

Springer Optimization and Its Applications

VOLUME 70

Managing Editor
Panos M. Pardalos (University of Florida)

Editor–Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (Lehigh University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques
have been developed, the diffusion into other disciplines has proceeded at a
rapid pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization
is the constantly increasing emphasis on the interdisciplinary nature of the
field. Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics, and other sciences.

The series Springer Optimization and Its Applications publishes under-
graduate and graduate textbooks, monographs and state-of-the-art exposi-
tory work that focus on algorithms for solving optimization problems and
also study applications involving such problems. Some of the topics covered
include nonlinear optimization (convex and nonconvex), network flow
problems, stochastic optimization, optimal control, discrete optimization,
multi-objective programming, description of software packages, approxima-
tion techniques and heuristic approaches.

For further volumes:
http://www.springer.com/series/7393

http://www.springer.com/series/7393

Michael Doumpos • Constantin Zopounidis
Panos M. Pardalos
Editors

Financial Decision Making
Using Computational
Intelligence

123

Editors
Michael Doumpos
Department of Production

Engineering & Management
Technical University of Crete
University Campus
Chania, Greece

Panos M. Pardalos
Center for Applied Optimization
ISE Department
University of Florida
Gainesville, FL, USA

and

Laboratory of Algorithms
and Technologies for Networks

Analysis (LATNA)
National Research University
Higher School of Economics
Moscow, Russia

Constantin Zopounidis
Department of Production

Engineering & Management
Technical University of Crete
University Campus
Chania, Greece

ISSN 1931-6828
ISBN 978-1-4614-3772-7 ISBN 978-1-4614-3773-4 (eBook)
DOI 10.1007/978-1-4614-3773-4
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012942084

© Springer Science+Business Media New York 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Fast is fine, but accuracy is everything.
Xenophon (Greek historian, 431–350 BC)

Preface

The Context of Financial Decision Making

At the beginning of the twentieth century, finance was mainly a descriptive
science focusing on institutional and legal aspects [9], but since then the field has
experienced major transformations. These transformations began during the 1950s
with the pioneering work of Harry Markowitz on portfolio theory [7] and intensified
after then in the 1970s with the work of Black and Scholes on option pricing [1].
With these breakthroughs, the descriptive character of financial theory gradually
progressed towards a more analytic one, which ultimately led to the engineering
phase of finance by the late 1980s [8].

Todays, the financial industry is going through a tough period characterized by
increasing uncertainties and risk challenges of diverse nature. The globalization of
the business environment has generated several new opportunities and increased
the pace of development for many financial instruments and innovations. In this
context, investors have a wide range of options suitable for different investment
policies. Managers of firms can use a variety of products for corporate financing
and risk management, and policy makers face new challenges in choosing the best
policies and measures for monitoring and controlling the markets in an effective
way. Clearly, the decision-making process in the “new era” of finance is becoming
more and more difficult, as all stakeholders seek effective operational decision-
support tools to assess risks, assets, and funds, taking into particular consideration
the new issues and concerns raised by the recent global crisis.

The financial decisions in firms and organization are of diverse nature, involving
investment appraisal, risk management, asset valuation, capital budgeting, corporate
financing, and performance evaluation among others. Depending on the problem at
hand, different modeling and methodologies are applicable, such as:

• Regression models for risk analysis
• Econometric methods for time-series forecasting
• Stochastic calculus for asset pricing
• Optimization techniques for asset allocation

vii

viii Preface

• Multiple criteria decision making for corporate performance evaluation and
banking

• Simulation approaches for risk assessment

It is clear that, the financial decision modeling process cannot be contained
within a set of specific methods and techniques. Instead, financial decision making
usually requires the implementation of an interdisciplinary approach. Furthermore,
the volume and complexity of financial data makes sophisticated computational
procedures highly relevant. These computational procedures are not only restricted
to efficient and scalable solution algorithms, but also provide new decision modeling
and analysis capabilities. In this context, computational intelligence approaches
have attracted considerable interest among researchers and practitioners.

Computational Intelligence in Financial Decision Making

Financial decisions are characterized by their highly complex and ill-structured
nature, the increasing volume of data that needs to be analyzed, and the uncertainties
involved in the decision context. Intelligent systems and techniques are well suited
to this framework. Over the past decades, enormous progress has been made in
the field of artificial intelligence in areas such as expert systems, knowledge-based
systems, case-based reasoning, logic, data mining, and machine learning. Com-
putational intelligence has emerged as a distinct sub-field of artificial intelligence
involved with the study of adaptive mechanisms to enable intelligent behavior
in complex and changing environments [4]. Typical computational intelligence
paradigms include neural networks, support vector machines, and other machine
learning algorithms, as well as evolutionary computation, nature-inspired computa-
tional methodologies, and fuzzy systems.

Computational intelligence methodologies have been successfully used in a
variety of complex financial decision-making problems, providing researchers and
practitioners with new solution algorithms for financial optimization problems as
well as new decision modeling capabilities to handle the nonlinearities, uncer-
tainties, and ambiguity involved in the financial decision-making process. While
a comprehensive overview is beyond the scope of this introductory preface, some
characteristic examples are given below.

• Portfolio optimization: The mean–variance model of Markowitz has set the
basis of modern portfolio management. The basic model has been extended
in various directions to take into consideration new risk measures (e.g., mean
absolute deviation, value at risk, conditional value at risk, etc.), as well as several
important factors in describing the investment policy of the decision maker (e.g.,
transaction costs, multiperiod horizons, cardinality constrained portfolios, round
lots, index replication, etc.). While such extensions add much more realism in
the modeling process, they also add considerable complexity, which is difficult to
cope with through analytic optimization algorithms. Evolutionary algorithms are

Preface ix

particularly useful in this context as they enable the efficient search of complex
solution spaces. (See [6] for a comprehensive discussion with applications to
portfolio optimization).

• Financial time-series forecasting: Time-series analysis and forecasting is a
major topic within the field of finance, widely used to perform stock market
predictions, forecast exchange rates, and interest rate modeling, among others.
Traditional econometric forecasting approaches are usually based on linear
models and impose specific assumptions about the relation between the variables.
Computational intelligence methods, including neural network models, support
vector machines, and other machine learning approaches, constitute a powerful
alternative based on data-driven nonlinear modeling forms, which are free of
statistical assumptions [5].

• Trading systems: The large volume of data that traders have to analyze in
the financial markets has made algorithmic trading systems extremely popular.
Such systems enable the analysis of the current state of the markets and the
identification of short-term trends and patterns, based on technical analysis
indicators. Given the high complexity of the financial markets and their chaotic
behavior simple empirical trading strategies often fail to perform well, while
the search for more complex trading rules is computationally difficult. However,
evolutionary computation techniques such as genetic programming and genetic
algorithms have been found particularly useful in this area (see for example [2]).

• Credit scoring: The development of credit risk rating models and systems is
of major importance for financial institutions. Traditional statistical procedures
such as discriminant analysis and logistic regression are commonly used for
model development, but computational intelligence approaches have attracted
much interest recently. For instance, neural networks, neuro-fuzzy systems, and
other machine learning techniques have been successfully used to build credit
scoring models with high predictive accuracy [3, 10]. Evolutionary methods and
nature-inspired metaheuristics (e.g., swarm intelligence, ant colony optimization,
etc.) have also been employed in this context to select the best set of predictor
attributes and to construct hybrid scoring systems.

Outline of the Book

Aims and Scope

During the past decade, the research on the use of computational intelligence meth-
ods for financial decision making has grown considerably. The aim of this book is
to present the recent advances made in this field covering both new methodological
developments and new emerging application areas. On the methodological side,
popular computational intelligence paradigms are presented in the book, such as
machine learning, neural networks, evolutionary computation, Bayesian networks,

x Preface

Markov models, and fuzzy sets. The book also covers a wide range of applications
related to financial decision making, financial modeling, risk management, and
financial engineering, such as algorithmic trading, financial time-series analysis,
asset pricing, portfolio management, auction market, and insurance services. Below
we provide an outline to the contents of the book.

Organization

The book starts with a chapter written by Healy on the use of computational
intelligence methods for building regression models in financial decision making.
While such models are often used simply to obtain point estimates, the specification
of intervals for their outputs is also very important in several contexts. Healy
provides an exposition of different methods for estimating confidence and prediction
intervals on outputs of neural network models, which are the best known and
most successful computational intelligence technique for financial applications. The
chapter also includes empirical comparative results on synthetic data, as well as data
involving option pricing.

The second chapter by Chen, Shih, and Tai is concerned with the use of com-
putational intelligence for building artificial traders who are capable of mimicking
human traders’ behavior. The authors present a genetic programming approach and
propose a novel learning index which can better capture the state of human traders’
learning dynamics. Computational results from double auction markets are given to
illustrate the proposed framework.

The third chapter of the book, by Bozic, Chalup, and Seese, presents the
contributions of intelligent systems for the analysis of market sentiment information.
Analyzing the business and financial news in order to capture the sentiment of the
market is an important part of the decision making with regard to the prediction of
stock market movements. The chapter overviews the existing systems that perform
automatic news analysis using text mining techniques in order to provide predictions
for equity price movements on the financial markets, based on an estimated
sentiment score. The chapter also presents some empirical results demonstrating
how such a sentiment score relates to macroeconomic variables and closes with a
presentation of an integrated system for performing sentiment analysis.

In the fourth chapter, Dunis, Laws, and Karathanasopoulos investigate the use
of novel neural network architectures for stock market prediction. In particular,
the chapter analyzes the trading performance of six different neural network
architectures (including hybrid models) using data from the Greek stock market,
and presents comparative results to traditional statistical and technical methods.

The fifth chapter, by Xylogiannopoulos, Karampelas, and Alhajj, focuses on
data-mining techniques for financial time-series analysis involving exchange rates.
The authors propose a new methodology that enables the extraction of valuable
information about pattern periodicity, which can be used to interpret correlations

Preface xi

among different market events or even to forecast future behavior. The proposed
algorithmic procedure is of low computational complexity, thus allowing the
analysis of extremely large time series.

The next two chapters are related to asset pricing. In particular, the chapter of
Agapitos, O’Neill, and Brabazon involves the pricing of weather derivatives, which
have become important financial instruments for protecting against commercial
risks. The authors present a genetic programming approach to learn and forecast
temperature profiles as part of the broader process of determining appropriate
pricing model for weather derivatives. Furthermore, in order to improve the
forecasting performance of the model an ensemble learning technique is employed
combining the outputs of multiple models.

In the seventh chapter, Quintana, Luque, Valls, and Isasi develop a methodology
for pricing initial public offerings (IPOs). IPOs have attracted considerable interest
among researchers and practitioners due to the abnormal first-day trading returns
that they often provide to investors. The authors review the contributions of
computational intelligence in IPO pricing and develop a novel methodology based
on an evolutionary system that combines multiple models in order to provide
improved recommendations. The system is benchmarked against a set of well-
known machine learning algorithms.

The following three chapters involve the applications of computational intel-
ligence techniques to portfolio management and optimization. The first of these
chapters, by Villa and Stella, develops a new framework for portfolio analysis
and optimization based on Bayesian networks. The Bayesian networks’ ability for
efficient evidential reasoning is used to understand the behavior of an investment
portfolio in different economic and financial scenarios. Thus, a portfolio optimiza-
tion problem is formulated taking into account the investor’s market views. The
proposed framework is applied to data from the Dow Jones Euro Stoxx 50 Index.

The next chapter, by Bautin and Kalyagin, is concerned with the use of Markov
chain models in portfolio optimization in the Russian stock market. First, the authors
focus on multiperiod portfolio optimization and identify instabilities in the optimal
portfolio related to the choice of the states of the Markov model. At the second
stage, the analysis involves the structural changes on the market due to the financial
crisis of 2008, leading to the detection of interesting dynamics due to the crisis.

In the next chapter, Vercher and Bermúdez present some possibilistic models for
selecting portfolios considering different approaches for quantifying the uncertainty
of future returns. In the proposed modeling approach, the uncertainties are taken
into consideration using the theory of fuzzy sets, which provides a framework for
the analysis of investment decisions under imperfect knowledge of future market
behavior. The portfolio selection process is implemented through the formulation of
a multi-objective optimization, which is solved through an evolutionary algorithm
to find efficient portfolios that meet the investor’s goals.

The book closes with the chapter by Corsaro, De Angelis, Marino, and Zanetti,
which is concerned with the asset-liability management (ALM) process in insurance
undertakings. In particular, the chapter focuses on some computational issues

xii Preface

related to internal models, which are used by insurance undertakings as risk
management systems developed to analyze the overall risk position and define the
corresponding capital requirements.

Acknowledgements Sincere thanks must be expressed to all the authors who have devoted
considerable time and effort to prepare excellent comprehensive works of high scientific quality
and value. Without their help it would be impossible to prepare this book in line with the high
standards that we have set from the very beginning of this project.

Chania, Greece Michael Doumpos
Chania, Greece Constantin Zopounidis
Gainesville, FL Panos M. Pardalos

References

1. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81,
659–674 (1973)

2. S.-H. Chen, T.-W. Kuo, K.-M. Hoi, Genetic programming and financial trading: how
much about what we know, in Handbook of Financial Engineering, ed. by C. Zopounidis,
M. Doumpos, P.M. Pardalos (Springer, New York, 2008), pp. 99–154

3. J.N. Crook, D.B. Edelman, L.C. Thomas, Recent developments in consumer credit risk
assessment. Eur. J. Oper. Res. 183, 1447–1465 (2007)

4. A.P. Engelbrecht, Computational Intelligence: An Introduction (Wiley, Chichester, 2002)
5. J. Kingdon, Intelligent Systems and Financial Forecasting (Springer, New York, 1997)
6. D. Maringer, Portfolio Management with Heuristic Optimization (Springer, Dordrecht, 2005)
7. H. Markowitz, Portfolio Selection: Efficient Diversification of Investments (Wiley, New York,

1959)
8. J.F. Marshall, M.P. Dorigan, Financial engineering: Information technology and its place in the

new finance. Tech. Soc. 18(2), 185–201 (1996)
9. R.C. Merton, Influence of mathematical models in finance on practice: past, present and future,

in Mathematical Models in Finance, ed. by S.D. Howison, F.P. Kelly, P. Wilmott (Chapman and
Hall, London, 1995), pp. 1–13

10. P. Ravi Kumar, V. Ravi, Bankruptcy prediction in banks and firms via statistical and intelligent
techniques – A review. Eur. J. Oper. Res. 180, 1–28 (2007)

Contents

1 Statistically Principled Application of Computational
Intelligence Techniques for Finance . 1
Jerome V. Healy

2 Can Artificial Traders Learn and Err Like Human
Traders? A New Direction for Computational Intelligence
in Behavioral Finance . 35
Shu-Heng Chen, Kuo-Chuan Shih, and Chung-Ching Tai

3 Application of Intelligent Systems for News Analytics 71
Caslav Bozic, Stephan Chalup, and Detlef Seese

4 Modelling and Trading the Greek Stock Market
with Hybrid ARMA-Neural Network Models . 103
Christian L. Dunis, Jason Laws, and Andreas Karathanasopoulos

5 Pattern Detection and Analysis in Financial Time Series
Using Suffix Arrays . 129
Konstantinos F. Xylogiannopoulos, Panagiotis Karampelas,
and Reda Alhajj

6 Genetic Programming for the Induction of Seasonal
Forecasts: A Study on Weather Derivatives . 159
Alexandros Agapitos, Michael O’Neill, and Anthony Brabazon

7 Evolution Strategies for IPO Underpricing Prediction 189
David Quintana, Cristobal Luque, Jose Maria Valls, and Pedro Isasi

8 Bayesian Networks for Portfolio Analysis and Optimization 209
Simone Villa and Fabio Stella

9 Markov Chains in Modelling of the Russian Financial Market 233
Grigory A. Bautin and Valery A. Kalyagin

xiii

xiv Contents

10 Fuzzy Portfolio Selection Models: A Numerical Study 253
Enriqueta Vercher and José D. Bermúdez

11 Financial Evaluation of Life Insurance Policies in High
Performance Computing Environments . 281
Stefania Corsaro, Pasquale Luigi De Angelis, Zelda Marino,
and Paolo Zanetti

Index . 321

Contributors

Alexandros Agapitos Financial Mathematics and Computation Research Cluster,
Natural Computing Research and Applications Group, Complex and Adaptive
Systems Laboratory, University College Dublin, Ireland,
alexandros.agapitos@ucd.ie

Reda Alhajj Department of Computer Science, University of Calgary, Calgary,
AB, Canada, alhajj@ucalgary.ca

Grigory A. Bautin National Research University Higher School of Economics,
Lab LATNA, Russia, gbautin@hse.ru

José D. Bermúdez Department of Statistics and Operational Research, University
of Valencia, Spain, bermudez@uv.es

Caslav Bozic Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe,
Germany, bozic@kit.edu

Anthony Brabazon Complex and Adaptive Systems Laboratory, University
College Dublin, Ireland, anthony.brabazon@ucd.ie

Stephan Chalup School of Electrical Engineering and Computer Science, The
University of Newcastle, Australia, stephan.chalup@newcastle.edu.au

Shu-Heng Chen AIECON Research Center, Department of Economics, National
Chengchi University, Taiwan, chen.shuheng@gmail.com

Stefania Corsaro Dipartimento di Statistica e Matematica per la Ricerca
Economica, Università degli Studi di Napoli “Parthenope”, Napoli, Italy,
corsaro@uniparthenope.it

Pasquale Luigi De Angelis Dipartimento di Statistica e Matematica per la Ricerca
Economica, Università degli Studi di Napoli “Parthenope”, Napoli, Italy,
deangelis@uniparthenope.it

Christian L. Dunis Liverpool John Moores University, Liverpool, UK,
C.Dunis@ljmu.ac.uk

xv

xvi Contributors

Jerome V. Healy UEL Royal Docks Business School, University of East London,
London, UK, j.healy@uel.ac.uk

Pedro Isasi Universidad Carlos III de Madrid, Madrid, Spain, isasi@ia.uc3m.es

Valery A. Kalyagin National Research University Higher School of Economics,
Lab LATNA, Russia, vkalyagin@hse.ru

Panagiotis Karampelas Hellenic American University, Manchester, NH, USA,
pkarampelas@hauniv.us

Andreas Karathanasopoulos London Metropolitan University, London, UK,
a.karathanasopoulos@londonmet.ac.uk

Jason Laws University of Liverpool Management School, Liverpool, UK,
J.Laws@liverpool.ac.uk

Cristobal Luque Universidad Carlos III de Madrid, Madrid, Spain,
cluqueac@gmail.com

Zelda Marino Dipartimento di Statistica e Matematica per la Ricerca Economica,
Università degli Studi di Napoli “Parthenope”, Napoli, Italy,
marino@uniparthenope.it

Michael O’Neill Financial Mathematics and Computation Research Cluster,
Natural Computing Research and Applications Group, Complex and Adaptive
Systems Laboratory, University College Dublin, Ireland, m.oneill@ucd.ie

David Quintana Universidad Carlos III de Madrid, Madrid, Spain, dquintan@inf.
uc3m.es

Detlef Seese Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe,
Germany, detlef.seese@kit.edu

Kuo-Chuan Shih AIECON Research Center, Department of Economics, National
Chengchi University, Taiwan, melvinshih@gmail.com

Fabio Stella University of Milano – Bicocca, Milano, Italy, stella@disco.unimib.it

Chung-Ching Tai Department of Economics, Tunghai University, Taiwan,
chungching.tai@gmail.com

Jose Maria Valls Universidad Carlos III de Madrid, Madrid, Spain,
jvalls@inf.uc3m.es

Enriqueta Vercher Department of Statistics and Operational Research, University
of Valencia, Burjassot, Spain, vercher@uv.es

Simone Villa University of Milano - Bicocca, 20126 Milano, Italy

Saint George Capital Management, Lugano, Switzerland,
simone.villa@sgcm.ch

Contributors xvii

Konstantinos F. Xylogiannopoulos Hellenic American University, Manchester,
NH, USA, kostasfx@yahoo.gr

Paolo Zanetti Dipartimento di Statistica e Matematica per la Ricerca Economica,
Università degli Studi di Napoli “Parthenope”, Napoli, Italy,
zanetti@uniparthenope.it

Chapter 1
Statistically Principled Application
of Computational Intelligence Techniques
for Finance

Jerome V. Healy

Abstract Computational techniques for regression have been widely applied to
asset pricing, return forecasting, volatility forecasting, credit risk assessment, and
value at risk estimation, among other tasks. Determining probabilistic bounds on
results is essential in these contexts. This chapter provides an exposition of methods
for estimating confidence and prediction intervals on outputs, for computational
intelligence tools used for data modelling. The exposition focuses on neural nets
as exemplars. However, the techniques and theory outlined apply to any equivalent
computational intelligence technique used for regression. A recently developed
robust method of computing prediction intervals, appropriate to any such regression
technique of sufficient generality, is described.

1.1 Computational Intelligence Techniques in Finance

In the past 2 decades there has been increasing interest among both practitioners
and scholars in using techniques from the field of computational intelligence for
modelling to support financial decisions. Recent examples documented in the
literature include: the use of radial basis functions [8], projection pursuit regression
[5], multilayer perceptrons (MLPs) [22], genetic algorithms [1], and support vector
machines [27]. It has been shown [7, 11] that these techniques possess universal
approximation properties and can approximate arbitrarily closely virtually any
linear or non-linear function. Techniques of these types are now frequently used
for asset pricing, return forecasting, volatility forecasting, credit risk assessment,
and Value at Risk (VaR) estimation, among other tasks. Determining probabilistic
bounds on the resulting estimates and predictions is essential in such applications.

J.V. Healy (�)
UEL Royal Docks Business School, University of East London, Docklands Campus,
4-6 University Way, London E16 2RD, UK
e-mail: j.healy@uel.ac.uk

M. Doumpos et al. (eds.), Financial Decision Making Using Computational Intelligence,
Springer Optimization and Its Applications 70, DOI 10.1007/978-1-4614-3773-4 1,
© Springer Science+Business Media New York 2012

1

2 J.V. Healy

Consider the task of forecasting VaR, in support of decisions on regulatory capital
requirements. The VaR for a portfolio is the largest expected loss likely to occur with
defined probability p, over a defined horizon T − t = τ . VaR is thus the upper bound
of a (single sided) prediction interval of expected portfolio losses in statistical terms.
Formally, if we wish to determine the 95% VaR of a portfolio V over some horizon
τ , where Vt is the value of the portfolio today and VT is the expected value of the
portfolio at the end of period τ , then we define Prob(Lτ ≤ VaR) = 95%. Thus Lτ is
the maximum expected loss in the period and will have a positive value (negative
values represent a gain). The 95% VaR for Lτ is therefore the upper bound of the
95% prediction interval for the conditional probability distribution of Lτ . If we wish
to apply computational intelligence to forecast the VaR for Lτ we thus require a
method for estimating prediction intervals for the chosen technique.

The computational intelligence techniques referred to above, and others in
this class, such as decision trees, or k-nearest neighbour classifiers, may appear
superficially disparate. However, Maruyama et al. [18] have demonstrated the
underlying equivalence among a broad class of such techniques, including those
mentioned. Given the wide variety of available techniques and their essential
equivalence, the exposition in this chapter necessarily focuses on what is arguably
the best known and most successful computational intelligence technique for
financial applications. Namely, the form of neural network termed a multilayer
perceptron (MLP). However, it is shown that under mild conditions, the theory and
methods discussed are applicable to all such techniques used for regression.

An MLP with a single hidden layer can approximate arbitrarily closely virtually
any linear or non-linear continuous function [11]. MLPs are also twice differen-
tiable, so first- and second-order partial derivatives of the network with respect
to its inputs are obtainable [12]. These characteristics make MLPs well suited to
applications in finance.

1.2 Theory

To define terms and develop notation the theory relating to confidence and prediction
intervals applied to regression is first reviewed. A discussion of how this theory
applies to computational intelligence techniques then follows.

1.2.1 Confidence and Prediction Intervals

Regression is the name given to the family of statistical techniques used to model
the relationship between a response (or dependent) variable y and a vector x of
explanatory (or independent) variables, the regressors. In the learning network
literature the terminology targets for response variables and inputs for regressors,
with the vector x termed the input vector, is used. The following discussion adopts

1 Statistically Principled Computational Intelligence Techniques for Finance 3

this usage. In regression, it is assumed there is a relationship between the target y
and the input vector x. Equation (1.1) shows a possible form this may take.

y = μy(x)+ ε. (1.1)

The relationship has both stochastic and deterministic components. Here ε ∼
N(0,σ2) is a normally distributed random error. The stochastic component consists
of the resulting random fluctuation of y about its mean μy(x). The deterministic
component is the function relating μy(x) and x. Suppose that the true but unknown
function relating μy(x) and x is given by

μy(x) = f (x;βββ), (1.2)

where βββ is a set of parameters. Regression attempts to model this relationship by
estimating the parameter values from the data set. To achieve this, the values of βββ
are adjusted under the assumption that f is the true function, giving

μ̂y(x; β̂ββ) = f (x; β̂ββ), (1.3)

where a hat denotes an estimated value. The right-hand side of (1.3) is termed a re-
gression function. If μ̂y(x; β̂ββ) is estimated from a finite sample S, {(x1,y1),(x2,y2),

. . . ,(xn,yn) ∈ S}, sampling variation in S will result in variation in β̂ββ and hence
variation in μ̂y(x; β̂ββ). It follows μ̂y(x0; β̂ββ) has a sampling distribution about μy(x0),
where x0 is a particular value of x. A 95% confidence interval for μy(x0) is an

interval [λL(S,x0),λU(S,x0)] about μ̂y(x0; β̂ββ) such that μy(x0) is within the interval
in 95% of cases. A 95% prediction interval is an interval [λL(S,x0),λU(S,x0)] about
μ̂y(x0; β̂ββ) such that the unknown value y0 associated with x0 is within the interval
in 95% of cases. As an example consider the univariate (OLS) regression of y on x
for a sample S, {(x1,y1),(x2,y2), . . . ,(xn,yn) ∈ S}. The 95% confidence interval for
μy(x0) is given by

μ̂y(x0; β̂)± t0.025(n−2)

⎛
⎝sy

√
1
n
+

(x0 − x̄)2

∑n
i=1 (x

2
i)

⎞
⎠ (1.4)

and the 95% prediction interval by

μ̂y(x0; β̂)± t0.025(n−2)

⎛
⎝sy

√
1
n
+

(x0 − x̄)2

∑n
i=1 (x

2
i)

+ 1

⎞
⎠ , (1.5)

where sy is the standard deviation of the y values and x is the mean of the x values
[23]. In (1.4) and (1.5), sy is given by

sy =

√
∑e2

i

n− 2
, (1.6)

4 J.V. Healy

where e = (μ̂y(xi; β̂) − yi) are the residuals. This follows from the classical
assumptions for OLS regression under which Var(yi) = Var(εi) = σ2. An unbiased
estimate of σ and hence of the standard deviation of the yi is given by (1.6).
Equations (1.4) and (1.5) can be generalised to the multivariate case for OLS
regression to obtain a (1 − α)100% confidence interval for μy(x0). In matrix
notation this is

μ̂y(x0; β̂ββ)± t(α/2)(n−k−1)

(√
x�0 (X�X)−1x0s2

y

)
(1.7)

and a (1−α)100% prediction interval is

μ̂y(x0; β̂ββ)± t(α/2)(n−k−1)

(√
(1+ x�0 (X�X)

−1
)x0s2

y

)
. (1.8)

In (1.7) and (1.8) x0 is a k× 1 column vector of inputs and X is a n× k matrix,
containing first a column of ones, and then the k × 1 values of each of the n row
vectors x�i . The scalar s2

y is the mean squared residual (MSR). It is an unbiased
estimate of σ2 and hence of the variance of the yi. For (1.7) and (1.8), s2

y is given by

MSR = s2
y =

Y�Y− β̂ββ
�

X�Y
n− k− 1

. (1.9)

In (1.9), X is as previously defined, Y is an n×1 vector of target values, and β̂ββ is
a k× 1 vector of estimated parameters given by β̂ββ = (X�X)−1X�Y. If the x values
in (1.4)–(1.9) are continuously valued over the interval [x1,x2], x2 > x1 a continuous
confidence band and prediction band are obtained. From (1.2) f (x;βββ) is the true
but unknown function relating μy(x) and x (the true regression). Equation (1.3)
μ̂y(x;βββ) = f (x;βββ) is an estimate of this regression. It follows that the confidence
intervals (1.4) and (1.7) are for the true regression functions. The prediction intervals
(1.5) and (1.8) are for predicted values associated with a new unseen input. The
relationship between confidence intervals and prediction intervals can be understood
by considering the following equation:

[y− f (x; β̂ββ)] = [f (x;βββ)− f (x; β̂ββ)]+ ε(x) (1.10)

Prediction intervals are concerned with the left-hand side of this equation, the
difference between the target value and its predicted value from the estimated
regression function. The left-hand term decomposes into the two right-hand terms.
Confidence intervals are concerned with the first of these, the difference between
the true and estimated regression functions. This difference is determined by the
parameter difference βββ − β̂ββ . The remaining term on the right-hand side is the
(sample dependent) random noise term. Neither the noise or the true parameters
βββ can be directly observed. However, the variance of the noise can be estimated as
V̂ar(ε) = s2 and confidence intervals constructed for the true βββ .

1 Statistically Principled Computational Intelligence Techniques for Finance 5

1.2.2 Application to Computational Intelligence Techniques

The theory presented in the previous section can be applied where the right-hand
side of (1.3), the regression function, is a neural net or other computational
intelligence technique used for regression. Existing methods are discussed in this
section. The discussion uses an MLP with one hidden layer as an exemplar. In this
case, from (1.3),

μ̂y(x;Ω̂ΩΩ) =ΘΘΘ

(
H

∑
h=1

wlhΦh

(
K

∑
k=1

whkxk +ωh

)
+ωl

)
. (1.11)

In (1.11), the MLP consists of one layer of K input nodes x1, . . . ,xK , a layer
of l output nodes, and H hidden layer nodes [3]. The functions ΘΘΘ and Φ are
termed activation functions. For the hidden layer, Φ is usually a sigmoid function
such as the logistic function or the hyperbolic tangent function. For a continuously
valued target variable, the output functions ΘΘΘ are usually linear and may be the
identity. The w are referred to as the weights and the ω are constant intercept
terms known as biases. The set of estimated weights and biases is denoted by
{Ω̂ΩΩ(w1, . . . ,wKH+Hl ,ω1, . . . ,ωH+l) ∈ Ω̂ΩΩ}. Unlike classical NLLS regression, in
neural nets, the form of non-linearity involved is unknown. The error surface can
have many local minima, and a closed form solution for the global minimum is
not generally possible. The network is fitted (“trained” in the learning networks
literature) by searching a weight space to select Ω̂ΩΩ to minimise a cost function.
This is done using a search algorithm such as gradient descent, conjugate gradient,
or quasi-Newton [3]. These methods require initialisation of the vector ΩΩΩ with a
set of small random values. The vector Ω̂ΩΩ that minimises the cost function is then
iteratively estimated. Neural nets can over-fit data. To prevent over-fitting, training
is terminated when the error function is minimised on a portion of the data withheld
to form a separate validation data set (early stopping). Alternatively, some form of
regularisation (weighting) can be used.

When the cost function used for (1.11) is the sum of squared errors, some
activation functions are non-linear (the usual case), and early stopping is used to
prevent over-fitting, the optimisation is effectively a non-linear least squares regres-
sion (NLLS). The theory for estimating standard errors for non-linear regression is
then directly applicable. It has been shown [15] that asymptotically correct standard
errors can be estimated in this case. The estimation of standard errors for MLPs
using the Delta Method [21] and Sandwich Method [13] for non-linear regression is
outlined in Sect. 1.2.2.1. Alternative bootstrap and Bayesian approaches are outlined
in Sect. 1.2.2.2.

6 J.V. Healy

1.2.2.1 The Delta and Sandwich Methods

Consider a sample S, {(x1,y1),(x2,y2), . . . ,(xn,yn) ∈ S} where y represents scalar
targets and x a vector of k inputs. Suppose the true relationship between the targets
y and the input vectors x takes the form

yi = f (xi;βββ)+ εi i = 1, . . . ,n. (1.12)

The data are modelled by the regression equation (1.3) where the right-hand side
is an MLP or equivalent computational intelligence technique. Thus the vector of
parameters βββ is replaced by the set of weights and biases ΩΩΩ , and

μ̂y(xi;Ω̂ΩΩ) = f (xi;Ω̂ΩΩ)+ ei i = 1, . . . ,n. (1.13)

If n is large enough so that Ω̂ΩΩ ≈ ΩΩΩ , a local linear approximation of the network
about x0 = x, where x0 is a particular value of x, can be obtained and the procedures
for multivariate linear regression applied. From a first-order Taylor series,

μ̂y(x0;Ω̂ΩΩ) = f (x0;Ω̂ΩΩ)≈ f (x0;ΩΩΩ)+ g�0 ΔΩ̂ΩΩ , (1.14)

where ΔΩ̂ΩΩ = (Ω̂ΩΩ −ΩΩΩ) and g0 = d f (x0;ΩΩΩ)/dΩΩΩ .
Substituting this approximation into the least squares cost function gives the

following expression for the sum of squared residuals:

SSR ≈
n

∑
i=1

(yi − f (xi;ΩΩΩ)− g�i ΔΩ̂ΩΩ)2 ≈
n

∑
i=1

(ei − g�i ΔΩ̂ΩΩ)2. (1.15)

Rewriting (1.15) in matrix notation gives

SSR ≈ (e−GΔΩ̂ΩΩ)�(e−GΔΩ̂ΩΩ), (1.16)

where G is an n×k matrix whose ith row is the vector g�i and e is an n×1 vector of
errors. Setting the derivatives of (1.16) with respect to Ω̂ΩΩ equal to zero and solving
the resulting equations to minimise the SSR gives

ΔΩ̂ΩΩ ≈ (G�G)−1G�e. (1.17)

Different samples will generate different weight vectors according to (1.17). The
variance–covariance matrix of the weights is (the derivation is not given here)

V̂ar(ΔΩ̂ΩΩ)≈ s2
y(G

�G)−1 ≈ H−1, (1.18)

1 Statistically Principled Computational Intelligence Techniques for Finance 7

where H−1 is the outer product approximation to the Hessian matrix of second-order
partial derivatives of the cost function (1.16) with respect to each of the elements
of the weight matrix Ω̂ΩΩ . From (1.14) and (1.18) the standard error of the regression
function can now be defined as

ŜE(f (xi;ΩΩΩ))≈
(√

g�i (G�G)−1gis2
y

)
≈
(√

g�i H−1gi

)
. (1.19)

Using (1.19), a (1−α)100% confidence interval for μy(x0) is given by

μ̂y(x�0 ;Ω̂ΩΩ)± t(α/2)(n−k−1)

(√
g�0 (G�G)−1g0s2

y

)
(1.20)

and a (1−α)100% prediction interval is

μ̂y(x�0 ;Ω̂ΩΩ)± t(α/2)(n−k−1)

(√
(1+ g�0 (G�G)−1g0)s2

y

)
. (1.21)

Equations (1.20) and (1.21) have the same form as (1.7) and (1.8) in Sect. 1.2.1,
with vector g substituted for x and matrix G substituted for X. The s2

y term is
SSR/(n− k− 1), the MSR obtained using (1.16) in the numerator. Note that k here
is the number of effective weights and biases.

If regularisation as described by Bishop [3] rather than early stopping is used to
prevent over-fitting, the standard error given in (1.19) must be replaced by

ŜE(f (xi;ΩΩΩ))≈
(√

g�i (H−1 + 2λ)gi

)
, (1.22)

where the cost function to be minimised is

SSR+λ ∑
i=1

nw2
i (1.23)

and the λ term in (1.23) is a penalty term used to induce weight decay. The wi are
the weights from (1.11).

The value of k, the degrees of freedom to use in (1.20) and (1.21), is somewhat
problematic. When training is stopped before convergence, by regularisation or
early stopping, some weights and biases may be ineffective. An architecture
selection algorithm should be applied, to ensure there are no redundant hidden layer
nodes, thereby minimising or eliminating redundant weights. Assuming there are
no redundant weights or hidden units in the network, k = 1+H(q+ 2), where q is
the number of input variables and H the number of hidden layer nodes. Otherwise,
this is an upper bound. In either case, for large data sets (e.g. 7,000 + observations),
with k > 50, use of the above should have minimal effect on estimation accuracy.

8 J.V. Healy

An important assumption underlying the OLS and delta method estimators
of standard error concerns the variance of the noise ε associated with the true
regression. This is assumed ε ∼ N(0,σ2) with constant variance σ2. The presence
of heteroskedasticity will result in estimated standard errors that are biased.
The sandwich estimator [13] provides a method of dealing with this problem.
The sandwich estimator is obtained by replacing the variance–covariance matrix
of weights given by (1.18) with

V̂arSand(ΔΩ̂ΩΩ)≈
n

[
(G�G)−1G�(

n
∑

i=1
gig�i e2

i)G(G�G)−1

]

(n− k)
. (1.24)

Substituting (1.24) into (1.19) in place of (1.18) gives

ŜESand(f (xi;ΩΩΩ))≈
(√

g�i
(

V̂arSand(ΔΩ̂ΩΩ)
)

gi

)
. (1.25)

Equation (1.24) yields asymptotically consistent variance–covariance matrix
estimates without making distributional assumptions, even if the assumed model
underlying the parameter estimates is incorrect. Because of these desirable proper-
ties, the sandwich estimator is also termed the robust covariance matrix estimator
or the empirical covariance estimator.

1.2.2.2 Bootstrap and Bayesian Approaches

Re-sampling methods provide an alternative to the delta method for calculating
standard errors and statistical intervals for neural nets. The bootstrap method [6]
is a computer-based technique based on re-sampling that can provide confidence
intervals for any population parameter estimate. In the context of regression, two
forms of bootstrap are possible. The first of these is the bootstrap pair method.
Consider a sample S, {(x1,y1),(x2,y2), . . . ,(xn,yn) ∈ S}, where y represents scalar
targets and x is a vector of k inputs. A bootstrap sample is a sample SBoot,
{(xi,yi) ∈ SBoot, i = 1, . . . ,n} , consisting of n pairs of (xi,yi) drawn randomly (with
replacement) from S. This means that some (xi,yi) may appear more than once in
SBoot while others may not appear at all. The bootstrap estimate of the standard error
of the true regression function, which is a function of the set of inputs X, is given by

ŜEBoot(f (X;ΩΩΩ))≈
√

1
B− 1

B

∑
b=1

[
μ̂y(Xb;Ω̂ΩΩ)− μ̂y,Boot(X)

]2
. (1.26)

In (1.26), μ̂y(Xb;Ω̂ΩΩ) is the network trained on the bth bootstrap sample SBoot
b ,

where there are a total of B bootstrap samples, with typical values 20 < B < 200.

1 Statistically Principled Computational Intelligence Techniques for Finance 9

The bootstrap estimate of the mean of the target values μ̂y,Boot(X), termed a bagged
estimate in the neural net literature, is given by the mean of the ensemble of B
networks:

μ̂y,Boot(X)≈ 1
B

B

∑
b=1

μ̂y(Xb;Ω̂ΩΩ). (1.27)

In (1.26) and (1.27), X is an n× 1 vector of the xi, that is, an n× k matrix of
x values. Using (1.26), a (1−α)100% bootstrap confidence interval for μy(X) is
given by [10]:

μ̂y,Boot(X)± t(α/2)B

(
ŜEBoot(f (X;ΩΩΩ))

)
. (1.28)

In the bootstrap residuals method the residuals from μ̂y(X;Ω̂ΩΩ) trained on a
sample S, defined as before, are re-sampled rather than the training sample itself.
Suppose E, {(e1,e2, . . . ,en) ∈ E} is a set of residuals from μ̂y(X;Ω̂ΩΩ) trained on
sample S. A bootstrap residual sample is a sample EBoot, {ei ∈ EBoot, i = 1, . . . ,n}
consisting of n samples ei drawn randomly (with replacement) from E. The
bootstrap residual estimate of the standard error of the true regression function is
given by

ŜEBootR(f (X;ΩΩΩ))≈
√

1
B− 1

B

∑
b=1

[
μ̂ r

y (X;Ω̂ΩΩ b
)− μ̂y,BootR(X)

]2
. (1.29)

In (1.29), μ̂ r
y(X;Ω̂ΩΩ

b
) is the NN trained on the bth bootstrap residual sample EBoot

b ,
where there are a total of B bootstrap residual samples, with typical values 20 <

B < 200. The target for μ̂ r
y(X;Ω̂ΩΩ

b
) is (EBoot

b + μ̂ r
y(X;Ω̂ΩΩ

b
)). The bootstrap residual

estimate of the mean of the target values, μ̂y,BootR(X), is given by the mean of the
ensemble of B networks:

μ̂y,BootR(X)≈ 1
B

B

∑
b=1

μ̂ r
y (X;Ω̂ΩΩ

b
). (1.30)

Using (1.29), a (1−α)100% bootstrap confidence interval for μy(X) is

μ̂y,BootR(X)± t(α/2)B

(
ŜEBootR(f (X;ΩΩΩ))

)
. (1.31)

The bootstrap residuals method has the advantage that the same sample S is the
source of the inputs X for all B networks that must be trained. This may be an
advantage in some experimental situations. On the other hand, it is model specific
and not as robust to over-fitting or misspecification as the bootstrap pair method.

The delta, sandwich, and bootstrap estimators of standard errors are based on the
maximum likelihood framework. Bayesian statistics provides a different approach.
In classical “frequentist” statistics, inferences about the parameters of a population

10 J.V. Healy

P are based entirely on sample statistics from sample(s) S drawn randomly from P.
Bayesian statistics, in contrast, takes account of prior beliefs about the population
P, by basing inferences on a prior probability distribution that is combined with a
sample S to produce a posterior (probability) distribution P(θ |S), for the parameter
of interest θ . Confidence and prediction intervals are defined within the Bayesian
framework.

Let θ be a parameter of the population distribution P and S a random sample
drawn from P. If θ is viewed as a random variable whose posterior distribution is
P(θ |S), then [λL(S),λU(S)] is a (1−α)100% Bayesian confidence interval for θ if
from P(θ |S) there is a (1−α)100% probability θ ∈ [λL(S),λU(S)]. In the Bayesian
approach, θ is a random variable and [λL(S),λU(S)] is fixed given availability of S.
In the classical approach, it is θ which is fixed and [λL(S),λU (S)] varies with S. If S
is a (univariate) random sample drawn from P where {(x1,x2, . . . ,xn)∈S,n< p} and
P(xn+1|S) is the posterior distribution for xn+1, then [λL(S),λU(S)] is a (1−α)100%
Bayesian prediction interval for xn+1 if from P(xn+1|S) there is a (1−α)100%
probability xn+1 ∈ [λL(S),λU (S)].

For regression, maximum likelihood based methods estimate single values for
each (unknown) parameter of the true regression. The Bayesian approach, in
contrast, expresses the uncertainty regarding the true weight vector ΩΩΩ as the
posterior probability distribution P(ΩΩΩ |S) given a sample S. Thus:

P(μy(x)|S) =
∫

ΩΩΩ
P(μy(x)|ΩΩΩ)P(ΩΩΩ |S)dΩΩΩ

∝
∫

ΩΩΩ
P(μy(x)|ΩΩΩ)P(S|ΩΩΩ)P(ΩΩΩ)dΩΩΩ ,

(1.32)

where P(ΩΩΩ) is the prior distribution for the weights. It has been shown [17] that
with approximations, the latter integral can be solved analytically. If the noise is
assumed to be ε ∼ N(0,σ2) and the prior P(ΩΩΩ) is also assumed to be Gaussian,
then a Gaussian posterior distribution P(μy(x)|ΩΩΩMP) can be derived where:

Ê[μy(x)] = μ̂y(x;ΩΩΩMP). (1.33)

In (1.33), ΩΩΩMP is ΩΩΩ at the maximum of the posterior probability distribution
P(ΩΩΩ |S). The variance of P(μy(x)|ΩΩΩMP) is

V̂ar(μy(x)) = (σ2)−1 + g�A−1g, (1.34)

where σ2 is the (constant) noise variance and A−1 is the Hessian matrix of
second-order partial derivatives (with respect to each of the elements of ΩΩΩ) of the
regularised cost function:

σ2

2

N

∑
i=1

[μ̂y(xi;ΩΩΩ)− yi]
2 +

λ
2 ∑i

wi. (1.35)

1 Statistically Principled Computational Intelligence Techniques for Finance 11

The second term in (1.35) is a regularisation term resulting from the assumption
that P(ΩΩΩ), the prior distribution in (1.32), is a Gaussian. In (1.35), λ is a constant
and the wi are the weights from (1.11). It follows that an approximate (1−α)100%
Bayesian prediction interval for μy(x) is given by

μ̂y(x0;ΩΩΩMP)± z(1−α)100%

√
(σ2)

−1
+ g0

�A−1g0. (1.36)

By using (1.36), maximum likelihood estimation has been avoided. However,
the derivation relies on the same assumptions of normality of the errors and
unbiasedness as the delta method, to which it is related. The method has been
extended by Bishop and Qazaz [4] to the case of non-constant variance, by replacing
the constant noise variance term in (1.34) with input-dependent (variable) noise
variance. An advantage of the Bayesian approach is that the regularisation parameter
is automatically determined during training. This means cross validation is not
required to control over-fitting, so all of the available data can be used for training.
Unfortunately, obtaining Bayesian standard error estimates is substantially more
complex than using maximum likelihood based approaches [25]. This is due to
the need to use approximations to obtain the analytical formulae. The Bayesian
method is unreliable where crude approximations are used. Moreover, inversion of
the Hessian matrix is required, with the attendant possibility of failure.

1.3 Implementations of the Theory

In this section, the empirical performance of different implementations of the theory
outlined in Sect. 1.2 for estimating standard errors, confidence, and prediction inter-
vals for computational intelligence techniques used for regression is considered.

Tests of eight different standard error estimates for MLPs with single hidden
layers and a linear output layer were performed by Tibshirani [24]. Four variants
of the delta method, two variants of the sandwich estimator, the bootstrap pairs
and bootstrap residuals methods were tested. The delta method variants tested by
Tibshirani [24] were the standard, a method using the inverse Hessian matrix, a
method using an approximation to the Hessian matrix omitting second-order terms,
and the delta method with a regularisation term. The sandwich method variants were
the standard sandwich method and a variant using an approximate Hessian matrix.
A small data set was used for these tests, consisting of 111 observations on air
pollution. For the bootstrap methods, B = 20 bootstrap replicates were used. The
bootstrap methods provided the most accurate estimates of standard errors. The delta
methods and sandwich estimators missed the substantial variability due to random
starting weights. Tibshirani [24] suggests these latter estimators may perform
better where there is less sensitivity to the choice of starting weights (initialisation
parameters), for example with larger data sets where gradient descent is used.

This suggestion is consistent with findings reported by LeBaron and Weigend
[16] who used a training set of 3,200 observations on market trading volume at

12 J.V. Healy

the New York Stock Exchange. These data were relatively noisy, with predictions
explaining approximately 0.5 of the variance. Both an MLP and a linear model
were tested. The error measure used by LeBaron and Weigend [16] was (1−R2),
and 2,523 bootstrap replicates were generated on the test set of 1,500 observations
to obtain out-of-sample distributions for this error. For the MLP, 697 networks were
also trained on a single sample and initialisation parameters were randomly drawn
for each one. It was found that the randomness due to the splitting of the data
generated more variability than the randomness due to network initialisation. No
significant correlation was found between the choice of initialisation parameters or
network topology and performance. Moreover, the error distributions obtained from
the bootstrap procedure on the test set were almost identical for both the linear and
MLP models.

In tests using synthetic data with an input-dependent noise variance, Bishop
and Qazaz [4] demonstrated that the Bayesian approach can give an improved
estimate of noise variance compared with maximum likelihood based approaches.
However, Ungar et al. [25] question whether the improved performance of Bayesian
approaches justifies the extra computational cost involved.

The method proposed by Heskes [10] uses bootstrap pairs to obtain prediction
intervals for a pair {(x0,y0) /∈ SBoot

b ,b = 1, . . . ,B} using the relationship in (1.10),
(1.26) and (1.27). To achieve this a separate neural net χ2(X) is trained to model the
noise variance Var(ε). The targets for this network are residuals satisfying

r2 (Xv) = max
(

e2
Boot (Xv)− ŜE

2
Boot(f (Xv;ΩΩΩ)),0

)
(1.37)

obtained from the validation sets used for training the B networks used in the
bootstrap ensemble (1.27). Alternatively, these may be obtained by applying (1.27)
to an independent test set. In (1.37), e2

Boot(Xv) = (y − μ̂y,Boot(Xv))2 , the residuals
from (1.27) when applied to the validation sets. The cost function used for training
the auxiliary network is the negative log likelihood function; hence the use of the
max(·,0) function in (1.37). The resulting bootstrap prediction interval is

μ̂y,Boot(X)± t(α/2)B

(
ŜEBoot(f (X;ΩΩΩ))+ χ (X)

)
. (1.38)

The prediction interval (1.38) offers the advantage that it allows for the uncer-
tainty of the regression function as well as that of the noise. In addition, it does not
rely on the assumption that the network is an unbiased estimator of the conditional
mean of the target value (i.e. that the error due to bias is negligible compared with
the error due to variance).

A novel method of computing prediction intervals for neural nets has been
proposed by Nix and Weigend [19]. The method uses an NN with two output nodes,
one for μ̂y(x;Ω̂ΩΩ), the predicted value and a second for σ̂2

y (x;Û), the variance of
the predicted value. The network has a non-standard structure, with a second hidden
layer for σ̂2

y (x;Û) receiving inputs from both the hidden layer for μ̂y(x;Ω̂ΩΩ) and from
the input layer. A negative log likelihood cost function is used, modified by inclusion

1 Statistically Principled Computational Intelligence Techniques for Finance 13

of the input-dependent variance term σ̂2
y (xi). Usually σ̂2(X) is assumed constant

and drops out after differentiation. A linear activation function is specified for the
μ̂y(x;Ω̂ΩΩ) output unit. To ensure only positive outputs, an exponential activation
function is specified for the σ̂2

y (x;Û) output unit. A hyperbolic tangent activation
function is used for the hidden layer units. Using these activation functions,
differentiating the cost function with respect to the network weights gives weight
update equations containing terms 1/σ̂2

y (x), which act as a form of weighted
regression. An improved fit in low noise regions of the input space is claimed by
Nix and Weigend [19]. The outputs obtained from this network are equivalent to
training a separate network for σ̂2

y (x;Û) using the squared residuals from μ̂y(x;Ω̂ΩΩ)
as targets.

The network proposed by Nix and Weigend [19] requires a three-phase training
process. In Phase I the network is trained on a training set A for the output μ̂y(x;Ω̂ΩΩ).
This is equivalent to normal network training using a sum of squares cost function
with early stopping to prevent over-fitting. In Phase II, the weights trained in Phase
I are frozen and the second hidden layer for σ̂2

y (x;Û) added. The squared residuals
from the Phase I model are used as targets for the second output node σ̂2

y (x;Û).

The network is now trained for the output σ̂2
y (x;Û) using the validation set B from

Phase I as the training set, with set A as the validation set. In Phase III (weighted
regression), the available data are re-split into a new training set A′ and validation set
B′. All network weights are unfrozen, and the network is re-trained for both output
nodes on training set A′, using B′ as the validation set. Training is now considered
complete.

The method of Nix and Weigend [19] can provide prediction intervals without
bootstrap re-sampling or use of the Hessian matrix. Improved performance in
low noise regions of the input space is claimed, due to the form of weighted
regression used. However, the use of weighted regression means the standard errors
obtained must be interpreted with caution. This is because inference for NNs and
other computational intelligence techniques rests on the assumption that an NLLS
regression is performed, as discussed in Sect. 1.2.2. In weighted regression a penalty
term is added to the least squares cost function and this may not be the case.
Moreover, as Nix and Weigend [19] themselves point out, weighted regression
introduces local minima in the error surface, complicating learning. Improved
prediction intervals are claimed by Nix and Weigend [19] in tests using both
synthetic data with added non-uniform Gaussian noise and real-world data with
uniform non-Gaussian noise, compared to the use of a separate network to estimate
the variance, as proposed by Satchwell [20] or used by Heskes [10].

1.3.1 Limitations of Existing Approaches

Existing methods for computing standard errors, confidence, and prediction inter-
vals for computational intelligence techniques used for regression are of three types:
first, the delta method, sandwich method, and their variants, which use the Hessian

14 J.V. Healy

matrix of second-order partial derivatives of the cost function with respect to the
weights and biases; second, methods using bootstrap re-sampling; third, methods
which rely on directly modelling the noise.

The empirical findings considered above suggest that methods of the first type
do not perform as well as methods of the second type, at least for small samples.
Moreover, where there is over-fitting the matrix inversions required for the Delta
and Sandwich methods are unstable and may fail, making computations impossible.
Methods based on bootstrap re-sampling are reported by Tibshirani [24] to give
estimates that are more accurate. While the bootstrap can provide confidence
intervals for the true regression function, on its own it cannot provide prediction
intervals where the target variable is unknown. Heskes [10] attempts to overcome
this limitation by employing a separate neural network to model the noise, in
conjunction with bootstrap re-sampling. However, the naı̈ve bootstrap does not
provide heteroskedasticity consistent standard errors [26]. For these, the use of a
more complex wild bootstrap is required. The method proposed by Nix and Weigend
[19] is of the third type. It does not have any of the above limitations, and is less
computationally costly. However, it relies on a non-standard architecture, requiring
special programming, a complex training algorithm, and utilises a form of weighted
regression.

1.4 Robust Practical Prediction Intervals

A robust practical method for obtaining standard errors, confidence, and prediction
intervals that is applicable to any computational intelligence technique of sufficient
generality used for regression is now described [9]. The method is robust to
heteroskedasticity and practical to implement. It allows the standard error to be
obtained directly and avoids the bootstrapping that is otherwise a practical necessity
in obtaining confidence intervals for the true regression.

The method is based on a network with two outputs, one fitted to the target
variable and the other to its squared error. It differs from the method of Nix
and Weigend [19] because: (a) It uses a sum of squares cost function and does
not assume a Gaussian noise distribution. (b) It uses a training algorithm with
independent training and validation sets, rather than interchanging validation sets.
This latter feature is due to a suggestion by Heskes [10] that it is desirable that
the training set for fitting the squared errors is disjoint from either the training or
validation sets used for fitting the target variable. The reason is, when a network is
trained using early stopping, training is stopped when the sum of squared errors is
minimised not on the training set, but on a separate validation set. Thus, the model
obtained is a function of both data sets, and the validation set cannot be viewed as
independent for the purpose of fitting the squared errors. The theoretical basis of the
method follows.

1 Statistically Principled Computational Intelligence Techniques for Finance 15

1.4.1 Least Squares Derivation

The object in training (fitting) an MLP or other computational intelligence technique
is not to memorise features specific to the training set, but to model the underlying
data generating process, so that when presented with a new input vector x, the
trained network gives the best possible estimate of the target. The most compre-
hensive description of the DGP is a statistical one, in terms of the joint probability
density P(x,d) of the input vector x and the target vector d. This density can be
expressed as the product of the conditional distribution P(d|x) of the target vector
d conditioned on the input vector x and the unconditional distribution P(x) of the
input vector

P(x,d) = P(d|x)P(x), (1.39)

where

P(x) =
∫

P(x,d)dd. (1.40)

An MLP trained by minimising a sum of squares error defined over a training
set approximates the means of the elements of a target vector d conditioned on a
corresponding input vector x. The optimisation results in estimation of a vector Ω̂ΩΩ
of weights and biases that minimise the cost function. The function to be minimised
takes the form

1
2

n

∑
i=1

m

∑
j=1

[f j(xi;Ω̂ΩΩ)− di j]
2. (1.41)

In (1.41) di j is the jth element of the ith target vector. f j(xi;Ω̂ΩΩ) is the corre-
sponding network estimate. Asymptotically as n, the size of the data set, tends to
infinity and assuming the function f j(xi;Ω̂ΩΩ) has sufficient flexibility (i.e. degrees of
freedom), bias and variance tend to zero yielding the optimum least squares solution.

In the limit, the summation over n in (1.41) becomes an integral over the joint
probability density [3]:

CLS = lim
n→∞

1
2n

n

∑
i=1

m

∑
j=1

[f j(xi,Ω̂ΩΩ)− di j]
2 (1.42)

=
1
2

m

∑
j=1

∫∫
[f j(x,Ω̂ΩΩ − d j]

2 p(d j|x)P(x)dd j dx, (1.43)

where 1/n in (1.43) is a convergence factor. The cost function can be minimised
(using functional differentiation) with respect to f (x,Ω̂ΩΩ) and setting the derivative
to zero

δCLS

δ f j(x,Ω̂ΩΩ)
= 0. (1.44)

16 J.V. Healy

Substituting (1.43) into (1.44) and using (1.39) yields the following solution for
the minimising function:

f j(x,Ω̂ΩΩ) = E(d j|x) = d j(x). (1.45)

Thus, the output of the network function corresponds to the conditional means
of the elements of the target vector d, conditioned on the input vector x. The result
(1.45) depends only on the generality of the non-linear mapping represented by the
network function. It does not specifically require use of an MLP and thus extends to
any comparable non-linear mapping of sufficient flexibility.

The (global) conditional variance corresponding to the conditional mean (1.45)
is given by

Var(d j|X) =

n

∑
i=1

e2
i j

(n− k− 1)
, (1.46)

where X is the matrix of input data, e2
i j is the squared residuals for d j(xi) at the

minimum of the cost function, n is the number of observations in the data set, and k
is the applicable degrees of freedom. Given (1.46) the conditional distribution of the
target P(d j|xi) is characterised by a two parameter distribution with a mean given
by f j(x,Ω̂ΩΩ) and a (global) variance given by Var(d j|X) . However, the use of a
least squares cost function does not require the assumption that this distribution is
Gaussian.

Suppose that the target vector d as well as d j have an additional element σ2
j (x)

where σ2
j (x) = {d j −E(d j|x)}2, the squared residuals from the network estimate of

d j(x). Then it follows from (1.45) that:

σ2
j (x) = E[{d j −E(d j|x)}2|x] = Var(d j|x). (1.47)

The function σ̂2
j (x) is modelled by adding an additional output node to the MLP

trained to fit the squared residuals of d̂ j(x). Using (1.47) in place of (1.46) allows
estimation of a separate variance parameter for each target d j conditioned on the
corresponding input vector x, and is equivalent to using White’s heteroskedasticity
consistent estimator [23].

1.4.2 Maximum Likelihood Derivation

If the conditional distribution of the target data is assumed to be Gaussian, the
result (1.45) can be derived using maximum likelihood [2]. Under the Gaussian
assumption P(d j|x) can be written as

P(d j|x) = 1√
2πσ2

exp

(
− [f j(x;Ω̂ΩΩ)− d j]

2

2σ2

)
, (1.48)

1 Statistically Principled Computational Intelligence Techniques for Finance 17

where σ2 is a global variance parameter that can be estimated by (1.46). Again, this
is easily extended to obtain a more general distributional assumption by substituting
(1.47) for (1.46) in (1.48) giving

P(d j|x) = 1

(2π)1/2σ j(x)
exp

(
− [f j(x;Ω̂ΩΩ)− d j]

2

2σ2
j (x)

)
. (1.49)

Maximising the likelihood is equivalent to minimising the negative log likeli-
hood. Forming the negative log likelihood of (1.49) and omitting constants give

C−LL =
n

∑
i=1

m

∑
j=1

(
lnσ j(xi)+

[f j(xi,Ω̂ΩΩ)− di j]
2

2σ2
j (xi)

)
. (1.50)

Taking the limit as before gives the integral form

C−LL =
m

∑
j=1

∫∫ (
lnσ j(x)+

[f j(x,Ω̂ΩΩ)− d j]
2

2σ2
j (x)

)
P(d j|X)P(x)dd j dx. (1.51)

Functional differentiation is again used to minimise the errors for the network
outputs for the mean and variance functions. For the mean:

δC−LL

δ f j(x,Ω̂ΩΩ)
= 0 = P(x)

∫
[f j(x,Ω̂ΩΩ)− d j]

σ2
j (x)

P(d j|x)dd j. (1.52)

Rearranging and simplifying (1.52) give the standard result of (1.45). For the
variance, (1.51) is minimised with respect to the function σ j(x) giving

δC−LL

δσ j(x)
= 0 = P(x)

∫ (
1

σ j(x)
− [f j(x,Ω̂ΩΩ)− d j]

2

σ2
j (x)

3

)
P(d j|x)dd j. (1.53)

Using (1.45) again and solving for σ2
j (x) give (1.47). This approach is based on

maximum likelihood and gives a biased estimate of the variance, because it makes
use of an estimated mean, rather than the (unknown) true mean. The relationship
between the true variance and its estimate obtained under maximum likelihood is
given by

σ̂2 =
n− k− 1

n
σ2, hence σ2 =

n
n− k− 1

σ̂2, (1.54)

where k is the appropriate degrees of freedom [3].1

1Equation (1.54) also applies to least squares estimators. The value of k depends on the particular
regression technique used.

18 J.V. Healy

Table 1.1 Training algorithm

Phase Description

I (a) Randomly split the training data into two data sets, set A and set B
(b) Using set A, train a Phase I NN to fit the target variable d(x)
(c) Run the trained NN model on set B, create a set of squared residuals

II (a) Using set B, train a Phase II NN with two output nodes Use the variable
d(x) as the target for the first output node Use the squared residuals
created in Phase I using set B as the target for the second output node

III (optional) (a) Run the Phase II model on set A, create a set of squared residuals for the
target d(x)

(b) Using set A, train a Phase III NN with two output nodes Use the variable
d(x) as the target for the first output node Use the squared residuals
created in step III (a) using set A as the target for the second output node

Notes (1) By using squared residuals on a test set (set B) as the second target for
Phase II, over-fitting and consequent underestimation of the standard
error is avoided

(2) Phase III may give improved results on certain data, but generally
produces inferior results to Phase II, and may thus be omitted. For
training, set A is itself randomly split into a training and a validation
portion; as is set B. Testing of each phase is performed on an
independent test set, set C

Thus, it is shown here that an MLP with two output nodes, the first trained to fit
a target value, and the second trained to fit the squared residuals of the first fit, can
produce an estimate of the mean and variance of the conditional distribution of the
target in both the least squares and maximum likelihood frameworks. The maximum
likelihood derivation requires the assumption that the conditional distribution
of the target data is Gaussian. This assumption is not made for the proposed
method. However, maximum likelihood and least squares estimators are otherwise
equivalent. Moreover, the result (1.45) which is central to the proposed method
requires only the use of a least squares cost function, and a sufficiently flexible
form of non-linear regression, thus encompassing a wide variety of computational
intelligence techniques used for regression.

1.4.3 Practical Implementation and Performance

Practical application of the proposed method requires the use of a special training
algorithm. The theory presented in Sects. 1.4.1 and 1.4.2 is implemented using the
algorithm given in Table 1.1.

1 Statistically Principled Computational Intelligence Techniques for Finance 19

1.4.3.1 Empirical Tests and Performance

The method has been extensively tested in [9] using the following sequence. First the
method was tested as Example #1, using the same synthetic data and single input
variable used by Nix and Weigend [19]. This allowed a performance comparison
with their method. Next the method was tested as Example #2, using option market
data. Synthetic option prices and noise generated by known underlying functions
were used. Example #2 is deliberately restricted to two input variables, moneyness
and maturity [m, t], following [14]. This allowed the use of a known smooth noise
variance function. The purpose of Example #2 was to test the method in a more
realistic multi-dimensional, option pricing context, while retaining comparability
with Example #1. The method was next tested using actual option prices, as
Example #3. The same option market data as used for Example #2 were again
used. For comparability with Example #2 the model was again restricted to the two
inputs [m,t]. The underlying true regression function and noise variance function
were unknown for Example #3, however, in contrast to Examples #1 and #2 where
synthetic prices and noise were used, generated by known functions. Finally, the
method was tested as Example #4 using actual prices and all five standard inputs to
the Black–Scholes formula. The same data sets were again used.

The sequence of examples features increasing dimensionality from the one-
dimensional Example #1, through the two-dimensional Examples #2 and #3, to the
five-dimensional Example #4. The sequence also relaxes the condition of synthetic
inputs, target data, and noise, used for Example #1. It moves through the synthetic
target and noise to the actual prices, market inputs, and residuals of Examples #3
and #4. At the beginning of the sequence, a direct comparison was possible with
the method of Nix and Weigend [19], and at the end, a direct comparison with the
benchmark BS formula was possible.

1.4.3.2 Example #1: Tests Using Standard Synthetic Data

Nix and Weigend [19] defined a univariate synthetic example to demonstrate the ef-
fectiveness of their model. For comparison purposes the proposed training algorithm
and network were applied to the same univariate synthetic data and called Example
#1 in their paper and here. This test example used a one-dimensional data set
where y(x), the true regression, and σ2(x), the variance of the noise, were known.
The true regression y(x) is given by the equation y(x) = sin(3x)sin(5x), where
x is a uniformly distributed random number from the interval [0,π/2]. The noise
n(x) consists of numbers from the normal distribution N[0,σ2(x)], where σ2(x) =
0.02+ 0.25[1−Sin(5x)]2.2 The target value for training is d(x) = y(x)+ n(x).

2Heskes [10] used similar trigonometric functions for the true regression and the noise variance.

20 J.V. Healy

Fig. 1.1 Prediction bands for Example #1. Here, y(x) is the true regression. d(x) are the target data
points. y∗(x) is the estimate of the true regression. L and U are the true lower and upper prediction
intervals and L∗ and U∗ are the estimated prediction intervals obtained using σ ∗2(x), the network
estimate of the noise variance function

The following procedure was adopted. For Phase I, a network with a single input
node, 10 hidden layer nodes and a single output node to fit d(x), was used. Phases
II and III used a network with a single input node, 20 hidden layer nodes and 2
output nodes, one to fit d(x) and one to fit σ2(x). The numbers of hidden nodes
used were the same as in [19], except that here they were fully connected in a
single layer. Figure 1.1 shows a plot of the data points, the true regression y(x),
and the approximate prediction band, for the Phase III model, obtained on a test set.
The effect of Phase III was to improve the Adj. R2 figure and the F-statistic, for the
estimated noise variance function. Table 1.2 shows the results of statistical tests for
Example #1 in predicting the true regression, the true noise variance function, the
target data points d(x), and the actual squared residuals.

In Table 1.2 μ∗
y (x) is the estimate produced by the node having d(x) as target,

and σ∗2(x) is the estimate produced by the node having squared residuals as target.
In the comparison of the network estimates with the true regression function and
noise variance function, unbiased estimates of the mean of the true regression y(x)
and the true noise variance function σ2(x) were obtained for both Phases II and
III. For Phase III, the F-statistics suggest the distributions of values for the true
regression and true noise variance functions were also well recovered. Approximate
upper and lower prediction intervals based on the estimated noise variance function
were also unbiased estimates of the true upper and lower prediction intervals. The
fit to the true regression function is very good in Phases II and III with R2 and Adj.
R2 figures > 0.99. The fit to the noise variance function was also excellent with
Phases II and III R2 and Adj. R2 figures > 0.94 in all cases. In the comparisons of

1 Statistically Principled Computational Intelligence Techniques for Finance 21

T
ab

le
1.

2
E

st
im

at
es

by
pr

op
os

ed
ne

tw
or

k
(E

xa
m

pl
e

#1
)

L
ay

er
s

In
pu

ts
F

-s
ta

t
t-

st
at

is
ti

c
t-

te
st

Ph
as

e
[N

od
es

]
x

O
ut

pu
ts

R
2

A
dj

.R
2

F c
ri

t(
1

ta
il

)
F c

al
c(

0.
05

)
t c

ri
t(

2
ta

il
)

t c
al

c(
0.

05
)

[B
ia

s]

C
om

pa
ri

so
n

w
it

h
tr

ue
re

gr
es

si
on

fu
nc

ti
on

I
1-

10
-1

x
μ
∗ y
(x
)

0.
56

1
0.

56
1

1.
03

1.
75

1.
96

0.
28

U
nb

ia
se

d

C
om

pa
ri

so
n

w
it

h
tr

ue
re

gr
es

si
on

fu
nc

ti
on

an
d

no
is

e
va

ri
an

ce
fu

nc
ti

on

II
1-

20
-2

x
μ
∗ y
(x
)

0.
99

4
0.

99
4

1.
03

1.
01

1.
96

0.
95

U
nb

ia
se

d
II

1-
20

-2
x

σ
∗2
(x
)

0.
96

5
0.

94
4

1.
03

1.
74

1.
96

1.
64

U
nb

ia
se

d

II
I

1-
20

-2
x

μ
∗ y
(x
)

0.
99

2
0.

99
1

1.
03

1.
01

1.
96

−1
.1

2
U

nb
ia

se
d

II
I

1-
20

-2
x

σ
∗2
(x
)

0.
98

7
0.

98
9

0.
97

0.
86

1.
96

−1
.9

6
U

nb
ia

se
d

C
om

pa
ri

so
n

w
it

h
ac

tu
al

ta
rg

et
(d

)

I
1-

10
-1

x
μ
∗ y
(x
)

0.
23

4
0.

23
4

1.
03

4.
18

1.
96

0.
15

U
nb

ia
se

d

C
om

pa
ri

so
n

w
it

h
ac

tu
al

ta
rg

et
(d

)
an

d
sq

ua
re

d
re

si
du

al
s

II
1-

20
-2

x
μ
∗ y
(x
)

0.
42

3
0.

42
3

1.
03

2.
41

1.
96

0.
68

U
nb

ia
se

d
II

1-
20

-2
x

σ
∗2
(x
)

0.
21

1
0.

96
7

1.
03

4.
41

1.
96

−8
.5

5
B

ia
se

d

II
I

1-
20

-2
x

μ
∗ y
(x
)

0.
42

2
0.

42
2

1.
03

2.
4

1.
96

−0
.9

1
U

nb
ia

se
d

II
I

1-
20

-2
x

σ
∗2
(x
)

0.
33

8
0.

33
7

1.
03

4.
38

1.
96

0.
32

U
nb

ia
se

d

T
he

pr
op

os
ed

ne
tw

or
k

pr
od

uc
es

un
bi

as
ed

es
ti

m
at

es
μ
∗ y
(x
)

of
th

e
un

de
rl

yi
ng

tr
ue

re
gr

es
si

on
fu

nc
ti

on
,a

nd
σ
∗2
(x
)

of
th

e
no

is
e

va
ri

an
ce

fu
nc

ti
on

.
Ph

as
e

II
I

es
ti

m
at

es
of

th
e

ac
tu

al
ta

rg
et

d
an

d
ac

tu
al

sq
ua

re
d

re
si

du
al

s
ar

e
al

so
un

bi
as

ed
.

T
he

t-
te

st
fo

r
th

e
m

ea
ns

sh
ow

s
no

di
ff

er
en

ce
at

th
e

95
%

le
ve

l

22 J.V. Healy

Table 1.3 Results for Example #1: methods compared

This work Nix–Weigend

Test set (n = 104) Test set (n = 105)

Row Target d ENMS Our mean cost ENMS NW mean cost

1 Phase I 0.764 0.454 0.593 0.882
2 Phase II 0.577 0.344 0.593 0.566
3 Phase III 0.578 0.344 0.57 0.462
4 n(x) (exact additive noise) 0.575 0.343 0.563 0.441

Target e2 ρ (PIII) ρ (PII) ρ (PIII) ρ (PII)

5 ρ(σ ∗(x), residual errors) 0.571 0.569 0.548 N/a
6 ρ(σ (x), residual errors) 0.586 0.585 0.584 N/a

Distribution P(III) 1 std. 2 std. 1 std. 2 std.

7 % of errors < σ ∗(x); 2σ ∗(x) 67.4 93.1 67.0 94.6
8 % of errors < σ (x); 2σ (x) 66.9 95.0 68.4 95.4
9 (exact Gaussian) 68.3 95.4 68.3 95.4

ENMS is the mean squared error normalised by the (global) variance of the target d. The mean cost
is the mean of the cost function (d − d∗)2. Row 4 gives these figures for [(d − y(x))2 = n(x)2]
and represents the best performance attainable. Row 5 gives the correlations between the absolute
errors and the network estimate for the standard deviation of the errors. Row 6 gives the correlations
between the absolute errors and the true noise standard deviation. Row 7 gives the percentage of
absolute errors that are less than 1 and 2 times the corresponding network estimate for the standard
deviation of the error. Row 8 gives the percentage of absolute errors that are less than 1 and 2
times the corresponding true noise standard deviation. Row 9, which is included for comparison
purposes, gives the percentage of observations that are less than 1 and 2 standard deviations in a
Gaussian distribution

the network estimates with the actual target d(x) and the actual squared residuals,
the much poorer R2 , Adj. R2, and F-statistic figures are consistent with the noisy,
scattered, target data points. However, in both Phases II and III, the t-test results
indicate unbiased estimates of the mean of the target d. In Phase III, the estimate of
the mean of the squared residuals is also unbiased.

For comparison of the proposed network performance, the statistics used by
Nix and Weigend [19] were computed. These are shown in Table 1.3 for Example
#1 and Table 1.4 for Example #2. Table 1.4 results are discussed in Sect. 1.4.3.3.
Table 1.3 shows that compared to the network of Nix and Weigend [19] there was
little improvement in the fit to the target d(x) between Phases II and III. However,
the Phase III fit (row 3) for the proposed network was close to the best attainable,
deviating only by 0.6%. The method of Nix and Weigend [19] does not approach
the best attainable figure quite so closely, deviating by 1.4%. The proposed network
figures for correlation of the actual absolute errors with the network prediction and
the true values (rows 5 and 6) improved slightly on the corresponding figures for
the Nix–Weigend network, even in Phase II. The distributions of errors reported in
rows 7 and 8 differed only slightly from those of Nix and Weigend [19]. Overall, the
results in Table 1.3 show the proposed network performed comparably with a Nix–
Weigend network [19] and outperformed it slightly on the errors and correlations.
However, the results in Table 1.3 are not based on hypothesis tests or confidence

1 Statistically Principled Computational Intelligence Techniques for Finance 23

Table 1.4 Results for Example #2: synthetic option prices + noise

Test set

Row Target d =CNN +noise ENMS Our mean cost

1 Phase I 0.059 564.6
2 Phase II 0.062 599.4
3 Phase III 0.059 566.8
4 n(x) (exact additive noise) 0.058 556.9

Target e2 ρ (PIII) ρ (PII)

5 ρ(σ ∗(x), residual errors) 0.537 0.536
6 ρ(σ (x), residual errors) 0.562 0.591

Distribution (PII) 1 std. 2 std.

7 % of errors < σ ∗(x); 2σ ∗(x) 51.30 81.40
8 % of errors < σ (x); 2σ (x) 70.00 96.10

Distribution (PIII)

9 % of errors < σ ∗(x); 2σ ∗(x) 32.50 60.20
10 % of errors < σ (x); 2σ (x) 71.40 96.20
11 (exact Gaussian) (%) 68.30 95.40

Rows 1–8 are as Table 1.3. Rows 9 and 10 for Phase III correspond to
rows 7 and 8 for Phase II. Row 11 corresponds to row 9 in Table 1.3. Here
(x) represents the vector of input variables [t,m]

intervals; therefore the results presented in Table 1.2 are preferred. The results
presented in Table 1.2 showed that the proposed network was able to provide
unbiased estimates of an underlying true regression function, an associated noise
variance function, and the actual targets and squared errors in the univariate case.

1.4.3.3 Example #2: Tests Using Synthetic Option Prices

This section reports results for Example #2 where the proposed network was applied
in the more realistic multivariate setting of option pricing. The method was tested
using synthetic option prices and synthetic noise. The option market data used were
from LIFFE. They consisted of daily closing prices for the FTSE-100 index call
option for all trading dates from 13 March 1992 to 1 April 1997. The raw data set
contained 119,413 records. The data were cleaned to remove illiquid contracts. The
cleaned data set comprised 14,254 records. This data set was randomly split into a
training set and a test set. The resulting training sets contained 7,083 records with
3,629 in Set A and 3,454 in Set B. Fifty percent of these were randomly sampled
and used for validation. The test set contained 7,171 records.

The synthetic option prices were created using a trained neural net option
pricing model as the underlying known true regression function. For this purpose,
the approach of Hutchinson et al. [14] was followed, and the volatility and risk-
free interest rate were omitted as inputs. The network was trained using observed
market prices as the target and the variables moneyness, (m = S/X), and time to

24 J.V. Healy

maturity, t, as inputs; S represents the price of the asset in index points and X is
the strike price for the option. Analysis of squared residual errors for neural net
option pricing models indicated that σ2(t,m) = 510t4 + 361m17 was an acceptable
parameterisation for the known true noise variance function for approximating
the underlying residuals; it is important to emphasise that this function has no
significance other than providing a noise variance model for this example. Using
σ2(t,m), a synthetic noise distribution very similar to that for real residual errors for
neural net option pricing models was obtained, as indicated by variance, standard
deviation, skewness, and kurtosis. Synthetic noise from the normal distribution
N was drawn as N(0,σ2(t,m)) and added to the outputs of the trained NN to
generate a synthetic target option price d(t,m). The obtained target d(t,m) was
not significantly different from observed market prices in t-tests and F-tests. As
in Example #1, the aim was to determine whether the method could successfully
recover an underlying known regression function and noise variance function. The
results for Example #2 are presented in Table 1.5.

In Table 1.5 μ∗
y (x) is the estimate produced by the node having d(x) as target, and

σ∗2(x) is the estimate produced by the node having the squared residuals as target.
In the comparison of the network estimates with the true regression function and
noise variance function, unbiased estimates of the mean of the true regression y(x)
and the true noise variance function σ2(x) were obtained for Phase II. The Phase
III estimate of the mean of the noise variance function σ2(x) was biased. For both
Phases II and III, the F-statistics suggest the distribution shapes for the true noise
variance function were again well recovered. The fits to both the true regression and
noise variance function for both Phases II and III are again very good, as measured
by R2 and Adj. R2. In the comparisons of Example #2 estimates with the actual
target d(x) and the actual squared residuals, the R2, and Adj. R2 figures for μ∗

y (x)
are much better than the corresponding results for Example #1. This is because the
synthetic option price data are far less noisy than the corresponding data used for
Example #1. Again, in both Phases II and III, the t-test results indicate unbiased
estimates of the mean of the target d(t,m). In Phase II, the estimate of the mean of
the squared residuals is also unbiased.

For comparison of the proposed network performance with that of Nix and
Weigend [19], the statistics used by Nix and Weigend [19] were again computed.
These are shown in Table 1.4 in Sect. 1.4.3.2. In Table 1.4 the Phase III fit for
the target d(t,m) (Row 3) is only 0.001, (1.7%) more than the lowest attainable
value (Row 4). The Phase II fit (Row 2) was not quite as good but still only 0.004
(7%) greater than the lowest attainable value. Although there was no statistically
significant difference at the 95% level in the t-tests, the Phase II fit to ENMS was
slightly poorer than the Phase I fit (Row 1). This may be because, in contrast to
[19], the Phase II used here involved training a new model constrained to fit both
the target d(t,m) and the squared residuals from Phase I. As with [19] 10 hidden
layer nodes per output node were used, but these were arranged in a single hidden
layer of 20 nodes with full connectivity to all input and output nodes. Pruning
runs, not reported here, indicated fewer nodes could achieve the relevant accuracy.

1 Statistically Principled Computational Intelligence Techniques for Finance 25

T
ab

le
1.

5
E

st
im

at
es

by
pr

op
os

ed
ne

tw
or

k
(E

xa
m

pl
e

#2
)

L
ay

er
s

In
pu

t
F

-s
ta

t
t-

st
at

is
ti

c
t-

te
st

Ph
as

e
[N

od
es

]
x
=
[t
,m

]
O

ut
pu

ts
R

2
A

dj
.R

2
F c

ri
t(

1
ta

il
)

F c
al

c(
0.

05
)

t c
ri

t(
2

ta
il

)
t c

al
c(

0.
05

)
[B

ia
s]

C
om

pa
ri

so
n

w
it

h
tr

ue
re

gr
es

si
on

fu
nc

ti
on

I
2-

10
-1

x
μ
∗ y
(x
)

1.
00

0
0.

99
8

1.
04

1.
08

1.
96

−0
.0

2
U

nb
ia

se
d

C
om

pa
ri

so
n

w
it

h
tr

ue
re

gr
es

si
on

fu
nc

ti
on

an
d

no
is

e
va

ri
an

ce
fu

nc
ti

on

II
2-

20
-2

x
μ
∗ y
(x
)

1.
00

0
0.

99
7

0.
96

0.
98

1.
96

−1
.6

2
U

nb
ia

se
d

II
2-

20
-2

x
σ
∗2
(x
)

0.
84

5
0.

56
1

0.
96

0.
45

1.
96

1.
52

U
nb

ia
se

d

II
I

2-
20

-2
x

μ
∗ y
(x
)

1.
00

0
0.

99
8

1.
04

1.
08

1.
96

−0
.6

1
U

nb
ia

se
d

II
I

2-
20

-2
x

σ
∗2
(x
)

0.
90

0
0.

85
6

0.
96

0.
75

1.
96

6.
20

B
ia

se
d

C
om

pa
ri

so
n

w
it

h
ac

tu
al

ta
rg

et
(d

)

I
2-

10
-1

x
μ
∗ y
(x
)

0.
94

2
0.

96
7

1.
04

1.
11

1.
96

0.
49

U
nb

ia
se

d

C
om

pa
ri

so
n

w
it

h
ac

tu
al

ta
rg

et
(d

)
an

d
sq

ua
re

d
re

si
du

al
s

II
2-

20
-2

x
μ
∗ y
(x
)

0.
93

9
0.

96
5

1.
04

1.
00

1.
96

−1
.1

1
U

nb
ia

se
d

II
2-

20
-2

x
σ
∗2
(x
)

0.
24

6
−0

.7
43

1.
04

1.
29

1.
96

1.
16

U
nb

ia
se

d

II
I

2-
20

-2
x

μ
∗ y
(x
)

0.
94

2
0.

96
7

1.
04

1.
11

1.
96

−0
.1

0
U

nb
ia

se
d

II
I

2-
20

-2
x

σ
∗2
(x
)

0.
21

9
−0

.6
27

1.
04

1.
51

1.
96

4.
39

B
ia

se
d

T
he

pr
op

os
ed

ne
tw

or
k

pr
od

uc
es

an
un

bi
as

ed
es

ti
m

at
e,
μ
∗ y
(x
),

of
bo

th
th

e
un

de
rl

yi
ng

tr
ue

re
gr

es
si

on
fu

nc
ti

on
an

d
th

e
ta

rg
et

d
in

al
lt

hr
ee

tr
ai

ni
ng

ph
as

es
.

T
he

es
ti

m
at

e
σ
∗2
(x
)

is
al

so
an

un
bi

as
ed

es
ti

m
at

e
of

bo
th

th
e

tr
ue

no
is

e
va

ri
an

ce
fu

nc
ti

on
an

d
ac

tu
al

sq
ua

re
d

er
ro

r
fo

r
Ph

as
e

II
;t

he
co

rr
es

po
nd

in
g

Ph
as

e
II

I
es

ti
m

at
es

ar
e

bi
as

ed

26 J.V. Healy

As in Example #1 the correlation of the absolute errors with the estimated absolute
errors and with the true noise standard deviation (Rows 5 and 6) improved slightly
from Phase II to Phase III. The correlation results in Table 1.4 are of a similar order
to those for Example #1 in Table 1.3. Rows 7 and 9 distribution results show the
dispersion of the actually occurring absolute errors was greater than indicated by
the estimated and true noise standard deviation results given in Rows 8 and 10. The
decreased correlation of absolute values of residual errors with the known noise
standard deviation (Row 6) suggested that Phase III training should be omitted in
the more realistic multivariate setting for these data. This conclusion was supported
by Table 1.5, where hypothesis tests for Example #2 showed that the Phase III
estimate σ∗2(x) was a biased estimate of both the true noise variance and the squared
residuals.

The results of Tables 1.4 and 1.5 for Phase II training in Example #2 showed
the proposed network produced an unbiased estimate σ∗2(x) of the input dependent
noise variance function σ2(t,m), which is a smooth function of time to maturity t
and moneyness m. Moreover, σ∗2(x) was also an unbiased estimate of the actually
occurring residual errors for μ∗

y (x). These results suggested that given a set of
unseen input variables for which there is no corresponding targets, the proposed
network was capable of producing an unbiased estimate of a target d(t,m), in this
case synthetic option prices. An unbiased estimate of the underlying regression
giving rise to the target data, and a corresponding (known) noise variance function,
was also obtained. The unbiased estimate of both the mean of the target and the true
noise variance function suggested that prediction intervals based upon the proposed
network provided a good estimate of the 95% prediction intervals.

1.4.3.4 Example #3: Tests Using Actual Option Prices

Example #3 used the same data set as Example #2. However, actual observed market
prices of options, corresponding to the input variables t, and m, were now used as
targets in place of the synthetic prices created as targets for Example #2.

Table 1.6 reports the results for Example #3. In this case, the comparisons
of the network estimates are with the actual target O and the actual squared
residuals for the estimate μ∗

y (x) only. There is no known underlying regression
and true noise variance function. The pattern for Example #2 was repeated. The
Example #3 estimate for the mean of the target O was unbiased for all three training
phases with high values for R2 and Adj. R2. The Phase II estimate σ∗2(x) was an
unbiased estimate of the actual squared residuals of μ∗

y (x), as indicated by the t-
test results. However, the Phase III estimate was biased, like the corresponding
Example #2 result. The R2 and Adj. R2 figures for the estimate σ∗2(x) were
better than the corresponding Example #2 results. These results suggested that the
proposed network could produce unbiased estimates of both the mean and squared
residuals of the target values, where those targets were actual observed option prices
corresponding to unseen input variables. The biased estimate σ∗2(x) obtained in
Phase III is a further evidence that Phase III training is superfluous in the more

1 Statistically Principled Computational Intelligence Techniques for Finance 27

T
ab

le
1.

6
E

st
im

at
es

by
pr

op
os

ed
ne

tw
or

k
(E

xa
m

pl
e

#3
)

L
ay

er
s

In
pu

t
F

-s
ta

t
t-

st
at

is
ti

c
t-

te
st

Ph
as

e
[N

od
es

]
x
=
[t
,m

]
O

ut
pu

ts
R

2
A

dj
.R

2
F c

ri
t(

1
ta

il
)

F c
al

c(
0.

05
)

t c
ri

t(
2

ta
il

)
t c

al
c(

0.
05

)
[B

ia
s]

C
om

pa
ri

so
n

w
it

h
ac

tu
al

ta
rg

et
(O

)

I
2-

10
-1

x
μ
∗ y
(x
)

0.
96

0
0.

99
9

1.
04

1.
09

1.
96

0.
47

U
nb

ia
se

d

C
om

pa
ri

so
n

w
it

h
ac

tu
al

ta
rg

et
(O

)
an

d
sq

ua
re

d
re

si
du

al
s

II
2-

20
-2

x
μ
∗ y
(x
)

0.
93

2
0.

97
2

1.
04

1.
13

1.
96

−0
.3

1
U

nb
ia

se
d

II
2-

20
-2

x
σ
∗2
(x
)

0.
38

5
0.

34
7

1.
04

6.
14

1.
96

0.
63

U
nb

ia
se

d

II
I

2-
20

-2
x

μ
∗ y
(x
)

0.
95

7
0.

97
4

1.
04

1.
10

1.
96

0.
70

U
nb

ia
se

d
II

I
2-

20
-2

x
σ
∗2
(x
)

0.
43

5
0.

36
5

1.
04

1.
14

1.
96

−6
.5

9
B

ia
se

d

T
he

pr
op

os
ed

ne
tw

or
k

pr
od

uc
es

an
un

bi
as

ed
es

ti
m

at
e,

μ
∗ y
(x
),

of
th

e
m

ea
n

of
th

e
ta

rg
et

O
in

al
l

th
re

e
tr

ai
ni

ng
ph

as
es

.
T

he
es

ti
m

at
e

σ
∗2
(x
)

is
al

so
an

un
bi

as
ed

es
ti

m
at

e
of

th
e

ac
tu

al
sq

ua
re

d
er

ro
r

fo
r

Ph
as

e
II

;t
he

co
rr

es
po

nd
in

g
Ph

as
e

II
I

es
ti

m
at

e
is

bi
as

ed

28 J.V. Healy

Estimated Call Prices & Prediction Intervals (Phase II)
[Trading 03/03/95 for 16/06/95 expiration]

0

100

200

300

400

500

600

1.110.8 0.9

Moneyness (S/X)

P
ri
ce

 (
In

de
x

po
in

ts
)

Observed Estimated U* L* L U BS

Fig. 1.2 Prediction intervals for Example #3. Prices of FT-SE100 call options trading on the 3rd
March 1995 for June 1995 expiration. The x’s are observed option prices. Estimated is the network
estimate of the prices. U∗ and L∗ are estimated upper and lower prediction intervals. U and L are
corresponding intervals calculated using the actually occurring residual errors. BS is the Black–
Scholes price prediction

realistic setting. Moreover, the estimate μ∗
y (x) is not improved in Phase III, as

indicated by the poorer t-statistic. The unbiased Phase II estimates of the target
mean, and the actually occurring squared residuals, suggested a good estimate of
the 95% prediction intervals was given in this case also.

This is confirmed by inspection of Fig. 1.2 where the estimated prediction
intervals (the blue dashed lines) correspond well with intervals calculated using the
actually occurring residual errors (the green dashed lines). The option price series
illustrated in Fig. 1.2 is new unseen data. The Example #3 model gives an unbiased
price prediction for the series, with a t-statistic of −0.27 in an independent t-test
assuming unequal variances. By comparison, the BS prediction of the option price
is also unbiased for this series with a t-statistic of −0.20. In a paired t-test of the
model predictions, the two models show no significant difference and the t-statistic
is −1.12. In a paired t-test of the model residuals, a statistic of 1.12 is obtained.
These results suggest that both the Example #3 model and the BS formula provide
good models of the DGP for this sample. The relatively good result for the BS
formula given the small sample of 21 observations is surprising, as the BS formula
usually gives biased results for large samples. The Example #3 NN model though
has only two inputs, moneyness and time to maturity, compared to the five inputs of
the BS formula.

1 Statistically Principled Computational Intelligence Techniques for Finance 29

1.4.3.5 Example #4: Tests Using Actual Option Prices and Optimised
Network

To facilitate equal comparison with the BS formula a further NN model, Example
#4, was trained. Example #4 used the same training and test data used for Example
#3. For Example #4, however, all five of the BS inputs were used. In addition,
the network architecture was optimised, using sensitivity based pruning, to give four
hidden layer nodes. Table 1.7 gives the results for Example #4.

In Table 1.7 the estimate μ∗
y (x) is again unbiased for all three phases. The fit to

the observed option prices O is very good with Phases II and III R2 and Adj. R2

figures > 0.99, which is higher than the corresponding figures for Example #3. In
addition, the F-test results for the estimate μ∗

y (x) indicate no significant difference
in the variance compared with the target O. However, the Phase II estimate σ∗2(x) is
now biased, as well as the Phase III estimate. Inspection of the means of the actual
squared residuals and their estimates given by σ∗2(x) indicate an underestimate.
This result suggests the proposed method underestimates the magnitude of squared
residuals when the fit to the target O (or d) is very good. However, it is unlikely
to be a problem in practice, as the underestimate only occurs when μ∗

y (x) is an
unbiased estimate of the target O, and the fit is better than R2 > 0.99, and calculated
F-statistics are less than their critical values.3

Figure 1.3 shows the results of applying Example #4 to the same option price
series illustrated in Fig. 1.2. In Fig. 1.3 the estimated prediction intervals (the blue
dashed lines) correspond well with intervals calculated using the actually occurring
residual errors (the green dashed lines), for the region of moneyness >1.05 where
the fit of μ∗

y (x) to O is in general poorer than the region where moneyness is
<1.05. However, the overall fit for Example #4 is much better than the fit for
Example #3, which is itself unbiased. It can be seen that the BS price predictions are
outside the prediction bands for the Example #4 predictions, for moneyness >1.0.
Figures 1.2 and 1.3 graphically illustrate the performance of the proposed method
for estimating prediction intervals and the utility of prediction intervals for assessing
the differences in performance over the input space of option pricing models.

1.5 Conclusions

This chapter provides an exposition of methods for estimating confidence and
prediction intervals on outputs, from computational intelligence tools used for
data modelling. The underlying theory and the performance of a variety of

3The method is based on the use of a least squares cost function. However, maximum likelihood
and least squares estimators are equivalent in terms of performance, and the tendency for maximum
likelihood estimators to underestimate the variance is known, and has been remarked in [3] Chap. 6,
Sect. 6.3.

30 J.V. Healy

T
ab

le
1.

7
E

st
im

at
es

by
pr

op
os

ed
ne

tw
or

k
(E

xa
m

pl
e

#4
)

L
ay

er
s

In
pu

t
F

-s
ta

t
t-

st
at

is
ti

c
t-

te
st

Ph
as

e
[N

od
es

]
x
=
[S
,X

,t
,r
,i

v]
O

ut
pu

ts
R

2
A

dj
.R

2
F c

ri
t(

1
ta

il
)

F c
al

c(
0.

05
)

t c
ri

t(
2

ta
il

)
t c

al
c(

0.
05

)
[B

ia
s]

C
om

pa
ri

so
n

w
it

h
ac

tu
al

ta
rg

et
(O

)

I
5-

4-
1

x
μ
∗ y
(x
)

0.
99

5
0.

99
7

1.
04

1.
02

1.
96

−0
.6

1
U

nb
ia

se
d

C
om

pa
ri

so
n

w
it

h
ac

tu
al

ta
rg

et
(O

)
an

d
sq

ua
re

d
re

si
du

al
s

II
5-

4-
2

x
μ
∗ y
(x
)

0.
99

2
0.

99
5

1.
04

1.
02

1.
96

−0
.4

4
U

nb
ia

se
d

II
5-

4-
2

x
σ
∗2
(x
)

0.
29

4
0.

07
1

1.
04

25
8.

32
1.

96
4.

81
B

ia
se

d

II
I

5-
4-

2
x

μ
∗ y
(x
)

0.
99

0
0.

99
4

1.
04

1.
04

1.
96

−0
.4

6
U

nb
ia

se
d

II
I

5-
4-

2
x

σ
∗2
(x
)

0.
33

5
0.

31
2

1.
04

7.
27

1.
96

2.
40

B
ia

se
d

T
he

pr
op

os
ed

ne
tw

or
k

pr
od

uc
es

an
un

bi
as

ed
es

ti
m

at
e,
μ
∗ y
(x
),

of
th

e
m

ea
n

of
th

e
ta

rg
et

O
in

al
lt

hr
ee

tr
ai

ni
ng

ph
as

es
.T

he
es

ti
m

at
e
σ
∗2
(x
)

is
bi

as
ed

fo
r

bo
th

Ph
as

es
II

an
d

II
I

1 Statistically Principled Computational Intelligence Techniques for Finance 31

Estimated Call Price & Prediction Intervals (Phase II)
[Trading 03/03/95 for 16/06/95 expiration]

0

100

200

300

400

500

600

1.110.90.8
Moneyness (S/X)

Pr
ic

e
(I

nd
ex

 p
oi

nt
s)

Observed Estimated U* L* BS L U

Fig. 1.3 Prediction intervals for Example #4. Prices of FT-SE100 call options trading on the 3rd
March 1995 for June 1995 expiration. The x’s are observed option prices. Estimated is the network
estimate of the prices. U∗ and L∗ are estimated upper and lower prediction intervals. U and L are
corresponding intervals calculated using the actually occurring residual errors. BS is the Black–
Scholes price prediction

different empirical applications of this theory are critically reviewed. Limitations
of the existing approaches are outlined. A method for computing standard errors,
confidence intervals, and prediction intervals which addresses these limitations is
presented. This method is applicable to any sufficiently flexible computational intel-
ligence technique used for non-linear regression. The method rests on the classical
framework for least squares regression and maximum likelihood estimation. The
implementation of this method was first described in [9], and it relies on a specific
training algorithm. The training algorithm is easily adaptable to standard neural net
software and a broad class of other computational intelligence techniques.

Test results for the method are presented here. It was applied successfully to a
standard synthetic data set and gave statistically acceptable results. It performed
comparably with the method of Nix and Weigend [19] in this test. A test using
synthetic option prices was also performed and the true noise variance function
successfully recovered. In a test with actual option prices, an unbiased estimate
of the true squared errors for the fitted option prices was obtained. Further tests
with actual option prices suggest the noise variance is underestimated when Adj.
R2 is greater than 0.99, but this is a feature of all methods based on least squares
or maximum likelihood. The theory presented and the test results confirm that the
method is suitable for use with the generality of financial market data.

32 J.V. Healy

References

1. E.O. Abensu, Genetic algorithms for development of new financial products. Braz. Rev.
Finance 5(1), 59–77 (2007)

2. C.M. Bishop, Mixture density networks. Technical report NCRG/4288, Neural Computing
Research Group, Aston University (1994)

3. C.M. Bishop, Neural Networks for Pattern Recognition (Clarendon Press, Oxford, 1995)
4. C.M. Bishop, C.S. Qazaz, Bayesian inference of noise levels in regression. Technical report,

Neural Computing Research Group, Aston University (1995)
5. C.M. Dahl, S. Hylleberg, Flexible regression models and relative forecast performance. Int. J.

Forecast. 20(2), 201–217 (2004)
6. B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap (Chapman and Hall, New York,

1993)
7. F. Girosi, T. Poggio, Networks and the best approximation property. Biol. Cybern. 20, 169–176

(1990)
8. J.M. Górriz, C.G. Puntonet, M. Salmern, J.J.G. de la Rosa, A new model for time-series

forecasting using radial basis functions and exogenous data. Neural Comput. Appl. 13(2),
101–111 (2004)

9. J.V. Healy, M. Dixon, B.J. Read, F.F. Cai, Confidence in data mining model predictions:
a financial engineering application, in Proceedings of the 29th Annual Conference IEEE
Industrial Electronics Society, vol. 2 (2003), pp. 1926–1931

10. T. Heskes, Practical confidence and prediction intervals, in Advances in Neural Information
Processing Systems, vol. 9, ed. by M. Mozer, M. Jordan, T. Petsche (MIT, Cambridge, 1997),
pp. 176–182

11. K. Hornik, Multilayer feedforward networks are universal approximators. Neural Network
2(5), 359–366 (1989)

12. K. Hornik, M. Stinchcombe, H. White, Universal approximation of an unknown mapping and
its derivatives using multilayer feedforward networks. Neural Network 3, 551–560 (1990)

13. P.J. Huber, The behavior of maximum likelihood estimation under nonstandard conditions, in
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1,
ed. by L.M. LeCam, J. Neyman (University of California Press, CA, 1967), pp. 221–233

14. J. Hutchinson, A.W. Lo, T. Poggio, A non-parametric approach to pricing and hedging
derivative securities via learning networks. J. Finance 49(3), 851–889 (1994)

15. J.T.G. Hwang, A.A. Ding, Prediction intervals for artificial neural networks. J. Am. Stat. Assoc.
92(438), 748–757 (1997)

16. A. LeBaron, A. Weigend, Evaluating neural network predictors by bootstrapping, in Proceed-
ings of the International Conference on Neural Information Processing (ICONIP’94), Seoul,
Korea, 1994, pp. 1207–1212

17. D.J.C. MacKay, Bayesian Methods for Adaptive Models. PhD thesis, California Institute of
Technology (1991)

18. M. Maruyama, F. Girosi, T. Poggio, A connection between GRBF and MLP. Artificial
Intelligence Memo 1291, Massachusetts Institute of Technology (1991)

19. D.A. Nix, A.S. Weigend, Learning local error bars for non-linear regression, in Proceedings of
NIPS 7, 1995, pp. 489–496

20. C. Satchwell, Neural networks for stochastic problems: More than one outcome for the input
space, in NCAF Conference, Aston University, 1994

21. G.A.F. Seber, C.J. Wild, Nonlinear Regression (Wiley, New York, 1989)
22. A. Skabar, Direction-of-change financial time series forecasting using neural networks: a

Bayesian approach, in Advances in Electrical Engineering and Computational Science, ed. by
S-I. Ao, L. Gelman. Lecture Notes in Electrical Engineering, vol. 39 (Springer, Berlin, 2009),
pp. 515–524

23. R.L. Thomas, Modern Econometrics (Addison Wesley, MA, 1997)

1 Statistically Principled Computational Intelligence Techniques for Finance 33

24. R. Tibshirani, A comparison of some error estimates for neural network models. Neural
Comput. 8, 152–163 (1996)

25. L.H. Ungar, R.D. De Veaux, E. Rosengarten, Estimating Prediction Intervals for Artificial
Neural Networks (University of Pennsylvania, Philadelphia, 1995)

26. C.J.F. Wu, Jacknife, bootstrap and other resampling methods in regression analysis. Ann. Stat.
14, 1261–1295 (1986)

27. M. Zhu, L. Wang, Intelligent trading using support vector regression and multilayer perceptrons
optimized with genetic algorithms, in Proceedings of the International Joint Conference on
Neural Networks (IJCNN), 2010, pp. 1–5

Chapter 2
Can Artificial Traders Learn and Err Like
Human Traders? A New Direction
for Computational Intelligence in Behavioral
Finance

Shu-Heng Chen, Kuo-Chuan Shih, and Chung-Ching Tai

Abstract The microstructure of markets involves not only human traders’ learning
and erring processes but also their heterogeneity. Much of this part has not been
taken into account in the agent-based artificial markets, despite the fact that various
computational intelligence tools have been applied to artificial-agent modeling. One
possible reason for this little progress is due to the lack of good-quality data by
which the learning and erring patterns of human traders can be easily archived
and analyzed. In this chapter, we take a pioneering step in this direction by, first,
conducting double auction market experiments and obtaining a dataset involving
about 165 human traders. The controlled laboratory setting then enables us to
anchor the observing trading behavior of human traders to a benchmark (a global
optimum) and to develop a learning index by which the learning and erring patterns
can be better studied, in particular, in light of traders’ personal attributes, such as
their cognitive capacity and personality. The behavior of artificial traders driven by
genetic programming (GP) is also studied in parallel to human traders; however,
how to represent the observed heterogeneity using GP remains a challenging issue.

S.-H. Chen (�) • K.-C. Shih
AIECON Research Center, Department of Economics, National Chengchi University, Taiwan
e-mail: chen.shuheng@gmail.com; melvinshih@gmail.com

C.-C. Tai
Department of Economics, Tunghai University, Taiwan
e-mail: chungching.tai@gmail.com

M. Doumpos et al. (eds.), Financial Decision Making Using Computational Intelligence,
Springer Optimization and Its Applications 70, DOI 10.1007/978-1-4614-3773-4 2,
© Springer Science+Business Media New York 2012

35

36 S.-H. Chen et al.

2.1 Introduction and Motivation

2.1.1 Learning About Human Traders’ Learning

When human subjects are placed in the market for trading competition [50, 51, 55],
we have to admit that, up to the present, we do not have a good theory or even
well-archived empirical evidence which can help answer the very general question
regarding who learns what and when? The traditional approach to handling this
issue is very much in the line initiated by Arthur [4], which is to compare the patterns
observed from human traders with those observed from artificial (machine-learning)
agents and, based on the similarity of the pattern, to decide whether human-subject
learning has been well captured by the proposed computational intelligence models,
such as genetic algorithms [2,3], reinforcement learning [20], and so on and so forth.

One, of course, can gain some insights from this mirroring approach [16] that is
conditional on a carefully chosen similarity metric. However, saying that human
traders behave like the artificial agents, driven by evolutionary computation or
reinforcement learning, seems at best to be only a first-order approximation of many
complex or complicated details that human traders may face in the real markets,
but are nonetheless difficult model at this stage. Humans are emotional beings and
have different personal traits, which can easily result in great deviations from the
behavioral dynamics as predicted by computational intelligence, be they genetic
algorithms or reinforcement learning.

We try to use Fig. 2.1 to elaborate on this point. As typically assumed in most
textbooks on financial mathematics, a global optimum exists for a well-defined
trading problem. For example, it can be an optimum trading strategy which advises
traders with respect to both the market timing and pricing (bids or asks) decisions.
Given the existence of the global optimum, presumably one can then define and
measure errors that a trader made based on the observed deviations. Both artificial
traders and human traders can make mistakes and mistakes may have their patterns.1

These patterns can be further analyzed to understand the underlying mechanisms
which cause these patterns. In addition, in response to the errors, both artificial
traders and human traders are supposed to learn, and their learning may also have
patterns.2 The question is then whether one can use computational intelligence to
construct artificial agents in a way that both patterns of errors and learning observed
from human subjects can be well understood.

What will be claimed in this chapter is that studies devoted to these issues are
still in their infancy stage. While studies devoted to the financial application of

1Various patterns of mistakes, also known as behavioral biases, have been long studied by
psychologists and social scientists. See [5], Part II, for a review of various biases. Also see [34].
2Learning does not necessarily mean correction in a right direction; the well-known over-reaction
or over-adjustment are typical examples of this pattern of learning [48]. Furthermore, learning may
take a while to see its effect; this is known as slower learning or the inertial effect [12].

2 Can Artificial Traders Learn and Err Like Human Traders? 37

Global Optimum

Genetic
Programming

Gut Feeling
Emotion

Computational
Intelligence

Intelligence of
Unconsciousness

Artificial Trader Human Trader

Patterns of Learning and Errors

Fig. 2.1 Artificial traders
and human traders

computational intelligence are piling-up research, most of them only have artificial
traders or programmed traders as their main concern (the left part of Fig. 2.1). Few
ever go further to see the possible connections to real human traders. Although the
term “heuristics” is a psychology-oriented term and has lately also been widely
used in computational intelligence,3 the heuristics developed in the latter tend to be
very much disentangled from the former.4 It seems to us that the former belongs
to a separate literature (the right part of Fig. 2.1) known as behavioral finance,
psychological finance or, recently, neurofinance [5].

The tools and the languages used by intelligent finance and psychological finance
are very different. For the former, the decision is made based on intensive search
and data mining, such as genetic programming, whereas for the latter the decision is
often made by very limited search in a very spontaneous and reflexive manner, such
as gut feelings [32]. Needless to say, to build human-like artificial traders, it would
be necessary to narrow the gap.5 Hence, the first step is to have a thorough under-
standing of what kinds of patterns, both in learning and error-making, are neglected
by the conventional financial applications of computational intelligence [18].

2.1.2 Research Framework

In this study, we bring a new direction by taking a first step in narrowing the gap.
Instead of fitting a specific CI model to the observations of human traders, we
propose a sensible measure, called the learning index, which takes into account
some important details and hence sheds light on the exact cognitive orientation of
human traders in the bazaar.

3See [33] for a simple historical review of the use of this term.
4For example, the recently published handbook on metaheuristics [31] has no single mention of
psychology.
5Probably partially because of this gap, artificial traders cannot replace human traders [15].

38 S.-H. Chen et al.

Learning

Index

Behavioral

Classifications

Earnings

Preciseness

Efforts

A

B C D

E F

A+

Personal

Traits

Working

Memory

Capacity

Big-7

Personality

Fig. 2.2 Research
framework

Our proposed learning index is based on three major elements related to the
behavior of human traders. These three elements are earning capacity, trading
preciseness, and trading efforts, as shown in the left block of Fig. 2.2. Each of the
three will be motivated and detailed later; they together show the distinguishing
feature of this learning index: not only can each element tell us whether the human
agents have learned, but more importantly can inform us of the quality of their
learning, which includes the degree, speed, and stability (fragility) of their learning.
Hence, it gives us not just a one-shot end-result but more on the process, and, as
we mention above, it is the process that matters in the applications of computational
intelligence to modeling the human-trader behavior.

We then use the learning index to classify the performance of human subjects into
distinctive groups, which basically range from inferior learning to superior learning.
Hence, at the low end, such as Class “F” (middle block, Fig. 2.2), we have human
subjects who have learned little or not at all, whereas, at the very top end such as
“A+” or “A” (middle block, Fig. 2.2), we have subjects who have learned by heart.
In the middle, we have subjects whose learning is not complete and their confidence
about what they have learned has not been established either. For them, while the
sky is not entirely clouded, shadows appear here and there.6

We then can proceed further to understand the causes of the observed heterogene-
ity among different subjects. The observed heterogeneities of human agents have not
been represented by the standard applications of computational intelligence, and
hence the causes of the observed heterogeneity have generally been neglected in
the literature on artificial agents [18]. The study has not been picked up until very
recently [19]. While human subjects can be heterogeneous in many dimensions, this
chapter is limited to only two important ones: cognitive capacity and personality.
These two dimensions are included because the literature indicates that they, by and
large, can have an impact upon the decision-making quality [14, 46]. Hence, as a
first step, we would like to examine their contribution to account for the observed
heterogeneity in learning.

6Recently, there have been a number of studies focusing on the neurocognitive study of decision
making under uncertainty or ambiguity, which may well serve as a neural foundation for the
observed behavioral phenomena here [36, 54].

2 Can Artificial Traders Learn and Err Like Human Traders? 39

The proposed research framework with the three major components is
summarized in Fig. 2.2. To illustrate the implementation of this framework, below
we shall provide a concrete example based on the double auction markets. However,
before we proceed further, let us wrap up this section by pointing out that each
component of the proposed framework is flexible enough to make it adaptable to
different applications. The essence is to meaningfully understand the learning and
erring processes of human traders in a controlled (experimental) environment and
hence to bridge the gap in learning and erring behavior between artificial traders
and human traders, if the latter, to a quite large extent, cannot be replaced by the
former [15].

The rest of this chapter is organized as follows. Section 2.2 describes the trading
environment, a double auction market, based on which the laboratory experiments
were designed. The global optimal trading strategy in this trading environment
can be derived as a solution from a combinatorial optimization problem (integer
programming). The solution can be read as an application of the economic theory of
optimal procrastination. With this global optimum, Sect. 2.3 proposes the learning
index which can help us observe the learning and erring patterns of both artificial
traders and human traders. It can further help cluster different behavioral patterns,
upon which the optimum-discovery capability of human traders can be observed.
Section 2.4 applies the established learning index to sets of 165 and 168 human
traders, respectively, and then associates the observed heterogeneities among these
traders with their personal attributes, including cognitive capacity and personality.
Section 2.5 presents the concluding remarks.

2.2 Trading Environment: The Double Auction Markets

In this study, both artificial traders and human traders are placed in a typical double
auction market experiment [53]. In a double auction market, both buyers and sellers
can submit bids and asks. This contrasts with only buyers shouting bids (as in an
English Auction) or only sellers shouting asks (as in a Dutch Auction). There are
several variations of DA markets. One example is the clearinghouse DA of the Santa
Fe Token Exchange (SFTE) [50] on which this work is based.

On the SFTE platform, time is discretized into alternating bid/ask (BA) and
buy/sell (BS) steps. Initially, the DA market opens with a BA step in which all
traders are allowed to simultaneously post bids and asks for one token only. After
the clearinghouse informs the traders of each others’ bids and asks, the holders of
the highest bid and lowest ask are matched and enter a BS step. During the BS
step, the two matched traders carry out the transaction using the mid-point between
the highest bid and the lowest ask as the transaction price. Once the transaction is
cleared, the market enters a BA stage for the next auction round. The DA market
operations are a series of alternating BA and BS steps.

The specific market architecture employed in this study has four buyers and
four sellers. They are numbered from Buyer 1 to Buyer 4 and Seller 1 to Seller 4,

40 S.-H. Chen et al.

Buyer 1

Buyer 2

Buyer 3

Buyer 4

Seller 1

Seller 2

Seller 3

Seller 4

Double

Auction

[GP]

[H]

[TT]

[TT]

[TT]

[TT]

[TT]

[TT]

[TT]

Fig. 2.3 Composition of
market participants

Table 2.1 The token value
table Token 1 Token 2 Token 3 Token 4

Buyer 1 10,518 10,073 6,984 6,593
Buyer 2 10,519 10,072 6,981 6,593
Buyer 3 10,516 10,071 6,985 6,589
Buyer 4 10,521 10,071 6,987 6,590
Seller 1 622 1,013 4,102 4,547
Seller 2 622 1,010 4,101 4,548
Seller 3 618 1,014 4,100 4,545
Seller 4 619 1,016 4,100 4,550

accordingly, as shown in Fig. 2.3. The commodity traded in this market is called
the token. Buyers value these tokens and their maximum willingness to pay (the
reservation price of buyers) for each token is specified in the token-value table.
The willingness to pay is nonincreasing with the number of tokens already owned.
For example, in Table 2.1, for Buyer 1, the maximum willingness to pay for the
first token is 10,518, followed by 10,073 for the second, 6,984 for the third, and
6,593 for the fourth. On the other hand, sellers would like to provide these tokens
and the minimum acceptable price (the reservation price of the seller) for each
token is also specified in the token-value table. As the opposite of the maximum
willingness to pay, the minimum acceptable price is nondecreasing with the number
of tokens already sold. Let us use Seller 1 in Table 2.1 as an example. The minimum
acceptable price starts with 622 for the first token, then 1,013 for the second, 4,102
for the third, and 4,547 for the fourth.

This structure of the token-value table is generated in light of the familiar
behavior of marginal utility and marginal cost and hence it fits well with the law
of demand and supply. If we pool all of the maximum willingness to pay and
the minimum acceptable price together, and arrange them in descending order and
ascending order separately, we can then draw a downward-sloping demand schedule
and upward-sloping supply schedule, as shown in Fig. 2.4.

The artificial traders and human traders, placed in this market environment, will
play the role of Buyer 1 (Fig. 2.3). The trading behavior of the artificial traders and
the human traders is the focus of this study. The artificial traders will be programmed

2 Can Artificial Traders Learn and Err Like Human Traders? 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10,500
10,000
9,500
9,000
8,500
8,000
7,500
7,000

500

0

1,000
1,500
2,000
2,500

3,500
3,000

4,000
4,500
5,000
5,500

6,500
6,000

Buyer 1's Tokens

Fig. 2.4 The demand–supply schedule: the demand and supply schedule given above is drawn by
arranging a list of all reservation prices in descending order for buyers’ reservation prices and in
ascending order for sellers’ reservation prices

by genetic programming.7 We also assume that all other market participants, i.e.,
the opponents of the artificial or human traders, are truth tellers (Fig. 2.3). Being a
truth teller, the trader simply bids or asks at his current reservation price (along the
demand and supply curves).

2.2.1 Benchmark: Market Timing and Bids

The institutional assumption of a discrete-time double auction in the form of SFTE
coupled with the behavioral assumption of truth telling enables us to represent
the given environment as a solvable combinatorial optimization problem (see the
Appendix) [56]. Solving this optimization problem will give Buyer 1 the best market
timing and the most favorable bids, which together leads to the highest trading
profits for Buyer 1. The solvability of this problem allows us to keep a benchmark
upon which our further analysis of learning and erring is based (Figs. 2.1 and 2.2).

For Buyer 1, the unique optimal trading strategy for the constrained combinato-
rial optimization is derived and presented in the left panel of Table 2.2. The panel
has three columns, and the leftmost one is simply the number of trading steps, and,
by following SFTE, there are a total of 25 trading steps for each market experiment.

7Chen [17] argues that genetic programming equips economists with a tool to model the chance-
discovering agent, which is an essential element of modern economic theory.

42 S.-H. Chen et al.

Table 2.2 Trading schedule by optimization (left panel) and by the GP trader (right panel)

Optimization GP simulation

Step Bidding time and bid Match or not Step Bidding time and bid Match or not

1 −1 1 −1
2 −1 2 618
3 −1 3 619
4 −1 4 622
5 −1 5 622
6 −1 6 1,010
7 6,988 Yes 7 1,013
8 6,988 Yes 8 1,014
9 −1 9 1,016
10 −1 10 4,100
11 −1 11 4,100
12 −1 12 4,101
13 −1 13 4,102
14 −1 14 4,545 Yes
15 4,548 Yes 15 4,545
16 4,550 Yes 16 4,547 Yes
17 −1 17 4,547
18 −1 18 4,548 Yes
19 −1 19 4,548
20 −1 20 4,550 Yes
21 −1 21 −1
22 −1 22 −1
23 −1 23 −1
24 −1 24 −1
25 −1 25 −1

All trades have to be finished within these 25 steps. Normally, this is more than what
an optimal trading strategy needs. The question is when to get into the market and
how much to bid (ask), and the answers are shown in the 2nd column. Hence we
can see that in this specific market, the optimal time to enter the market is at steps 7,
8, 15, and 16 with bids of 6,988, 6,988, 4,548, and 4,550, respectively. In this way,
Buyer 1 can earn a maximum profit of 17,067. The symbol “−1” also showing in
many rows of the table is not a value to bid, but a sign indicating “Pass,” i.e., not
entering the market. The third column then shows whether a deal is made given the
offers (bids) and the asks from the sellers. Being an optimal trading strategy, this
means that all bids are successfully matched, as the sign “Yes” indicates.

The intuition behind this optimum solution is the economic theory of optimal
procrastination, which basically means that the trader attempts to delay his par-
ticipation in the market transaction so as to avoid early competition and become
a monopsonist in the later stage. Once getting there, he will then fully exercise
the monopsony power by bidding with third-degree price discrimination. However,
procrastination may also cause the agent to miss some good offers; therefore,
there is an opportunity cost for procrastination and the agent will try to optimize

2 Can Artificial Traders Learn and Err Like Human Traders? 43

the procrastination time by balancing his monopsony profits against these costs.
Procrastinating in two stages gives the balance. As shown in Fig. 2.4, there is a
sharp fall in the market demand curve accompanied by the sharp rise in the supply
curve, which suggests dividing the sequence of trading actions into two, one before
the change and one after the change.

2.2.2 Deviations: A Case of the GP Trader

The benchmark is an optimal strategy. In that sense, it becomes a rest state;
additional efforts for searching or learning are not necessary. Therefore, as a
benchmark, it helps us not only evaluate the earning performance of GP, but also
enables us to see how much energy is being devoted to searching and learning. The
second kind of deviation, deviation from effort minimization, can be equally, if not
more, important than the first kind of deviation, deviation from profit maximization,
even though in the machine learning literature we often only consider the first kind
rather than the second.

Let us illustrate the second kind of deviation using one example from GP, as
shown in Table 2.2.8 This specific trading strategy found by GP generates the
following trading behavior. We notice that, compared to the benchmark, GP traded
at a different time schedule and made deals in periods 14, 16, 18 and 20 with lower
bids (from 4,445 to 4,550). Not surprisingly, in this way, it also ended up with a
lower profit of 15,978, rather than the maximum one of 17,067.

In light of the benchmark, we can see that the GP trader also learned to delay
trading (as clearly shown in Table 2.2), but it did not procrastinate in the optimal
way, i.e., in two stages; instead, it did so in one stage only. In addition to that, the
GP trader had a total of 19 visits to the market, which is four times higher than the
minimum effort required by the benchmark, i.e., four visits only. Hence, in sum,
the GP traders deviate from the benchmark in earnings, trading schedule (market
timing and bids), and trading frequency. The interpretation of these deviations for
artificial traders, like GP, can be very different from that for human traders. All kinds
of feelings related to uncertainty, such as gut feelings, fast and frugal heuristics,
greed, fear, regret aversion, risk aversion, fatigue, and overconfidence, good or
bad, may cause human traders to deviate from the benchmark in all three above-
mentioned dimensions, and probably, in very different manner, too [52].

Alternatively put, the learning and erring behavior of human traders should be
studied in the context of both cognitive psychology and personality psychology
[30, 43–45]. Unless these psychological attributes have been incorporated into the
design of artificial agents, one could hardly expect the same deviation patterns

8The details of the GP run in this chapter can be found in [22].

44 S.-H. Chen et al.

between humans and machines.9 Therefore, in the following, we will propose a
measure of learning or a learning index which not only allows us to examine the
end-results (earnings), but also enables us to trace some psychological details of the
learning process of human subjects.

2.3 Leaning Index

2.3.1 The Three Criteria

What is proposed in this section is a learning index (LI) built upon the three above-
mentioned possible deviations, namely, earnings, the trading schedule (market
timing and bids), and trading frequency. The basic idea is to assign credits to the
three above-mentioned criteria in such a way that in the end very different behavioral
patterns can be easily distinguished. This is summarized in Table 2.3.

Here, very much in the spirit of the widely used balanced scorecard [40], we
assign credits for each strategy or action that either fulfills or partially fulfills the
target (given by the benchmark). Hence, X1 points are given to the action if it leads
to the maximum profit, and X2 if it fails to do so. Obviously, X1 > X2. As we have
learned from Table 2.2, if the action fails to fulfill the target return, it must then fail
to follow the target trading schedule in terms of either market timing or bidding.
Hence, a partial credit of Y points will be given for each single successful match.
From Table 2.2, we know that these are a total of four units to trade; therefore,
the trader will be assigned 4×Y points if the entire trading schedule is matched.
Otherwise, it could be 3×Y , 2×Y , . . . , all the way down to zero if there is no single
match.

It is possible that the trader can still gain the maximum profits while not following
the target trading schedule, because not all trades will be successful or effective, as
we have seen from the GP trader in Table 2.2. Therefore, in considering that each
offer, regardless of being successful or not, involves a cost, broadly known as the

Table 2.3 Credit assignment rule

Criterion Credits assigned Range

1 Target earning X1 points if achieved X2,X1,X3

X2 points if not achieved
X3 points if surpassed

2 Trading schedule Y for every single match 0,Y,2Y,3Y,4Y
3 Trading frequency Z for each entering to the market 21Z,20Z, . . . ,0

9The fundamental pursuit here is: when a mistake is made, what are the differences between that
made by an artificial agent and that made by human agents?

2 Can Artificial Traders Learn and Err Like Human Traders? 45

transaction cost,10 we “credit” each additional unnecessary entrance to the market
with Z points and Z < 0. Since a single market experiment lasts for 25 steps and 4
steps are necessary for finishing all possible trades, the trader can be “credited” with
21×Z as a maximum for his transaction cost.

2.3.1.1 Greed and Gambling

This gives the basic structure of the learning index. One thing which enables us to
make a further distinction is the case where the trader may earn a profit which is
higher than the benchmark. This subtle situation can occur when there is a piece of
luck on which the benchmark does not rely on. This kind of luck occurs when a deal
can be made with two or more identical offers, say, two identical bids, and then a
lottery will be applied to decide who has the right to buy.

For example, according to the benchmark, the second token shall be bid in step 8
at a price of 6,988 (Table 2.2), which is one dollar higher than what Buyer 4 will bid
at that moment (Table 2.1). Hence, if instead of 6,988 Buyer 1 bids more greedily
also with 6,987, he may still get the deal with a 50% chance. If he has that luck, he
may even earn an additional profit of 0.5, up to a total of 17,067.5. Nevertheless,
if it is Buyer 3 who has the luck and not him, then he will lose the good price,
1,016, offered by Seller 4, and the next available quote for him will be a much
higher 4,100, offered by Seller 3 or 4 (Fig. 2.4 and Table 2.1), which can cause him
a dramatic drop in profits, from the target 17,067 to 16,622. Since our benchmark
will not take this risky action, it may, therefore, lose to a trader who would like to
bet on this luck.

This delicate design enables us to observe human traders’ exploration of profit
opportunities and their reevaluation of these opportunities after being aware of the
underlying risk. We call this process “route to a gambler,” and we wish to examine
how traders’ personalities may have an effect on the choice of this route and how
this route has affected traders’ total performance. To achieve this goal, a credit of
X3 will be assigned to the gambler (X3 > X2) if he did conclude a successful deal
(Table 2.3). In this way, we can easily identify the occurrence of the gambler’s route
during the trader’s learning process.

2.3.2 Illustrations

The proposed learning index is illustrated with three cases, one GP trader and two
human traders. Before we do so, we need to set the values of the credit parameters
appearing in Table 2.2. There is no unique way to set these values. Many possible
sets of values should work fine as long as they help us easily separate agents with

10It does not have to be narrowly limited to the pecuniary costs associated with trading, such as
broker fees or the Tobin tax. It can cost personal health as well [6].

46 S.-H. Chen et al.

Table 2.4 Parameter setting
for the credit assignment

Parameter Value

X1 1,000
X2 0
X3 2,000
Y 100
Z −1

very different leaning and erring patterns. In a sense, these sets of values serve
the role of separating the hyperplane, such as the support vector machine. With
this understanding, we, therefore, arbitrarily choose one set of values, as given in
Table 2.4, and will fix this setting throughout the rest of the chapter.

2.3.2.1 Artificial Trader

We begin with a very simple demonstration and apply the learning index to the GP
trader introduced in Table 2.2. First, this GP trader did not earn the target profit;
hence, his earning performance is credit zero (X2 = 0). Second, he failed to follow
the target trading schedule from the first token to the last token; hence, the credit
assigned to his trading schedule is also zero (0×Y = 0). Finally, as to the transaction
frequency, he also failed to use the necessary trading times: he used 15 more times.
His credits earned in this part become −15 (15×Z =−15). As a total, the learning
index of this GP trader is, therefore, −15 (= X2 +(0×Y)+ (15×Z)).

2.3.2.2 Human Traders

Human-subject experiments in double auction markets were conducted at the
Experimental Economics Laboratory (EEL), National Chengchi University, from
May to July 2010. Each student played the role of Buyer 1 as shown in Fig. 2.4. The
DA experiments were repeated 30 times for each subject, and as a whole could be
finished in 1 h. In addition to the DA experiment, they were also paid to run two
additional psychological tests, namely, the working memory test (Sect. 2.4.2.1) and
personality test. The experimental results, including their DA market performance
as well as psychological tests, are all well archived in the Experimental Subject
Database (ESD). From this database, we successfully retrieved a set of 165 subjects
with the working memory test and 168 subjects with the personality test.11 In the
following, our illustration will be based on two representative subjects, namely,
Subjects 1331 and 1129.

11In fact, there are a total of 185 subjects attending the double auction experiments, but for some
of them the data are incomplete. Hence, for the WMC test the valid sample has 165 subjects, and
for the personality test the valid sample has 168 subjects. There are 151 subjects appearing in both
samples.

2 Can Artificial Traders Learn and Err Like Human Traders? 47

Fig. 2.5 The learning and erring process of Subject 1331

Figure 2.5 gives the trading process of Subject 1331. As said, the DA experiments
were repeated 30 times (periods). For each period, bids and asks were made and
matched 25 times (steps). Hence, basically, what is demonstrated in Fig. 2.5 is a
25-by-30 table. Each column vector then indicates how the subject bid and made
deals during the respective period. At the very top of the table, the “Index” row (the
2nd row) gives the sum of the credits assigned for each of the three criteria.

For example, this number in the 31st column (the last trading period) is 1,398,
which can be broken down into 1,000 (X1), 400 (4×Y), and −2 (2×Z). The reasons
for these assigned credits are clear. The subject did earn the target profit (1,000
credits); in addition, the trading schedules of all four tokens (bidding time and bids)
were exactly the same as the benchmark strategy (400 credits). Nevertheless, he
also made two unnecessary early bids for the last two tokens; by the third criterion,
he lost two points (−2). Therefore, his learning index (LI) over the three criteria is
1,398 points. This performance, compared to his initial value, −5 in period 1 and
98 in period 2, shows a significant improvement.

We, however, would like to draw readers’ attention to two stylized patterns of
human learning and erring. First, while many subjects are able to show significant
improvement made over time, their learning curve is not monotonically increasing
and may fluctuate significantly, which leads to our next point. The fluctuating pattern
of their performance can be attributed to either accidents or a lack of confidence in
what they learned. In the case of Subject 1331, we can see the relevance of these
two possibilities. The sudden drop from a peak of “1,398” in period 15 to “−6” in
period 16 could be hypothesized as an accident due to an absent mind (forgot to bid
in Steps 7 and 8). In addition, in periods 21 and 23, the subject already had a full
score; however, he was constantly trying something else nearby and that cost him
some additional points. This indicates that some degree of uncertainty or confusion

48 S.-H. Chen et al.

Fig. 2.6 The learning and erring process of Subject 1129

remains, even though he was very close to having a full grasp of the underlying
environment and incessantly earned the highest profit from period 17 to the end (see
the last row).

What is particularly interesting is the gambler’s route as we have discussed in
Sect. 2.3.1.1. Subject 1331 at a very early stage had already found the route for the
risky higher profit. His learning index in periods 3, 4, and 6 of 2,096 or 2,098 shows
his success in trading the second unit at a noncompetitive bid. This noncompetitive
bid caused him to lose the deal in period 7, and he seemed to learn the risk associated
with this lower bid with this loss, and decided to walk away from this gambler’s
route and never came back. This pattern clearly shows that when he recognized the
risk and decided not to take the risk, period 7 was the critical point.

Figure 2.6 shows another example of discovering the gambler’s route. Subject
1129 also found the gambler’s route in period 13, when he tried to bid at an equal
level to the bid of Buyer 4 with 6,987. He succeeded by “stealing” the deal and
earned a higher profit. By the same greedy strategy, he also succeeded four times in
the next five periods (periods 14–19). He did fail in period 15, but that single failure
did not prevent him from walking on this gambler’s route. Then the two consecutive
losses in periods 20 and 21 finally made him realize that his luck was simply not as
good as he expected. So, he also walked away from the gambler’s route and never
came back.

This pattern of “walking away from the gambler’s route” is intriguing because
human traders were not supplied with the information on the chance of getting the
deal when the two bids were equal. They had to calculate the risk solely based on
their experience. They may thus behave like the expected-profit maximizer except
that, without being given the underlying probability, their profit expectations have to
be formed through experience. The judgment of risk or risk preference is obviously
different among traders. For Subject 1331, it took only one failure before he walked
away, but, for Subject 1129, it took failures on three occasions.

2 Can Artificial Traders Learn and Err Like Human Traders? 49

Table 2.5 Learning and erring patterns represented by different plateaus

Plateau Index Points Target earning Description

A+ X3 +αY +βZ 1,975–2,400 Higher Lucky gambler

A X1 +4Y 1,400 Y Global optimizer

B X1 +4Y +βZ 1,375–1,399 Y First-order ε-global
optimizer

C X1 +3Y +βZ 1,275–1,300 Y Second-order
ε-global optimizer

D X1 +2Y +βZ 1,175–1,200 Y Third-order ε-global
optimizer

X1 +Y +βZ 1,075–1,100
X1 +βZ 975–1,000

F X2 +3Y +βZ 275–300 N Non-optimizer
X2 +2Y +βZ 175–200
X2 +1Y +βZ 75–100
X2 +βZ −25 to 0

α ∈ {1,2,3,4}, and β ∈ {0,1,2, . . . ,25}. Points given in the third column “points” are
the results from the index formula (second column) using the parameters specified in
Table 2.4

2.3.3 Plateaus

The credit assignment rule specified in Sect. 2.3.1 allows us to easily separate
several different kinds of behavior, as is now summarized in Table 2.5, and which
can be read as a sequence of plateaus arranged in descending order. Basically, we
have classified traders into four distinct groups, namely, lucky gamblers (Class A+),
optimizers (Class A), near optimizers (Classes B, C, and D), and non-optimizers
(Class F).

Traders belonging to Class A+ have been described in Sect. 2.3.1.1. Traders
belonging to the other four highest classes, Classes A, B, C, D, are those who
are able to achieve target returns. However, what distinguishes Class A from other
classes is that the traders belonging to the former are exactly on the trading schedule
(market timing and bids), whereas the traders belonging to the latter are not. This
can happen when the human trader misplaced an aggressive lower bid, which caused
him to miss an early trade and fall out of the target trading schedule accordingly.
Every such single miss can be interpreted as if human traders were still testing
other possibilities of generating a higher profit by exploring around a small (ε)
neighborhood of a global optimum. Hence, Classes B, C, and D can be pictured
as traders who are in the small neighborhood of the global optimum with different
radii, from a smaller one to a larger one. In the parlance of economics, if Class
A is equivalent to rational traders, then Classes B, C, and D can be analogous to
near-rational traders.

In contrast to the above four classes, Class F traders are traders who are still
distant from the global optimum due to various errors (bidding, timing, etc.).

50 S.-H. Chen et al.

Despite the noticeable distance, some agents were able to figure out part of the
structure of the trading game; they, therefore, made one, or two, or three deals in
line with the trading schedule. However, since all of them are still in the early or the
middle stage of learning, they are qualitatively separated from the global optimizers.

2.3.4 Learned or Not and When?

Based on the two illustrations in Sect. 2.3.2, can we use the learning index to decide
whether the subject has actually learned the optimum strategy, and, if so, when? This
issue is more subtle than what one might think. Using the examples above, can we
consider a subject with a score of 1,400 to be the one who has learned? The answer
is yes, if he could have repeatedly achieved this score, but what happens if he did
not? The idea to be discussed below is to allow for a kind of deviation which we
shall call an accident and to develop an accident-tolerance criterion for determining
whether the agent has learned.

By that, we intend to consider the case where the subject seemed to learn the
benchmark strategy, but his learning index was not consistently high as 1,400 and
might occasionally have fallen down to a lower level (Fig. 2.5). These falls may
occur for various reasons. First, the subject was tired, absent-minded, and made
operational mistakes. Second, the subject was not sure that he had already found the
benchmark strategy and attempted to explore further before realizing that nothing
was there. Falls of these kinds can then be tolerated as long as they do not occur
frequently. Hence, a subject is considered to have learned the benchmark strategy if
he can stay on the high plateau long enough to make any fall look like an accident.

The discussion above motivates the development of the accident-tolerance
criterion. What we propose is a Q− q rule, where Q refers to the length of window
denoting the most recent Q periods. Among the most recent Q periods, the subject
is either on a high plateau or not: q1 is the number of the periods that he stayed on a
high plateau, and q2 is the number of periods that he did not. Obviously, Q= q1+q2.
Now, consider the ratio q = q2/Q. If the error is an accident, then q must be low
enough to justify it being so. The question is how low. The answer may further
depend on the subject’s most recent Q location. Is it a global optimum or an epsilon-
global optimum? Intuitively, q can be higher if the subject has already been in the
global optimum, and lower if the subject has not. Quantitatively speaking, q should
be an inverse function of ε (the radius of the neighborhood of the global optimum).

To implement this Q− q rule, we have to parameterize it. What we suggest in
this study is the following. We only consider Classes A and B (Table 2.5) as the
high plateau, i.e., we take the first-order near-optimum as the threshold for the
applicability of the Q−q rule. Higher-order near-optima will make it difficult for us
to distinguish accidental errors from true errors, which in turn will make it harder to
catch the first crossing time that the subject learns the optimum. Other parameters
are specified in Fig. 2.7 to satisfy a q as a monotone decreasing function of the radius
of a neighborhood of the global optimum.

2 Can Artificial Traders Learn and Err Like Human Traders? 51

Fig. 2.7 Accident-tolerance criteria for deciding whether the subject has learned

As suggested in the figure, it is sufficient to consider that the subject has learned
the optimum strategy if he had the highest score (1,400) twice over the last three
periods (q = 1/3). In other words, if he has been really good on two occasions, then
missing once is accepted as an accident. In a similar vein, we also consider a subject
to have learned if his score is between 1,395 and 1,400 three times over the last four
periods (q = 1/4), or between 1,390 and 1,400 four times over the last five periods
(q= 1/5), or between 1,380 and 1,400 five times over the last six periods (q = 1/6),
or between 1,375 and 1,400 six times over the last seven periods (q = 1/7).

2.4 Heterogeneity in Learning

2.4.1 Time Required to Learn and the Aftermath

The learning index (Table 2.3) and the accident-tolerance criteria (Fig. 2.7) are now
applied to the 165 subjects (Sect. 2.3.2.2). The results are shown in Fig. 2.8. To
maintain brevity, we only show those subjects who have learned, at least once, in the
sense of the accident-tolerance criteria. In other words, one of the five possibilities,
as shown in Fig. 2.7, must apply for the subject at least once during the 30-period
experiment; if that never happens, the subject simply did not learn the optimum and
the code is not shown in this figure. In this way, the learning dynamics of 29 subjects
(17.5% of the 165 subjects) are presented in Fig. 2.8. Their code is listed in the first
column of the figure from the bottom to the top, based on the time used to learn the
optimum; the lower, the faster.

Each row then denotes the state of each subject in each of the 30 periods of the
experiment, from the left to the right. The blank cell means that the subject has
not learned or learned but “forgot” in that respective period. The blue-colored cell
means that one of the accident-tolerance criteria (Fig. 2.7) applies to the respective
agent in the respective period. The first blue-colored cell in each row refers to the
earliest time that the subject learned the optimum, and all other blue-colored cells
following this leading one indicated that the subject stayed on the optimum strategy
after having learned it.

As we can read from the bottom to the top, some subjects were able to learn
the optimum strategy in the very early periods, like Subject 1531, who had already

52 S.-H. Chen et al.

Fig. 2.8 Subjects who have learned the global optimal trading strategy: when it was the first time
that the human traders learned the optimum trading strategy, and, after they learned it, whether they
stayed on the optimal state. Out of 165 human traders, only 29 have learned the optimum before the
expiration of the entire experiment. Their code is listed in the first column of the figure from the
bottom to the top, based on the time used to learn the optimum; the lower, the faster. Each row
then indicates the state of each subject in each of the 30 periods of the experiment, from the left to
the right. A blank cell means that the subject has not learned or has learned but “forgot” during that
respective period. The first blue-colored cell in each row indicates the earliest time that the subject
learned the optimum, and all other blue-colored cells following this leading one indicate that the
subject stayed on the optimum trading strategy after having learned it

done so in period 3; some needed a longer time to do so, like Subject 1384, who
did not learn the optimum strategy until period 29. In addition to the minimum time
required to learn the optimum, the aftermath of reaching the global optimum is also
heterogeneous among agents. Once after being blue-colored, most subjects remain
blue-colored, such as Subjects 1531, 1519, and 1690 (Fig. 2.8). There are a few,
such as 1568 and 1607, who detoured from the optimum strategy to have further
explorations, but were able to return in a later period. Only a very few, such as
1777, failed to come back again before the expiration of the experiment. Hence, in
general, the global optimum is quite stable for most subjects: once they learn it, they
will constantly keep it.

2.4.2 Cognitive Capacity

Our double auction experiment shows once again the heterogeneity of the learning
dynamics among human traders. One of the most ambitious plans under the
integration of agent-based computational economics and finance and experimental

2 Can Artificial Traders Learn and Err Like Human Traders? 53

economics is to examine and model the great heterogeneity of human subjects as
manifested in their learning dynamics.12 There are two fundamental issues arising
in this research direction. First, under the parsimony principle, how many attributes
are needed for representing, up to a substantial degree, each human trader so that
their heterogeneity in the learning dynamics can be replicated through artificial
agents? Second, for each attribute and the assigned value, should we consider
a different computational intelligence algorithm or the same algorithm but with
different parameter values?

In this chapter, our focus is on the first issue and starts from a very fundamental
level, namely, the psychological attribute of human traders.13 By that, we mean
differentiating human traders by either their cognitive attributes or personality
attributes. The key measurement of the former is working memory capacity,
whereas the key measurement of the latter is a Chinese version of Big Five. In this
section, we shall focus on the former and provide details of the latter in a separate
section (Sect. 2.4.3).

2.4.2.1 Working Memory Capacity

Cognitive capacity is a general concept used in psychology to describe a human’s
cognitive flexibility, verbal learning capacity, learning strategies, intellectual ability,
etc. [13]. Although cognitive capacity is a very general concept and can be
measured from different aspects with different tests, concrete concepts such as the
intelligence quotient (IQ) and working memory capacity are considered to be highly
representative of this notion. We adopt working memory capacity as a measure of
cognitive capacity because working memory capacity is not simply a measurement
of the capacity of short-term memory, but a “conceptual ragbag for everything
that is needed for successful reasoning, decision making, and action planning”
(p. 167, [47]). It has been shown that WMC is highly correlated with general
intelligence [26, 39] and performance in other cognitive domains, such as sentence
comprehension [27] and reasoning [41]. Recently, working memory capacity has
been regarded as an important economic variable in both experimental economics
and agent-based computational economics.14

In this study, human traders involved in the double auction experiments are
requested to take a working memory test. The test version is based on [42]
and is composed of five parts, which are backward digit span (BDG), memory
updating (MU), operation span (OS), sentence span (SS), and spatial short-term

12For those readers who are unfamiliar with this development, some backgrounds are available
from [19, 20].
13While the conversation between psychology and economics has a long history and a rapidly
growing literature, it was only very recently that economists started to take into account
psychological attributes in their economic modeling and analysis.
14A survey is available from [21].

54 S.-H. Chen et al.

Fig. 2.9 Score distribution of the working memory test

memory (SSTM). They basically ask the subjects to undertake some tasks, such as
memorizing series of numbers and letters and performing very basic arithmetical
operations. By following the conventional procedure in psychological tests, the
scores for each task are normalized using the mean and the standard deviation of the
subject pool. The five standardized scores for the five tasks will then be averaged to
arrive at the WMC of a specific subject. The histogram of the normalized WMC is
depicted in Fig. 2.9. The histogram starts with the leftmost cluster “WMC <−1” (21
subjects in this cluster) and ends at the rightmost cluster “WMC > 1” (4 subjects).
In between, there are 20 clusters, each with a range of 0.1, dividing the distribution
equally into 20 equal intervals, from [−1, −0.9), [−0.9, 0.8), . . . , all the way up to
[0.9, 1].

2.4.2.2 Optimum-Discovery Capability

To have a general picture of how WMC may actually impact the capability to
discover the pattern or to learn the optimum strategy, we also indicate, within each
WMC cluster, the number of human traders who were able to discover and learn
the optimum and place it on a higher layer (blank-colored) to be separated from the
number of those who did not on a lower layer (blue-colored).

By just eye-browsing Fig. 2.9, we can see that most human traders who were able
to discover the pattern have a positive WMC (23 out of 29), and for those subjects
who have a WMC below −0.5, only one, out of 32, is able to do so. Therefore,
there is evidence indicating a positive influence of WMC on the pattern discovering
capability. To present the result in a more precise manner, we also average the WMC
of the performing group (29 subjects) and compare it with that of the nonperforming

2 Can Artificial Traders Learn and Err Like Human Traders? 55

Fig. 2.10 First time and WMC

group (136 subjects). It is found that the mean WMC is 0.28036 for the performing
group, but only −0.12648 for the nonperforming group; the whole population
average is −0.05004.

Despite the positive statistics between WMC and the optimum-discovery capa-
bility, it is also interesting to notice the existence of some “outliers.” Specifically,
the four subjects belonging to the highest cluster of WMC (>1) and the three out of
four in the next highest cluster ([0.9,1]) all failed to discover the global optimum.
We shall come back to this point later in Sect. 2.4.2.4.

2.4.2.3 Time Required to Discover

To have a further look at the effect of cognitive capacity, we examine, within the
performing group, whether the trader with a higher WMC tends to discover or learn
the optimum faster. To do so, Fig. 2.10 gives the X −Y plot of the pairs between
WMC and the discovering time for each trader belonging to the performing group.
Subject 1531, the trader who used the minimal time to discover the optimum, spent
only three periods to “touch down” and stay on the optimum strategy almost for
the entire duration (Fig. 2.8); yet, his WMC is only in the middle, 0.2475, and
not particularly high.15 In fact, the whole X −Y plot of Fig. 2.10 shows that there
is no significant relationship between WMC and discovering time, except for the
following interesting finding. After 15 periods, most low WMC traders were no
longer able to learn the optimum; more working time for them is to no avail.

15From Fig. 2.7, for a trader who is identified as a case of learning the optimum in period 3,
his learning index must be in plateau A in the first three periods. Actually, Subject 1531 started
performing the optimal strategy in period 2 until the end of the experiment except for one period
obviously due to a typo. Subject 1531 seems to thoroughly understand the market features in period
1, and then performs the optimum strategy seamlessly in period 2.

56 S.-H. Chen et al.

Table 2.6 Working memory
capacity and staying
frequencies in the high and
low plateaus

Class (plateau) Frequencies Cardinality Mean WMC

A–D 15 38 0.31396
20 30 0.33392
25 18 0.24462

F 30 121 −0.17702
10 139 −0.11911

However, this “bottleneck” does not exist for the high WMC traders. In fact, the
nine subjects who discovered the optimum after period 15 all have positive WMC,
except one.

The bottleneck observed in Fig. 2.10 can be regarded as a cognitive trap. The
depth of the trap might be different for traders with different WMC. For traders
with lower WMC, this trap might be too deep to jump out; hence, if these traders do
not initially stand in a favorable position outside the trap, a longer learning time may
help them a little. That is why we see that very few can walk out of this trap in the
entire second half of the experiment. The attempt to associate the energy required to
climb the hill with cognitive capacity is first made in [24]. Here, we also have some
observations similar to this psychological analogy of the numerical trap.16

2.4.2.4 Target Return

The purpose of this section is to see whether cognitive capacity may have effects on
the learning behavior of human traders. To do this, we separate human traders into
different groups, for example, those who learned the optimum and those who did
not, and then examine whether the WMCs of these two groups are different. We can
also consider other grouping possibilities. One of them is to differentiate subjects by
the frequencies according to which they stayed in different plateaus. Hence, we can
differentiate those frequently visiting a high plateau from those frequently visiting a
low plateau. For both, we may further differentiate them by degree, such as normal
frequency or high frequency. We exemplify this kind of grouping in Table 2.6.

16 This chapter and [24] are both under the umbrella of a 3-year NSC research project. Hence, they
both share some similar features. What distinguishes [24] from this chapter is that the former
explicitly constructs traders’ learning paths in a numerical landscape. The question is then to
address whether the observed learning behavior of traders can also be understood as an output of
a numerical search algorithm. In other words, they inquire whether there is a connection between
behavioral search and numerical search. However, the trading environment here makes it hard
to derive this geometrical representation; therefore, the use of a learning index becomes another
way to see how this trap might actually also exist. Despite this difference, the implication of these
two studies is the same: we need to equip artificial agents with different CI tools so that their
search behavior can be meaningfully connected to the cognitive capacity of human traders, or,
more directly, we need to reflect upon the cognitive capacity of different CI tools [19].

2 Can Artificial Traders Learn and Err Like Human Traders? 57

The upper panel of Table 2.6 denotes the group of traders who are frequently
classified into the high plateau, namely, Classes A, B, C, and D. In other words,
they are the traders who frequently meet the target return. By different frequencies,
we further consider three types of traders: those who were classified into this high
plateau at least 15 times, at least 20 times, and at least 25 times, abbreviated as “15,”
“20,” and “25” in the second column of the table. Similarly, the lower panel refers
to the traders who are frequently classified into the low plateau (Class F) and who
failed to earn the target return. The two subgroups “30” and “10” refer to the types
of traders who were classified into this low plateau all the time (30 times) and at
least 10 times, respectively.

These five groups are not exclusive to each other. In fact, group “25” is obviously
a subset of group “20,” which in turn is also a subset of group “15.” As we can see
from the 3rd column of Table 2.6, there are 38 subjects belonging to group “15,”
but only 30 of them belong to group “20” and 18 belong to group “25.” Similarly,
group “30” is also a subset of group “10.” There are 139 subjects belonging to the
former, whereas only 121 out of these 139 belong to the latter. These five groups
provide us with another opportunity to see the effect of cognitive capacity on trading
performance.

First of all, very similar to our earlier analysis of the optimum-discovering
capability, we find that traders frequently classified to F tend to have a lower WMC
than those who were frequently classified to a high plateau. As one can see from the
fourth column of Table 2.6, the former has an average of negative normalized WMC,
whereas the latter has a positive average. Both the student t-test and Wilcoxon rank
sum test show that the difference in WMC between these two classes, “F” and
“A–D”, is significant. Second, if we further isolate group “30” (those who failed
to make the target return from the beginning to the end), then it has a particularly
lower WMC (−0.17702), which is lower than that of group “10” (−0.11911). Third,
however, if we do the same thing for the high plateau and isolated group “25,” we
shall be surprised by the result that this elitist group (traders who can make the
target return 25 out of 30 times) does not have a higher WMC (0.24462) than its
super sets, “15” (0.31396) and “20” (0.33392). This later evidence is very intriguing,
because this finding accompanied by our early observations of the outliers in the
“optimum-discovery” section (Sect. 2.4.2.2) together lend support to the hypothesis
of a diminishing marginal contribution of cognitive capacity in the psychological
literature.17

17As the psychological literature points out, high intelligence does not always contribute to
high performance—the significance of intelligence in performance is more salient when the
problems are more complex [25]. In addition, it appears that intelligence exhibits a decreasing
marginal contribution in terms of performances [29, 37]. In the setting of an agent-based double
auction market, Chen et al. [23] have replicated this diminishing marginal contribution of
cognitive capacity. In that article, autonomous traders are modeled by genetic programming with
different population size. The population size is manipulated as a proxy variable for working
memory capacity. They then found that, while the trading performance between agents with small

58 S.-H. Chen et al.

2.4.3 Personality Traits

The second possible contributing factor for the observed heterogeneity among
human traders in their learning behavior is personality. In personality psychology,
there are many competing paradigms, but the personality trait is now the most
widely accepted theory. Although there have been many studies regarding traits,
they never seem to agree on the number of basic traits. Nevertheless, the five-
factor model developed by Gordon Allport (1897–1967) is probably the most
popular one. The five personality factors, also known as Big Five, are openness,
conscientiousness, extraversion, agreeableness, and neuroticism. A convenient
acronym is “OCEAN.” Using the Big Five model, labor economists have already
started to explore the relevance of personality to economics [14]. Big Five has also
been applied to economic experiments [9–11, 35], while a lot of other measures are
simultaneously used. Recently, there is even a trend to combine both cognitive and
noncognitive factors to account for economic behavior [1, 24].

In this study, we applied a variant of Big Five to measure the personality trait
of human traders, which we shall call Big Seven. The Big Seven was originally
developed by Kuo-Shu Yang, a Fellow of Academia Sinica. Yang considered that
Big Five may not be straightforwardly applied to Chinese due to their different
cultural background; he, therefore, revised the Big Five model and made it the Big
Seven model. The seven factors are smartness, conscientiousness, agreeableness,
trustworthiness, extraversion, chivalry, and optimism.18 A test accompanying this
Big Seven model is also developed. The test is organized into seven major
categories. For each category, there are 15–20 short descriptions (adjectives) of
personality. As a total, there are 131 descriptions. For each description, the subject
is required to rate himself on a scale from 1 (unsuitable) to 6 (suitable). Hence, “1,”
if he thinks that the adjective does not at all describe their personality, and “6,” if
he thinks that the adjective perfectly describes his personality. After filling in all
131 entries, his personality score will be calculated based on the loading (weight)
of each entry.

The basic personality statistics of all 168 subjects are summarized in Table 2.7.
The first two rows give the number of queries (each query is associated with an
adjective) and the range of score. The third, fourth, and fifth rows give the mean
of these scores over the whole group of 168 subjects, over the performing subgroup
(those who were able to discover or learn the optimum) and over the non-performing
subgroup (those who did not), respectively.

population size and agents with a large one is significantly different, this difference between agents
with a large one and agents with a larger one is negligible.
18There is no official translation of the seven factors. An attempt to do so on our own is not easy,
in particular if one wants to describe the whole of 15–20 adjectives using a single word, such
as conscientiousness. What we do here is to follow OCEAN closely and to use the same name
if the factor in Big Seven shares very much in common with one of the Big Five. Examples are
conscientiousness, agreeableness, and extraversion.

2 Can Artificial Traders Learn and Err Like Human Traders? 59

Table 2.7 Big-7 personality and discovery of the optimum

S C A T E Ch O
of queries 20 20 20 20 20 20 15
Range of score 20−120 20−120 20−120 20−120 20−120 20−120 15−90

Avg. (whole) 84.58 71.52 79.50 86.39 76.79 68.11 54.83
Avg. (performing) 86.43 71.90 78.93 90.78 79.00 70.56 56.87
Avg. (nonperforming) 84.15 71.43 79.63 85.36 76.27 67.54 54.35
Difference 2.28 0.47 −0.69 5.42 2.72 3.01 2.52

The first row is the initial of each of the Big Seven: smartness (S), conscientiousness (C),
agreeableness (A), trustworthiness (T), extraversion (E), chivalry (Ch), and optimism (O)

Our analysis starts with a quick look at how the performing group and non-
performing group differ in their Big Seven. For this purpose, the sixth column
of Table 2.7 gives the differences between the two groups in these seven items.
By looking at their relative magnitudes, among the seven, trustworthiness stands
out, as the most salient one to distinguish the two groups, followed by chivalry,
extraversion, optimism, and smartness. The two with rather small magnitudes are
agreeableness and conscientiousness. These results are not well expected. First of
all, conscientiousness, which has been constantly identified as a factor to predict
economic behavior, is not founded here,19 while our finding is consistent with this
literature by singling out the extraversion as one of the top three. Second, the most
salient one found in our dataset is trustworthiness.20 This is the one which has never
been mentioned in a separate study [24], which also examines the role of Big Seven
in traders’ performance.21

Like what we do for cognitive capacity (Fig. 2.9), we also plot the histogram
of the Big-Seven personality score in Fig. 2.11, and, at the top of each bar, we
indicate the number of the human traders who were able to discover the optimum.
To make it easier to see the relationship between the seven factors and the capability
to discover, we further rescale the presentation in terms of percentages. Hence,
each cluster of each factor has a total of 100%, which is then divided by the size
(share) of the blank-colored area (the performing one) and the blue-colored area
(the nonperforming one). In this way, we can easily compare the relative size across
different clusters.

By eye-browsing the seven histograms, one may find it difficult to see any
visualizable pattern between personality factors and optimum-discovering capabil-
ity except for the factor trustworthiness. In the case of trustworthiness, one can

19Conscientiousness is found to be a good predictor of job performance, mortality, divorce,
educational attainment, car accidents, and credit score [1, 7, 8, 24, 38, 49].
20In fact, both our student t-test and Wilcoxon rank sum test only find this factor statistically
significantly different between the performing group and the non-performing group.
21However, this study differs from [24] in using a different performance measure. See also
footnote 16.

60 S.-H. Chen et al.

Fig. 2.11 Big-7 and learning performance: the seven figures, from the first row to the fourth
row and from the left to the right, refer to the personality factor, smartness (1st row, left),
conscientiousness (1st row, right), agreeableness (2nd row, left), trustworthiness (2nd row, right),
extraversion (3rd row, left), chivalry (3rd row, right), and optimism (4th row), respectively

see that the percentage of performing human traders increases with the score of
trustworthiness. This finding is consistent with the one revealed in Table 2.7. How-
ever, it is hard to argue why trustworthiness may help discover the optimum and it

2 Can Artificial Traders Learn and Err Like Human Traders? 61

becomes even harder when other seemingly natural ones, such as conscientiousness,
extraversion, and even smartness, all fail to play a role.22 This may in fact indicate
the potential problem in this self-reported evaluation.

Let us use Subject 917 to illustrate this problem. This smartness factor of this
subject is self-reportedly between 30 and 40, i.e., the lowest one of the whole
sample of 168 subjects. Nevertheless, he is one of the 32 subjects who were able
to discover the optimum, and, therefore, behaves as an “outlier” in the sense of the
only performing trader with a very low score in smartness. On the other hand, his
WMC score is 0.8756, which is among the top 10%. So, in contrast to his WMC
score, his self-reported smartness seems to be too much understated.

2.5 Concluding Remarks

The chapter, distinguished from most financial applications of computational intel-
ligence in economics, is concerned with the issue of how computational intelligence
can help build artificial traders who are capable of mimicking human traders’
learning and erring behavior [18]. This research area is just in its very beginning
stage, but it is important in the following two ways.

Firstly, there is no clear evidence indicating that human traders (human heuris-
tics) can be or have been substantially replaced by robots (machine heuristics).
While both cognitive psychology and computational intelligence have heuristics
as their research interest, they seem to have been developed at different levels, in
different directions, and have been applied to different domains. When coming to
competition, what often surprises us is that, even in a simple situation like the double
auction market, there is no clear evidence that heuristics developed by machines can
outperform those coming out of humans.

Take our double auction experiments as an example. It is highly interesting to
see how human traders actually learned, consciously or unconsciously, the two-
stage procrastination strategy, particularly when a large number of runs of GP could
only find the one-stage procrastination strategy. The one-stage procrastination has
a simple heuristic behind it: hold everything till the end of a trade. This simplicity
can be easily picked up by human traders with good intuition. Hence, one may

22Among the seven factors, Chen et al. [24] find conscientiousness, extraversion, and agreeableness
to be influential, at least in some contexts. In their analysis, they attempt to justify each of these
three. Among the three, conscientiousness is probably the easiest one to justify, given the already
lengthily archived documents (see footnote 2.4.3). They then go further to justify the other two
by using [28] to argue that extraverted subjects are more sensitive to potential rewarding stimuli
through the mesolimbic dopamine, which may in turn help them more easily find the more
profitable trading arrangements. In addition, for agreeableness, they argue that subjects with a
higher degree of agreeableness can resist time pressure and may be able to think for a longer time
before making decisions.

62 S.-H. Chen et al.

say that GP simply replicates human traders’ heuristics or “rules of thumb.” Hence,
the heuristic developed by GP is consistent with the heuristics developed by many
human traders.

Nonetheless, the two-stage procrastination bidding is less straightforward. GP
succeeded in learning this strategy in only a few runs; most runs were trapped
in a local optimum. However, as we can see from our human-trader experiments,
some human traders could actually learn this strategy, while most of them also
failed. Among the successful ones, some could even touch down in a few minutes.
Evidently, for them, they did not learn this by solving a hard combinatoric
optimization; instead, they learned it as a heuristic.

However, why were some people able to see this pattern, whereas others failed
to do so? If we assume that some have a good representation of the problem, by
that representation the problem becomes easier, but others do not “see” this pattern.
Then, is this difference mainly due to chances, which are very much random, or can
this difference be attributed to some more fundamental causes?

To answer this question, this chapter proposes a new research framework. The
new research framework includes the design of a novel learning index in light of a
separation hyperplane. Through this index, one can better capture the state of human
traders’ learning dynamics and then develop various performance measures upon
it. This performance measure, which encapsulates human traders’ heterogeneity in
learning dynamics, can be further analyzed in light of the basic attributes of human
traders, such as their cognitive capacity and personality traits. This chapter, to the
best of our knowledge, is one of the pioneering studies devoted to the inquires about
whether cognitive capacity and personality have influences on traders’ performance
and their heuristic development in a laboratory setting.

Very similar to the earlier study [24], we once again confirm the significance
of cognitive capacity to the heuristic development of human traders. However, we
do not find a particularly insightful connection between personality and learning
dynamics; in particular, the factor conscientiousness plays no role in the heuristic
formation, a result different from that of the earlier study.

Secondly, tremendous analyses of heuristic biases of human traders are con-
ducted in the area of psychology, cognitive neuroscience, and behavioral finance,
but this literature, at this point, receives little interdisciplinary collaboration with the
computational intelligence society. We believe that narrowing this gap may help us
build more human-like artificial traders. Hence, carefully studying human heuristics
with computational intelligence may lead us to explore a rich class of fast and frugal
heuristics [32].

An emotional and neurocognitive study of financial decision making may benefit
from the analysis provided in this chapter. It enables us to stand in the front line to
see interesting behavior patterns which can be further explored from the aspects of
psychological analysis, and also enables us too see how such advanced analysis can
enrich the current literature on behavioral economics.

2 Can Artificial Traders Learn and Err Like Human Traders? 63

Acknowledgements The authors are grateful to Professor Kuo-Shu Yang for his generous
permission for using his developed Chinese version of the Big-Five personality test. We are also
grateful to Professor Li-Jen Weng and Professor Lei-Xieng Yang for their advice and guidance on
the psychological tests implemented in this study. NSC research grants no. 98-2410-H-004-045-
MY3, no. 99-2811-H-004-014, and no. 100-2410-H-029-001 are also gratefully acknowledged.

Appendix: Double Auction as a Combinatorial Optimization
Problem

In order to set the benchmark, we have to determine the best bidding strategy for
Buyer 1. However, to determine the best timing and bidding values in a discrete-
time double auction is a combinatorial optimization problem and is NP-hard. To
tackle this problem, one should first notice that the discrete-time double auction is
in fact an integer programming problem constrained by various rules and market
regulations, such as that a buyer should always bid from his/her highest token to the
lowest token and he/she can only bid once in each step. Second, to solve this integer
programming problem, Xia et al. [56] have shown the superiority of the branch-and-
bound method. We therefore use the branch-and-bound method to find the optimal
bidding strategy for Buyer 1 in our markets. We will first demonstrate the rules of
bidding and matching, and the exact models of integer programming will then be
given as well.

In the SFTE auction, there are nb buyers and ns sellers in the market. The
bidding/asking rules as well as the transaction mechanism are as follows:

1. Each trader has nt ordered tokens. Starting from the first token, traders have to
bid/ask based on the ordered token values.

2. The auction lasts np steps. In each step, every buyer and seller can choose to
bid/ask or remain silent.

3. Only those who bid/ask in the market have chances to make transactions, and
only those who make transactions earn profits. Staying silent will not pay.

4. The bidder with the highest bid price in a step is the current buyer, while the
seller with the lowest ask price in that step is the current seller.

5. Only the current buyer and the current seller have the chance to complete a
transaction, depending on whether the bid price is higher than the ask price.

6. The transaction price is the average of the current buyer’s bid price and the
current seller’s ask price.

7. Once a trader is involved in a transaction, he/she naturally uses up one token and
has to continue trading based on the next token value.

8. If a trader uses up all nt tokens, he/she is expelled from the market and can only
return to the market when the market starts over again.

9. In our human experiments as well as GP simulations, all traders except human
subjects or GP traders are truth tellers, who always truthfully use their token
values as the bids or asks and will never keep silent in the market.

64 S.-H. Chen et al.

Table 2.8 Parameters and variables

b Index for buyers
s Index for sellers
j Index for steps
k Index for tokens
btvb,k Value of token k for buyer b
stvs,k Value of token k for seller s
bm A very big number
nb Number of buyers
ns Number of sellers
np Number of steps
nt Number of tokens

BTb,k, j Whether buyer b’s token k is bidded in the market in step j [0,1]
ATs,k, j Whether seller s’s token k is asked in the market in step j [0,1]
Bb, j Buyer b’s bid in step j
As, j Seller s’s ask in step j
CBb, j Whether buyer b’s bid is the highest bid in step j [0,1]
CSs, j Whether seller s’s ask is the lowest ask in step j [0,1]
B j The highest bid in step j
A j The lowest ask in step j
T B

b,k, j Whether buyer b’s token k reaches a transaction in step j [0,1]

T S
s,k, j Whether seller s’s token k reaches a transaction in step j [0,1]

Tj Whether a transaction is made in step j [0,1]
Pj The transaction price in step j

Our goal is to find the best bidding strategy, which maximizes Buyer 1’s profit in
the face of truth telling opponents. Since this is an integer programming problem,
we can describe the problem with the objective function (2.1) and constraints ((2.2)–
(2.21)). Notice that the constraints are proposed here to directly or indirectly enforce
the rules and mechanisms developed above. Notations used in the objective function
and the constraints are summarized in Table 2.8.

Objective Function

max
np

∑
j

nt

∑
k

[(btv1,k −Pj)×T B
1,k, j] (2.1)

Constraint for Rule 1

∀b, BTb,1,1 = 1 ‖ ∀s, ATs,1,1 = 1 (2.2)

Constraint for Rule 2

∀b, j,
nt

∑
k

BTb,k, j ≤ 1 ‖ ∀s, j,
nt

∑
k

ATs,k, j ≤ 1 (2.3)

2 Can Artificial Traders Learn and Err Like Human Traders? 65

Constraints for Rule 3

∀b, j,k, T B
b,k, j ≤ BTb,k, j ‖ ∀s, j,k, T S

s,k, j ≤ ATs,k, j (2.4)

∀b, j, CBb, j ≥
nt

∑
k

T B
b,k, j ‖ ∀s, j, CS j ≥

nt

∑
k

T S
s,k, j (2.5)

Constraints for Rule 4

∀ j, B j =
nb

∑
b

(CBb, j ×Bb, j) ‖ ∀ j, Aj =
ns

∑
s
(CSs, j ×As, j) (2.6)

∀b, j, Bj ≥ Bb, j ‖ ∀s, j, A j ≤ As, j (2.7)

∀ j,
nb

∑
b

CBb, j = 1 ‖ ∀ j,
ns

∑
s

CSs, j = 1 (2.8)

Constraints for Rule 5

∀ j,
nb

∑
b

nt

∑
k

T B
b,k, j ≤ 1 ‖ ∀ j,

ns

∑
s

nt

∑
k

T S
s,k, j ≤ 1 (2.9)

∀ j,
nb

∑
b

nt

∑
k

T B
b,k, j =

ns

∑
s

nt

∑
k

T S
s,k, j (2.10)

∀ j, (B j −Aj)×Tj ≥ 0 (2.11)

∀ j,
nb

∑
b

nt

∑
k

T B
b,k, j = Tj (2.12)

Constraints for Rule 6

∀ j, (B j −Aj)< Tj × bm (2.13)

∀ j, 2×Pj = (B j +Aj) (2.14)

Constraints for Rule 7

∀b,k,
np

∑
j

T B
b,k, j ≤ 1 ‖ ∀s,k,

np

∑
j

T S
s,k, j ≤ 1 (2.15)

66 S.-H. Chen et al.

∀b, j ∈ 2 . . .np, BTb,1, j = BTb,1, j−1 −T B
b,1, j−1 ‖

∀s, j ∈ 2 . . .np, ATs,1, j = ATs,1, j−1 −T S
s,1, j−1 (2.16)

∀b,k ∈ 2 . . .nt, j ∈ 2 . . .np, BTb,k, j = BTs,k, j−1 +T B
s,k−1, j−1 ‖

∀s,k ∈ 2 . . .nt, j ∈ 2 . . .np, ATs,k, j = ATs,k, j−1 +TS
s,k−1, j−1 (2.17)

Constraints for Rule 8

∀b,
np

∑
j

nt

∑
k

T B
b,k, j ≤ nt ‖ ∀s,

np

∑
j

nt

∑
k

T S
s,k, j ≤ nt (2.18)

∀s,
np

∑
j

T S
s,nt+1, j = 0 (2.19)

Constraints for Rule 9

∀b ∈ 2 . . .4, j, Bb, j =
nt

∑
k

(BTb,k, j × btvb,k) (2.20)

∀s, j, As, j =
nt

∑
k

(ATs,k, j × stvs,k) (2.21)

References

1. J. Anderson, S. Burks, C. DeYoung, A. Rustichinid, Toward the Integration of Personality
Theory and Decision Theory in the Explanation of Economic Behavior (University of
Minnesota, Mimeo, 2011)

2. J. Arifovic, Genetic algorithms learning and the cobweb model. J. Econ. Dyn. Contr. 18(1),
3–28 (1994)

3. J. Arifovic, R. McKelvey, S. Pevnitskaya, An initial implementation of the Turing tournament
to learning in repeated two-person games. Game. Econ. Behav. 57(1), 93–122 (2006)

4. B. Arthur, On designing economic agents that behave like human agents. J. Evol. Econ. 3(1),
1–22 (1993)

5. H. Baker, J. Nofsinger, Behavioral Finance: Investors, Corporations, and Markets (Wiley,
New York, 2010)

6. B. Barber, T. Odean, Trading is hazardous to your wealth: The common stock investment
performance of individual investors. J. Finance 55(2), 773–806 (2000)

7. M. Barrick, M. Mount, The big five personality dimensions and job performance: A meta-
analysis. Person. Psychol. 44(1), 1–26 (1991)

8. M. Barrick, M. Mount, T. Judge, Personality and performance at the beginning of the new
millennium: What do we know and where do we go next? Int. J. Sel. Assess. 9, 9–30 (2001)

2 Can Artificial Traders Learn and Err Like Human Traders? 67

9. A. Ben-Ner, F. Halldorsson, Measuring Trust: Which Measures Can be Trusted? Working
paper, University of Minnesota (2007)

10. A. Ben-Ner, L. Putterman, F. Kong, D. Magan, Reciprocity in a two-part dictator game. J.
Econ. Behav. Organ. 53(3), 333–352 (2004)

11. A. Ben-Ner, F. Kong, L. Putterman, Share and share alike? Gender-paring, personality, and
cognitive ability as determinants of giving. J. Econ. Psychol. 25, 581–589 (2004)

12. Y. Bereby-Meyer, A. Roth, The speed of learning in noisy games: Partial reinforcement and
the sustainability of cooperation. Am. Econ. Rev. 96(4), 1029–1042 (2006)

13. Z. Boender, J. Ultee, S. Hovius, Cognitive capacity: No association with recovery of sensibility
by Semmes Weinstein test score after peripheral nerve injury of the forearm. J. Plast. Reconstr.
Aesthetic Surg. 63(2), 354–359 (2010)

14. L. Borghans, A. Duckworth, J. Heckman, B. Weel, The Economics and Psychology of
Personality Traits, NBER Working Paper No. 13810 (2008)

15. P. Bossaerts, What decision neuroscience teaches us about financial decision making. Annu.
Rev. Financ. Econ. 1, 383–404 (2009)

16. S.-H. Chen, Computational intelligence in agent-based computational economics, in Compu-
tational Intelligence: A Compendium, ed. by J. Fulcher, L. Jain (Springer, New York, 2008),
pp. 517–594

17. S.-H. Chen, Genetic programming and agent-based computational economics: from au-
tonomous agents to product innovation, in Agent-Based Approaches in Economic and Social
Complex Systems, ed. by T. Terano, H. Kita, S. Takahashi, H. Deguchi (Springer, New York,
2008), pp. 3–14

18. S.-H. Chen, Software-agent designs in economics: An interdisciplinary framework. IEEE
Comput. Intell. Mag. 3(4), 18–22 (2008)

19. S.-H. Chen, Collaborative computational intelligence in economics, in Computational In-
telligence: Collaboration, Fusion and Emergence, ed. by C. Mumford, L. Jain (Springer,
New York, 2009), pp. 233–273

20. S.-H. Chen, Y.-L. Hsieh, Reinforcement learning in experimental asset markets. E. Econ. J.
37(1), 109–133 (2011)

21. S.-H. Chen, S. Wang, Emergent complexity in agent-based computational economics. J. Econ.
Surv. 25(3), 527–546 (2011)

22. S.-H. Chen, R.-J. Zeng, T. Yu, Co-evolving trading strategies to analyze bounded rationality
in double auction markets, in Genetic Programming Theory and Practice VI, ed. by R. Riolo
(Springer, New York, 2008), pp. 195–213

23. S.-H. Chen, C.-C. Tai, S. Wang, Does cognitive capacity matter when learning using genetic
programming in double auction markets? in Multi-Agent-Based Simulation, ed. by G. Di Tosto,
H. Van Dyke Parunak. Lecture Notes in Artificial Intelligence, vol. 5683 (Springer, New York,
2010), pp. 37–48

24. S.-H. Chen, U. Gostoli, C.-C. Tai, K.-C. Shih, To whom and where the hill becomes difficult to
climb: Effects of personality and cognitive capacity in experimental DA markets. Adv. Behav.
Finance Econ (forthcoming)

25. R. Christal, W. Tirre, P. Kyllonen, Two for the money: speed and level scores from a
computerized vocabulary test, in Proceedings of the Ninth Annual Symposium, Psychology in
the Department of Defense (USAFA TR ’84-2), ed. by G. Lee, Ulrich (U.S. Air Force Academy,
Colorado Springs, 1984)

26. A. Conway, M. Kane, R. Engle. Working memory capacity and its relation to general
intelligence. Trends Cognit. Sci. 7(12), 547–552 (2003)

27. M. Daneman, P. Carpenter, Individual differences in integrating information between and
within sentences. J. Exp. Psychol. Learn. Mem. Cognit. 9, 561–584 (1983)

28. R. Depue, P. Collins, Neurobiology of the structure of personality: Dopamine, facilitation of
incentive motivation, and extraversion. Behav. Brain Sci. 22(3), 491–517 (1999)

68 S.-H. Chen et al.

29. D. Detterman, M. Daniel, Correlations of mental tests with each other and with cognitive
variables are highest for low-IQ groups. Intelligence 13, 349–359 (1989)

30. M. Fenton-O’Creevy, E. Soane, N. Nicholson, P. Willman, Thinking, feeling and deciding: The
influence of emotions on the decision making and performance of traders. J. Organ. Behav.
32(8), 1044–1061 (2011)

31. M. Gendreau, J.-Y. Potvin, Handbook of Metaheuristics (Springer, New York, 2010)
32. G. Gigerenzer, Gut Feelings: The Intelligence of the Unconscious (Penguin, New York, 2007)
33. G. Gigerenzer, C. Engel, Heuristics and the Law (MIT, Cambridge, 2006)
34. T. Gilovich, D. Griffin, D. Kahneman, Heuristics and Biases: The Psychology of Intuitive

Judgment (Cambridge University Press, Cambridge, 2002)
35. J. Hirsh, J. Peterson, Extraversion, neuroticism, and the prisoners dilemma. Pers. Indiv. Differ.

46(2), 254–256 (2009)
36. M. Hsu, M. Bhatt, R. Adolphs, D. Tranel, C. Camerer, Neural systems responding to degrees

of uncertainty in human decision-making. Science 310, 1680–1683 (2005)
37. E. Hunt, The role of intelligence in modern society. Am. Sci. July/August, 356–368 (1995)
38. T. Judge, C. Higgins, C. Thoresen, M. Barrick, The big five personality traits, general mental

ability, and career success across the life span. Person. Psychol. 52, 621–652 (1999)
39. M. Kane, D. Hambrick, A. Conway, Working memory capacity and fluid intelligence are

strongly related constructs: Comment on Ackerman, Beier, and Boyle. Psychol. Bull. 131,
66–71 (2005)

40. R. Kaplan, D. Norton, The Balanced Scorecard: Translating Strategy into Action (Harvard
Business Press, Boston, 1996)

41. P. Kyllonen, R. Christal, Reasoning ability is (little more than) working-memory capacity?
Intelligence 3, 1–64 (1990)

42. S. Lewandowsky, K. Oberauer, L.-X. Yang, U. Ecker, A working memory test battery for
MatLab. Behav. Res. Meth. 42(2), 571–585 (2011)

43. A. Lo, D. Repin, The psychophysiology of real-time financial risk processing. J. Cognit.
Neurosci. 14(3), 323–339 (2002)

44. A. Lo, D. Repin, B. Steenbarger, Fear and greed in financial markets: A clinical study of day-
traders. Am. Econ. Rev. 95(2), 352–359 (2005)

45. B. Lucey, M. Dowling, The role of feelings in investor decision-making. J. Econ. Surv. 19(2),
211–237 (2005)

46. K. Morsanyi, S. Handley, How smart do you need to be to get it wrong? The role of cognitive
capacity in the development of heuristic-based judgment. J. Exp. Child Psychol. 99, 18–36
(2008)

47. K. Oberauer, H.-M. Süß, O. Wilhelm, W. Wittman, The multiple faces of working memory:
Storage, processing, supervision, and coordination. Intelligence 31, 167–193 (2003)

48. T. Offerman, J. Sonnemans, What’s causing overreaction? An experimental investigation of
recency and the hot-hand effect. Scand. J. Econ. 106(3), 533–554 (2004)

49. B. Roberts, N. Kuncel, R. Shiner, A. Caspi, L. Goldberg, The power of personality: The
comparative validity of personality traits, socio-economic status, and cognitive ability for
predicting important life outcomes. Perspect. Psychol. Sci. 2, 313–345 (2007)

50. J. Rust, J. Miller, R. Palmer, Behavior of trading automata in a computerized double auction
market, in Double Auction Markets: Theory, Institutions, and Laboratory Evidence, ed. by
D. Friedman, J. Rust (Addison Wesley, CA, 1993), pp. 155–198

51. J. Rust, J. Miller, R. Palmer, Characterizing effective trading strategies: Insights from a
computerized double auction tournament. J. Econ. Dyn. Contr. 18, 61–96 (1994)

52. H. Shefrin, Beyond Greed and Fear: Understanding Behavioral Finance and the Psychology
of Investing (Oxford University Press, New York, 2007)

53. V. Smith, Papers in Experimental Economics (Cambridge University Press, Cambridge, 1991)
54. E. Weber, E. Johnson, Decisions under uncertainty: Psychological, economic, and neuroeco-

nomic explanations of risk preference, in Neuroeconomics: Decision Making and the Brain,
ed. by P. Glimcher, E. Fehr, A. Rangel, C. Camerer, R. Poldrack (Academic, New York, 2008),
pp. 127–144

2 Can Artificial Traders Learn and Err Like Human Traders? 69

55. M. Wellman, A. Greenwald, P. Stone, Autonomous Bidding Agents: Strategies and Lessons
from the Trading Agent Competition (MIT, Cambridge, 2007)

56. M. Xia, J. Stallaert, A.B. Whinston, Solving the combinatorial double auction problem. Eur. J.
Oper. Res. 164, 239–251 (2005)

Chapter 3
Application of Intelligent Systems for News
Analytics

Caslav Bozic, Stephan Chalup, and Detlef Seese

Abstract The chapter starts with an overview of existing text mining systems
whose main purpose is predicting equity price movements on the financial markets.
In general, these systems transform the input text to a so-called sentiment score, a
numerical value equivalent to the opinion of an analyst on the influence of the news
text to the further development of the regarded stock. In the second part it is explored
how the sentiment score relates to some of the relevant macroeconomic variables.
It is suggested that raw sentiment score can be transformed to reveal sentiment
reversals, and such transformed indicator relates better to future returns. As an
example the project FINDS is presented as an integrated system that consists of
a module that performs sentiment extraction from the financial news, a benchmark
module for comparison between different classification engines, and a visualization
module used for the representation of the sentiment data to the end users, thus
supporting the traders in analysing news and making buy and sell decisions.

3.1 Introduction

News articles make a very important information source for traders. News stories
reach a huge number of people, and they can initiate massive market movements,
like panic selling or massive buying, but they can also lead to more subtle market
movements. Until recently it was mainly the task of human analysts to determine
how positive or negative a news story is for a subject company. In general, we call
such a positivity or negativity measure “text sentiment”.

C. Bozic • D. Seese (�)
Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: bozic@kit.edu; detlef.seese@kit.edu

S. Chalup
School of Electrical Engineering and Computer Science, The University of Newcastle, Australia
e-mail: stephan.chalup@newcastle.edu.au

M. Doumpos et al. (eds.), Financial Decision Making Using Computational Intelligence,
Springer Optimization and Its Applications 70, DOI 10.1007/978-1-4614-3773-4 3,
© Springer Science+Business Media New York 2012

71

72 C. Bozic et al.

With a rise of algorithmic trading volume in recent years, the need for quantifying
qualitative information in textual news and incorporating that additional information
into new trading algorithms emerged. This task has to be done on a vast amount
of data and in millisecond frequency range, so these requirements render human
analysts less useful and machines have to take over the task of quantifying text
sentiment.

There are two paths of using quantified text sentiment information—one is
feeding it to the machinery that executes trades automatically, and there it is
combined with other indicators and used by an algorithm to execute trades most
efficiently. The alternative approach is to present this sentiment information to
traders visually in a comprehensible way, so the news articles are summarized
and the important ones can be filtered. This second approach offers support to
professional traders in making trading decisions and relieve them from the burden
of following all news releases, including those unimportant and uninteresting.

In this chapter we will give an overview of the most important systems with
this goal found in the literature and then describe the system developed within
the Karlsruhe Institute of Technology (KIT) and its unique way of using Neural
Networks and Support Vector Machines methodology to analyse news articles and
support traders in their decisions.

3.2 Present Results

In the past decade different systems and methods appeared in the literature that try to
solve the task of automatic news analysis. They use text mining of publicly acces-
sible financial texts in order to predict market movements. They employ different
machine learning approaches, define important features in text in a different way,
and use different and often incomparable criteria for performance measurement.
Although some of them do not explicitly use the term “text sentiment”, if we observe
text mining methodologies as transformations that assign a numerical value to every
textual string, we can refer to that numerical value as a sentiment score. All these
publications have at least implicit statements about the predictive power of the
specific sentiment score on, for example returns or volatility.

In the following sections we will describe these systems, always following the
similar structure. We start with a brief overview and a list of publications where
the system was described. Then a source of news data is described, followed by
a description of a quantitative data from markets that was used and a definition
of target values or classes. Afterwards, we present approaches to document repre-
sentation, followed by employed classification methodologies. Finally, methods of
performance assessment are described, and a section closes with a short discussion,
where appropriate. If not stated otherwise, we describe the most recent version of
the system, supposing it to be most advanced and best performing.

3 Application of Intelligent Systems for News Analytics 73

3.2.1 System LOLITA for Finance

Forerunner of all systems of this type that can be found in the academic literature
was a financial text summarization system based on natural language engineering
system LOLITA (Large-scale, Object-based, Linguistic Interactor, Translator, and
Analyser). It was developed at the University of Durham, and it is first mentioned
in [42]. In the same year the first proposal to use this system for financial text
analysis came as a publication [14]. The financial application of the system was
described in a series of publications [12, 13, 15, 16]. The LOLITA system translates
text into a semantic network representation, and the built-in templates for financial
activities extract specific events that are expected to have an influence on the
market movements. Identified and implemented built-in templates can recognize
company takeover, merger, privatization, new issue of shares, new stake, dividend
announcement, overseas listing, and bankruptcy. Further analysis and relating
extracted event properties to a quantitative data from stock markets were out of
scope of this work. That is why it is noted as a forerunner only.

3.2.2 System PDR

The first prototype of the system that uses data mining techniques to predict
market movements was presented in the master thesis [34]. The extended version
was described shortly afterwards in [66]. The system originates from Hong Kong
University of Science and Technology, and it employs methodology of probabilistic
datalog rules (PDR) to predict daily change of Hong Kong’s Hang Seng Index (HSI).
The improved system is presented in the subsequent publications [9,10], and finally
it is in detail described in the PhD thesis [11].

The analysed text is built by merging all articles published during 1 day in
all relevant data sources. The list of data sources contains 41 daily changing
documents from financial web sites: Wall Street Journal (www.wsj.com), Finan-
cial Times (www.ft.com), CNN (www.cnnfn.com), International Herald Tribune
(www.iht.com), and Bloomberg (www.bloomberg.com). There is an elaborated
procedure for selecting relevant data sources by comparing its performance on the
training dataset.

The textual data is aligned with daily values of the Hang Seng Index. The total of
120 training days are split into three classes, “up”, “steady”, and “down”, according
to daily change of HSI. Changes between −0.5% and +0.5% are considered as
“steady”, while changes of more than 0.5% in positive and negative direction are
considered as “up” and “down”, respectively. The threshold value used in the first
version of this system was 0.3%.

The underlying vocabulary is handcrafted, but unfortunately the complete list
can be found only in [34] and contains 125 phrases, for example “hang seng index
surged”, “shares rose”, “political worries”, or “dollar edged lower”. According to

www.wsj.com
www.ft.com
www.cnnfn.com
www.iht.com
www.bloomberg.com

74 C. Bozic et al.

[11], later vocabulary contains 392 words and phrases, selected from the list of 790
suggested by experts. The first version of the system matched only the complete
vocabulary phrases in the analysed text, what is in subsequent version changed to
word-level matching, but no version uses word stemming. The document vector is
built using term frequency with either inverse document frequency (IDF) or category
frequency (CF).

The system uses PDR to build rules that assign scores to text documents. The
set of rules is built for each target class, so each analysed document is assigned
three distinct scores for “up”, “steady”, and “down”. The scores are compared to
certain thresholds to obtain a categorical result (zero or one) for each of the classes.
If the result is inconsistent and the text is assigned to none or more than one class,
the conflict resolution is conducted. Three different conflict resolution methods are
proposed: based on the simple maximum likelihood, on the maximum deviation
from the corresponding threshold, and on the nearest neighbour.

As the final step, the system predicts closing value of HSI HSIt using classifi-
cation result CP and previous day’s closing value HSIt−1. Three delta values δup,
δsteady, and δdown are calculated from training data for each class separately. The
delta is defined as an average difference of HSI values in 2 consecutive days. Nc

represents number of days in training set falling into particular class c:

δc =
1

Nc
∑
t∈c

(HSIt −HSIt−1).

The predicted closing value HSI′t is then calculated by adding the appropriate
delta for the predicted class CP to the previous HSI closing value:

HSI′t = HSIt−1 + δCP.

Performance evaluation is consistently done using overall accuracy as the main
performance measure. The best reported result in [11, p. 161] is 51.9% accuracy for
predicting direction of HSI change, and it is achieved with majority voting among
multiple data sources and calculated for 79 trading days. Besides HSI, system
described in [66] predicts also Dow Jones Industrial Average, Nikkei 225, Financial
Times 100 Index, and Singapore Straits Index. The best reported accuracy there
is 46.7% for the Financial Times 100 Index. These evaluations are done using 60
trading days.

In one short passage of [10] the same result is expressed in a different manner.
The authors analyse the probability that the outcome of classification would
have reached certain accuracy if the prediction was totally random. Even for the
worst prediction accuracy in the experiment of 40.2%, they could refute the null
hypothesis that the same result could come from random guessing with 99.82%
confidence.

It is worth mentioning that [66] compares the system based on PDR with two
further systems based on k-nearest neighbour learning and neural networks. For
the feed-forward neural network with 423 input neurons (one for each of the

3 Application of Intelligent Systems for News Analytics 75

features), 211 neurons in hidden layer, and three output neurons, trained by back
propagation, they report the best accuracy of 43.9% for HSI, calculated on 40 trading
days. Unfortunately, further information about the neural network (for example
activation function and determination of one resulting class) was not included in
the publication.

The same article employs a trading strategy for performance evaluation. The
articles published overnight are used as an input to the system, as well as the
closing index value from the previous day. This allows to predict the direction of
index change before the market opening. According to the trading strategy, stocks
representing index or appropriate options are bought if the resulting class is “up”,
and sold if the resulting class is “down”. If the system classifies text to “steady”,
nothing is done. The reported profit for the Dow Jones Industrial Average is 7.5%
for 60 trading days where actual trading according to the strategy takes place on 40
days.

As the authors of [41] well noted, the trading strategy is based on the assumption
that at the moment the market opens one can on average sell and buy at yesterday’s
closing price. They state

However, this approach is not acceptable, because - taken that HKUST (system developed
at Hong Kong University of Science and Technology) recognizes the majority of positive
respectively negative developments correctly - it is unlikely that in the case of a positive
(negative) prediction one can buy (sell) at yesterday’s closing price, but in average certainly
at a higher (lower) price.

Maybe even more important is the fact that the authors of this trading strategy
do not use real changes in index value for the evaluation, but instead they use the
fixed thresholds defined for each of the classes, in this case +0.5 and −0.5%. This
means that the conclusion about profitability of the trading strategy is to be taken
with reservations.

3.2.3 System DC-1 for Finance

Originally created for a fraud detection, in [22] the authors present an application
of the DC-1 system for the task of news monitoring. The paper in which it has
been presented as a main contribution has a high-level definition of the general
monitoring task which is a part of data mining. The authors propose a framework
for evaluating performance of the monitoring systems based on a modified receiver
operating characteristic (ROC) curve (for more on ROC, see [21, 46]). They use
news monitoring task as an illustration of their framework’s application.

The evaluation dataset contains news messages published in the 3-month period.
The exact period, the total number of messages, and the source of the messages were
not disclosed. There are about 6,000 different companies detected in the dataset. The
news stream was aligned with (most probably daily) stock prices, and the event of
interest was a surge or a drop in the stock price greater than 10%. According to the
proposed framework, the scoring function has to be defined. The scoring function

76 C. Bozic et al.

represents the utility of detecting the event in a certain point in time, and it is set to 1
if the event of a price change was recognized during the previous day, or on the day
of the price change before 10:30 a.m. Otherwise, the scoring function is set to 0.

Each story was lexically analysed and reduced to its constituent words. The
words are stemmed and those from a stop word list are removed from the further
analysis. The ordered pairs of two adjacent words (bigrams) were also used in
the final vector representation of the news story. The stories preceding substantial
change in price (either positive or negative) are labelled as positive examples. This
means that all subsequent performance analyses do not distinct between positive and
negative change in stock prices, so any direct economic interpretation of the results
is difficult.

For performance evaluation, the authors use a modified version of ROC named
activity monitoring operating characteristic (AMOC). The variables represented on
the axis of this graphical representation are modified to be in accordance with the
sequential nature of the monitored data streams. So the x axis represents false
alarm rate, normalized to some time interval, and y axis shows average score,
according previously defined scoring function. The results presented in the paper
are calculated using tenfold cross-validation. The AMOC curve of the system is
presented in the publication, and some of the specific points read from the graph
are, for example (0.1, 0.76), (0.2, 0.89), and (0.5,0.97). The points of the AMOC
curve are determined by varying the threshold of the event detection trigger.

The authors introduce two orthogonal distinctions for classifying approaches
in stream mining: the first distinction separates “profiling” on the one end, where
only one class of the events is modelled, and all the events that substantially differ
from this profile are considered events of interest and “discriminating” on the other
end, where both classes are modelled with specific attention to differences between
classes. The other distinction is made between a “uniform” and an “individual”
approach. In the “uniform” approach only one model for all streams is built, while
“individual” approach models each data stream individually. The authors show that
the individual approach does not bring much improvement in the news monitoring
case study, although introducing more complexity.

3.2.4 System Ænalyst

Started at the University of Massachusetts Amherst, the system under the name
of Ænalyst aims at identifying news stories that strongly correlate with significant
shifts in the stock price. The project proposal is published in [31], while the actually
implemented system was described in [32, 33]. The system uses news messages
collected from Biz Yahoo! and modified time series of stock prices transformed
to trends by piecewise linear regression, and tries to mine these two types of data
concurrently.

The source of the data consists of news stories published via Biz Yahoo! in
the period from 15 October 1999 to 10 February 2000. The authors report 38,469

3 Application of Intelligent Systems for News Analytics 77

news stories mentioning 127 companies, and the stories are already tagged with the
company names they mention. The selection of the companies is done according
to the specific criteria: 15 stocks with the largest increase on any day, 15 with
the largest decrease on any day, and the certain number of stocks from the three
lists published periodically that mention companies that are most actively traded,
gainers, and losers. This kind of ex post selection of the companies comprising the
dataset makes the trading strategy evaluation results biased in the way that is not
attainable in the real market conditions (see [41]).

The quantitative part of the dataset contains stock prices for these 127 companies
during the opening hours of the exchanges, with the 10 min resolution. The period
is equivalent to the period of the news dataset. “Piecewise linear regression” is used
to represent the time series as an array of trend lines. These trends are clustered
according to the slope and confidence (squared error) of each linear segment, and
after the inspection of the distribution, it is decided that a simple binning procedure
can be used. The trends are divided into five classes: “surge” (“plunge”), if the slope
is greater (less) than 75% of the maximum (minimum) slope, “slight+” (“slight−”)
if the slope is between 50 and 75% of the maximum (minimum) observed slope, and
“no recommendation” otherwise.

The authors propose named entities, linked objects, and subsumption hierarchies
as approaches for text representation (see [31] for more details). Though, the
evaluation in subsequent publications [32, 33] is done for bag of words approach
only. Bag of words is an approach to document representation where unordered
collections of words are used, assuming conditional independence and disregarding
the order of words. The system builds a language model for all messages that
precede the beginning of the particular trend for a certain period. If t is the moment
in which the particular trend starts, then all the messages published between t − h
and t are considered to have influence on the appearance of the observed trend.
These messages are used to build the language model for the class of the observed
trend. The variable h represents the chosen time horizon, and it is varied from 5
to 10 h during the evaluation. Authors use additional approach of aligning only the
stories published contemporaneous with the observed trend, with the note that this
kind of model is rather explanatory than predictive.

After all of the news stories are associated with trends, and trends are divided
into classes, classification is done by building language models with an assumption
of words independence, effectively arriving at a naı̈ve Bayesian classification. Since
the news analytics and news classification is an on-line task, where used language
can change, we need to assure that these new terms have non-zero probability;
otherwise, it would drive the model’s probability to zero value. This is done by a
linear back-off algorithm, where the conditional probability of word ω under the
model Mt is given by formula

P(ω |Mt) = λtPml(ω |Mt)+ (1−λt)P(ω |GE),

78 C. Bozic et al.

where Pml represents the original probability under the certain language model
that possibly can be equal to zero and GE denotes background of general English
language model. The parameter λt is calculated according to formula

λt =
Nt

Nt +Ut

with Nt denoting total number of tokens and Ut denoting the number of unique
tokens in the model Mt .

The evaluation of the prototype is done using two approaches: a detection error
tradeoff (DET) curve, similar to ROC, and a trading strategy. DET is a graphical
representation of the classification performance that plots miss rate against false
alarm probability. Tenfold cross-validation was used to calculate the results. The
plot contains points like (0.5, 90) and (15, 60) being percentages of false alarms
and miss rates, respectively. This means that the system can achieve 10% recall
with false alarm rate of 0.5% in the task of predicting exact class of the trend up to
10 h ahead.

The previous evaluation works with pairs (t, D), where t represents a trend and
D a document, so one document can be associated with more than one trend (in fact
it is associated with all trends that follow the particular document in next 10 h). For
a practical evaluation, one need to introduce conflict resolution and determine only
one prevailing resulting class for the each document. This is done in the evaluation
that uses trading strategy. Different language models are built for each stock using
the data from the first 3 months of the dataset, while the rest of the dataset was used
for evaluation. According to the most probable class, the trading strategy should buy
or short-sell the stock worth of 10,000 USD. The budget is considered unlimited,
and the transaction costs are considered to be zero. The reported total gain was
21,000 USD within the whole dataset, with, for example in the case of Yahoo!
stocks 0.5% gain per transaction. With changing the time window for associating
documents and trends in the range from 1 to 10 h, the average profits varied from
290 USD to 2,360 USD.

3.2.5 System from University of California, San Diego (UCSD)

News analytics prototype developed at the University of California in San Diego
and financed by US Air force was described in a project report [26] and somewhat
more detailed later in [25]. In the first version, it uses the same dataset as prototype
Ænalyst and an original approach to aligning text and price values. The naı̈ve
Bayesian classifier is used for text classification.

The dataset contains 25,087 articles about 30 companies of the Dow Jones
Industrial Average (DJIA) index in the period from 26 July 2001 to 16 March 2002.
After excluding the articles published outside of business hours and excluding the
articles that correspond to the periods where price data is incomplete or missing,

3 Application of Intelligent Systems for News Analytics 79

the authors report 12,437 news articles. The influence of the published article to the
market is modelled by the “window of influence”, thus creating the model similar to
event study. Window of influence is the period in which the published article should
have the influence on the stock price of the company that is mentioned. Different
lengths of the window of influence up to 30 min are evaluated, and this is done for
the two cases: when the window of influence ends at the moment of news article
publication and when the window of influence starts at the moment of news article
publication.

The price data is collected on the 1-min level. The classes are determined
according to the β and index adjusted change m in the stock price within the window
of influence. The price data is transformed according the following formula:

m(t1, t2) =
δ ps(t1, t2)

β
− δ pi(t1, t2),

where t1 and t2 represent endpoints of the window of influence, δ ps(t1, t2) is the
change in the observed stock price and δ pi(t1, t2) is the change of the index value
during the window of influence. The parameter β determines relation between the
price of the particular stock and the market as a whole. The value of DJIA index is
chosen as a proxy for market performance in this case.

According to this value, the target classes are labelled as “up”, “normal”, and
“down”. If the value of m is less than the negative threshold ρnegative, the target class
is “down”, if the value of m is greater than positive threshold ρpositive the target
class is “up”, and otherwise the target class is “normal”. The values for ρnegative

and ρpositive are determined in such a way that the frequencies of the classes “up”,
“normal”, and “down” are approximately 25%, 50%, and 25%, respectively. The
classification is performed using a naı̈ve Bayesian classifier.

Depending on the prior distribution of classes the trivial classifier that always
predict the class with highest prior can have better overall accuracy, although not
being economically useful, as noted by the authors. That is why they suggest two
performance measures based on the economic utility of the classification. One is
based on the β and index adjusted price change m, which authors call “normalized
economic value estimate” (NEVE). They also mention the major drawbacks of this
measure by saying

. . . the meaning of NEVE is not easy to understand, nor even its unit is clear.

The second performance measure the authors suggest is the average profit per trade
achieved in the specific trading strategy. According to the strategy, at the beginning
of the window of influence one buys (sells) 1,000 USD worth of shares of the
mentioned company and sells (buys) β× 1,000 USD worth of the index if the
predicted class was “up” (“down”). At the end of the window of influence, this
position is cleared.

The best performance according to both criteria is achieved using the window of
influence with the length of 20 min before the publication of the news article. The
reported profit per trade is 1.0063 USD and NEVE value of about 0.17. The question

80 C. Bozic et al.

of economic applicability of the trading strategy in real conditions stays open
since it seems that it incorporates some actions that have to take place before the
classification of the news article is performed.

3.2.6 System from the Chinese University of Hong Kong
(CUHK)

The prototype developed at the Chinese University of Hong Kong is the first system
which analyses news stories published by Reuters, thus achieving to collect about
600,000 news items for the training and evaluation. It is mostly composed of
already existing natural language processing (NLP) and machine learning (ML)
components, combined in a new manner to allow for parallel mining of text and
multiple time series. The system is described in two publications [23, 24].

These 600,000 news articles were published between 1 October 2002 and 30
April 2003, and the first 6 months were used for training, while the last month was
used for the out of sample evaluation. The news articles are tagged with company
names mentioned, so the system uses all messages in that period that mention 33
components of Hang Seng Index.

The time series of daily prices is transformed using piecewise linear regression,
similar to the one in [33]. It is just not clear whether both opening and closing
prices represent points in time series, or just one type of daily price, and in the latter
case, which one. All trends generated this way are characterized by slope m and
goodness of fit R2 and clustered into three classes: “rise”, “steady”, and “drop”. The
cluster with greatest average slope is selected for the class “rise”, the cluster with
the lowest average slope is selected for class “drop”, while the third cluster becomes
class “steady”.

The documents are represented by a bag of words approach where all the words
are stemmed, and with punctuation, stop words, web links, and numbers excluded.
The features produced that way are weighted according to the tf∗idf schema.

The authors chose to align the documents with contemporaneous trend only,
not allowing for delayed influence of the news to stock prices. They back up this
decision by effective market hypothesis, although in later evaluation of the system’s
performance, they use trading strategy and show its profitability, thus violating
the previous principle. The improvement and the novel approach is to once more
cluster the documents falling into the categories “rise” and “drop”, thus creating
two subclusters each, and then removing one subcluster from the “rise” category
which is more similar to the documents of the “drop” category, and vice versa—
removing one of two subclusters from the “drop” category that is more similar
to the documents of the “rise” category. This provides two more distant classes
of documents for “rise” and “drop” categories, creating less confusion during the
learning phase.

3 Application of Intelligent Systems for News Analytics 81

The model learning is done using SVMlight support vector machine software
[63]. Two SVMs are trained, for “rise” and “drop” class. If the news article is
classified positive by both of the classifiers, it is labelled as ambiguous, effectively
falling into the “steady” class.

The evaluation is performed by applying a trading strategy to the prices and news
data from April 2003. According to the strategy, the shares are bought (sold short)
in the moment of publication of the news article that is classified as “rise” (“drop”),
and the position is cleared after 24 h. If the news article is published during the
holidays, the shares are bought (sold short) immediately after the stock market opens
on the first business day. Since the authors have only daily data at disposal, it is not
clear which daily price they use for the market simulation. The best performing
version of the system achieves a rate of return of 0.1985, but the total number of
trades was not disclosed. The usual assumption of zero transaction cost applies also.

3.2.7 System AZFinText

One of the recent systems that is still in development bears the name of AZFinText.
It is s built upon one version of Arizona Text Extractor (AzTeK) which is described
in [64]. The AZFinText system aims at predicting price of particular stock after
a 20-min period by analysing news published via Yahoo! Finance. The system
is presented consistently and with slight constant improvements in a long row of
publications [49–57].

As the only data source the system uses articles from Yahoo! Finance, tagged
with the company they relate to. Texts published outside of stock markets opening
hours, as well as those published less than 1 h after markets opening and less than
20 min before markets closing, are filtered out. Excluded are also messages that are
less than 20 min apart. The final dataset used for analysis contains 2,802 articles
from 5 trading weeks that relate to 484 of the S&P 500 companies. The goal is to
predict the exact equity price exactly 20 min after the news text has been published.

The input text is preprocessed using four different approaches: bag of words,
noun phrases, proper nouns, and named entities. Only phrases with three or more
instances per document are represented with one in resulting binary vector, while
the other phrases are represented as zero. The binary document vector created in
this way, together with equity price in the moment of article publication, is used as
an input to machine learning engine.

Machine learning part of the this prototype is built on SVM trained using
sequential minimal optimization as described in [45] and using linear kernel. As
an output from the training step, SVM estimates parameters of a regression by
assigning weights to each of the input terms. The dependent variable of this
regression represents the predicted equity price.

In [57] the authors use additional inputs to the machine learning engine. It
represents sentiment assessment of an analysed article, produced by OpinionFinder.
OpinionFinder analyses text and classifies it as rather “subjective” or rather

82 C. Bozic et al.

“objective”, and its tone as “positive” or “negative”. In both classifications, the
classifier can also abstain from classification. The article reports that just adding
subjectivity and tone information leads to deteriorated result, but on the other hand,
results improve when the prediction is done only on subset of articles classified by
OpinionFinder as “subjective” or “negative”.

For performance evaluation there are three approaches consistently used through
publications. All of them employ tenfold cross-validation. The first measure of
accuracy is equivalent to the mean squared error between real and predicted equity
price. The lowest reported value is 0.03407 on 2,620 data points when named
entities preprocessing approach is used. Unfortunately the nature of this measure
and its dependence on absolute value and range of target variables makes it unfit for
further comparisons.

The second approach considers observing the direction of change only. If a
predicted price and a realized price are both higher or both lower than the price
at the moment of prediction, the prediction is considered correct. This is equivalent
to the overall accuracy for the case of two-class classification. The best reported
value in this category is 58.2% which is achieved using a proper noun preprocessing
approach on the whole test set of 2,809 data points, with higher accuracy of 59%
if calculated for 61 subjective text only and even higher for the case of training the
SVMs separately for different industry sectors, reaching 71.18%.

The third approach is using a trading strategy that follows ideas given in [39].
It invests by buying stocks which have predicted an increase of more than 1% and
short-selling a stocks which have predicted a decrease of more than 1%. The position
is in both cases cleared after 20 min. The best reported profit 8.5% is reported when
using SVMs trained separately on different industry sectors in [54]. It is, though, not
clear how many trades this scenario contains. The number of trades is only reported
in [49], where the best profit of 3.6% is achieved in 108 trades with named entities
preprocessing model used.

3.2.8 Other Systems

Further prototypes include the system called news categorization and trading
system (NewsCATS) described in [40,41]. NewsCATS is a high-frequency forecast
system that classifies press releases of publicly traded companies in the USA
using a dictionary that combines automatically selected features and a handcrafted
thesaurus. For classification the authors use SVMs with polynomial kernels.

One of a few systems that employ neural networks is described in [35, 36]. The
system proposed in the first publication uses only the volume of posted internet stock
news to train a neural network and predict changes in stock prices, so we cannot
consider the system proposed there as a real text mining system. As an extension, the
second work [36] employs NLP techniques and a handcrafted dictionary to predict
stock returns. They use a feed-forward neural network with five neurons in the input

3 Application of Intelligent Systems for News Analytics 83

layer, 27 in the hidden layer, and one output neuron. Since only 500 news items
were used for the analysis, no statistical significance of the results could be found.

Another group of publications contains works that do not primary attempt to
prove economical relevance of published text by evaluating specifically tailored
trading strategies, but rather to find statistically relevant relations between financial
indicators and sentiment extracted from the text.

The authors of [1] use naı̈ve Bayes and SVM classifiers to classify messages
posted to Yahoo! Finance and Raging Bull and determine their sentiment. They do
not find statistically significant correlation with stock prices, but they find sentiment
and volume of messages significantly correlated to trade volumes and volatility.
In their methodological paper [18], authors offer a variety of classifiers, as well
as composed sentiment measure as a result of voting among classifiers. In the
illustrative example, they analyse Yahoo! stock boards and stock prices of eight
technology companies, but they do not find clear evidence that the sentiment index
can be predictive for stock prices.

There are two pivotal articles published in the Journal of Finance. Tetlock in
[60] observes Wall Street Journal’s column “Abreast of the Market”, uses content
analysis software General Inquirer together with principal component analysis
approach and finds that high pessimism in published media predicts downward
pressure on market prices. The authors of [61] succeeded to find that rate of negative
words in news stories about certain company predicts low earnings of the company.

While most of the previously described publications focus on predicting price
trends of single stock or index, there are publications that aim at determining
influence of news releases to volatility. System [62] improves the risk-return profile
by exiting the market in case of news that are predicting high volatility, while
[48] attempt to classify press releases of German public companies according their
influence on volatility of stock prices. There are also systems that aim at predicting
foreign exchange rates, for example [44, 65], but we will stay focused on the
sentiment extraction systems for equity prices prediction.

From the previous sections and Tables 3.1–3.6 we can notice that existing
systems implement various classification methodologies—at the beginning mostly
naı̈ve Bayes and decision rules, later more SVMs, and recently just a few that use
neural networks. The feature definition procedure and document representation are
quite different between systems, what makes comparison of different classification
approaches a complicated task.

It is of special interest to compare the performance evaluation of all these
systems. Some of performance measures are purely machine learning and sta-
tistically oriented, making them less useful for financial setting. The others are
based on historical data and trading strategies, but in most of these cases, lack
enough evaluation data points or use assumptions that are unattainable in real life.
All presented systems have between 40 and about 13,000 evaluation data points,
what might be not enough to guarantee stability of the results. Additionally, both
systems having more than 10,000 evaluation points include some assumptions that
are observable only ex post.

84 C. Bozic et al.

Table 3.1 Properties of the prototype PDR

Prototype PDR

Features definition Handcrafted
Inputs Text 41 data sources a day
Classifier Rule-based PDR

(k-nearest neighbour)
(feed-forward NN)

Output Categorical
Prediction Index value change
Frequency Daily
Performance Overall accuracy 51.9%/3 classes

Trading strategy 7.5%/40 trades
Evaluation data points 40

Table 3.2 Properties of the prototype DC-1 for finance

Prototype DC-1 for finance

Features definition Automatic
Inputs Text 3 months and 6,000 companies
Output Categorical
Prediction Stock price jump
Frequency (Daily)
Performance ROC-AMOC
Evaluation data points Undisclosed

Table 3.3 Properties of the prototype Ænalyst

Prototype Ænalyst

Features definition Automatic
Inputs Text Biz Yahoo!
Classifier Naı̈ve Bayesian
Output Probabilities/categorical
Prediction Trend class
Frequency 10 min
Performance DET

Trading strategy 0.5%/trade
Evaluation data points 12,174 trades

Table 3.4 Properties of the prototype UCSD

Prototype UCSD

Features definition Automatic
Inputs Text
Classifier Naı̈ve Bayesian
Output Categorical
Prediction Normalized price change
Frequency 1 min
Performance NEVE 0.17

Trading strategy 1.0063 USD/trade
Evaluation data points 13,372 articles

3 Application of Intelligent Systems for News Analytics 85

Table 3.5 Properties of the prototype CUHK

Prototype CUHK

Features definition Automatic
Inputs Text
Classifier SVM SVMlight
Output Categorical
Prediction Trend
Frequency Daily
Performance Trading strategy 0.1985 rate of return
Evaluation data points 1 month daily data

for 33 companies

Table 3.6 Properties of the prototype AZFinText

Prototype AZFinText

Features definition Automatic
Inputs Text Yahoo Finance
Classifier SVM
Output Categorical

Real
Prediction Stock price
Frequency 1 min
Performance Mean squared error 0.03407

Overall accuracy 71.18%
Trading strategy 8.5%

Evaluation data points Tenfold cross-validation
on 2,802 articles

We suggest to bridge this gap by creating a benchmark based on sufficient data
to ensure statistical relevance of the results (over 100,000 articles and 600,000 daily
returns). We also offer the spectrum of different classification approaches, while
keeping the text preprocessing and document representation constant, enabling the
effective comparison of classification engines.

Besides the prototypes described in the academic literature, there are systems
developed in the industry. They employ methodology that is proprietary and rarely
described in the academic literature. Nevertheless, they represent de facto industrial
standard, being used by a great number of professional traders. Such services are
provided under the name of News Analytics in the product portfolios of companies
like RavenPack (see Sect. 3.3.2) and Thomson Reuters (see Sect. 3.3.1).

3.3 Text Sentiment Properties

The publications presented in the previous section showed a relation between
extracted sentiment from financial news and equity prices, trade volumes, and
volatilities. We will take here the macroeconomic view and explore the influence of

86 C. Bozic et al.

such sentiment score to GDP and other macroeconomic variables. We also propose
a way of transforming raw sentiment score to expose sentiment reversals and show
that the data transformed in this way relate even better to future returns.

3.3.1 Macroeconomic Data

The data used in this research originates from two main sources: the source
for quantified news data and the basis for sentiment score comes from Reuters
NewsScope Sentiment Engine for historical data, while the public World Economic
Outlook (WEO) database [29] of the International Monetary Fund provided the
macroeconomic data.

Data constituting the output of the Reuters NewsScope Sentiment Engine (now
part of the Thomson Reuters News Analytics product) represents the authors
sentiment measure for every English language news item published via NewsScope
in the period from 2003 to 2008 inclusive. The measure classifies a news item into
one of three categories: positive, negative, or neutral. The probability of the news
item falling into each of the categories is also given. Each record represents a unique
mention of the specific company, with a possibility of one news item relating to more
than one company. In our dataset there are 6,127,190 records. Each news item can
have multiple tags called topic codes, and topic codes are grouped into categories.
One of the categories represents countries, and it can be used for determining what
country is mentioned in the particular news item. Using this tagging feature, average
sentiment per country can be calculated. The data is aggregated using the system
described in [6] to the level of country and year. The data provided by Reuters
are outputs of the classifiers in the form of three probabilities: probability that the
analysed news item is positive in sentiment Ppi, that it is neutral Poi, or that it is
negative in sentiment Pni. We define sentiment score Si by subtracting probabilities
for positive and negative class, and by aggregation we get a yearly sentiment score
for a country Sy,c:

Si = Ppi −Pni.

This way we get panel data with 6 consecutive years and 233 countries and
territories. We combine this data with the data for the same period from the WEO
database. After excluding countries that are not a part of the WEO database, we get
the data about 181 countries. The selected subset of variables from WEO dataset
is given in Table 3.7. The estimation of panel regression coefficients on the data is
performed with the help of OxMetrics and DPD software [20].

Table 3.8 shows estimated values of coefficients for the OLS panel regression
when only contemporaneous sentiment is used as independent variable. The star
notation of the statistical significance of the results is explained in Table 3.12. We
find positive and significant relation of the average sentiment of all news items
published in 1 year and mentioning a country, with that country’s GDP in that

3 Application of Intelligent Systems for News Analytics 87

Table 3.7 Selected variables from WEO dataset

Variable description Units Scale

Gross domestic product, constant prices (change) Percent change
Gross domestic product, current prices US dollars Billions
Gross domestic product per capita, current prices US dollars Units
Gross domestic product based on purchasing-power-parity
(PPP) valuation of country GDP Current international

dollar
Billions

Gross domestic product based on purchasing-power-parity
(PPP) per capita GDP Current international

dollar
Units

Gross domestic product based on purchasing-power-parity
(PPP) share of world total Percent
Investment Percent of GDP
Gross national savings Percent of GDP
Inflation, average consumer prices Index
Inflation, average consumer prices (change) Percent change
Inflation, end of period consumer prices Index
Inflation, end of period consumer prices (change) Percent change
Import volume of goods and services (change) Percent change
Export volume of goods and services (change) Percent change
Unemployment rate Percent of total labour

force
Population Persons Millions

Table 3.8 Estimated
coefficients,
contemporaneous sentiment
score as an independent
variable

Variable description Coefficient

Gross domestic product, constant prices (change) 1.5138∗∗

Gross domestic product, current prices 44.3611∗∗

Gross national savings 6.2975
Import volume of goods and services (change) 4.6756
Export volume of goods and services (change) 1.8859
Population 1.1836∗∗∗

year, and with that country’s GDP change compared to the previous year. Thus,
the country with more positive news published in a year will have greater GDP and
more positive GDP change by the end of the year.

This prediction goes beyond the time span of 1 year, as the data from Table 3.9
suggests. It shows that the sentiment score in 1 year can be significantly and
positively related to GDP, GDP change, gross national savings, and import volume
for the following years, up to 3 years ahead. The negative estimations for the
coefficients in Table 3.9, like relation to export volume, or import volume 3 years
ahead, are all not significant, so we cannot make any statements on that relations.

88 C. Bozic et al.

Table 3.9 Estimated coefficients, lagged sentiment score as an independent variable

Variable description S S(t −1) S(t −2) S(t −3)

Gross domestic product,
constant prices (change)

2.8990∗∗ 1.3739 1.6556* 0.9656

Gross domestic product,
current prices

32.6456 67.7682* 52.5004 93.2768∗∗∗

Gross national savings 14.6525* 14.6006∗∗ 8.5230* 6.2042∗∗

Import volume of goods and
services (change)

13.8133∗∗ 12.5976∗∗ 0.4568 −2.9750

Export volume of goods and
services (change)

1.4063 −4.2891 2.9645 −0.9618

Population 0.9589∗∗∗ 0.4708 1.0382∗∗ 1.2311∗∗∗

3.3.2 Sentiment Reversals

Since the scientific exploration of text mining and sentiment extraction in finance
lasts for over a decade, as noted in [7]

. . . simple “buy on the good news” and “sell on the bad news” strategies won’t likely
generate significant alpha as news analytics become more widely adopted.

That is one of the reasons for the great number of publications in recent years
which try to find novel approaches and exploit sentiment scores provided by existing
systems.

One of the recent publications, with an approach similar to ours, is [30]. The
author uses sentiment reversals as buy signals and proves the performance of his
approach by simulating a set of portfolios over the time frame 2000–2008. The
source of sentiment data is Dow Jones News Analytics historical database, where the
sentiment scores have been assigned to news articles using RavenPack proprietary
software. Each story is assigned a positive or a negative sentiment indicator as
a value of +1 and −1, respectively. Each story is also related to the company
mentioned in the text. This approach builds one time series of sentiment indicators
for each company. The author uses an average value of the sentiment time series
over a certain time window to define sentiment reversal. Sentiment reversal is, in
fact, defined as an end of the period in which the running window average sentiment
has a constantly positive (negative) value. Graphically, this corresponds to all points
where graphical representation of the running window average sentiment intersects
the x axis. There are some additional constraints introduced, like minimal duration
of reversal period of 30 days, and minimally 30 published stories in this period.

The author’s findings suggest that the portfolios built using sentiment reversal-
based signals for buying and short-selling the companies’ stocks can outperform the
market both in bull and bear market conditions.

We explored a similar approach, although using different dataset and basing our
performance assessment on more general and theoretical approach described in [6]
instead of portfolio simulation.

3 Application of Intelligent Systems for News Analytics 89

The question we want to answer here is whether sentiment data transformed by
extracting sentiment reversals can be more useful for predicting future returns for a
company than the raw sentiment score data. We work with sentiment data provided
by Thomson Reuters and evaluate it according the framework described in [6].

Historical database of Thomson Reuters News Scope Sentiment Engine is a
source of sentiment scores for all English language news published via Reuters
News Scope system since year 2003. For each company mentioned in the news,
this database contains the probabilities that the author write about the particular
company in rather positive or rather negative context. The sentiment score S(n,c)
for news article n and company c is built as a difference between the probability
that the mention is positive (Prpos) and the probability that the mention is negative
(Prneg). Since we want to work with daily data, the sentiment score is averaged
within each trading day, thus producing daily sentiment score for a company S(t,c).
With T we denote a set of all messages published during the trading day t:

S(n,c) = Prpos(N,C)−Prneg(N,C)

S(t,c) = ∑
n∈T

S(n,c).

Besides sentiment scores this dataset offers additional metadata. Most important
for us are the publication time stamp and the identifiers of all the companies
mentioned in the news. We form a subset of all news available in the archive
by choosing only those news items related to companies that are constituents of
the Russell 3000 Index. The Russell 3000 Index consists of the largest 3,000 US
companies representing approximately 98% of the investable US equity market.

The sentiment reversal measure is defined in the following way—for each
company a running average sentiment score Savg(t,c) is calculated for each day t. In
the moment of news article publication, instead of raw sentiment score as defined
in the previous paragraph, we assign a new value that measures sentiment reversal
or sentiment deviation from the average value Sr. The number of total trading days
before the current day t is denoted by Nt :

Savg(t,c) =
∑tl<t S(tl ,c)

Nt

Sr(t,c) = S(t,c)− Savg(t,c).

As a source of trading data we used Thomson Reuters Tick History database.
We extract opening prices for all trading days in 2003 for each company from
the Russell 3000 Index. The opening prices are adjusted for dividends and then
transformed into log returns. In this way we get open-to-open (ROO) returns for
each trading day in 2003 and each Russell 3000 company. The respective equation
is given below, where PO represents opening stock price and t represents the current
trading day:

ROO = ln
PO(t)

PO(t − 1)
.

90 C. Bozic et al.

Table 3.10 Estimated OLS
coefficients for raw and
transformed sentiment score,
ROO as an independent
variable

Time lag Raw sentiment score Sentiment reversal

t 104.159∗∗∗ 100.850∗∗∗

t −1 22.052∗∗ 34.596∗∗∗

t −2 −9.126∗∗ −5.034
t −3 −8.236∗∗ 0.173
t −4 −3.569 −2.887
t −5 −2.863 0.910

We next align daily sentiment data (both raw data and reversal measure) with
daily returns and build the linear regression to explore relation between these
variables. If the observed sentiment measure actually correlates with the future
stock returns and if we represent the current day’s return as a regression of previous
sentiments (as in (3.1)), then the coefficients in front of the text sentiment measures
should be significantly different from zero. We estimate regression parameters
for linear regression with open-to-open return ROO as a dependent variable using
ordinary least squares method. As independent variables we use contemporaneous
daily sentiment score S(t), daily sentiment score from day before S(t − 1), 2 days
before S(t − 2), and 3, 4, and 5 days before S(t − 3), S(t − 4), and S(t − 5). This is
done with respect to the subject company c, which is represented as an additional
parameter in the equation, besides time t. We order all the companies in our dataset
according to their market capitalization (total market value of all shares of the
company), and divide them into ten equally sized groups. In this way we get the
values for ten additional dummy variables dd1 to dd10 (being 1 if the subject
company falls into the respective group, and 0 otherwise). We include them into
the regression to account for the variations of returns as a result of company’s size

ROO(t,c) = α0S(t,c)+α1S(t − 1,c)+α2S(t − 2,c)+α3S(t − 3,c)

+α4S(t − 4,c)+α5S(t − 5,c)+
9

∑
i=1

βiddi(c)+ γ. (3.1)

We repeat the estimation of the regression parameters using sentiment reversal
measure Sr(t,c) instead of raw sentiment score S(t,c) following (3.2). The results
are presented in Table 3.10 which offers a possibility for a comparison of these two
approaches:

ROO(t,c) = α ′
0Sr(t,c)+α ′

1Sr(t − 1,c)+α ′
2Sr(t − 2,c)+α ′

3Sr(t − 3,c)

+α ′
4Sr(t − 4,c)+α ′

5Sr(t − 5,c)+
9

∑
i=1

β ′
i ddi(c)+ γ ′. (3.2)

From Table 3.10 it is visible that both sentiment measures have positive and
significant relation to contemporaneous return as well as to the return 1 day ahead.
With increasing the lag between sentiment measure and return, this relation becomes
less significant for both sentiment measures. Since contemporaneous sentiment does

3 Application of Intelligent Systems for News Analytics 91

not introduce any incremental forecasting ability, we are more interested in lagged
sentiments. Relation between today’s sentiment reversal and tomorrow’s return is
stronger and noticeably more significant than the relation between today’s raw
sentiment score and tomorrow’s return.

The conclusion from the results presented in this section, as well from the
previous work, is that sentiment reversal measure can be a very useful dimension
in news analytics and that any system aiming in representing the results of the
sentiment extraction should not omit representing this parameter.

3.4 Project FINDS

Financial News and Data Service (short FINDS) is a project going on within
Information Management and Market Engineering (IME) Graduate School at the
KIT with the goal to conduct innovative research on the analysis of quantitative
and qualitative information from financial markets [2]. The topics covered are
broad and include detecting novelty of the published financial articles employing
semantic technologies [37, 38], as well as exploring financial markets’ reaction to
the introduction of machine readable reports in XBRL format [67]. Contribution
to the evidence that published information influence financial markets, taking the
perspective of empirical microeconomics, has been brought by Storkenmaier et al.
[59] and Riordan et al. [47]. The impact of the public announcements on prices of
CO2 emission permits is investigated in [28]. The research presented in the previous
section [3–5] is a part of this corpus, too.

The FINDS system itself consists of three main components—the first compo-
nent is a NLP and text classification engine which is used to extract sentiment
from text documents and news articles. Multiple engines exist, and they are
based on Bayesian classifier, support vector machines, and neural networks. The
extracted sentiment score is delivered to the second component which is used
for performance assessment. Employing the methodology of empirical finance
and aligning sentiment data with quantitative data on an extensive dataset, this
benchmark can determine relative quality of different classifying engines and help in
choosing the appropriate one for the specific task, as described in [6]. The produced
sentiment scores are numerical values that summarize the tone of the great amount
of news articles for a number of different companies. To render this numerical
summarization useful, we developed FINDS visualization component as a third
main component of the FINDS system.

3.4.1 Sentiment Extraction

As a source of financial news we use the archive of all news items published via
Reuters NewsScope in year 2003. Besides news text this dataset offers additional
metadata. Most important for us are the publication time stamp and the identifiers

92 C. Bozic et al.

of all the companies mentioned in the news. We form a subset of all news available
in the archive by choosing only the news items related to companies that are
constituents of the Russell 3000 Index. As mentioned earlier, the Russell 3000 Index
consists of the largest 3,000 US companies representing approximately 98% of the
investable US equity market.

As a source of trading data we have an access to Thomson Reuters Tick History
database. We extract opening and closing prices for all trading days in 2003 for each
company from Russell 3000 Index. The opening and closing prices are adjusted
for dividends and then transformed into log returns. In this way we get open-to-
close (ROC), open-to-open (ROO), close-to-open (RCO), and close-to-close (RCC)
returns for each trading day in 2003 and each Russell 3000 company. The respective
equations are given below, where PO and PC represent opening and closing stock
price, respectively, and t represents current trading day:

ROC = ln
PO(t)

PC(t − 1)

ROO = ln
PO(t)

PO(t − 1)

RCO = ln
PC(t)
PO(t)

RCC = ln
PC(t)

PC(t − 1)

For training we singled out news about four companies: Apple Computer Inc.,
International Business Machines Corp., Microsoft Corp., and Oracle Corp. We kept
only the paragraph where the subject company is mentioned and four surrounding
paragraphs since this amount of surrounding text was proven in previous tests
to yield the best performance. The words with only one or two characters are
discarded. All other words are stemmed, and their absolute frequencies in the text
are calculated. Each of 11,781 distinct words in the training set represents one
dimension of the training vector. Each news item represents one training vector.
The target value is determined according to the next days open-to-open return of
the subject company. To decrease the overlapping between time range of news
publication and time range of returns, all the news items published after the closing
time of the market (3:30 p.m., local time) are considered to belong already to the
next date.

The first classification method that can be trained and then later used for
classifying unseen documents is Bayesian classification. It is based on the Bayes
theorem:

P(A|B) = P(B|A)P(A)
P(B)

.

3 Application of Intelligent Systems for News Analytics 93

If we substitute probabilities of a document falling into a certain class and look
for the class with the highest probability, the equation has the form

C = arg max
c∈classes

∏
ω∈D

P(ω |c)P(c)
P(ω |B) .

With C we denoted the selected class, ω is individual word in a document
that we want to classify D, while B represents background distribution of words
in a particular language, English in our case. This approach assumes mutual
independence of individual words, what is a common assumption in the text
classification area. Although this assumption is not strictly correct for most of the
languages, there are evidence that this simplification has little influence on practical
results [19].

The second classifier is based on support vector machines. As a kernel function
it uses radial basis function in the form

RBF(xi,x j) = exp−γ||xi − x j||2,γ > 0.

To find the best performing combination of parameters γ and C, which is the
penalty parameter of the error term, we perform grid search. Different combination
of these two parameters are tested using fivefold cross-validation on the training
dataset. The resolution is gradually increased, so we generate the accuracy contour
and can select the best values for the parameters. For the detailed discussion on
support vector machines applications in text classification and applications of kernel
methods in finance, the reader is advised to consult publications [8, 63].

The third system uses a feed-forward neural network with an input layer, two
hidden layers, and an output layer. The size of the input layer depends on the
properties of input text, and it is defined by the number of distinct words in training
dataset. In our case the number of neurons in the input layer is 11,781. The two
hidden layers consist of 16 and 8 neurons, while output layer has one or two neurons,
depending on the version of neural network. We compared two different versions of
neural networks. They differ in structure and training procedure:

• Version 1 has one neuron in the output layer, and the output value of that neuron
is the value of future return.

• Version 2 has two neurons in the output layer. During the training, the neurons
can take only one of two values—zero or one. The first neuron is set to one if
the future return is positive; the second neuron is set to one if the future return is
negative.

3.4.2 Benchmark

Each of 107,266 news items published via Thomson Reuters in the year 2003 that
mentions any of the Russell 3000 companies is classified. The paragraphs with the
mention of the subject company and the four surrounding paragraphs are singled out,

94 C. Bozic et al.

Table 3.11 Estimated OLS coefficients with ROO as an independent variable

Bayes SVM NN v1 NN v2 Reuters NSE

S(t −1) 33.22* 44.81* 13.69* 8.96 21.87∗∗

S(t −2) −10.63∗∗∗ −10.52 −6.36∗∗∗ −4.07∗∗ −9.37∗∗

S(t −3) 7.59∗∗∗ 0.840 10.78∗∗∗ −0.80 −8.79∗∗

the words with only one or two letters are discarded, and the other words stemmed.
This word vector is fed to the Neural Network predictor, and as an output we get the
text sentiment.

All the text sentiment results for one company and 1 day (in this case the next
day starts already with closing the market—3:30 p.m. local time) are averaged and
aligned with the corresponding return for the same company and same date:

ROO(t,c) =α0S(t,c)+α1S(t−1,c)+α2S(t−2,c)+α3S(t−3,c)+
10

∑
i=2

βiddi(c)+γ.

(3.3)

At this point we need the way to determine the predicting power of the text
sentiment measure. If the observed text sentiment measure actually correlates
with the future stock returns and if we represent the current day’s return as a
regression of previous sentiments (as in (3.3)), then the coefficients in front of the
text sentiment measures should be significantly different from zero. We estimate
regression parameters for linear regression with open-to-open return ROO as a
dependent variable using ordinary least squares method. As independent variables
we use a contemporaneous text sentiment value S(t), a text sentiment value from
day before S(t − 1), from 2 days before S(t − 2), and from 3 days before S(t − 3).
This is done with respect to the subject company c, which is represented as an
additional parameter in the equation, besides time t. We order all the companies in
our dataset according to their market capitalization (total market value of all shares
of the company) and divide them into ten equally sized groups. In this way we get
the values for ten additional “dummy” variables dd1 to dd10 (being 1 if the subject
company falls into the respective group, and 0 otherwise). We include them into the
regression to account for the variations of returns as a result of the company’s size.

The results presented in Table 3.11 reveal that the highest estimated coefficient
for the sentiment score is achieved by an SVM, but the most statistically significant
result in predicting returns 1 day ahead has the proprietary Reuters NewsScope
Sentiment Engine (NSE). The remaining estimated coefficients are not shown in
the table and do not influence predictive power of the systems. All the company’s
size dummies and estimated constant are statistically significant to the level of 1%.

3 Application of Intelligent Systems for News Analytics 95

Table 3.12 Statistical
significance of the results

p value

∗∗∗ <1%
∗∗ <5%
∗ <10%
Otherwise ≥10%

3.4.3 Visualization

Based on our findings presented in the previous sections and on the previous
works in related areas of text sentiment visualization, we developed a visualization
component as a third part of the project FINDS. Visualization of data extracted from
great amounts of text is a task being usually solved as a part of the wider project and
often without extensive exploration of previous work in this area. All existing works
cluster around two main focuses: topic detection and sentiment extraction from user
opinions. For the extensive overview of other prototypes and approaches, the reader
is advised to consult surveys [43, 58].

The visualization component is loosely coupled with the rest of the system via
a messaging interface. This allows it to be connected and to receive inputs from
various systems, either other classifier components of the FINDS system, or directly
from commercially available providers of sentiment scores, like Thomson Reuters.

When a news article arrives, it is analysed by one of the FINDS classifiers, or
Reuters News Score Sentiment Engine, and the sentiment score for each of the
companies mentioned in the article is calculated as a real number between −1 and 1.
The values near −1 indicate news that are rather bad for the affected company and
implicitly signalize negative pressure on company’s equity price and returns. As we
learned from the previous chapters, sudden change of the sentiment are even better
signals of this negative pressure, so when negative news arrives for the company that
had in average positive sentiment, that is a strong signal that the downward pressure
on prices will be strong in a short future period. This is why our visualization system
is designed in a way to make such and similar cases clearly noticeable.

The typical screen of the FINDS visualization component is shown in Fig. 3.1.
The users have a possibility to set a list of all companies they are interested in,
so only these companies will be displayed. Each company is represented by the
coloured circle. We can vary four dimensions for each company: x-axis position,
y-axis position, size and colour.

The size of the circle representing a company and its sentiment is defined in such
a manner that the visibility is kept also in the case of simultaneous representation
of a great number of companies. The circle area is linearly dependent on number of
messages published about a particular company, and the total area of all displayed
representations is kept constant. Using this representation approach, the companies
that draw more attention and are mentioned in more news stories are represented
with a larger circle.

96 C. Bozic et al.

Fig. 3.1 Screenshot of the FINDS visualization component

The colour of the company’s representation is chosen from the palette that ranges
from green, over yellow and orange, to red. The colour directly represents the last
sentiment score, by using bright red to represent sentiment value of −1 and very
bad news to bright green used for the sentiment value of +1 and very positive news.
The x position is determined in the same manner, ordering companies from left to
right according to increasing recent sentiment score.

The y position of the company’s representation is determined by a deviation
of the recent sentiment score from the average sentiment score for the particular
company, so the sentiment reversals can be easily noticed. The companies with
highest sudden increase in sentiment are singled out in upper portion of display,
while those companies with highest decrease in sentiment are occupying the lower
portion of the display. To make this relation more obvious, we use a transformation
described by (3.4) to calculate the y position of the company representation yc,
as described in [17]. Sr(c) denotes deviation of current sentiment score from the
average value, as described in Sect. 3.3.2. The values for constants are chosen
empirically, after testing the system on realistic data:

yc =C1 arctan(C2Sr(c))+C3, C1 =
1.056
π

, C2 = 6, C3 = 0.5. (3.4)

The user is offered the possibility to see the details of the selected company,
like numerical values of current sentiment, average sentiment, the integral text of
news story, and the historical development of stock prices for the selected company.
Our goal is to offer an integrated decision support tool for the users interested in
analysing influence of published news articles to market movements.

3 Application of Intelligent Systems for News Analytics 97

Fig. 3.2 Components of the FINDS system: classification engines (bottom left), benchmark
component (bottom right), interface component (top left), and multi-component GUI (top right,
described in detail in Sect. 3.4.3.)

3.5 Conclusion

We provided an overview of the existing text mining systems whose main purpose
is predicting equity price movements on the financial markets. Some of the systems
transform the input text directly to a numerical value that we call sentiment score.
Others output categorical result, which in turn can be transformed into a numerical
value, thus producing a sentiment score. As an example of such sentiment score
properties, we show how it relates to some of the macroeconomic variables. It is
suggested that this sentiment score can be transformed to reveal sentiment reversals
and deviations from the average score for a company, and such transformed indicator
relates better to future returns.

Finally we present the project FINDS as an integrated system that can be used
for sentiment extraction from the financial news, comparison between different
classification engines, and the representation of the sentiment data to the end user.

In the time when more than 50% of all trades on certain markets are executed
by algorithms, as reported in [27], real time information on sentiment of published
news can be used as a valuable additional indicator and input for these algorithms.
We plan on building an interface between the FINDS system and other systems
which can use sentiment score information. The structure of the complete system
is illustrated in Fig. 3.2. In this way we could offer traders support for their buy

98 C. Bozic et al.

and sell decisions, by visually filtering important news articles, but we could also
support them by letting the algorithm determine the best timing and amount of the
order, so the trade is executed optimally.

References

1. W. Antweiler, F.Z. Murray, Is all that talk just noise? The information content of internet stock
message boards. J. Finance 59(3), 1259–1294 (2004)

2. C. Bozic, Finds – integrative services, in IEEE/ACS International Conference on Computer
Systems and Applications, 2009 (AICCSA 2009), IEEE, 10–13 May 2009, pp. 61–62.
doi:10.1109/AICCSA.2009.5069302

3. C. Bozic, D. Seese, Neural networks for sentiment detection in financial text, in Proceedings
of the 14th International Business Research Conference, Melbourne, Victoria, Australia, April
2011 (World Business Institute, Australia, 2011). URL http://www.wbiconpro.com/344-Bozic.
pdf

4. C. Bozic, D. Seese, News analytics and text sentiment visualization in finance, in Proceedings
of the SYMOPIS, 38. Symposium on Operational Research, Faculty of Economics, University
of Belgrade, Serbia, 2011, pp. 127–130. URL http://www.aifb.kit.edu/images/2/25/Bozic
seese short 4pDSC.pdf

5. C. Bozic, D. Seese, News analytics: exploring predictive power of aggregated text sentiment
measure, in Proceedings of Annual Paris Conference on Money, Economy and Management,
Melbourne, Victoria, Australia, July 2011 (World Business Institute, Australia, 2011). URL
http://www.wbiconpro.com/327-Caslav.pdf

6. C. Bozic, R. Riordan, D. Seese, C. Weinhardt, Towards a benchmarking framework for
financial text mining, in Information Management and Market Engineering, ed. by D. Thomas,
J. Krämer, R. Studer, C. Weinhardt. Studies on eOrganisation and Market Engineering, vol. 2
(KIT Scientific Publishing, Karlsruhe, 2010), pp. 21–36

7. R. Brown, Incorporating news into algorithmic trading strategies: increasing the signal-to-noise
ratio, in The Handbook of News Analytics in Finance, chap. 14 (Wiley Finance, NJ, 2011),
pp. 307–309

8. S.K. Chalup, A. Mitschele, Kernel methods in finance, in Handbook on Information Tech-
nology in Finance, International Handbooks on Information Systems, ed. by D. Seese,
C. Weinhardt, F. Schlottmann (Springer, Berlin, 2008), pp. 655–687

9. V. Cho, B. Wüthrich, Combining forecasts from multiple textual data sources, in Methodolo-
gies for Knowledge Discovery and Data Mining, ed. by N. Zhong, L. Zhou. Lecture Notes in
Computer Science, vol. 1574 (Springer, Berlin, 1999), pp. 174–179

10. V. Cho, B. Wüthrich, J. Zhang, Text processing for classification. Technical report, The Hong
Kong University of Science and Technology (1998)

11. W.S.V. Cho, Knowledge discovery from distributed and textual data. PhD thesis, Department
of Computer Science, Hong Kong University of Science and Technology (1999)

12. M. Costantino, Financial Information Extraction using pre-defined and user-definable Tem-
plates in the LOLITA System. PhD thesis, Laboratory for Natural Language Engineering,
Department of Computer Science, University of Durham (1997)

13. M. Costantino, The LOLITA user-definable template interface. J. Comput. Inf. Tech. – CIT
9(1), 55–69 (2001)

14. M. Costantino, R.J. Collingham, R.G. Morgan, Natural Language Processing in Finance:
Automatic Extraction of Information from Financial News Articles. Laboratory for Natural
Language Engineering, Department of Computer Science (University of Durham, UK, 1995)

15. M. Costantino, R.J. Collingham, R.G. Morgan, Financial information extraction at the
University Of Durham, in Artificial Intelligence in Accounting and Auditing: International

http://www.wbiconpro.com/344-Bozic.pdf
http://www.wbiconpro.com/344-Bozic.pdf
http://www.aifb.kit.edu/images/2/25/Bozic_seese_short_4pDSC.pdf
http://www.aifb.kit.edu/images/2/25/Bozic_seese_short_4pDSC.pdf
http://www.wbiconpro.com/327-Caslav.pdf

3 Application of Intelligent Systems for News Analytics 99

Perspectives (Markus Wiener Publishers, NJ, 2005); exists also in Proceedings of the II
Meeting of Artificial Intelligence in Accounting, Finance and Tax (University of Huelva, Spain,
1996)

16. M. Costantino, R. Morgan, R. Collingham, R. Carigliano, in Proceedings of the IEEE/IAFE
1997 Computational Intelligence for Financial Engineering (CIFEr), 1997. IEEE (IEEE,
1997), pp. 116–122. DOI 10.1109/CIFER.1997.618923

17. A. Darmoul, G. Hackensellner, P. Rouast, in Findsvisions. Abschlusspräsentation, 07 2011
(Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany)

18. S.R. Das, M.Y. Chen, Yahoo! for Amazon: Sentiment extraction from small talk on the web.
Manag. Sci. 53(9), 1375–1388 (2007)

19. P. Domingos, M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one
loss. Mach. Learn. 29, 103–130 (1997)

20. J. Doornik, M. Arellano, S. Bond, Panel Data Estimation Using DPD for OX (Nuffield College,
Oxford, 2001)

21. T. Fawcett, An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)
22. T. Fawcett, F. Provost, Activity monitoring: Noticing interesting changes in behavior, in

Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’99 (ACM, New York, 1999), pp. 53–62

23. G. Fung, J. Yu, W. Lam, News sensitive stock trend prediction, in Advances in Knowledge
Discovery and Data Mining, ed. by M.-S. Chen, P. Yu, B. Liu. Lecture Notes in Computer
Science, vol. 2336 (Springer, Berlin, 2002), pp. 481–493

24. G.P.C. Fung, J. Xu Yu, W. Lam, in 2003 IEEE International Conference on Computational
Intelligence for Financial Engineering, 2003. IEEE (IEEE, 2003), pp. 395–402. DOI 10.1109/
CIFER.2003.1196287

25. G. Gidófalvi, C. Elkan, Using news articles to predict stock price movements. Draft Tech
Report, Department of Computer Science and Engineering, University of California, San
Diego, USA (2003)

26. G. Gidófalvi, Using news articles to predict stock price movements. Project Report, Depart-
ment of Computer Science and Engineering, University of California, San Diego, USA (2001)

27. T. Hendershott, R. Riordan, Algorithmic Trading and Information. Working Papers 09-08, NET
Institute, March 2009. University of California, Berkeley, USA

28. S. Hitzemann, M. Uhrig-Homburg, K.-M. Ehrhart, The impact of the yearly emissions
announcement on CO2 prices: an event study, in Information Management and Market
Engineering, ed. by T. Dreier, J. Krämer, R. Studer, C. Weinhardt. Studies on eOrganisation
and Market Engineering, vol. 2 (KIT Scientific Publishing, Karlsruhe, 2010), pp. 63–78

29. International Monetary Fund. World economic outlook database (2011). URL http://www.imf.
org/external/ns/cs.aspx?id=28. Accessed June 12 2011

30. J. Kittrell, Sentiment reversals as buy signals, in The Handbook of News Analytics in Finance,
chap. 9 (Wiley Finance, NJ, 2011), pp. 231–244

31. V. Lavrenko, D. Lawrie, P. Ogilvie, M. Schmill. Electronic analyst of stock behavior. Project
Draft (1999). URL http://homepages.inf.ed.ac.uk/vlavrenk/doc/pitch.pdf. Center for Intelligent
Information Retrieval, University of Massachusetts Amherst, USA

32. V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, J. Allan, in Proceedings of the ninth
international conference on Information and knowledge management (ACM, New York, NY,
USA, 2000), CIKM ’00, pp. 389–396. DOI http://doi.acm.org/10.1145/354756.354845. URL
http://doi.acm.org/10.1145/354756.354845

33. V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, J. Allan, Mining of concurrent text
and time-series, in Sixth ACMSIGKDD International Conference on Knowledge Discovery and
Data Mining (2000)

34. S.K.F. Leung, Automatic stock market predictions from world wide web data. Master’s thesis,
Department of Computer Science, Hong Kong University of Science and Technology (1997)

35. X. Liang, Impacts of internet stock news on stock markets based on neural networks, in
Advances in Neural Networks? ISNN 2005, ed. by J. Wang, X.F. Liao, Z. Yi, Lecture Notes
in Computer Science, vol. 3497 (Springer, Berlin, 2005), pp. 811–811

http://www.imf.org/external/ns/cs.aspx?id=28
http://www.imf.org/external/ns/cs.aspx?id=28
http://homepages.inf.ed.ac.uk/vlavrenk/doc/pitch.pdf
http://doi.acm.org/10.1145/354756.354845

100 C. Bozic et al.

36. X. Liang, R.C. Chen, in Proceedings of ICNN&B ’05. International Conference on Neural Net-
works and Brain, 2005, vol. 2, IEEE, 2005, pp. 893 –898. doi:10.1109/ICNNB.2005.1614765

37. U. Lösch. Event and sentiment detection in financial markets (2008). URL http://www.aifb.
kit.edu/images/b/bc/2008 1774 L%C3%B6sch Event and Senti 1.pdf

38. U. Lösch, R. Studer, C. Weinhardt, New event detection in financial news analysis, in
Information Management and Market Engineering, ed. by T. Dreier, J. Krämer, R. Studer,
C. Weinhardt. Studies on eOrganisation and Market Engineering, vol. 2 (KIT Scientific
Publishing, Karlsruhe, 2010), pp. 3–20

39. M.A. Mittermayer, in Proceedings of the 37th Annual Hawaii International Conference on
System Sciences, 2004. (IEEE Computer Society Press, 2004). DOI 10.1109/HICSS.2004.
1265201

40. M.-A. Mittermayer, Einsatz von Text Mining zur Prognose kurzfristiger Trends von
Aktienkursen nach der Publikation von Unternehmensnachrichten. PhD thesis, Uniersitt Bern
(2006)

41. M.-A. Mittermayer, G.F. Knolmayer, NewsCATS: a news categorization and trading system,
in IEEE International Conference on Data Mining, pp. 1002–1007 (2006)

42. R. Morgan, R. Garigliano, P. Callaghan, S. Poria, M. Smith, C. Cooper, University of Durham:
Description of the LOLITA system as used in MUC-6, in Proceedings of the 6th conference on
Message understanding, MUC6 ’95 (Association for Computational Linguistics, Stroudsburg,
1995), pp. 71–85

43. B. Pang, L. Lee, Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2, 1–135
(2008)

44. D. Peramunetilleke, R.K. Wong, Currency exchange rate forecasting from news headlines, in
ADC’02: Proceedings of the 13th Australasian Database Conference, Darlinghurst, Australia
(Australian Computer Society, Australia, 2002), pp. 131–139

45. J.C. Platt, Fast training of support vector machines using sequential minimal optimization,
in Advances in Kernel Methods, ed. by B. Schölkopf, C.J.C. Burges, A.J. Smola (MIT,
Cambridge, 1999), pp. 185–208

46. F.J. Provost, T. Fawcett, R. Kohavi, The case against accuracy estimation for comparing
induction algorithms, in Proceedings of the Fifteenth International Conference on Machine
Learning, ICML ’98, San Francisco, CA, USA (Morgan Kaufmann Publishers, MA, 1998),
pp. 445–453

47. R. Riordan, A. Storkenmaier, M. Wagener, Public Information Arrival: Price Discovery and
Liquidity in Electronic Limit Order Markets. Working Paper Series, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany (2011)

48. A. Schulz, M. Spiliopoulou, K. Winkler, Kursrelevanzprognose von ad-hoc-meldungen:
Text mining wider die informationsüberlastung im mobile banking. Wirtschaftsinformatik 2,
181–200 (2003)

49. R.P. Schumaker, H. Chen, in Proceedings of the 12th Americas Conference on Information
Systems (AMCIS-2006) (AIS, Atlanta, GA, USA, 2006). URL http://www.robschumaker.
com/publications/AMCIS%20\discretionary-%20Textual%20Analysis%20of%20Stock
%20Market%20Prediction%20Using%20Financial%20News%20Articles.pdf

50. R.P. Schumaker, Analyzing representational schemes of financial news articles, in The Third
China Summer Workshop on Information Systems, 2009

51. R.P. Schumaker. Analyzing parts of speech and their impact on stock price. Conference paper
(2010). URL http://www.robschumaker.com/publications/IIMA%20\discretionary-%20A
%20Discrete%20Stock%20Price%20Prediction%20Engine%20Based%20on%20Financial
%20News.pdf

52. R.P. Schumaker, Analyzing parts of speech and their impact on stock price. Comm. Int. Inform.
Manag. Assoc. 10, 1–10 (2010)

53. R.P. Schumaker, An analysis of verbs in financial news articles and their impact on stock price,
in NAACL Workshop on Social Media and Computational Linguistics (2010)

54. R.P. Schumaker, H. Chen, A quantitative stock prediction system based on financial news.
Inform. Process. Manag. 45, 571–583 (2009)

http://www.aifb.kit.edu/images/b/bc/2008_1774_L%C3%B6sch_Event_and_Senti_1.pdf
http://www.aifb.kit.edu/images/b/bc/2008_1774_L%C3%B6sch_Event_and_Senti_1.pdf
http://www.robschumaker.com/publications/AMCIS%20discretionary {-}{}{}%20Textual%20Analysis%20of%20Stock%20Market%20Prediction%20Using%20Financial%20News%20Articles.pdf
http://www.robschumaker.com/publications/AMCIS%20discretionary {-}{}{}%20Textual%20Analysis%20of%20Stock%20Market%20Prediction%20Using%20Financial%20News%20Articles.pdf
http://www.robschumaker.com/publications/AMCIS%20discretionary {-}{}{}%20Textual%20Analysis%20of%20Stock%20Market%20Prediction%20Using%20Financial%20News%20Articles.pdf
http://www.robschumaker.com/publications/IIMA%20discretionary {-}{}{}%20A%20Discrete%20Stock%20Price%20Prediction%20Engine%20Based%20on%20Financial%20News.pdf
http://www.robschumaker.com/publications/IIMA%20discretionary {-}{}{}%20A%20Discrete%20Stock%20Price%20Prediction%20Engine%20Based%20on%20Financial%20News.pdf
http://www.robschumaker.com/publications/IIMA%20discretionary {-}{}{}%20A%20Discrete%20Stock%20Price%20Prediction%20Engine%20Based%20on%20Financial%20News.pdf

3 Application of Intelligent Systems for News Analytics 101

55. R.P. Schumaker, H. Chen, Textual analysis of stock market prediction using breaking
financial news: The AZFINTEXT system. Assoc. Comput. Mach. Trans. Inform. Syst. 27(2),
12:1–12:19 (2009)

56. R.P. Schumaker, H. Chen, A discrete stock price prediction engine based on financial news.
IEEE Comp. 43, 51–56 (2010)

57. R.P. Schumaker, Y. Zhang, C.N. Huang. Sentiment analysis of financial news articles.
conference paper (2009). URL http://www.robschumaker.com/publications/IIMA
%20\discretionary-%20Sentiment%20Analysis%20of%20Financial%20News%20Articles.
pdf

58. A. Šilić, B. Bašić, Visualization of text streams: A survey, in Knowledge-Based and Intelligent
Information and Engineering Systems, ed. by R. Setchi, I. Jordanov, R. Howlett, L. Jain.
Lecture Notes in Computer Science, vol. 6277 (Springer, Berlin, 2010), pp. 31–43

59. A. Storkenmaier, M. Wagener, C. Weinhardt, Public Information in Fragmented Markets.
Working Paper Series, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2011)

60. P.C. Tetlock, Giving content to investor sentiment: The role of media in the stock market. J.
Finance 62(3), 1139–1168 (2007)

61. P.C. Tetlock, M. Saar-Tsechansky, S. Macskassy, More than words: Quantifying language to
measure firms’ fundamentals. J. Finance 63(3), 1437–1467 (2008)

62. J.D. Thomas, News and trading rules. PhD thesis, Carnegie Mellon University (2003)
63. J. Thorsten, Learning to Classify Text Using Support Vector Machines: Methods, Theory and

Algorithms (Kluwer, Norwell, 2002)
64. K.M. Tolle, H. Chen, Comparing noun phrasing techniques for use with medical digital library

tools. J. Am. Soc. Inform. Sci. 51(4), 352–370 (2000)
65. C. Ullrich, D. Seese, S. Chalup, Foreign exchange trading with support vector machines,

in Advances in Data Analysis, Studies in Classification, Data Analysis, and Knowledge
Organization, ed. by R. Decker, H.-J. Lenz (Springer, Berlin, 2007), pp. 539–546

66. B. Wüthrich, D. Permunetilleke, S. Leung, V. Cho, J. Zhang, W. Lam. Daily prediction of
major stock indices from textual www data. Poster (1998). URL http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.51.2979

67. S.S. Zhang, C. Weinhardt, R. Riordan, Market responses to the introduction of interactive data:
the case of XBRL, in Information Management and Market Engineering, ed. by T. Dreier,
J. Krämer, R. Studer, C. Weinhardt. Studies on eOrganisation and Market Engineering, vol. 2
(KIT Scientific Publishing, Karlsruhe, 2010), pp. 55–62

http://www.robschumaker.com/publications/IIMA%20discretionary {-}{}{}%20Sentiment%20Analysis%20of%20Financial%20News%20Articles.pdf
http://www.robschumaker.com/publications/IIMA%20discretionary {-}{}{}%20Sentiment%20Analysis%20of%20Financial%20News%20Articles.pdf
http://www.robschumaker.com/publications/IIMA%20discretionary {-}{}{}%20Sentiment%20Analysis%20of%20Financial%20News%20Articles.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.2979
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.2979

Chapter 4
Modelling and Trading the Greek Stock Market
with Hybrid ARMA-Neural Network Models

Christian L. Dunis, Jason Laws, and Andreas Karathanasopoulos

Abstract The motivation for this chapter is to investigate the use of alternative
novel neural network architectures when applied to the task of forecasting and
trading the ASE 20 Greek Index using only autoregressive terms as inputs. This is
done by benchmarking the forecasting performance of six different neural network
designs representing a Higher Order Neural Network (HONN), a Recurrent Network
(RNN), a classic Multilayer Perceptron (MLP), a Hybrid Higher Order Neural
Network, a Hybrid Recurrent Neural Network and a Hybrid Multilayer Perceptron
Neural Network with some traditional techniques, either statistical such as an
autoregressive moving average model (ARMA) or technical such as a moving
average convergence/divergence model (MACD), plus a naı̈ve trading strategy.
More specifically, the trading performance of all models is investigated in a forecast
and trading simulation on ASE 20 fixing time series over the period 2001–2008
using the last one and a half year for out-of-sample testing. We use the ASE 20 daily
fixing as many financial institutions are ready to trade at this level and it is therefore
possible to leave orders with a bank for business to be transacted on that basis.
As it turns out, the hybrid-HONNs do remarkably well and outperform all other
models in a simple trading simulation exercise. However, when more sophisticated
trading strategies using confirmation filters and leverage are applied, the hybrid-
HONN network produces better results and outperforms all other neural network
and traditional statistical models in terms of annualised return.

C.L. Dunis (�)
Liverpool John Moores University, Liverpool, UK
e-mail: C.Dunis@ljmu.ac.uk

J. Laws
University of Liverpool Management School, Liverpool, UK
e-mail: J.Laws@liverpool.ac.uk

A. Karathanasopoulos
London Metropolitan University, London, UK
e-mail: a.karathanasopoulos@londonmet.ac.uk

M. Doumpos et al. (eds.), Financial Decision Making Using Computational Intelligence,
Springer Optimization and Its Applications 70, DOI 10.1007/978-1-4614-3773-4 4,
© Springer Science+Business Media New York 2012

103

104 C.L. Dunis et al.

4.1 Introduction

The use of intelligent systems for market predictions has been widely established.
This chapter deals with the application of hybridised computing techniques for fore-
casting the Greek stock market. The development of accurate techniques is critical to
economists, investors and analysts. This task is getting more and more complex as
financial markets are getting increasingly interconnected and interdependent. The
traditional statistical methods, on which forecasters were reliant in recent years,
seem to fail to capture the interrelationship between market variables. This chapter
investigates methods capable of identifying and capturing all the discontinuities, the
non-linearities and the high-frequency multipolynomial components characterising
the financial series today. A model category that promises such effective results
is the combination of autoregressive models such as ARMA model with neural
networks named hybrid-neural network model. Many researchers have argued that
combining several models for forecasting gives better estimates by taking advantage
of each model’s capabilities when comparing them with single time series models.

The motivation for this chapter is to investigate the use of several new neural
networks techniques combined with ARMA model in order to overcome these
limitations using autoregressive terms as inputs. This is done by benchmarking six
different neural network architectures representing a Multilayer Perceptron (MLP),
a Higher Order Neural Network (HONN), a Recurrent Neural Network (RNN), a
Hybrid Higher Order Neural Network, a Hybrid Recurrent Neural Network and a
Hybrid Multilayer Perceptron Neural Network. Their trading performance on the
ASE 20 time series is investigated and is compared with some traditional statistical
or technical methods such as an autoregressive moving average (ARMA) model
or a moving average convergence/divergence (MACD) model, and a naı̈ve trading
strategy.

As it turns out, the hybrid-HONN demonstrates a remarkable performance and
outperforms all other models in a simple trading simulation exercise. On the other
hand, when more sophisticated trading strategies using confirmation filters and
leverage are applied, HONNs outperform all models in terms of annualised return.
Our conclusion corroborates those of Lindemann et al. [25] and Dunis et al. [11]
where HONNs also demonstrate a forecasting superiority on the EUR/USD series
over more traditional techniques such as an MACD and a naı̈ve strategy. However,
the RNN, which performed remarkably well, shows a disappointing performance in
this research: this may be due to their inability to provide good enough results when
only autoregressive terms are used as inputs.

The rest of the chapter is organised as follows. In Sect. 4.2, we present the
literature relevant to the hybrid-neural networks, the RNN, the HONNs and the
multilayer perceptron. Section 4.3 describes the data set used for this research and its
characteristics. An overview of the different neural network models and statistical
techniques is given in Sect. 4.4. Section 4.5 gives the empirical results of all the
models considered and investigates the possibility of improving their performance
with the application of more sophisticated trading strategies. Section 4.6 provides
some concluding remarks.

4 Modelling and Trading with Hybrid ARMA-Neural Network Models 105

4.2 Literature Review

The motivation for this chapter is to apply some of the most promising new neural
network architectures combining them with autoregressive models (in our case
ARMA model) which have been developed recently with the purpose to overcome
the numerous limitations of the more classic neural architectures and to assess
whether they can achieve a higher performance in a trading simulation using only
autoregressive series as inputs.

Combining different models can increase the chance to capture different patterns
in the data and improve forecasting performance. Several empirical studies have
already suggested that by combining several different models, forecasting accuracy
can often be improved over an individual model. Using hybrid models or combining
several models has become a common practice to improve the forecasting accuracy
since the well-known M-competition [27] in which combinations of forecasts from
more than one model often led to improved forecasting performance. The basic idea
of the model combination in forecasting is to use each model’s unique feature to
capture different patterns in the data. Both theoretical and empirical findings suggest
that combining different methods can be an effective and efficient way to improve
forecasts [26, 28, 29, 41]. Research in time series forecasting argues that predictive
performance improves the combined models [2, 5, 17, 18, 35, 38, 40, 42].

The reason for combining models comes from the assumption that either one
cannot identify the true data-generating process [35] or that a single model may
not be sufficient to identify all the characteristics of the time series [40]. Moreover,
hybrid-neural networks have not been used until the moment that scientists started to
investigate not only the benefits of hybrid-neural networks against other statistical
methods but also the differences between different combinations of hybrid-neural
networks with other statistical models following hybrid GARCH-NN approach [39]
and hybrid ARIMA/ ARCH-NN [14].

RNNs have an activation feedback which embodies short-term memory allowing
them to learn extremely complex temporal patterns. Their superiority against
feedfoward networks when performing non-linear time series prediction is well
documented in [1, 6]. In financial applications, Kamijo et al. [21] applied them
successfully to the recognition of stock patterns of the Tokyo stock exchange
while Tenti [34] achieved remarkable results using RNNs to forecast the exchange
rate of the Deutsche Mark. Tino et al. [37] use them to trade successfully the
volatility of the DAX and the FTSE 100 using straddles while Dunis and Huang
[8], using continuous implied volatility data from the currency options market,
obtain remarkable results for their GBP/USD and USD/JPY exchange rate volatility
trading simulation.

HONNs were first introduced by introduced by Giles and Maxwell [16] as a
fast learning network with increased learning capabilities. Although their function
approximation superiority over the more traditional architectures is well docu-
mented in the literature (see among others [24, 31, 32]), their use in finance so
far has been limited. This has changed when scientists started to investigate not

106 C.L. Dunis et al.

only the benefits of neural networks (NNs) against the more traditional statistical
techniques but also the differences between the different NN model architectures.
Practical applications have now verified the theoretical advantages of HONNs by
demonstrating their superior forecasting ability and put them in the front line of
research in financial forecasting. For example, Dunis et al. [9] use them to forecast
successfully the gasoline crack spread while Fultcher et al. [15] apply HONNs to
forecast the AUD/USD exchange rate, achieving a 90% accuracy. However, Dunis
et al. [10] show that, in the case of the futures spreads and for the period under
review, the MLPs performed better compared with HONNs and RNNs. Moreover,
Dunis et al. [12], who also study the EUR/USD series for a period of 10 years,
demonstrate that when multivariate series are used as inputs the HONNs, RNN and
MLP networks have a similar forecasting power. Finally, Dunis et al. [11], in a paper
with a methodology identical to that used in this research, demonstrate that HONN
and the MLP networks are superior in forecasting the EUR/USD ECB fixing until
the end of 2007, compared to the RNN networks, an ARMA model, a MACD and a
naı̈ve strategy.

4.3 The ASE-20 Greek and Related Financial Data

For futures on the FTSE/ASE-20 that are traded in derivatives markets the under-
lying asset is the blue chip index FTSE/ASE-20. The FTSE/ASE-20 index is based
on the 20 largest ASE stocks. It was developed in 1997 by the partnership of ASE
with FTSE International and is already an established benchmark. It represents over
50% of ASE’s total capitalisation and currently has a heavier weight on banking,
telecommunication and energy stocks.

The futures contract on the index FTSE/ASE-20 is cash settled in the sense that
the difference between the traded price of the contract and the closing price of the
index on the expiration day of the contract is settled between the counterparties in
cash. As a matter of fact, as the price of the contract changes daily, it is cash settled
on a daily basis, up until the expiration of the contract. The futures contract is traded
in index points, while the monetary value of the contract is calculated by multiplying
the futures price by the multiplier 5 EUR per point. For example, a contract trading
at 1,400 points has a value of 7,000 EUR.

The ASE 20 futures is therefore a tradable level which makes our application
more realistic and this is the series that we investigate in this chapter.1

The observed ASE 20 time series is non-normal (Jarque-Bera statistics confirms
this at the 99% confidence interval) containing slight skewness and high kurtosis.

1We examine the ASE 20 since its first trading day on 21 January 2001, and until 31 December
2008, using the continuous data available from datastream.

4 Modelling and Trading with Hybrid ARMA-Neural Network Models 107

Fig. 4.1 ASE 20 returns summary statistics (total data set)

Table 4.1 The ASE 20 dataset

Name of period Trading days Beginning End

Total data set 2,087 21 January 2001 31 December 2008
Training data set 1,719 29 January 2001 30 August 2007
Out-of-sample data set

(validation set)
349 31 August 2007 31 December 2008

It is also non-stationary and we decided to transform the ASE 20 series into
stationary series of rates of return.2 A distribution of returns can be seen in Fig. 4.1.

Given the price level P1,P2, . . . ,Pt , the rate of return at time t is formed by

Rt =

(
Pt

Pt−1

)
− 1. (4.1)

As inputs to our networks and based on the autocorrelation function and some
ARMA experiments we selected two sets of autoregressive and moving average
terms of the ASE 20 returns and the 1-day Riskmetrics volatility series.

In order to train the neural networks we further divided our data set as shown in
4.2. A division of the data set can be seen in Tables 4.1 and 4.2 while a graphical
representation of the total data set can be seen in Fig. 4.2.

Furthermore, the inputs and lag structure used for the neural network models can
be seen in Table 4.3. Each of the inputs and lags were optimised in sample according
to annualised returns (Table 4.4).

2Confirmation of its stationary property is obtained at the 1% significance level by both the
Augmented Dickey Fuller (ADF) and Phillips-Perron (PP) test statistics.

108 C.L. Dunis et al.

Table 4.2 The neural networks data sets

Name of period Trading days Beginning End

Total data set 2,087 21 January 2001 31 December 2008
Training data set 1,373 29 January 2001 03 May 2006
Test data set 346 04 May 2006 30 August 2007
Out-of-sample data set

(validation set)
349 31 August 2007 31 December 2008

Fig. 4.2 ASE 20 fixing prices (total data set)

Table 4.3 Explanatory
variables for traditional
neural networks

Number Variable Lag

1 Athens Composite all share return 1
2 Athens Composite all share return 3
3 Athens Composite all share return 6
4 Athens Composite all share return 8
5 Athens Composite all share return 10
6 Athens Composite all share return 13
7 Athens Composite all share return 14
8 Moving average of the Athens

Composite all share return
15

9 Athens Composite all share return 16
10 Athens Composite all share return 18
11 Moving average of the Athens

Composite all share return
19

4 Modelling and Trading with Hybrid ARMA-Neural Network Models 109

Table 4.4 Explanatory
variables for hybrid-neural
networks

Number Variable Lag

1 Athens Composite all share return 1
2 Athens Composite all share return 3
3 Athens Composite all share return 5
4 Athens Composite all share return 7
5 Athens Composite all share return 8
6 Athens Composite all share return 9
7 Athens Composite all share return 12
8 Athens Composite all share return 13
9 Moving average of the Athens

Composite all share return
14

10 Athens Composite all share return 15
11 Athens Composite all share return 16
12 Moving average of the Athens

Composite all share return
17

13 1-day Riskmetrics volatility 1

4.4 Forecasting Models

4.4.1 Benchmark Models

In this chapter, we benchmark our neural network models with three traditional
strategies, namely an autoregressive moving average model (ARMA), a moving
average convergence/divergence technical model (MACD) and a naı̈ve strategy.

4.4.1.1 Naı̈ve Strategy

The naı̈ve strategy simply takes the most recent period change as the best prediction
of the future change. The model is defined by

Ŷt+1 = Yt , (4.2)

where Yt is the actual rate of return at period t and Ŷt+1 is the forecast rate of return
for the next period.

The performance of the strategy is evaluated in terms of trading performance via
a simulated trading strategy.

4.4.1.2 Moving Average

The moving average model is defined as

Mt =
Yt +Yt−1 +Yt−2 + · · ·+Yt−n+1

n
, (4.3)

110 C.L. Dunis et al.

where Mt is the moving average at time t, n is the number of terms in the moving
average and Yt is the actual rate of return at period t.

The MACD strategy used is quite simple. Two moving average series are created
with different moving average lengths. The decision rule for taking positions in the
market is straightforward. Positions are taken if the moving averages intersect. If the
short-term moving average intersects the long-term moving average from below a
“long” position is taken. Conversely, if the long-term moving average is intersected
from above a “short” position is taken.3

The forecaster must use judgement when determining the number of periods n on
which to base the moving averages. The combination that performed best over the
in-sample sub-period was retained for out-of-sample evaluation. The model selected
was a combination of the ASE 20 and its 7-day moving average, namely n= 1 and 7,
respectively, or a (1, 7) combination. The performance of this strategy is evaluated
solely in terms of trading performance.

4.4.1.3 ARMA Model

Autoregressive moving average models (ARMA) assume that the value of a time
series depends on its previous values (the autoregressive component) and on
previous residual values (the moving average component).4

The ARMA model takes the form

Yt = ϕ0 +ϕ1Yt−1 +ϕ2Yt−2 + · · ·+ϕpYt−p + εt −w1εt−1 −w2εt−2 −·· ·−wqεt−q,

(4.4)

where:

• Yt is the dependent variable at time t
• Yt−1,Yt−2, . . . ,Yt−p are the lagged dependent variables
• ϕ0,ϕ1,ϕ2, . . . ,ϕp are regression coefficients
• εt is the residual term
• εt−1,εt−2, . . . ,εt−p are previous values of the residual
• w1,w2, . . . ,wq are weights

Using as a guide the correlogram in the training and the test sub-periods we have
chosen a restricted ARMA (7, 7) model. All of its coefficients are significant at
the 99% confidence interval. The null hypothesis that all coefficients (except the
constant) are not significantly different from zero is rejected at the 99% confidence
interval (see section “ARMA Model” in Appendix).

3A “long” ASE 20 position means buying the index at the current price, while a “short” position
means selling the index at the current price.
4For a full discussion on the procedure, refer to [3, 30].

4 Modelling and Trading with Hybrid ARMA-Neural Network Models 111

The selected ARMA model takes the form

Yt = 2.90 ·10−4+ 0.376Yt−1 − 0.245Yt−3− 0.679Yt−7

+ 0.374εt−1 − 0.270εt−3− 0.677εt−7. (4.5)

The model selected was retained for out-of-sample estimation. The performance
of the strategy is evaluated in terms of traditional forecasting accuracy and in terms
of trading performance (statistical measures are given in Sect. 4.4.2.5).

4.4.2 Neural Networks and Hybrid-Neural Networks

Neural networks exist in several forms in the literature. The most popular architec-
ture is the multilayer perceptron (MLP).

A standard neural network has at least three layers. The first layer is called the
input layer (the number of its nodes corresponds to the number of explanatory
variables). The last layer is called the output layer (the number of its nodes
corresponds to the number of response variables). An intermediary layer of nodes,
the hidden layer, separates the input from the output layer. Its number of nodes
defines the amount of complexity the model is capable of fitting. In addition, the
input and hidden layer contain an extra node, called the bias node. This node has a
fixed value of one and has the same function as the intercept in traditional regression
models. Normally, each node of one layer has connections to all the other nodes of
the next layer.

The network processes information as follows: the input nodes contain the value
of the explanatory variables. Since each node connection represents a weight factor,
the information reaches a single hidden layer node as the weighted sum of its inputs.
Each node of the hidden layer passes the information through a non-linear activation
function and passes it on to the output layer if the calculated value is above a
threshold.

The training of the network (which is the adjustment of its weights in the way
that the network maps the input value of the training data to the corresponding
output value) starts with randomly chosen weights and proceeds by applying a
learning algorithm called backpropagation of errors [33].5 The learning algorithm
simply tries to find those weights which minimise an error function (normally the
sum of all squared differences between target and actual values). Since networks
with sufficient hidden nodes are able to learn the training data (as well as their
outliers and their noise) by heart, it is crucial to stop the training procedure at
the right time to prevent overfitting (this is called “early stopping”). This can

5Backpropagation networks are the most common multilayer networks and are the most commonly
used type in financial time series forecasting [20].

112 C.L. Dunis et al.

Original or
transformed data

ARMA model to
extract linear

elements in DGP*
Predicted data

Save ARMA
residuals to check for

potentional
nonlinearities in DGP

Neural network

Forecasted residuals

Hybrid ARMA-NN
model

Forecasted residuals
+Forecasted returns

*DGP = Data generating process

Fig. 4.3 The architecture of hybrid ARMA-neural network model

be achieved by dividing the data set into three subsets, respectively, called the
training and test sets used for simulating the data currently available to fit and tune
the model and the validation set used for simulating future values. The network
parameters are then estimated by fitting the training data using the above-mentioned
iterative procedure (backpropagation of errors). The iteration length is optimised by
maximising the forecasting accuracy for the test data set. Our networks, which are
specially designed for financial purposes, will stop training when the profit of our
forecasts in the test sub-period is maximised. Then the predictive value of the model
is evaluated applying it to the validation data set (out-of-sample data set).

There is a range of combination techniques that can be applied to forecasting the
attempt to overcome some deficiencies of single models. The combining method
aims at reducing the risk of using an inappropriate model by combining several
to reduce the risk of failure. Typically this is done because the underlying process
cannot easily be determined [19].

Combining methods involves using several redundant models designed for the
same function, where the diversity of the components is thought important [4].
The procedure of making a hybrid forecasting time series model can be achieved
by combining an ARMA process in order to learn the linear component of the
conditional mean pattern with an artificial neural network process designed to
learn its non-linear elements. The construction of the hybrid ARMA-neural network
model in details is in Figs. 4.3 and 4.7.

4.4.2.1 The Multilayer Perceptron Model Architecture

The network architecture of a “standard” MLP looks as presented in Fig. 4.4 (the
bias nodes are not shown here for the sake of simplicity).
where:

• x[n]t (n = 1,2, . . . ,k+ 1) are the model inputs (including the input bias node) at
time t

4 Modelling and Trading with Hybrid ARMA-Neural Network Models 113

[k]
tx

[j]
th

jku

jw

ty
∼

Fig. 4.4 A single output, fully connected MLP model

• h[m]
t (m = 1,2, . . . , j+ 1) are the hidden nodes outputs (including the hidden bias

node)
• ỹt is the MLP model output
• u jk and wj are the network weights
• is the sigmoid transfer function

S(x) =
1

1+ e−x (4.6)

• is a linear function

F(x) =∑
i

xi. (4.7)

The error function to be minimised is

E
(
u jk,wj

)
=

1
T

T

∑
t=1

[
yt − ỹt

(
u jk,wj

)]2
(4.8)

with yt being the target value.

4.4.2.2 The Recurrent Network Architecture

Our next model is the RNN. While a complete explanation of RNN models
is beyond the scope of this chapter, we present below a brief explanation of
the significant differences between RNN and MLP architectures. For an exact
specification of the recurrent network, see [13].

114 C.L. Dunis et al.

ty

[1]
jx

[2]
jx

[3]
jx

[1]
j_1

j_1

U

[2]
U

[1]
jU

[2]
jU

∼

Fig. 4.5 Elman recurrent
neural network architecture
with two nodes on the hidden
layer

A simple recurrent network has activation feedback, which embodies short-term
memory. The advantages of using recurrent networks over feedforward networks,
for modelling non-linear time series, has been well documented in the past. However
as described in Tenti [34] “the main disadvantage of RNNs is that they require
substantially more connections, and more memory in simulation, than standard
backpropagation networks,” thus resulting in a substantial increase in computational
time. However having said this RNNs can yield better results in comparison to
simple MLPs due to the additional memory inputs.

A simple illustration of the architecture of an Elman RNN is presented in Fig. 4.5.
where:

• x[n]t (n = 1,2, . . . ,k+ 1), u[1]t , u[2]t are the model inputs (including the input bias
node) at time t

• ỹt) is the recurrent model output

• d[f]
t (f = 1,2) and w[n]

t (n = 1,2, . . . ,k+ 1) are the network weights

• U [f]
t (f = 1,2) is the output of the hidden nodes at time t

• is the sigmoid transfer function (4.6)
• is the linear function (4.7)

The error function to be minimised is

E (dt ,wt) =
1
T

T

∑
t=1

[yt − ỹt (dt ,wt)]
2. (4.9)

In short, the RNN architecture can provide more accurate outputs because the

inputs are (potentially) taken from all previous values (see inputs U [1]
j−1 and U [2]

j−1 in
Fig. 4.5).

4 Modelling and Trading with Hybrid ARMA-Neural Network Models 115

Fig. 4.6 Left, MLP with three inputs and two hidden nodes; right, second-order HONN with three
inputs

4.4.2.3 The Higher Order Neural Network Architecture

HONNs were first introduced by Giles and Maxwell [16] and were called “Tensor
Networks.” Although the extent of their use in finance has so far been limited,
Knowles et al. [23] show that, with shorter computational times and limited input
variables, “the best HONN models show a profit increase over the MLP of around
8%” on the EUR/USD time series. For Zhang et al. (2002), a significant advantage of
HONNs is that HONN models are able to provide some rationale for the simulations
they produce and thus can be regarded as “open box” rather than “black box.”
HONNs are able to simulate higher frequency, higher order non-linear data and
consequently provide superior simulations compared to those produced by artificial
neural networks (ANNs). Furthermore HONNs clearly outperform in terms of
annualised return and this enables Dunis et al. [11] to conclude with confidence
over their forecasting superiority and their stability and robustness through time.

While they have already experienced some success in the field of pattern
recognition and associative recall,6 HONNs have only started recently to be used in
finance. The architecture of a three-input second-order HONN is shown in Fig. 4.6.
where:

• x[n]t (n = 1,2, . . . ,k+ 1), u[1]t , u[2]t are the model inputs (including the input bias
node) at time t

• ỹt is the HONNs model output
• u jk are the network weights

6Associative recall is the act of associating two seemingly unrelated entities, such as smell and
colour. For more information see [22].

116 C.L. Dunis et al.

ARMA

Residuals Returns
Forecasted

returns

Neural
networks

Forecasted
residuals

Hybrid
HONN/MLP/RNN

forecast

Forecasted residuals
+ Forecasted returns

Fig. 4.7 The architecture of hybrid ARMA-neural network model

• �are the model inputs
• is the sigmoid transfer function (4.6)
• is the linear function (4.7)

The error function to be minimised is

E
(
u jk,wj

)
=

1
T

T

∑
t=1

[
yt − ỹt

(
u jk,
)]2

(4.10)

with yt being the target value.
HONNs use joint activation functions; this technique reduces the need to

establish the relationships between inputs when training. Furthermore this reduces
the number of free weights and means that HONNS are faster to train than even
MLPs. However because the number of inputs can be very large for higher order
architectures, orders of 4 and over are rarely used.

Another advantage of the reduction of free weights means that the problems of
overfitting and local optima affecting the results of neural networks can be largely
avoided. For a complete description of HONNs see [23].

4.4.2.4 The Hybrid HONN, MLP, RNN Architecture

The methodology we follow to construct the hybrid ARMA-neural network is
divided into three steps. In a first step we take the residuals from the ARMA model.
In a second step, we forecast the residuals with our neural network model. In a third
step, we create the hybrid model by adding the forecasted returns from the ARMA
model with the forecasted residuals from the second step. The architecture of the
neural hybrid models can be seen in Fig. 4.7.

4.4.2.5 Forecasting Accuracy Measures

As it is standard in the literature, in order to evaluate statistically our forecasts,
the RMSE, the MAE, the MAPE and the Theil-U statistics are computed. The

4 Modelling and Trading with Hybrid ARMA-Neural Network Models 117

Table 4.5 Out-of-sample statistical performance

RMSE MAE MAPE (%) THEIL-U

NAIVE 0.0329 0.0234 811.13 0.6863
MACD 0.0254 0.0174 393.44 0.7534
ARMA 0.0239 0.0161 115.00 0.9446
MLP 0.0470 0.0163 106.97 0.9661
RNN 0.0241 0.0170 275.23 0.8287
HONN 0.0240 0.0299 679.96 0.7289
Hybrid-MLP 0.0238 0.0160 113.19 0.8891
Hybrid-RNN 0.0237 0.0160 112.83 0.8873
Hybrid-HONN 0.0237 0.0159 113.00 0.8868

RMSE and MAE statistics are scale-dependent measures but give a basis to compare
volatility forecasts with the realised volatility while the MAPE and the Theil-U
statistics are independent of the scale of the variables. In particular, the Theil-
U statistic is constructed in such a way that it necessarily lies between zero
and one, with zero indicating a perfect fit. A more detailed description of these
measures can be found on [7, 30, 36] while their mathematical formulas are in
section “Performance Measures” in Appendix. For all four of the error statistics
retained (RMSE, MAE, MAPE and Theil-U) the lower the output, the better the
forecasting accuracy of the model concerned. In Table 4.5 we present our results for
the out-of-sample period.

As can be seen from Table 4.5 and section “Statistical Results in the Training
and Test Sub-periods” in the Appendix for the in-sample period, hybrid-HONNs
outperform all other models and present the most accurate forecasts in statistical
terms in both in- and out-of-sample periods. It seems that their ability to capture
higher order correlations gave them a considerable advantage compared to the other
models. Hybrid-RNNs come second and hybrid-MLPs come third in our statistical
evaluation in both periods. Furthermore, it is worth noting that the time that we need
to train our HONNs was less than the time needed for the RNNs and the MLPs.

4.4.2.6 Empirical Trading Simulation Results

The trading performance of all the models considered in the validation subset is
presented in the Table 4.6. We choose the network with the higher profit in the test
sub-period. Our trading strategy applied is simple and identical for all the models:
go or stay long when the forecast return is above zero and go or stay short when the
forecast return is below zero. Section “Empirical Results in the Training and Test
Sub-periods” in Appendix provides the performance of all the NNs in the training
and the test sub-periods while sections “Performance Measures” and “Networks
Characteristics” in Appendix provide the characteristics of our networks and the

118 C.L. Dunis et al.

Table 4.6 Trading performance results

Information Annualised Annualised Maximum Positions
ratioa volatilitya (%) returna (%) drawdowna (%) takenb

NAIVE 0.32 36.70 11.42 −49.41 119
MACD 0.46 38.12 17.63 −50.63 38
ARMA 0.20 38.13 7.68 −36.50 72
MLP 0.60 38.11 22.99 −36.26 105
RNN 0.59 38.11 22.51 −36.22 147
HONN 0.70 38.10 26.75 −38.71 98
Hybrid-MLP 0.86 38.08 32.80 −59.05 94
Hybrid-RNN 0.81 38.09 30.72 −59.05 93
Hybrid-HONN 0.94 38.07 35.67 −59.05 94
aExcluding costs
bAnnualised

performance measures. The hybrid-RNNs are trained with gradient descent as for
the hybrid-MLPs. However, the increase in the number of weights, as mentioned
before, makes the training process extremely slow: to derive our results, we needed
about ten times the time needed with the hybrid-MLPs. As shown in Table 4.6,
the hybrid-RNN has a lower performance compared to the hybrid-MLP model and
hybrid-HONN.

We can see that hybrid-HONNs perform significantly better than the hybrid-
MLPs and the Hybrid-RNNs and significantly better than the standard neural
network architectures despite larger drawdowns. Learning first the linear component
of the data-generating process before applying a neural network to learn its non-
linear elements definitely appears to add value in this application.

4.5 Trading Costs and Leverage

Up to now, we have presented the trading results of all our models without
considering transaction costs. Since some of our models trade quite often, taking
transaction costs into account might change the whole picture. Following Dunis
et al. [12], we checked for potential improvements to our models through the
application of confirmation filters. Confirmation filters are trading strategies devised
to filter out those trades with expected returns below the 0.14% transaction cost.
These trading strategies examine how the models behave if we introduce a threshold
d around zero. They suggest to go long when the forecast is above d and to go
short when the forecast is below d. It just so happens that the hybrid ARMA-neural
network models perform best without any filter. This is also the case of the MLP and
HONN models. Still, the application of confirmation filters to the benchmark models

4 Modelling and Trading with Hybrid ARMA-Neural Network Models 119

and the RNN model could have led to these models outperforming the hybrid, MLP
HONN models. This is not the case in order to conserve space; these results are not
shown here but they are available from the authors.

4.5.1 Transaction Costs

According to the Athens Stock Exchange, transaction costs for financial institutions
and fund managers dealing a minimum of 143 contracts or 1 million Euros are 10
Euros per contract (round trip). Dividing this transaction cost of the 143 contracts
by average size deal (1 million Euros) gives us an average transaction cost for large
players of 14 basis points (1 base point= 1/100 of 1%) or 0.14% per position.

From Table 4.7, we can see that, after transaction costs, the hybrid-HONN
network outperforms all the other strategies based on the annualised return. The
hybrid-MLP strategy performs also well and presents the second best performance
in terms of annualised return. It is worth mentioning the good performance of
HONN and MLP model. On the other hand, the naı̈ve strategy and the ARMA
model seem to be unable to fully exploit the introduction of the modified trading
strategy. Furthermore the RNN which also performed well before the introduction
of the trading strategy seems also capable of exploiting it. However, the time used
to derive these results with the HONN network is half that needed with RNNs and
the MLPs.

4.5.2 Leverage to Exploit High Information Ratios

In order to further improve the trading performance of our models we introduce a
level of confidence to our forecasts, i.e. a leverage based on the test sub-period. For
the naı̈ve model, which presents a negative return, we do not apply leverage. The
leverage factors applied are calculated in such a way that each model has a common
volatility of 20% on the test data set.7

The transaction costs are calculated by taking 0.14% per position into account,
while the cost of leverage (interest payments for the additional capital) is calculated
at 4% p.a. (i.e. 0.016% per trading day).8 Our final results are presented in Table 4.8.

7Since most of the models have a volatility of about 20%, we have chosen this level as our basis.
The leverage factors retained are given in Table 4.8.
8The interest costs are calculated by considering a 4% interest rate p.a. divided by 252 trading days.
In reality, leverage costs also apply during non-trading days so that we should calculate the interest
costs using 360 days per year. But for the sake of simplicity, we use the approximation of 252
trading days to spread the leverage costs of non-trading days equally over the trading days. This
approximation prevents us from keeping track of how many non-trading days we hold a position.

120 C.L. Dunis et al.

T
ab

le
4.

7
O

ut
-o

f-
sa

m
pl

e
re

su
lt

s
w

it
h

tr
an

sa
ct

io
n

co
st

s

In
fo

rm
at

io
n

A
nn

ua
lis

ed
A

nn
ua

lis
ed

M
ax

im
um

Po
si

tio
ns

T
ra

ns
ac

tio
n

A
nn

ua
lis

ed
ra

ti
oa

vo
la

ti
li

ty
a

(%
)

re
tu

rn
a

(%
)

dr
aw

do
w

na
(%

)
ta

ke
nb

co
st

s
(%

)
re

tu
rn

c
(%

)

N
A

IV
E

0.
32

36
.7

0
11

.4
2

−4
9.

41
11

9
16

.6
6

−5
.2

4
M

A
C

D
0.

46
38

.1
2

17
.6

3
−5

0.
63

38
5.

32
12

.3
1

A
R

M
A

0.
20

38
.1

3
7.

68
−3

6.
50

72
10

.0
8

−2
.4

0
M

L
P

0.
60

38
.1

1
22

.9
9

−3
6.

26
10

5
14

.7
0

8.
29

R
N

N
0.

59
38

.1
1

22
.5

1
−3

6.
22

14
7

20
.5

8
1.

93
H

O
N

N
0.

70
38

.1
0

26
.7

5
−3

8.
71

98
13

.7
2

13
.0

3
H

yb
ri

d-
M

L
P

0.
86

38
.0

8
32

.8
0

−5
9.

05
94

13
.6

0
19

.2
0

H
yb

ri
d-

R
N

N
0.

81
38

.0
9

30
.7

2
−5

9.
05

93
13

.0
2

17
.7

0
H

yb
ri

d-
H

O
N

N
0.

94
38

.0
7

35
.6

7
−5

9.
05

94
13

.6
0

22
.0

7
a E

xc
lu

di
ng

co
st

s
b
A

nn
ua

li
se

d
c In

cl
ud

in
g

co
st

s

4 Modelling and Trading with Hybrid ARMA-Neural Network Models 121

T
ab

le
4.

8
T

ra
di

ng
pe

rf
or

m
an

ce
—

fin
al

re
su

lt
s

T
ra

ns
ac

ti
on

In
fo

rm
at

io
n

A
nn

ua
lis

ed
A

nn
ua

lis
ed

M
ax

im
um

L
ev

er
ag

e
Po

si
tio

ns
an

d
le

ve
ra

ge
A

nn
ua

lis
ed

ra
ti

oa
vo

la
ti

li
ty

a
(%

)
re

tu
rn

a
(%

)
dr

aw
do

w
na

(%
)

fa
ct

or
ta

ke
nb

co
st

s
(%

)
re

tu
rn

c
(%

)

N
A

IV
E

0.
32

36
.7

0
11

.4
2

−4
9.

41
–

11
9

16
.6

6
−5

.2
4

M
A

C
D

0.
70

40
.0

3
18

.5
1

−5
3.

16
1.

05
0

38
5.

60
12

.9
0

A
R

M
A

0.
20

38
.1

3
7.

68
−3

6.
50

–
72

10
.0

8
−2

.4
0

M
L

P
0.

60
40

.2
8

24
.3

0
−3

8.
32

1.
05

7
10

5
15

.0
2

9.
28

R
N

N
0.

59
40

.2
1

23
.7

5
−3

8.
21

1.
05

5
14

7
20

.8
8

2.
87

H
O

N
N

0.
70

40
.3

1
28

.3
0

−4
0.

96
1.

05
8

98
14

.0
4

14
.2

6
H

yb
ri

d-
M

L
P

0.
86

40
.1

4
34

.5
7

−6
2.

24
1.

05
4

94
13

.9
0

20
.6

7
H

yb
ri

d-
R

N
N

0.
81

40
.3

0
32

.5
0

−6
2.

48
1.

05
8

93
13

.3
4

19
.1

6
H

yb
ri

d-
H

O
N

N
0.

94
40

.2
4

37
.7

1
−6

2.
46

1.
05

7
94

13
.9

0
23

.2
1

a E
xc

lu
di

ng
co

st
s

b
A

nn
ua

li
se

d
c In

cl
ud

in
g

co
st

s

122 C.L. Dunis et al.

As can be seen from Table 4.8, hybrid-HONNs continue to demonstrate a
superior trading performance despite significant drawdowns. The hybrid-MLP
strategy also performs well and presents the second higher annualised return. In
general, we observe that all models are able to gain extra profits from the leverage
as the increased transaction costs seem to counter any benefits. Again it is worth
mentioning that the time needed to train the HONN and the hybrid-HONN network
was considerably shorter compared with that needed for the MLP, hybrid-MLP,
RNN and the Hybrid-RNN networks.

4.6 Concluding Remarks

In this chapter, we applied multilayer perceptron, recurrent, higher order, hybrid-
multilayer perceptron, hybrid-recurrent and hybrid-higher order neural networks to
a 1-day-ahead forecasting and trading task of the ASE 20 fixing series with only
autoregressive terms as inputs. We used a naı̈ve, an MACD and an ARMA model
as benchmarks. We developed these different prediction models over the period
January 2001–August 2007 and validate their out-of-sample trading efficiency over
the following period from September 2007 through December 2008.

The hybrid-HONNs demonstrated the higher trading performance in terms of
annualised return and information ratio before transaction costs and elaborate
trading strategies are applied. When refined trading strategies are applied and
transaction costs are considered again the hybrid-HONNs manage to outperform
all other models achieving the highest annualised return. Moreover, the hybrid-
MLPs and the hybrid-RNNs models performed remarkably well and seem to have
an ability in providing good forecasts when autoregressive series are only used as
inputs.

It is also important to note that the hybrid-HONN network which presents
the best performance needs less training time than hybrid-RNN and hybrid-MLP
network architectures, a much desirable feature in a real-life quantitative investment
and trading environment: in the circumstances, our results should go some way
towards convincing a growing number of quantitative fund managers to experiment
beyond the bounds of traditional statistical and neural network models. In particular,
the strategy consisting of modelling in a first stage the linear component of a
financial time series and then applying a neural network to learn its non-linear
elements appears quite promising.

4 Modelling and Trading with Hybrid ARMA-Neural Network Models 123

Appendix

ARMA Model

The output of the ARMA model used in this chapter is presented below.

Dependent variable: RETURNS, Method: Least squares
Sample (adjusted): 81,738, Included observations: 1,731 after adjustments
Convergence achieved after 37 iterations
Backcast: 17

Variable Coefficient Std. error t-statistic Prob.

C 0.000290 0.000303 0.956602 0.3389
AR(1) 0.375505 0.052705 7.124626 0.0000
AR(3) −0.244662 0.024991 9.789999 0.0000
AR(7) −0.678906 0.044902 −15.11958 0.0000
MA(1) −0.374290 0.053055 7.054702 0.0000
MA(3) 0.269470 0.026409 10.20353 0.0000
MA(7) 0.677169 0.044295 15.28785 0.0000

R-squared 0.026582 Mean dependent var. 0.000288
Adjusted R-squared 0.023194 S.D. dependent var. 0.012549
S.E. of regression 0.012403 Akaike info criterion −5.937710
Sum squared resid. 0.265213 Schwarz criterion −5.915645
Log likelihood 5146.088 F-statistic 7.846483
Durbin–Watson stat. 1.857 Prob (F-statistic) 0.000000

Inverted AR roots 0.89−0.44i 0.89+0.44i 0.31−0.92i 0.31+0.92i
−0.54+0.70i −0.54−0.70i −0.93

Inverted MA roots 0.88−0.45i 0.88+0.45i 0.31−0.92i 0.31+0.92i
−0.54+0.70i −0.54−0.70i −0.94

Performance Measures

The performance measures are calculated as follows:

Table 4.9 Trading simulation performance measures

Performance measure Description

Annualised return RA = 252× 1
N

N
∑

t=1
Rt

Cumulative return RC = ∑N
t=1 Rt

Annualised volatility σA =
√

252

√
1

N−1

N
∑

t=1
(Rt − R̄)2

Information ratio IR = RA/σA

Maximum drawdown Maximum negative value of ∑Rt over the period

MD = min
i=1,···,t ;t=1,···,N

(
t
∑
j=i

R j

)

124 C.L. Dunis et al.

Statistical Results in the Training and Test Sub-periods

Table 4.10 In-sample statistical performance

RMSE MAE MAPE (%) THEIL-U

NAIVE 0.0125 0.0125 456.56 0.6781
MACD 0.0131 0.0097 235.17 0.7459
ARMA 0.0124 0.0090 117.82 0.8643
MLP 0.0153 0.0111 371.57 0.6842
RNN 0.0237 0.0119 329.88 0.7174
HONN 0.0141 0.0103 234.72 0.6938
Hybrid-MLP 0.0118 0.0086 108.93 0.7226
Hybrid-RNN 0.0122 0.0082 128.02 0.7760
Hybrid-HONN 0.0118 0.0081 124.91 0.6862

Empirical Results in the Training and Test Sub-periods

Table 4.11 In-sample trading performance

Information Annualised Annualised Maximum Positions
ratioa volatilitya (%) returna (%) drawdowna (%) takenb

NAIVE 1.55 19.32 29.86 −23.39 114
MACD 1.24 19.49 24.29 −25.42 34
ARMA 1.24 19.83 24.66 −26.70 50
MLP 1.57 19.60 30.72 −27.52 86
RNN 1.53 19.60 30.02 −34.66 81
HONN 1.61 19.59 31.56 −39.70 108
Hybrid-MLP 2.13 19.42 41.35 −37.20 102
Hybrid-RNN 2.01 19.44 39.01 −26.86 79
Hybrid-HONN 2.26 19.40 43.77 −37.20 77
aExcluding costs
bAnnualised

Networks Characteristics

We present below the characteristics of the networks with the best trading perfor-
mance on the test sub-period for the different architectures.

4 Modelling and Trading with Hybrid ARMA-Neural Network Models 125

T
ab

le
4.

12
N

et
w

or
k

ch
ar

ac
te

ri
st

ic
s

fo
r

tr
ad

it
io

na
ln

eu
ra

ln
et

w
or

ks
an

d
hy

br
id

-n
eu

ra
l

ne
tw

or
ks

L
ea

rn
in

g
L

ea
rn

in
g

It
er

at
io

n
In

it
ia

li
sa

ti
on

In
pu

t
H

id
de

n
O

ut
pu

t
al

go
ri

th
m

ra
te

M
om

en
tu

m
st

ep
s

of
w

ei
gh

ts
no

de
s

no
de

s
(1

la
ye

r)
no

de

M
L

P
G

ra
di

en
td

es
ce

nt
0.

00
1

0.
00

3
1,

50
0

N
(0

,1
)

11
7

1
R

N
N

G
ra

di
en

td
es

ce
nt

0.
00

1
0.

00
3

1,
50

0
N

(0
,1

)
11

6
1

H
O

N
N

s
G

ra
di

en
td

es
ce

nt
0.

00
1

0.
00

3
1,

00
0

N
(0

,1
)

11
0

1
H

yb
ri

d-
M

L
P

G
ra

di
en

td
es

ce
nt

0.
00

1
0.

00
3

1,
50

0
N

(0
,1

)
13

6
1

H
yb

ri
d-

R
N

N
G

ra
di

en
td

es
ce

nt
0.

00
1

0.
00

3
1,

50
0

N
(0

,1
)

13
7

1
H

yb
ri

d-
H

O
N

N
s

G
ra

di
en

td
es

ce
nt

0.
00

1
0.

00
3

1,
00

0
N

(0
,1

)
13

0
1

126 C.L. Dunis et al.

References

1. O. Adam, L. Zarader, M. Milgram, Identification and prediction of non-linear models with
recurrent neural networks, in New Trends in Neural Computation, ed. by J. Mira, J. Cabestany,
A. Prieto. Lecture Notes in Computer Science, vol. 686 (Springer, Berlin, 1993), pp. 531–535

2. C. Bishop, Mixture density networks. Technical report NCRG/4288, Neural Computing
Research Group, Aston University (1994)

3. G. Box, G. Jenkins, G. Gregory, Time Series Analysis: Forecasting and Control (Prentice-Hall,
New Jersey, 1994)

4. G. Brown, J. Wyatt, R. Harris, X. Yao, Diversity creation methods: A survey and categorization.
Inf. Fusion 6, 5–20 (2005)

5. R. Clemen, Combining forecasts: A review and annotated bibliography. Int. J. Forecast. 5,
559–583 (1989)

6. J. Connor, L. Atlas, Recurrent neural networks and time series prediction, in Proceedings of
the International Joint Conference on Neural Networks (1993), pp. 301–306

7. C. Dunis, Y. Chen, Alternative volatility models for risk management and trading: Application
to the EUR/USD and USD/JPY rates. Derivatives Use, Trading and Regulation 11(2), 126–156
(2005)

8. C. Dunis, X. Huang, Forecasting and trading currency volatility: An application of recurrent
neural regression and model combination. J. Forecast. 21(5), 317–354 (2002)

9. C. Dunis, J. Laws, B. Evans, Modelling and trading the gasoline crack spread: A non-linear
story. Derivatives Use, Trading and Regulation 12, 126–145 (2006)

10. C. Dunis, J. Laws, B. Evans, Trading futures spreads: An application of correlation and
threshold filters. Appl. Financ. Econ. 16, 1–12 (2006)

11. C. Dunis, J. Laws, G. Sermpinis, Modelling and trading the EUR/USD exchange rate at the
ECB fixing. Eur. J. Finance 16(6), 541–560 (2010)

12. C. Dunis, J. Laws, G. Sermpinis, Higher order and recurrent neural architectures for trading
the EUR/USD exchange rate. Quant. Finance 11(4), 615–629 (2011)

13. J.L. Elman, Finding structure in time. Cognit. Sci. 14, 179–211 (1990)
14. S. Fatima, G. Hussain, Statistical models of KSE100 index using hybrid financial systems.

Neurocomputing 7, 2742–2746 (2008)
15. J. Fulcher, M. Zhang, S. Xu, Application of higher-order neural networks to financial time

series, in Artificial Neural Networks in Finance and Manufacturing, ed. by J. Kamruzzaman,
R. Begg, R. Sarker (Idea Group, Hershey, 2006), pp. 80–108

16. L. Giles, T. Maxwell, Learning, invariance and generalization in higher order neural networks.
Appl. Optic. 26, 4972–4978 (1987)

17. J. Hansen, R. Nelson, Time-series analysis with neural networks and ARIMA-neural network
hybrids. J. Exp. Theor. Artif. Intell. 15(3), 315–330 (2003)

18. H. Hibbert, C. Pedreira, R. Souza, Combining neural networks and arima models for hourly
temperature forecast, in IEEE International Joint Conference on Neural Networks (IJCNN’00),
vol. 4 (2000), pp. 414–419

19. M. Hibon, T. Evgeniou, To combine or not to combine: Selecting among forecasts and their
combinations. Int. J. Forecast. 22, 15–24 (2005)

20. I. Kaastra, M. Boyd, Designing a neural network for forecasting financial and economic time
series. Neurocomputing 10, 215–236 (1996)

21. K. Kamijo, T. Tanigawa, Stock price pattern recognition: A recurrent neural network ap-
proach, in Proceedings of the International Joint Conference on Neural Networks (1990),
pp. 1215–1221

22. N. Karayiannis, A. Venetsanopoulos, On the training and performance of high-order neural
networks. Math. Biosci. 129, 143–168 (1994)

23. A. Knowles, A. Hussein, W. Deredy, P. Lisboa, C.L. Dunis, Higher-order neural networks with
Bayesian confidence measure for prediction of EUR/USD exchange rate, in Artificial Higher
Order Neural networks for Economics and Business, ed. by M. Zhang (Idea Group, Hershey,
2009), pp. 48–59

4 Modelling and Trading with Hybrid ARMA-Neural Network Models 127

24. E. Kosmatopoulos, M. Polycarpou, M. Christodoulou, P. Ioannou, High-order neural network
structures for identification of dynamical systems. IEEE Trans. Neural Network 6, 422–431
(1995)

25. A. Lindemann, C. Dunis, P. Lisboa, Level estimation, classification and probability distribution
architectures for trading the EUR/USD exchange rate. Neural Network Comput. Appl. 14(3),
256–271 (2004)

26. S. Makridakis, Why combining works? Int. J. Forecast. 5, 601–603 (1989)
27. S. Makridakis, A. Anderson, R. Carbone, R. Fildes, M. Hibdon, R. Lewandowski, J. Newton,

E. Parzen, R. Winkler, The accuracy of extrapolation (time series) methods: Results of a
forecasting competition. J. Forecast. 1, 111–153 (1982)

28. P. Newbold, C.W.J. Granger, Experience with forecasting univariate time series and the
combination of forecasts (with discussion). J. Stat. 137, 131–164 (1974)

29. F.C. Palm, A. Zellner, To combine or not to combine? issues of combining forecasts. J.
Forecast. 11, 687–701 (1992)

30. R. Pindyck, D. Rubinfeld, Econometric Models and Economic Forecasts, 4th edn. (McGraw-
Hill, New York, 1988)

31. D. Psaltis, C. Park, J. Hong, Higher order associative memories and their optical implementa-
tions. Neural Network 1, 149–163 (1988)

32. N. Redding, A. Kowalczyk, T. Downs, Constructive higher-order network algorithm that is
polynomial time. Neural Network 6, 997–1010 (1993)

33. A.F. Shapiro, A hitchhikers guide to the techniques of adaptive nonlinear models. Insur. Math.
Econ. 26, 119–132 (2000)

34. P. Tenti, Forecasting foreign exchange rates using recurrent neural networks. Appl. Artif. Intell.
10, 567–581 (1996)

35. N. Terui, H. van Dijk, Combined forecasts from linear and nonlinear time series models. Int. J.
Forecast. 18, 421–438 (2002)

36. H. Theil, Applied Economic Forecasting (North-Holland, Amsterdam, 1996)
37. P. Tino, C. Schittenkopt, G. Dorner, Financial volatility trading using recurrent neural

networks. IEEE Trans. Neural Network 12(4), 865–874 (2001)
38. F.M. Tseng, H.C. Yu, G.H. Tzeng, Combining neural network model with seasonal time series

ARIMA model. Technol. Forecast. Soc. Change 69, 71–87 (2002)
39. Y.-H. Wang, Nonlinear neural network forecasting model for stock index option price: Hybrid

GJR-GARCH approach. Expert Syst. Appl. 36(1), 564–570 (2009)
40. G.P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model.

Neurocomputing 50, 159–175 (2003)
41. R.L. Winkler, Combining forecasts: A philosophical basis and some current issues. Int. J.

Forecast. 5, 605–609 (1989)
42. G.P. Zhang, M. Qi, Neural network forecasting for seasonal and trend time series. Eur. J. Oper.

Res. 160(2), 501–514 (2005)

Chapter 5
Pattern Detection and Analysis in Financial
Time Series Using Suffix Arrays

Konstantinos F. Xylogiannopoulos, Panagiotis Karampelas, and Reda Alhajj

Abstract The current chapter focuses on data-mining techniques in exploring
time series of financial data and more specifically of foreign exchange currency
rates’ fluctuations. The data-mining techniques used attempt to analyze time series
and extract, if possible, valuable information about pattern periodicity that might
be hidden behind huge amount of unformatted and vague information. Such
information is of great importance because it might be used to interpret correlations
among different events regarding markets or even to forecast future behavior.
In the present chapter a new methodology has been introduced to take advantage of
suffix arrays in data mining instead of the commonly used data structure suffix trees.
Although suffix arrays require high-storage capacity, in the proposed algorithm they
can be constructed in linear time O(n) or O(n logn) using an external database
management system which allows better and faster results during analysis process.
The proposed methodology is also extended to detect repeated patterns in time series
with time complexity of O(n logn). This along with the capability of external storage
creates a critical advantage for an overall efficient data-mining analysis regarding
construction of time series data structure and periodicity detection.

5.1 Introduction

The current chapter proposes a method for detecting and analyzing patterns in
financial time series using a novel approach. It utilizes the data structure suffix
array which is constructed by the time series and is stored in an external database

K.F. Xylogiannopoulos • P. Karampelas (�)
Hellenic American University, Manchester, NH, USA
e-mail: kostasfx@yahoo.gr; pkarampelas@hauniv.us

R. Alhajj
University of Calgary, Calgary, AB, Canada
e-mail: alhajj@ucalgary.ca

M. Doumpos et al. (eds.), Financial Decision Making Using Computational Intelligence,
Springer Optimization and Its Applications 70, DOI 10.1007/978-1-4614-3773-4 5,
© Springer Science+Business Media New York 2012

129

130 K.F. Xylogiannopoulos et al.

management system. The method searches the suffix array to identify all repeated
patterns and finally analyzes the outcome of the search to detect all patterns
with specific periodicity. The proposed methodology has been tested by analyzing
real financial data for the US Dollar Euro currency exchange rate’s values from
December 2001 to December 2011 and it has produced interesting results showing
that there is scarce periodicity, even in the foreign currency exchange market which
is a chaotic system.

A time series is a set of data values representing a variable over a specific time
period. The variable can be of any kind such as weather conditions, traffic, banking
transactions, stocks or index prices, earthquakes or other geological events, etc.
In each distinct fragment of the specific time period examined one value of the
variable is assigned. Time period fragmentation can range from nanoseconds in
case nuclear phenomena are observed to days for stock markets or even millions
of years for geological events. Time series tend to become very important tools in
data mining because they can help in discovering periodicities in the events they
represent. Periodicities on the other hand can play an important role in decision
making, e.g., in profit maximization in financial markets, in cost minimization in
operations management in organizations such as banks or supermarkets, in quality
of life improvement such as the traffic in large cities, etc.

The first step in the time series processing is to discretize it by assigning a letter
of a predefined alphabet to each value or range [3, 16]. Such a process is important
before the analysis because:

(a) Ranges of values are more influential than discrete ones since they represent a
wide range of values

(b) Ranges can absorb and eliminate noise and errors of the data collection process
(c) Trying to analyze absolute values instead of ranges might be difficult and

produce inconsistent results

For example, let T = e0,e1,e2, . . . ,en−1 be a time series of n events, where ei is
the event occurred at time i. Time series T can be discretized by creating an alphabet
of m characters to describe each value region. If T is defined from the stock market
index daily changes, since there are two significant decimal digits for the change,
it means that for a positive change between 0 and 5% there are 501 distinct values.
In a time period of 5 years there are approximately 1,260 different values with each
value having a probability of almost 0.024 to occur, which if analyzed might not
lead to any result. Therefore, the time series can be discretized using a predefined
alphabet, denoted by Σ , e.g., by using the following ranges:

• a for change between [0–0.99%]
• b for change between [1.00–1.99%]
• c for change between [2.00–2.99%]
• d for change between [3.00–3.99%]
• e for change between [4.00–5.00%]

Thus, the time series T = 0.45%,2.12%,2.44%,1.67%,3.09%,0.87% can be
discretized into T ′ = accbda.

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 131

Following the discretization process, periodicity detection is applied in two steps
by representing data values in memory or other storage means such as a hard disk
and analyzing the data. For the representation of data, the most common approach
so far is using suffix trees, which is a representation of all suffix strings in a tree data
structure [16,22]. A suffix string is a substring of the original string which represents
the time series from which a part of the beginning of the string has been removed.
For example, let τ = τ0,τ1,τ2, . . . ,τn be a string with n characters. A suffix string of
τ can be τ ′ = τm,τm+1,τm+2, . . . ,τn, where 0 ≤ m ≤ n. A string of length n can have
exactly n−1 suffix strings. An alternative approach to achieve the same results is by
using, instead of suffix trees, suffix arrays, which is another powerful data structure.
A suffix array is a sorted list of all the suffixes of a string [11]. After the creation of
the suffix array the analysis of the time series can be done using already developed
algorithms for periodicity detection [3, 4, 8, 16].

The rest of the chapter is organized as follows: Section 5.2 reviews the related
work. In Sect. 5.3 the problem to be solved is defined. Section 5.4 describes the
proposed method. Section 5.5 discusses the findings from applying the proposed
method on historical financial data and finally, Sect. 5.6 presents the conclusions
and anticipated future work.

5.2 Related Work

The suffix tree of a string is a tree including all the suffixes of the string [17] which
is a very powerful data structure [2, 3, 15] heavily used for data-mining analysis
because of its flexibility in string processing [6]. Many algorithms have been
developed in the past decades to create suffix trees, like Weiner [23] and McCreight
[12], with O(n2) and O(n logn) complexity, respectively. A suffix tree can also
be created in linear time using Ukkonen’s algorithm [22] with the assumptions
that it can be stored in main memory [2, 6]. Then several other algorithms can be
used to traverse suffix trees such as the non-recursive algorithm for binary search
tree traversal [1]. In parallel, due to the size of the suffix trees especially in large
time series, many techniques have been developed to store them on disks [2, 6].
Nevertheless, performance problems might occur even in the case of the O(n)
method of Ukkonen algorithm when traversing the tree especially if the part that
is processed is not loaded entirely on memory. In any case, such methods are very
useful for processing large time series and their strings [2] such as DNA analysis in
bioinformatics and traffic control systems.

Many of the methods for the construction of suffix trees are very time consuming,
especially if the time series to be analyzed is very long [2, 21]. Moreover, for very
long time series, in which the whole structure has to be stored in a disk instead of
memory, significant issues could occur. The constant disk access for writing and
reading data can reduce the performance of the algorithms to a great extent [21].
However, the linear time construction and the lesser space consumption compared
to other data structures have established suffix trees as the preferable data structure

132 K.F. Xylogiannopoulos et al.

for many string matching analysis tasks [2,15,16,21]. Despite that, many researchers
have shown that it is unfeasible to construct a suffix tree that exceeds the available
main memory [2, 13, 14]. To overcome this problem some researchers, like Cheung
et al. [2], have developed methods to combine on memory and disk data storage
and access. Such techniques have a significant improvement of the performance of
suffix trees and turn them into a powerful data structure.

Another data structure that has been developed relatively lately is suffix array
[9, 17]. It is an array of all the suffixes of a string. The simpler way to construct a
suffix array is by using a sorting method such as the merge-sort with complexity
of O(n logn) [9, 11, 17]. Although a suffix array of a string can be constructed in
linear time and then it can be lexicographically sorted, Ko and Aluru [10] have
developed a method to construct directly the sorted suffix array in O(n) time. The
most important disadvantage compared to suffix trees, except construction time, is
the storage space required [10, 11]. The elements of a suffix array are n(n+ 1)/2,
based on the Gauss proof for the summation of the series ∑n

k=1 k, which is the
summation of the elements of all the n − 1 suffix strings including the original
time series string of length n. On the other hand, the advantage of the suffix array
is that it does not require memory storing, but instead it can be directly stored on
a disk and accessed whenever needed. Although the amount of data to be stored
is very large for long strings, since it has space capacity requirement O(n2), it is
more efficient because by taking advantage of the structure of the array it is easier
for storing and accessing a massive number of data on a disk instead of the main
memory of a computer. Moreover, a database management system can be used for
storage, sorting, and accessing and other data operations. Despite the fact that data
operations on disk are usually processed slower than in memory, such methods can
overcome the usual difficulty to address the problem of the limited memory size by
converting it to a more manageable time delay problem due to disk storage as we
will present.

For the computation of all the repeating substrings in a time series, methods
and algorithms based either on suffix trees or suffix arrays can be used. There are
methods that have linear time efficiency such as those described in [6, 20]. These
methods can be implemented on suffix trees or suffix arrays and although they might
be linear in time consumption and space capacity, the detection of repetitions can be
significantly time and space consuming [16,20]. Franek and Smyth have developed
an algorithm that can be used on suffix trees and a variation of it can be used on
suffix arrays [5] for the computation of all the repeated patterns in a time series.

There are many algorithms that can be used for the analysis of the time series
and the detection of any periodicities [3, 15, 16]. One of the earliest was developed
by Elfeky et al. [3]. In their work the authors proposed two distinct algorithms for
symbol and segment periodicity with complexity O(n logn) and O(n2), respectively.
Their main difference is that the former does not work properly in the presence
of insertion or deletion of noise while the latter does [16]. Many other algorithms
have been developed lately using several techniques [4, 8] such as the algorithm of
Han et al. [7] for partial periodicity and multiple period data mining in time series.
Based on the work of Han et al. [7], Sheng et al. [18, 19] developed an algorithm

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 133

to detect periodic patterns in a section of a time series [16]. Moreover, Huang and
Chang [8] have also developed an algorithm for asynchronous periodic patterns.

Recently, a new approach [15, 16] has been developed which will be used
in the current chapter for detecting the periodicity in time series. The specific
methods have more efficient results by combining different techniques to report
all types of periods even in the presence of noise. In their research, Rasheed et al.
[16] have developed periodicity detection algorithms that are very efficient with
average complexity O(n2). Moreover, their algorithms can work in the presence of
insertion or deletion of noise and they can also be used for periodicity detection in
a subsection of a time series.

5.3 Problem Definition

The data-mining analysis in time series can solve the problem of the detection of
all the repeated patterns with a specific periodicity. This problem can be divided
into two phases: (a) the detection of all the repeating patterns in the time series and
(b) the filtering of the repeated patterns to discover which of them have specific
periodicity.

To address these two challenges several techniques have been introduced in the
literature. For the identification of all the repeating patterns, suffix trees have been
used so far [2, 3, 15, 16] although some methods using suffix arrays have been
introduced lately [9, 17]. Both cases require the construction of the data structure
first and then the identification of all the existing patterns that have some kind of
repetition in time series follows. Subsequent to the retrieval of all the positions of the
repeating patterns in the time series, potential periodicities are detected. To detect
periodicities, occurrence vectors need to be created first for storing the positions
of all repeated patterns. Occurrence vectors are very important because they are
required by periodicity detection algorithms [16] in order to analyze the time series
and check if these patterns occur with a specific periodicity.

In the current work, suffix arrays will be used instead of suffix trees, for finding
all the occurrences of repeated patterns and creating the occurrence vector in
the time series. The proposed approach to solve the problem is to first construct
the suffix array using a novel methodology and then detect all the repetitions of
substrings in it. Subsequently the introduction of an algorithm will follow, which
uses the suffix array to produce the occurrence vector of all the patterns.

5.4 Our Approach

The developed methodology is based on the following mathematical definitions and
theorems that have been developed and proved for the scope of the chapter. First the
definition and calculation of perfect periodicity is introduced. Such a calculation is

134 K.F. Xylogiannopoulos et al.

important because perfect periodicity is needed to introduce confidence limits that
will allow us later to detect periodicities that are highly confident and, therefore,
valuable for data analysis.

5.4.1 Theorem for the Calculation of Perfect Periodicity
of a Subset in a Time Series

Definition 5.1 (Perfect Periodicity). Let a time series T = {e0e1 . . .en−1} of n ∈
N∗ elements and length |T | = n and a subset S = {eiei+1 . . .ei+k−1}, of the time
series T , of k ∈ N∗ elements and length |S| = k that occurs in position i where
0 ≤ i ≤ i+ k− 1 ≤ n− 1. We define as perfect periodicity PP of the subset S, with
period p ∈ N, p ≥ 1, the maximum number of repetitions that the S can have, with
period p, in the time series T .

Theorem 5.1 (Calculation of perfect periodicity). Let a time series T = {e0e1 . . .
en−1} of n ∈ N∗ elements and length |T |= n and a subset S = {eiei+1 . . .ei+k−1}, of
the time series T , of k ∈ N∗ elements and length |S|= k. The perfect periodicity PP
of the subset S, with period p ∈ N, p > 1, can be derived from the formula

PP =

[|T |+(p−|S|)
p

]
.

Proof. From the definition of the perfect periodicity we have that PP is the
maximum number of repetitions that a subset can have in a time series. Therefore
we can write

|T |= p×PP. (5.1)

However, the formula is not complete because there are cases in which we can have
a residual that we have to add to the multiplication to get the precise number of the
length of the time series. Therefore, we can write

|T |= p×PP+R, (5.2)

where R is the residual.
From the definition of division between two natural numbers D and d, where D

is the dividend and d the divisor, we have

D = dq+ r. (5.3)

What we can notice from comparing (5.2) and (5.3) is that they are analogous. If
we change variables D, d, q, and r as follows:

D ≡ |T |, d ≡ p, q ≡ PP, r ≡ R

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 135

then we will have as a result equation (5.2). From this result we can claim that
perfect periodicity derives from the algorithm of division since the divisor has
exactly the same definition as periodicity, while quotient is the same outcome as
perfect periodicity. Indeed with the divisor d we divide the dividend D and get a
quotient q, while if we divide |T | with the period p (the divisor) we will get PP (the
quotient), plus any remainder.

In the case of perfect periodicity it is important to note that perfect periodicity PP
is larger than quotient q by one when the remainder of the division is not 0 (if r �= 0,
we do not have perfect division), so, we have to change the equation PP = q to
PP = q+1 ⇒ q = PP−1. That happens because while in the division between two
natural numbers we get as a result the quotient that gives us how many times D is
greater than d (plus a remainder, if any), in periodicity we have to count also the first
occurrence of the subset S. Namely, we analyze subsets with a length of at least 1
and therefore the subset itself takes space inside the time series, which is not the case
of division between natural numbers. For example, in the division 9/5, we will get as
quotient 1 and remainder 4, while in the time series T1 = {a∗∗∗∗a∗∗∗}with length
9 we can have two occurrences of subset S = {a}, in positions 0 and 5, with period 5
and a residual of three elements at the end of the time series after the last occurrence
of the subset. So we have the same dividend and time series length (D = |T |= 9),
divisor and period (d = p = 5) but we get as a result perfect periodicity PP = 2
instead of the quotient q = 1 and residual R = 3 instead of remainder r = 4. The
perfect periodicity is greater than quotient by 1 as we expected to be. In the division
10/5 we will get as quotient 2 and remainder 0, while in the time series T2 = {a ∗
∗ ∗ ∗a ∗ ∗ ∗ ∗} with length 10 we have again two occurrences of subset S = {a},
in positions 0 and 5, with period 5 and a residual of 4 elements. In this case we
have perfect division and that is why perfect periodicity is equal to quotient. If we
expand the time series T2 by adding one more element and create a new time series
T3 = {a ∗ ∗ ∗ ∗a ∗ ∗ ∗ ∗a} then we will have three occurrences, at positions 0, 5, and
10, with no residuals, while from the division 11/5 we will get as quotient 2 and
remainder 1. Again the perfect periodicity will be greater than quotient by 1 as we
have described previously.

Moreover, the above example implies that since the smallest length of the subset
we can have is k = |S| = 1, the residual R can be 1 ≤ R ≤ p− 1, where p is the
period. Indeed, although the remainder of the division r is 0 ≤ r ≤ d−1, in the case
of perfect periodicity, the residual R can only be k ≤ R ≤ p− 1, k > 0 in general
or 1 ≤ R ≤ p− 1, k = 1, which is the smallest value that k can take since k = |S|
represents the length of the subset, which cannot be 0. That is because if the residual
becomes R = k− 1, smaller than k, then the last element of the last occurrence of
the subset S will be outside of the time series’ boundaries. In that case we will
have a reduced perfect periodicity by 1 and the new residual will be R = p− 1.
Therefore, we can claim that R ∈ [k, p−1], 0 < k < p. For the calculation of perfect
periodicity we have to choose the smallest possible R; therefore, we will choose the
R = min{k, p− 1} = k = |S| which includes all cases we want to examine. If we
choose the greatest possible R, max{k, p− 1}= p− 1, we fall into the category of

136 K.F. Xylogiannopoulos et al.

normal division with length of subset |S| = 1, which is not the general case since
we want to cover all the cases with subsets’ length greater than one. Furthermore, if
R = k then we have no residual, which is the optimum case we can have for perfect
periodicity before it is downgraded to the next smaller integer.

According to the above-mentioned analysis, where PP should be changed to
PP− 1 and R should be replaced with |S|, (5.2) can be transformed as follows:

|T |= p(PP− 1)+ |S|=⇒ |T |= pPP− p+ |S|=⇒ PP =
|T |+(p−|S|)

p
. (5.4)

Since we care about perfect periodicity, which is a natural number, we can
transform (5.4), in order to get the integral part of the outcome, as follows:

PP =

[|T |+(p−|S|)
p

]

which is the biggest natural number smaller than PP, [PP]≤ PP < [PP]+ 1. ��
Furthermore, the decimal part that is truncated is R/p and represents the

percentage of the remaining elements in the time series following the last occurrence
of the substring. It is also showing how much more elements we need in time series
to have one more occurrence of the subset since 1−R/p represent the percentage
of elements we need to have in a full period. So, the actual number of the elements
to complete another period will be (1−R/p)p = p−R.

Example 5.1. Let us take a simple example of calculating perfect periodicity that
will demonstrate, why k ≤ R ≤ p− 1 and why we have to choose as R the smallest
R = min{k, p− 1} = k = |S|. Let us assume that we have a time series T1 as it is
presented in Fig. 5.1 with |T1|= 20 and the subset ab that starts at position 0 and is
repeated with period p = 5.

In this case we have perfect periodicity PP1 = 4:

PP1 =

[|T1|+(p−|S|)
p

]
=

[
20+(5− 2)

5

]
= [4.6] = 4.

Suppose that we truncate the time series to have |T2| = 17. Then we have again
perfect periodicity PP2 = 4:

PP2 =

[|T2|+(p−|S|)
p

]
=

[
17+(5− 2)

5

]
= [4] = 4.

We have to remember that perfect periodicity is not just the quotient but it is by 1
greater since PP= q+1. So, if we do the division and express the perfect periodicity
as the quotient plus 1 then we will have the following analysis 17/5 = 5× 3+ 2 ⇒
PP = q+ 1 = 3+ 1 = 4, and, moreover, we have no other values after the subset

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 137

Fig. 5.1 Different time series for the calculation of perfect periodicity

since the remainder of the division 17/5 is 2 = k, which is the length of the subset
k = |S| and as we have proved it is the smallest value the residual r could take since
k ≤ R ≤ p− 1, k > 0.

If we truncate the time series by one more element to have |T3| = 16, then the
perfect periodicity will be PP3 = 3

PP3 =

[|T2|+(p−|S|)
p

]
=

[
16+(5− 2)

5

]
= [3.8] = 3

instead of 4 because one character of the subset will be outside of the boundaries of
the time series T3. Now we will have four remaining values (including a at position
15, which is not an occurrence anymore), which is actually the largest value the
residual R could take since k ≤ R ≤ p−1, k > 0 and in this case p−1 = 5−1 = 4,
while the remainder of the division 16/5 is 1 < k. Therefore, we conclude that the
optimum case for the perfect periodicity, before we fall into smaller number, is when
we have no remaining elements as in the second case in which R = k = |S|. ��
Lemma 5.1 (Calculation of perfect periodicity starting at a position greater
than 0). Let a time series T = {e0e1 . . .en−1} of n ∈ N∗ elements and length
|T |= n and a subset S = {eiei+1 . . .ei+k−1} of the time series T of k ∈ N∗ elements
and length |S| = k where 0 ≤ i < i + k − 1 ≤ n − 1. If we want to calculate
perfect periodicity for the subset S from the position of first occurrence ei, where

138 K.F. Xylogiannopoulos et al.

Fig. 5.2 Original time series for calculation of perfect periodicity

Fig. 5.3 The new time series for calculation of perfect periodicity using Lemma 5.1

i = StartingPosition, then the perfect periodicity PP of the subset S, with period
p ∈ N, p ≥ 1, can be derived from the formula

PP =

[
(|T |− i)+ (p−|S|)

p

]
.

Proof. If we truncate from the time series T , i elements from the beginning then we
have a new time series T1 with length:

|T1|= |T |− StartingPosition= |T |− i

which it will give as a result the formula of Lemma 5.1 for the perfect periodicity if
we change the new value of |T1| with its equivalent in the formula of the theorem:

PP =

[|T1|+(p−|S|)
p

]
=⇒ |T1|= |T |− iPP =

[
(|T |− i)+ (p−|S|)

p

]

and we get the formula of Lemma 5.1. ��

Example 5.2. Let us examine again the first case of Example 5.1 calculating perfect
periodicity from a different starting element than e0 at position 0. We have the
time series as presented in Fig. 5.2 in which we have calculated that the perfect
periodicity is PP = 4. However, assuming that we want to calculate the perfect
periodicity starting from position i = 4 as it is illustrated in Fig. 5.3 we will have

PP =

[
(|T |− i)+ (p−|S|)

p

]
=

[
(20− 4)+ (5− 2)

5

]
= [3.8] = 3

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 139

and we get the expected result because starting from position 4 we have excluded
the first occurrence of the subset and we have four free cells, one at the begging
and three at the end, which are the most we can have 1+ 3 = 4 = p− 1. It is like
creating a new time series T1 with |T1| = |T | − 4 = 16, in which the subset starts
from position 4 of the first time series T (position 0 of the new time series T1) with
four remaining elements at the end, including a at the position 19 which is not an
occurrence any more as it is represented in Fig. 5.3. ��
Lemma 5.2 (Calculation of perfect periodicity starting at a position greater
than 0 and ending at position less than n− 1). Let a time series T={e0e1 . . .en−1}
of n ∈ N∗ elements and length |T | = n and a subset S = {eiei+1 . . .ei+k−1} of the
time series T of k ∈ N∗ elements and length |S|= k where 0 ≤ i < i+ k−1 ≤ n−1.
If we want to calculate the perfect periodicity for the subset S from the position
of first occurrence ei, where i = StartingPosition, till another position em, where
m = EndingPosition and moreover we have that 0 ≤ i < i+k−1 < m ≤ n−1, then
the perfect periodicity PP of the subset S, with period p ∈ N, p ≥ 1, can be derived
from the formula

PP=

[
(|T |− i− (|T |− (m+ 1)))+ (p−|S|)

p

]
⇐⇒PP=

[
(m+ 1− i)+ (p−|S|)

p

]
.

Proof. If we truncate from the time series T i elements from the beginning and
(|T |− (m+ 1)) elements from the end, a new time series T1 is created with length

|T1|= |T |− StartingPosition− (|T|− (EndingPosition+1))⇐⇒
|T1|= |T |− i− (|T |− (m+ 1)) = m+ 1− i

which it will give as a result the formula of Lemma 5.2 for the perfect periodicity if
we change the new value of |T1| with its equivalent in the formula of the theorem:

PP =

[|T1|+(p−|S|)
p

]
⇐⇒ |T1|= m+ 1− iPP =

[
(m+ 1− i)+ (p−|S|)

p

]

and we get the formula of Lemma 5.2. ��
In the second lemma we get the general formula that represents the perfect

periodicity of a subset in a time series because if we set m + 1 = |T | and i = 0
we fall in the formula of the theorem, while with m+ 1 = |T | and i �= 0 we fall in
the formula of the first lemma in which we start from a position greater than 0.

Example 5.3. Let us use again Example 5.2, calculating perfect periodicity from
element ei at position i = 4 but for a different ending element em at the position
m = 14. Then we will have as it is presented in Fig. 5.4 a new time series T1 starting
at position 4 and ending at position 14 of the original time series, in which perfect
periodicity will be

140 K.F. Xylogiannopoulos et al.

Fig. 5.4 Time series for calculation of perfect periodicity using Lemma 5.2

PP =

[
(|T |− i− ((|T |− 1)−m))+ (p−|S|)

p

]
⇐⇒

PP =

[
(m+ 1− i)+ (p−|S|)

p

]
=

[
(14+ 1− 4)+ (5− 2)

5

]
= [2.8] = 2

and we get the expected result because starting from position 4 and ending at
position 14 of the original time series, we can have only two occurrences of the
subset with four remaining elements at the end, including a at the position 14 of the
original time series or position 10 of the new time series, which is not an occurrence
any more. ��

5.4.2 Algorithms

5.4.2.1 Suffix Array Construction

Many different approaches for the construction of the suffix array can be used. The
most common is the use of a for-loop structure, which each time removes the first
letter of the string. The new substring, which is a suffix string of the initial string
of the time series, can be stored either on memory as an array (suffix array) or on
the disk. Alternatively, many other algorithms can be used to construct the suffix
array in linear time and lexicographically sorted [9, 17]. However, it is important to
take into consideration memory storage limitations and constrains. When stored in
memory, processing is significantly faster, but, for very long strings, the size of the
array might be a drawback because it might exceed the size of the available memory
or leave a small amount of free memory for algorithms’ operation. In this work in
order to calculate occurrence vectors faster and easier, a storage method that uses an
external database management system has been selected.

The algorithm Suffix Array Construction (SAC) is used, in which a for-loop
calculates each time the substring from the position i till the end of the string of
the time series. Then the substring is inserted into database with the respective T-
SQL insert command. With the selected algorithm we avoid the construction of a
huge array on memory before inserting it into database.

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 141

Fig. 5.5 The suffix array and
the sorted suffix array of
string abcabbabb

Algorithm 1 has only one for-loop and, therefore, it has time complexity O(n).
Time complexity cannot be defined with accuracy because the time needed for the
insertion of the string into the database might vary on different database manage-
ment systems and on different software and hardware configurations. In general, the
process can be counted as one instruction. In case memory storage is used the time
complexity will be Θ(4n) or generally O(n).

5.4.2.2 Repeated Patterns Detection

Let the time series be represented by the string abcabbabb. The length of the time
series is n = 9. The alphabet of the specific sample is Alphabet = {a,b,c} of length
m = 3. The suffix array of the specific string is represented in Fig. 5.5a.

Irrespectively of the selected type of storage two different types of information
for each row of the suffix array table are needed. The first is the position of the
suffix string in the time series string and the second is the suffix string. Figure 5.5b
represents the lexicographically sorted rows of the table by the suffix string column.

142 K.F. Xylogiannopoulos et al.

Fig. 5.6 The suffix strings of string abcabbabb using a sorted suffix array

In order to calculate the occurrence vectors that will be needed in the periodicity
detection algorithms the following process has to be executed:

1. For all the letters of the alphabet count suffix strings that start with the specific
letter.

2. If no suffix strings found or only one is found, proceed to the next letter
(periodicity cannot be defined with just one occurrence).

3. In case the same number of substrings is found as the total number of the suffix
strings, proceed to step 4 and the specific letter is not considered as occurrence
because a longer hyper-string will occur.

4. If more than one string and less than the total number of the suffix strings is
found, then for the letter used and counted already and for all letters of the
alphabet add a letter at the end and construct a new hyper-string. Then do the
following checks:

(a) If none or one suffix string is found that starts with the new hyper-string
consider the previous substring as an occurrence and proceed with the next
letter of the alphabet.

(b) If the same number of substrings is found as previously then proceed to step
4. However, the specific substring is not considered as occurrence because a
longer hyper-string will occur.

(c) If more than one and less than the number of occurrences of the previous
substring is found, consider the previous substring as a new occurrence and
continue the process from step 4.

In the case of the string abcabbabb the following process can be used: Starting
with first letter of the alphabet, a, three substrings can be found that start with a
as depicted in Fig. 5.6a. Since more than one and less than the total number of the
substrings have been found starting with a, the process should continue to search
deeper by adding each letter of the alphabet to a and construct each time a new
string.

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 143

The first hyper-string is aa. Since there is no substring starting with aa the
process should continue with the next letter and create a new hyper-string, ab.
Counting the substrings that start with the new string ab the result is exactly as
many as the previous string (with only one letter, a) as illustrated in Fig. 5.6b.
In this case, the first string the process started, a, is definitely not an important
occurrence, because the hyper-string ab has occurred exactly the same times in
the time series. Since ab is longer than a, the process uses only the longer ab.
Continuing to search deeper by adding again each one of the alphabet letters to the
new string ab, the process starts with the letter a and founds no substrings starting
with aba. It proceeds to the next letter b. With the new string abb two substrings
can be found as presented in Fig. 5.6c. Since the number of the substrings is less
than the previous ab, definitely ab is an occurrence. However, the process should
check if abb is an occurrence too, or there is a longer string that starts with abb is an
occurrence. The process continues and finds that there is no string that starts with
abb and can be counted more than two times. Therefore, the process goes back to
step 4 and checks for the string ac. Since there are no substrings starting with ac, the
process has finished with all the substrings starting with a. So far the occurrences
that are important are ab and abb. By continuing the process and moving back to the
first step and proceeding with the next letter of the alphabet, b, the process will find
the occurrences b and bb. For the letter c there are no occurrences. So, the whole
process has been concluded and produced the findings depicted in Fig. 5.6d.

The whole process can be described by the algorithm Calculate Occurrences’
Vectors (COV) “Algorithm 2”. The execution of the algorithm should be done by
passing an empty string and the length n of the time series: COV(“”, n).

In the algorithm there are two external calls: (a) the first one is “how many strings
start with newX,” which is a T-SQL statement that queries the database and returns
the number of the strings that start with the specific substring and (b) the second
“find positions of string X ,” which is again a T-SQL statement that gets the positions
of the suffix strings in the time series. These positions are the numbers in front of
each suffix string. In the specific example with the string abcabbabb the occurrences
ab, abb, b, bb have been found and the equivalent occurrence vectors are: ab(0,3,6),
abb(3,6), b(1,4,5,7,8), and bb(4,7).

In the case of memory storage, the appropriate algorithms for sorting and
querying the suffix array should be produced to get the respective results, instead
of using the two T-SQL statements.

The equivalent suffix tree for the specific sample string will be as it is presented
in Fig. 5.7, where $ is the terminal symbol that is used for each suffix string.
The relative occurrence vectors have also the substring positions in parenthesis.

5.4.2.3 Periodicity Detection Algorithms

In order to search and detect if there are any periodicity patterns in the time
series, we use the periodicity detection algorithms described thoroughly in the

144 K.F. Xylogiannopoulos et al.

Fig. 5.7 The suffix tree of abcabbabb and its occurrences’ vectors

research paper [16]. In those algorithms minor modifications have been done
using the above-mentioned theorem to calculate confidence and some other minor
improvements regarding variable initialization.

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 145

Algorithm 3 searches all the positions for each repeated pattern Algorithm
2 has found to detect periodicity. First it creates the difference vector which is
position i+ 1 minus position i of the repeated pattern and calculates the differences
(periodicities) p for each pair. Then it checks if the modulo of the division between
starting position and p is equal with the modulo of position i and p. If it is the same,
it means that the specific position i is a repetition with the specific periodicity p
and the algorithm increments the count of the specific periodicity. When finished
it calculates the confidence which is the number that periodicity p has been found
valid divided by the perfect periodicity.

Perfect periodicity can be calculated using Theorem 5.1. If confidence is equal
or larger than the user’s specified threshold then the periodicity is added to the
list of all valid periodicities. The threshold is the percentage of the lower limit of
the confidence. When the process is finished, Algorithm 3 continues to the next
occurrence vector.

Algorithm 4 works very similar to Algorithm 3 but allows noise resilience in
the time series. The main and very important difference is the introduction of time
tolerance value. More specifically, the algorithm searches for periodicities not only
in the specific positions that periodicity is expected but also within the limits of
a time tolerance. The algorithm namely searches the elements before and after the
actual period within a time tolerance value. The new variables that include represent
(a) the distance between the current occurrence and the reference starting position

146 K.F. Xylogiannopoulos et al.

(variable A), (b) the number of periodic values that must be passed from the current
reference starting position to reach the current occurrence (variable B), and (c) the
distance between the current occurrence and the expected occurrence (variable C).
The preOccur variable holds the value of the current occurrence. If the pattern that
is under examination will be found in between the limits of the expected position
and the time tolerance (minus or plus) and the current occurrence is not a repetition
of an already counted periodic value then the algorithm increments the count that
periodicity p has been found [16]. When finished it calculates the confidence
which is the number that periodicity p has been found valid divided by the perfect
periodicity. Perfect periodicity again can be calculated using Theorem 5.1. If
confidence is equal or larger than the user’s specified threshold then the periodicity
is added to the list of valid periodicities. The threshold is the percentage of the lower
limit of the confidence. When the process is finished, Algorithm 4 continues to the
next occurrence vector.

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 147

Table 5.1 Suffix construction space capacity and time complexity results (real-case scenarios A)

Case 1 2 3 4 5 6 7

Alphabet size (m) 9 9 9 9 9 9 9
String length (n) 100 200 400 800 1,600 3,200 6,400
S.A. construction

instructions
698 1,398 2,798 5,598 11,198 22,398 44,798

S.A. space 5,150 20,300 80,600 321,200 1,282,400 5,124,800 20,489,600

5.4.3 Algorithm Analysis

For the data analysis in the current chapter a typical personal computer has been
used. The main disadvantage of the suffix array is the storage allocation on memory
or on disk. The size of the required storage space is at least n(n+ 1)/2 or O(n2).
For a string of length 100,000 elements the approximate needed disk space is 12 GB
in order for the database management system to create the appropriate database
file. The need for approximately 2.5 times more space than what the formula
∑n

k=1 k = n(n+ 1)/2 computes is because of the metadata and other information
that the database management system stores in the file. Furthermore, when a field
is declared for example, as char(50) in the database management system, even if
only one character is stored in the data field, this occupies 50 characters in the file.
Database management systems have many techniques to compact database files to
their actual size either when the database is constructed or after the process has been
completed. Taking this into consideration and the fact that in database management
systems the necessary operations for sorting and querying data are available, it is
more efficient to store the suffix array in a database than in memory. In addition, the
system memory will not be used apart from performing the necessary calculations.
Regarding the complexity of the algorithms for the creation of the lexicographically
sorted suffix array various results can be produced. The best could be O(n logn)
[9, 17]. However, a simple for-loop method to create the array first can be used
and then the database management system can use its internal procedures to
lexicographically sort the array. In this case the time complexity will be O(n) for the
creation and O(n logn) for sorting the array, if the database management system uses
merge-sort algorithm, which is the most efficient. The overall complexity will be
O(n+ n logn) or generally O(n logn). The relevant calculated results can be found
in Table 5.1.

For the Calculate Occurrence Vectors Algorithm, several tests regarding maxi-
mum complexity (worst case) and average complexity have been run based on real
financial data of Dow Jones Industrial Average Index 30, 1971–2011. Since COV
Algorithm uses recursion, it is very difficult to calculate the exact theoretical worst
complexity which can be estimated to be O(10× n×m× 16× logn) or generally
O(n logn). However, so far the experimental findings have shown a time complexity
for the worst-case scenario of O(10×n×m×16×2× logm) which is almost linear
because it can be simplified as O(n), where m is the length of the alphabet and n the
length of the string with m � n. It is very important also to be mentioned that based

148 K.F. Xylogiannopoulos et al.

Table 5.2 Repeated pattern detection for real-case scenarios of DJIA 30 index (real-case
scenarios B)

Case 1 2 3 4 5 6 7

Alphabet size (m) 9 9 9 9 9 9 9
String length (n) 100 200 400 800 1,600 3,200 6,400
Recursions (R) 57 109 204 398 770 1,522 3,154
Occurrences (O) 51 97 182 373 721 1,419 2,924
Instructions (I) 8,063 15,417 28,857 56,390 109,094 215,608 446,717

Fig. 5.8 Algorithm’s 2 complexity diagram for real data (logarithmic scale)

on real-case scenarios of time series from financial data, the average complexity is
O(1

2 mn) or generally linear O(n). In both cases the complexity is depending on the
alphabet, which is expected since the algorithm uses recursion based on the letters
of the alphabet.

Thus, the overall complexity for the creation of the lexicographically sorted suffix
array and the execution of the COV algorithm for the detection of the repeated
patterns will be of class O(n+ n logn+ n logn) or in general O(n logn) while for
the average case scenario with real data it will be O(n+ n logn+ n) or again in
general O(n logn).

Table 5.2 shows some examples from the Dow Jones Industrial Average 30 index
for the period 1971–1995 for different time classes from 100 days to almost 25
years data or 6,400 working days. Recursions and of course occurrences are linear
analogue to the length of the string, which is important because it shows that the
complexity is of type O(n) as illustrated in Fig. 5.8.

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 149

Table 5.3 Repeated pattern detection results of mock data for worst-case scenario

Case 1 2 3 4 5

Alphabet size (m) 26 26 26 26 26
String length (n) 208 416 832 1,664 3,328
Recursions (R) 5,356 26,985 70,249 156,777 329,833
Occurrences (O) 136 364 780 1,612 3,276
Instructions (I) 2,100,331 10,579,939 27,541,507 61,432,440 129,226,590

Fig. 5.9 Algorithm’s 3 complexity diagram for mock data worst-case scenario (logarithmic scale)

In case of mock data that represent the worst case of a time series for Algorithm
2 the results presented in Table 5.3 can be found. What can be observed from the
results is that the instructions and, therefore, the time complexity of Algorithm
2 are almost linear despite the theoretical approach described earlier regarding
O(n logn) complexity. However, the theoretical worst complexity is introduced to
avoid underestimation of the time complexity. These results have been illustrated
in Fig. 5.9.

The major disadvantage of the described method is the allocation of large storage
space on the disk and as a result significant delay in the process because of the slower
data access than in memory. However, it can be considered as an advantage since
the suffix array is created and stored once in the database and then it can be used in
many different ways, e.g., selecting specific time regions to analyze without the need
to recalculate each time the respective array. Furthermore, database management
systems provide many tools (such as multiprocessing) that can significantly improve
the performance of the algorithm. In addition, the alternative method to store the
suffix array in memory has a major disadvantage. When computer’s memory reaches

150 K.F. Xylogiannopoulos et al.

its limits due to the large amount of data stored and the recursion of the algorithm,
then the operating system automatically uses the virtual memory on disk which is
significantly slower than the database storing approach.

5.5 Experiments with Financial Data

Suffix arrays and periodicity algorithms have shown some very interesting findings
regarding financial data. The most common analysis that can be done is to search
if there are specific patterns that occur in currency rate values per day change, by
collecting the appropriate time series and then calculating the percentage change
of each day from its previous day. Then the percentage daily data change has to
be classified by taking into consideration some financial factors. Another type of
analysis is to examine also the equivalent weekly data time series instead of daily.
In this case, although we lose information, the analysis is more flexible because we
can avoid significant noise from the data and its fluctuation.

5.5.1 Data Classification and Classes Construction

Something very important in statistical and financial analysis is the definition of the
alphabet. The length of the alphabet (how many discrete ranges exist) and the way
it is defined (what are the limits of its range) are very important in order to have
credible results.

The most common way to define value regions and therefore the alphabet are,
first of all, estimation of the quartiles, deciles, or percentiles. After deciding how
many classes are needed or in other words the alphabet used, the calculation of the
width of each class follows, in order to discretize the sample and start the analysis.

5.5.2 Financial Aspects

Many statistical tools and methods in stock market analysis, known also as technical
analysis, have shown that there are patterns that occur periodically in financial time
series and especially major currency rates such as US Dollar and Euro. The most
common results fit with the major economic cycles. Each economic cycle can have
several growth and recession periods, something that stock markets tend to follow.
Moreover, regarding specific major stocks, we can have again results based not only
on economic factors but also on sector and market factors.

Periodicity algorithms can detect periodic patterns that might be useful in
technical analysis. However, time periods and time ranges are hardly the same,
which makes extremely difficult for periodicity detection algorithms to scan and
reveal periodicities in standard time series. Furthermore, it has to be mentioned that

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 151

Fig. 5.10 Daily fluctuation of currency rate between US Dollar and Euro

foreign exchange markets are chaotic systems based on many factors that are not
necessarily financial (like human behavioral) and it is very difficult to find distinct
and clear periodicities like in traffic or other models. More complex models should
be defined in order to have credible results. For example, extreme noise might exist
in time series because of holiday seasons, different calendar days each Central Bank
decides every quarter to report financial facts, figures, interest rate changes and
currency policies, even natural disasters like earthquakes, hurricanes or even power
failures, which may distort data that otherwise could be periodic. Such an example
is the case of the recent earthquake in Japan (summer of 2011) which significantly
influenced the US Dollar vs. Japanese Yen currency exchange rate. Moreover, in the
case of currency rates, they are directly influenced from many other factors such as
inflation and interest rate. Therefore, the development of new approaches, models,
and solutions that could eliminate such distortion is needed.

5.5.3 Experimental Results

In the current chapter, data from the US Dollar Euro currency exchange rate
will be examined. The specific exchange rate is very important since it represents
the two major currencies of the world today. Moreover, because of the financial
and state debt crisis of the past 3 years and its further political and economic
aspects, the values of the exchange rate have been heavily influenced and present
major uncertainty and high volatility in their prices. Currency markets represent
transactions of trillion dollars and are very important because they can have
significantly high impact on state economic policies, trade, imports, exports, etc.
Therefore, it is of great importance to check if there are any patterns that might have
periodicity with great confidence.

In the particular research, two different time series will be used for daily
changes (2,508 observations) as it is presented in Fig. 5.10 and weekly changes

152 K.F. Xylogiannopoulos et al.

Fig. 5.11 Weekly fluctuation of currency rate between US Dollar and Euro

(518 observations) as depicted in Fig. 5.11. The alphabet used consists of four
{ABCD} letters for quartiles for each time series. It is also important to mention that
in the case of weekly data (instead of more commonly daily), the existence of small
patterns of even three or four letters long is very important since they are describing
overall longer time periods. A four-letter pattern in weekly data can be considered
very important since the underneath time region length is actually 1 month. The data
values for the US Dollar Euro currency exchange rate are based on records taken
from the Canadian Central Bank’s website1 and time horizon from December 2001
till December 2011.

The first time series of daily data, as it is presented in Fig. 5.10, has an equivalent
time series string after applying the alphabet as it is illustrated in Fig. 5.12. The value
ranges that each letter represents are: A = [−4.51,−0.39], B = (−0.39,−0.01],
C = (−0.01,0.34], and D = (0.34,3.09]. The second time series of weekly data,
represented in Fig. 5.11, has an equivalent time series string after applying the
alphabet as it is illustrated in Fig. 5.13. The value ranges that each letter represents
are: A = [−2.81,0.37], B = (−0.37,0.02], C = (0.02,0.36], and D = (0.36,2.72].

In both cases the value of 0.67 has been used as a confidence limit in order
to have meaningful results. For example, if a pattern has perfect periodicity 20
and only 2 occurrences, Algorithm 3 will report it as an occurrence; however, for
statistical purposes it is not important since it will have confidence 10%. For this
reason the confidence has been set to equal 0.67 or greater than 0.67 in order
to find more reliable outcomes. It is very important to mention that periodicity
detection algorithms have an important effect on analysis. Since they calculate
confidence based on the theorem described earlier in the chapter, they tend to lose
potentially important results because repetitions used in calculating the confidence
start counting from the moment the first pattern occurrence happens till the end. If a
pattern starts very early in the time series and also stops very early (in the middle for
example) the confidence will be very low. That is not in general bad for the pattern

1www.bankofcanada.ca/rates/exchange/10-year-converter.

www.bankofcanada.ca/rates/exchange/10-year-converter

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 153

Fig. 5.12 Time series string for daily data

Fig. 5.13 Time series string for weekly data

since it might be considered as an interesting pattern in the time series that might
occur again in the future e.g., after a period in time, however, periodicity detection
algorithms will discard it if confidence is set to high because of the time gap.

In the first case (Table 5.4) 1,557 distinct patterns have been found with length
1–11. There are some results with zero time tolerance and for patterns with length
3 and 4 characters that occur with great confidence 3 or 4 times in the time series.
If we change time tolerance from zero to up to three, more long patterns can be
found. That is expected since in this case the time tolerance reduces the noise
between the pattern’s strings. It is very important to be mentioned though that in the
case of daily data, significant findings are not expected due to the high randomness
of the data. After all, as being already described and analyzed, foreign exchange
markets and financial markets in general are chaotic systems.

Although exchange rates are difficult to be predicted with daily data, several
patterns have been found which have some kind of periodicity in which their
number is significantly smaller than the total number of occurrences found. It is
very important though to analyze the second time series which represents weekly

154 K.F. Xylogiannopoulos et al.

Table 5.4 Indicative daily data results

Pattern
Starting
position Period Occurrences

Confidence
level Tolerance

AD 2,387 129 24 0.80 0
AD 2,421 124 23 0.75 0
ADD 1,269 329 13 1.00 0
BD 2,329 253 13 1.00 0
CCA 2,089 142 13 1.00 0
DAD 2,366 252 13 1.00 0
DCCA 2,293 879 13 1.00 0
D 2,321 229 15 0.71 1
ADD 1,269 329 13 0.75 1
BDA 2,431 224 13 0.75 1
CCA 2,089 142 13 1.00 1
DAD 2,366 252 13 1.00 1
DDA 2,251 110 13 1.00 1
ACBD 1,520 454 13 1.00 1
ADBC 1,903 290 13 1.00 1
CDCC 2,292 554 13 0.75 1
DCCA 2,293 879 13 1.00 1
DCDD 2,039 200 13 1.00 1
A 1,826 228 58 0.67 2
B 2,225 218 12 0.75 2
C 1,975 211 33 0.67 2
D 1,313 214 58 0.67 2
DA 2,368 221 16 0.86 2
CDA 2,365 244 13 0.75 2
ACAD 1,534 348 13 1.00 3
BAAA 1,615 259 13 0.75 3
BCBB 1,392 436 13 1.00 3
DDAD 2,417 226 13 0.75 3
DDCC 2,980 694 13 1.00 3

data, a more compact version of the first case (Table 5.5), as it is mentioned before,
weekly data have the ability to normalize the daily data and reduce in a great degree
the noise and any abnormal movements because of external factors. Therefore,
despite the fact that the COV algorithm has found only 329 distinct patterns in the
weekly data, the results from their analysis are much better.

Even without the use of time tolerance, several patterns exist with length up to
four characters. It is also important to be mentioned in this case that since each
character represents a week, a four-character length pattern represents a month,
which is a very long time for exchange rates or stock markets in general. Beside
the single character patterns, which are also important since they represent a week,
two patterns for three and four characters have been found, and more specifically,
ADB and CDA with confidence 0.75, and ADBD and DACB with confidence

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 155

Table 5.5 Indicative weekly data results

Pattern
Starting
position Period Occurrences

Confidence
level Tolerance

A 501 128 13 1.00 0
B 492 111 13 1.00 0
D 469 115 13 0.75 0
DA 466 121 13 1.00 0
DC 374 165 13 1.00 0
DD 238 175 13 0.75 0
CDA 125 103 13 0.75 0
ADBD 249 188 13 0.75 0
DACB 222 157 13 0.75 0
A 441 126 19 0.69 1
B 503 124 13 0.75 1
D 398 110 19 0.75 1
AC 333 163 13 1.00 1
BC 357 142 13 0.75 1
BD 427 129 13 0.75 1
DC 497 127 13 1.00 1
BBC 142 116 13 0.75 1
A 396 125 19 0.76 2
B 115 120 15 0.71 2
C 461 123 14 0.74 2
A 243 136 32 0.70 3
A 324 125 28 0.72 3
B 270 129 34 0.68 3
C 263 114 23 0.70 3
D 236 128 41 0.67 3
D 244 110 33 0.69 3
AB 329 140 14 0.80 3
BC 357 142 13 0.75 3
AAC 447 125 13 1.00 3

0.75, respectively. However, ADB is encapsulated inside the ADBD with different
occurrences since the first starts from very early in the time series. Yet, the fact that
patterns which represent months in data can be found it is very important and has
to be further analyzed in terms of the financial point of view for correlations with
other factors, e.g., political.

In the case that time tolerance is used, more interesting results have been
identified. More specifically, significant number of occurrences has been found for
one-character long patterns. Patterns like A, B, C, and D can be found tenths of
times with time tolerance 1, 2, or 3. Furthermore, patterns with two letters have also
been found to occur with the time tolerance. Table 5.5 includes some of the findings
for the weekly data; however, many more have been found but not included to keep
both tables readable.

156 K.F. Xylogiannopoulos et al.

5.6 Conclusion and Future Work

The current chapter has introduced a new methodology for periodicity detection in
time series by using suffix arrays instead of the most commonly used suffix trees.
The methodology proposes an algorithm for the construction of the suffix array and
another algorithm that searches the sorted suffix array and returns all the repeated
patterns. For the calculation of the confidence of the results from the algorithm,
perfect periodicity has been introduced. Perfect periodicity calculation is based on
the relative theorem that has been proven in this chapter.

Regarding the algorithm complexity, the process of creating a lexicographically
sorted suffix array and calculating the repeated patterns (occurrences’ vectors) has
been computed to be O(n logn). Especially Algorithm 2, which searches the suffix
array to find all the repeated patterns in the time series, has an average complexity
of O(n). By using suffix arrays, extremely large time series can be analyzed since
they can be stored in a database management system which also has sorting and
querying facilities.

The proposed methodology has been applied in US Dollar Euro currency
exchange rate which is governed by chaotic models that can be compared more
to random walks and therefore there were no great expectations from periodicity
detection. The data analysis though has shown that there is some kind of periodicity
in several cases which depends on the selected time interval and the alphabet chosen.
Moreover, the improvement of the Periodicity Detection Algorithms [16] can lead
to more sophisticated and important results, which can trigger off future research
for further improvement of both Calculate Occurrences’ Vector Algorithm and
Periodicity Detection Algorithms.

In future work, new storing approaches will be sought to improve the need for
storage space of suffix arrays as it is identified as its main drawback. By achieving
less space capacity and in combination of the repeated detection algorithm intro-
duced in this chapter, suffix arrays could be transformed to a powerful tool in time
series data mining.

References

1. A. Al-Rawi, A. Lansari, F. Bouslama, A new non-recursive algorithm for binary search tree
traversal, in Proceedings of the 10th IEEE International Conference on Electronics, Circuits
and Systems (IEEE Computer Society, Washington, DC, 2003), pp. 770–773

2. C.-F. Cheung, J.X. Yu, H. Lu, Constructing suffix tree for gigabyte sequences with megabyte
memory. IEEE Trans. Knowl. Data Eng. 17(1), 90–105 (2005)

3. M.G. Elfeky, W.G. Aref, A.K. Elmagarmid, Periodicity detection in time series databases.
IEEE Trans. Knowl. Data Eng. 17(7), 875–887 (2005)

4. M.G. Elfeky, W.G. Aref, A.K. Elmagarmid, WARP: time warping for periodicity detection,
in Proceedings of the 5th IEEE International Conference on Data Mining (IEEE Computer
Society, Washington, DC, 2005), pp. 138–145

5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays 157

5. F. Franek, W.F. Smyth, Y. Tang, Computing all repeats using suffix arrays. J. Automata
Languages Combinatorics 8(4), 579–591 (2003)

6. D. Gusfield, Algorithms on Strings, Trees, and Sequences (Cambridge University Press,
New York, 1997)

7. J. Han, Y. Yin, G. Dong, Efficient mining of partial periodic patterns in time series database,
in Proceedings of the 15th International Conference on Data Engineering, ICDE ’99 (IEEE
Computer Society, Washington, DC, 1999), p. 106

8. K.-Y. Huang, C.-H. Chang, SMCA: A general model for mining asynchronous periodic
patterns in temporal databases. IEEE Trans. Knowl. Data Eng. 17(6), 774–785 (2005)

9. J. Kärkkäinen, P. Sanders, S. Burkhardt, Linear work suffix array construction. J. ACM 53,
918–936 (2006)

10. P. Ko, S. Aluru, Space efficient linear time construction of suffix arrays. J. Discrete Algorithm
3, 143–156 (2005)

11. U. Manber, G. Myers, Suffix arrays: a new method for on-line string searches, in Proceedings
of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and
Applied Mathematics, Philadelphia, 1990), pp. 319–327

12. E.M. McCreight, A space-economical suffix tree construction algorithm. J. ACM 23(2),
262–272 (1976)

13. G. Navarro, R. Baeza-Yates, A new indexing method for approximate string matching, in
Proceedings of the 10th Annual Symposium on Combinatorial Pattern Matching, ed. by
G. Goos, J. Hartmanis, J. van Leeuwen, vol. 1645 of Lecture Notes in Computer Science
(Springer, Berlin, 1999), pp. 163–185

14. G. Navarro, R. Baeza-Yates, A hybrid indexing method for approximate string matching.
J. Discrete Algorithm 1(1), 205–239 (2000)

15. F. Rasheed, R. Alhajj, Using suffix trees for periodicity detection in time series databases,
in Proceedings of the 4th IEEE International Conference on Intelligent Systems, vol. 2,
pp. 11/8–11/13, Varna, Bulgaria, 2008 Sept. 6–8

16. F. Rasheed, M. Alshalfa, R. Alhajj, Efficient periodicity mining in time series databases using
suffix trees. IEEE Trans. Knowl. Data Eng. 22(20), 1–16 (2010)

17. K.B. Schürmann, J. Stoye, An incomplex algorithm for fast suffix array construction. Software
Pract. Ex. 37(3), 309–329 (2007)

18. C. Sheng, W. Hsu, M.-L. Lee, Efficient mining of dense periodic patterns in time series.
Technical report, National University of Singapore, 2005. Technical report TR20/05

19. C. Sheng, W. Hsu, M.-L. Lee, Mining dense periodic patterns in time series data, in
Proceedings of the 22nd International Conference on Data Engineering (IEEE Computer
Society, Washington, DC, 2006), p. 115

20. W.F. Smyth, Computing periodicity in strings – a new approach, in Proceedings of the 16th
Australasian Workshop on Combinatorial Algorithms, pp. 263–268, Victoria, Australia, 18–21
Sept 2005

21. Y. Tian, S. Tata, R.A. Hankins, J.M. Patel, Practical methods for constructing suffix trees.
VLDB J. 14(3), 281–299 (2005)

22. E. Ukkonen, Online construction of suffix trees. Algorithmica 14(3), 249–260 (1995)
23. P. Weiner, Linear pattern matching algorithms, in Proceedings of the 14th Annual Symposium

on Switching and Automata Theory (IEEE Computer Society, Washington, DC, 1973),
pp. 1–11

Chapter 6
Genetic Programming for the Induction
of Seasonal Forecasts: A Study on Weather
Derivatives

Alexandros Agapitos, Michael O’Neill, and Anthony Brabazon

Abstract The last 10 years has seen the introduction and rapid growth of a market
in weather derivatives, financial instruments whose payoffs are determined by the
outcome of an underlying weather metric. These instruments allow organisations
to protect themselves against the commercial risks posed by weather fluctua-
tions and also provide investment opportunities for financial traders. The size of
the market for weather derivatives is substantial, with a survey suggesting that the
market size exceeded $45.2 Billion in 2005/2006 with most contracts being written
on temperature-based metrics. A key problem faced by buyers and sellers of weather
derivatives is the determination of an appropriate pricing model (and resulting
price) for the financial instrument. A critical input into the pricing model is an
accurate forecast of the underlying weather metric. In this study we induce seasonal
forecasting temperature models by means of a machine learning algorithm. Genetic
Programming (GP) is applied to learn an accurate, localised, long-term forecast of a
temperature profile as part of the broader process of determining appropriate pricing
model for weather derivatives. Two different approaches for GP-based time series
modelling are adopted. The first is based on a simple system identification approach
whereby the temporal index of the time-series is used as the sole regressor of the
evolved model. The second is based on iterated single-step prediction that resembles
autoregressive and moving average models in statistical time-series modelling.
The major issue of effective model generalisation is tackled though the use of
an ensemble learning technique that allows a family of forecasting models to be
evolved using different training sets, so that predictions are formed by averaging
the diverse model outputs. Empirical results suggest that GP is able to successfully
induce seasonal forecasting models and that search-based autoregressive models

A. Agapitos (�) • M. O’Neill • A. Brabazon
Financial Mathematics and Computation Research Cluster, Natural Computing Research
and Applications Group, Complex and Adaptive Systems Laboratory,
University College Dublin, Ireland
e-mail: alexandros.agapitos@ucd.ie; m.oneill@ucd.ie; anthony.brabazon@ucd.ie

M. Doumpos et al. (eds.), Financial Decision Making Using Computational Intelligence,
Springer Optimization and Its Applications 70, DOI 10.1007/978-1-4614-3773-4 6,
© Springer Science+Business Media New York 2012

159

160 A. Agapitos et al.

compose a more stable unit of evolution in terms of generalisation performance for
the three datasets considered. In addition, the use of ensemble learning of 5-model
predictors enhanced the generalisation ability of the system as opposed to single-
model prediction systems. On a more general note, there is an increasing recognition
of the utility of evolutionary methodologies for the modelling of meteorological,
climatic and ecological phenomena, and this work also contributes to this literature.

6.1 Introduction

Weather conditions affect the cash flows and profits of businesses in a multitude of
ways. For example, energy company sales will be lower if a winter is warmer than
usual, leisure industry firms such as ski resorts, theme parks, hotels are affected
by weather metrics such as temperature, snowfall or rainfall, construction firms
can be affected by rainfall, temperatures and wind levels and agricultural firms can
be impacted by weather conditions during the growing or harvesting seasons [30].
Firms in the retail, manufacturing, insurance, transport and brewing sectors will also
have weather “exposure.” Less obvious weather exposures include the correlation
of events such as the occurrence of plant disease with certain weather conditions
(i.e. blight in potatoes and in wheat) [48]. Another interesting example of weather
risk is provided by the use of “Frost Day” cover by some of the UK town/county
councils whereby a payout is obtained by them if a certain number of frost days
(when roads would require gritting—with an associated cost) are exceeded. Putting
the above into context, it is estimated that in excess of $1 trillion of activity in the
US economy is weather-sensitive [21].

A key component of the accurate pricing of a weather derivative are forecasts of
the expected value of the underlying weather variable and its associated volatility.
The goal of this study is to produce seasonal predictive models by the means of
genetic programming (GP) of the stochastic process that describes temperature. On
a more general attempt to induce good-generalising seasonal models, an ensemble
learning method (bagging) is employed to minimise high-variance models that are
often associated with unstable learning algorithms as is the case of GP.

This chapter is organised as follows. Sections 6.2–6.4 provide the background
information to the problem domain tackled, as well as to the problem-solving
methods employed. Background information is divided into three major parts.
These are:

1. Section 6.2 introduces weather derivatives, discusses various methods for pricing
these financial instruments and finally motivates the need for seasonal tempera-
ture forecasting as part of a more general model for their pricing.

2. Section 6.3 introduces basic prior approaches to the task of seasonal temperature
forecasting and distinguishes between a number of possible scenarios in consid-
ering the use of weather forecast information for derivative pricing. This section
also motivates our choice of time-series index modelling.

6 Genetic Programming for the Induction of Seasonal Forecasts... 161

3. Section 6.4 reviews the machine learning method of GP and its application
to time-series forecasting with an emphasis on weather, climate and ecology
forecasting. The major statistical techniques for time-series modelling are also
described in this section with the aim of linking these methods with similar
frameworks employed by GP-based time-series modelling systems. The en-
semble learning method of bagging for improving model generalisation is also
introduced in this section.

Following the background sections, Sect. 6.5 details our current scope of re-
search. Section 6.6 describes the data utilised, the experimental setup and the
evolutionary model development framework adopted. Section 6.7 discusses the
empirical findings, and finally Sect. 6.8 draws our conclusions.

6.2 A Brief Introduction to Weather Derivatives

6.2.1 Managing Weather Risk

In response to the existence of weather risk, a series of financial products have
been developed in order to help organisations manage these risks. Usually, the
organisation that wishes to reduce its weather risk buys “protection” and pays a
premium to the seller who then assumes the risk. If the weather event occurs,
the risk taker then pays an amount of money to the buyer. The oldest of these
financial products are insurance contracts. However, insurance only provides a
partial solution to the problem of weather risk as insurance typically concentrates
on the provision of cover against damage to physical assets (buildings, machinery)
or cash flows which arise from high-risk, low-probability, events such as floods or
storm damage. The 1990s saw a convergence of capital and insurance markets and
this led to the creation of additional tools for financial weather risk management.
One example of this is provided by “catastrophe bonds” whereby a firm issues debt
in the form of long-term bonds. The terms of these bonds include a provision that the
payment of principal or interest (or both) to bondholders will be reduced in the event
of specified natural disasters—thereby transferring part of the risk of these events
to the bondholders. This reduction in capital or interest payments would leave the
seller with extra cash to offset the losses caused by the weather disaster. As would
be expected, the buyers of catastrophe bonds will demand a risk premium in order
to compensate them for bearing this weather risk.

The above financial products do not usually provide cover against lower risk,
higher probability, events such as the risk of higher than usual rainfall during the
summer season, which could negatively impact on the sales and profits of (for
example) a theme park. This “gap” in the risk transfer market for weather eventually
led to the creation of a market for weather derivatives which allow counterparties to
trade weather risks between each other. In essence, weather derivatives are financial
products that provide a payout which is related to the occurrence of pre-defined

162 A. Agapitos et al.

weather events [49]. These derivatives allow commercial organisations to reduce the
volatility of future cash flows by hedging against one of the factors which contribute
to volatility, namely the weather. Weather derivatives offer several advantages over
insurance contracts as unlike insurance cover there is no need to file a claim or prove
damages. Weather derivatives also permit a user to create a hedge against a “good”
weather event elsewhere. For example, for an agricultural firm, good weather in
another location may increase the harvest in that locality, thereby reducing the price
that the firm gets for its own produce due to over supply. Weather derivatives also
remove the problem of “moral hazard” that can occur under traditional insurance.

In addition to the trading of weather derivatives in order to manage weather
risks, substantial trading in weather derivatives markets is driven by the trading
of weather risk as an investment product. As weather is not strongly correlated
with the systemic risk in general financial markets, weather derivatives represent
an asset class which can provide diversification benefits for investors [52]. Weather
derivatives also provide short-term traders with speculative investment possibilities
as well as opening up cross trading strategies between weather and commodities
markets (as both are impacted by weather) [52].

The scale of weather markets can be gleaned from the fifth annual industry survey
by the Weather Risk Management Association (WRMA) (a Washington-based trade
group founded in 1999) which suggests that the number of contracts transacted
globally in the weather market had risen to more than 1,000,000 in the year ending
March 2006, with a notional value of $45.2 billion [51].

6.2.2 Development of Market for Weather Derivatives

The earliest weather derivative contracts arose in the USA in 1997 [23]. A number
of factors promoted their introduction at this time. Federal deregulation of the
power sector created a competitive market for electricity. Before deregulation,
utilities had the opportunity to raise prices to customers in the event of weather-
related losses. This created a demand for financial products to allow the newly
deregulated utilities to hedge against reductions in sales volume, caused by weather
(temperature) fluctuations. Most of the early weather derivatives involved utilities
and their imprint on the market remains in that the most-heavily traded weather
derivatives are still temperature-based (for this reason, this chapter concentrates
on temperature-based derivatives). Apart from deregulation of the power sector,
the 1997 El Nino brought an unusually mild winter to parts of the USA. Many
firms, including heating oil retailers, utilities and clothing manufacturers, saw their
revenue dip during what should have been their peak selling season. This enhanced
the visibility of weather-related risks. At the same time, the insurance industry faced
a cyclical downturn in premium income, and seeking alternative income sources,
was prepared to make capital available to hedge weather risks providing liquidity to
the fledgling market [23].

6 Genetic Programming for the Induction of Seasonal Forecasts... 163

The earliest weather derivatives were traded over-the-counter (OTC) as
individually negotiated contracts. The absence of market-traded derivatives restricted
the liquidity of the OTC market. In September 1999, the Chicago Mercantile
Exchange (CME) (www.cme.com) created the first standardised, market-traded,
weather derivatives (futures and options) and this led to a notable increase in
their use. The CME also acted as a clearing house for all transactions, reducing
substantially the counter-party risk faced by market participants. Currently the
CME offer weather derivative contracts on a wide variety of underlying weather
metrics including temperature, rainfall, snowfall, frost and hurricanes. The most
popular contracts are those based on temperature in 24 US cities including Colorado
Springs, Las Vegas, Los Angeles, Portland,Sacramento, Salt Lake City, Tucson,
Atlanta, Dallas, Houston, Jacksonville, Little Rock, Raleigh, Chicago, Cincinnati,
Des Moines, Detroit, Kansas City, Minneapolis, Baltimore, Boston, New York,
Philadelphia and Washington, DC. Weather derivatives are also available based on
weather events outside the USA.

6.2.3 OTC Weather Derivatives

Weather derivative contracts typically have a number of common attributes [34]:

• A contract period with a specified start and end date
• A defined measurement station (location) at which the weather variable is to be

measured
• An index which aggregates the weather variable over the contract period
• A payoff function which converts the index value into a monetary amount at the

end of the contract period

Contracts can be sub-divided into three broad categories [11]:

1. OTC weather derivatives
2. Traded weather futures (equivalent to a swap—in essence this is a combined put

and call option—each with the same strike price—with each party taking one
side)

3. Traded weather options

The earliest weather derivatives were traded OTC as individually negotiated
contracts. In OTC contracts, one party usually wishes to hedge a weather exposure
in order to reduce cash flow volatility. The payout of the contract may be linked to
the value of a weather index on the CME or may be custom-designed. The contract
will specify the weather metric chosen, the period (a month, a season) over which
it will be measured, where it will be measured (often a major weather station at
a large airport), the scale of payoffs depending on the actual value of the weather
metric and the cost of the contract. The contract may be a simple “swap” where
one party agrees to pay the other if the metric exceeds a predetermined level while
the other party agrees to pay if the metric falls below that level. Thus if an energy

164 A. Agapitos et al.

firm was concerned that a mild winter would reduce demand for power, it could
enter into a swap which would provide it with an increasing payout if average
temperature over (for example) a month exceeded 66◦F. Conversely, to the extent
that average temperature fell below this, the energy firm, benefiting from higher
power sales, would pay an amount to the counterparty. OTC contracts usually have
a fixed maximum payout and therefore are not open ended. As an alternative to swap
contracts, contracts may involve call or put options. As an interesting example of an
OTC contract, a London restaurant entered into a contract which provided for a
payout based on the number of days in a month when the temperature was less than
‘x’ degrees [11]. This was designed to compensate the restaurant for lost outdoor
table sales when the weather was inclement.

In the USA, many OTC (and all exchange-traded) contracts are based on
the concept of a degree-day. A degree-day is the deviation of a day’s average
temperature from a reference temperature. Degree days are usually defined as
either Heating Degree Days (HDDs) or Cooling Degree Days (CDDs). The origin
of these terms lies in the energy sector which historically (in the USA) used 65
degrees Fahrenheit as a baseline, as this was considered to be the temperature below
which heating furnaces would be switched on (a heating day) and above which air-
conditioners would be switched on (a cooling day). As a result HDDs and CDDs
are defined as

HDD = Max (0, 65oF − average daily temperature) (6.1)

CDD = Max (0, average daily temperature − 65oF) (6.2)

For example, if the average daily temperature for December 20th is 36◦F, then
this corresponds to 29 HDDs (65− 36 = 29). The payoff of a weather future is
usually linked to the aggregate number of these in a chosen time period (one HDD or
CDD is typically worth $20 per contract). Hence, the payoff to a December contract
for HDDs which (for example) trade at 1025 HDDs on 1st December—assuming
that there was a total of 1080 HDDs during December—would be $1,100 ($20 ×
(1080−1025)). A comprehensive introduction to weather derivatives is provided
by [34].

6.2.4 Pricing a Weather Derivative

A substantial literature exists concerning the pricing of financial derivatives.
However, models from this literature cannot be simply applied for pricing of weather
derivatives as there are a number of important differences between the two domains.
The underlying (variable) in a weather derivative (a weather metric) is non-traded
and has no intrinsic value in itself (unlike the underlying in a traditional derivative
which is typically a traded financial asset such as a share or a bond). It is also
notable that changes in weather metrics do not follow a pure random walk as

6 Genetic Programming for the Induction of Seasonal Forecasts... 165

values will typically be quite bounded at specific locations. Standard (arbitrage-free)
approaches to derivative pricing (such as the Black–Scholes option pricing model
[16]) are inappropriate as there is no easy way to construct a portfolio of financial
assets which replicates the payoff to a weather derivative [20].

In general there are four methods used to price weather risk which vary in their
sophistication:

1. Business Pricing. This approach considers the potential financial impact of
particular weather events on the financial performance of a business. This
information combined with the degree of risk adverseness of the business (a
utility function [25]) can help determine how much a specific business should
pay for “weather insurance.”

2. Burn Analysis. This approach uses historical payout information on the derivative
in order to estimate the expected payoff to the derivative in the future. This
approach makes no explicit use of forecasts of the underlying weather metric.

3. Index modelling. These approaches attempt to build a model of the distribution of
the underlying weather metric (e.g., the number of seasonal cumulative HDDs),
typically using historical data. A wide variety of forecasting approaches such as
time-series models, of differing granularity and accuracy, can be employed. The
fair price of the derivative is the expected value based on this, discounted for the
time value of money.

4. Physical models of the weather. These employ numerical weather prediction
models of varying time horizon and granularity. This approach can incorporate
the use of Monte Carlo simulation, by generating a large number of probabilistic
scenarios (and associated payoffs for the weather derivative) with the fair price of
the derivative being based on these, discounted for the time value of money [46].

As with financial asset returns, weather has volatility, and hence, a key compo-
nent of the accurate pricing of a weather derivative such as an option are forecasts of
the underlying weather variable (an estimate of its expected value) and its associated
volatility. As can be seen, the latter two methods above explicitly rely on the
production of forecasts of the underlying variable using historic and/or current
weather forecast information. This chapter focuses on index modelling, whereby
temperature composes the weather metric of interest. The section that follows
contains a brief introduction to the complex task of weather forecasting for the
purposes of pricing a weather derivative. Our discussion concentrates on seasonal
temperature forecasting.

6.3 Weather Forecasting for Pricing a Weather Derivative

Weather forecasting is a complex process which embeds a host of approaches and
associated time horizons. At one end of the continuum we have short-run weather
forecasts which typically are based on structural physical models of atmospheric

166 A. Agapitos et al.

conditions (known as atmospheric general circulation models—AGCMs). These
models divide the atmosphere into a series of “boxes” of defined distance in north–
south, east–west, and vertical directions. Starting from a set of initial conditions in
each box, the evolution of atmospheric conditions is simulated forward in time using
these values and the set of equations assumed to explain atmospheric conditions.

As the outputs from these models are sensitive to initial conditions the most
common approach is to develop an ensemble forecast (which consists of multiple
future weather scenarios, each scenario beginning from slightly different initial
conditions). These models usually have good predictive ability up to about 10
days with rapidly reducing predictive ability after that. Forecasts produced by
these models are relatively large-scale in nature and hence, to obtain a regional
or localised weather forecast, the output from the AGCM must be “downscaled”
(this refers to the process of developing a statistical model which attempts to relate
large-scale AGCM forecasts to the weather at a specific location). It should be noted
that as weather derivatives are usually written for a specific location, course-grained
forecasts from AGCMs are not especially useful for weather derivative pricing (at a
specific location).

Longer term forecasts having a time horizon beyond 1 month are typically termed
seasonal forecasts [53]. There are a variety of methods for producing these forecasts
ranging from the use of statistical time-series models based on historic data to
the use of complex, course-grained, simulation models which incorporate ocean
and atmospheric data. Given the range of relevant phenomena it has proven to
be a very difficult task to build structural models for accurate long-term seasonal
forecasting and non-structural time-series approaches (which bypass atmospheric
data and science) can produce long-run forecasts which are at least as good as those
produced by structural models once the forecast horizon exceeds a few weeks [46].
Very long-term climate forecasts are also produced by various groups but these are
not relevant for the purposes of weather derivative pricing.

In considering the use of weather forecast information for derivative pricing, we
can distinguish between a number of possible scenarios. Weather derivatives can
often be traded long before the start of the relevant “weather period”, which will de-
termine the payoff to the derivative. In this case we can only use seasonal forecasting
methods as current short-run weather forecasts have no useful information content
in predicting the weather that will arise during the weather period. The second case
is that the derivative is due to expire within the next 10 or so days, so the current
short-run weather forecast (along with the weather record during the recent past)
has substantial information content in pricing the derivative. Obviously the closer
the derivative gets to its expiry date, the less important the weather forecast will
become, as the payoff to the derivative will have been substantially determined by
weather that has already occurred. The final (and most complex) case is where the
derivative has several weeks or months left to run in its weather period, hence its
value will need to be ascertained using a synthesis of short-run weather forecasts
and information from a longer-run seasonal forecast. The process of integrating
these sources of information has been the subject of several studies [33].

6 Genetic Programming for the Induction of Seasonal Forecasts... 167

6.3.1 Prior Approaches to Seasonal Temperature Forecasting

A number of prior studies have examined the prediction of seasonal temperature in
the context of pricing weather derivatives. The historical time series of temperatures
for a given location exhibits the following characteristics [11]:

1. Seasonality
2. Mean reversion
3. Noise

A simple linear model for capturing the seasonality component is proposed
by [11]:

T m
t = A+Bt+C sin(ωt +ϕ), (6.3)

where T m
t is the mean temperature at (day) time t, ω represents a phase angle as

the maximum and minimum do not necessarily occur on 1st January and 1st July
each year, ϕ represents the period of the seasonal temperature cycle (2π/365). Bt
permits mean temperature to change each year, allowing for a general warming
or cooling trend, and A provides an intercept term. Daily temperatures display
marked mean-reversion, and this supports the idea that the process can be modelled
using autoregressive methods. These models can capture the key properties of
temperature behavior such as seasonality and other variations throughout the year
[21]. The variance of temperatures is not constant during the annual cycle, varying
between months but remaining fairly constant within each month [11]. In particular,
variability of temperature is higher in winter (in the Northern Hemisphere) than
in summer. Thus, the noise component is likely to be complex. In [40] they
noted that the assumption of the noise component being i.i.d. did not result in
reasonable predictions. This could be improved by allowing the distribution of the
noise component to vary dynamically. In modeling temperature, attention can be
restricted to discrete estimation processes [40]. Although temperature is continually
measured, the values used to calculate the temperature metrics of interest (HDDs or
CDDs) are discrete, as they both rely on the mean daily temperature.

Seasonal temperature forecasting can be reduced to the task of index modelling
as discussed in Sect. 6.2.4. Two major families of heuristic and statistical time-series
modelling methods are described in the next section, with the aim of introducing the
general problem-solving framework employed.

6.4 Machine Learning of Time-Series Forecasting Models

Modern machine learning heuristic methods for time-series modelling are based
on two main natural computing paradigms, those of Artificial Neural Networks
and Evolutionary Automatic Programming (EAP). Both methods rely on a training
phase, whereby a set of adaptive parameters or data-structures are being adjusted to
provide a model that is able to uncover sufficient structure in training data in order

168 A. Agapitos et al.

to allow useful predictions. This work makes use of the main thread of EAP that
comes under the incarnation of genetic programming.

There are a number of reasons to suppose that the use of GP can prove fruitful
in the seasonal modelling of the temperature at a specific location. As noted, the
problem of seasonal forecasting is characterised by a lack of a strong theoretical
framework, with many plausible, collinear explanatory variables. Rather than
attempting to uncover a theoretical cause and effect model of local temperature for
each location, this study undertakes a time-series analysis of historical temperature
data for the locations of interest. A large number of functional forms, lag periods
and recombinations of historic data could be utilised in this process. This gives rise
to a high-dimensional combinatorial problem, a domain in which GP has particular
potential. The major issue of effective model generalisation is tackled though the use
of an ensemble learning technique that allows a family of forecasting models to be
evolved using different training sets, so that predictions are formed by averaging the
diverse model outputs. This section introduces the GP paradigm and its application
to time-series modelling. Special attention is given to the modelling of ecologic and
atmospheric data. The dominant statistical time-series modelling methods are also
reviewed in an attempt to motivate the forecasting model representations that will
be employed as part of the evolutionary learning algorithm in later sections. Finally,
ensemble learning and its impact on model generalisation are discussed in the final
sub-section.

6.4.1 Genetic Programming

Genetic programming [37,41–43] (GP) is an automatic programming technique that
employs an evolutionary algorithm (EA) to search the space of candidate solutions,
traditionally represented using expression-tree structures, for the one that optimises
some sort of program-performance criterion. The highly expressive representation
capabilities of programming languages allow GP to evolve arithmetic expressions
that can take the form of regression models. This class of GP application has been
termed “Symbolic Regression,” and is potentially concerned with the discovery of
both the functional form and the optimal coefficients of a regression model. In
contrast to other statistical methods for data-driven modelling, GP-based symbolic
regression does not presuppose a functional form, i.e. polynomial, exponential,
logarithmic, etc., thus the resulting model can be an arbitrary arithmetic expression
of regressors [36]. GP-based regression has been successfully applied to a wide
range of financial modelling tasks [18].

GP adopts an evolutionary algorithm (EA), which is a class of stochastic search
algorithms inspired by principles of natural genetics and survival of the fittest. The
general recipe for solving a problem with an EA is as follows:

1. Define a representation space in which candidate solutions (computer programs)
can be specified.

6 Genetic Programming for the Induction of Seasonal Forecasts... 169

2. Design the fitness criteria for evaluating the quality of a solution.
3. Specify a parent selection and replacement policy.
4. Design a variation mechanism for generating offspring programs from a parent

or a set of parents.

In GP, programs are usually expressed using hierarchical representations taking
the form of syntax-trees, as shown in Fig. 6.1. It is common to evolve programs
into a constrained, and often problem-specific, user-defined language. The variables
and constants in the program are leaves in the tree (collectively named as terminal
set), whilst arithmetic operators are internal nodes (collectively named as function
set). In the simplest case of symbolic regression, the function set consists of basic
arithmetic operators, while the terminal set consists of random numerical constants
and a set of regressor variables. Figure 6.1 illustrates an example expression-tree
representing the arithmetic expression x+(2− y).

GP finds out how well a program works by executing it, and then testing its
behaviour against a number of test cases, a process reminiscent of the process of
black-box testing in conventional software engineering practice. In the case of sym-
bolic regression, the test cases consist of a set of input–output pairs, where a number
of input variables represent the regressors and the output variable represents the
regressand. GP relies on an error-driven model optimisation procedure, assigning
program fitness that is based on some sort of error between the program output
value and the actual value of the regressand variable. Those programs that do well
(i.e. high fitness individuals) are chosen to be part of a program variation procedure
and produce offspring programs. The primary program variation procedures that
compose the main search operators of the space of computer programs are crossover
and mutation.

The most commonly used form of crossover is subtree crossover, depicted in
Fig. 6.1. Given two parents, subtree crossover randomly (and independently) selects
a cross-over point (a node) in each parent tree. Then, it creates two offspring
programs by replacing the subtree rooted at the crossover point in a copy of the
first parent with a copy of the subtree rooted at the crossover point in the second
parent, and vice versa. Crossover points are not typically selected with uniform
probability. This is mainly due to the fact that the majority of the nodes in an
expression-tree are leaf-nodes, thus a uniform selection of crossover points leads
to crossover operations frequently exchanging only very small amounts of genetic
material (i.e. small subtrees). To counteract this tendency, inner-nodes are randomly
selected 90% of the time, while leaf-nodes are selected 10% of the time.

The dominant form of mutation in GP is subtree mutation, which randomly
selects a mutation point in a tree and substitutes the subtree rooted there with a
new randomly generated subtree. An example application of the mutation operator
is depicted in Fig. 6.1. Another common form of mutation is point mutation, which
is roughly equivalent to the bit-flip mutation used in genetic algorithms. In point
mutation, a random node is selected and the primitive stored there is replaced with
a different random primitive of the same rarity taken from the primitive set. When
subtree mutation is applied, this involves the modification of exactly one subtree.

170 A. Agapitos et al.

+

_x

2 y

+

+ 3

x y

Crossover

a

b

c

point
+

/ 3

x 2

Crossover
point

*

+

y x

Crossover
point

/

1 2

*

+

y x

+

1 y

Crossover
point

gnirpsffOstneraP

+

+ 3

x y /

x 2
*

y

x

/

2

+

+

x y

*

y

Mutation
point

Mutation
point

Fig. 6.1 Genetic programming representation and variation operators

6 Genetic Programming for the Induction of Seasonal Forecasts... 171

Point mutation, on the other hand, is typically applied on a per-node basis. That
is, each node is considered in turn and, with a certain probability, it is altered as
explained above. This allows multiple nodes to be mutated independently in one
application of point mutation.

Like in any EA, the initial population of GP individuals is randomly generated.
Two dominant methods are the full and grow methods, usually combined to form
the ramped half-and-half expression-tree initialisation method [36]. In both the full
and grow methods, the initial individuals are generated so that they do not exceed
a user-specified maximum depth. The depth of a node is the number of edges that
need to be traversed to reach the node starting from the tree’s root node (the depth of
the tree is the depth of its deepest leaf). The full method generates full tree structures
where all the leaves are at the same depth, whereas the grow method allows for the
creation of trees of more varied sizes and shapes.

6.4.2 Genetic Programming in Time-Series Modelling

This section describes the approach adopted by GP in time-series forecasting with
an emphasis to weather, climate and ecology forecasting. In GP-based time-series
prediction [10,22,50] the task is to induce a model that consists of the best possible
approximation of the stochastic process that could have generated an observed time
series. Given delayed vectors v, the aim is to induce a model f that maps the vector
v to the value xt+1. That is,

xt+1 = f (v) = f (xt−(m−1)τ ,xt−(m−2)τ , . . . ,xt), (6.4)

where m is embedding dimension and τ is delay time. The embedding specifies on
which historical data in the series the current time value depends. These models
are known as single-step predictors and are used to predict one value xt+1 of the
time series when all inputs xt−m, . . . ,xt−2,xt−1,xt are given. For long-term forecasts,
iterated single-step prediction models are employed to forecast further than one step
in the future. Each predicted output is fed back as input for the next prediction while
all other inputs are shifted back one place. As a result, the input consists partially of
predicted values as opposed to observables from the original time series. That is,

x′t+1 = f (xt−m, . . . ,xt−1,xt); m < t

x′t+2 = f (xt−m+1, . . . ,xt ,x
′
t+1); m < t

...

x′t+k = f (xt−m+k−1, . . . ,x
′
t+k−2,x

′
t+k−1); m < t, k ≥,

where k is the prediction step.

172 A. Agapitos et al.

Long-term predictions involve a substantially more challenging task than
short-term ones. The fact that each newly predicted value is partially dependent
on previously generated predictions creates a reflexive relationship among program
outputs, often resulting in inaccuracy propagation and an associated rapid fitness
decrease with each additional fitness-case evaluation. Long-term forecasting models
are generally sensitive to their initial output values, and inaccuracies of initial
predictions are quickly magnified with each subsequent fitness evaluation iteration.

Examining prior literature reveals that evolutionary model induction methodolo-
gies have been applied to a number of problems in weather, climate and ecology
forecasting. Examples include [24] which used GP to downscale forecasts based
on course-grained Atmospheric General Circulation model outputs to estimate
local daily extreme (maximum and minimum) temperatures. The results obtained
from application of GP to data from the Chute-du-Diable weather station in North
Eastern Canada outperformed benchmark results from commonly used statistical
downscaling models. GP has also been used for climate prediction problems
including rainfall-runoff modelling [54], groundwater level fluctuations [31], short-
term temperature prediction [44] and CO2 emission modelling [12], the combination
of ensemble forecasts [14], the forecasting of El Nino [26], evapotranspiration
modelling (the process by which water is lost to the atmosphere from the ground
surface via evaporation and plant transpiration) [35], modelling the relationship
between solar activity and earth temperature [47], stream flow forecasting (fore-
casting of stream flow rate in a river) [38], modelling of monthly mean maximum
temperature [45], modelling of water temperature [13] and wind prediction [29].
Hence we can see that there has been fairly widespread use of GP in this domain,
although no previous application to the problem of seasonal forecasting was noted.

6.4.3 Statistical Time-Series Forecasting Methods

Statistical time-series forecasting methods fall into the following five categories; the
first three categories can be considered as linear, whereas the last two are non-linear
methods:

1. Exponential smoothing methods
2. Regression methods
3. Autoregressive integrated moving average methods (ARIMA)
4. Threshold methods
5. Generalised autoregressive conditionally heteroskedastic methods (GARCH)

In exponential smoothing, a forecast is given as a weighted moving average of
recent time-series observations. The weights assigned decrease exponentially as the
observations get older. In regression, a forecast is given as a linear combination
of one or more explanatory variables. ARIMA models give a forecast as a linear
function of past observations and error values between the time series itself and
past observations of explanatory variables. These models are essentially based on

6 Genetic Programming for the Induction of Seasonal Forecasts... 173

a composition of autoregressive models (linear prediction formulas that attempt to
predict an output of a system based on the previous outputs) and moving average
models (linear prediction model based on a white noise stationary time series).
For a discussion on smoothing, regression and ARIMA methods see [39]. Linear
models cannot capture some features that commonly occur in real-world data such
as asymmetric cycles and outliers.

Threshold methods [39] assume that extant asymmetric cycles are caused by
distinct underlying phases of the time series and that there is a transition period
between these phases. Commonly, the individual phases are given a linear functional
form, and the transition period is modelled as an exponential or logistic function.
GARCH methods [17] are used to deal with time series that display non-constant
variance of residuals (error values). In these methods, the variance of error values is
modelled as a quadratic function of past variance values and past error values.

Both linear and non-linear methods above, although capable of characterising
features such as asymmetric cycles and non-constant variance of residuals, assume
that the underlying data-generation process is stationary. For many real-world
problems, this assumption is often invalid as shifting environmental conditions may
cause the underlying data-generating process to change. In applying the statistical
forecasting methods listed above, expert judgement is required to initially select
the most appropriate method, and hence select an appropriate model-parameter
optimisation technique. In the likely event that the underlying data-generating
process is itself evolving, a modelling method must be reevaluated. This is one of
the main reasons that forecasting models that can handle dynamic environments are
desired.

6.4.4 Ensemble Learning for Model Generalisation

The idea of supervised ensemble learning is to induce multiple base models and
combine their predictions in order to increase generalisation performance, i.e. the
performance on previously unseen instances. This was originally conceived in the
context of learning algorithm instability, in which small changes in the training
instances can lead to substantially different models with significant fluctuations in
accuracy [27]. Ensembles of models approach the phenomenon of overfitting using
the statistical concept of bias-variance tradeoff, under which the generalisation error
of a model is decomposed into the sum of bias plus the variance [27]. Bias measures
the extent to which the learned model is different from the target model, whereas
variance measures the extent to which the learned model is sensitive on a particular
sample training dataset [15].

There is a trade-off between bias and variance, with very flexible models having
low bias and high variance, whereas relatively rigid models having high bias and
low variance. To better illustrate the concept of bias and variance, consider that we
are constructing a fixed model completely independent of a dataset. In this case,
the bias will be high since we are not learning anything from the data; however,

174 A. Agapitos et al.

the variance will vanish. In the opposite case, where we induce a function that fits
the training data perfectly, the bias term disappears, whereas the variance becomes
pronounced. Best generalisation is achieved when we have the best balance between
the conflicting requirements of small bias and small variance. Ensemble methods are
typically based on inducing families of accurate models that are trained on various
distributions over the original training dataset. They form an approach to minimise
both bias and variance.

A parallel ensemble combines independently constructed accurate (low-bias)
and diverse (low-variance) base models. In this case, an individual base model
is trained on a specific sub-sample of the training instances, and the ultimate
requirement is that different base models should make errors of different magnitude
when confronted with new instances. Parallel ensembles obtain better generalisation
performance than any single one of their components using a variance-reduction
technique, and in the majority of cases, they are applied to unstable, high-
variance learning algorithms (i.e. decision-tree induction, GP model induction [32]).
Bagging [19] (bootstrap aggregation) is the earliest parallel ensemble learning
method that has been proven very effective for training unstable classifiers. The
method creates multiple instances of the training dataset by using a bootstrapping
technique [28]. Each of these different datasets are used to train a different model.
The outputs of the multiple models are hence combined by averaging (in the case
of regression) or voting (in the case of classification) to create a single output.
Additional methods for enhancing the generalisation of evolved programs have been
investigated in [1–9].

6.5 Scope of Research

The goal of this study is to produce predictive models of the stochastic process that
describes temperature. More specifically, we are interested in modelling aggregate
monthly HDDs using data from three US airport weather stations. Our main
objective is to determine whether GP is capable of uncovering sufficient structure in
historical data for a series of US locations, to allow useful prediction of the future
monthly HDD profile for those locations. The incorporation of the induced models
into a complete pricing model for weather derivatives is left for future work. We
also restrict attention to the case where the contract period for the derivative has not
yet commenced. Hence, we ignore short-run weather forecasts and concentrate on
seasonal forecasting.

We investigate two families of program representations for time-series mod-
elling. The first is the standard GP technique, genetic symbolic regression (GSR),
applied to the forecasting problem in the same way that it is applied to symbolic
regression problems. The task is to approximate a periodic function, where temper-
ature (HDDs) is the dependent variable (regressand), and time is the sole regressor
variable. The second representation allows the induction of iterated single-step
predictors that can resemble autoregressive (GP-AR) and autoregressive moving
average (GP-ARMA) time-series models that were described in Sect. 6.4.3. In an

6 Genetic Programming for the Induction of Seasonal Forecasts... 175

attempt to provide good-generalising forecasting models, ensembles of predictors
are evolved within the general bagging framework for training set resampling and
model-output combination. The sections that follow describe the experiment design,
discuss the empirical results and draw our conclusions.

6.6 Experiment Design

6.6.1 Model Data

Three US weather stations were selected: (a) Atlanta (ATL); (b) Dallas, Fort Worth
(DEN); (c) La Guardia, New York (DFW). All the weather stations were based
at major domestic airports and the information collected included date, maximum
daily temperature, minimum daily temperature and the associated HDDs and CDDs
for the day. This data was preprocessed to create new time series of monthly
aggregate HDDs and CDDs for each weather station respectively.

There is generally no agreement on the appropriate length of the time series
which should be used in attempts to predict future temperatures. Prior studies have
used lengths of 20–50 years, and as a compromise this study uses data for each
location for the period 01/01/1979–31/12/2002. The monthly HDD data for each
location is divided into a training set (15 years) that measures the performance
during the learning phase and a test set (9 years) that quantifies model generalisation.

6.6.2 Forecasting Model Representations and Run Parameters

This study investigates the use of two families of seasonal forecast model repre-
sentations, where the forecasting horizon is set to 6 months. The first is based on
standard GP-based symbolic regression (GSR), where time serves as the regressor
variable (corresponding to a month of a year), and monthly HDD is the regressand
variable. Assuming that time t is the start of the forecast, we can obtain a 6-month
forecast by executing the program with inputs {t + 1, . . . , t + 6}.

The second representation for evolving seasonal forecasting models is based
on the iterated single-step prediction that can emulate autoregressive models, as
described in Sect. 6.4.3. This method requires that delayed vectors from the monthly
HDD time series are given as input to the model, with each consecutive model output
being added at the end of the delayed input vector, while all other inputs are shifted
back one place.

Table 6.1 shows the primitive single-type language elements that are being used
for forecasting model representation in different experiment configurations. For
GSR, the function set contains standard arithmetic operators (protected division)
along with ex, log(x),

√
x, and finally the trigonometric functions of sine and

cosine. The terminal set is composed of the index t representing a month and

176 A. Agapitos et al.

Table 6.1 Forecasting model representation languages

Forecasting model Function set Terminal set

GSR add, sub, mul, div, Index t corresponding to a month
exp,log, sqrt, sin, cos 10 rand. constants in −1.0, . . . , 1.0

10 rand. constants in −10.0, . . . , 10.0
GP-AR(12) add, sub, mul, div, 10 rand. constants in −1.0, . . . , 1.0

exp, log, sqrt 10 rand. constants in −10.0, . . . , 10.0
HDDt−1, . . ., HDDt−12

GP-AR(24) add, sub, mul, div, 10 rand. constants in −1.0, . . . , 1.0
exp, log, sqrt 10 rand. constants in −10.0, . . . , 10.0

HDDt−1, . . ., HDDt−24

GP-AR(36) add, sub, mul, div, 10 rand. constants in −1.0, . . . , 1.0
exp, log, sqrt 10 rand. constants in −10.0, . . . , 10.0

HDDt−1, . . ., HDDt−36

GP-ARMA(36) add, sub, mul, div, exp, 10 rand. constants in −1.0, . . . , 1.0
exp, log, sqrt 10 rand. constants in −10.0, . . . , 10.0

HDDt−1, . . ., HDDt−36

M(HDDt−1,. . ., HDDt−6),
SD(HDDt−1,. . ., HDDt−6)

M(HDDt−1,. . ., HDDt−12),
SD(HDDt−1,. . ., HDDt−12)

M(HDDt−1,. . ., HDDt−18),
SD(HDDt−1,. . ., HDDt−18)

M(HDDt−1,. . ., HDDt−24),
SD(HDDt−1,. . ., HDDt−24)

M(HDDt−1,. . ., HDDt−30),
SD(HDDt−1,. . ., HDDt−30)

M(HDDt−1,. . ., HDDt−36),
SD(HDDt−1,. . ., HDDt−36)

Table 6.2 Learning
algorithm parameters

EA Panmictic, generational, elitist GP with
an expression-tree representation

No. of generations 51
Population size 1,000
Tournament size 4
Tree creation Ramped half-and-half (depths of 2–6)
Max. tree depth 17
Subtree crossover 30%
Subtree mutation 40%
Point mutation 30%
Fitness function Root mean squared error (RMSE)

random constants within specified ranges. All GP-AR(12), GP-AR(24), GP-AR(36)
correspond to standard autoregressive models that are implemented as iterated
single-step prediction models. The argument in the parentheses specifies the number
of past time-series values that are available as input to the model. The function set
in this case is similar to that of GSR excluding the trigonometric functions, whereas

6 Genetic Programming for the Induction of Seasonal Forecasts... 177

Table 6.3 Comparison of training and testing RMSE obtained by different forecasting
configurations, each experiment was run for 50 times

Dataset
Forecasting
configuration

Mean training
RMSE

Best training
RMSE

Mean testing
RMSE

Best testing
RMSE

ATL GSR 140.52 (9.55) 168.82 149.53 (8.53) 172.73
GP-AR(12) 92.44 (0.54) 181.78 111.87 (0.41) 103.60
GP-AR(24) 91.33 (0.68) 183.33 96.15 (0.51) 191.26
GP-AR(36) 88.96 (0.81) 177.30 90.38 (0.81) 179.44
GP-ARMA 85.20 (0.86) 175.84 85.71 (0.82) 174.31

DEN GSR 165.76 (11.46) 103.09 180.46 (11.74) 195.23
GP-AR(12) 133.18 (0.43) 121.38 126.78 (0.25) 117.19
GP-AR(24) 130.41 (0.73) 111.48 124.36 (0.66) 110.31
GP-AR(36) 131.13 (1.08) 114.86 111.41 (0.57) 103.73
GP-ARMA 126.46 (1.29) 106.18 108.90 (0.64) 101.57

DFW GSR 118.96 (8.02) 166.49 118.69 (7.20) 166.12
GP-AR(12) 88.75 (0.66) 180.64 90.37 (0.26) 186.57
GP-AR(24) 96.14 (0.95) 183.55 85.36 (0.42) 178.24
GP-AR(36) 89.52 (0.69) 181.12 62.11 (0.43) 155.84
GP-ARMA 87.09 (0.82) 175.41 60.92 (0.52) 155.10

Dataset
Forecasting
configuration

Ensemble
size

Mean training
RMSE

Best training
RMSE

Mean testing
RMSE

Best testing
RMSE

ATL GSR 5 144.90 (4.62) 182.82 150.26 (4.27) 193.29
GP-AR(12) 5 90.70 (0.38) 184.62 111.40 (0.28) 106.94
GP-AR(24) 5 85.22 (0.49) 177.32 92.06 (0.29) 188.13
GP-AR(36) 5 80.01 (0.40) 175.08 80.94 (0.57) 175.65
GP-ARMA 5 81.60 (0.83) 175.60 80.57 (0.34) 170.96

DEN GSR 5 247.27 (22.70) 121.47 215.87 (7.70) 108.38
GP-AR(12) 5 131.47 (0.36) 123.37 136.36 (11.13) 120.14
GP-AR(24) 5 127.64 (0.60) 116.79 122.04 (0.50) 114.35
GP-AR(36) 5 123.73 (0.86) 110.45 106.42 (0.44) 192.93
GP-ARMA 5 116.86 (0.51) 109.19 109.38 (0.48) 103.49

DFW GSR 5 165.29 (3.75) 187.93 145.76 (4.05) 75.76
GP-AR(12) 5 87.11 (0.42) 180.91 89.20 (0.22) 182.71
GP-AR(24) 5 87.65 (0.49) 180.99 79.21 (0.33) 174.66
GP-AR(36) 5 86.41 (0.44) 179.74 59.56 (0.33) 153.07
GP-ARMA 5 87.16 (0.60) 177.40 67.20 (0.17) 163.71

ATL GSR 10 261.62 (18.76) 153.55 190.13 (2.99) 133.39
GP-AR(12) 10 91.07 (0.30) 185.90 111.71 (0.23) 108.17
GP-AR(24) 10 85.65 (0.49) 181.25 91.53 (0.21) 188.32
GP-AR(36) 10 78.82 (0.28) 174.62 79.44 (0.25) 176.43
GP-ARMA 10 79.95 (0.43) 175.14 80.00 (0.26) 177.67

DEN GSR 10 295.79 (4.46) 223.11 287.47 (4.73) 203.87
GP-AR(12) 10 131.20 (0.27) 125.50 125.15 (0.18) 120.60
GP-AR(24) 10 128.37 (0.41) 122.67 122.59 (0.36) 118.53
GP-AR(36) 10 122.99 (0.70) 115.29 105.68 (0.31) 101.55
GP-ARMA 10 116.52 (0.34) 112.35 109.26 (0.37) 104.42

(continued)

178 A. Agapitos et al.

Table 6.3 (continued)

Dataset
Forecasting
configuration

Ensemble
size

Mean training
RMSE

Best training
RMSE

Mean testing
RMSE

Best testing
RMSE

DFW GSR 10 152.20 (5.85) 117.91 144.53 (2.35) 109.15
GP-AR(12) 10 92.88 (5.21) 183.11 94.55 (0.65) 187.53
GP-AR(24) 10 87.02 (0.25) 182.93 78.80 (0.18) 176.47
GP-AR(36) 10 84.98 (0.35) 180.19 58.91 (0.27) 154.32
GP-ARMA 10 86.97 (0.50) 179.66 66.82 (0.14) 163.70

ATL GSR 20 245.24 (3.97) 189.02 206.78 (1.79) 178.42
GP-AR(12) 20 90.76 (0,78) 186.16 110.44 (0.20) 107.24
GP-AR(24) 20 85.05 (0.24) 182.21 91.21 (0.14) 189.50
GP-AR(36) 20 78.76 (0.24) 175.95 78.82 (0.13) 177.51
GP-ARMA 20 79.26 (0.13) 176.18 79.19 (0.16) 176.95

DEN GSR 20 336.83 (4.43) 286.20 323.56 (3.15) 270.80
GP-AR(12) 20 131.16 (0.22) 127.63 125.22 (0.14) 123.32
GP-AR(24) 20 127.53 (0.27) 123.45 121.87 (0.24) 118.17
GP-AR(36) 20 123.33 (0.52) 115.27 105.91 (0.30) 102.10
GP-ARMA 20 116.26 (0.40) 111.86 108.52 (0.23) 105.34

DFW GSR 20 215.47 (2.97) 179.29 189.28 (1.57) 166.87
GP-AR(12) 20 87.32 (2.09) 182.32 88.90 (0.11) 186.24
GP-AR(24) 20 85.88 (0.20) 179.72 78.41 (0.12) 176.62
GP-AR(36) 20 85.40 (0.23) 182.31 59.11 (0.20) 156.43
GP-ARMA 20 86.37 (0.20) 180.95 67.19 (0.16) 165.19

Standard error for mean is indicated in parentheses. Bold face indicates best performance on test
data for single base models. Bold face combined with underline indicates best test performance
among all experiment series

the terminal set is augmented with historical monthly HDD values. For the final
model configuration, GP-ARMA(36), the function set is identical to the one used
in the other autoregressive model configurations; however, the terminal set contains
moving averages, denoted by M(HDDt−1, . . . ,HDDt−λ), where λ is the time-lag
and HDDt−1 and HDDt−λ represent the bounds of the moving average period. For
every moving average, the associated standard deviation for that period is also given
as model input, and is denoted by SD(HDDt−1, . . . ,HDDt−λ). Finally, Table 6.2
presents the parameters of our learning algorithm.

6.6.3 Bagging of GP Time-Series Models

Bagging produces redundant training sets by sampling with replacement from the
original training instances. This effectively produces training sets that focus on
various distributions over the original learning points. For a number of trials equal to
the ensemble size, a training set of equal size to the original training set is sampled
with replacement from the original instances. This means that some instances may
not appear in it while others appear more than once. An independent GP time-series

6 Genetic Programming for the Induction of Seasonal Forecasts... 179

model is being evolved for every bootstrapped training set, and the outputs of the
multiple models are hence combined using a simple averaging procedure in order to
predict unseen instances. In this study we are considering ensembles of sizes 5, 10,
and 20 independent predictors.

6.7 Results

We performed 50 independent evolutionary runs for each forecasting model con-
figuration presented in Table 6.1. A summary of average and best training and test
results obtained using each model configuration is presented in Table 6.3. The first
part of the table refers to single-model forecasting, while the second part presents
the results obtained by multi-model predictions using different ensemble sizes. The
distributions of test-data RMSE obtained by best-of-run models are illustrated in
Figs. 6.2–6.4 for ATL, DEN, and DFW datasets, respectively.

For the case of single-model forecasting, the results suggest that the family
of autoregressive moving average models performs better on average than those
obtained with standard symbolic regression. A statistically significant difference
(unpaired t-test, p < 0.0001, degrees of freedom d f = 98) was found between the

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

80

100

120

140

160

180

200

220

240a b

c d

T
es

tin
g

R
M

S
E

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

80

100

120

140

160

180

200

T
es

tin
g

R
M

S
E

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

80

100

120

140

160

180

200

220

240

T
es

tin
g

R
M

S
E

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

80

100

120

140

160

180

200

220

T
es

tin
g

R
M

S
E

Fig. 6.2 Distribution of best-of-run test RMSE accrued from 50 independent runs for the ATL
dataset. (a) Single model (b) Ensemble size 5 (c) Ensemble size 10 (d) Ensemble size 20

180 A. Agapitos et al.

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

100

150

200

250

300

350

a b

c d

T
es

tin
g

R
M

S
E

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

100

200

300

400

500

600

700

T
es

tin
g

R
M

S
E

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

100

150

200

250

300

350

T
es

tin
g

R
M

S
E

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

100

150

200

250

300

350

T
es

tin
g

R
M

S
E

Fig. 6.3 Distribution of best-of-run test RMSE accrued from 50 independent runs for the DEN
dataset. (a) Single model (b) Ensemble size 5 (c) Ensemble size 10 (d) Ensemble size 20

average test RMSE for GSR and GP-ARMA in all three datasets. Despite the fact
that the ARMA representation space offers a more stable unit for evolution than
the essentially free-of-domain-knowledge GSR space, best testing RMSE results
indicated that GSR models are better performers in ATL and DEN datasets, as
opposed to the DFW dataset, where the best-of-50-runs GP-ARMA model appeared
superior. Given that in time-series modelling it is often practical to assume a
deterministic and a stochastic part in a series’ dynamics, this result can well
corroborate on the ability of standard symbolic regression models to effectively
capture the deterministic aspect of a time series and successfully forecast future
values in the case of time series with a weak stochastic or volatile part. Another
interesting observation is that there is a difference in the generalisation performance
between GP-AR models of different order, suggesting that the higher the order
of the AR process the better its performance on seasonal forecasting. Statistically
significant differences (unpaired t-test, p < 0.0001, d f = 98) were found in mean
test RMSE between GP-AR models of order 12 and those of order 36, in all three
datasets. During the learning process, we monitored the test-data performance of the
best-of-generation individual, and we adopted a model selection strategy whereby
the best-generalising individual from all generations is designated as the outcome of
the run. Figure 6.5a–c illustrates the distributions of the generation number where

6 Genetic Programming for the Induction of Seasonal Forecasts... 181

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

60

80

100

120

140

160

180

200

a b

c d

220

T
es

tin
g

R
M

S
E

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

60

80

100

120

140

160

180

200

220

T
es

tin
g

R
M

S
E

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

50

100

150

200

250

300

350

T
es

tin
g

R
M

S
E

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA
50

100

150

200

T
es

tin
g

R
M

S
E

Fig. 6.4 Distribution of best-of-run test RMSE accrued from 50 independent runs for the DFW
dataset. (a) Single model (b) Ensemble size 5 (c) Ensemble size 10 (d) Ensemble size 20

model selection was performed, for the three datasets. It can be seen that GSR
models are less prone to overfitting, then follows GP-ARMA, and finally it can
be noted that GP-AR models of high order are the most sensitive to overfitting the
training data. Interestingly this fact is observed across all three datasets. In addition
to this observation, Fig. 6.6 illustrates the RMSE curves during training. It can be
seen that under the GSR model configuration, there is a slower rate of training-
error minimisation, with initial models being poorer performers compared to the
respective ones under the GP-AR and GP-ARMA model configurations. Eventually,
however, we observe that all model configurations reach the same training-error
rates. This observation makes the GP-AR and GP-ARMA model configurations
much more efficient in terms of search effort required to find the best-of-run
generalising models, however, rendering any additional training prone to overfitting.

Looking at the results of Table 6.3 obtained with multi-model predictors, we
observe that ensembles of size 5 generalised the best in all datasets, improving the
results upon single-model predictors. Interestingly, the best-generalising ensemble
GP-AR and GP-ARMA models outperformed their GSR counterparts in all datasets.
Statistically significant differences (unpaired t-test, p < 0.0001, d f = 98) were
found between the mean test RMSE of ensembles of size 5 of autoregressive
models and standard symbolic regression models. This is mainly attributed to the
unstable performance of GSR models indicated by the high variance in test RMSE in

182 A. Agapitos et al.

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

0

5

10

15

20

25

30

35

40

45

50a b

c

G
en

. o
f b

es
t−

of
−

ru
n

te
st

 p
er

fo
rm

an
ce

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

0

5

10

15

20

25

30

35

40

45

50

G
en

. o
f b

es
t−

of
−

ru
n

te
st

 p
er

fo
rm

an
ce

GSR GP−AR(12) GP−AR(24) GP−AR(36) GP−ARMA

0

5

10

15

20

25

30

35

40

45

50

G
en

. o
f b

es
t−

of
−

ru
n

te
st

 p
er

fo
rm

an
ce

Fig. 6.5 (a), (b), (c) show the distribution of generation number where each best-of-run individual
on test data was discovered for the cases of ATL, DEN, and DFW, respectively. Cases for single-
model predictions

different evolutionary runs (Figs. 6.2a, 6.3a, 6.4a) and the fact the bagging generates
models from resampling the training data and learning models using each sub-
sample separately. An additional interesting observation is that the use of greater
ensemble size has an effect in reducing the RMSE variance in the case of GSR;
however, increasing the ensemble size shows no pronounced effect in the variance of
autoregressive models. Overall, it is noted that increasing the ensemble size beyond
5 models results in worsening the generalisation performance. This observation is
consistent across all datasets.

Finally, Figs. 6.7–6.9 show the target and predicted values from the best-
performing 5-model autoregressive models of Table 6.3, for ATL, DEN, and DFW
datasets, respectively. It can be seen that the evolved ensemble models achieved a
good fit for most of the in-sample and out-of-sample data range. Table 6.4 presents
a gallery of good-generalising GP-AR(36) evolved models.

6 Genetic Programming for the Induction of Seasonal Forecasts... 183

0 10 20 30 40 50
0

50

100

150

200

250
a b

c d

e

Generation

B
es

t T
ra

in
 R

M
S

E

0 10 20 30 40 50
0

20

40

60

80

100

120

Generation

B
es

t T
ra

in
 R

M
S

E

0 10 20 30 40 50
0

20

40

60

80

100

120

Generation

B
es

t T
ra

in
 R

M
S

E

0 10 20 30 40 50
0

20

40

60

80

100

120

Generation

B
es

t T
ra

in
 R

M
S

E

0 10 20 30 40 50
0

20

40

60

80

100

120

Generation

B
es

t T
ra

in
 R

M
S

E

Fig. 6.6 RMSE histograms for the ATL dataset. Each figure illustrates 50 independent evolution-
ary runs. Average is indicated with bold. (a) GSR; (b) GP-AR(12); (c) GP-AR(24); (d) GP-AR(36);
(e) GP-ARMA

184 A. Agapitos et al.

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200a b

Months

A
gg

re
ga

te
 m

on
th

ly
 H

D
D

s

TargetTarget

GP−ARMAGP−ARMA

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Months

A
gg

re
ga

te
 m

on
th

ly
 H

D
D

s

TargetTarget

GP−ARMAGP−ARMA

Fig. 6.7 Target vs. prediction for best-performing models of GP-ARMA (ensemble size 5) for the
ATL dataset. (a) training data (b) test data

0 20 40 60 80 100 120 140
0

500

1000

1500a b

Months

A
gg

re
ga

te
 m

on
th

ly
 H

D
D

s

Target

GP−AR(36)

0 20 40 60 80 100
0

500

1000

1500

Months

A
gg

re
ga

te
 m

on
th

ly
 H

D
D

s

Target

GP−AR(36)

Fig. 6.8 Target vs. prediction for best-performing models of GP-AR(36) (ensemble size 5) for the
DEN dataset. (a) training data (b) test data

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200a b

Months

A
gg

re
ga

te
 m

on
th

ly
 H

D
D

s

Target
GP−AR(36)

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Months

A
gg

re
ga

te
 m

on
th

ly
 H

D
D

s

Target
GP−AR(36)

Fig. 6.9 Target vs. prediction for best-performing models of GP-AR(36) (ensemble size 5) for the
DFW dataset. (a) training data (b) test data

6 Genetic Programming for the Induction of Seasonal Forecasts... 185

Table 6.4 Sample evolved GP-AR(36) models

f (t) =

√
HDDt−12

[
HDDt−36+

√
HDDt−12 ∗

(
HDDt−26

−0.92+(HDDt−7∗log(HDDt−21))

)]

f (t) =
√
(HDDt−24HDDt−36)−HDDt−24+11.51

f (t) = 0.94HDDt−36

f (t) = HDDt−36−
√

HDDt−12 +0.41(HDDt−36−HDDt−12)

f (t) =
HDDt−36√
HDDt−36+5.11

HDDt−12

f (t) =
√
(HDDt−36 +0.17)(HDDt−12 −0.84)

6.8 Conclusion

This study adopted a time-series modelling approach to the production of a seasonal
weather-metric forecast, as a constituent part of a general method for pricing
weather derivatives. Two GP-based methods for time-series modelling were used;
the first one is based on standard symbolic regression; the second one is based
on autoregressive time-series modelling that is realised via an iterated single-step
prediction process and a specially crafted terminal set of historical time-series
values.

Results are very encouraging, suggesting that GP is able to successfully evolve
accurate seasonal temperature forecasting models. The use of ensemble learning of
5-model predictors enhanced the generalisation ability of the system, as opposed
to single-model predictions. Standard symbolic regression was seen to be able to
capture the deterministic aspect of the modelled data and attained the best test
performance; however, its overall performance was marked as unstable, producing
some very poor-generalising models. On the other hand, the performance of search-
based autoregressive and moving average models was deemed on average the most
stable and best-performing in out-of-sample data.

Acknowledgements This publication has emanated from research conducted with the financial
support of Science Foundation Ireland under Grant Number 08/SRC/FM1389.

186 A. Agapitos et al.

References

1. C. Tuite, A. Agapitos, M. O’Neill, A. Brabazon, A Preliminary Investigation of Overfitting
in Evolutionary Driven Model Induction: Implications for Financial Modelling. Applications
of Evolutionary Computing, EvoApplications 2011: EvoCOMNET, EvoFIN, EvoHOT, Evo-
MUSART, EvoSTIM, EvoTRANSLOG, vol. 6625, 2011 (Springer, Turin, 2011), pp. 121–130

2. A. Agapitos, M. O’Neill, A. Brabazon, T. Theodoridis, Maximum margin decision surfaces
for increased generalisation in evolutionary decision tree learning, in Proceedings of the 14th
European Conference on Genetic Programming, EuroGP 2011, vol. 6621, ed. by S. Silva,
J.A. Foster, M. Nicolau, M. Giacobini, P. Machado (Springer, Turin, 2011), pp. 61–72

3. C. Tuite, A. Agapitos, M. O’Neill, A. Brabazon, Tackling overfitting in evolutionary-driven
financial model induction, in Natural Computing in Computational Finance (Volume 4),
Volume 380 of Studies in Computational Intelligence, Chap. 8, ed. by A. Brabazon, M. O’Neill,
D. Maringer (Springer, New York, 2012), pp. 141–161

4. A. Kattan, A. Agapitos, R. Poli, Unsupervised problem decomposition using genetic program-
ming, in Proceedings of the 13th European Conference on Genetic Programming, EuroGP
2010, vol. 6021, ed. by A.I. Esparcia-Alcazar, A. Ekart, S. Silva, S. Dignum, A. Sima Uyar
(Springer, Istanbul, 2010), pp. 122–133

5. A. Agapitos, M. O’Neill, A. Brabazon, Evolutionary learning of technical trading rules without
data-mining bias, in PPSN 2010 11th International Conference on Parallel Problem Solving
From Nature, vol. 6238, ed. by R. Schaefer, C. Cotta, J. Kolodziej, G. Rudolph (Springer,
Krakow, 2010), pp. 294–303

6. A. Agapitos, M. O’Neill, A. Brabazon, Stateful program representations for evolving technical
trading rules, in GECCO ’11: Proceedings of the 13th Annual Conference Companion on
Genetic and Evolutionary Computation (ACM, Dublin, 2011), pp. 199–200

7. T. Theodoridis, A. Agapitos, H. Hu, A gaussian groundplan projection area model for evolving
probabilistic classifiers, in GECCO ’11: Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation (ACM, Dublin, 2011), pp. 1339–1346

8. C. Tuite, A. Agapitos, M. O’Neill, A. Brabazon, Early stopping criteria to counteract overfitting
in genetic programming, in GECCO ’11: Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation (ACM, Dublin, 2011), pp. 203–204

9. A. Agapitos, M. O’Neill, A. Brabazon, Promoting the generalisation of genetically induced
trading rules, in Proceedings of the 4th International Conference on Computational and
Financial Econometrics CFE’10, ed. by G. Kapetanios, O. Linton, M. McAleer, E. Ruiz
(ERCIM, Senate House, University of London, UK, 2010), p. E678

10. A. Agapitos, M. Dyson, J. Kovalchuk, S.M. Lucas, On the genetic programming of time-
series predictors for supply chain management, in GECCO ’08: Proceedings of the 10th
Annual Conference on Genetic and Evolutionary Computation (ACM, New York, 2008),
pp. 1163–1170

11. P. Alaton, B. Djehiche, D. Stillberger, On modelling and pricing weather derivatives. Appl.
Math. Finance 9(1), 1–20 (2002)

12. M. Alvarez-Diaz, G. Caballero Miguez, M. Solino, The Institutional Determinants Of CO2
Emissions: A Computational Modelling Approach Using Artificial Neural Networks and
Genetic Programming. FUNCAS Working Paper 401, Fundacion de las Cajas de Ahorros,
Madrid, July 2008

13. M. Arganis, R. Val, J. Prats, K. Rodriguez, R. Dominguez, J. Dolz, Genetic programming and
standardization in water temperature modelling. Adv. Civil Eng. (2009). Article ID 353960,
doi:10.1155/2009/353960

14. A. Bakhshaii, R. Stull, Deterministic ensemble forecasts using gene-expression programming.
Weather Forecast. 24(5), 1431–1451 (2009)

15. C.M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, Oxford,
1996)

6 Genetic Programming for the Induction of Seasonal Forecasts... 187

16. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81,
637–654 (1973)

17. T. Bollerslev, Generalised autoregressive conditional heteroskedasticity. J. Econometrics 31,
307–327 (1986)

18. A. Brabazon, M. O’Neill, Biologically Inspired Algorithms for Financial Modelling (Springer,
New York, 2006)

19. L. Breiman, Bagging predictors. Mach. Learn. 24, 123–140 (1996)
20. S. Campbell, F. Diebold, Weather forecasting for weather derivatives. J. Am. Stat. Assoc.

100(469), 6–16 (2005)
21. M. Cao, J. Wei, Equilibrium Valuation of Weather Derivatives. Working paper, School of

Business, York University, Toronto (2002)
22. E. Carreno Jara, Long memory time series forecasting by using genetic programming. Genetic

Programming and Evolvable Machines 12(4), 429–456 (2012)
23. G. Considine, Introduction to weather derivatives. Technical report, Weather Derivatives Group

(1999)
24. P. Coulibaly, Downscaling daily extreme temperatures with genetic programming. Geophys.

Res. Lett. 31, 1–4 (2004)
25. M. Davis, Pricing weather derivatives by marginal value. Quant. Finance 1, 305–308 (2001)
26. I. De Falco, A. Della Cioppa, E. Tarantino, A genetic programming system for time series

prediction and its application to El Nino forecast, in Soft Computing: Methodologies and
Applications, ed. by F. Hoffmann, M. Köppen, F. Klawonn, R. Roy. Advances in Intelligent
and Soft Computing, vol. 32 (Springer, Berlin, 2005), pp. 151–162

27. R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd edn. (Wiley, New York, 2001)
28. B. Efron, R. Tibshirani, An Introduction to the Bootstrap (Chapman and Hall, New York, 1993)
29. J.J. Flores, M. Graff, E. Cadenas, Wind prediction using genetic algorithms and gene

expression programming, in Proceedings of the International Conference on Modelling and
Simulation in the Enterprises. AMSE 2005, Morelia, Mexico, April 2005

30. A. Garcia, F. Sturzenegger, Hedging corporate revenues with weather derivatives: A case study.
Master’s thesis, Universite de Lausanne (2001)

31. Y.-S. Hong, M.R. Rosen, Identification of an urban fractured-rock aquifer dynamics using an
evolutionary self-organizing modelling. J. Hydrol. 259(1–4), 89–104 (2002)

32. H. Iba, Bagging, boosting, and bloating in genetic programming, in Proceedings of the Genetic
and Evolutionary Computation Conference, ed. by W. Banzhaf, J. Daida, A.E. Eiben, M.H.
Garzon, V. Honavar, M. Jakiela, R.R. Smith, vol. 2 (Morgan Kaufmann, San Francisco, 1999),
pp. 1053–1060

33. S. Jewson, R. Caballero, The use of weather forecasts in the pricing of weather derivatives.
Meteorol. Appl. 10, 367–376 (2003)

34. S. Jewson, A. Brix, C. Ziehmann, Weather Derivative Valuation: The Meteorological, Statisti-
cal, Financial and Mathematical Foundations (Cambridge University Press, Cambridge, 2005)

35. O. Kisi, A. Guven, Evapotranspiration modeling using linear genetic programming technique.
J. Irrigat. Drain. Eng. 136(10), 715–723 (2010)

36. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection (MIT, Cambridge, 1992)

37. J.R. Koza, Human-competitive results produced by genetic programming. Genetic Program-
ming and Evolvable Machines 11(3/4), 251–284 (2010)

38. A. Makkeasoyrn, N.-B. Chang, X. Zhou, Short-term streamflow forecasting with global climate
change implications – A comparative study between genetic programming and neural network
models. J. Hydrol. 352(3–4), 336–354 (2008)

39. S. Makridakis, S. Wheelright, R. Hyndman, Forcasting: Methods and Applications (Wiley,
New York, 1998)

40. M. Moreno, Riding the temp – Is it possible, in weather derivatives pricing models, to simulate
the temperature effectively? Futures and Options World 15, 22–26 (2001)

41. M. O’Neill, L. Vanneschi, S. Gustafson, W. Banzhaf, Open issues in genetic programming.
Genetic Programming and Evolvable Machines 11(3/4), 339–363 (2010)

188 A. Agapitos et al.

42. R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming (Lulu Enter-
prises, NC, 2008)

43. R. Poli, L. Vanneschi, W.B. Langdon, N.F. McPhee, Theoretical results in genetic program-
ming: The next ten years? Genetic Programming and Evolvable Machines 11(3/4), 285–320
(2010)

44. K. Rodriguez-Vazquez, Genetic programming in time series modelling: an application to
meteorological data, in Proceedings of the 2001 Congress on Evolutionary Computation
CEC2001 (IEEE Press, NJ, 2001), pp. 261–266

45. S. Shahid, M. Hasan, R.U. Mondal, Modeling monthly mean maximum temperature using
genetic programming. Int. J. Soft Comput. 2(5), 612–616 (2007)

46. J. Taylor, R. Buizza, Density forecasting for weather derivative pricing. Int. J. Forecast. 22,
29–42 (2006)

47. J.J. Valdes, A. Pou, Central England temperatures and solar activity: a computational intelli-
gence approach, in International Joint Conference on Neural Networks (IJCNN 2010) (IEEE
Press, Piscataway, 2010), pp. 1–8

48. G.J.F.T. Van Sprundel, Using weather derivatives for the financial risk management of
plant diseases: A study on Phytophthora infestans and Fusarium head blight. PhD thesis,
Wageningen University (2011)

49. R. Vining, Weather derivatives: implications for Australia, in Proceedings of Hawaii Confer-
ence on Business (2001)

50. N. Wagner, Z. Michalewicz, M. Khouja, R.R. McGregor, Time series forecasting for dynamic
environments: The DyFor genetic program model. IEEE Trans. Evol. Comput. 11(4), 433–452
(2007)

51. Weather Risk Management Association. Results of 2006 annual industry-wide survey, April
2006

52. Weather Risk Management Association. Introduction to the weather market, April 2011
53. A. Weigel, D. Baggenstos, M. Liniger, Probabilistic verification of monthly temperature

forecasts. Mon. Weather Rev. 136, 5162–5182 (2008)
54. P.A. Whigham, P.F. Crapper, Time series modelling using genetic programming: an application

to rainfall-runoff models, in Advances in Genetic Programming 3, ed. by L. Spector, W.B.
Langdon, U.-M. O’Reilly, P.J. Angeline (MIT, Cambridge, 1999), pp. 89–104

Chapter 7
Evolution Strategies for IPO Underpricing
Prediction

David Quintana, Cristobal Luque, Jose Maria Valls, and Pedro Isasi

Abstract The prediction of first-day returns of initial public offerings is a
challenging task due, among other things, to an incomplete theory on the dynamics
and the presence of outliers. In this chapter we introduce an evolutionary system
based on prototypes adjusted by evolution strategies. The system, set up in two
layers, breaks the input space into different regions and fits specialized sets of
models. These models are then combined to offer predictions. The structure of the
model is such that it is able to handle the extreme values that hinder prediction in this
domain. The system is benchmarked against a set of well-known machine learning
algorithms, and the results show competitive performance.

7.1 Introduction

The existence of abnormal first-day trading returns on initial public offerings (IPOs)
is a phenomenon that has been documented in the academic literature for a long
time. Historically, there has been a substantial difference between the price at which
the stock is sold to investors and the closing price at the end of the first trading
day. The size of gap between the price set by the sellers and their advisors and the
market price, once the shares of the company have been trading freely, varies with
time periods and industries and is difficult to justify from current financial theory.
Ritter and Welch [42] report an average initial return of 18.8% on a sample of 6,249
US IPOs that took place between 1980 and 2001.1

1Equally weighted average first-day return measured from the offer price to the first CRSP-listed
crossing price.

D. Quintana (�) • C. Luque • J.M. Valls • P. Isasi
Universidad Carlos III de Madrid, Avda. Universidad, 30 Leganés 28911, Madrid, Spain
e-mail: dquintan@inf.uc3m.es; cluqueac@gmail.com; jvalls@inf.uc3m.es; isasi@ia.uc3m.es

M. Doumpos et al. (eds.), Financial Decision Making Using Computational Intelligence,
Springer Optimization and Its Applications 70, DOI 10.1007/978-1-4614-3773-4 7,
© Springer Science+Business Media New York 2012

189

190 D. Quintana et al.

There is a long history of research devoted to this issue. Researchers on financial
economics have been trying to explain the phenomenon for decades and it has been
the subject of a vast amount of academic work. Many theories have been postulated
to offer explanations and it is still a very active field. The mentioned paper by Ritter
and Welch is a good introduction to the domain.

The pricing of new stock is a complicated process that results from a negotiation
process between the issuers and their financial advisors. Pricing entails building
complicated models that deal with a wide array of uncertainties regarding the firm
and their markets. Once an initial reference price is agreed, the company and the
investment banks present the deal to potential investors during a process called the
road show. These potential buyers, usually large institutional investors, show their
interest making of nonbinding purchase offers. The financial advisors gather this
new information regarding the potential demand and subsequently use it to adjust the
original reference price and set the final offering price. The existence of information
asymmetries, conflicting interests, uncertainties, and the state of financial markets
leads to the mentioned first-day return pattern.

Misspricing could result in major economic inefficiency, specially in those cases
where the difference is extremely large. An example that could be mentioned would
be the case of Broadcom, a high-speed semiconductor products company. The
company filed an offer price of $24 and, by the end of the first day, the stock was
trading at $53.63. Depending on the point of view, underpricing could be seen as
money left on the table or a considerable opportunity for those who can get shares
allocated on the right IPOs. Given the sums involved, the ability to predict the initial
return could be very profitable. Sellers could adjust the offering price to get more
money for their shares, and buyers could improve their allocation of funds. Having
said that, IPOs underpricing prediction pose a major challenge. The nature of the
underpricing is not well understood, the set of variables identified as relevant in the
literature is incomplete, and the presence of outliers adds difficulty to the task of
predicting the initial performance.

Most of the empirical analysis that has been carried out to date in order to
explain underpricing is based on linear models. These models lack the flexibility
to capture nonlinearity and complex interaction among the independent variables.
Despite these limitations, the efforts carried out using computational intelligence
are very limited and are mostly based on artificial neural networks. They model
it as a regression task and rely on multilayer perceptrons to solve it. The approach
suggested in this chapter is very different as it is based on evolutionary system using
a Michigan approach. The system evolves a set of Voroni regions using evolution
strategies that are subsequently used to fit local models. These models, set up in a
two layer structure, can then be used for prediction purposes.

The rest of the chapter is structured as follows: Sect. 7.2 introduces the main
contributions to IPO underpricing prediction using computational intelligence.
Section 7.3 presents the explanatory variables and describe the data used in the
empirical analysis. Section 7.4 describes the evolutionary system and Sect. 7.5 will
be used to report the results of the empirical analysis. Finally, Sect. 7.6 covers the
summary and conclusions.

7 Evolution Strategies for IPO Underpricing Prediction 191

7.2 Computational Intelligence Literature in IPO
Underpricing Prediction

The use of computational intelligence in financial prediction is hardly new. Many
pieces of research have explored the suitability of this technique in areas such
as trading [4, 16, 17], portfolio optimization [12, 26, 28], or bankruptcy prediction
[5, 34, 46] but little has been done in IPO research. Given the nature of the problem,
it has been traditionally tackled using artificial neural networks.

Jain and Nag [24] conducted the first attempt to predict IPO underpricing. In
their paper, they train a set of multilayer perceptrons trained with backpropagation
to predict the first-day close of a set of US IPOs. They used a set of 11 input variables
representing different financial indicators traditionally used by investors. The results
generated by the networks were closer to the offering prices set by the issuers and
investment bankers, leading the authors to conclude that neural networks outperform
issuers and investment bankers in pricing IPOs. Their work was closely followed by
those of Coy et al. [15] and Robertson et al. [43], who modeled the problem in a very
similar way. The authors of the latter extended the number of predictors to 16 and
targeted the initial return. Their main contributions was segmenting the data into two
samples, technology and not technology, and adding factorial analysis to understand
the effects of different parameter settings. They also report that the neural networks
trained with backpropagation beat ordinary least squares (OLS) regression in both
samples.

Another related paper is the one presented by Mitsdorffere et al. [36]. Unlike the
previous authors, these researchers did not target the specific underpricing. Instead,
they modeled the problem as a classification task and tried to identify IPOs that
showed first-day price run-ups over 50%. In order to do that, they tested a set
of machine learning methods (Bayesian classifications, support vector machines,
decision tree techniques, rule, learners and artificial neural networks) on a sample of
182 US tech IPOs. They concluded that C4.5, followed by neural networks, offered
the best results.

More recently, other authors have tested these models on non-US samples. The
second most studied IPO market using computational intelligence, after the US,
has been the Chinese one. This market is characterized by abnormally high initial
returns. Tian [49], for instance, reports an average underpricing of 267% between
1991 and 2001 and explains this extraordinary performance through a combination
of specific regulations and investment risks. Meng [35] tested artificial neural
networks on a sample of 99 Chinese SME IPOs preprocessing the data. He used
principal component analysis to reduce the dimension of the input space from 18
variables to 6 factors. Chen and Wu [11] also tested a set of multilayer perceptrons
on Chinese SME IPOs to predict first day’s closing prices. Finally, Chou et al. [13]
use a genetic algorithm to optimize the architecture of the neural network but, apart
from that, there are no major differences compared to the mentioned studies.

Reber et al. [40] compare linear regression and neural network models on a UK
sample and obtain the best performance using simple neural networks based on

192 D. Quintana et al.

seven inputs. They also report instability of the models across different partitions of
the data. However, it is important to note that this phenomenon was observed across
the board. It was not something specific of neural networks.

The alternatives to neural networks have been very limited. Quintana et al. [39]
introduced a system that evolves a set of prediction rules using a steady-state genetic
algorithm with a Michigan approach. Once the system is trained, it can then be used
to predict underpricing for new IPOs matching relevant rules to the values of seven
independent variables identified in the financial literature. The authors compared its
performance to OLS regression and robust regression models and obtained the best
results with the evolutionary system. Luque et al. subsequently introduced another
method based on evolution strategies in an earlier version of this work [32] offering
competitive results.

7.3 Variables and Data

In this section, we introduce formally the phenomenon we have been referring to as
IPO underpricing . Then, we will describe the set of independent variables that will
be used in the models for prediction purposes.

We define IPO underpricing as the percentage change of the share price from the
offer to the closing price on first day of trading minus the return on the appropriate
index or:

Ri =

(
Pci −Poi

Poi

)
−
(

Mci −Moi

Moi

)
,

where Ri is the adjusted first-day return for stock i; Poi is the offering price for stock
i; Pci is the closing price for stock i; Moi is the closing for the broad market index
of the market where the stock i was taken public for the day before the IPO and Mci

is the closing for the broad market index of the market where the stock i was floated
on the day of the IPO.2

Once the target variable has been clearly described, we introduce the independent
variables.

7.3.1 Explanatory Variables

As we have already mentioned in the introduction, the amount of literature regarding
IPO underpricing is quite remarkable. This fact makes the initial number of potential
explanatory variables very high. However, there seems to be a number of them
concerning the structure of the offerings that show up often in academic studies.

2The indexes used in the analysis were: S&P 500, NASDAQ Composite and AMEX Composite.

7 Evolution Strategies for IPO Underpricing Prediction 193

These variables, which are about to be succinctly described, are the following: price
range width, price adjustment, offer price, retained stock offer size, and relation to
tech sector.

7.3.1.1 Price Range Width (RANGE)

This variable represents the width of the nonbinding reference price range offered
to potential customers during the roadshow. This width can be interpreted as a sign
of uncertainty regarding the real value of the company and, therefore, as a factor
that could influence the initial return. Following [21, 25], the representation to be
used will be the difference between the maximum and minimum price divided by
the minimum price.

7.3.1.2 Price Adjustment (P ADJ)

Authors of [8, 21, 29] suggest the relation between the final offer price and the
mentioned price range might also be interpreted as sign of uncertainty. They state
that this effect might be captured by the following expression:

P ADJ =
Pf −Pe

Pe
,

where Pf is the final offer price and Pe is the expected price defined as the middle
point of the price range.

7.3.1.3 Offering Price (PRICE)

The final offering price has been found to be a relevant variable not only as a part
of the previous indicator but also on its own. Studies like [3, 9, 10], among others,
support this idea.

7.3.1.4 Retained Stock (RETAINED)

The influence of the capital retained by initial investors at the time of the IPO has
been traditionally understood to signal the quality of the stock [1, 18, 27, 29]. Since
we lack the breakdown of primary and secondary shares, we will proxy this variable
through the ratio number of shares sold at the IPO divided by post-offering number
of shares minus the number of shares sold at the IPO.

194 D. Quintana et al.

Table 7.1 Descriptive statistics

Mean Median Max Min Std. dev.

RETURN 10.176 10.073 13.718 −0.281 0.389
PRICE 14.641 14.000 85.000 −3.250 5.812
RANGE 10.149 10.143 10.500 −0.000 0.063
P ADJ 10.105 10.082 11.509 −0.000 0.099
LSIZE 12.054 12.025 13.939 −0.061 0.446
RETAINED 10.309 10.262 11.000 −0.002 0.198
TECH 10.328 10.000 11.000 −0.000 0.470

7.3.1.5 Offering Size (LSIZE)

This variable is defined as the logarithm of the offering size in millions of dollars
excluding the over-allotment option. Studies like [3, 22, 23, 33] support the need to
include it in the models.

7.3.1.6 Technology (TECH)

The reason why we suggest a specific variable to control whether the industrial
activities of a company are related to tech sector is the fact that they tend to show
a higher underpricing. This fact is usually modeled by a dummy that equals one
for tech companies [30, 31, 47]. Our labeling criterion is based on IPO Monitor’s
definition. This company publishes reports with the list of tech companies taken
public based on US Standard Industry Codes. Hence, we will consider an IPO to be
“Tech” if it is in the list.

7.3.2 Data

The sample used in the empirical section of this work consisted of 866 companies
taken public between January 1999 and May 2010 in US stock markets. This
includes AMEX, NASDAQ, and NYSE IPOs and excludes American Depositary
Receipts; closed-end funds; real-state investment trusts and unit offerings. Our
primary data source was IPO Monitor. The information was completed with IPO
profiles from Hoovers. Index information was obtained from NASD (NASDAQ and
AMEX composites) and DataStream (S&P 500).

The main descriptive statistics (mean, median, maximum, minimum and standard
deviation) for the sample of 866 IPOs considered in the analysis are reported in
Table 7.1.

7 Evolution Strategies for IPO Underpricing Prediction 195

7.4 Description of the Evolutionary System

In this chapter, we present a new supervised learning system based on evolution
strategies [41, 45] to perform a prediction tasks. Usually, this kind of systems relies
on the whole training data set to derive the rules used to make predictions. However,
in some domains, the peculiarities of the input space favor approaches that stress the
importance of local information. Among these, we could mention the existence of
significant differences among the different regions of the input space. The system
introduced in this work tries to automatically detect the areas in the input space
that share enough features to be accurately predicted by the same set of rules. In
addition to that, the system will determine which rules are appropriate for each of
them. Thus, at the end, it is going to produce on one hand a partition of the input
space in different areas by means of a set of prototypes and the nearest neighborhood
rule, and, on the other hand, a set of rules for each region that defines the predictions
that are going to be generated for that region.

As in most machine learning algorithms, two stages are required: a training stage,
to create a model, and a test stage, to validate the model. As part of the training stage,
the input space is divided into Voronoi regions by means of a set of prototypes.
In each of these Voronoi regions, a linear regression is performed to fit the points
representing the instances of the training set, defined by pairs (input, output). Thus,
several local linear regressions are performed, one per region.

Once the training process is finished, given a test pattern, the system will assign
it to the appropriate region, following the nearest neighborhood rule, and then it
will provide a prediction based on the local regression associated to that region.
The algorithm has been conceived in a way that tends to allocate noisy patterns into
specific regions, hence improving the accuracy of the models fitted to the patterns
that show a clearer structure. Next, we will describe the learning procedure and how
the system works.

In this work we use the previously defined set of independent variables (LSIZE,
P ADJ, PRICE, RANGE, RETAINED and TECH) and RETURN as target variable.

7.4.1 Training Process

The training process divides the input variable space into Voronoi regions. Let n be
the dimension of the input space, and thus n+1 the dimension of the pattern space,
where the extra dimension represents the prediction. We will call “prototype” to a
point P (a vector) in the input variable space (in this particular domain, R6). Given a
set of k prototypes Pi ∈Rn, where i≤ k, and n is the dimension of the input space, this
set divides Rn into k Voronoi regions, when the nearest neighborhood rule is used.
If we call Vi to the region defined by Pi, we can describe this region mathematically
as

Vi := {P ∈ Rn/d(P,Pi)< d(P,Pj) for all j ≤ k such that j �= i},
where d is the standard Euclidean distance.

196 D. Quintana et al.

The goal of this phase is to determine the best partitioning in terms of predictive
accuracy. The approach suggested to do this is based on an evolutionary process.
Each prototype is represented by an individual in an evolutionary strategies system.
The learning procedure of the evolutionary strategies moves those prototypes to
place them in the location where the predictive properties are maximized. The
predictive properties of the regions are used as the fitness value of the individuals.

7.4.1.1 Evaluation of Fitness

Training patterns are composed of vectors of (n + 1) dimensions (n dimensions
for the input variables and one dimension for the output). For the encoding of the
individuals, just the n first dimensions, corresponding to the n input variables, are
used. Let T = (t1, . . . , tn−1, tn, tn+1) be a training pattern. A projection map from
Rn+1 to Rn has to be defined:

Π(t1, . . . , tn−1, tn, tn+1) := (t1, . . . , tn−1, tn).

Those projections are used as training elements for the generation of the Voronoi
regions. In order to compute the fitness value of an individual (prototype Pi), we
need first to assign a set of pattern projections to that prototype, following the nearest
neighborhood rule:

Π(T) ∈Vi ⇐⇒ d(T,Pi)< d(T,Pj) for all j ≤ k such that j ≤ i.

Once every training pattern is assigned to its corresponding region, a regression
Ri is calculated for each region Vi. Ri is a linear regression of the output variable
over the input variables for each pattern T , such that Π(T) ∈ Vi. Let Ri(T) be the
estimated output for the pattern T by the regression Ri, and T0 the output value of
the pattern T . That is, if T = (t1, . . . , tn, tn+1), then T0 := tn+1. Then, the error of that
estimation is E = |T0 −Ri(T)|. Thus, we have the relationship Pi →Vi → Ri for each
i ≤ k. That is, a prototype Pi defines a region Vi, and that region has an associated
regression Ri.

The goal of the algorithm is to minimize the sum of errors. In standard
evolutionary algorithms, a fitness value is assigned to each individual. For instance,
we could use the sum of the errors for all the patterns associated to the region Vi

as the fitness function for each individual (prototype Pi). However, we consider that
it would not be suitable in this setting since the individuals with fewer associated
patterns (that is, fewer projections in their region, and therefore, a sum of less error
terms) would tend to behave better. Another candidate for fitness function could
be the previous one divided by the number of patterns belonging to the region
associated to the individual (mean error). This choice would not be much better
than the previous one, because it would allow individuals with more patterns in
their regions to evolve stealing patterns from the nearby regions, and thus, the error
derived from using a regression that is not suitable would be compensated by the

7 Evolution Strategies for IPO Underpricing Prediction 197

Fig. 7.1 Graphical representation of the way the input space is broken down into Voronoi regions

fact that the magnitude of such error would be shared among all the data points in
the region. The dilution of the consequences of the mentioned undesired behavior
has led us to look for another alternative, a population-based fitness (Michigan
approach). That means that instead of having a fitness value for each individual,
we have a fitness value for all the population. This value is the sum of the errors
E = |T0 −Ri(T)| for each pattern T and i such that Π(T) ∈Vi:

Fitness =∑
T

|T0 −Ri(T)|, i such that Π(T) ∈Vi.

This approach is illustrated in Fig. 7.1.

7.4.1.2 Evolution Process

The initial population is randomly created. The evolution process basically works
as a (1+ 1) parallel evolution strategy. That is, in every generation, each parent
produces an offspring by mutation. Let I = (x1, . . . ,xn,σI) be an individual and let
I′ = (x′1, . . . ,x

′
n,σ ′

I′) be its offspring. The mutation process can be expressed as

x′i = N(xi,σI),

where N(X ,Y) represents a normal random variable with mean X and variance Y ,
and σI is the variance of the parent. In order to mutate the offspring’s variance σ ′

I′ ,
the offspring carries a counter for the last successful replacement of his parent by
its offspring. That is done using the 1/5 rule suggested by Rechenberg, to adapt the
variance of the mutations I, as explained in [7].

198 D. Quintana et al.

Fig. 7.2 Schema of the two phases of prediction of the evolutive system

For each offspring I0 we look for the closest individual I in the population in
terms of Euclidean distance. Both individuals must be compared in order to select
the best, so we calculate the population fitness before and after replacing I by I0.
Finally, if the population fitness is worse after the replacement, we undo the change
and keep the population as it was before.

7.4.2 Prediction Process

This evolutionary approach allows us to build a predictive model composed of
several local linear regressions associated to the specific regions.

With the aim of improving the quality of the predictions, instead of one, ten
models or subsystems with different random initializations will be built, in order
to make the predictions more reliable and accurate. The reason behind this is that
a regression is able to produce a reliable prediction only if the number of points it
has been built with is big enough. Because of this, the regions composed of a scarce
number of points will not be allowed to produce an output.

Therefore, our system is composed of ten subsystems, as it can be seen in Fig. 7.2.
Each one is a prediction model randomly initialized and evolved with the training
patterns, as it has been explained above. Some subsystems might not produce a valid
output because the corresponding Voronoi regions are not reliable enough. However,
the final output of the whole system is the mean of the valid—and reliable—
outputs of the other subsystems. The whole system is now likely to produce reliable
predictions for new testing patterns.

Let us summarize the prediction process: For a given testing pattern T , each
subsystem must establish, in the first place, the region in which the pattern is located.
Then, the prediction is calculated as the estimated value of T by the regression that
corresponds to that region.

7 Evolution Strategies for IPO Underpricing Prediction 199

Algorithm 1 Prediction Algorithm
STEP 1: find i such that Π(T) ∈Vi

STEP 2: if (�Ri >MIN) then
OUTPUT:= Ri(T)

else NO-OUTPUT

The prediction process for each subsystem could be summarized as in
Algorithm 1, where �Ri is the number of points in the region Ri after the
training process and MIN is the minimum of points required for a prediction. The
MIN parameter depends on the accuracy we desire for the algorithm. For linear
regressions, in order to make its prediction reliable, it is usually recommended to
be calculated with, at least, 5 points for each variable. Therefore, the number of
input variables multiplied by 5 is a good value for MIN. For the experiments done,
the algorithm has been tested with 3, 5, and 10 patterns per input variable for each
region as condition in order to produce an output.

For a given pattern, each subsystem may produce an output or not. The final
output of the system for a pattern T is the mean of the valid values returned by each
subsystem, as Fig. 7.2 shows.

7.5 Empirical Analysis

The aim of this chapter is to show an evolutionary algorithm that could be very
useful in IPO research. We will illustrate its potential comparing its forecasting
ability to the one achieved by several and widely used machine learning alternatives.
This comparison will be based on a 100-fold cross-validation analysis using the
866 patterns introduced before. The accuracy of the predictions will be assessed
comparing the root mean square error (RMSE) of the predictions of the models. We
will apply all the algorithms to the same data sets in order to get comparable results.

The data was normalized in the [0,1] interval and subsequently used to fit the
described model. We did 100 experiments with 3, 6, 12, and 24 individuals, and
the results are reported in Table 7.2. Each row shows the average of the results for
each number of individuals. Column “RMSE” shows the Root Mean Square Error,
column “Var.” displays the variance of the RMS Error, and column “Pred. %” the
percentage of patterns in the validation set for whom the system could produce
a reliable prediction. As it was explained before, the system has the ability to
anticipate which observations could lead to potentially inaccurate forecasts. Should
this be the case, the system would not provide any estimation. The percentage of
the sample predicted depends on the minimum number or points that a region is
required to have. This parameter is set in function of the number of input variables
in the data set, in this case, six, and the number of patterns per variable required to
fit a reliable regression model. Table 7.2 shows the results for this minimum number
of points value required, when we set the minimum number of patterns per variable

200 D. Quintana et al.

Table 7.2 Results of the experiments for the Voronoi system

18 p./reg. 30 p./reg. 60 p./reg.

Indiv. RMSE Var. Pred.% RMSE Var. Pred.% RMSE Var. Pred.%

3 0.0802 0.00239 99.8 0.0796 0.00247 99.8 0.0768 0.00244 99.8
6 0.0763 0.00223 99.8 0.0757 0.00220 99.8 0.0751 0.00223 99.7
12 0.0745 0.00232 99.6 0.0744 0.00230 99.6 0.0728 0.00219 99.4
24 0.0705 0.00202 99.0 0.0700 0.00191 98.6 0.0689 0.00180 97.6

to 3, 5, and 10. This means that we will test the system with requirements of at least
18, 30 and 60 points for region. The reported figures confirm that the larger this
number is, the higher predictive accuracy.

The best result in terms of prediction error, 0.0689, is achieved using both the
largest number of regions and the largest minimum number of patterns per region
required to make predictions. Ceteris paribus, Larger values in any of the mentioned
two parameters result in both lower prediction errors, and lower prediction rates.
This makes sense as one of them results in more specialization and the other in
linear models fitted on more data. Combined, they result in more areas potentially
devoted to outliers that will not meet the requirement to be predicted and, therefore,
will not drag the results.

As we mentioned before, we repeated the same cross-validation analysis using
a set of machine learning alternatives. For such a task, we used a powerful, well-
known and widely used Java package called Waikato Environment for Knowledge
Analysis (WEKA) [20]. The algorithms we will use as benchmarks are conjunctive
rules, IBK, K∗, LWL, M5 Rules, M5P, radial basis neural networks, multilayer
perceptron neural networks, and SMO for regression.

• Conjunctive rule [20]: Single conjunctive rule learner.
• IBK [2]: K-nearest neighbor classifier algorithm.
• K∗ [14]: Is an instance-based classifier, that is the class of a test instance is based

upon the class of those training instances similar to it, as determined by some
similarity function.

• LWL [6]: This is a local instance-based weighted learning algorithm. It builds a
classifier from the weighted instances.

• M5Rules [19]: Generates a decision list for regression problems using separate-
and-conquer.

• M5p [38]: Numerical classifier that combines a conventional decision tree with
the possibility of linear regression to predict continual variables.

• Multilayer Perceptron: Algorithm that simulates the biological process of learn-
ing through weight adjusting using backpropagation algorithm [44].

• RBNN [37]: Radial basis neural networks are another type of artificial neural
network. It uses radial basis functions to approximate different regions of the
input space depending on their characteristics.

• SMO-Reg [41]: Implements sequential minimal optimization algorithm for
training a support vector regression using polynomial or RBF kernels.

7 Evolution Strategies for IPO Underpricing Prediction 201

Table 7.3 Results of the
experiments for other
algorithms implemented
in WEKA

Algorithm RMSE Variance

Conj. rule 0.0849 0.002833
IBK 0.0767 0.001979
K* 0.0780 0.001854
LWL 0.0834 0.002729
M5P 0.0830 0.001983
M5Rules 0.0850 0.002060
Percep 0.0948 0.002326
RBNN 0.0813 0.002710
SMO-Reg 0.0766 0.003046

Table 7.4 Significance tests for the average prediction error

Vor 3R 60P Vor 6R 60P Vor 12R 60P Vor 24R 60P

Voronoi 6 Reg 10 Pt =

Voronoi 12 Reg 10 Pt = =

Voronoi 24 Reg 10 Pt = = =

Conj. rule ++ ++ ++ ++

IBK = = + ++

K∗ = + ++ ++

LWL ++ ++ ++ ++

M5P ++ ++ ++ ++

M5Rules ++ ++ ++ ++

Percep ++ ++ ++ ++

RBNN + + ++ ++

SMO = = = =

The mean errors and variance of the experiments using the default parameters
are displayed in Table 7.3.

The best alternative seems to be SMO-Reg, closely followed by IBK and K∗.
These perform at a level close to the algorithm using three regions and a 60-pattern
per region requirement. In that case, the evolutionary algorithm offers a slightly
higher RMSE for a percentage prediction of 99.8%. For any other case, the Voronoi
System beats any alternative. The significance of the difference of the prediction
errors was formally tested using Mann–Whitney test. The results of these tests are
reported in Table 7.4. There, we represent the fact that the element in the row has
an average prediction error significantly larger than the one in the column at 1% by
“++,” and the opposite by “−.” In case it is significantly larger at 5% we will use
“+.” Finally, if we cannot discard at 5% the possibility of equal accuracy, we report
“=.” Table 7.4 shows the results of these tests.

Table 7.4 shows that the Voronoi system with 12 or 24 regions and at least 60
patterns per region outperforms significantly any alternative but SMO. With 24
regions, all these differences are significant at the 1% conventional level. Regarding
the support vector machine, even though the prediction error is systematically higher
for any combination of regions and minimum number of patterns, when the number

202 D. Quintana et al.

Fig. 7.3 Average root mean squared prediction error per fold and prediction method (the darkest
line represents the evolutionary system)

of regions is higher than 3, the difference is not large enough to reject the null
hypothesis of equality. The performance of the evolutionary algorithm is statistically
identical across the different combinations of parameters.

In order to get a better understanding of the reason why the evolutionary system
outperforms the alternatives, we will analyze the results by folds. Figure 7.3
shows the average RMSE for the configuration that offered the lowest prediction
error, 24 regions and a minimum requirement of 60 patterns per region, and the
machine learning alternatives across the 100-folds. The darkest line represents the
evolutionary method.

The graph shows some of the IPOs are harder to predict than others. As it was
mentioned before, the presence of outliers is a major factor in this domain. In this
case, the patterns predicted in the first and the last few folds seem to be specially
problematic, together with the mid-twenties and mid-forties. However, the largest
contribution to the prediction error of most of the algorithms comes from the first
set. The average prediction error for the algorithms rarely goes beyond the 0.15
threshold. The only exception is the multilayer perceptron. This model tends to show
a performance that is in line with the rest, but seems to be more prone to large errors
in specific cases.

The approach based on evolution strategies shows an interesting behavior. Most
of the time, the prediction error is below average. However, we also observe spikes
between 0.1 and 0.15 with higher than average relative frequency. In spite of this,
the prediction error is still the lowest among the alternatives. The chart suggests that
the explanation might be related to the extreme errors. For some specific folds, the
average prediction errors tend to be extremely high. This is likely to be caused by the
presence of outliers, that is, IPOs whose initial returns are hard to anticipate using
the suggested set of independent variables. This is very relevant because the relative

7 Evolution Strategies for IPO Underpricing Prediction 203

Fig. 7.4 Folds with the
lowest prediction rates for the
Voronoi system with 24
regions and a minimum of 60
patterns per region

magnitude of the errors for these folds is so large that it makes a major contribution
to the total average RMSEs. Interestingly, in these folds, the evolutionary system
tends to make predictions whose average accuracy is significantly higher than the
rest. In fact, the difference seems to be so large in these cases that it more than
compensates the mentioned spikes on regular patterns. The source of this advantage
is likely to be found on the feature that was introduced before, more specifically, the
one that prevents the system from making any forecast whenever it is anticipated
that such prediction is likely to be unreliable.

As we mentioned on the previous section, the system requires a minimum
number of patterns per region to make predictions. In case the minimum is not
met, the regressions are considered unreliable. This feature, together with the way
the prototypes are evolved, results on the isolation of some problematic areas of
the input space. Further analysis of the prediction errors broken down by fold will
illustrate the connection between this and the reported performance.

Figure 7.4 shows the folds with the 13 lowest prediction rates by the evolutionary
algorithm. There, we can see that fold 100 got predictions for 90.70% of the patterns
considered, folds 96, 97, and 99 got 93.02%, and so on. This information has been
color-coded and put in relation with the prediction errors of the machine learning
algorithms.

Figure 7.5 reports the ten highest average prediction errors by fold and alter-
native. The shading highlights the overlap between the difficulty anticipated by
the system based on evolution strategies and the actual prediction errors. As it is
apparent, the system introduced in this chapter correctly anticipates a large portion
of the difficulties found by the competing algorithms. The degree of coincidence
ranges from 50 to 90%, but goes up to 70–80% for the best ones. The color code

204 D. Quintana et al.

Fig. 7.5 Top ten highest average prediction errors by fold for the machine learning algorithms

considers the 13 lowest prediction percentages, not 10, due to the fact that there
are fivefolds with a prediction rate of 96.51%. The system, however, seems to have
been unable to identify fold 1 as specially problematic while, at the same time,
every single algorithm shows extremely high average RMSE (the highest for 7 out
of 9 machine learning algorithms). We could say something similar about fold 95,
which is not among the top 13 lowest prediction rates for the evolutionary system in
spite of being between the 7th and 10th hardest for 7 out of the mentioned 9.

It is worth noting the connection between the forecasting errors of the system and
identification of outliers. As we can see in Fig. 7.3, fold 1 had the highest average
RMSE and 95 was also among the most difficult to predict. Even though folds 96–
100 were among the least predicted, RMSEs are very high. However, in spite of this
being the case, the errors are clearly lower than average compared to the alternatives.
The success of the outlier isolation behavior is specially remarkable in the first few
folds, which explain to a large degree the differences in the global performance
reported in Tables 7.2–7.4.

7.6 Summary and Conclusions

In this chapter we introduced an implementation of two-layer system based on
evolution strategies to predict the underpricing of initial public offerings (IPOs).

The system divides the input variable space into Voronoi regions, which cover a
set of patterns that are expected to behave in a similar way, and fits linear regressions
that provide local predictions. The mentioned regions are defined by a set of nearest-
neighbor prototypes whose location is updated using an evolution strategy with
a Michigan approach. The process is run in parallel several times, each of them
resulting in a component of a first prediction layer for the system. The outputs
of these models are subsequently combined by a second layer to produce a single
prediction.

7 Evolution Strategies for IPO Underpricing Prediction 205

This domain is particularly complicated due to the presence of outliers.
Fortunately, the suggested approach is specially suitable as its design includes
a specific mechanism to deal with this problem. The solution is based on a
requirement to produce outputs. The system assesses the reliability of its predictions
and only provides a forecast when it is expected to be accurate. The maximum
allowed degree of uncertainty is set specifying a minimum number of patterns per
Voronoi region. Below that level, prediction model is considered unreliable and the
system does not provide forecasts for the region. This, combined with the way
prototypes are evolved, results in specialized regions that both identify outliers
among new patterns and reduce the distortion they introduce in the training sample.

The algorithm was tested on a sample of US IPOs using a 100-fold cross
validation. The predictions were based on six variables identified by literature
review and their accuracy has been compared to the forecasts provided by a set
of machine learning algorithms.

The system was compared in terms of prediction error to nine alternatives
implemented in WEKA: conjunctive rules, IBK, K*, LWL, M5P, M5Rules, mul-
tilayer perceptrons, RBNN and SMO for regression. The experimental results show
statistically significant differences in favor of evolutionary system for all cases but
SMO. The highest average prediction error of the Voronoi system for the worst-case
scenario (3 regions and 18 patterns) was lower than the one obtained by six out of
nine alternatives. That configuration offers a 98.5% prediction rate. This percentage
goes down to 97.6% for 24 regions and a minimum of 60 patterns per region, which
is the configuration with the lowest average root mean squared error.

The analysis of the results by fold shows that the difficulty of predicting
underpricing is variable. However, most of the machine learning algorithms show
the highest average prediction error in the same folds. Interestingly, the evolutionary
system refrains to a larger degree from making predictions in most of those folds.
This shows that the rule system is identifying outliers in the right places. Even
though the forecasting error from the evolutionary system might be still high in
these folds, it tends to be low in relative terms when we compare it to the rest of
alternatives.

All the above suggests that IPO research would benefit from the use of this tool.
We understand that so would prediction efforts in other domains where the presence
of outliers is a relevant factor.

There are several potential lines of research that could extend the work presented
here. Among them, we could mention the development of strategies that might
enable higher prediction percentages, minimizing the cost in terms of prediction
error. A second alternative that remains open is the possibility of developing hybrid
solutions that combine the advantages of good function approximators with the
outlier management capabilities of the evolutionary system.

Acknowledgements The authors acknowledge the financial support granted by the Spanish
Ministry of Science and Technology under contract TIN2008-06491-C04-03 (MSTAR) and
Comunidad de Madrid (CCG10-UC3M/TIC-5029).

206 D. Quintana et al.

References

1. R.K. Aggarwal, L. Krigman, K. Womack, Strategic IPO underpricing, information momentum,
and lockup expiration selling. J. Financ. Econ. 66(1), 105–137 (2002)

2. D. Aha, D. Kibler, Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)
3. S.M. Albring, R.J. Elder, J. Zhou, IPO underpricing and audit quality differentiation within

non-big 5 firms. Int. J. Audit. 11, 115–131 (2007)
4. F. Allen, R. Karjalainen, Using genetic algorithms to find technical trading rules. J. Financ.

Econ. 51, 245–272 (1999)
5. A. Atiya, Bankruptcy prediction for credit risk using neural networks: A survey and new

results. IEEE Trans. Neural Network 12(4), 929–935 (2001)
6. C.G. Atkeson, A.W. Moore, S. Schaal, Locally weighted learning. Artif. Intell. Rev. 11, 11–73

(1997)
7. T. Bäck, H.P. Schwefel, Evolutionary algorithms: some very old strategies for optimization

and adaptation, in New Computing Techniques in Physics Research II, ed. by D. Perret-Gallix
(World Scientific, Singapore, 1992), pp. 247–254

8. L.M. Benveniste, P.A. Spindt, How investment bankers determine the offer price and allocation
of new issues. J. Financ. Econ. 24, 343–362 (1989)

9. M. Brennan, P. Hughes, Stock prices and the supply of information. J. Finance 46, 1665–1691
(1991)

10. A. Chalk, J. Peavy, Initial public offerings, daily returns, offering types and the price effect.
Financ. Analysts J. 43, 65–69 (1987)

11. X. Chen, Y. Wu, IPO pricing of SME based on artificial neural network, in Proceedings of
the 2009 International Conference on Business Intelligence and Financial Engineering (IEEE
Computer Society, Los Alamitos, 2009), pp. 21–24

12. Y. Chen, S. Mabu, K. Hirasawa, Genetic relation algorithm with guided mutation for the large-
scale portfolio optimization. Expert Syst. Appl. 38(4), 3353–3363 (2011)

13. S. Chou, N. Yen-Sen, T.L. William, Forecasting IPO price using GA and ANN simulation,
in Proceedings of the 10th WSEAS International Conference on Signal Processing, Computa-
tional Geometry and Artificial Vision (World Scientific and Engineering Academy and Society
(WSEAS), WI, 2010), pp. 145–150

14. J.G. Cleary, L.E. Trigg, K*: an instance-based learner using an entropic distance measure, in
Proceedings of the 12th International Conference on Machine Learning, ed. by A. Prieditis,
S.J. Russell (Morgan Kaufmann, San Francisco, 1995), pp. 108–114

15. S.P. Coy, R. Balasubramanian, B.L. Golden, O. Kwon, H. Beirjandi, Using neural networks
to predict the degree of underpricing of an initial public offering, in Proceedings of the Third
International Conference on Artificial Intelligence Applications on Wall Street (R.S. Freedman,
ed.), Software Engineering Press, Gaithersburg, MD, pp. 223–231, 1995

16. D. Enke, S. Thawornwong, The use of data mining and neural networks for forecasting stock
market returns. Expert Syst. Appl. 29, 927–940 (2005)

17. A. Ghandar, Z. Michalewicz, M. Schmidt, T. Thuy-Duong, R. Zurbrugg, Computational
intelligence for evolving trading rules. IEEE Trans. Evol. Comput. 13(1), 71–86 (2009)

18. M. Grinblatt, C.Y. Hwang, Signaling and the pricing of new issues. J. Finance 44, 393–420
(1989)

19. M. Hall, G. Holmes, E. Frank, Generating rule sets from model trees, in Proceedings of
the 12th Australian Joint Conference on Artificial Intelligence: Advanced Topics in Artificial
Intelligence (Springer, London, 1999), pp. 1–12

20. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA data
mining software: An update. SIGKDD Explor. 11(1), 10–18 (2009)

21. K.W. Hanley, The underpricing of initial public offerings and the partial adjustment phe-
nomenon. J. Financ. Econ. 34(2), 231–250 (1993)

22. R.S. Hansen, P. Torregrosa, Underwriter compensation and corporate monitoring. J. Finance
47(4), 1537–1555 (1992)

7 Evolution Strategies for IPO Underpricing Prediction 207

23. B.A. Jain, O. Kini, On investment banker monitoring in the new issues market. J. Bank. Finance
23, 49–84 (1999)

24. B.A. Jain, B.N. Nag, Artificial neural network models for pricing initial public offerings. Decis.
Sci. 26(3), 283–299 (1995)

25. B. Kirkulak, C. Davis, Underwriter reputation and underpricing: Evidence from the Japanese
IPO market. Pac. Basin Finance J. 13(4), 451–470 (2005)

26. J. Korczak, P. Lipinski, P. Roger, Evolution strategy in portfolio optimization, in Artificial
Evolution, ed. by P. Collet, C. Fonlupt, J.-K. Hao, E. Lutton, M. Schoenauer. Lecture Notes in
Computer Science, vol. 2310 (Springer, Berlin, 2002), pp. 156–167

27. H. Leland, D. Pyle, Informational asymmetries, financial structure and financial intermediation.
J. Finance 32, 371–387 (1977)

28. C.C. Lin, Y.T. Liu, Genetic algorithms for portfolio selection problems with minimum
transaction lots. Eur. J. Oper. Res. 185(1), 393–404 (2008)

29. A. Ljungqvist, W. Wilhelm, IPO pricing in the dot-com bubble. J. Finance 58, 723–752 (2003)
30. T. Loughran, J.R. Ritter, Why has IPO underpricing changed over time? Financ. Manag. 33,

5–37 (2004)
31. M. Lowry, M.S. Officer, W. Schwert, The variability of IPO initial returns. J. Finance 65(2),

425–465 (2010)
32. C. Luque, D. Quintana, J.M. Valls, P. Isasi, Two-layered evolutionary forecasting for IPO

underpricing, in Proceedings of the Eleventh conference on Congress on Evolutionary Compu-
tation (IEEE Press, Piscataway, 2009), pp. 2374–2378

33. W.L. Megginson, K.A. Weiss, Venture capitalist certification in initial public offerings. J.
Finance 46(3), 799–903 (1991)

34. F. Mendes, J. Duarte, A. Vieira, A. Gaspar-Cunha, Feature selection for bankruptcy prediction:
a multi-objective optimization approach, in Soft Computing in Industrial Applications, ed. by
X.-Z. Gao, A. Gaspar-Cunha, M. Köppen, G. Schaefer, J.Wang (Springer, Berlin, 2010), pp.
109–115

35. D. Meng, A neural network model to predict initial return of Chinese SMEs stock market initial
public offerings, in Proceedings of the IEEE International Conference on Networking, Sensing
and Control (ICNSC) (IEEE Press, Piscataway, 2008), pp. 394–398

36. R. Mitsdorffer, J. Diederich, C. Tan, Rule extraction from the technology IPOs in the US stock
market, in Proceedings of the 9th International Conference on Neural Information Processing
(ICONIP’02) (IEEE Press, Piscataway, 2002), pp. 2328–2334

37. J. Moody, C.J. Darken, Fast learning in networks of locally tuned processing units. Neural
Comput. 1, 281–294 (1989)

38. R.J. Quinlan, Learning with continuous classes, in 5th Australian Joint Conference on Artificial
Intelligence, ed. by A. Adams, L. Sterling (World Scientific, Singapore, 1992), pp. 343–348

39. D. Quintana, C. Luque, P. Isasi, Evolutionary rule-based system for IPO underpricing
prediction, in Proceedings of the 2005 Conference on Genetic and Evolutionary Computation
(ACM, New York, 2005), pp. 983–989

40. B. Reber, B. Berry, S. Toms, Predicting mispricing of initial public offerings. Intell. Syst.
Account. Finance Manag. 13, 41–59 (2005)

41. I. Rechenberg, Cybernetic solution path of an experimental problem, in Royal Aircraft
Establishment: Farnborough, Hampshire, UK, Library Translation p. 1122 (1965)

42. J.R. Ritter, I. Welch, A review of IPO activity, pricing, and allocations. J. Finance 57(4),
1795–1828 (2002)

43. S.J. Robertson, B.L. Golden, G.C. Runger, E.A. Wasil, Neural network models for initial public
offerings. Neurocomputing 18, 165–182 (1998)

44. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating
errors. Nature 323, 533–536 (1986)

45. H.P. Schwefel, Kybernetische evolution als strategie der exprimentellen forschung in er
strmungstechnik. Master’s thesis, Technical University of Berlin (1965)

46. K. Shin, Y. Lee, A genetic algorithm application in bankruptcy prediction modeling. Expert
Syst. Appl. 23, 321–328 (2002)

208 D. Quintana et al.

47. S.B. Smart, C.J. Zutter, Control as a motivation for underpricing: A comparison of dual and
single-class IPOs. J. Financ. Econ. 69, 85–110 (2003)

48. A.J. Smola, B. Schölkopf, A tutorial on support vector regression. Stat. Comput. 14, 199–222
(2004)

49. L.G. Tian, Financial Regulations, Investment Risks, and Determinants of Chinese IPO
Underpricing. Working paper, Peking University Management School (2003)

Chapter 8
Bayesian Networks for Portfolio Analysis
and Optimization

Simone Villa and Fabio Stella

Abstract Portfolio analysis studies the impact of economic and financial scenarios
on the performance of an investment portfolio, while portfolio optimization con-
cerns asset allocation to achieve a trade-off between risk and return. In this chapter
we exploit the interplay between modern portfolio theory and Bayesian networks
to describe a new framework for portfolio analysis and optimization. Bayesian
networks provide an effective way to interface models to data, allow efficient
evidential reasoning, while their graphical language offers an intuitive interface
by which the analyst can elicit his/her knowledge. The proposed framework
leverages on evidential reasoning to understand the behavior of an investment
portfolio in different economic and financial scenarios. It allows to formulate and
solve a portfolio optimization problem, while coherently taking into account the
investor’s market views. The Bayesian network framework for portfolio analysis and
optimization is instantiated on the DJ Euro Stoxx 50 Index. Examples of portfolio
analysis and optimization, exploiting evidential reasoning on Bayesian networks,
are presented and discussed.

8.1 Introduction

Portfolio analysis and portfolio optimization are basic problems in computational
finance. They have been intensively studied over the last 60 years, while sev-
eral relevant contributions are available in the specialized literature. Portfolio

S. Villa
University of Milano – Bicocca, 20126 Milano, Italy

Saint George Capital Management, 6907 Lugano, Switzerland
e-mail: simone.villa@disco.unimib.it

F. Stella (�)
University of Milano – Bicocca, 20126 Milano, Italy
e-mail: stella@disco.unimib.it

M. Doumpos et al. (eds.), Financial Decision Making Using Computational Intelligence,
Springer Optimization and Its Applications 70, DOI 10.1007/978-1-4614-3773-4 8,
© Springer Science+Business Media New York 2012

209

210 S. Villa and F. Stella

optimization originates from the seminal paper of Markowitz [15] who introduced
the mean–variance investment framework. This conventional approach to portfolio
optimization consists of two steps. The first one concerns distributional assumptions
about the behavior of stock prices, while the second one is related to the selection
of the optimal portfolio depending on some objective function and/or utility
function defined according to the investor’s goal. This conceptual model in the
past proved to be useful even if many drawbacks have been pointed out by finance
practitioners, private investors, and researchers. The basic formulation introduced
by Markowitz has been extended in the specialized literature by taking into
account additional moments of the portfolio’s return distribution and by developing
necessary conditions on the utility function of investors [9]. It is increasingly
understood that the investor’s experience, i.e., his/her qualitative and quantitative
knowledge on economy, finance and financial markets, is a key factor for success.
Indeed, the knowledge on: the likelihood of future events, the outlook on finance and
economy, the coexistence of different asset pricing theories, and the security-driving
forces, can be fruitfully exploited to formulate and solve the portfolio optimization
problem. In such a context the Bayesian approach offers a set of powerful tools
for implementing the main tasks of the investment management process: (1)
specification of the investment objectives, (2) policy settlement, (3) specification
of the portfolio strategy, (4) portfolio optimization, and (5) measurement and
evaluation of the portfolio’s performance (see [3]). Bayesian methods allow the
investor to account for the uncertainty about the parameters of the return generating
process, to incorporate prior beliefs in the decision–making process, and to provide
a way to control and limit the sensitivity of the optimal portfolio allocation to
the input parameters by shrinking the estimate of the market parameters toward
the investor’s prior. Therefore, Bayesian methods definitely address a deficiency
of the standard statistical measures in conveying the economic significance of the
information contained in a data sample (see [36]).

In this chapter we describe how Bayesian networks can be used to combine
the investor’s knowledge with the market data to perform portfolio analysis and
optimization. Section 8.2 presents the basics of portfolio modeling and optimization.
Bayesian networks are presented in Sect. 8.3 together with the framework for
portfolio analysis and optimization. Section 8.4 describes a case study which
concerns portfolio analysis and optimization on the DJ Euro Stoxx 50 financial
market.

8.2 Portfolio Modeling and Optimization

This section describes the mean–variance portfolio framework together with the
first five steps of The Prayer [24], a recipe used by finance practitioners to model
and manage the Profit and Loss (P&L) distribution of theirs portfolios over a given
investment horizon. The first five steps of the prayer recipe are:

8 Bayesian Networks for Portfolio Analysis and Optimization 211

1. Quest for invariance
2. Estimation of the invariants distribution
3. Projection of the invariants distribution into the future
4. Pricing
5. Aggregation

To better describe the steps of the prayer recipe we let the financial market
to consist of m securities, Pt be an m-dimensional vector whose components are
associated with the spot price at time t for the m securities, T be the time when
the portfolio allocation decision has to be made, τ be the investment horizon, and τ̃
be the estimation interval. The portfolio modeling task consists of forecasting the
portfolio’s P&L distribution at the end of the investment horizon T + τ , see [16] for
a detailed analysis.

8.2.1 Quest for Invariance

The forecasting model of the financial market behavior is developed through:

1. Identification of the risk drivers. A risk driver of a security is modeled with a
random variable D sharing the following properties: (1) it fully specifies the price
of the security at time t and (2) it follows a homogeneous stochastic process.
Examples of risk drivers are: the log-price for stocks, the yield to maturity for
bonds, and the log-price of the underlying security together with the logarithm
of its implied volatility for equity options.

2. Extraction of the invariants from the risk drivers. An invariant I is a shock
that steers the stochastic process associated with the risk driver D. It shares the
following properties: (1) can be modeled by a set of independent and identically
distributed random variables and (2) becomes known at time t + τ̃ . To connect
the invariant I to the risk driver D, the following random walk model is used:

It = h(Dt)− h(Dt−τ̃), (8.1)

where Dt and It are the value of the risk driver and the value of the invariant at
time t, while h is an invertible deterministic function. More flexible processes,
taking into account autocorrelations, stochastic volatility, and long memory, can
be used. Examples of invariants are: compounded returns for equities, changes of
the yield to maturity for bonds, compounded returns of the underlying security,
and changes of the log-implied volatility for equity options (note that in this case
(8.1) is associated with a multivariate random walk).

212 S. Villa and F. Stella

8.2.2 Estimation of the Invariants Distribution

This step concerns the estimation of the probability distribution of the J-dimensional
invariants vector I which must not depend on any specific time value t. This step
consists of:

1. Estimation. The invariants distribution for the next step fIT+τ̃ is approximated
by fitting an empirical distribution to the invariants time series. This fitting
problem depends on the sample size and quality (e.g., outliers and missing
data) [16]. Nonparametric estimators perform well in the case where the number
of observations is large, while when the number of observations is small, a
parametric approach is preferred. In the case where very few observations are
available shrinkage estimators are used. This step must properly account for the
risk of using an estimate of the invariants distribution instead of the true one.

2. Dimension reduction. The number of invariants J can be very large and thus
the estimation and management of the invariants distribution may become
intractable. Therefore, the linear factor model dimension reduction technique
is used to decompose the J-dimensional invariants vector I as follows:

I = c+BF+U, (8.2)

where c is a J-dimensional vector of constants, F is an M-dimensional factors
vector (with M � J), B is a J ×M matrix of factor loadings which links the
factors vector F to the invariants vector I, while U is a J-dimensional vector
of residuals. According to [23] the available linear factor modeling approaches
are:

• Dominant-plus-residual model. Where the term c+BF in (8.2) is optimized to
explain the largest portion of the variability of I under a set of constraints on c,
B, and F, and according to a general measure of fitness (e.g., the generalized
R-square). This class includes: pure models, time series, cross section, and
statistical models.

• Systematic-plus-idiosyncratic model. Where the term c + BF in (8.2) is
selected such that (1) the residuals U are uncorrelated with each other and
(2) the residuals U are uncorrelated with the factors F.

8.2.3 Projection of the Invariants Distribution into the Future

The distribution of the risk drivers DT+τ at the end of the investment horizon T +τ is
obtained by projecting the invariants distribution fIT+τ̃ , recovered from the previous
step, to the investment horizon T + τ . The projection operation can be implemented
in different ways. If the risk drivers evolve according to a random walk then the first
two moments of the projected distribution can be obtained through recursion, while
projecting the full distribution is more challenging, but can still be accomplished by
the Fourier transform technique [1].

8 Bayesian Networks for Portfolio Analysis and Optimization 213

8.2.4 Pricing

The securities price vector PT+τ is computed with the following pricing formula:

PT+τ = g(DT+τ ; iT), (8.3)

where g is the pricing function, iT is the available information at time T , i.e. terms
and conditions. The risk drivers together with terms and conditions completely
determine the price of a security. If we are interested in obtaining the P&L
distribution of the securities, we simply subtract the current prices vector PT

from the future prices vector PT+τ . No closed form solution exists to compute
the distribution of the prices under general conditions and thus it is customary
to approximate the pricing formula (8.3) by Taylor expansion (see [42]). It is
worthwhile to notice that (8.3) makes the assumption that a unique price of the
security exists, while this is not always the case. The pricing step must take into
account the liquidity risk and its implications.

8.2.5 Aggregation

The knowledge of the P&L distribution of the securities at the end of the investment
horizon allows to compute the P&L distribution A of the portfolio a as follows:

AT+τ = a′(PT+τ −PT). (8.4)

This computational step may be time consuming, while involving the solution of
multiple integrals. A possible solution consists in describing the financial market
with a set of scenarios and in applying scenario aggregation.

8.2.6 Mean–Variance Portfolio Optimization

This section describes the mean–variance two-step portfolio optimization model
[16, 22]. This model requires the knowledge of the investor’s profile, specified by:
(1) the current portfolio and horizon, (2) the objective function Oa, and (3) the
attitude toward risk summarized by the index of satisfaction S. This index depends
on the investor’s objective function Oa and thus on the portfolio vector a. Feasible
portfolios a, i.e., satisfying a set of constraints C, are compared according to the
investor’s index of satisfaction S, while the optimal portfolio a∗ solves the following
maximization problem:

a∗ = argmax
a∈C

S(a). (8.5)

214 S. Villa and F. Stella

The mean–variance portfolio optimization framework focuses on the first two
moments of the probability distribution of the investor’s objective function and
makes the assumption that S(a) ≈ f (E[Oa],Var[Oa]) for some well–behaved func-
tion f . The portfolio a∗, which solves the optimization problem (8.5), belongs to the
following parametric family:

a(v) = argmax
a∈C,

Var[Oa]=v

E[Oa]. (8.6)

The optimization problem (8.6) is the mean–variance two–step formulation of
the portfolio optimization problem, while its solution set is called the mean–
variance efficient frontier [15]. This formulation solves the problem (8.5) through
the following steps: (1) computation of the mean–variance efficient frontier and (2)
solution of the following one–dimensional constrained optimization problem:

a∗ = a(v̂) = argmax
v≥0

S(a(v)). (8.7)

The optimal portfolio a∗ maximizes the expected value of the investor’s objective
function subject to the investor’s constraints on the risk level v. It is worthwhile to
notice that when the investor’s objective function is the terminal wealth while the
initial capital is nonnull, the portfolio optimization problem can be formulated in
terms of the linear returns L and weights w vectors:

w(v) = argmax
w∈C,

w′Cov[L]w=v,

w′E[L], (8.8)

where E[L] and Cov[L] are, respectively, the expected value and the covariance
matrix of the vector of linear returns L at the end of the investment horizon. If a
budget constraint is introduced (w′1 = 1) and short-selling is not allowed (w ≥ 0),
then the optimization problem is quadratic and thus can be solved analytically.

8.3 Bayesian Networks for Portfolio Analysis
and Optimization

8.3.1 Basic Definitions and Notation

Bayesian networks (BNs) [13, 27, 31] are probabilistic models which allow the
efficient description and management of joint probability distributions. BNs proved
to be a useful tool for combining informal expert knowledge with statistical
techniques for distribution evaluation. They are specifically designed for cases
when the vector of random variables can have considerable dimension and/or it

8 Bayesian Networks for Portfolio Analysis and Optimization 215

is difficult to come up with traditional parametric models of the joint probability
distribution. Bayesian networks are popular in computer science, with specific
reference to data mining and machine learning. Indeed, classical machine learning
methods like hidden Markov models, neural networks, and Kalman filters can be
considered as special cases of Bayesian networks [25]. An extension of Bayesian
networks to model discrete time stochastic processes is offered by Dynamic
Bayesian networks [26], while recently continuous time Bayesian networks [29]
have been proposed to cope with continuous time stochastic processes. Bayesian
networks and Bayesian network classifiers have been previously applied to fi-
nance [7, 10, 21, 28, 30, 41].

A Bayesian network (BN) over n variables, X=(X1, ...,Xn), consists of a directed
acyclic graph G = (V,E) and a set of conditional probability distributions Θ . Each
node i ∈ V is associated with a discrete random variable Xi ∈ X with xi ∈ {1, . . . ,ki}
possible outcomes. The directed links E ⊆ V × V of G specify assumptions of
conditional dependence and independence between random variables according to
the d-separation criterion [31]. Each variable Xi ∈X is associated with a conditional
probability distribution, P(Xi|pa(Xi))∈Θ , where pa(Xi) denotes the parents of node
Xi, i.e., the set of variables which directly influence the random variable Xi. A BN
encodes a joint probability distribution over the random vector X while the set of
conditional probability distributions,Θ , allows the joint probability distribution over
X to factorize as follows:

P(X) =
n

∏
i=1

P(Xi|pa(Xi)). (8.9)

A BN is often constructed by exploiting the cause–effect relations between entities
of a given problem domain. This is done in such a way that nodes are associated with
entities, while the links usually represent cause–effect relations (direct or indirect)
between entities. However, many real–world problems involve continuous variables,
and thus BNs have been extended to cope with continuous random variables by
discretization, i.e., by partitioning the range of each random variable into a fixed set
of intervals. This technique is adequate, but very often results in a considerable loss
of accuracy or leads to very large conditional probability tables (CPTs). Another
solution exploits standard families of probability density functions, fully specified
by means of a finite and usually small number of parameters. It is worthwhile
to mention that the Gaussian probability distribution is the most used due to its
analytical tractability [39].

8.3.2 Evidential Reasoning

BNs allow efficient evidential reasoning in highly dimensional problem domains. In
the case where X is the query variable, E is the vector of the observed variables, e is

216 S. Villa and F. Stella

their observed value, and Y is the random vector of the unobserved variables, the
query P(X |E = e) can be written as follows:

P(X |E = e) = αP(X ,E = e) = α
|Y|
∑
i=1

P(X ,E = e,Yi), (8.10)

the sum over all possible where α is a normalization constant ensuring that
P(X |E = e) adds up to 1, while the sum is over all possible assignments of the
unobserved variables Y. It is worthwhile to mention that according to (8.9) the terms
P(X ,E = e,Yi) in (8.10) can be written as products of conditional probabilities.
Therefore, a query P(X |E = e) can be answered with inference by enumeration, i.e.,
by computing sums of products of conditional probabilities according to the BN
model.

However, even in the case where the random variables are binary, the joint
probability distribution has size O(2n), and thus the time required for the summation
over the joint probability distribution is exponential in the number of variables. The
inference by enumeration algorithm can be significantly improved, through dynamic
programming, by eliminating repeated calculations (see [6]). The full summation
over discrete variables (or integration for continuous variables) is called exact
inference and is known to be NP–hard [5]. Some efficient algorithms to perform
exact inference exist in the case where the BN model is a polytree, i.e., its directed
acyclic graph has at most one undirected path between any pair of nodes. Exact
inference in polytrees is linear in the size of the network; while the most popular
inference algorithm for polytrees is the Pearl’s message passing algorithm [31].
This algorithm has been extended by Lauritzen and Spiegelhalter [14] to obtain the
junction tree algorithm, which works on general BN models. Other exact inference
algorithms are: cycle–cutset conditioning and variable elimination [6].

The intractability of exact inference for general BN models calls for approximate
inference algorithms: direct sampling, rejection sampling, and likelihood weight-
ing [39]. However, the most interesting approximate inference algorithm belongs to
the class of Monte Carlo Markov Chains (MCMC) and exploits the Gibbs sampling
and Metropolis–Hastings algorithms [11].

8.3.3 Learning Bayesian Networks

The directed acyclic graph, G = (V,E), and the set of conditional probability
distributions, Θ , of the BN model can be learned from data through parametric
and structural learning. Parametric learning is concerned with the estimation of the
elements of the set Θ when the directed acyclic graph G is known, while structural
learning is concerned with the selection of both components of the BN model, i.e.,
the directed acyclic graph G and the set of conditional probability distributions Θ .
Parametric and structural learning can be developed for complete or missing data

8 Bayesian Networks for Portfolio Analysis and Optimization 217

arising from partial observability of the random vector X, i.e., when some random
variables cannot be directly observed (hidden variables) or have not been measured
during the data collection process. BN learning is a complex task and its detailed
treatment is out of the scope of this chapter.

Parametric learning when BN structure is known and all the variables are
observed is briefly presented to better describe the Bayesian network framework
for portfolio analysis and optimization. To this extent we let

DS = {(xt,1, . . . ,xt,n), t = 1, . . . ,N} , (8.11)

be a data set consisting of N complete observations over n discrete variables
X = (X1, . . . ,Xn), each with xi ∈ {1, . . . ,ki} possible outcomes. In such a setting the
task of parametric learning consists of estimating the terms P(Xi|pa(Xi)) in (8.9).
This task can be performed by maximum likelihood estimation (MLE) or Bayesian
learning. In parametric learning it is customary to make the assumption that the
conditional probabilities are fully parameterized, i.e., each term P(Xi|pa(Xi)) =
θXi|pa(Xi), i = 1, ...,n, can be selected without any constraint on pa(Xi). MLE
maximizes the log-likelihood [12] of the data set DS (8.11):

LL(DS;θ ,G) = P(DS|θ) =
N

∑
t=1

logP(xt,1, . . . ,xt,n|θ) =
N

∑
t=1

n

∑
i=1

logθxt,i |pa(xt,i)

=
N

∑
i=1

∑
xi,pa(xi)

η(xi, pa(xi)) logθxi |pa(xi), (8.12)

where η(Xi, pa(Xi)) represents the number of observations such that Xi and its
parents pa(Xi) have a fixed assignment. The closed form solution of (8.12) is

θ̂xi |pa(xi) =
η(xi, pa(xi))

∑ki
xi=1η(xi, pa(xi))

. (8.13)

It is worthwhile to notice that the MLE approach suffers from the sparse data
problem, while Bayesian learning offers a valid alternative.

8.3.4 The Bayesian Network Framework

Several models for portfolio optimization allow the investor to exploit qualitative
market views as described in the specialized literature (see [19]). The first contri-
bution is due to Black and Litterman [4] who made two significant contributions
to the problem of portfolio optimization: (1) the Capital Asset Pricing Model [40]
which is used to estimate the prior distribution of the asset returns and (2) a way to
specify and blend the complete/partial investor’s views with the prior distribution

218 S. Villa and F. Stella

of the asset return. The process to input the investor’s views described in [4]
consists of the following steps: (1) identification of the eligible universe, market
capitalization, and time series of returns for each asset class and for the risk–free
asset, used to compute the covariance matrix of excess returns, (2) specification
of the investor’s views to be used to compute the estimates of the returns, and (3)
portfolio optimization. The most interesting extensions of the Black and Litterman
model are: Qian and Gorman [35], where the conditional-marginal factorization
is used to input views on volatilities, correlations, and expectations; Almgren and
Chriss [2], who provided a framework to rank views on expectations; Meucci [17],
where the market views are used without any preprocessing; Pezier [32], where
full/partial views on expectations and covariances are used; Meucci [18], where
different confidence levels and multiple users are pooled to obtain a posterior
consistent with the most general views; Meucci [19], who handles views and allows
stress testing in derivative markets by nonlinearly mapping generic risk factors to
the P&L distribution. Finally, Meucci [21] described a methodology to stress test a
set of risk drivers under minimal information [18] and presented a novel consistency
algorithm which extends the Bayesian network approach presented in [37].

In this chapter we go a step further and propose a Bayesian network framework
for portfolio analysis and optimization which consists of the following layers:

1. Bayesian network layer. Links the key factors with the invariants, while provid-
ing a compact description of the portfolio as discussed in Sect. 8.2.

2. Transformation layer. The investor may be interested not merely in the P&L
probability distribution at the end of the investment horizon, but also in the
probability distribution of the risk drivers, prices or returns.

3. Aggregation layer. It models the behavior of a set of securities in different
scenarios and allows to stress test a portfolio by combining a Bayesian network
model with the investor’s market views.

8.3.4.1 Bayesian Network Layer

This layer links the factors vector F to the invariants vector I by using a factor
analysis BN model (Fig. 8.1) which factorizes the joint probability P(F,I) =
P(F)P(I|F). The directed acyclic graph G=(V,E) is bipartite. Indeed, V=(F,I) =
(F1, . . . ,FM, I1, . . . , IJ) consists of factor nodes and invariant nodes, while the set of
arcs is defined as follows: E = {(Fk, I j): 1 ≤ k ≤ M, 1 ≤ j ≤ J }.

The vectors F and I can be modeled with multivariate normal random variables,
i.e., P(F) ∼ N (0,I) and P(I|F = x) ∼ N (a + Bx,Σ), where I is the identity
matrix, while Σ is a diagonal matrix. It is worthwhile to mention that when the
number of factors is much smaller than the number of invariants, i.e., M � J, the
BN model explains a highly dimensional vector I through a linear combination of
low–dimensional features F. It is customary to make the simplifying assumption of
isotropic noise, i.e., to assume that Σ = αI for some scalar α . Furthermore, it turns
out that the maximum likelihood estimate (MLE) of the factor loading matrix B (8.2)

8 Bayesian Networks for Portfolio Analysis and Optimization 219

Fig. 8.1 Factor analysis Bayesian network

is given by the first M principal eigenvectors of the sample covariance matrix, with
scalings determined by the eigenvalues and sigma. Note that the classical principal
component analysis (PCA) is obtained by taking the limit α → 0 [38, 43]. Given
the directed acyclic graph G = (V,E) and by assuming that all random variables
are observed, the parametric learning is performed by MLE. It is important to note
that for Gaussian random variables, the MLE of the mean and covariance are,
respectively, the sample mean and the sample covariance, while the MLE of the
weight matrix is the least squares solution to the normal equations.

8.3.4.2 Transformation Layer

The BN model depicted in Fig. 8.1b allows to perform efficient evidential reasoning.
Evidence concerning the nodes associated with the factors vector F can be intro-
duced into the BN model, while exact inference algorithms can be used to compute
the posterior probability over the invariants vector I.

However, in practice, we are usually interested not only in analyzing the
distribution of the invariants vector I but also rather in the distribution of other
key variables of the securities, such as the risk drivers, the prices, or the returns.
Therefore, the proposed Bayesian network framework for portfolio analysis and
optimization is augmented with a second layer which links the J nodes associated
with the invariants vector I to R nodes associated with the components of the
security key variable vector K. The components of the invariant vector I and
the components of the securities key variables vector K can be fully or partially
connected to each other. This layer is not constrained to be represented with a BN
model, but rather it is a visual representation of one or more generic functions.
When we are interested in modeling the risk drivers given the invariants, we can
use the h−1 function, see (8.1), while when the prices have to be modeled we first
determine the risk drivers and then apply the g function to them, see (8.3). The main
advantage of using a generic function to link the invariants vector I to the securities
key variables vector K is to speed up evidential reasoning on the Bayesian network.

220 S. Villa and F. Stella

Fig. 8.2 Conceptual model of the Bayesian network framework for portfolio analysis and
optimization. The Bayesian Network layer links the factors vector F to the invariants vector I,
the Transformation layer links the invariants vector I to the securities key variables vector K, the
Aggregation layer links the securities key variables vector K to the portfolio variable A

8.3.4.3 Aggregation Layer

This layer links the securities key variables vector K to the portfolio variable A and
thus definitely allows the investor to perform portfolio analysis and optimization.
When the securities key variables vector K is used to model the securities prices
(or their P&L), the portfolio value A (or its P&L) can be computed by aggrega-
tion, as described in Sect. 8.2.5. This layer allows both continuous and discrete
random variables, while their probability distributions can be either parametric or
nonparametric. However, in many circumstances, the use of parametric distributions
may be too restrictive. Therefore, the implementation of the proposed Bayesian
network framework for portfolio analysis and optimization relies on nonparametric
discrete distributions. The conceptual model of the Bayesian network framework
for portfolio analysis and optimization is depicted in Fig. 8.2.

8 Bayesian Networks for Portfolio Analysis and Optimization 221

8.4 Case Study: The DJ Euro Stoxx 50 Index

In this section, the Bayesian network framework for portfolio analysis and optimiza-
tion is instantiated to the case where the Eurozone Blue-chips forming the DJ Euro
Stoxx 50 Index are considered.

Two Bayesian network models (Fig. 8.2) have been instantiated. The first one
consists of 15 estimation factors (M = 15), while the second one consists of
16 interpretation factors (M = 16), i.e., 6 interpretation factors associated with
the European country indexes and 10 interpretation factors associated with the
European GICS sector indexes. In both BN models the M factors are linked to 50
invariants (J = 50) which in turn are linked to 50 security key variables (R = 50),
i.e., projected prices, by means of the transformation layer. The security key
variables are aggregated into the investment portfolio by the aggregation layer.

Five years of last prices data, spanning from December 30th, 2005, to December
30th, 2010, are used. The framework has been implemented by exploiting the
MATLAB software environment and the Bayes Net Toolbox [25]. The case study
considers the position of a European equity investor interested in analyzing, stress
testing, and optimizing the tomorrow’s return distribution of his/her portfolio.

8.4.1 From Invariants to Projected Prices

The first four steps of the prayer recipe are described in the case where daily stock
data and 1 day horizon are considered.

1. Quest for invariance. The risk drivers vector of the stocks is the log-prices vector,
i.e., Dt = ln(Pt), while the invariants vector It is the vector of daily compounded
returns. The function h in (8.1) is the natural logarithm ln and thus we can write
the following:

It = ln(Pt)− ln(Pt−τ̃). (8.14)

2. Estimation of the invariants distribution. Monte Carlo simulation is used to
estimate the distribution of the invariants fIT+τ̃ . A normal copula is used to
generate 100,000 joint scenarios using the technique described in [20]. The
problem’s dimension can be reduced with: (1) Factor Analysis Using Random
Matrix Theory. It allows to model the invariants It with a sum of R � J informa-
tive factors plus a residual term represented with a sum of J −R noise factors
(see [8, 33] and [34]). The R largest eigenvalues of the empirical covariance
matrix of a panel of invariants for a market consisting of n securities over t time
periods are used. However, the number of the underlying factors is unknown.
Thus, a cutoff point is computed to separate the R eigenvalues associated with
the underlying factors from the remaining J −R eigenvalues associated with the
noise components. It is customary to choose the value of R by visual inspection

222 S. Villa and F. Stella

of the scree plot or by using ad hoc cutoff points of the eigenvalues distribution.
(2) Factors on Demand. This framework offers the possibility to assign the
portfolio return to Q attribution factors Z = (Z1, . . . ,ZQ), i.e., random variables
correlated with the portfolio return (e.g., the cross-sectional industry factors).
This is possible because the generation of the distribution for the attribution
factors fZ|I (i.e., the conditional distribution of the securities key variables vector
Z given the invariants vector I) is constrained to have first generated the scenarios
for the portfolio return, which are fully driven by the distribution of the invariants
fI. Using the identity fI,Z = fI fZ|I, we can estimate fZ|I through three steps: (1)
quest for invariance, (2) application of conditional estimation techniques, and
(3) application of the projection step (see [20]). It is important to mention that
the Factor Analysis Using Random Matrix Theory method has been used for the
BN model consisting of 15 estimation factors, while the Factors on Demand
approach has been used for the BN model consisting of 16 interpretation factors.

3. Projection of the invariants into the future. The distribution of the next step
invariants vector fIT+τ̃ is the desired distribution at the investment horizon. The
estimation interval τ̃ is equal to the investment horizon τ , i.e., τ̃ = τ = 1 day.

4. Pricing. The choice of the pricing function g in (8.3) allows to write the following
pricing formula:

PT+1 = PT eIT+1 . (8.15)

8.4.2 Framework Instantiation

The modeling steps illustrated in Sect. 8.4.1 allow to obtain: the invariants forward–
looking probability distribution, the key factors, forward–looking probability dis-
tribution, and the probability distribution of prices at the investment horizon.
Therefore, the three layers of the Bayesian network framework for portfolio analysis
and optimization can be instantiated.

1. Bayesian network layer. It is implemented through the BN model described in
Sect. 8.3.4.1, i.e., each node of the BN is associated with a discrete random
variable. The components of the factors vector F are discretized into the
following states: low, medium, and high. The components of the invariants vector
I are discretized to a greater granularity, i.e., 100 states. MLE parametric learning
is used to estimate the parameters of the conditional probability distributions of
K and I.

2. Transformation layer. The securities key variables vector K is the vector of the
securities prices P. This layer allows to analyze how the investor’s views on the
key factors affect the distribution of the security’s forward–looking price.

3. Aggregation layer. This layer is used to formulate and solve the portfolio
optimization problem on the DJ Euro Stoxx 50 market. The optimal portfolio
is ensured to reflect the investor’s views on the key factors.

8 Bayesian Networks for Portfolio Analysis and Optimization 223

1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%
−0.15%

 −0.1%

−0.05%

 0%

 0.05%

 0.1%
Estimation Factor

1
 (F = no evidence)

Standard Deviation

E
xp

ec
te

d
V

al
ue

1.5% 2% 2.5% 3% 3.5% 4% 4.5%
−3.5%

 −3%

−2.5%

 −2%

−1.5%

 −1%

−0.5%
Estimation Factor1(F = low)

Standard Deviation

E
xp

ec
te

d
V

al
ue

1.2% 1.4% 1.6% 1.8% 2%
−0.06%

−0.04%

−0.02%

 0%

 0.02%

 0.04%

 0.06%

 0.08%

 0.1%

 0.12%
Estimation Factor1(F = med)

Standard Deviation

E
xp

ec
te

d
V

al
ue

1.5% 2% 2.5% 3% 3.5% 4% 4.5%
0.5%

 1%

1.5%

 2%

2.5%

 3%

3.5%
Estimation Factor1 (F = high)

Standard Deviation

E
xp

ec
te

d
V

al
ue

Fig. 8.3 Stress test on estimation factors. Estimates of the expected value and standard deviation
for the prior distribution of the returns for the securities of the DJ Euro Stoxx 50 Index (top left).
Estimates of the expected value and standard deviation for the posterior distribution of the returns
for the securities of the DJ Euro Stoxx 50 Index where the first factor F1 is respectively evidenced
to the state low (top right), medium (bottom left), and high (bottom right)

8.4.3 Evidential Reasoning: Market’s Views

The constituents of the DJ Euro Stoxx 50 Index can now be analyzed and stress
tested. To show how this is performed, a top down approach is adopted where
basic moments, i.e., expected value and standard deviation of the projected returns
of the securities, are analyzed first. Then, the attention is shifted to the full
distribution of the return for each security. Examples of evidential reasoning on
market views are:

1. Views on estimation factors. The first two moments of the projected returns
of each security at the investment horizon are plotted. The best practice starts
the portfolio analysis and optimization tasks by computing the expected value
and the standard deviation when no evidence is available (top left of Fig. 8.3).
Then, the principal estimation factor F1 is evidenced to the state low, then to the
state medium, and to the state high (Fig. 8.3). Evidential reasoning consists of
computing the posterior distribution of the projected returns. The first eigenvector

224 S. Villa and F. Stella

1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%
−0.15%

 −0.1%

−0.05%

 0%

 0.05%

 0.1%
Interpretation Factor (IBEX Index = no evidence)

Standard Deviation

E
xp

ec
te

d
V

al
ue

1.2% 1.4% 1.6% 1.8% 2% 2.2%
−1.2%

 −1%

−0.8%

−0.6%

−0.4%

−0.2%

 0%

 0.2%

 0.4%

 0.6%
Interpretation Factor (IBEX Index = low)

Standard Deviation

E
xp

ec
te

d
V

al
ue

1.2% 1.4% 1.6% 1.8% 2%
−0.06%

−0.04%

−0.02%

 0%

 0.02%

 0.04%

 0.06%

 0.08%

 0.1%
Interpretation Factor (IBEX Index = med)

Standard Deviation

E
xp

ec
te

d
V

al
ue

 1% 1.5% 2% 2.5% 3% 3.5%
−0.6%

−0.4%

−0.2%

 0%

 0.2%
Interpretation Factor (IBEX Index = high)

Standard Deviation

E
xp

ec
te

d
V

al
ue

Fig. 8.4 Stress test on attribution factors. Estimates of the expected value and standard deviation
for the distribution of the returns for the securities of the DJ Euro Stoxx 50 Index with no evidence
(top left). Estimates of the expected value and standard deviation for the posterior distribution of
the returns for the securities of the DJ Euro Stoxx 50 Index where the IBEX Index is respectively
evidenced to the state low (top right), medium (bottom left), and high (bottom right)

F1 is associated with a common factor driving the market. When F1 is instantiated
to the state low, the expected value of each security is negative; while when it
is instantiated to the state high, the expected value of each security is positive.
Furthermore, under both instantiations the returns of the securities are strongly
correlated (Fig. 8.3).

2. Views on interpretation factors. Analysis and stress test of the reference market
through the estimation factors can be difficult or simply not informative;
moreover, analysis and stress test rely on the model and on the assumptions
used to perform the dimension reduction step. Therefore, the estimation factors
are replaced with two sets of attribution factors associated with the: (1) equity
reference indexes of the leading European countries (i.e. CAC40 for France,
DAX for Germany, FTSE MIB for Italy, IBEX for Spain, AEX for Netherlands,
and BEL20 for Belgium) as shown in Fig. 8.4 and (2) ten European GICS sectors
indexes as shown in Fig. 8.5. The comparison of Fig. 8.4 with Fig. 8.5 allows
to conclude that stressing the Industrials GICS sector has a greater impact on
the first two moments of the projected return distribution of the securities. This

8 Bayesian Networks for Portfolio Analysis and Optimization 225

1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%
−0.15%

 −0.1%

−0.05%

 0%

 0.05%

 0.1%
Interpretation Factor (Industrials = no evidence)

Standard Deviation

E
xp

ec
te

d
V

al
ue

1.2% 1.4% 1.6% 1.8% 2%
−1.6%

−1.4%

−1.2%

 −1%

−0.8%

−0.6%

−0.4%

−0.2%

 0%

 0.2%
Interpretation Factor (Industrials = low)

Standard Deviation

E
xp

ec
te

d
V

al
ue

1.2% 1.4% 1.6% 1.8% 2%
−0.06%

−0.04%

−0.02%

 0%

 0.02%

 0.04%

 0.06%

 0.08%

 0.1%
Interpretation Factor (Industrials = med)

Standard Deviation

E
xp

ec
te

d
V

al
ue

 1% 1.5% 2% 2.5% 3% 3.5%
 0%

0.2%

0.4%

0.6%

0.8%

 1%

1.2%

1.4%

1.6%
Interpretation Factor (Industrials = high)

Standard Deviation

E
xp

ec
te

d
V

al
ue

Fig. 8.5 Stress test on attribution factors. Estimates of the expected value and standard deviation
for the distribution of the returns for the securities of the DJ Euro Stoxx 50 Index with no evidence
(top left). Estimates of the expected value and standard deviation for the posterior distribution of the
returns for the securities of the DJ Euro Stoxx 50 Index where the Industrials Index is respectively
evidenced to the state low (top right), medium (bottom left), and high (bottom right)

effect is efficiently computed with the framework and can be used to analyze
the behavior of each company under stress conditions. It is important to mention
that the top-left graph of each figure does not change. This peculiarity of the
framework is inherited from the Factors on Demand model: we can choose
different sets of attribution factors without affecting the prior distributions.

3. Single security. The framework allows to analyze the distribution of the return
of each security. Figure 8.6 shows the distribution of the returns for the first four
securities, in alphabetical order, of the DJ Euro Stoxx 50 Index. Each graphic
shows three distributions associated with: (1) no evidence, (2) evidence set to
the state low for IBEX, and (3) evidence set to the state low for IBEX under the
hypothesis that the distribution is normal. Figure 8.7 is similar to Fig. 8.6, but in
this case it is the interpretation factor associated with the Industrials GICS sector
to be evidenced to the state low. From the figures it is possible to conclude that
the state low is more critical for the third security than the remaining ones.

226 S. Villa and F. Stella

−10% −5% 0% 5% 10% 15%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Return

P
ro

ba
bi

lit
y

Cumulative Return Distribution of 1’ security

−10% −5% 0% 5% 10% 15%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Cumulative Return Distribution of 2’ security

Return

P
ro

ba
bi

lit
y

−10% −5% 0% 5% 10% 15%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Cumulative Return Distribution of 3’ security

Return

P
ro

ba
bi

lit
y

−10% −5% 0% 5% 10% 15%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Cumulative Return Distribution of 4’ security

Return

P
ro

ba
bi

lit
y

No evidence
IBEX Index = low
Normal

No evidence
IBEX Index = low
Normal

No evidence
IBEX Index = low
Normal

No evidence
IBEX Index = low
Normal

Fig. 8.6 Stress test on return distribution. Cumulative distribution of the returns for the first four
securities of the DJ Euro Stoxx 50 Index where no evidence, normal distribution, and evidence on
the IBEX Index is set to the state low

8.4.4 Evidential Reasoning: Portfolio Views

Stress testing the market to select the optimal portfolio under different scenarios
is performed through evidential reasoning on portfolio views. Indeed, once the
posterior distribution of the return of the securities has been recovered, it is possible
to formulate and solve the portfolio optimization problem. To better clarify how
the proposed framework allows to select the optimal portfolio, while encompassing
the investor’s market views, we adopt the mean–variance approach based on the
projected linear returns according to (8.8). The efficient frontier together with the
optimal portfolio composition when the IBEX Index is evidenced to the state low
(high) are depicted on the left (right) hand side of Fig. 8.8. Figure 8.9 is similar to
Fig. 8.8, but in this case the Industrials GICS sector is analyzed. The framework
allows to construct portfolios with positive expected return under the analyzed
scenarios.

8 Bayesian Networks for Portfolio Analysis and Optimization 227

−10% −5% 0% 5% 10% 15%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Cumulative Return Distribution of 1’ security

Return

P
ro

ba
bi

lit
y

−10% −5% 0% 5% 10% 15%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Cumulative Return Distribution of 2’ security

Return

P
ro

ba
bi

lit
y

−10% −5% 0% 5% 10% 15%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Cumulative Return Distribution of 3’ security

Return

P
ro

ba
bi

lit
y

−10% −5% 0% 5% 10% 15%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Cumulative Return Distribution of 4’ security

Return

P
ro

ba
bi

lit
y

No evidence

Industrials = low

Normal

No evidence

Industrials = low

Normal

No evidence

Industrials = low

Normal

No evidence

Industrials = low

Normal

Fig. 8.7 Stress test on return distribution. Cumulative distribution of the returns for the first four
securities of the DJ Euro Stoxx 50 Index where no evidence, normal distribution, and evidence on
the Industrials Index is set to the state low

8.4.5 Evidential Reasoning: Backtesting the Views

A backtesting procedure is used to evaluate the impact of the views on the
performance of the DJ Euro Stoxx 50 Index portfolio. A rolling window consisting
of 4 years of daily data, spanning from January 4th, 2010, to December 30th, 2010,
is used. The following assumptions are made: no transaction costs and market
liquidity, i.e., it is always possible to trade at the last price. The backtesting
procedure can be summarized as follows: (1) execution of the standard steps for
portfolio modeling; (2) instantiation of the framework by using the Countries and
GICS sectors attribution factors; (3) introduction of the qualitative views to the
Bayesian network layer; (4) portfolio optimization; (5) computation of the linear
returns for the optimal allocation.

The first analysis consists of comparing the daily linear returns of the DJ Euro
Stoxx 50 (DJES 50) index with the returns of the selected portfolio allocation with
a daily standard deviation equal to 0.5 and under the following scenarios for the
IBEX stock market: no view, randomly selected view, wrong view, and correct view
(Table 8.1). It is important to notice that in 72.62% of the days, the return achieved

228 S. Villa and F. Stella

0.4% 0.6% 0.8% 1% 1.2% 1.4%
−0.3%

−0.2%

−0.1%

 0%

 0.1%

 0.2%

 0.3%

 0.4%

 0.5%
Efficient Frontier (IBEX Index = low)

Standard Deviation of portfolio return

E
xp

ec
te

d
po

rt
fo

lio
 r

et
ur

n

0.4% 0.6% 0.8% 1% 1.2% 1.4%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Portfolio relative composition (IBEX Index = low)

Standard Deviation of portfolio return

R
el

at
iv

e
w

ei
gh

t

0.4% 0.6% 0.8% 1% 1.2% 1.4%
0.2%

0.4%

0.6%

0.8%

 1%

1.2%

1.4%
Efficient Frontier (IBEX Index = high)

Standard Deviation of portfolio return

E
xp

ec
te

d
po

rt
fo

lio
 r

et
ur

n

0.4% 0.6% 0.8% 1% 1.2% 1.4%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Portfolio relative composition (IBEX Index = high)

Standard Deviation of portfolio return

R
el

at
iv

e
w

ei
gh

t

Fig. 8.8 Optimal portfolio allocation by using the market views. Efficient frontier and correspond-
ing portfolio composition where the IBEX Index is evidenced to the state low (left side) and to the
state high (right side)

by the portfolio selected under the correct view is greater than the return achieved by
the DJES 50 Index. Table 8.2 concerns the same comparison when using views on
the Industrials GICS sector.

The second analysis concerns the comparison of the entire distribution of the
daily linear returns under the previous four scenarios. Tables 8.3 and 8.4 report on
the main statistics of the distribution of returns for the portfolio allocation selected
with the view on the IBEX stock market and on the Industrials GICS sector.

Tables 8.1–8.4 allow to conclude that the correct view is effective in selecting an
optimal portfolio achieving a return which is greater than the one achieved without
any market views. It is important to mention that the imputation of the correct view
for each trading day is a complex task. However, the imputation is restricted to the
state of a specific factor which can be well known by the investor. The empirical
results confirmed that portfolio optimization with a qualitative view is a crucial part
of the investment management process.

8 Bayesian Networks for Portfolio Analysis and Optimization 229

0.4% 0.6% 0.8% 1% 1.2% 1.4%
−0.5%

−0.4%

−0.3%

−0.2%

−0.1%

 0%

 0.1%
Efficient Frontier (Industrials = low)

Standard Deviation of portfolio return

E
xp

ec
te

d
po

rt
fo

lio
 r

et
ur

n

0.4% 0.6% 0.8% 1% 1.2% 1.4%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Portfolio relative composition (Industrials = low)

Standard Deviation of portfolio return

R
el

at
iv

e
w

ei
gh

t

0.4% 0.6% 0.8% 1% 1.2% 1.4% 1.6% 1.8% 2%
0.4%

0.6%

0.8%

 1%

1.2%

1.4%

1.6%
Efficient Frontier (Industrials = high)

Standard Deviation of portfolio return

E
xp

ec
te

d
po

rt
fo

lio
 r

et
ur

n

0.4% 0.6% 0.8% 1% 1.2% 1.4% 1.6% 1.8% 2%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Portfolio relative composition (Industrials = high)

Standard Deviation of portfolio return

R
el

at
iv

e
w

ei
gh

t

Fig. 8.9 Optimal portfolio allocation by using the market views. Efficient frontier and the
corresponding portfolio composition where the Industrials Index is evidenced to the state low (left
side) and to the state high (right side)

Table 8.1 Backtesting the views. Percentage of days where the return
achieved by the portfolio associated with the row is greater than or
equal to the return achieved by the portfolio associated with the column
when the views on the IBEX Index are available

Returns (≥) DJES 50 No evidence Wrong evidence

No evidence 57.14%
Wrong evidence 28.17% 33.33%
Correct evidence 72.62% 64.29% 71.83%

Table 8.2 Backtesting the views. Percentage of days where the return
achieved by the portfolio associated with the row is greater than or
equal to the return achieved by the portfolio associated with the column
when the views on the Industrials GICS sector are available

Returns (≥) DJES 50 No evidence Wrong evidence

No evidence 55.56%
Wrong evidence 33.33% 28.17%
Correct evidence 76.19% 64.68% 76.19%

230 S. Villa and F. Stella

Table 8.3 Backtesting the views. Summary statistics for the return distribution
with views on the IBEX Index

Returns DJES 50 No evidence Wrong evidence Correct evidence

Mean −0.01% 0.06% −0.29% 0.29%
St.dev. 1.50% 1.45% 1.56% 1.67%
Skewness 0.91 0.26 −0.54 2.40
Kurtosis 11.60 5.62 6.16 22.84
Minimum −4.72% −4.08% −7.39% −3.74%
Maximum 10.35% 7.51% 6.29% 14.49%
Median −0.05% 0.03% −0.17% 0.24%

Table 8.4 Backtesting the views. Summary statistics for the return distribution
with views on the Industrials GICS sector

Returns DJES 50 No evidence Wrong evidence Correct evidence

Mean −0.01% 0.06% −0.22% 0.26%
St.dev. 1.50% 1.41% 1.43% 1.48%
Skewness 0.91 0.28 −0.45 1.54
Kurtosis 11.60 5.62 5.46 13.07
Minimum −4.72% −4.08% −5.03% −4.00%
Maximum 10.35% 7.33% 6.47% 10.92%
Median −0.05% 0.04% −0.06% 0.14%

8.5 Conclusions

This chapter described portfolio analysis and optimization in the case where the
investor is allowed to combine market data with his/her market views. The interplay
between modern portfolio theory and Bayesian networks has been exploited to
propose a new framework for portfolio analysis and optimization. The Bayesian
network framework for portfolio analysis and optimization provides efficient ways
to interface models to data and allows efficient evidential reasoning to understand
the behavior of the investment portfolio in different economic and financial
scenarios. We described how the investor can perform a what-if analysis on some
financial factors to understand the behavior of the reference market under different
stress testing conditions. Furthermore, the chapter described how the investor can
formulate and solve the portfolio optimization problem to ensure that the selected
portfolio allocation reflects the investor market views. The case study on DJ Euro
Stoxx 50 Index emphasizes the relevance of evidential reasoning on estimation
factors, interpretation factors, securities, and portfolios. The results confirm that
the optimal portfolio, selected under the correct qualitative view, is effective.
In conclusion, we can state that the proposed framework for portfolio analysis
and optimization is a useful tool for those investors who need to integrate their
quantitative and qualitative information (market view) with the available market
data.

8 Bayesian Networks for Portfolio Analysis and Optimization 231

References

1. C. Albanese, K. Jackson, P. Wiberg, A new fourier transform algorithm for value at risk. Quant.
Finance 4, 328–338 (2004)

2. R. Almgren, N. Chriss, Optimal portfolios from ordering information. J. Risk 9, 1–47 (2006)
3. D. Avramov, G. Zhou, Bayesian portfolio analysis. Annu. Rev. Financ. Econ. 2, 25–47 (2010)
4. F. Black, R. Litterman, Asset allocation: Combining investors views with market equilibrium.

Journal of Fixed Income, 7–18 (1991)
5. G. Cooper, The computational complexity of probabilistic inference using bayesian belief

networks. Artif. Intell. 42(2–3), 393–405 (1990)
6. R. Dechter, Bucket elimination: A unifying framework for reasoning. Artif. Intell. 113, 41–85

(1999)
7. R. Demirer, R.R. Mau, C. Shenoy, Bayesian networks: A decision tool to improve portfolio

risk analysis. J. Appl. Finance 16 (2006)
8. A. Edelman, Eigenvalues and Condition Numbers of Random Matrices. PhD thesis, Depart-

ment of Mathematics, Massachussetts Institute of Technology (1989)
9. E.J. Elton, M.J. Gruber, S.J. Brown, Modern Portfolio Theory and Investment Analysis (Wiley,

New York, 2009)
10. N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers. Mach. Learn. 29,

131–163 (1997)
11. W.R. Gilks, S. Richardson, D.J. Spiegelhalter, Markov Chain Monte Carlo in Practice

(Chapman and Hall, London, 1996)
12. D. Heckerman, D. Geiger, M. Chickering, Learning bayesian networks: The combination of

knowledge and statistical data. Mach. Learn. 20, 197–243 (1995)
13. F.V. Jensen, T.D. Nielsen, Bayesian Networks and Decision Graphs (Springer, Berlin, 2007)
14. S.L. Lauritzen, D.J. Spiegelhalter, Local computations with probabilities on graphical struc-

tures and their application to expert systems (with discussion). J. Roy. Stat. Soc. 50, 157–224
(1988)

15. H. Markowitz, Portfolio selection. J. Finance 7, 77–91 (1952)
16. A. Meucci, Risk and Asset Allocation (Springer, Berlin, 2005)
17. A. Meucci, Beyond black-litterman in practice: A five-step recipe to input views on non-normal

markets. Risk 19, 114–119 (2006)
18. A. Meucci, Fully flexible views: Theory and practice. Risk 21, 97–102 (2008)
19. A. Meucci, Enhancing the black-litterman and related approaches: Views and stress-test on risk

factors. J. Asset Manag. 10, 89–96 (2009)
20. A. Meucci, Factors on demand. Risk 23, 84–89 (2010)
21. A. Meucci, Fully flexible bayesian networks. http://ssrn.com/abstract=1721302 (2010)
22. A. Meucci, Linear vs. compounded returns-common pitfalls in portfolio management. GARP

Risk Prof. “The Quant Classroom” series, 49–51 (2010)
23. A. Meucci, Review of linear factor models: Surprising common principles, the systematic-

plus-idiosyncratic myth, and the misread relationship with financial theory, July (2010). http://
ssrn.com/abstract=1635495

24. A. Meucci, The prayer - Ten-step checklist for advanced risk and portfolio management. GARP
Risk Prof. “The Quant Classroom” series, 54–60/34–41 (2011)

25. K.P. Murphy, The bayes net toolbox for matlab. Comput. Sci. Stat. 33 (2001)
26. K.P. Murphy, Dynamic Bayesian Networks: Representation, Inference and Learning. PhD

thesis, UC Berkeley, Computer Science Division (2002)
27. R.E. Neapolitan, Learning Bayesian Networks (Prentice Hall, NJ, 2003)
28. M. Neil, N. Fenton, M. Tailor, Using bayesian networks to model expected and unexpected

operational losses. Risk Anal. J. 25(4), 963–972 (2005)
29. U. Nodelman, C. Shelton, D. Koller, Continuous time Bayesian networks, in Proceedings of

the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI) (2002), pp. 378–387.
http://robotics.stanford.edu/∼nodelman/publications.html

http://ssrn.com/abstract=1721302
http://ssrn.com/abstract=1635495
http://ssrn.com/abstract=1635495
http://robotics.stanford.edu/~nodelman/publications.html

232 S. Villa and F. Stella

30. T. Pavlenko, O. Chernyak, Credit risk modeling using bayesian networks. Int. J. Intell. Syst.
25(4), 326–344 (2010)

31. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
(Morgan Kaufmann, CA, 1988)

32. J. Pezier, Global portfolio optimization revisited: A least discrimination alternantive to black-
litterman. ICMA Centre Discussion Papers in Finance (2007). http://www.icmacentre.ac.uk/
files/pdf/dps/dp2007 07.pdf

33. V. Plerou, V. Gopikrishnan, B. Rosenau, L. Amaral, T. Guhr, E. Stanley, Random matrix
approach to cross-correlations in financial data. Phys. Rev. E 65, 1–17 (2002)

34. J.P.B.M. Potters, L. Laloux, Financial applications of random matrix theory: Old laces and new
pieces. Acta Phys. Pol. B 36(9), 2767–2784 (2005)

35. E. Qian, S. Gorman, Conditional distribution in portfolio theory. Financ. Analyst J. 57, 44–51
(2001)

36. S.T. Rachev, J.S.J. Hsu, B.S. Bagasheva, F.J. Fabozzi, Bayesian Methods in Finance (Wiley,
New York, 2008)

37. R. Rebonato, Coherent Stress Testing: A Bayesian Approach to the Analysis of Financial Stress,
Wiley (2010). ISBN: 0470666013

38. S. Roweis, Z. Ghahramani, A unifying review of linear gaussian models. Neural Comput. 11,
305–345 (1999). http://www.cs.nyu.edu/∼roweis/papers/NC110201.pdf

39. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edn. (Prentice Hall, NJ,
2009)

40. W.F. Sharpe, Capital asset prices: A theory of market equilibrium under conditions of risk.
J. Finance 3, 425–442 (1964)

41. C. Shenoy, P.P. Shenoy, Bayesian Networks: A Decision Tool to Improve Portfolio Risk
Analysis. Working paper, School of Business, University of Kansas (1998)

42. D. Stefanica, A Primer for the Mathematics of Financial Engineering (FE Press, New York,
2008)

43. M. Tipping, C. Bishop, Mixtures of probabilistic principal component analyzers. Neural
Comput. 11(2), 443–482 (1999)

http://www.icmacentre.ac.uk/files/pdf/dps/dp2007_07.pdf
http://www.icmacentre.ac.uk/files/pdf/dps/dp2007_07.pdf
http://www.cs.nyu.edu/~roweis/papers/NC110201.pdf

Chapter 9
Markov Chains in Modelling of the Russian
Financial Market

Grigory A. Bautin and Valery A. Kalyagin

Abstract We use Markov chains models for the analysis of Russian stock market.
First problem studied in the chapter is concerned with multiperiod portfolio
optimization. We show that known approaches applied for the Russian stock market
produce the phenomena of nonstability and propose a new method in order to
smooth it. The second problem concerns the structural changes in the Russian stock
market after the financial crisis of 2008. We propose a hidden Markov chain model
to analyze structural changes and apply it to the Russian stock market.

9.1 Markov Chain Models for the Russian Market

Portfolio optimization involves the allocation of funds between assets having
different characteristics—profitability, risk, liquidity, etc. The main problem is that
higher returns entail higher risk, and the investor operates under conditions of
uncertainty. Thus, the investor faces the problem of finding the optimal strategy
based on the preferences regarding return and risk ratio. In general, this problem is
very complex and not amenable to rigorous mathematical description, and therefore
different models are used to simplify the reality and allow formulating a set of
specific recommendations.

A Markov chain is a sequence of random variables x1,x2,x3, . . . that can take
values from a countable set S and have the Markov property. The property can be
formally defined in the following way:

P(Xn+1 = x|X1 = x1,X2 = x2, . . . ,Xn = xn) = P(Xn+1 = x|Xn = xn),

G.A. Bautin (�) • V.A. Kalyagin
National Research University Higher School of Economics, Lab LATNA, Russia
e-mail: gbautin@hse.ru; vkalyagin@hse.ru

M. Doumpos et al. (eds.), Financial Decision Making Using Computational Intelligence,
Springer Optimization and Its Applications 70, DOI 10.1007/978-1-4614-3773-4 9,
© Springer Science+Business Media New York 2012

233

234 G.A. Bautin and V.A. Kalyagin

i.e., conditional distribution of future states of the Markov chain depends only on the
current state and is independent of all previous states. The set S of possible values
of random variables Xn is called the state space. Another important characteristic

of Markov chains is the transition matrix, which is defined as p(n)i j = P(Xn+1 =
j|Xn = i). In what follows we use only homogenous Markov chain models where

p(n)i j are independent of n. There are also many different extensions of the basic
Markov model, such as continuous time models or higher-order chains that permit
dependencies between the future and more than one of the previous states of the
chain. However, further we consider only the simplest model with discrete time and
finite state space.

Markov models are widely used for analysis of the financial market (see [2, 6]).
The returns of the assets in a market depend on many factors, some of which are
invisible and not measurable. Generally, the asset returns can be treated as random
variables. A model can assume that the asset returns are modulated by states of a
Markov chain. There is now a considerable amount of publications on the topic, for
instance, Stettner [8] provides an example on risk-sensitive portfolio optimization
with completely or partially observed states; Bäuerle and Rieder [1] deal with a
financial market with one bond and one stock where the expected return of the
stock is modulated by an external finite state Markov chain; Çakmak and Özekici
[3] provide an explicit solution for multiperiod portfolio optimization in a Markov-
modulated market.

9.1.1 Modelling the Russian Financial Market

The Russian stock market is significantly different from developed Western and
Asian markets. In recent years, as a result of many new companies entering the
market, as well as the emergence of market access for a broad segment of the
population (via Internet), some differences are smoothed out. However, the Russian
market still has a number of characteristics.

In particular, most of the operations are speculative and long-term investments
are the exception. There are also a lack of financial guarantee insurance, imperfec-
tion of the tax system, no liquid market for private debt assets, and a large number
of investment institutions, imposing their services. These features suggest the use of
new models or adjusting parameters and algorithms used in existing models. High
volatility and unpredictability lead to an idea of using Markov chains to model the
switching of market regimes and trying to guess the possible unobservable state of
the market (that is a combination of factors influencing the returns). The chapter is
organized as follows. First we study the multiperiod portfolio optimization problem
for the Russian stock market. For our numerical experiments we use the stochastic
market model suggested in [3]. As a result, we observe a phenomena of nonstability
of the optimal multiperiod portfolio for the Russian market. We show that this
nonstability is related with the choice of the states of the associated Markov chain

9 Markov Chains in Modelling of the Russian Financial Market 235

model. To fix the instability phenomena we suggest to use a more sophisticated
choice of the states of the model for Russian stock market. Second we deal with a
structural change on the stock market after the financial crisis of 2008. To detect
the structural changes we use an appropriate hidden Markov chain model and show
how it works for the Russian stock market.

9.1.2 Multiperiod Portfolio Optimization Using a Markov
Chain Model

We start with the model described in [3]. This model considers a market consisting
of one risk-free asset, the yield of which is known in advance, and several risky
assets which have random returns.

At any time, the market may be in one of the states belonging to the set of states
E . Let the state of the market at time n (or the period n) be Yn. We assume that Y =
{Yn;n = 1,2, . . . ,} is a Markov chain with state space E and the transition matrix Q.

Return on the risk-free asset is known in advance for each of the states of the
market, and equals r f (i), while returns of risky assets are random variables R(i) =
(R1(i),R2(i), . . . ,Rm(i)), where i is the state of the market.

Let rk(i)=E[Rk(i)] denote the mean return on asset k, and σkl(i)=Cov(Rk(i),
Rl(i)) denote the covariance between yields of the assets k and l for the state of the
market i. The excess (relative to the riskless asset) return of the asset k is defined as
Re

k(i) = Rk(i)− r f (i). It follows:

re
k(i) = E[Re

k(i)] = rk(i)− r f (i) (9.1)

σkl(i) = Cov(Re
k(i),R

e
l (i)) = Cov(Rk(i),Rl(i)) (9.2)

We introduce the following auxiliary vectors: r(i) = (r1(i),r2(i), . . . ,rm(i)) and
re(i) = (re

1(i),r
e
2(i), . . . ,r

e
m(i)). In addition, we assume that Ei[Z] = E[Z|Y0 = i] and

Vari(Z) = Ei[Z2]−Ei[Z]2 are the mean and variance of Z, respectively, provided
that the initial state of the market is i. For any matrix M, we assume that M′ is a
transposed matrix M.

Let Xn denote the capital available at time n, and u = (u1,u2, . . . ,um) is a column
vector of investments in assets (1,2, . . . ,m). Then the following dynamic equation
may be considered:

Xn+1 = r f (Yn)Xn +Re(Yn)
′u. (9.3)

The model assumes that we can borrow and lend at the rate of return of the
riskless asset with no limits, and that the short selling is allowed for any asset in any
period. It also does not take into account transaction costs, considering them to be
negligible.

236 G.A. Bautin and V.A. Kalyagin

The following two equivalent dynamic programming problems can be
formulated: ⎧⎨

⎩
E[XT] → max

Vari ≤ σ
Xn+1 = r f (Yn)Xn +Re(Yn)

′u
(9.4)

⎧⎨
⎩

Vari → min
E[XT] ≥ μ
Xn+1 = r f (Yn)Xn +Re(Yn)

′u
(9.5)

These problems are nonseparable in the sense of dynamic programming. How-
ever, there is a parametric equivalent to these two problems:

{
E[XT]−ωVari(XT)→ max
Xn+1 = r f (Yn)Xn +Re(Yn)

′u
(9.6)

defined for ω > 0. This problem is also nonseparable, but it can be solved with the
help of an auxiliary problem (see [3]):

{
E[−ωX2

T +λXT]→ max
Xn+1 = r f (Yn)Xn +Re(Yn)

′u
(9.7)

defined for ω > 0 and all λ . The latter problem is separable in the sense of dynamic
programming, and an explicit solution can be found for it. It turns out that any
solution for it, where λ = 1 + 2ωEi[XT], is also the solution of problems (9.4)
and (9.5).

Thus, the optimal investment strategy and the efficient mean–variance frontier
can be obtained by solving problem (9.7). The following are the conclusions
obtained by solving this problem, details and proofs are omitted and can be found
in [3]. The optimal investment strategy is given by

un(i,x) =

[(
1+ 2ωa1(i)x0

2ω(1− 2b(i))

)
Q

T−n−1
g (i)

Q
T−n−1
f (i)

− r f (i)x

]
V−1(i)re(i) (9.8)

for all n= 0,1, . . . ,T −1, where for any matrix M and vector f , Mf is a matrix whose
elements equal Mf (i, j) = M(i, j) f (j). Furthermore, Mf is the vector obtained by
summing the columns of the matrix Mf , i.e. Mf (i) = ∑ j Mf (i, j). In addition, we
introduce the following auxiliary variables:

V (i) = E[Re(i)Re(i)′] = σ(i)+ re(i)re(i)′ (9.9)

h(i) = re(i)′V−1(i)re(i) (9.10)

g(i) = r f (i)[1− h(i)] (9.11)

9 Markov Chains in Modelling of the Russian Financial Market 237

f (i) = r f (i)
2[1− h(i)] (9.12)

a1(i) = Qg
T−1

(i)g(i) (9.13)

a2(i) = Q f
T−1

(i) f (i) (9.14)

b(i) =
1
2

T

∑
k=1

Qk−1

⎛
⎜⎝
(

Qg
T−k
)2

(
Q f

T−k
) • h

⎞
⎟⎠(i), (9.15)

where for all vectors a, b, and c, ((a/b)•c) denotes the vector where ((a/b)•c)(i)=
(a(i)/b(i))c(i). In order to determine the optimal strategy in terms of σ and μ , the
following formulas for ω should be used:

ω =

√
b(i)

2
[
(1− 2b(i))σ− [1− 2b(i)a2(i)− a1(i)2]x2

0

] (9.16)

ω =
b(i)

(1− 2b(i))μ− a1(i)x0
. (9.17)

And the efficient frontier for the period T is defined by the following equation:

Vari(XT) =

(
a2(i)− a1(i)2

(1− 2b(i))

)
x2

o +
[(1− 2b(i))Ei[XT]− a1(i)x0]

2

2b(i)(1− 2b(i))
. (9.18)

9.1.3 Analysis of the Model and Its Application
to the Russian Market

The basic assumptions of the described above model are the following:

• There is a risk-free asset, and the investor can freely lend and borrow at the risk-
free rate.

• Short-selling is allowed for all assets in all periods.
• The capital of the investor cannot be increased or decreased inside the planning

horizon.
• Transaction costs are negligible.

The assumption of the existence of a riskless asset is not obvious for the Russian
market. In fact, in this model, unlike many others, the risk-free asset and the risk-
free rate are not just abstract theoretical concepts. This asset must actually exist,
since the investor is assumed to be able to invest into it. Unlike the USA, where
the government bonds are traditionally considered risk-free, there are virtually no
such securities in the Russian market. Requirements for the riskless asset are as
follows: (a) the returns of the asset should be predictable, ideally it must have a

238 G.A. Bautin and V.A. Kalyagin

zero deviation, (b) the asset must be absolutely liquid, i.e., at any time you can buy
or sell it in any volume, (c) the asset should be infinitely divisible. In our further
numerical experiments, we suppose that risk-free asset exists and its return is zero
for any state of the market. We consider daily data, so the time period is too short
to get any positive return for any asset, which theoretically could be called a risk-
free: government or blue chips bonds, bank deposits. Actually, in case of using any
of these assets, the transaction costs would make the real return negative. In other
words, we suppose that the investor has an unlimited financial leverage. In practice,
for the most of optimal portfolios obtained with the model, the need for borrowed
funds is quite low and well within the bounds provided by most broker leverage.

The possibility of short selling is offered by many brokerage companies. In the
case of a short sale, the investor borrows the needed asset from the broker and sells
it. Thus, at the end of the operation, the investor has to return not money, but the
borrowed asset. There is always a risk that the investor will be able to return the
borrowed assets, for example if the price of the asset has risen, and the investor
does not have enough funds. In order to protect themselves from such losses, the
brokerage firms establish certain requirements, for example they require investors
to have a special account with a certain amount of money to cover the possible
loss. Generally, the short selling is possible in a wide range of cases, but it leads to
additional transaction costs.

The assumption that the capital is not changed inside the planning horizon seems
to be quite plausible. Moreover, this assumption can be easily bypassed with a slight
model modification. However, it is worth noting that in some cases the investor may
decide to reduce the amount of capital invested in the asset, if things do not go
well, or increase it otherwise. In addition, the model does not consider transaction
costs, but in practice these costs can significantly influence the performance of the
portfolio.

One of the weaknesses of the model is that it has a rather high sensitivity of
the resulting expressions for the optimal strategy and the efficient frontier to the
accuracy of calculations. Thus, minor change of one of the intermediate variables
may, under certain conditions, lead to a significant shift in the efficient frontier.
Another disadvantage of the model, which is typical for a large class of multiperiod
models, is that the “excess” (i.e., unplanned) returns are automatically eliminated in
the further periods. That is, if at some point the actual rate of return is higher than
planned, the model is working to eliminate this excess return in the next iteration.
From a mathematical point of view, the model works properly, but in practice in
such a situation it is better to increase the planned yield. The model can be even
dynamically updated with the recent data.

There is also one aspect that significantly influences the performance of the
model—the method of determining the state of the market. In general, the method
of determining the state must meet the following requirements:

• The criterion should be based on historical data, so we should be able to
determine the state of the market at the moment: the investor cannot know what
exactly will happen in the future.

9 Markov Chains in Modelling of the Russian Financial Market 239

• Since this model uses Markov chain, it is desirable that market state is determined
by exactly one period of observation. Using data from several periods will distort
the logic of the model.

• It is advisable that the returns of the assets in different states were significantly
different.

The question of efficient state classification is discussed in the next sections.

9.1.4 Multiperiod Optimization on the Russian Stock Market

At the first step we use the method from [3] for determining the states of the market.
Following this method the state in a given period depends on the number of assets
whose prices have risen in the previous period. Thus, if all assets have fallen, it is
considered that the market is in state s1, if exactly one asset has increased in price—
the market is in state s2, etc. We want to apply the model to Russian financial market
and need to choose several assets. In our numerical experiments we select assets
from different industries and we apply the model to the shares of five Russian blue
chips traded in MICEX:

• GAZP, LKOH—Oil and gas industry
• GMKN—Metallurgy
• SBER—Financial sector
• RTKM—Telecommunications

We choose 1 day as the length of the period to avoid intraday fluctuations on one
hand, and to have enough data on the other. To avoid the influence of the financial
crisis, we consider the time period from the beginning of 2009 until the end of
2011—totally 745 observations. Graphs of the value of assets, normalized by the
first day, are shown in Fig. 9.1. The top two graphs correspond to Norilsk Nickel
(GMKN) and Gazprom (GAZP), two graphs in the middle are Lukoil (LKOH)
and Sberbank (SBER), and the bottom graph corresponds to Rostelecom (RTKM).
We can see that the prices of certain assets fairly strongly correlated.

Let the initial wealth of the investor be x0 = 1. We are going to apply the model
with the investment horizon T = 5 and the target terminal return μ = 1.2763 (that is
an equivalent for a 5% daily return). Having five assets, we get six possible market
states: from zero up to five asset prices can rise in a given period. Analyzing the
historical data, we get the following transition matrix:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.2746 0.1268 0.1479 0.1549 0.1549 0.1408
0.2432 0.1261 0.1712 0.1802 0.0991 0.1802
0.2072 0.2162 0.1171 0.1441 0.1351 0.1802
0.2015 0.1866 0.0970 0.2015 0.1716 0.1418
0.1140 0.1316 0.2105 0.2281 0.1228 0.1930
0.1092 0.1261 0.1765 0.1849 0.2437 0.1597

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

240 G.A. Bautin and V.A. Kalyagin

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 9.1 Graphs of the value of assets, normalized by the first day. The top two graphs correspond
to Norilsk Nickel (GMKN) and Gazprom (GAZP), two graphs in the middle are Lukoil (LKOH)
and Sberbank (SBER), and the bottom graph corresponds to Rostelecom (RTKM)

Table 9.1 Expected returns of the assets

State RTKM GAZP LKOH SBER GMKN

1 0.9811 0.9775 0.9811 0.9740 0.9765
2 0.9974 0.9881 0.9893 0.9879 0.9909
3 1.0002 0.9992 0.9986 1.0006 1.0004
4 1.0004 1.0066 1.0038 1.0065 1.0067
5 0.9996 1.0157 1.0147 1.0212 1.0164
6 1.0218 1.0209 1.0205 1.0273 1.0229

We can see that the transitions have no a straightforward interpretation related to the
chosen states of the Markov model. The expected returns of the assets, depending
on the market state, can be found in Table 9.1. We can see that the higher the number
of the market state, the higher is the expected return of most of the assets. Now, we
can use formulas (9.8) and (9.18) to calculate the optimal strategy and the efficient
frontier (which is shown in Fig. 9.2).

The optimal strategy is shown in Table 9.2; the asset returns correspond to the
period from 12/15/2011 until 12/21/2011. We can see that in the first period the
investments are rather aggressive: the model proposes a portfolio with large short
sellings. In the second period, there are no short sellings, but the total cost of the
portfolio is higher than the capital that investor has at that moment, i.e., the investor
has to borrow money to form this portfolio. The third period portfolio has large short

9 Markov Chains in Modelling of the Russian Financial Market 241

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1

1.05

1.1

1.15

Standard Deviation x 1000

E
xp

ec
te

d
R

et
ur

n

Fig. 9.2 The efficient frontier for dynamically optimized portfolio of five assets: GAZP, LKOH,
GMKN, SBER, and RTKM. The number of periods T = 5

Table 9.2 The optimal strategy and the actual returns of the assets

Asset u1 r1 u2 r2 u3 r3 u4 r4 u5 r5

RTKM −1.547 0.981 2.323 1.038 −0.758 1.008 0.103 0.979 0.012 1.004
GAZP −7.168 1.010 1.566 1.007 −3.512 0.971 0.682 1.027 0.008 1.006
LKOH −2.656 0.993 0.778 1.011 −1.301 0.997 0.259 1.007 0.004 1.008
SBER −2.277 0.987 1.199 1.010 −1.115 0.988 0.475 1.004 0.006 1.012
GMKN −0.162 0.991 2.492 1.007 −0.079 0.971 0.266 0.998 0.013 1.021

sellings again, and the last two portfolios are more or less balanced. This strategy is
unlikely to be practically applicable, but we should remember that we have chosen a
rather high target return—about 28% in 5 days. Such an experiment is a good crash
test for the model. The result of the applied strategy is shown in Fig. 9.3; the strategy
suggested by the model leads to almost exactly the target return. Unfortunately
this is not always the case. To evaluate the performance of the method we run
the calculation 100 times with a different time period. The results are presented
in Fig. 9.4. The dashed lines indicate the target portfolio return μ and theoretical
standard deviation. The solid line is the actual portfolio return over 100 model runs
on sequential time periods. It is clear from the figure that the performance of the
proposed method is very low. The method applied for the Russian market manifests
a high nonstability in the final return of the multiperiod portfolio. We will see in
the next section that the result of multiperiod portfolio optimization for the Russian

242 G.A. Bautin and V.A. Kalyagin

0 1 2 3 4 5
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Time Period

Wealth
Target terminal wealth

Fig. 9.3 The wealth of the investor over five periods. The strategy leads to almost exactly the
planned return

stock market essentially depends on the choice of the states for the Markov chain
model. An appropriate choice of the states makes the optimal portfolio more realistic
and stable.

9.1.5 Efficient Market State Clustering for the Russian Market

To determine the most effective method of state clustering, we consider the
optimization of a portfolio of three assets: Norilsk Nickel (GMKN), Lukoil
(LKOH), and Rostelecom (RTKM). For a direct numerical test, we use the following
technique. Having a particular method of state clustering, we determine the market
state for each period of the historic data. Then, the model parameters are evaluated
for each state: the asset return expectations, covariance matrix, transition matrix,
that is, the market is analyzed in view of the selected states. The model is then
applied to optimize a portfolio on the data that follows immediately after the historic
data. To illustrate the results a graph can be built to indicate the portfolio returns
over the entire planning horizon (i.e., the model performance) for each period of
some time interval. Using this graph, one can visually evaluate how well the model
works in different conditions, compare the planned and actual return μ , and see how
the deviation of the actual yield is related to the planned risk σ (which, in turn, is
determined from the efficient frontier).

9 Markov Chains in Modelling of the Russian Financial Market 243

10 20 30 40 50 60 70 80 90 100

1.09

1.1

1.11

1.12

1.13

1.14

Fig. 9.4 The illustration of model performance with original method of state determination. The
dashed lines indicate the target portfolio return μ and theoretical standard deviation. The solid line
is the actual portfolio return over 100 model runs on sequential time periods

In addition to visual observations, the quality of the model can be measured by
such values as the evaluation of the standard deviation of return on investment for
the entire period (based on actual data), the average yield, and the yield spread.
We use the following notation: μ is the expected return, σ is the standard deviation
of the terminal wealth, μr is actual average yield, σr is the evaluation of the actual
standard deviation, and Dr is the spreading of the actual yield (i.e., the difference
between the highest and the lowest value).

We consider several methods of state determination. Let us call the approach
described in [3] that takes into account the number of assets that rise in a given
period the basic method. One of the drawbacks of this method is that the number
of states equals the number of assets plus one, so if we want to build a portfolio of
big number of assets, we have to have a really large historical data for proper model
parameter estimation. Even if there is enough historical data, some global events
such as financial crisis can affect the parameter estimation, because the nature of
the market changes, and the parameter estimations can become unsuitable.

The model is applied 100 times, the historical data for parameter estimation
always begins at 11.01.2009, and the end of the time frame slides from 03.08.2011
up to 21.12.2011, and the strategy is applied to the immediate next T observations.
We consider different values of T = 4,8,12,16 and μ = 1.06,1.12,1.19,1.24.
The model performance for the basic method of state determination is shown in

244 G.A. Bautin and V.A. Kalyagin

Table 9.3 The model performance for the basic method

T μ σ μr σr Dr

4 1.06 2.2376×10−4 1.0571 2.3575×10−4 0.1152
1.12 8.9503×10−4 1.1142 9.4299×10−4 0.2304
1.19 0.0022 1.1808 0.0024 0.3648
1.24 0.0036 1.2284 0.0038 0.4608

8 1.06 1.8152×10−5 1.0591 1.7143×10−5 0.0251
1.12 7.2609×10−5 1.1181 6.8571×10−5 0.0502
1.19 1.8203×10−4 1.1870 1.7190×10−4 0.0795
1.24 2.9044×10−4 1.2363 2.7428×10−4 0.1004

12 1.06 2.9607×10−6 1.0596 1.7046×10−6 0.0082
1.12 1.1843×10−5 1.1191 6.8184×10−6 0.0164
1.19 2.9689×10−5 1.1886 1.7093×10−5 0.0260
1.24 4.7371×10−5 1.2382 2.7274×10−5 0.0328

16 1.06 3.4133×10−7 1.0599 1.0125×10−7 0.0018
1.12 1.3653×10−6 1.1198 4.0499×10−7 0.0036
1.19 3.4228×10−6 1.1896 1.0153×10−6 0.0057
1.24 5.4613×10−6 1.2395 1.6199×10−6 0.0072

Table 9.3. The result is quite expected: the higher the target return, the higher the
variation, and the bigger the planning period, the more accurate strategy the model
is able to suggest.

The second method of state determination we are going to consider is the average
values method. The state is determined by the average return of all assets, in the
simplest case there are two states—the first state is when the average return of the
assets is higher or equals 1, and the second state is when it is when the average
return is less than 1. Obviously, we can set up any number of states by discretizing
the average return. The proposed method is very simple: we calculate the maximum
and minimum values of average returns, divide it by the number of states, and then
for each new observation determine into which interval the average value falls.

For quality evaluation, we use the same technique as for the previous method, but
now we calculate only the actual standard deviation of the terminal wealth σr for
some of the T and μ values from the previous experiment and for different numbers
of states. It turns out that when we have ten or more states, there is not enough
data to estimate all the needed parameters, and some intermediate matrices become
singular.

The model performance using the average values method is shown in Table 9.4.
We can see that the accuracy of the model rises with the rise of number of states;
however there is an obvious exception when the number of states equals 3. Most
probably, in this case most of the observations fall into the “central state” 2, so
the transition matrix and parameter estimations become improper for correct model
functioning. Taking into consideration the calculation problems with high number
of states, we can choose “the best” number of states Nst = 7, and use it in further
method comparison.

9 Markov Chains in Modelling of the Russian Financial Market 245

Table 9.4 Standard deviations of the terminal wealth σr for the average values method and
various number of states Nst

T μ Nst = 2 Nst = 3 Nst = 4 Nst = 5 Nst = 7 Nst = 9

4 1.06 1.16×10−4 0.0053 7.31×10−5 5.87×10−4 2.23×10−4 6.56×10−6

8 1.12 2.09×10−5 0.0196 2.44×10−6 2.92×10−4 3.81×10−6 5.79×10−9

12 1.19 4.04×10−6 0.0053 1.41×10−7 2.13×10−4 5.92×10−7 3.55×10−12

16 1.24 3.93×10−7 0.1204 1.81×10−9 8.25×10−5 8.12×10−9 2.80×10−15

Table 9.5 Standard deviations of the terminal wealth σr for the k-means method and various
number of clusters Ncl

T μ Ncl = 2 Ncl = 3 Ncl = 4 Ncl = 5 Ncl = 7 Ncl = 9

4 1.06 1.39×10−4 7.23×10−5 7.47×10−4 4.78×10−4 7.87×10−6 6.87×10−6

8 1.12 5.55×10−5 8.46×10−6 3.93×10−4 3.01×10−6 3.92×10−7 2.12×10−8

12 1.19 8.40×10−6 5.95×10−7 3.52×10−4 3.44×10−6 9.76×10−11 4.68×10−11

16 1.24 1.40×10−6 4.82×10−8 1.62×10−4 1.94×10−7 3.11×10−11 4.15×10−13

The third method of state determination that we consider is the k-means method.
We apply the k-means clustering to vectors of asset returns, so the historical data is
divided into Ncl clusters. After that, every new observation can be attributed to one
of the clusters. This is done by calculating the Euclidean distance between the new
observation vector and the centers of the clusters, and finding the closest cluster.
It should be noted that in case of using cluster analysis the partitioning should be
performed several times, and the most efficient partition should be chosen, since the
initial cluster centers are set up randomly, affecting the final result.

The performance of the model with states determined using the k-means method
is shown in Table 9.5. Again, the accuracy of the model grows with the growth of
number of states, but there is a computational limit for efficient model parameters
estimation. We can also notice that with Ncl = 4 the performance is worse than with
Ncl = 3 or Ncl = 5. This can be explained by the nature of the transition matrix that
we get in case of Ncl = 4:

Q =

⎛
⎜⎜⎝

0.6833 0.0542 0.0846 0.1779
0.4130 0.2391 0.1522 0.1957
0.5185 0.0864 0.2963 0.0988
0.6515 0.0152 0.0833 0.2500

⎞
⎟⎟⎠ .

The first state is obviously the most frequent state of the market: there are high
probabilities of transitions into it and low probabilities of going out. With different
number of clusters, the states are distributed more uniformly, and the model works
better. Of course, this property cannot be extended to the general case, and is caused
only by the nature of the data used for our experiments.

246 G.A. Bautin and V.A. Kalyagin

10 20 30 40 50 60 70 80 90 100

1.09

1.1

1.11

1.12

1.13

1.14

a b

Using the average values method

10 20 30 40 50 60 70 80 90 100

1.09

1.1

1.11

1.12

1.13

1.14

Using the k-means method

Fig. 9.5 The illustration of model performance with different state determination methods in use.
The dashed lines indicate the target portfolio return μ and theoretical standard deviation. The solid
line is the actual portfolio return over 100 model runs on sequential time periods

Although in some particular cases the k-means method shows a lower per-
formance than the average values method, generally it looks more robust. The
performance of all three discussed methods is shown in Fig. 9.5. The graphs are
built for 100 model runs on sequential time periods with μ = 1.12, T = 8, Nst = 7,
and Ncl = 7; the graphs are in the same scale. The dashed lines indicate the target
portfolio return μ and theoretical standard deviation. The solid line is the actual
portfolio return over 100 model runs on sequential time periods. The figures clearly
show that the k-means method manifests a good stability. It is preferable for state
determination for Russian stock market, as it provides stable performance with a
relatively small standard deviation.

9.2 Hidden Markov Chain Model for the Russian Market

The financial crisis of 2008 has had a big impact on the economics of Russia. It is
a common opinion that the Russian stock market is not the same after the crisis
as it was before. But it is not easy to measure this difference. The behavior of the
indexes MICEX and RTSI of the Russian stock market before and after the crisis of
2008 is presented in Fig. 9.6. The period of observations is taken from 02.09.2003
to 14.12.2011 and the crisis period is fixed from 01.07.2008 to 05.12.2008.

As everywhere the crisis period is marked by a strongly correlated shut done of
the indexes. From the first view the market behaviors before and after the crisis are
similar. To analyze a structural change of the Russian stock market after the crisis
of 2008 we use a hidden Markov chain model.

9 Markov Chains in Modelling of the Russian Financial Market 247

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 9.6 The graph of MICEX and RTSI indexes

9.2.1 Hidden Markov Chain Model

A hidden Markov model is built of two random processes. The first one is an
unobservable process, we cannot register it, but it can be described by the second
random process, which gives us a set of signals—the observed sequence. In the
simplest case, the observed process is discrete with a finite set of possible values
V = {V1,V2, . . .VM}, where M is the number of possible values. The hidden random
process is a Markov process q1,q2,q3, . . . with N possible states from a state space
S = {S1,S2, . . . ,SN} and a transition matrix Q. The two processes are connected
via emission probabilities b j(k) = P[vt = Vk|qt = S j], so b j(k) is the probability of
getting the signal Vk provided the model is in state S j.

A good overview of hidden Markov models can be found in Rabiner’s tutorial
on Hidden Markov models [7]. There are numerous applications of the concept in
the area of pattern recognition such as speech, handwriting, gesture recognition, etc.
The recent development of the topics with applications in finance is presented in [6].
There are also some applications in the area of market analysis, for instance in [5]
it is suggested to describe the essential stock price movements by a hidden Markov
model. In [1] portfolio optimization is considered with one bond and one stock, in
[4] a utility-based portfolio selection problem is considered, where the parameters
are modulated by an unobserved Markov process.

In our numerical calculations we consider the case of discrete observations, i.e.,
the vector of asset returns in each period should be converted into a finite discrete
variable. A possible approach has been already discussed in Sect. 9.1.5, where we
developed a k-means method for this transformation for the determination of the
states of the observable Markov chain. Having a discrete variable as an observation,
we need to estimate the transition matrix Q and the emission probabilities b j(k).
This can be done using iterative Baum–Welch algorithm [7]. The algorithm requires
some initial estimation of the transition matrix and emission probability matrix,
which we obtain using the same clustering approach. To run the experiments we

248 G.A. Bautin and V.A. Kalyagin

choose the number of possible observation values (number of the states of the
observable Markov chain) as M = 4 and the number of hidden Markov chain states
N = 3. In fact we apply the clustering twice—into 4 and 3 states, respectively, and
then enhance the estimation of the transition matrix in the second case with the
Baum–Welch algorithm (as a starting value of the transition matrix estimation).

9.2.2 Structural Analysis of Russian Stock Market

In order to understand the impact of the crisis on the structural changes of the market
we fix 5 observation periods: 3 periods before crisis and 2 periods after the crisis.
Then we use the Baum–Welch algorithm for each period of observation and examine
the structure of the transition matrix for the hidden states for each period. As a result
we observe an interesting structural change in the structure of the transition matrix
and give their interpretation. The results of calculation are presented in the tables
below.

Period 1 (precrisis) from 02.09.2003 to 31.01.2006:
Transition Q1 and emission E1 matrices for the hidden states

Q1 =

⎛
⎝

0.63 0.00 0.37
0.00 0.86 0.14
0.34 0.17 0.49

⎞
⎠ , E1 =

⎛
⎝

0.32 0.68 0.00 0.00
0.00 0.50 0.50 0.00
0.00 0.00 0.63 0.37

⎞
⎠ .

The limiting (stationary) probabilities for this period are given by

D1 = (0.28,0.40,0.32).

Period 2 (precrisis) from 10.11.2004 to 16.04.2007:
Transition Q2 and emission E2 matrices for the hidden states

Q2 =

⎛
⎝

0.61 0.00 0.39
0.04 0.83 0.13
0.21 0.31 0.48

⎞
⎠ , E2 =

⎛
⎝

0.36 0.64 0.00 0.00
0.00 0.49 0.51 0.00
0.00 0.00 0.58 0.42

⎞
⎠ .

The limiting (stationary) probabilities for this period are given by

D2 = (0.20,0.51,0.29).

Period 3 (precrisis) from 01.02.2006 to 30.06.2008:
Transition Q3 and emission E3 matrices for the hidden states

Q3 =

⎛
⎝

0.54 0.00 0.46
0.16 0.81 0.03
0.16 0.41 0.43

⎞
⎠ , E3 =

⎛
⎝

0.41 0.59 0.00 0.00
0.00 0.52 0.48 0.00
0.00 0.00 0.65 0.35

⎞
⎠ .

9 Markov Chains in Modelling of the Russian Financial Market 249

The limiting (stationary) probabilities for this period are given by

D3 = (0.22,0.53,0.25).

Period 4 (postcrisis) from 08.12.2008 to 10.12.2010:
Transition Q4 and emission E4 matrices for the hidden states

Q4 =

⎛
⎝

0.61 0.01 0.38
0.01 0.99 0.00
0.42 0.00 0.58

⎞
⎠ , E4 =

⎛
⎝

0.23 0.77 0.00 0.00
0.00 0.49 0.51 0.00
0.00 0.00 0.77 0.23

⎞
⎠ .

The limiting (stationary) probabilities for this period are given by

D4 = (0.30,0.43,0.27).

Period 5 (postcrisis) from 09.12.2009 to 14.12.2011:
Transition Q5 and emission E5 matrices for the hidden states

Q5 =

⎛
⎝

0.21 0.55 0.25
0.12 0.46 0.42
0.01 0.37 0.62

⎞
⎠ , E5 =

⎛
⎝

0.99 0.01 0.00 0.00
0.00 0.77 0.23 0.00
0.00 0.00 0.67 0.33

⎞
⎠.

The limiting (stationary) probabilities for this period are given by

D5 = (0.08,0.42,0.51).

To make an appropriate comment to the presented results we need some
interpretation of the hidden states. Figure 9.7 shows the behavior of the indexes
and associated hidden state. From this information we conclude that state 1 can be
associated with a “jump down” of the market, state 2—with a “regular growth” of
the market and state 3—with a “jump up” of the market. The same conclusion is
true for the postcrisis periods. Now we can describe the peculiarity of the transition
matrix for each period. For all three periods of the precrisis the limiting probabilities
are nearly the same but some structural changes can be observed in the transition
matrix for the hidden states. Periods 1 and 2 are marked by the very low probability
of transition from the state 1 (jump down) to state 2 (regular growth) and vise versa.
This structure is perturbed near the crisis period. Period 3 is marked by the very
low probability of transition from state 1 (jump down) to state 2 (regular growth)
and from state 2 (regular growth) to state 3 (jump up). It means that the market
became less regular looking on the hidden states. The first postcrisis period, period
4, is marked by an interesting phenomena: state 2 (regular growth) became the most
attractive and the probabilities of transition from this state to states 1 (jump down)
and 3 (jump up) are very low. However this phenomenon is not translated into the
limiting distribution which is closed to be uniform. Finally the period 5 is marked by

250 G.A. Bautin and V.A. Kalyagin

220 240 260 280 300 320 340 360 380 400
100

200

300

400

500

600

700

800

Fig. 9.7 Market behavior and hidden states before crisis

the very low probability of transition from state 3 (jump up) to state 1 (jump down).
It means that the market is good for the investment. This conclusion is confirmed by
the limiting distribution of the state probabilities. This distribution is shifted to the
favorable states 2 and 3.

9.3 Conclusion

In the present chapter we used Markov chain models for the analysis of some
problems for the Russian stock market. Two problems were addressed. One is
concerned with the multiperiod portfolio optimization. Our finding is a nonstability
phenomena for the optimal portfolio related with the choice of the states of the
Markov model. Second problem deals with the structural changes on the market due
to the financial crisis of 2008. Using the hidden Markov chain model we detected
some interesting dynamics of the structure of the hidden states transition matrix over
the crisis dynamics.

Acknowledgements The authors acknowledge the RF Grant No. 11.G34.31.0057 for the support.

References

1. N. Bäuerle, U. Rieder, Portfolio optimization with jumps and unobservable intensity process.
Math. Finance 17(2), 205–224 (2007)

2. N. Bäuerle, U. Rieder, Markov Decision Processes with Applications to Finance (Springer,
Berlin, 2011)

9 Markov Chains in Modelling of the Russian Financial Market 251

3. U. Çakmak, S. Özekici, Portfolio optimization in stochastic markets. Math. Meth. Oper. Res.
63(1), 151–168 (2006)

4. E. Çanakoǧlu, S. Özekici, Portfolio selection in stochastic markets with exponential utility
functions. Ann. Oper. Res. 166(1), 281–297 (2009)

5. R. Elliott, Y. Hinz, Portfolio optimization, hidden Markov models, and technical analysis of
P&F-Charts. Int. J. Theor. Appl. Finance 5(4), 385–399 (2002)

6. R.S. Mammon, R.J. Elliott, Hidden Markov Models in Finance (Springer, New York, 2007)
7. L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech

recognition. Proc. IEEE 77(2), 257–286 (1989)
8. L. Stettner, Risk-sensitive portfolio optimization with completely and partially observed factors.

IEEE Trans. Automat. Contr. 49, 457–464 (2004)

Chapter 10
Fuzzy Portfolio Selection Models: A Numerical
Study

Enriqueta Vercher and José D. Bermúdez

Abstract In this chapter we analyze the numerical performance of some
possibilistic models for selecting portfolios in the framework of risk-return trade-
off. Portfolio optimization deals with the problem of how to allocate wealth among
several assets, taking into account the uncertainty involved in the behavior of the
financial markets. Different approaches for quantifying the uncertainty of the future
return on the investment are considered: either assuming that the return on every
individual asset is modeled as a fuzzy number or directly measuring the uncertainty
associated with the return on a given portfolio. Conflicting goals representing the
uncertain return on and risk of a fuzzy portfolio are analyzed by means of possi-
bilistic moments: interval-valued mean, downside-risk, and coefficient of skewness.
Thus, several nonlinear multi-objective optimization problems for determining the
efficient frontier could appear. In order to incorporate possible trading requirements
and investor’s wishes, some constraints are added to the optimization problems, and
the effects of their fulfillment on the corresponding efficient frontiers are analyzed
using a data set from the Spanish stock market.

10.1 Introduction

The portfolio selection problem deals with finding an optimal strategy for building
satisfactory portfolios. From Markowitz’s seminal work many different modeling
approaches have been developed in order to propose suitable investment strate-
gies [44]. Concerning uncertainty quantification, it is assumed that these decision
problems can be modeled either by using the stochastic tools provided by probability
theory or by using soft computing approaches based on fuzzy set theory [65].

E. Vercher (�) • J.D. Bermúdez
Department of Statistics and Operational Research, University of Valencia,
C/ Dr. Moliner 50, 46100-Burjassot, Spain
e-mail: vercher@uv.es; bermudez@uv.es

M. Doumpos et al. (eds.), Financial Decision Making Using Computational Intelligence,
Springer Optimization and Its Applications 70, DOI 10.1007/978-1-4614-3773-4 10,
© Springer Science+Business Media New York 2012

253

254 E. Vercher and J.D. Bermúdez

The decision problem under uncertainty must be then approached using different
mathematical tools, and from an optimization point of view both linear and
nonlinear programming and different meta-heuristic techniques can be used for
solving the portfolio selection problem.

Modern portfolio selection theory usually deals with two opposite concepts:
risk aversion and maximizing return. The main point of this modeling approach
is how risk and asset profitability are defined and measured. Following Markowitz’s
proposal classic models consider the return on an asset as a random variable and
its profitability is defined as the mathematical expectation of that random variable,
while risk is measured by means of the variance. Since the formulation of the mean–
variance model, a variety of enlarged and improved models have been developed
in several directions. One dealt with alternative portfolio selection models either
by modifying the risk measure (mean–semivariance model [45], mean-absolute
deviation model [31], mean–downside risk models [54, 55]) or by adding higher
probability moments to best represent the uncertainty on the returns [30,34]. Others
dealt with the introduction of factors influencing stock prices based on the Capital
Asset Pricing Model [42, 50] and derivative methodologies.

In order to identify the best portfolio for a given level of desired return, Levy and
Markowitz [39] propose extending the classic portfolio selection models into multi-
criteria decision-making models. A straightforward approach to selecting an optimal
portfolio is minimizing the risk and maximizing the expected return simultaneously,
that is considering a bi-objective optimization problem. From then on, multi-
objective programming techniques have been applied for portfolio selection, and
the solutions are usually obtained using scalar optimization by aggregation of the
objectives into a single one [3, 57]. Some multi-objective approaches also allow the
incorporation of higher-order moments as several alternative criteria for portfolio
selection [10, 34, 56, 62].

Another approach to uncertainty quantification is based on fuzzy set theory,
which also provides a framework for the analysis of decisions about investment
under imperfect knowledge of future market behavior. Different elements and
characteristics of the portfolio selection problem can be fuzzified such as the
following papers reflect. Watada [63] uses fuzzy sets to introduce the vague goals
of the decision makers for the expected rate of return and risk in the mean–
variance model. Ramaswamy [48] applies fuzzy decision theory to selecting optimal
portfolios with targets above the risk-free rate, taking into account only market risk
under different scenarios of market behavior. Tanaka and Guo [58] use possibility
distributions to model uncertainty in the returns, allowing the incorporation of expert
knowledge by means of a possibility grade, which reflects the degree of similarity
between the future state of stock markets and the state of previous periods. Arenas
et al. [2] propose a fuzzy goal programming approach for portfolio selection based
on a factor model, also taking into account the liquidity of the investment. León
et al. [37] present a fuzzy interactive algorithm for selecting optimal portfolios
that uses a modification of Zimmermann’s method [67] for solving multi-objective
decision problems; the authors also describe a fuzzy optimization scheme to manage
unfeasible instances of the portfolio selection problem.

10 Fuzzy Portfolio Selection Models: A Numerical Study 255

In this chapter we analyze the performance of certain possibilistic multi-objective
portfolio selection models with the main objective of providing the investor with
sufficient tools to address the portfolio selection problem. Discrete constraints
representing trading requirements and investors’ preferences are introduced by
means of diversification and restricted cardinality conditions. The optimization
scheme goals are to minimize the risk of the investment while maximizing the
expected return and skewness. Then, a multi-objective evolutionary algorithm finds
efficient portfolios that also meet the investors’ wishes. The uncertainty in the
expected income is represented by modeling the returns on the individual assets as
trapezoidal fuzzy numbers, or alternatively, directly computing the trapezoidal fuzzy
number that approximates to the return on a given portfolio, without requiring the
estimation of the joint distribution of the returns on the assets. The expected return
on the investment are approximated by using interval-valued possibilistic means,
the risk being measured as a fuzzy downside risk. In order to analyze whether
the introduction of skewness would significantly improve the quality of chosen
portfolios, the relationship between the fuzzy downside risk and the possibilistic
coefficient of skewness is considered, also with respect to the observation that
increasing diversification could lead to a loss of skewness. Our approaches for
selecting efficient portfolios are applied to a selection of assets from the Spanish
Stock Market.

The rest of the chapter is organized in the following manner. The next section
presents a brief summary of portfolio optimization models. In Sect. 10.3 we include
some definitions and basic results of fuzzy sets and possibilistic moments, which are
used to represent the uncertainty of returns. Section 10.4 describes the formulation
of the portfolio selection problem as a possibilistic multi-objective programming
problem. Section 10.5 shows that a satisfactory solution can be easily obtained
using a meta-heuristic procedure. Suitable comparisons are reported, also showing
the influence of the presence of discrete constraints and the effect of considering
skewness as an effective goal of the optimization scheme. Section 10.6 gives the
conclusions.

10.2 Portfolio Optimization Models

Let us present some portfolio modeling approaches, paying special attention to the
optimization techniques that have been used for selecting optimal portfolios.

10.2.1 Portfolio Selection Models Based on Probability Theory

Markowitz shows how rational investors can construct optimal portfolios under
conditions of uncertainty using both probability theory and optimization techniques.
In the mean–variance (MV) portfolio approach the return on any portfolio is

256 E. Vercher and J.D. Bermúdez

quantified as its expected value and its risk is quantified as its variance. In a standard
formulation we have the following quadratic programming problem, for a given
expected return ρ :

(MV) Min ∑n
j=1∑

n
i=1σi jxix j

s.t. ∑n
j=1 x jE(R j) = ρ

∑n
j=1 x j = 1

x j ≥ 0,

where x j is the proportion of the portfolio held in the asset jth, R j is the random
variable representing the return on asset jth, and σi j is the covariance between Ri

and R j, for i, j = 1, . . . ,n. The solution for this quadratic program for different values
of ρ allows identifying the set of efficient portfolios (see [4], for a complete report on
nonlinear optimization). It is usual to plot the pairs (σ ,ρ) to represent the portfolio
efficient frontier where σ is the standard deviation.

A number of researchers have introduced alternative measures of risk for
portfolio planning, and in many cases these measures are linear, leading to a
corresponding simplification in the computational model. According to Konno and
Yamazaki [31], when the returns on the assets are multivariate normally distributed,
the above portfolio selection problem is equivalent to the mean-absolute deviation
model (MAD), which minimizes the sum of absolute deviations from the averages
associated with the x j choices:

(MAD) Min E(|∑n
j=1 R jx j −E(∑n

j=1 R jx j)|)
s.t. ∑n

j=1 x jE(R j)≥ Mρ
∑n

j=1 x j = M
0 ≤ x j ≤ u j,

where M is the total fund and u j represents the maximum amount of the total fund
which can be invested in the asset jth. This modeling approach permits avoidance
of one of the main drawbacks associated with the solution of the MV model:
the input problem of estimating 2n+ n(n− 1)/2 parameters. Moreover, it can be
easily converted into a finite linear optimization problem by replacing its objective
function with:

Min (1/T)∑T
k=1 yk

s.t. yk +∑n
j=1(rk j −E(R j))x j ≥ 0 k = 1, . . . ,T

yk −∑n
j=1(rk j −E(R j))x j ≥ 0 k = 1, . . . ,T,

where the returns on the assets over T periods are given and rk j denotes the return on
the jth asset at the time k, for k = 1, . . . ,T . The corresponding linear programming
problem (LMAD) gives portfolios which involve fewer nonzero components and
hence reduces the numerous small transactions that are likely to appear in the MV
model.

Concerning the performance of the above modeling approaches, Simaan [51]
stated that although the minimization of mean-absolute deviation is close to the MV

10 Fuzzy Portfolio Selection Models: A Numerical Study 257

formulation, they lead to two different efficient sets. This divergence is probably due
to the fact that each model utilizes different sample statistics and consequently relies
on a different set drawn from the sample. On the other hand, since the normality
assumption is rarely verified in practice, different portfolios can be obtained when
the above models are applied. Júdice et al. [29] use MV and LMAD models in
real-life capital markets for analyzing the stability of the selected portfolios and
their expected return, and conclude that no one model is superior to the other.
Papahristodoulou and Dotzauer [47] also compare them with out-of-sample data
from shares traded in the Stockholm Stock Exchange and the results show that the
MV model yields higher utility levels and higher degrees of risk aversion in very
similar computing times.

Dissatisfaction with the traditional notion of variance as a measure of investment
risk may be due to the fact that it makes no distinction between gains and losses.
Thus, Markowitz [45] proposed the use of the semi-variance instead of the variance:

SV(x) = E

⎛
⎝
(

max

{
0,E(

n

∑
j=1

R jx j)−
n

∑
j=1

R jx j

})2
⎞
⎠ (10.1)

From then on, several optimization models which consider only the downside risk
of a portfolio have been introduced. In particular, if risk is measured by means of
the mean-absolute semi-deviation, as proposed in Speranza [55], the following risk
function appears:

SD(x) = E

(∣∣∣∣∣min

{
0,

n

∑
j=1

R jx j −E(
n

∑
j=1

R jx j)

}∣∣∣∣∣

)
(10.2)

which can be easily evaluated in contrast with the complexity of computing the
semi-variance of a given portfolio. Konno et al. [32] review the performance of
different lower partial measures of risk by applying linear programming techniques,
which also allows the efficient resolution of large-scale instances.

Recently, a lot of research has been undertaken with the purpose of constructing
efficient portfolios using meta-heuristic techniques [1, 14, 43] and for developing
decision support system (DSS) strategies for assessing the investors during the
process of decision making [64, 69].

10.2.2 Fuzzy Approaches for Portfolio Selection

Portfolio selection models use parameters, goals, and constraints whose character-
istics and values are imprecise in a certain sense. This imperfect knowledge can be
introduced by means of fuzzy quantities in very different ways. Let us mention some
of them.

The portfolio selection problem under uncertainty can be transformed into a
problem of decision making in a fuzzy environment by modeling the investors’

258 E. Vercher and J.D. Bermúdez

aspiration levels for the expected return on and risk of through suitable membership
functions of a fuzzy set. For instance, the fuzzy portfolio selection model in
Watada [63], based on the mean–variance model, assigns a logistic membership
function to the goal of expected return, as follows:

μE

(
n

∑
j=1

x jE(R j)

)
=

1
1+ exp[−β1(∑n

j=1 x jE(R j)−EM)]
, (10.3)

where β1 is the positive shape parameter of the logistic function and EM is the
point in the support of the membership function with a value of 0.5 (analogously
for the membership function of the goal associated with risk: β2 and VM). Since
goals and constraints can be represented as a fuzzy set, the corresponding decision
problem can be defined as the intersection of goals and constraints. Therefore, if
we consider a full compensation approach, it would be more appropriate to define
the membership function of the fuzzy decision by taking the maximum degree of
membership achieved by any of the fuzzy sets representing objectives or constraints.
The portfolio selection problem can then be stated as

(FMV) Max λ
s.t. λ +(exp[−β1(∑n

j=1 x jE(R j)−EM)])λ ≤ 1
λ +(exp[β2(∑n

j=1σi jxix j −VM)])λ ≤ 1

∑n
j=1 x j = 1

x j ≥ 0,

where λ is the degree of satisfaction of the solution of the above nonlinear
programming problem.

Another approach to managing uncertainty is based on possibility distributions
which are associated with fuzzy variables [20, 66]. Tanaka and Guo [58], for
instance, use exponential possibility distribution to build a possibility portfolio
model which integrates the historical data set of returns on individual assets and
experts’ experience and judgment. Two possibility distributions (upper and lower)
are identified from the given possibility degrees for data that reflect two opposing
expert opinions. Portfolio selection problems based on upper and lower possibility
distributions are formalized as quadratic programming problems minimizing the
spreads of possibility portfolios subject to the given center returns (rc), as follows:

(TG) Min xtDAx
s.t. ctx = rc

∑n
j=1 x j = 1

x j ≥ 0.

The estimation of the matrix DA is made using a linear programming problem,
where the data are (rk,hk), k = 1, . . . ,T and rk = (r1k, . . . ,rnk)

t is the vector of the
returns on n assets during the kth period, hk being an associated possibility grade

10 Fuzzy Portfolio Selection Models: A Numerical Study 259

given by expert knowledge to reflect the degree of similarity between the future
state of stock markets and the state of the kth sample. The authors show that the
spread of the portfolio return based on a lower possibility distribution is smaller
than the spread of the portfolio return based on an upper possibility distribution for
the same center value. More information about this possibilistic model and other
approaches to portfolio selection based on fuzzy set theory can be found in [22].

In contrast with the above approaches other authors propose the incorporation
of fuzzy numbers to directly represent the uncertainty of the future returns on the
assets [12,38,46]. In Carlsson et al. [12], the rates of return on securities are modeled
by possibility distributions, and the return on, E(rp), and risk of the portfolio σ2(rp)
are, respectively, quantified using the possibilistic mean and variance previously
defined in [11]. The authors find an exact optimal solution to the following portfolio
selection problem under trapezoidal possibility distributions:

(CFM) Max E(rp)− 0.005Aσ2(rp)

s.t. ∑n
j=1 x j = 1

x j ≥ 0,

where A is an index of the investors’ aversion to risk. Alternatively, assuming that
the downside risk is a more realistic description of investor preferences, because
this risk function only penalizes the non-desired deviations, some fuzzy models
for portfolio selection have been proposed [61]. The fuzzy downside risk function
evaluates the mean-absolute semi-deviation with respect to the total return R̃P(x) as
follows [38]:

wP(x) = E(max{0,E(R̃P(x))− R̃P(x)}) (10.4)

where the total return on the fuzzy portfolio is a convex linear combination of the
individual asset returns, that is: R̃P(x) = ∑n

j=1 x jR̃ j and R̃ j are LR-fuzzy numbers,
for j = 1,2, . . . ,n. Then, the fuzzy mean–downside risk portfolio selection problem
can be stated in the following way:

(MDR) Min E(max{0,E(R̃P(x))− R̃P(x)})
s.t. ∑n

j=1 x jR̃ j � r̃

∑n
j=1 x j = 1

l j ≤ x j ≤ u j,

where l j ≥ 0 represents the minimum amount of the total fund which can be invested
in asset jth. The calculation of the fuzzy expected return and downside risk depends
on both the characteristics of the LR-fuzzy numbers which represent the individual
returns and the definition of the average of a fuzzy number. Also, for satisfying the
fuzzy constraint, different approaches can be used (see, for instance, [59]). Using
interval-valued expectations the above MDR model provides optimal portfolios by
applying linear optimization, linear semi-infinite optimization, or linear interval
programming, for different modeling approaches.

260 E. Vercher and J.D. Bermúdez

Recently, Huang [27] has introduced fuzzy models for portfolio selection under
the assumption that the returns on the assets are random fuzzy variables; other
approaches which deal with randomness and fuzziness simultaneously have also
been proposed (see, for instance, [25, 33]).

The next section introduces definitions of and criteria for modeling return and
risk using possibilistic moments and then looks into other related criteria which are
based on fuzzy logic to represent the uncertainty of future returns on assets and
portfolios.

10.3 Modeling Uncertainty

The concept of fuzzy sets was introduced by Zadeh in 1965, and since then it has
been used for modeling uncertainty or impreciseness in data. Fuzzy set theory allows
a more precise mathematical description to be given of what are normally vague
statements, and has become an interesting tool when applied to decision problems
(see, for instance, [5, 52, 68]). A deep and comprehensive treatment of fuzzy sets
and their properties is provided, for instance, in [21].

10.3.1 Fuzzy Numbers and Fuzzy Arithmetic

Let us briefly recall some definitions and results which will be used in what follows.

Definition 10.1. Let X denote the universal set. A fuzzy set Ã in X is characterized
by a membership function μÃ(x) which associates a real number in the interval
[0,1] with each point in X , where the value of μÃ(x) at x represents the grade of
membership of x in Ã.

Definition 10.2. A fuzzy number Ã is a fuzzy set defined on the set of real numbers
ℜ, characterized by means of a membership function μÃ(x) which is upper semi-
continuous and satisfies the condition supx∈ℜμÃ(x) = 1, and whose α-cuts, for 0 ≤
α ≤ 1: [Ã]α = {x ∈ℜ : μÃ(x)≥ α}, are convex sets.

Definition 10.3. A fuzzy number is said to be a trapezoidal LR-fuzzy number, Ã =
(al ,au,c,d)LR, if its membership function has the following form:

μÃ(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L(al−y
c) = y−(al−c)

c if y ∈ [al − c,al]

1 if y ∈ [al ,au]

R(y−au
d) = au+d−y

d if y ∈ [au,au + d]
0 otherwise

,

10 Fuzzy Portfolio Selection Models: A Numerical Study 261

where the reference functions L,R : [0,1] → [0,1] are linear, [al ,au] is the core of
Ã, and the closure of the support of Ã, supp(Ã) = {y : μÃ(y) > 0}, is exactly [al −
c,au + d].

The aggregation and ranking of positive linear combinations of LR-fuzzy
numbers have been extensively dealt with when their reference functions are linear
or all of them have the same shape, because it provides LR-fuzzy numbers of the
same shape. Thus, using Zadeh’s extension principle, the following arithmetical
rules hold.

Theorem 10.1. Let Ã = (al ,au,c1,d1)LR and B̃ = (bl ,bu,c2,d2)LR be two LR-fuzzy
numbers and let λ ∈ℜ be a real number. Then,

1. Ã+ B̃ = (al + bl,au + bu,c1 + c2,d1 + d2)LR

2. λ Ã =

{
(λal ,λau,λc1,λd1)LR i f λ ≥ 0
(λau,λal , |λ |d1, |λ |c1)LR i f λ < 0

,

where the addition and multiplication by a scalar is defined by the sup-min extension
principle.

The above result cannot be applied to differently shaped LR-fuzzy numbers,
where this aggregation is defined with respect to theα-level sets of the fuzzy number
Ã [20, 36].

10.3.2 Possibilistic Moments

The possibility measure of an event might be interpreted as the possibility degree
of its occurrence under a possibility distribution. Let Ã be a fuzzy number, the
membership function values for every x ∈ ℜ can be interpreted as the degree of
possibility of the statement “x is the value of Ã.” Since the fuzzy numbers can
be considered a special class of possibility distributions, the imprecise coefficients
and vagueness and imprecision of data may be modeled by means of possibility
distributions [66].

In this chapter the uncertainty regarding the returns of a given investment is
modeled by means of fuzzy quantities for which different definitions of the average
can be used. Let us remember some of them. In 1987 Dubois and Prade defined
the mean value of a fuzzy number as a closed interval bounded by the expectations
calculated from its lower and upper probability mean values [19]:

Definition 10.4. The interval-valued expectation of a fuzzy number Ã is the fol-
lowing interval: E(Ã) = [E∗(Ã),E∗(Ã)], whose endpoints are E∗(Ã) =

∫ 1
0 infÃαdα

and E∗(Ã) =
∫ 1

0 supÃαdα , where infÃα and supÃα denote the left and right extreme
points of the α-cut of Ã for 0 ≤ α ≤ 1.

This mean interval definition provides the nearest interval approximation to the
fuzzy number with respect to the metric introduced in [24], its width being equal

262 E. Vercher and J.D. Bermúdez

to the width of Ã in the Chanas sense [13]. We will use the midpoint of this mean
interval as the crisp representation of the fuzzy expected return, which is denoted
as Ē(Ã). In order to incorporate the importance of α-level sets into the definition
of mean value of a fuzzy quantity, Fullér and Majlender [23] introduce the concept
of weighted possibilistic expectation of fuzzy numbers, extending the definition of
interval-valued possibilistic mean and variance given by Carlsson and Fullér [11].

Definition 10.5. Let Ã be a fuzzy number and f (α) be a weighted function. The f -
weighted possibilistic mean of Ã is the following interval: M(Ã) = [M∗(Ã),M∗(Ã)],
where the endpoints are calculated as M∗(Ã) =

∫ 1
0 f (α)infÃαdα and M∗(Ã) =∫ 1

0 f (α)supÃαdα .

A variety of alternative criteria for the definition of higher order moments for the
portfolio selection can be found in the literature. Recently, Saedifar and Pasha [49]
have introduced new weighted possibilistic moments of fuzzy numbers and analyzed
the properties of the nearest weighted possibilistic points which are usually used
in the stage of defuzzification processes. Let us recall their definition of a 3rd
weighted possibilistic moment, which will be useful in the context of measuring
the asymmetry of LR-fuzzy numbers.

Definition 10.6. Let Ã be a fuzzy number and f (α) be a weighted function. The
3rd weighted possibilistic moment about the weighted possibilistic mean value of
Ã, M̄(Ã), is

μ3(Ã) =
1
2

∫ 1

0
f (α)[infÃα − M̄(Ã)]3dα+

1
2

∫ 1

0
f (α)[supÃα − M̄(Ã)]3dα (10.5)

where M̄(Ã) is the midpoint of the f -weighted possibilistic mean interval.

Throughout this chapter we work with the interval-valued expectation given in
Definition 10.4, which means that we assume that all the α-cuts have the same
weight: f (α) = 1 for every 0≤α ≤ 1, although the introduction of different weights
for every α should be straightforward.

10.3.3 Fuzzy Risk and Expected Return on Portfolios

Let us consider a portfolio in which the total wealth has to be allocated to n
risky assets. The vector X = (x1, . . . ,xn) represents the proportions of the total
investment devoted to each asset jth, for j = 1, . . . ,n, and the components of vector
X are restricted to the basic constraints of ∑n

j=1 x j = 1 and x j ≥ 0, if the short-
selling of the assets is not allowed. The uncertainty regarding its future return
is modeled by means of fuzzy quantities based on the historical returns over T
periods: {rt j}, for t = 1, . . . ,T and j = 1, . . . ,n. Therefore, associated with each
rate of return there is a possibility distribution defined by the membership function

10 Fuzzy Portfolio Selection Models: A Numerical Study 263

of the corresponding fuzzy set. This approach allows the application of the above
definitions of possibilistic moments in order to quantify the uncertainty associated
with the future return on a portfolio, X .

Here we will analyze two different approaches to the measurement of the
uncertainty on the return of a risky investment. Firstly, modeling the return on
the individual assets using trapezoidal LR-fuzzy numbers R̃ j and alternatively
considering the returns on a given portfolio as the historical data set.

10.3.3.1 Fuzzy Returns on the Individual Assets

Let us denote the return on the jth asset by R̃ j = (al j,au j,c j,d j)LR, a trapezoidal
fuzzy number whose α-level cuts are [R̃ j]

α = [al j − c j(1−α),au j −d j(1−α)], for
α ∈ [0,1]. The core and spreads of the fuzzy return on every asset j0 are computed
as functions of the sample percentiles of the data in the corresponding column:
{rt j0}T

t=1. Then, the total fuzzy return on the portfolio X is the following trapezoidal
fuzzy number:

R̃P(x) = ∑n
j=1 x jR̃ j =

(
∑n

j=1 al jx j,∑n
j=1 au jx j,∑n

j=1 c jx j,∑n
j=1 d jx j

)
LR

= (Pl(x),Pu(x),C(x),D(x))LR .

This approach does not require the estimation of the joint possibility distribution
of the return on the assets, which is not usually computable with any degree of
confidence.

Since the interval-valued expectation remains additive in the sense of the
addition of fuzzy numbers (Definition 10.4), we can easily compute the possibilistic
moments of the total fuzzy return R̃P(x). It is easy to see that its interval-valued
mean is

E(R̃P(x)) =
[
Pl(x)− C(x)

2 ,Pu(x)+
D(x)

2

]
(10.6)

then as a scalar representative of this mean-interval we use its middle point:

Ē(R̃P(x)) =
1
2

n

∑
j=1

(al j + au j)x j +
1
4

n

∑
j=1

(d j − c j)x j. (10.7)

In terms of measuring the risk of the investment, we will use the fuzzy downside
risk defined in (10.4). Then, applying the interval-valued expectation given in
Definition 10.4, it can be found that this fuzzy interval risk is (see [61] for details):

wP(x) =

[
0,Pu(x)−Pl(x)+

1
3
(C(x)+D(x))

]
(10.8)

and we use the length of this interval mean as a crisp representation of the investment
risk:

w̄P(x) =
n

∑
j=1

(
au j − al j +

1
2
(c j + d j)

)
x j. (10.9)

264 E. Vercher and J.D. Bermúdez

Delgado et al. [18], in the context of ranking fuzzy numbers, define the value
V (B̃) and ambiguity A(B̃) of a fuzzy number B̃. It is easy to see that the value of
R̃P(x), with respect to the reducing function s(r) = r, coincides with the expected
return given by (10.7). Moreover, (10.9) is twice the ambiguity of R̃P(x). This fact
reinforces the idea that these values are picking up the inexactness of the future
return and they could be useful for selecting suitable sharing portfolios.

When the return on the portfolio is not symmetrically distributed around the
mean, it is usually recommended to measure this asymmetry by using information
about the 3rd moment of the possibility distribution. On the other hand, to obtain
a relative measure of the asymmetry of the returns on fuzzy portfolios, we have
recently introduced the following definition [60]:

Definition 10.7. Let R̃P(x) be the total return on a portfolio and μ3(R̃P(x)) its
3rd possibilistic moment about the mean value Ē(R̃P(x)), then the coefficient of
possibilistic skewness of R̃P(x) is defined as

S(R̃P(x)) =
μ3(R̃P(x))
(w̄P(x))3 (10.10)

For trapezoidal fuzzy numbers we have also proved that the above coefficient of
skewness can be calculated by means of the following ratio:

S(R̃P(x)) =
1
16

D(x)2 −C(x)2

(w̄P(x))2 (10.11)

The values in (10.7) and (10.9), which are the crisp representation of the possibilistic
expected return and downside risk of the total fuzzy return on a portfolio, have
previously been used to define the goals and constraints of portfolio selection
problems with fuzzy returns [38, 61].

10.3.3.2 Fuzzy Return on a Given Portfolio

The above approach does not incorporate the contemporary relationship of the
returns on the individual assets into the portfolio composition, because their
historical information has been independently analyzed. Since our main interest
is to suitably model the returns on a given portfolio, we can directly consider its
returns as the historical data set, instead of considering the individual returns on the
assets as the data set [6, 7], therefore the main difference between these approaches
appears in the modeling of uncertainty.

Now we propose to model the uncertainty about the future returns on a given
portfolio X = (x1, . . . ,xn) by using the information provided by the data set:
{rt(X)}T

t=1, in such a way that the contemporary relationship among the individual
returns is considered for each period t = 1, . . . ,T . We define this contemporary
return on X as follows:

rt(X) =
n

∑
j=1

rt jx j. (10.12)

10 Fuzzy Portfolio Selection Models: A Numerical Study 265

Table 10.1 Yearly returns on five securities (1937–1954) from
Markowitz’s historical data

Year Am. T. A.T.T. U.S.S. C.C. Frstn.

1937 −0.305 −0.173 −0.318 −0.065 −0.400
1938 0.513 0.098 0.285 0.238 0.336
1939 0.055 0.200 −0.047 −0.078 −0.093
1940 −0.126 0.030 0.104 −0.077 −0.090
1941 −0.280 −0.183 −0.171 −0.187 −0.194
1942 −0.003 0.067 −0.039 0.156 0.113
1943 0.428 0.300 0.149 0.351 0.580
1944 0.192 0.103 0.260 0.233 0.473
1945 0.446 0.216 0.419 0.349 0.229
1946 −0.088 −0.046 −0.078 −0.209 −0.126
1947 −0.127 −0.071 0.169 0.355 0.009
1948 −0.015 0.056 −0.035 −0.231 0.000
1949 0.305 0.038 0.133 0.246 0.223
1950 −0.096 0.089 0.732 −0.248 0.650
1951 0.016 0.090 0.021 −0.064 −0.131
1952 0.128 0.083 0.131 0.079 0.175
1953 −0.010 0.035 0.006 0.067 −0.084
1954 0.154 0.176 0.908 0.077 0.756

The sample percentiles of this data set define the core and spreads of the trapezoidal
fuzzy number X̃ = (pl , pu,c,d)LR, which represents the uncertainty about the future
returns on X . Then, we have the same possibilistic model and its measures of risk
and return are obtained by using the corresponding definitions. Then, we have:

Ē(X̃) =
pl + pu

2
+

d − c
4

(10.13)

w̄(X̃) = pu − pl +
d+ c

2
(10.14)

S(X̃) =
1
16

d2 − c2

w̄(X̃)2
. (10.15)

Let us show the performance of these two fuzzy approaches for modeling
uncertainty by using the set of historical data introduced by Markowitz [45].

10.3.3.3 Numerical Example

Let us assume that an investor wants to distribute one unit of wealth among five
securities (for instance: American Tobacco, A.T.T., United States Steel, Coca-Cola,
and Firestone) from the Markowitz data set. Table 10.1 shows their yearly returns
{rt j} from 1937 to 1954, for t = 1, . . . ,18 and j = 1, . . . ,5.

266 E. Vercher and J.D. Bermúdez

Table 10.2 Possibilistic moments of six portfolios built from Markowitz’s historical data

Portfolio Ē(R̃P(x)) w̄P(x) S(R̃P(x)) Ē(X̃) w̄(X̃) S(X̃)

X1 = (0.1,0.1,0.4,0.2,0.2) 0.121 0.552 0.041 0.108 0.483 0.030
X2 = (0.15,0.15,0.35,0.2,0.15) 0.111 0.520 0.040 0.094 0.440 0.021
X3 = (0.1,0.2,0.3,0.3,0.1) 0.099 0.481 0.036 0.089 0.383 0.010
X4 = (0.15,0.25,0.25,0.25,0.1) 0.094 0.463 0.034 0.076 0.359 0.006
X5 = (0.1,0.4,0.2,0.2,0.1) 0.090 0.427 0.028 0.075 0.322 −0.005
X6 = (0.35,0.2,0.15,0.15,0.15) 0.089 0.469 0.031 0.064 0.370 −0.007

Table 10.2 shows the performance of certain portfolios for the above approaches
to modeling uncertainty on future return. Firstly, for each asset j the core of the
trapezoidal fuzzy returns is approximated using the interval [q40,q60], qk being the
kth percentile of the sample {rt j}18

t=1, where the support is the interval between the
minimum and maximum observed return. Once each trapezoidal fuzzy number R̃ j

has been built, we can evaluate the total fuzzy return R̃Pi(x) for each portfolio {Xi}
and their possibilistic moment values. On the other hand, we can also approximate
the fuzzy returns on X̃i by using the same percentiles for the core and spreads from
the sample {rt(X)} and explicitly evaluate their possibilistic moment values using
(10.13)–(10.15).

The first columns in Table 10.2 show the possibilistic moments for the total
return on the portfolios, by assuming fuzzy returns on individual assets, and the
last three ones for the direct evaluation of the returns on given portfolios. Note that
the value of possibilistic moments is usually greater when the uncertainty regarding
the future returns on a given portfolio has been measured through the returns on
individual assets. The results in Table 10.2 also show that for both approaches
the possibilistic measures have a coherent behavior, that is higher returns and
higher asymmetry values are associated with higher risk. Note also that portfolio
X4 dominates portfolio X6 in both cases, the latter thus being inefficient. Moreover,
since portfolios X5 and X6 have negative skewness they should be rejected if we are
looking for portfolios with positive skewness, as will be stated in Sect. 10.4.

For the portfolios analyzed, the width of the support of R̃Pi(x) is greater than the
width of the support of X̃i, the cores being of similar length. This fact could mean
that the fuzzy representation of the portfolio return is more imprecise when it is
evaluated through the historical returns on the individual assets. Figure 10.1 shows
the fuzzy representation of returns on the portfolios X1 and X5. It does not seem easy
either to compare both fuzzy representations of uncertainty or to obtain conclusive
results for the general statement of fuzzy portfolio selection problems.

In the next section we present certain multi-objective programs for portfolio
selection based on the above possibilistic measures of return and risk. Without loss
of generality they deal with the approach which directly builds the fuzzy return on
a given portfolio, that is X̃ .

10 Fuzzy Portfolio Selection Models: A Numerical Study 267

0

0,2

0,4

0,6

0,8

1

1,2

-0,400 -0,200 0,000 0,200 0,400 0,600 0,800

X1

RP1(x)

0

0,2

0,4

0,6

0,8

1

1,2

-0,400 -0,200 0,000 0,200 0,400 0,600 0,800

X5

RP5(x)

Fig. 10.1 Fuzzy representation of the return on given portfolios. The left-hand graph corresponds
to portfolio X1, and the right-hand graph to portfolio X5. The blue solid lines correspond to X̃i and
the red dashed lines correspond to R̃Pi (x), for i = 1 and 5, respectively

10.4 Multi-objective Possibilistic Models for Portfolio
Selection

Recently, a few multi-criteria decision-making models have been proposed for
determining appropriate portfolios in risk-return trade-off assuming a fuzzy repre-
sentation of the uncertainty regarding future returns [8, 28, 40]. The multi-objective
formulation allows consideration of the more realistic situation in which several
conflicting goals competed in the allocation decision, providing both flexibility and
a large set of choices for the decision maker: the Pareto-optimal set, whose elements
are called efficient solutions. On the other hand, from a practical point of view,
taking investors’ preferences into account implies the inclusion of several types of
constraints, which may change the feasible region in which the optimal portfolio
must be selected and may also transform the type of optimization problem that must
be solved in such a way that it could be considerably more difficult to solve the new
problem than the original one. Therefore, the use of suitable mathematical program-
ming techniques is necessary for solving the portfolio selection problem [56].

The mathematical formulation of a multiple criteria optimization problem is as
follows:

(MOP) Max [f1(x), . . . , fr(x)]
s.t. x ∈ S,

where fi are deterministic functions and S ∈ℜn is the feasible set. This problem also
defines the objective feasible region Z = {z ∈ℜr : z = f (x), x ∈ S} in the objective
space ℜr, r being the number of objectives (see, for instance, [16]).

268 E. Vercher and J.D. Bermúdez

In the optimization problems with multiple objectives, the set of solutions is
composed of all those elements in the decision space S for which the corresponding
objective vector cannot be improved in any dimension without another one dete-
riorating. To characterize the efficient solutions for the MOP problem we use the
usual notion of Pareto optimality which determines how one alternative dominates
another alternative. Let us recall some useful definitions.

Definition 10.8. Let z∗ ∈ Z. Then z∗ is a non-dominated solution for MOP if and
only if there is no other z ∈ Z such that zi ≥ z∗i for i = 1, . . . ,r, with strict inequality
for at least one of them. Otherwise, z∗ ∈ Z is a dominated solution.

Definition 10.9. A decision vector x ∈ S is said to be efficient for MOP if and only
if z = f (x) is a non-dominated solution.

The set of all efficient points is usually denoted by E and is called the efficient
set. The inefficient points are those whose image in Z is a dominated solution. Note
that when the goal is to minimize one objective fi the definitions are analogous,
taking into account that Min fi(x) =−Max(− fi(x)).

10.4.1 Possibilistic Mean–Downside Risk–Skewness Model

Here we propose to deal with certain multi-objective decision problems associated
with the possibilistic mean–downside risk–skewness model (MDRS), where three
objective functions corresponding to the crisp mean values of these possibilistic
moments are considered. Note that the objective functions are nonlinear because
they depend on the sample percentiles of the returns on the portfolio X . As is usual
for selecting efficient portfolios, we propose to maximize the odd moments while
minimizing the downside risk value. This multi-objective possibilistic portfolio
selection problem can then be formulated as follows:

(MDRS) Max z1 = Ē(X̃)

Min z2 = w̄(X̃)

Max z3 = S(X̃)

s.t. x ∈ S. (10.16)

Therefore, a non-dominated portfolio must offer the highest level of expected return
for a given level of risk and skewness and the lowest level of risk for a given level of
return and skewness. On the other hand, an explicit characterization of the decision
space S is needed in order to know where the feasible solutions must be found, and
then some constraints must be included to incorporate investors’ preferences into
the model. For instance, concerning an investor’s opinion, some of the following
constraints should be added:

10 Fuzzy Portfolio Selection Models: A Numerical Study 269

1. Limits to the budget to be invested in every asset.

(a) Lower bounds: Indicate the minimum level below which an asset is not
purchased and also imply an explicit diminution of the fund invested in the
sharing portfolio.

(b) Upper bounds: Limit the percentage of the budget in a given asset and it
could imply more diversification in the investment.

2. Portfolio size: Explicit specification of the number of assets in the portfolio or an
explicit rank-size.

3. Limits to the percentage that is invested in one group of assets J ⊂ {1, . . . ,n},
which are considered the basic unit of investment.

4. Achieving a given level of expected liquidity, and so on.

Note that the above constraints are implicitly related because of the requirement
to invest of the total budget and they define different subsets in the n-simplex, requir-
ing the introduction of binary and/or integer variables. Some heuristic algorithms
have been proposed to deal with the optimization problems that incorporate these
constraints into the mean–variance modeling approach [1, 14, 15].

In what follows we will consider finite upper and lower bounds for the asset
weight and cardinality constraints, in such a way that the decision space is
mathematically stated as follows:

S =

{
x ∈ℜn :

n

∑
j=1

x j = 1, l j ≤ x j ≤ u j, l j ≥ 0,kl ≤ c(X)≤ ku

}
, (10.17)

where c(X) is the number of positive proportions in portfolio X , that is c(X) =
rank(diag(X)). It is well known that this cardinality constraint involves a quasi-
concave function, c(X), which implies that optimization problems with this feasible
set are NP-hard [9]. Then, for solving the nonlinear multi-objective decision
problem MDRS, we use a meta-heuristic procedure that independently manages the
historical information about the returns on the assets and the investors’ preferences.

In order to generate efficient portfolios taking into account the goals of the
MDRS model, we will apply a multi-objective evolutionary algorithm which has
been prepared to deal with two conflicting objective functions. We then deal with
two alternative bi-objective optimization problems which incorporate the third goal
as a constraint, in the following way:

(MDRS1) Min z2 = w̄(X̃)

Max z3 = S(X̃)

s.t. Ē(X̃)≥ ρ
x ∈ S, (10.18)

where ρ is a given expected return, which is usually the rate offered for risk-free
investment, and

270 E. Vercher and J.D. Bermúdez

(MDRS2) Max z1 = Ē(X̃)

Min z2 = w̄(X̃)

s.t. S(X̃)≥ γ
x ∈ S. (10.19)

In a previous work we dealt with a bi-objective optimization problem with the
same goals as the MDRS2 problem, but without the requirement of positiveness
for the coefficient of asymmetry [7]. There we proposed a heuristic procedure for
generating the approximate Pareto frontier which is the basis of our multi-objective
evolutionary algorithm for solving the MDRS problem.

10.5 An Evolutionary Algorithm for Multi-objective
Constrained Fuzzy Portfolio Selection

Evolutionary algorithms (EA) are population-based stochastic heuristic procedures
based on the principles of natural selection. Starting with a random initial popula-
tion, an evolutionary algorithm searches through a solution space by evaluating a set
of possible candidates. After the best individuals are selected, new individuals are
created for the next generation through random mutation and crossover. Then, the
generational cycle is repeated a number of times until convergence.

The more popular evolutionary procedures are genetic algorithms (GA), origi-
nally proposed by Holland [26], which have been successfully applied in different
fields of decision-making theory. Recently, concerning portfolio optimization some
GA-based portfolio selection approaches have been proposed leading with MV
and MAD models with additional constraints such as minimum transaction lots,
cardinality size, buy-in thresholds, and transactions costs [15, 41, 53]. With respect
to the evolutionary approaches for approximating the efficient frontier of multi-
objective portfolio selection problems, Anagnostopoulos et al. [1] provide an
interesting performance comparison among the more usual multi-objective evolu-
tionary techniques.

10.5.1 Description of the Algorithm

Our proposal for solving the multi-objective optimization problems in (10.18) and
(10.19) is to use a multi-objective evolutionary algorithm (MOEA), which has been
specifically developed for dealing with admissible portfolios that meet (10.17) and
for approximating their corresponding Pareto frontier. Let us describe the basis
of our procedure, which follows the general framework outlined by Laumanns
et al. [35] and incorporates a dominance method for sorting individuals based on
the objective function values (see, for instance, [17]).

10 Fuzzy Portfolio Selection Models: A Numerical Study 271

We use a standard real-valued vector to represent the proportions of the budget
invested in the assets of a given portfolio: X . The procedure works with two
populations of individuals. The first population, which is randomly generated in
the initialization step, always has the same number of admissible individuals,
x ∈ S, while the second one, which maintains the non-dominated solutions, attains
different sizes depending on the number of non-dominated solutions in the current
generation. At each generation, the quality of an individual is evaluated and the
population is sorted according to each objective function values; the procedure
rejects those individuals which do not meet the additional constraint. Once the non-
dominated individuals have been identified we use them for building the current
approximate Pareto frontier: the upper boundary of one generation.

Then, the algorithm selects the best solutions by measuring their distance to the
current upper boundary and applies them over a mutation operator which slightly
perturbs a pair of randomly selected proportions. Some learning rules are introduced
for identifying which are the most interesting assets to being involved in the
next generations. The individuals of the offspring population must be admissible
portfolios and must contain all the non-dominated portfolios of the previous
generation. In order to decide if the convergence has been met, the algorithm
measures the distance between two successive upper boundaries, and stops if it is
less than a given C. Then, the last approximate Pareto frontier contains the selected
portfolios.

10.5.1.1 Experiment Settings

In our experiments we apply a generational genetic population strategy with a
population of 500 individuals for each portfolio size, the number of securities in
the portfolio varying between kl = 6 and ku = 9. We use an elitism mechanism
that selects 20% of the better individuals from the current population. The selection
mechanism prefers individuals that are better than other individuals in at least
one objective value, i.e. that they are not dominated by another individual. The
procedure then maintains the currently approximated Pareto-frontier, including all
those individuals in the elite set. We apply a local mutation constant p0 that
takes values in the set {0.050,0.020,0.010,0.001}. If the stopping criterion is not
satisfied, for C = 10−4, the algorithm builds 50 generations. These parameters
were selected from preliminary experiments (see, for instance, [7]). The algorithm
was implemented in R language (http://www.r-project.org/) and runs on a personal
computer.

10.5.2 Numerical Results

In this section we report the results that we have obtained on randomly generated
portfolios, X , whose risks and returns have been evaluated using a historical data set
from the Spanish Stock Exchange in Madrid. We consider the weekly returns on 27

http://www.r-project.org/

272 E. Vercher and J.D. Bermúdez

assets from the Spanish IBEX35 index between January 2007 and December 2009.
We took the observations of the Wednesday prices as an estimate of the weekly
prices. The sample returns rt j for t = 1, . . . ,152 and j = 1, . . . ,27 are

rt j =
p(t+1) j − pt j

pt j
, (10.20)

where pt j is the price of asset jth on Wednesday of week tth. For every portfolio
X we evaluate its weekly return using (10.12) and we assume a trapezoidal fuzzy
representation of the uncertainty associated to its future weekly return. The core
and support of X̃ are given by (q40,q60) and (q5,q95), respectively, qh being the h
percentile of the sample {rt(X)}, and then its expected return, downside risk, and
coefficient of skewness are obtained.

Let us assume that the diversification parameters are given by l j = 0 and u j =
0.2, for all j, and that the right-hand side values for the corresponding possibilistic
moments are fixed as ρ = 0.001 and γ = 0.01 in (10.18) and (10.19), respectively.

In order to analyze the performance of our evolutionary algorithm we have solved
numerous instances of the problems defined in (10.18) and (10.19), with different
portfolio sizes. The number of positive proportions in portfolio k is set from 6 to 9.
Note that because of the upper bound value, the minimum number of assets that
compose a portfolio is 5. In addition, we decide to consider up to 9 assets for an
admissible portfolio following the suggestion given in [15], which points out that
investors should not consider k values above one-third of the total number of assets
because of dominance relationships. Each configuration was randomly run 5 times
for both multi-objective programs, using the same set of seeds. Let us show some of
the results obtained.

10.5.2.1 Possibilistic Downside Risk–Skewness Model

Figure 10.2 shows the downside risk and possibilistic skewness for the first and final
generations of 5 independent runs for (10.18), k = 9 being the number of assets in
every portfolio. The figure clearly shows the generational improvement between
these two generations of 2,500 portfolios and the discontinuities which will appear
in the efficient frontier because of the cardinality constraint. Note that for the initial
population, the algorithm randomly generates portfolios with negative skewness and
very diversified risk values. Finally, it converges towards a frontier with an important
decrease in risk.

The fact of having discontinuities and missing parts in the Pareto frontier is more
clearly shown in Fig. 10.3, where the corresponding efficient frontiers for different
portfolio sizes are represented, for k from 6 to 9. Since all of them have been
obtained using populations of 2,500 portfolios, the plot shows the efficient frontiers
of a set of 10,000 admissible portfolios. Note that the effect of portfolio size can
be extremely hard if the investors decide to set this value to 6 assets. However, the
dominance relationship is not clearly stated among portfolios of different sizes, at
least with respect to risk and skewness.

10 Fuzzy Portfolio Selection Models: A Numerical Study 273

Fig. 10.2 Downside risk and possibilistic coefficient of skewness of the first and final generations
obtained for MDRS1 with k = 9. The black points correspond to the portfolios of the first
generation, and the blue points to the final generation. Population size: 2,500 portfolios

0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.
00

0.
02

0.
04

0.
06

Risk

S
ke

w
ne

ss

Fig. 10.3 Efficient frontiers of MDRS1 for different portfolio sizes from k = 6 to k = 9. The green
points correspond to k = 6, the black points to k = 7, the blue points to k = 8, and the red ones to
k = 9

We therefore apply our procedure assuming that portfolios may alternatively
contain 7, 8, or 9 assets. Figure 10.4 plots the coefficient of skewness and the
downside risk corresponding to the 1,500 portfolios of the first and last generations.
The final generation is now more explicitly defined, although its efficient frontier
also presents a few discontinuities. However, there are not too many differences
between the frontiers obtained by dealing with different portfolio sizes (population
size: 10,000 portfolios) and this last frontier obtained by randomly building 1,500
portfolios at each generation.

Concerning the expected return of non-dominated portfolios (risk–skewness
trade-off) shown in Fig. 10.4, their pairs of risk-return values are shown in Fig. 10.5.
Note that some of the portfolios selected by solving MDRS1 are not efficient in the
risk-return trade-off.

274 E. Vercher and J.D. Bermúdez

Fig. 10.4 Downside risk and possibilistic coefficient of skewness of the first and final generations
obtained by solving MDRS1 for k from 7 to 9. Population size: 1,500 portfolios

0.035 0.040 0.045

0.
00

1
0.

00
2

0.
00

3
0.

00
4

Risk

E
xp

ec
te

d
re

tu
rn

Fig. 10.5 Downside risk and expected return of the portfolios of the Pareto frontier of the final
generation obtained by solving MDRS1 for k ∈ [7,9]

On the other hand, since increasing the k value implies increasing diversification,
it does not seem that this fact provides any loss of skewness, at least in this
optimization framework. In fact, Fig. 10.3 shows that by increasing k we can obtain
portfolios with greater values of the skewness coefficient.

10.5.2.2 Possibilistic Mean–Downside Risk Model

Analogously, we have performed the same experiments using the MDRS2 problem
and the results are presented in Fig. 10.5 for k = 7 and Fig. 10.6 for k from 6 to 9.
Again, fixing the number of assets in the portfolio to 6 would not be recommended.
In addition, it is also the most time-consuming experiment. Note that the rank of
the expected return values has increased considerably with respect to the results
obtained by solving MDRS1. Now more risky portfolios with more expected benefits

10 Fuzzy Portfolio Selection Models: A Numerical Study 275

Fig. 10.6 Downside risk and expected return on the portfolios of the first and final generations
obtained by solving MDRS2 with k = 7. Population size: 2,500 portfolios

0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.
00

0
0.

00
5

0.
01

0

Risk

E
xp

ec
te

d
re

tu
rn

Fig. 10.7 Efficient frontiers of MDRS2 for different portfolio sizes from k = 6 to k = 9. The green
points correspond to k = 6, the black points to k = 7, the blue points to k = 8, and the red ones to
k = 9

are provided for every experiment. However, what is not clearly established are
the dominance relationships among the corresponding efficient frontiers where the
number of assets in the portfolio is increased (Fig. 10.7).

Figure 10.8 jointly plots the downside risk of and expected return values on
the 1,500 portfolios of the first and last generations obtained by applying our
evolutionary algorithm to solve MDRS2 for k ∈ [7,9]. Figure 10.9 shows the
downside risk and possibilistic coefficient of skewness for the non-dominated
portfolios of the last generation. Note that when the risk value increases, the
portfolios obtained will be inefficient in the risk–skewness trade-off.

This result reinforces the idea that the inclusion of skewness in the portfolio
optimization scheme can play an interesting role for investors with great risk aver-
sion because it can provide them with alternative investment strategies. However, it
does not seem to be useful if the investors want to assume bigger risks because in
the risk–skewness trade-off the efficient frontier is obtained with lower risk values,
which are related to portfolios with lower expected returns.

Concerning the use of our evolutionary algorithm for providing efficient and
appropriate portfolios for the investors, the above results show the importance

276 E. Vercher and J.D. Bermúdez

Fig. 10.8 Downside risk and expected return on the portfolios of the first and last generations with
k ∈ [7,9] and MDRS2. The black points correspond to the first generation, and the blue ones to the
last generation. Population size: 1,500 portfolios

0.04 0.06 0.08 0.10

0.
01

0.
02

0.
03

0.
04

0.
05

Risk

S
ke

w
ne

ss

Fig. 10.9 Downside risk and possibilistic skewness of the portfolios of the Pareto frontier of the
final generation obtained by solving MDRS2 for k ∈ [7,9]

of suitably identifying their risk profiles. Then, different strategies based on the
mean–downside risk–skewness model can be developed in order to obtain different
investment proposals with portfolios satisfying the explicit preferences of the
investors. This modeling approach can also be useful for providing information
concerning the influence of bounds and cardinal sizes over the expected return on
and risk of the investment, which could be useful to support her or his decision
making.

10 Fuzzy Portfolio Selection Models: A Numerical Study 277

10.6 Conclusions

Concerning quantification of the uncertainty regarding future returns on risky assets
and given portfolios we propose to use LR-fuzzy numbers, whose possibilistic
moments measure the risk and profitability of the investment. In order to directly
approximate the contemporary relationship among the returns on the assets that
compose a portfolio, we propose to consider the returns on a given portfolio as
the historical data set instead of considering the individual returns on the assets as
the data set.

We extend the mean–downside risk model into a mean–downside risk–skewness
model using interval-valued expectations and higher possibilistic moments. We then
formulate a new fuzzy portfolio selection problem in which trading requirements
and investor preferences are introduced by means of discrete constraints. We
propose to solve it by applying multi-objective optimization techniques based on
evolutionary searches.

We present some numerical results for the possibilistic mean–downside risk–
skewness model for trapezoidal fuzzy numbers. We use two different strategies for
finding the efficient frontier and analyze the effect of introducing the possibilistic co-
efficient of skewness as a goal or as a constraint in the multi-objective optimization
problems. Our multi-objective evolutionary algorithm is effective for solving these
difficult optimization problems and for providing efficient frontiers that only take
into account portfolios that meet investor preferences. Thus, different investment
proposals suitably categorized by different risk tendencies can be proposed to the
investors.

In our opinion, this multi-objective evolutionary algorithm could be a good
strategy for finding suitable portfolios in the approximation Pareto frontier in those
situations in which the description of the data set is also made with LR-fuzzy
numbers of different shapes, because the analysis of the quality of a portfolio is
only based on the specific uncertainty of every portfolio.

Acknowledgements This research was partially supported by the Ministerio de Ciencia e
Innovación of Spain under grant number MTM2008-03993.

This manuscript was prepared during a research stay of E. Vercher at the Centre for
Interdisciplinary Mathematics (CIM), Uppsala University (Sweden), supported by the Vicerectorat
d’Investigació i Polı́tica Cientı́fica, University of València (Spain).

References

1. K.P. Anagnostopoulos, G. Mamanis, A portfolio optimization model with three objectives and
discrete variables. Comp. Oper. Res. 37, 1285–1297 (2010)

2. M. Arenas, A. Bilbao, M.V. Rodrı́guez, A fuzzy goal programming approach to portfolio
selection. Eur. J. Oper. Res. 133, 287–297 (2001)

3. E. Ballestero, C. Romero, Portfolio selection: A compromise programming solution. J. Oper.
Res. Soc. 47, 1377–1386 (1996)

278 E. Vercher and J.D. Bermúdez

4. M. Bazaraa, H. Sherali, C. Shetty, Nonlinear Programming: Theory and Algorithms, 3rd edn.
(Wiley, New York, 2006)

5. R. Bellman, L.A. Zadeh, Decision-making in a fuzzy environment. Manag. Sci. 17, 141–164
(1970)

6. J.D. Bermúdez, J.V. Segura, E. Vercher, A fuzzy ranking strategy for portfolio selection applied
to the Spanish stock market, in Proceedings of the 2007 IEEE International Conference on
Fuzzy Systems (2007), pp. 787–790

7. J.D. Bermúdez, J.V. Segura, E. Vercher, A multi-objective genetic algorithm for cardinality
constrained fuzzy portfolio selection. Fuzzy Set. Syst. 188, 16–26 (2012)

8. R. Bhattacharyya, S. Kar, D.D. Majumber, Fuzzy Mean-Variance-skewness portfolio selection
models by interval analysis. Comp. Math. Appl. 61, 126–137 (2011)

9. S.P. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,
2004)

10. W. Briec, K.Kerstens, O. Jokund, Mean-variance-skewness portfolio performance gauging.
A general shortage function and dual approach. Manag. Sci. 53, 135–149 (2007)

11. C. Carlsson, R. Fullér, On possibilistic mean value and variance of fuzzy numbers. Fuzzy Set.
Syst. 122, 315–326 (2001)

12. C. Carlsson, R. Fullér, P. Majlender, A possibilistic approach to selecting portfolios with
highest utility score. Fuzzy Set. Syst. 131, 13–21 (2002)

13. S. Chanas, On the interval approximation of a fuzzy number. Fuzzy Set. Syst. 122, 353–356
(2001)

14. T.-J. Chang, N. Meade, J.E. Beasley, Y.M. Sharaiha, Heuristics for cardinality constrained
portfolio optimization. Comp. Oper. Res. 27, 1271–1302 (2000)

15. T.-J. Chang, S.-Ch. Yang, K.-J. Chang, Portfolio optimization problems in different risk
measures using genetic algorithm. Expert Syst. Appl. 36, 10529–10537 (2009)

16. V. Chankong, Y.Y. Haimes, Multiobjective Decision Making: Theory and Methodology (North
Holland, New York, 1983)

17. C.A.C. Coello, Evolutionary multi-objective optimization: A historical view of the field. IEEE
Comput. Intell. Mag. 1(1), 28–36 (2006)

18. M. Delgado, M.A. Vila, W. Voxman, On a canonical representation of fuzzy numbers. Fuzzy
Set. Syst. 93, 125–135 (1998)

19. D. Dubois, H. Prade, The mean value of a fuzzy number. Fuzzy Set. Syst. 24, 279–300 (1987)
20. D. Dubois, H. Prade, Fuzzy numbers: an overview, in Analysis of Fuzzy Information, ed. by

J. Bezdek (CRC Press, Boca Raton, 1988), pp. 3–39
21. D. Dubois, H. Prade, Fundamentals of Fuzzy Sets (Kluwer, Boston, 2000)
22. Y. Fang, K.K. Lai, S.Y. Wang, Fuzzy portfolio optimization, in Lecture Notes in Economics

and Mathematical Systems, vol. 609 (Springer, Berlin, 2008)
23. R. Fullér, P. Majlender, On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy

Set. Syst. 136, 363–374 (2003)
24. P. Grzegorzewski, Nearest interval approximation of a fuzzy number. Fuzzy Set. Syst. 130,

321–330 (2002)
25. T. Hasuike, H. Katagiri, H. Ishii, Portfolio selection problems with random fuzzy variable

returns. Fuzzy Set. Syst. 160, 2579–2596 (2009)
26. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control and Artificial Intelligence (University of Michigan Press,
Michigan, 1975)

27. X. Huang, A new perspective for optimal portfolio selection with random fuzzy returns. Inform.
Sci. 177, 5404–5414 (2007)

28. P. Jana, T.K. Roy, S.K. Mazumder, Multi-objective possibilistic model for portfolio selection
with transaction cost. J. Comput. Appl. Math. 228, 188–196 (2009)

29. J.J. Júdice, C.O. Ribeiro, J.P. Santos, A comparative analysis of the Markowitz and Konno
portfolio selection models. Investigaão Operacional 23(2), 211–224 (2003)

30. H. Konno, K. Suzuki, A mean-variance-skewness optimization model. J. Oper. Res. Soc. Jpn.
38, 137–187 (1995)

10 Fuzzy Portfolio Selection Models: A Numerical Study 279

31. H. Konno, H. Yamazaki, Mean-absolute deviation portfolio optimization model and its
application to Tokyo stock market. Manag. Sci. 37, 519–531 (1991)

32. H. Konno, H. Waki, A. Yuuki, Portfolio optimization under lower partial risk measures. Asia
Pac. Financ. Market 9, 127–140 (2002)

33. V. Lacagnina, A. Pecorella, A stochastic soft constraints fuzzy model for a portfolio selection
problem. Fuzzy Set. Syst. 157, 1317–1327 (2006)

34. T. Lai, Portfolio selection with skewness: A multiple-objective approach. Rev. Quant. Finance
Account. 1, 293–305 (1991)

35. M. Laumanns, E. Zitzler, L. Thiele, A unified model for multi-objective evolutionary algo-
rithms with elitism, in Proceedings of the 2000 Congress on Evolutionary Computation (IEEE
Press, Piscataway, 2000), pp. 46–53

36. T. León, E. Vercher, Solving a class of fuzzy linear programs by using semi-infinite program-
ming techniques. Fuzzy Set. Syst. 146, 235–252 (2004)

37. T. León, V. Liern, E. Vercher, Viability of infeasible portfolio selection problems: A fuzzy
approach. Eur. J. Oper. Res. 139, 178–189 (2002)

38. T. León, V. Liern, P. Marco, J.V. Segura, E. Vercher, A downside risk approach for the portfolio
selection problem with fuzzy returns. Fuzzy Econ. Rev. 9, 61–77 (2004)

39. H. Levy, H.M. Markowitz, Approximating expected utility by a function of mean and variance.
Am. Econ. Rev. 69, 308–317 (1975)

40. X. Li, Z, Qin, S. Kar, Mean-Variance-skewness model for portfolio selection with fuzzy
returns. Eur. J. Oper. Res. 202, 239–247 (2010)

41. C.C. Lin, T.Y. Liu, Genetic algorithms for portfolio selection problems with minimum
transaction lots. Eur. J. Oper. Res. 185, 393–404 (2007)

42. J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios
and capital budgets. Rev. Econ. Stat. 47, 13–37 (1965)

43. D. Maringer, H. Kellerer, Optimization of cardinality constrained portfolios with a hybrid local
search algorithm. OR Spectrum 25(4), 481–495 (2003)

44. H.M. Markowitz, Portfolio selection. J. Finance 7, 77–91 (1952)
45. H.M. Markowitz, Portfolio Selection: Efficient Diversification of Investments (Wiley, New

York, 1959)
46. F.J. Ortı́, J. Sáez, A. Terceño, On the treatment of uncertainty in portfolio selection. Fuzzy

Econ. Rev. 7, 59–80 (2002)
47. C. Papahristodoulou, E. Dotzauer, Optimal portfolios using linear programming models.

J. Oper. Res. Soc. 55, 1169–1177 (2004)
48. S. Ramaswamy, Portfolio Selection Using Fuzzy Decision Theory. BIS Working Paper no. 59,

Bank for International Settlements (1998)
49. A. Saedifar, E. Pasha, The possibilistic moments of fuzzy numbers and their applications.

J. Comput. Appl. Math. 223, 1028–1042 (2009)
50. W.F. Sharpe, Capital asset prices: A theory of market equilibrium under conditions of risk.

J. Finance 19, 425–442 (1964)
51. Y. Simaan, Estimation risk in portfolio selection: The mean variance model versus the mean

absolute deviation model. Manag. Sci. 43, 1437–1446 (1997)
52. R. Slowinski, Fuzzy Sets in Decision Analysis, Operations Research and Statistics (Kluwer,

Boston, 1998)
53. H. Soleimani, H.R. Golmakani, M.H. Salimi, Markowitz-based portfolio selection with

minimum transaction lots, cardinality constraints and regarding sector capitalization using
genetic algorithm. Expert Syst. Appl. 36, 5058–5063 (2009)

54. F. Sortino, R. van der Meer, Downside risk. J. Portfolio Manag. 17, 27–32 (1991)
55. M.G. Speranza, Linear programming model for portfolio optimization. Finance 14, 107–123

(1993)
56. R.E. Steuer, Y. Qi, M. Hirschberger, Suitable-portfolio investors, nondominated frontier

sensitivity, and the effect of multiple objectives on standard portfolio selection. Ann. Oper.
Res. 152, 297–317 (2007)

280 E. Vercher and J.D. Bermúdez

57. M. Tamiz, Multi-objective programming and goal programming, in Lecture Notes in Eco-
nomics and Mathematical Systems, vol. 432 (Springer, Berlin, 1996)

58. T. Tanaka, P. Guo, Possibilistic data analysis and its application to portfolio selection problems.
Fuzzy Econ. Rev. 2, 2–23 (1999)

59. E. Vercher, Portfolios with fuzzy returns: Selection strategies based on semi-infinite program-
ming. J. Comput. Appl. Math. 217, 381–393 (2008)

60. E. Vercher, J.D. Bermúdez, A possibilistic mean-downside risk-skewness model for efficient
portfolio selection. Technical Report: TR Departament Estadı́stica i Investigació Operativa,
Universitat de València (2011)

61. E. Vercher, J.D. Bermúdez, J.V. Segura, Fuzzy portfolio optimization under downside risk
measures. Fuzzy Set. Syst. 158, 769–782 (2007)

62. S.Y. Wang, Y.S. Xia, Portfolio selection and asset pricing, in Lecture Notes in Economics and
Mathematical Systems, vol. 514 (Springer, Berlin, 2002)

63. J. Watada, Fuzzy portfolio selection and its applications to decision making. Tatra Mountains
Mathematical Publication 13, 219–248 (1997)

64. P. Xidonas, G. Mavrotas, C. Zopounidis, J. Psarras, IPSSIS: An integrated multicriteria
decision support system for equity portfolio construction and selection. Eur. J. Oper. Res. 210,
398–409 (2010)

65. L.A. Zadeh, Fuzzy sets. Inf. Contr. 8, 338–353 (1965)
66. L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Set. Syst. 1, 3–28 (1978)
67. H.J. Zimmermann, Fuzzy Programming and linear programming with several objective

functions. Fuzzy Set. Syst. 1, 45–55 (1978)
68. H.J. Zimmermann, Fuzzy Set Theory and its Applications, 4th edn. (Kluwer, Boston, 2001)
69. C. Zopounidis, M. Doumpos, Multi-criteria decision aid in financial decision making: Method-

ologies and literature review. J. Multi-Criteria Decis. Anal. 11, 167–186 (2002)

Chapter 11
Financial Evaluation of Life Insurance Policies
in High Performance Computing Environments

Stefania Corsaro, Pasquale Luigi De Angelis, Zelda Marino,
and Paolo Zanetti

Abstract The European Directive Solvency II has increased the request of
stochastic asset–liability management models for insurance undertakings. The
Directive has established that insurance undertakings can develop their own “in-
ternal models” for the evaluation of values and risks in the contracts. In this
chapter, we give an overview on some computational issues related to internal
models. The analysis is carried out on “Italian style” profit-sharing life insurance
policies (PS policy) with minimum guaranteed return. We describe some approaches
for the development of accurate and efficient algorithms for their simulation.
In particular, we discuss the development of parallel software procedures. Main
computational kernels arising in models employed in this framework are stochastic
differential equations (SDEs) and high-dimensional integrals. We show how one
can develop accurate and efficient procedures for PS policies simulation applying
different numerical methods for SDEs and techniques for accelerating Monte Carlo
simulations for the evaluation of the integrals. Moreover, we show that the choice
of an appropriate probability measure provides a significative gain in terms of
accuracy.

11.1 Introduction

The European Directive 2009/138 (Solvency II) [19] has more and more increased
the request of stochastic asset–liability management (ALM) models for insurance
undertakings. The article 44 of the Directive states that “insurance and reinsurance
undertakings shall have in place an effective risk-management system—RSM—

S. Corsaro (�) • P.L. De Angelis • Z. Marino • P. Zanetti
Dipartimento di Statistica e Matematica per la Ricerca Economica, Università degli Studi
di Napoli “Parthenope”, via Medina 40, 80133 Napoli, Italy
e-mail: corsaro@uniparthenope.it; deangelis@uniparthenope.it; marino@uniparthenope.it;
zanetti@uniparthenope.it

M. Doumpos et al. (eds.), Financial Decision Making Using Computational Intelligence,
Springer Optimization and Its Applications 70, DOI 10.1007/978-1-4614-3773-4 11,
© Springer Science+Business Media New York 2012

281

282 S. Corsaro et al.

comprising strategies, processes and reporting procedures necessary to identify,
measure, monitor, manage and report, on a continuous basis the risks, at an
individual and at an aggregated level, to which they are or could be exposed, and
their interdependencies.”

The Solvency II Directive has established that insurance undertakings can
develop their own “internal models” for the evaluation of relevant quantities,
both values and risks, in the contracts. The “internal model” is defined by the
International Association of Insurance Supervisors as “a risk management system
developed by an insurer to analyse its overall risk position, to quantify risks and
to determine the economic capital required to meet those risks” [27]. Nevertheless,
in order to make the internal models of “effective” use, it is fundamental to obtain
responses in a suitable turnaround time; therefore, the computational performance
of the evaluation process plays a crucial role in this framework.

In this chapter, we focus on some computational issues related to internal models;
for the internal model validation it is a challenging matter to focus on their numerical
solution, with the aim of obtaining adaptive solution processes, that is, capable of
being properly scaled in order to balance accuracy and computational efficiency on
demand, depending on the evaluation context.

The analysis is carried out on “Italian style” profit-sharing life insurance policies
(PS policies) with minimum guarantees. In these contracts, the benefits which
are credited to the policyholder are indexed to the annual return of a specified
investment portfolio, called the segregated fund (in Italian gestione separata). In
Italian insurance market, the crediting mechanism typically guarantees a minimum
to the policyholder. A profit-sharing policy is a “complex” structured contract, with
underlying the segregated fund return; the models for values and risk evaluation of
the policy must provide “market-consistent valuation,” thus requiring the use of a
stochastic framework and of Monte Carlo (MC) simulation techniques.

The quantities in a single contract, defined in condition of financial and actuarial
uncertainty, have to be computed with great accuracy and in an “adequate” time in
order to effectively support undertakings in coming to decisions and to allow them
to quickly act in an appropriate way. The complexity of the contracts and the great
number of contracts in the portfolio lead to a complex overall valuation process, thus
requiring both accurate and efficient numerical algorithms and High Performance
Computing (HPC) methodologies and resources.

The literature on the development of high performance procedures for the ALM
of PS policy simulation is very poor; a relevant contribution is given in [8] where
appropriate technical and technological solutions based on a parallel distributed
processing framework (grid) are shown.

In this chapter, we report some results of our research activity on the numerical
simulation of profit-sharing policies.

In a first stage of our activity, we focused on the typical computational kernels
arising from stochastic models employed for PS policy modeling, aiming at
developing accurate numerical algorithms.

11 Financial Evaluation of Life Insurance Policies. . . 283

Main computational kernels involved in the simulations of PS policies are
multidimensional integrals and stochastic differential equations (SDEs). The inte-
grals represent expected values, the SDEs model the diffusion processes describing
the time evolution of risk sources. Preliminary experiments were carried out on a
single insurance contract; the analysis that we performed is presented in [11].

We then developed a parallel software based on the best-performing numerical
schemes. The first HPC environment we considered is a cluster-based system
with supercomputing capability assembled with commodity-off-the-shelf (COTS)
hardware components and equipped with freely available, standard software. The
choice was due to the observation that the use of cluster of personal computers and
workstations as platforms for running high performance applications in financial
undertakings widely increased, mainly due to their cost-effective nature. This
research activity is described in [14].

In the second stage of our work, we have considered the numerical simulation
of real ALM portfolios. In particular, we used the dynamic investment strategy with
accounting rules (DISAR) ALM system [8] as valuation framework.

In this framework, we analyzed a change of numéraire in the stochastic processes
for risk sources, since the flexibility of this approach can be particularly valuable
in a model with stochastic interest rates. In particular, we analysed the use of
the numéraire which defines the forward risk-neutral measure. Pricing under the
forward measure can provide considerable gains in accuracy, since it allows to
discount at a deterministic price deflator, even though the short rate is stochastic.
We proposed parallel algorithms for ALM of PS policy portfolios, under both
risk-neutral and forward risk-neutral measure, based on the parallelization of
Monte Carlo method [12]. The high performance computing environment used to
implement and test the algorithms is a Bladecenter architecture consisting of six
multi-core Blade; multi-core clusters are more and more popular, with almost all of
the Top 500 systems (http://www.top500.org) containing processors with a multi-
core architecture.

We moreover investigated the use of stochastic models to measure default risk in
PS policies. The motivation for this has been again the European Directive Solvency
II: indeed, it is established that “insurance and reinsurance undertakings may take
full account of the effect of risk-mitigation techniques in their internal model, as
long as credit risk . . . ” (art. 121), the default risk being a fundamental component
of credit risk. The carried out activity is described in [13].

The rest of this work is organized as follows: in Sect. 11.2 we present the general
valuation framework we refer to; in Sect. 11.3 we describe main computational
kernels in stochastic models employed for PS policy valuation; in Sect. 11.4 the
development of accurate and efficient procedures for PS policy simulation is
discussed and in Sect. 11.5 default-risk modeling is considered. Finally, in Sect. 11.6
we give some conclusions.

http://www.top500.org

284 S. Corsaro et al.

11.2 Valuation Framework

In this section we describe the main features of the mathematical formalization
of the Italian contractual standard for profit-sharing policies. We refer to notation
defined in [8, 17, 18]. For an exhaustive analysis of the basic principles and
methodological approach for a valuation system of profit-sharing policies with
minimum guarantees we address to [9].

In order to describe the profit-sharing mechanism, we consider a single premium
pure endowment insurance contract, written at time 0 for a life with age x, with term
T years and initial sum insured Y0. The crediting mechanism generally includes
minimum guarantees. Let Y0 be the initial sum insured and T the term, in years,
of the policy. Following a typical interest crediting mechanism, the benefits are
readjusted at the end of the year t according to the revaluation rule

Yt =Yt−1(1+ρt), t = 1, . . . ,T, (11.1)

where ρt is the so-called readjustment rate defined as

ρt =
max{min{ψIt ; It −η}− i;δ c}

1+ i
. (11.2)

ψ ∈ (0,1] is the participation coefficient, It is the rate of return of the segregated
fund in the year [t−1, t], η is the minimum annual rate retained by the insurance
undertaking, i is the technical rate, and δ c is the minimum guaranteed annual cliquet
rate.

All quantities, with obviously the exception of It , are contractually defined. The
final benefit is given by the insured sum Y0, raised at the financial readjustment
factor ΦT

YT = Y0ΦT , (11.3)

where, from (11.1) to (11.3), it follows that

ΦT =
T

∏
k=1

(1+ρk). (11.4)

If we denote by ε(x,T) the event “the aged x insured is alive at time T ,” then the
benefit for the policyholder—the liability of the company—in T is given by

YT = Y0ΦT Iε(x,T),

where Iε(x,T) is the indicator function of ε(x,T), defining actuarial uncertainty.
In a market consistent valuation framework of the policy the value of the

benefits at time t = 0, V (0,YT), can be expressed as the expected value of the
payoff at time t = T , weighted by a suitable state-price deflator. Both actuarial and

11 Financial Evaluation of Life Insurance Policies. . . 285

financial uncertainty have to be taken into account, anyway these risk sources can
be supposed to be mutually independent, thus the expectation can be factorized.
Finally, the expectations can be rewritten with a change of measure, employing
the so-called risk-neutral probability measure Q. It is well known that any positive
martingale, with initial value one, defines a change of probability measure; thus,
through the Radon–Nikodym derivative one can switch between suitable probability
measures. This process is usually referred to as a change of numéraire [4,24], where
the numéraire is a non-dividend paying asset with respect to which a probability
measure is defined. The numéraire corresponding to the risk-neutral measure is, at
time t, the money market account

β (t,T) = e
∫ T

t r(u)du.

Under Q prices measured in units of the value of the money market account are
martingales. Accordingly,

V (0,YT) = EQ

[
YT

e
∫ T

0 r(u)du

∣∣∣∣∣F0

]
T px = Y T EQ

[
T

∏
k=1

(1+ρk) e−
∫ T

0 r(u)du
∣∣∣F0

]
, (11.5)

where r(t) is the instantaneous intensity of interest rate determining the value of the
money market account, Ft is the filtration containing the information about financial
events up to time t,1 T px is the risk-neutral probability that an individual aged x
will persist for T more years (lapse included), and Y T = Y0 T px is the actuarially
expected benefit. Notice that both ρt and r(t) are Ft -adapted random variables.

The quantity V (0,YT) can be expressed using either a put or a call decomposition
(see [8], eq. 4, and [18], p. 91)

V (0,YT) = B0 +P0 = G0 +C0, (11.6)

where B0 is the value of a risky investment (base component) and P0 that of a put
option; G0 is the value of a guaranteed investment and C0 that of a call option,
or—in the jargon of the Directive Solvency II—the policy guaranteed benefits
and its future discretionary benefits. These decompositions show that the annual
minimum guarantees imply that financial options are embedded in these policies.
The “underlying” is the annual return of the reference fund, which in turn is
influenced by the “management actions” of the insurer.

1In the following formulas, for sake of brevity, it is understood that all the expected values are
conditional expectations.

286 S. Corsaro et al.

11.3 Stochastic Processes for Risk and Computational
Kernels

This section is devoted to the description of the main computational kernels in
stochastic models employed for PS policy valuation. In the general valuation frame-
work described in Sect. 11.2, the main computational kernels are multidimensional
integrals, representing expected values, and SDEs for risk modeling.

The segregated fund is typically composed of stocks and bonds; thus, risk sources
related to them both have to be taken into account. We now consider a typical
market model with three sources of uncertainty: interest rate, stock market, and
consumer price index (CPI). For each one we present a model mostly used in
financial modeling. We will introduce default-risk modeling later in the chapter.

Risk sources, time evolution is modeled by SDEs under a certain probability
measure. We introduce the models for risks in a typical risk-neutral setting. Risk
adjusted parameters are the only ones required for pricing purpose.

We denote by

W̃ = (W̃r,W̃p,W̃S),

the vector containing the risk-neutral Girsanov transformations of a three-dimensional
standard Brownian motion driving the time evolution processes of the short rate, the
CPI, and the stock market, respectively.

For the interest rate risk, we refer to the well-known one-factor Cox–Ingersoll–
Ross (CIR) model [15].

This model has some features which turn to be useful in insurance policy
modeling; for instance, it produces nonnegative values for the nominal interest rates
and, as reported below, it allows one to obtain closed form for the price of the unitary
default-free zero-coupon bond (zcb). On the other hand, in particular situations the
CIR model is not able to accurately fit market data; in these cases, other models
could be employed, such as the CIR++ [4] and two-factor model proposed by Hull
and White [26].

The market short rate at time t, r(t), is assumed to follow the square-root mean-
reverting diffusion process

dr(t) = α̃ [γ̃− r(t)]dt +σr

√
r(t)dW̃r(t), (11.7)

with 2α̃ γ̃ > σ2
r . This condition ensures the positivity of the process (11.7). α̃ and γ̃

are a linear transformation of the corresponding actual parameters. In this modeling
context, a closed form for the price B(t,T) of the unitary default-free zcb with
maturity T is available

B(t,T) = Ar(t,T)e−βr(t,T)r(t), (11.8)

11 Financial Evaluation of Life Insurance Policies. . . 287

where

Ar(t,T) =

[
dreφr(T−t)

φr(edr(T−t)− 1)+ dr

]νr

, (11.9)

βr(t,T) =
edr(T−t)− 1

φr(edr(T−t)− 1)+ dr
(11.10)

and

dr =
√

α̃2 + 2σ2
r , νr =

2α̃γ̃
σ2

r
, φr =

α̃+ dr

2
.

In (11.9) and (11.10) the risk-adjusted Brown–Dybvig parametrization [5] is
employed.

Since logB(t,T) is an affine transformation of r(t), the CIR process (11.7)
belongs to the so-called affine class of interest rate models [24].

For stock market risk we consider the Black and Scholes [2] log-normal process

dS(t)
S(t)

= (r(t)− d)dt +σSdW̃S(t), (11.11)

where d is the dividend yield.
Finally, CPI is described via a log-normal process as well; in particular, we

suppose that it evolves as [10]

dp(t)
p(t)

= ỹtdt +σpdW̃p(t), (11.12)

where

ỹt = yt −σp

is the risk-neutral counterpart of the expected value of inflation at time t

yt = y∞+(y0 − y∞)e−αyt .

y0, y∞ are the levels of current and long-period expected inflation, respectively;
expected inflation is therefore supposed to evolve deterministically with respect to
time. The parameter αy corresponds to the speed of adjustment, that is, yt is “pulled”
towards y∞ at a speed controlled by αy.

The short rate and the stock processes are often supposed to be not correlated to
the CPI. This is a restrictive hypothesis, but it supplies a simplified mathematical
model [10]. We follow this approach, that is, we only model correlation between
the short rate and the stock market processes. In particular, we consider a constant
correlation between r and S. Let L be the Cholesky factor of the correlation matrix;

288 S. Corsaro et al.

from the mentioned hypotheses it follows that the matrix L has the following
sparsity pattern:

L =

⎛
⎝

1 0 0
0 1 0
l13 0 l33

⎞
⎠ ,

where l13 is the fixed correlation level between r and S and l33 =
√

1− l2
13. Let

furthermore W̄ = (W̄r,W̄p,W̄S) be the correlated Brownian motion; the following
relation holds:

dW̄ = L ·dW̃ =

⎛
⎝

1 0 0
0 1 0
l13 0 l33

⎞
⎠ ·
⎛
⎝

dW̃r(t)
dW̃p(t)
dW̃S(t)

⎞
⎠=

⎛
⎝

dW̃r(t)
dW̃p(t)

l13dW̃r(t)+ l33dW̃S(t)

⎞
⎠ , (11.13)

thus, when introducing correlation among risk processes, only (11.11) has to be
modified according to (11.13).

The integrals involved in PS policy simulation are high-dimensional ones [7,39];
to derive such a representation, let us consider the revaluation factor in (11.4). The
function ΦT depends on the risk sources, expressed, as seen, by means of SDEs that
are simulated on a time grid

0 = t0 < t1 < · · ·< tn = T

therefore, n independent normally distributed random numbers are needed for each
process. Let

ξi = (ξi,1, . . . ,ξi,n)∼ N(0,1), i = 1, . . . ,k

be the random vector generated to simulate the ith risk source, where k is the number
of risk sources; to simulate all the stochastic processes we have to generate the
random vector

Z = (Z1, . . . ,Zkn) = (ξ1,1, . . . ,ξ1,n, . . . ,ξk,1, . . . ,ξk,n),

then, ΦT can be regarded as a deterministic function ΦT (Z) of the normally
distributed vector Z ∈ ℜkn. As a consequence, for instance, the expected value in
(11.5) can be represented by the kn-dimensional integral

EQ
[
ΦT e−

∫ T
0 r(u)du

]
=V (0,ΦT) =

∫

ℜkn
ΦT (Z)

e−ZT Z/2

(2π)n dZ. (11.14)

Typical values for the dimension kn are of order of hundreds, depending on the
time horizon and the discretization step.

11 Financial Evaluation of Life Insurance Policies. . . 289

The integral (11.14) can be transformed into an integral over the kn-dimensional
unit cube by means of the substitution Zi = G−1(xi) for i = 1, . . . ,kn, where G−1

denotes the inverse cumulative normal distribution function, thus obtaining

V (0,ΦT) = I(f) =
∫

[0,1]d
f (x)dx, (11.15)

with d = kn and f (x) =Φ(G−1(x)).

11.4 Improving Accuracy and Efficiency

In this section we describe some approaches for the development of accurate and
efficient procedures for PS policy simulation.

This purpose can be obviously met in different ways. For instance, one can
focus on the solution of computational kernels, investigating, on one hand, various
numerical methods for SDEs, on the other hand, techniques for accelerating numer-
ical simulations performed to evaluate multidimensional integrals. This approach
turns out to be effective when dealing with “small” portfolios. The simulation of
real “large” ALM portfolios requires execution times of order of hours, thus, the
gain which one can obtain by most efficient numerical methods is not enough: a
huge number of variables are involved and a huge number of conditions have to be
taken into account for accurate forecasts in this case. In order to develop software
procedures which can provide reliable estimates in a useful turn around time, it is
necessary, for example, to act on the mathematical model. We here present a change
of numéraire, that is, a change of the probability measure. Moreover, one can use
HPC methodologies and resources.

As already pointed out, we choose to organize this part of the chapter in
accordance with the time stages of our research activity on the topic. We start by
focusing on the main kernels in models for PS policy evaluation, thus, we act on
the numerical solution of SDEs and multidimensional integrals. In Sect. 11.4.1 we
indeed explore the use of different methods for the solution of computational kernels
and compare them in terms of performance (accuracy and efficiency).

In the second part, we discuss the simulation of real ALM portfolios of PS
policies. In Sect. 11.4.2 we describe a general procedure for this problem and
analyze the use of the forward risk-neutral measure for improving the accuracy, then
reducing the execution time. In Sect. 11.4.3 we describe a parallelization strategy to
speed up ALM portfolio simulation procedures.

11.4.1 Improving Accuracy and Efficiency: A First Approach

In Sect. 11.4.1.1 we present some among the mostly used numerical methods
for SDEs, selected for having certain desiderable properties. In Sect. 11.4.1.2 we

290 S. Corsaro et al.

consider integrals; it is well known that high-dimensional integrals are usually
solved via Monte Carlo method. We describe the method together with the
Antithetic Variates (AV), a variance reduction technique used to improve the
convergence rate of MC. In Sect. 11.4.1.3 we support our discussion with some
numerical experiments.

11.4.1.1 Investigating Numerical Methods: Solution of SDEs

In this section we analyze some numerical schemes for the solution of the linear
SDEs (11.7), (11.11), and (11.12) and compare their performance in terms of
accuracy and efficiency in the evaluation of PS policies, with the aim of selecting
the most effective ones.

In the numerical solution of SDEs, convergence and numerical stability proper-
ties of the schemes play a fundamental role as well as in a deterministic framework.
Regarding the stability of a numerical method for SDEs, an important role is
played by its region of absolute stability, as discussed in [30], since it defines
possible restrictions on the maximum allowed step size, ensuring that errors will
not propagate in successive iterations. Explicit methods are usually simpler to
implement, but implicit methods generally reveal larger stability regions, therefore
the bounds imposed on the values of step size are less stringent than for explicit
ones. Indeed, both explicit and implicit methods have been investigated in literature;
in particular, implicitness has been introduced either in the deterministic part of
the equations only, leading to the so-called drift-implicit methods, or in both the
deterministic and stochastic terms, in stochastically or fully implicit methods [37].

Several criteria are defined to estimate the approximation error; we essentially
distinguish strong criteria from weak ones: strong criteria are based on the pathwise
proximity between the continuous random process and the approximated one, weak
ones require their probability distribution functions to be closed. When dealing with
pricing problems, weak convergence criteria are actually more relevant, since prices
are expressed as expected values.

In the following, we briefly describe the methods that we have tested. We selected
an explicit method, namely, the well-known Euler method, a drift-implicit one and
two fully implicit schemes having different convergence orders. We do not go into
details in the description of the methods; we address to the copious existing literature
on the topic, in particular to [30] and references therein. We just focus on equation
(11.7), since the extension to the others is straightforward.

Let [0,T] be a time interval; we consider a time grid with fixed time step
h > 0, that is, ti = ih, i = 0, . . . ,n. Let us furthermore denote by r a time-discrete
approximation of function r in (11.7) on the mentioned time grid. In the following,
we will sometimes use the notation

ri := r(ih) = r(ti).

11 Financial Evaluation of Life Insurance Policies. . . 291

The first method we discuss is the well-known explicit Euler stochastic scheme.
The explicit Euler approximation of (11.7) is defined by

ri+1 = ri + α̃[γ̃− ri]h+σr

√
hridW̄r,i+1 (11.16)

with r(0)= r(0) and dW̃r,1,dW̃r,2, . . . independent, standard normal random variables.
The explicit Euler scheme achieves order-1 weak convergence if appropriate

hypotheses on the coefficients of the equation, reported in [24, 30], are satisfied.
As already pointed out, since implicit schemes can reveal better stability

properties, we take into account the drift-implicit Euler scheme too [30]; we refer
to this as “Implicit Euler” in the following for brevity. This scheme is obtained
by making implicit just the pure deterministic term of the equation, while at each
time step, the coefficients of the random part of the equation are retained from the
previous step. Using the same notations as in (11.16), we have, at each time step,

ri+1 = ri + α̃[γ̃− ri+1]h+σr

√
hridW̄r,i+1.

Implicit Euler has the same weak order of convergence of corresponding
explicit Euler scheme, but the step size can be chosen arbitrarily large. From the
computational point of view, it is not more expensive than (11.16), but it can allow
better accuracy.

It is well known that Euler schemes for CIR process can lead to negative values
since the Gaussian increment is not bounded from below. Different fixing techniques
are applied to get positive solutions. Negative values can be either reflected about
zero (reflection) or set to zero (absorption). Moreover, partial correction to equations
has been considered, as in [16, 25]. See [33] for a detailed discussion. In our
simulations, we apply absorption technique.

Milstein [36] proposed a order-2 weak convergence method. We here describe a
simplified version of this method for practical implementation as shown in [24] and
in [30], approximating the diffusion process (11.7) by the following expansion:

ri+1 = ri + ah+ b
√

hdW̃r,i+1 +
1
2

(
a′b+ ab′+

1
2

b2b′′
)

h
√

hdW̄r,i+1

+
1
2

bb′h
[
dW̄ 2

r,i+1 − 1
]
+

(
aa′+

1
2

b2a′′
)

1
2

h2,

where a = α̃ [γ̃− r(t)], b = σr
√

r(t), with a, b and their derivatives all evaluated at
time ti. This scheme is more accurate than the Euler method, but it is computation-
ally more expensive.

We finally tested a fully implicit, positivity-preserving Euler scheme introduced
by Brigo and Alfonsi in [3]. According to this scheme, the discrete values of r are
obtained by means of the following recursion:

292 S. Corsaro et al.

ri+1 =

⎛
⎝σr

√
hdW̄r,i+1 +

√
σ2

r hdW̄2
r,i+1+ 4(ri + δh)(1+ α̃h)

2(1+ α̃h)

⎞
⎠

2

with δ = α̃ γ̃−σ2
r /2.

11.4.1.2 Investigating Numerical Methods: Approximation
of High-Dimensional Integrals

The main idea underlying the Monte Carlo algorithm for multivariate integration is
to replace a continuous average with a discrete one over randomly selected points:
the integral (11.15) is approximated by a weighted sum of N function evaluations

I(f)≈ IN(f) =
1
N

N

∑
i=1

f (xi)

with weights given by 1/N and nodes xi ∈ [0,1]kn uniformly distributed pseudo-
random sequences, where k denotes the number of risk sources. It is well known
that the expected error in Monte Carlo method is proportional to the ratio σ f /

√
N,

where σ2
f is the variance of the integrand function and N is the number of computed

trajectories. In this formula, the value σ f depends on the integrand function and
thus on the dimension of the integral, but the factor 1/

√
N does not. In particular,

the O(1/
√

N) convergence rate holds for every dimension. This shows why MC
becomes more and more attractive as the dimension of integral increases, in
comparison with deterministic methods for numerical integration that are conversely
characterized by a rate of convergence strongly decreasing with respect to the
dimension.

On the other hand, the MC method presents two deficiencies: the rate of
convergence is only proportional to N−1/2 and special care has to be taken in
generating independent random points because we actually deal with pseudo-
random numbers.

Since, as already pointed out, the expected error of the MC method depends on
the variance of the integrand, convergence can be speeded up by decreasing the
variance. One of the simplest and most widely used variance reduction techniques
is the antithetic variates (AV) [24]. This method attempts to reduce variance by
introducing negative dependence between pair of replications; in particular, in a
simulation driven by independent standard normal variables Zi, this technique can
be implemented by pairing the sequence Zi with the sequence −Zi. If the Zi are used
to simulate the increments of a Brownian path, then the −Zi simulate the increments
of the reflection of the Brownian path about the origin: this suggests that it can result
in a smaller variance. Following the antithetic variates method, an expected value
E(Y) can be computed by generating a sequence of pair of observations (Yi,Ỹi)

11 Financial Evaluation of Life Insurance Policies. . . 293

Table 11.1 Parameters for
the stochastic processes
for risk

t=04/01/1999

r(t) 0.0261356909
α̃ 0.0488239077
γ̃ 0.1204548842
σr 0.1056548588
d 0
σS 0.25

such that two pairs (Yi,Ỹi),(Yj , Ỹj), i �= j are independent, identically distributed,
while, within each pair, the observations have the same distribution but are not
independent.

The use of the antithetic variates method can approximately double the computa-
tional complexity with respect to a classical Monte Carlo simulation, since, for each
trajectory, two realizations of the Brownian path have to be simulated. Therefore,
its application is effective if we obtain an estimator with a variance smaller than the
one corresponding to a classical Monte Carlo simulation performed with a double
number of trajectories, that is, if

Var

(
1
N

N

∑
i=1

Yi + Ỹi

2

)
< Var

(
1

2N

2N

∑
i=1

Yi

)
.

As will be shown later through some numerical experiments, nearly the same
accuracy obtained by a classical MC method on N replications can be reached using
the antithetic variates with less than N/2 pair of replications.

For brevity, in the following, we refer to the antithetic variates reduction
technique combined with MC method as the antithetic variates method.

11.4.1.3 Numerical Experiments

In order to analyze the impact of different SDEs solvers, we here consider a single
insurance contract and a simulated investment portfolio. CPI is not taken into
account. The return of the segregated fund Ft is defined by a trading strategy on
stocks and bonds

Ft = δSt +(1− δ)Bt , (11.17)

where St is a stock index, Bt is a bond index, and δ = 10% at time 0.
We point out that, since the discussion follows the stages of our activity,

numerical experiments refer to different dates as for processes calibration. In
particular, this test case refers to the date January 4th 1999 for the evaluation of bond
market. In Table 11.1 the parameters of the equations governing the considered risk
sources, that is, the short rate and the stock index, are reported.

Bond market data have been estimated following [38]. All the experiments refer
to a T = 20 year term policy for a 30 year old insured. The technical interest rate

294 S. Corsaro et al.

Table 11.2 Values
of V (0;YT) (11.5)

N Expected value Monte Carlo Antithetic variates

1,000 85.530725 85.330736 85.538849
2,500 85.530725 85.446784 85.513984
5,000 85.530725 85.490321 85.526349
10,000 85.530725 85.515832 85.529525
20,000 85.530725 85.556925 85.532012
50,000 85.530725 85.531398 85.532053
100,000 85.530725 85.535615 85.532456

N is the number of simulated trajectories; in the second column
the expected value, that is, the sample mean computed via AV
with N = 20×106 is reported

is set to 4%, the yearly minimum guarantee is supposed to be δ c = i and ψ = 0.8.
The initial capital is set to Y0 = 100. The values of the expectation of life have been
computed by the life tables SIM81. Finally, the correlation coefficient between short
rate and stock market is set to −0.1.

We recall that the main computational kernels are multidimensional integrals and
SDEs. We focus on them separately.

In the discussion about techniques for the numerical computation of multidimen-
sional integrals, we use the Euler scheme for the solution of the involved SDEs.
We test and compare performances of MC and antithetic variates methods. In our
simulations the routine snorm of the package ranlib, written by Brown, Lovato
and Russell, available through Netlib repository, has been used to generate standard
normally distributed values. In Table 11.2 we report the values of the undertaking
labilities V (0;YT) estimated via the two integration methods, for different values of
the number N of simulated trajectories.

In order to estimate the error, an “almost true” values is needed: we assume as
true expected value the sample mean computed via antithetic variates method with
a number of replications equal to 20× 106. We observe that with the classical MC
method we obtain three significant digits for N ≥ 104; applying antithetic variates
method the same accuracy is reached just for N = 103. Moreover, to obtain four
significant digits with antithetic variates we need N = 2× 104 simulations while
with MC we need N = 5 × 104 simulations. Since the application of antithetic
variates technique at most doubles the computational cost, we deduce that efficiency
is strongly improved in these cases. All the experiments confirmed this.

It is well known that special care has to be taken in generating pseudo-random
points. To show the sensitivity of MC and antithetic variates methods to the initial
seed of the pseudo-random number generator, in Table 11.3, we report the minimum
and the maximum values of V (0,YT) estimated via Monte Carlo method and
antithetic variates, repeating each MC and antithetic variates run 20 times. We
observe that MC exhibits a sensitivity greater than the one shown by antithetic
variates to the seed and that both minimum and maximum estimations computed
by antithetic variates deliver two significant digits for all considered values of N.

11 Financial Evaluation of Life Insurance Policies. . . 295

Table 11.3 To valuate the sensitivity of MC and AV to initial seed we
repeat each run 20 times

MC AV

N V (0;YT) min V (0;YT) max V (0;YT) min V (0;YT) max

1,000 84.448579 86.314370 85.098095 85.880454
2,500 84.962291 86.099855 85.387740 85.704434
10,000 85.097654 86.042048 85.431023 85.605205

In the 2nd and 4th column are reported the minimum resulting values
for V (0;YT), while in the 3rd and 5th column are reported the maximum
resulting values

Table 11.4 MC and AV
CPU times in seconds for
different values of the number
N of trajectories and the ratio
between them

N MC AV AV
MC

1,000 115.84 117.87 1.34
2,500 117.75 119.73 1.11
5,000 132.90 139.53 1.20
10,000 166.24 179.01 1.19
20,000 130.75 157.13 1.20
50,000 334.19 393.59 1.18
100,000 668.16 786.06 1.18

In Table 11.4 we show the CPU time spent by Monte Carlo simulation and
antithetic variates methods. In order to evaluate the overhead of antithetic variates
with respect to MC method we also report the ratio between the two values. We
observe that the execution time of antithetic variates is never the double of execution
time of Monte Carlo method, even though it requires the generation of a number of
simulations that is double with respect to MC. The ratio between the two execution
times is always about 1.2.

All the shown experiments reveal that the use of antithetic variates method
allows to obtain the same accuracy as MC method with a number of replications
that is reduced by a factor near to four. Then, a first important result is that the
use of antithetic variates allows us to have a good accuracy for small number of
replications, resulting in a large gain in terms of execution time.

We now turn to the numerical solution of SDEs. In order to estimate the error we
refer to the deterministic solution, obtained neglecting the stochastic term in (11.7),
since it can be shown that the expected value of r(t), given its value at time 0, is

E(r(t)) = γ̃− (γ̃− r(0))e−α̃t = rdet(t),

which is just the solution of the SDE obtained by (11.7) when the deterministic term
is the only considered.

To confirm our previous statements on the better performance of the antithetic
variates method over MC, we represent, in Figs. 11.1 and 11.2, the values of the
absolute errors of the interest rates computed at each time with the four different
SDE methods and with both MC and antithetics variates methods, for N = 5× 103

and for N = 5× 104, respectively. A monthly discretization step size is used. We

296 S. Corsaro et al.

0 20 40 60 80 100 120
10−6

10−5

10−4

10−3

10−2

10−6

10−5

10−4

10−3

10−2Monte Carlo N = 5000

months

ab
so

lu
te

 e
rr

or
 in

 in
te

re
st

 r
at

es

Euler
implicit Euler
Brigo−Alfonsi
Milstein

0 20 40 60 80 100 120

Antithetic Variates N = 5000

months

ab
so

lu
te

 e
rr

or
 in

 in
te

re
st

 r
at

es

Euler
implicit Euler
Brigo−Alfonsi
Milstein

Fig. 11.1 Absolute errors in the estimation of interest rates computed with MC and antithetic
variates vs. time. N = 5 × 103 trajectories have been simulated; the discretization step size is
monthly. At each time t the average over trajectories is represented

0 20 40 60 80 100 120

10−3 10−3

10−4

10−4

10−5

10−510−6

Monte Carlo N=50000

months

ab
so

lu
te

 e
rr

or
 in

 in
te

re
st

 r
at

es

Euler
implicit Euler
Brigo−Alfonsi
Milstein

0 20 40 60 80 100 120

Antithetic Variates N=50000

months

ab
so

lu
te

 e
rr

or
 in

 in
te

re
st

 r
at

es

Euler
implicit Euler
Brigo−Alfonsi
Milstein

Fig. 11.2 Absolute errors in the estimation of interest rates computed with MC and antithetic
variates vs. time. N = 5 × 104 trajectories have been simulated; the discretization step size is
monthly. At each time t the average over trajectories is represented

observe that, as we expected, antithetic variates outperforms from the accuracy point
of view MC method in the estimation of the spot interest rates too.

In Fig. 11.3, we plot the values obtained with N = 5× 103 replications of MC
and with N = 103 replications of antithetic variates method; we observe that errors
estimated via antithetic variates with N = 103 are almost always lower than those
estimated via MC with N = 5 × 103. Analyzing now the behavior of the four
different methods we note that the absolute error lies for all the methods in the
interval]10−6,10−3[. In particular, for values of N equal to 1,000 and 5,000 the
accuracy given by the four methods is almost comparable. Increasing the number of

11 Financial Evaluation of Life Insurance Policies. . . 297

0 20 40 60 80 100 120
10

−6

10
−5

10
−4

10
−3

10
−2

Monte Carlo N=5000

months

ab
so

lu
te

 e
rr

or
 in

 in
te

re
st

 r
at

es

Euler
implicit Euler
Brigo−Alfonsi
Milstein

0 20 40 60 80 100 120
10

−5

10
−4

10
−3

10
−2

Antithetic Variates N=1000

months

ab
so

lu
te

 e
rr

or
 in

 in
te

re
st

 r
at

es

Euler
implicit Euler
Brigo−Alfonsi
Milstein

Fig. 11.3 Absolute errors in the estimation of interest rates computed with MC for N = 5,000 and
with antithetic variates for N = 1,000 vs. time; the discretization step size is monthly. At each time
t the average over trajectories is represented

Table 11.5 Execution times in seconds for AV method with the four different scheme for the
SDEs

Antithetic variates execution times (seconds)

N 1,000 2,500 5,000 10,000 20,000 50,000 100,000

Euler 7.87 19.73 39.53 79.01 157.13 393.59 1786.06
Implicit Euler 8.30 20.80 41.63 83.69 166.34 414.45 1829.81
Brigo–Alfonsi 8.65 21.67 43.30 86.69 173.52 433.25 1868.01
Milstein 9.98 25.04 49.89 99.77 199.39 498.56 1,000.37

simulations (Fig. 11.2) the Euler method exhibits the worst behavior; Implicit Euler
is comparable with Milstein scheme, but the computational complexity of the latter
is higher, while the Brigo–Alfonsi method reaches the highest level of accuracy.

In Table 11.5 we report the execution times for antithetic variates method using
the four different schemes for the SDEs. The results show that the Milstein scheme
is more time-consuming than the other ones; the Brigo–Alfonsi method is slightly
more expensive than the Implicit Euler one.

Finally, in Fig. 11.4 are reported, for MC and antithetic variates methods, the
values of the root-mean-square (RMS) absolute error defined by

RMS =

√
1
n

n

∑
i=1

(ri − rdet(ti))2.

Figure 11.4 shows that the RMS errors of all the considered methods significantly
reduce using the antithetic variates method, and Implicit Euler and Milstein have
comparable behavior, while the Brigo–Alfonsi method outperforms all the other
ones, especially for high values of N.

298 S. Corsaro et al.

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5
x 10

−3 MC Root Mean Square Error h=30 days

N

R
M

S
E

Euler
implicit Euler
Brigo−Alfonsi
Milstein

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3 AV Root Mean Square Error h=30 days

N
R

M
S

E

Euler
implicit Euler
Brigo−Alfonsi
Milstein

Fig. 11.4 On the left: RMS errors in the SDEs solution with MC method vs. N; on the right: RMS
errors in the SDEs solution with antithetic variates vs. N. The discretization step size is monthly

11.4.2 Improving Accuracy and Efficiency: The Forward
Risk-Neutral Measure

From this section on, we deal with the numerical simulation of a real ALM
portfolio; we specifically refer to Dynamic Investment Strategy with Accounting
Rules (DISAR), an ALM system for the valuation and risk management of portfolios
of profit-sharing policies [8]. The methodological ALM framework in which DISAR
has been designed is detailed in [9].

The simulation of an asset–liability portfolio results in a large-scale computa-
tional problem. Let 0 and T be, respectively, the beginning and the end of the
simulation period, expressed in years; we consider, as before, a time grid with n+1
equally spaced points in [0,T]. Let h > 0 be the fixed time step, generally equal to 1
month. According to the ALM strategy, then, every month the investment strategy is
reviewed in dependence from the current value of assets and liabilities. Therefore,
all the involved quantities, expressed by complex functions of random variables,
have to be evaluated at each month up to year T . Moreover, at least at the end
of each year, the balance sheet and the statutory reserve have to be computed. In
Fig. 11.5 an outline of a procedure for ALM of a portfolio is shown.

Typically, these simulations require hours to be performed [8]. We consider a
change of numéraire in the stochastic processes for risk sources, since the flexibility
of this approach can be particularly valuable in a model with stochastic interest rates.
In particular, we consider the numéraire which defines the forward risk-neutral
measure. This choice is motivated by the observation that pricing under the forward
measure can provide considerable gains in accuracy, since it allows to discount
at a deterministic price deflator, even though the short rate is stochastic: indeed

11 Financial Evaluation of Life Insurance Policies. . . 299

Fig. 11.5 Sketch of a procedure for the numerical simulation of asset–liability portfolio of PS
policies

the forward measure is considered the right probability measure when evaluating a
future random cash flow in a stochastic interest rate environment [23].

The forward risk-neutral measure for maturity T (the expression has been
proposed by Jamshidian in [28]) is the probability measure associated with taking
as numéraire a zcb maturing at T , with unitary face value [4,23,24,28]. In this case,
it can be shown that the pricing formula of a security becomes

V (t) = B(t,T)EF [V (T)] ,

where B(t,T) is the value in t of the numéraire bond, having expression (11.8) when
the short rate evolves according to the CIR model. EF denotes expectation under
the forward measure. As a consequence, V (0,TY) under the forward measure can be
computed as

V (0,YT) = Y0B(0,T)EF [ΦT]T px. (11.18)

The bond price (11.8) dynamics is given, under the risk-neutral measure, by [24]

dB(t,T)
B(t,T)

= r(t)dt −βr(t,T)σr

√
r(t)dW̃r(t)

with βr defined in (11.10). Applying Girsanov’s theorem, it can be shown that the
process W F

r defined by

dW F
r = dW̃r +σr

√
r(t)βr(t,T)dt

is a standard Brownian motion under the forward measure. It can be proved that, in
general, a change of numéraire affects the drift of the processes only [4, 24].

300 S. Corsaro et al.

The components of the vector

WF = (W F
r ,W F

p ,W F
S),

defined by

dW F
r (t) = dW̃r(t)+σr

√
r(t)βr(t,T)dt,

dW F
p (t) = dW̃p(t),

dW F
S (t) = dW̃S(t) (11.19)

are independent Brownian motions under the forward measure [4]. From (11.19) it
follows

dW̃r(t) = dWF
r (t)−σr

√
r(t)βr(t,T)dt,

dW̃p(t) = dWF
p (t),

dW̃S(t) = dWF
S (t). (11.20)

Combining (11.13) and (11.20), we obtain

dW̄ = L ·dW̃ =

⎛
⎝

dWF
r (t)−σr

√
r(t)βr(t,T)dt

dW F
p (t)

l13(dW F
r (t)−σr

√
r(t)βr(t,T)dt)+ l33dW F

S (t)

⎞
⎠ .

The dynamics of the correlated state variables becomes, thus, under the forward
risk-neutral measure

dr(t) = α̃[γ̃− r(t)]dt +σr

√
r(t) [dW F

r (t)−σr

√
r(t)βr(t,T)dt],

dp(t)
p(t)

= ỹtdt +σpdWF
p (t),

dS(t)
S(t)

= (r(t)− d)dt +σS[l13(dW F
r (t)−σr

√
r(t)βr(t,T)dt)+ l33dWF

S (t)],

from which it follows

dr(t) = [α̃ γ̃− (α̃+σ2
r βr(t,T))r(t)]dt +σr

√
r(t)dWF

r (t),

dp(t)
p(t)

= ỹtdt +σpdW F
p (t),

dS(t)
S(t)

= [r(t)− d− l13σSσr

√
r(t)βr(t,T)]dt +σS[l13dW F

r (t)+ l33dW F
S (t)].

Let

W̄F = (W̄ F
r ,W̄ F

p ,W̄ F
S)

11 Financial Evaluation of Life Insurance Policies. . . 301

be the correlated Brownian motion under the forward measure; the following
relation holds:

dW̄F = L ·dWF =

⎛
⎝

1 0 0
0 1 0
l13 0 l33

⎞
⎠ ·
⎛
⎝

dWF
r (t)

dWF
p (t)

dWF
S (t)

⎞
⎠=

⎛
⎝

dWF
r (t)

dWF
p (t)

l13dW F
r (t)+ l33dW F

S (t)

⎞
⎠.

The forward risk-neutral dynamics of the correlated state variables is therefore

dr(t) = [α̃ γ̃− (α̃+σ2
r βr(t,T))r(t)]dt +σr

√
r(t)dW̄ F

r (t),

dp(t)
p(t)

= ỹtdt +σpdW̄ F
p (t),

dS(t)
S(t)

= [r(t)− d− l13σSσr

√
r(t)βr(t,T)]dt +σSdW̄ F

S (t).

Note that the dynamics of the state variables under the forward measure depends
on the bond maturity T . In ALM models, where the valuation of V (0,YT), by means
of (11.18), has to be performed at least for all T ∈ t, that is, at least at all the
payment dates, this dependence implies that the simulation process of the dynamics
of state variables changes with respect to the specific date of payment. This affects
the computational complexity of the numerical evaluation process. Nevertheless,
pricing under the forward measure can provide a very strong reduction of variance
in the estimates of expected values, thus fewer trajectories have to be simulated
with a consequent overall simulation time reduction, in spite of the mentioned
computational complexity increase. In the following, we show this by means of
numerical results.

11.4.2.1 Numerical Experiments

The insurance portfolio we consider contains about 78,000 policies aggregated in
5,600 fluxes. The time horizon of simulation is 40 years. The segregated fund
includes about 100 assets, both bonds and equities. The return of the segregated
fund Ft is defined by the trading strategy introduced in (11.17) on stocks and bonds,
with δ = 5.08% at time t0.

We solve the SDEs for the risk sources by means of the Euler method with
a monthly discretization step; as a consequence the dimension of the involved
integrals is 3 ·480.

The CIR model for short rate is calibrated on market data at December 30th 2005.
In Table 11.6 the parameters for the stochastic processes for risks (11.7), (11.11),
and (11.12) are reported. The values of the expectation of life are computed by
means of the life tables SIM92. Finally, the correlation factor between dW̃r and dW̃S

is set at 0.07.

302 S. Corsaro et al.

Table 11.6 Parameters
for the stochastic processes
for risk

t = 12/30/2005

r(t) 0.0261356909
α̃ 0.3240399040
γ̃ 0.0393541850
σr 0.0534477680
d 0.027
σS 0.1
y0 0.0236
y∞ 0.0211
σp 0.0089
αy 2.897

Table 11.7 Column 1: number of MC trajectories; column 2: prob-
ability measure; column 3: 95% confidence interval for outstanding
company liabilities; column 4: half-width of the interval

95% confidence intervals

N Measure V̂ − z0.05/2
s√
N

V̂ + z0.05/2
s√
N

z0.05/2
s√
N

1,000 R-N [2,305,030,474 2,311,939,670] 3,454,598
FW [2,308,799,862 2,309,475,980] 1 338,059

2,000 R-N [2,305,212,676 2,310,184,153] 2,485,739
FW [2,308,871,978 2,309,341,618] 1 234,820

4,000 R-N [2,306,464,218 2,310,001,768] 1,768,775
FW [2,308,776,199 2,309,104,117] 1 163,959

5,000 R-N [2,306,272,289 2,309,443,908] 1,585,810
FW [2,308,784,101 2,309,076,514] 1 146,206

The experiments shown here and in the following sections have been carried out
on an IBM Bladecenter installed at Università di Napoli “Parthenope.” It consists
of 6 Blade LS 21, each one of which is equipped with 2 AMD Opteron 2210 and
with 4 GB of RAM.

In Table 11.7 we compare the 95% confidence intervals obtained in the estimation
of V (0,YT), when stochastic processes for risks are modeled under the risk-neutral
and the forward measure, respectively, for different values of Monte Carlo simulated
trajectories. We denote by V̂ the sample mean, and, as usual, by z0.05/2 the 95%
quantile of the standard normal distribution, by s the sample standard deviation, so
that s/

√
N is the standard error. In all the cases, we observe that the confidence

intervals obtained via the forward measure are contained into the corresponding
ones estimated under the risk-neutral measure; moreover, the half-width of the
confidence intervals estimated in the risk-neutral setting is about ten times the half-
width observed working under the forward measure, thus we gain one order of
magnitude in terms of accuracy.

In Fig. 11.6 we show the relative standard error

RSE =
s

V̂
√

N
.

11 Financial Evaluation of Life Insurance Policies. . . 303

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
10

−5

10
−4

10
−3

N

R
el

at
iv

e
S

ta
nd

ar
d

E
rr

or

risk neutral measure
forward measure

Fig. 11.6 RSE vs. number of MC trajectories

The two lines representing the RSE exhibit almost the same slope, that is, an
almost constant reduction factor in RSE is observed when simulating under the
forward measure, coherently to values reported in Table 11.7. On the other hand, we
recall that, as already pointed out in Sect. 11.4.2, the dynamics of the state variables
under the forward measure depends on the bond maturity T . Therefore, for each
evaluation date, a different simulation has to be carried out for all the risk sources.
This obviously results in a time overhead, as it can be seen in Fig. 11.7, where the
execution time, expressed in hours, for different values of simulated trajectories is
reported.

In order to go deep inside into the matter, in Table 11.8 we report the values
of RSE obtained in the risk-neutral setting, in the forward setting, and the ratio
between them, for different numbers of MC simulated trajectories. We note that, as
already observed, the ratio between the RSE values is always about ten; the RSE
obtained when working under the forward measure with N = 1,000 MC trajectories
is smaller than the one concerning the MC simulation under risk-neutral measure
with N = 12,000, thus confirming that modeling risks under the forward measure
results in a considerable improvement in terms of accuracy. In Table 11.8 we also
report the execution time, expressed in hours, required in the two cases and the
ratio between these values, which gives the time overhead related to the forward
measure approach. We note that the simulation under the forward measure almost
doubles the execution time with respect to the one performed under the risk-neutral
measure, but we observe that the simulation corresponding to N = 1,000 trajectories
under the forward measure provides, in about 17 min, more accurate estimates than
the one corresponding to N = 12,000 trajectories under the risk-neutral measure

304 S. Corsaro et al.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

0.1

0.25

0.5

1

1.5

3

N

ho
ur

s

risk neutral measure

forward measure

Fig. 11.7 Execution time in hours vs. number of MC trajectories

Table 11.8 Column 1: number of MC trajectories; column 2: RSE
under the risk-neutral measure; column 3: RSE under the forward
measure; column 4: RSE under the risk-neutral measure over RSE
under the forward measure. Column 5: execution time in hours under
the risk-neutral measure; column 6: execution time in hours under the
forward measure; column 7: overhead of the forward measure approach

RSE Execution time

N RNM FM Ratio RNM FM Ratio

1,000 7.635E-04 7.469E-05 10.22 0.15 0.28 1.90
2,000 5.496E-04 5.188E-05 10.59 0.29 0.54 1.90
4,000 3.910E-04 3.623E-05 10.79 0.57 1.06 1.85
5,000 3.506E-04 3.231E-05 10.85 0.71 1.32 1.85
6,000 3.219E-04 2.976E-05 10.82 0.87 1.64 1.90
10,000 2.486E-04 2.310E-05 10.74 1.42 2.74 1.92
12,000 2.278E-04 2.121E-05 10.74 1.72 3.26 1.89

as well, which requires about 1 h and 45 min. This means that the forward risk-
neutral approach is only apparently more time-consuming, since it actually requires
a significantly smaller number of Monte Carlo trajectories to provide the same
accuracy as the risk-neutral approach.

11.4.3 Improving Accuracy and Efficiency: Introducing
Parallelism

In this section we discuss the development of a parallel algorithm for the simulation
of PS policies.

11 Financial Evaluation of Life Insurance Policies. . . 305

Fig. 11.8 Parallel Monte Carlo algorithm for the valuation of participating life insurance policies

We introduce parallelism by means of a parallel Monte Carlo algorithm. The
natural strategy for parallelizing Monte Carlo method is to distribute trajectories;
in distributed environments this means that trajectories are distributed among
processors.

If N trajectories are generated in a parallel simulation involving P processors,
each processor computes the average over N/P randomly selected points, then the
partial results are combined to obtain the overall sample mean. Therefore, Monte
Carlo is generally considered “naturally parallel.” In Fig. 11.8 a sketch of a typical
parallel MC algorithm is represented. However, the core of MC is the generation of
pseudo-random sequences capable to mimic random samples drawn from uniform
distribution. Effective pseudo-random generators (PRG) must provide long-period
sequences of uncorrelated values. The effectiveness of a parallel MC algorithm is
strongly related to the relying parallel pseudo-random generator (PPRG) as well:
even though MC is generally intended inherently parallel, parallelism requires
special care in the use of PRG. Generation of pseudo-random sequences in a
parallel setting must deal with both inter-processor and intra-processor correlations.
Indeed, values belonging to a pseudo-random subsequence distributed to a processor
must be uncorrelated; moreover, correlation among numbers distributed to different
processors is undesirable too. Moreover, efficiency is a critical issue as well, thus,
inter-processor communication should be as minimum as possible. Parallelization
schemes based on cycle parametrization are mostly employed. These methods rely
on the capability of certain generators to produce different full-period streams,
that is, nonoverlapping sequences, given different, carefully chosen, seeds. In this
way, processors concurrently generate uncorrelated streams, thus providing scalable
procedures [35].

We developed a parallel MC algorithm, employing a parallel ALFG based on
a cycle parametrization technique [34]. In Fig. 11.9 the outline of the parallel MC
algorithm is shown. Communication among processors is limited to the initialization
phase, where basic common information are to be exchanged, and the final phase,
when partial results are to be combined to compute the global average which gives
the MC method result.

306 S. Corsaro et al.

Fig. 11.9 Parallel Monte Carlo algorithm based on cycle parametrization technique for the
generation of pseudo-random streams

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

procs

ho
ur

s

N=6000
N=12000

2.97E−05

3.01E−05

3.05E−05

3.00E−05
2.89E−05 2.90E−05 2.99E−05

2.12E−05

2.08E−05

2.08E−05

2.11E−05

2.05E−05
2.10E−05

2.08E−05

Fig. 11.10 Execution time in hours vs. number of processors involved in the simulation. The
global number of simulated trajectories is fixed. For each simulation, the value of the RSE is also
reported

Since the change of numéraire does not affect parallel performances, we confine
our discussion to the forward measure, which, as already pointed out, gives the
more accurate results. In Fig. 11.10 the execution time in hours versus the number
of processors involved in the computation is represented. Here the global number

11 Financial Evaluation of Life Insurance Policies. . . 307

Table 11.9 Execution time
in minutes; the global number
of trajectories is fixed

nprocs N = 6,000 N = 12,000

1 92 196
2 50 100
4 25 152
6 17 134
8 13 126
10 10 121
12 18 117

of trajectories is fixed; for this reason, the number of MC simulated trajectories has
been chosen so to be divisible by the number of processors. Moreover, we report
for each simulation time the corresponding RSE value. The execution time values,
expressed in minutes, are also reported in Table 11.9 for the sake of readability.
We observe that the RSE keeps the same order of magnitude as the number of
processors increases, thus confirming the scalability of the chosen parallel pseudo-
random number generator. In this case, if we fix a target accuracy for estimates, then
parallelism allows to realize the target accuracy in a strongly reduced time: this is
clearly meaningful to insurance undertaking.

In Fig. 11.11 the RSE versus the number of processors involved in the computa-
tion is shown. The results refer to simulations in which we fix the local number of
simulated trajectories: thus, for instance, the point corresponding to four processors
in the line referring to N = 1,000 trajectories is the value of the RSE obtained with
a global number of 4,000 trajectories. Moreover, we report for each estimated RSE
value the related execution time in hours. Looking at the two lines, we observe
that the execution times at most vary on the second decimal digit with respect
to processors, thus confirming the scalability of the parallel MC algorithm, and,
obviously, the RSE is reduced. Therefore, if we fix a target time for responses, then,
parallelism allows to improve the estimate reliability within the target time.

We finally show, in Fig. 11.12, the speedup for the same simulations. The graphic
reveals the good scalability properties of the algorithm. The same behavior was
observed in all our experiments. The speedup is almost linear: this is motivated by
the lowest communication cost of the parallel algorithm, indeed, communication is
only required during the initialization phase of the pseudo-random number generator
and during the reduction phase, when the local averages are combined to compute
the sample mean provided by the Monte Carlo method.

11.5 Default-Risk Modeling

In this section we deal with default-risk modeling; the reason for this is the increas-
ing interest on this topic; the Solvency II Directive establishes that “insurance and
reinsurance undertakings may take full account of the effect of risk-mitigation tech-
niques in their internal model, as long as credit risk . . . ” (art. 121). “The credit risk”

308 S. Corsaro et al.

1 2 3 4 5 6 7 8 9 10 11 12

2

3

4

5

6

7

8
x 10

−5

procs

R
el

at
iv

e
S

ta
nd

ar
d

E
rr

or

N=1000
N=20000.27h

0.27h

0.27h

0.27h

0.27h
0.27h

0.27h

0.54h

0.54h

0.54h

0.54h

0.55h
0.54h

0.54h

Fig. 11.11 RSE vs. number of processors involved in the simulation. The local number of
simulated trajectories is fixed. For each simulation, the value of the execution time in hours is
also reported

is defined as “the risk of loss or of adverse change in the financial situation, resulting
from fluctuations in the credit standing of issuers of securities, counterparties and
any debtors to which insurance and reinsurance undertakings are exposed, in the
form of counterparty default risk, or spread risk, or market risk concentrations”
(art. 13(32)). From the definition above, it is clear that default risk is a relevant
component of credit risk. Specifically, in profit-sharing life insurance policies a
part of the counterparty default risk falls on the insurance undertaking, because
of the minimum guarantees, and a part is transferred to the policyholders, by the
retrocession mechanism.

Default-risk modeling mainly follows two approaches, one leading to the
so-called structural models, another, more recently become popular, leading to
reduced-form models. The former has its foundations in option pricing techniques,
following Black and Scholes and Merton. Structural models are based on modeling
the stochastic evolution of the issuer’s balance sheet, with default occurring when

11 Financial Evaluation of Life Insurance Policies. . . 309

2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

procs

sp
ee

d
up

N=6000

N=12000

Fig. 11.12 Speedup vs.
number of processors

the issuer is unable to meet its obligations. These models are generally difficult to
implement for several reasons, for instance, issuer’s assets and liabilities could be
not traded, thus their market value could be not available [1]. Moreover, structural
models do not generally allow one to capture credit spreads within a short time
horizon if a continuous sample path is assumed for the asset process [21]. This
can be overcome by assuming incomplete information about the asset value of the
firm: in this case, the curves representing credit spreads are quite similar to the
ones obtained in the case of reduced-form models, which have become popular in
the last decade. Reduced-form models have been proven to be fully consistent with
option-based approach if uncertainty on information is assumed [32]. According to
them, default is treated as an unexpected event with the likelihood governed by a
default-intensity process: the default-intensity measures the conditional likelihood
that the issuer will default over the next (small) interval of time, given that it has
not yet defaulted and given all other available information. Reduced-form models
have attracted great interest also because this approach involves default-free term
structure modeling, thus one can benefit from all existing literature [29]. In this
framework moreover some results which turn out to be very useful in practice have
been proven: for instance, corporate bond pricing is greatly simplified when default
probability is modeled as an intensity process [20]. For all these reasons, in the
following we focus on this second approach: we discuss the use of stochastic models
to measure default risk in the development of internal models, according to the rules
of the European Directive.

We start by introducing the modeling context we refer to. Let τ be the time of
default and B̄(0,T) the price at time 0 of a defaultable unitary zcb with maturity T .
Under the zero-recovery hypothesis, the arbitrage-free price is given by the expected
value of the risk-free discount-factor conditional to survival up to time T [21]

B̄(0,T) = EQ
[
e−
∫ T

0 r(u)du1{τ>T}
]
.

310 S. Corsaro et al.

1{τ>T} is the indicator function of the event τ > T . τ is modeled as the first
arrival time of a Poisson process with random arrival rate λ , that is, the default
event is conditional on the information given by the path of the random intensity

{λ (u) : u ≥ 0}.

Therefore, a doubly stochastic process is considered, in that we have two layers
of uncertainty, both the time and the intensity of default [21]. In this framework, the
survival probability in [0,T] has the following expression:

P(0,T) = EQ
[
e−
∫ T

0 λ (u)du
]
.

A very useful result, proved by Lando [32], provides an expression for the price at
time 0 of a defaultable unitary zcb in terms of the short rate and the default intensity

B̄(0,T) = EQ
[
e−
∫ T

0 r(u)+λ (u) du
]
. (11.21)

Moreover, r and λ are often assumed to be stochastically independent; this
simplifying assumption actually appears to be a reasonable first approximation in
the historical probabilities for investment-grade debt [29]. The expected value in
(11.21) can be factorized in the following way [32]:

B̄(0,T) = B(0,T)P(0,T), (11.22)

where B(0,T) is the price in 0 of the unitary default-free zcb with maturity T .
Relation (11.22) states that the price of the defaultable zcb is the product of the
price of the corresponding non-defaultable zcb times the “markdown” factor, given
by the survival probability in the time interval delimited by the pricing time and the
zcb maturity.

If the default intensity λ is supposed to follow the classical Cox, Ingersoll and
Ross process, that is, λ evolves as square root diffusions, the stochastic equation
governing the process is

dλ (t) = k̃[θ̃ −λ (t)]dt +σλ
√

λ (t)dZλ (t). (11.23)

So, in the described modeling framework, both r and λ are modeled as
basic affine processes; under independence hypothesis, a closed form for survival
probability in [0,T] can be obtained, which depends on the parameters of the
intensity process in (11.23) and on the value of λ at t = 0

P(0,T) = Aλ (0,T)e
−λ (0)βλ (0,T), (11.24)

11 Financial Evaluation of Life Insurance Policies. . . 311

where

Aλ (t,T) =

[
dλ eφλ (T−t)

φλ (edλ (T−t)− 1)+ dλ

]νλ
, (11.25)

βλ (t,T) =
edλ (T−t)− 1

φλ (edλ (T−t)− 1)+ dλ
(11.26)

with

dλ =
√

k̃2 + 2σ2, νλ =
2k̃θ̃
σ2 , φλ =

k̃+ dλ
2

. (11.27)

11.5.1 The Data and Calibration Method

Model calibration is well known to be a fundamental task in risk modeling. In
this section we present a procedure for the calibration of (11.23); the problem is
formulated as a nonlinear least-squares one.

Special care has to be addressed to data: in the context of default-risk modeling,
an adequate set of bonds to calibrate the spread curve to has to be chosen. We start
by discussing a data selection procedure.

The idea underlying data selection is to model the evolution of a collection of
term structures of defaultable bond credit spread with different credit ratings and
sectors.2

Rating are used as a way of aggregating corporate bond prices [32]. To obtain a
benchmark term structure for corporate bonds it is necessary to pool different bonds
and rating is a natural place to start; nevertheless ratings are not sufficient to price a
bond; then, as it is usually done, we pool bonds also for different economic sectors.

We consider, in particular investment-grade bonds, the only ones that can be
included in the investment portfolio of profit-sharing policies. Under technical
conditions discussed before, the price, at time 0, of a zero-recovery zcb in the jth
credit class of corporate bonds with maturity T is given by

B̄ j(0,T) = EQ
[
e−
∫ T

0 r(u)+λ j(u) du
]
. (11.28)

A credit class can be interpreted as an indicator of credit quality, such as a rating
category assigned to bonds by a rating agency such as Moody’s or Standard &
Poor’s and the economic sector of bonds. Hence, λ j(u) is the intensity of a Poisson

2We do not deal with a ratings-based model, in the form of [21, 22, 31]. We do not consider the
potential of upgrades or downgrades of the underlying bonds, which would result in a shift of the
default intensity to that of the new rating. We use constant credit quality corporate bond indices to
estimate the dynamics of the default intensities.

312 S. Corsaro et al.

Table 11.10 Risk-neutral
parameters for CIR model

t = 04/30/2010

r(0) 0.00560384
α̃ 0.30368297
γ̃ 0.04367279
σr 0.13681307

process used to model the event of default of the jth credit class. We use data on
investment-grade bonds from Finance sector with Moody’s rating Aa3 e Baa1. We
consider current market data of a set of coupon bonds at April 30th 2010; we refer
to the closing prices. For each corporate bond, the corresponding time to maturity
as well as the coupon payments, the number of payments remaining, and the time to
next payment plus the accrued interest as of that date have been computed using
information available on Bloomberg. These data have been ordered by time to
maturity.

Even within a fairly homogeneous sample, the credit spreads of some bonds can
noticeably vary [40]. A problem which arises then is the removal of outliers. Outliers
are bonds whose spreads deviate very much from the average spreads of the other
bonds. Including them into the sample would distort the whole calibrated curve.
Typically these are bonds that have not been down- or up-graded by rating agencies
although the market trades them at down- or up-graded spread levels. We use a two-
stage procedure to remove outliers. In the first stage a bond is removed if its yield
deviates more than twice the standard deviation from the average yield in the same
maturity bracket. Afterwards, the same procedure is repeated.3

Considering t = 04/30/2010 as evaluation date, we initially extracted from
Bloomberg database:

• 75 Aa3 defaultable bonds of Finance sector with residual maturities ranging from
3 months up to 20 years

• 62 Baa1 defaultable bonds of Finance sector with residual maturities ranging
from 3 months up to 10 years

Defaultable bond yields have two components: the risk-free interest rate and the
default spread. Risk-neutral parameters for CIR model calibrated on market data are
reported in Table 11.10.

We estimate the vector of default-risk parameters, (dλ ,νλ ,φλ ,λ (0)), by per-
forming a nonlinear fit procedure on the two different sets of corporate bonds. The
estimation is then done by means of a nonlinear least-square method that minimizes
the sum of the quadratic differences between the market prices and the model prices.

In the calibration phase, the second stage of the outliers removal procedure, as
described in [40], has been performed by removing those defaultable bonds whose
pricing errors exceed two times the average root mean-squared relative pricing

3We refer to criteria applied by ECB when selecting bonds for the estimation of yield curves
(www.ecb.int/stats/money/yc/html/index.en.html).

www.ecb.int/stats/money/yc/html/index.en.html

11 Financial Evaluation of Life Insurance Policies. . . 313

Table 11.11 Risk-neutral
and Brown–Dybvig
default-intensity parameters
for Aa3-rated and Baa1-rated
bonds at evaluation time t

t = 04/30/2010 Aa3-finance Baa1-finance

λ (t) 0.00079011351155 0.00762255771740
dλ 0.32209372929069 0.36215265757040
φλ 0.30328555876149 0.36208344131790
νλ 1.00000000000468 321.544667798335
sqmr 0.37561488234354 0.29840697224378

0 5 10 15 20 25 30
20

40

60

80

100

120

140

160

180

200

220

time to maturity (years)

cr
ed

it
 s

p
re

ad
 (

b
as

is
 p

o
in

ts
)

Aa3 Finance
Baa1 Finance

Fig. 11.13 Credit spread for Aa3-rated and Baa1-rated bonds

errors and afterwards by repeating the calibration procedure. For the implementation
of the above calibration and selection procedure, we use the Matlab software
environment (trust-region reflective Newton method).

In Table 11.11 we report the resulting estimates of the default-risk parameters
in (11.24)–(11.27), using the two different sets of selected corporate bonds and the
sample standard deviation of residuals.

In Fig. 11.13, for both the two credit rating classes, we plot the term structures
of credit spreads (in basis points) using the calibrated default-intensity process
parameters, over a range of 30 years of maturities; in Fig. 11.14 we plot the related
risk-neutral default intensity λ (t) too.

Credit spreads range from about 33 to 176 basis points for Aa3-rated bonds and
from 101 to 219 basis points for Baa1 ones. In Table 11.12 we report the Credit
Default Swap (CDS),4 at the valuation date April 30th 2010, for 1, 2, 3, 4, 5, 7,
10 years to maturity, of two Aa3-rated bonds used in the calibration procedure.

4Source Bloomberg.

314 S. Corsaro et al.

0 5 10 15 20 25 30
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

time to maturity (years)

d
ef

au
lt

 in
te

n
si

ty

Aa3 Finance
Baa1 Finance

Fig. 11.14 Default intensity
λ (t) for Aa3-rated and
Baa1-rated bonds

Table 11.12 CDS of two
Aa3-rated bonds at
t = 04/30/2010 (basis
points)

t = 04/30/2010 Bond 1 Bond 2

1 196.2 162.9
2 112.1 172.9
3 116.3 187.3
4 135.1 105.3
5 141.9 115.1
7 142.4 122.0
10 148.6 126.6

We can see that the CDS of the two securities are different between them; anyway
they are not too far from the obtained default-intensity model-based credit spreads,
especially over long horizons. The estimated term structures of credit spread can
be considered and used as “benchmark” credit spread term structures to price
defaultable bonds aggregated for rating and economic sector.

11.5.2 Computational Issues

Stochastic default-risk simulation increases the computational complexity of an
ALM system both in terms of amount of data to be managed and computing time.

Specifically, the system has to be able to manage a set of default-risk adjusted
term structures, each of them related to a combination of rating and economic
sector—the choice of the combinations and the number of the term structures
to consider depending on the company investment strategy; the default-intensity
parameter computation requires a preprocessing phase implementing a calibration
procedure, as, for example, the one described in Sect. 11.5.1. This phase has an
impact on the amount of data, needed to properly calibrate the parameters, to
be included in the DataBase system; it has also an impact on the execution time
required to perform the calibration procedure on each set of data.

11 Financial Evaluation of Life Insurance Policies. . . 315

Table 11.13 V (0,YT), put and call components for three different segre-
gated funds

N = 5,000 Risk-free bond Aa3-finance bond Baa1-finance bond

V (0,YT) 711.793.017 716.334.673 722.241.384
Std. err. 000.523.798 000.535.177 000.543.725
B0 690.066.024 697.948.820 705.637.021
P0 021.726.993 018.385.853 016.604.364
G0 704.994.119 705.134.076 705.134.076
C0 006.798.898 011.200.598 017.107.309

After the preprocessing phase, the DataBase must be enriched with all the
default-risk parameters calibrated for each default-intensity process; the DataBase
Management System has to be able to identify and then to manage credit risky bonds
on the basis of the appropriate rating and sector.

In order to analyze the computational overhead due to the introduction of
stochastic default-risk modeling in a real case, in this section we again consider the
DISAR system. The default risk simulation in DIALMENG, the ALM computing
unit of DISAR, requires, for each set of calibrated default-intensity parameters:

1. Simulation of stochastic default-intensity processes
2. Simulation of stochastic default probabilities
3. Computation, at the evaluation date, of the default-risk adjusted term structures

The simulations at points 1 and 2 require, as seen, the use of numerical methods
for solving SDEs and Monte Carlo methods. The computation at point 3 requires
the evaluation of (11.28), for each considered class.

Each risky bond in the fund has to be managed in order to be “linked” to
the pertaining default-risk adjusted term structure and default probabilities, to
properly estimate the related financial quantities (value, duration, . . .) involved in
the considered ALM framework.

We performed numerical simulations considering two different investment port-
folios, each composed by the same quantity of just one type of risky bond, Aa3
and Baa1 Finance respectively, with maturity 3 years, fixed annual coupons and
same market price at the evaluation date. The policy portfolio contains about two
hundreds policies. The time horizon of simulation we consider is 40 years. The
SDEs for the risk sources are numerically solved by means of the Euler method
with a monthly discretization step. Further, to make some comparisons, we carried
out a simulation also on an investment portfolio composed by the same quantity of
a risk-free coupon bond, with same maturity and market price.

In Table 11.13 we report the values, in euro, of V (0,YT) (and the related standard
error) and of the components of the put and call decompositions in (11.6), for
the three different segregated funds, obtained performing N = 5,000 Monte Carlo
simulations.

To quantify the increment of computing time overhead, we report in Table 11.14
the execution times of the overall ALM procedure on the investment portfolio

316 S. Corsaro et al.

Table 11.14 Execution
times (in seconds) for two
different segregated funds

Risk-free Aa3-finance bond Time
N bond bond increment (%)

6,000 135.812 163.423 20.3
12,000 269 326.333 21.3

Process N = 6,000 N = 12,000

1 163.423 326.333
2 85.687 169.048
4 43.234 85.651
6 29.673 59.249
8 22.285 44.494
10 17.899 35.729
12 15.105 30.120

2 4 6 8 10 12
2

3

4

5

6

7

8

9

10

11

12

procs

sp
ee

d
−u

p

N=6000
N=12000

Fig. 11.15 On the left hand the execution time (in seconds); on the right hand the speedup vs.
number of processors

composed by risk-free coupon bonds and on that composed by Aa3-Finance risky
bonds (the execution times being the same for the investment portfolio composed
by the Baa1-Finance), respectively, for N = 6,000 and N = 12,000 MC simulations
on one processor. We observe that the default-risk valuation implies an increment
of about 20% of the computing time, for both the considered values of N, including
just one credit risk class in the investment portfolio.

HPC is therefore mandatory for developing efficient simulation procedures.
We implement the same parallelization strategy showed in Sect. 11.4.3. We use
the Mersenne-Twister generator included in the Intel Math Kernel Library for the
generation of pseudo-random sequences.

To analyze the performance of the parallel procedure, we report, on the left hand
of Fig. 11.15, the execution times, expressed in seconds, for two values of global
number of simulated trajectories, N = 6,000 and N = 12,000, versus the number of
processors involved in the computation. To evaluate the parallel efficiency, we show,
on the right hand of the same figure, the related speedup. The graph reveals the good
scalability properties of the algorithm. Indeed, speedup is almost linear. The same
behavior was observed in all our experiments.

The parallelization strategy then allows to pull down the execution time, thus
allowing to efficiently deal with the complex task of measuring default risk.

11 Financial Evaluation of Life Insurance Policies. . . 317

11.6 Conclusion

“Risk” and “model” are the key words around which Solvency II project is built.
To measure the risk to which an insurance undertaking is exposed, a model has
to be defined according to the asset–liability policy; the model must provide
market-consistent valuations. The definition of a reliable model depends on robust
theoretical basis, accurate numerical approximations, as well as efficient algorithms
and high-quality input data. Only high-level technological solutions guarantee high-
quality information and perfect timing in risk control and subsequent actions: the
Directive requires “measure, monitor, manage and report, on a continuous basis” of
the risk.

The Directive allows undertakings to use “internal models,” subject to prior su-
pervisory approval. The implications and requirements introduced by the Directive
become particularly compelling when undertakings choose to employ an internal
model.

In the case of profit-sharing policies with minimum guarantees, the market-
consistent valuation problem clearly shows that “dealing with the time value of
money above the classical actuarial technique is nowadays so far off economic
reality that it needs to be fundamentally revised” [6]. PS policies are structured
contracts which embed options. The structure of these contracts points out the
dependence of the company liabilities—and thus of the “future discretionary
benefits” in Solvency II jargon—on the segregated fund return; it is therefore clear
that the set of rules which form the ALM strategy for the management of the policy
portfolio is very complex.

The valuation model has to integrate the dynamic ALM strategy in an MC sim-
ulation process of the risk sources. So, time-consuming MC simulations, involving
a huge number of random variables on long-time horizons, have to be performed.
Efficient numerical algorithms and advanced architectures are thus mandatory for
“quickly” providing accurate results.

In this work, some approaches for the solution of the main computational kernels
in models for PS policy portfolios valuations have been presented. The analyses
we carried out show that robust numerical algorithms implemented in parallel
environments allow to obtain effective solution procedures.

The Solvency II Directive is still evolving, thus new computational problems are
posed. So, in order to build effective risk-management systems, the focus must be
kept on both numerical methods and algorithms for solving computational kernels
and different HPC environments (grid architectures, distributed environments,
multi-core processors, GPUs) able to provide the necessary computational power.

318 S. Corsaro et al.

References

1. G. Barone-Adesi, E. Barone, G. Castagna, Pricing bonds and bond options with default risk.
Eur. Financ. Manag. 4, 231–282 (1998)

2. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81(3),
637–654 (1973)

3. D. Brigo, A. Alfonsi, Credit default swaps calibration and option pricing with the SSRD
stochastic intensity and interest-rate model. Finance Stochast. 9(1), 29–42 (2005)

4. D. Brigo, F. Mercurio, Interest Rate Models: Theory and Practice (Springer, New York, 2006)
5. S.J. Brown, P.H. Dybvig, The empirical implications of the Cox, Ingersoll, Ross theory of the

term structure of interest rates. J. Finance 41(3), 617–630 (1986)
6. H. Bulhmann, New math for life insurance. Astin Bull. 32(2), 209–211 (2002)
7. R. Caflisch, W. Morokoff, A. Owen, Valuation of mortgage-backed securities using Brownian

bridges to reduce effective dimension. J. Comput. Finance 1, 27–46 (1998)
8. G. Castellani, L. Passalacqua, Applications of distributed and parallel computing in the

solvency II framework: the DISAR system, in Euro-Par 2010 Parallel Processing Workshops,
ed. by M.R. Guarracino, F. Vivien, J.L. Träff, M. Cannataro, M. Danelutto, A. Hast, F. Perla,
A. Knüpfer, B. Di Martino, M. Alexander. Lecture Notes in Computer Science, vol. 6586
(Springer, Berlin, 2011), pp. 413–421

9. G. Castellani, M. De Felice, F. Moriconi, C. Pacati, Embedded Value in Life Insurance.
Working paper (2005)

10. G. Castellani, M. De Felice, F. Moriconi, Manuale di Finanza, vol. III. Modelli Stocastici e
Contratti Derivati (Società editrice il Mulino, Bologna, 2006)

11. S. Corsaro, P.L. De Angelis, Z. Marino, F. Perla, P. Zanetti, On high performance software
development for the numerical simulation of life insurance policies, in Numerical Methods for
Finance, ed. by J. Miller, I.D. Edelman, J. Appleby (Chapman and Hall/CRC, Dublin, 2007),
pp. 87–111

12. S. Corsaro, P.L. De Angelis, Z. Marino, F. Perla, P. Zanetti, On parallel asset-liability
management in life insurance: A forward risk-neutral approach. Parallel Comput. 36(7),
390–402 (2010)

13. S. Corsaro, Z. Marino, F. Perla, P. Zanetti, Measuring default risk in a parallel ALM software
for life insurance portfolios, in Euro-Par 2010 Parallel Processing Workshops, ed. by M.R.
Guarracino, F. Vivien, J.L. Träff, M. Cannataro, M. Danelutto, A. Hast, F. Perla, A. Knüpfer,
B. Di Martino, M. Alexander. Lecture Notes in Computer Science, vol. 6586 (Springer, Berlin,
2011), pp. 471–478

14. S. Corsaro, P.L. De Angelis, Z. Marino, F. Perla, Participating life insurance policies:
An accurate and efficient parallel software for COTS clusters. Comput. Manag. Sci. 8(3),
219–236 (2011)

15. J.C. Cox, J.E. Ingersoll, S.A Ross. A theory of the term structure of interest rates. Econometrica
53, 385–407 (1985)

16. G. Deelstra, F. Delbaen, Convergence of discretized stochastic (interest rate) processes with
stochastic drift term. Appl. Stochast. Model Data Anal. 14(1), 77–84 (1998)

17. M. De Felice, F. Moriconi, Market consistent valuation in life insurance: Measuring fair value
and embedded options. Giornale dell’Istituto Italiano degli Attuari 67, 95–117 (2004)

18. M. De Felice, F. Moriconi, Market based tools for managing the life insurance company. Astin
Bull. 35(1), 79–111 (2005)

19. Directive 2009/138/EC of the European Parliament and of the Council of 25 November 2009
on the taking-up and pursuit of the business of Insurance and Reinsurance. Official Journal of
the European Union 335(52), 1–155 (2009)

20. D. Duffie, Credit risk modeling with affine processes. J. Bank. Finance 29, 2751–2802 (2005)
21. D. Duffie, K.J. Singleton, Modeling term structures of defaultable bonds. Rev. Financ. Stud.

12(4), 686–720 (1999)

11 Financial Evaluation of Life Insurance Policies. . . 319

22. D. Duffie, K.J. Singleton, Credit Risk: Pricing, Measurement, and Management (Princeton
University Press, Princeton, 2003)

23. H. Geman, N. El Karoui, J.C. Rochet. Changes of numéraire, changes of probability measure
and option pricing. J. Appl. Probab. 32(2), 443–458 (1995)

24. P. Glasserman, Monte Carlo Methods in Financial Engineering (Springer, New York, 2004)
25. D. Higham, X. Mao, Convergence of Monte Carlo simulations involving the mean-reverting

square root process. J. Comput. Finance 8(3), 35–62 (2005)
26. J. Hull, A. White, One-factor interest rate models and the valuation of interest rate derivative

securities. J. Financ. Quant. Anal. 28, 235–254 (1993)
27. IAIS, Guidance Paper on the Use of Internal Models for Regulatory Capital Purpose,

International Association of Insurance Supervisors, Basel, Guidance paper no. 2.6 (2008)
28. J. Jamshidian, An exact bond option formula. J. Finance 44(1), 205–209 (1989)
29. R.A. Jarrow, D. Lando, S.M. Turnbull, A Markov model for the term structure of credit risk

spreads. Rev. Finan. Stud. 10(2), 481–523 (1997)
30. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer,

Berlin, 1992)
31. D. Lando, On Cox processes and credit risky securities. Rev. Derivatives Res. 2(2–3), 99–120

(1998)
32. D. Lando, Credit Risk Modeling, Theory and Applications (Princeton University Press,

Princeton, 2004)
33. R. Lord, R. Koekkoek, D. van Dijk, A comparison of biased simulation schemes for stochastic

volatility models. Quant. Finance 10(2), 177–194 (2010)
34. M. Mascagni, A. Srinivasan, Algorithm 806: SPRNG: A scalable library for pseudorandom

number generation. ACM Trans. Math. Software 26, 436–461 (2000)
35. M. Mascagni, S.A. Cuccaro, D.V. Pryor, M.L. Robinson, A fast, high-quality, and reproducible

lagged-Fibonacci pseudorandom number generator. J. Comput. Phys. 15, 211–219 (1995)
36. G.N. Milstein, A method of second-order accuracy integration of stochastic differential

equations. Theor. Probab. Appl. 23, 396–401 (1978)
37. G.N. Milstein, E. Platen, H. Schurz, Balanced implicit methods for stiff stochastic systems.

SIAM J. Numer. Anal. 35(3), 1010–1019 (1998)
38. C. Pacati, Estimating the Euro term structure of interest rates. Research Group on “Models for

Mathematical Finance”, Working Paper 32 (1999)
39. S. Paskov, J. Traub, Faster valuation of financial derivatives. J. Portfolio Manag. 22(1),

113–123 (1995)
40. P.J. Schonbucher, Credit Derivatives Pricing Models – Models, Pricing and Implementation

(Wiley, New York, 2005)

Index

Symbols
Ænalyst, 76

A
Abreast of the market, 83
activation functions, 5
activity monitoring operating characteristic, 76
antithetic variates, 290
approximate inference algorithms, 216
architecture selection algorithm, 7
ARIMA models, 172
artificial agents, 36
artificial traders, 35
asset-liability management, 281
autoregressive models, 173
AZFinText, 81
AzTeK, 81

B
bag of words, 77, 80, 81
bagged estimate, 9
balanced scorecard, 44
Bayes rule, 92
Bayesian, 5
Bayesian methods, 210
Bayesian networks, 214
behavioral bias, 36
behavioral finance, 37
biases, 5
Biz Yahoo, 76
Black & Scholes process, 287
bootstrap, 5
bootstrap pairs, 8
bootstrap residuals, 9
Brownian motion, 286

C
call option, 285
catastrophe bonds, 161
category frequency, 74
combinatorial optimization, 41
computational intelligence, 36
computational intelligence tools, 1
computational kernels, 286
conditional probability distribution, 2
confidence band, 4
confidence interval, 3
confirmation filters, 103, 104, 118
conjugate gradient, 5
continuously valued, 5
convergence, 7
cost function, 5
covariance matrix, 214
Cox-Ingersoll-Ross model, 286
credit risk, 307
CUHK system, 80
currency exchange rate, 151

D
data mining, 131, 215
DC-1 system, 75
decision problem under uncertainty, 254
decision trees, 2
default risk, 283, 307
degrees of freedom, 7
delta method, 5
derivatives, 6
detection error tradeoff curve, 78
deterministic, 3
diffusion process, 286
directed acyclic graph, 216
double auction market, 39

M. Doumpos et al. (eds.), Financial Decision Making Using Computational Intelligence,
Springer Optimization and Its Applications 70, DOI 10.1007/978-1-4614-3773-4,
© Springer Science+Business Media New York 2012

321

322 Index

Dow Jones Industrial Average, 78
downside risk, 257
dynamic programming, 236

E
early stopping, 5
efficient portfolios, 256
efficient set, 240, 268, 275
ensemble learning, 173
error function, 5
error surface, 5
evidential reasoning, 215
evolution strategies, 195
evolutionary algorithms, 270
evolutionary automatic programming, 167
evolutionary computation, 36
exponential smoothing, 172
export volume, 87

F
feed-forward neural network, 74, 82, 84, 93
financial mathematics, 36
forward risk-neutral measure, 298
fuzzy numbers, 260
fuzzy sets, 260
fuzzy sets theory, 253

G
GARCH methods, 173
Gaussian, 10
genetic algorithms, 1, 270
genetic programming, 41, 168
Gibbs sampling, 216
global minimum, 5
gradient descent, 5
gross domestic product, 87
gross national savings, 87

H
Hang Seng Index, 73
Hessian matrix, 7
heteroskedasticity, 8
heuristics, 37
hidden layer, 2
hidden layer nodes, 5
hidden Markov model, 247
hidden Markov models, 215
high performance computing, 282
higher order neural networks, 103, 104, 115

homogenous Markov chains, 234
hybrid neural networks, 104, 105, 109, 111

I
identity, 5
import volume, 87
index modeling, 165
input nodes, 5
input vector, 2
insurance undertakings, 281
integral, 10
interest rate risk, 286
internal model, 282
International Monetary Fund, 86
inverse document frequency, 74, 80
IPO, 189

K
k-means clustering, 245
k-nearest neighbour, 2, 74, 84
Kalman filters, 215

L
learning network, 2
leverage, 103, 104, 118
linear, 2
linear back-off algorithm, 77
linear regression, 90, 94
local minima, 5
log likelihood, 12, 217
LOLITA system, 73

M
machine learning, 167, 215
market timing, 41, 43
Markov chain, 233
martingales, 285
matrix notation, 4
maximum likelihood, 9
maximum likelihood estimation, 217
mean absolute deviation model, 256
mean squared residual, 4
mean-variance model, 214, 255
membership function, 258
metaheuristics, 37, 257
Michigan approach, 197
model generalisation, 173
Monte Carlo Markov chains, 216
Monte Carlo simulation, 282
multi-criteria decision making, 254

Index 323

multi-layer perceptron, 1, 103, 104, 111, 112
multiperiod portfolio optimization, 235
multiple criteria optimization, 267
multivariate, 4

N
naı̈ve Bayesian classification, 77–79, 83, 84,

91, 92
named entities, 81
neural networks, 72, 75, 83, 91, 93, 94
neurofinance, 37
news analytics, 72, 85, 86, 88, 91
NewsCATS, 82
non linear least squares, 5
non-linear, 2
normal distribution, 3
normalized economic value estimate, 79
noun phrases, 81

O
OpinionFinder, 81
optimal procrastination, 42
ordinary least squares, 3
output nodes, 5
over-fitting, 5
overall accuracy, 74, 82, 84, 85

P
panel regression, 86
parameters, 3
Pareto frontier, 272
partial derivatives, 2
PDR system, 73
penalty term, 7
periodicity detection, 131
piecewise linear regression, 76, 77, 80
population parameter, 8
portfolio optimization, 209, 233, 255
portfolio selection, 253
possibilistic moments, 253
possibility distributions, 258
posterior probability distribution, 10
prediction band, 4
prediction intervals, 1
principal component analysis, 219
prior distribution, 10
probabilistic datalog rules, 73
Project FINDS, 91
projection pursuit regression, 1

Q
quantitative, 122
quasi-Newton, 5

R
radial basis function, 1, 93
RavenPack, 85
re-sampling, 8
receiver operating characteristic, 75
recurrent neural network, 103, 104, 113,

114
regression, 1
regression function, 3
regularisation, 5
reinforcement learning, 36
rejection sampling, 216
residual, 9
residuals, 4
risk aversion, 43, 254
risk driver, 211
risk modeling, 286
riskless asset, 235
Russell 3000, 89, 92

S
sampling distribution, 3
sampling variation, 3
sandwich method, 5
scalar, 4
search algorithm, 5
seasonal temperature forecasting, 167
segregated fund, 282
semi-variance, 257
sentiment score, 71, 72, 83, 86–88, 91, 94, 95,

98
short selling, 238
short-selling, 214
skewness, 255
solvency II directive, 282
standard deviation, 3
standard errors, 5
state space, 234
statistical intervals, 8
stochastic, 3
stochastic models, 286
suffix array, 132
suffix tree, 131
support vector machines, 1, 72, 81–83, 85, 91,

93, 94

324 Index

T
target values, 4
Taylor series, 6
term frequency, 74, 80
Thomson Reuters, 85, 89, 92–95
time series, 130
trading strategy, 36, 75, 77–80, 82–85, 103,

104, 118
training, 5
transaction cost, 45
transition matrix, 234

U
UCSD system, 78
unbiased estimate, 4
uncertainty, 253
underpricing, 192
upper bound, 7
utility function, 210

V
validation, 12
Value at Risk, 2
variance, 4
variance reduction, 290, 292
variance-covariance matrix, 6

W
Wall Street Journal, 83
weather derivatives, 161
weather risk, 161
weight decay, 7
weight space, 5
weights, 5
World Economic Outlook database, 86

Y
Yahoo Finance, 81

	Financial Decision Making Using Computational Intelligence
	Preface
	Contents
	Contributors
	Chapter1 Statistically Principled Application of Computational Intelligence Techniques for Finance
	Chapter2 Can Artificial Traders Learn and Err Like Human Traders? A New Direction for Computational Intelligence in Behavioral Finance
	Chapter3 Application of Intelligent Systems for News Analytics
	Chapter4 Modelling and Trading the Greek Stock Marketwith Hybrid ARMA-Neural Network Models
	Chapter5 Pattern Detection and Analysis in Financial Time Series Using Suffix Arrays
	Chapter6 Genetic Programming for the Induction of Seasonal Forecasts: A Study on Weather Derivatives
	Chapter7 Evolution Strategies for IPO Underpricing Prediction
	Chapter8 Bayesian Networks for Portfolio Analysis and Optimization
	Chapter9 Markov Chains in Modelling of the Russian Financial Market
	Chapter10 Fuzzy Portfolio Selection Models: A Numerical Study
	Chapter11 Financial Evaluation of Life Insurance Policies in High Performance Computing Environments
	Index

