

Springer Series in 42
Computational
Mathematics

Editorial Board

R. Bank
R.L. Graham
J. Stoer
R. Varga
H. Yserentant

For further volumes:
http://www.springer.com/series/797

•

Wolfgang Hackbusch

Tensor Spaces and Numerical
Tensor Calculus

123

Wolfgang Hackbusch
Max-Planck-Institute
for Mathematics in the Sciences
Leipzig
Germany

ISSN 0179-3632
ISBN 978-3-642-28026-9 e-ISBN 978-3-642-28027-6
DOI 10.1007/978-3-642-28027-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012933366

Mathematics Subject Classification (2010): 15A69, 35C99, 44A35, 46A32, 46B28, 47A80,
65F99 65N99 65L99 65N22 65N99 65Z05

c© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Dedicated to my grandchildren
Alina and Daniel

•

Preface

Large-scale problems have always been a challenge for numerical computations.
An example is the treatment of fully populated n × n matrices, when n2 is close
to or beyond the computer’s memory capacity. Here, the technique of hierarchical
matrices can reduce the storage and the cost of numerical operations from O(n2) to
almost O(n).

Tensors of order (or spatial dimension) d can be understood as d-dimensional
generalisations of matrices, i.e., arrays with d discrete or continuous arguments. For
large d ≥ 3, the data size nd is far beyond any computer capacity. This book con-
cerns the development of compression techniques for such high-dimensional data
via suitable data sparse representations. Just as the hierarchical matrix technique
was based on a successful application of the low-rank strategy, in recent years, re-
lated approaches have been used to solve high-dimensional tensor-based problems
numerically. The results are quite encouraging, at least for data arising from suitably
smooth problems, and even some problems of size nd = 10001000 have become
computable.

The methods, which can be applied to these multilinear problems, are black box-
like. In this aspect they are similar to methods used in linear algebra. On the other
hand, most of the methods are approximate (computing suitably accurate approx-
imations to quantities of interest) and in this respect they are similar to some ap-
proaches in analysis. The crucial key step is the construction of an efficient new
tensor representation, thus overcoming the drawbacks of the traditional tensor for-
mats. In 2009 a rapid progress could be achieved by introducing the hierarchical
format as well as the TT format for the tensor representation. Under suitable con-
ditions these formats allow a stable representation and a reduction of the data size
from nd to O(dn). Another recent advancement is the so-called tensorisation tech-
nique, which may replace the size n by O(log n). Altogether, there is the hope that
problems of size hd can be reduced to size O(d log(n)) = O(log(nd)), i.e., we
reduce the problems to logarithmical size.

It turned out that some of the raw material for the methods described in this book
was already known in the literature belonging to other (applied) fields outside of
mathematics, such as chemistry. However, the particular language used to describe

vii

viii Preface

this material, combined with the fact that the algorithms (although potentially of
general interest) were given names relating them only to a particular application,
prevented the dissemination of the methods to a wider audience.

One of the aims of this monograph is to introduce a more mathematically-based
treatment of this topic. Through this more abstract approach, the methods can be
better understood, independently of the physical or technical details of the applica-
tion.

The material in this monograph has been used for as the basis for a course of
lectures at the University Leipzig in the summer semester of 2010.

The author’s research at the Max-Planck Institute of Mathematics in the Sci-
ences has been supported by a growing group of researchers. In particular we would
like to mention: B. Khoromskij, M. Espig, L. Grasedyck, and H.J. Flad. The help
of H.J. Flad was indispensable for bridging the terminological gap between quan-
tum chemistry and mathematics. The research programme has also benefited from
the collaboration between the group in Leipzig and the group of E. Tyrtyshnikov in
Moscow. E. Tyrtyshnikov and I. Oseledets have delivered important contributions to
the subject. A further inspiring cooperation1 involves R. Schneider (TU Berlin, for-
merly University of Kiel). The author thanks many more colleagues for stimulating
discussions.

The author also wishes to express his gratitude to the publisher Springer for their
friendly cooperation.

Leipzig, October 2011 Wolfgang Hackbusch

1 The groups in Leipzig and Berlin thank the Germany Research Society (DFG) for financial
support within the priority program 1324 (Schwerpunktprogramm “Extraktion quantifizierbarer
Information aus komplexen Systemen”). The Russian partner has been supported by the Russian
Foundation for Basic Research RFBR.

Contents

Part I Algebraic Tensors

1 Introduction . 3
1.1 What are Tensors? . 3

1.1.1 Tensor Product of Vectors . 3
1.1.2 Tensor Product of Matrices, Kronecker Product 5
1.1.3 Tensor Product of Functions . 6

1.2 Where do Tensors Appear? . 7
1.2.1 Tensors as Coefficients . 7
1.2.2 Tensor Decomposition for Inverse Problems 8
1.2.3 Tensor Spaces in Functional Analysis 9
1.2.4 Large-Sized Tensors in Analysis Applications 10
1.2.5 Tensors in Quantum Chemistry . 12

1.3 Tensor Calculus . 13
1.4 Preview . 13

1.4.1 Part I: Algebraic Properties . 13
1.4.2 Part II: Functional Analysis of Tensors 14
1.4.3 Part III: Numerical Treatment . 15
1.4.4 Topics Outside the Scope of the Monograph 16

1.5 Software . 17
1.6 Comments about the Early History of Tensors 17
1.7 Notations . 18

2 Matrix Tools . 21
2.1 Matrix Notations . 21
2.2 Matrix Rank . 23
2.3 Matrix Norms . 24
2.4 Semidefinite Matrices . 26
2.5 Matrix Decompositions . 27

2.5.1 Cholesky Decomposition . 27

ix

x Contents

2.5.2 QR Decomposition . 28
2.5.3 Singular Value Decomposition . 29

2.6 Low-Rank Approximation . 35
2.7 Linear Algebra Procedures . 38
2.8 Deflation Techniques . 40

2.8.1 Dominant Columns . 40
2.8.2 Reduction of a Basis . 44

3 Algebraic Foundations of Tensor Spaces . 47
3.1 Vector Spaces . 47

3.1.1 Basic Facts . 47
3.1.2 Free Vector Space over a Set . 48
3.1.3 Quotient Vector Space . 49
3.1.4 Linear and Multilinear Mappings, Algebraic Dual 50

3.2 Tensor Product . 51
3.2.1 Formal Definition . 51
3.2.2 Characteristic Properties . 53
3.2.3 Isomorphism to Matrices for d = 2 . 55
3.2.4 Tensors of Order d ≥ 3 . 56
3.2.5 Different Types of Isomorphisms . 59
3.2.6 Rr and Tensor Rank . 61

3.3 Linear and Multilinear Mappings . 70
3.3.1 Definition on the Set of Tuples . 70
3.3.2 Embeddings . 72

3.4 Tensor Spaces with Algebra Structure . 78
3.5 Symmetric and Antisymmetric Tensor Spaces 80

3.5.1 Basic Definitions . 80
3.5.2 Quantics . 82
3.5.3 Determinants . 83

Part II Functional Analysis of Tensor Spaces

4 Banach Tensor Spaces . 87
4.1 Banach Spaces . 87

4.1.1 Norms . 87
4.1.2 Basic Facts about Banach Spaces . 88
4.1.3 Examples . 89
4.1.4 Operators . 91
4.1.5 Dual Spaces . 93
4.1.6 Examples . 94
4.1.7 Weak Convergence . 95
4.1.8 Continuous Multilinear Mappings . 97

4.2 Topological Tensor Spaces . 97
4.2.1 Notations . 97
4.2.2 Continuity of the Tensor Product and Crossnorms 98

Contents xi

4.2.3 Examples . 100
4.2.4 Projective Norm ‖·‖∧(V,W) . 103
4.2.5 Examples . 105
4.2.6 Absolutely Convergent Series . 106
4.2.7 Duals and Injective Norm ‖·‖∨(V,W) . 107
4.2.8 Examples . 113
4.2.9 Reasonable Crossnorms . 114
4.2.10 Examples and Counterexamples . 116
4.2.11 Reflexivity . 118
4.2.12 Uniform Crossnorms . 118
4.2.13 Nuclear and Compact Operators . 121

4.3 Tensor Spaces of Order d . 122
4.3.1 Continuity, Crossnorms . 122
4.3.2 Recursive Definition of the Topological Tensor Space 124
4.3.3 Projective Norm ‖·‖∧ . 127
4.3.4 Injective Norm ‖·‖∨ . 129
4.3.5 Examples . 132
4.3.6 Intersections of Banach Tensor Spaces 132
4.3.7 Tensor Space of Operators . 135

4.4 Hilbert Spaces . 136
4.4.1 Scalar Product . 136
4.4.2 Basic Facts about Hilbert Spaces . 137
4.4.3 Operators on Hilbert Spaces . 138
4.4.4 Orthogonal Projections . 141

4.5 Tensor Products of Hilbert Spaces . 142
4.5.1 Induced Scalar Product . 142
4.5.2 Crossnorms . 144
4.5.3 Tensor Products of L(Vj , Vj) . 145
4.5.4 Partial Scalar Products . 146

4.6 Tensor Operations . 147
4.6.1 Vector Operations . 147
4.6.2 Matrix-Vector Multiplication . 148
4.6.3 Matrix-Matrix Operations . 148
4.6.4 Hadamard Multiplication . 150
4.6.5 Convolution . 150
4.6.6 Function of a Matrix . 152

4.7 Symmetric and Antisymmetric Tensor Spaces 154
4.7.1 Hilbert Structure . 154
4.7.2 Banach Spaces and Dual Spaces . 155

5 General Techniques . 157
5.1 Vectorisation . 157

5.1.1 Tensors as Vectors . 157
5.1.2 Kronecker Tensors . 159

xii Contents

5.2 Matricisation . 160
5.2.1 General Case . 161
5.2.2 Finite Dimensional Case . 162
5.2.3 Hilbert Structure . 167
5.2.4 Matricisation of a Family of Tensors . 170

5.3 Tensorisation . 170

6 Minimal Subspaces . 173
6.1 Statement of the Problem, Notations . 173
6.2 Tensors of Order Two . 174

6.2.1 Existence of Minimal Subspaces . 174
6.2.2 Use of the Singular Value Decomposition 177
6.2.3 Minimal Subspaces for a Family of Tensors 178

6.3 Minimal Subspaces of Higher Order Tensors . 179
6.4 Hierarchies of Minimal Subspaces and rankα 181
6.5 Sequences of Minimal Subspaces . 184
6.6 Minimal Subspaces of Topological Tensors . 187

6.6.1 Interpretation of Umin
j (v) . 187

6.6.2 Case of dim(Umin
j (v)) <∞ . 187

6.6.3 The General Banach Space Case . 189
6.6.4 Hilbert Spaces . 193

6.7 Minimal Subspaces for Intersection Spaces . 193
6.7.1 Algebraic Tensor Space . 194
6.7.2 Topological Tensor Space . 194

6.8 Linear Constraints and Regularity Properties . 195

Part III Numerical Treatment

7 r-Term Representation . 199
7.1 Representations in General . 199

7.1.1 Concept . 199
7.1.2 Computational and Memory Cost . 200
7.1.3 Tensor Representation versus Tensor Decomposition 201

7.2 Full and Sparse Representation . 202
7.3 r-Term Representation . 204
7.4 Sensitivity . 206
7.5 Representation of Vj . 208
7.6 Conversions between Formats . 210

7.6.1 From Full Representation into r-Term Format 210
7.6.2 From r-Term Format into Full Representation 211
7.6.3 From r -Term into N -Term Format with r >N 211
7.6.4 Sparse Grid Approach . 212
7.6.5 From Sparse Format into r-Term Format 214

7.7 Modifications . 216

Contents xiii

8 Tensor Subspace Representation . 217
8.1 The Set Tr . 217
8.2 Tensor Subspace Formats . 220

8.2.1 General Frame or Basis . 220
8.2.2 Orthonormal Basis . 223
8.2.3 Tensors in K

I . 225
8.2.4 Hybrid Format . 228

8.3 Higher-Order Singular Value Decomposition (HOSVD) 230
8.3.1 Definitions . 230
8.3.2 Examples . 232
8.3.3 Computation and Computational Cost 233

8.4 Sensitivity . 239
8.5 Relations between the Different Formats . 241

8.5.1 Conversion from Full Representation into Tensor Subspace
Format . 241

8.5.2 Conversion fromRr to Tr . 241
8.5.3 Conversion from Tr to Rr . 244
8.5.4 Comparison of Both Representations . 245
8.5.5 r-Term Format for Large r > N . 246

8.6 Joining two Tensor Subspace Representation Systems 247
8.6.1 Setting of the Problem . 247
8.6.2 Trivial Joining of Frames . 247
8.6.3 Common Bases . 248

9 r-Term Approximation . 249
9.1 Two Approximation Problems . 249
9.2 Discussion for r = 1 . 251
9.3 Discussion in the Matrix Case d = 2 . 252
9.4 Discussion in the Tensor Case d ≥ 3 . 254

9.4.1 Non-Closedness ofRr . 254
9.4.2 Border Rank . 255
9.4.3 Stable and Unstable Sequences . 256
9.4.4 A Greedy Algorithm . 258

9.5 Numerical Approaches for the r-Term Approximation 259
9.5.1 Use of the Hybrid Format . 259
9.5.2 Alternating Least-Squares Method . 261
9.5.3 Stabilised Approximation Problem. 265
9.5.4 Newton’s Approach . 266

9.6 Generalisations . 267
9.7 Analytical Approaches for the r-Term Approximation 268

9.7.1 Quadrature . 269
9.7.2 Approximation by Exponential Sums 270
9.7.3 Sparse Grids . 280

xiv Contents

10 Tensor Subspace Approximation . 281
10.1 Truncation to Tr . 281

10.1.1 HOSVD Projection . 282
10.1.2 Successive HOSVD Projection . 284
10.1.3 Examples . 286
10.1.4 Other Truncations . 287

10.2 Best Approximation in the Tensor Subspace Format 289
10.2.1 General Setting . 289
10.2.2 Approximation with Fixed Format . 290

10.3 Alternating Least-Squares Method (ALS) . 292
10.3.1 Algorithm . 292
10.3.2 ALS for Different Formats . 294
10.3.3 Approximation with Fixed Accuracy . 298

10.4 Analytical Approaches for the Tensor Subspace Approximation 299
10.4.1 Linear Interpolation Techniques . 300
10.4.2 Polynomial Approximation . 303
10.4.3 Polynomial Interpolation . 305
10.4.4 Sinc Approximations . 306

10.5 Simultaneous Approximation . 312
10.6 Résumé . 314

11 Hierarchical Tensor Representation . 315
11.1 Introduction . 315

11.1.1 Hierarchical Structure . 315
11.1.2 Properties . 317
11.1.3 Historical Comments . 318

11.2 Basic Definitions . 319
11.2.1 Dimension Partition Tree . 319
11.2.2 Algebraic Characterisation, Hierarchical

Subspace Family . 321
11.2.3 Minimal Subspaces . 323
11.2.4 Conversions . 325

11.3 Construction of Bases . 326
11.3.1 Hierarchical Bases Representation . 327
11.3.2 Orthonormal Bases . 336
11.3.3 HOSVD Bases . 339
11.3.4 Sensitivity . 345
11.3.5 Conversion fromRr toHr Revisited . 352

11.4 Approximations inHr . 353
11.4.1 Best Approximation in Hr . 353
11.4.2 HOSVD Truncation toHr . 355

11.5 Joining two Hierarchical Tensor Representation Systems 364
11.5.1 Setting of the Problem . 364
11.5.2 Trivial Joining of Frames . 365
11.5.3 Common Bases . 366

11.6 Conversion from Sparse-Grid . 370

Contents xv

12 Matrix Product Systems . 371
12.1 Basic TT Representation . 371

12.1.1 Finite Dimensional Case . 371
12.1.2 Function Case . 373

12.2 TT Format as Hierarchical Format . 374
12.2.1 Related Subspaces . 374
12.2.2 From Subspaces to TT Coefficients . 375
12.2.3 From Hierarchical Format to TT Format 376
12.2.4 Construction with Minimal ρj . 377
12.2.5 Extended TT Representation . 377
12.2.6 Properties . 378
12.2.7 HOSVD Bases and Truncation . 379

12.3 Conversions . 380
12.3.1 Conversion fromRr to Tρ . 380
12.3.2 Conversion from Tρ toHr with a General Tree 380
12.3.3 Conversion fromHr to Tρ . 382

12.4 Cyclic Matrix Products and Tensor Network States 384

13 Tensor Operations . 385
13.1 Addition . 386

13.1.1 Full Representation . 386
13.1.2 r-Term Representation . 387
13.1.3 Tensor Subspace Representation . 387
13.1.4 Hierarchical Representation . 389

13.2 Entry-wise Evaluation . 389
13.2.1 r-Term Representation . 390
13.2.2 Tensor Subspace Representation . 390
13.2.3 Hierarchical Representation . 391
13.2.4 Matrix Product Representation . 391

13.3 Scalar Product . 392
13.3.1 Full Representation . 393
13.3.2 r-Term Representation . 393
13.3.3 Tensor Subspace Representation . 394
13.3.4 Hybrid Format . 396
13.3.5 Hierarchical Representation . 397
13.3.6 Orthonormalisation . 401

13.4 Change of Bases . 401
13.4.1 Full Representation . 402
13.4.2 Hybrid r-Term Representation . 402
13.4.3 Tensor Subspace Representation . 402
13.4.4 Hierarchical Representation . 403

13.5 General Binary Operation . 404
13.5.1 r-Term Representation . 404
13.5.2 Tensor Subspace Representation . 404
13.5.3 Hierarchical Representation . 405

xvi Contents

13.6 Hadamard Product of Tensors . 406
13.7 Convolution of Tensors . 407
13.8 Matrix-Matrix Multiplication . 408
13.9 Matrix-Vector Multiplication . 408

13.9.1 Identical Formats . 409
13.9.2 Separable Form (13.25a) . 409
13.9.3 Elementary Kronecker Tensor (13.25b) 410
13.9.4 Matrix in p-Term Format (13.25c) . 411

13.10Functions of Tensors, Fixed Point Iterations . 412
13.11Example: Operations for Quantum Chemistry Applications 414

14 Tensorisation . 417
14.1 Basics . 417

14.1.1 Notations, Choice of TD . 417
14.1.2 FormatHtens

ρ . 419
14.1.3 Operations with Tensorised Vectors . 420
14.1.4 Application to Representations by Other Formats 421
14.1.5 Matricisation . 423
14.1.6 Generalisation to Matrices . 423

14.2 Approximation of Grid Functions . 425
14.2.1 Grid Functions . 425
14.2.2 Exponential Sums . 425
14.2.3 Polynomial Approximations for Asymptotically Smooth

Functions . 426
14.2.4 Multiscale Feature and Conclusion . 427
14.2.5 Local Grid Refinement . 428

14.3 Convolution . 429
14.3.1 Notations . 429
14.3.2 Preview and Motivation . 430
14.3.3 Tensor Algebra A(�0) . 432
14.3.4 Algorithm . 438

14.4 Fast Fourier Transform . 441
14.4.1 FFT for Cn Vectors . 441
14.4.2 FFT for Tensorised Vectors . 442

14.5 Tensorisation of Functions . 444
14.5.1 Isomorphism ΦFn . 444
14.5.2 Scalar Products . 445
14.5.3 Convolution . 446
14.5.4 Continuous Functions . 446

15 Generalised Cross Approximation . 447
15.1 Approximation of General Tensors . 447

15.1.1 Approximation of Multivariate Functions 448
15.1.2 Multiparametric Boundary Value Problems and PDE with

Stochastic Coefficients . 449
15.1.3 Function of a Tensor . 451

Contents xvii

15.2 Notations . 451
15.3 Properties in the Matrix Case . 453
15.4 Case d ≥ 3 . 455

15.4.1 Matricisation . 456
15.4.2 Nestedness . 457
15.4.3 Algorithm . 459

16 Applications to Elliptic Partial Differential Equations 463
16.1 General Discretisation Strategy . 463
16.2 Solution of Elliptic Boundary Value Problems 464

16.2.1 Separable Differential Operator . 465
16.2.2 Discretisation . 465
16.2.3 Solution of the Linear System . 467

16.3 Solution of Elliptic Eigenvalue Problems . 469
16.3.1 Regularity of Eigensolutions . 469
16.3.2 Iterative Computation . 471
16.3.3 Alternative Approaches . 472

16.4 On Other Types of PDEs . 472

17 Miscellaneous Topics . 473
17.1 Minimisation Problems on V . 473

17.1.1 Algorithm . 473
17.1.2 Convergence . 474

17.2 Solution of Optimisation Problems involving Tensor Formats 475
17.2.1 Formulation of the Problem . 476
17.2.2 Reformulation, Derivatives, and Iterative Treatment 477

17.3 Ordinary Differential Equations . 478
17.3.1 Tangent Space . 478
17.3.2 Dirac-Frenkel Discretisation . 478
17.3.3 Tensor Subspace Format Tr . 479
17.3.4 Hierarchical FormatHr . 481

17.4 ANOVA . 483
17.4.1 Definitions . 483
17.4.2 Properties . 484
17.4.3 Combination with Tensor Representations 486
17.4.4 Symmetric Tensors . 486

References . 487

Index . 495

•

List of Symbols and Abbreviations

Symbols

[a b . . .] aggregation of vectors a, b ∈ K
I , . . . into a matrix of size I × J

[A B . . .] aggregation of matrices A ∈ K
I×J1 , B ∈ K

I×J2, . . . into a matrix of
size I × (J1 ∪ J2 ∪ . . .)

�·� smallest integer ≥ ·
	·
 largest integer≤ ·
〈·, ·〉 scalar product; in K

I usually the Euclidean scalar product; cf. §2.1,
§4.4.1

〈·, ·〉α partial scalar product; cf. (4.66)
〈·, ·〉H scalar product of a (pre-)Hilbert space H
〈·, ·〉HS Hilbert-Schmidt scalar product; cf. Definition 4.117
〈·, ·〉j scalar product of the (pre-)Hilbert space Vj from V =

⊗d
j=1 Vj

〈·, ·〉F Frobenius scalar product of matrices; cf. (2.10)
cardinality of a set
⇀ weak convergence; cf. §4.1.7
•|τ×σ restriction of a matrix to the matrix block τ × σ; cf. §1.7
•⊥ orthogonal complement, cf. §4.4.1
•H Hermitean transpose of a matrix or vector
•T transpose of a matrix or vector
•−T, •−H inverse matrix of •T or •H, respectively
• either complex-conjugate value of a scalar or closure of a set
× Cartesian product of sets: A×B := {(a, b) : a ∈ A, b ∈ B}
×d

j=1 d-fold Cartesian product of sets
×j j-mode product, cf. Footnote 6 on page 5; not used here
� convolution; cf. §4.6.5
∧ exterior product; cf. §3.5.1
� Hadamard product; cf. (4.72a)
⊕ direct sum; cf. footnote on page 21
⊗d d-fold tensor product; cf. Notation 3.23

xix

xx List of Symbols and Abbreviations

v ⊗ w,
⊗d

j=1 v
(j) tensor product of two or more vectors; cf. §3.2.1

V ⊗W,
⊗d

j=1 Vj tensor space generated by two or more vector spaces; cf. §3.2.1

V ⊗aW, a
⊗d

j=1 Vj algebraic tensor space; cf. (3.11) and §3.2.4

V ⊗‖·‖W, ‖·‖
⊗d

j=1 Vj topological tensor space; cf. (3.12); §4.2
⊗

j �=k cf. (3.21b)
⊂ the subset relation A ⊂ B includes the case A = B
∪̇ disjoint union
∼ equivalence relation; cf. §3.1.3, §4.1.1
• ∼= • isomorphic spaces; cf. §3.2.5
• ≤ • semi-ordering of matrices; cf. (2.14)
‖·‖ norm; cf. §4.1.1
‖·‖∗ dual norm; cf. Lemma 4.18
‖·‖2 Euclidean norm of vector or tensor (cf. (2.12) and Example 4.126) or

spectral norm of a matrix (cf. (2.13))
‖·‖F Frobenius norm of matrices; cf. (2.9)
‖·‖HS Hilbert-Schmidt norm; cf. Definition 4.117
‖·‖SVD,p Schatten norm; cf. (4.17)
‖·‖X norm of a space X
‖·‖X←Y associated matrix norm (cf. (2.11) or operator norm (cf. (4.6a))
‖·‖1 � ‖·‖2 semi-ordering of norms; cf. §4.1.1
‖·‖∧(V,W) , ‖·‖∧ projective norm; cf. §4.2.4
‖·‖∨(V,W) , ‖·‖∨ injective norm; cf. §4.2.7

Greek Letters

α often a subset of the set D of directions (cf. (5.3a,b)) or vertex of the
tree TD (cf. Definition 11.2)

αc complementD\α; cf. (5.3c)
α1, α2 often sons of a vertex α ∈ TD; cf. §11.2.1
δij Kronecker delta; cf. (2.1)
ρ tuple of TT ranks; cf. Definition 12.1
ρ(·) spectral radius of a matrix; cf. §4.6.6
ρxyz(·) tensor representation by format ‘xyz’; cf. §7.1
ρframe general tensor subspace format; cf. (8.13c)
ρHOSVD HOSVD tensor subspace format; cf. (8.26)
ρHTR hierarchical format; cf. (11.28)
ρHOSVD
HTR hierarchical HOSVD format; cf. Definition 11.36
ρorthHTR orthonormal hierarchical format; cf. (11.38)
ρtensHTR TT format for tensorised vectors; cf. (14.5a)
ρhybr, ρ

hybr
orth , ρ

hybr
r-term hybrid formats; cf. §8.2.4

ρj TT rank; cf. (12.1a) and Definition 12.1
ρorth orthonormal tensor subspace format; cf. (8.8b)

List of Symbols and Abbreviations xxi

ρr-term r-term format; cf. (7.7a)
ρsparse sparse format; cf. (7.5)
ρTS general tensor subspace format; cf. (8.6c)
ρTT TT format; cf. (12.7)
σ(·) spectrum of a matrix; cf. §4.6.6
σi singular value of the singular value decomposition; cf. (2.19a), (4.59)
Σ diagonal matrix of the singular value decomposition; cf. (2.19a)
ϕ, ψ often linear mapping or functional (cf. §3.1.4)
Φ, Ψ often linear mapping or operator (cf. §4.1.4)
Φ′ dual of Φ; cf. Definition 4.20
Φ∗ adjoint of Φ; cf. Definition 4.113

Latin Letters

a coefficient tensor, cf. Remark 3.29
A, B, . . . , A1, A2, . . . often used for linear mapping (from one vector space into

another one). This includes matrices.
A, B, C, . . . tensor products of operators or matrices
A(j) mapping from L(Vj ,Wj), j-th component in a Kronecker product
A(V) tensor algebra generated by V ; cf. (3.43)
A(V) antisymmetric tensor space generated by V ; cf. Definition 3.62
Arcosh area [inverse] hyperbolic cosine: cosh(Arcosh(x)) = x

b
(j)
i ,b

(α)
i basis vectors; cf. (8.5a), (11.20a)

B,Bj ,Bα basis (or frame), Bj=
[
b
(j)
1 , . . . , b

(j)
r

]
, cf. (8.5a-d);

in the case of tensor spaces: Bα =
[
b
(α)
1 , . . . ,b

(α)
rα

]
, cf. (11.20a)

c0(I) subset of �∞(I); cf. (4.4)
c
(α,�)
ij coefficients of the matrix C(α,�); cf. (11.24)
C field of complex numbers
C(D), C0(D) bounded, continuous functions on D; cf. Example 4.8
Cα tuple (C(α,�))1≤�≤rα of C(α,�) from below; cf. (11.27)

C(α,�) coefficient matrix at vertex α characterising the basis vector b(α)
� ; cf.

(11.24)
Cj ,Cα contractions; cf. Definition 4.130
CN (f, h), C(f, h) sinc interpolation; cf. Definition 10.31
d order of a tensor; cf. §1.1.1
D set {1, . . . , d} of directions; cf. (5.3b)
Dδ analyticity stripe; cf. (10.38)
depth(·) depth of a tree; cf. (11.7)
det(·) determinant of a matrix
diag{. . .} diagonal matrix with entries . . .
dim(·) dimension of a vector space
e(i) i-th unit vector of KI (i ∈ I); cf. (2.2)

xxii List of Symbols and Abbreviations

EN (f, h), E(f, h) sinc interpolation error; cf. Definition 10.31
Er(·) exponential sum; cf. (9.27a)
Eρ regularity ellipse; cf. §10.4.2.2
F(W,V) space of finite rank operators; cf. §4.2.13
G(·) Gram matrix of a set of vectors; cf. (2.16), (11.35)
H, H1, H2, . . . (pre-)Hilbert spaces
H(Dδ) Banach space from Definition 10.33
H1,p(D) Sobolev space; cf. Example 4.41
HS(V,W) Hilbert-Schmidt space; cf. Definition 4.117
id identity mapping
i, j, k, . . . index variables
i, j,k multi-indices from a product index set I etc.
I identity matrix or index set
I, I[a,b] interpolation operator; cf. §10.4.3
I, J, K, I1, I2, . . . , J1, J2, . . . often used for index sets
I, J index sets defined by products I1 × I2 × . . . of index sets
j often index variable for the directions from {1, . . . , d}
K underlying field of a vector space; usually R or C
K(W,V) space of compact operators; cf. §4.2.13
�(I) vector space KI ; cf. Example 3.1
�0(I) subset of �(I); cf. (3.2)
�p(I) Banach space from Example 4.5; 1 ≤ p ≤ ∞
level level of a vertex of a tree, cf. (11.6)
L often depth of a tree, cf. (11.7)
L lower triangular matrix in Cholesky decomposition; cf. §2.5.1
L(T) set of leaves of the tree T ; cf. (11.9)
L(V,W) vector space of linear mappings from V into W ; cf. §3.1.4
L(X,Y) space of continuous linear mappings from X into Y ; cf. §4.1.4
Lp(D) Banach space; cf. Example 4.7; 1 ≤ p ≤ ∞
Mα,Mj matricisation isomorphisms; cf. Definition 5.3
n, nj often dimension of a vector space V, Vj
N set {1, 2, . . .} of natural numbers
N0 set N ∪ {0} = {0, 1, 2, . . .}
N (W,V) space of nuclear operators; cf. §4.2.13
Nxyz arithmetical cost of ‘xyz’
Nxyz

mem storage cost of ‘xyz’; cf. (7.8a)
NLSVD cost of a left-sided singular value decomposition; cf. p. 2.21
NQR cost of a QR decomposition; cf. Lemma 2.19
NSVD cost of a singular value decomposition; cf. Corollary 38
o(·), O(·) Landau symbols; cf. (4.12)
P permutation matrix (cf. (2.18)) or projection
PA alternator, projection onto A(V); cf. (3.45)
PS symmetriser, projection onto S(V); cf. (3.45)
P, Pj , etc. often used for projections in tensor spaces

PHOSVD
j , P

(rj)
j,HOSVD,P

HOSVD
r HOSVD projections; cf. Lemma 10.1

List of Symbols and Abbreviations xxiii

P ,Pp,Pp spaces of polynomials; cf. §10.4.2.1
Q unitary matrix of QR decomposition; cf. (2.17a)
r matrix rank or tensor rank (cf. §2.2), representation rank (cf. Definition

7.3), or bound of ranks
r rank (rα)α∈TD

connected with hierarchical formatHr; cf. §11.2.2
rα components of r from above
r rank (r1, . . . , rd) connected with tensor subspace representation in Tr
rj components of r from above
rmin(v) tensor subspace rank; cf. Remark 8.4
range(·) range of a matrix or operator; cf. §2.1
rank(·) rank of a matrix or tensor; cf. §2.2 and (3.24)
rank(·) border rank; cf. (9.11)
rankα(·), rankj(·) α-rank and j-rank; cf. Definition 5.7
rmax maximal rank; cf. (2.5) and §3.2.6.4
R upper triangular matrix of QR decomposition; cf. (2.17a)
R field of real numbers
R
J set of J-tuples; cf. page 4
Rr set of matrices or tensors of rank ≤ r; cf. (2.6) and (3.22)
S(α) set of sons of a tree vertex α; cf. Definition 11.2
S(V) symmetric tensor space generated by V ; cf. Definition 3.62
S(k, h)(·) see (10.36)
sinc(·) sinc function: sin(πx)/(πx)
span{·} subspace spanned by ·
supp(·) support of a mapping; cf. §3.1.2
Tα subtree of TD; cf. Definition 11.6
TD dimension partition tree; cf. Definition 11.2
T

(�)
D set of tree vertices at level �; cf. (11.8)
TTT
D linear tree used for the TT format; cf. §12
Tr set of tensors of representation rank r; cf. Definition 8.1
Tρ set of tensors of TT representation rank ρ; cf. (12.4)
trace(·) trace of a matrix or operator; cf. (2.8) and (4.60)
tridiag{a, b, c} tridiagonal matrix (a: lower diagonal entries, b : diagonal, c: up-

per diagonal entries)
U vector space, often a subspace
U, V unitary matrices of the singular value decomposition; cf. (2.19b)
ui, vi left and right singular vectors of SVD; cf. (2.21)
u,v,w vectors
u,v,w tensors
U tensor space, often a subspace of a tensor space
Uα subspace of the tensor space Vα; cf. (11.10)
{Uα}α∈TD hierarchical subspace family; cf. Definition 11.8
U ′, V ′,W ′, . . . algebraic duals of U, V,W, . . .; cf. (3.7)
U Ij (v), U

II
j (v), U IIIj (v), U IVj (v) see Lemma 6.12

Umin
j (v),Umin

α (v) minimal subspaces of a tensor v; Def. 6.3, (6.10a), and §6.4
vi either the i-th component of v or the i-th vector of a set of vectors

xxiv List of Symbols and Abbreviations

v(j) vector of Vj corresponding to the j-th direction of the tensor; cf. §3.2.4
v[k] tensor belonging to V[k]; cf. (3.21d)
Vfree(S) free vector space of a set S; cf. §3.1.2
Vα tensor space

⊗
j∈α Vj ; cf. (5.3d)

V[j] tensor space
⊗

k �=j Vj ; cf. (3.21a) and §5.2
V,W, . . . , X, Y, . . . vector spaces
V ′,W ′, . . . , X ′, Y ′, . . . algebraically dual vector spaces; cf. (3.7)
V,W,X,Y tensor spaces
X , Y often used for Banach spaces; cf. §4.1
X∗, Y ∗, . . . dual spaces containing the continuous functionals; cf. §4.1.5
V ∗∗ bidual space; cf. §4.1.5

Abbreviations and Algorithms

ALS alternating least-squares method, cf. §9.5.2
ANOVA analysis of variance, cf. §17.4
DCQR cf. (2.40)
DFT density functional theory, cf. §13.11
DFT discrete Fourier transform, cf. §14.4.1
DMRG density matrix renormalisation group, cf. §17.2.2
FFT fast Fourier transform, cf. §14.4.1
HOOI higher-order orthogonal iteration; cf. §10.3.1
HOSVD higher-order singular value decomposition; cf. §8.3
HOSVD(·),HOSVD∗(·),HOSVD∗∗(·) procedures constructing the hierar-

chical HOSVD format; cf. (11.46a-c)
HOSVD-lw,HOSVD∗-lw levelwise procedures; cf. (11.46a-c), (11.47a,b)
HOSVD-TrSeq sequential truncation procedure; cf. (11.63)
HOSVDα(v),HOSVDj(v) computation of HOSVD data; cf. (8.30a)
JoinBases joining two bases; cf. (2.35)
JoinONB joining two orthonormal bases; cf. (2.36)
LOBPCG locally optimal block preconditioned conjugate gradient, cf. (16.13)
LSVD left-sided reduced SVD; cf. (2.32)
MALS modified alternating least-squares method, cf. §17.2.2
MPS matrix product state, matrix product system; cf. §12
PEPS projected entangled pairs states, cf. footnote 5 on page 384
PGD proper generalised decomposition, cf. (17.1.1)
PQR pivotised QR decomposition; cf. (2.30)
QR QR decomposition; §2.5.2
REDUCE,REDUCE∗ truncation procedure; cf. §11.4.2
RQR reduced QR decomposition; cf. (2.29)
RSVD reduced SVD; cf. (2.31)
SVD singular value decomposition; cf. §2.5.3

Part I
Algebraic Tensors

In Chap. 1, we start with an elementary introduction into the world of tensors (the
precise definitions are in Chap. 3) and explain where large-sized tensors appear.
This is followed by a description of the Numerical Tensor Calculus. Section 1.4
contains a preview of the material of the three parts of the book. We conclude with
some historical remarks and an explanation of the notation.

The numerical tools which will be developed for tensors, make use of linear
algebra methods (e.g., QR and singular value decomposition). Therefore, these
matrix techniques are recalled in Chap. 2.

The definition of the algebraic tensor space structure is given in Chap. 3. This
includes linear mappings and their tensor product.

Chapter 1
Introduction

In view of all that . . . , the many obstacles
we appear to have surmounted, what casts
the pall over our victory celebration? It is
the curse of dimensionality, a malediction that
has plagued the scientist from earliest days.
(Bellman [11, p. 94]).

1.1 What are Tensors?

For a first rough introduction into tensors, we give a preliminary definition of tensors
and the tensor product. The formal definition in the sense of multilinear algebra will
be given in Chap. 3. In fact, below we consider three types of tensors which are of
particular interest in later applications.

1.1.1 Tensor Product of Vectors

While vectors have entries vi with one index and matrices have entries Mij with
two indices, tensors will carry d indices. The natural number1 d defines the order of
the tensor. The indices

j ∈ {1, . . . , d}

correspond to the ‘j-th direction’, ‘j-th position’, ‘j-th dimension’, ‘j-th axis’,
‘j-th site’, or2 ‘j-th mode’. The names ‘direction’ and ‘dimension’ originate from
functions f(x1, . . . , xd) (cf. §1.1.3), where the variable xj corresponds to the j-th
spatial direction.

For each j ∈ {1, . . . , d} we fix a (finite) index set Ij , e.g., Ij = {1, . . . , nj}. The
Cartesian product of these index sets yields

I := I1 × . . .× Id .

The elements of I are multi-indices or d-tuples i = (i1, . . . , id) with ij ∈ Ij .
A tensor v is defined by its entries

vi = v[i] = v[i1, . . . , id] ∈ R.

1 The letter d is chosen because of its interpretation as spatial dimension.
2 The usual meaning of the term ‘mode’ is ‘eigenfunction’.

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 1,
© Springer-Verlag Berlin Heidelberg 2012

3

4 1 Introduction

We may write v := (v[i])i∈I . Mathematically, we can express the set of these
tensors by R

I. Note that for any index set J, RJ is the vector space

R
J = {v = (vi)i∈J : vi ∈ R}

of dimension #J (the sign # denotes the cardinality of a set).

Notation 1.1. Both notations, vi with subscript i and v[i] with square brackets are
used in parallel. The notation with square brackets is preferred for multiple indices
and in the case of secondary subscripts: v[i1, . . . , id] instead of vi1,...,id .

There is an obvious entrywise definition of the multiplication λv of a tensor by a
real number and of the (commutative) addition v+w of two tensors. Therefore the
set of tensors has the algebraic structure of a vector space (here over the field R). In
particular in scientific fields more remote from mathematics and algebra, a tensor
v[i1, . . . , id] is regarded as data structure and called ‘d-way array’.

The relation between the vector spaces RIj and R
I is given by the tensor product.

For vectors v(j) ∈ R
Ij (1 ≤ j ≤ d) we define the tensor product3,4

v := v(1) ⊗ v(2) ⊗ . . .⊗ v(d) =
d⊗

j=1

v(j) ∈ R
I

via its entries

vi = v[i1, . . . , id] = v
(1)
i1
· v(2)i2 · . . . · v

(d)
id

for all i ∈ I. (1.1)

The tensor space is written as tensor product
⊗d

j=1 R
Ij = R

I1 ⊗ R
I2 ⊗ . . .⊗ R

Id

of the vector spaces RIj defined by the span
d⊗

j=1

R
Ij = span

{
v(1) ⊗ v(2) ⊗ . . .⊗ v(d) : v(j) ∈ R

Ij , 1 ≤ j ≤ d
}
. (1.2)

The generating products v(1) ⊗ v(2) ⊗ . . . ⊗ v(d) are called elementary tensors.5

Any element v ∈
⊗d

j=1 R
Ij of the tensor space is called a (general) tensor. It is

important to notice that, in general, a tensor v ∈
⊗d

j=1 R
Ij is not representable as

elementary tensor, but only as a linear combination of such products.
The definition (1.2) implies

⊗d
j=1 R

Ij ⊂ R
I. Taking all linear combinations of

elementary tensors defined by the unit vectors, one easily proves
⊗d

j=1 R
Ij = R

I.
In particular, because of #I =

∏d
j=1 #Ij , the dimension of the tensor space is

dim

(
d⊗

j=1

R
Ij

)

=

d∏

j=1

dim(RIj).

3 In some publications the term ‘outer product’ is used instead of ‘tensor product’. This contradicts
another definition of the outer product or exterior product satisfying the antisymmetric property
u ∧ v = − (v ∧ u) (see page 82).
4 The index j indicating the ‘direction’ is written as upper index in brackets, in order to let space
for further indices placed below.
5 Also the term ‘decomposable tensors’ is used. Further names are ‘dyads’ for d = 2, ‘triads’ for
d = 3, etc. (cf. [139, p. 3]).

1.1 What are Tensors? 5

Remark 1.2. Let #Ij = n, i.e., dim(RIj) = n for 1 ≤ j ≤ d. Then the dimension
of the tensor space is nd. Unless both n and d are rather small numbers, nd is a
huge number. In such cases, nd may exceed the computer memory by far. This fact
indicates a practical problem, which must be overcome.

The set of matrices with indices in I1 × I2 is denoted by R
I1×I2 .

Remark 1.3. (a) The particular case d = 2 leads to matrices R
I = R

I1×I2 , i.e.,
matrices may be identified with tensors of order 2. To be precise, the tensor entry vi

with i = (i1, i2) ∈ I = I1 × I2 is identified with the matrix entry Mi1,i2 . Using the
matrix notation, the tensor product of v ∈ R

I1 and w ∈ R
I2 equals

v ⊗ w = v wT. (1.3)

(b) For d = 1 the trivial identity R
I = R

I1 holds, i.e., vectors are tensors of order 1.

(c) For the degenerate case d= 0, the empty product is defined by the underlying
field:

⊗0
j=1 R

Ij = R.

1.1.2 Tensor Product of Matrices, Kronecker Product

Let d pairs of vector spaces Vj and Wj (1 ≤ j ≤ d) and the corresponding tensor
spaces

V =

d⊗

j=1

Vj and W =

d⊗

j=1

Wj

be given together with linear mappings

A(j) : Vj →Wj .

The tensor product of the A(j), the so-called Kronecker product, is the linear
mapping

A :=

d⊗

j=1

A(j) : V→W (1.4a)

defined by

d⊗

j=1

v(j) ∈ V �→ A

(
d⊗

j=1

v(j)

)

=

d⊗

j=1

(
A(j)v(j)

)
∈W (1.4b)

for6 all vj ∈ Vj . Since V is spanned by elementary tensors (cf. (1.2)), equation
(1.4b) defines A uniquely on V (more details in §3.3).

6 In De Lathauwer et al. [41, Def. 8], the matrix-vector multiplication Av by A :=
⊗

d
j=1 A

(j)

is denoted by v×1 A(1) ×2 A(2) · · · ×d A(d), where ×j is called the j-mode product.

6 1 Introduction

In the case of Vj = R
Ij and Wj = R

Jj , the mappings A(j) are matrices from
R
Ij×Jj . The Kronecker product

⊗d
j=1 A

(j) belongs to the matrix space R
I×J with

I = I1 × . . .× Id and J = J1 × . . .× Jd.

For d = 2 let I1 = {1, . . . , n1} , I2 = {1, . . . , n2} , J1 = {1, . . . ,m1}, and
J2 = {1, . . . ,m2} be ordered index sets and use the lexicographical ordering7 of
the pairs (i, j) in I = I1× I2 and J = J1× J2. Then the matrix A⊗B ∈ R

I×J has
the block form

A⊗B =

⎡

⎢
⎣

a11B · · · a1n2B
...

...
an11B · · · an1n2B

⎤

⎥
⎦ . (1.5)

1.1.3 Tensor Product of Functions

Now, we redefine Ij ⊂ R as an interval and consider infinite dimensional vector
spaces of functions like Vj = C(Ij) or Vj = L2(Ij). C(Ij) contains the continuous
functions on Ij , while L2(Ij) are the measurable and square-integrable functions
on Ij . The tensor product of univariate functions fj(xj) is the d-variate function8

f :=

d⊗

j=1

fj with f(x1, . . . , xd) =
d∏

j=1

fj(xj) (xj ∈ Ij , 1≤j≤ d) . (1.6)

The product belongs to

V =
d⊗

j=1

Vj , where V ⊂ C(I) or V ⊂ L2(I), respectively.

for Vj = C(Ij) or Vj = L2(Ij) (details in §4 and §4.4).

In the infinite dimensional case, the definition (1.2) must be modified, if one
wants to obtain a complete (Banach or Hilbert) space. The span of the elementary
tensors must be closed with respect to a suitable norm (here norm ofC(I) orL2(I)):

d⊗

j=1

Vj = span {v1 ⊗ v2 ⊗ . . .⊗ vd : vj ∈ Vj , 1 ≤ j ≤ d}. (1.7)

7 This is the ordering (1, 1) , (1, 2) , . . . , (1, n2) , (2, 1) , . . . , (2, n2) , . . . If another ordering or
no ordering is defined, definition (1.5) is incorrect.
8 According to Notation 1.1 we might write f [x1, x2, . . . , xd] instead of f(x1, x2, . . . , xd). In
the sequel we use the usual notation of the argument list with round brackets.

1.2 Where do Tensors Appear? 7

The tensor structure of functions is often termed separation of the variables. This
means that a multivariate function f can be written either as an elementary tensor
product

⊗d
j=1 fj as in (1.6) or as a sum (series) of such products.

A particular example of a multivariate function is the polynomial

P (x1, . . . , xd) =
∑

i

aix
i, (1.8)

where each monomial xi :=
∏d
j=1(xj)

ij is an elementary product.
The definitions in §§1.1.1-3 may lead to the impression that there are different

tensor products. This is only partially true. The cases of §§1.1.1-2 follow the same
concept. In Chap. 3, the algebraic tensor product V = a

⊗d
j=1 Vj of general vector

spaces Vj (1 ≤ j ≤ d) will be defined. Choosing Vj = R
Ij , we obtain tensors as in

§1.1.1, while for matrix spaces Vj = R
Ij×Jj the tensor product coincides with the

Kronecker product.
The infinite dimensional case of §1.1.3 is different, since topological tensor

spaces require a closure with respect to some norm (see Chap. 4).

1.2 Where do Tensors Appear?

At the first sight, tensors of order d ≥ 3 do not seem to be used so often. Vectors
(the particular case d = 1) appear almost everywhere. Since matrices (case d = 2)
correspond to linear mappings, they are also omnipresent. The theory of vectors
and matrices has led to the field of linear algebra. However, there are no standard
constructions in linear algebra which lead to tensors of order d ≥ 3. Instead, tensors
are studied in the field of multilinear algebra.

1.2.1 Tensors as Coefficients

The first purpose of indexed quantities is a simplification of notation. For instance,
the description of the polynomial (1.8) in, say, d = 3 variables is easily readable if
coefficients aijk with three indices are introduced. In §1.6 we shall mention such an
approach used already by Cayley in 1845.

Certain quantities in the partial differential equations of elasticity or in Maxwell’s
equations are called tensor (e.g., stress tensor). These tensors, however, are of order
two, therefore the term ‘matrix’ would be more appropriate. Moreover, in physics
the term ‘tensor’ is often used with the meaning ‘tensor-valued function’.

In differential geometry, tensors are widely used for coordinate transformations.
Typically, one distinguishes covariant and contravariant tensors and those of mixed
type. The indices of the coefficients are placed either in lower position (covariant
case) or in upper position (contravariant). For instance, aijk is a mixed tensor with

8 1 Introduction

two covariant and one contravariant component. For coordinate systems in R
n, all

indices vary in {1, . . . , n}. The notational advantage of the lower and upper indices
is the implicit Einstein summation rule: expressions containing a certain index in
both positions are to be summed over this index. We give an example (cf. [132]).
Let a smooth two-dimensional manifold be described by the function x(u1, u2).
First and second derivatives with respect to these coordinates are denoted by xuk

and xui,uj . Together with the normal vector n, the Gaussian formula for the second
derivatives is

xui,uj = Γij
k xuk + aijn (apply summation over k),

where Γij
k are the Christoffel symbols9 of second kind (cf. Christoffel [37], 1869).

The algebraic explanation of co- and contravariant tensor is as follows. The dual
space to V := R

n is denoted by V ′. AlthoughV ′ is isomorphic to V , it is considered
as a different vector space. Mixed tensors are elements of V =

⊗d
j=1 Vj , where Vj

is either V (contravariant component) or V ′ (covariant component). The summation
rule performs the dual form v′(v) of v′ ∈ V ′ and v ∈ V .

1.2.2 Tensor Decomposition for Inverse Problems

In many fields (psychometrics, linguistics, chemometrics,10 telecommunication,
biomedical applications, information extraction,11 computer vision,12 etc.) matrix-
valued data appear. M ∈ R

n×m may correspond to m measurements of different
properties j, while i is associated to n different input data. For instance, in problems
from chemometrics the input may be an excitation spectrum, while the output is
the emission spectrum. Assuming a linear behaviour, we obtain for one substance
a matrix abT of rank one. In this case, the inverse problem is trivial: the data abT

allow to recover the vectors a and b up to a constant factor. Having a mixture of r
substances, we obtain a matrix

M =
r∑

ν=1

cν aν b
T
ν (aν ∈ R

n, bν ∈ R
m),

where cν ∈ R is the concentration of substance ν. The componentwise version of
the latter equation is

Mij =

r∑

ν=1

cν aνi bνj .

9 This notation is not used in Christoffel’s original paper [37].
10 See, for instance, Smile-Bro-Geladi [173] and De Lathauwer-De Moor-Vandevalle [42].
11 See, for instance, Lu-Plataniotis-Venetsanopoulos [142].
12 See, for instance, Wang-Ahuja [193].

1.2 Where do Tensors Appear? 9

With A = [c1a1 c2a2 . . . crar] ∈ R
n×r and B = [b1 b2 . . . br] ∈ R

m×r, we may
write

M = ABT.

Now, the inverse problem is the task to recover the factors A and B. This, however,
is impossible since A′ = AT and B′ = T−TB satisfy M = A′B′T for any regular
matrix T ∈ R

r×r.
Tensors of order three come into play, when we repeat the experiments with

varying concentrations cνk (concentration of substance ν in the k-th experiment).
The resulting data are

Mijk =

r∑

ν=1

cνk aνi bνj .

By definition (1.1), we can rewrite the latter equation as13

M =

r∑

ν=1

aν ⊗ bν ⊗ cν . (1.9)

Under certain conditions, it is possible to recover the vectors aν ∈ R
n, bν ∈ R

m,
cν ∈ R

r from the data M ∈ R
n×m×r (up to scaling factors; cf. Remark 7.4b). In

these application fields, the above ‘inverse problem’ is called ‘factor analysis’ or
‘component analysis’ (cf. [96], [42]).

These techniques have developed in the second part of the last century:
Cattell [31] (1944), Tucker [184] (1966), Harshman [96] (1970), Appellof-
Davidson [3] (1981) and many more (see review by Kolda-Bader [128]).

In this monograph, we shall not study these inverse problems. In §7.1.3, the
difference between tensor representations and tensor decompositions will be
discussed. Our emphasis lies on the tensor representation.

We remark that the tensors considered above cannot really be large-sized as long
as all entries Mijk can be stored.

1.2.3 Tensor Spaces in Functional Analysis

The analysis of topological tensor spaces has been started by Schatten [167] (1950)
and Grothendieck [79]. Chapter 4 introduces parts of their concepts. However, most
of the applications in functional analysis concern tensor products X = V ⊗ W
of two Banach spaces. The reason is that these tensor spaces of order two can be
related to certain linear operator spaces. The interpretation of X as tensor product
may allow to transport certain properties from the factors V andW , which are easier
to be analysed, to the productX which may be of a more complicated nature.

13 Representations like (1.9) are used by Hitchcock [100] in 1927 (see §1.6).

10 1 Introduction

1.2.4 Large-Sized Tensors in Analysis Applications

In analysis, the approximation of functions is well-studied. Usually, the quality of
approximation is related to smoothness properties. If a function is the solution of a
partial differential equation, a lot is known about its regularity (cf. [82, §9]). Below,
we give an example how the concept of tensors may appear in the context of partial
differential equations and their discretisations.

1.2.4.1 Partial Differential Equations

Let Ω = I1 × I2 × I3 ⊂ R
3 be the product of three intervals and consider an

elliptic differential equation Lu = f on Ω, e.g., with Dirichlet boundary conditions
u = 0 on the boundary Γ = ∂Ω. A second order differential operator L is called
separable, if

L = L1 + L2 + L3 with Lj =
∂

∂xj
aj(xj)

∂

∂xj
+ bj(xj)

∂

∂xj
+ cj(xj). (1.10a)

Note that any differential operator with constant coefficients and without mixed
derivatives is of this kind. According to §1.1.3, we may consider the three-variate
function as a tensor of order three. Moreover, the operator L can be regarded as a
Kronecker product:

L = L1 ⊗ id⊗ id+ id⊗ L2 ⊗ id+ id⊗ id⊗ L3. (1.10b)

This tensor structure becomes more obvious, when we consider a finite difference
discretisation of Lu = f. Assume, e.g., that I1 = I2 = I3 = [0, 1] and introduce
the uniform grid Gn =

{
(in ,

j
n ,

k
n) : 0 ≤ i, j, k ≤ n

}
of grid size h = 1/n. The

discrete values of u and f at the nodes of the grid are denoted by14

uijk := u(in ,
j
n ,

k
n), fijk := f(in ,

j
n ,

k
n), (1 ≤ i, j, k ≤ n− 1) . (1.11a)

Hence, u and f are tensors of size (n− 1)×(n− 1)×(n− 1). The discretisation of
the one-dimensional differential operatorLj from (1.10a) yields a tridiagonal matrix
L(j) ∈ R

(n−1)×(n−1). As in (1.10b), the matrix of the discrete system Lu = f is
the Kronecker product

L = L(1) ⊗ I ⊗ I + I ⊗ L(2) ⊗ I + I ⊗ I ⊗ L(3). (1.11b)

I ∈ R
(n−1)×(n−1) is the identity matrix. Note that L has size (n− 1)3×(n− 1)3.

The standard treatment of the system Lu = f views u and f as vectors from R
N

with N := (n − 1)3 and tries to solve N equations with N unknowns. If n ≈ 100,
a system with N ≈ 106 equations can still be handled. However, for n ≈ 10000 or

14 Because of the boundary condition, uijk = 0 holds if one the indices equals 0 or n.

1.2 Where do Tensors Appear? 11

even n ≈ 106, a system of size N ≈ 1012 or N ≈ 1018 exceeds the capacity of
standard computers.

If we regard u and f as tensors of Rn−1⊗R
n−1⊗R

n−1, it might be possible to
find tensor representations with much less storage. Consider, for instance, a uniform
load f = 1. Then f = 1 ⊗ 1 ⊗ 1 is an elementary tensor, where 1 ∈ R

n−1 is the
vector with entries 1i = 1. The matrix L is already written as Kronecker product
(1.11b). In §9.7.2.6 we shall show that at least for positive definite L a very accurate
inverse matrix B ≈ L−1 can be constructed and that the matrix-vector multiplica-
tion ũ = Bf can be performed. The required storage for the representation of B and
ũ is bounded by O(n log2(1/ε)), where ε is related to the error

∥
∥L−1 −B

∥
∥
2
≤ ε.

The same bound holds for the computational cost.
The following observations are important:

1) Under suitable conditions, the exponential cost nd can be reduced toO(dn) (here:
d = 3). This allows computations in cases, where the standard approach fails and
not even the storage of the data u, f can be achieved.

2) Usually, tensor computations will not be exact, but yield approximations. In
applications from analysis, there are many cases where fast convergence holds.
In the example from above the accuracy ε improves exponentially with a certain
rank parameter, so that we obtain the logarithmic factor log2(1/ε). Although such a
behaviour is typical for many problems from analysis, it does not hold in general, in
particular not for random data.

3) The essential key are tensor representations with two requirements. First, low
storage cost is an obvious option. Since the represented tensors are involved into
operations (here: the matrix-vector multiplication Bf), the second option is that
such tensor operations should have a comparably low cost.

Finally, we give an example, where the tensor structure can be successfully
applied without any approximation error. Instead of the linear system Lu = f from
above, we consider the eigenvalue problem Lu = λu. First, we discuss the undis-
cretised problem

Lu = λu. (1.12)

Here, it is well-known that the separation ansatz u(x, y, z) = u1(x)u2(y)u3(z)
yields three one-dimensional boundary eigenvalue problems

L1u1(x) = λ(1)u1, L2u2(y) = λ(2)u2, L3u3(z) = λ(3)u3

with zero conditions at x, y, z ∈ {0, 1}.The productu(x, y, z) := u1(x)u2(y)u3(z)

satisfies Lu = λu with λ = λ(1)+λ(2)+λ(3). The latter product can be understood
as tensor product: u = u1 ⊗ u2 ⊗ u3 (cf. §1.1.3).

Similarly, we derive from the Kronecker product structure (1.11b) that the solu-
tions of the discrete eigenvalue problems

L(1)u1 = λ(1)u1, L(2)u2 = λ(2)u2, L(3)u3 = λ(3)u3

12 1 Introduction

in R
n−1 yield the solution u = u1⊗u2⊗u3 of Lu = λu with λ = λ(1)+λ(2)+λ(3).

In this example we have exploited that the eigensolution is exactly15 equal to an
elementary tensor. In the discrete case, this implies that an object of size (n− 1)3

can be represented by three vectors of size n− 1.

1.2.4.2 Multivariate Function Representation

The computational realisation of a special function f(x) in one variable may be
based on a rational approximation, a recursion etc. or a combination of these
tools. The computation of a multivariate function f(x1, . . . , xp) is even more diffi-
cult. Such functions may be defined by complicated integrals involving parameters
x1, . . . , xp in the integrand or integration domain. Consider the evaluation of f on
I = I1× . . .× Ip ⊂ R

p with Ij = [aj , bj]. We may precompute f at grid points
(x1,i1 , . . . , xp,ip), xj,ij = aj + ij(bj − aj)/n for 0≤ ij≤n, followed by a suitable
interpolation at the desired x = (x1, . . . , xp) ∈ I. However, we fail as the required
storage of the grid values is of size np. Again, the hope is to find a suitable tensor
approximation with storage O(pn) and an evaluation procedure of similar cost.

To give an example, a very easy task is the approximation of the function

1

‖x‖ =

(
p∑

i=1

x2i

)−1/2

for ‖x‖ ≥ a > 0.

We obtain a uniform accuracy of size O
(
exp(−π

√
r/2)/

√
a
)

with a storage of
size 2r and an evaluation cost O(rp). Details will follow in §9.7.2.5.2.

1.2.5 Tensors in Quantum Chemistry

The Schrödinger equation determines ‘wave functions’ f(x1, . . . , xd), where each
variable xj ∈ R

3 corresponds to one electron. Hence, the spatial dimension
3d increases with the size of the molecule. A first ansatz16 is f(x1, . . . , xd) ≈
Φ(x1, . . . , xd) := ϕ1(x1)ϕ2(x2) · . . . · ϕd(xd), which leads to the Hartree-Fock
equation. According to (1.6), we can write Φ :=

⊗d
j=1 ϕj as a tensor. More accu-

rate approximations require tensors being linear combinations of such products.

The standard ansatz for the three-dimensional functionsϕj(x) are sums of Gaus-
sian functions17 Φν(x) := exp(αν ‖x−Rν‖2) as introduced by Boys [23] in 1950.
Again,Φν is the elementary tensor

⊗3
k=1 ek with ek(xk) := exp(αν (xk −Rν,k)

2).

15 This holds only for separable differential operators (cf. (1.10a)), but also in more general cases
tensor approaches apply as shown in [91] (see §16.3).
16 In fact, the product must be antisymmetrised yielding the Slater determinant from Lemma 3.72.
17 Possibly multiplied by polynomials.

1.4 Preview 13

1.3 Tensor Calculus

The representation of tensors (in particular, with not too large storage requirements)
is one goal of the efficient numerical treatment of tensors. Another goal is the effi-
cient performance of tensor operations.

In the case of matrices, we apply matrix-vector and matrix-matrix multiplications
and matrix inversions. The same operations occur for tensors, when the matrix is
given by a Kronecker matrix and the vector by a tensor. Besides of these operations
there are entry-wise multiplications, convolutions etc.

In linear algebra, basis transformations are well-known which lead to vector
and matrix transforms. Such operations occur for tensors as well. There are matrix
decompositions like the singular value decomposition. Generalisations to tensors
will play an important rôle.

These and further operations are summarised under the term of ‘tensor cal-
culus’.18 In the same way, as a library of matrix procedures is the basis for all
algorithms in linear algebra, the tensor calculus enables computations in the world
of tensors.

Note that already in the case of large-sized matrices, special efficient matrix
representations are needed (cf. Hackbusch [86]), although the computational time
grows only polynomially (typically cubically) with the matrix size. All the more
important are efficient algorithms for tensors to avoid exponential run time.

1.4 Preview

1.4.1 Part I: Algebraic Properties

Matrices can be considered as tensors of second order. In Chap. 2 we summarise
various properties of matrices as well as techniques applicable to matrices. QR and
singular value decompositions will play an important rôle for later tensor operations.

In Chap. 3, tensors and tensor spaces are introduced. The definition of the tensor
space in §3.2 requires a discussion of free vectors spaces (in §3.1.2) and of quotient
spaces (in §3.1.3). Furthermore, linear and multilinear mappings and algebraic dual
spaces are discussed in §3.1.4.

In §3.2 not only the tensor product and the (algebraic) tensor space are intro-
duced, but also the (tensor) rank of a tensor is defined, which generalises the rank
of a matrix. Later, we shall introduce further vector-valued ranks of tensors.

In §3.3 we have a closer look to linear and multilinear maps. In particular, tensor
products of linear maps are discussed.

18 The Latin word ‘calculus’ is the diminutive of ‘calx’ (lime, limestone) and has the original
meaning ‘pebble’. In particular, it denotes the pieces used in the Roman abacus. Therefore the
Latin word ‘calculus’ has also the meaning of ‘calculation’ or, in modern terms, ‘computation’.

14 1 Introduction

Tensor spaces with additional algebra structure are different from tensor algebras.
Both are briefly described in §3.4.

In particular applications, symmetric or antisymmetric tensors are needed. These
are defined in §3.5. Symmetric tensors are connected to quantics (cf. §3.5.2), while
antisymmetric tensors are related to determinants (cf. §3.5.3).

1.4.2 Part II: Functional Analysis of Tensors

Normed tensor spaces are needed as soon as we want to approximate certain tensors.
Even in the finite dimensional case one observes properties of tensors which are
completely unknown from the matrix case. In particular in the infinite dimensional
case, one has Banach (or Hilbert) spaces Vj endowed with a norm ‖·‖j as well
as the algebraic tensor space Valg = a

⊗d
j=1 Vj , which together with a norm ‖·‖

becomes a normed space. Completion yields the topological Banach space Vtop =

‖·‖
⊗d

j=1 Vj . The tensor space norm ‖·‖ is by no means determined by the single
norms ‖·‖j . In §4.2 we study the properties of tensor space norms. It turns out that
continuity conditions on the tensor product limit the choice of ‖·‖ (cf. §§4.2.2-7).
There are two norms induced by {‖·‖j : 1 ≤ j ≤ d}, the projective norm (cf. §4.2.4)
and the injective norm (cf. §4.2.7), which are the strongest and weakest possible
norms. Further terms of interest are crossnorms (cf. §4.2.2), reasonable crossnorms
(cf. §4.2.9), and uniform crossnorms (cf. §4.2.12). The case d = 2 considered in
§4.2 allows to discuss nuclear and compact operators (cf. §4.2.13). The extension to
d ≥ 3 discussed in §4.3 is almost straightforward except that we also need suitable
norms, e.g., for the tensor spaces a

⊗
j∈{1,...,d}\{k} Vj of order d− 1.

While Lp or C0 norms of tensor spaces belong to the class of crossnorms, the
usual spaces Cm or Hm (m ≥ 1) cannot be described by crossnorms, but by inter-
sections of Banach (or Hilbert) tensor spaces (cf. §4.3.6). The corresponding con-
struction by crossnorms leads to so-called mixed norms.

Hilbert spaces are discussed in §4.4. In this case, the scalar products 〈·, ·〉j of
Vj define the induced scalar product of the Hilbert tensor space (cf. §4.4.1). In
the Hilbert case, the infinite singular value decomposition can be used to define
the Hilbert-Schmidt and the Schatten norms (cf. §4.4.3). Besides the usual scalar
product the partial scalar product is of interest (cf. §4.5.4).

In §4.6 the tensor operations are enumerated which later are to be performed
numerically.

Particular subspaces of the tensor space ⊗dV are the symmetric and
antisymmetric tensor spaces discussed in §4.7.

Chapter 5 concerns algebraic as well as topological tensor spaces. We consider
different isomorphisms which allow to regard tensors either as vectors (vectorisation
in §5.1) or as matrices (matricisation in §5.2). In particular, the matricisation will
become an important tool. The opposite direction is the tensorisation considered in

1.4 Preview 15

§5.3 and later, in more detail, in Chap. 14. Here, vectors from R
n are artificially

reformulated as tensors.

Another important tool for the analysis and for concrete constructions are the
minimal subspaces studied in Chap. 6. Given some tensor v, we ask for the smallest
subspaces Uj such that v ∈

⊗d
j=1 Uj. Of particular interest is their behaviour for

sequences vn ⇀ v.

1.4.3 Part III: Numerical Treatment

The numerical treatment of tensors is based on a suitable tensor representation.
Chapters 7 to 10 are devoted to two well-known representations, the r-term format
(also called canonical or CP format) and the tensor subspace format (also called
Tucker format). We distinguish the exact representation from the approximation
task. Exact representations are discussed in Chap. 7 (r-term format) and Chap. 8
(tensor subspace format). If the tensor rank is moderate, the r-term format is a
very good choice, whereas the tensor subspace format is disadvantageous for larger
tensor order d because of its exponentially increasing storage requirement.

Tensor approximations are discussed separately in Chaps. 9 (r-term format) and
10 (tensor subspace format). In the first case, many properties known from the
matrix case (see §9.3) do not generalise to tensor orders d ≥ 3. A particular draw-
back is mentioned in §9.4: the set of r-term tensors is not closed, which may cause
a numerical instability. An approximation of a tensor v by some ṽ in the r-term for-
mat may be performed numerically using a regularisation (cf. §9.5). In some cases,
analytical methods allow to determine very accurate r-term approximations to func-
tions and operators (cf. §9.7).

In the case of tensor subspace approximations (§10), there are two different
options. The simpler approach is based on the higher order singular value de-
composition (HOSVD; cf. §10.1). This allows a projection to smaller rank sim-
ilar to the standard singular value decomposition in the matrix case. The result
is not necessarily the best one, but quasi-optimal. The second option is the best-
approximation considered in §10.2. In contrast to the r-term format, the existence
of a best-approximation is guaranteed. A standard numerical method for its compu-
tation is the alternating least-squares method (ALS, cf. §10.3). For particular cases,
analytical methods are available to approximate multivariate functions (cf. §10.4).

While the r-term format suffers from a possible numerical instability, the storage
size of the tensor subspace format increases exponentially with the tensor order
d. A format avoiding both problems is the hierarchical format described in Chap.
11. Here, the storage is strictly bounded by the product of the tensor order d, the
maximal involved rank, and the maximal dimension of the vector spaces Vj . Again,
HOSVD techniques can be used for a quasi-optimal truncation. Since the format is
closed, numerical instability does not occur.

16 1 Introduction

The hierarchical format is based on a dimension partition tree. A particular choice
of the tree leads to the matrix product representation or TT format described in
Chap. 12.

The essential part of the numerical tensor calculus is the performance of tensor
operations. In Chap. 13 we describe all operations, their realisation in the different
formats, and the corresponding computational cost.

The tensorisation briefly mentioned in §5.3 is revisited in Chap. 14. When ap-
plied to grid functions, tensorisation corresponds to a multiscale approach. The
tensor truncation methods allow an efficient compression of the data size. As shown
in §14.2, the approximation can be proved to be at least as good as analytical
methods like hp-methods, exponential sum approximations, or wavelet compres-
sion techniques. In §14.3 the performance of the convolution is described. The fast
Fourier transform is explained in §14.4. The method of tensorisation can also be
applied to functions instead of grid functions as detailed in §14.5.

Chapter 15 is devoted to the generalised cross approximation. The underlying
problem is the approximation of general tensors, which has several important appli-
cations.

In Chap. 16, the application of the tensor calculus to elliptic boundary value
problems (§16.2) and eigenvalue problems (§16.3) is discussed.

The final Chap. 17 collects a number of further topics. §17.1 considers general
minimisation problems. Another minimisation approach described in §17.2 applies
directly to the parameters of the tensor representation. Dynamic problems are
studied in §17.3, while the ANOVA method is mentioned in §17.4.

1.4.4 Topics Outside the Scope of the Monograph

As already mentioned in §1.2.2, we do not aim at inverse problems, where the
parameters of the representation (decomposition) have a certain external interpre-
tation (see references in Footnotes 10-12).

Also in data mining high-dimensional tensors arise (cf. Kolda - Sun [129]).
However, in contrast to mathematical applications (e.g., in partial differential equa-
tions) weaker properties hold concerning data smoothness, desired order of accu-
racy, and often availability of data.

We do not consider data completion (approximation of incomplete data; cf.
[140]), which is a typical problem for data from non-mathematical sources. Entries
v[i] of a tensor v ∈

⊗d
j=1 R

nj may be available only for i ∈ I̊ of a subset I̊ ⊂ I :=

×d
j=1{1, . . . , nj}. Another example are cases where data are lost or deleted. Ap-

proximation of the remaining data by a tensor ṽ of a certain format yields the desired
completion (cf. Footnote 9 on page 262). Instead, in Chap. 15 we are discussing
quite another kind of data completion, where an approximation ṽ is constructed
by a small part of the data, but in contrast to the usual data completion problem,
we assume that all data are available on demand, although possibly with high
arithmetical cost.

1.6 Comments about the Early History of Tensors 17

Another subject, which is not discussed here, is the detection and determina-
tion of principal manifolds of smaller dimension (‘manifold learning’; see, e.g.,
Feuersänger-Griebel [59]).

The order d of the tensor considered here, is always finite. In fact, the numerical
cost of storage or arithmetical operations is at least increasing linearly in d. Infinite
dimensions (d =∞) may appear theoretically (as in §15.1.2.2), but only truncations
to finite d are discussed.

There are purely algebraic approaches to tensors which try to generalise terms
from linear algebra to multilinear algebra including certain decompositions (cf.
[160, §5]). Unfortunately, constructive algorithms in this field are usually NP hard
and do not help for large-sized tensors.

1.5 Software

Free software for tensor applications is offered by the following groups:

• MATLAB Tensor Toolbox by Bader-Kolda [4]:
http://csmr.ca.sandia.gov/˜tgkolda/TensorToolbox

• Hierarchical Tucker Toolbox by Tobler-Kressner [131]:
http://www.sam.math.ethz.ch/NLAgroup/software.html

• TT TOOLBOX by I. Oseledets: http://spring.inm.ras.ru/osel
• TensorCalculus by H. Auer, M. Espig, S. Handschuh, and P. Wähnert:
http://gitorious.org/tensorcalculus/pages/Home

1.6 Comments about the Early History of Tensors

The word ‘tensor’ seems to be used for the first time in an article by William Rowan
Hamilton [95] from 1846. The meaning, however, was quite different. Hamilton is
well-known for his quaternions. Like complex numbers, a modulus of a quaternion
can be defined. For this non-negative real number he introduced the name ‘tensor’.
The word ‘tensor’ is used again in a book by Woldemar Voigt [192] in 1898 for
quantities which come closer to our understanding.19

In May 1845, Arthur Cayley [32] submitted a paper, in which he described
hyperdeterminants.20 There he considers tensors of general order. For instance, he
gives an illustration of a tensor from R

2 ⊗ R
2 ⊗ R

2 (p. 11 in [192]):

19 From [192, p. 20]: Tensors are “. . . Zustände, die durch eine Zahlgrösse und eine zweiseitige
Richtung charakterisiert sind. . . . Wir wollen uns deshalb nur darauf stützen, dass Zustände der
geschilderten Art bei Spannungen und Dehnungen nicht starrer Körper auftreten, und sie deshalb
tensorielle, die für sie charakteristischen physikalischen Grössen aber Tensoren nennen.”
20 See also [44, §5.3]. The hyperdeterminant vanishes for a tensor v ∈ R

p ⊗R
q ⊗R

r if and only
if the associated multilinear form ϕ(x, y, z) :=

∑
i,j,k v[i, j, k]xiyjzk allows nonzero vectors

x, y, z such that ∇xϕ,∇yϕ, or ∇zϕ vanish at (x, y, z).

18 1 Introduction

Soit n = 3, posons pour plus simpicité m = 2, et prenons

111 = a, 112 = e,
211 = b, 212 = b,
121 = c, 122 = g,
221 = d, 222 = h,

de manière que la fonction à considérer est

U = ax1y1z1 + bx2y1z1 + cx1y2z1 + dx2y2z1+
+ ex1y1z2 + fx2y1z2 + gx1y2z2 + hx2y2z2.

Next, he considers linear transformations Λ(1), Λ(2), Λ(3) in all three directions,
e.g., Λ(1) is described as follows.

Les équations pour la transformation sont

x1 = λ11ẋ1 + λ21ẋ2,

x2 = λ12ẋ1 + λ22ẋ2,

...

The action of the transformationsΛ(1), Λ(2), Λ(3) represents already the Kronecker
product Λ(1) ⊗ Λ(2) ⊗ Λ(3).

The paper of Hitchcock [100] from 1927 has a similar algebraic background.
The author states that ‘any covariant tensor Ai1..ip can be expressed as the sum
of a finite number of which is the product of p covariant vectors’. In [100] the
ranks are defined which we introduce in Definition 5.7. Although in this paper he
uses the name ‘tensor’, in the following paper [99] of the same year he prefers the
term ‘matrix’ or ‘p-way matrix’. The tensor product of vectors a, b is denoted by ab
without any special tensor symbol.

In §1.1.2 we have named the tensor product of matrices ‘Kronecker product’.
In fact, this term is well-introduced, but historically it seems to be unfounded.
The ‘Kronecker product’ (and its determinant) was first studied by Johann Georg
Zehfuss [200] in 1858, while it is questionable whether there exists any notice of
Kronecker about this product (see [107] for historical remarks). Zehfuss’ result
about determinants can be found in Exercise 4.134.

1.7 Notations

A list of symbols, letters etc. can be found on page xix. Here, we collect the nota-
tional conventions which we use in connection with vectors, matrices, and tensors.

Index Sets. I, J,K are typical letters used for index sets. In general, we do not
require that an index set is ordered. This allows, e.g., to define a new index set

1.7 Notations 19

K := I × J as the product of index sets I, J without prescribing an ordering of the
pairs (i, j) of i ∈ I and j ∈ J .

Fields. A vector space is associated with some field, which will be denoted by
K. The standard choices21 are R and C. When we use the symbol K instead of the
special choice R, we use the complex-conjugate value λ of a scalar whenever this is
required in the case of K = C.

Vector Spaces Kn and K
I . Let n ∈ N.Kn is the standard notation for the vector

space of the n-tuples v = (vi)
n
i=1 with vi ∈ K. The more general notation K

I

abbreviates the vector space {v = (vi)i∈I : vi ∈ K}. Equivalently, one may define
K
I as the space of mappings from I into K. Note that this definition makes sense

for non-ordered index sets. If, e.g., K = I × J is the index set, a vector v ∈ K
K

has entries vk = v(i,j) for k = (i, j) ∈ K . The notation v(i,j) must be distinguished
from vi,j which indicates a matrix entry. The simple notation K

n is identical to K
I

for I = {1, . . . , n}.
Vectors will be symbolised by small letters. Vector entries are usually denoted

by vi. The alternative notation v[i] is used if the index carries a secondary index
(example: v[i1]) or if the symbol for the vector is already indexed (example: vν [i]
for vν ∈ K

I).

Typical symbols for vector spaces are V , W , U , etc. Often, U is used for sub-
spaces.

Matrices and Matrix Spaces K
I×J . Any linear mapping Φ : KI → K

J (I, J
index sets) can be represented by means of a matrix22

M ∈ K
I×J

with entries Mij ∈K and one may write M =(Mij)i∈I,j∈J or M =(Mij)(i,j)∈I×J .

The alternative notation K
n×m is used for the special index sets I = {1, . . . , n}

and J = {1, . . . ,m}. Even the mixed notation K
I×m appears if J = {1, . . . ,m},

while I is a general index set.

Matrices will be symbolised by capital letters. Matrix entries are denoted by
Mi,j=Mij or by M [i, j]. Given a matrix M ∈KI×J , its i-th row or its j-th column
will be denoted by

Mi,• = M [i, •] ∈ K
J or M•,j =M [•, j] ∈ K

I , respectively.

If τ ⊂ I and σ ⊂ J are index subsets, the restriction of a matrix is written as

M |τ×σ = (Mij)i∈τ,j∈σ ∈ K
τ×σ.

More about matrix notations will follow in §2.1.

21 Fields of finite characteristic are of less interest, since approximations do not make sense. Never-
theless, there are applications of tensor tools for Boolean data (cf. Lichtenberg-Eichler [138]).
22 M ∈ K

I×J is considered as matrix, whereas v ∈ K
K for K = I × J is viewed as vector.

20 1 Introduction

Tensors. Tensors are denoted by small bold type letters: v,w, . . . , a,b, . . . Their
entries are usually indexed in square brackets: v[i1, . . . , id]. Only in simple cases,
subscripts are used: vijk . The bold type notation v[i1, . . . , id] is also used in the
case of a variable d which possibly takes the values d = 1 [vector case] or 2 [matrix
case].

The standard notation for a tensor space of order d is

V =

d⊗

j=1

Vj .

Here, Vj (1 ≤ j ≤ d) are vector spaces generating the tensor space V. As in this
example, tensor spaces are denoted by capital letters in bold type. U is the typical
letter for a subspace of a tensor space.

Elementary tensors from V=
⊗d

j=1Vj have the form

v =

d⊗

j=1

v(j) = v(1) ⊗ . . .⊗ v(d).

The superscript in round brackets indicates the vector corresponding to the j-th
direction. The preferred letter for the direction index is j (or k, if a second index is
needed). The entries of v(j) may be written as v(j)i or v(j)[i]. A lower subscript may
also denote the ν-th vector v(j)ν ∈ Vj as required in v =

∑r
ν=1

⊗d
j=1 v

(j)
ν . In this

case, the entries of v(j)ν are written as v(j)ν [i].

To be precise, we have to distinguish between algebraic and topological tensor
spaces denoted by a

⊗d
j=1Vj and ‖·‖

⊗d
j=1Vj , respectively. Details can be found

in Notation 3.8.

Chapter 2
Matrix Tools

Abstract In connection with tensors, matrices are of interest for two reasons.
Firstly, they are tensors of order two and therefore a nontrivial example of a tensor.
Differently from tensors of higher order, matrices allow to apply practically
realisable decompositions. Secondly, operations with general tensors will often be
reduced to a sequence of matrix operations (realised by well-developed software).
Sections 2.1–2.3 introduce the notation and recall well-known facts about matrices.
Section 2.5 discusses the important QR decomposition and the singular value
decomposition (SVD) and their computational cost. The (optimal) approximation
by matrices of lower rank explained in Sect. 2.6 will be used later in truncation
procedures for tensors. In Part III we shall apply some linear algebra procedures
introduced in Sect. 2.7 based on QR and SVD.

2.1 Matrix Notations

In this subsection, the index sets I, J are assumed to be finite. As soon as complex
conjugate values appear,1 the scalar field is restricted to K ∈ {R,C}.

We recall the notation K
I×J explained in §1.7. The entries of a matrix M ∈KI×J

are denoted by Mij (i ∈ I , j ∈ J) . Vice versa, numbers αij ∈ K (i ∈ I , j ∈ J)
may be used to define M := (αij)i∈I , j∈J ∈ K

I×J .

Let j∈J . The j-th column of M ∈ K
I×J is the vector M [•, j]=(Mij)i∈I ∈KI ,

while vectors c(j) ∈ K
I generate a matrix M := [c(j) : j ∈ J] ∈ K

I×J . If J is
ordered, we may write M := [c(j1), c(j2), . . .].

δij (i, j ∈ I) is the Kronecker symbol defined by

δij =

{
1 if i = j ∈ I,
0 otherwise.

(2.1)

1 In the case of K = R, α = ᾱ holds for all α ∈ K.

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 2,
© Springer-Verlag Berlin Heidelberg 2012

21

22 2 Matrix Tools

The unit vector e(i) ∈ K
I (i ∈ I) is defined by

e(i) := (δij)j∈I . (2.2)

The symbol I = (δij)i,j∈I is used for the identity matrix. Since matrices and
index sets do not appear at the same place, the simultaneous use of I for a matrix
and for an index set should not lead to any confusion (example: I ∈ K

I×I).
If M ∈ K

I×J , the transposed matrix MT ∈ K
J×I is defined by Mij = (MT)ji

(i ∈ I , j ∈ J). A matrix from K
I×I is symmetric if M =MT.

The Hermitean transposed matrixMH∈KJ×I isMT, i.e.,Mij=(MT)ji,where
• is the complex conjugate value. If K = R, MH = MT holds. This allows us to
use H for the general case of K ∈ {R,C}. A Hermitean matrix satisfies M=MH.

The range of a matrix M ∈ K
I×J is2

range(M) := {Mx : x ∈ K
J}.

The Euclidean scalar product in K
I is given by

〈x, y〉 = yHx =
∑

i∈I
xi yi ,

where in the real case K = R the conjugate sign can be ignored. In the case of
K = C, the scalar product is a sesquilinear form, i.e., it is antilinear in the second
argument.3

Two vectors x, y ∈K
I are orthogonal (symbolic notation: x⊥ y), if 〈x, y〉=0.

A family of vectors {xν}ν∈F ⊂ K
I is orthogonal, if the vectors are pairwise ortho-

gonal, i.e., 〈xν , xμ〉 = 0 for all ν, μ ∈ F with ν �= μ.
Similarly, two vectors x, y ∈ K

I or a family {xν}ν∈F ⊂ K
I is orthonormal, if,

in addition, all vectors are normalised: 〈x, x〉 = 〈y, y〉 = 1 or 〈xν , xν〉 = 1 (ν ∈ F).
A matrix M ∈ K

I×J is called orthogonal, if the columns of M are orthonormal.
An equivalent characterisation is

MHM = I ∈ K
J×J . (2.3)

Note that the (Hermitean) transpose of an orthogonal matrix is, in general, not ortho-
gonal. M ∈ K

I×J can be orthogonal only if #J ≤ #I.
An orthogonal square4 matrix M ∈ K

I×I is called unitary (if K = R, often the
term ‘orthogonal’ is preferred). Differently from the remark above, unitary matrices
satisfy

MHM = MMH = I ∈ K
I×I ,

i.e., MH = M−1 holds.
Assume that the index sets satisfy either I ⊂ J or J ⊂ I. Then a (rectangular)

matrix M ∈KI×J is diagonal, if Mij=0 for all i �= j, (i, j)∈I×J . Given numbers

2 Also the notation colspan(M) exists, since range(M) is spanned by the columns of M.
3 A mapping ϕ is called antilinear, if ϕ(x+ αy) = ϕ(x) + αϕ(y) for α ∈ C.
4 We may assume M ∈ K

I×J with #I = #J and different I, J . Then MHM = I ∈ K
I×I

and MMH = I ∈ K
J×J are the precise conditions.

2.2 Matrix Rank 23

δi (i ∈ I ∩ J) , the associated diagonal matrix M with Mii = δi is written as

diag{δi : i ∈ I ∩ J}.

If the index set I ∩J is ordered, an enumeration of the diagonal entries can be used:
diag{δi1 , δi2 , . . .}.

Assume again I ⊂ J or J ⊂ I and a common ordering of I ∪ J. A (rectangular)
matrix M ∈KI×J is lower triangular, if Mij =0 for all (i, j) ∈ I×J with i > j.
Similarly, Mij=0 for all i < j defines the upper triangular matrix.

2.2 Matrix Rank

Remark 2.1. Let M ∈ K
I×J . The following statements are equivalent and may be

used as definition of the ‘matrix rank’ r = rank(M):
(a) r = dim range(M),
(b) r = dim range(MT),
(c) r is the maximal number of linearly independent rows in M,

(d) r is the maximal number of linearly independent columns in M,

(e) r ∈ N0 is minimal with the property

M =
r∑

i=1

aib
T
i , where ai ∈ K

I and bi ∈ K
J , (2.4)

(f) r is maximal with the property that there exists a regular r×r submatrix5 of M .
(g) r is the number of positive singular values (see (2.19a)).

In (b) and (e) we may replace •T by •H. Part (e) states in particular that products
aib

T
i of non-vanishing vectors represent all rank-1 matrices.
The rank of M ∈ K

I×J is bounded by the maximal rank

rmax := min {#I,#J} , (2.5)

and this bound is attained for the so-called full-rank matrices.
The definition of linear independency depends on the field K. This leads to the

following question. A real matrix M ∈ R
I×J may also be considered as an element

of CI×J . Hence, in principle, such an M may possess a ‘real’ rank and a ‘complex’
rank. However, the equivalent characterisations (f) and (g) are independent of the
choice K ∈ {R,C} and prove the next remark.

Remark 2.2. For M ∈ R
I×J ⊂ C

I×J the value of rank(M) is independent of the
field K ∈ {R,C}.

Corollary 2.3. Let r=rank(M) and defineA := [a1, . . ., ar] and B := [b1, . . ., br]
by ai and bi from (2.4). Then (2.4) is equivalent to M = ABT.

5 That means that there are I ′ ⊂ I and J ′ ⊂ J with #I ′ = #J ′ = r and M |I′×J ′ regular.

24 2 Matrix Tools

An interesting matrix family is the set of matrices of rank not exceeding r :

Rr :=
{
M ∈ K

I×J : rank(M) ≤ r
}
. (2.6)

Any M ∈ Rr may be written in the form (2.4).

Lemma 2.4. The sets Rr ⊂ K
I×J for r ∈ N0 are closed. Any convergent sequence

R(k) ∈ Rr satisfies

lim inf
k→∞

rank(R(k)) ≥ rank
(

lim
k→∞

R(k)
)
. (2.7)

Proof. For s ∈ N0 set Ns :=
{
k ∈ N : rank(R(k)) = s

}
⊂ N and

r∞ = min{s ∈ N0 : #Ns =∞} = lim inf
k→∞

rank(R(k)).

We restrict R(k) to the subsequence with k ∈ Nr∞ , i.e., rank(R(k)) = r∞. For
full rank, i.e., r∞ = min{#I1,#I2}, nothing is to be proved. Otherwise, we use
the criterion from Remark 2.1f: all (r∞ + 1) × (r∞ + 1) submatrices R(k)|I′1×I′2
(#I ′1 = #I ′2 = r∞ + 1) are singular, in particular, det

(
R(k)|I′1×I′2

)
= 0. Since

the determinant is continuous, 0 = limdet(R(k)|I′1×I′2) = det(lim(R(k))|I′1×I′2)
proves that rank(limR(k)) ≤ r∞. ��

Remark 2.5. A matrixM ∈KI×J with random entries has maximal rank rmax with
probability one.

Proof. Matrices of smaller rank form a subset of measure zero. ��

2.3 Matrix Norms

Before the Euclidean, spectral and Frobenius norms will be discussed, the trace of a
square matrix is introduced. For a generalisation of the trace mapping to operators
see (4.60).

Definition 2.6. The mapping trace : KI×I → K is defined by

trace(M) :=
∑

i∈I
Mii. (2.8)

Exercise 2.7. (a) trace(AB) = trace(BA) for any A ∈ K
I×J and B ∈ K

J×I .
(b) trace(M)= trace(UMUH) for M ∈KI×I and any orthogonal matrix U∈KJ×I
(in particular, for a unitary matrix U ∈ K

I×I).
(c) Let λi (i ∈ I) be all eigenvalues of M ∈ K

I×I according to their multiplicity.
Then trace(M) =

∑
i∈I λi.

2.3 Matrix Norms 25

The general definition of norms and scalar products can be found in §4.1.1 and
§4.4.1. The Frobenius norm

‖M‖F =

√ ∑

i∈I,j∈J
|Mi,j|2 for M ∈ K

I×J (2.9)

is also called Schur norm or Hilbert-Schmidt norm. This norm is generated by the
scalar product

〈A,B〉F :=
∑

i∈I,j∈J
Ai,jBi,j = trace(ABH) = trace(BHA), (2.10)

since 〈M,M〉F=‖M‖
2
F . In particular, ‖M‖2F=trace(MMH)=trace(MHM) holds.

Remark 2.8. Let I×J and I ′×J ′ define two matrix formats with the same number
of entries: #I · #J = #I ′ · #J ′. Any bijective mapping π : I × J → I ′ × J ′

generates a mapping P : M ∈ K
I×J �→ P (M) = M ′ ∈ K

I′×J′ via M ′[i′, j′] =
M [i, j] for (i′, j′) = π(i, j). Then, the Frobenius norm and scalar product are
invariant with respect to P, i.e.,

‖P (M)‖F = ‖M‖F and 〈P (A), P (B)〉F = 〈A,B〉F .

Let ‖·‖X and ‖·‖Y be vector norms on X = K
I and Y = K

J , respectively. Then
the associated matrix norm is

‖M‖ := ‖M‖X←Y := sup

{
‖My‖X
‖y‖Y

: 0 �= y ∈ K
J

}

for M ∈ K
I×J . (2.11)

If ‖·‖X and ‖·‖Y coincide with the Euclidean vector norm

‖u‖2 :=

√
∑

i∈K
|ui|2 for u ∈ K

K , (2.12)

the associated matrix norm ‖M‖X←Y is the spectral norm denoted by ‖M‖2 .

Exercise 2.9. Let M ∈ K
I×J . (a) Another equivalent definition of ‖·‖2 is

‖M‖2 = sup

{
yHMx

√
yHy · xHx

: 0 �= x ∈ K
J , 0 �= y ∈ K

I

}

. (2.13)

(b) ‖M‖2 = ‖UM‖2 = ‖MV H‖2 = ‖UMV H‖2 holds for orthogonal matrices
U ∈KI′×I and V ∈ K

J′×J .

From Lemma 2.20b we shall learn that the squared spectral norm ‖M‖22 is the
largest eigenvalue of both MHM and MMH.

Both matrix norms ‖·‖2 and ‖·‖F are submultiplicative, i.e., ‖AB‖ ≤ ‖A‖ ‖B‖.
The example of A = B = I ∈ R

n×n shows the equality in 1 = ‖I · I‖2 ≤
‖I‖2 ‖I‖2 = 1, while

√
n = ‖I · I‖F ≤ ‖I‖F ‖I‖F = n is a rather pessimistic

estimate. In fact, spectral and Frobenius norms can be mixed to get better estimates.

26 2 Matrix Tools

Lemma 2.10. The product of A ∈ K
I×J and B ∈ K

J×K is estimated by

‖AB‖F ≤ ‖A‖2 ‖B‖F as well as ‖AB‖F ≤ ‖A‖F ‖B‖2 .

Proof. C[•, j] denotes the j-th column of C ∈ K
I×K . ‖C‖2F =

∑
j∈J ‖C[•, j]‖22

involves the Euclidean norm of the columns. For C := AB the columns satisfy
C[•, j]=A · B[•, j] and the estimate ‖C[•, j]‖2≤‖A‖2 ‖B[•, j]‖2 . Together with
the foregoing identity, ‖A‖2F ≤ ‖A‖

2
2 ‖B‖

2
F follows. The second inequality can be

concluded from the first one because of ‖X‖F=‖XT‖F and ‖X‖2=‖XT‖2. ��

A particular consequence is ‖A‖2 ≤ ‖A‖F (use B = I in the second inequality).

Exercise 2.11. Let U ∈ K
I′×I and V ∈ K

J′×J be orthogonal matrices and prove:
(a) ‖M‖F = ‖UM‖F = ‖MV H‖F = ‖UMV H‖F for M ∈ K

I×J .
(b) 〈A,B〉F =

〈
UAV H, UBV H

〉
F

for A,B ∈ K
I×J .

Exercise 2.12. For index sets I , J , and K let A ∈ K
I×K and B ∈ K

J×K with
rank(B) = #J ≤ #K . Show that the matrix C ∈ K

I×J minimising ‖A− CB‖F
is given by C := ABH(BBH)−1.

2.4 Semidefinite Matrices

A matrix M ∈ K
I×I is called positive semidefinite, if

M =MH and 〈Mx, x〉 ≥ 0 for all x ∈ K
I .

In addition, a positive definite matrix has to satisfy 〈Mx, x〉 > 0 for 0 �= x ∈ K
I .

Remark 2.13. Let M ∈KI×I be positive [semi]definite. (a) The equation X2 =M
has a unique positive [semi]definite solution in K

I×I , which is denoted by M1/2.
(b) M has positive [non-negative] diagonal entries Mii (i ∈ I).

In the set of Hermitean matrices from K
I×I a semi-ordering can be defined via

A ≤ B :⇐⇒ B −A positive semidefinite. (2.14)

When we write A ≤ B, we always tacitly assume that A and B are Hermitean.

Remark 2.14. Let A,B ∈ K
I×I be Hermitean. (a) A ≤ B is equivalent to

〈Ax, x〉 ≤ 〈Bx, x〉 for all x ∈ K
I . (2.15)

(b) For any matrix T ∈ K
I×J the inequality A ≤ B implies THAT ≤ THBT .

(c) A ≤ B implies trace(A) ≤ trace(B).
(d) A ≤ B implies trace(THAT) ≤ trace(THBT) for all T.

Lemma 2.15. For 0 ≤ Ê ≤ E ∈ K
I×I and arbitrary Ci ∈ K

J×K (i ∈ I), we have

0 ≤ X̂ :=
∑

i,j∈I
ÊijCiC

H
j ≤ X :=

∑

i,j∈I
EijCiC

H
j ∈ K

J×J .

2.5 Matrix Decompositions 27

Proof. Diagonalisation E − Ê = U diag{λk : k ∈ I}UH holds with λk ≥ 0. Set
Bk :=

∑
i∈I UikCi. Then X − X̂ =

∑
k∈I λkBkB

H
k proves X̂ ≤ X because of

λk ≥ 0 and BkBH
k ≥ 0. ��

A tuple x := (xi : i ∈ I) of vectors6 xi ∈ K
J leads to the scalar products 〈xj , xi〉

for all i, j ∈ I. Then the Gram matrix of x is defined by

G := G(x) =
(
〈xj , xi〉

)
i,j∈I . (2.16)

Exercise 2.16. (a) Gram matrices are always positive semidefinite.
(b) The Gram matrix G(x) is positive definite if and only if x is a tuple of linearly
independent vectors.
(c) Any positive definite matrix G ∈ K

I×I can be interpreted as a Gram matrix of
a basis x := (xi : i ∈ I) of KI by defining a scalar product via 〈v, w〉 := bHGa for
v =

∑
i∈I aixi and w =

∑
i∈I bixi.

Lemma 2.17. The spectral norm of G(x) can be characterised by

‖G(x)‖2 = max
{∥
∥
∑

i∈I
ξixi

∥
∥2
2
: ξi ∈ K with

∑

i∈I
|ξi|2 = 1

}
.

Proof. Let ξ := (ξi)i∈I ∈ K
I . ‖G(x)‖2 = max {|〈Gξ, ξ〉| : ‖ξ‖ = 1} holds, since

G(x) is symmetric. 〈Gξ, ξ〉 =
∑
i,j 〈xj , xi〉 ξjξi =

〈∑
j∈I ξjxj ,

∑
i∈I ξixi

〉
=∥

∥∑
i∈I ξixi

∥
∥2
2

proves the assertion. ��

2.5 Matrix Decompositions

Three well-known decompositions will be recalled. The numbers of arithmetical
operations7 given below are reduced to the leading term, i.e., terms of lower order
are omitted.

2.5.1 Cholesky Decomposition

Remark 2.18. Given a positive definite matrix M ∈ K
n×n, there is a unique lower

triangular matrix L ∈ K
n×n with positive diagonal entries such that

M = LLH.

The computation of L costs 1
3n

3 operations. Matrix-vector multiplications La or
LHa or the solution of linear systems Lx = a or LHx = b require n2 operations.

For semidefinite matrices there are pivotised versions such that M is equal to
PLLHPH with a permutation matrix P and the condition Lii≥0 instead ofLii>0.

6 Here, KJ can also be replaced by an infinite dimensional Hilbert space.
7 Here, we count all arithmetical operations (+,−, ∗, /,√, etc.) equally. Sometimes, the combi-
nation of one multiplication and one addition is counted as one unit (‘flop’, cf. [20, p. 43]).

28 2 Matrix Tools

2.5.2 QR Decomposition

The letter ‘R’ in ‘QR decomposition’ stands for a right (or upper) triangular matrix.
Since an upper triangular matrix R is defined by Rij = 0 for all i > j, this
requires suitably ordered index sets. The QR decomposition (or ‘QR factorisation’)
is a helpful tool for orthogonalisation (cf. [161, §3.4.3], [69, §5.2]) and can be
viewed as algebraic formulation of the Gram-Schmidt8 orthogonalisation. Concern-
ing details about different variants and their numerical stability we recommend the
book of Björck [20].

Lemma 2.19 (QR factorisation). Let M ∈ K
n×m. (a) Then there are a unitary

matrix Q ∈ K
n×n and an upper triangular matrix R ∈ K

n×m with

M = QR (Q unitary, R upper triangular matrix). (2.17a)

Q can be constructed as product of Householder transforms (cf. [178, §4.7]). The
computational work is 2mnmin(n,m) − 2

3 min(n,m)3 for the computation of R
(while Q is defined implicitly as a product of Householder matrices), and 4

3n
3 for

forming Q explicitly as a matrix (cf. [69, §5.2.1]).
(b) If n > m, the matrix R has the block structure

[
R′
0

]
, where the submatrix R′ is

an upper triangular matrix of size m×m. The corresponding block decomposition
Q = [Q′ Q′′] yields the reduced QR factorisation

M = Q′R′ (Q′ ∈ K
n×m, R′ ∈ K

m×m). (2.17b)

The computational work is9 NQR(n,m) := 2nm2 (cf. [69, Alg. 5.2.5], [161, §3.4]).
(c) If r := rank(M) < min{n,m}, the sizes of Q′ and R′ can be further reduced:

M = Q′R′ (Q′ ∈ K
n×r, R′ ∈ K

r×m). (2.17c)

In particular, if M does not possess full rank as in Part (c) of the lemma above,
one wants R′ from (2.17c) to be of the form

R′ = [R′1 R
′
2] , R′1 ∈ K

r×r upper triangular, rank(R′1) = r, (2.17d)

i.e., the diagonal entries ofR′1 do not vanish. This form of R′ can be achieved if and
only if the part (Mij)1≤i,j≤r of M has also rank r. Otherwise, one needs a suitable
permutationM �→MP of the columns of M . Then the factorisation takes the form

MP = Q′ [R′1 R
′
2] (P permutation matrix, Q′, R′1, R

′
2 from (2.17c,d)). (2.18)

An obvious pivot strategy for a matrix M ∈ K
n×m with r = rank(M) is the

Gram-Schmidt orthogonalisation in the following form (cf. [69, §5.4.1]).

8 A modified Gram-Schmidt algorithm was already derived by Laplace in 1816 (see reference in
[20, p. 61] together with further remarks concerning history).
9 Half of the cost of NQR(n,m) is needed for 1

2
(m2 +m) scalar products. The rest is used for

scaling and adding column vectors.

2.5 Matrix Decompositions 29

1) Let mi ∈ K
n (1 ≤ i ≤ m) be the i-th columns of M.

2) for i := 1 to r do
2a) Choose k ∈ {i, . . . ,m} such that ‖mk‖ = max{‖mν‖ : i ≤ ν ≤ m}. If

k �= i, interchange the columns mi and mk.
2b) Now mi has maximal norm. Normalise: mi := mi/ ‖mi‖. Store mi as i-th

column of the matrix Q.
2c) Perform mk := mk − 〈mk,mi〉mi for i+ 1 ≤ k ≤ m.

Here, ‖·‖ is the Euclidean norm and 〈·, ·〉 the corresponding scalar product. The
column exchanges in Step 2a lead to the permutation matrix10 P in (2.18). The
operations in Step 2b and Step 2c define [R′1 R

′
2] .

The presupposition r = rank(M) guarantees that all mi appearing in Step 2b
do not vanish, while mi = 0 (r + 1 ≤ i ≤ m) holds after the r-th iteration for the
remaining columns. In usual applications, the rank is unknown. In that case, one
may introduce a tolerance τ > 0 and redefine Step 2b as follows:

2b’) If ‖mi‖ ≤ τ set r := i− 1 and terminate. Otherwise, proceed as in Step 2b.

The principle of the QR decomposition can be generalised to tuples V m, where
the column vectors from K

n are replaced by functions from the space V (cf. Tre-
fethen [183]).

2.5.3 Singular Value Decomposition

2.5.3.1 Definition and Computational Cost

The singular value decomposition (abbreviation: SVD) is the generalisation of the
diagonalisation of square matrices (cf. [161, §1.9]).

Lemma 2.20 (SVD). (a) Let M ∈ K
n×m be any matrix. Then there are unitary

matricesU ∈ K
n×n, V ∈ K

m×m, and a diagonal rectangular matrix Σ ∈ R
n×m,

Σ =

⎡

⎢
⎢
⎢
⎢
⎣

σ1 0 . . . 0 0 . . . 0

0 σ2
. . . 0 0 0

...
. . .

. . .
...

...
...

0 . . . 0 σn 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎦

⎛

⎝
illustration

for the case

of n ≤ m

⎞

⎠ , (2.19a)

with so-called singular values11

σ1 ≥ σ2 ≥ . . . ≥ σi = Σii ≥ . . . ≥ 0 (1 ≤ i ≤ min{n,m})

10 A permutation matrix P ∈ K
r×r (corresponding to a permutation π : {1, . . . , r} →

{1, . . . , r}) is defined by (Pv)i = vπ(i). Any permutation matrix P is unitary.
11 For indices � > min{#I,#J} we formally define σ� := 0.

30 2 Matrix Tools

such that 12

M = UΣ V T. (2.19b)

The columns of U are the left singular vectors, the columns of V are the right
singular vectors.
(b) The spectral norm of M has the value ‖M‖2 = σ1.
(c) The Frobenius norm of M equals

‖M‖F =

√
∑min{n,m}

i=1
σ2
i . (2.19c)

Proof. i) Assume without loss of generality that n≤m and set A :=MMH∈Kn×n.
Diagonalise the positive semidefinite matrix: A = UDUH with U ∈ K

n×n unitary,
D = diag{d1, . . ., dn} ∈ R

n×n, where the (non-negative) eigenvalues are ordered
by size: d1 ≥ d2 ≥ . . . ≥ 0. Defining σi :=

√
di in (2.19a), we rewrite

D = ΣΣT = ΣΣH.

With W := MHU = [w1, . . ., wn] ∈ K
m×n we have

D = UHAU = UHMMHU = WHW.

Hence, the columns wi of W are pairwise orthogonal and wH
i wi = di = σ2

i .
Next, we are looking for a unitary matrix V = [v1, . . ., vm] ∈ K

m×m with

W = V ΣT, i.e., wi = σivi (1 ≤ i ≤ m)

(note that the complex conjugate values vi are used12).
Let r := max{i : σi > 0}. For 1 ≤ i ≤ r, the condition above leads to

vi :=
1
σi
wi, i.e., vi is normalised: vHi vi = 1. Since the vectors wi of W are already

pairwise orthogonal, the vectors {vi : 1 ≤ i ≤ r} are orthonormal.
For r + 1 ≤ i ≤ n, σi = 0 implies wi = 0. Hence wi = σivi holds for

any choice of vi. To obtain a unitary matrix V , we may choose any orthonormal
extension {vi : r + 1 ≤ i ≤ m} of {vi : 1 ≤ i ≤ r}. The relation W = V ΣT

(withΣT = ΣH) impliesWH = ΣV T. By Definition of W we haveM = UWH =
UΣ V T, so that (2.19b) is proved.

ii) Exercises 2.9b and 2.11a imply that ‖M‖2 = ‖Σ‖2 and ‖M‖F = ‖Σ‖F
proving the parts (b) and (c). ��

If n < m, the last m − n columns of V are multiplied by the zero part of Σ.
Similarly, for n > m, certain columns of U are not involved in the representation
of M. Reduction to the first min{n,m} columns yields the following result.

Corollary 2.21. (a) Let ui ∈ K
I and vi ∈ K

J be the (orthonormal) columns of U
and V, respectively. Then the statement M = UΣ V T from (2.19b) is equivalent to

12 The usual formulation uses M = UΣ V H (or UHΣ V) with the Hermitean transposed V H.
Here we use V T also for K = C because of Remark 1.3a.

2.5 Matrix Decompositions 31

M =

min{n,m}∑

i=1

σi ui v
T
i . (2.20)

The computational cost is about

NSVD(n,m) := min
{
14nmN + 8N3, 6nmN + 20N3

}
,

where N := min{n,m} (cf. [69, §5.4.5]).
(b) The decomposition (2.20) is not unique. Let σi = σi+1 = . . . = σi+k−1 be a
k-fold singular value. The part

∑i+k−1
j=i σjujv

T
j in (2.20) equals

σi [ui, . . . , ui+k−1] [vi, . . . , vi+k−1]
T
.

For any unitary k × k matrix Q, the transformed vectors

[ûi, . . . , ûi+k−1] := [ui, . . . , ui+k−1]Q and [v̂i, . . . , v̂i+k−1] := [vi, . . . , vi+k−1]Q

yield the same sum
∑i+k−1
j=i σj ûj v̂

T
j . Even in the case k = 1 of a simple singular

value, each pair ui, vi of columns may be changed into ûi := zui, v̂i :=
1
z vi with

z ∈ K and |z| = 1.
(c) In many applications span{ui : 1 ≤ i ≤ r} for some r ≤ min{n,m} is of
interest. This space is uniquely determined if and only if σr < σr+1. The same
statement holds for span{vi : 1 ≤ i ≤ r}.

Next, we consider a convergent sequence M (ν)→M of matrices together with
their singular value decompositionsM (ν) = U (ν)Σ(ν)V (ν)T and M=UΣV T.

Remark 2.22. (a) Let M (ν) = U (ν)Σ(ν)V (ν)T ∈ K
n×m be the singular value de-

compositions of M (ν) →M. Then there is a subsequence {νi : i ∈ N} ⊂ N such
that

U (νi) → U, Σ(νi) → Σ, V (νi) → V, M = UΣV T.

(b) Subsequences of the spaces S(ν)
r := span{u(ν)i : 1 ≤ i ≤ r} converge to

Sr := span{ui : 1 ≤ i ≤ r}, where u(ν)i and ui are the columns of U (ν) and U
from Part (a).

Proof. Eigenvalues depend continuously on the matrix; hence,Σ(ν) → Σ. The sub-
set {u(ν)1 : ν ∈ N} ⊂ K

I is bounded by 1, thus it is pre-compact and a subsequence
yields u1 := limi u

(νi)
1 with ‖u1‖ = lim ‖u(νi)1 ‖ = 1. Restrict the sequence to the

latter subsequence and proceed with u(ν)2 in the same way. The convergence of the
subsequences to U, Σ, V implies M = UΣV T. ��

Since the factors U and V are possibly not unique (cf. Corollary 2.21b), it may
happen that M = UΣV T = ÛΣV̂ T are two different decompositions and the
limit of M (ν) =U (ν)Σ(ν)V (ν)T yields UΣV T, while no subsequence converges to
ÛΣV̂ T. Hence, the reverse statement that, in general, any singular value decompo-
sition M = UΣV T is a limit of M (ν)=U (ν)Σ(ν)V (ν)T, is wrong.

32 2 Matrix Tools

2.5.3.2 Reduced and One-Sided Singular Value Decompositions

If M is not of full rank, there are singular values σi = 0, so that further terms can
be omitted from the sum in (2.20). Let13 r := max{i : σi > 0} = rank(M) as in
the proof above. Then (2.20) can be rewritten as

M =
r∑

i=1

σi ui v
T
i with

{
{ui}ri=1 , {vi}

r
i=1 orthonormal,

σ1 ≥ . . . ≥ σr > 0,
(2.21)

where only nonzero terms appear. The corresponding matrix formulation is

M = U ′Σ′V ′T with

⎧
⎨

⎩

U ′ = [u1, . . . , ur] ∈ K
n×r orthogonal,

V ′ = [v1, . . . , vr] ∈ K
m×r orthogonal,

Σ′ = diag{σ1, . . . , σr} ∈ R
r×r, σ1 ≥ . . . ≥ σr > 0.

(2.22)

Definition 2.23 (reduced SVD). The identities (2.21) or (2.22) are called the
reduced singular value decomposition (since the matrices U, Σ, V from (2.19b)
are reduced to the essential nonzero part).

There are cases—in particular, when m � n—where one is interested only in
the left singular vectors ui and the singular values σi from (2.21) or equivalently
only in U ′ and Σ′ from (2.22). Then we say that we need the left-sided singular
value decomposition. The proof of Lemma 2.20 has already shown how to solve for
U ′ and Σ′ alone:

1) Perform A :=MMH ∈ K
n×n.

2) Diagonalise A = UDUH with the non-negative diagonal matrix

D = diag{d1, . . . , dn} ∈ R
n×n, d1 ≥ d2 ≥ . . . ≥ 0.

3) Set r := max{i : di > 0}, σi :=
√
di, and Σ′ := diag{σ1, . . . , σr}.

4) Restrict U to the first r columns: U ′ = [u1, . . . , ur] .

Remark 2.24. (a) Steps 1-4 from above define the matrices U ′ and Σ′ from (2.22).
The third matrix V ′ is theoretically available via V ′=(Σ′)

−1
MHU ′. The product

MMH in Step 1 requires the computation of n(n+1)
2 scalar products 〈mi,mj〉

(i, j ∈ I) involving the rows mi := M [i, •] ∈ K
J of M . The computational cost

for these scalar products will crucially depend on the underlying data structure (cf.
Remark 7.12). Steps 2-4 are independent of the size of J . Their cost is asymptoti-
cally 8

3n
3 (cf. [69, §8.3.1]).

(b) The knowledge of U ′ suffices to define M̂ := U ′HM. M̂ has orthogonal rows
m̂i (1 ≤ i ≤ n) which are ordered by size: ‖m̂1‖ = σ1 > ‖m̂2‖ = σ2 > . . . > 0.

Proof. Let M = U ′Σ′V ′T be the reduced singular value decomposition. Since
U ′HU ′ = I ∈ K

r×r, Part (b) defines M̂ := U ′HM = Σ′V ′T. It follows that
M̂M̂H =

(
Σ′V ′T

)
(V ′Σ′) = Σ′ 2, i.e., 〈m̂i, m̂j〉 = 0 for i �= j and ‖m̂i‖ = σi . ��

13 If σi = 0 for all i, set r := 0 (empty sum). This happens for the uninteresting case of M = 0.

2.5 Matrix Decompositions 33

The analogously defined right-sided singular value decomposition of M is
identical to the left-sided singular value decomposition of the transposed matrix
MT, since M = U ′Σ′V ′T ⇐⇒MT = V ′Σ′U ′T.

2.5.3.3 Inequalities of Singular Values

Finally, we discuss estimates about eigenvalues and singular values of perturbed
matrices. The following lemma states the Fischer-Courant characterisation of eigen-
values. For a general matrix A ∈ K

n×n we denote the eigenvalues corresponding
to their multiplicity by λk(A). If λk(A) ∈ R, we order the eigenvalues such that
λk(A) ≥ λk+1(A). Formally, we set λk(A) := 0 for k > n.

Remark 2.25. For matrices A ∈ K
n×m and B ∈ K

m×n the identity λk(AB) =
λk(BA) is valid. If A and B are positive semidefinite, the eigenvalues λk(AB) are
non-negative.

Proof. 1) If e �= 0 is an eigenvector of AB with nonzero eigenvalue λ, the vector
Be does not vanish. Then (BA)(Be) = B(AB)e = B(λe) = λ(Be) proves that
Be is an eigenvector of BA for the same λ. Hence, AB and BA share the same
nonzero eigenvalues. The further ones are zero (maybe by the setting from above).

2) If B ≥ 0, the square root B1/2 is defined (cf. Remark 2.13). Part 1) shows
λk(AB) = λk(AB

1/2B1/2) = λk(B
1/2AB1/2). The latter matrix is positive

semidefinite proving λk(B1/2AB1/2) ≥ 0. ��

Lemma 2.26. Let the matrix A ∈ K
n×n be positive semidefinite. Then the eigen-

values λ1(A) ≥ . . . ≥ λn(A) ≥ 0 can be characterised by

λk(A) = min
V ⊂ K

n subspace
with dim(V) ≤ k − 1

max
x ∈ K

n with
xHx = 1 and x⊥V

xHAx. (2.23)

Proof. A can be diagonalised: A = UΛUH with Λii = λi. Since xHAx = yHΛy
for y = UHx, the assertion can also be stated in the form

λk = min
W with dim(W)≤k−1

max
{
yHΛy : y ∈ K

n with yHy = 1, y⊥W
}

(W=UHV). FixW with dim(W)≤ k−1 . All y∈Kn with yi=0 for i>k form a
k-dimensional subspace Y . Since dim(W)≤ k − 1, there is at least one 0 �=y∈Y
with yHy = 1, y⊥W . Obviously, yHΛy =

∑k
i=1 λiy

2
i ≥

∑k
i=1 λky

2
i ≥ λk. The

choiceW = {w ∈ K
n : wi = 0 : k ≤ i ≤ n} yields equality: yHΛy = λk. ��

In the following we use the notation λk(A) for the k-th eigenvalue of a positive
semidefinite matrix A, where the ordering of the eigenvalues is by size (see Lemma
2.26). Similarly, σk(A) denotes the k-th singular value of a general matrix A. Note
that ‖·‖2 is the spectral norm from (2.13).

34 2 Matrix Tools

Lemma 2.27. (a) Let A,B ∈ K
n×n be two positive semidefinite matrices. Then

λk(A) ≤ λk(A+B) ≤ λk(A) + ‖B‖2 for 1 ≤ k ≤ n. (2.24a)

In particular, 0 ≤ A ≤ B implies λk(A) ≤ λk(B) for 1 ≤ k ≤ n.

(b) Let the matrices A ∈ K
n×m and B ∈ K

n×m′ satisfy AAH ≤ BBH. Then the
singular values14 σk(A) and σk(B) of both matrices are related by

σk(A) ≤ σk(B) for 1 ≤ k ≤ n. (2.24b)

The same statement holds for A ∈ K
m×n and B ∈ K

m′×n with AHA ≤ BHB.

(c) Let M ∈Kn×m be any matrix, while A∈Kn′×n and B∈Km×m′ have to satisfy
AHA ≤ I and BHB ≤ I . Then14

σk(AMB) ≤ σk(M) for k ∈ N.

Proof. 1) λk(A) ≤ λk(A+B) is a consequence of Remark 2.14 and Lemma 2.26.
2) Let VA and VA+B be the subspaces from (2.23), which yield the minimum for

A and A + B, respectively. Abbreviate the maximum in (2.23) over x ∈ K
n with

xHx = 1 and x⊥V by maxV . Then

λk(A+B) = max
VA+B

xH(A+B)x ≤ max
VA

xH(A+B)x = max
VA

[
xHAx+ xHBx

]

≤ max
VA

xHAx+ max
xHx=1

xHBx = λk(A) + ‖B‖2 .

3) For Part (b) use λk(A) ≤ λk(A + B) with A and B replaced by AAH and
BBH − AAH in the case of AAH ≤ BBH. Otherwise, use that the eigenvalues of
XHX and XXH coincide (cf. Remark 2.25).

4) Let M ′ := AMB and use σk(M
′)2 = λk(M

′HM ′). Remark 2.14b im-
plies that M ′(M ′)H = AMBBHMHAH ≤ AMMHAH, so that λk(M ′HM ′) ≤
λk(AMMHAH). Remark 2.25 states that λk(AMMHAH) = λk(M

HAHAM),
and from AHA≤I we infer that λk(MHAHAM) ≤ λk(M

HM) = σk(M)2. ��

Let n = n1 + n2, A ∈ K
n1×m and B ∈ K

n2×m. Then the agglomerated matrix[
A
B

]
belongs to K

n×m. In the next lemma we compare singular values of A and
[
A
B

]
.

Lemma 2.28. For general A∈Kn1×m and B∈Kn2×m, the singular values satisfy

σk(A) ≤ σk(
[
A
B

]
) ≤

√

σ2
k(A) + ‖B‖

2
2.

The same estimate holds for σk([A B]), where A ∈ K
n×m1 and B ∈ K

n×m2 .

Proof. Use σ2
k(A)=λk(A

HA) and σ2
k(
[
A
B

]
)=λk([A B]

H[A
B

]
)=λk(A

HA +BHB)

and apply (2.24a): σ2
k(
[
A
B

]
) ≤ λk(A

HA) + ‖BHB‖2 = σ2
k(A) + ‖B‖

2
2. ��

14 See Footnote 11 on page 29.

2.6 Low-Rank Approximation 35

Exercise 2.29. Prove σk(A) ≤ σk

([
A C

B

])

≤
√
σ2
k(A) + ‖B‖

2
2 + ‖C‖

2
2.

2.6 Low-Rank Approximation

Given a matrix M, we ask for a matrix R ∈ Rs of lower rank (i.e., s < rank(M))
such that ‖M −R‖ is minimised. The answer is given by15 Erhard Schmidt (1907)
[168, §18]. In his paper, he studies the infinite singular value decomposition for
operators (cf. Theorem 4.114). The following finite case is a particular application.

Lemma 2.30. (a) Let M,R ∈ K
n×m with r := rank(R). The singular values ofM

and M −R are denoted by σi(M) and σi(M −R), respectively. Then16

σi(M −R) ≥ σr+i(M) for all 1 ≤ i ≤ min{n,m}. (2.25)

(b) Let s ∈
{
0, 1, . . . ,min{n,m}

}
. Use the singular value decomposition M =

UΣV T to define

R := UΣsV
T with (Σs)ij =

{
σi for i = j ≤ s,
0 otherwise,

(2.26a)

i.e., Σs results from Σ by replacing all singular values σi = Σii for i > s by zero.
Then the approximation error is

‖M −R‖2 = σs+1 and ‖M −R‖F =

√
∑min{n,m}

i=s+1
σ2
i . (2.26b)

Inequalities (2.25) becomes σi(M −R) = σs+i(M).

Proof. 1) If r + i > min{n,m}, (2.25) holds because of σr+i(M) = 0. Therefore
suppose r + i ≤ min{n,m}.

2) First, σi(M − R) is investigated for i = 1. λr+1(MMH) := σ2
r+1(M) is the

(r + 1)-th eigenvalue ofA := MMH (see proof of Lemma 2.20). The minimisation
in (2.23) yields

σ2
r+1(M) ≤ max

{
xHAx : x ∈ K

n with xHx = 1, x⊥V
}

for any fixed subspace V of dimension ≤ r. Choose V := ker(RH)⊥. As x⊥V is
equivalent to x ∈ ker(RH), we conclude that

xHAx = xHMMHx =
(
MHx

)H (
MHx

)
=
(
(M −R)H x

)H(
(M −R)H x

)

= xH (M −R) (M −R)H x.
15 Occasionally, this result is attributed to Eckart-Young [50], who reinvented the statement later
in 1936.
16 See Footnote 11 on page 29.

36 2 Matrix Tools

Application of (2.23) to the first eigenvalue λ1 = λ1((M −R) (M −R)H) of the
matrix (M −R) (M −R)H shows

max
{
xHAx : x ∈ K

n with xHx = 1, x⊥V
}

= max{xH (M −R) (M −R)H x : xHx = 1, x⊥V}
≤ max{xH (M −R) (M −R)H x : x ∈ K

I with xHx = 1}
= λ1

(
(M −R) (M −R)H

)

(in the case of the first eigenvalue, the requirement x⊥V with dim(V) = 0 is an
empty condition). Since, again, λ1

(
(M −R) (M −R)H

)
= σ2

1(M −R), we have
proved σ2

r+1(M) ≤ σ2
1(M −R), which is Part (a) for i = 1.

3) For i > 1 choose V := ker(RH)⊥ +W , whereW with dim(W) ≤ i − 1 is
arbitrary. Analogously to Part 2), one obtains the bound

max
{
xH (M −R) (M −R)H x : x ∈ K

n with xHx = 1, x⊥W
}
.

Minimisation over allW yields λi
(
(M −R) (M −R)H

)
= σ2

i (M −R).
4) The choice from (2.26a) eliminates the singular values σ1, . . . , σs so that

σi(M −R) = σs+i(M) for all i ≥ 1. ��

Using the notation M =
∑r
i=1σiuiv

T
i from (2.21), we write R as

∑s
i=1σiuiv

T
i .

A connection with projections is given next.

Remark 2.31. P (s)
1 :=

∑s
i=1 ui u

H
i and P

(s)
2 :=

∑s
i=1 vi v

H
i are the orthogonal

projections onto span{ui : 1 ≤ i ≤ s} and span{vi : 1 ≤ i ≤ s}, respectively.

Then R from (2.26a) can be written as R = P
(s)
1 M(P

(s)
2)T=P

(s)
1 M=M(P

(s)
2)T.

Conclusion 2.32 (best rank-k approximation). For M ∈ K
n×m construct R as in

(2.26a). Then R is the solution of the following two minimisation problems:

min
rank(R)≤r

‖M −R‖2 and min
rank(R)≤r

‖M −R‖F . (2.27)

The values of the minima are given in (2.26b). The minimising element R is unique
if and only if σr > σr+1.

Proof. 1) Since ‖M −R′‖2 = σ1(M −R′) and ‖M −R′‖2F =
∑

i>0 σ
2
i (M −R′)

follows from Lemma 2.20b,c, we obtain from Lemma 2.30a that

‖M −R′‖2 ≥ σr+1(M), ‖M −R′‖2F ≥
∑

i>r

σ2
i (M) for R′ with rank(R′) ≤ r.

Since equality holds for R′ = R, this is the solution of the minimisation problems.

2) If σk = σk+1, one may interchange the r-th and (r + 1)-th columns in U and
V obtaining another singular value decomposition. Thus, another R results. ��

2.6 Low-Rank Approximation 37

Next, we consider a convergent sequence M (ν) and use Remark 2.22.

Lemma 2.33. Consider M (ν) ∈ K
n×m with M (ν) → M . Then there are best

approximations R(ν) according to (2.27) so that a subsequence of R(ν) converges
to R, which is the best approximation to M .

Remark 2.34. The optimisation problems (2.27) can also be interpreted as the best
approximation of the range of M :

max {‖PM‖F : P orthogonal projection with rank(P) = r} . (2.28a)

Proof. The best approximation R ∈ Rr to M has the representation R = PM for
P =P

(r)
1 (cf. Remark 2.31). By orthogonality,

‖PM‖2F + ‖(I − P)M‖2F = ‖M‖2F

holds. Hence, minimisation of ‖(I − P)M‖2F = ‖M −R‖2F is equivalent to
maximisation of ‖PM‖2F . ��

In the following, not only the range of one matrix but of a family of matrices
Mi ∈ K

n×mi (1 ≤ i ≤ p) is to be optimised:

max

{
p∑

i=1

‖PMi‖2F : P orthogonal projection with rank(P) = r

}

. (2.28b)

Problem (2.28b) can be reduced to (2.28a) by agglomeratingMi into

M := [M1M2 · · · Mp] . (2.28c)

The optimal projection P = P
(r)
1 from Remark 2.31 is obtained from the left

singular vectors of M. If the left singular value decompositions of Mi are known,
the corresponding decomposition of M can be simplified.

Lemma 2.35. The data of the left singular value decompositions of Mi = UiΣiV
T
i

consist of Ui and Σi. The corresponding data U,Σ of M = UΣV T from (2.28c)
can also be obtained from the left singular value decomposition of

M ′ := [U1Σ1 U2Σ2 · · · UpΣp] . (2.28d)

Proof. Since MMH =
∑p
i=1MiM

H
i =

∑p
i=1 UiΣ

2
i U

H
i coincides with the product

M ′M ′H =
∑p

i=1 UiΣ
2
i U

H
i , the diagonalisation UΣ2UH is identical. ��

38 2 Matrix Tools

2.7 Linear Algebra Procedures

For later use, we formulate procedures based on the previous techniques.
The reduced QR decomposition is characterised by the dimensions n and m, the

input matrixM ∈Kn×m, the rank r, and resulting factorsQ andR. The correspond-
ing procedure is denoted by

procedure RQR(n,m, r,M,Q,R); {reduced QR decomposition}
input: M ∈ K

n×m;
output: r = rank(M), Q ∈ K

n×r orthogonal,
R ∈ K

r×m upper triangular.

(2.29)

and requires NQR(n,m) operations (cf. Lemma 2.19).
The modified QR decomposition from (2.18) produces a further permutation

matrix P and the decomposition of R into [R1 R2]:

procedure PQR(n,m, r,M, P,Q,R1, R2); {pivotised QR decomposition}
input: M ∈ K

n×m;
output: Q ∈ K

n×r orthogonal, P ∈ K
m×m permutation matrix,

R1 ∈ K
r×r upper triangular with r = rank(M), R2 ∈ K

r×(m−r).

(2.30)

A modified version of PQR will be presented in (2.40).
The (two-sided) reduced singular value decomposition from Definition 2.23

leads to

procedure RSVD(n,m, r,M,U,Σ, V); {reduced SVD}
input: M ∈ K

n×m;
output: U ∈ K

n×r, V ∈ K
m×r orthogonal with r = rank(M),

Σ = diag{σ1, . . . , σr} ∈ R
r×r with σ1 ≥ . . . ≥ σr > 0.

(2.31)

Here the integers n,m may also be replaced by index sets I and J . Concerning the
cost NSVD(n,m) see Corollary 2.21a.

The left-sided reduced singular value decomposition (cf. Remark 2.24) is de-
noted by

procedure LSVD(n,m, r,M,U,Σ); {left-sided reduced SVD}
input: M ∈ K

n×m;
output: U , r, Σ as in (2.31).

(2.32)

Its cost is

NLSVD(n,m) :=
1

2
n (n+ 1)Nm +

8

3
n3,

where Nm is the cost of the scalar product of rows of M . In general,Nm = 2m− 1
holds, but it may be less for structured matrices (cf. Remark 7.12).

In the procedures above, M is a general matrix from K
n×m. Matrices M ∈ Rr

(cf. (2.6)) may be given in the form

2.7 Linear Algebra Procedures 39

M=

r∑

ν=1

r∑

μ=1

cνμaνb
H
μ=ACB

H

(
aν ∈ K

n, A=[a1a2 · · ·]∈Kn×r ,
bν ∈ K

m, B=[b1 b2 · · ·]∈Km×r
)

. (2.33)

Then the following approach has a cost proportional to n + m if r n,m (cf.
[86, Alg. 2.5.3]), but also for r � n,m it is cheaper than the direct computation17

of the productM = ACBH followed by a singular value decomposition.

Remark 2.36. For M = ACBH from (2.33) compute the reduced QR decomposi-
tions18

A = QARA and B = QBRB with

{
QA ∈ K

n×rA , rA := rank(A),
QB ∈ K

n×rB , rB := rank(B),

followed by the singular value decomposition RACRH
B = ÛΣV̂ H. Then the singu-

lar value decomposition of M is given by UΣV H with U = QAÛ and V = QBV̂ .
The cost of this calculation is

NQR(n, r) +NQR(m, r) +NLSVD(rA, rB) + 2rArBr + 2r̄r2 + 2
(
r2An+ r2Bm

)

with r̄ := min{rA, rB} ≤ min{n,m, r}. In the symmetric case of A = B and
n = m with r̄ := rank(A), the cost reduces to

NQR(n, r) + 2r̄r2 + r̄2
(
r + 2n+ 8

3 r̄
)
.

Let B′ = [b′1, . . . , b
′
r′] ∈ K

n×r′ and B′′ = [b′′1 , . . . , b
′′
r′′] ∈ K

n×r′′ contain two
systems of vectors. Often, B′ and B′′ correspond to bases of subspaces U ′ ⊂ V
and U ′′ ⊂ V . A basic task is the construction of a basis19 B = [b1, . . . , br] of
U := U ′ + U ′′. Furthermore, the matrices T ′ ∈ K

r×r′ and T ′′ ∈ K
r×r′′ with

B′ = BT ′ and B′′ = BT ′′, i.e., b′j =
r∑

i=1

T ′ijbi, b
′′
j =

r∑

i=1

T ′′ijbi, (2.34)

are of interest. The corresponding procedure is

procedure JoinBases(B′, B′′, r, B, T ′, T ′′); {joined bases}
input: B′ ∈ K

n×r′ , B′′ ∈ K
n×r′′ ,

output: r = rank[B′ B′′]; B basis of range([B′ B′′]),
T ′ ∈ K

r×r′ and T ′′ ∈ K
r×r′′ with (2.34).

(2.35)

A possible realisation starts fromB=[b′1,. . ., b
′
r′ , b
′′
1 ,. . ., b

′′
r′′]∈Kn×(r

′+r′′) and per-
forms the reduced QR factorisation B=QR by RQR(n,r′+ r′′,r,B,P,Q,R1,R2).
Then the columns of PTQ form the basis B, while [T ′, T ′′] = R := [R1, R2].

17 For instance, the direct computation is cheaper if n = m = r = rA = rB .
18 Possibly, permutations according to (2.30) are necessary.
19 We call B = [b1, . . . , br] a basis, meaning that the set {b1, . . . , br} is the basis.

40 2 Matrix Tools

If B′ is a basis, if may be advantageous to let the basis vectors bi = b′i from B′

unchanged, whereas for i > r′, bi is the i-th column of Q. Then T ′ =
[
I
0

]
holds,

while T ′′ is as before.
If all bases B′, B′′, B are orthonormal, the second variant from above completes

the system B′ to an orthonormal basis B:

procedure JoinONB(b′, b′′, r, b, T ′, T ′′); {joined orthonormal basis}
input: B′ ∈ K

n×r′ , B′′ ∈ K
n×r′′ orthonormal bases,

output: B orthonormal basis of range([B′ B′′]); r, T ′, T ′′ as in (2.35).
(2.36)

The cost of both procedures is NQR(n, r
′ + r′′).

2.8 Deflation Techniques

2.8.1 Dominant Columns

We consider again the minimisation problem (2.27): minrank(M ′)≤k ‖M −M ′‖ for
M ∈ K

n×m and ‖·‖ = ‖·‖2 or ‖·‖ = ‖·‖F. Without loss of generality, we assume
that the minimising matrix Mk satisfies rank(Mk) = k; otherwise, replace k by
k′ :=rank(Mk) and note that min

rank(M ′)≤k
‖M −M ′‖ = min

rank(M ′)≤k′
‖M −M ′‖ .

The minimising matrix Mk ∈ Rk is of the form

Mk = ABT, where A ∈ K
n×k and B ∈ K

m×k

and range(Mk)=range(A). The singular value decomposition M=UΣV T yields
the matrices A = U ′Σ′ and B = V ′, where the matrices U ′, Σ′, V ′ consist of the
first k columns of U,Σ, V . Since A = U ′Σ′ = MV ′T, the columns of A are linear
combinations of all columns of M. The latter fact is a disadvantage is some cases.
For a concrete numerical approach, we have to representA. If the columnsmj ofM
are represented as full vectors from K

n, a linear combination is of the same kind and
leads to no difficulty. This can be different, if other representations are involved. To
give an example for an extreme case, replace Kn×m=(Kn)m by Xm, where X is a
subspace of, say, L2([0, 1]). Let the columns be functions like xν or exp(αx). Such
functions can be simply coded together with procedures for pointwise evaluation
and mutual scalar products. However, linear combinations cannot be simplified. For
instance, scalar products of linear combinations must be written as double sums of
elementary scalar products. As a result, the singular value decomposition reduces
the rank of M to k, but the related computational cost may be larger than before.

This leads to a new question. Can we findABT∈ Rk approximatingM such that
A = [cj1 · · · cjk] consists of k (different) columns of M? In this case, ABT involves
only k columns of M instead of all. For this purpose we define

Rk(M) := {ABT ∈ Rk : A = [M [·, j1], · · · ,M [·, jk]] with 1≤jκ≤m}, (2.37)

2.8 Deflation Techniques 41

using the notations from above. The minimisation (2.27) is now replaced by

find Mk ∈ Rk(M) with ‖M −Mk‖ = min
M ′∈Rk(M)

‖M −M ′‖ . (2.38)

Since there are
(
m
k

)
different combinations of columns, we do not try to solve this

combinatorial problem exactly. Instead, we are looking for an approximate solution.
By procedure PQR from (2.30), we obtain the QR decomposition MP = QR

with R=[R1 R2]. First we discuss the case r :=rank(M)=m, which is equivalent
to M possessing full rank. Then R2 does not exist (m − r = 0 columns) and
R := R1 is a square upper triangular matrix with non-vanishing diagonal entries.
Thanks to the pivoting strategy, the columns ofR are of decreasing Euclidean norm.
Let k ∈ {1, . . . ,m − 1} be the desired rank from problem (2.38). We split the
matrices into the following blocks:

R =
R′ S
0 R′′

with

{
R′ ∈ K

k×k, R′′ ∈ K
(m−k)×(m−k) upper triangular,

S ∈ K
k×(m−k),

Q = Q′ Q′′ with Q′ ∈ K
n×k, Q′′ ∈ K

n×(m−k).

ThenQ′R′ corresponds to the first k columns of MP. As P is a permutation matrix,
these columns form the matrix A as required in (2.37). The approximating matrix
is defined by MPQR

k := Q′ [R′ S] , where [R′ S] ∈ K
k×m, i.e., the matrix B from

(2.37) is B = [R′ S]
T
.

Proposition 2.37. The matrix MPQR
k := Q′ [R′ S] constructed above belongs to

Rk(M) and satisfies the following estimates:

‖M −MPQR
k ‖2 ≤ ‖R′′‖2 , ‖M −MPQR

k ‖F ≤ ‖R′′‖F , (2.39a)

σk(M
PQR
k) ≤ σk(M) ≤

√

σ2
k(M

PQR
k) + ‖R′′‖22. (2.39b)

Proof. 1) By construction,M −MPQR
k = Q

[
0 0
0 R′′

]
holds and leads to (2.39a).

2) (2.39b) follows from Lemma 2.28. ��

Now, we investigate the case r < m. Then the full QR decomposition would lead
toQRwith R =

[
R′
0

]
with zeros in the rows r+1 to m. These zero rows are omitted

by the reduced QR decomposition. The remaining part R′ (again denoted by R) is
of the shape R = [R1 R2] , where R1 has upper triangular form. As rank(M) = r,
the approximation rank k from (2.38) should vary in 1 ≤ k < r. Again the columns
of R1 are decreasing, but the choice of the first k columns may not be the optimal
one. This is illustrated by the following example.

Let M=
[
2 1 1 1
0 1 1 1

]
with r = 2 < m = 4. Since the first column has largest norm,

procedure PQR produces P = I (no permutations) and

Q =

[
1 0
0 1

]

, R1 =

[
2 1
0 1

]

, R2 =

[
1 1
1 1

]

.

42 2 Matrix Tools

Let k = 1. Choosing the first column of Q and first row of R, we obtain M [1]
1 :=[

2 1 1 1
0 0 0 0

]
. The approximation error is ε1 := ‖M −M

[1]
1 ‖ =

∥
∥
[
0 0 0 0
0 1 1 1

]∥
∥ =

√
3.

Note that we cannot choose the second column
[
0
1

]
of Q and the second row of R

instead, since
[
0
1

]
is not a column of M, i.e., the resulting approximation does not

belong to R1(M). A remedy is to change the pivot strategy in Step 2a from page
29. We choose the second column of M as first column of Q. For this purpose let P
be the permutation matrix corresponding to 1↔ 2. The QR decomposition applied
to MP =

[
1 2 1 1
1 0 1 1

]
yields

Q =
1√
2

[
1 1
1 −1

]

, R1 =
√
2

[
1 1
0 1

]

, R2 =
√
2

[
1 1
0 0

]

.

The first column of Q and the first row of R result in M
[2]
1 P with the smaller

approximation error

ε2 := ‖M −M [2]
1 ‖ =

∥
∥
∥
∥

[
1 0 0 0
−1 0 0 0

]∥
∥
∥
∥ =
√
2 <
√
3.

The reason for ε2 < ε1 is obvious: although
[
1
1

]
is of smaller norm than

[
2
0

]
, it

has a higher weight because it appears in three columns of M. To take this weight
into consideration, we need another pivot strategy.

Let M = [c1 · · · cm] ∈ K
n×m. Each column cj �= 0 is associated with the

orthogonal projection Pj := ‖cj‖−2 cjcHj onto span{cj}. We call ci a dominant
column, if ‖PiM‖ = max1≤j≤m ‖PjM‖. Equivalently, ‖M − PjM‖ is minimal
for j = i. Let P be the permutation matrix corresponding to the exchange 1 ↔ i.
Then MP = QR leads to Q with ci/ ‖ci‖ as first column. The first row of R is
rH1 := ‖ci‖−1 cHiMP . Hence, the choice of the dominant column ensures that the
approximation (2.38) with k = 1 is given by ‖ci‖−1cirH1 PH = PiM .

The calculation of a dominant column is discussed in the next lemma.

Lemma 2.38. For M = [c1 · · · cm] set

Z = (ζjk)1≤j,k≤m with ζjk := 〈ck, cj〉 / ‖cj‖ .

Then the index imax ∈ {1, . . . ,m} with ‖ζimax,•‖ = max1≤j≤m ‖ζj,•‖ charac-
terises the dominant column.

Proof. Because of

PjM = ‖cj‖−2
(
cj c

H
j ck

)
1≤k≤m =

(
ζjk
‖cj‖

cj

)

1≤k≤m
,

its norm is ‖PjM‖ =
√∑

k |ζjk|2 = ‖ζj,•‖ . ��

The concept of the dominant column leads to the following variant of PQR:

2.8 Deflation Techniques 43

procedure DCQR(n,m, r,M, P,Q,R1, R2); {pivot by dominant column}
input: M ∈ K

n×m;
output: Q ∈ K

n×r orthogonal, P ∈ K
m×m permutation matrix,

R1 ∈ K
r×r upper triangular with r = rank(M), R2 ∈ K

r×(m−r).
for j := 1 to r do
begin determine i ∈ {j, . . . ,m} such that ci := M [•, i]

is the dominant column of M [•, j : m];
permute j ↔ i (change of P)
Q[j, •] := ci ;M [•, i] := M [•, j];
M [•, j + 1 : m] := (I − Pi)M [•, j + 1 : m] (Pi := ‖ci‖−2cicHi)

end; {determination of R1, R2 as usual; here omitted}

(2.40)

Corollary 2.39. In practical applications, it suffices to determine ι̂max instead of
imax, where ‖ζι̂max,•‖ is sufficiently close to ‖ζimax,•‖. For this purpose,
order the columns by decreasing norm: MP =: [c1 · · · cm] with ‖cj‖ ≥ ‖cj+1‖ .
Choose m0 ∈ {1, . . . ,m − 1} with ε2 :=

∑m
k=m0+1 ‖ck‖2 sufficiently small

and reduce the maximisation to the first m0 columns: ι̂max is the maximiser of
max1≤j≤m0

√∑m0

k=1|ζjk|2. Then the two maxima are related by

‖ζι̂max,•‖ ≤ ‖ζimax,•‖ ≤
√

‖ζι̂max,•‖
2
+ ε2.

To estimate the cost, we start with the determination of the matrixZ from Lemma
2.38. The 1

2m(m + 1) scalar products are to be computed only once. After one
elimination step (ck �→ Pick) they can be updated20 without new scalar products
(cost: 2(m−1)m). Also the application of Pi toM does not require scalar products,
since they are precomputed. The cost of the original procedure DCQR is

NDCQR = 4
(
mr − 1

2r
2
)
n+m2n+ 2rm(m− r)

plus lower order terms. If m is immediately reduced to m0, the cost is reduced
correspondingly.

Remark 2.40. Assume that n = n̂p with n̂, p ∈ N. A further reduction of cost is
possible, if the scalar product 〈a, b〉 =

∑n
i=1 aibi is approximated by

〈a, b〉p := p
∑n̂

i=1
aibi.

〈·, ·〉p is not a scalar product in K
n, but if a, b ∈ K

n is a smooth grid function,
〈a, b〉p approximates 〈a, b〉 . With this modification in DCQR, n in NDCQR can
be reduced to n̂. Note that the computed Q is not strictly orthogonal.

Following the ideas from [120], one may start with n̂ = O(1) to select r̂ columns,
where r < r̂ = O(r). Then the final call of DCQR (with exact scalar product)
is applied to the reduced matrix M ∈ K

n×r̂. Note that this procedure yields the
same result as DCQR applied to the original matrix M, if the finally chosen r
columns are among the r̂ columns selected by the first heuristic step. The total work
is O(mr +m2

0r + r2n+ r3) with m0 from Corollary 2.39.

20 To be precise, only 〈ck, cj〉 and |ζjk|2 need to be updated.

44 2 Matrix Tools

2.8.2 Reduction of a Basis

A related, but more general problem is discussed next. Let B ∈ K
I×J be a matrix

containing #J basis vectors

bν = B[·, ν] ∈ K
I (ν ∈ J) . (2.41a)

Furthermore, p vectors xμ ∈ range(B) ⊂ K
I are given, gathered in the matrix

X ∈ K
I×p, xμ = X [·, μ] (1 ≤ μ ≤ p) . (2.41b)

Because of xμ∈ range(B) = span{bν : ν∈J}, there are coefficients aνμ such that

xμ =
∑

ν∈J
aνμbν (1 ≤ μ ≤ p) , (2.41c)

which is equivalent to the matrix formulation

X = BA with A = (aνμ)ν∈J,1≤μ≤p ∈ K
J×p. (2.41d)

Now, we want to approximate X by a reduced basis. Similarly as in §2.8.1,
the smaller basis must consist of a subset of the vectors bν from (2.41a). Split J
into J = J ′∪̇J ′′, where J ′ is the remaining index set, while basis vectors bμ with
μ ∈ J ′′ are to be omitted. The simultaneous approximation of all xν is expressed
by minimising the Frobenius norm:

given J ′, find AJ
′ ∈ K

J′×p such that (2.42a)

ε(J ′) := ‖X −B′AJ′‖F = min
A′∈KJ′×p

‖X −B′A′‖F, (2.42b)

where B′ is the restriction B|I×J′ ∈ K
I×J′ . The best choice of J ′ ⊂ J under the

constraint #J ′ = q ∈ {1, . . . ,#J} is given by

J ′ minimiser of εq := min{ε(J ′) : J ′ ⊂ J with #J ′ = q}. (2.42c)

The problem from §2.8.1 corresponds to the particular case ofB=M andX=M .
The minimisation in (2.42a,b) is a least-squares problem. For its solution we

define the Gram matrix

G = (gνμ)ν,μ∈J with gνμ = 〈bμ, bν〉 .

The disjoint partition J = J ′
·
∪ J ′′ leads to the block decomposition

G =

[
G′ G�

(G�)H G′′

]

with

{
G′ = (gνμ)ν,μ∈J′ , G

′′ = (gνμ)ν,μ∈J′′ ,

G� = (gνμ)ν∈J′,μ∈J′′ .
(2.43)

The decomposition defines the Schur complement

S := G′′ − (G�)HG′−1G�. (2.44)

2.8 Deflation Techniques 45

Lemma 2.41. Let X = BA. The solution AJ
′
of (2.42a,b) is given by

AJ
′
:=

[
I G′−1G�

0 0

]

A. (2.45a)

Splitting A ∈ K
J×p into

[
A′

A′′
]

with A′ ∈ K
J′×p and A′′ ∈ K

J′′×p, we rewrite the
latter equation as

AJ
′
= A′ +G′−1G�A′′. (2.45b)

The minimum ε(J ′) from (2.42b) equals

ε(J ′) =

√∑p

μ=1

〈
S−1a′′μ, a

′′
μ

〉
, where a′′μ := (aνμ)ν∈J′′ ∈ K

J′′ . (2.45c)

Proof. First, we may assume p = 1, i.e., X andA are vectors. Define the subspaces
U ′ := span{bμ : μ ∈ J ′} and U ′′ := span{bμ : μ ∈ J ′′}. Then, range(B) is
the direct sum21 U ′ ⊕ U ′′. The best approximation in U ′ is given by the orthogonal
projection P ′ onto U ′, i.e., P ′X ∈ U ′ is the desired solution B′AJ

′
. It remains

to determine the coefficients of AJ
′
. Split X into X = BA = X ′ + X ′′ with

X ′ = B′A′ ∈ U ′ and X ′′ = B′′A′′ ∈ U ′′ (for A′, A′′, B′, and B′′ see the lines
after (2.42b) and (2.45a)). Let P be the mapping X = BA �→ B′AJ

′
with AJ

′

from (2.45b). We have to show that P = P ′. Obviously, P is a mapping into U ′.
Furthermore, X ∈ U ′ implies X = B′A′ and A′′ = 0 and, therefore, PX = X .
This proves that P is a projection. Next, one verifies that 〈(I − P)X, bν〉 = 0 for
ν ∈ J ′, i.e., range(I − P) ⊂ U ′⊥. Hence, P is the orthogonal projection P ′.
X = X ′ + X ′′ leads to the error (I − P)X = X ′′ − PX ′′ with the squared

Frobenius norm

‖X−B′AJ′‖2 =

∥
∥
∥
∥B

[
−G′−1G�

I

]

A′′
∥
∥
∥
∥

2

=

〈

G

[
−G′−1G�

I

]

A′′,

[
−G′−1G�

I

]

A′′
〉

=
〈
S−1A′′, A′′

〉
.

For p > 1, we have to sum over all columns a′′μ of A′′. ��

The calculation of εq from (2.42c) can be quite costly, since there may be very
many subsets J ′ ⊂ J with #J ′ = q. For each J ′ one has to evaluate ε(J ′)
involving the Schur complement S = SJ

′
. Here, it is helpful that all inverse Schur

complements can be computed simultaneously.

Lemma 2.42. Compute the inverse G−1. Then, for any ∅ �= J ′ ⊂ J, the inverse
Schur complement (SJ

′
)−1 ∈ K

J′′×J′′ corresponding to J ′ is the restriction of
G−1 to the part J ′′×J ′′:

(SJ
′
)−1 = G−1|J′′×J′′ .

21 U := U ′⊕U ′′ is called a direct sum, if every u ∈ U has a unique decomposition u = u′+u′′

with u′ ∈ U ′ and u′′ ∈ U ′′.

46 2 Matrix Tools

Proof. Note the identity

G−1 =

[
G′−1 +G′−1G�S−1

(
G�
)H
G′−1 −G′−1G�S−1

−S−1
(
G�
)H
G′−1 S−1

]

(only for depicting the matrix, we order J such that ν ∈ J ′ are taken first and
ν ∈ J ′′ second). ��

We make use of Lemma 2.42 for q := #J − 1, i.e., for #J ′′ = 1. Let J ′′ = {ι}
for ι ∈ J. In this case, (SJ

′
)−1 is the 1 × 1 matrix (G−1)ιι. The approximation

error ε(J ′) = ε(J\{ι}) from (2.45c) becomes

ε(ι) :=
(
G−1

)
ιι

p∑

μ=1

∣
∣a′′ιμ

∣
∣2 (ι ∈ J) , (2.46a)

involving the diagonal entries (G−1)ιι of G−1. Minimisation over all ι ∈ J yields

ε#J−1 := min{ε(ι) : ι ∈ J}. (2.46b)

This leads to the following algorithm.

Algorithm 2.43. (a) Let X = BA with B ∈ K
I×J . Compute the Gram matrix and

its inverse G−1 ∈ K
J×J . Determine ι ∈ J with minimal value ε(ι) (cf. (2.46a)).

Then the reduction of J to J ′ := J\{ι} yields the best approximation of X by
X ′ ∈ span{bν : J ′} among all J ′ with #J ′ = #J − 1.

(b) If one wants to omit more than one basis vector, the procedure from Part (a) can
be iterated. The computation of the reduced Gram matrix G′ := G|J′×J′ and its
inverse need not be repeated. Decompose G and its inverse into22

G =

[
G′ g
gH g′′

]

and G−1 =

[
H ′ h
hH h′′

]

with G,H ∈ K
J′×J′ , g, h ∈ K

J′ .

Then the inverse of G′ is given by

(G′)−1 = H ′
(

I − 1

1− hHg gh
H

)

.

Corollary 2.44. The general assumption of this section is that the columns of B
form a basis. If this is not the case, i.e., r := rank(B) < #J, the Gram matrix
is singular and the algorithm from above cannot be applied. Instead, one can apply
the procedure PQR from (2.30) to determine r linearly independent columns of
B. Let their indices form the subset J ′ ⊂ J. The reduction from J to J ′ does not
introduce any error: ε(J ′) = 0. A further reduction can be performed by Algorithm
2.43, since the Gram matrix corresponding to J ′ is regular.

22 The index set J is ordered such that ι is the last index.

Chapter 3
Algebraic Foundations of Tensor Spaces

Abstract Since tensor spaces are in particular vector spaces, we start in Sect.
3.1 with vector spaces. Here, we introduce the free vector space (§3.1.2) and the
quotient vector space (§3.1.3) which are needed later. Furthermore, the spaces
of linear mappings and dual mappings are discussed in §3.1.4. The core of this
chapter is Sect. 3.2 containing the definition of the tensor space. Section 3.3 is
devoted to linear and multilinear mappings as well as to tensor spaces of linear
mappings. Algebra structures are discussed in Sect. 3.4. Finally, symmetric and
antisymmetric tensors are defined in Sect. 3.5.

3.1 Vector Spaces

3.1.1 Basic Facts

We recall that V is a vector space (also named ‘linear space’) over the field K,
if V �= ∅ is a commutative group (where the group operation is written as addition)
and if a multiplication

· : K× V → V

is defined with the following properties:

(αβ) · v = α · (β · v) for α, β ∈ K, v ∈ V,
(α+ β) · v = α · v + β · v for α, β ∈ K, v ∈ V,
α · (v + w) = α · v + α · w for α ∈ K, v, w ∈ V,

1 · v = v for v ∈ V,
0 · v = 0 for v ∈ V,

(3.1)

where on the left-hand side 1 and 0 are the respective multiplicative and additive
unit elements of the field K, while on the right-hand side 0 is the zero element of
the group V .

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 3,
© Springer-Verlag Berlin Heidelberg 2012

47

48 3 Algebraic Foundations of Tensor Spaces

The sign ‘·’ for the multiplication · : K × V → V is usually omitted, i.e., αv is
written instead of α · v. Only when α (v + w) may be misunderstood as a function
α evaluated at v + w, we prefer the original notation α · (v + w).

Any vector space V has a basis {vi : i ∈ B} ⊂ V with the property that it is
linearly independent and spans V = span{vi : i ∈ B}. In the infinite case of
#B = ∞, linear independence means that all finite sums

∑
i aivi vanish if and

only if ai = 0. Analogously, span{vi : i ∈ B} consists of all finite sums
∑

i aivi.
Here ‘finite sum’ means a sum with finitely many terms or equivalently a sum, where
only finitely many terms do not vanish.

The cardinality #B is independent of the choice of the basis and called
dimension, denoted by dim(V). Note that there are many infinite cardinalities.
Equality dim(V) = dim(W) holds if and only if there is a bijection BV ↔ BW
between the corresponding index sets of the bases. Vector spaces of identical
dimension are isomorphic. For finite dimension n ∈ N0 the model vector space
is Kn. The isomorphism between a general vector space V with basis {v1, . . . , vn}
and K

n is given by v =
∑
ανvν �→ (α1, . . . , αn) ∈ K

n.

Example 3.1. Let I be an infinite, but countable index set, i.e., #I = ℵ0 := #N.
Then �(I) = K

I denotes the set of all sequences (ai)i∈I . The set �(I) may be also
be viewed as the set of all mappings I → K. A subset of �(I) is

�0(I) := {a ∈ �(I) : ai = 0 for almost all i ∈ I} . (3.2)

The unit vectors {e(i) : i ∈ I} from (2.2) form a basis of �0(I), so that the dimension
equals dim(�0(I)) = #I = ℵ0. However, the vector space �(I) has a much larger
basis: dim(�(I)) > ℵ0 = dim(�0(I)).

3.1.2 Free Vector Space over a Set

The aim of the following construction is a vector space of all linear combinations of
elements of a set S such that S is a basis.

Let S be any non-empty set and K a field. Consider a mapping ϕ : S → K.
Its support is defined by

supp(ϕ) := {s ∈ S : ϕ(s) �= 0} ⊂ S,

where 0 is the zero element in K. Requiring #supp(ϕ) < ∞ means that ϕ = 0
holds for almost all s ∈ S. This property defines the set

V := {ϕ : S → K : # supp(ϕ) <∞} .

We introduce an addition in V . For ϕ, ψ∈V, the sum σ :=ϕ+ ψ is the mapping
σ : S → K defined by their images σ(s) := ϕ(s)+ψ(s) for all s ∈ S. Note that the
support of σ is contained in supp(ϕ) ∪ supp(ψ), which again has finite cardinality,
so that σ ∈ V. Since ϕ(s)+ψ(s) is the addition in K, the operation is commutative:

3.1 Vector Spaces 49

ϕ + ψ = ψ + ϕ. Obviously, the zero function 0V ∈ V with 0V (s) = 0 ∈ K for
all s ∈ S satisfies ϕ + 0V = 0V + ϕ = ϕ. Furthermore, ϕ− : S → K defined
by ϕ−(s) = −ϕ(s) is the inverse of ϕ, i.e., ϕ− + ϕ = ϕ + ϕ− = 0V . Altogether,
(V,+) is a commutative group.

The scalar multiplication · : K × V → V maps α ∈ K and ϕ ∈ V into the
mapping ψ := αϕ defined by ψ(s) = αϕ(s) for all s ∈ S.

Thereby, all axioms in (3.1) are satisfied, so that V represents a vector space over
the field K.

The characteristic functions χs are of particular interest for an element s ∈ S:

χs(t) =

{
1 if t = s ∈ S,
0 if t ∈ S\{s}.

Every ϕ ∈ V may be written as a linear combination of such χs:

ϕ =
∑

s∈supp(ϕ)
ϕ(s)χs =

∑

s∈S
ϕ(s)χs.

Here, two different notations are used: the first sum is finite, while the second one
is infinite, but contains only finitely many nonzero terms.

Note that any finite subset of {χs : s ∈ S} is linearly independent. Assuming∑
s∈S0

αsχs = 0V for some S0 ⊂ S with #S0 <∞ and αs ∈ K, the evaluation at
t ∈ S0 yields

αt =
(∑

s∈S0

αsχs

)
(t) = 0V (t) = 0

proving linear independence. Vice versa, any finite linear combination

∑

s∈S0

αsχs with αs ∈ K, S0 ⊂ S, #S0 <∞ (3.3)

belongs to V .

Let Φχ : χs �→ s be the one-to-one correspondence between the sets {χs :s∈S}
and S. We can extendΦχ to ΦV defined on V such that v =

∑
s∈S0

αsχs from (3.3)
is mapped onto the formal linear combination

∑
s∈S0

αss of elements of S.

The image Vfree(S) := ΦV (V) is called the free vector space over the set S.

3.1.3 Quotient Vector Space

Let V be a vector space and V0 ⊂ V a subspace. V0 defines an equivalence relation
on V :

v ∼ w if and only if v − w ∈ V0.

Any v ∈ V can be associated with an equivalence class

cv := {w ∈ V : w ∼ v} . (3.4)

50 3 Algebraic Foundations of Tensor Spaces

Here, v is called a representative of the class cv, which is also written as v + V0.
Because of the definition of an equivalence relation, the classes are either equal or
disjoint. Their union equals V. The set {cv : v ∈ V } of all equivalence classes is
denoted by the quotient

V / V0.

One may define c′+c′′ := {v′+v′′ :v′∈c′, v′′∈c′′} for two classes c′, c′′ ∈ V/V0
and can check that the resulting set is again an equivalence class, i.e., an element
in V/V0. Similarly, one defines λ · c ∈ V/V0 for c ∈ V/V0. Using the notation cv
for the classes generated by v ∈ V, one finds the relations cv + cw = cv+w and
λ · cv = cλv. In particular, c0 is the zero element. Altogether, V/V0 is again a vector
space over the same field, called the quotient vector space.

Exercise 3.2. Prove the identity dim(V) = dim (V/V0) dim(V0) and the particular
cases V/V = {0} and V/ {0} = V.

A mapping ϕ : V/V0 → X (X any set) may possibly be induced by a mapping
Φ : V → X via

ϕ(cv) := Φ(v) (cv from (3.4)). (3.5)

Whether (3.5) is a well-defined formulation, hinges upon the following consistency
condition.

Lemma 3.3. (a) Let Φ : V → X be a general mapping. Then (3.5) for all v ∈ V
defines a mapping ϕ : V/V0 → X if and only if Φ is constant on each equivalence
class, i.e., v ∼ w implies Φ(v) = Φ(w).
(b) If Φ : V → X (X a vector space) is a linear mapping, the necessary and
sufficient condition reads Φ(v) = 0 for all v ∈ V0.

3.1.4 Linear and Multilinear Mappings, Algebraic Dual

Let X,Y be two vector spaces. ϕ : X → Y is a linear mapping, if ϕ(λx′ +
x′′) = λϕ(x′)+ϕ(x′′) for all λ∈K, x′, x′′ ∈X . The set of linear mappings ϕ is
denoted by

L(X,Y) := {ϕ : X → Y is linear} . (3.6)

Let Xj (1 ≤ j ≤ d) and Y be vector spaces. A mapping ϕ : ×d
j=1Xj → Y is

called multilinear (or d-linear), if ϕ is linear in all d arguments:

ϕ(x1, . . . , xj−1, x
′
j + λx′′j , xj+1, . . . , xd)

= ϕ(x1, . . . , xj−1, x
′
j , xj+1, . . . , xd) + λϕ(x1, . . . , xj−1, x

′′
j , xj+1, . . . , xd)

for all xi ∈ Xi, x
′
j , x
′′
j ∈ Xj, 1 ≤ j ≤ d, λ ∈ K.

In the case of d = 2, the term ‘bilinear mapping’ is used.

3.2 Tensor Product 51

Definition 3.4. Φ ∈ L(X,X) is called a projection, if Φ2 = Φ. It is called a
projection onto Y, if Y = range(Φ).

Note that no topology is defined and therefore no continuity is required.

Remark 3.5. Let {xi : i ∈ B} be a basis of X. ϕ ∈ L(X,Y) is uniquely deter-
mined by the values ϕ(xi), i ∈ B.

In the particular case of Y = K, linear mappings ϕ : X → K are called linear
forms. They are elements of the vector space

X ′ := L(X,K), (3.7)

which is called the algebraic dual of X.

Definition 3.6. Let S := {xi : i ∈ B} ⊂ X be a system of linearly independent
vectors. A dual system {ϕi : i ∈ B} ⊂ X ′ is defined by ϕi(xj) = δij for i, j ∈ B
(cf. (2.1)). If {xi : i ∈ B} is a basis, {ϕi : i ∈ B} is called dual basis.

Remark 3.7. The dual basis allows us to determine the coefficients αi in the basis
representation

x =
∑

i∈B
αixi ∈ X by αi = ϕi(x).

A multilinear [bilinear] map into Y = K is called ‘multilinear form’ [‘bilinear
form’].

3.2 Tensor Product

3.2.1 Formal Definition

There are various ways to define the tensor product of two vector spaces. We follow
the quotient space formulation (cf. [195]). Other constructions yield isomorphic
objects (see comment after Proposition 3.22).

Given two vector spaces V and W over some field K, we start with the free
vector space Vfree(S) over the pair set S := V ×W as introduced in §3.1.2. Note
that Vfree(V ×W) does not make use of the vector space properties of V or W. We
recall that elements of Vfree(V ×W) are linear combinations of pairs from V ×W :

m∑

i=1

λi (vi, wi) for any

{
(λi, vi, wi) ∈ K× V ×W,
m ∈ N0.

(3.8)

A particular subspace of Vfree(V ×W) is

N := span

⎧
⎨

⎩

m∑

i=1

n∑

j=1

αiβj (vi, wj)−
(

m∑

i=1

αivi,
n∑

j=1

βjwj

)

for m,n ∈ N, αi, βj ∈ K, vi ∈ V, wj ∈W

⎫
⎬

⎭
. (3.9)

52 3 Algebraic Foundations of Tensor Spaces

The algebraic tensor space is defined by the quotient vector space

V ⊗aW := Vfree(V ×W) /N (3.10)

(cf. §3.1.3). The equivalence class c(v,w) ∈ V ⊗a W generated by a pair (v, w) ∈
V ×W is denoted by

v ⊗ w.

Note that the tensor symbol⊗ is used for two different purposes:1

(i) In the tensor space notation, the symbol⊗ connects vector spaces and may carry
the suffix ‘a’ (meaning ‘algebraic’) or a norm symbol in the later case of Banach
tensor spaces (cf. (3.12) and §4).

(ii) In v ⊗ w, the quantities v, w, v ⊗ w are vectors, i.e., elements of the respective
vector spaces V, W, V ⊗aW .

As Vfree(V ×W) is the set of linear combinations of (vi, wi) , the quotient space
Vfree(V ×W)/N consists of the linear combinations of vi ⊗ wi:

V ⊗aW = span {v ⊗ w : v ∈ V, w ∈ W} . (3.11)

If a norm topology is given, the completion with respect to the given norm ‖·‖
yields the topological tensor space

V ⊗‖·‖W := V ⊗aW. (3.12)

In §4 we discuss the properties of the tensor product for Banach spaces. This
includes the Hilbert spaces, which are considered in §4.4.

Notation 3.8. (a) For finite dimensional vector spaces V andW, the algebraic tensor
space V ⊗aW is already complete with respect to any norm and therefore coincides
with the topological tensor space V ⊗‖·‖ W. In this case, we omit the suffices and
simply write V ⊗W.
(b) Furthermore, the notation V ⊗W is used, when both choices V ⊗aW and
V ⊗‖·‖W are possible or if the distinction between ⊗a and ⊗‖·‖ is irrelevant.

(c) The suffices of ⊗a and ⊗‖·‖ will be moved to the left side, when indices appear
at the right side as in a

⊗d
j=1 Vj and ‖·‖

⊗d
j=1 Vj .

Definition 3.9 (tensor space, tensor). (a) V ⊗aW (or V ⊗‖·‖W) is again a vector
space, which is now called ‘tensor space’.

(b) The explicit term ‘algebraic tensor space’ emphasises that V ⊗a W , and not
V ⊗‖·‖W , is meant.

(c) Elements of V ⊗aW or V ⊗‖·‖W are called tensors, in particular, x ∈ V ⊗aW
is an algebraic tensor, while x ∈ V ⊗‖·‖W is a topological tensor.

(d) Any product v ⊗ w (v ∈ V, w ∈ W) is called ‘elementary tensor’.

1 Similarly, the sum v +w of vectors and the sum V +W := span{v +w : v ∈ V, w ∈ W} of
vector spaces use the same symbol.

3.2 Tensor Product 53

3.2.2 Characteristic Properties

Lemma 3.10. The characteristic algebraic properties of the tensor space V ⊗a W
is the bilinearity:

(λv) ⊗ w = v ⊗ (λw) = λ · (v ⊗ w) for λ ∈ K, v ∈ V, w ∈ W,
(v′ + v′′)⊗ w = v′ ⊗ w + v′′ ⊗ w for v′, v′′ ∈ V, w ∈W,
v ⊗ (w′ + w′′) = v ⊗ w′ + v ⊗ w′′ for v ∈ V, w′, w′′ ∈ W,
0⊗ w = v ⊗ 0 = 0 for v ∈ V, w ∈W.

(3.13)

Proof. The first equality in (3.13) follows from λ (v, w) − (λv, w) ∈ N, i.e.,
λ · (v ⊗ w) − λv ⊗ w = 0 in the quotient space. The other identities are derived
similarly. ��

Here, the standard notational convention holds: the multiplication ⊗ has priority
over the addition +, i.e., a⊗ b+ c⊗ d means (a⊗ b) + (c⊗ d). The multiplication
by a scalar needs no bracket, since the interpretation of λv ⊗ w by (λv) ⊗ w or
λ · (v ⊗ w) does not change the result (see first identity in (3.13)). In the last line2

of (3.13), the three zeros belong to the different spaces V , W , and V ⊗aW .
The following statements also hold for infinite dimensional spaces. Note that in

this case the dimensions have to be understood as set theoretical cardinal numbers.

Lemma 3.11. (a) Let {vi : i ∈ BV } be a basis of V and {wj : j ∈ BW } a basis of
W. Then

B := {vi ⊗ wj : i ∈ BV , j ∈ BW } (3.14)

is a basis of V ⊗aW.
(b) dim (V ⊗aW) = dim(V) · dim(W).

Proof. Assume
∑
i,j aijvi⊗wj = 0. For the linear independence of all vi⊗wj ∈ B

we have to show aij = 0. The properties (3.13) show

∑

i∈I
vi ⊗ w′i = 0 for w′i :=

∑

j∈J
aijwj . (3.15)

Let ϕi ∈ V ′ (cf. §3.1.4) be the linear form on V with ϕi(vj) = δij (cf. (2.1)). Define
Φi : V ⊗a W → W by Φi (v ⊗ w) = ϕi(v)w. Application of Φi to (3.15) yields
w′i = 0. Since {wj : j ∈ BW } is a basis, aij = 0 follows for all j. As i is chosen
arbitrarily, we have shown aij = 0 for all coefficients in

∑
i,j aijvi ⊗ wj = 0.

Hence, B is a system of linearly independent vectors.
By definition, a general tensor x ∈ V ⊗aW has the form x =

∑
ν v

(ν) ⊗ w(ν).
Each v(ν) can be expressed by the basis vectors: v(ν) =

∑
i α

(ν)
i vi, and similarly,

w(ν) =
∑

j β
(ν)
j wj . Note that all sums have finitely many terms. The resulting sum

x =
∑

ν

(∑

i

α
(ν)
i vi

)

⊗
(∑

j

β
(ν)
j wj

)

=
(3.13)

∑

i,j

(∑

ν

α
(ν)
i β

(ν)
j

)

vi ⊗ wj

2 The last line can be derived from the first one by setting λ = 0.

54 3 Algebraic Foundations of Tensor Spaces

is again finite and shows that span{B} = V ⊗aW, i.e., B is a basis.
Since #B = #BV ·#BW , we obtain the dimension identity of Part (b). ��

The last two statements characterise the tensor space structure.

Proposition 3.12. Let V , W , and T be vector spaces over the field K. A product
⊗ : V ×W → T is a tensor product and T a tensor space, i.e., it is isomorphic to
V ⊗aW, if the following properties hold:

(i) span property: T = span{v ⊗ w : v ∈ V,w ∈W};
(ii) bilinearity (3.13);

(iii) linearly independent vectors {vi : i ∈ BV } ⊂ V and {wj : j ∈ BW } ⊂W
lead to independent vectors {vi ⊗ wj : i ∈ BV , j ∈ BW } in T.

Proof. Properties (i)-(iii) imply that B from (3.14) is again a basis. ��

Lemma 3.13. For any tensor x ∈ V ⊗aW there is an r ∈ N0 and a representation

x =
r∑

i=1

vi ⊗ wi (3.16)

with linearly independent vectors {vi : 1 ≤ i ≤ r} ⊂ V and {wi : 1 ≤ i ≤ r} ⊂W .

Proof. Take any representation x =
∑n
i=1 vi ⊗ wi. If, e.g., the system of vectors

{vi : 1 ≤ i ≤ n} is not linearly independent, one vi can be expressed by the others.
Without loss of generality assume

vn =

n−1∑

i=1

αivi .

Then

vn ⊗ wn =

(
n−1∑

i=1

αivi

)

⊗ wn =

n−1∑

i=1

vi ⊗ (αiwn)

shows that x possesses a representation with only n−1 terms:

x =

(
n−1∑

i=1

vi ⊗ wi

)

+ vn ⊗ wn =

n−1∑

i=1

vi ⊗ w′i with w′i := wi + αiwn.

Since each reduction step decreases the number of terms by one, this process termi-
nates at a certain number r of terms, i.e., we obtain a representation with r linearly
independent vi and wi. ��

The number r appearing in Lemma 3.13 will be called the rank of the tensor x
(cf. §3.2.6.2). This is in accordance with the usual matrix rank as seen in §3.2.3.

3.2 Tensor Product 55

3.2.3 Isomorphism to Matrices for d = 2

In the following, the index sets I and J are assumed to be finite. In the same way
as KI is the model vector space for vector spaces of dimension #I , we obtain the
model tensor space K

I ⊗K
J ∼= K

I×J .

Proposition 3.14. Let {vi : i ∈ I} be a basis of V and {wj : j ∈ J} a basis of W,
where dim(V) < ∞ and dim(W) < ∞. Let Φ : KI → V and Ψ : KJ → W de-
note the isomorphisms Φ : (αi)i∈I �→

∑
i∈I αivi and Ψ : (βj)j∈J �→

∑
j∈J βjwj .

(a) Then the corresponding canonical isomorphism of the tensor spaces is given by

Ξ : KI ⊗K
J → V ⊗W with (αi)i∈I ⊗ (βj)j∈J �→

∑

i∈I

∑

j∈J
αiβjvi ⊗ wj .

(b) Together with the identification of KI ⊗ K
J with the matrix space K

I×J (see
Remark 1.3), we obtain an isomorphism between matrices from K

I×J and tensors
from V ⊗W :

Ξ : KI×J → V ⊗W with (aij)i∈I,j∈J �→
∑

i∈I

∑

j∈J
aij vi ⊗ wj .

Although the isomorphism looks identical to the usual isomorphism between
matrices from K

I×J and linear mappingsW → V, there is a small difference which
will be discussed in Proposition 3.57.

Remark 3.15 (basis transformation). If we change the bases {vi : i ∈ I} and
{wj : j ∈ J} from Proposition 3.14 by transformations S and T :

vi =
∑

n∈I
Sniv̂n and wj =

∑

m∈J
Tmjŵm,

then ∑

i∈I

∑

j∈J
aijvi ⊗ wj =

∑

n∈I

∑

m∈J
ânmv̂n ⊗ ŵm

shows that A = (aij) and Â = (âij) are related by

Â = S ATT.

On the side of the tensors, this transformation takes the form

(S ⊗ T) (a⊗ b) with a := (αi)i∈I and b := (βj)j∈J ,

where S ⊗ T is the Kronecker product.

Corollary 3.16. If V = K
I and W = K

J , the isomorphism of the tensor space
K
I ⊗K

J and the matrix space K
I×J is even more direct, since it does not need a

choice of bases.

Remark 3.17. Suppose dim(V) = 1. Then the vector space V may be identified
with the field K. V ⊗a W is isomorphic to K ⊗a W and to W . In the latter case,
one identifies λ⊗ w (λ ∈ K, w ∈W) with λw.

56 3 Algebraic Foundations of Tensor Spaces

Lemma 3.18 (reduced singular value decomposition). Let K ∈ {R,C} , and
suppose dim(V) < ∞ and dim(W) < ∞. Then for any x ∈ V ⊗W there is a
number r ≤ min{#I,#J} and two families (xi)i=1,...,r and (yi)i=1,...,r of
linearly independent vectors such that

x =

r∑

i=1

σi xi ⊗ yi

with singular values σ1 ≥ . . . ≥ σr > 0.

Proof. The isomorphism Ξ : KI×J → V ⊗ W defines the matrix A := Ξ−1x,
for which the reduced singular value decomposition A =

∑r
i=1 σi aib

T
i can be

determined (cf. (2.21)). Note thatΞ(aib
T
i) = ai⊗bi (cf. (1.3)). Backtransformation

yields x = ΞA =
∑r

i=1 σi Ξ(ai ⊗ bi) =
∑r
i=1 σi Φ(ai) ⊗ Ψ(bi). The statement

follows by setting xi := Φ(ai) and yi := Ψ(bi). Note that linearly independent ai
yield linearly independent Φ(ai). ��

We remark that the vectors xi (as well as yi) are not orthonormal, since such
properties are not (yet) defined for V (and W). Lemma 3.18 yields a second proof
of Lemma 3.13, but restricted to K ∈ {R,C}.

Remark 3.19. The tensor spaces V ⊗aW andW⊗aV are isomorphic vector spaces
via the (bijective) transposition

T : V ⊗aW → W ⊗a V,
x = v ⊗ w �→ xT = w ⊗ v.

If x ∈ V ⊗W is related to a matrix M = Ξ−1(x) (cf. Proposition 3.14b), then
xT ∈W ⊗ V is related to the transposed matrix MT.

3.2.4 Tensors of Order d ≥ 3

In principle, one can extend the construction from §3.2.1 to the case of more than
two factors. However, this is not necessary as the next lemma shows.

Lemma 3.20. (a) The tensor product is associative:

U ⊗a (V ⊗aW) = (U ⊗a V)⊗aW,

i.e., they are isomorphic vector spaces as detailed in the proof. We identify both
notations and use the neutral notation U ⊗a V ⊗aW instead.
(b) If U ,V ,W are finite dimensional with dim(U) = n1, dim(V) = n2, and
dim(W) = n3, the isomorphic model tensor space is K

n1 ⊗K
n2 ⊗K

n3 .

Proof. Let ui (i ∈ BU), vj (j ∈ BV), wk (k ∈ BW) be bases of U, V, W. As seen
in Lemma 3.11, V ⊗a W has the basis vj ⊗ wk

(
(j, k) ∈ BV × BW

)
, while

3.2 Tensor Product 57

U⊗a (V ⊗aW) has the basis ui⊗(vj ⊗ wk) with (i, (j, k)) ∈ BU ×(BV ×BW) .
Similarly, (U ⊗a V)⊗aW has the basis

(ui ⊗ vj)⊗ wk with ((i, j) , k) ∈ (BU ×BV)×BW .

By the obvious bijection between BU × (BV ×BW) and (BU ×BV) × BW , the
isomorphism U ⊗a (V ⊗aW) ∼= (U ⊗a V) ⊗a W follows. This proves Part (a).
For Part (b) see Remark 3.29. ��

Repeating the product construction (d− 1)-times, we get the generalisation of
the previous results to the algebraic tensor product a

⊗d
j=1 Vj (cf. Notation 3.8).

Proposition 3.21. Let Vj (1 ≤ j ≤ d, d ≥ 2) be vector spaces over K.

(a) The algebraic tensor space3

V := a

d⊗

j=1

Vj

is independent of the order in which the pairwise construction (3.10) is performed
(more precisely, the resulting spaces are isomorphic and can be identified).

(b) T is the algebraic tensor space V if the following properties hold:

(i) span property: T = span
{⊗d

j=1 v
(j) : v(j) ∈ Vj

}
;

(ii) multilinearity, i.e., for all λ ∈ K, v(j), w(j) ∈ Vj , and j ∈ {1, . . . , d}:
v(1) ⊗ v(2) ⊗ . . .⊗

(
λv(j) + w(j)

)
⊗ . . .⊗ v(d) =

λv(1) ⊗ v(2) ⊗...⊗ v(j) ⊗...⊗ v(d) + v(1) ⊗ v(2) ⊗...⊗ w(j) ⊗...⊗ v(d);
(iii) linearly independent vectors {v(j)i : i ∈ Bj} ⊂ Vj (1 ≤ j ≤ d) lead to

linearly independent vectors {
⊗d

j=1 v
(j)
ij

: ij ∈ Bj} in T.

(c) The dimension is given by

dim(V) =

d∏

j=1

dim(Vj). (3.17)

If {v(j)i : i ∈ Bj} are bases of Vj (1 ≤ j ≤ d), then {vi : i ∈ B} is a basis of V,
where

vi =
d⊗

j=1

v
(j)
ij

for i = (i1, . . . , id) ∈ B := B1 × . . .×Bd.

An alternative definition of a
⊗d

j=1 Vj follows the construction from §3.2.1 with
pairs (v, w) replaced by d-tuples and an appropriately defined subspace N. The
following expression of the multilinear mapping ϕ by the linear mapping Φ is also
called ‘linearisation’ of ϕ.

3 The product
⊗d

j=1 Vj is to be formed in the order of the indices j, i.e., V1 ⊗ V2 ⊗ . . . If we
write

⊗
j∈KVj for an ordered index set K, the ordering of K determines the order of the factors.

58 3 Algebraic Foundations of Tensor Spaces

Proposition 3.22 (universality of the tensor product). Let Vj (1 ≤ j ≤ d) and U
be vector spaces over K. Then, for any multilinear mapping ϕ : V1× . . .×Vd → U ,
i.e.,

ϕ(v(1), . . . , λv(j) + w(j), . . . , v(d))

= λϕ(v(1), . . . , v(j), . . . , v(d)) + ϕ(v(1), . . . , w(j), . . . , v(d)) (3.18a)

for all v(j), w(j)∈ Vj , λ ∈ K, 1 ≤ j ≤ d,

there is a unique linear mapping Φ : a
⊗d

j=1 Vj → U such that

ϕ(v(1), v(2), . . . , v(d)) = Φ
(
v(1) ⊗ v(2) ⊗ . . .⊗ v(d)

)
(3.18b)

for all v(j)∈ Vj , 1 ≤ j ≤ d.

Proof. Let {v(j)i : i ∈Bj} be a basis of Vj for 1≤ j ≤ d. As stated in Proposition

3.21c, {vi : i∈B} is a basis of V :=a

⊗d
j=1Vj . Define Φ(vi) := ϕ(v

(1)
i1
,. . ., v

(d)
id

).
This determines Φ :V→U uniquely (cf. Remark 3.5). Analogously, the multilinear
mapping ϕ is uniquely determined by ϕ(v(1)i1 , . . . , v

(d)
id

). The multilinear nature of

ϕ and V yields ϕ
(
v(1), v(2), . . . , v(d)

)
= Φ

(
v(1) ⊗ . . .⊗ v(d)

)
for all v(j) ∈ Vj . ��

V1 × . . .× Vd →
ϕ

U

⊗↓ Φ↗
a

⊗d
j=1 Vj

The statement of Proposition 3.22 may also be
used as an equivalent definition of a

⊗d
j=1 Vj (cf.

Greub [76, Chap. I, §2]). The content of Proposition
3.22 is visualised by the commutative diagram to the
right.

Notation 3.23. If all Vj = V are identical vector spaces, the notation
⊗d

j=1 Vj is
simplified by ⊗dV. For a vector v ∈ V, we set ⊗dv :=

⊗d
j=1 v.

To avoid trivial situations, we introduce the notation of non-degenerate tensor
spaces.

Definition 3.24. A tensor space V= a

⊗d
j=1Vj is called non-degenerate, if d > 0

and dim(Vj) ≥ 2 for all 1 ≤ j ≤ d. Otherwise, V is called degenerate.

This definition is justified by the following remarks. If dim(Vj) = 0 for one j,
also V = {0} is the trivial vector space. If d = 0, the empty product is defined by
V = K, which is also a trivial case. In the case of dim(Vj) = 1 for some j, the
formulation by a

⊗d
j=1 Vj can be reduced (see next remark).

Remark 3.25. (a) If dim(Vk) = 1 for some k, the isomorphismV = a

⊗d
j=1 Vj

∼=
a

⊗
j∈{1,...,d}\{k}Vj allows us to omit the factor Vk .

(b) After eliminating all factors Vj with dim(Vj) = 1 and renaming the remaining
vector spaces, we obtain V∼=Vred= a

⊗dred
j=1Vj . If still dred>0, the representation

is non-degenerate. Otherwise the tensor space is degenerate because of dred = 0.

3.2 Tensor Product 59

As an illustration we may consider a matrix space (i.e., a tensor space of order
d= 2). If dim(V2) = 1, the matrices consist of only one column. Hence, they may
be considered as vectors (tensor space with d=1). If even dim(V1)=dim(V2)=1 ,
the 1× 1-matrices may be identified with scalars from the field K.

Finally, we mention an isomorphism between the space of tuples of tensors and
an extended tensor space.

Lemma 3.26. Let V = a

⊗d
j=1 Vj be a tensor space over the field K and m ∈ N.

The vector space of m-tuples (v1, . . . ,vm) with vi ∈ V is denoted by Vm. Then
the following vector space isomorphism is valid:

Vm ∼= a

d+1⊗

j=1

Vj = V⊗Vd+1 with Vd+1 := K
m. (3.19)

Proof. (v1, . . . ,vm) ∈ Vm corresponds to
∑m
i=1 vi ⊗ e(i), where e(i) ∈ K

m

is the i-th unit vector. The opposite direction of the isomorphism is described by
v⊗ x(d+1) ∼= (x1v, x2v, . . . , xmv) with x(d+1) = (xi)i=1,...,m ∈ K

m. ��

3.2.5 Different Types of Isomorphisms

For algebraic objects it is common to identify isomorphic ones. All characteristic
properties of an algebraic structure should be invariant under an isomorphism. The
question is what algebraic structures are meant. All previous isomorphisms were
vector space isomorphisms. As it is well-known, two vector spaces are isomorphic
if and only if the dimensions coincide (note that in the infinite dimensional case the
cardinalities of the bases are decisive).

Any tensor space is a vector space, but not any vector space isomorphism pre-
serves the tensor structure. A part of the tensor structure is the d-tuple of vector
spaces (V1, . . . , Vd) together with the dimensions of Vj (cf. Proposition 3.22).
In fact, each space Vj can be regained from V := a

⊗d
j=1 Vj as the range of the

mapping Φ =
⊗d

k=1 φk (cf. (1.4a)) with φj = id, while 0 �= φk ∈ V ′k for k �= j.
Therefore, a tensor space isomorphism must satisfy that V = a

⊗d
j=1 Vj

∼= W

implies that W = a

⊗d
j=1Wj holds with isomorphic vector spaces Wj

∼= Vj for
all 1 ≤ j ≤ d. In particular, the order d of the tensor spaces must coincide. This
requirement is equivalent to the following definition.

Definition 3.27 (tensor space isomorphism). A tensor space isomorphism

Φ : V := a

d⊗

j=1

Vj →W = a

d⊗

j=1

Wj

is any bijection of the form Φ =
⊗d

j=1 φj (cf. (3.34b)), where φj : Vj → Wj for
1 ≤ j ≤ d are vector space isomorphisms.

60 3 Algebraic Foundations of Tensor Spaces

For instance, K2 ⊗ K
8, K4 ⊗ K

4, and K
2 ⊗ K

2 ⊗ K
4 are isomorphic vector

spaces (since all have dimension 16), but their tensor structures are not identical.
For the definition of U ⊗a V ⊗aW we use in Lemma 3.20 that U ⊗a (V ⊗aW) ∼=
(U ⊗a V) ⊗a W. Note that these three spaces are isomorphic only in the sense of
vector spaces, whereas their tensor structures are different. In particular, the latter
spaces are tensor spaces of order two, while U ⊗a V ⊗aW is of order three. We see
the difference, when we consider the elementary tensors as in the next example.

Example 3.28. Let both {v1, v2} ⊂ V and {w1, w2} ⊂W be linearly independent.
Then u ⊗ (v1 ⊗ w1 + v2 ⊗ w2) is an elementary tensor in U ⊗a (V ⊗aW) (since
u ∈ U and v1 ⊗ w1 + v2 ⊗ w2 ∈ V ⊗a W), but it is not an elementary tensor of
U⊗aV ⊗aW.

Remark 3.29. In the finite dimensional case of nj :=dim(Vj)<∞, the isomorphic
model tensor space is W :=

⊗d
j=1K

nj . Choose some bases {b(j)ν : 1≤ ν ≤nj} of
Vj . Any v ∈ V :=

⊗d
j=1Vj has a unique representation of the form

v =
∑

i1···id

ai b
(1)
i1
⊗ . . .⊗ b(d)id . (3.20)

The coefficients ai define the ‘coefficient tensor’ a∈W. The mapping Φ :V→W
by Φ(v)=a is a tensor space isomorphism.

The isomorphism sign ∼= is an equivalence relation in the set of the respective
structure. Let ∼=vec denote the vector space isomorphism, while ∼=ten is the tensor
space isomorphism. Then ∼=ten is the finer equivalence relation, since V ∼=ten W
implies V ∼=vec W, but not vice versa. There are further equivalence relations ∼=,
which are between ∼=ten and ∼=vec, i.e., V ∼=ten W⇒ V ∼=W⇒ V ∼=vec W. We
give three examples.

1) We may not insist upon a strict ordering of the vector spaces Vj . Let
π : {1, . . . , d} → {1, . . . , d} be a permutation. Then V := V1 ⊗ V2 ⊗ . . .⊗ Vd and
Vπ := Vπ(1) ⊗ Vπ(2) ⊗ . . .⊗ Vπ(d) are considered as isomorphic. In a second step,
each Vj may be replaced by an isomorphic vector space Wj .

2) In Remark 3.25 we have omitted vector spaces Vj ∼= K of dimension one. This
leads to an isomorphism V1 ⊗K ∼= V1 or K ⊗ V2 ∼= V2, where Vj may be further
replaced by an isomorphic vector space Wj . Note that the order of the tensor spaces
is changed, but the nontrivial vector spaces are still pairwise isomorphic.

3) The third example will be of broader importance. Fix some k ∈ {1, . . . , d}.
Using the isomorphism from Item 1, we may state that

V1 ⊗ . . .⊗ Vk ⊗ . . .⊗ Vd ∼= Vk ⊗ V1 ⊗ . . .⊗ Vk−1 ⊗ Vk+1 ⊗ . . .⊗ Vd

using the permutation 1 ↔ k. Next, we make use of the argument of Lemma 3.20:
associativity allows the vector space isomorphism

Vk⊗V1⊗ . . .⊗Vk−1⊗Vk+1⊗ . . .⊗Vd ∼= Vk⊗
[
V1⊗ . . .⊗Vk−1⊗Vk+1⊗ . . .⊗Vd

]
.

3.2 Tensor Product 61

The tensor space in parentheses will be abbreviated by

V[k] := a

⊗

j �=k
Vj , (3.21a)

where ⊗

j �=k
means

⊗

j∈{1,...,d}\{k}
. (3.21b)

Altogether, we have the vector space isomorphism

V = a

d⊗

j=1

Vj ∼= Vk ⊗V[k]. (3.21c)

We notice that V is a tensor space of order d, whereas Vk⊗V[k] has order 2. Never-
theless, a part of the tensor structure (the space Vk) is preserved. The importance of
the isomorphism (3.21c) is already obvious from Lemma 3.20, since this allows a
reduction to tensor spaces of order two. We shall employ (3.21c) to introduce the
matricisation in §5.2.

In order to simplify the notation, we shall often replace the ∼= sign by equality:
V = Vk ⊗V[k]. This allows to write v ∈ V as well as v ∈ Vk ⊗ V[k], whereas
the more exact notation is v ∈ V and ṽ = Φ(v) ∈ Vk ⊗V[k] with the vector space
isomorphism Φ : V→ Vk ⊗V[k]. In fact, we shall see in Remark 3.33 that v and ṽ
have different properties. For elementary tensors of V we write

v =
d⊗

j=1

v(j) = v(k) ⊗ v[k], where v[k] :=
⊗

j �=k
v(j) ∈ V[k]. (3.21d)

For a general (algebraic) tensor, the corresponding notation is

v =
∑

i

d⊗

j=1

v
(j)
i =

∑

i

v
(k)
i ⊗ v

[k]
i with v

[k]
i :=

⊗

j �=k
v
(j)
i ∈ V[k].

3.2.6 Rr and Tensor Rank

3.2.6.1 The set Rr

Let Vj (1≤j≤d) be vector spaces generating V := a

⊗d
j=1Vj . All linear combi-

nations of r elementary tensors are contained in

Rr := Rr(V) :=

{
r∑

ν=1

v(1)ν ⊗ . . .⊗ v(d)ν : v(j)ν ∈ Vj

}

(r ∈ N0). (3.22)

Deliberately, we use the same symbol Rr as in (2.6) as justified by Remark 3.35a.

62 3 Algebraic Foundations of Tensor Spaces

Remark 3.30. V =
⋃
r∈N0

Rr holds for the algebraic tensor space V.

Proof. By definition (3.11), v ∈ V is a finite linear combination of elementary
tensors, i.e., v =

∑s
ν=1 ανeν for some s ∈ N0 and suitable elementary tensors eν .

The factor αν can be absorbed by the elementary tensor: ανeν =: v
(1)
ν ⊗ . . .⊗ v(d)ν .

Hence, v ∈ Rs ⊂
⋃
r∈N0

Rr proves V ⊂
⋃
r∈N0

Rr ⊂ V. ��

Remark 3.31. The setsRr, which in general are not subspaces, are nested:

{0} = R0 ⊂ R1 ⊂ . . . ⊂ Rr−1 ⊂ Rr ⊂ . . . ⊂ V for all r ∈ N, (3.23a)

and satisfy the additive property

Rr +Rs = Rr+s. (3.23b)

Proof. Note thatR0 = {0} (empty sum convention). Since we may choose v(j)r = 0

in
∑r

ν=1 v
(1)
ν ⊗ . . .⊗ v(d)ν , all sums of r − 1 terms are included in Rr. ��

3.2.6.2 Tensor Rank

A non-vanishing elementary tensor v(1)ν ⊗ . . . ⊗ v
(d)
ν in (3.22) becomes a rank-1

matrix in the case of d = 2 (cf. §2.2). Remark 2.1 states that the rank r is the
smallest integer such that a representation M =

∑r
ν=1 v

(1)
ν ⊗ v

(2)
ν is valid (cf.

(1.3)). This leads to the following generalisation.

Definition 3.32 (tensor rank). The tensor rank of v ∈ a

⊗d
j=1 Vj is defined by

rank(v) := min {r : v ∈ Rr} ∈ N0. (3.24)

The definition makes sense since subsets of N0 have always a minimum. As in
(2.6), we can characterise the setRr by

Rr = {v ∈ V : rank(v) ≤ r} .

We shall use the shorter ‘rank’ instead of ‘tensor rank’. Note that there is an
ambiguity if v is a matrix as well as a Kronecker tensor (see Remark 3.35b). If
necessary, we use the explicit terms ‘matrix rank’ and ‘tensor rank’.

Another ambiguity is caused by isomorphisms discussed in §3.2.5.

Remark 3.33. Consider the isomorphic vector spaces U ⊗aV ⊗aW and U ⊗aX
with X :=V ⊗aW from Example 3.28. Let Φ : U ⊗a V ⊗aW → U ⊗a X be the
vector space isomorphism. Then rank(v) and rank(Φ(v)) are in general different.
If we identify v and Φ(v), the tensor structure should be explicitly mentioned,
e.g., by writing rankU⊗V⊗W (v) or rankU⊗X(v). The same statement holds for
V := a

⊗d
j=1Vj and Vk ⊗aV[k] from (3.21a).

3.2 Tensor Product 63

The latter remark shows that the rank depends on the tensor structure (U⊗aX
versus U⊗aV ⊗aW). However, Lemma 3.36 will prove invariance with respect to
tensor space isomorphisms.

Practically, it may be hard to determine the rank. It is not only that the rank is a
discontinuous function so that any numerical rounding error may change the rank
(as for the matrix rank), even with exact arithmetic the computation of the rank is,
in general, not feasible for large-size tensors because of the next statement.

Proposition 3.34 (Håstad [97]). In general, the determination of the tensor rank is
an NP-hard problem.

If Vj = K
Ij×Jj are matrix spaces, the tensor rank is also called Kronecker rank.

Remark 3.35. (a) For d = 2, the rank of v ∈ V1⊗a V2 is given by r from (3.16)
and can be constructed as in the proof of Lemma 3.13. If, in addition, the spaces
Vj are finite dimensional, Proposition 3.14 yields an isomorphism between V1⊗aV2
and matrices of size dim(V1)×dim(V2). Independently of the choice of bases in
Proposition 3.14, the matrix rank of the associated matrix coincides with the tensor
rank.
(b) For Vj = K

Ij×Jj the (Kronecker) tensors A ∈ V :=
⊗d

j=1 Vj are matrices.
In this case, the matrix rank of A is completely unrelated to the tensor rank of A.
For instance, the identity matrix I ∈ V has (full) matrix rank

∏d
j=1 #Ij , whereas

the tensor rank of the elementary tensor I =
⊗d

j=1 Ij (Ij= id ∈ K
Ij×Ij) equals 1.

(c) For tensors of order d ∈ {0, 1}, the rank is trivial: rank(v) =
{
0 for v=0
1 otherwise

}
.

So far, we have considered only algebraic tensor spaces Valg := a

⊗d
j=1Vj . A

Banach tensor space Vtop := ‖·‖
⊗d

j=1 Vj (cf. (3.12)) is the closure (completion)
of
⋃
r∈N0
Rr (cf. Remark 3.30). We can extend the definition of the tensor rank by4

rank(v) :=∞ if v ∈ ‖·‖
d⊗

j=1

Vj \ a
d⊗

j=1

Vj . (3.25)

Lemma 3.36 (rank invariance). Let V =
⊗d

j=1Vj and W =
⊗d

j=1Wj be either
algebraic or topological tensor spaces.
(a) Assume that V and W are isomorphic tensor spaces, i.e., the vector spaces
Vj ∼= Wj are isomorphic (cf. Definition 3.27). Let Φ =

⊗d
j=1 φ

(j) : V → W be
an isomorphism. Then the tensor rank of v ∈ V is invariant underΦ:

rank(v) = rank(Φ(v)) for all v ∈ V.

(b) Let A =
⊗d

j=1 A
(j) : V→W with A(j) ∈ L(Vj ,Wj). Then,

rank(Av) ≤ rank(v) for all v ∈ V.

4 This does not mean, in general, that v can be written as an infinite sum (but see §4.2.6 and
Theorem 4.110).

64 3 Algebraic Foundations of Tensor Spaces

Proof. For Part (b) consider v =
∑r

ν=1

⊗d
j=1b

(j)
ν . Since the number of terms in

Av =
∑r

ν=1

⊗d
j=1(A

(j)b
(j)
ν) is unchanged, rank(v) ≥ rank(Av) follows. For

Part (a) we use this inequality twice for Φ and Φ−1: rank(v) ≥ rank(Φv) ≥
rank(Φ−1Φv) = rank(v). ��

Corollary 3.37. Remark 3.29 states a tensor space isomorphism Φ between a finite
dimensional tensor space V :=

⊗d
j=1Vj with nj := dim(Vj) and its coefficient

tensor space W :=
⊗d

j=1 K
nj . Let a be the coefficient tensor ofv. Then rank(v)=

rank(a). As a consequence,Φ is a bijection betweenRr(V) andRr(W).

By definition of the rank of algebraic tensors, there is a representation

v =
r∑

ν=1

d⊗

j=1

v(j)ν with r := rank(v) <∞. (3.26)

The following lemma offers a necessary condition for (3.26). The proof is known
from Lemma 3.13.

Lemma 3.38. Assume r = rank(v). Using v(j)ν from (3.26), define the elementary
tensors

v[j]
ν :=

⊗

k∈{1,...,d}\{j}
v(k)ν ∈ a

⊗

k∈{1,...,d}\{j}
Vk

(cf. (3.21d)). Then (3.26) implies that the tensors {v[j]
ν : 1 ≤ ν ≤ r} are linearly

independent for all 1 ≤ j ≤ d, while v(j)ν �= 0 for all ν and j.

Proof. Let j = 1. Assume that the elementary tensors {v[1]
ν : 1≤ν≤r} are linearly

dependent. Without loss of generality, suppose that v[1]
r may be expressed by the

other tensors: v[1]
r =

∑r−1
ν=1 βνv

[1]
ν . Then

v =

r∑

ν=1

v(1)ν ⊗ v[1]
ν =

r−1∑

ν=1

(
v(1)ν + βνv

(1)
r

)
⊗ v[1]

ν

=

r−1∑

ν=1

(
v(1)ν + βνv

(1)
r

)
⊗ v(2)ν ⊗ . . .⊗ v(d)ν

implies rank(v)< r. Similarly, if v(j)ν = 0, the j-th term can be omitted implying
again the contradiction rank(v) < r. Analogously, j > 1 is treated. ��

Remark 3.39. Note that Lemma 3.38 states linear independence only for the tensors
v
[1]
ν , 1 ≤ ν ≤ r. The vectors v(1)ν are nonzero, but may be linearly depen-

dent. An example is the tensor from (3.28), which has rank 3, while all subspaces
Uj = span{v(j)ν : 1 ≤ ν ≤ 3} have only dimension 2.

3.2 Tensor Product 65

Finally, we mention two extensions of the term ‘rank’. Bergman [13] defines a
rank of a subspace U ⊂

⊗d
j=1 Vj by

rank(U) := min{rank(x) : 0 �= x ∈ U}.

For symmetric tensors s ∈ Sd(V) (cf. §3.5), a specific symmetric rank can be
introduced:

ranksym(s) := min

{

r ∈ N0 : s =

r∑

i=1

⊗dvi with vi ∈ V
}

for s ∈ Sd(V).

Note that each term ⊗dvi = vi ⊗ . . .⊗ vi is already symmetric.

3.2.6.3 Dependence on the Field

So far, the statements hold for any fixed choice of the field K. Note that the ‘real’
tensor space VR :=

⊗d
j=1 R

nj can be embedded into the ‘complex’ tensor space
⊗d

j=1 C
nj . On the other hand, VC := VR + iVR may be considered as a vector

space over R with dimension 2 dim(VR). Concerning the tensor rank, the following
problem arises. Let v ∈ VR be a ‘real’ tensor. The tensor rank is the minimal
number r = rR of terms in (3.26) with v(j)ν ∈ R

nj . We may also ask for the minimal
number r = rC of terms in (3.26) under the condition that v(j)ν ∈ C

nj . Since
R
Ij ⊂ C

Ij , the inequality rC ≤ rR is obvious, which already proves statement (a)
below.

Proposition 3.40. Let VR =
⊗d

j=1Vj be a tensor space over the field R. Define
VC =

⊗d
j=1Vj,C as the corresponding complex version over C. Let rR(v) be the

(real) tensor rank within VR, while rC(v) is the (complex) tensor rank within VC .

(a) For any v ∈ VR, the inequality rC(v) ≤ rR(v) holds.

(b) (vector and matrix case) If 0 ≤ d ≤ 2, rC(v) = rR(v) holds for all v ∈ VR.

(c) (proper tensor case) If d ≥ 3 and VR =
⊗d

j=1 Vj is a non-degenerate tensor
space (cf. Definition 3.24), there are v∈VR with strict inequality rC(v) < rR(v).

Proof. a) Part (a) is already proved above.

b) If d = 1, Remark 3.35c shows rC = rR. If d = 2, v ∈ VR may be interpreted
as a real-valued matrixM ∈ R

I1×I2 . By Remark 2.2, the matrix rank is independent
of the field: rC(v) = rR(v).

c) Example 3.44 below presents a counterexample for which rC(v) < rR(v) in
the case of d=3. It may be easily embedded into tensor spaces with larger d by
setting v′ := v ⊗ a4 ⊗ a5 ⊗ . . .⊗ ad with arbitrary 0 �= aj ∈ Vj (4 ≤ j ≤ d). ��

Another dependence on the field will be mentioned in §3.2.6.4.

66 3 Algebraic Foundations of Tensor Spaces

3.2.6.4 Maximal Rank and Typical Ranks

The sequenceR0⊂R1⊂ . . .⊂ V :=a

⊗d
j=1Vj from (3.23a) is properly increasing

for infinite dimensional tensor spaces. On the other hand, for finite dimensional
tensor spaces there must be a smallest rmax so that Rr = Rrmax for all r ≥ rmax.
As a consequence,

V = Rrmax , whileRrmax−1 � V. (3.27)

This rmax is called the maximal rank in V (cf. (2.5) for the matrix case).

Lemma 3.41. Let nj := dim(Vj) <∞ for 1 ≤ j ≤ d. Then

rmax ≤
(

d∏

j=1

nj

)

/ max
1≤i≤d

ni = min
1≤i≤d

∏

j∈{1,...,d}\{i}
nj

describes an upper bound of the maximal rank. For equal dimensions nj = n, this
is rmax ≤ nd−1.

Proof. After a permutation of the factors we may assume that nd = max1≤i≤d ni.
Consider the full representation (3.20) of any v ∈ V:

v =
∑

i1,...,id−1,id

a[i1, . . . , id] b
(1)
i1
⊗ . . .⊗ b(d)id

=
∑

i1,...,id−1

b
(1)
i1
⊗ . . .⊗ b(d−1)id−1

⊗
(
∑

id

a[i1, . . . , id] b
(d)
id

)

.

The sum in the last line is taken over r̄ :=
∏d−1
j=1 nj elementary tensors. Hence,

Rr̄ = V proves rmax ≤ r̄. ��

The true value rmax may be clearly smaller than the bound from above. For
instance, Kruskal [134] proves

rmax = min{n1, n2}+min

{

n1, n2,
max{n1, n2}

2

}

for V = R
n1⊗ R

n2⊗ R
2,

rmax = 5 for V = R
3 ⊗ R

3 ⊗ R
3.

Concerning the maximal rank, there is a remarkable difference to the matrix case.
Random matrices and their rank are described in Remark 2.5. Random tensors may
attain more than one rank with positive probability. Such ranks are called typical
ranks. Kruskal [134] proves that {2, 3} are the typical ranks of V = R

2⊗R
2⊗R

2,
while 3 is the maximal rank. Note that such results also depend on the field. For
algebraically closed fields like C there is only one typical rank (cf. Strassen [180],
Comon-Golub-Lim-Mourrain [39]). More details are given by Comon et al. [38].

3.2 Tensor Product 67

3.2.6.5 Examples

As illustration we consider the tensor v ∈ V ⊗ V defined by

v = a⊗ a+ b⊗ a+ a⊗ b+ b⊗ a,

where a, b∈V are linearly independent. The given representation provesv∈R4 and
rank(v)≤ 4. The fact that all four terms are linearly independent is no indication
for rank(v) = 4. In fact, another representation is

v = (a+ b)⊗ (a+ b)

proving rank(v) = 1, since v �= 0 excludes rank(v) = 0.
For later use we exercise the determination of the rank for a special tensor.

Lemma 3.42. Let Vj (1≤ j ≤ 3) be vector spaces of dimension ≥ 2 and consider
the tensor space V := V1⊗V2⊗V3. For linearly independent vectors vj , wj ∈ Vj
define

v := v1 ⊗ v2 ⊗ w3 + v1 ⊗ w2 ⊗ v3 + w1 ⊗ v2 ⊗ v3. (3.28)

Then rank(v) = 3 holds, i.e., the given representation is already the shortest one.

Proof. For r = 0, 1, 2 we show below that rank(v) = r cannot be valid. Then the
given representation proves rank(v) = 3.

1) rank(v) = 0 implies v = 0. But the terms on the right-hand side of (3.28) are
linearly independent and therefore their sum cannot vanish.

2) Assume rank(v) = 1, i.e., v = u ⊗ v ⊗ w with non-vanishing u, v, w ∈ V .
There is a linear functional ϕ ∈ V ′1 with ϕ(v1) = 1. Applying ϕ ⊗ id ⊗ id :
V1 ⊗ V2 ⊗ V3 → V2 ⊗ V3 to both representations of v, we obtain

ϕ(u)v ⊗ w = v2 ⊗ w3 + w2 ⊗ v3 + ϕ(w1)v2 ⊗ v3.

The matrix on the left-hand side has rank ≤ 1, while the matrix on the right-hand
side has rank 2. Hence rank(v) = 1 cannot hold.

2) Assume rank(v) = 2, i.e., v = u ⊗ v ⊗ w + u′ ⊗ v′ ⊗ w′. If u and u′ are
linearly dependent, there is a functional ϕ with ϕ(u) = ϕ(u′) = 0, while either
ϕ(v1) �= 0 or ϕ(w1) �= 0. Then

0 = (ϕ⊗ id⊗ id) (v) = ϕ(v1) (v2 ⊗ w3 + w2 ⊗ v3) + ϕ(w1)v2 ⊗ v3.

Since v2⊗w3+w2⊗v3 and v2⊗v3 are linearly independent, this is a contradiction.
Hence u and u′ are linearly independent and one of the vectors u or u′ must be
linearly independent of v1, say u′ and v1 are linearly independent. Choose ϕ ∈ V ′1
with ϕ(v1) = 1 and ϕ(u′) = 0. Then

ϕ(u)v ⊗ w = (ϕ⊗ id⊗ id) (v) = (v2 ⊗ w3 + w2 ⊗ v3) + ϕ(w1)v2 ⊗ v3.

The matrix on the left-hand side has rank ≤ 1, while the matrix on the right-hand
side has rank 2. This contradiction completes the proof. ��

68 3 Algebraic Foundations of Tensor Spaces

Exercise 3.43. Consider v =
⊗d

j=1 vj +
⊗d

j=1 wj with non-vanishing vectors vj
andwj . Show that rank(v)≤1 holds if and only if vj andwj are linearly dependent
for at least d− 1 indices j ∈ {1, . . . , d}. Otherwise, rank(v) = 2.

Concerning the distinction of rankR and rankC we give the following example.

Example 3.44. Let a, b, c, a′, b′, c′ ∈ R
n with n ≥ 2 such that (a, a′) , (b, b′),

(c, c′) are pairs of linearly independent vectors. The real part of the complex tensor
(a+ ia′)⊗ (b+ ib′)⊗ (c+ ic′) ∈ C

n ⊗ C
n ⊗ C

n has a representation

v = 1
2 (a+ ia′)⊗(b+ ib′)⊗(c+ ic′) + 1

2 (a− ia
′)⊗(b− ib′)⊗(c− ic′) ∈ R2

in C
n ⊗ C

n ⊗ C
n. Exercise 3.43 proves that rankC(v) = 2 in C

n ⊗ C
n ⊗ C

n.
Multilinearity yields the representation

v = a⊗ b⊗ c− a′ ⊗ b′ ⊗ c− a′ ⊗ b⊗ c′ − a⊗ b′ ⊗ c′

within R
n ⊗ R

n ⊗ R
n. One verifies that also

v = (a− a′)⊗ (b+ b′)⊗ c+ a′ ⊗ b⊗ (c− c′)− a⊗ b′ ⊗ (c+ c′) (3.29)

holds. A further reduction is not possible so that rankR(v) = 3 > 2 = rankC(v) is
valid.

Proof. Assume that v=A⊗B⊗C+A′⊗B′⊗C′. Applying suitable functionals to
the first two components, one sees that C,C′∈span{c, c′}. If C and C′ are linearly
dependent, this leads to a quick contradiction. So assume that they are linearly in-
dependent and choose functionals γ ∈ (Rn)

′ with γ(C) = 1 and γ(C′) = 0.
Note that at least two of the numbers γ(c), γ(c− c′), γ(c+ c′) are nonzero. Hence
application of id⊗ id⊗ γ to v = A⊗B ⊗ C + A′ ⊗ B′ ⊗ C′ yields A⊗B with
matrix rank equal to 1, while the result for v from (3.29) is a linear combination of
(a− a′)⊗ (b+ b′) , a′⊗ b, a⊗ b′, where at least two terms are present. One verifies
that the matrix rank is 2. This contradiction excludes rankR(v) = 2. It is even easier
to exclude the smaller ranks 1 and 0. ��

The next example of different n-term representations over the real or complex
field, which is of practical interest, is taken from Mohlenkamp-Monzón [151] and
Beylkin-Mohlenkamp [15].

Example 3.45. Consider the function f(x1, . . . , xd) := sin
(∑d

j=1xj
)
∈ ⊗dV for

V = C(R). If C(R) is regarded as vector space over K = C, rank(f) = 2 holds
and is realised by

sin

(
d∑

j=1

xj

)

=
1

2i
ei
∑d

j=1 xj − 1

2i
e−i

∑d
j=1 xj =

1

2i

d⊗

j=1

eixj − 1

2i

d⊗

j=1

e−ixj .

If C(R) is considered as vector space over K = R, the following representation
needs d terms:

3.2 Tensor Product 69

sin

(
d∑

j=1

xj

)

=

d∑

ν=1

(
ν−1⊗

j=1

sin(xj+αj−αν)
sin(αj−αν)

)

⊗ sin(xν)⊗
(

d⊗

j=ν+1

sin(xj+αj−αν)
sin(αj−αν)

)

with arbitrary αj ∈ R satisfying sin(αj − αν) �= 0 for all j �= ν.

In the case of d = 2, the representation (3.26) corresponds to a matrix M =∑r
i=1 aib

T
i ∈ K

I×J with vectors ai ∈ K
I and bi ∈ K

J . Here, the minimal (tensor
and matrix) rank r is attained if the vectors ai and the vectors bi are linearly in-
dependent. Moreover, the singular value decomposition yields the particular form
M =

∑r
i=1 σiaib

T
i with σi > 0 and orthonormal ai and bi. Generalisations of these

properties to d ≥ 3 are not valid.

Remark 3.46. (a) A true generalisation of the singular value decomposition to d

dimensions would be v=
∑r
ν=1σν

⊗d
j=1v

(j)
ν ∈V :=

⊗d
j=1K

nj with r=rank(v),
orthonormal vectors {v(j)ν : 1≤ ν≤ r} for all 1≤ j≤ d, and σν > 0. Unfortunately,
such tensors form only a small subset of V, i.e., in general, v ∈ V does not possess
such a representation.
(b) Even the requirement that the vectors {v(j)ν : 1 ≤ ν ≤ r} are linearly indepen-
dent cannot be satisfied in general.

Proof. The tensors a⊗ a⊗ a+ a⊗ b⊗ b cannot be reduced to rank≤ 1, although
the first factors are equal. This proves Part (b), while (b) implies (a). ��

3.2.6.6 Application: Strassen’s Algorithm

The standard matrix-matrix multiplication of two n×n matrices costs 2n3 opera-
tions. A reduction to 4.7nlog2 7=4.7n2.8074 proposed by Strassen [179] is based on
the fact that two 2×2 block matrices can be multiplied as follows:

[
a1 a2
a3 a4

] [
b1 b2
b3 b4

]

=

[
c1 c2
c3 c4

]

, ai, bi, ci submatrices with (3.30)

c1 = m1+m4−m5+m7, c2=m2+m4, c3=m3+m5, c4=m1+m3−m2+m6,

m1 = (a1+a4)(b1+b4), m2=(a3+a4)b1, m3=a1(b2−b4), m4=a4(b3−b1),
m5 = (a1 + a2)b4, m6 = (a3 − a1)(b1 + b2), m7 = (a2 − a4)(b3 + b4),

where only 7 multiplications of block matrices are needed.

The entries of a tensor v ∈ K
4×4×4 are involved in

cν =
4∑

μ,λ=1

vνμλ aμ bλ (1 ≤ ν ≤ 4). (3.31a)

For instance for ν = 1, the identity c1 = a1b1 + a2b3 shows that v111 = v123 = 1
and v1μλ = 0, otherwise. Assume a representation of v by r terms:

70 3 Algebraic Foundations of Tensor Spaces

v =
∑r

i=1

⊗3

j=1
v
(j)
i . (3.31b)

Insertion into (3.31a) yields

cν =

r∑

i=1

4∑

μ,λ=1

v
(1)
i [ν] v

(2)
i [μ] v

(3)
i [λ] aμ bλ

=

r∑

i=1

v
(1)
i [ν]

(
4∑

μ=1

v
(2)
i [μ] aμ

)(
4∑

λ=1

v
(3)
i [λ] bλ

)

, (3.31c)

i.e., only r multiplications are needed. Algorithm (3.30) corresponds to a represen-
tation (3.31b) with r = 7.

3.3 Linear and Multilinear Mappings

Now, we consider linear mappings defined on V ⊗a W or, more generally, on

a

⊗d
j=1 Vj . The image space might be the field K—then the linear mappings are

called linear forms or functionals—or another tensor space.

In §3.3.1 we justify that it suffices to define a mapping by its values for elemen-
tary tensors. Often a linear mapping ϕk : Vk → Wk for a fixed k is extended to
a linear mapping defined on V := a

⊗d
j=1 Vj . This leads to an embedding ex-

plained in §3.3.2. Functionals are a special kind of linear maps. Nevertheless, there
are special properties which are addressed in §3.3.2.2.

3.3.1 Definition on the Set of Tuples

If a linear mapping φ is to be defined on a vector space V spanned by a basis {vj},
it suffices to describe the images φ(vj) (cf. Remark 3.5).

In the case of a linear mapping

φ : V := a

d⊗

j=1

Vj → X

we know that V is spanned by elementary tensors
⊗d

j=1 v
(j). Hence, it is sufficient

to know the image φ
(⊗d

j=1 v
(j)
)
. In fact, such values are often given by means of

a mapping Φ : V1 × . . .× Vd → X :

φ

⎛

⎝
d⊗

j=1

v(j)

⎞

⎠ = Φ(v(1), . . . , v(d)) for all v(j) ∈ Vj . (3.32)

3.3 Linear and Multilinear Mappings 71

Since the elementary tensors are not linearly independent, it is not obvious whether
these values are not contradictory.

The answer follows from the ‘universality of the tensor product’ formulated in
Proposition 3.22: If

Φ : V1 × . . .× Vd → U is multilinear,

(3.32) defines a unique linear mapping. Multilinearity of Φ is equivalent to

Φ(n) = 0 for all n ∈ N,

where N is the analogue of (3.9) for general d.
The next lemma shows a particular case.

Lemma 3.47. Let ϕ : V → U be a linear mapping. Then the definition

φ (v ⊗ w) := ϕ(v)⊗ w for all v ∈ V,w ∈ W

defines a unique linear mapping from V ⊗aW into U⊗aW.

Proof. This is the case ofX = U⊗aW andΦ(v(1), v(2)) = ϕ(v(1))⊗v(2). Linearity
of ϕ shows multilinearity of Φ. ��

Of course, the same statement holds for a linear mapping ψ : W → U . Then
φ (v ⊗ w) := v ⊗ ψ(w) defines a unique linear mapping from V ⊗aW to V ⊗aU.

Also the generalisation to tensor spaces of order d is obvious. Let Vj (1≤j≤d)
and W be vector spaces and fix an index k ∈ {1, . . . , d}. Given a linear mapping
ϕ : Vk →W, define

φ :

d⊗

j=1

v(j) �→ v(1) ⊗ . . .⊗ v(k−1) ⊗ ϕ(v(k))⊗ v(k+1) ⊗ . . .⊗ v(d). (3.33)

Then, there is a unique extension to

φ ∈ L

⎛

⎝
d⊗

j=1

Vj ,

(
k−1⊗

j=1

Vj

)

⊗W ⊗
(

d⊗

j=k+1

Vj

)⎞

⎠ .

Another generalisation concerns bilinear mappings.

Remark 3.48. Let ϕi :Vi×Wi→K (1≤ i≤ d) be bilinear [sesquilinear] forms (cf.
§3.1.4). Then

φ

(
d⊗

j=1

v(j),

d⊗

j=1

w(j)

)

=

d∏

j=1

ϕi(v
(j), w(j)) (v(j)∈Vj , w(j)∈Wj)

defines a unique bilinear [sesquilinear] form φ :
(⊗d

j=1 Vj
)
×
(⊗d

j=1Wj

)
→ K.

72 3 Algebraic Foundations of Tensor Spaces

3.3.2 Embeddings

3.3.2.1 Embedding of Spaces of Linear Maps

In the following, we consider two d-tuples (V1,...,Vd) and (W1,...,Wd) of vector

spaces and the corresponding tensor spaces V := a

⊗d
j=1Vj and W := a

⊗d
j=1Wj .

Since L(Vj ,Wj) for 1 ≤ j ≤ d are again vector spaces, we can build the tensor
space

L := a

d⊗

j=1

L(Vj ,Wj) . (3.34a)

Elementary tensors from L are of the form Φ =
⊗d

j=1ϕ
(j) with ϕ(j)∈L(Vj ,Wj).

In §1.1.2, we have calledΦ the Kronecker product5 of the mappingsϕ(j). They have
a natural interpretation as mappings of L(V,W) via (1.4b):

Φ

(d⊗

j=1

v(j)
)

=
d⊗

j=1

ϕ(j)(v(j)) ∈W for any
d⊗

j=1

v(j) ∈ V. (3.34b)

Note that (3.34b) defines Φ for all elementary tensors of V. By the considerations
from §3.3.1, Φ can be uniquely extended to Φ ∈ L(V,W). Linear combinations
of such elementary tensors Φ are again elements of L(V,W). This leads to the
embedding described below.

Proposition 3.49. Let Vj , Wj , V, and W as above. We identify a
⊗d

j=1 L(Vj ,Wj)
with a subspace of L(V,W) via (3.34b):

L = a

d⊗

j=1

L(Vj ,Wj) ⊂ L(V,W). (3.34c)

In general, L is a proper subspace. If, however, the vector spaces Vj are finite
dimensional, the spaces coincide:

a

d⊗

j=1

L(Vj ,Wj) = L(V,W). (3.34d)

Proof. a) Definition (3.34b) yields a linear mapping Υ : L → L(V,W). It
describes an embedding if and only if Υ is injective. For this purpose, we use
induction over d and start with d = 2. We have to disprove Υ (Λ) = 0 for
0 �= Λ ∈ L = L(V1,W1) ⊗a L(V1,W1). If Υ (Λ) = 0, the interpretation
(3.34b) ofΛ produces the zero mapping Υ (Λ) in L(V,W). By Lemma 3.13, there

5 At least, this term is used for matrix spaces L(Vj ,Wj) with Vj = K
nj and Wj = K

mj . As
mentioned in §1.6, the attribution to Kronecker is questionable.

3.3 Linear and Multilinear Mappings 73

is a representation Λ =
∑r
ν=1 ϕ

(1)
ν ⊗ ϕ

(2)
ν with linearly independent ϕ(2)

ν and6

ϕ
(1)
1 �= 0. Application to any v := v(1) ⊗ v(2) yields

0 = Λ(v) =
r∑

ν=1

ϕ(1)
ν (v(1))⊗ ϕ(2)

ν (v(2)) ∈W =W1 ⊗aW2.

Fix v(1) such that ϕ(1)
1 (v(1)) �= 0. Then there is some functional χ ∈ W ′1 with

χ(ϕ
(1)
1 (v(1))) �= 0. Application of χ⊗ id to Λ(v) yields

0 = (χ⊗ id) (Λ(v)) =
r∑

ν=1

αν ϕ
(2)
ν (v(2)) ∈ W2

(cf. Remark 3.54) with αν := χ(ϕ
(1)
ν (v(1))). The choice of v(1) and χ ensures

that α1 �= 0. Linear independence of ϕ(2)
ν implies

∑r
ν=1ανϕ

(2)
ν �= 0. Hence,

there exists some v(2) ∈ V2 with
∑r

ν=1 αν ϕ
(2)
ν (v(2)) �= 0 in contradiction to

0 = (χ⊗ id)
(
Λ(v)(v(1) ⊗ v(2))

)
. This proves injectivity of Υ for d = 2.

Let the assertion be valid for d− 1. RepresentΛ in the form

Λ =
r∑

ν=1

ϕ(1)
ν ⊗ ϕ[1]

ν with r = rankV1⊗V[1]
(Λ)

(cf. Remark 3.33). As stated in Lemma 3.38, {ϕ[1]
ν } is linearly independent, while

ϕ
(1)
ν �= 0. By induction, ϕ[1]

ν ∈ L(V[1],W[1]) holds with V[1] := a

⊗d
j=2Vj and

W[1] := a

⊗d
j=2Wj. Now, all arguments from the inductive start d = 2 can be

repeated.

b) The equality in (3.34d) holds, if Υ is surjective. For any Φ ∈ L(V,W),
we shall construct φ ∈ a

⊗d
j=1 L(Vj ,Wj) with Υ (φ) = Φ, provided Vj are

finite dimensional. Again, considerations for d = 2 are sufficient. Since V is
finite dimensional, also the image Φ(V) ⊂ W is finite dimensional. In fact,
Φ(V) ⊂ Ŵ1 ⊗a Ŵ2 ⊂ W holds with finite dimensional subspaces Ŵj :=
Umin
j (Φ(V)) ⊂ Wj introduced later in §6.2.3 (see also Exercise 6.14b). Let
{b(j)i,v : 1 ≤ i ≤ dim(Vj)} be a basis of Vj , and {b(j)i,w : 1 ≤ i ≤ dim(Ŵj)} a basis

of Ŵj . The dual basis {χ(j)
i : 1 ≤ i ≤ dim(Vj)} of V ′j satisfies χ(j)

i (b
(j)
i′,v) = δi,i′

(cf. Definition 3.6). Each image wij := Φ(b
(1)
i,v ⊗ b

(2)
j,v) ∈ Ŵ1 ⊗a Ŵ2 has a repre-

sentation wij =
∑

νμ αij,νμb
(1)
ν,w ⊗ b(2)μ,w. Set

φ :=
∑

ijνμ

αij,νμϕ
(1)
i,ν ⊗ ϕ

(2)
j,μ, where

{
ϕ
(1)
i,ν (v

(1)) := χ
(1)
i (v(1)) · b(1)ν,w ,

ϕ
(2)
j,μ(v

(2)) := χ
(2)
j (v(2)) · b(2)μ,w .

Since Υ (φ) and Φ coincide on all basis vectors b(1)i,v ⊗ b
(2)
j,v , Υ (φ) = Φ holds.

c) A counterexample for infinite dimensional Vj will follow in Example 3.53. ��

6 In fact, ϕ(1)
ν are linearly independent, but only ϕ

(1)
1 �= 0 is needed.

74 3 Algebraic Foundations of Tensor Spaces

In Lemma 3.47 we use the mapping v⊗w �→ ϕ(v)⊗w, which is generalised to
Φ :

⊗d
j=1 v

(j) �→ v(1) ⊗ . . . ⊗ v(k−1) ⊗ ϕ
(
v(k)

)
⊗ v(k+1) ⊗ . . . ⊗ v(d) in (3.33).

The latter mapping can be formulated as

Φ =

d⊗

j=1

ϕ(j) with

{
ϕ(j) = ϕ, Wj :=W for j = k,

ϕ(j) = id, Wj := Vj for j �= k,
(3.35a)

orΦ = id⊗ . . .⊗id⊗ϕ⊗id⊗ . . .⊗id. Since such a notation is rather cumbersome,
we identify7 ϕ and Φ as stated below.

Notation 3.50. (a) A mapping ϕ ∈ L(Vk,Wk) for some k ∈ {1, . . . , d} is synony-
mously interpreted as Φ from (3.35a). This defines the embedding

L(Vk,Wk) ⊂ L(V,W) (3.35b)

where V = a

⊗d
j=1 Vj and W = a

⊗d
j=1Wj with Wj = Vj for j �= k.

(b) Let α ⊂ {1, . . . , d} be a non-empty subset. Then the embedding

a

⊗

k∈α
L(Vk,Wk) ⊂ L(V,W) (3.35c)

is defined analogously by inserting identity maps for all j ∈ {1, . . . , d}\α.

Finally, we repeat the composition rule for Kronecker products from §4.6.3,
where they are formulated for Kronecker matrices.

Remark 3.51. (a) Let Ψ =
⊗d

j=1ψ
(j) ∈L(U,V) and Φ=

⊗d
j=1 ϕ

(j) ∈L(V,W)
be elementary tensors. Then the composition of the mappings satisfies

Φ ◦ Ψ =

d⊗

j=1

(
ϕ(j) ◦ ψ(j)

)
∈ L(U,W).

(b) Let ϕ ∈ L(Vk,Wk) and ψ ∈ L(V�,W�) with k �= �. Then ϕ ◦ ψ = ψ ◦ ϕ holds.
Moreover, ϕ ◦ ψ = ϕ ⊗ ψ is valid, where the embedding (3.35b) is used on the
left-hand side, while (3.35c) with α = {k, �} is used on the right-hand side.
(c) Let ϕ(j) ∈ L(Vj ,Wj) for all 1 ≤ j ≤ d. Then ϕ(1) ◦ϕ(2) ◦ . . .◦ϕ(d) interpreted
by (3.35b) equals

⊗d
j=1 ϕ

(j).

3.3.2.2 Embedding of Linear Functionals

The previous linear mappings become functionals, if the image space Wj is the
trivial vector space K. However, the difference is seen from the following example.
Consider the mapping ϕ : V → U from Lemma 3.47 and the induced mapping

7 The identifications (3.35a-c) are standard in other fields. If we use the multi-index notation
∂nf = ∂n1

x ∂n2
y ∂n3

z f for the partial derivative, the identities are expressed by ∂n2
y = ∂n3

z = id

if, e.g., n2 = n3 = 0. However, more often ∂
∂x

f(x, y, z) is written omitting the identities in
∂/∂x ⊗ id⊗ id.

3.3 Linear and Multilinear Mappings 75

Φ : v ⊗ w �→ ϕ(v) ⊗ w ∈ U ⊗a W. For U = K, the mapping is a functional and
the image belongs to K ⊗a W. As K ⊗a W is isomorphic8 to W , it is standard to
simplify U⊗aW to W (cf. Remark 3.25a). This means that ϕ(v) ∈ K is considered
as scalar factor: ϕ(v)⊗ w = ϕ(v) · w ∈ W .

When we want to reproduce the notations from §3.3.2.1, we have to modify W
by omitting all factors Wj = K.

The counterpart of Proposition 3.49 is the statement below. Here, W =
d⊗

j=1

K

degenerates to K, i.e., L(V,W) = V′.

Proposition 3.52. Let Vj (1≤j≤d) be vector spaces generating V := a

⊗d
j=1Vj .

Elementary tensors of a
⊗d

j=1V
′
j are Φ=

⊗d
j=1ϕ

(j), ϕ(j)∈V ′j . Their application

to tensors from V is defined via

Φ

(
d⊗

j=1

v(j)

)

=

d∏

j=1

ϕ(j)(v(j)) ∈ K. (3.36a)

This defines the embedding

a

d⊗

j=1

V ′j ⊂ V′, and (3.36b)

a

d⊗

j=1

V ′j = V′, if dim(Vj) <∞ for 1 ≤ j ≤ d. (3.36c)

The next example shows that, in general, (3.36b) holds with proper inclusion.

Example 3.53. Choose V :=�0⊗a �0 with �0 from (3.2) and consider the functional
Φ ∈ V′ with Φ(v ⊗ w) :=

∑
i∈Z viwi. Note that this infinite sum is well-defined,

since viwi=0 for almost all i∈Z. Since Φ does not belong to �′0 ⊗a �′0, the latter
space is a proper subspace of (�0 ⊗a �0)′ .

Proof. For an indirect proof assume that Φ =
∑k

ν=1 ϕν ⊗ ψν ∈ �′0 ⊗a �′0 for some
ϕν , ψν ∈ �′0 and k ∈ N. Choose any integer m > k. Let e(i) ∈ �0 be the i-th unit
vector. The assumed identityΦ =

∑k
ν=1 ϕν⊗ψν tested for all e(i)⊗e(j) ∈ �0⊗a �0

with 1 ≤ i, j ≤ m yields m2 equations

δjk = Φ(e(i) ⊗ e(j)) =
k∑

ν=1

ϕν(e
(i)) · ψν(e(j)) (1 ≤ i, j ≤ m) . (3.37)

Define matrices A,B ∈ K
m×k by Aiν := ϕν(e

(i)) and Bjν := ψν(e
(j)). Then

equation (3.37) becomes I = ABT. Since rank(A) ≤ min{m, k} = k, also the
rank of the product ABT is bounded by k, contradicting rank(I) = m > k. ��

8 Concerning isomorphisms compare the last paragraph in §3.2.5.

76 3 Algebraic Foundations of Tensor Spaces

A very important case is the counterpart of (3.35b) from Notation 3.50a. In the
following, we use the notations

⊗
j �=k and V[k] from (3.21a,b).

Remark 3.54. (a) Let Vj (1≤j≤d) be vector spaces generating V := a

⊗d
j=1Vj .

For a fixed index k ∈ {1, . . . , d} let ϕ(k) ∈ V ′k be a linear functional. Then ϕ(k)

induces the definition of Φ ∈ L(V,V[k]) by

Φ

(
d⊗

j=1

v(j)

)

:= ϕ(k)
(
v(k)

)
·
⊗

j �=k
v(j). (3.38a)

(b) According to (3.35b), we identifyΦ = id ⊗ . . .⊗ ϕ(k) ⊗ . . .⊗ id and ϕ(k) and
write ϕ(k)

(⊗d
j=1 v

(j)
)
=ϕ(k)

(
v(k)

)
·
⊗

j �=k
v(j). This leads to the embedding

V ′k ⊂ L(V,V[k]). (3.38b)

Another extreme case occurs for V′[k]. Here, the elementary tensors are ϕ[k] =
⊗

j �=k
ϕ(j). In this case, the image space is K⊗ . . .⊗K⊗ Vk ⊗K⊗ . . .⊗K ∼= Vk.

Remark 3.55. Let Vj (1 ≤ j ≤ d) be vector spaces generating V := a

⊗d
j=1 Vj .

For a fixed index k ∈ {1, . . . , d} define V[k] by (3.21a). Then elementary tensors
ϕ[k]=

⊗
j �=kϕ

(j)∈V′[k] (ϕ(j)∈V ′j) are considered as mappings from L(V,Vk) via

ϕ[k]

(
d⊗

j=1

v(j)

)

:=

(
∏

j �=k
ϕ(j)(v(j))

)

· v(k). (3.39a)

This justifies the embedding

V′[k] ⊂ L(V, Vk). (3.39b)

The generalisation of the above case is as follows. Let α⊂{1,...,d} be any non-
empty subset and define the complement αc :={1, . . . , d}\α. Then the embedding

V′α ⊂ L(V,Vαc) with Vα := a

⊗

j∈α
Vj (3.39c)

is defined via
(
⊗

j∈α
ϕ(j)

)(
d⊗

j=1

v(j)

)

:=

(
∏

j∈α
ϕ(j)(v(j))

)

·
⊗

j∈αc

v(j). (3.39d)

Functionals from V ′k or V′[k] are often used in proofs. As a demonstration we
prove a statement about linear independence of the vectors representing the tensor.

3.3 Linear and Multilinear Mappings 77

Lemma 3.56. Let V = a

⊗d
j=1 Vj and v :=

∑r
i=1

⊗d
j=1 v

(j)
i . If, for some index

k ∈ {1, . . . , d}, the vectors {v(k)i : 1 ≤ i ≤ r} ⊂ Vk are linearly independent,
v = 0 implies

v
[k]
i = 0 for all v[k]

i :=
⊗

j �=k
v
(j)
i (1 ≤ i ≤ r).

Vice versa, for linearly dependent vectors{v(k)i : 1 ≤ i ≤ r}, there are v
[k]
i ∈ V[k],

not all vanishing, with v =
∑r

i=1 v
[k]
i ⊗ v

(k)
i = 0.

Proof. 1) We give two proofs. The first one makes use of V ′k. For linearly indepen-
dent v(k)i there is a dual system of functionals ϕi ∈ V ′k with ϕν(v

(k)
μ) = δνμ (cf.

Definition 3.6). Using the embedding V ′k⊂L(V,V[k]) from (3.38b), we derive from
v = 0 that

0 = ϕν(v) =

r∑

i=1

ϕν(v
(k)
i)v

[k]
i = v[k]

ν ,

proving the first statement. Linearly dependent {v(k)i : 1≤ i≤ r} allow a nontrivial
linear combination

∑r
i=1civ

(k)
i =0. Choose any 0 �=v[k]∈V[k]. Then v

[k]
i := civ

[k]

are not vanishing for all 1≤ i≤r, but v=
∑r
i=1v

[k]
i ⊗v

(k)
i =v[k]⊗

∑r
i=1civ

(k)
i =0.

2) The second proof uses a functionalϕ[k]∈V′[k].Assume that not all v[k]
i vanish,

say, v[k]
1 �=0. Then there is some ϕ[k]∈V′[k] with ϕ[k](v

[k]
1) �=0. Using the embed-

ding V′[k] ⊂L(V, Vk), we obtain 0=ϕ[k](v) =
∑r

i=1 civ
(k)
i with ci :=ϕ[k](v

[k]
i).

Since c1 �=0, the v(k)i cannot be linearly independent. ��

3.3.2.3 Further Embeddings

Proposition 3.57. (a) The algebraic tensor space V ⊗a W ′ can be embedded into
L(W,V) via

w ∈ W �→ (v ⊗ w′) (w) := w′(w) · v ∈ V. (3.40a)

(b) Similarly, V ⊗aW can be embedded into L(W ′, V) via

w′ ∈W ′ �→ (v ⊗ w) (w′) := w′(w) · v ∈W. (3.40b)

(c) The embeddings from above show that

V ⊗aW ′ ⊂ L(W,V) and V ⊗aW ⊂ L(W ′, V). (3.40c)

Corollary 3.58. If dim(W) <∞, V ⊗aW ∼= V ⊗aW ′ ∼= L(W,V) are isomorphic.

78 3 Algebraic Foundations of Tensor Spaces

Proof. dim(W) < ∞ implies W ′ ∼= W and therefore also V ⊗aW ∼= V ⊗aW ′.
Thanks to (3.40c), V ⊗aW ′ is isomorphic to a subspace of L(W,V). In order to
prove V ⊗aW ∼= L(W,V), we have to demonstrate that any ϕ ∈ L(W,V) can be
realised by some x ∈ V ⊗aW ′. Let {wi} be a basis ofW and {ωi} a dual basis with
ωi(wj) = δij . Set x :=

∑
i ϕ(wi)⊗ ωi. One easily verifies that x(wi) = ϕ(wi) in

the sense of the embedding (3.40b). ��

Remark 3.59. Let M(V1, . . . , Vd) := {ϕ : ×d
j=1 Vj → K multilinear} denote

the set of multilinear mappings from ×d
j=1 Vj to K . If the spaces Vj are finite

dimensional, the following inclusions become equalities.

(a) The inclusion a

⊗d
j=1 Vj ⊂M(V ′1 , . . . , V

′
d) is interpreted by

(
d⊗

j=1

vj

)

(v′1, . . . , v
′
d) :=

d∏

j=1

v′j(vj) ∈ K.

(b) The inclusion a

⊗d
j=1 V

′
j ⊂M(V1, . . . , Vd) is interpreted by

(
d⊗

j=1

v′j

)

(v1, . . . , vd) :=

d∏

j=1

v′j(vj) ∈ K.

3.4 Tensor Spaces with Algebra Structure

Throughout this section, all tensor spaces are algebraic tensor spaces. Therefore,
we omit the index ‘a’ in ⊗a.

So far, we have considered tensor products of vector spaces Aj (1≤j≤d). Now,
we suppose that Aj possesses a further operation9

◦ : Aj ×Aj → Aj ,

which we call multiplication (to be quite precise, we should introduce individual
symbols ◦j for each Aj). We require that

(a+ b) ◦ c = a ◦ c+ b ◦ c for all a, b, c ∈ Aj ,
a ◦ (b+ c) = a ◦ b+ a ◦ c for all a, b, c ∈ Aj ,
(λa) ◦ b = a ◦ (λb) = λ · (a ◦ b) for all λ ∈ K and all a, b ∈ Aj ,
1 ◦ a = a ◦ 1 = a for some 1 ∈ Vj and all a ∈ Aj .

(3.41)

These rules define a (non-commutative) algebra with unit element 1. Ignoring the
algebra structure, we define the tensor space A := a

⊗d
j=1Aj as before and establish

an operation ◦ : A×A→ A by means of

9 μ : Aj×Aj → Aj defined by (a, b) �→ a ◦ b is called the structure map of the algebra Aj .

3.4 Tensor Spaces with Algebra Structure 79

(
d⊗

j=1

aj

)

◦
(

d⊗

j=1

bj

)

=

d⊗

j=1

(aj ◦ bj) , 1 :=

d⊗

j=1

1

for elementary tensors. The first two axioms in (3.41) are used to define the multi-
plication for tensors of a

⊗d
j=1 Aj .

Example 3.60. (a) Consider the matrix spaces Aj := K
Ij×Ij (Ij : finite index sets).

Here, ◦ is the matrix-matrix multiplication in K
Ij×Ij . The unit element 1 is the

identity matrix I. Then A :=
⊗d

j=1 Aj = K
I×I (I = I1 × . . . × Id) is the space

containing the Kronecker matrices.

(b) The vector spaces Aj and A from Part (a) yield another algebra, if ◦ is defined
by the Hadamard product (entry-wise product, cf. (4.72a)): (a ◦ b)i = ai · bi for
i∈Ij×Ij and a, b ∈Aj . The unit element 1 is the matrix with all entries being one.

(c) Let Aj := C(Ij) be the set of continuous functions on the interval Ij ⊂ R.
Aj becomes an algebra with ◦ being the pointwise multiplication. The unit element
is the function with constant value 1 ∈ K. Then A :=

⊗d
j=1 Aj ⊂ C(I) contains

multivariate functions on the product domain I = I1 × . . .× Id.

(d) Let Aj := �0(Z) (cf. (3.2)). The multiplication ◦ in Aj may be defined by
the convolution � from (4.73a). The unit element 1 is the sequence with 1i = δi0
for all i ∈ Z (δi0 from (2.1)). This defines the d-dimensional convolution � in
A :=

⊗d
j=1 Aj = �0(Z

d).

The term ‘tensor algebra’ is used for another algebraic construction. Let V be a
vector space and consider the tensor spaces

⊗d V :=

d⊗

j=1

V (3.42)

(cf. Notation 3.23) and define the direct sum of ⊗dV for all d ∈ N0:

A(V) :=
∑

d∈N0

⊗d V. (3.43)

Elements of the tensor algebra are finite sums
∑

d∈N0
vd with vd ∈ ⊗dV . The

multiplicative structure is given by ◦ = ⊗:

vn ∈ ⊗d V, vm ∈ ⊗m V �→ vn ⊗ vm ∈ ⊗n+m V

(cf. [76, Chap. III]). The algebraA(V) has the unit element 1 ∈ K = ⊗0V ⊂ A(V).
The algebraA(�0) will be used in §14.3.3.

If we replace N0 in (3.43) by N,

A(V) :=
∑

d∈N
⊗d V

is an algebra without unit element.

80 3 Algebraic Foundations of Tensor Spaces

3.5 Symmetric and Antisymmetric Tensor Spaces

3.5.1 Basic Definitions

In the following, all vector spaces Vj coincide and are denoted by V :

V := V1 = V2 = . . . = Vd.

The d-fold tensor product is now denoted by V = ⊗dV , where d ≥ 2 is required.
Here we refer to the algebraic tensor space, i.e., V = ⊗daV . The completion to a
Banach or Hilbert tensor space will be considered in §4.7.2.

A bijection π : D → D of the set D := {1, . . . , d} is called permutation. Let

P := {π : D → D bijective}

be the set of all permutations. Note that its cardinality

#P = d!

increases fast with increasing d. (P, ◦) is a group, where ◦ is defined by composi-
tion: (τ ◦ π) (j) = τ (π(j)). The inverse of π is denoted by π−1. As known from
the description of determinants, sign : P → {−1,+1} can be defined such that
transpositions (pairwise permutations) have the sign −1, while the function sign is
multiplicative: sign(τ ◦ π) = sign(τ) · sign(π).

A permutation π ∈ P gives rise to a mapping V→ V denoted again by π:

π :

d⊗

j=1

v(j) �→
d⊗

j=1

v(π
−1(j)). (3.44)

Exercise 3.61. For v∈⊗dKn show that (π(v))i=vπ(i) for all i∈{1,...,n}d, where

π (i1, . . . , id) :=
(
iπ(1), . . . , iπ(d)

)

is the action of π ∈ P onto a tuple from {1, . . . , n}d.

Definition 3.62. (a) v ∈ V =⊗d V is symmetric, if π(v) = v for all10 π ∈ P .

(b) The symmetric tensor space is defined by

S := S(V) := Sd(V) := ⊗dsymV := {v ∈ V : v symmetric} .

(c) A tensor v ∈ V = ⊗d V is antisymmetric (synonymously: ‘skew symmetric’),
if π(v) = sign(π)v for all π ∈ P .

(d) The antisymmetric tensor space is defined by

10 Replacing all π ∈ P by a subgroup of permutations (e.g., only permutations of certain positions)
one can define tensor spaces with partial symmetry.

3.5 Symmetric and Antisymmetric Tensor Spaces 81

A := A(V) := Ad(V) := ⊗dantiV := {v ∈ V : v antisymmetric} .

An equivalent definition of a symmetric [antisymmetric] tensor v is v = π(v)
[v = −π(v)] for all pair interchanges

π : (1, . . . , i, . . . , j, . . . , d) �→ (1, . . . , j, . . . , i, . . . , d) ,

since all permutations from P are products of pairwise permutations.
For d=2 and V =K

n, tensors from S and A correspond to symmetric matrices
(Mij = Mji) and antisymmetric matrices (Mij = −Mji), respectively.

Proposition 3.63. (a) S and A are subspaces of V =⊗d V .

(b) The projections PS and PA from V onto S and A, respectively, are given by

PS(v) :=
1

d!

∑

π∈P
π(v), PA(v) :=

1

d!

∑

π∈P
sign(π)π(v). (3.45)

PS is called symmetriser, PA alternator.

Remark 3.64. (a) Exercise 3.61 shows that (PS(v))i = 1
d!

∑
π∈P vπ(i) and

(PA(v))i =
1
d!

∑
π∈P sign(π)vπ(i) for v ∈ ⊗dKn and all i ∈ {1, . . . , n}d.

(b) Let V = K
n, In := {1, . . . , n}d, and

Isymn := {i ∈ In : 1 ≤ i1 ≤ i2 ≤ . . . ≤ id ≤ n} . (3.46a)

Then, v ∈ ⊗dsymKn is completely determined by the entries vi for i ∈ Isymn . All
other entries vi coincide with vπ(i), where π ∈ P is chosen such that π(i) ∈ Isymn .

(c) With V and In from Part (b) let

Iantin := {i ∈ In : 1 ≤ i1 < i2 < . . . < id ≤ n} . (3.46b)

Then v ∈ ⊗dantiKn is completely determined by the entries vi with i ∈ Iantin .
For i ∈ In\Iantin two cases have to be distinguished. If i contains two equal
elements, i.e., ij = ik for some j �= k, then vi = 0. Otherwise, there is some
π ∈ P with π(i) ∈ Iantin and vi = sign(π)vπ(i).

Conclusion 3.65. (a) Ad(Kn) = {0} for d > n, since Iantin = ∅.
(b) For n = d, Ad(Kd) = span{PA(

⊗d
j=1 e

(j))} is one-dimensional (e(j): unit
vectors, cf. (2.2)), since #Iantin = 1.

Proposition 3.66. For dim(V) = n < ∞ and d ≥ 2 the dimensions of S and A
satisfy

dim(Ad(V)) =
(
n
d

)
< nd/d! < dim(Sd(V)) =

(
n+d−1

d

)
.

Bounds are dim(Ad(V)) ≤
(
n− d−1

2

)d
/d! and dim(Sd(V)) ≤

(
n+ d−1

2

)d
/d! .

82 3 Algebraic Foundations of Tensor Spaces

Proof. S is isomorphic to S(Kn). Remark 3.64c shows dim(S) = #Isymn . By
induction one shows that #Isymn =

(
n
d

)
. The proof for A is analogous. ��

As Proposition 3.66 shows, A(V) has a smaller dimension than S(V), but the
other side of the coin is that V must be higher dimensional to form Ad(V) of a
certain dimension. As long as n = dim(V) < d, Ad(V) = {0} is zero-dimensional.

Let NA =ker(PA), NS =ker(PS) be the kernels and note that A=range(PA)
and S = range(PS) are the images. Then the tensor space V =

⊗d V admits the
direct decomposition

V = NA ⊕ A = NS ⊕S,

i.e., any v∈T has a unique decomposition into v=vN+vX with either vN ∈NA,
vX ∈ A or vN ∈ NS, vX ∈ S. Consequently, S and A are isomorphic to the
quotient spaces (cf. §3.1.3):

S ∼= V/NS, A ∼= V/NA. (3.47)

V/NA = ∧dV is called the d-th exterior power of V, and v(1) ∧ v(2) ∧ . . . ∧ v(d) is
the isomorphic image of PA(v

(1)⊗ v(2)⊗ . . .⊗ v(d)). The operation ∧ is called the
exterior product. Analogously,V/NS = ∨dV is called the d-th symmetric power of
V, and v(1)∨v(2)∨. . .∨v(d) is the isomorphic image of PS(v(1)⊗v(2)⊗. . .⊗v(d)).

In the context of (anti)symmetric tensor spaces, a mapping A ∈ L(V,V) is
called symmetric, if A commutes with all π ∈ P , i.e., Aπ = πA. This property
implies that APS = PSA and APA = PAA, and proves the following result.

Remark 3.67. If A ∈ L(V,V) is symmetric, S and A are invariant under A,
i.e., the restrictions of A to S and A belong to L(S,S) and L(A,A), respectively.

The Hadamard product � will be explained in (4.72a). In the case of functions,
it is the usual pointwise product.

Exercise 3.68. Let s, s′ ∈ S and a, a′ ∈ A. Show that s� s′, a� a′ ∈ S, whereas
s� a, a� s ∈ A.

3.5.2 Quantics

The term ‘quantics’ introduced by Arthur Cayley [33] in 1854 is used for homoge-
neous polynomials in multiple variables, i.e., polynomials in the variables xi (i∈B)
which are a finite sum of terms aνxν =aν

∏
i∈Bx

νi
i with multi-indices ν of length

|ν| :=
∑
i∈B νi=d ∈ N0 and aν ∈K. Such quantics have the property

p(λx) = λdp(x).

Proposition 3.69. Let V be a vector space with the (algebraic) basis {bi : i ∈B}.
Then the algebraic symmetric tensor space Sd(V) is isomorphic to the set of
quantics in the variables {xi : i ∈ B}.

3.5 Symmetric and Antisymmetric Tensor Spaces 83

This statement holds also for dim(V) = #B =∞. Note that the infinite product
xν =

∏
i∈B x

νi
i makes sense, since at most d exponents νi are different from zero.

For the proof of Proposition 3.69 consider a general tensor v ∈
⊗d

a V . Using the
basis {bi : i ∈ B}, we may write v =

∑
i∈Bd ai

⊗d
j=1bij (almost all ai vanish).

Therefore, any symmetric tensor can be written asPSv =
∑

i∈Bd PS(ai
⊗d

j=1bij).
The isomorphism into the quantics of degree d is given by

Φ : PS

(

ai

d⊗

j=1

bij

)

�→ ai

d∏

j=1

xij .

Note that

d∏

j=1

xij =
∏

i∈B
xνii with νi := #{j ∈ {1, . . . , d} : ij = i} for all i ∈ B.

The symmetry of PSv corresponds to the fact that all factors xi commute.

Above we have used the range of PS to define Sd(V). In the case of d = 2, e.g.,
v := PS(a ⊗ b) = a ⊗ b + b ⊗ a represents a symmetric tensor. Instead, one may
use v = 1

2 ⊗2 (a+ b) − 1
2 ⊗2 (a− b) . In the latter representation, each term itself

is symmetric. In general, Sd(V) can be generated by d-fold tensor products ⊗dv:

S(V) = span{⊗dv : v ∈ V }.

In the language of quantics this means that the polynomial is written as sum of

d-th powers
(∑n

i=1 aixi
)d

of linear forms. The decomposition of a homogeneous
polynomial into this special form is addressed by Brachat - Comon - Mourrain -
Tsigaridas [24] (see ranksym on page 65).

3.5.3 Determinants

Since tensor products are related to multilinear forms (cf. Proposition 3.22) and
the determinant is a special antisymmetric multilinear form, it is not surprising to
find relations between antisymmetric tensors and determinants. We recall that the
determinant det(A) of a matrix A ∈ K

d×d equals

det(A) =
∑

π∈P
sign(π)

d∏

j=1

aj,π(j). (3.48)

The building block of usual tensors are the elementary tensors
⊗d

j=1 u
(j). For

antisymmetric tensors we have to use their antisymmetrisation PA

(⊗d
j=1 u

(j)
)
.

84 3 Algebraic Foundations of Tensor Spaces

Lemma 3.70. An antisymmetrised elementary tensor v := PA

(⊗d
j=1 v

(j)
)

with
v(j) ∈ V := K

n has the entries

v[i1, . . . , id] =
1

d!
det

⎡

⎢
⎢
⎢
⎢
⎣

v
(1)
i1

v
(2)
i1
· · · v(d)i1

v
(1)
i2

v
(2)
i2
· · · v(d)i2

...
...

. . .
...

v
(1)
id

v
(2)
id
· · · v(d)id

⎤

⎥
⎥
⎥
⎥
⎦
.

Proof. Set e :=
⊗d

j=1 v
(j). By definition (3.48), the right-hand side equals

1

d!

∑

π∈P
sign(π)

d∏

j=1

v
(j)
iπ(j)

=
1

d!

∑

π∈P
sign(π)eπ(i) = (PA(e))i = vi = v[i1, ..., id],

proving the assertion. ��

For V = K
d the antisymmetric spaceAd(Kd) is one-dimensional (cf. Conclusion

3.65b). Therefore, any transformation by A = ⊗dA is identical to a multiple of the
identity.

Remark 3.71. Let V =K
d. For any A ∈Kd×d and v= PA(

⊗d
j=1v

(j)) ∈Ad(Kd)
one has

A(v) := PA

(⊗d

j=1
Av(j)

)

= det(A)PA

(⊗d

j=1
v(j)

)

.

Proof. By Conclusion 3.65, tensors u from A(Kd) are determined by u[1, . . . , d].

Lemma 3.70 shows that v[1,..., d] = 1
d! det(M), where M = [v(1),..., v(d)]∈Kd×d,

and that A(v)1,...,d = 1
d! det(AM) = det(A) · 1

d! det(M) = det(A) · v[1,..., d]. ��

For function spaces V (e.g., V =L2(R), V =C[0, 1], etc.) there is an analogue
of Lemma 3.70.

Lemma 3.72. For functions f1,..., fd ∈ V the antisymmetrisation of the elementary
tensor

F =

d⊗

j=1

fj , i.e., F (x1, . . . , xd) =

d∏

j=1

fj(xj),

yields G := PA(F) with

G(x1, . . . , xd) =
1

d!
det

⎡

⎢
⎢
⎢
⎣

f1(x1) f2(x1) · · · fd(x1)
f1(x2) f2(x2) · · · fd(x2)

...
...

. . .
...

f1(xd) f2(xd) · · · fd(xd)

⎤

⎥
⎥
⎥
⎦
.

G is also called the Slater determinant of f1, . . . , fd.

Part II
Functional Analysis of Tensor Spaces

Algebraic tensor spaces yield a suitable fundament for the finite dimensional case.
But even in the finite dimensional case we want to formulate approximation
problems, which require the introduction of a topology. Topological tensor spaces
are a subject of functional analysis.

Standard examples of infinite dimensional tensor spaces are function spaces,
since multivariate functions can be regarded as tensor products of univariate ones.
To obtain a Banach tensor space, we need the completion with respect to a norm,
which is not fixed by the normed spaces generating the tensor space. The scale of
norms is a particular topic of the discussion of Banach tensor spaces in Chap. 4.
A particular, but important case are Hilbert tensor spaces.

Chapter 5 has a stronger connection to algebraic tensor spaces than to topological
ones. But, in particular, the technique of matricisation is a prerequisite required in
Chap. 6.

In Chap. 6 we discuss the so-called minimal subspaces which are important for
the analysis of the later tensor representations in Part III.

Chapter 4
Banach Tensor Spaces

Abstract The discussion of topological tensor spaces has been started by Schatten
[167] and Grothendieck [79, 80]. In Sect. 4.2 we discuss the question how the norms
of V and W are related to the norm of V ⊗W.
From the viewpoint of functional analysis, tensor spaces of order 2 are of particular
interest, since they are related to certain operator spaces (cf. §4.2.13). However, for
our applications we are more interested in tensor spaces of order≥ 3. These spaces
are considered in Sect. 4.3.
As preparation for the aforementioned sections and later ones, we need more or less
well-known results from Banach space theory, which we provide in Sect. 4.1.
Section 4.4 discusses the case of Hilbert spaces. This is important, since many
applications are of this kind. Many of the numerical methods require scalar products.
The reason is that, unfortunately, the solution of approximation problems with re-
spect to general Banach norms is much more involved than those with respect to a
scalar product.

4.1 Banach Spaces

4.1.1 Norms

In the following we consider vector spaces X over one of the fields K ∈ {R,C}.
The topological structure will be generated by norms. We recall the axioms of a
norm on X :

‖·‖ : X → [0,∞) ,
‖x‖ = 0 if and only if x = 0,
‖λx‖ = |λ| ‖x‖ for all λ ∈ K and x ∈ X,
‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X (triangle inequality).

(4.1)

The map ‖·‖ : X → [0,∞) is continuous because of the inverse triangle inequality

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 4,
© Springer-Verlag Berlin Heidelberg 2012

87

88 4 Banach Tensor Spaces

∣
∣ ‖x‖ − ‖y‖

∣
∣ ≤ ‖x− y‖ for all x, y ∈ X. (4.2)

Combining a vector space X with a norm defined on X , we obtain a normed
vector space denoted by the pair (X, ‖·‖). If there is no doubt about the choice of
norm, the notation (X, ‖·‖) is shortened by X .

A vector space X may be equipped with two different norms, i.e., (X, ‖·‖1) and
(X, ‖·‖2) may be two different normed spaces although the set X is the same in
both cases. For the set of all norms on X we can define a semi-ordering. A norm
‖·‖1 is called weaker (or not stronger) than ‖·‖2, in symbolic notation

‖·‖1 � ‖·‖2

(equivalently: ‖·‖2 stronger than ‖·‖1 , or ‖·‖2 � ‖·‖1), if there is a constantC such
that

‖x‖1 ≤ C ‖x‖2 for all x ∈ X.

Two norms ‖·‖1 and ‖·‖2 on X are equivalent, in symbolic notation

‖·‖1 ∼ ‖·‖2 ,

if ‖·‖1 � ‖·‖2 � ‖·‖1, or equivalently, if there are C1, C2 ∈ (0,∞) with

1

C1
‖x‖1 ≤ ‖x‖2 ≤ C2 ‖x‖1 for all x ∈ X.

4.1.2 Basic Facts about Banach Spaces

A sequence xi ∈ X in a normed vector space (X, ‖·‖) is called a Cauchy sequence
(with respect to ‖·‖) if

supi,j≥n ‖xi − xj‖ → 0 as n→∞.

A normed vector space (X, ‖·‖) is called a Banach space if it is also complete (with
respect to ‖·‖). Completeness means that any Cauchy sequence xi ∈ X has a limit
x := limi→∞ xi ∈ X (i.e., ‖x− xi‖ → 0).

A subset X0 ⊂ X of a Banach space (X, ‖·‖) is dense, if for any x ∈ X there
is a sequence xi ∈ X0 with ‖x− xi‖ → 0. An equivalent criterion is that for any
ε > 0 and any x ∈ X there is some xε ∈ X0 with ‖x− xε‖ ≤ ε. A dense subset
may be, in particular, a dense subspace. An important property of dense subsets is
noted in the next remark.

Remark 4.1. Let Φ : X0 → Y be a continuous mapping, where X0 is dense in the
Banach space (X, ‖·‖) and (Y, ‖·‖Y) is some Banach space. Then there is a unique
continuous extension Φ : X → Y with Φ(x) = Φ(x) for all x ∈ X.

If a normed vector space (X, ‖·‖) is not complete, it has a unique completion(
X, ||| · |||

)
—up to isomorphisms—such that X is a dense subspace of the Banach

4.1 Banach Spaces 89

space X and ||| · ||| is the continuous extension of ‖·‖ (note that Φ := ‖·‖ : X → R

is a particular continuous function into the Banach space (Y, ‖·‖Y) = (R, |·|) with
the extension Φ =||| · ||| being again a norm, cf. Remark 4.1). In the following, we
shall use the same symbol ‖·‖ for the norm on the closure X (instead of ||| · |||).
Furthermore, we write again Φ instead of Φ.

Remark 4.2. Let (X, ‖·‖1) and (X, ‖·‖2) be normed vector spaces with identical
sets X, but different norms. Then we have to distinguish between the comple-
tions (X1, ‖·‖1) and (X2, ‖·‖2) with respect to the corresponding norms. Identity
X1=X2 holds if and only if ‖·‖1 ∼ ‖·‖2. If ‖·‖1 � ‖·‖2 , then1 X1 ⊃ X2 ⊃ X.

Definition 4.3. A Banach space is separable, if there is a countable dense subset.

Definition 4.4. A closed subspace U of a Banach space X is called direct or com-
plemented, if there is a subspace W such thatX = U ⊕W is a direct sum (cf. [108,
p. 4]). The Grassmannian2

G(X) is the set of all direct subspaces of X (cf. [110]).

Closedness of U in X = U ⊕W implies that also W is closed.

4.1.3 Examples

Let I be a (possibly infinite) index set with #I ≤ #N (i.e., I finite or countable).
Examples for I are I = {1, . . . , n}, I = N or I = Z or products of these sets. The
vector spaces �(I) = K

Iˆ and �0(I) ⊂ �(I) are already explained in Example 3.1.

Example 4.5. �p(I) consists of all a ∈ �(I) with bounded norm

‖a‖�p(I) := ‖a‖p :=
(∑

i∈I |ai|
p
)1/p

for p ∈ [1,∞) or

‖a‖�∞(I) := ‖a‖∞ := sup{|ai| : i ∈ I} for p =∞.
(4.3)

(�p(I), ‖·‖p) is a Banach space for all 1 ≤ p ≤ ∞.

Remark 4.6. (a) For p <∞, �0(I) is a dense subspace of �p(I).
(b) For an infinite set I, the completion of �0(I) under the norm ‖·‖∞ yields the
proper subset (c0(I), ‖·‖∞) � �∞(I) of zero sequences:

c0(I) = {a ∈ �∞(I) : lim
ν→∞

aiν = 0}, (4.4)

where iν describes any enumeration of the countable set I.

Proof. 1) For finite I, �0(I) = �(I) holds and nothing is to be proved. In the fol-
lowing, I is assumed to be infinite and countable. One may choose any enumeration
I = {iν : ν ∈ N}, but for simplicity we write ν instead of iν .

1 More precisely, the completion X1 can be constructed such that X1 ⊃ X2.
2 The correct spelling of the name is Graßmann, Hermann Günther.

90 4 Banach Tensor Spaces

2) Case p∈ [1,∞). Since
∑∞
ν=1 |aν |

p
<∞, for any ε> 0, there is a νε such that∑

ν>νε
|aν |p≤εp, which proves ‖a− a′‖p≤ε for a′=(a′i)i∈I with a′ν :=aν for the

finitely many 1≤ν≤νε and with a′ν :=0 otherwise. Since a′∈�0(I), �0(I) is dense
in �p(I).

3a) Case p =∞. Assume �0(I)) a(n) → a ∈ �∞(I) with respect to ‖·‖∞. For
any n ∈ N there is a νn such that a(n)ν = 0 for ν > νn. For any ε > 0, there is an nε
such that ‖a(n)−a‖∞ ≤ ε for n ≥ nε. Hence, |aν |= |a(nε)

ν −aν|≤‖a(nε)−a‖∞≤ε
for ν > νnε proves limν aν=0, i.e., a∈c0(I). This proves �0(I) ⊂ c0(I).

3b) Assume a ∈ c0(I). For any n ∈ N, there is a νn such that |aν | ≤ 1/n

for ν > νn. Define a(n) ∈ �0(I) by a(n)ν = aν for 1 ≤ ν ≤ νn and a(n)ν = 0
otherwise. Then ‖a(n) − a‖∞≤ 1/n hold, i.e., a(n) → a and the reverse inclusion
c0(I) ⊂ �0(I) holds. ��

Example 4.7. Let D ⊂ R
m be a domain. (a) Assume 1 ≤ p <∞. Then3

Lp(D) :=
{
f : D → K measurable and

∫

D

|f(x)|p dx <∞
}

defines a Banach space with the norm ‖f‖Lp(D) = ‖f‖p =
(∫
D |f(x)|

p
dx
)1/p

.

(b) For p = ∞, L∞(D) := {f : D → K measurable and ‖f‖∞ < ∞} equipped
with the norm ‖f‖∞ := ess sup

x∈D
|f(x)| is a Banach space.

Example 4.8. LetD ⊂ R
m be a domain. The following sets of continuous functions

and n-times continuously differentiable functions are Banach spaces.
(a) C(D) = C0(D) := {f : D → K with ‖f‖C(D) <∞} with

‖f‖C(D) = sup {|f(x)| : x ∈ D} .

(b) Let n ∈ N0 and define Cn(D) := {f : I → K with ‖f‖Cn(D) < ∞} with
the norm ‖f‖Cn(D) = max|ν|≤n ‖∂νf‖C(D), where the maximum is taken over
all multi-indices ν = (ν1, . . . , νm) ∈ N

m
0 with |ν| :=

∑m
i=1 νi. The mixed partial

derivatives are abbreviated by

∂ν :=
∏m

i=1

(∂

∂xi

)νi
. (4.5)

∂νf denotes the weak derivative (considered as a distribution).

Example 4.9. Let D ⊂ R
m be a domain. The Sobolev space

H1,2(D) :=
{
f : D → K with ‖f‖H1,2(D) <∞

}

is a Banach space, where

‖f‖H1,2(D) :=

√
√
√
√

∑

|ν|≤1
‖∂νf‖2L2(D) =

√
√
√
√‖f‖2L2(D) +

m∑

i=1

∥
∥
∥
∥
∂

∂xi
f

∥
∥
∥
∥

2

L2(D)

.

3 To be precise, we have to form the quotient space {. . .} /N with N := {f : f = 0 on D\S for
all S with measure μ(S) = 0}.

4.1 Banach Spaces 91

4.1.4 Operators

We recall the definition (3.6) of the set L(X,Y) of linear mappings. The following
remark states basic facts about continuous linear mappings, which are also called
operators. The set of operators will be denoted by L(X,Y).

Remark 4.10. Let (X, ‖·‖X) and (Y, ‖·‖Y) be normed spaces, and Φ ∈ L(X,Y).
(a) The following conditions (i) and (ii) are equivalent:

(i) Φ is continuous;
(ii) Φ is bounded, i.e., sup {‖Φ(x)‖Y : x ∈ X with ‖x‖X ≤ 1} <∞.

(b) The supremum from (ii) defines the operator norm4

‖Φ‖Y←X := sup {‖Φ(x)‖Y : x ∈ X with ‖x‖X ≤ 1} . (4.6a)

A simple consequence is

‖Φ(x)‖Y ≤ ‖Φ‖Y←X ‖x‖X for all x ∈ X. (4.6b)

Another notation for the boundedness of Φ reads as follows: there is a constant
C <∞ such that

‖Φ(x)‖Y ≤ C ‖x‖X for all x ∈ X. (4.6c)

Then the minimal possible C in (4.6c) coincides with ‖Φ‖Y←X (cf. (4.6b)).

(c) Let X and Y be the completions of X,Y so that
(
X, ‖·‖X

)
and

(
Y , ‖·‖Y

)
are

Banach spaces. Then the continuation Φ : X → Y discussed in Remark 4.1 has an
identical operator norm: ‖Φ‖Y←X = ‖Φ‖Y←X . Because of this equality, we shall
not distinguish between ‖·‖Y←X and ‖·‖Y←X .

(d) The set of continuous linear mappings (operators) from X into Y is denoted by
L(X,Y). Together with (4.6a),

(L(X,Y), ‖·‖Y←X) (4.6d)

forms a normed space. If (Y, ‖·‖Y) is a Banach space, also (L(X,Y), ‖·‖Y←X) is
a Banach space.

Proof. 1) If the boundedness (ii) holds, the definition of ‖Φ‖Y←X makes sense and
(4.6b) follows by linearity of Φ.

2) (boundedness⇒ continuity) For any ε > 0 set δ := ε/ ‖Φ‖Y←X . Whenever
‖x′ − x′′‖X ≤ δ, we conclude that

‖Φ(x′)− Φ(x′′)‖Y = ‖Φ(x′−x′′)‖Y ≤ ‖Φ‖Y←X ‖x′−x′′‖X ≤ ‖Φ‖Y←X δ = ε,

i.e., Φ is continuous.

4 In (4.6a) one may replace ‖x‖X ≤ 1 by ‖x‖X = 1, as long as the vector space is not the trivial
space X = {0} containing no x with ‖x‖X = 1. Since this trivial case is of minor interest, we
will often use ‖x‖X = 1 instead.

92 4 Banach Tensor Spaces

3) The direction ‘continuity⇒ boundedness’ is proved indirectly. Assume that
(ii) is not valid. Then there are xi with ‖xi‖X ≤ 1 and αi := ‖Φ(xi)‖Y → ∞.
The scaled vectors x′i :=

1
1+αi

xi satisfy x′i→ 0, whereas ‖Φ(x′i)‖Y = αi

1+αi
→ 1 �=

0=‖0‖Y =‖Φ(0)‖Y . Hence Φ is not continuous. Steps 2) and 3) prove Part (a).

4) For the last part of (d) let Φi ∈ L(X,Y) be a Cauchy sequence, i.e.,

sup
i,j≥n

‖Φi − Φj‖Y←X → 0 as n→∞.

For any x ∈ X, also the images yi := Φi(x) form a Cauchy sequence, as seen
from ‖yi − yj‖Y ≤ ‖Φi − Φj‖Y←X ‖x‖X → 0. By the Banach space property,
y := lim yi∈Y exists uniquely giving rise to a mapping Φ(x) :=y. One verifies that
Φ : X→Y is linear and bounded with ‖Φi − Φ‖Y←X→ 0, i.e., Φ ∈ L(X,Y). ��

In the following, ‘operator’ is used as a shorter name for ‘continuous linear map’.
In later proofs we shall use the following property of the supremum in (4.6a).

Remark 4.11. For all operators Φ ∈ L(X,Y) and all ε > 0, there is an xε ∈ X
with ‖xε‖X ≤ 1 such that

‖Φ‖Y←X ≤ (1 + ε) ‖Φ(xε)‖Y and ‖Φ(xε)‖Y ≥ (1− ε) ‖Φ‖Y←X .

A subset K of a normed space is called compact, if any sequence xν ∈ K
possesses a convergent subsequence with limit in K .

Definition 4.12. An operator Φ ∈ L(X,Y) is called compact, if the unit ball B :=
{x ∈ X : ‖x‖X ≤ 1} is mapped onto Φ(B) :={Φ(x) :x∈B}⊂Y and the closure
Φ(B) is a compact subset of Y . K(X,Y) denotes the set of compact operators.

The approximation property of a Banach space, which will be explained in
Definition 4.81, is also related to compactness.

Finally, we add results about projections (cf. Definition 3.4). The next statement
follows from Banach’s closed map theorem.

Lemma 4.13. If X = U ⊕W is the direct sum of closed subspaces, the decomposi-
tion x = u+w (u∈U , w∈W) of any x∈X defines projections P1, P2 ∈ L(X,X)
onto these subspaces by P1x = u and P2x = w.

Theorem 4.14. Let Y ⊂ X be a subspace of a Banach space X with dim(Y) ≤ n.
Then there exists a projection Φ ∈ L(X,X) onto Y such that

‖Φ‖X←X ≤
√
n.

The proof can be found in DeVore-Lorentz [46, Chap. 9, §7] or [145, Proposition
12.14]. The bound is sharp for general Banach spaces, but can be improved to

‖Φ‖X←X ≤ n| 12− 1
p | for X = Lp. (4.7)

4.1 Banach Spaces 93

4.1.5 Dual Spaces

A trivial example of a Banach space (Y, ‖·‖Y) is the field K ∈ {R,C} with the
absolute value |·| as norm. The operators X → K are called continuous functionals
or continuous forms. The Banach space L(X,K) is called the (continuous) dual of
X and denoted by5

X∗ := L(X,K).

The norm ‖·‖X∗ of X∗ follows from the general definition (4.6a):

‖ϕ‖X∗ = sup {|ϕ(x)| : x ∈ X with ‖x‖X ≤ 1} (4.8)

= sup {|ϕ(x)| / ‖x‖X : 0 �= x ∈ X} .

Instead of ‖·‖X∗ , we also use the notation ‖·‖∗X (meaning the dual norm corre-
sponding to ‖·‖X).

The next statement is one of the many versions of the Hahn-Banach Theorem
(cf. Yosida [198, §IV.6]).

Theorem 4.15. Let (X, ‖·‖X) be a normed linear space and U ⊂ X a subspace.
If a linear form is bounded on U, it can be extended to a continuous functional on
X with the same bound. In particular, for x0 ∈ X there is some ϕ ∈ X∗ such that

ϕ(x0) = ‖x0‖X and ‖ϕ‖X∗ = 1. (4.9)

This implies that we recover the norm ‖·‖X from the dual norm ‖·‖X∗ via the
following maximum (no supremum is needed!):

‖x‖X = max {|ϕ(x)| : ‖ϕ‖X∗ = 1} = max

{
|ϕ(x)|
‖ϕ‖X∗

: 0 �= ϕ ∈ X∗
}

. (4.10)

Corollary 4.16. Let {xν ∈ X : 1 ≤ ν ≤ n} be linearly independent. Then there are
functionals ϕν ∈ X∗ such that ϕν(xμ) = δνμ (cf. (2.1)). The functionals (ϕν)

n
ν=1

are called dual to (xν)
n
ν=1 .

Proof. Let U := span {xν : 1 ≤ ν ≤ n} , and define the dual system {ϕν} as in
Definition 3.6. Since U is finite dimensional, the functionals ϕν are bounded on U .
By Theorem 4.15 there exists an extension of all ϕν to X∗ with the same bound. ��

The following Lemma of Auerbach is proved, e.g., in [145, Lemma 10.5].

Lemma 4.17. For any n-dimensional subspace of a Banach space X, there exists
a basis {xν : 1 ≤ ν ≤ n} and a corresponding dual system {ϕν : 1 ≤ ν ≤ n} such
that ‖xν‖ = ‖ϕν‖∗ = 1 (1 ≤ ν ≤ n) .

Lemma 4.18. (a) Let (X, ‖·‖1) and (X, ‖·‖2) be two normed vector spaces with
‖·‖1 ≤ C ‖·‖2. By Remark 4.2, completion yields Banach spaces (X1, ‖·‖1) and

5 Note that X∗ is a subset of X′, the space of the algebraic duals.

94 4 Banach Tensor Spaces

(X2, ‖·‖2) with X2 ⊂ X1. The corresponding duals
(
X∗1 , ‖·‖

∗
1

)
and

(
X∗2 , ‖·‖

∗
2

)

satisfy X∗1 ⊂ X∗2 . The dual norms fulfil ‖ϕ‖∗2 ≤ C ‖ϕ‖∗1 for all ϕ ∈X∗1 with the
same constant C. If ‖·‖1 and ‖·‖2 are equivalent, X∗1 = X∗2 holds.
(b) If

(
X∗, ‖·‖∗1

)
and

(
X∗, ‖·‖∗2

)
are identical sets with equivalent dual norms ‖·‖∗1

and ‖·‖∗2 generated by normed vector spaces (X, ‖·‖1) and (X, ‖·‖2) , then also
‖·‖1 and ‖·‖2 are equivalent.

Proof. 1) Let ϕ∈X∗1 . Since X2 ⊂ X1, ϕ(x2) is well-defined for any x2∈X2 with
‖x2‖2 = 1 and we estimate |ϕ(x2)| ≤ ‖ϕ‖∗1 ‖x2‖1 ≤ C ‖ϕ‖∗1 ‖x2‖2 = C ‖ϕ‖∗1 .
Taking the supremum over all x2 ∈ X2 with ‖x2‖2 = 1, we get ‖ϕ‖∗2 ≤ C ‖ϕ‖∗1 .
Again, by Remark 4.2, X∗1 ⊂ X∗2 follows.

2) For equivalent norms both inclusions X∗1 ⊂ X∗2 ⊂ X∗1 prove the assertion.
3) The identity ‖x‖1 = max

{
|ϕ(x)| : ‖ϕ‖∗1 = 1

}
= maxϕ �=0

{
|ϕ(x)| / ‖ϕ‖∗1

}

follows from (4.10). By equivalence, ‖ϕ‖∗1 ≤ C ‖ϕ‖∗2 follows, so that

max
ϕ �=0

{
|ϕ(x)| / ‖ϕ‖∗1

}
≥ 1

C max
ϕ �=0

{
|ϕ(x)| / ‖ϕ‖∗2

}
= 1

C ‖x‖2
and vice versa, proving Part (b). ��

The Banach space (X∗, ‖·‖X∗) has again a dual (X∗∗, ‖·‖X∗∗) called the bidual
of X. The embedding X ⊂ X∗∗ is to be understood as identification of x ∈ X
with the bidual mapping χx ∈ X∗∗ defined by χx (ϕ) := ϕ(x) for all ϕ ∈ X∗.
If X = X∗∗, the Banach space X is called reflexive.

Lemma 4.19. Let ϕ ∈ X∗. Then

‖ϕ‖X∗ = sup
0�=x∈X

|ϕ(x)|
‖x‖X

= max
0�=Φ∈X∗∗

|Φ(ϕ)|
‖Φ‖X∗∗

.

If X is reflexive, ‖ϕ‖X∗= max0�=x∈X |ϕ(x)| / ‖x‖X holds (max instead of sup).

Proof. The left equality holds by definition of ‖·‖X∗ . The right equality is the iden-
tity (4.10) with x, X , ϕ replaced by ϕ, X∗, Φ. In the reflexive case, Φ(ϕ) = ϕ(xΦ)
holds for some xΦ ∈ X and proves the second part. ��

Definition 4.20. If Φ ∈ L(X,Y), the dual operator Φ∗ ∈ L(Y ∗, X∗) is defined via
Φ∗ : η �→ ξ := Φ∗η with ξ(x) := η(Φx) for all x ∈ X.

Lemma 4.21. ‖Φ∗‖X∗←Y ∗ = ‖Φ‖Y←X .

4.1.6 Examples

In §4.1.3, examples of Banach spaces are given. Some of the corresponding dual
spaces are easy to describe.

Example 4.22. (a) The dual of �p(I) for 1 ≤ p <∞ is (isomorphic to) �q(I), where
the conjugate q is defined by 1

p + 1
q = 1 and the embedding �q(I) ↪→ (�p(I))

∗ is
defined by

4.1 Banach Spaces 95

ϕ (a) :=
∑

i∈I
aiϕi ∈ K for a = (ai)i∈I ∈ �

p(I) and ϕ = (ϕi)i∈I ∈ �
q(I).

The subspace c0(I) ⊂ �∞(I) (cf. (4.4)) has the dual �1(I). If #I < ∞, equality
(�∞(I))

∗
= �1(I) holds; otherwise, (�∞(I))

∗
� �1(I).

(b) Similarly, (Lp(D))
∗ ∼= Lq(D) is valid for 1 ≤ p < ∞ with the embedding

g∈Lq(D) �→ g(f) :=
∫
D f(x)g(x)dx for all f ∈ Lp(D).

(c) Let I = [a, b] ⊂ R be an interval. Any functional ϕ ∈ (C(I))
∗ corresponds to

a function g of bounded variation such that ϕ(f) =
∫
I
f(x)dg(x) exists as Stieljes

integral for all f ∈ C(I). The latter integral with g chosen as the step function
gs(x) :=

{
0 for x≤s
1 for x>s

}
leads to the Dirac functional δs with the property

δs(f) = f(s) for all f ∈ C(I) and s ∈ I. (4.11)

4.1.7 Weak Convergence

Let (X, ‖·‖) be a Banach space. We say that (xn)n∈N converges weakly to x ∈ X,
if limϕ(xn) = ϕ(x) for all ϕ ∈ X∗. In this case, we write xn ⇀ x. Standard
(strong) convergence xn → x implies xn ⇀ x.

Lemma 4.23. If xn ⇀ x, then ‖x‖ ≤ lim inf
n→∞

‖xn‖ .

Proof. Choose ϕ ∈ X∗ with ‖ϕ‖∗ = 1 and |ϕ(x)| = ‖x‖ (cf. (4.9)) and note that
‖x‖ ← |ϕ(xn)| ≤ ‖xn‖. ��

Lemma 4.24. Let N ∈ N. Assume that the sequences (x
(i)
n)n∈N for 1 ≤ i ≤ N

converge weakly to linearly independent limits x(i) ∈ X (i.e., x(i)n ⇀ x(i)). Then
there is an n0 such that for all n ≥ n0 the N -tuples (x(i)n : 1 ≤ i ≤ N) are linearly
independent.

Proof. There are functionals ϕ(j) ∈ X∗ (1 ≤ j ≤ N) with ϕ(j)(x(i)) = δij (cf.
Corollary 4.16). Set

Δn := det
(
(ϕ(j)(x(i)n))Ni,j=1

)
.

x
(i)
n ⇀ x(i) implies ϕ(j)(x

(i)
n) → ϕ(j)(x(i)). Continuity of the determinant proves

Δn → Δ∞ := det((δij)
N
i,j=1) = 1. Hence, there is an n0 such that Δn > 0 for all

n ≥ n0, but Δn > 0 proves linear independence of {x(i)n : 1 ≤ i ≤ N}. ��

For a proof of the local sequential weak compactness, stated next, we refer to
Yosida [198, Chap. V.2].

Lemma 4.25. If X is a reflexive Banach space, any bounded sequence xn ∈ X has
a subsequence xnν converging weakly to some x ∈ X.

96 4 Banach Tensor Spaces

Corollary 4.26. Let X be a reflexive Banach space, xn ∈ X a bounded sequence
with xn =

∑r
i=1 ξn,i, ξn,i∈X, and ‖ξn,i‖ ≤ C ‖xn‖ . Then there are ξi ∈ X and

a subsequence such that ξnν ,i ⇀ ξi and, in particular, xnν ⇀ x :=
∑r

i=1 ξi.

Proof. By Lemma 4.25, weak convergence xn ⇀ x holds for n ∈ N
(0) ⊂ N,

where N
(0) is an infinite subset of N. Because of ‖ξn,1‖ ≤ C ‖xn‖ , also ξn,1 is a

bounded sequence for n ∈ N
(0). A second infinite subset N(1) ⊂ N

(0) exists with
the property ξn,1 ⇀ ξ1 (n ∈ N

(1)) for some ξ1 ∈ X. Next, ξn,2 ⇀ ξ2 ∈ X can
be shown for n ∈ N

(2) ⊂ N
(1), etc. Finally, for N(r)) n → ∞ all sequences ξn,i

converge weakly to ξi and summation over i yields xn ⇀ x :=
∑r

i=1 ξi. ��

Definition 4.27. A subset M ⊂ X is called weakly closed, if xn ∈ M and xn ⇀ x
imply x ∈M .

Note the implication ‘M weakly closed ⇒ M closed’, i.e., ‘weakly closed’ is
stronger than ‘closed’.

Theorem 4.28. Let (X, ‖·‖) be a reflexive Banach space with a weakly closed
subset ∅ �= M ⊂ X . Then the following minimisation problem has a solution:
For any x ∈ X find v ∈M with

‖x− v‖ = inf{‖x− w‖ : w ∈M}.

Proof. Choose any sequence wn ∈ M with ‖x− wn‖ ↘ inf{‖x− w‖ : w ∈ M}.
Since (wn)n∈N is a bounded sequence in X , Lemma 4.25 ensures the existence of a
weakly convergent subsequence wni ⇀ v ∈ X . v belongs to M because wni ∈ M
and M is weakly closed. Since also x− wni ⇀ x− v is valid, Lemma 4.23 shows
‖x− v‖ ≤ lim inf ‖x− wni‖ ≤ inf{‖x− w‖ : w ∈M}. ��

Since the assumption of reflexivity excludes important spaces, we add some
remarks on this subject. The existence of a minimiser or ‘nearest point’ v in a
certain set A ⊂ X to some v ∈ V \A is a well-studied subject. A set A is called
‘proximinal’ if for all x ∈ X\A the best approximation problem ‖x − v‖ =
infw∈A ‖x − w‖ has at least one solution v ∈ A. Without the assumption of
reflexivity, there are statements ensuring under certain conditions that the set of
points x ∈ X\A possessing nearest points in A are dense (e.g., Edelstein [51]).
However, in order to conclude from the weak closedness6 of the minimal subspaces
that they are proximinal, requires reflexivity as the following statement elucidates.

Theorem 4.29 ([64, p. 61]). For a Banach space X the following is equivalent:
(a) X is reflexive,
(b) All closed subspaces are proximinal.
(c) All weakly closed non-empty subsets are proximinal.

6 On the other hand, if X coincides with the dual Y ∗ of another Banach space Y , every weak∗

closed set in X is proximinal (cf. Holmes [101, p. 123]). However, the later proofs of weak closed-
ness of Umin

j (v) in §6 do not allow to conclude also weak∗ closedness.

4.2 Topological Tensor Spaces 97

4.1.8 Continuous Multilinear Mappings

Multilinearity is defined in (3.18a). The equivalence of continuity and boundedness
shown in Remark 4.10a also holds for bilinear, or generally, for multilinear map-
pings. The proof follows by the same arguments.

Lemma 4.30. (a) A bilinear mapping B : (V, ‖·‖V) × (W, ‖·‖W) → (X, ‖·‖) is
continuous if and only if there is some C ∈ R such that

‖B(v, w)‖ ≤ C ‖v‖V ‖w‖W for all v ∈ V and w ∈ W.

(b) A multilinear mapping A : ×d
i=1

(
Vj , ‖·‖j

)
→ (X, ‖·‖) is continuous if and

only if there is some C ∈ R such that

‖A(v(1), . . . , v(d))‖ ≤ C
∏d

j=1
‖v(j)‖j for all v(j) ∈ Vj .

4.2 Topological Tensor Spaces

4.2.1 Notations

The algebraic tensor product V ⊗aW has been defined in (3.11) by the span of all
elementary tensors v⊗w for v ∈ V and w ∈ W . In pure algebraic constructions
such a span is always a finite linear combination. Infinite sums as well as limits of
sequences cannot be defined without topology. In the finite dimensional case, the
algebraic tensor product V ⊗aW is already complete. Corollary 4.61 below will
even show a similar case with one factor being infinite dimensional.

As already announced in (3.12), the completion X := X0 of X0 := V ⊗aW
with respect to some norm ‖·‖ yields a Banach space (X, ‖·‖) , which is denoted by

V ⊗‖·‖W := V ⊗
‖·‖

W := V ⊗aW
‖·‖

and now called Banach tensor space. Note that the result of the completion depends
on the norm ‖·‖ as already discussed in §4.1.2. A tensor x ∈ V ⊗‖·‖W is defined as
limit x = limn→∞ xn of some xn ∈ V ⊗aW from the algebraic tensor space, e.g.,
xn is the sum of say n elementary tensors. In general, such a limit of a sequence
cannot be written as an infinite sum (but see §4.2.6). Furthermore, the convergence
xn → x may be arbitrarily slow. In practical applications, however, one is interested
in fast convergence, in order to approximate x by xn with reasonable n (if n is the
number of involved elementary tensors, the storage will be related to n). In that case,
the statement xn → x should be replaced by a quantified error estimate:

‖xn − x‖ ≤ O(ϕ(n)) with ϕ(n)→ 0 as n→∞,
or ‖xn − x‖ ≤ o(ψ(n)) with supψ(n) <∞,

(4.12)

98 4 Banach Tensor Spaces

i.e., ‖xn − x‖ ≤ Cϕ(n) for some constant C or ‖xn − x‖ /ψ(n)→ 0 as n→∞.
The notation⊗‖·‖ becomes a bit cumbersome if the norm sign ‖·‖ carries further

suffices, e.g., ‖·‖Cn(I). To shorten the notation, we often copy the (shortened)
suffix7 of the norm to the tensor sign, e.g., the association p ↔ ‖·‖�p(Z) or
∧ ↔ ‖·‖∧(V,W) is used in

V ⊗
p
W = V ⊗pW, V ⊗

∧
W = V ⊗∧W, etc.

The neutral notation
V ⊗W

is used only if
(i) there is not doubt about the choice of norm of the Banach tensor space or
(ii) a statement holds both for the algebraic tensor product and the topological one.
In the finite dimensional case, where no completion is necessary, we shall use V ⊗W
for the algebraic product space (without any norm) as well as for any normed tensor
space V ⊗W .

4.2.2 Continuity of the Tensor Product and Crossnorms

We start from Banach spaces (V, ‖·‖V) and (W, ‖·‖W). The question arises whether
the norms ‖·‖V and ‖·‖W define a norm ‖·‖ on V ⊗W in a canonical way. A suitable
choice seems to be the definition

‖v ⊗ w‖ = ‖v‖V ‖w‖W for all v ∈ V and w ∈W (4.13)

for the norm of elementary tensors. However, differently from linear maps, the def-
inition of a norm on the set of elementary tensors does not determine ‖·‖ on the
whole of V ⊗a W. Hence, in contrast to algebraic tensor spaces, the topological
tensor space (V ⊗W, ‖·‖) is not uniquely determined by the components (V, ‖·‖V)
and (W, ‖·‖W).

Definition 4.31. Any norm ‖·‖ on V ⊗aW satisfying (4.13) is called a crossnorm.

A necessary condition for ‖·‖ is the continuity of the tensor product, i.e., the
mapping (v, w) ∈ V ×W �→ v ⊗ w ∈ V ⊗W must be continuous. Since ⊗ is
bilinear (cf. Lemma 3.10), we may apply Lemma 4.30a.

Remark 4.32. Continuity of the tensor product ⊗ : (V, ‖·‖V) × (W, ‖·‖W) →
(V ⊗W, ‖·‖) is equivalent to the existence of some C <∞ such that

‖v ⊗ w‖ ≤ C ‖v‖V ‖w‖W for all v ∈ V and w ∈W. (4.14)

Here, (V ⊗W, ‖·‖) may be the algebraic (possibly incomplete) tensor space V ⊗aW
equipped with norm ‖·‖ or the Banach tensor space (V ⊗‖·‖ W, ‖·‖). Inequality
(4.14) is, in particular, satisfied by a crossnorm.

7 The letter a must be avoided, since this denotes the algebraic product ⊗a.

4.2 Topological Tensor Spaces 99

Continuity of ⊗ is necessary, since otherwise there are pairs v ∈ V and w ∈ W
such that v ⊗ w ∈ V ⊗a W has no finite norm ‖v ⊗ w‖ . Hence, ‖·‖ cannot be
defined on all of V ⊗a W and (V ⊗aW, ‖·‖) is not a normed vector space. For a
proof we use the following lemma (cf. [45, I.1.2]).

Lemma 4.33. Let V be a Banach space (W may be not complete). Assume separate
continuity: ‖v ⊗ w‖ ≤ Cw ‖v‖V and ‖v ⊗ w‖ ≤ Cv ‖w‖W hold for all v ∈ V and
w ∈W with Cv [Cw] depending on v [w]. Then (4.14) follows for some C <∞.

Assuming that (4.14) is not true, we conclude from Lemma 4.33 that there is
some w ∈ W such that sup0�=v∈V ‖v ⊗ w‖ / ‖v‖V = ∞. Since for fixed w a norm
|||v |||w := ‖v ⊗ w‖ is defined which is strictly stronger than ‖·‖V , there is v0 ∈ V
which has no finite |||·|||w norm (cf. Remark 4.2), i.e., ‖v0 ⊗ w‖ is not defined.

In the definition of V ⊗‖·‖W we have not fixed, whether V and W are com-
plete or not. The next lemma shows that in any case the same Banach tensor space
V ⊗‖·‖W results. Any non-complete normed space (V, ‖·‖V) may be regarded as a
dense subset of the Banach space (V , ‖·‖V). Replacing the notations V , V by V, V0,
we can apply the following lemma. There we replace V and W in V ⊗W by dense
subspaces V0 and W0. Three norms are involved: ‖·‖V for V0 and V, ‖·‖W for W0

and W, and the norm ‖·‖ for the tensor spaces V0⊗aW0, V ⊗aW, V ⊗‖·‖W.

Lemma 4.34. Let V0 be dense in (V, ‖·‖V) and W0 be dense in (W, ‖·‖W). Assume
⊗ : (V, ‖·‖V)× (W, ‖·‖W)→ (V ⊗‖·‖W, ‖·‖) to be continuous, i.e., (4.14) holds.
Then V0 ⊗aW0 is dense in V ⊗‖·‖W , i.e.,

V0 ⊗aW0 = V ⊗‖·‖W.

Proof. For any ε > 0 and any x ∈ V ⊗‖·‖ W we have to show that there is an
xε ∈ V0 ⊗a W0 with ‖x− xε‖ ≤ ε. By definition of V ⊗‖·‖ W , there is an x′ ∈
V ⊗aW with ‖x− x′‖ ≤ ε/2 and a finite sum representation x′ =

∑n
i=1 v

′
i ⊗ w′i

with v′i ∈ V and w′i ∈W . We set

Cmax := max {‖v′i‖V , ‖w′i‖W : 1 ≤ i ≤ n} ,

and choose δ so small that

nCδ (2Cmax + δ) ≤ ε/2

with C being the equally named constant from (4.14). We select vi ∈ V0 and wi ∈
W0 with ‖v′i − vi‖V ≤ δ and ‖w′i − wi‖W ≤ δ and set xε :=

∑n
i=1 vi ⊗ wi. Then

‖x′ − xε‖ =
∥
∥
∥
∥
∥

n∑

i=1

(v′i ⊗ w′i − vi ⊗ wi)
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

n∑

i=1

{(v′i − vi)⊗ w′i + v′i ⊗ (w′i − wi) + (vi − v′i)⊗ (w′i − wi)}
∥
∥
∥
∥
∥

100 4 Banach Tensor Spaces

≤
n∑

i=1

{‖(v′i − vi)⊗ w′i‖+ ‖v′i ⊗ (w′i − wi)‖+ ‖(vi − v′i)⊗ (w′i − wi)‖} ≤
(4.14)

≤
n∑

i=1

{C ‖v′i − vi‖V ‖w′i‖W + C ‖v′i‖V ‖w′i − wi‖W + C ‖vi − v′i‖ ‖w′i − wi‖}

≤ nCδ {2Cmax + δ} ≤ ε/2

proves ‖x− xε‖ ≤ ε. ��

Remark 4.35. If (V, ‖·‖V) and (W, ‖·‖W) are separable (cf. Definition 4.3) and
continuity (4.14) holds, also (V ⊗‖·‖W, ‖·‖) is separable.

Proof. Let {vi : i ∈ N} and {wj : j ∈ N} be dense subsets of V and W,
respectively. The set E := {vi ⊗ wj : i, j ∈ N} ⊂ V ⊗a W is again countable.
By continuity of⊗, the closure E contains all elementary tensors v⊗w ∈ V ⊗aW .
Let B := span{E} be the set of finite linear combinations of vi ⊗ wj ∈ E. The
previous result shows V ⊗‖·‖W ⊃ B ⊃ V ⊗aW , which provesB = V ⊗‖·‖W. ��

4.2.3 Examples

Example 4.36 (�p). Let V := (�p(I), ‖·‖�p(I)) and W := (�p(J), ‖·‖�p(J)) for
1≤p≤∞ and for some finite or countable I and J. Then the tensor product of
the vectors a = (aν)ν∈I ∈ �p(I) and b = (bμ)μ∈J ∈ �p(J) may be considered
as the (infinite) matrix a ⊗ b =: c = (cνμ)ν∈I,μ∈J with entries cνμ := aνbμ.
Any elementary tensor a⊗ b belongs to8 �p(I × J), and ‖·‖�p(I×J) is a crossnorm:

‖a⊗ b‖�p(I×J) = ‖a‖�p(I) ‖b‖�p(J) for a ∈ �p(I), b ∈ �p(J). (4.15)

Proof. For p <∞, (4.15) follows from

‖a⊗ b‖p�p(I×J) =
∑

ν∈I

∑

μ∈J
|aνbμ|p =

∑

ν∈I

∑

μ∈J
|aν |p |bμ|p

=
(∑

ν∈I
|aν |p

)(∑

μ∈J
|bμ|p

)
=
(
‖a‖�p(I) ‖b‖�p(J)

)p
.

For p = ∞, use |cνμ| = |aνbμ| = |aν | |bμ| ≤ ‖a‖�∞(I) ‖b‖�∞(J) to show that
‖a⊗ b‖�∞(I×J) ≤ ‖a‖�∞(I) ‖b‖�∞(J). For the reverse inequality use that there are
indices ν∗ and μ∗ with |aν∗ | ≥ (1− ε) ‖a‖�∞(I) and |bμ∗ | ≥ (1− ε) ‖b‖�∞(J). ��

Since linear combinations of finitely many elementary tensors again belong to
�p(I × J), we obtain �p(I)⊗a �p(J) ⊂ �p(I × J) . Hence, the completion with
respect to ‖·‖�p(I×J) yields a Banach tensor space �p(I) ⊗p �p(J) ⊂ �p(I × J).
The next statement shows that, except for p =∞, even equality holds.

8 Note that I × J is again countable.

4.2 Topological Tensor Spaces 101

Remark 4.37. �p(I)⊗
p
�p(J) = �p(I × J) holds for 1 ≤ p <∞.

Proof. Let 1 ≤ p < ∞. It is sufficient to show that �p(I) ⊗a �p(J) is dense in
�p(I × J). Let iν and jμ (ν, μ ∈ N) be any enumerations of the index sets I
and J , respectively. Note that c ∈ �p(I × J) has entries indexed by (i, j) ∈ I × J.
Then for each c ∈ �p(I × J) , lim

n→∞

∑

1≤ν,μ≤n
|ciν ,jμ |p = ‖c‖p�p(I×J) holds. Define

c(n) ∈ �p(I × J) by

c
(n)
iν ,jμ

=

{
ciν ,jμ for 1 ≤ ν, μ ≤ n,
0 otherwise.

The previous limit expresses that c(n)→c as n→∞. Let eIν ∈�p(I) and eJμ ∈�1(J)
be the unit vectors (cf. (2.2)). Then the identity c(n) =

∑
1≤ν,μ≤n c

(n)
iν ,jμ

eIν ⊗ eJμ
shows that c(n) ∈ �p(I) ⊗a �p(J). Since c = lim c(n) ∈ �p(I × J) is an arbitrary
element, �p(I)⊗a �p(J) is dense in �p(I × J). ��

For p = ∞ we consider the proper subspace c0(I) � �∞(I) endowed with the
same norm ‖·‖�∞(I) (cf. (4.4)). The previous proof idea can be used to show

c0(I) ⊗
∞
c0(J) = c0(I × J).

Next, we consider the particular case of p = 2, i.e., V := (�2(I), ‖·‖�2(I)) and
W := (�2(J), ‖·‖�2(J)) for some finite or countable I and J . Again, c := a ⊗ b

with a ∈ �2(I) and b ∈ �2(J) as well as any linear combination from V ⊗aW may
be considered as a (possibly) infinite matrix c = (cνμ)ν∈I,μ∈J . Theorem 4.114 will
provide an infinite singular value decomposition of c :

c =
∞∑

i=1

σi vi ⊗ wi
with σ1 ≥ σ2 ≥ . . . ≥ 0
and orthonormal systems {vi} and {wi}.

(4.16)

Algebraic tensors v =
∑n
i=1 xi ⊗ yi lead to σi = 0 for all i > n. Therefore, the

sequence σ := (σi)i∈N belongs to �0(N). Only for topological tensors sequences
(σi)i∈N with infinitely many nonzero entries can appear.

Definition 4.38 (Schatten norms). If the singular values σ = (σν)
∞
ν=1 of c from

(4.16) have a finite �p norm ‖σ‖p, we set

‖c‖SVD,p := ‖σ‖p :=
(∞∑

ν=1

|σν |p
)1/p

for 1 ≤ p <∞. (4.17)

As already seen in (4.15), ‖·‖�2(I×J) is a crossnorm. The next example shows
that there is more than one crossnorm.

Example 4.39. Consider Example 4.36 for p = 2, i.e., V := (�2(I), ‖·‖�2(I)) and
W := (�2(J), ‖·‖�2(J)). For any 1 ≤ p ≤ ∞, the Schatten9 norm ‖·‖SVD,p is a

9 Brief remarks about Robert Schatten including his publication list can be found in [139, p. 138].

102 4 Banach Tensor Spaces

crossnorm on V ⊗aW :

‖a⊗ b‖SVD,p = ‖a‖�2(I)‖b‖�2(J) for a∈�2(I), b∈�2(J), 1≤p≤∞. (4.18)

As a consequence,⊗ : V ×W → V ⊗SVD,pW is continuous for all 1 ≤ p ≤ ∞.
In particular, ‖·‖SVD,2 = ‖·‖�2(I×J) holds.

Proof. The rank-1 matrix c := a⊗ b has the singular values σ1 = ‖a‖�2(I) ‖b‖�2(J)
and σi = 0 for i ≥ 2. Since the sequence σ := (σi) has at most one nonzero
entry, ‖σ‖p = σ1 holds for all 1 ≤ p ≤ ∞ and implies (4.18). Concerning the last
statement compare (2.19c). ��

Example 4.40. (a) Let V = C(I) and W = C(J) be the spaces of continuous
functions on some domains I and J with supremum norms ‖·‖V = ‖·‖C(I) and
‖·‖W = ‖·‖C(J) (cf. Example 4.8). Then the norm

‖·‖∞ = ‖·‖C(I×J) on V ⊗aW = C(I) ⊗a C(J)

satisfies the crossnorm property (4.13).
(b) If I and J are compact sets, the completion of V ⊗aW with respect to ‖·‖∞ =
‖·‖C(I×J) yields

C(I) ⊗
∞
C(J) = C(I × J). (4.19)

(c) Also for V = Lp(I) and W = Lp(J) (1 ≤ p <∞) , the crossnorm property
(4.13) and the following identity hold:

Lp(I)⊗
p
Lp(J) = Lp(I × J) for 1 ≤ p <∞.

Proof. 1) For Part (a), one proves (4.13) as in Example 4.36.
2) Obviously, polynomials in C(I × J) belong to C(I)⊗a C(J). Since I and J

and, therefore, also I × J are compact, the Stone-Weierstraß Theorem (cf. Yosida
[198]) states that polynomials are dense inC(I×J). This implies thatC(I)⊗aC(J)
is dense in C(I × J) and (4.19) follows.

3) In the case of Lp, one may replace polynomials by step functions. ��

An obvious generalisation of Lp is the Sobolev space

H1,p(D) :=

{

f ∈ Lp(D) :
∂

∂xj
f ∈ Lp(D) for 1 ≤ j ≤ d

}

for D ⊂ R
d

with the norm

‖f‖1,p := ‖f‖H1,p(D) :=

(

‖f‖pp +
d∑

j=1

∥
∥
∥
∥
∂f

∂xj

∥
∥
∥
∥

p

p

)1/p

for 1 ≤ p <∞.

4.2 Topological Tensor Spaces 103

Let I1, I2 be intervals. Then the algebraic tensor space H1,p(Ij) ⊗a H1,p(I2) is a
dense subset ofH1,p(I1×I2). Hence, the completion with respect to ‖·‖H1,p(I1×I2)
yields

H1,p(I1 × I2) = H1,p(I1)⊗1,p H
1,p(I2). (4.20)

Example 4.41 (H1,p). The tensor space (H1,p(I1×I2), ‖·‖H1,p(I1×I2)) from (4.20)

for10 1 ≤ p ≤ ∞ satisfies the continuity inequality (4.14) with C = 1, but the norm
is not a crossnorm.

Proof. For f = g ⊗ h, i.e., f(x, y) = g(x)h(y), we have

‖g ⊗ h‖pH1,p(I1×I2) = ‖g‖
p
p ‖h‖

p
p + ‖g′‖

p
p ‖h‖

p
p + ‖g‖

p
p ‖h′‖

p
p ≤ ‖g‖

p
1,p ‖h‖

p
1,p ,

where equality holds if and only if ‖g′‖p ‖h′‖p = 0. ��

For later use we introduce the anisotropic Sobolev space

H(1,0),p(I1 × I2) := {f ∈ Lp(I1 × I2) : ∂f/∂x1 ∈ Lp(I1 × I2)}

with the norm

‖f‖(1,0),p := ‖f‖H(1,0),p(I1×I2) :=

(

‖f‖pp +
∥
∥
∥
∂f

∂x1

∥
∥
∥
p

p

)1/p

for 1 ≤ p <∞.

In this case, ‖g ⊗ h‖p
H(1,0),p(I1×I2) = ‖g‖pp ‖h‖

p
p + ‖g′‖pp ‖h‖

p
p = ‖g‖p1,p ‖h‖

p
p

proves the following result.

Example 4.42. Let 1 ≤ p <∞. The tensor space
(
H(1,0),p(I1 × I2), ‖·‖H(1,0),p(I1×I2)

)
= H1,p(I1)⊗(1,0),p L

p(I2)

satisfies (4.13), i.e., ‖·‖H(1,0),p(I1×I2) is a crossnorm.

4.2.4 Projective Norm ‖·‖∧(V,W)

Let ‖·‖1 and ‖·‖2 be two norms on V ⊗a W and denote the corresponding com-
pletions by V ⊗1 W and V ⊗2 W . If ‖·‖1 � ‖·‖2 , we have already stated that
V ⊗1 W ⊃ V ⊗2 W (cf. Remark 4.2).

If the mapping (v, w) �→ v ⊗ w is continuous with respect to the three norms
‖·‖V , ‖·‖W , ‖·‖2 of V, W, V ⊗2 W, then it is also continuous for any weaker
norm ‖·‖1 of V ⊗1W. For a proof combine ‖v ⊗ w‖2 ≤ C ‖v‖V ‖w‖W from (4.14)
with ‖·‖1 ≤ C′ ‖·‖2 to obtain boundedness ‖v ⊗ w‖1 ≤ C′′ ‖v‖V ‖w‖W with the
constant C′′ := CC′ .

10 To include p = ∞, define ‖f‖1,∞ := max{‖f‖∞ , ‖∂f/∂x1‖∞ , ‖∂f/∂x2‖∞}.

104 4 Banach Tensor Spaces

On the other hand, if ‖·‖1 is stronger than ‖·‖2, continuity may fail. Therefore,
one may ask for the strongest possible norm still ensuring continuity. Note that the
strongest possible norm yields the smallest possible Banach tensor space containing
V ⊗aW (with continuous⊗). Since � is only a semi-ordering of the norms, it is not
trivial that there exists indeed a strongest norm. The answer is given in the following
exercise.

Exercise 4.43. Let N be the set of all norms α on V ⊗aW satisfying α(v ⊗ w) ≤
Cα ‖v‖V ‖w‖W (v ∈ V , w ∈ W). Replacing α by the equivalent norm α/Cα,
we obtain the set N ′ ⊂ N of norms with α(v ⊗ w) ≤ ‖v‖V ‖w‖W . Define
‖x‖ := sup{α(x) : α ∈ N ′} for x ∈ V ⊗a W and show that ‖·‖ ∈ N ′ satisfies
α � ‖·‖ for all α ∈ N .

The norm defined next will be the candidate for the strongest possible norm.

Definition 4.44 (projective norm). The normed spaces (V, ‖·‖V) and (W, ‖·‖W)
induce the projective norm11 ‖·‖∧(V,W) = ‖·‖∧ on V ⊗aW defined by

‖x‖∧(V,W) := ‖x‖∧ (4.21)

:= inf

{ n∑

i=1

‖vi‖V ‖wi‖W : x =
n∑

i=1

vi ⊗ wi
}

for x ∈ V ⊗aW.

Completion of V ⊗aW with respect to ‖·‖∧(V,W) defines the Banach tensor space

(
V ⊗
∧
W, ‖·‖∧(V,W)

)
.

Note that the infimum in (4.21) is taken over all representations of x.

Lemma 4.45. ‖·‖∧(V,W) is not only a norm, but also a crossnorm.

Proof. 1) The first and third norm axioms from (4.1) are trivial. For the proof
of the triangle inequality ‖x′ + x′′‖∧ ≤ ‖x′‖∧ + ‖x′′‖∧ choose any ε > 0. By

definition of the infimum in (4.21), there are representations x′ =
∑n′

i=1 v
′
i ⊗ w′i

and x′′ =
∑n′′

i=1 v
′′
i ⊗ w′′i with

n′∑

i=1

‖v′i‖V ‖w′i‖W ≤ ‖x′‖∧ +
ε

2
and

n′′∑

i=1

‖v′′i ‖V ‖w′′i ‖W ≤ ‖x′′‖∧ +
ε

2
.

A possible representation of x = x′ + x′′ is x =
∑n′

i=1 v
′
i ⊗ w′i +

∑n′′

i=1 v
′′
i ⊗ w′′i .

Hence, a bound of the infimum involved in ‖x‖∧ is

‖x‖∧ ≤
n′∑

i=1

‖v′i‖V ‖w′i‖W +
n′′∑

i=1

‖v′′i ‖V ‖w′′i ‖W ≤ ‖x′‖∧ + ‖x′′‖∧ + ε.

11 Grothendieck [80] introduced the notations ‖·‖∧ for the projective norm and ‖·‖∨ for the
injective norm from §4.2.7. The older notations by Schatten [167] are γ(·) for ‖·‖∧(V,W) and
λ(·) for ‖·‖∨(V,W) .

4.2 Topological Tensor Spaces 105

Since ε > 0 is arbitrary, ‖x‖∧ ≤ ‖x′‖∧ + ‖x′′‖∧ follows. It remains to prove
‖x‖∧ > 0 for x �= 0. In §4.2.7 we shall introduce another norm ‖x‖∨ for which
‖x‖∨ ≤ ‖x‖∧ will be shown in Lemma 4.56. Hence, the norm property of ‖·‖∨
proves that x �= 0 implies 0 < ‖x‖∨ ≤ ‖x‖∧ .

2) Definition (4.21) implies the inequality ‖v ⊗ w‖∧ ≤ ‖v‖V ‖w‖W .

3) For the reverse inequality consider any representation v⊗w =
∑n
i=1 vi⊗wi.

By Theorem 4.15 there is a continuous functional Λ ∈ V ∗ with Λ(v) = ‖v‖V and
‖Λ‖V ∗ ≤ 1. The latter estimate implies |Λ (vi)| ≤ ‖vi‖V . Applying Λ to the first
component in v ⊗ w =

∑n
i=1 vi ⊗ wi, we conclude that

‖v‖V w =

n∑

i=1

Λ(vi)wi

(cf. Remark 3.54). The triangle inequality of ‖·‖W yields

‖v‖V ‖w‖W ≤
n∑

i=1

|Λ(vi)| ‖wi‖W ≤
n∑

i=1

‖vi‖V ‖wi‖W .

The infimum over all representations yields ‖v‖V ‖w‖W ≤ ‖v ⊗ w‖∧ . ��

Proposition 4.46. Given (V, ‖·‖V) and (W, ‖·‖W), the norm (4.21) is the strongest
one ensuring continuity of (v, w) �→ v ⊗ w. More precisely, if some norm ‖·‖
satisfies (4.14) with a constant C, then ‖·‖ ≤ C ‖·‖∧ holds with the same constant.

Proof. Let ‖·‖ be a norm on V ⊗aW such that (v, w) �→ v⊗w is continuous. Then
(4.14), i.e., ‖v ⊗ w‖ ≤ C ‖v‖V ‖w‖W holds. Let x =

∑n
i=1vi ⊗ wi ∈ V ⊗aW .

The triangle inequality yields ‖x‖ ≤
∑n
i=1 ‖vi ⊗ wi‖. Together with (4.14),

‖x‖ ≤ C
∑n

i=1 ‖vi‖V ‖wi‖W follows. Taking the infimum over all representations
x =

∑n
i=1 vi⊗wi, ‖x‖ ≤ C ‖x‖∧ follows, i.e., ‖·‖∧ is stronger than ‖·‖. Since ‖·‖

is arbitrary under the continuity side condition, ‖·‖∧ is the strongest norm. ��

The property of ‖·‖∧ as the strongest possible norm ensuring continuity justifies
calling ‖·‖∧(V,W) a canonical norm of V ⊗aW induced by ‖·‖V and ‖·‖W . The
completion V ⊗∧ W with respect to ‖·‖∧ is the smallest one. Any other norm ‖·‖
with (4.14) leads to a larger Banach space V ⊗‖·‖W.

4.2.5 Examples

Example 4.47 (�1). Consider V = (�1(I), ‖·‖�1(I)) and W = (�1(J), ‖·‖�1(J)) for
some finite or countable sets I and J (cf. Example 4.36). The projective norm and
the resulting Banach tensor space are

‖·‖∧(V,W) = ‖·‖�1(I×J) and �1(I)⊗
∧
�1(J) = �1(I × J).

106 4 Banach Tensor Spaces

Proof. 1) c ∈ V ⊗aW ⊂ �1(I×J) has entries cνμ for ν ∈ I and μ ∈ J. A possible
representation of c is

c =
∑

ν∈I

∑

μ∈J
cνμ e

(ν)
V ⊗ e

(μ)
W

with unit vectors e(ν)V and e(μ)W (cf. (2.2)). By ‖e(ν)V ‖�1(I) = ‖e
(μ)
W ‖�1(J) = 1 and the

definition of ‖·‖∧(V,W) , we obtain the inequality

‖c‖∧(V,W) ≤
∑

ν∈I

∑

μ∈J
|cνμ| = ‖c‖�1(I×J) .

2) ‖·‖�1(I×J) is a crossnorm (cf. (4.15)), i.e., (4.14) holds with C = 1. Hence
Proposition 4.46 shows ‖c‖�1(I×J) ≤ ‖c‖∧(V,W). Together with the previous part,
‖·‖∧(V,W) = ‖·‖�1(I×J) follows.

3) The latter identity together with Remark 4.37 (for p = 1) implies that the
tensor product equals �1(I)⊗

∧
�1(J) = �1(I × J). ��

Example 4.48 (�2). Let V := (�2(I), ‖·‖�2(I)) and W := (�2(J), ‖·‖�2(J)) for some
finite or countable sets I and J . Then

‖·‖∧(V,W) = ‖·‖SVD,1 (cf. (4.17) for ‖·‖SVD,p).

Note that ‖·‖SVD,1 � ‖·‖SVD,2 = ‖·‖�2(I×J) for #I,#J > 1.

Proof. 1) Let c ∈ V ⊗aW. Its singular value decomposition c =
∑

i σi vi ⊗wi has
only finitely many nonzero singular values σi. By definition of ‖·‖∧(V,W) we have

‖c‖∧(V,W) ≤
∑

i

σi ‖vi‖V ‖wi‖W .

‖vi‖V =‖wi‖W =1 (vi, wi orthonormal) yields ‖c‖∧(V,W)≤‖σ‖1=‖c‖SVD,1.
2) ‖·‖SVD,1 satisfies (4.14) with C = 1 (cf. (4.18)), so that Proposition 4.46

implies the opposite inequality ‖c‖SVD,1 ≤ ‖c‖∧(V,W). Together, the assertion
‖c‖SVD,1 = ‖c‖∧(V,W) is proved. ��

4.2.6 Absolutely Convergent Series

By definition, any topological tensor x ∈ V ⊗‖·‖ W is the limit of some sequence
x(ν) =

∑nν

i=1 v
(ν)
i ⊗ w

(ν)
i ∈ V ⊗aW. If, in particular, v(ν)i = vi and w(ν)

i =wi are
independent of ν, the partial sums xν define the series x=

∑∞
i=1 vi ⊗ wi. Below

we state that there is an absolutely convergent series x =
∑∞

i=1 vi ⊗ wi, whose
representation is almost optimal compared with the infimum ‖x‖∧ .

4.2 Topological Tensor Spaces 107

Proposition 4.49. For any ε > 0 and any x ∈ V ⊗∧ W, there is an absolutely
convergent infinite sum

x =

∞∑

i=1

vi ⊗ wi (vi ∈ V , wi ∈ W) (4.22a)

with
∞∑

i=1

‖vi‖V ‖wi‖W ≤ (1 + ε) ‖x‖∧ . (4.22b)

Proof. We abbreviate ‖·‖∧ by ‖·‖ and set εν := ε
3 ‖x‖ /2ν . If x = 0, nothing is to

be done. Otherwise, choose some s1 ∈ V ⊗aW with

‖x− s1‖ ≤ ε1. (4.23a)

Hence, ‖s1‖ ≤ ‖x‖+ε1 follows. By definition of the norm, there is a representation
s1 =

∑n1

i=1 vi ⊗ wi with

n1∑

i=1

‖vi‖V ‖wi‖W ≤ ‖s1‖+ ε1 ≤ ‖x‖ + 2ε1. (4.23b)

Set d1 := x− s1 and approximate d1 by s2 ∈ V ⊗aW such that

‖d1 − s2‖ ≤ ε2, s2 =

n2∑

i=n1+1

vi⊗wi,
n2∑

i=n1+1

‖vi‖V ‖wi‖W ≤ ‖s2‖+ε2 ≤ ε1+2ε2

(4.23c)
(here we use ‖s2‖ ≤ ‖d1‖ + ε2 and ‖d1‖ ≤ ε1; cf. (4.23a)). Analogously, we set
d2 := d1 − s2 and choose s3 and its representation such that

‖d2 − s3‖ ≤ ε3, s3 =

n3∑

i=n2+1

vi⊗wi,
n3∑

i=n2+1

‖vi‖V ‖wi‖W ≤ ‖s3‖+ε3 ≤ ε2+2ε3.

(4.23d)
By induction, using (4.23a,c,d) one obtains statement (4.22a) in the form of
x =

∑∞
ν=1 sν =

∑∞
i=1 vi ⊗ wi. The estimates of the partial sums in (4.23b,c,d)

show that
∑∞

i=1‖vi‖V ‖wi‖W ≤‖x‖+3
∑∞
ν=1εν=‖x‖+ ε ‖x‖ proving (4.22b).��

4.2.7 Duals and Injective Norm ‖·‖∨(V,W)

The normed spaces (V, ‖·‖V) and (W, ‖·‖W) give rise to the dual spaces V ∗ and
W ∗ endowed with the dual norms ‖·‖V ∗ and ‖·‖W∗ described in (4.8). Consider the
tensor space V ∗⊗aW ∗. Elementary tensors ϕ⊗ψ from V ∗⊗aW ∗ may be viewed
as linear forms on V ⊗aW via the definition

(ϕ⊗ ψ) (v ⊗ w) := ϕ(v) · ψ(w) ∈ K .

108 4 Banach Tensor Spaces

As discussed in §3.3.2.2, any x∗ ∈ V ∗ ⊗aW ∗ is a linear form on V ⊗aW. Hence,

V ∗ ⊗aW ∗ ⊂ (V ⊗aW)
′
. (4.24)

Note that (V ⊗aW)′ is the algebraic dual, since continuity is not yet ensured.
A norm ‖·‖ on V ⊗a W leads to a dual space (V ⊗aW)

∗ with a dual norm
denoted by ‖·‖∗. We would like to have

V ∗ ⊗aW ∗ ⊂ (V ⊗aW)
∗ (4.25)

instead of (4.24). Therefore the requirement on the dual norm ‖·‖∗ (and indirectly
on ‖·‖) is that⊗ : (V ∗, ‖·‖V ∗)×(W ∗, ‖·‖W∗)→

(
V ∗ ⊗aW ∗, ‖·‖∗

)
is continuous.

The latter property, as seen in §4.2.2, is expressed by

‖ϕ⊗ ψ‖∗ ≤ C ‖ϕ‖V ∗ ‖ψ‖W∗ for all ϕ ∈ V ∗ and ψ ∈ W ∗. (4.26)

Lemma 4.50. Inequality (4.26) implies

‖v‖V ‖w‖W ≤ C ‖v ⊗ w‖ for all v ∈ V,w ∈W, (4.27)

which coincides with (4.14) up to the direction of the inequality sign. Furthermore,
(4.26) implies the inclusion (4.25).

Proof. Given v ⊗ w ∈ V ⊗a W, choose ϕ and ψ according to Theorem 4.15:
‖ϕ‖V ∗=‖ψ‖W∗=1 and ϕ(v) = ‖v‖V , ψ(w) = ‖w‖W . Then

‖v‖V ‖w‖W = ϕ(v)ψ(w) = |(ϕ⊗ ψ) (v ⊗ w)| ≤ ‖ϕ⊗ ψ‖∗ ‖v ⊗ w‖ ≤
(4.26)

≤ C ‖ϕ‖V ∗ ‖ψ‖W∗ ‖v ⊗ w‖ = C ‖v ⊗ w‖

proves (4.27) with the same constant C as in (4.26). ��

A similar result with a ‘wrong’ inequality sign for ‖·‖∗ is stated next.

Lemma 4.51. Let ‖·‖ satisfy the continuity condition (4.14) with constant C. Then
C ‖ϕ⊗ ψ‖∗ ≥ ‖ϕ‖V ∗‖ψ‖W∗ holds for all ϕ ∈ V ∗ and ψ ∈ W ∗.

Proof. The desired inequality follows from

|ϕ(v)|
‖v‖V

|ψ(w)|
‖w‖W

=
|(ϕ⊗ ψ) (v ⊗ w)|
‖v‖V ‖w‖W

≤ ‖ϕ⊗ ψ‖ ‖v ⊗ w‖‖v‖V ‖w‖W
≤

(4.14)
C ‖ϕ⊗ ψ‖

for all 0 �= v ∈ V and 0 �= w ∈ W . ��

As in §4.2.2, we may ask for the strongest dual norm satisfying inequality (4.26).
As seen in Lemma 4.18, weaker norms ‖·‖ correspond to stronger dual norms ‖·‖∗.
Therefore, the following two questions are equivalent:

• Which norm ‖·‖ on V ⊗aW yields the strongest dual norm ‖·‖∗ satisfying (4.26)?
• What is the weakest norm ‖·‖ on V ⊗aW such that the corresponding dual norm
‖·‖∗ satisfies (4.26)?

4.2 Topological Tensor Spaces 109

Exercise 4.52. Prove analogously to Exercise 4.43 that there exists a unique weakest
norm V ⊗aW satisfying (4.26).

A candidate will be defined below. Since this will be again a norm determined
only by ‖·‖V and ‖·‖W , it may also be called an induced norm.

Definition 4.53 (injective norm). Normed spaces (V, ‖·‖V) and (W, ‖·‖W) induce
the injective norm ‖·‖∨(V,W) on V ⊗aW defined by

‖x‖∨(V,W) := ‖x‖∨ := sup
ϕ∈V ∗, ‖ϕ‖V ∗=1
ψ∈W∗, ‖ψ‖W∗=1

|(ϕ⊗ ψ) (x)| . (4.28)

The completion of V ⊗aW with respect to ‖·‖∨ defines (V ⊗∨W, ‖·‖∨).

Lemma 4.54. (a) ‖·‖∨(V,W) defined in (4.28) is a crossnorm on V ⊗aW , i.e.,
(4.13) holds implying (4.14) and (4.27).
(b) The dual norm ‖ϕ⊗ ψ‖∗∨(V,W) is a crossnorm on V ∗ ⊗aW ∗, i.e.,

‖ϕ⊗ ψ‖∗∨(V,W) = ‖ϕ‖V ∗ ‖ψ‖W∗ for all ϕ ∈ V ∗, ψ ∈W ∗ (4.29)

holds, implying (4.26).

Proof. 1) The norm axiom ‖λx‖∨ = |λ| ‖x‖∨ and the triangle inequality are stan-
dard. To show positivity ‖x‖∨> 0 for 0 �= x ∈V ⊗aW, apply Lemma 3.13: x has
a representation x=

∑r
i=1vi ⊗ wi with linearly independent vi and wi. Note that

r≥ 1 because of x �=0. Then there are normalised functionals ϕ∈V ∗ and ψ∈W ∗
with ϕ(v1) �= 0 and ψ(w1) �= 0, while ϕ(vi) = ψ(wi) = 0 for i ≥ 2. This leads to

|(ϕ⊗ψ)(x)|=
∣
∣
∣
∣
∣
(ϕ⊗ψ)

(r∑

i=1

vi⊗wi
)∣∣
∣
∣
∣
=

∣
∣
∣
∣
∣

r∑

i=1

ϕ(vi)ψ(wi)

∣
∣
∣
∣
∣
= |ϕ(v1)ψ(w1)|>0.

Hence also ‖x‖∨ ≥ |(ϕ⊗ ψ) (x)| is positive.
2) Application of (4.28) to an elementary tensor v ⊗ w yields

‖v ⊗ w‖∨(V,W) = sup
‖ϕ‖V ∗=1
‖ψ‖W∗=1

|(ϕ⊗ ψ) (v ⊗ w)| = sup
‖ϕ‖V ∗=1
‖ψ‖W∗=1

|ϕ(v)| |ψ(w)|

=
(

sup
‖ϕ‖V ∗=1

|ϕ(v)|
)(

sup
‖ψ‖W∗=1

|ψ(w)|
)

=
(4.10)

‖v‖V ‖w‖W .

3) For 0 �= ϕ⊗ψ ∈ V ∗⊗aW ∗ introduce the normalised continuous functionals
ϕ̂ := ϕ/ ‖ϕ‖V ∗ and ψ̂ := ψ/ ‖ψ‖W∗ . Then for all x ∈ V ⊗aW, the inequality

|(ϕ⊗ ψ) (x)| = ‖ϕ‖V ∗ ‖ψ‖W∗
∣
∣
∣
(
ϕ̂⊗ ψ̂

)
(x)

∣
∣
∣

≤ ‖ϕ‖V ∗ ‖ψ‖W∗ sup
ϕ′∈V ∗, ‖ϕ′‖V ∗=1
ψ′∈W∗, ‖ψ′‖W∗=1

|(ϕ′ ⊗ ψ′) (x)| = ‖ϕ‖V ∗ ‖ψ‖W∗ ‖x‖∨

110 4 Banach Tensor Spaces

follows. The supremum over all x ∈ V ⊗aW with ‖x‖∨ = 1 yields the dual norm
so that ‖ϕ⊗ ψ‖∗∨(V,W) ≤ ‖ϕ‖V ∗‖ψ‖W∗ . This is already (4.26) with C = 1.

4) Let ε > 0 and ϕ ⊗ ψ ∈ V ∗⊗aW ∗ be arbitrary. According to Remark 4.11,
there are vε ∈ V and wε ∈ W with ‖vε‖V = ‖wε‖W = 1 and

|ϕ(vε)| ≥ (1− ε) ‖ϕ‖V ∗ and |ψ(wε)| ≥ (1− ε) ‖ψ‖W∗ .

Note that by (4.13) xε := vε ⊗ wε satisfies ‖xε‖∨ = ‖vε‖V ‖wε‖W = 1. Hence

‖ϕ⊗ ψ‖∗∨(V,W) = sup
‖x‖∨=1

|(ϕ⊗ ψ) (x)| ≥ |(ϕ⊗ ψ) (xε)| =

= |(ϕ⊗ ψ) (vε ⊗ wε)| = |ϕ(vε)| |ψ(wε)| ≥ (1− ε)2 ‖ϕ‖V ∗ ‖ψ‖W∗ .

As ε > 0 is arbitrary, the reverse inequality ‖ϕ⊗ ψ‖∗∨(V,W) ≥ ‖ϕ‖V ∗ ‖ψ‖W∗
follows. Together with Step 3), we have proved (4.29). ��

Proposition 4.55. ‖·‖ = ‖·‖∨(V,W) is the weakest norm on V ⊗a W subject to the
additional condition that the dual norm ‖·‖∗ satisfies (4.26).

Proof. Let ‖·‖ be a weaker norm, i.e., ‖·‖ ≤ C ‖·‖∨(V,W). The dual norms satisfy

‖·‖∗∨(V,W) ≤ C ‖·‖∗ (cf. Lemma 4.18). Choose any 0 �= ϕ ⊗ ψ ∈ V ∗ ⊗a W ∗.
Again, we apply Remark 4.11. Given any ε > 0, there is some xε ∈ V ⊗aW with
‖xε‖ = 1 and

‖ϕ⊗ ψ‖∗ ≤ (1 + ε) |(ϕ⊗ ψ) (xε)| ≤ (1 + ε) ‖(ϕ⊗ ψ)‖∗
=1
︷︸︸︷
‖xε‖ ≤

(4.26)

≤ C (1 + ε) ‖ϕ‖V ∗ ‖ψ‖W∗ =
(4.29)

C (1 + ε) ‖ϕ⊗ ψ‖∗∨(V,W) ,

i.e., ‖·‖∗ ≤ C ‖·‖∗∨(V,W). Together with assumption ‖·‖∗∨(V,W) ≤ C ‖·‖∗ , equiv-
alence of both norms follows. Thus, also ‖·‖ and ‖·‖∨(V,W) are equivalent (cf.
Lemma 4.18). This proves that there is no weaker norm than ‖·‖∨(V,W) . ��

Lemma 4.56. ‖·‖∨(V,W) ≤ ‖·‖∧(V,W) holds on V ⊗aW.

Proof. Choose any ε > 0. Let x =
∑
i vi ⊗ wi ∈ V ⊗aW be some representation

with
∑

i ‖vi‖V ‖wi‖W ≤ ‖x‖∧(V,W) + ε. Choose normalised functionals ϕ and ψ

with ‖x‖∨(V,W) ≤ |(ϕ⊗ ψ) (x)| + ε. Then

‖x‖∨(V,W) ≤
∣
∣
∣(ϕ⊗ ψ)

(∑

i
vi ⊗ wi

)∣
∣
∣+ ε =

∣
∣
∣
∑

i
ϕ(vi)ψ(wi)

∣
∣
∣+ ε

≤
∑

i

|ϕ(vi)| |ψ(wi)|+ ε ≤
∑

i

‖vi‖V ‖wi‖W + ε ≤ ‖x‖∧(V,W) + 2ε.

As ε > 0 is arbitrary, ‖x‖∨(V,W) ≤ ‖x‖∧(V,W) holds for all x ∈ V ⊗aW . ��

4.2 Topological Tensor Spaces 111

Exercise 4.57. For any a1, . . . , an ≥ 0 and b1, . . . , bn > 0 show that

min
1≤i≤n

ai
bi
≤ a1 + . . .+ an

b1 + . . .+ bn
≤ max

1≤i≤n

ai
bi
.

So far, we have considered the norm ‖x‖∨(V,W) on V ⊗a W. Analogously, we
can define ‖x‖∨(V ∗,W∗) on V ∗ ⊗a W ∗. For the latter norm we shall establish a
connection with ‖·‖∧(V,W) from §4.2.4, which states that in a certain sense the

injective norm is dual to the projective norm.12

Proposition 4.58. ‖·‖∨(V ∗,W∗) = ‖·‖
∗
∧(V,W) on V ∗ ⊗aW ∗.

Proof. 1) The norm ‖Φ‖∗∧(V,W) of Φ ∈ V ∗ ⊗aW ∗ is bounded by

‖Φ‖∗∧(V,W)= sup
0�=x∈V⊗aW

|Φ(x)|
‖x‖∧(V,W)

= sup
0�=x=

∑
ivi⊗wi∈V⊗aW

|Φ(
∑
ivi ⊗ wi)|∑

i ‖vi‖V ‖wi‖W

≤ sup
0�=x=

∑
ivi⊗wi∈V⊗aW

∑
i |Φ (vi ⊗ wi)|∑
i ‖vi‖V ‖wi‖W

≤
Exercise 4.57

sup
0�=v∈V
0�=w∈W

|Φ (v ⊗ w)|
‖v‖V ‖w‖W

.

On the other hand, the elementary tensor x = v⊗w appearing in the last expression

is only a subset of those x used in sup0�=x=
∑

i vi⊗wi

|Φ(∑i vi⊗wi)|
∑

i‖vi‖V ‖wi‖W
= ‖Φ‖∗∧(V,W) ,

so that ‖Φ‖∗∧(V,W) must be an upper bound. Together, we arrive at

‖Φ‖∗∧(V,W) = sup
0�=v∈V
0�=w∈W

|Φ (v ⊗ w)|
‖v‖V ‖w‖W

. (4.30a)

2) Let Φ=
∑

i

ϕi⊗ψi and set ϕ :=
∑

i

ψi(w)ϕi∈V ∗ for some fixed w∈W . Then

sup
0�=v∈V

|
∑

i ϕi(v)ψi(w)|
‖v‖ = sup

0�=v∈V

|ϕ(v)|
‖v‖ =

Lemma 4.19
sup

0�=v∗∗∈V ∗∗

|v∗∗(ϕ)|
‖v∗∗‖∗∗

= sup
0�=v∗∗∈V ∗∗

|
∑
i v
∗∗(ϕi)ψi(w))|
‖v∗∗‖∗∗

.

Similarly, the supremum over w can be replaced by a supremum over w∗∗ :

sup
0�=v∈V
0�=w∈W

|
∑

i ϕi(v)ψi(w)|
‖v‖ ‖w‖ = sup

0�=v∗∗∈V ∗∗
0�=w∗∗∈W∗∗

|(v∗∗⊗w∗∗) (Φ)|
‖v∗∗‖∗∗ ‖w∗∗‖∗∗

for Φ=
∑

i

ϕi ⊗ ψi.

(4.30b)
3) The left-hand side of (4.30b) coincides with the right-hand side of (4.30a), since
|Φ (v ⊗ w)| = |

∑
i ϕi(v)ψi(w)|. The right-hand side of (4.30b) is the definition of

‖Φ‖∨(V ∗,W∗). Together, ‖Φ‖∗∧(V,W) = ‖Φ‖∨(V ∗,W∗) is shown. ��

12 The reverse statement is not true, but nearly (see [45, §I.6]).

112 4 Banach Tensor Spaces

Corollary 4.59. The norm ‖·‖∧(V,W) satisfies not only (4.26), but also

‖ϕ⊗ ψ‖∗∧(V,W) = ‖ϕ‖V ∗ ‖ψ‖W∗ for all ϕ ∈ V ∗, ψ ∈W ∗ (cf. (4.29)).

Proof. This is the crossnorm property for ‖·‖∨(V ∗,W∗) = ‖·‖∗∧(V,W) stated in
Lemma 4.54. ��

According to Remark 3.54, we consider V ∗⊂V ′ as a subspace ofL(V ⊗aW,W)
via ϕ ∈ V ∗ �→ ϕ

(∑
i vi ⊗ wi

)
=
∑

i ϕ (vi ⊗ wi) =
∑

i ϕ(vi)wi ∈ W. The
crucial question is, whether the map x �→ ϕ(x) is continuous, i.e., whether
V ∗ ⊂ L (V ⊗aW,W) . The supposition ‖·‖ � ‖·‖∨(V,W) of the next proposition
is satisfied for all reasonable crossnorms (cf. §4.2.9 and Proposition 4.55).

Proposition 4.60. If V ⊗a W is equipped with a norm ‖·‖ � ‖·‖∨(V,W), the
embedding V ∗ ⊂ L (V ⊗aW,W) is valid. In particular,

‖ϕ(x)‖W ≤ ‖ϕ‖V ∗ ‖x‖∨(V,W) for all ϕ ∈ V ∗ and x ∈ V ⊗aW. (4.31)

An analogous result holds for W ∗ ⊂ L (V ⊗aW,V) .

Proof. For w := ϕ(x) ∈W choose ψ ∈W ∗ with ψ(w) = ‖w‖W and ‖ψ‖W∗ = 1
(cf. Theorem 4.15). Then

‖ϕ(x)‖W = |ψ(ϕ(x))| =
x=

∑
ivi⊗wi

∣
∣
∣ψ
(∑

i
ϕ(vi)wi

)∣
∣
∣

=
∣
∣
∣
∑

i
ϕ(vi)ψ(wi)

∣
∣
∣ = |(ϕ⊗ ψ) (x)| ≤ ‖ϕ⊗ ψ‖∗∨(V,W) ‖x‖∨(V,W) =

(4.29)

= ‖ϕ‖V ∗ ‖ψ‖W∗ ‖x‖∨(V,W) = ‖ϕ‖V ∗ ‖x‖∨(V,W)

proves (4.31). ��

Corollary 4.61. Let V andW be two Banach spaces, where either V orW are finite
dimensional. Equip V ⊗aW with a norm ‖·‖ � ‖·‖∨(V,W). Then V ⊗aW is already
complete.

Proof. Let dim(V) = n and choose a basis {v1, . . . , vn} of V. Then it is easy
to see that all tensors from V ⊗a W may be written as

∑n
i=1 vi ⊗ wi with some

wi ∈ W. Let xk =
∑n

i=1 vi ⊗ wki ∈ V ⊗a W be a Cauchy sequence. V ∗ has
a dual basis {ϕ1, . . . , ϕn} with ϕν(vμ) = δνμ (cf. (2.1)). The embedding V ∗ ⊂
L (V ⊗aW,W) discussed above, yields ϕi(xk) = wki . Since, by Proposition 4.60,
ϕi : xk �→ wki is continuous, also

(
wki
)
k∈N is a Cauchy sequence. Since W is a

Banach space, wki → ψi ∈W proves limxk =
∑n
i=1 ϕi ⊗ ψ ∈ V ⊗aW. ��

Exercise 4.62. Let U ⊂ V be a closed subspace. Show that the norm ‖·‖ =
‖·‖∨(U,W) (involving functionals ψ ∈ U∗) and the restriction of ‖·‖ = ‖·‖∨(V,W) to
U ⊗W (involving ϕ ∈ V ∗) lead to the same closed subspace U ⊗‖·‖W.

4.2 Topological Tensor Spaces 113

4.2.8 Examples

Again, we consider the spaces �p(I) and �p(J). To simplify the reasoning, we first
restrict the analysis to finite index sets I = J = {1, . . . , n} . The duals of �p(I)
and �p(J) for 1 ≤ p <∞ are �q(I) and �q(J) with 1

p + 1
q = 1 (cf. Example 4.22).

Let ϕ ∈ �q(I) and ψ ∈ �q(J). The definition of ‖·‖∨ makes use of (ϕ⊗ ψ) (x),
where for x = v ⊗ w the definition (ϕ⊗ ψ) (v ⊗ w) = ϕ(v) · ψ (w) holds. The
interpretation of ϕ(v) for a vector v ∈ �p(I) and a (dual) vector ϕ ∈ �q(I) is
ϕ(v) := ϕTv. Similarly, ψ (w) = ψTw. Elements from �p(I)⊗ �p(J) = �p(I × J)
are standard n × n matrices, which we shall denote by M. We recall that v ⊗ w
(v ∈ �p(I), w ∈ �p(J)) corresponds to the matrix vwT. Hence, with M = vwT, the
definition of (ϕ⊗ ψ) (v ⊗ w) becomesϕTMψ ∈ K. This leads to the interpretation
of ‖x‖∨(V,W) in (4.28) by

‖M‖∨(�p(I),�p(J)) = sup
‖ϕ‖q=‖ψ‖q=1

∣
∣ϕTMψ

∣
∣ = sup

ϕ,ψ �=0

|ϕTMψ|
‖ϕ‖q ‖ψ‖q

.

Remark 4.63. (a) Let 1≤p<∞ and assume #I > 1 and #J > 1. Then inequality
‖·‖∨(�p(I),�p(J)) ≤ ‖·‖�p(I×J) holds, but the corresponding equality is not valid.

(b) For p = 2, ‖·‖∨(�2(I),�2(J)) = ‖·‖SVD,∞ �= ‖·‖SVD,2 = ‖·‖�2(I×J) holds with
‖·‖SVD,p defined in (4.17).

Proof. To prove ‖·‖∨(�p(I),�p(J)) �= ‖·‖�p(I×J), choose M =
[
1
1

1
−1

]
for the case13

I = J = {1, 2}. For instance for p = 1, ‖M‖�1(I×J) = 4, while an elementary

analysis of |ϕTMψ|
‖ϕ‖∞‖ψ‖∞

shows that ‖M‖∨(�1(I),�1(J)) = 2. ��

In the case of the projective norm ‖·‖∧(�p(I),�p(J)) from §4.2.4, we have seen
in §4.2.5 that the norms ‖·‖∧(�p(I),�p(J)) and ‖·‖�p(I×J) coincide for p = 1. Now,
coincidence happens for p =∞.

Remark 4.64. ‖·‖∨(�∞(I),�∞(J)) = ‖·‖�∞(I×J) .

Proof. Choose unit vectors e(i)I ∈ �1(I), e
(j)
J ∈ �1(J). Then (e

(i)
I)TMe

(j)
J = Mij

and ‖e(i)I ‖1 = ‖e(j)J ‖1 = 1 show that |(e(i)I)TMeJj |/
(
‖e(i)I ‖1‖e

(j)
J ‖1

)
= |Mij | and

‖M‖∨(�∞(I),�∞(J)) = sup
0�=ϕ∈(�∞(I))∗

sup
0�=ψ∈(�∞(J))∗

|ϕTMψ|
‖ϕ‖∗∞ ‖ψ‖

∗
∞
.

A subset of (�∞(I))∗ is �1(I). The particular choice of the unit vectors e(i)I (i ∈ I)
and e(j)J (j ∈ J) yields

‖M‖∨(�∞(I),�∞(J)) ≥ sup
i∈I,j∈J

|(e(i)I)TMe
(j)
J |

‖e(i)I ‖1‖e
(j)
J ‖1

= sup
i∈I,j∈J

|Mij | = ‖M‖�∞(I×J) .

13 This 2× 2 example can be embedded in any model with #I,#J ≥ 2.

114 4 Banach Tensor Spaces

On the other hand, for all i ∈ I we have

|(Mψ)i| =
∣
∣
∣
∑

j

Mijψj

∣
∣
∣ ≤

(
sup
j
|Mij |

)∑

j

|ψj | ≤ ‖M‖�∞(I×J) ‖ψ‖1

implying ‖Mψ‖∞ ≤ ‖M‖�∞(I×J) ‖ψ‖1 . Finally, |ϕTMψ| ≤ ‖ϕ‖1 ‖Mψ‖∞
proves the reverse inequality ‖M‖∨(�∞(I),�∞(J)) ≤ ‖M‖�∞(I×J). ��

Among the function spaces, C(I) is of interest, since again the supremum norm
‖·‖∞ is involved.

Remark 4.65. Let V = (C(I), ‖·‖C(I)) and W = (C(J), ‖·‖C(J)) with certain
domains I and J (cf. Example 4.8). Then

‖·‖∨(C(I),C(J)) = ‖·‖C(I×J) .

Proof. 1) Let f(·, ·) ∈ C(I × J). The duals C(I)∗ and C(J)∗ contain the delta
functionals δx, δy (x ∈ I, y ∈ J) with ‖δx‖C(I)∗ = 1 (cf. (4.11)). Hence,

‖f‖∨(C(I),C(J)) = sup
ϕ,ψ �=0

| (ϕ⊗ ψ) f |
‖ϕ‖C(I)∗ ‖ψ‖C(J)∗

≥ sup
x∈I,y∈J

| (δx ⊗ δy) f | = sup
x∈I,y∈J

|f(x, y)| = ‖f‖C(I×J) .

2) For the reverse inequality, consider the function fy := f(·, y) for fixed y ∈ J.
Then fy ∈ C(I) has the norm ‖fy‖C(I) ≤ ‖f‖C(I×J) for all y ∈ J. Application of
ϕ yields g(y) := ϕ(fy) and |g(y)| = |ϕ(fy)| ≤ ‖ϕ‖C(I)∗ ‖f‖C(I×J) for all y ∈ J ;
hence, ‖g‖C(J) ≤ ‖ϕ‖C(I)∗ ‖f‖C(I×J) .

Application of ψ to g gives | (ϕ⊗ ψ) f | = |ψ(g)| ≤ ‖ψ‖C(J)∗ ‖g‖C(J) ≤
‖f‖C(I×J) ‖ϕ‖C(I)∗ ‖ψ‖C(J)∗ implying ‖f‖∨(C(I),C(J)) ≤ ‖f‖C(I×J) . ��

4.2.9 Reasonable Crossnorms

Now, we combine the inequalities (4.14) and (4.26) (with C = 1), i.e., we require,
simultaneously, continuity of ⊗ : (V, ‖·‖V) × (W, ‖·‖W) → (V ⊗aW, ‖·‖) and
⊗ : (V ∗, ‖·‖V ∗) × (W ∗, ‖·‖W∗) → (V ∗ ⊗a W ∗, ‖·‖∗). Note that ‖·‖∗ is the dual
norm of ‖·‖.

Definition 4.66. A norm ‖·‖ on V ⊗aW is a reasonable crossnorm,14 if ‖·‖ satisfies

‖v ⊗ w‖ ≤ ‖v‖V ‖w‖W for all v ∈ V and w ∈W, (4.32a)

‖ϕ⊗ ψ‖∗≤ ‖ϕ‖V ∗ ‖ψ‖W∗ for all ϕ ∈ V ∗ and ψ ∈ W ∗. (4.32b)

14 Also the name ‘dualisable crossnorm’ has been used (cf. [172]). Schatten [167] used the term
‘crossnorm whose associate is a crossnorm’ (‘associate norm’ means dual norm).

4.2 Topological Tensor Spaces 115

Lemma 4.67. If ‖·‖ is a reasonable crossnorm, then (4.32c,d) holds:

‖v ⊗ w‖ = ‖v‖V ‖w‖W for all v ∈ V and w ∈W, (4.32c)

‖ϕ⊗ ψ‖∗= ‖ϕ‖V ∗ ‖ψ‖W∗ for all ϕ ∈ V ∗ and ψ ∈W ∗. (4.32d)

Proof. 1) Note that (4.32b) is (4.26) with C = 1. By Lemma 4.50, inequality (4.27)
holds with C = 1, i.e., ‖v ⊗ w‖ ≥ ‖v‖V ‖w‖W . Together with (4.32a) we obtain
(4.32c).

2) Similarly, (4.32a) is (4.14) with C = 1. Lemma 4.51 proves ‖ϕ⊗ ψ‖∗ ≥
‖ϕ‖V ∗ ‖ψ‖W∗ so that, together with (4.32b), identity (4.32d) follows. ��

By the previous lemma, an equivalent definition of a reasonable crossnorm ‖·‖
is: ‖·‖ and ‖·‖∗ are crossnorms.

Lemma 4.45, Corollary 4.59, and Lemma 4.54 prove that the norms ‖·‖∧(V,W)

and ‖·‖∨(V,W) are particular reasonable crossnorms. Furthermore, Lemma 4.56,
together with Propositions 4.46 and 4.55, shows the next statement.

Proposition 4.68. ‖·‖∨(V,W) is the weakest and ‖·‖∧(V,W) is the strongest reason-
able crossnorm, i.e., any reasonable crossnorm ‖·‖ satisfies

‖·‖∨(V,W) � ‖·‖ � ‖·‖∧(V,W) . (4.33)

Proposition 4.69. If ‖·‖ is a reasonable crossnorm on V ⊗W , then also ‖·‖∗ is a
reasonable crossnorm on V ∗ ⊗W ∗.
Proof. 1) We have to show that ‖·‖∗ satisfies (4.32a,b) with ‖·‖, V , W replaced by
‖·‖∗, V ∗, W ∗. The reformulated inequality (4.32a) is (4.32b). Hence, this condition
is satisfied by assumption. It remains to show the reformulated version of (4.32b):

‖v∗∗ ⊗ w∗∗‖∗∗ ≤ ‖v∗∗‖V ∗∗ ‖w∗∗‖W∗∗ for all v∗∗ ∈ V ∗∗, w∗∗ ∈ W ∗∗. (4.34a)

2) By Proposition 4.68, ‖·‖∨(V,W) ≤ ‖·‖ ≤ ‖·‖∧(V,W) is valid. Applying Lemma

4.18 twice, we see that ‖·‖∗∗∨(V,W) ≤ ‖·‖
∗∗ ≤ ‖·‖∗∗∧(V,W) holds for the bidual norm;

in particular,

‖v∗∗ ⊗ w∗∗‖∗∗ ≤ ‖v∗∗ ⊗ w∗∗‖∗∗∧(V,W) . (4.34b)

Proposition 4.58 states that ‖·‖∗∧(V,W) = ‖·‖∨(V ∗,W∗), which implies

‖·‖∗∗∧(V,W) = ‖·‖
∗
∨(V ∗,W∗) . (4.34c)

Since ‖·‖∨(V ∗,W∗) is a reasonable crossnorm on V ∗ ⊗W ∗ (cf. Proposition 4.68), it
satisfies the corresponding inequality (4.32b):

‖v∗∗ ⊗ w∗∗‖∗∨(V ∗,W∗) ≤ ‖v∗∗‖V ∗∗ ‖w∗∗‖W∗∗ for all v∗∗ ∈ V ∗∗, w∗∗ ∈W ∗∗.
(4.34d)

Now, the equations (4.34b-d) prove (4.34a). ��

116 4 Banach Tensor Spaces

4.2.10 Examples and Counterexamples

Example 4.70 (�2). Let V = �2(I) and W = �2(J) for finite or countable index
sets I, J with norms ‖·‖�2(I) and ‖·‖�2(J). Then all norms ‖·‖SVD,p for 1 ≤ p ≤ ∞
are reasonable crossnorms on �2(I)⊗a �2(J). In particular,

‖·‖∨(�2(I),�2(J)) = ‖·‖SVD,∞ ≤ ‖·‖SVD,p ≤ ‖·‖SVD,q

≤ ‖·‖SVD,1 = ‖·‖∧(�∞(I),�∞(J)) for all p ≥ q.

Example 4.71 (�p). ‖·‖�p(I×J) is a reasonable crossnorm for 1 ≤ p <∞.

Proof. (4.15) proves that ‖·‖�p(I×J) satisfies (4.32a). The same statement (4.15) for
p replaced by q (defined by 1

p + 1
q = 1) shows (4.32b). ��

The next example can be shown analogously.

Example 4.72 (Lp). Let V = Lp(I) and W = Lp(J) for intervals I and J . Then
‖·‖Lp(I×J) is a reasonable norm on V ⊗aW = Lp(I × J) for 1 ≤ p <∞.

For the next example we recall that

‖f‖C1(I) = max
x∈I
{|f(x)| , |f ′(x)|}

is the norm of continuously differentiable functions in one variable x ∈ I ⊂ R. The
name ‖·‖1,mix of the following norm is derived from the mixed derivative involved.

Example 4.73. Let I and J be compact intervals inR and set V =(C1(I), ‖·‖C1(I)),
W = (C1(J), ‖·‖C1(J)). For the tensor space V ⊗aW we introduce the mixed norm

‖ϕ‖C1
mix(I×J)

:= ‖ϕ‖1,mix (4.35)

:= max
(x,y)∈I×J

{

|ϕ(x, y)| ,
∣
∣
∣
∣
∂ϕ(x, y)

∂x

∣
∣
∣
∣ ,

∣
∣
∣
∣
∂ϕ(x, y)

∂y

∣
∣
∣
∣ ,

∣
∣
∣
∣
∂2ϕ(x, y)

∂x∂y

∣
∣
∣
∣

}

.

Then, ‖·‖1,mix is a reasonable crossnorm.

Proof. ‖f ⊗ g‖C1
mix(I×J)

≤ ‖f‖C1(I) ‖g‖C1(J) is easy to verify. The proof of
(4.32b) uses similar ideas as those from the proof of Remark 4.65. ��

However, the standard norm for C1(I × J) is

‖ϕ‖C1(I×J) = max
(x,y)∈I×J

{

|ϕ(x, y)| ,
∣
∣
∣
∣
∂

∂x
ϕ(x, y)

∣
∣
∣
∣ ,

∣
∣
∣
∣
∂

∂y
ϕ(x, y)

∣
∣
∣
∣

}

.

As ‖·‖C1(I×J) ≤ ‖·‖C1
mix(I×J)

, inequality ‖f ⊗ g‖C1(I×J) ≤ ‖f‖C1(I) ‖g‖C1(J)

proves (4.32a). However, the second inequality (4.32b) characterising a reason-
able crossnorm cannot be satisfied. For a counterexample, choose the continuous
functionals δ′x0

∈ V ∗ (x0 ∈ I) and δ′y0 ∈ V ∗ (y0 ∈ J) defined by δ′x0
(f) =−f ′(x0)

4.2 Topological Tensor Spaces 117

and δ′y0(g)=−g′(y0). Then
(
δ′x0
⊗δ′y0

)
(f⊗g) = f ′(x0)g

′(y0) cannot be bounded

by ‖f⊗g‖C1(I×J), since the term | ∂2

∂x∂yϕ(x, y)| from (4.35) is missing. For the
treatment of this situation we refer to §4.3.6.

An analogous situation happens for H1,p(I × J) = H1,p(I) ⊗1,p H
1,p(J)

from Example 4.41. As mentioned in Example 4.41, ‖·‖H1,p(I×J) is no crossnorm.

Furthermore, it does not satisfy (4.26). On the other hand, H1,p
mix(I × J) allows the

crossnorm (‖f‖pp + ‖∂f/∂x‖
p
p + ‖∂f/∂y‖

p
p +

∥
∥∂2f/∂x∂y

∥
∥p
p
)1/p.

The anisotropic Sobolev space H(1,0),p(I1 × I2) = H1,p(I1) ⊗(1,0),p L
p(I2)

is introduced in Example 4.42.

Remark 4.74. The norm ‖·‖(1,0),p = ‖·‖H(1,0),p(I1×I2) on H(1,0),p(I1 × I2) is a
reasonable crossnorm for 1 ≤ p <∞.

Proof. As already stated in Example 4.42, the norm satisfies (4.32c). It remains to
prove (4.32b). The functionals ϕ ∈ V ∗ := (H1,p(I1))

∗ and ψ ∈ W ∗ := Lp(I2)
∗

may be normalised: ‖ϕ‖V ∗ = ‖ψ‖W∗ = 1. Then ‖ϕ⊗ ψ‖∗ ≤ 1 is to be proved.
By definition of ‖·‖∗, it is sufficient to show

|(ϕ⊗ ψ) (f)| ≤ ‖f‖(1,0),p for all f ∈ H(1,0),p(I1 × I2).

Next, we may restrict f ∈ H(1,0),p(I1 × I2) to the dense subset f ∈ C∞(I1 × I2).
As stated in Example 4.22b, the dual space W ∗ can be identified with Lq(I2), i.e.,
ψ ∈ Lq(I2) and ‖ψ‖q = 1. Application of ψ ∈ W ∗ to f yield the following
function of x ∈ I1:

F (x) :=

∫

I2

f(x, y)ψ(y)dy ∈ C∞(I1).

The functional ϕ ∈ V ∗ acts with respect to the x-variable:

(ϕ⊗ ψ) (f) = ϕ(F) =

∫

I2

ϕ [f(·, y)]ψ(y)dy.

For a fixed y ∈ I2, the estimate |ϕ [f(·, y)]| ≤ ‖ϕ‖V ∗ ‖f(·, y)‖1,p = ‖f(·, y)‖1,p
implies that

|(ϕ⊗ ψ) (f)| ≤
∫

I2

‖f(·, y)‖1,p ψ(y)dy

≤
(∫

I2

‖f(·, y)‖p1,p dy
)1/p(∫

I2

|ψ(y)|q dy
)1/q

= ‖ψ‖q
︸ ︷︷ ︸
=1

p

√∫

I2

‖f(·, y)‖p1,p dy

= p

√∫

I2

(∫

I1

|f(x, y)|p +
∣
∣
∣
∣
∂

∂x
f(x, y)

∣
∣
∣
∣

p

dx

)

dy = ‖f‖(1,0),p . ��

Although the solution of elliptic partial differential equations is usually a
function of the standard Sobolev spaces and not of mixed spaces like H1,p

mix, there
are important exceptions. As proved by Yserentant [199], the solutions of the
electronic Schrödinger equation have mixed regularity because of the additional
Pauli principle (i.e., the solutions must be antisymmetric).

118 4 Banach Tensor Spaces

4.2.11 Reflexivity

Let ‖·‖ be a crossnorm norm on V ⊗aW. The dual space of V ⊗‖·‖W or15 V ⊗aW
is
(
V ⊗‖·‖W

)∗
. From (4.25) we derive that

V ∗ ⊗‖·‖∗ W ∗ ⊂
(
V ⊗‖·‖W

)∗
. (4.36)

Lemma 4.75. Assume that V ⊗‖·‖W is equipped with a reasonable crossnorm ‖·‖
and is reflexive. Then the identity

V ∗ ⊗‖·‖∗ W ∗ =
(
V ⊗‖·‖W

)∗
(4.37)

holds. Furthermore, the spaces V and W are reflexive.

Proof. 1) For an indirect proof assume that (4.37) is not valid. Then there is some
φ ∈ (V ⊗‖·‖W)∗ with φ /∈ V ∗⊗‖·‖∗W ∗. By Hahn-Banach there is some bidualΦ ∈
(V ⊗‖·‖W)∗∗ such that Φ(φ) �=0, while Φ(ω)=0 for all ω ∈ V ∗⊗‖·‖∗W ∗. Because
of reflexivity, Φ(φ) has a representation as φ(xΦ) for some 0 �= xΦ ∈ V ⊗‖·‖W. As
0 �= xΦ implies ‖xΦ‖∨(V,W)> 0, there is some ω=ϕ ⊗ ψ ∈ V ∗ ⊗aW ∗ such that
|ω(xΦ)| > 0. This is in contradiction to 0=Φ(ω)=ω(xΦ) for all ω ∈ V ∗ ⊗aW ∗.
Hence, identity (4.37) must hold.

2) The statement analogous to (4.36) for the dual spaces is

V ∗∗ ⊗‖·‖∗∗ W ∗∗ ⊂
(
V ∗ ⊗‖·‖∗ W ∗

)∗
=

(4.37)

(
V ⊗‖·‖W

)∗∗
= V ⊗‖·‖W,

implying V ∗∗ ⊂ V and W ∗∗ ⊂ W . Together with the general property V ⊂ V ∗∗

and W ⊂W ∗∗, we obtain reflexivity of V and W . ��

The last lemma shows that reflexivity of the Banach spaces V andW is necessary
for V ⊗‖·‖W to be reflexive. One might expect that reflexivity of V and W is also
sufficient, i.e., the tensor product of reflexive spaces is again reflexive. This is wrong
as the next example shows (for a proof see Schatten [167, p. 139]; note that the
Banach spaces �p(N) are reflexive for 1 < p <∞).

Example 4.76. �p(N)⊗
∨
�q(N) for 1 < p <∞ and 1

p + 1
q = 1 is non-reflexive.

4.2.12 Uniform Crossnorms

Let (V ⊗aW, ‖·‖) be a tensor space with crossnorm ‖·‖ and consider operators
A ∈ L(V, V) and B ∈ L(W,W) with operator norms ‖A‖V←V and ‖B‖W←W .
As discussed in §3.3.2.1, A⊗B is defined on elementary tensors v ⊗ w via

(A⊗B) (v ⊗ w) := (Av)⊗ (Bw) ∈ V ⊗aW.
15 A Banach space X and any dense subspace X0 ⊂ X yield the same dual space X∗ = X∗0 .

4.2 Topological Tensor Spaces 119

While A ⊗ B is well-defined on finite linear combinations from V ⊗a W, the
question is, whether A ⊗ B : V ⊗a W → V ⊗a W is (uniformly) bounded,
i.e., A ⊗ B ∈ L(V ⊗a W,V ⊗a W). In the positive case, A ⊗ B also belongs
to L(V ⊗‖·‖W,V ⊗‖·‖W). For elementary tensors, the estimate

‖(A⊗B) (v ⊗ w)‖ = ‖(Av) ⊗ (Bw)‖ = ‖Av‖ ‖Bw‖ (4.38)

≤ ‖A‖V←V ‖B‖W←W ‖v‖V ‖w‖W = ‖A‖V←V ‖B‖W←W ‖v ⊗ w‖

follows by the crossnorm property. However, this inequality does not automatically
extend to general tensors from V ⊗a W. Instead, the desired estimate is subject of
the next definition (cf. [167]).

Definition 4.77. A crossnorm on V ⊗a W is called uniform, if A ⊗ B belongs to
L(V ⊗aW,V ⊗aW) with the operator norm

‖A⊗B‖V⊗aW←V⊗aW
≤ ‖A‖V←V ‖B‖W←W . (4.39)

Taking the supremum over all v ⊗ w with ‖v ⊗ w‖ = 1, one concludes from
(4.38) that ‖A⊗B‖V⊗aW←V⊗aW

≥ ‖A‖V←V ‖B‖W←W . Therefore, one may
replace inequality (4.39) by

‖A⊗B‖V⊗aW←V ⊗aW
= ‖A‖V←V ‖B‖W←W .

Proposition 4.78. ‖·‖∧(V,W) and ‖·‖∨(V,W) are uniform crossnorms.

Proof. 1) Let x =
∑
i vi ⊗ wi ∈ V ⊗aW and A ∈ L(V, V), B ∈ L(W,W). Then

‖(A⊗B) (x)‖∧(V,W)=
∥
∥
∥
∑

i
(Avi)⊗(Bwi)

∥
∥
∥
∧(V,W)

≤
∑

i
‖Avi‖V ‖Bwi‖W

≤ ‖A‖V←V ‖B‖W←W
∑

i
‖vi‖V ‖wi‖W

holds for all representations x =
∑

i vi ⊗ wi. The infimum over all representations
yields

‖(A⊗B) (x)‖∧(V,W) ≤ ‖A‖V←V ‖B‖W←W ‖x‖∧(V,W) ,

i.e., (4.39) holds for
(
V ⊗aW, ‖·‖∧(V,W)

)
.

2) Let x =
∑

i vi ⊗ wi ∈ V ⊗aW and note that

‖(A⊗B)x‖∨(V,W) = sup
0�=ϕ∈V ∗,0�=ψ∈W∗

|(ϕ⊗ ψ) ((A⊗B)x)|
‖ϕ‖V ∗ ‖ψ‖W∗

= sup
0�=ϕ∈V ∗,0�=ψ∈W∗

|
∑

i (ϕ⊗ ψ) ((Avi)⊗ (Bwi))|
‖ϕ‖V ∗ ‖ψ‖W∗

= sup
0�=ϕ∈V ∗,0�=ψ∈W∗

|
∑

i(ϕ(Avi) · ψ(Bwi)|
‖ϕ‖V ∗ ‖ψ‖W∗

.

120 4 Banach Tensor Spaces

By Definition 4.20, A∗ ∈ L(V ∗, V ∗) and B∗ ∈ L(W ∗,W ∗) satisfy
∣
∣
∣
∑

i
ϕ(Avi) · ψ(Bwi)

∣
∣
∣ =

∣
∣
∣
∑

i
(A∗ϕ) (vi) · (B∗ψ) (wi)

∣
∣
∣

= |((A∗ϕ)⊗ (B∗ψ)) (x)| .

We continue:

‖(A⊗B)x‖∨(V,W) = sup
0�=ϕ∈V ∗,0�=ψ∈W∗

|((A∗ϕ)⊗ (B∗ψ)) (x)|
‖ϕ‖V ∗ ‖ψ‖W∗

= sup
0�=ϕ,0�=ψ

‖A∗ϕ‖V ∗
‖ϕ‖V ∗

‖B∗ψ‖W∗
‖ψ‖W∗

|((A∗ϕ)⊗ (B∗ψ)) (x)|
‖A∗ϕ‖V ∗ ‖B∗ψ‖W∗

.

By Lemma 4.21, the inequalities ‖A
∗ϕ‖V ∗
‖ϕ‖V ∗

≤ ‖A∗‖V ∗←V ∗ = ‖A‖V←V and
‖B∗ψ‖W∗
‖ψ‖W∗

≤ ‖B∗‖W∗←W∗ = ‖B‖W←W hold, while

|((A∗ϕ)⊗ (B∗ψ)) (x)|
‖A∗ϕ‖V ∗ ‖B∗ψ‖W∗

≤ ‖x‖∨(V,W) .

Together, ‖(A⊗B)x‖∨(V,W) ≤ ‖A‖V←V ‖B‖W←W ‖x‖∨(V,W) proves that also
‖·‖∨(V,W) is uniform. ��

By definition, a uniform crossnorm is a crossnorm. As shown in Simon [172], it
is also a reasonable crossnorm.

Lemma 4.79. A uniform crossnorm is a reasonable crossnorm.

Proof. Let ϕ ∈ V ∗ and ψ ∈ W ∗ and choose some 0 �= v ∈ V and 0 �= w ∈ W .
Define the operator Φ ∈ L(V, V) by Φ = vϕ (i.e., Φ(x)=ϕ(x) · v) and, similarly,
Ψ ∈ L(W,W) by Ψ := wψ. The identities ‖Φ‖V←V = ‖v‖V ‖ϕ‖V ∗ and
‖Ψ‖W←W = ‖w‖W ‖ψ‖W∗ are valid as well as

(Φ⊗ Ψ) (x) = ((ϕ⊗ ψ) (x)) · (v ⊗ w) for all x ∈ X : = V ⊗aW.

The crossnorm property yields

‖(Φ⊗ Ψ) (x)‖ = |(ϕ⊗ ψ) (x)| ‖v ⊗ w‖ = |(ϕ⊗ ψ) (x)| ‖v‖V ‖w‖W ,

while the uniform crossnorm property allows the estimate

|(ϕ⊗ ψ) (x)| ‖v‖V ‖w‖W = ‖(Φ⊗ Ψ) (x)‖ ≤ ‖Φ‖V←V ‖Ψ‖W←W ‖x‖
= ‖v‖V ‖ϕ‖V ∗ ‖w‖W ‖ψ‖W∗ ‖x‖ .

Dividing by ‖v‖V ‖w‖W �= 0, we obtain |(ϕ⊗ ψ) (x)| ≤ ‖ϕ‖V ∗ ‖ψ‖W∗ ‖x‖ for
all x ∈ X. Hence, ‖·‖ is a reasonable crossnorm. ��

4.2 Topological Tensor Spaces 121

Proposition 4.80. Suppose that the Banach spaces V and W are reflexive. If ‖·‖
is a uniform crossnorm on V ⊗a W , then also ‖·‖∗ is a uniform and reasonable
crossnorm on V ∗ ⊗aW ∗.

Proof. By Lemma 4.79, ‖·‖ is a reasonable crossnorm, while by Proposition 4.69
also ‖·‖∗ is a reasonable crossnorm. To prove uniformity, let A∗ ∈ L(V ∗, V ∗) and
B∗ ∈ L(W ∗,W ∗). Because of reflexivity, the adjoint operators of A∗ and B∗ are
A∗∗ = A ∈ L(V, V) and B ∈ L(W,W). For x∗ =

∑
i ϕi ⊗ ψi ∈ V ∗ ⊗aW ∗ and

x =
∑

j vj ⊗ wj ∈ V ⊗aW we have

∣
∣
(
(A∗ ⊗B∗) (x∗)

)
(x)

∣
∣ =

∣
∣
∣
∣

∑

i

∑

j

(A∗ϕi) (vj) · (B∗ψi) (wj)
∣
∣
∣
∣

=

∣
∣
∣
∣

∑

i

∑

j

ϕi(Avj) · ψi(Bwj)
∣
∣
∣
∣ =

∣
∣x∗

(
(A⊗ B) (x)

)∣
∣

≤ ‖x∗‖∗ ‖(A⊗B) (x)‖ ≤
‖·‖ uniform

‖x∗‖∗ ‖A‖V←V ‖B‖W←W ‖x‖ .

From ‖(A∗ ⊗B∗) (x∗)‖∗ = sup
x �=0

|((A∗⊗B∗)(x∗))(x)|
‖x‖ ≤ ‖A‖V←V ‖B‖W←W ‖x∗‖

∗,

‖A‖V←V = ‖A∗‖V ∗←V ∗ , and ‖B‖W←W = ‖B∗‖W∗←W∗ we derive that the dual

norm ‖·‖∗ is uniform. ��

4.2.13 Nuclear and Compact Operators

Suppose that V and W are Banach spaces and consider the tensor space V ⊗aW ∗.
The inclusion

V ⊗aW ∗ ⊂ L(W,V)

is defined via

(v ⊗ ψ) (w) := ψ(w)v ∈ V for all v ∈ V, ψ ∈ W ∗, w ∈ W.

Similarly as in Proposition 3.57a, V ⊗aW ∗ is interpreted as a subspace of L(W,V)
and denoted by F(W,V). Elements Φ ∈ F(W,V) are called finite rank operators.
We recall Definition 4.12: K(W,V) is the set of compact operators.

Definition 4.81. A Banach spaceX has the approximation property, if for any com-
pact setK⊂X and ε>0 there is ΦK,ε∈F(X,X) with supx∈K‖ΦK,εx− x‖V ≤ ε.

Proposition 4.82. (a) The completion with respect to the operator norm ‖·‖V←W
from (4.6a) yields

F(W,V) ⊂ K(W,V).

(b) Sufficient for F(W,V) = K(W,V) is the approximation property of W ∗.

122 4 Banach Tensor Spaces

Proof. Φ∈F(W,V) is compact since its range is finite dimensional. Part (a) follows,
because limits of compact operators are compact. For Part (b) see [139, p. 17]. ��

Next, we relate the operator norm ‖·‖V←W with the crossnorms of V ⊗‖·‖W ∗.

Lemma 4.83. ‖Φ‖V←W ≤ ‖Φ‖∨(V,W∗) holds for all Φ ∈ V ⊗∨W ∗. Reflexivity of
W implies the equality ‖·‖V←W = ‖·‖∨(V,W∗).

Proof. ‖Φ‖∨(V,W∗) is the supremum of |(ϕ⊗ w∗∗)(Φ)| over all normalised ϕ∈V ∗
and w∗∗ ∈W ∗∗. Replacing W ∗∗ by its subspace W , we get a lower bound:

‖Φ‖∨(V,W∗) ≥ sup
‖ϕ‖V ∗=‖w‖W=1

|(ϕ⊗ w) (Φ)| = sup
‖ϕ‖V ∗=‖w‖W=1

|ϕ(Φ(w))|

= sup
‖w‖W=1

‖Φ(w)‖V = ‖Φ‖V←W .

If W = W ∗∗, equality follows. ��

Corollary 4.84. As all reasonable crossnorms ‖·‖ are stronger than ‖·‖∨(V,W∗) , we
have V ⊗‖·‖W ∗ ⊂ F(W,V) ⊂ K(W,V). This holds in particular for ‖·‖∧(V,W∗) .

The definition of nuclear operators can be found in Grothendieck [79].

Definition 4.85. N (W,V) := V ⊗∧W ∗ is the space of nuclear operators.

If V and W are assumed to be Hilbert spaces, the infinite singular value decom-
position enables further conclusions which will be given in §4.4.3.

Exercise 4.86. Show that for Banach spaces V and W, the dual (V ⊗∧W)
∗ is

isomorphic to L(V,W ∗).

4.3 Tensor Spaces of Order d

4.3.1 Continuity, Crossnorms

In the following, ‖·‖j are the norms associated with the vector spaces Vj , while ‖·‖
is the norm of the tensor space a

⊗d
j=1Vj and the Banach tensor space ‖·‖

⊗d
j=1Vj.

Lemma 4.30b implies the following result.

Remark 4.87. Let (Vj , ‖·‖j) be normed vector spaces for 1 ≤ j ≤ d. The d-fold
tensor product

d⊗

j=1

: V1 × . . .× Vd → V1 ⊗a . . .⊗a Vd

4.3 Tensor Spaces of Order d 123

is continuous, if and only if there is some constant C such that

∥
∥
∥
∥

d⊗

j=1

v(j)
∥
∥
∥
∥ ≤ C

d∏

j=1

‖v(j)‖j for all v(j) ∈ Vj (1 ≤ j ≤ d) .

Again, we call ‖·‖ a crossnorm, if
∥
∥
∥
∥

d⊗

j=1

v(j)
∥
∥
∥
∥ =

d∏

j=1

‖v(j)‖j for all v(j) ∈ Vj (1 ≤ j ≤ d) (4.40)

holds for elementary tensors.
Similarly, we may consider the d-fold tensor product

d⊗

j=1

: V ∗1 × . . .× V ∗d → a

d⊗

j=1

V ∗j

of the dual spaces. We recall that the normed space (a
⊗d

j=1 Vj , ‖·‖) has a dual
equipped with the dual norm

(
(a
⊗d

j=1 Vj)
∗, ‖·‖∗

)
. We interpret ϕ1 ⊗ . . .⊗ ϕd ∈

a

⊗d
j=1V

∗
j as functional on a

⊗d
j=1 Vj , i.e., as an element of (a

⊗d
j=1 Vj)

∗, via

(ϕ1 ⊗ . . .⊗ ϕd)
(
v(1) ⊗ . . .⊗ v(d)

)
:= ϕ1(v

(1)) · ϕ2(v
(2)) · . . . · ϕd(v(d)).

Then, continuity of
⊗d

j=1 : V ∗1 × . . .× V ∗d → a

⊗d
j=1 V

∗
j is equivalent to

∥
∥
∥
∥

d⊗

j=1

ϕj

∥
∥
∥
∥

∗
≤ C

d∏

j=1

‖ϕj‖∗j for all ϕj ∈ V ∗j (1 ≤ j ≤ d) .

A crossnorm ‖·‖ on
⊗d

j=1 Vj is called a reasonable crossnorm, if
∥
∥
∥
∥

d⊗

j=1

ϕj

∥
∥
∥
∥

∗
=

d∏

j=1

‖ϕj‖∗j for all ϕj ∈ V ∗j (1 ≤ j ≤ d) . (4.41)

A crossnorm ‖·‖ on V :=‖·‖
⊗d

j=1Vj is called uniform crossnorm, if elementary
tensors A :=

⊗d
j=1A

(j) have the operator norm

‖A‖V←V =

d∏

j=1

‖A(j)‖Vj←Vj

(
A(j) ∈ L(Vj ,Vj), 1 ≤ j ≤ d

)
(4.42)

(we may write ≤ instead, but equality follows, compare Definition 4.77 and the
following comment on page 119).

The proofs of Lemma 4.79 and Proposition 4.80 can easily be extended to d
factors yielding the following result.

Lemma 4.88. (a) A uniform crossnorm on
⊗d

j=1 Vj is a reasonable crossnorm.

(b) Let ‖·‖ be a uniform crossnorm on
⊗d

j=1 Vj with reflexive Banach spaces Vj .
Then ‖·‖∗ is a uniform and reasonable crossnorm on

⊗d
j=1 V

∗
j .

124 4 Banach Tensor Spaces

4.3.2 Recursive Definition of the Topological Tensor Space

As mentioned in §3.2.4, the algebraic tensor space Valg := a

⊗d
j=1 Vj can be con-

structed recursively by pairwise products:

Xalg
2 := V1 ⊗a V2, Xalg

3 := Xalg
2 ⊗a V3, . . . , Valg := Xalg

d := Xalg
d−1 ⊗a Vd .

For a similar construction of the topological tensor space V := ‖·‖
⊗d

j=1 Vj , we
need in addition suitable norms ‖·‖Xk

on Xk so that

Xk := Xk−1 ⊗‖·‖Xk
Vk for k = 2, . . . , d with X1 := V1

yielding V = Xd with ‖·‖ = ‖·‖Xd
. In the case of a (reasonable) crossnorm, it is

natural to require that also ‖·‖Xk
is a (reasonable) crossnorm.

The crossnorm property is not a property of ‖·‖ alone, but describes its relation
to the norms of the generating normed spaces. For d ≥ 3, different situations are
possible as explained below.

Remark 4.89. There are two interpretations of the crossnorm property of ‖·‖Xk
:

(i) A crossnorm on Xk = ‖·‖Xk

⊗k
j=1 Vj requires

∥
∥
∥
∥
∥

k⊗

j=1

v(j)

∥
∥
∥
∥
∥
Xk

=

k∏

j=1

‖v(j)‖j (v(j) ∈ Vj),

(ii) whereas a crossnorm on Xk=Xk−1⊗‖·‖Xk
Vk requires the stronger condition

‖x⊗ v(k)‖Xk
= ‖x‖Xk−1

‖v(k)‖k for x ∈ Xk−1 and v(k) ∈ Vk .

If, for 2 ≤ k ≤ d, ‖·‖Xk
are crossnorms in the sense of Item (ii), ‖·‖Xk

is uniquely
defined by the norm ‖·‖ of V via

‖x‖Xk
=

∥
∥
∥
∥
∥
x⊗

⊗d

j=k+1
v(j)

∥
∥
∥
∥
∥

for arbitrary v(j) ∈ Vj with ‖v(j)‖j = 1. (4.43)

Proof. The induction starts with k = d− 1. The crossnorm property (ii) states that
‖x ⊗ v(d)‖ = ‖x‖Xd−1

‖v(d)‖d = ‖x‖Xd−1
for any normalised vector v(d) ∈ Vd.

The cases k = d− 2, . . . , 2 follow by recursion. ��

Note that (4.43) requires that a crossnorm ‖·‖Xk
exists in the sense of (ii). Under

the assumption that ‖·‖ is a uniform crossnorm on V, we now show the opposite
direction: The intermediate norms ‖·‖Xk

from (4.43) are well-defined and have the
desired properties.

Proposition 4.90. Assume that ‖·‖ is a uniform crossnorm on V = ‖·‖
⊗d

j=1Vj .
Then the definition (4.43) does not depend on the choice of v(j) ∈ Vj and the
resulting norm ‖·‖Xk

is a uniform and reasonable crossnorm on ‖·‖Xk

⊗k
j=1 Vj .

Furthermore, ‖·‖Xk
is a reasonable crossnorm on Xk−1⊗‖·‖Xk

Vk.

4.3 Tensor Spaces of Order d 125

Proof. 1) It suffices to consider the case k = d − 1, so that definition (4.43) be-
comes ‖x‖Xd−1

:= ‖x ⊗ v(d)‖ with ‖v(d)‖d = 1. There is some ϕ(d) ∈ V ∗d with

‖ϕ(d)‖∗d = 1 and ϕ(d)(v(d)) = 1. Let w(d) ∈ Vd with ‖w(d)‖d = 1 be another
choice. Set A(d) := w(d)ϕ(d) ∈ L(Vd, Vd), i.e., A(d)v = ϕ(d)(v)w(d). Because of
‖A(d)‖Vd←Vd

= ‖ϕ(d)‖∗d‖w(d)‖d = 1, the uniform crossnorm property (4.42) with
A :=

⊗d
j=1 A

(j), where A(j) = I for 1 ≤ j ≤ d− 1, implies

‖x⊗ w(d)‖ = ‖A(x⊗ v(d))‖ ≤ ‖x⊗ v(d)‖.

Interchanging the rôles of w(d) and v(d), we obtain ‖x ⊗ v(d)‖ = ‖x ⊗ w(d)‖.
Obviously, ‖·‖Xd−1

= ‖ · ⊗v(d)‖ is a norm on Xd−1.

2) For x :=
⊗d−1

j=1 v
(j) we form x ⊗ v(d) =

⊗d
j=1 v

(j) with some ‖v(d)‖d=1 .
The crossnorm property of ‖·‖ implies the crossnorm property of ‖·‖Xd−1

on

‖·‖Xd−1

⊗d−1
j=1 Vj :

∥
∥
∥
∥

⊗d−1

j=1
v(j)

∥
∥
∥
∥
Xd−1

=
∥
∥x⊗ v(d)

∥
∥ =

∥
∥
∥
∥

⊗d

j=1
v(j)

∥
∥
∥
∥

=
∏d

j=1
‖v(j)‖j =

‖v(d)‖d=1

∏d−1

j=1
‖v(j)‖Vj←Vj .

Similarly, the uniform crossnorm property can be shown:
∥
∥
∥
∥
∥

(
d−1⊗

j=1

A(j)

)

x

∥
∥
∥
∥
∥
Xd−1

=
∥
∥
∥
((
A(1) ⊗ . . .⊗A(d−1))x

)
⊗ v(d)

∥
∥
∥

=
∥
∥
∥
(
A(1) ⊗ . . .⊗A(d−1) ⊗ I

)(
x⊗ v(d)

)∥∥
∥

≤
(
d−1∏

j=1

‖A(j)‖Vj←Vj

)

‖I‖Vd←Vd︸ ︷︷ ︸
=1

‖x⊗ v(d)‖ =
d−1∏

j=1

‖A(j)‖Vj←Vj ‖x‖Xd−1
.

As a consequence, by Lemma 4.79, ‖·‖Xd−1
is also a reasonable crossnorm.

3) Now we consider V as the tensor space Xd−1 ⊗a Vd (interpretation (ii) of
Remark 4.89). Let v := x ⊗ wd with x ∈ Xd−1 and 0 �= w(d) ∈ Vd. Set
v(d) := w(d)/‖w(d)‖d. Then

‖v‖ = ‖x⊗ w(d)‖ = ‖w(d)‖d‖x⊗ v(d)‖V = ‖x‖Xd−1
‖w(d)‖d (4.44a)

follows by definition (4.43) of ‖x‖Xd−1
. This proves that ‖·‖ is a crossnorm on

Xd−1 ⊗a Vd.
Since ‖·‖ is not necessarily uniform on Xd−1 ⊗a Vd, we need another argument

to prove that ‖·‖ is a reasonable crossnorm on Xd−1 ⊗ Vd. Let ψ ∈ X∗d−1 and
ϕ(d) ∈ V ∗d . We need to prove that ‖ψ ⊗ ϕ(d)‖∗ = ‖ψ‖∗Xd−1

‖ϕ(d)‖∗d. Using the
crossnorm property for an elementary tensor v, we get

|(ψ⊗ϕ(d))(v)|
‖v‖ =

|ψ(x)|
‖x‖Xd−1

|ϕ(d)(v(d))|
‖v(d)‖d

≤‖ψ‖∗Xd−1
‖ϕ(d)‖∗d if v=x⊗v(d) �=0.

(4.44b)

126 4 Banach Tensor Spaces

Taking the supremum over all v = x⊗ v(d) �= 0 (x ∈ Xd−1), we obtain

‖ψ ⊗ ϕ(d)‖∗= sup
v∈Xd

|(ψ ⊗ ϕ(d))(v)|
‖v‖ ≥ sup

v=x⊗v(d)

|(ψ ⊗ ϕ(d))(v)|
‖v‖ =‖ψ‖∗Xd−1

‖ϕ(d)‖∗d.

Define the operator A :=
⊗d

j=1 A
(j) ∈ L(V,V) by A(j) = I (1 ≤ j ≤ d− 1)

and A(d) = v̂(d)ϕ(d) with 0 �= v̂(d) ∈ Vd. Then Av is an elementary vector of the
form x ⊗ v̂(d) (x ∈ Xd−1), and ‖A(d)‖Vd←Vd

= ‖v̂(d)‖d‖ϕ(d)‖∗d holds. This fact
and the crossnorm property ‖Av‖ ≤ ‖v̂(d)‖d‖ϕ(d)‖∗d‖v‖ lead us to

‖ψ‖∗Xd−1
‖ϕ(d)‖∗d ≥

(4.44b)

|(ψ ⊗ ϕ(d))(Av)|
‖Av‖ ≥ |(ψ ⊗ ϕ(d))(Av)|

‖v̂(d)‖d ‖ϕ(d)‖∗d ‖v‖
.

Since (ψ ⊗ ϕ(d))(Av) = (ψ ⊗ (ϕ(d)A(d)))(v) = ϕ(d)(v̂(d)) · (ψ ⊗ ϕ(d))(v), the
estimate can be continued by

‖ψ‖∗Xd−1
‖ϕ(d)‖∗d ≥

|ϕ(d)(v̂(d))|
‖v̂(d)‖d‖ϕ(d)‖∗d

|(ψ ⊗ ϕ(d))(v)|
‖v‖ for all 0 �= v̂(d) ∈ Vd.

Since supv̂(d) �=0

∣
∣ϕ(d)(v̂(d))

∣
∣ /‖v̂(d)‖d = ‖ϕ(d)‖∗d , it follows that

∣
∣
(
ψ ⊗ ϕ(d)

)
(v)

∣
∣

‖v‖ ≤ ‖ψ‖∗Xd−1
‖ϕ(d)‖∗d for all v ∈ V,

so that ‖ψ ⊗ ϕ(d)‖∗ ≤ ‖ψ‖∗Xd−1
‖ϕ(d)‖∗d. Together with the opposite inequality

from above, we have proved ‖ψ ⊗ ϕ(d)‖∗ = ‖ψ‖∗Xd−1
‖ϕ(d)‖∗d . ��

Corollary 4.91. For ϕ(d) ∈ V ∗d and ψ ∈ X∗d−1, where Xd−1 = ‖·‖Xd−1

⊗d−1
j=1 Vj

is equipped with the norm ‖·‖Xd−1
defined in Proposition 4.90, the following two

inequalities hold:
∥
∥
(
I ⊗ . . .⊗ I ⊗ ϕ(d)

)
(v)

∥
∥
Xd−1

≤ ‖ϕ(d)‖∗d ‖v‖ and

‖(ψ ⊗ I) (v)‖d ≤ ‖ψ‖∗Xd−1
‖v‖. (4.45)

Proof. Any ψ ∈ X∗d−1 satisfies

ψ ⊗ ϕ(d) = ψ
(
I ⊗ . . .⊗ I ⊗ ϕ(d)

)
.

For v[d] :=
(
I ⊗ . . .⊗ I ⊗ ϕ(d)

)
(v) there is a ψ ∈ X∗d−1 with ‖ψ‖∗

Xd−1
= 1 and

∣
∣ψ
(
v[d]

)∣
∣ = ‖v[d]‖Xd−1

(cf. (4.10)). Hence,

∥
∥(I ⊗ . . .⊗ I ⊗ ϕ(d))(v)

∥
∥
Xd−1

=
∣
∣ψ
(
(I ⊗ . . .⊗ I ⊗ ϕ(d))(v)

)∣
∣

=|(ψ ⊗ ϕ(d))(v)| ≤ ‖ψ ⊗ ϕ(d)‖∗ ‖v‖ = ‖ψ‖∗Xd−1
‖ϕ(d)‖∗d ‖v‖ = ‖ϕ(d)‖∗d ‖v‖

proves the first inequality in (4.45). The second one can be proved analogously. ��

4.3 Tensor Spaces of Order d 127

4.3.3 Projective Norm ‖·‖∧

First we discuss the generalisation of ‖·‖∧ to the d-fold tensor product. As for d = 2

(cf. §4.2.4), there is a norm ‖x‖∧(V1,...Vd)
on a

⊗d
j=1 Vj induced by the norms

‖·‖j = ‖·‖Vj
for (1 ≤ j ≤ d), which can be defined as follows.

Remark 4.92. (a) For x ∈ a

⊗d
j=1 Vj define ‖·‖∧(V1,...Vd)

by

‖x‖∧(V1,...Vd)
:= ‖x‖∧ := inf

{ n∑

i=1

d∏

j=1

‖v(j)i ‖j : x =

n∑

i=1

d⊗

j=1

v
(j)
i

}

.

(b) ‖·‖∧ satisfies the crossnorm property (4.40).

(c) ‖·‖∧ is the strongest norm for which the map
d⊗

j=1

: V1 × . . . × Vd→ a

d⊗

j=1

Vj is
continuous.

The parts (b) and (c) are proved analogously to the case of d = 2 in Lemma 4.45
and Proposition 4.46

Proposition 4.93. ‖·‖∧ is a uniform and reasonable crossnorm on a

⊗d
j=1 Vj .

Proof. 1) The proof of the uniform crossnorm property in Proposition 4.78 can
easily be extended from d = 2 to d ≥ 3.

2) The result of Part 1) together with Lemma 4.79 implies that ‖·‖∧ is a reason-
able crossnorm. ��

According to Proposition 4.90, the tensor space V := ∧
⊗d

j=1 Vj is generated

recursively by Xk :=Xk−1⊗‖·‖Xk
Vk for k = 2, . . . , d starting with X2 := V2 and

producing V=Xd. The concrete form of the norm ‖·‖Xk
constructed in (4.43) is

described below.

Lemma 4.94. The norm ‖·‖Xk
on

⊗k
j=1Vj (2 ≤ k ≤ d) which leads to the pro-

jective norm ‖·‖Xd
= ‖·‖∧ = ‖·‖∧(V1,...,Vd)

, is the projective norm of V1, . . . , Vk :

‖·‖Xk
= ‖·‖∧(V1,...,Vk)

. (4.46a)

Considering Xk as the tensor space Xk−1⊗‖·‖Xk
Vk, the construction of ‖·‖Xk

from

‖·‖Xk−1
and ‖·‖k is given by

‖·‖∧(V1,...,Vk)
= ‖·‖∧(Xk−1,Vk)

. (4.46b)

‖·‖∧(V1,...,Vk)
is not only a uniform and reasonable crossnorm on ‖·‖Xk

⊗k
j=1 Vj , but

also16 on Xk−1⊗‖·‖Xk
Vk.

16 Proposition 4.90 does not state the uniform crossnorm property on Xk−1⊗‖·‖Xk
Vk.

128 4 Banach Tensor Spaces

Proof. 1) For v := x ⊗ v(d) ∈ a

⊗d
j=1 Vj with x ∈ Xd−1 and ‖v(d)‖d = 1 we

have ‖x‖Xd−1
= ‖v‖∧ (cf. (4.43)). Let v =

∑
i

⊗d
j=1 v

(j)
i be any representation

so that ‖v‖∧ ≤
∑

i

∏d
j=1 ‖v

(j)
i ‖j . A particular representation with v(d)i = v(d) for

all i can be obtained as follows. Let ψ ∈ V ∗d be the functional with ‖ψ‖∗d = 1 and
ψ(v(d)) = 1 (cf. Theorem 4.15) and set Ψ := v(d)ψ. Since (I ⊗ Ψ)v = v, another
representation is

v = (I ⊗ Ψ)
∑

i

d⊗

j=1

v
(j)
i =

∑

i

(
d−1⊗

j=1

v
(j)
i

)

⊗ Ψ(v(d)i)

=

(
∑

i

ψ(v
(d)
i)

d−1⊗

j=1

v
(j)
i

)

⊗ v(d)

leading to the same estimate ‖v‖∧ ≤
∑

i

∏d
j=1 ‖v

(j)
i ‖j because of ‖v(d)‖d=1 and

|ψ(v(d)i)| ≤ ‖v(d)i ‖d. Hence, the infimum ‖v‖∧ can be obtained by all representa-

tions v=
∑
i

⊗d
j=1v

(j)
i with v(d)i =v(d). Because of ‖v(d)‖d=1 we obtain

‖v‖∧ = inf

{
∑

i

d−1∏

j=1

‖v(j)i ‖j : v =
∑

i

d⊗

j=1

v
(j)
i and v(d)i = v(d)

}

.

In the latter case, v =
(∑

i

⊗d−1
j=1 v

(j)
i

)
⊗ v(d) implies that

∑
i

⊗d−1
j=1 v

(j)
i is a

representation of x ∈ Xd−1, since v = x ⊗ v(d). Therefore, the right-hand side in
the last formula is ‖x‖∧(V1,...,Vd−1)

. This proves (4.46a) for k = d − 1. Recursion
yields (4.46a) for k = d− 2, . . . , 2.

2a) Let ε > 0. For v ∈Xd−1⊗aVd there is a representation v =
∑
ν xν⊗v

(d)
ν

so that ‖v‖∧(Xd−1,Vd)
≥
∑

ν ‖xν‖X ‖v
(d)
ν ‖d − ε (xν ∈ Xd−1, v

(d)
ν ∈ Vd). For

each xν ∈ Xd−1 =
⊗d−1

j=1 Vj (ν ≥ 1) choose representations xν =
∑
μ

⊗d−1
j=1 v

(j)
ν,μ

such that ‖xν‖Xd−1
‖v(d)ν ‖d ≥

(∑
μ

∏d−1
j=1 ‖v

(j)
ν,μ‖j

)
‖v(d)ν ‖d − 2−νε. Altogether, it

follows that

‖v‖∧(Xd−1,Vd)
≥
∑

ν

(
∑

μ

d−1∏

j=1

‖v(j)ν,μ‖j

)

‖v(i)ν ‖d − 2ε.

A possible representation of v ∈
⊗d

j=1Vj is v =
∑

ν

∑
μ

⊗d
j=1v

(j)
ν,μ with v(d)ν,μ :=

v
(d)
ν (independent of μ); hence,

∑
ν,μ

(∏d−1
j=1 ‖v

(j)
ν,μ‖j

)
‖v(d)ν ‖d ≥ ‖v‖∧(V1,...,Vd)

.

As ε > 0 is arbitrary, ‖v‖∧(Xd−1,Vd)
≥ ‖v‖∧(V1,...,Vd)

is proved.

2b) For the reverse inequality choose a representation v =
∑

ν

⊗d
j=1 v

(j)
ν with

‖z‖∧(V1,...,Vd)
≥
∑

ν

d∏

j=1

‖v(j)ν ‖j − ε.

4.3 Tensor Spaces of Order d 129

Define xν :=
⊗d−1

j=1 v
(j)
ν . Then v =

∑
ν xν ⊗ v

(d)
ν and

∏d−1
j=1 ‖v

(j)
ν ‖j = ‖xν‖Xd−1

(crossnorm property) are valid, and one concludes that

‖v‖∧(V1,...,Vd)
≥
∑

ν

‖xν‖Xd−1
‖v(d)ν ‖d − ε ≥ ‖v‖∧(Xd−1,Vd)

− ε

for all ε > 0, which proves ‖v‖∧(V1,...,Vd)
≥ ‖v‖∧(Xd−1,Vd)

.

Again, induction for k = d − 2, . . . , 2 shows (4.46b) for all k. We remark that
equality of the norms implies that the completion yields identical Banach spaces

∧
⊗k

j=1 Vj = Xk−1 ⊗∧ Vk.
3) Since the projective norm is a uniform crossnorm, Proposition 4.78 states that

‖·‖Xk
is a uniform crossnorm on Xk−1 ⊗∧(Xk−1,Vk) Vk. ��

Equations (4.40) and (4.41) together with Remark 4.92c show that ‖·‖∧(V1,...,Vd)

is the strongest reasonable crossnorm on a

⊗d
j=1 Vj .

4.3.4 Injective Norm ‖·‖∨

The analogue of the definition of ‖·‖∨ in §4.2.7 for d factors yields the following
formulation. Let ϕ1 ⊗ ϕ2 ⊗ . . .⊗ ϕd be an elementary tensor of the tensor space

a

⊗d
j=1V

∗
j involving the dual spaces. The proof of the next remark uses the same

arguments as used in Lemma 4.54 and Proposition 4.55.

Remark 4.95. (a) For v ∈ a

⊗d
j=1 Vj define ‖·‖∨(V1,...Vd)

by17

‖v‖∨(V1,...,Vd)
:= ‖v‖∨ := sup

0�=ϕj∈V ∗j
1≤j≤d

|(ϕ1 ⊗ ϕ2 ⊗ . . .⊗ ϕd) (v)|
∏d
j=1 ‖ϕj‖∗j

. (4.47)

(b) For elementary tensors the crossnorm property (4.40) holds:

∥
∥
∥
∥

d⊗

j=1

v(j)
∥
∥
∥
∥
∨(V1,...,Vd)

=

d∏

j=1

‖v(j)‖j for all v(j) ∈ Vj (1≤j≤d) .

(c) ‖·‖∨(V1,...Vd)
is the weakest norm with

⊗
:
d

×
j=1

V ∗j → a

d⊗

j=1

V ∗j being continuous.

Lemma 4.94 can be repeated with ‖·‖∧ replaced by ‖·‖∨ .

Lemma 4.96. The norms ‖·‖Xk
on
⊗k

j=1Vj for 2≤ k≤ d leading to the injective
norm ‖·‖Xd

= ‖·‖∨ = ‖·‖∨(V1,...,Vd)
, are the injective norms of V1, . . . , Vk :

‖·‖Xk
= ‖·‖∨(V1,...,Vk)

.

17 In [201, Def. 1.2], the expression (ϕ1 ⊗ ϕ2 ⊗ . . .⊗ ϕd) (v)/
∏

d
j=1 ‖ϕj‖∗j is introduced as

the generalised Rayleigh quotient.

130 4 Banach Tensor Spaces

Considering Xk as the tensor space Xk−1 ⊗‖·‖Xk
Vk, the construction of ‖·‖Xk

from ‖·‖Xk−1
and ‖·‖k is given by

‖·‖∨(V1,...,Vk)
= ‖·‖∨(Xk−1,Vk)

.

‖·‖∨(V1,...,Vk)
is not only a uniform and reasonable crossnorm on ‖·‖Xk

⊗k
j=1 Vj ,

but also on Xk−1 ⊗‖·‖Xk
Vk.

Proof. 1) By (4.43), ‖x‖Xd−1
= ‖x⊗ v(d)‖∨ holds for any normalised v(d) ∈ Vd.

Then the right-hand side in (4.47) can be simplified by

sup
0�=ϕd∈V ∗d

|(ϕ1 ⊗ . . .⊗ ϕd) (v)|
‖ϕd‖∗d

=

∣
∣
∣
∣

(d⊗

j=1

ϕj

)

(x)

∣
∣
∣
∣‖v

(d)‖d =
∣
∣
∣
∣

(d⊗

j=1

ϕj

)

(x)

∣
∣
∣
∣

to

‖x⊗ v(d)‖∨ = sup
0�=ϕj∈V ∗j
1≤j≤d−1

∣
∣
∣
∣

(d⊗

j=1

ϕj

)

(x)

∣
∣
∣
∣/

d∏

j=1

‖ϕj‖∗j = ‖x‖∨(V1,...,Vd−1)

proving the first assertion for k = d− 1 (other k by recursion).
2) For the proof of the second part, let v =

∑
i xi ⊗ v

(k)
i ∈ Xk−1 ⊗a Vk. By

definition,

‖v‖∨(Xk−1,Vk)
= sup

0�=Φ∈X∗k−1

0�=ϕk∈V ∗k

|(Φ⊗ ϕk) (v)|
‖Φ‖∗Xk−1

‖ϕk‖∗k

holds. We perform the supremum over 0 �=Φ∈X∗k−1, 0 �=ϕk∈V ∗k sequentially by

sup
0�=v∗k∈V ∗k

{
1

‖ϕk‖∗k
sup

0�=Φ∈X∗k−1

|(Φ⊗ ϕk) (v)|
‖Φ‖∗Xk−1

}

.

The nominator |(Φ⊗ ϕk) (v)| becomes
∑

iΦ(xi)ϕk(v
(k)
i). We introduce the ab-

breviation λi := ϕk(v
(k)
i) ∈ K and obtain

∑
iΦ(xi)ϕk(v

(k)
i) =

∑
iΦ(xi)λi =

Φ (
∑
i λixi). The inner supremum yields

sup
0�=Φ∈X∗k−1

|(Φ⊗ ϕk) (v)|
‖Φ‖∗Xk−1

= sup
0�=Φ∈X∗k−1

|Φ (
∑

i λixi)|
‖Φ‖∗Xk−1

=
(4.10)

∥
∥
∥
∑

i
λixi

∥
∥
∥
Xk−1

.

By definition of ‖·‖Xk−1
this is

∥
∥
∥
∑

i
λixi

∥
∥
∥
Xk−1

= sup
0�=ϕj∈V ∗j
1≤j≤k−1

|(ϕ1 ⊗ . . .⊗ ϕk−1) (
∑
i λixi)|

∏k−1
j=1 ‖ϕj‖∗j

.

Now, we re-insert λi = ϕk(v
(k)
i) and perform the outer supremum:

4.3 Tensor Spaces of Order d 131

sup
0�=ϕk∈V ∗k

sup
0�=x∗∈X∗k−1

|(Φ⊗ ϕk) (v)|
‖Φ‖∗Xk−1

‖ϕk‖∗k
= sup

0�=ϕj∈V ∗j
1≤j≤k

∣
∣
∣
∣

(
k−1⊗

j=1

ϕj

)(∑

i

ϕk(v
(k)
i)xi

)∣∣
∣
∣

∏k
j=1 ‖ϕj‖∗j

= sup
0�=ϕj∈V ∗j
1≤j≤k

∣
∣
∣(ϕ1 ⊗ . . .⊗ ϕk)

(∑
i xi ⊗ v

(k)
i

)∣
∣
∣

∏k
j=1 ‖ϕj‖∗j

= sup
0�=ϕj∈V ∗j
1≤j≤k

|(ϕ1 ⊗ . . .⊗ ϕk) (v)|
∏k
j=1 ‖ϕj‖∗j

= ‖x‖∨(V1,...,Vk)
,

which finishes the proof of ‖·‖∨(V1,...,Vk)
= ‖·‖∨(Xk−1,Vk)

.

3) By Proposition 4.78, ‖·‖∨(Xk−1,Vk)
is a uniform crossnorm on Xk−1⊗Vk. ��

Lemma 4.97. For fixed j ∈ {1, . . . , d}, the mapping

Φ =
⊗

k∈{1,...,d}\{j}
ϕk ∈ a

⊗

k∈{1,...,d}\{j}
V ∗k

is also understood as a mapping from
(
a

⊗d
k=1 Vk , ‖·‖∨

)
onto Vj :

Φ

(
d⊗

k=1

v(k)

)

:=

(
∏

k∈{1,...,d}\{j}
ϕk(v

(k))

)

· v(j). (4.48)

The more precise notation for ϕ in the sense of (4.48) is

Φ = ϕ1 ⊗ . . .⊗ ϕj−1 ⊗ id⊗ ϕj+1 ⊗ . . .⊗ ϕd.

Then Φ is continuous, i.e., Φ ∈ L
(
∨
⊗d

k=1 Vk, Vj
)
. Its norm is

‖Φ‖Vj←∨
⊗

d
k=1 Vk

=
∏

k∈{1,...,d}\{j}
‖ϕk‖∗k .

Proof. Let ϕj ∈ V ∗j and note that the composition ϕj ◦Φ equals
⊗d

k=1 ϕk. Hence,

‖Φ(v)‖j =
(4.10)

max
ϕj∈V ∗j , ‖ϕj‖∗j=1

|ϕj(Φ(v))| = max
‖ϕj‖∗j=1

|(ϕj ◦Φ)(v)|

= max
‖ϕj‖∗j=1

∣
∣
∣
∣

(⊗d

k=1
ϕk

)

(v)

∣
∣
∣
∣ ≤

(∏

k∈{1,...,d}\{j}
‖ϕk‖∗k

)

‖v‖∨ .

Equation (4.8) shows sup{‖Φ(v)‖j : ‖v‖∨ = 1} =
∏
k∈{1,...,d}\{j} ‖ϕk‖

∗
k . ��

Corollary 4.98. For any norm ‖·‖ on a

⊗d
k=1Vk not weaker than ‖v‖∨ (in particu-

lar, for all reasonable crossnorms)Φ ∈ L(‖·‖
⊗d

k=1 Vk, Vj) is valid.

132 4 Banach Tensor Spaces

4.3.5 Examples

Example 4.47 can be generalised to tensors of order d.

Example 4.99. Let Vj := �1(Ij) with finite or countable index set Ij for 1 ≤ j ≤ d.

The induced norm ‖·‖∧(V1,...,Vd)
of a

⊗j
j=1 Vj coincides with ‖·‖�1(I1×I2×...×Id) .

Remark 4.65 leads to the following generalisation.

Example 4.100. Let Vj = (C(Ij), ‖·‖C(Ij)
) with certain domains Ij (e.g., inter-

vals). Then
‖·‖∨(C(I1),...,C(Id))

= ‖·‖C(I1×I2×...×Id) .

Proof. We perform the product sequentially. Remark 4.65 shows ‖·‖∨(C(I1),C(I2))

= ‖·‖C(I1×I2) . Iteration yields ‖·‖∨(C(I1),C(I2),C(I3))
= ‖·‖∨(C(I1×I2),C(I3))

=

‖·‖C(I1×I2×I3). Induction completes the proof. ��

Since ‖c‖SVD,2 = ‖·‖�2(I1×I2) is not equivalent to ‖·‖SVD,1, the explicit inter-
pretation of ‖·‖∧(V1,...,Vd)

for (Vj , ‖·‖�2(Ij)) and d ≥ 3 is not obvious.

4.3.6 Intersections of Banach Tensor Spaces

If two Banach spaces (X, ‖·‖X) and (Y, ‖·‖Y) have a non-empty intersection
Z := X ∩Y, the intersection norm ‖·‖Z is given by ‖z‖Z := max{‖z‖X , ‖z‖Y }
or equivalent ones. Below, we shall make use of this construction.

At the end of §4.2.10 we have studied the example C1(I × J). This space can be
obtained as the closure of C1(I) ⊗a C1(J) with respect to the norm ‖·‖C1(I×J) ,
however, this norm is not a reasonable crossnorm, it satisfies (4.32a), but not (4.32b).
Instead, the mixed norm ‖·‖1,mix from (4.35) is a reasonable crossnorm, but the
resulting space C1

mix(I × J) is a proper subspace of C1(I × J).
There is another way to obtainC1(I×J). First we consider the anisotropic spaces

C(1,0)(I×J) := {f : f, ∂∂xf ∈ C(I×J)}, ‖f‖(1,0) := max{‖f‖∞ , ‖fx‖∞},
C(0,1)(I×J) := {f : f, ∂∂y f ∈ C(I×J)}, ‖f‖(0,1) := max{‖f‖∞ , ‖fy‖∞},

with ‖f‖∞ := sup(x,y)∈I×J |f(x, y)|. Then we obtain C1(I × J) and its norm by

C1(I×J)=C(1,0)(I×J)∩C(0,1)(I×J), ‖·‖C1(I×J)=max{‖f‖(1,0) , ‖f‖(0,1)}.

The proof of Remark 4.65 can be extended to show that ‖·‖(1,0) [‖·‖(0,1)] is a
reasonable crossnorm of C(1,0)(I × J) [C(0,1)(I × J)].

We give another important example. Here, N ∈ N is a fixed degree.

4.3 Tensor Spaces of Order d 133

Example 4.101. For Ij ⊂ R (1 ≤ j ≤ d) and 1 ≤ p < ∞, the Sobolev space
HN,p(Ij) consists of all functions f from Lp(Ij) with bounded norm 18

‖f‖N,p;Ij :=

(N∑

n=0

∫

Ij

∣
∣
∣
∣
dn

dxn
f

∣
∣
∣
∣

p

dx

)1/p

, (4.49a)

whereas HN,p(I) for I = I1 × . . .× Id ⊂ R
d is endowed with the norm

‖f‖N,p :=
(∑

0≤|n|≤N

∫

I

|∂nf |p dx
)1/p

(4.49b)

with n ∈ N
d
0 being a multi-index of length |n| :=

∑d
j=1 nj, and ∂n as in (4.5).

Again, the norm ‖·‖N,p satisfies (4.32a), but not (4.32b), in particular, it is not a
reasonable crossnorm. Instead, for each n ∈ N

d
0 with |n| ≤ N we define the space

Hn,p(I) := {f ∈ Lp(I) : ∂nf ∈ Lp(I)} with the reasonable crossnorm

‖f‖n,p := (‖f‖p0,p + ‖∂
nf‖p0,p)

1/p.

Then, the Sobolev space HN,p(I) is equal to the intersection
⋂

0≤|n|≤N Hn,p(I),
and its norm (4.49b) is equivalent to max0≤|n|≤N ‖·‖n,p .

Note that Hn,p for n = (1, 0) is considered in Example 4.42. If n ∈ N
d
0 is a

multiple of a unit vector, i.e., ni = 0 except for one i, the proof of Remark 4.74 can
be used to show that ‖·‖n,p is a reasonable crossnorm for 1 ≤ p <∞.

The Sobolev spaces Hm,p(Ij) for m = 0, 1, . . . , N are an example for a scale
of Banach spaces. In the following, we fix integers Nj and denote the j-th scale by

Vj = V
(0)
j ⊃ V

(1)
j ⊃ . . . ⊃ V

(Nj)
j with dense embeddings, (4.50)

i.e., V (n)
j is a dense subspace of (V (n−1)

j , ‖·‖j,n−1) for 1≤n≤Nj . This fact implies

that the corresponding norms satisfy ‖·‖j,n � ‖·‖j,m forNj ≥ n≥m≥ 0 on V (Nj)
j .

Lemma 4.102. By (4.50), all V (n)
j (1≤n≤Nj) are dense in (V

(0)
j , ‖·‖j,0).

Let numbers Nj ∈ N0 be given and define N ⊂ N
d
0 as a subset of d-tuples

satisfying

n ∈ N ⇒ 0 ≤ nj ≤ Nj, (4.51a)

0 := (0, . . . , 0) ∈ N , (4.51b)

Nj := (0, . . . , 0
︸ ︷︷ ︸
j−1

, Nj , 0, . . . , 0︸ ︷︷ ︸
d−j

) ∈ N . (4.51c)

The standard choice ofN is

N :=
{
n ∈ N

d
0 with |n| ≤ N

}
, where Nj = N for all 1 ≤ j ≤ d. (4.51d)

18 It suffices to have the terms for n = 0 and n = N in (4.49a). The derivatives are to be
understood as weak derivatives (cf. [82, §6.2.1]).

134 4 Banach Tensor Spaces

For each n ∈ N we define the tensor space

V(n) := a

d⊗

j=1

V
(nj)
j . (4.52a)

Then we can choose a reasonable crossnorm ‖·‖n on V(n) or an equivalent one.
The intersection Banach tensor space is defined by

V :=
⋂

n∈N
V(n)=

⋂

n∈N
V(n) with intersection norm ‖v‖ := max

n∈N
‖v‖n (4.52b)

or an equivalent norm.

Remark 4.103. Assume V (0)
j � V

(Nj)
j (this excludes the finite dimensional case)

and let V be defined by (4.52b).
(a) Only if (N1, . . . , Nd) ∈ N ,V = Vmix := V(N1,N2,...,Nd) holds (cf. (4.35)).

(b) Otherwise, Vmix � V � V(0) and Vmix is dense in V.

(c) In Case (a), a reasonable crossnorm ‖·‖mix may exist, whereas in Case (b)
condition (4.32b) required for a reasonable crossnorm cannot be satisfied.

Proof. For Part (c) note that ϕ ∈
⊗d

j=1(V
(Nj)
j)∗ are continuous functionals on

Vmix, but not necessarily on V � Vmix endowed with a strictly weaker norm. ��

Proposition 4.104. Under the conditions (4.51a-c), the Banach tensor space V
from (4.52b) satisfies the inclusion

(

a

d⊗

j=1

Vj

)

∩V = a

d⊗

j=1

V
(Nj)
j ⊂ Vmix := ‖·‖(N1,...,Nd)

d⊗

j=1

V
(Nj)
j ,

i.e., an algebraic tensor in V does not differ from an algebraic tensor in Vmix. Each
v ∈ a

⊗d
j=1Vj ∩V has a representation v=

∑r
i=1

⊗d
j=1v

(j)
i with v

(j)
i ∈V

(Nj)
j .

Proof. By definition (4.52a),
(

a

d⊗

j=1

Vj

)

∩V =
⋂

n∈N

[(

a

d⊗

j=1

Vj

)

∩V(n)

]

holds. Since v ∈
(
a

⊗d
j=1Vj

)
∩V(n) is an algebraic tensor, it belongs to the space

(
a

⊗d
j=1 Vj

)
∩V(n) = V(n). Lemma 6.11 will show that

v ∈
⋂

n∈N
V(n) = a

d⊗

j=1

[
⋂

n∈N
V

(nj)
j

]

.

By condition (4.51c), v ∈ a

⊗d
j=1

(⋂
n∈N V

(nj)
j

)
= a

⊗d
j=1 V

(Nj)
j can be con-

cluded from the fact that one of the nj equals Nj . ��

4.3 Tensor Spaces of Order d 135

Application to V (0)
j =C0(Ij) and V (1)

j =C1(Ij) yields that all functions from

the algebraic tensor space
(
a

⊗d
j=1C

0(Ij)
)
∩C1(I) are already in Vmix = C1

mix(I)

(cf. (4.35)), which is a proper subspace of C1(I).
The dual spaceV∗ is the sum (span) of the duals ofV(n): V∗ =

∑
n∈N

(
V(n)

)∗
.

4.3.7 Tensor Space of Operators

Let V = a

⊗d
j=1 Vj and W = a

⊗d
j=1Wj be two Banach tensor spaces with

the respective norms ‖·‖V and ‖·‖W, while ‖·‖Vj
and ‖·‖Wj

are the norms of Vj
and Wj . The space L(Vj ,Wj) is endowed with the operator norm ‖·‖Wj←Vj

. Their
algebraic tensor space is

L := a

d⊗

j=1

L(Vj ,Wj) .

The obvious action of an elementary tensor A =
d⊗

j=1

A(j)∈ L on v =
d⊗

j=1

v(j)∈ V

yields the following tensor from W:

Av =

(
d⊗

j=1

A(j)

)(
d⊗

j=1

v(j)

)

=

d⊗

j=1

A(j)v(j) ∈W.

If ‖·‖V and ‖·‖W are crossnorms, we estimate ‖Av‖W by

d∏

j=1

‖A(j)v(j)‖Wj ≤
d∏

j=1

[
‖A(j)‖Wj←Vj‖v(j)‖Vj

]
=

(
d∏

j=1

‖A(j)‖Wj←Vj

)

‖v‖V .

Hence, ‖Av‖W ≤ ‖A‖‖v‖V holds for all elementary tensors. However, we cannot
expect that all crossnorms ‖·‖V and ‖·‖W satisfy the estimate ‖Av‖W≤‖A‖‖v‖V
for general tensors v ∈ V. In the special case of V=W, we have called crossnorms
uniform if they satisfy this estimate (cf. §4.2.12). We show that the induced norms
are uniform crossnorms.

Proposition 4.105. (a) If ‖·‖V = ‖·‖∧(V1,...,Vd)
and ‖·‖W = ‖·‖∧(W1,...,Wd)

, then

A =
⊗d

j=1A
(j) ∈ L has the operator norm

‖A‖W←V =
d∏

j=1

‖A(j)‖Wj←Vj . (4.53)

(b) If ‖·‖V = ‖·‖∨(V1,...,Vd)
and ‖·‖W = ‖·‖∨(W1,...,Wd)

, (4.53) holds again with
respect to the corresponding operator norm.

Proof. The same arguments as in the proof of Proposition 4.78 can be applied. ��

136 4 Banach Tensor Spaces

Since ‖A‖W←V is finite for elementary tensors A=
⊗d

j=1A
(j), boundedness

holds for all A ∈ L := a

⊗d
j=1 L(Vj ,Wj) . The completion of (L, ‖·‖W←V) yields

the tensor space

‖·‖W←V

d⊗

j=1

L(Vj ,Wj) ⊂ L(V,W).

4.4 Hilbert Spaces

4.4.1 Scalar Product

Again, we restrict the field to either K = R or K = C. A normed vector space
(V, ‖·‖) is a pre-Hilbert space if the norm is defined by

‖v‖ =
√
〈v, v〉 <∞ for all v ∈ V, (4.54)

where 〈·, ·〉 : V × V → K is a scalar product on V. In the case of K = R, a scalar
product is a bilinear form, which, in addition, must be symmetric and positive:

〈v,w〉 = 〈w, v〉 for v, w ∈ V, (4.55a)

〈v,v〉 > 0 for v �= 0. (4.55b)

In the complex case K = C, the form must be sesquilinear, i.e., bilinearity and
(4.55a) is replaced by19

〈v,w〉 = 〈w, v〉 for v, w ∈ V,
〈u+ λv,w〉 = 〈u,w〉 + λ 〈v,w〉 for all u, v, w ∈ V, λ ∈ C,
〈w, u + λv〉 = 〈w, u〉+ λ̄ 〈w, v〉 for all u, v, w ∈ V, λ ∈ C.

The triangle inequality of the norm (4.54) follows from the Schwarz inequality

|〈v,w〉| ≤ ‖v‖ ‖w‖ for v, w ∈ V.

We describe a pre-Hilbert space by (V, 〈·, ·〉) and note that this defines uniquely
a normed space (V, ‖·‖) via (4.54).

If (V, 〈·, ·〉) is complete, i.e., if (V, ‖·‖) is a Banach space, we call (V, 〈·, ·〉) a
Hilbert space.

Example 4.106. The Euclidean scalar product on K
I is defined by

〈v, w〉 =
∑

i∈I
vi wi.

19 In physics, the opposite ordering is common: the scalar product is antilinear in the first and linear
in the second argument.

4.4 Hilbert Spaces 137

4.4.2 Basic Facts about Hilbert Spaces

Vectors u, v ∈ V are orthogonal, if 〈v,w〉 = 0. A subset S ⊂ V is an orthogonal
system, if all pairs of different v, w ∈ S are orthogonal. If an orthogonal system
is a basis, it is called an orthogonal basis. If, in addition, ‖v‖ = ‖w‖ = 1 holds,
we have orthonormal vectors, an orthonormal system, and an orthonormal basis,
respectively. In the infinite dimensional Hilbert case, the term ‘orthonormal basis’
is to be understood as ‘complete basis’, which is different from the algebraic basis:
b = {bν : ν ∈ B} is a complete basis of V, if any v ∈ V can uniquely be written as
unconditionally20 convergent series v =

∑
ν∈B ανbν (αν ∈K). If V is separable,B

is (at most) countable; otherwise, B is not countable, but for each v ∈ V the series∑
ν∈B ανbν contains only countably many nonzero coefficients.

The orthogonal complement of a subset S ⊂ V is

S⊥ = {v ∈ V : 〈v,w〉 = 0 for all w ∈ S} .

Remark 4.107. (a) Any orthogonal complement is closed.
(b) If S ⊂ V is a closed subset, V = S ⊕ S⊥ is a direct sum, i.e., every v ∈ V has
a unique decomposition v = s+ t with s ∈ S and t ∈ S⊥.

An unpleasant feature of general Banach spaces is the possible non-reflexivity
X∗∗ � X. This does not happen for Hilbert spaces as stated next.

Remark 4.108. (a) All Hilbert spaces satisfy V = V ∗∗.
(b) The dual space V ∗ is isomorphic to V : For any ϕ ∈ V ∗ there is exactly one
vϕ ∈ V with

ϕ(v) = 〈v,vϕ〉 for all v ∈ V (4.56)

(theorem of Fréchet-Riesz’, cf. Riesz [163, §II.30]). Vice versa, every element
vϕ ∈ V generates a functional ϕ ∈ V ∗ via (4.56). This defines the Fréchet-Riesz
isomorphism J : V → V ∗ with 〈v,w〉V = 〈Jv,Jw〉V ∗ .

Notation 4.109. (a) For v ∈ V we shall denote Jv ∈ V ∗ by v∗, i.e., v∗(·) = 〈·, v〉 .
For finite dimensional vector spaces, v∗ equals vH (cf. §2.1).
(b) It is possible (but not necessary) to identify V with V ∗ by setting v = v∗.
(c) Let v ∈ V and w ∈W . Then wv∗ ∈ L(V,W) denotes the operator

(wv∗) (x) := v∗(x) · w ∈W for all x ∈ V. (4.57)

Theorem 4.110. For every Hilbert space V there is an orthonormal basis {φi : i∈S}
with the property that

v =
∑

i∈S
〈v, φi〉φi, ‖v‖2 =

∑

i∈S
|〈v, φi〉|2 for all v ∈ V. (4.58)

The second identity in (4.58) is the Parseval equality.

20 An unconditionally convergent series gives the same finite value for any ordering of the terms.

138 4 Banach Tensor Spaces

Exercise 4.111. Let v, w ∈ V. Show that

〈v, w〉 =
∑

i∈S
〈v, φi〉 〈φi, w〉

for any orthonormal basis {φi : i ∈ S} of V.

4.4.3 Operators on Hilbert Spaces

Throughout this subsection, V and W are Hilbert spaces.

Exercise 4.112. The operator norm ‖Φ‖W←V of Φ ∈ L(V,W) defined in (4.6a)
coincides with the definition

‖Φ‖W←V = sup
0�=v∈V, 0�=w∈W

|〈Φv,w〉W |√
〈v,v〉V 〈w,w〉W

.

Definition 4.113. (a) The operatorΦ ∈ L(V,W) gives rise to the adjoint operator21

Φ∗ ∈ L(W,V) defined by

〈Φv,w〉W = 〈v,Φ∗w〉V .

(b) If V = W and Φ = Φ∗ ∈ L(V, V), the operator is called self-adjoint.

Next, we consider the subspace K(W,V) ⊂ L(W,V) of compact operators (cf.
Definition 4.12 and §4.2.13). We recall thatW ⊗V can be interpreted as a subspace
of K(W,V) (cf. Corollary 4.84).

The (finite) singular value decomposition from Lemma 2.20 can be generalised
to the infinite dimensional case.

Theorem 4.114 (infinite singular value decomposition). (a) For Φ ∈ K(V,W)
there are singular values σ1 ≥ σ2 ≥ . . . with σν ↘ 0 and orthonormal systems
{wν ∈ W : ν ∈ N} and {vν ∈ V : ν ∈ N} such that

Φ =

∞∑

ν=1

σνwνv
∗
ν (cf. (4.57)), (4.59)

where the sum converges with respect to the operator norm ‖·‖W←V :

‖Φ− Φ(k)‖W←V = σk+1 ↘ 0 for Φ(k) :=

k∑

ν=1

σνwνv
∗
ν .

(b) Vice versa, any Φ defined by (4.59) with σk ↘ 0 belongs to K(V,W).

21 There is a slight difference between the adjoint operator defined here and the dual operator
from Definition 4.20, since the latter belongs to L(W∗, V ∗). As we may identify V = V ∗ and
W = W∗, this difference is not essential.

4.4 Hilbert Spaces 139

Proof. Set Ψ := Φ∗Φ ∈ L(V, V). As product of compact operators, Ψ is com-
pact. The Riesz-Schauder theory (cf. [82, Theorem 6.4.12]) states that Ψ has
eigenvalues λν with λν → 0. Since Ψ is self-adjoint, there are corresponding
eigenfunctions wν which can be chosen orthonormally defining an orthonormal
system {vν : ν ∈ N}. As Ψ is positive semidefinite, i.e., 〈Ψv, v〉V ≥ 0 for all
v ∈ V , one concludes that λν ≥ 0. Hence, the singular values σν := +

√
λν are

well-defined. Finally, set wν := Φvν/ ‖Φvν‖ = 1
σν
Φvν (the latter equality follows

from ‖Φvν‖2 = 〈Φvν , Φvν〉 = 〈vν , Φ∗Φvν〉 = 〈vν , Ψvν〉 = λν 〈vν , vν〉 = λν). The
vectors wν are already normalised. Since

〈wν , wμ〉 ‖Φvν‖ ‖Φvμ‖ = 〈Φvν , Φvμ〉 = 〈vν , Φ∗Φvμ〉 = λμ 〈vν , vμ〉 = 0

for ν �= μ, {wν : ν ∈ N} is an orthonormal system in W .

Besides Φvν = σνwν (by definition ofwν) also Φ(k)vν = σνwν holds for ν ≤ k,
since v∗μ(vν) = 〈vν , vμ〉 = δνμ and

(
k∑

μ=1

σμwμv
∗
μ

)

(vν) =

k∑

μ=1

σμwμδνμ = σνwν .

One concludes that
(
Φ− Φ(k)

)
(vν) = 0 for ν ≤ k, while

(
Φ− Φ(k)

)
(vν) = Φ(vν)

for ν > k. Hence,
(
Φ− Φ(k)

)∗(
Φ− Φ(k)

)
has the eigenvalues σ2

k+1 ≥ σ2
k+2 ≥ . . .

This implies that

‖Φ− Φ(k)‖W←V = σk+1.

Convergence follows by σν ↘ 0.

For the opposite direction use that Φ(k) is compact because of the finite dimen-
sional range and that limits of compact operators are again compact. ��

Corollary 4.115. If κ(·, ·) is the Schwartz kernel of Φ, i.e.,

Φ(v) :=

∫

Ω

κ(·, y)v(y)dy for v ∈ V,

we may write (4.59) as

κ(x, y) =

∞∑

ν=1

σνwν(x)vν (y).

Representation (4.59) allows us to define a scale of norms ‖·‖SVD,p (cf. (4.17)),
which use the �p norm of the sequence σ = (σν)

∞
ν=1 of singular values.22

Remark 4.116. (a) ‖Φ‖SVD,∞ = ‖Φ‖∨(W,V) = ‖Φ‖V←W is the operator norm.

(b) ‖Φ‖SVD,2 = ‖Φ‖HS is the Hilbert-Schmidt norm.

(c) ‖Φ‖SVD,1 = ‖Φ‖∧(W,V) determines the nuclear operators.

22 In physics, in particular quantum information, the entropy −
∑

ν σν ln(σν) is of interest.

140 4 Banach Tensor Spaces

In the context of Hilbert spaces, it is of interest that the Hilbert-Schmidt operators
form again a Hilbert space, where the scalar product is defined via the trace, which
for the finite dimensional case is already defined in (2.8). In the infinite dimensional
case, this definition is generalised by

trace(Φ) :=
∑

i∈S
〈φi, Φφi〉 for any orthonormal basis {φi : i ∈ S} . (4.60)

To show that this definition makes sense, one has to prove that the right-hand side
does not depend on the particular basis. Let {ψj : j ∈ T } be another orthonormal
basis. Then Exercise 4.111 shows

∑

i∈S
〈φi, Φφi〉 =

∑

i∈S

∑

j∈T
〈φi, ψj〉 〈ψj , Φφi〉 =

∑

j∈T

〈

ψj , Φ

(∑

i∈S
〈φi, ψj〉φi

)〉

=
∑

j∈T
〈ψj , Φψj〉 .

Definition 4.117 (Hilbert-Schmidt space). The Hilbert-Schmidt scalar product
of Φ, Ψ ∈ L(V,W) is defined by 〈Φ, Ψ〉HS := trace(Ψ∗Φ) and defines the norm

‖Φ‖HS :=
√
〈Φ,Φ〉HS =

√
trace(Φ∗Φ).

The operators Φ ∈ L(V,W) with ‖Φ‖HS < ∞ form the Hilbert-Schmidt space
HS(V,W).

As stated in Remark 4.116b, the norms ‖Φ‖SVD,2 = ‖Φ‖HS coincide. Since
finiteness of

∑∞
ν=1 σ

2
ν implies σν ↘ 0, Theorem 4.114b proves the next result.

Remark 4.118. HS(V,W) ⊂ K(V,W).

A tensor from V ⊗W ′ may be interpreted as map (v ⊗ w′) : w �→ 〈w,w′〉W · v
from L(W,V). In §4.2.13 this approach has led to the nuclear operator equipped
with the norm ‖Φ‖SVD,1. For Hilbert spaces, the norm ‖Φ‖SVD,2 = ‖Φ‖HS is more
natural.

Lemma 4.119. Let V ⊗‖·‖W =V ⊗‖·‖W ′ be the Hilbert tensor space generated by
the Hilbert spaces V and W . Interpreting Φ=v⊗w∈V ⊗‖·‖W as a mapping from
L(W,V), the tensor norm ‖v⊗w‖ coincides with the Hilbert-Schmidt norm ‖Φ‖HS.

Proof. By Theorem 4.114, there is a representationΦ =
∑∞

ν=1σνvνw
∗
ν ∈ L(W,V)

with orthonormal vν and wν . The Hilbert-Schmidt norm equals
√∑∞

ν=1 σ
2
ν (cf.

Remark 4.116b). The interpretation of Φ as a tensor from V⊗‖·‖W uses the notation

Φ=
∞∑

ν=1
σνvν ⊗wν . By orthonormality, ‖v⊗w‖2=

∞∑

ν=1
σ2
ν leads to the same norm.��

Combining this result with Remark 4.118, we derive the next statement.

Remark 4.120. Φ ∈ V ⊗‖·‖W interpreted as mapping from W into V is compact.

4.4 Hilbert Spaces 141

4.4.4 Orthogonal Projections

A (general) projection is already defined in Definition 3.4.

Definition 4.121. Φ ∈ L(V, V) is called an orthogonal projection, if it is a projec-
tion and self-adjoint.

Remark 4.122. (a) Set R :=range(Φ) :={Φv :v∈V } for a projection Φ∈L(V, V).
Then Φ is called a projection onto R. v = Φ(v) holds if and only if v ∈ R.
(b) Let Φ ∈ L(V, V) be an orthogonal projection onto R. Then R is closed and
Φ is characterised by

Φv =

{
v for v ∈ R
0 for v ∈ R⊥

}

, where V = R⊕R⊥ (cf. Remark 4.107b). (4.61)

(c) Let a closed subspace R ⊂ V and w ∈ V be given. Then the best approximation
problem

find a minimiser vbest ∈ R of ‖w − vbest‖ = min
v∈R
‖w − v‖

has the unique solution vbest = Φw, where Φ is the projection onto R from (4.61).

(d) An orthogonal projection 0 �= Φ ∈ L(V, V) has the norm ‖Φ‖V←V = 1.

(e) If Φ is the orthogonal projection onto R ⊂ V, then I − Φ is the orthogonal
projection onto R⊥.

(f) Let {b1, . . . , br} be an orthonormal basis of a subspace R ⊂ V. Then the ortho-
gonal projection onto R is explicitly given by

Φ =

r∑

ν=1

bνb
∗
ν , i.e., Φv =

r∑

ν=1

〈v, bν〉 bν.

In the particular case of V = K
n with the Euclidean scalar product, one forms the

orthogonal matrix U := [b1, . . . , br]. Then

Φ = UUH ∈ K
n×n

is the orthogonal projection onto R = range{U}.
Lemma 4.123. (a) Let P1, P2 ∈ L(V, V) be two orthogonal projections. Then

‖ (I − P1P2) v‖2V ≤ ‖ (I − P1) v‖2V + ‖ (I − P2) v‖2V for any v ∈ V.

(b) Let Pj ∈ L(V, V) be orthogonal projections for 1 ≤ j ≤ d. Then

∥
∥
∥
∥
∥

(

I −
d∏

j=1

Pj

)

v

∥
∥
∥
∥
∥

2

V

≤
d∑

j=1

‖ (I − Pj) v‖2V for any v ∈ V.

holds for any ordering of the factors Pj in the product.

142 4 Banach Tensor Spaces

Proof. In (I − P1P2) v = (I − P1) v + P1 (I − P2) v, the two terms on the right-
hand side are orthogonal. Therefore

‖ (I − P1P2) v‖2V = ‖ (I − P1) v‖2V + ‖P1 (I − P2) v‖2V
≤ ‖ (I − P1) v‖2V + ‖P1‖V←V ‖ (I − P2) v‖2V
≤ ‖ (I − P1) v‖2V + ‖ (I − P2) v‖2V

using ‖P1‖V←V ≤ 1 from Remark 4.122d proves Part (a). Part (b) follows by
induction: replace P2 in Part (a) by

∏d
j=2 Pj . ��

4.5 Tensor Products of Hilbert Spaces

4.5.1 Induced Scalar Product

Let 〈·, ·〉j be a scalar product defined on Vj (1 ≤ j ≤ d), i.e., Vj is a pre-Hilbert
space. Then V := a

⊗d
j=1Vj is again a pre-Hilbert space with a scalar product

〈·, ·〉 which is defined for elementary tensors v =
⊗d

j=1 v and w =
⊗d

j=1 w
(j) by

〈
d⊗

j=1

v(j),
d⊗

j=1

w(j)

〉

:=
d∏

j=1

〈v(j), w(j)〉j for all v(j), w(j) ∈ Vj . (4.62)

In the case of norms we have seen that a norm defined on elementary tensors does
not determine the norm on the whole tensor space. This is different for a scalar
product. One verifies that 〈v,w〉 is a sesquilinear form. Hence, its definition on
elementary tensors extends to V×V. Also the symmetry 〈v,w〉 = 〈w,v〉 follows
immediately from the symmetry of 〈·, ·〉j . It remains to prove the positivity (4.55b).

Lemma 4.124. Equation (4.62) defines a unique scalar product on a

⊗d
j=1 Vj ,

which is called the induced scalar product.

Proof. 1) Consider d = 2, i.e., a scalar product on V ⊗aW . Let 〈·, ·〉V , 〈·, ·〉W be
scalar products of V , W, and x =

∑n
i=1 vi⊗wi �= 0. Without loss of generality we

may assume that the vi and wi are linearly independent (cf. Lemma 3.13). Conse-
quently, the Gram matrices Gv =

(
〈vi, vj〉V

)
n
i,j=1 and Gw =

(
〈wi, wj〉W

)
n
i,j=1

are positive definite (cf. Exercise 2.16b). The scalar product 〈x,x〉 equals

n∑

i,j=1

〈vi, vj〉V 〈wi, wj〉W =

n∑

i,j=1

Gv,ijGw,ij = trace(GvG
T
w).

Exercise 2.7a with A := G
1/2
v and B := G

1/2
v GT

w (cf. Remark 2.13a) yields
trace(GvG

T
w) = trace(G

1/2
v GT

wG
1/2
v). The positive definite matrix G1/2

v GT
wG

1/2
v

has positive diagonal elements (cf. Remark 2.13b), proving 〈x,x〉 > 0.

4.5 Tensor Products of Hilbert Spaces 143

2) For d≥3 the assertion follows by induction: a
⊗d

j=1Vj =
(
a

⊗d−1
j=1Vj

)
⊗aVd

with the scalar product of a
⊗d−1

j=1Vj as in (4.62), but with d replaced by d− 1. ��

Definition (4.62) implies that elementary tensors v and w are orthogonal if and
only if vj⊥wj for at least one index j. A simple observation is stated next.

Remark 4.125. Orthogonal [orthonormal] systems {φ(j)i : i∈Bj}⊂Vj for 1≤j≤d
induce the orthogonal [orthonormal] system in V consisting of

φi :=
d⊗

j=1

φ
(j)
ij

for all i = (i1, . . . , id) ∈ B := B1 × . . .×Bd.

If {φ(j)i : i∈Bj} are orthonormal bases, {φi : i ∈ B} is an orthonormal basis of V.

Example 4.126. Consider Vj = K
Ij endowed with the Euclidean scalar product

from Example 4.106. Then the induced scalar product of v,w ∈ V =
⊗d

j=1 Vj is
given by

〈v,w〉 =
∑

i∈I
viwi =

∑

i1∈I1

· · ·
∑

id∈Id

v[i1 · · · id]w[i1 · · · id].

The corresponding (Euclidean) norm is denoted by ‖·‖ or more specifically by ‖·‖2.

There is a slight mismatch in the matrix case d = 2: the previously defined norm

‖v‖2 =
√∑

i,j |vij |
2 is introduced for matrices as Frobenius norm ‖·‖F.

The standard Sobolev space HN is a Hilbert space corresponding to p = 2 in
Example 4.101. As seen in §4.3.6, HN is an intersection space with a particular
intersection norm. Therefore we cannot define HN =

⊗d
j=1 Vj by the induced

scalar product (4.62). Let
(
V

(n)
j , 〈·, ·〉j,n

)
, the space V(n), and the setN be defined

as in §4.3.6. Then the canonical scalar product on V =
⋂

n∈N V(n) is defined by

〈
d⊗

j=1

v(j),
d⊗

j=1

w(j)

〉

:=
∑

n∈N

d∏

j=1

〈v(j), w(j)〉j,nj for all v(j), w(j)∈V (Nj)
j . (4.63a)

In this definition, v and w are elementary tensors of the space Vmix, which by
Remark 4.103b is dense in V. The bilinear (sesquilinear) form defined in (4.63a)
is positive, since a convex combination of positive forms is again positive. The
corresponding norm

‖v‖ =
√∑

n∈N
‖v‖2n (4.63b)

is equivalent to max
n∈N
‖v‖n from (4.52b).

144 4 Banach Tensor Spaces

4.5.2 Crossnorms

Proposition 4.127. The norm derived from the scalar product (4.62) is a reasonable
crossnorm. Furthermore, it is a uniform crossnorm, i.e.,

∥
∥
∥
∥

⊗d

j=1
A(j)

∥
∥
∥
∥
V←V

=
d∏

j=1

‖A(j)‖Vj←Vj for all A(j) ∈ L(Vj , Vj). (4.64)

Proof. 1) Taking v = w in (4.62) shows ‖v‖ =
∏d
i=1 ‖vi‖ for all v ∈ V.

2) Since the dual spaces V ∗i and V∗ may be identified with Vi and V, part 1)
shows also the crossnorm property (4.41) for V∗.

3) First we consider the finite dimensional case. Let A=
⊗d

j=1A
(j) with A(j)∈

L(Vj , Vj) and v∈V. Diagonalisation yields A(j)∗A(j)=U∗jDjUj (Uj unitary, Dj

diagonal). The columns {φ(j)i : 1≤ i≤dim(Vj)} of Uj form an orthonormal bases
of Vj . Define the orthonormal basis {φi} according to Remark 4.125 and represent
v as v =

∑
i ciφi. Note that ‖v‖2 =

∑
i |ci|

2 (cf. (4.58)). Then

‖Av‖2=
∥
∥
∥
∥
∥

∑

i

ci

d⊗

j=1

A(j)(φ
(j)
ij

)

∥
∥
∥
∥
∥

2

=
∑

i,k

〈

ci

d⊗

j=1

A(j)(φ
(j)
ij

), ck

d⊗

j=1

A(j)(φ
(j)
kj

)

〉

=
∑

i,k

cick

d∏

j=1

〈
A(j)φ

(j)
ij
, A(j)φ

(j)
kj

〉

j
=
∑

i,k

cick

d∏

j=1

〈
φ
(j)
ij
, A(j)∗A(j)φ

(j)
kj

〉
.

Since φ(j)kj are eigenvectors of A(j)∗A(j), the products 〈φ(j)ij , A
(j)∗A(j)φ

(j)
kj
〉 vanish

for ij �= kj . Hence,

‖Av‖2 =
∑

i

|ci|2
d∏

j=1

〈
φ
(j)
ij
, A(j)∗A(j)φ

(j)
ij

〉
=
∑

i

|ci|2
d∏

j=1

∥
∥
∥A(j)φ

(j)
ij

∥
∥
∥
2

j

≤
(d∏

j=1

‖A(j)‖Vj←Vj

)2∑

i

|ci|2
d∏

j=1

‖φ(j)ij ‖
2
j

︸ ︷︷ ︸
=1

=

(d∏

j=1

‖A(j)‖Vj←Vj

)2∑

i

|ci|2 =

(d∏

j=1

‖A(j)‖Vj←Vj

)2

‖v‖2

proves that the crossnorm is uniform (the equality in (4.64) is trivial).
4) Next we consider the infinite dimensional case. The tensor v∈V := a

⊗d
j=1Vj

has some representation v =
∑n
i=1

⊗d
j=1 v

(j)
i , therefore v∈V0 :=

⊗d
j=1V0,j with

the finite dimensional subspaces V0,j := span{v(j)i : 1 ≤ i ≤ n}. Let Φj = Φ∗j ∈
L(Vj ,Vj) be the orthogonal projection onto V0,j . An easy exercise shows

‖Av‖2 = 〈v,A∗Av〉

=

〈

v,

(⊗d

j=1
A(j)∗A(j)

)

v

〉

=

〈

v,

(⊗d

j=1
Φ∗jA

(j)∗A(j)Φj

)

v

〉

.

4.5 Tensor Products of Hilbert Spaces 145

Set Cj := Φ∗jA
(j)∗A(j)Φj = (A(j)Φj)

∗(A(j)Φj) = B(j)∗B(j) for the well-defined

square rootB(j) := C
1/2
j . Since the operator acts in the finite dimensional subspace

V0,j only, Part 3) applies. The desired estimate follows from

‖B(j)‖2Vj←Vj
= ‖B(j)∗B(j)‖Vj←Vj = ‖(A(j)Φj)

∗(A(j)Φj)‖Vj←Vj

= ‖A(j)Φj‖2Vj←Vj
≤ ‖A(j)‖2Vj←Vj

‖Φj‖2Vj←Vj
= ‖A(j)‖2Vj←Vj

(cf. Remark 4.122). ��

The projective crossnorm ‖·‖∧ for �2(I) × �2(J) is discussed in Example 4.48.
The result shows that the generalisation for d ≥ 3 does not lead to a standard norm.

The injective crossnorm ‖·‖∨ of a
⊗d

j=1Vj is defined in (4.47). For instance,
Vj = �2(Ij) endowed with the Euclidean scalar product leads to

‖v‖∨(�2,...,�2)= sup
0�=w(j)∈Vj

1≤j≤d

∣
∣
∣
∑

i1∈I1 · · ·
∑

id∈Id v[i1 · · · id]·w
(1)
i1
·. . .·w(d)

id

∣
∣
∣

‖w(1)‖2 · . . . · ‖w(d)‖d
.

If d=1, ‖v‖∨ coincides with ‖v‖2. For d=2, ‖v‖∨ is the spectral norm ‖v‖2 for
v interpreted as matrix (cf. (2.13)).

4.5.3 Tensor Products of L(Vj, Vj)

The just proved uniformity shows that the Banach spaces
(
L(Vj , Vj), ‖ · ‖Vj←Vj

)

form the tensor space

a

d⊗

j=1

L(Vj , Vj) ⊂ L(V,V)

and that the operator norm ‖·‖V←V is a crossnorm (cf. (4.64)).
Note that (L(V,V), ‖·‖V←V) is a Banach space, but not a Hilbert space. To

obtain a Hilbert space, we have to consider the space HS(Vj , Vj) of the Hilbert-
Schmidt operators with the scalar product 〈·, ·〉j,HS (cf. Definition 4.117). The scalar
products 〈·, ·〉j,HS induce the scalar product 〈·, ·〉HS on H := a

⊗d
j=1HS(Vj , Vj) .

Equation (4.71) shows that 〈·, ·〉HS is defined by the trace on H.

Exercise 4.128. For A(j)v(j) = λjv
(j) (v(j) �= 0) and A :=

⊗d
j=1A

(j) prove:

(a) The elementary tensor v :=
⊗d

j=1 v
(j) is an eigenvector of A with eigenvalue

λ :=
∏d
j=1 λj , i.e., Av = λv.

(b) Assume that A(j) ∈ L(Vj , Vj) has dim(Vj) <∞ eigenpairs (λj , v(j)). Then all
eigenpairs (λ,v) constructed in Part (a) yield the complete set of eigenpairs of A.

Exercise 4.128b requires that all A(j) are diagonalisable. The next lemma con-
siders the general case.

146 4 Banach Tensor Spaces

Lemma 4.129. Let A(j) ∈ C
Ij×Ij be a matrix with #Ij < ∞ for 1 ≤ j ≤ d and

form the Kronecker product A :=
⊗d

j=1 A
(j) ∈ C

I×I. Let (λj,k)k∈Ij be the tuple
of eigenvalues of A(j) corresponding to their multiplicity. Then

(λk)k∈I with λk :=

d∏

j=1

λj,kj (4.65)

represents all eigenvalues of A together with their multiplicity. Note that λk might
be a multiple eigenvalue by two reasons: (a) λj,kj = λj,kj+1 = . . . = λj,kj+μ−1
is a μ-fold eigenvalue of A(j) with μ > 1, (b) different factors λj,kj �= λj,k′j may
produce the same product λk = λk′ .

Proof. For each matrix A(j) there is a unitary similarity transformation R(j) =
U (j)A(j)U (j)H (U (j) unitary) into an upper triangular matrix R(j) (Schur normal
form; cf. [81, Theorem 2.8.1]). Hence, A(j) and R(j) have identical eigenvalues
including their multiplicity. Set U :=

⊗d
j=1 U

(j) and R :=
⊗d

j=1 R
(j). U is again

unitary (cf. (4.70a,b)), while R ∈ C
I×I is of upper triangular form with λk from

(4.65) as diagonal entries. Since the eigenvalues of triangular matrices are given by
the diagonal elements of R(j) (including the multiplicity), the assertion follows. ��

4.5.4 Partial Scalar Products

Let

X := V1 ⊗aW and Y := V2 ⊗aW

be two tensor spaces sharing a pre-Hilbert space (W, 〈·, ·〉W). We define a sesqui-
linear mapping (again denoted by 〈·, ·〉W) via

〈·, ·〉W : X×Y→ V1 ⊗a V2,
〈v1⊗w1, v2⊗w2〉W := 〈w1, w2〉W · v1⊗v2 for v1∈V1, v2∈V2, w1, w2∈W.

We call this operation a partial scalar product, since it acts on the W part only.

In the following, we assume V1 = V2 so that X = Y. We rename X by V with
the usual structure V = a

⊗
j∈D Vj , where, e.g., D = {1, . . . , d}. In this case,

W from above corresponds to Vα = a

⊗
j∈α Vj for a non-empty subset α ⊂ D.

The notation 〈·, ·〉W is replaced by 〈·, ·〉α:

〈·, ·〉α : V ×V→ VD\α ⊗a VD\α, (4.66)
〈

d⊗

j=1

vj ,
d⊗

j=1

wj

〉

α

:=

[
∏

j∈α
〈vj , wj〉

]

·
(

⊗

j∈D\α
vj

)

⊗
(

⊗

j∈D\α
wj

)

.

4.6 Tensor Operations 147

The partial scalar product 〈·, ·〉α : V×V→ Vαc ⊗aVαc can be constructed as
composition of the following two mappings:

1) sesquilinear concatenation (v,w) �→ v ⊗w ∈ V ⊗a V followed by

2) contractions23 explained below.

Definition 4.130. For a non-empty, finite index set D let V = VD = a

⊗
j∈D Vj

be a pre-Hilbert space with induced scalar product. For any j ∈ D, the contraction
Cj : V ⊗a V→ VD\{j} ⊗a VD\{j} is defined by

Cj

((
⊗

k∈D
vk

)

⊗
(
⊗

k∈D
wk

))

:= 〈vj , wj〉
(

⊗

k∈D\{j}
vk

)

⊗
(

⊗

k∈D\{j}
wk

)

.

For a subset α⊂D, the contraction Cα : V⊗aV→ VD\α ⊗aVD\α is the product
Cα=

∏
j∈αCj with the action

Cα

⎛

⎝

(
⊗

j∈D
vj

)

⊗
(
⊗

j∈D
wj

)⎞

⎠ =

[
∏

j∈α
〈vj , wj〉

]

·
(

⊗

j∈D\α
vj

)

⊗
(

⊗

j∈D\α
wj

)

.

§5.2 will show further matrix interpretations of these partial scalar products. The
definition allows to compute partial scalar product recursively. Formally, we may
define C∅(v) := v and 〈v,w〉∅ := v ⊗w.

Corollary 4.131. If ∅ � α � β ⊂ D, then 〈v,w〉β = Cβ\α(〈v,w〉α).

4.6 Tensor Operations

In the following we enumerate operations which later are to be realised numerically
in the various formats. With regard to practical applications, we mainly focus to a
finite dimensional setting.

4.6.1 Vector Operations

The trivial vector space operations are the scalar multiplication λ · v (λ ∈ K,
v ∈ a

⊗d
j=1 Vj) and the addition v + w. By definition, v and w ∈ a

⊗d
j=1 Vj

have representations as finite linear combinations. Obviously, the sum might have a
representation with even more terms. This will become a source of trouble.

23 In tensor algebras, contractions are applied to tensors from
⊗

jVj , where Vj is either the space
V or its dual V ′. If, e.g., V1 = V ′ and V2 = V, the corresponding contraction is defined by⊗

j v
(j) �→ v(1)(v(2)) ·

⊗
j≥3 v

(j) (cf. Greub [76, p. 72]).

148 4 Banach Tensor Spaces

The scalar product of two elementary tensors v =
⊗d

j=1 vj and w =
⊗d

j=1 wj
reduces by definition to the scalar product of the simple vectors vj , wj ∈ Vj :

〈v,w〉 =
d∏

j=1

〈vj , wj〉 . (4.67)

The naive computation of the scalar product by 〈v,w〉 =
∑

i∈Id viwi would be
much too costly. Therefore, the reduction to scalar products in Vj is very helpful.

General vectors v,w ∈ a

⊗d
j=1 Vj are sums of elementary tensors. Assume

that the (minimal) number of terms is nv and nw, respectively. Then nvnw scalar
products (4.67) must be performed and added. Again, it becomes obvious that large
numbers nv and nw cause problems.

Note that the evaluation of 〈v,w〉 is not restricted to the discrete setting Vj =
R
Ij with finite index sets Ij . Assume the infinite dimensional case of continuous

functions from Vj = C([0, 1]) . As long as vj , wj belong to a (possibly infinite)
family of functions for which the scalar product 〈vj , wj〉 =

∫ 1

0 vj(x)wj(x)dx is
exactly known, the evaluation of 〈v,w〉 can be realised.

4.6.2 Matrix-Vector Multiplication

Again, we consider Vj = K
Ij and V = K

I =
⊗d

j=1 Vj with I = I1 × . . . × Id.
Matrices from K

I×I are described by Kronecker products in
⊗d

j=1K
Ij×Ij . For ele-

mentary tensors A=
⊗d

j=1A
(j) ∈

⊗d
j=1K

Ij×Ij and v=
⊗d

j=1vj ∈
⊗d

j=1K
Ij the

evaluation of

Av =
d⊗

j=1

(
A(j)v(j)

)
(4.68)

requires d simple matrix-vector multiplications, while the naive evaluation of Av
may be beyond the computer capacities.

The same holds for a rectangular matrix A ∈ K
I×J =

⊗d
j=1 K

Ij×Jj .

4.6.3 Matrix-Matrix Operations

Concerning the addition of Kronecker tensorsA,B ∈
⊗d

j=1 K
Ij×Ij the same state-

ment holds as for the addition of vectors.
The multiplication rule for elementary Kronecker tensors is
(

d⊗

j=1

A(j)

)(
d⊗

j=1

B(j)

)

=

d⊗

j=1

A(j)B(j) for all A(j), B(j) ∈ K
Ij×Ij . (4.69)

Similarly for A(j) ∈ K
Ij×Jj , B(j) ∈ K

Jj×Kj . If A (B) is a linear combination of
nA (nB) elementary Kronecker tensors, nAnB evaluations of (4.69) are needed.

4.6 Tensor Operations 149

Further rules for elementary Kronecker tensors are:

(
d⊗

j=1

A(j)

)−1

=

d⊗

j=1

(
A(j)

)−1
for all invertible A(j) ∈ K

Ij×Ij , (4.70a)

(
d⊗

j=1

A(j)

)T

=

d⊗

j=1

(
A(j)

)T
for all A(j) ∈ K

Ij×Jj . (4.70b)

Exercise 4.132. Assume that all matrices A(j) ∈ K
Ij×Jj have one of the proper-

ties {regular, symmetric, Hermitean, positive definite, diagonal, lower triangular,
upper triangular, orthogonal, unitary, positive, permutation matrix}. Show that the
Kronecker matrix

⊗d
j=1A

(j) possesses the same property. What statements hold for
negative, negative definite, or antisymmetric matrices A(j)?

Exercise 4.133. Let A :=
⊗d

j=1A
(j). Assume that one of the decompositions

A(j) = Q(j)R(j) (QR), A(j) = L(j)L(j)H (Cholesky), or A(j) = U (j)Σ(j)V (j)T

(SVD) is given for all 1 ≤ j ≤ d. Prove that A possesses the respective decom-
position QR (QR), LLH (Cholesky), UΣVT (SVD) with the Kronecker matrices
Q :=

⊗d
j=1Q

(j),R :=
⊗d

j=1R
(j), etc.

Exercise 4.134. Prove the following statements about the matrix rank (cf. Remark
2.1):

rank

⎛

⎝
d⊗

j=1

A(j)

⎞

⎠ =

d∏

j=1

rank(A(j)),

and the trace of a matrix (cf. (2.8)):

trace

⎛

⎝
d⊗

j=1

A(j)

⎞

⎠ =

d∏

j=1

trace(A(j)). (4.71)

The determinant involving A(j) ∈ K
Ij×Ij equals

det

⎛

⎝
d⊗

j=1

A(j)

⎞

⎠ =

d∏

j=1

(
det(A(j))

)pj
with pj :=

∏

k∈{1,...,d}\{j}
#Ik.

The latter identity for d = 2 is treated in the historical paper by Zehfuss [200]
(cf. §1.6): matrices A ∈ K

p×p and B ∈ K
q×q lead to the determinant

det(A⊗B) = (detA)
q
(detB)

p
.

Further statements about elementary Kronecker products can be found in
Langville-Stewart [137] and Van Loan-Pitsianis [189].

150 4 Banach Tensor Spaces

4.6.4 Hadamard Multiplication

As seen in §1.1.3, univariate functions may be subject of a tensor product producing
multivariate functions. Given two functions f(x) and g(x) with x = (x1, . . . , xd) ∈
[0, 1]d, the (pointwise) multiplication f · g is a standard operation. Replace [0, 1]d

by a finite grid

Gn := {xi : i ∈ I} ⊂ [0, 1]d, where

I = {i=(i1, . . . , id) : 0≤ ij≤n}, xi = (xi1 , . . . , xid) ∈ [0, 1]d, xν = ν/n.

Then the entries ai := f(xi) and bi := g(xi) define tensors in K
I =

⊗d
j=1 K

Ij ,
where Ij = {0, . . . , n} . The pointwise multiplication f ·g corresponds to the entry-
wise multiplication of a and b, which is called Hadamard product:24

a� b ∈ K
I with entries (a� b)i = aibi for all i ∈ I. (4.72a)

Performing the multiplication for all entries would be too costly. For elementary
tensors it is much cheaper to use

⎛

⎝
d⊗

j=1

a(j)

⎞

⎠�

⎛

⎝
d⊗

j=1

b(j)

⎞

⎠ =

d⊗

j=1

(
a(j) � b(j)

)
. (4.72b)

The following rules are valid:
a� b = b� a,

(a′ + a′′)� b = a′ � b+ a′′ � b, (4.72c)

a� (b′ + b′′) = a� b′ + a� b′′.

4.6.5 Convolution

There are various versions of a convolution a � b. First, we consider sequences
from �0(Z) (cf. Example 3.1). The convolution in Z is defined by

c := a � b with cν =
∑

μ∈Z
aμbν−μ (a, b, c ∈ �0(Z)) . (4.73a)

Sequences a ∈ �0(N0) can be embedded into a0 ∈ �0(Z) by setting a0i = ai
for i ∈ N0 and a0i = 0 for i < 0. Omitting the zero terms in (4.73a) yields the
convolution in N0:

c := a � b with cν =

ν∑

μ=0

aμbν−μ (a, b, c ∈ �0(N0)) . (4.73b)

24 Although the name ‘Hadamard product’ for this product is widely used, it does not go back to
Hadamard. However, Issai Schur mentions this product in his paper [169] from 1911. In this sense,
the term ‘Schur product’ would be more correct.

4.6 Tensor Operations 151

The convolution of two vectors a = (a0, . . . , an−1) and b = (b0, . . . , bm−1) ,
with possibly n �= m, yields

c := a � b with cν =

min{n−1,ν}∑

μ=max{0,ν−m+1}
aμbν−μ for 0 ≤ ν ≤ n+m− 2. (4.73c)

Note that the resulting vector has increased length: c = (c0, . . . , cn+m−2) .
For finite a = (a0, a1, . . . , an−1) ∈ �({0, 1, . . . , n− 1}) = K

n, the periodic
convolution (with period n) is explained by

c := a � b with cν =

n−1∑

μ=0

aμb[ν−μ] (a, b, c ∈ K
n) , (4.73d)

where [ν − μ] is the rest class modulo n, i.e., [m] ∈ {0, 1, . . . , n− 1} with [m]−m
being a multiple of n.

Remark 4.135. For a, b ∈ K
n let c ∈ K

2n−1 be the result of (4.73c) and define
cper ∈ K

n by cperν := cν + cν+n for 0 ≤ ν ≤ n − 2 and cpern−1 := cn−1. Then cper

is the periodic convolution result from (4.73d).

The index sets Z, N, In := {0, 1, . . . , n− 1} may be replaced by the d-fold
products Zd, Nd, Idn. For instance, (4.73a) becomes

c := a � b with cν =
∑

μ∈Zd

aμbν−μ
(
a, b, c ∈ �0(Zd)

)
. (4.73e)

For any I ∈ {Z,N, In}, the space �0(Id) is isomorphic to ⊗da�0(I). For elemen-
tary tensors a, b ∈ ⊗da�0(I), we may apply the following rule:
(⊗d

j=1
a(j)

)

�

(⊗d

j=1
b(j)

)

=
⊗d

j=1
a(j)�b(j), a(j), b(j) ∈ �0(I). (4.74)

Note that a � b is again an elementary tensor.
Since almost all entries of a ∈ �0 are zero, the sums in (4.73a) and (4.74) contain

only finitely many nonzero terms. If we replace �0 by some Banach space �p, the
latter sums may contain infinitely many terms and one has to check its convergence.

Lemma 4.136. For a∈�p(Z) and b∈�1(Z), the sum in (4.73a) is finite and produces
a � b ∈ �p(Z) for all 1 ≤ p ≤ ∞; furthermore,

‖a � b‖�p(Z) ≤ ‖a‖�p(Z) ‖b‖�1(Z) .

Proof. Choose any d ∈ �q(Z) with ‖d‖�q(Z) = 1 and 1
p + 1

q = 1. Then the scalar
product 〈d, a � b〉 =

∑
ν,μ∈Z aμbν−μdν can be written as

∑
α∈Z bα

∑
ν∈Z aν−αdν .

Since the shifted sequence (aν−α)ν∈Z has the norm ‖a‖�p(Z) , we obtain
∣
∣
∣
∑

ν∈Z
aν−αdν

∣
∣
∣ ≤ ‖a‖�p(Z) ‖d‖�q(Z) = ‖a‖�p(Z) .

|〈d, a � b〉| can be estimated by
∑
α∈Z |bα| ‖a‖�p(Z) = ‖a‖�p(Z) ‖b‖�1(Z). Since �q

is isomorphic to (�p)′ for 1≤p<∞, the assertion is proved except for m=∞. The
latter case is an easy conclusion from |cν |≤‖a‖�∞(Z) ‖b‖�1(Z) (cf. (4.73a)). ��

152 4 Banach Tensor Spaces

So far, discrete convolutions have been described. Analogous integral versions
for univariate functions are

(f � g) (x) =

∫ ∞

−∞
f(t)g(x− t)dt, (f � g) (x) =

∫ x

0

f(t)g(x− t)dt, (4.75a)

(f � g) (x) =

∫ 1

0

f(t)g([x− t])dt, where [x] ∈ [0, 1), [x]− x ∈ Z. (4.75b)

The multivariate analogue of (4.75a) is

(f � g) (x) =

∫

Rd

f(t1, . . . , td) g(x1 − t1, . . . , xd − td) dt1. . .dtd.

Again, elementary tensors f(x) =
∏d
j=1 f

(j)(xj) and g(x) =
∏d
j=1 g

(j)(xj)
satisfy the counterpart of (4.74):

(
d⊗

j=1

f (j)

)

�

(
d⊗

j=1

g(j)

)

=

d⊗

j=1

(
f (j) � g(j)

)
, (4.75c)

i.e., the d-dimensional convolution can be reduced to d one-dimensional ones.

4.6.6 Function of a Matrix

A square matrix of size n × n has n eigenvalues λi ∈ C (1 ≤ i ≤ n, counted
according to their multiplicity). They form the spectrum

σ(M) := {λ ∈ C : λ eigenvalue of M} .

The spectral radius is defined by

ρ(M) := max {|λ| : λ ∈ σ(M)} . (4.76)

Let f : Ω ⊂ C → C be a holomorphic function25 with open domain Ω. The
application of f to a matrix M is possible if

σ(M) ⊂ Ω .

Proposition 4.137. (a) Assume M ∈ C
I×I and let D be an (open) domain with

σ(M) ⊂ D ⊂ D ⊂ Ω. Then a holomorphic function on Ω gives rise to a matrix
f(M) ∈ C

I×I defined by

f(M) :=
1

2πi

∫

∂D

(ζI −M)
−1
f(ζ) dζ . (4.77a)

(b) Assume that f(z) =
∑∞
ν=0 aνz

ν converges for |z| < R with R > ρ(M). Then
an equivalent definition of f(M) is

25 Functions with other smoothness properties can be considered too. Compare §13.1 in [86].

4.6 Tensor Operations 153

f(M) =

∞∑

ν=0

aνM
ν . (4.77b)

Important functions are, e.g.,

f(z) = exp(z), f(z) = exp(
√
z), if σ(M) ⊂ {z ∈ C : ,e(z) > 0},

f(z) = 1/z if 0 /∈ σ(M).

Lemma 4.138. If f(M) is defined, then

f (I⊗. . .⊗I ⊗M ⊗ I⊗. . .⊗I) = I⊗. . .⊗I ⊗ f(M)⊗ I⊗. . .⊗I.

Proof. Set M := I⊗ . . .⊗I⊗M⊗I⊗ . . .⊗I and I :=
⊗d

j=1 I. As σ(M) = σ(M)
(cf. Lemma 4.129), f(M) can be defined by (4.77a) if and only if f(M) is well-
defined. (4.77a) yields f(M) := 1

2πi

∫
∂D

(ζI −M)−1f(ζ)dζ. Use

ζI−M = I⊗. . .⊗I ⊗ (ζI)⊗ I⊗. . .⊗I − I⊗. . .⊗I ⊗M ⊗ I⊗. . .⊗I
= I⊗. . .⊗I ⊗ (ζI −M)⊗ I⊗. . .⊗I

and (4.70a) and proceed by

f(M) =
1

2πi

∫

∂D

(
I⊗. . .⊗I ⊗ (ζI −M)−1 ⊗ I⊗. . .⊗I

)
f(ζ) dζ

= I⊗. . .⊗I ⊗
(

1

2πi

∫

∂D

(ζI −M)
−1
f(ζ)dζ

)

⊗ I⊗. . .⊗I

= I⊗. . .⊗I ⊗ f(M)⊗ I⊗. . .⊗I . ��

For later use, we add rules about the exponential function.

Lemma 4.139. (a) IfA,B ∈ C
I×I are commutative matrices (i.e.,AB=BA), then

exp(A) exp(B) = exp(A+B). (4.78a)

(b) Let A(j) ∈ K
Ij×Ij and

A =A(1) ⊗ I⊗. . .⊗I + I ⊗A(2) ⊗ . . .⊗ I + . . . (4.78b)

+ I⊗. . .⊗I ⊗ A(d−1) ⊗ I + I⊗. . .⊗I ⊗A(d) ∈ K
I×I.

Then

exp(tA) =
d⊗

j=1

exp(tA(j)) (t ∈ K). (4.78c)

Proof. The d terms in (4.78b) are pairwise commutative, therefore (4.78a) proves
exp(A)=

∏d
j=1exp(A

(j)) for A(j) := I⊗. . .⊗I⊗A(j)⊗ I⊗. . .⊗I . Lemma 4.138

shows exp(A(j))=I⊗. . .⊗I⊗exp(A(j))⊗I⊗. . .⊗I. Thanks to (4.69), their product
yields

⊗d
j=1 exp(A

(j)). Replacing A(j) by tA(j), (4.78c) can be concluded. ��

154 4 Banach Tensor Spaces

Finally, we mention quite a different kind of a function application to a tensor.
Let v ∈ K

I with I = I1 × . . . × Id. Then the entry-wise application of a function
f : K→ K yields

f(v) ∈ K
I with f(v)i := f(vi) for all i ∈ I.

For a matrix v ∈ K
n×m this is a rather unusual operation. It becomes more natural,

when we consider multivariate functions C(I) defined on I= I1×. . .×Id (product
of intervals). Let ϕ∈C(I)= ‖·‖∞

⊗d
j=1C(Ij). Then the definition

f(ϕ) ∈ C(I) with (f(ϕ)) (x) = f (ϕ(x)) for all x ∈ I

shows that f(ϕ) = f ◦ ϕ is nothing than the usual composition of mappings.
If f is a polynomial, one can use the fact that the power function f(x) = xn

applied to v coincides with the n-fold Hadamard product (4.72a). But, in general,
not even for elementary tensors v the result f(v) has an easy representation.

4.7 Symmetric and Antisymmetric Tensor Spaces

4.7.1 Hilbert Structure

Given a Hilbert space (V, 〈·, ·〉V), define 〈·, ·〉 on V by the induced scalar product
(4.62). We recall the set P of permutations and the projections PS, PA (cf. §3.5.1):
PS and PA are orthogonal projections from V onto the symmetric tensor space S
and the antisymmetric tensor space A, respectively (cf. Proposition 3.63).

As a consequence, e.g., the identities

〈PA(u), PA(v)〉 = 〈PA(u),v〉 = 〈u, PA(v)〉 , (4.79a)

〈PA(u),APA(v)〉 = 〈PA(u),PA(Av)〉=〈PA(u),Av〉=〈u,APA(v)〉 (4.79b)

hold for all u,v ∈ V and symmetric A ∈ L(V,V).
By definition of the induced scalar product (4.62), the scalar product 〈u,v〉 of

elementary tensors u and v reduces to products of scalar products in V . In A,
elementary tensors u =

⊗d
j=1 u

(j) are to be replaced by PA

(⊗d
j=1 u

(j)
)
. Their

scalar product reduces to determinants of scalar products in V .

Lemma 4.140. Antisymmetrised elementary tensors satisfy the product rule

〈

PA

(d⊗

j=1

u(j)
)

, PA

(d⊗

j=1

v(j)
)〉

=
1

d!
det

(
〈u(i), v(j)〉V

)

i,j=1,...,d
. (4.80)

Proof. The left-hand side equals
〈⊗d

j=1u
(j), PA(

⊗d
j=1v

(j))
〉

because of (4.79a).
Definitions (3.44) and (3.45) show that

4.7 Symmetric and Antisymmetric Tensor Spaces 155

〈
d⊗

j=1

u(j), PA

(d⊗

j=1

v(j)
)〉

=
1

d!

〈
d⊗

j=1

u(j),
∑

π∈P
sign(π)π

(d⊗

j=1

v(j)
)〉

=
1

d!

〈
d⊗

j=1

u(j),
∑

π∈P
sign(π)

d⊗

j=1

v(π(j))

〉

=
1

d!

∑

π∈P
sign(π)

d∏

j=1

〈
u(j), v(π(j))

〉

V
.

A comparison with (3.48) finishes the proof. ��

Corollary 4.141. For biorthonormal systems {u(j)} and {v(j)}, i.e., 〈u(i), v(j)〉V =
δij , the right-hand side in (4.80) becomes 1/d! . The systems are in particular
biorthonormal, if u(j) = v(j) forms an orthonormal system.

Let {bi : i∈I} be an orthonormal system in V with #I≥d. For (i1, . . . , id)∈Id
define the elementary tensor

e(i1,...,id) :=

d⊗

j=1

bij .

If (i1, . . . , id) contains two identical indices, PA(e
(i1,...,id)) = 0 follows.

Remark 4.142. For two tuples (i1, . . . , id) and (j1, . . . , jd) consisting of d different
indices, the following identity holds:

〈
PA(e

(i1,...,id)), PA(e
(j1,...,jd))

〉

=

{
sign(π)/d! if π (i1, . . . , id) = (j1, . . . , jd) for some π ∈ P,
0 otherwise.

Proof. 〈PA(e
(i1,...,id)), PA(e

(j1,...,jd))〉 = 〈e(i1,...,id), PA(e
(j1,...,jd))〉 follows from

(4.79a). If {i1, . . . , id} = {j1, . . . , jd} , there is π ∈ P with π(i1, . . . , id) =

(j1, . . . , jd), and PA(e
(j1,...,jd)) contains a term sign(π)

d! e(i1,...,id). All other terms
are orthogonal to e(i1,...,id). ��

4.7.2 Banach Spaces and Dual Spaces

Let V be a Banach space (possibly, a Hilbert space) with norm ‖·‖V . The norm of
the algebraic tensor space Valg = ⊗daV is denoted by ‖·‖. We require that ‖·‖ is
invariant with respect to permutations, i.e.,

‖v‖ = ‖π (v)‖ for all π ∈ P and v ∈ ⊗daV. (4.81)

Conclusion 4.143. Assume (4.81). The mapping π : ⊗daV → ⊗daV corresponding
to π ∈ P as well as the mappings PS and PA are bounded by 1.

156 4 Banach Tensor Spaces

Proof. The bound for π is obvious. For PS use that ‖PS‖ =
∥
∥ 1
d!

∑
π∈P π

∥
∥ ≤

1
d!

∑
π∈P ‖π‖ = 1

d!d! = 1 holds for the operator norm. Similarly for PA. ��

V‖·‖ := ⊗d‖·‖V is defined by completion with respect to ‖·‖.

Lemma 4.144. Assume (4.81). Denote the algebraic symmetric and antisymmetric
tensor spaces by Salg(V) and Aalg(V). Both are subspaces of Valg. The completion
of Salg(V) and Aalg(V) with respect to ‖·‖ yields subspaces S‖·‖(V) and A‖·‖(V)
of V‖·‖. An equivalent description of S‖·‖(V) and A‖·‖(V) is

S‖·‖(V) =
{
v ∈ V‖·‖ : v = π (v) for all π ∈ P

}
,

A‖·‖(V) =
{
v ∈ V‖·‖ : v = sign(π)π (v) for all π ∈ P

}
.

Proof. 1) By Conclusion 4.143, π is continuous. For any sequence vn ∈ Salg(V)
with vn → v ∈ S‖·‖(V) the property vn = π (vn) is inherited by v ∈ S‖·‖(V).

2) Vice versa, let v ∈ V‖·‖ with v = π (v) for all π ∈ P. This is equivalent to
v = PS (v) . Let vn → v for some vn ∈ Valg and construct

un := PS(vn) ∈ Salg(V).

Continuity of PS (cf. Conclusion 4.143) implies

u := limun = PS(limvn) = PS (v) ∈ V‖·‖;

hence v = u lies in the completion S‖·‖(V) of Salg(V). Analogously for the space
A‖·‖(V). ��

Any dual form ϕ ∈ ⊗daV ′ is also a dual form on the subspaces Salg(V) and
Aalg(V). For π ∈ P let π′ be the dual mapping, i.e., π′(

⊗d
j=1 ϕj) ∈ ⊗daV ′ acts as

(
π′
⊗d

j=1 ϕj
)
(v) = ϕ (π(v)). One concludes that π′

⊗d
j=1 ϕj =

⊗d
j=1 ϕπ(j) and

that all ϕ ∈ ⊗daV ′ with P ′Sϕ = 0 represent the zero mapping on Salg(V). Thus,
⊗daV ′ reduces to the quotient space⊗daV ′/ kerP ′S.A comparison with (3.47) shows
that ⊗daV ′/ kerP ′S can be viewed as the symmetric tensor space Aalg(V

′) derived
from V ′. Similarly, Aalg(V

′) ∼= ⊗daV ′/ kerP ′A.
The same statements hold for the continuous functionals:

S‖·‖∗(V
∗) ∼=

(
⊗d‖·‖∗ V ∗

)
/ kerP ∗S and

A‖·‖∗(V
∗) ∼=

(
⊗d‖·‖∗ V ∗

)
/ kerP ∗A,

where by the previous considerations kerP ∗S and kerP ∗A are closed subspaces.

Chapter 5
General Techniques

Abstract In this chapter, isomorphisms between the tensor space of order d
and vector spaces or other tensor spaces are considered. The vectorisation from
Sect. 5.1 ignores the tensor structure and treats the tensor space as a usual vector
space. In finite dimensional implementations this means that multivariate arrays are
organised as linear arrays. After vectorisation, linear operations between tensor
spaces become matrices expressed by Kronecker products (cf. §5.1.2).
While vectorisation ignores the tensor structure completely, matricisation keeps one
of the spaces and leads to a tensor space of order two (cf. Sect. 5.2). In the finite
dimensional case, this space is isomorphic to a matrix space. The interpretation as
matrix allows to formulate typical matrix properties like the rank leading to the
j-rank for a direction j and the α-rank for a subset α of the directions 1, . . . , d.
In the finite dimensional or Hilbert case, the singular value decomposition can be
applied to the matricised tensor.
In Sect. 5.3, the tensorisation is introduced, which maps a vector space (usually
without any tensor structure) into an isomorphic tensor space. The artificially con-
structed tensor structure allows interesting applications. While Sect. 5.3 gives only
an introduction into this subject, details about tensorisation will follow in Chap. 14.

5.1 Vectorisation

5.1.1 Tensors as Vectors

In program languages, matrices or multi-dimensional arrays are mapped internally
into a linear array (vector) containing the entries in a lexicographical ordering. Note
that the ordering is not uniquely determined (even different program languages may
use different lexicographical orderings). Without further data, it is impossible to
restore a matrix or even its format from the vector. This fact expresses that structural
data are omitted.

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 5,
© Springer-Verlag Berlin Heidelberg 2012

157

158 5 General Techniques

Vectorisation is implicitly expressed by the notation (1.5) for Kronecker matrices.
Applying this notation to n × 1 matrices which are regarded as (column) vectors,
(1.5) becomes

a⊗ b =

⎡

⎢
⎣

a1b
a2b

...

⎤

⎥
⎦ ∈ K

n·m for a =

⎡

⎢
⎣

a1
a2
...

⎤

⎥
⎦ ∈ K

n and b =

⎡

⎢
⎣

b1
b2
...

⎤

⎥
⎦ ∈ K

m.

Hence, the resulting tensor is immediately expressed as vector in K
n·m. Only with

this vectorisation, Kronecker products of matrices A ∈ K
n×n and B ∈ K

m×m can
be interpreted as matrices from K

n·m×n·m.
For a mathematical formulation of the vectorisation assume Vj = K

Ij with nj :=
#Ij < ∞. Choose any index set J with #J =

∏d
j=1 nj together with a bijection

φ : I1 × . . . × Id → J. This defines the isomorphism Φ : V =
⊗d

j=1 Vj → K
J

between the tensor space V and the vector space K
J . Tensor entries v[i1, . . . , id]

are mapped into vector entries v[φ(i1, . . . , id)] and vice versa. Note that Φ is a
vector space isomorphism in the sense of §3.2.5.

In the case of a linear system with n equations and unknowns, we are used to
deal with vectors x, b and a matrix M :

Mx = b
(
M ∈ K

J×J , x, b ∈ K
J
)
. (5.1a)

In particular, LU and Cholesky decompositions require an ordered index set J, e.g.,
J = {1, . . . , N} with N := #J.

An example, where such a system is described differently, are matrix equations,
e.g., the Lyapunov matrix equation

AX +XA� = B, (5.1b)

where matrices A,B ∈ K
I×I are given and the solution X ∈ K

I×I is sought.
Let n := #I. The number of unknown entries Xij is n2. Furthermore, Eq. (5.1b)
is linear in all unknowns Xij , i.e., (5.1b) turns out to represent a linear system of
n2 equations for n2 unknowns. Lemma 5.1 from below allows us to translate the
Lyapunov equation (5.1b) into

Ax = b, (5.1c)

where x,b ∈ V := K
I ⊗ K

I are tensors and A ∈ L(V,V) is the following
Kronecker product:

A = A⊗ I + I ⊗A ∈ L(V,V). (5.1d)

Using the vectorisation isomorphism Φ : V→ K
J from above, we obtain the linear

system (5.1a) with M = ΦAΦ−1, x = Φx, and b = Φb.

Lemma 5.1. The matrices U, V ∈ K
I×I define Kronecker products U = U ⊗ I,

V = I ⊗ V , W = U ⊗ V ∈ L(KI⊗ K
I ,KI⊗ K

I). The products Ux, Vx, and
Wx correspond to UX , XV �, and UXV �, where X ∈ K

I×I is the matrix inter-
pretation of the tensor x ∈ K

I⊗K
I .

5.1 Vectorisation 159

Proof. W :=UXV � has the matrix coefficients Wi,j=
∑
k,�∈I Ui,kXk,� Vj,�. The

Kronecker matrix W = U ⊗ V has the entries W(i,j),(k,�) = Ui,k Vj,�. Hence,

(Wx)(i,j) =
∑

(k,�)∈I×I
W(i,j),(k,�) x(k,�) =Wi,j .

The special cases U=I or V =I yield the first two statements. ��

From (5.1d) we easily conclude that a positive definite matrix A in (5.1b) leads
to a positive definite matrix M and, therefore, enables a Cholesky decomposition.

5.1.2 Kronecker Tensors

As already mentioned in the previous section, the interpretation of a Kronecker
tensor product as a matrix is based on vectorisation. However, there is a second
possibility for vectorisation. Matrices, which may be seen as tensors of order two,
can be mapped isomorphically into vectors. This will be done by the mappings φj
from below.

Let Ij and Jj be the index sets of the matrix space Mj :=K
Ij×Jj . An isomorphic

vector space is Vj := K
Kj with Kj = Ij × Jj . The following isomorphism φj

describes the vectorisation:

φj :Mj → Vj , A(j) =
(
A

(j)
�,m

)
�∈Ij ,m∈Jj

�→ a(j) := φj(A
(j)) =

(
a
(j)
i

)
i∈Kj

.

We identify M :=
⊗d

j=1Mj with the matrix space K
I×J, where I :=×d

j=1Ij

and J := ×d
j=1Jj , while V :=

⊗d
j=1Vj is identified with the vector space K

K

for K :=×d
j=1Kj =×d

j=1(Ij×Jj) . Note that the matrix-vector multiplication
y = Mx is written as yi =

∑
j∈J Mijxj for i ∈ I.

Elementary tensors A=
⊗d

j=1A
(j)∈M and a=

⊗d
j=1a

(j)∈V have the entries

A[(�1, . . . , �d) , (m1, . . . ,md)] =
d∏

j=1

A
(j)
�j ,mj

and a[i1 . . . , id] =
d∏

j=1

a
(j)
ij
.

Define a(j) by φj(A
(j)). Then a =

(⊗d
j=1 φj

)
(A) holds and gives rise to the

following definition:

Φ =
⊗d

j=1
φj : A ∈M �→ a ∈ V with

A[(�1,..., �d) , (m1,...,md)] �→ a[(�1,m1) ,..., (�d,md)] for (�j ,mj)∈Kj .

Φ can be regarded as vectorisation of the Kronecker matrix space M. For d ≥ 3,
we have the clear distinction that M is a matrix space, whereas V is a tensor space

160 5 General Techniques

of order d ≥ 3. For d = 2, however, also V can be viewed as a matrix space (cf.
Van Loan-Pitsianis [189]).

Remark 5.2. Suppose that d = 2.

(a) The matrix A with entries A[(�1, �2) , (m1,m2)] is mapped by Φ into a with
entries a[(�1,m1) , (�2,m2)]. Since d = 2, the tensor a can again be viewed as a
matrix from K

K1×K2 . Note that, in general, a ∈ K
K1×K2 is of another format than

A ∈ K
I×J. However, #(K1 ×K2) = #(I× J) holds, and A and a have the same

Frobenius norm, i.e., Φ is also isometric (cf. Remark 2.8).

(b) The singular value decomposition of A in the sense of Lemma 3.18 can be
applied as follows. Apply Lemma 3.18 to a=Φ(A) resulting in a =

∑r
i=1 σi xi⊗yi

(xi ∈ V1, yi ∈ V2). Then application of Φ−1 yields

A =

r∑

i=1

σiXi ⊗ Yi with Xi = φ−11 (xi), Yi = φ−12 (yi). (5.2)

Note that (5.2) is not the singular value decomposition of the matrix A.

As an illustration of Part (a) consider the identity matrix A = I for the index
sets I1 = J1 = {1, 2} and I2 = J2 = {a, b, c}. The matrices A and a = Φ(A)
are given below together with the indices for the rows and columns (only nonzero
entries are indicated):

A =

1a 1b 1c 2a 2b 2c
1a 1
1b 1
1c 1
2a 1
2b 1
2c 1

�→
Φ

a =

aa ab ac ba bb bc ca cb cc
11 1 1 1
12
21
22 1 1 1

5.2 Matricisation

Synonyms for ‘matricisation’ are ‘matrix unfolding’ or ‘flattening’. We prefer the
first term, since it clearly indicates the correspondence to matrices (at least in the
finite dimensional case).

We recall the two types of isomorphisms discussed in §3.2.5. The strongest form
is the tensor space isomorphism which preserves the tensor structure (cf. Defini-
tion 3.27). The weakest form is the vector space isomorphism which identifies
all tensor spaces V and W of same dimension not regarding the tensor struc-
ture. An intermediate form groups the d spaces Vj from V =

⊗d
j=1Vj such that

the order is reduced. For instance,
⊗5

j=1Vj is isomorphic to the rearrangement

5.2 Matricisation 161

Vnew=(V1 ⊗ V5)⊗ (V2 ⊗ V3)⊗ V4, which is a tensor space of order dnew=3. In
this setting, vectorisation results from dnew=1, while matricisation corresponds to
dnew=2. Since tensor spaces of order two are close to matrix spaces, matricisation
tries to exploit all features of matrices.

In the following we use the sign ⊗ without subscripts ⊗a or ⊗‖·‖, since both
cases are allowed.

5.2.1 General Case

To get dnew=2,we have to divide the whole index set {1, . . . , d} into two (disjoint)
subsets. For a systematic approach we introduce the set

D = {1, . . . , d} (5.3a)

and consider proper subsets
∅ � α � D. (5.3b)

The complement of α is denoted by

αc := D\α. (5.3c)

We define the (partial) tensor spaces

Vα =
⊗

j∈α
Vj for α ⊂ D, (5.3d)

which include the cases V∅ = K for α = ∅ and VD = V for α = D. For singletons
we have the synonymous notation

V{j} = Vj (j ∈ D). (5.3e)

Instead of V{j}c ˆ for the complement {j}c we have already introduced the symbol

V[j] =
⊗

k∈D\{j}
Vk

(cf. (3.21a)). Depending on the context, the spaces Vα and V[j] may be algebraic or
topological tensor spaces. Concerning the (choice of the) norm of the partial tensor
space Vα in the case of ∅ � α � D, we refer to §4.3.2.

Below, we introduce the isomorphismMα from V onto the binary tensor space
Vα ⊗Vαc :

V =
⊗

j∈D
Vj ∼= Vα ⊗Vαc . (5.4)

Often, α is a singleton {j}, i.e., Vα = V{j} = Vj . In this case, (5.4) becomes
V ∼= Vj ⊗V[j] and the isomorphism is denoted byMj .

162 5 General Techniques

Definition 5.3 (Mα,Mj). The matricisation Mα with α from1 (5.3b) is the iso-
morphism2

Mα :
⊗

k∈D Vk → Vα ⊗Vαc
⊗

k∈D v
(k) �→ v(α)⊗ v(αc) with v(α)=

⊗

k∈α
v(k), v(αc)=

⊗

k∈αc

v(k).

In particular, for j ∈ D,Mj is the isomorphism

Mj :
⊗

k∈D Vk → Vj ⊗V[j]

⊗
k∈D v

(k) �→ v(j) ⊗ v[j] with v[j] =
⊗

k∈D\{j} v
(k).

Next, we check howMα(v) behaves when we apply an elementary Kronecker
product

⊗d
j=1A

(j) : V →W to v. This includes the case of a tensor space iso-
morphismΦ : V→W (cf. Definition 3.27).

Remark 5.4. For V=
⊗d

j=1Vj and W=
⊗d

j=1Wj let A :=
⊗d

j=1A
(j) :V→W

be an elementary Kronecker product. For α from (5.3b) set A(α) :=
⊗

j∈α A
(j) and

A(αc) :=
⊗

j∈αc A(j). Then,

Mα(Av) =
(
A(α) ⊗A(αc)

)
Mα(v) for all v ∈ V.

If A(j) : Vj → Wj are isomorphisms, A(α) ⊗ A(αc) describes the isomorphism
between Vα ⊗Vαc and Wα ⊗Wαc .

5.2.2 Finite Dimensional Case

5.2.2.1 Example

For finite dimensions, the binary tensor space Vα ⊗ Vαc resulting from the
matricisation may be interpreted as matrix space (cf. §3.2.3). If, e.g., Vj = K

Ij ,

thenMα maps into3
K

Iα×Iαc, where Iα =×k∈α Ik and Iαc =×k∈αc Ik. Hence,
a tensor v with entries v[(iκ)κ∈D] becomes a matrix M = Mα(v) with entries
M [(iκ)κ∈α , (iλ)λ∈αc].

To demonstrate the matricisations, we illustrate allMα for a small example.

1 By condition (5.3b) we have avoided the empty set α = ∅ and α = D (⇒ αc = ∅). Since
the empty tensor product is interpreted as the field K, one may view MD : V → V ⊗ K as the
vectorisation (column vector) and M∅ : V → K⊗V as mapping into a row vector.
2 In the case of Banach tensor spaces, the isomorphism must also be isometric.
3 This means that Mα is replaced by Ξ−1 ◦Mα, where Ξ is the isomorphism from the matrix
space K

Iα×Iαc onto the tensor space Vα ⊗Vαc (see Proposition 3.14). For simplicity, we write
Mα instead of Ξ−1 ◦Mα.

5.2 Matricisation 163

Example 5.5. Below, all matricisations are given for the tensor

v ∈ K
I1 ⊗K

I2 ⊗K
I3 ⊗K

I4 with I1 = I2 = I3 = I4 = {1, 2}.

The matrix M1(v) belongs to K
I1×J with J = I2 × I3 × I4. For the sake of

the following notation we introduce the lexicographical ordering of the triples from
I2 × I3 × I4 : (1, 1, 1) , (1, 1, 2) , (1, 2, 1) , . . . , (2, 2, 2). Under these assumptions,
K
I1×J becomes K2×8 : 4

M1(v) =

(
v1111 v1112 v1121 v1122 v1211 v1212 v1221 v1222

v2111 v2112 v2121 v2122 v2211 v2212 v2221 v2222

)

.

M2(v) belongs to K
I2×J with J = I1× I3× I4. Together with the lexicographical

ordering in J we get

M2(v) =

(
v1111 v1112 v1121 v1122 v2111 v2112 v2121 v2122

v1211 v1212 v1221 v1222 v2211 v2212 v2221 v2222

)

.

Similarly,

M3(v) =

(
v1111 v1112 v1211 v1212 v2111 v2112 v2211 v2212

v1121 v1122 v1221 v1222 v2121 v2122 v2221 v2222

)

,

M4(v) =

(
v1111 v1121 v1211 v1221 v2111 v2121 v2211 v2221

v1112 v1122 v1212 v1222 v2112 v2122 v2212 v2222

)

.

Next, we consider α = {1, 2}.M{1,2}(v) belongs to K
I×J with I = I1 × I2

and J = I3 × I4. Lexicographical ordering of I and J yields a matrix from K
4×4 :

M{1,2}(v) =

⎛

⎜
⎜
⎝

v1111 v1112 v1121 v1122

v1211 v1212 v1221 v1222

v2111 v2112 v2121 v2122

v2211 v2212 v2221 v2222

⎞

⎟
⎟
⎠ .

Similarly,

M{1,3}(v) =

⎛

⎜
⎜
⎝

v1111 v1112 v1121 v1212

v1121 v1122 v1221 v1222

v2111 v2112 v2211 v2212

v2121 v2122 v2221 v2222

⎞

⎟
⎟
⎠ ,

M{1,4}(v) =

⎛

⎜
⎜
⎝

v1111 v1121 v1112 v1221

v1112 v1122 v1212 v1222

v2111 v2121 v2211 v2221

v2112 v2122 v2212 v2222

⎞

⎟
⎟
⎠ .

The further Mα(v) are transposed versions of the already described matrices:
M{2,3} = MT

{1,4}, M{2,4} = MT
{1,3}, M{3,4} = MT

{1,2}, M{1,2,3} = MT
4 ,

M{1,2,4} =MT
3 ,M{1,3,4} =MT

2 ,M{2,3,4} =MT
2 .

4 Bold face indices correspond to the row numbers.

164 5 General Techniques

5.2.2.2 Invariant Properties and α-Rank

The interpretation of tensors v as matrices M enables us

(i) to transfer the matrix terminology from M to v,
(ii) to apply all matrix techniques to M.

In Remark 3.15 we have considered an isomorphism v ∼= M and stated that
the multiplication of a tensor by a Kronecker product A⊗B has the isomorphic
expression (A⊗B)v ∼= AMBT. More generally, the following statement holds,
which is the matrix interpretation of Remark 5.4.

Lemma 5.6. Let v ∈ V=
⊗

j∈D K
Ij and A=

⊗
j∈DA

(j) ∈
⊗

j∈DL(K
Ij ,KJj).

The product Av ∈W =
⊗

j∈D K
Jj satisfies

Mα(Av)=A(α)Mα(v)A
(αc)T with A(α)=

⊗

j∈α
A(j), A(αc)=

⊗

j∈αc

A(j). (5.5)

In particular, if all A(j) are regular matrices, the matrix ranks of Mα(Av) and
Mα(v) coincide.

Proof. Define the index sets Iα :=×j∈αIj and Iαc :=×j∈αcIj , and similarly Jα
and Jαc . In the following, the indices i ∈ I :=×j∈DIj are written as (i′, i′′) with
i′ ∈ Iα and i′′ ∈ Iαc . Similarly for j = (j′, j′′) ∈ J. Note that •j′,j′′ denotes a
matrix entry, while •j = •(j′,j′′) is a tensor entry. The identity

Mα(Av)j′,j′′ = (Av)(j′,j′′) =
∑

i∈I
A(j′,j′′),ivi =

∑

i′∈Iα

∑

i′′∈Iαc

A(j′,j′′),(i′,i′′)v(i′,i′′)

=
∑

i′∈Iα

∑

i′′∈Iαc

A
(α)
j′,i′v(i′,i′′)A

(αc)
j′′,i′′ =

∑

i′∈Iα

∑

i′′∈Iαc

A
(α)
j′,i′Mα(v)i′,i′′A

(αc)
j′′,i′′

proves (5.5). ��

According to item (i), we may define the matrix rank ofMα(v) as a property of
v. By Lemma 5.6, the rank ofMα(v) is invariant under tensor space isomorphisms.

Definition 5.7 (rankα). For any5 α ⊂ D from (5.3b) and all j ∈ D we define

rankα(v) := rank (Mα(v)) , (5.6a)

rankj(v) := rank{j}(v) = rank (Mj(v)) . (5.6b)

In 1927, Hitchcock [100, p. 170] has introduced rankj(v) as ‘the rank on the
jth index’. Also rankα(v) is defined by him as the ‘α-plex rank’. We shall call it
j-rank or α-rank, respectively. Further properties of the α-rank will follow in
Lemma 6.19 and Corollary 6.20.

5 Usually, we avoid α = ∅ and α = D. Formally, the definition of M∅, MD from Footnote 1
yields rank∅(v) = rankD(v) = 1 for v �= 0 and rank∅(0) = rankD(0) = 0, otherwise.

5.2 Matricisation 165

The tensor rank defined in (3.24) is not directly related to the family of ranks
{rankα(v) : ∅ � α � D} from (5.6a) or the ranks {rankj(v) : j ∈ D} from (5.6b).
Later, in Remark 6.21, we shall prove

rankα(v) ≤ rank(v) for all α ⊂ D.

Remark 5.8. Let ‖·‖ be the Euclidean norm in V=
⊗d

j=1K
Ij (cf. Example 4.126),

while ‖·‖F is the Frobenius norm for matrices (cf. (2.9). Then, the norms coincide:

‖v‖ = ‖Mα(v)‖F for all ∅ � α � {1, . . . , d} and all v ∈ V.

Proof. Use Remark 2.8. ��

5.2.2.3 Singular Value Decomposition

Later, singular values ofMα(v) will be important. The next proposition compares
the singular values ofMα(v) andMα(Av).

Proposition 5.9. Let v∈V=
⊗

κ∈DK
Iκ . The Kronecker matrix A=A(α)⊗A(αc)

is assumed to be composed of A(α) ∈ L(Vα,Vα) and A(αc) ∈ L(Vαc ,Vαc) with
the properties A(α)HA(α)≤I and A(αc)HA(αc)≤I. Then the singular values fulfil

σk(Mα(Av)) ≤ σk(Mα(v)) for all k ∈ N.

Proof. CombineMα(Av) = A(α)Mα(v)A
(αc)T from (5.5) and Lemma 2.27c.��

Corollary 5.10. The assumptions of Proposition 5.9 are in particular satisfied, if
A(α) and A(αc) are orthogonal projections.

Remark 5.11. The reduced singular value decomposition

Mα(v) = UΣV T =

rα∑

i=1

σ
(α)
i uiv

T
i

(σi > 0, ui, vi columns of U and V, rα = rankα(v)) translates into

v =

rα∑

i=1

σ
(α)
i ui ⊗ vi (ui ∈ Vα, vi ∈ Vαc). (5.7)

Here, ui and vi are the isomorphic vector interpretations of the tensors ui, vi.

Remark 5.12. (a) In the case of matrices (i.e., D = {1, 2}), the ranks are equal:6

rank1(v)=rank2(v). Further, the singular values ofMα(v) coincide: σ(1)
i =σ

(2)
i .

(b) If d ≥ 3, the values rankk(v) (k ∈ D) may not coincide. Furthermore, the

6 The true generalisation of this property for general d is Eq. (6.17a).

166 5 General Techniques

singular values σ(k)
i ofMk(v) may be different; however, the following quantity is

invariant:

rankk(v)∑

i=1

(
σ
(k)
i

)2
= ‖v‖22 for all k ∈ D (‖·‖2 from (4.126)).

Proof. 1) Let v(i,j) =Mi,j be the isomorphism between v ∈ K
I = K

I1 ⊗K
I2 and

the matrix M ∈ K
I1×I2 . ThenM1(v) = M, whileM2(v) = MT. Since M and

MT have identical rank and identical singular values, Part (a) follows.
2) Consider the tensor v = a1 ⊗ a2 ⊗ a3 + a1 ⊗ b2 ⊗ b3 ∈

⊗3
j=1 K

2 with
ai =

(
1
0

)
(i = 1, 2, 3) and bi =

(
0
1

)
(i = 2, 3). We have

M1(v) = a1 ⊗ c ∈ K
2 ⊗

(
K

2 ⊗K
2
) ∼= K

2 ⊗K
4

with c := a2 ⊗ a3 + b2 ⊗ b3 ∼= (1 0 0 1) ∈ K
4 (i.e.,M1(v) ∼=

(
1 0 0 1
0 0 0 0

)
has rank 1),

whereas

M2(v) = a2 ⊗ c+ b2 ⊗ d ∼=
(c

d

)
with

{
c := a1 ⊗ a3 ∼= c := (1 0 0 0) ,
d := a1 ⊗ b3 ∼= d := (0 1 0 0)

has two linearly independent rows and therefore rank 2.
3) Since the rank is also the number of positive singular values, they must be

different for the given example. The sum of the squared singular values is the
squared Frobenius norm of the corresponding matrix: ‖Mk(v)‖2F. Since the matrix
entries ofMk(v) are only a permutation of the entries of v (cf. Example 5.5), the
sum of their squares equals ‖v‖22 . ��

5.2.2.4 Infinite Dimensional Spaces

For infinite dimensional vector spaces Vj , these quantities generalise as follows.
In the finite dimensional case, rank (Mα(v)) is equal to the dimension of the range
ofMα(v) (cf. Remark 2.1), where

range(Mα(v)) = {Mα(v)z : z ∈ Vαc}.

SinceMα(v) ∈ Vα⊗Vαc has the form
∑

ν xν⊗yν (cf. Definition 5.3), the matrix-
vector multiplicationMα(v)z can be considered as

∑
ν z(yν) · xν ∈ Vα, where

z ∈ V ′αc is considered as an element of the dual vector space (for dim(Vαc) < ∞,
V′αc may be identified with Vαc). The mapping

∑
ν xν ⊗ yν �→

∑
ν z(yν) · xν is

denoted by id⊗z. Then the matrix-vector multiplicationMα(v)z may be rewritten
as (id⊗ z)Mα(v). This leads to the notation

rankα(v) := dim {(id⊗ z)Mα(v) : z ∈ V′αc} .

5.2 Matricisation 167

The transition to the dual space V′αc (or V∗αc) is necessary, since, in the infinite
dimensional case,Mα(v) cannot be interpreted as a mapping from Vαc into Vα,

but as a mapping from V′αc into Vα. The set {(id⊗ z)Mα(v) : z ∈ V′αc} on the
right-hand side will be defined in §6 as the minimal subspace Umin

α (v), so that

rankα(v) := dim(Umin
α (v)) (5.8)

is the generalisation to infinite dimensional (algebraic) vector spaces as well as to
Banach spaces.

An identification of V∗αc with Vαc becomes possible, if all Vj are Hilbert spaces.
This case is discussed next.

5.2.3 Hilbert Structure

Next, we consider a pre-Hilbert space V = a

⊗
j∈D Vj and the left-sided singular

value decomposition problem of Mα(v) for some v ∈ V. The standard singular
value decomposition is

Mα(v) =

r∑

i=1

σ
(α)
i ui⊗vi

(

ui∈Vα := a

⊗

j∈α
Vj , vi∈Vαc := a

⊗

j∈αc

Vj

)

(5.9)

with two orthonormal families {ui}, {vi} , and σ(α)
1 ≥ . . . ≥ σ(α)

r > 0. The left-
sided singular value decomposition problem asks for {ui} and {σ(α)

i }. If Vj = K
Ij

allows us to interpretMα(v) as a matrix, the data {ui}, {σ(α)
i } are determined by

LSVD(Iα, Iαc , r,Mα(v), U,Σ) (cf. (2.32)). We recall that its computation may
use the diagonalisation of Mα(v)Mα(v)

H =
∑r
i=1(σ

(α)
i)2 uiu

H
i . In the infinite

dimensional setting, the latter expression can be expressed by the partial scalar
product7 from §4.5.4:

〈Mα(v),Mα(v)〉αc = 〈v,v〉αc ∈ Vα ⊗Vα

Assuming the singular value decompositionMα(v) =
∑r

i=1 σ
(α)
i ui⊗vi (possibly

with r =∞, cf. (4.16)), the partial scalar product yields the diagonalisation

〈Mα(v),Mα(v)〉αc =

〈 r∑

i=1

σ
(α)
i ui ⊗ vi,

r∑

j=1

σ
(α)
j uj ⊗ vj

〉

αc

=
r∑

i=1

r∑

j=1

σ
(α)
i σ

(α)
j 〈vi,vj〉αc
︸ ︷︷ ︸

=δij

ui ⊗ uj =
r∑

i=1

(σ
(α)
i)2 ui ⊗ ui.

7 If the image Mα(v) = v(α) ⊗ v(αc) under the isomorphism Mα : V → V(α) ⊗ V(αc)

is an elementary tensors, the partial scalar product is defined by 〈Mα(v),Mα(v)〉αc =
〈
v(αc),v(αc)

〉
αc ·v(α) ⊗ v(α) ∈ Vα ⊗Vα. The expression 〈v,v〉αc has the same meaning.

168 5 General Techniques

We summarise.

Lemma 5.13. Let V = a

⊗
j∈D Vj

∼= Vα ⊗a Vαc with Vα,Vαc as in (5.9). The
left singular vectors u

(α)
i ∈Vα and singular values σ(α)

i are obtainable from the
diagonalisation

〈Mα(v),Mα(v)〉αc =

r∑

i=1

(
σ
(α)
i

)2
u
(α)
i ⊗ u

(α)
i . (5.10a)

Analogously, the right singular vectors v
(α)
i ∈ Vαc and singular values σ(α)

i are
obtainable from the diagonalisation

〈Mα(v),Mα(v)〉α =

r∑

i=1

(
σ
(α)
i

)2
v
(α)
i ⊗ v

(α)
i . (5.10b)

Corollary 4.131 allows us to determine the partial scalar product 〈·, ·〉β from
〈·, ·〉α if α � β ⊂ D. As a consequence, 〈Mα(v),Mα(v)〉αc can be obtained
from 〈Mβ(v),Mβ(v)〉βc :

〈Mα(v),Mα(v)〉αc = Cβ\α

(
〈Mβ(v),Mβ(v)〉βc

)
(5.11)

with the contraction Cβ\α from Definition 4.130. In order to apply Cβ\α, the tensor
〈Mβ(v),Mβ(v)〉βc ∈ Vβ ⊗ Vβ is interpreted as Vα ⊗ Vβ\α ⊗ Vα ⊗ Vβ\α.
Using basis representations, we obtain the following result.

Theorem 5.14. Assume ∅ � α1 � α ⊂ D and

〈Mα(v),Mα(v)〉αc =

rα∑

i,j=1

e
(α)
ij b

(α)
i ⊗ b

(α)
j ∈ Vα ⊗Vα. (5.12a)

Set α2 := α\α1. Then α = α1∪̇α2 holds. Consider b
(α)
i ∈ Vα as elements of

Vα1 ⊗Vα2 with the representation

b
(α)
i =

rα1∑

ν=1

rα2∑

μ=1

c(i)νμ b
(α1)
ν ⊗ b(α2)

μ . (5.12b)

We introduce the matrices Ci :=
(
c
(i)
νμ

)
∈ K

rα1×rα2 for 1 ≤ i ≤ rα. Then

〈Mαk
(v),Mαk

(v)〉αc
k
=

rα∑

i,j=1

e
(αk)
ij b

(αk)
i ⊗ b

(αk)
j ∈ Vαk

⊗Vαk
(k = 1, 2)

holds with coefficient matrices Eαk
=
(
e
(αk)
ij

)
∈ K

rαk
×rαk defined by

Eα1 =

rα∑

i,j=1

e
(α)
ij CiG

T
α2
CH
j , Eα2 =

rα∑

i,j=1

e
(α)
ij CT

i G
T
α1
Cj , (5.12c)

where Gαk
=
(
g
(αk)
νμ

)
is the Gram matrix with entries g(αk)

νμ =
〈
b
(αk)
μ ,b

(αk)
ν

〉
.

5.2 Matricisation 169

Proof. Insertion of (5.12b) in (5.12a) yields

〈Mα(v),Mα(v)〉αc =

rα∑

i,j=1

e
(α)
ij

∑

ν,μ,σ,τ

c(i)νμ c
(j)
στ b

(α1)
ν ⊗ b(α2)

μ ⊗ b
(α1)
σ ⊗ b

(α2)
τ .

Applying (5.11) with β\α replaced by α2 = α\α1 yields

〈Mα1(v),Mα1 (v)〉αc
1
=

rα∑

i,j=1

e
(α)
ij

∑

ν,μ,σ,τ

c(i)νμ c
(j)
στ

〈
b(α2)
μ ,b(α2)

τ

〉
b(α1)
ν ⊗ b

(α1)
σ

proving e(α1)
νσ =

∑rα
i,j=1 e

(α)
ij

∑
μ,τ c

(i)
νμ c

(j)
στ g

(α2)
τμ , i.e., Eα1 =

∑

i,j=1

e
(α)
ij CiG

T
α2
CH
j .

The case of Eα2 is analogous. ��

Corollary 5.15. Assume the finite dimensional case with orthonormal basis {b(α)
i }.

Form the matrix Bα = [b
(α)
1 b

(α)
2 · · ·]. Then

Mα(v)Mα(v)
H = BαEαB

H
α

holds in the matrix interpretation. In particular, (σ(α)
i)2 = λ

(α)
i is valid for the

singular values σ(α)
i ofMα(v) and the eigenvalues λ(α)i of Eα.

In the following example, we apply the matricisation to a topological Hilbert
tensor space V = ‖·‖

⊗
j∈D Vj with induced scalar product.

Example 5.16. Let Vj = L2(Ij) with Ij ⊂ R for 1 ≤ j ≤ d. Then L2(I) =

‖·‖
⊗d

j=1Vj holds for I =×d
j=1Ij . Consider a function f ∈ L2(I). To obtain the

left singular vectors u(j)i ∈L2(Ij), we have to form the operator

Kj :=Mj(f)M∗j (f) = 〈Mj(f),Mj(f)〉[j] ∈ L (Vj , Vj) .

The application of Kj to g∈L2(Ij) is given by

Kj(g)(ξ) =
∫

Ij

kj(ξ, ξ
′)g(ξ′)dξ′ with I[j] =×

k �=j
Ik, dx[j] =

∏

k �=j
dxk in

kj(ξ, ξ
′) :=

∫

I[j]

f(. . . , xj−1, ξ, xj+1, . . .) f(. . . , xj−1, ξ′, xj+1, . . .) dx[j].

The singular vectors u(j)i and singular values σ(j)
i can be obtained from the eigen-

value problem

Kj(u(j)i) =
(
σ
(j)
i

)2
u
(j)
i (i ∈ N) .

If f ∈ a

⊗d
j=1Vj is an algebraic tensor, Kj has finite rank and delivers only finitely

many singular vectors u(j)i with positive singular values σ(j)
i .

170 5 General Techniques

5.2.4 Matricisation of a Family of Tensors

Let F = (vi)i∈I be a family of tensors vi ∈ VD =
⊗

j∈D Vj . According to
Lemma 3.26, the tuple (vi)i∈I may be considered as an element of the tensor space
VD ⊗ K

I . If D = {1, . . . , d}, define the extended index set Dex := D ∪ {d + 1}
and the extended tensor space Vex =

⊗
j∈Dex

Vj , where Vd+1 := K
I . Using the

identification described in Lemma 3.26, we may view F as an element of Vex.
This allows us to defineMα(F) for all α ⊂ Dex. For instance, α = D yields

MD(F) =
∑

i∈I
vi ⊗ ei

(
vi ∈ VD, ei ∈ K

I : i-th unit vector
)
.

From this representation one concludes the following result about the left-sided
singular value decomposition (cf. (5.10a)).

Remark 5.17. 〈Mα(F),Mα(F)〉Dex\α =
∑

i∈I
〈Mα(vi),Mα(vi)〉D\α for α ⊂ D.

5.3 Tensorisation

Tensorisation is the opposite of vectorisation: a vector is isomorphically transformed
into a tensor, even if the tensor structure is not given beforehand.

One example of tensorisation has been presented in §1.2.4.1. There, u and f are
grid functions and are usually considered as vectors. Because of the special shape
of the grid Gn, the entries of u and f are of the form uijk and fijk (1 ≤ i, j, k ≤ n)
and u and f can be regarded as tensors from K

n ⊗K
n ⊗K

n.
However, the tensorisation may also be rather artificial. Consider, e.g., any vector

from K
I with I := {0, . . . , n − 1} and assume that n is not a prime, so that a

factorisation n=n1n2 (n1, n2≥2) exists. Choose index sets J1 := {0, . . . , n1− 1}
and J2 := {0, . . . , n2 − 1} and J := J1 × J2. Since #J =#I , there is a bijection
α : J→ I leading to an isomorphism

x ∈ K
I ←→ v ∈ K

J = K
J1 ⊗K

J2 with (5.13)

v[j1, j2] = x[α(j1, j2)] and α(j1, j2) = j2n2 + j1.

In the latter case, v ∈ K
J is an n1 × n2 matrix or a tensor of order two.

Obviously, tensors of higher order can be obtained by exploiting a factorisation
n = n1n2 · . . . · nd (assuming nj ≥ 2 to avoid trivial cases):

K
I ∼=

d⊗

j=1

K
Jj for #I =

d∏

j=1

#Jj .

An extreme case is KI with the dimension #I = 2d :

5.3 Tensorisation 171

K
2d ∼=

⊗d

j=1
K

2. (5.14)

The advantage of the representation as tensor is the fact that vectors (of length
n) rewritten as tensors may require less storage. In the following example, the
corresponding tensors are elementary tensors (cf. Khoromskij [118]). Consider

x ∈ K
{0...,n−1} with xν = ζν for 0 ≤ ν ≤ n− 1, (5.15)

where ζ ∈ K is arbitrary. Such vectors appear in exponential sum approximations
as well as in Fourier representations. The isomorphism (5.13) based on n = n1n2

yields the matrix

M =

⎡

⎢
⎢
⎢
⎣

ζ0 ζn1 · · · ζ(n2−1)n1

ζ1 ζn1+1 · · · ζ(n2−1)n1+1

...
...

. . .
...

ζn1−1 ζ2n1−1 · · · ζn2n1−1

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

ζ0

ζ1

...
ζn1−1

⎤

⎥
⎥
⎥
⎦

[
ζ0 ζn1 · · · ζ(n2−1)n1

]
,

which corresponds to the tensor product

x ∈ K
{0...,n−1} ←→

⎡

⎢
⎢
⎢
⎣

ζ0

ζ1

...
ζn1−1

⎤

⎥
⎥
⎥
⎦
⊗

⎡

⎢
⎢
⎢
⎣

ζ0

ζn1

...
ζ(n2−1)n1

⎤

⎥
⎥
⎥
⎦
∈ K

{0...,n1−1} ⊗K
{0...,n2−1}.

The decomposition can be repeated for the first vector, provided that n1 = n′n′′

(n′, n′′ ≥ 2) and yields (after renaming n′, n′′, n2 by n1, n2, n3)

x ∈ K
{0...,n−1} ←→

⎡

⎢
⎢
⎢
⎣

ζ0

ζ1

...
ζn1−1

⎤

⎥
⎥
⎥
⎦
⊗

⎡

⎢
⎢
⎢
⎣

ζ0

ζn1

...
ζ(n2−1)n1

⎤

⎥
⎥
⎥
⎦
⊗

⎡

⎢
⎢
⎢
⎣

ζ0

ζn1n2

...
ζ(n3−1)n1n2

⎤

⎥
⎥
⎥
⎦
.

By induction, this proves the next statement.

Remark 5.18. Let n = n1n2 · · ·nd with nj ≥ 2. The vector x from (5.15) corre-
sponds to the elementary tensor v(1)⊗ . . .⊗v(d) with v(j) ∈ K

{0...,nj−1} defined by

v(j) =

⎡

⎢
⎢
⎢
⎣

ζ0

ζpj

...
ζ(nj−1)pj

⎤

⎥
⎥
⎥
⎦

with pj :=
j−1∏

k=1

nk.

In the case of n=2d, i.e., nj =2, pj = 2j−1, and v(j) =

[
1

ζ2
j−1

]

, the data size is
reduced from n to 2d=2 log2 n.

172 5 General Techniques

Interestingly, this representation does not only save storage, but also provides a
more stable representation. As an example consider the integral involving the oscil-
latory function f(t) = exp(−αt) for α = 2πik + β, k ∈ N, β > 0, and g(t) = 1.
For large k, the value

∫ 1

0

f(t)g(t)dt =
1− exp(−β)
β + 2πik

is small compared with
∫ 1

0
|f(t)g(t)| dt = (1− exp(−β)) /β. For usual numerical

integration one has to expect a cancellation error with the amplification factor

κ :=

∫ 1

0

|f(t)g(t)| dt /
∣
∣
∣
∣

∫ 1

0

f(t)g(t)dt

∣
∣
∣
∣ =

√
1 + (2πk/β)2 ∼ 2πk

β
,

which is large for large k and small β. If we approximate the integral by8

S :=
1

n

n−1∑

ν=0

f
(ν

n

)
g
(ν

n

)
for n = 2d,

the floating point errors are amplified by κ from above. Using the tensorised grid
functions f =

⊗d
j=1 f

(j) and g =
⊗d

j=1 g
(j) with

f (j) =

[
1

exp(−(2πik + β)2j−1−d)

]

and g(j) =

[
1
1

]

according to Remark 5.18, we rewrite9 the sum (scalar product) as 1
n 〈f ,g〉 =

1
n

∏d
j=1

〈
f (j), g(j)

〉
:

S =
1

n

d∏

j=1

[
1 + exp(−(2πik + β)2j−1−d)

]
.

In this case, the amplification factor for the floating point errors is O(d + 1) and
does not deteriorate for k →∞ and β → 0.

More details about tensorisation will follow in Chap. 14.

8 Because of other quadrature weights for ν = 0 and n, the sum S is not exactly the trapezoidal
rule. For β = 1/10, k = 1000, and d = 20 (i.e., n = 220 = 1048 576), the value of S is
4.56210-8 − 1.51510-5 i (exact integral value: 2.41010-10−1.51510-5 i).
9 Note that

∏
d
j=1

(
1 + x2j−1

)
=
∑2d−1

ν=0 xν .

Chapter 6
Minimal Subspaces

Abstract The notion of minimal subspaces is closely connected with the represen-
tations of tensors, provided these representations can be characterised by (dimen-
sions of) subspaces. A separate description of the theory of minimal subspaces can
be found in Falcó-Hackbusch [57].
The tensor representations discussed in the later Chapters 8, 11, 12 will lead to
subsets Tr, Hr, Tρ of a tensor space. The results of this chapter will prove weak
closedness of these sets. Another result concerns the question of a best approxima-
tion: is the infimum also a minimum? In the positive case, it is guaranteed that the
best approximation can be found in the same set.
For tensors v ∈ a

⊗d
j=1Vj we shall define ‘minimal subspaces’ Umin

j (v) ⊂ Vj
in Sects. 6.1-6.4. In Sect. 6.5 we consider weakly convergent sequences vn ⇀ v
and analyse the connection between Umin

j (vn) and Umin
j (v). The main result will

be presented in Theorem 6.24. While Sects. 6.1-6.5 discuss minimal subspaces of
algebraic tensors v ∈ a

⊗d
j=1Vj , Sect. 6.6 investigates Umin

j (v) for topological
tensors v∈ ‖·‖

⊗d
j=1Vj . The final Sect. 6.7 is concerned with intersection spaces.

6.1 Statement of the Problem, Notations

Consider an algebraic tensor spaceV= a

⊗d
j=1Vj and a fixed tensor v∈V. Among

the subspaces Uj ⊂ Vj with

v ∈ U := a

d⊗

j=1

Uj (6.1)

we are looking for the smallest ones. We have to show that minimal subspaces Uj
exist and that these minimal subspaces can be obtained simultaneously in (6.1) for
all 1≤ j ≤ d. Since it will turn out that the minimal subspaces are uniquely deter-
mined by v, we use the notation

Umin
j (v) ⊂ Vj .

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 6,
© Springer-Verlag Berlin Heidelberg 2012

173

174 6 Minimal Subspaces

The determination of Umin
j (v) will be given in (6.6) and (6.10). We shall charac-

terise the features of Umin
j (v), e.g., the dimension

rj := dim(Umin
j (v)).

Furthermore, the properties of Umin
j (v) for varying v are of interest. In particular,

we consider Umin
j (vn) and its dimension for a sequence vn ⇀ v.

First, in §6.2, we explore the matrix case d=2. In §6.6 we replace the algebraic
tensor space by a Banach tensor space.

An obvious advantage of (6.1) is the fact that the subspaces Uj can be of finite
dimension even if dim(Vj)=∞, as stated next.

Remark 6.1. For v ∈ a

⊗d
j=1Vj there are always finite dimensional subspaces

Uj ⊂ Vj satisfying (6.1). More precisely, dim(Uj) ≤ rank(v) can be achieved.

Proof. By definition of the algebraic tensor space, v∈ a

⊗d
j=1Vj means that there

is a finite linear combination

v =

n∑

ν=1

d⊗

j=1

v(j)ν (6.2a)

with some integer n ∈ N0 and certain vectors v(j)ν ∈ Vj . Define

Uj := span{v(j)ν : 1 ≤ ν ≤ n} for 1 ≤ j ≤ d. (6.2b)

Then v ∈ U := a

⊗d
j=1Uj proves (6.1) with subspaces of dimension dim(Uj)≤n.

By definition of the tensor rank, the smallest n in (6.2a) is n := rank(v). ��

6.2 Tensors of Order Two

6.2.1 Existence of Minimal Subspaces

First, we consider the matrix case d = 2 and admit any field K. To ensure the
existence of minimal subspaces, we need the lattice property

(X1 ⊗a X2) ∩ (Y1 ⊗a Y2) = (X1 ∩ Y1)⊗a (X2 ∩ Y2) , (6.3)

which is formulated in the next lemma more generally.

Lemma 6.2. Let A be an index set of possibly infinite cardinality. Then

⋂

α∈A
(U1,α ⊗a U2,α) =

(⋂

α∈A
U1,α

)

⊗a
(⋂

α∈A
U2,α

)

holds for any choice of subspaces Uj,α ⊂ Vj .

6.2 Tensors of Order Two 175

Proof. The inclusion
(⋂

α∈A U1,α

)
⊗a

(⋂
α∈A U2,α

)
⊂
⋂
α∈A (U1,α ⊗a U2,α) is

obvious. It remains to show that v ∈ U1,β ⊗a U2,β for all β ∈ A implies that
v ∈

(⋂
α∈AU1,α

)
⊗a

(⋂
α∈AU2,α

)
. Choose some β∈A and let γ∈A be arbitrary.

By assumption, v has representations

v =

nβ∑

ν=1

u
(1)
ν,β ⊗ u

(2)
ν,β =

nγ∑

ν=1

u(1)ν,γ ⊗ u(2)ν,γ with u(j)ν,β ∈ Uj,β , u
(j)
ν,γ ∈ Uj,γ .

Thanks to Lemma 3.13, we may assume that {u(1)ν,β} and {u(2)ν,β} are linearly inde-

pendent. A dual system ϕμ ∈ V ′2 of {u(2)ν,β} satisfies ϕμ(u
(2)
ν,β) = δνμ (cf. Definition

3.6). Application of id⊗ϕμ to the first representation yields (id⊗ ϕμ)(v) = u
(1)
μ,β ,

while the second representation leads to
∑nγ

ν=1 ϕμ(u
(2)
ν,γ)u

(1)
ν,γ . The resulting equa-

tion u(1)μ,β =
∑nγ

ν=1 ϕμ(u
(2)
ν,γ)u

(1)
ν,γ shows that u(1)μ,β is a linear combination of vectors

u
(1)
ν,γ ∈ U1,γ , i.e., u(1)μ,β ∈ U1,γ . Since γ ∈ A is arbitrary, u(1)μ,β ∈

⋂
α∈A U1,α follows.

Analogously, using the dual system of {u(1)ν,β}, one proves u(2)ν,γ ∈
⋂
α∈A U2,α.

Hence, v∈
(⋂

α∈AU1,α

)
⊗a
(⋂

α∈AU2,α

)
. ��

Definition 6.3. For an algebraic tensor v ∈ V1⊗aV2, subspacesUmin
1 (v) ⊂ V1 and

Umin
2 (v) ⊂ V2 are called minimal subspaces, if they satisfy

v ∈ Umin
1 (v)⊗a Umin

2 (v), (6.4a)

v ∈ U1 ⊗a U2 ⇒ Umin
1 (v) ⊂ U1 and Umin

2 (v) ⊂ U2. (6.4b)

Proposition 6.4. All v ∈ V1 ⊗a V2 possess unique minimal subspaces Umin
j (v) for

j = 1, 2.

Proof. To prove existence and uniqueness of minimal subspaces, define the set

F := F(v) := {(U1, U2) : v ∈ U1⊗aU2 for subspaces Uj ⊂ Vj} .

F is non-empty, since (V1, V2) ∈ F . Then Umin
j (v) :=

⋂
(U1,U2)∈FUj holds for

j = 1, 2. In fact, by Lemma 6.2, v ∈ Umin
1 (v)⊗aUmin

2 (v) holds and proves (6.4a),
while (6.4b) is a consequence of the construction by

⋂
(U1,U2)∈F Uj . ��

Lemma 6.5. Assume (3.16), i.e., v =
∑r

ν=1 u
(1)
ν ⊗ u

(2)
ν holds with linearly inde-

pendent {u(j)ν : 1 ≤ ν ≤ r} for j = 1, 2. Then these vectors span the minimal
subspaces:

Umin
j (v) = span

{
u(j)ν : 1 ≤ ν ≤ r

}
for j = 1, 2. (6.5)

Proof. Apply the proof of Lemma 6.2 to the set A := {β, γ} and the subspaces

Uj,β := span{u(j)ν : 1≤ν≤ r}, and Uj,γ :=Umin
j (v). It shows that Uj,β⊂Umin

j (v).
Since a strict inclusion is excluded, Uj,β=Umin

j (v) proves the assertion. ��

176 6 Minimal Subspaces

As a consequence of (6.5), dim(Umin
j (v))=r holds for j=1 and j=2, proving

the following result.

Corollary 6.6. Umin
1 (v) and Umin

2 (v) have identical finite dimensions.

A constructive algorithm for the determination of Umin
j (v) is already given in

the proof of Lemma 3.13: As long as the vectors vν or wν in v=
∑n

ν=1 vν⊗wν are
linearly dependent, one can reduce the number of terms by one. This process has to
terminate after at most n steps. By Lemma 6.5, the resulting vectors {vν} and {wν}
span Umin

1 (v) and Umin
2 (v).

In the proof of Lemma 6.5 we have already made indirect use of the following
characterisation of Umin

j (v). The tensor id⊗ϕ2 ∈ L(V1, V1)⊗V ′2 can be considered
as a mapping from L(V1 ⊗a V2, V1) (cf. §3.3.2.2):

v ⊗ w ∈ V1 ⊗a V2 �→ (id⊗ ϕ2) (v ⊗ w) := ϕ2(w) · v ∈ V1.

The action of ϕ1 ⊗ id ∈ V ′1 ⊗ L(V2, V2) ⊂ L(V1 ⊗a V2, V2) is analogous.

Proposition 6.7. For v ∈ V1 ⊗a V2 the minimal subspaces are characterised by

Umin
1 (v) = {(id⊗ ϕ2) (v) : ϕ2 ∈ V ′2} , (6.6a)

Umin
2 (v) = {(ϕ1 ⊗ id) (v) : ϕ1 ∈ V ′1} . (6.6b)

Proof. Repeat the proof of Lemma 6.2: there are maps id ⊗ ϕ2 yielding u
(1)
ν .

By Lemma 6.5, the vectors u(1)ν span Umin
1 (v). Similarly for (6.6b). Note that the

right-hand sides in (6.6a,b) are linear subspaces. ��

For V1 = K
n1 and V2 = K

n2 , tensors from V1⊗V2 are isomorphic to matrices
from K

n1×n2 . Then definition (6.6a) may be interpreted as

Umin
1 (v) = range{M} = {Mx : x ∈ V2},

where M = M1(v) is the matrix corresponding to v. Similarly, (6.6b) becomes
Umin
2 (v) = range{MT}.

Corollary 6.8. (a) Once Umin
1 (v) and Umin

2 (v) are given, one may select any basis
{u(1)ν : 1≤ ν ≤ r} of Umin

1 (v) and find a representation v =
∑r

ν=1u
(1)
ν ⊗u(2)ν (cf.

(3.16)) with the given u(1)ν and some basis {u(2)ν } of Umin
2 (v). Vice versa, one may

select a basis {u(2)ν : 1≤ ν≤ r} of Umin
2 (v), and obtains v=

∑r
ν=1u

(1)
ν ⊗u(2)ν with

the given u(2)ν and some basis {u(1)ν } of Umin
1 (v).

(b) If {u(1)ν : 1≤ ν≤s} is a basis of a larger subspace U1 � Umin
1 (v), a representa-

tion v =
∑s

ν=1 u
(1)
ν ⊗ u(2)ν still exists, but the vectors u(2)ν are linearly dependent.

(c) If we fix a basis {u(2)ν : 1 ≤ ν ≤ r} of some subspace U2 ⊂ V2, there are
mappings {ψν : 1 ≤ ν ≤ r} ⊂ L(V1 ⊗a U2, V1) such that ψν(w) ∈ Umin

1 (w) and

w =

r∑

ν=1

ψν(w) ⊗ u(2)ν for all w ∈ V1 ⊗ U2. (6.7)

6.2 Tensors of Order Two 177

Proof. 1) Assume v=
∑r
ν=1 û

(1)
ν ⊗ û(2)ν and choose another basis {u(1)ν : 1≤ν≤r}.

Inserting the transformation û(1)ν =
∑

μ aνμu
(1)
μ (1 ≤ ν ≤ r), we get

v=

r∑

ν=1

û(1)ν ⊗û(2)ν =

r∑

ν=1

r∑

μ=1

aνμu
(1)
μ ⊗û(2)ν =

r∑

μ=1

u(1)μ ⊗
r∑

ν=1

aνμû
(2)
ν =

r∑

μ=1

u(1)μ ⊗u(2)μ

with the new basis u(2)μ :=
∑r
ν=1aνμû

(2)
ν . If r is minimal [Part (a)], the vectors

u
(2)
μ are linearly independent (cf. Lemma 6.5); otherwise [Part (b)], they are linearly

dependent.
2) Consider w ∈ V1 ⊗ U2 and a basis {u(2)ν : 1≤ ν≤ r} of U2⊂V2. By Part (b),

there is a representation w=
∑r
μ=1u

(1)
μ ⊗u(2)μ with suitable u(1)μ ∈ V1. Let ϕν ∈V ′2

be a dual system to {u(2)ν : 1≤ ν ≤ r} (cf. Definition 3.6) and set ψν := id ⊗ ϕν .
Application of ψν to w yields

ψν(w) = ψν

(r∑

μ=1

u(1)μ ⊗ u(2)μ
)

=

r∑

μ=1

ϕν(u
(2)
μ) · u(1)μ =

r∑

μ=1

δνμu
(1)
μ = u(1)ν ,

proving assertion (6.7). ��

6.2.2 Use of the Singular Value Decomposition

If v∈U1⊗aU2 holds for subspaces Uj⊂Vj of not too large dimension, the singular
value decomposition offers a practical construction of Umin

1 (v) and Umin
2 (v).

Although the singular value decomposition produces orthonormal bases, no Hilbert
structure is required for V1 and V2. The approach is restricted to the fields R and C.

Remark 6.9. Let K ∈ {R,C}. Suppose that a representation of v ∈ U1 ⊗a U2 by

v =
∑n

ν=1 v
(1)
ν ⊗ v(2)ν with v(j)ν ∈ Uj and dim(Uj) <∞ is given.

1) Choose bases {u(j)i : 1≤ i≤nj} of Uj (j=1, 2) and determine the coefficients

of v(j)ν :
v(j)ν =

∑nj

i=1
c
(j)
νi u

(j)
i (j = 1, 2).

Hence, v=
∑n1

i=1

∑n2

j=1Mij u
(1)
i ⊗u

(2)
j has the coefficientsMij :=

∑n
ν=1 c

(1)
νi c

(2)
νj .

2) Determine the reduced singular value decomposition of the matrix M ∈Kn1×n2

by calling the procedure RSVD(n1, n2, r,M,U,Σ, V), i.e.,

M = UΣV T =
∑r

ν=1
σνaνb

T
ν .

3) Define {âν : 1≤ ν ≤ r} ⊂ U1 and {b̂ν : 1≤ ν ≤ r} ⊂ U2 by1

1 aν [i] is the i-th entry of aν ∈ K
n1 , etc.

178 6 Minimal Subspaces

âν :=

n1∑

i=1

σν aν [i]u
(1)
i and b̂ν :=

n2∑

j=1

bν [j]u
(2)
j for 1 ≤ ν ≤ r.

They span the minimal subspaces Umin
1 (v) := span {âν : 1 ≤ ν ≤ r} ⊂ U1 and

Umin
2 (v) := span{b̂ν : 1 ≤ ν ≤ r} ⊂ U2, and v =

∑r
ν=1 âν ⊗ b̂ν holds.

4) dim(Umin
1 (v)) = dim(Umin

2 (v)) = rank(M) = r.

Proof. Singular value decomposition yields

v =

n1∑

i=1

n2∑

j=1

Mij u
(1)
i ⊗ u

(2)
j =

n1∑

i=1

n2∑

j=1

(
r∑

ν=1

σνaν [i]bν [j]

)

u
(1)
i ⊗ u

(2)
j

=

r∑

ν=1

(nv∑

i=1

σνaν [i]u
(1)
i

)
⊗
(nw∑

j=1

bν [j]u
(2)
j

)
=

r∑

ν=1

âν ⊗ b̂ν.

Since the vectors aν are linearly independent, also the âν are linearly independent.
Similarly, {b̂ν} forms a basis. ��

6.2.3 Minimal Subspaces for a Family of Tensors

The minimal subspaces Umin
j (v) serve for representing a single tensor v∈V1⊗aV2.

Now we replace the tensor v by a subset F ⊂ V1 ⊗a V2 and ask for minimal
subspaces Umin

1 (F) and Umin
2 (F) so that v ∈ Umin

1 (F) ⊗a Umin
2 (F) holds for all

v ∈ F .
The obvious result is summarised in the next remark.

Proposition 6.10. Let F ⊂V1⊗aV2 be a non-empty subset. Then the minimal sub-
spaces Umin

1 (F) and Umin
2 (F) are 2

Umin
1 (F) :=

∑

v∈F
Umin
1 (v) and Umin

2 (F) :=
∑

v∈F
Umin
2 (v). (6.8a)

Another characterisation is

Umin
1 (F) = span {(id⊗ ϕ2) (v) : ϕ2 ∈ V ′2 ,v ∈ F} ,

Umin
2 (F) = span {(ϕ1 ⊗ id) (v) : ϕ1 ∈ V ′1 ,v ∈ F} .

(6.8b)

Proof. v ∈ F and v ∈ Umin
1 (F)⊗aUmin

2 (F) require Umin
j (v) ⊂ Umin

j (v)(F) for
j = 1, 2 and all v ∈ F ; hence,

⋃
v∈F U

min
j (v) ⊂ Umin

j (v)(F). The smallest
subspace containing

⋃
v∈F U

min
j (v) is the sum

∑
v∈F U

min
j (v), implying (6.8a).

Equations (6.6a,b) prove (6.8b). ��

2 The sum of subspaces is defined by the span of their union.

6.3 Minimal Subspaces of Higher Order Tensors 179

6.3 Minimal Subspaces of Higher Order Tensors

In the following we assume that d ≥ 3 and generalise some of the features of tensors
of second order.

By Remark 6.1, we may assume v ∈ U :=
⊗d

j=1 Uj with finite dimensional
subspaces Uj ⊂ Vj . The lattice structure from Lemma 6.2 generalises to higher
order.

Lemma 6.11. Let Xj , Yj ⊂ Vj for 1 ≤ j ≤ d. Then the identity

(

a

d⊗

j=1

Xj

)

∩
(

a

d⊗

j=1

Yj

)

= a

d⊗

j=1

(Xj ∩ Yj)

holds and can be generalised to infinitely many intersections.

Proof. For the start of the induction at d = 2 use Lemma 6.2. Assume that the
assertion holds for d − 1 and use a

⊗d
j=1Xj =X1⊗X[1] with X[1] := a

⊗d
j=2Xj

and a

⊗d
j=1Yj =Y1⊗Y[1]. Lemma 6.2 states that v∈(X1 ∩ Y1)⊗

(
X[1] ∩ Y[1]

)
. By

inductive hypothesis, X[1] ∩ Y[1]= a

⊗d
j=2(Xj∩Yj) holds proving the assertion.��

Again, the minimal subspaces Umin
j (v) can be defined by the intersection of all

subspaces Uj ⊂ Vj satisfying v ∈ a

⊗d
j=1 Uj .

The algebraic characterisation of Umin
j (v) is similar as for d = 2. Here we use

the short notation
⊗

k �=j instead of
⊗

k∈{1,...,d}\{j}. Note that the following right-
hand sides of (6.9a-d) involve the spaces a

⊗
k �=j V

′
k, (a

⊗
k �=jVk)

′, a
⊗

k �=j V
∗
k ,

(
⊗

k �=j Vk)
∗, which may differ. Nevertheless, the image spaces are identical.

Lemma 6.12. Let v ∈ V = a

⊗d
j=1 Vj . (a) The two spaces

U Ij (v) :=
{
ϕ(v) : ϕ ∈ a

⊗

k �=j
V ′k

}
, (6.9a)

U IIj (v) :=

{

ϕ(v) : ϕ ∈
(

a

⊗

k �=j
Vk

)′
}

(6.9b)

coincide: U Ij (v) = U IIj (v).

(b) If Vj are normed spaces, one may replace algebraic functionals by continuous
functionals:

U IIIj (v) :=
{
ϕ(v) : ϕ ∈ a

⊗

k �=j
V ∗k

}
. (6.9c)

Then U Ij (v) = U IIj (v) = U IIIj (v) is valid.

(c) If a
⊗

k �=j Vk is a normed space, one may define

U IVj (v) :=
{
ϕ(v) : ϕ ∈

(⊗

k �=j
Vk

)∗}
. (6.9d)

Then U Ij (v) = U IIj (v) = U IVj (v) holds.

180 6 Minimal Subspaces

Proof. 1) Since the mappings ϕ are applied to v ∈ U :=
⊗d

j=1Uj (cf. Remark
6.1), one may replace ϕ ∈ a

⊗
k �=jV

′
k by ϕ ∈ a

⊗
k �=jU

′
k and ϕ ∈ (a

⊗
k �=j Vk)

′

by ϕ ∈ (a
⊗

k �=j Uk)
′ without changing ϕ(v). Since dim(Uk) < ∞, Proposition

3.52c states that a

⊗
k �=j U

′
k = (a

⊗
k �=j Uk)

′. This proves Part (a).
2) As in Part 1) we may restrict ϕ to a

⊗
k �=jU

′
k = (a

⊗
k �=jUk)

′. Since
dim(Uk) <∞, algebraic duals are continuous, i.e.,

ϕ ∈ a

⊗

k �=j
U ′k =

(

a

⊗

k �=j
Uk

)′
= a

⊗

k �=j
U∗k .

By Hahn-Banach (Theorem 4.15), such mappings can be extended to a

⊗
k �=jV

∗
k .

This proves Part (b), while Part (c) is analogous. ��

Theorem 6.13. (a) For any v ∈ V = a

⊗d
j=1 Vj there exist minimal subspaces

Umin
j (v) (1 ≤ j ≤ d). An algebraic characterisation of Umin

j (v) is

Umin
j (v) = span

{
(ϕ1 ⊗ . . .⊗ ϕj−1 ⊗ id⊗ ϕj+1 ⊗ . . .⊗ ϕd) (v)

with ϕk ∈ V ′k for k �= j

}

(6.10a)

or equivalently

Umin
j (v) =

{
ϕ(v) : ϕ ∈ a

⊗

k �=j
V ′k

}
, (6.10b)

where the action of the functional ϕ is understood as in (6.10a). Umin
j (v) coincides

with the sets from (6.9a-d).
(b) For a subset F ⊂ V = a

⊗d
j=1 Vj of tensors, the minimal subspaces Vj,F with

F ⊂ a

⊗d
j=1 Vj,F are

Umin
j (F) =

∑

v∈F
Umin
j (v). (6.10c)

(c) For finite dimensional Vj , the j-rank is defined in (5.6b) and satisfies

rankj(v) = dim(Umin
j (v)), (6.10d)

while, for the infinite dimensional case, Eq. (6.10d) is the true generalisation of the
definition of rankj .

Proof. 1) The equivalence of (6.10a) and (6.10b) is easily seen: Linear combina-
tions of elementary tensors

⊗
k �=j ϕk are expressed by span {. . .} in (6.10a) and by

ϕ ∈ a

⊗
k �=j V

′
k in (6.10b).

2) We apply the matricisation from §5.2. The isomorphismMj from Definition
5.3 maps a

⊗d
k=1Vk into Vj⊗aV[j]. Proposition 6.7 states that

Umin
j (v) =

{
ϕ(v) : ϕ ∈ V ′[j]

}
=

{

ϕ(v) : ϕ ∈
(

a

⊗

k �=j
Vk

)′
}

(6.11)

is the minimal subspace. The set on the right-hand side is U IIj (v) (cf. (6.9b)) and

6.4 Hierarchies of Minimal Subspaces and rankα 181

Lemma 6.12 states that U IIj (v) = U Ij (v), where U Ij (v) coincides with the set
on the right-hand side of (6.10b). So far, we have proved v ∈ Umin

j (v) ⊗a V[j].
Thanks to Lemma 6.11, the intersection may be performed componentwise yielding
v ∈

⊗d
j=1 U

min
j (v) .

3) For families of tensors, the argument of Proposition 6.10 proves Part (b).

4) Concerning rankj see the discussion in §6.4. ��

The right-hand side in (6.10a) is the span of a subset. For d = 2, the symbol
‘span’ may be omitted, since the subset is already a subspace (cf. Proposition 6.7).

Exercise 6.14. (a) For a subset F ⊂ V let UF := span{F} ⊃ F. Show that
Umin
j (F) = Umin

j (UF).

(b) Let F ⊂ V be a subspace of finite dimension. Show that dim(Umin
j (F)) <∞.

The determination of Umin
j (v) by (6.10a,b) is not very constructive, since it

requires the application of all dual mappings ϕν ∈V ′ν . Another approach is already
used in the proof above.

Remark 6.15. For j ∈ {1, . . . , d} apply the matricisation

Mj :=Mj(v) ∈ Vj ⊗a V[j] with V[j] := a

⊗

k∈{1,...,d}\{j}
Vk .

The techniques of §6.2.1 and §6.2.2 may be used to determine the minimal sub-
spaces Umin

j (v) and Umin
[j] (v): Mj(v) ∈ Umin

j (v) ⊗ Umin
[j] (v). In particular, if a

singular value decomposition is required, one can make use of Remark 2.24, since
only the first subspace Umin

j (v) is of interest.

Remark 6.16. While dim(Umin
1 (v))=dim(Umin

2 (v)) holds for d=2 (cf. Corollary
6.6), the dimensions of Umin

j (v) may be different for d ≥ 3.

6.4 Hierarchies of Minimal Subspaces and rankα

So far, we have defined minimal subspaces Umin
j (v) for a single index j ∈ D :=

{1, . . . , d}.We can extend this definition to Umin
α (v), where ∅ � α � D are subsets

(cf. (5.3b)). For illustration we consider the example

v ∈ V =

7⊗

j=1

Vj = (V1 ⊗ V2)
︸ ︷︷ ︸

=Vα

⊗ (V3 ⊗ V4)
︸ ︷︷ ︸

=Vβ

⊗ (V5 ⊗ V6 ⊗ V7)
︸ ︷︷ ︸

=Vγ

= Vα⊗Vβ⊗Vγ ,

in which we use the isomorphism between V =
⊗7

j=1 Vj and Vα ⊗Vβ ⊗Vγ . Ig-
noring the tensor structure of Vα,Vβ ,Vγ ,we regardV = Vα⊗Vβ⊗Vγ as tensor
space of order 3. Consequently, for v ∈ V there are minimal subspaces Umin

α (v) ⊂
Vα = V1 ⊗ V2,Umin

β (v) ⊂ Vβ = V3 ⊗ V4, and Umin
γ (v) ⊂ Vγ = V5 ⊗ V6 ⊗ V7

182 6 Minimal Subspaces

such that v ∈ Umin
α (v) ⊗Umin

β (v)⊗Umin
γ (v) . These minimal subspaces may be

constructively determined fromMα(v),Mβ(v),Mγ(v).
As in the example, we use the notations (5.3a-d) for D,α, αc, and Vα. By

V = Vα⊗Vαc , any v ∈ V gives rise to minimal subspaces Umin
α (v) ⊂ Vα and

Umin
αc (v) ⊂ Vαc .

Proposition 6.17. Let v ∈ V =
⊗d

j=1Vj , and ∅ �= α ⊂ D. Then the minimal
subspace Umin

α (v) and the minimal subspaces Umin
j (v) for j ∈ α are related by

Umin
α (v) ⊂

⊗

j∈α
Umin
j (v). (6.12)

Proof. We know that v ∈ U =
⊗d

j=1 U
min
j (v). Writing U as Uα ⊗ Uαc with

Uα :=
⊗

j∈α U
min
j (v) and Uαc :=

⊗
j∈αc Umin

j (v) , we see that Umin
α (v) must

be contained in Uα =
⊗

j∈α U
min
j (v) . ��

An obvious generalisation is the following.

Corollary 6.18. Let v ∈ V=
⊗d

j=1Vj . Assume that ∅ �= α1, . . . , αm, β ⊂ D are
subsets such that β =

⋃m
μ=1 αμ is a disjoint union. Then

Umin
β (v) ⊂

⊗m

μ=1
Umin
αμ

(v).

In particular, if ∅ �= α, α1, α2 ⊂ D satisfy α = α1 ∪̇α2 (disjoint union), then

Umin
α (v) ⊂ Umin

α1
(v) ⊗Umin

α2
(v). (6.13)

If ∏

μ∈αc

dim(Vμ) ≥ dim(Umin
α1

(v)) · dim(Umin
α2

(v)),

there are tensors v ∈ V such that (6.13) holds with equality sign.

Proof. For the last statement let {b(1)i } be a basis of Umin
α1

(v) and {b(2)j } a basis of

Umin
α2

(v). Then {b(1)i ⊗ b
(2)
j } is a basis of Umin

α1
(v) ⊗Umin

α2
(v). For all pairs (i, j)

choose linearly independent tensors wij ∈
⊗

μ∈αc Vμ and set

v :=
∑

i,j
wij ⊗ b(1)i ⊗ b

(2)
j ∈ V.

One verifies that Umin
α (v) = span{b(1)i ⊗ b

(2)
j } = Umin

α1
(v)⊗Umin

α2
(v). ��

The algebraic characterisation of Umin
α (v) is analogous to (6.10a,b):

Umin
α (v) = span

{
ϕαc(v) : ϕαc =

⊗

j∈αc
ϕ(j), ϕ(j) ∈ V ′j

}
, (6.14)

where ϕαc

(⊗d
j=1 v

(j)
)
:= ϕαc

(⊗
j∈αc v(j)

)
·
⊗

j∈α v
(j).

6.4 Hierarchies of Minimal Subspaces and rankα 183

In Definition 5.7, rankα is introduced by rankα(v) := rank (Mα(v)), where
Mα(v) may be interpreted as a matrix. In the finite dimensional case, rank(Mα(v))
equals the dimension of range(Mα(v)). In general,Mα(v) is a mapping fromV′αc

into Vα, whereas the interpretation of the range of the matrix Mα(v) considers
Mα(v) as a mapping from Vαc into Vα, which is true for the finite dimensional
case, since then V′αc and Vαc may be identified. As announced in (5.8), the true
generalisation is

rankα(v) = dim(Umin
α (v)) (6.15)

(cf. Theorem 6.13c), which includes the case of rankα(v)=∞ for v∈ ‖·‖
⊗d

j=1Vj
with dim(Umin

α (v))=∞. For completeness, we define

rank∅(v) = rankD(v) =

{
1 if v �= 0,
0 if v = 0

(6.16)

(cf. Footnote 5 on page 164). The α-ranks satisfy the following basic rules.

Lemma 6.19. (a) The ranks for α ⊂ D and for the complement αc coincide:

rankα(v) = rankαc(v). (6.17a)

(b) If α ⊂ D is the disjoint union α = β ∪̇ γ, then

rankα(v) ≤ rankβ(v) · rankγ(v) (6.17b)

(c) If ∏

μ∈αc

dim(Vμ) ≥ rankβ(v) · rankγ(v), (6.17c)

then there are v such that equality holds in (6.17b):

rankα(v) = rankβ(v) · rankγ(v) (6.17d)

In particular, under condition (6.17c), random tensors satisfy (6.17d) with proba-
bility one.

Proof. 1) In the finite dimensional case, we can useMαc(v) =Mα(v)
T to derive

(6.17a) from Definition 5.7. In general, use V = Vα ⊗Vαc and Corollary 6.6.
2) Definition (6.15) together with (6.13) yields (6.17b).
3) The last statement in Corollary 6.18 yields Part (c). A random tensor yields a

random matrixMα(v), so that Remark 2.5 applies. ��

Corollary 6.20. (a) Decompose D = {1, . . . , d} disjointly into D = α ∪̇β ∪̇ γ.
Then the following inequalities hold:

rankα(v) ≤ rankβ(v) · rankγ(v),
rankβ(v) ≤ rankα(v) · rankγ(v),
rankγ(v) ≤ rankα(v) · rankβ(v).

184 6 Minimal Subspaces

(b) Let α = {j, j + 1, . . . , j}, β = {1, . . . , j − 1}, γ = {1, . . . , j}. Then (6.17b)
holds again.

Proof. 1) Since αc=β ∪̇ γ, the combination of (6.17a,b) proves the first inequality
of Part (a). Since α, β, γ are symmetric in their properties, the further two inequali-
ties follow.

2) For Part (b) note that D = α ∪̇β ∪̇ γc. ��

We conclude with a comparison of the α-rank and the tensor rank introduced in
Definition 3.32.

Remark 6.21. rankα(v)≤ rank(v) holds for v ∈ a

⊗d
k=1Vk and α ⊂ {1, . . ., d}.

While rank(·) may depend on the underlying field K ∈ {R,C} (cf. §3.2.6.3), the
value of rankα(·) is independent.

Proof. 1) Rewrite v=
∑r
i=1

⊗d
j=1u

(j)
i with r=rank(v) as

r∑

i=1

u
(α)
i ⊗ u

(αc)
i , where u(α)

i :=
⊗

j∈α
u
(j)
i .

The dimension of Uα := span{u(j)
α,i : 1≤ i≤ r} satisfies

rankα(v) = dim(Umin
α (v)) ≤ dim(Uα) ≤ r = rank(v).

2) Because rankα(v) is the matrix rank ofMα(v), Remark 2.2 proves indepen-
dence of the field. ��

6.5 Sequences of Minimal Subspaces

Let V := ‖·‖
⊗d

j=1 Vj be a Banach tensor space with norm ‖·‖ and assume that

‖·‖ � ‖·‖∨ . (6.18)

We recall that all reasonable crossnorms satisfy (6.18) (cf. Proposition 4.68).
The following lemma allows us to define a subspace Umin

j (v) for topological
tensors v ∈ ‖·‖

⊗d
j=1Vj not belonging to the algebraic tensor space a

⊗d
j=1Vj .

Since we do not exclude infinite dimensional spaces Umin
j (v), we use the closure

of the respective sets in (6.19) with respect to the norm of Vj . However, whether
Umin
j (v) is closed or not is irrelevant as long as only the Banach subspace

U(v) := ‖·‖

d⊗

j=1

Umin
j (v)

is of interest (cf. Lemma 4.34). In §6.6 we shall discuss the meaning of Umin
j (v)

and U(v) for non-algebraic tensors.

6.5 Sequences of Minimal Subspaces 185

Lemma 6.22. Assume (6.18). (a) Let v ∈ a

⊗d
j=1 Vj . Then the space of linear

functionals V ′ν may be replaced in (6.10) by continuous linear functionals from V ∗ν :

Umin
j (v) = span

{(
ϕ(1) ⊗ . . .⊗ ϕ(j−1) ⊗ id⊗ ϕ(j+1) ⊗ . . .⊗ ϕ(d)

)
(v),

where ϕ(ν) ∈ V ∗ν for ν ∈ {1, . . . , d}\{j}

}

=
{
ϕ(v) : ϕ ∈ a

⊗

k∈{1,...,d}\{j}
V ∗k

}
(6.19)

=
{
ϕ(v) : ϕ ∈

(
‖·‖
⊗

k∈{1,...,d}\{j}
Vk
)∗
}
.

(b) If v ∈ ‖·‖
⊗d

j=1Vj is not an algebraic tensor, take (6.19) as a definition of
Umin
j (v). Note that in this case Umin

j (v) may be infinite dimensional.

Proof. 1) By Lemma 4.97, the mapping ϕ(1)⊗. . .⊗ϕ(j−1)⊗id⊗ϕ(j+1)⊗. . .⊗ϕ(d)

is continuous on (∨
⊗d

j=1 Vj , ‖·‖∨), where ‖·‖∨ may also be replaced by a stronger
norm. By Lemma 6.12b, V ′ν may be replaced by V ∗ν .

2) Let Umin
j (v) be defined by the first or second line in (6.19) and denote the

subspace of the third line by Ûmin
j (v). Since

a

⊗

k∈{1,...,d}\{j}
V ∗k ⊂

(

‖·‖
⊗

k∈{1,...,d}\{j}
Vk

)∗
,

Umin
j (v) ⊂ Ûmin

j (v) holds. Assuming that Ûmin
j (v) is strictly larger than Umin

j (v),

there is some ψ ∈ (‖·‖
⊗

k �=j Vk)
∗ and u := ψ(v) ∈ Ûmin

j (v) such that u /∈
Umin
j (v). By Hahn-Banach, there is a functional ϕ(j) ∈ V ∗j with ϕ(j)(u) �= 0 and

ϕ(j)|Umin
j (v) = 0. The tensor w := ϕ(j)(v) ∈ ‖·‖

⊗
k �=jVk does not vanish, since

ψ(w) =
(
ϕ(j) ⊗ ψ

)
(v) = ϕ(j)(ψ(v)) = ϕ(j)(u) �= 0.

Hence, the definition of ‖w‖∨ > 0 implies that there is an elementary tensor
ϕ[j] =

⊗
k �=j ϕ

(k) with |ϕ[j](w)| > 0. Set ϕ := ϕ(j) ⊗ ϕ[j] =
⊗d

k=1 ϕ
(k). Now,

ϕ(v) = ϕ[j](ϕ(j)(v)) = ϕ[j](w) �= 0

is a contradiction to ϕ(v) = ϕ(j)(ϕ[j](v)) = 0 because of ϕ[j](v) ∈ Umin
j (v) and

ϕ(j)|Umin
j (v) = 0 . Hence, Umin

j (v) = Ûmin
j (v) is valid.

3) Since ϕ ∈ a

⊗
k �=jV

∗
k is continuous, any v ∈ ‖·‖

⊗d
j=1Vj , defined by

v = limvn, has a well-defined limit ϕ(v) = limϕ(vn). ��

Lemma 6.23. Assume (6.18). For all vn,v ∈ ‖·‖
⊗d

j=1 Vj with vn ⇀ v, we have

ϕ[j](vn)⇀ ϕ[j](v) in Vj for all ϕ[j] ∈ a

⊗

k �=j
V ∗k .

186 6 Minimal Subspaces

Proof. Let ϕ[j] =
⊗

k∈{1,...,d}\{j} ϕ
(k) with ϕ(k) ∈ V ∗k be an elementary tensor.

In order to prove ϕ[j](vn) ⇀ ϕ[j](v), we have to show for all ϕ(j) ∈ V ∗j that

ϕ(j)(ϕ[j](vn))→ ϕ(j)(ϕ[j](v)). (6.20)

However, the composition ϕ(j) ◦ ϕ[j] =
⊗d

k=1 ϕ
(k) belongs to (∨

⊗d
k=1 Vk)

∗ and
because of (6.18) also to V∗=(‖·‖

⊗d
k=1 Vk)

∗. Hence vn ⇀ v implies (6.20) and
proves the assertion for an elementary tensor ϕ[j]. The result extends immediately
to finite linear combinations ϕ[j] ∈ a

⊗
k �=j V

∗
k . ��

Theorem 6.24. Assume (6.18). If vn ∈ a

⊗d
j=1Vj satisfies vn ⇀ v ∈ ‖·‖

⊗d
j=1Vj ,

then

dim(Umin
j (v)) ≤ lim inf

n→∞
dim(Umin

j (vn)) for all 1 ≤ j ≤ d.

Proof. Choose a subsequence (again denoted by vn) such that dim(Umin
j (vn)) is

weakly increasing. In the case of dim(Umin
j (vn))→∞, nothing is to be proved.

Therefore, let lim dim(Umin
j (vn)) = N < ∞. For an indirect proof assume that

dim(Umin
j (v)) > N . Since {ϕ(v) : ϕ ∈ a

⊗
k �=j V

∗
k } is dense in Umin

j (vn)

(cf. Lemma 6.22), there are N + 1 linearly independent vectors

b(i) = ϕ
[j]
i (v) with ϕ[j]

i ∈ a

⊗

k �=j
V ∗k for 1 ≤ i ≤ N + 1.

By Lemma 6.23, weak convergence b(i)n := ϕ
[j]
i (vn)⇀ b(i) holds. By Lemma 4.24,

for large enough n, also (b
(i)
n : 1 ≤ i ≤ N + 1) is linearly independent. Because of

b
(i)
n = ϕ

[j]
i (vn) ∈ Umin

j (vn), this contradicts dim(Umin
j (vn)) ≤ N. ��

If the spaces Umin
j (v) and Umin

j (vn) are infinite dimensional, one may ask
whether they have different (infinite) cardinalities. The proof of the next remark
shows that Umin

j (v) is the completion of a space of dimension≤ ℵ0 = #N.

Remark 6.25. Even if the tensor space V is nonseparable, the minimal subspaces
Umin
j (v) are separable.

Proof. Let vi → v be a converging sequence with algebraic tensors vi ∈ Valg.
The subspace U (j)

i := Umin
j (vi) is finite dimensional. There is a sequence of basis

elements bν and integers n(j)
m ∈ N such that

S(j)
m :=

m∑

i=1

U
(j)
i = span{bν : 1 ≤ ν ≤ n(j)

m }.

The spaces S(j) :=
∑∞

i=1 U
(j)
i = span{bν : ν ∈ N} are separable and satisfy

v ∈ S := ‖·‖
⊗d

j=1 S
(j). By Remark 4.35, S is separable. Because of minimality,

the inclusion Umin
j (v) ⊂ S(j) holds and proves the assertion. ��

6.6 Minimal Subspaces of Topological Tensors 187

6.6 Minimal Subspaces of Topological Tensors

6.6.1 Interpretation of Umin
j (v)

In Lemma 6.22b, under condition (6.18), we have defined Umin
j (v) also for topo-

logical tensors from ‖·‖
⊗d

j=1Vj . Accordingly, we may define the Banach subspace

U(v) := ‖·‖
⊗d

j=1
Umin
j (v) . (6.21)

For algebraic tensors we know that3 v ∈ U(v). However, the corresponding con-
jecture v ∈ U(v) for topological tensors turns out to be not quite obvious.4

We discuss the property v ∈ U(v) in three different cases.

1. The case of dim(Umin
j (v)) < ∞ is treated in §6.6.2. From the practical view-

point, this is the most important case. If dim(Umin
j (v)) < ∞ results from

Theorem 6.24, we would like to know whether the (weak) limit v satisfies3

v ∈ U(v)=a

⊗d
j=1U

min
j (v), which implies that v is in fact an algebraic tensor.

2. The general Banach case is studied in §6.6.3. We give a proof for v = limvn,
provided that the convergence is fast enough (cf. (4.12)) or that the minimal
subspaces are Grassmannian (cf. Definition 4.4).

3. In the Hilbert case, a positive answer can be given (see §6.6.4).

6.6.2 Case of dim(Umin
j (v)) < ∞

Theorem 6.26. Assume (6.18) and dim(Umin
j (v))<∞ for v ∈V = ‖·‖

⊗d
j=1Vj .

Then v belongs to the algebraic tensor space U(v) = a

⊗d
j=1 U

min
j (v) .

3 Since dim(Umin
j (v)) < ∞, a

⊗
d
j=1 U

min
j (v) = ‖·‖

⊗
d
j=1 U

min
j (v) = U(v) holds.

4 To repeat the proof of the existence of minimal subspaces, we need the counterpart of (6.3) which
would be (

X1 ⊗‖·‖ X2

)
∩
(
Y1 ⊗‖·‖ Y2

)
= (X1 ∩ Y1)⊗‖·‖ (X2 ∩ Y2) .

Again, (X1 ∩ Y1) ⊗‖·‖ (X2 ∩ Y2) ⊂
(
X1 ⊗‖·‖ X2

)
∩
(
Y1 ⊗‖·‖ Y2

)
is a trivial statement.

For the opposite direction one should have that
(
X1 ⊗‖·‖ X2

)
∩
(
Y1 ⊗‖·‖ Y2

)
=
(
X1 ⊗a X2

)
∩
(
Y1 ⊗a Y2

)

is a subset of

(X1 ⊗a X2) ∩ (Y1 ⊗a Y2) =
(6.3)

(X1 ∩ Y1)⊗a (X2 ∩ Y2) = (X1 ∩ Y1)⊗‖·‖ (X2 ∩ Y2) .

However, the closure and the intersection of sets satisfy the rule A ∩ B ⊂ A ∩ B, whereas the
previous argument requires the reverse inclusion.

The underlying difficulty is that a topological tensor v∈V is defined as limit of some sequence
vn ∈ a

⊗
d
j=1Vj and that the statement v ∈ U(v) requires to prove the existence of another

sequence un∈ a

⊗
d
j=1U

min
j (v) with un→v.

188 6 Minimal Subspaces

Proof. 1) Let {b(j)i : 1 ≤ i ≤ rj} be a basis of Umin
j (v). There is a dual system

ϕ
(j)
i ∈V ∗j with the property ϕ(j)

i (b
(j)
k) = δik. Define ai :=

⊗d
j=1ϕ

(j)
ij
∈ a

⊗d
j=1V

∗
j

and bi :=
⊗d

j=1b
(j)
ij
∈ U for i = (i1, . . . , id) with 1 ≤ ij ≤ rj . Any u ∈ U is

reproduced by

u =
∑

i
ai(u)bi.

We set

uv :=
∑

i

ai(v)bi ∈ a

d⊗

j=1

Umin
j (v) (6.22a)

and want to prove that v = uv ∈ a

⊗d
j=1 U

min
j (v) .

2) The norm ‖v − uv‖∨ is defined by means of α(v − uv) with normalised
functionalsα =

⊗d
j=1 α

(j) ∈ a

⊗d
j=1 V

∗
j (cf. (4.47)). If we can show

α(v − uv) = 0 for all α =

d⊗

j=1

α(j) ∈ a

d⊗

j=1

V ∗j , (6.22b)

the norm ‖v − uv‖∨ vanishes and v = uv is proved. The proof of (6.22b) is given
in the next part.

3) Write α(j)=α
(j)
0 +

∑
iciϕ

(j)
i with ci :=α(j)(b

(j)
i) and α(j)

0 :=α(j)−
∑
i ciϕ

(j)
i .

It follows that α(j)
0 (b

(j)
i) = 0 for all i, i.e.,

α
(j)
0 (u(j)) = 0 for all u(j) ∈ Umin

j (v). (6.22c)

We expand the product into

α =

d⊗

j=1

α(j) =

d⊗

j=1

(

α
(j)
0 +

∑

i

ciϕ
(j)
i

)

=

d⊗

j=1

(∑

i

ciϕ
(j)
i

)

+R,

where all products in R contain at least one factor α(j)
0 . Consider such a product in

R, where, without loss of generality, we assume that α(j)
0 appears for j = 1, i.e.,

α
(1)
0 ⊗ γ[1] with γ [1] ∈ a

⊗d
j=2 V

∗
j . We conclude that (α(0)

1 ⊗γ[1])(uv) = 0, since
(α

(1)
0 ⊗ id⊗ . . .⊗ id)(uv) = 0 and α(1)

0 ⊗ γ[1] = γ[1] ◦ (α(1)
0 ⊗ id ⊗ . . . ⊗ id).

Furthermore,
(
α
(1)
0 ⊗ γ[1]

)
(v) = α

(1)
0 (w) for w := (id⊗ γ[1])(v).

By definition of Umin
1 (v), w ∈ Umin

1 (v) holds and α(1)
0 (w) = (α

(1)
0 ⊗ γ[1])(v) = 0

follows from (6.22c). Together, (α(1)
0 ⊗ γ[1])(v − uv) = 0 is shown. Since this

statement holds for all terms in R, we obtain R(v − uv) = 0.

It remains to analyse
(⊗d

j=1

(∑
i ciϕ

(j)
i

))
(v − uv) =

(∑
i ciai

)
(v − uv)

6.6 Minimal Subspaces of Topological Tensors 189

with ci :=
∏d
j=1 cij . Application to uv yields

(∑

i
ciai

)
(uv) =

∑

i
ciai(v) ∈ K

(cf. (6.22a)). Since this value coincides with (
∑

i ciai) (v) =
∑

i ciai(v), we have
demonstrated that

(
d⊗

j=1

(∑

i

ciϕ
(j)
i

)
)

(v − uv) = 0.

Altogether we have proved (6.22b), which implies the assertion of the theorem. ��

6.6.3 The General Banach Space Case

For the next theorem we need a further assumption on the norm ‖·‖. A sufficient
condition is that ‖·‖ is a uniform crossnorm (cf. §4.3.1). The uniform crossnorm
property implies that ‖·‖ is a reasonable crossnorm (cf. Lemma 4.79). Hence, con-
dition (6.18) is ensured (cf. Proposition 4.68).

The proof of the theorem requires that the speed of convergence is fast enough.
Since there are several cases, where exponential convergence vn → v holds, the
condition from below is not too restrictive. Here, the index n in vn refers to the
tensor rank or, more weakly, to the j-rank for some 1 ≤ j ≤ d. In Theorem 6.27 we
take j = d. Another more abstract criterion used in Theorem 6.29 requires instead
that the minimal subspaces are Grassmannian.

Theorem 6.27. Assume that V = ‖·‖
d⊗

j=1

Vj is a Banach tensor space with a uniform

crossnorm ‖·‖. If v ∈ V is the limit of vn =
n∑

i=1

v
[d]
i,n ⊗ v

(d)
i,n ∈ a

d⊗

j=1

Vj with the

rate5

‖vn − v‖ ≤ o(n−3/2),

then v ∈ U(v) = ‖·‖
d⊗

j=1

Umin
j (v) , i.e., v = limun with un ∈ a

d⊗

j=1

Umin
j (v).

Proof. We use the setting Valg =Xd−1⊗aVd from Proposition6 4.90 and rewrite
the norm on Xd−1 by ‖·‖[d] := ‖·‖Xd−1

. Thus, each vn ∈ Valg has a represen-

tation in Umin
[d] (vn) ⊗ Umin

d (vn) with Umin
[d] (vn) ⊂ Xd−1, U

min
d (vn) ⊂ Vd, and

r := dimUmin
[d] (vn) = dimUmin

d (vn) ≤ n. Renaming r by n, we obtain the

5 The condition can be weakened to o(n−1−|1/2−1/p|) if (4.7) applies.
6 Differently from the setting in Proposition 4.90, we define Xd−1 = a

⊗d
j=1Vj as algebraic

tensor space equipped with the norm ‖·‖Xd−1
. This does not change the statement of the proposi-

tion because of Lemma 4.34.

190 6 Minimal Subspaces

representation vn =
∑n
i=1 v

[d]
i,n⊗ v

(d)
i,n . According to Corollary 6.8c, we can fix any

basis {v(d)i } of Umin
d (vn) and recover

vn =
n∑

i=1

ψ
(d)
i (vn)⊗ v(d)i

from a dual basis {ψ(d)
i }. Here we use Remark 3.54, i.e., ψ(d)

i is the abbreviation

for id ⊗ . . . ⊗ id ⊗ ψ
(d)
i ∈ L(Valg,Xd−1). We choose v(d)i and ψ(d)

i according to

Lemma 4.17 with ‖v(d)i ‖d = ‖ψ
(d)
i ‖∗d = 1 and define

uIn :=

n∑

i=1

ψ
(d)
i (v) ⊗ v(d)i ∈ Umin

[d] (v)⊗a Vd.

The triangle inequality yields

‖uIn − vn‖ =
∥
∥
∥
∥
∥

n∑

i=1

(
ψ
(d)
i (v) − ψ(d)

i (vn)
)
⊗ v(d)i

∥
∥
∥
∥
∥

(6.23a)

=

∥
∥
∥
∥
∥

n∑

i=1

ψ
(d)
i (v − vn)⊗ v(d)i

∥
∥
∥
∥
∥
≤

n∑

i=1

∥
∥
∥ψ

(d)
i (v − vn)⊗ v(d)i

∥
∥
∥

=
(4.44a)

n∑

i=1

∥
∥
∥ψ

(d)
i (v − vn)

∥
∥
∥
[d]
‖v(d)i ‖d︸ ︷︷ ︸

=1

≤
(4.45)

n∑

i=1

‖ψ(d)
i ‖∗d︸ ︷︷ ︸
=1

‖v− vn‖ = n‖v − vn‖.

Note that

uIn ∈ U[d],n ⊗ Vd with U[d],n := span
{
ψ
(d)
i (v) : 1 ≤ i ≤ n

}
⊂ Umin

[d] (v),

where dimU[d],n ≤ n.

Again by Lemma 4.17, we can choose a basis {v[d]
i }ni=1 of Umin

[d] (vn)⊂Xd−1

and a corresponding dual system {χ[d]
i }ni=1⊂X∗d−1.An analogous proof shows that

uIIn :=

n∑

i=1

v
[d]
i ⊗ χ

[d]
i (v) ∈ Xd−1 ⊗a Ud,n

satisfies the estimate

‖uIIn − vn‖ ≤ n‖v− vn‖, (6.23b)

where Ud,n := span{χ[d]
i (v) : 1≤ i≤n}⊂Umin

d (v). We choose the projection Φd
onto the subspace Ud,n according to Theorem 4.14. We denote id ⊗ . . .⊗ id⊗ Φd

6.6 Minimal Subspaces of Topological Tensors 191

again by Φd and define

un := Φd(u
I
n) ∈ U[d],n ⊗a Ud,n ⊂ Umin

[d] (v)⊗a Umin
d (v) ⊂

(6.12)
a

d⊗

j=1

Umin
j (v) .

The uniform crossnorm property (4.42) with Aj = id (1≤ j ≤ d − 1) and Ad=Φd
implies the estimate ‖Φd‖V←V = ‖Φd‖Vd←Vd

≤
√
n, where the latter bound

is given by Theorem 4.14 because of dim(Ud,n) ≤ n. Since Φd
(
uIIn

)
= uIIn , the

estimates

‖Φd(vn)− uIIn ‖ = ‖Φd
(
vn − uIIn

)
‖ ≤ √n‖vn − uIIn ‖ ≤

(6.23b)
n3/2‖v− vn‖,

‖un − Φd(vn)‖ = ‖Φd
(
uIn − vn

)
‖ ≤

√
n‖uIn − vn‖ ≤

(6.23a)
n3/2‖v − vn‖

are valid. Altogether, we get the estimate

‖un − v‖ = ‖ [un − Φd(vn)] +
[
Φd(vn)− uIIn

]
+
[
uIIn − vn

]
+ [vn − v] ‖

≤
(
2n3/2 + n+ 1

)
‖v − vn‖.

The assumption ‖v− vn‖ ≤ o(n−3/2) implies ‖un − v‖ → 0. ��

A second criterion7 for v ∈ U(v) makes use of the Grassmannian G(·) from
Definition 4.4.

Lemma 6.28. Let Uj ∈ G(Vj) for 1 ≤ j ≤ d. Assume that V = ‖·‖
⊗d

j=1Vj is a
Banach tensor space with a uniform crossnorm ‖·‖. Then the following intersection
property holds:

⋂

1≤j≤d

(
Uj ⊗‖·‖ V[j]

)
= ‖·‖

d⊗

j=1

Uj , where V[j] := ‖·‖
⊗

k �=j
Vk

Proof. Since induction can be used (cf. Lemma 6.11), we consider only the case
d = 2. The result for the algebraic tensor spaces implies that

U1 ⊗‖·‖ U2 = U1 ⊗a U2 = (U1 ⊗a V2) ∩ (V1 ⊗a U2)

⊂ U1 ⊗a V2 ∩ V1 ⊗a U2 =
(
U1 ⊗‖·‖ V2

)
∩
(
V1 ⊗‖·‖ U2

)

because of the general rule A ∩B ⊂ A ∩ B . It remains to prove the opposite
inclusion

(
U1 ⊗‖·‖ V2

)
∩
(
V1 ⊗‖·‖ U2

)
⊂ U1 ⊗‖·‖ U2.

For any v ∈ U1 ⊗‖·‖ V2 there is a sequence vn ∈ U1 ⊗a V2 with vn → v. The
projection P1 ∈ L(V1, V1) from Lemma 4.13 onto U1 satisfies (P1 ⊗ id)vn = vn.

7 This approach is communicated to the author by A. Falcó.

192 6 Minimal Subspaces

By the uniform crossnorm property, P1 ⊗ id is continuous on V = V1 ⊗‖·‖ V2 so
that

v = limvn = lim (P1 ⊗ id)vn = (P1 ⊗ id) (limvn) = (P1 ⊗ id)v.

Analogously, v = (id⊗ P2)v holds. (P1 ⊗ id) commutes with (id⊗ P2) and
yields the product P1⊗P2 = (P1 ⊗ id) ◦ (id⊗P2). This proves v = (P1 ⊗ P2)v.
Note that un = (P1 ⊗ P2)vn ∈ U1 ⊗a U2 and v = limun, i.e., v ∈ U1 ⊗‖·‖ U2,
which implies the desired reverse inclusion. ��

Theorem 6.29. Assume that V = ‖·‖
⊗d

j=1Vj is a Banach tensor space with a
uniform crossnorm ‖·‖. For v ∈ V assume that Umin

j (v) ∈ G(Vj) for 1 ≤ j ≤ d.
Then

v ∈ U(v) := ‖·‖

d⊗

j=1

Umin
j (v)

holds.

Proof. Set Uj := Umin
j (v). According to Lemma 6.28 we have to show that v ∈

Uj ⊗‖·‖ V[j] for all 1 ≤ j ≤ d. Let Ij ∈ L(Vj , Vj) and I[j] ∈ L(V[j],V[j]) be the
identity mappings. We split v =

(
Ij ⊗ I[j]

)
v into

v =
(
Pj ⊗ I[j]

)
v +

(
(Ij − Pj)⊗ I[j]

)
v (6.24)

with Pj ∈ L(Vj , Vj) as in the proof of Lemma 6.28. For an indirect proof we
assume that d :=

(
(Ij − Pj)⊗ I[j]

)
v �= 0. By Lemma 4.79, ‖·‖ is a reasonable

crossnorm. Therefore, the injective norm ‖d‖∨ is defined, which is the supremum
of all |(ϕj ⊗ ϕ[j])d| with normalised ϕj and ϕ[j] =

⊗
k �=j ϕk. Write ϕj ⊗ ϕ[j] as

ϕj ◦ (Ij ⊗ϕ[j]) and note that

(Ij⊗ϕ[j])d =
(
(Ij ⊗ϕ[j]) ◦

(
(Ij − Pj)⊗ I[j]

))
v =

(
(Ij − Pj) ◦ (Ij ⊗ϕ[j])

)
v.

By definition of Umin
j (v), (Ij ⊗ϕ[j])v ∈ Uj holds proving

(Ij − Pj)
(
(Ij ⊗ϕ[j])v

)
= 0.

This shows that ‖d‖∨ = 0; hence, d = 0. From (6.24), we conclude that v =(
Pj ⊗ I[j]

)
v ∈ Uj ⊗‖·‖ V[j]. ��

The assumption of a uniform crossnorm can be weakened. Instead, we require
that tensor products of projections are uniformly bounded:

‖Pv‖ ≤ CP ‖v‖
{

for all v ∈ V and

all P =
⊗d

j=1
Pj , Pj ∈ L(Vj , Vj) projection.

(6.25)

6.7 Minimal Subspaces for Intersection Spaces 193

The reason is that the proof from above involves only projections. Also in this case
the norm is not weaker than the injective norm.

Remark 6.30. A crossnorm ‖·‖ satisfying condition (6.25) fulfils ‖·‖∨ ≤ CP ‖·‖
(cf. (4.33)).

Proof. Note that the proof of Lemma 4.79 uses projections. ��

6.6.4 Hilbert Spaces

Since in Hilbert spaces every closed subspace U is complemented: Vj = U ⊕ U⊥,
Theorem 6.29 yields the following result.

Theorem 6.31. For Hilbert spaces Vj let V = ‖·‖
⊗d

j=1 Vj be the Hilbert tensor
space with the induced scalar product. Then v ∈ U(v) holds for all v ∈ V with
U(v) from (6.21).

6.7 Minimal Subspaces for Intersection Spaces

Banach spaces which are intersection spaces (see §4.3.6) do not satisfy the basic
assumption (6.18). Therefore, we have to check whether the previous results can be
extended to this case. We recall the general setting. For each 1≤ j ≤ d we have a
scale of spaces V (n)

j , 0≤n≤Nj , which leads to tensor spaces

V(n) = ‖·‖n

d⊗

j=1

V
(nj)
j for multi-indices n ∈ N ⊂ N

d
0,

where the subset N satisfies the conditions (4.51a-c). The final tensor subspace is

Vtop :=
⋂

n∈N
V(n)

endowed with the intersection norm (4.52b).

The algebraic counterparts are denoted by

V
(n)
alg := a

d⊗

j=1

V
(nj)
j and Valg :=

⋂

n∈N
V

(n)
alg .

There are different conclusions for algebraic and topological tensor spaces,
which are presented in the next subsections.

194 6 Minimal Subspaces

6.7.1 Algebraic Tensor Space

All spaces V(n) are dense subspaces of

V(0) = ‖·‖0

d⊗

j=1

Vj , where Vj = V
(0)
j

(cf. Lemma 4.102). Here, we consider algebraic tensors from a

⊗d
j=1Vj . Each

multi-index n ∈ N defines another space V
(n)
[j] = a

⊗
k∈{1,...,d}\{j} V

(nk)
k . Never-

theless, each n yields the same minimal subspace Umin
j (v).

Remark 6.32. For all n ∈ N
d
0 with nk ≤ Nk and v ∈ Valg, the minimal subspace

is given by

Umin
j (v) =

{
ϕ(v) : ϕ ∈ (V

(n)
[j])
′} ⊂ V

(Nj)
j . (6.26)

Proof. By Proposition 4.104, v∈V(N1,...,Nd)
alg ⊂V

(n)
alg holds for all n with nk≤Nk.

From v ∈ V
(n)
alg we derive (6.26) and v ∈

⊗d
j=1 U

min
j (v). By v ∈ V

(N1,...,Nd)
alg and

minimality of Umin
j (v), the inclusion Umin

j (v) ⊂ V
(Nj)
j follows. ��

6.7.2 Topological Tensor Space

Remark 6.32 does not hold for non-algebraic tensors. A simple counter-example is
f ∈ C1(I × J) with f(x, y) = F (x + y) and F /∈ C2. Choose the functional
ϕ = δ′η ∈ C1(J)∗. Then ϕ(f)(x) = −F ′(x + η) ∈ C0(I), but ϕ(f) is not in
C1(I) in contrast to Remark 6.32.

While in Remark 6.32 we could take functionals from V
(n)
[j] for any n bounded

by nk ≤ Nk, we now have to restrict the functionals to n = 0. Because of the
notation V (0)

k = Vk, the definition coincides with the one in Lemma 6.22:

Umin
j (v) :=

{
ϕ(v) : ϕ ∈

(

a

⊗

k∈{1,...,d}\{j}
Vk

)∗}‖·‖0
(6.27)

= span
{
ϕ(v) : ϕ =

⊗

k∈{1,...,d}\{j}
ϕ(k), ϕ(k) ∈ V ∗k

}‖·‖0
,

where the completion is performed with respect to the norm ‖·‖0 of V(0)
[j] .

In the following we show that the same results can be derived as in the standard
case. Condition (6.18) used before has to be adapted to the situation of the inter-
section space. Consider the tuples Nj = (0, . . . , 0, Nj, 0, . . . , 0) ∈ N from (4.51c)
and the corresponding topological tensor spaces

6.8 Linear Constraints and Regularity Properties 195

V(Nj) = V1 ⊗ . . .⊗ Vj−1 ⊗ V (Nj)
j ⊗ Vj+1 ⊗ . . .⊗ Vd+1

endowed with the norm ‖·‖Nj
. We require

‖·‖
∨(V1,...,Vj−1,V

(Nj)

j ,Vj+1,...,Vd+1)
� ‖·‖Nj

for all 1 ≤ j ≤ d. (6.28)

Lemma 6.33. Assume (6.28). Let ϕ[j] ∈ a

⊗
k �=jV

∗
k and vm,v ∈V with vm⇀ v.

(a) Then ϕ[j](vm)⇀ ϕ[j](v) in V (Nj)
j .

(b) The estimate

‖ϕ[j](v − vm)‖j,Nj ≤ C ‖v − vm‖Nj

holds for elementary tensors ϕ[j] =
⊗

k �=jϕ
(k) ∈ a

⊗
k �=jV

∗
k with ‖ϕ(k)‖∗ = 1,

where C is the norm constant involved in (6.28).

Proof. Repeat the proof of Lemma 6.23 and note that a functional ϕ(j) ∈ (V (Nj)
j)∗

composed with an elementary tensor ϕ[j] =
⊗

k �=jϕ
(k) ∈ a

⊗
k �=j V

∗
k yields

ϕ =
⊗d

k=1ϕ
(k) ∈ a

⊗d
k=1(V

(nj)
k)∗ , where nj are the components of n = Nj .

By (6.28), ϕ belongs to (V(Nj))∗. ��

Conclusion 6.34. Under assumption (6.28), Umin
j (v)⊂ V (Nj)

j holds for all v ∈V
and all 1 ≤ j ≤ d.

Proof. Let vm ∈ Valg be a sequence with vm → v ∈ V. By definition (4.52b) of
the intersection norm, ‖vm − v‖Nj

→ 0 holds for all j. Then Lemma 6.33b shows
that ‖ϕ[j](v − vm)‖j,Nj → 0. Since ϕ[j](vm) ∈ V (Nj)

j by Proposition 4.104, also

the limit ϕ[j](v) belongs to V (Nj)
j . ��

Theorem 6.35. Assume (6.28) and vm ∈ Valg with vm ⇀ v ∈ V. Then

dim(Umin
j (v)) ≤ lim inf

m→∞
dim(Umin

j (vm)) for all 1 ≤ j ≤ d.

Proof. We can repeat the proof from Theorem 6.24. ��

6.8 Linear Constraints and Regularity Properties

Let ϕk ∈ V ∗k be a continuous linear functional. We say that a tensor v ∈
⊗d

j=1 Vj
satisfies the linear constraint ϕk if

(id⊗ . . .⊗ id⊗ ϕk ⊗ id⊗ . . .⊗ id)v = 0. (6.29)

A single constraint can be replaced by a family Φ ⊂ V ∗k : v satisfies the linear
constraints Φ ⊂ V ∗k , if (6.29) holds for all ϕk ∈ Φ.

196 6 Minimal Subspaces

If, for instance, Vk = K
nk×nk is a matrix space, the subset of symmetric matrices

is characterised by ϕνμ(M) := Mνμ −Mμν = 0 for all 1 ≤ ν ≤ μ ≤ nk. In the
same way, tridiagonal matrices, sparse matrices with a fixed sparsity pattern, etc.
can be defined by means of linear constraints. The next statement is mentioned by
Tyrtyshnikov [185].

Remark 6.36. Under the assumption (6.18), statements (a) and (b) are equivalent:
(a) v ∈

⊗d
j=1 Vj satisfies a linear constraint ϕk,

(b) the minimal subspace Umin
k (v) fulfils ϕk(Umin

k (v)) = 0, i.e., ϕk(uk) = 0 holds
for all uk ∈ Umin

k (v).

Proof. The direction (b)⇒(a) is trivial. Assume (a) and choose any uk ∈ Umin
k (v).

There is some ϕ[k] ∈ V ∗[k] with uk = ϕ[k](v). Since ϕk ◦ ϕ[k] = ϕ[k] ◦ ϕk, one
concludes that ϕk(uk) = ϕk(ϕ[k](v)) = ϕ[k](ϕk(v)) = ϕ[k](0) = 0. ��

In the infinite dimensional case, when v is a multivariate function, regularity
properties of v are characterised by the boundedness of certain functionals. For
instance, v ∈ V = H1(I) defined on I := I1 × . . . × Id is differentiable (in the
weak sense) with respect to xk, if

‖(id⊗ . . .⊗ id⊗ ϕk ⊗ id⊗ . . .⊗ id)v‖L2(I) <∞ for ϕk = ∂/∂xk.

The formulation corresponding to Remark 6.36 is: If ϕk : (V, ‖·‖H1(I)) → L2(I)

is bounded, also ϕk : (Umin
k (v), ‖·‖H1(Ik)

)→ L2(Ik) is bounded.
The more general formulation of this property is Conclusion 6.34: If

id⊗ . . .⊗ id⊗ ϕk ⊗ id⊗ . . .⊗ id : V(N) → V(0)

is bounded, Umin
k (v) ⊂ V

(Nk)
k holds. Note that Umin

k (v) is defined via
(
V

(0)
[k]

)∗
.

Therefore, considering v ∈ V as a function v ∈ V(0), we obtain the same minimal
subspace Umin

k (v) ⊂ V
(0)
k . This leads to the next observation.

Remark 6.37. Let the Banach tensor space V(0) = ‖·‖0
⊗d

j=1 Vj with norm ‖·‖0
satisfy (6.18). Then the minimal subspace of v ∈ V(n) satisfies Umin

j (v) ⊂ V
(nj)
j ,

while v ∈ V =
⋂

n∈NV
(n) leads to Umin

j (v) ⊂ V
(Nj)
j .

Part III
Numerical Treatment

The numerical treatment of tensors is based on a suitable tensor representation.
The first four chapters are devoted to two well-known representations. Chapter 7
describes the r-term format (also called canonical or CP format), while Chap. 8
is concerned with the tensor subspace format (also called Tucker format). In both
chapters, tensors are exactly represented. Quite another topic is the approximation
of tensors. Chapter 7 studies the approximation within the r-term format. Here, it
becomes obvious that tensors of larger order than two have much less favourable
properties than matrices, which are tensors of order two. Approximation within the
tensor subspace format is addressed in Chap. 8. Here, the technique of higher order
singular value decomposition (HOSVD; cf. §10.1) is very helpful, both theoretically
and practically.

While the r-term format suffers from a possible numerical instability, the storage
size of the tensor subspace format increases exponentially with the tensor order d.
A format avoiding both drawbacks is the hierarchical format described in Chap. 11.
Here, the storage is strictly bounded by the product of the maximal involved rank,
the maximal dimension of the vector spaces Vj , and d, the order of the tensor. Again,
HOSVD techniques can be used for a quasi-optimal truncation. Since the format is
closed, numerical instability does not occur.

The hierarchical format is based on a dimension partition tree. A particular choice
of the tree leads to the matrix product representation or TT format described in
Chap. 12.

The essential part of the numerical tensor calculus is the performance of tensor
operations. In Chap. 13 we describe all operations, their realisation in the different
formats, and the corresponding arithmetical cost.

Chapter 14 contains the details of the tensorisation technique. When applied to
(grid) functions, tensorisation corresponds to a multiscale approach.

Chapter 15 is devoted to the generalised cross approximation, which has several
important applications. If a tensor can be evaluated entry-wise, this method allows
to construct a tensor approximation in the hierarchical format.

In Chap. 16, the application of the tensor calculus to elliptic boundary value
problems and elliptic eigenvalue problems is discussed.

The final Chap. 17 collects a number of further topics. Section 17.1 considers
general minimisation problems. Another minimisation approach described in Sect.
17.2 applies directly to the parameters of the tensor representation. Dynamic prob-
lems are studied in Sect. 17.3, while the ANOVA method is mentioned in Sect. 17.4.

Chapter 7
r-Term Representation

Abstract The r-term representation v =
∑r
ν=1

⊗d
j=1 v

(j)
ν , i.e., a representation

by sums of r elementary tensors, is already used in the algebraic definition (3.11) of
tensors. In different fields, the r-term representation has different names: ‘canoni-
cal decomposition’ in psychometrics (cf. [30]), ‘parallel factors model’ (cf. [96]) in
chemometrics.1 The word ‘representation’ is often replaced by ‘format’. The short
form ‘CP’ is proposed by Comon [38] meaning ‘canonical polyadic decomposition’.
Here, the notation ‘r-term representation’ is used with ‘r’ considered as a variable
from N0, which may be replaced by other variable names or numbers.
Before we discuss the r-term representation in Sect. 7.3, we consider representations
in general (Sect. 7.1) and the full representation (Sect. 7.2). The sensitivity of the
r-term representation is analysed in Sect. 7.4. Section 7.5 discusses possible rep-
resentations of the vectors v(j)ν ∈ Vj . We briefly mention the conversion from full
format to r-term representation (cf. §7.6.1) and modifications (cf. Sect. 7.7).
The discussion of arithmetical operations with tensors in r-term representation is
postponed to Chap. 13. In this chapter we restrict our considerations to the exact
representation in the r-term format. Approximations, which are of greater interest
in practice, will be discussed in Chap. 9.

7.1 Representations in General

7.1.1 Concept

For any practical implementation we have to distinguish between the mathematical
objects and the way we represent them for the purpose of a computer implemen-
tation. To give a simple example: any rational number r ∈ Q may be represented
by a pair (p, q) of integers. Here we need the semantic explanation that r = p/q.

1 The combination of both names has led to the awful abbreviation ‘CANDECOMP/PARAFAC
decomposition’.

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 7,
© Springer-Verlag Berlin Heidelberg 2012

199

200 7 r-Term Representation

From this example we see that the representation is not necessarily unique. The
representation concept may be iterated, e.g., in the previous example we need a
representation of the integers by a bit sequence together with a coding of the sign.

Let S be a mathematical set. In general, a representation of s ∈ S is based on a
mapping

ρS : PS → S (7.1)

where usually the set PS consists of tuples p = (p1, . . . , pn) of parameters which
are assumed to be realisable in computer language implementations. The mapping
ρS is only the explanation of the meaning of p ∈ PS and is not a subject of imple-
mentation.

First we discuss surjectivity of ρS . Since most of the mathematical sets are
infinite, whereas a real computer has only finite size, surjectivity cannot hold in
general. There are two ways to overcome this problem.

Like in the concept of the Turing machine, we may base our considerations on a
virtual computer with infinite storage. Then, e.g., all integers can be represented by
bit sequences of arbitrary length.

The second remedy is the replacement of S by a finite subset S0 ⊂ S such that
ρS : PS → S0 becomes surjective. For instance, we may restrict the integers to an
interval S0 = Z∩ [−imax, imax]. A consequence is that we have to expect problems
when we try to perform the addition imax+1. Another type of replacement S0 ⊂ S
is known for the case S = R.Here, the set S0 of machine numbers satisfies a density
property: Any real number2 x ∈ S = R can be approximated by x0 ∈ S0 such that
the relative error is smaller than the so-called machine precision eps.

From now on we assume that the mapping ρS :PS→S is surjective (since infinite
storage is assumed or/and S is replaced by a subset which again is called S).

There is no need to require injectivity of ρS . In general, the inverse ρ−1S (s) of
some s∈S is set-valued. Any p∈ρ−1S (s) may be used equally well to represent s∈S.

7.1.2 Computational and Memory Cost

An important property of s ∈ S is the storage size needed for its representation. For
instance, a natural number n ∈ S = N needs 1 + 	log2 n
 bits. In general, we have
to deal with the storage needed for a parameter tuple p = (p1, . . . , pn). We denote
the necessary storage by

Nmem(p).

Since s ∈ S may have many representations, we associate s with the memory size3

Nmem(s) := min
{
Nmem(p) : p ∈ ρ−1S (s)

}
.

2 Here, we ignore the problems of overflow and underflow, which is a difficulty of the same kind
as discussed above for integers.
3 The memory size Nmem(p) is assumed to be a natural number. Any subset of N has a minimum.

7.1 Representations in General 201

Practically, when ρ−1S (s) is a large set, it might be hard to find p ∈ ρ−1S (s) with
Nmem(p) = Nmem(s).

Usually, we want to perform some operations between mathematical objects or
we want to evaluate certain functions. Assume, e.g., a binary operation � within the
set S. The assignment s := s1 � s2 requires to find a representation p of s provided
that representations pi of si (i = 1, 2) are given. The corresponding operation �̂ on
the side of the parameter representations becomes

p := p1 �̂ p2 :⇐⇒ ρS(p) = ρS(p1) � ρS(p2) (7.2)

(note that p ∈ ρ−1S (ρS(p1) � ρS(p2)) is in general not unique). The right-hand side
in (7.2) explains only the meaning of �̂. It cannot be used for the implementation
since ρS and ρ−1S are not implementable. We assume that there is some algorithm
mapping the arguments p1, p2 ∈ PS into some p = p1 �̂ p2 ∈ PS with finite
Nmem(p) such that this computation requires a finite number of arithmetical opera-
tions. The latter number is denoted by N� and may be a function of the arguments.
In standard considerations, where mainly the arithmetical operations +,−, ∗, / of
real numbers (machine numbers) appear, these form the unit of N�.

The same setting holds for an n-variate function

ϕ : S1 × . . .× Sn → S0.

Assume representations ρi : Pi → Si for 0 ≤ i ≤ n. Then, on the level of represen-
tation, ϕ becomes

ϕ̂ : P1 × . . .× Pn → P0 with ρ0 (ϕ̂(p1, . . . , pn)) = ϕ(ρ1(p1), . . . , ρn(pn)).

The required number of arithmetical operations is denoted by Nϕ.

7.1.3 Tensor Representation versus Tensor Decomposition

The term ‘decomposition’ is well-known, e.g., from the QR decomposition or singu-
lar value decomposition. One may define a decomposition as an (at least essentially)
injective representation.

As an example we take the singular value decomposition. We may represent
a matrix M by the three matrix-valued parameters p1 = U (unitary matrix),
p2 = Σ (diagonal matrix), and V (unitary matrix). The semantic explanation is
ρSVD(U,Σ, V) = M := UΣV T. However, the representation of M is not the
purpose of SVD. Instead, the parameters U,Σ, V of ρSVD(U,Σ, V) = M are
of interest, since they indicate important properties of M . Injectivity of ρSVD is
necessary to speak about the singular vectors ui, vi and the singular values Σii.
We know from Corollary 2.21b that injectivity does not hold for multiple singular
values. Therefore, the vague formulation ‘essentially injective’ has been used above.

202 7 r-Term Representation

In a certain way, ‘representation’ and ‘decomposition’ play opposite rôles like
synthesis and analysis.

• ‘representation’: The parameters in ρS(p1, . . . , pn) = s are only of auxiliary
nature. In the case of non-injectivity, any parameter tuple is as good as another.
Only, if the data sizes are different, one may be interested in the cost-optimal
choice. The representation of s is illustrated by the direction

p1, . . . , pn �→ s.

• ‘decomposition’: For a given s ∈ S one likes to obtain the parameters pi in
ρS(p1, . . . , pn) = s. Therefore, the direction is

s �→ p1, . . . , pn.

‘Tensor decomposition’ it is applied, when features of a concrete object should
be characterised by parameters of tensor-valued data about this object. The r-term
representation can be considered as decomposition, since often essential injectivity
holds (cf. Remark 7.4b). The HOSVD decomposition from §8.3 is another example.

Since our main interest is the calculation with tensors, we are only interested in
representations of tensors.

7.2 Full and Sparse Representation

Consider the tensor space

V =

d⊗

j=1

Vj

of finite dimensional vector spaces Vj . As mentioned before, in the finite dimen-
sional case we need not distinguish between algebraic and topological tensor spaces.
After introducing bases {b(j)1 , b

(j)
2 , . . .} of Vj and index sets Ij :={1, . . . , dim(Vj)}

we reach the representation of elements from
⊗d

j=1Vj by elements from K
I =

⊗d
j=1K

Ij , where

I = I1 × . . .× Id.

This representation ρ : P = K
I → S =

⊗d
i=1 Vi (cf. (7.1)) is defined by

ρfull(a) =
∑

i∈I
ai b

(1)
i1
⊗ . . .⊗ b(d)id with a ∈ K

I and i = (i1, . . . , id) ∈ I. (7.3)

In the case of Vj = K
Ij , the bases are formed by the unit vectors.

Notation 7.1. The full representation uses the coefficients ai ∈ K
I with the inter-

pretation (7.3). The data size is

7.2 Full and Sparse Representation 203

N full
mem = #I = dim

(
d⊗

j=1

Vj

)

=

d∏

j=1

dim(Vj). (7.4)

In the model case of dim(Vj)=n for all 1≤ j≤d, the storage size is nd. Unless
n and d are very small numbers, the value of nd is too huge for practical realisations.
In particular when d→∞, the exponential growth of nd is a severe hurdle.

In the case of matrices, the format of sparse matrices is very popular. For com-
pleteness, we formulate the sparse tensor format. A concrete example will follow in
§7.6.5.

Remark 7.2. Given a subset I̊ ⊂ I and ai ∈ K for all i ∈ I̊, the sparse representa-
tion consists of the data I̊ and (ai)i∈̊I and represents the tensor

ρsparse

(
I̊, (ai)i∈̊I

)
=
∑

i∈̊I

ai b
(1)
i1
⊗ . . .⊗ b(d)id . (7.5)

The data size is N sparse
mem = 2#̊I.

The traditional understanding in linear (and multilinear) algebra is that their
objects are completely given. A vector v ∈ K

I needs knowledge of all vi (i∈I) and,
correspondingly, all coefficients vi should be stored simultaneously. In the field of
analysis, the alternative concept of functions is dominating. Note that KI for arbi-
trary, possibly infinite sets I is isomorphic to the set of functions I → K. Although
a function f , say from I = [0, 1] to K is defined as the set {(x, f(x)) : x ∈ [0, 1]}
of all pairs, implementations of f do not suffer from the fact that there are infinitely
many function values. Instead of requiring all values to be present, one asks for the
possibility to determine f(x) only for a given x ∈ I .

Accordingly, the full functional representation of some a ∈ K
I needs the imple-

mentation of a function
function a(i1, i2, . . . , id) (7.6)

which returns the entry ai ∈ K for any single index i = (i1, . . . , id).

Often tensors which can be represented by (7.6), are called function related
tensors. This naming is a bit vague: In principle, any tensor a ∈ K

I with finite I
can be implemented by (7.6). A typical function related tensor is

f(i1h, i2h, . . . , idh) for ij ∈ {0, 1, . . . , n} and h = 1/n,

which describes the restriction of a function f : [0, 1]d → K to a uniform
grid Gh ⊂ [0, 1]d of grid size h (this restriction we call ‘grid function’). The
evaluation time of f(x) for an x ∈ K

d is assumed to be independent of the grid size

h. The uniform grid may equally well be replaced by f(x(1)i1 , x
(2)
i2
, . . . , x

(d)
id

), where
{x(j)i : i ∈ Ij} is a non-equidistant grid in the j-th direction.

The functional representation is of particular interest, if partial evaluations of
a ∈ K

I are required (cf. §15).

204 7 r-Term Representation

7.3 r-Term Representation

The setRr defined in (3.22) is fundamental for the r-term representation.

Definition 7.3. For variable r ∈ N0, the r-term representation is explained by the
mapping

ρr-term

(
r, (v(j)ν)1≤j≤d

1≤ν≤r

)
:=

r∑

ν=1

d⊗

j=1

v(j)ν ∈ a

d⊗

j=1

Vj with

{
r ∈ N0 ,

v
(j)
ν ∈ Vj .

(7.7a)

For fixed r ∈ N0, the r-term representation

ρr-term : N0 ×
⋃
r∈N0

(V1 × . . .× Vd)r →Rr ,

ρr-term

(
r, (v

(j)
ν)1≤j≤d

1≤ν≤r

)
=

r∑

ν=1

d⊗

j=1

v
(j)
ν ∈ Rr

(7.7b)

refers to all tensors fromRr. We call r the representation rank.

Note that the representation rank refers to the representation by the parameters
(v

(j)
ν)1≤j≤d,1≤ν≤r, not to the represented tensor. Because ofRr ⊂ Rr+1, a tensor

expressed with representation rank r can also be expressed by any larger represen-
tation rank.

The relation between the representation rank and the tensor rank is as follows:

(i) If v ∈ V is represented by a representation rank r, then rank(v) ≤ r.
(ii) Let r := rank(v). Then there exists a representation of v with representation
rank r. However, finding this representation may be NP-hard (cf. Proposition 3.34).

Remark 7.4. (a) The r-term representation is by no means injective; e.g., v(j)ν may
be replaced by λj,νv

(j)
ν with scalars λj,ν ∈ K satisfying

∏d
j=1 λj,ν = 1. To reduce

this ambiguity, one may consider the modified representation

v =

r∑

ν=1

aν

d⊗

j=1

v(j)ν with ‖v(j)ν ‖Vj = 1 for all 1 ≤ j ≤ d

with normalised v(j)ν and factors aν ∈ K. Still the sign of v(j)ν is not fixed (and in the
case of K=C, v

(j)
ν may be replaced by λj,νv

(j)
ν with |λj,ν |=1 and

∏d
j=1λj,ν=1).

For large d, this representation is not the best choice for practical use, since over-
or underflow of the floating point numbers aν may occur. A better normalisation4 is

v =
r∑

ν=1

d⊗

j=1

v(j)ν with ‖v(j)ν ‖Vj = ‖v(k)ν ‖Vk
for all 1 ≤ j, k ≤ d.

Another trivial ambiguity of the r-term representation is the ordering of the terms.
(b) The representation v =

∑r
ν=1

⊗d
j=1 v

(j)
ν is called essentially unique, if the

scalar factors and ordering of the terms mentioned in Part (a) are the only ambigui-
ties. Under certain conditions, essential uniqueness holds (cf. Kruskal [133]). For a
detailed discussion see Kolda-Bader [128, §3.2] and De Lathauwer [40].

4 Cf. Mohlenkamp [149, Remark 2.1].

7.3 r-Term Representation 205

The second formula in Example 3.45 shows that there are tensors which allow
more than countably many representations which are essentially different. As long
as we are only interested in a cheap representation of tensors and cheap realisations
of tensor operations, (essential) uniqueness is not relevant. This is different in appli-
cations, where the vectors v(j)ν are used for an interpretation of certain data v.

Remark 7.5. (a) The storage size for the parameter p =
(
r, (v

(j)
ν)1≤j≤d,1≤ν≤n

)
is

N r-term
mem (p) = r ·

∑d

j=1
size(v(j)ν). (7.8a)

Here, the representation is iterated: we need some representation of v(j)ν ∈ Vj and
the related storage size is denoted by size(v

(j)
ν). More details about size(·) will

follow in §7.5.
(b) For the standard choice Vj = K

Ij with nj := #Ij the full representation of a
vector v(j)ν ∈ Vj requires size(v(j)ν) = nj . This results in

N r-term
mem (p) = r ·

∑d

j=1
nj . (7.8b)

(c) Assume nj = n for all 1 ≤ j ≤ d. Then the characteristic size is

N r-term
mem (p) = r · d · n. (7.8c)

By Corollary 3.37, an isomorphism Φ :V→W is a bijectionRr(V)�Rr(W),
i.e., the r-term format remains invariant: v ∈ Rr(V)⇔ w := Φ(v) ∈ Rr(W).

The following remark is a reformulation of Remark 6.1.

Remark 7.6. v =
∑r

ν=1

⊗d
j=1 v

(j)
ν is an element of

⊗d
j=1 Uj with subspaces

Uj := span{v(j)ν : 1 ≤ ν ≤ r} for 1 ≤ j ≤ d. In particular, Umin
j (v) ⊂ Uj holds.

We state two results involving the minimal subspaces Umin
j (v) ⊂ Vj from §6.

Given some r-term representation v =
∑r
ν=1

⊗d
j=1v

(j)
ν , the first statement shows

that the vectors v(j)ν may be projected to v̂(j)ν ∈Umin
j (v) and v=

∑r
ν=1

⊗d
j=1v̂

(j)
ν is

still a correct representation. This implies that the search for candidates of v(j)ν may
immediately be restricted to Umin

j (v).

Lemma 7.7. For v∈V:=
⊗d

j=1Vj let Pj∈L(Vj ,Vj) be a projection onto Umin
j (v).

(a) The vectors v(j)i in the r-term representation may be replaced by Pjv
(j)
i :

v =

r∑

i=1

d⊗

j=1

v
(j)
i =

r∑

i=1

d⊗

j=1

Pjv
(j)
i . (7.9)

(b) Equation (7.9) is also valid, if some of the Pj are replaced by the identity.

Proof. Set P :=
⊗d

j=1 Pj and use v = Pv. ��

The second result concerns representations v =
∑r

ν=1

⊗d
j=1 v

(j)
ν with minimal

r = rank(v) and states that in this case equality Umin
j (v) = Uj must hold. Hence,

v
(j)
ν ∈ Umin

j (v) is a necessary condition for a representation with minimal r.

206 7 r-Term Representation

Proposition 7.8. If v =
∑r

ν=1

⊗d
j=1 v

(j)
ν is a representation with r = rank(v),

the subspaces from Remark 7.6 are Uj = Umin
j (v) (cf. (6.10a)).

Proof. Let j ∈ {1, . . . , d}. Pj is some projection onto Umin
j (v). By Lemma 3.38,

v =
∑r

ν=1v
(j)
ν ⊗v

[j]
ν holds with linearly independent v[j]

ν ∈ a

⊗
k �=jVk . Apply

Pj (regarded as a map from L(V,V), cf. Notation 3.50) to v. By Lemma 7.7b,

v = Pjv =
∑r
ν=1(Pjv

(j)
ν)⊗v

[j]
ν is valid implying 0 =

∑r
ν=1(v

(j)
ν −Pjv(j)ν)⊗v

[j]
ν .

Linear independence of v[j]
ν proves v(j)ν −Pjv(j)ν = 0 (cf. Lemma 3.56), i.e., all v(j)ν

belong to Umin
j (v). ��

A consequence are the following conclusions from §6.8.

Remark 7.9. Suppose that v =
∑r

ν=1

⊗d
j=1 v

(j)
ν with r = rank(v).

(a) If v satisfies a linear constraint ϕk (as defined in §6.8), then ϕk(v
(k)
ν) = 0 holds

for all 1 ≤ ν ≤ r (cf. Tyrtyshnikov [185, Theorem 2.1]).

(b) Let V =
⋂

n∈NV
(n) be the intersection Banach spaces from §4.3.6. Then

v ∈ V(n) [V] implies v(j)ν ∈ V (nj)
j [V (Nj)

j] for all 1 ≤ ν ≤ r.

7.4 Sensitivity

We have started in §7.1 with general comments about representationsρS(p1, . . . , pn)
by means of parameters pj . From the numerical point of view it is important to know
how ρS behaves under perturbations of pj . The derivative ∂ρS/∂pj may be called
sensitivity with respect to pj. There are several reasons why one is interested in these
numbers. Since we are almost never working with exact data, the true parameter pj
may be perturbed by rounding or other effects. Another reason are approximations,
where the parameters p = (p1, . . . , pn) are replaced by approximate ones. Whether
such perturbations lead to dangerous effects for ρS(p1, . . . , pn) is detected by the
sensitivity analysis.

In the case of the r-term representation

v =

r∑

ν=1

d⊗

j=1

v(j)ν , (7.10a)

we use v(j)ν as parameters (cf. (7.7b)). For all v(j)ν we allow perturbations d(j)ν :

ṽ =

r∑

ν=1

d⊗

j=1

(
v(j)ν + d(j)ν

)
. (7.10b)

It is convenient to consider the relative error

δ(j)ν :=
‖d(j)ν ‖
‖v(j)ν ‖

. (7.10c)

7.4 Sensitivity 207

Proposition 7.10. Let ‖·‖ be any crossnorm on V = ‖·‖
⊗d

j=1Vj (cf. Definition

4.31 and (4.40)). Write the tensor v ∈ V from (7.10a) as v =
∑r

ν=1vν with the
elementary tensors vν :=

⊗d
j=1v

(j)
ν . Then the following error estimate holds:

‖ṽ − v‖ ≤
r∑

ν=1

δν ‖vν‖ with δν :=
[∏d

j=1
(1 + δ(j)ν)

]
− 1. (7.11)

For small δ(j)ν the first order approximation is δν ≈
∑d

j=1 δ
(j)
ν .

Proof. The term vν is only effected by δ(j)ν (1 ≤ j ≤ d). Induction by d will prove
∥
∥
∥
∥
∥

d⊗

j=1

(
v(j)ν + d(j)ν

)
−

d⊗

j=1

v(j)ν

∥
∥
∥
∥
∥
≤
[∏d

j=1
(1 + δ(j)ν)− 1

]∏d

j=1
‖v(j)ν ‖.

For d = 1 the statement is trivial. Assume that the statement holds for d− 1, i.e.,
for the products

⊗d
j=2 · · · . Then

∥
∥
∥
∥
∥

d⊗

j=1

(
v(j)ν + d(j)ν

)
−

d⊗

j=1

v(j)ν

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

(
v(1)ν +d(1)ν

)
⊗
{

d⊗

j=2

(
v(j)ν +d(j)ν

)
−

d⊗

j=2

v(j)ν

}

+ d(1)ν ⊗
d⊗

j=2

v(j)ν

∥
∥
∥
∥
∥
≤

(4.40)

≤ ‖v(1)ν +d(1)ν ‖
∥
∥
∥
∥
∥

d⊗

j=2

(
v(j)ν +d(j)ν

)
−

d⊗

j=2

v(j)ν

∥
∥
∥
∥
∥
+ ‖d(1)ν ‖

d∏

j=2

‖v(j)ν ‖ ≤ inductive
hypothesis

≤ (1 + δ(1)ν) ‖v(1)ν ‖
[d∏

j=2

(1+δ(j)ν)−1
]∏d

j=2
‖v(j)ν ‖ + δ(1)ν ‖v(1)ν ‖

d∏

j=2

‖v(j)ν ‖

=
[∏d

j=1

(
1 + δ(j)ν

)
− 1

]∏d

j=1
‖v(j)ν ‖

proves the statement. ��

The error estimate (7.11) should be combined with the stability estimate
r∑

i=1

∥
∥
∥
∥

⊗d

j=1
v
(j)
i

∥
∥
∥
∥ ≤ κ

∥
∥
∥
∥
∥

r∑

i=1

⊗d

j=1
v
(j)
i

∥
∥
∥
∥
∥
, (7.12)

which will be discussed in more detail in Definition 9.15. Note that the best (small-
est) stability constant is κ = 1. Together, we can estimate the relative error of ṽ:

‖ṽ − v‖
‖v‖ ≤ κ δ with δ := max{δν : 1 ≤ ν ≤ r}.

Since the condition κ may be as large as possible (cf. §9.4), there is no guarantee
that a small relative perturbation in v(j)i leads to a similarly small relative error of v.

Finally, we consider the �2 norm
√∑d

j=1(δ
(j)
ν)2. In the case of general errors

208 7 r-Term Representation

d
(j)
ν , δν =

∏d
j=1(1 + δ

(j)
ν)− 1 ≈

∑d
j=1 δ

(j)
ν is the best result, so that ‖ṽ − v‖ ≤ δ

with δ ≈
√
rd
√∑r

ν=1 ‖vν‖2
∑d

j=1(δ
(j)
ν)2. The estimate improves a bit, if the

error d(j)ν is a projection error.

Remark 7.11. Let V= ‖·‖
⊗d

j=1Vj be a Hilbert tensor space with induced scalar
product. Consider orthogonal projections Pj : Vj → Vj and the resulting errors

d
(j)
ν := (Pj − I)v(j)ν (v(j)ν from (7.10a)). Then the following error estimate holds:

‖ṽ − v‖ ≤
√
r

√
√
√
√

r∑

ν=1

‖vν‖2
d∑

j=1

(δ
(j)
ν)2 with ‖vν‖ =

∥
∥
∥
∥
∥

d⊗

j=1

v(j)ν

∥
∥
∥
∥
∥

2

.

Proof. We repeat the inductive proof. The first and second lines from above are
⊗d

j=1(v
(j)
ν + d

(j)
ν) −

⊗d
j=1 v

(j)
ν = (v

(1)
ν + d

(1)
ν) ⊗ · · · + d

(1)
ν ⊗ · · · . Since

v
(1)
ν + d

(1)
ν =P1v

(1)
ν and d(1)ν =(Pj − I)v(j)ν are orthogonal and ‖P1v

(1)
ν ‖ ≤ ‖v(1)ν ‖,

the squared norm of
⊗d

j=1(v
(j)
ν + d

(j)
ν)−

⊗d
j=1 v

(j)
ν is bounded by

‖v(1)ν ‖2
∥
∥
∥
∥
∥

d⊗

j=2

(v(j)ν + d(j)ν)−
d⊗

j=2

v(j)ν

∥
∥
∥
∥
∥

2

+ (δ(j)ν)2

∥
∥
∥
∥
∥

d⊗

j=1

v(j)ν

∥
∥
∥
∥
∥

2

.

Induction leads us to ‖ṽν − vν‖2 ≤ ‖vν‖2
∑d
j=1(δ

(j)
ν)2. Schwarz’ inequality of

the sum over ν proves the assertion. ��

7.5 Representation of Vj

In (7.7a), v= ρr-term(r, (v
(j)
ν)j,ν) is described as a representation of the tensor v.

However, representations may be become recursive if the parameters of the repre-
sentation need again a representation. In this case, the involved vectors v(j)i ∈ Vj
must be implementable. If Vj=K

Ij with nj :=#Ij , we might try to store the vector
v
(j)
i by full representation (i.e., as an array of length nj). But depending on the size

of nj and the nature of the vectors v(j)i , there may be other solutions, e.g., repre-
sentation as sparse vector if it contains mostly zero components. Another approach
has been mentioned in §5.3 and will be continued in §14: usual vectors from K

nj

may be interpreted as higher order tensors. Under certain assumptions the storage
of such tensor representations may be much cheaper than nj (possibly, it becomes
O(log nj)). These considerations are in particular of interest, if approximations are
exceptable (see §9).

The spaces Vj may be matrix spaces: Vj = K
Ij×Jj . Full representation of

large-scale matrices is usually avoided. Possibly, one can exploit the sparsity of
v
(j)
i ∈ K

Ij×Jj . Another possibility is the representation of v(j)i as hierarchical
matrix (cf. Hackbusch [86]). In all these cases, the required storage size may

7.5 Representation of Vj 209

strongly deviate from dim(Vj). We shall therefore use the notation

size(v(j)) for v(j) ∈ Vj

as already done in (7.8a).

Remark 7.12. Many computations require scalar products 〈u, v〉j for u, v ∈ Vj .
We denote its computational cost by Nj . The standard Euclidean scalar product in
Vj = K

nj costs Nj = 2nj − 1 arithmetical operations. Nj may be smaller than
2nj − 1 for certain representations of u, v ∈ Vj , while it may be larger for a scalar
product 〈u, v〉j = vHAju involving some positive definite Aj .

Full representations are obviously impossible if dim(Vj) = ∞. This happens,
e.g., for Vj = C([0, 1]). Really general functions cannot be represented in a finite
way. A remedy is the approximation, e.g., by interpolation. Such an approach will be
studied in §10.4. In this chapter we discuss exact representations. Often, the involved
functions can be described by well-known function classes, e.g., v(j)i ∈ C([0,1]) are
polynomials, trigonometric polynomials or sums of exponentials exp(αx). Then we
are led to the following situation:

v
(j)
i =

∑

ν∈Bj

β
(j)
ν,i b

(j)
ν ∈ Uj ⊂ Vj with Uj = span{b(j)ν : ν ∈ Bj}. (7.13)

Now, v(j)i is represented by its coefficients (β(j)
ν,i)ν∈Bj, while the basis functions b(j)ν

are fully characterised by ν∈Bj (e.g., the monomial xn is completely described by
the integer n ∈ N0). In §8.2.4 we shall obtain (7.13) in a different way and call it
‘hybrid format’.

Representation (7.13) via a basis of a subspace Uj may even be of interest when
Vj=K

Ij contains standard vectors (of large size nj=#Ij). If more than one tensor
shares the same subspaces Uj , the costly storage of the basis vectors is needed only
once, while the storage for the coefficients β(j)

ν,i is of minor size. Having precom-
puted the Gram matrix Γ (j) ∈ K

Bj×Bj of the scalar products Γ (j)
ν,μ := 〈b(j)ν , b

(j)
μ 〉,

we can reduce a scalar product 〈v, u〉 of v, u ∈ Uj to the scalar product 〈Γβv, βu〉
of the respective coefficients in K

Bj . The resulting cost is Nj = 2(#Bj)
2 +#Bj .

A similar situation is discussed in the next remark.

Remark 7.13. Assume that, according to (7.13), {v(j)i : 1 ≤ i ≤ r} ⊂ Vj = K
Ij

is represented by coefficients β(j)
ν,i , where rj := #Bj and nj = dim(Vj). If the

task is to compute the Gram matrix Mj with entries Mνμ := 〈v(j)ν , v
(j)
μ 〉, the direct

approach would cost 1
2r(r + 1)Nj ≈ r2nj . The computation of Γ (j) ∈ K

Bj×Bj

mentioned above requires r2jnj operations. The Cholesky decomposition Γ (j) =

L(j)L(j)H can be determined by 1
3r

3
j operations. The coefficients β(j)

ν,i define the
vectors β(j)

i := (β
(j)
ν,i)ν∈Bj (1 ≤ i ≤ r). Using

〈v(j)ν , v(j)μ 〉Vj =
〈
Γ (j)β(j)

ν , β(j)
μ

〉
K

Bj =
〈
L(j)Hβ(j)

ν , L(j)Hβ(j)
μ

〉
K

Bj ,

we compute all Mνμ by r2j r + r2rj operations. The total cost of this approach is

210 7 r-Term Representation

r2jnj +
1
3r

3
j + r2j r + r2rj .

It is cheaper than the direct computation if (r2 − r2j)nj > 1
3r

3
j + r2j r + r2rj .

Remark 7.14. In the case of Vj =K
Ij , the standard method for producing a basis

b
(j)
ν and the coefficients β(j)

ν,i from (7.13) is the reduced QR decomposition. Form
the matrix A := [v

(j)
1 · · · v

(j)
r] and decompose A = QR with Q ∈ K

Ij×rj ,

rj := rank(A), R ∈ K
rj×r (cf. Lemma 2.19). Then v(j)i =

∑r
ν=1Q•,νRν,i holds,

i.e., b(j)ν := Q•,ν, β
(j)
ν,i := Rν,i, and Bj := {1, . . . , rj}. The computational cost is

NQR(nj , r).

7.6 Conversions between Formats

In this section, we consider the tensor space V :=
⊗d

j=1 K
Ij with index sets of size

nj := #Ij . The tensor index set is I := I1× . . .×Id. An interesting number is

N :=

(
d∏

j=1

nj

)

/ max
1≤i≤d

ni, (7.14)

which appears in Lemma 3.41 as bound of the maximal rank in V. To simplify the
notation, we assume that n1 = max{ni : 1 ≤ i ≤ d} and introduce the index set

I′ := I2 × . . .× Id (7.15)

of size N = #I′.

conversion arithmetical cost
F → RN 0
Rr → F 2rnd for any r,
RR → RN 2Rnd if R > N.

In particular if r > N , it can be interesting
to convert a tensor from r-term format into an-
other one. We discuss the conversion from full
format (abbreviation: F) or r-term format (Rr)
into other ones. At the right we give a summary
of the costs using n := maxj nj .

7.6.1 From Full Representation into r-Term Format

Assume that v ∈ V is given in full representation, i.e., by all entries v[i1 . . . id]

(ij∈Ij). The associated memory size is N full
mem=

∏d
j=1 nj . Theoretically, a shortest

r-term representation v =
∑r

ν=1

⊗d
j=1v

(j)
ν exists with r := rank(v) and memory

size N r-term
mem = r

∑d
j=1nj . However, its computation is usually far too difficult (cf.

Proposition 3.34). On the other hand, we have constructively proved in Lemma 3.41
that the tensor rank is always bounded by N from (7.14).

7.6 Conversions between Formats 211

Remark 7.15. Given v ∈V in full representation, the N -term representation with
N from (7.14) is realised by

v =
∑

i′∈I′

d⊗

j=1

v
(j)
i′ with

{
v
(1)
i′ ∈ K

I1, v
(1)
i′ [k] := v[k, i′2, . . . , , i

′
d] for j=1,

v
(j)
i′ = e(j,i

′
j) ∈ K

Ij for 2 ≤ j ≤ d,
(7.16)

where e(j,i) is the i-th unit vector in K
Ij , i.e., e(j,i)[k] = δik. Note that no arithmeti-

cal operations occur.

Unfortunately, conversion to N -term format increases the storage requirement.
Even, if we do not associate any storage to the unit vectors e(j,i), j ≥ 2, the vectors
v
(1)
i′ , i

′ ∈ I′ (cf. (7.15)), have the same data size as the fully represented tensor v.

Because of the large memory cost, the transfer described above, is restricted to
d = 3 and moderate nj . Further constructions leading to smaller ranks than N will
be discussed in §7.6.5. Even smaller ranks can be reached, if we do not require an
exact conversion, but allow for an approximation (cf. §9).

7.6.2 From r-Term Format into Full Representation

Conversion from r-term format into full representation can be of interest if r > N,

since then the full format is cheaper. Given v =
∑r

ν=1

⊗d
j=1v

(j)
ν , v

(j)
ν ∈ K

Ij , the

expressions v[i]=
∑r

ν=1

∏d
j=1v

(j)
ν [ij] have to be evaluated for all i ∈ I.

Lemma 7.16. Conversion of an r-term tensor into a full tensor requires 2r
∏d
j=1nj

operations (plus lower order terms).

Proof. Note that v[1]ν [i′] :=
∏d
j=2 v

(j)
ν [i′j] can be obtained for all i′∈ I′ (cf. (7.15))

by r(d − 1)
∏d
j=2 nj operations. This is a lower order term compared with the

operation count for
∑r

ν=1 v
(1)
ν [i1] · v[1]ν [i′]. ��

7.6.3 From r -Term into N -Term Format with r >N

Here, we assume that v=
∑r

ν=1

⊗d
j=1 v

(j)
ν ∈V is given with r > N, whereN from

(7.14) is the upper bound N of the maximal rank. Such a situation may occur after
operations, where the number of terms is the product of those of the operands (see,
e.g., §13.5).

Remark 7.17. Let v(j)i′ for 2 ≤ j ≤ d be the unit vectors from (7.16). Then the

tensor v =
∑r

ν=1

⊗d
j=1 v

(j)
ν is equal to

212 7 r-Term Representation

v =
∑

i′∈I′

d⊗

j=1

v
(j)
i′ ∈ RN with v

(1)
i′ :=

r∑

ν=1

⎛

⎝
d∏

j=2

v(j)ν [i′j]

⎞

⎠ v(1)ν .

The number of terms is #I′=N . The computational cost is 2r
∏d
j=1nj plus lower

order terms.

The performed operations are identical to those from §7.6.3, only the interpreta-
tion of the result as N -term format is different.

Another conversion for the particular case d = 3 is related to [119, Remark 2.7].
Below, e(1,i) (i ∈ I1) is again the i-th unit vector in K

I1 .

Remark 7.18. Without loss of generality, assume that n1 = minj nj . Write v as
∑
i∈I1e

(1,i)⊗w[1]
i with tensorsw[1]

i ∈ V2⊗V3 defined byw[1]
i [i2, i3] := v[i, i2, i3].

For v=
∑r
ν=1

⊗3
j=1v

(j)
ν , all w[1]

i have the form

w
[1]
i =

r∑

ν=1

v(1)ν [i] · v(2)ν ⊗ v(3)ν .

Evaluation of w[1]
i for all i in full format costs 2rn1n2n3 + (r − n1)n2n3 opera-

tions. Note that the leading term is the same as above. The reduced singular value
decomposition w[1]

i =
∑mi

μ=1 xi,μ ⊗ yi,μ is an mi-term representation, where the

(matrix and tensor) rank mi = rank(w
[1]
i) is bounded by min{n2, n3}. The cost

of the SVDs is O(n1 · NSVD(n2, n3)) = O(n4), where n = maxj nj . Because of
r > N = O(n2), O(n4) is a lower order term compared with 2rn1n2n3. Thus, this
method needs almost the same computational work, while the resulting N ′-term
representation is

v =
∑

(i,μ)

e(1,i) ⊗ xi,μ ⊗ yi,μ with N ′ :=
∑

i∈I1

mi ≤ n1 min{n2, n3} = N.

7.6.4 Sparse Grid Approach

The sparse grid approach is used to interpolate functions in higher spatial dimen-
sions or it serves as ansatz for discretising partial differential equations. For a review
of sparse grids we refer to Bungartz-Griebel [29]. Here, we only sketch the main line
and its relation to tensor representations. To simplify the notation, we assume that
the tensor space V =

⊗d
j=1 Vj uses identical spaces V = Vj , which allow a nested

sequence of subspaces:

V = V(�) ⊃ V(�−1) ⊃ . . . ⊃ V(2) ⊃ V(1). (7.17)

A typical example are finite element spaces V(�) of functions, say, on the interval
[0, 1] using the step size 2−�. For sparse grids in Fourier space compare Sprengel
[174]. While the usual uniform discretisation by V = ⊗dV(�) has a dimension of
order 2−�d, the sparse grid approach uses the sum of tensor spaces

7.6 Conversions between Formats 213

Vsg,� =
∑

∑
d
j=1 �j=�+d−1

⊗d

j=1
V(�j). (7.18)

The background is the estimation of the interpolation error5 by O(2−2��d−1) for
functions of suitable regularity (cf. [29, Theorem 3.8]). This is to be compared with
dim(Vsg) ≈ 2��d−1 (cf. [29, (3.63)]). The basis vectors in Vsg,� are elementary
tensors

⊗d
j=1 b

(j)
k,�j

, where �j denotes the level: b(j)k,�j ∈ V(�j). Since the number of
terms is limited by the dimension of Vsg,�, the tensor v ∈ Vsg,� belongs toRr with
r = dim(Vsg,�) ≈ 2−��d−1.

For the practical implementation one uses hierarchical bases (cf. [29, §3]). In
V(1) we choose, e.g., the standard hat function basis b1 := (bi)1≤i≤n1

. The basis b2
of V(2) is b1 enriched by n2/2 hat functions from V(2). The latter additional basis
functions are indexed by n1 + 1 ≤ i ≤ n1 + n2/2 = n2. In general, the basis
bλ ⊂ V(λ) consists of bλ−1 and additional nλ/2 hat functions of V(λ). The index
�j corresponds to the dimension nj = 2�j of V(�j). The additive side condition
∑d
j=1 �j ≤ L := � + d − 1 in (7.18) can be rewritten as

∏d
j=1 nj ≤ N := 2L.

It follows from ij ≤ nj that the involved indices of the basis functions bij ∈ V(�j)
satisfy

∏d
j=1 ij ≤ N. For ease of notation, we replace Vsg,� by

Vsg := span

{⊗d

j=1
bij :

∏d

j=1
ij ≤ N

}

.

Since Vsg ⊃ Vsg,�, the approximation is not worse, while dim(Vsg) has the same
asymptotic behaviour 2−��d−1 as dim(Vsg,�). The inequality

∏d
j=1 ij ≤ N gives

rise to the name ‘hyperbolic cross’.

Remark 7.19. The typical hyperbolic cross approach is the approximation of a
function f with the (exact) series expansion f =

∑
i∈Nd vi

⊗d
j=1φij by

fN :=
∑

∏
d
j=1ij≤N

vi

d⊗

j=1

φij .

The behaviour of the number σd(N) of tuples i involved in the summation with
respect to N is

σd(N) = O
(
N logd−1(N)

)
. (7.19)

In the previous example,O(N−2 logd−1(N)) is the accuracy of fN . The follow-
ing table shows the values of σ2(N) and σ10(N) for different N as well as values
of σd(10) for increasing d:

d = 2
N 2 4 8 16 32 64 128 256
σd(N) 3 8 20 50 119 280 645 1466

d = 10
N 2 4 8 16 32 64 128 256
σd(N) 11 76 416 2 056 9 533 41 788 172 643 675 355

N = 10
d 2 3 5 10 20 50 100 1000
σd(N) 27 53 136 571 2 841 29 851 202 201 170 172 001

5 Any Lp norm with 2 ≤ p ≤ ∞ can be chosen.

214 7 r-Term Representation

7.6.5 From Sparse Format into r-Term Format

Finally, we consider the sparse format v = ρsparse(̊I, (vi)i∈̊I) from (7.5). By defi-
nition, v =

∑
i∈̊I vi

⊗d
j=1 b

(j)
ij

holds. The latter expression is an r-term representa-
tion of v with r :=#̊I nonzero terms.

The function f from Remark 7.19 is a tensor isomorphically represented by the
coefficient v ∈ ⊗dKN, where the tensor space is to equipped with the suitable
norm. The tensor vsg corresponding to the approximation fN has sparse format:
vsg = ρsparse(̊I, (vi)i∈̊I) with I̊ = {i ∈ N

d :
∏d
j=1ij ≤ N}. This ensures an r-

term representation with r := #̊I. The representation rank r can be reduced because
of the special structure of I̊. Here, we follow the idea from the proof of Lemma 3.41:
for fixed ij with j ∈ {1, . . . , d}\{k} we can collect all terms for ik ∈ N in

(
k−1⊗

j=1

b
(j)
ij

)

⊗
(
∑

ik

vib
(k)
ik

)

⊗
(

d⊗

j=k+1

b
(j)
ij

)

∈ R1. (7.20)

The obvious choice of (i1, . . . , ik−1, ik+1, . . . , id) are indices such that the sum∑
ik

contains as many nonzero terms as possible.

1
2
3
4

1 3 42

8

8

16

5

15 6

Fig. 7.1 Sparse grid in-
dices

First, we discuss the situation for d = 2. Fig. 7.1 shows
the pairs (i1, i2) ∈ I̊ with

∏d
j=1ij ≤ N = 16. For the first

choice k = 1 and i2 = 1, the indices i involved in (7.20)
are contained in the first column of height 16. The second
choice k = 2 and i1 = 1 leads to the lower row. Here,
the sum in (7.20) ranges from 2 to 16, since v[1, 1] belongs
to the previous column. Similarly, two further columns and
rows correspond to i2 = 2, 3 and i1 = 2, 3. Then we are
left with a single index i = (4, 4) so that we have decom-
posed I̊ into seven groups. Each group gives rise to one
elementary tensor (7.20). This finishes the construction of a 7-term representation
of vsg. Obviously, for general N we can construct a representation in Rr with

r ≤ 2	
√
N
 ≤ 2

√
N

and even r ≤ 2
√
N − 1 if

√
N ∈ N.

For general d, the decomposition of I̊ can be achieved as follows. Let

T :=
{
(t1, . . . , td−1) ∈ N

d−1 :
d−1
max
j=1
{tj} ·

∏d−1

j=1
tj ≤ N

}

be a set of (d− 1)-tuples. For each t := (t1, . . . , td−1) ∈ T and 1 ≤ k ≤ d define

I̊t,k :=

{

(t1, . . . , tk−1, ik, tk, . . . , td−1) ∈ I̊ with ik ≥
d−1
max
j=1
{tj}

}

.

We claim that
⋃
t∈T

⋃d
k=1 I̊t,k = I̊. For a proof take any i = (i1, . . . , id) ∈ I̊ and

let k and m be indices of the largest and second largest ij, i.e.,

7.6 Conversions between Formats 215

ik ≥ im ≥ ij for all j ∈ {1, . . . , d}\{k,m} with k �= m.

Inequality im ≤ ik and i ∈ I̊ imply that im ·
∏
j �=k ij ≤

∏d
j=1 ij ≤ N. Therefore

the tuple t := (i1, . . . , ik−1, ik+1, . . . , id) belongs to T and shows that i ∈ I̊t,k.
This proves I̊ ⊂

⋃
t∈T

⋃d
k=1 I̊t,k, while direction ‘⊃’ follows by definition of I̊t,k.

We conclude that {̊It,k : t ∈ T, 1 ≤ k ≤ d} is a (not necessarily disjoint)
decomposition of I̊, whose cardinality is denoted by τd(N). Each6 set I̊t,k gives rise
to an elementary tensor (7.20) and proves vsg ∈ Rr , where7

r := τd(N) ≤ d ·#T.

It remains to estimate #T. For t := (t1, . . . , td−1) ∈ T let m be an index with
tm = maxd−1j=1{tj}. From t2m

∏
j �=m tj ≤ N we conclude that 1 ≤ tm ≤

√
N. In

the following, we distinguish the cases tm ≤ N1/d and N1/d < tm ≤ N1/2.
If tm ≤ N1/d, also tj ≤ N1/d holds and all such values satisfy the condition

maxd−1j=1{tj} ·
∏d−1
j=1 tj ≤ N. The number of tuples t ∈ T with maxj{tj} ≤ N1/d

is bounded by
N (d−1)/d.

Now we consider the case N1/d < tm ≤ N1/2. The remaining components
tj (j �= k) satisfy

∏
j �=m tj ≤ N/t2m. We ignore the condition tj ≤ tm, and ask

for all (d − 2)-tuples (tj : j ∈ {1, . . . , d − 1}\{m}) with
∏
j �=m tj ≤ N/t2m.

Its number is σd−2(N/t2m) = O
(
N
t2m

logd−3(Nt2m
)
)

(cf. (7.19)). It remains to bound

the sum
∑

N1/d<t≤N1/2
N
t2 log

d−3(Nt2). Instead, we consider the integral

∫ N1/2

N1/d

N

x2
logd−3

(N

x2

)
dx < N logd−3(N (d−2)/d)

∫ N1/2

N1/d

dx

x2

< N logd−3(N (d−2)/d)[N−1/d −N−1/2] < N (d−1)/d logd−3(N (d−2)/d).

Therefore, any tensor v = ρsparse(̊I, (vi)i∈̊I can be written as v ∈ Rr with

representation rank r ≤ O
(
N (d−1)/d logd−3(N)

)
. This proves that although #̊I

is not bounded by O(N), the rank is strictly better than O(N).

Proposition 7.20. For an index set I̊ ⊂ {i ∈ N
d :

∏d
j=1 ij ≤ N}, any tensor v =

ρsparse(̊I, (vi)i∈̊I) can be explicitly converted into v ∈ Rr with a representation

rank r = τd(N)≤O
(
N (d−1)/d logd−3(N)

)
.

The factor logd−3 may be an artifact of the rough estimate. Numerical tests show
that the asymptotic behaviour appears rather late. The next table shows

γd(N) := log2(τd(N)/τd(N/2)) for N = 2n.

6 Since the sets I̊t,k may overlap, one must take care that each vi is associated to only one I̊t,k.
7 τd(N) < d · #T may occur, since I̊t,k = I̊t,k′ may hold for k �= k′. An example is the
decomposition from Fig. 7.1, where τ2(16) = 7.

216 7 r-Term Representation

γd(N) should converge to (d− 1)/d.

n 3 6 9 12 15 18 21 24 27 30
γ3(2

n) 1.0 0.88 0.78 0.73 0.71 0.693 0.684 0.679 0.675 0.672 → 2
3

γ4(2
n) 1.4 1.15 0.96 0.89 0.85 0.825 0.806 0.794 0.784 0.777 → 3

4

Finally, we compare the quantities σd(N) (cardinality of the sparse grid) and τd(N)
for d = 3 and d = 6:

N 10 100 1 000 10 000 100 000 1 000 000
σ3(N) 53 1 471 29 425 496 623 7 518 850 106 030 594
τ3(N) 12 102 606 3265 16542 81 050
σ6(N) 195 14 393 584 325 17 769 991 439 766 262 -
τ6(N) 51 2 047 36 018 502 669 5 812 401 59 730 405

7.7 Modifications

Restricting Vj to certain subsets Aj ⊂ Vj , we can define a modified r-term format
Rr
(
(Aj)

d
j=1

)
by

Rr
(
(Aj)

d
j=1

)
:=

{
r∑

ν=1

v(1)ν ⊗ . . .⊗ v(d)ν : v(j)ν ∈ Aj

}

(r ∈ N0).

Examples of Aj are

• Vj = R
nj , Aj = {v ∈ Vj : vi ≥ 0}. Hence, Aj contains the non-negative

vectors.

• Vj = Lp(Ij), then Aj = {v ∈ Vj : v(x) ≥ 0 for x ∈ Ij} describes the
non-negative functions.

• Vj = C
nj×nj , Aj = {M ∈ Vj : M Hermitean matrix}.

• Vj = C
nj×nj , Aj = {M ∈ Vj : M positive semidefinite}

We shall refer to these modifications in §9.6, §9.7.1, and §9.7.2.5.1.
A challenging problem is the representation of (anti-)symmetric tensors. Assume,

e.g., that v ∈ A(V) ⊂ ⊗dV is an antisymmetric tensor (cf. §3.5). A possible repre-
sentation uses a usual tensor v′ ∈ ⊗dV with the property v = PA(v

′). Note that an
elementary tensor v′ leads to the Slater determinantv requiring d! terms (cf. Lemma
3.70). The difficulty of this approach comes with the operations. For instance, the
scalar product 〈v,w〉 of two antisymmetric tensors v,w ∈ A(V) is to be expressed
by means of their representations v′ and w′. For a solution of this problem compare
Beylkin-Mohlenkamp-Pérez [16].

Chapter 8
Tensor Subspace Representation

Abstract We use the term ‘tensor subspace’1 for the tensor product U :=

a

⊗d
j=1Uj of subspaces Uj ⊂Vj . Obviously, U is a subspace of V := a

⊗d
j=1Vj ,

but not any subspace of V is a tensor subspace.2 For d = 2, r-term and tensor sub-
space representations (also called Tucker representation) are identical. Therefore,
both approaches can be viewed as extensions of the concept of rank-r matrices to
the tensor case d ≥ 3. The resulting set Tr introduced in Sect. 8.1 will be charac-
terised by a vector-valued rank r = (r1, . . . , rd). Since by definition, tensors v ∈ Tr
are closely related to subspaces, their descriptions by means of frames or bases is
of interest (see Sect. 8.2). Differently from the r-term format, algebraic tools like
the singular value decomposition can be applied and lead to a higher order singu-
lar value decomposition (HOSVD), which is a quite important feature of the tensor
subspace representation (cf. Sect. 8.3). Moreover, HOSVD yields a connection to
the minimal subspaces from Chap. 6. In Sect. 8.5 we compare the formats discussed
so far and describe conversions between the formats. In a natural way, a hybrid
format appears using the r-term format for the coefficient tensor of the tensor sub-
space representation (cf. §8.2.4). Section 8.6 deals with the problem of joining two
representation systems, as it is needed when we add two tensors involving different
tensor subspaces.

8.1 The Set Tr

Consider an algebraic tensor space

V = a

d⊗

j=1

Vj

1 ‘Tensor subspace’ is to be understood as ‘subspace and tensor space’.
2 For instance, choose two linearly independent vectors a, b ∈ V. Then U := span{a⊗a, b⊗ b}
is a two-dimensional subspace of V ⊗V, but the smallest tensor subspace containing U is V0⊗V0

with V0 := span{a, b} and has dimension four.

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 8,
© Springer-Verlag Berlin Heidelberg 2012

217

218 8 Tensor Subspace Representation

and a fixed tensor v ∈ V. We want to find possibly lower dimensional subspaces
Uj ⊂ Vj such that

v ∈ U := a

d⊗

j=1

Uj with rj := dim(Uj) (8.1)

holds. In §8.2 we shall represent v by means of chosen bases of Uj . A possible
choice of Uj ⊂ Vj for all 1≤ j ≤ d are the minimal subspaces Umin

j (v) described
in §6. Note that in this chapter only exact representations are considered. Approxi-
mations in possibly even smaller subspaces will be discussed in §10.

Above, we have started with v ∈ V and have been looking for a subspace family
{Uj} with property (8.1). Now, we reverse the viewpoint and fix the dimensions rj
of Uj,

r := (r1, . . . , rd) ∈ N
d
0, (8.2)

and ask for all v satisfying (8.1) for subspaces Uj which may depend on v. The
dimensions3 rj play a similar rôle as the parameter r of the r-term representation.
Therefore, we refer to r as the tensor subspace representation rank. Since it is
vector-valued, it cannot be confounded with the tensor rank from §3.2.6.

Definition 8.1 (Tr). Let V := a

⊗d
j=1Vj , fix r := (r1, . . . , rd) ∈ N

d
0, and set

Tr := Tr(V) :=

{

v ∈ V :
there are subspaces Uj ⊂ Vj such that
dim(Uj) = rj and v ∈ U :=

⊗d
j=1 Uj

}

. (8.3)

For v ∈ Tr we say that v possesses an (r1, . . . , rd)-tensor subspace representation.

The symbol Tr is used if the reference to the underlying tensor space V is ob-
vious; otherwise, Tr(V) is preferred.

An equivalent definition is

Tr =
⋃

Uj⊂Vj subspaces with dim(Uj)=rj (1≤j≤d)

d⊗

j=1

Uj .

The letter T may also be read as ‘Tucker format’ (cf. Tucker [184]).
Note that the subspaces Uj involved in (8.3) vary with v. The set Tr corresponds

to Rr from (3.22). The parameters r1, . . . , rd are not necessarily the optimal ones,
i.e., the subspaces Uj may be larger than necessary.

Exercise 8.2. (a) If rj = 0 for some j, then Tr = R0 = {0} is the trivial subspace.
(b) Coincidence T1 = R1 holds for 1 = (1, . . . , 1) ∈ N

d
0.

(c) If d = 2, the identity Tr = Rr holds for r = (r, . . . , r) and all r ∈ N0.

Except for the cases from Exercise 8.2, the sets Tr and Rr do not coincide.
Relations and conversions between both formats will be discussed in §8.5.

Assume that v ∈ Tr holds with v ∈ U :=
⊗d

j=1Uj and dim(Uj) = rj . For

3 Obviously, only integer rj ≤ dim(Vj) are of interest.

8.1 The Set Tr 219

any sj ≥ rj there are larger subspaces Wj ⊃ Uj with dim(Wj) = sj . Obviously,
v ∈W :=

⊗d
j=1Wj holds and shows that also v ∈ Ts is valid, i.e.,4

v ∈ Tr ⇒ v ∈ Ts for s ≥ r.

This proves the following statement.

Corollary 8.3. In definition (8.3) we may replace dim(Uj) = rj by dim(Uj) ≤ rj
without changing the set Tr.

Tr satisfies similar properties asRr in (3.23a):

{0} = Tr if rj = 0 for at least one j,
Tr ⊂ Ts for r ≤ s,
Tr + Ts ⊂ Tr+s for all r, s ∈ N

d
0.

(8.4)

Note that Tr is not a subspace! Two different tensors v,w ∈ Tr may belong to
different systems of subspaces: v ∈

⊗d
j=1 Uj and w ∈

⊗d
j=1Wj . In the worst

case, Uj ∩Wj = {0} holds and the sum v+w requires the subspace Uj +Wj with
dim(Uj +Wj) = rj + sj for its tensor subspace representation, proving the last
line of (8.4). Differently from (3.23b), Tr + Ts is a proper subset of Tr+s if r, s �= 0.

Summarising the results of §6.3, we can state:

Remark 8.4 (Tucker rank). Given v ∈ V, there is a minimal r = rmin(v) ∈ N
d
0

with v ∈ Tr. This rmin(v) has the components

rj = rankj(v) = dim
(
Umin
j (v)

)

(cf. (5.6b)). The corresponding subspaces from (8.3) are Uj :=Umin
j (v). The vector

rmin(v) is called the tensor subspace rank or ‘Tucker rank’ of v (although this rank
is much earlier introduced by Hitchcock [100]).

Example 8.5. (a) Let Ppj ⊂ Vj := L2([0, 1]) be the subspace of polynomials of
degree at most pj . All multivariate polynomials f(x1, . . . , xd)∈V := a

⊗d
j=1Vj

with polynomial degree ≤ pj with respect to xj belong to U :=
⊗d

j=1Ppj ⊂ Tr
with rj = pj + 1.
(b) The particular polynomial f(x, y, z) = xz + x2y belongs to T(2,2,2) involving
the subspaces U1 := span{x, x2}, U2 := span{1, y}, U3 := span{1, z}.

The next property of Tr will become important for approximation problems.

Lemma 8.6. Let V = ‖·‖
⊗d

j=1 Vj be a Banach tensor space with a norm not
weaker than ‖·‖∨ (cf. (6.18)). Then the subset Tr ⊂ V is weakly closed.

Proof. Let vn ∈ Tr be a weakly convergent sequence with vn ⇀ v ∈ V. From
vn ∈ Tr we infer that Umin

j (vn) has a dimension not exceeding rj . By Theorem
6.24, dim(Umin

j (v)) ≤ rj follows, implying v∈Tr (cf. Theorem 6.26). ��

4 Inequalities s≥r for vectors from N
d
0 are understood componentwise: sj ≥ rj for all 1≤ j≤d.

220 8 Tensor Subspace Representation

8.2 Tensor Subspace Formats

8.2.1 General Frame or Basis

The characterisation of a tensor by v ∈ U :=
⊗d

j=1 Uj ⊂ V :=
⊗d

j=1Vj corre-
sponds to the (theoretical) level of linear algebra. The numerical treatment requires
a description of the subspaces by a frame5 or basis. Even if a basis (in contrast to a
frame) is the desired choice, there are intermediate situations, where frames cannot
be avoided (cf. §8.6). By obvious reasons, we have to suppose that dim(Uj)<∞
(cf. Remark 6.1). Without loss of generality, we enumerate the frame vectors of Uj
by b(j)i , 1 ≤ i ≤ rj , and form the rj-tuple

Bj :=
[
b
(j)
1 , b

(j)
2 , . . . , b(j)rj

]
∈ (Vj)

rj . (8.5a)

Set
J = J1 × . . .× Jd with Jj = {1 ≤ i ≤ rj} for 1 ≤ j ≤ d.

Bj ∈ (Vj)
rj can be considered as an element from the set L(KJj , Vj). In the case

of Vj = K
Ij , Bj is a matrix:

Bj ∈ K
Ij×Jj . (8.5b)

The elementary Kronecker product

B :=

d⊗

j=1

Bj ∈ L(KJ,V) (8.5c)

becomes a matrix from K
I×J, if Vj = K

Ij and V = K
I. In the following, the frame

data will be described by Bj ∈ (Vj)
rj or Bj ∈ K

Ij×Jj for 1 ≤ j ≤ d, which
includes the information about rj = #Jj . These quantities define B by (8.5c).
A column of B corresponding to a multi-index i ∈ I is bi =

⊗d
j=1 b

(j)
ij
. Hence, all

columns of B form the frame [or basis] of U ⊂ V. For later use we add that for any
index subset ∅ � α � {1, . . . , d} a frame of Uα =

⊗
j∈αUj is denoted by

Bα :=
[
b
(α)
1 ,b

(α)
2 , . . . ,b(α)

rα

]
∈ (Vα)

rα . (8.5d)

We specify the following data:

Bj ∈ (Vj)
rj frame or basis of Uj for 1 ≤ j ≤ d, ,

Jj := {1 ≤ i ≤ rj} for 1 ≤ j ≤ d,

a ∈
⊗d

j=1 K
Jj = K

J for J = J1 × . . .× Jd
(8.6a)

5 The frame is a system of vectors generating the subspace without assuming linear independence.
When the term ‘frame’ is used, this does not exclude the special case of a basis; otherwise, we use
the term ‘proper frame’. Note that a frame cannot be described by a set {b(j)ν : 1 ≤ ν ≤ rj},

since b
(j)
ν = b

(j)
μ may hold for ν �= μ.

8.2 Tensor Subspace Formats 221

so that

v = Ba =
∑

i∈J
ai

d⊗

j=1

b
(j)
ij

(8.6b)

=

r1∑

i1=1

r2∑

i2=1

· · ·
rd∑

id=1

a[i1i2 · · · id] b(1)i1 ⊗ b
(2)
i2
⊗ . . .⊗ b(d)id .

Note that rj ≥ dim(Uj). Equality rj = dim(Uj) holds if and only if Bj is a basis.
According to §7.1, the representation is the mapping

ρTS

(
a, (Bj)

d
j=1

)
:=

∑

i∈J
ai

d⊗

j=1

b
(j)
ij

= Ba. (8.6c)

The coefficient tensor a is also called ‘core tensor’ (Tucker [184, p. 287] uses the
term ‘core matrix’).

Formally, representation (8.6c) looks very similar to the full representation (7.3).
However, there are two important differences. First, the index set J is hopefully
much smaller than the original index set I. Second, the frame vectors {b(j)i } are
of different nature. In the case of the full representation (7.3), Bj is a fixed basis.
For instance, for the space V of multivariate polynomials, b(j)i = xij may be the
monomials, or for V = K

I the basis vectors b(j)i are the unit vectors e(i) ∈ K
Ij

(cf. (2.2)). Because of the fixed (symbolic) meaning, these basis vectors need not
be stored. The opposite is true for the representation (8.6c). Here, we have chosen a
special frame Bj of Uj and must store the frame vectors b(j)i explicitly.

A tensor v ∈ Tr may still be represented in different versions. A general one is
given next, orthonormality is required in (8.8a), while a special orthonormal basis
is used in Definition 8.23.

Remark 8.7 (general tensor subspace representation). (a) The storage require-
ments of the vectors b(j)i depend on the nature of Uj (cf. §7.5). Denoting the storage
of each frame vector by size(Uj), the basis data require

NTSR
mem

(
(Bj)

d
j=1

)
=
∑d

j=1
rj · size(Uj). (8.6d)

(b) The coefficient tensor a ∈ K
J is given by its full representation (cf. §7.2) and

requires a storage of size
NTSR

mem(a) =

d∏

j=1

rj . (8.6e)

(c) For the optimal choice Uj =Umin
j (v) together with basesBj of Uj , the numbers

rj are given by rj = rankj(v) (cf. Remark 8.4).
(d) If, at least for one j, Bj is not a basis, the coefficient tensor a ∈ K

J is not
uniquely defined.

The counterpart of Remark 7.9 reads as follows.

Remark 8.8. Suppose a representation of v with rj = rankj(v) for 1 ≤ j ≤ d.

(a) If v satisfies a linear constraint ϕk (as defined in §6.8), then ϕk(b
(k)
i) = 0 holds

for all basis vectors b(k)i from Bk.

222 8 Tensor Subspace Representation

(b) Let V(n) be the intersection Banach spaces from §4.3.6. Then v ∈ V(n) implies
b
(k)
i ∈ V (nk)

k for all b(k)i from Bk.

Let n := maxj size(Uj) and r := maxj rj . Then the memory costs (8.6d,f) sum
to rdn+ rd. How rdn and rd compare, depends on the sizes of r and d. If r is small
compared with n and if d is small (say d = 3), rd < rdn may hold. For medium
sized d, the term rd becomes easily larger than rdn. For really large d, this term
makes the representation infeasible.

The frame Bj may be transformed using Bnew
j =

[
b
(j)
1,new, . . . , b

(j)
rnewj ,new

]
and an

rnewj ×rj matrix T (j):

Bj = Bnew
j T (j), i.e., b

(j)
i =

rnewj∑

k=1

T
(j)
ki b

(j)
k,new for 1 ≤ i ≤ rj , (8.7a)

or, more shortly, B = BnewT with B =
d⊗

j=1

Bj , Bnew =
d⊗

j=1

Bnew
j , T =

d⊗

j=1

T (j).

In the case of bases Bj and Bnew
j with rnewj = rj , the transformation matrix

T (j) is regular and the inverse transformation is b(j)k,new =
∑rj

i=1 S
(j)
ik b

(j)
i with

S(j) = (T (j))−1. In general, the inclusion6 range(Bj) ⊂ range(Bnew
j) following

from (8.7a) ensures that all v=Ba can be expressed by means of Bnew.

Lemma 8.9 (frame transformation). Let v∈U be described by (8.6a,b) and con-
sider the transformation of Bnew

j to the frames Bj by means of (8.7a) with matrices
T (j), i.e., B = BnewT. The corresponding transformation of the coefficients is

anew := Ta with T =
d⊗

j=1

T (j). (8.7b)

Then
ρTS

(
a, (Bj)

d
j=1

)
= ρTS

(
anew, (B

new
j)dj=1

)
. (8.7c)

Proof. Ba = (BnewT)a = Bnew(Ta) = Bnewanew proves (8.7c). ��

The elementwise formulation of (8.7b) reads as

anew[i1i2 · · · id] (8.7d)

=

r1∑

k1=1

r2∑

k2=1

· · ·
rd∑

kd=1

T (1)[i1, k1]T
(2)[i2, k2] · · ·T (d)[id, kd] a[k1k2 · · · kd].

One can interpret (8.7c) also in the reverse direction (then, the affices ‘old’ and
‘new’ are to be exchanged).

Corollary 8.10. Let v= ρTS

(
a, (Bj)

d
j=1

)
be given. If the coefficient tensor allows

the formulation a = Sanew, the tensor subspace format can be transformed into

v = ρTS

(
anew, (B

new
j)dj=1

)
with Bnew := BS.

6 This inclusion does imply that rj ≤ rnewj . If Bj is a proper frame and Bnew
j a basis of the

range of Bj, even rnewj < rj holds.

8.2 Tensor Subspace Formats 223

8.2.2 Orthonormal Basis

Let V=
⊗d

j=1Vj be a [pre-]Hilbert space with scalar product 〈·, ·〉 induced by the
scalar products 〈·, ·〉j of Vj . Consider again the representation (8.6a,b) of v∈U with
a basis (Bj)1≤j≤d. In the Hilbert space setting, an orthonormal basis is obviously
the desirable choice. An orthonormal basis is characterised by Bj ∈ L(KJj , Vj)
with the property

B∗jBj = I ∈ K
Jj×Jj for 1 ≤ j ≤ d.

A consequence is B∗B = id ∈ K
J×J. Note that in the matrix case B∗j and B∗ are

written as BH
j and BH. This setting yields the next representation.

Definition 8.11 (orthonormal tensor subspace representation). (a) If the bases
Bj of Uj are orthonormal, the representation (8.6a,b) of v∈U=

⊗d
j=1Uj is called

an orthonormal tensor subspace representation in U.
(b) The detailed parameters of the representation are

rj := dim(Uj) for 1 ≤ j ≤ d,
Bj ∈ (Vj)

rj orthonormal basis of Uj ,
Jj := {1 ≤ i ≤ rj} for 1 ≤ j ≤ d,

a ∈
⊗d

j=1K
Jj = K

J for J = J1 × . . .× Jd

(8.8a)

with

ρorth
(
a, (Bj)

d
j=1

)
:=
∑

i∈J
ai

d⊗

j=1

b
(j)
ij

= Ba. (8.8b)

In the following, Vj = K
Ij is assumed. If, starting from general frames Bj , we

want to obtain orthonormal bases, we have to find transformations such that Bnew
j

is an orthogonal matrix. For this purpose, two standard approaches can be applied.
We recall Exercise 4.133: a QR decomposition of B or a Cholesky decomposition
of BHB are equivalent to the respective decomposition of Bj or BH

j Bj .

Lemma 8.12. Let v = Ba be given. (a) The QR decomposition B = QR yields

v = Qanew with anew := Ra.

By definition, Q is an orthogonal matrix representing an orthonormal basis.
(b) Let B represent a basis. The Cholesky decomposition BHB = LLH ∈ K

J×J

defines the transformation

v =
(
BL−H

)
anew with anew := LHa.

BL−H is an orthogonal matrix.

Proof. Under the assumption of Part (b), the Gram matrix BHB is positive definite
and a decompositionLLH exists. Orthogonality follows from (BL−H)H(BL−H) =
L−1(BHB)L−H = L−1(LLH)L−H = id. ��

224 8 Tensor Subspace Representation

Corollary 8.10 can be supplemented with orthogonality conditions.

Corollary 8.13. Let v = ρorth
(
a, (Bj)

d
j=1

)
be given. Assume a = Sanew with an

orthogonal S, i.e., SHS = I. Then also the new tensor subspace representation is
orthonormal:

v = ρorth
(
anew, (B

new
j)dj=1

)
with Bnew := BS.

Proof. Use BH
newBnew = SHBHBS = SHS = I. ��

In the case of Corollary 8.13, range(Bnew
j) ⊂ range(Bj) holds. If both ortho-

normal bases span the same subspace, transformations must be unitary. Given
unitary transformationsQ(j) of Bj into Bnew

j :

b
(j)
i =

rj∑

k=1

Q
(j)
ki b

(j)
k,new, b

(j)
k,new=

rj∑

i=1

Q
(j)
ik b

(j)
i for 1≤ i≤rj , 1≤j≤d, (8.9a)

the Kronecker product Q :=
⊗d

j=1Q
(j) is also unitary and the coefficients trans-

form according to anew = Qa, i.e.,

ρorth
(
a, (Bj)

d
j=1

)
= ρorth

(
anew, (B

new
j)dj=1

)
(8.9b)

(cf. (8.7c) with T = Q and (Q(j))−1 = Q(j)H).
Above, the new coefficient tensor anew is obtained from a by some transforma-

tion Ta. Alternatively, the coefficient tensor can be obtained directly from v via
projection.

Lemma 8.14. (a) Let v ∈ U and orthonormal bases Bj (1 ≤ j ≤ d) be given:
v = Ba with B :=

⊗d
j=1 Bj . Then the coefficient tensor a of v has the entries

ai :=
〈
v,
⊗d

j=1
b
(j)
ij

〉
, i.e., a = B∗v. (8.10)

(b) For a general basis, the coefficient tensor from (8.6b) equals a = G−1b with
bk :=

〈
v,
⊗d

j=1 b
(j)
kj

〉
, G =

⊗d
j=1G

(j), where the Gram matrix G(j) (cf. (2.16))
has the entries

G
(j)
ik :=

〈
b
(j)
k , b

(j)
i

〉
for 1 ≤ i, k ≤ rj , 1 ≤ j ≤ d. (8.11)

Exercise 8.15. (a) Prove that the orthonormal tensor subspace representation v =
∑

i∈J ai
⊗d

j=1 b
(j)
ij

(cf. (8.8b)) implies that

‖v‖ = ‖a‖2 ,
where ‖·‖ : V → R is the norm associated with the induced scalar product of V,
while ‖·‖2 is the Euclidean norm of KJ (cf. Example 4.126).

(b) If a second tensor w =
∑

i∈J ci
⊗d

j=1 b
(j)
ij

uses the same bases, the scalar
products

(
that is 〈·, ·〉 in V, 〈·, ·〉2 in K

J
)

coincide:

〈v,w〉 = 〈a, c〉2 .
More details about the computation of orthonormal bases in the case of Vj = K

Ij

will follow in §8.2.3.2.

8.2 Tensor Subspace Formats 225

8.2.3 Tensors in K
I

8.2.3.1 Representations and Transformations

Here, we consider the tensor space V = K
I =

⊗d
j=1 K

Ij with I = I1× . . . ×Id
and U=

⊗d
j=1Uj with subspaces Uj ⊂K

Ij . According to (8.5b), the quantity Bj
representing a frame or basis is the matrix

Bj :=
[
b
(j)
1 , b

(j)
2 , . . . , b(j)rj

]
∈ K

Ij×Jj (1 ≤ j ≤ d) , (8.12a)

where the index sets Jj := {1, . . . , rj} form the product J=J1× . . .×Jd. Note that
rj = dim(Uj) in the case of a basis; otherwise, rj > dim(Uj).

For the sake of simplicity, we shall speak about ‘the frame Bj or basis Bj’,
although Bj is a matrix and only the collection of its columns form the frame
or basis. Note that an “orthonormal basis Bj” and an “orthogonal matrix Bj” are
equivalent expressions (cf. (2.3)).

The matrices Bj generate the Kronecker product

B :=

d⊗

j=1

Bj ∈ K
I×J (8.12b)

(cf. (8.5c)).
We repeat the formats (8.6a-c) and (8.8a,b) for Vj =K

Ij with the modification
that the frames are expressed by matrices Bj .

Lemma 8.16 (general tensor subspace representation). (a) The coefficient tensor

a ∈
d⊗

j=1

K
Jj = K

J for J = J1 × . . .× Jd, (8.13a)

and the tuple (Bj)1≤j≤d of frames represent the tensor v = Ba with the entries

v[i1 · · · id] =
r1∑

k1=1

r2∑

k2=1

· · ·
rd∑

kd=1

B1[i1, k1]B2[i2, k2] · · ·Bd[id, kd] a[k1k2 · · · kd]

=

r1∑

k1=1

r2∑

k2=1

· · ·
rd∑

kd=1

b
(1)
k1

[i1]b
(2)
k2

[i2] · · · b(d)kd [id] a[k1k2 · · · kd], (8.13b)

using the columns b(j)k =Bj [•, k] of Bj . Equation (8.13b) is equivalent to v=Ba.
The representation by

ρframe(a, (Bj)
d
j=1) = Ba (8.13c)

is identical to (8.6c), but now the data Bj are stored as (fully populated) matrices.
(b) The storage required by B and a is

Nmem (B) = Nmem

(
(Bj)

d
j=1

)
=

d∑

j=1

rj ·#Ij , Nmem (a) =
d∏

j=1

rj . (8.13d)

226 8 Tensor Subspace Representation

Orthonormal bases are characterised by orthogonal matrices Bj (cf. §8.2.2) :
BH
j Bj = I ∈Krj×rj . This property holds for all 1≤ j≤ d, if and only if BHB= I.

Because of numerical stability, orthonormal bases are the standard choice for the
tensor subspace representation.

Lemma 8.17 (orthonormal tensor subspace representation). Assume thatBj are
orthogonal matrices. Bj and the coefficient tensor (8.13a) are the data of the
orthonormal tensor subspace representation:

v = ρorth
(
a, (Bj)

d
j=1

)
=

(
d⊗

j=1

Bj

)

a with BH
j Bj = I. (8.14a)

The required memory size is the same as in (8.13d). The coefficient tensor a can be
obtained from v by

a = BHv. (8.14b)

Proof. Use (8.10). A direct proof is a =
BHB=I

BHBa = BHv. ��

8.2.3.2 Orthonormalisation and Computational Cost

Here, we assume7 that a tensor v=ρframe(â, (B̂j)
d
j=1) is given with a proper frame

or non-orthonormal basis B̂j . Lemma 8.12 proposes two methods for generating
orthonormal bases Bj . Another possibility is the computation of the HOSVD bases
(cf. §8.3 and §8.3.3). These computations are more expensive, on the other hand they
allow to determine orthonormal bases of the minimal subspaces Umin

j (v), whereas
the following methods yield bases of possibly larger subspaces Uj := range(B̂j).
We start with the QR decomposition. Given frames or bases (B̂j)

d
j=1, procedure

RQR(nj , r̂j , rj , Bj , Qj, Rj) from (2.29) yields the decomposition

B̂j = QjRj (B̂j ∈ K
nj×r̂j , Qj ∈ K

nj×rj , Rj ∈ K
rj×r̂j)

with orthogonal matrices Qj , where rj is the rank of B̂j , Qj , and Rj . Defining the
Kronecker matrices

B̂ :=

d⊗

j=1

B̂j , Q :=

d⊗

j=1

Qj , and R :=

d⊗

j=1

Rj ,

we get v = B̂â=QRâ (cf. (8.6c)). Besides the exact operation count, we give a
bound in terms of

r̂ := maxj r̂j and n := maxj nj . (8.15)

7 Also tensors represented in the r-term format are related to subspaces Uj , for which orthonormal
basis can be determined (cf. Remark 6.1). We can convert such tensors into the format ρTS accord-
ing to §8.5.2.2 without arithmetical cost and apply the present algorithms.

8.2 Tensor Subspace Formats 227

Remark 8.18. Use the notations from above. The computational cost of all QR
decompositions B̂j=QjRj and the cost of the product a :=Râ add to

d∑

j=1

[

NQR(nj , r̂j) +

j∏

k=1

rk ·
d∏

k=j

r̂k

]

≤ 2dnr̂
2
+ dr̂

d+1
. (8.16)

Proof. The second term describes the cost of Râ considered in (13.27a). Because
of the triangular structure, a factor two can be saved. ��

The second approach from Lemma 8.12 is based on the Cholesky decomposition,
provided that (B̂j)dj=1 represents bases. Because of the latter assumption, r̂j = rj
holds. Note that, in particular for the case r n, the resulting cost in (8.17) is
almost the same as in (8.16).

Remark 8.19. With the notations from above, the computational cost of the
Cholesky approach in Lemma 8.12b is

d∑

j=1

[

2njr
2
j +

1

3
r3j + rj

d∏

k=1

rk

]

≤ d
(
2n+

r̄

3

)
r̄2 + dr̄d+1. (8.17)

Proof. The product B̂H
j B̂j takes 1

2 (2nj − 1)rj(rj + 1) ≈ njr
2
j operations. The

Cholesky decomposition into LjL
H
j requires 1

3r
3
j operations (cf. Remark 2.18).

Further njr2j operations are needed to build the new basis Bj := B̂jL
−H
j . The trans-

formation a = LHâ costs
(∑d

j=1 rj
)
·
∏d
j=1 rj operations (cf. Remark 2.18). ��

For larger d, the major part of the computational cost in Remark 8.18 is dr̄d+1,
which is caused by the fact that â is organised as full tensor in K

J. Instead, the
hybrid format discussed in §8.2.4 uses the r-term format for â. The resulting cost
of Râ (R, â as in Remark 8.18) described in (13.28b) is given in the following
corollary.

Corollary 8.20. Let the coefficient tensor â ∈ Rr be given in r-term format. The
following transformations yield the new coefficient tensor a in the same format.

(a) Using the QR decompositions from Remark 8.18, the cost of a :=Râ is

r

d∑

j=1

rj (2r̂j − rj) � drr̂
2
,

while the QR cost
∑d

j=1NQR(nj , r̂j) does not change. The total cost is bounded by

d(2n+ r)r̂
2
.

(b) In the Cholesky approach from Remark 8.19 the coefficient tensor a :=LHâ can
be obtained by r

∑d
j=1 r

2
j operations, yielding the total bound d(2n+ r̄

3 + r)r̄2.

228 8 Tensor Subspace Representation

8.2.3.3 Generalisation

The [orthonormal] tensor subspace representation (8.13) [or (8.14a)] can be used to
represent several tensors simultaneously in the same tensor subspace:

v(1), . . . ,v(m) ∈ U =
⊗d

j=1
Uj .

In this case, the data (Bj)1≤j≤d need to be stored only once. Each tensor v(μ)

requires a coefficient tensor a(μ) (1 ≤ μ ≤ m). The required data size is r̄dn+mr̄d,
where n := maxj#Ij and r̄ := maxj rj .

8.2.4 Hybrid Format

Let v =
∑

i∈J ai
⊗d

j=1b
(j)
ij

be the standard tensor subspace representation ρTS or
ρorth. An essential drawback of this format is the fact that the coefficient tensor
a ∈ K

J is still represented in full format. Although J = J1 × . . . × Jd might be
of much smaller size than I = I1 × . . . × Id, the exponential increase of #J with
respect to d proves disadvantageous. An obvious idea is to represent a itself by one
of the tensor formats described so far. Using again a tensor subspace representation
for a does not yield a new format as seen in Remark 8.21 below.

An interesting approach is the choice of an r-term representation of the coeffi-
cient tensor a. Often, such an approach goes together with an approximation, but
here we consider an exact representation of a by

a =
r∑

ν=1

d⊗

j=1

a(j)ν ∈ K
J with a(j)ν ∈ K

Jj . (8.18)

The tensor subspace format v = ρTS(a, (Bj)
d
j=1) combined with the r-term rep-

resentation a= ρr-term
(
r, (a

(j)
ν)1≤j≤d,1≤ν≤r

)
from (8.18) yields the hybrid format,

which may be interpreted in two different ways.
The first interpretation views v as a particular tensor from Tr (with rj = #Jj)

described by the iterated representation

ρhybr

(
r, (a(j)ν)1≤j≤d

1≤ν≤r
, (Bj)

d
j=1

)
:= ρTS

(

ρr-term

(
r, (a(j)ν)1≤j≤d

1≤ν≤r

)
, (Bj)

d
j=1

)

=
∑

i∈J

(r∑

ν=1

d∏

j=1

a(j)ν [ij]

) d⊗

j=1

b
(j)
ij

(8.19)

with ρTS from (8.6c) and a = ρr-term(. . .) from (7.7a). Similarly, we may define

ρhybrorth

(
r, (a(j)ν), (Bj)

d
j=1

)
:= ρorth

(
ρr-term

(
r, (a(j)ν)

)
, (Bj)

d
j=1

)
, (8.20)

provided that Bj describes orthonormal bases.

8.2 Tensor Subspace Formats 229

The second interpretation views v as a particular tensor fromRr:

v =

r∑

ν=1

∑

i∈J

d⊗

j=1

a(j)ν [ij] b
(j)
ij

=

r∑

ν=1

d⊗

j=1

(∑

i∈Jj

a(j)ν [i] b
(j)
i

)

.

The right-hand side may be seen as v =
∑r
ν=1

⊗d
j=1v

(j)
ν , where, according to

modification (7.13), v(j)ν is described by means of the basis {b(j)i : i ∈ Jj}, which
yields the matrix Bj . The format is abbreviated by

ρhybrr-term

(
r,J, (a(j)ν)1≤j≤d

1≤ν≤r
, (Bj)

d
j=1

)
=

r∑

ν=1

d⊗

j=1

(
∑

i∈Jj

a(j)ν [i] b
(j)
i

)

. (8.21)

Note that the formats (8.19) and (8.21) are equivalent in the sense that they use the
same data representing the same tensor.

Another characterisation of a tensor v in the hybrid format is

v ∈ Rr ∩ Tr
with r, r = (r1, . . . , rd), rj = #Jj from (8.19) and (8.21).

The hybrid format is intensively used in Espig [52, Satz 2.2.4] (cf. §9.5.1) and in
Khoromskij-Khoromskaja [119].

Finally, we discuss the situation of a coefficient tensor a given again in tensor
subspace format.

Remark 8.21. (a) Consider the following nested tensor subspace formats:

v =
∑

i∈J
ai

d⊗

j=1

b
(j)
ij
, a =

∑

k∈K
ck

d⊗

j=1

β
(j)
kj
, (8.22a)

where v ∈ V = K
I with I = I1 × . . .× Id, b(j)ij ∈ Vj = K

Ij , a ∈ K
J, β

(j)
kj
∈ K

Jj ,

c ∈ K
K with K = K1 × . . . × Kd. Then, v has the standard tensor subspace

representation

v =
∑

k∈K
ck

d⊗

j=1

b̂
(j)
k

{
with b̂(j)k ∈ K

Ij defined by

b̂
(j)
k :=

∑
i∈Jj

β
(j)
k [i] b

(j)
i (k ∈ Kj).

(8.22b)

(b) Using Bj := [b
(j)
1 · · · b

(j)
rj] (rj := #Jj), B :=

⊗d
j=1 B, βj := [β

(j)
1 · · ·β

(j)
sj]

(sj := #Kj), β :=
⊗d

j=1 βj , and B̂j := [b̂
(j)
1 · · · b̂

(j)
sj], we rewrite (8.22a,b) as

v = Ba, a = βc, v = B̂c with B̂ := Bβ. (8.22c)

The equations in (8.22c) can be interpreted as transformation: set anew = c,
S=β, and Bnew= B̂ in Corollary 8.10. The computation of B̂, i.e., of all products
B̂j=Bjβj requires 2

∑d
j=1 njrjsj operations, where nj := #Ij .

(c) Orthonormal tensor subspace representations for v and a in (8.22a) yield again
an orthonormal tensor subspace representation in (8.22b).

230 8 Tensor Subspace Representation

8.3 Higher-Order Singular Value Decomposition (HOSVD)

In the following, matrices denoted by U, V or even Uj , Vj appear in the singular
value decomposition. These matrices are to be distinguished from the (sub)spaces
Uj, U

min
j and Vj with similar or even equal names.

As stated in Remark 3.46a, there is no true generalisation of the singular value
decomposition (SVD) for d≥ 3. However, it is possible to extend parts of the SVD
structure to higher dimensions as sketched below. Considering a (reduced) singular
value decomposition of a matrix, we observe the following properties:

(a1) M = UΣV T =
∑r

i=1 σiuiv
T
i can be exploited, e.g., for truncations.

(a2) In fact, Ms :=
∑s
i=1 σiuiv

T
i is the best approximation of rank s.

(b1) We may use ui and vi as new basis vectors.
(b2) The basis transformation from (b1) maps M into diagonal form.

HOSVD will also be helpful for truncation (as in (a1)), and, in fact, this property
will be a very important feature in practice. However, the result of truncation is not
necessarily optimal, i.e., (a2) does not extend to d ≥ 3. As in (b1), HOSVD will
provide new bases, but the tensor expressed with respect to these bases is by no
means diagonal, not even sparse, i.e., (b2) has no tensor counterpart.

8.3.1 Definitions

We start with the tensor space V =
⊗d

j=1K
Ij . Given v ∈ V, we consider the

matricisation M :=Mj(v) which is a matrix of size Ij×I[j] with I[j] =×k �=j Ik.
Its reduced singular value decomposition is

M = UΣV T =
∑rj

i=1
σiuiv

T
i ∈ K

Ij×I[j] , (8.23)

where ui and vi are the columns of the respective orthogonal matrices U ∈KIj×rj
and V ∈KI[j]×rj , σ1≥ σ2≥ . . .> 0 are the singular values, and rj = rank(M) =
rankj(v) (cf. (5.6b)). While U may be of reasonable size, V ∈ K

I[j]×rj is expected
to have a huge number of rows, which one does not like to compute. Moreover, it
turns out that the matrix V is not needed.

We recall the ‘left-sided singular value decomposition’: as mentioned in Remark
2.24b, we may ask only for U and Σ in the singular value decomposition M =
UΣV T, and the computation of U and Σ may be based on MMH = UΣ2UH. The
diagonal matrix Σ controls the truncation procedure (see item (a1) from above),
while U defines an orthonormal basis (item (b1)). We remark that range(U) =
range(M) = Umin

j (v) (cf. Remark 8.4).
Different from the case d = 2, we have d different matricisationsMj(v) lead-

ing to a tuple of d different decompositions (8.23), called ‘higher-order singular
value decomposition (HOSVD)’ by De Lathauwer et al. [41]. To distinguish the
matricisations, we ornament the quantities of (8.23) with the index j referring to
Mj(v) ∈ Vj ⊗V[j].

8.3 Higher-Order Singular Value Decomposition (HOSVD) 231

In the next definition, V is a general Hilbert tensor space. This space as well as
all V[j]=

⊗
k �=jVk are equipped with the corresponding induced scalar product. All

scalar products in V, Vj , and V[j] are denoted by 〈·, ·〉 .

Definition 8.22 (HOSVD basis). Let v ∈ ‖·‖
⊗d

j=1U
min
j (v) ⊂ ‖·‖

⊗d
j=1Vj . An

orthonormal basisBj = (b
(j)
i , . . . , b

(j)
rj } of Umin

j (v) is called j-th HOSVD basis for
v, if the following (singular value) decomposition is valid:

Mj(v) =
rj∑

i=1

σ
(j)
i b

(j)
i ⊗m

(j)
i with

σ
(j)
1 ≥ σ

(j)
2 ≥ . . . > 0 and

orthonormal {m(j)
i : 1 ≤ i ≤ rj} ⊂ V[j] := ‖·‖

⊗
k �=j Vk .

(8.24)

σ
(j)
i are called the singular values of the j-th matricisation. For infinite dimensional

Hilbert spaces Vj and topological tensors, rj =∞ may occur.

Similarly, for a subset ∅ �= α � {1, . . . , d}, an orthonormal basis (b
(α)
i)rαi=1 of

Umin
α (v) is called an α-HOSVD basis for v, if

Mα(v) =
rα∑

i=1

σ
(α)
i b

(α)
i ⊗m(α)

i with

σ
(α)
1 ≥ σ

(α)
2 ≥ . . . > 0 and

orthonormal {m(α)
i : 1 ≤ i ≤ rj} ⊂ Vαc .

(8.25)

Definition 8.23 (HOSVD representation). A tensor subspace representation
v=ρorth(a, (Bj)1≤j≤d) is a higher-order singular value decomposition (HOSVD)
(or ‘HOSVD tensor subspace representation’ or shortly ‘HOSVD representation’)
of v, if all bases Bj (1≤ j ≤ d) are HOSVD bases for v.8 For Bj satisfying these
conditions, we write

v = ρHOSVD

(
a, (Bj)1≤j≤d

)
. (8.26)

The storage requirements of HOSVD are the same as for the general case which
is described in Lemma 8.16b.

The next statement follows from Lemma 5.6.

Lemma 8.24. (a) A tensorv=Ba with B=
⊗d

j=1Bj yieldsMj(v)=BjMj(a)B
T
[j]

with B[j] =
⊗

k �=jBk. If, at least for k �= j, the bases Bk are orthonormal, the
matricisations of v and a are related by

Mj(v)Mj(v)
H = Bj

[
Mj(a)Mj(a)

H
]
BH
j . (8.27a)

(b) If also Bj contains an orthonormal basis, a diagonalisationMj(a)Mj(a)
H =

ÛjΣ
2
j Û

H
j yields the left-sided singular value decomposition

Mj(v)Mj(v)
H = UjΣ

2
jU

H
j with Uj := BjÛj . (8.27b)

8 Because of the orthogonality property (8.24) for all 1 ≤ j ≤ d, such a tensor representation is
called all-orthogonal by De Lathauwer et al. [40], [106].

232 8 Tensor Subspace Representation

As a consequence, HOSVD representations of v and a are closely connected.

Corollary 8.25. Let v ∈
⊗d

j=1K
Ij be given by an orthonormal tensor subspace

representation (8.14a): v=ρorth(a, (Bj)1≤j≤d) with BH
j Bj = I. Then, (Bj)1≤j≤d

describes the j-th HOSVD basis of v if and only if

Mj(a)Mj(a)
H = Σ2

j with

Σj = diag{σ(j)
1 , σ

(j)
2 , . . .} and σ

(j)
1 ≥ σ

(j)
2 ≥ . . . > 0.

8.3.2 Examples

We give two examples of the HOSVD for the simple case d = 3 and the symmetric
situation r1 = r2 = r3 = 2, V1 = V2 = V3 =: V .

Example 8.26. Let x, y ∈ V be two orthonormal vectors and set9

v := x⊗ x⊗ x+ σy ⊗ y ⊗ y ∈ V := ⊗3V. (8.28)

(8.28) is already the HOSVD representation of v. For all 1≤j≤3, (8.24) holds with

rj = 2, σ
(j)
1 = 1, σ

(j)
2 = σ, b

(j)
1 = x, b

(j)
2 = y, m

(j)
1 = x⊗ x, m(j)

2 = y ⊗ y.

While v from (8.28) has tensor rank 2, the next tensor has rank 3.

Example 8.27. Let x, y ∈ V be two orthonormal vectors and set

v = αx⊗ x⊗ x+ βx⊗ x⊗ y+ βx⊗ y⊗ x+ βy⊗ x⊗ x ∈ V := ⊗3V. (8.29a)

For the choice

α :=

√

1− 3
2

√
2σ + σ2 and β :=

√

σ/
√
2, (8.29b)

the singular values are again σ(j)
1 = 1, σ

(j)
2 = σ. The HOSVD basis is given by

b
(j)
1 =

√
1− σ√

2
x+

√

σ
(

1√
2
− σ

)
y

√
(1 + σ) (1− σ)

, b
(j)
2 =

√

σ
(

1√
2
− σ

)
x−

√
1− σ√

2
y

√
(1 + σ) (1− σ)

.

(8.29c)

In principle, the HOSVD can also be performed in Hilbert tensor spaces V :=

‖·‖
⊗d

j=1Vj with induced scalar product. In the general case, the HOSVD bases are
infinite (cf. Theorem 4.114). If v := a

⊗d
j=1Vj is an algebraic tensor, finite bases

are ensured as in the next example referring to the polynomial from Example 8.5b.
Note that here Vj is the function space L2([0, 1]).

9 The coefficient tensor a has the entries a[1, 1, 1] = 1, a[2, 2, 2] = σ, and zero, otherwise.

8.3 Higher-Order Singular Value Decomposition (HOSVD) 233

Example 8.28. The HOSVD bases and the corresponding singular values10 of the
polynomial f(x, y, z) = xz + x2y ∈ V := a

⊗d
j=1Vj , Vj = L2([0, 1]), are

b
(1)
1 = 0.99953x+ 0.96327x2, σ

(1)
1 =

√
109
720 + 1

45

√
46 ≈ 0.54964,

b
(1)
2 = 6.8557x− 8.8922x2, σ

(1)
2 =

√
109
720 −

1
45

√
46 ≈ 0.025893,

b
(2)
1 = 0.58909 + 0.77158y, σ

(2)
1 =

√
109
720 + 1

360

√
2899 ≈ 0.54859,

b
(2)
2 = 1.9113− 3.3771y, σ

(2)
2 =

√
109
720 −

1
360

√
2899 ≈ 0.042741,

b
(3)
1 = 0.44547 + 1.0203z, σ

(3)
1 = σ

(2)
1 ,

b
(3)
2 = 1.9498− 3.3104z, σ

(3)
2 = σ

(2)
2 .

Proof. The matricisationsMj(f) define integral operators Kj :=Mj(f)M∗j (f)∈
L(L2([0, 1]), L2([0, 1])) of the form (Kj(g))(ξ)=

∫ 1

0
kj(ξ, ξ

′)g(ξ′)dξ′ (cf. Example

5.16). The involved kernel functions are

k1(x, x
′)=

∫ 1

0

∫ 1

0

f(x, y, z)f(x′, y, z)dydz=
1

3
xx′ +

1

4
x2x′ +

1

4
xx′2 +

1

3
x2x′2,

k2(y, y
′)=

1

9
+

1

8
y +

1

8
y′ +

1

5
yy′, k3(z, z

′) =
1

15
+

1

8
z +

1

8
z′ +

1

3
zz′.

The eigenfunctions of K1 are x − 1
6 (
√
46 + 1)x2 and x + 1

6 (
√
46 − 1)x2 with the

eigenvalues λ1,2 = 109
720 ±

1
45

√
46. Normalising the eigenfunctions and extracting

the square root of λ1,2, we obtain the orthonormal basis functions b(1)i and σ
(1)
i

(i = 1, 2) from above.

Similarly, the eigenfunctions 1 + −
√
2899±8
35 y of K2 and 1 + 8±

√
2899

27 z of K3

yield the indicated results. ��

8.3.3 Computation and Computational Cost

Let Vj = K
Ij with nj := #I and V=

⊗d
j=1Vj . For subsets ∅ �= α � {1, . . . , d},

we use the notations αc := {1, . . . , d}\α and Vα= a

⊗
k∈αVk . The usual choice is

α={j}. We introduce the mapping

(Bα, Σα) := HOSVDα(v) (8.30a)

characterised by the left-side singular value decomposition

Mα(v)Mα(v)
H=BαΣ

2
αB

H
α , Bα∈Knα×rα, 0≤Σα∈Krα×rα, BH

αBα=I,

10 Since
∑

2
i=1

(
σ
(j)
1

)2 = 109
720

for all 1 ≤ j ≤ 3, the values pass the test by Remark 5.12b.

234 8 Tensor Subspace Representation

where rα := rankα(v) = dim(Umin
α (v)). Since the singular value decomposition

is not always unique (cf. Corollary 2.21b), the map HOSVDα is not well-defined in
all cases. If multiple solutions exist, one may pick a suitable one.

Performing HOSVDj(v) for all 1 ≤ j ≤ d, we obtain the complete higher order
singular value decomposition

(B1, Σ1, B2, Σ2, . . . , Bd, Σd) := HOSVD(v). (8.30b)

The computational realisation of HOSVDj depends on the various formats.
Here, we discuss the following cases:

(A) Tensor v given in full format.

(B) v given in r-term format ρr-term
(
r, (v

(j)
ν)1≤j≤d, 1≤ν≤r

)
.

(C) v given in the orthonormal tensor subspace format ρorth
(
a, (Bj)

d
j=1

)
, where

the coefficient tensor a may have various formats.

(D) v given in the general tensor subspace format ρframe

(
a, (Bj)

d
j=1

)
, which means

that Bj is not necessarily orthogonal.

As review we list the cost (up to lower order terms) for the various cases:

format of v computational cost details in
full nd+1 Remark 8.29
r-term d

[
2nrmin(n, r)+nr2+2nr̄2+2r2r̄+3rr̄2+ 8

3 r̄
3
]

Remark 8.30

ρorth 3dr̂
d+1

+2dr̂
2
(n+ 4

3 r̂) (8.35c)

ρhybrorth 2dnrr̂+(d+2) r2r̂+2drr̂min(r̂, r)+3rr̂
2
+ 14

3 dr̂
3

(8.36)

8.3.3.1 Case A: Full Format

Set nj := #Ij , I[j] = ×k �=j Ik, and n := maxj nj . The data HOSVDj(v) =
(Bj , Σj) can be determined by procedure LSVD(#Ij ,#I[j], rj ,Mj(v), Bj , Σj)
from (2.32), where

rj = dim(Umin
j (v))

describes the size of Bj ∈ K
Ij×rj . The cost NLSVD(nj ,#I[j]) summed over all

1 ≤ j ≤ d yields

d∑

j=1

[
(
2#I[j]−1

)nj
2
(nj + 1)+

8n3
j

3

]

≈
d∑

j=1

nj

[
8n2

j

3
+

d∏

k=1

nk

]

≤ dnd+1+
8

3
dn3.

For d ≥ 3, the dominant part of the cost is dnd+1 arising from the evaluation of the
matrix entries of Mj :=Mj(v)Mj(v)

H:

Mj[ν, μ]=
∑

i∈I[j]

v[i1, · · ·, ij−1, ν, ij+1, · · ·, id]v[i1, · · ·, ij−1, μ, ij+1, · · ·, id].

8.3 Higher-Order Singular Value Decomposition (HOSVD) 235

If the HOSVD tensor subspace format of v is desired, one has to determine the
coefficient tensor a. Lemma 8.17 implies that

a = BHv with B :=

d⊗

j=1

Bj . (8.31)

i.e., a[k1, . . . , kd] =
∑
i1∈I1 · · ·

∑
id∈Id B1[k1, i1] · · ·Bd[kd, id]v[i1i2 · · · id]. The

cost for evaluating a is

d∑

j=1

(2nj − 1) ·
j∏

k=1

rk ·
d∏

k=j+1

nk � 2r1n
d.

In this estimate we assume that rj nj , so that the terms for j > 1 containing
2r1r2n

d−1, 2r1r2r3nd−2, . . . are much smaller than the first term. Obviously, the
summation should be started with j∗ = argmin{rj : 1 ≤ j ≤ d}.

Above, we have first determined the HOSVD bases and afterwards performed
the projection (8.31). In fact, it is advantageous to apply the projection by BjBH

j

immediately after the computation of Bj , since the projection reduces the size of
the tensor:

start: v0 := v

loop: for j := 1 to d do
begin (Bj , Σj) := HOSVDj(vj−1);

vj :=
(
id⊗ . . .⊗ id⊗ BH

j ⊗ id⊗ . . .⊗ id
)
vj−1

end;
return: a := vd

(8.32)

Set B(1,d) :=BH
1 ⊗

⊗d
j=2id and B(1,d−1) :=BH

1 ⊗
⊗d

j=3id. Lemma 5.6 implies

the identityM2(v1)=M2(B
(1,d)v)=M2(v)B

(1,d−1)T. SinceB(1,d−1)HB(1,d−1)

is the projection onto the subspace Umin
1 (v) ⊗

⊗d
j=2 Vj which contains v, one has

B(1,d−1)HB(1,d−1)v = v. This proves

M2(v1)M2(v1)
H
=M2(v)

(
M2(v)B

(1,d−1)T B(1,d−1)
)H

=M2(v)
(
M2(B

(1,d−1)HB(1,d−1)v)
)H

=M2(v)M2(v)
H
.

Similarly, one proves the identity Mj(vj−1)Mj(vj−1)
H
= Mj(v)Mj(v)

H im-
plying (Bj , Σj) = HOSVDj(vj−1) = HOSVDj(v).

Remark 8.29. The cost of algorithm (8.32) is

d∑

j=1

[

(nj + 2rj) ·
j−1∏

k=1

rk ·
d∏

k=j

nk +
8

3
n3
j

]

. (8.33)

Under the assumptions rj nj and d ≥ 3, the dominant part is n1

∏d
k=1 nk.

236 8 Tensor Subspace Representation

8.3.3.2 Case B: r-Term Format

In §8.5 we shall discuss conversions between format. The present case is already
such a conversion from r-term format into HOSVD tensor subspace representation
(other variants will be discussed in §8.5.2).

Let v =
∑r

ν=1

⊗d
j=1v

(j)
ν ∈ Rr be given. First, all scalar products 〈v(j)ν , v

(j)
μ 〉

(1≤ j ≤ d, 1≤ ν, μ≤ r) are to be computed. We discuss in detail the computation
of (B1, Σ1) = HOSVD1(v). The first matricisation is given by

M1(v) =

r∑

ν=1

v(1)ν ⊗ v[1]ν with v[1]ν =

d⊗

j=2

v(j)ν .

By definition, B1 and Σ1 from HOSVD1(v) results from the diagonalisation of
M1 :=M1(v)M1(v)

H = B1Σ
2
1B

H
1 . We exploit the special structure of M1(v):

M1 =
r∑

ν=1

r∑

μ=1

〈
v[1]ν , v[1]μ

〉
v(1)ν (v(1)μ)H =

r∑

ν=1

r∑

μ=1

(d∏

j=2

〈
v(j)ν , v(j)μ

〉)

v(1)ν (v(1)μ)H.

M1 has the form

M1 = A1C1A
H
1 with

⎧
⎨

⎩

A1 := [v
(1)
1 v

(1)
2 · · · v(1)r] and

C1 :=
⊙d

j=2
Gj with Gj :=

(
〈v(j)ν , v(j)μ 〉

)r
ν,μ=1

(here,
⊙d

j=2 denotes the multiple Hadamard product; cf. §4.6.4). As explained
in Remark 2.36, the diagonalisation M1 = B1Σ

2
1B

H
1 is not performed directly.

Instead, one uses M1 = A1C1A
H
1 = Q1R1C1R

H
1Q

H
1 and diagonalises R1C1R

H
1 .

In the following algorithm, the index j varies from 1 to d:

form Gram matrices Gj :=
(
〈v(j)ν , v

(j)
μ 〉

)r
ν,μ=1

; Gj ∈ K
r×r 1

compute Hadamard products Cj :=
⊙

k �=j Gk; Cj ∈ K
r×r 2

[v
(j)
1 · · · v

(j)
r] = QjRj (Qj∈Knj×rj, Rj∈Krj×r); rj=rank(QjRj) 3

form products Aj := RjCjR
H
j ; Aj ∈ K

rj×rj 4

diagonalise Aj = UjΛjU
H
j ; Uj, Λj ∈ K

rj×rj 5

return Σj := Λ
1/2
j and Bj := QjUj ; Bj ∈ K

nj×rj 6

(8.34a)

In Line 3, rank rj = dim(Umin
j (v)) is determined. Therefore, r = (r1, . . . , rd) is

the Tucker rank which should be distinguished from the representation rank r of
v ∈ Rr. Line 6 delivers the values (Bj , Σj) = HOSVDj(v).

It remains to determine the coefficient tensor a ∈
⊗d

j=1 K
rj of v. As known

from Theorem 8.36, also a possesses an r-term representation. Indeed,

a =
r∑

ν=1

d⊗

j=1

u(j)ν with u(j)ν [i] = 〈v(j)ν , b
(j)
i 〉 =

(
RH
j Uj

)
[ν, i]. (8.34b)

8.3 Higher-Order Singular Value Decomposition (HOSVD) 237

Hence, one obtains the hybrid format (8.19) of v. If wanted, one may convert a into
full representation. This would yield the standard tensor subspace format of v.

Remark 8.30. The computational cost of (8.34a,b), up to lower order terms, is

r

d∑

j=1

[
nj (r + 2min(nj , r)) + rj (2r + 3rj)

]
+

d∑

j=1

(
8
3rj + 2nj

)
r2j

≤ d
(
2nrmin(n, r) + nr2 + 2nr̄2 + 2r2r̄ + 3rr̄2 + 8

3 r̄
3
)

with n := maxj nj and r̄ := maxj rj .

Proof. The cost of each line in (8.34a) is r(r+1)
2

∑d
j=1 (2nj − 1) (line 1),

(d− 1) r(r + 1) (line 2),
∑d

j=1NQR(nj , r) = 2r
∑d

j=1 nj min(nj , r) (line 3),

(2r − 1)
d∑

j=1

rj(r +
rj+1
2) (line 4), 8

3

d∑

j=1

r3j (line 5), and
d∑

j=1

rj (1 + nj(2rj − 1))

(line 6), while (8.34b) requires r
∑d

j=1 rj(2rj − 1) operations. ��

This approach is in particular favourable, if r, rj nj , since nj appears only
linearly, whereas squares of r and third powers of rj are present.

For later purpose we mention an approximative variant, which can be used for
large r. The next remark is formulated for the first step j = 1 in (8.34a). The other
steps are analogous.

Remark 8.31. Assume that the norm11 of v =
∑r
ν=1

⊗d
j=1v

(j)
ν ∈ Rr is known,

say, ‖v‖ ≈ 1. Normalise the vectors by ‖v(j)ν ‖ = 1 for 2 ≤ j ≤ d. Instead of the
exact QR decomposition [v(1)1 · · · v

(1)
r] = Q1R1 apply the algorithm from Corollary

2.39 and Remark 2.40. According to Corollary 2.39, we may omit sufficiently small
terms and reduce r to r0 (calledm0 in Corollary 2.39). Alternatively or additionally,
one may use the approximate scalar product 〈·, ·〉p from Remark 2.40 for the cheap
approximate computation of Gj .

8.3.3.3 Case C: Orthonormal Tensor Subspace Format

Let v ∈ V be represented by v = ρorth(â, (B̂j)1≤j≤d), i.e., v = B̂â. According
to Lemma 8.24b, the HOSVD bases of v can be derived from the HOSVD bases of
the coefficient tensor â. Having determined (Ûj , Σj) := HOSVDj(â), we obtain
(Bj , Σj) := HOSVDj(v) by means of Bj := B̂jÛj .

Case C1: Assume that â ∈ K
Ĵ is given in full format with Ĵ = ×d

j=1 Ĵj ,

Ĵj = {1, . . . , r̂j}. The computation of (Ûj , Σj) := HOSVDj(â) together with the
evaluation of the coefficient tensor a ∈ K

J, J =×d
j=1 Jj , Jj = {1, . . . , rj}, with

the property â = Ûa, Û :=
⊗d

j=1Ûj , requires

11 Because of the instability discussed later, the norm of v may be much smaller than the sum of
the norms of all terms (cf. Definition 9.15).

238 8 Tensor Subspace Representation

d∑

j=1

[

(r̂j + 2rj) ·
j−1∏

k=1

rk ·
d∏

k=j

r̂k +
8

3
r̂3j

]

(8.35a)

operations (cf. (8.33)), where rj = dim(Umin
j (â)) = dim(Umin

j (v)). Because of

rj≤ r̂j , we get the estimate by
∑d
j=1

[
3r̂j ·

∏d
k=1 r̂k + 8

3 r̂
3
j

]
≤ 3dr̂

d+1
+ 8

3dr̂
3

with r̂ := maxj r̂j.

The cost of Bj := B̂jÛj for all 1 ≤ j ≤ d is

d∑

j=1

(2r̂j − 1)njrj . (8.35b)

In total, the computational work is estimated by

3dr̂
d+1

+ 2dr̂
2
(
n+

4

3
r̂
)

with n, r̂ from (8.15). (8.35c)

Case C2: Assume that â∈KĴ is given in r-term format â=
∑r

ν=1aν
⊗d

j=1v
(j)
ν .

By Remark 8.30 (with nj replaced by r̂j), the cost of (Ûj , Σj) := HOSVDj(â)

including the computation of a with â = Ûa amounts to

r

d∑

j=1

[
r̂j (r + 2min(r̂j , r)) + rj (2r + 3rj)

]
+

d∑

j=1

(
8

3
rj + 2r̂j

)

r2j

≤ (d+ 2) r2r̂ + 2drr̂min(r̂, r) + 3rr̂
2
+

14

3
dr̂

3
.

Adding the cost (8.35b) of Bj := B̂jÛj, we obtain the following operation count.

Remark 8.32. If the coefficient tensor â in v = ρorth(â, (B̂j)1≤j≤d) is represented
as â = ρr-term(r, (v

(j)
ν)1≤j≤d,1≤ν≤r), the computation of the HOSVD bases Bj

and of the coefficient tensor a ∈ Rr in v = ρHOSVD(a, (Bj)1≤j≤d) requires

d∑

j=1

[

rr̂j (r + 2min(r̂j , r)) + rrj (2r + 3rj) +

(
8

3
rj + 2r̂j

)

r2j + 2nj r̂jrj

]

≤ 2dnrr̂ + (d+ 2) r2r̂ + 2drr̂min(r̂, r) + 3rr̂
2
+

14

3
dr̂

3
(8.36)

operations, where r̂ := maxj r̂j and n := maxj nj as in (8.15).

8.3.3.4 Case D: General and Hybrid Tensor Subspace Format

In the case of v = ρframe(â, (B̂j)
d
j=1) with non-orthonormal bases, the simplest

approach combines the following steps:

8.4 Sensitivity 239

Step 1: convert the representation into orthonormal tensor subspace format v =
ρorth(a

′, (B′j)
d
j=1) by one of the methods described in §8.2.3.2.

Step 2: apply the methods from §8.3.3.3 to obtain v = ρHOSVD(a, (Bj)
d
j=1).

Alternatively, one may determine ρHOSVD(a, (Bj)
d
j=1) directly from the full

tensor â and the bases (B̂j)
d
j=1 in v = ρframe(â,(B̂j)

d
j=1). However, this

approach turns out to be more costly.12

The situation differs, at least for r < nj , for the hybrid format, when the coeffi-
cient tensor â is given in r-term format: â =

∑r
ν=1 aν

⊗d
j=1 v

(j)
ν ∈ Rr. First, the

Gram matrices

G(j) :=
(〈
b̂(j)ν , b̂(j)μ

〉)r̂j

ν,μ=1
∈ K

r̂j×r̂j (1 ≤ j ≤ d) (8.37)

are to be generated (cost:
∑
jnj r̂

2
j). A different kind of Gram matrices areGj∈Kr×r

with Gj [ν, μ] := 〈G(j)v
(j)
ν , v

(j)
μ 〉, whose computation costs

∑d
j=1(2rr̂

2
j + r2r̂j). If

B̂j represents a basis, a modification is possible: compute the Cholesky decomposi-
tions G(j) =L(j)L(j)H and use Gj [ν, μ] = 〈L(j)Hv

(j)
ν , L(j)Hv

(j)
μ 〉. Then, the opera-

tion count
∑d

j=1(
1
3 r̂

3
j + r̂2j r + r2r̂j) is reduced because of the triangular shape of

L(j)H. The matrices Gj correspond to the equally named matrices in the first line of
(8.34a). Since the further steps are identical to those in (8.34a), one has to compare

the costs d(nr̂
2
+ 2rr̂

2
+ r2r̂) or d(nr̂

2
+ 1

3 r̂
3
+ r̂

2
r + r2r̂) from above with the

sum of dr̂
2
(2n+ r) from Corollary 8.20 plus dr2n for (8.34a1) (n, r̂ from (8.15)).

Unless r � n, the direct approach is cheaper. We summarise the results below. For
the sake of simplicity, we compare the upper bounds.

Remark 8.33. Let v = ρframe(â, (B̂j)
d
j=1) with B̂j ∈ K

nj×r̂j and assume that
â has an r-term representation. Then the direct method is advantageous if n > r.

Its cost is by d
[
(n− r) r̂2 +

(
n− r̂

)
r2
]

cheaper than the combination of Step 1
and 2 from above. The Cholesky modification mentioned above is even cheaper by

d
[(
n− r̂/3

)
r̂
2
+
(
n− r̂

)
r2
]
.

8.4 Sensitivity

We have two types of parameters: the coefficient tensor a and the basis vectors b(j)i .
Perturbations in a are very easy to describe, since they appear linearly.

A perturbation

ã := a+ δa

leads to a perturbation δv =
∑

i δai
⊗d

j=1b
(j)
ij

of v. In the case of a general

12 Starting from (8.37) and Kronecker products G[j] :=
⊗

k �=jG
(k), one has to determine

matrices Mj with entries
〈
G[j]â, â

〉
[j]

using the partial scalar product in
⊗

k �=jK
r̂j (cf. §4.5.4).

240 8 Tensor Subspace Representation

crossnorm and a general basis, we have

‖δv‖ ≤
∑

i

|δai|
d∏

j=1

‖b(j)ij ‖.

For an orthonormal basis and Hilbert norm, we can use that the products
⊗d

j=1b
(j)
ij

are pairwise orthonormal and get

‖δv‖ ≤
√
∑

i
|δai|2 =: ‖δa‖ ,

where the norm on the right-hand side is the Euclidean norm.
For perturbations of the basis vectors we give only a differential analysis, i.e., we

consider only a small perturbation in one component. Furthermore, we assume that
the b(j)i form orthonormal bases. Without loss of generality we may suppose that
b
(1)
1 is perturbed into b(1)1 + δ

(1)
1 . Then

ṽ = v+
∑

i2,...,id

a[1, i2, . . . , id] δ
(1)
1 ⊗ b

(2)
i2
⊗ b(3)i3 ⊗ · · · ⊗ b

(d)
id
,

i.e., δv=
∑
i2···ida[1, i2, . . . , id] δ

(1)
1 ⊗

⊗d
j=2 b

(j)
ij

. Terms with different (i2, . . . , id)
are orthogonal. Therefore

‖δv‖ = ‖δ(1)1 ‖
√ ∑

i2,...,id

|a[1, i2, . . . , id]|2.

As a consequence, for small perturbations δ(j)i of all b(j)i , the first order approxi-
mation is

‖δv‖ ≈
∑d

j=1

∑

�

‖δ(j)� ‖
√ ∑

i1,...,ij−1,ij+1,...,id

|a[i1, . . . , ij−1, �, ij+1, . . . , id]|2

≤ ‖v‖
∑d

j=1

√
∑

�
‖δ(j)� ‖2 ≤ ‖v‖

√
d

√∑

j,�
‖δ(j)� ‖2. (8.38)

Here, we have used the Schwarz inequality

∑

�

‖δ(j)� ‖
√ ∑

i1,...,ij−1,ij+1,...,id

|a[i1, . . . , ij−1, �, ij+1, . . . , id]|2

≤
√
∑

�
‖δ(j)� ‖2

√
∑

i
|ai|2

together with
∑

i |ai|
2
= ‖v‖2 (cf. Exercise 8.15). The last inequality in (8.38) is

again Schwarz’ inequality.

8.5 Relations between the Different Formats 241

8.5 Relations between the Different Formats

So far, three formats (full representation,Rr , Tr) have been introduced; in addition,
there is the hybrid formatRr ∩ Tr. A natural question is how to convert one format
into another one. It will turn out that conversions between Rr and Tr lead to the
hybrid format introduced in §8.2.4. The conversionsRr → Tr and Tr → Rr are de-
scribed in §8.5.2 and §8.5.3. The mapping fromRr into the HOSVD representation
is already mentioned in §8.3.3.2. For completeness, the full format is considered in
§8.5.1 (see also §7.6.1).

8.5.1 Conversion from Full Representation into Tensor Subspace
Format

Assume that v ∈ V :=
⊗d

j=1K
nj is given in full representation. The translation

into tensor subspace format is v =
∑

i∈Jvi

⊗d
j=1b

(j)
ij

with the unit basis vectors
b
(j)
i := e(i) ∈ K

nj from (2.2). Here, the tensor v and its coefficient tensor are
identical. The memory cost of the tensor subspace format is even larger because
of the additional basis vectors. In order to reduce the memory, one may determine
the minimal subspaces Umin

j (v) ⊂ K
nj , e.g., by the HOSVD representation. If

rj=dim(Umin
j (v))<nj , the memory cost

∏d
j=1nj is reduced to

∏d
j=1rj .

8.5.2 Conversion from Rr to Tr

The letter ‘r’ is the standard variable name for all kinds of ranks. Here, one has
to distinguish the tensor rank or representation rank r in v ∈ Rr from the vector-
valued tensor subspace rank r with components rj .

8.5.2.1 Theoretical Statements

First, we recall the special situation of d=2 (matrix case). The matrix rank is equal
to all ranks introduced for tensors: matrix-rank= tensor-rank=rank1=rank2.
Therefore, there is an r-term representation v=

∑r
i=1 v

(1)
i ⊗v

(2)
i with r=rank(v).

Since {v(1)i : 1 ≤ i ≤ r} and {v(2)i : 1 ≤ i ≤ r} are sets of linearly independent
vectors, they can be used as bases and yield a tensor subspace representation (8.6b)
for r = (r, r) with the coefficients aij = δij . The singular value decomposition
yields another r-term representation v=

∑r
i=1 σiui ⊗ vi , which is an orthonormal

tensor subspace representation (8.14a) (with orthonormal bases {ui}, {vi} , and
coefficients aij = δijσi). The demonstrated identity Rr = T(r,r) of the formats
does not extend to d ≥ 3.

242 8 Tensor Subspace Representation

Given an r-term representation

v =

r∑

i=1

d⊗

j=1

v
(j)
i , (8.39)

Remark 6.1 states that v ∈ a

⊗d
j=1Uj (cf. (6.1)) with Uj := span{v(j)1 , . . . , v

(j)
d }.

This proves v ∈ Tr for r = (r1, . . . , rd), rj := dim(Uj). We recall the relations
between the different ranks.

Theorem 8.34. (a) The minimal tensor subspace rank r = (r1, . . . , rd) of v ∈ V
is given by rj = rankj(v) (cf. (5.6b)). The tensor rank r= rank(v) (cf. Definition
3.32) satisfies r ≥ rj . The tensor rank may depend on the field: rR ≥ rC ≥ rj (cf.
Proposition 3.40), while rj=rankj(v) is independent of the field.

(b) The inequalities of Part (a) are also valid for the border rank from (9.11) instead
of r, rR, rC.

Proof. Part (a) follows from Remark 6.21. In the case of (b), v is the limit of a
sequence of tensors vn ∈ Rr. There are minimal subspaces Umin

j (vn) (1≤ j≤ d,
n∈N) of dimension rj,n satisfying r :=rank(v)≥rj,n. By Theorem 6.24 the mini-
mal subspace Umin

j (v) has dimension rj :=dim(Umin
j (v))≤ lim infn→∞ rj,n≤ r.

Hence, r≥rj is proved. ��

Using a basis Bj of Uj = span{v(j)1 , . . . , v
(j)
d }, we shall construct a tensor sub-

space representation v = ρTS

(
a, (Bj)

d
j=1

)
in §8.5.2.3. In general, these subspaces

Uj may be larger than necessary; however, under the assumptions of Proposition
7.8, Uj = Umin

j (v) are the minimal subspaces. This proves the following statement.

Remark 8.35. If v is given by the r-term representation (8.39) with r = rank(v),
constructions based13 on Uj := span{v(j)1 , . . . , v

(j)
d } yield v = ρTS

(
a, (Bj)

d
j=1

)

with rj = rankj(v).

Having converted v = ρr-term(. . .) into v = ρTS

(
a, (Bj)

d
j=1

)
, the next state-

ment describes the r-term structure of the coefficient tensor a. This helps, in
particular, to obtain the hybrid format from §8.2.4.

Theorem 8.36. Let v = ρTS(a, (Bj)
d
j=1) be any tensor subspace representation

with the coefficient tensor a ∈ K
J and bases14 Bj . Then the ranks of v and a

coincide in two different meanings. First, the true tensor ranks satisfy

rank(a) = rank(v).

13 Representations with rj = rankj(v) can be obtained anyway by HOSVD. These decomposi-
tions, however, cannot be obtained from Uj alone.
14 For general frames Bj the coefficient tensor is not uniquely defined and, in fact, different (equiv-
alent) coefficient tensors may have different ranks. However, the minimum of rank(a) over all
equivalent a coincides with rank(v).

8.5 Relations between the Different Formats 243

Second, given (8.39) with representation rank r, the r-term representation of a (with
same number r) can be obtained constructively as detailed in §8.5.2.3. The resulting
tensor subspace representation of v is the hybrid format (8.19).

Proof. Consider v as an element of
⊗d

j=1Uj with Uj=span{v(j)1 , . . . , v
(j)
d }∼=K

Jj .
By Lemma 3.36a, the rank is invariant. This proves rank(a) = rank(v). The second
part of the statement follows from the constructions in §8.5.2.3. ��

8.5.2.2 Conversion into General Tensor Subspace Format

A rather trivial translation of v =
∑r
i=1

⊗d
j=1v

(j)
i ∈ Rr into v ∈ Tr with r =

(r, . . . , r) can be obtained without any arithmetical cost by choosing the frames

Bj = [v
(j)
1 , . . . , v(j)r] (8.40a)

and the diagonal coefficient tensor

a[i, . . . , i] = 1 for 1 ≤ i ≤ r, and a[i] = 0, otherwise. (8.40b)

Obviously, v = ρr-term(r, (v
(j)
i)) = ρTS(a, (Bj)

d
j=1) holds. Note that there is no

guarantee that the frames are bases, i.e., the subspaces Uj = range(Bj) from (6.2b)
may have a dimension less than r (cf. Remark 3.39).

The diagonal tensor a is a particular case of a sparse tensor (cf. (7.5)).

8.5.2.3 Conversion into Orthonormal Hybrid Tensor Subspace Format

Let Vj = K
Ij . An orthonormal basis of the subspace Uj from above can be obtained

by a QR decomposition of the matrix Aj := [v
(j)
1 · · · v

(j)
r] ∈ K

Ij×r. Procedure
RQR from (2.29) yields Aj = BjRj with an orthogonal matrix Bj ∈ K

Ij×rj ,
where rj = rank(Aj) = dim(Uj). The second matrixRj allows the representations

v
(j)
k = BjRj [•, k] =

∑rj
i=1 r

(j)
i,k b

(j)
i . From this we derive

v =

r∑

k=1

d⊗

j=1

v
(j)
k =

r∑

k=1

d⊗

j=1

rj∑

ij=1

r
(j)
ij ,k

b
(j)
ij

(8.41a)

=

r1∑

i1=1

· · ·
rd∑

id=1

[r∑

k=1

d∏

j=1

r
(j)
ij ,k

]

︸ ︷︷ ︸
a[i1 · · · id]

d⊗

j=1

b
(j)
ij
,

proving v=ρorth
(
a, (Bj)

d
j=1

)
with the coefficient tensor a described in the r-term

format

244 8 Tensor Subspace Representation

a =

r∑

k=1

d⊗

j=1

r
(j)
k , r

(j)
k :=

(
r
(j)
i,k

)rj

i=1
∈ K

rj . (8.41b)

This yields the orthonormal hybrid format v=ρhybrorth

(
r, (r

(j)
k), (Bj)

d
j=1

)
(cf. (8.20)).

The conversion cost caused by the QR decomposition is
∑n
j=1NQR(nj , r) with

nj := #Ij . If r ≤ n := maxj n, the cost is bounded by 2nr2.
The construction from above can equivalently be obtained by the following two

steps: (i) apply the approach of §8.5.2.2 and (ii) perform an orthonormalisation of
the frame as described in §8.2.2. Note that the transformation to new orthonormal
bases destroys the sparsity of the coefficient tensor (8.40b).

8.5.2.4 Case of Large r

As seen from (8.41a,b), the representation rank r of v ∈ Rr(KI) is inherited by the
coefficient tensor a ∈ Rr(KJ). In §7.6.2, the conversion of v ∈ Rr into full format
is proposed, provided that r > N :=

(∏d
j=1 nj

)
/max1≤i≤d ni. Now, the same

consideration can be applied to a ∈ Rr , provided that

r > R :=
(∏d

j=1
rj

)
/ max
1≤i≤d

ri, (8.42)

where rj is obtained in §8.5.2.3 as size of the basis Bj ∈ K
Ij×Jj , Jj = {1, . . . , rj}.

Lemma 7.16 and Remark 7.17 show that a conversion of a ∈ Rr(KJ) into full
format or R-term format a ∈ RR(KJ) requires 2r

∏d
j=1rj operations. The cost to

obtain a ∈ Rr is
∑n
j=1NQR(nj , r) ≤ 2r

∑n
j=1nj min{r, nj} (cf. §8.5.2.3). This

yields the following result.

Lemma 8.37. Assume v = ρr-term
(
r, (v

(j)
ν)

)
with r satisfying (8.42). Then, v can

be converted into v = ρorth
(
a, (Bj)

d
j=1

)
or a hybrid format with a ∈ RR(KJ)

requiring 2r
(∏d

j=1rj +
∑n
j=1nj min{r, nj}

)
operations.

8.5.3 Conversion from Tr to Rr

The tensor subspace representation

v =

r1∑

k1=1

r2∑

k2=1

· · ·
rd∑

kd=1

a[k1k2 · · · kd] b(1)k1 ⊗ b
(2)
k2
⊗ · · · ⊗ b(d)kd

from (8.6b) or (8.14a) is an r-term representation of v with r :=
∏d
j=1rj terms. To

reach the format (7.7a): v =
∑

k

⊗d
j=1 v

(j)
k , the vectors v(1)k for j = 1 could be

defined by a[k1k2 · · · kd]b(1)k1 , while v(j)k := b
(j)
kj

for j > 1. Following the proof of
Lemma 3.41, an improvement is possible. Choose the largest r�. Without loss of
generality, assume r1 ≥ rj for all j. Rewrite v as

8.5 Relations between the Different Formats 245

v =

r2∑

k2=1

· · ·
rd∑

kd=1

(r1∑

k1=1

a[k1k2 · · · kd] b(1)k1

)

︸ ︷︷ ︸

=: b̂(1)[k2 · · · kd]

⊗ b(2)k2 ⊗ · · · ⊗ b
(d)
kd
. (8.43)

This is an r-term representation of v with r :=
∏d
j=2 rj terms.

Because of the presumably very large number r of terms, the storage requirement
r
∑d

j=1 size(Uj) of the r-term representation of v seems huge. An improvement
can be based on the fact that the r factors v(j)ν (1≤ν≤r) in v=

∑r
ν=1

⊗d
j=1v

(j)
ν for

j≥ 2 are not r different vectors, but can be expressed by the basis (b(j)i)
rj
i=1, which

is already stored (cf. (7.13)). This leads again to the hybrid format, now considered
as a particular case of the r-term format (cf. (8.21)).

Next, we assume that v ∈ Tr is given in the hybrid format from (8.19):

v =

r1∑

i1=1

· · ·
rd∑

id=1

(r∑

ν=1

d∏

j=1

a(j)ν [ij]

) d⊗

j=1

b
(j)
ij
.

Using the reformulation (8.43), we have to compute the vectors

b̂(1)[i2 · · · id] :=
r1∑

i1=1

(
r∑

ν=1

d∏

j=1

a(j)ν [ij]

)

b
(1)
i1
∈ V1 = K

n1 .

As above, the direction k = 1 is chosen because of the assumption r1≥rj for all j,
so that the resulting representation rank N =

∏d
j=2 nj is minimal.

Remark 8.38. Let v be given in the hybrid format from (8.19) with rj , r as above.
Conversion into N -term format with N =

∏d
j=2nj requires N

(
(d − 1)r + 2n1r1

)

operations.

8.5.4 Comparison of Both Representations

We summarise the results from above.

Remark 8.39. (a) If v∈Rr , then v∈Tr with r = (r, . . . , r).

(b) If v ∈Rr, a hybrid format Rr ∩ Tr can be constructed with r = (r1, . . . , rd) ,
rj = rankj(v).

(c) If v ∈ Tr with r = (r1, . . . , rd) , then v ∈ Rr with r :=
∏d

j=1 rj

max1≤j≤d rj
.

For simplification, we assume in the following that Vj = K
n (i.e., dimension n

independent of j).
The transfer between both representations is quite non-symmetric. According to

Remark 8.39a, v ∈ Rr yields v ∈ Tr with r = (r, r, . . . , r). Note that vectors of
same size have to be stored:

246 8 Tensor Subspace Representation

N r-term
mem = r · d · n = NTSR

mem ((Bj)1≤j≤d) (cf. (7.8c) and (8.6d)).

Additionally, the tensor subspace representation needs storage for the coefficient
tensor a:

NTSR
mem(a) = rd

(cf. Remark 8.7b). This large additional memory cost makes the tensor subspace
representation clearly less advantageous. The hybrid format from Remark 8.39b
needs the storage

Nhybr
mem = (n+ r)

d∑

j=1

rj ,

which may be smaller than N r-term
mem , if rj < r < n.

On the other hand, if a tensor v ∈ Tr with r = (r, · · · , r) is converted into the
rd−1-term representation from (8.43), the latter format requires storage of size

NN -term
mem = rd−1 · d · n.

Since r ≤ n (and usually r n), the inequality NTSR
mem = r · d · n + rd

rd−1 · n < rd−1 · d · n = N r-term
mem indicates that the tensor subspace representation

is by far better.
The previous examples underline that none of the formats Rr or Tr are, in

general, better than the other. It depends on the nature of the tensor what format
is to be preferred. Often, the hybrid format is the best compromise.

8.5.5 r-Term Format for Large r > N

In §7.6.3, we have discussed the case of r > N, where N is the bound of the
maximal rank from (8.44b). In particular in the case of d = 3 one may use an
intermediate tensor subspace representation (and, possibly, approximation tools for
this format; see §10). Here, we assume that a tensor is represented in the r-term
format,

v =

r∑

i=1

v
(1)
i ⊗ v

(2)
i ⊗ v

(3)
i ∈ K

n1×n2×n3 , (8.44a)

with rather large r. The term ‘rather large’ may, e.g., mean

r > N := min{n1n2, n1n3, n2n3}. (8.44b)

Instead of a large r, one may also assume N to be rather small.
In this case, the following procedure yields an exact N ′-term representation with

N ′ ≤ N < r.

Step 1. Convert v from r-term format into tensor subspace format (hybrid variant
from §8.2.4).

Step 2. Convert v back into N ′-term format with N ′ ≤ N (N from (8.44b); see
§8.5.3).

8.6 Joining two Tensor Subspace Representation Systems 247

8.6 Joining two Tensor Subspace Representation Systems

8.6.1 Setting of the Problem

Let v′ = ρTS(a
′, (B′j)

d
j=1) and v′′ = ρTS(a

′′, (B′′j)
d
j=1) be two tensors from V =

⊗d
j=1 Vj involving different subspaces U ′j and U ′′j . Obviously, the sum v′ + v′′

requires the spaces Uj defined by

Uj := U ′j + U ′′j for 1 ≤ j ≤ d. (8.45)

A common systems Bj spanning Uj is to be constructed. A subtask is to transform
the coefficient tensors a′ of v′ and a′′ of v′′ into the new coefficient tensors referring
to the new bases Bj .

8.6.2 Trivial Joining of Frames

The least requirement is that

B′j = [b
′(j)
1 , b

′(j)
2 , . . . , b

′(j)
r′j

] ∈
(
U ′j
)r′j and

B′′j = [b
′′(j)
1 , b

′′(j)
2 , . . . , b

′′(j)
r′j

] ∈
(
U ′′j
)r′′j

are frames spanning the respective subspaces U ′j and U ′′j . The respective index sets
are J′=×d

j=1J
′
j and J′′=×d

j=1J
′′
j with J ′j = {1, . . . , r′j} and J ′′j = {1, . . . , r′′j }.

Since no linear independence is required, the simple definition

Bj :=
[
B′j B

′′
j

]
=
[
b
′(j)
1 , b

′(j)
2 , . . . , b

′(j)
r′j

, b
′′(j)
1 , b

′′(j)
2 , . . . , b

′′(j)
r′j

]
,

Jj := {1, . . . , rj} with rj := r′j + r′′j ,

yields a frame associated with the subspace Uj := U ′j + U ′′j . The representation
rank rj is the sum of the previous ones, even if the subspaces U ′j and U ′′j overlap.

An advantage is the easy construction of the coefficients. The columns of
Bj = [b

(j)
1 , . . . , b

(j)
rj] are b(j)i := b

′(j)
i for 1≤ i≤ r′j and b(j)i+r′j := b

′′(j)
i for 1≤ i≤ r′′j .

The coefficient a′ of

v′ =
∑

i′∈J′
a′i′
⊗d

j=1
b
′(j)
i′j
∈
⊗d

j=1
U ′j (8.46a)

becomes

v′ =
∑

i∈J
ai
⊗d

j=1
b
(j)
ij
∈
⊗d

j=1
Uj (8.46b)

with ai := a′i for i ∈ J′ and ai := 0 for i ∈ J\J′. Analogously, a coefficient a′′ of
v′′=

∑
i′′∈J′′ a

′
i′
⊗d

j=1b
′′(j)
i′′j

becomes ai+r′ :=a′′i for i∈J′′ with r′=(r′1, . . . , r
′
d)

and ai :=0 otherwise.

Remark 8.40. The joining of frames requires only a rearrangement of data, but no
arithmetical operations.

248 8 Tensor Subspace Representation

8.6.3 Common Bases

Now, we assume that B′j and B′′j are bases of U ′j and U ′′j . We want to construct a
new, common basis Bj for the sum Uj = U ′j + U ′′j . Applying the procedure

JoinBases(B′j , B
′′
j , rj , Bj , T

′
j , T

′′
j) (8.47a)

from (2.35), we produce a common basis Bj=[b
(j)
1 , . . . , b

(j)
rj] of dimension rj and

transformation matrices T ′j and T ′′j with the property

B′j = BjT
′
j and B′′j = BjT

′′
j (8.47b)

(cf. (2.34)).

Lemma 8.41. Let a′ ∈ K
J′ be the coefficient tensor of v′ from (8.46a) with respect

to the bases B′j. The coefficient tensor a′new ∈ K
J of v′ with respect to the bases Bj

satisfying (8.47b) is given by

a′new =

(
d⊗

j=1

T ′j

)

a′

(cf. (8.46b)). Similarly, the coefficient tensor a′′∈KJ′′ representing v′′∈
⊗d

j=1 U
′′
j

transforms into a′′new=(
⊗d

j=1 T
′′
j)a
′′∈KJ with respect to the bases Bj . A possible

option in procedure JoinBases is to take B′j as the first part of Bj , which leads to
T ′j =

[
I
0

]
.

Remark 8.42. Assume Vj = K
nj . The cost of (8.47a) is NQR(nj , r

′
j + r′′j). The

coefficient tensor a′new is without arithmetical cost under the option mentioned
in Lemma 8.41, while a′′new requires 2

∑d
j=1

[
(
∏j
�=1 r

′′
�)(
∏d
�=j r�)

]
operations. If

nj ≤ n and rj ≤ r, the total cost can be estimated by 8dnr2 + 2drd+1.

The cost for the basis transformation is much less, if v′ and v′′ are given in hybrid

format. Here, we use that a′′ =
∑r′′

ν=1

⊗d
j=1 a

′′(j)
ν and that a′′new=(

⊗d
j=1 T

′′
j)a
′′ =

∑r′′

ν=1

⊗d
j=1 a

′′(j)
ν,new with a′′(j)ν,new = T ′′j a

′′(j)
ν costs 2r′′

∑d
j=1 rjr

′′
j operations.

Remark 8.43. In the case of hybrid tensors v′ and v′′, the computation of common
bases and the transformation of the coefficient tensors cost NQR(nj , r

′
j + r′′j) +

2r′′
∑d

j=1 rjr
′′
j . If all ranks are bounded by r and nj ≤ n, the total cost can be

estimated by 8dnr2 + 2dr3.

In the case of a tensor subspace representation with orthonormal bases, proce-
dure JoinBases is to be replaced by JoinONB.

Chapter 9
r-Term Approximation

Abstract In general, one tries to approximate a tensor v by another tensor u re-
quiring less data. The reason is twofold: the memory size should decrease and,
hopefully, operations involving u should require less computational work. In fact,
u ∈ Rr leads to decreasing cost for storage and operations as r decreases. However,
the other side of the coin is an increasing approximation error. Correspondingly, in
Sect. 9.1 two approximation strategies are presented, where either the representa-
tion rank r of u or the accuracy is prescribed. Before we study the approximation
problem in general, two particular situations are discussed. Section 9.2 is devoted
to r = 1, when u ∈ R1 is an elementary tensor. The matrix case d= 2 is recalled
in Sect. 9.3. The properties observed in the latter two sections contrast with the
true tensor case studied in Sect. 9.4. Numerical algorithms solving the approxima-
tion problem will be discussed in Sect. 9.5. Modified approximation problems are
addressed in Sect. 9.6.

9.1 Two Approximation Problems

In (7.8c), the storage requirement of an r-term representationu=
∑r

i=1

⊗d
j=1v

(j)
i ∈

Rr under the assumption nj=n for all 1≤j≤d is described byN r-term
mem (p)=r ·d·n.

On the other hand, the size of r is bounded by r ≤ nd−1 (cf. Lemma 3.41). If we
insert this inequality, we get an upper bound of N r-term

mem (p)≤ d · nd which is worse
than the storage size for the full representation (cf. (7.4)).

The consequence is that the r-term representation makes sense only if the
involved rank r is of moderate size. Since the true rank r may be large (or even
infinite), an exact representation may be impossible, and instead one has to accept
approximations of the tensor.

Let V = ‖·‖
⊗d

j=1Vj be a Banach tensor space. The approximation problem
(truncation problem) can be formulated in two different versions. In the first version
we fix the representation rank r and look for approximations inRr:

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 9,
© Springer-Verlag Berlin Heidelberg 2012

249

250 9 r-Term Approximation

Given v ∈ V and r ∈ N0,
determine u ∈ Rr minimising ‖v − u‖ . (9.1)

Here, ‖·‖ is an appropriate norm1 on V.
We shall see that, in general, a minimiser u ∈ Rr of Problem (9.1) need not

exist, but we can form the infimum

ε(v, r) := ε(r) := inf {‖v − u‖ : u ∈ Rr} . (9.2)

In §9.3 we shall discuss modified formulations of Problem (9.1).
In the next variant, the rôles of r and ε(r) are reversed:

Given v ∈ V and ε > 0,
determine u ∈ Rr with ‖v − u‖ ≤ ε for minimal r.

(9.3)

There are two trivial cases which will not be discussed further on. One case is
r=0, becauseR0={0} leads to the solution u=0. The second case is d=1, since
then Rr = V for all r ≥ 1 and u := v is the perfect minimiser of (9.1) and (9.3).

Remark 9.1. Problem (9.3) has always a solution.

Proof. Let Nr := {‖v − u‖ : u ∈ Rr} ⊂ [0,∞) be the range of the norm. Given
ε > 0, we have to ensure that there are some r ∈ N0 and ε′ ∈ Nr with ε ≥ ε′. Then

N(ε) := {r ∈ N0 : there is some ε′ ∈ Nr with ε′ ≤ ε}

is a non-empty subset of N0 and a minimum r := min{n ∈ N(ε)} must exist.
First we consider the finite dimensional case. Then there is a finite rmax with

V = Rrmax . Hence, ε′ := 0 ∈ Nrmax satisfies ε′ ≤ ε.

In the infinite dimensional case, a
⊗d

j=1Vj is dense in V. This implies that there
is a uε∈ a

⊗d
j=1Vj with ε′ :=‖v − uε‖≤ε/2. By definition of the algebraic tensor

space, uε has a representation of r elementary tensors for some r∈N0. This proves
that ε ≥ ε′ ∈ Nr. ��

Solutions u ∈ Rr of Problem (9.3) satisfy ‖v − u‖ ≤ ε for a minimal r. Fixing
this rank r, we may still ask for the best approximation among all u ∈ Rr. This
leads again to Problem (9.1).

Lemma 9.2. Let (Vj , 〈·, ·〉j) be Hilbert spaces, while (V, 〈·, ·〉) is endowed with
the induced scalar product 〈·, ·〉 and the corresponding norm ‖·‖. If a minimiser
u∗ ∈ Rr of Problem (9.1) exists, then

u∗ ∈ U(v) :=
⊗d

j=1
Umin
j (v).

If, furthermore, v satisfies linear constraints (cf. §6.8), these are also fulfilled by u∗.
If V = V(0) is subspace of a Hilbert intersection space V(n) and v ∈ V(n), then
also u∗ ∈ V(n) (cf. Uschmajew [188]). In the case of Problem (9.3), one of the
solutions satisfies u∗ ∈ U(v) and the conclusions about possible constraints.

1 Some results are stated for general norms, however, most of the practical algorithms will work
for Hilbert tensor spaces with induced scalar product.

9.2 Discussion for r = 1 251

Proof. Let P : V → U(v) :=
⊗d

j=1 U
min
j (v) be the orthogonal projection onto

U(v). Because of ‖v − u‖2 =
Pv=v

‖v −Pu‖2 + ‖(I−P)u‖2 and Pu ∈ Rr, the

minimiser u must satisfy (I − P)u = 0, i.e., u ∈ U(v). The further statements
follow from u ∈ U(v). ��

9.2 Discussion for r = 1

Because of Exercise 8.2b, the following results can be derived from the later proven
properties of Tr. Nevertheless, we discuss the case R1 as an exercise (cf. Zhang-
Golub [201]) and as demonstration of the contrast to the case r > 1.

Let v ∈ V be given. Problem (9.1) with r = 1 requires the minimisation of
∥
∥
∥v −

⊗d

j=1
u(j)

∥
∥
∥. (9.4)

In the following we assume that the vector spaces Vj are finite dimensional
(corresponding results for infinitely dimensional spaces follow from Theorem 10.8
combined with Exercise 8.2b). Note that the choice of the norm is not restricted.

Lemma 9.3. Let V =
⊗d

j=1Vj be a finite dimensional normed tensor space.
Then for any v ∈ V there are tensors umin =

⊗d
j=1u

(j)∈ R1 minimising (9.4):

‖v − umin‖ = min
u(1)∈V1,...,u(d)∈Vd

∥
∥
∥v −

⊗d

j=1
u(j)

∥
∥
∥. (9.5)

If d ≥ 2 and dim(Vj) ≥ 2 for at least two indices j, the minimiser umin may be
not unique.

Proof. 1) If v = 0, u = 0 ∈ R1 is the unique solution.
2) For the rest of the proof assume v �= 0. Furthermore, we may assume,

without loss of generality, that there are norms ‖·‖j on Vj scaled in such a way that
∥
∥
∥
⊗d

j=1
v(j)

∥
∥
∥ ≥

∏d

j=1
‖v(j)‖j (cf. (4.27)). (9.6)

3) For the minimisation in minu∈R1‖v−u‖, the set R1 may be reduced to the
subset C := {u ∈ R1 : ‖u‖ ≤ 2 ‖v‖}, since otherwise

‖v − u‖ ≥
(4.2)
‖u‖ − ‖v‖ > 2 ‖v‖ − ‖v‖ = ‖v‖ = ‖v − 0‖ ,

i.e., 0 ∈ R1 is a better approximation than u. Consider the subsets

Cj :=
{
u(j) ∈ Vj : ‖v(j)‖j ≤ (2 ‖v‖)1/d

}
⊂ Vj

and note that C⊂C′ :=
{⊗d

j=1u
(j) : u(j)∈Cj

}
because of (9.6). We conclude that

252 9 r-Term Approximation

inf
u∈R1

‖v − u‖ = inf
u∈C′

‖v − u‖ = inf
u(j)∈Cj

∥
∥
∥v −

⊗d

j=1
u(j)

∥
∥
∥.

Let uν :=
d⊗

j=1

uj,ν (uj,ν ∈ Cj) be a sequence with ‖v − uν‖→ inf
u∈R1

‖v − u‖.

Since the sets Cj are bounded and closed, the finite dimension of Vj implies com-
pactness. We find a subsequence so that uj,ν→u

(j)
∗ ∈Vj and u∗ :=

⊗d
j=1u

(j)
∗ ∈R1

satisfies ‖v − u∗‖ = infu∈R1‖v − u‖ .
4) For d=1, v∈V belongs toR1 so that u∗ :=v is the only minimiser. Already

for d=2, the matrix
[
1
0
0
1

]
has the two different minimisers u∗ =

[
1
0

]
⊗
[
1
0

]
=
[
1
0
0
0

]

and u∗∗=
[
0
1

]
⊗
[
0
1

]
=
[
0
0
0
1

]
with respect to the Frobenius norm. ��

The practical computation of umin from (9.5) is rendered more difficult by the
following fact.

Remark 9.4. The function Φ(u(1), . . . , u(d)) = ‖v −
⊗d

j=1 u
(j)‖ may have local

minima larger than the global minimum.

For Problems (9.1) and (9.3) with r ≥ 2 we have to distinguish the cases d = 2
(see §9.3) and d ≥ 3 (see §9.4).

9.3 Discussion in the Matrix Case d = 2

First we discuss the general case of finite dimensional vector spaces V1 and V2 and
the tensor space V=V1⊗V2 with arbitrary norm ‖·‖. Introducing bases {b(j)i : i∈Ij}
in V1 and V2, we obtain isomorphisms Vj ∼= K

Ij . Similarly, the tensor space V is
isomorphic to K

I1×I2 . Given a norm ‖·‖ on V, we define the equally named norm

‖M‖ :=
∥
∥
∥
∑

ν∈I1

∑

μ∈I2

Mνμ b
(1)
ν ⊗ b(2)μ

∥
∥
∥ for M ∈ K

I1×I2 .

This makes the isomorphism V ∼= K
I1×I2 isometric. Therefore, Problem (9.1) is

equivalent to
Given a matrix M ∈ K

I1×I2 and r ∈ N0,
determine R ∈ Rr minimising ‖M −R‖ , (9.7)

withRr =
{
M ∈ K

I1×I2 : rank(M) ≤ r
}

from (2.6).

Proposition 9.5. For d = 2, Problems (9.1) and (9.7) have a solution, i.e., the
minima minu∈Rr‖v − u‖ and minR∈Rr‖M −R‖ are attained.

Proof. Since the problems (9.1) and (9.7) are equivalent, we focus to Problem (9.7).
As in the proof of Lemma 9.3 we find that the minimisation in (9.7) may be reduced
to the bounded subsetRr,M := Rr ∩

{
R ∈ K

I×J : ‖R‖ ≤ 2‖M‖
}

. We consider a
sequence R(k) ∈ Rr,M such that

9.3 Discussion in the Matrix Case d = 2 253

‖M −R(k)‖ → inf
R∈Rr

‖M −R‖ .

Since {R∈KI×J :‖R‖≤2 ‖M‖} is a compact set, there is a subsequence (denoted
again by R(k)) with limR(k)=:R∗∈KI1×I2 . Continuity of ‖·‖ (cf. §4.1.1) implies
that infR∈Rr‖M−R‖= ‖M−R∗‖. It remains to show that R∗∈Rr. Lemma 2.4
proves that indeed rank(R∗)=rank(limR(k))≤ lim infk→∞ rank(R(k))≤r. ��

Next, we consider the Frobenius norm2 ‖·‖ = ‖·‖F .

Proposition 9.6. In the case of Problem (9.7) with the Frobenius norm ‖·‖ = ‖·‖F ,
the characterisation of the solution is derived from the singular value decomposition
M=UΣV H=

∑s
i=1σiuiv

H
i (cf. (2.21)). Then

R :=

min{r,s}∑

i=1

σi ui v
H
i

is a solution to Problem (9.7). It is unique if r = s or σr+1 < σr . The remaining
error is

‖M −R‖F =

√
∑s

i=r+1
σ2
i .

Proof. Use Lemma 2.30. ��

For ‖·‖ = ‖·‖F , also Problem (9.3) has an immediate solution. The result is
deduced from (2.26b).

Remark 9.7. The problem

Given M ∈ K
I×J and ε > 0,

determine R ∈ Rr with ‖M −R‖F ≤ ε for minimal r
(9.8)

has the solutionR :=
∑rε
i=1 σiuiv

H
i ,whereM =

∑s
i=1 σiuiv

H
i with s := rank(M)

(cf. (2.21)) is the singular value decomposition and

rε = min
{
r ∈ {0, . . . , s} :

∑s

i=r+1
σ2
i ≤ ε2

}
.

There is a connection between the case r = 1 from §9.2 and Problem (9.7) for
‖·‖ = ‖·‖F . We may determine the solution R ∈ Rr of (9.8) sequentially by a
deflation technique, where in each step we determine a best rank-1 matrixR(i)∈R1:

1) let R(1)∈R1 be the minimiser of min
s∈R1

‖M−S‖F and set M (1) :=M−R(1);

2) letR(2)∈R1 be the minimiser of min
S∈R1

‖M (1)−S‖F and setM (2) :=M−R(2);

...

r) let R(r)∈R1 be the minimiser of min
S∈R1

‖M (r−1)−S‖F, set R :=
r∑

i=1

R(i)∈Rr .

2 We may also choose the matrix norm ‖·‖2 from (2.13) or any unitarily invariant matrix norm.

254 9 r-Term Approximation

Remark 9.8. The solution of the previous deflation algorithm yields the approxi-
mation R ∈ Rr which is identical to the solution of Proposition 9.6. The error
‖M (r)‖F = ‖M −R‖F is as in Proposition 9.6.

The solutions discussed above satisfy an important stability property. We shall
appreciate this property later when we find situations, where stability is lacking.

Lemma 9.9. The solutions R :=
∑r

i=1 σiuiv
H
i to Problems (9.1) and (9.3) satisfy3

∑r

i=1

∥
∥σiuiv

H
i

∥
∥2
F
= ‖R‖2F , (9.9)

i.e., the terms σiuivHi are pairwise orthogonal with respect to the Frobenius scalar
product.

Proof. The Frobenius scalar product (2.10) yields the value
〈
σiuiv

H
i , σjujv

H
j

〉

F
=

σiσj
〈
uiv

H
i , ujv

H
j

〉
= σiσj trace

(
(ujv

H
j)

H(uiv
H
i)
)

= σiσj trace
(
vju

H
j uiv

H
i

)
.

Since the singular vectors ui are orthogonal, uHj ui = 0 holds for i �= j proving
the orthogonality

〈
σiuiv

H
i , σjujv

H
j

〉

F
= 0. ��

9.4 Discussion in the Tensor Case d ≥ 3

9.4.1 Non-Closedness of Rr

In the following we assume that the tensor space of order d ≥ 3 is non-degenerate
(cf. Definition 3.24).

A serious difficulty for the treatment of tensors of order d ≥ 3 is based on the
fact that Proposition 9.5 does not extend to d ≥ 3. The following result stems from
De Silva-Lim [44] and is further discussed in Stegeman [175], [176]. However, an
example of such a type can already be found in Bini-Lotti-Romani [19].

Proposition 9.10. Let V be a non-degenerate tensor space of order d ≥ 3. Then,
independently of the choice of the norm, there are tensors v ∈ V for which Problem
(9.1) possesses no solution.

Proof. Consider the tensor space V = V1 ⊗ V2 ⊗ V3 with dim(Vj) ≥ 2 and choose
two linearly independent vectors vj , wj ∈ Vj . The tensor

v := v(1) ⊗ v(2) ⊗ w(3) + v(1) ⊗ w(2) ⊗ v(3) + w(1) ⊗ v(2) ⊗ v(3)

has tensor rank 3 as proved in Lemma 3.42. Next, we define

vn :=
(
w(1) + nv(1)

)
⊗
(
v(2) + 1

nw
(2)
)
⊗ v(3)

+ v(1) ⊗ v(2) ⊗
(
w(3) − nv(3)

)
for n ∈ N.

(9.10)

3 Eq. (9.9) has a similar flavour as the estimate
∑

i ‖ui ⊗ vi‖∧ ≤ (1 + ε) ‖v‖∧ for a suitable
representation v =

∑
i ui ⊗ vi with respect to the projective norm ‖·‖∧ from §4.2.4.

9.4 Discussion in the Tensor Case d ≥ 3 255

Exercise 3.43 shows that rank(vn) = 2.The identityv−vn = − 1
nw

(1)⊗w(2)⊗v(3)
is easy to verify; hence, independently of the choice of norm, one obtains

lim
n→∞

vn = v.

This shows
3 = rank(v) = rank(limvn) > rank(vn) = 2

in contrary to (2.7).
The tensor space of order 3 from above can be embedded into higher order tensor

spaces, so that the statement extends to non-degenerate tensor spaces with d ≥ 3.��

The proof reveals that the setR2 is not closed.

Lemma 9.11. Let V =
⊗d

j=1 Vj be a non-degenerate tensor space of order d ≥ 3.

Then R1 ⊂ V is closed, but Rr ⊂ V for 2 ≤ r ≤ min
1≤j≤d

dim(Vj) is not closed.4

Proof. 1) Consider a sequence vn :=
⊗d

j=1u
j,n ∈R1 with v := limn→∞ vn ∈V.

Hence, infu∈R1‖v − u‖≤ infn‖v − vn‖=0. On the other hand, Lemma 9.3 states
that the minimum is attained: minu∈R1‖v − u‖=‖v − umin‖ for some umin∈R1.
Together, we obtain from 0=infn‖v − vn‖=‖v − umin‖ that v=umin∈R1, i.e.,
R1 is closed.

2) The fact that R2 is not closed, is already proved for d= 3. The extension to
d ≥ 3 is mentioned in the proof of Proposition 3.40c.

3) For the discussion of r > 2 we refer to [44, Theorem 4.10]. ��

De Silva and Lim [44] have shown that tensors v without a minimiser u∗ ∈ Rr
of infu∈Rr‖v − u‖ are not of measure zero, i.e., there is a positive expectation that
random tensors v are of this type.

9.4.2 Border Rank

The observed properties lead to a modification of the tensor rank (cf. Bini et al.
[19]), whereRr is replaced by its closure.

Definition 9.12. The tensor border rank is defined by

rank(v) := min
{
r : v ∈ Rr

}
∈ N0. (9.11)

Concerning estimates between rank(v) and the tensor subspace ranks rj see
Theorem 8.34b. A practical application to Kronecker products is given in the
following remark.

4 The limitation r ≤ minj{dim(Vj)} is used for the proof in [44, Theorem 4.10]. It is not claimed
that Rr is closed for larger r.

256 9 r-Term Approximation

Remark 9.13. For A(j), B(j) ∈ L(Vj , Vj), the Kronecker product

A := A(1)⊗B(2)⊗. . .⊗B(d)+B(1)⊗A(2)⊗. . .⊗B(d)+. . .+B(1)⊗B(2)⊗. . .⊗A(d)

has border rank rank(A) ≤ 2.

Proof. A is the derivative d
dtC(t) of C(t) :=

⊗d
j=1

(
B(j) + tA(j)

)
at t = 0. Since

rank(C(t))=1 for all t and 1
h (C(h)−C(0))→ A, the result follows. ��

9.4.3 Stable and Unstable Sequences

For practical use, it would be sufficient to replace the (non-existing) minimiser
u ∈ Rr of ‖v − u‖ by some uε ∈ Rr with ‖v − uε‖ ≤ infu∈Rr‖v − u‖ + ε
for an ε small enough. However, those uε with ‖v − uε‖ close to infu∈Rr‖v − u‖
suffer from the following instability (below, ε is replaced by 1/n).

Remark 9.14. vn from (9.10) is the sum vn=vn,1+vn,2 of two elementary tensors.
While ‖vn,1+vn,2‖ ≤ C stays bounded, the norms ‖vn,1‖ and ‖vn,2‖ grow like
n: ‖vn,1‖, ‖vn,2‖ ≥ C′n. Hence, the cancellation of both terms is the stronger the
smaller ‖v − vn‖ is.

Cancellation is an unpleasant numerical effect leading to a severe error amplifi-
cation. A typical example is the computation of exp(−20) by

∑n
ν=0

(−20)ν
ν! with

suitable n. Independently of n, the calculation with standard machine precision
eps= 10−16 yields a completely wrong result. The reason is that rounding errors
produce an absolute error of size

∑n
ν=0 | (−20)

ν
/ν!| ·eps≈exp(+20) ·eps. Hence,

the relative error is about exp(40) · eps ≈ 2.41017 · eps.
In general, the ‘condition’ of a sum

∑
νaν of reals can be described by the

quotient
∑

ν
|aν | /

∣
∣
∣
∑

ν
aν

∣
∣
∣ .

A similar approach leads us to the following definition of a stable representation
(see also (7.12)).

Definition 9.15. Let V = a

⊗d
j=1 Vj be a normed tensor space.

(a) For any representation 0 �= v =
∑r
i=1

⊗d
j=1 v

(j)
i we define5

κ

((
v
(j)
i

)1≤j≤d

1≤i≤r

)

:=

(
r∑

i=1

∥
∥
∥
∥
∥

d⊗

j=1

v
(j)
i

∥
∥
∥
∥
∥

)

/

∥
∥
∥
∥
∥

r∑

i=1

d⊗

j=1

v
(j)
i

∥
∥
∥
∥
∥
. (9.12a)

(b) For v ∈ Rr we set

5 The first sum on the right-hand side of (9.12a) resembles the projective norm (cf. §4.2.4). The
difference is that here only r terms are allowed.

9.4 Discussion in the Tensor Case d ≥ 3 257

κ(v, r) := inf

{

κ

(
(v

(j)
i)1≤j≤d1≤i≤r

)
: v =

r∑

i=1

⊗d

j=1
v
(j)
i

}

. (9.12b)

(c) A sequence vn ∈ Rr (n ∈ N) is called stable in Rr, if

κ((vn)n∈N, r) := sup
n∈N

κ(vn, r) <∞; (9.12c)

otherwise, the sequence is unstable.

The instability observed in Remark 9.14 does not happen accidentally, but is a
necessary consequence of the non-closedness ofR2.

Proposition 9.16. Suppose dim(Vj) <∞. If a sequence vn ∈ Rr ⊂ a

⊗d
j=1Vj is

stable and convergent, then limn→∞ vn ∈ Rr.

Proof. Set C := 2κ((vn), r) and v := limn→∞ vn. After choosing a subsequence,

vn → v holds with representations
r∑

i=1

d⊗

j=1

v
(j)
n,i such that

r∑

i=1

∥
∥
∥
∥

d⊗

j=1

v
(j)
n,i

∥
∥
∥
∥ ≤ C ‖v‖

holds. The vectors v(j)n,i can be scaled equally so that all {v(j)n,i ∈Vj :n∈N} are uni-

formly bounded. Choosing again a subsequence, limits v̂(j)i :=limn→∞v
(j)
n,i exist and

v = limvn = lim
∑r
i=1

⊗d
j=1v

(j)
n,i =

∑r
i=1

⊗d
j=1lim v

(j)
n,i =

∑r
i=1

⊗d
j=1v̂

(j)
i ∈ Rr

proves the assertion. ��

A generalisation of the last proposition to the infinite dimensional case follows.

Theorem 9.17. Let V be a reflexive Banach space with a norm not weaker than
‖·‖∨ (cf. (6.18)). For any bounded and stable sequence vn ∈ V, there is a weakly
convergent subsequence vnν ⇀ v ∈ Rr. Moreover, if vn=

∑r
i=1

⊗d
j=1v

(j)
n,i ∈Rr

holds with balanced 6 factors v(j)n,i, i.e.,

sup
n

{

max
j
‖v(j)n,i‖Vj/min

j
‖v(j)n,i‖Vj

}

<∞ for all 1 ≤ i ≤ r,

then there are v(j)i ∈Vj and a subsequence such that

v
(j)
nν ,i

⇀ v
(j)
i and vnν =

r∑

i=1

d⊗

j=1

v
(j)
nν ,i

⇀ v =
r∑

i=1

d⊗

j=1

v
(j)
i . (9.13)

Proof. 1) By definition of stability, there are v(j)i,n ∈ Vj such that vi,n :=
⊗d

j=1 v
(j)
i,n

satisfies vn =
∑r

i=1 vi,n and ‖vi,n‖ ≤ C ‖vn‖ , e.g., for C := κ((vn), r) + 1.

Corollary 4.26 states that vi,n⇀vi and vn⇀v=
∑r

i=1vi are valid after restricting
n to a certain subsequence. Note that vi,n ∈ R1 = T(1,...,1) and that T(1,...,1) is
weakly closed (cf. Lemma 8.6). Hence, vi ∈ R1 implies that v =

∑r
i=1vi ∈ Rr .

6 This can be ensured by scaling the factors such that ‖v(j)
n,i‖Vj

= ‖v(k)
n,i‖ for all 1 ≤ j, k ≤ d.

258 9 r-Term Approximation

2) Taking the subsequence from Part 1), vi,n =
⊗d

j=1v
(j)
i,n ⇀ vi ∈ R1 holds,

i.e., vi =
⊗d

j=1v̂
(j)
i . Since vi = 0 is a trivial case, assume vi �= 0. Choose func-

tionals ϕ(j) ∈ V ∗j with ϕ(j)(v̂
(j)
i) = 1 and define Φ[k] :=

⊗
j �=kϕ

(j) : V → Vk.

The weak convergence vi,n⇀vi implies Φ[k](vi,n)⇀Φ[k](vi)= v̂
(k)
i (cf. Lemma

6.23). By construction, Φ[k](vi,n) = α
[k]
n v

(k)
i,n holds with α[k]

n :=
∏
j �=k ϕ

(j)(v
(j)
i,n).

Since ‖v(j)n,i‖Vj ∈ [a, b] for some 0 < a ≤ b < ∞, also the sequence {α[k]
n } is

bounded. For k = 1, we extract a convergent subsequence such that α[1]
n → α[1]

and hence α[1]v
(1)
i,n ⇀ v̂

(1)
i . Since v̂(1)i �= 0, α[1] cannot vanish and allows to define

v
(1)
i :=(1/α[1])v̂

(1)
i as weak limit of v(1)i,n . Restricting the considerations to this sub-

sequence, we proceed with the sequence {α[2]
n } and derive the weak convergence

v
(1)
i,n⇀v

(2)
i :=(1/α[2])v̂

(2)
i , etc. The now defined v(j)i satisfy statement (9.13). Note

that v(j)i and v̂(j)i differ only by an uninteresting scaling, since
∏d
j=1 α

[j] = 1. ��

9.4.4 A Greedy Algorithm

Finally, we hint to another important difference between the matrix case d = 2 and
the true tensor case d ≥ 3. Consider again Problem (9.1), where we want to find an
approximation u ∈ Rr of v ∈ V.

In principle, one can try to repeat the deflation method from §9.3:

1) determine the best approximation u1 ∈ R1 to v ∈ V according to Lemma 9.3,
set v1 := v − u1,

2) determine the best approximation u2 ∈ R1 to v1 ∈ V according to Lemma 9.3,
set v2 := v1 − u2,

...

r) determine the best approximation ur ∈ R1 to vr−1 ∈ V.

Then û := u1 + u2 + . . .+ ur ∈ Rr can be considered as an approximation of
v ∈ V. The described algorithm belongs to the class of ‘greedy algorithms’, since
in each single step one tries to reduce the error as good as possible.

Remark 9.18. (a) In the matrix case d = 2 with ‖·‖ = ‖·‖F (cf. §9.3), the algorithm
from above yields the best approximation û ∈ Rr of v ∈ V, i.e., û solves (9.1).
(b) In the true tensor case d ≥ 3, the resulting û ∈ Rr is, in general, a rather poor
approximation, i.e., ‖v − û‖ is much larger than infu∈Rr ‖v − u‖.

Proof. 1) The matrix case is discussed in Remark 9.8.
2) If infu∈Rr ‖v − u‖ has no minimiser, û cannot be a solution of Problem (9.1).

But even if v ∈ Rr so that u := v is the unique minimiser, practical examples (see
below) show that the greedy algorithm yields a poor approximation û. ��

9.5 Numerical Approaches for the r-Term Approximation 259

As an example, we choose the tensor space V = R
2 ⊗ R

2 ⊗ R
2 and the tensor

v =

[
1
2

]

⊗
[
1
2

]

⊗
[
1
1

]

+

[
3
2

]

⊗
[
3
2

]

⊗
[
3
1

]

∈ R2 (9.14)

with Euclidean norm ‖v‖ =
√
2078 ≈ 45.585.

The best approximation u1 ∈ R1 of v ∈ V is

u1 = 27.14270606 ·
[

1
0.7613363832

]

⊗
[

1
0.7613363836

]

⊗
[

1
0.3959752430

]

.

The approximation error is ‖v − u1‖ = 2.334461003.
In the second step, the best approximation u2 ∈ R1 of v − u1 turns out to be

u2 = 0.03403966791 ·
[

1
−4.86171875

]

⊗
[

1
−3.91015625

]

⊗
[

1
2.469921875

]

.

It yields the approximation error ‖v − (u1 + u2)‖=1.465604638, whereas the best
approximation inR2 is u = v with vanishing error.

The reason why the algorithm fails to find the best approximation, becomes
obvious from the first correction step. The correction u1 is close to the second term
in (9.14), but not equal. Thereforev−u1 belongs toR3 and it is impossible to reach
the best approximation in the second step.

Nevertheless, the algorithm can be used as an iteration (cf. §17.1). Concerning
convergence compare [47] and [58].

9.5 Numerical Approaches for the r-Term Approximation

If infu∈Rr‖v−u‖ has no minimum, any numerical method is in trouble. First, no
computed sequence can converge, and second, the instability will spoil the compu-
tation. On the other hand, if minu∈Rr‖v−u‖ exists and moreover essential unique-
ness holds (see Remark 7.4b), there is hope for a successful numerical treatment.

9.5.1 Use of the Hybrid Format

When v ∈ V is to be approximated by u ∈ Rr, the computational cost will de-
pend on the representation of v. The cost is huge, if v is represented in full format.
Fortunately, in most of the applications, v is already given in R-term format with
some R > r or, possibly, in a tensor subspace format. We start with the latter case.

We consider the case of Vj = K
Ij and V = K

I, I = I1 × . . . × Id, equipped
with the Euclidean norm ‖·‖. Assume that v = ρorth

(
a, (Bj)

d
j=1

)
with orthogonal

matrices Bj ∈ K
Ij×Jj and a ∈ K

J, J = J1 × . . . × Jd. Also the Euclidean norm
in K

J is denoted by ‖·‖. Set B :=
⊗d

j=1 Bj and note that v = Ba (cf. (8.6b)).

260 9 r-Term Approximation

Lemma 9.19. Let v, a, B be as above. Any c ∈ K
J together with u := Bc ∈ K

I

satisfies ‖a− c‖ = ‖v − u‖ . Furthermore, c and u have equal tensor rank.
Minimisation of ‖a− c‖ over all c ∈ Rr(KJ) is equivalent to minimisation of
‖v − u‖ over all u ∈ Rr(KI).

Proof. The coincidence of the norm holds because orthonormal bases are used:
BHB = I. Theorem 8.36a states that rank(c) = rank(u). ��

Therefore, the strategy consists of three steps:

(i) Given v = ρorth
(
a, (Bj)

d
j=1

)
∈ K

I, focus to a ∈ K
J,

(ii) approximate a by some c ∈ Rr(KJ),
(iii) define u := Bc ∈ Rr(KI) as approximant of v.

This approach is of practical relevance, since #J≤#I holds and often #J #I

is expected. The resulting tensor u = Bc has hybrid format v = ρhybrorth (. . .) (cf.
(8.20)). This approach is, e.g., recommended in Espig [52].

The previous step (ii) depends again on the format of a ∈ K
J. In the general case

of v = ρorth
(
a, (Bj)

d
j=1

)
, the coefficient tensor a is given in full format. A more

favourable case is the hybrid format v = ρhybrorth (. . .), where a is given in R-term
format.

Next, we assume that v ∈ V is given in R-term format with a possibly large
representation rank R, which is to be reduced to r ≤ R (either r fixed, or indirectly
determined by a prescribed accuracy). §8.5.2.3 describes the conversion of the tensor
v= ρr-term(R, . . .) into the hybrid format v= ρhybrorth (. . .) = Ba, i.e., with a ∈ K

J

given again in the R-term format a = ρr-term(R, . . .). According to Lemma 9.19,
the approximation is applied to the coefficient tensor a.

We summarise the reduction of the approximation problems for the various
formats:

format of original tensor v format of coefficient tensor a

ρorth
(
a, (Bj)

d
j=1

)
full format

ρhybrorth

(
R, (a

(j)
ν), (Bj)

d
j=1

)
R-term format

R-term format R-term format

(9.15)

The equivalence of minimising c in ‖a− c‖ and u in ‖v − u‖ leads again to the
statement that the minimiser u∗ of minu ‖v − u‖ belongs to

⊗d
j=1 U

min
j (v) (cf.

Lemma 9.2).
The hybrid format is also involved in the approach proposed by Khoromskij-

Khoromskaja [120]. It applies in the case of a large representation rank r in v ∈ Rr
and d = 3, and consists of two steps:
Step 1: convert the tensor v ∈ Rr approximately into an HOSVD representation
v′ = ρHOSVD

(
a, (Bj)1≤j≤d

)
;

Step 2: exploit the sparsity pattern of a to reconvert to v′′ ∈ Rr′ with hopefully
much smaller r′ < r.

9.5 Numerical Approaches for the r-Term Approximation 261

For Step 1 one might use methods like described in Remark 8.31. Because of the
HOSVD structure, the entries of the coefficient tensor a are not of equal size. In
practical applications one observes that a large part of the entries can be dropped
yielding a sparse tensor (cf. §7.6.5), although a theoretical guarantee cannot be
given. A positive result about the sparsity of a can be stated for sparse grid bases
instead of HOSVD bases (cf. §7.6.5).

9.5.2 Alternating Least-Squares Method

9.5.2.1 Alternating Methods in General

Assume that Φ is a real-valued function of variables x := (xω)ω∈Ω with an ordered
index setΩ. We want to find a minimiser x∗ ofΦ(x) = Φ(xω1 , xω2 , . . .).A standard
iterative approach is the successive minimisation with respect to the single variables
xω. The iteration starts with some x(0). Each step of the iteration maps x(m−1) into
x(m) and has the following form:

Start choose x(0)ω for ω ∈ Ω.
Iteration for i := 1, . . . ,#Ω do

m = 1, 2, . . . x
(m)
ωi :=minimiser of Φ(. . . , x(m)

ωi−1 , ξ, x
(m−1)
ωi+1 , . . .) w.r.t. ξ (9.16)

Note that in the last line the variables x(m−1)ω� for � > i are taken from the last iterate
x(m−1), while for � < i the new values are inserted.

The underlying assumption is that minimisation with respect to a single variable
is much easier and cheaper than minimisation with respect to all variables simulta-
neously. The form of the iteration is well-known from the Gauss-Seidel method (cf.
[81, §4.2.2]). Obviously, the value Φ(x(m)) is weakly decreasing during the compu-
tation. Whether the iterates converge depends on properties of Φ and on the initial
value. In case x(m) converges, the limit may be a local minimum.

Next, we mention some variations of the general method.

(α) Minimisation may be replaced by maximisation.

(β) Using i :=1, 2, . . . ,#Ω − 1, #Ω, #Ω − 1, . . . , 2 as i loop in (9.16), we en-
sure a certain symmetry. Prototype is the symmetric Gauss-Seidel iteration (cf. [81,
§4.8.3]).

(γ) Instead of single variables, one may use groups of variables, e.g., minimise
first with respect to (x1, x2), then with respect to (x3, x4), etc. After rewriting
(X1 := (x1, x2), . . .) we get the same setting as in (9.16). Since we have not fixed
the format of xj , each variable xj may be vector-valued. The corresponding variant
of the Gauss-Seidel iteration is called block-Gauss-Seidel (cf. [81, §4.5.2]).

(δ) The groups of variables may overlap, e.g., minimise first with respect to
(x1, x2), then with respect to (x2, x3), etc.

262 9 r-Term Approximation

(ε) Usually, we do not determine the exact minimiser, as required in (9.16). Since
the method is iterative anyway, there is no need for an exact minimisation. The weak
decrease of Φ(x(m)) can still be ensured.

(ζ) Previous iterates can be used to form some nonlinear analogues of the cg,
Krylov, or GMRES methods.

For any 1 ≤ k ≤ p, let Φ(x1, . . . , xp) with fixed xj (j �= k) be a quadratic
function7 in xk . Then the minimisation in (9.16) is a least-squares problem, and
algorithm (9.16) is called alternating least-squares method. This situation will
typically arise, when Φ is a squared multilinear function.

9.5.2.2 ALS Algorithm for the r-Term Approximation

Let V ∈
⊗d

j=1Vj and Vj = K
Ij be equipped with the Euclidean norm8 and set

I := I1 × . . . × Id. For v ∈ V and a representation rank r ∈ N0 we want to
minimise9

‖v − u‖2 =

∥
∥
∥
∥v −

r∑

ν=1

⊗d

j=1
u(j)ν

∥
∥
∥
∥

2

=
∑

i∈I

∣
∣
∣
∣v[i]−

r∑

ν=1

d∏

j=1

u(j)ν [ij]

∣
∣
∣
∣

2

(9.17a)

with respect to all entries u(j)ν [i]. To construct the alternating least-squares method
(abbreviation: ALS), we identify the entries u(k)ν [i] with the variables xω from above.
The indices are ω= (k, ν, i)∈Ω := {1, . . . , d}×{1, . . . , r}×Ik. For this purpose,

we introduce the notations I[k] :=×j �=k Ij and u
[k]
ν :=

⊗
j �=ku

(j)
ν (cf. (3.21d)), so

that u =
∑r
ν=1 u

(k)
ν ⊗ u

[k]
ν and

‖v − u‖2 =
∑

i∈Ik

∑

�∈I[k]

∣
∣
∣
∣v[�1, . . . , �k−1, i, �k+1, . . . , �d]−

r∑

ν=1

u(k)ν [i] · u[k]
ν [�]

∣
∣
∣
∣

2

.

For fixed ω = (k, ν, i) ∈ Ω, this equation has the form

‖v − u‖2 = αω |xω |2 − 2,e (βωxω) + γω with (9.17b)

xω=u
(k)
ν [i], αω=

∑

�∈I[k]

∣
∣
∣u[k]
ν [�]

∣
∣
∣
2

, βω=
∑

�∈I[k]

u[k]
ν [�]v[. . . , �k−1, i, �k+1, . . .]

and is minimised by xω = βω/αω. We add some comments:

7 In the case of a Hilbert space V over K = C, ‘quadratic function in xk ∈ V ’ means Φ(xk) =
〈Axk, xk〉+ 〈b, xk〉+ 〈xk, b〉+ c, where 〈·, ·〉 is the scalar product in V , A = AH, b ∈ V, and
c ∈ R.
8 More generally, the norm ‖·‖j of Vj may be generated by any scalar product 〈·, ·〉j , provided
that V is equipped with the induced scalar product.
9 In the case of incomplete tensor data, the sum

∑
i∈I has to be reduced to

∑
i∈̊I, where I̊ ⊂ I is

the index set of the given entries.

9.5 Numerical Approaches for the r-Term Approximation 263

1) For fixed k, ν, the minimisation with respect to u(k)ν [i], i ∈ Ik, is independent
and can be performed in parallel. The coefficient αω from (9.17b) is independent of
i ∈ Ik. These facts will be used in (9.18).

2) As a consequence of 1), the block version with Ω′ := {1, . . . , d}×{1, . . . , r}
and xω′ = u

(k)
ν ∈ Vk (ω′ = (k, ν) ∈ Ω′) delivers identical results.

3) The starting value u0 should be chosen carefully. Obviously, u0 = 0 is not
a good choice as αω �= 0 is needed in (9.17b). Different starting values may lead
to different minima of ‖v − u‖ (unfortunately, also local minima different from
min‖v − u‖ must be expected).

4) Since xω = βω/αω, the computational cost is dominated by the evaluation of
αω and βω for all ω ∈ Ω.

Rewriting the general scheme (9.16) for Problem (9.17a,b), we obtain the fol-
lowing algorithm. The iterate x(m)

ω takes the form u
(j,m)
ν ∈ Vj , where ω = (j, ν) ∈

Ω :={1, . . . , d}×{1, . . . , r}, since the components u(j,m)
ν [i], i∈Ik, are determined

in parallel.

Start choose some starting values u(j)ν ∈ Vj for 1 ≤ j ≤ d;

for j := 1, . . . , d do for ν := 1, . . . , r do τ (j)ν := ‖u(j)ν ‖2j ;
Iteration for k := 1, . . . , d do for ν := 1, . . . , r do

m = 1, 2, . . . begin αν :=
∏d
j �=k τ

(j)
ν ; u

(k)
ν := 1

αν

〈⊗
j �=ku

(j)
ν ,v

〉

[k]
;

τ
(k)
ν := ‖u(k)ν ‖2k

end; {u(j)ν =u
(j,m)
ν are the coefficients of the m-th iterate}

(9.18)

9.5.2.3 Computational Cost

Remark 9.20. According to §9.5.1, we should replace the tensors v,u ∈ K
I

(u approximant of v) by their coefficient tensors a, c ∈ K
J. This does not change

the algorithm; only when we discuss the computational cost, we have to replace #Ij
by #Jj .

The bilinear mapping 〈·, ·〉[k] : (
⊗

j �=kVj)×V→ Vk from above is defined by

〈w,v〉[k] [i] =
∑

�∈I[k]

w[�]v[�1, . . . , �k−1, i, �k+1, . . . , �d] for all i ∈ Ik. (9.19)

The variables τ (j)ν are introduced in (9.18) to show that only one norm ‖u(k)ν ‖k is to
be evaluated per (k, ν)-iteration.

So far, we have not specified how the input tensor v is represented. By Remark
9.20 and (9.15), the interesting formats are the full and R-term formats.

If the tensor v [a] is represented in full format, the partial scalar product
〈⊗

j �=ku
(j)
ν ,v

〉
[k]

takes 2
∏d
j=1 #Ij

[
2
∏d
j=1 #Jj

]
operations (the quantities in

brackets refer to the interpretation by Remark 9.20). All other operations are of
lower order.

264 9 r-Term Approximation

Remark 9.21. If v = ρorth
(
a, (Bj)

d
j=1

)
, ALS can be applied to the coefficient

tensor a requiring 2
∏d
j=1rj operations per iteration (rj = #Jj).

The standard situation is that v is given inR-term representation, but with a large
representation rank R which should be reduced to r < R. Let

v =
R∑

μ=1

d⊗

j=1

v(j)μ .

Then, 〈w,v〉[k] =
∑R

μ=1 v
(k)
μ
∏
j �=k σ

(j)
νμ holds with σ

(j)
νμ := 〈u(j)ν , v

(j)
μ 〉j . The

scalar products σ(j)
νμ have to be evaluated for the starting values and as soon as

new u
(j)
ν are computed. In total, dr(R + 1) scalar products or norm evaluations are

involved per iteration. Assuming that the scalar product in Vj = R
Ij costs 2nj − 1

operations (nj := #Ij , cf. Remark 7.12), we conclude that the leading part of the
cost is 2rR

∑d
j=1 nj . This cost has still to be multiplied by the number of iterations

in (9.16). The cost described in the next remark uses the interpretation from Remark
9.20.

Remark 9.22. If the coefficient tensor of v is given in R-term format, the cost of
one ALS iteration is

2rR

d∑

j=1

rj ≤ 2drr̄R ≤ 2drR2, where r̄ := max
j

rj , rj = #Jj .

The use of Remark 9.20 requires as preprocessing the conversion of v from
R-term into hybrid format (cost:

∑d
j=1NQR(nj , R)) and as postprocessing the

multiplication Bc (cost: 2r
∑d

j=1 njrj).

The following table summarises the computational cost per iteration and possibly
for pre- and postprocessing.

format of v cost per iteration pre-, postprocessing

full 2
∏d
j=1 nj (nj := #Ij) 0

tensor subspace 2
∏d
j=1 rj (rj := #Jj) 2r

∑d
j=1 njrj

R-term 2rR
∑d

j=1 rj
∑d

j=1NQR(nj , R) + 2r
∑d

j=1 njrj

hybrid 2rR
∑d

j=1 rj 2r
∑d

j=1 njrj

9.5.2.4 Properties of the Iteration

Given an approximation um, the loop over ω ∈Ω produces the next iterate um+1.
The obvious questions are whether the sequence {um}m=0,1,... converges, and in
the positive case, whether it converges to u∗ with ‖v−u∗‖ = minu∈Rr‖v−u‖.

9.5 Numerical Approaches for the r-Term Approximation 265

Statements can be found in Mohlenkamp [149, §4.3]:

a) The sequence {um} is bounded,

b) ‖um−um+1‖ → 0,

c)
∞∑

m=0
‖um−um+1‖2 <∞,

d) the set of accumulation points of {um} is connected and compact.

The negative statements are: the properties from above do not imply conver-
gence, and in the case of convergence, the limit u∗ may be a local minimum with
‖v−u∗‖>minu∈Rr‖v−u‖. A simple example for the latter fact is given in [149,
§4.3.5].

Under suitable assumptions, which need not hold in general, local convergence
is proved by Uschmajew [187].

9.5.3 Stabilised Approximation Problem

As seen in §9.4, the minimisation problem minu∈Rr‖v−u‖ is unsolvable, if and
only if infimum sequences are unstable. An obvious remedy is to enforce stability
by adding a penalty term:

Φλ

(
(u

(j)
i)1≤j≤d1≤i≤r

)
:= min
u
(j)
i ∈Vj

√
√
√
√

∥
∥
∥
∥
∥
v−

r∑

i=1

d⊗

j=1

u
(j)
i

∥
∥
∥
∥
∥

2

+ λ2
r∑

i=1

∥
∥
∥
∥
∥

d⊗

j=1

u
(j)
i

∥
∥
∥
∥
∥

2

, (9.20a)

where λ > 0 and ‖
⊗d

j=1 u
(j)
i ‖2 =

∏d
j=1 ‖u

(j)
i ‖2. Alternatively, stability may be

requested as a side condition (C > 0):

ΦC

(
(u

(j)
i)1≤j≤d1≤i≤r

)
:= min

u
(j)
i ∈Vj subject to

∑r
i=1 ‖

⊗d
j=1 u

(j)
i ‖

2≤C2‖v‖2

∥
∥
∥
∥
∥
v−

r∑

i=1

d⊗

j=1

u
(j)
i

∥
∥
∥
∥
∥
. (9.20b)

If un =
∑r

i=1

⊗d
j=1 u

(j)
i,n is a sequence with ‖v−un‖ ↘ infu ‖v−u‖ subject

to the side condition from (9.20b), it is a stable sequence: κ((vn), r) ≤ C. Hence,
we infer from Theorem 9.17 that this subsequence converges to some u∗ ∈ Rr.

In the penalty case of (9.20a), we may assume Φλ ≤ ‖v‖, since already the
trivial approximation u = 0 ensures this estimate. Then κ((vn), r) ≤ λ follows
and allows the same conclusion as above. Even for a general minimising sequence

un =
∑r

i=1

⊗d
j=1 u

(j)
i,n with c := limn Φλ

(
(u

(j)
i,n)

1≤j≤d
1≤i≤r

)
, we conclude that

κ((vn), r) ≤ c holds asymptotically.

If minu∈Rr‖v−u‖ possesses a stable minimising sequence with κ((un), r)≤C
and limit u∗, the minimisation of ΦC from (9.20b) yields the same result. Lemma
9.2 also holds for the solution u∗ of the regularised solution.

266 9 r-Term Approximation

9.5.4 Newton’s Approach

The alternative to the successive minimisation is the simultaneous minimisation of
Φ(x) in all variables x = (u

(j)
i,n)

1≤j≤d
1≤i≤r . For this purpose, iterative methods can be

applied like the gradient method or the Newton method. Both are of the form

x(m+1) := x(m) − αm sm (sm: search direction, αm∈K).

The gradient method is characterised by sm=∇Φ(x(m)), while Newton’s method
uses sm = H(x(m))−1∇Φ(x(m)) and αm = 1. Here, H is the matrix of the
second partial derivatives: Hωω′ = ∂2Φ/∂xω∂xω′ . However, there are a plenty
of variations between both methods. The damped Newton method has a reduced
parameter 0<αm< 1. The true Hessian H may be replaced by approximations H̃
which are easier to invert. For H̃=I, we regain the gradient method. Below we use
a block diagonal part of H .

In Espig [52] and Espig-Hackbusch [54], a method is described which computes
the minimiser of 10 Φλ from (9.20a). It is a modified Newton method with an ap-
proximate Hessian matrix H̃ allowing for a continuous transition from the Newton
to a gradient-type method. Although the Hessian H is a rather involved expression,
its particular structure can be exploited when the system H(x(m))sm=∇Φ(x(m))
is to be solved. This defines a procedure RNM(v,u) which determines the best
approximationu∈Rr of v∈RR by the stabilised Newton method (cf. [54, Alg. 1]).
For details and numerical examples, we refer to [54]. The cost per iteration is

O

⎛

⎝r(r +R)d2 + dr3 + r(r +R+ d)

d∑

j=1

rj

⎞

⎠

with rj := #Jj and Jj from Lemma 9.19.
In the following, we use the symbols v,u for the tensors involved in the optimi-

sation problem. For the computation one should replace the tensors from V by the
coefficient tensors in K

J as detailed in §9.5.1. Newton’s method is well-known for
its fast convergence as soon as x(m) is sufficiently close to a zero of ∇Φ(x) = 0.
Usually, the main difficulty is the choice of suitable starting values. If a fixed rank
is given (cf. Problem (9.1)), a rough initial guess can be constructed by the method
described in Corollary 15.6.

A certain kind of nested iteration (cf. [83, §5], [81, §12.5]) can be exploited for
solving Problem (9.3). The framework of the algorithm is as follows:

given data v∈RR, initial guess u∈Rr with r < R, ε > 0 1

loop RNM(v,u); ρ := v − u; if ‖ρ‖ ≤ ε then return; 2

if r = R then begin u := v; return end; 3

find a minimiser w ∈ R1 of minω∈R1‖ρ− ω‖ ; 4

u := u+w ∈ Rr+1; r := r + 1; repeat the loop 5

(9.21)

10 In fact, a further penalty term is added to enforce ‖u(j)
i ‖ = ‖u(k)

i ‖ for 1 ≤ j, k ≤ d.

9.6 Generalisations 267

Line 1: The initial guess u ∈ Rr also defines the starting rank r.
Line 2: The best approximation u ∈ Rr is accepted, if ‖v − u‖ ≤ ε.
Line 3: If no approximation in Rr with r < R is sufficiently accurate, u=v ∈Rr
must be returned.
Line 4: The best approximation problem in R1 can be solved by RNM or ALS.
Here, no regularisation is needed (cf. §9.2).
Line 5: u+w is the initial guess inRr+1.

Obviously, the R1 optimisation in Line 4 is of low cost compared with the
other parts. This fact can be exploited to improve the initial guesses. Before calling
RNM(v,u) in Line 2, the following procedure can be applied. Here, App1(v,w)
is a rough R1 approximation of v using w ∈ R1 as starting value (a very cheap
method makes use of Remark 15.7):

data v∈RR, u=
∑r

i=1 ui ∈Rr , ui ∈R1.

loop for ν = 1 to r do begin d := u−
∑

i�=ν ui; uν := App1(d,uν) end;

This improvement of the approximation u can be applied in Line 2 of (9.21) before
calling RNM(v,u). Details are given in [54].

9.6 Generalisations

Here we refer to §7.7, where subsets Aj ⊂ Vj and Rr
(
(Aj)

d
j=1

)
⊂ Rr have been

introduced. The corresponding approximation problem is:

Given v ∈ V and r ∈ N0,
determine u ∈ Rr

(
(Aj)

d
j=1

)
minimising ‖v − u‖ . (9.22)

Though the practical computation of the minimiser may be rather involved, the
theoretical aspects can be simpler than in the standard case.

Lemma 9.23. Assume that V is either finite dimensional or a reflexive Banach
space. Let Aj be weakly closed subsets of Vj (1≤ j ≤ d). If there is a stable sub-
sequence un∈Rr

(
(Aj)

d
j=1

)
with lim

n→∞
‖v − un‖ = inf

u∈Rr((Aj)dj=1)
‖v − u‖ , then

Problem (9.22) is solvable.

Proof. By Theorem 9.17, there is a subsequence such that un=
∑r

i=1

⊗d
j=1u

(j)
i,n ⇀

u ∈ Rr with u =
∑r

i=1

⊗d
j=1u

(j)
i and u

(j)
i,n ⇀ u

(j)
i satisfying ‖v − u‖ =

infw∈Rr((Aj)dj=1)
‖v −w‖. Since u(j)i,n ∈ Aj and Aj is weakly closed, u(j)i ∈ Aj

follows, proving u ∈ Rr
(
(Aj)

d
j=1

)
. ��

In §7.7, the first two examples of Aj are the subset {v ∈ Vj : v ≥ 0} of non-
negative vectors (Vj = R

nj) or functions (Vj = Lp). Standard norms like the �p

norm (cf. (4.3)) have the property

‖v + w‖Vj
≥ ‖v‖Vj

for all v, w ∈ Aj (1 ≤ j ≤ d) . (9.23a)

268 9 r-Term Approximation

Furthermore, these examples satisfy Aj +Aj ⊂ Aj , i.e.,

v, w ∈ Aj ⇒ v + w ∈ Aj (1 ≤ j ≤ d) . (9.23b)

Remark 9.24. Conditions (9.23a,b) imply the stability estimate κ(v, r) ≤ r, pro-
vided that in definition (9.12b) the vectors v(j)i are restricted to Aj . Hence, any
sequence vn∈Rr

(
(Aj)

d
j=1

)
is stable and Lemma 9.23 can be applied.

For matrix spaces Vj = C
nj×nj equipped with the spectral or Frobenius norm,

Aj = {M ∈ Vj : M positive semidefinite} also satisfies conditions (9.23a,b). The
set Aj = {M ∈ Vj : M Hermitean} is a negative example for (9.23a,b). Indeed,
(9.10) with v(j), w(j) ∈ Aj is an example for an unstable sequence.

The subset Aj = {M ∈ Vj :M positive definite} is not closed, hence the min-
imiser of Problem (9.22) is expected in Rr

(
(Aj)

d
j=1

)
instead of Rr

(
(Aj)

d
j=1

)
.

Nevertheless, the following problem has a minimiser inR1

(
(Aj)

d
j=1

)
.

Exercise 9.25. For Vj = C
nj×nj equipped with the spectral or Frobenius norm,

M ∈
⊗d

j=1 Vj positive definite and Aj = {M ∈ Vj : M positive definite},

inf
{∥
∥
∥M−

d⊗

j=1

M (j)
∥
∥
∥ :M (j)∈Aj

}
is attained by some

d⊗

j=1

M (j) with M (j)∈Aj .

9.7 Analytical Approaches for the r-Term Approximation

The previous approximation methods are black box-like techniques which are appli-
cable for any tensor. On the other side, for very particular tensors (e.g., multivariate
functions) there are special analytical tools which yield an r-term approximation.
Differently from the approaches above, the approximation error can be described
in dependence on the parameter r. Often, the error is estimated with respect to the
supremum norm ‖·‖∞, whereas the standard norm11 considered above is �2 or L2.

Analytical approaches will also be considered for the approximation in tensor
subspace format. Since Rr = T(r,r) for dimension d = 2, these approaches from
§10.4 can also be interesting for the r-term format.

Note that analytically derived approximations can serve two different purposes:

1. Constructive approximation. Most of the following techniques are suited for
practical use. Such applications are described, e.g., in §9.7.2.5 and §9.7.2.6.

2. Theoretical complexity estimates. A fundamental question concerning the use of
the formatsRr or Tr is, how the best approximation error ε(v, r) from (9.2) de-
pends on r. Any explicit error estimate of a particular (analytical) approximation
yields an upper bound of ε(v, r). Under the conditions of this section, we shall
obtain exponential convergence, i.e., ε(v, r) ≤ O(exp(−crα) with c, α > 0 is
valid for the considered tensors v.

11 The optimisation problems from §9.5.2 and §9.5.4 can also be formulated for the �p norm with
large, even p, which, however, would not make the task easier.

9.7 Analytical Approaches for the r-Term Approximation 269

Objects of approximation are not only tensors of vector type, but also matrices
described by Kronecker products. Early papers of such kind are [92], [88, 89].

9.7.1 Quadrature

Let Vj be Banach spaces of functions defined on Ij ⊂R, and V= ‖·‖
⊗d

j=1Vj the
space of multivariate functions on I :=×d

j=1 Ij . Assume that f ∈V has an integral
representation

f(x1, . . . , xd) =

∫

Ω

g(ω)

d∏

j=1

fj(xj , ω) dω for xj ∈ Ij , (9.24)

whereΩ is some parameter domain, such that the functions fj are defined on Ij×Ω.
For fixed ω, the integrand is an elementary tensor

⊗d
j=1 fj(·, ω) ∈ V. Since the

integral
∫
Ω

is a limit of Riemann sums
∑r
i=1 . . . ∈ Rr , f is a topological tensor. A

particular example of the right-hand side in (9.24) is the Fourier integral transform
of g(ω) = g(ω1, . . . , ωd):

∫

Rd

g(ω) exp

(

i

d∑

j=1

xjωj

)

dω.

A quadrature method for
∫
Ω G(ω) dω is characterised by a sum

∑r
i=1 γiG(ωi)

with quadrature weights (γi)
r
i=1 and quadrature points (ωi)

r
i=1. Applying such a

quadrature method to (9.24), we get the r-term approximation

fr ∈ Rr with fr(x1, . . . , xd) :=

r∑

i=1

γi g(ωi)

d∏

j=1

fj(xj , ωi). (9.25)

Usually, there is a family of quadrature rules for all r ∈ N,which leads to a sequence
(fr)r∈N of approximations. Under suitable smoothness conditions on the integrand
of (9.24), one may try to derive error estimates of ‖f − fr‖ . An interesting question
concerns the (asymptotic) convergence speed ‖f − fr‖ → 0.

There is a connection to §9.6 and the subset Aj of non-negative functions.
Assume that the integrand in (9.24) is non-negative. Many quadrature method (like
the Gauss quadrature) have positive weights: γi > 0. Under this condition, also the
terms in (9.25) are non-negative, i.e., fr ∈ Rr

(
(Aj)

d
j=1

)
.

So far, only the general setting is described. The concrete example of the sinc
quadrature will follow in §9.7.2.2.

The described technique is not restricted to standard functions. Many of the
tensors of finite dimensional tensor spaces can be considered as grid functions, i.e.,
as functions with arguments x1, . . . , xd restricted to a grid ×d

j=1Gj , #Gj <∞.
This fact does not influence the approach. If the error ‖f − fr‖ is the supremum
norm of the associated function space, the restriction of the function to a grid is
bounded by the same quantity.

270 9 r-Term Approximation

9.7.2 Approximation by Exponential Sums

Below we shall focus to the (best) approximation with respect to the supremum
norm ‖·‖∞. Optimisation with respect to the �2 norm is, e.g., considered by Golub-
Pereyra [68]. However, in Proposition 9.31 ‖·‖∞ estimates will be needed, while
�2 norm estimates are insufficient.

9.7.2.1 General Setting

For scalar-valued functions defined on a set D, we denote the supremum norm by

‖f‖D,∞ := sup{|f(x)| : x ∈ D}. (9.26)

If the reference to D is obvious from the context, we also write ‖·‖∞ instead.

Exponential sums are of the form

Er(t) =

r∑

ν=1

aν exp(−ανt) (t ∈ R) (9.27a)

with 2r (real or complex) parameters aν and αν . Exponential sums are a tool to
approximate certain univariate functions (details about their computation in §9.7.2
and §9.7.2.3).

Assume that a univariate function f in an interval I ⊂ R is approximated by
some exponential sum Er with respect to the supremum norm in I:

‖f − Er‖I,∞ ≤ ε (9.27b)

(we expect an exponential decay of ε = εr with respect to r; cf. Theorem 9.29).
Then the multivariate function

F (x) = F (x1, . . . , xd) := f

(
d∑

j=1

φj(xj)

)

(9.27c)

obtained by the substitution t =
∑d
j=1 φj(xj), is approximated equally well by

Fr(x) := Er
(∑d

j=1 φj(xj)
)
:

‖F − Fr‖I,∞ ≤ ε for I :=
d×
i=1

Ij , (9.27d)

provided that

{
d∑

j=1

φj(xj) : xj ∈ Ij

}

⊂ I with I from (9.27b). (9.27e)

9.7 Analytical Approaches for the r-Term Approximation 271

For instance, condition (9.27e) holds for φj(xj) = xj and Ij = I = [0,∞).
By the property of the exponential function, we have

Fr(x) := Er

(
d∑

j=1

φj(xj)

)

=

r∑

ν=1

aν exp

(

− αν
d∑

j=1

φj(xj)

)

(9.27f)

=

r∑

ν=1

aν

d∏

j=1

exp (−ανφj(xj)) .

Expressing the multivariate function Er as a tensor product of univariate functions,
we arrive at

Fr =
r∑

ν=1

aν

d⊗

j=1

E(j)
ν ∈ Rr with E(j)

ν (xj) := exp (−ανφj(xj)) , (9.27g)

i.e., (9.27g) is an r-term representation of the tensor Fr ∈ C(I)= ∞
⊗d

j=1 C(Ij) ,
where the left suffix∞ indicates the completion with respect to the supremum norm
in I ⊂ R

d. A simple, but important observation is the following conclusion, which
shows that the analysis of the univariate function f and its approximation by Er is
sufficient.

Conclusion 9.26. The multivariate function Fr(x) has tensor rank r independently
of the dimension d. Also the approximation error (9.27d) is independent of the
dimension d, provided that (9.27b) and (9.27e) are valid.

Approximations by sums of Gaussians,Gr(ξ) =
∑r

ν=1 aνe
−ανξ

2

, are equivalent
to the previous exponential sums via Er(t) := Gr(

√
t) =

∑r
ν=1 aνe

−ανt.

A particular, but important substitution of the form considered in (9.27c) is
t = ‖x‖2 leading to

Fr(x) := Er

(√
∑d

j=1
x2j

)

=

r∑

ν=1

aν exp

(

− αν
d∑

j=1

x2j

)

=

r∑

ν=1

aν

d∏

j=1

e−ανx
2
j ,

i.e., Fr =

r∑

ν=1

aν

d⊗

j=1

G(j)
ν with G(j)

ν (xj) := exp
(
−ανx2j

)
. (9.28)

Inequality (9.27b) implies

‖F − Fr‖D,∞ ≤ ε with D :=
{
x ∈ R

d : ‖x‖ ∈ I
}
.

Remark 9.27. In the applications from above we make use of the fact that estimates
with respect to the supremum norm are invariant under substitutions. When we
consider an Lp norm (1 ≤ p <∞) instead of the supremum norm, the relation
between the one-dimensional error bound (9.27b) and the multi-dimensional one
in (9.27d) is more involved and depends on d.

272 9 r-Term Approximation

9.7.2.2 Quadrature Based Exponential Sum Approximations

Approximations by exponential sums may be based on quadrature methods12.
Assume that a function f with domain I ⊂ R is defined by the Laplace transform

f(x) =

∫ ∞

0

e−txg(t)dt for x ∈ I.

Any quadrature methodQ(F) :=
∑r

ν=1 ωνF (tν) for a suitable integrandF defined
on [0,∞) yields an exponential sum of the form (9.27a):

f(x) ≈ Q(e−•xg) :=
r∑

ν=1

ωνg(tν)
︸ ︷︷ ︸

=:aν

e−tνx ∈ Rr .

Note that the quadrature error f(x)−Q(e−•xg) is to be controlled for all parameter
values x ∈ I.

A possible choice of Q is the sinc quadrature. For this purpose one chooses a
suitable substitution t = ϕ(τ) with ϕ : R→ [0,∞) to obtain

f(x) =

∫ ∞

−∞
e−ϕ(τ)x g(ϕ(τ))ϕ′(τ) dτ.

The sinc quadrature can be applied to analytic functions defined on R:

∫ ∞

−∞
F (x)dx ≈ T (F, h) := h

∞∑

k=−∞
F (kh) ≈ TN(F, h) := h

N∑

k=−N
F (kh).

T (F, h) can be interpreted as the infinite trapezoidal rule with step size h, while
TN(F, h) is a truncated finite sum. In fact, T (F, h) and TN(F, h) are interpolatory
quadratures, i.e., they are exact integrals

∫
R
C(f, h)(t)dt and

∫
R
CN (f, h)(t)dt

involving the sinc interpolationsC(f, h) and CN (f, h) defined in (10.37a,b).
The error analysis of T (F, h) depends on the behaviour of the holomorphic

function F (z) in the complex strip Dδ defined in (10.38) and the norm (10.39).
A typical error bound is of the form C1 exp(−

√
2πδαN) with C1 = C1(‖F‖Dδ

)
and δ from (10.38), while α describes the decay of F : |F (x)| ≤ O(exp(−α |x|).
For a precise analysis see Stenger [177] and Hackbusch [86, §D.4]. Sinc quadrature
applied to F (t) = F (t;x) := e−ϕ(t)x g(ϕ(t))ϕ′(t) yields

TN(F, h) := h

N∑

k=−N
e−ϕ(kh)x g(ϕ(kh))ϕ′(kh).

The right-hand side is an exponential sum (9.27a) with r := 2N+1 and coefficients
aν :=h g

(
ϕ((ν − 1−N)h)

)
ϕ′
(
(ν − 1−N)h

)
, αν :=ϕ

(
(ν − 1−N)h

)
. Since

12 Quadrature based approximation are very common in computational quantum chemistry. For a
discussion from the mathematical side compare Beylkin-Monzón [18].

9.7 Analytical Approaches for the r-Term Approximation 273

the integrand F (•;x) depends on the parameter x ∈ I, the error analysis must be
performed uniformly in x ∈ I to prove an estimate (9.27b): ‖f − Er‖I,∞ ≤ ε.

Even if the obtainable error bounds possess an almost optimal asymptotic
behaviour, they are inferior to the best approximations discussed next.

9.7.2.3 Approximation of 1/x and 1/
√
x

Negative powers x−λ belong to the class of those functions which can be well
approximated by exponential sums in (0,∞). Because of their importance, we shall
consider the particular functions 1/x and 1/

√
x. For the general theory of approx-

imation by exponentials we refer to Braess [25]. The first statement concerns the
existence of a best approximation and stability of the approximation expressed by
positivity of its terms.

Theorem 9.28 ([25, p. 194]). Given the function f(x) = x−λ with λ > 0 in an
interval I = [a, b] (including b =∞) with a > 0, and r ∈ N, there is a unique best
approximation Er,I(x) =

∑r
ν=1 aν,I exp(−αν,Ix) such that

ε(f, I, r) := ‖f − Er,I‖I,∞ = inf

{∥
∥
∥
∥f−

r∑

ν=1

bνe
−βνx

∥
∥
∥
∥
I,∞

: bν , βν ∈ R

}

. (9.29)

Moreover, this Er,I has positive coefficients: aν , αν > 0 for 1 ≤ ν ≤ r.

In the case of f(x) = 1/x, substitution x = at (1 ≤ t ≤ b/a) shows that the best
approximation for I = [a, b] can be derived from the best approximation in [1, b/a]
via the transform

aν,[a,b] :=
aν,[1,b/a]

a
, αν,[a,b] :=

αν,[1,b/a]

a
, ε(f, [a, b], r) =

ε(f, [1, b/a], r)

a
.

(9.30a)

In the case of f(x) = 1/
√
x, the relations are

aν,[a,b] =
aν,[1,b/a]√

a
, αν,[a,b] =

αν,[1,b/a]
a

, ε(f, [a, b], r) =
ε(f, [1, b/a], r)√

a
.

(9.30b)

Therefore, it suffices to study the best approximation on standardised intervals [1, R]
for R ∈ (1,∞). The reference [84] points to a web page containing the coefficients
{aν , αν : 1 ≤ ν ≤ r} for various values of R and r.

Concerning convergence, we first consider a fixed interval [1, R] = [1, 10]. The
error ‖1/x− Er,[1,10]‖[1,10],∞ is shown below:

r = 1 2 3 4 5 6 7

8.55610-2 8.75210-3 7.14510-4 5.57710-5 4.24310-6 3.17310-7 2.34410-8

One observes an exponential decay like O(exp(−cr)) with c > 0.

274 9 r-Term Approximation

If R varies from 1 to ∞, there is a certain finite value R∗ = R∗r depending on
r, such that ε(f, [1, R], r) as a function of R strictly increases in [1, R∗], whereas
the approximant Er,[1,R] as well as the error ε(f, [1, R], r) is constant in [R∗,∞).
This implies that the approximation Er,[1,R∗] is already the best approximation in
the semi-infinite interval [1,∞). The next table shows R∗r and ε(1/x, [1, R∗r], r) =
ε(1/x, [1,∞), r):

r 9 16 25 36 49
R∗r 28387 2.02710+6 1.51310+8 1.16210+10 9.07410+11

ε(1x , [1,∞), r) 2.61110-5 3.65910-7 4.89810-9 6.38210-11 8.17210-13

25 exp
(
−π
√
2r
)

4.06810-5 4.78510-7 5.62810-9 6.61910-11 7.78610-13

Here, the accuracy behaves like the function 25 exp
(
−π
√
2r
)

given for compari-
son. The behaviour of f(x) = 1/

√
x is quite similar:

r 9 16 25 36 49
R∗r 7.99410+6 4.12910+9 2.1710+12 1.1510+15 6.1010+17

ε(1/
√
x, [1,∞), r) 3.07210-4 1.35210-5 5.89810-7 2.56410-8 1.11610-9

4 exp (−π
√
r) 3.22810-4 1.39510-5 6.02810-7 2.60510-8 1.12610-9

The observed asymptotic decay from the last row of the table is better than the upper
bound in the next theorem.

Theorem 9.29. Let f(x) = x−λ with λ > 0. The asymptotic behaviour of the error
ε(f, I, r) is

ε(f, I, r) ≤
{
C exp(−cr) for a finite positive interval I = [a, b] ⊂ (0,∞) ,
C exp(−c

√
r) for a semi-infinite interval I = [a,∞), a > 0,

where the constants C, c > 0 depend on I . For instance, for λ = 1/2 and a = 1,
upper bounds are

ε(1/
√
x, [1, R], r) ≤ 8

√
2 exp

(
−π2r/

√
log(8R)

)
,

ε(1/
√
x, [1,∞), r) ≤ 8

√
2 exp

(
−π

√
r/2

)
.

For general a > 0 use (9.30a,b).

Proof. Details about the constants can be found in Braess-Hackbusch [27], [28].
The latter estimates can be found in [28, Eqs. (33), (34)]. ��

Best approximations with respect to the supremum norm can be performed by
the Remez algorithm (cf. Remez [162]). For details of the implementation in the
case of exponential sums see [84, §7] and [28, §7].

9.7 Analytical Approaches for the r-Term Approximation 275

9.7.2.4 Other Exponential Sums

Another well-known type of exponential sums are trigonometric series. A periodic
function in [0, 2π] has the representation f(x) =

∑
ν∈Z aνe

iνx. The coefficients aν
decay the faster the smoother the function is. In that case, fn(x) =

∑
|ν|≤n aνe

iνx

yields a good approximation. fn is of the form (9.27a) with imaginary coefficients
αν := iν.

Besides real coefficients αν like in Theorem 9.28 and imaginary ones as above,
also complex coefficients with positive real part appear in applications. An impor-
tant example is the Bessel function J0, which is approximated by exponential sums
in Beylkin-Monzón [17].

9.7.2.5 Application to Multivariate Functions

9.7.2.5.1 Multivariate Functions Derived from 1/x

We start with an application for f(x) = 1/x. Let fj ∈ C(Dj) (1 ≤ j ≤ d) be
functions with values in Ij ⊂ (0,∞). Set

I :=

d∑

j=1

Ij =

{
d∑

j=1

yj : yj ∈ Ij

}

= [a, b],

possibly with b =∞. Choose an optimal exponential sumEr for 1
x on13 I with error

bound ε(1x , I, r). As in the construction (9.27c), we obtain a best approximation of

F (x) = F (x1, . . . , xd) := 1/
∑d
j=1 fj(xj) by

∥
∥
∥
∥

1
∑d
j=1 fj(xj)

−
r∑

ν=1

aν,I

d∏

j=1

exp
(
− αν,I fj(xj)

)
∥
∥
∥
∥
I,∞
≤ ε(1x , I, r),

i.e., ‖F − Fr‖I,∞ ≤ ε(1x , I, r) with Fr :=
∑r

ν=1 aν,I
⊗d

j=1 E
(j)
ν ∈ Rr, where

E
(j)
ν = exp(−αν,I fj(·)).
Since aν,I > 0 (cf. Theorem 9.28), the functions E(j)

ν belong to the class Aj of
positive functions. In the notation of §7.7, Fr∈Rr

(
(Aj)

d
j=1

)
is valid (cf. §9.6).

In quantum chemistry, a so-called MP2 energy denominator 1
εa+εb−εi−εj

appears, where εa, εb> 0 and εi, εj < 0 (more than four energies ε• are possible).
The denominator is contained in [A,B] with A := 2 (εLUMO − εHOMO) > 0 being
related to the HOMO-LUMO gap, while B := 2 (εmax − εmin) involves the maxi-
mal and minimal orbital energies (cf. [181]). Further computations are significantly
accelerated, if the dependencies of εa, εb, εi, εj can be separated. For this purpose,
the optimal exponential sum Er for 1

x on [A,B] can be used:

1

εa + εb − εi − εj
≈

r∑

ν=1

aν,Iν e
−ανεa · e−ανεb · eανεi · eανεj ∈ Rr, (9.31)

13 For a larger interval I ′, Er yields a (non-optimal) error bound with ε(1
x
, I ′, r).

276 9 r-Term Approximation

where the error can be uniformly estimated by ε(1x , [A,B], r).
In quantum chemistry, the usual derivation of the exponential sum approximation

starts from the Laplace transform 1
x =

∫∞
0

exp(−tx)dt and applies certain quadra-
ture methods as described in §9.7.2.2 (cf. Almlöf [2]). However, in this setting it
is hard to describe how the best quadrature rule should be chosen. Note that the
integrand exp(−tx) is parameter dependent.

9.7.2.5.2 Multivariate Functions Derived from 1/
√
x

The function

P(x) :=
1

‖x‖ =
1

∥
∥
∥
∑3
j=1 x

2
j

∥
∥
∥

for x ∈ R
3

is called Newton potential, if gravity is described, and Coulomb potential in connec-
tion with an electrical field. Mathematically, 4πP is the singularity function of the
Laplace operator

Δ =
d∑

j=1

∂2

∂x2j
(9.32)

for d = 3 (cf. [82, §2.2]). Usually, it appears in a convolution integral P � f .
If f is the mass [charge] density,

4π

∫

R3

f(y)

‖x− y‖dy = 4π (P � f) (x)

describes the gravitational [electrical] field.
Obviously, it is impossible to approximate P uniformly on the whole R

3 by
exponential sums. Instead, we choose some η > 0 which will be fixed in Lemma
9.30. Take an optimal approximation Er of 1/

√
t on I := [η2,∞). Following the

strategy from (9.28), we substitute t = ‖x‖2 =
∑3

j=1 x
2
j and obtain

Er(‖x‖2) =
r∑

ν=1

aν,I

3∏

j=1

exp(−αν,I x2j),

i.e., Er,[η2,∞)(‖·‖2) =
∑r

ν=1 aν,I
⊗3

j=1 E
(j)
ν ∈ Rr with E(j)

ν (ξ) = e−αν,I ξ
2

. The
uniform estimate

∣
∣
∣P(x)− Er,[η2,∞)(‖x‖2)

∣
∣
∣ ≤ ε(1√

· , [η
2,∞), r) =

ε

η

{
for η ≤ ‖x‖ <∞ and
ε := ε(1√

· , [1,∞), r)

excludes the neighbourhood Uη := {x ∈ R
3 : ‖x‖ ≤ η} of the singularity. Here,

we use
∣
∣
∣P(x)− Er,[η2,∞)(‖x‖2)

∣
∣
∣ ≤ P(x) for x ∈ Uη and

∫

Uη

P(x)dx = 2πη2.

9.7 Analytical Approaches for the r-Term Approximation 277

Lemma 9.30. Assume ‖f‖L1(R3) ≤ C1 and ‖f‖L∞(R3) ≤ C∞ set. Then
∣
∣
∣
∣

∫

R3

f(y)

‖x− y‖dy −
∫

R3

Er(‖x− y‖2)f(y)dy
∣
∣
∣
∣ ≤ 2πη2C∞ +

ε

η
C1

holds with ε := ε(1√
· , [1,∞), r) for all x ∈ R

3. The error bound is minimised for

η = 3

√
C1ε

4πC∞
:

∥
∥
∥
∥

∫

R3

f(y)

‖x− y‖dy −
∫

R3

Er(‖x− y‖2)f(y)dy
∥
∥
∥
∥
R3,∞

≤ 3
22

2
3 3
√
π

︸ ︷︷ ︸
=3.4873

3

√
C2

1C∞ ε
2
3 .

Inserting the asymptotic behaviour ε=8
√
2 exp(−π

√
r/2) from Theorem 9.29,

we obtain a bound of the same form C exp(−c
√
r) with c=

√
2π/3. The observed

behaviour is better: O(exp(− 2π
3

√
r). We conclude from Lemma 9.30 that the con-

volution P � f may be replaced by the convolutionEr(‖·‖2) � f , while the accuracy
is still exponentially improving.

In the following, we assume for simplicity that f is an elementary tensor:

f(y) = f1(y1) · f2(y2) · f3(y3).

As seen in (4.75c), the convolution with Er(‖x− y‖2) can be reduced to three
one-dimensional convolutions:

∫

R3

f(y)

‖x− y‖dy ≈
∫

R3

Er(‖x− y‖2)f(y)dy

=

r∑

ν=1

aν,I

3∏

j=1

∫

R

exp(−αν,I (xj − yj)2)fj(yj)dyj .

Numerical examples related to integral operators involving the Newton potential
can be found in [90].

9.7.2.6 Application to Operators

Functions of matrices and operators are discussed in §4.6.6. Now we consider the
situation of two functions f and f̃ applied to a matrix of the form UDUH, where f̃
is considered as approximation of f .

Proposition 9.31. LetM = UDUH (U unitary,D diagonal) and assume that f and
f̃ are defined on the spectrum σ(M). Then the approximation error with respect to
the spectral norm ‖·‖2 is bounded by

‖f(M)− f̃(M)‖2 ≤ ‖f − f̃‖σ(M),∞. (9.33)

The estimate extends to selfadjoint operators. For diagonalisable matrices M =
TDT−1, the right-hand side becomes ‖T ‖2 ‖T−1‖2‖f − f̃‖σ(M),∞.

278 9 r-Term Approximation

Proof. Since f(M)− f̃(M) = Uf(D)UH −Uf̃(D)UH = U [f(D)− f̃(D)]UH

and unitary transformations do not change the spectral norm, ‖f(M)− f̃(M)‖2 =
‖f(D)−f̃(D)‖2 = max{|f(λ)−f̃(λ)| : λ ∈ σ(M)} = ‖f−f̃‖σ(M),∞ follows. ��

The supremum norm on the right-hand side in (9.33) cannot be relaxed to an Lp

norm with p < ∞. This fact makes the construction of best approximations with
respect to the supremum norm so important.

Under stronger conditions on f and f̃ , general operators M ∈ L(V, V) can be
admitted (cf. [86, Satz 13.2.4]).

Proposition 9.32. Let f and f̃ be holomorphic in a complex domain Ω containing
σ(M) for some operator M ∈ L(V, V). Then

‖f(M)− f̃(M)‖2 ≤
1

2π

∮

∂Ω

|f(ζ)− f̃(ζ)| ‖(ζI −M)−1‖2 dζ.

Proof. Use the representation (4.77a). ��

Quite another question is, how f(M) behaves under perturbations of M . Here,
the following result for Hölder continuous f is of interest.

Theorem 9.33 ([1]). Let f ∈Cα(R) with α∈ (0, 1), i.e., |f(x)−f(y)|≤C |x−y|α
for x, y ∈ R. Then symmetric matrices (or general selfadjoint operators) M ′ and
M ′′ satisfy the analogous inequality ‖f(M ′)− f(M ′′)‖ ≤ C′‖M ′ −M ′′‖α.

The corresponding statement for Lipschitz continuous f (i.e., for α=1) is wrong,
but generalisations to functions of the Hölder-Zygmund class are possible (cf. [1]).

The inverse of M can be considered as the application of the function f(x) =
1/x to M, i.e., f(M)=M−1. Assume that M is Hermitean (selfadjoint) and has a
positive spectrum σ(M) ⊂ [a, b] ⊂ (0,∞]. As approximation f̃ we choose the best
exponential sum Er,I(x) =

∑r
ν=1 aν,I exp(−αν,Ix) on I, where I ⊃ [a, b]. Then

Er,I(M) =
∑r

ν=1
aν,I exp(−αν,IM) (9.34)

approximatesM−1 exponentially well:

‖f(M)− f̃(M)‖2 ≤ ε(1x , I, r). (9.35)

The approximation ofM−1 seems to be rather impractical, since matrix exponen-
tials exp(−tνM) have to be evaluated. The interesting applications, however, are
matrices which are sums of certain Kronecker products. We recall Lemma 4.139b:

M =
d∑

j=1

I ⊗ · · · ⊗M (j) ⊗ · · · ⊗ I ∈ Rd, M (j) ∈ K
Ij×Ij (9.36)

(factor M (j) at j-th position) has the exponential

exp(M) =
d⊗

j=1

exp(M (j)). (9.37)

9.7 Analytical Approaches for the r-Term Approximation 279

Let M (j) be positive definite with extreme eigenvalues 0 < λ
(j)
min ≤ λ

(j)
max for

1≤ j≤d. Since the spectrum of M is the sum
∑d
j=1λ

(j) of all λ(j)∈σ(M (j)), the

interval [a, b] containing the spectrum σ(M) is given by a :=
∑d
j=1 λ

(j)
min > 0 and

b :=
∑d

j=1 λ
(j)
max. In the case of an unbounded selfadjoint operator, b =∞ holds.

These preparations lead us to the following statement, which is often used for the
case M (j)=I.

Proposition 9.34. Let M (j), A(j) ∈ K
Ij×Ij be positive definite matrices with λ(j)min

and λ
(j)
max being the extreme eigenvalues of the generalised eigenvalue problem

A(j)x = λM (j)x and set

A =A(1) ⊗M (2) ⊗ . . .⊗M (d) +M (1) ⊗A(2) ⊗ . . .⊗M (d) + . . . (9.38a)

+M (1) ⊗ . . .⊗M (d−1) ⊗A(d).

Then A−1 can be approximated by

B :=

[
r∑

ν=1

aν,I

d⊗

j=1

exp
(
−αν,I

(
M (j)

)−1
A(j)

)
]

·
[

d⊗

j=1

(
M (j)

)−1
]

. (9.38b)

The error is given by
∥
∥A−1 −B

∥
∥
2
≤ ε(1x , [a, b], r)

∥
∥M−1

∥
∥
2

(9.38c)

with M =
⊗d

j=1M
(j), a :=

∑d
j=1 λ

(j)
min, and b :=

∑d
j=1 λ

(j)
max.

Proof. Write A = M1/2 · Â ·M1/2 with Â = Â(1) ⊗ I . . . ⊗ I + . . . , where
Â(j) := (M (j))−1/2A(j)(M (j))−1/2. Note that λ(j)min and λ

(j)
max are the extreme

eigenvalues of Â(j). Apply (9.35) to Â instead of M. For exp(−αν,IÂ) appearing
in B̂ := Er,I(Â) (cf. (9.34)) use the representation (9.37) with the error estimate
‖Â−1 − B̂‖2 ≤ ε(1x , [a, b], r). Note that B = M−1/2 · Er,I(Â) ·M−1/2. Hence,
‖A−1−B‖2 = ‖M−1/2 · [Â−1−Er,I(Â)] ·M−1/2‖2 ≤ ‖Â−1− B̂‖2‖M−1/2‖22.
The identity ‖M−1/2‖22 = ‖M−12 ‖ completes the proof. ��

It remains to compute the exponentials of −αν,I
(
M (j)

)−1
A(j). As described in

[86, §13.3.1] and [66], the hierarchical matrix technique allows us to approximate
exp

(
−αν,I(M (j))−1A(j)

)
with a cost almost linear in #Ij . The total number of

arithmetical operations is O
(
r
∑d

j=1 #Ij log
∗#Ij

)
. For #Ij =n (1≤j≤d) , this

expression is O(rdn log∗ n) and depends only linearly on d. For identical A(j) =
A(k), M (j)=M (k) (1≤j, k≤d), the cost O(rdn log∗ n) reduces to O(rn log∗ n).

Proposition 9.34 can in particular be applied to the Laplace operator and its dis-
cretisations as detailed below.

Remark 9.35. (a) The negative Laplace operator (9.32) in14 H1
0 ([0, 1]

d) has the

d-term format (9.38a) with M (j)= id, A(j)=−∂2/∂x2j and λ(j)min=π
2, λ

(j)
max=∞.

14 The reference to H1
0([0, 1]

d) means that zero Dirichlet values are prescribed on the boundary.

280 9 r-Term Approximation

(b) If we discretise by a finite difference scheme in an equidistant grid of step size
1/n,A(j) is the tridiagonal matrix15 n−2 ·tridiag{−1, 2,−1},whileM (j)=I . The
extreme eigenvalues are λ(j)min=4n2 sin2(π2n) ≈ π2, λ

(j)
max=4n2 cos2(π2n) ≈ 4n2.

(c) A finite element discretisation with piecewise linear elements in the same grid
leads to the same16 matrixA(j), butM (j) is the mass matrix tridiag{1/6, 2/3, 1/6}.

This approach to the inverse allows to treat cases with large n and d. Grasedyck
[72] presents examples with n = 1024 and d ≈ 1000. Note that in this case the
matrix is of size A−1 ∈ R

M×M with M ≈ 103000.

The approximation method can be extended to separable differential operators in
tensor domains D=×d

j=1Dj with appropriate spectra.

Definition 9.36. A differential operatorL is called separable ifL=
∑d
j=1Lj andLj

contains only derivatives with respect to xj and has coefficients which only depend
on xj .

So far, we have applied the exponential sum Er ≈ 1/x. Analogous statements
can be made about the application of Er ≈ 1/

√
x. Then r-term approximations of

A−1/2 can be computed.

9.7.3 Sparse Grids

The mixed Sobolev space H2,p
mix([0, 1]

d) for 2 ≤ p ≤ ∞ is the completion of

a⊗dH2,p([0, 1])with respect to the norm ‖f‖2,p,mix=
(∑

‖ν‖∞≤2
∫
|Dνf(x)|p

)1/p

for p <∞ and the obvious modification for p =∞.

The approximation properties of sparse grids can be used to estimate ε(v, r)
from (9.2) with respect to the Lp norm of V = ‖·‖p⊗

d Lp([0, 1]) .

Remark 9.37. For v ∈ H2,p
mix([0, 1]

d), the quantity ε(v, r) equals

ε(v, r) = inf
{
‖v − u‖p : u ∈ Rr(V)

}
≤ O

(
r−2 log3(d−1)(log r)

)
.

Proof. Vsg,� is defined in (7.18). Note that the completion of
⋃
�∈N Vsg,� yields

V. Consider r = dim(Vsg,�) ≈ 2� logd−1(�) (cf. [29, (3.63)]). The interpolant
u ∈ Vsg,� of v satisfies ‖v − u‖p ≤ O(2−2� logd−1(�)) (cf. [29, Theorem 3.8]).
The inequality

2−2� logd−1(�) ≤ r−2 log3(d−1)(�) ≤ O(r−2 log3(d−1)(log r))

proves the assertion. ��

15 In this case, a cheap, exact evaluation of exp(A(j)) can be obtained by diagonalisation of A(j).
16 In fact, both matrices are to be scaled by a factor 1/n.

Chapter 10
Tensor Subspace Approximation

Abstract The exact representation of v ∈ V =
⊗d

j=1 Vj by a tensor subspace
representation (8.6b) may be too expensive because of the high dimensions of the
involved subspaces or even impossible since v is a topological tensor admitting
no finite representation. In such cases we must be satisfied with an approximation
u ≈ v which is easier to handle. We require that u ∈ Tr, i.e., there are bases
{b(j)1 , . . . , b

(j)
rj } ⊂ Vj such that

u =
∑r1

i1=1
· · ·

∑rd

id=1
a[i1 · · · id]

⊗d

j=1
b
(j)
ij
. (10.1)

The basic task of this chapter is the following problem:

Given v ∈ V, find a suitable approximation u ∈ Tr ⊂ V, (10.2)

where r = (r1, . . . , rd) ∈ N
d. Findingu ∈ Tr means finding coefficients a[i1 · · · id]

as well as basis vectors b(j)i ∈ Vj in (10.1). Problem (10.2) is formulated rather
vaguely. If an accuracy ε > 0 is prescribed, r ∈ N

d as well as u ∈ Tr are to be
determined. The strict minimisation of ‖v − u‖ is often replaced by an appropriate
approximation u requiring low computational cost. Instead of ε > 0, we may
prescribe the rank vector r ∈ N

d in (10.2).
Optimal approximations (so-called ‘best approximations’) will be studied in Sect.
10.2. While best approximations require an iterative computation, quasi-optimal
approximations can be determined explicitly using the HOSVD basis introduced
in Sect. 8.3. The latter approach is explained in Sect. 10.1.

10.1 Truncation to Tr

The term ‘truncation’ (to Tr) is used here for a (nonlinear) map τ=τr :V→Tr with
quasi-optimality properties. Truncation should be seen as a cheaper alternative to
the best approximation, which will be discussed in §10.2. Below we describe such
truncations based on the higher order singular value decomposition (HOSVD) and
study the introduced truncation error.

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 10,
© Springer-Verlag Berlin Heidelberg 2012

281

282 10 Tensor Subspace Approximation

One of the advantages of the tensor subspace format is the constructive existence
of the higher order singular value decomposition (cf. §8.3). The related truncation is
described in §10.1.1, while §10.1.2 is devoted to the successive HOSVD projection.
Examples of HOSVD projections can be found in §10.1.3. A truncation starting
from an r-term representation is mentioned in §10.1.4.

Throughout this section, V is a Hilbert tensor space with induced scalar product.
Often, we assume Vj = K

Ij , where nj := #Ij denotes the dimension.

10.1.1 HOSVD Projection

The tensor to be approximated will be called v ∈ V, while the approximant is
denoted by u (possibly with further subscripts). The standard assumption is that v
is represented in tensor subspace format, i.e., v∈Ts for some s ∈ N

d
0, whereas the

approximant u∈Tr is sought for some1 r � s. If v∈V=
⊗d

j=1K
Ij is given in full

representation (cf. §7.2), it can be interpreted as v ∈ Ts with s := n = (n1, . . . , nd).
Optimal approximantsubest are a favourite subject in theory, but in applications2

one is often satisfied with quasi-optimal approximations. We say that u ∈ Tr is
quasi-optimal, if there is a constant C such that

‖v − u‖ ≤ C ‖v − ubest‖ . (10.3)

The following approach is based on the higher-order singular value decompo-
sition from §8.3. Therefore, the truncation is practically feasible if and only if the
higher-order singular value decomposition is available. In particular, the cost of the
HOSVD projection is identical to the cost of the HOSVD calculation discussed in
§8.3.3. Moreover, it requires a Hilbert space structure of V as mentioned above.

We recall that, given v ∈ V, the j-th HOSVD basis Bj = [b
(j)
1 · · · b

(j)
sj] (cf.

Definition 8.22) is a particular orthonormal basis of Umin
j (v), where each b

(j)
i is

associated with a singular value σ(j)
i . The basis vectors are ordered according to

σ
(j)
1 ≥ σ

(j)
2 ≥ . . . We use sj = dim(Umin

j (v)) instead of rj in Definition 8.22.
The following projectionsPj correspond to the SVD projections from Remark 2.31.

Lemma 10.1 (HOSVD projection). Let v∈V=‖·‖
⊗d

j=1Vj , where V is a Hilbert
tensor space. Let {b(j)i : 1 ≤ i ≤ sj} be the HOSVD basis of Umin

j (v). The j-th
HOSVD projection P HOSVD

j =P
(rj)
j,HOSVD corresponding to rj ≤ sj is the orthogonal

projection onto U
(rj)
j,HOSVD := span{b(j)i : 1 ≤ i ≤ rj}. Its explicit description is3

1 The notation r � s means that rj ≤ sj for all 1 ≤ j ≤ d, but rj < sj for at least one index j.
2 A prominent example is the Galerkin approximation technique, where the Lemma of Céa proves
that the Galerkin solution in a certain subspace is quasi-optimal compared with the best approxi-
mation in that subspace (cf. [82, Theorem 8.2.1]).
3 Note that P HOSVD

j and PHOSVD
r depend on the tensor v∈V whose singular vectors b(j)i enter their

definition. However, we avoid the notation P HOSVD
j (v) since this looks like the application of the

projection onto v.

10.1 Truncation to Tr 283

PHOSVD
j = P

(rj)
j,HOSVD =

rj∑

i=1

b
(j)
i b

(j)∗
i = B

(rj)
j

(
B

(rj)
j

)∗ ∈ L(Vj , Vj),

with B(rj)
j := [b

(j)
1 · · · b

(j)
rj] ∈ (Vj)

rj . The overall HOSVD projection PHOSVD
r is

the orthogonal projection onto the tensor subspace
⊗d

j=1U
HOSVD
j , described by

PHOSVD
r :=

d⊗

j=1

P
(rj)
j,HOSVD ∈ L(V,V) with r := (r1, . . . , rd) .

We repeat the HOSVD representation in the case of Vj = K
Ij with nj := #Ij .

The coefficient tensor a ∈ K
Ĵ of v uses the index sets Ĵj = {1, . . . , sj} with sj

from above, whereas the index set Jj = {1, . . . , rj} refers to rj ≤ sj .

Corollary 10.2. Let V =
⊗d

j=1K
Ij be endowed with the Euclidean scalar product.

The HOSVD representation of v ∈ V by v = ρHOSVD

(
a, (Bj)1≤j≤d

)
= Ba (cf.

(8.26)) is characterised by

B =

d⊗

j=1

Bj , Bj ∈ K
Ij×Ĵj , sj = #Ĵj := rank(Mj(a)), BH

j Bj = I,

Mj(a)Mj(a)
H = diag{σ(j)

1 , σ
(j)
2 , . . . , σ(j)

sj }, σ
(j)
1 ≥ σ

(j)
2 ≥ . . . ≥ σ(j)

sj > 0

(cf. Corollary 8.25 and (8.24) with sj instead of rj). For given rank vector r ∈Nd
with rj ≤ sj let B(rj)

j be the restriction of the matrix Bj to the first rj columns.

Then PHOSVD
r :=B(r)B(r)H with B(r) =

⊗d
j=1B

(rj)
j is the orthogonal projection

onto U
(r)
HOSVD =

⊗d
j=1U

(rj)
j,HOSVD with U (rj)

j,HOSVD = range{B(rj)
j }.

The first inequality in (10.4b) below is described by De Lathauwer et al. [41,
Property 10]. While this first inequality yields a concrete error estimate, the second
one in (10.4b) states quasi-optimality. The constant C =

√
d shows independence

of the dimensions r ≤ s ≤ n = (n1, . . . , nd) ∈ N
d.

Theorem 10.3. Let V =
⊗d

j=1K
Ij be endowed with the Euclidean scalar product.

Define the orthogonal projection PHOSVD
r and the singular values σ

(j)
i as in

Corollary 10.2. Then the HOSVD truncation is defined by

uHOSVD := PHOSVD
r v ∈ Tr. (10.4a)

This approximation is quasi-optimal:

‖v − uHOSVD‖ ≤

√
√
√
√

d∑

j=1

sj∑

i=rj+1

(
σ
(j)
i

)2
≤
√
d ‖v − ubest‖ , (10.4b)

where ubest ∈ Tr yields the minimal error (i.e., ‖v − ubest‖ = minu∈Tr ‖v − u‖).

284 10 Tensor Subspace Approximation

Proof (cf. [73]). We introduce the shorter notationsPj=P
(rj)
j,HOSVD, Uj=U

(rj)
j,HOSVD,

Bj = B
(rj)
j , and B = B(r).

Pj := I ⊗ . . .⊗ I ⊗BjBH
j ⊗ I ⊗ . . .⊗ I (10.5)

is the projection onto

V(j) := K
I1 ⊗ . . .⊗K

Ij−1 ⊗ Uj ⊗K
Ij+1 ⊗ . . .⊗K

Id .

Then the projection Pr = BBH =
⊗d

j=1BjB
H
j is the product

∏d
j=1Pj and yields

‖v − uHOSVD‖=‖(I −
∏d
j=1 Pj)v‖. Lemma 4.123b proves the estimate

‖v − uHOSVD‖2 ≤
d∑

j=1

‖(I − Pj)v‖2 .

The singular value decomposition of Mj(v) used in HOSVD implies that
(I−Pj)v is the best approximation of v in V(j) under the condition dim(Uj)=rj .
Error estimate (2.19c) implies ‖(I−Pj)v‖2 =

∑sj
i=rj+1(σ

(j)
i)2. Thereby, the first

inequality in (10.4b) is shown. The best approximation ubest belongs to

K
I1 ⊗ . . .⊗K

Ij−1 ⊗ Ũj ⊗K
Ij+1 ⊗ . . .⊗K

Id

with some subspace Ũj of dimension rj . Since (I−Pj)v is the best approximation
in this respect,

‖(I − Pj)v‖2 ≤ ‖v − ubest‖2 (10.6)

holds and proves the second inequality in (10.4b). ��

Corollary 10.4. If rj=sj (i.e., no reduction in the j-th direction), the sum
∑sj

i=rj+1

in (10.4b) vanishes and the bound
√
d can be improved by

√
#{j : rj < sj}.

Since uHOSVD ∈
⊗d

j=1U
min
j (v), the statements from the second part of Lemma

10.7 are still valid.

10.1.2 Successive HOSVD Projection

The algorithm behind Theorem 10.3 reads as follows: For all 1 ≤ j ≤ d compute
the left-sided singular value decomposition ofMj(v) in order to obtainBj and σ(j)

i

(1 ≤ i ≤ sj). After all data are computed, the projection PHOSVD
r is applied.

Instead, the projections can be applied sequentially, so that the result of the
previous projections is already taken into account. The projection P̃j from (10.7) is
again P (rj)

j,HOSVD, but referring to the singular value decomposition of the actual tensor
vj−1 (instead of v0 = v):

10.1 Truncation to Tr 285

Start v0 := v

Loop Perform the left-sided SVD ofMj(vj−1) yielding

j = 1 to d the basis Bj and the singular values σ̃(j)
i .

Let B̃j be the restriction of Bj to the first rj columns
and set P̃j := I ⊗ . . .⊗ I ⊗ B̃jB̃H

j ⊗ I ⊗ . . .⊗ I .
Define vj := P̃jvj−1.

Return ũHOSVD := vd.

(10.7)

The projection P̃j maps Vj onto some subspace Uj of dimension rj . Hence, vj
belongs to V(j) := U1 ⊗ . . .⊗ Uj ⊗ Vj+1 ⊗ . . .⊗ Vd . One advantage is that the
computation of the left-sided singular value decomposition ofMj(vj−1) is cheaper
than the computation for Mj(v), since dim(V(j)) ≤ dim(V). There is also an
argument, why this approach may yield better results. Let v1 := P HOSVD

1 v = P̃1v
(note that P HOSVD

1 = P̃1, where P HOSVD
j from Lemma 10.1 belongs to v) be the result

of the first step j = 1 of the loop. Projection P HOSVD
1 splits v into v1 + v⊥1 . If we

use the projection P HOSVD
2 from Theorem 10.3, the singular values σ(2)

i select the

basis B̂j . The singular value σ(2)
i corresponds to the norm of4 b

(2)
i b

(2)H
i v, but what

really matters is the size of b(2)i b
(2)H
i v1,which is the singular value σ̃(2)

i computed in
(10.7) from v1. This proves that the projection P̃2 yields a better result than P HOSVD

2

from Theorem 10.3, i.e., ‖v − v2‖ = ‖v− P̃2P̃1v‖ ≤ ‖v − P HOSVD
2 P HOSVD

1 v‖.
One can prove an estimate corresponding to the first inequality in (10.4b), but

now (10.4b) becomes an equality. Although σ̃(j)
i ≤ σ

(j)
i holds, this does not imply

that ‖v − ũHOSVD‖ ≤ ‖v − uHOSVD‖. Nevertheless, in general one should expect
the sequential version to be better.

Theorem 10.5. The error of ũHOSVD from (10.7) is equal to

‖v − ũHOSVD‖ =

√
√
√
√

d∑

j=1

sj∑

i=rj+1

(
σ̃
(j)
i

)2
≤
√
d ‖v − ubest‖ . (10.8)

The arising singular values satisfy σ̃(j)
i ≤ σ

(j)
i , where the values σ(j)

i belong to the
algorithm from Theorem 10.3.

Proof. 1) We split the difference into

v − ũHOSVD = (I − P̃dP̃d−1 · · · P̃1)v

= (I − P̃1)v+(I − P̃2)P̃1v + . . .+(I − P̃d)P̃d−1 · · · P̃1v.

Since the projections commute (P̃jP̃k = P̃kP̃j), all terms on the right-hand side are
orthogonal. Setting vj = P̃j · · · P̃1v, we obtain

‖v − ũHOSVD‖2 =
d∑

j=1

∥
∥
∥
(
I − P̃j

)
vj−1

∥
∥
∥
2

.

4 b
(2)
i b

(2)H
i applies to the 2nd component: (b(2)i b

(2)H
i)

d⊗

j=1

v(j)=v(1)⊗〈v(j), b
(2)
i 〉b(2)i ⊗v(3)⊗. . .

286 10 Tensor Subspace Approximation

Now, ‖(I − P̃j)vj‖2 =
∑sj

i=rj+1(σ̃
(j)
i)2 finishes the proof of the first part.

2) For j = 1, the same HOSVD basis is used so that σ̃(1)
i = σ

(1)
i (σ(j)

i are
the singular values from Theorem 10.3). For j ≥ 2 the sequential algorithm uses
the singular value decomposition ofMj(vj−1)=Mj(P̃j−1 · · · P̃1v). The product
P̃j−1 · · · P̃1 is better written as Kronecker product P̃⊗ I, where P̃ =

⊗j−1
k=1 P̃k and

I =
⊗d

k=j I. According to (5.5),

Mj(vj−1)Mj(vj−1)
H =Mj(v)P̃

TP̃Mj(v)
H ≤Mj(v)Mj(v)

H

holds because of P̃TP̃ = P̃ ≤ I (cf. Remark 4.122d). By Lemma 2.27b, the
singular values satisfy σ̃(j)

i ≤ σ
(j)
i (σ̃(j)

i : singular values ofMj(vj−1), σ
(j)
i : those

ofMj(v)). Therefore, the last inequality in (10.8) follows from (10.4b). ��

10.1.3 Examples

Examples 8.26 and 8.27 describe two tensors from T(2,2,2) ⊂ V ⊗V ⊗V . Here, we
discuss their truncation to T(1,1,1) = R1.

Tensor v = x ⊗ x ⊗ x + σy ⊗ y ⊗ y from (8.28) is already given in HOSVD
representation. Assuming 1 > σ > 0, the HOSVD projection P (1)

j := P
(1)
j,HOSVD is

the projection onto span{x}, i.e.,

uHOSVD := PHOSVD
(1,1,1) v = x⊗ x⊗ x ∈ T(1,1,1) (10.9)

is the HOSVD projection from Theorem 10.3. Obviously, the error is

‖v − uHOSVD‖ = ‖σy ⊗ y ⊗ y‖ = σ = σ
(1)
2

(cf. Example 8.26), and therefore smaller than the upper bound in (10.4b). The
reason becomes obvious, when we apply the factors in PHOSVD

(1,1,1) = P
(1)
1 ⊗P

(1)
2 ⊗P

(1)
3

sequentially. Already the first projection maps v into the final value P
(1)
1 v =

x ⊗ x ⊗ x; the following projections cause no further approximation errors.
Accordingly, if we apply the successive HOSVD projection from §10.1.2, the first
step of algorithm (10.7) yields P (1)

1 v = x ⊗ x ⊗ x ∈ T(1,1,1), and no further pro-
jections are needed (i.e., P (1)

2 = P
(1)
3 = id). Therefore, ũHOSVD := P

(1)
1 v holds,

and only the singular value σ(1)
2 for j = 1 appears in the error estimate (10.8).

Example 8.27 uses the tensor v = αx ⊗ x ⊗ x + βx ⊗ x ⊗ y + βx ⊗ y ⊗ x +

βy ⊗ x ⊗ x, where α, β are chosen such that again 1= σ
(j)
1 >σ

(j)
2 = σ∈ [0, 1) are

the singular values for all j (cf. (8.29b)). The HOSVD bases {b(j)1 , b
(j)
2 } are given in

(8.29c). Since b(j)i = bi is independent of j, we omit the superscript j. The HOSVD
projection yields

uHOSVD = γ b1 ⊗ b1 ⊗ b1 with γ := ακ3 + 3βκ2λ and (10.10)

x = κb1 + λb2, y = λb1 − κb2, b1 = κx+ λy, b2 = λx− κy,

10.1 Truncation to Tr 287

where the coefficients κ =
√

1−σ/
√
2

(1+σ)(1−σ) and λ =

√
σ(1/

√
2−σ)

(1+σ)(1−σ)
(
κ
2 + λ2 = 1

)

are functions of the singular value σ = σ
(j)
2 . The error is given by

‖v − uHOSVD‖ =
√
3/2σ +O(σ2).

For the special choice σ=1/10, the approximation uHOSVD and its error are

uHOSVD=⊗3(0.968135 x+ 0.247453 y) , ‖v−uHOSVD‖=0.120158. (10.11)

Next, we consider the successive HOSVD projection from §10.1.2. The first
projection yields

u(1) = b
(1)
1 ⊗ [(ακ + βλ) x⊗ x+ βκ x⊗ y + βκ y ⊗ x]

= b
(1)
1 ⊗ [0.93126 x⊗ x+ 0.25763 x⊗ y + 0.25763 y⊗ x] for σ=1/10

and ‖v−u(1)‖=σ=σ(j)
2 . The second projection needs the left-sided singular value

decomposition of

M2(u
(1)) = x⊗

[
b
(1)
1 ⊗ ((ακ + βλ) x+ βκy)

]
+ y ⊗

[
b
(1)
1 ⊗ βκx

]
.

The singular values and left singular vectors for σ=1/10 are

σ
(2)
1 = 0.99778, b

(2)
1 = 0.96824 x+ 0.25 y,

σ
(2)
2 = 0.066521, b

(2)
2 = 0.25 x− 0.96824 y.

b
(2)
1 is quite close to b

(1)
1 = 0.96885 x+ 0.24764 y. The second projection yields

u(2) = b
(1)
1 ⊗ b

(2)
1 ⊗ [0.96609 x+ 0.24945 y]

= [0.96885 x+0.24764 y]⊗ [0.96824 x+ 0.25 y]⊗ [0.96609 x+0.24945 y]

with the error ‖u(1) − u(2)‖ = σ
(2)
2 . Since rank3(u

(2)) = 1, a third projection is
not needed, i.e., ũHOSVD := u(2). The total error is

‖v − ũHOSVD‖ =
√(

σ
(1)
2

)2
+
(
σ
(2)
2

)2
= 0.12010.

One observes that ũHOSVD is a bit better than uHOSVD. However, as a consequence
of the successive computations, the resulting tensor ũHOSVD is not symmetric.

10.1.4 Other Truncations

Starting with an r-term representation v =
∑r

ν=1

⊗d
j=1v

(j)
ν , the procedure from

§8.3.3.2 allows an HOSVD representation in the hybrid format from §8.2.4, i.e., the
coefficient tensor a of v ∈ Tr is represented in the r-term formatRr.

288 10 Tensor Subspace Approximation

To avoid the calculations from §8.3.3.2 for large r, there are proposals to simplify
the truncation. In5 [120], reduced singular value decompositions of the matrices
[v

(j)
1 , . . . , v

(j)
r] are used to project v(j)i onto a smaller subspace. For the correct

scaling of v(j)ν define

ω(j)
ν :=

∏

k �=j
‖v(k)ν ‖, Aj :=

[
ω
(j)
1 v

(j)
1 , · · · , ω(j)

r v(j)r

]
∈ K

Ij×r.

The reduced left-sided singular value decomposition of Aj =
∑sj

i=1 σ
(j)
i u

(j)
i w

(j)T
i

(sj = rank(Aj)) yields σ(j)
i and u(j)i . Note that sj r if #Ij r. Define the ortho-

gonal projection P (rj)
j =

∑rj
i=1 u

(j)
i u

(j)H
i from K

Ij onto span{u(j)i : 1 ≤ i ≤ rj}
for some rj≤sj . Application of Pr :=

⊗d
j=1P

(rj)
j to v yields the truncated tensor

ṽ := Prv =

r∑

ν=1

d⊗

j=1

(
P

(rj)
j v(j)ν

)
=

r∑

ν=1

d⊗

j=1

rj∑

i=1

〈
v(j)ν , u

(j)
i

〉
u
(j)
i .

The right-hand side is given in hybrid format (8.21). The error ṽ − v is caused by

d(j)ν :=
(
P

(rj)
j − I

)
v(j)ν =

sj∑

i=rj+1

〈
v(j)ν , u

(j)
i

〉
u
(j)
i =

sj∑

i=rj+1

σ
(j)
i w

(j)
ν,i

ω
(j)
ν

u
(j)
i .

The latter equality uses the singular value decomposition of Aj . The relative error

introduced in (7.10c) is δ(j)ν = ‖d(j)ν ‖/‖v(j)ν ‖. Note that ω(j)
ν ‖v(j)ν ‖ = ‖vν‖ with

vν =
⊗d

j=1 v
(j)
ν . Since {u(j)i : 1 ≤ i ≤ sj} are orthonormal,

(δ(j)ν)2 = ‖vν‖−2
sj∑

i=rj+1

(
σ
(j)
i

)2 (
w

(j)
ν,i

)2

follows. Orthonormality of w(j)
i proves

r∑

ν=1

‖vν‖2
d∑

j=1

(δ(j)ν)2 =

r∑

ν=1

d∑

j=1

sj∑

i=rj+1

(
σ
(j)
i

)2 (
w

(j)
ν,i

)2
=

d∑

j=1

sj∑

i=rj+1

(
σ
(j)
i

)2
.

Remark 10.6. Given a tolerance ε>0, choose the minimal j-rank rj≤sj such that
∑d
j=1

∑sj
i=rj+1(σ

(j)
i)2 ≤ ε2. Then, the total error is bounded by

‖ṽ − v‖ ≤
√
r ε.

Proof. Apply Remark 7.11. ��

Differently from Theorem 10.3, no comparison with the best approximation can
be given.6 Therefore, starting from a given error bound

√
rε, the obtained reduced

5 In [120, Theorem 2.5d], this approach is called ‘reduced HOSVD approximation’, although there
is no similarity to HOSVD as defined in §8.3.
6 As counterexample consider a tensor v = v′ + εv′′, where v′′ = vn ∈ R2 is taken from
(9.10) with n � 1/ε, while v′ ∈ Rr−2 has a stable representation. Together, v has an r-term

10.2 Best Approximation in the Tensor Subspace Format 289

ranks rj may be much larger than those obtained from HOSVD. In this case, the
truncation v �→ Pv can be followed by the ALS iteration from §10.3.

A favourable difference to the HOSVD projection is the fact that the projections
Pj are determined independently.

10.2 Best Approximation in the Tensor Subspace Format

10.2.1 General Setting

As in §9.1, two approximation problems can be formulated. Let V =
⊗d

j=1Vj be
a Banach tensor space with norm ‖·‖. In the first version we fix the format Tr :

Given v ∈ V and r = (r1, . . . , rd) ∈ N
d,

determine u ∈ Tr minimising ‖v − u‖ . (10.12)

Again, we may form the infimum

ε(v, r) := ε(r) := inf {‖v − u‖ : u ∈ Tr} . (10.13)

The variation over all u ∈ Tr includes the variation over all subspaces Uj ⊂ Vj of
dimension rj :

ε(v, r) = inf
U1⊂V1 with
dim(U1)=r1

inf
U2⊂V2 with
dim(U2)=r2

. . . inf
Ud⊂Vd with
dim(Ud)=rd

{

inf
u∈

⊗
d
j=1Uj

‖v − u‖
}

.

The existence of a best approximation u ∈ Tr with ‖v − u‖ = ε(v, r) will be
discussed in §10.2.2.2. Practical computations are usually restricted to the choice of
the Euclidean norm (see §§10.2.2.3-4).

In the following second variant the rôles of r and ε(r) are reversed:7

Given v ∈ V and ε > 0,
determine u ∈ Tr with ‖v − u‖ ≤ ε and minimal storage size.

(10.14)

The following lemma is the analogue of Lemma 9.2 and can be proved similarly.

Lemma 10.7. Assume that V is a Hilbert tensor space with induced scalar product.
The best approximation from Problem (10.12) and at least one of the solutions of
Problem (10.14) belong to the subspace U(v) := ‖·‖

⊗d
j=1 U

min
j (v) (cf. (6.21)).

Consequently, the statements from Lemma 9.2 are valid again.

representation, where the two terms related to vn are dominant and lead to the largest singular
values σ(j)

i . The projection described above omits parts of v′, while εv′′ is hardly changed. The

ratio σ
(j)
i /σ

(j)
1

∼= σ
(j)
i nε is not related to the relative error.

7 In principle, we would like to ask for u ∈ Tr with ‖v − u‖ ≤ ε and r as small as possible, but
this question may not lead to a unique rmin. The storage size of u is a scalar value depending of
r and attains a minimum.

290 10 Tensor Subspace Approximation

As an illustration, we discuss the Examples 8.26 and 8.27. The HOSVD pro-
jection (10.9) from Example 8.26 is already the best approximation. For Example
8.27 (with σ = 1/10) we make the symmetric ansatz u(ξ, η) := ⊗3 (ξ x+ η y).
Minimisation of ‖v − u(ξ, η)‖ over ξ, η ∈ R yields the optimum

ubest := ⊗3 (0.96756588 x+ 0.24968136 y) , ‖v − ubest‖ = 0.120083,

which is only insignificantly better than ‖v − uHOSVD‖ = 0.120158 from (10.11).
In §10.2.2 we shall analyse Problem (10.12), where the rank vector r is fixed.

The second Problem (10.14) will be addressed in §10.3.3.

10.2.2 Approximation with Fixed Format

10.2.2.1 Matrix Case d = 2

The solution of Problem (10.12) is already discussed in Conclusion 2.32 for the
Euclidean (Frobenius) norm. Let r=r1=r2 < min{n1, n2}. Determine the singu-
lar value decomposition

∑min{n1,n2}
i=1 σiui⊗vi of the tensor v ∈Kn1⊗K

n2. Then
B1 = [u1, . . . , ur] and B2 = [v1, . . . , vr] contain the optimal orthonormal bases.
The solution of Problem (10.12) is u =

∑r
i=1σiui ⊗ vi. The coefficient tensor is

a = BHv = diag{σ1, . . . , σr}. The error ‖v − u‖ equals
√∑min{n1,n2}

i=r+1 σ2
i (cf.

(2.26b)), while the maximised value ‖BHv‖ is
√∑r

i=1σ
2
i . Non-uniqueness occurs

if σr=σr+1 (cf. Conclusion 2.32).

10.2.2.2 Existence of a Minimiser

The following assumptions hold in particular in the finite dimensional case.

Theorem 10.8. Let V = ‖·‖
⊗d

j=1Vj be a reflexive Banach tensor space with a
norm not weaker than ‖·‖∨ (cf. (6.18)). Then the subset Tr ⊂ V is weakly closed.
For any v ∈ V, Problem (10.12) has a solution, i.e., for given finite representation
ranks rj ≤ dim(Vj) there are subspaces Uj ⊂ Vj with dim(Uj) = rj and a tensor
umin ∈ U =

⊗d
j=1Uj such that

‖v − umin‖ = inf
u∈Tr

‖v − u‖ .

Proof. By Lemma 8.6, Tr is weakly closed. Thus, Theorem 4.28 proves the exis-
tence of a minimiser. ��

For (infinite dimensional) Hilbert spaces Vj , the statement of Theorem 10.8 is
differently proved by Uschmajew [186, Corollary 23].

Concerning non-uniqueness of the best approximation, the observations for the
matrix case d = 2 mentioned in §10.2.2.1 are still valid for larger d.

10.2 Best Approximation in the Tensor Subspace Format 291

Remark 10.9. If d ≥ 2 and dim(Vj) > rj > 0 for at least one j ∈ {0, . . . , d},
uniqueness8 of the minimiser umin cannot be guaranteed.

10.2.2.3 Optimisation with Respect to the Euclidean Norm

The Hilbert structure enables further characterisations. Concerning orthogonal
projections we refer to §4.4.3.

Lemma 10.10. (a) Given a fixed subspace U = ‖·‖
⊗d

j=1Uj , the minimiser of
‖v − u‖ over all u ∈ U is explicitly described by

u = PUv, (10.15a)

where PU is the orthogonal projection onto U. Pythagoras’ equality yields

‖v‖2 = ‖u‖2 + ‖v− u‖2. (10.15b)

(b) PU may be written as Kronecker product

PU =

d⊗

j=1

PUj
(PUj

orthogonal projection onto Uj). (10.15c)

Proof. 1) By definition of U := ‖·‖
⊗d

j=1Uj , this subspace is closed and (10.15a)
follows from Remark 4.122c. By Remark 4.122e, I − PU is the orthogonal projec-
tion onto U⊥. Since PUv ∈ U and (I − PU)v ∈ U⊥ are orthogonal,

‖v‖2 = ‖PUv + (I − PU)v‖2 = ‖PUv‖2 + ‖ (I − PU)v‖2

follows. Now, PUv = u and (I − PU)v = v − u yield (10.15b).
2) (10.15c) is trivial. Note that PUj

uses the closed subspace, since closeness of
Uj is not yet assumed. ��

Next, we consider the special case of finite dimensional Vj = K
Ij , nj = #Ij ,

endowed with the Euclidean norm (and therefore also the Euclidean scalar product).
Let r = (r1, . . . , rd) be the prescribed dimensions and set Jj := {1, . . . , rj}.
With each subspace Uj of dimension rj we associate an orthonormal basis Bj =

[b
(j)
1 · · · b

(j)
rj] ∈ K

Ij×Jj . Then, PUj = BjB
H
j ∈ K

Ij×Ij is the orthogonal projection
onto9 Uj (cf. Remark 4.122f). Using (10.15c), we obtain the representation

PU =

d⊗

j=1

BjB
H
j = BBH with B :=

d⊗

j=1

Bj ∈ K
I×J, (10.16)

where I := I1 × . . .× Id and J := J1 × . . .× Jd.

8 Since there are often misunderstandings we emphasise that uniqueness of umin is meant, not
uniqueness of its representation by a[i1 · · · id] and b

(j)
i .

9 Note that Uj = Uj because of the finite dimension.

292 10 Tensor Subspace Approximation

Remark 10.11. Under the assumptions from above, the following minimisation
problems are equivalent:

min
u∈Tr

‖v − u‖ = min
B∈KIj×Jj

{

‖v −BBHv‖ : B =
d⊗

j=1

Bj , B
H
j Bj = I

}

. (10.17)

Proof. Any u ∈ Tr belongs to some subspace U =
⊗d

j=1Uj with dim(Uj) = rj ;

hence, u = BBHv holds for a suitable B proving minB‖v−BBHv‖ ≤ ‖v−u‖.
On the other hand, BBHv belongs to Tr so that minu∈Tr‖v−u‖≤‖v−BBHv‖.��

Lemma 10.12. The minimisation problem u∗ := argminu∈Tr ‖v − u‖ is equiva-
lent to the following maximisation problem:10

Find B with B =
⊗d

j=1Bj , Bj ∈ K
Ij×Jj , BH

j Bj = I,

such that ‖BHv‖ is maximal.
(10.18)

If B̂ := argmaxB ‖BHv‖, then u∗ = B̂a with a := B̂
H
v ∈ K

J. If B is a solution
of (10.18), also BQ with Q =

⊗d
j=1Qj and unitary Qj ∈ K

Jj×Jj , is a solution.

Proof. As a consequence of (10.15b), minimisation of ‖v − u‖ is equivalent to the
maximisation of ‖u‖. By Remark 10.11, u = BBHv holds for some orthogonal
matrix B so that

‖u‖2=〈u,u〉=
〈
BBHv,BBHv

〉
=
〈
BHv,BHBBHv

〉
=
〈
BHv,BHv

〉
=‖BHv‖2

(cf. Exercise 8.15). The last assertion follows from ‖BHv‖ = ‖QHBHv‖. ��

The reformulation (10.18), which is due to De Lathauwer-De Moor-Vandewalle
[43, Theorem 4.2]), is the basis of the ALS method described in the next section.

10.3 Alternating Least-Squares Method (ALS)

10.3.1 Algorithm

Problem (10.18) is an optimisation problem, where the d parameters are orthogonal
matrices Bj ∈ K

Ij×Jj . The function

Φ(B1, . . . , Bd) := ‖BHv‖2

is a quadratic function of theBj entries. As discussed in §9.5.2.1, a standard method
for optimising multivariate functions is the iterative optimisation with respect to

10 The orthogonal matrices Bj from (10.18) form the so-called Stiefel manifold.

10.3 Alternating Least-Squares Method (ALS) 293

a single parameter. In this case, we consider Bj as one parameter and obtain the
following iteration (cf. De Lathauwer-De Moor-Vandevalle [43, Alg. 4.2], where
it is called HOOI: higher-order orthogonal iteration. We use the term ‘alternating
least-squares method’, although it is an alternating largest-squares method with the
side conditions BH

jBj = I .).

Start Choose B(0)
j ∈ K

Ij×Jj (1 ≤ j ≤ d) (cf. Remark 10.16c), set m := 1.

Loop For j = 1 to d do computeB(m)
j as maximiser of

B
(m)
j := argmax

Bj with BH
jBj=I

Φ(B
(m)
1 , . . . , B

(m)
j−1, Bj , B

(m−1)
j+1 , . . . , B

(m−1)
d) (10.19)

Set m := m+ 1 and repeat the iteration.

The concrete realisation will be discussed in §10.3.2. Here, we give some general
statements. Define vj,m ∈ K

J1×...×Jj−1×Ij×Jj+1×...×Jd by

vj,m :=
(
B

(m)
1 ⊗ . . .⊗B(m)

j−1 ⊗ id⊗B
(m−1)
j+1 ⊗ . . .⊗B(m−1)

d

)H
v (10.20)

During the iteration (10.19) one is looking for an orthogonal matrix Bj ∈ K
Ij×Jj

so that BH
j vj,m has maximal norm. Here and in the sequel, the short notation Bj ,

when applied to a tensor, means id⊗ . . .⊗Bj ⊗ . . .⊗ id.

Lemma 10.13. The maximiser Bj = [b
(j)
1 · · · b

(j)
rj] ∈KIj×Jj is given by the first rj

columns (singular vectors) of U in the reduced left-sided singular value decomposi-
tionMj(vj,m)=UΣV T. Moreover, BjBH

j = P
(rj)
j,HOSVD is the HOSVD projection.

Proof. The statements are easily derived by ‖BH
j vj,m‖ =

Remark 5.8
‖Mj(B

H
j vj,m)‖ =

=
Lemma 5.6

‖BH
jMj(vj,m)‖ = ‖BH

j UΣV
T‖ =

V unitary
‖BH

j UΣ‖. ��

Remark 10.14. (a) The construction of Bj requires rank(Mj(vj,m)) ≥ rj , since,
otherwise, U has not enough columns. In the latter case, one either adds arbitrarily
chosen orthonormal vectors from range(U)⊥ or one continues with decreased j-th
representation rank rj .
(b) If rank(Mj(vj,m)) = rj , any orthonormal basis Bj of range(Mj(vj,m)) is
the solution of (10.19).
(c) Note that initial valuesB(0)

j with range(B
(0)
j)⊥ range(Mj(v)) for at least one

j ≥ 2 lead to v1,1 = 0.

In the sequel, we assume that such failures of (10.19) do not appear. We introduce
the index sets

Ij={1,. . ., nj}, Jj={1,. . ., rj}, I[j]= ×
k∈{1,...,d}\j

Ik, J[j]= ×
k∈{1,...,d}\{j}

Jk (10.21)

and the tensor B[j] := B
(m)
1 ⊗ . . .⊗ B(m)

j−1 ⊗ B
(m−1)
j+1 ⊗ . . . ⊗ B(m−1)

d ∈KIj×J[j] .
Remark 5.8 shows that

294 10 Tensor Subspace Approximation

Mj(vj,m) =Mj(B
H
[j]v) =Mj(v)B[j].

This proves the first part of the following remark.

Remark 10.15. Assume rank(Mj(vj,m)) ≥ rj . Matrix U from Lemma 10.13 is
obtained by diagonalising

Mj(vj,m)Mj(vj,m)H =Mj(v)B[j]B
T
[j]Mj(v)

H = UΣ2UH.

All maximisers B(m)
j from (10.19) satisfy range(B

(m)
j) ⊂ Umin

j (v).

Proof. Use range(B
(m)
j) ⊂ range(Mj(v)B[j]) ⊂ range(Mj(v)) = Umin

j (v). ��

Remark 10.16. (a) The function values Φ(B(m)
1 , . . . , B

(m)
j , B

(m−1)
j+1 , . . . , B

(m−1)
d)

increase weakly monotonously to a maximum of Φ. The sequence B(m)
j has a con-

vergent subsequence.

(b) The determined maximum of Φ may be a local one.
(c) The better the starting values B(0)

j are, the better are the chances to obtain the
global maximum of Φ. A good choice of B(0)

j can be obtained from the HOSVD
projection PHOSVD

r =
⊗d

j=1 B
(0)
j B

(0)H
j , denoted by B(r)B(r)H in Corollary 10.2.

For a detailed discussion of this and related methods we refer to De Lathauwer-
De Moor-Vandevalle [43]. In particular, it turns out that the chance to obtain fast
convergence to the global maximum is the greater the larger the gaps σ(j)

rj −σ
(j)
rj+1

are.

10.3.2 ALS for Different Formats

The realisation described above involves Mj(v)B[j] ∈ K
Ij×J[j] and its left-

sided singular value decomposition. The corresponding computations depend on the
format of v. Note that the choice of the format is independent of the fact that the
optimal solution u is sought in tensor subspace format Tr. We start with the case of
the full tensor representation.

10.3.2.1 Full Format

The tensors vj,m or equivalently their matricisationsMj(vj,m) have to be deter-
mined.11 The direct computation of the iterate vj,m=BH

[j]v from the tensor v costs
2
∑j−1
k=1

∏k
�=1r�

∏d
�=kn�+2

nj

rj

∑d
k=j+1

∏k
�=1r�

∏d
�=kn� operations. This number

11 A precomputation of the Gram matrix C := B[j]B
T
[j] followed by the evaluation of the product

Mj(v)CMj(v)H ∈ K
I1×I1 is more expensive.

10.3 Alternating Least-Squares Method (ALS) 295

is bounded by 2
∑j−1
k=1r̄

knd−k+1 + 2
∑d
k=j+1 r̄

k−1nd−k+2, where n := maxnj

and r̄ := max rj . If r̄ n, the leading term is 2r1
∏d
�=1n� ≤ 2r̄nd.

Instead, one can determineB(m−1)H
d v, (B

(m−1)
d−1 ⊗B(m−1)

d)Hv, . . . at the expense
of more memory. Note that the sizes of these tensors are decreasing. Having com-
puted a new B

(m)
1 , one can obtain v1,m from B

(m)H
1 (B

(m−1)
3 ⊗ . . . ⊗ B(m−1)

d)Hv
etc. Using these data, we need

2

d∑

j=2

[
j∏

�=1

n�

][
d∏

�=j

r�

]

+ 2

d∑

j=2

j−1∑

k=1

[
k∏

�=1

r�

][
j∏

�=k

n�

][
d∏

�=j+1

r�

]

operations to determine all d tensors v1,m, v2,m, . . . ,vd,m.

As soon as vj,m is determined, the computation ofMj(vj,m)Mj(vj,m)H and
its diagonalisation requires n2

j

∏
� �=j r� +

8
3n

3
j operations.

We summarise the total cost per iteration m �→ m + 1 for different ratios r/n.

(a) If r̄ n, the leading cost is 4r̄nd.

(b) If r̄ < n, the asymptotic cost is ndr̄
[
4 + 6 r̄n + (r̄n)

d−2 +O
(
(r̄n)

2
)]

.

(c) If r̄ ≈ n, so that r̄ ≤ n can be used, the leading bound is (d2 + 2d− 2)nd+1.

10.3.2.2 r-Term Format

Now v=
∑r

i=1

⊗d
j=1v

(j)
i is assumed. The projections v �→ BH

j v can be performed
independently for all j:

w
(j)
i := BH

j v
(j)
i ∈ K

Jj

(cost: 2r
∑d

j=1 rjnj). The projected iterate vj,m = BH
[j]v (cf. (10.20)) takes the

form

vj,m=

r∑

i=1

(
j−1⊗

k=1

w
(k)
i

)

⊗ v(j)i ⊗
(

d⊗

k=j+1

w
(k)
i

)

.

Therefore, the computation of Mj(vj,m)Mj(vj,m)H ∈ K
Ij×Ij requires similar

Gram matricesGk as in (8.34a), but now the entries are scalar products 〈w(k)
ν , w

(k)
μ 〉

in K
Jj instead of KIj . Furthermore, the QR decomposition [v

(j)
1 · · · v

(j)
r] = QjRj

with r̃j = rank(QjRj) ≤ min{nj, r} (line 3 in (8.34a)) can be performed once
for all. The matrix Uj from the diagonalisationMj(vj,m)Mj(vj,m)H = UjΣjU

H
j

is obtained as in (8.34a). Repeating the proof of Remark 8.30, we obtain a total
computational cost of

d∑

j=1

(

r2rj + 2r2r̃j + rr̃2j +
8

3
r̃3j + 2rj r̃jnj + 2rrjnj

)

(10.22)

per iteration m �→ m + 1. For r n := maxj nj , r̄ := maxj rj n, the
dominating term is 4drr̄n.

296 10 Tensor Subspace Approximation

10.3.2.3 Tensor Subspace Format

We recall that the index sets Jj , J, and J[j] together with the representation ranks
rj are fixed in (10.21) and used for the format of the optimal solution u ∈ Tr of
Problem (10.12). For v ∈ V = K

I we introduce representation ranks sj and

Ĵj = {1, . . . , sj}, Ĵ = Ĵ1 × . . .× Ĵd, Ĵ[j] = ×
k∈{1,...,d}\{j}

Ĵk, (10.23a)

and assume

v = ρorth

(
â, (B̂j)

d
j=1

)
= B̂â with

{
â ∈ K

Ĵ, B̂j ∈ K
Ij×Ĵj ,

B̂ =
⊗d

j=1 B̂j ∈ K
I×Ĵ (10.23b)

and Ij and I from (10.21). If v is given in the general format ρframe, one has first to
orthonormalise the bases (cf. §8.2.3.2).

The bases from (10.23b) determine the spaces Uj := range(B̂j). According
to Remark 10.16c, one should compute the HOSVD representation (and the corre-
sponding truncation to Tr). If Bj is the HOSVD basis, even Uj = Umin

j (v) holds;
otherwise, Umin

j (v) ⊂ Uj . We recall that the best approximation u = ubest ∈ Tr
of Problem (10.12) belongs to Umin

j (v) (cf. Lemma 10.7):

ubest ∈ U(v) :=
d⊗

j=1

Umin
j (v) and Umin

j (v) ⊂ Uj = range(B̂j). (10.23c)

The usual advantage of the tensor subspace format is that the major part of the
computations can be performed using the smaller coefficient tensor â. This state-
ment is also true for the best approximation in Tr. Because of (10.23c), there is a
coefficient tensor ĉbest such that

ubest = B̂ĉbest.

Orthonormality of the bases B̂j ensures that

‖v − ubest‖ = ‖â− ĉbest‖

holds for the Euclidean norms in K
I and K

Ĵ, respectively.

Proposition 10.17. (a) Minimisation of ‖v−u‖ over Tr(KI) is equivalent to
minimisation of ‖â− ĉ‖ over Tr(KĴ). If ĉbest is found, ubest := B̂ĉbest is the
desired solution.
(b) Let ĉbest=ρorth

(
a, (βj)

d
j=1

)
with a∈KJ and βj=[β

(j)
1 · · ·β

(j)
rj] ∈ K

Ĵj×Jj be

the representation in Tr(KĴ) and set β :=
⊗d

j=1 βj . Then

ubest = ρorth
(
a, (Bj)

d
j=1

)
= Ba with

{
a ∈ K

J, Bj := B̂jβj ∈ K
Ij×Ĵj ,

B := B̂β ∈ K
I×J

is the orthonormal tensor subspace representation of ubest.

10.3 Alternating Least-Squares Method (ALS) 297

Proof. Part (b) follows by Remark 8.21. ��

Application of the ALS iteration to â ∈ K
Ĵ requires the cost stated in §10.3.2.1

with nj replaced by sj := #Ĵj .

10.3.2.4 Hybrid Format

Proposition 10.17 holds again, but now â is given in r-term format. The cost of one
ALS iteration applied to â∈KĴ is given by (10.22) with nj replaced by sj := #Ĵj .

10.3.2.5 Special Case r = (1, . . . , 1)

An interesting special case is given by

rj = 1 for all 1 ≤ j ≤ d, i.e., r = (1, . . . , 1),

since then
max
B
‖BHv‖ = ‖v‖∨

describes the injective crossnorm from §4.3.4 and §4.5.2. De Lathauwer-De Moor-
Vandewalle [43] propose an iteration, which they call the higher order power
method, since, for d = 2, it corresponds to the power method.

The basis Bj ∈ K
Ij×Jj from (10.17) reduces to one vector b(j) := b

(j)
1 . The

mapping

B[j] = b(1)H ⊗ . . .⊗ b(j−1)H ⊗ id⊗ b(j−1)H ⊗ . . .⊗ b(d)H ∈ L(V, Vj)

acts on elementary vectors as

B[j]

(
d⊗

k=1

v(k)

)

=

⎡

⎣
∏

k �=j

〈
v(k), b(k)

〉
⎤

⎦ v(j).

The higher order power method applied to v∈V can be formulated as follows:

start choose b(j), 1 ≤ j ≤ d, with ‖b(j)‖ = 1

iteration for j := 1 to d do
m = 1, 2, . . . begin b(j) := B[j](v); λ := ‖b(j)‖; b(j) := b(j)/λ end;

return u := λ
⊗d

j=1 b
(j) ∈ T(1,...,1).

For further comments on this method see the article De Lathauwer-De Moor-
Vandevalle [43, §3].

298 10 Tensor Subspace Approximation

10.3.3 Approximation with Fixed Accuracy

Consider the tensor space V =
⊗d

j=1Vj with Vj = K
Ij , nj = #Ij , equipped

with the Euclidean norm. A tensor from V given in the format v ∈ Ts with tensor
subspace rank s=(s1, . . . , sd) ∈ N

d
0 requires storage of size

Ns :=

d∑

j=1

sjnj +

d∏

j=1

sj (cf. Remark 8.7a,b).

An approximation u∈Tr with r� s leads to a reduced storage Nr (cf. Footnote 1).
Given some ε > 0, there is a subset Rε ⊂ N

d
0 of smallest vectors r ∈ N

d
0 with the

property minu∈Tr‖v − u‖ ≤ ε, i.e.,12

Rε :=

{

r ∈ N
d
0 :

0 ≤ r ≤ s, minu∈Tr ‖v − u‖ ≤ ε, and
r = 0 or minu∈Ts ‖v − u‖ > ε for all 0 ≤ s � r

}

.

Let r∗ be the minimiser of min{Nr : r ∈ Rε} and choose a minimiser13 u∗ ∈ Tr∗
of min{‖v − u‖ : u ∈ Tr∗}. Then, u∗ is the solution of Problem (10.14). Since
neither r∗ ∈ N

d
0 nor u∗ ∈ Tr∗ are necessarily unique minimisers, and in particular

because of the comment in Footnote 13, Problem (10.14) admits, in general, many
solutions.

To obtain Rε we need to know the minimal errors εr := minu∈Tr‖v − u‖. As
seen in §10.3, the computation of εr is not a trivial task. Instead, we shall use a
heuristic strategy which is again based on the higher order singular value decompo-
sition.

First, one has to compute the HOSVD tensor subspace representation of v. This
includes the determination of the singular values σ(j)

i (1≤ j ≤ d, 1 ≤ i ≤ sj) and
the corresponding basis vectors b(j)i . The reduction in memory size is the larger the
more basis vectors b(j)i can be omitted. More precisely, the saved storage

ΔNj(s) :=Ns −Ns(j) =nj +
∏

k �=j
sk with s(j) :=(. . ., sj−1, sj − 1, sj+1, . . .),

depends on the size of nj and s. Consider the maximum over all ΔNj(s)/(σ
(j)
sj)2,

which is attained for some j∗. Dropping the component corresponding to b
(j∗)
sj∗

yields the best decrease of storage cost. Hence, v is replaced by u := P
(sj∗−1)
j∗,HOSVDv

(projection defined in Lemma 10.1). Note that u ∈ Tr for r := s(j
∗). Since the

values ΔNj(r) for j �= j∗ are smaller than ΔNj(s), the singular values are now
weighted by ΔNj(r)/(σ

(j)
rj)2. Their maximiser j∗ is used for the next projection

12 The exceptional case r = 0 occurs if ‖v‖ ≤ ε. Then u = 0 ∈ T0 is a sufficient approximation.
13 To solve Problem (10.14), it suffices to take any u∗ ∈ Tr∗ with ‖v − u∗‖ ≤ ε. Among all
possible u∗ with this property, the minimiser is the most appreciated solution.

10.4 Analytical Approaches for the Tensor Subspace Approximation 299

u := P
(rj∗−1)
j∗,HOSVDu. These reductions are repeated until the sum of the omitted

squared singular values σ(j∗)
rj∗ does not exceed ε2. The corresponding algorithm

reads as follows:

start u := v; r := s; τ := ε2, compute the HOSVD of v 1

loop J := {j ∈ {1, . . . , d} : (σ(j)
rj)2 < τ}; 2

if J = ∅ then halt; 3

determine ΔNj(r) for j ∈ J ; 4

j∗ := argmax{ΔNj(r)/(σ(j)
rj)2 : j ∈ J}; 5

u := P
(rj∗−1)
j∗,HOSVDu; τ := τ − (σ

(j∗)
rj∗)2; 6

if rj∗ > 1 then set r := r(j
∗) and repeat the loop 7

(10.24)

In line 2, directions are selected for which a projection P
(rj−1)
j,HOSVD yields an

approximation u satisfying the requirement ‖v − u‖ ≤ ε. In line 6, the previous
approximation u ∈ Tr is projected into u∈Tr(j∗) , where the j∗-th rank is reduced
from rj∗ to rj∗−1. If rj∗=1 occurs in line 7, u = 0 holds. The algorithm terminates
with values of r ∈ N

d
0, u ∈ Tr, and τ ≥ 0.

Thanks to estimate (10.4b), the inequality ‖v − u‖2 ≤ ε2− τ ≤ ε2 holds with τ
determined by (10.24). However, as discussed in §10.1.3, the estimate (10.4b) may
be too pessimistic. Since v − u⊥u, the true error can be computed from

‖v − u‖2 = ‖v‖2 − ‖u‖2

(note that ‖v‖2 =
∑sj
i=1(σ

(j)
i)2 for any j). If a further reduction is wanted, algo-

rithm (10.24) can be repeated with u, r and ε2−‖v−u‖2 instead of v, s and ε2.
The proposed algorithm requires only one HOSVD computation in (10.24).

In principle, after getting a new approximation u in line 6, one may compute a
new HOSVD. In that case, the accumulated squared error ε2 − τ is the true error
‖v − u‖2 (cf. Theorem 10.5).

10.4 Analytical Approaches for the Tensor Subspace
Approximation

In the following, we consider multivariate function spaces V = ‖·‖
⊗d

j=1Vj and
use interpolation of univariate functions from Vj . We may also replace functions
f ∈ Vj by grid functions f̂ ∈ K

Ij with the interpretation f̂i = f(ξi) (ξi, i ∈ Ij :
grid nodes). Then, all interpolation points appearing below must belong to the grid
{ξi : i ∈ Ij}. Interpolation will map the functions into a fixed tensor subspace

U =

d⊗

j=1

Uj ⊂ V, (10.25)

300 10 Tensor Subspace Approximation

which is equipped with the norm of V. Note that U ⊂ Tr with r = (r1, . . . , rd) .
As remarked at the beginning of §9.7, the following techniques can be used for

practical constructions as well as for theoretical estimates of the best approximation
error ε(v, r) from (10.13).

10.4.1 Linear Interpolation Techniques

10.4.1.1 Linear Interpolation Problem

Here, we omit the index j of the direction and rename rj , Uj, Vj by r, U, V.
For r ∈ N0 fix a subspace U ⊂ V of dimension r and define linear functionals

Λi ∈ V ∗ (1 ≤ i ≤ r). Then the linear interpolation problem in V reads as follows:

Given λi ∈ K (1 ≤ i ≤ r), find f ∈ U with

Λi(f) = λi for 1 ≤ i ≤ r. (10.26a)

In most of the cases, Λi are Dirac functionals at certain interpolation points ξi, i.e.,
Λi(f) = f(ξi). Then, the interpolation conditions for f ∈ U become

f(ξi) = λi for 1 ≤ i ≤ r. (10.26b)

The Dirac functionals are continuous in C(I) or Hilbert spaces with sufficient
smoothness (Sobolev embedding). In spaces like L2(I), other functionals Λi must
be chosen for (10.26a).

Remark 10.18. (a) Problem (10.26a) is uniquely solvable for all λi ∈ K, if and
only if the functionals {Λi : 1 ≤ i ≤ r} are linearly independent on U .
(b) In the positive case, there are so-called Lagrange functions Li defined by
Li ∈ U (1 ≤ i ≤ r) and

Λν(Lμ) = δνμ (1 ≤ ν, μ ≤ r) . (10.27a)

Then, problem (10.26a) has the solution

f =

r∑

i=1

λiLi. (10.27b)

In the following, we assume that the interpolation problem is solvable. The
Lagrange functions define the interpolation operator I ∈ L(V, U) by

I(f) =
r∑

i=1

Λi(f)Li ∈ Uj . (10.28)

Remark 10.19. I ∈ L(V, U) is a projection onto U. The norm Cstab := ‖Ij‖V←V
is called the stability constant of the interpolation I.

10.4 Analytical Approaches for the Tensor Subspace Approximation 301

The estimation of the interpolation error f−I(f) requires a Banach subspace
W ⊂V with a stronger norm of f ∈W (e.g., W =Cp+1(I)�V =C(I) in (10.35)).

10.4.1.2 Linear Product Interpolation

Let the function f(x)= f(x1 , . . . , xd) be defined on a product domain I :=×d
j=1Ij .

For each direction j, we assume an interpolation operator

Ij(f) =
rj∑

i=1

Λ
(j)
i (f)L

(j)
i

involving functionals Λ(j)
i and Lagrange functions L(j)

i . Interpolations points are
denoted by ξ(j)i .

In the sequel, we assume that ‖·‖ is a uniform crossnorm. Then, the multivariate
interpolation operator (product interpolation operator)

I :=

d⊗

j=1

Ij : V = ‖·‖

d⊗

j=1

Vj → U =

d⊗

j=1

Uj ⊂ V (10.29)

is bounded by Cstab :=
∏d
j=1Cstab,j . Application of I to f(x)= f(x1 , . . . , xd) can

be performed recursively. The following description refers to the Dirac functionals
in (10.26b). Application of I1 yields f(1)(x) =

∑r1
i1=1f(ξ

(1)
i1
, x2, . . . , xd)L

(1)
i1

(x1).
I2 maps into

f(2)(x) =

r1∑

i1=1

r2∑

i2=1

f(ξ
(1)
i1
, ξ

(2)
i2
, x2, . . . , xd)L

(1)
i1

(x1)L
(2)
i2

(x2).

After d steps the final result is reached:

f(d)(x) = I(f)(x) =
r1∑

i1=1

· · ·
rd∑

id=1

f(ξ
(1)
i1
, . . . , ξ

(d)
id

)

d∏

j=1

L
(j)
ij

(xj) ∈ U.

Remark 10.20. Even the result f(d−1) is or interest. The function

f(d−1)(x) =
r1∑

i1=1

· · ·
rd∑

id−1=1

f(ξ
(1)
i1
, . . . , ξ

(d−1)
id−1

, xd)
d−1∏

j=1

L
(j)
ij

(xj)

belongs to
(⊗d−1

j=1 Uj
)
⊗ Vd. For fixed values {ξ(j)i : 1≤ i≤ rj, 1≤ j≤d− 1} the

function f(ξ
(1)
i1
, . . . , ξ

(d−1)
id−1

, •) is already univariate.

Interpolation is a special form of approximation. Error estimates for interpolation
can be derived from best approximation errors.

Lemma 10.21. Let Cstab,j be the stability constant of Ij (cf. Remark 10.19). Then
the interpolation error can be estimated by

302 10 Tensor Subspace Approximation

‖f − Ij(f)‖Vj
≤ (1 + Cstab,j) inf{‖f − g‖Vj

: g ∈ Uj}.

Proof. Split the error into [f − Ij(g)] + [Ij(g)− Ij(f)] for g ∈ Uj and note that
Ij(g) = g because of the projection property. Taking the infimum over g ∈ Uj in

‖f − Ij(f)‖Vj
≤ ‖f − g‖Vj

+ ‖Ij(g − f)‖Vj
≤ (1 + Cstab,j) ‖f − g‖Vj

,

we obtain the assertion. ��

The multivariate interpolation error can be obtained from univariate errors as
follows. Let

εj(f) := inf

{

‖f − g‖ : g ∈
[
j−1⊗

k=1

Vj

]

⊗ Uj ⊗
[

d⊗

k=j+1

Vj

]}

(10.30)

for 1 ≤ j ≤ d be the best approximation error in j-th direction.

Proposition 10.22. Let the norm of V be a uniform crossnorm. With εj(f) and
Cstab,j from above, the interpolation error of I from (10.29) can be estimated by

‖f − I(f)‖ ≤
d∑

j=1

[
j−1∏

k=1

Cstab,k

]

(1 + Cstab,j) εj(f).

Proof. Consider the construction of f(j) from above with f(0) := f and f(d) = I(f).
The difference f(j−1)− f(j) in f −I(f) =

∑d
j=1

(
f(j−1) − f(j)

)
can be rewritten as

f(j−1) − f(j) = [I1 ⊗ I2 ⊗ . . .⊗ Ij−1 ⊗ (I − Ij)⊗ id⊗ . . .⊗ id] (f)

=

[(
j−1⊗

k=1

Ik

)

⊗
(

d⊗

k=j

id

)]

[id⊗ . . .⊗ id⊗ (I − Ij)⊗ id⊗ . . .⊗ id] (f).

The norm of [. . .⊗ id⊗ (I − Ij)⊗ id⊗ . . .] (f) is bounded by (1 + Cstab,j) εj(f)

(cf. Lemma 10.21). The operator norm of the first factor is
∏j−1
k=1 Cstab,k because

of the uniform crossnorm property. ��

10.4.1.3 Use of Transformations

We return to the univariate case of a function f defined on an interval I. Let
φ : J → I be a mapping from a possibly different interval J onto I and define

F := f ◦ φ. (10.31a)

The purpose of the transformation φ is an improvement of the smoothness proper-
ties. For instance, φ may remove a singularity.14 Applying an interpolation IJ with
interpolation points ξJi ∈ J to F, we get

14 f(x) =
√

sin(x) in I = [0, 1] and x = φ(y) := y2 yield F (y) =
√

sin(y2) ∈ C∞.

10.4 Analytical Approaches for the Tensor Subspace Approximation 303

F (y) ≈ (IJ(F)) (y) =

r∑

i=1

F (ξJi)L
J
i (y). (10.31b)

The error estimate of F − IJ(F) may exploit the improved smoothness of F. We
can reinterpret this quadrature rule on J as a new quadrature rule on I:

f(x) ≈ (IJ(F)) (φ−1(x)) =
r∑

i=1

F (ξJi)L
J
i (φ
−1(x)) = II(f)(x) (10.31c)

with II(f) :=
∑r

i=1 Λ
I
i (f)L

I
i , Λ

I
i (f) := f(ζIi), ζ

I
i := φ(ξJi), L

I
i := LJi ◦ φ−1.

Remark 10.23. (a) Since (IJ(f ◦ φ)) (φ−1(·)) = II(f), the supremum norms of
the errors coincide: ‖f − II(f)‖I,∞ = ‖F − IJ(F)‖J,∞ .

(b) While LJi may be standard functions like, e.g., polynomials, LIi = LJi ◦φ−1 are
non-standard.

10.4.2 Polynomial Approximation

10.4.2.1 Notations

Let I = ×d
j=1 Ij . Choose the Banach tensor space C(I) = ∞

⊗d
j=1 C(Ij) , i.e.,

Vj = C(Ij). The subspaces Uj ⊂ Vj are polynomial spaces Ppj , where

Pp :=
{∑p

ν=0
aνx

ν : aν ∈ K

}
.

The tensor subspace U from (10.25) is built from Uj = Ppj :

Pp :=
⊗d

j=1
Ppj ⊂ C(I) with p = (p1, . . . , pd).

Note that U = Pp ⊂ Tr requires pj ≤ rj − 1.

10.4.2.2 Approximation Error

The approximation error is the smaller the smoother the function is. Optimal
smoothness conditions hold for analytic functions. For this purpose, we assume that
a univariate function is analytic (holomorphic) in a certain ellipse.

Ea,b :=

{

z ∈ C : z = x+ iy,
x2

a2
+
y2

b2
≤ 1

}

is the ellipse with half-axes a and b. In particular,

Eρ := E 1
2 (ρ+1/ρ), 12 (ρ−1/ρ) for ρ > 1

304 10 Tensor Subspace Approximation

is the unique ellipse with foci±1 and ρ being the sum of the half-axes. The interior
of Eρ is denoted by E̊ρ. Note that the interval [−1, 1] is contained in E̊ρ because of
ρ > 1. Eρ will be called regularity ellipse, since the functions to be approximated
are assumed to be holomorphic in E̊ρ.

The main result is Bernstein’s theorem [14] (proof in [46, Sect. 8, Chap. 7]).

Theorem 10.24 (Bernstein). Let f be holomorphic and uniformly bounded in E̊ρ
with ρ > 1. Then, for any p ∈ N0 there is a polynomial Pp of degree ≤ p such that

‖f − Pp‖[−1,1],∞ ≤
2ρ−p

ρ− 1
‖f‖E̊ρ,∞ . (10.32)

A general real interval [x1, x2] with x1 <x2 is mapped by Φ(z) := 2(z−x1)
x2−x1

−1
onto [−1, 1]. We set

Eρ([x1, x2]) := Φ−1(Eρ)

=

{

z ∈ C : z = x+ iy,

(
x− x1+x2

2

)2

(ρ+ 1/ρ)
2 +

y2

(ρ− 1/ρ)
2 ≤

(x2 − x1
4

)2
}

.

Corollary 10.25. Assume that a function f defined on I = [x1, x2] can be extended
holomorphically onto E̊ρ(I) with M := sup{|f(z)| : z ∈ E̊ρ([x1, x2])}. Then, for
any p ∈ N0 there is a polynomial Pp of degree≤ p such that

‖f − Pp‖I,∞ ≤
2ρ−p

ρ− 1
M. (10.33)

The next statement exploits only properties of f on a real interval (proof in
Melenk-Börm-Löhndorf [146]).

Lemma 10.26. Let f be an analytical function defined on the interval I ⊂ R of
length L. Assume that there are constants C, γ ≥ 0 such that

∥
∥
∥
dn

dxn
f
∥
∥
∥
I,∞
≤ C n! γn for all n ∈ N0. (10.34a)

Then, for any p ∈ N0 there is a polynomial Pp of degree≤ p such that

‖f − Pp‖I,∞ ≤ 4eC (1 + γL) (p+ 1)
(
1 +

2

γL

)−(p+1)

. (10.34b)

Corollary 10.27. With the notations from §10.4.2.1 assume that f ∈ C(I) is
analytic in all arguments. Then the best approximation error εj(f) from (10.30)
can be estimated by

εj(f) ≤
2Mj

ρj − 1
ρ
−pj
j (ρj > 1, 1 ≤ j ≤ d) ,

if for all xk ∈ Ik (k �= j), the univariate function f(x1, . . . , xj−1, •, xj+1, . . . , xd)∈
C(Ij) satisfies the conditions of Corollary 10.25. The estimate

10.4 Analytical Approaches for the Tensor Subspace Approximation 305

εj(f) ≤ C′ (p+ 1)ρ
−pj
j with ρj := 1 +

2

γL

holds, if f(x1, . . . , xj−1, •, xj+1, . . . , xd) fulfils the inequalities (10.34a). In both
cases, the bound of εj(f) decays exponentially like O(ρ

−pj
j) as pj →∞.

10.4.3 Polynomial Interpolation

10.4.3.1 Univariate Interpolation

The univariate interpolation by polynomials is characterised by the interval I =
[a, b], the degree p, and the quadrature points (ξi)

p
i=0 ⊂ I. The interval can be

standardised to [−1, 1].An interpolation operator I[−1,1] on [−1, 1] with quadrature
points (ξi)

p
i=0 ⊂ [−1, 1] can be transferred to an interpolation operator I[a,b] on

[a, b] with quadrature points (Φ(ξi))
p
i=0, where Φ : [−1, 1] → [a, b] is the affine

mapping Φ(x) = a + 1
2 (b− a) (x+ 1) . The interpolating polynomials satisfy

I[a,b](f) = I[−1,1](f ◦ Φ).
The Lagrange functions Lν from (10.27a) are the Lagrange polynomials

Lν(x) =
∏

i∈{0,...,p}\{ν}

x− ξi
ξν − ξi

.

They satisfy L[a,b]
ν = L

[−1,1]
ν ◦ Φ−1.

A well-known interpolation error estimate holds for functions f ∈ Cp+1(I):

‖f−I(f)‖∞ ≤
Cω(I)
(p+1)!

‖f (p+1)‖∞ with Cω(I) :=
∥
∥
∥
∥
∥

p∏

i=0

(x− ξi)
∥
∥
∥
∥
∥
I,∞

. (10.35)

The natural Banach space is V =
(
C(I), ‖·‖I,∞

)
.

Remark 10.28. (a) If I[a,b](f) = I[−1,1](f ◦ Φ) are polynomial interpolations of
degree p, then Cω(I[a,b]) = Cω(I[−1,1])(b−a2)p+1.

(b) The stability constantCstab=‖I[a,b]‖V←V does not depend on the interval [a, b].

The smallest constant Cω(I[−1,1]) is obtained for the so-called Chebyshev inter-
polation using the Chebyshev quadrature points

ξi = cos
(i+ 1/2

p+ 1
π
)
∈ [−1, 1] (i = 0, . . . , p),

which are the zeros of the (p+ 1)-th Chebyshev polynomial Tp+1.

Remark 10.29 ([164]). The Chebyshev interpolation of polynomial degree p leads
to the constants

Cω(I[−1,1]) = 2−p−1 and Cstab ≤ 1 +
2

π
log (p+ 1) .

306 10 Tensor Subspace Approximation

10.4.3.2 Product Interpolation

Given polynomial interpolation operatorsIj of degree pj on intervals Ij , the product
interpolation is the tensor product

I :=

d⊗

j=1

Ij : C(I)→ Pp .

Under the conditions of Corollary 10.27, the approximation error εj(f) from (10.30)
decays exponentially: εj(f) ≤ O(ρ

−pj
j). Hence, Proposition 10.22 yields the result

‖f − I(f)‖ ≤
d∑

j=1

[
j−1∏

k=1

Cstab,k

]

(1 + Cstab,j) εj(f) ≤ O(max
j

ρ
−pj
j).

For Chebyshev interpolation, the stability constants Cstab,j ≤ 1 + 2
π log (pj + 1)

depend only very weakly on the polynomial degree pj .

10.4.4 Sinc Approximations

The following facts are mainly taken from the monograph of Stenger [177].

10.4.4.1 Sinc Functions, Sinc Interpolation

The sinc function sinc(x) := sin(πx)
πx is holomorphic in C. Fixing a step size h > 0,

we obtain a family of scaled and shifted functions

S(k, h)(x) := sinc
(x

h
−k

)
=

sin [π(x−kh)/h]
π (x− kh) /h (h > 0, k ∈ Z). (10.36)

Note that S(k, h) is a function in x with two parameters k, h.

Remark 10.30. The entire function S(k, h) satisfies S(k, h)(�h)=δk,� for all �∈Z.

Because of Remark 10.30, S(k, h) can be viewed as Lagrange function Lk
corresponding to infinite many interpolation points {kh : k ∈ Z}. This leads to
the following definition.

Definition 10.31 (sinc interpolation). Let f ∈ C(R) and N ∈ N0. The sinc inter-
polation in 2N + 1 points {kh : k ∈ Z, |k| ≤ N} is denoted by15

15 Only for the sake of convenience we consider the sum
∑N

k=−N . . . One may use instead
∑N2

k=−N1
, where N1 and N2 are adapted to the behaviour at −∞ and +∞, separately.

10.4 Analytical Approaches for the Tensor Subspace Approximation 307

CN (f, h) :=
N∑

k=−N
f(kh)S(k, h). (10.37a)

If the limit exists for N →∞, we write

C(f, h) :=

∞∑

k=−∞
f(kh)S(k, h). (10.37b)

The corresponding interpolation errors are

EN (f, h) := f − CN (f, h), E(f, h) := f − C(f, h). (10.37c)

Lemma 10.32. The stability constant in ‖CN (f, h)‖∞ ≤ Cstab(N) ‖f‖∞ for all
f ∈ C(R) satisfies

Cstab(N) ≤ 2

π
(3 + log(N)) (cf. [177, p. 142]).

Under strong conditions on f, it coincides with C(f, h) (cf. [177, (1.10.3)]).
Usually, there is an error E(f, h), which will be estimated in (10.40). The speed,
by which f(x) tends to zero as R) x → ±∞, determines the error estimate of
C(f, h) − CN (f, h) = EN (f, h) − E(f, h) (cf. Lemma 10.34), so that, finally,
EN (f, h) can be estimated.

The error estimates are based on the fact that f can be extended analytically from
R to a complex stripe Dδ satisfying R ⊂ Dδ ⊂ C:

Dδ := {z ∈ C : |0mz| < δ} (δ > 0) . (10.38)

Definition 10.33. For δ > 0 and f holomorphic in Dδ, define

‖f‖Dδ
=

∫

∂Dδ

|f(z)| |dz| =
∫

R

(|f(x+ iδ)|+ |f(x− iδ)|) dx (10.39)

(set ‖f‖Dδ
=∞, if the integral does not exist). Then, a Banach space is given by

H(Dδ) := {f is holomorphic in Dδ and ‖f‖Dδ
<∞}.

The residual theorem allows to represent the interpolation error exactly:

E(f, h)(z) =
sin(πz/h)

2πi

∫

∂Dδ

f(ζ)

(ζ − z) sin (πζ/h)dζ for all z ∈ Dδ

(cf. [177, Thm 3.1.2]). Estimates with respect to the supremum norm ‖·‖
R,∞ or

L2(R) norm have the form16

16 For a proof and further estimates in L2(R) compare [177, (3.1.12)] or [86, §D.2.3].

308 10 Tensor Subspace Approximation

‖E(f, h)‖∞ ≤
‖f‖Dδ

2πδ sinh(πδh)
(10.40)

Note that 1
sinh(πδ/h) ≤ 2 exp(−πδh) decays exponentially as h→ 0.

While E(f, h) depends on ‖f‖Dδ
and therefore on the behaviour of f in the

complex plane, the difference E(f, h)− EN (f, h) hinges on decay properties of f
on the real axis alone.

Lemma 10.34. Assume that for f ∈H(Dδ) there are some c≥0 and α>0 such that

|f(x)| ≤ c · e−α|x| for all x ∈ R. (10.41)

Then, the difference E(f,h)−EN(f,h)=
∑
|k|>Nf(kh)S(k,h) can be bounded by

‖E(f, h)− EN (f, h)‖∞ ≤
2c

αh
e−αNh. (10.42)

Proof. Since E(f, h) − EN (f, h) =
∑
|k|>N f(kh)S(k, h) and ‖S(k, h)‖∞ ≤ 1,

the sum
∑
|k|>N |f(kh)| can be estimated using (10.41). ��

To bound ‖EN (f, h)‖∞ ≤ ‖E(f, h)‖∞ + ‖E(f, h)− EN (f, h)‖∞ optimally,
the step width h has to be chosen such that both terms are balanced.

Theorem 10.35. Let f ∈ H(Dδ) satisfy (10.41). Choose h by

h := hN :=

√
πδ

αN
. (10.43)

Then the interpolation error is bounded by

‖EN (f, h)‖∞ ≤
√

N
δ e−

√
παδN

[‖f‖Dδ

π [1− e−παδN]
√
Nδ

+
2c√
πα

]

. (10.44)

The right-hand side in (10.44) behaves like ‖EN (f, h)‖∞ ≤ O(exp{−C
√
N }).

Proof. Combine (10.40) and (10.42) with h from (10.43). ��

Inequality (10.40) implies that, given an ε > 0, accuracy ‖EN (f, hN)‖∞ ≤ ε
holds for N ≥ C−2 log2(1ε) +O(log

1
ε).

Corollary 10.36. A stronger decay than in (10.41) holds, if

|f(x)| ≤ c · e−α |x|
γ

for all x ∈ R and some γ > 1. (10.45)

Instead of (10.42), the latter condition implies that

‖E(f, h)− EN (f, h)‖∞ ≤
2c

αNγ−1hγ
exp(−α (Nh)

γ
). (10.46)

10.4 Analytical Approaches for the Tensor Subspace Approximation 309

The optimal step size h := hN :=
(
πδ
α

)1/(γ+1)
N−γ/(γ+1) leads to

‖EN (f, hN)‖∞ ≤ O
(
e−CN

γ
γ+1

)
for all 0 < C < α

1
γ+1 (πδ)

γ
γ+1 . (10.47)

To reach accuracy ε, the number N must be chosen ≥
(
C−1 log(1/ε)

)(γ+1)/γ
.

Proof. See [86, Satz D.2.11]. ��

For increasing γ, the right-hand side in (10.47) approachesO(e−CN) as attained
in Theorem 9.29 for a compact interval. A bound quite close to O(e−CN) can be
obtained when f decays doubly exponentially.

Corollary 10.37. Assume that for f ∈ H(Dδ) there are constants c1, c2, c3 > 0
such that

|f(x)| ≤ c1 · exp{−c2ec3|x|} for all x ∈ R. (10.48)

Then

‖E(f, h)− EN (f, h)‖∞ ≤
2c1
c2c3

exp
(
− c2ec3Nh

)e−c3Nh

h
. (10.49)

Choosing h := hN := logN
c3N

, we obtain

‖EN (f, h)‖∞ ≤ C exp
(−πδc3N

logN

)
with C→

‖f‖Dδ

2πδ
for N→∞. (10.50)

Accuracy ε>0 follows from N≥Cε
(
log 1

ε

)
·log

(
log 1

ε

)
with Cε=

1+o(1)
πδ c3

as ε→0.

Proof. See [86, Satz D.2.13]. ��

10.4.4.2 Transformations and Weight Functions

As mentioned in §10.4.1.3, a transformation φ : J → I may improve the smooth-
ness of the function. Here, the transformation has another reason. Since the sinc
interpolation is performed on R, a function f defined on I must be transformed into
F := f ◦φ for some φ : R→ I. Even if I = R, a further substitution by φ : R→ R

may lead to a faster decay of |f(x)| as |x| → ∞. We give some examples:

I transformations x = φ(ζ)

(a) (0, 1] φ(ζ) = 1
cosh(ζ) or 1

cosh(sinh(ζ)) (cf. [112])
(b) [1,∞) φ(ζ) = cosh(ζ) or cosh(sinh(ζ))
(c) (0,∞) φ(ζ) = exp(ζ)
(d) (−∞,∞) φ(ζ) = sinh(ζ)

One has to check carefully, whether F := f ◦ φ belongs to H(Dδ) for a positive δ.
The stronger the decay on the real axis is, the faster is the increase in the imaginary

310 10 Tensor Subspace Approximation

axis. The second transformations in the lines (a) and (b) are attempts to reach the
doubly exponential decay from Corollary 10.37. The transformation from line (d)
may improve the decay.

Let f be defined on I. To study the behaviour of F (ζ) = f(φ(ζ)) for ζ → ±∞,
it is necessary to have a look at the values of f at the end points of I. Here, different
cases are to be distinguished.

Case A1: Assume that f is defined on (0, 1] with f(x)→ 0 as x→ 0. Then F (ζ) =
f(1/ cosh(ζ)) decays even faster to zero as ζ → ±∞. Note that the boundary value
f(1) is arbitrary. In particular, f(1) = 0 is not needed. Furthermore, since F (ζ)
is an even function, the interpolation CN (F, h) =

∑N
k=−N F (kh)S(k, h) from

(10.37a) can be simplified to CN (F, h) = F (0)S(0, h) + 2
∑N
k=1 F (kh)S(k, h),

which, formulated with f = F ◦ φ−1, yields the new interpolation scheme

ĈN (f, h)(x) = f(1)L0(x) + 2

N∑

k=1

f(1
cosh(kh))Lk(x)

with Lk(x) := S(k, h)(Arcosh(1x)). Area hyperbolic cosine Arcosh is the inverse

of cosh . Note that ĈN involves only N + 1 interpolation points ξk = 1/ cosh(kh).

Case A2: Take f as above, but assume that f(x) → c �= 0 as x → 0. Then
F (ζ)→ c as ζ → ±∞ shows that F fails to fulfil the desired decay to zero.

Case B: Let f be defined on (0,∞) and set F (ζ) := f(exp(ζ)). Here, we have to
require f(x)→0 for x→0 as well as for x→∞. Otherwise, F fails as in Case A2.

In the following, we take Case A2 as model problem and choose a weight func-
tion ω(x) with ω(x) > 0 for x > 0 and ω(x) → 0 as x → 0. Then, obviously,
fω := ω · f has the correct zero limit at x = 0. Applying the interpolation to
Fω(ζ) := (ω · f) (φ(ζ)) yields

Fω(ζ) ≈ CN (Fω , h)(ζ) =

N∑

k=−N
Fω(kh) · S(k, h)(ζ).

Backsubstitution yields ω(x)f(x)≈
∑N

k=−N (ω ·f)(φ(kh))·S(k, h)(φ−1(x)) and

f(x) ≈ ĈN (f, h)(x) :=

N∑

k=−N
(ω ·f) (φ(kh))S(k, h)(φ

−1(x))

ω(x)
for x ∈ (0, 1].

The convergence of |f(x) − ĈN (f, h)(x)| as N → ∞ is no longer uniform.
Instead, the weighted error

‖f − ĈN (f, h)‖ω := ‖ω[f − ĈN (f, h)]‖∞

satisfies the previous estimates. In many cases, this is still sufficient.

Example 10.38. (a) The function f(x) = xx is analytic in (0, 1], but singular at
x = 0 with limx→0 f(x)= 1. Choose ω(x) :=xλ for some λ> 0 and transform by

10.4 Analytical Approaches for the Tensor Subspace Approximation 311

φ(ζ) = 1/ cosh(ζ). Then Fω(ζ) = (cosh(ζ))
−λ−1/ cosh(ζ) behaves for ζ→±∞

like 2λ exp(−λ |ζ|). It belongs to H(Dδ) for δ < π/2 (note the singularity at
ζ = ±πi/2). Therefore, Lemma 10.34 can be applied.

(b) Even if f is unbounded like f(x) = 1/
√
x, the weight ω(x) := x1/2+λ leads to

the same convergence of Fω as in Part (a).

10.4.4.3 Separation by Interpolation, Tensor Subspace Representation

We apply Remark 10.20 for d = 2, where the interpolation is the sinc interpolation
with respect to the first variable. Consider a function f(x, y) with x ∈ X and y ∈ Y.
If necessary, we apply a transformation x = φ(ζ) with φ : R→ X, so that the first
argument varies in R instead of X. Therefore, we may assume that f(x, y) is given
with x ∈ X = R. Suppose that f(x, y)→ 0 as |x| → ±∞. Sinc interpolation in x
yields

f(x, y) ≈ CN (f(·, y), h)(x) =
N∑

k=−N
f(kh, y) · S(k, h)(x).

The previous convergence results require uniform conditions with respect to y.

Proposition 10.39. Assume that there is some δ > 0 so that f(·, y) ∈ H(Dδ) for all
y ∈ Y and ||| f ||| := sup{‖f(·, y)‖Dδ

: y ∈ Y } < ∞. Furthermore, suppose that
there are c ≥ 0 and α > 0 such that

|f(x, y)| ≤ c · e−α|x| for all x ∈ R, y ∈ Y.

Then the choice h :=
√

πδ
αN yields the uniform error estimate

|EN (f(·, y), h)| ≤
√
N

δ
e−
√
παδN

[
||| f |||

π [1− e−παδN]
√
Nδ

+
2c√
πα

]

(y ∈ Y).

Proof. For any y ∈ Y, the univariate function f(·, y) satisfies the conditions of
Theorem 10.35. Inequality ‖f(·, y)‖Dδ

≤ |||f ||| proves the desired estimate. ��

If f(x, y) → 0 as |x| → ±∞ is not satisfied, the weighting by ω(x) has to be
applied additionally. We give an example of this type.

Example 10.40. Consider the function f(x, y) := 1
x+y for x, y∈(0,∞). Choose the

weight function ω(x) :=xα (0<α<1). Transformation x = φ(ζ) := exp(ζ) yields

Fω(ζ, y) := [ω(x)f(x, y)]
∣
∣
∣
x=φ(ζ)

=
exp(αζ)

y + exp(ζ)
.

One checks that Fω ∈ H(Dδ) for all δ < π. The norm ‖f(·, y)‖Dδ
is not uniquely

bounded for y ∈ (0,∞), but behaves like O(yα−1):

312 10 Tensor Subspace Approximation

∣
∣
∣ω(x)

[
f(x, y)− ĈN (f(·, y), h)(x)

]∣
∣
∣ ≤ O(yα−1e−

√
παδN) for

ĈN (f(·,y),h)(x) := CN(Fω(·, y),h)(log(x))
ω(x)

=

N∑

k=−N

eαkh

y+ekh
S(k, h)(log(x))

ω(x)
.

The interpolation yields a sum of the form FN (x, y) :=
∑N

k=−N fk(y)Lk(x)
with Lk being the sinc function S(k, h) possibly with a further transformation and
additional weighting, while fk(y) are evaluations of f(x, y) at certain xk. Note that
FN ∈ R2N+1.

Next, we assume that f(x1, x2, . . . , xd) is a d-variate function. For simplicity
suppose that all xj vary in R with f → 0 as |xj | → ±∞ to avoid transformations.
Since interpolation in x1 yields

f(1)(x1, x2, . . . , xd) =

N1∑

k1=−N1

f(1),k1(x2, . . . , xd) · S(k1, h)(x1).

Application of sinc interpolation to f(1),k(x2, . . . , xd) with respect to x2 separates
the x2 dependence. Insertion into the previous sum yields

f(2)(x1, . . . , xd) =

N1∑

k1=−N1

N2∑

k2=−N2

f(2),k1,k2(x3, . . . , xd)·S(k1,h)(x1)·S(k2,h)(x2).

After d− 1 steps we reach at

f(d−1)(x1, . . . , xd) =
N1∑

k1=−N1

· · ·
Nd−1∑

kd−1=−Nd−1

f(d−1),k1,...,kd−1
(xd)

d−1∏

j=1

S(kj , h)(xj),

which belongs to
⊗d

j=1 Uj, where dim(Uj) = 2Nj + 1, while Ud spanned by
all f(d−1),k1,...,kd−1

for −Nj ≤ kj ≤ Nj is high-dimensional. The last step yields

f(d)(x1, x2, . . . , xd) =

N1∑

k1=−N1

· · ·
Nd∑

kd=−Nd

f(d),k1,...,kd−1

d∏

j=1

S(kj , h)(xj) ∈ Tr ,

where r = (2N1 + 1, . . . , 2Nd + 1) is the tensor subspace rank.

10.5 Simultaneous Approximation

Let v1, . . . ,vm ∈ V = a

⊗d
j=1Vj be m tensors. As in Problem (10.12) we want to

approximate all vi by ui ∈Tr, however, the involved subspace U=
⊗d

j=1Uj with
dim(Uj)= rj should be the same for all ui. More precisely, we are looking for the
minimisers ui of the following minimisation problem:

10.5 Simultaneous Approximation 313

inf
U1⊂V1 with
dim(U1)=r1

inf
U2⊂V2 with
dim(U2)=r2

. . . inf
Ud⊂Vd with
dim(Ud)=rd

{

inf
ui∈

⊗
d
j=1Uj

m∑

i=1

ω2
i ‖vi − ui‖2

}

, (10.51)

where we have associated suitable weights ω2
i > 0.

Such a problem arises for matrices (i.e., d = 2), e.g., in the construction of
H2-matrices (cf. [86, §8]).

We refer to Lemma 3.26: a tuple (v1, . . . ,vm) ∈ Vm may be considered as a
tensor of W= a

⊗d+1
j=1Vj with the (d+ 1)-th vector space Vd+1 :=K

m. The Hilbert
structure is discussed in the next remark.

Remark 10.41. Let V = a

⊗d
j=1 Vj be a Hilbert space with scalar product 〈·, ·〉V,

while K
m is endowed with the scalar product 〈x, y〉d+1 :=

∑m
i=1 ω

2
i xiyi. Then

Vm is isomorphic and isometric to W = a

⊗d+1
j=1 Vj with Vd+1 := K

m. Tuples
(v1, . . . ,vm) ∈ Vm are written as tensors w :=

∑m
i=1 vi ⊗ e(i) ∈W (e(i) unit

vectors, cf. (2.2)) with the following induced scalar product and norm:

〈w,w′〉 =
∑m

i=1
ω2
i 〈vi,v′i〉V , ‖w‖ =

√
∑m

i=1
ω2
i ‖vi‖

2
V.

Hence, Problem (10.51) is equivalent to

inf
U1⊂V1 with
dim(U1)=r1

inf
U2⊂V2 with
dim(U2)=r2

. . . inf
Ud⊂Vd with
dim(Ud)=rd

{

inf
u∈

⊗d+1
j=1Uj

‖w− u‖2
}

(10.52)

where the last subspace Ud+1 = Vd+1 = K
m has full dimension. This shows the

equivalence to the basic Problem (10.12) (but with d replaced by d+1, Vd+1=K
m

and rd+1=m). The statements about the existence of a minimiser of (10.12) can be
transferred to statements about Problem (10.51).

As an important application we consider the simultaneous approximation prob-
lem for matrices vi = Mi ∈ K

I×J (1≤ i≤m), where
∑m

i=1 ω
2
i ‖Mi −Ri‖2F is to

be minimised with respect to Ri ∈U1 ⊗ U2 with the side conditions dim(U1)= r1
and dim(U2) = r2. Here, W = K

I ⊗ K
J ⊗ K

m is the underlying tensor space.
The HOSVD bases of KI and K

J result from the matrices U (1) and U (2) of the
left-sided singular value decompositions LSVD(I,m#J, r1,M1(w), U (1), Σ(1))
and LSVD(J,m#I, r2,M2(w), U (2), Σ(2)) :

M1(w) = [ω1M1, ω2M2, . . . , ωmMm] = U (1)Σ(1)V (1)T ∈ K
I×(J×m),

M2(w) =
[
ω1M

T
1 , ω2M

T
2 , . . . , ωmM

T
m

]
= U (2)Σ(2)V (2)T ∈ K

J×(I×m).

Equivalently, one has to perform the diagonalisations

M1(w)M1(w)T =
∑m

i=1
ω2
iMiM

T
i = U (1)(Σ(1))2U (1)T ∈ K

I×I ,

M2(w)M2(w)T =
∑m

i=1
ω2
iM

T
i Mi = U (2)(Σ(2))2U (2)T ∈ K

J×J .

314 10 Tensor Subspace Approximation

The HOSVD basis of Km is not needed since we do not want to introduce a strictly
smaller subspace. The HOSVD projection from Lemma 10.1 takes the special
form Rk := P

(r1)
1 MkP

(r2)
2 , where P

(ri)
i =

∑ri
ν=1 u

(i)
ν u

(i)H
ν (i = 1, 2) uses the

ν-th column u(i)ν of U (i). The error estimate (10.4b) becomes

∑m

i=1
ω2
i ‖Mi −Ri‖2F = ‖w − uHOSVD‖2 ≤

2∑

j=1

nj∑

i=rj+1

(
σ
(j)
i

)2

≤ 2 ‖v − ubest‖2 = 2

m∑

i=1

ω2
i

∥
∥Mi −Rbest

i

∥
∥2
F

with n1 := #I and n2 := #J. Here, we have made use of Corollary 10.4 because
of r3 = n3 := m.

10.6 Résumé

The discussion of the two traditional formats (r-term and tensor subspace format)
has shown that the analysis as well as the numerical treatment is by far more com-
plicated for d ≥ 3 than for the matrix case d = 2. The main disadvantages are:

1 Truncation of v ∈ RR to u ∈ Rr with smaller rank r < R is not easy to per-
form. This nonlinear optimisation problem, which usually needs regularisation,
does not only lead to an involved numerical algorithm, but also the result is not
reliable, since a local minimum may be obtained and different starting value can
lead to different optima.

1 There is no decomposition of v ∈ Rr into highly and less important terms,
which could help for the truncation. In contrast, large terms may be negligible
since they add up to a small tensor.

1 The disadvantage of the tensor subspace format is the data size
∏d
j=1 rj of the

coefficient tensor. For larger d and rj ≥ r, the exponential increase of rd leads
to severe memory problems.

1 While the ranks rj of the tensor subspace format are bounded by nj = dim(Vj),
the upper bound of the tensor rank has exponential increase with respect to d (cf.
Lemma 3.41). Therefore, the size of r in v ∈ Rr may become problematic.

On the other hand, both formats have their characteristic advantages:

⊕ If the rank r of v ∈ Rr is moderate, the representation of v by the r-term
format requires a rather small storage size, which is proportional to r, d, and the
dimension of the involved vector spaces Vj .

⊕ The tensor subspace format together with the higher order singular value
decompositions (HOSVD) allows a simple truncation to smaller ranks. For the
important case of d = 3, the data size

∏d
j=1 rj is still tolerable.

Chapter 11
Hierarchical Tensor Representation

Abstract The hierarchical tensor representation (notation: Hr) allows to keep the
advantages of the subspace structure of the tensor subspace format Tr, but has only
linear cost with respect to the order d concerning storage and operations. The hier-
archy mentioned in the name is given by a ‘dimension partition tree’. The fact that
the tree is binary, allows a simple application of the singular value decomposition
and enables an easy truncation procedure.
After an introduction in Sect. 11.1, the algebraic structure of the hierarchical tensor
representation is described in Sect. 11.2. While the algebraic representation uses
subspaces, the concrete representation in Sect. 11.3 introduces frames or bases and
the associated coefficient matrices in the hierarchy. Again, higher order singular
value decompositions (HOSVD) can be applied and the corresponding singular
vectors can be used as basis. In Sect. 11.4, the approximation in the Hr format is
studied with respect to two aspects. First, the best approximation within Hr can be
solved. Second, the HOSVD bases allow a quasi-optimal truncation. Section 11.5
discusses the joining of two representations. This important feature is needed if
two tensors described by two different hierarchical tensor representations require a
common representation. Finally, Sect. 11.6 shows how the sparse grid format can be
mapped into the hierarchical tensor format.

11.1 Introduction

11.1.1 Hierarchical Structure

In the following, we want to keep the positive properties of the tensor subspace
representation but avoiding exponential increase of the coefficient tensor. The
dimension of the subspaces Uj ⊂ Vj is bounded by rj , but their d-fold tensor
product is again high-dimensional. In the approach of the hierarchical tensor
format, we repeat the concept of tensor subspaces on higher levels: we do not form
tensor products of all Uj , but choose again subspaces of pairs of subspaces so that

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 11,
© Springer-Verlag Berlin Heidelberg 2012

315

316 11 Hierarchical Tensor Representation

the dimension is reduced. The recursive use of the subspace idea leads to a certain
tree structure describing a hierarchy of subspaces. In particular, we shall use binary
trees, since this fact will allow us to apply standard singular value decompositions
to obtain HOSVD bases and to apply HOSVD truncations.

The previous r-term and tensor subspace representations are invariant with re-
spect to the ordering of the spaces Vj . This is different for the hierarchical format.1

Before giving a strict definition, we illustrate the idea by examples.

V

V12 V34

V V V1 2 3 V4

Fig. 11.1 Hierarchy

We start with the case of d = 4, where V =⊗4
j=1Vj . In §3.2.4, a tensor space of order 4 has been

introduced as ((V1 ⊗ V2)⊗ V3) ⊗ V4 using the defini-
tion of binary tensor products. However, the order of
binary tensor products can be varied. We may first intro-
duce the spaces V12 := V1 ⊗ V2 and V34 := V3 ⊗ V4
and then V12 ⊗ V34 = (V1 ⊗ V2) ⊗ (V3 ⊗ V4) ∼=

V1 ⊗ V2 ⊗ V3 ⊗ V4. This approach is visualised in Fig. 11.1. Following the tensor
subspace idea, we introduce subspaces for all spaces in Fig. 11.1. This leads to the
following construction:

U{1,2,3,4} ⊂ U{1,2} ⊗U{3,4} ⊂ V
� 	

U{1,2} ⊂ U1 ⊗ U2 U{3,4} ⊂ U3 ⊗ U4 (11.1)
� 	 � 	

U1 ⊂ V1 U2 ⊂ V2 U3 ⊂ V3 U4 ⊂ V4

The tensor to be represented must be contained in the upper subspace U{1,2,3,4}.
Assume that there are suitable subspaces Uj (1 ≤ j ≤ 4) of dimension r. Then the
tensor products U1⊗U2 and U3⊗U4 have the increased dimension r2. The hope is
to find again subspaces U{1,2} and U{3,4} of smaller dimension, say, r. In this way,
the exponential increase of the dimension could be avoided.

The construction by (11.1b) is still invariant with respect to permutations 1↔2,
3↔ 4, {1, 2} ↔ {3, 4}; however, the permutation 2↔ 3 yields another tree.

A perfectly balanced tree like in Fig. 11.1 requires that d= 2L, where L is the
depth of the tree. The next example d = 7, i.e., V =

⊗7
j=1Vj , shows a possible

construction of V by binary tensor products:

level 0 V
� 	

level 1 V123 V4567

� 	 � 	

level 2 V1 V23 V45 V67

� 	 � 	 � 	

level 3 V2 V3 V4 V5 V6 V7

(11.2)

Again, the hierarchical format replaces the full spaces by subspaces.

1 Instead of ‘hierarchical tensor format’ also the term ‘H-Tucker format’ is used (cf. [74], [131]),
since the subspace idea of the Tucker format is repeated recursively.

11.1 Introduction 317

The position of V in the tree is called the root of tree. The factors of a binary
tensor product appear in the tree as two sons, e.g., V1 and V23 are the sons of V123

in the last example. Equivalently, V123 is called the father of V1 and V23. The
spaces Vj , which cannot be decomposed further, are the leaves of the tree. The root
is associated with the level 0. The further levels are defined recursively: sons of a
father at level � have the level number �+ 1.

The fact that we choose a binary tree (i.e., the number of sons is either 2
or 0) is essential, since we want to apply matrix techniques. If we decompose
tensor products of order d recursively in (d/2) + (d/2) factors for even d and in
((d− 1) /2) + (d/2) factors for odd d, it follows easily that2

L := �log2 d� (11.3)

is the largest level number (depth of the tree).

{1} {2}

{1,2} {3}

{1,2,3} {4}

{1,2,3,4} {5}

{1,2,3,4,5} {6}

{1,2,3,4,5,6} {7}

{1,2,3,4,5,6,7}

Fig. 11.2 Linear tree TTT
D

Quite another division strategy is the splitting
into 1+(d− 1) factors. The latter example

⊗7
j=1Vj

leads to the partition tree TTT
D depicted in Fig. 11.2.

In this case, the depth of the tree is maximal:

L := d− 1. (11.4)

Another derivation of the hierarchical represen-
tation can be connected with the minimal subspaces
from §6. The fact that a tensor v might have small
j-th ranks, gives rise to the standard tensor subspace
format with Uj = Umin

j (v). However, minimal sub-
spaces Umin

α (v) of dimension rα are also existing
for subsets ∅ � α � D := {1, . . . , d} (cf. §6.4). For instance, U{1,2} and U{3,4}
in (11.1) can be chosen as Umin

{1,2}(v) and Umin
{3,4}(v). As shown in (6.13), they are

nested is the sense of U{1,2} ⊂ U1 ⊗ U2, etc. Note that the last minimal subspace
is one-dimensional: U{1,2,3,4} = Umin

{1,2,3,4}(v) = span{v}.

11.1.2 Properties

We give a preview of the favourable features of the actual approach.

1. Representations in the formatsRr (cf. §11.2.4.2 and §11.3.5) or Tr (cf. §11.2.4.1)
can be converted into hierarchical format with similar storage cost. Later this will
be shown for further formats (sparse-grid representation, TT representation). As
a consequence, the approximability by the hierarchical format is at least as good
as by the aforementioned formats.

2. The cost is strictly linear in the order d of the tensor space
⊗d

j=1Vj . This is in
contrast to Tr, where the coefficient tensor causes problems for higher d. These

2 �x� is the integer with x ≤ �x� < x+ 1.

318 11 Hierarchical Tensor Representation

statements hold under the assumption that the rank parameters stay bounded
when d varies. If, however, the rank parameters increase with d, all formats have
problems.

3. The binary tree structure allows us to compute all approximations by means of
standard linear algebra tools. This is essential for the truncation procedure.

4. The actual representation may be much cheaper than a representation withinRr
or Tr (see next Example 11.1).

Example 11.1. Consider the Banach tensor space L2([0, 1]d)= L2

⊗d
j=1L

2([0, 1])
for d = 4 and the particular function

f(x1, x2, x3, x4) = P1(x1, x2) · P2(x3, x4),

where P1 and P2 are polynomials of degree p.
(a) Realisation in hierarchical format. The example is such that the dimension
partition tree TD from Fig. 11.3 is optimal. Writing P1(x1, x2) as

p+1∑

i=1

P1,i(x1)x
i−1
2 =

p+1∑

i=1

P1,i(x1)⊗ xi−12 ,

we see that dim(U1)=dim(U2)=p+1 is sufficient to have P1(x1, x2) ∈ U1⊗U2.
Similarly, dim(U3)=dim(U4)=p+ 1 is enough to ensure P2(x3, x4) ∈ U3 ⊗ U4.
The subspaces U12 and U34 may be one-dimensional: U12 = span{P1(x1, x2)},
U34 = span{P2(x3, x4)}. The last subspace U14 = span{f} is one-dimensional
anyway. Hence, the highest dimension is rj=p+ 1 for 1≤j≤4.

(b) Realisation in Tr . The subspaces Uj coincide with Uj from above, so that
rj = dim(Uj) = p+ 1. Hence, U =

⊗4
j=1Uj has dimension (p+ 1)

d
= (p+ 1)

4.

(c) Realisation in Rr. P1(x1, x2) =
∑p+1

i=1 P1,i(x1)x
i−1
2 as well as P2(x3, x4) =

∑p+1
i=1 P2,i(x3)x

i−1
4 have p+ 1 terms; hence, their product has r = (p+ 1)

2 terms.

The background of this example is that the formats Tr and Rr are symmetric in
the treatment of the factors Vj in V =

⊗d
j=1Vj . The simple structure f = P1 ⊗ P2

(while P1 and P2 are not elementary tensors) cannot be mapped into the Tr or Rr
structure. One may extend the example to higher d by choosing f =

⊗d/2
j=1 Pj ,

where Pj = Pj(x2j−1, x2j). Then the cost of the Tr andRr formats is exponential
in d (more precisely, (p+ 1)d for Tr and r = (p+ 1)d/2 for Rr), while for the
hierarchical format the dimensions are rj = p + 1 (1 ≤ j ≤ d) and rα = 1 for all
other subsets α appearing in the tree.

11.1.3 Historical Comments

The hierarchical idea has also appeared as ‘sequential unfolding’ of a tensor. For
instance, v ∈ K

n×n×n×n can be split by a singular value decomposition into
v =

∑
ν eν ⊗ fν with eν , fν ∈ K

n×n. Again, each eν , fν has a decomposition
eν =

∑
μ aν,μ ⊗ bν,μ and fν =

∑
λ cν,λ ⊗ dν,λ with vectors aν,μ, . . . , dν,λ ∈ K

n.

11.2 Basic Definitions 319

Together, we obtain v =
∑

ν,μ,λ aν,μ⊗ bν,μ⊗ cν,λ⊗ dν,λ. The required data size is
4r2n, where r ≤ n is the maximal size of the index sets for ν, μ, λ. In the general
case of v ∈

⊗d
j=1 K

n with d = 2L, the required storage is drLn. Such an approach
is considered in Khoromskij [115, §2.2] and repeated in Salmi-Richter-Koivunen
[165]. It has two drawbacks. The required storage is still exponentially increasing
(but only with exponent L = log2 d), but the major problem is that singular value
decompositions are to be computed for extremely large matrices.

The remedy is to require that all eν from above belong simultaneously to one
r-dimensional subspace (U12 in (11.1)). The author has borrowed this idea from a
similar approach leading to the H2 technique of hierarchical matrices (cf. Hack-
busch [86, §8], Börm [21]). The hierarchical tensor format is described 2009 in
Hackbusch-Kühn [94]. A further analysis is given by Grasedyck [73]. However, the
method has been mentioned much earlier by Vidal [191] in the quantum comput-
ing community. In quantum chemistry, MCTDH abbreviates ‘multi-configuration
time-dependent Hartree’ (cf. Meyer et al. [147]). In Wang-Thoss [194], a multilayer
formulation of the MCTDH theory is presented which might contain the idea of
a hierarchical format. At least Lubich [144, p. 45] has translated the very specific
quantum chemistry language of that paper into a mathematical formulation using
the key construction (11.24) of the hierarchical tensor representation.

A closely related method is the matrix product system which is the subject of the
next chapter (§12).

11.2 Basic Definitions

11.2.1 Dimension Partition Tree

We consider the tensor space3

V = a

⊗

j∈D
Vj (11.5)

with a finite index set D. To avoid trivial cases, we assume #D ≥ 2.

Definition 11.2 (dimension partition tree). The tree TD is called a dimension
partition tree (of D) if

1) all vertices4 α ∈ TD are non-empty subsets of D,
2) D is the root of TD,
3) every vertex α ∈ TD with #α ≥ 2 has two sons α1, α2 ∈ TD such that

α = α1 ∪ α2, α1 ∩ α2 = ∅.
The set of sons of α is denoted by S(α). If S(α) = ∅, α is called a leaf. The set of
leaves is denoted by L(TD).

3 The tensors represented next belong to the algebraic tensor space Valg = a

⊗
j∈D Vj. Since

Valg ⊂ Vtop = ‖·‖
⊗

j∈D Vj, they may also be seen as elements of Vtop.
4 Elements of a tree are called ‘vertices’.

320 11 Hierarchical Tensor Representation

D={1,2,3,4}

{1,2} {3,4}

{1} {2} {3} {4}

Fig. 11.3 Dimen-
sion partition tree

The tree TD corresponding to (11.1) is illustrated in Fig. 11.3.
The numbers 1, . . . , d are chosen according to Remark 11.4.

As mentioned in §11.1, the level number of vertices are defined
recursively by

level(D) = 0, σ ∈ S(α)⇒ level(σ) = level(α)+ 1. (11.6)

The depth of the tree defined below is often abbreviated by L:

L := depth(TD) := max {level(α) : α ∈ TD} . (11.7)

Occasionally, the following level-wise decomposition of the tree TD is of interest:

T
(�)
D := {α ∈ TD : level(α) = �} (0 ≤ � ≤ L) . (11.8)

Remark 11.3. Easy consequences of Definition 11.2 are:
(a) TD is a binary tree,
(b) The set of leaves, L(TD), consists of all singletons of D:

L(TD) = {{j} : j ∈ D} . (11.9)

(c) The number of vertices in TD is 2#D − 1.

ConsideringD as a set, no ordering is prescribed. A total ordering not only of D,
but also of all vertices of the tree TD can be defined as follows.

Remark 11.4 (ordering of TD). (a) Choose any ordering of the two elements in
S(α) for any α ∈ TD\L(TD), i.e., there is a first son α1 and a second son α2 of α.
The ordering is denoted by α1 < α2. Then for two different β, γ ∈ TD there are the
following cases:

(i) If β, γ are disjoint, there is some α ∈ TD with sons α1 < α2 such that β ⊂ α1

and γ ⊂ α2 [or γ ⊂ α1 and β ⊂ α2]. Then define β < γ [or γ < β, respectively];
(ii) If β, γ are not disjoint, either β ⊂ γ or γ ⊂ β must hold. Then define β < γ

or γ < β, respectively.
(b) Let TD be ordered and denote the elements of D by 1, . . . , d according to their
ordering. The vertices α are of the form α= {i∈D : iαmin≤ i≤ iαmax} with bounds
iαmin, i

α
max. For the sons α1<α2 of α we have iαmin= i

α1

min≤ iα1
max= i

α2

min−1<iα2
max=

iαmax. Interchanging the ordering of α1 and α2 yields a permutation of D, but the
hierarchical representation will be completely isomorphic (cf. Remark 11.20).

The notations α1, α2 ∈ S(α) or S(α) = {α1, α2} tacitly imply that α1 < α2.
Taking the example (11.1) corresponding to TD from Fig. 11.3, we may define

that the left son precedes the right one. Then the total ordering

{1} < {2} < {1, 2} < {3} < {4} < {3, 4} < {1, 2, 3, 4}

of TD results. In particular, one obtains the ordering 1 < 2 < 3 < 4 of D, where
we identify j with {j} .

11.2 Basic Definitions 321

Remark 11.5. (a) The minimal depth of TD is L = �log2 d� (cf. (11.3)), which is
obtained under the additional condition

|#α1 −#α2| ≤ 1 for all α1, α2 ∈ S(α)\L(TD).

(b) The maximal depth of TD is L = d− 1 (cf. (11.4)).

Different trees TD will lead to different formats and in the case of approximations
to different approximation errors. Example 11.1 shows that for a given tensor there
may be more and less appropriate trees.

We recall the notation Vα :=
⊗

j∈αVj for α⊂D (cf. (5.4)). For leaves α= {j}
with j ∈ D, the latter definition reads V{j} = Vj . The matricisationMα denotes
the isomorphism V ∼= Vα ⊗Vαc , where αc := D\α is the complement.

Definition 11.6 (Tα). For any α ∈ TD the subtree Tα := {β ∈ TD : β ⊂ α} is
defined by the root α and the same set S(β) of sons as in TD.

11.2.2 Algebraic Characterisation, Hierarchical Subspace Family

In the case of Tr, the definition in (8.3) is an algebraic one using subspaces of certain
dimensions. The concrete tensor subspace representation v=ρTS

(
a, (Bj)

d
j=1

)
uses

bases and coefficients. Similarly, we start here with a definition based on subspace
properties and later in §11.3.1 introduce bases and coefficient matrices.

Let a dimension partition tree TD together with a tensor v ∈ V = a

⊗
j∈DVj

be given. The hierarchical representation of v is characterised by finite dimensional
subspaces5

Uα ⊂ Vα := a

⊗

j∈α
Vj for all α ∈ TD . (11.10)

The basis assumptions on Uα depend on the nature of the vertex α ∈ TD. Here,
we distinguish (a) the root α = D, (b) leaves α ∈ L(TD), (c) non-leaf vertices
α ∈ TD\L(TD).

• The aim of the construction is to obtain a subspace UD at the root D ∈ TD such
that

v ∈ UD . (11.11a)

Since D ∈ TD is not a leaf, also condition (11.11c) must hold.
• At a leaf α = {j} ∈ L(TD),Uα = Uj is a subspace6 of Vj (same situation as in

(8.3) for Tr):

Uj ⊂ Vj for all j ∈ D, i.e., α = {j} ∈ L(TD). (11.11b)

5 We use the bold-face notation Uα for tensor spaces, although for α ∈ L(TD), U{j} = Uj is
a subspace of the standard vector space Vj.
6 We identify the notations Vj (j ∈ D) and Vα = V{j} for α = {j} ∈ L(TD). Similar for
Uj =U{j}. Concerning the relation of L(TD) and D see Remark 11.3b.

322 11 Hierarchical Tensor Representation

• For any vertex α ∈ TD\L(TD) with sons α1, α2 ∈ S(α), the subspace Uα (cf.
(11.10)) must be related to the subspaces Uα1 and Uα1 by the crucial nestedness
property

Uα ⊂ Uα1 ⊗Uα2 for all α ∈ TD\L(TD), α1, α2 ∈ S(α). (11.11c)

Diagram (11.1) depicts these conditions for the tree TD from Fig. 11.3. Note that
U{1,2} ⊂ U{1}⊗U{2} is a subspace, but not a tensor subspace (cf. abstract in §8).

Remark 11.7. (a) Since the subspace UD ⊂ V has to satisfy only that v ∈ UD for
a given tensor v ∈ V, it is sufficient to define UD by

UD = span{v}, i.e., dim(UD) = 1. (11.12)

(b) Another situation arises if a family F ⊂ U =
⊗

j∈D Uj of tensors is to be
represented (cf. §6.2.3). Then requirement (11.11a) is replaced by F ⊂ UD . The
minimal choice is

UD = span(F).

Definition 11.8 (hierarchical subspace family). (a) We call {Uα}α∈TD a hierar-
chical subspace family (associated with V = a

⊗
j∈D Vj), if TD is a dimension

partition tree of D and the subspaces Uα satisfy (11.11b,c).
(b) We say that a tensor v is represented by the hierarchical subspace family
{Uα}α∈TD , if v ∈ UD (cf. (11.11a)).

Definition 11.9. A successor of α ∈ TD is any σ ∈ TD with σ ⊂ α. A set {σi} of
disjoint successors of α ∈ TD is called complete if α = ∪̇iσi.

For instance, in the case of the tree from Fig. 11.3, the set {{1}, {2}, {3, 4}} is a
complete set of successors of {1, 2, 3, 4}.

Lemma 11.10. Let {Uα}α∈TD be a hierarchical subspace family. For any α ∈ TD
and any complete set Σ of successors of α,

Uα ⊂
⊗

σ∈Σ
Uσ ⊂ Vα (11.13)

holds with Vα from (11.10).

Proof. The fundamental structure (11.11c) implies Uα⊂Uα1 ⊗Uα2 . The chain of
inclusions can be repeated inductively to prove the first inclusion in (11.13). Since
Uσ⊂Vσ (cf. (11.10)),

⊗
σ∈ΣUσ⊂

⊗
σ∈ΣVσ=Vα proves the last inclusion. ��

The analogue of Tr is the set Hr which is defined next. We start from given
(bounds of) dimensions

r := (rα)α∈TD
∈ N

TD
0 , (11.14)

and consider subspaces Uα ⊂ Vα with dim(Uα) ≤ rα for all α ∈ TD.

11.2 Basic Definitions 323

Definition 11.11 (Hr). Fix some r from (11.14) and let V = a

⊗
k∈D Vk . Then

Hr = Hr(V) ⊂ V is the set7

Hr :=

{

v ∈ V :
there is a hierarchical subspace family {Uα}α∈TD

with v ∈ UD and dim(Uα) ≤ rα for all α ∈ TD .

}

(11.15)

11.2.3 Minimal Subspaces

We recall the definition of the minimal subspace associated to α ⊂ D with comple-
ment αc = D\α:

Umin
α (v) =

{
ϕαc(v) : ϕαc ∈

(⊗

j∈αc
Vj

)′}
for all α∈TD\{D} (11.16a)

(cf. (6.14)). A possible computation uses the matricisationMα(v) from Definition
5.3. The (left-sided) singular value decomposition ofMα(v) yields the data σ(α)

i

and u
(α)
i of v =

∑r
i=1 σ

(α)
i u

(α)
i ⊗ v

(αc)
i with σ(α)

1 ≥ . . . ≥ σ
(α)
r > 0. Then

Umin
α (v) = span{u(α)

i : 1 ≤ i ≤ r}. (11.16b)

For α = {j} ∈ L(TD), these subspaces coincide with the subspaces Umin
j (v) of

the tensor subspace representation (cf. (6.10a)). For α ∈ TD\L(TD), the subspaces
fulfil the nestedness property

Umin
α (v) ⊂ Umin

α1
(v) ⊗Umin

α2
(v) (α1, α2 sons of α) (11.16c)

as stated in (6.13).
Next, we give a simple characterisation of the property v ∈ Hr. Moreover, the

subspace family {Uα}α∈TD can be described explicitly.

Theorem 11.12. For r := (rα)α∈TD
∈ N

TD
0 , a tensor v belongs to Hr if and only

if rankα(v) ≤ rα holds for all α ∈ TD. A possible hierarchical subspace family is
given by {Umin

α (v)}α∈TD .

Proof. 1) The α-rank definition rankα(v) = dim(Umin
α (v)) (cf. (6.15)) and

rankα(v) ≤ rα imply the condition dim(Uα) ≤ rα for Uα := Umin
α (v) in (11.15).

Property (11.16c) proves that {Uα}α∈TD is a hierarchical subspace family.
2) Assume v∈Hr with some hierarchical subspace family {Uα}α∈TD . Fix some

α ∈ TD and choose a complete set Σ of successors such that α ∈ Σ. Statement
(11.13) with D instead of α shows that v ∈ UD ⊂

⊗
σ∈Σ Uσ . The definition of

a minimal subspace implies Umin
σ (v) ⊂ Uσ , in particular, Umin

α (v) ⊂ Uα for the
fixed but arbitrary α ∈ TD. Hence, rankα(v) = dim(Umin

α (v)) ≤ dim(Uα) ≤ rα
proves the reverse direction of the theorem. ��

The proof reveals the following statement.

7 By analogy with (8.3) one might prefer dim(Uα)=rα instead of dim(Uα)≤rα. The reason
for the latter choice is the fact that, otherwise, without the conditions (11.17) Hr=∅ may occur.

324 11 Hierarchical Tensor Representation

Corollary 11.13. r=(rα)α∈TD
with rα :=dim(Umin

α (v)) are the smallest integers
so that v ∈ Hr . This tuple r is called the hierarchical rank of v.

Remark 11.14. Let α ∈ TD\{D} be a vertex with sons α1, α2 ∈ S(α) so that
Umin
α (v) ⊂ Umin

α1
(v) ⊗Umin

α2
(v). Then Umin

αi
(v) can be interpreted differently:

Umin
αi

(v) = Umin
αi

(F) for F := Umin
α (v), i = 1, 2 (cf. (6.10c)).

Proof. Umin
α (v) is the span of all u(α)

i appearing in the reduced singular value
decompositionv =

∑rα
i=1 σ

(α)
i u

(α)
i ⊗v

(αc)
i . Hence,Umin

α1
(F) =

∑rα
i=1U

min
α1

(u
(α)
i)

holds. The singular value decomposition of each u
(α)
i by

u
(α)
i =

r∑

j=1

τ
(i)
j a

(i)
j ⊗ b

(i)
j with a

(i)
j ∈Vα1 , b

(i)
j ∈Vα2 , τ

(i)
1 ≥ . . . ≥ τ (i)r > 0

yields Umin
α1

(u
(α)
i) = span{a(i)j : 1 ≤ j ≤ r} so that

Umin
α1

(F) = span
{
a
(i)
j : 1 ≤ j ≤ r, 1 ≤ i ≤ rα

}
.

There are functionals β(i)
j ∈V′α2

with β(i)
j (b

(i)
k) = δjk (cf. (2.1)). As stated in

(11.16a), u(α)
i =ϕαc(v) holds for some ϕαc ∈V′αc . The functional ϕ :=β

(i)
j ⊗ ϕαc

belongs to V′αc
1

(note that αc1=α2 ∪ αc). It follows from (11.16a) that

ϕ(v) = β
(i)
j (u

(α)
i) =

r∑

k=1

τ
(i)
k β

(i)
j (b

(i)
k)a

(i)
k = τ

(i)
j a

(i)
j ∈ Umin

α1
(v).

Hence, a(i)j ∈ Umin
α1

(v) for all i, j, i.e., Umin
α1

(F) ⊂ Umin
α1

(v). On the other hand,

Umin
α1

(v)⊂Umin
α1

(F) follows from v=
∑rα

i=1

∑r
j=1τ

(i)
j σα,ia

(i)
j ⊗

(
b
(i)
j ⊗ v

(αc)
i

)
. ��

Finally, we consider the reverse setting: we specify dimensions rα and construct
a tensor v such that rα = rankα(v) = dim(Umin

α (v)). The following restrictions
are necessary:

rα ≤ rα1rα2 , rα1 ≤ rα2rα, rα2 ≤ rα1rα, for α ∈ TD\L(TD),
rα ≤ dim(Vj) for α = {j} ∈ L(TD),
rD = 1 for α = D,

(11.17)

where α1, α2 are the sons of α. The first line follows from (6.17b) and Corollary
6.20a (note that rankα(v) = rankαc(v)).

Lemma 11.15. Let r := (rα)α∈TD
∈ N

TD satisfy (11.17). Then there is a tensor
v ∈ Hr(V) with rankα(v) = dim(Umin

α (v)) = rα.

Proof. 1) We construct the subspaces Uα ⊂ Vα from the leaves to the root. For
α = {j} ∈ TD\L(TD) choose any U{j} of dimension r{j} (here, the second line
in (11.17) is needed).

11.2 Basic Definitions 325

2) Assume that for a vertex α ∈ TD\L(TD) the subspaces Uα1 and Uα2 for
the leaves with dimensions rα1 and rα2 are already constructed. Choose any bases
{b(αi)

� : 1≤ �≤rαi} of Uαi (i=1, 2). Without loss of generality assume rα1 ≥rα2 .

For the most critical case rα1 = rα2rα set Uα := span{b(α)
� : 1 ≤ � ≤ rα} with

b
(α)
� :=

rα2∑

i,j=1

b
(α1)
i+(�−1)rα2

⊗ b
(α2)
j .

One observes that b(α)
� ∈Vα satisfies

Umin
α1

(b
(α)
�) = span{b(α1)

i+(�−1)rα2
: 1 ≤ i ≤ rα2}, while Umin

α2
(b

(α)
�)=Uα2 .

From Exercise 6.14 we conclude that Umin
α1

({b(α)
� : 1 ≤ � ≤ rα}) = Umin

α1
(Uα) =

span{b(α1)
i : 1≤ i≤ rα2rα} =

rα1=rα2rα
Uα1 . For rα1 <rα2rα (but rα≤ rα1rα2) it is

easy to produce linearly independent {b(α)
� : 1 ≤ � ≤ rα} with Umin

αi
(Uα) = Uαi .

3) For α = D, the first and third lines of (11.17) imply that rα1 = rα2 . Set

v :=
∑rα1

i=1 b
(α1)
i ⊗ b

(α2)
i and UD = span{v}. Obviously, Umin

αi
(v) = Uαi holds

for i = 1, 2, proving the assertion rαi = rankαi(v). For the further vertices use
Remark 11.14. Induction from the root to the leaves shows that Uα = Umin

α (v)

implies Umin
αi

(Uα) = Umin
αi

(v). Because of the identities Umin
αi

(Uα) = Uαi and
dim(Uαi) = rankαi(v) = rαi , the lemma is proved. ��

Remark 11.16. With probability one a random tensor from
⊗

j∈DR
nj possesses

the maximal hierarchical rank r with

rα = min

{∏

j∈α
nj ,

∏

j∈D\α
nj

}

(α ∈ TD) .

Proof. Apply Remark 2.5 to the matrixMα(v) and note that rα=rank(Mα(v)).��

11.2.4 Conversions

Tensors from Tr orRr can be represented exactly inHr with at least similar storage
cost.

11.2.4.1 Conversion from Tr to Hr, Maximal Subspaces

Assume that a tensor is given in the tensor subspace representation:

v ∈ U =
⊗

j∈D
Uj ⊂ Tr ⊂ V =

⊗

j∈D
Vj

326 11 Hierarchical Tensor Representation

with dim(Uj) = rj . The maximal choice of the subspaces is

Uα :=

{
Uj for α = {j},⊗

j∈αUj for α ∈ TD\L(TD). (11.18)

From v∈Tr we derive that dim(Uj)= rj and, in general, dim(Uα)=
∏
j∈αrj for

α �=D. The large dimension dim(Uα) =
∏
j∈αrj corresponds exactly to the large

data size of the coefficient tensor a∈
⊗

j∈DK
rj from (8.6). On the positive side, this

approach allows us to represent any v ∈ U in the hierarchical format {Uα}α∈TD .

11.2.4.2 Conversion from Rr

Assume an r-term representation of v ∈ Rr ⊂ V =
⊗

j∈DVj by

v =

r∑

i=1

⊗

j∈D
v
(j)
i with v(j)i ∈ Vj .

Set

Uα :=

⎧
⎪⎨

⎪⎩

span

{
⊗

j∈α
v
(j)
i : 1 ≤ i ≤ r

}

for α �= D,

span{v} for α = D.

(11.19)

Obviously, conditions (11.11a-c) are fulfilled. This proves the next statement.

Theorem 11.17. Let TD be any dimension partition tree. Then v ∈ Rr ⊂ V =⊗
j∈D Vj belongs toHr with rα = r for α �= D and rα = 1 for α = D.

Conversion from Rr to hierarchical format will be further discussed in §11.3.5.

11.3 Construction of Bases

As for the tensor subspace format, the involved subspaces have to be characterised
by frames or bases. The particular problem in the case of the hierarchical format is
the fact that a basis [b

(α)
1 , . . . ,b

(α)
rα] of Uα consists of tensors b

(α)
i ∈Vα of order

#α. A representation of b(α)
i by its entries would require a huge storage. It is essen-

tial to describe the vectors b(α)
i indirectly by means of the frames associated to the

sons α1, α2 ∈ S(α). The general concept of the hierarchical representation is ex-
plained in §11.3.1. Of particular interest is the performance of basis transformations.
Usually, one prefers an orthonormal basis representation which is discussed in
§11.3.2. A special orthonormal basis is defined by the higher order singular value
decomposition (HOSVD). Its definition and construction are given in §11.3.3. In
§11.3.4, a sensitivity analysis is given, which describes how perturbations of the data
influence the tensor. Finally, in §11.3.5, we mention that the conversion of r-term
tensors into the hierarchical format yields very particular coefficient matrices.

11.3 Construction of Bases 327

11.3.1 Hierarchical Bases Representation

The term ‘bases’ in the heading may be replaced more generally by ‘frames’.

11.3.1.1 Basic Structure

In the most general case, the subspace Uα (α ∈ TD) is generated by a frame:

Bα =
[
b
(α)
1 ,b

(α)
2 , . . . ,b(α)

rα

]
∈ (Uα)

rα , (11.20a)

Uα = span{b(α)
i : 1 ≤ i ≤ rα} for all α ∈ TD. (11.20b)

Except for α ∈ L(TD), the tensors b
(α)
i ∈Uα are not represented as full tensor.

Therefore, the frame vectors b
(α)
i serve for theoretical purpose only, while other

data will be used in the later representation of a tensor v ∈V. The integer8 rα is
defined by (11.20b) denoting the size of the frame.

Concerning the choice of Bα in (11.20a,b), the following possibilities exist:

1. Frame. A frame Bα∈ (Uα)
rα cannot be avoided as an intermediate represen-

tation (cf. §11.5.2), but usually one of the following choices is preferred.
2. Basis. If Bα is a basis, the number rα coincides with the dimension:

rα := dim(Uα) for all α ∈ TD . (11.21)

3. Orthonormal basis. Assuming a scalar product in Uα, we can construct an
orthonormal basis Bα (cf. §11.3.2).

4. HOSVD. The higher order singular value decomposition from §8.3 can be
applied again and leads to a particular orthonormal basis Bα (cf. §11.3.3).

Concerning the practical realisation, we have to distinguish leaves α ∈ L(TD)
from non-leaf vertices.

Leaf vertices. Leaves α∈L(TD) are characterised by α= {j} for some j ∈D.
The subspace Uj ⊂ Vj refers to Vj from V= a

⊗
j∈DVj and is characterised by a

frame or basis Bj=
[
b
(j)
1 , . . . , b

(j)
rj

]
∈(Uj)rj from above. The vectors b(j)i are stored

directly.

Remark 11.18. (a) If Vj = K
Ij , the memory cost for Bj ∈ K

Ij×rj is rj#Ij .
(b) Depending on the nature of the vector space Vj , one may use other data-sparse
representations of b(j)i (cf. §7.5 and §14.1.4.3).

Non-leaf vertices α ∈ TK\L(TK). The sons of α are denoted by α1, α2∈S(α).
Let b(α1)

i and b
(α2)
j be the columns of the respective frames [bases] Bα1 and Bα2 .

Then the tensor space Uα1 ⊗Uα2 has the canonical frame [basis] consisting of the
tensor products of the frame [basis] vectors of Uα1 and Uα2 as detailed below.

8 See Footnote 6 for the notation rj = r{j}. Similarly, b(j)i = b
({j})
i etc.

328 11 Hierarchical Tensor Representation

Remark 11.19. Let Bα1 and Bα2 be generating systems of Uα1 and Uα2 . Define
the tuple B and the tensors b(α)

ij ∈ Uα1 ⊗Uα2 by

B := (b
(α)
ij := b

(α1)
i ⊗ b

(α2)
j : 1 ≤ i ≤ rα1 , 1 ≤ j ≤ rα2). (11.22)

(a) If Bα1 and Bα2 are frames, B is a frame of Uα1 ⊗Uα2 .
(b) If Bα1 and Bα2 are bases, B is a basis of Uα1 ⊗Uα2 (cf. Lemma 3.11a).
(c) If Bα1 and Bα2 are orthonormal bases, B is an orthonormal basis of Uα1⊗Uα2

(cf. Remark 4.125).

As a consequence, any tensor w ∈ Uα1 ⊗Uα2 and, in particular, w ∈ Uα ⊂
Uα1⊗Uα2 , can be written in the form9

w =

rα1∑

i=1

rα2∑

j=1

c
(α)
ij b

(α)
ij =

rα1∑

i=1

rα2∑

j=1

c
(α)
ij b

(α1)
i ⊗ b

(α2)
j . (11.23a)

Since the frame vectors b(α)
ij carry two indices, the coefficient vector

(
c
(α)
ij

)
has the

special form of a coefficient matrix

C(α) =
(
c
(α)
ij

)

i=1,...,rα1
j=1,...,rα2

∈ K
rα1×rα2 . (11.23b)

If Bα1 and Bα2 are bases, the one-to-one correspondence between a tensor
w ∈ Uα1 ⊗Uα2 and its coefficient matrix C(α) defines an isomorphism which we
denote by

Θα : Uα1 ⊗Uα2 → K
rα1×rα2 for α ∈ TD\L(TD). (11.23c)

The fact that w ∈ Uα1⊗Uα2 can be coded by rα1· rα2 numbers, is independent
of how the frame vectors b(α1)

i ,b
(α2)
j are represented. They may be given directly

(as for the leaves α� ∈ L(TD)) or indirectly (as for non-leaves α� ∈ TD\L(TD)).
Now, we apply the representation (11.23a,b) to the frame vectorsb(α)

� ∈Uα from
Bα=

[
b
(α)
1 , . . . ,b

(α)
rα

]
and denote the coefficient matrix by C(α,�) ∈ K

rα1×rα2 :

b
(α)
� =

rα1∑

i=1

rα2∑

j=1

c
(α,�)
ij b

(α1)
i ⊗ b

(α2)
j {α1, α2} = S(α)

with C(α,�) =
(
c
(α,�)
ij

)

1≤i≤rα1
1≤j≤rα2

∈ K
rα1×rα2 for 1 ≤ � ≤ rα.

(11.24)

This is the key relation of the hierarchical format.

Remark 11.20. The formulation of the coefficient matrix C(α,�) depends of the
ordering of the sons α1, α2. If the sons are interchanged, C(α,�) changes into the
transposed matrix C(α,�)T.

9 In the case of a frame, the coefficients c(α)
ij are not uniquely determined.

11.3 Construction of Bases 329

We summarise: Only for leaves α ∈ L(TD), the basis vectors b(j)i are explicitly
represented. For all other vertices, the vectors b(α)

� ∈Uα are defined recursively by
means of the coefficient matrices10 C(α,�). The practical representation of a tensor
v ∈ V uses the data C(α,�) for α ∈ TD\L(TD) and b

(j)
i for {j} ∈ L(TD) only,

while the theoretical discussion may still refer to b
(α)
� and their properties.

One obtains, in particular, a frame [basis] BD for the root D ∈ TD. We can
represent all tensors of v∈UD by a coefficient vector c(D)∈KrD :

v =

rD∑

i=1

c
(D)
i b

(D)
i . (11.25)

Remark 11.21. Since, usually, the basis BD of UD consists of one basis vector only
(cf. Remark 11.7a), one might avoid the coefficient c(D)

1 by choosing b
(D)
1 =v and

c
(D)
1 =1. However, for systematic reasons (orthonormal basis, basis transforms), it

is advantageous to separate the choice of the basis vector b(D)
1 from the value of v.

11.3.1.2 Explicit Description

The definition of the basis vectors is recursive. Correspondingly, all operations will
be performed recursively. In the following, we give an explicit description of the
tensor v represented in the hierarchical format. However, this description will not
be used for practical purposes.

Renaming � by �[α], i by �[α1], j by �[α2], we rewrite (11.24) by

b
(α)
�[α] =

rα1∑

�[α1]=1

rα2∑

�[α2]=1

c
(α,�[α])
�[α1],�[α2]

b
(α1)
�[α1]
⊗ b

(α2)
�[α2]

.

Insertion of the definitions of b(α1)
�[α1]

and b
(α2)
�[α2]

yields

b
(α)
�[α] =

rβ∑

�[β]=1
for β∈Tα\{α}

∏

β∈Tα\L(Tα)

c
(β,�[β])
�[β1],�[β2]

d⊗

j=1

b
(j)
�[{j}] (β1, β2 sons of β).

The multiple summation involves all variable �[β] ∈ {1, . . . , rβ}with β ∈ Tα\{α},
where Tα is the subtree from Definition 11.6.

The tensor v =
∑rD

�=1 c
(D)
� b

(D)
� (cf. (11.25)) has the representation

v =

rα∑

�[α]=1
for α∈TD

c
(D)
�[D]

∏

β∈TD\L(TD)

c
(β,�[β])
�[β1],�[β2]

d⊗

j=1

b
(j)
�[{j}] . (11.26)

10 Note that also in wavelet representations, basis vectors do not appear explicitly. Instead the filter
coefficients are used for the transfer of the basis vectors.

330 11 Hierarchical Tensor Representation

To interpret (11.26) correctly, note that β1 or β2 in c(β,�[β])�[β1],�[β2]
may belong to L(TD),

e.g., β1={j} for some j∈D. Then �[β1] coincides with the index �[{j}] of b(j)�[{j}].

For the case of D = {1, 2, 3} and S(D) = {{1, 2} , {3}}, Eq. (11.26) becomes

v =

r1∑

�1=1

r2∑

�2=1

r3∑

�3=1

c
(D)
1 ·

r{1,2}∑

ν=1

c
({1,2},ν)
�1,�2

· c(D,1)ν,�3

︸ ︷︷ ︸
=: a[�1,�2,�3]

d⊗

j=1

b
(j)
�j
,

where we have assumed the standard case rD = 1. The summation variables are
ν = �[{1, 2}], �j = �[{j}]. When using minimal ranks, we obtain r3 = r{1,2} (cf.
(6.17a)). Hence, C{1,2} can be considered as a tensor from K

r1×r2×r3 which has
the same size as the coefficient tensor a of the tensor subspace representation.

We conclude from the last example that for d = 3 the tensor subspace format and
the hierarchical format require almost the same storage (the data c(D) and c(D,1) are
negligible compared with C{1,2}).

11.3.1.3 Hierarchical Representation

Equation (11.26) shows that v is completely determined by the data C(α,�) (cf.
(11.24)), c(D) (cf. (11.25)), and the bases Bj for the leaves j ∈ D. Also the frames
Bα for α ∈ TD\L(TD) are implicitly given by these data. The coefficient matrices
C(α,�) at vertex α ∈ TD\L(TD) are gathered in the tuple11

Cα :=
(
C(α,�)

)
1≤�≤rα ∈

(
K
rα1×rα2

)rα for all α ∈ TD\L(TD). (11.27)

Hence, the formal description of the hierarchical tensor representation is12

v = ρHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)
. (11.28)

Remark 11.22. (a) The data size of TD, (Cα)α∈TD\L(TD), c(D), and (Bj)j∈D is

NHTR
mem (TD) = 2#D − 1 vertices,

NHTR
mem ((Cα)α∈TD\L(TD)) =

∑

α∈TD\L(TD)

rαrα1rα2 (α1, α2 sons of α)

NHTR
mem (c(D)) = rD (cf. Remark 11.21),

NHTR
mem ((Bj)j∈D) =

d∑

j=1

rj · size(Uj) (cf. Remark 8.7a).

(11.29a)

(b) Suppose rj = r for all j ∈ D. Then the data size NHTR
mem ((Bj)j∈D) is the

same as N r-term
mem for the r-term representation or NTSR

mem((Bj)j∈D) for the tensor

11 Cα may be viewed as Θα(Bα), where the isomorphism Θα from (11.23c) is extended from
Uα to (Uα)rα . In [73], Cα is called ‘transfer tensor’; cf. §11.3.1.8.
12 HTR abbreviates ‘hierarchical tensor representation’.

11.3 Construction of Bases 331

subspace representation. The terms NHTR
mem (TD) +NHTR

mem (c(D)) may be neglected.
The dominant parts are

NHTR
mem ((Bj)j∈D) and NHTR

mem

(
(Cα)α∈TD\L(TD)

)
.

If V = K
I with I = I1 × . . . × Id and #Ij = n, full representation of the basis

vectors leads to
NHTR

mem ((Bj)j∈D) = d · r · n, (11.29b)

while
NHTR

mem ((Cα)α∈TD\L(TD)) = (d− 1) r3. (11.29c)

Proof. For TD compare Remark 11.3. The coefficient matrix C(α,�) ∈ K
rα1×rα2

contains rα1rα2 entries. Since 1 ≤ � ≤ rα, the size of Cα is rα1rα2rα for each
α ∈ TD\L(TD). Eq. (11.29c) follows from #(TD\L(TD)) =#TD − #L(TD) =
(2d− 1)− d = d− 1 (cf. Remark 11.3c). ��

11.3.1.4 Transformations

There will be various reasons to change the frame from (11.20a) into another one. In
general, even the generated subspaces may vary. For a vertex α ∈ TD we consider
the following ‘old’ and ‘new’ frames and subspaces:

Bnew
α =

[
b
(α)
1,new, . . . ,b

(α)
rnewα ,new

]
, Unew

α = range{Bnew
α },

Bold
α =

[
b
(α)
1,old, . . . ,b

(α)

roldα ,old

]
, Uold

α = range{Bold
α },

The replacement Bold
α �→ Bnew

α creates new coefficient matrices C(α,�)
new (cf. Lemma

11.23). Moreover, if α �= D, the coefficient matrices C(β,�)
old associated to the father

β ∈ TD of α must be renewed intoC(β,�)
new , since these coefficients refer to Bnew

α (cf.
Lemma 11.24). If α = D, the coefficient vector c(D) must be transformed instead
(cf. Lemma 11.26).

We distinguish three different situations:

Case A. Bold
α and Bnew

α generate the same subspace Uα = Unew
α = Uold

α . Then
there are transformation matrices T (α) ∈ K

rnewα ×roldα , S(α) ∈ K
roldα ×r

new
α such that

Bold
α = Bnew

α T (α), i.e., b(α)
j,old =

rnewα∑

k=1

T
(α)
kj b

(α)
k,new (1 ≤ j ≤ roldα), (11.30a)

Bnew
α = Bold

α S(α), i.e., b(α)
k,new =

roldα∑

j=1

S
(α)
jk b

(α)
j,old (1 ≤ k ≤ rnewα). (11.30b)

In the standard case, Bold
α and Bnew

α are bases. Then roldα = rnewα = dim(Uα)
holds, and T (α) and S(α) are uniquely defined satisfying

332 11 Hierarchical Tensor Representation

S(α) := (T (α))−1. (11.30c)

In the case of frames, the representation ranks roldα , rnewα ≥ dim(Uα) may be
different so that T (α) and S(α) are rectangular matrices. If rnewα > dim(Uα)
[roldα > dim(Uα)], the matrix T (α) [S(α)] satisfying (11.30a [b]) is not unique.

There may be reasons to change the subspace. In Case B we consider
Unew
α ⊂Uold

α , and in Case C the opposite inclusion Unew
α ⊃Uold

α .

Case B. Assume Unew
α � Uold

α . This is a typical step, when we truncate the tensor
representation. Note that a transformation matrix S(α) satisfying (11.30b) exists,
whereas there is no T (α) satisfying (11.30a).

Case C. Assume Unew
α � Uold

α . This happens, when we enrich Uold
α by further

vectors. Then a transformation matrix T (α) satisfying (11.30a) exists, but no S(α)

with (11.30b).

In Cases A and B the transformation matrix T (α) exists. Then (11.30b) proves
the following result.

Lemma 11.23. If (11.30b) holds for α∈ TD\L(TD), the new basis vectors b(α)
k,new

have coefficient matrices C(α,k)
new defined by

Cnew
α = Cold

α S(α), i.e., C(α,k)
new =

roldα∑

j=1

S
(α)
jk C

(α,j)
old (1 ≤ k ≤ rnewα) . (11.31)

The arithmetical cost of (11.31) is 2rnewα roldα rα1rα2 (α1, α2 sons of α).

Next, we consider the influence of a transformation upon the coefficient matrices
of the father. Here, we rename the father vertex by α ∈ TD\L(TD) and assume that
the bases Bold

α1
and Bold

α2
for at least one of the sons α1, α2 of α are changed into

Bnew
α1

and Bnew
α2

. If only one basis is changed, set S(αi) = T (αi) = I for the other
son. Since the transformation matrix T (αi) is used, the following lemma applies to
Cases A and C.

Lemma 11.24. Let α1, α2 be the sons of α ∈ TD\L(TD). Basis transformations
(11.30a) at the son vertices α1, α2, i.e., Bnew

αi
T (αi) = Bold

αi
(i = 1, 2), lead to a

transformation of the coefficients at vertex α by

C
(α,�)
old �→ C(α,�)

new = T (α1) C
(α,�)
old (T (α2))T for 1 ≤ � ≤ rα. (11.32)

The arithmetical cost for (11.32) is 2rαr
old
α1
roldα2

(
rnewα1

+ rnewα2

)
. If the basis is

changed only at α1 (i.e., T (α2) = I), the cost reduces to 2rαr
new
α1

roldα1
roldα2

.

Proof. The basis vector b(α)
� at vertex α has the representation

b
(α)
� =

roldα1∑

i=1

roldα2∑

j=1

c
(α,�)
ij,old b

(α1)
i,old ⊗ b

(α2)
j,old for 1 ≤ � ≤ rα

11.3 Construction of Bases 333

with respect to Bold
α1

and Bold
α2

. Using Bold
α1

= Bnew
α1

T (α1) and Bold
α2

= Bnew
α2

T (α2)

(cf. (11.30a)), we obtain

b
(α)
� =

roldα1∑

i=1

roldα2∑

j=1

c
(α,�)
ij,old

⎛

⎝

rnewα1∑

k=1

T
(α1)
ki b

(α1)
k,new

⎞

⎠⊗

⎛

⎝

rnewα2∑

m=1

T
(α2)
mj b(α2)

m,new

⎞

⎠

=

rnewα1∑

k=1

rnewα2∑

m=1

⎛

⎜
⎝

roldα1∑

i=1

roldα2∑

j=1

T
(α1)
ki c

(α,�)
ij,old T

(α2)
mj

⎞

⎟
⎠ b

(α1)
k,new ⊗ b(α2)

m,new

=

rnewα1∑

k=1

rnewα2∑

m=1

c
(α,�)
km,new b

(α1)
k,new ⊗ b(α2)

m,new

with c
(α,�)
km,new :=

∑roldα1

i=1

∑roldα2

j=1 T
(α1)
ki c

(α,�)
ij,old T

(α2)
mj . This corresponds to the matrix

formulation (11.32). ��

The next lemma uses the transformation matrix S(αi) from Cases A and B.

Lemma 11.25. Let α ∈ TD\L(TD) be a vertex with sons {α1, α2} = S(α).

Assume that the coefficient matrices C(α,�)
old admit a decomposition

C
(α,�)
old = S(α1) C(α,�)

new (S(α2))T for 1 ≤ � ≤ rα. (11.33a)

Then C(α,�)
new are the coefficient matrices with respect to the new bases

Bnew
αi

:= Bold
αi

S(αi) (i = 1, 2) (11.33b)

at the son vertices (cf. (11.30b)). Since the frame Bnew
αi

is not used in computations,
no arithmetical operations accrue.

Proof. We start with (11.24) and insert C(α,�)
old = S(α1) C

(α,�)
new (S(α2))T. Then,

b
(α)
� =

r,oldα1∑

i=1

r,oldα2∑

j=1

c
(α,�)
ij,old b

(α1)
i,old ⊗ b

(α2)
j,old

=

r,oldα1∑

i=1

r,oldα2∑

j=1

(
S(α1) C(α,�)

new (S(α2))T
)

i,j
b
(α1)
i,old ⊗ b

(α2)
j,old

=

r,oldα1∑

i=1

r,oldα2∑

j=1

rnewα1∑

k=1

rnewα2∑

m=1

S
(α1)
ik c

(α,�)
km,new S

(α2)
jm b

(α1)
i,old ⊗ b

(α2)
j,old

=

rnewα1∑

k=1

rnewα2∑

m=1

c
(α,�)
km,new

⎛

⎜
⎝

roldα1∑

i=1

S
(α1)
ik b

(α1)
i,old

⎞

⎟
⎠⊗

⎛

⎜
⎝

roldα2∑

j=1

S
(α2)
jm b

(α2)
j,old

⎞

⎟
⎠

334 11 Hierarchical Tensor Representation

=

rnewα1∑

k=1

rnewα2∑

m=1

c
(α,�)
km,new b

(α1)
k,new ⊗ b(α2)

m,new

has the coefficients C(α,�)
new with respect to the new basis Bnew

αi
:=Bold

αi
S(αi). ��

At the root α=D, the tensor v is expressed by v=
∑rD

i=1 c
(D)
i b

(D)
i =BDc

(D)

(cf. (11.25)). A change of the basis BD is considered next.

Lemma 11.26. Assume a transformation by Bnew
D T (D) = Bold

D (cf. (11.30a)).
Then the coefficient vector c(D)

old must be transformed into

c(D)
new := T (D) c

(D)
old . (11.34)

The arithmetical cost is 2roldD rnewD .

Proof. v = Bold
D c

(D)
old = Bnew

D T (D)c
(D)
old = Bnew

D c
(D)
new. ��

11.3.1.5 Multiplication by Kronecker Products

In §11.3.1.4, the bases and consequently also some coefficient matrices have been
changed, but the tensor v is fixed. Now, we map v into another tensor w = Av,
where A =

⊗
j∈D Aj , but the coefficient matrices stay constant.

Proposition 11.27. Let the tensor v=ρHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)

and the elementary Kronecker product A =
⊗

j∈D A
(j) be given. Then w :=Av

has the representation w = ρHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bwj)j∈D
)
, where

only the frames (bases) Bj = [b
(j)
1 , . . . , b

(j)
rj] are replaced by the new frames

Bwj =[A(j)b
(j)
1 , . . . , A(j)b

(j)
rj].

Proof. Consider α ∈ TD\L(TD) with sons α1, α2. Application of A(α)=A(α1)⊗
A(α2) to b

(α)
� from (11.24) yields

A(α)b
(α)
� =

∑

i,j

c
(α,�)
ij (A(α1)b

(α1)
i)⊗ (A(α2)b

(α2)
i).

Although the quantities A(α)b
(α)
� ,A(α1)b

(α1)
i ,A(α2)b

(α2)
i are new, the coefficient

matrix C(α,�) is unchanged. ��

11.3.1.6 Gram Matrices of Bases

The Gram matrix G(Bα) = BH
αBα ∈ K

rα×rα will frequently appear later on. Its
entries are

G(Bα) = (g
(α)
ij) with g(α)ij =

〈
b
(α)
j ,b

(α)
i

〉
. (11.35)

The recursive structure (11.24) allows a recursive definition of the Gram matrices.

11.3 Construction of Bases 335

Lemma 11.28. For α ∈ TD\L(TD) let C(α,•) be the coefficient matrices from
(11.24). Then G(Bα) can be derived from G(Bα1), G(Bα2) (α1, α2 sons of α)
by

g
(α)
�k = trace

(
C(α,k)G(Bα2)

T(C(α,�))HG(Bα1)
)

(1 ≤ �, k ≤ rα)

=
〈
C(α,k)G(Bα2)

T, G(Bα1)C
(α,�)

〉
F

=
〈
G(Bα1)

1
2C(α,k)G(Bα2)

1
2T, G(Bα1)

1
2C(α,�)G(Bα2)

1
2T
〉
F
.

Proof. g(α)�k =〈b(α)
k ,b

(α)
� 〉=〈

∑
ij c

(α,k)
ij b

(α1)
i ⊗ b

(α2)
j ,

∑
pq c

(α,�)
pq b

(α1)
p ⊗ b

(α2)
q 〉=

∑
ijpq c

(α,k)
ij 〈b(α2)

j ,b
(α2)
q 〉c(α,�)pq 〈b(α1)

i ,b
(α1)
p 〉. Use (2.10). ��

11.3.1.7 Ordering of the Directions

The construction of the tree TD groups the directions 1, 2, . . . , d in a certain way.
Different trees TD lead to different nodes α ⊂ D and therefore also to different
dimensions rα. Theoretically, one would prefer a tree TD such that

NHTR
mem ((Cα)α∈TD\L(TD)) =

∑

α∈TD\L(TD)

rαrα1rα2 (α1, α2 sons of α)

is minimal. However, this minimisation is hard to perform, since usually the ranks
rα = rankα(v) are not known in advance.

On the other hand, given a tree TD, we can identify all permutations π of
D = {1, 2, . . . , d} such that the tensor viπ(1) ···iπ(d)

with interchanged directions
is organised by almost the same tree.

Lemma 11.29. Any node α ∈ TD\L(TD) gives rise to a permutation πα : D → D
by interchanging the positions of the sons α1 and α2. Set

P :=

{
∏

α∈A
πα : A ⊂ TD\L(TD)

}

.

Any permutation π ∈ P lets the tree TD invariant, only the ordering of the sons α1

and α2 may be reversed. According to Remark 11.20, the coefficient matrix C(α,�)

becomes C(α,�)T, if the factor πα appears in π ∈ P. Hence, all tensors viπ(1)···iπ(d)

for π ∈ P have almost the same representation. Since #(TD\L(TD)) = d − 1,
there are 2d−1 permutations in P.

Remark 11.30. A particular permutation is the reversion

π : (1, 2, . . . , d) �→ (d, d− 1, . . . , 1) .

Since π =
∏
α∈TD\L(TD) πα, this permutation is contained in the set P from above.

Hence, the tensor representation of w ∈ Vd ⊗ . . . ⊗ V1 defined by w = π(v) (cf.
(3.44)) is obtained from the representation (11.28) of v by transposing all coefficient
matrices C(α,�).

336 11 Hierarchical Tensor Representation

11.3.1.8 Interpretation of Cα as Tensor of Order Three

Above, Cα from (11.27) is seen as a tuple of matrices. According to Lemma 3.26,
such a tuple is equivalent to a tensor of order d = 3. In this case, the indices are
rearranged:

Cα ∈ K
rα1×rα2×rα with entries C(α)

ijk := C
(α,k)
ij .

The transformation of the coefficients looks different in the new notation:

Eq. (11.31): Cnew
α =

(
I ⊗ I ⊗ (S(α))T

)
Cold
α ,

Eq. (11.32): Cold
α �→ Cnew

α =
(
T (α1) ⊗ T (α2) ⊗ I

)
Cold
α ,

Eq. (11.33a): Cold
α =

(
S(α1) ⊗ S(α2) ⊗ I

)
Cnew
α .

11.3.2 Orthonormal Bases

The choice of orthonormal bases has many advantages, numerical stability is one
reason, the later truncation procedure from §11.4.2.1 another one.

11.3.2.1 Bases at Leaf Vertices

Assume that the spacesUj involved in U=
⊗

j∈DUj possess scalar products, which
are denoted by 〈·, ·〉 (the reference to the index j is omitted). Also the induced scalar
product on the tensor spaces Uα =

⊗
j∈αUj for α ∈ TD is written as 〈·, ·〉.

Even if V = ‖·‖
⊗

j∈D Vj is a Banach tensor space with a non-Hilbert norm,
one can introduce another (equivalent) norm on the finite dimensional subspace U,
in particular, one may define a scalar product (see also Exercise 2.16c). A Hilbert
structure in V outside of U =

⊗
k∈D Uk is not needed.

If the given bases Bj=[b
(j)
1 , . . . , b

(j)
rj] of Uj are not orthonormal, one can apply

the techniques discussed in §8.2.3.2 (see also §13.4.4). For instance, one may use
the Gram matrix G(Bj) from (11.35) (cf. Lemma 8.12b). After obtaining the new
orthonormal basis Bnew

j , we replace the old one by Bnew
j and rename it Bj . If

{j} ∈ TD has a father α ∈ TD for which already a basis of Uα is defined, the
corresponding coefficients have to be transformed according to Lemma 11.24.

11.3.2.2 Bases at Non-Leaf Vertices

Now, we are considering a vertex α ∈ TD\L(TD) and assume that orthonormal
bases Bα1 and Bα2 at the son vertices α1, α2 are already determined. According to
Remark 11.19c, the tensor space Uα1 ⊗Uα2 at vertex α has the canonical ortho-
normal basis

{b(α)
νμ := b(α1)

ν ⊗ b(α2)
μ : 1 ≤ i ≤ rα1 , 1 ≤ j ≤ rα2}. (11.36)

11.3 Construction of Bases 337

Assume that a subspace Uα ⊂ Uα1 ⊗Uα2 is defined as the span of some basis
{b(α)

i : 1 ≤ i ≤ rα}, which gives rise to Bα :=
[
b
(α)
1 , . . . ,b

(α)
rα

]
∈ (Uα)

rα . In
case the basis Bα is not already orthonormal, we may follow Lemma 8.12b and
determine the Gram matrix G(Bα) (cf. Lemma 11.28).

Lemma 11.31. Let α1 and α2 be the sons of α ∈ TD. Suppose that Bα1 and Bα2

represent orthonormal13 bases. For any vectors v,w ∈ Uα with representations

v =

rα1∑

i=1

rα2∑

j=1

cvij b
(α1)
i ⊗ b

(α2)
j and w =

rα1∑

i=1

rα2∑

j=1

cwij b
(α1)
i ⊗ b

(α2)
j

involving coefficient matrices Cv :=
(
cvij
)
, Cw :=

(
cwij
)
∈ K

rα1×rα2 , the scalar
product of v and w equals the Frobenius scalar product (2.10) of Cv and Cw :

〈v,w〉 = 〈Cv, Cw〉F =

rα1∑

i=1

rα2∑

j=1

cvij c
w
ij . (11.37a)

Hence, the isomorphism Θα from (11.23c) is unitary. In particular, the coefficient
matrices of b(α)

ν and b
(α)
μ yield

g(α)νμ =
〈
b(α)
μ ,b(α)

ν

〉
=
〈
C(α,μ), C(α,ν)

〉
F

(1 ≤ ν, μ ≤ rα). (11.37b)

The basis {b(α)
ν } is orthonormal if and only if {C(α,ν)} is orthonormal with

respect to the Frobenius scalar product. The computational cost for all entries g(α)νμ

(1 ≤ ν, μ ≤ rα) is 2r2αrα1rα2 .

Proof. By

〈v,w〉 =
〈∑

i,j

cvij b
(α1)
i ⊗ b

(α2)
j ,

∑

k,�

cwk� b
(α1)
k ⊗ b

(α2)
�

〉

=
∑

k,�

∑

i,j

cvij c
w
k�

〈
b
(α1)
i ⊗ b

(α2)
j ,b

(α1)
k ⊗ b

(α2)
�

〉

︸ ︷︷ ︸
= δi,kδj,�

=
∑

i,j

cvij c
w
k� ,

we arrive at the Frobenius scalar product. (11.37b) follows also from Lemma 11.28
because of G(Bαi) = I. ��

We denote the hierarchical format with orthonormal bases by

v = ρorthHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)
, (11.38)

which requires BH
j Bj = I for all j ∈ D and 〈C(α,μ), C(α,ν)〉F = δνμ. By Lemma

11.31, these conditions imply orthonormality: BH
αBα = I.

Adding the cost of the orthonormalisation of a basis and of the transformations
involved, we get the following result.

Remark 11.32. Given a hierarchical representation with general bases or frames,
the orthonormalisation costs asymptotically 2dnr2 + 4r4(d − 1) operations
(r := maxα rα, n := maxj nj , details in (13.16b)).

13 If the bases are not orthonormal, compare Lemma 11.44 and its proof.

338 11 Hierarchical Tensor Representation

11.3.2.3 Transformation between Orthonormal Bases

Lemmata 11.24 and 11.25 remain valid for orthonormal bases. In order not to
lose orthonormality, the transformation matrices must be unitary or (in the case of
rectangular matrices) orthogonal. Note that orthogonal n × m matrices require
n ≥ m. The situation rnewαi

≤ roldαi
is covered by Part (a) of the next corollary,

while Part (b) requires rnewαi
≥ roldαi

.

Corollary 11.33. Let α1, α2 be the sons of α ∈ TD\L(TD). (a) If the transforma-
tions

C
(α,�)
old = S(α1) C

(α,�)
new (S(α2))T for 1 ≤ � ≤ rα,

Bnew
α1

= Bold
α1

S(α1), Bnew
α2

= Bold
α2

S(α2)
(11.39a)

hold with orthogonal matrices S(αi) (i = 1, 2), the bases Bnew
αi

inherit ortho-
normality from Bold

αi
, while the Frobenius scalar product of the coefficient matrices

is invariant:
〈
C(α,�)

new , C(α,k)
new

〉
F
=
〈
C

(α,�)
old , C

(α,k)
old

〉
F

for all 1 ≤ �, k ≤ rα. (11.39b)

(b) If Bnew
αi

T (αi) = Bold
αi

holds for i=1, 2 with orthogonal matrices T (αi), the
new coefficients defined by C

(α,�)
new = T (α1)C

(α,�)
old (T (α2))T satisfy again (11.39b).

Proof. BnewH
α1

Bnew
α1

= S(α1)HBoldH
α1

Bold
α1

S(α1) = S(α1)H S(α1) = I proves ortho-
normality of the basis Bnew

α1
.

The identity
〈
C

(α,�)
old , C

(α,k)
old

〉
F
=
〈
S(α1)C

(α,�)
new S(α2)T, S(α1)C

(α,k)
new S(α2)T

〉
F
=

〈
C

(α,�)
new , C

(α,k)
new

〉
F

follows from Exercise 2.11b. ��

As in §11.3.2.1, a transformation of Bα should be followed by an update of Cβ

for the father β of α (cf. Lemma 11.24). If D is the father of α, the coefficient cD

must be updated (cf. Lemma 11.26).

11.3.2.4 Unitary Mappings

Here, we consider the analogue of the mappings from §11.3.1.5 under orthonormal-
ity preserving conditions. For j ∈ D, let Bj = [b

(j)
1 , . . . , b

(j)
rj] be an orthonormal

basis. Uj := range(Bj) is a subspace of Vj . Let Aj : Uj → Ûj ⊂ Vj be a mapping

such that B̂j = [b̂
(j)
1 , . . . , b̂

(j)
rj] with b̂(j)i := Ajb

(j)
i is again an orthonormal basis.

Proposition 11.27 applied to A=
⊗

j∈D Aj takes the following form.

Proposition 11.34. Let the tensor v=ρorthHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)

and the elementary Kronecker product A =
⊗

j∈D Aj with unitary mappings
Aj : Uj → Ûj ⊂ Vj be given. Then w := Av has the representation w =
ρorthHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (B̂j)j∈D
)
, where only the orthonormal bases

Bj are replaced by the orthonormal bases B̂j = [Ajb
(j)
1 , . . . , Ajb

(j)
rj].

11.3 Construction of Bases 339

Let A ⊂ TD be a complete set of successors of D (cf. Definition 11.9). Consider
Kronecker products A=

⊗
α∈AAα and assume that

Aα : Uα → Ûα ⊂ Uα1 ⊗Uα2 is unitary for all α ∈ A.

Hence, the orthonormal basis Bα = [b
(α)
1 , . . . ,b

(α)
rα] is mapped into a new ortho-

normal basis B̂α = [b̂
(α)
1 , . . . , b̂

(α)
rα] with b̂

(α)
� := Aαb

(α)
� . To represent b̂(α)

� , new
coefficient matrices Ĉ(α,�) are to be defined with the property

Aαb
(α)
� =

∑

ij
ĉ
(α,�)
ij b

(α1)
i ⊗ b

(α2)
j .

The result Av has the representation ρorthHTR

(
TD, (Ĉβ)β∈TD\L(TD), c

(D), (Bj)j∈D
)
,

where Ĉβ = Cβ for all β /∈ A. Only for β ∈ A, new coefficient matrices appear as
defined above.

11.3.3 HOSVD Bases

11.3.3.1 Definitions, Computation of Mα(v)Mα(v)
H

A by-product of the representation (11.16b) in Theorem 11.12 is stated below.

Remark 11.35. The left singular vectors u
(α)
i of Mα(v) (cf. (11.16b)) may be

chosen as orthonormal basis: Bα = [u
(α)
1 · · ·u(α)

rα]. They form the HOSVD basis
corresponding to the tensor v ∈ V and to the vertex α ∈ TD (cf. Definition 8.22).

Definition 11.36 (hierarchical HOSVD representation). The hierarchical HOSVD
representation denoted by

v = ρHOSVD
HTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)

indicates that these data correspond to HOSVD bases Bα for all α ∈ TD.

Remark 11.35 states the existence of a basis BHOSVD
α =

[
b
(α)
1 , . . . ,b

(α)
rα

]
, but for

the practical implementation one needs the corresponding coefficient matrix family
CHOSVD
α = (C

(α,�)
HOSVD)1≤�≤rα. In the following, we describe a simple realisation of its

computation.
The left singular value decomposition ofMα(v) is equivalent to the diagonal-

isation of Mα(v)Mα(v)
H. We recall that Mα(v)Mα(v)

H for a certain vertex
α ∈ TD is the matrix version of the partial scalar product 〈Mα(v),Mα(v)〉αc ∈
Vα ⊗ Vα (cf. §5.2.3). In the case of the tensor subspace format, its computation
has to refer to the complete coefficient tensor. Similarly, for the r-term format,
the computation of Mα involves all coefficients. For the orthonormal hierarchical
format, the situation is simpler. Only the coefficients Cβ for all predecessors β ⊃ α
are involved.

340 11 Hierarchical Tensor Representation

Theorem 11.37. For v = ρorthHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)

define the
matrices Eα =

(
e
(α)
ij

)
∈ K

rα×rα by

〈Mα(v),Mα(v)〉αc =

rα∑

i,j=1

e
(α)
ij b

(α)
i ⊗ b

(α)
j ∈ Vα ⊗Vα. (11.40a)

For α = D, the matrix ED (usually of size 1× 1) equals

ED := c(D)(c(D))H ∈ K
rD×rD . (11.40b)

Let α1, α2 be the sons of α ∈ TD\L(TD). Given Eα ∈ K
rα×rα , one determines

Eα1 and Eα2 from

Eα1 =

rα∑

i,j=1

e
(α)
ij C(α,i)(C(α,j))H, Eα2 =

rα∑

i,j=1

e
(α)
ij (C(α,i))T C(α,j). (11.40c)

Proof. Use Theorem 5.14 and note that the Gram matrix is the identity, since the
bases are orthonormal. ��

Even for non-orthonormal bases, Theorem 5.14 provides a recursion for Eα.
Theorem 11.37 allows us to determine Eα by a recursion from the root to the

leaves. However, it helps also for the computation of the HOSVD bases. A HOSVD
basis at vertex α is characterised by

Eα = diag
{(
σ
(α)
1

)2
, . . . ,

(
σ(α)
rα

)2}
, (11.41)

corresponding to the diagonalisation 〈Mα(v),Mα(v)〉αc =
rα∑

i=1

(
σ
(α)
i

)2
b
(α)
i ⊗b

(α)
i .

Theorem 11.38. Given the data v=ρorthHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)
,

assume that (11.41) holds at the vertex α ∈ TD\L(TD). Then

Eα1 =

rα∑

i=1

(
σ
(α)
i

)2
C(α,i)(C(α,i))H, Eα2 =

rα∑

i=1

(
σ
(α)
1

)2
(C(α,i))T C(α,i) (11.42)

holds at the son vertices α1 and α2. The diagonalisations Eα1 = Uα1Σ
2
α1
UH
α1

and Eα2 = Uα2Σ
2
α2
UH
α2

yield the HOSVD bases BHOSVD
αk

= Bαk
Uαk

for k = 1, 2,

where Uαk
= [u

(αk)
1 , . . . , u

(αk)
rHOSVD
αk

].

Proof. Eα1 = Uα1Σ
2
α1
UH
α1

can be rewritten as Eα1 =
∑rHOSVD

α1
ν=1 (σ

(α1)
ν)2u

(α1)
ν u

(α1)H
ν

and e(α1)
ij =

∑rHOSVD
α1
ν=1 (σ

(α1)
ν)2u

(α1)
ν,i u

(α1)H
ν,j . Hence,

〈Mα1(v),Mα1 (v)〉αc
1
=

rα1∑

i,j=1

rHOSVD
α1∑

ν=1

(σ(α1)
ν)2u

(α1)
ν,i u

(α1)H
ν,j b

(α1)
i ⊗ b

(α1)
j =

11.3 Construction of Bases 341

=

rHOSVD
α1∑

ν=1

(σ(α1)
ν)2 b

(α1)
ν,HOSVD ⊗ b

(α1)
ν,HOSVD

with b
(α1)
ν,HOSVD =

∑rα
i=1 u

(α1)
ν [i]b

(α1)
i , i.e., BHOSVD

α1
= Bα1Uα1 . Similarly for α2. ��

In the following, we shall determine the HOSVD bases BHOSVD
α together with the

singular values σ(α)
i > 0 which can be interpreted as weights of b(α)i,HOSVD. We add

Σα = diag{σ(α)
1 , . . . , σ

(α)
rHOSVD
α
} to the representation data.

In the following, we start from orthonormal bases Bα and their coefficient
matrices Cα and construct the new HOSVD bases BHOSVD

α , weightsΣα, and matrices
CHOSVD
α . The coefficient matricesC(α,�) will change twice: a transformBα �→ BHOSVD

α

creates new basis vectors and therefore also new coefficient matrices Ĉ(α,�). Since
the coefficients refer to the basis vectors of the sons, a basis change in these vertices
leads to the second transform Ĉ(α,�) �→ C

(α,�)
HOSVD into their final state. Also the number

of basis vectors in Bαi for the sons α1, α2 ∈ S(α) may change from rαi to rHOSVD
αi

.
For simplicity, we shall overwrite the old values by the new ones without changing
the symbol.

Because of rD = 1, the treatment of the root (cf. §11.3.3.2) differs from the
treatment of the inner vertices of TD (cf. §11.3.3.3). The inductive steps can be
combined in different ways to get (a) the complete HOSVD representation ρHOSVD

HTR,

(b) the HOSVD at one vertex, and (c) the coefficients at one level T (�)
D of the tree

(cf. §11.3.3.4).

11.3.3.2 Treatment of the Root

In order to apply Theorem 11.38, we assume in the following that all bases Bα

(α ∈ TD) are orthonormal: v = ρorthHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)
.

The root α = D plays a special rôle, since we assume UD = span{v} to
be one-dimensional (otherwise replace UD by span{v}; note that the HOSVD is
associated to one tensor v only). Hence, there is only one basis vector b(D)

1 . We
may assume that b(D)

1 =v/ ‖v‖. The definition of the weight

σ
(D)
1 := ‖v‖ (11.43a)

coincides with (11.40b):Σ2
D := ED := c(D)(c(D))H ∈ K

1×1.

Let C(D,1)∈Krα1×rα2 be the coefficient matrix of the vector b(D)
1 , where α1, α2

are the sons of D (cf. (11.24)). Determine the reduced (both-sided) singular value
decomposition of σ(D)

1 C(D,1):

σ
(D)
1 C(D,1) = UΣV T

⎧
⎨

⎩

U ∈ K
rα1×r, V ∈ K

rα2×r orthogonal,
σ1≥ . . .≥ σr > 0, r := rank(C(D,1)),
Σ = diag{σ1, . . . , σr} ∈ K

r×r.

⎫
⎬

⎭
(11.43b)

342 11 Hierarchical Tensor Representation

The rank rHOSVD
αk

:= r may be smaller than rαk
(k = 1, 2). The bases at the son

vertices α1, α2 are changed via14

Bα1 �→ BHOSVD
α1

:= Bα1U and Bα2 �→ BHOSVD
α2

:= Bα2V, (11.43c)

i.e., Lemma 11.25 applies with S(α1) := U and S(α2) := V, and shows that

C
(D,1)
HOSVD = Σ = diag

{
σ1
σ(D)

1

, . . . ,
σr
σ(D)

1

}

. (11.43d)

The size of the bases BHOSVD
αi

is rHOSVD
αi

:= r = rank(C(D,1)). According to Lemma
11.23, the coefficient matrices of the new basis vectors b(αi)

�,HOSVD
are

CHOSVD
α1

:= Cα1U and CHOSVD
α2

:= Cα2V, (11.43e)

i.e., C(α1,�)
HOSVD :=

∑rα1

k=1Uk� C
(α1,k) and C(α2,�)

HOSVD :=
∑rα2

k=1Vk� C
(α2,k) for 1 ≤ � ≤ r.

To simplify the notation, we omit the suffix ‘HOSVD’ and write rαi , Bαi , Cαi for
the new quantities at αi. The newly introduced weights are defined by the singular
values of (11.43b):

Σα1 :=Σα2 :=diag{σ1, . . . , σr} with σi=σ
(α1)
i =σ

(α2)
i from (11.43b). (11.43f)

As mentioned above, the old dimensions rαi of the subspaces are changed into

rα1 := rα2 := r. (11.43g)

Remark 11.39. The computational work of (11.43) consists of
a) NSVD(rα1 , rα2) for U, σi, V,
b) 2(rα1r

HOSVD
α1

rα11rα12 + rα2r
HOSVD
α2

rα21rα22) for (11.43e), where15 αk1, αk2 ∈
S(αk). Bounding all rγ (γ ∈ TD) by r, the total asymptotic work is 4r4.

11.3.3.3 Inner Vertices

Assume that at vertex α ∈ TD\({D} ∪ L(TD)) a new basis Bα = [b
(α)
1 , . . . ,b

(α)
rα]

with weight tuples Σα = diag{σ(α)
1 , . . . , σ

(α)
rα } is already determined. The corre-

sponding coefficient matrices are gathered in C(α) = (C(α,�))1≤�≤rα (note that in
the previous step these matrices have been changed). Form the matrices16

Zα1 :=
[
σ
(α)
1 C(α,1), σ

(α)
2 C(α,2), . . . , σ(α)

rα C(α,rα)
]
∈ K

rα1×(rαrα2), (11.44a)

Zα2 :=

⎡

⎢
⎣

σ
(α)
1 C(α,1)

...

σ
(α)
rα C(α,rα)

⎤

⎥
⎦ ∈ K

(rαrα1)×rα2 , (11.44b)

14 Note that Eα1
from (11.42) equals (σ

(D)
1 C(D,1))(σ

(D)
1 C(D,1))H = Uα1

Σ2
α1

UH
α1

with
Uα1

= U (U from (11.43b)). Analogously, Uα2
= V holds.

15 If α1 (or α2) is a leaf, the numbers change as detailed in Remark 11.40.
16 Zα1

may be interpreted as Θα(BαΣα) from (11.23c).

11.3 Construction of Bases 343

where α1 and α2 are the sons of α ∈ TD. Compute the left-sided reduced singular
value decomposition of Zα1 and the right-sided one of Zα2 :

Zα1 = UΣα1 V̂
T and Zα2 = ÛΣα2V

T. (11.44c)

The matrices V̂ and Û are not needed. Only the matrices

U ∈ K
rα1×r

HOSVD
α1 , Σα1 = diag{σ(α1)

1 , . . . , σ
(α1)

rHOSVD
α1

} ∈ K
rHOSVD
α1

×rHOSVD
α1 ,

V ∈ K
rα2×r

HOSVD
α2 , Σα2 = diag{σ(α2)

1 , . . . , σ
(α2)

rHOSVD
α2

} ∈ K
rHOSVD
α2

×rHOSVD
α2

(11.44d)

are of interest, where rHOSVD
αi

:= rank(Zαi) < rαi may occur. The data (11.44d) are
characterised by the diagonalisations of the matrices Eα1 and Eα2 from (11.42):

Eα1 = Zα1Z
H
α1

=
∑rα

�=1(σ
(α)
�)2C(α,�)C(α,�)H = UΣ2

α1
UH,

Eα2 = ZT
α2
Zα2 =

∑rα
�=1(σ

(α)
�)2C(α,�)TC(α,�) = V Σ2

α2
V H.

The inclusions range(C(α,�)) ⊂ range(U) and range(C(α,�)T) = range(V) are
valid by construction; hence, C(α,�) allows a representation C(α,�) = UC

(α,�)
HOSVDV

T.
Since U and V are orthogonal matrices, the coefficient matrices at vertex α are
transformed by

C(α,�) �→ C
(α,�)
HOSVD := UHC(α,�)V ∈ K

rHOSVD
α1

×rHOSVD
α2 (1 ≤ � ≤ rα). (11.44e)

According to Lemmata 11.25 and 11.23, the bases and coefficient matrices at the
son vertices α1, α2 transform as follows:

Bα1 �→ BHOSVD
α1

:= Bα1U and Bα2 �→ BHOSVD
α2

:= Bα2V,
CHOSVD
α1

:= Cα1U and CHOSVD
α2

:= Cα2V.
(11.44f)

Again, we write Bαi and Cαi instead of BHOSVD
αi

and CHOSVD
αi

and redefine rαi by

rαi := rHOSVD
αi

.

The related weights are the diagonal matrices of Σα1 and Σα2 from (11.44d).

Remark 11.40. The computational work of the steps (11.44a-f) consists of
a) (rα1 + rα2) rαrα1rα2 for forming Zα1Z

H
α1

and ZT
α2
Zα2 and 8

3 (r
3
α1

+ r3α2
) for

the diagonalisation producing U,Σα1 , V,Σα2 , b) 2rαr
HOSVD
α1

rα2(rα1 + rHOSVD
α2

) for
(11.44e), c) 2(rα1r

HOSVD
α1

rα11rα12 + rα2r
HOSVD
α2

rα21rα22) for (11.44f), where
αk1, αk2 ∈ S(αk), provided that αk ∈ TD\L(TD). Otherwise, if α1 = {j},
(11.44f) costs 2(rjr

HOSVD
j nj), where nj = dim(Vj). Bounding all rγ by r and nj

by n, the total asymptotic work is 10r4 (if α1, α2 /∈ L(TD)), 8r4+2r2n (if one leaf
in {α1, α2}), and 6r4 + 4r2n (if α1, α2 ∈ L(TD)).

344 11 Hierarchical Tensor Representation

Exercise 11.41. Let {α1, α2} = S(α). Zα1 and Zα2 from (11.44a,b) formulated
with the transformed matrices C(α,�) = C

(α,i)
HOSVD satisfy

Zα1Z
H
α1

=
∑rα
�=1(σ

(α)
�)2 C(α,�)C(α,�)H = Σ2

α1
,

ZT
α2
Zα2 =

∑rα
�=1(σ

(α)
�)2 C(α,�)TC(α,�) = Σ2

α2
.

(11.45)

Note that the case of the root α = D is not really different from inner vertices.
Because of rD = 1, the identity Zα1 = Zα2 holds.

11.3.3.4 HOSVD Computation

First, we want to compute the HOSVD bases at all vertices. The algorithm starts
at the root and proceeds to the leaves. The underlying computational step at vertex
α ∈ TD\L(TD) is abbreviated as follows:

procedure HOSVD(α); (for α ∈ TD\L(TD) with sons α1, α2)

transform C(α,�) (1≤�≤rα) according to

{
(11.43d) if α = D,
(11.44e) if α �= D;

transform

{
C(α1,�) (1≤�≤rα1)

C(α2,�) (1≤�≤rα2)

}

according to

{
(11.43e) if α = D,
(11.44f) if α �= D;

define the weights

{
Σα1 := diag{σ(α1)

1 , . . . , σ
(α1)
rα1
}

Σα2 := diag{σ(α2)
1 , . . . , σ

(α2)
rα2
}

}

according to

{
(11.43f) if α = D
(11.44c) if α �= D

}

with possibly new rα1 , rα2 ;

(11.46a)

The complete computation of HOSVD bases at all vertices of TD is performed by
the call HOSVD∗(D) of the recursive procedure HOSVD∗(α) defined by

procedure HOSVD∗(α);
if α /∈ L(TD) then
begin HOSVD(α); for all sons σ ∈ S(α) do HOSVD∗(σ) end;

(11.46b)

The derivation of the algorithm yields the following result.

Theorem 11.42. Assume v=ρorthHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)
. The re-

sult of HOSVD∗(D) is v=ρHOSVD
HTR

(
TD, (C

HOSVD
α)α∈TD\L(TD), c

(D)
HOSVD,(B

HOSVD
j)j∈D

)
.

The implicitly defined bases BHOSVD
α = [b

(α)
1,HOSVD, . . . ,b

(α)
rα,HOSVD] for α ∈ TD are the

HOSVD bases. The computed tuples Σα contain the singular values.

The computational cost for α = D and α ∈ TD\{D ∪ L(TD)} is discussed in
the Remarks 11.39 and 11.40. The total cost of HOSVD∗(D) sums to

11.3 Construction of Bases 345

NSVD(rσ1 , rσ2) + 2
∑d

j=1
rjr

HOSVD
j nj (11.46c)

+ 2
∑

α∈TD\{D∪L(TD)}
rαrα2

(
rHOSVD
α rα1 + rHOSVD

α1
(rα1 + rHOSVD

α2
)
)
,

where {σ1, σ2} = D and {α1, α2} = S(α). If rα ≤ r and nj ≤ n, the asymptotic
cost is 3(d− 2)r4 + 2dr2n.

Remark 11.43. Algorithm (11.46b) uses a recursion over the tree TD. Compu-
tations at the sons of a vertex are completely independent. This allows an easy
parallelisation. This reduces the computational time by a factor d/ log2 d.

We can use a similar recursion to obtain the HOSVD basis of a single vertex
α ∈ T. The algorithm shows that only the predecessors of α are involved.

procedure HOSVD∗∗(α); (11.46d)
begin if α �= D then

begin β :=father(α); if HOSVD not yet installed at β then HOSVD∗∗(β)
end;
HOSVD(α)

end;

We recall that the tree TD is decomposed in T (�)
D for the levels 0 ≤ � ≤ L (cf.

(11.8). The quite general recursion in (11.46b) can be performed levelwise:

procedure HOSVD-lw(�);

for all α ∈ T (�)
D \L(TD) do HOSVD(α);

(11.47a)

To determine the HOSVD bases on level �, we may call HOSVD-lw(�), provided
that HOSVD bases are already installed on level �− 1 (or if � = 0). Otherwise, one
has to call

procedure HOSVD∗-lw(�);
for λ = 0 to � do HOSVD-lw(λ);

(11.47b)

11.3.4 Sensitivity

The data of the hierarchical format, which may be subject to perturbations, consist
mainly of the coefficients c(α,�)ij and the bases Bj at the leaves. Since basis vectors

b
(α)
� appear only implicitly, perturbations of b(α)

� are caused by perturbations of

c
(α,�)
ij (usually, some coefficients c(α,�)ij are replaced by zero).

An important tool for the analysis are Gram matrices, which are considered
in §11.3.4.1. The error analysis for the general (sub)orthonormal case is given in
§11.3.4.2. HOSVD bases are considered in §11.3.4.3.

346 11 Hierarchical Tensor Representation

11.3.4.1 Gram Matrices and Suborthonormal Bases

We recall the definition of a Gram matrix (cf. (2.16)). For any basis Bα (α ∈ TD)
or Bj (j ∈ D) we set

G(Bα) := (g(α)νμ)1≤ν,μ≤rα with g(α)νμ :=
〈
b(α)
μ ,b(α)

ν

〉
. (11.48a)

Similarly, the tupleCα :=
(
C(α,�)

)
1≤�≤rα of coefficient matrices is associated with

G(Cα) := (gνμ)1≤ν,μ≤rα with gνμ :=
〈
C(α,μ), C(α,ν)

〉

F
. (11.48b)

First we consider the situation of a vertex α ∈ TD\L(TD) with sons α1, α2. In
the following lemma the data Bα1 ,Bα2 are general variables; they may be bases or
their perturbations. The crucial question is whether the mapping (Bα1 ,Bα2) �→ Bα

defined in (11.24) is stable.

Lemma 11.44. Let α1, α2 ∈ S(α). Bα1 ∈ (Vα1)
rα1 and Bα2 ∈ (Vα2)

rα2 are

mapped by b
(α)
� =

∑
i,j c

(α,�)
ij b

(α1)
i ⊗ b

(α2)
j into Bα ∈ (Vα)

rα . The related Gram
matrices satisfy

‖G(Bα)‖2 ≤ ‖G(Cα)‖2 ‖G(Bα1)‖2 ‖G(Bα2)‖2 . (11.49)

Proof. According to Lemma 2.17, there are coefficients ξi∈K with
∑rα
�∈1 |ξ�|

2
=1

and ‖G(Bα)‖2=
∥
∥∑rα

�=1ξ�b
(α)
�

∥
∥2
2
. Summation over � yields c(α)ij :=

∑rα
�=1 ξ� c

(α,�)
ij

and the matrixCα = (c
(α)
ij).With this notation and the abbreviationsGi := G(Bαi)

for i = 1, 2, we continue:

∥
∥
∥
∥
∥

rα∑

�=1

ξ� b
(α)
�

∥
∥
∥
∥
∥

2

2

=

∥
∥
∥
∥

∑

i,j

c
(α)
ij b

(α1)
i ⊗ b

(α2)
j

∥
∥
∥
∥

2

2

=

〈∑

i,j

c
(α)
ij b

(α1)
i ⊗ b

(α2)
j ,

∑

i′,j′
c
(α)
i′j′ b

(α1)
i′ ⊗ b

(α2)
j′

〉

=
∑

i,j

∑

i′,j′
c
(α)
ij g

(α2)
j′j c

(α)
i′j′ g

(α1)
i′i

= trace(CαG
T
2C

H
αG1).

Set Ĉ := G
1/2
1 Cα(G

1/2
2)T. Exercise 2.7a allows us to rewrite the trace as follows:

trace(CαG
T
2C

H
αG1) = trace(ĈĈH) = 〈Ĉ, Ĉ〉F = ‖Ĉ‖2F.

Thanks to Lemma 2.10, we can estimate by17

17 Here we use that positive semi-definite matrices satisfy ‖G1/2‖2=(ρ(G1/2))2=ρ(G)=‖G‖
(ρ: spectral radius from (4.76)).

11.3 Construction of Bases 347

‖Ĉ‖2F = ‖G
1
2
1 Cα(G

1
2
2)

T‖2F ≤
[
‖G

1
2
1 ‖2‖Cα‖F‖G

1
2
2 ‖2

]2
= ‖G1‖2‖Cα‖2F‖G2‖2

Now we use Cα =
∑rα

�=1ξ� C
(α,�) and apply Lemma 2.17 (with the Euclidean

scalar product replaced by the Frobenius scalar product):

‖Cα‖2F =

∥
∥
∥
∥
∥

rα∑

�∈1
ξ�C

(α,�)

∥
∥
∥
∥
∥

2

F

≤ max∑
�|η�|2=1

∥
∥
∥
∥
∥

rα∑

�∈1
η�C

(α,�)

∥
∥
∥
∥
∥

2

F

= ‖G(Cα)‖2 .

Putting all estimates together, we obtain the desired estimate. ��

This result deserves some comments.

1) Orthonormality of the basis Bαi is equivalent to G(Bαi) = I . According to
Lemma 11.31, orthonormal matrices C(α,�) produce an orthonormal basis Bα, i.e.,
G(Bα)=I. Under these assumptions, inequality (11.49) takes the form 1 ≤ 1·1·1.

2) The quantity ‖G(Bα)‖2 is a reasonable one, since it is an estimate for all

expressions
∥
∥∑rα

�=1 ξ�b
(α)
�

∥
∥2
2

with
∑rα

�=1 |ξ�|
2
= 1 (cf. Lemma 2.17).

3) Starting from the orthonormal setting (i.e., ‖G(. . .)‖2 = 1), we shall see that
truncations lead to ‖G(. . .)‖2 ≤ 1. Therefore, errors will not be amplified.

A typical truncation step at vertex α1 omits a vector of the basis, say, b(α1)
rα1

keeping Bnew
α1

=[b
(α1)
1 · · ·b(α1)

rα1−1
]. AlthoughBnew

α1
and Bα2 represent orthonormal

bases, the resulting basis Bnew
α at the father vertex α is no longer orthonormal.

G(Bnew
α) corresponds to G(Cnew

α), where Cnew
α = (C

(α,�)
new)1≤�≤rα is obtained by

omitting the rα1 -th row in C(α,�). However, still the inequality G(Bnew
α) ≤ I can

be shown (cf. Exercise 11.48).

Exercise 11.45. Prove ‖b(α)
� ‖22 ≤‖G(Bα1)‖2‖G(Bα2)‖2‖C(α,�)‖2F for 1≤�≤rα.

Exercise 11.46. (a) Prove that
√
‖G(B+C)‖2 ≤

√
‖G(B)‖2 +

√
‖G(C)‖2.

(b) Let B,C∈Kn×m be pairwise orthogonal, i.e., BHC=0. Prove that

G(B+C) = G(B) +G(C),

‖G(B+C)‖2 ≤ ‖G(B)‖2 + ‖G(C)‖2.

Definition 11.47. An n-tuple of linearly independent vectors x = (x1, . . . , xn) is
called suborthonormal, if the corresponding Gram matrix satisfies

0 < G(x) ≤ I (cf. (2.14)) .

Exercise 11.48. Show for any B∈Kn×m and any orthogonal projection P ∈Kn×n
that

G(PB) ≤ G(B).

Hint: Use Remark 2.14b with P = PHP ≤ I.

348 11 Hierarchical Tensor Representation

11.3.4.2 Orthonormal Bases

Here we suppose that all bases Bα ∈ (Vα)
rα (α ∈ TD) are orthonormal or, more

generally, suborthonormal. This fact implies G(Bα) ≤ I, G(Cβ) ≤ I and thus
‖G(Bα)‖2 , ‖G(Cβ)‖2 ≤ 1. Perturbations may be caused as follows.

1. At a leaf j ∈ D, the basis Bj may be altered. We may even reduce the dimension
by omitting one of the basis vectors (which changes some b(j)i into 0). Whenever
the new basis Bnew

j is not orthonormal or the generated subspace has a smaller
dimension, the implicitly defined bases Bnew

α with j∈α also lose orthonormality.

2. Let α ∈ TD\L(TD) have sons α1, α2. Changing Cα, we can rotate the basis
Bα into a new orthonormal basis Bnew

α satisfying the nestedness property
range(Bα) ⊂ range(Bα1) ⊗ range(Bα2). This does not change G(Bnew

β) = I
and G(Cβ) = I for all predecessors β ∈ TD (i.e., β ⊃ α).

3. We may omit, say, b(α)
rα from Bα ∈ (Vα)

rα by setting C(α,rα)
new := 0. If Bα is

(sub)orthonormal, Bnew
α is so too. For β ⊃ α, G(Bnew

β)≤G(Bβ) follows, i.e.,
an orthonormal basis Bβ becomes a suborthonormal basis Bnew

α . The inequality
G(Cnew

α)≤G(Cα) holds.

We consider a general perturbation δBα ∈ (Vα)
rα , i.e., the exact Bα is changed

into
Bnew
α := Bα − δBα

at one vertex α ∈ TD. Let β ∈ TD be the father of α such that β1, β2 ∈ S(β) are
the sons and, e.g., α = β1. A perturbation δBα causes a change of Bβ into Bnew

β =

Bβ − δBβ . Because of the linear dependence, δb(β)
� =

∑
i,j c

(β,�)
ij δb

(α)
i ⊗ b

(β2)
j

holds for the columns of δBβ , δBα, and inequality (11.49) implies

‖G(δBβ)‖2 ≤ ‖G(Cβ)‖2 ‖G(δBα)‖2 ‖G(Bβ2)‖2 ≤ ‖G(δBα)‖2 .

The inequality ‖G(δBβ)‖2 ≤ ‖G(δBα)‖2 can be continued up to the root D
yielding ‖G(δBD)‖2≤‖G(δBα)‖2. However, since rD=1, G(δBD)= ‖δb(D)

1 ‖22
is an 1×1 matrix. This proves the following result.

Theorem 11.49. Given v = ρorthHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)

as de-
fined in (11.38), consider a perturbation δBα at some α ∈ TD (in particular, δBj
for α = {j} is of interest). Then v is changed into vnew = v − δv with

‖δv‖2 ≤ |c(D)
1 |

√
‖G(δBα)‖2.

If β is the father of α ∈ TD, the fact that the perturbed basis Bnew
α = Bα− δBα

is, in general, no longer orthonormal, implies that also Bnew
β = Bβ − δBβ loses

orthonormality, although the coefficients Cβ still satisfy G(Cβ) = I.

Corollary 11.50. Let A ⊂ TD be a subset of size #A (hence, #A ≤ 2d − 1).
Perturbations δBα at all α ∈ A yield the error

11.3 Construction of Bases 349

‖δv‖2 ≤ |c(D)
1 |

√
#A

√
∑

α∈A
‖G(δBα)‖2 + higher order terms.

A first perturbation changes some Bβ into Bnew
β . If ‖G(Bβ)‖2 ≤ 1,

i.e., if Bnew
β is still suborthonormal, the second perturbation is not amplified.

However, ‖G(Bnew
β)‖2 may become larger than one. Exercise 11.46a allows us to

bound the norm by

‖G(Bnew
β)‖2 ≤

[√
‖G(Bβ)‖2 +

√
‖G(δBβ)‖2

]2

=

[

1 +
√
‖G(δBβ)‖2

]2
= 1 +O

(√
‖G(δBβ)‖2

)

.

If this factor is not compensated by other factors smaller than 1, higher order terms
appear in the estimate.

So far, we have considered general perturbations δBα leading to perturbations
δvα of v. If the perturbations δvα are orthogonal, we can derive a better estimate
of ‖G(·)‖2 (cf. Exercise 11.46b).

In connection with the HOSVD truncations discussed in §11.4.2, we shall con-
tinue the error analysis.

11.3.4.3 HOSVD Bases

Since HOSVD bases are particular orthonormal bases, the results of §11.3.4.2 are
still valid. However, now the weights Σα from (11.43f) and (11.44d) enable a
weighted norm of the error, which turns out to be optimal for our purpose.

First, we assume that HOSVD bases are installed at all vertices α ∈ TD. The
coefficient matricesC(α,�) together with the weightsΣαi = diag{σ(αi)

1 , . . . , σ
(αi)
rαi
}

(i = 1, 2) at the son vertices {α1, α2} = S(α) satisfy (11.45) (cf. Exercise 11.41).
A perturbation δBτ of the basis Bτ is described by δBτ = [δb

(τ)
1 , . . . , δb

(τ)
rτ]. The

weights σ(τ)
i from Στ are used for the formulation of the error:

ετ :=

√
√
√
√

rτ∑

i=1

(
σ
(τ)
i ‖δb

(τ)
i ‖

)2
(τ ∈ TD). (11.50)

The next proposition describes the error transport from the son α1 to the father α.

Proposition 11.51. Suppose that the basis Bα satisfies the first HOSVD property
(11.45) for α1 ∈ S(α). Let δBα1 be a perturbation18 of Bα1 = [b

(α1)
1 , . . . ,b

(α1)
rα1

]
into Bα1−δBα1 . The perturbation is measured by εα1 from (11.50). The (exact)

basis Bα = [b
(α)
1 , . . . ,b

(α)
rα] with b

(α)
� =

∑rα1

i=1

∑rα2

j=1 c
(α,�)
ij b

(α1)
i ⊗ b

(α2)
j is per-

turbed into Bα − δBα with

18 This and following statements are formulation for the first son α1. The corresponding result for
α2 is completely analogous.

350 11 Hierarchical Tensor Representation

δBα =
[
δb

(α)
1 , . . . , δb(α)

rα

]
and δb

(α)
� =

rα1∑

i=1

rα2∑

j=1

c
(α,�)
ij δb

(α1)
i ⊗ b

(α2)
j .

Then the perturbations δb(α)
� lead to an error of equal size:

εα :=

√
√
√
√

rα∑

�=1

(
σ
(α)
� ‖δb

(α)
� ‖

)2
= εα1 .

Proof. By orthonormality of the basis Bα2 we have

‖δb(α)
� ‖2 =

∥
∥
∥
∥
∥

rα1∑

i=1

rα2∑

j=1

c
(α,�)
ij δb

(α1)
i ⊗ b

(α2)
j

∥
∥
∥
∥
∥

2

=

rα2∑

j=1

∥
∥
∥
∥

∑

i

c
(α,�)
ij δb

(α1)
i

∥
∥
∥
∥

2

=

rα2∑

j=1

〈∑

i

c
(α,�)
ij δb

(α1)
i ,

∑

i′
c
(α,�)
i′j δb

(α1)
i′

〉

=
∑

i,i′,j

c
(α,�)
ij c

(α,�)
i′j

〈
δb

(α1)
i , δb

(α1)
i′

〉
.

The Gram matrixG=G(δBα1)∈Krα1×rα1 has the entriesGi′i :=
〈
δb

(α1)
i , δb

(α1)
i′

〉
.

The sum over i, i′, j from above equals

trace
(
(C(α,�))HGC(α,�)

)
= trace

(
G1/2C(α,�)(C(α,�))HG1/2

)

(cf. Exercise 2.7a). From (11.45) we derive

rα∑

�=1

(
σ
(α)
� ‖δb

(α)
� ‖

)2
=

rα∑

�=1

(
σ
(α)
�

)2
trace(G1/2C(α,�)(C(α,�))HG1/2)

= trace

{

G
1
2

[∑rα

�=1

(
σ
(α)
�

)2
C(α,�)(C(α,�))H

]
G

1
2

}

= trace
(
G

1
2Σ2

α1
G

1
2

)

= trace (Σα1 GΣα1) =

rα∑

i=1

(
σ
(α1)
i ‖δb(α1)

i ‖
)2

= ε2α1

concluding the proof. ��

The HOSVD condition (11.45) can be weakened:

rα∑

�=1

(σ
(α)
�)2 C(α,�)(C(α,�))H≤Σ2

α1
,

rα∑

�=1

(σ
(α)
�)2 (C(α,�))HC(α,�)≤Σ2

α2
(11.51)

for α1, α2 ∈ S(α). Furthermore, the basis Bτ = [b
(τ)
1 , . . . ,b

(τ)
rτ] (τ ∈ TD) may be

suborthonormal, i.e., the Gram matrix G(Bτ) := BH
τBτ satisfies

G(Bτ) ≤ I (τ ∈ TD) . (11.52)

The statement of Proposition 11.51 can be generalised for the weak HOSVD
condition.

11.3 Construction of Bases 351

Corollary 11.52. Suppose that the basis Bα satisfies the first equality in (11.51) for
α1 ∈ S(α). Let δBα1 be a perturbation of Bα1 measured by εα1 from (11.50). The
basis Bα2 at the other son α2 ∈ S(α) may be suborthonormal (cf. (11.52)). Then

the perturbations δb(α)
� are estimated by

εα :=

√
√
√
√

rα∑

�=1

(
σ
(α)
� ‖δb

(α)
� ‖

)2
≤ εα1 .

Proof. 1) We have ‖δb(α)
� ‖2 =

∥
∥∑rα2

j=1 cj⊗b
(α2)
j

∥
∥2 for cj :=

∑rα1

i=1 c
(α,�)
ij δb

(α1)
i .

Using the Gram matrices C := G(c) and G := G(Bα2), the identity

∥
∥
∥
∑

j
cj ⊗ b

(α2)
j

∥
∥
∥
2

=
∑

j,k
〈cj , ck〉

〈
b
(α2)
j ,b

(α2)
k

〉
=

C=CH
trace(CG)

= trace(C1/2GC1/2)

holds. Applying (11.52) and Remark 2.14d, we can use the inequality

trace(C1/2GC1/2) ≤ trace(C1/2C1/2) = trace(C) =
∑

j
〈cj , cj〉

=

rα2∑

j=1

∥
∥
∥
∥

rα1∑

i=1

c
(α,�)
ij δb

(α1)
i

∥
∥
∥
∥

2

to continue with the estimates in the proof of Proposition 11.51. In the last lines of
the proof trace{. . .} = trace

(
δ1/2Σ2

α1
δ1/2

)
has to be replaced by the inequality

trace {. . .} ≤ trace
(
δ1/2Σ2

α1
δ1/2

)
. ��

Theorem 11.53. Suppose v ∈ Hr. Assume that all Bτ , τ ∈ TD, are weak HOSVD
bases is the sense of (11.52) and that all coefficient matrices C(α,�) together with
the weights Σα satisfy (11.51). Then a perturbation of the basis at vertex α∈TD by

εα :=

√
√
√
√

rα∑

�=1

(
σ
(α)
� ‖δb

(α)
� ‖

)2

leads to an absolute error of v by

‖δv‖ ≤ εα.

Proof. Corollary 11.52 shows that the same kind of error at the father vertex does

not increase. By induction, one obtains εD=

√
∑rD

�=1(σ
(D)
� ‖δb(D)

� ‖)2 ≤ εα at the

root D ∈ TD. Since rD = 1 and σ(D)
1 = ‖v‖, it follows that εD = ‖v‖‖δb(D)

1 ‖.
On the other hand, v = c

(D)
1 b

(D)
1 with ‖v‖ = |c(D)

1 | proves that the perturbation is

‖δv‖ = ‖c(D)
1 δb

(D)
1 ‖ = ‖v‖‖δb(D)

1 ‖. ��

352 11 Hierarchical Tensor Representation

11.3.5 Conversion from Rr to Hr Revisited

In §11.2.4.2, the conversion from r-term representationRr into hierarchical format
Hr has been discussed on the level of subspaces. Now we consider the choice of
bases. The input tensor is

v =

r∑

i=1

⊗

j∈D
v
(j)
i with v(j)i ∈ Vj for j ∈ D. (11.53a)

Let TD be a suitable dimension partition tree for D. The easiest approach is to
choose

b
(α)
i :=

⊗

j∈α
v
(j)
i (1 ≤ i ≤ r, α ∈ TD\{D}) (11.53b)

as a frame (cf. (11.19)). Note that rα = r for all α ∈ TD\{D}. Because of

b
(α)
i = b

(α1)
i ⊗ b

(α2)
i (1 ≤ i ≤ r, α1, α2 sons of α), (11.53c)

the coefficient matrices are of extremely sparse form:

c
(α,�)
ij =

{
1 if � = i = j
0 otherwise.

}

1 ≤ i, j, � ≤ r, α ∈ TD\{D}. (11.53d)

Only for α=D, the definition b
(D)
1 =

∑r
i=1 b

(α1)
i ⊗b

(α2)
i is used to ensure rD=1,

i.e., C(D,1) = I . In particular, the matrices C(α,�) are sparse, diagonal, and of rank
one for α �= D.

Now we denote the basis vectors b(α)
i from (11.53b,c) by b

(α)
i,old. Below we con-

struct an orthonormal hierarchical representation.

Step 1 (orthogonalisation at the leaves): By QR or Gram matrix techniques one
can obtain an orthonormal bases {b(j)i : 1≤ i≤ rj} of span{v(j)i : 1≤ i≤ r} with
rj ≤ r (cf. Lemma 8.12). Set Bj = [b

(j)
1 , . . . , b

(j)
rj]. Then there is a transformation

matrix T (j) with

Bold
j = [v

(j)
1 , . . . , v(j)r] = BjT

(j), i.e., v(j)� =

rk∑

i=1

t
(j)
i� b

(j)
i (1 ≤ � ≤ r) .

Step 2 (non-leaf vertices): The sons of α ∈ TD\L(TD) are denoted by α1 and

α2. By induction, we have b
(αν)
�,old =

∑
i t

(αν)
i� b

(αν)
i (ν = 1, 2). From (11.53c) we

conclude that

b
(α)
�,old =

rα1∑

i=1

rα2∑

j=1

t
(α1)
i� t

(α2)
j� b

(α1)
i ⊗ b

(α2)
i (1 ≤ � ≤ r) (11.54a)

11.4 Approximations in Hr 353

with the coefficient matrix

C
(α,�)
old =

(
c
(α,�)
ij

)
, c

(α,�)
ij := t

(α1)
i� t

(α2)
j� (11.54b)

(1 ≤ � ≤ r, 1 ≤ i ≤ rα1 , 1 ≤ j ≤ rα2) . The identityC(α,�)
old = abT for the vectors

a = T
(α1)
•,� , b = T

(α2)
•,� proves the first statement of the next remark.

Remark 11.54. (a) The matrices C(α,�)
old from (11.54b) are of rank 1.

(b) The Gram matrix Gα = G(Cα) has coefficients g(α)m� =
〈
C

(α,�)
old , C

(α,m)
old

〉
F

(cf.
(11.37b)) of the form

g
(α)
m� =

(rα1∑

i=1

s
(α1)
i� s

(α1)
im

)(rα2∑

j=1

s
(α2)
j� s

(α2)
jm

)

.

Therefore, the computational cost for orthonormalisation is 2r2α (rα1 + rα2) (in-
stead of 2r2αrα1rα2 as stated in Lemma 11.31 for the general case).

Using Gα, we can construct an orthonormal basis {b(α)
� : 1 ≤ � ≤ rα} leading

to Bold
α = BαT

(α) and an updated C(α,�).

Step 3 (root): For α = D choose rD = 1 with obvious modifications of Step 2.

11.4 Approximations in Hr

11.4.1 Best Approximation in Hr

11.4.1.1 Existence

Lemma 8.6 has the following counterpart forHr.

Lemma 11.55. Let V = ‖·‖
⊗d

j=1 Vj be a Banach tensor space with a norm not
weaker than ‖·‖∨ (cf. (6.18)). Then the subsetHr ⊂ V is weakly closed.

Proof. Let v(ν)∈Hr be a weakly convergent: v(ν)⇀v∈V. Because of v(ν)∈Hr

we know that dim(Umin
α (v(ν))) ≤ rj . By Theorem 6.24, dim(Umin

α (v)) ≤ rj
follows. Also the nestedness property Umin

α (v) ⊂ Umin
α1

(v) ⊗ Umin
α2

(v) follows
from (6.13). Hence v∈Hr is proved. ��

The minimisation problem forHr reads as follows:

Given v ∈ ‖·‖
⊗d

j=1 Vj and r = (rα)α∈TD
∈ N

TD ,
determine u ∈ Hr minimising ‖v − u‖ . (11.55)

354 11 Hierarchical Tensor Representation

The supposition of the next theorem is, in particular, satisfied if dim(Vj) <∞.

Theorem 11.56. Suppose that the Banach space V =
⊗d

j=1 Vj is reflexive with a
norm not weaker than ‖·‖∨. Then Problem (11.55) has a solution for all v ∈ V, i.e.,
for given representation ranks r = (rα)α∈TD

, there is a tensor ubest ∈ Hr ⊂ V
which solves

‖v − ubest‖ = inf
u∈Hr

‖v − u‖ .

Proof. By Lemma 11.55, Hr is weakly closed. Thus, Theorem 4.28 proves the
existence of a minimiser. ��

In the rest of this chapter we assume that V is a Hilbert tensor space with induced
scalar product. Since ubest ∈

⊗d
j=1 U

min
j (v), the statements from the second part

of Lemma 10.7 are still valid. These are also true for the truncation results from
§11.4.2.

11.4.1.2 ALS Method

As in the case of the tensor subspace format, one can improve the approximation
iteratively. Each iteration contains a loop over all vertices of TD\{D}. The action
at α ∈ TD\{D} is in principle as follows. Let v ∈ V be the given tensor and
u= ρorthHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)

the present representation inHr.

If α = {k} ∈ L(TD), u is replaced by unew which is the minimiser of
{∥
∥v − ρorthHTR

(
TD, (Cα), c

(D), (Bj)j∈D
)∥
∥ : Bk∈Knk×rk with BH

kBk=I
}
,

i.e., a new rk-dimensional subspace Unew
k ⊂ Vk is optimally chosen and rep-

resented by an orthonormal basis Bnew
k . Replacing the previous basis Bk from

u = ρorthHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)

by Bnew
k , we obtain the repre-

sentation of unew. Note that the change from Bk to Bnew
k corresponds to a unitary

mapping Ak. By Proposition 11.34, unew=(Ak ⊗A[k])u holds with A[k]=I .
If α ∈ TD\L(TD), a new rα-dimensional subspace Unew

α ⊂ Vα is to be de-
termined. Since Uα = range(Bα), one has in principle to minimise over all
Bα∈ (Vα)

rα with BH
αBα= I. Since the basis Bα does not appear explicitly in the

representation ρorthHTR(. . .), one has to use Cα instead. Note that BH
αBα= I holds if

and only if G(Cα) = I holds for the Gram matrix G(Cα) (cf. (11.48b)). Hence,
the previous approximation u = ρorthHTR

(
TD, (Cβ)β∈TD\L(TD), c

(D), (Bj)j∈D
)

is
replaced by unew which is the minimiser of
{∥
∥v − ρorthHTR

(
TD, (Cβ)β∈TD\L(TD), c

(D), (Bj)j∈D
)∥
∥ : Cα with G(Cα)=I

}
.

Cnew
α =

(
C

(α,�)
new

)rα
�=1

defines the basis Bnew
α = [b

(α)
1,new, . . . ,b

(α)
rα,new] by (11.24). If

Aα : range(Bα)→ range(Bnew
α) with Aαb

(α)
i = b

(α)
i,new is a unitary mapping, the

transition from Cα to Cnew
α produces unew = (Aα ⊗ Aαc)u with Aαc = I (see

second part of §11.3.2.4).

11.4 Approximations in Hr 355

11.4.2 HOSVD Truncation to Hr

As for the tensor subspace format in §10.1, the higher order singular value decom-
position can be used to project a tensor into Hr. In the case of the tensor subspace
format Tr we have discussed two versions: (i) independent HOSVD projections in
all d directions (§10.1.1) and (ii) a successive version with renewed HOSVD after
each partial step in §10.1.2.

In the case of the hierarchical format, a uniform version (i) will be discussed in
§11.4.2.1. However, now the successive variant (ii) splits into two versions (iia) and
(iib). The reason is that not only different directions exists but also different levels of
the vertices. Variant (iia) in §11.4.2.2 uses the direction root-to-leaves, while variant
(iib) in §11.4.2.3 proceeds from the leaves to the root.

11.4.2.1 Basic Form

We assume that v is represented inHs and should be truncated into a representation
in Hr for a fixed rank vector r ≤ s. More precisely, the following compatibility
conditions are assumed:

rα ≤ sα for all α ∈ TD,
rD = 1, rσ1 = rσ2 for the sons σ1, σ2 of D,
rα ≤ rα1rα2 for all α ∈ TD\L(TD) and {α1, α2} = S(α).

(11.56)

The last inequality follows from the nestedness property (11.11c). The equation
rσ1 = rσ2 for the sons σ1, σ2 of D is due to the fact that for V = Vσ1 ⊗ Vσ2

we have the matrix case: The minimal subspaces Umin
σ1

(u) and Umin
σ2

(u) of some
approximation u ∈ V have identical dimensions (cf. Corollary 6.6).

First we describe a truncation touHOSVD∈Hr which is completely analogous to the
truncation to Tr discussed in Theorem 10.3 for the tensor subspace representation.
Nevertheless, there is a slight difference. In the case of Tr, there are single projec-
tions Pj (1 ≤ j ≤ d) from (10.5) and uHOSVD =Prv holds for the product Pr of all
Pj . Since the Pj commute, the ordering of the Pj in the product does not matter.
In the hierarchical case, one has to take into consideration that not all projections
commute.

In the case of Hs, let BHOSVD
α = [b

(α)
1 , . . . ,b

(α)
sα] be the HOSVD basis discussed

in §11.3.3. Denote the reduction to the first rα bases vectors (assuming rα≤sα) by
Bred
α := [b

(α)
1 , . . . ,b

(α)
rα]. The projection Pα from Vα onto range(Bred

α) is deter-
mined by Pα=Bred

α (Bred
α)H. The same symbol Pα denotes its extension to V via

Pα := Pα ⊗ idαc , i.e., Pα
(⊗

j∈D
uj

)
=
[
Pα

(⊗

j∈α
uj

)]
⊗
[⊗

j∈αc
uj

]

for any uj ∈ Vj (cf. (3.39a,b)).
Given v = ρHOSVD

HTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)

(cf. Definition 11.36),
the projection Pα must be expressed by means of the coefficient matrices Cα, as

356 11 Hierarchical Tensor Representation

detailed in the following procedure with r = rα:

procedure REDUCE(α, r);
1) delete C(α,�) for � > r ;
2) if level(α) ≥ 1 then for the father β do

2a) if α = β1 is the first son of β then

reduce C(β,�) ∈ K
s1×s2 to

(
c
(β,�)
i,j

)
1≤i≤r, 1≤j≤s2 ∈ K

r×s2 else
2b) if α = β2 is the second son of β then

reduce C(β,�) ∈ K
s1×s2 to

(
c
(β,�)
i,j

)
1≤i≤s1, 1≤j≤r ∈ K

s1×r.

Concerning the ordering of the sons see Remark 11.4. s1 × s2 denotes the actual
size of C(β,�) before reduction. Note that the remaining coefficients c(α,�)i,j , c(β,�)i,j are
unchanged, only those referring to {b(α)

� : r+1 ≤ � ≤ sα} are deleted by reducing
the size of Cα, Cβ .

The recursive version of this procedure is

procedure REDUCE∗(α, r);
begin REDUCE(α, rα);

if α /∈ L(TD) then for all σ ∈ S(α) do REDUCE∗(σ, r)
end;

REDUCE∗(D, r) maps v = ρHOSVD
HTR(·) ∈ Hs into uHOSVD = Prv ∈ Hr. Since no

arithmetical operations are performed, the computational cost of the procedures
REDUCE and REDUCE∗ is zero.

Remark 11.57. (a) If α, β ∈ TD are disjoint, the projections commute: PαPβ =
PβPα. Otherwise, PαPβ and PβPα may differ.
(b) If Pα, Pβ are orthogonal projections onto subspaces Uα, Uβ with Uα ⊂ Uβ , the
identity Pα = PαPβ = PβPα is valid.
(c) Let σ1 and σ2 be the sons ofD ∈ TD. The projectionsPσ1 and Pσ2 (as mappings
on V) satisfy Pσ1v = Pσ2v.

Proof. For Part (c) note that v =
∑
ν σν b

(σ1)
ν ⊗ b

(σ2)
ν . ��

To study the consequence of Remark 11.57a, we consider α ∈ TD\L(TD) and
its sons α1 and α2. While Pα1 and Pα2 commute, they do not commute with Pα,
which can be seen as follow. First we describe the action of Pα. A tensor vα ∈ Uα

has the representation

vα =

sα∑

�=1

c
(α)
� b

(α)
�

with b
(α)
� from the HOSVD basis BHOSVD

α = [b
(α)
1 , . . . ,b

(α)
sα]. Hence, the projection

yields

Pαvα =

rα∑

�=1

c
(α)
� b

(α)
� =

rα∑

�=1

c
(α)
�

sα1∑

i=1

sα2∑

j=1

c
(α,�)
i,j b

(α1)
i ⊗ b

(α2)
j ,

where we use the representation (11.24) of b(α)
� (index bound sα replaced by rα!).

The projections Pα1 and Pα2 produce

11.4 Approximations in Hr 357

Pα2Pα1Pαvα =

rα∑

�=1

c
(α)
�

rα1∑

i=1

rα2∑

j=1

c
(α,�)
i,j b

(α1)
i ⊗ b

(α2)
j (11.57)

(summation up to rαi instead of sαi). Now, Pα2Pα1Pαvα belongs to the subspace
Ũα := span{b̃(α)

� : 1 ≤ � ≤ rα} with the modified vectors

b̃
(α)
� :=

rα1∑

i=1

rα2∑

j=1

c
(α,�)
i,j b

(α1)
i ⊗ b

(α2)
j . (11.58)

Ũα is a subspace of Uα1 ⊗Uα2 for Uαi := span{b(αi)
� : 1 ≤ � ≤ rαi}, i.e., the

nestedness property (11.11c) holds.
On the other hand, if we first apply Pα2Pα1 , we get

Pα2Pα1vα =

sα∑

�=1

c
(α)
�

rα1∑

i=1

rα2∑

j=1

c
(α,�)
i,j b

(α1)
i ⊗ b

(α2)
j =

sα∑

�=1

c
(α)
� b̃

(α)
�

with the modified vectors b̃
(α)
� from (11.58). The next projection Pα yields some

vector PαPα2Pα1vα in Uα := range(Bα) = span{b(α)
� : 1 ≤ � ≤ rα} �= Ũα.

Therefore, in general,
Pα2Pα1Pαvα �= PαPα2Pα1vα

holds proving noncommutativity. Further, Uα is not a subspace of Uα1 ⊗Uα2 , i.e.,
the construction does not satisfy the nestedness property (11.11c).

These considerations show that the HOSVD projections have to be applied from
the root to the leaves. A possible description is as follows. For all level numbers
1 ≤ � ≤ L := depth(TD) (cf. (11.7)) we set19

P (�) :=
∏

α∈TD , level(α)=�
Pα. (11.59)

Since all Pα with level(α) = � commute (cf. Remark 11.57a), the ordering in
the product does not matter and P (�) itself is a projection. Then we apply these
projections in the order

uHOSVD := P (L)P (L−1) · · ·P (2)P (1)v. (11.60)

The following theorem is the analogue of Theorem 10.3 for the tensor subspace
representation. Again, we refer to the best approximation ubest ∈ Hr, which exists
as stated in Theorem 11.56.

Theorem 11.58. Let V = a

⊗
j∈D Vj and Vj be pre-Hilbert spaces with induced

scalar product20. For v ∈ Hs and r ≤ s satisfying (11.56) the approximation
uHOSVD ∈ Hr from (11.60) is quasi-optimal:

‖v − uHOSVD‖ ≤
√∑

α

∑

i≥rα+1

(σ
(α)
i)2 ≤

√
2d− 3 ‖v − ubest‖ . (11.61)

σ
(α)
i are the singular values ofMα(v). The sum

∑
α is taken over all α ∈ TD\{D}

except that only one son σ1 of D is involved.

19 At level � = 0 no projection P0 is needed because of (11.12), which holds for HOSVD bases.
20 The induced scalar product is also used for Vα, α ∈ TD\L(TD).

358 11 Hierarchical Tensor Representation

Proof. The vertex α=D is exceptional, since P (1) =
∏

α∈TD , level(α)=1

Pα = Pσ2Pσ1

(σ1, σ2 sons of D) can be replaced by Pσ1 alone (cf. Remark 11.57c). Since
uHOSVD := P (L) · · ·P (2)Pσ1v, Lemma 4.123b yields

‖v − uHOSVD‖2 ≤
∑

α
‖(I − Pα)v‖2 .

The number of projections Pα involved is 2d− 3. The last estimate in

‖(I − Pα)v‖2 =
∑

i≥rα+1
(σ

(α)
i)2 ≤ ‖v − ubest‖2 (11.62)

follows as in the proof of Theorem 10.3. Summation of (11.62) over α proves
(11.61). ��

For all α with rα = rα1rα2 or rα = sα, the projections Pα may be omitted.
This improves the error bound.

The practical performance of (11.60) is already illustrated by (11.57).

Proposition 11.59. The practical performance of the HOSVD projection (11.60) is
done in three steps:

1) Install HOSVD bases at all vertices as described in §11.3.3. For an ortho-
normal basis this is achieved by HOSVD∗(D) from (11.46b).

2) Delete the basis vectors b(α)
i with rα < i ≤ sα. Practically this means that

the coefficient matrices C(α,�) ∈ K
sσ1×sσ2 for � > rα are deleted, whereas those

C(α,�) with 1 ≤ � ≤ rα are reduced to matrices of the size K
rα1×rα2 . This is

performed by REDUCE∗(D, r).
3) Finally, uHOSVD is represented by ρHOSVD

HTR

(
TD, (C̃α)α∈TD\L(TD), c

(D), (B̃j)j∈D
)

referring to the bases B̃α=[b̃
(α)
1 , . . . , b̃

(α)
rα] generated recursively from B̃j and C̃α:

b̃
(α)
i := b

(α)
i for α ∈ L(TD) and 1 ≤ i ≤ rα,

b̃
(α)
� :=

∑rα1

i=1

∑rα2

j=1 c
(α,�)
i,j b̃

(α1)
i ⊗ b̃

(α2)
j for α ∈ TD\L(TD) and 1 ≤ � ≤ rα.

Note that these bases are suborthonormal, not orthonormal. To reinstall ortho-
normality, the orthonormalisation procedure from §11.3.2 must be applied.

According to Remark 11.40, the cost of Step 1) is about (10r4 + 2r2n)d, while
Steps 2) and 3) are free. The cost for a possible re-orthonormalisation is discussed
in Remark 11.32.

11.4.2.2 Sequential Truncation

In the case of the tensor subspace representation, a sequential truncation is formu-
lated in (10.7). Similarly, the previous algorithm can be modified. In the algorithm
from Proposition 11.59 the generation of the HOSVD bases in Step 1 is completed
before the truncation starts in Step 2. Now, both parts are interweaved. Again, we
want to truncate fromHs toHr, where s ≥ r.

11.4 Approximations in Hr 359

The following loop is performed from the root to the leaves:

1) Start: Tensor given in orthonormal hierarchical representation. Set α := D.
2) Loop: a) If α /∈ L(TD), compute the HOSVD bases B̃α1 and B̃α2 for the sons
α1 and α2 of α by HOSVD(α).

b) Restrict the bases at the vertices αi to the first rαi vectors, i.e., call the proce-
dures REDUCE(α1, rα1) and REDUCE(α2, rα2).

c) As long as the sons satisfy αi /∈ L(TD) repeat the loop for α := αi.
Let the tensor v= ρorthHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)
∈ Hs be given

by an orthonormal hierarchical representation. The call

HOSVD-TrSeq(D, r)

yields the truncated tensor ṽ=ρHTR

(
TD, (C̃α)α∈TD\L(TD), c

(D), (B̃j)j∈D
)
∈ Hr:

procedure HOSVD-TrSeq(α, r);
if α /∈ L(TD) then
begin HOSVD(α); let α1, α2 ∈ S(α);

REDUCE(α1, rα1); REDUCE(α2, rα2);
HOSVD-TrSeq(α1, r); HOSVD-TrSeq(α2, r)

end;

(11.63)

Remark 11.60. (a) Note that the order by which the vertices are visited is not com-
pletely fixed. The only restriction is the root-to-leaves direction. This fact enables a
parallel computation. The result does not depend on the choice of the ordering. In
particular, computations at the vertices of a fixed level can be performed in parallel.
This reduces the factor d in the computational work to log2 d. Another saving of the
computational work is caused by the fact that C̃α has smaller data size than Cα.
(b) When the HOSVD basis B̃α1 is created, this is by definition an orthonormal
basis. If, however, the computation proceeds at α :=α1, the truncation of the basis at
the son vertex of α1 destroys orthonormality. As in the basic version, an orthonormal
basis may be restored afterwards. However, even without re-orthonormalisation the
sensitivity analysis from Theorem 11.53 guarantees stability for the resulting sub-
orthonormal bases.

Below we use the sets T (�)
D defined in (11.8) and L = depth(TD) (cf. (11.7)).

Theorem 11.61. The algorithm HOSVD-TrSeq(D, r) yields a final approxima-
tion ur ∈ Hr with

‖v − ur‖ ≤
L∑

�=1

√∑

α∈T (�)
D

∑

i≥rα+1

(
σ̃
(α)
i

)2
(11.64)

≤
[

1 +

L∑

�=2

√

#T
(�)
D

]

‖v − ubest‖ ,

where σ̃(α)
i are the singular values computed during the algorithm. The sum

∑
α is

understood as in Theorem 11.58, i.e., at level � = 1 only one son of D is involved.

360 11 Hierarchical Tensor Representation

Proof. 1) When bases at α1, α2 ∈ S(α) are computed, they are orthonormal, i.e.,
G(Bαi) = I holds for the Gram matrix. All later changes are applications of pro-
jections. Thanks to Exercise 11.48, G(Bαi) ≤ I holds for all modifications of the
basis in the course of the algorithm. This is important for the later application of
Theorem 11.53.

2) Algorithm HOSVD-TrSeq(D, r) starts at level � = 0 and reduces recur-
sively the bases at the son vertices at the levels � = 1 to L = depth(TD). v

0 := v
is the starting value. Let v� denote the result after the computations at level �. The
final result is ur := vL. The standard triangle inequality yields

‖v − ur‖ ≤
L∑

�=1

‖v� − v�−1‖.

As in (11.59), we define the product P̃ (�) :=
∏
α∈T (�)

D
P̃α, but now P̃α describes

the orthogonal projection onto span{b̃(α)
i : 1 ≤ i ≤ rα}, where b̃

(α)
i are the (no

more orthonormal) basis vectors computed by the present algorithm. We observe
that v� = P̃ (�)v�−1. Lemma 4.123b allows us to estimate by

‖v� − v�−1‖2 = ‖
(
I − P̃ (�)

)
v�−1‖2 ≤

∑

α∈T (�)
D

‖
(
I − P̃α

)
v�−1‖2.

Theorem 11.53 states that

‖
(
I − P̃α

)
v�−1‖2 ≤

∑

i≥rα+1

(
σ̃
(α)
i

)2
, (11.65)

since the perturbations are δb(α)
i = 0 for 1 ≤ i ≤ rα, but δb(α)

i = −b(α)
i with

‖b(α)
i ‖ = 1 for i ≥ rα+1. This proves the inequality in (11.64). Concerning � = 1,

one uses again that P̃α1 P̃α2 = P̃α1 (α1, α2 ∈ S(D)).

3) Next we prove that the involved singular values σ̃(α)
i are not larger than those

σ
(α)
i from the basic algorithm in Theorem 11.58. During the sequential process we

visit each vertex α ∈ TD and create an orthogonal basis b
(α)
i (1 ≤ i ≤ sα) by

calling HOSVD(α). For theoretical purpose, we choose coefficient matrices Cα

corresponding to these bases. The truncation process v �→ . . . �→ v′ �→ v′′ �→
. . . �→ ur starts with the original tensor v and ends with ur. Fix a vertex β ∈ TD
and let v′,v′′ be the tensors before and after the truncation at β. ViaMα(v

′) and
Mα(v

′′) we obtain singular values, for which σ′′(α)i ≤ σ
′(α)
i is to be proved for all

α ⊂ β. For these cases we apply (5.12c): Eβ1 =
∑rβ1

i,j=1 e
(β)
ij C

(β,i)C(β,j)H and
Corollary 5.15: the squared singular values are the eigenvalues of the matrices Eα.
More precisely, we have E′α and E′′α corresponding to v′ and v′′.

3a) Case α = β. E′α = diag{σ′(α)1 , . . . , σ
′(α)
sα }2 holds because of the particular

choice of basis {b(α)
i }, while truncation yieldsE′′α = diag{σ′′(α)1 , . . . , σ

′′(α)
sα }2 with

σ
′′(α)
i = σ

′(α)
i for 1≤ i≤rα and σ′′(α)i = 0 for rα<i≤sα. Hence, E′′α ≤ E′α holds.

11.4 Approximations in Hr 361

3b) Case α � β. We apply induction in the subtree Tβ (cf. Definition 11.6). It
suffices to explain the case of α being the first son of β. Equation (5.12c) states
thatEα =

∑rα
i,j=1 e

(β)
ij C

(β,i)C(β,j)H (note thatG• = I because of orthonormality).
Using this identity for E′• and E′′• instead of E•, the inequality E′′β ≤ E′β together

with Lemma 2.15 proves E′′α ≤ E′α and, by Lemma 2.27a, σ′′(α)i ≤ σ
′(α)
i . This

sequence of inequalities proves

σ̃
(α)
i ≤ σ

(α)
i for 1 ≤ i ≤ sα, α ∈ Tβ, (11.66)

4) Thanks to (11.66), inequality (11.65) can be continued by the comparison∑
i≥rα+1(σ

(α)
i)2 ≤ ‖v − ubest‖ with the best approximation (cf. (11.62)). ��

The sum
∑
�

√
· · · appears in (11.64), since the perturbations from the different

levels are not orthogonal. We may estimate the error by
√∑

α ‖(I − Pα)v‖
2 as in

the proof of Theorem 11.58, but now the HOSVD basis at vertex α is not related to
the singular value decomposition ofMα(v), so that we cannot continue like in the
mentioned proof.

Remark 11.62. The factor C(Tk) := 1+
∑L

�=2

√

#T
(�)
D in (11.64) depends on the

structure of Tk. If d = 2L, the perfectly balanced tree TD leads to

C(Tk) = 1 +

L−2∑

�=0

2(L−�)/2 =
(
2 +
√
2
)√

d− 1− 2
√
2 = 3.4142

√
d− 3.8284 .

For general d, the tree Tk with minimal depth �log2 d� (see Remark 11.5a) yields

C(Tk) =
√
d− 2L−1 +

L−2∑

�=1

2(L−�)/2 + 1 < 4.1213 · 2L/2 − 3.8284 .

The worst factor appears for the tree of maximal depth L = d − 1 (see Remark
11.5b), where

C(Tk) = 1 + 2 (d− 2) .

Remark 11.63. In principle, Algorithm (11.63) can be modified such that after
each reduction step (call of REDUCE) the higher order SVD is updated. Then

all contributions in
√∑

α ‖(I − Pα)v‖
2 can be estimated by ‖v − ubest‖ and we

regain the estimate in (11.61).

11.4.2.3 Leaves-to-Root Truncation

As pointed out in §11.4.2.1, the projections Pα should not proceed from the leaves
to the root, since then the nestedness property is violated. Grasedyck [73] proposes
a truncation from the leaves to the root modified in such a way that nestedness is
ensured. Let a tensor v ∈ Hs be given. A truncation at the sons α1, α1 ∈ S(α)
reduces the size of the coefficient matrices C(α,�) so that the computational work at

362 11 Hierarchical Tensor Representation

vertex α is reduced. We assume that the target format Hr satisfies (11.56). We use
the notation T (�)

D from (11.8) and the abbreviation L := depth(TD). The leaves-to-
root direction is reflected by the loop L,L− 1, . . . , 1 in the following algorithm:

Start: The starting value is uL+1:= v.

Loop from � := L to 1: For all α∈ T (�)
D determine the HOSVD fromMα(u

�+1).
Let Uα be spanned by the first rα left singular vectors of Mα(u

�+1) and define
the HOSVD projection Pα as orthogonal projection onto Uα. Set u� := P (�)u�+1,
where P (�) :=

∏
α∈T (�)

D
Pα.

The fact that in each step the matricisation Mα(u
�+1) uses the last projected

tensor u�+1 is essential, since it guarantees that the left-sided singular value
decomposition ofMα(u

�+1) for α∈T (�)
D leads to basis vectors b(α)

i ∈Uα1⊗Uα2

(α1, α2 sons of α). This ensures nestedness.

Theorem 11.64. The algorithm described above yields a final approximation
u1 ∈ Hr with

∥
∥v − u1

∥
∥ ≤

√∑

α

∑

i≥rα+1

σ
(α)
i ≤

√
2d− 3 ‖v − ubest‖ .

The sum
∑

α is understood as in Theorem 11.58. The singular values σ(α)
i are those

ofMα(u
�+1) with � = level(α).

Proof. We remark that V = a

⊗
α∈T (�)

D or α∈L(TD), level(α)<�
Vα . Consider all

u ∈
[

a

⊗

α∈T (�)
D

Uα

]
⊗
[

a

⊗

α∈L(TD), level(α)<�
Vα

]

with subspaces Uα⊂Uα1⊗Uα2 satisfying dim(Uα) = rα, provided that α ∈ T (�)
D

(note that Uα1 ,Uα2 are already fixed). Let u�best be the best approximation in
inf ‖u�+1 − u‖ = ‖u�+1 − u�best‖. This tensor satisfies

u�best ∈
[

a

⊗

α∈T (�)
D

U∗α

]
⊗
[

a

⊗

α∈L(TD), level(α)<�
Vα

]

for certain subspaces U∗α, α ∈ T
(�)
D . Again, the proof of Theorem 10.3 yields

∥
∥u�+1 − u�

∥
∥ ≤

√

#T
(�)
D

∥
∥u�+1 − u�best

∥
∥

for u� := P (�)u�+1, since P (�) is the tensor product of #T (�)
D projections Pα. We

have u�best = P ∗� u
�+1 = P ∗� P

(�+1)P (�+2) · · ·P (L)v with P ∗� being the product of
the orthogonal projections onto U∗α. The nestedness property together with Remark
11.57b shows that

P ∗� P
(�+1)P (�+2) · · ·P (L) = P ∗� = P (�+1)P (�+2) · · ·P (L)P ∗� .

11.4 Approximations in Hr 363

This implies that

∥
∥u�+1 − u�best

∥
∥ =

∥
∥P (�+1)P (�+2) · · ·P (L)v − P (�+1)P (�+2) · · ·P (L)P ∗� v

∥
∥

=
∥
∥P (�+1)P (�+2) · · ·P (L) (v − P ∗� v)

∥
∥ ≤ ‖v − P ∗� v‖ ≤ ‖v − ubest‖ .

Together, we see that

∥
∥u�+1 − u�

∥
∥ ≤

√

#T
(�)
D ‖v − ubest‖ .

We claim that u�+1 − u�⊥um+1 − um for � �= m. Without loss of generality
assume � > m. We have um+1 − um = (I − P (m))P (m+1) · · ·P (�) · · ·P (L)v.
Again, Remark 11.57b and the nestedness property prove that all projections P (i)

are pairwise commuting; hence, um+1−um = P (�)(um+1 −um) is orthogonal to
u�+1 − u� = (I − P (�))u�+1. Therefore, we can estimate as follows:

∥
∥v − u0

∥
∥ =

∥
∥
(
v − uL

)
+
(
uL − uL−1

)
+ . . .+

(
u2 − u1

)∥
∥

≤
√

‖v − uL‖2 + ‖uL − uL−1‖2 + . . .+ ‖u2 − u1‖2

≤
√

#T
(L)
D + . . .+#T

(1)
D ‖v − ubest‖ .

Again, we can argue that at level � = 1 one projection is sufficient:

P (1)u2 = Pα1Pα2u
2 = Pα2u

2.

This reduces #T (1)
D = 2 to 1. In total,

√
· · · =

√
2d− 3 proves the assertion of the

theorem. ��

11.4.2.4 Error Controlled Truncation

So far, we have prescribed a fixed r for the truncation. Instead, one can prescribe
a tolerance ε > 0. Given v ∈ Hs, we want to find an approximation ṽ ∈ Hr

with r ≤ s such that ‖v − ṽ‖ ≤ ε. The following heuristic strategies will yield an
r ≤ s such that for any smaller component than rα the error bound by ε cannot be
ensured. The theoretically optimal choice of r and ṽ ∈ Hr would be the minimiser
(r,ṽ) ∈ N

TD ×Hr of

min
{

memory cost of ṽ ∈ Hr with r ≤ s, ‖v − ṽ‖ ≤ ε
}
.

The truncation from §11.4.2.1 allows the easiest realisation of an error controlled
truncation. Given v = ρHOSVD

HTR(. . .) ∈ Hs, all singular values σ(α)
i (α ∈ TD\L(TD),

1≤ i≤sα) are available. We may order them by size:

σ1 ≥ σ2 ≥ . . . ≥ σν ≥ . . . ≥ σνmax , νmax =
∑

α∈TD\L(TD)

sα. (11.67)

364 11 Hierarchical Tensor Representation

For all indices ν, there are α[ν] ∈ TD\L(TD) and i[ν] ∈ [1, sα[ν]] such that
σν = σ

(α[ν])
i[ν] . It is easy to choose a minimal νε such that

νmax∑

ν=νε

σ2
ν ≤ ε2. (11.68)

Then define rα = min{i[ν]− 1 : νε ≤ ν ≤ νmax with α[ν] = α} (and rα = sα if
the latter set is empty). This defines a format Hr. Truncation to Hr as in §11.4.2.1
leads us to ṽ ∈ Hr with ‖v − ṽ‖ ≤ ε because of (11.61).

For the sequential version from §11.4.2.3, one has to split ε2 into ε2=
∑L−1
�=0 ε

2
� .

Then, in each level �, one can proceed as before but with ε replaced by ε�. This
means that all σ(α)

i with α ∈ T (�)
D \L(TD) are ordered as in (11.67).

The sequential version from §11.4.2.2 requires the splitting ε =
∑L−1

�=0 ε�.
In the approaches from above, we have maximised

∑

α∈TD\L(TD)

(sα − rα) ,

which is the number of omitted basis vectors. If the gained storage is to be max-
imised, the strategy has to be refined as follows (taking the example of the trunca-
tion from §11.4.2.1). Omitting one basis vector at vertex α saves a storage of size21

Nmem(α) = sα1sα2 + sβsα′ , where {α1, α2} = S(α) and {α, α′} = S(β), i.e.,
β is the father of α. The term sα1sα2 corresponds to the deleted matrix C(α,sα),

while sβsα′ is related to the omitted rows C(β,·)
sα,· (if α is the first son of β). Instead

of (11.67), one can order the quantities

σ̂ν = σ
(α[ν])
i[ν] /

√
Nmem(α[ν]) .

The indices νε≤ν≤νmax are selected with minimal νε subject to (11.68) (with σν ,
not σ̂ν).

11.5 Joining two Hierarchical Tensor Representation Systems

11.5.1 Setting of the Problem

We consider the following situation: v′ ∈ Hr′ and v′′ ∈ Hr′′ are tensors involving
two hierarchical systems related to V=

⊗d
j=1Vj with a common dimension parti-

tion tree TD, but different basis systems

(B′α)α∈L(TD), (B
′′
α)α∈L(TD), (C

′
α)α∈TD\L(TD), (C

′′
α)α∈TD\L(TD),

21 At the beginning, the ranks sα are defined by s from Hs. After each truncation step, one of the
sα is replaced by sα − 1. Therefore also the memory save may decrease.

11.5 Joining two Hierarchical Tensor Representation Systems 365

and different subspaces {U′α}α∈TD and {U′′α}α∈TD .
We want to construct a hierarchical systemHr by means of subspaces {Uα}α∈TD

defined by
Uα := U′α +U′′α for α ∈ TD.

Then, Hr represents all tensors of UD = U′D +U′′D , i.e., the tensors v′,v′′ from
above belong to the new, common basis systems.

Each tensor in Hr′ and Hr′′ is characterised by the respective coefficients c′(D)

and c′′(D). A subtask is to transform these coefficients into new ones referring to the
new basis of UD.

Before we discuss the solution of this problem under various requirements on the
bases, we ensure that the problem makes sense.

Remark 11.65. The subspaces {Uα}α∈TD defined above satisfy the nestedness
condition:

U′α +U′′α ⊂
(
U′α1

+U′′α1

)
⊗
(
U′α2

+U′′α2

)

for α ∈ TD\L(TD) and α1, α2 ∈ S(α).

11.5.2 Trivial Joining of Frames

The least requirement is that B′α = [b
′(α)
1 , . . . ,b

′(α)
r′α

] ∈ (U′α)
r′α and B′′α =

[b
′′(α)
1 , . . . ,b

′′(α)
r′′α

] ∈ (U′′α)
r′′α are frames spanning the respective subspaces U′α

and U′′α. Since no linear independence is required, the simple definition

Bα :=
[
b
′(α)
1 ,b

′(α)
2 , . . . ,b

′(α)
r′α

,b
′′(α)
1 ,b

′′(α)
2 , . . . ,b

′′(α)
r′′α

]

is a frame generating Uα := U′α + U′′α. The drawback is that the cardinality
rα := r′α + r′′α of the new frame is fully additive, even if the subspaces U′α, U

′′
α

overlap.
An advantage is the easy construction of the coefficients. Consider a vertex

α ∈ TD\L(TD) with sons α1, α2. The coefficient matrixC′(α,�) representing b
′(α)
�

and the matrix C′′(α,�) representing b
′′(α)
� lead to the block diagonal matrix

C(α,�) :=

[
C′(α,�) 0

0 C′′(α,�)

]

representing the new columns of Bα by those from Bα1 and Bα2 .

If v′ ∈ U′D is coded by the coefficient vector c′(D) ∈ K
r′D , the new coefficient

is
[
c′(D)

0

]
, while v′′ ∈ U′′D coded by c′′(D) ∈ K

r′′D is expressed by the coefficient
vector

[
0

c′′(D)

]
.

Remark 11.66. The joining of frames requires only a rearrangement of data, but no
arithmetical operation.

366 11 Hierarchical Tensor Representation

11.5.3 Common Bases

Let B′α and B′′α carry the bases of the respective spaces U′α and U′′α. For the joint
space Uα = U′α +U′′α we want to construct a new common basis Bα.

11.5.3.1 General or Orthonormal Case

The computation proceeds over all α ∈ TD from level depth(TD) to 0. In principle,
the two bases B′α and B′′α are joined into one basis by means of the procedure
JoinBases from (2.35). Here, we have to distinguish the case of leaves α∈L(TD)
from inner vertices, since the bases are explicitly known for leaves only.

The procedure takes the following form, where T (λ)
D is defined in (11.8).

for λ := depth(TD) to 0 do

begin for all α ∈ T (λ)
D do

if α ∈ L(TD) then apply (11.70a-c) else
begin apply (11.71a);

if α �= D then apply (11.70b,c)
else apply (11.71b)

end end;

(11.69)

Case of leaves. If α = {j} ∈ L(TD), the matrices B′j = [b
′(j)
1 , . . . , b

′(j)
r′j

] and

B′′j = [b
′′(j)
1 , . . . , b

′′(j)
r′′j

] contain the explicitly available basis vectors. The call of

JoinBases(B′j , B
′′
j , rj , Bj , T

′, T ′′) (11.70a)

yields a basisBj=[b
(j)
1 , . . . , b

(j)
rj] together with its cardinality rj and transformation

matrices T ′ ∈Krj×r′j , T ′′ ∈Krj×r′′j with the property B′j =BjT
′ and B′′j =BjT

′′

(cf. (2.34)). The basis change at α = {j} influences C′(β,�) and C′′(β,�) for the
father vertex β of α. Assume that α = β1 is the first son of β. Then C

′(β,�)
new =

T (β1) C
′(β,�)
old (T (β2))T from (11.32) holds with T (β1) = T ′ and T (β2) = I, i.e., the

coefficient matrix from Hr′ becomes C′(β,�)new :=T ′C
′(β,�)
old . If α = β2 is the second

son of β, then C′(β,�)new := C
′(β,�)
old T ′T holds. The coefficient matrices from Hr′′ are

treated analogously:

C′(β,�)new := T ′C
′(β,�)
old or C′(β,�)new := C

′(β,�)
old T ′T, (11.70b)

C′′(β,�)new := T ′′C
′′(β,�)
old or C′′(β,�)new := C

′′(β,�)
old T ′′T (11.70c)

depending on whether α is the first [second] son of β (left [right] identities).

Case of inner vertices. Let α ∈ TD\L(TD) and assume that by procedure
(11.69) the sons α1, α2 of α have already common bases Bα1 and Bα2 . There-
fore, the coefficient matrices C′(α,�)∈Krα1×rα2 of Hr′ and C′′(α,�)∈Krα1×rα2 of

11.5 Joining two Hierarchical Tensor Representation Systems 367

Hr′′ refer to these common bases (see (11.70b,c)). The matrices are gathered in
C′α =

(
C′(α,�)

)r′α
�=1

and C′′α =
(
C′′(α,�)

)r′′α
�=1

. The matrices in C′α are linearly

independent if and only if the represented vectors b′(α)� =
∑
i,j c
′(α,�)
ij b

(α1)
i ⊗ b

(α2)
j

are linearly independent. The call of

JoinBases(C′α,C
′′
α, rα,Cα, T

′, T ′′) (11.71a)

yields the collection Cα = (C(α,�))rα�=1 of rα linearly independent matrices C(α,�)

representing the new basis vectors b(α)
� =

∑
i,j c

(α,�)
i,j b

(α1)
i ⊗ b

(α2)
j (1 ≤ � ≤ rα) .

The matrices T ′, T ′′ describe the relations C′α = CαT
′ and C′′α = CαT

′′, i.e.,

C′(α,�) =

rα∑

k=1

T ′k�C
(α,k) (1 ≤ � ≤ r′α) , C′′(α,�) =

rα∑

k=1

T ′′k�C
(α,k) (1 ≤ � ≤ r′′α)

(cf. (2.34)), which are equivalent to B′α = BαT
′ and B′′α = BαT

′′. Hence, again
the transformations (11.70b,c) are to be applied.

If α=D, the coefficients c′(D) [c′′(D)] of the tensors v′ ∈ Hr′ [v′′ ∈ Hr′′] are
to be updated:

c′(D)
new := T ′c′(D) for v′∈Hr′ , c′′(D)

new := T ′′c′′(D) for v′′∈Hr′′ (11.71b)

(cf. (11.34)). Note that (11.71b) has to be performed for each tensor represented by
these schemes (cf. Remark 11.7b).

Remark 11.67. (a) Provided that B′α is already a basis, one option of the proce-
dure JoinBases is to produce a new basis Bα whose first r′α columns coincide
with those of B′α.22 Then T ′=

[
I
0

]
holds, that means for instance that the definition

C
′(β,�)
new :=T ′C

′(β,�)
old in (11.70b) copies all entries c′(β,�)ij,old for 1≤ i≤ r′β1

, 1≤ j≤ r′β2

into c
′(β,�)
ij,new and adds the entries c

′(β,�)
ij,new := 0 for r′β1

< i ≤ rβ1 if β1 = α
or r′β2

< j ≤ rβ2 if β2 = α.

(b) Assume that Vk = K
nk for k ∈ D. Then the cost of JoinBases in (11.70a)

is NQR(nk, r
′
k + r′′k). For α ∈ TD\L(TD), the cost of JoinBases in (11.71a) is

NQR(rα1 · rα2 , r
′
α + r′′α) (cf. Lemma 2.19b).

(c) The computation of (11.70b,c) can be reduced to either (11.70b) or (11.70c) (see
Part (a)). For T ′′ �= I, the transformation (11.70c) costs 2rαr

′′
βr
′′
β1
r′′β2

operations,
where one of the sons {β1, β2} = S(β) coincides with α.

(d) Assuming the bounds rα, r′α, r
′′
α ≤ r, nk ≤ n and 2r ≤ n, we can estimate the

overall cost by ≤ dr2
(
12r2 + 8n

)
.

In the case of the hierarchical representation with orthonormal bases, procedure
JoinONB is to be used instead of JoinBases. This does not change the arith-
metical cost.

22 The optimal choice is to retain the basis B′α or B′′α of largest dimension.

368 11 Hierarchical Tensor Representation

11.5.3.2 HOSVD Case

Here we consider two tensors

v′ = ρHOSVD
HTR

(
TD, (C

′
α)α∈TD\L(TD), c

′(D), (B′j)j∈D
)
,

v′′ = ρHOSVD
HTR

(
TD, (C

′′
α)α∈TD\L(TD), c

′′(D), (B′′j)j∈D
)

together with their weights Σ′α and Σ′′α. Remark 5.17 states that the HOSVD basis
Bα of the family [v′ v′′] at vertex α is obtained by diagonalisation of

Mα(v
′)Mα(v

′)H +Mα(v
′′)Mα(v

′′)H = B′αΣ
′2
αB
′H
α +B′′αΣ

′′2
α B′′Hα . (11.72)

We start with the leaves α={j}. By JoinONB(B′j , B
′′
j , rj , B̂j , T

′, T ′′) we obtain
an intermediate orthonormal basis B̂j with the properties

B′j = B̂jT
′ and B′′j = B̂jT

′′.

The right-hand side of Eq. (11.72) becomes B̂j
(
T ′Σ′2j T

′H + T ′′Σ′′2j T ′′H
)
B̂H
j .

Diagonalisation of the rj × rj matrix

T ′Σ′2j T
′H + T ′′Σ′′2j T ′′H = TΣ2

jT
H (11.73a)

allows us to form the final basis

Bj := B̂jT (11.73b)

Now, the right-hand side of (11.72) equals BjΣ2
jB

H
j , i.e., we have determined the

HOSVD representation of [v′ v′′] at vertex α = {j}. The identities B′j = BjT
HT ′

and B′′j = BjT
HT ′′ follow from T−1 = TH. Therefore, the coefficientsC′(β,�) and

C′′(β,�) with β = father({j}) are transformed into Ĉ′(β,�) and Ĉ′′(β,�) according
to Lemma 11.24.

Assume that new bases are created at the son vertices of α ∈ TD\L(TD). The
isomorphic formulation of (11.72) in terms of the coefficient matrices becomes

∑

�

(
Ĉ′(α,�)Σ′2α Ĉ

′(α,�)H + Ĉ′′(α,�)Σ′′2α Ĉ′′(α,�)H
)
.

By JoinONB(Ĉ′α, Ĉ
′′
α, rα, Ĉα, T

′, T ′′) we obtain a common orthonormal basis
Ĉα (isomorphic to B̂α) and proceed as in (11.73a,b):

T ′Σ′2α T
′H + T ′′Σ′′2α T ′′H = TΣ2

αT
H and Cα := ĈαT. (11.73c)

Note that the basis change

B′α,B
′′
α �→ Bα with B′α = BαT

HT ′ and B′′α = BαT
HT ′′

11.5 Joining two Hierarchical Tensor Representation Systems 369

involves again a transformation C′(β,�), C′′(β,�) �→ Ĉ′(β,�), Ĉ′′(β,�) according to
Lemma 11.24.

Finally, at the root α = D the coefficients c′(D) and c′′(D) are updated by

c′(D)
new := THT ′c′(D), c′′(D)

new := THT ′′c′′(D). (11.73d)

Eventually, we obtain the common representations

v′ = ρHOSVD
HTR

(
TD, (Cα)α∈TD\L(TD), c

′(D)
new , (Bj)j∈D

)
,

v′′ = ρHOSVD
HTR

(
TD, (Cα)α∈TD\L(TD), c

′′(D)
new , (Bj)j∈D

)
.

(11.73e)

Remark 11.68. The generalisation from two tensors to a family {vi : 1 ≤ i ≤ p}
of tensors is obvious.

11.5.3.3 Truncation

One option is to determine the exact common representation (11.73e) first and then
to truncate according to §11.4.2.

A second, cheaper approach performs truncation together with the computation
of the common bases. After obtaining T from (11.73a), we define Ttr by the first
rj,tr columns of T (either rj,tr is a prescribed dimension or determined implicitly
from the singular values in the diagonal matrix Σj). Then, Bj,tr := B̂jTtr spans a
subspace Uj,tr of the reduced dimension rj,tr. Let Pj := Bj,trB

H
j,tr be the ortho-

gonal projection onto Uj,tr. Consequently, v′ and v′′ are replaced by Pjv
′ and

Pjv
′′. Furthermore, the bases B′j and B′′j are to be replaced by PjB′j and PjB′′j ,

which are no longer orthonormal, but Bj,tr represents an orthonormal basis. Instead
of the previous relation B′j = BjT

HT ′, one now obtains

PjB
′
j = Bj,trT

H
trT
′ and PjB

′′
j = Bj,trT

H
trT
′′.

Therefore the updates of C′(β,�), C′′(β,�) for the father β of α = {j} involve
TH
trT
′ and TH

trT
′′. Since TH

trT
′ ∈ K

rj,tr×r′j , the updated version Ĉ′(β,�)tr is of size23

r′β1,tr
× r′β2,tr

instead of r′β1
× r′β2

. Because of the reduced size, the following
calculations are cheaper.

The further truncation at the inner vertices follows the same line.

Remark 11.69. The truncation controls the absolute error. If two tensors v′ and
v′′ are converted into a common representation in order to compute the difference
v′ − v′′ with ‖v′ − v′′‖ ‖v′‖ , the usual cancellation effect may occur.

23 This holds after truncation at both son vertices β1 and β2.

370 11 Hierarchical Tensor Representation

11.6 Conversion from Sparse-Grid

The sparse-grid space Vsg and the spaces V(�) are introduced in (7.18) and (7.17).
Given v ∈ Vsg and any dimension partition tree TD, we define the characteristic
subspaces Uα (α ∈ TD) as follows:

Uα =
∑

∑

j∈α
�j=�+d−1

⊗

j∈α
V(�j) for α ∈ TD\{D}, (11.74)

and UD = span{v}.
Because of (7.17), we may replace the summation in (7.18) and (11.74) over∑
�j = L := �+ d− 1 by

∑
�j ≤ L.

We have to prove the nestedness property (11.11c): Uα ⊂ Uα1 ⊗ Uα2 . It is
sufficient to prove

⊗

j∈α
V(�j) ⊂ Uα1 ⊗Uα2

for any tuple (�j)j∈α with
∑
j∈α �j = L. Obviously,

⊗

j∈α
V(�j) =

⎛

⎝
⊗

j∈α1

V(�j)

⎞

⎠⊗

⎛

⎝
⊗

j∈α2

V(�j)

⎞

⎠ .

Since
∑

j∈α1
�j ≤ L, the inclusion

⊗
j∈α1

V(�j) ⊂ Uα1 holds and, analogously,
⊗

j∈α2
V(�j) ⊂ Uα2 .

If we also define UD by (11.74), UD = Vsg follows. Hence, v ∈ Vsg belongs
to Uα1 ⊗Uα2 (α1, α2 sons of D) proving

UD = span{v} ⊂ Uα1 ⊗Uα2 .

All subspaces Uα satisfy dim(Uα) ≤ dim(Vsg) = O(2LLd−1). This proves
that any sparse grid tensor from Vsg can be exactly represented in hierarchical
format with subspaces of dimensions not exceeding dim(Vsg).

Chapter 12
Matrix Product Systems

Abstract The term ‘matrix-product state’ (MPS) is introduced in quantum physics
(see, e.g., Verstraete-Cirac [190], [105, Eq. (2)]). The related tensor representation
can be found already in Vidal [191] without a special naming of the representa-
tion. The method has been reinvented by Oseledets and Tyrtyshnikov ([152], [155],
[159]) and called ‘TT decomposition’.1

We start in Sect. 12.1 with the finite dimensional case. In Sect. 12.2 we show that
the TT representation is a special form of the hierarchical format. Finally three con-
versions are considered: conversion from r-term format to TT format (cf. §12.3.1),
from TT format into hierarchical format with a general tree TD (cf. §12.3.2), and
vice versa, from general hierarchical format into TT format (cf. §12.3.3). A closely
related variant of the TT format is the cyclic matrix product format. As we shall see
in Sect. 12.4, the change from the tree structure to a proper graph structure may have
negative consequences.
The algorithms for obtaining HOSVD bases and for truncations are mentioned
only briefly. The reason is the equivalence to the hierarchical format, so that the
algorithms defined there can be easily transferred. The interested reader finds such
algorithms in [155].

12.1 Basic TT Representation

12.1.1 Finite Dimensional Case

Consider V =
⊗d

j=1 Vj with Vj = K
Ij and a tensor v ∈ V =

⊗d
j=1 Vj written as

v[i1i2 · · · id]=
ρ1∑

k1=1

· · ·
ρd−1∑

kd−1=1

v
(1)
i1k1
· v(2)k1i2k2· . . . · v

(d−1)
kd−2id−1kd−1

· v(d)kd−1id
(12.1a)

1 While the first interpretation of ‘TT’ has been ‘Tree Tensor’, the later reading is ‘Tensor Train’.
We avoid the term ‘decomposition’ (there is no uniqueness, cf. §7.1.3) and prefer the term ‘TT
representation’ or ‘TT format’.

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 12,
© Springer-Verlag Berlin Heidelberg 2012

371

372 12 Matrix Product Systems

for all (i1, . . . , id) ∈ I := I1 × . . .× Id. The scalars v(j)kj−1ijkj
can be considered as

entries of a tensor of order three from K
Kj−1 ⊗K

Ij ⊗K
Kj , where

Kj = {1, . . . , ρj} for 0 ≤ j ≤ d. (12.1b)

In the cases of j = 1 and j = d, we set

ρ0 = ρd = 1, v
(1)
i1k1

= v
(1)
1,i1k1

, v
(d)
kd−1id

= v
(d)
kd−1id,1

, (12.1c)

so that KK0⊗KI1⊗KK1 = K⊗KI1⊗KK1∼= K
I1⊗KK1 andKKd−1⊗KId⊗KKd∼=

K
Kd−1 ⊗K

Id .

Rewriting v(j)kj−1ijkj
as v(j)kj−1kj

[ij], we reformulate (12.1a) as

v[i1i2 · · · id] =
ρ1∑

k1=1

· · ·
ρd−1∑

kd−1=1

v
(1)
k1

[i1] · v(2)k1k2 [i2] · . . . · v
(d−1)
kd−2kd−1

[id−1] · v(d)kd−1
[id].

(12.1d)

Fixing the indices i1, . . . , id, we interpret v(j)kj−1kj
[ij] as entries of the matrix

V (j)[ij] :=
(
v
(j)
kj−1kj

[ij]
)
kj−1∈Kj−1, kj∈Kj

∈ K
Kj−1×Kj (ij ∈ Ij) (12.2a)

(using (12.1c)). Then the entries v[i1i2 · · · id] can be regarded as matrix products:

v[i1i2 · · · id] = V (1)[i1] · V (2)[i2] · · · · · V (d−1)[id−1] · V (d)[id] ∈ K . (12.2b)

This representation justifies the term ‘matrix-product representation’. Note that
V (1)[i1] ∈ K

1×ρ1 ∼= K
ρ1 is a row vector, while V (d)[id] ∈ K

ρd−1×1 ∼= K
ρd−1

is a column vector.

For fixed kj−1, kj , the entries v(j)kj−1kj
[ij] define the vector v(j)kj−1kj

∈ K
Ij = Vj

(for all 1 ≤ j ≤ d, using (12.1c)). Then (12.1a) is equivalent to

v =

ρ1∑

k1=1

ρ2∑

k2=1

· · ·
ρd−1∑

kd−1=1

v
(1)
1,k1
⊗v(2)k1k2⊗v

(3)
k2k3
⊗. . .⊗v(d−1)kd−2kd−1

⊗v(d)kd−1,1
. (12.3a)

Formulation (12.3a) can be used for general spaces Vj . Using Kj from (12.1b)
together with (12.1c), we shorten the notation (12.3a) by

v =
∑

k0∈K0

· · ·
∑

kd∈Kd

d⊗

j=1

v
(j)
kj−1kj

with v(j)kj−1kj
∈ Vj . (12.3b)

12.1 Basic TT Representation 373

Definition 12.1 (Tρ). Let V = a

⊗d
j=1 Vj and fix a tuple ρ = (ρ1, . . . , ρd−1) ∈

N
d−1. The TT format is defined by

Tρ=Tρ(V) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v∈V :

v =
∑

ki∈Ki
(0≤i≤d)

d⊗

j=1

v
(j)
kj−1kj

with v(j)kj−1kj
∈Vj

and #Kj =

{
1 for j = 0 or j = d
ρj for 1 ≤ j ≤ d− 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (12.4)

Theorem 12.2. Let v ∈ Tρ with ρ = (ρ1, . . . , ρd−1). Then ρj ≥ ρ∗j holds with

ρ∗j := rank{1,...,j}(v) for 1 ≤ j < d (12.5)

(cf. (5.6a)). Furthermore, a representation v∈Tρ∗ for ρ∗=
(
ρ∗1, . . . , ρ

∗
d−1

)
exists.

Proof. 1) Summation in (12.3) over all kν except for ν = j yields

v =

ρj∑

kj=1

v
{1,...,j}
kj

⊗ v
{j+1,...,d}
kj

with (12.6)

v
{1,...,j}
kj

:=
∑

ki∈Ki
(0≤i≤j−1)

d⊗

j=1

v
(j)
kj−1kj

and v
{j+1,...,d}
kj

:=
∑

ki∈Ki
(j+1≤i≤d)

d⊗

j=1

v
(j)
kj−1kj

.

This proves rank{1,...,j}(v) ≤ ρj (cf. Lemma 6.5). The results of §12.2.4 will
show that a representation (12.3) with ρ∗j = rank{1,...,j}(v) can be obtained, i.e.,
v belongs to Tρ∗ . ��

The TT representation is denoted by

ρTT

⎛

⎝ρ,

(
(
v
(j)
kj−1kj

)

kj−1∈Kj−1

kj∈Kj

)

1≤j≤d

⎞

⎠ =
∑

ki∈Ki
(0≤i≤d)

d⊗

j=1

v
(j)
kj−1kj

, (12.7)

where #Kj = ρj and v(j)kj−1kj
∈ Vj . Note that (12.1c), i.e., #K0 = #Kd = 1, is

always required.

12.1.2 Function Case

As already mentioned, the formulation (12.3a) holds for v(j)kj−1kj
∈Vj , whatever the

vector space is. In the case of a function space Vj we regain (12.1d) in the form

f(x1, . . . , xd) =
∑

ki∈Kj (1≤j≤d−1)
v
(1)
k1

(x1) ·v(2)k1k2(x2) · . . . ·v
(d−1)
kd−2kd−1

(xd−1) ·v(d)kd−1
(xd).

374 12 Matrix Product Systems

Here, V (j)(xj) from (12.2a) can be regarded as matrix-valued function.
A further generalisation replaces the matrices by kernel functions. Then the

representation rank ρj becomes infinite:

f(x1, . . . , xd) =

∫

K1×···×Kd−1

v(1)(κ1, x1)v
(2)(κ1, x2, κ2) · · · v(d)(κd−1, xd)dκ1 . . .dκd−1.

By quadrature approximation one can regain the foregoing form with finite rank.

12.2 TT Format as Hierarchical Format

12.2.1 Related Subspaces

Let D := {1, . . . , d}. The dimension partition tree TTT
D is given in Fig. 11.2, i.e.,

TTT
D consists of leaves {j} (j ∈ D) and interior nodes {1, . . . j} for j ∈ D\{1}:

TTT
D = {{1, . . . j}, {j} : 1 ≤ j ≤ d} (12.8a)

The first son of {1, . . . , j} is {1, . . . , j − 1}, the second one is {j}:

S({1, . . . , j}) = {{1, . . . , j − 1}, {j}} for 2 ≤ j ≤ d. (12.8b)

According to (11.10), given a tensor v∈Tρ(V), we have to introduce subspaces
Uα ⊂ Vα for all α ∈ TTT

D . For j = 1 we choose

U1 = U{1} = span{v(1)k1 : k1 ∈ K1}. (12.9a)

Here, the vectors v(1)k1 (and later v(j)kj−1kj
) are those from the representation (12.3a).

For j > 1 the trivial choice

Uj = Vj for j ∈ D\{1} (12.9b)

is made. The next interior node is {1, 2} ∈ TTT
D . As in (12.6) we form

v
{1,2}
k2

:=

ρ1∑

k1=1

v
(1)
1,k1
⊗ v(2)k1k2 and U{1,2} := span{v{1,2}k2

: k2 ∈ K2}.

In the general case, v{1,...,j}kj
:=
∑

ki∈Ki
(0≤i≤j−1)

⊗j
�=1v

(�)
kj−1kj

is obtained recursively by

v
{1,...,j}
kj

=

ρj−1∑

kj−1=1

v
{1,...,j−1}
kj−1

⊗ v(j)kj−1kj
(kj ∈ Kj). (12.9c)

12.2 TT Format as Hierarchical Format 375

These tensors define the subspace

U{1,...,j} := span{v{1,...,j}kj
: kj ∈ Kj} for j ∈ D\{1} (12.9d)

(the case j=1 is already stated in (12.9a)).

Since v
{1,...,j−1}
kj−1

∈U{1,...,j−1} and v(j)kj−1kj
∈ Uj = Vj , we obtain the inclusion

U{1,...,j} ⊂ U{1,...,j−1} ⊗ Uj for j ∈ D\{1}, (12.9e)

which is the nestedness condition (11.11c), since {1, . . . , j−1} and {j} are the sons
of {1, . . . , j}.Because of#Kd=1 (cf. (12.4)), there is only one tensor v{1,...,d}kd

=v
which spans UD. This proves

v ∈ UD and dim(UD) = 1. (12.9f)

Following Definition 11.8, the tensor v ∈ Tρ is represented by the hierarchical
subspace family {Uα}α∈TTT

D
.

12.2.2 From Subspaces to TT Coefficients

Let the subspaces U{1,...,j} ⊂ V{1,...,j} satisfy conditions (12.9e,f). Choose any

basis (or frame) {b(1)k : k ∈ K1} of U{1} = U1 and rename the basis vectors by
v
(1)
k = b

(1)
k . For j ∈ {2, . . . , d − 1} let {b(j)

k : k ∈ Kj} be a basis (or frame) of
U{1,...,j} and assume by induction that the tensors

b
(j−1)
kj−1

=
∑

k1,...,kj−2

v
(1)
k1
⊗ v(2)k1k2 ⊗ . . .⊗ v

(j−1)
kj−2kj−1

(kj−1 ∈ Kj−1) (12.10)

are already constructed. By inclusion (12.9e), the basis vector b(j)
k has a represen-

tation

b
(j)
kj

=
∑

kj−1∈Kj−1

∑

ij∈Ij

c
(α,kj)
kj−1,ij

b
(j−1)
kj−1

⊗ b(j)ij with α = {1, . . . , j}, cf. (11.24).

Setting v(j)kj−1kj
=
∑
ij
c
(α,kj)
kj−1,ij

b
(j)
ij

, (12.10) follows for j instead of j − 1. For j=d,

the tensor v∈UD⊂U{1,...,d−1}⊗Ud is written as v =
∑

id
c
(D,1)
kd−1,id

b
(d−1)
kd−1

⊗ b(d)id .

Now, v(d)kd−1
=
∑

id
c
(D,1)
kd−1,id

b
(d)
id

defines the last coefficients in the representation

(12.1a). Note that the cardinalities ρj = #Kj coincide with dim(U{1,...,j}), pro-
vided that bases (not frames) are used.

As a by-product, the construction shows how the data v(j)kj−1kj
are connected to

the coefficients c({1,...,j},kj)kj−1,ij
of the hierarchical format.

376 12 Matrix Product Systems

12.2.3 From Hierarchical Format to TT Format

Now, we start from v ∈ Hr with the underlying tree TTT
D from (12.8a,b) and a rank

tuple r = (rα)α∈TTT
D
.We may construct a TT-representation based on the subspaces

(Uα)α∈TTT
D

as in §12.2.2. Instead, we translate the data from

v = ρHTR

(
TTT
D , (Cα), c

(D), (Bj)
)
∈ Hr

directly into the TT data of ρTT
(
ρ,(v

(j)
kj−1kj

)
)

with ρj = r{1,...,j}. By (11.26) the
explicit representation of v is

v =

rα∑

i[α]=1

for α∈TTT
D

c
(D)
i[D]

⎡

⎣
∏

β∈TD\L(TD)

c
(β,i[β])
i[β1],i[β2]

⎤

⎦
d⊗

j=1

b
(j)
i[{j}].

We rename the indices as follows: for α = {1, . . . , j} ∈ TTT
D we rewrite i[α] by kj ,

and for leaves α = {j} ∈ TTT
D , j > 1, we write ij . This yields

v =
∑

i�∈I�
(2≤�≤d)

r{1,...,�}∑

k�=1
(1≤�≤d)

c
(D)
kd

⎡

⎣
d∏

j=2

c
({1,...,j},kj)
kj−1,ij

⎤

⎦ b
(1)
k1
⊗ b(2)i2 ⊗ . . .⊗ b

(d)
id
.

Because of the choice Uj = Vj for 2 ≤ j ≤ d, the basis {b(j)i : i ∈ Ij} is the
canonical one formed by the unit vectors of Vj = K

Ij . This implies b(j)i [�] = δi�.
Therefore, the entries of v have the form

v[i1i2 · · · id] =
ρ�∑

k�=1
(1≤�≤d)

c
(D)
kd

⎡

⎣
d∏

j=2

c
({1,...,j},kj)
kj−1,ij

⎤

⎦ b
(1)
k1

[i1]

=

ρ�∑

k�=1
(1≤�≤d−1)

b
(1)
k1

[i1] · c({1,2},k2)k1,i2
· . . . · c({1,...,d−1},kd−1)

kd−2,id−1
·
rD∑

kd=1

c
({1,...,d},kd)
kd−1,id

c
(D)
kd

with ρ� := r{1,...,�}. Defining

v
(1)
k1

[i1] := b
(1)
k1

[i1] for j = 1, i1 ∈ I1,

v
(j)
kj−1,kj

[ij] := c
({1,...,j},kj)
kj−1,ij

for 2 ≤ j ≤ d− 1, ij ∈ Ij ,

v
(d)
kd−1

[id] :=
∑ρd

kd=1 c
({1,...,d},kd)
kd−1,id

c
(D)
kd

for j = d, id ∈ Id,
with 1 ≤ kj ≤ ρj for 1 ≤ j ≤ d− 1,

(12.11)

we get the matrix formulation

12.2 TT Format as Hierarchical Format 377

v[i1i2 · · · id] =
ρ�∑

k�=1
(1≤�≤d−1)

v
(1)
k1

[i1] · v(2)k1,k2 [i2] · . . . · v
(d−1)
kd−2,kd−1

[id−1] · v(d)kd−1
[id],

i.e., v ∈ Tρ with ρ = (ρ1, . . . , ρd−1).

12.2.4 Construction with Minimal ρj

Given a tensor v ∈ V and the dimension partition tree TTT
D , the considerations of

§11.2.3 show that a hierarchical representation exists involving the minimal sub-
spaces Uα=Umin

α (v) for α= {1, . . . , j}. Hence rα=dim(Umin
α (v))= rankα(v)

(cf. (6.15)). As seen in §12.2.3, this hierarchical representation can be transferred
into TT format with

ρj = dim(Umin
{1,...,j}(v)) = rank{1,...,j}(v).

On the other side, the first part of Theorem 12.2 states that ρj ≥ rank{1,...,j}(v).
This proves the second part of Theorem 12.2.

12.2.5 Extended TT Representation

Representation (12.7) requires to store ρj−1ρj vectors v(j)kj−1,kj
from Vj . In the

optimal case, all v(j)kj−1,kj
belong to Umin

j (v) whose dimension is rj . It is not
unlikely that ρj−1ρj > rj holds. Then it may be more advantageous to store a
basis {b(j)i : 1 ≤ i ≤ rj} of Umin

j (v). The representations

v
(1)
k1

=

r1∑

i=1

a
(1,1,k1)
i b

(1)
i , v

(d)
kd−1

=

rd−1∑

i=1

a
(d,kd−1,1)
i b

(d)
i , (12.12)

v
(j)
kj−1,kj

=

rj∑

i=1

a
(j,kj−1,kj)
i b

(j)
i (2 ≤ j ≤ d− 1) ,

lead to the overall storage cost

d∑

j=1

rjρj−1ρj +
d∑

j=1

rj · size(Vj) with ρ0 = ρd = 1.

In this case, the tensor v is given by2

2 a
(j,kj−1,kj)
ij

is to be interpreted as a(1,k1)
i1

for j = 1 and as a
(d,kd−1)
id

for j = d.

378 12 Matrix Product Systems

v =
∑

ki∈Ki
(0≤i≤d)

∏

1≤ij≤rj
(1≤j≤d)

a
(j,kj−1,kj)
i

d⊗

j=1

b
(j)
ij
.

This format is called ‘extended tensor-train decomposition’ in [158, Eq. (11)].
Note that the optimal values of the decisive parameters (ranks) are

rj = rankj(v) and ρj = rank{1,...,j}(v) for 1 ≤ j ≤ d. (12.13)

This format is completely equivalent to the hierarchical format with the particular
choice of the dimension partition tree TTT

D .

12.2.6 Properties

Remark 12.3. The storage cost for v ∈ Tρ is

d∑

j=1

ρj−1ρj · size(Vj) with ρ0 = ρd = 1,

where size(Vj) denotes the storage size for a vector from Vj . Under the assumption

size(Vj) = n and ρj = ρ for all 1 ≤ j ≤ d− 1,

the data need a storage of size

(
(d− 2) ρ2 + 2ρ

)
n.

The storage cost is less, if some factors v(j)kj−1,kj
vanish (cf. Remark 12.4).

The storage cost improves for the extended TT format (cf. §12.2.5), since then it
coincides with the storage cost of the hierarchical format.

Remark 11.4b states that any permutation of indices from D which correspond
to the interchange of sons {α1, α2} = S(α), leads to an isomorphic situation. In the
case of the TT representation, the only permutation keeping the linear tree structure
and leading to the same ranks ρj is the reversion

(1, . . . , d) �→ (d, d− 1, . . . , 1).

The reason is (6.17a): ρj = rank{1,...,j}(v) = rank{j+1,...,d}(v).

Note that the underlying linear tree TTT
D is not the optimal choice with respect to

the following aspects. Its length d−1 is maximal, which might have negative effects,
e.g., in Remark 11.62. Because of the linear structure, computations are sequential,
while a balanced tree TD supports parallel computations (cf. Remark 11.60).

12.2 TT Format as Hierarchical Format 379

12.2.7 HOSVD Bases and Truncation

In principle, the HOSVD computation is identical to the algorithm from §11.3.3.4.
The do statement ‘for all sons σ ∈ S(α)’ in (11.46b) can be rewritten. Since for
the linear tree TTT

D , the second son α2 is a leaf, the recursion coincides with the
loop from {1, . . . , d} to {1, 2}, i.e., from d to 2. The first matrix in this loop is
Md := V (d)[1] ∈ K

ρd−1×nd (cf. (12.2b) and ρd = 1), to which a left-sided singular
value decomposition is applied. Let Hd be the result (i.e., Md = HdΣdG

T
d with

Gd, Hd orthogonal). The HOSVD basis of the d-th direction is given byHH
d V

(d)[•].
The matrix-product representation V (1)[i1] · V (2)[i2] · · · · · V (d−1)[id−1] · V (d)[id]
from (12.2b) is transformed into

V (1)[i1] · V (2)[i2] · . . . · V (d−1)[id−1]Hd ·HH
d V

(d)[id]
︸ ︷︷ ︸
V (d,HOSVD)[id]

with V (d,HOSVD)[•] ∈ K
ρHOSVD
d−1 ×nd , where the rank ρHOSVD

d−1 = rank{1···d−1}(v)
is possibly smaller than ρd−1. For general 2 ≤ j ≤ d− 1, the matrix

Mj := [V (j)[i1]Hj+1 V
(j)[i2]Hj+1 · · · V (j)[inj]Hj+1] ∈ K

ρj−1×ρHOSVD
j nj

possesses a left-sided singular matrix Hj ∈ K
ρHOSVD
j−1 ×ρ

HOSVD
j−1 and the matrix-product

is further transformed into

V (1)[i1] · · ·V (j−1)[ij−1]Hj ·HH
j V

(j)[ij]Hj+1
︸ ︷︷ ︸
V (j,HOSVD)[ij]

· · ·HH
d−1V

(d−1)[id−1]Hd
︸ ︷︷ ︸

V (d−1,HOSVD)[id−1]

·HH
d V

(d)[id]
︸ ︷︷ ︸
V (d,HOSVD)[id]

.

The final HOSVD matrices are

V (1,HOSVD)[•] = V (1)[•]H2, V (j,HOSVD)[•] = HH
j V

(j)[•]Hj+1

for 2 ≤ j ≤ d − 1, and V (d,HOSVD)[•] = HH
d V

(d)[•]. The computational cost can
be estimated by

2

d∑

j=2

ρ2j−1

(

ρj−2nj−1 + 2ρjnj +
8

3
ρj−1

)

. (12.14)

In §11.4.2.1, the truncation based on the HOSVD bases leads to the estimate
(11.61) with the factor

√
2d− 3, since 2d− 3 projections are applied. This number

reduces to d − 1 for the TT format, since only d − 1 projections are performed
(reduction of Hj to the first ρ′j columns). The hierarchical format requires further
d− 2 projections for the subspaces Uj ⊂ Vj (2 ≤ j ≤ d− 1) which are now fixed
by Uj = Vj .

The truncation of §11.4.2.3 leads again to the factor
√
d− 1 instead of

√
2d− 3

(same reasons as above).

380 12 Matrix Product Systems

12.3 Conversions

12.3.1 Conversion from Rr to Tρ

Remark 12.4. (a) Let v ∈ Rr, i.e., v =
∑r

ν=1

⊗d
j=1 u

(j)
ν . Then set ρj := r for

1 ≤ j ≤ d− 1 and

v
(1)
k1

:= u
(1)
k1
, v

(d)
kd−1

= u
(d)
kd−1

, v
(j)
kj−1,kj

:=

{
u
(j)
ν for kj−1 = kj = ν

0 otherwise

for the factors in (12.3a). Because most of the v(j)kj−1,kj
are vanishing, the storage

cost from Remark 12.3 reduces to the storage needed forRr.
(b) Part (a) describes the implication v ∈ Rr ⇒ v ∈ Tρ for ρ = (r, . . . , r). If
r = rank(v), ρ = (r, . . . , r) is minimal in the case of d ≤ 3, while for d ≥ 4, the
ranks ρ∗j (j /∈ {1, d− 1}) of ρ∗ with v ∈ Tρ∗ may be smaller than r.

Proof. We consider Part (b) only and prove that ρ1 = ρd−1 = r. Lemma 3.38
defines v[1]ν (1 ≤ ν ≤ r) and states that these vectors are linearly independent. This
implies that

ρ1 = rank{1}(v) = rank{2,...,d}(v) = dim{v[1]ν : 1 ≤ ν ≤ r} = r.

For ρd−1 use ρd−1 = rank{d}(v) = dim{v[d]ν : 1 ≤ ν ≤ r} = r. Note that for
d ≤ 3, all indices 1 ≤ j ≤ d− 1 belong to the exceptional set {1, d− 1}. ��

12.3.2 Conversion from Tρ to Hr with a General Tree

The format Tρ is connected with the tree TTT
D and the ordering 1, . . . , d of the

vector spaces Vj . We assume that another dimension partition tree TD is based on
the same ordering.3 The tensor v = ρTT

(
ρ, (v

(j)
kj−1kj

)
)
∈ Tρ is described by the

data v(j)kj−1kj
∈ Vj .

By the assumption on the ordering of the indices, each α ∈ TD has the form

α = {j′α, j′α + 1, . . . , j′′α}

for suitable j′α, j
′′
α ∈ D. We define

u
(α)
kj′α−1,kj′′α

:=
∑

kj′α

. . .
∑

kj′′α−1

v
(j)
kj′α−1kj′α

⊗ v(j)kj′αkj′α+1 ⊗ . . .⊗ v
(j)
kj′′α−1kj′′α

(12.15a)

for kj′α−1 ∈ Kj′α−1, kj′′α ∈ Kj′′α (with K0 = Kd = {1}), and

3 According to Remark 11.4, several orderings can be associated with TD. One of them has to
coincide with the ordering of TTT

D .

12.3 Conversions 381

Uα := span
{
u
(α)
kj′α−1,kj′′α

: kj′α−1 ∈ Kj′α−1, kj′′α ∈ Kj′′α

}
. (12.15b)

Note that ρj := #Kj. Since the number of tensors on the right-hand side of (12.15b)
is #Kj′α−1#Kj′′α = ρj′α−1ρj′′α , we obtain the estimate

dim(Uα) ≤ ρj′α−1ρj′′α for α = {j ∈ D : j′α ≤ j ≤ j′′α}. (12.15c)

For α ∈ TD\L(TD) with sons α1, α2, we can rewrite (12.15a) as

u
(α)
kj′α−1,kj′′α

=
∑

kj′′α2
∈Kj′′α2

u
(α1)
kj′α1

−1,kj′′α1

⊗ u
(α2)
kj′′α1

,kj′′α2

, (12.16)

since j′α1
= j′α, j

′′
α1

= j′α2
− 1, and j′′α2

= j′′α. Equality (12.16) proves the nested-
ness property Uα ⊂ Uα1 ⊗Uα2 . Since for α = D, u

(D)
kj′

D
−1,kj′′

D

= v holds, also

v ∈ UD is shown. Hence, {Uα}α∈TD
is a hierarchical subspace family and (11.15)

is satisfied: v ∈ Hr.

Proposition 12.5. Let v ∈ Tρ with ρ = (ρ1, . . . , ρd−1) and consider a hierarchical
format Hr involving any dimension partition tree TD with the same ordering of D.
(a) All v ∈ Tρ can be transformed into a representation v ∈ Hr, where the dimen-
sions r = (rα : α ∈ TD) are bounded by

rα ≤ ρj′α−1 · ρj′′α for α = {j : j′α ≤ j ≤ j′′α} ∈ TD. (12.17)

ρj are the numbers appearing in ρ = (ρ1, . . . , ρd−1). The estimate remains true for
ρj := rank{1,...,j}(v).

(b) If TD = TTT
D (cf. (12.8a,b)), r{1,...,j} = ρj holds.

(c) If d ≤ 6, a tree TD with minimal depth can be chosen such that all rα are
bounded by some rj or ρj from (12.13), i.e., no product like in (12.17) appears.

Proof. 1) (12.17) corresponds to (12.15c). Using the definitions rα = rankα(v)
for vertices α = {j : j′α ≤ j ≤ j′′α} and (12.5), i.e., ρj′α−1 = rankβ(v) for
β = {1, . . . , j′α − 1} and ρj′′α = rankγ(v) = rankγc(v) for γc = {1, . . . , j′′α},
inequality (12.17) is a particular case of Lemma 6.19b.

2) Consider the case d = 6 in Part (c). Choose the tree depicted below. For a leaf
α ∈ L(TD), the rank rα is some rj from (12.13). The vertices {1,2} and {1,2,3}
lead to ρ2 and ρ3, while r{4,5,6}=r{1,2,3}=ρ3 and r{5,6}=r{1,2,3,4}=ρ4. ��

{1,2} {3}

{1,2,3} {4,5,6}

{4} {5,6}

{5} {6}

{1,2,3,4,5,6}

{1} {2}

A simplification of the previous proposition is as
follows: if the TT representation uses the constant ranks
ρ = (r, . . . , r) , the ranks of the hierarchical format are
always bounded by r2. This estimate is sharp for d ≥ 8 as
shown by an example in [75]. Up to d = 6, the better bound
r can be achieved with optimally balanced trees.

382 12 Matrix Product Systems

12.3.3 Conversion from Hr to Tρ

Given a hierarchical format Hr involving the tree TD, we may consider Tρ with
an optimal permutation of the dimension indices from D = {1, . . . , d}. Rewriting
this new ordering again by 1, . . . , d means that the Hr-vertices from of TD are
not necessarily of the form {j : j′α ≤ j ≤ j′′α} . The Tρ-ranks ρj = rank{1,...,j}(v)
can be estimated by products of the ranks rα = rankα(v) (α ∈ TD) appearing in
the hierarchical format as follows.

The set {1, . . . , j} can be represented (possibly in many ways) as a disjoint union
of subsets of TD:

{1, . . . , j} =
κj⋃

ν=1

αν (disjoint αν ∈ TD). (12.18)

The existence of such a representation is proved by the singletons (leaves of TD):
{1, . . . , j} =

⋃j
ν=1{ν}, yielding the largest possible value κj = j. In the best case,

{1, . . . , j} is already contained in TD and κj equals 1. Let κ′j,min be the smallest
κj in (12.18) taken over all possible representations. Then Lemma 6.19b states that
ρj ≤

∏κ
′
j,min

ν=1 rαmin
ν
, where αmin

ν are the subsets with {1, . . . , j} =
⋃κ

′
j,min

ν=1 αmin
ν .

However, since ρj = rank{1,...,j}(v) coincides with rank{j+1,...,d}(v), one has
also to consider partitions {j + 1, . . . , d} =

⋃κj

ν=1 βν (βν ∈ TD). Let κ′′j,min and
βmin
ν be the optimal choice in the latter case. Then

ρj ≤ min

{
κ
′
j,min∏

ν=1

rαmin
ν
,

κ
′′
j,min∏

ν=1

rβmin
ν

}

follows. Assuming a hierarchical formatHr with rα ≤ r for all α ∈ TD, we obtain
the estimate ρj ≤ rmin{κ′j,min,κ

′′
j,min}. Introducing

κmax := max
{
min{κ′j,min,κ

′′
j,min} : 1 ≤ j ≤ d

}
,

we get
max {ρj : 1 ≤ j ≤ d} ≤ rκmax .

To understand how large κmax may become, we consider the regular case of a
completely balanced tree for d = 2L with even L (cf. (11.1) for L = 2). We choose

j :=

L
2 −1∑

ν=0

4ν (12.19)

and note that d− j = 1+
∑L/2−1
ν=0 2 ·4ν . Since all subsets from TD have the size 2μ

for some μ ∈ {0, . . . , L}, one verifies that {1, . . . , j} needs exactly κ
′
j,min = L/2

subsets αν,min. Similarly, {j+1, . . . , d} is covered by at least L/2+1 subsets. This
proves

κmax =
L

2
=

1

2
log2 d.

12.3 Conversions 383

Conclusion 12.6. Let TD be the balanced tree for d = 2L. Assuming a hierarchical
formatHr with rα=r for all α∈TD, the rank ρj for j=

∑L
2−1
ν=0 4ν is bounded by

ρj ≤ r
1
2 log2 d = d

1
2 log2 r. (12.20)

Conjecture 12.7. One can construct tensors v ∈ Hr such that inequality (12.20)
becomes an equality.

The reasoning is as follows (see also [75]). By Lemma 6.19c, rankαmin
ν

(v) =

rankβmin
ν

(v) = r implies ρj = d
1
2 log2 r for a suitable tensor v ∈ V. However, such

a tensor may violate the conditions rankα(v) ≤ r for the other vertices α∈TD .
Nevertheless, for the special j from (12.19) and the associated vertices αmin

ν and
βmin
ν , equality (12.20) can be proved. The missing part is the argument that another

partition of {1, . . . , j} consisting of κ > κmax vertices may be such that the proof
of ρj = rκ does not apply. In this case, at least ρj < rκ−1 must hold. See also the
example mentioned below.

In more detail, the following cases can be distinguished:

1) 1 ≤ d ≤ 5: The ranks ρj of Tρ coincide with certain rα fromHr. For d ≤ 3,
any tree after reordering coincides with the linear tree. For d = 4 take the natural
ordering of the balanced tree TD. Then,

ρ1 = r{1}, ρ2 = r{1,2}, ρ3 = rank{1,2,3}(v) = rank{4}(v) = r{4}

holds. If d=5, four leaves (say 1-4) are contained in pair vertices (say {1,2}, {3,4}).
Use the numbering i1=1, i2=2, i3=5, i4=3, i5=4 for Tρ. Again, we may use
ρ3=rank{1,2,5}(v)=rank{3,4}(v)=r{3,4}.

2) 6 ≤ d ≤ 16: Assuming rα ≤ r for Hr, the ranks ρj of Tρ are bounded by
ρj ≤ r2 (equality sign is taken for suitable v and j). For the case d = 6 we choose
the balanced tree4 with three vertices {1,2}, {3,4}, {5,6} of size 2. Then all triples
{i1, i2, i3} as well as their complements are of size 3, while the vertices of TD are
of size 1, 2, 4, 6. Hence, the quantity min{κ′j,min,κ

′′
j,min} from above is at least 2.

An example in [75] proves that already for d = 6 the maximal TT rank is the square
of the hierarchical ranks.

3) d = 17: Take the balanced tree of 16 leaves and add the vertices {17} and
{1, . . . , 17}. Then ρj ≤ r3 holds for some j. For a proof take any permutation
{i1, . . . , i16} and consider the set {i1, . . . , i7} . It requires κ

′
7,min ≥ 3 subsets.

The complement {i7, . . . , i16} has 10 elements. To obtain κ
′′
7,min = 2 one must

use 10 = 8 + 2, i.e., {i1, . . . , i7} must be the union of two vertices α ∈ TD with
cardinality 8 and 2. This proves 17 /∈ {i7, . . . , i16} and 17 ∈ {i1, . . . , i7}. Now,
17 is contained in {i1, . . . , i10} and leads to κ

′
10,min ≥ 3, while {i11, . . . , i17} with

7 elements proves κ′′10,min ≥ 3.

4 However, the tree containing the vertices {1,2}, {1,2,3}, {5,6}, {4,5,6} has the same length and
allows the estimate ρj ≤ r.

384 12 Matrix Product Systems

12.4 Cyclic Matrix Products and Tensor Network States

The definition ρ0 = ρd = 1 in (12.1c) or #Kj = 1 for the index sets for j = 0
and j = d has the purpose to avoid summations over these indices. Instead, one can
identify the indices of K0 = Kd and allow ρd > 1:

v =

ρ1∑

k1=1

· · ·
ρd−1∑

kd−1=1

ρd∑

kd=1

v
(1)
kd,k1

⊗ v(2)k1k2 ⊗ . . .⊗ v
(d−1)
kd−2kd−1

⊗ v(d)kd−1,kd
. (12.21)

This results into a cycle instead of a linear tree. In the following, we set D = Zd

which implies 0 = d and hence ρ0 = ρd. Although this tensor representation looks
quite similar to (12.3a), it has essentially different properties.

Proposition 12.8. (a) If ρj = 1 for at least one j ∈ D, the tensor representation
(12.21) coincides with (12.3a) with the ordering {j + 1, j + 1, . . . , d, 1, . . . , j}.
(b) The minimal subspace Umin

j (v) is not related to a single parameter ρk in
(12.21), i.e., ρk cannot be interpreted as a subspace dimension.
(c) Inequality rankj(v) = dim(Umin

j (v)) ≤ ρj−1ρj holds for (12.21).
(d) In general, a cyclic representation with rankj(v) = ρj−1 ρj does not exist.

Proof. 1) Assume that j = d in Part (a). Then ρ0 = ρd = 1 yields (12.3a).
2) Fix j = 1. Then the representation v =

∑ρ1
k1=1

∑ρd
kd=1 v

(1)
kd,k1

⊗ v
[1]
kd,k1

holds

with v
[1]
kd,k1

:=
∑
k2,k3,...,kd−1

⊗d
�=2 v

(�)
k�−1k�

. Both indices kd and k1 enter the def-

inition of Umin
1 (v) =

{
ϕ(v

[1]
kd,k1

) : ϕ ∈ V′[1]
}

in the same way proving Part (b).
Obviously, the dimension is bounded by ρdρ1 = ρ0ρ1 as stated in Part (c).

3) If rankj(v) is a prime number, rankj(v) = ρj−1ρj implies that ρj−1 = 1 or
ρj = 1. Hence, by Part (a), (12.21) cannot be a proper cyclic representation. ��

According to Proposition 12.8a, we call (12.21) a proper representation, if all ρj
are larger than 1. In the cyclic case, the ranks ρj are not related to the dimensions of
Umin
j (v). Therefore, we cannot repeat the proof of Lemma 11.55 to prove closed-

ness of the format (12.21). In fact, non-closedness is proved (cf. Theorem 12.9).
The cycle Zd is only one example of tensor representations based on graphs

(instead of trees). Examples5 are given in Hübener-Nebendahl-Dür [105, p. 5], in
particular, multi-dimensional grid-shaped graphs are considered instead of the one-
dimensional chain 1 − 2 − . . . − d used in (12.3a). Whenever the graph contains a
cycle, statements as in Proposition 12.8b-d can be made and instability must be ex-
pected because of Theorem 12.9. If a connected graph contains no cycle, it describes
a tree and corresponds to the hierarchical format (with the possible generalisation
that the dimension partition tree TD is not necessarily binary; cf. Definition 11.2).

The following result is proved by Landsberg-Qi-Ye [136]. It implies that a similar
kind of instability may occur as for the r-term format (cf. Remark 9.14).

Theorem 12.9. In general, a graph-based format containing a cycle is not closed.

5 The graph-based tensor format has several names: tensor network states, finitely correlated states
(FCS), valance-bond solids (VBS), projected entangled pairs states (PEPS), etc. (cf. [136]).

Chapter 13
Tensor Operations

Abstract In §4.6 several tensor operations have been described. The numerical
tensor calculus requires the practical realisation of these operations. In this chapter
we describe the performance and arithmetical cost of the operations for the different
formats. The discussed operations are the addition in Sect. 13.1, evaluation of tensor
entries in Sect. 13.2, the scalar product and partial scalar product in Sect. 13.3, the
change of bases in Sect. 13.4, general binary operations in Sect. 13.5, Hadamard
product in Sect. 13.6, convolution of tensors in Sect. 13.7, matrix-matrix multipli-
cation in Sect. 13.8, and matrix-vector multiplication in Sect. 13.9. Section 13.10 is
devoted to special functions applied to tensors. In the last Sect. 13.11 we comment
on the operations required for the treatment of Hartree-Fock and Kohn-Sham appli-
cations in quantum chemistry.
In connection with the tensorisation discussed in Chap. 14, further operations and
their cost will be discussed.

We repeat the consideration from §7.1 concerning operations. Two mathematical
entities s1, s2 ∈ S are represented via parameters p1, p2 ∈ PS , i.e., s1 = ρS(p1)
and s2 = ρS(p2). A binary operation � leads to s := s1 � s2. We have to find
a parameter p ∈ PS such that s = ρS(p). Therefore, on the side of the parameter
representations, we have to perform (7.2):

p := p1 �̂ p2 :⇐⇒ ρS(p) = ρS(p1) � ρS(p2).

The related memory cost is denoted by Nmem(·) and the number of arithmetical
operations by N� with ‘�’ replaced by the respective operation.

The following list yields an overview of the asymptotic cost of various opera-
tions for the different formats. Here, we assume the most general case (different
bases etc.) and consider only upper bounds using n = minnj, r = max rα etc.1

Furthermore, the cost of the j-th scalar product is assumed to be 2nj − 1.

1 Note that the meaning of the bound r differs for the formats, since different kinds of ranks are
involved.

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 13,
© Springer-Verlag Berlin Heidelberg 2012

385

386 13 Tensor Operations

full r-term tensor subspace hierarchical
storage nd dnr rd + dnr dr3 + dnr
basis change 2dnd+1 2dn2r 2drd+1 2dr3

orthonormalisation 2drd+1 + 2dnr2 2dnr2 + 4dr4

u+ v nd 0 2drd+1 + 2dnr2 8dnr2 + 8dr4

vi evaluation 0 dr 2rd 2dr3

〈u,v〉 2nd dr2 + 2dnr2 2drd+1 + 8dnr2 2dnr2 + 6dr4

〈u,v〉αc 2nd+#α r2#αc + 2#αcnr2 2drd+#α + 8#αcnr2 < 2dnr2 + 6dr4

〈v,v〉{j}c nd+1 1
2
dr2 + dnr2 2drd+1 + 8dnr2 < 2dnr2 + 6dr4

u� v nd dnr2 r2d + dnr2 dnr2 + (d− 1) r4

Av 2dnd+1 2dn2r 2d
(
rd+1 + n2r + nr2

)
2dn2r

truncation ∼ dr2R+ d2rR 3drd+1 + 2dr2n 2dr2n + 3dr4

The cost of the truncation is cited from §9.5.4 for2 Rr, from §8.3.3 for Tr, and
from (11.46c) forHr.

The terms involving n may be improved by applying the tensorisation technique
from §14 as detailed in §14.1.4. In the best case, n may be replaced by O(log n).

13.1 Addition

Given v′,v′′ ∈ V in some representation, we have to represent v := v′ + v′′.

13.1.1 Full Representation

Assume V =
⊗d

j=1 K
Ij with I = ×d

j=1 Ij (cf. §7.2). Given v′,v′′ ∈ V in full
representation, the sum is performed directly by

vi := v′i + v′′i for all i ∈ I.

The memory Nmem(v) = #I is the same as for each of v′,v′′. Also the number of
arithmetical operations equals

N full
+ = Nmem(v) = #I =

d∏

j=1

#Ij .

As a variant, one may consider sparse tensors. Then, obviously, v is less sparse
than v′,v′′, unless both terms possess the same sparsity pattern.

Another variant is the full functional representation by a function. Given two
functions function v1(. . .) and function v2(. . .), the sum is represented by the
function v(i1, . . . , id) defined by v(. . .) := v1(. . .) + v2(. . .). Hence, the cost per
call increases: Nv = Nv1 +Nv2.

2 Here, the cost of one iteration is given.

13.1 Addition 387

13.1.2 r-Term Representation

Given v′ =
∑r
ν=1 v

(1)
ν ⊗ . . .⊗v(d)ν ∈ Rr and v′′ =

∑s
ν=1 w

(1)
ν ⊗ . . .⊗w(d)

ν ∈ Rs,
the sum v = v′ + v′′ is performed by concatenation, i.e.,

v =

r+s∑

ν=1

v(1)ν ⊗ . . .⊗ v(d)ν ∈ Rr+s, where v(j)r+ν := w(j)
ν for 1≤ν≤s, 1≤j≤d.

The memory is additive:Nmem(v)=Nmem(v
′)+Nmem(v

′′), while no arithmetical
work is required: N+ = 0.

Since the result lies inRr+s with increased representation rank r+s, we usually
need a truncation procedure to return to a lower representation rank.

Consider the hybrid format from (8.21). If v′ = ρhybrr-term

(
r′,J, (a

′(j)
ν), (Bj)

)

and v′′ = ρhybrr-term

(
r′′,J, (a

′′(j)
ν), (Bj)

)
holds with identical bases, the procedure

is as above. The coefficients are joined into (a
(j)
ν) with 1 ≤ ν ≤ r := r′+ r′′.

If different bases (B′j) and (B′′j) are involved, these have to be joined via
JoinBases(B′j , B

′′
j , rj , Bj , T

′(j), T ′′(j)). Now, v′′ can be reformulated by coef-
ficients a(j) = T ′′(j)a′′(j) with respect to the basis Bj . v′ may stay essentially
unchanged, since B′j can be taken as the first part of Bj . Afterwards, v′ and v′′

have identical bases and can be treated as before. The total cost in the second case
is

N+ =

d∑

j=1

(
NQR(nj , r

′
j + r′′j) + rj(2r

′′
j − 1)

)
.

13.1.3 Tensor Subspace Representation

Case I (two tensors from Tr with same bases). First we consider the case that
v′,v′′ ∈Tr belong to the same tensor subspace U :=

⊗d
j=1Uj with rj =dim(Uj).

The representation parameters are the coefficient tensors a′, a′′ ∈ K
J with J =

×d
j=1 Jj , where i ∈ Jj = {1, . . . , rj} is associated to the basis vectors b(j)i (cf.

(8.6b)). The addition of v′,v′′ ∈ U reduces to the addition a := a′ + a′′ of the
coefficient tensors for which the full representation is used. Hence, §13.1.1 yields

Nmem(v) = N+ = #J =

d∏

j=1

rj .

Case II (two tensors with different bases). Another situation arises, if different
tensor subspaces are involved:

v′=
∑

i∈J′
a′i

d⊗

j=1

b
′(j)
ij
∈U′ :=

d⊗

j=1

U ′j , v
′′=

∑

i∈J′′
a′′i

d⊗

j=1

b
′′(j)
ij
∈U′′ :=

d⊗

j=1

U ′′j .

388 13 Tensor Operations

The sum v := v′ + v′′ belongs to the larger space U :=U′+U′′=
⊗d

j=1Uj with

Uj := U ′j + U ′′j = range(B′j) + range(B′′j),

where B′j = [b
′(j)
1 , . . . , b

′(j)
r′j

] and B′′j = [b
′′(j)
1 , . . . , b

′′(j)
r′′j

] are the given bases or

frames of U ′j ⊂ Vj and U ′′j ⊂ Vj , respectively. The further treatment depends on

the requirement about Bj := [b
(j)
1 , . . . , b

(j)
rj].

1. If Bj may be any frame (cf. Remark 8.7d), one can set ri := r′j + r′′j and

Bj :=
[
b
′(j)
1 , . . . , b

′(j)
r′j

, b
′′(j)
1 , . . . , b

′′(j)
r′′j

]
.

Then a ∈ K
J with J =×d

j=1 Jj and Jj = {1, . . . , rj} is obtained by concate-
nation: ai = a′i for i ∈ J′ ⊂ J, ar′+i = a′′i for i ∈ J′′, where r′ = (r′1, . . . , r

′
d).

All further entries are defined by zero. There is no arithmetical cost, i.e.,

NTr,frame
+ = 0,

but the memory is largely increased: Nmem(v) = #J =
∏d
j=1 rj (note that, in

general, Nmem(v)� Nmem(v
′) +Nmem(v

′′)).

2. IfBj should be a basis, we apply JoinBases(B′j , B
′′
j , rj , Bj, T

′(j), T ′′(j)) from

(2.35), which determines a basis Bj =
[
b
(j)
1 , . . . , b

(j)
rj

]
of Uj together with trans-

fer maps b′(j)k =
∑r

i=1 T
′(j)
ik b

(j)
i and b′′(j)k =

∑r
i=1 T

′′(j)
ik b

(j)
i . It is advantageous

to retain one part, say B′j , and to complement B′j by the linearly independent
contributions from B′′j , which leads to T ′(j)ik =δik. The dimension rj=dim(Uj)
may take any value in max{r′j , r′′j } ≤ rj ≤ r′j + r′′j . It defines the index sets

Jj={1, . . . , rj} and J=×d
j=1 Jj . If rj = r′j + r′′j , the memory is as large as in

Case 1. The work required by JoinBases depends on the representation of the
vectors in Vj (cf. §7.5). Set3 T′ :=

⊗d
j=1 T

′(j) and T′′ :=
⊗d

j=1 T
′′(j). Lemma

8.9 states that

v′ = ρframe

(
a′, (B′j)1≤j≤d

)
= ρframe (T

′a′, (Bj)1≤j≤d) ,
v′′ = ρframe

(
a′′, (B′′j)1≤j≤d

)
= ρframe (T

′′a′′, (Bj)1≤j≤d) .

Then a :=T′a′+T′′a′′ is the resulting coefficient tensor in v=ρframe(a, (Bj)).
The cost of JoinBases is

∑d
j=1NQR(nj , r

′
j + r′′j), if Vj = K

nj . The update

a := T′a′ + T′′a′′ of the coefficient tensor leads to 2#J
∑d

j=1 rj operations.
If nj ≤ n and rj ≤ r, the overall cost is

NTr+ ≤ 2dnr2 + 2drd+1.

3. In the case of orthonormal basesB′j , B
′′
j , Bj , one applies JoinONB (cf. (2.36)).

The coefficient tensors are treated as in Case 2. The cost is as in Item 2.

3 T′ can be chosen as trivial injection: T ′(j)αβ = δαβ .

13.2 Entry-wise Evaluation 389

13.1.4 Hierarchical Representation

Case I (two tensors with identical bases). Assume that both tensors v′,v′′ ∈ Hr

are represented by the same data
(
TD, (Cα)α∈TD\L(TD), (Bj)j∈D

)
, only their

coefficients c′(D) and c′′(D) differ. Then the sum v := v′ + v′′ is characterised
by v = ρHTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)

with the coefficient vector
c(D) := c′(D) + c′′(D) ∈ K

rD . The cost is marginal:

NHr,Case I
+ = rD.

Case II (two tensors with different bases). Here we assume that both terms
v′ ∈ Hr′ and v′′ ∈ Hr′′ use the same dimension partition tree TD:

v′ = ρHTR

(
TD, (C

′
α)α∈TD\L(TD), c

′(D), (B′j)j∈D
)
,

v′′ = ρHTR

(
TD, (C

′′
α)α∈TD\L(TD), c

′′(D), (B′′j)j∈D
)
.

First we consider the involved hierarchical subspace families from Definition
11.8a. Let {U′α}α∈TD and {U′′α}α∈TD be the subspaces associated with v′ and v′′,
respectively. The sum v := v′ + v′′ belongs to {Uα}α∈TD with Uα := U′α +U′′α.

As in §13.1.3, we have to determine bases of the spacesU′α+U′′α. This procedure
has been described in §11.5. According to Remark 11.67d, the cost is bounded by
≤ 8dr2(r2 + n), where r := max rj and n := maxnj . Having a common basis
representation, we can apply Case I from above. Hence, the cost is

NHr,Case II
+ ≤ 8dnr2 + 8dr4.

An increase of storage is caused by the fact that, in the worst case, the subspaces
Uα = U′α+U′′α have dimension dim(Uα) = dim(U′α)+dim(U′′α). In particu-
lar, dim(UD) ≥ 2 can be reduced to 1 without loss of accuracy. Possibly, further
subspaces Uα can be reduced by the truncation procedure of §11.4.2.

13.2 Entry-wise Evaluation

For Vj = K
nj , the tensor v ∈ V=

⊗d
j=1Vj has entries vi with i=(i1, . . . , id) ∈ I

and the evaluation Λi : v �→ vi ∈ K is of interest.
In connection with variants of the cross approximation (cf. §15), it is necessary

to evaluate vi not only for one index i, but for all k in the so-called fibre

F(j, i) :=
{
k ∈ I = I1 × . . .× Id : k� = i� for � ∈ {1, . . . , d}\{j}

}
.

Note that the component kj of k ∈ F(j, i) takes all values from Ij , while all
other components are fixed. The challenge is to perform the simultaneous evalu-
ation cheaper than #Ij times the cost of a single evaluation.

390 13 Tensor Operations

The entry-wise evaluation may be viewed as scalar product by the unit vector
e(i) ∈ V with e

(i)
j = δij (i, j ∈ I), since vi = 〈v, e(i)〉. Therefore, the evaluation of

the scalar product with an elementary tensor is closely related.
Full representation of v need not be discussed, since then vi is directly available,

i.e., N r-term
eval = 0.

13.2.1 r-Term Representation

If v is represented in r-term format v =
∑r

ν=1

⊗d
j=1 v

(j)
ν ∈ Rr, the entry vi

equals
∑r
ν=1

∏d
j=1(v

(j)
ν)ij . Its computation requires

N r-term
eval = rd− 1

arithmetical operations.
The cost of the evaluation for all indices k ∈ F(j, i) is

N r-term
eval (F(j, i)) = r (d+ 2#Ij − 2)−#Ij .

Here, the products
∏
�∈{1,...,d}\{j}(v

(�)
ν)i� (1 ≤ ν ≤ r) are computed first.

13.2.2 Tensor Subspace Representation

The tensor subspace representation v =
∑

k∈J ak
⊗d

j=1 b
(j)
kj

yields

v[i1, . . . , id] = vi =
∑

k∈J
ak
∏d

j=1
(b

(j)
kj

)ij

with J = J1 × . . . × Jd and Jj := {1 ≤ i ≤ rj}. The evaluation starts with
summation over k1 yielding a reduced coefficient tensor a[k2, . . . , kd] etc. Then
the arithmetical operations amount to

NTreval =
d∑

�=1

(2r� − 1)
d∏

j=�+1

rj < 2#J.

Summation in the order k1, k2, . . . , kd is optimal, if r1 ≥ r2 ≥ . . . ≥ rd.Otherwise,
the order of summation should be changed. If rj ≤ r, the cost is aboutNTreval ≤ 2rd.

For the simultaneous evaluation, the summations over all k� are to be performed
in such an order that � = j is the last one. For j = d, the cost is

NTreval(F(j, i)) =

d−1∑

�=1

(2r� − 1)

d∏

j=�+1

rj +#Id (2rd − 1) .

13.2 Entry-wise Evaluation 391

13.2.3 Hierarchical Representation

For α ⊂ D = {1, . . . , d} the index iα belongs to Iα =×j∈α Ij . The evaluation of
the iα entry

β
(α)
� := b

(α)
� [iα] =

rα1∑

i=1

rα2∑

j=1

c
(α,�)
ij b

(α1)
i [iα1]b

(α2)
j [iα2] (13.1)

of the basis vector b(α)
� is performed recursively from the leaves to the root:

procedure eval∗(α, i);
for � := 1 to rα do

if α = {j} then β(α)
� := b

(j)
� [ij] else {leaf}

begin eval∗(α1, i); eval
∗(α2, i); {α1, α2 sons of α}

β
(α)
� :=

rα1∑

i=1

rα2∑

j=1

c
(α,�)
ij β

(α1)
i β

(α2)
j {non-leaf vertex, cf. (13.1)}

end;

(cf. (11.26)). The evaluation of v[i] is implemented by

function eval(v, i);
begin eval∗(D, i); s := 0;

for � := 1 to rD do s := s+ c
(D)
� · β(D)

� ;
eval := s

end;

The asymptotic computational cost is

NHr

eval = 2
∑

α∈TD\L(TD)

rαrα1rα2 (α1, α2 sons of α) .

For rα ≤ r, the cost is bounded by NHr

eval ≤ 2dr3.
The cost of the simultaneous evaluation at F(j, i) amounts to

NHr

eval(F(j, i)) = NHr

eval + 2#Ij
∑

α∈TD\L(TD) with j∈α1∈S(α)
rαrα1 .

The latter summation involves all non-leaf vertices α with a son α1 containing j.
The total cost is bounded by 2r2 [dr + (depth(TD)− 1)#Ij] (cf. (11.7)). Note
that the tree TD can be constructed such that depth(TD) ≈ log2 d.

13.2.4 Matrix Product Representation

The TT format is introduced in (12.1a) by means of a representation of an entry vi.
Since the data v(j)kj−1ijkj

are already separated with respect to ij, only the matrices

392 13 Tensor Operations

v
(j)
kj−1kj

[ij] from (12.2b) enter the computation. Correspondingly, the evaluation of
the right-hand side requires less operations than in §13.2.3:

NTT
eval = 2

d−2∑

�=1

ρ� ρ�+1. (13.2)

For ρ� ≤ ρ, this is NTT
eval ≈ 2 (d− 2) ρ2.

For the simultaneous evaluation in the case of j ∈ {2, . . . , d − 1}, perform the
product of the matrices V (�,i�) in (12.2b) such that VI · V (j,kj) · VII holds with
vectors VI ∈ K

ρj−1 and VII ∈ K
ρj . Its evaluation for all kj ∈ Jj yields

NTT
eval(F(j, i)) = ρj−1ρj (2ρj + 1) +

j−2∑

�=1

(2ρ� − 1) ρ�+1 +

d−2∑

�=j

(2ρ�+1 − 1) ρ�

≈ 2

(

ρj−1ρ
2
j +

∑d−2

�=1
ρ�ρ�+1

)

.

The cases j = 1 and j = d are left to the reader.

13.3 Scalar Product

Given pre-Hilbert spaces Vj with scalar product 〈·, ·〉j , the induced scalar product
in V = a

⊗d
j=1 Vj is defined in §4.5.1. The corresponding norms of Vj and V are

denoted by ‖·‖j and ‖·‖. We suppose that the computation of 〈u, v〉j is feasible, at
least for u, v ∈ Uj ⊂ Vj from the relevant subspace Uj , and that its computational
cost is

Nj (13.3)

(cf. Remark 7.12). In the case of function spaces, 〈u, v〉j for u, v ∈ Uj may be
given analytically or approximated by a quadrature formula4, provided that Uj is a
subspace of sufficiently smooth functions.

The scalar product 〈u,v〉 is considered in two situations. In the general case,
both u and v are tensors represented in one of the formats. A particular, but also
important case is the scalar product of u—represented in one of the formats—and
an elementary tensor

v =

d⊗

j=1

v(j) (13.4)

represented by the vectors v(j) ∈ Vj (1-term format).
A related problem is the computation of the partial scalar product defined in

§4.5.4. It is important since the left or right singular vectors of the singular value
decomposition can be obtained via the partial scalar product (see Lemma 5.13).

4 Whether approximations of the scalar product are meaningful or not, depends on the applica-
tion. For instance, a quadrature formula with n quadrature points cannot be used to determine an
(approximately) orthogonal system of more than n vectors.

13.3 Scalar Product 393

13.3.1 Full Representation

For V = K
I with I = ×d

j=1 Ij , the Euclidean scalar product 〈u,v〉 is to be com-
puted by

∑
i∈I uivi so that N〈·,·〉 = 2#I. The computation may be much cheaper

for sparse tensors. The full representation by a function is useful only in connection
with a quadrature formula. The case of (13.4) is even a bit more expensive.

The partial scalar product in K
I depends on the decomposition of {1, . . . , d} into

disjoint and non-empty sets α and αc := {1, . . . , d}\α. This induces a partition of I
into I = Iα×Iαc with Iα =×j∈α Ij and Iαc =×j∈αc Ij . Then w := 〈u,v〉αc ∈
K

Iα ⊗K
Iα is defined by the entries5

wi′,k′ =
∑

i′′∈Iαc
ui′,i′′vk′,i′′ for i′,k′ ∈ Iα.

The computational cost per entry is 2#Iαc . Since w has (#Iα)
2 entries, the overall

cost is N〈·,·〉,Iα = 2 (#Iα)
2 #Iαc .

13.3.2 r-Term Representation

For elementary tensors, the definition of 〈·, ·〉 yields 〈u,v〉 =
∏d
j=1

〈
u(j), v(j)

〉
j

.
Combining all terms from u ∈ Rru and v ∈ Rrv , we obtain the following result.

Remark 13.1. The scalar product of u ∈ Rru and v ∈ Rrv costs

N r-term
〈·,·〉 = rurv

(
d+

∑d

j=1
Nj
)

operations withNj from (13.3). The case of (13.4) is included by the choice rv = 1.

For partial scalar products we use the notations α, αc ⊂ {1, . . . , d} and w :=

〈u,v〉Iαc
as in §13.3.1. First, let u =

⊗d
j=1 u

(j) and v =
⊗d

j=1 v
(j) be elementary

tensors. Then

〈u,v〉αc =
(∏

j∈αc

〈
u(j), v(j)

〉
j

)(⊗

j∈α
u(j)

)
⊗
(⊗

j∈α
v(j)

)
∈ Vα ⊗Vα

with Vα =
⊗

j∈α Vj is again an elementary tensor. The same considerations as
above lead to the next remark. Since 〈v,v〉αc (i.e., u = v) appears for the left-sided
singular value decomposition ofMα(v), this case is of special interest.

Remark 13.2. (a) The partial scalar product w := 〈u,v〉αc of u∈Rru and v∈Rrv
costs N〈·,·〉 = rurv(#α

c +
∑

j∈αc Nj) operations. The tensor w ∈ Vα ⊗ Vα is
given in the formatRr with r := rurv.

(b) Because of symmetry, NRr

〈·,·〉,αc reduces to rv(rv+1)
2

(
#αc +

∑
j∈αc Nj

)
for the

computation of 〈v,v〉αc .

5 The notation ui′,i′′ assumes that αc = {j∗, . . . , d} for some 1 ≤ j∗ ≤ d. Otherwise, uπ(i′,i′′)
with a suitable permutation π is needed. However, this does not effect the computational cost.

394 13 Tensor Operations

13.3.3 Tensor Subspace Representation

Case I (two tensors from Tr with same bases). The easiest case is given by u =
∑

i∈J a
u
i

⊗d
j=1 b

(j)
ij
∈ Tr and v =

∑
i∈J a

v
i

⊗d
j=1 b

(j)
ij
∈ Tr belonging to the same

subspace U :=
⊗d

j=1 Uj with orthonormal bases Bj = [b
(j)
1 , . . . , b

(j)
rj] of Uj . Then

〈u,v〉 = 〈au, av〉J

holds, where the latter is the Euclidean scalar product of the coefficient tensors in
K

J. The cost is N〈·,·〉 = 2#J = 2
∏d
j=1 rj (cf. §13.3.1).

Case II (tensor from Tr and elementary tensor). If u=
∑

i∈J ai
⊗d

j=1b
(j)
ij
∈Tr,

while v is an elementary tensor, 〈u,v〉 =
∑

i∈J ai
⊗d

j=1〈b
(j)
ij
, v(j)〉j requires

d∑

j=1

(2rj − 1)
d∏

�=j+1

rj +
d∑

j=1

rjNj

operations. The second sum corresponds to the scalar products β(j)
ij

:= 〈b(j)ij , v
(j)〉j ,

where Nj is the cost of a scalar product in Vj (cf. (13.3)). Performing first
the summation of

∑
i∈J ai

∏d
j=1 β

(j)
ij

over 1 ≤ i1 ≤ r1 for all combinations of

i2, i3, . . . , id, we obtain
∑r1
i1=1 aiβ

(1)
i1

with the cost (2r1 − 1) r2 · · · rd. Proceeding
with summation over i2, . . . , id, we obtain the cost given above.

Case III (tensors from Tr′ and Tr′′). If u′ =
∑

i∈J′ a
′
i

⊗d
j=1 b

′(j)
ij
∈ Tr′ and

u′′ =
∑

i∈J′′ a
′′
i

⊗d
j=1 b

′′(j)
ij
∈ Tr′′ use different bases, the computation of

〈u′,u′′〉 =
∑

i∈J′

∑

k∈J′′
a′i a
′′
k

d∏

j=1

〈
b
′(j)
ij

, b
′′(j)
kj

〉

j
(13.5)

requires

NTr〈·,·〉 =
d∑

j=1

(
2r′′j + 1

)
r′j

d∏

�=j+1

r′�r
′′
� +

d∑

j=1

r′jr
′′
jNj

operations.

Remark 13.3. Assume nj ≤ n and rj , r′�, r
′′
� ≤ r. Then the asymptotic costs of

Cases I-III can be estimated by

I: rd, II: 2
(
rd + dnr

)
, III: 2

(
r2d + dnr2

)
.

An alternative way for Case III is to transform u′ and u′′ into a representa-
tion with a common orthonormal basis Bj as explained in §8.6.3. The expense is
8dnr2+2drd+1 (cf. Remark 8.42). Having a common basis of dimension≤ 2r, we
can apply Case I. Hence, the total cost is

III’: NTr〈·,·〉 = 8dnr2 + 2drd+1 + (2r)d .

This leads to the following remark:

13.3 Scalar Product 395

Remark 13.4. For Case III with n < 1
3dr

2d−2 − 1
3r
d−1 − 1

6d2
drd−2, it is advanta-

geous first to transform u′ and u′′ into a representation with common orthonormal
bases Bj . The cost is O(dnr2 + rdmin{rd, 2d + dr}).

In the case of a partial scalar product w := 〈u,v〉αc ∈ K
Iα ⊗ K

Iα , we have
similar cases as before.

Case I (two tensors from Tr with same bases). Let u =
∑

i∈Jα
aui
⊗d

j=1 b
(j)
ij

and

v =
∑

i∈Jα
avi
⊗d

j=1 b
(j)
ij

. Again, under the assumption of orthonormal bases, the
partial scalar product can be applied to the coefficient tensors:

w =
∑

(i,k)∈Jα×Jα

ci,k
⊗

j∈α
b
(j)
ij
⊗
⊗

j∈α
b
(j)
kj

with c := 〈au, av〉αc .

Therefore, the cost is given by NTr〈·,·〉,αc = 2 (#Jα)
2
#Jαc (cf. §13.3.1). Note that

the resulting tensor w ∈ K
Iα ⊗K

Iα is again represented in tensor subspace format.
The most important case is u = v and α = {j}. Then,

NTr〈·,·〉,αc = (rj + 1)

d∏

k=1

rk for u = v and α = {j} with rj = #Jj . (13.6)

Case II (tensors from Tr′ and Tr′′). Now we assume that v′=
∑

i∈J′αa
′
i

⊗d
j=1b

′(j)
ij

and v′′ =
∑

i∈J′′α a′′i
⊗d

j=1 b
′′(j)
ij

use not only different bases, but also different
subspaces of possibly different dimensions. Basing the computation of the partial
scalar product w := 〈v′,v′′〉Iαc

on the identity6

w=
∑

i′∈J′α

∑

k′∈J′′α

[∑

i′′∈J′αc

∑

k′′∈J′′αc

a′i′,i′′a
′′
k′,k′′

∏

j∈αc

〈
b
′(j)
i′′j

, b
′′(j)
k′′j

〉

j

]

︸ ︷︷ ︸
=:bi′,k′

⊗

j∈α
b
′(j)
i′j
⊗
⊗

j∈α
b
′′(j)
k′j

,

we need
NTr〈·,·〉,αc = 2

d∏

j=1

r′jr
′′
j +

∑

j∈αc

r′jr
′′
jNj + lower order

operations for the evaluation of the coefficient tensor b ∈ K
Jα ⊗ K

Jα . Here, we
assume that all r′j = #J ′j and r′′j = #J ′′j are of comparable size.

The alternative approach is to determine common orthonormal bases for j ∈ αc
requiring #αc

(
8nr2 + 2rd+1

)
operations (assuming common bounds r and n for

all directions). Then, Case I can be applied. The estimate of the total cost by

NTr〈·,·〉,αc ≤ #αc
(
8nr2 + 2rd+1

)
+ 2#α

c

rd+#α

shows that the second approach is cheaper under the assumptions Nj = 2nj − 1
and n ≤ r2d−2/ (3#αc) up to lower order terms.

6 Note that the index i ∈ J′ = ×d
j=1 J

′
j of a′i = a′i′,i′′ is split into the pair (i′, i′′) , where

i′ ∈ Jα =×j∈α Jj and i′′ ∈ Jαc =×j∈αc Jj . Similarly for k ∈ J′′.

396 13 Tensor Operations

13.3.4 Hybrid Format

The hybrid format u= ρhybr(·) from §8.2.4 implies that u=
∑

i∈J a
u
i

⊗d
j=1b

(j)
ij
∈

Tr, where au ∈ Rr(KJ) is represented in r-term format. The cost of a scalar
product in K

Jj is denoted by N̂j (usually, this is 2#Jj).
Again, we distinguish the cases from above.

Case I (two hybrid tensors with same bases). Here, u,v ∈ Tr are given with
identical subspace U :=

⊗d
j=1 Uj and orthonormal bases Bj = [b

(j)
1 , . . . , b

(j)
rj] of

Uj . Again, the identity 〈u,v〉 = 〈au, av〉J holds. Since au, av ∈ Rru(KJ) and
av ∈ Rrv(KJ), the latter scalar product can be performed as discussed in §13.3.2.
The cost is

rurv

⎛

⎝d+
d∑

j=1

N̂j

⎞

⎠ .

Case II (hybrid tensor and elementary tensor). Let u be of hybrid format,
while v is the elementary tensor (13.4). As in §13.3.3, the scalar products β(j)

ij
:=

〈b(j)ij , v
(j)〉j are to be computed. Since a =

∑r
ν=1

⊗d
j=1 a

(j)
ν ∈ Rr, we obtain

〈u,v〉 =
∑

i∈J ai
∏d
j=1 β

(j)
ij

=
∑

ν

∏d
j=1

〈
a
(j)
ν , β(j)

〉
involving the K

J-scalar

product with β(j) = (β
(j)
i)i∈Jj . The total cost is

d∑

j=1

rjNj + r

d∑

j=1

N̂j.

Case III (hybrid tensors with different bases). For hybrid tensors u′,u′′ with

coefficient tensors a′ =
∑r′

ν=1

⊗d
j=1 a

′(j)
ν and a′′ =

∑r′′

ν=1

⊗d
j=1 a

′′(j)
ν , the right-

hand side in (13.5) can be written as

〈u′,u′′〉 =
∑

ν,μ

d∏

j=1

[
∑

ij∈J′j

∑

kj∈J′′j

a′(j)ν [ij] a
′′(j)
μ [kj]

〈
b
′(j)
ij

, b
′′(j)
kj

〉

j

]

(13.7)

and requires

NTr〈·,·〉 =
d∑

j=1

r′jr
′′
j (Nj + 3r′r′′)

operations, which are bounded by

2dnr2 + 2r4, if r′j , r
′′
j , r
′, r′′ ≤ r and Nj ≤ 2n.

Alternatively, we introduce common bases. According to Remark 8.43, the cost
including the transformation of the coefficient tensors a′, a′′ is 8dnr2 + 2dr3. The
addition of a′ ∈ Rr′ and a′′ ∈ Rr′′ requires no arithmetical work, but increases the
representation rank: r = r′ + r′′.

Remark 13.5. For Case III with n ≥ (r2/d− r)/3, the first variant based on (13.7)
is more advantageous. The cost is bounded by 2r2

(
dn+ r2

)
.

13.3 Scalar Product 397

13.3.5 Hierarchical Representation

We start with the scalar product 〈u,v〉 of u ∈ Hr and an elementary tensor v =
⊗d

j=1 v
(j) from (13.4). Define v(α) :=

⊗
j∈α v

(j) and use the recursion

〈
b
(α)
� ,v(α)

〉
α
=

rα1∑

i=1

rα2∑

j=1

c
(α,�)
ij

〈
b
(α1)
i ,v(α1)

〉
α1

〈
b
(α2)
j ,v(α2)

〉
α2

(13.8)

(cf. (11.24)), where α1, α2 are the sons of α.

Remark 13.6. The computation of all
〈
b
(α)
� ,v(α)

〉
α

for α ∈ TD, 1 ≤ � ≤ rα, can
be performed by

∑

α∈TD\L(TD)

{rα (2rα1 + 1) rα2 − 1}+
d∑

j=1

rjNj+2rD−1 ({α1, α2} = S(α))

arithmetical operations. Under the assumptions rα ≤ r and Nj ≤ 2n − 1, the
asymptotic cost is

2 (d− 1) r3 + 2rn.

Proof. Set β(α)
� := 〈b(α)

� ,v(α)〉α and β(α) := (β
(α)
�)rα�=1 ∈ K

rα . Given the vectors

β(α1) and β(α2), (13.8) implies that β(α)
� =

∑rα1

i=1

∑rα2

j=1 c
(α,�)
ij β

(α1)
i β

(α2)
j , i.e.,

β
(α)
� = (β(α1))TC(α,�)β(α2) for 1 ≤ � ≤ rα. Therefore, the computation of β(α)

requires rα (2rα1 + 1) rα2 − 1 operation. The recursion (13.8) terminates with the
scalar products 〈b(j)i , v(j)〉j , which cost

∑d
j=1 rjNj operations. Finally, the scalar

product 〈u,v〉 =
∑rD

�=1 c
(D)
� β

(D)
� takes 2rD − 1 operations. ��

Next, we consider the scalar product 〈u,v〉 of general tensors u,v ∈ Hr.

Case I (two tensors fromHr with identical bases). Two tensors

u = ρorthHTR

(
TD, (Cα)α∈TD\L(TD), c

(D)
u , (Bj)j∈D

)
, v = ρorthHTR

(
. . . , c(D)

v , . . .
)

given in the same formatHr with orthonormal bases (cf. §11.3.2) satisfy

〈u,v〉 =
〈
c(D)
u , c(D)

v

〉
, (13.9)

where
〈
c
(D)
u , c

(D)
v

〉
is the Euclidean scalar product in K

rD . The cost is negligible:
N〈·,·〉 = 2rD − 1. Note that Case I holds in particular for u = v.

Case II (two tensors fromHr with different bases). Next, we consider two tensors

u′ = ρHTR

(
TD, (C

′(α))α∈TD\L(TD), c
′(D), (B′(α))α∈L(TD)

)
and (13.10a)

u′′ = ρHTR

(
TD, (C

′′(α))α∈TD\L(TD), c
′′(D), (B′′(α))α∈L(TD)

)
, (13.10b)

398 13 Tensor Operations

which are given with respect to different bases. Note that the bases need not be ortho-
normal. The next lemma uses the subtree Tα from Definition 11.6. 〈·, ·〉β denotes
the scalar product of the tensor space Vβ :=

⊗
j∈β Vj .

Lemma 13.7. Let {b′(β)i : 1 ≤ i ≤ r′β} and {b′′(β)j : 1 ≤ j ≤ r′′β} be the bases
involved in (13.10a,b) for β ∈ Tα. The computation of all scalar products

〈
b
′(β)
i ,b

′′(β)
j

〉
β

for 1 ≤ i ≤ r′β , 1 ≤ j ≤ r′′β , β ∈ Tα
costs

∑

j∈α
r′{j}r

′′
{j}Nj + 2

∑

β∈Tα\L(Tα)

r′β
(
r′β1

r′′β1
r′′β2

+ r′β1
r′β2

r′′β1
+ r′′βr

′
β2
r′′β2

)

(β1, β2 sons of β) arithmetical operations, if these quantities are computed as
detailed in the proof.

Proof. By property (11.24), we have the recursive equation

〈
b
′(β)
� ,b

′′(β)
k

〉
β
=

r′β1∑

i=1

r′β2∑

j=1

r′′β1∑

m=1

r′′β2∑

n=1

c
′(β,�)
ij c

′′(β,k)
mn

〈
b
′(β1)
i ,b′′(β1)

m

〉
β1

〈
b
′(β2)
j ,b′′(β2)

n

〉
β2
.

(13.11)

Let S(β)∈ K
r′β×r

′′
β be the matrix with the entries S(β)

�k =〈b′(β)� ,b
′′(β)
k 〉β . Eq. (13.11)

involves the matrices S(β1)∈ K
r′β1
×r′′β1 and S(β2)∈ K

r′β2
×r′′β2 defined by the entries

S
(β1)
im = 〈b′(β1)

i ,b′′(β1)
m 〉β1 and S

(β2)
jn = 〈b′(β2)

j ,b′′(β2)
n 〉β2 .

Note that the fourfold sum in (13.11) can be expressed as the Frobenius scalar
product

〈
Sβ1TC′(β,�)Sβ2 , C′′(β,k)

〉
F
. The computation of

M� := Sβ1TC′(β,�)Sβ2 for all 1 ≤ � ≤ r′β

needs 2r′β(r
′
β1
r′′β1

r′′β2
+ r′β1

r′β2
r′′β1

) operations. The products
〈
M�, C

′′(α,k)〉
F

for
all 1 ≤ � ≤ r′β and 1 ≤ k ≤ r′′β cost 2r′βr

′′
βr
′
β2
r′′β2

.

The recursion (13.11) terminates for the scalar products 〈·, ·〉β with respect to the
leaves β = {j} and j ∈ α. In this case, S(β) requires the computation of r′{j}r

′′
{j}

scalar products in Vj , each with the cost Nj . ��

The scalar product of u′ =
∑rD
i=1 c

′(D)
i b

′(D)
i and u′′ =

∑rD
j=1 c

′′(D)
j b

′′(D)
j equals

〈u′,u′′〉 =
r′D∑

�=1

r′′D∑

k=1

c
′(D)
� c

′′(D)
k

〈
b
′(D)
� ,b

′′(D)
k

〉
.

The computation of S(D)
�k := 〈b′(D)

� ,b
′′(D)
k 〉 is discussed in Lemma 13.7 for

α := D. The computation of 〈u′,u′′〉 = (c′(D))TS(D)c′′(D) costs 2r′D (r′′D + 1)
operations. Altogether, we get the following result.

13.3 Scalar Product 399

Remark 13.8. (a) The recursive computation of the scalar product 〈u′,u′′〉 (see
proof of Lemma 13.7) costs

N〈·,·〉 =
d∑

j=1

r′{j}r
′′
{j}Nj (13.12a)

+ 2
∑

α∈TD\L(TD)

r′α
(
r′α1

r′′α1
r′′α2

+ r′α1
r′α2

r′′α1
+ r′′αr

′
α2
r′′α2

)
+ 2r′D (r′′D + 1)

operations. Under the assumptions r′α, r
′′
α ≤ r and Nj ≤ 2n, the cost is bounded by

N〈·,·〉 ≤ 2dr2n+ 6 (d− 1) r4 + 2r2. (13.12b)

(b) Equation (13.9) does not hold for a non-orthonormal basis. In that case, the
scalar product 〈u,v〉 has to be computed as in Case II. By Hermitean symmetry of
S
(α)
�k = 〈b(α)

� ,b
(α)
k 〉α, the computational cost is only half of (13.12a).

An alternative approach is to join the bases of u′ and u′′ as described in §11.5.
By Remark 11.67, this procedure requires

N〈·,·〉 ≤ 8dr2
(
r2 + n

)

operations. Obviously, the latter cost is larger than (13.12b). However, for the special
case considered in §14.1.3, this approach is advantageous.

Next we consider the partial scalar product 〈u′,u′′〉αc . Here we concentrate to
the case of α ∈ TD. We recall that the partial scalar product 〈v,v〉αc is needed for
the left-sided singular value decomposition ofMα(v) (see Lemma 5.13). The result
of 〈u′,u′′〉αc is a tensor in the tensor space Vα⊗Vα for which a hierarchical format
is still to be defined. Let α′ be a copy of α disjoint to α and set A(α) := α∪̇α′. The
dimension partition tree TA(α) is defined as follows: A(α) is the root with the sons
α and α′. The subtree at vertex α is Tα (cf. Definition 11.6) and the subtree at vertex
α′ is the isomorphic copy Tα′ of Tα. The bases b′(β)� (β ∈ Tα) [b′′(β)� (β ∈ Tα′)]
of u′ [u′′] define the subspaces Uγ , γ ∈ TA(α)\A(α), together with their bases,
while the basis of the subspace UA(α) is still to be determined.

The computation of 〈u′,u′′〉αc follows the description in §4.5.4. First, we form
u′ ⊗ u′′ ∈ V ⊗ V, which is represented in the hierarchical format with the tree
TA(D). Let σ1 and σ2 be the sons of D. Since either α ⊂ σ1 or α ⊂ σ2, it follows
that either αc ⊃ σ2 or αc ⊃ σ1. Without loss of generality, we assume αc ⊃ σ2 and
apply the contraction Cσ2 from Definition 4.130:

u′ ⊗ u′′ �→ Cσ2(u
′ ⊗ u′′) ∈ Vσ1 ⊗Vσ1 .

Let

u′ =
rD∑

�=1

c
′(D)
� b

′(D)
� =

∑

�,i,j

c
′(D)
� c

′(D,�)
ij b

′(σ1)
i ⊗ b

′(σ2)
j and

400 13 Tensor Operations

u′′ =
∑

k,m,n

c
′′(D)
k c′′(D,k)mn b′′(σ1)

m ⊗ b′′(σ2)
n .

Then

Cσ2(u
′⊗u′′) =

∑

�,i,j

∑

k,m,n

c
′(D)
� c

′(D,�)
ij c

′′(D)
k c

′′(D,k)
mn

=S
(σ2)
jn

︷ ︸︸ ︷〈
b
′(σ2)
j ,b′′(σ2)

n

〉

σ2

b
′(σ1)
i ⊗b′′(σ1)

m

holds. For each pair (i,m), the coefficient of b′(σ1)
i ⊗ b

′′(σ1)
m is the sum

∑

�,j,k,n

c
′(D)
� c

′(D,�)
ij c

′′(D)
k c

′′(D,k)
mn S

(σ2)
jn .

Set

c
′(D)
ij :=

∑

�

c
′(D)
� c

′(D,�)
ij and c′′(D)

mn :=
∑

k

c
′′(D)
k c′′(D,k)mn .

Then, the fourfold sum equals C′(D)S(σ2)(C′′(D))H =: C(σ1) and yields the repre-
sentation

Cσ2(u
′ ⊗ u′′) =

∑

i,m

c
(σ1)
im b

′(σ1)
i ⊗ b

′′(σ1)
m ∈ Vσ1 ⊗Vσ1 . (13.13)

The computational cost (without the determination of S(σ2)
jn) is

2r′Dr
′
σ1
r′σ2

+ 2r′′Dr
′′
σ1
r′′σ2

+ 2r′σ1
r′σ2

r′′σ2
+ 2r′σ1

r′′σ1
r′′σ2

.

Now we proceed recursively: if σ1 = α, we are ready. Otherwise, let σ11 and
σ12 be the sons of σ1, apply Cσ12 [Cσ11] if αc ⊃ σ12 [if αc ⊃ σ11] and repeat
recursively.

The overall cost is given under the simplification r′β , r
′′
β ≤ r. Then the com-

putation of the coefficients in (13.13) requires 8r3level(α). In addition, we need

to compute the scalar products 〈b′(β)j ,b
′′(β)
n 〉β for all β ∈ {γ∈TD : γ ∩ α = ∅} .

The latter set contains d − #α − level(α) interior vertices and d − #α leaf
vertices (see (11.6) for the definition of the level). Hence, Lemma 13.7 yields a cost
of 2 (d−#α) r2n + 6 (d−#α− level(α)) r4. The result is summarised in the
following remark.

Remark 13.9. Assume α ∈ TD. The partial scalar product 〈u′,u′′〉αc can be per-
formed with the arithmetical cost

2 (d−#α) r2n+ 6 (d−#α− level(α)) r4 + 8r3level(α).

The resulting tensor belongs to Vα ⊗ Vα and is given in the hierarchical format
with the dimension partition tree TA(α) explained above.

13.4 Change of Bases 401

13.3.6 Orthonormalisation

One purpose of scalar product computations is the orthonormalisation of a basis
(QR or Gram-Schmidt orthonormalisation). If the basis belongs to one of the
directly represented vector spaces Vj , the standard procedures from §2.7 apply.
This is different, when the basis vectors are tensors represented in one of the tensor
formats. This happens, e.g., if the vectors from Vj are tensorised as proposed in
§14.1.4. Assume that we start with s tensors

bj ∈W (1 ≤ j ≤ s)

given in some format with representation ranks r (i.e., r = maxj rj in the case of
bj ∈ Tr and r = maxα rα for bj ∈ Hr). Furthermore, assume that dim(W) is
sufficiently large. Here, one can choose between the following cases.

1. Perform the Gram-Schmidt orthonormalisation without truncation. Then an exact
orthonormalisation can be achieved. In general, the representation ranks of the
new basis elements bnew

j ∈W equal jr for 1 ≤ j ≤ s leading to unfavourably
large ranks.

2. The same procedure, but with truncation, produces basis elements bnew
j which

are almost orthonormal. This may be sufficient if an orthonormal basis is intro-
duced for the purpose of stability.

3. Let B := [b1 · · ·bs] ∈ Ws be the matrix corresponding to the basis and com-
pute the Cholesky decomposition of the Gram matrix: BHB = LLH ∈ K

s×s.
The (exactly) orthonormalised basis is Bnew = BL−H (cf. Lemma 8.12b). In
some applications is suffices to use the factorisation BL−H without performing
the product.

13.4 Change of Bases

In general, the vector spaces Vj [or Uj] are addressed by means of a basis or frame

(b
(j)
i)1≤i≤nj which gives rise to a matrix Bj := [b

(j)
1 b

(j)
2 . . . b

(j)
nj] ∈ V

nj

j . Consider

a new basis (b(j)i,new)1≤i≤nj,new and Bnew
j together with the transformation

Bj = Bnew
j T (j), i.e., b

(j)
k =

nj,new∑

i=1

T
(j)
ik b

(j)
i,new . (13.14)

nj = nj,new holds for bases. If Bj is a frame, also nj,new < nj may occur.
We write rj [rj,new] instead of nj [nj,new], if the bases span only a subspace Uj .
In the case of the tensor subspace format and the hierarchical format, another

change of bases may be of interest. If the subspaces are not described by ortho-
normal bases, an orthonormalisation can be performed. This includes the deter-
mination of some orthonormal basis and the corresponding transformation of the
coefficients.

402 13 Tensor Operations

13.4.1 Full Representation

The full representation
∑

i∈I ai b
(1)
i1
⊗ . . .⊗ b(d)id (cf. (7.3)) is identical to the tensor

subspace representation involving maximal subspaces Uj = Vj with dimension
nj = #Ij . The coefficient tensor a ∈ K

I is transformed into anew := Ta ∈ K
I

with the Kronecker matrixT =
⊗d

j=1 T
(j) (cf. (8.7b)). The elementwise operations

are anewi1i2···id =
∑n1

k1=1 · · ·
∑nd

kd=1 T
(1)
i1k1
· · ·T (d)

idkd
ak1k2···kd with 1 ≤ ij , kj ≤ nj .

The arithmetical cost is

N full
basis-change = 2

(d∑

j=1

nj

) d∏

j=1

nj ≤ 2dnd+1 for n := max
j

nj .

13.4.2 Hybrid r-Term Representation

Let v=
∑r
ν=1

⊗d
j=1v

(j)
ν ∈Rr. If v(j)ν ∈KIj represents the vector

∑nj

i=1v
(j)
ν,i b

(j)
i ∈Vj ,

the transformation with respect to the new bases Bnew
j yields

nj∑

k=1

v
(j)
ν,kb

(j)
k =

nj∑

k=1

v
(j)
ν,k

nj,new∑

i=1

T
(j)
ik b

(j)
i,new =

nj,new∑

i=1

(nj∑

k=1

T
(j)
ik v

(j)
ν,k

)

︸ ︷︷ ︸

= v̂
(j)
ν,i

b
(j)
i,new

(cf. (13.14). Hence, the transformed tensor is

v̂ =

r∑

ν=1

d⊗

j=1

v̂(j)ν ∈ Rr with v̂(j)ν = T (j)v(j)ν .

Multiplication by the nj,new × nj matrices T (j) leads to the total cost

NRr

basis-change = r

d∑

j=1

nj,new (2nj − 1) ≤ 2drn2 for n := max
j

nj .

13.4.3 Tensor Subspace Representation

Here, it is assumed that only the bases representing the subspaces Uj ⊂ Vj are
changed. We assume that the basis vectors b(j)i,new, 1 ≤ i ≤ rj,new, are given together
with the rj × rj,new matrices T (j). The cost for transforming the coefficient tensor
is as in §13.4.1, but with nj replaced by rj :

NTrbasis-change = 2

d∑

j=1

(j∏

k=1

rk,new

d∏

k=j

rk

)

≤ 2drd+1 for r := max
j
{rj , rj,new}.

(13.15a)

13.4 Change of Bases 403

Another type of basis transform is the orthonormalisation in the case that the
format Tr is described by general bases (or frames) Bold

j := [b
(j)
1,old, . . . , b

(j)
rj,old,old

].

By procedureRQR(nj , rj,old, rj , B
old
j , Q,R) from (2.29) one obtains a new ortho-

normal basis Bnew
j = Q = [b

(j)
1,new, . . . , b

(j)
rj,new] together with the transforma-

tion matrix T (j) = R, i.e., Bnew
j T (j) = Bold

j . Note that in the case of a frame
Bold
j , the dimension rj may be smaller than rj,old. The cost for calling RQR is

NQR(nj , rj,old) = 2njr
2
j,old. The cost of an application of T (j) to the coefficient

tensor is NTrbasis-change from above. Altogether, the cost of orthonormalisation is

NTrorthonormalisation ≤ 2drd+1 + 2dnr2 (13.15b)

with r := maxj rj,old and n := maxj nj .

13.4.4 Hierarchical Representation

The transformation considered here, is a special case of §11.3.1.4. The basis trans-
formations (13.14) influence the coefficient matrices C(α,�) for vertices α ∈ TD
with at least one son {j} ∈ L(TD). Let α1 denote the first son and α2 the second
son of α. Then

C(α,�)
new :=

⎧
⎪⎨

⎪⎩

T (j1) C
(α,�)
old (T (j2))T if α1 = {j1} and α2 = {j2}

T (j1) C
(α,�)
old if α1 = {j1} and α2 /∈ L(TD)

C
(α,�)
old (T (j2))T if α1 /∈ L(TD) and α2 = {j2}

⎫
⎪⎬

⎪⎭

for 1 ≤ � ≤ rα. Otherwise, C(α,�) is unchanged. The computational work consists
of d matrix multiplications:

NHr

basis-change = 2

d∑

j=1

rjrj,newrbrother(j) ≤ 2dr3. (13.16a)

The brother of {j} may be defined by {brother(j)} := S(father(j))\{j}.
Next, we assume that the bases (frames) Bα := [b

(α)
1 , . . . ,b

(α)
rα] (α ∈ TD)

of Hr are to be orthonormalised. Generating orthonormal bases by RQR costs
NQR(nj , rj) = 2njr

2
j for 1 ≤ j ≤ d and NQR(rα, rα) = 2r3α for α ∈ TD\L(TD).

Each transformation T (α) (α �= D) leads to rγ matrix multiplications (cf. (11.32))
with the cost 2rγrαrβrnewα , where γ := father(α) and β := brother(α). T (D)

leads to 2rDr
new
D operations (cf. (11.34)). Hence, orthonormalisation is realised by

NHr

orthonormalisation ({α1, α2} = S(α))

= 2

d∑

j=1

njr
2
j + 2

∑

α∈TD\L(TD)

(
r3α + rαrα1rα2 (rα1 + rα2)

)
+ 2r2D (13.16b)

≤ 2dnr2 + 4 (d− 1) r4 + 2 (d− 1) r3 + 2r2.

operations, where r := maxα rα and n := maxj nj .

404 13 Tensor Operations

13.5 General Binary Operation

Here we consider tensor spaces V =
⊗d

j=1Vj , W =
⊗d

j=1Wj , X =
⊗d

j=1Xj ,

and any bilinear operation

� : V ×W→ X,

which satisfies7

⎛

⎝
d⊗

j=1

v(j)

⎞

⎠�

⎛

⎝
d⊗

j=1

w(j)

⎞

⎠ =

d⊗

j=1

(
v(j) � w(j)

)
, v(j) � w(j) ∈ Xj , (13.17)

for elementary tensors. We assume that the evaluation of v(j) � w(j) for vectors
v(j) ∈ Vj and w(j) ∈Wj costs N�

j arithmetical operations.

13.5.1 r-Term Representation

Tensors v =
∑rv

ν=1

⊗d
j=1 v

(j)
ν ∈ Rrv (V) and w =

∑rw
μ=1

⊗d
j=1 w

(j)
μ ∈ Rrw(W)

lead to x := v �w ∈ Rrvrw(X) with

x =

rv∑

ν=1

rw∑

μ=1

d⊗

j=1

(
v(j)ν � w(j)

μ

)
∈ Rrx , rx = rv · rw.

Under the assumption about N�
j , the total work is

NRr

� = rvrw

d∑

j=1

N�
j . (13.18)

13.5.2 Tensor Subspace Representation

For v=
∑

i∈J′ a
′
i

⊗d
j=1 b

′(j)
ij
∈ Tr′(V) and w=

∑
k∈J′′ a

′′
k

⊗d
j=1 b

′′(j)
kj
∈ Tr′′(W)

we conclude from (13.17) that

w := u� v =
∑

i∈J′

∑

k∈J′′
a′i a
′′
k

d⊗

j=1

(
b
′(j)
ij

� b
′′(j)
kj

)
.

We may define the frame b(j) := (b
′(j)
i � b

′′(j)
k : i ∈ J ′j , k ∈ J ′j) and the subspace

Uj = span(b(j)) ⊂ X. Then a possible representation is

7 The map �j = � : Vj ×Wj → Xj on the right-hand side is denoted by the same symbol �.

13.5 General Binary Operation 405

x =
∑

m∈J
am

d⊗

j=1

b(j)mj
with J :=

d×
j=1

Jj , Jj := J ′j × J ′′j , (13.19)

b(j)mj
:= b

′(j)
m′j

� b
′′(j)
m′′j
∈ b(j) for mj :=

(
m′j ,m

′′
j

)
∈ Jj ,

am := a′m′a
′′
m′′ with m = ((m′1,m

′′
1) , . . . , (m

′
d,m

′′
d))

and m′ = (m′1, . . . ,m
′
d) ,m

′′ = (m′′1 , . . . ,m
′′
d).

The cost for computing all frame vectors b(j)mj ∈ b(j) is #JjN�
j . The coefficient

tensor am requires #J multiplications. The total work is

NTr� =

d∑

j=1

#J ′j#J
′′
j N

�
j +

d∏

j=1

(
#J ′j#J

′′
j

)
.

In general, b(j) is only a frame. Therefore, a further orthonormalisation of b(j)

may be desired. By (13.15b), the additional cost is

2d(r2)d+1 + 2dn(r2)2 = 2dnr4 + 2dr2d+2 (cf. (13.15b)).

13.5.3 Hierarchical Representation

Let v ∈ Hr′(V) and w ∈ Hr′′(W) be two tensors described in two different
hierarchical formats, but with the same dimension partition tree TD. Since v =
∑
� c
′(D)
� b

′(D)
� and w =

∑
k c
′′(D)
k b

′′(D)
k , one starts from

v �w =

r′D∑

�=1

r′′D∑

k=1

c
′(D)
� c

′′(D)
k b

′(D)
� � b

′′(D)
k (13.20a)

and uses the recursion

b
′(α)
� �b

′′(α)
k =

r′α1∑

i=1

r′α2∑

j=1

r′′α1∑

i=1

r′′α2∑

j=1

c
′(α,�)
ij c′′(α,k)mn

(
b
′(α1)
i � b′′(α1)

m

)
⊗
(
b
′(α2)
j � b′′(α2)

n

)

(13.20b)
(cf. (11.24)), which terminates at the leaves of TD.

In the first approach, we accept the frame b(α) consisting of the r′αr
′′
α vectors

b
′(α)
� �b

′′(α)
k (1≤�≤r′α, 1≤k≤r′′α) describing the subspace Uα. The computation

of b(j), 1 ≤ j ≤ d, costs
∑d
j=1 r

′
jr
′′
jN

�
j operations. Denote the elements of b(α)

by b
(α)
m with m ∈ Jα := {1, . . . , r′α}×{1, . . . , r′′α}, i.e., b(α)

m = b
′(α)
� � b

′′(α)
k if

m = (�, k) . Then (13.20b) yields the relation

b(α)
m =

∑

p∈Jα1

∑

q∈Jα2

c(α,m)
pq b(α1)

p ⊗ b(α2)
q with c(α,m)

pq := c′(α,�)p1q1 c′′(α,k)p2q2 (13.20c)

406 13 Tensor Operations

for p = (p1, p2) ∈ Jα1 , q = (q1, q2) ∈ Jα2 .The new coefficient matrix C(α,m) is
the Kronecker product

C(α,m) = C′(α,�) ⊗ C′′(α,k) for m = (�, k)

and can be obtained by #Jα1#Jα2 = r′α1
r′′α1

r′α2
r′′α2

multiplications.
Equation (13.20a) can be rewritten as

v �w =
∑

m∈JD

c(D)
m b(D)

m with c(D)
m := c′(D)

m1
c′′(D)
m2

for m = (m1,m2)

involving #JD = r′Dr
′′
D multiplications. The result v�w is represented inHr(X)

with representation ranks rα := r′αr
′′
α. Altogether, the computational cost amounts to

NHr

� =

d∑

j=1

r′jr
′′
jN

�
j +

∑

α∈TD\L(TD)

r′α1
r′′α1

r′α2
r′′α2

+ r′Dr
′′
D ≤ dr2n+(d− 1) r4 +1.

By (13.16b) with r replaced by r2, an additional orthonormalisation of the frame
requires 2dnr4 + 4dr8 + (lower order terms) operations.

13.6 Hadamard Product of Tensors

The Hadamard product defined in §4.6.4 is of the form (13.17). For Vj = K
nj the

number of arithmetical operations is given by N�j = nj replacing N�
j . Therefore,

the considerations in §13.5 yield the following costs for the different formats:

N full
� =

d∏

j=1

nj , (13.21a)

NRr
� = rv · rw

d∑

j=1

nj ≤ dr2n with r := max{ru, rv}, (13.21b)

NTr� =

d∑

j=1

nj#J
′
j#J

′′
j +

d∏

j=1

(
#J ′j#J

′′
j

)
≤ dnr2 + r2d, (13.21c)

NHr
� =

d∑

j=1

r′jr
′′
j nj +

∑

α∈TD\L(TD)

r′α1
r′′α1

r′α2
r′′α2

+ r′αr
′′
α ≤ dr2n+ (d− 1) r4 + r2,

(13.21d)

where n := maxj{nj} and in (13.21c) r := maxj{#J ′j ,#J ′′j }. Concerning an
additional orthonormalisation of the frames obtained for the formats Tr and Hr

compare the remarks in §13.5.2 and §13.5.3.

13.7 Convolution of Tensors 407

Above, we have considered the Hadamard product as an example of a binary
operation� : V×V→ V. Consider h := g� f with fixed g ∈ V. Then f �→ h is
a linear mapping and G ∈ L(V,V) defined by

G(f) := g � f (13.22)

is a linear multiplication operator. On the level of matrices, G is the diagonal matrix
formed from the vector g:

G := diag{gi : i ∈ I}.

Remark 13.10. If g is given in one of the formatsRr, Tr, Hr, matrix G has a quite
similar representation in Rr, Tr, Hr with vectors replaced by diagonal matrices:

g =
∑

i

d⊗

j=1

g
(j)
i ⇒ G =

∑

i

d⊗

j=1

G
(j)
i with G(j)

i := diag{g(j)i [ν] : ν ∈ Ij},

g =
∑

i

a[i]

d⊗

j=1

b
(j)
ij
⇒ G =

∑

i

a[i]

d⊗

j=1

B
(j)
ij

with B(j)
ij

:=diag{b(j)ij [ν] : ν ∈ Ij},

and analogously for Hr. Even the storage requirements are identical, if we exploit
that diagonal matrices are characterised by the diagonal entries.

13.7 Convolution of Tensors

We assume that the convolution operations � : Vj × Vj → Vj are defined and
satisfy (13.17). For Vj = K

nj we expect N�
j = O(nj log nj) replacing N�

j . A
realisation of the convolution of functions with similar operation count (nj: data
size of the function representation) is discussed in [85]. The algorithms from §13.5
with � instead of � require the following costs:

N full
� ≤ O(dnd logn), (13.23a)

NRr
� ≤ O(dr2n logn), (13.23b)

NTr� ≤ O(dr2n logn) + r2d, (13.23c)

NHr
� ≤ O(dr2n logn) + (d− 1) r4. (13.23d)

The same comment as above applies to an orthonormalisation.

A cheaper performance of the convolution will be proposed in §14.3, where in
suitable cases N�

j = O(log nj) may hold.

408 13 Tensor Operations

13.8 Matrix-Matrix Multiplication

Let V := L(R,S), W := L(S,T), and X := L(R,T) be matrix spaces with
R=

⊗d
j=1Rj , S=

⊗d
j=1Sj , T=

⊗d
j=1Tj . The matrix-matrix multiplication is a

binary operation satisfying (13.17). In the case of Rj=K
nR
j , Sj=K

nS
j , Tj=K

nT
j ,

the standard matrix-matrix multiplication of A′j ∈ L(Rj , Sj) and A′′j ∈ L(Sj , Tj)
requiresN�

j =2nRj n
S
j n

T
j arithmetical operations. This leads to the following costs:

N full
MMM = 2

d∏

j=1

nRj n
S
j n

T
j ,

NRr

MMM = 2rR · rS
d∑

j=1

nRj n
S
j n

T
j ,

NTrMMM = 2

d∑

j=1

#J ′j#J
′′
j n

R
j n

S
j n

T
j +

d∏

j=1

(
#J ′j#J

′′
j

)
≤ 2dr2n3 + r2d,

NHr

MMM = 2

d∑

j=1

r′jr
′′
j n

R
j n

S
j n

T
j +

∑

α∈TD\L(TD)

r′α1
r′′α1

r′α2
r′′α2

+ r′αr
′′
α

≤ dr2n3 + (d− 1) r4 + r2.

Note, however, that the matrix-matrix multiplication of hierarchical matrices of
size nj × nj requires only NMMM

j = O(n log∗ n) operations (cf. [86, §7.8.3]).
Often, one is interested in symmetric (K = R) or Hermitean matrices (K = C):

M = MH. (13.24)

Sufficient conditions are given in the following lemma.

Lemma 13.11. (a) FormatRr: M=
∑

i

d⊗

j=1

M
(j)
i satisfies (13.24), ifM (j)

i =(M
(j)
i)H.

(b) Format Tr: M =
∑

i a[i]
⊗d

j=1 b
(j)
ij

satisfies (13.24), if b(j)ij = (b
(j)
ij

)H.

(c) Format Hr: M ∈ Hr satisfies (13.24), if the bases Bj = (b
(j)
i)1≤i≤rj ⊂ Vj

in (11.28) consist of Hermitean matrices: b
(j)
i = (b

(j)
i)H.

Proof. See Exercise 4.132. ��

13.9 Matrix-Vector Multiplication

We distinguish the following cases:
(a) the matrix A ∈ L(V,W) and the vector v ∈ V are given in the same format,
(b) the vector v ∈ V is given in one of the formats, while A is of special form:

13.9 Matrix-Vector Multiplication 409

A=A(1)⊗I⊗. . .⊗I + I⊗A(2)⊗I⊗. . .⊗I +. . .+ I⊗. . .⊗I⊗A(d), (13.25a)

A =

d⊗

j=1

A(j), (13.25b)

A =

p∑

i=1

d⊗

j=1

A
(j)
i (13.25c)

with A(j), A
(j)
i ∈ L(Vj ,Wj) (where Vj =Wj in the case of (13.25a)). We assume

nj = dim(Vj) and mj = dim(Wj). A matrix like in (13.25a) occurs for separable
differential operators and their discretisations (cf. Definition 9.36). (13.25b)
describes a general elementary tensor, and (13.25c) is the general p-term format.

13.9.1 Identical Formats

The matrix-vector multiplication is again of the form (13.17). The standard cost of
A(j)v(j) is 2njmj (for hierarchical matrices the computational cost can be reduced
to O((nj +mj) log(nj +mj)), cf. [86, Lemma 7.8.1]). §13.5 shows

N full
MVM = 2

∏d

j=1
njmj ,

NRr

MVM = 2rv · rw
∑d

j=1
njmj ,

NTrMVM = 2
∑d

j=1
#J ′j#J

′′
j njmj +

∏d

j=1

(
#J ′j#J

′′
j

)
≤ 2dr2nm+ r2d,

NHr

MVM = 2

d∑

j=1

r′jr
′′
j njmj +

∑

α∈TD\L(TD)

r′α1
r′′α1

r′α2
r′′α2

+ r′Dr
′′
D

≤ 2dr2nm+ (d− 1) r4 + 1,

where n := maxj nj and m := maxjmj.

13.9.2 Separable Form (13.25a)

Let v∈V be given in full format. w=(A(1) ⊗ I ⊗ I ⊗ . . . ⊗ I)v has the explicit

description w[i1 . . . id] =
∑n1

k1=1A
(1)
i1k1

v[k1i2 . . . id]. Its computation for all
i1, . . . , id takes 2n2

1n2 · · ·nd operations. This proves

N full
(13.25a) = 2

(
d∑

j=1

nj

)

≤ 2dnd+1. (13.26a)

410 13 Tensor Operations

Next we consider the tensor v=
∑r

i=1

⊗d
j=1 v

(j)
i ∈Rr in r-term format. Multi-

plication by A from (13.25a) leads to the following cost and representation rank:

NRr

(13.25a) = r

d∑

j=1

(2nj − 1)nj ≤ 2drn2, Av ∈ Rd·r. (13.26b)

In the tensor subspace case, v ∈
⊗d

j=1 Uj is mapped into w = Av ∈
⊗d

j=1 Yj ,

where Uj ⊂ Vj and Yj ⊂ Wj . Its representation is v =
∑

k∈J ak
⊗d

j=1 b
(j)
kj
. For

A from (13.25a) the resulting subspaces are Yj = span{Uj, A(j)Uj}, which can be

generated by the frame (b
(j)
k , A(j)b

(j)
k : 1 ≤ k ≤ rj) of size rwj := 2rj . Denote

these vectors by (b
(j)
k,w)1≤k≤rwj with

b
(j)
k,w := b

(j)
k and b(j)k+rj ,w := A(j)b

(j)
k for 1 ≤ k ≤ rj .

Then w =
∑

k∈Jw
bk

⊗d
j=1 b

(j)
kj,w

holds with

bk1···kj−1,kj+rj,kj+1···kd = ak1···kj−1,kj ,kj+1···kd for 1 ≤ k� ≤ r�, 1 ≤ j, � ≤ d,
bk = 0 otherwise.

The only arithmetical computations occur for b(j)k+rj ,w :=A(j)b
(j)
k (cost: (2nj−1)nj

operations), while bk needs only copying of data. However, note that the size of
the coefficient tensor b is increased by 2d: the new index set Jw has the cardinality
#Jw =

∏d
j=1 r

w
j = 2d

∏d
j=1 rj = 2d#J. We summarise:

NTr(13.25a) =
∑d

j=1
(2nj − 1)nj ≤ 2drn2, rwj = 2rj , #Jw = 2d#J. (13.26c)

For v given in the hierarchical format, we obtain

NHr

(13.25a) ≤ 2drn2, (13.26d)

as detailed for the case of (13.25b) above.

13.9.3 Elementary Kronecker Tensor (13.25b)

For v in full format, the multiplication of A from (13.25b) by v requires

N full
(13.25b) = 2

d∑

j=1

(j∏

k=1

mk

)(d∏

k=j

nk

)

≤ 2dnd+1, (13.27a)

operations, where n := maxj{nj,mj}.

13.9 Matrix-Vector Multiplication 411

The r-term format v =
∑r

i=1

⊗d
j=1 v

(j)
i ∈ Rr requires to compute A(j)v

(j)
i

leading to

NRr

(13.25b) = r
∑d

j=1
(2nj − 1)mj ≤ 2drn2, Av ∈ Rr. (13.27b)

For the tensor subspace format v =
∑

k∈J ak
⊗d

j=1 b
(j)
kj
∈ Tr we obtain w =

Av =
∑

k∈Jw
awk

⊗d
j=1 b

(j)
kj ,w

, where, as in §13.9.2,

NTr(13.25b) =

d∑

j=1

(2nj − 1)mj ≤ 2drn2, rwj = rj , #Jw = #J. (13.27c)

Next, we consider in more detail the case of v ∈ Hr. Let A(α) :=
⊗

j∈αA
(j)

be the partial products. Let v =
∑rD
i=1 c

(D)
i b

(D)
i ∈ Hr. The product w = Av =

A(D)v =
∑rD
i=1 c

(D)
i A(D)b

(D)
i satisfies the recursion

A(α)b(α)� =

rα1∑

i=1

rα2∑

j=1

c
(α,�)
ij

(
A(α1)b

(α1)
i

)
⊗
(
A(α2)b

(α2)
j

)
({α1, α2} = S(α)) .

At the leaves, A(j)b
(j)
i is to be computed for all 1 ≤ j ≤ d. Defining frames with

b
(α)
�,w := A(α)b

(α)
� for all α ∈ TD and 1 ≤ � ≤ rα, we obtain the representation

w ∈ Hr with identical coefficient matrices C(α,�) and c(D)
i . Note that the frame

vectors b(α)
�,w are to be computed for the leaves α ∈ L(TD) only, i.e., for α= {j},

1 ≤ j ≤ d. Therefore, the computational work is

NHr

(13.25b) =
∑d

j=1
(2nj − 1)mj ≤ 2drn2, (13.27d)

while the data size is unchanged.

13.9.4 Matrix in p-Term Format (13.25c)

The general case A =
∑p

i=1

⊗d
j=1 A

(j)
i from (13.25c) requires the p-fold work

compared with (13.25b) plus the cost for p− 1 additions of vectors:

N full
(13.25c) = pN full

(13.25b) ≤ 2pdnd+1, (13.28a)

N
Rp

(13.25c) ≤ 2prdn2, w ∈ Rp·r, (13.28b)

NTr(13.25c) ≤ 2prdn2 + (p− 1)NTr+ , (13.28c)

NHr

(13.25c) ≤ 2pdrn2 + (p− 1)NHr
+ . (13.28d)

In the first two cases the addition is either of lower order (full format) or free of cost.
The values of NTr+ and NHr

+ depend on the choice frame versus basis. In the latter
case, NTr+ ≤ 2dnr2 + 2drd+1 and NHr

+ ≤ 8dnr2 + 8dr4.

412 13 Tensor Operations

13.10 Functions of Tensors, Fixed Point Iterations

Given a function f : D ⊂ C→ C and a matrixAwith spectrum inD, a matrix f(A)
can be defined.8 Details about functions of matrices can be found in Higham [98]
or Hackbusch [86, §13]. Examples of such matrix functions are exp(A), exp(tA),
or A1/2, but also the inverse A−1 (corresponding to f(z) = 1/z).

In particular cases, there are fixed point iterations converging to f(A). In the case
of A−1, the Newton method yields the iteration

Xm+1 := 2Xm −XmAXm, (13.29)

which shows local, quadratic convergence. A possible starting value is X0 := I.
Equation (13.29) is an example of a fixed point iteration. If the desired tensor

satisfies X∗ = Φ(X∗), the sequence

Xm+1 := Φ(Xm)

converges to X∗, if Φ is contractive. Assuming that the evaluation of Φ involves
only the operations studied in this chapter, Φ(Xm) is available. However, since the
operations cause an increase of the representation ranks, the next iteration must be
preceded by a truncation:

X̃m+1 := T (Φ(Xm)) (T : truncation).

The resulting iteration is called ‘truncated iteration’ and studied in Hackbusch-
Khoromskij-Tyrtyshnikov [93] (see also Hackbusch [86, §14.3.2]). In essence, the
error decreases as in the original iteration until the iterates reach an X∗ neighbour-
hood of the size of the truncation error (X∗: exact solution).

For the particular iteration (13.29) converging to X∗ = A−1, a suitable modifi-
cation is proposed by Oseledets-Tyrtyshnikov [157] (see also [156]). The iteration
for Hk, Yk, Xk is defined by

Hk := T0(2I − Yk), Yk+1 := T1(YkHk), Xk+1 := T1(XkHk)

and uses a standard truncation T1 and a possibly rougher truncation T0. In the exact
case (no truncation), Hk → I, Yk → I, Xk → A−1 holds.

We conclude that approximations to A−1 can be determined iteratively, provided
we have a sufficient starting value.

For other functions like A1/2 and exp(tA) we refer to [86, §14.3.1] and [86,
§14.2.2.2], respectively.

A useful and seemingly simple (nonlinear) function is the maximum of a tensor
v ∈ V =

⊗d
j=1 R

Ij ∼= R
I (I =×d

j=1 Ij):

max(v) := max{vi : i ∈ I}.

8 In the case of a general function, A must be diagonalisable.

13.10 Functions of Tensors, Fixed Point Iterations 413

Since min(v) = −max(−v), this function allows us to determine the maximum
norm ‖v‖∞ of a tensor. The implementation is trivial for an elementary tensor:

max

⎛

⎝
d⊗

j=1

v(j)

⎞

⎠ =

d∏

j=1

max
(
v(j)

)
;

however, the implementation for general tensors is not straightforward. A possible
approach, already described in Espig [52] and also contained in [55, §4.1], is based
on the reformulation as an eigenvalue problem. The tensor v ∈ V corresponds to
a multiplication operator G(v) defined in (13.22). Let I∗ := {i ∈ I : max(v)=vi}
be the index subset where the maximum is attained. Then the eigenvalue problem

G(v)u = λu (0 �= u ∈ V) (13.30)

has the maximal eigenvalue λ = max(v). The eigenspace consists of all vectors u
with support in I∗. In particular, if I∗ = {i∗} is a singleton, the maximal eigenvalue
is a simple one and the eigenvector is a multiple of the unit vector e(i

∗), which has
tensor rank 1. Using the simple vector iteration or more advanced methods, we can
determine not only the maximum max(v), but also the corresponding index.

An interesting function in statistics is the characteristic functionχ(a,b) : R
I → R

I

of an interval (a, b) ⊂ R (including a =∞ or b =∞) with the pointwise definition

(
χ(a,b)(v)

)
i
:=

{
1 vi ∈ (a, b)
0 otherwise

}

for v ∈ R
I, i ∈ I .

This function can be derived from the sign function:

(sign(v))i :=

⎧
⎨

⎩

+1 vi > 0
0 vi = 0
−1 vi < 0

⎫
⎬

⎭
for v ∈ R

I, i ∈ I .

In contrast to (13.30), the tensor u := χ(a,b)(v) may have large tensor rank, even
for an elementary tensor v. However, in cases of rare events, u is sparse (cf. Remark
7.2). In Espig et al. [55, §4.2] an iteration for computing sign(v) is proposed, using
either

uk := T
(
1
2u

k−1 + (uk−1)−1)
)

(T : truncation) (13.31a)

or
uk := T

(
1
2u

k−1 � (3 · 1− uk−1 � uk−1)
)

(13.31b)

with the constant tensor 1 of value 1 (1i = 1). Iteration (13.31a) requires a sec-
ondary iteration for the pointwise inverse

(
(uk−1)−1

)
i
:= 1/uk−1i for i ∈ I .

For numerical examples see [55, §6].

414 13 Tensor Operations

13.11 Example: Operations for Quantum Chemistry
Applications

The stationary electronic Schrödinger equation

HΨ :=

⎡

⎣−1

2

d∑

i=1

Δi −
M∑

k=1

d∑

i=1

Zk
|xi−Rk|

+
∑

1≤i<j≤d

1

|xi−xj|

⎤

⎦Ψ = λΨ, (13.32)

is an eigenvalue problem for a normed ‘wave’ function9 Ψ(x1, ...,xd) ∈ D(H) ∩
Ad(L2(R

3d), which must be antisymmetric because of the Pauli principle. The
quantity of utmost interest is the ground state energy, i.e., the lowest eigenvalue
λ ofH together with the eigenfunction

Ψ = argmin{〈HΦ,Φ〉 : ‖Φ‖L2 = 1, Φ ∈ D(H) ∩Ad(L2(R
3)}. (13.33)

Formulation (13.33) is a minimisation problem for the Rayleigh quotient ofH.
Usually, a direct solution of the linear eigenvalue equation (13.32) is not feasible

except for sufficiently small molecules. Larger molecules, consisting of hundreds to
thousands of electrons, are nowadays computed by means of single-particle models
as the Hartree-Fock model and the Kohn-Sham model of density functional theory
(DFT). These models compute an antisymmetric rank-one approximation

ΨSL(x1, . . . ,xd) =
1√
d!

det(ϕi(xj))
d
i,j=1

to the solution (13.33) of (13.32). This Slater determinant (cf. Lemma 3.72) is con-
stituted in the closed-shell case by d orthonormal functions ϕ1, . . . , ϕd ∈ L2(R3)
which now have to be computed. Minimisation of (13.33) over the set of rank-1
functions yields as a necessary condition for the minimiser Φ = (ϕ1, . . . , ϕd) the
nonlinear Hartree-Fock equations

FΦϕi(x) = λi ϕi(x) (1 ≤ i ≤ d), (13.34a)

where the Hamilton-Fock operator FΦ depends on Φ and is given by

FΦϕ(x) := −
1

2
Δϕ(x) + Vc(x)ϕ(x) + VH(x)ϕ(x) + (Kϕ) (x) , (13.34b)

with the core potential Vc, the Hartree potential VH and the exchange operator K
defined via10

9 The dependency on the spin variables si ∈ {−1/2, 1/2} is suppressed (closed-shell case).
D(H) is the domain of H.
10 M is the number of nuclei with charge Zk and position Rk ∈ R

3. All integrations are taken
over R3.

13.11 Example: Operations for Quantum Chemistry Applications 415

ρ(x,y) = 2
d∑

i=1

ϕi(x)ϕi(y), Vc(x) =
M∑

k=1

Zk
|x−Rk|

,

VH(x) =

∫
ρ(y,y)

|x− y| dy, (K(ϕ)) (x) = − 1
2

∫
ρ(x,y)

|x− y| ϕ(y) dy.

Note that VH(x) = VH [ϕ1, ϕ2, ϕ3](x) depends quadratically on ϕi. The equations
(13.34a) form a nonlinearly coupled system of eigenvalue problems, but differently
from (13.32) only functions in R

3 are to be determined. Since it is known that the
solutions are exponentially decaying for |x| → ∞, the unboundedness of R3 is not
a severe problem.

The success of tensor computations for this problem depends on the involved
representation ranks and therefore on the data compressibility. For a theoretical
discussion see Flad-Hackbusch-Schneider [61, 62].

A discretisation of (13.34a) by, e.g., a finite difference method on a regular grid
in a finite box with zero boundary conditions replaces functions in R

3 by grid func-
tions in

⊗3
j=1 R

nj with possibly large nj . The evaluations of the potentials involve
almost all operations studied in this chapter.

1. Hadamard product. The application of the core potential,ϕ �→ Vcϕ is an example
of the Hadamard product. For this purpose, the function 1/| • −Rk| has to be
approximated in one of the formats (see Item 2).

Another Hadamard product occurs in the computation of the electron density
n(y) := ρ(y,y) involved in the Hartree potential VH , since it requires to square
the functions ϕi(y). Having computed VH , we have to perform the Hadamard
product VH � ϕ for all ϕ = ϕi (cf. (13.34b)).

A third Hadamard product appears in K(ϕ). Let ϕ = ϕj . Using the definition of
ρ, we see that

K(ϕj) = −
d∑

i=1

ϕi

∫
ϕi(y)ϕj(y)

| • −y| dy.

The Hadamard product ϕi � ϕj has to be determined for all 1 ≤ i < j ≤ 3
(for i = j, the result is already known from ρ(y,y)). There is even a fourth
Hadamard product ϕi � ψ, where ψ is the result of

∫ ϕi(y)ϕj(y)
|•−y| dy, which is

discussed in Item 3. A related problem is the evaluation of two-electron integrals
(cf. Benedikt-Auer-Espig-Hackbusch [12]).

2. Representation of the Coulomb potential. The techniques from §9.7.2.5.2 yield a
k-term representation of the function 1/|•|.A simple substitution xi → xi−Rk,i

in this representation can be used for 1/| •−Rk|. Since the representation inRk
can be transferred easily into any other format, the approximation of 1/| • −Rk|
causes no problem.

The Coulomb potential 1/| • −y| also appears in Item 3.

416 13 Tensor Operations

3. Convolution. The function VH is the convolution result of the electron density
n(y) = ρ(y,y) and the Coulomb potential 1/| •−y|, i.e., VH = 1

|•| �n. Lemma
9.30 ensures that the approximation from Item 2 admits an accurate result of VH .
For the performance of the convolution see §13.7, but also the later §14.3.

The function ψ =
∫ ϕi(y)ϕj(y)

|•−y| dy mentioned in Item 1 requires the convolution
1
|•| � nij , where nij := ϕi � ϕj is determined in Item 1.

4. Addition. Finally, Vcϕ+ VHϕ+K(ϕ) has to be added.

5. Laplace inverse. An inverse iteration of the (nonlinear) eigenvalue problem
(13.34a) starts from the reformulation of (13.34a,b) by

ϕi = 2 (−Δ)
−1

(λi ϕi − Vc ϕi − VHϕi −K(ϕi)) .

As seen in §9.7.2.6 and, in particular, in Remark 9.35, the inverse matrix (−Δ)
−1

possesses a simple and accurate representation in Rk. See also Khoromskij
[116].

6. Matrix-vector multiplication. The (Kronecker) operator approximating (−Δ)−1

has to be multiplied by λi ϕi − Vc ϕi − VHϕi −K(ϕi).

The Kohn-Sham model of density functional theory replaces the nonlocal ex-
change operator K in the Fock operator FΦ by an exchange correlation potential
Vxc depending only on the electron density

n(x) := ρ(x,x).

Although this dependence is not known explicitly, several models developed in
physics yield satisfactory results. One of these models uses or the ‘local density
approximation’ (LDA) the so-called exchange part

εX(n(x)) = −3

4

(
3

π
n(x)

)1/3

(cf. Koch-Holthausen [127, §6.4]), which gives rise to the next item.

7. Function evaluation. By definition, n(x) is non-negative, so that the function
f(t) := t1/3 can be applied to each entry of the (grid) function. Here, the
generalised cross approximation method can be applied (cf. §15.1.3) or an
iterative approach as in §13.10.

A realisation of the computations using the formats Rr, Tr, and the hybrid for-
mat from §8.2.4 can be found in Khoromskij-Khoromskaia-Flad [121] (see also
[113]). The tensorisation from §5.3 and §14 has been employed in Khoromskaia-
Khoromskij-Schneider [114].

Chapter 14
Tensorisation

Abstract Tensorisation has been introduced by Oseledets [153] (applied to matrices
instead of vectors). The tensorised version of a K

n vector can easily be truncated
in a black-box fashion. Under suitable conditions, the data size reduces drastically.
Operations applied to these tensors instead of the original vectors have a cost related
to the (much smaller) tensor data size. Section 14.1 describes the main principle,
the hierarchical format Htens

ρ corresponding to the TT format, operations with
tensorised vectors, and the generalisation to matrices. The reason, why the data
size can be reduced so efficiently is analysed in Sect. 14.2. Tensorisation mimics
classical analytical approximations method which exploit the smoothness of a func-
tion to obtain an approximation with much less degrees of freedom. Section 14.3
presents in detail the (exact) convolution of vectors performed by means of their
tensorisations. It is shown that the cost corresponds to the data size of the tensors.
Section 14.4 is devoted to the tensorised counterpart of the fast Fourier transform
(FFT). During the algorithm one has to insert truncation steps, since otherwise
a maximal representation rank arises. While the original tensorisation technique
applies to discrete data, Sect. 14.5 generalises the approach to functions.

14.1 Basics

14.1.1 Notations, Choice of TD

As introduced in §5.3, vectors can be rewritten as tensors. Here, we restrict our
discussion to the case of vectors from K

n = K
I with I = {0, 1, . . . , n− 1} and

n = 2d (14.1a)
(cf. Remark 14.1 below). Let

V :=
⊗d

j=1
K

2, (14.1b)

where K
2 = K

J with J = {0, 1}. The isomorphism Φn : V→K
I is given by

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 14,
© Springer-Verlag Berlin Heidelberg 2012

417

418 14 Tensorisation

means of the binary integer representation k =
∑d

j=1 ij2
j−1 (0 ≤ ij ≤ 1) :

Φn : V → K
n

v �→ v with vk = v[i1 · · · id] for k =
d∑

j=1

ij2
j−1.

(14.1c)

In special cases, the r-term format can be applied successfully to v ∈ V. An
example is given in Remark 5.18, where the tensor has rank one, i.e., v ∈ R1.

The tensor subspace format Tr is not of much help for V =⊗dK2. In general,
the success of this format is caused by the fact that the subspace Uj has a much
smaller dimension than Vj . Here, dim(Vj) = dim(K2) = 2 is already rather small.
Subspaces of dimension dim(Uj) = 1 rarely appear. If, however, dim(Uj) = 2
holds, the tensor subspace format T(2,...,2) is identical to the full representation.

Therefore, we use the hierarchical formatHr from §11 for the representation of
v ∈ V. Because of the special nature of K

2, we modify the structure of Hr as
follows. Let α = {j} ∈ L(TD) be a leaf-node. The subspace Uα = Uj ⊂ Vj = K

2

is chosen as
Uj = Vj (j ∈ D = {1, . . . , d}) (14.2a)

with the fixed basis b(j) consisting of the unit vectors

b
(j)
1 =

[
1
0

]
, b

(j)
2 =

[
0
1

]
(1 ≤ j ≤ d) . (14.2b)

This simplification is justified by the fact that in most of the cases, the minimal sub-
space Uj = Umin

j (v) will be two-dimensional anyway. Fixing the basis by (14.2b)
avoids the overhead for coding Uj . As a consequence,

rj = 2 (1 ≤ j ≤ d) (14.2c)

holds for the representation ranks rα = rj of r characterising the format Hr at the
leaves α = {j} ∈ L(TD).

Concerning the choice of the dimension partition tree TD, it will turn out that the
linear tree from Fig. 11.2 used for the TT format Tρ is a good choice:

TTT
D = D ∪ {{1, . . . , k} : k ∈ D} and
{1, . . . , k} has the first son {1, . . . , k − 1} and the second son {k}. (14.2d)

Another choice is a balanced tree T bal
D like in (11.1) or (11.2).

A first argument favouring TTT
D is that the tensor spaces V{1,...,k} :=

⊗k
j=1K

2

correspond to vector spaces K2k with a natural interpretation K
2k ∼= K

2k−1 ⊗ K
2,

but also T bal
D has realistic interpretations.

Another convincing argument is the storage cost (cf. Remark 11.22). The part
ρHTR
mem((Bα)α∈L(TD)) vanishes because of the fixed choice of the basis (14.2b),

while ρHTR
mem(c(D)) = rD = 1 can be neglected. It remains the term

NHTR
mem ((Cα)α∈TD\L(TD)) =

∑

α∈TD\L(TD)

rαrα1rα2 (14.3)

14.1 Basics 419

(α1, α2 sons of α). Assume rα ≤ r. In the case of TTT
D , the property α2 ∈ L(TD)

implies rα2 = 2 and therefore

NHTR
mem ((Cα)) ≤ 2 (d− 1) r2.

The balanced tree T bal
D contains products rαrα1rα2 whose factors may all be of size1

r. This yields a storage requirement S(T bal
D) = O(dr3) cubic in r.

We recall that Tρ with ranks ρ = (ρ1 = 2, ρ2, . . . , ρd) is characterised alge-
braically by subspaces Uj ⊂ ⊗jK2 for 1 ≤ j ≤ d such that

U1 = K
2, (14.4a)

Uj ⊂ Uj−1 ⊗K
2 and dim(Uj) = ρj, (2 ≤ j ≤ d), (14.4b)

v ∈ Ud (14.4c)

holds for the represented tensor v ∈ ⊗dK2.

Remark 14.1. The requirement n = 2d in (14.1a) is made for the sake of con-
venience. Otherwise, there are two remedies:
(i) Assume a decomposition n =

∏d
j=1 pj (1 < pj ∈ N, cf. §5.3) and use the

isomorphism K
n∼=

⊗d
j=1 K

pj . The advantage of tensorisation vanishes if there are
too large factors pj .
(ii) One might embed K

n into K
m (m > n) with m = 2d (or modified according

to (i)) by replacing v ∈ K
n by ṽ ∈ K

m with ṽi = vi (1 ≤ i ≤ n) and ṽi = 0
(n < i ≤ m). Many operations can be performed with ṽ instead of v.

14.1.2 Format Htens
ρ

Let ρ = (ρ0 = 1, ρ1 = 2, ρ2, . . . , ρd−1, ρd = 1). In the following we use a par-
ticular hierarchical format2 Htens

ρ based on the linear tree TTT
D , which is almost

identical to Tρ. The parameters of v ∈ Htens
ρ are

v = ρtensHTR

(
(Cj)

d
j=2, c

(D)
)
. (14.5a)

The coefficients (Cj)
d
j=1 with

Cj =
(
C(j,�)

)

1≤�≤ρj
and C(j,�) =

(
c
(j,�)
ik

)

1≤i≤ρj
1≤k≤2

∈ K
ρj×2

define the basis vectors b(1,...,j)
� recursively:

b
(1)
� = b(1)

� for j = 1 and 1 ≤ � ≤ 2, (14.5b)

b
(j)
� =

ρj−1∑

i=1

2∑

k=1

c
(j,�)
ik b

(j−1)
i ⊗ b(j)

k (1 ≤ � ≤ ρj) for j = 2, . . . , d. (14.5c)

1 Of course, the maximum ranks appearing in TTT
K and T bal

K may be different.
2 The TT format applied to tensorised quantities has also been called QTT (‘quantised TT’ or
‘quantics TT’ inspite of the meaning of quantics; cf. [114]).

420 14 Tensorisation

Here, the bases b(1)
� and b(j)

k are the unit vectors from (14.2b). Finally, the tensor v
is defined by3

v = c(D)b
(d)
1 . (14.5d)

The differences to the usual hierarchical format are: (i) fixed tree TTT
D , (ii) fixed

unit bases (14.2b), (iii) vertex α = {1, . . . , j} is abbreviated by j in the notations
b
(j)
� (instead of b(α)

�) and c
(j,�)
ik (instead of c(α,�)ik), (iv) ρd = 1 simplifies (14.5d).

The data Cj from (14.5a) almost coincide with those of the Tρ format (12.1a).
For the precise relation we refer to (12.11).

Once, the data of v ∈ K
n are approximated by ṽ ∈ Htens

ρ , the further opera-
tions can be performed within this format (cf. §14.1.3). The question remains,
how v ∈ K

n can be transferred to v = Φ−1n (v) ∈ Htens
ρ and then approximated by

some ṽ ∈ Htens
ρ . An exact representation by v = Φ−1n (v) is possible, but requires

to touch all n data. Hence, the cost may be much larger than the later data size of ṽ.
Nevertheless, this is the only way if we require an exact approximation error bound.
A much cheaper, but heuristic approach uses the generalised cross approximation
tools from §15.

14.1.3 Operations with Tensorised Vectors

In the sequel, we assume (14.1a,b) and represent v ∈ ⊗dK2 by the Htens
ρ format

(14.5a) with representation ranks ρj . The family Cj of matrices in (14.5a) is
assumed to be orthonormal with respect to the Frobenius norm implying that the
bases in (14.5b,c) are orthonormal.

The storage size of v follows from (14.3) with rα2 = 2: S = 2
∑d
j=2 ρjρj−1.

The addition of two tensors v,w ∈ ⊗dK2 with identical data (Cj)2≤j≤d
is trivial. In the standard case, there are different data Cv

j and Cw
j and the

procedure JoinBases is to be applied (cf. (11.71a) and Remark 11.67). The
arithmetical cost NQR(rα1 · rα2 , r

′
α + r′′α) mentioned in Remark 11.67b becomes4

NQR(2(ρ
v
j−1 + ρwj−1), ρ

v
j + ρwj) ≤ 8ρ3 for ρ := maxj{ρvj , ρwj }.

The entry-wise evaluation of v from (14.5a) costs 2
∑d
j=2 ρj−1ρj operations

as seen from (13.2). The latter computation uses the Htens
ρ data which are directly

given by (12.11).
The scalar product 〈u,v〉 of two tensors with identical data (Cj)2≤j≤d is trivial

as seen from (13.9). Otherwise, we may apply the recursion from (13.11). Note
that (13.11) simplifies because β2 ∈ L(TTT

D) implies
〈
b
′(β2)
j ,b

′′(β2)
n

〉
= δjn (cf.

(14.2b)). The cost of the recursion becomes 7
∑d
j=2 ρ

v
j ρ

w
j ρ

v
j−1ρ

w
j−1. Alternatively,

we may join the bases as for the addition above. In fact, this approach is cheaper,
since it is only cubic in the ranks:

3 Here, we make use of ρd = 1. For ρd > 1, one has v =
∑ρd

�=1 c
(D)
� b

(d)
� . In the latter case,

several tensors can be based of the same parameters (Cj)dj=2.
4 The transformations from (11.70a-c) do not appear, since the bases Bj are fixed.

14.1 Basics 421

4

d∑

j=2

(
ρvj + ρwj

)2 (
ρvj−1 + ρwj−1

)
. (14.6)

A binary operation � between tensors of V and W can be performed as in
§13.5.3, however, there are two particular features. First, the ranks rα2 for the
second son—which is a leaf—is rα2 = 2 (cf. (14.2c)). In the matrix case it may
be rα2 = 4 (cf. §14.1.6). Second, the results of b

′(α2)
j � b

′′(α2)
n in (13.20b) are

explicitly known. The basis vectors b
′(α2)
j are from the set {

[
1
0

]
,
[
0
1

]
} and their �

products are again either zero or belong to this set (at least for all � considered here).
An example is the Hadamard product � = �, where b

′(α2)
j � b

′′(α2)
n = δjnb

(α2)
n .

Hence, the general frame b(α2) used in the algorithm of §13.5.3 can be replaced by
{
[
1
0

]
,
[
0
1

]
}. Correspondingly, the computational cost is reduced to

2
d−1∑

j=1

ρvj ρ
w
j . (14.7)

The Hadamard product is invariant with respect to the tensorisation (cf. (14.1c)):

Φn (v �w) = Φn(v) � Φn(w), (14.8)

i.e., the tensorisation of the vector-wise Hadamard product v�w is expressed by the
tensor-wise Hadamard product v �w. This binary operation is already mentioned
above.

As in §12.2.7, the HOSVD bases can be computed, on which the truncation is
based. The corresponding computational cost described in (12.14) for the general
case becomes

4

d∑

j=2

ρ2j−1

(

ρj−2 + 2ρj +
4

3
ρj−1

)

≤ 52

3
(d− 1)

(

max
j

ρj

)3

. (14.9)

14.1.4 Application to Representations by Other Formats

The tensorisation procedure can be combined with other formats in various ways.
In the following, we consider the tensor space V =

⊗d
j=1 Vj with Vj = K

nj

and assume for simplicity that nj = 2δj (δj ∈ N). The tensorisation of the spaces
Vj ∼= Vj = ⊗δjK2 leads to

V =
d⊗

j=1

Vj ∼= V̂ :=
d⊗

j=1

⎛

⎝
δj⊗

κ=1

K
2

⎞

⎠ . (14.10)

14.1.4.1 Combination with r-Term Format

The r-term representation of v =
∑r
i=2

⊗d
j=1 v

(j)
i ∈ V is based on the vectors

v
(j)
i ∈ Vj . Following the previous considerations, we replace the vectors v(j)i by

422 14 Tensorisation

(approximate) tensors v(j)
i ∈ Vj = ⊗δjK2. For the representation of v(j)

i we use

theHtens
ρ format (14.5a) involving rank parameters ρ(j) = (ρ

(j)
1 , . . . , ρ

(j)
δj

).

For nj ≤ n, the storage requirement of the r-term format has been described by
drn. If a sufficient approximation v

(j)
i of data size O(ρ2 log(nj)) = O(ρ2δj) and

moderate ρ = maxκ ρ
(j)
κ exists, the storage can be reduced to O(drρ2 log(n)).

Similarly, the cost of operations can be decreased drastically. In Remark 7.12,
the cost of the scalar product in Vj is denoted by Nj . In the standard case Vj = K

nj

we expect Nj = 2nj − 1 arithmetical operations. Now, with v(j)i and w(j)
i replaced

by v
(j)
i ,w

(j)
i ∈ Vj , the cost of the scalar product is

Nj = O(ρ3 log(nj)) with ρ = max
κ
{ρv,(j)κ , ρw,(j)κ }

as can be seen from (14.6). Analogously, the cost of the further operations improves.

14.1.4.2 Combination with Tensor Subspace Format

The data of the tensor subspace format are the coefficient tensor a and the basis
(frame) vectors b(j)i ∈ Vj (cf. (8.6c)). Tensorisation can be applied to b(j)i ∈ Vj with
the same reduction of the storage for b(j)i as above. Unfortunately, the coefficient
tensor a which requires most of the storage, is not affected. The latter disadvantages
can be avoided by using the hybrid format (cf. §8.2.4).

All operations with tensors from Tr lead to various operations between the basis
vectors from Vj . If b(j)i ∈ Vj is expressed by the tensorised version b

(j)
i ∈ ⊗δjK2,

these operations may be performed much cheaper. For instance, the convolution in
Vj can be replaced by the algorithm described in §14.3 below.

14.1.4.3 Combination with the Hierarchical Format

There are two equivalent ways of integration into the hierarchical format. First, we
may replace all basis vectors in Bj =

[
b
(j)
1 , . . . , b

(j)
rj

]
∈ (Uj)

rj by their tensorised
version b

(j)
i ∈⊗δjK2 using the Htens

ρ format (14.5a). Consequently, all operations
involving b(j)i are replaced by the corresponding tensor operations for b(j)

i .
The second, simpler interpretation extends the dimension partition tree TD of

the hierarchical format. Each leaf vertex {j} is replaced by the root of the linear
tree TTT

Δj
used for the tensorisation, where Δj = {1, . . . , δj} (see Fig. 14.1). The

resulting extended tree is denoted by T ext
D . The set L(T ext

D) of its leaves is the union
⋃d
j=1 L(TTT

Δj
) of the leaves of TTT

Δj
. Hence, dim(V(α)) = 2 holds for all α ∈

L(T ext
D). One may interpret T ext

D as the dimension partition tree for the tensor space
V̂ from (14.10), where a general (possibly balanced) tree structure is combined with
the linear tree structure below the vertices α ∈ L(TD), which are now inner vertices
of T ext

D .

14.1 Basics 423

⇒

Fig. 14.1 Left: balanced tree with 4 leaves corresponding to Vj = K
16. The isomorphic tensor

spaces ⊗4
K

2 are treated by the linear trees below. Right: Extended tree.

14.1.5 Matricisation

The vertices of the linear tree TTT
D are {1, . . . , j} for j = 1, . . . , d. In Definition 5.3

the matricisationM{1,...,j}(v) is defined. In this case,M{1,...,j}(v) can easily be
described by means of the generating vector v = Φn(v) ∈ K

n (n = 2d):

M{1,...,j}(v) =

⎡

⎢
⎢
⎢
⎣

v0 v2j · · · v2d−1

v1 v2j+1 · · · v2d−1+1
...

...
...

v2j−1 v2j+1−1 · · · v2d−1

⎤

⎥
⎥
⎥
⎦
. (14.11)

Hence, the columns ofM{1,...,j}(v) correspond to blocks of the vector with block
size 2j.An illustration is given below forM3(v) in the case of n = 32. The columns
of M3(v) consists of the four parts of the vector.

(14.12)

We recall that ρj = rank(M{1,...,j}(v)).

14.1.6 Generalisation to Matrices

As mentioned above, the original description of the tensorisation technique by
Oseledets [153] applies to matrices. Let M be a matrix of size n× n with n = 2d.
Since dim(Kn×n) = n2 = (2d)2 = 4d, the matrix space K

n×n is isomorphic to
⊗dK2×2, the tensor product of 2× 2 matrices. A possible isomorphism is given by
the following counterpart of Φn from (14.1c):

Φn×n : M ∈
⊗d

j=1 K
2×2 �→M ∈ K

n×n

M [ν, μ] = M[(ν1, μ1), . . . , (νd, μd)]

with ν =
∑d

j=1 νj2
j−1, μ =

∑d
j=1 μj2

j−1.

424 14 Tensorisation

The latter definition corresponds to the (d − 1)-fold application of the Kronecker
product (1.5) to 2× 2 matrices.

Again, the hierarchical format with the linear tree TTT
D can be used to represent

tensors M ∈ V := ⊗dK2×2. Differently from the definitions in (14.2b,c), we now
have

rj = 4, b
(j)
1 =

[
1
0
0
0

]
, b

(j)
2 =

[
0
0
1
0

]
, b

(j)
3 =

[
0
1
0
0

]
, b

(j)
4 =

[
0
0
0
1

]
.

This fact increases some constants in the storage cost, but does not change the format
in principle.

A B C

Fig. 14.2 Matricisation for
n = 32, j = 3

Now, matricisation corresponds to a block represen-
tation of the matrix with block size 2j×2j as illustrated
in Fig. 14.2. This means that the columns of the matrix
M{1,...,j}(v) are formed by these subblocks.

Concerning operations, matrix operations are of par-
ticular interest. The multiplication M ′M ′′ is a binary
operation. The operation count (14.7) holds with a
factor 4 instead of 2 because of rj=4. Also the matrix-
vector multiplication Mv of a matrix M ∈ K

n×n by
v ∈ K

n using the tensor counterparts M ∈ ⊗dK2×2

and v ∈ ⊗dK2 is of the same kind.
Finally, we discuss the ranks ρj of certain Toeplitz matrices.5 The identity matrix

or any diagonal matrix with 2j periodic data has rank ρj = 1, since the range of
M{1,...,j}(v) is spanned by one diagonal block.

A banded upper triangular Toeplitz matrix consisting of the diagonal Mii and
off-diagonals Mi,i+� (1 ≤ � ≤ 2j) has rank ρj = 2. The proof can be derived
from Fig. 14.2. The 2j × 2j blocks appearing in the matrix are either of type A
and B, or zero (type C). A simple example of this kind are tridiagonal Toeplitz
matrices, which appear as discretisations of one-dimensional differential equations
with constant coefficients.

If, however, the band width increases and an off-diagonal Mi,i+� with 2j + 1 ≤
� ≤ 2 · 2j occurs, a new nonzero block appears at position C, leading to rank 3.
Correspondingly, for a fixed � ∈ {3, . . . , 2j}, the rank becomes larger than ρj = 2
for sufficiently small block size 2k × 2k, when 2k < � ≤ 2j .

A general banded Toeplitz matrix with diagonals Mi,i+� for −2j ≤ � ≤ 2j has
rank ρj = 3, because a transposed version of block C appears in Fig. 14.2.

Explicit TT representations of Laplace and related matrices are given in [111].

Remark 14.2. A general, fully populated Toeplitz matrix satisfies

ρj ≤ min{2d−j+1, 2j+1} − 1.

Proof. Because of the Toeplitz structure, there are at most 2d−j+1−1 blocks of size
2j × 2j . Each block is characterised by data forming a vector in K

2j+1−1. This fact
bounds the number of linearly independent blocks by 2j+1 − 1. ��

5 A Toeplitz matrix M is defined by the property that the entries Mij depend on i− j only.

14.2 Approximation of Grid Functions 425

14.2 Approximation of Grid Functions

14.2.1 Grid Functions

In the following, we assume that the vector v ∈ K
n, n = 2d, is a grid function, i.e.,

vk = f(a+ kh) for 0 ≤ k ≤ n− 1, h :=
b− a
n

, (14.13a)

where f ∈ C([a, b]) is sufficiently smooth. If f ∈ C((a, b]) has a singularity at
x = a, the evaluation of f(a) can be avoided by the definition

vk = f(a+ (k + 1)h) for 0 ≤ k ≤ n− 1. (14.13b)

Any approximation f̃ of f yields an approximation ṽ of v.

Remark 14.3. Let f ∈ C([a, b]). For j ∈ D and k = 0, . . . , 2d−j − 1 consider the
functions fj,k(•) := f(a+ k2jh+ •) ∈ C([0, 2jh]) and the subspace

Fj := span{fj,k : 0 ≤ k ≤ 2d−j − 1}.

Then rank{1,...,j}(v) ≤ dim(Fj) holds for v ∈ ⊗dK2 with v = Φn(v) satisfying
(14.13a) or (14.13b).

Proof. The k-th columns ofM{1,...,j}(v) in (14.11) are evaluations of fj,k. There-
fore, rank{1,...,j}(v) = rank(M{1,...,j}(v)) cannot exceed dim(Fj). ��

The tensorisation technique is not restricted to discrete grid functions. In §14.5,
we shall describe a version for functions.

14.2.2 Exponential Sums

Here, we suppose that the function f can be approximated in [a, b] by

fr(x) :=

r∑

ν=1

aν exp(−ανx), (14.14)

where aν , αν ∈ K. Examples with aν , αν > 0 are given in §9.7.2.3 together with
error estimates for the maximum norm ‖f − fr‖∞ .

If f is periodic in [a, b] = [0, 2π], the truncated Fourier sum yields (14.14) with
imaginary αν = [ν − (r + 1)/2] i for odd r ∈ N. Closely related are sine or cosine
sums

∑r
ν=1 aν sin(νx) and

∑r−1
ν=0 aν cos(νx) in [0, π].

An example of (14.14) with general complex exponents αν is mentioned in
§9.7.2.4.

426 14 Tensorisation

As seen in Remark 5.18, the grid function v ∈ K
n corresponding to fr from

(14.14) has a tensorised version v = Φ−1n (v) ∈ ⊗dK2 inRr :

v =

r∑

ν=1

aν

d⊗

j=1

[
1

exp(−2j−1αν)

]

(14.15)

requiring 2rd = 2r log2 n data.6

14.2.3 Polynomial Approximations for Asymptotically Smooth
Functions

Let f ∈ C∞((0, 1]) be a function with a possible singularity at x = 0 and assume
that the derivatives are bounded by

∣
∣f (k)(x)

∣
∣ ≤ Ck!x−k−a for all k ∈ N, 0 < x ≤ 1 and some a > 0. (14.16)

Because of a possible singularity at x = 0 we choose the setting (14.13b).

Exercise 14.4. Check condition (14.16) for f(x) = 1/x, 1/x2, x log x, and xx.

Functions f satisfying (14.16) are called asymptotically smooth. In fact, f is
analytic in (0, 1]. The Taylor series at x0 ∈ (0, 1] has the convergence radius x0.
The remainder

∣
∣∑∞

k=N
1
k!f

(k)(x0)(x − x0)k
∣
∣ is bounded by

C x−a0

∞∑

k=N

(

1− x

x0

)k
= C

x1−a0

x

(

1− x

x0

)N
→ 0.

Lemma 14.5. Assume (14.16) and ξ ∈ (0, 1]. Then there is a polynomial p of degree
N − 1 such that

‖f − p‖[ξ/2,ξ],∞ = max
ξ/2≤x≤ξ

|f(x)− p(x)| ≤ εN,ξ :=
C

2

(
ξ

4

)−a
31−a−N .

Proof. Choose x0 = 3
4ξ and set p(x) :=

∑N−1
k=0

1
k!f

(k)(x0)(x − x0)
k. The

remainder in [ξ/2, ξ] is bounded by εN,ξ defined above. ��

If an accuracy ε is prescribed, the number Nε satisfying εNε,ξ ≤ ε is asymptoti-
cally N = (log 1

ε + a log ξ
4)/ log

1
3 .

Next, we define the following, piecewise polynomial function. Divide the inter-
val [1n , 1] into the subintervals [1n ,

2
n] = [2−d, 21−d], (21−d, 22−d], . . . , (12 , 1]. For

each interval (2−j , 21−j] define a polynomial pj ∈ PN−1 (cf. §10.4.2.1) according

6 The factor in (14.15) can be integrated into the first factor. On the other hand, in the special case
of (14.15) one need not store the number 1, so that only r(d+ 1) data remain.

14.2 Approximation of Grid Functions 427

to Lemma 14.5. Altogether, we obtain a piecewise continuous function fN (an hp-
finite element approximation) defined on [1/n, 1] satisfying the exponential decay

‖f − fN‖[1n ,1],∞ ≤ εN := 2−1+a(d+1)31−a−N .

Evaluation of fN yields the vector entries vk = f ((k + 1)/n) and the tensorised
version v ∈ ⊗dK2.

Proposition 14.6. The tensor v constructed above possesses the {1, . . . , j}-rank

ρj = rank{1,...,j} = dim(M{1,...,j}(v)) ≤ N + 1.

Proof. For fN define the functions fN,j,k from Remark 14.3. For k ≥ 1, fN,j,k
is a polynomial of degree N−1, only for k = 0, the function fN,j,0 is piecewise
polynomial. This proves Fj ⊂ PN−1 + span{fN,j,0} and dim(Fj) ≤ N + 1. The
assertion follows from Remark 14.3. ��

Since ρj is the (minimal) TT rank of v in the Htens
ρ representation, the required

storage is bounded by 2 (d− 1) (N + 1)2.
A more general statement of a similar kind for functions with several singulari-

ties7 is given by Grasedyck [74].

14.2.4 Multiscale Feature and Conclusion

Multiscale considerations of (grid) functions use different grid sizes hj = 2jh and
look for the behaviour in intervals of size hj . A typical method exploiting these
scales is the wavelet approach. Applying wavelet approximations to asymptotically
smooth functions like in (14.16), one would need few wavelet levels on the right
side of the interval, while the number of levels is increasing towards the singularity
at x = 0. Again, one obtains estimates like in Proposition 14.6, showing that the
advantages of the wavelet approach carry over to the hierarchical representation of
v = Φ−1n (v).

From (14.11) one sees that the subspace U{1,...,j} = range(M{1,...,j}(v)) is
connected to step size 2jh, i.e., to level d− j.

The approximation by exponentials, by hp-finite elements, or by wavelets helps
to reduce the data size n of the uniformly discretised function v to a much smaller
size, exploiting the regularity properties of the function. The tensorisation procedure
has the same effect. The particular advantage is that the tensor approximation is a
black box procedure using singular value decompositions, whereas the analytical
methods mentioned above are chosen depending on the nature of the function and
often require the computation of optimal coefficients (like in (14.14)).

7 Then, in the right-hand side of (14.16), x is replaced by the distance of x to the next singularity.

428 14 Tensorisation

14.2.5 Local Grid Refinement

Standard multiscale approaches apply local grid refinement in regions, where the
approximation error is still too large. The tensorisation approach has fixed a step size
h = 1/n. The data truncation discussed above can be related to grid coarsening.
Nevertheless, also a grid refinement is possible. First, we discuss a prolongation
from grid size h to h/2.

Remark 14.7 (prolongation). Consider a tensor v ∈ V :=
⊗d

j=1 K
2 correspond-

ing to a vector v ∈ K
n. We introduce a further vector space V0 := K

2 and define
vext ∈ Vext :=

⊗d
j=0 K

2 by

vext :=
[
1
1

]
⊗ v. (14.17)

The prolongation P : V → Vext is defined by v �→ vext according to (14.17).
vext ∈ Vext corresponds to Φ−12n (v

ext) = vext ∈ K
2n via

vext[i0, i1, . . . , id] = vext

[
d∑

i=0

ij2
j

]

.

Furthermore, vext[i] represents the function value at grid point i · (h/2). The
prolongation can be regarded as piecewise constant interpolation, since vext[2i] =
vext[2i+ 1].

The prolongation increases the data size by one tensor
[
1
1

]
. Note that the ranks ρj

are not altered. Now, we redefine Vext =
⊗d

j=0 K
2 by Vext =

⊗d+1
j=1 K

2.

Let v ∈ Vext be any tensor, e.g., in the image of the prolongation. Local refine-
ment of the corresponding grid function in the subinterval

[

ν · 2j∗ · h
2
,
(
(μ+ 1) · 2j∗ − 1

)
· h
2

]

⊂ [0, 1]

yields a tensor v′, which satisfies the supposition of the next remark. If the refine-
ment is really local, the level number j∗ is not large.

Remark 14.8 (local change). Let v,v′ ∈ ⊗d+1
K

2 be two tensors such that Φ−12n (v)
and Φ−12n (v

′) differ only in the interval h
2

[
ν · 2j∗ , (μ + 1) · 2j∗ − 1

]
for some

1 ≤ j∗ ≤ d, 1 ≤ ν ≤ μ ≤ 2d+1−j∗. Then the respective ranks ρj and ρ′j satisfy

ρ′j ≤ ρj + 1 for j ≥ j∗,

ρ′j ≤ min{ρj + 2j
∗−j, 2j} for 1 ≤ j < j∗.

Proof. For j ≥ j∗, only one block in (14.12) is altered so that the rank in-
crease is bounded by one. For j < j∗, at most 2j

∗−j blocks are involved so that
ρ′j ≤ ρj + 2j

∗−j . On the other hand, ρ′j ≤ 2j holds for all tensors. ��

14.3 Convolution 429

14.3 Convolution

Operations like the Hadamard product can be applied to vectors v = Φn(v) as
well as tensors v, and identity (14.8) states that the results coincide. Similarly, the
Euclidean scalar product 〈v, w〉 = 〈Φn(v), Φn(w)〉 of two vectors coincides with
the scalar product 〈v,w〉 of the tensors. Such a property is not obvious for the
convolution v � w of vectors which is discuss below (cf. Hackbusch [87]).

14.3.1 Notations

We consider vectors from K
n = K

I with I = {0, 1, . . . , n − 1}. The convolution
of v, w ∈ K

n is defined by8

u = v � w with uk =

min{k,n−1}∑

�=max{0,k+1−n}
v�wk−� (0 ≤ k ≤ 2n− 2) . (14.18a)

Note that the resulting vector u belongs to K
2n−1, since for all k ∈ {0, . . . , 2n− 2}

the sum in (14.18) is non-empty.
An easier notation holds for vectors (infinite sequences) from �0 := �0(N0)

defined in (3.2):

� : �0 × �0 → �0, u = v � w with uk =
k∑

�=0

v�wk−� for all k ∈ N (14.18b)

(check that the result belongs to �0, i.e., uk = 0 for almost all k ∈ N).
In the following, we embed K

n into �0 by identifying v ∈ K
n and v̂ ∈ �0 with

v̂k = vk for 0 ≤ k ≤ n− 1 and v̂k = 0 for k ≥ n:

K
n ⊂ �0. (14.19a)

A consequence of this identification is the embedding

K
m ⊂ K

n for 1 ≤ m ≤ n. (14.19b)

Now we can rewrite (14.18a) as

u = v � w with uk =

k∑

�=0

v�wk−� (0 ≤ k ≤ 2n− 2) , (14.18a’)

since the additional terms vanish.

8 More generally, one may consider the convolution of v ∈ K
n and w ∈ K

m for different n,m.
We avoid this trivial generalisation to reduce notational complications.

430 14 Tensorisation

On �0 we define the degree

deg(v) := max{k ∈ N : vk �= 0}.

Then K
n is identified with the subset {v ∈ �0 : deg(v) ≤ n− 1}.

Remark 14.9. Let u = v � w for u, v, w ∈ �0. Then deg(u) = deg(v) + deg(w).

The reason for the name ‘degree’ becomes obvious from the following iso-
morphism.

Remark 14.10. Let P be the vector space of all polynomials (with coefficients
in K). Then P and �0 are isomorphic. The corresponding isomorphism is given by

π : �0 → P with π[v](x) :=
∑

k∈N
vkx

k. (14.20)

The well-known connection of polynomials with the convolution is described by
the property

u = v � w for u, v, w ∈ �0 if and only if π[u] = π[v]π[w]. (14.21)

Definition 14.11 (shift operator). For any m ∈ Z, the shift operator Sm : �0 → �0
is defined by

w = Sm(v) has entries wi =

{
vi−m if m ≤ i
0 otherwise

}

for v ∈ �0.

For m ∈ N0, S
m maps (v0, v1, . . .) into

(0, . . . , 0
︸ ︷︷ ︸
m positions

, v0, v1, . . .)

and has the left inverse S−m, i.e., S−mSm = id.

The interaction of the shift operator and π is described by

π[Smv](x) = xm · π[v](x) for m ∈ N0.

14.3.2 Preview and Motivation

Under the assumptions of §14.1.1, we rewrite the vectors v, w ∈ K
n as tensors

v,w ∈ V. To simplify the situation, assume that the tensors are elementary tensors:
v =

⊗d
j=1 v

(j), w =
⊗d

j=1 w
(j) with v(j), w(j) ∈ K

2. We want to perform the
composition of the following mappings:

14.3 Convolution 431

(v,w) ∈ V ×V �→ (v, w) ∈ K
n ×K

n with v = Φn(v), w = Φn(w)

�→ u := v � w ∈ K
2n (cf. (14.18a’))

�→ u := Φ−12n (u) ∈ ⊗d+1
K

2.

(14.22)

We denote the mapping (v,w) �→ u from above shortly by

u := v �w. (14.23)

Note that the result u ∈ U is a tensor of order d+1, since the corresponding vector
u ∈ K

2n−1 also belongs to K
2n (cf. (14.19b)) and 2n = 2d+1.

In principle, the numerical realisation can follow definition (14.22). However,
such an algorithm leads to at least O(n) arithmetical operations, since u := v �w is
performed. Assuming that the data sizes of v and w are much smaller than O(n),
such an approach is too costly. Instead, the cost of v �w should be related to the
data sizes of v and w. An algorithm of this kind is obtained, if we perform the
convolution separately in each direction:

⎛

⎝
d⊗

j=1

v(j)

⎞

⎠ �

⎛

⎝
d⊗

j=1

w(j)

⎞

⎠ =

d⊗

j=1

(
v(j) � w(j)

)
, (14.24)

provided that the right-hand side is a true description of u := v �w. Unfortunately,
this equation seems to be incorrect and even inconsistent, since the vector v(j)�w(j)

belongs to K
3 instead of K2.

Because of (14.1c), this difficulty is connected to a well-known problem arising
for sums of integers in digital representation. When adding the decimal numbers
836 and 367, the place-wise addition of the digits yields

8 3 6
3 6 7

(11) 9 (13)

with the problem that 13 and 11 are no valid (decimal) digits. While this problem
is usually solved by the carry-over, we can also allow a generalised decimal
representation (11)(9)(13) meaning 11 · 102 + 9 · 101 + 13 · 100, i.e., admitting
all non-negative integers instead of the digits {0, . . . , 9}.

Such a ‘generalised representation’ for tensors will make use of the tensor space
⊗d�0 introduced in §14.3.3. Note that a vector from K

3 appearing in the right-hand
side of (14.24) is already considered as an element of �0. It will turn out that (14.24)
has a correct interpretation in ⊗d�0. A corresponding ‘carry-over’ technique is
needed to obtain a result in

U = ⊗d+1
K

2.

432 14 Tensorisation

14.3.3 Tensor Algebra A(�0)

14.3.3.1 Definition and Interpretation in �0

The embedding K
2 ⊂ �0 leads to the embedding

V = ⊗dK2 =

d⊗

j=1

K
2 ⊂ ⊗d�0 =

d⊗

j=1

�0

(cf. Notation 3.23). The tensor algebra (cf. §3.4) is defined by

A(�0) := span{a ∈ ⊗d �0 : d ∈ N}.

Remark 14.12. A linear mapping F : A(�0) → V into some vector space V is
well-defined, if one of the following conditions holds:

(a) F : ⊗d�0 → V is defined as linear mapping for all d ∈ N,

(b) the linear mapping F is defined for all elementary tensors
⊗d

j=1 v
(j) ∈ ⊗d�0

and for any d ∈ N,

(c) the linear mapping F is defined for all elementary tensors
⊗d

j=1 e
(ij) ∈ ⊗d�0

and for all ij ∈ N0 and all d ∈ N. Here, e(ν) ∈ �0 is the unit vector with entries

e(ν)[k] = δkν (k, ν ∈ N0).

Proof. By definition, A(�0) is the direct sum of ⊗d�0, i.e., non-vanishing tensors
of ⊗d�0 with different order d are linearly independent. This proves part (a). A
linear mapping F : ⊗d�0 → V is well-defined by the images of the basis vectors
e(i) :=

⊗d
j=1 e

(ij) for all i = (ij)j=1,...,d ∈ N
d
0. ��

In (14.1c), the isomorphism Φn : V→K
n has been defined. We extend this

mapping to A(�0) by

Φ : A(�0)→ �0 , (14.25)

a ∈ ⊗d�0 �→ v ∈ �0
with vk =

∑

i1,...,id∈N0 such that k=
∑

d
j=1 ij2

j−1

a[i1i2 . . . id].

Remark 14.13. Since �0 is a subspace of A(�0) and Φ(v) = v holds for v ∈ �0, the
mapping Φ is a projection onto �0. Furthermore, the restriction of Φ to the tensor
subspace V = ⊗dK2 ⊂ ⊗d�0 coincides with Φn from (14.1c) (hence, Φ is an
extension of Φn).

14.3 Convolution 433

14.3.3.2 Equivalence Relation and Polynomials

Definition 14.14. The equivalence relation ∼ on A(�0) is defined by

a ∼ b ⇔ Φ(a) = Φ(b) (a,b ∈ A(�0)).

Since Φ is a projection onto �0, we have in particular

Φ(a) ∼ a for all a ∈ A(�0). (14.26)

The mapping π : �0 → P is defined in (14.20). We want to extend this mapping
to A(�0) ⊃ �0 such that

a ∼ b ⇔ πA[a] = πA[b]. (14.27)

Definition 14.15. The extension9 πA : A(�0) → P of π : �0 → P from (14.20) is
defined by

πA

[⊗d

j=1
a(j)

]

(x) :=
∏d

j=1
π[a(j)]

(
x2

j−1
)
. (14.28)

Lemma 14.16. Mapping πA from Definition 14.15 is an extension of π : �0 → P
and satisfies (14.27). Moreover,

π[Φ(a)] = πA[a]. (14.29)

Proof. 1) v ∈ �0 = ⊗1�0 ⊂ A(�0) is an elementary tensor
⊗1

j=1 v
(j) with the

only factor v(1) = v. Definition (14.28) yields πA[v](x) =
∏1
j=1 π[v

(j)](x2
j−1

) =

π[v(1)](x1) = π[v](x), proving the extension property πA|�0 = π.

2) Let e(i) :=
⊗d

j=1 e
(ij) ∈ ⊗d�0 for some multi-index i = (ij)j=1,...,d ∈ N

d
0.

Since π[e(ij)](x) = xij , definition (14.28) yields

πA[e
(i)](x) =

∏d

j=1
π[e(ij)](x2

j−1

) =
∏d

j=1
(x2

j−1

)ij =
∏d

j=1
xij2

j−1

= xk for k :=
∑d

j=1
ij2

j−1. (14.30)

Definition (14.25) shows Φ(e(i))=e(k)∈�0 with k as above. Hence, π[Φ(e(i))]=xk

proves (14.29) for a = e(i). By Remark 14.12c, (14.29) follows for all a ∈ A(�0).
3) The statement πA[a] = πA[b] ⇔ π[Φ(a)] = π[Φ(b)] follows from (14.29).

Since π : �0 → P is an isomorphism, also π[Φ(a)] = π[Φ(b)] ⇔ Φ(a) = Φ(b)
holds. The latter equality is the definition of a ∼ b. Hence, (14.27) is proved. ��

Remark 14.17. a⊗ e(0) ∼ a and πA[a⊗ e(0)] = πA [a] hold for all a ∈ A(�0).

Proof. By Remark 14.12c, it suffices to consider the tensor a =
⊗d

j=1 e
(ij). Then

b := a⊗ e(0) equals
⊗d+1

j=1 e
(ij) with id+1 := 0. By (14.28), πA[a](x) = xk holds

with k as in (14.30), while πA[b](x) = xk · π[e(0)](x) = xk · 1 = xk. Now, (14.27)
proves the assertion. ��
9 It may be more natural to define the mapping π̂A into polynomials of all variables xj (j ∈ N) by
π̂A[

⊗d
j=1 v

(j)](x) :=
∏d

j=1 π[v
(j)] (xj) . Then the present value πA[

⊗d
j=1 v

(j)](x) results

from the substitutions xj := x2j−1
.

434 14 Tensorisation

14.3.3.3 Shift

Next, we extend the shift operator Sm : �0 → �0 to SmA : A(�0)→ A(�0) by means
of 10

SmA

(⊗d

j=1
v(j)

)

:=
(
Smv(1)

)
⊗
⊗d

j=2
v(j). (14.31)

Remark 14.18. Φ(SmA (a)) = Sm(Φ(a)) holds for all a ∈ A(�0). S
m
A is an exten-

sion of Sm, since SmA |�0 = Sm.

Proof. According to Remark 14.12c, we choose a tensor a = e(i) =
⊗d

j=1 e
(ij) ∈

⊗d�0 with i = (ij)j=1,...,d ∈ N
d
0. SinceΦ(a) = e(k) holds with k defined in (14.30),

the shift yields the result Sm(Φ(a)) = e(k+m). On the other hand, (14.31) shows
that SmA (a) = e(i1+m) ⊗

⊗d
j=2 e

(ij) and Φ(SmA (a)) = e(k+m), proving the first
assertion Φ(SmA (a)) = Sm(Φ(a)). The second one is trivial. ��

On the right-hand side of (14.31), the shift operator Sm is applied to v(1) only.
Next, we consider shifts of all v(j).

Lemma 14.19. Let m = (m1, . . . ,md) ∈ N
d
0. The operator S(m) :=

⊗d
j=1 S

mj

applied to v ∈ ⊗d�0 yields

πA[S
(m)v](x) = xmπA[v](x)

S(m)v ∼ Sm(Φ(v))

}

with m =

d∑

j=1

mj2
j−1. (14.32)

Proof. 1) By Remark 14.12c, we may consider v = e(i) =
⊗d

j=1 e
(ij). Set i :=

∑d
j=1 ij2

j−1. Then, S(m)e(i) =
⊗d

j=1 e
(ij+mj) yields

πA[S
(m)v](x) = πA

⎡

⎣
d⊗

j=1

e(ij+mj)

⎤

⎦ (x) =

d∏

j=1

x(ij+mj)2
j−1

= xi+m,

which coincides with xmπA[v](x) = xmπA[
⊗d

j=1 e
(ij)](x) = xmxi. This proves

the first part of (14.32).
2) Sm(Φ(v)) = Φ(SmA (v)) holds by Remark 14.18. The definition of SmA can

be rewritten as S(m̂) with the multi-index m̂ = (m, 0, . . . , 0) . Statement (14.26)
shows Φ(S(m̂)(v)) ∼ S(m̂)(v) , hence Sm(Φ(v)) ∼ S(m̂)(v). Since S(m̂)(v) and
S(m)v have the identical image xmπA[v](x) under the mapping πA, property
(14.27) implies the second statement in (14.32). ��

Corollary 14.20. Let v ∈ ⊗d�0 and m,m′ ∈ N
d
0. Then

d∑

j=1

mj2
j−1 =

d∑

j=1

m′j2
j−1 implies S(m)v ∼ S(m′)v.

10 Here, we make use of Remark 14.12b and restrict the definition to elementary tensors.

14.3 Convolution 435

14.3.3.4 Multi-Scale Interpretation

The representation of a vector from �0 by means of Φ(a) with a ∈ A(�0) has
similarities to the multi-scale analysis of functions using a wavelet basis. A vector
v ∈ �0 is often viewed as the vector of grid values vk = f(k) of a (smooth) function
f defined on [0,∞). Let a =

⊗d
ν=1 a

(ν) ∈ ⊗d�0 and j ∈ {1, . . . , d}. A shift in
position j is described by

a �→ â := a(1) ⊗ . . .⊗ a(j−1) ⊗ (Sa(j))⊗ a(j+1) ⊗ . . .⊗ a(d)

and corresponds to v = Φ(a) �→ v̂ := Φ(â) with v̂ = S2j−1

v (cf. (14.32)). The
interpretation of v by vk = f(k) leads to v̂μ = f̂(μ) with the shifted function
f̂(x) = f(x + 2j−1). On the other hand, a multi-scale basis at level � = j − 1 is
given by {ψν}with the shift propertyψμ(x) = ψν(x+(ν − μ) 2�). Hence, the shift

f =
∑

ν

cνψν �→ f̂ =
∑

ν

(Sc)ν ψν =
∑

ν

cν−1ψν =
∑

ν

cνψν+1

also results in f̂(x) = f(x+ 2�).

14.3.3.5 Convolution

Finally, we define a convolution operation in A(�0). The following � operation will
be different (but equivalent) to the � operation in (14.23). The former operation
acts in A(�0) × A(�0) and yields results in A(�0), whereas the latter one maps
(⊗dK2)× (⊗dK2) into ⊗d+1

K
2.

For elementary tensors a =
⊗d

j=1 a
(j) and b =

⊗d
j=1 b

(j) from ⊗d�0 the
obvious definition is

⎛

⎝
d⊗

j=1

a(j)

⎞

⎠ �

⎛

⎝
d⊗

j=1

b(j)

⎞

⎠ =

d⊗

j=1

(
a(j) � b(j)

)
(14.33)

(cf. (14.24) and (4.74)). Since A(�0) contains tensors of different orders, we define
more generally

⎛

⎝
da⊗

j=1

a(j)

⎞

⎠ �

⎛

⎝
db⊗

j=1

b(j)

⎞

⎠ =

dc⊗

j=1

c(j) with dc := max{da, db}

and

⎧
⎨

⎩

c(j) := a(j) � b(j) for j ≤ min{da, db},

c(j) :=

{
a(j) for db < j ≤ dc if da = dc,
b(j) for da < j ≤ dc if db = dc.

(14.34)

Note that (14.34) coincides with (14.33) for da = db.

436 14 Tensorisation

Corollary 14.21. Another interpretation of (14.34) follows. Assume a ∈ ⊗da�0 and
b ∈ ⊗db�0 with da < db. Replace a by â := a ⊗

⊗dc
j=da+1 e

(0) ∈ ⊗dc�0 and set
a � b := â � b, where the latter expression can be defined by (14.33) with d = db.
As

e(0) � v = v � e(0) = v for all v ∈ �0,

the new definition of a � b coincides with (14.34).

Property (14.21) has a counterpart for the convolution in A(�0), which will be
very helpful in §14.3.4.

Proposition 14.22. (a) Φ(a � b) = Φ(a) � Φ(b) holds for all a,b ∈ A(�0), where
the second � operation is the convolution (14.18b) in �0.
(b) The implication

c ∼ a � b ⇔ Φ(c) = Φ(a) � Φ(b)

holds for all a,b, c ∈ A(�0).

Proof. We apply (14.21), which holds for the �0-convolution:

Φ(c) = Φ(a) � Φ(b) ⇔ π[Φ(c)] = π[Φ(a)]π[Φ(b)].

By (14.29), this is equivalent to πA[c] = πA[a]πA[b]. It suffices to consider
elementary tensors a =

⊗da
j=1 a

(j) and b =
⊗db

j=1 b
(j) (extend Remark 14.12

to the bilinear mapping �). First we assume da = db =: d. Then definition (14.33)
yields

πA[a � b](x) = πA

⎡

⎣
d⊗

j=1

(a(j) � b(j))

⎤

⎦ (x) =
(14.28)

d∏

j=1

π[a(j) � b(j)](x2
j−1

) =
(14.21)

=

d∏

j=1

{
π[a(j)](x2

j−1

) · π[b(j)](x2j−1

)
}

=

⎡

⎣
d∏

j=1

π[a(j)](x2
j−1

)

⎤

⎦ ·

⎡

⎣
d∏

j=1

π[b(j)](x2
j−1

)

⎤

⎦ =
(14.28)

= πA[a](x) · πA[b](x).

This proves Φ(a � b) = Φ(a) � Φ(b) for a,b ∈ ⊗d�0. For elementary tensors of
different orders dv �= dw use the equivalent definition from Corollary 14.21. Since
πA[â] =πA[a] (cf. Remark 14.17), assertion (a) follows from the previous result.

Because c ∼ a � b is equivalent to Φ(c)=Φ(a � b), Part (b) follows from (a).��

Exercise 14.23. Let a, a′ ∈ ⊗d�0 and b,b′ ∈ A(�0) with a ∼ a′ and b ∼ b′.
Prove a⊗ b ∼ a′ ⊗ b′.

14.3 Convolution 437

14.3.3.6 Carry-over Procedure

In §14.3.2 we have pointed to the analogue of the ‘carry-over’ for sums of inte-
gers. In the present case, the ‘carry-over’ must change an element a ∈ A(�0) into
a′ ∈A(�0) such that a∼a′ and a′∈⊗dK2 for a minimal d. Equivalence a∼a′ en-
sures that both a and a′ are (generalised) tensorisations of the same vector Φ(a)=
Φ(a′)∈ �0. The minimal d is determined by the inequality 2d−1<deg(Φ(a))≤ 2d .
The following algorithm proceeds from Step 0 to Step d− 1.

Step 0) Any element a is a finite sum
∑
ν aν of elementary tensors aν ∈ ⊗dν �0.

Case a) If dν > d, we may truncate to d as follows. Let aν = a′ν ⊗ a′′ν with
a′ν ∈ ⊗d�0 and a′′ν ∈ ⊗dν−d�0. Replace aν by ãν := λa′ν ∈ ⊗d�0, where
λ := (a′′ν) [0 . . . 0] is the entry for (i1, . . . , idν−d) = (0, . . . , 0) . Then Φ(aν)
and Φ(ãν) have identical entries for the indices 0 ≤ i ≤ 2d − 1. The other may
differ, but in the sum

∑
νaν they must vanish, since deg(Φ(a)) ≤ 2d. Hence,∑

νaν ∼
∑

ν ãν are equivalent representations.

Case b) If dν < d, replace aν by ãν := aν ⊗
⊗d

j=dν+1 e
(0). Remark 14.17

ensures aν ∼ ãν .
After these changes, the new ã ∼ a belongs to V := ⊗d�0.

Step 1) a∈⊗d�0 has the representation
∑

ν a
(1)
ν ⊗ a(>1)

ν with components a(1)ν ∈ �0
and a(>1)

ν ∈
⊗d

j=2 �0. In case of deg(a(1)ν) > 2, split a := a
(1)
ν into a′(1)ν +S2a

′′(1)
ν

with a′(1)ν ∈ K
2. For this purpose, set

a′(1)ν := (a0, a1) and a′′(1)ν := (a3, a4, . . .) = S−2a(1)ν ∈ �0.
Then (14.32) implies

a(1)ν ⊗a(>1)
ν = a′(1)ν ⊗a(>1)

ν +
(
S2a′′(1)ν

)
⊗a(>1)

ν ∼ a′(1)ν ⊗a(>1)
ν +a′′(1)ν ⊗

(
S1a(>1)

ν

)
.

Note that deg(a′′(1)ν) = deg(a
(1)
ν) − 2 has decreased. As long as deg(a′′(1)ν) > 2,

this procedure is to be repeated.
At the end of Step 1, a new tensor ã =

∑
ν a

(1)
ν ⊗ a(>1)

ν ∼ a with a(1)ν ∈ K
2 is

obtained.

Step 2) If d > 2, we apply the procedure of Step 1 to a(>1)
ν in ã =

∑
ν a

(1)
ν ⊗ a(>1)

ν

with d replaced by d−1. Each a(>1)
ν is replaced by ã(>1)

ν =
∑
μ a

(2)
νμ ⊗a(>2)

νμ ∼ a(>1)
ν .

By Exercise 14.23, ã ∼ â :=
∑
ν,μ a

(1)
ν ⊗ a(2)νμ ⊗ a(>2)

νμ holds with a(1)ν , a
(2)
νμ ∈ K

2.

Take â as new ã. Reorganisation of the sum
∑

ν,μ
yields ã=

∑
ν a

(1)
ν ⊗a(2)ν ⊗a(>2)

ν ∼a

with a(1)ν , a
(2)
ν ∈ K

2.
...

Step d − 1) The previous procedure yields ã =
∑

ν

⊗d
j=1 a

(j)
ν with a(j)ν ∈ K

2 for

1 ≤ j ≤ d− 1. If deg(a(d)ν) > 2, split a(d)ν into a′(d)ν +S2a
′′(d)
ν with a′(d)ν ∈ K

2. As

in Case a) of Step 0), we conclude that
∑
ν

(⊗d−1
j=1 a

(j)
ν

)
⊗
(
S2a

′′(d)
ν

)
= 0. Hence,

ã =
∑

ν

(⊗d−1
j=1 a

(j)
ν

)
⊗ a′(d)ν ∼ a is the desired representation in V := ⊗dK2.

438 14 Tensorisation

14.3.4 Algorithm

14.3.4.1 Main Identities

A tensor v ∈ ⊗dK2 (d ∈ N) possesses a unique decomposition11

v = v′ ⊗
[
1
0

]
+ v′′ ⊗

[
0
1

]
with v′,v′′ ∈ ⊗d−1K2.

The linear mappings v �→ v′ and v �→ v′′ from ⊗dK2 onto ⊗d−1K2 are denoted
by φ′d and φ′′d , respectively. Their precise definition is

φ′d

(
v ⊗

[
α
β

])
= αv, φ′′d

(
v ⊗

[
α
β

])
= βv for v ∈ ⊗d−1K2.

We start with the simple case of d = 1. The next lemma demonstrates how the
‘carry-over’ is realised.

Lemma 14.24. The convolution of
[
α
β

]
,
[
γ
δ

]
∈ K

2 = ⊗1
K

2 yields

[
α
β

]
�
[
γ
δ

]
= Φ(v) with v :=

[
αγ

αδ+βγ

]
⊗
[
1
0

]
+
[
βδ
0

]
⊗
[
0
1

]
∈ ⊗2

K
2. (14.35a)

Furthermore, the shifted vector S1
([
α
β

]
�
[
γ
δ

])
has the tensor representation

S1
([
α
β

]
�
[
γ
δ

])
= Φ(v) with v :=

[
0
αγ

]
⊗
[
1
0

]
+
[
αδ+βγ
βδ

]
⊗
[
0
1

]
∈ ⊗2

K
2. (14.35b)

Proof. An elementary calculation yields
[
α
β

]
�
[
γ
δ

]
=

[
αγ

αδ+βγ
βδ

]

∈ K
3, where the

latter vector is identified with (αγ, αδ + βγ, βδ, 0, 0, . . .) ∈ �0. We split this vector
into

[
αγ

αδ+βγ

]
+ S2

[
βδ
0

]
. From

[
αγ

αδ+βγ

]
∼
[

αγ
αδ+βγ

]
⊗
[
1
0

]
(cf. Remark 14.17) and

S2
[
βδ
0

]
∼
(
S2
[
βδ
0

])
⊗
[
1
0

]
∼
[
βδ
0

]
⊗
(
S1
[
1
0

])
=
[
βδ
0

]
⊗
[
0
1

]

we obtain the first assertion. The second one follows analogously from

S1
([
α
β

]
�
[
γ
δ

])
=

[
0
αγ

αδ+βγ
βδ

]

∼
[

0
αγ

]
+ S2

[
αδ+βγ
βδ

]

finishing the proof. ��

The basic identity is given in the next lemma, which shows how the convolution
product of tensors of order d− 1 can be used for tensors of order d. Note that a′, a′′

and u′, u′′ can be expressed by φ′d(a), φ
′′
d(a) and φ′d(u), φ

′′
d(u), respectively.

11 For d = 1, the tensors v′,v′′ degenerate to numbers from the field K.

14.3 Convolution 439

Lemma 14.25. Let d ≥ 2. Assume that for v,w ∈ ⊗d−1K2 the equivalence

v �w ∼ a = a′ ⊗
[
1
0

]
+ a′′ ⊗

[
0
1

]
∈ ⊗dK2 (14.36a)

holds. Let the tensors v ⊗ x,w ⊗ y ∈ ⊗dK2 be defined by x=
[
α
β

]
, y=

[
γ
δ

]
∈ K

2.
Then,

(v ⊗ x) � (w ⊗ y) ∼ u = u′ ⊗
[
1
0

]
+ u′′ ⊗

[
0
1

]
∈ ⊗d+1

K
2

with u′ = a′ ⊗
[

αγ
αδ+βγ

]
+ a′′ ⊗

[
0
αγ

]
∈ ⊗dK2 (14.36b)

and u′′ = a′ ⊗
[
βδ
0

]
+ a′′ ⊗

[
αδ+βγ
βδ

]
∈ ⊗dK2.

Proof. Proposition 14.22 ensures that

(v ⊗ x) � (w ⊗ y) ∼ (v �w)⊗ z with z := x � y ∈ K
3 ⊂ �0.

Assumption (14.36a) together with a′ ⊗
[
1
0

]
∼ a′ (cf. Remark 14.17) and

a′′ ⊗
[
0
1

]
= a′′ ⊗

(
S1
[
1
0

])
∼ S2d−1

A a′′

(cf. Remark 14.18) yields

(v �w)⊗ z ∼
(
a′ + S2d−1

A a′′
)
⊗ z.

Again, Remark 14.18 shows that

(S2d−1

A a′′)⊗ z = S2d−1

A (a′′ ⊗ z) ∼ a′′ ⊗ (Sz).

Using (14.35a,b), we obtain

a′ ⊗ z ∼ a′ ⊗
[

αγ
αδ+βγ

]
⊗
[
1
0

]
+ a′ ⊗

[
βδ
0

]
⊗
[
0
1

]
,

(
S2δ−1

a′′
)
⊗ z ∼ a′′ ⊗ (Sz) ∼ a′′ ⊗

[
0
αγ

]
⊗
[
1
0

]
+ a′′ ⊗

[
αδ+βγ
βδ

]
⊗
[
0
1

]
.

Summation of both identities yields the assertion of the lemma. ��

If x =
[
α
β

]
and y =

[
γ
δ

]
are equal to any of the unit vectors

[
1
0

]
,
[
0
1

]
, the quantities

[
αγ

αδ+βγ

]
,
[

0
αγ

]
,
[
βδ
0

]
,
[
αδ+βγ
βδ

]

arising in (14.36b) are of the form
[
0
0

]
,
[
1
0

]
, or

[
0
1

]
.

Remark 14.26. Given v,w ∈ ⊗dK2, Lemmata 14.24 and 14.25 allow to find the
unique u ∈ ⊗d+1

K
2 with v �w ∼ u. In the following, we write v �w instead of

u. This notation coincides with the definition in (14.23).

440 14 Tensorisation

14.3.4.2 Realisation in Different Formats

First, we assume that v, w ∈ K
n are represented by v = Φ(v) and w = Φ(w) with

elementary tensors v =
⊗d

j=1 v
(j) and w =

⊗d
j=1 w

(j). Already the convolution
v(1) � w(1) ∈ ⊗2

K
2 yields a tensor of rank 2, as seen from (14.35a). Assume by

induction that
(⊗d−1

j=1 v
(j)
)
�
(⊗d−1

j=1 w
(j)
)
∼ a ∈ ⊗dK2 has a representation rank

2d−1. Then (14.36b) yields a representation rank 2d. Since 2d = n is the bound
of the maximal tensor rank in ⊗d+1

K
2, the r-term representation may yield large

representation ranks for v �w, even if rank(v) = rank(w) = 1. Hence, the r-term
format Rr is not a proper choice for the convolution.

Since the tensor subspace format Tr is questionable anyway (see discussion in
§14.1.1), we use the Htens

ρ format as described in §14.1.2. We recall the involved
subspaces Uj ⊂ ⊗jK2 for 1 ≤ j ≤ d (cf. (14.4a-c)).

Theorem 14.27. Let tensors v, w ∈ ⊗dK2 be represented as v ∈ Htens
ρ′ and

w ∈ Htens
ρ′′ involving the respective subspaces U′j and U′′j , 1 ≤ j ≤ d, i.e.,

U′1 = K
2, U′j ⊂ U′j−1 ⊗K

2, dim(U′j) = ρ′j , v ∈ U′d ,
U′′1 = K

2, U′′j ⊂ U′′j−1 ⊗K
2, dim(U′′j) = ρ′′j , w ∈ U′′d .

(14.37a)

Then v �w ∈ ⊗d+1
K

2 belongs to the formatHtens
ρ with

ρ1 = ρd+1 = 2, ρj ≤ 2ρ′jρ
′′
j (1 ≤ j ≤ d) (14.37b)

The involved subspaces

Uj := span{φ′j+1(x � y), φ
′′
j+1(x � y) : x ∈ U′j , y ∈ U′′j } (1≤j≤d) (14.37c)

with dim(Uj) = ρj satisfy again

U1 = K
2, Uj ⊂ Uj−1 ⊗K

2 (2 ≤ j ≤ d+ 1) , v �w ∈ Ud+1. (14.37d)

Proof. 1) By Lemma 14.24,U1 defined in (14.37c) equalsK2 as required in (14.4a).
2) Let j ∈ {2, . . . , d}. Because of U′j ⊂ U′j−1 ⊗K

2 and U′′j ⊂ U′′j−1 ⊗K
2, we

have

Uj ⊂ span

{

φ′j+1(x � y), φ
′′
j+1(x � y) :

{
x = v⊗x, v ∈ U′j−1, x ∈ K

2

y = w⊗y, w ∈ U′′j−1, y ∈ K
2

}}

.

By (14.36a), v �w ∈ span{a′, a′′} ⊗ K
2 holds with a′, a′′ ∈ Uj−1. The tensors

u′ = φ′j+1(x � y) and u′′ = φ′′j+1(x � y) from (14.36b) belong to Uj−1 ⊗ K
2,

proving Uj ⊂ Uj−1 ⊗K
2 . ��

The fact that the ranks are squared is the usual consequence of binary opera-
tions (cf. §13.5.3). The factor 2 in ρj ≤ 2ρ′jρ

′′
j is the carry-over effect. The exact

computation using a frame b(j) of size ρj spanning Uj can be followed by an ortho-
normalisation and truncation.

14.4 Fast Fourier Transform 441

14.4 Fast Fourier Transform

The fast Fourier algorithm uses the same hierarchical structure as the tensorisation.
Therefore it is not surprising that the fast Fourier transform can be realised by means
of the tensors without using the original vectors. After recalling the algorithm for
vectors in §14.4.1, the tensorised version is derived in §14.4.2. The latter algorithm
is studied by Dolgov et al. [49], which also describes the sine and cosine transforms.

14.4.1 FFT for Cn Vectors

Let n = 2d and ωd := exp(2πi/n). The discrete Fourier transform (DFT) is the
mapping v ∈ C

n into v̂ ∈ C
n defined by

v̂ = Fdv with Fd = 1√
n
(ωk�d)n−1k,�=0.

The inverse Fourier transform v̂ �→v is described by FH
d involving ωd instead of ωd.

We recall the fast Fourier transform (FFT) in the case of n = 2d. If d = 0, v̂ = v

holds. Otherwise, introducing vI = (vk)
n/2−1
k=0 and vII = (vk)

n−1
k=n/2, we observe

that

v̂2k =
1√
n

⎡

⎣

n
2−1∑

�=0

ω2k�
d v� +

n−1∑

�=n
2

ω2k�
d v�+n

2

⎤

⎦ =
1√
2
Fd−1

(
vI + vII

)
,

v̂2k+1 =
1√
n

⎡

⎣

n
2−1∑

�=0

ω2k�
d ω�dv� −

n−1∑

�=n
2

ω2k�
d ω�dv�+n

2

⎤

⎦ = 1√
2
Fd−1

(
&d�

(
vI−vII

))

for 0 ≤ k ≤ n/2− 1. The last expression uses a Hadamard product with the vector

&d := (ω�d)
n/2−1
�=0 ∈ C

n/2.

For an algorithmic description one needs a function Divide with the property
vI = Divide(v, 1), vII = Divide(v, 2), and a function12 Merge, such that the
arguments u = (u0, u1, . . . , un/2−1)

T and v = (v0, v1, . . . , vn/2−1)
T are mapped

into w := Merge(u, v) ∈ C
n with w = (u0, v0, u1, v1, . . . , un/2−1, vn/2−1)

T, i.e.,
w2k = uk and w2k+1 = vk. Then the discrete Fourier transform can be performed
by the following recursive function:

function DFT (v, d); {v ∈ C
n with n = 2d}

if d = 0 then DFT := v else
begin vI := Divide(v, 1); vII := Divide(v, 2); (14.38)

DFT := 1√
2
Merge(DFT (vI+vII , d− 1), DFT (&d �

(
vI−vII

)
, d− 1))

end;

12 After d merge steps the bit reversal is already performed.

442 14 Tensorisation

14.4.2 FFT for Tensorised Vectors

The vectors v and v̂ = Fdv correspond to tensors v, v̂ ∈ ⊗dC2 with Φn(v) = v
and Φn(v̂) = v̂. Note that

v̂ = Fdv for Fd := Φ−1n Fd Φn. (14.39)

To perform Fd directly, we have to rewrite the function DFT from (14.38) for the
tensorised quantities.

Lemma 14.28. Assume n = 2d, d ≥ 1. (a) The tensor vI ∈ ⊗d−1C2 satisfying
Φn(v

I) = vI = Divide(v, 1) is obtained by evaluating v = Φ−1n (v) at id = 0, i.e.,

vI [i1, . . . , id−1] := v[i1, . . . , id−1, 0] for all 0 ≤ ij ≤ 1, 1 ≤ j ≤ d− 1.

Similarly, Φn(vII) = vII = Divide(v, 2) holds for

vI [i1, . . . , id−1] := v[i1, . . . , id−1, 1] for all 0 ≤ ij ≤ 1, 1 ≤ j ≤ d− 1.

(b) Let wI , wII ∈ C
n/2 with w := Merge(wI , wII) ∈ C

n. The tensorised quanti-
ties wI = Φ−1n/2(w

I), wII = Φ−1n/2(w
II), and w = Φ−1n (w) satisfy

w =
[
1
0

]
⊗wI +

[
0
1

]
⊗wII .

(c)�d =
d−1⊗

j=1

[
1

ω2j−1

d

]

with Φn/2(�d) = &d is an elementary tensor.

Proof. For (a), (b) use definition (14.1c). For (c) see Remark 5.18 and (14.8). ��

By Lemma 14.28 there are direct realisations ofDivide andMerge for the tensor
counterpart, which we denote by Divide and Merge. The tensorised version of
DFT is v̂ = DFT(v, d) satisfying (14.39). The analogous algorithmic description
is13

function DFT(v, d); {v ∈ ⊗dC2}
if d = 0 then DFT := v else
begin vI := Divide(v, 1); vII := Divide(v, 2);

DFT := 1√
2
Merge(DFT(vI+vII , d− 1),DFT(�d � (vI−vII), d− 1))

end;

Define Ωdv by 1√
2
Merge(vI + vII ,�d � (vI − vII)) and observe the identity

Fd = (id⊗ Fd−1)Ωd. The d-fold recursion yields

Fd = Ω1Ω2 · · ·Ωd−1Ωd,

where Ωj applies to the components d − j + 1, . . . , d, while the components
1, . . . , d− j remain unchanged.

13 Instead of multiplying by 1/
√
2 in each step, one can divide by

√
n in the end.

14.4 Fast Fourier Transform 443

In its exact form this procedure is unsatisfactory. Each Ωj doubles the number
of terms so that finally n = 2d terms are created. As a consequence, the amount of
work is not better than the usual FFT for vectors. Instead, after each step a truncation
is applied:

Ftrunc
d = T1Ω1T2Ω2 · · ·Td−1Ωd−1TdΩd (T : truncation). (14.40)

The (nonlinear) truncation operator Tj appearing in (14.40) can be based on a
prescribed accuracy or a prescribed rank.

Lemma 14.29. Given v, set

v(d+1) := ṽ(d+1) := v and
v(j) := TjΩjv(j+1), ṽ(j) := TjΩj ṽ(j+1) for j = d, . . . , 1.

Then ṽ(1)=Ftrunc
d v has to be compared with v(1)=Fdv. Assume that Tj is chosen

such that
∥
∥Tj

(
Ωj ṽ(j+1)

)
−Ωj ṽ(j+1)

∥
∥ ≤ ε

∥
∥Ωj ṽ(j+1)

∥
∥

holds with respect to the Euclidean norm. Then the resulting error can be estimated
by

∥
∥Ftrunc

d v − Fdv
∥
∥ ≤

[
(1 + ε)

d − 1
]
‖v‖ ≈ dε ‖v‖ .

Proof. Set δj :=
∥
∥ṽ(j) − v(j)

∥
∥. Note that δ(d+1) = 0. Since the operation Ωj is

unitary, the recursion

δj =
∥
∥ṽ(j) − v(j)

∥
∥ =

∥
∥
[
Tj
(
Ωj ṽ(j+1)

)
−Ωj ṽ(j+1)

]
+Ωj

(
ṽ(j+1) − v(j+1)

)∥
∥

≤ ε
∥
∥Ωj ṽ(j+1)

∥
∥+

∥
∥Ωj

(
ṽ(j+1) − v(j+1)

)∥
∥ ≤ ε

∥
∥ṽ(j+1)

∥
∥+ δj+1

≤ ε
∥
∥v(j+1)

∥
∥+ (1 + ε) δj+1 = ε ‖v‖ + (1 + ε) δj+1

proves δj ≤ [(1 + ε)
j − 1] ‖v‖ . ��

Next, we assume that the ranks ρ1, . . . , ρd of ṽ(j) ∈ Htens
ρ are uniformly

bounded by ρ. The main part of Ωj is the Hadamard product with �j . The
corresponding cost (cf. (14.7)) is of lower order than the truncation cost O(dρ3)
(cf. (14.9)). Since Ftrunc

d v is obtained after d steps, we obtain the following result
about the computational cost.

Remark 14.30. If, using the Htens
ρ format, all intermediate results have TT ranks

bounded by ρ, the truncated FFT version Ftrunc
d v costs O(d2ρ3) operations.

Note that ρ is the maximum of the ranks of the input tensor v and of all inter-
mediate results ṽ(j) including the final Fourier image v̂. Concerning numerical
examples, we refer to [49].

444 14 Tensorisation

14.5 Tensorisation of Functions

So far, tensorisation has been applied to vectors which might be viewed as a grid
function. Now we use the same formalism for functions. This corresponds to the
multiscale treatment of functions.

14.5.1 Isomorphism ΦF
n

Consider a space F ((a, b]) of functions defined on the interval (a, b] ⊂ R. The
norm (and, possibly, the scalar product) of F ((a, b]) must be such that the norm is
invariant with respect to a shift, i.e.,

‖f‖F ((a,b]) = ‖f(·+ δ)‖F ((a+δ,b+δ]) .

Furthermore, the function space F ((0, 1]) must allow discontinuities of the func-
tions at ν/n, 1 ≤ ν ≤ n− 1.

In the following we try to establish an isomorphism between F ((0, 1]) and

VF
n := F ((0, 1/n]) ⊗

d⊗

j=1

K
2, where n = 2d.

For a better understanding, we first introduce the intermediate tensor space

Vn := F ((0, 1/n])⊗K
n.

Definition 14.31. Define Φ̂n : Vn → F ((0, 1]) by

f = Φ̂n(ϕ⊗ v) ∈ F ((0, 1]) for ϕ ∈ F ((0, 1/n]) and v = (vk)
n−1
k=0 ∈ K

n (14.41)

with f(x) = vk · ϕ(x− k
n) for kn < x ≤ k+1

n and k ∈ {0, . . . , n− 1}.

For v = e(k) being the k-th unit vector, f = Φ̂n(ϕ ⊗ v) can be regarded as ϕ
shifted by k/n, i.e., f(x+ k/n) = ϕ(x) for 0 < x ≤ 1/n and f = 0 elsewhere.

In general, the function Φ̂n(ϕ⊗ v) from (14.41) will be discontinuous, since we
do not require f(k+1

n) = vkϕ(1/n) = vk+1ϕ(0− 0) = f(k+1
n − 0).

Using the isomorphism Φn :
⊗d

j=1 K
2 → K

n for n = 2d, we obtain Vn
∼= V

and can define the final isomorphism

ΦFn : VF
n = F ((0, 1/n])⊗

d⊗

j=1

K
2 → F ((0, 1]),

ΦFn

(

ϕ⊗
d⊗

j=1

v(j)

)

= Φ̂n

(

ϕ⊗ Φn
(d⊗

j=1

v(j)
))

.

14.5 Tensorisation of Functions 445

Let ΨFn be the inverse of ΦFn which maps F ((0, 1]) into VF
n :

ΨFn : f ∈ F ((0, 1]) �→
n−1∑

k=0

fk ⊗ Φ−1n (e(k)) with fk := f(·+ k

n
) ∈ F ((0, 1/n]).

Lemma 14.32. a) For function spaces F ((0, 1]) = Lp((0, 1]) (1 ≤ p ≤ ∞), the
mapping ΦFn : VF

n → F ((0, 1]) is an isomorphism.

b) For function spaces F ((0, 1]) ⊂ C((0, 1]), ΨFn maps F ((0, 1]) into a proper
subspace of VF

n . If one extends F ((0, 1]) to the space

Fpw((0, 1]) =
n−1×
k=0

F
(
(kn ,

k+1
n]

)

of piecewise smooth functions, ΦFn is again an isomorphism.

For the representation of a tensor v ∈ VF
n =

⊗d
j=0 Vj , a variant ofHtens

ρ can be
used. Note thatD = {0, 1, . . . , d} includes 0. TD is again the linear tree. The spaces

Vj = K
2 for 1 ≤ j ≤ d are treated as before. In particular, the bases {b(j)1 , b

(j)
2 } are

fixed (cf. (14.2b)). Only for j = 0, we follow the general concept ofHr and choose
a subspace U0 ⊂ V0 by means of a basis {b(0)i : 1 ≤ i ≤ ρ0}.

A prominent example of U0 is the subspace Pρ0−1 of polynomials of degree
ρ0− 1. A simple basis is b(0)k (x)=xk−1. A more stable choice is are the orthogonal
Legendre polynomial (mapped from [−1, 1] onto [0, 1/n]).

14.5.2 Scalar Products

Assume that V0 = F ((0, 1/n]) is a Hilbert space with the scalar product
〈·, ·〉F , while Vj = K

2 (1 ≤ j ≤ d) is equipped with the Euclidean scalar product
〈v, w〉2 = v1w1+v2w2. For VF

n =
⊗d

j=0 Vj we choose the induced scalar product
(cf. (4.62) and Lemma 4.124).

Remark 14.33. For F ((0, 1/n]) = L2((0, 1/n]), the induced scalar product of

VF
n = F ((0, 1/n])⊗

d⊗

j=2

K
2

coincides with that of L2((0, 1]).

For the practical implementation of the scalar product one needs the products
gik = 〈b(0)k , b

(0)
i 〉F of the basis functions spanning U0, which are of course trivial in

the case of an orthonormal basis.

446 14 Tensorisation

14.5.3 Convolution

Let U I0 ⊗
⊗d

j=1 K
2 and U II0 ⊗

⊗d
j=1 K

2 be two subspaces of VF
n with possibly

different subspaces U I0 , U
II
0 ⊂ F ((0, 1/n]). The convolution of two tensors v ∈

U I0 ⊗
⊗d

j=1 K
2 and w ∈ U II0 ⊗

⊗d
j=1 K

2 is described in [87, §6]. Here, we suppose

that the products bI,(0)k � b
II,(0)
i ∈ F ((0, 2/n]) of all basis functions of U I0 and U II0

are known. The result belongs to U III0 ⊗
⊗d+1

j=1 K
2, where U III0 is spanned by the

restrictions (bI,(0)k � b
II,(0)
i)|(0,1/n] and (b

I,(0)
k � b

II,(0)
i)(• + 1/n)|(0,1/n]. Note that

the result of the convolution is exact.

14.5.4 Continuous Functions

As mentioned in Lemma 14.32, functions from VF
n are, in general, discontinuous

at k
n . This is a drawback for applications, when continuous or even H1([0, 1])

functions are required, i.e., ΦFn (V
F
n) ⊂ F ([0, 1]) ⊂ C([0, 1]).

A possible remedy uses a decomposition which is well-known from hp-finite
element approaches. Choose a subspace U0 ⊂ F ([0, 1/n]) with zero boundary
conditions: f(0) = f(1/n) = 0. Therefore, the space

VI
n := U0 ⊗

d⊗

j=1

K
2

is isomorphic to the subspace14

ΦIn(V
I
n) ⊂ F0[0, 1] :=

{
f ∈ Fpw([0, 1]) : f(

k
n) = 0 for 0 ≤ k ≤ n

}
⊂ C([0, 1]).

Define the space of piecewise linear functions:

Fpl[0, 1] :=

{

f ∈ F ([0, 1]) : f(1) = 0 and f |
[
k
n ,
k+1
n]

linear for 0 ≤ k ≤ n− 1

}

and note that Fpl[0, 1] is determined by the n nodal values f(kn) for 0 ≤ k ≤ n− 1.
Hence, Fpl[0, 1] is isomorphic to K

n and to

VII
n :=

⊗d

j=1
K

2.

The sum of F0[0, 1] and Fpl[0, 1] yields all f ∈ F ([0, 1]) with the side condition
f(1) = 0. To avoid the latter restriction, a further one-dimensional space must be
added.

As a consequence, there are two tensors vI ∈ VI
n and vII ∈ VII

n representing a
function. Operations, which cause an interaction of both data, like the scalar product,
are possible, but more involved (the matrices from Figure 14.1.6 come into play).

14 For F ([0, 1]) = C([0, 1]) or F ([0, 1]) = H1([0, 1]), ΦI
n(V

I
n) = F ([0, 1]) holds. For

smoother function spaces like F ([0, 1]) = C1([0, 1]), the derivatives of f ∈ ΦI
n(V

I
n) are still

discontinuous.

Chapter 15
Generalised Cross Approximation

Abstract An important feature is the computation of a tensor from comparably few
tensor entries. The input tensor v ∈ V is assumed to be given in a full functional
representation so that, on request, any entry can be determined. This partial informa-
tion can be used to determine an approximation ṽ ∈ V. In the matrix case (d=2) an
algorithm for this purpose is well-known under the name ‘cross approximation’ or
‘adaptive cross approximation’ (ACA). The generalisation to the multi-dimensional
case is not straightforward. We present a generalised cross approximation, which fits
to the hierarchical format. If v ∈Hr holds with a known rank vector r, this tensor
can be reproduced exactly, i.e., ṽ = v. In the general case, the approximation is
heuristic. Exact error estimates require either inspection of all tensor entries (which
is practically impossible) or strong theoretical a priori knowledge.
There are many different applications, where tensors are given in a full functional
representation. Section 15.1 gives examples of multivariate functions constructed
via integrals and describes multiparametric solutions of partial differential equa-
tions, which may originate from stochastic coefficients. Section 15.2 introduces the
definitions of fibres and crosses. The matrix case is recalled in Sect. 15.3., while the
true tensor case (d ≥ 3) is considered in Sect. 15.4.

15.1 Approximation of General Tensors

In the following, we consider tensors from V =
⊗d

j=1Vj with Vj = K
Ij and re-

call the full functional representation of tensors mentioned in §7.2. In that case,
all entries v[i1, . . . , id] of v ∈ V are available; however, they are not collectively
stored. Instead, they are obtainable via a function v(i1, i2, . . . , id). This approach is
the only possibility for standard functions, which can never be represented by the
infinite number of their function values. In the discrete case, a tensor v can often be
regarded as grid function:

v[i1, . . . , id] = ϕ(i1h, . . . , idh) (ij ∈ Ij ⊂ Z). (15.1)

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 15,
© Springer-Verlag Berlin Heidelberg 2012

447

448 15 Generalised Cross Approximation

If, e.g., Ij = {0, . . . , n} and h = 1/n, the tensor v is the restriction of the function
ϕ ∈ C([0, 1]d) to the uniform grid with step size h.

If v is given in some tensor format together with a procedure for its entrywise
evaluation, the full functional representation is given. Note that in the latter case, we
even do not need to know the kind of format.

The aim is to approximate the tensor in the hierarchical formatHr.
Next, we give different examples for tensors in full functional representation.

15.1.1 Approximation of Multivariate Functions

Even if a multivariate function1 ϕ ∈ C([0, 1]d) is available, each call of ϕ might
be rather costly. The goal is the computation of an approximation ṽ to the tensor v
from (15.1) in some tensor format. Then the evaluation of the tensor ṽ[i1, . . . , id]
approximates the grid value ϕ(i1h, . . . , idh). Depending on the representation
ranks, the tensor evaluation may be much cheaper than the function evaluation of ϕ.

As illustration we give an example from boundary element applications. Here,
the surface Γ = ∂Ω of a finite domain Ω ⊂ R

3 is covered by a triangulation T (set
of triangles). For piecewise constant finite elements (simplest choice) the system
matrix M ∈ K

T ×T is given by entries which are the following (four-dimensional)
surface integrals:2

MΔ′Δ′′ =

∫∫

Δ′

∫∫

Δ′′

dΓxdΓy

‖x− y‖ (Δ′, Δ′′ ∈ T). (15.2)

If the triangles Δ′ and Δ′′ have a positive distance, the integrand 1/ ‖x− y‖ is
analytic and there are efficient ways to handle this part of the matrix (cf. [86, Satz
4.2.8]). However, for neighbouring triangles (i.e., Δ′ ∩Δ′′ �= ∅) the entries MΔ′Δ′′

must be computed. The required quadrature methods can be found in Sauter-Schwab
[166]; nevertheless, the final four-fold Gauss quadrature is expensive and makes the
generation of the system data to the costly part of the boundary element method.

Consider the situation of two triangles Δ′, Δ′′ intersecting in a common side.
Since the kernel of (15.2) is rotational and shift-invariant and homogeneous, we
may assume without loss of generality that the corners of Δ′ are (0, 0, 0), (1, 0, 0),
(x, y, 0), while those of Δ′′ are (0, 0, 0), (1, 0, 0), (ξ, η, τ). Therefore, up to a
scaling factor, all integrals (15.2) with Δ′, Δ′′ intersecting in a common side are
given by the 5-variate function3

ϕ(x, y, ξ, η, τ) =

∫∫

Δ

⎛

⎜
⎜
⎝

[0

0

0

]

,

[1

0

0

]

,

[x
y

0

]⎞
⎟
⎟
⎠

∫∫

Δ

⎛

⎜
⎜
⎝

[0

0

0

]

,

[1

0

0

]

,

[ξ
η

τ

]⎞
⎟
⎟
⎠

dΓxdΓy

‖x− y‖ .

This function can be evaluated with any desired accuracy.

1 For simplicity, we choose [0, 1]d. Generalisations to [a1, b1]× . . .× [ad, bd] are trivial.
2 As a typical example the kernel of the single-layer potential is chosen; cf. Hsiao-Wendland [104].
3 If the triangles (i) are identical, (ii) have one corner in common, (iii) are disjoint, then the arising
integral is a function of 2 (case i), 8 (case ii), 11 (case iii) variables.

15.1 Approximation of General Tensors 449

Remark 15.1. If the goal is to approximate the grid values (15.1) for later evalu-
ations of the tensor representation of ṽ, the time needed for the computation of ṽ
is irrelevant. The format of the tensor representation should be chosen such that the
evaluation4 is as cheap as possible. The r-term representation is a favourable choice,
since the evaluation cost is rd (cf. §13.2.1).

For ϕ from above and accuracies from 10−3 to 10−10, the evaluation of the tensor
representation turns out to be faster than quadrature by a factor 630 to 2800 (cf.
Ballani [5, Tab. 2]).

In the previous example the parameters are connected with the integration
domain. They may also appear in the integrand:

ϕ(p1, . . . pd) :=

∫∫∫

F (x, p1, . . . pd)dx,

whose numerical evaluation may be rather involved.

15.1.2 Multiparametric Boundary Value Problems and PDE with
Stochastic Coefficients

15.1.2.1 Formulation of the Problem

The multivariate function may be the solution of a boundary value problem:

L(x,p, u)u = f(x,p) in D, B(x,p)u = g(x,p) on ∂D, (15.3)

where x ∈ D, p = (p1, . . . pd), pj ∈ Pj .
Here, D ⊂ R

m may be an arbitrary domain. D may even depend on the parameters
p. L is a second order elliptic differential operator, which may depend on u, so that
the problem is nonlinear.B is a boundary operator, for instance the restriction to the
boundary. Assuming solvability of the boundary value problem for all p ∈ P :=

×d
j=1Pj , we obtain solutions u = u(x,p) = u(x, p1, . . . pd). Formally, u depends

on d+ 1 variables (x, p1, . . . pd) ∈ D ×P.
After the discretisation, D is to be replaced by a set Dh of nodal points. The

discrete solution is denoted by uh = uh(x,p) for (x,p) ∈ Dh × P. Now, the
evaluation of uh at a certain (grid) point in Dh × P requires the solution of the
discrete boundary value problem for fixed parameters p ∈ P.

Next, we consider the boundary value problem

div a(x, ω) gradu = f(x) in D, u = 0 on ∂Ω,

where the coefficients (‘random field’) a are defined on D × Ω, and ω ∈ Ω is a
stochastic variable (even f and D may be stochastic). Ω is a probability space with
a probability measure P . To ensure ellipticity, one has to assume the inequalities
0 < a− ≤ a(x, ω) ≤ a+ <∞ for (almost all) (x, ω) ∈ D ×Ω.
4 In particular, in connection with Monte-Carlo methods, evaluations are also called ’samples’.

450 15 Generalised Cross Approximation

The Monte-Carlo method solves many (discretised) boundary value problems
with different realisations of ω. Another approach is based on the Karhunen-Loève
expansion. As shown next, this brings us back to the situation of a multiparametric
problem (15.3).

15.1.2.2 Karhunen-Loève Expansion

It is convenient to split a(x, ω) into a0(x)+r(x, ω), where a0(x)=
∫
Ω a(x, ω)dP (ω)

is the mean value, while r(x, ω) is called fluctuation. Under minimal conditions,
r ∈ L2(D × Ω) holds. This implies that the operator Φ : L2(Ω) → L2(D) de-
fined by the kernel r is compact. By Theorem 4.114 and Corollary 4.115, an infinite
singular value decomposition

a(x, ω) = a0(x) +
∞∑

j=1

σjφj(x)Xj(ω) (15.4)

holds with orthonormal systems {φj} and {Xj}. Since the mean value of Xj is
zero, Xj are uncorrelated random variables. By historical reasons, (15.4) is called
Karhunen-Loève expansion (cf. Karhunen [109], Loève [141, §37.5B]). Setting
σ0 = 1, φ0 := a0, and X1 = P, we may write a(x, ω) =

∑∞
j=0 σjφj(x)Xj(ω).

We recall that φj (j ∈ N) are the eigenfunctions of C := ΦΦ∗, whose kernel is the
two-point correlation

Cr(x, x
′) :=

∫

Ω

r(x, ω) r(x′, ω) dP (ω).

The critical question is how fast the singular values σj in (15.4) are decaying.
Under suitable conditions, Todor-Schwab [171, 182] prove exponential decay.
This allows us to truncate (15.4) and to replace a(x, ω) by

aM (x, ω) = a0(x) +

M∑

j=1

σjφj(x)Xj(ω).

Assuming ‖Xj‖∞ < ∞, the sets Pj := range(Xj) ⊂ R are bounded. We can
substitute ω by p ∈ P := ×M

j=1 Pj and Xj(ω) by pj ∈ Pj . The multiparametric
boundary value problem

div aM (x,p) graduM = f(x) in D for all p ∈ P, uM = 0 on ∂Ω,

with aM (x,p) = a0(x) +

M∑

j=1

σjφj(x)pj ,

has a solution uM (x,p) for all p ∈ P. The solution uM (x, ω) (‘random field’) can
be obtained by the back-substitution pj �→ Xj(ω) (cf. [182, Prop. 3.4]).

15.2 Notations 451

Tensor-based solutions of elliptic problems with multiparametric or stochastic
coefficients can be found in Khoromskij-Schwab [124], Khoromskij-Oseledets
[122], and Espig et al. [55]; in particular, we recommend the recent description
Schwab-Gittelson [170].

15.1.3 Function of a Tensor

Let f : K→ K be any function.5 Given a tensor v ∈ V =
⊗d

j=1Vj with Vj=K
Ij ,

the application of f to v is explained by

f(v) ∈ V and f(v)[i1, . . . , id] := f (v[i1, . . . , id]) . (15.5a)

Even if v is an elementary tensor, there is no easy description of f(v). On the
other hand, if v is given in one of the formats, the evaluation of v[i1, . . . , id] is
well-defined and therefore also the determination of f(v[i1, . . . , id]). Hence, f(v)
is given in a full functional representation. Again, the goal is to determine an
approximation w ∈ V with w ≈ f(v).

In (15.5a), an explicit function f is given. The tensor may also be determined
implicitly:

given v ∈ V find x ∈ V such that g(x[i1, . . . , id]) = v[i1, . . . , id]. (15.5b)

Here, for instance, a Newton iteration can be applied to solve for x[i1, . . . , id].

15.2 Notations

As usual, we write I = I1 × . . . × Id and I[j] = ×k �=j Ik. The terms ‘fibre’ and
‘cross’ will become important. Fibres are a generalisation of rows and columns of
matrices.

Definition 15.2 (fibre). For 1≤ j≤ d and i[j] =(i1, . . . , ij−1, ij+1, , . . . , id) ∈ I[j]
the j-th fibre of v ∈ V at position i[j] is the vector

F(v; j, i[j]) := v(i1, . . . , ij−1, •, ij+1, . . . , id) ∈ Vj . (15.6a)

The simpler notation F(v; j, i) for i ∈ I means F(v; j, i[j]), where i[j] is obtained
from i by dropping the j-th tuple element. The involved indices form the (index)
fibre

F(j, i[j]) := F(j, i) := {k ∈ I : k� = i� for all � ∈ {1, . . . , d}\{j}} . (15.6b)

The first fibre F(M ; 1, j) of a matrix M ∈ K
I1×I2 is the j-th column

M [•, j] ∈ K
I1 , while F(M ; 2, i) is the i-th row M [i, •] ∈ K

I2 .

5 f : D → K may be restricted to a subset D ⊂ K, if all entries v[i1, . . . , id] belong to D.

452 15 Generalised Cross Approximation

Remark 15.3. The vector F(v; j, i[j]) is the i[j]-th column of the matricisation
Mj(v)∈KIj×I[j] .

Definition 15.4 (cross). The following d-tuple from V1× . . .×Vd is called the cross
of v ∈ V at i ∈ I:

C(v; i) :=
(
F(v; 1, i),F(v; 2, i), . . . ,F(v; d, i)

)
. (15.7a)

The involved indices form the (index) cross

C(i) :=
d⋃

j=1

F(j, i). (15.7b)

M15

M25

M31 M32 M33 M34 M35 M36

M45

M55

Note that all vectors {F(v; j, i) : 1≤ j ≤ d}
of a cross have the entry v[i] in common. In the
following example, the matrix cross C(v; i) at
(3, 5) contains the fifth column and third row,
while C(i) contains the indicated indices.

Lemma 15.5. Let v ∈ V = K
I and i ∈ I satisfy v[i] �= 0. The elementary tensor

E(v; i) := (v[i])
1−d

d⊗

j=1

F(v; j, i) ∈ R1 (15.8a)

coincides with v on the cross C(i), i.e.,

E(v; i)[k] = v[k] for all k ∈ C(i). (15.8b)

Proof. k = (k1, i2, . . . , id) belongs to C(i) for all k1 ∈ I1. Note that v[k] =
F(v; 1, i)[k1] and

E(v; i)[k] = 1

v[i]d−1

d∏

j=1

F(v; j, i)[kj] =
1

v[i]d−1
F(v; 1, i)[k1])
︸ ︷︷ ︸

=v[k]

d∏

j=2

F(v; j, i)[ij]

because of kj = ij for j ≥ 2. Since F(v; j, i)[ij] = v[i] for j ≥ 2, the identity
E(v; i)[k] = v[k] follows. ��

Property (15.8b) describes the interpolation on the cross C(i). The tensor E(v; i)
can be used for approximation.

Corollary 15.6. Let v ∈ Rs with s ≥ r.An approximationu ∈ Rr can be obtained
by the following procedure:

u := 0; d := v; for ρ := 1 to r do (15.9)
begin choose i ∈ I with d[i] �= 0; u := u+ E(d; i); d := d− E(d; i) end;

Since ‖v − E(v; i)‖ ≥ ‖v‖ may hold, the optimal scaling would help (cf. [54,
Lemma 6.7]), but it requires a scalar product.

15.3 Properties in the Matrix Case 453

Remark 15.7. Let v ∈ V = K
I and i ∈ I with v[i] �= 0. Set λ := 〈v,E(v;i)〉

‖E(v;i)‖2 . Then
λE(v; i) is an approximation satisfying

‖v − λE(v; i)‖2 = ‖v‖2 − |〈v, E(v; i)〉|
2

‖E(v; i)‖2
.

15.3 Properties in the Matrix Case

Cross approximation originates from the matrix case. The fibres are rows and
columns. E(v; i) corresponds to the rank-1 matrix E(M, i, j) ∈ K

I×J with entries
Eν,μ = Mi,μMν,j/Mi,j associated to the cross C(i) centred at i = (i, j) ∈ I × J .
Using the row M [i, •] and the column M [•, j], we may write

E(M, i, j) = 1
M [i,j]M [i, •]M [•, j].

Algorithm (15.9) from Corollary 15.6 can be rewritten for matrices:

M ∈ K
I×J input matrix; M0 := M ; R0 := 0;

for � := 1 to r do
begin choose (i�, j�) ∈ I × J with M [i�, j�] �= 0;

R� := R�−1 + E(M�−1, i, j); M� :=M�−1 − E(M�−1, i, j)
end;

(15.10)

Lemma 15.8. (a) If r = rank(M), algorithm (15.10) is well-defined and results in
Rr =M and Mr = 0.
(b) If the loop in (15.10) terminates at step � because of M�[i, j] = 0 for all entries,
� = rank(M) and R� = M hold.

Proof. Prove that rank(M�) = rank(M�−1)− 1. This leads to statement (a), while
(b) is equivalent to (a). ��

Property (b) in Lemma 15.8 is called rank revealing.
Denote the cross centres (also called ‘pivots’) in (15.10) by (i�, j�) , 1 ≤ � ≤ r.

It turns out that the result is independent of the order in which these centres are
chosen. Set

τ := {i1, . . . , ir} ⊂ I, σ := {j1, . . . , jr} ⊂ J.

Then
Rr =M |I×σ (M |τ×σ)−1M |τ×J (15.11)

holds (cf. [86, §9.4], for the notation see §1.7).
A direct interpretation of the sets τ, σ with #τ = #σ = r := rank(M) follows

from Remark 2.1f:M possesses at least one regular r×r submatrix. The correspond-
ing row and column indices form a possible choice of the index subsets τ, σ.

Another question is the approximation of M ∈ K
I×J by matrices Rr ∈ Rr .

Assume that M = Mr + S, where Mr ∈ Rr is the desired rank-r matrix, while

454 15 Generalised Cross Approximation

S is a small perturbation. According to (15.10), we have to avoid pivots (i, j) with
Mr[i, j] = 0. Such indices yield M [i, j] = S[i, j], which by assumption is small.
Hence, the criterion Mi,j �= 0 in (15.10) has to be replaced by ‘Mi,j as large as
possible’.6 Alternatively, one may ask for subsets τ ⊂ I, σ ⊂ J in (15.11) with
#τ =#σ= r such that |det(M |τ×σ)| is maximal. In fact, Goreinov-Tyrtyshnikov
[70] prove that this choice is close to the optimal one (see also [71]). However,
for large matrices it is infeasible to check all Mi,j or even all block determinants
det(M |τ×σ).

Because of the later application to tensors, we prefer the representation (15.11)
and add a remark concerning the cheap recursive computation of (M |τ×σ)−1 .
Remark 15.9. Set Sτ×σ := M |τ×σ and Tτ×σ := S−1τ×σ. For #τ = #σ = 1, the
computation of Tτ×σ is trivial. Otherwise, let τ = τ ′ ∪ {p} and σ = σ′ ∪ {q} and

assume that Tτ ′×σ′ is known. Sτ×σ is of the form7

[
Sτ ′×σ′ a
bT c

]

, where

[
a
c

]

=

M [•, q] and
[
bT c

]
= M [p, •]. Then

Tτ×σ =
1

d

[
Tτ ′×σ′

(
dI − abTTτ ′×σ′

)
−Tτ ′×σ′a

bTTτ ′×σ′ 1

]
with d :=
c− bTTτ ′×σ′ a.

(15.12a)

The evaluation of M − Rr = M −M |I×σ (M |τ×σ)−1M |τ×J at [i, j] with i /∈ τ
and j /∈ σ requires only the computation of M |{i}×σ and M |τ×{j}:

(M −Rr) [i, j] = M [i, j]−
∑

i′∈τ

∑

j′∈σ
M [i, j′]Tτ×σ[j

′, i′]M [i′, j]. (15.12b)

The adaptive cross approximation (ACA) tries to choose a new pivot i, j such
that |(M −R�−1) [i, j]| is maximal. The search for i, j is, however, restricted to
few crosses. We start with some (i�, j�) such that (M −R�−1) [i�, j�] �= 0 and try
to improve the choice by iterating (i�, j�) := ImprovedP ivot(M−R�−1, (i�, j�)):

function ImprovedP ivot(X, (i�, j�));
begin j� := argmaxj |X [i�, j]| ; i� := argmaxi |X [i, j�]| ;

ImprovedP ivot := (i�, j�)
end;

(15.13a)

The second line requires the evaluation of M [•, j�] and M [i�, •].
The adaptive cross approximation may be performed as follows:

1 R0 :=0; τ := σ := ∅;
2 for � := 1 to r do
3 begin choose any (i�, j�) such that (M −R�−1)[i�, j�] �= 0;
4 iterate: (i�, j�) := ImprovedP ivot(M −R�−1, (i�, j�));
5 R� := R�−1 + E(M −R�−1, i�, j�);
6 τ := τ ∪ {i�}; σ := σ ∪ {j�}; determine Tτ×σ from (15.12a)
7 end;

(15.13b)

6 This choice is also be recommended in the case of rank(M) = r because of numerical stability.
7 The ordering of the indices in τ and σ is irrelevant.

15.4 Case d ≥ 3 455

The choice in line 3 can be made by random. Note that for � > 1 it is impossi-
ble to choose (i�, j�) := (i�−1, j�−1) , since this index belongs to the cross, where
M−R�−1 is vanishing. More generally, i� /∈ {i1, . . . , i�−1} and j� /∈ {j1, . . . , j�−1}
is required. The second last value (i�−1, j�−1) from the loop 4 in the previous step
�− 1 may satisfy this requirement.

The loop in line 4 may be repeated, e.g., three times.
Line 5 contains the explicit definition of R�. Implicitly, M − Rr is determined

by (15.12b) from Tτ×σ defined in line 6.
In the case of approximation, algorithm (15.10) is either performed with fixed r,

or the termination depends on a suitable stopping criterion.

Remark 15.10. In (15.10) the number of evaluated matrix entries is bounded by
O(r(#I +#J)). Also for large-scale matrices one assumes that computations and
storage of size O(#I+#J) are acceptable, whileO(#I#J) is too large. However,
this statement holds for a successful application only.

There are cases where this heuristic approach fails. If a small low-rank matrix
is embedded into a large zero matrix, O(min(#I,#J)) crosses have to be tested
before (M −R�−1) [i�, j�] �= 0 occurs. A second difficulty arises for a block matrix[
∗ 0
0 ∗

]

, where the stars indicate nonzero blocks. If (i�, j�) is chosen from the first

block, all later iterates determined by (15.13a) stay in this block. Only a random
choice has a chance to enter the second diagonal block.

Descriptions of the adaptive cross approximation and variations can be found in
Bebendorf [8, 9] and Börm-Grasedyck [22].

Finally, we remark that the same approach can be used for multivariate func-
tions. In the case of a function Φ in two variables the analogue of the rank-1 matrix
E(M, i, j) is the rank-1 functionE(Φ, ξ, η)(x, y) = Φ(ξ, y)Φ(x, η)/Φ(ξ, η), which
interpolates Φ(·, ·) in the lines x = ξ and y = η, i.e., Φ(ξ, y) = E(Φ, ξ, η)(ξ, y) and
Φ(x, η) = E(Φ, ξ, η)(x, η).

15.4 Case d ≥ 3

As stated in Lemma 15.5, the rank-1 tensor E(v; i) interpolates v at the cross C(i),
i.e., v′ := v − E(v; i) vanishes on C(i). However, when we choose another cross
C(i′), the next tensor E(v′; i′)—differently from the matrix case d = 2—need not
vanish on C(i) so that the next iterate v′ − E(v′; i′) loses the interpolation property
on C(i). As a consequence, the iteration (15.9) yields tensors of rank r, which do
not satisfy the statement of Lemma 15.8. In the case of locally best rank-1 approxi-
mations, we have seen this phenomenon already in Remark 9.18b.

The properties observed above make it impossible to generalise the cross
approximation to higher dimension. Another reason why Lemma 15.8 cannot hold
for d ≥ 3, is Proposition 3.34: tensor rank revealing algorithms must be NP hard.

456 15 Generalised Cross Approximation

15.4.1 Matricisation

There are several approaches to get tensor versions of the cross approximation (cf.
Espig-Grasedyck-Hackbusch [53], Oseledets-Tyrtyshnikov [159], Bebendorf [10]).
Here, we follow the algorithm of Ballani-Grasedyck-Kluge [7].

First, we are looking for the exact representation of v in the hierarchical format
Hr. We recall that the optimal ranks are rα = dim(Umin

α (v)), where Umin
α (v) =

range(Mα(v)) involves the matricisation of v (cf. (6.15)).Mα(v) is a matrix from
K

Iα×Iαc with the index sets Iα :=×j∈α Ij and Iαc :=×j∈αc Ij (αc = D\α).
Theoretically, we may apply the methods of §15.3. Choose pivot subsets

Pα = {p(α)
1 , . . . ,p(α)

rα } ⊂ Iα, Pαc = {p(αc)
1 , . . . ,p(αc)

rα } ⊂ Iαc (15.14a)

containing rα indices such thatMα(v)|Pα×Pαc is regular. ThenMα(v) is equal to

Mα(v)|Iα×Pαc · (Mα(v)|Pα×Pαc)
−1 ·Mα(v)|Pα×Iαc

∈ K
Iα×Iαc (15.14b)

(cf. (15.11) and Lemma 15.8). The columns

b
(α)
i :=Mα(v)[•,p(αc)

i], 1 ≤ i ≤ rα,

form a basis of Umin
α (v) (cf. (11.20b)). Similarly, b(αc)

j :=Mα(v)[p
(α)
j , •]T yields

a basis of Umin
αc (v).

In general, Iα and Iαc are huge sets, so that neither the matrixMα(v)|Iα×Pαc

norMα(v)|Pα×Iαc
are practically available. This corresponds to the fact that the

bases {b(α)
i } and {b(αc)

i } need never be computed. The only practically computable
quantity is the rα × rα matrix Sα := Mα(v)|Pα×Pαc (we use Sα shortly for
SPα×Pαc , which is introduced in Remark 15.9).

Evaluations at p(α)
i ∈ Pα are particular functionals:

ϕ
(α)
i ∈ V′α with ϕ(α)

i (vα) := vα[p
(α)
i] for vα ∈ Vα.

As explained in Notation 3.50b, we identify ϕ(α)
i ∈V′α and ϕ(α)

i ∈L(V,Vαc):

ϕ
(α)
i (v) = v[p

(α)
i , •] ∈ Vαc for v ∈ V.

Similarly, evaluations at p(αc)
i ∈ Pαc are particular functionals ϕ(αc)

i ∈ V′αc

defined by ϕ(αc)
i (vαc) :=vαc [p

(αc)
i] for vαc ∈Vαc . Identification of ϕ(αc)

i ∈V′αc

and ϕ(αc)
i ∈L(V,Vα) yields

ϕ
(αc)
i (v) = v[•,p(αc)

i] ∈ Vα for v ∈ V.

The bases {b(α)
i } and {b(αc)

i } defined above, spanningUmin
α (v) andUmin

αc (v), take
now the form

b
(α)
i = ϕ

(αc)
i (v), b

(αc)
j = ϕ

(α)
j (v) (1 ≤ i ≤ rα) . (15.15)

15.4 Case d ≥ 3 457

Since v ∈ Umin
α (v) ⊗Umin

αc (v), there are coefficients cij with

v =
∑rα

i,j=1
cij b

(α)
i ⊗ b

(αc)
j . (15.16)

Application of ϕ(αc)
ν yields b

(α)
ν = ϕ

(αc)
ν (v) =

∑rα
i,j=1 cij b

(α)
i ϕ

(αc)
ν (b

(αc)
j).

Since b
(αc)
j = ϕ

(αc)
ν (v), the identity ϕ(αc)

ν (b
(αc)
j) = (ϕ

(α)
j ⊗ ϕ(αc)

ν)(v) holds.
Hence, the matrix C=(cij)∈Krα×rα is the inverse Tα := S−1α of

Sα =
(
(ϕ

(α)
j ⊗ϕ

(αc)
i)(v)

)rα

i,j=1
=
(
Mα(v)[p

(α)
j ,p

(αc)
i]

)rα

i,j=1
. (15.17)

Equation (15.16) with C = Tα is the interpretation of (15.14b) in V.

15.4.2 Nestedness

Let α ∈ TD with sons α1 and α2. While the index sets Pα, Pαc from (15.14a) are
associated to α, there are some other index sets Pα1 , Pαc

1
and Pα2 , Pαc

2
related to

α1 and α2. Their cardinalities are

#Pαι = #Pαc
ι
= rαι := dim(Umin

αι
(v)) (ι = 1, 2) .

The bases of Umin
α1

(v) and Umin
α2

(v) are given by

b
(α1)
i = ϕ

(αc
1)

i (v) := v[•,p(α1)
i], b

(α2)
j = ϕ

(αc
2)

j (v) := v[•,p(α2)
j].

Since Umin
α (v) ⊂ Umin

α1
(v)⊗Umin

α2
(v) (cf. (11.16c)), there are coefficient matrices

C(α,�) = (c
(α,�)
ij) such that

b
(α)
� =

rα1∑

i=1

rα2∑

j=1

c
(α,�)
ij b

(α1)
i ⊗ b

(α2)
j (15.18)

(cf. (11.24)). For the determination of c(α,�)ij we make the ansatz

b
(α)
� =

rα1∑

i,ν=1

rα2∑

j,μ=1

c
(α1)
iν c

(α2)
jμ

(
ϕ(α1)
ν ⊗ϕ(α2)

μ ⊗ϕ(αc)
�

)
(v)b

(α1)
i ⊗ b

(α2)
j . (15.19)

Since the rα1rα2 functionals ϕ(α1)
ν ⊗ ϕ(α2)

μ are linearly independent on the space
Umin
α1

(v)⊗Umin
α2

(v) of dimension rα1rα2 , equation (15.19) holds if and only if all

images under ϕ(α1)
ν′ ⊗ϕ

(α2)
μ′ are equal. The left-hand side yields

(
ϕ

(α1)
ν′ ⊗ϕ

(α2)
μ′

)(
b
(α)
�

)
=

(15.15)

(
ϕ

(α1)
ν′ ⊗ϕ

(α2)
μ′

)(
ϕ

(αc)
� (v)

)
(15.20a)

=
(
ϕ

(α1)
ν′ ⊗ϕ

(α2)
μ′ ⊗ϕ

(αc)
�

)
(v),

458 15 Generalised Cross Approximation

while the right-hand side equals

rα1∑

i,ν=1

rα2∑

j,μ=1

c
(α1)
iν c

(α2)
jμ

(
ϕ

(α1)
ν′ ⊗ϕ

(α2)
μ′ ⊗ϕ

(αc)
�

)
(v) ϕ

(α1)
ν′ (b

(α1)
i) ϕ

(α2)
μ′ (b

(α2)
j).

(15.20b)
As in (15.17), we have

Sα1 =
(
ϕ(α1)
ν ⊗ϕ(αc

1)
i

)
(v)=

(
ϕ(α1)
ν (b

(α1)
i)

)rα1

ν,i=1
, Sα2 =

(
ϕ(α2)
μ (b

(α2)
j)

)rα2

μ,j=1

and Tα1 := S−1α1
, Tα2 := S−1α2

. Set Cα1 = (c
(α1)
iν)

rα1

i,ν=1 and Cα2 = (c
(α2)
jμ)

rα2

j,μ=1.
Then, (15.20b) becomes

rα1∑

ν=1

rα2∑

μ=1

(Sα1Cα1)ν′,ν (Sα2Cα2)μ′,μ

(
ϕ

(α1)
ν′ ⊗ϕ

(α2)
μ′ ⊗ϕ

(αc)
�

)
(v). (15.20c)

Comparison of (15.20a) and (15.20c) shows that Cα1 = Tα1 and Cα2 = Tα2 yield

the desired identity. Hence, the coefficients c(α,�)ij in (15.18) satisfy

c
(α,�)
ij =

rα1∑

ν=1

rα2∑

μ=1

Tα1 [i, ν]Tα2 [j, μ]
(
ϕ

(α1)
ν′ ⊗ϕ

(α2)
μ′ ⊗ϕ

(αc)
�

)
(v)

=

rα1∑

ν=1

rα2∑

μ=1

Tα1 [i, ν]Tα2 [j, μ]v[p
(α1)
ν ,p(α2)

μ ,p
(αc)
�].

For a matrix notation set V (α)
� :=

(
v[p

(α1)
ν ,p

(α2)
μ ,p

(αc)
�]

)
ν=1,...,rα1 , μ=1,...,rα2

and

C(α,�) = Tα1 V
(α)
� TT

α2
. (15.20d)

We summarise the results.

Proposition 15.11. Assume that v ∈ Hr holds exactly. Then the parameters C(α,�),
c(D), and Bj of the hierarchical representation can be determined as follows.

(a) For α=D with sons α1 and α2, v = b
(D)
1 =

∑rα1

i,j=1 c
(D,1)
ij b

(α1)
i ⊗ b

(α2)
j holds

with C(D,1) = TD. Furthermore, c(D) = 1 ∈ K.
(b) Let α ∈ TD\(D ∪ L(TD)) with sons α1 and α2. For β ∈ {α, α1, α2} and
rβ := rankβ(v), there are row and column index sets Pβ , Pβc of Mα(v) such
that the rβ × rβ matrixMβ(v)|Pβ×Pβc is regular. For any such index sets, bases
{b(β)

i : 1 ≤ i ≤ rβ} are defined by v[•,p(βc)
i]. The coefficient matrix C(α,�) for the

characteristic relation (15.18) is given by (15.20d).
(c) If in the cases (a,b) a son αι belongs to L(TD), αι = {j} holds for some j ∈ D,
and Bj = [b

(αι)
1 b

(αι)
2 · · · b(αι)

rj] is used as basis of Umin
j (v) ⊂ Vj .

(d) The inverses Tα are computed via the recursion (15.12a).

Proof. Part (a) follows from (15.16). Part (b) is explained in §15.4.2. ��

15.4 Case d ≥ 3 459

15.4.3 Algorithm

15.4.3.1 Provisional Form

Let a tensor v be given. We want to represent v (exactly) in the hierarchical format
Hr with tree TD and rank vector r = (rα)α∈TD , rα = rankα(v). The first step can
be performed independently for all α:

Step 1 for all α ∈ TD determine index subsets Pα ⊂ Iα, Pαc ⊂ Iαc with #Pα =
#Pαc = rα (cf. (15.14a)) such that Sα from (15.17) is regular. Tα is computed
via (15.12a).

Note that the subsets Pα, Pαc are in general not unique. The bases of Umin
j (v) are

determined in the second step:

Step 2 for all 1 ≤ j ≤ d set

b
(j)
i := ϕ

({j}c)
i (v) = v[•,p({j}c)

i] (1 ≤ i ≤ rj).

The bases {b(α)
i : 1 ≤ i ≤ rα} of Umin

α (v) for non-leaf vertices α ∈ TD\L(TD)
do not enter the algorithm. Instead, the coefficient matrices C(α,�) are determined:

Step 3a for all α ∈ TD determine Sα from (15.17) and Tα from (15.12a),

Step 3b for allα ∈ TD\(D∪L(TD)) determineV (α)
� :=(v[p

(α1)
ν ,p

(α2)
μ ,p

(αc)
�])ν,μ

(α1 and α2 sons of α) and compute C(α,�) from (15.20d).

The representation of v follows from (15.16) with α and αc being sons of D ∈ TD:

Step 4 for α = D, the matrix C(D,1) is the inverse of SD. Set c(D)
1 := 1.

Remark 15.12. (a) For Step 1, one may in principle apply the algorithm from
(15.10) until M� = 0 (cf. Lemma 15.8b). For theoretical considerations, regularity
of Sα is sufficient. Practically, the determinant |det(Sα)| should not be too large.
Therefore, strategies for suitable subsets Pα, Pαc will be discussed later.

(b) b(j)i = v[•,p({j}c)
i] is the fibre F(v; j,p({j}c)

i) in direction j. Its computation
requires dim(Vj) evaluations of v.

(c) Matrix Sα requires r2α evaluations of v. The matrices V (α)
� (1 ≤ � ≤ rα) need

rαrα1rα2 evaluations. Altogether,
∑

α∈TD\L(TD)

rαrα1rα2 +
∑

α∈TD

r2α +

d∑

j=1

rj dim(Vj)

evaluations of v are required.

In the case of tensorisation with dim(Vj) = 2, the leading term of evaluations
is dr3 (r := maxα rα), which is surprisingly small compared with the huge total
number of tensor entries.

460 15 Generalised Cross Approximation

15.4.3.2 Choice of Index Sets

In (15.13a) we have described how to improve the choice of the two-dimensional
pivot (i, j). Now we generalise this approach to general order d ≥ 2. Consider a
vertexα ∈ TD/L(TD) with sonsα1 andα2.We want to find the pivots forMα1(v),
whose rows and columns belong to Iα1 and Iαc

1
= Iα2 ∪ Iαc . From the previous

computation at α we have already a pivot index set Pαc = {p(αc)
1 , . . . ,p

(αc)
rα }⊂Iαc

(cf. (15.14a)). To reduce the search steps, possible pivots i = (i1, . . . , id) ∈ I are
restricted to those with the property (ij)j∈αc ∈ Pαc (note that there are only rα
tuples in Pαc). The remaining components (ij)j∈α are obtained by maximisation
along one fibre. Again, the starting index i must be such that x[i] �= 0 for the tensor
x = v − v�−1 (v�−1: actual approximation). The sentence following (15.13b) is
again valid.

The index tuple i ∈ I is input and return value of the following function. We
split i = (i1, . . . , id) into iα := (ij)j∈α ∈ Iα and iαc := (ij)j∈αc ∈ Iαc . We write
i(iα, iαc)∈ I for the tuple i constructed from both iα and iαc (note that the indices
in α, αc need not be numbered consecutively; e.g., α = {1, 4}, αc = {2, 3}).

1 function ImprovedP ivot(α,x, i); (15.21)
2 {input: α ∈ TD, x ∈ V, i ∈ I satisfying iαc ∈ Pαc ⊂ Iαc}
3 begin for all j ∈ α do ij := argmaxi∈Ij |x[i1, . . . , ij−1, i, ij+1, . . . id]| ;
4 iαc := argmaxiαc∈Pαc |x[i(iα, iαc)]| ;
5 ImprovedP ivot := i(iα, iαc)
6 end;

A single step in line 3 maximises |x[i1, . . . , id]| on the fibreF(j, i). This requires
the evaluation of the tensor along this fibre. Since j is restricted to α, line 3 defines
the part iα ∈ Iα. Having fixed iα, we need only rα evaluations for the maximisation
over Pαc in line 4. The parts iα, iαc define the return value in line 5. In total, one
call of the function requires

rα +
∑

j∈α
dim(Vj)

evaluation of x.

The obtained index i ∈ I will be split into iα1 := (ij)j∈α1 ∈ Iα1 and iαc
1

for a
son α1 of α. Note that iαc

1
is formed by iα2 (with entries optimised in line 3) and

iαc from line 4.

According to Steps 1 and 3a from §15.4.3.1, the matrices Sα1 and its inverse Tα1

for the sons α1 of α ∈ TD are to be determined. In fact, Tα1 is determined explicitly,
while Sα1 follows implicitly. The following procedure ImprovedS performs one
iteration step Tα1 ∈K(r−1)×(r−1) �→Tα1 ∈Kr×r together with the determination of
the index sets Pα1 , Pαc

1
. These data determine the approximation vr ∈ V satisfying

rank(Mα1(vr)) = r. The evaluation of x := v − vr−1 in ImprovedP ivot needs

15.4 Case d ≥ 3 461

a comment, since vr−1 is not given directly.8 The inverse matrix Tα1 = S−1α1
∈

K
(r−1)×(r−1) is performed via (15.12b) and yields the representation

vr−1[iα1 , iα2 , iαc] =
r−1∑

i,j=1

v[iα1 ,p
(α2)
i , iαc]Tτ×σ[p

(α2)
i ,p

(α1)
j]v[p

(α1)
j , iα2 , iαc]

(15.22)
(cf. (15.12b)), where the summation involves p(α1)

j ∈Pα1 and p
(α2)
i ∈Pα2 .

Changing i, we have to update v[iα1 ,p
(α2)
i , iαc] and v[p

(α1)
j , iα2 , iαc].

1 procedure ImproveS(α, α1,v, r, Tα1 , Pα1 , Pαc
1
, Pαc);

2 {input parameters: α1 son of α ∈ TD, v ∈ V, Pαc ⊂ Iαc ;
3 in- and output: r ∈ N0; Tα1 ∈ K

r×r, Pα1 ⊂ Iα1 , Pαc
1
⊂ Iαc

1
}

4 begin choose start indices iα ∈ Iα and iαc ∈ Pαc ; i := i(iα, iαc);
5 for χ := 1 to χmax do i := ImprovedP ivot(α1,v − v�−1, i);
6 Pα1 := Pα1 ∪ iα1 ; Pαc

1
:= Pαc

1
∪ iαc

1
;

7 r := r + 1; compute Tα1 ∈ K
r×r from (15.12a);

8 end;

Index i obtained in line 5 yields the largest value |(v − v�−1)[i]| among the fibres
checked in ImprovedP ivot. A typical value of χmax is 3. In line 6, the parts iα1 :=
(ij)j∈α1 ∈ Iα1 and iαc

1
become new pivots in Pα1 and Pαc

1
(in (15.17) the entries

are denoted by p
(α)
j and p

(αc)
j). The update of Tα1 in line 7 is the inverse of Sα1 .

The final algorithm for determining Sα1 (Tα1) depends on the stopping criterion.
If rα1 is prescribed, the criterion is r = rα1 . If rα1 should be determined adaptively,
an error estimation can be applied.

procedureDetS(α, α1,v, r, Tα1 , Pα1 , Pαc
1
, Pαc);

{input parameters: α1 son of α ∈ TD, v ∈ V, Pαc ⊂ Iαc ;
output: r ∈ N0; Tα1 ∈ K

r×r, Pα1 ⊂ Iα1 ; Pαc
1
⊂ Iαc

1
}

begin r := 0; Tα1 := 0; Pα1 := Pαc
1
:= ∅;

repeat ImproveS(α, α1,v, r, Tα1 , Pα1 , Pαc
1
, Pαc)

until criterion satisfied
end;

The call

HierAppr(TD, D,v, (Cα)α∈TD\L(TD), c
(D), (Bj)j∈D, (Pα)α∈TD)

of the next procedure determines the parameters Cα = (C(α,�))1≤�≤rα , c
(D) ∈ K,

and (Bj)j∈D ∈ (Vj)
rj of the hierarchical approximation ṽ = ρHTR(. . .) ≈ v from

(11.28). Note that v is the given tensor in full functional representation (cf. (7.6)),
while ṽ is the approximation due to the chosen criterion. We recall that v = ṽ holds
if the criterion prescribes the ranks rα = dim(Mα(v)).

1 procedureHierAppr(TD, α,v, (Cα)α∈TD\L(TD), c
(D), (Bj)j∈D, (Pα)α∈TD);

2 {input: TD, α ∈ TD\L(TD),v ∈ V; output: Cα, c
(D), Bj , Pα}

3 if α = D then

8 Note the difference to the matrix case. In (15.12b) the rows M [•, j′] and columns M [i′, •] are
already evaluated.

462 15 Generalised Cross Approximation

4 begin c(D) := 1; determine sons α1, α2 of D; C(D,1) := Tα1 ;
5 DetS(α, α1,v, rα1 , Tα1 , Pα1 , Pα2 , ∅);
6 HierAppr(TD, α1,v,Cα, c

(D), Bj, Pα);
7 HierAppr(TD, α2,v,Cα, c

(D), Bj, Pα)
8 end else if α /∈ L(TD) then
9 begin determine sons α1, α2 of α;
10 DetS(α, α1,v, rα1 , Tα1 , Pα1 , Pαc

1
, Pαc);

11 DetS(α, α2,v, rα2 , Tα2 , Pα2 , Pαc
2
, Pαc);

12 for � :=1 to rα do C(α,�) :=Tα1V
(α)
� TT

α2
;(V (α)

� [ν, μ] :=v[p
(α1)
ν ,p

(α2)
μ ,p

(αc)
�])

13 if α1 /∈ L(TD) then HierAppr(TD, α1,v,Cα, c
(D), Bj , Pα)

14 else Bj := [b
(j)
1 · · · b

(j)
rj] with α1 = {j}, b(j)i := v[•,p(αc

1)
i], p

(αc
1)

i ∈ Pαc
1
;

15 if α2 /∈ L(TD) then HierAppr(TD, α2,v,Cα, c
(D), Bj , Pα)

15 else Bj := [b
(j)
1 · · · b

(j)
rj] with α2 = {j}, b(j)i := v[•,p(αc

2)
i], p

(αc
2)

i ∈ Pαc
2

17 end;

Lines 3-7 correspond to Proposition 15.11a. Lines 9-15 describe the case of
Proposition 15.11b. For leaves α1 or α2 case (c) of Proposition 15.11 applies.

15.4.3.3 Cost

We have to distinguish the number Na of arithmetical operations and the number
Ne of evaluations of tensor entries. The value

Na = O(dr4 +Ne) with r := maxα∈TD rα

is of minor interest (cf. [7]). More important is Ne because evaluations may be
rather costly. Following Remark 15.12c, for fixed pivots we need (d− 1) r3 +
(2d− 1) r2 + drn evaluations, where r := maxα∈TD rα and n := maxj nj .
Another source of evaluations is the pivot search by ImprovedP ivot(α,x, i) in
(15.21), where #α fibres and further #Pαc indices i = i(iα, iαc) are tested with
respect to the size of |x[i]|. Since x = v − v�−1, one has to evaluate v[i] as well as
v�−1[i]. The latter expression is defined in (15.22). If a new index ij ∈ Ij belongs
to direction j ∈ α1, the sum in (15.22) involves r− 1 new values v[iα1 ,p

(α2)
i , iαc].

Similarly for j ∈ α2. This leads to 2(r − 1)
∑
j∈α nj evaluations. Variation of

iαc ∈ Pαc causes only 2(r − 1)#Pαc evaluations. The procedure ImproveS is
called for 1 ≤ r ≤ rα1 , the total number of evaluations due to the pivot choice is
bounded by

∑

α∈TD\L(TD)
r2α1

#α
∑

j∈α
nj ≤ d · depth(TD) · r2

∑d

j=1
nj ,

where r := maxα∈TD rα. We recall that for a balanced tree TD the depth of TD
equals �log2 d�, whereas depth(TD) = d − 1 holds for the TT format (cf. Remark
11.5). In the first case, the total number of evaluations is

Ne = O
(
(d− 1) r3 + d log(d)r2n

)
.

Chapter 16
Applications to Elliptic Partial Differential
Equations

Abstract We consider elliptic partial differential equations in d variables and their
discretisation in a product grid I =×d

j=1Ij . The solution of the discrete system is a
grid function, which can directly be viewed as a tensor in V =

⊗d
j=1 K

Ij . In Sect.
16.1 we compare the standard strategy of local refinement with the tensor approach
involving regular grids. It turns out that the tensor approach can be more efficient. In
Sect. 16.2 the solution of boundary value problems is discussed. A related problem
is the eigenvalue problem discussed in Sect. 16.3.
We concentrate ourselves to elliptic boundary value problems of second order.
However, elliptic boundary value problems of higher order or parabolic problems
lead to similar results.

16.1 General Discretisation Strategy

The discretisation of partial differential equations leads to matrices whose size
grows with increasing accuracy requirement. In general, simple discretisation tech-
niques (Galerkin method or finite difference methods) using uniform grids yield too
large matrices. Instead, adaptive discretisation techniques are used. Their aim is to
use as few unknowns as possible in order to ensure a certain accuracy.

The first type of methods is characterised by the relation ε = O(nκ/d), where ε is
the accuracy of the approximation (in some norm), n number of degrees of freedom,
κ the consistency order, and d the spatial dimension. The corresponding methods
are Galerkin discretisations with polynomial ansatz functions of fixed degree. The
relation ε = O(nκ/d) is not always reached.1 Only if the solution behaves uniformly
regular in its domain of definition, also the uniform grid yields

ε = O(nκ/d). (16.1)

1 For three-dimensional problems, edge singularities require stretched tetraeders. However, usual
adaptive refinement strategies try to ensure form regularity (cf. [82]).

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 16,
© Springer-Verlag Berlin Heidelberg 2012

463

464 16 Applications to Elliptic Partial Differential Equations

In the standard case, however, the solution of partial differential equations has point
singularities and—for 3D problems—edge singularities. This requires a concentra-
tion of grid points towards corners or edges.

A more efficient method is the hp finite element method in the case of piecewise
analytic solutions. Here, the ideal relation between the error ε and the number n of
unknowns is ε = O(exp(−βnα)) for suitable α, β > 0.

So far, for fixed ε, the strategy is to minimise the problem size n. In principle, this
requires that also the generation of the system matrix and its solution is O(n). This
requirement can be relaxed for the hp finite element method. If n = O(log1/α 1

ε),

even Gauss elimination with cost O(log3/α 1
ε) is only a redefinition of α by α/3.

Tensor applications require a Cartesian grid I := I1× . . .×Id of unknowns. This
does not mean that the underlying domain Ω ⊂ R

d must be of product form. It is
sufficient that Ω is the image of a domain Ω1 × . . .×Ωd. For instance, Ω may be a
circle, which is the image of the polar coordinates varying in Ω1 ×Ω2.

The use of a (uniform2) grid I = I1 × . . . × Id seems to contradict the strate-
gies from above. However, again the leading concept is: best accuracy for mini-
mal cost, where the accuracy3 is fixed by the grid I. For simplicity, we assume
nj = #Ij = n = O(ε−β). The storage cost of the tensor formats is O(r∗nd),
where r∗ indicates possible powers of some rank parameters. The approximation of
the inverse by the technique from §9.7.2.6 costs O(log2(1ε) · r∗nd). Comparing the
storage and arithmetical cost with the accuracy, we see a relation like in (16.1), but
the exponent κ/d is replaced by some β > 0 independent of d.

A second step is the tensorisation from §14. As described in §14.2.3, the com-
plexity reached by tensorisation corresponds (at least) to the hp finite element
approach. Therefore, in the end, the cost should be not worse than the best hp
method, but independent of d.

16.2 Solution of Elliptic Boundary Value Problems

We consider a linear boundary value problem

Lu = f in Ω = Ω1 × . . .×Ωd ⊂ R
d, u = 0 on ∂Ω (16.2)

with a linear differential operator of elliptic type (cf. [82, §5.1.1]). Concerning the
product form see the discussion from above. The homogeneous Dirichlet condition
u = 0 on ∂Ω may be replaced by other conditions like the Neumann condition.

The standard dimension d = 3 is already of interest for tensor methods. The
other extreme are dimensions of the order d = 1000.

2 The grids Ij need not be uniform, but for simplicity this is assumed.
3 In the case of a point singularity rα (α > 0, r = ‖x− x0‖ , x0: corner point), the grid
size h leading to an accuracy ε is of the form h = O(εβ), β > 0. A uniform grid Ij needs
nj = O(ε−β) grid points.

16.2 Solution of Elliptic Boundary Value Problems 465

16.2.1 Separable Differential Operator

The most convenient form of L is the separable one (cf. (1.10a); Definition 9.36):

L =

d∑

j=1

Lj , Lj differential operator in xj , (16.3a)

i.e., Lj contains derivatives with respect to xj only and its coefficients depend only
on xj (in particular, Lj may have constant coefficients). In this case, we can write
the differential operator as Kronecker product:

L =

d∑

j=1

I ⊗ . . .⊗ I ⊗ Lj ⊗ I ⊗ . . .⊗ I, (16.3b)

where Lj is considered as one-dimensional differential operator acting on a suitable
space Vj .

16.2.2 Discretisation

16.2.2.1 Finite Difference Method

Choose a uniform4 grid with nj (interior) grid points in direction j. The one-
dimensional differential operator Lj from (16.3b) can be approximated by a dif-
ference operator Λj (see [82, §4.1] for details). The standard choice of finite differ-
ences leads to tridiagonal matrices Λj . Higher-order differences may produce more
off-diagonals. The resulting system matrix of the difference method takes the form

A =

d∑

j=1

I ⊗ . . .⊗ I ⊗ Λj ⊗ I ⊗ . . .⊗ I, (16.4)

provided that (16.3b) holds.

16.2.2.2 Finite Element Method

The variational formulation of (16.2) is given by a
{

bilinear if K = R

sesquilinear if K = C

}
form

a(·, ·) and the functional f(v) =
∫
Ω fvdx :

find u ∈ H1
0 (Ω) such that a(u, v) = f(v) for all v ∈ H1

0 (Ω). (16.5)

4 Also non-uniform grids may be used. In this case, the difference formulae are Newton’s first and
second difference quotients (cf. [82, §4.1]).

466 16 Applications to Elliptic Partial Differential Equations

According to the splitting (16.3a), the form a(·, ·) is a sum of products:

a(·, ·) =
d∑

j=1

⎡

⎣aj(·, ·)
∏

k �=j
(·, ·)k

⎤

⎦ , (16.6)

where aj : H1
0 (Ωj)×H1

0 (Ωj)→ K and (·, ·)k is the L2(Ωk) scalar product.

The (possibly non-uniform) intervals [x
(j)
ν , x

(j)
ν+1], 0 ≤ ν ≤ nj, of the one-

dimensional grids in directions 1≤j≤d form the cuboids τν :=×d
j=1[x

(j)
νj , x

(j)
νj+1]

for multi-indices ν ∈ ×d
j=1{0, . . . , nj}. Let b(j)ν ∈ H1

0 (Ωj) for 1 ≤ ν ≤ nj be
the standard, one-dimensional, piecewise linear hat function: b(j)ν (x

(j)
μ) = δνμ.

They span the subspace Vj ⊂ H1
0 (Ωj). The final finite elements basis functions are

bν :=

d⊗

j=1

b(j)νj ∈ H
1
0 (Ω) for ν ∈ I :=

d×
j=1

Ij , Ij := {1, . . . , nj}.

Their span is the space V :=
⊗d

j=1 Vj ⊂ H1
0 (Ω). The finite element solution

u ∈ V is defined by

a(u,v) = f(v) for all v ∈ V. (16.7)

The solution has a representation u =
∑

xμbμ, where the coefficient vector
x = (xμ) is the solution of the linear system Ax = φ. Here, the right-hand side φ
has the entries φν = f(bν). The finite element system matrix A is defined by

Aνμ := a(bμ,bν).

From (16.6) one derives that

A =
d∑

j=1

(
j−1⊗

k=1

Mk

)

⊗Aj ⊗

⎛

⎝
d⊗

k=j+1

Mk

⎞

⎠, where (16.8)

Aj [ν, μ] := aj(b
(j)
μ , b(j)ν) and Mj [ν, μ] := (b(j)μ , b(j)ν)j .

Note that the mass matrix Mk replaces the identity matrix in (16.4).

Remark 16.1. Let M :=
⊗d

j=1Mj , and define Λ := M−1A. Then Λ takes the
form (16.4) with Λj := M−1j Aj .

16.2.2.3 Treatment of Non-separable Differential Operators

The assumption of a separable L excludes not only mixed derivatives ∂2

∂xi∂xj
, but

also coefficients depending on other x-components than xj . As an example, we
consider the first order term Lfirst := c∇ =

∑d
j=1 cj(x)

∂
∂xj

appearing in L with

16.2 Solution of Elliptic Boundary Value Problems 467

coefficients cj(x1, . . . , xd) and discuss the definition of a tensor-based finite
difference scheme.

The forward difference ∂+ (defined by (∂+ϕ)(ξ) = [ϕ(ξ + h) − ϕ(ξ)]/h) or
the backward difference ∂− can be represented exactly in the format Htens

ρ with
ranks ρk = 2 (cf. §14.1.6). The central difference requires ρk = 3. Next, we apply
the technique of §15.4 to construct a tensor cj ∈ V approximating the d-variate
function cj . According to Remark 13.10, we may define the multiplication operator
Cj ∈ L(V,V). Hence, the discretisation of Lfirst = c∇ is given by

Λfirst :=
d∑

j=1

Cj∂
+
j .

Usually, it is not necessary to determine the operatorΛfirst explicitly, but in principle
this can be done (cf. §13.8). Analogously, other parts of L can be treated.

16.2.3 Solution of the Linear System

In the following, we discuss the use of iterative schemes (details in Hackbusch [81,
§3]). An alternative approach is mentioned in §17.2.1. Let Ax = b be the linear
system with x,b ∈ V. The basic form of a linear iteration is

x(m+1) := x(m) −C
(
Ax(m) − b

)
(16.9)

with some matrix C and any starting value x(0). Then convergence x(m) → x =
A−1b holds if and only if the spectral radius (4.76) of CA satisfies ρ(CA) < 1.
For the efficient solution one needs ρ(CA) ≤ η < 1 with η independent of the grid
size and of possible parameters appearing in the problem.

The (slow) convergence of non-efficient methods is often directly connected
to the condition of the matrix A. Assume for simplicity that A ∈ L(V,V) for
V =

⊗d
j=1 K

nj is of the form (16.4) with positive definite matrices Λj possessing
eigenvalues λ(j)1 ≥ . . . ≥ λ

(j)
nj > 0. Then the condition of A equals

cond(A) =

d∑

j=1

λ
(j)
1

/ d∑

j=1

λ(j)nj
.

In the simplest case of Λ1 = Λ2 = . . . = Λd, the eigenvalues λ(j)ν = λν are
independent and cond(A) = λ1/λn holds. This together with Exercise 4.57 proves
the next remark.

Remark 16.2. The condition of the matrix A depends on the numbers nj = #Ij ,
but not on the dimension d. In particular, the following inequalities hold:

minj cond(Λj) ≤ cond(A) ≤ maxj cond(Λj).

468 16 Applications to Elliptic Partial Differential Equations

If A and C = B−1 are positive definite, C is a suitable choice5 if A and B are
spectrally equivalent, i.e., 1

c1
(Ax,x) ≤ (Bx,x) ≤ c2 (Ax,x) for all x ∈ V

and constants c1, c2 < ∞. In the case of (not singularly degenerate) elliptic
boundary value problems, (A·, ·) corresponds to the H1 norm. As a consequence,
different system matrices A and B corresponding to H1 coercive elliptic problems
are spectrally equivalent. In particular, there are elliptic problems with separable B
(e.g., the Laplace equation−Δu = f).

Given a positive definite and separable differential operator, its discretisation B
satisfies the conditions of Proposition 9.34 (therein, B is called A, while C =
B−1 is called B). The matrices M (j) in Proposition 9.34 are either the identity
(finite difference case) or the mass matrices (finite element case). As a result, a
very accurate approximation of C = B−1 can be represented in the format Rr
(transfer into other formats is easy). We remark that the solution requires the matrix
exponentials exp(−αT) or exp(−αM−1T) (T : n×n triangular matrix). In the case
of exp(−αT), this can be performed exactly by means of a diagonalisation of T.
In general, the technique of hierarchical matrices yields exp(−αM−1T) in almost
linear cost O(n log∗ n) (cf. Hackbusch [86, §13.2.2]).

Once, a so-called preconditioner C is found, we have to apply either iteration
(16.9) or an accelerated version using conjugate gradients or GMRES. For simplic-
ity, we assume ρ(CA) ≤ η < 1 and apply (16.9). The representation ranks of x(m)

are increased first by the evaluation of the defect Ax(m) − b and second by multi-
plication by C. Therefore, we have to apply the truncated iteration from §13.10:

x(m+1) := T
[
x(m) −C

(
Ax(m) − b

)]
, or

x(m+1) := T
[
x(m) −C

(
T
[
Ax(m) − b

])]
,

where T denotes a suitable truncation. See also Khoromskij [117].
If a very efficient C is required (i.e., 0 < η 1), C must be close to A−1. The

fixed point iterations explained in §13.10 can be used to produce C ≈ A−1.
Another approach is proposed in Ballani-Grasedyck [6], where a projection

method onto a subspace is used, which is created in a Krylov-like manner.
A well-known efficient iterative method is the multi-grid iteration (cf. [83]). For

its implementation one needs a sequence of grids with decreasing grid size, prolon-
gations and restrictions, and a so-called smoother. Since we consider uniform grids,
the construction of a sequence of grids with grid width h� = 2−�h0 (�: level of
the grid) is easy. The prolongations and the restrictions are elementary Kronecker
tensors. For the solution on the coarsest grid (level � = 0) one of the aforementioned
methods can be applied. As smoothing iteration one may choose the damped
Jacobi iteration. The numerical examples in Ballani-Grasedyck [6] confirm a grid-
independent convergence rate.

An alternative to the iteration (16.9) is the direct minimisation approach from
§17.2.1.

5 To be precise, C must be suitably scaled to obtain ρ(CA) ≤ η < 1.

16.3 Solution of Elliptic Eigenvalue Problems 469

16.3 Solution of Elliptic Eigenvalue Problems

As already stated in the introduction (see page 11), an eigenvalue problem

Lu = λu in Ω = Ω1 × . . .×Ωd, u = 0 on ∂Ω, (16.10)

for a separable differential operator L (cf. (16.3a)) is trivial, since the eigenvectors
are elementary tensors: u ∈ R1. The determination of u can be completely reduced
to one-dimensional eigenvalue problems

Lju
(j) = μu(j), u(j) ∈ Vj\{0}.

In the following, we consider a linear, symmetric eigenvalue problem (16.10)
discretised by6

Ax = λx (16.11a)

involving a symmetric matrix A. Regarding x ∈ K
N as tensor x ∈ V, we interpret

A as a Kronecker product A ∈ L(V,V). In general, due to truncations, A and x
will be only approximations of the true problem

Ax = λx. (16.11b)

According to Lemma 13.11, we can ensure Hermitean symmetry A = AH exactly.

16.3.1 Regularity of Eigensolutions

Since separable differential operators lead to rank-1 eigenvectors, one may hope
that, in the general case, the eigenvector is well approximated in one of the formats.
This property can be proved, e.g., under the assumption that the coefficients of L are
analytic. The details can be found in Hackbusch-Khoromskij-Sauter-Tyrtyshnikov
[91]. Besides the usual ellipticity conditions, all coefficients appearing in L are
assumed to fulfil

‖∇pc‖L∞(Ω) :=

∥
∥
∥
∥

∑

ν∈Nd
0 with |ν|=p

p!

ν!

∣
∣
∣
(∂

∂x

)ν
u
∣
∣
∣
2
∥
∥
∥
∥

1/2

L∞(Ω)

≤ Ccγ
pp! (16.12a)

for all p ∈ N0 and some Cc, γ > 0. Then for analytic Ω or for Ω = R
d, the

eigensolutions u corresponding to an eigenvalue λ satisfy

∥
∥∇p+2u

∥
∥
L2(Ω)

:=

√
√
√
√

∑

ν∈Nd
0 with |ν|=p+2

(p+ 2)!

ν!

∥
∥
∥
(∂

∂x

)ν
u
∥
∥
∥
2

L2(Ω)
(16.12b)

≤ CKp+2 max
{
p,
√
|λ|
}

for all p ∈ N0,

6 A Galerkin discretisation leads to a generalised eigenvalueAx=λMx with the mass matrix M .

470 16 Applications to Elliptic Partial Differential Equations

whereC andK depend only on the constants in (16.12a) and onΩ (cf. [91, Theorem
5.5]).

Because of these smoothness results, one obtains error bounds for polynomial
interpolants. As shown in [91, Theorem 5.8], this implies that a polynomial ur ∈
Pr ⊂ Tr exists with r = (r, . . . , r) and

‖u− ur‖H1 ≤ CMr logd(r)ρ−r , where

ρ := 1 +
Ĉd

1 +
√
|λ|

, M :=
CC̃d√
2π

(
K(p+

√
|λ|)

)�(d+1)/2�

with Ĉd, C̃d > 0 depending only on C, K from (16.12b) (cf. [91, Theorem 5.8]).
The latter approximation carries over to the finite element solution (cf. [91,

Theorem 5.12]). This proves that, under the assumptions made above, the represen-
tation rank r depends logarithmically on the required accuracy. However, numerical
tests with non-smooth coefficients show that even then good tensor approximations
can be obtained (cf. [91, §6.2]).

The most challenging eigenvalue problem is the Schrödinger equation (13.32).
This is a linear eigenvalue problem, but the requirement of an antisymmetric eigen-
function (Pauli principle) is not easily compatible with the tensor formats (see, e.g.,
Mohlenkamp et al. [16, 148, 150]). The alternative density functional theory (DFT)
approach—a nonlinear eigenvalue problem—and its treatment are already explained
in §13.11. Again the question arises whether the solution can be well approximated
within one of the tensor formats. In fact, the classical approximation in quantum
chemistry uses Gaussians7

exp{−αν ‖• − xν‖2} (αν > 0, xν ∈ R
3 position of nuclei)

multiplied by suitable polynomials. Since the Gaussian function times a monomials
is an elementary tensor in ⊗3C(R), all classical approximations belong to format
Rr, more specifically, to the subset of Rr spanned by r Gaussians modulated by a
monomial. This shows that methods from tensor calculus can yield results which are
satisfactory for quantum chemistry purpose. Nevertheless, the number r of terms is
large and increases with molecule size. For instance, for C2H5OH the number r is
about 7000 (cf. [63]). Although Gaussian functions are suited for approximation,
they are not the optimal choice. Alternatively, one can choose a sufficiently fine
grid in some box [−A,A]3 and search for approximations in Rr ⊂ V = ⊗3

R
n

corresponding to a grid width 2A/n (see concept in [60]). Such a test is performed
in Chinnamsetty et al. [34, 35] for the electron density n(y) = ρ(y,y) (see page
415) and shows a reduction of the representation rank by a large factor. A similar
comparison can be found in Flad et al. [63]. See also Chinnamsetty et al. [36].

Theoretical considerations about the approximability of the wave function are
subject of Flad-Hackbusch-Schneider [61, 62].

7 There are two reasons for this choice. First, Gaussians approximate the solution quite well (cf.
Kutzelnigg [135] and Braess [26]). Second, operations as mentioned in §13.11 can be performed
analytically. The historical paper is Boys [23] from 1950.

16.3 Solution of Elliptic Eigenvalue Problems 471

16.3.2 Iterative Computation

Here, we follow the approach of Kressner-Tobler [130], which is based on the al-
gorithm8 of Knyazev [125] for computing the smallest eigenvalue of an eigenvalue
problem (16.11a) with positive definite matrix A and suitable preconditioner B:

1 procedure LOBPCG(A,B, x, λ); (16.13)
2 {input: A,B, x with ‖x‖ = 1; output: eigenpair x, λ}
3 begin λ := 〈Ax, x〉 ; p := 0;
4 repeat r := B−1(Ax− λx); U := [x, r, p] ∈ C

N×3;

5 Â := UHAU ; M̂ := UHU ;

6 determine eigenpair
(
y ∈ C

3, λ
)

of Ây = λM̂y with smallest λ;
7 p := y2 · r + y3 · p; x := y1 · x+ p; x := x/ ‖x‖
8 until suitable stopping criterion satisfied
9 end;

‖x‖2 = 〈x, x〉 is the squared Euclidean norm. The input of B is to be understood
as a (preconditioning) method performing ξ �→ B−1ξ for ξ ∈ C

N . The input value
x ∈ C

N is the starting value. The desired eigenpair (x, λ) of (16.11a) with mini-
mal λ is the output of the procedure. In line 5, Â and M̂ are positive semidefinite
3× 3 matrices; hence, the computation of the eigenpair in line 6 is very cheap.

Next, we consider the tensor formulation (16.11b) of the eigenvalue problem.
Then, procedure (16.13) becomes

1 procedure T-LOBPCG(A,B,x, λ); (16.14)
2 {input: A,B ∈ L(V,V), x ∈ V with ‖x‖ = 1; output: eigenpair x, λ}
3 begin λ := 〈Ax,x〉 ; p := 0 ∈ V;
4 repeat r := T (B−1(Ax− λx)); u1 := x; u2 := r; u3 := p;
5a for i := 1 to 3 do for j := 1 to i do

5b begin Âij := Âji := 〈Auj ,ui〉 ; M̂ij := M̂ji := 〈uj ,ui〉 end;
6 determine eigenpair

(
y ∈ C

3, λ
)

of Ây = λM̂y with smallest λ;
7 p := T (y2 · r+ y3 · p); x := T (y1 · x+ p); x := x/ ‖x‖
8 until suitable stopping criterion satisfied
9 end;

This procedure differs from the (16.13) in lines 4 and 7, where a truncation T to a
suitable format is performed. The required tensor operations are (i) the matrix-vector
multiplication Auj for 1 ≤ j ≤ 3 (note that u1 = x), (ii) the scalar product in lines
3 and 5b, (iii) additions and scalar multiplications in lines 4 and 7, and (iv) the
performance of B−1 in line 4. Here, we can apply the techniques from §16.2.3.

As pointed out in [130], the scalar products 〈Auj ,ui〉 are to be computed
exactly, i.e., no truncation is applied to Auj .

8 LOBPCG means ‘locally optimal block preconditioned conjugate gradient’. For simplicity, we
consider only one eigenpair, i.e., the block is of size 1× 1.

472 16 Applications to Elliptic Partial Differential Equations

Algorithm (16.14) can be combined with any of the tensor formats. The numeri-
cal examples in [130] are based on the hierarchical format.

Ballani-Grasedyck [6] compute the minimal (or other) eigenvalues by means of
the (shifted) inverse iteration. Here the arising linear problems are solved by the
multi-grid iteration described in §16.2.3. Numerical examples can be found in [6].

16.3.3 Alternative Approaches

In the case of a positive definite matrix A, the minimal eigenvalue of Ax = λx is
the minimum of the Rayleigh quotient:

min

{
〈Ax, x〉
〈x, x〉 : x �= 0

}

.

This allows us to use the minimisation methods from §17.2. Also this approach is
discussed in [130, §4].

Another approach is proposed by [67, §4], where the spectrum is recovered from
the time-dependent solution x(t) of ẋ(t) = iAx(t).

16.4 On Other Types of PDEs

So far, we have only discussed partial differential operators of elliptic type. Never-
theless, the tensor calculus can also be applied to partial differential equations of
other type. Section 17.3 is concerned with time-dependent problems. In the case
of v̇(t) = Av(t)+ f(t) with an elliptic operator A, we obtain a parabolic partial
differential equation. On the other hand, the wave equation is a prototype of a
hyperbolic differential equation. For its solution by means of the retarded poten-
tial, tensor methods are used in Khoromskij-Sauter-Veit [123].

Chapter 17
Miscellaneous Topics

Abstract In this chapter we mention further techniques which are of interest for
tensor calculations. The first two sections consider optimisation problems. Section
17.1 describes iterative minimisation methods on a theoretical level of topological
tensor spaces assuming exact tensor arithmetic. On the other hand, Sect. 17.2 applies
optimisation directly to the parameters of the tensor representation. Section 17.3
is devoted to ordinary differential equations for tensor-valued functions. Here, the
tangent space and the Dirac-Frenkel discretisation are explained. Finally, Sect. 17.4
recalls the ANOVA decomposition (‘analysis of variance’).

17.1 Minimisation Problems on V

In this section we follow the article of Falcó-Nouy [58]. We are looking for a
minimiser u ∈ V satisfying

J(u) = min
v∈V

J(v) (17.1)

under certain conditions on V and J. For its solution a class of iterations producing
a sequence (um)m∈N is described and convergence um → u is proved.

17.1.1 Algorithm

The usual approach is to replace the global minimisation by a finite or infinite se-
quence of simpler minimisations. For this purpose we define a set S for which
we shall give examples below. Then the simplest version of the algorithm (called
‘purely progressive PGD’ in [58], where PGD means ‘proper generalised decompo-
sition’) is the following iteration starting from some u0 := 0:

um := um−1 + zm, where J(um−1 + zm) = min
z∈S

J(um−1 + z). (17.2)

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6 17,
© Springer-Verlag Berlin Heidelberg 2012

473

474 17 Miscellaneous Topics

The set S must be rich enough. The precise conditions are:

0 ∈ S ⊂ V, S = λS := {λs : s ∈ S} for all λ ∈ K,
span(S) is dense in V, S is weakly closed.

(17.3)

Example 17.1. Sets S satisfying (17.3) are (a) S = R1 (set of elementary tensors),
(b) S = Tr with r ≥ (1, . . . , 1) .

Proof. The first two conditions are obvious. By definition, span(R1) = Valg is
dense in V. AsR1 ⊂ Tr, the same holds for Tr. By Lemma 8.6, Tr and in particular
R1 = T(1,...,1) are weakly closed. ��

Iteration (17.2) can be improved by certain updates of the correction. Falcó-Nouy
[58] propose two variants. In the following, v �→ U(v) are mappings from V into
the set of closed subspaces with the property v ∈ U(v).

Update A Replace the iteration step (17.2) by

ẑ ∈ S with J(um−1 + ẑ) = minz∈S J(um−1 + z),
um ∈ U(um−1 + ẑ) with J(um) = minv∈U(um−1+ẑ) J(v).

(17.4)

While minz∈S , in general, involves a non-convex set, minimisation over
U(um−1 + ẑ) is of simpler kind. Next, U(um−1 + ẑ) is replaced by an affine
subspace. For instance, U(v) may be chosen as Umin(v) :=

⊗d
j=1 U

min
j (v).

Update B Replace the iteration step (17.2) by

ẑ ∈ S with J(um−1 + ẑ) = minz∈S J(um−1 + z),
um ∈ um−1 +U(ẑ) with J(um) = minv∈U(ẑ) J(um−1 + v).

(17.5)

Concerning examples of U(ẑ) see [58, Example 4]. The choice of the subspaces
may be different in any iteration.

Steps (17.4) and (17.5) are called ‘updated progressive PGD’. The final iteration
may choose for each index m one of the variants (17.2), (17.4), or (17.5).

17.1.2 Convergence

Because of the later property (17.7), the iterates um are bounded. To find a weakly
convergent subsequence, we have to assume that

V is a reflexive Banach tensor space. (17.6a)

The nonlinear functional J has to be sufficiently smooth:

17.2 Solution of Optimisation Problems involving Tensor Formats 475

J is Fréchet differentiable with Fréchet differential J ′ : V→ V∗. (17.6b)

J must satisfy the following ellipticity condition with constants α > 0 and s > 1:

〈J ′(v)− J ′(w),v −w〉 ≥ α ‖v −w‖s . (17.6c)

Here, 〈ϕ,v〉 := ϕ(v) denotes the dual pairing in V∗ ×V. Furthermore, one of the
following two conditions (17.6d,e) are required:

J : V→ R is weakly sequentially continuous, (17.6d)

i.e., J(um) → J(u) for sequences um ⇀ u. Alternatively, J ′ : V → V∗ may be
assumed to be Lipschitz continuous on bounded sets, i.e.,

‖J ′(v) − J ′(w)‖ ≤ CA ‖v −w‖ for v,w ∈ A and bounded A ⊂ V. (17.6e)

As shown in [58, Lemma 3], (17.6b) and (17.6c) imply that J is strictly convex,
bounded from below, and satisfies

lim‖v‖→∞ J(v) =∞. (17.7)

Under these conditions including (17.3), the minima in (17.2), (17.4), and (17.5)
exist. The values J(um) decrease weakly:

J(um) ≤ J(um−1) for m ≥ 1.

If equality J(um) = J(um−1) occurs, u := um−1 is the solution of the original
problem (17.1) (cf. [58, Lemma 8]). The following result is proved in [58, Thm. 4].

Proposition 17.2. (a) Under the conditions (17.6a-d), all variants of the progressive
PGD (17.2), (17.4), (17.5) converge to the solution u of (17.1): um → u.
(b) The same statement holds under conditions (17.6a-c,e), if s ≤ 2 in (17.6c).

17.2 Solution of Optimisation Problems involving Tensor
Formats

There are two different strategies in tensor calculus. The first one performs tensor
operations (as described in §13) in order to calculate certain tensors (solutions of
fixed point iterations, etc.). In this case, truncation procedures are essential for the
practical application. The final representation ranks of the solution may be deter-
mined adaptively. The second strategy fixes the ranks and tries to optimise the
parameters of the representation.

476 17 Miscellaneous Topics

17.2.1 Formulation of the Problem

Many problems can be written as minimisation problems of the form

find x ∈ V such that J(x) = min
v∈V

J(v). (17.8)

Examples are linear systems Ax = b with x,b ∈ V :=
⊗d

j=1 K
nj and A ∈M :=

⊗d
j=1 K

nj×nj . Here, J takes the form

J(v) = 〈Av,v〉 − ,e 〈b,v〉 ,

if A is positive definite (cf. [81, §10.1.4]). Otherwise, use

J(v) = ‖Av − b‖2 or ‖B (Av − b)‖2

with a preconditioning operator B. The largest eigenvalue of a positive definite
matrix A and the corresponding eigenvector can be determined from the Rayleigh
quotient

J(v) =
〈Av,v〉
〈v,v〉 .

Let F = F(V) be any tensor format (e.g.,Rr, Tr,Hr, etc.). Instead of Problem
(17.8), we want to solve

find xF ∈ F such that J(xF) = min
v∈F

J(v). (17.9)

Definition 17.3. A mapping J : V→ R ∪ {∞} is called weakly sequentially lower
semicontinuous in S ⊂ V, if

J(v) ≤ lim inf
n→∞

J(vn) for all vn, v ∈ S with vn ⇀ v.

The following conditions ensuring the existence of a minimiser of (17.9) can be
found in [58, Theorems 1 and 2].

Proposition 17.4. Problem (17.9) is solvable, if V is a reflexive Banach space,
F is weakly closed, J is weakly sequentially lower semicontinuous, and either F is
bounded or lim‖v‖→∞ J(v) =∞.

In the cases F =

⎧
⎨

⎩

Rr
Tr
Hr

⎫
⎬

⎭
we may write xF =

⎧
⎨

⎩

xr
xr

xr

⎫
⎬

⎭
, respectively.

Remark 17.5. Let the minimisers x from (17.8) and xF from (17.9) exist and
assume that J is continuous (condition (17.6b) is sufficient). Then the respec-
tive values J(xr), J(xr), or J(xr) converge to J(x), provided that r → ∞,
min r := min1≤j≤d rj →∞, or min r := minα∈TD rα →∞, respectively.

17.2 Solution of Optimisation Problems involving Tensor Formats 477

Proof. By definition of V, for any ε > 0 there are η > 0, r ∈ N0, and xε ∈ Rr
such that ‖x− xε‖ ≤ η and J(xε) − J(x) ≤ ε. The optimal xr ∈ Rr satisfies
J(xr) − J(x) ≤ J(xε) − J(x) ≤ ε. This proves J(xr) → J(x) for the optimal
xr ∈ Rr . Setting r := min r, we derived fromRr ⊂ Tr, that also J(xr)→ J(x).
Similarly for xr ∈ Hr, sinceRr ⊂ Hr for r = min r. ��

17.2.2 Reformulation, Derivatives, and Iterative Treatment

The general form of a format description v = ρS(. . .) is considered in §7.1.1. Par-
ticular examples are ρr-term(r, (v

(j)
ν)) for the r-term format (7.7a), ρTS(a, (Bj))

for the general subspace format in (8.6c), ρHTR(TD, (Cα), c
(D), (Bj)) for the

hierarchical format in (11.28), etc. Discrete parameters like r in ρr-term(r, (v
(j)
ν))

or TD in ρHTR(TD, . . .) are fixed. All other parameters are variable. Renaming the
latter parameters

p := (p1, . . . , pm) ,

we obtain the description v = ρF (p), where p varies in P. The minimisation in
(17.9) is equivalent to

find p ∈ P such that J(ρF(p)) = min
q∈P

J(ρF (q)). (17.10)

Iterative optimisation methods require at least parts of the derivatives in

∂J(ρF (p))/∂p =
∂J

∂v

∂ρF
∂p

or even second order derivatives like the Hessian. Since the mapping ρF(p) is multi-
linear in p, the format-dependent part ∂ρF∂p as well as higher derivatives are easy to
determine.

Since, in general, the representations are non-unique (cf. §7.1.3), the Jacobi
matrix ∂ρF

∂p does not have full rank. For instance, for ρr-term(r, (v
(j)
ν)) the parame-

ters are p1 := v
(1)
1 ∈ V1, p2 := v

(2)
1 ∈ V2, . . . The fact that ρF(sp1, 1sp2, p3, . . .)

is independent of s ∈ K\{0} leads to 〈∂ρF∂p1 , v
(1)
1 〉 = 〈∂ρF∂p2 , v

(2)
1 〉. Hence ∂ρF

∂p has
a nontrivial kernel. In order to avoid redundancies of the r-term format, one may,
e.g., equi-normalise the vectors: ‖v(1)ν ‖ = ‖v(2)ν ‖ = . . . The problem of redundant
parameters will be discussed in more detail in §17.3.1.

The usual iterative optimisation methods are alternating optimisations (ALS, see
§9.5.2). A modification (MALS: modified alternating least squares) which often
yields good results is the overlapping ALS, where optimisation is perform consecu-
tively with respect to (p1, p2), (p2, p3), (p3, p4), . . . (cf. variant (δ) in §9.5.2.1). For
particular quantum physics applications, this approach is called DMRG (density
matrix renormalisation group, cf. [196, 197]). For a detailed discussion see Holtz-
Rohwedder-Schneider [103] and Oseledets [154].

478 17 Miscellaneous Topics

17.3 Ordinary Differential Equations

We consider initial value problems

d

dt
v = F(t,v) for t ≥ 0, v(0) = v0, (17.11)

where v = v(t) ∈ V belongs to a tensor space, while F(t, ·) : V → V is defined
for t ≥ 0. v0 is the initial value. Since V may be a function space, F can be
a differential operator. Then, parabolic problems d

dtv = Δv or the instationary
Schrödinger equation d

dtv = −iHv are included into the setting (17.11).
The discretisation with respect to time is standard. The unusual part is the dis-

cretisation with respect to a fixed format for the tensor v. For this purpose we have
to introduce the tangent space of a manifold.

17.3.1 Tangent Space

Let a format F be defined via v = ρF (p1, . . . , pm) (cf. §7.1.1), where ρF is differ-
entiable with respect to the parameters pi, 1 ≤ i ≤ m. The set F forms a manifold
parametrised by p1, . . . , pm ∈ K. The subscripts r, r, and r in F = Rr, F = Tr,
and F = Hr indicate the fixed representation ranks.

Definition 17.6. Let v = ρF(p1, . . . , pm) ∈ F . The linear space

T (v) := span{∂ρF(p1, . . . , pm)/∂pi : 1 ≤ i ≤ m} ⊂ V

is the tangent space at v ∈ F .

As observed above, the mapping ρF(p1, . . . , pm) is, in general, not injective.
Therefore, a strict inequality mT := dim(T (v)) < m may hold. Instead of a
bijective parametrisation, we use a basis for T (v). This will be exercised for the
format Tr in §17.3.3 and formatHr in §17.3.4.

17.3.2 Dirac-Frenkel Discretisation

The Galerkin method restricts v in (17.11) to a certain linear subspace. Here, we re-
strict v to the manifoldF , which is no subspace. We observe that any differentiable
function vF (t) ∈ F has a derivative d

dtvF ∈ T (vF). Hence, the right-hand side
F(t,vF) in (17.11) has to be replaced by an expression belonging to T (vF). The
closest one is the orthogonal projection of F onto T (vF). Denoting the orthogonal
projection onto T (vF) by P (vF), we get the substitute

vF(t) ∈ F with vF (0) = v0F ∈ F and

d
dtvF (t) = P (vF (t))F(t,vF (t)) for t ≥ 0,

(17.12)

17.3 Ordinary Differential Equations 479

where the initial value v0F is an approximation of v0. The new differential equation
is called the Dirac-Frenkel discretisation of (17.11) (cf. [48], [65]). The variational
formulation of (17.12) is

〈
d

dt
vF (t)− F(t,vF (t)), t

〉

= 0 for all t ∈ T (vF).

Concerning an error analysis of this discretisation we refer to Lubich [143, 144]
and Koch-Lubich [126].

For a concrete discretisation of (17.12), we may choose the explicit Euler
scheme. The parameters of vn ≈ vF (n · Δt) ∈ F are ρF (p

(n)
1 , . . . , p

(n)
m). The

vector P (vn)F(t,vn) from the tangent space leads to coordinates ∂p(n)1 , . . . , ∂p
(n)
m

(their explicit description in the case of F = Tr is given below in Lemma 17.8).
Then, the Euler scheme with step size Δt produces the next approximation

vn+1 := ρF (p
(n)
1 +Δt∂p

(n)
1 , . . . , p(n)m +Δt∂p(n)m).

17.3.3 Tensor Subspace Format Tr

Tensors from F = Tr are represented by

v = ρorth(a, (Bj)) =
∑

i∈J
ai
⊗d

j=1
b
(j)
ij

= Ba

(cf. (8.8b)), where without loss of generality we use orthonormal bases Bj =

(b
(j)
1 , . . . , b

(j)
rj) ∈ V

rj
j . Note that B =

⊗d
j=1 Bj . The set of matrices Bj ∈ K

Ij×rj

with BH
j Bj = I is called Stiefel manifold.

Lemma 17.7. Let v = ρorth(a, (Bj)) ∈ Tr. Every tangent tensor t ∈ T (v) has a
representation of the form

t = Bs+

(
d∑

j=1

B1 ⊗ . . .⊗Bj−1 ⊗ Cj ⊗Bj+1 ⊗ . . .⊗Bd

)

a, (17.13a)

where Cj satisfies
BH
j Cj = 0. (17.13b)

Cj and s are uniquely determined (see (17.13c,d)), provided that rankj(v) = rj .
Vice versa, for any coefficient tensor s and all matrices Cj satisfying (17.13b) the
right-hand side in (17.13a) belongs to T (v).

Proof. 1a) Any t ∈ T (v) is the limit of 1
h [ρorth(a+ h δa, (Bj + h δBj))− v] as

h→ 0 for some δa and δBj . This limit equals

B δa +

(d∑

j=1

B1 ⊗ . . .⊗Bj−1 ⊗ δBj ⊗Bj+1 ⊗ . . .⊗Bd
)

a.

480 17 Miscellaneous Topics

The first term is of the form Bs. Since Bj(h) := Bj + h δBj must be orthogonal,
i.e., Bj(h)HBj(h) = I, it follows that BH

j δBj + δBH
j Bj = 0. Split δBj into

δBj = δBIj + δBIIj with δBIj :=
(
I −BjBH

j

)
δBj and δBIIj := BjB

H
j δBj . The

derivative of v with respect to δBIIj yields

(
B1 ⊗ . . .⊗ Bj−1 ⊗ δBIIj ⊗Bj+1 ⊗ . . .⊗Bd

)
a = Ba′

with a′ :=
(
id⊗ . . .⊗ id⊗BH

j δBj ⊗ id⊗ . . .⊗ id
)
a. Such a term can be ex-

pressed by Bs in (17.13a). Therefore, we can restrict δBj to the part δBIj =: Cj ,

which satisfies (17.13b):BH
j δB

I
j = BH

j

(
I −BjBH

j

)
δBj = 0.

1b) Given t ∈ T (v), we have to determine s and Cj . BHB = I and BH
j Cj = 0

imply that
s = BHt . (17.13c)

Hence, t′ = t−Bs equals
(∑d

j=1 B1 ⊗ . . .⊗Bj−1 ⊗ Cj ⊗Bj+1 ⊗ . . .⊗Bd
)
a.

From (5.5) we conclude that Mj(t
′) = CjMj(a)B

T
[j]. Let Mj(a) = UjΣjV

T
j

be the reduced singular value decomposition with Uj , Vj ∈ V rjj and Σj ∈ R
rj×rj .

Thanks to rankj(v) = rj , Σj is invertible. This allows to solve for Cj :

Cj =Mj(t
′)B[j] Vj Σ

−1
j UH

j . (17.13d)

2) Given s and matrices Cj satisfying (17.13b), the derivative

t = lim
h→0

1

h
[ρorth(a+ h s, (Bj + hCj))− v] ∈ T (v) with v = ρorth(a, (Bj))

has the representation (17.13a). ��

A more general problem is the description of the orthogonal projection on T (v).
Given any w ∈ V, we need the parameters s and Cj of t ∈ T (v) defined by
t = P (v)w and v = ρorth(a, (Bj)) ∈ Tr. Another notation for t is ‖t−w‖ =
min{

∥
∥t̃−w

∥
∥ : t̃ ∈ T (v)}. First we split w into the orthogonal components w =

BBHw +w′. Since BBHw ∈ T (v), it remains to determine t′ satisfying

‖t′ −w′‖ = min{‖t̃′ −w′‖ : t̃′ ∈ T (v)},

where t′ =
∑d
j=1 t

′
j with t′j := (B[j] ⊗ Cj)a ∈ Uj and orthogonal subspaces

Uj := U⊥j ⊗
⊗

k �=j Uk, Uj := range(Bj). Orthogonal projection onto Uj yields

‖t′j − B[j]B
H
[j]w

′‖ = min{‖t̃′j − B[j]B
H
[j]w

′‖ : t̃′j ∈ T (v) ∩ Uj}. Equivalent
statements are

t′j = B[j](Cja) with ‖Cja−BH
[j]w

′‖ = min{‖C̃ja−BH
[j]w

′‖ : BH
j C̃j = 0}

⇔ ‖Mj(Cja)−Mj(B
H
[j]w

′)‖F = min
BH

j C̃j=0
‖Mj(C̃ja)−Mj(B

H
[j]w

′)‖F

⇔ ‖CjMj(a)−Mj(w
′)B[j]‖F = min

BH
j C̃j=0

‖C̃jMj(a)−Mj(w
′)B[j]‖F,

17.3 Ordinary Differential Equations 481

since the Euclidean norm ‖x‖ of a tensor x is equal to the Frobenius norm of the
matricisation Mj(x). By Exercise 2.12, the minimiser of the last formulation is

Cj =Mj(w
′)B[j]M

H
j (MjM

H
j)
−1 with Mj :=Mj(a).

The rank condition of Exercise 2.12 is equivalent to rankj(v) = rj . Cj satisfies
(17.13b) because of BH

jMj(w
′) =Mj(B

H
j w
′) and BH

j w
′ = BH

j (I − B)w = 0.
Using the singular value decomposition Mj = UjΣjV

T
j , we may rewrite Cj as

Mj(w
′)B[j]VjΣjU

H
j (UjΣ

2
jU

H
j)
−1 =Mj(w

′)B[j]VjΣ
−1
j UH

j . We summarise the
result in the next lemma.

Lemma 17.8. Let v ∈ V with rankj(v) = rj (1 ≤ j ≤ d). For any w ∈ V, the
orthogonal projection onto T (v) is given by t = P (v)w from (17.13a) with

s := BHw, Cj :=Mj((I−BBH)w)B[j] Vj Σ
−1
j UH

j .

17.3.4 Hierarchical Format Hr

We choose the HOSVD representation for v ∈ Hr:

v = ρHOSVD
HTR

(
TD, (Cα)α∈TD\L(TD), c

(D), (Bj)j∈D
)

(cf. Definition 11.3.3), i.e., all bases Bα =
[
b
(α)
1 , . . . ,b

(α)
rα

]
of Umin

α (v) are
HOSVD bases. They are characterised by the following properties of the coefficient
matrices C(α,�) in Cα = (C(α,�))1≤�≤rα .
1) For the root D assume rD = 1. Then

C(D,1) = Σα := diag{σ(D)
1 , . . .},

where σ(D)
i are the singular values of the matricisationMα1(v) (α1 son of D).

2) For non-leaf vertices α ∈ TD, α �= D, we have

rα∑

�=1

(σ
(α)
�)2 C(α,�)C(α,�)H = Σ2

α1
,

rα∑

�=1

(σ
(α)
�)2 C(α,�)TC(α,�) = Σ2

α2
, (17.14)

whereα1, α2 are the first and second son ofα∈TD, andΣαi the diagonal containing
the singular values ofMαi(v) (cf. Exercise 11.41).

Let v(t) ∈ Hr be a differentiable function. We characterise v̇(t) at t = 0 and
abbreviate v̇ := v̇(0). The differentiation follows the recursion of the representation.
Since rD = 1, v = c

(D)
1 b

(D)
1 yields

v̇ = ċ
(D)
1 b

(D)
1 + c

(D)
1 ḃ

(D)
1 . (17.15a)

The differentiation of the basis functions follows from (11.24):

482 17 Miscellaneous Topics

ḃ
(α)
� =

rα1∑

i=1

rα2∑

j=1

ċ
(α,�)
ij b

(α1)
i ⊗ b

(α2)
j (17.15b)

+

rα1∑

i=1

rα2∑

j=1

c
(α,�)
ij ḃ

(α1)
i ⊗ b

(α2)
j +

rα1∑

i=1

rα2∑

j=1

c
(α,�)
ij b

(α1)
i ⊗ ḃ

(α2)
j

At the end of the recursion, v̇ is represented by the differentiated coefficients ċ(D)
1 ,

ċ
(α,�)
ij and the derivatives ḃ(j)i of the bases at the leaves.

By the same argument as in Lemma 17.7, we may restrict the variations ḃ(α)
� to

the orthogonal complement of Umin
α (v), i.e.,

ḃ
(α)
� ⊥ Umin

α (v) . (17.16)

We introduce the projections

Pα : Vα → Umin
α (v), Pα =

rα∑

�=1

〈
·,b(α)

�

〉
b
(α)
�

onto Umin
α (v) and its complement P⊥α := I − Pα.

Next, we discuss the unique representation of the parameters. ċ(D)
1 is obtained as

ċ
(D)
1 =

〈
v̇,b

(D)
1

〉
. (17.17a)

ḃ
(D)
1 is the result of

ḃ
(D)
1 =

1

c
(D)
1

P⊥D v̇ (17.17b)

with ‖v‖ = |c(D)
1 |. Note that c(D)

1 ḃ
(D)
1 is the quantity of interest.

We assume by induction that ḃ(α)
� is known and use (17.15b):

ċ
(α,�)
ij =

〈
ḃ
(α)
� ,b

(α1)
i ⊗ b

(α2)
j

〉
. (17.17c)

Set

β
(α)
� :=

(
P⊥α1
⊗ id

)
ḃ
(α)
� =

rα1∑

i=1

rα2∑

j=1

c
(α,�)
ij ḃ

(α1)
i ⊗ b

(α2)
j .

The scalar product of (σ(α)
�)2β

(α)
� and

∑
k c

(α,�)
i′k b

(α2)
k with respect to Vα2 is

〈

(σ
(α)
�)2β

(α)
� ,

rα2∑

k=1

c
(α,�)
ik b

(α2)
k

〉

α2

=

〈

(σ
(α)
�)2

rα1∑

i′=1

rα2∑

j=1

c
(α,�)
i′j ḃ

(α1)
i′ ⊗ b

(α2)
j ,

rα2∑

k=1

c
(α,�)
ik b

(α2)
k

〉

α2

17.4 ANOVA 483

=

rα1∑

i′=1

〈

(σ
(α)
�)2

rα2∑

j=1

c
(α,�)
i′j b

(α2)
j ,

rα2∑

k=1

c
(α,�)
ik b

(α2)
k

〉

ḃ
(α1)
i′

=

rα1∑

i′=1

⎛

⎝
rα2∑

j=1

(σ
(α)
�)2c

(α,�)
i′j c

(α,�)
ij

⎞

⎠ ḃ
(α1)
i =

rα1∑

i′=1

(σ
(α)
�)2

(
C(α,�)C(α,�)H

)

i′i
ḃ
(α1)
i′ .

Summation over � and identity (17.14) yield

rα∑

�=1

〈

(σ
(α)
�)2β

(α)
� ,

rα2∑

k=1

c
(α,�)
ik b

(α2)
k

〉

α2

=

rα1∑

i′=1

(rα∑

�=1

(σ
(α)
�)2C(α,�)C(α,�)H

)

i′i
ḃ
(α1)
i′

=

rα1∑

i′=1

(
Σ2
α1

)
i′i ḃ

(α1)
i′ = (σ

(α1)
i)2 ḃ

(α1)
i . (17.17d)

Similarly, γ(α)� :=
(
id⊗ P⊥α2

)
ḃ
(α)
� holds and

rα∑

�=1

〈

(σ
(α)
�)2γ

(α)
� ,

rα1∑

i=1

c
(α,�)
ij b

(α2)
i

〉

α1

= (σ
(α2)
j)2 ḃ

(α2)
j . (17.17e)

We summarise: Assume v ∈ Hr and dim(Umin
α (v)) = rα for α ∈ TD (this

implies σ(α)
i > 0 for 1 ≤ i ≤ rα). Under condition (17.16), the tangential tensor

v̇∈Hr has a unique description by ċ(D)
1 , ḃ(α)

� , and ċ(α,�)ij characterised in (17.17a-e).

An investigation of the tangent space of the TT format is given by Holtz-
Rohwedder-Schneider [102].

17.4 ANOVA

ANOVA is the abbreviation of ‘analysis of variance’. It uses a decomposition of
functions into terms of different spatial dimensions. If contributions of high spatial
dimension are sufficiently small, an approximation by functions of a smaller number
of variables is possible.

17.4.1 Definitions

Consider a space V of functions in d variables. As example we choose

V = C([0, 1]d) = ‖·‖∞

⊗d

j=1
Vj with Vj = C([0, 1]).

We denote the function with constant value one by 1 ∈ Vk. Functions which are
constant with respect to the variable xk are characterised by Umin

k (f) = span{1}

484 17 Miscellaneous Topics

and can also be considered as elements of V[k] = ‖·‖∞
⊗

j∈D\{k} Vj . We may
identify ‖·‖∞

⊗
j∈t Vj for any subset t ⊂ D with

Vt := ‖·‖∞

⊗

j∈t
Vj ∼= ‖·‖∞

d⊗

j=1

Wj ⊂ V with Wj :=

{
Vj if j ∈ t,
span{1} if j /∈ t

(cf. Remark 3.25a). For instance, f ∈ V∅ is a globally constant function, while
f ∈ V{1,3,4,...} is constant with respect to x2 so that f(x1, x2, x3, . . .) can also be
written as f(x1, x3, x4, . . .).

Fix a functional Pj ∈ V ∗j with Pj1 = 0. We denote the mapping

f ∈ Vj �→ (Pjf) · 1 ∈ Vj

by the same symbol Pj . In the second interpretation, Pj ∈ L(Vj , Vj) is a projection
onto the subspace span{1} ⊂ Vj . For each subset t ⊂ D, the product Pt :=∏
j∈t Pj defines a projection onto Vtc , where tc = D\t. Note that the order of its

factors is irrelevant. P∅ = id holds for t = ∅. A tensor notation is

Pt :=

d⊗

j=1

{
Pj if j ∈ t
id if j /∈ t

}

∈ L(V,Vtc).

The recursive definition

ft := Ptcf −
∑

τ�t
fτ (17.18)

starts with t = ∅, since the empty sum in (17.18) leads to the constant function
f∅ = PDf ∈ V∅. As PDc = P∅ is the identity, the choice t = D in (17.18) yields
the ANOVA decomposition

f =
∑

t⊂D
ft. (17.19)

Note that ft depends on (at most) #t variables.

17.4.2 Properties

Lemma 17.9. (a) Let s, t ⊂ D. The Hadamard product of f ∈ Vs and g ∈ Vt

belongs to Vs∪t.
(b) Pjft = 0 holds for ft from (17.19) with j ∈ t.
(c) If s, t ⊂ D are different, the ANOVA components fs and gt of some functions f
and g satisfy

Pτ (fs � gt) = 0 for all τ ⊂ D with τ ∩ (s\t ∪ t\s) �= ∅.

17.4 ANOVA 485

Proof. Part (a) is trivial. For (b) we rewrite (17.18) as

Ptcf =
∑

τ⊂t
fτ , (17.20a)

where the sum includes τ = t. Split the sum into
∑
τ⊂t with j∈τ and

∑
τ⊂t with j /∈τ .

The second sum is identical to
∑

τ⊂t\{j}:

Ptcf =
∑

τ⊂t with j∈τ
fτ +

∑

τ⊂t\{j}
fτ =

(17.20a)

∑

τ⊂t with j∈τ
fτ +P(t\{j})cf. (17.20b)

Since (t\{j})c = tc ∪ {j}, the projection Pj satisfies the identity Pj ◦ Ptc =
P(t\{j})c = Pj ◦P(t\{j})c , and application of Pj to (17.20b) leads to

Pj

(
∑

τ⊂t with j∈τ
fτ

)

= 0 for all t ⊂ D with j ∈ t. (17.20c)

We use induction over #t. The smallest set with j∈t is t={j}, for which (17.20c)
becomes Pjf{j} = 0. Assume that Pjfσ = 0 holds for all σ ⊂ D with j ∈ σ
and #σ ≤ k < d. Assume j ∈ t and #t = k + 1. Identity (17.20c) shows
0 =

∑
τ⊂t with j∈τ Pjfτ = Pjft, since all other τ satisfy #τ ≤ k.

For Part (c) choose some j ∈ τ ∩ (s\t ∪ t\s) . Assume without loss of generality
that j ∈ t, but j /∈ s. Hence, fs is constant with respect to xj and, since Part (b)
implies that Pjgt = 0, also Pj (fs � gt) = 0 and Pτ (fs � gt) = 0 hold for any τ
with j ∈ τ. ��

For the choice Vj = L2
ρj ([0, 1]) of the Hilbert space of weighted L2 functions,

the scalar product is defined by (f, g) =
∫ 1

0
f(x)g(x)dρj(x). The weight should

be scaled such that
∫ 1

0 dρj = 1. The induced scalar product of V is
∫
[0,1]d fg dρ

with dρ =
∏d
j=1 dρj . Then the functional Pj ∈ V ∗j from above can be defined by

Pjf :=
∫ 1

0 fdρj and Lemma 17.9c takes the following form.

Remark 17.10. Let V = L2
ρ([0, 1]

d), Pjϕ :=
∫ 1

0
ϕdρj , and s, t ⊂ D with s �= t.

Then the ANOVA components fs, gt of any f, g ∈ V are orthogonal in V.

In this case, f =
∑

t⊂D ft is an orthogonal decomposition. If the terms ft
decrease with increasing #t, one may truncate the sum and introduce the approx-
imation f (k) :=

∑
t:#t≤k ft. It may even happen that ft vanishes for #t > k.

An important example of ft = 0 for #t > 2 is the potential of the Schrödinger
equation1

f(x1, . . . , xd) =
∑

1≤i<j≤d

1

‖xi − xj‖
−

∑

1≤j≤d

∑

1≤i≤A

Qi
‖ai − xj‖

(xj ∈ R
3, d: number of electrons, A: number of nuclei, ai: positions of nuclei,

Qi: charges).

1 The terms on the right-hand side are not yet the components f{j} and f{i,j}, since these ex-
pressions are not orthogonal.

486 17 Miscellaneous Topics

Since discrete weights (sums of Dirac distributions) are not excluded, functions
may be replaced by K

n vectors. Therefore, the described analysis applies also to
finite dimensional tensor spaces

⊗d
j=1K

nj . Discrete weights are also introduced
for the so-called ‘anchored ANOVA’ to simplify quadrature (cf. Griebel [77]).

17.4.3 Combination with Tensor Representations

So far, the components ft are general #t-variate functions (possibly with better
regularity than f ; cf. Griebel-Kuo-Sloan [78]). Any practical implementation has
to introduce some discretisation in order to represent ft. Depending on #t and the
discretisation size, a representation of ft by one of the tensor representations might
be useful. For representation schemes, which have d as linear factor for the storage
cost, the reduction from d to #t < d is of limited help, unless the representation
ranks of ft are much smaller than for f. On the other hand, the large number of
terms in

∑
t⊂D ft or

∑
t:#t≤k ft is not encouraging the choice of ANOVA with

tensor representations compared with an overall tensor representation. An exception
will be discussed next.

17.4.4 Symmetric Tensors

A symmetric tensor v ∈ Sd(V) ⊂ V = ⊗dV may be represented by any w ∈ V
with the property v = PS(w) (projection PS from (3.45)). However, if two tensors
v′,v′′ ∈ Sd(V) are represented via w′,w′′ ∈ V, the computation of the scalar
product 〈v′,v′′〉 is not easily described by means of w′,w′′.

The ANOVA decomposition (17.19) has components ft such that ft ∈ S#t(V).
Different t, t′ of same cardinality lead to identical2 functions ft = ft′ . Therefore, a
symmetric decomposition (17.19) requires only the data

f∅, f{1}, f{1,2}, . . . , f{1,...,d}.

Assume that Pj is related to the scalar product. Then, by Remark 17.10, the ANOVA
decompositions f =

∑
t⊂D ft and g =

∑
t⊂D gt satisfy

〈f, g〉 =
∑

t⊂D
〈ft, gt〉 =

d∑

k=0

(
k
d

) 〈
f{1,...,k}, g{1,...,k}

〉
,

since there are
(
k
d

)
different t ⊂ D with #t = k. This property favours the ANOVA

representation with f{1,...,k} in some tensor representation.

2 The understanding of ft is ambiguous. One may regard ft as a function of #t variables. In this
sense, ft(ξ1, . . . , ξ#t) = ft′(ξ1, . . . , ξ#t) holds. On the other hand, the univariate functions
f{1}c = f{2}c become different, when they are written as f{1}c(x1) and f{2}c (x2) involving
two different independent variables (as it happens, e.g., in f{1}c(x1) + f{2}c (x2)).

References

1. Aleksandrov, A., Peller, V.: Functions of perturbed operators. C. R. Acad. Sci. Paris, Ser. I
347, 483–488 (2009)

2. Almlöf, J.: Elimination of energy denominators in Møller-Plesset perturbation theory by a
Laplace transform approach. Chem. Phys. Lett. 176, 319–320 (1991)

3. Appellof, C.J., Davidson, E.R.: Strategies for analyzing data from video fluorometric moni-
toring of liquid-chromatographic effluents. Anal. Chem. 13, 2053–2056 (1981)

4. Bader, B.W., Kolda, T.G.: MATLAB tensor toolbox, version 2.3. Tech. rep., http://csmr.ca.
sandia.gov/˜tgkolda/TensorToolbox (2007)

5. Ballani, J.: Fast evaluation of BEM integrals based on tensor approximations. Preprint 77,
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig (2010)

6. Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format.
Preprint 22, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig (2010)

7. Ballani, J., Grasedyck, L., Kluge, M.: Black box approximation of tensors in hierarchical
Tucker format. Linear Algebra Appl. (2011). To appear

8. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86, 565–589
(2000)

9. Bebendorf, M.: Hierarchical matrices, Lect. Notes Comput. Sci. Eng., vol. 63. Springer,
Berlin (2008)

10. Bebendorf, M.: Adaptive cross approximation of multivariate functions. Constr. Approx. 34,
149–179 (2011)

11. Bellman, R.: Adaptive control processes - a guided tour. Princeton University Press, New
Jersey (1961)

12. Benedikt, U., Auer, A.A., Espig, M., Hackbusch, W.: Tensor decomposition in post-Hartree-
Fock methods. I. Two-electron integrals and MP2. J. Chem. Phys. 134 (2011)

13. Bergman, G.M.: Ranks of tensors and change of base field. J. Algebra 11 613–621 (1969)
14. Bernstein, S.N.: Leçons sur les proprietés extremales et la meilleure approximation des

fonctions analytiques d’une variable réelle. Gauthier-Villars, Paris (1926)
15. Beylkin, G., Mohlenkamp, M.J.: Numerical operator calculus in higher dimensions. Proc.

Natl. Acad. Sci. USA 99, 10,246–10,251 (2002)
16. Beylkin, G., Mohlenkamp, M.J., Pérez, F.: Approximating a wavefunction as an uncon-

strained sum of Slater determinants. J. Math. Phys. 49, 032,107 (2008)
17. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Com-

put. Harmon. Anal. 19, 17–48 (2005)
18. Beylkin, G., Monzón, L.: Approximation by exponential sums revisited. Appl. Comput.

Harmon. Anal. 28, 131–149 (2010)
19. Bini, D., Lotti, G., Romani, F.: Approximate solutions for the bilinear form computational

problem. SIAM J. Comput. 9, 692–697 (1980)
20. Björck, Å.: Numerical methods for least squares problems. SIAM, Philadelphia (1996)

W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Series
in Computational Mathematics 42, DOI 10.1007/978-3-642-28027-6,
© Springer-Verlag Berlin Heidelberg 2012

487

488 References

21. Börm, S.: Efficient numerical methods for non-local operators. EMS, Zürich (2010)
22. Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer. Math.

101, 221–249 (2005)
23. Boys, S.F.: Electronic wave functions. I. A general method of calculation for stationary states

of any molecular system. Proc. R. Soc. London Ser. A 200, 542–554 (1950)
24. Brachat, J., Comon, P., Mourrain, B., Tsigaridas, E.: Symmetric tensor decomposition.

Linear Algebra Appl. 433, 1851–1872 (2010)
25. Braess, D.: Nonlinear approximation theory. Springer, Berlin (1986)
26. Braess, D.: Asymptotics for the approximation of wave functions by exponential-sums. J.

Approx. Theory 83, 93–103 (1995)
27. Braess, D., Hackbusch, W.: Approximation of 1/x by exponential sums in [1,∞). IMA J.

Numer. Anal. 25, 685–697 (2005)
28. Braess, D., Hackbusch, W.: On the efficient computation of high-dimensional integrals and

the approximation by exponential sums. In: R.A. DeVore, A. Kunoth (eds.) Multiscale, non-
linear and adaptive approximation, pp. 39–74. Springer, Berlin (2009)

29. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)
30. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via

ann-way generalization of Eckart-Young decomposition. Psychometrika 35, 283–319 (1970)
31. Cattell, R.B.: Parallel proportional profiles and other principles for determining the choice of

factors by rotation. Psychometrika 9, 267–283 (1944)
32. Cayley, A.: Mémoire sur les hyperdéterminants. J. Reine Angew. Math. 30, 1–37 (1846)
33. Cayley, A.: An introductory memoir on quantics. Philos. Trans. R. Soc. Lond. 144 (1854)
34. Chinnamsetty, S.R., Espig, M., Flad, H.J., Hackbusch, W.: Canonical tensor products as a

generalization of Gaussian-type orbitals. Z. Phys. Chem. 224, 681–694 (2010)
35. Chinnamsetty, S.R., Espig, M., Khoromskij, B., Hackbusch, W., Flad, H.J.: Tensor product

approximation with optimal rank in quantum chemistry. J. Chem. Phys. 127, 084,110 (2007)
36. Chinnamsetty, S.R., Luo, H., Hackbusch, W., Flad, H.J., Uschmajew, A.: Bridging the gap

between quantum Monto Carlo and F12-methods. Chem. Phys. (2011). On-line published
37. Christoffel, E.B.: Über die Transformation der homogenen Differentialausdrücke zweiten

Grades. J. Reine Angew. Math. 70, 46–70 (1869)
38. Comon, P., ten Berge, J.M.F., De Lathauwer, L., Castaing, J.: Generic and typical ranks of

multi-way arrays. Linear Algebra Appl. 430, 2997–3007 (2009)
39. Comon, P., Golub, G.H., Lim, L.H., Mourrain, B.: Symmetric tensors and symmetric tensor

rank. SIAM J. Matrix Anal. Appl. 30, 1254–1279 (2008)
40. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms - part II: defini-

tions and uniqueness. SIAM J. Matrix Anal. Appl. 30 (2008)
41. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition.

SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)
42. De Lathauwer, L., De Moor, B., Vandewalle, J.: An introduction to independent component

analysis. J. Chemometrics 14, 123–149 (2000)
43. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R1 ,R2,...,Rn)

approximation of higher order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)
44. De Silva, V., Lim, L.H.: Tensor rank and the ill-posedness of the best low-rank approximation

problem. SIAM J. Matrix Anal. Appl. 30, 1084–1127 (2008)
45. Defant, A., Floret, K.: Tensor methods and operator ideals. North-Holland, Amsterdam (1993)
46. DeVore, R.A., Lorentz, G.G.: Constructive approximation. Springer, Berlin (1993)
47. Dilworth, S.J., Kutzarova, D., Temlyakov, V.N.: Convergence of some greedy algorithms in

Banach spaces. J. Fourier Anal. Appl. 8, 489–505 (2002)
48. Dirac, P.A.M.: Note on exchange phenomena in the Thomas atom. Proc. Cambridge Phil.

Soc. 26, 376–385 (1930)
49. Dolgov, S., Khoromskij, B., Savostyanov, D.V.: Multidimensional Fourier transform in

logarithmic complexity using QTT approximation. Preprint 18, Max-Planck-Institut für
Mathematik in den Naturwissenschaften, Leipzig (2011)

50. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psycho-
metrika 1, 211–218 (1936)

References 489

51. Edelstein, M.: Weakly proximinal sets. J. Approx. Theory 18, 1–8 (1976)
52. Espig, M.: Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen

Dimensionen. Dissertation, Universität Leipzig (2008)
53. Espig, M., Grasedyck, L., Hackbusch, W.: Black box low tensor-rank approximation using

fiber-crosses. Constr. Approx. 30, 557–597 (2009)
54. Espig, M., Hackbusch, W.: A regularized Newton method for the efficient approximation

of tensors represented in the canonical tensor format. Preprint 78, Max-Planck-Institut für
Mathematik in den Naturwissenschaften, Leipzig (2010)

55. Espig, M., Hackbusch, W., Litvinenko, A., Matthies, H.G., Zander, E.: Efficient analysis of
high dimensional data in tensor formats. Preprint 62, Max-Planck-Institut für Mathematik in
den Naturwissenschaften, Leipzig (2011)

56. Espig, M., Hackbusch, W., Rohwedder, T., Schneider, R.: Variational calculus with sums of
elementary tensors of fixed rank. Numer. Math. (2012). To appear

57. Falcó, A., Hackbusch, W.: On minimal subspaces in tensor representations. Found. Comput.
Math. (2011). To appear

58. Falcó, A., Nouy, A.: Proper generalized decomposition for nonlinear convex problems in
tensor Banach spaces. Numer. Math. (2012). To appear

59. Feuersänger, C., Griebel, M.: Principal manifold learning by sparse grids. Computing 85,
267–299 (2009)

60. Flad, H.J., Hackbusch, W., Khoromskij, B., Schneider, R.: Concept of data-sparse tensor-
product approximation in many-particle modelling. In: V. Olshevsky, E.E. Tyrtyshnikov
(eds.) Matrix methods - theory, algorithms, applications, pp. 313–343. World Scientific,
Singapore (2010)

61. Flad, H.J., Hackbusch, W., Schneider, R.: Best N-term approximation in electronic structure
calculations. I. One-electron reduced density matrix. M2AN 40, 49–61 (2006)

62. Flad, H.J., Hackbusch, W., Schneider, R.: Best N-term approximation in electronic structure
calculations. II. Jastrow factors. M2AN 41, 261–279 (2007)

63. Flad, H.J., Khoromskij, B., Savostyanov, D.V., Tyrtyshnikov, E.E.: Verification of the cross
3D algorithm on quantum chemistry data. Contemp. Math. 23, 329–344 (2008)

64. Floret, K.: Weakly compact sets, Lect. Notes Math., vol. 119. Springer, Berlin (1980)
65. Frenkel, J.: Wave mechanics, advanced general theory. Clarendon Press, Oxford (1934)
66. Gavrilyuk, I.P., Hackbusch, W., Khoromskij, B.: H-matrix approximation for the operator

exponential with applications. Numer. Math. 92, 83–111 (2002)
67. Gavrilyuk, I.P., Khoromskij, B.: Quantized-TT-Cayley transform for computing the dynam-

ics and the spectrum of high-dimensional Hamiltonians. Comput. Meth. Appl. Math. 11,
273–290 (2011)

68. Golub, G.H., Pereyra, V.: Separable nonlinear least squares: the variable projection method
and its applications. Inverse Problems 19, R1–R26 (2003)

69. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. The Johns Hopkins University
Press, Baltimore (1996)

70. Goreinov, S.A., Tyrtyshnikov, E.E.: The maximal-volume concept in approximation by low-
rank matrices. Contemp. Math. 280, 47–51 (2001)

71. Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of pseudoskeleton approx-
imations. Linear Algebra Appl. 261, 1–22 (1997)

72. Grasedyck, L.: Existence and computation of a low Kronecker-rank approximant to the
solution of a tensor system with tensor right-hand side. Computing 72, 247–266 (2004)

73. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal.
Appl. 31, 2029–2054 (2010)

74. Grasedyck, L.: Polynomial approximation in hierarchical Tucker format by vector-
tensorization. Preprint 43, DFG-SPP 1324 (2010). http://www.dfg-spp1324.de

75. Grasedyck, L., Hackbusch, W.: An introduction to hierarchical (H-)rank and TT-rank of
tensors with examples. Comput. Meth. Appl. Math. 11, 291–304 (2011)

76. Greub, W.H.: Multilinear algebra, 2nd edn. Springer, Berlin (1978)

490 References

77. Griebel, M.: Sparse grids and related approximation schemes for higher dimensional
problems. In: L. Pardo, A. Pinkus, E. Süli, M.J. Todd (eds.) Foundations of computational
mathematics (FoCM05), pp. 106–161. Cambridge University Press, Cambridge (2006)

78. Griebel, M., Kuo, F.Y., Sloan, I.H.: The smoothing effect of the ANOVA decomposition.
J. Complexity 26, 523–551 (2010)

79. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math.
Soc. 16 (1955)

80. Grothendieck, A.: Résumé de la théorie métrique des produit tensoriels topologiques. Bol.
Soc. Mat. São Paulo 8, 1–79 (1956)

81. Hackbusch, W.: Iterative solution of large sparse system of equations. Springer, New York
(1994)

82. Hackbusch, W.: Elliptic differential equations. Theory and numerical treatment, 2nd edn.
Springer, Berlin (2003)

83. Hackbusch, W.: Multi-grid methods and applications, 2nd edn. Springer, Berlin (2003)
84. Hackbusch, W.: Entwicklungen nach Exponentialsummen. Techn. Bericht 4, Max-Planck-

Institut für Mathematik in den Naturwissenschaften, Leipzig (2005)
85. Hackbusch, W.: Convolution of hp-functions on locally refined grids. IMA J. Numer. Anal.

29, 960–985 (2009)
86. Hackbusch, W.: Hierarchische Matrizen - Algorithmen und Analysis. Springer, Berlin (2009)
87. Hackbusch, W.: Tensorisation of vectors and their efficient convolution. Numer. Math. 119,

465–488 (2011)
88. Hackbusch, W., Khoromskij, B.: Low-rank Kronecker-product approximation to multi-

dimensional nonlocal operators. Part I. Separable approximation of multi-variate functions.
Computing 76, 177–202 (2006)

89. Hackbusch, W., Khoromskij, B.: Low-rank Kronecker-product approximation to multi-
dimensional nonlocal operators. Part II. HKT representation of certain operators. Computing
76, 203–225 (2006)

90. Hackbusch, W., Khoromskij, B.: Tensor-product approximation to operators and functions
in high dimensions. J. Complexity 23, 697–714 (2007)

91. Hackbusch, W., Khoromskij, B., Sauter, S.A., Tyrtyshnikov, E.E.: Use of tensor formats in
elliptic eigenvalue problems. Numer. Linear Algebra Appl. (2011). On-line published

92. Hackbusch, W., Khoromskij, B., Tyrtyshnikov, E.E.: Hierarchical Kronecker tensor-product
approximations. J. Numer. Math. 13, 119–156 (2005)

93. Hackbusch, W., Khoromskij, B., Tyrtyshnikov, E.E.: Approximate iterations for structured
matrices. Numer. Math. 109, 365–383 (2008)

94. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl.
15, 706–722 (2009)

95. Hamilton, W.R.: On quaternions, or on a new system of imaginaries in algebra. The London,
Edinburgh and Dublin Philos. Mag. and J. of Science (3rd Series) 29, 26–31 (1846)

96. Harshman, R.: Foundations of PARAFAC procedure: models and conditions for an
“exploratory” multi-mode analysis. UCLA Working Papers in Phonetics 16, 1–84 (1970)

97. Håstad, J.: Tensor rank is NP-complete. J. Algorithms 11, 644–654 (1990)
98. Higham, N.J.: Functions of matrices, theory and computation. SIAM, Philadelphia (2008)
99. Hitchcock, F.L.: Multiple invariants and generalized rank of a p-way matrix or tensor. Journal

of Mathematics and Physics 7, 40–79 (1927)
100. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. Journal of

Mathematics and Physics 6, 164–189 (1927)
101. Holmes, R.B.: A course on optimization and best approximation. Springer, Berlin (1980)
102. Holtz, S., Rohwedder, T., Schneider, R.: On manifolds of tensors of fixed TT-rank. Numer.

Math. (2011). On-line published
103. Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for tensor optimisation

in the TT format. Preprint 71, DFG-SPP 1324 (2010). http://www.dfg-spp1324.de
104. Hsiao, G.C., Wendland, W.L.: Boundary integral equations. Springer, Berlin (2008)
105. Hübener, R., Nebendahl, V., Dür, W.: Concatenated tensor network states. New J. Phys. 12,

025,004 (2010)

References 491

106. Ishteva, M., De Lathauwer, L., Absil, P.A., Van Huffel, S.: Differential-geometric Newton
method for the best rank-(R1, R2, R3) approximations of tensors. Numer. Algorithms 51,
179–194 (2009)

107. Jemderson, H.V., Pukelsheim, F., Searle, S.R.: On the history of the Kronecker product.
Linear Multilinear Algebra 14, 113–120 (1983)

108. Johnson, W.B., Lindenstrauss, J.: Concepts in the geometry of Banach spaces. In: Handbook
of the geometry of Banach spaces, vol. 1, pp. 1–84. North-Holland, Amsterdam (2001)

109. Karhunen, K.: Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci.
Fennicae. Ser. A. I. Math.-Phys. 37, 1–79 (1947)

110. Kaup, W.: On Grassmannians associated with JB*-triples. Math. Z. 236, 567–584 (2001)
111. Kazeev, V.A., Khoromskij, B.: On explicit QTT representation of Laplace and its inverse.

Preprint 75, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig (2010)
112. Keinert, F.: Uniform approximation to |x|β by Sinc functions. J. Approx. Theory 66, 44–52

(1991)
113. Khoromskaia, V.: Computation of the Hartree-Fock exchange by the tensor-structured

methods. Comput. Meth. Appl. Math. 10, 204–218 (2010)
114. Khoromskaia, V., Khoromskij, B., Schneider, R.: QTT representation of the Hartree and

exchange operators in electronic structure calculations. Comput. Meth. Appl. Math. 11,
327–341 (2011)

115. Khoromskij, B.: Structured rank-(r1, ..., rD) decomposition of function-related tensors in
R

D. Comput. Meth. Appl. Math. 6, 194–220 (2006)
116. Khoromskij, B.: On tensor approximation of Green iterations for Kohn-Sham equations.

Comput. Vis. Sci. 11, 259–271 (2008)
117. Khoromskij, B.: Tensor-structured preconditioners and approximate inverse of elliptic oper-

ators in R
d. Constr. Approx. 30, 599–620 (2009)

118. Khoromskij, B.: O(d logN)-quantics approximation of N − d tensors in high-dimensional
numerical modeling. Constr. Approx. (2011). To appear

119. Khoromskij, B., Khoromskaia, V.: Low rank Tucker-type tensor approximation to classical
potentials. Cent. Eur. J. Math. 5, 523–550 (2007)

120. Khoromskij, B., Khoromskaia, V.: Multigrid accelerated tensor approximation of function
related multidimensional arrays. SIAM J. Sci. Comput. 31, 3002–3026 (2009)

121. Khoromskij, B., Khoromskaia, V., Flad, H.J.: Numerical solution of the Hartree-Fock equa-
tion in multilevel tensor-structured format. SIAM J. Sci. Comput. 33, 45–65 (2011)

122. Khoromskij, B., Oseledets, I.V.: Quantics-TT collocation approximation of parameter-
dependent and stochastic elliptic PDEs. Comput. Meth. Appl. Math. 10, 376–394 (2010)

123. Khoromskij, B., Sauter, S.A., Veit, A.: Fast quadrature techniques for retarded potentials
based on TT/QTT tensor approximation. Comput. Meth. Appl. Math. 11, 342–362 (2011)

124. Khoromskij, B., Schwab, C.: Tensor-structured Galerkin approximation of parametric and
stochastic elliptic PDEs. SIAM J. Sci. Comput. 33, 364–385 (2011)

125. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block pre-
conditioned conjugate gradient method. SIAM J. Sci. Comput. 23, 517–541 (2001)

126. Koch, O., Lubich, C.: Dynamical tensor approximation. SIAM J. Matrix Anal. Appl. 31,
2360–2375 (2010)

127. Koch, W., Holthausen, M.C.: A chemist’s guide to density functional theory. Wiley-VCH,
Weinheim (2000)

128. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500
(2009)

129. Kolda, T.G., Sun, J.: Scalable tensor decompositions for multi-aspect data mining. In: 2008
Eighth IEEE international conference on data mining, pp. 363–372 (2008)

130. Kressner, D., Tobler, C.: Preconditioned low-rank methods for high-dimensional elliptic PDE
eigenvalue problems. Comput. Meth. Appl. Math. 11, 363–381 (2011)

131. Kressner, D., Tobler, C.: htucker - A MATLAB toolbox for tensors in hierarchical Tucker
format. Tech. rep., Seminar for Applied Mathematics, ETH Zurich (2011)

132. Kreyszig, E.: Differentialgeometrie, 2nd edn. Akademische Verlagsgesellschaft Geest &
Portig K.-G., Leipzig (1968)

492 References

133. Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics. Linear Algebra Appl. 18, 95–138 (1977)

134. Kruskal, J.B.: Rank, decomposition, and uniqueness for3-way andN-wayarrays. In: R. Coppi,
S. Bolasco (eds.) Multiway data analysis, pp. 7–18. North-Holland, Amsterdam (1989)

135. Kutzelnigg, W.: Theory of the expansion of wave functions in a gaussian basis. Int. J. Quan-
tum Chem. 51, 447–463 (1994)

136. Landsberg, J.M., Qi, Y., Ye, K.: On the geometry of tensor network states. arXiv 1105.
4449v1, math.AG (2011)

137. Langville, A.N., Stewart, W.J.: The Kronecker product and stochastic automata networks.
J. Comput. Appl. Math. 167, 429–447 (2004)

138. Lichtenberg, G., Eichler, A.: Multilinear algebraic Boolean modelling with tensor decompo-
sition techniques. In: IFAC World Congress, vol. 18. IFAC (2011)

139. Light, W.A., Cheney, E.W.: Approximation theory in tensor product spaces, Lect. Notes
Math., vol. 1169. Springer, Berlin (1985)

140. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in
visual data. In: IEEE international conference on computer vision (2009)

141. Loève, M.: Probability theory II, 4th edn. Springer, New York (1978)
142. Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: A survey of multilinear subspace learning

for tensor data. Pattern Recognition 44, 1540–1551 (2011)
143. Lubich, C.: On variational approximations in quantum molecular dynamics. Math. Comp.

74, 765–779 (2005)
144. Lubich, C.: From quantum to classical molecular dynamics: reduced models and numerical

analysis. EMS, Zürich (2008)
145. Meise, R., Vogt, D.: Introduction to functional analysis. Clarendon Press, Oxford (1997)
146. Melenk, J.M., Börm, S., Löhndorf, M.: Approximation of integral operators by variable-order

interpolation. Numer. Math. 99, 605–643 (2005)
147. Meyer, H.D., Gatti, F., Worth, G.A. (eds.): Multidimensional quantum dynamics. MCTDH

theory and applications. Wiley-VCH, Weinheim (2009)
148. Mohlenkamp, M.J.: A center-of-mass principle for the multiparticle Schrödinger equation.

J. Math. Phys. 51, 022,112 (2010)
149. Mohlenkamp, M.J.: Musing on multilinear fitting. Linear Algebra Appl. (2011). To appear
150. Mohlenkamp, M.J.: Numerical implementation to approximate a wavefunction with an un-

constrained sum of Slater determinants. Tech. rep., University Ohio (2011)
151. Mohlenkamp, M.J., Monzón, L.: Trigonometric identities and sums of separable functions.

The Mathematical Intelligencer 27, 65–69 (2005)
152. Oseledets, I.V.: A new tensor decomposition. Doklady Math. 80, 495–496 (2009)
153. Oseledets, I.V.: Approximation of matrices using tensor decomposition. SIAM J. Matrix

Anal. Appl. 31, 2130–2145 (2010)
154. Oseledets, I.V.: DMRG approach to fast linear algebra in the TT-format. Comput. Meth.

Appl. Math. 11, 382–393 (2011)
155. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33, 2295–2317 (2011)
156. Oseledets, I.V., Savostyanov, D.V., Tyrtyshnikov, E.E.: Linear algebra for tensor problems.

Computing 85, 169–188 (2009)
157. Oseledets, I.V., Tyrtyshnikov, E.E.: Approximate inversion of matrices in the process of

solving a hypersingular integral equation. Comput. Math. Math. Phys. 45, 302–313 (2005)
158. Oseledets, I.V., Tyrtyshnikov, E.E.: Tensor tree decomposition does not need a tree. Preprint

2009-08, RAS, Moskow (2009)
159. Oseledets, I.V., Tyrtyshnikov, E.E.: TT-cross approximation for multidimensional arrays.

Linear Algebra Appl. 432, 70–88 (2010)
160. Qi, L., Sun, W., Wang, Y.: Numerical multilinear algebra and its applications. Front. Math.

China 2, 501–526 (2007)
161. Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics. Springer, New York (2000)
162. Remez, E.J.: Sur un procédé convergent d’approximations successives pour déterminer les

polynômes d’approximation. Compt. Rend. Acad. Sc. 198, 2063–2065 (1934)

References 493

163. Riesz, F., Sz.-Nagy, B.: Vorlesungen über Funktionalanalysis, 4th edn. VEB Deutscher Ver-
lag der Wissenschaften, Berlin (1982)

164. Rivlin, T.J.: The Chebyshev polynomials. Wiley-Interscience, New York (1990)
165. Salmi, J., Richter, A., Koivunen, V.: Sequential unfolding SVD for tensors with applications

in array signal processing. IEEE Trans. Signal Process. 57, 4719–4733 (2009)
166. Sauter, S.A., Schwab, C.: Boundary element methods. Springer, Berlin (2011)
167. Schatten, R.: A theory of cross-spaces. University Press, Princeton (1950)
168. Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Ent-

wicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Math. Ann. 63, 433–
476 (1907)

169. Schur, I.: Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen
Veränderlichen. J. Reine Angew. Math. 141, 1–28 (1911)

170. Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and
stochastic PDEs. Acta Numerica 20, 291–467 (2011)

171. Schwab, C., Todor, R.A.: Karhunen-Loève approximation of random fields by generalized
fast multipole methods. J. Comput. Phys. 217, 100–122 (2006)

172. Simon, B.: Uniform crossnorms. Pacific J. Math. 46, 555–560 (1973)
173. Smilde, A., Bro, R., Geladi, P.: Multi-way analysis. Applications in the chemical sciences.

Wiley, West Sussex (2004)
174. Sprengel, F.: A class of periodic functions spaces and interpolation on sparse grids. Numer.

Funct. Anal. Optim. 21, 273–293 (2000)
175. Stegeman, A.: Degeneracy in Candecomp/Parafac explained for p × p × 2 arrays of rank

p+ 1 or higher. Psychometrika 71, 483–501 (2006)
176. Stegeman, A., De Lathauwer, L.: A method to avoid diverging components in the CANDE-

COMP/PARAFAC model for generic I × J × 2 arrays. SIAM J. Matrix Anal. Appl. 30,
1614–1638 (2009)

177. Stenger,F.:Numericalmethodsbasedofsincandanalytic functions. Springer,NewYork(1993)
178. Stoer, J.: Einführung in die Numerische Mathematik I, 8th edn. Springer, Berlin (1999)
179. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)
180. Strassen, V.: Rank and optimal computation of generic tensors. Linear Algebra Appl. 52,

645–685 (1983)
181. Takatsuka, A., Ten-no, S., Hackbusch, W.: Minimax approximation for the decomposition of

energy denominators in Laplace-transformed Møller-Plesset perturbation theories. J. Chem.
Phys. 129, 044,112 (2008)

182. Todor, R.A., Schwab, C.: Convergence rates for sparse chaos approximations of elliptic prob-
lems with stochastic coeffcients. IMA J. Numer. Anal. 27, 232–261 (2007)

183. Trefethen, L.N.: Householder triangularization of a quasimatrix. IMA J. Numer. Anal. 30,
887–897 (2010)

184. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31,
279–311 (1966)

185. Tyrtyshnikov, E.E.: Preservation of linear constraints in approximation of tensors. Numer.
Math. Theory Methods Appl. 2, 421–426 (2009)

186. Uschmajew, A.: Convex maximization problems on non-compact Stiefel manifolds with
application to orthogonal tensor approximations. Numer. Math. 115, 309–331 (2010)

187. Uschmajew, A.: Local convergence of the alternating least squares algorithm for canonical
tensor approximation. SIAM J. Matrix Anal. Appl. (2012). To appear

188. Uschmajew, A.: Regularity of tensor product approximations to square integrable functions.
Constr. Approx. 34, 371–391 (2011)

189. Van Loan, C.F., Pitsianis, N.: Approximation with Kronecker products. In: M.S. Moonen,
G.H. Golub (eds.) Linear algebra for large scale and real-time applications, NATO Adv. Sci.
Inst. Ser. E Appl. Sci., vol. 232, pp. 293–314. Kluwer Academic Publ., Dortrecht (1993)

190. Verstraete, F., Cirac, J.I.: Matrix product states represent ground states faithfully. Phys. Rev.
B 73, 094,423 (2006)

191. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys.
Rev. Letters 91, 147,902 (2003)

494 References

192. Voigt, W.: Die fundamentalen physikalischen Eigenschaften der Krystalle in elementarer
Darstellung. Veit & Comp., Leipzig (1898)

193. Wang, H., Ahuja, N.: Compact representation of multidimensional data using tensor rank-
one decomposition. In: ICPR 2004 - Proceedings of the 17th International Conference on
Pattern Recognition, vol. 1, pp. 44–47 (2004)

194. Wang, H., Thoss, M.: Multilayer formulation of the multiconfiguration time-dependent
Hartree theory. J. Chem. Phys. 119, 1289–1299 (2003)

195. Weidmann, J.: Lineare Operatoren in Hilberträumen, Teil 1. Teubner, Stuttgart (2000)
196. White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev.

Letters 69, 2863 (1992)
197. White, S.R., Martin, R.L.: Ab initio quantum chemistry using the density matrix renormal-

ization group. J. Chem. Phys. 110, 4127 (1999)
198. Yosida, K.: Functional analysis, 4th edn. Springer, Berlin (1974)
199. Yserentant, H.: Regularity and approximability of electronic wave functions, Lect. Notes

Math., vol. 2000. Springer, Berlin (2010)
200. Zehfuss, J.: Über eine gewisse Determinante. Z. für Math. und Phys. 3, 298–301 (1858)
201. Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix

Anal. Appl. 23, 534–550 (2001)

List of authors involved in the references from above, but not placed as first author.

Absil, P.A. [106]
Ahuja, N. [193]
Auer, A.A. [12]
Bader, B.W. [128]
ten Bergen, J.M.F. [38]
Börm, S. [146]
Bro, R. [173]
Castaing, J. [38]
Chang, J.J. [30]
Cheney, E.W. [139]
Cirac, J.I. [190]
Comon, P. [24]
Davidson, E.R. [3]
De Lathauwer, L. [38, 106, 176]
De Moor, B. [41–43]
Dür, W. [105]
Eichler, A. [138]
Espig, M. [12, 34, 35]
Flad, H.J. [34–36, 121]
Floret, K. [45]
Gatti, F. [147]
Geladi, P. [173]
Gittelson, C.J. [170]
Golub, G.H. [39, 201]
Grasedyck, L. [6, 7, 22, 53]
Griebel, M. [29, 59]
Hackbusch, W. [12, 27, 28, 34–
36, 53–57, 60–62, 66, 75, 92,
93, 181]
Holthausen, M.C. [127]
Khoromskaia,V.[119–121]
Khoromskij, B. [35, 49, 60, 63,
66, 67, 88–91, 111, 114]
Kluge, M. [7]
Koivunen, V. [165]

Kolda, T.G.: [4]
Kühn, S. [94]
Kuo, F.Y. [78]
Kutzarova, D. [47]
Lim, L.H. [39, 44]
Lindenstrauss, J. [108]
Litvinenko, A. [55]
Löhndorf, M. [146]
Lorentz, G.G. [46]
Lotti, G. [19]
Lubich, C. [126]
Luo, H. [36]
Martin, R.L. [197]
Matthies, H.G. [55]
Mohlenkamp, M.J. [15, 16]
Monzón, L. [17, 18, 151]
Mourrain, B. [24, 39]
Musialski, P. [140]
Nebendahl, V. [105]
Nouy, A. [58]
Oseledets, I.V. [122]
Peller, V. [1]
Pereyra, V. [68]
Pérez, F. [16]
Plataniotis, K.N. [142]
Qi, Y. [136]
Pitsianis, N. [189]
Pukelsheim, F. [107]
Richter, A. [165]
Rohwedder, T. [56, 102, 103]
Romani, F. [19]
Sauter, S.A. [91, 123]
Sacco, R. [161]
Saleri, F. [161]
Savotyanov, D.V. [49, 63, 156]

Schneider, R. [56, 60–62, 102,
103, 114]
Schwab, C. [124, 166, 182]
Searle, S.R. [107]
Sloan, I.H. [78]
Stewart, W.J. [137]
Sun, J. [129]
Sun, W. [160]
Sz.-Nagy, B. [163]
Temlyakov, V.N. [47]
ten Bergen, J.M.F. [38]
Ten-no, S. [181]
Thoss, M. [194]
Tobler, C. [130, 131]
Todor, R.A. [171]
Tsigaridas, E. [24]
Tyrtyshnikov, E.E. [63, 70, 71,
91–93, 156–159]
Uschmajew, A. [36]
Vandewalle, J. [41–43]
Van Huffel, S. [106]
Van Loan, C.F. [69]
Veit, A. [123]
Venetsanopoulos, A.N. [142]
Vogt, D. [145]
Wang, Y. [160]
Wendland, W.L. [104]
Wonka, P. [140]
Worth, G.H. [147]
Ye, J. [140]
Ye, K. [136]
Young, G. [50]
Zamarashkin, N.L. [71]
Zander, E. [55]

Index

adaptive cross approximation (ACA), 454
algebra, 78

tensor, 79
algorithm

fast Fourier, 441
greedy, 258
Remez, 274
Strassen, 69

all-orthogonal, 231
ALS, see alternating least-squares method
alternating least-squares method, 262, 292,

294, 354
modified, 477

alternator, 81
ANOVA, 483

anchored, 486
antilinear, 22
approximation

analytical construction, 268, 299, 427
hierarchical tensor, 353
low-rank, 35
r-term, 249
simultaneous, 312
tensor subspace, 281

approximation property, 121
arithmetical operation, 27
array, d-way, 4
asympotically smooth, 426

Banach space, 88
intersection, 134
reflexive, 94, 96
separable, 89, 100, 186

Banach tensor space, 97
basis, 48

complete, 137
dual, 51

hierarchical, 213
orthonormal, 137
suborthonormal, 347

basis transformation, 55, 222
Bernstein Theorem, 304
Bessel function, 275
bilinear form, 51, 136
biorthonormal system, 155
border rank, 242, 255

calculus, 13
cardinality, 4, 48

ℵ0, 48
Cauchy sequence, 88
Cayley, Arthur, 17
Cholesky decomposition, 27
coefficient matrix, 328
compact, 92
complemented subspace, 89
completion, 88
condition, 256, 467
constraint, linear, 195
continuous

Lipschitz, 278
separately, 99

contraction, 147
convergence, weak, 95
conversion

from F to RN , 210
from F to Tr, 241
from Hr to Tρ, 382
from Rr to Hr, 326, 352
from Rr to Tr, 241
from Rr to Tρ, 380
from sparse grid to Hr, 370
from Tr to Hr, 325
from Tr to Rr , 244

495

496 Index

from Tρ to Hr, 380
convolution, 150, 276, 407, 429
cosine transform, 441
Coulomb potential, 276
cross, 452

hyperbolic, 213
index, 452

cross approximation, 447
adaptive, 454
generalised, 456

crossnorm, 98, 123
dualisable, 114
injective, 109, 129
projective, 104
reasonable, 114, 120, 123, 144
uniform, 119, 120, 123, 144

curse of dimensionality, 3
cyclic representation, 384

data completion, 16, 262
data mining, 16
decomposition, 201

ANOVA, 484
Cholesky, 27
proper generalised, see PGD
QR, 28
singular value, see singular value

decomposition
deflation technique, 253
dense, 88
density functional theory, 414
depth of a tree, 320

minimal, 321
determinant, 83, 154

Slater, 84
differential operator

separable, 280, 409
dimension, 3, 48
dimension partition tree, 319
Dirac functional, 95
Dirac-Frenkel discretisation, 479
direct subspace, 89
direct sum, 45, 89
direction, 3
discretisation, 463

Dirac-Frenkel, 479
finite difference, 280, 465
finite element, 280, 465
sparse grid, 212

DMRG, 477
dual space, 93

algebraic, 51
dual system, 51
dyad, 4

eigenvalue, 24, 145, 146
eigenvalue problem, 11, 169, 413, 414, 469,

471
electron density, 415, 416
entropy, 139
exchange correlation potential, 416
exchange operator, 414
extension, continuous, 88
exterior product, 82

factor analysis, 9
fast Fourier transform, 441
father, 317
FFT, 441
fibre, 451

index, 451
field, 65, 184

algebraically closed, 66
finite difference scheme, 280
finite element discretisation, 280
fixed point iteration, 412
flattening, see matricisation
form

bilinear, 51, 136
linear, 51
multilinear, 51
sesquilinear, 22, 136

format
Hr, 323
Htens

ρ , 419
Rr , 61, 204
Tr, 218
Tρ, 373

frame, 220
proper, 220

Fréchet-Riesz isomorphism, 137
Fréchet-Riesz Theorem, 137
Frobenius norm, 25
function

exponential, 153
holomorphic, 152
multivariate, 7, 12, 79, 269, 270, 275, 276,

448, 449
of a matrix, 152
of a tensor, 451

functional
continuous, 93
Dirac, 95, 300
dual, 93

gradient method, 266
Gram matrix, 27, 46, 224, 334, 346
Gram-Schmidt orthogonalisation, 28
graph, 384

Index 497

Grassmannian, 89
greedy algorithm, 258

H-Tucker representation, 316
Hadamard product, 150, 406
Hadamard, Jacques Salomon, 150
Hahn-Banach Theorem, 93
Hamilton, William Rowan, 17
Hamilton-Fock operator, 414
Hartree potential, 414
Hartree-Fock equation, 414
Hessian, 266
hierarchical basis, 213
hierarchical matrix, 279, 319, 408, 409, 468
hierarchical tensor approximation

best approximation, 353
HOSVD truncation, 355
leaves-to-root truncation, 361

hierarchical tensor representation, 315
conversion from Rr , 326, 352
conversion from Tr, 325
HOSVD, 339
orthonormal, 336

higher order power method, 297
higher-order orthogonal iteration, 293
Hilbert space, 136
Hilbert tensor space, 142
historical comments, 8, 17, 28, 101, 150, 318
Hitchcock, Frank Lauren, 18
Hölder continuity, 278
Hölder-Zygmund class, 278
HOSVD, 230

weak, 350
HOSVD projection, 282
hyperbolic cross, 213
hyperdeterminant, 17

index set, countable, 48
initial value problem, 478
injective norm, see crossnorm
instability, 256
interpolation

Chebyshev, 305
sinc, 306

interpolation error, 307
interpolation operator, 300
intersection Banach space, 134
inverse problem, 8
isomorphism

Fréchet-Riesz, 137
tensor space, 59
vector space, 59

iteration
fixed point, 412

higher-order orthogonal, 293
multi-grid, 468, 472
Newton, 266, 412
truncated, 412

Karhunen-Loève expansion, 450
Kohn-Sham model, 416
Kronecker product, 5
Kronecker rank, see rank
Kronecker symbol, 21
Kronecker, Leopold, 18

Lagrange functions, 300
Lagrange polynomial, 305
Laplace operator, 276

inverse, 416
Laplace transform, 272
lattice, 174
leaf, 319
linear form, 51
linear independence, 48
linear mapping, 50

continuous, see operator
symmetric, 82

linear system of equations, 27, 158, 466, 476
solution of, 467

linearisation, 57
Lipschitz continuity, 278
low-rank approximation, 35
Lyapunov equation, 158

MALS, 477
manifold, 478

learning, 17
principal, 17
Stiefel, 292, 479

mapping
linear, 50
multilinear, 50

mass matrix, 469
matricisation, 160
matrix

coefficient, 328
column of a, 21
diagonal, 22
entries of a, 21
Gram, 27, 46, 224, 334, 346
Hermitean, 22, 408
Hermitean transposed, 22
hierarchical, 279, 319, 408, 409, 468
identity, 22
inverse, 412
mass, 469
orthogonal, 22

498 Index

permutation, 29
positive definite, 26
positive semidefinite, 26
range of a, 22
spectrally equivalent, 468
symmetric, 22, 408
Toeplitz, 424
trace of a, 24
transposed, 22
triangular, 23
tridiagonal, 465
unitary, 22

matrix norm, 25
associated, 25

matrix rank, 23
matrix-product representation, 372
matrix-product state, 371
minimal subspaces, 173, 175

for a family of tensors, 178
for intersection spaces, 193
hierarchy of, 181
of topological tensors, 187
sequence of, 184

mixed norm, 116, 132, 280
mode, 3
Monte-Carlo method, 449, 450
MP2 energy denominator, 275
multi-grid iteration, 468, 472
multilinear form, 51
multilinear mapping, 50
multivariate function, 12, 79, 269, 270, 275,

276, 448, 449

nestedness property, 322
Newton iteration, 266, 412

damped, 266
Newton potential, 276
norm, 87

cross-, see crossnorm
Euclidean, 25
Frobenius, 25
Hilbert-Schmidt, 25, 139
intersection, 134
mixed, 116, 132, 280
operator, 91
Schatten, 101
Schur, 25
spectral, 25

operation
arithmetical, 27
tensor, 385

operator, 91
adjoint, 138

compact, 92, 121, 138
exchange, 414
finite rank, 121
Hamilton-Fock, 414
Hilbert-Schmidt, 140
Laplace, 276
nuclear, 122, 139
self-adjoint, 138

order, 3
infinite, 17, 450

ordering, 19, 316
semi-, 26, 88

orthogonalisation
Gram-Schmidt, 28

parallel computation, 345, 359
Parseval equality, 137
partial differential equation

elliptic, 463
hyperbolic, 472
parabolic, 472

Pauli principle, 117, 414
permutation, 80
PGD

purely progressive, 473
updated progressive, 474

polynomial, 7, 304
homogeneous, 82
Lagrange, 305

potential
Coulomb, 276
exchange correlation, 416
Hartree, 414
Newton, 276
retarded, 472

product
Cartesian, 3
exterior, 82
Hadamard, 150, 406
j-mode, 5
Kronecker, 5
tensor, see tensor product

product interpolation, 306
projection, 51

continuous, 92, 96
HOSVD, 282
orthogonal, 141

projective norm, see crossnorm
proximinal, 96

QR decomposition, 28
reduced, 28

QTT, 419
quadrature points, 305

Index 499

Chebyshev, 305
quadrature, sinc, 272
quantic, 82

r-term approximation, 249
r-term representation, 204

conversion from Tr, 244
conversion into Hr, 326, 352
conversion into Tr, 241
essentially unique, 204

random field, 449
range of a matrix, 22
rank
α-, 164
border, 242, 255
complex/real, 65
hierarchical, 324
j-, 164
Kronecker, 63
maximal, 23, 66
of a matrix, 23
representation, 204
revealing, 453, 455
symmetric, 65
tensor, 62
tensor subspace, 219
Tucker, 219
typical, 66

Rayleigh quotient, 414, 472, 476
generalised, 129

reflexive Banach space, 94, 96
regularity ellipse, 304
Remez algorithm, 274
representation, 201

of Vj , 208
full, 202
full functional, 203
H-Tucker, 316
hierarchical tensor, 315
iterated, 200, 208
matrix-product, 372
r-term, 204
sparse, 203
sparse grid, 212
tensor subspace, 217
TT, 371
Tucker, 217

representation (of a tensor), 199
representation rank, 204
Riesz-Schauder theory, 139
root, 319

scalar product, 136
Euclidean, 22, 136

Hilbert-Schmidt, 140
induced, 142
partial, 146

scale of Banach spaces, 133
Schatten, Robert, 101
Schrödinger equation, 117, 414, 485

instationary, 478
Schur complement, 44
Schur product, 150
Schur, Issai, 150
semi-ordering, see ordering
semicontinuous

weakly sequentially lower, 476
sensitivity, 206, 239, 345
sesquilinear form, 22, 136
sinc function, 306
sinc interpolation, 306
sinc quadrature, 272
sine transform, 441
singular value decomposition, 29

higher-order, 230
infinite, 138
left-sided, 32
reduced, 32, 56
right-sided, 33

singular values, 29
singular vectors

left, 30
right, 30

site, 3
smooth, asympotically, 426
Sobolev space, 90

anisotropic, 103
software, 17
son, 317
space

Banach, 88
complete, 88
dual, 93
Hilbert, 136
separable, 137
tangent, 478
tensor, see tensor space

span, 48
sparse grid representation, 212, 280
spectral radius, 152
spectrum, 152
stability, 207, 254
stability constant, 300, 305, 307
Stiefel manifold, 292, 479
stochastic coefficients, 449
Stone-Weierstraß Theorem, 102
Strassen algorithm, 69
structure map, 78

500 Index

subspace
complemented, 89
direct, 89
minimal, see minimal subspaces
tensor, 217

successor, 322
supremum norm, 270
SVD, see singular value decomposition
symmetriser, 81
system

biorthonormal, 155
dual, 51
orthonormal, 101, 137

tangent space, 478
tensor, 4, 52

algebraic, 52
antisymmetric, 80, 216
coefficient, 221
core, 221
decomposable, 4
elementary, 4, 52
function related, 203
mixed, 8
operation, 385
order of a, 3
stress, 7
symmetric, 80, 486
topological, 52
transfer, 330

tensor algebra, 79
tensor approximation

by Tr, 281
hierarchical, 353
r-term, 249

tensor network states, 384
tensor product, 4, 51

universality of the, 58
tensor rank, see rank
tensor representation, see representation
tensor space

algebraic, 52
antisymmetric, 80, 154
Banach, 97
Hilbert, 142
non-degenerate, 58
symmetric, 80, 155
topological, 52

tensor subspace, 217
tensor subspace approximation, 281

by truncation, 281
tensor subspace representation, 217
(r1, . . . , rd)-, 218
conversion from Rr , 241
conversion from Hr, 325
conversion into Rr , 244

HOSVD, 231
orthonormal, 223

tensorisation, 170, 417
Theorem

Bernstein, 304
Fréchet-Riesz, 137
Hahn-Banach, 93
Stone-Weierstraß, 102

Toeplitz matrix, 424
trace

of a matrix, 24
of an operator, 140

transfer tensor, 330
tree

binary, 317, 320
depth of a, 317, 320
dimension partition, 319
father of a, 317
leaf of a, 317
ordering of a, 320
root of a, 317
son of a, 317

triad, 4
triangle inequality

inverse, 87
tridiagonal matrix, 465
trigonometric series, 275
truncated iteration, 412
truncation, 281, 349

to Hr, 355
to Rr , 249
to Tr, 281
to Tρ, 379

TT representation, 371
Tucker representation, 217

unfolding, see matricisation

vector
orthogonal, 22
orthonormal, 22

vector space, 47
free, 48
normed, 88
quotient, 50

vectorisation, 157
vertex, 319
Voigt, Woldemar, 17

wave function, 414
weak convergence, 95
weakly closed, 96, 219, 353, 476
weakly sequentially lower semicontinuous,

476

Zehfuss, Johann Georg, 18

	Tensor Spaces and Numerical Tensor Calculus
	Preface
	Contents
	List of Symbols and Abbreviations
	Part I Algebraic Tensors
	Part II Functional Analysis of Tensor Spaces
	Part III Numerical Treatment
	References
	Index

