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Preface

Harmonic analysis is one of the most active and fastest growing parts of both pure
and applied mathematics. It has gone far beyond its primary goal, which was to
study the representation of functions or signals as superpositions of trigonometric
functions (Fourier series). The interest in harmonic analysis has always been great
because of the wealth of its applications, and it plays nowadays a central role in
the study of signal theory and time-frequency analysis. Its interest in pure math-
ematics (especially in functional analysis) has been revived by the introduction of
new functional spaces which are tools of choice for studying regularity properties
of pseudo-differential operators and their applications to mathematical physics.
Methods from symplectic geometry add power and scope to modern harmonic
analysis; historically these methods were perhaps for the first time systematically
used in Folland’s seminal book [59].

The aim of the present book is to give a rigorous and modern treatment of
various objects from harmonic analysis with a strong emphasis on the underlying
symplectic structure (for instance symplectic and metaplectic covariance proper-
ties). More specifically we have in mind two audiences: the time-frequency commu-
nity, and mathematical physicists interested in applications to quantum mechanics.
The concepts and methods are presented in such a way that they should be eas-
ily accessible to students at the upper-undergraduate level (a certain familiarity
with basic Fourier analysis and the elementary theory of distributions is assumed).
Needless to say, this book can also be read with profit by more advanced readers,
and can be used as a reference work by researchers in partial differential equations,
harmonic analysis, and mathematical physics. (Several chapters are part of ongo-
ing research and contain material that is usually not addressed in introductory
texts. For instance Gromov’s non-squeezing theorem from symplectic topology
and its applications, or the theory of phase space pseudodifferential operators.)

Description of the book

This book is divided into parts and chapters, each devoted to a particular topic.
They have been designed in such a way that the material of each chapter can be
covered in a 90 minutes lecture (but this, of course, very much depends on the
student’s background). The parts can be read independently.

xv
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Part I: Symplectic Mechanics

• Chapter 1 is intended to be a review of the main concepts from Hamilto-
nian mechanics; while it can be skipped by the reader wanting to advance
rapidly in the mathematics of harmonic analysis on symplectic spaces, it
is recommended as a reference for a better understanding of the reasons
for which many concepts are introduced. For instance, the Hamiltonian ap-
proach leads to a very natural and “obvious” motivation for consideration
of the Heisenberg–Weyl operators, and of the Weyl pseudo-differential cal-
culus. Also, deformation quantization does not really make sense unless one
understands the mechanical reasons which lie behind it. The main result of
this first chapter is that Hamiltonian flows consist of symplectomorphisms
(the physicist’s canonical transformations). This is proven in detail using an
elementary method, that of the “variational equation” (which is a misnomer,
because there is per se nothing variational in that equation!). We also dis-
cuss other topics, such as Poisson brackets (which is helpful to understand
the first steps of deformation quantization; Hamilton–Jacobi theory is also
briefly discussed).
• In Chapter 2 the basics of the theory of the symplectic group are developed

in a self-contained way. Only an elementary knowledge of linear algebra is re-
quired for understanding of the topics of this chapter; the few parts where we
invoke more sophisticated material such as differential forms can be skipped
by the beginner. A particular emphasis is put on the machinery of free sym-
plectic matrices and their generating functions, which are usually ignored
in first courses. The consideration of this topic simplifies many calculations,
and has the advantage of yielding the easiest approach to the theory of the
metaplectic group. We also discuss classical topics, such as the identification
of the unitary group with a subgroup of the symplectic group.
• In Chapter 3 we refine our study of the symplectic group by introducing the

notion of free symplectic matrix and its generating functions. Free symplectic
matrices can be defined in several different ways. Their importance comes
from the fact that they are in a sense the building blocks of the symplectic
group: every symplectic matrix is the product (in infinitely many ways) of
exactly two free symplectic matrices. This property in turn allows an easy
construction of simple sets of generators for the symplectic group. Last – but
certainly not least! – the notion of free symplectic matrix will be instrumental
for our definition in Chapter 7 of the metaplectic representation.
• In Chapter 4 we discuss the notion of symplectomorphism, which is a gen-

eralization to the non-linear case of the symplectic transformations intro-
duced in the previous chapters. This leads us to define two very interest-
ing groups Symp(2n,R) and Ham(2n,R), respectively the group of all sym-
plectomorphisms, and that of all Hamiltonian symplectomorphisms. These
groups, which are of great interest in current research in symplectic topology,
are non-linear generalizations of the symplectic group Sp(2n,R). The group
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Ham(2n,R) will play an important role in our derivation of Schrödinger’s
equation for arbitrary Hamiltonian functions.
• In Chapter 5 we introduce new and very powerful tools from symplectic

geometry and topology: Gromov’s symplectic non-squeezing theorem, and the
associated notion of symplectic capacity. The importance of these concepts
(which go back to the mid 1980s, and for which Gromov got the Abel Prize in
2009) in applications has probably not yet been fully realized in mathematical
analysis, and even less in mathematical physics.
• In Chapter 6 we address a topic which belongs to both classical and quantum

mechanics, namely uncertainties principles, and we do this from a topological
point of view. We begin by discussing uncertainty principles associated with
a quasi-probability distribution from a quite general point of view (hence
applicable both to the classical and quantum cases), and introduce the asso-
ciated notion of covariance matrix. This enables us to reformulate the strong
version of the uncertainty principle in terms of symplectic capacities. This
approach to both classical and quantum uncertainties is new and due to the
author. It seems to be promising because it allows us to analyze uncertain-
ties which are more general than those usually considered in the literature,
and has led to the definition of “quantum blobs”, which are symplectically
invariant subsets of phase space with minimum symplectic capacity one-half
of Planck’s constant h. We also prove a multi-dimensional Hardy uncertainty
principle, which says that a function and its Fourier transform cannot be
simultaneously dominated by too sharply peaked Gaussians.

Part II: Harmonic Analysis in Symplectic Spaces

• Chapter 7 is devoted to a detailed study of the metaplectic group Mp(2n,R)
as a unitary representation in L2(Rn) of the two-fold covering of the sym-
plectic group Sp(2n,R). The properties of Sp(2n,R), as exposed in Chapters
2 and 3, allow us to identify the generators of the metaplectic group as
“quadratic Fourier transforms”, generalizing the usual Fourier transforms.
We construct with great care the projection (covering) mapping from the
metaplectic group to the symplectic group, having in mind our future appli-
cations to the Wigner transform and the Schrödinger equation. In the forth-
coming chapters we will use systematically the properties of the metaplectic
group, in particular when establishing symplectic/metaplectic covariance for-
mulas in Weyl calculus and the theory of the Wigner transform.
• In Chapter 8 we study two companions, the Heisenberg–Weyl and Gross-

mann–Royer operators. These operators can in a sense be viewed as “quan-
tized” versions of, respectively, translation and reflection operators and are
symplectic Fourier transforms of each other. We also discuss the related no-
tion of Heisenberg group and algebra which play such an important role in
harmonic analysis in phase space; our approach starts with the canonical
commutation relations of quantum mechanics. We also define and briefly dis-
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cuss the affine variant of the metaplectic group, namely the inhomogeneous
metaplectic group AMp(2n,R) which is an extension by the Heisenberg–Weyl
operators of the metaplectic group Mp(2n,R).
• In Chapter 9 we study in great detail various algebraic and functional prop-

erties of the cross-ambiguity and cross-Wigner functions, which are concisely
defined using the Heisenberg–Weyl and Grossmann–Royer operators intro-
duced in the previous chapter. We discuss the relations with the short-time
Fourier transform used in signal and time-frequency analysis. We also prove
a useful inversion formula for the cross-Wigner transform; this formula plays
an important role in the theory of Feichtinger’s modulation spaces which will
be studied later in this book.

Part III: Pseudo-differential Operators and Function Spaces

• In Chapter 10 we present the basics of Weyl calculus, in particular the defini-
tion of the Weyl correspondence which plays such an important role both in
the theory of pseudodifferential operators and in modern quantum mechanics
of which it is one of the pillars. The chapter begins with an introductory sec-
tion where the need for “quantization” is briefly discussed. We prove various
formulas (in particular formulas for the adjoint of a Weyl operator, and that
for the twisted symbol of the composition of two operators).
• In Chapter 11 we take a close look at the notion of coherent states (they are

elementary Gaussian functions); the properties of the metaplectic group al-
low us to give very explicit formulas for their natural extension, the squeezed
coherent states, which play a pivotal role both in harmonic analysis and in
quantum mechanics (especially in the subdiscipline known as quantum op-
tics). This leads us naturally to the consideration of anti-Wick operators (also
called Toeplitz or Berezin operators), of which we give the main properties.
• In Chapter 12 we review two venerable topics from functional analysis: the

theory of Hilbert–Schmidt and the associated theory of trace class operators.
This will allow us to give a precise meaning to the notion of mixed quantum
state in Chapter 13. We discuss in some detail the delicate procedure of cal-
culating the trace. In particular we state and prove a result making legitimate
the integration of the kernel when the operator is a Weyl pseudodifferential
operator.
• In Chapter 13 we give a rigorous definition of the notion of mixed quan-

tum state, and of the associated density operators (called density matri-
ces in quantum mechanics). The relation between density operators and the
Wigner transform is made clear and fully exploited. We discuss the very
delicate notion of positivity for the density operator. This is done by in-
troducing the Kastler–Loupias–Miracle-Sole conditions, which we relate to
the uncertainty principle. We also apply Hardy’s uncertainty principle in its
multi-dimensional form to the characterization of sub-Gaussian mixed states;
the results are stated concisely using the notion of symplectic capacity.
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• Chapter 14 is of a rather technical nature. We introduce Shubin’s global sym-
bol classes, and the associated pseudo-differential operators. Shubin classes
are of a greater use in quantum-mechanics than the ordinary Hörmander
classes because their definition takes into account global properties of poly-
nomial decrease in phase space. We discuss the notion of asymptotic expan-
sion of the symbols, and show that operators which are at first sight much
more general can be reduced to the case of ordinary pseudo-differential oper-
ators. We also study the notion of τ -symbol of a pseudo-differential, and give
formulas allowing one to switch between different values of the parameter τ .

Part IV: Applications

• In Chapter 15 we study a great classic of quantum mechanics, in fact one
of its pillars: Schrödinger’s time-dependent equation. We begin by showing
that this equation can be derived from the theory of the metaplectic group
when associated to a quadratic Hamiltonian function. In the second part of
the chapter we generalize our construction to arbitrary Hamiltonian func-
tions by using Stone’s theorem on strongly continuous one-parameter groups
of unitary operators together with the characteristic property of symplectic
covariance of Weyl pseudo-differential calculus.
• Chapters 16 and 17 are an introduction to Feichtinger’s theory of modula-

tion spaces. The elements ψ of these spaces are functions (or distributions) on
R
n characterized by the property that the cross-Wigner transform W (ψ, φ)

belongs to some weighted Banach space of integrable functions on R
2n for

every “window” φ. The simplest example is provided by the Feichtinger al-
gebra M1(Rn) which is the smallest Banach algebra containing the Schwartz
functions and being invariant under the action of the inhomogeneous group
(Chapter 16). Since Feichtinger’s algebra is a Banach algebra it can be used
with profit as a substitute for the Schwartz space; it allows in particular,
together with its dual, to define a Gelfand triple. Modulation spaces play a
crucial role in time-frequency analysis and in the theory of pseudodifferential
operators. Their importance in quantum mechanics has only been recently
realized, and is being very actively investigated.
• Chapter 18 is an introduction to a new topic, which we have called Bopp

calculus. Bopp operators are pseudodifferential operators of a certain type
acting on phase space functions or distributions. They are associated in a
natural way to the usual Weyl operators by “Bopp quantization rules”, x −→
x + 1

2 i�∂p, p −→ p − 1
2 i�∂x. These rules are often used heuristically by

physicists working in the area of deformation quantization; this chapter gives
a rigorous justification of these manipulations. We note that the theory of
Bopp operators certainly has many applications in pure mathematics and
physics (Schrödinger equation in phase space).
• In Chapter 19 we give a few applications of Bopp calculus. We begin by

studying spectral properties of Bopp operators, which we relate to those of
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the corresponding standard Weyl operators. As an example we derive the en-
ergy levels and eigenfunctions of the magnetic operator (also called Landau
operator). We thereafter show that Bopp pseudodifferential operators allow
one to express deformation quantization in terms of a pseudodifferential the-
ory; this has of course many technical and conceptual advantages since it
allows us to easily prove deep results on “stargenvalues” and “stargenvec-
tors”. The book ends on a beginning: the application of Bopp operators to
an emerging subfield of mathematics called “noncommutative quantum me-
chanics” (NCQM), which has its origins in the quest for quantum gravity.
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Prologue

In this preliminary chapter we introduce some notation and recall basic facts from
linear algebra and vector calculus.

Some notation

Let K = R or C.

• M(m,K) is the algebra of all m×m matrices with entries in K.
• GL(m,K) is the general linear group. It consists of all invertible matrices in
M(m,K).
• SL(m,K) is the special linear group: it is the subgroup of GL(m,K) consisting

of all matrices with determinant equal to 1.
• Sym(m,K) is the vector space of all symmetric matrices in M(m,K); it has

dimension 1
2m(m+1); Sym+(2n,R) is the subset of Sym(m,K) consisting of

the positive definite symmetric matrices.

The elements of R
m should be viewed as column vectors

x =






x1

...
xn






when displayed; for typographic simplicity we will usually write x = (x1, . . . , xn)
in the text. The Euclidean scalar product 〈·, ·〉 and norm | · | on R

m are defined by

x · y = xT y =
m∑

j=1

xjyj .

The gradient operator in the variables x1, . . . , xn will be denoted by

∂x or






∂x1

...
∂xm




 .

xxi
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Let f and g be differentiable functions R
m −→ R

m; in matrix form the chain
rule is

∂x(g ◦ f)(x) = (Df(x))T ∂xf(x) (1)

where Df(x) is the Jacobian matrix of f : if f = (f1, . . . , fm) is a differentiable
mapping R

m −→ R
m then

Df =









∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xm

...
...

. . .
...

∂fm
∂x1

∂fn
∂x2

· · · ∂fm
∂xm









. (2)

Let y = f(x); we will indifferently use the notation Df(x) for the Jacobian matrix
at x. If f is invertible, the inverse function theorem says that

D(f−1)(y) = [Df(x)]−1. (3)

If f : R
m −→ R is a twice continuously differentiable function, its Hessian

calculated at a point x is the symmetric matrix of second derivatives

D2f(x) =










∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn
...

...
. . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2
n










. (4)

Notice that the Jacobian and Hessian matrices are related by the formula

Dx(∂xf)(x) = D2
xf(x). (5)

Also note the following useful formulae:

〈A∂x, ∂x〉 e− 1
2 〈Mx,x〉 = [〈MAMx, x〉 − Tr(AM)] e−

1
2 〈Mx,x〉, (6)

〈Bx, ∂x〉 e− 1
2 〈Mx,x〉 = 〈MBx, x〉 e− 1

2 〈Mx,x〉, (7)

where A, B, and M are symmetric matrices.

The space S(Rn) and its dual S′(Rn)

Very useful classes of functions and distributions are the so-called Schwartz space
S(Rn) and its dual S′(Rn), which is the space of tempered distributions. In our
context they are better adapted than the space C∞

o (Rn) of infinitely differen-
tiable functions with compact support (the latter is not invariant under Fourier
transform).
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Definition 1. The space S(Rn) consists of all infinitely differentiable functions
f : R

n −→ C such that for every pair (α, β) of multi-indices there exists a constant
Cαβ ≥ 0 such that

|xα∂βx f(x)| ≤ Cαβ for x ∈ R
n.

This condition is equivalent to the existence of C′
αβ ≥ 0 such that

|∂βx (xαf)(x)| ≤ C′
αβ for x ∈ R

n.

The proof of the equivalence of the two conditions above is left to the reader;
it readily follows – after some tedious calculations – from Leibniz’s rule for the
derivatives of a product.

Clearly C∞
0 (Rn) ⊂ S(Rn); the archetypical example of a function which

belongs to S(Rn) but not to C∞
0 (Rn) is the Gaussian f(x) = e−|x|2; more generally

the product of a Gaussian by a polynomial is in S(Rn). Note that S(Rn) actually
is an algebra: the product of two elements of S(Rn) is also in S(Rn) (this readily
follows from the chain rule). The formulae

‖f‖(1)αβ = sup
x∈Rn

|xα∂βx f(x)|,

‖f‖(2)αβ = sup
x∈Rn

|∂βx (xαf)(x)|

define equivalent families of semi-norms on S(Rn); one shows that S(Rn) becomes
a Fréchet space for the topology thus defined.

The Fourier transform

Let f : R
n −→ C be an absolutely integrable function

‖f‖L1 =
∫

Rn

|f(x)|dx <∞;

we will write for short f ∈ L1(Rn). By definition the Fourier transform Ff = f̂ is
the function defined by

f̂(ξ) =
(

1
2π

)n/2
∫

Rn

e−iξ·xf(x)dx.

We will use in this book the following variant of the Fourier transform F :

Fψ(x) =
(

1
2π�

)n/2
∫

Rn

e−ix·x
′
ψ(x′)dx′;

here � is a positive parameter, which one identifies in physics with Planck’s con-
stant divided by 2π: � = h/2π (the notation is due to the physicist Dirac). One
proves (Riemann–Lebesgue lemma) that lim|ξ|→∞ f̂(ξ) = 0.



xxiv Prologue

One of the main properties of the Schwartz space (and of it dual) is that it
is invariant by the Fourier transform:

F : S(Rn) −→ S(Rn),
F : S′(Rn) −→ S′(Rn).

This is in strong contrast with the case of C∞
o (Rn): the only compactly supported

function (or distribution, for that matter) whose Fourier transform is also com-
pactly supported is 0 (this is easily seen if one knows that the Fourier transform
of a compactly supported function is analytic, and can thus never have compact
support).

Proposition 2. The Fourier transforms F : f �−→ f̂ and f �−→ Ff are invertible
automorphisms of S(Rn) which extends by duality into automorphisms of S′(Rn)
defined by

〈f̂ , g〉 = 〈f, ĝ〉 , 〈Ff, g〉 = 〈f, Fg〉
for f ∈ S′(Rn), g ∈ S(Rn). The restriction of these automorphism to L2(Rn) are
unitary.

Proof. Let f ∈ S(Rn); for α, β ∈ N
n we have

ξα∂βξ f̂ = (−i)|α|+|β|∂̂αx xβf ;

since ∂αx x
βf ∈ S(Rn) there exists a constant Cαβ > 0 such that |ξα∂βξ f̂(ξ)| ≤ Cαβ ,

hence f̂ ∈ S(Rn). That the Fourier transform is an invertible automorphism of
S(Rn) follows from the Fourier inversion formula. The two last statements easily
follow from Plancherel’s formula

∫

Rn

f(x)ĝ(x)dx =
∫

Rn

f̂(x)g(x)dx

and their proof is therefore left to the reader. �



Part I

Symplectic Mechanics



Chapter 1

Hamiltonian Mechanics in a Nutshell

This chapter is an introduction to the basics of Hamiltonian mechanics, with an
emphasis on its symplectic formulation. It thus motivates the symplectic tech-
niques which will be developed in the forthcoming chapters. In fact, Hamiltonian
mechanics is historically the main motivation for the study of the symplectic group
in particular, and of symplectic geometry in general. For complements and an ex-
tended study the reader can consult with profit the treatises by Abraham–Marsden
[2] and Arnol’d [3]; an elementary introduction at the undergraduate level is the
classical book by Goldstein [63] and its re-editions. (This book is written for physi-
cists, however, and the mathematics is not always rigorous.)

Historically, Hamiltonian mechanics goes back to the early work of Hamilton
and Lagrange; its symplectic formulation (as exposed in this chapter) is relatively
recent; see Arnol’d [3] and Abraham et al. [1] for detailed accounts.

1.1 Hamilton’s equations

We will use the notation x = (x1, . . . , xn), p = (p1, . . . , pn) for elements of R
n and

z = (x, p) for elements of R
2n (the “phase space”). When using matrix notation,

x, p, z will always be viewed as column vectors.

1.1.1 Definition of Hamiltonian systems

Let H (“the Hamiltonian”) be a real-valued function in C∞(R2n); more generally
we will consider “time-dependent Hamiltonians” H ∈ C∞(R2n × R), functions of
z and t.

Definition 3. The system of 2n ordinary differential equations

dxj
dt

=
∂H

∂pj
(x, p, t),

dpj
dt

= − ∂H
∂xj

(x, p, t) (1.1)

is called the Hamilton equations associated with H .

3M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics,  
Pseudo-Differential Operators 7, DOI 10.1007/978-3-7643-9992-4_ , © Springer Basel AG 2011 1



4 Chapter 1. Hamiltonian Mechanics in a Nutshell

To simplify the discussion we will assume that for every z0 = (x0, p0) belong-
ing to an open subset Ω of R

2n, this system has a unique solution t �−→ z(t) =
(x(t), p(t)) such that z(0) = z0, defined for −T ≤ t ≤ T where T > 0. (See
Abraham–Marsden [2], Ch. 1, §2.1, for a general discussion of global existence and
uniqueness, including the important notion of “flow box”.)

A basic example is the following; we state it in the case n = 1:

H(x, p) =
p2

2m
+ U(x) (1.2)

where m is a positive constant (“the mass”) and U a smooth function (“the po-
tential”). In this case Hamilton’s equations are

dx

dt
=

p

m
,
dp

dt
= −U ′(x). (1.3)

In physics one writes v = p/m (it is the velocity) and dp/dt, so that these equations
are just a restatement of Newton’s second law, familiar from elementary physics;
the quantity p2/2m is the “kinetic energy”. (We have discussed in some detail the
physical interpretation of Hamilton’s equations in [65].)

This example motivates the following definition:

Definition 4. Let t �−→ z(t) be a solution of Hamilton’s equations. The number
E(t) = H(z(t)) is called the energy along the solution curve through z0 = z(0)
at time t. When H is time-independent, we have H(z(t)) = H(z(0)) for every t.
More generally, any function which is constant along the curves t �−→ z(t) is called
a “constant of the motion”.

That the energy E is a constant for time-independent Hamiltonians follows
from the chain rule applied to H(z(t)), taking Hamilton’s equations into consid-
eration: setting z = z(t) we have

d

dt
H(z(t)) =

n∑

j=1

∂H

∂xj
(z)

dxj
dt

+
∂H

∂pj
(z)

dpj
dt

= 0.

In the case of time-dependent Hamiltonians the same argument shows that
d

dt
H(z(t), t) =

∂H

∂t
(z(t), t)

hence the energy E(t) = H(z(t), t) is not a constant of the motion.

1.1.2 A simple existence and uniqueness result

Here is an existence result which is sufficient for many applications to physics. We
assume that the Hamiltonian is time-independent and of the type

H(x, p) =
∑n

j=1

p2
j

2mj
+ U(x)

where U ∈ C∞(Rn).
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Proposition 5. If U ≥ a for some constant a, then every solution of Hamilton’s
equations

dxj
dt

=
pj
mj

,
dpj
dt

= − ∂U
∂xj

(x)

(1 ≤ j ≤ n) exists for all times (and is unique).

Proof. In view of the local existence theory for ordinary differential equations it
suffices to show that the solutions t �−→ z(t) remain in bounded sets for finite times.
Since Hamilton’s equations are insensitive to the addition of a constant to the
Hamiltonian we may assume a = 0, and rescaling if necessary the momentum and
position coordinates it is no restriction neither to assumemj = 1 for 1 ≤ j ≤ n. For
notational simplicity we moreover assume n = 1. Let thus t → z(t) = (x(t), p(t))
be a solution curve of the equations

dx

dt
= p ,

dp

dt
= −∂U

∂x
(x)

and let E = H(z(t)) be the energy; since H ≥ U we have E ≥ U(x(t)). In view of
the triangle inequality

|x(t)| ≤ |x(0)|+ |x(t) − x(0)| ≤ |x(0)|+
∫ t

0

∣
∣ d
dtx(s)

∣
∣ ds;

since d
dtx(s) = p(s) and

p(t) =
√

2(E − U(x(t)) ≤
√

2E (1.4)

we have:

|x(t)| ≤ |x(0)|+
∫ t

0

|p(s)| ds ≤ |x(0)|+
∫ t

0

√

2(E − U(x(s))ds

so that
|x(t)| ≤ |x(0)|+ t

√
2E. (1.5)

The inequalities (1.4) and (1.5) show that for t in any finite time-interval [0, T ]
the functions t �−→ x(t) and t �−→ p(t) = x(t), and hence t �−→ z(t), stay forever
in a bounded set. �

One can show (see [1], §4.1) that the conclusions of Proposition 5 still hold
if one replaces the boundedness condition U ≥ a by the much weaker requirement

U(x) ≥ a− b|x|2 for b > 0

where a and b are some constants (b > 0). This condition cannot be very much
relaxed; for instance one shows (ibid.) that already in the case n = 1 the solutions
of the Hamilton equations for

H(x, p) =
p2

2m
− ε2

8
x2+(4/ε)

are not defined for all t if ε > 0.
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1.2 Hamiltonian fields and flows

From now on we will use the following more compact notation, borrowed from
mechanics: time derivatives (i.e., derivatives with respect to t) will be denoted
by putting a dot over the letter standing for the function. For instance, ẋ means
dx/dt. Derivatives will in general be written as ∂x, ∂xj , etc. instead of ∂/∂x, ∂/∂xj .
We will also freely use the notation ∂x for the gradient (∂x1 , . . . , ∂xn). Similarly,
∂z = (∂x, ∂p) is the gradient in the 2n variables z1 = x1, . . . , zn = xn; zn+1 =
p1, . . . , z2n = pn.

The Hamilton equations (1.1) can be rewritten in compact form as

ż = J∂zH(z) (1.6)

where J is the “standard symplectic matrix” defined by

J =
(

0 I
−I 0

)

where 0 and I are the n× n zero and identity matrices. That matrix will play an
essential role in all of this book.

1.2.1 The Hamilton vector field

Assume first that H is a time-independent Hamiltonian function.

Definition 6. We call the vector field

XH = J∂zH = (∂xH,−∂pH)

the “Hamilton vector field of H”; the operator J∂z is called a “symplectic gradi-
ent”.

It follows from the elementary theory of ordinary autonomous differential
equations that the system (1.1) defines a flow (φHt ): by definition the function
t �−→ z(t) = φHt (z0) is the solution of Hamilton’s equations with z(0) = z0 and we
have

φHt φ
H
t′ = φHt+t′ , φH0 = I (1.7)

when t, t′ and t + t′ are in the interval [−T, T ]. In particular each φHt is a diffeo-
morphism such that (φHt )−1 = φH−t.

Definition 7. One says that (φHt ) is the flow generated by the Hamilton equations
for H .

The Hamilton vector field is gradient-free:

divXH = ∂x (∂pH)− ∂p (∂xH) = 0
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hence the flow (φHt ) is incompressible. This result is called “Liouville’s theorem”
in the physics literature. Incompressibility means that for every subset U of Ω and
t ∈ [−T, T ] such that φHt (U) ⊂ Ω we have

VolφHt (U) = VolU.

Hamiltonian flows are thus volume-preserving. This property also follows from the
fact that Hamiltonian flows consist of symplectomorphisms, as we will see in a
moment, for we then have

(φHt )∗ Vol = Vol

where Vol is the volume form (2.11).
When H is a time-dependent function, Hamilton’s equations become a non-

autonomous system of differential equations which we can write concisely as

ż = J∂zH(z, t). (1.8)

One again writes XH = ∂zH , but XH is not, strictly speaking, a vector field in the
usual sense (because it depends on the parameter t). The “flow” (φHt ) generated
by time-dependent Hamiltonian no longer has the group property: φHt φ

H
t′ 
= φHt+t′ .

It is often useful to replace the notion of flow as defined above by that of time-
dependent flow (φHt,t′): φ

H
t,t′ is the function defined by the condition that t �−→

z(t, t′) = φHt,t′(z0) is the solution of Hamilton’s equations with z(t′) = z0. Obviously

φHt,t′ = φHt,0
(
φHt′,0

)−1

hence the group property (1.7) has then to be replaced by

φHt,t′φ
H
t′,t′ = φHt,t′′ , φHt,t = I (1.9)

for all admissible t, t′, and t′′. Notice that it follows in particular that (φHt,t′)
−1 =

φHt′,t.
It is however always possible to reduce the study of a time-dependent Hamil-

tonian to the time-independent case. The price to pay is that we have to work in
a phase space with dimension 2n+ 2 instead of 2n. We define a new Hamiltonian
function H̃ by the formula

H̃(x, p, t, E) = H(x, p, t)− E (1.10)

where E is a new variable, viewed as conjugate to the time t which now has the
status of a “position variable”; we could as well write the definition of H̃ in the
form

H̃(x, p, xn+1, pn+1) = H(x, p, xn+1)− pn+1

but we will however stick to the notation (1.10). The function H̃ is defined on the
extended phase space R

2n+2 ≡ R
2n×RE×Rt. The associated Hamilton equations
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are, expressed in terms of the original Hamiltonian H :

dx

dt′
= ∂pH ,

dp

dt′
= −∂xH,

dE

dt′
=
∂H

∂t
,
∂t

∂t′
= 1,

where the parameter t′ plays the role of a new “time”; since H̃ does not explicitly
contain that parameter, it is a “time-independent” Hamiltonian on the extended
phase space. Notice that in view of the fourth equation above we may choose
t′ = t so that the two first equations are just the Hamiltonian equations for H ; as
a bonus the third equation is just the familiar law for the variation of energy of a
time-dependent Hamiltonian system:

dE

dt
=

d

dt
H(x, p, t) =

∂

∂t
H(x, p, t)

(the second equality because of the chain rule and using the fact that x and
p satisfy Hamilton’s equations). We can now define the “extended Hamiltonian
flow” (φ̃Ht ) of H by the formula φ̃Ht = φH̃t . Notice that since (φH̃t ) is the flow
determined by a time-independent Hamiltonian, (φ̃Ht ) enjoys the one-parameter
group property φ̃Ht φ̃

H
t′ = φ̃Ht+t′ and φ̃H0 = I (the identity operator on the extended

phase space R
2n+2). Denote now by (φHt,t′) the two-parameter family of canonical

transformations of R
2n defined as follows: for fixed t′ the function z = φHt,t′(z

′) is
the solution of Hamilton’s equations for H taking the value z′ at time t′. Thus:

φHt,t′ = φHt
(
φHt′

)−1
. (1.11)

Clearly φHt,t is the identity operator on R
2n and φHt,t′φ

H
t′,t′′ = φHt,t′′ , (φHt,t′ )

−1 = φHt′,t.
The two-parameter family (φHt,t′) is sometimes called the “time-dependent flow”;
it is related to the extended flow defined above by the simple formula

φ̃Ht (z′, t′, E′) = (φHt,t′(z
′), t+ t′, Et,t′) (1.12)

with
Et,t′ = E′ +H(φHt,t′(z

′), t)−H(z′, t′). (1.13)

We refer to the paper [154] by Struckmeier for a discussion of some subtleties
and difficulties related to the method just outlined. See Sardanashvily [139] for an
up-to-date discussion of time-dependent Hamiltonian mechanics from the point of
view of differential geometry.

1.2.2 The symplectic character of Hamiltonian flows

Recall that J (the “standard symplectic matrix”) is defined by

J =
(

0 I
−I 0

)
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where 0 and I are the n× n zero and identity matrices. Note that detJ = 1 and

J2 = I , JT = J−1 = −J
(the superscript T denotes transposition).

Definition 8. A real 2n × 2n matrix is said to be symplectic if it satisfies the
conditions

STJS = SJST = J. (1.14)

The set of all symplectic matrices is denoted by Sp(2n,R).

A symplectic matrix is invertible because det(STJS) = detJ implies
det(S)2 = 1 since detJ = 1. (We will actually see later that we must have detS = 1
when S is a symplectic matrix; this property is in fact not quite obvious.) We will
see in the next chapter that Sp(2n,R) is a group, in fact one of the classical Lie
groups.

The main property of Hamiltonian flows – or, at least the one that distin-
guishes them from general flows – is that they consist of symplectomorphisms (also
called “canonical transformations”, especially in the physical literature). There
are several ways to prove this; our approach makes use of the so-called variational
equation satisfied by the Jacobian matrices of a Hamiltonian flow. We prove the
result for time-independent Hamiltonians; the extension to the time-dependent
case is straightforward (see Exercise 10 below).

Theorem 9. Let (φHt ) be a Hamiltonian flow defined on Ω ⊂ R
2n.

(i) The Jacobian matrix St(z) = DφHt (z) satisfies the “variational equation”

d

dt
St(z) = JD2H(φHt (z))St(z) , St(z) = I. (1.15)

(ii) The Jacobian matrix DφHt (z) is symplectic for every z ∈ Ω:

[DφHt (z)]TJDφHt (z) = DφHt (z)J [DφHt (z)]T = J.

Proof. (i) Taking Hamilton’s equation into account the time-derivative of the Ja-
cobian matrix St(z) is

d

dt
St(z) =

d

dt
(DφHt (z)) = D

(
d

dt
φHt (z)

)

,

that is
d

dt
St(z) = D(XH(φHt (z))).

Using the fact that XH = J∂zH together with the chain rule, we have

D(XH(φHt (z))) = D(J∂zH)(φHt (z))

= JD(∂zH)(φHt (z))

= J(D2H)(φHt (z))DφHt (z),
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hence St(z) satisfies the variational equation (1.15). Statement (ii) follows from
(i): set St = St(z) and At = (St(z))TJSt(z); using the product rule together with
(1.15) we have

dAt
dt

=
d(St)T

dt
JSt + (St)TJ

dSt
dt

= (St)TD2H(z)St − (St)TD2H(z)St
= 0.

It follows that the matrix STt JSt is constant in t, hence, in particular, STt JSt =
ST0 JS0 = J (because S0 is the identity) so that St ∈ Sp(2n,R) for all t ∈ R. �

The following exercise is easy, but the result is useful: it shows that even for
time-depending Hamiltonians the flow consists of symplectomorphisms.

Exercise 10. Reformulate (and prove) the conclusions of Theorem 9 in the case of
a time-dependent flow determined by a time-dependent Hamiltonian.

1.2.3 Poisson brackets

There is another way of writing Hamilton’s equations; it makes use of the notion
of Poisson bracket. Let us introduce the following notation: for any pair of vectors
(z, z′) in R

2n we set
σ(z, z′) = (z′)TJz = Jz · z′.

The scalar σ(z, z′) is called the symplectic product of z and z′; σ is the standard
symplectic form on R

2n. Observe that σ is a bilinear form on R
2n which is antisym-

metric: σ(z, z′) = −σ(z′, z). It satisfies in addition the following non-degeneracy
condition: we can have σ(z, z′) = 0 for all z′ if and only if z = 0 (this because J
is invertible).

Definition 11. Let (f, g) ∈ C∞(R2n)× C∞(R2n). The Poisson bracket of f and g
is the function

{f, g} =
n∑

j=1

∂xjf∂pjg − ∂xjg∂pjf = ∂xf · ∂pg − ∂xg · ∂pf.

It is immediate to verify that Hamilton’s equations can be rewritten, using
Poisson brackets, as

ẋj = {xj , H} , ṗj = {pj, H}.
The following properties of the Poisson brackets are proven by straightforward
calculations:

• Anticommutativity:
{f, g} = −{g, f};
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• Linearity:

{f, g + h} = {f, g}+ {f, h},
{f + g, h} = {f, h}+ {g, h},
{λf, g} = {f, λg} = λ{f, g};

• Leibniz’s law
{f, gh} = {f, g}h+ g{f, h};

• Jacobi identity:

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0.

The relation between the symplectic product and Poisson brackets is instruc-
tive; it comes from the following property:

Proposition 12. Let XH and XK be the Hamilton fields of H and K. The Poisson
bracket of H and K is given by

{H,K} = −σ(XH , XK). (1.16)

Proof. It is obvious since XH = (∂pH,−∂xH), XK = (∂pK,−∂xK) so that

σ(XH , XK) = −∂xH · ∂pK + ∂xK · ∂pH = −{f, g}. �

Poisson brackets are useful in various circumstances; they are historically
at the origin of quantization deformation (and of prequantization, which is an
unphysical mathematical theory; see Wallach [158] for an introduction to this
topic).

1.3 Additional topics

1.3.1 Hamilton–Jacobi theory

Here is one method that can be used (at least theoretically) to integrate Hamilton’s
equations; historically it is one of the first known resolution schemes. A complete
rigorous treatment is to be found in, for instance, Abraham et al. [1].

Given an arbitrary Hamiltonian function H the associated Hamilton–Jacobi
equation is the (usually non-linear) partial differential equation with unknown Φ:

∂Φ
∂t

+H(x, ∂xΦ, t) = 0. (1.17)

The interest of this equation comes from the fact that the knowledge of a suffi-
ciently general solution Φ yields the solutions of Hamilton’s equations for H . At
first sight it may seem strange that one replaces a system of ordinary differential
equations by a non-linear partial differential equation, but this procedure is often
the only available method!
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Proposition 13. Let Φ = Φ(x, t, α) be a solution of

∂Φ
∂t

+H(x, ∂xΦ, t) = 0 (1.18)

depending on n non-additive constants of integration α1, . . . , αn, and such that

detD2
x,αΦ(x, t, α) 
= 0. (1.19)

Let β1, . . . , βn be constants; the functions t �−→ x(t) and t �−→ p(t) determined by
the implicit equations

∂αΦ(x, t, α) = β , p = ∂xΦ(x, t, α) (1.20)

are solutions of Hamilton’s equations for H.

Proof. We assume n = 1 for notational simplicity; the proof extends to the general
case without difficulty. Condition (1.19) implies, in view of the implicit function
theorem, that the equation ∂αΦ(x, t, α) = β has a unique solution x(t) for each t;
this defines a function t �−→ x(t). Inserting x(t) in the formula p = ∂xΦ(x, t, α) we
also get a function t �−→ p(t) = ∂xΦ(x(t), t, α). Let us show that t �−→ (x(t), p(t))
is a solution of Hamilton’s equations for H . Differentiating the equation (1.18)
with respect to α yields, using the chain rule,

∂2Φ
∂α∂t

+
∂H

∂p

∂2Φ
∂α∂x

= 0; (1.21)

differentiating the first equation (1.20) with respect to t yields

∂2Φ
∂x∂α

x+
∂2Φ
∂t∂α

= 0; (1.22)

subtracting (1.22) from (1.21) we get

∂2Φ
∂x∂α

(
∂H

∂p
− ẋ

)

= 0,

hence we have proven that ẋ = ∂pH since ∂2Φ/∂x∂α is assumed to be non-singular.
To show that ṗ = −∂xH we differentiate (1.18) with respect to x:

∂2Φ
∂x∂t

+
∂H

∂x
+
∂H

∂p

∂2Φ
∂x2

= 0 (1.23)

and p = ∂xΦ with respect to t:

ṗ =
∂2Φ
∂t∂x

+
∂2Φ
∂x2

ẋ. (1.24)

Inserting the value of ∂2Φ/∂x∂t given by (1.24) in (1.23) yields

∂H

∂x
+
∂2Φ
∂x2

ẋ− ∂H

∂p

∂2Φ
∂x2

+ ṗ = 0

hence ṗ = −∂xH since ẋ = ∂pH . �
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When the Hamiltonian is time-independent, the Hamilton–Jacobi equation
is separable: inserting Φ = Φ0−Et in (1.18) we get the ‘reduced Hamilton–Jacobi
equation’:

H(x, ∂xΦ0, t) = E (1.25)

which is often easier to solve in practice; the energy E can be taken as a constant
of integration.

Exercise 14.

(i) Let H = 1
2mp

2 be the Hamiltonian of a particle with mass m moving freely
along the x-axis. Use (1.25) to find a complete family of solutions of the
time-dependent Hamilton–Jacobi equation for H .

(ii) Do the same with the harmonic oscillator HamiltonianH = 1
2m (p2+m2ω2x2).

1.3.2 The invariant volume form

In what follows H denotes a time-independent Hamiltonian function on R
2n and

E a real number.

Definition 15. When non-empty the level set ΣE = {z ∈ R
2n : H(z) = E} is called

the energy shell for H corresponding to the energy level E. An energy shell is said
to be regular if the gradient field ∂zH of the Hamiltonian is orthogonal to ΣE at
every point and moreover never vanishes on ΣE .

When ΣE is a regular energy shell, the formula

N (z) =
∂zH(z)
|∂zH(z)|

thus defines a unit normal field N to the energy shell ΣE . We claim that the
(2n− 1)-form dV 2n−1 defined by

dV 2n−1
E (X1, . . . , X2n−1) = dV 2n(N , X1, . . . , X2n−1) (1.26)

(X1, . . . , X2n−1 tangent vector fields to ΣE) is a volume form on ΣE ;

dV 2n =
1
n!
σ ∧ · · · ∧ σ

(n factors) is the ‘Liouville volume form’ on R
2n. This can be rewritten as:

dV 2n = dp1 ∧ · · · ∧ dpn ∧ dx1 ∧ · · · ∧ dxn.

All we have to do is to check that dV 2n−1
E (z) 
= 0 for each z. Choose linearly

independent tangent vectors X1, . . . , X2n−1 to ΣE ; since N (z) is orthogonal to
each Xj(z), the 2n vectors N(z), X1(z), . . . , X2n−1(z) are linearly independent.
Since Vol2n is a volume form on R

2n we must thus have

Vol2n(N(z), X1(z), . . . , X2n−1(z)) 
= 0

at every z, which proves our claim.
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In the notation and terminology of intrinsic differential geometry the volume
form just constructed is the restriction to ΣE of interior products of the Liouville
form Vol2n by the vector field N ; it is thus the contraction (or interior product)
of Vol2n with N :

dV 2n−1
E = i∂zH/|∂zH| Vol2n

∣
∣
ΣE

.

Here is an elementary example. LetH = 1
2 (p2+x2) be the harmonic oscillator

Hamiltonian function. The energy shells are the circles S1(
√

2E). Formula (1.26)
yields

dV 1
E(z)(X,P ) = −

∣
∣
∣
∣

x
2E X
p

2E P

∣
∣
∣
∣ =

1
2E

(pX − xP )

hence dV 1
E = (pdx− xdp)/2E.

A drawback with the standard volume element dV 2n−1
E is the following: while

the Liouville form Vol2n is invariant under Hamiltonian flows (more generally,
under the action of any symplectomorphism), this is not the case of dV 2n−1

E .
We can however remedy this inconvenience by defining a volume element on ΣE
related in a simple way to dV 2n−1

E and which will be invariant under the flow (φHt )
determined by any Hamiltonian defining that energy shell. One shows that

Proposition 16. Let ΣE be a regular energy shell for the Hamiltonian H.

(i) The formula

σ2n−1
E =

1
|∂zH |dV

2n−1
E (1.27)

defines a volume form on ΣE such that

Vol2n = dH ∧ σ2n−1
E . (1.28)

(ii) For every subset M of ΣE we have
∫

Mt

σ2n−1
E =

∫

M

σ2n−1
E (1.29)

where Mt = φHt (M) is the image of M by the Hamiltonian flow (φHt ).

Problem 17. (Requires a good knowledge of intrinsic differential calculus.) Show
that the form σ2n−1

E is the only volume form ν2n−1
E on ΣE such that Vol2n =

dH ∧ ν2n−1
E ; deduce from this the invariance property (1.29) of σ2n−1

E . [Hint: use
the fact that both Vol2n and dH are invariant under the Hamiltonian flow (φHt ).]

The invariant volume form defines a measure µE of sets on the energy shell.
If U ⊂ ΣE , then

µE(U) =
∫

U
σ2n−1
E ≡

∫

U

dV 2n−1
E

|∂zH | (1.30)

when defined.
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We are next going to prove a very interesting property relating measure of
the energy shell to the volume of its interior. That result is sometimes called
the Cavalieri principle. We begin by making the following remark: let H be a
Hamiltonian and ΣE a regular and compact energy shell. We claim that there
exists ε0 > 0 and a family of diffeomorphisms (ϕε)−ε0≤ε≤ε0 of phase space such
that ϕ0 is the identity, and

z ∈ ΣE =⇒ H(ϕ∆E(z)) = E + ∆E. (1.31)

Since ΣE is a regular energy shell, the gradient ∂zH does not vanish on ΣE ; by
continuity we thus have ∂zH(z) 
= 0 in a whole neighborhood U of ΣE . Since ΣE
is compact, we actually conclude the existence of c > 0 such that |∂zH(z)| ≥ c in
that neighborhood. Set now X = ∂zH(z)/|∂zH(z)|2. This vector field is defined
on U ; let (ϕε)−ε0≤ε≤ε0 be its flow. Let z ∈ ΣE ; by the chain rule

d

dε
H(ϕε(z)) = ∂zH(ϕε(z))

dϕε
ds

(z) = ∂zH(ϕε(z))
∂zH(ϕε(z))
|∂zH(ϕε(z))|2

which is equal to 1, hence (1.31) since H(ϕ0(z)) = H(z) = E.

Proposition 18. Let ΣE be a regular and compact energy shell and V (E)=Vol(ME)
the volume of the set bounded by ΣE. We have

∂V (E)
∂E

=
∫

ΣE

dV 2n−1
E

|∂zH | = σ2n−1
E (ΣE). (1.32)

Proof. For a point z ∈ ΣE let z + ∆z be the intersection of the normal through
z with ΣE+∆E; the length of the line segment [z, z + ∆z] is |∆z|. The difference
∆V = V (E + ∆E) − V (E) is the volume of the phase space region bounded by
ΣE and ΣE+∆E; we have

d(∆V ) = |∆z|dV 2n−1
E . (1.33)

With the notation introduced above, ∆z = ϕ∆E(z)− z, hence

∆z = ∆E
(
dϕε
dε

(z)
)

ε=0

+O((∆E)2)

= ∆E
∂zH(z)
|∂zH(z)|2 +O((∆E)2)

so that we can rewrite (1.33) as

d(∆V ) = ∆E
(

1
|∂zH(z)| +O((∆E)2)

)

dV 2n−1
E

hence, integrating over ΣE and dividing by ∆E:

∆V
∆E

=
∫

ΣE

(
1

|∂zH(z)| +O(∆E)
)

dV 2n−1
E

which yields (1.32) letting ∆E → 0. �
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1.3.3 The problem of “Quantization”

Quantum mechanics has its historical origins in the work of Bohr, Born, Heisen-
berg, Jordan, Pauli, von Neumann, Schrödinger, Weyl and Wigner in the mid
1920s. Its thrust is that physical phenomena are not continuous phenomena, but
instead take place in very small but discrete increments – that is, quanta. Besides
its great intrinsic interest as one of the pillars of modern Science, quantum mechan-
ics has triggered interest in new mathematical concepts, one of the most important
being the Weyl (also called the Weyl–Wigner–Moyal) formalism. In this chapter
we study the basic definitions and properties of Weyl calculus from a modern
point of view, where the notions of Heisenberg–Weyl operator and cross-Wigner
transform play an essential role.

Already in the early years (1925–1926) of Quantum Mechanics physicists
where confronted with the problem of ordering, which consisted of finding an un-
ambiguous procedure for associating to a “classical observable” (in mathematics,
we would speak about a real symbol) a self-adjoint operator. The oldest quan-
tization procedure was actually suggested by Schrödinger who associated to the
Hamiltonian function

H(x, p) =
p2

2m
+ U(x)

the partial differential operator

Ĥ = − �
2

2m
∂2

∂x2
+ U(x)

in the case n = 1. Schrödinger’s empirical prescription thus consisted in the formal
substitution p −→ −i�∂/∂x in the Hamiltonian function. So far, so good. But,
asked physicists, what should one then do when confronted with more complicated
cases? For instance, what should the operator corresponding to

H(x, p) =
1

2m
(p+ x)2 + U(x)

then be? The “obvious” guess,

Ĥ = − �
2

2m
(−i�∂x + x)2 + U(x),

is not obvious at all, because if we expand the square in the function H we have
infinitely many possible choices for quantizing the product 2px, because there are
infinitely many ways to write that function. For instance, we can write

2px = τpx+ (1− τ)xp = 2xp

for every number τ . Physicists decided to make a King Solomon’s Choice: they
decided that the “right” choice was α = 1/2. This corresponds to the “canonical
quantization rules”

x −→ X̂ , p −→ P̂ , px −→ 1
2
(X̂P̂ + P̂ X̂) (1.34)
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where X̂ is the operator of multiplication by x and P̂ = −i�∂/∂x (this prescription
is actually the one corresponding to the first “obvious” guess above).

It turns out that the canonical quantization rules above are particularly in-
teresting because they lead to a symplectically covariant theory. It is actually no
more than a particular case of the Weyl quantization procedure. It is sometimes
objected that the choice of Weyl quantization is in a sense ad hoc. One could as
well define “τ -quantization” which corresponds to the more general choice

x −→ x̂ , p −→ p̂ , px −→ τx̂p̂+ (1− τ)p̂x̂ (1.35)

which is mathematically interesting by itself. However, there is one reason to pre-
fer this choice, and to think it is the right choice, thus confirming Weyl’s insight.
It turns out that Weyl quantization not only leads to a symplectically covariant
quantization procedure (and pseudodifferential operator calculus), but in addition
it is the only possible choice if one insists on symplectic covariance (this funda-
mental fact will be proven later in this book).

Here is an exercise:

Problem 19. Consider the polynomial

(t1x1 + · · ·+ tnxn + τ1Dx1 + · · ·+ τnDn1)
N

in the variables t, τ ∈ R
n with operator coefficients (xj is viewed as the multipli-

cation operator by xj) and write it in the form

∑

|α+β|=N

N !
α!β!

tατβAαβ .

Then Aαβ is the operator with the Weyl symbol xαξβ .

We will actually study the notion of τ -quantization in some detail in Chapter
14 using Shubin’s theory of global pseudo-differential operators.

There is another way to see things. Quantization can be viewed as a “defor-
mation” of Hamiltonian mechanics (a little bit in the same way as special relativity
is seen as a deformation of Galilean relativity). Deformation quantization is one
of the themes of the last part of this book.



Chapter 2

The Symplectic Group

This chapter is a review of the most basic concepts of the theory of the symplectic
group, and of related concepts, such as symplectomorphisms or the machinery of
generating functions.

We may well be witnessing the advent of a “symplectic revolution” in funda-
mental Science. In fact, since the late sixties there has been a burst of applications
of symplectic techniques to mathematics and physics, and even to engineering or
medical sciences (magnetic resonance imaging is a typical example). It seems on
the other hand that it may be possible to recast a great deal of mathematics
in symplectic terms: there is indeed a process of “symplectization of Science” as
pointed out by Gotay and Isenberg [80].

Symplectic geometry differs profoundly from more traditional geometries
(such as Euclidean geometry, or its refinement Riemannian geometry) because
it appears somewhat counter-intuitive to the uninitiated. In symplectic geometry
all vectors are “orthogonal” to themselves because the ‘scalar product’ is anti-
symmetric. As a consequence, the notion of length in a symplectic space does
not make sense; but instead the notion of area does. For instance, in the plane
R

2, the standard symplectic form is (up to the sign) the determinant function: if
z = (x, p), z′ = (x′, p′) are two vectors in R

2, then det(z, z′) = xp′−x′p represents
the oriented area of the parallelogram built on the vectors z, z′. In higher dimen-
sions the situation is similar: the symplectic product of two vectors is the sum of
the algebraic areas of the parallelograms built on the projections of these vectors
on the conjugate planes. Symplectic geometry is thus an ‘areal’ type of geometry;
this quality is actually reflected in recent, deep, theorems which express the fact
that this ‘two-dimensionality’ has quite dramatic consequences for the behavior of
Hamiltonian flows, which are much more rigid than was thought before the mid-
1980s, when Gromov [87] proved very deep results in symplectic topology. Gromov
was eventually awarded (2009) the Abel prize (the equivalent of the Nobel prize
for mathematics) for his discoveries.

19M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics,  
Pseudo-Differential Operators 7, DOI 10.1007/978-3-7643-9992-4_ , © Springer Basel AG 2011 2
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2.1 Symplectic matrices

Recall that the “standard symplectic matrix” is J =
(

0 I
−I 0

)

where 0 and I

are the n × n zero and identity matrices. we have detJ = 1 and J2 = I,
JT = J−1 = −J .

2.1.1 Definition of the symplectic group

Definition 20. The set of all symplectic matrices is denoted by Sp(2n,R). Thus
S ∈ Sp(2n,R) if and only if

STJS = SJST = J. (2.1)

If S is symplectic then S−1 is also symplectic because

(S−1)TJS−1 = −(SJS−1)T = J

since JT = J−1 = −J . The product of two symplectic matrices being obviously
symplectic as well, symplectic matrices thus form a group; that group is denoted
by Sp(2n,R) and is called the (real) symplectic group. The conditions (2.1) are
actually redundant. In fact:

S ∈ Sp(2n,R)⇐⇒ STJS = J ⇐⇒ SJST = J (2.2)

as you are asked to prove in Exercise 21 below:

Exercise 21. Show that S ∈ Sp(2n,R) if and only ST ∈ Sp(2n,R). [Hint: use the
fact that (S−1)TJS−1 = J ].

The eigenvalues of a symplectic matrix are of a particular type:

Problem 22. (i) Show that the eigenvalues of a symplectic matrix occur in quadru-
ples (λ, λ−1, λ̄, λ̄−1). [Hint: show that the characteristic polynomial P of a sym-
plectic matrix is reflexive: P (λ) = λ2nP (λ−1).] (ii) Show that the determinant of
a symplectic matrix is equal to 1. (iii) Show that the eigenvalues of a symplectic
matrix S and those of its inverse S−1 are the same.

2.1.2 Symplectic block-matrices

It is often useful for practical purposes to use block-matrix notation and to write

S =
(
A B
C D

)

(2.3)

where the entries A,B,C,D are n× n matrices. Recalling that

J =
(

0 I
−I 0

)
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one verifies by an explicit calculation, using the identities STJS = J = SJST ,
that this matrix is symplectic if and only the two following sets of equivalent
conditions are satisfied:

ATC, BTD are symmetric, and ATD − CTB = I, (2.4)

ABT , CDT are symmetric, and ADT −BCT = I. (2.5)

Using the second set of conditions it follows that the inverse of a symplectic matrix
S written in the form (2.3) is

S−1 =
(
DT −BT
−CT AT

)

. (2.6)

Notice that in the case n = 1 the formula above reduces to the familiar

S−1 =
(
d −b
−c a

)

which is true for every 2× 2 matrix S =
(
a b
c d

)

such that det(ad− bc) = 1.

Exercise 23. Verify in detail the formulas (2.4), (2.5), (2.6) above.

Exercise 24. Show, using the conditions (2.4), (2.5) that S is symplectic if and
only if ST is.

Exercise 25. Show that if S =
(
A B
C D

)

is symplectic, then AAT + BBT is in-

vertible. [Hint: calculate (A+ iB)(BT + iAT ) and use the fact that ABT = BAT .]

2.1.3 The affine symplectic group

An interesting extension of Sp(2n,R) consists of the affine symplectic automor-
phisms. We denote by T(2n,R) the group of phase space translations: T (z0) ∈
T(2n,R) is the mapping z �−→ z + z0. Clearly T(2n,R) is isomorphic to R

n ⊕ R
n

equipped with addition.

Definition 26. The affine (or inhomogeneous) symplectic group is the semi-direct
product

ASp(2n,R) = Sp(2n,R) � T(2n,R).

Formally, the group law of the semi-direct product ASp(2n,R) is given by

(S, z)(S′, z′) = (SS′, z + Sz′);

this is conveniently written in matrix form as
(

S z
01×2n 1

)(
S′ z′

01×2n 1

)

=
(
SS′ Sz′ + z

01×2n 1

)

. (2.7)
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One immediately checks that ASp(2n,R) is identified with the set of all
affine transformations F of R

n ⊕ R
n such that F can be factorized as a product

F = ST (z) for some S ∈ Sp(2n,R) and z ∈ R
n ⊕ R

n. Since translations are
symplectomorphisms in their own right, it follows that ASp(2n,R) is the group of
all affine symplectomorphisms of the symplectic space (Rn ⊕ R

n, σ). We note the
following useful relations:

ST (z) = T (Sz)S, T (z)S = ST (S−1z).

2.2 Symplectic forms

We have defined the symplectic group in terms of matrices. It turns out that
Sp(2n,R) can be defined intrinsically in terms of a general algebraic notion, that
of symplectic form:

2.2.1 The notion of symplectic form

We begin with a general definition:

Definition 27. A bilinear form on R
n ⊕ R

n (or, more generally, on any even-
dimensional real vector space) is called a “symplectic form” if it is antisymmetric
and non-degenerate. The special antisymmetric bilinear form σ on R

n ⊕ R
n de-

fined by
σ(z, z′) = p · x′ − p′ · x (2.8)

for z = (x, p), z′ = (x′, p′) is symplectic; it is called the “standard symplectic form
on R

n ⊕ R
n”.

The antisymmetry condition means that we have

σ(z, z′) = −σ(z′, z)

for all z, z′ in R
2n. Notice that the antisymmetry implies in particular that all

vectors z are isotropic, that is:

σ(z, z) = 0.

The non-degeneracy condition means that the condition σ(z, z′) = 0 for all z ∈ R
2n

is equivalent to z = 0.
Definition (2.8) of the standard symplectic form can be rewritten in a con-

venient way using the symplectic standard matrix

J =
(

0 I
−I 0

)

where 0 and I are the n× n zero and identity matrices. In fact

σ(z, z′) = Jz · z′ = (z′)TJz. (2.9)
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Exercise 28. Show that the standard symplectic form is indeed non-degenerate.

Let s be a linear mapping R
n ⊕R

n −→ R
n⊕R

n. The condition σ(sz, sz′) =
σ(z, z′) is equivalent to STJS = J where S is the matrix of s in the canonical
basis of R

n ⊕ R
n that is, to S ∈ Sp(2n,R). We can thus redefine the symplectic

group by saying that it is the group of all linear automorphisms of R
n⊕R

n which
preserve the standard symplectic form σ.

There are other more “exotic” symplectic forms which originate from physical
problems (for instance from quantum gravity); here is one example that will be
studied further when we discuss non-commutative quantum mechanics at this end
of this book: set

Ω =
(

�
−1Θ I
−I �

−1N

)

where Θ and N are n× n real antisymmetric matrices, and I the n× n identity.
One usually requires that Θ and N depend on � and that Θ = O(�2), N = O(�2).
From this viewpoint Ω can be viewed as perturbation of J : we have Ω = J+O(�2).
One shows that if � is small enough then Ω is invertible. Since Ω is antisymmetric
the formula

ω(z, z′) = z ·Ω−1z′ = (ΩT )−1z · z′
defines a new symplectic form on R

n ⊕R
n (see Dias and Prata [31]). Note that ω

coincides with the standard symplectic form σ when Θ = N = 0.

2.2.2 Differential formulation

There is another, slightly more abstract, way to define the standard symplectic
form which has advantages if one has Hamiltonian mechanics on manifolds in mind.
It consists in observing that we can view σ as an exterior two-form on R

n ⊕ R
n,

in fact:

σ = dp ∧ dx =
n∑

j=1

dpj ∧ dxj (2.10)

where dpj ∧ dxj is the wedge product of the coordinate one-forms dpj and dxj .
This formula is a straightforward consequence of the relation

dpj ∧ dxj(x, p;x′, p′) = pjx
′
j − p′jxj .

With this identification the standard symplectic form is related to the Lebesgue
volume form Vol on R

n ⊕ R
n by the formula

Vol = (−1)n(n−1)/2 1
n!
σ ∧ σ ∧ · · · ∧ σ
︸ ︷︷ ︸

n factors

. (2.11)

Using this approach one can express very concisely that a diffeomorphism f
of R

n ⊕ R
n is a symplectomorphism:

f ∈ Symp(2n,R)⇐⇒ f∗σ = σ
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where f∗σ is the pull-back of the two-form σ by the diffeomorphism f :

f∗σ(z0)(z, z′) = σ(f(z0))Df(z0)z,Df(z0)z′).

(Df(z0) the Jacobian matrix at z0.)
In particular one immediately sees that a symplectomorphism is volume-

preserving since we then also have f∗ Vol = Vol in view of (2.11).
The language of differential form allows an elegant (and concise) reformula-

tion of the previous definitions. For instance, part (i) of Theorem (9) can thus be
re-expressed as

(φHt )∗σ = σ.

It tuns out that Hamilton’s equations can be rewritten in a very neat and
concise way using the notion of contraction of a differential form. They are in fact
equivalent to the concise relation

ιXHσ + dzH = 0 (2.12)

between the contraction of the symplectic form with the Hamilton field and the
differential of the Hamiltonian; this is easily verified by writing this formula “in
coordinates”, in which case it becomes

σ(XH(z, t), ·) + dzH = 0. (2.13)

Formula(2.12) is usually taken as the starting point of Hamiltonian mechanics on
symplectic manifolds, which is a topic of great current interest.

It is quite easy to reconstruct a Hamiltonian function from its Hamilton
vector field; in fact:

H(z, t) = H(0, t)−
∫ 1

0

σ(XH(sz), z)ds. (2.14)

This formula is an immediate consequence of the observation that we have, for
fixed t,

H(z, t)−H(0, t) =
∫ 1

0

d

ds
H(sz, t)ds

=
∫ 1

0

∂zH(sz, t) · zds

= −
∫ 1

0

σ(XH(sz), z)ds.

Notice that formula (2.14) defines H up to the addition of a smooth function of t.



2.3. The unitary groups U(n,C) and U(2n,R) 25

2.3 The unitary groups U(n,C) and U(2n,R)

Let U(n,C) denote the complex unitary group: u ∈ U(n,C) if and only if u ∈
M(n,C) (the algebra of complex matrices of dimension n) and u∗u = uu∗ = I
(the conditions u∗u = I and uu∗ = I are actually equivalent).

2.3.1 A useful monomorphism

Writing the elements Z ∈ M(n,C) in the form Z = A + iB where A and B are
real matrices we define a mapping

ι :M(n,C) −→M(2n,R)

by the formula:

ι(A+ iB) =
(
A −B
B B

)

. (2.15)

Lemma 29. The mapping ι is an algebra monomorphism: ι is injective and ι(Z +
Z ′) = ι(Z) + ι(Z ′), ι(λZ) = λι(Z) for λ ∈ C, and ι(ZZ ′) = ι(Z)ι(Z ′).

Proof. It is easy to verify that ι is an algebra homomorphism (we leave the di-
rect calculations to the reader); that ι is injective immediately follows from its
definition. �

We will see below that ι is an isomorphism of the unitary group onto a certain
subgroup of the symplectic group.

2.3.2 Symplectic rotations

Let us prove the main result of this section; it identifies U(n,C) with a subgroup
of Sp(2n,R):

Proposition 30. The restriction of the mapping

ι :M(n,C) −→M(2n,R) (2.16)

defined above is an isomorphism of U(n,C) onto a subgroup U(2n,R) of Sp(2n,R).

Proof. It follows from conditions (2.4), (2.5) for the entries of a symplectic matrix
that the block matrix

U =
(
A −B
B A

)

(2.17)

is in U(2n,R) if and only if

ABT = BTA, AAT +BBT = I, (2.18)

or, equivalently
ATB = BAT , ATA+BTB = I. (2.19)
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The equivalence of conditions (2.18) and (2.19) is proved by noting that U ∈
U(2n,R) if and only if UT ∈ U(2n,R) which follows from the fact that the
monomorphism (2.16) satisfies ι(u∗) = ι(u)T and that the unitary group is in-
variant under the operation of taking adjoints. �

Exercise 31. Show that u ∈ U(2n,R) if and only if UJ = JU and that

U(2n,R) = Sp(2n,R) ∩O(2n,R). (2.20)

The identity above shows that U(2n,R) (which is a copy of the unitary
group) consists of symplectic rotations. It contains the group O(n) of all symplectic
matrices of the type

(
A 0
0 A

)

with AAT = ATA = I.

It is immediately verified that O(n) is the image in U(2n,R) of the orthogonal
group O(n,R) by the monomorphism ι.

2.3.3 Diagonalization and polar decomposition

A positive-definite matrix can always be diagonalized using an orthogonal matrix.
When this matrix is in addition symplectic we can use a symplectic rotation to
perform this diagonalization:

Proposition 32. Let S ∈ Sp(2n,R) be positive definite (in particular S = ST ).
There exists U ∈ U(2n,R) such that S = UTDU where

D = diag(λ1, . . . , λn;λ−1
1 , . . . , λ−1

n )

where λ1, . . . , λn are the n smallest eigenvalues of S.

Proof. The eigenvalues of a symplectic matrix occur in quadruples: if λ is an
eigenvalue, then so are λ−1, λ̄, and λ̄−1 (Exercise 22). If S > 0 these eigenvalues
occur in real pairs (λ, λ−1) with λ > 0 and we can thus order them as follows:

λ1 ≤ · · · ≤ λn ≤ λ−1
n ≤ · · · ≤ λ−1

1 .

Let now U be an orthogonal matrix such that S = UTDU . We are going to show
that U ∈ U(2n,R). It suffices for this to show that we can write U in the form
(2.17) with A and B satisfying (2.18). Let e1, . . . , en be n orthonormal eigenvectors
of U corresponding to the eigenvalues λ1, . . . , λn. Since SJ = JS−1 (S is both
symplectic and symmetric) we have, for 1 ≤ k ≤ n,

SJek = JS−1ek =
1
λj
Jek
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hence ±Je1, . . . ,±Jen are the orthonormal eigenvectors of U corresponding to the
remaining n eigenvalues 1/λ1, . . . , 1/λn. Write now the 2n×nmatrix (e1, . . . , en) as

(e1, . . . , en) =
(
A
B

)

where A and B are n× n matrices; we have

(−Je1, . . . ,−Jen) = −J
(
A
B

)

=
(−B
A

)

hence U is indeed of the type

U = (e1, . . . , en;−Je1, . . . ,−Jen =
(
A −B
B A

)

.

The conditions (2.18) are satisfied since UTU = I. �

The following consequence of the result above shows that one can take powers
of symplectic matrices, and that these powers still are symplectic. In fact:

Corollary 33. Let S be a positive definite symplectic matrix. Then:

(i) For every α ∈ R there exists a unique R ∈ Sp(2n,R), R > 0, R = RT , such
that S = Rα. In particular S1/2 ∈ Sp(2n,R).

(ii) Conversely, if R ∈ Sp(2n,R) is positive definite, then Rα ∈ Sp(2n,R) for
every α ∈ R.

Proof of (i). Set R = UTD1/αU ; then Rα = UTDU = S.

Proof of (ii). It suffices to note that we have

Rα = (UTDU)α = UTDαU ∈ Sp(2n,R). �

This result allows us to prove a polar decomposition result for the symplectic
group. We denote by Sym+(2n,R) the set of all symmetric positive definite real
2n× 2n matrices.

Proposition 34. For every S ∈ Sp(2n,R) there exists a unique U ∈ U(2n,R) and
a unique R ∈ Sp(2n,R) ∩ Sym+(2n,R), such that S = RU (resp. S = UR).

Proof. The matrix R = STS is symplectic and positive definite. Set U =
(STS)−1/2S; since (STS)−1/2 ∈ Sp(2n,R) in view of Corollary 33, we have U ∈
Sp(2n,R). On the other hand

UUT = (STS)−1/2SST (STS)−1/2 = I

so that we actually have

U ∈ Sp(2n,R) ∩O(2n,R) = U(2n,R)



28 Chapter 2. The Symplectic Group

(cf. Exercise 31). That we can alternatively write S = UR (with different choices
of U and R) follows by applying the result above to ST . The uniqueness statement
follows from the generic uniqueness of polar decompositions. �

We will see in Chapter 11, Subsection 11.3 that Proposition 34 can be refined
by giving explicit formulas for the matricesR and U (“pre-Iwasawa factorization”).

Exercise 35. Use the result above to prove that every S ∈ Sp(2n,R) has determi-
nant 1.

One very important consequence of the results above is the connectedness of
the symplectic group:

Corollary 36. The symplectic group Sp(2n,R) is a connected Lie group.

Proof. Let us set Sp+(2n,R) = Sp(2n,R) ∩ Sym+(2n,R). In view of Proposition
34 above the mapping

f : Sp(2n,R) −→ Sp+(2n,R)× U(2n,R)

defined by f(S) = RU is a bijection; both f and its inverse f−1 are continuous,
hence f is a homeomorphism. Now U(2n,R) is connected, and so is Sp+(2n,R).
It follows that Sp(2n,R) is also connected. �

Exercise 37. Check that Sp+(2n,R) is connected (use for instance Corollary 33).

2.4 Symplectic bases and Lagrangian planes

Symplectic bases in phase space are in a sense the analogues of orthonormal bases
in Euclidean geometry.

2.4.1 Definition of a symplectic basis

Let δij be the Kronecker index: δij = 1 if i = j and δij = 0 if i 
= j.

Definition 38. A set B of vectors

B = {e1, . . . , en} ∪ {f1, . . . , fn}

of R
n ⊕ R

n is called a “symplectic basis” of (Rn ⊕ R
n, σ) if we have

σ(ei, ej) = σ(fi, fj) = 0, σ(fi, ej) = δij for 1 ≤ i, j ≤ n. (2.21)

Exercise 39. Check that a symplectic basis is a basis in the usual sense.
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An obvious example of a symplectic basis is the following: choose

ei = (ci, 0), ei = (0, ci)

where (ci) is the canonical basis of R
n. (For instance, if n = 1, e1 = (1, 0) and

f1 = (0, 1).) These vectors form the canonical symplectic basis

C = {e1, . . . , en} ∪ {f1, . . . , fn}

of (Rn ⊕ R
n, σ).

A very useful result is the following; it is a symplectic variant of the Gram–
Schmidt orthonormalization procedure in Euclidean geometry. It also shows that
there are (infinitely many) non-trivial symplectic bases:

Proposition 40. Let A and B be two (possibly empty) subsets of {1, . . . , n}. For any
two subsets E = {ei : i ∈ A}, F = {fj : j ∈ B} of the symplectic space (Rn⊕R

n, σ)
such that the elements of E and F satisfy the relations

ω(ei, ej) = ω(fi, fj) = 0 , ω(fi, ej) = δij for (i, j) ∈ A×B, (2.22)

there exists a symplectic basis B of (Rn ⊕ R
n, σ) containing these vectors.

For a proof we refer to de Gosson [67], §1.2.2.
Symplectic automorphisms take symplectic bases to symplectic bases: this is

obvious from the definition. In fact, the symplectic group acts transitively on the
set of all symplectic bases:

Exercise 41. Show that for any two symplectic bases B and B′ there exists S ∈
Sp(2n,R) such that B = S(B′).

2.4.2 The Lagrangian Grassmannian

The group Sp(2n,R) not only acts on points of phase space R
n ⊕ R

n but also on
subspaces of R

n⊕R
n. Among these of particular interest are “Lagrangian planes”:

Definition 42. A Lagrangian plane of the symplectic space (Rn ⊕ R
n, σ) is an n-

dimensional linear subspace � of R
n⊕R

n having the following property: if (z, z′) ∈
�× � then σ(z, z′) = 0. The set of all Lagrangian planes in (Rn⊕R

n, σ) is denoted
by Lag(2n,R); it is called the Lagrangian Grassmannian of (Rn ⊕ R

n, σ).

Both “coordinate planes” �X = R
n×{0} and �P = {0}×R

n are Lagrangian,
and so is the diagonal ∆ = {(x, x) : x ∈ R

n} of R
n⊕R

n. If � is a Lagrangian plane,
so is S� for every S ∈ Sp(2n,R): first � and S� have the same dimension n, and if
z1 = Sz and z′1 = Sz′ are in S� with z and z′ in �, then σ(z1, z′1) = σ(z, z′) = 0.
In fact, we have the following much more precise result:
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Proposition 43. The group action

Sp(2n,R)× Lag(2n,R) −→ Lag(2n,R)

defined by (S, �) �−→ S� is transitive. That is, for every pair (�, �′) ∈ Lag(2n,R)×
Lag(2n,R) there exists S ∈ Sp(2n,R) such that � = S�′.

Proof. Choose bases {e1, . . . , en} and {e′1, . . . , e′n} of � and �′ respectively. Since
� and �′ are Lagrangian planes we have σ(ei, ej) = σ(e′i, e

′
j) = 0 so in view of

Proposition 40 we can find vectors f1, . . . , fn and f ′
1, . . . , f

′
n such that

B = {e1, . . . , en} ∪ {f1, . . . , fn},
B′ = {e′1, . . . , e′n} ∪ {f ′

1, . . . , f
′
n}

are symplectic bases of (Rn ⊕ R
n, σ). Defining S ∈ Sp(2n,R) by the condition

B = S(B′) (see Exercise 41); we have � = S�′. �
Exercise 44. Show that the result above is still true if one replaces Sp(2n,R) by
the unitary group U(2n,R).

Here you are supposed to prove the following refinement of Proposition 43:

Problem 45. Two Lagrangian planes � and �′ are said to be transversal if �∩�′ = 0;
equivalently � ⊕ �′ = R

n ⊕ R
n. Prove that Sp(2n,R) acts transitively on the set

of all transversal Lagrangian planes (hint: use Proposition 40). Does the property
remain true if we replace Sp(2n,R) by U(2n,R)?

The Lagrangian Grassmannian has a natural topology which makes it into a
compact and connected topological space.

Proposition 46. The Lagrangian Grassmannian Lag(2n,R) is homeomorphic to the
coset space U(2n,R)/O(n) where O(n) is the image of O(n,R) by the restriction
of the embedding U(n,C) −→ U(2n,R). Hence Lag(2n,R) is both compact and
connected.

Proof. U(2n,R) acts transitively on Lag(2n,R) (Exercise 44); the isotropy sub-
group of �P = {0} × R

n is precisely O(n). It follows that Lag(2n,R) is home-
omorphic to U(2n,R)/O(n). Since U(2n,R)/O(n) is trivially homeomorphic to
U(n,C)/O(n,R), and the projection U(n,C) −→ U(n,C)/O(n,R) is continuous,
Lag(2n,R) is compact and connected because U(n,C) has these properties. �
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Free Symplectic Matrices

Free symplectic matrices are in a sense the building blocks of the symplectic group.
Not only do they form a system of generators of Sp(2n,R), but they can be de-
scribed by so-called “generating functions”, well known in Hamiltonian mechanics.
Free symplectic matrices and their generating functions will play a crucial role in
the definition of the metaplectic group in Chapter 7. A related interesting reading
is the older paper of Burdet et al. [24].

3.1 Generating functions

Let us begin by giving a few equivalent definitions of the notion of free symplectic
matrix.

3.1.1 Definition of a free symplectic matrix

Let us begin by giving a general definition.

Definition 47. Let S ∈ Sp(2n,R). We say that S is “free” if it satisfies any of the
three following equivalent conditions:

(i) For a given pair (p, p′) ∈ R
2n there exists a unique pair (x, x′) ∈ R

n × R
n

such that (x, p) = S(x′, p′);

(ii) If S =
(
A B
C D

)

then detB 
= 0;

(iii) Setting (x, p) = S(x′, p′) we have

det
(
∂x

∂p′
(z0)

)


= 0. (3.1)

Exercise 48. Show that all three conditions (i), (ii), and (iii) in the definition above
indeed are equivalent.
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Here is a very useful geometric characterization of free symplectic matrices.
Suppose that S ∈ Sp(2n,R) is free and set (x, p) = S(x′, p′) as above. Identifying
σ with the differential 2-form

dp ∧ dx =
n∑

j=1

dpj ∧ dxj ,

we have dp ∧ dx = dp′ ∧ dx′ and this is equivalent, by Poincaré’s lemma, to the
existence of a function G ∈ C∞(Rn ⊕ R

n) such that

pdx = p′dx′ + dG(x′, p′).

The condition det(∂x/∂p′) 
= 0 implies, by the implicit function theorem, that we
can locally solve the equation x = x(x′, p′) in p′, so that p′ = p′(x, x′) and hence
G(x′, p′) is, for (x′, p′) ∈ U , a function of x, x′ only: G(x′, p′) = G(x′, p′(x, x′)).
Calling this function W :

W (x, x′) = G(x′, p′(x, x′))

we thus have

pdx = p′dx′ + dW (x, x′)
= p′dx′ + ∂xW (x, x′)dx + ∂x′W (x, x′)dx′

which requires p = ∂xW (x, x′) and p′ = −∂x′W (x, x′) and f is hence free in U .
We will see in a moment that this function W , which is uniquely defined up to
an additive constant, plays a very important role under the name of “generating
function” of the free symplectic automorphism (or matrix) S.

Let us give another, purely geometric, definition of the notion of free sym-
plectic matrix. This property will be used when we prove our main factorization
result below.

Proposition 49. A matrix S ∈ Sp(2n,R) is free if and only if we have S�P ∩ �P =
{0} where �P = {0} × R

n.

Proof. The set S�P ∩�P is described by the equations (Bp,Dp) = (0, p). It reduces
to {0} if and only if the solution of these equations is p = 0, which is equivalent
to detB 
= 0. �

The interest of this characterization is that it allows us to define a more
general notion of free symplectic matrix: one says that S ∈ Sp(2n,R) is free with
respect to a Lagrangian plane � ∈ Lag(2n,R) if we have S� ∩ � = {0}; see de
Gosson [67], §2.2.3 for a study of this notion.
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3.1.2 The notion of generating function

Free symplectic matrices are “generated” by quadratic forms in (x, x′):

Proposition 50. (i) Let S ∈ Sp(2n,R) be a free symplectic matrix. Then

(x, p) = S(x′, p′)⇐⇒
{

p = ∂xW (x, x′),
p′ = −∂x′W (x, x′), (3.2)

where W is the quadratic form given by

W (x, x′) = 1
2DB

−1x2 −B−1x · x′ + 1
2B

−1Ax′2 (3.3)

and DB−1 and B−1A are symmetric matrices.
(ii) If conversely

W (x, x′) = 1
2Px

2 − Lx · x′ + 1
2Qx

′2 (3.4)

with P = PT , Q = QT , and detL 
= 0, then the matrix

SW =
(

L−1Q L−1

PL−1Q− LT PL−1

)

(3.5)

is a free symplectic matrix whose generating function in the sense above is (3.4).

Proof of (i). The matrices DB−1 and B−1A are symmetric in view of (2.4). We
have

∂xW (x, x′) = DB−1x− (B−1)Tx′,

∂x′W (x, x′) = −B−1x′ +B−1Ax′;

setting p = ∂xW (x, x′) and p′ = −∂x′W (x, x′) and solving in x and p we get
x = Ax′ +Bp′, p = Cx′ +Dp′, that is (x, p) = S(x′, p′).

Proof of (ii). To see this, it suffices to remark that we have (x, p) = S(x′, p′) if and
only if p = Px−LTx′ and p′ = Lx−Qx′, and to solve the equations p = Px−LTx′
and p′ = Lx−Qx′ in x, p. �

Notation 51. If the free symplectic matrix S has generating function W we will
write S = SW .

Corollary 52. Let SW ∈ Sp(2n,R) be a free symplectic matrix. Then (SW )−1 is
also free, and we have

S−1
W = SW∗ with W ∗(x, x′) = −W (x′, x). (3.6)
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Proof. The inverse of SW is the symplectic matrix

S−1
W =

(
DT −BT
−CT AT

)

which is thus free since det(−BT ) = (−1)n detB. In view of part (i) in Proposition
50 the inverse S−1

W is generated by the function

W ∗(x, x′) = − 1
2A

T (BT )−1x2 + (BT )−1x · x′ − 1
2 (BT )−1DTx′2

= − 1
2B

−1Ax2 +B−1x′ · x− 1
2DB

−1x′2

= −W (x′, x)

(recall that AT (BT )−1 = B−1A and (BT )−1DT = DB−1). �

The statement in the following exercise implies that almost every symplectic
matrix is free:

Exercise 53. Show that the set Sp0(2n,R) of all free symplectic matrices has
codimension 1 in Sp(2n,R). [Hint: there is a bijective correspondence between the
set of all triples (P,L,Q) (P and Q symmetric, detL 
= 0) and Sp0(2n,R).]

The notion of generating function also makes sense for affine symplectic map-
pings:

Proposition 54. Let F = T (z0)SW ∈ ASp(2n,R).

(i) A free generating function of f = T (z0)SW is the function

Wz0(x, x
′) = W (x− x0, x

′) + p0 · x (3.7)

where z0 = (x0, p0).
(ii) Conversely, if W is the generating function of SW then any polynomial

Wz0(x, x
′) = W (x, x′) + α · x+ α′ · x′ (3.8)

with α, α′ ∈ R
n is a generating function of an affine symplectic transforma-

tion T (z0)SW with z0 = (x0, p0) = (Bα,Da+ β).

Proof. LetWz0 be defined by (3.7), and set (x′,p′)=S(x′′,p′′), (x,p)=T (z0)(x′,p′).
We have

pdx− p′dx′ = (pdx − p′′dx′′) + (p′′dx′′ − p′dx′)
= (pdx − (p− p0)d(x − x0) + dW (x′′, x′)
= d(p0 · x+W (x− x0, x

′))

which shows thatWz0 is a generating function. Finally, formula (3.8) is obtained by
a direct computation, expanding the quadratic form W (x−x0, x

′) in its variables.
�
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Corollary 55. Let f = [SW , z0] be a free affine symplectic transformation, and set
(x, p) = f(x′, p′). The function Φz0 defined by

Φz0(x, x
′) = 1

2p · x− 1
2p

′ · x′ + 1
2σ(z, z0) (3.9)

is also a free generating function for f ; in fact,

Φz0(x, x
′) = Wz0(x, x

′) + 1
2p0 · x0. (3.10)

Proof. Setting (x′′, p′′) = S(x, p), the generating function W satisfies

W (x′′, x′) = 1
2p

′′ · x′′ − 1
2p

′ · x′

in view of Euler’s formula for homogeneous functions. Let Φz0 be defined by for-
mula (3.9); in view of (3.7) we have

Wz0(x, x
′)− Φz0(x, x

′) = 1
2p0 · x− 1

2p · x0 − 1
2p0 · x0

which is (3.10); this proves the corollary since all generating functions of a sym-
plectic transformation are equal up to an additive constant. �

3.1.3 Application to the Hamilton–Jacobi equation

The notion of generating function also makes sense for general symplectomor-
phisms; it has an interesting application to the Hamilton–Jacobi equation briefly
discussed in the first chapter.

Definition 56. A symplectomorphism φ of R
n ⊕ R

n is said to be free in a neigh-
borhood U of z0 ∈ R

n ⊕ R
n when its Jacobian matrix Dφ(z′) is a free symplectic

matrix for each z′ ∈ U , that is, if and only if det(∂x/∂p′) 
= 0.

Let H be a Hamiltonian function; we will use the notation Hpp, Hxp, and
Hxx for the matrices of second derivatives of H in the corresponding variables; for
instance

Hxp =
(

∂2H

∂xj∂pk

)

1≤j,k≤n
= HT

px.

Let (φHt ) be the associated flow; we assume it is defined for every t in some interval
[−T, T ], T > 0.

Proposition 57. There exists ε > 0 such that the symplectomorphism φHt is free at
z0 ∈ R

n ⊕ R
n for 0 < |t| ≤ ε if and only if detHpp(z0) 
= 0.

Proof. Let t �−→ z(t) = (x(t), p(t)) be the solution to Hamilton’s equations ż =
J∂zH(z) with initial condition z(t0) = z0. A second-order Taylor expansion in t
of the function z(t) yields

z(t) = z0 + tXH(z0) +O(t2);
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and hence, in particular

x(t) = x0 + t∂pH(z0) +O(t2).

It follows that the Jacobian matrix of x(t) with respect to the p variables is

∂x(t)
∂p

= tHpp(z0) +O(t2)

hence there exists ε > 0 such that ∂x(t)/∂p is invertible in the interval [−ε, 0[∩]0, ε]
if and only if Hpp(z0) is invertible; this is equivalent to saying that φHt is free at
the point z0. �

Exercise 58. Justify the last sentence of the proof above!

The result above applies when the Hamiltonian H is of the “physical type”

H(z, t) =
n∑

j=1

1
2mj

p2
j + U(x)

since Hpp(z0) is in this case the diagonal matrix whose diagonal elements are the
numbers 1/2mj, 1 ≤ j ≤ n. In this case φHt is free for small non-zero t near each
z0 where it is defined. More generally it also applies to all Hamiltonians of the
type

H(z, t) =
1
2
A(x)p2 + U(x)

where A(x) > 0 (i.e., positive-definite).
Here is an application of the result above; it shows that the generating func-

tion provides us with a way of solving explicitly the Hamilton–Jacobi equation:

Proposition 59. Suppose again that detHpp(z) 
= 0 for all z. Then, the Hamilton–
Jacobi equation

∂Φ
∂t

+H (x, ∂xΦ, t) = 0 , Φ(x, 0) = Φ0(x) (3.11)

has a solution Φ for 0 < |t| < ε given by

Φ(x, t) = Φ0(x′) +W (x, x′; t) (3.12)

where x′ is defined by the condition

(x, p) = φHt (x′, ∂xΦ0(x′)) (3.13)

and W is the generating function

W (x, x′; t) =
∫

pdx−Hdt.
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Proof. We assume that n = 1 for notational simplicity (the generalization to arbi-
trary dimension is straightforward replacing partial derivatives by gradients, etc.).
Formula (3.13) uniquely defines x′ for small values of t: writing x = (x′, ∂xΦ0(x′), t)
we have, by the chain rule,

dx

dx′
=

∂x

∂x′
+
∂x

∂p′
∂2Φ0

∂x′2
.

The limit for t → 0 of the Jacobian matrix DH
t (z′) being the identity it follows

that dx/dx′ is different from zero in some interval [−α, α], α > 0, and hence
the mapping x′ �−→ φHt (x′, ∂xΦ0(x′)) is a local diffeomorphism for each fixed
t ∈ [−α, α]. Obviously limt→0 Φ(x, t) = Φ0(x) since x′ → x as t → 0, so that the
Cauchy condition is satisfied. To prove that Φ is a solution of Hamilton–Jacobi’s
equation one then notes that

Φ(x+ ∆x, t+ ∆t)− Φ(x, t) =
∫

L

pdx−Hdt

where L is the line segment joining (x, p, t) to (x+ ∆x, p+ ∆p, t+ ∆t); the values
p and p+ ∆p are determined by the relations p = ∂xW (x, x′; t) and

p+ ∆p = ∂xW (x+ ∆x, x′ + ∆x′; t+ ∆t)

where we have set ∆x′ = x′(x+ ∆x) − x′(x). Thus,

Φ(x+∆x, t+∆t)−Φ(x, t) = p∆x+
1
2
∆p∆x−∆t

∫ 1

0

H(x+ s∆x, p+ s∆p)ds

and hence
Φ(x, t+ ∆t)− Φ(x, t)

∆t
= −

∫ 1

0

H(x, p+ s∆p)ds.

Taking the limit ∆t→ 0 and noting that ∆p→ 0 we get

∂Φ
∂t

(x, t) = −H(x, p). (3.14)

Similarly,

Φ(x+ ∆x, t)− Φ(x, t) = p∆x+
1
2
∆p∆x

and ∆p→ 0 as ∆x→ 0 so that

∂Φ
∂x

(x, t) = p. (3.15)

Combining both relations (3.14) and (3.15) we see that Φ satisfies Hamilton-
Jacobi’s equation. �
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3.2 A factorization result

There are many factorization results for symplectic matrices. Here we will only be
concerned with factorizations using free symplectic matrices (see de Gosson [67]
for more results).

3.2.1 Statement and proof

In our context the main interest of the notion of free symplectic matrix comes from
the following factorization result which says that every symplectic matrix can be
written as the product of exactly two free symplectic matrices. Our proof makes
use of the transitivity of the action of Sp(2n,R) on the Lagrangian Grassmannian
Lag(2n,R).

Theorem 60. For every S ∈ Sp(2n,R) there exist two free symplectic matrices SW
and SW ′ such that S = SWSW ′ .

Proof. The symplectic group Sp(2n,R) acts transitively not only on the Lagrang-
ian Grassmannian Lag(2n,R) but also on the subset of Lag(2n,R) × Lag(2n,R)
consisting of all pairs (�, �′) such that � ∩ �′ = {0} (see Problem 45). Let �P be
the Lagrangian plane {0} × R

n and, for given �, choose �′ transversal to both
�P and S�:

�′ ∩ �P = �′ ∩ S� = {0}.
In view of the pair transitivity property there exists S1 ∈ Sp(2n,R) such that
S1(�P , �′) = (�′, S�P ), that is S1�P = �′ and S�P = S1�

′. Since Sp(2n,R) acts
transitively on Lag(2n,R) we can find S′

2 such that �′ = S′
2�P and hence S�P =

S1S
′
2�P . It follows that there exists S′′ ∈ Sp(2n,R) such that S′′�P = �P and

S = S1S
′
2S

′′. Set S2 = S′
2S

′′; then S = S1S2 and we have

S1�P ∩ �P = �′ ∩ �P = 0,
S2�P ∩ �0 = S′

2�P ∩ �P = �′ ∩ �P = 0.

Hence S1 and S2 are free in view of Proposition 49; our claim follows since
S = S1S2. �

The choice of SW and SW ′ in the factorization S = SWSW ′ is of course
not unique; for instance the identity I can be written as I = SWSW∗ for every
generating function W !

Problem 61. Modify the proof of Theorem 60 to show that, more generally, for
every (S, �0) ∈ Sp(2n,R)× Lag(2n,R) there exist two symplectic matrices S1, S2

such that S = S1S2 and S1�0 ∩ �0 = S2�0 ∩ �0 = 0.
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3.2.2 Application: generators of Sp(2n,R)

If P and L are, respectively, a symmetric and an invertible n × n matrix, and L
an invertible matrix, we set

VP =
(
I 0
−P I

)

, UP =
(−P I
−I 0

)

, ML =
(
L−1 0
0 LT

)

. (3.16)

Proposition 62. Every free symplectic matrix S = ML =
(
A B
C D

)

can be factored
as

S = V−DB−1MB−1U−B−1A (3.17)

and
S = V−DB−1MB−1JV−B−1A. (3.18)

Proof. We begin by noting that we can write
(
A B
C D

)

=
(

I 0
DB−1 I

)(
B 0
0 DB−1A− C

)(
B−1A I
−I 0

)

(3.19)

whether S is symplectic or not. If now S is symplectic, then the middle factor in
the right-hand side of (3.19) also is symplectic, since the first and the third factors
obviously are. Taking the condition ADT − BCT = I in (2.5) into account, we
have DB−1A− C = (BT )−1and hence

(
B 0
0 DB−1A− C

)

=
(
B 0
0 (BT )−1

)

so that

S =
(

I 0
DB−1 I

)(
B 0
0 (BT )−1

)(
B−1A I
−I 0

)

. (3.20)

The factorization (3.17) follows (both DB−1 and B−1A are symmetric, as a con-
sequence of the relations BTD = DTB and BTA = ATB in (2.4)). Noting that

(
B−1A I
−I 0

)

=
(

0 I
−I 0

)(
I 0

B−1A I

)

the factorization (3.18) follows as well. �

Conversely, if a matrix S can be written in the form V−PMLJV−Q, then it
is a free symplectic matrix; in fact,

S = SW =
(

L−1Q L−1

PL−1Q− LT PL−1

)

(3.21)

as is checked by a straightforward calculation.
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A consequence of these results is the following:

Corollary 63. Each of the sets

{VP ,ML, J : P = PT , detL 
= 0}
and

{UP ,ML : P = PT , detL 
= 0}

generates Sp(2n,R).

Proof. Every S ∈ Sp(2n,R) is the product of two free symplectic matrices. It now
suffices to apply Proposition 62 above. �



Chapter 4

The Group of Hamiltonian
Symplectomorphisms

Symplectic diffeomorphisms, or symplectomorphisms as they are often called, are
the “canonical transformations” which have been known and used by physicists
for a long time. They generalize the linear (and affine) symplectic mappings we
have been using so far. A basic reference for this chapter is Polterovich [133].

4.1 The group Symp(2n,R)

The notion of symplectic matrix or automorphism can be generalized to the non-
linear case, and leads to the notion of symplectomorphism.

4.1.1 Definition and examples

Recall that a diffeomorphism of R
n⊕R

n is an invertible mapping φ : R
n⊕R

n −→
R
n ⊕ R

n (or Ω −→ Ω′ where Ω and Ω′ are open subsets of R
n ⊕ R

n) such that
both φ and its inverse φ−1 are infinitely differentiable.

Definition 64. Let Ω be an open subset of R
n⊕R

n. Let R
n⊕R

n be equipped with
the symplectic form σ. A diffeomorphism φ : Ω −→ φ(Ω) ⊂ R

n ⊕ R
n is called a

symplectomorphism (or symplectic diffeomorphism) if its Jacobian matrix Dφ(z)
is symplectic at every point z ∈ Ω: Dφ(z) ∈ Sp(2n,R), that is

Dφ(z)TJDφ(z) = Dφ(z)JDφ(z)T = J.

In differential notation a diffeomorphism φ is a symplectomorphism if and
only if φ∗σ = σ:

φ∗





n∑

j=1

dpj ∧ dxj


 =
n∑

j=1

dpj ∧ dxj

where φ∗ denotes the pull-back by φ.
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A typical (but rather trivial) example is the following: let f : R
n −→ R

n be
a diffeomorphism; then the formula

φ(z) = (f(x), Df(x)−1p)

defines a symplectomorphism φ : R
n ⊕ R

n −→ R
n ⊕ R

n.

Exercise 65. What is the symplectomoprphism φ above when f is linear?

Exercise 66. Show that the mapping φ : (r, α) �−→ (x, p) where x =
√

2r cosα
and p =

√
2r sinα is a symplectomorphism of some subset Ω of R

n ⊕ R
n onto

its image. (The variables x =
√

2r cosα and p =
√

2r sinα are called “symplectic
polar coordinates”; the reader is invited to verify that the usual change to polar
variables x = r cosα, p = r sinα is not a symplectomorphism.)

If φ and ψ are symplectomorphisms defined on R
n ⊕ R

n then φψ = φ ◦ ψ is
also a symplectomorphism: in view of the chain rule the Jacobian matrix of φψ at
a point z is namely

D(φψ)(z) = Dφ(ψ(z))Dψ(z)

and is hence a product of symplectic matrices. Using the formula D(φ−1) =
(Dφ)−1 for the Jacobian of the inverse of a diffeomorphism, one sees also that the
inverse of a symplectomorphism is also a symplectomorphism. Thus, Symp(2n,R)
is a group for the usual composition law φψ = φ ◦ ψ.

Definition 67. The set of all symplectomorphisms defined on R
n⊕R

n and equipped
with the natural composition law is denoted by Symp(2n,R) and called the group
of symplectomorphisms of the symplectic space (Rn ⊕ R

n, σ).

Clearly the following inclusions hold:

Sp(2n,R) ⊂ ISp(2n,R) ⊂ Symp(2n,R).

The group Symp(2n,R) is equipped with a topology by specifying the con-
vergent sequences: let (φj)j∈N be a sequence of symplectomorphisms of R

n ⊕ R
n;

we will say that
lim
j→∞

φj = φ in Symp(2n,R)

if and only if for every compact setK in R
n⊕R

n the sequences (φj|K) and (D(φj|K))
converge uniformly towards φ|K and D(φ|K), respectively.

Symplectomorphisms preserve phase-space volume: this is an immediate con-
sequence of the fact that the Jacobian matrix of a symplectomorphism is symplec-
tic and thus has determinant equal to 1. On the differential level this can be seen
as follows: the volume form dz in R

n⊕R
n is proportional to σ∧n = σ∧σ ∧ · · · ∧σ

(n factors) and
φ∗σ∧n = φ∗σ ∧ φ∗σ ∧ · · · ∧ φ∗σ = σ∧n.

Of course, more generally, we have φ∗σ∧k = σ∧k for 1 ≤ k ≤ n.
We will study in Section 4.2 the connected component of Symp(2n,R); it is

the group of Hamiltonian symplectomorphisms.
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4.2 Hamiltonian symplectomorphisms

The notion of Hamiltonian symplectomorphism appears naturally when one stud-
ies Hamiltonian flows. Recall from Chapter 1 that the flow (φHt ) determined by
Hamilton’s equations

dxj
dt

=
∂H

∂pj
(x, p, t) ,

dpj
dt

= − ∂H
∂xj

(x, p, t)

consists of Hamiltonian symplectomorphisms since the Jacobian matrix DφHt (z)
is symplectic at every point z of R

n ⊕ R
n (Theorem 9(ii)).

4.2.1 Symplectic covariance of Hamiltonian flows

Hamilton’s equations are covariant (i.e., they retain their form) under canonical
transformations. Let us begin by proving the following general result about vector
fields. We will write ϕψ for ϕ ◦ ψ when ϕ and ψ are diffeomorphisms.

Lemma 68. Let (ϕXt ) be the flow of some vector field X on R
m. Let ϕ be a diffeo-

morphism R
m −→ R

m. The family (ϕYt ) of diffeomorphisms defined by

ϕYt = ϕ−1ϕXt ϕ (4.1)

is the flow of the vector field Y = (Dϕ)−1(X ◦ ϕ), that is:

Y (u) = D(ϕ−1)(ϕ(u))X(ϕ(u)) = [Dϕ(u)]−1X(ϕ(u)). (4.2)

Proof. Obviously ϕY0 is the identity; in view of the chain rule

d

dt
ϕYt (x) = D(ϕ−1)(ϕXt (ϕ(x)))X(ϕXt (ϕ(x))

= (Dϕ)−1(ϕYt (x))X(ϕ(ϕYt (x)))

hence
d

dt
ϕYt (x) = Y (ϕYt (x))

which we set out to prove. �

Let us apply this lemma to the Hamiltonian case. We define the push-forward
of a vector field X by a diffeomorphism φ by the formula

φ∗X = (Dφ)−1(X ◦ φ)

well known from elementary differential geometry.
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Proposition 69. Let φ be a symplectomorphism of (Rn ⊕ R
n, σ).

(i) We have
XH◦φ(z) = [Dφ(z)]−1(XH ◦ φ)(z), (4.3)

that is
φ∗XH = XH◦φ.

(ii) The flows (φHt ) and (φH◦φ
t ) are conjugate by φ:

φH◦φ
t = φ−1φHt φ. (4.4)

Proof. Let us prove (i); part (ii) will follow in view of Lemma 68 above. Set
K = H ◦ φ. By the chain rule

∂zK(z) = [Dφ(z)]T (∂zH)(φ(z))

hence the vector field XK = J∂zK is given by

XK(z) = J [Dφ(z)]T ∂zH(φ(z)).

Since Dφ(z) is symplectic we have

J [Dφ(z)]T = [Dφ(z)]−1J

and hence
XK(z) = [Dφ(z)]−1J∂zH(φ(z))

which is (4.3). �

4.2.2 The group Ham(2n,R)

Let us now define the notion of Hamiltonian symplectomorphism.
In what follows Hamilton functions are generically time-dependent.

Definition 70. We will say that a diffeomorphism φ of (Rn ⊕ R
n, σ) is a Hamil-

tonian symplectomorphism (or diffeomorphism) if there exists a real function
H ∈ C∞((Rn ⊕ R

n) × R) such that φ = φH1 where (φHt ) is the flow generated
by H . The set of all Hamiltonian symplectomorphisms is denoted by Ham(2n,R).

Choosing H constant it is clear that the identity is a Hamiltonian symplec-
tomorphism.

The choice of a time-one map φH1 in the definition above is of course arbitrary,
and can be replaced by any φHa : if φ = φHa for some a 
= 0 then we also have
φ = φH

a

1 where Ha(z, t) = aH(z, at). In fact, setting ta = at we have

dza

dt
= J∂zH

a(za, t)⇐⇒ dza

dta
= J∂zH(za, ta)

and hence φH
a

t = φHat.
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We are going to see in a moment that Ham(2n,R) is a connected and normal
subgroup of Symp(2n,R) for the induced composition law, thus justifying the
following definition:

Definition 71. The set Ham(2n,R) of all Hamiltonian symplectomorphisms
equipped with the law φψ = φ◦ψ is called the group of Hamiltonian symplectomor-
phisms of the standard symplectic space (Rn⊕R

n, σ). The topology of Ham(2n,R)
is the topology induced by that of the group Symp(2n,R) of symplectomorphisms
of (Rn ⊕ R

n, σ).

We assume in what follows that all Hamiltonian flows are defined on R
n⊕R

n

for all values of time. This may seem a strong condition, especially after our dis-
cussion in Chapter 1, Subsection 1.1.2: many interesting Hamiltonian functions
do not generate flows that exist forever. This difficulty can be suppressed by the
following trick: (see, e.g., Polterovich [133]). If φHt is not defined for all values
of t, we just replace H by the function HΘ where Θ ∈ C∞

0 (Rn ⊕ R
n) is a com-

pactly supported infinitely differentiable function equal to 1 on some arbitrarily
chosen subset Ω of phase space. Thus, H(z, t) is equal to 0 for z lying outside
Supp(Θ) ⊂ Ω. The classical theory of differential systems tells us that the solu-
tions of Hamilton’s equations then exist for all times, and hence the flow (φHΘ

t )
is defined for all t. The diffeomorphisms φHΘ

t are the identity outside the support
of Θ. Suppose in fact that the initial point z0 lies outside Supp(Θ), so that H(z0)
is constant. The function z(t) = z0 is a solution of Hamilton’s equations because
ż0 = 0 and ∂pH(z0, t) = ∂xH(z0, t) = 0. Since we always assume uniqueness,
z(t) = z0 is the solution, and thus φHt (z0) = z0. Moreover, any solution curve
starting at time t = 0 from a point z0 inside Supp(Θ) will stay forever inside
Supp(Θ) (otherwise the curve would stop at a point outside Supp(Θ) in view of
the previous argument, and could not leave the exterior of Supp(Θ) even under
time-reversal, which is a contradiction).

Let us first prove a preparatory result which is interesting in its own right.

Proposition 72. Let (φHt ) and (φKt ) be Hamiltonian flows. Then:

φHt φ
K
t = φH#K

t and (φHt )−1 = φH̄t (4.5)

where H#K and H̄ are the Hamiltonian functions defined by

H#K(z, t) = H(z, t) +K((φHt )−1(z), t).

H̄(z, t) = −H(φHt (z), t).

Proof of the first identity (4.5). By the product and chain rule we have

d

dt
(φHt φ

K
t ) = (

d

dt
φHt )φKt + (DφHt )φKt

d

dt
φKt (4.6)

= XH(φHt φ
K
t ) + (DφHt )φKt ◦XK(φKt ) (4.7)
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and it thus suffices to show that

(DφHt )φKt ◦XK(φKt ) = XK◦(φHt )−1(φKt ). (4.8)

Writing

(DφHt )φKt ◦XK(φKt ) = (DφHt )((φHt )−1φHt φ
K
t ) ◦XK((φHt )−1φHt φ

K
t )

the equality (4.8) follows from the transformation formula (4.3) in Proposition 69.

Proof of the second identity (4.5). It is an easy consequence of the first, noting
that (φHt φH̄t ) is the flow determined by the Hamiltonian

K(z, t) = H(z, t) + H̄((φHt )−1(z), t) = 0;

φHt φ
H̄
t is thus the identity, so that (φHt )−1 = φH̄t as claimed. �

Let us now show that Ham(2n,R) is a group, as claimed. In fact we will prove
a little bit more:

Proposition 73. Ham(2n,R) is a normal subgroup of the group Symp(2n,R) of all
symplectomorphisms of the standard symplectic space (Rn ⊕ R

n, σ).

Proof. Let us show that if φ, ψ ∈ Ham(2n,R) then φψ−1 ∈ Ham(2n,R). We have
φ = φH1 and ψ = φK1 for some Hamiltonians H and K. In view of the identities
(4.5) we have

φψ−1 = φH1 (φK1 )−1 = φH#K̄
1

hence φψ−1 ∈ Ham(2n,R). That Ham(2n,R) is a normal subgroup of Symp(2n,R)
immediately follows from formula (4.4) in Proposition 69: if ψ is a symplectomor-
phism and φ ∈ Ham(2n,R) then

φH◦ψ
1 = ψ−1φH1 ψ ∈ Ham(2n,R) (4.9)

which was to be proven. �

We are now going to prove a deep and beautiful result due to Banyaga
[5]. It essentially says that a path of time-one Hamiltonian symplectomorphisms
passing through the identity at time zero is itself Hamiltonian; as a consequence
Ham(2n,R) is a connected group.

Let t �−→ φt be a path in Ham(2n,R), defined for 0 ≤ t ≤ 1 and starting at the
identity: φ0 = I. We will call such a path a one-parameter family of Hamiltonian
symplectomorphisms. Thus, each φt is equal to some symplectomorphism φHt1 .

Theorem 74. Let t �−→ φt, 0 ≤ t ≤ 1 be a continuous curve in Ham(2n,R) such
that φ0 = I. Then (φt) is the Hamiltonian flow determined by the Hamiltonian
function

H(z, t) = −
∫ 1

0

σ(X(uz, t), z)du with X = ( ddtφt) ◦ (φt)−1. (4.10)
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Proof. The starting point of the argument is the following: one begins by noting
that if XH is a Hamiltonian vector field, one can reconstruct H by the following
method: first write

H(z, t) = H(z, 0) +
∫ 1

0

d

du
XH(uz, t)du

= H(z, 0) +
∫ 1

0

[∂zH(uz, t) · z]du

(the second equality in view of the chain rule).
Next observe that since ∇zH(uz, t) = −J2∂zH(uz, t) = −JXH(uz, t) we

have

H(z, t) = H(z, 0)−
∫ 1

0

σ(XH(uz, t), z)du

where σ is the standard symplectic form. Let us now prove Banyaga’s formula
(4.10). By definition of X we have d

dtφt = Xφt so that all we have to do is to prove
thatX is a (time-dependent) Hamiltonian field. For this it suffices to show that the
contraction iXσ of the symplectic form with X is an exact differential one-form, for
then iXσ = −dH where H is given by (4.10). The φt being symplectomorphisms,
they preserve the symplectic form σ and hence LXσ = 0. In view of Cartan’s
homotopy formula we have

LXσ = iXdσ + d(iXσ) = d(iXσ) = 0

so that iXσ is closed; by Poincaré’s lemma it is also exact. �
Corollary 75. The group Ham(2n,R) of Hamiltonian symplectomorphisms is a
connected subgroup of the group Symp(2n,R) of symplectomorphisms of (Rn ⊕
R
n, σ).

Proof. The connectedness of Ham(2n,R) follows from Theorem 74: let t �−→ φt,
0 ≤ t ≤ 1 be a continuous curve in Ham(2n,R) joining the identity to φ ∈
Ham(2n,R); then (φt) is a Hamiltonian flow and hence φ = φ1 ∈ Ham(2n,R). �

We encourage the reader to pay some attention to the following exercise.

Exercise 76. Show that Sp(2n,R) ⊂ Ham(2n,R) and that the Hamiltonian func-
tion of (φHt ) such that φHt ∈ Sp(2n,R) is of the type H(z, t) = 1

2M(t)z ·z for some
real symmetric matrix M(t) depending smoothly on t.

4.3 The symplectic Lie algebra

Let M(2n,R) be the algebra of all real 2n × 2n matrices. The symplectic group
Sp(2n,R) is a closed subgroup of the general linear group GL(2n,R): we have
Sp(2n,R) = f−1(0) where f is the continuous mapping M(2n,R) −→ M(2n,R)
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defined by f(M) = STMS − J hence Sp(2n,R) is closed in M(2n,R); since
Sp(2n,R) ⊂ GL(2n,R) it is also closed in GL(2n,R). It follows that Sp(2n,R) is
a classical Lie group, and it thus makes sense to talk about its Lie algebra.

4.3.1 Matrix characterization of sp(2n,R)

The main result is the following:

Proposition 77. The Lie algebra sp(2n,R) of Sp(2n,R) consists of all X∈M(2n,R)
such that

XJ + JXT = 0 (equivalently XTJ + JX = 0). (4.11)

Proof. Let (St) be a differentiable one-parameter subgroup of Sp(2n,R) and X
a 2n × 2n real matrix such that St = exp(tX). Since St is symplectic we have
StJ(St)T = J , that is

exp(tX)J exp(tXT ) = J .

Differentiating both sides of this equality with respect to t and then setting t = 0
we getXJ+JXT = 0, and applying the same argument to the transpose STt we get
XTJ+JX = 0 as well. Suppose conversely that X is such that XJ+JXT = 0 and
let us show that X ∈ sp(2n,R). For this it suffices to prove that St = exp(tX) is
in Sp(2n,R) for every t. The condition XTJ+JX = 0 is equivalent to XT = JXJ
hence STt = exp(tJXJ); since J2 = −I we have (JXJ)k = (−1)k+1JXkJ and
hence

exp(tJXJ) = −
∞∑

k=0

(−t)k
k!

(JXJ)k = −Je−tXJ .

It follows that STt JSt = (−Je−tXJ)JetX = J so that St ∈ Sp(2n,R) as claimed.
�

Note that if one writes X ∈ sp(2n,R) in block matrix form then it has the
form

X =
(
U V
W −V T

)

where U , V , and W are n× n matrices such that

V = V T and W = WT .

In particular sp(2,R) consists of all 2× 2 matrices with vanishing trace:

X ∈ sp(2,R)⇐⇒ TrX = 0.

Exercise 78. Show that the dimension of Sp(2n,R) as a Lie group is n(2n + 1).
[Hint: write X ∈ sp(2n,R) in block-matrix form and then use the fact that a Lie
group has the same dimension as its Lie algebra.]
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Problem 79.

(i) Let ∆jk = (δjk)1≤j,k≤n (δjk = 0 if j 
= k, δjk = 1). Show that the matrices

Xjk =
[
∆jk 0
0 −∆jk

]

, Yjk =
1
2

[
0 ∆jk + ∆kj

0 0

]

,

Zjk =
1
2

[
0 0

∆jk + ∆kj 0

]

(1 ≤ j ≤ k ≤ n)

form a basis of sp(n).
(ii) Show that every Z ∈ sp(n) can be written in the form [X,Y ] = XY − Y X

with X,Y ∈ sp(n).

4.3.2 The exponential mapping

One should be careful to note that the exponential mapping

exp : sp(2n,R) −→ Sp(2n,R)

is neither surjective nor injective; for instance it is not hard to prove that if S ∈
Sp(2,R) can be written in the form S = expX with X ∈ sp(1) then we must have
TrS ≥ −2 (see de Gosson [67], p. 37). However, when conditions of positivity
and symmetry are imposed, one has a much better situation. In fact, denoting by
Sym(2n,R) the set of real symmetric 2n × 2n matrices and by Sym+(2n,R) the
subset of Sym(2n,R) consisting of positive definite matrices, we have:

Proposition 80.

(i) We have S ∈ Sp(2n,R) ∩ Sym+(2n,R) if and only if S = expX with X ∈
sp(n) and X = XT .

(ii) The exponential mapping is a diffeomorphism

exp : sp(2n,R) ∩ Sym(2n,R) −→ Sp(2n,R) ∩ Sym+(2n,R).

Proof. If X ∈ sp(2n,R) and X = XT then S is both symplectic and symmetric
positive definite. Assume conversely that S is symplectic and symmetric positive
definite. The exponential mapping is a diffeomorphism

exp : Sym(2n,R) −→ Sym+(2n,R)

hence there exists a unique X ∈ Sym(2n,R) such that S = expX . Let us show
that X ∈ sp(2n,R). Since S = ST we have SJS = J and hence S = −JS−1J .
Because −J = J−1 it follows that

expX = J−1(exp(−X))J = exp(−J−1XJ)

and, J−1XJ being symmetric, we conclude that X = J−1XJ that is JX = −XJ ,
showing that X ∈ sp(2n,R). �
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We now view the group Ham(2n,R) of all Hamiltonian symplectomorphisms
of (Rn⊕R

n, σ) as a Lie subgroup of the group of all diffeomorphisms of R
n⊕R

n.

Proposition 81. The Hamiltonian Lie algebra ham(2n,R) consists of all Hamilto-
nian vector fields XH with Lie bracket [XH , XK ] such that

[XH , XK ] = X{H,K} (4.12)

where {H,K} is the Poisson bracket:

{H,K} = ∂xH · ∂pK − ∂xK · ∂pH. (4.13)

Proof. The Lie algebra ham(2n,R) of Ham(2n,R) is just the tangent space to
Ham(2n,R) at the identity, hence it is the algebra of all vector fields X on R

n⊕R
n

such that

X(z) =
d

dt
φt(z)

∣
∣
∣
∣
t=0

.

In view of Theorem 74 there exists a Hamiltonian functionH ∈ C∞((Rn⊕R
n)×R)

such that φt = φHt hence X = XH . The proof of formula (4.13) readily follows
from Proposition 12; we leave the details to the reader as an exercise. �



Chapter 5

Symplectic Capacities

We are going to describe a deep topological principle, Gromov’s symplectic non-
squeezing theorem [87], alias the “principle of the symplectic camel”. As we will see
in the next chapter, the main tool allowing the application of Gromov’s theorem to
the study of classical and quantum uncertainties is the derived notion of symplectic
capacity, which is a typically “classical” object.

5.1 Gromov’s theorem and symplectic capacities

In addition to being volume-preserving, Hamiltonian flows have an unexpected
additional property as soon as the number of degrees of freedom is superior to 1;
this property is a consequence of the symplectic non-squeezing theorem which was
proved in 1985 by M. Gromov [87].

5.1.1 Statement of Gromov’s theorem

Gromov’s non-squeezing theorem is very surprising and has many indirect conse-
quences. Let us state it precisely. We denote by Zj(R) the cylinder in R

n ⊕ R
n

defined by the condition: a point (x, p) is in Zj(R) if and only if x2
j + p2

j ≤ R2.

Theorem 82 (Gromov). If there exists a symplectomorphism φ in R
n⊕R

n sending
the ball B(r) in some cylinder Zj(R), then we must have r ≤ R.

It is essential for the non-squeezing theorem to hold that the considered cylin-
der is based on an xj , pj plane (or, more generally, on a symplectic plane). For
instance, if we replace the cylinder Zj(R) by the cylinder Z12(R) : x2

1 + x2
2 ≤ R2

based on the x1, x2 plane, it is immediate to check that the linear symplecto-
morphism φ defined by φ(x, p) = (λx, λ−1p) sends B(r) into Z12(R) as soon as
λ ≤ r/R. Also, one can always “squeeze” a large ball into a big cylinder using
volume-preserving diffeomorphisms that are not canonical. Here is an example in
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the case n = 2 that is very easy to generalize to higher dimensions: define a linear
mapping f by

f(x1, x2, p1, p2) = (λx1, λ
−1x2, λp1, λ

−1p2).

Clearly det f = 1 and f is hence volume-preserving; f is however not symplectic
if λ 
= 1. Choosing again λ ≤ r/R, the mapping f sends B(R) into Z1(r).

Gromov’s theorem actually holds when Zj(R) is replaced by any cylinder
with radius R based on a symplectic plane, i.e., a two-dimensional subspace P
of R

n ⊕ R
n such that the restriction of σ to P is non-degenerate (equivalently,

P has a basis {e, f} such that σ(e, f) 
= 0). The planes Pj of coordinates xj , pj
are of course symplectic, and given an arbitrary symplectic plane P it is easy to
construct a linear symplectomorphism Sj such that Sj(P) = Pj . It follows that a
symplectomorphism φ sends B(r) in the cylinder Zj(R) if and only if φ ◦Sj sends
B(r) in the cylinder Zj(R) with the same radius based on P .

Gromov’s theorem obviously applies to Hamiltonian flows, since these con-
sist of symplectomorphisms. Here is a dynamical description of the non-squeezing
theorem. Assume that we are dealing with a subset Ωt ⊂ R

n ⊕R
n at time t mod-

elling a large number of points in phase space, subject to a Hamiltonian flow (φHt ).
Suppose that Ω0 = Ω is a phase space ball B(r) : |z − z0| ≤ r at time t = 0. The
orthogonal projection of that ball on any plane of coordinates is a circle with area
πr2. As time evolves, Ω will distort and may take after a while a very different
shape, while keeping constant volume (because Hamiltonian flows are volume pre-
serving). In fact, since conservation of volume has nothing to do with conservation
of shape, one might very well envisage that Ω becomes stretched in all directions
by the Hamiltonian flow (φHt ), and eventually gets very thinly spread out over
huge regions of phase space, so that the projections on any plane could a priori
become arbitrarily small after some time t. (In fact, this possibility is perfectly
consistent with a deep result of Katok [106] which says that, up to sets of arbi-
trarily small measure ε, any kind of phase-space spreading is a priori possible for
a volume-preserving flow. However, Gromov’s theorem implies that the areas of
the projections of the set φHt (B(r)) on any plane of conjugate coordinates xj , pj
(or, more generally, on any symplectic plane) will never decrease below its original
value πr2.

5.1.2 Proof of Gromov’s theorem in the affine case

All known proofs (direct, or indirect) of Gromov’s theorem are notoriously difficult,
whatever method one uses (this might explain that it had not been discovered
earlier, even in the more “physical” framework of Hamiltonian dynamics). We
note that a related heuristic justification of Gromov’s theorem is given by Hofer
and Zehnder in [101] p. 34; their argument however relies on an assumption which
is (if true) at least as difficult to prove as Gromov’s theorem itself! We are going to
be much more modest, and to give a proof (actually two) of Gromov’s theorem for
affine symplectomorphisms; a symplectomorphism is affine if it can be factorized
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as the product of a symplectic transformation (i.e., an element of Sp(2n,R)) and
a phase space translation. Both proofs are of an elementary nature (the second
is shorter, but slightly more conceptual; also see [67] §3.7.2 for a variant of this
proof).

Proposition 83. If there exists an affine symplectomorphism φ in R
n⊕R

n sending
a ball B(r) inside the cylinder Zj(R), then we must have r ≤ R. Equivalently,
the intersection of φ(B(r)) by an affine plane parallel to a plane of conjugate
coordinates xj , pj passing through the center of φ(B(r)) is an ellipse with area πr2.

First proof. It relies on the fact that the form pdx =
∑

j pjdxj is a relative integral
invariant of every symplectomorphism, that is: if φ is a symplectomorphism and
γ a cycle (or loop) in R

n ⊕ R
n then

∮

γ

pdx =
∮

φ(γ)

pdx (5.1)

(see for instance Arnol’d [3], §44, p. 239). It is of course no restriction to assume
that the ball B(r) is centered at the origin, and that φ is a symplectic transforma-
tion S. We claim that the ellipse Γj = S(B(r)) ∩ Pj , intersection of the ellipsoid
S(B(r)) with any plane Pj of conjugate coordinates xj , pj has area πr2; the propo-
sition immediately follows from this property. Let γj be the curve bounding the
ellipse Γj and orient it positively; the area enclosed by γ is then

Area(Γj) =
∮

γj

pjdxj =
∮

γj

pdx (5.2)

hence, using property (5.1),

Area(Γj) =
∮

S−1(γj)

pdx = πr2 (5.3)

(because S−1(γ) is a big circle of B(r)); notice that the assumption that Pj is a
plane of conjugate coordinates xj , pj is essential for the second equality (5.2) to
hold, making use of formula (5.1) possible [more generally, the argument works
when Pj is replaced by any symplectic plane].

Second proof. With the same notation as above we note that the set

S−1 [S(B(r)) ∩ Pj ]
is a big circle of B(r), and hence encloses a surface with area πr2. Now, Pj is
a symplectic space when equipped with the skew-linear form σj = dpj ∧ dxj
and the restriction of S to Pj is also canonical from (Pj , σj) to the symplectic
plane S(Pj) equipped with the restriction of the symplectic form σ. Canonical
transformations being volume- (here: area) preserving it follows that S(B(r))∩Pj
also has area πr2. �
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It would certainly be interesting to generalize the first proof to arbitrary
symplectomorphisms, thus yielding a new proof of Gromov’s theorem in the general
case, in fact, a refinement of it! The difficulty comes from the following fact: the
key to the proof in the linear case is the fact that we were able to derive the
equality ∫

γR

pjdxj = πR2

by exploiting the fact that the inverse image of the xj , pj plane by S was a plane
cutting B(R) along a big circle, which thus encloses an area equal to πR2. When
one replaces the linear transformation S by a non-linear one, the inverse image of
xj , pj plane will not generally be a plane, but rather a surface. It turns out that
this surface is not quite arbitrary: it is a symplectic 2-dimensional manifold. If the
following property holds:

The section of B(r) by any symplectic surface containing the center of
B(r) has an area at least πr2

then we would have, by the same argument,
∫

γR

pjdxj ≥ πR2,

hence we would have proved Gromov’s theorem in the general case. We do not
know any proof of this property; nor do we know whether it is true!

We urge the reader to notice that the assumption that we are cutting S(B(r))
with a plane of conjugate coordinates is essential, because it is this assumption that
allowed us to identify the area of the section with action. Here is a counterexample
which shows that the property does not hold for arbitrary sections of the ellipsoid
S(B(r)). Taking n = 2 we define a symplectic matrix

S =







λ1 0 0 0
0 λ2 0 0
0 0 1/λ1 0
0 0 0 1/λ2







,

where λ1 > 0, λ2 > 0, and λ1 
= λ2. The set S(B(r)) is defined by

1
λ1
x2

1 +
1
λ2
x2

2 + λ1p
2
1 + λ2p

2
2 ≤ r2

and its section with the x2, p2 plane is the ellipse
1
λ1
x2

1 + λ1p
2
1 ≤ r2

which has area πr2 as predicted, but its section with the x2, p1 plane is the ellipse
1
λ1
x2

1 + λ2p
2
2 ≤ R2

which has area π(r2
√
λ1/λ2) different from πr2 since λ1 
= λ2.
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Why is Gromov’s theorem sometimes called “the principle of the symplec-
tic camel”? The reason is metaphoric: Gromov’s non-squeezing theorem can be
restated by saying that there is no way to deform a phase space ball using sym-
plectomorphisms in such a way that we can make it pass through a circular hole
in a plane of conjugate coordinates xj , pj if the area of that hole is smaller than
that of the cross-section of that ball: the biblical camel is the ball B(R) and the
hole in the plane is the eye of the needle!

5.2 The notion of symplectic capacity

Gromov’s non-squeezing theorem makes possible the definition of a very interesting
and useful topological notion, that of symplectic capacity, which was defined by
Ekeland and Hofer [41]. We refer to Hofer and Zehnder [101], Polterovich [133] for
much more on the topic.

5.2.1 Definition and existence

The following definition is standard, and the most commonly accepted in the
literature:

Definition 84. A normalized symplectic capacity” on (Rn ⊕ R
n, σ) is a function

assigning to every subset Ω of R
n ⊕ R

n a number c(Ω) ≥ 0, or +∞, and having
the four properties (SC1)–(SC4) listed below:

(SC1) Symplectic invariance:

c(φ(Ω)) = c(Ω) if φ ∈ Symp(2n,R); (5.4)

(SC2) Monotonicity:
c(Ω) ≤ c(Ω′) if Ω ⊂ Ω′; (5.5)

(SC3) Conformality:
c(λΩ) = λ2c(Ω) for λ ∈ R; (5.6)

(SC4) Normalization:

c(B(R)) = πR2 = c(Zj(R)). (5.7)

Exercise 85. (i) Show that if condition (5.7) holds for one index j then it holds
for all. (ii) Show that the cylinder Zj(R) : x2

j + p2
j ≤ R2 can be replaced by any

cylinder Zj(R) with radius R based on a symplectic plane.

We will also often consider the weaker notion of linear symplectic capacity:

Definition 86. A linear symplectic capacity assigns to every subset Ω of R
n ⊕ R

n

a number clin(Ω) ≥ 0 or +∞, and having the properties (SC2)–(SC4) above,
property (SC1) being replaced by:
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(SC1Lin) A linear symplectic capacity clin is invariant under phase-space trans-
lations and under the action of Sp(2n,R).

This definition can be restated by saying that a linear symplectic capacity is
only invariant under the action of the affine (or: inhomogeneous) symplectic group
ASp(2n,R):

clin(φ(Ω)) = c(Ω) for all φ ∈ Asp(2n,R). (5.8)

(Recall that Asp(2n,R) consists of all products ST (z) where S ∈ Sp(2n,R) and
T (z) : z′ �−→ z′ + z is an arbitrary phase-space translation.)

Obviously symplectic capacities are unbounded (even if the symplectic ca-
pacity of an unbounded set can be bounded, cf. property (SC4). We have for
instance

c(Rn ⊕ R
n) = clin(Rn ⊕ R

n) = +∞ (5.9)

as immediately follows from the double equality c(B(R)) = clin(B(R)) = πR2.
However, if Ω is bounded then all its symplectic capacities are finite: there exists
R such that a ball B(R) contains Ω, and hence c(Ω) ≤ c(B(R)) = πR2 in view
of the monotonicity property (SC2). More generally, it follows from properties
(SC2) and (SC4) that if B(R) ⊂ Ω ⊂ Zj(R) then c(Ω) = πR2; this illustrates the
fact that sets very different in shape and volume can have the same symplectic
capacity.

Also note that a set Ω with non-empty interior cannot have symplectic ca-
pacity equal to zero: let Ω′ be the interior of Ω, it is an open set, and if it is not
empty it contains a (possibly) very small) ball B(ε). Using again (SC2) we have
πε2 = c(B(ε)) ≤ c(Ω).

We will usually drop the qualification “normalized” in the definition above
and just speak about “symplectic capacities”; one exception to this rule will be
the Ekeland–Hofer capacities discussed in de Gosson and Luef [77].

The reader is urged to keep in mind that the notion of symplectic capacity is
not directly related to that of volume. For instance, the function cVol defined by

cVol(Ω) = [Vol(Ω)]1/n

obviously satisfies the properties (SC1)–(SC4) above except the second identity
(SC4): we have cVol(Zj(R)) 
= πR2 as soon as n > 1; now the second identity
(SC4) is precisely the most characteristic and interesting property of a symplectic
capacity, because it is related to Gromov’s non-squeezing theorem.

There remains to prove the existence of symplectic capacities.

Proposition 87. Let Ω ⊂ R
n ⊕ R

n and set

Rσ = sup
φ∈Symp(2n,R)

{R : φ(B(R)) ⊂ Ω}.

Set cmin(Ω) = πR2
σ if Rσ <∞, cmin(Ω) =∞ if Rσ =∞. Then cmin is a symplectic

capacity on the standard symplectic space (Rn ⊕ R
n, σ).
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Proof. Let us prove the symplectic invariance property (SC1). Let φ∈Symp(2n,R)
and φ′ ∈ Symp(2n,R) be such that g(B(R)) ⊂ Ω; then (φ ◦ φ′)(B(R)) ⊂ φ(Ω) for
every φ ∈ Symp(2n,R) hence cmin(φ(Ω)) ≥ cmin(Ω). To prove the opposite inequal-
ity we note that replacing Ω by φ−1(Ω) leads to cmin(Ω)) ≥ cmin(φ−1(Ω)); since
φ is arbitrary we have in fact cmin(Ω)) ≥ cmin(φ(Ω)) for every φ ∈ Symp(2n,R).
It follows that we have equality: cmin(φ(Ω)) = cmin(Ω). The monotonicity prop-
erty (SC2) is of course trivially verified because a symplectomorphism sending
B(R) in Ω′ also sends B(R) in any set Ω′ ⊃ Ω. Let us prove the conformality
property (SC3). First note it trivially holds for λ = 0 so we may assume λ 
= 0.
Let φ ∈ Symp(2n,R) and define φλ by φλ(z) = λφ(λ−1z); it is clear that φλ ∈
Symp(2n,R). The condition φ(B(R)) ⊂ Ω being equivalent to λ−1φλ(λB(R)) ⊂ Ω,
that is to φλ(B(λR)) ⊂ λΩ, it follows from the definition of cmin that cmin(λΩ) =
π(λRσ)2 = λ2cmin(Ω). Let us finally prove that the normalization conditions
(SC4) are satisfied by cmin. The equality cmin(B(R)) = πR2 is obvious: every
ball B(r) with R′ ≤ R is sent into B(R) by the identity and if R′ ≥ R there
exists no φ ∈ Symp(2n,R) such that φ(B(R′)) ⊂ B(R) because symplectomor-
phisms are volume-preserving. There remains to show that cmin(Zj(R)) = πR2.
If R′ ≤ R then the identity sends B(R′) in Zj(R) hence cmin(Zj(R)) ≤ πR2. As-
sume that cmin(Zj(R)) > πR2; then there exists a ball B(R′) with R′ > R and a
φ ∈ Symp(2n,R) such that φ(B(R′)) ⊂ Zj(R) and this would violate Gromov’s
theorem. �

We urge the reader to note that in the proof of the fact that cmin indeed is a
symplectic capacity, we needed Gromov’s theorem only at the very last step, when
we wanted to prove that cmin(Zj(R)) = πR2.

Definition 88. The symplectic capacity cmin is called the Gromov width (or sym-
plectic width). The (possibly infinite) number Rσ such that cmin(Ω) = πR2

σ is
called the symplectic radius of Ω.

The proof that the existence of symplectic capacities is actually equivalent
to Gromov’s theorem is proposed to the reader’s sagacity in the problem below:

Problem 89. Show that the existence of a single symplectic capacity proves Gro-
mov’s non-squeezing theorem.

Gromov’s non-squeezing theorem actually allows us to easily construct an-
other symplectic capacity cmax, distinct from cmin and there are thus infinitely
many symplectic capacities because for every real λ in the closed interval [0, 1] the
formula

cλ = λcmax + (1 − λ)cmin (5.10)

obviously defines a symplectic capacity, and we have cλ 
= cλ′ if λ 
= λ′. (More
generally, we can always interpolate two arbitrary symplectic capacities to obtain
new capacities). The symplectic capacity cmax is constructed as follows: suppose
that no matter how large we choose r there exists no symplectomorphism sending
Ω inside a cylinder Zj(r). We then set cmax(Ω) = +∞. Suppose that, on the



58 Chapter 5. Symplectic Capacities

contrary, there are symplectomorphisms sending Ω inside some cylinder Zj(r) and
let R be the infimum of all such r. Thus, by definition,

cmax(Ω) = inf
φ
{πr2 : φ(Ω) ⊂ Zj(r)} = πR2 (5.11)

where φ again ranges over all the symplectomorphisms R
n⊕R

n −→ R
n⊕R

n. We
leave it to the reader to verify, using again the non-squeezing theorem, that cmax

indeed is a symplectic capacity. As the notation suggests, we have:

Proposition 90. For every Ω ⊂ R
n ⊕ R

n we have

cmin(Ω) ≤ c(Ω) ≤ cmax(Ω) (5.12)

for every symplectic capacity c.

Proof. Suppose first cmin(Ω) > c(Ω) and set c(Ω) = πR2; thus cmin(Ω) > πR2. It
follows, by definition of cmin, that there exists ε > 0 and a symplectomorphism φ
such that φ(B(R+ ε)) ⊂ Ω. But then, in view of the monotonicity property (SC2)
of c we have c(φ(B(R + ε))) ≤ c(Ω), that is, in view of the symplectic invariance
property (SC1), c(B(R + ε)) ≤ c(Ω). We thus have, taking (SC4) into account,
c(B(R + ε)) = π(R + ε)2 ≤ c(Ω), and this contradicts c(Ω) = πR2. The proof of
the inequality c(Ω) ≤ cmax(Ω) is similar; we leave the details to the reader. �
Exercise 91. Prove the existence of a subset Ω of R

n ⊕ R
n such that cmin(Ω) <

cmax(Ω).

The existence of linear symplectic capacities is proven exactly in the same
way as above. In fact, for Ω ⊂ R

n ⊕ R
n set

clinmin(Ω) = sup
φ∈ISp(2n,R)

{πR2 : φ(B(R)) ⊂ Ω}, (5.13)

clinmax(Ω) = inf
φ∈ISp(2n,R)

{πR2 : φ(Ω) ⊂ Zj(R)}; (5.14)

it is immediate to show that clinmin and clinmax are linear symplectic capacities, which
can be interpreted as follows: for every Ω ⊂ R

n ⊕ R
n the number clinmin(Ω) (which

can be infinite) is the supremum of all the πR2 of phase space balls B(R) that
can be sent in Ω using elements of ISp(2n,R); similarly clinmin(Ω) is the infimum of
all πR2 such that a cylinder Zj(R) can contain the deformation of Ω by elements
of the inhomogeneous symplectic group ISp(2n,R) (the group generated by phase
space translations and the elements of Sp(2n,R)). We have moreover

clinmin(Ω) ≤ clin(Ω) ≤ clinmax(Ω) (5.15)

for every Ω ⊂ R
n⊕R

n and every linear symplectic capacity clin; the proof is similar
to that of the inequalities (5.12).

The homogeneity property (SC2) satisfied by every symplectic capacity (lin-
ear or not) together with the fact that c(B(R)) = πR2 suggests that symplectic
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capacities have something to do with the notion of area. In fact, the following is
true: the symplectic capacity cmin(Ω) of a subset in the phase plane R

2 is the area
of Ω when the latter is connected (Siburg [148]; also see the proof in Hofer and
Zehnder [101], §3.5, Theorem 4). Note that the result in general no longer holds
when Ω is disconnected: suppose for instance that Ω is the union of two disjoint
disks with radii R and R′ such that R′ < R. Then cmin(Ω) = πR2 < Area(Ω). The
symplectic capacity cmax(Ω) is the area when Ω is simply connected. Summarizing,
it follows from the inequalities (5.12) that:

Proposition 92. Let c be a symplectic capacity on the phase plane R
2. We have

c(Ω) = Area(Ω) when Ω is a connected and simply connected surface.

The reader may easily convince himself that cmin(Ω) is not the area when Ω
is disconnected, and that cmax(Ω) is in general not the area when Ω fails to be
simply connected (a typical counterexample is the annulus r ≤ x2 + p2 ≤ R2).

5.2.2 The symplectic capacity of an ellipsoid

As the title of this subsection suggests, the symplectic capacity of an ellipsoid is
intrinsically attached to that ellipsoid, in the sense that it does not depend on the
choice of symplectic capacity. To prove this we will need the following symplectic
diagonalization theorem, which is very interesting by itself, and which we will
use several times in this book. It was proven by Williamson [162] in 1936, and has
been rediscovered many times since. It can be viewed as a partial result in the non-
trivial topic of classification of quadratic forms. We are following the presentation
in Folland’s book [60] (Proposition 4.22); for an alternative proof using Lagrange
multipliers see Hofer and Zehnder [101], §1.7.

Theorem 93 (Williamson). Let M be a positive-definite symmetric real 2n × 2n
matrix.

There exists S ∈ Sp(2n,R) such that

STMS =
(

Λ 0
0 Λ

)

, Λ diagonal, (5.16)

the diagonal entries λj of Λ being defined by the condition

±iλj is an eigenvalue of JM. (5.17)

Proof. Let 〈·, ·〉M be the scalar product on C
2n defined by 〈z, z′〉M = 〈Mz, z′〉.

Since both 〈·, ·〉M and the symplectic form are non-degenerate we can find a unique
invertible matrix K of order 2n such that

〈z,Kz′〉M = σ(z, z′)

for all z, z′; that matrix satisfies KTM = J = −MK. Since the σ is antisymmetric
we must have K = −KM where KM = −M−1KTM is the transpose of K with
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respect to 〈·, ·〉M ; it follows that the eigenvalues of K = −M−1J are of the type
±iλj, λj > 0, and so are those of JM−1. The corresponding complex eigenvectors
occurring in conjugate pairs e′j ± if ′

j , we thus obtain a 〈·, ·〉M -orthonormal basis
{e′i, f ′

j}1≤i,j≤n of R
n ⊕ R

n such that Ke′i = λif
′
i and Kf ′

j = −λje′j . Notice that
it follows from these relations that we have K2e′i = −λ2

i e
′
i and K2f ′

j = −λ2
jf

′
j and

that the vectors of the basis {e′i, f ′
j}1≤i,j≤n satisfy the relations

σ(e′i, e
′
j) = 〈e′i,Ke′j〉M = λj〈e′i, f ′

j〉M = 0,

σ(f ′
i , f

′
j) = 〈f ′

i ,Kf
′
j〉M = −λj〈f ′

i , e
′
j〉M = 0,

σ(f ′
i , e

′
j) = 〈f ′

i ,Ke
′
j〉M = λi〈f ′

i , f
′
j〉M = −λiδij .

Setting ei = λ
−1/2
i e′i and fj = λ

−1/2
j f ′

j , the basis {ei, fj}1≤i,j≤n is symplectic.
Let S be the element of Sp(2n,R) mapping the canonical symplectic basis to
{ei, fj}1≤i,j≤n. The 〈·, ·〉M -orthogonality of {ei, fj}1≤i,j≤n implies (5.16) with Λ =
diag(λ1, . . . , λn). �

Williamson’s theorem allows us to calculate rather easily the symplectic ca-
pacity of an ellipsoid:

Proposition 94. LetW = {z : Mz2 ≤ 1} (M symmetric) be an ellipsoid in R
n⊕R

n

and let c be an arbitrary linear symplectic capacity on (Rn ⊕ R
n, σ). Let λ1,σ ≥

λ2,σ ≥ · · · ≥ λn,σ be the decreasing sequence of the moduli of the eigenvalues ±iλ
of JM . We have

c(W) =
π

λ1,σ
= clin(W) (5.18)

where clin is any linear symplectic capacity.

Proof. Let us choose S ∈ Sp(2n,R) such that the matrix STMS =
(

Λ 0
0 Λ

)

. The

set S−1(W) is thus the ellipsoid described by Λx2 + Λp2 ≤ 1, that is

n∑

j=1

λj,σ(x2
j + p2

j) ≤ 1. (5.19)

Since c(S−1(W)) = c(W) in view of the symplectic invariance (SC1) of symplectic
capacities it is sufficient to assume that the ellipsoid W is represented by (5.19).
In view of the obvious double inequality

λ1,σ(x2
1 + p2

1) ≤
n∑

j=1

λj,σ(x2
j + p2

j) ≤ λ1,σ

n∑

j=1

(x2
j + p2

j) (5.20)

we have B(λ−1/2
1,σ ) ⊂ W ⊂ Z1(λ

−1/2
1,σ ) hence, using the monotonicity property

(SC2) of symplectic capacities,

c(B(λ−1/2
1,σ )) ⊂ c(W) ⊂ (Z(λ−1/2

1,σ )).
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The equality c(W) = π/λ1,σ follows in view of the normalization conditions (SC4)
satisfied by any symplectic capacity; the formula clin(W) = π/λ1,σ follows as
well since we have put the ellipsoid W in the form (5.19) using only a linear
symplectomorphism. �

5.3 Other symplectic capacities

In this section we briefly review two interesting symplectic capacities which cannot
be directly deduced from Gromov’s non-squeezing theorem, and which can thus
be used to derive this theorem (cf. Problem 89). The first example, the Hofer–
Zehnder capacity, is normalized (in the sense of (SC4)), while the second example
provides us with a whole family of non-normalized symplectic capacities.

5.3.1 The Hofer–Zehnder capacity

We mentioned at the beginning of this chapter that the notion of symplectic
capacity can be viewed as a generalization of the notion of action. This is most
easily seen by using the Hofer–Zehnder capacity. In [101] (Chapter 3) Hofer and
Zehnder construct a symplectic capacity cHZ which measures sets in a dynamical
way. It is defined as follows. Let Ω be an open set in R

n⊕R
n and consider the class

H(Ω) of all Hamiltonian functions H ≥ 0 having the following three properties:

• H vanishes outside Ω (and is hence bounded);
• The critical values of H are 0 and maxH ;
• The flow (φHt ) has no constant periodic orbit with period T ≤ 1.

Then, by definition,

cHZ(Ω) = sup{maxH : H ∈ H(Ω)}. (5.21)

To prove that cHZ satisfies the properties (SC1)–(SC4) is not straightforward;
the proof uses several tricks from the theory of Hamiltonian systems. However, it
does not rely on Gromov’s theorem, and thus provides an alternative proof of
this result (cf. Problem 89). The Hofer–Zehnder capacity has the property that
whenever Ω is a compact convex set in phase space then

cHZ(Ω) =
∮

γmin

pdx (5.22)

where pdx = p1dx1 + · · · + pndxn and γmin is the shortest (positively oriented)
Hamiltonian periodic orbit carried by the boundary ∂Ω of Ω. (For (5.22) the
condition that Ω be compact and convex is essential (see Hofer and Zehnder’s
very illustrative “Bordeaux bottle” example in [101], p. 99).

Notice that this formula generalizes the observation made earlier in this sec-
tion that symplectic capacities agree with the usual notion of area in the case
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n = 1 for connected and simply connected surfaces. In fact, let Ω be such a sur-
face in the phase plane, and assume that the boundary γ = ∂Ω is smooth, and
given the positive orientation. We then have, by Stoke’s theorem,

Area(Ω) = 1
2

∮

γ

(pdx− xdp) =
∮

γ

pdx.

Formula (5.22) in particular implies the inequalities

cmin(Ω) ≤ cHZ(Ω) ≤
∣
∣
∣
∣

∮

γ

pdx

∣
∣
∣
∣ (5.23)

for every periodic orbit γ on ∂Ω.

5.3.2 The Ekeland–Hofer capacities

The normalized symplectic capacities we have been using so far do not gen-
erally allow us to distinguish between ellipsoids: formula (5.18) implies that if
ΩM : Mz2 ≤ 1 and ΩM ′ : M ′z2 ≤ 1 are such that M and M ′ have the same small-
est symplectic eigenvalue, then c(ΩM ) = c(ΩM ′). This can however be achieved
by introducing a slightly more general notion of symplectic capacity. To do this
we slightly relax the normalization condition (SC4) for symplectic capacities and
replace it with the weaker requirement:

(SC4bis) c(B2n(R)) > 0 and c(Zj(R)) <∞.
In [41, 42] Ekeland and Hofer construct a sequence of generalized symplectic

capacities cEH
k having the following properties:

(EH1) The sequence (cEH
k )k≥1 is increasing:

cEH
1 (Ω) ≤ cEH

2 (Ω) ≤ · · · ≤ cEH
k (Ω) ≤ · · · (5.24)

for all Ω ⊂ R
n ⊕ R

n;
(EH2) If Ω is convex with boundary ∂Ω, then

cEH
k (Ω) = cEH

k (∂Ω) (5.25)

(hence cEH
k (Ω) is determined by the boundary ∂Ω);

(EH3) If Ω is convex, then

cEH
1 (Ω) = cHZ(Ω) and cEH

k (Ω) =
∮

γ

pdx (5.26)

where γ is a periodic Hamiltonian orbit carried by ∂Ω.
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The values of the capacities cEH
k on balls and cylinders are given by the

formulas

cEH
k (B2n(r)) =

[
k + n− 1

n

]

πr2, (5.27)

cEH
k (Z2n

j (r)) = πr2; (5.28)

in the first formula [x] is the integer part of x ∈ R.
The Ekeland–Hofer capacities cEH

k allow us to classify phase-space ellip-
soids. In fact, it readily follows from their properties (EH1) and (EH3) that
the non-decreasing sequence of numbers cEH

k (ΩM ) is determined as follows: if
Specσ(M) = (λσ1 , . . . , λ

σ
n) write the numbers kπ/λσ1 in increasing order with repe-

tition if a number occurs several times; we thus obtain a sequence c1 ≤ c2 ≤ · · ·
and we have

cEH
k (ΩM ) = ck. (5.29)

That the Ekeland–Hofer capacities cEH
k can be used to distinguish between ellip-

soids follows from:

Proposition 95. An ellipsoid ΩM : Mz2 ≤ 1 is uniquely determined (up to a sym-
plectic transformation) by the sequence of its Ekeland–Hofer capacities cEH

k (ΩM ).

Proof. Suppose that ΩM and ΩM ′ are two ellipsoids with λσj = λ′σj for 1 ≤ j < k
and λσk > λ′σk . Then the multiplicity of λσk in the sequence of Ekeland–Hofer
capacities is one higher for ΩM than for ΩM ′ hence not all of these capacities
agree on ΩM and ΩM ′ . �



Chapter 6

Uncertainty Principles

Since the aim of the first part of this book is to discuss classical mechanics from
the symplectic point of view, some readers might be a little surprised by the title
of the present chapter because it has a certain quantum-mechanical connotation.
In fact “uncertainty principles” are mostly studied within the realm of quantum
mechanics, even if the study of uncertainties is also a part of classical statistical
mechanics. However, as we have shown in our paper [72], the formalism of the
uncertainty principle is actually not as “quantum” as it may seem, but appears
in classical mechanics if one uses the notion of symplectic capacity. Even if every-
thing we will do is “classical”, in the sense that we do not invoke any quantum
mechanical properties, we will however make use of the notation � as if we were
“doing quantum mechanics”; the reader who feels uncomfortable with this irrup-
tion of a quantum-mechanical constant can view � as a parameter measuring some
indeterminacy in classical measurement processes.

The textbook uncertainty principle of quantum mechanics is usually stated in
the form ∆xj∆pj ≥ 1

2� (the “Heisenberg inequalities”). It is unfortunate that even
in many otherwise excellent mathematical texts it is only this weak form of the
uncertainty principle that is studied. In fact, to limit ourselves to the Heisenberg
inequalities has many disadvantages, the most obvious being that these inequal-
ities are not preserved by linear transformations (except trivial ones). A better
formulation consists in using the Robertson [137] and Schrödinger [142] inequali-
ties

(∆Xα)2(∆Pα)2 ≥ ∆(Xα, Pα)2 + 1
4�

2 , 1 ≤ α ≤ n (6.1)

which we will express in the form

c(WΣ) ≥ 1
2h (6.2)

where WΣ is a certain ellipsoid and c a symplectic capacity. We will be following
rather closely the exposition in our review paper de Gosson and Luef [77].

65M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics,  
Pseudo-Differential Operators 7, DOI 10.1007/978-3-7643-9992-4_ , © Springer Basel AG 2011 6
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6.1 The Robertson–Schrödinger inequalities

The Robertson–Schrödinger uncertainty principle is a strong version of the Heisen-
berg inequalities ∆xj∆pj ≥ 1

2�, to which it reduces when one neglects the contri-
butions due to the covariances.

6.1.1 The covariance matrix

In what follows ρ is a real-valued function defined on R
n ⊕ R

n satisfying the
normalization condition ∫

R2n
ρ(z)dz = 1 (6.3)

and such that ∫

R2n
(1 + |z|2)|ρ(z)|dz <∞. (6.4)

We do not assume that ρ ≥ 0 so ρ is not in general a true probability density.
(Having later applications to quantum mechanics in mind, ρ will typically be
the Wigner transform of a mixed quantum state.) We will call such a function
ρ a “quasi-distribution”, and work with it exactly as we would with an ordinary
probability density.

Exercise 96. Show that condition (6.4) implies that the Fourier transform Fρ is
twice continuously differentiable.

Let us introduce the following notation: we set zα = xα if 1 ≤ α ≤ n and
zα = pα−n if n+ 1 ≤ α ≤ 2n.

We define the covariances and variances associated with ρ in the usual way
by the formulas

∆(Zα, Zβ) =
∫

R2n
(zα − 〈zα〉)(zβ − 〈zβ〉)ρ(z)dz (6.5)

and

(∆Zα)2 = ∆(Zα, Zα) =
∫

R2n
(zα − 〈zα〉)2ρ(z)dz. (6.6)

In the formulas above the moments 〈zkα〉, k = 1, 2, are the averages with respect
to ρ of the corresponding functions:

〈zkα〉 =
∫

R2n
zkαρ(z)dz. (6.7)

These moments are of course well defined in view of condition (6.4).
Let Z1, Z2, . . . , Z2n be random variables on R

n ⊕ R
n whose values are the

phase-space coordinates z1, z2, . . . , zn. Since the integral of ρ is equal to 1, formulae
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(6.5) and 6.6) can be rewritten in the familiar form

∆(Zα, Zβ) = 〈zαzβ〉 − 〈zα〉〈zβ〉, (6.8)

(∆Zα)2 = ∆(Zα, Zα) = 〈z2
α〉 − 〈zα〉2. (6.9)

The quantities (6.5), (6.6), and (6.7) are well defined in view of condition (6.4):
the integrals above are all absolutely convergent in view of the trivial estimates

∣
∣
∣
∣

∫

R2n
zαρ(z)dz

∣
∣
∣
∣ ≤

∫

R2n
(1 + |z|2)|ρ(z)|dz <∞,

∣
∣
∣
∣

∫

R2n
zαzβρ(z)dz

∣
∣
∣
∣ ≤

∫

R2n
(1 + |z|2)|ρ(z)|dz <∞.

Definition 97. We will call the symmetric 2n× 2n matrix

Σ = [∆(Zα, Zβ)]1≤α,β≤2n

the covariance matrix associated with ρ. When detΣ 
= 0 the inverse Σ−1 is called
the precision (or information) matrix.

For instance, when n = 1, the covariance matrix is

Σ =
(

∆X2 ∆(X,P )
∆(P,X) ∆P 2

)

where the quantities ∆X2 and ∆(X,P ) are defined by

∆X2 = 〈x2〉 − 〈x〉2 , ∆P 2 = 〈p2〉 − 〈p〉2,
∆(X,P ) = 〈xp〉 − 〈x〉〈p〉.

6.1.2 A strong version of the Robertson–Schrödinger
uncertainty principle

The following result is essential. The first statement (i) was apparently first noted
in Narcowich [128] (Lemma 2.3), and part (ii) goes back to Narcowich [126], Nar-
cowich and O’Connell [129], and Yuen [167]. The third part (iii) is a way of ex-
pressing the symplectic covariance of the uncertainty principle.

Theorem 98. Let Σ be a real symmetric 2n×2n matrix and � a real number. Then
Σ+ i�

2 J is a Hermitian matrix. Suppose that there exists a real number � 
= 0 such
that Σ + i�

2 J ≥ 0. Then:

(i) The matrix Σ must be positive definite and we have Σ + i�′
2 J ≥ 0 for every

�
′ ≤ �;

(ii) The inequalities

(∆Xα)2(∆Pα)2 ≥ ∆(Xα, Pα)2 + 1
4�

2 (6.10)

hold for 1 ≤ α ≤ n;
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(iii) Let S ∈ Sp(2n,R) and define (XS
α , P

S
α ) = S(Xα, Pα). Then

(∆XS
α )2(∆PSα )2 ≥ ∆(XS

α , P
S
α )2 + 1

4�
2. (6.11)

Proof. We begin by noting that the matrix Σ+ i�
2 J is Hermitian because Σ is real

symmetric and (iJ)∗ = (−i)(−J) = iJ .

Proof of (i). Let us begin by showing that Σ is non-negative. Suppose indeed that
Σ has a negative eigenvalue λ, and let zλ be a real eigenvector corresponding to
λ (such an eigenvector exists because Σ is real and symmetric). Since zTλ Jzλ = 0
we have

zTλ

(

Σ +
i�

2
J

)

zλ = zTλΣzλ = λ|zλ|2 < 0

which contradicts the assumption Σ + i�
2 J ≥ 0. We next show that 0 cannot be

an eigenvalue of Σ; this will prove the statement. Suppose indeed that 0 is an
eigenvalue, and let z0 be a real eigenvector. For ε > 0 set z(ε) = (I+ iεJ)z0. Using
the relations Σz0 = 0, zT0 Σ = 0, and zT0 Jz0 = σ(z0, z0) = 0 we get, after a few
calculations,

z(ε)T
(

Σ +
i�

2
J

)

z(ε) = ε
1
2

�|z0|2 + ε2(Jz0)TΣ(Jz0).

Choose now ε opposite in sign to 1
2�; then ε 1

2�|z0|2 < 0 and if |ε| is small enough
we have z(ε)T (Σ + i�

2 J)z(ε) < 0, which contradicts the fact that Σ + i�
2 J ≥ 0. To

show that Σ + i�′
2 J ≥ 0 for every �

′ ≤ � it suffices to set �
′ = r� with 0 < r ≤ 1

and to note that

Σ +
i�′

2
J = (1− r)Σ + r

(

Σ +
i�

2
J

)

≥ 0

because (1− r)Σ ≥ 0 and Σ + i�
2 J ≥ 0.

Proof of (ii). The non-negativity of the Hermitian matrix Σ+ i�
2 J can be expressed

in terms of the submatrices

Σα =
(

(∆Xα)2 ∆(Xα, Pα) + i�
2

∆(Pα, Xα)− i�
2 (∆Pα)2

)

which are non-negative provided that Σ + i�
2 J is. Since

Tr(Σα) = (∆Xα)2 + (∆Pα)2 ≥ 0

we have Σα ≥ 0 if and only if

detΣα = (∆Xα)2(∆Pα)2 −∆(Xα, Pα)2 − 1
4�

2 ≥ 0

which is equivalent to the inequality (6.10).
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Proof of (iii). Set ΣS = STΣS; it is the covariance matrix of the vector

(XS
1 , . . . , X

S
n ;PS1 , . . . , P

S
n ) = S(X1, . . . , Xn;P1, . . . , Pn).

Since S is symplectic we have STJS = J and hence

ΣS +
i�

2
J = ST (Σ +

i�

2
J)S ≥ 0;

the inequalities (6.11) now follow from the inequalities (6.10). �

At this point it is appropriate to notice that (except in the case n = 1) the
condition Σ + i�

2 J ≥ 0 is not equivalent to the uncertainty inequalities (6.10); it
is in fact a stronger condition. It is actually easy to see why we have equivalence
when n = 1: the covariance matrix is just

Σ =
(

∆X2 ∆(X,P )
∆(P,X) ∆P 2

)

and since

Tr
(

Σ +
i�

2
J

)

= ∆X2 + ∆P 2 ≥ 0

the condition Σ + i�
2 J ≥ 0 is equivalent to det

(
Σ + i�

2 J
) ≥ 0, that is to

∆X2∆P 2 −
(

∆(X,P )2 +
1
4

�
2

)

≥ 0

which is precisely (6.10) in the case n = 1. That this equivalence between Σ +
i�
2 J ≥ 0 and (6.10) is not true in higher dimensions is easily seen on the following
counterexample. Take n = 2 and 1

2� = 1 and define a covariance matrix by

Σ =







1 −1 0 0
−1 1 0 0
0 0 1 0
0 0 0 1






. (6.12)

We thus have (∆X1)2 = (∆X2)2 = 1 and (∆P1)2 = (∆P2)2 = 1, and also
∆(X1, P1) = ∆(X2, P2) = 0 so that the inequalities (6.10) are trivially satisfied
(they are in fact equalities). The matrix Σ + iJ is nevertheless indefinite.

Exercise 99. Verify the indefiniteness of the 4× 4 covariance matrix (6.12).

Let us introduce the following terminology:

Definition 100. Let Σ be a covariance matrix. The phase space ellipsoid

WΣ = {z ∈ R
2n : 1

2Σ−1z2 ≤ 1}
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is called the “Wigner ellipsoid” associated with Σ. The dual ellipsoid

W∗
Σ = {z ∈ R

2n : 1
2Σz2 ≤ 1}

of the Wigner ellipsoid is called the “precision (or information) ellipsoid” (cf.
Definition 97).

We will see in a while that the strong uncertainty principle in the form
Σ + i�

2 J ≥ 0 can be expressed in terms of the notion of symplectic capacity. But
we first have to introduce some material from symplectic topology.

6.1.3 Symplectic capacity and the strong uncertainty principle

We are now going to give an application of the notion of symplectic capacity to the
strong uncertainty principle discussed in the beginning of this chapter. Another
application will be given in Chapter 6.2 when we discuss Hardy’s inequalities.

Let us return to the uncertainty principle in its strong Robertson–Schrödinger
form Σ + i�

2 J ≥ 0. The following geometric result is the key to our formulation in
terms of symplectic capacities:

Proposition 101. Let Σ be a positive-definite real 2n × 2n matrix. The three fol-
lowing conditions are equivalent:

(i) The Hermitian matrix Σ + i�
2 J is non-negative.

(ii) The symplectic capacity of the Wigner ellipsoid

WΣ = {z : 1
2Σ−1z2 ≤ 1}

is such that
c(WΣ) ≥ π� = 1

2h. (6.13)

(iii) The symplectic capacity of the dual ellipsoid

W∗
Σ = {z : 1

2Σz2 ≤ 1}
is such that

c(W∗
Σ) ≤ 2π

�
=

4π2

h
. (6.14)

Proof. Setting M = 1
2Σ−1 the Wigner ellipsoid is the set of all z ∈ R

2n such that
Mz2 ≤ 1 and the condition Σ + i�

2 J ≥ 0 is equivalent to 1
2M

−1 + i�
2 J ≥ 0; using

a symplectic diagonalization of M this is equivalent to 1
2D

−1 + i�
2 J ≥ 0 where

D =
(

Λσ 0
0 Λσ

)

, Λσ = diag(λσ1 , . . . , λ
σ
n).

It follows that the characteristic polynomial of 1
2M

−1 + i�
2 J is the product P (t) =

P1(t) · · · Pn(t) where

Pα(t) = t2 − (λσα)−1t+ 1
4 (λσα)−2 − 1

4�
2.
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The eigenvalues of the matrix 1
2M

−1+ i�
2 J are thus the real numbers 1

2 [(λσj )−1±�]
hence that matrix is non-negative if and only if λσj ≤ 1

2 (1
2�)−1 for every j, that is

if and only if λσmax ≤ 1
2 (1

2�)−1; this is equivalent to

c(WΣ) = π/λσmax ≥ 2π · 1
2�|

and to
c(W∗

Σ) = 2πλσmin ≤ π/
(

1
2�

)

in view of the discussion above; this proves the inequalities (6.13) and (6.14). �

When Σ is a covariance matrix, the condition c(WΣ) ≥ 1
2h thus implies (but

is not equivalent to) the Robertson–Schrödinger uncertainty inequalities (6.10),
that is we have

(∆Xα)2(∆Pα)2 ≥ ∆(Xα, Pα)2 + 1
4�

2

for 1 ≤ α ≤ n.
We have conjectured in [72] and [77] that the condition c(WΣ) ≥ 1

2h might
well be the “true” uncertainty principle to be used both in classical and quantum
mechanics under certain conditions that we do not discuss here. A rather obvious
advantage in using this symplectic formulation is that if c(WΣ) ≥ 1

2h then we also
have c(f(WΣ)) ≥ 1

2h when f is an arbitrary symplectomorphism of (Rn ⊕ R
n, σ)

(this because of the symplectic invariance property (SC1) of symplectic capacities),
so that the uncertainty principle expressed in this form is de facto symplectically
invariant (which is not true of the Schrödinger–Robertson inequalities which only
retain their form under linear symplectic transformations).

6.2 Hardy’s uncertainty principle

In this section we give another application of the notion of symplectic capacity.
A folk metatheorem is that a function ψ and its Fourier transform Fψ cannot
be simultaneously sharply localized. An obvious manifestation of this “principle”
is when ψ is of compact support: in this case the Fourier transform Fψ can be
extended into an entire function, and is hence never of compact support. A less
trivial way to express this kind of trade-off between ψ and Fψ was discovered in
1933 by G.H. Hardy [98]. Hardy showed, using the Phragmén–Lindelöf principle
from complex analysis, that if a function ψ ∈ L2(R) and its Fourier transform

Fψ(p) =
1√
2π�

∫ ∞

−∞
e−

i
�
pxψ(x)dx

satisfy, for |x|+ |p| → ∞, estimates of the type

ψ(x) = O
(

e−
a
2�
x2

)

, Fψ(p) = O
(

e−
b
2�
p2

)

(6.15)

with a, b > 0, then the following holds true:
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• If ab > 1 then ψ = 0;
• If ab = 1 we have ψ(x) = Ce−

a
2�
x2

for some complex constant C;
• If ab < 1 there exists a whole space of S solutions, containing the functions
ψ(x) = Q(x)e−

a
2�
x2

where Q is a polynomial (equivalently, S contains the
finite linear combinations of Hermite polynomials).

In this section we will generalize Hardy’s uncertainty principle to an arbitrary
number of dimensions. We will thereafter reformulate it in terms of the notion of
symplectic capacity previously introduced.

6.2.1 Two useful lemmas

The following result, although being of an elementary nature, is very useful. We
will see that it is a refined version of Williamson’s diagonalization theorem [162]
in the block-diagonal case.

We make the preliminary observation that if A and B are positive definite
matrices then the eigenvalues of AB are real because AB has the same eigenvalues
as the symmetric matrix A1/2BA1/2. The following result shows that A and B can
be simultaneously diagonalized in a particular way:

Lemma 102. Let A and B be two positive-definite n×n real matrices. There exists
L ∈ GL(n,R) such that

LTAL = L−1B(LT )−1 = Λ (6.16)

where Λ = diag(
√
λ1, . . . ,

√
λn) is the diagonal matrix whose eigenvalues are the

square roots of the eigenvalues λ1, . . . , λn of AB.

Proof. We claim that there exists R ∈ GL(n,R) such that

RTAR = I and R−1B(RT )−1 = D (6.17)

whereD = diag(λ1, . . . , λn). In fact, first choose P ∈ GL(n,R) such that PTAP =
I and set B−1

1 = PTB−1P . Since B−1
1 is symmetric, there exists H ∈ O(n,R)

such that B−1
1 = HTD−1H where D−1 is diagonal. Set now R = PHT ; we have

RTAR = I and also

R−1B(RT )−1 = HP−1B(PT )−1HT = HB1H
T = D

hence the equalities (6.17). Let Λ = diag(
√
λ1, . . . ,

√
λn). Since

RTAB(RT )−1 = RTAR(R−1B(RT )−1) = D

the diagonal elements ofD are indeed the eigenvalues of AB henceD = Λ2. Setting
L = RΛ1/2 we have

LTAL = Λ1/2RTARΛ1/2 = Λ,

L−1B(L−1)T = Λ−1/2R−1B(RT )−1Λ−1/2 = Λ

hence our claim. �
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The result above is a precise statement of a classical theorem of Williamson
[162] in the block-diagonal case. That theorem says that every positive-definite
symmetric matrix can be diagonalized using symplectic matrices. More precisely:
let M be a positive definite real 2n×2nmatrix; the eigenvalues of JM are those of
the antisymmetric matrix M1/2JM1/2 and are thus of the type ±iλσj with λσj > 0.

We have the following result, which relates Lemma 102 to Williamson’s the-
orem:

Lemma 103. Let A,B > 0. The symplectic spectrum (λσ1 , . . . , λσn) of M =
(
A 0
0 B

)

consists of the decreasing sequence
√
λ1 ≥ · · · ≥

√
λn of square roots of the

eigenvalues λj of AB.

Proof. Let (λσ1 , . . . , λ
σ
n) be the symplectic spectrum of M . The λσj are the eigen-

values of

JM =
(

0 B
−A 0

)

;

they are thus the moduli of the zeroes of the polynomial

P (t) = det(t2I +AB) = det(t2I +D)

where D = diag(λ1, . . . , λn); these zeroes are the numbers ±i√λj , j = 1, . . . , n;
the result follows. �

Recall that when L is invertible the matrix

ML =
(
L−1 0
0 LT

)

(6.18)

is in Sp(2n,R). Lemma 102 can be restated by saying that if (A,B) is a pair of
symmetric positive definite matrices then there exists L such that

(
A 0
0 B

)

= MLT

(
Λ 0
0 Λ

)

ML. (6.19)

This lemma is thus a precise version of Williamson’s theorem for block-diagonal
positive matrices: it is not at all obvious from the statement of Williamson’s the-

orem that
(
A 0
0 B

)

can be diagonalized using only a block-diagonal symplectic

matrix!
Lemma 102 allows us to give a simple proof of a multi-dimensional version

of this theorem. The following elementary remark will be useful:

Lemma 104. Let n > 1. For 1 ≤ j ≤ n let fj be a function of (x1, . . . , x̃j , . . . , xn) ∈
R
n−1 (the tilde˜suppressing the term it covers), and gj a function of xj ∈ R. If

h = f1 ⊗ g1 = · · · = fn ⊗ gn
then there exists a constant C such that h = C(g1 ⊗ · · · ⊗ gn).
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Proof. Assume that n = 2; then

h(x1, x2) = f1(x2)g1(x1) = f2(x1)g2(x2).

If g1(x1)g2(x2) 
= 0 then

f1(x2)/g2(x2) = f2(x1)/g1(x1) = C

hence f1(x2) = Cg2(x2) and h(x1, x2) = Cg1(x1)g2(x2). If g1(x1)g2(x2) = 0 then
h(x1, x2) = 0 hence h(x1, x2) = Cg1(x1)g2(x2) in all cases. The general case follows
by induction on the dimension n: suppose that

h = f1 ⊗ g1 = · · · = fn ⊗ gn = fn+1 ⊗ gn+1;

for fixed xn+1 the function k = f1 ⊗ g1 = · · · = fn ⊗ gn is given by

k(x, xn+1) = C(xn+1)g1(x1) · · · gn(xn).

Since we also have

k(x, xn+1) = fn+1(x1, . . . , xn)gn+1(xn+1)

it follows that C(xn+1) = C. �

6.2.2 Proof of the multi-dimensional Hardy uncertainty principle

We are going the use the lemmas above to prove the following extension of Hardy’s
uncertainty principle:

Theorem 105. Let A and B be two real positive definite matrices and ψ ∈ L2(Rn),
ψ 
= 0. Assume that

|ψ(x)| ≤ CAe−
1
2�
Ax2

and |Fψ(p)| ≤ CBe−
1
2�
Bp2 (6.20)

for some constants CA, CB > 0. Then:

(i) The eigenvalues λj , j = 1, . . . , n, of the matrix AB are all ≤ 1;
(ii) If λj = 1 for all j, then ψ(x) = Ce−

1
2�
Ax2

for some some complex constant
C;

(iii) If λj < 1 for some j then the space of functions satisfying (6.20) contains

every ψ(x) = Q(x)e−
1
2�
Ax2

where Q is a complex polynomial.

Proof. It is of course no restriction to assume that CA = CB = C. Let L be as in
Lemma 102 and order the eigenvalues of AB decreasingly: λ1 ≥ λ2 ≥ · · · ≥ λn. It
suffices to show that λ1 ≤ 1. Setting ψL(x) = ψ(Lx) we have

FψL(p) = Fψ((LT )−1p);
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in view of (6.16) in Lemma 102 condition (6.20) is equivalent to

|ψL(x)| ≤ Ce− 1
2�

Λx2
and |FψL(p)| ≤ Ce− 1

2�
Λp2 (6.21)

where Λ = diag(λ1, λ2, . . . , λn). Setting ψL,1(x1) = ψL(x1, 0, . . . , 0) we have

|ψL,1(x1)| ≤ Ce−
1
2�
λ1x

2
1 . (6.22)

On the other hand, by the Fourier inversion formula,
∫

FψL(p)dp2 · · · dpn = (2π�)n/2
∫

· · ·
∫

Rn

e−
i
�
p·xψL(x)dxdp2 · · · dpn

= (2π�)(n−1)/2FψL,1(p1)

and hence we have the inequality

|FψL,1(p1)| ≤ CL,1e−
1
2�
λ1p

2
1 (6.23)

for some constant CL,1 > 0. Applying Hardy’s uncertainty principle in one di-
mension to the inequalities (6.22) and (6.23) we must have λ2

1 ≤ 1 hence the
assertion (i).

Proof of (ii). The condition λj = 1 for all j means that

|ψL(x)| ≤ Ce− 1
2�
x2

and |FψL(p)| ≤ Ce− 1
2�
p2 (6.24)

for some C > 0. Let us keep x′ = (x2, . . . , xn) constant; the partial Fourier trans-
form of ψL in the x1 variable is F1ψL = (F ′)−1FψL where (F ′)−1 is the inverse
Fourier transform in the x′ variables, hence there exists C′ > 0 such that

|F1ψL(x1, x
′)| ≤ (

1
2π�

)n−1
2

∫

|FψL(p)|dp2 · · · dpn ≤ C′e−
1
2�
p21 .

Since |ψL(x)| ≤ C(x′)e−
1
2�
x2
1 with C(x′) ≤ e− 1

2�
x′2

it follows from Hardy’s theorem
that we can write

ψL(x) = f1(x′)e−
1
2�
x2
1

for some real C∞ function f1 on R
n−1. Applying the same argument to the re-

maining variables x2, . . . , xn we conclude that there exist C∞ functions fj for
j = 2, . . . , n, such that

ψL(x) = fj(x1, . . . , x̃j , . . . , xn)e−
1
2�
x2
1 . (6.25)

In view of Lemma 104 above we have ψL(x) = CLe
− 1

2�
x2

for some constant CL;
since Λ = I = LTAL we thus have ψ(x) = CLe

−Ax2/2� as claimed.

Proof of (iii). Assume that λ1 < 1 for j ∈ J , J a subset of {1, . . . , n}. By the
same argument as in the proof of part (ii) establishing formula (6.25), we infer,
using Hardy’s theorem in the case ab < 1, that

ψL(x) = fj(x1, . . . , x̃j , . . . , xn)Qj(xj)e−
1
2�
x2
j
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where Qj is a polynomial with degree 0 if j /∈ J . One concludes the proof using
once again Lemma 104. �

6.2.3 Geometric interpretation

Let us give a geometric interpretation of Theorem 105 in terms of the notion
of symplectic capacity. We begin by making an obvious observation: Hardy’s
uncertainty principle can be restated by saying that if ψ 
= 0 then the con-
ditions ψ(x) = O(e−

1
2�
ax2

) and Fψ(p) = O(e−
1
2�
bp2) imply that the ellipse

W : ax2 + bp2 ≤ � has area π�/
√
ab ≥ π� =1

2h:

Area(W) ≥ 1/2h.

More precisely:

If the area of the ellipse W is smaller than 1
2h then ψ = 0; if this area

equals 1
2h then ψ(x) = Ce−

1
2�
ax2

and if it is larger than 1
2h then the

functions ψ(x) = Q(x)e−
1
2�
ax2

, Q a polynomial, belong to the set of
functions satisfying Area(W) > 1

2h.

We can restate Hardy’s theorem in a very simple geometric way in terms of
the symplectic capacity (not the volume!) of an ellipsoid. Recall that all symplectic
capacities agree on phase space ellipsoids in view of Proposition 94. Recall that
π� = 1

2h.

Proposition 106. Let ψ ∈ L2(Rn), ψ 
= 0. Assume that there exist constants CA >
0 and CB > 0 such that

|ψ(x)| ≤ CAe−
1
2�
Ax2

and |Fψ(p)| ≤ CBe−
1
2�
Bp2 . (6.26)

Then the symplectic capacity of the ellipsoid

W = {(x, p) : Ax2 +Bp2 ≤ �}
is such that c(W) ≥ 1

2h.

Proof of (i). Setting M =
(
A 0
0 B

)

the equation of W is Mz2 ≤ �. In view of

formula (5.18) in Proposition 94 together with the conformality property of sym-
plectic capacities we have c(W) = π�/λσ1 where λσ1 is the smallest of all numbers
λ such that ±iλ is an eigenvalue of JM . In view of Lemma 103 λσj =

√
λj where

the λj are the eigenvalues of AB, and by Theorem 105 we must have λj ≤ 1; the
result follows since π� = 1

2h. �

The result above thus shows that Hardy’s uncertainty principle has an im-
portant (and unexpected) geometrical meaning. It will be generalized later on in
this book when we discuss the Wigner formalism.
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Chapter 7

The Metaplectic Group

The metaplectic group is a unitary representation of the double cover of the sym-
plectic group; it plays an essential role in Weyl pseudodifferential calculus, because
it appears as a characteristic group of symmetries for Weyl operators. In fact –
and this fact seems to be largely ignored in the literature – this property (called
“symplectic covariance”) actually is characteristic (in a sense that will be made
precise) of Weyl calculus. Metaplectic operators of course have many other appli-
cations; they allow us, for instance, to give explicit solutions to the time-dependent
Schrödinger equation with quadratic Hamiltonian, as will be shown later, but they
are also used with profit in optics, engineering, and last but not least, in quantum
mechanics.

7.1 The metaplectic representation

The idea behind the metaplectic representation of the symplectic group is that one
can associate to every symplectic matrix a pair of unitary operators on L2(Rn)
differing by a sign. Technically this is achieved by constructing of a unitary rep-
resentation of the (connected) double covering Sp2(2n,R) of Sp(2n,R). This rep-
resentation (which is not irreducible, see Exercise 138 in Chapter 8) is called the
metaplectic group and is denoted by Mp(2n,R). Equivalently, the sequence

0 −→ Z2 −→ Mp(2n,R) −→ Sp(2n,R) −→ 0

is exact. In many texts the existence of the metaplectic representation is motivated
by vague considerations about the uniqueness of the Schrödinger representation
and the Heisenberg–Weyl operators T̂ (z) which will be studied in Chapter 8. Fol-
lowing this argument there must exist, for every S ∈ Sp(2n,R) a unitary operator
Ŝ such that ŜT̂ (z)Ŝ−1 = T̂ (Sz). However this relation certainly does not charac-
terize precisely Ŝ since it is still true if we replace it by cŜ with |c| = 1. At best
one obtains in this way a projective representation of the symplectic group.

We are following closely de Gosson [67], Chapter 7.

79M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics,  
Pseudo-Differential Operators 7, DOI 10.1007/978-3-7643-9992-4_ , © Springer Basel AG 2011 7
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7.1.1 A preliminary remark, and a caveat

In many texts the metaplectic group is presented as being the group of unitary
operators generated by the following elementary unitary operators:

• The modified Fourier transform µ(J) defined by

µ(J)ψ(x) =
(

1
2πi�

)n
∫

Rn

e−
i
�
x·x′

ψ(x′)dx′;

• The “chirps”
µ(V−P )ψ(x) = e

i
2�
Px·xψ(x)

where P is a real symmetric matrix;
• The rescaling operators

µ(ML)ψ(x) =
√

detLψ(Lx)

where
√

detL is “some adequate” determination of the square root of detL.

We emphasize that the notation µ(S) used above to denote metaplectic op-
erators associated to a symplectic automorphism S is ambiguous, and should be
avoided because it can lead to contradictions; unfortunately it is often found in
the literature, even in the best treatises. We will not use it in this book.

7.1.2 Quadratic Fourier transforms

We have seen that the symplectic group Sp(2n,R) is generated by the free sym-
plectic matrices

S =
(
A B
C D

)

∈ Sp(2n,R) , detB 
= 0.

To each such matrix we associated the generating function

W (x, x′) = 1
2DB

−1x2 −B−1x · x′ + 1
2B

−1Ax′2

and we showed that

(x, p) = S(x′, p′)⇐⇒ p = ∂xW (x, x′) , p′ = −∂x′W (x, x′).

Conversely, to every polynomial of the type

W (x, x′) = 1
2Px

2 − Lx · x′ + 1
2Qx

′2 (7.1)

with P = PT , Q = QT , and detL 
= 0

we can associate a free symplectic matrix, namely

SW =
(

L−1Q L−1

PL−1Q− LT PL−1

)

. (7.2)
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We now associate an operator ŜW,m to every SW by setting, for ψ ∈ S(Rn),

ŜW,mψ(x) =
(

1
2πi

)n/2 ∆(W )
∫

Rn

eiW (x,x′)ψ(x′)dx′; (7.3)

here arg i = π/2 and the factor ∆(W ) is defined by

∆(W ) = im
√

| detL|; (7.4)

the integer m corresponds to a choice of arg detL:

mπ ≡ arg detL mod 2π. (7.5)

Notice that we can rewrite Definition (7.3) in the form

ŜW,mψ(x) =
(

1
2π

)n/2 (
e−i

π
4
)µ

∆(W )
∫

Rn

eiW (x,x′)ψ(x′)dx′ (7.6)

where
µ = 2m− n. (7.7)

Definition 107.

(i) The operator ŜW,m is called a “quadratic Fourier transform” associated to
the free symplectic matrix SW .

(ii) The class modulo 4 of the integer m is called “Maslov index” of ŜW,m. The
quadratic Fourier transform corresponding to the choices SW = J and m = 0
is denoted by Ĵ .

We will not discuss the properties of the Maslov index in this book; it has
been studied in a comprehensive way in de Gosson [67].

The generating function of J being simply W (x, x′) = −x ·x′, it follows that

Ĵψ(x) =
(

1
2πi

)n/2
∫

Rn

e−ix·x
′
ψ(x′)dx′ = i−n/2Fψ(x) (7.8)

for ψ ∈ S(Rn); F is the usual unitary Fourier transform defined by

Fψ(x) =
(

1
2π

)n/2
∫

Rn

e−ix·x
′
ψ(x′)dx′.

It follows from the Fourier inversion formula

F−1ψ(x) =
(

1
2π

)n/2
∫

Rn

eix·x
′
ψ(x′)dx′

that the inverse Ĵ−1 of Ĵ is given by the formula

Ĵ−1ψ(x) =
(
i

2π

)n/2
∫

Rn

eix·x
′
ψ(x′)dx′ = in/2F−1ψ(x).
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Note that the identity operator cannot be represented by an operator ŜW,m
since it is not a free symplectic matrix.

Of course, if m is one choice of Maslov index, then m+ 2 is another equally
good choice: to each function W formula (7.3) associates not one but two operators
ŜW,m and ŜW,m+2 = −ŜW,m (this reflects the fact that the operators ŜW,m are
elements of the two-fold covering group of Sp(2n,R)).

Let us define operators V̂−P and M̂L,m by

V̂−Pψ(x) = e
i
2Px·xψ(x) , M̂L,mψ(x) = im

√

| detL|ψ(Lx). (7.9)

We have the following useful factorization result:

Proposition 108. Let W be the quadratic form (7.1).

(i) We have the factorization

ŜW,m = V̂−P M̂L,mĴ V̂−Q; (7.10)

(ii) The operators ŜW,m extend to unitary operators L2(Rn) −→ L2(Rn) and the
inverse of ŜW,m is

Ŝ−1
W,m = ŜW∗,m∗ with W ∗(x, x′) = −W (x′, x) , m∗ = n−m. (7.11)

Proof. (i) By definition of Ĵ we have

Ĵψ(x) = i−n/2Fψ(x) =
(

1
2πi

)n/2
∫

Rn

e−ix·x
′
ψ(x′)dx′;

the factorization (7.10) immediately follows noting that

M̂L,mĴψ(x) =
(

1
2πi

)n/2
im

√

| detL|
∫

Rn

e−iLx·x
′
ψ(x′)dx′.

(ii) The operators V̂−P and M̂L,m are trivially unitary, and so is the modified
Fourier transform Ĵ ; (ii) We obviously have

(V̂−P )−1 = V̂P and (M̂L,m)−1 = M̂L−1,−m

and Ĵ−1 is given by

Ĵ−1ψ(x) =
(

i
2π�

)n/2
∫

Rn

e
i
�
x·x′

ψ(x′)dx′.

Writing
Ŝ−1
W,m = V̂QĴ

−1M̂L−1,−mV̂P
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and noting that

Ĵ−1M̂L−1,−mψ(x) =
(
i

2π

)n/2
i−m

√

| detL−1|
∫

Rn

eix·x
′
ψ(L−1x′)dx′

=
(

1
2πi

)n/2
i−m+n

√

| detL|
∫

Rn

eiL
T x·x′

ψ(x′)dx′

= M̂−LT ,n−mĴψ(x)

the inversion formulas (7.11) follow. �

It follows from the proposition above that the operators ŜW,m form a subset
of the group U(L2(Rn)) of unitary operators acting on L2(Rn), which is closed
under the operation of inversion. They thus generate a subgroup of U(L2(Rn)).

Definition 109. The subgroup of U(L2(Rn)) generated by the quadratic Fourier
transforms ŜW,m is called the “metaplectic group” and is denoted by Mp(2n,R).
The elements of Mp(2n,R) are called “metaplectic operators”.

Every Ŝ ∈ Mp(2n,R) is thus, by definition, a product ŜW1,m1 · · · ŜWk,mk

of metaplectic operators associated to free symplectic matrices. We will use the
following result which considerably simplifies many arguments; it is the metaplectic
analogue of Theorem 60 which says that every symplectic matrix can be written
as the product of two free symplectic matrices:

Proposition 110. Every Ŝ ∈Mp(2n,R) can be written as a product of exactly two
quadratic Fourier transforms: Ŝ = ŜW,mŜW ′,m′ . (Such a factorization is, however,
never unique: for instance I = ŜW,mŜW∗,m∗ for every generating function W.)

Proof. See Leray [114], Ch. 1, or de Gosson [64]); the result follows from the exis-
tence of a natural projection Mp(2n,R) −→ Sp(2n,R) which will be established in
the next section and the fact that every S ∈ Sp(2n,R) can be written as a product
SWSW ′ . (See Exercise 111 below.) �

Exercise 111. Prove Proposition 110 above.

Proposition 110 has the following immediate consequence:

Corollary 112. The metaplectic group Mp(2n,R) is generated by the operators
V̂−P , M̂L,m, and Ĵ .

Proof. It follows from the definition above of Mp(2n,R) together with the fact
that each ŜW,m is a product V̂−P M̂L,mĴ V̂−Q (formula (7.10)). �

Exercise 113. Show that quadratic Fourier transform ŜW,m cannot be a local
operator (a local operator on S′(Rn) is an operator Ŝ such that Supp(Ŝψ) ⊂
Supp(ψ) for ψ ∈ S′(Rn)).
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7.2 The projection πMp

It turns out that Mp(2n,R) is a double covering of the symplectic group Sp(2n,R)
and hence a faithful representation of Sp(2n,R).

7.2.1 Precise statement

The main result of this subsection is the following, whose detailed proof is given
in Section 7.3:

Theorem 114. The mapping ŜW,m �−→ SW , which to the quadratic Fourier trans-
form

ŜW,mψ(x) =
(

1
2πi

)n/2 ∆(W )
∫

Rn

eiW (x,x′)ψ(x′)dx′

associates the free symplectic matrix with generating function W , extends into a
surjective group homomorphism

πMp : Mp(2n,R) −→ Sp(2n,R);

that is
πMp(ŜŜ′) = πMp(Ŝ)πMp(Ŝ′)

and the kernel of πMp is
ker(πMp) = {−I,+I}.

Hence πMp : Mp(2n,R) −→ Sp(2n,R) is a twofold covering of the symplectic
group.

The last statement follows from the theory of covering groups: a covering
group of a Lie group has discrete fiber, isomorphic to the kernel of the projection
homomorphism.

Definition 115. We will call the homomorphism πMp the natural projection, or
covering mapping of Mp(2n,R) onto Sp(2n,R).

Recalling that Sp(2n,R) is generated by the symplectic matrices J and

ML =
(
L−1 0
0 LT

)

, V−P =
(
I 0
P I

)

(detL 
= 0, P = PT ), the natural projection has in addition the following proper-
ties:

Proposition 116. We have:

πMp(Ĵ) = J , πMp(M̂L,m) = ML , πMp(V̂P ) = VP . (7.12)
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Proof. The formula πMp(Ĵ) = J is obvious since Ĵ is a quadratic Fourier trans-
form with W (x, x′) = −x · x′. Let us prove the second formula (7.12). We have
M̂L,m = Ĵ−1(ĴM̂L,m) and ĴM̂L,m = ŜW,m with W (x, x′) = −(LT )−1x · x′. Since
πMp(Ĵ−1) = J−1 = −J it follows that

πMp(M̂L,m) = πMp(Ĵ−1)πMp(ĴM̂L,m)

=
(

0 I
−I 0

)(
0 LT

L−1 0

)

=
(
L−1 0
0 LT

)

hence πMp(M̂L,m) = ML. The formula πMp(V̂P ) = VP is proven using a similar
argument. �

7.2.2 Dependence on �

It is useful to have a parameter-dependent version of Mp(2n,R); in the applications
to quantum mechanics that parameter is �, Planck’s constant h divided by 2π.

The main observation is that a covering group can be “realized” in many dif-
ferent ways. Instead of choosing πMp as a projection, we could as well have chosen
any other mapping Mp(2n,R) −→ Sp(2n,R) obtained from πMp by composing
it on the left with an inner automorphism of Mp(2n,R), or on the right with an
inner automorphism of Sp(2n,R), or both. The point is here that the diagram

Mp(2n,R) F−→ Mp(2n,R)

πMp


�



�πMp′

Sp(2n,R) −→
G

Sp(2n,R)

is commutative: π′Mp ◦ F = G ◦ πMp, because for all such π′Mp we will have
Ker(π′ Mp) = {± I} and

π′Mp : Mp(2n,R) −→ Sp(2n,R)

will then also be a covering mapping. We find it particularly convenient to define a
new projection by using the following inner automorphism of Mp(2n,R): for λ > 0
set M̂λ = M̂λI,0, that is

M̂λψ(x) = λn/2ψ(λx) , ψ ∈ L2(Rn)

and denote by Mλ the projection of M̂λ on Sp(2n,R):

Mλ(x, p) = (λ−1x, λp).
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We have M̂λ ∈ Mp(2n,R) and Mλ ∈ Sp(2n,R). For Ŝ ∈ Mp(2n,R) we define
Ŝ� ∈ Mp(2n,R) by

Ŝ� = M̂1/
√

�
ŜM̂√

�
. (7.13)

The projection of S� on Sp(2n,R) is then given by:

πMp(Ŝ�) = S� = M1/
√

�
SM√

�
.

We now define the new projection

πMp � : Mp(2n,R) −→ Sp(2n,R)

by the formula
πMp �(Ŝ�) = M√

�
(πMp(Ŝ�))M1/

√
�

which is of course equivalent to

πMp�

(Ŝ�) = πMp(Ŝ).

Suppose for instance that Ŝ = ŜW,m; it is easily checked using the fact that
W is homogeneous of degree 2 in (x, x′) that

Ŝ�

W,mψ(x) =
(

1
2πi�

)n/2 ∆(W )
∫

Rn

e
i
�
W (x,x′)ψ(x′) dx′

or, equivalently,
Ŝ�

W,m = �
−n/2ŜW/�,m.

Also,

(Ŝ�

W,m)−1ψ(x) =
(

i
2π�

)n/2 ∆(W ∗)
∫

Rn

e
i
�
W∗(x,x′)ψ(x′) dx′.

The projection of Ŝ�

W,m on Sp(2n,R) is the free matrix SW :

πMp�

(Ŝ�

W,m) = SW . (7.14)

Exercise 117. Show that if � and �
′ are two positive numbers, then we have

Ŝ�

W,m = M√
�′/�

Ŝ�
′
W,mM

√
�/�′ .

(i.e., Mp(2n,R) and Mp(2n,R) are equivalent representations of the metaplectic
group).

In what follows we will use the following convention, notation, and terminology:

Notation 118. The projection Mp(2n,R) −→ Sp(2n,R) will always be assumed to
be the homomorphism

πMp�

: Mp(2n,R) −→ Sp(2n,R)

and we will drop all the superscripts referring to �: we will write πMp for πMp�

,
ŜW,m for Ŝ�

W,m and Ŝ for Ŝ�.
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7.3 Construction of πMp

We begin by giving a few definitions.

7.3.1 The group Diff (1)(n)

Let us denote the elements of the dual (Rn ⊕ R
n)∗ of R

n ⊕ R
n by a, b, etc. Thus

a(z) = a(x, p) is the value of the linear form a at the point z = (x, p).
To every a we associate a first-order linear partial differential operator A

obtained by replacing formally p in a(x, p) by Dx: A = a(x,Dx), Dx = −i∂x;
thus, if a(x, p) = α · x+ β · p for α = (α1, . . . , αn), β = (β1, . . . , βn) in R

n, then

A = α · x+ β ·Dx = α · x− iβ · ∂x. (7.15)

Obviously the sum of two operators of the type above is an operator of the same
type, and so is the product of such an operator by a scalar. It follows that these
operators form a 2n-dimensional vector space, which we denote by Diff(1)(n).

The vector spaces R
n ⊕ R

n, (Rn ⊕ R
n)∗ and Diff(1)(n) are isomorphic since

they all have the same dimension 2n. The following result explicitly describes three
canonical isomorphisms between these spaces:

Lemma 119.

(i) The linear mappings

ϕ1 : R
n ⊕ R

n −→ (Rn ⊕ R
n)∗ , ϕ1 : z0 �−→ a,

ϕ2 : (Rn ⊕ R
n)∗ −→ Diff(1)(n) , ϕ2 : a �−→ A,

where a is the unique linear form on R
n ⊕ R

n such that a(z) = σ(z, z0), are
isomorphisms, hence so is their compose ϕ :

ϕ = ϕ2 ◦ ϕ1 : R
n ⊕ R

n −→ Diff(1)(n);

the latter associates to z0 = (x0, p0) the operator

A = ϕ(z0) = p0 · x− x0 ·Dx.

(ii) Let [A,B] = AB −BA be the commutator of A,B ∈ Diff(1)(n); we have

[ϕ(z1), ϕ(z2)] = −iσ(z1, z2) (7.16)

for all z1, z2 ∈ R
n ⊕ R

n.

Proof. (i) The vector spaces R
n⊕R

n, (Rn⊕R
n)∗, and Diff(1)(n) having the same

dimension, it suffices to show that ker(ϕ1) and ker(ϕ2) are zero. Now, ϕ1(z0) = 0
is equivalent to the condition σ(z, z0) = 0 for all z, and hence to z0 = 0 since a
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symplectic form is non-degenerate. If ϕ2(a) = 0 then

Aψ = ϕ2(a)ψ = 0 for all ψ ∈ S(Rn)

which implies A = 0 and thus a = 0.
(ii) Let z1 = (x1, p1), z2 = (x2, p2). We have

ϕ(z1) = p1 · x− x1 ·Dx , ϕ(z2) = p2 · x− x2 ·Dx

and hence
[ϕ(z1), ϕ(z2)] = i(x1 · p2 − x2 · p1)

which is precisely the commutation formula (7.16). �

We are next going to show that the metaplectic group Mp(2n,R) acts by
conjugation on Diff(1)(n). This will allow us to explicitly construct a covering
mapping Mp(2n,R) −→ Sp(2n,R).

Recall that the symplectic matrices

VP =
(
I 0
−P I

)

, ML =
(
L−1 0
0 LT

)

, J =
(

0 I
I 0

)

generate the group Sp(2n,R).

Lemma 120. For z0 = (x0, p0) ∈ R
n ⊕ R

n define A ∈ Diff(1)(n) by

A = ϕ(z0) = p0 · x− x0 ·Dx.

(i) Let {Ĵ, M̂L,m, V̂P } be the set of generators of Mp(2n,R) defined in Corollary
112. We have:

ĴAĴ−1 = −x0 · x− p0 ·Dx = ϕ(Jz0), (7.17)

M̂L,mA(M̂L,m)−1 = LT p0 · x− L−1x0 ·Dx = ϕ(MLz0), (7.18)

V̂PA(V̂P )−1 = (p0 + Px0) · x− x0 ·Dx = ϕ(VP z0). (7.19)

(ii) If A ∈ Diff(1)(n) and Ŝ ∈Mp(2n,R), then ŜAŜ−1 ∈ Diff(1)(n).
(iii) For every Ŝ ∈Mp(2n,R) the mapping

ΦŜ : Diff(1)(n) −→ Diff(1)(n) , A �−→ ŜAŜ−1

is a vector space automorphism.

Proof of (i). Using the properties of the Fourier transform, it is immediate to
verify that:

(x0 ·Dx)ψ = Ĵ−1(x0 · x)Ĵψ,
(p0 · x)ψ = −Ĵ−1(p0 ·Dx)Ĵψ

for ψ ∈ S(Rn) hence (7.17). To prove (7.18) it suffices to remark that

M̂L,m(p0 · x)(M̂L,m)−1ψ(x) = (p0 · Lx)ψ(x)
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and
M̂L,m(x0 ·Dx)(M̂L,m)−1ψ(x) = x0(L−1)TDxψ(x).

Let us prove formula (7.19). Recalling that by definition

V̂−Pψ(x) = e
i
2Px·xψ(x)

we have, since P is symmetric,

(x0 ·Dx)V̂−Pψ(x) = V̂−P (Px0 · x)ψ(x) + (p0 ·Dx)ψ(x))

and hence

V̂PA(V̂−Pψ)(x) = ([p0 + Px0) · x]ψ(x) − (x0 ·Dx)ψ(x)

which is (7.19).

Proof of (ii). Property (ii) immediately follows since Ŝ is a product of operators
Ĵ , M̂L,m, V̂P . (iii) The mapping ΦŜ is trivially a linear mapping Diff(1)(n) −→
Diff(1)(n). If B = ŜAŜ−1 ∈ Diff(1)(n), then we have also A = Ŝ−1BŜ ∈ Diff(1)(n)
since A = Ŝ−1B(Ŝ−1)−1. It follows that ΦŜ is surjective and hence bijective. �

Since the operators Ĵ , M̂L,m, V̂P generate Mp(2n,R) the lemma above shows
that for every Ŝ ∈ Mp(2n,R) there exists a linear automorphism S of R

n ⊕ R
n

such that ΦŜ(A) = â ◦ S that is

ΦŜ(ϕ(z0)) = ϕ(Sz0). (7.20)

Let us show that the automorphism S preserves the symplectic form. For z, z′ ∈
R
n ⊕ R

n we have, in view of the commutation formula (7.16),

σ(Sz, Sz′) = i [ϕ(Sz), ϕ(Sz′)] = i
[
ΦŜϕ(z),ΦŜϕ(z′)

]

= i
[

Ŝϕ(z)Ŝ−1, Ŝϕ(z′)Ŝ−1
]

= iŜ [ϕ(z), ϕ(z′)] Ŝ−1

= σ(z, z′)

hence S ∈ Sp(2n,R) as claimed.

7.3.2 Construction of the projection

We are now able to describe explicitly the natural projection of Mp(2n,R) onto
Sp(2n,R).

Definition 121. The covering projection πMp : Mp(2n,R) −→ Sp(2n,R) is the
mapping πMp which to Ŝ ∈ Mp(2n,R) associates the element πMp(Ŝ) = S ∈
Sp(2n,R) defined by (7.20), that is

S = ϕ−1ΦŜϕ. (7.21)
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That the mapping πMp indeed is a covering mapping follows from:

Proposition 122.

(i) The mapping πMp is a continuous group epimorphism of Mp(2n,R) onto
Sp(2n,R) such that:

πMp(Ĵ) = J , πMp(M̂L,m) = ML , πMp(V̂P ) = VP (7.22)

and hence
πMp(ŜW,m) = SW . (7.23)

(ii) We have ker(πMp) = {−I,+I}; hence πMp : Mp(2n,R) −→ Sp(2n,R) is a
two-fold covering map.

Proof. (i) Let us first show that πMp is a group homomorphism. In view of the
obvious identity ΦŜΦŜ′ = ΦŜŜ′ we have

πMp(ŜŜ′) = ϕ−1ΦŜŜ′ϕ

= (ϕ−1ΦŜϕ)(ϕ−1ΦŜ′ϕ)

= πMp(Ŝ)πMp(Ŝ′).

Let us next prove that πMp is surjective. We have seen in Corollary 63 of Proposi-
tion 62 that the matrices J,ML, and VP generate Sp(2n,R) when L and P range
over, respectively, the invertible and symmetric real matrices of order n. It is thus
sufficient to show that formulae (7.22) hold. Now, using (7.17), (7.18), and (7.19)
we have

ϕΦĴϕ
−1 = J , ϕΦ

M̂L,m
ϕ−1 = ML , ϕΦV̂P ϕ

−1 = VP

hence (7.12). Formula (7.23) follows since every quadratic Fourier transform ŜW,m
can be factorized as

ŜW,m = V̂−P M̂L,mĴ V̂−Q
in view of Proposition 108 above. To establish the continuity of the mapping πMp

we first remark that the isomorphism ϕ : R
n⊕R

n −→ Diff(1)(n) defined in Lemma
119 is trivially continuous, and so is its inverse. Since ΦŜŜ′ = ΦŜΦŜ′ it suffices
to show that for every A ∈ Diff(1)(n), ψS(A) has A as limit when Ŝ → I in
Mp(2n,R). Now, Mp(2n,R) is a group of continuous automorphisms of S(Rn)
hence, when Ŝ → I then Ŝ−1ψ → ψ for every ψ ∈ S(Rn), that is AŜ−1ψ → Aψ

and also ŜAŜ−1ψ → ψ. (ii) Suppose that ϕ−1ΦŜϕ = I. Then ŜAŜ−1 = A for
every A ∈ Diff(1)(n) and this is only possible if Ŝ is multiplication by a constant
c with |c| = 1 (see exercise below); thus ker(πMp) ⊂ S1. In view of Lemma 110 we
have Ŝ = ŜW,mŜW ′,m′ for some choice of (W,m) and (W ′,m′) hence the condition
Ŝ ∈ ker(πMp) is equivalent to

ŜW ′,m′ = c(ŜW,m)−1 = cŜW∗,m∗

which is only possible if c = ±1 hence Ŝ = ±I as claimed. �



Chapter 8

Heisenberg–Weyl and
Grossmann–Royer Operators

The Heisenberg–Weyl operators (also sometimes called simply “Heisenberg oper-
ators”) are in a sense the easiest way to access quantum mechanics, because their
definition can be understood in terms of a simple Hamiltonian dynamics: they
are the time-one evolution operator for the quantized displacement Hamiltonian.
One can actually also define these operators in terms of the phase function of a
Lagrangian manifold without invoking any quantization at all; we will not use this
approach here and refer the interested reader to Chapter 5 in de Gosson [67]). To-
gether with their cousins, the Grossmann–Royer operators, the Heisenberg–Weyl
operators play a key role in the theory of Weyl pseudo-differential operators, and
moreover allow us to simplify many statements and proofs. In particular they al-
low a neat definition of the cross-ambiguity and Wigner transforms as we will see
in Chapter 9. We will also briefly discuss the notion of Weyl–Heisenberg frame,
also called Gabor frame in time-frequency analysis.

8.1 Dynamical motivation, and definition

The Heisenberg–Weyl operators (also sometimes called Heisenberg operators) are
the “quantized” variants of phase-space translations. The presentation we give is
“dynamical”: we start with a displacement Hamiltonian, which we then “quan-
tize”, as opposed with the usual approaches.

8.1.1 The displacement Hamiltonian

The phase space translation operators T (z0) : z �−→ z+z0 are symplectomorphisms
(because the Jacobian matrix of a translation is the identity, and is hence symplec-
tic). These translations are in fact even Hamiltonian symplectomorphisms: we have

91M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics,  
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T (z0) ∈ Ham(2n,R). To see this define, for each z0, a Hamiltonian function Hz0 by

Hz0(z) = σ(z, z0) = p · x0 − p0 · x.

The associated Hamilton equations are ẋ = x0, ṗ = p0 so that the flow is given by
the formula

φ
Hz0
t (z′) = z′ + tz0

and we have T (z0) = φ
Hz0
1 .

Definition 123. The function Hz0 = σ(z, z0) is called the displacement (or trans-
lation) Hamiltonian.

Let us look for a “quantized” version of the T (z0). For this we consider the
Schrödinger equation

i�
∂ψ

∂t
= Ĥz0ψ , ψ(x, 0) = ψ0(x) (8.1)

where Ĥz0 is the operator

Ĥz0 = σ(ẑ, z0) = −i�x0 · ∂x − p0 · x (8.2)

obtained from Hz0 by formally replacing p by −i�∂x. The solution of (8.1) can be
formally written as

ψ(x, t) = T̂ (z0, t)ψ0(x) = e−
it
�
σ(ẑ,z0)ψ0(x). (8.3)

Using for instance the method of characteristics, or a direct calculation, one sees
that an explicit formula for this solution is given by

T̂ (z0, t)ψ0(x) = e
i
�

(tp0·x−1
2 t

2p0·x0)ψ0(x− tx0). (8.4)

It is clear that T̂ (z0, t) is a unitary operator on L2(Rn): we have

‖T̂ (z0, t)ψ‖L2 = ‖ψ‖L2 (8.5)

for every ψ ∈ L2(Rn).
The reader is invited to observe that we have here a case where the Schrö-

dinger equation can be explicitly solved; it is actually a particular case of a more
general situation; we will come back to this when we study the Schrödinger equa-
tion in Chapter 15.
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8.1.2 The Heisenberg–Weyl operators

The considerations above lead us to the following definition:

Definition 124. The operator T̂ (z0) = T̂ (z0, 1) is called the Heisenberg–Weyl (for
short: HW) operator determined by z0. Thus, explicitly,

T̂ (z0)ψ = e
i
�

(p0·x−1
2p0·x0)ψ(x − x0). (8.6)

This formula can also be written

T̂ (z0)ψ = e−
i
�
σ(ẑ,z0)ψ0(x) = e

i
�
σ(z0,ẑ)ψ(x) (8.7)

(cf. formula (8.3)).

Notice that it is clear from formula (8.4) that we have T̂ (z0, t) = T̂ (tz0).
While ordinary translation operators obviously form an abelian group iso-

morphic to the additive group R
n ⊕ R

n:

T (z)T (z′) = T (z′)T (z) = T (z + z′),

this is not true of the HW operators; in particular these operators do not commute.
The following relations are considered by many mathematicians or physicists al-
most as “mythic”, in the sense that they are supposed to contain the essence of
quantum mechanics. This view is however questionable, because the HW opera-
tors (and thus their commutation relations) can be defined using only classical
arguments (the Hamilton–Jacobi theory together with the notion of phase of a
Lagrangian manifold: see de Gosson [66, 67]).

Proposition 125. The Heisenberg–Weyl operators satisfy the relations

T̂ (z0)T̂ (z1) = e
i
�
σ(z0,z1)T̂ (z1)T̂ (z0) (8.8)

and

T̂ (z0 + z1) = e−
i

2�
σ(z0,z1)T̂ (z0)T̂ (z1) (8.9)

for all z0, z1 ∈ R
2n.

Proof. Translations act on functions on R
n via the formula T (z0)ψ(x) = ψ(x−x0)

if z0 = (x0, p0). Let us prove formula (8.8). We have

T̂ (z0)T̂ (z1) = T̂ (z0)(e
i
�
(p1·x−1

2p1·x1)T (z1))

= e
i
�

(p0·x− 1
2p0·x0)e

i
�
(p1·(x−x0)− 1

2p1·x1)T (z0 + z1)

and, similarly

T̂ (z1)T̂ (z0) = e
i
�

(p1·x−1
2p1·x1)e

i
�
(p0·(x−x1)− 1

2p0·x0)T (z0 + z1).
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Defining the quantities

Φ = p0 · x− 1
2p0 · x0 + p1 · (x− x0)− 1

2p1 · x1,

Φ′ = p1 · x− 1
2p1 · x1 + p0 · (x− x1)− 1

2p0 · x0,

we have
T̂ (z0)T̂ (z1) = e

i
�
(Φ−Φ′)T̂ (z1)T̂ (z0)

and an immediate calculation yields

Φ− Φ′ = p0 · x1 − p1 · x0 = σ(z0, z1)

which proves (8.8). Let us next prove formula (8.9). We have

T̂ (z0 + z1) = e
i
�
Φ′′
T (z0 + z1)

with
Φ′′ = (p0 + p1) · x− 1

2 (p0 + p1) · (x0 + x1).

On the other hand we have seen above that

T̂ (z0)T̂ (z1) = e
i
�
ΦT (z0 + z1)

so that
T̂ (z0 + z1) = e

i
�
(Φ′′−Φ)T̂ (z0)T̂ (z1).

A straightforward algebraic calculation shows that

Φ′′ − Φ = 1
2p1 · x0 − 1

2p0 · x1 = − 1
2σ(z0, z1)

hence formula (8.9). �
Exercise 126. Prove formally the formulas (8.8) and (8.9) using the differential
expression (8.7) of the Heisenberg–Weyl operators.

We note that the HW operators act on functions defined on “configuration
space” R

n while the translations T (z0) act on phase space R
n⊕R

n. It is not difficult
to remedy at this dissymmetry: it suffices to define, for a function Ψ ∈ S(Rn⊕R

n),

T̂ (z0)Ψ(z) = e
i
�

(p0·x−1
2p0·x0)Ψ(z − z0); (8.10)

this definition of course extends to Ψ ∈ S′(Rn⊕R
n) and one immediately verifies,

using the argument in the proof of the proposition above, that this redefinition
of the Heisenberg–Weyl operators again satisfy the relations (8.8) and (8.9). We
will use a variant of this idea in Chapter 18 when we study phase-space pseudo-
differential operators (“Bopp calculus”).

Exercise 127. Verify that the operators (8.10) satisfy the same relations (8.8) and
(8.9) as the HW operators.
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8.1.3 The symplectic covariance property of the HW operators

The phase space translation operators T (z0) satisfy the intertwining formula
ST (z0)S−1 = T (Sz0) for every S ∈ Sp(2n,R). It is therefore perhaps not so
surprising that we have a similar formula for the HW operators. In fact:

Theorem 128. Let Ŝ ∈Mp(2n,R) and S = πMp(Ŝ). We have

ŜT̂ (z0)Ŝ−1 = T̂ (Sz0) (8.11)

for every z0 ∈ R
2n.

Proof. To prove formula (8.11) it is sufficient to assume that Ŝ is a quadratic
Fourier transform ŜW,m since every Ŝ ∈ Mp(2n,R) is a product of two such
operators. Suppose indeed we have shown that

T̂ (SW z0) = ŜW,mT̂ (z0)Ŝ−1
W,m; (8.12)

writing an arbitrary element S of Mp(2n,R) as a product SW,mSW ′,m′ we have

T̂ (Sz0) = ŜW,m(ŜW ′,m′ T̂ (z0)Ŝ−1
W ′,m′)Ŝ−1

W,m

= ŜW,mT̂ (SW ′z0)Ŝ−1
W,m

= T̂ (SWSW ′z0)

= ŜW,mŜW ′,m′ T̂ (z0)(ŜW,mŜW ′,m′)−1

= ŜT̂ (z0)Ŝ−1.

Let us set out to prove (8.12); equivalently:

T̂ (z0)ŜW,m = ŜW,mT̂ (S−1
W z0). (8.13)

For ψ ∈ S(Rn) set
g(x) = T̂ (z0)ŜW,mψ(x).

By definition of ŜW,m and T̂ (z0) we have

g(x) =
(

1
2πi�

)n/2 ∆(W )e−
1
2�
p0·x0

∫

Rn

e
i
�
(W (x−x0,x

′)+p0·x)ψ(x′)dx′.

In view of formula (3.7) in Proposition 54, the function

W0(x, x′) = W (x− x0, x
′) + p0 · x (8.14)

is a generating function of the free affine symplectomorphism T (z0)SW , hence we
have just shown that

T̂ (z0)ŜW,m = e
i

2�
p0·x0 ŜW0,m (8.15)
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where ŜW0,m is one of the metaplectic operators associated to W0. Let us now set

h(x) = ŜW,mT̂ (S−1
W z0)ψ(x) and (x′0, p

′
0) = Ŝ−1

W,m(x0, p0);

we have

h(x) =
(

1
2πi�

)n/2 ∆(W )
∫

Rn

e
i
�
W (x,x′)e−

i
2�
p′0·x′

0e
i
�
p′0·x′

ψ(x′ − x′0) dx′

that is, performing the change of variables x′ �−→ x′ + x′0:

h(x) =
(

1
2πi�

)n/2 ∆(W )
∫

Rn

e
i
�
W (x,x′+x′

0)e
i

2�
p′0·x′

0e
i
�
p′0·x′

ψ(x′) dx′.

We will thus have h(x) = g(x) as claimed, if we show that

W (x, x′ + x′0) + 1
2p

′
0 · x′0 + p′0 · x′ = W0(x, x′)− 1

2p0 · x0

that is

W (x, x′ + x′0) + 1
2p

′
0 · x′0 + p′0 · x′ = W (x− x0, x

′) + p0 · x− 1
2p0 · x0.

Replacing x by x+ x0 this amounts to proving that

W (x+ x0, x
′ + x′0) + 1

2p
′
0 · x′0 + p′0 · x′ = W (x, x′) + 1

2p0 · x0 + p0 · x.

But this equality immediately follows from Proposition 54 and its Corollary 55.
�

Exercise 129. Give an alternative proof of formula (8.11) using the generators
V̂−P , M̂L,m, Ĵ of Mp(2n,R) defined by (7.9).

The inhomogeneous metaplectic group AMp(2n,R) is an extension by the
HW operators of the metaplectic group Mp(2n,R). It is the analogue at the “quan-
tized” level of the inhomogeneous symplectic group ASp(2n,R) (see Definition 26).
Its construction requires the use of the Heisenberg–Weyl operators.

8.2 The Heisenberg group

The Heisenberg group is a venerable topic, closely related to the Heisenberg–Weyl
operators. It has played an important role in the development of quantum me-
chanics following ideas of Heisenberg and Weyl. We shortly discuss it for the sake
of completeness even if we will not really use it in this book. Excellent references
for the Heisenberg group are the books by Schempp [140] and Stein [153] (Chapter
12); very readable presentations are also given in Folland [59] and Gröchenig [82].
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8.2.1 The canonical commutation relations

Consider the textbook “quantum operators” X̂j , P̂j on S(Rn) defined, for ψ ∈
S(Rn) by

X̂jψ = xjψ , P̂jψ = −i� ∂ψ
∂xj

.

These operators satisfy the commutation relations

[X̂i, X̂j ] = [P̂i, P̂j ] = 0 , [X̂i, P̂j ] = i�δijI (8.16)

thus justifying the following definition:

Definition 130. A “Heisenberg algebra” is a Lie algebra hn with a basis

{X̂1, . . . , X̂n; P̂1, . . . , P̂n; T̂}

whose elements satisfy the so-called canonical commutation relations (for short:
CCR)

[X̂i, X̂j ] = 0 , [P̂i, P̂j ] = 0 ,

[X̂i, P̂j ] = δij T̂ , [X̂i, T̂ ] = 0 ,

[P̂i, T̂ ] = 0

(8.17)

for 1 ≤ i, j ≤ n; � is a constant identified in Physics with Planck’s constant h
divided by 2π.

In the realization (8.16) of the CCR one usually chooses for T̂ multiplication
of functions by the imaginary number i�: T̂ψ = i�ψ. (The operator T̂ can be
viewed as “setting the quantum scale”.)

Writing Û and Û ′ in the basis {X̂1, . . . , X̂n; P̂1, . . . , P̂n; T̂} we have

Û =
n∑

i=1

xiX̂i + piP̂i + tT̂ , Û ′ =
n∑

i=1

x′iX̂i + p′iP̂i + t′T̂ .

Setting z = (x, p), z′ = (x′, p′) the CCR are then immediately seen to be equivalent
to the relation

[Û , Û ′] = σ(z, z′)T̂ . (8.18)

Formula (8.18) quite explicitly shows that the CCR are intimately related to the
choice of the symplectic structure on R

n ⊕ R
n; this observation will be fully ex-

ploited in Chapters 18 and 19 when we motivate and discuss phase space pseudo-
differential operators.

Exercise 131. Verify that the Heisenberg algebra hn really is a Lie algebra.
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8.2.2 Heisenberg group and Schrödinger representation

Let us now describe the simply connected Lie group Hn corresponding to the Lie
algebra hn. We begin by recalling that the exponential mapping exp : g −→ G
from a Lie algebra g to a Lie groupG does not in satisfy the relation expX expY =
exp(X + Y ) if XY 
= Y X . Now, there is a formula, called the Baker–Campbell–
Hausdorff formula, that says that under some conditions (which we assume to
hold), there exists a C(X,Y ) ∈ g such that

eXeY = eC(X,Y )

where C(X,Y ) has a series expansion of the type

C(X,Y ) = X + Y +
1
2
[X,Y ] +

∞∑

j=1

Cj(X,Y )

where the Cj(X,Y ) are linear combinations of commutators of higher order. Since
all Lie brackets in Û , Û ′ of length superior to 2 vanish, hence the Baker–Campbell–
Hausdorff formula reduces (if Û and Û ′ are sufficiently close to zero) to the simple
formula

exp(Û) exp(Û ′) = exp(Û + Û ′ + 1
2 [Û , Û ′])

that is, in view of formula (8.18),

exp(Û) exp(Û ′) = exp(Û + Û ′ + 1
2σ(z, z′)T̂ ). (8.19)

The exponential being a diffeomorphism of a neighborhood U of zero in hn onto a
neighborhood of the identity in Hn we can identify Û , Û ′, for small z, z′, t, t′,
with the exponentials exp(Û), exp(Û ′), and exp(Û) exp(Û ′) with the element
(z, t)�(z′, t) of R

2n+1 = R
2n × R defined by

(z, t)�(z′, t) = (z + z′, t+ t′ + 1
2σ(z, z′)). (8.20)

It turns out that this formula defines a (non-commutative) group law:

Definition 132. The set R
2n × R equipped with the group law

(z, t)�(z′, t) = (z + z′, t+ t′ + 1
2σ(z, z′))

is called the (2n + 1)-dimensional Heisenberg group Hn. [In physics it is often
called the Weyl group.]

Obviously (0, 0) ∈ R
2n × R is a unit for the composition law �, and each

(z, t) is invertible with inverse (−z,−t) (the latter property immediately follows
from the fact that σ(z, z) = 0).

Exercise 133. Verify that the law � is associative, so it really defines a group
structure on R

2n+1.
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At this point we remark that some authors use the following variant of Def-
inition 132:

Definition 134. The reduced Heisenberg group H
red
n is the set R

2n × S1 equipped
with the law

(z, u)♦(z′, u′) = (zz′, uu′e
i
2�
σ(z,z′)). (8.21)

It turns out that Hn is the universal covering group of this “exponentiated”
version H

red
n of Hn. Define in fact a projection π : Hn −→ H

red
n by the formula

π(z, t) = (z, eit). We have

π [(z, t)(z′, t′)] = π(z + z′, t+ t′ + i
2σ(z, z′))

= (z + z′, eiteit
′
e
i
2σ(z,z′))

= π(z, t)π(z′, t′)

so that π is a group homomorphism; it is in addition trivially surjective (because
every u ∈ S1 is of the type eit for some t ∈ R). Now the kernel kerπ = π−1{(0, 1)}
is defined by z = 0 and eit = 1, that is t ∈ 2πZ; it is thus a discrete subgroup of
Hn so that Hn is indeed a covering group of H

red
n ; since Hn is simply connected

(it is just R
2n × R as a set) it is thus the universal covering of H

red
n .

Since the Lie algebra g of the universal covering group of a Lie group G is
isomorphic to that of G itself, we see that the Lie algebra of H

red
n is just hn.

There is a useful identification of Hn with a subgroup H
pol
n of GL(2n+2,R).

That group (the “polarized Heisenberg group”) consists of all (2n+ 2)× (2n+ 2)
upper-triangular matrices of the type

M(z, t) =










1 p1 · · · pn t
0 1 · · · 0 x1

...
...

...
...

...
0 0 · · · 1 xn
0 0 · · · 0 1










(the entries of the principal diagonal are each equal to 1); we find it convenient to
write these matrices for short as

M(z, t) =





1 pT t
0 1 x
0 0 1



 .

One easily checks that the determinant of M(z, t) is 1:

detM(z, t) = 1

and that its inverse is given by the formula

M(z, t)−1 =





1 −pT −t+ p · x
0 1 −x
0 0 1



 ;
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we have moreover

M(z, t)M(z′, t′) = M(z + z′, t+ t′ + p · x′). (8.22)

Exercise 135. Show that the mapping φ : H
pol
n −→ Hn defined by

φ(M(z, t)) =
(
z, t− 1

2p · x
)

(8.23)

is a group isomorphism.

Exercise 136. Show that the Lie algebra hpol
n of H

pol
n consists of all matrices

Xpol(z, t) =





0 pT t− 1
2p · x

0 0 x
0 0 0



 .

The polarized version of the Heisenberg group is useful in many applications
(for instance medical imaging); see for instance Schempp [140, 141].

8.2.3 The Stone–von Neumann theorem

Recall that a unitary representation of a topological group G is a pair (H, π)
where H is a Hilbert space and π is a strongly continuous homomorphism of G
into the group U(H) of all unitary operators on H. “Strong continuity” refers to
the following property:

If limj→∞ gj = g in G then limj→∞ π(gj)ψ = π(g)ψ for every ψ ∈ H.

Given a representation (H, π) of G the functions g �−→ (ψ|π(g)φ)H are called
the “representation coefficients” of (H, π).

Let us introduce some terminology:

Definition 137.

(i) Two representations (H1, π1) and (H2, π2) are equivalent if there exists a
unitary operator U : H1 −→ H2 such that Uπ1(g)U−1 = π2(g) for all g ∈ G.

(ii) A representation (H, π) is said to be irreducible if {0} and H are the only
closed subspaces of H invariant under all the operators π(g), g ∈ G.

It is easy to see that the metaplectic representation is not irreducible.

Exercise 138. Let L2
even(R

n) (resp. L2
odd(R

n)) be the vector subspaces of L2(Rn)
consisting of all even (resp. odd) functions. Let Ŝ ∈Mp(2n,R). Show that

L2(Rn) = L2
even(R

n)⊕ L2
odd(R

n) and Ŝ(L2
even(R

n)) ⊂ L2
even(R

n)

and
Ŝ(L2

odd(R
n)) ⊂ L2

odd(R
n).

[Hint: use Proposition 110.]
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The Heisenberg–Weyl operators are related in the following way to the Hei-
senberg group:

Proposition 139. Let U(L2(Rn)) be the group of all unitary operators on L2(Rn).
The mapping ρ : Hn −→ U(L2(Rn)) defined by

ρ(z, t) = e
i
�
tT̂ (z) (8.24)

is a unitary representation of the Heisenberg group Hn.

Proof. The operators ρ(z, t) are obviously unitary on L2(Rn). Let us show that ρ
is a group homomorphism, that is

ρ [(z, t)�(z′, t′)] = ρ(z, t)ρ(z′, t′).

By definition of the multiplication on Hn and formula (8.9) we have

ρ [(z, t)�(z′, t′)] = ρ
[
(z + z′, t+ t′ + 1

2σ(z, z′)
]

= e
i
�
(t+t′+1

2σ(z,z′)T̂ (z + z′)

= e
i
�
(t+t′)T̂ (z)T̂ (z′) = ρ(z, t)ρ(z′, t′). �

This result leads us to the following definition:

Definition 140. The representation (L2(Rn), ρ) is called the Schrödinger represen-
tation of the Heisenberg group.

One can prove (see for instance [67, 59, 82, 158]) that the Schrödinger rep-
resentation is irreducible, that is:

The only closed subspaces of L2(Rn) which are invariant under every
operator ρ(z, t) (or, equivalently, T̂ (z)) are {0} or L2(Rn) itself.

In view of a result of Schur (Schur’s Lemma) this condition is equivalent to:

If A is a bounded operator on L2(Rn) commuting with ρ (that is Aρ =
ρA) then A = λI for some λ ∈ C.

There is a deep result of Stone and von Neumann about the uniqueness of
the Schrödinger representation. It is in fact so well known that it has acquired the
status of a “folk theorem” which has led to the following usual (mis-)quotation:

The Schrödinger representation is the only irreducible representation of
Hn up to trivial transformations such as rescalings.

Here is one statement of the theorem of Stone and von Neumann:

Theorem 141. Every irreducible representation (L2(Rn), π) of the Heisenberg group
Hn is equivalent to one of the following:

(i) π(z, t) = e
i
�
z0·z where z0 ∈ R

2n;
(ii) π(z, t) = T̂λ(z, t) where T̂ (z, t) = T̂ (λz, t).
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A more complete statement is the following (Folland, [59], §5):

Theorem 142. Let (H, π) be a unitary representation of the Heisenberg group Hn

such that π(0, t) = e
i
�
tI for some � 
= 0. Then H =

⊕Hj where the Hj are pairwise
orthogonal subspaces of H each invariant under π and such that the restrictions
πj = π|Hj

are unitarily equivalent to (L2(Rn), ρ) for every j. In particular, if
(H, π) is irreducible then π is equivalent to (L2(Rn), ρ).

We will see later on, when we discuss pseudo-differential operators on phase
space, that it is perfectly possible to construct non-trivial representations of the
Heisenberg group which are distinct from the Schrödinger representation provided
that one replaces L2(Rn) by other Hilbert spaces.

8.3 The Grossmann–Royer operators

We introduce in this section the Grossmann–Royer operators which are a kind
of reflection operators. Their definition goes back to the work of Grossmann [88]
and Royer [138]. These operators are not universally known, and this is indeed
very unfortunate since their use allows one to considerably simplify many proofs.
In addition they allow an alternative definition of Weyl operators in terms of the
symbol, as we will see in Chapter 10

8.3.1 The symplectic Fourier transform

We begin by introducing the notion of symplectic Fourier transform, which is a
“twisted” form of the usual Fourier transform on R

2n. We will often use it when
dealing later on with Weyl calculus.

Definition 143. The symplectic Fourier transform Fσ is defined, for a ∈ S(Rn⊕R
n),

by

Fσa(z) =
(

1
2π�

)n
∫

R2n
e−

i
�
σ(z,z′)a(z′)dz′. (8.25)

We will often use the shorthand notation aσ = Fσa.

The following propositions give the main properties of the symplectic Fourier
transform. Recall that the standard (�-dependent) Fourier transform on S(Rn ⊕
R
n) is given by

Fa(z) =
(

1
2π�

)n
∫

R2n
e−

i
�
z·z′a(z′)dz′. (8.26)

Proposition 144.

(i) The Fourier transforms Fσ and F are related by the formula

Fσa(z) = Fa(Jz) = F (a ◦ J)(z). (8.27)

In particular Fσ is a linear automorphism

Fσ : S(Rn ⊕ R
n) −→ S(Rn ⊕ R

n)
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which extends by duality into an automorphism

Fσ : S′(Rn ⊕ R
n) −→ S′(Rn ⊕ R

n).

(ii) The symplectic Fourier transform is involutive and unitary:

Fσ ◦ Fσ = I , ‖Fσa‖L2(R2n) = ‖a‖L2(R2n). (8.28)

Proof of (i). Writing σ(z, z′) = Jz · z′ where J is the standard symplectic matrix,
we have,

Fσa(z) =
(

1
2π�

)n
∫

R2n
e−

i
�
Jz·z′a(z′)dz′ = Fa(Jz)

hence the first equality (8.27). Setting z′ = Jz′′ in the integral the second formula
formula (8.27) follows as well since we have Jz · Jz′′ = z · z′′.
Proof of (ii). The equality Fσ ◦ Fσ = I follows from the usual Fourier inversion
formula written in the form F (Fa)(z) = a(−z):

Fσ(Fσa)(z) = F (Fa)(−z) = a(z).

It follows that the symplectic Fourier transform is both involutive and unitary. �

In particular the symplectic Fourier transform Fσ is its own inverse: F−1
σ =

Fσ on S′(Rn ⊕ R
n). Thus:

Fσa(z) =
(

1
2π�

)n
∫

R2n
e−

i
�
σ(z,z′)a(z′)dz′,

a(z) =
(

1
2π�

)n
∫

R2n
e−

i
�
σ(z,z′)Fσa(z′)dz′.

More generally, the symplectic Fourier transform behaves well under the ac-
tion of the symplectic group:

Proposition 145. For a ∈ S′(Rn ⊕ R
n) and S ∈ Sp(2n,R) we have

Fσa(Sz) = Fσ(a ◦ S)(z). (8.29)

Proof. It suffices to assume that a ∈ S(Rn ⊕ R
n), in which case

Fσa(Sz) =
(

1
2π�

)n
∫

R2n
e−

i
�
σ(Sz,z′)a(z′)dz′;

since we have
σ(Sz, z′) = σ(S−1Sz, S−1z′) = σ(z, S−1z′)

because S−1 is symplectic, it follows, setting z′′ = S−1z′, that

Fσa(Sz) =
(

1
2π�

)n
∫

R2n
e−

i
�
σ(z,S−1z′)a(z′)dz′

=
(

1
2π�

)n
∫

R2n
e−

i
�
σ(z,z′′)a(Sz′′)dz′

which proves (8.29). �
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Fσ also satisfies the following variants of the Plancherel formula:

Proposition 146. The symplectic Fourier transform satisfies the Plancherel formula

(Fσa|b)L2(R2n) = (a|Fσb)L2(R2n) (8.30)

or, equivalently,using the distributional brackets 〈〈·, ·〉〉 on S(Rn ⊕ R
n):

∫

R2n
a(z)Fσb(z)dz =

∫

R2n
Fσa(−z)b(z)dz, (8.31)

〈〈a, bσ〉〉 = 〈〈a∨σ , b〉〉 = 〈〈aσ, b∨〉〉 (8.32)

where a∨σ (z) = aσ(−z).

Proof. It is a straightforward consequence of the fact that Fσ is a unitary involu-
tion:

(Fσa|b)L2(R2n) = (F 2
σa|Fσb)L2 = (a|Fσb)L2 . �

8.3.2 Definition of the Grossmann–Royer operators

The simplest – or perhaps the most convincing! – way of introducing the Gross-
mann–Royer operators is to express them as the conjugate of a reflection operator
by a Heisenberg–Weyl operator:

Definition 147. The Grossmann–Royer operator T̂GR(z0) is the operator

T̂GR(z0) : S(Rn) −→ S(Rn)

defined by the formulae
T̂GR(0)ψ(x) = ψ(−x) (8.33)

and
T̂GR(z0) = T̂ (z0)T̂GR(0)T̂ (z0)−1. (8.34)

The following properties are straightforward (but useful!) consequences of
the definition:

Proposition 148. The Grossmann–Royer operators are linear and unitary involu-
tions of S(Rn) (and hence of S′(Rn)), and the action of T̂GR(z0), z0 = (x0, p0),
is explicitly given by the formula

T̂GR(z0)ψ(x) = e
2i
�
p0·(x−x0)ψ(2x0 − x) (8.35)

for any function (or distribution) ψ : R
n −→ C.
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Proof. The linearity of T̂GR(z0) is obvious. That T̂GR(z0) is an involution, that is

T̂GR(z0)T̂GR(z0) = I,

follows from the sequence of equalities

T̂GR(z0)T̂GR(z0) = T̂ (z0)T̂GR(0)T̂ (z0)−1T̂ (z0)T̂GR(0)T̂ (z0)−1

= T̂ (z0)T̂GR(0)T̂GR(0)T̂ (z0)−1 = T̂ (z0)T̂ (z0)−1.

Setting x′ = 2x0 − x, we have

‖T̂GR(z0)ψ‖2L2 =
∫

Rn

|ψ(2x0 − x)|2dx = ‖ψ‖2L2

hence T̂GR(z0) is also unitary. Formula (8.35) follows from Definition (8.34) by a
straightforward calculation which is left to the reader as a pleasant exercise. �

The following result shows that the operators T̂GR(z0) and T̂ (z0) are inti-
mately related by the symplectic Fourier transform:

Proposition 149. Let ψ ∈ S′(Rn). We have

T̂GR(z0)ψ(x) = 2−nFσ[T̂ (·)ψ(x)](−z0) (8.36)

where Fσ is the symplectic Fourier transform.

Proof. Since T̂GR(z0) and Fσ are continuous automorphisms of S′(Rn) it is suf-
ficient to assume that ψ ∈ S(Rn). Formula (8.36) follows from (8.35): using the
explicit expressions of σ(z0, z′) and T̂ (z′)ψ(x) the right-hand side of (8.36) is

A =
(

1
4π�

)n
∫

R2n
e
i
�
σ(z0,z

′)T̂ (z′)ψ(x)dz′

=
(

1
4π�

)n
∫

R2n
e
i
�
(p0·x′−p′·x0+p

′·x− 1
2p

′·x′)ψ(x− x′)dz′

=
(

1
4π�

)n
∫

Rn

(∫

Rn

e
i
�
p′·(x−x0− 1

2x
′)dp′

)

e
i
�
p0·x′

ψ(x)dx′.

Now, in the distributional sense,
∫

R2
e
i
�
p′·(x−x0− 1

2x
′)dp′ = (2π�)n δ(x− x0 − 1

2x
′)

and hence, setting y = 1
2x

′:

A = 2−n
∫

Rn

δ(x− x0 − 1
2x

′)e
i
�
p0·x′

ψ(x)dx′

=
∫

Rn

δ(y + x0 − x)e 2i
�
p0·yψ(x)dy

= e
2i
�
p0·(x−x0)ψ(−x+ 2x0)

which proves (8.35). �
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We have seen that the Grossmann–Royer operators are involutions; more
generally we have the following result which is a generalization of the fact that
the product of two reflections is a translation:

Proposition 150. The Grossmann–Royer operators satisfy the product formula

T̂GR(z0)T̂GR(z1) = e−
2i
�
σ(z0,z1)T̂ (2(z0 − z1)) (8.37)

for all z0, z1 ∈ R
2n.

Proof. We have

T̂GR(z0)T̂GR(z1)ψ(x) = T̂GR(z0)
[

e
2i
�
p1·(2x0−x−x1)ψ(2x1 − x)

]

= e
2i
�
p0·(x−x0)e

2i
�
p1·(x−x1)ψ(2x1 − (2x0 − x))

= e
i
�
Φψ(x− 2(x0 − x1))

with
Φ = 2[(p0 − p1)x− p0x0 − p1x1 + 2p1x0].

On the other hand

T̂ (2(z0 − z1))ψ(x) = e
i
�
Φ′
ψ(x− 2(x0 − x1))

with
Φ′ = 2((p0 − p1)x− (p0 − p1)(x0 − x1)).

We have Φ− Φ′ = −2σ(z0, z1) hence the result. �

8.3.3 Symplectic covariance

We have previously seen that the Heisenberg–Weyl operators T̂ (z0) satisfy the
intertwining formula

ŜT̂ (z0)Ŝ−1 = T̂ (Sz0).

We are going to see that a similar relation holds for the Grossmann–Royer oper-
ators.

Proposition 151. Let Ŝ ∈Mp(2n,R) and S = πMp(S). We have

ŜT̂GR(z0)Ŝ−1 = T̂GR(Sz0) (8.38)

for every z0 ∈ R
2n.

Proof. To prove formula (8.38) recall (Proposition 149) that we have

T̂GR(z0) = T̂ (z0)T̂GR(0)T̂ (z0)−1.
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It follows that

T̂GR(Sz0) = ŜT̂ (z0)(Ŝ−1
GRT̂ (0)Ŝ)T̂ (z0)−1Ŝ−1.

It thus suffices to show that Ŝ−1
GRT̂ (0)Ŝ = T̂GR(0), and as above it is no restriction

to assume that Ŝ = ŜW,m. For ψ ∈ S(Rn) we have, since T̂GR(0) is just a reflection
operator,

T̂GR(0)ŜW,mψ(x) =
(

1
2πi�

)n/2 ∆(W )
∫

Rn

e
i
�
W (−x,x′)ψ(x′) dx′

=
(

1
2πi�

)n/2 ∆(W )
∫

Rn

e
i
�
W (−x,−x′′)ψ(−x′′) dx′

= ŜW,mT̂GR(0)ψ(x),

the last equality because W (−x,−x′′) = W (x, x′′) since W is a quadratic form.
For the same reason we have W (−x, x′) = W (x,−x′) and hence

T̂GR(0)ŜW,mψ(x) =
(

1
2πi�

)n/2 ∆(W )
∫

Rn

e
i
�
W (x,−x′′)ψ(x′′) dx′

=
(

1
2πi�

)n/2 ∆(W )
∫

Rn

e
i
�
W (x,x′′)ψ(−x′′) dx′

=
(

1
2πi�

)n/2 ∆(W )
∫

Rn

e
i
�
W (x,x′′)T̂GR(0)ψ(x′′) dx′,

that is
T̂GR(0)ŜW,mψ(x) = ŜW,mT̂GR(0)ψ

which proves our claim. �
Exercise 152. Show that for every Ŝ ∈ Mp(2n,R) there exists Ŝ′ ∈ Mp(2n,R)
such that

ŜT̂GR(z0) = T̂ (Sz0)Ŝ′.

[Hint: Consider first the case Ŝ = ŜW,m.]

8.4 Weyl–Heisenberg frames

This section aims at being a modest introduction to frame theory, especially to
Weyl–Heisenberg frames (which are also called Gabor frames in signal theory and
time-frequency analysis1). Our main sources are Christensen [26] and Gröchenig
[82]. For a detailed study of the topic of varying the lattice of Gabor frames see
Feichtinger and Kaiblinger [53].
1Since Weyl–Heisenberg frames will be defined using Heisenberg–Weyl operators, it would be bet-
ter to call them “Heisenberg–Weyl frames”. We are however complying here with the commonly
accepted terminology.
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8.4.1 The notion of frame

Frames are generalizations of the notion of basis in a Hilbert space.

Definition 153. A frame in a Hilbert space H is a sequence (ψj)j = (ψj)j∈N in H
for which there exist a, b > 0 such that

a‖ψ‖2H ≤
∑

j

|(ψ|ψj)H|2 ≤ b‖ψ‖2H (8.39)

for all ψ ∈ H. The numbers a and b are called the lower and upper frame bounds,
respectively. If a = b then (ψj)j is called a tight frame; if a = b = 1 it is called a
normalized tight frame.

An orthonormal basis of H is a normalized tight frame since we always have
the identity

∑

j

|(ψ|ψj)H|2 = ‖ψ‖2H.

Notice that in the definition above one does not require that the vectors ψj are
linearly independent, even less that they form an orthonormal set. A tight frame
can of course always be normalized, replacing each ψj by a−1/2ψj .

Fundamental tools in the study of frames are the following operators:

• The frame operator : it is the operator F̂ on H defined by

F̂ψ =
∑

j

(ψ|ψj)Hψj (8.40)

for ψ ∈ H;
• The synthesis (or reconstruction) operator: it is the operator R̂ : �2(N) −→ H

defined by
R̂[(cj)j ] =

∑

j

cjψj ;

• The coefficient (or analysis) operator: it is the operator Ĉ : H −→ �2(N)
defined by

Ĉψ = ((ψ|ψj)H)j .

It is immediate to check that Ĉ = R̂∗ and that F̂ = ĈĈ∗. In particular F̂ is
thus a positive and self-adjoint operator. Notice that when (ψj)j is an orthonormal
basis the frame operator is the identity. One shows – but we will not do it here
– that the series in the right-hand side of formula (8.40) is unconditionally con-
vergent, that is,

∑

j(ψ|ψε(j))Hψσ(j) < ∞ for every permutation ε of N, in which
case the limit is the same regardless of ε. For a detailed study of the notion of
unconditional convergence see [82, §5.3].
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Proposition 154. The frame operator F̂ is an invertible positive self-adjoint
bounded operator on the complex Hilbert space H such that

a‖ψ‖2H ≤ (F̂ψ|ψ)H ≤ b‖ψ‖2H (8.41)

for every ψ ∈ H. Equivalently

aI ≤ F̂ ≤ bI (8.42)

which means F̂ − aI ≥ 0 and bI − F̂ ≥ 0.

Proof. As noticed above, the self-adjointness and positivity statements follow from
the formula F̂ = CC∗. It can also be seen directly by noting that we have by
definition of F̂ ,

(F̂ψ|ψ)H =
∑

j

(ψ|ψj)H(ψj |ψ)H =
∑

j

|(ψ|ψj)H|2 . (8.43)

The double inequality (8.41) immediately follows from (8.39). In view of (8.41) we
have, if ‖ψ‖H = 1,

0 < 1− b−1(F̂ψ|ψ)H ≤ b− a
b

< 1

hence the operator norm of I − b−1F̂ψ satisfies

‖I − b−1F̂ψ‖ = sup
‖ψ‖H=1

|(I − b−1F̂ψ|ψ)H < 1.

It follows that b−1F̂ = I− (I− b−1F̂) is invertible, hence F̂ is also invertible. �

Using the frame operator we can construct a new frame, the so-called dual
frame (F̂−1ψj)j :

Proposition 155. Let (ψj)j be a frame with frame operator F̂ . Then (F̂−1ψj)j is
also a frame with frame bounds b−1 and a−1 and frame operator F̂−1.

Proof. Let us show that

b−1‖ψ‖2H ≤
∑

j

|(ψ|F̂−1ψj)H|2 ≤ a−1‖ψ‖2H ; (8.44)

this will prove that (F̂−1ψj)j∈J is a frame with bounds b−1 and a−1. We first
observe that since (F̂−1)∗ = F̂−1 we have

∑

j

|(ψ|F̂−1ψj)H|2 =
∑

j

|(F̂−1ψ|ψj)H|2
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and hence, replacing ψ with F̂−1ψ in (8.43),

∑

j

|(ψ|F̂−1ψj)H|2 = (ψ|F̂−1ψ)H = (F̂−1ψ|ψ)H.

Because F̂ and the identity commute with F̂−1 we can multiply both sides of
(8.42) which yields F̂−1 ≤ a−1I and F̂−1 ≥ b−1I so that b−1I ≤ F̂−1 ≤ a−1I and
this is equivalent to (8.45).

b−1‖ψ‖2H ≤ (F̂−1ψ|ψ)H ≤ a−1‖ψ‖2H. (8.45)

Let us show that (F̂−1ψ|ψ)H =
∑

j |(ψ|F̂−1ψj)H|2 for every ψ ∈ H, the identity
(8.44) will follow. Replacing ψ with F̂ψ this equality is equivalent to (ψ|F̂ψ)H =
∑

j |(F̂ψ|ψj)H|2, which is just (8.43). There remains to prove that F̂−1 is the frame
operator for (F̂−1ψj)j∈J . Let us denote by F̂ ′ this frame operator; by definition,

F̂ ′ψ =
∑

j

(ψ|F̂−1ψj)HF̂−1ψj

= F̂−1
∑

j

(F̂−1ψ|ψj)Hψj

= F̂−1F̂(F̂−1ψ)

hence F̂ ′ = F̂−1. �

Problem 156. Show that if the bounds a and b are optimal for the frame (ψj)j
then b−1 and a−1 are optimal bounds for the dual frame (F̂−1ψj)j .

The following result shows why frames are important in harmonic analysis:

Proposition 157. Let (ψj)j be a frame with frame operator F̂ . We have

ψ =
∑

j

(ψ|F̂−1ψj)Hψj =
∑

j

(ψ|ψj)HF̂−1ψj , (8.46)

both series being unconditionally convergent for every ψ ∈ H.

Proof. We have ψ = F̂ [F̂−1ψ] hence, by Definition (8.40) of F̂ ,

ψ =
∑

j

(F̂−1ψ|ψj)Hψj =
∑

j

(ψ|F̂−1ψj)Hψ

which proves the first equality (8.46). The proof of the unconditional convergence
of the series is omitted (see Christensen [26]). �
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This result shows that given a frame (ψj)j we can always write an arbitrary
function ψ ∈ H as an unconditionally convergent series

ψ =
∑

j

cjψj , (cj)j ∈ �2(N)

with coefficients cj = (F̂−1ψ|ψj)H. However, except in the case where (ψj)j is a ba-
sis, these coefficients are not unique; it turns out that the choice cj = (F̂−1ψ|ψj)H
is in a sense optimal: If (ψj)j is a frame with frame operator F̂ then ψ =

∑

j cjψj
with (cj)j ∈ �2(N) implies that

∑

j

|cj |2 ≥
∑

j

|(F̂−1ψ|ψj)H|2

(see [82], Proposition 5.1.4, for a proof of this inequality). Let us give the following
definition:

Definition 158. Let (ψj)j be a frame with frame operator F̂ . If each ψ ∈ H
has a unique decomposition ψ =

∑

j cjψj (with coefficients thus given by cj =
(F̂−1ψ|ψj)H) one says that (ψj)j is a Riesz basis of H.

Of course the frame operator of a Riesz basis is the identity. Moreover:

Proposition 159. A frame (ψj)j of H is a Riesz basis if and only if there exists
an orthonormal basis (φj)j of H and an invertible bounded operator T on H such
that ψj = Tφj for each j ∈ N.

For a proof of this result we refer to [82], Proposition 5.1.5, where alternative
necessary and sufficient conditions are also given.

8.4.2 Weyl–Heisenberg frames

Weyl–Heisenberg frames are traditionally defined in time-frequency analysis using
the shift (= translation) and modulation operators Tx and Eω given by

Tx0ψ(x) = ψ(x− x0) , Eω0ψ(x) = e2πiω0·xψ(x). (8.47)

Exercise 160. Show that these operators satisfy the commutation relation TxEω =
e−2πiω·xEωTx.

These operators are related to the Heisenberg–Weyl operators by the simple
(but important) formula

T̂ (z) = eπip·xTxEp = Ep/2TxEp/2 (8.48)

when � = 1/2π.
Consider Weyl–Heisenberg frames in terms of lattices. A lattice in phase space

R
2n is a cocompact discrete subgroup of R

2n; more precisely:



112 Chapter 8. Heisenberg–Weyl and Grossmann–Royer Operators

Definition 161. A lattice in R
2n is a discrete subgroup Λ = M(Z2n) where M ∈

GL(2n,R). The number Vol(Λ) = detM is called the volume of the lattice Λ. The
lattice Λo = (M−1)∗(Z2n) is called the dual lattice of Λ. When M = αS with
S ∈ Sp(2n,R) then Λ is called a symplectic lattice.

It is convenient in practice to choose M =
(

A 0n×n
0n×n B

)

with A,B ∈
GL(n,R); we then have Λ = AZ

n × BZ
n. In many applications one even makes

the simpler choice M =
(
αIn×n 0n×n
0n×n βIn×n

)

in which case the lattice is just Λ =

αZ
n × βZ

n.

Definition 162. Let φ ∈ L2(Rn), φ 
= 0 (“window”) and a lattice Λ. The set

G(φ,Λ) = {T̂ (z)φ : z ∈ Λ}
is called a Weyl–Heisenberg (or Gabor) system. If G(φ,Λ) is a frame, it is called a
Weyl–Heisenberg (or Gabor) frame. The corresponding frame operator is denoted
by Fφ,Λ; it is given for ψ ∈ L2(Rn) by

Fφ,Λψ =
∑

z∈Λ

(ψ|T̂ (z)φ)L2(Rn)T̂ (z)φ (8.49)

and the right-hand side of this equality is called a Gabor expansion.

In Chapter 9 we will study in detail the cross-ambiguity function of a pair
(ψ, φ) of elements of L2(Rn); it is the function on L2(R2n) defined by

A(ψ, φ)(z) =
(

1
2π�

)n (ψ|T̂ (z)φ)L2(Rn). (8.50)

Given a Weyl–Heisenberg frame G(φ,Λ) it is easy to characterize the frame oper-
ator in terms of the cross-ambiguity function: we have

Fφ,Λψ = (2π�)n
∑

z∈Λ

A(ψ, φ)(z)T̂ (z)φ. (8.51)

In fact by Definition (8.40) of the frame operator we have

Fφ,Λψ =
∑

z∈Λ

(ψ|T̂ (z)φ)L2(Rn)T̂ (z)φ,

hence (8.51). The cross-ambiguity function has the following symplectic covariance
property: for every Ŝ ∈ Mp(2n,R) with projection S = πMp(Ŝ) on Sp(2n,R) we
have

A(Ŝψ, Ŝφ)(z) = A(ψ, φ)(S−1z); (8.52)

this important property follows at once from formula (8.11) which we find conve-
nient to rewrite here in the form

T̂ (S−1z0) = Ŝ−1T̂ (z0)Ŝ (8.53)

for further use.
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Proposition 163. Let G(φ,Λ) be a Weyl–Heisenberg frame and Ŝ ∈ Mp(2n,R)
with projection S = πMp(Ŝ). Then G(Ŝφ, SΛ) is also a Weyl–Heisenberg frame
and the frame operators of G(φ,Λ) and G(Ŝφ, SΛ) are related by the metaplectic
conjugation formula

FŜφ,SΛ = ŜFφ,ΛŜ−1. (8.54)

Proof. In view of formulas (8.51) and (8.52) we have

Fφ,ΛŜ−1ψ =
∑

z∈Λ

A(ψ, Ŝφ)(Sz)T̂ (z)φ =
∑

z∈SΛ

A(ψ, Ŝφ)(z)T̂ (S−1z)φ

and hence, using (8.53),

Fφ,ΛŜ−1ψ =
∑

z∈SΛ

A(ψ, Ŝφ)(z)Ŝ−1T̂ (z0)Ŝφ

= Ŝ−1

(
∑

z∈SΛ

A(ψ, Ŝφ)(z)T̂ (z0)Ŝφ

)

= Ŝ−1FŜφ,SΛ

proving formula (8.54). �

8.4.3 A useful “dictionary”

In the time-frequency literature Weyl–Heisenberg frames are defined using the
shift and modulation operators (8.47) and the Gabor expansion defined above is
then replaced with

ψ =
∑

(x,ω)∈Λ

(ψ|TxEωφ)TxEωψ. (8.55)

It is therefore useful to have a “dictionary” allowing one to pass from one definition
to the other. Recalling that in the case � = 1/2π the operators T̂ (z) and TxEω
are related by the formula T̂ (z) = eπip·xTxEω (ω = p) and hence

Fφ,Λψ =
∑

z∈Λ

(ψ|T̂ (z)φ)L2 T̂ (z)φ =
∑

z∈Λ

(ψ|TxEpφ)L2TxEωφ

because we have (ψ|T̂ (z)φ)L2 = e−πip·x(ψ|TxEωφ)L2 . Thus, if � = 1/2π both
Definitions (8.49) and (8.55) coincide. How about the general case? We observe
that the reduction to the former case can be easily made by setting p = 2π�ω:
we then have T̂ (x, p) = eπiω·xTxEω so that (8.49) and (8.55) again are the same.
Thus:

T̂ (x, 2π�p) = eπiω·xTxEp.
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It follows that we have the equality

∑

z∈Λ

(ψ|TxEpφ)L2TxEpφ =
∑

z∈Λ

(ψ|T̂ (x, 2π�p)φ)L2 T̂ (x, 2π�p)φ. (8.56)

Defining the new lattice Λ� =
(
I 0
0 2π�I

)

Λ we get the important formula

∑

z∈Λ

(ψ|TxEpφ)L2TxEpφ =
∑

z∈Λ�

(ψ|T̂ (z)φ)L2 T̂ (z)φ (8.57)

valid for arbitrary �.
It is useful to rescale the window φ by using some dilation, to make it more

adequate for a quantum-mechanical use. For example, it is customary in time-
frequency analysis to work with the Gaussian window ψ0(x) = 2n/4e−πx

2
while

one prefers to use the “coherent state” ψ�

0 (x) = (π�)−n/4e−x
2/2� in quantum

mechanics; both functions are normalized in L2(Rn) and we have ψ�

0 = ψ0 when
� = 1/2π. Introducing the unitary scaling operator M̂λ defined for λ > 0 by

M̂λψ(x) = λn/2ψ(λx)

we then have M̂√
2π�

ψ0 = ψ�

0 and M̂1/
√

2π�
ψ�

0 = ψ0. We notice that the operator

M̂λ belongs to the metaplectic group Mp(2n,R); in fact M̂λ = M̂L,0 with L = λI,
so that M̂λ has projection

Mλ =
(
λI 0
0 λ−1I

)

∈ Sp(2n,R). (8.58)

A simple calculation shows that we have

T̂ (x, 2π�p)M̂√
2π�

= eπip·xTxEp

and hence
∑

z∈Λ

(ψ|T̂ (z)φ)L2 T̂ (z)φ =
∑

z∈Λ

(ψ|TxEpφ)L2TxEωφ.

Proposition 164. For ψ, φ ∈ L2(Rn) set ψ� = M̂√
2π�

ψ and φ� = M̂√
2π�

φ. Let
G(φ,Λ) be a Gabor system with frame operator Fφ,Λ. Then G(φ�,

√
2π�Λ) is a

Gabor system with frame operator Fφ,√2π�Λ such that

Fφ,√2π�Λψ
� =

∑

z∈√
2π�Λ

(ψ�|T̂ (z)φ�)L2 T̂ (z)φ�. (8.59)
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Proof. We have

Fφ,Λψ =
∑

z∈Λ�

(ψ|T̂ (z)φ)L2 T̂ (z)φ

=
∑

z∈Λ�

(ψ|T̂ (z)M̂√
2π�

φ�)L2 T̂ (z)M̂√
2π�

φ�

that is

Fφ,Λψ =
∑

z∈Λ�

(ψ|M̂√
2π�

T̂ (M−1√
2π�

z))L2M̂√
2π�

T̂ (M−1√
2π�

z)φ�

since T̂ (z)M̂√
2π�

= M̂√
2π�

T̂ (M−1√
2π�

z) in view of formula (8.53). Since the adjoint

of M̂√
2π�

is M̂−1√
2π�

the formula above is equivalent to

M̂−1√
2π�
Fφ,Λψ =

∑

z∈Λ�

(M̂−1√
2π�

ψ|T̂ (M−1√
2π�

z))L2 T̂ (M−1√
2π�

z)φ�

=
∑

z∈M√
2π�

Λ�

(ψ�|T̂ (z)φ�)L2 T̂ (z)φ�.

Observing that by definition of Λ� and formula (8.58)

M−1√
2π�

Λ� =
(√

2π�I 0
0 (

√
2π�)−1I

)(
I 0
0 2π�I

)

Λ =
√

2π�Λ

we thus have

M̂−1√
2π�
Fφ,Λψ =

∑

z∈√
2π�Λ

(ψ�|T̂ (z)φ�)L2 T̂ (z)φ�.

Taking into account the metaplectic conjugation formula (8.54) we have

ŜFŜφ,SΛ = ŜFφ,Λ
and

M̂−1√
2π�
Fφ,Λψ = Fφ�,

√
2π�ΛM̂

−1√
2π�

ψ = Fφ�,
√

2π�Λψ
�,

hence formula (8.59). �

The result above allows us to restate the following necessary condition for a
Weyl–Heisenberg system to be a frame in terms of �:

Proposition 165. Let Λαβ = αZ
n × βZ

n be a lattice in R
2n, and G(φ,Λαβ) the

corresponding Gabor system.
(i) If G(φ,Λαβ) is a frame for L2(Rn) then we have αβ ≤ 2π�;
(ii) G(φ,Λαβ) is a Riesz basis for L2(Rn) if and only if it is a frame and αβ =

2π�;
(iii) G(φ,Λαβ) is an orthonormal basis for L2(Rn) if and only if it is a tight frame

and ‖φ‖L2 = 1 and αβ = 2π�.
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For a proof of this result (in the case 2π� = 1) see [82], §7.5. The study
and even the statement of sufficient conditions for G(φ,Λαβ) to be a frame is
rather complicated; see Theorem 6.5.1 in [82] which proves a condition due to
Walnut [159].

A very interesting situation occurs when one chooses a Gaussian window
because Gaussians play a somewhat privileged role in both time-frequency analysis
and quantum mechanics. Unfortunately at the time we are writing one has a simple
necessary and sufficient condition only in the case n = 1:

Proposition 166. Let ψ�

0 (x) = (π�)−1/4e−x
2/2� with x ∈ R and Λαβ = αZ × βZ.

The Gabor system G(ψ�

0 ,Λαβ) is a frame for L2(R2) if and only if αβ < 2π�.

The proof of this result uses methods from complex analysis (see Lyubarski
[120] and Seip and Wallstén [146]).



Chapter 9

Cross-ambiguity and
Wigner Functions

The Heisenberg–Weyl and Grossmann–Royer operators allow us to define in a
particular simple way two classical objects from symplectic harmonic analysis,
namely the cross-ambiguity and Wigner functions, which are symplectic Fourier
transforms of each other. Wigner introduced the eponymic distribution in 1932 as
a substitute for a phase space probability density, but he did that in an ad hoc
way, a kind of “lucky guess” one could say. It has since then been realized that
the Wigner distribution (and its companion, the cross-ambiguity function) have
a very natural meaning in Weyl calculus, and that they can be simply defined in
terms of the Grossmann–Royer and Heisenberg–Weyl operators of last chapter.

9.1 The cross-ambiguity function

The cross-ambiguity function is a venerable object much used in harmonic anal-
ysis, and having many applications in signal theory, time-frequency analysis, and
engineering (for instance radar theory). We have already briefly encountered it
when discussing Weyl–Heisenberg frames.

9.1.1 Definition of A(ψ,φ)

Recall that the Heisenberg–Weyl operator T̂ (z0) is defined by

T̂ (z0)ψ = e
i
�

(p0·x−1
2p0·x0)ψ0(x− x0)

where ψ ∈ S(Rn) (or ψ ∈ S′(Rn)).

Definition 167. Let ψ and φ be in S(Rn). The function (ψ, φ) −→ A(ψ, φ) de-
fined by

A(ψ, φ)(z) =
(

1
2π�

)n (ψ|T̂ (z)φ)L2(Rn) (9.1)
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is called the cross-ambiguity function (or transform). The function Aψ = A(ψ, ψ)
given by

Aψ(z) =
(

1
2π�

)n (ψ|T̂ (z)ψ)L2(Rn) (9.2)

is called the (auto-)ambiguity function or sometimes, the Wigner–Fourier trans-
form of ψ.

Notice that formula (9.1) can be rewritten in the form

A(ψ, φ)(z) =
(

1
2π�

)n (T̂ (z)ψ∨|φ∨)L2(Rn) (9.3)

where ψ∨(x) = ψ(−x); this formula is somewhat useful and shows that

A(ψ, φ) = A(ψ∨, φ∨). (9.4)

When � = 1/2π and p is viewed as a frequency the function Aψ is also called
“radar ambiguity function” or “Woodward ambiguity function”.

Having in mind our applications to the case where ψ might be a tempered
distribution, we notice that Definition (9.1) might as well be written

A(ψ, φ)(−z) =
(

1
2π�

)n 〈T̂ (z)ψ, φ〉 (9.5)

where 〈T̂ (z)ψ, φ〉 is the distributional pairing of T̂ (z)ψ and φ. This formula defines
unambiguously A(ψ, φ) when ψ ∈ S′(Rn) and φ ∈ S(Rn).

Exercise 168. Check the “following polarization identity” satisfied by the cross-
ambiguity function:

ReA(ψ, φ) =
1
4

[A(ψ + φ)−A(ψ − φ)] . (9.6)

Exercise 169. In Chapter 8 we discussed the Stone–von Neumann theorem from the
point of representation theory. Show that the cross-ambiguity function is related
to the notion of “representation coefficient” for the Schrödinger representation.

The cross-ambiguity function of (ψ, φ) ∈ S(Rn) × S(Rn) is explicitly given
by the formula

A(ψ, φ)(z) =
(

1
2π�

)n
∫

Rn

e−
i
�
p·x′

ψ(x′ + 1
2x)φ(x′ − 1

2x)dx
′. (9.7)

In fact, by definition of T̂ (z) we have, setting z = (x, p),

A(ψ, φ)(z) =
(

1
2π�

)n
∫

Rn

e
i
�

(p·x′′− 1
2p·x)ψ∨(x′′ − x)φ∨(x′′)dx′′ (9.8)

which is precisely (9.8) performing the change of variables x′′ = −x′ + 1
2x. The

ambiguity function is thus given by

Aψ(z) =
(

1
2π�

)n
∫

Rn

e−
i
�
p·x′

ψ(x′ + 1
2x)ψ(x′ − 1

2x)dx
′. (9.9)
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9.1.2 Elementary properties of the cross-ambiguity function

Here are some elementary continuity properties of the cross-ambiguity function:

Proposition 170. The cross-ambiguity function has the following properties:

(i) It is a continuous mapping S(Rn)× S(Rn) −→ S(Rn ⊕ R
n);

(ii) That mapping extends into a continuous mapping

A : L2(Rn)× L2(Rn) −→ C0(Rn ⊕ R
n) ∩ L∞(Rn ⊕ R

n)

such that
‖A(ψ, φ)‖∞ ≤ ‖ψ‖L2‖φ‖L2 . (9.10)

Proof of (i). In view of formula (9.8) and the fact that multiplication by the ex-

ponential e−
i

2�
p·x is a mapping S(Rn ⊕ R

n) −→ S(Rn ⊕ R
n) it suffices to show

that the function F defined by

F (z) =
∫

Rn

e
i
�
p·x′

ψ(x′ − x)φ(x′)dx′

is in S(Rn ⊕R
n) if ψ and φ are in S(Rn). Now, F is (up to a constant factor) the

partial Fourier transform in x′ of the mapping (x, x′) �−→ f(x, x′) = ψ(x′−x)φ(x′);
since f ∈ S(Rn × R

n) the claim follows.

Proof of (ii). Using Definition (9.3) of A(ψ, φ) we have

|A(ψ, φ)(z0)| ≤
(

1
2π�

)n
∫

Rn

|T̂ (z0)ψ(−x)||φ(−x)|dx

≤
∫

Rn

|ψ(−x− x0)||φ(−x)|dx

=
∫

Rn

|ψ(x− x0)||φ(x)|dx,

hence, using the Cauchy–Schwarz inequality,

|A(ψ, φ)(z0)|2 ≤
(∫

Rn

|ψ(x− x0)|2dx
)2 (∫

Rn

|φ(x)|2dx
)2

that is
|A(ψ, φ)(z0)| ≤ ‖ψ‖L2‖φ‖L2 .

Taking the supremum with respect to z0 we get the inequality (9.10). The fact
that A(ψ, φ) is continuous follows since S(Rn) is dense in L2(Rn). �
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9.2 The cross-Wigner transform

The cross-Wigner function (or transform) is closely related to the cross-ambiguity
function using a symplectic Fourier transform. It is an object of choice for studying
quantum mechanics in phase space. The definition we give is a first illustration of
the usefulness of Grossmann–Royer operators.

9.2.1 Definition and first properties of W (ψ,φ)

Replacing the Heisenberg–Weyl operator by the Grossmann–Royer operator

T̂GR(z0)ψ(x) = e
2i
�
p0·(x−x0)ψ(2x0 − x)

in Definition 167 yields the cross-Wigner transform:

Definition 171. Let ψ and φ be as in S(Rn). The function (ψ, φ) −→ W (ψ, φ)
defined by

W (ψ, φ)(z) =
(

1
π�

)n (T̂GR(z)ψ|φ)L2(Rn) (9.11)

is called the cross-Wigner transform, or function (it is sometimes also called the
Wigner–Moyal distribution). The function Wψ = W (ψ, ψ) is called the “Wigner
transform” of ψ (or “Wigner–Blokhintsev transform”).

As in the case for the cross-ambiguity function, we might rewrite this formula
in terms of distribution brackets as

W (ψ, φ)(z) =
(

1
π�

)n 〈T̂GR(z)ψ, φ〉. (9.12)

As for the cross-ambiguity function, we have an analytic expression for the cross-
Wigner function.

The formulas below are very often taken as a definition in the literature.

Proposition 172. The cross-Wigner transform is given by the explicit formula

W (ψ, φ)(z) =
(

1
2π�

)n
∫

Rn

e−
i
�
p·yψ(x + 1

2y)φ(x− 1
2y)dy, (9.13)

hence the Wigner transform is given by

Wψ(z) =
(

1
2π�

)n
∫

Rn

e−
i
�
p·yψ(x+ 1

2y)ψ(x − 1
2y)dy. (9.14)

Proof. We have

(T̂GR(z0)ψ|φ)L2 =
∫

Rn

e
2i
�
p0·(x−x0)ψ(2x0 − x)φ(x)dx.
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Setting y = 2(x0 − x) this is

(T̂GR(z0)ψ|φ)L2 = 2−n
∫

Rn

e−
i
�
p0·yψ(x0 + 1

2y)φ(x0 − 1
2y)dx

= (π�)nW (ψ, φ)(z0)

proving (9.14) in view of (9.11). �

Clearly (ψ, φ) �−→ W (ψ, φ) is a sesquilinear mapping (as is the cross-am-
biguity function); it follows that we have the polarization identity

ReW (ψ, φ) =
1
4

[W (ψ + φ)−W (ψ − φ)] (9.15)

(cf. formula (9.6) for the cross-ambiguity function).
The following property is obvious:

W (ψ, φ) = W (φ, ψ); (9.16)

and hence, in particular

Wψ is always a real function.

The fact that Wψ is real has far-reaching consequences in quantum me-
chanics; this property allows Wψ to be viewed as the substitute for a probability
density; for instance, we will see later that Wψ has the “correct marginals” in the
sense that

∫

Rn

W (ψ, φ)(z)dp = ψ(x)φ(x), (9.17)
∫

Rn

W (ψ, φ)(z)dx = Fψ(p)Fφ(p). (9.18)

However, the Wigner function is not in general positive. In fact, a classical result
of Hudson [103] (also see Janssen [104]) tells us that Wψ is non-negative if and
only if ψ is a Gaussian, in fact:

Wψ ≥ 0⇔ ψ(x) = CeM(x−x0)
2

where M is a complex matrix with negative real eigenvalues and x0 ∈ R
n.

Exercise 173. Assume that ψ ∈ S(Rn) is an odd function: ψ(−x) = −ψ(x). Show
that Wψ takes negative values. [Hint: calculate Wψ(0).]

We also mention the following tensor-product properties: if x = (x′, x′′) with
x′ ∈ R

k, x′′ ∈ R
n−k and ψ′ ∈ S(Rk), ψ′′ ∈ S(Rn−k), then

A(ψ′ ⊗ ψ′′) = A′ψ′ ⊗A′′ψ′′ (9.19)

and
W (ψ′ ⊗ ψ′′) = W ′ψ′ ⊗W ′′ψ′′ (9.20)
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where A and A′ (resp. W ′ and W ′′) are the cross-ambiguity (resp. Wigner) trans-
forms on S(Rk) and S(Rn−k), in that order. More generally, we have

A(ψ′ ⊗ ψ′′, φ′ ⊗ φ′′) = A′(ψ′, φ′)⊗A′′(ψ′′, φ′′) (9.21)

and
W (ψ′ ⊗ ψ′′, φ′ ⊗ φ′′) = W ′(ψ′, φ′)⊗W ′′(ψ′′, φ′′). (9.22)

These formulas are useful for the study of so-called partial traces in quantum
mechanics.

9.2.2 Translations of Wigner transforms

The following result describes the behavior of the (cross) Wigner transform under
translations and Heisenberg–Weyl operators. Recall that T (z0) is the translation
operator z �−→ z+z0; it acts on functions or distributions F on R

2n by T (z0)F (z) =
F (z − z0).
Proposition 174.

(i) For every ψ ∈ L2(Rn) and z0 ∈ R
2n we have

W (T̂ (z0)ψ, T̂ (z0)φ)(z) = T (z0)W (ψ, φ)(z). (9.23)

In particular
W (T̂ (z0)ψ)) = T (z0)Wψ. (9.24)

(ii) More generally, if ψ, φ ∈ L2(Rn), then

W (T̂ (z0)ψ, T̂ (z1)φ)(z) = e−
i
�
[σ(z,z0−z1)+ 1

2σ(z0,z1)]W (ψ, φ)(z − 〈z〉) (9.25)

where 〈z〉 = 1
2 (z0 + z1).

Proof. The statements in (i) follow from (ii). Let us prove formula (9.25). We will
use the notation 〈x〉 = 1

2 (x0 + x1) and 〈p〉 = 1
2 (p0 + p1). By definition of the

Weyl–Heisenberg operators we have

T̂ (z0)ψ(x+ 1
2y) = e

i
�
[p0·(x+ 1

2y)− 1
2p0·x0]ψ(x − x0 + 1

2y),

T̂ (z1)φ(x − 1
2y) = e

i
�
[p1·(x− 1

2y)− 1
2p1·x1]φ(x − x1 − 1

2y)

and hence

T̂ (z0)ψ(x + 1
2y)T̂ (z1)φ(x − 1

2y)

= e
i
�
δ(z0,z1)e

i
�
〈p〉·yψ(x− x0 + 1

2y)φ(x − x1 − 1
2y)

with
δ(z0, z1) = (p0 − p1) · x− 1

2 (p0 · x0 − p1 · x1).
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It follows that we have

W (T̂ (z0)ψ, T̂ (z1)φ)(z) =
(

1
2π�

)n
e
i
�
δ(z0,z1)

×
∫

Rn

e−
i
�

(p−〈p〉)·yψ(x− x0 + 1
2y)φ(x − x0 − 1

2y)dy.

Performing the change of variables y′ = x1 − x0 + y in the integral this equality
becomes

W (T̂ (z0)ψ, T̂ (z1)φ)(z) =
(

1
2π�

)n
e
i
�
∆

×
∫

Rn

e−
i
�

(p−〈p〉)·yψ(x− 〈x〉 + 1
2y)φ(x − 〈x〉 − 1

2y)dy

where the phase ∆ is given by

∆ = (p0 − p1) · x− (x0 − x1) · p+ 1
2 (p1 · x0 − p0 · x1)

= −σ(z, z0 − z1)− 1
2σ(z0, z1)

hence formula (9.25). �

The following particular case of formula (9.25) will be important in our study
of a certain pseudo-differential calculus in Chapter 18:

W (T̂ (z0)ψ, φ)(z) = e−
i
�
σ(z,z0)W (ψ, φ)(z − 1

2z0).

9.3 Relations between A(ψ, φ), W (ψ, φ),
and the STFT

The cross-ambiguity and cross-Wigner transform are related by a symplectic
Fourier transform; in addition, both can be expressed in terms of the short-time
Fourier transform used in signal theory and time-frequency analysis.

9.3.1 Two simple formulas

The definitions (and explicit expressions) of the cross-ambiguity and Wigner func-
tions are formally very similar. In this section we analyze these similarities in
detail, which leads us to some rather surprising results.

As claimed in the beginning of the chapter, the cross-ambiguity and Wigner
functions are symplectic transforms of each other. Let us prove this.

Proposition 175. Let (ψ, φ) ∈ S′(Rn)× S′(Rn).

(i) We have
A(ψ, φ) = FσW (ψ, φ) (9.26)

where Fσ is the symplectic Fourier transform; in particular Aψ = FσWψ.
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(ii) We have
A(ψ, φ)(z) = 2−nW (ψ, φ∨)(1

2z) (9.27)

where φ∨(x) = φ(−x).
Proof of (i). It is sufficient to assume that ψ and φ are in S(Rn). Set A =
(2π�)2nFσW (ψ, φ); by definition of Fσ and W (ψ, φ) we have

A(z) =
∫∫∫

R3n
e−

i
� [σ(z,z′)+p′·y]ψ(x′ + 1

2y)φ(x′ − 1
2y)dp

′dx′dy

=
∫∫∫

R3n
e−

i
�
p′·(y−x)e−

i
�
p·x′

ψ(x′ + 1
2y)φ(x′ − 1

2y)dp
′dx′dy.

In view of the “Fourier inversion formula”
∫

Rn

e−
i
�
p′·(y−x)dp′ = (2π�)n δ(x− y)

we can rewrite the expression A as

A = (2π�)n
∫∫

R2n
δ(x− y)e− i

�
p·x′

ψ(x′ + 1
2y)φ(x′ − 1

2y)dx
′dy

= (2π�)n
∫

Rn

e−
i
�
p·x′

ψ(x′ + 1
2x)φ(x′ − 1

2x)dx
′

hence A = A(ψ, φ). [The calculation of the integral in p′ is formal and should
be viewed in the distributional sense; the reader willing to attain full rigor might
want to redo the calculation using a distributional pairing 〈FσW (ψ, φ),Φ〉 with
Φ ∈ S(Rn ⊕ R

n).]

Proof of (ii). We have, by definition of the cross-Wigner transform,

W (ψ, φ)(1
2z) =

(
1

2π�

)n
∫

Rn

e−
i

2�
p·yψ(1

2x+ 1
2y)φ(1

2x− 1
2y)dy

that is, setting x′ = 1
2y,

W (ψ, φ∨)(1
2z) =

(
1
π�

)n
∫

Rn

e−
i
�
p·x′

ψ(1
2x+ x′)φ(1

2x− x′)dy′

=
(

1
π�

)n
∫

Rn

e−
i
�
p·y′ψ(y′ + 1

2x)φ
∨(x′ − 1

2x)dy
′

hence (9.27) in view of formula (9.7). �

We claim that:

Proposition 176. If (ψ, ψ′) ∈ S′(Rn)× S′(Rn) then

Wψ = Wψ′ ⇐⇒ ψ = eiαψ′ , α ∈ R. (9.28)



9.3. Relations between A(ψ,φ), W (ψ,φ), and the STFT 125

Proof. It is sufficient to assume that ψ and φ are in S′(Rn). That both ψ and eiαψ
(α ∈ R) have the same Wigner transform immediately follows from the definition
of Wψ. Suppose conversely that Wψ = Wψ′ and, for fixed x, set

f(y) = ψ(x+ 1
2y)ψ(x− 1

2y),

f ′(y) = ψ′(x + 1
2y)ψ

′(x− 1
2y).

The equality Wψ = Wψ′ is then equivalent to the equality of the Fourier trans-
forms of f and f ′ and hence f = f ′ that is

ψ(x+ 1
2y)ψ(x− 1

2y) = ψ′(x+ 1
2y)ψ

′(x− 1
2y)

for all x, y; taking y = 0 we get |ψ|2 = |ψ′|2 which proves (9.28). �

There remains the question of the invertibility of the Wigner transform. We
will deal with that question in a moment.

We will see later (formula 10.26) that the cross-Wigner transform enjoys the
following very nice symplectic covariance property: if Ŝ is a metaplectic operator
with projections, the symplectic matrix S is then

W (Ŝψ, Ŝφ)(z) = W (ψ, φ)(S−1z). (9.29)

9.3.2 The short-time Fourier transform

A mathematical object closely related to the Wigner function is the short-time
Fourier transform used in signal theory and time-frequency analysis:

Definition 177. Let φ ∈ S(Rn). The short-time Fourier transform (STFT) (or
windowed Fourier transform, or Gabor transform) with window φ ∈ S(Rn) is the
mapping Vφ : S(Rn) −→ S(Rn ⊕ R

n) defined by

Vφψ(z) =
∫

Rn

e−2πip·x′
ψ(x′)φ(x′ − x)dx′. (9.30)

We note the following rescaling result, whose (trivial) proof is left to the
reader as an exercise:

Lemma 178. For real λ 
= 0 set ψλ(x) = ψ(λx). We have

Vφλψλ(x, p) = λ−nVφψ(λx, λ−1p). (9.31)

Taking λ =
√

2π� it is easy to see that the STFT and the cross-Wigner
transform are related by the formulae

W (ψ, φ)(z) =
(

2
π�

)n/2
e

2i
�
p·xVφ∨√

2π�

ψ√
2π�

(

z
√

2
π�

)

(9.32)

where φ∨(x) = φ(−x); equivalently:

Vφψ(z) =
(

2
π�

)−n/2
e−iπp·xW (ψ1/

√
2π�

, φ∨
1/

√
2π�

)
(

z
√

π�

2

)

. (9.33)
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Exercise 179. Verify in detail formulae (9.32) and (9.33) using the definitions.

Exercise 180. Prove the Moyal identity

〈Vφψ, Vφ′ψ′〉 = 〈ψ, ψ′〉〈φ, φ′〉 (9.34)

for the short-time Fourier transform. (This formula is called by some authors the
“orthogonality relation for the STFT”. It is familiar in representation theory, and
apparently goes back to the 1940s; it is thus posterior to the Wigner transform.)

In particular, if one takes � = 1/2π (which is the standard choice in time-
frequency analysis) one gets

W (ψ, φ)(z) = 2ne4πip·xVφ∨ψ(2z) (9.35)

and
Vφψ(z) = 2−ne−iπp·xW (ψ, φ∨)(1

2z). (9.36)

These formulas will be used in Chapters 16 and 17 when we study the theory
of modulation spaces (they are usually defined in terms of the STFT).

9.3.3 The Cohen class

The lack of positivity of the Wigner distribution Wψ which makes its interpre-
tation as a true probability density problematic has led to search for alternative
distributions Qψ. One of the most famous examples is Husimi’s distribution, which
is the convolution of the Wigner transform with a Gaussian function. More gen-
erally, we will say following Gröchenig [82], §4.5, that Qψ belongs to the Cohen
class if it is of the type Qψ = Wψ ∗ θ for some distribution θ ∈ S′(Rn ⊕R

n). The
following result gives sufficient conditions for a distribution to belong to Cohen’s
class:

Proposition 181. Let Q : S(Rn) × S(Rn) −→ S(Rn ⊕ R
n) be a sesquilinear form

and set Qψ = Q(ψ, ψ). If Q is such that

Qψ(z − z0) = Q(T̂ (z0)ψ)(z), (9.37)
|Q(ψ, φ)(0, 0)| ≤ ‖ψ‖L2(Rn)‖φ‖L2(Rn) (9.38)

for all ψ, φ in L2(Rn), then there exists θ ∈ S′(Rn ⊕R
n) such that Qψ = Wψ ∗ θ

for all ψ ∈ S(Rn).

Proof. (Cf. [82], Theorem 4.5.1.) The condition (9.38) ensures us that (ψ, φ) �−→
Q(ψ, φ)(0, 0) is a bounded sesquilinear form. Hence, by Riesz’s representation the-
orem there exists a bounded operator Â on L2(Rn) such that Q(ψ, φ)(0, 0) =
〈Âψ, φ〉. In view of the covariance formula (9.37) we have

Qψ(z0) = Q(T̂ (−z0)ψ)(0)

= 〈ÂT̂ (−z0)ψ, T̂ (−z0)ψ〉.
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In view of Schwartz’s kernel theorem there exists a distribution K ∈ S′(Rn ×R
n)

such that 〈Âψ, φ〉 = 〈〈K,ψ ⊗ φ〉〉 for all ψ, φ ∈ S(Rn) (〈〈·, ·〉〉 the distributional
bracket on S(R2n)) so that we can write

Qψ(z0) = 〈〈K, T̂ (−z0)ψ ⊗ T̂ (−z0)ψ〉〉
=

∫∫

Rn×Rn

K(x, y)T̂ (−z0)ψ(x)T̂ (−z0)ψ(y)dxdy.

By definition of the Weyl–Heisenberg operators we have

T̂ (−z0)ψ(x) = e
i
�
(−p0·x− 1

2p0·x0)ψ(x+ x0)

T̂ (−z0)ψ(y) = e−
i
�
(−p0·y− 1

2p0·x0)ψ(y + x0)

and hence

Qψ(z0) =
∫∫

Rn×Rn

K(x, y)e−
i
�
p0·(x−y)ψ(x+ x0)ψ(y + x0)dxdy. (9.39)

On the other hand, for every θ ∈ S′(Rn ⊕ R
n) we have

(Wψ ∗ θ)(z0) =
∫

Rn

Wψ(z0 − z)θ(z)dz

(the integral being interpreted in the distributional sense) hence, in view of the
definition of the Wigner transform,

(Wψ ∗ θ)(z0) =
(

1
2π�

)n
∫∫∫

Rn×Rn×Rn

e−
i
�
(p0−p)·y′

× ψ(x0 − x′ + 1
2y

′)ψ(x0 − x′ − 1
2y

′)θ(x′, p′)dpdx′dy′

that is, calculating the integral in the p variables,

(Wψ ∗ θ)(z0) =
(

1
2π�

)n/2
∫∫

Rn×Rn

F−1
2 θ(x′, y′)e−

i
�
p0·y′

× ψ(x0 − x′ + 1
2y

′)ψ(x0 − x′ − 1
2y

′)θ(x′, p′)dx′dy′

where F−1
2 θ is the partial inverse Fourier transform of θ in the second set of

variables. Making the change of variables x′ = − 1
2 (x + y), y′ = x − y we have

dx′dy′ = dxdy and the equality above becomes

(Wψ ∗ θ)(z0) =
(

1
2π�

)n/2
∫∫

Rn×Rn

F−1
2 θ(x, x − y)e− i

�
p0·(x−y)

× ψ(x+ x0)ψ(y + x0)dxdy.
(9.40)
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Comparing formulas (9.39) and (9.40) we see that Qψ = Wψ ∗ θ where θ is
determined by the equality

K(x, y) =
(

1
2π�

)n/2
F−1

2 θ(x, x − y)
that is

θ(x, p) = (2π�)n/2
∫

Rn

e−
i
�
p·yK(x, x− y)dy. �

9.4 The Moyal identity

Moyal’s identity is a fundamental formula which will allow us later in this book
to construct wavepacket transforms; it has many uses in quantum mechanics and
time-frequency analysis.

9.4.1 Statement and proof

The Moyal identity, is valid for both the cross-Wigner and ambiguity functions.
It shows, in particular, that up to a constant factor the mapping ψ �−→ W (ψ, φ)
is, for each fixed φ ∈ L2(Rn), a partial isometry of L2(Rn) onto a closed subspace
of L2(R2n). This fact will be used in Chapter 18, where these mappings will be
used to intertwine ordinary Weyl calculus with “Bopp calculus”. Because of its
importance in both practical and theoretical considerations we dignify the result
as a theorem:

Theorem 182. The cross-Wigner and cross-ambiguity functions satisfies the
“Moyal identity”

(W (ψ, φ)|W (ψ′, φ′))L2(R2n) =
(

1
2π�

)n (ψ|ψ′)L2(Rn)(φ|φ′)L2(Rn) (9.41)
and

(A(ψ, φ)|A(ψ′, φ′))L2(R2n) =
(

1
2π�

)n (ψ|ψ′)L2(Rn)(φ|φ′)L2(Rn) (9.42)

for all (ψ, φ) ∈ L2(Rn)× L2(Rn). Equivalently:

〈W (ψ, φ),W (ψ′, φ′)〉 =
(

1
2π�

)n 〈ψ, ψ′〉〈φ, φ′〉. (9.43)

In particular
‖Wψ‖L2(R2n) =

(
1

2π�

)n/2 ‖ψ‖L2(Rn). (9.44)

Proof. It suffices to prove formula (9.41) since formula (9.42) immediately follows
using the fact that the symplectic Fourier transform is unitary (recall that the
cross-Wigner and ambiguity functions are symplectic Fourier transforms of each
other). Also, the equivalence of formulas (9.41) and (9.43) is obvious. Let us prove
(9.41). The scalar product

A = (2π�)2n(W (ψ, φ)|W (ψ′, φ′))L2(R2n)
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is given by the expression
∫

R4n
e−

i
�
p·(y−y′)ψ(x + 1

2y)ψ
′(x+ 1

2y
′) φ(x − 1

2y)φ
′(x− 1

2y
′)dydy′dxdp.

The integral in p (interpreted as a distributional bracket) yields

∫

Rn

e−
i
�
p·(y−y′)dp = (2π�)nδ(y − y′)

and hence

A = (2π�)n
∫

R3n
ψ(x + 1

2y)ψ
′(x− 1

2y)φ(x + 1
2y)φ

′(x− 1
2y)dy

′dx.

Setting u = x+ 1
2y and v = x− 1

2y we have dudv = dxdy hence

A = (2π�)n
(∫

Rn

ψ(u)ψ′(u)du
)(∫

Rn

φ(v)φ′(v)dv
)

which is (9.41). �

Using Moyal’s identity we can prove:

Proposition 183. The cross-Wigner and ambiguity transforms (ψ, φ) −→W (ψ, φ)
and (ψ, φ) −→ A(ψ, φ) extends into bilinear mappings

W : S′(Rn)× S′(Rn) −→ S′(Rn), (9.45)
A : S′(Rn)× S′(Rn) −→ S′(Rn), (9.46)

and we have

W : L2(Rn)× L2(Rn) −→ L2(Rn ⊕ R
n) ∩ C0(Rn ⊕ R

n), (9.47)

A : L2(Rn)× L2(Rn) −→ L2(Rn ⊕ R
n) ∩ C0(Rn ⊕ R

n). (9.48)

We have the following inequalities:

‖W (ψ, φ)‖∞ ≤
(

1
π�

)n ‖ψ‖L2(Rn)‖φ‖L2(Rn), (9.49)

‖A(ψ, φ)‖∞ ≤
(

1
π�

)n ‖ψ‖L2(Rn)‖φ‖L2(Rn). (9.50)

Proof. Let us show that W (ψ, φ) and A(ψ, φ) are square integrable if ψ and φ are.
The property for the Wigner transform W follows from Moyal’s identity (9.42).
That it is also true for the ambiguity function A follows from the relation A =
FσW and the fact that the symplectic Fourier transform is an automorphism of
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L2(Rn ⊕ R
n). Let us show the continuity property. We have, using (9.41), the

integral definition of W (ψ, φ), and the Cauchy–Schwarz inequality,

‖W (ψ, φ)‖∞ = sup
z∈R2n

|W (ψ, φ)(z)|

≤ (
1

2π�

)n
∫

Rn

|ψ(x + 1
2y)||φ(x− 1

2y)|dy

≤ (
1

2π�

)n
(∫

Rn

|ψ(x+ 1
2y)|2dy

)1/2 (∫

Rn

|φ(x − 1
2y)|2dy

)1/2

,

hence the inequality (9.49) since we have
(∫

Rn

|ψ(x + 1
2y)|2dy

)1/2

= 2n/2‖ψ‖L2(Rn),

(∫

Rn

|φ(x − 1
2y)|2dy

)1/2

= 2n/2‖φ‖L2(Rn).

The inequality (9.50) is proven by a similar argument. �

Let us mention, without proof (see [82], Theorem 3.3.2) that the cross-Wigner
transform satisfies the “Lieb inequality”

∫

R2n
|W (ψ, φ)|q(z)dz ≤ Cq

[‖ψ‖Lq(Rn)‖ψ‖Lq(Rn)

]q

for 2 ≤ q <∞. Here Lq(Rn) is the space of all complex functions on R
n such that

‖ψ‖Lq(Rn) =
(∫

Rn

|ψ(x)|qdx
)1/q

<∞.

9.4.2 An inversion formula

Moyal’s formula also allows us to prove the following important inversion formula
for the Wigner function; it is important because it also yields a formula for the
adjoint mapping of ψ �−→ W (ψ, φ) and because it will allow us later in this book
to prove a fundamental property of modulation spaces.

Proposition 184. Let (φ, γ) ∈ L2(Rn)× L2(Rn) be such that (γ|φ)L2(Rn) 
= 0. For
every ψ ∈ S′(Rn) we have

ψ(x) =
2n

(γ|φ)L2(Rn)

∫

R2n
W (ψ, φ)(z0)T̂GR(z0)γ(x)dz0. (9.51)

Proof. Let us denote by χ(x) the right-hand side of (9.51):

χ(x) =
2n

(γ|φ)L2(Rn)

∫

R2n
W (ψ, φ)(z0)T̂GR(z0)γ(x)dz0.
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This function is well defined since W (ψ, φ) ∈ L2(Rn ⊕ R
n) in view of Moyal’s

identity (9.41). For any α ∈ S(Rn) we have

(χ|α) =
2n

(γ|φ)L2

∫

R2n
W (ψ, φ)(z)(T̂GR(z)γ|α)L2dz.

Recalling (formula (9.11)) that by definition

W (ψ, φ)(z) =
(

1
π�

)n (T̂GR(z)ψ|φ)L2 ,

we thus have the sequence of equalities

(χ|α) =
(2π�)n

(γ|φ)L2

∫

R2n
W (ψ, φ)(z)W (γ, α)dz

=
(2π�)n

(γ|φ)L2

∫

R2n
W (ψ, φ)(z)W (α, γ)dz

=
(2π�)n

(γ|φ)L2
(W (ψ, φ)|W (α, γ))L2

(the second equality because W (γ, α) = W (α, γ)). Applying Moyal’s identity
(9.41) to (W (ψ, φ)|W (α, γ)) we get

(χ|α)L2 =
(

1
2π�

)n (2π�)n

(γ|φ)
(ψ|α)L2(φ|γ)L2 = (ψ|α)L2 .

Since this identity holds for all α ∈ S(Rn) we have χ = ψ almost everywhere,
which proves formula (9.51). �

An interesting consequence of the result above is the following; it will be
useful in our study of modulation spaces:

Corollary 185. Let φ ∈ S(Rn), φ 
= 0. The following properties are equivalent:

(i) ψ ∈ S(Rn);
(ii) W (ψ, φ) ∈ S(Rn ⊕ R

n);
(iii) For every N ≥ 0 there exists CN ≥ 0 such that

|W (ψ, φ)| ≤ CN (1 + |z|)−N .
Proof. We already know that (i)=⇒(ii). That (ii)=⇒(iii) is obvious in view of
the definition of S(Rn ⊕ R

n). There remains to prove that (iii)=⇒(i). It is easily
verified that the function χ defined by

χ(x) =
2n

‖φ‖L2

∫

R2n
W (ψ, φ)(z)T̂GR(z)φ(x)dz

is in S(Rn); but then χ = ψ in view of the proof of Proposition 184 since (iii)
implies in particular that W (ψ, φ) ∈ L2(Rn ⊕ R

n). Thus ψ ∈ S(Rn) and we are
done. �
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Exercise 186. Check that we indeed have χ ∈ S(Rn) by using one of the definitions
of the space S(Rn).

One also proves the following extension of Proposition 184:

Corollary 187. Assume that W (ψ, φ) = O(|z|m) for |z| → ∞ (m ∈ R). The
inversion formula (9.51) still holds under the assumption ψ ∈ S′(Rn).

Proof. The result is obtained by refining the proof above, cf. Gröchenig [82], Corol-
lary 11.2.7. �

Here is an interesting application of the Moyal identity to orthonormal bases,
which does not seem to be universally known, and which we will use several times
in this book (in particular to establish a trace formula for a product of two Weyl
operators, and to study the spectral properties of the “Bopp operators” that will
be introduced in Chapter 18). This result shows that to each orthonormal basis
of L2(Rn) we can associate an orthonormal basis of L2(Rn ⊕R

n) using the cross-
Wigner transform. Since we will prove this result in a more general setting in
Chapter 18 (Theorem 442) we just outline the argument here.

Proposition 188. Let (ψj)j be an orthonormal basis of L2(Rn). The vectors Φj,k =
(2π�)n/2W (ψj , ψk) form an orthonormal basis of L2(Rn ⊕ R

n).

Proof. We have, using Moyal’s identity (9.41),

(Φj,k|Φj′,k′)L2 = (2π�)n(W (ψj , ψk)|W (ψj′ , ψk′ ))L2

= (ψj |ψj′)L2(ψk|ψk′)L2

hence the Φj,k form an orthonormal system. There remains to show that if Ψ ∈
L2(Rn ⊕ R

n) is orthogonal to the family (Φj,k)j,k then Ψ = 0. This is done using
the properties of the adjoint of the linear mapping ψj �−→W (ψj , ψk) and formula
(9.51) above. �

9.5 Continuity and growth properties

In this section we study some global properties of the cross-Wigner and ambiguity
transforms.

9.5.1 Continuity of A(ψ,φ) and W (ψ,φ)

We begin by stating two formulas, the proof of which is left to the reader (they are
obtained quite easily by using Leibniz’s formula for the product of two functions).
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Let ψ ∈ S(Rn) (or S′(Rn)) and α, β ∈ N
n two multi-indices. We define

∂αx = ∂α1
x1
· · · ∂αnxn and xβ = xβ1 · · · xβn . We have:

∂αx x
β T̂ (z)ψ =

∑

γ≤α,δ≤β
cαβγδx

δpγ T̂ (z)(∂α−γx xβ−δψ), (9.52)

∂αx x
β T̂GR(z)ψ =

∑

γ≤α,δ≤β
dαβγδx

δpγT̂GR(z)(∂α−γx xβ−δψ) (9.53)

where the cαβγδ and dαβγδ are complex constants and γ ≤ α means γj ≤ αj for
j = 1, 2, . . . , n.

We will need the following result which is genuinely interesting in its own
right:

Proposition 189. The maps z �−→ T̂ (z) and z �−→ T̂GR(z) are strongly continuous
on S(Rn) and weakly ∗-continuous on S′(Rn).

Proof. Let us prove the two claims for the map z �−→ T̂ (z); the proof for z �−→
T̂GR(z) is identical, replacing the coefficient cαβγδ by dαβγδ. Let ψ ∈ S(Rn). Since
T̂ (z) acts linearly on functions we have to show that, for all multi-indices α and
β, we have

lim
|z|→0

‖∂αx xβ(T̂ (z)ψ − ψ)‖∞ = 0

where ‖ψ‖∞ = sup |ψ|. In view of formula (9.52) we have

‖∂αx xβ(T̂ (z)ψ − ψ)‖∞ ≤ ‖(T̂ (z)(∂αx x
βψ)− (∂αx x

βψ)‖∞
+

∑

0<γ≤α
0<δ≤β

cαβγδ|xδpγ | ‖T̂ (z)(∂α−γx xβ−δψ)‖∞.

It is clear that
lim
|z|→0

|xδpγ | ‖T̂ (z)(∂α−γx xβ−δψ)‖∞ = 0

since γ 
= 0, δ 
= 0. There remains to show that

lim
|z|→0

‖(T̂ (z)(∂αx x
βψ)− (∂αx x

βψ)‖∞ = 0.

This is clear if ψ is compactly supported, i.e., ψ ∈ C∞
0 (Rn). The convergence in

the general case follows from the density of C∞
0 (Rn) in S(Rn). There remains to

prove the statement about S′(Rn). Assume that ψ ∈ S′(Rn) and φ ∈ S(Rn); we
have

lim
|z|→0

〈T̂ (z)ψ, φ〉 = lim
|z|→0

〈ψ, T̂ (−z)φ〉 = 〈ψ, φ〉

and hence T̂ (z) is weakly ∗-continuous on S′(Rn) as claimed. �

Let us now prove the main result of this subsection.
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Theorem 190. Let ψ ∈ S′(Rn) and φ ∈ S(Rn). Then:
(i) Both A(ψ, φ) and W (ψ, φ) are continuous functions:

A(ψ, φ) ∈ C0(Rn ⊕ R
n) and W (ψ, φ) ∈ C0(Rn ⊕ R

n); (9.54)

(ii) There exist constants C,C′ > 0 and µ, µ′ such that

|A(ψ, φ)(z)| ≤ C(1 + |z|)µ, (9.55)

|W (ψ, φ)(z)| ≤ C′(1 + |z|)µ′
(9.56)

for all z ∈ R
2n.

Proof of (i). The continuity statements for A(ψ, φ) and W (ψ, φ) are immediate
consequences of Proposition 189.

Proof of (ii). In view of formula (9.27) relating A(ψ, φ) and W (ψ, φ) it is sufficient
to prove the estimate for the cross-ambiguity function. Recalling that

A(ψ, φ)(z) =
(

1
2π�

)n 〈T̂ (−z)ψ, φ〉
(formula (9.5)), we have, since ψ ∈ S′(Rn) and using inequality (9.52),

|A(ψ, φ)(z)| ≤ C
∑

|α|≤M
|β|≤N

‖∂αxxβ T̂ (z)φ‖∞

≤ C′ ∑

|α|≤M
|β|≤N

∑

γ≤α
δ≤β

xδpγ‖∂α−γx xβ−δφ‖∞ .

Since φ ∈ S(Rn) we have ‖∂α−γx xβ−δφ‖∞ <∞ so that the right-hand side of the
last inequality is a polynomial in z = (x, p); the estimate |A(ψ, φ)(z)| ≤ C(1+|z|)µ
follows. �

9.5.2 Decay properties of A(ψ,φ) and W (ψ,φ)

We are going to see that it suffices with a decay property of A(ψ, φ) and W (ψ, φ)
which does not invoke derivatives to prove that ψ and φ are both in S(Rn). This
result will have several pleasant consequences, which will be fully exploited when
we study modulation spaces. We begin with a preparatory result.

Lemma 191. Let φ ∈ S(Rn) and let Ψ be a function defined on R
2n and such that

for every N ≥ 0 there exists CN > 0 such that

|Ψ(z)| ≤ CN (1 + |z|)−N . (9.57)

Then, the function θ defined by

θ(x) =
∫

R2n
Ψ(z0)T̂GR(z0)φ(x)dz0 (9.58)

is in S(Rn).
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Proof. The integral in the right-hand side of (9.58) is obviously absolutely conver-
gent in view of the assumption (9.57). Things do not change for

∂αx x
βθ(x) =

∫

R2n
Ψ(z0)(∂αx x

β T̂GR(z0))φ(x)dz0

as is easily checked using the estimate (9.53) (we leave the task of writing explicit
inequalities to the reader as a technical exercise); it follows that ‖∂αx xβθ(x)‖∞ <∞
so that θ ∈ S(Rn) as claimed. �

Let us now prove:

Proposition 192. Let φ ∈ S(Rn) and ψ ∈ S′(Rn). Then the following four proper-
ties are equivalent:

(i) ψ ∈ S(Rn);
(ii) W (ψ, φ) ∈ S(Rn ⊕ R

n);
(iii) A(ψ, φ) ∈ S(Rn ⊕ R

n);
(iv) For every N ≥ 0 there exist CN , C′

N > 0 such that

|W (ψ, φ)(z)| ≤ CN (1 + |z|)−N , (9.59)

|A(ψ, φ)(z)| ≤ C′
N (1 + |z|)−N . (9.60)

Proof. That (i)=⇒(ii) was established in Proposition 170. We have (ii)=⇒(iii)
because A(ψ, φ) and W (ψ, φ) are (symplectic) Fourier transforms of each other
(alternatively use formula (9.27). That (ii) or (iii)=⇒(iv) is obvious by definition
of S(Rn⊕R

n). Let us show that (iv)=⇒(i). Choosing Ψ = W (ψ, φ) in Lemma 191
above we have ψ ∈ S(Rn) in view of the inversion formula (9.51). �

An interesting consequence of this result is:

Corollary 193. For every φ ∈ S(Rn), φ 
= 0, the seminorms ψ �−→ ‖ψ‖φ where

‖ψ‖s,φ = sup
z∈R2n

[(1 + |z|)sW (ψ, φ)(z)]

define the topology of S(Rn).

Proof. That the ‖ · ‖s,φ are seminorms on S(Rn) is obvious in view of the equiva-
lence (i)⇐⇒(iv) in the proposition above. Let us show that the seminorms ‖ · ‖s,φ
are equivalent to the usual seminorms

‖ψ‖αβ = sup
x∈Rn

|∂βxxαψ(x)| = ‖∂βxxαψ‖

on S(Rn). By the inversion formula (9.51) we have

|∂βxxαψ(x)| ≤ 2n

‖φ‖2L2

∫

R2n
|W (ψ, φ)(z0)||∂βxxαT̂GR(z0)φ(x)|dz
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and hence, using the estimate (9.53), there exists a polynomial function P such
that

‖∂βxxαψ‖∞ ≤ C
∫

R2n
|W (ψ, φ)(z0)|P (z0)|dz;

note that the integral on the right side is absolutely convergent in view of the
estimates (9.59). Setting m = degP (z) we have

‖∂βxxαψ‖∞ ≤ C′
∫

R2n
|W (ψ, φ)(z)(1 + |z|)mdz

≤ C′
∫

R2n
|W (ψ, φ)(z)(1 + |z|)m+2n+1dz

×
∫

R2n
(1 + |z|)−2n−1dz

that is
‖∂βxxαψ(x)‖∞ ≤ C′′‖ψ‖m+2n+1,φ.

But this estimate implies that the identity operator ψ �−→ ψ from S(Rn) equipped
with the topology defined by the seminorms ‖ψ‖s,φ onto S(Rn) equipped with the
usual topology is continuous. The open mapping theorem for the Fréchet space
S(Rn) then implies that the identity operator is an isomorphism, and we are thus
done. �



Chapter 10

The Weyl Correspondence

This chapter introduces and discusses the basics of “Weyl correspondence”, or
“Weyl quantization” as it is also called. It is today the preferred quantization
procedure in physics, for reasons that will be discussed (one of the main features
of the Weyl correspondence is that it is the only pseudo-differential quantization
procedure which is symplectically covariant). It is in a sense the natural general-
ization of the Schrödinger correspondence rule xp −→ 1

2 (p̂x̂ + x̂p̂) from the early
days of quantum mechanics as discussed in Section 1.3.3 of the first chapter.

10.1 The Weyl correspondence

The material developed in the previous two chapters gives us all the elements we
need to define the Weyl correspondence a

Weyl←→ Â in a simple way, without having
to invoke pseudo-differential calculus (our approach, which is common in quan-
tum mechanics and time-frequency analysis) has the advantage of immediately
allowing the use of quite general symbols. It also immediately makes explicit the
relation between the Weyl correspondence and related objects such as the Wigner
transform.

We begin by defining the notion of Weyl operator in terms of the Heisen-
berg–Weyl and Grossmann–Royer operators. We will thereafter give equivalent
definitions using the cross-ambiguity and Wigner functions.

10.1.1 First definitions and properties

Recall the definitions of the Heisenberg–Weyl and Grossmann–Royer operators:

T̂ (z0)ψ = e
i
�

(p0·x−1
2p0·x0)ψ(x− x0),

T̂GR(z0)ψ(x) = e
2i
�
p0·(x−x0)ψ(2x0 − x).
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Definition 194. Let a ∈ S(Rn⊕R
n) and aσ = Fσa be the symplectic Fourier trans-

form of a. The Weyl operator with symbol a is the linear operator Â : S(Rn) −→
S(Rn) defined by

Âψ(x) =
(

1
2π�

)n
∫

R2n
aσ(z0)T̂ (z0)ψ(x)dz0; (10.1)

equivalently,

Âψ(x) =
(

1
π�

)n
∫

R2n
a(z0)T̂GR(z0)ψ(x)dz0. (10.2)

We will write Â
Weyl←→ a or a

Weyl←→ Â (“Weyl correspondence”). The function aσ is
called the “twisted” (or covariant) symbol of Â.

The fact that a ∈ S(Rn ⊕R
n) ensures us that Â : S(Rn) −→ S(Rn) is clear.

In fact:

Proposition 195. If a ∈ S(Rn ⊕ R
n) then Â

Weyl←→ a is a continuous operator
S(Rn) −→ S(Rn) and hence extends into a continuous operator S′(Rn) −→
S′(Rn).

Proof. We only sketch the proof and leave the details to the reader as an exercise.
If a ∈ S(Rn ⊕R

n) and ψ ∈ S(Rn) then the function z0 �−→ a(z0)(xα∂αx )T̂GR(z0)ψ
belongs to S(Rn⊕R

n) for all multi-indices α ∈ N
n, hence |(xα∂αx )Âψ(x)| <∞ for

all α ∈ N
n; the property follows. �

We can rewrite these definition in slightly more compact form as

Â =
(

1
2π�

)n
∫

R2n
aσ(z0)T̂ (z0)dz0

and

Â =
(

1
π�

)n
∫

R2n
a(z0)T̂GR(z0)dz0

where the integrals are interpreted as Bochner integrals (that is, operator-valued
integrals).

Exercise 196. Prove the equivalence of Definitions (10.1) and (10.2).

These formulas already make quite “obvious” the fact that we will be able to
extend the definition of the Weyl correspondence to much larger classes of symbols
than the Schwartz functions. This can be seen by rewriting the definition of Â in
terms of the distributional brackets 〈〈·, ·〉〉 on R

2n:

Âψ =
(

1
2π�

)n 〈〈aσ(·), T̂ (·)ψ〉〉 =
(

1
π�

)n 〈〈a(·), T̂GR(·)ψ〉〉. (10.3)

The notation Â
Weyl←→ a or a

Weyl←→ Â introduced in the definition above suggests
that the Weyl correspondence is one-to-one. In the following Proposition we show
that this indeed the case:



10.1. The Weyl correspondence 139

Proposition 197. The Weyl correspondence a
Weyl←→ Â is linear and one-to-one:

(i) If a
Weyl←→ Â and a′

Weyl←→ Â then a = a′.

(ii) In particular 1
Weyl←→ I where I is the identity operator on S′(Rn).

Proof of (i). The linearity of the correspondence a
Weyl←→ Â is obvious; to show that

it is one-to-one it thus suffices to show that if Âψ = 0 for all ψ ∈ S(Rn) then a = 0.
But Âψ = 0 is equivalent, by the second formula (10.3), to 〈a(·), T̂GR(·)ψ〉 = 0,
that is to a = 0 since ψ ∈ S(Rn) is arbitrary.

Proof of (ii). To show that if a = 1 then Â is the identity it suffices to note that
by the second formula (10.3) we have

Âψ(x) =
(

1
π�

)n 〈〈1, T̂GR(·)ψ(x)〉〉

=
∫

Rn

(∫

Rn

e
2i
�
p0·(x−x0)dp0

)

ψ(2x0 − x)dx0

=
∫

Rn

δ(2(x− x0))ψ(2x0 − x)dx0 = ψ(x)

so that Âψ = ψ for all ψ ∈ S(Rn). By continuity, using the density of S(Rn), we
also have Âψ = ψ for all ψ ∈ S′(Rn) hence Â = I on S′(Rn). �

Property (ii) in the proposition above is a particular case of the following
interesting result which determines explicitly the Weyl symbol of the Heisenberg–
Weyl operator:

Proposition 198. The operator with Weyl symbol z �→ e−
i
�
σ(z,z0) is the Heisen-

berg–Weyl operator T̂ (z0).

Proof. Let us write az0(z) = e−
i
�
σ(z,z0). Let Âz0 be the operator with Weyl symbol

az0 . We have, by the second formula (10.3),

Âz0ψ(x) =
(

1
π�

)n
∫∫

Rn×Rn

e−
i
�
σ(z,z′)e

2i
�
p0·(x−x0)ψ(2x0 − x)dp0dx0

=
(

1
π�

)n
∫∫

Rn×Rn

e
i
�
p′·x0e

i
�
p0·(x′+2x0−2x)ψ(2x0 − x)dp0dx0

=
(

1
π�

)n
∫

Rn

e
i
�
p′·x0

[∫

Rn

e
i
�
p0·(x′+2x0−2x)dp0

]

ψ(2x0 − x)dx0

= 2n
∫

Rn

e
i
�
p′·x0δ(x′ + 2x0 − 2x)ψ(2x0 − x)dx0.

Setting y = 2x0 we get

Âz0ψ(x) =
∫

Rn

e
i
�
p′·x0δ(y − (2x− x′))ψ(2x0 − x)dx0 = e

i
�
(p′·x− 1

2p
′·x′)ψ(x− x′)

which concludes the proof. �
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Taking into account the differential expression (8.7) of the Heisenberg–Weyl
operator we thus have

e−
i
�
σ(ẑ,z0) Weyl←→ e−

i
�
σ(z,z0). (10.4)

As a consequence of Schwartz’s kernel theorem, every continuous operator
S(Rn ⊕ R

n) −→ S′(Rn ⊕ R
n) is a Weyl operator for a suitable symbol (usually a

tempered distribution); we will prove this in a moment, but let us for the moment
show that the notion of Weyl operator makes sense even when the symbol is not
a function, but a distribution. A first constraint comes from the fact that the
symplectic Fourier transform aσ = Fσa must be defined. This is however a minor
limitation because Fσ is an isomorphism S′(Rn ⊕ R

n) −→ S′(Rn ⊕ R
n) and we

are thus authorized to use any tempered distributions as a symbol. Since we have,
for ψ, φ ∈ S(Rn),

〈Âψ, φ〉 =
∫∫

R2n×R

aσ(z0)T̂ (z0)ψ(x)φ(x)dz0dx, (10.5)

Â is defined in the weak sense by:

〈Âψ, φ〉 = 〈aσ,Φ〉 , Φ(z0) = 〈T̂ (z0)ψ, φ〉. (10.6)

Proposition 199. If a ∈ S′(Rn ⊕ R
n) then Â : S(Rn) −→ S′(Rn).

Proof. The condition a ∈ S′(Rn ⊕ R
n) is equivalent to aσ ∈ S′(Rn ⊕ R

n) hence
it is sufficient to show that Φ defined in (10.6) is in S(Rn ⊕ R

n). But this follows
from Lemma 170. �

Let us now return to formula (10.8) which, as we said, can be taken as an
alternative definition of the Weyl correspondence. Choosing φ = ψ this formula
implies, since Wψ = W (ψ, ψ):

(Âψ|ψ)L2(Rn) =
∫

R2n
a(z)Wψ(z)dz.

More about the properties of the Weyl correspondence in a moment; we are
first going to rewrite the definition of Â in two equivalent ways using the cross-
Wigner and ambiguity transforms.

10.1.2 Definition using the Wigner transform

The following result can be taken as an alternative definition of the Weyl operator
with symbol a; it also makes obvious the fact that the Weyl correspondence extends
to symbols a ∈ S′(Rn ⊕ R

n).
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Proposition 200. Let (ψ, φ) ∈ S(Rn) × S(Rn) and assume that Â
Weyl←→ a is a

mapping S(Rn) −→ L2(Rn). We have both

(Âψ|φ)L2(Rn) =
∫

R2n
aσ(z)A(ψ, φ)(−z)dz (10.7)

and

(Âψ|φ)L2(Rn) =
∫

R2n
a(z)W (ψ, φ)(z)dz. (10.8)

Proof. It is sufficient to assume that a ∈ S(Rn ⊕ R
n). We have

(Âψ|φ)L2 =
(

1
2π�

)n
∫

Rn

(∫

R2n
aσ(z0)

∫

Rn

T̂ (z0)ψ(x)dz0

)

φ(x)dx

and hence, by Fubini’s theorem,

(Âψ|φ)L2 =
(

1
2π�

)n
∫

R2n
aσ(z0)

(∫

Rn

T̂ (z0)ψ(x)φ(x)dx
)

dz0

that is, in view of Definition (9.1) of the cross-Wigner transform,

(Âψ|φ)L2 =
∫

R2n
aσ(z0)A(ψ, φ)(−z0)dz0

which is formula (10.7). In view of formula (9.26) we have

A(ψ, φ)(−z0) = FσW (ψ, φ)(−z0)
and hence, by Plancherel’s formula (8.31) for the symplectic Fourier transform

(Âψ|φ)L2 =
∫

R2n
Fσa(z0)A(ψ, φ)(−z0)dz0

=
∫

R2n
a(z0)FσA(ψ, φ)(−z0)dz0

which is formula (10.8) since FσA(ψ, φ) = W (ψ, φ) (see formula (9.26)). �

The formulas above can be easily extended to the distributional case using
Proposition 199. In fact:

Corollary 201. Let (ψ, φ) ∈ S(Rn) × S(Rn) and assume that Â
Weyl←→ a with a ∈

S′(Rn ⊕ R
n). Then

〈Âψ, φ〉 = 〈〈aσ , A(ψ, φ)∨〉〉 = 〈〈a,W (ψ, φ)〉〉 (10.9)

where A(ψ, φ)∨(z) = A(ψ, φ)(−z) and 〈〈·, ·〉〉 is the distributional bracket for dis-
tributions on R

n ⊕ R
n.

Proof. It is an immediate consequence of formulas (10.7), (10.8) using Proposi-
tion 199. �
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10.1.3 Probabilistic interpretation

As we already have discussed, the Wigner function is not in general positive. In
fact, as mentioned earlier, a classical result of Hudson [103] (also see Janssen [104])
tells us that Wψ is non-negative if and only if ψ is a Gaussian. An illustration of
this generic non-positivity of the Wigner transform is provided by the following
easy exercise:

Exercise 202. Assume that ψ ∈ S(Rn) is an odd function: ψ(−x) = −ψ(x). Show
that Wψ takes negative values. [Hint: calculate Wψ(0).]

However, there are several good reasons for which it might be adequate to
view Wψ as a good substitute for a true probability density. Here is a first moti-
vation for viewing the Wigner function as a “quasi probability” density:

Proposition 203. Assume that ψ, φ ∈ L1(Rn) ∩ L2(Rn). We have
∫

Rn

W (ψ, φ)(z)dp = ψ(x)φ(x), (10.10a)
∫

Rn

W (ψ, φ)(z)dx = Fψ(p)Fφ(p) (10.10b)

hence, in particular
∫

Rn

Wψ(z)dp = |ψ(x)|2 ,
∫

Rn

Wψ(z)dx = |Fψ(p)|2. (10.11)

Proof. Let us prove the first formula (10.10). Noting that in view of the “inverse
Fourier transform formula”, which we write sloppily as

∫

Rn

e−
i
�
p·ydp = (2π�)n δ(y)

we have
∫

Rn

W (ψ, φ)(z)dp =
∫

Rn

δ(y)ψ(x + 1
2y)φ(x− 1

2y)dy

=
∫

Rn

δ(y)ψ(x)φ(x)dy

= ψ(x)φ(x)

as claimed. Let us prove the second formula (10.10). Setting x′ = x + 1
2y and

x′′ = x− 1
2y in the right-hand of the equality

∫

Rn

Wψ(z)dx =
(

1
2π�

)n
∫∫

Rn×Rn

e−
i
�
p·yψ(x+ 1

2y)φ(x − 1
2y)dydx
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we get
∫

Rn

Wψ(z)dx =
(

1
2π�

)n
∫∫

Rn×Rn

e−
i
�
p·x′

ψ(x′)e−
i
�
p·x′′

φ(x′′)dx′dx′′

=
(

1
2π�

)n
∫

Rn

e−
i
�
p·x′

ψ(x′)dx′
∫

Rn

e−
i
�
p·x′′

φ(x′′)dx′′ = Fψ(p)Fφ(p).

�
It immediately follows from any of the two formulae (10.11) above that

∫

R2n
Wψ(z)dz = ‖ψ‖2L2(Rn) = ‖Fψ‖2L2(Rn). (10.12)

If the function ψ is normalized: ‖ψ‖2L2 = 1, then so is Wψ(z):
∫

R2n
Wψ(z)dz = 1 if ‖ψ‖2L2(Rn) = 1.

If in addition Wψ ≥ 0 it would thus be a probability density; but again, this is
only the case when ψ is a Gaussian function.

These two formulas are just particular cases of a (generalized) Radon trans-
forms of the Wigner distribution Wψ, corresponding to integration along the par-
ticular Lagrangian planes �P = 0 × R

n and �X = 0 × R
n, respectively. More

generally one could define that transform as the function defined by

R�(u) =
∫

�

Wψ(z)dµ�(z)

where dµ�(z) is the Euclidean measure on the Lagrangian plane �. The Radon
transform was defined by the Austrian mathematician J. Radon [134] in 1917 (see
the English translation Radon and Parks [135]). For a mathematically rigorous
treatment of its various extensions (which belong to the area of integral geometry)
see Helgason’s book [99].

Having the probabilistic interpretation of the Wigner transform Wψ in mind
formulas (10.7) and (10.9) can be interpreted as giving the average value of the
symbol a when ‖ψ‖2L2 = 1. This point of view is totally consistent with the one
adopted in quantum mechanics, from which the following definition comes:

Definition 204. Let ψ 
= 0 be viewed as a “quantum state”, and let a be a real
symbol, viewed as a “classical observable”. Then

〈Â〉ψ =
(Âψ|ψ)L2(Rn)

(ψ|ψ)L2(Rn)
(10.13)

is called the average value of the corresponding “quantum observable” in the
quantum state ψ.

Formula (10.13) can be viewed as saying that the expectation value 〈Â〉ψ of
the Weyl operator Â in the state ψ is the average of the symbol a with respect to
the quasi-probability distribution Wψ.
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10.1.4 The kernel of a Weyl operator

The following result will be studied further from a slightly different point of view
in Section 10.4 when we study the Weyl correspondence from the point of view of
pseudo-differential operators. Recall that the kernel of an operator A : S(Rn) −→
S′(Rn) is a distribution K ∈ S′(Rn × R

n) such that

〈Aψ, φ〉 = 〈K,φ⊗ ψ〉
for all φ, ψ ∈ S(Rn). We may also write

Aψ(x) =
∫

Rn

K(x, y)ψ(y)dy

where the integral is to be understood in the distributional sense. Every linear
operator A : S(Rn) −→ S′(Rn) has a kernel K ∈ S′(Rn × R

n) provided it is con-
tinuous from S(Rn) to S′(Rn) (this is Schwartz’s kernel theorem; for a refinement
see [82]).

Proposition 205. (i) Let Â
Weyl←→ a. The kernel of Â and its symbol a are related by

the following formulas:

KÂ(x, y) =
(

1
2π�

)n
∫

Rn

e
i
�
p·(x−y)a(1

2 (x+ y), p)dp, (10.14)

a(x, p) =
∫

Rn

e−
i
�
p·yKÂ(x+ 1

2y, x− 1
2y)dy. (10.15)

Proof of (i). Let us express Â in terms of its symbol and the Grossmann–Royer
operators (formula (10.2)):

Âψ(x) =
(

1
π�

)n
∫

R2n
a(z0)T̂GR(z0)ψ(x)dz

=
(

1
π�

)n
∫

R2n
a(z0)e

2i
�
p0·(x−x0)ψ(2x− x0)dz.

Setting y = 2x− x0 and p = p0 we get

Âψ(x) =
(

1
2π�

)n
∫∫

Rn×Rn

e
i
�
p·(x−y)a(1

2 (x + y), p)ψ(y)dydp. (10.16)

It follows that the kernel of the operator Â is given by formula (10.14).

Proof of (ii). We have

KÂ(x + 1
2y, x− 1

2y) =
(

1
2π�

)n
∫

Rn

e
i
�
p·ya(x, p)dp; (10.17)

fixing x, the Fourier inversion formula yields (10.15). �
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Exercise 206. Show that the function z �−→ e−
i
�
σ(z,z0) is the Weyl symbol of the

Heisenberg–Weyl operator T̂ (z0).

The following consequence of Proposition 205 is obvious:

Corollary 207. The Weyl symbol of the operator with kernel
(

1
2π�

)n (ψ⊗ φ) is the
cross-Wigner transform W (ψ, φ).

Proof. It is a straightforward application of formula (10.15). �

Exercise 208. Find the relation between the kernel KÂ and the symplectic Fourier
transform aσ = Fσa of the symbol of Â.

There is a simple relation between the L2 norm of the symbol and that of
the kernel. The result is useful when one studies L2 regularity properties of Weyl
operators; we will also use it in Chapter 12 in connection with the calculation of
traces of Weyl operators:

Proposition 209. Assume that KÂ ∈ L2(Rn×R
n). We then have a ∈ L2(Rn⊕R

n)
and aσ ∈ L2(Rn ⊕ R

n); moreover:

‖a‖L2(R2n) = ‖aσ‖L2(R2n) = (2π�)n/2 ‖KÂ‖L2(Rn×Rn). (10.18)

Proof. The equality ‖a‖L2 = ‖aσ‖L2 is obvious since the symplectic Fourier trans-
form is unitary. Let us prove that ‖a‖L2 = (2π�)n/2 ‖KÂ‖L2 when KÂ ∈ S(Rn ×
R
n); the proposition will follow by the density of S(Rn ×R

n) in L2(Rn ×R
n). In

view of formula (10.15) the symbol a is, for fixed x, (2π�)n/2 times the Fourier
transform of the function y �−→ KÂ(x+ 1

2y, x− 1
2y) hence, by Plancherel’s formula,

∫

Rn

|a(x, p)|2dp = (2π�)n
∫

Rn

|KÂ(x+ 1
2y, x− 1

2y)|2dy (10.19)

and hence, integrating in x,
∫

R2n
|a(z)|2dz = (2π�)n

∫

Rn

(∫

Rn

|KÂ(x + 1
2y, x− 1

2y)|2dy
)

dx

= (2π�)n
∫∫

Rn×Rn

|KÂ(x+ 1
2y, x− 1

2y)|2dxdy

where we have applied Fubini’s theorem (the integrals are absolutely convergent
since (x, y) �−→ KÂ(x + 1

2y, x − 1
2y) is in S(Rn × R

n) because KÂ is). Set now
x′ = x+ 1

2y and y′ = x− 1
2y; we have dx′dy′ = dxdy hence

∫

R2n
|a(z)|2dz = (2π�)n

∫∫

Rn×Rn

|KÂ(x′, y′)|2dx′dy′

which we set out to prove. �
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We have several times insisted on the fact that the “quantization” of classical
“observables” should satisfy the Schrödinger prescription: to a(z) = xjpj should
correspond to the symmetrized operator

Â = 1
2 (X̂jP̂j + P̂jX̂j). (10.20)

Let us check that the Weyl correspondence Â
Weyl←→ a satisfies this requirement. We

have, taking a(z) = xjpj and hence

(2π�)n Âψ(x) = 1
2

∫∫

R2n
e
i
�
p·(x−y)pjxjψ(y)dydp

+ 1
2

∫∫

R2n
e
i
�
p·(x−y)pjyjψ(y)dydp.

Formula (10.20) follows in view of the obvious equalities

(
1

2π�

)n 1
2xj

∫∫

R2n
e
i
�
p·(x−y)pjψ(y)dydp = 1

2xj P̂jψ(x),

(
1

2π�

)n 1
2

∫∫

R2n
e
i
�
p·(x−y)pjyjψ(y)dydp = 1

2 P̂j(xjψ)(x).

Exercise 210. Prove (10.20) using the definition of Â in terms of the symbol and
the Grossmann–Royer operator.

10.2 Adjoints and products

We are going to see that the symbol of the adjoint of a Weyl operator Â can be
very easily determined in terms of the symbol of a. This leads to the celebrated
property of the Weyl correspondence which says that Â

Weyl←→ a is self-adjoint if and
only if a is real. This property is very important in the applications to quantum
mechanics, because “quantization” of an observable should precisely lead to a
self-adjoint operator.

We also calculate the symbol of the product of two Weyl operators; the
result is of particular importance for the study of the applications to deformation
quantization (“Bopp calculus”).

10.2.1 The adjoint of a Weyl operator

The formal adjoint Â∗ of an operator Â : S(Rn) −→ S(Rn) is defined by the
formula

(Âψ|φ)L2(Rn) = (ψ|Â∗φ)L2(Rn)

for all (ψ, φ) ∈ S(Rn) × S(Rn). We are going to determine explicitly the Weyl

correspondence Â∗ Weyl←→ a∗. For this we need the following elementary lemma:
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Lemma 211. Let b be a function on R
n such that (b|W (ψ, φ))L2(R2n) = 0 for all

(ψ, φ) ∈ S(Rn)× S(Rn). Then b = 0.

Proof. In view of formula (10.8) we have, noting that W (ψ, φ) = W (φ, ψ),

(B̂φ|ψ))L2 = (b|W (ψ, φ))L2

where B̂
Weyl←→ b. If (b|W (ψ, φ))L2 = 0 for all ψ and φ we must thus have B̂φ = 0

for all φ hence B̂ = 0; but then b = 0 since the Weyl correspondence is one-to-one
in view of Proposition 197. �

We have:

Proposition 212. The adjoint Â∗ of the Weyl operator Â Weyl←→ a is the Weyl op-
erator Â∗ Weyl←→ a∗ with symbol a∗ = a. In particular, Â is formally self-adjoint if
and only if a is a real function.

Proof. Expressing Â in terms of the Grossmann–Royer operators we have, in view
of formula (10.2),

(Âψ|φ)L2 =
(

1
π�

)n
∫

R2n
a(z0)

(∫

Rn

T̂GR(z0)ψ(x)φ(x)
)

dz0

=
∫

R2n
a(z0)W (ψ, φ)(z0)dz0.

Since, by definition, (Âψ|φ)L2 = (ψ|Â∗φ)L2 we have

(ψ|Â∗φ)L2 = (Â∗φ|ψ)L2

=
∫

R2n
a∗(z0)W (ψ, φ)(z0)dz0

hence

(Âψ|φ)L2 =
∫

R2n
a∗(z0)W (ψ, φ)(z0)dz0.

Applying Lemma 211 to b = a− a∗ yields a = a∗ that is a∗ = a. �

10.2.2 Composition formulas

We now assume that the Weyl operators

Â =
(

1
2π�

)n
∫

R2n
aσ(z)T̂ (z)dz,

B̂ =
(

1
2π�

)n
∫

R2n
bσ(z)T̂ (z)dz
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can be composed (this is always the case for instance if aσ and bσ are in S(Rn⊕R
n))

and set Ĉ = ÂB̂. Assuming that we can write

Ĉ =
(

1
2π�

)n
∫

R2n
cσ(z)T̂ (z)dz

we ask: what is cσ? The answer is giving by the following theorem, which is
instrumental in the definition of deformation quantization we will give later in
this book:

Theorem 213. Let Â
Weyl←→ a and B̂

Weyl←→ b be Weyl operators.

(i) The product Ĉ = ÂB̂ has (when defined) Weyl symbol

c(z) =
(

1
4π�

)2n
∫∫

R4n
e
i
2�
σ(z′,z′′)a(z + 1

2z
′)b(z − 1

2z
′′)dz′dz′′. (10.21)

(ii) The symplectic Fourier transform of c is given by

cσ(z) =
(

1
2π�

)n
∫

R2n
e
i

2�
σ(z,z′)aσ(z − z′)bσ(z′)dz′ (10.22)

or, equivalently, by

cσ(z) =
(

1
2π�

)n
∫

R2n
e−

i
2�
σ(z,z′)aσ(z′)bσ(z − z′)dz′. (10.23)

Proof of (i). Assume that the Weyl symbols a, b of Â and B̂ are in S(Rn ⊕ R
n).

We have

KÂB̂(x, y) =
(

1
2π�

)2n
∫∫∫

R3n
e
i
�
((x−α)·p+(α−y)·p

× a(1
2 (x+ α), ζ)b(1

2 (x+ y), ξ)dαdζdξ.

In view of formula (10.15) we have

c(x, p) =
∫

e−
i
�
p·uKÂB̂(x+ 1

2u, x− 1
2u)du

and the symbol of ÂB̂ is thus

c(z) =
(

1
π�

)2n
∫∫∫∫

R4n
e
i
�
Qa(1

2 (x+ α+ 1
2u), ζ)

× b(1
2 (x+ α− 1

2u), ξ)dαdζdudξ

where the phase Q is given by

Q = (x− α+ 1
2u) · ζ + (α− x+ 1

2u) · ξ − u · p
= (x− α+ 1

2u) · (ζ − p) + (α− x+ 1
2u) · (ξ − p).



10.2. Adjoints and products 149

Setting ζ′ = ζ − p, ξ′ = ξ− p, α′ = 1
2 (α− x+ 1

2u) and u′ = 1
2 (α− x− 1

2u) we have

dαdζdudξ = 22ndα′ζ′du′dξ′

and Q = 2σ(u′, ξ′;α′, ζ′), hence

c(z) =
(

1
π�

)2n
∫∫∫∫

R4n
e

2i
�
σ(u′,ξ′;α′,ζ′)

× a(x+ α′, p+ ζ′)b(x+ u′, p+ ξ′)dα′dζ′du′dξ′;

formula (10.21) follows setting z′ = 2(α′, ζ′) and z′′ = −2(u′, ξ′).

Proof of (ii). Writing the operators Â and B̂ in the usual form

Â =
(

1
2π�

)n
∫

R2n
aσ(z0)T̂ (z0)dz0,

B̂ =
(

1
2π�

)n
∫

R2n
bσ(z1)T̂ (z1)dz1

we have, using the property

T̂ (z0 + z1) = e−
i

2�
σ(z0,z1)T̂ (z0)T̂ (z1)

of HW operators,

T̂ (z0)B̂ =
(

1
2π�

)n
∫

R2n
bσ(z1)T̂ (z0)T̂ (z1)dz1

=
(

1
2π�

)n
∫

R2n
e
i

2�
σ(z0,z1)bσ(z1)T̂ (z0 + z1)dz1

and hence

ÂB̂ =
(

1
2π�

)2n
∫∫

R4n
e
i
2�
σ(z0,z1)aσ(z0)bσ(z1)T̂ (z0 + z1)dz0dz1.

Setting z = z0 + z1 and z′ = z1 this can be written

ÂB̂ =
(

1
2π�

)2n
∫

R2n

(∫

R2n
e
i

2�
σ(z,z′)aσ(z − z′)bσ(z′)dz′

)

T̂ (z)dz

hence (10.22). Formula (10.23) follows by a trivial change of variables and using
the antisymmetry of σ. �

The composition formulas (10.22), (10.23) are very important in the context
of the deformation quantization theory we will study later, and where the function
c defined by (10.21) is called the Moyal (or Groenewold–Moyal) starproduct, and
is denoted a �� b.

Exercise 214. Prove formula (10.21) for the Weyl symbol of a product by using
the representation (10.2) of Â and B̂ in terms of the Grossmann–Royer operators.



150 Chapter 10. The Weyl Correspondence

10.3 Symplectic covariance of Weyl operators

A striking feature of Weyl calculus is that it is the only pseudo-differential operator
calculus for which metaplectic covariance holds (see Chapter 10.4 for a discussion
of the general notion of pseudo-differential operator). This property is another
manifestation of the importance of Weyl operators in quantum mechanics.

10.3.1 Statement and proof of the symplectic covariance property

Recall that the Heisenberg–Weyl and Royer–Grossmann operators T̂ (z0) and
T̂GR(z0) satisfy the following property: for Ŝ ∈ Mp(2n,R) and S = πMp(Ŝ) we
have

ŜT̂ (z0)Ŝ−1 = T̂ (Sz0) , ŜT̂GR(z0)Ŝ−1 = T̂GR(Sz0) (10.24)

for every z0 ∈ R
2n.

Theorem 215. Let S ∈ Sp(2n,R) and Ŝ ∈ Mp(2n,R) be any one of the two

metaplectic operators with S = πMp(Ŝ). For every Weyl operator Â
Weyl←→ a we

have the correspondence
a ◦ S Weyl←→ Ŝ−1ÂŜ. (10.25)

That is, to the symbol aS (z) = a(Sz) corresponds the Weyl operator Ŝ−1ÂŜ.

Proof. Let us denote by B̂ the Weyl operator with symbol a◦S. In view of formula
(10.8) we have

B̂ψ =
∫

R2n
aσ(Sz)T̂ (z)ψdz

that is, performing the change of variables Sz �−→ z and taking into account the
fact that detS = 1,

B̂ψ =
∫

R2n
aσ(z)T̂ (S−1z)ψdz.

By formula (8.11) in Theorem 128 we have Ŝ−1T̂ (z)Ŝ = T̂ (S−1z) and hence

B̂ψ =
∫

R2n
aσ(z)Ŝ−1T̂ (z)Ŝψdz

= Ŝ−1

(∫

R2n
aσ(z)T̂ (z)dz

)

Ŝψ

which is (10.25). �
Problem 216. Give an alternative proof of (10.25) using the formula

Â =
(

1
π�

)n
∫

R2n
a(z0)T̂GR(z0)dz0

expressing the Weyl correspondence in terms of the Grossmann–Royer operators.
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As a straightforward consequence of Theorem 128 we obtain the so-called
metaplectic covariance formula for the cross-Wigner transform:

Corollary 217. Let ψ, φ ∈ S(Rn) and Ŝ ∈Mp(2n,R); we denote by S the projection
of Ŝ on Sp(2n,R). We have

W (Ŝψ, Ŝφ)(z) = W (ψ, φ)(S−1z) (10.26)

and hence in particular
W (Ŝψ)(z) = Wψ(S−1z). (10.27)

Proof. In view of formula (10.7) in Proposition 200 we have, since Ŝ is unitary,
∫

R2n
W (Ŝψ, Ŝφ)a(z)dz = (ÂŜψ|Ŝφ)L2 = (Ŝ−1ÂŜψ|φ)L2 .

In view of (10.25) we have

(Ŝ−1ÂŜψ, φ)L2 =
∫

R2n
W (ψ, φ)(z)(a ◦ S)(z)dz

=
∫

R2n
W (ψ, φ)(S−1z)a(z)dz

which establishes the equality (10.26) since ψ and φ are arbitrary; formula (10.27)
trivially follows taking ψ = φ. �

Problem 218. Prove a similar result for the cross-ambiguity function.

10.3.2 Covariance under affine symplectomorphisms

Let us denote by T (z0) the phase space translation operator z �−→ z + z0. It
induces a natural action of functions by the formula T (z0)a(z) = a(z − z0); this
action can be extended into an action on distributions in the obvious way.

Proposition 219. Let a
Weyl←→ Â with a ∈ S′(Rn ⊕ R

n). Let T (z0)a(z) = a(z − z0).
We have

T (z0)a
Weyl←→ T̂ (z0)ÂT̂ (z0)−1 (10.28)

where T̂ (z0) is the Heisenberg–Weyl operator.

Proof. Let ψ, φ ∈ S(Rn). We first remark that writing (10.8) in terms of distribu-
tional brackets, and using the fact that W (ψ, φ) = W (φ, ψ) we have

〈Âψ, φ〉 =
∫

R2n
a(z)W (ψ, φ)(z)dz = 〈a,W (φ, ψ)〉.
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We next observe that

〈T̂ (z0)ÂT̂ (z0)−1ψ, φ〉 = 〈ÂT̂ (z0)−1ψ, T̂ (z0)−1φ〉
= 〈a,W (T̂ (z0)−1φ, T̂ (z0)−1ψ)〉
= 〈a, T (−z0)W (φ, ψ)〉

the last equality in view of formula (9.23); since we have

〈a, T (−z0)W (φ, ψ)〉 = 〈T (z0)a,W (φ, ψ)〉

formula (10.28) follows. �

Exercise 220. Prove directly formula (10.28) using the definition of Â in terms of
the Heisenberg–Weyl operators. [Hint: use several changes of variables together

with the formula T̂ (z0)T̂ (z1) = e
i
�
σ(z0,z1)T̂ (z1)T̂ (z0) (formula (8.8)).]

Recall (Definition 26) that the affine symplectic group ASp(2n,R) is the semi-
direct product Sp(2n,R) � T(2n,R) of the symplectic group with the translation
group T(2n,R) ≡ R

2n. It is the group generated by symplectic matrices and
the translations T (z0). Writing Sz0 = ST (z0) to each Sz0 one can associate two
unitary operators ±Ŝz0 defined as follows: Ŝz0 = ŜT̂ (z0) where Ŝ is any one of
the two metaplectic operators with projection S ∈ Sp(2n,R). The operators Ŝz0
generate a group, the affine (or homogeneous) metaplectic group AMp(2n,R).
Combining Theorem 128 with Proposition 219 we get:

Corollary 221. The Weyl correspondence is covariant under the action of the affine
symplectic group ASp(2n,R) in the sense that if Â

Weyl←→ a then

a ◦ Sz0 Weyl←→ Ŝ−1
z0 ÂŜz0 (10.29)

for every Sz0 = ST (z0).

It turns out that symplectic covariance is characteristic of the Weyl corre-
spondence: among all other pseudo-differential calculi (as studied in Chapter 14),
it is the only one having the properties above. This is a fundamental fact, because
it allows the derivation of Schrödinger’s equation. We will come back to that prop-
erty in Chapter 15 when we study the derivation of Schrödinger’s equation.

10.4 Weyl operators as pseudo-differential operators

We introduced Weyl operators using concepts from harmonic analysis such as the
Heisenberg–Weyl or Grossmann–Royer operators. We now take the point of view
of pseudo-differential operators; this approach will be developed in Chapter 14
from a more general point of view using Shubin’s theory [147]. The literature on
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pseudo-differential operators is immense. The main references for what we will
be doing here are the books by Wong [163], Nicola and Rodino [131]. The books
[40] by Egorov, Komech, and Shubin, contains very valuable material concerning
applications of pseudo-differential operators to the theory of partial differential
equations. Another good source is Chazarain and Piriou [25] where there is a
strong use of microlocal techniques.

We begin with a quick review of the general notion of pseudo-differential
operator.

10.4.1 The notion of pseudo-differential operator

We will use the following multi-index notation: for α = (α1, . . . , α2n) in N
2n we

set
|α| = α1 + · · ·+ α2n , ∂αz = ∂α1

z1 · · · ∂α2n
z2n

where ∂αjzj = ∂αj/∂x
αj
j for 1 ≤ j ≤ n and ∂

αj
zj = ∂αj/∂ξ

αj
j for n + 1 ≤ j ≤ 2n.

We will write Dx = −i∂x and Dα
x = (−i)|α|∂αx and use similar notation for Dp

and Dα
p .

The starting point of any honest theory of pseudo-differential operators is
the search for an extension of partial differential operators. In the early days of
the theory one started by remarking that we can write any partial differential
operators (with smooth coefficients) on R

n in the form

Â =
∑

|α|≤m
aα(x)Dα

x , aα ∈ C∞(Rn) (10.30)

and define the symbol of Â as being the polynomial

a(x, ξ) =
∑

|α|≤m
aα(x)ξα , ξα = ξα1

1 · · · ξαnn . (10.31)

Defining the Fourier transform f̂ of f ∈ C∞
0 (Rn) (the vector space of C∞ functions

with compact support) by

f̂(ξ) =
(

1
2π

)n/2
∫

Rn

e−iξ·xf(x)dx (10.32)

(thus f̂ = Ff with � = 1) we can rewrite Definition (10.30) as

Âf(x) =
∫

Rn

eiξ·xa(x, ξ)f̂(ξ)dξ. (10.33)

Exercise 222. Show that formula (10.33) immediately follows from the Fourier
inversion formula

f(x) =
(

1
2π

)n/2
∫

Rn

eix·ξf̂(ξ)dx (10.34)

and the relation ξαf̂(ξ) = D̂α
xf(ξ).
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The next step consisted in defining pseudo-differential operators as being
linear operators of the type (10.33) where a is a (more or less arbitrary) function on
R
n⊕R

n called in this context a symbol or amplitude. Of course, such a definition is
vague and rather useless unless one puts some constraints on the classes of symbols
that are acceptable. For instance if a(x, ξ) increases “too” fast when |ξ| → ∞ the
integral in (10.33) will only be convergent for “very” small classes of functions f .
For instance, a reasonable requirement is that one should be able to calculate Âf
when f ∈ C∞

0 (Rn), and this will be the case if one requires that the symbol not
grow faster than a polynomial in ξ. Then, another natural requirement might be
that the smoothness of Âf corresponds in some way to the smoothness of f , and
for this to be true one has to impose conditions on the x-derivatives of the symbol
a. The most popular choice in the 1970s was to use the so-called Hörmander symbol
classes Smρ,σ (Hörmander [96], Hörmander and Duistermaat [97]):

Definition 223. Let m, ρ, δ be real numbers such that 0 ≤ δ < ρ ≤ 1. The symbol
class Smρ,δ(R

n⊕R
n) is the (complex) vector space of all functions a ∈ C∞(Rn⊕R

n)
such that for each choice of multi-indices α, β ∈ N

n and of a compact subset K of
R
n there exists a constant Cα,β,K ≥ 0 such that

∂αx ∂
β
ξ a(x, ξ) ≤ Cα,β,K(1 + |ξ|)m−|β| (10.35)

for (x, ξ) ∈ K ×R
n. One writes Sm(Rn ⊕R

n) = Sm1,0(R
n ⊕R

n). The vector space
of pseudo-differential operators

Âf(x) =
∫

Rn

eiξ·xa(x, ξ)f̂ (ξ)dξ (10.36)

with symbol in Smρ,δ(R
n ⊕ R

n) is denoted Lmρ,δ(R
n). One often calls a the Kohn–

Nirenberg symbol of Â.

It is not difficult to show that when a ∈ Smρ,δ(R
n ⊕ R

n) the corresponding
pseudo-differential operator Â maps continuously C∞

0 (Rn) into C∞(Rn) (it in-
volves repeated use of Leibniz’s rule for the differentiation of a product); moreover
any symbol a of the polynomial type (10.31) belongs to the class Sm(Rn ⊕ R

n),
so the definition above achieves the program of generalizing ordinary partial dif-
ferential operators (at least those with C∞ coefficients).

So far, so good. The rub comes from the fact that in the elements of the
symbol classes Smρ,δ the variables x and ξ are on very different footing, due to
the fact that one is more interested in local properties than in global behavior
(the cotangent bundle of a manifold is locally identical with T ∗

R
n = R

n ⊕ R
n).

This dissymmetry conflicts with the phase space approach of both classical and
quantum mechanics, where the variables x and ξ play equivalent roles. We will
define later in this book a pseudo-differential calculus that avoids this difficulty
(the Shubin global calculus, Chapter 14).
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Problem 224. Show that every pseudo-differential operator belonging to one of
the Hörmander classes Lmρ,δ(R

n) with 0 ≤ δ < ρ ≤ 1 maps (continuously) S(Rn)
into itself.

The best-known regularity results for these operators are expressed in terms
of the usual Sobolev spaces1 Hs: we have f ∈ Hs(Rn) if and only if f̂ is a function
satisfying

‖f‖2s =
∫

Rn

|f̂(ξ)|2(1 + |ξ|2)sdξ <∞.

It is clear that Hs(Rn) is a vector space; it is in fact a complex Hilbert space for
the sesquilinear form

(f, g) �−→ (f |g)s =
∫

Rn

f̂(ξ)ĝ(ξ)(1 + |ξ|2)sdξ

and f �−→ ‖f‖s = (f |f)1/2s is the associated norm. Since pseudo-differential op-
erators are not in general local one cannot in general state regularity results in
terms of these spaces, and one considers the following derived spaces:

Hs
c (R

n) = {f ∈ Hs(Rn) : Supp(f) is compact},
Hs
loc(R

n) = {f ∈ S′(Rn) : ϕf ∈ Hs
c (R

n) for some ϕ ∈ C∞
0 (Rn)}.

Equipping these spaces with adequate topologies, a classical result is then:

Theorem 225. Every Â ∈ Lm1,0(Rn) is continuous Hs
c (Rn) −→ Hs−m

loc (Rn).

Proof. See any textbook on pseudo-differential operators published before the mid-
1980s. �

It should be mentioned that every Â ∈ Lm1,0(R
n) can be written as Â =

Â′ +R where Â′ : Hs
c (Rn) −→ Hs−m

c (Rn) and R is a smoothing operator (i.e., an
operator with C∞ kernel). If an operator maps compactly supported distributions
to compactly supported distributions one says it is a proper operator.

10.4.2 The kernel of a Weyl operator revisited

We are going to see that a Weyl operator Â
Weyl←→ a can be represented in the

following way:

Âψ(x) =
(

1
2π�

)n
∫∫

Rn×Rn

e
i
�
p·(x−y)a(1

2 (x + y), p)ψ(y)dydp. (10.37)

Of course, the right-hand side does not have a well-defined mathematical sense
in general; for the “double integral” to be absolutely convergent one has to put
1Sometimes also called “Bessel potential spaces”.
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rather stringent conditions on the symbol a and the function ψ. For instance, one
can require that ψ ∈ S(Rn) and a decreases sufficiently fast in p. We are going
to see that one can, however, give a meaning to this formal expression by using a
“mollifier” provided that a belongs to a “good” symbol class. We will refine and
improve our results when we discuss the Shubin classes.

Let us show that Weyl operators are just pseudo-differential operators of
the type above when a decays rapidly. Recall from Proposition 205 that if a ∈
S(Rn ⊕ R

n) and Â
Weyl←→ a then

Âψ(x) =
(

1
2π�

)n
∫∫

Rn×Rn

e
i
�
p·(x−y)a(1

2 (x+ y), p)ψ(y)dydp (10.38)

for every ψ ∈ S(Rn). It follows that the kernel of Â is given by

KÂ(x, y) =
(

1
2π�

)n
∫

Rn

e
i
�
p·(x−y)a(1

2 (x+ y), p)dp. (10.39)

Conversely, the expression of the symbol in terms of the kernel is

a(x, p) =
∫

Rn

e−
i
�
p·yKÂ(x+ 1

2y, x− 1
2y)dy. (10.40)

Notice that if we interpret formula (10.39) in the distributional sense we
recover the fact that the identity operator has symbol a = 1. In fact it suffices to
observe that in view of the Fourier inversion formula we have

(
1

2π�

)n
∫∫

R2n
e
i
�
p·(x−y)ψ(y)dydp = ψ(x). (10.41)

10.4.3 Justification in the case a ∈ Sm

We are following here closely Chapter 4 in Wong [163]. Let us begin with a regu-
larization result making use of a “mollifier”.

Proposition 226. Let a ∈ Sm(Rn ⊕ R
n) = Sm1,0(R

n ⊕ R
n) and assume that the

estimates (10.35) hold uniformly in x, that is

∂αx ∂
β
ξ a(x, ξ) ≤ Cα,β(1 + |ξ|)m−|β|.

Let θ ∈ C∞
0 (Rn) be such that θ(0) = 1. For every ψ ∈ S(Rn) the limit

L(x) = lim
ε→0+

∫∫

Rn×Rn

e
i
�
p·(x−y)θ(εp)a(1

2 (x + y), p)ψ(y)dydp (10.42)

exists and is independent of the choice of the function θ.
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Proof. Define a function Lε by the formula

Lε(x) =
∫∫

Rn×Rn

e
i
�
p·(x−y)θ(εp)a(1

2 (x+ y), p)ψ(y)dydp.

For any integer N ≥ 0 we have

(1−∆y)Ne
i
�
p·(x−y) = �

−N(1 + |p|2)Ne i�p·(x−y)

hence, integrating by parts in the y variable,

Lε(x) = �
N

∫∫

Rn×Rn

e
i
�
p·(x−y)θ(εp)(1 + |p|2)−N

× (1−∆y)N
(
a(1

2 (x + y), p)ψ(y)
)
dydp.

Using Leibniz’s formula for the repeated derivatives of a product we have

(1−∆y)N
(
a(1

2 (x+ y), p)ψ(y)
)

=
∑

|α|≤N

1
α!

(Dα
xa)(

1
2 (x+y), p)Pα(D)ψ(y) (10.43)

where PαN (D) is the partial differential operator with symbol ∂αp
[
(1 + |p|2)N ]

. For
each fixed x ∈ R

n we have

lim
ε→0+

[

θ(εp)(1 + |p|2)−Ne i�p·(x−y)(Dα
xa)(

1
2 (x + y), p)PαN (D)ψ(y)

]

= (1 + |p|2)−Ne i�p·(x−y)(Dα
xa)(

1
2 (x + y), p)PαN (D)ψ(y).

In view of the estimate

|(Dα
xa)(

1
2 (x+ y), p)| ≤ Cα(1 + |p|2)m

there exists a constant C such that

|θ(εp)(1 + |p|2)−Ne i�p·(x−y)(Dα
xa)(

1
2 (x+ y), p)PαN (D)ψ(y)|

≤ C(1 + |p|2)−N (1 + |p|2)m|PαN (D)ψ(y)|

for y and p in R
n. Since the function

(y, p) �−→ (1 + |p|2)−N (1 + |p|2)m|PαN (D)ψ(y)|

is in L1(Rn) as soon as N > (m + n)/2 it follows from (10.43) and Lebesgue’s
dominated convergence theorem that limε→0+ Lε(x) exists and is independent of
the choice of θ. �

Exercise 227. Show, using the formulas in the proof, that the convergence in
formula (10.42) is uniform with respect to the variable x.
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The limit (10.42) is called an “oscillatory integral”, and one often uses the
notation

L(x) =
(

1
2π�

)n ˜
∫∫

Rn×Rn

e
i
�
p·(x−y)a(1

2 (x + y), p)ψ(y)dydp.

Provided that some care is taken one can work with oscillatory integrals very much
like with ordinary integrals in their evaluation (see Chazarain and Piriou [25] for
more on this topic and various extensions).

10.5 Regularity results for Weyl operators

10.5.1 Some general results

Let us begin with a modest goal and see what happens if we assume that aσ is
absolutely integrable. Recall that if A is an operator from a Banach space B to a
Banach space B′ then the operator norm ‖A‖ is defined by

‖A‖ = inf {M : ‖Af‖B′ ≤M‖f‖B, f ∈ B} .

We have the following precise result:

Proposition 228. Assume that aσ ∈ L1(Rn⊕R
n) [equivalently a ∈ FL1(Rn⊕R

n)]
and ψ ∈ S(Rn). Then:

(i) The operator Â
Weyl←→ a is continuous on S(Rn⊕R

n) for the induced L2-norm;
in fact

‖Âψ‖L2(Rn) ≤
(

1
2π�

)2n ‖aσ‖L1(Rn)‖ψ‖L2(Rn) (10.44)

hence the operator norm of Â on L2(Rn) satisfies

‖Â‖ ≤ (
1

2π�

)2n ‖aσ‖L1(Rn). (10.45)

(ii) Â extends into a bounded operator L2(Rn) −→ L2(Rn), which will also be
denoted Â.

Proof. Statement (ii) immediately follows from (i), using the density of S(Rn) in
L2(Rn). Formula (10.45) is equivalent to formula (10.44). The kernel of Â is given
by

KÂ(x, y) =
(

1
2π�

)n/2
F2(1

2 (x+ y), y − x)
where F2 is the Fourier transform in the p variables. By the Fourier inversion
formula we have

F2a(1
2 (x+ y), y − x) =

(
1

2π�

)n/2
∫

Rn

e
i

2�
(x+y)·ξF (ξ, y − x)dξ
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and hence
KÂ(x, y) =

(
1

2π�

)n
∫

Rn

e
i

2�
(x+y)·ξFa(ξ, y − x)dξ.

It follows that
∫

|KÂ(x, y)|dx ≤ (
1

2π�

)n
∫∫

Rn×Rn

|Fa(ξ, y − x)|dξdx,
∫

|KÂ(x, y)|dy ≤ (
1

2π�

)n
∫∫

Rn×Rn

|Fa(ξ, y − x)|dξdy.

Setting η = y − x we have
∫∫

Rn×Rn

|Fa(ξ, y − x)|dξdx =
∫∫

Rn×Rn

|Fa(ξ, η)|dξdη

hence the two inequalities above can be rewritten, in view of the first equality
(8.27), in the form

∫

Rn

|KÂ(x, y)|dx ≤ (
1

2π�

)n ‖aσ‖L1,

∫

Rn

|KÂ(x, y)|dy ≤ (
1

2π�

)n ‖aσ‖L1.

The rest of the proof of the inequality (10.44) goes as follows: setting C =
(2π�)−n‖aσ‖L1 we have, using Cauchy–Schwarz’s inequality,

|Âψ(x)|2 ≤
∫

Rn

|KÂ(x, y)|dny
∫

Rn

|KÂ(x, y)| |ψ(y)|2dy

≤ C2

∫

Rn

|KÂ(x, y)| |ψ(y)|2dy

and hence
∫

Rn

|Âψ(x)|2dx ≤ C2

∫

Rn

(∫

Rn

|KÂ(x, y)|dx
)

|ψ(y)|2dy,

that is ∫

Rn

|Âψ(x)|2dx ≤ C2

∫

Rn

|ψ(y)|2dy

which is precisely the estimate (10.44). �

The study of regularity properties of Weyl operators on L2(Rn) has become
something of an industry since the early 1990s. One of the most known (and cer-
tainly most useful!) results nevertheless goes back to an older paper of Cordes [29]:

Proposition 229. Assume that the symbol a satisfies the conditions ∂αx ∂
β
p a ∈

L∞(Rn ⊕ R
n) for all multi-indices α, β such that |α|, |β| ≤ [n/2] + 1. Then

the operator Â
Weyl←→ a is bounded on the space L2(Rn).
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The conditions on the multi-indices α, β in the result above are rather sharp;
see Boulkhemair [21] for a discussion of these conditions and references to previous
work (in addition there is a detailed discussion of L2-boundedness for operators
with symbols in the Hörmander classes Smρ,δ).

10.5.2 Symbols in Lq spaces

In his book [163] Wong has analyzed in detail regularity results for Weyl operators
with symbols in the Lq spaces, and has given conditions for these operators to be
continuous, compact, and Hilbert–Schmidt. We refer to Wong’s work for details,
and limit ourselves here to a few statements.

We begin by proving a boundedness result when the symbol a belongs to the
space L2(Rn ⊕ R

n) of square integrable functions. It is a nice application of the
Moyal identity

(W (ψ, φ)|W (ψ′, φ′))L2(R2n) =
(

1
2π�

)n (ψ|ψ′)L2(Rn)(φ|φ′)L2(Rn). (10.46)

Proposition 230. Let Â
Weyl←→ a with a ∈ L2(Rn ⊕ R

n). Then the Weyl operator Â
is bounded on L2(Rn) and we have the estimate

‖Âψ‖L2(Rn) ≤
(

1
2π�

)n ‖a‖L2(R2n)‖ψ‖L2(Rn) (10.47)

for all functions ψ ∈ L2(Rn).

Proof. It is no restriction to assume that Âψ 
= 0. Assume first that a ∈ S(Rn ⊕
R
n). Then, for every ψ, φ ∈ S(Rn) we have, in view of (10.8),

(Âψ|φ)L2 =
∫

R2n
a(z)W (ψ, φ)(z)dz

and hence, using successively the Cauchy–Schwarz inequality and the Moyal iden-
tity (10.46),

|(Âψ|φ)L2 | ≤ ‖a‖L2‖W (ψ, φ)‖L2

≤ (
1

2π�

)n ‖a‖L2‖ψ‖L2‖φ‖L2.

Since Âψ ∈ S(Rn) we may choose φ = Âψ and the inequality above then becomes

‖Âψ‖2L2 ≤
(

1
2π�

)n ‖a‖L2‖ψ‖L2‖Âψ‖L2 .

Dividing both sides by ‖Âψ‖L2 yields the estimate (10.47) in the considered case.
The general case follows in view of the density of S(Rn) in L2(Rn) and that of
S(Rn ⊕ R

n) in L2(Rn ⊕ R
n). �



10.5. Regularity results for Weyl operators 161

Recall that Lq(Rn ⊕R
n) (1 ≤ q <∞) is the Banach space of all measurable

functions a : R
n ⊕ R

n −→ C such that

‖a‖q =
(∫

R2n
|a(z)|qdz

)1/q

<∞

(these spaces will be studied in some detail in Chapter 17).
The result above extends to the case of Lq spaces with 1 ≤ q < 2; we will

not prove this here and refer to Wong [163], Theorem 1.1:

Proposition 231. Let Â Weyl←→ a with a ∈ Lq(Rn ⊕ R
n), 1 ≤ q < 2. The Weyl

operator Â is bounded on L2(Rn) and there exists a constant Cq only depending
on q such that

‖Âψ‖L2(Rn) ≤ Cq‖a‖Lq(R2n)‖ψ‖L2(Rn)

for all ψ ∈ L2(Rn).

When 2 < q <∞ one can no longer expect L2 boundedness; in fact one can
show that for each q such that 2 < q <∞ there exists a symbol a ∈ Lq(Rn ⊕R

n)

such that Â
Weyl←→ a is not a bounded operator on L2(Rn) (for a proof of this result

we refer to Wong [163], Theorem 13.1).



Chapter 11

Coherent States and
Anti-Wick Quantization

The theory of coherent states plays an important role in various aspects of repre-
sentation theory, and of, course, in quantum mechanics from which it originates.
Historically, the notion of coherent state goes back to Schrödinger’s 1926 work [143]
on non-dispersing wavepackets for a harmonic oscillator. In 1932 von Neumann
[130] considered sets of coherent states associated with a division of phase space
into quantum cells. The modern theory was initiated by Glauber’s 1963 work [62]
in quantum optics (Glauber was awarded the 2005 Nobel Prize in Physics for his
contributions; we mention that there was a controversy about priorities involving
the physicist Sudarshan, also famous for his work on coherent states). The theory
of coherent states has since then been applied to a variety of problems in math-
ematics and mathematical physics, and has been extended in various directions,
for instance within the framework of anti-Wick (also called Toeplitz, or Berezin)
quantization (Berezin [13]) which we will study later in this chapter.

11.1 Coherent states

Much of the material of this section is inspired by Littlejohn’s seminal paper
[117]. We begin with an easy physical motivation of coherent states as “minimum
uncertainty wavepackets”.

11.1.1 A physical motivation

Consider the Hamiltonian function

H(z) =
1

2m
p2 +

1
2
mω2x2
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of the harmonic oscillator in one dimension; the eigenvalues of the corresponding
Weyl operator

Ĥ = − �

2m
∂2

∂x2
+

1
2
mω2x2

are the numbers (N + 1
2 )�ω (N = 0, 1, 2, . . . ) and the associated eigenfunctions

are the rescaled Hermite functions

ψN (x) =

√
1

2NN !

(mω

π�

)1/4

exp
(

−mω
2�

x2
)

HN

(

x

√
mω

�

)

where the HN are the Hermite polynomials

HN (x) = (−1)Nex
2 dN

dxN
ex

2
.

Let us focus on the ground state ψ0; it is given by

ψ0(x) =
(mω

π�

)1/4

exp
(

−mω
2�

x2
)

. (11.1)

This function has the following typical property: it is, to use physicists’ terminol-
ogy, a “minimum extension (or uncertainty) wavepacket”; by that we mean that
the statistical variances (∆x)ψ0 and (∆p)ψ0 are such that (∆p)ψ0(∆x)ψ0 = 1

2�

(one says that the Heisenberg inequality is “saturated by ψ0”).

Exercise 232. Show that (∆x)ψ0 = (�/2mω)1/2 and (∆p)ψ0 = (�mω/2)1/2. [Hint:
use for instance formula (11.18) to calculate explicitly Wψ0(z) and then determine
the corresponding covariance matrix.]

For more on the physical properties of the coherent state ψz0 we refer to
Messiah’s classical (but still very modern) book [123].

11.1.2 Properties of coherent states

Let us introduce the following notation for x ∈ R
n; we write

ψ�

0 (x) =
(

1
π�

)n/4
e−

1
2�

|x|2 (11.2)

and
ψ�

z0(x) = T̂ (z0)ψ�

0 (x) (11.3)

where T̂ (z0) is the Heisenberg–Weyl operator. When n = 1 the function ψ�

0 is just
the ground state (11.1) of the quantum harmonic oscillator when m = 1, ω = 1.

Definition 233. The function ψ�

0 ∈ S(Rn) defined by (11.2) is called the standard
(or fiducial1) coherent state. Let z0 = (x0, p0); the function ψ�

z0 ∈ S(Rn) defined
by (11.3) is called the coherent state centered at z0. (In the quantum mechanical
literature these states are often denoted |0〉 and |z0〉, respectively.)
1In the sense of something taken as an origin or zero of reference – not in the legal sense!
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In physics one also sometimes calls ψ�

0 the “vacuum state”. In signal analysis
(particularly wavelet theory) one often uses the terminology “mother wavelet”.

We begin by proving that the set of all translations of the standard coher-
ent states span a dense subset of L2(Rn). Our proof is elementary, and relies on
Plancherel’s formula; Gröchenig [82] (Lemma 1.5.3) gives a related proof of this
property, which he then uses to derive Plancherel’s formula. More precisely:

Proposition 234. Let T (x0) be the translation operator x �−→ x + x0 on R
n and

define T (x0)ψ(x) = ψ(x − x0). The linear spans of sets {T (x0)ψ : x0 ∈ R
n} and

{ψ�

z0 : z0 ∈ R
n} are dense in the space L2(Rn) of square integrable functions.

Proof. We will only prove the assertion for the set {T (x0)ψ : x0 ∈ R
n}; the case

of {ψ�

z0 : z0 ∈ R
n} is an immediate adaptation. Let ψ ∈ L2(Rn); since ψ� is even

we have

〈ψ, T (x0)ψ�〉 =
∫

Rn

ψ(x)ψ�(x− x0)dx = ψ ∗ ψ�(x0).

Thus 〈ψ, T (x0)ψ�〉 = 0 for all ψ implies that ψ ∗ ψ� = 0, and hence FψFψ� = 0,
that is Fψ = 0 since Fψ� > 0. In view of Plancherel’s formula ‖Fψ‖L2 = ‖ψ‖L2

and thus ψ = 0 almost everywhere. It follows that there are no non-trivial vectors
which are orthogonal to the span of the set {ψ�

z0 : z0 ∈ R
n} and hence the span of

{T (x0)ψ : x0 ∈ R
n} is dense in L2(Rn). �

Note that in the proof above the fact that we were using the standard coherent
state was not essential: we could actually replace ψ� with any function φ ∈ L2(Rn)
such that Fφ never vanishes.

It follows from Proposition 234 that the space of functions spanned by the
{ψ�

z0 : z0 ∈ R
n} is also dense in the space L2(Rn), since it contains the span. Let

us develop this property:

Proposition 235. The coherent states ψ�

z0 have the following properties:

(i) They satisfy the generalized orthogonality relations

(
1

2π�

)n
∫

R2n
ψ�

z0(x)ψ
�
z0(y)dz0 = δ(x − y); (11.4)

(ii) For every ψ ∈ L2(Rn) we have

‖ψ‖2L2 =
(

1
2π�

)n
∫

R2n
|(ψ|ψ�

z0)L2(Rn)|2dz0 (11.5)

and

ψ(x) =
(

1
2π�

)n
∫

R2n
(ψ|ψ�

z0)L2(Rn)ψ
�

z0(x)dz0. (11.6)
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Proof of (i). We have

(ψ, ψ�

z0)L2 = e
i

2�
p0·x0

∫

Rn

e−
i
�
p0·xψ(x)e−

1
2�

(x−x0)
2
dx

= (2π�)n/2 e
i
2�
p0·x0F (ψψ�(· − x0))(p0)

hence, by Plancherel’s theorem,

∫

R2n
|(ψ, ψ�

z0)L2 |2dz0 = (2π�)n
∫

Rn

‖ψψ�((·) − x0)‖2L2dx0

= (2π�)n
∫

Rn

|ψ(x)|2
(∫

Rn

|ψ�(x− x0)|2dx0

)

dx

= (2π�)n ‖ψ‖2L2.

Proof of (ii). We have
∫

R2n
ψ�

z0(x)ψ
�
z0(y)dz0 =

∫

R2n
e
i
�
p0·(x−y)ψ�(x − x0)ψ�(y − x0)dz0

=
∫

Rn

(∫

Rn

e
i
�
p0·(x−y)dp0

)

ψ�(x− x0)ψ�(y − x0)dx0

= (2π�)n
∫

Rn

δ(x − y)ψ�(x− x0)ψ�(y − x0)dx0

= (2π�)n
(∫

Rn

|ψ�(x− x0)|2dx0

)

δ(x− y)

= (2π�)n δ(x− y)

which proves (11.4). Formula (11.6) follows since we have

ψ(x) =
∫

Rn

δ(x− y)ψ(y)dy

=
(

1
2π�

)n
∫∫

Rn×R2n
ψ�

z0(x)ψ
�
z0 (y)ψ(y)dydz0

=
(

1
2π�

)n
∫

R2n

(∫

Rn

ψ�
z0(y)ψ(y)dy

)

ψ�

z0(x)dz0

=
(

1
2π�

)n
∫

R2n
(ψ|ψ�

z0)L2(Rn)ψ
�

z0(x)dz0. �

Exercise 236. Restate formulas (11.5) and (11.6) in terms of the cross-ambiguity
and Wigner distributions.

The result above leads to interesting expressions in terms of coherent states
for the kernel and Weyl symbol of an operator:
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Proposition 237. Let Â be a continuous linear operator S(Rn) −→ S′(Rn) with
kernel KÂ; we have

KÂ(x, y) =
(

1
2π�

)n
∫

R2n
Âψ�

z0(x)ψ
�
z0(y)dz0 (11.7)

and the Weyl symbol a
Weyl←→ Â is given by

a(z) =
∫

R2n
W (Âψ�

z0 , ψ
�

z0)(z)dz0. (11.8)

Proof. We have

Âψ�

z0(x) =
∫

Rn

KÂ(x, x′)ψ�

z0(x
′)dx′

hence, using formula (11.4),
∫

R2n
Âψ�

z0(x)ψ
�
z0(y)dz0 =

∫

R×R2n
KÂ(x, x′)ψ�

z0(x
′)ψ�

z0(y)dx
′dz0

= (2π�)n
∫

Rn

KÂ(x, x′)δ(y − x′)dx′

= (2π�)nKÂ(x, y)

that is (11.7). Formula (11.8) for the symbol readily follows: using successively
(10.15) in Proposition 205 and (11.7) we have

a(x, p) =
∫

Rn

e−
i
�
p·yKÂ(x+ 1

2y, x− 1
2y)dy

=
(

1
2π�

)n
∫

Rn

e−
i
�
p·y

(∫

R2n
Âψ�

z0(x+ 1
2y)ψ

�
z0(x− 1

2y))dz0

)

dy

=
∫

R2n
W (Âψ�

z0 , ψ
�

z0)(z)dz0

which concludes the proof. �

In Section 8.4 we discussed the notion of frame. This notion can be generalized
to the continuous case, and this will allow us to interpret the results above. Let
us first give the following definition:

Definition 238. Let H be a complex Hilbert space and (M,µ) a measure space
with positive measure µ. A continuous (or generalized) frame in H is a family of
vectors (ψz)z∈M in H such that:

(i) For every ψ ∈ H the mapping z �−→ (ψ|ψz)H is a measurable function on
(M,µ);
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(ii) There exist constants a, b > 0 such that

a‖ψ‖2H ≤
∫

M

|(ψ|ψz)H|2dµ(z) ≤ b‖ψ‖2H (11.9)

for every vector ψ ∈ H.

When a = b (resp. a = b = 1) the family (ψz)z∈M is called a tight (resp.
normalized) continuous frame.

In what follows we chooseH = L2(Rn) andM = R
2n; µ is the usual Lebesgue

measure.

Proposition 239. The family (ψ�

z )z∈R2n is a continuous tight Gabor frame in
L2(Rn) with bound (2π�)n.

Proof. We have by definition ψ�

z = T̂ (z)ψ�

0 , hence

(ψ|ψ�

z )L2 = (2π�)nA(ψ, ψ�

0 )(z)

thus the mapping z �−→ (ψ|ψ�

z )L2 is continuous and hence measurable. In view of
formula (11.5) in Proposition 235 we have

(2π�)n ‖ψ‖2L2 =
∫

R2n
|(ψ|ψ�

z0)L2(Rn)|2dz0

hence (ψ�

z )z∈R2n is a tight frame. �

Much of what we have said above is not specific to the choice ψ�

z0 and remains
valid in a much more general setting. We refer to Peremolov’s paper [132] for a
generalization scheme useful for various physical problems that have dynamical
symmetries. From a more abstract point of view one can define a very general
notion of coherent states in Hilbert spaces as follows (see Kisil [108]):

Definition 240. Let H be a Hilbert space and G a Lie group with Haar measure µ
acting on H. A family {ψg ∈ H : g ∈ G} is called a system of coherent states if

(i) There is a representation T : g �−→ Tg of the group G by unitary operators
on H;

(ii) There is a vector ψ0 ∈ H such that for ψg = Tgψ0 and every ψ ∈ H we have

‖ψ‖2H =
∫

G

|(ψ|ψg)H|2dµ. (11.10)

The coherent states we have been studying above correspond to the choices
H = L2(Rn), G = Hn (the Heisenberg group); the representation T is of course
here the mapping (z0, t) �−→ T̂ (z0, t) where

T̂ (z0, t)ψ(x) = e
i
�

(tp0·x− 1
2 t

2p0·x0)ψ(x− tx0)

(see formula (8.4) in Chapter 8).
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11.2 Wigner transforms of Gaussians

In Chapter 6 (Proposition 106) we expressed Hardy’s multi-dimensional uncer-
tainty principle in terms of the topological notion of symplectic capacity studied
in Chapter 5. We are going to see that similar methods allow us to show that the
Wigner transform cannot be “too concentrated” in phase space; the result can be
expressed in terms of the symplectic capacity of the “Wigner ellipsoid”.

11.2.1 Some explicit formulas

Let us begin by giving a formula allowing us to calculate the Fourier transform

Fψ(x) =
(

1
2π�

)n/2
∫

Rn

e−
i
�
x·x′

ψ(x′)dx′

of a complex Gaussian function:

Lemma 241. Let φM (x) = e−
1
2�
Mx2

where M = X + iY is a symmetric complex
n× n matrix such that X = ReM > 0. We have

FφM (x) = (detM)−1/2φM−1 (x) (11.11)

where (detM)−1/2 is given by the formula

(detM)−1/2 = λ
−1/2
1 · · · λ−1/2

m ,

the numbers λ−1/2
1 , . . . , λ

−1/2
n being the square roots with positive real parts of the

eigenvalues λ−1
1 , . . . , λ−1

m of M−1.

Proof. It is standard, generalizing from the case n = 1 and using a simultaneous
diagonalization of X and Y . See, e.g., Folland [59], Appendix A. �

From now on we denote by ψ�

M the Gaussian function defined by

ψ�

M (x) =
(

1
π�

)n/4 (detX)1/4e−
1
2�
Mx2

(11.12)

where M is as above. The coefficient in front of the exponential is chosen so
that ψ�

M is normalized to unity: ‖ψ�

M‖L2 = 1. Gaussians of this type are called
“squeezed coherent states”; they will be studied in detail in Chapter 11. Note that
since X > 0 we have ψ�

M ∈ S(Rn) and hence Wψ�

M ∈ S(Rn ⊕ R
n). The following

result shows that Wψ�

M is in fact a phase space Gaussian of a very special type:

Proposition 242. Let M = X + iY and ψ�

M be defined as above.

(i) The Wigner transform Wψ�

M is the phase space Gaussian

Wψ�

M (z) =
(

1
π�

)n
e−

1
�
Gz2 (11.13)
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where G is the symmetric matrix

G =
(
X + Y X−1Y Y X−1

X−1Y X−1

)

; (11.14)

(ii) We have G ∈ Sp(2n,R); in fact G = STS where

S =
(

X1/2 0
X−1/2Y X−1/2

)

(11.15)

is a symplectic matrix.

Proof of (i). Set C(X) = (π�)−n/4 (detX)1/4. By definition of the Wigner trans-
form we have

Wψ�

M (z) =
(

1
2π�

)n
C(X)2

∫

Rn

e−
i
�
p·ye−

1
2�
F (x,y)dy (11.16)

where the phase F is defined by

F (x, y) = (X + iY )(x+ 1
2y)

2 + (X − iY )(x − 1
2y)

2

= 2Xx · x+ 2iY x · y + 1
2Xy · y

and hence

Wψ�

M (z) =
(

1
2π�

)n
e−

1
�
Xx2

C(X)2
∫

Rn

e−
i
�
(p+Y x)·ye−

1
4�
Xy2

dy.

Using the Fourier transformation formula (11.11) above with x replaced by p+Y x
and M by 1

2X we get

∫

Rn

e−
i
�
(p+Y x)·ye−

1
4�
Xy·ydy = (2π�)n/2

[
det(1

2X)
]−1/2

× C(X)2 exp
[− 1

�
X−1(p+ Y x) · (p+ Y x)

]
.

On the other hand we have

(2π�)n/2
[
det(1

2X)
]−1/2

C(X)2 =
(

1
π�

)n

and hence
Wψ�

M (z) =
(

1
π�

)n
e−

1
�
Gz2

where
Gz2 = (X + Y X−1)x · x+ 2X−1Y x · p+X−1p · p;

Proof of (ii). The symmetry of G is obvious, and so is the factorization G = STS.
One immediately verifies that STJS = J hence S ∈ Sp(2n,R) as claimed. �
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Exercise 243. Verify directly that Wψ�

M is normalized to unity by making the
change of variables u = Sz in the integral in formula (11.16).

In particular, when ψ�

0 is the “coherent state” defined by

ψ�

0 (x) =
(

1
π�

)n/4
e−

1
2�

|x|2 (11.17)

we immediately get from (11.13) and (11.14) the formula

Wψ�

0 (z) =
(

1
π�

)n
e−

1
�
|z|2 (11.18)

well known from quantum mechanics.

11.2.2 The cross-Wigner transform of a pair of Gaussians

Let us generalize formula (11.13) by calculating the cross-Wigner transform
W (ψ�

M , ψM ′) of a pair of Gaussians of the type above; we recall that the Wigner-
Moyal transform of ψ, φ ∈ S(Rn) is defined by

W (ψ, φ)(z) =
(

1
2π�

)n
∫

Rn

e−
i
�
p·yψ(x + 1

2y)φ(x− 1
2y)dy. (11.19)

Proposition 244. Let ψ�

M and ψ�

M ′ be Gaussian functions of the type (11.12). We
have

W (ψ�

M , ψ
�

M ′)(z) =
(

1
π�

)n
CM,M ′e−

1
�
Fz2 (11.20)

where CM,M ′ is a constant given by

CM,M ′ = (detXX ′)1/4 det
[

1
2 (M +M ′)

]−1/2
(11.21)

and F is the symmetric complex matrix given by

F =
(

2M ′(M +M ′)−1M −i(M −M ′)(M +M ′)−1

−i(M +M ′)−1(M −M ′) 2(M +M ′)−1

)

. (11.22)

Proof. We have

W (ψ�

M , ψ
�

M ′)(z) = C(X,X ′)
∫

Rn

e−
i
�
pye−

1
2�

Φ(x,y)dy

where the functions C and Φ are given by

C(X,X ′) = 2−n
(

1
π�

)2n (detXX ′)1/4,

Φ(x, y) = M(x+ 1
2y)

2 +M ′(x− 1
2y)

2.

Let us evaluate the integral

I(z) =
∫

Rn

e−
i
�
pye−

1
2�

Φ(x,y)dy.
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We have

Φ(x, y) = (M +M ′)x2 +
1
4
(M +M ′)y2 + (M −M ′)x · y

and hence

I(z) = e−
1
2�

(M+M ′)x2
∫

Rn

e−
i
�
[p− i

2 (M−M ′)x]·ye−
1
8�

(M+M ′)y2
dy.

Using the Fourier transformation formula (11.11) we get

I(z) = (2π�)n/2 det
[

1
4 (M +M ′)

]−1/2

× exp
(

− 1
2�

[

(M +M ′)x2 + 4(M +M ′)−1
(
p− 1

2 (M −M ′)x
)2

])

.

A straightforward calculation shows that

1
2 (M +M ′)x2 + 4(M +M ′)−1

(
p− 1

2 (M −M ′)x
)2

= Fz · z
where F is the matrix

(
K −i(M −M ′)(M +M ′)−1

−i(M +M ′)−1(M −M ′) 2(M +M ′)−1

)

(11.23)

with left upper block

K = 1
2

[
M +M ′ − (M −M ′)(M +M ′)−1(M −M ′)

]
.

Using the identity

M +M ′ − (M −M ′)(M +M ′)−1(M −M ′) = 4M ′(M +M ′)−1M (11.24)

the matrix (11.23) is given by (11.22). We thus have, collecting the constants and
simplifying the obtained expression,

W (ψ�

M , ψ
�

M ′)(z) =
(

1
π�

)n (detXX ′)1/4 det
[
1
2 (M +M ′)

]−1/2
e−

1
�
Fz2

which we set out to prove. �
Exercise 245. Check the matrix identity (11.24) above and verify that when M =
M ′ the matrix F is identical to the matrix G in formula (11.14) for the Wigner
transform of a Gaussian.

11.3 Squeezed coherent states

We have seen that the usual coherent states are minimum extension wavepackets,
in the sense that the Heisenberg inequalities become equalities for these states.
However, this property is not characteristic of these coherent states.
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11.3.1 Definition and characterization

We define the squeezed coherent states in terms of their Wigner transform:

Definition 246. A function ψ ∈ S(Rn) is called a (normalized) squeezed coherent
state if its Wigner transform is

Wψ(z) =
(

1
π�

)n
e−

1
�
G(z−z0)2 (11.25)

where G ∈ Sp(2n,R) is positive definite: G = GT > 0 and z0 ∈ R
2n.

Recall that
Wψ�

0 (z) =
(

1
π�

)n
e−

1
�
|z|2 (11.26)

(formula (11.18) hence, with this terminology, ψ�

0 is itself a squeezed coherent
state. Let ψ�

M be given by (11.12), that is

ψ�

M (x) =
(

1
π�

)n/4 (detX)1/4e−
1
2�
Mx2

(11.27)

with M = X+iY , X and Y symmetric, X > 0. Using Proposition 242 and formula
(9.24) in Proposition 174, we see that every function of the type T̂ (z0)ψ�

M satisfies
(11.25) with

G =
(
X + Y X−1Y Y X−1

X−1Y X−1

)

; (11.28)

moreover G = STS with

S =
(

X1/2 0
X−1/2Y X−1/2

)

. (11.29)

We are going to see that every squeezed coherent state is of the type T̂ (z0)ψ�

M

and that it can be obtained from the standard coherent state ψ�

0 using the affine
metaplectic group AMp(2n,R).

Proposition 247. A function ψ is a squeezed coherent state if and only if there
exists Ŝ ∈Mp(2n,R) and z0 ∈ R

2n such that

ψ = eiγT̂ (z0)Ŝψ�

0

where ψ�

0 is the standard coherent state and γ is real.

Proof. We first remark that the relation

W (eiγ T̂ (z0)Ŝψ�

0 )(z) = W (Ŝψ�

0 )(z − z0)
reduces the proof to case z0 = 0. Let us thus show that if

Wψ(z) =
(

1
π�

)n
e−

1
�
Gz2
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with G > 0 and symplectic, then ψ is equal to Ŝψ�

0 (up to a complex factor
with modulus 1) for some metaplectic operator Ŝ. We may write G = S2 where
S ∈ Sp(2n,R) is symmetric (Corollary 33). Thus

Wψ(S−1z) =
(

1
π�

)n
e−

1
�
|z|2 = Wψ�

0 (z).

In view of the metaplectic covariance formula (10.27) for Wigner transforms we
have Wψ(S−1z) = W (Ŝψ)(z) where Ŝ ∈ Mp(2n,R) is such that πMp(Ŝ) = S; it
follows that ψ = eiγ . We will see in a moment how to calculate explicitly Ŝψ�

0 ,
but let us first note that an immediate consequence of the discussion above is that
the metaplectic group acts on squeezed coherent states. Let us introduce some
notation: �
Notation 248. The set of all squeezed coherent states is denoted by Σ�(n); the
subset consisting of all centered squeezed coherent state is denoted by Σ�

0(n).

It turns out that we have a continuous group action

Mp(2n,R)× Σ�

0(n) −→ Σ�

0(n),

(Ŝ, ψ�

M ) �−→ Ŝψ�

M .

In fact, every ψ�

M ∈ Σ�

0(n) can be written ŜMψ�

0 for some ŜM ∈ Mp(2n,R) hence
Ŝψ�

M = (ŜŜM )ψ�

0 is also a squeezed coherent state. The action of Mp(2n,R) on
Σ�

0(n) is transitive: for every pair (ψ�

M , ψ
�

M ′ ) ∈ Σ�

0(n)×Σ�

0(n) we have ψ�

M = Sψ�

M ′

with Ŝ = Ŝ−1
M ′ ŜM if ψ�

M = ŜMψ
�

0 and ψ�

M ′ = ŜM ′ψ�

0 . These elementary remarks
lead to an interesting topological identification of Σ�

0(n): we have

Σ�

0(n) ≡ Mp(2n,R)/U(2n,R). (11.30)

This is easily seen as follows: by the theory of homogeneous spaces there is a
bijection of Σ�

0(n) on every coset space Mp(2n,R)/St(ψ) where

St(ψ) = {Ŝ ∈Mp(2n,R) : Ŝψ = ψ}
is the stabilizer (or isotropy subgroup) of ψ. Let us choose in particular ψ = ψ�

0 , the
standard coherent state. The stabilizer of ψ�

0 consists of all metaplectic operators
Ŝ such that Ŝψ�

0 = ψ�

0 , that is W (Ŝψ�

0 ) = Wψ�

0 . Since Wψ�

0 (z) = (π�)−n e−
1
�
|z|2

(formula (11.26) and W (Ŝψ�

0 )(z) = W (ψ�

0 )(S−1z) the condition W (Ŝψ�

0 ) = Wψ�

0

is equivalent to |S−1z|2 = |z|2 hence S must be a symplectic rotation, i.e.,

S ∈ Sp(2n,R) ∩O(2n,R) = U(2n,R)

whence the identification (11.30).

Problem 249. Show that there is a natural action

AMp(2n,R)× Σ�(n) −→ Σ�(n),

(ŜT̂ (z), ψ�

z0,M ) �−→ ŜT̂ (z)ψ�

z0,M

and generalize the discussion above to this case.
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11.3.2 Explicit action of Mp(2n,R) on squeezed states

Recall that the affine metaplectic group AMp(2n,R) consists of all operators
T̂ (z0)Ŝ (or ŜT̂ (z0)) where Ŝ ∈ Mp(2n,R) and z0 ∈ R

2n.We will need the fol-
lowing factorization formula for symplectic matrices (it is a refinement of the po-
lar decomposition result in Proposition 34). It is sometimes called a pre-Iwasawa
factorization in the theory of Lie groups.

Proposition 250. Let S =
(
A B
C D

)

be a symplectic matrix. We have a unique

factorization

S =
(
I 0
P I

)(
L 0
0 L−1

)(
U V
−V U

)

(11.31)

where P = PT , L = LT (detL 
= 0), X, and Y are given by the formulas

P = (CAT +DBT )(AAT +BBT )−1 (11.32)

L = (AAT +BBT )1/2 (11.33)

U = (AAT +BBT )−1/2A (11.34)

V = (AAT +BBT )−1/2B. (11.35)

The proof of this proposition is given in detail in de Gosson [67], Chapter 2,
§2.2.2. Note that we have

R =
(
U V
−V U

)

∈ U(2n,R)

and hence RRT = RTR = I because R is a symplectic rotation (see Subsection
2.3.2).

Exercise 251. Show that every symplectic matrix S =
(
A B
C D

)

can be written in

the form

S =
(
L 0
Q L−1

)(
U V
−V U

)

(11.36)

where Q is given by the formula

Q = (CAT +DBT )(AAT +BBT )−1/2. (11.37)

Recall from Proposition 242 that the Wigner transform of a Gaussian

ψ�

M (x) =
(

1
π�

)n/4 (detX)1/4e−
1
2�
Mx2

is given by the formula

Wψ�

M (z) =
(

1
π�

)n
e−

1
�
Gz2 (11.38)
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where G = STS is symplectic matrix, the matrix S being given by

S =
(

X1/2 0
X−1/2Y X−1/2

)

, (11.39)

that is

G =
(
X + Y X−1Y Y X−1

X−1Y X−1

)

. (11.40)

The following result is an easy consequence of the formulas above:

Proposition 252. Let Ŝ ∈Mp(2n,R) have projection S =
(
A B
C D

)

on Sp(2n,R).

We have
Ŝψ�

0 (x) = eiγ
(

1
π�

)n/4 (detX)1/4e−
1
2�
Mx2

(11.41)

where the phase γ is a real constant and M = X + iY where X and Y are real
symmetric matrices given by

X = (AAT +BBT )−1, (11.42)

Y = (CAT +DBT )(AAT +BBT )−1. (11.43)

Proof. We have W (Ŝψ�

0 )(z) = W (ψ�

0 )(S−1z) and hence, using formula (11.26),

W (Ŝψ�

0 )(z) =
(

1
π�

)n
e−

1
�

(S−1)TS−1z2 . (11.44)

Using formula (2.6) for the inverse of a symplectic matrix we have

(S−1)TS−1 =
(
CCT +DDT −DBT − CAT
−BDT −ACT AAT +BBT

)

and hence, comparing with (11.40),

X + Y X−1Y = CCT +DDT , Y X−1 = −DBT − CAT ,
X−1Y = −BDT −ACT , X−1 = AAT +BBT .

Solving this system of matrix equations yields the solutions (11.42) and (11.43).
That Ŝψ�

0 (x) is given by (11.41) follows from the fact that the Wigner transform of

ψ�

M (x) = eiγ
(

1
π�

)n/4 (detX)1/4e−
1
2�
Mx2

is given by (11.38). �

One can use formula (11.44) to describe the action of Ŝ ∈ Mp(2n,R) on
general squeezed coherent states. However the formulas and calculations are rather
lengthy, and in addition it is not immediate that the exact phase factor here is
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another method, which has a pleasant geometrical flavor. Let us denote by Σn the
Siegel half-space, that is

Σn = {Z : Z = ZT , ImM > 0}
where Z denotes a complex n×n matrix. We have the following interesting result
which describes the action of fractional linear transforms on the Siegel half-space:

Proposition 253. Let S ∈ Sp(2n,R) be given by (2.3) and Z ∈ Σn. Then det(A+
BZ) 
= 0, det(C +DZ) 
= 0 and

α(S) = (C +DZ)(A+BZ)−1 ∈ Σn (11.45)

(in particular α(S) is symmetric), and

α(SS′) = α(S)α(S′). (11.46)

The action Sp(2n,R)× Σn −→ Σn thus defined is transitive.

(Proof omitted; see Folland [59] or Littlejohn [117].)

Let Ŝ ∈ Mp(2n,R) have projection S = πMp(Ŝ) =
(
A B
C D

)

on Sp(2n,R);

one then proves that

Ŝψ�

0 (x) =
(

1
π�

)n/4
im(Ŝ)

√
det(A+ iB)

exp
[

− 1
2�
α(S)x2

]

where the branch cut of the square root of det(A+ iB) is taken to lie just under
the positive real axis; m(Ŝ) is the Maslov index of Ŝ. It follows from this formula
that a squeezed state of the type Ŝψ�

z0(x) is easily calculated: since by definition
ψ�

z0 = T̂ (z0)ψ�

0 , the metaplectic covariance formula ŜT̂ (z0)Ŝ−1 = T̂ (Sz0) (see
(8.11)) immediately yields

Ŝψ�,
z0(x) = T̂ (Sz0)Ŝψ�

0 (x).

The results above can be generalized to arbitrary squeezed coherent states:
Let ψ�

z0,M
(M ∈ Σn), be a squeezed coherent state and Ŝ ∈ Mp(2n,R),

S = πMp(Ŝ). We have

Ŝψ�

0,M = ψ�

α(S)M , Ŝψ�

z0,M = T̂ (Sz0)ψ�

α(S)M .

11.4 Anti-Wick quantization

There are several equivalent ways of defining anti-Wick pseudo-differential opera-
tors (also called Toeplitz, or Berezin, operators). In this section we review several
possibilities.
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11.4.1 Definition in terms of coherent states

We recall that ψ�

0 is the standard coherent state defined by

ψ�

0 (x) =
(

1
π�

)n/4
e−

1
2�

|x|2 . (11.47)

We denote by ̂Π�

0 the orthogonal projection operator of L2(Rn) onto the ray {λψ�

0 :
λ ∈ C}, that is

̂Π�

0ψ = (ψ|ψ�

0 )L2(Rn)ψ
�

0 . (11.48)

The Weyl symbol π0 of ̂Π�

0 is (2π�)n times the Wigner transform of ψ�

0 ; in view of
formula (11.18) we have Wψ�

0 (z) = (π�)−ne−|z|2/� and hence π0(z) = 2ne−|z|2/�.
Consider now the operator Π̂�(z0) with Weyl symbol the translated Gaussian

πz0(z) = T (z0)π0(z) = 2ne−
1
�
|z−z0|2 ; (11.49)

in view of Proposition 219 we have

Π̂�(z0) = T̂ (z0)̂Π�

0 T̂ (z0)−1

where T̂ (z0) is the Heisenberg–Weyl operator. In particular we see that Π̂�(z0) is
the orthogonal projection in L2(Rn) onto the ray {λψ�

z0 : λ ∈ C} where ψ�

z0 =
T̂ (z0)ψ�

0 (see formula (11.50) below).
The following lemma contains a few useful formulas which we will use to

study anti-Wick operators;

Lemma 254. We have, for every ψ ∈ L2(Rn),

Π̂�(z0)ψ = (ψ|ψ�

z0)L2(Rn)ψ
�

z0 . (11.50)

In particular

(Π̂�(z0)ψ|φ)L2(Rn) = (ψ|ψ�

z0)L2(Rn)(ψ�

z0 |φ)L2(Rn). (11.51)

We moreover have the identities

Π̂�(z0)ψ = (2π�)nA(ψ, ψ�

0 )(z0)ψ�

z0 (11.52)

and hence

(Π̂�(z0)ψ|φ)L2(Rn) = (2π�)2nA(ψ, ψ�

0 )(z0)A(ψ�

0 , φ)(z0). (11.53)

Proof. Let ψ ∈ L2(Rn); we have

Π̂�(z0)ψ = T̂ (z0)̂Π�

0(T̂ (z0)−1ψ)

= (T̂ (z0)−1ψ|ψ�

0 )L2 T̂ (z0)ψ�

0

= (ψ|T̂ (z0)ψ�

0 )L2 T̂ (z0)ψ�

0
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(the last equality because T̂ (z0)−1 = T̂ (z0)∗) hence Π̂�(z0) is indeed the orthogonal
projection on {λψ�

z0 : λ ∈ C}. Formula (11.51) immediately follows from (11.50).
Formula (11.50) can be rewritten

Π̂�(z0)ψ = (ψ|T̂ (z0)ψ�

0 )L2(Rn)ψ
�

z0

and hence, by Definition (9.1) of the cross-ambiguity function,

Π̂�(z0)ψ = (2π�)nA(ψ, ψ�

0 )(z0)ψ�

z0

which is precisely formula (11.52). Formula (11.53) follows by a similar argument,
rewriting formula (11.51) as

(Π̂�(z0)ψ|φ)L2(Rn) = (ψ|T̂ (z0)ψ�

0 )L2(T̂ (z0)ψ�

0 |φ)L2 . �

These considerations lead to the following definition:

Definition 255. Let a ∈ S(Rn); the anti-Wick operator ÂaW with symbol a is
defined by

ÂaWψ =
∫

R2n
a(z0)Π̂�(z0)ψdz0 (11.54)

or, equivalently, by

ÂaWψ = (2π�)n
∫

R2n
a(z0)A(ψ, ψ�

0 )(z0)ψ�

z0dz0. (11.55)

We will write ÂaW
AW←→ a or a AW←→ÂaW.

The equivalence of Definitions (11.54) and (11.55) of ÂaW is immediate taking
formula (11.52) in Lemma 254 into account.

We note that if ψ ∈ S(Rn) then the function z0 �−→ Π̂�(z0)ψ is in S(R2n),
hence one can expect the definition of ÂaWψ for large classes of symbols. We will
see later that Shubin classes are excellent choices, but the following remark is
already very useful:

Proposition 256. The anti-Wick operator ÂaW is uniquely defined by the formula

(ÂaWψ|φ)L2(Rn) = (2π�)2n(aA(ψ, ψ�

0 )|A(φ, ψ�

0 ))L2(R2n). (11.56)

Proof. We have (cf. formula (11.53))

(ÂaWψ|φ)L2 = (2π�)n
∫

R2n
a(z0)A(ψ, ψ�

0 )(z0)(ψ�

z0 |φ)L2dz0

= (2π�)n
∫

R2n
a(z0)A(ψ, ψ�

0 )(z0)(φ|ψ�
z0)L2dz0

= (2π�)2n
∫

R2n
a(z0)A(ψ, ψ�

0 )(z0)A(φ, ψ�

0 )L2dz0,

hence (11.56). �
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Immediate – and very pleasant – features of anti-Wick operators are the
following self-adjointness and positivity properties:

Proposition 257. Let a be a symbol defining an anti-Wick operator ÂaW.

(i) If a is real then ÂaW is self-adjoint.
(ii) If in addition a ≥ 0 then ÂaW ≥ 0, that is (ÂaWψ|ψ)L2(Rn) ≥ 0 for all

ψ ∈ L2(Rn).

Proof of (i). We have

(ÂaWψ|φ)L2 =
∫

R2n
a(z0)(Π̂�(z0)ψ|φ)L2dz0

and, by the sesquilinearity of the L2 inner product,

(ψ|Â∗
aWφ)L2 =

∫

R2n
a∗(z0)(Π̂�(z0)φ|ψ)L2dz0.

(a∗ is the symbol of Â∗
aW). In view of formula (11.51), (11.50) we have

(Π̂�(z0)φ|ψ)L2 = (Π̂�(z0)ψ|φ)L2

hence (ÂaWψ|φ)L2 = (ψ|Â∗
aWφ)L2 when a is a real function.

Proof of (ii). We have

(ÂaWψ|ψ)L2 =
∫

R2n
a(z0)(Π̂�(z0)ψ|ψ)L2dz0;

in view of (11.50) we have

(Π̂�(z0)ψ|ψ)L2 = (ψ|ψ)2L2 ≥ 0

hence (ÂaWψ|ψ)L2 ≥ 0 if a ≥ 0. �

11.4.2 The Weyl symbol of an anti-Wick operator

Every anti-Wick operator S(Rn) −→ S′(Rn) can be viewed as a Weyl operator. We
are going to determine the Weyl symbol of ÂaW, but let us first recall (Proposition

200) that if Â
Weyl←→ a then we have

(Âψ|φ)L2(Rn) =
∫

R2n
a(z)W (ψ, φ)(z)dz (11.57)

for all ψ and φ in S(Rn).
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Proposition 258. The Weyl symbol aw of the anti-Wick operator ÂaW
AW←→ a is

given by the convolution formula

aw(z) =
∫

R2n
e−

1
�
|z−z0|2a(z0)dz0. (11.58)

Proof. We have, by Definition (11.54),

(ÂaWψ|φ)L2 =
∫

R2n
a(z0)(Π̂�(z0)ψ|φ)L2dz0

that is, taking formulas (11.57) and (11.49) into account:

(ÂaWψ|φ)L2 = 2n
∫

R2n
a(z0)

(∫

R2n
e−

1
�
|z−z0|2W (ψ, φ)(z)dz

)

dz0

= 2n
∫

R2n

(∫

R2n
a(z0)e−

1
�
|z−z0|2dz0

)

W (ψ, φ)(z)dz

hence (11.58), using again (11.57). �

We notice that in view of formula (11.58) the Weyl symbol of an anti-Wick
operator is real analytic: expanding the exponential in a Taylor series we obtain
a power series for aw(z). This fact shows that not every Weyl operator can be
written as an anti-Wick operator. In [28] (Theorem 5.1) Cordero and Nicola have
shown that one can build an exact Weyl/anti–Wick correspondence for all Weyl
operators whose symbol is real analytic on R

2n and satisfies a certain condition
which is expressed in terms of a certain modulation space. In the general case one
can prove the following result:

Proposition 259. Let Â
Weyl←→ a be such that the symbol a satisfies the following

conditions: a ∈ C∞(Rn ⊕ R
n) and for every α ∈ N

2n there exists a constant
Cα ≥ 0 with

|∂αz a(z)| ≤ Cα 〈z〉m−ρ|α| for z ∈ R
2n (11.59)

where 〈z〉 = (1 + |z|2)1/2. Then there exists an anti-Wick operator B̂aW
AW←→ b

where b ∈ C∞(Rn ⊕ R
n) also satisfies the estimates (11.59) and such that the

kernel K of Â− B̂aW is in S(Rn × R
n).

We omit the proof of this result here, and refer to Shubin [147] (Theorem
24.2). The conditions (11.59) on the symbol characterize the Shubin class Γmρ (Rn⊕
R
n) which will be studied in Chapter 14).

11.4.3 Some regularity results

We are going to show that anti-Wick operators are continuous in S(Rn) (and hence
in S′(Rn)) if one makes a rather mild assumption of polynomial increase on its
symbol (cf. Proposition 259).
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Proposition 260. Assume that a satisfies the conditions (11.59) in Proposition 259.
Then ÂaW

AW←→ a is a continuous map S(Rn) −→ S(Rn) and hence extends into a
continuous map S′(Rn) −→ S′(Rn).

Proof. In view of formula (11.58) for the Weyl symbol aw of ÂaW we have

aw(z) =
∫

R2n
e−

1
�
|z0|2a(z − z0)dz0

and hence, for every multi-index α ∈ N
2n,

zα∂αz a
w(z) =

∫

R2n
e−

1
�
|z0|2zα∂αz a(z − z0)dz0

so that

|zα∂αz aw(z)| ≤ C�

α

∫

R2n
e−

1
�
|z0|2 〈z − z0〉m+(1−ρ)|α|

dz0 <∞

for some constant C�

α > 0. It follows that aw ∈ S(Rn) hence the result in view of
Proposition 195. �

Exercise 261. Prove the result above using directly Definition (11.54) of an anti-
Wick operator.

The following operator estimate for the anti-Wick correspondence is very
interesting:

Proposition 262. Let ÂaW
AW←→ a and

‖ÂaW‖ = sup
ψ∈S(Rn),ψ �=0

‖ÂaWψ‖
‖ψ‖ (11.60)

be the operator norm of ÂaW. We have

‖ÂaW‖ ≤ sup
z∈R2n

|a(z)|. (11.61)

Proof. We will prove the estimate (11.61) when a is a real-valued symbol; for the
general case we refer to Shubin [147] (Problem 24.4, p. 191). Since a is real the
operator ÂaW is self-adjoint in view of Proposition 257(i). Let λ ≥ 0; the inequality
‖ÂaW‖ ≤ λ is equivalent when A is self-adjoint to λI−ÂaW ≥ 0 and λI+ÂaW ≥ 0.
These relations obviously hold for λ = supz∈R2n |a(z)|, hence (11.61). �

Exercise 263. Apply the proof above to Re a and Im a to show that ‖ÂaW‖ ≤
2 supz∈R2n |a(z)|.
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Corollary 264. Let the symbol a satisfy the estimates (11.59) with m = 0.
Thus |∂αz a(z)| ≤ Cα 〈z〉−ρ|α| for every multi-index α. The anti-Wick operator
ÂaW

AW←→ a is then bounded on L2(Rn).

Proof. The estimates satisfied by the symbol a imply in particular that it is
bounded, and hence

sup
ψ∈S(Rn)

‖ÂaWψ‖
‖ψ‖ <∞.

By continuity we also have

sup
ψ∈L2(Rn)

‖ÂaWψ‖
‖ψ‖ <∞

hence ÂaW is bounded on L2(Rn). �

One also proves the following regularity results for anti-Wick operators with
symbols in Lq spaces:

Proposition 265. Let a ∈ Lq(Rn ⊕ R
n). Then:

(i) The operator ÂaW
AW←→ a is bounded on L2(Rn);

(ii) If 1 ≤ q ≤ 2 The anti-Wick operator ÂaW : L2(Rn) −→ L2(Rn) is compact.

Proof. See Boggiatto and Cordero [15] for a detailed argument. �



Chapter 12

Hilbert–Schmidt and
Trace Class Operators

In this chapter we pause to make an excursion to the well-established theory
of Hilbert–Schmidt and trace class operators. These are venerable topics from
functional analysis; besides their intrinsic interest in mathematics, they are of
paramount importance for studying the notion of mixed state in quantum me-
chanics, as we will see in the next chapter.

We give here a rather succinct treatment of the topic. For details and proofs
we refer to Reed and Simon [136], Simon [149], Shubin [147] (Appendix 3), Hör-
mander [102], §19.1; we are following de Gosson [67] with some additions, modifi-
cations and improvements.

12.1 Hilbert–Schmidt operators

In what follows H is a separable Hilbert space with scalar product (·|·j)H and
associated norm ‖ · ‖H. We denote by L(H) the Banach algebra of all bounded
operators on H.

We recall the elementary equality
∑

j

(u|ej)H(v|ej)H = (u|v), (12.1)

valid for all u, v ∈ H and all orthonormal bases (ej)j of H. When u = v it is called
the Bessel equality.

12.1.1 Definition and general properties

Hilbert–Schmidt operators are defined by an integrability condition with respect
to an orthonormal basis:

185M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics,  
Pseudo-Differential Operators 7, DOI 10.1007/978-3-7643-9992-4_ , © Springer Basel AG 2011 12
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Definition 266. An operator Â ∈ L(H) is called a Hilbert–Schmidt operator (for
short: Â is Hilbert–Schmidt) if there exists an orthonormal basis (ej)j of H such
that

∑

j,k

|(Âej |Âej)H =
∑

j

‖Âej‖2H <∞. (12.2)

We denote by L2(H) the set of all Hilbert–Schmidt operators on H.

If the condition (12.2) holds for one orthonormal basis then it holds for all,
and the sum

∑

j ‖Âej‖2H does moreover not depend on the choice of basis. Let us
prove this essential property. Let in fact (fj)j be an arbitrary orthonormal basis,
and write Âej =

∑

k(Âej |fj)Hfk. Then, using (12.1) with u = v = Âej ,

∑

j

‖Âej‖2H =
∑

j,k

|(Âej |fj)H|2 =
∑

j,k

|(ej |Â∗fj)H|2

that is, again by (12.1), with this time u = v = Â∗fj ,

∑

j

‖Âej‖2H =
∑

j,k

|(Â∗fj|ej)H|2 =
∑

k

‖Â∗fk‖2H <∞.

Taking (fj)j = (ej)j we have
∑

k ‖Â∗ek‖2H <∞ hence the adjoint is also Hilbert–
Schmidt; we may thus replace Â by Â∗ in the inequality above, which yields
∑

k ‖Âfk‖2H < ∞ as claimed. Notice that we have at the same time proved that
Â ∈ L(H) is Hilbert–Schmidt if and only if Â∗ is.

Proposition 267. We have:

(i) The set L2(H) is a vector subspace of L(H) and the function ‖ · ‖HS ≥ 0
defined by the formula

‖Â‖2HS =
∑

i

‖Âei‖2H (12.3)

is a norm on that subspace;
(ii) L2(H) is a two-sided *-ideal in L(H): if Â ∈ L2(H) and B̂ ∈ L(H) then

ÂB̂ ∈ L2(H) and B̂Â ∈ L2(H) and we have Â∗ ∈ L2(H).

Proof of (i). If Â and B̂ are Hilbert–Schmidt operators then λÂ is trivially a
Hilbert–Schmidt operator and ‖λÂ‖HS = |λ‖|Â‖HS for every λ ∈ C; on the other
hand

∑

j

‖(Â+ B̂)ej‖2H ≤
∑

j

‖Âej‖2H +
∑

j

‖B̂ej‖2H <∞
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for every orthonormal basis (ej)j hence Â+ B̂ is also a Hilbert–Schmidt operator
and we have

‖Â+ B̂‖2HS ≤ ‖Â‖2HS + ‖B̂‖2HS

hence also
‖Â+ B̂‖HS ≤ ‖Â‖HS + ‖B̂‖HS.

Finally, ‖Â‖HS = 0 is equivalent to Âej = 0 for every index j, that is to Â = 0.

Proof of (ii). Let us show that B̂Â ∈ L2(H). We have, denoting by ‖B̂‖ the oper-
ator norm of B̂,

‖B̂Â‖2HS =
∑

j

‖B̂Âej‖2H ≤ ‖B̂‖



∑

j

‖Âej‖2H



 <∞.

Applying the same argument to ÂB̂ = (B̂∗Â∗)∗ shows that ÂB̂ ∈ L2(H) as
well. �

The norm ‖ · ‖2HS is called the “Hilbert–Schmidt norm”. The space L2(H) is
complete for that norm, and hence a Banach space (it is actually even a Hilbert
space when equipped with a scalar product that we will define later).

We note the following useful inequality: if Â ∈ L2(H) then the operator norm
of Â satisfies

‖Â‖ = sup
‖u‖H≤1

‖Âu‖H ≤ ‖Â‖HS. (12.4)

To prove this inequality, it suffices to note that if (ej)j is an orthonormal basis
and u =

∑

j(u|ej)Hej then Âu =
∑

j(u|ej)HÂej and hence

‖Âu‖H ≤
∑

j

|(u|ej)H| · ‖Âej‖H.

Using the Cauchy–Schwarz inequality for sums we thus have

‖Âu‖2H ≤
∑

j

|(u|ej)H|2
∑

j

‖Âej‖2H = ‖u‖2H‖Â‖HS

hence (12.4) taking the supremum for ‖u‖H ≤ 1.
Simple examples of Hilbert–Schmidt operators are provided by the operators

of finite rank; in fact:

Problem 268. Let Â be a bounded operator on the Hilbert space H. Prove the
following properties: (i) If Â is of finite rank, then it is a Hilbert–Schmidt operator;
(ii) Every Hilbert–Schmidt operator is the limit of a sequence of compact operators
in L(H); (iii) Hilbert–Schmidt operators are compact operators.
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12.1.2 Hilbert–Schmidt operators on L2(Rn)

The following very important result characterizes all Hilbert–Schmidt operators
on L2(Rn), and is sometimes taken as their definition. Since by Hilbert–Schmidt
these operators are compact (Problem 268 above), that characterization also gives,
as a by-product, a sufficient (but of course not necessary) condition for an operator
on L2(Rn) to be compact.

Theorem 269. An operator Â on L2(Rn) is a Hilbert–Schmidt operator if and only
it has a kernel KÂ ∈ L2(Rn × R

n), and we have the norm equality

‖Â‖HS = ‖KÂ‖L2(Rn×Rn). (12.5)

Proof. Let Â be a Hilbert–Schmidt operator on L2(Rn) and choose an orthonormal
basis (ei)i in L2(Rn). The family (ei ⊗ ej)i,j of tensor products is an orthonormal
basis in L2(Rn × R

n). Let us now define

K(x, y) =
∑

i,j

(Âei|ej)L2ej(x) ⊗ ei(y).

We have
∫

R2n
|K(x, y)|2dxdy ≤

∑

i,j

|(Âei|ej)L2 |2‖ej ⊗ ei‖2L2

=
∑

i,j

|(Âei|ej)L2 |2,

hence K ∈ L2(Rn × R
n) using the fact that Â is Hilbert–Schmidt. Since ψ =

∑

i(ψ|ei)L2ei and Âei =
∑

j(Âej|ej)L2ej we have

Âψ(x) =
∑

i

(ψ|ei)L2Âei(x)

=
∑

i,j

(ψ|ei)L2(Âej |ej)L2ej(x);

since on the other hand
∫

Rn

K(x, y)ψ(y)dy =
∑

i,j

(Âei|ej)L2(ψ|ei)ej(x),

by definition of K it follows that we have

Âψ(x) =
∫

Rn

K(x, y)ψ(y)dy (12.6)
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and hence K is the kernel of the operator Â. The equality (12.5) now follows from
the identity (12.1). Assume conversely that the kernel of Â ∈ L(H) belongs to
L2(Rn × R

n). We can then find numbers cij such that
∑

i,j |cij |2 <∞ and

K(x, y) =
∑

i,j

cijej(x) ⊗ ei(y).

Define now the operator Â by the equality (12.6); we have

Âψ(x) =
∑

i,j

cijej(x)
∫

Rn

ei(y)ψ(y)dy

=
∑

i,j

cij(ψ|ei)L2ej(x)

and hence, since the basis (ei)i is orthonormal,

Âek =
∑

i,j

cij(ek|ei)L2ej =
∑

j

ckjej

so that
‖Â‖2HS =

∑

k

‖Âek‖2L2 =
∑

j,k

|ckj |2 <∞

and Â is thus Hilbert–Schmidt. �

12.2 Trace class operators

We begin by recalling some results from elementary functional analysis (see for
instance Reed and Simon [136], §6.4). Let H be a complex Hilbert space, and
Â ∈ L(H) be a positive operator: (Âu|u)H ≥ 0 for all u ∈ H. We will write Â ≥ 0.
A positive operator on a complex Hilbert space is always self-adjoint: Â = Â∗.
There exists a unique B̂ ∈ L(H) such that B̂ ≥ 0 and B̂2 = Â (in particular B̂ is
also self-adjoint). We will write B̂ =

√

Â or B̂ = Â1/2 and call B̂ the square root
of Â.

12.2.1 The trace of a positive operator

Positive trace class operators have two main advantages: they are easy to study,
and they can be used to define trace class operators in the general case. In addition,
they are the only ones we will really need when we study the density operator in
the next chapter.



190 Chapter 12. Hilbert–Schmidt and Trace Class Operators

Proposition 270. Let Â ∈ L(H) be such that Â ≥ 0. Assume that there exists an
orthonormal basis (ej)j of H such that

∑

j(Âej|ej)H <∞. Then
∑

j(Âfj|fj)H <
∞ for every orthonormal basis (fj)j of H. More precisely, we have the equality

∑

j

(Âej |ej)H =
∑

j

(Âfj |fj)H

valid for all operators Â ≥ 0, whether of trace class or not.

Proof. Let (fj)j be an arbitrary orthonormal basis of H and set

T =
∑

j

(Âfj|fj)H =
∑

j

(Â1/2fj|Â1/2fj)H.

We are going to show that T =
∑

j(Âej |ej)H; this will prove the proposition.
Taking u = v = Â1/2fj in (12.1) we have

(Â1/2fj |Â1/2fj)H =
∑

k

|(Â1/2fj |ek)H|2

and hence using the fact that Â1/2 is symmetric:

T =
∑

j

(
∑

k

|(Â1/2fj|ek)H|2
)

=
∑

k




∑

j

|(Â1/2ek|fj)H|2




(interchanging summation signs is allowed because all the terms are positive).
Using again (12.1) we have

∑

j

|(Â1/2ek|fj)H|2 = (Â1/2ek|Â1/2ek)H = (Âek|ek)H

and hence T =
∑

k(Âek|ek)H which we set out to prove. �

This result motivates the following definition:

Definition 271. The trace of a positive operator Â ∈ L(H) is

Tr Â =
∑

j

(Âej|ej)H (12.7)

where (ej)j is an arbitrary orthonormal basis of H. If Tr Â < ∞ one says that Â
is a trace class operator.

Clearly Tr Â ≥ 0 (because (Âej|ej)H ≥ 0 for every j since Â ≥ 0).

Every positive trace class operator is the square of a Hilbert–Schmidt operator:
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Proposition 272. Let Â ∈ L(H), Â ≥ 0, be of trace class. The square root B̂ =
√

Â
is a Hilbert–Schmidt operator on H. Hence every positive trace class operator is
the square of a Hilbert–Schmidt operator.

Proof. Since Â = B̂2 is of trace class we have
∑

j

(B̂ej |B̂ej)H =
∑

j

(B̂2ej |ej)H <∞

for every orthonormal basis (ej)j ofH, hence B̂ is a Hilbert–Schmidt operator. �

An interesting property of positive trace class operators is their invariance
under conjugation with unitary operators:

Proposition 273. Let Â be a positive trace class operator on H and Û a unitary
operator on H. Then Û∗ÂÛ is also a positive trace class operator and we have

Tr(Û∗ÂÛ) = Tr(Â). (12.8)

Proof. It is clear that Û∗ÂÛ is a positive operator. The operator Â is of trace
class if and only if

∑

j(Âej |ej)H <∞ for one (and hence every) orthonormal basis
(ej)j ofH. Since (Û∗ÂÛej |ej)H = (ÂÛej|Ûej)H and (Ûej)j also is an orthonormal
basis of H, it follows that Û∗ÂÛ is of trace class; formula (12.8) follows from the
basis independence of formula (12.7): we have

Tr(Û∗ÂÛ) =
∑

j

(Û∗ÂÛej |ej)H =
∑

j

(ÂÛej|Ûej)H = Tr(Â)

because (Ûej)j is an orthonormal basis since Û is unitary. �

Trace class operators are compact: this will be established in Proposition
280; it is already clear that this is the case for positive trace class operators using
Proposition 272 above since Hilbert–Schmidt operators are compact (Problem
268) and the product of two compact operators also is compact. We may thus
apply the spectral theory of compact operators to them. Recall the following basic
result from functional analysis obtained by amalgamating the Riesz–Schauder and
Hilbert–Schmidt theorems:

Theorem 274. Let Â be a compact self-adjoint operator on H. Then

(i) The spectrum σ(Â) is discrete and has no limit point except perhaps zero;
every non-zero element λj of σ(Â) = {λj : j ∈ J} is an eigenvalue with finite
multiplicity;

(ii) Ordering the λj, j ∈ J so that |λj | ≥ |λj+1| we have limj→∞ λj = 0 if J is
infinite;

(iii) There exists a system of orthonormal eigenvectors (ej)j∈J such that Âej =

λjej and the system (ej)j∈J is an orthonormal basis of the closure Im Â ⊂ H:
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(iv) For every u ∈ H we have

u = v +
∑

j∈J

(u|ej)H , Âu =
∑

j∈J

(Âu|ej)H (12.9)

with v ∈ ker Â.

For a proof see, e.g., Dieudonné [35], §11.5; beware of the too concise and
therefore somewhat misleading statement in Reed and Simon, Theorem VI.16.

Applying this result to positive trace class operators gives a complete char-
acterization of these operators in terms of orthogonal projections. We begin by
remarking that Theorem 274 above implies that, if we denote by Hj the eigenspace
corresponding to the eigenvalue λj > 0, then dimHj <∞ and for j 
= k the spaces
Hj and Hk are orthogonal. The first formula (12.9) implies that H splits into the
Hilbert sum

H = Ker Â⊕ (H1 ⊕H2 ⊕ · · ·). (12.10)

Proposition 275. Let Â be a positive self-adjoint operator Â of trace class on a
Hilbert space H; let λ1 ≥ λ2 · · · be the sequence of eigenvalues of Â and H1,H
2, . . . the corresponding eigenspaces.

(i) We have the spectral decomposition formula

Â =
∑

j

λjPj (12.11)

where Pj is the orthogonal projection H −→ Hj;
(ii) The trace of Â is given by the formula

Tr(Â) =
∑

j

λj dimHj ; (12.12)

(iii) Conversely, every operator of the type (12.11) with λj > 0 and Pj being an
orthogonal projection operator on a finite-dimensional space is of trace class
if we have

∑

j λj dimHj <∞.

Proof of (i). Choose an orthonormal basis (eij)i in each eigenspace Hj and com-
plete the union ∪i(eij)i of these bases into a full orthonormal basis ofH by selecting
orthonormal vectors (fi)i in Ker Â such that (fi, ejk)H = 0 for all j, k. Let u be
an arbitrary element of H and write

Âu =
∑

i

(Âu|fi)Hfi +
∑

i,j

(Âu|eij)Heij .

Since Â is self-adjoint we have (Âu, fi)H = (u, Âfi)H = 0 and

(Âu|eij)H = (u|Âeij)H = λj(u|eij)H.
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It follows that we have

Âu =
∑

j

λj

(
∑

i

(u|eij)Heij
)

.

The operator Pj defined by

Pju =
∑

i

(u|eij)Heij

is the orthogonal projection on Hj hence (12.11).

Proof of (ii). By definition of the trace of a positive operator we have

Tr(Â) =
∑

i

(Âfi|fi)H +
∑

i,j

(Âeij |eij)H;

since (Âfi, fi)H = 0 and (Âeij , eij)H = λj for every index i this reduces to

Tr(Â) =
∑

i,j

λj(eij |eij)H =
∑

j

λj

(
∑

i

(eij |eij)H
)

(12.13)

hence (12.12) since the sum indexed by i is equal to the dimension of the eigen-
space Hj .
Proof of (iii). Any operator Â that can be written in the form (12.11) is self-
adjoint because orthogonal projections are self-adjoint operators; moreover the
operator Â is positive and the condition

∑

j λj dimHj <∞ is precisely equivalent
to Â being of trace class in view of the second equality (12.13). �

12.2.2 General trace class operators

In many texts one defines trace class operators on H as operators Â ∈ L(H) such
that |Â| = (Â∗Â)1/2 is of trace class in the sense of the last subsection. In other
texts they are defined as products of two Hilbert–Schmidt operators. We give a
third definition, which is more in the same spirit as our definition of Hilbert–
Schmidt operators. All these definitions are equivalent.

Definition 276. An operator Â ∈ L(H) is said to be of trace class if there exist
two orthonormal bases (ei)i and (fj)j of H such that

∑

i,j

|(Âei|fj)H| <∞. (12.14)

The set of all trace class operators on H is denoted by L2(H).
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Obviously Â is of trace class if and only if its adjoint Â∗ is of trace class: we
have

∑

i,j

|(Â∗ei|fj)H| =
∑

i,j

|(ei|Âfj)H| =
∑

i,j

|(Âfj|ei)H|

and
∑

i,j |(Â∗ei|fj)H| <∞ if and only if
∑

i,j |(Âfj |ei)H| <∞.

Definition (12.15) coincides with Definition (12.7) when Â ≥ 0 since in this
case Â = |Â|.

We are going to prove that if the condition (12.14) characterizing trace class
operators holds for one pair of orthonormal basis, then it holds for all. This prop-
erty will allow us to prove that L2(H) is indeed a vector space, and to define the
trace of an element of L2(H) by the formula

Tr Â =
∑

i

(Âei|ei)H. (12.15)

Proposition 277. Suppose that Â ∈ L2(H). The following properties hold:

(i) We have
∑

i,j

|(Âei|fj)H| <∞ (12.16)

for all orthonormal bases (ei)i, (fj)j of H with the same index set;
(ii) If (ei)i and (fi)i are two orthonormal bases then

∑

i

(Âei|ei)H =
∑

i

(Âfi|fi)H (12.17)

and both series are absolutely convergent.
(iii) The set L2(H) of all trace class operators is a vector space.

Proof of (i). Writing Fourier expansions

e′i =
∑

j

(e′i|ej)Hej , f ′
� =

∑

k

(f ′
�|fk)Hfk

we have
(Âe′i|f ′

�)H =
∑

j,k

(e′i|ej)H(f ′
�|fk)H(Âej|fk)H (12.18)

and hence, by the triangle inequality,

∑

i,�

|(Âe′i|f ′
�)H| ≤

∑

j,k




∑

i,�

|(e′i|ej)H| |(f ′
�|fk)H|



 |(Âej|fk)H|). (12.19)



12.2. Trace class operators 195

In view of the trivial inequality ab ≤ 1
2 (a2 + b2) we have

∑

i,�

|(e′i|ej)H| |(f ′
�|fk)H| ≤ 1

2

∑

i

|(e′i|ej)H|2 + 1
2

∑

�

|(f ′
�|fk)H|2,

i.e., since
∑

i |(e′i|ej)H|2 = ‖ej‖2H = 1 and
∑

� |(f ′
�|fk)H|2 = ‖fk‖2H = 1,

∑

i,�

|(Âe′i|f ′
�)H| ≤

∑

j,k

|(Âej |fk)H|) <∞

which proves (12.16).

Proof of (ii). Assume now that ei = fi and e′i = f ′
i for all indices i. In view of

(12.18) we have

(Âe′i|e′i)H =
∑

j,k

(e′i|ej)H(e′i|ek)H(Âej |ek)H

and hence

∑

i

(Âe′i|e′i)H =
∑

j,k

(
∑

i

(e′i|ej)H(e′i|ek)H
)

(Âej |ek)H).

In view of (12.1)
∑

i

(e′i|ej)H(e′i|ek)H = (ej |ek)H = δjk

which establishes (12.17); that the series is absolutely convergent follows from
(12.16) with the choice ei = fi for all indices i.

Proof of (iii). It is clear that λÂ ∈ L2(H) if λ ∈ C and Â ∈ L2(H). Let Â, B̂ ∈
L2(H); then

∑

i

((Â+ B̂)ei|ei)H =
∑

i

(Âei|ei)H +
∑

i

(B̂ei|ei)H

and each sum on the right-hand side is absolutely convergent, implying that Â+
B̂ ∈ L2(H). �

Exercise 278. Show that
Tr(Â∗) = Tr(Â) (12.20)

(hence Tr(Â) is real when Â is self-adjoint).

Trace-class operators do not only form a vector space, they also form a
normed algebra:
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Proposition 279. Let Â ∈ L1(H) and B̂ ∈ L(H).

(i) We have ÂB̂ ∈ L1(H) and B̂Â ∈ L1(H), hence L1(H) is a two-sided ideal
in L(H); we have Tr(ÂB̂) = Tr(B̂Â).

(ii) The formula ‖Â‖Tr = (Tr(Â∗Â))1/2 defines a norm on the algebra L2(H) of
Hilbert–Schmidt operators on H; that norm is associated to the scalar product
(Â|B̂)Tr = Tr(Â∗B̂).

Proof of (i). Let (ei)i and (fi)i be orthonormal bases of H. Writing (ÂB̂ei|fi)H =
(B̂ei|Â∗fi)H formula (12.1) with u = B̂ei and v = Â∗fi yields

(ÂB̂ei|fi)H =
∑

j

(B̂ei|ej)H(Â∗fi|ej)H (12.21)

and hence, observing that |(B̂ei|ej)H| ≤ ‖B̂ei‖H ≤ ‖B̂‖,

|(ÂB̂ei|fi)H| ≤
∑

j

|(B̂ei|ej)H| · |(Â∗fi|ej)H| ≤ ‖B̂‖
∑

j

|(Â∗fi|ej)H|.

It follows that
∑

i

|(ÂB̂ei|ei)H| ≤ ‖B̂‖
∑

i,j

|(Â∗fi|ej)H| <∞

since Â∗ is of trace class;it follows that ÂB̂ ∈ L1(H). The property B̂Â ∈ L1(H)
follows by writing B̂Â = (Â∗B̂∗)∗. Formula (12.21) implies that

∑

i

(ÂB̂ei|ei)H =
∑

i

(B̂Âei|ei)H, (12.22)

that is Tr(ÂB̂) = Tr(B̂Â).

Proof of (ii). Since Â∗Â is self-adjoint its trace is real so (Tr(Â∗Â))1/2 is well
defined. If ‖Â‖Tr = 0 then (Âei|ej)H = 0 for all i hence Â = 0. The relation
‖λÂ‖Tr = |λ| ‖Â‖Tr being obvious there only remains to show that the triangle
inequality holds. If Â, B̂ ∈ LTr(H) then

‖Â+ B̂‖2Tr = Tr((Â∗ + B̂∗)(Â+ B̂))

= Tr(Â∗Â) + Tr(B̂∗B̂) + Tr(Â∗B̂) + Tr(B̂∗Â).

In view of the formula (12.20) we have

Tr(Â∗B̂) + Tr(B̂∗Â) = 2 Re Tr(Â∗B̂)

and hence
‖Â+ B̂‖2Tr = ‖Â‖2Tr + ‖B̂‖2Tr + 2 ReTr(Â∗B̂). (12.23)
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We have
Tr(Â∗B̂) =

∑

i

(B̂ei|Âei)H

hence, noting that Re Tr(Â∗B̂) ≤ |Tr(Â∗B̂)| and using the Cauchy-Schwarz in-
equality,

ReTr(Â∗B̂) ≤
∑

i

(B̂ei|B̂ei)1/2H (Âei|Âei)1/2H ,

that is

Re Tr(Â∗B̂) ≤
∑

i

(B̂∗B̂ei|ei)1/2H (Â∗Âei|ei)1/2H ≤ ‖B̂‖Tr‖Â‖Tr

which proves the triangle inequality in view of (12.23). �

An essential feature of trace class operators is that they are compact (an
operator Â on H is compact if the image of the unit ball in H by Â is relatively
compact). The sum and the product of two compact operators is again a compact
operator; in fact compact operators form a two-sided ideal in L(H).

Proposition 280. A trace class operator Â on a Hilbert space H is a compact
operator.

Proof. Let (uj) be a sequence in H such that ‖uj‖H ≤ 1 for every j. Let us show
that (Âuj) contains a convergent subsequence; this will prove our claim. Let (ei)
be an orthonormal basis of H; writing uj =

∑

i(uj |ei)Hei we have

‖Âuj‖2H = (Â∗Âuj|uj)H
=

∑

i,k

(uj|ei)H(uj |ek)H(Â∗Âek|ei)H.

Using Cauchy–Schwarz’s inequality we have

|(uj |ei)H| ≤ ‖uj‖H‖ei‖H ≤ 1

and hence
‖Âuj‖2H ≤

∑

i,k

(Â∗Âek|ei)H <∞;

since the operator Â∗Â is of trace class the sequence (Âuj) is contained in the ball
B̂(R) with R =

∑

i,k(Â
∗Âek|ei)H and thus contains a convergent subsequence as

claimed. �

We mentioned at the beginning of this subsection that there are several
different definitions of the trace class operators in the literature. In fact:
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Proposition 281. Let Â ∈ L(H). The following statements are equivalent:

(i) Â is of trace class;

(ii) The modulus |Â| =
√

Â∗Â is of trace class;
(iii) Â is the product of two Hilbert–Schmidt operators.

We do not give the proof of this result here; a proof of the equivalence
(i)⇐⇒(ii) is given in Hörmander [102], §19.1. That every trace class operator is the
product of two Hilbert–Schmidt operators is easy to see using the polar decom-
position of Â: writing Â = Û(Â∗Â)1/2 we have Â = B̂∗Ĉ with B̂∗ = Û(Â∗Â)1/4

and Ĉ = (Â∗Â)1/4 and one easily checks that B̂∗ and Ĉ are Hilbert–Schmidt
operators.

Note the following easy consequence of the result above:

Corollary 282. Every trace class operator on L2(Rn) is the product of two operators
with L2 kernels.

Proof. It suffices to use (iii) in the proposition above together with Theorem 269.
�

12.3 The trace of a Weyl operator

In this section we give several formulas in the case where the involved operators
are Weyl operators.

12.3.1 Heuristic discussion

Let Â be a trace class operator on L2(Rn) with kernelK. It is customary (especially
in the physical literature) to calculate the trace of Â using the formula

Tr(Â) =
∫

Rn

K(x, x)dx (12.24)

which is obviously an extension to the infinite-dimensional case of the usual defi-
nition of the trace of a matrix as the sum of its diagonal elements. Needless to say,
this formula does not follow directly from the definition of a trace class operator!
In fact, even when the integral in (12.24) is absolutely convergent, this formula
has no reason to be true in general. The right condition in the case n = 1 is the
following (Simon [149]): assume that the kernel K is of positive type: this means
that ∑

1≤j,k≤N
λjλkK(xj , xk) ≥ 0

for all integers N , all xj ∈ R and all λj ∈ C (in particular K ≥ 0). Then formula
(12.24) holds.
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On the positive side, Simon [149] notes that if a trace class operator Â has
kernel K satisfying

∫

Rn
|K(x, x)|dx < ∞ then we are “almost sure” that formula

(12.24) holds. Of course this vague statement is not, as Dubin et al. [39] note, a
charter allowing carefree calculations!

When Â is a Weyl operator Â
Weyl←→ a, one then infers from (12.24) that the

trace is expressed in terms of the Weyl symbol by the formula

Tr(Â) =
(

1
2π�

)n
∫

R2n
a(z)dz (12.25)

(which has no reason to be correct in general!). Heuristically one can argue as
follows to justify (12.25). In view of formula (10.14) in Proposition 205 the kernel
KÂ of Â is given by

KÂ(x, y) =
(

1
2π�

)n
∫

R2
e
i
�
p·(x−y)a(1

2 (x+ y), p)dp

so that KÂ(x, x) is given by (12.24) and formula (12.25) hence follows.

Another often used formula is the following: assuming that B̂
Weyl←→ b also is

of trace class, then

Tr(ÂB̂) =
(

1
2π�

)n
∫

R2n
a(z)b(z)dz. (12.26)

To justify formula (12.26) one argues as follows: we have

Tr(ÂB̂) =
(

1
2π�

)n
∫

R2n
c(z)dz

where c(z) is the Weyl symbol of Ĉ = ÂB̂; in view of formula (10.21) in Theorem
213 we have

c(z) =
(

1
4π�

)2n
∫∫

R4n
e
i

2�
σ(z′,z′′)a(z + 1

2z
′)b(z − 1

2z
′′)dz′dz′′.

Performing the change of variables u = z + 1
2z

′, v = z − 1
2z

′′ we have dz′dz′′ =
42ndudv and hence

c(z) =
(

1
π�

)2n
∫∫

R4n
e
i
2�
σ(u−z,v−z)a(u)b(v)dudv

=
(

1
π�

)2n
∫∫

R4n
e

2i
�
σ(z,u−v)

(

e
2i
�
σ(u,v)a(u)b(v)

)

dudv.

Integrating c(z) yields
∫

R2n
c(z)dz =

(
1
π�

)2n
∫∫

R4n

(∫

R2n
e

2i
�
σ(z,u−v)dz

)

e
2i
�
σ(u,v)a(u)b(v)dudv.
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Now, by the Fourier inversion formula,
∫

R2n
e

2i
�
σ(z,u−v)dz =

∫

R2n
e

2i
�
Jz·(u−v)dz = (2π�)2nδ(2u− 2v)

and hence
∫

R2n
c(z)dz = 22n

∫∫

R4n
δ(2u− 2v)e

2i
�
σ(u,v)a(u)b(v)dudv

= 22n

∫∫

R4n
δ(2u− 2v)a(u)b(v)dudv

=
∫

R4n
a(u)b(u)du;

formula (12.26) follows in view of formula (12.25).
Needless to say, the “derivations” above are formal and one should be ex-

tremely cautious when using the “formulas” thus obtained. Shubin [147], §27, dis-
cusses a step-by-step procedure for checking such identities, but it is not always
easy to use.

Exercise 283. Find the shortcomings in the arguments above, and try to correct
as many as possible by imposing conditions on the symbols (and kernels). A good
idea is to find out what happens when one assumes that a ∈ S(Rn ⊕ R

n).

12.3.2 Some rigorous results

Here are some rigorous results. Also see the paper by Brislawn [22] for a thorough
discussion of the kernels of trace class operators and of the traceability of Hilbert–
Schmidt operators.

We begin by giving a rigorous justification of formula (12.26) when the op-
erators Â and B̂ are Hilbert–Schmidt:

Proposition 284. Let Â
Weyl←→ a and B̂

Weyl←→ b be Hilbert–Schmidt operators. We
then have

Tr(ÂB̂) =
(

1
2π�

)n
∫

R2n
a(z)b(z)dz. (12.27)

Proof. We first observe that in view of Theorem 269 the kernels KÂ and KB̂ are
square integrable; it then follows from Proposition 209 that we have a ∈ L2(Rn)
and b ∈ L2(Rn). Let (ψj)j be an orthonormal basis of L2(Rn); we have

Tr(ÂB̂) =
∞∑

j=1

(ÂB̂ψj |ψj)L2 =
∞∑

j=1

(B̂ψj |Â∗ψj)L2 .
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Expanding B̂ψj and Â∗ψj in the basis (ψj)j we have B̂ψj =
∑∞

k=1(B̂ψj |ψk)L2ψk
and Â∗ψj =

∑∞
�=1(ψj |Âψ�)L2ψ�, hence

(B̂ψj |Â∗ψj)L2 =
∞∑

k=1

(B̂ψj |ψk)L2(Âψj |ψk)L2 .

In view of formula (10.8) in Proposition 200 we have

(Âψj |ψk)L2 =
∫

R2n
a(z)W (ψj , ψk)(z)dz = (a|W (ψk, ψj))L2(R2n),

(B̂ψj |ψk)L2 =
∫

R2n
b(z)W (ψj , ψk)(z)dz = (b|W (ψk, ψj))L2(R2n),

hence the equality above can be written:

(B̂ψj |Â∗ψj)L2 =
∞∑

k=1

(a|W (ψk, ψj))L2(R2n)(b|W (ψk, ψj))L2(R2n).

Recall now (Proposition 188) that if (ψj)j is an orthonormal basis of L2(Rn) then
the vectors Φj,k = (2π�)n/2W (ψk, ψj) form an orthonormal basis of L2(Rn⊕R

n);
thus

Tr(ÂB̂) =
∞∑

j=1

(B̂ψj |Â∗ψj)L2(Rn)

=
(

1
2π�

)n ∑

1≤j,k<∞
(a|Φj,k)L2(R2n)(b|Φj,k)L2(R2n)

=
(

1
2π�

)n (a|b)L2(R2n)

in view of the classical identity (12.1); this proves formula (12.27). �
Exercise 285. Give an alternative proof of Proposition 284 by justifying the heuris-
tic derivation of formula (12.26) given above when Â and B̂ are Hilbert–Schmidt
operators. [Hint: show that the symbols a and b are square integrable in view of
Theorem 269.]

A very useful criterion is the following (cf. Du and Wong [38], Theorem 2.4.):

Proposition 286. Let Â
Weyl←→ a be a trace class operator. If a ∈ L1(Rn) then

Tr(Â) =
(

1
2π�

)n
∫

R2n
a(z)dz. (12.28)

Equivalently
Tr(Â) = aσ(0) (12.29)

where aσ = Fσa is the symplectic Fourier transform of the symbol a.
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Proof. We first observe that the equality Tr(Â) = aσ(0) is obvious since the inte-
gral of a is exactly (2π�)n times the symplectic Fourier transform evaluated at 0.
Writing Â = B̂Ĉ where B̂ and Ĉ are Hilbert–Schmidt operators we have, using
formula (12.27) in Proposition 284,

Tr(Â) =
(

1
2π�

)n
∫

R2n
b(z)c(z)dz.

Let us show that
aσ(0) =

(
1

2π�

)n
∫

R2n
b(z)c(z)dz;

formula (12.29) will follow in view of the equality (12.29). We have, in view of
formula (10.22) in Theorem 213,

aσ(z) =
(

1
2π�

)n
∫

R2n
e
i

2�
σ(z,z′)bσ(z − z′)cσ(z′)dz′

and hence

aσ(0) =
(

1
2π�

)n
∫

R2n
(bσ)∨(z)cσ(z)dz

=
(

1
2π�

)n ((bσ)∨|cσ)L2(R2n)

with (bσ)∨(z) = bσ(−z). Noting that (bσ)∨ = (b∨)σ and cσ = (c∨)σ we thus have,
since the symplectic Fourier transform is unitary,

aσ(0) =
(

1
2π�

)n ((b∨)σ|(c∨)σ)L2(R2n)

=
(

1
2π�

)n (b∨|c∨)L2(R2n)

=
(

1
2π�

)n
∫

R2n
b(z)c(z)dz,

which was to be proven. �

Notice that in the proof above the assumption that Â is a trace class operator
is essential; in [38] it is moreover remarked that if a ∈ L1(Rn) but a /∈ L2(Rn)
then Â is not a trace class operator.

If one imposes more stringent conditions on the Weyl symbol, one can in
addition obtain sufficient conditions for the operator to be of trace class:

Proposition 287. Let Â
Weyl←→ a be a Weyl operator and assume that the symbol a

satisfies the following conditions: there exist m ∈ R and ρ ∈ R, 0 < ρ ≤ 1, such
that for every multi-index α ∈ N

2n we can find a constant Cα such that

|∂αz a(z)| ≤ Cα(1 + |z|)m−ρ|α|. (12.30)

If m < −2n then Â is of trace class and we have

Tr Â =
(

1
2π�

)n
∫

R2n
a(z)dz. (12.31)
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Proof. For the proof that the conditions on a imply that Â is of trace class see
Shubin [147], §27. The condition m < −2n implies that a ∈ L1(Rn) hence it
suffices to apply Proposition 286. �

We remark that the symbols a ∈ C∞(Rn ⊕ R
n) satisfying the conditions

(12.30) form a vector space denoted by Γmρ (Rn ⊕ R
n); it is one of the Shubin

classes of symbols we will study in Chapter 14; these classes play an important
role in the study of global properties of pseudo-differential operators.

We finally note the following invariance property of the trace of a Weyl
operator under conjugation with metaplectic operators:

Corollary 288. Assume that Â
Weyl←→ a of trace class on L2(Rn) and Ŝ ∈Mp(2n,R);

then ŜÂŜ−1 Weyl←→ a ◦ S−1 (S = πMp(Ŝ)) is also of trace class and has same trace
as Â.

Proof. It immediately follows from Proposition 273 since metaplectic operators
are unitary; that we have ŜÂŜ−1 Weyl←→ a ◦ S−1 was proven in Theorem 215. �



Chapter 13

Density Operator and
Quantum States

At first sight the notion of density operator (or density matrix, as it is called in
physics) should not lead to any particular difficulty: mathematically, a density
operator is just a positive trace class operator with trace equal to one. It turns
out that, perhaps somewhat unexpectedly, it is the positivity property which is
the most delicate to establish. It turns out that the positivity of a self-adjoint
trace class operator is very sensitive to the choice of the value of “Planck’s con-
stant” �: thus a self-adjoint operator with trace 1 might very well be a positive
operator for some values of � and non-positive for other values. We study in this
chapter a fundamental tool defined and developed by Narcowich [126, 127, 128]
and Narcowich and O’Connell [129] based on earlier work of Kastler [105] and
Loupias and Miracle-Sole [118, 119], namely the Narcowich–Wigner spectrum of a
self-adjoint trace class operator. Roughly speaking, this set consists of the values
of the parameter � for which the operator in question is positive, and hence a
“density operator” representing a mixed quantum state.

We mention that much of this chapter can be recast in the language of the
theory of C∗-algebras; due to lack of space we do not address this fruitful point of
view here and refer to the aforementioned papers of Kastler, Loupias, Miracle-Sole
and to the references therein. For a brief discussion (at an elementary level) of the
usefulness of the language of C∗-algebras in the study of quantum mechanical
states we refer to §11.11 in Hannabuss’ book [91].

13.1 The density operator

Density operators (also called “density matrices” in physics) are central objects
in quantum mechanics, because they are identified with the “mixed states” of a
quantum system. They contain, as a particular case, the “pure states” which are
usually described by the wave function.

205M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics,  
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13.1.1 Pure and mixed quantum states

Let us begin by defining rigorously the notion of density operator in terms of trace
class operators.

Definition 289. A density operator (or density matrix) on a separable Hilbert space
H is a bounded operator ρ̂ : H −→ H having the following properties:

(i) ρ̂ is self-adjoint and semi-definite positive: ρ̂ = ρ̂∗, ρ̂ ≥ 0;
(ii) ρ̂ is of trace class and Tr(ρ̂) = 1.

In quantum mechanics the Hilbert space H is usually realized as a space of
square-integrable functions.

Here is a first example of a density operator. Let us assume that we are in
presence of a well-defined quantum state, represented by an element ψ 
= 0 of
H. Such a state is called a pure state in quantum mechanics. It is no restriction
to assume that ψ is normalized, that is ‖ψ‖H = 1, so that the mathematical
expectation of Â in the state ψ is

〈Â〉ψ = (Âψ|ψ)H. (13.1)

Consider now the projection operator

ρ̂ψ : H −→ {αψ : α ∈ C} (13.2)

of H on the “ray” generated by ψ. For each φ ∈ H we have

ρ̂ψφ = αψ , α = (φ|ψ)H. (13.3)

We will call ρ̂ψ the pure density operator associated with ψ; it is a trace class
operator with trace equal to 1.

Exercise 290. Check this last statement in detail.

Observe that when H = L2(Rn) formula (13.3) can be written

ρ̂ψφ(x) =
∫

Rn

ψ(x)ψ(y)φ(y)dy,

hence the kernel of ρ̂ψ is just the tensor product

Kρ̂ψ = ψ ⊗ ψ. (13.4)

We are going to see that the pure density operator ρ̂ψ is in this case a Weyl
operator whose symbol is (up to a factor) just the Wigner transform of ψ (cf.
Corollary 207). Let us restate this property in our new language and notation:
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Proposition 291. Let ρ̂ψ be the density operator associated to a pure state ψ by
(13.3).

(i) The Weyl symbol ρψ of ρ̂ψ and the Wigner transform Wψ of ψ are related
by the formula

ρψ(z) = (2π�)nWψ(z). (13.5)

(ii) Let Â
Weyl←→a. If ‖ψ‖L2(Rn) = 1 then the expectation value 〈Â〉ψ=(Âψ|ψ)L2(Rn)

of Â in the state ψ is given by:

〈Â〉ψ =
(

1
2π�

)n Tr(ρ̂ψÂ). (13.6)

Proof of (i). In view of formula (10.15) in Proposition 205 the Weyl symbol aψ of
ρ̂ψ is given by

ρψ(x, p) =
∫

Rn

e−
i
�
p·yKρ̂ψ(x + 1

2y, x− 1
2y)dy

=
∫

Rn

e−
i
�
p·yψ(x+ 1

2y)ψ(x + 1
2y)d

ny

that is ρψ(z) = (2π�)nWψ(z) as claimed.

Proof of (ii). In view of formula (10.8) in Proposition 200 we have

〈Â〉ψ =
∫

R2n
a(z)Wψ(z)dz

and formula (13.6) follows from (i) using the expression (12.27) in Proposition 284
giving the trace of the composition of two Weyl operators. �

We have so far been assuming that the quantum system under consideration
was in a well-known state characterized by a function ψ. Suppose for instance
that we have the choice between a finite or infinite number of states, described by
functions ψ1, ψ2, . . . , each ψj having a probability αj to be the “true” description.
We can then form a weighted “mixture” of the ψj by forming the convex sum

ψ =
∞∑

j=1

αjψj ,
∞∑

j=1

αj = 1 , αj ≥ 0. (13.7)

We will say that ψ is a mixed state.

Definition 292. The density operator of the mixed state (13.7) is the self-adjoint
operator

ρ̂ =
∞∑

j=1

αj ρ̂ψj (13.8)

where the real numbers αj satisfy the conditions (13.7) above.

It is clear that ρ̂ is a density operator in the sense of Definition 289: since
trace class operators form a vector space, ρ̂ is indeed of trace class and its trace is 1
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since Tr(ρ̂j) = 1 and the αj sum to 1. That ρ̂ = ρ̂∗ is obvious, and the positivity
of ρ̂ follows from the fact that αj ≥ 0 for each j. We will see below (Corollary 294)
that any density operator on L2(Rn) can actually be written in the form (13.8).

The following result describes all density matrices in a Hilbert space H:

Proposition 293. An operator ρ̂ on a Hilbert space H is a density operator if and
only if there exists a (finite or infinite) sequence (αj) of positive numbers and
finite-dimensional pairwise orthogonal subspaces Hj of H such that

ρ̂ =
∑

j

αj ρ̂j and
∑

j

αj dimHj = 1 (13.9)

where ρ̂j is the orthogonal projection H −→ Hj.
Proof. The statement is just Proposition 275, since the orthogonal projections ρ̂j
are rank-one self-adjoint operators. Since the spaces Hj are pairwise orthogonal
we have ρ̂j ρ̂k = 0 if j 
= k and hence ρ̂2 =

∑

j α
2
j ρ̂j . �

Specializing to the case where H = L2(Rn) we get:

Corollary 294. An operator ρ̂ : L2(Rn) −→ L2(Rn) is a density operator if and
only if there exists a family (ψj)j∈J in L2(Rn), a sequence (λj)j∈J of numbers
λj ≥ 0 with

∑

j∈J
λj = 1 such that the Weyl symbol ρ of ρ̂ is given by

ρ =
∑

j∈J

λjWψj. (13.10)

Proof. Assume that the Weyl symbol of ρ̂ is given by (13.10); in view of Proposition
293 and the discussion preceding it we have

ρ̂ =
∑

j∈J

αj ρ̂j

where ρ̂j is the orthogonal projection on the ray {αψj : α ∈ C}. It follows that ρ̂ is
a density operator. If conversely ρ̂ is a density operator on L2(Rn), then there exist
pairwise orthogonal finite-dimensional subspaces H1, H2,. . . of L2(Rn) such that

ρ̂ =
∑

j

αj ρ̂Hj with
∑

j

mjαj = 1

with ρ̂j the orthogonal projection on Hj and mj = dimHj . Choose now an or-
thonormal basis ψ1, . . . , ψm1 of H1, an orthonormal basis ψm1+1, . . . , ψm1+m2+1

of H2, and so on. The Weyl symbol of ρ̂ is

ρ = α1

m1∑

j=1

Wψj + α2

m1+m2+1∑

j=m1

Wψj + · · ·

which is (13.10), setting λj = mjαj . �
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Let us define the notion of purity of a quantum state, which is a measure of
how much a quantum state differs from a pure state:

Definition 295. Let ρ̂ be a density operator on H; the number µ(ρ̂) = Tr(ρ̂2) is
called the “purity of the quantum state” that ρ̂ represents.

The following result justifies the definition above:

Proposition 296. Let ρ̂ be a density operator on a Hilbert space H. We have

0 ≤ Tr(ρ̂2) ≤ Tr(ρ̂) ≤ 1 (13.11)

and Tr(ρ̂2) = 1 if and only if ρ̂ is a pure-state density operator.

Proof. The condition
∑

j αj dimHj = 1 implies that we must have αj ≤ 1 for
each j so that

Tr ρ̂2 =
∑

j

α2
j dimHj ≤

∑

j

αj dimHj = 1.

If ρ̂ is a pure-state density operator then it is a projection of rank 1, hence ρ̂2 = ρ̂
and Tr(ρ̂2) = 1. Suppose conversely that Tr(ρ̂2) = 1, that is

∑

j

α2
j dimHj =

∑

j

αj dimHj = 1.

Since dimHj > 0 for every j this equality is only possible if the numbers αj
are either 0 or 1; since the case αj = 0 is excluded it follows that the sum
∑

j αj dimHj = 1 reduces to one single term, say αj0 dimHj0 = 1 so that ρ̂ =
αj0Pj0 and ρ̂2 = α2

j0
ρ̂j0 . The equality Tr(ρ̂) = Tr(ρ̂2) = 1 can hold if and only if

αj0 = 1 hence dimHj0 = 1 and ρ̂ is a projection of rank 1, and hence a pure-state
density operator. �

Recalling (formula (13.4)) that the operator kernel of the density operator of
a pure state ψ is just the tensor product ψ ⊗ ψ we have more generally:

Corollary 297. Let the density operator ρ̂ be given by formula (13.9) and let (ψjk)j,k
be a double-indexed family of orthonormal vectors in L2(Rn) such that the subfam-
ily (ψjk)k is a basis of Hj for each j.

(i) The kernel Kρ̂ of ρ̂ is given by

Kρ̂(x, y) =
∑

j,k

λjψjk(x)⊗ ψjk(y); (13.12)

(ii) The Weyl symbol of ρ̂ is given by

a(z) =
∑

j,k

λjWψjk(z) (13.13)

(Wψjk the Wigner transform of ψjk).
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Proof. (i) We have

ρ̂ψ =
∑

j

λj ρ̂ψ =
∑

j,k

λj(ψ|ψjk)Hψjk

that is, by definition of the scalar product:

ρ̂ψ =
∑

j

λj ρ̂ψ =
∑

j,k

λj

∫

Rn

ψjk(x)ψ(y)ψjk(y)dy

which is (13.12).
(ii) Formula (13.13) for the symbol immediately follows from (13.12) in view

of Proposition 293. �

13.2 The uncertainty principle revisited

Let us see what the strong uncertainty principle in the Robertson–Schrödinger
form becomes in the case of mixed states.

13.2.1 The strong uncertainty principle for the density operator

Recall that the Robertson–Schrödinger inequalities (6.10) are

(∆Xα)2(∆Pα)2 ≥ ∆(Xα, Pα)2 + 1
4�

2. (13.14)

Let Â and B̂ be Weyl operators; we assume that the expectation values

〈Â〉ρ̂ = Tr(ρ̂Â) , 〈Â2〉ρ̂ = Tr(ρ̂Â2) (13.15)

(and similar expressions for B̂) exist and are finite. Setting

(∆Â)2ρ̂ = 〈Â2〉ρ̂ − 〈Â〉2ρ̂ , (∆B̂)2ρ̂ = 〈B̂2〉ρ̂ − 〈B̂〉2ρ̂,
∆(Â, B̂)ρ̂ =

1
2
〈ÂB̂ + B̂Â〉ρ̂ − 〈Â〉ρ̂〈B̂〉ρ̂

we have the following result:

Proposition 298. Let Â
Weyl←→ a and B̂

Weyl←→ b be two essentially self-adjoint Weyl
operators on L2(Rn) for which the expectation values (13.15) are defined. We have

|〈ÂB̂〉ρ̂|2 = ∆(Â, B̂)2ρ̂ − 1
4 〈[Â, B̂]〉2ρ̂ (13.16)

where [Â, B̂] = ÂB̂ − B̂Â and hence

(∆Â)2ρ̂(∆B̂)2ρ̂ ≥ ∆(Â, B̂)2ρ̂ − 1
4 〈[Â, B̂]〉2ρ̂ . (13.17)
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Proof. Replacing Â and B̂ by Â−〈Â〉ρ̂ and B̂−〈B̂〉ρ̂ we may assume that 〈Â〉ρ̂ =
〈B̂〉ρ̂ = 0 so that (13.16) and (13.17) reduce to, respectively,

|〈ÂB̂〉ρ̂|2 = 1
2 〈ÂB̂ + B̂Â〉2ρ̂ − 1

4 〈[Â, B̂]〉2ρ̂ (13.18)

and
〈Â2〉ρ̂〈B̂2〉ρ̂ ≥ 1

2 〈ÂB̂ + B̂Â〉2ρ̂ − 1
4 〈[Â, B̂]〉2ρ̂. (13.19)

Writing ÂB̂ = 1
2 (ÂB̂ + B̂Â) + 1

2 (ÂB̂ − B̂Â) we have,

〈ÂB̂〉ρ̂ = 1
2 〈ÂB̂ + B̂Â〉ρ̂ + 1

2 〈ÂB̂ − B̂Â〉ρ̂.

Now, ∆(Â, B̂)ρ̂ is a real number, and 〈[Â, B̂]〉ρ̂ is pure imaginary (because
[Â, B̂]∗ = −[Â, B̂] since Â and B̂ are essentially self-adjoint), hence formula
(13.18). We next observe that

〈ÂB̂〉ρ̂ =
∑

j∈J
αj(ÂB̂ψj |ψj)L2 =

∑

j∈J
αj(B̂ψj |Âψj)L2 ; (13.20)

applying the Cauchy–Schwarz inequality to each scalar product (B̂ψj |Âψj)L2

we get
|〈ÂB̂〉ρ̂|2 ≤

∑

j∈J
αj‖B̂ψj‖L2 ‖Âψj‖L2 . (13.21)

Since 〈Â〉2ρ̂ = 〈B̂〉2ρ̂ = 0 we have

‖Âψj‖ = 〈Â2〉1/2ψj
= (∆Â)2ψj , ‖B̂ψj‖ = 〈B̂2〉1/2ψj

= (∆B̂)2ψj

and the inequality (13.21) is thus equivalent to

|〈ÂB̂〉ρ̂| ≤
∑

j∈J
αj〈Â2〉1/2ψj

〈B̂2〉1/2ψj
.

Writing αj = (√αj)2 the Cauchy–Schwarz inequality for sums yields

|〈ÂB̂〉ρ̂| ≤



∑

j∈J
αj〈Â2〉1/2ψj








∑

j∈J
α〈B̂2〉1/2ψj



 = 〈Â2〉ρ̂〈B̂2〉ρ̂

hence the inequality (13.19) using formula (13.18). �

Choosing for Â the operator of multiplication by xj and B̂ = −i�∂/∂xj one
obtains the usual Robertson–Schrödinger inequalities

(∆Xj)2ρ̂(∆Pj)
2
ρ̂ ≥ ∆(Xj , Pj)2ρ̂ + 1

4�
2 (13.22)

for 1 ≤ j ≤ n.
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Corollary 299. Assume that [Â, B̂] = i�; then

(∆Â)2ρ̂(∆B̂)2ρ̂ ≥ ∆(Â, B̂)2ρ̂ + 1
4�

2. (13.23)

If ρ̂ represents a pure state ψ ∈ DÂB̂ ∩DB̂Â then we have equality if and only if
the vectors (Â− 〈Â〉)ψ and (B̂ − 〈B̂〉)ψ are collinear.

Proof. The inequality (13.23) immediately follows from the inequality (13.17).
Assume that we have equality in (13.23). It is sufficient to consider the case 〈Â〉ψ =
〈B̂〉ψ = 0. In view of formula 〈ÂB̂〉ψ = 〈ÂB̂ψ|ψ〉 = 〈B̂ψ|Âψ〉 this means that the
Cauchy–Schwarz inequality reduces to an equality, which implies that Âψ and B̂ψ
are colinear. �

Assume in particular that Âψ = x1ψ and B̂ψ = −i�∂ψ/∂x1. The inequality
(13.22) with j = 1 becomes an equality if there exists a complex constant λ1 such
that

−i� ∂ψ
∂x1

= λ1x1ψ;

it follows that we must have

ψ(x) = C(x2, . . . , xn)e−
i
2�
λ1x

2
1

for some function C of only the variables x2, . . . , xn. Thus, if we require all the
Robertson–Schrödinger equalities (13.22) to become equalities we must have

ψ(x) = C exp




i

2�

n∑

j=1

λjx
2
j





where C and the λj are complex constants; the condition that ψ be square-
integrable requires that Imλj > 0. Choosing in particular λ1 = · · · = λn = i
and C = (π�)−n/4 one obtains the standard coherent state

ψ�

0 (x) = (π�)−n/4e−
1
2�

|x|2 . (13.24)

13.2.2 Sub-Gaussian estimates

We begin by discussing the case of a pure state.
We have seen in Chapter 11, Section 11.2, that the Wigner transform of a

Gaussian is itself a Gaussian. More precisely, assume that

ψ�

M (x) =
(

1
π�

)n/4
(detX)1/4e−

1
2�
Mx2

where M = X + iY with X and Y symmetric and X positive definite. Then

Wψ�

M (z) =
(

1
π�

)n
e−

1
�
Gz2 (13.25)
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where G is the real 2n× 2n matrix given by

G =
(
X + Y X−1Y Y X−1

X−1Y X−1

)

= STS (13.26)

where the symplectic matrix S is given by

S =
(

X1/2 0
X−1/2Y X−1/2

)

∈ Sp(2n,R). (13.27)

The following simple geometric remark already hints at the fact that sym-
plectic capacities might already be lurking behind these formulas:

Lemma 300. If a Gaussian function Ψ(z) = Ce−
1
�
Mz2 on R

2n is the Wigner
transform of a Gaussian (11.12) then the phase-space ellipsoidW = {z : Mz2 ≤ �}
is the image S(B(

√
�)) of the ball B(�) : |z| ≤ � by some S ∈ Sp(2n,R), and hence

the symplectic capacity of W is π� = 1
2h.

Proof. (Cf. Proposition 242) We haveM = STS for some S ∈ Sp(2n,R) and hence
W = S(B(�)). Let c be an arbitrary symplectic capacity; then, using successively
the symplectic invariance of c and the normalization condition c(B(R)) = πR2,
we get

c(W) = c(S(B(
√

�))) = c((B(
√

�))) = π�. �

The following result shows that a Wigner transform cannot be dominated by
an arbitrarily sharply peaked phase space Gaussian function. This is of course a
phase space version of the uncertainty principle obtained by using Hardy’s uncer-
tainty principle. We are following the exposition in de Gosson and Luef [74].

Proposition 301. Let ψ ∈ L2(Rn), ψ 
= 0, and assume that there exists C > 0 such
that Wψ(z) ≤ Ce−

1
�
Mz·z. Then c(WΣ) ≥ 1

2h where WΣ is the Wigner ellipsoid
corresponding to the choice Σ = �

2M
−1 (equivalently c(BM ) ≥ 1

2h where BM :
Mz2 ≤ �).

Proof. In view of Williamson’s symplectic diagonalization theorem we can find
S ∈ Sp(2n,R) such that

MSz · Sz =
n∑

j=1

λj(x2
j + p2

j)

where λ1 ≥ λ2 ≥ · · · ≥ λn are the moduli of the eigenvalues ±iλ, λ > 0, of JM .
It follows that the assumption Wψ(z) ≤ Ce− 1

�
Mz·z can be rewritten as

Wψ(S−1z) ≤ C exp



−1
�

n∑

j=1

λj(x2
j + p2

j)



 . (13.28)
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In view of the metaplectic covariance formula (9.29) we haveWψ(S−1z)=WŜψ(z)
where Ŝ ∈Mp(n,R) has projection S on Sp(2n,R). Since Ŝψ ∈ L2(Rn) and c(WΣ)
is a symplectic invariant it is no restriction to assume S = I, Ŝ = I. Integrating
the inequality

Wψ(z) ≤ C exp



−1
�

n∑

j=1

λj(x2
j + p2

j)





in x and p, respectively we get, using the marginal properties formulae (9.17) and
(9.18),

|ψ(x)| ≤ C1 exp



− 1
2�

n∑

j=1

λjx
2
j



 , (13.29)

|Fψ(p)| ≤ C1 exp



− 1
2�

n∑

j=1

λjp
2
j



 (13.30)

for some constant C1 > 0. Let us now introduce the following notation. We set
ψ1(x1) = ψ(x1, 0, . . . , 0) and denote by F1 the one-dimensional Fourier transform
in the x1 variable. Now, we first note that (13.29) implies that

|ψ1(x1)| ≤ C1 exp
(

−λ1

2�
x2

1

)

. (13.31)

On the other hand, by definition of the Fourier transform F ,
∫

Rn−1
Fψ(p)dp2 · · · dpn =

(
1

2π�

)n/2
∫

Rn−1

(∫

Rn

e−
i
�
p·xψ(x)dx

)

dp2 · · · dpn;

taking into account the Fourier inversion formula this formula can be rewritten as
∫

Rn−1
Fψ(p)dp2 · · · dpn = (2π�)(n−1)/2

F1ψ1(p1).

It follows that

|F1ψ1(p1)| ≤
(

1
2π�

)(n−1)/2
C1

∫

exp



− 1
2�

n∑

j=1

λjp
2
j



 dp2 · · · dpn

that is

|F1ψ1(p1)| ≤ C3 exp
(

−λ1

2�
p2
1

)

(13.32)

for some constant C3 > 0. Applying Hardy’s uncertainty principle we see that
the condition λ2

1 ≤ 1 is both necessary and sufficient for these inequalities to hold
(remember that we are using the ordering convention λ1 ≥ λ2 ≥ · · · ≥ λn); this is
equivalent to c(BM ) ≥ 1

2h. �
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Exercise 302. Use Theorem 301 to show that a Wigner transform Wψ can never
have compact support. [Hint: show that if Wψ has compact support then it is
dominated by arbitrarily sharply peaked Gaussians.]

The results above allow us to prove the more general result:

13.2.3 Positivity issues and the KLM conditions

Let us now shortly address the following important, deep, and difficult question:

When is a real symmetric 2n× 2n matrix Σ the covariance matrix of a
mixed quantum state ρ̂?

In the classical case the answer is simple: Σ is the covariance matrix of some
probability density if and only if Σ is positive definite. In the quantum case the
situation is much more subtle and difficult than it could appear at first sight,
because it is plagued by positivity questions. Let in fact ρ̂ be a self-adjoint operator
of trace class with trace Tr(ρ̂) = 1. The operator ρ̂ is thus a candidate for being a
density matrix. However, to be eligible, it must in addition be non-negative, that
is we must have (ρ̂ψ|ψ)L2 ≥ 0 for all ψ ∈ L2(Rn), and it is this property which is
difficult to check.

We are going to present a theoretical characterization of the positivity of
a density operator, the KLM conditions. The letters KLM are an acronym for
Kastler [105] and Loupias and Miracle-Sole [118, 119] who all three have con-
tributed significantly to a better understanding of the positivity issues for trace
class operators. Also see the related paper of Emch [43] on “geometric dequanti-
zation” where similar issues are discussed.

Let us first introduce a notation: for a function a ∈ S(Rn ⊕ R
n) we set

a♦(z) =
(

1
2π

)n
∫

Rn

eiσ(z,z′)a(z′)dz′

(a♦ can be pronounced “a diamond”). This definition of course also makes sense
for a ∈ S′(Rn ⊕ R

n) if one interprets the integral as a distributional bracket. In
fact, the function a♦(z) is related to the symplectic Fourier transform

aσ(z) = Fσa(z) =
(

1
2π�

)n
∫

Rn

e−
i
�
σ(z,z′)a(z′)dz′

by the simple formula
a♦(z)(z) = �

naσ(−�z). (13.33)

Definition 303. Let a be a complex function defined on the symplectic space (Rn⊕
R
n, σ). Let η ∈ R be a variable parameter and set

Λjk(zj , zk) = e−
iη
2 σ(zj ,zk)a♦(zj − zk) (13.34)
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where (z1, . . . , zN) ∈ (R2n)N . The setWS(a) of values of η for which every matrix
Λ = (Λjk(zj , zk, η))1≤j,k≤N with N and (z1, . . . , zN) arbitrary is positive semi-
definite is called the Narcowich–Wigner spectrum of a. If η ∈ WS(a) one says
that a is of η-positive type.

Explicitly, WS(a) is thus the set of all real numbers η such that for every
integer N ≥ 1 and every sequence (z1, . . . , zN ) we have

∑

1≤j,k≤N
λjλke

− iη
2 σ(zj ,zk)a♦(zj − zk) ≥ 0,

λ = (λ1, . . . , λN ) ∈ C
N . It should be emphasized that in the verification of the

condition above it is assumed that a does not depend explicitly on the variable η.

Exercise 304. Show that functions of η-positive type form a cone: if a and b are
of η-positive type then so is λa+ µb for all λ ≥ 0 and µ ≥ 0.

Notice that if we choose η = 0 we recover the usual definition of a function
of positive type: the function a is of positive type if for each integer N the N ×N
matrix with entries a♦(zj − zk) is positive semi-definite. In view of a classical
theorem of Bochner this is a well-known sufficient and necessary condition for
the continuous function a♦ to be the Fourier transform of a positive measure (see
Katznelson [107], p. 137 for a proof of Bochner’s theorem). Let us introduce the
following terminology from statistical mechanics: a classical state is the datum of
a probability density on the phase space R

n ⊕ R
n. We have:

Proposition 305. Assume that a is continuous on R
n ⊕R

n and of 0-positive type.
Then a is a positive measure and can thus be identified with a classical state.

Proof. To say that a is 0-positive type means that a♦ is of positive type in the
usual sense, hence a = (a♦)♦ is a positive measure in view of Bochner’s theorem.
Normalizing this measure yields a probability density, hence a classical state. �

When η = � we can restate the definition above in terms of the symplectic
Fourier transform Fσ:

Proposition 306. The function a♦ is of �-positive type if and only if for ev-
ery integer N ≥ 1 and every (z1, . . . , zN ) ∈ (R2n)N the N × N matrix Λ′ =
(Λ′

jk(zj , zk))1≤j,k≤N where

Λ′
jk(zj , zk) = e

i
2�
σ(zj ,zk)Fσa(zj − zk) (13.35)

is positive semi-definite.

Proof. It is immediate in view of formula (13.33) replacing (zj , zk) with η−1(zk, zj)
and noting that σ(zk, zj) = −σ(zj , zk). �
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The observant reader has certainly noticed that the right-hand side of (13.35)
has some kind of remote resemblance with the formula (8.9)

T̂ (z0 + z1) = e−
i

2�
σ(z0,z1)T̂ (z0)T̂ (z1)

for Heisenberg–Weyl operators, which we can rewrite as

T̂ (zk − zj) = e−
i

2�
σ(zj ,zk)T̂ (zk)T̂ (−zj). (13.36)

That the Heisenberg–Weyl operators indeed are part of the picture is shown by
the following fundamental example of a function of �-positive type.

Proposition 307. The Wigner distribution Wψ of ψ ∈ L2(Rn) is of �-positive type:
� ∈ WS(Wψ).

Proof. In view of Proposition 306 we have to show that for all (z1, . . . , zN ) ∈
(R2n)N and (λ1, . . . , λN ) ∈ C

N we have

IN =
∑

1≤j,k≤N
λjλke

− i
2�
σ(zj ,zk)FσWψ(zj − zk)) ≥ 0 (13.37)

for every complex vector (λ1, . . . , λN ) ∈ C
N and every sequence (z1, . . . , zN) ∈

(R2n)N . Since the Wigner distribution Wψ and the ambiguity function

Aψ(z) =
(

1
2π�

)n (T̂ (−z)ψ|ψ)L2

are obtained from each other by the symplectic Fourier transform Fσ (formula
(9.26) in Proposition 175) we have

IN =
∑

1≤j,k≤N
λjλke

− i
2�
σ(zj ,zk)Aψ(zj − zk)).

Let us prove that

IN =
(

1
2π�

)n
∥
∥
∥
∥

∑

1≤j≤N
λj T̂ (−zj)ψ

∥
∥
∥
∥

2

L2

; (13.38)

the inequality (13.37) will follow. Taking into account the fact that T̂ (−zk)∗ =
T̂ (zk) and using formula (13.36) we have

∥
∥
∥
∥

∑

1≤j≤N
λj T̂ (zj)ψ

∥
∥
∥
∥

2

L2

=
∑

1≤j,k≤N
λjλk(T̂ (−zj)ψ|T̂ (−zk)ψ)L2

=
∑

1≤j,k≤N
λjλk(T̂ (zk)T̂ (−zj)ψ|ψ)L2

=
∑

1≤j,k≤N
λjλke

i
2�
σ(zj ,zk)(T̂ (zk − zj)ψ|ψ)L2

= (2π�)n
∑

1≤j,k≤N
λjλke

i
2�
σ(zj ,zk)Aψ(zj − zk)

proving the equality (13.38). �
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One shows (but we will not do it here) that

Proposition 308. If a : R
n⊕R

n −→ C is of �-positive type then a ∈ L2(Rn⊕R
n).

(See Loupias and Miracle-Sole [118], Theorem 4.)
The interest of the notion of �-positivity comes from the following result:

Theorem 309. Let Â
Weyl←→ a be a self-adjoint trace class operator on L2(Rn). The

operator Â is positive semi-definite (written Â ≥ 0) if and only if the symbol a is
of �-positive type.

We will need the following result in our discussion:

Lemma 310. If a : R
n ⊕ R

n −→ C is continuous and twice continuously differen-
tiable near 0 and of �-positive type, then we have

−2�a′′(0) + iJ ≥ 0 (13.39)

where a′′(0) = D2a(0) is the Hessian matrix of a at 0.

Proof. (Cf. Lemma 2.1 in Narcowich [128]). For (λ1, . . . , λm) ∈ C
m and ε ∈ R let

us set

R(ε) =
m∑

j,k=1

λjλke
− iε2

2�
σ(zj ,zk)a(ε(zj − zk)).

If a is of �-positive type we have R(ε) ≥ 0 for every ε; choose now the λj such
that

∑

j λj = 0; thenR(0) = 0 and R′′(0) ≥ 0. An elementary calculation shows
that

R′′(0) = ZT (−2a′′(0) + i�−1J)Z

where Z =
∑

j λjzj ∈ C
2n. The λj and zj being arbitrary we thus have −2a′′(0)+

i�−1J ≥ 0, proving the lemma. �
Proposition 311. Let ρ̂ be a density operator.

(i) The covariance matrix Σρ̂ satisfies the strong uncertainty principle:

Σρ̂ + 1
2 i�J ≥ 0; (13.40)

(ii) The Robertson–Schrödinger inequalities hold:

(∆Xj)2ρ̂(∆Pj)
2
ρ̂ ≥ (Cov(Xj , Pj)ρ̂)2 + 1

4�
2, (13.41)

(j = 1, . . . , n) and (∆Xj)2ψ(∆Pk)2ψ ≥ 0 if j 
= k.

Proof of (i). The matrix Σρ̂ + 1
2 i�J is Hermitian since Σρ̂ is symmetric and the

transpose of J is −J . We next remark that Σρ̂ = Σρ̂0 where ρ0 is defined by
ρ0(z) = ρ(z + 〈z〉ρ) with 〈z〉ρ = (〈x〉ρ , 〈p〉ρ): we have 〈z〉ρ0 = 0 and hence

Cov(Xj , Xk)ρ0 =
∫

R2n
xjxkρ0(z)dz = Cov(Xj , Xk)ρ;
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similarly Cov(Xj , Pk)ρ0 = Cov(Xj , Pk)ρ and Cov(Pj , Pk)ρ0 = Cov(Pj , Pk)ρ. It is
thus sufficient to prove the proposition for the density operator ρ̂0. Let us calculate
the Hessian matrix ρ′′0,σ(0). A direct calculation shows that we have

�
2ρ′′0,σ(0) = (2π�)−n

(−ΣPP,ρ0 ΣXP,ρ0
ΣPX,ρ0 −ΣXX,ρ0

)

and hence
�

2ρ′′0,σ(0) =
(

1
2π�

)n
JΣρ̂J. (13.42)

Since we have ρσ = (2π�)−naσ the positivity of ρ̂ implies, taking Proposition 311
and the lemma preceding it into account that

M = −2�
−1JΣρJ + iJ ≥ 0 ;

the condition M ≥ 0 being equivalent to JTMJ ≥ 0 the inequality (13.40) follows.

Proof of (ii). It follows from property (i) in view of Theorem 98 in Chapter 6. �



Part III

Pseudo-differential Operators
and Function Spaces



Chapter 14

Shubin’s Global Operator Calculus

In the applications to quantum mechanics that we have in mind in this book a cru-
cial role is played by non-local effects in symplectic space; for this reason the local
theory traditionally developed by many authors working in the theory of partial
differential equations is of little use. This chapter is a review of pseudo-differential
calculus from the point of view developed in Shubin [147]. The specificity of this
calculus is that the symbols satisfy global estimates where the x and p variables are
placed on equal footing. This is in strong contrast with the usual pseudodifferential
calculus often used in the theory of partial differential equations (especially their
microlocal study), and which is less adequate for the study of quantum mechan-
ics in its phase space formulation. The Shubin calculus contains the usual Weyl
calculus as a particular case; this remark will be important later when we derive
the Schrödinger equation. An excellent source which complements this chapter is
Nicola and Rodino [131].

We will again use the multi-index notation α = (α1, . . . , α2n) ∈ N
n, |α| =

α1 + · · ·+ α2n, and ∂αz = ∂α1
x1
· · · ∂αnxn ∂αn+1

y1 · · · ∂α2n
yn if z = (x, y).

14.1 The Shubin classes

We begin by introducing some notation and useful formulas.

14.1.1 Generalities

In Section 1.3.3 we briefly discussed quantization rules of the type

px −→ τx̂p̂+ (1− τ)p̂x̂

where τ is an arbitrary real constant, and which generalize the Weyl quantization
scheme

px −→ 1
2
(x̂p̂+ p̂x̂).

223M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics,  
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The consideration of such rules leads us to study pseudo-differential operators of
the type

Âf(x) =
(

1
2π�

)n
∫∫

R2n
e
i
�
p·(x−y)aτ ((1 − τ)x + τy, p)f(y)dydp (14.1)

where the integral should be understood in some “reasonable” sense. For instance,
this expression makes perfect sense if f ∈ S(Rn) and aτ ∈ S(Rn⊕R

n) because the
integral is then absolutely convergent. For more general symbols aτ one can give
a meaning to the expression (14.1) by declaring that the operator Â is defined by
the distributional kernel

KÂ(x, y) =
(

1
2π�

)n/2 (F−1
2 aτ )((1 − τ)x + τy, p)

where F−1
2 is the inverse Fourier transform in the second set of variables. We

notice that setting τ = 1
2 and a1/2 = a formula (14.1) becomes

Âf(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y)a(1

2 (x+ y), ξ)f(y)dydξ (14.2)

which is the expression (10.38) of a Weyl operator in terms of its symbol when we
choose � = 1 (more about that below). To make the notation more compact we
will in fact often assume that � = 1, so that we will actually deal with operators
written in the form

Âf(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y)aτ ((1− τ)x + τy, ξ)f(y)dydξ (14.3)

which is standard in the theory of partial differential operators. In harmonic anal-
ysis the preferred choice is to take � = 1/2π and to write ω instead of p:

Âf(x) =
∫∫

R2n
e2πiω·(x−y)aτ ((1 − τ)x + τy, ω)f(y)dydω. (14.4)

Each choice has its advantages and disadvantages. But keeping these conventions
in mind, it is easy to translate the properties of each formulation into the other.
Choosing τ = 0 in formula (14.3) yields

Âf(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y)aτ (x, ξ)f(y)dydξ

that is
Âf(x) =

(
1
2π

)n/2
∫

Rn

eix·ξa(x, ξ)Ff(ξ)dξ (14.5)

where
Ff(ξ) =

(
1
2π

)n/2
∫

Rn

e−iξ·yf(y)dy;



14.1. The Shubin classes 225

this is the conventional definition of a pseudo-differential operator found in most
texts dealing with partial differential equations; a is then sometimes called the
“Kohn–Nirenberg symbol” of the operator Â.

We mention for further use the following simple conjugation relation the
between usual Weyl operators and operators (14.2) with �-dependent symbols (cf.
the subsection on the dependence on � of πMp in Chapter 7):

Lemma 312. The Weyl operator Â
Weyl←→ a given by

Âf(x) =
(

1
2π�

)n
∫∫

R2n
e
i
�
p·(x−y)a(1

2 (x+ y), p)f(y)dydp (14.6)

and the operator (14.2) with symbol a(�)(z) = a(z
√

�), that is

Â(�)f(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y)a(1

2

√
�(x + y),

√
�ξ)f(y)dydξ (14.7)

are related by the formula
Â = M−1√

�
Â(�)M√

�

where M√
�
f(x) = �

n/4f(x
√

�).

Proof. We have

M−1√
�
ÂM√

�
f(x) =

(
1
2π

)n
∫∫

R2n
e
iξ·( 1√

�
x−y)

a(1
2 (x+

√
�y),
√

�ξ)f(
√

�y)dydξ;

setting y = y′/
√

� and ξ = p/
√

� we get

M−1√
�
ÂM√

�
f(x) =

(
1

2π�

)n
∫∫

R2n
e
i
�
p·(x−y)a(1

2 (x+ y′), p)f(y′)dy′dp

which establishes the lemma. �

14.1.2 Definitions and preliminary results

It is convenient – and natural, from the point of view of quantum mechanics – to
introduce the Shubin symbol classes. We will be following very closely Shubin’s
exposition ([147], particularly §23).

We will use throughout this chapter the weight function

〈z〉 =
√

1 + |z|2

for z ∈ R
2n.
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Definition 313. Let m ∈ R and 0 < ρ ≤ 1.

(i) The symbol class Γmρ (Rn⊕R
n) consists of all complex functions a ∈ C∞(Rn⊕

R
n) such that for every α ∈ N

2n there exists a constant Cα ≥ 0 with

|∂αz a(z)| ≤ Cα 〈z〉m−ρ|α| for z ∈ R
2n. (14.8)

(ii) The symbol class Σm,µρ,δ (Rn ⊕ R
n), µ > 0, δ ≤ 1/2, consists of all complex

functions a ∈ C∞(Rn ⊕ R
n) depending continuously on � ∈ (0, ε) such that

|∂αz a(z, �)| ≤ Cα 〈z〉m−ρ|α|
�
µ−δ|α| for z ∈ R

2n. (14.9)

We set
Γ−∞
ρ (Rn ⊕ R

n) =
⋂

m∈R

Γmρ (Rn ⊕ R
n).

We will see later on that the choice of τ is actually irrelevant: if Â ∈ Gmρ (Rn) is
given by (14.1) for one choice of τ it is true for all choices of the parameter.

Obviously Γmρ (Rn ⊕ R
n), Σm,µρ,δ (Rn ⊕ R

n), and Γ−∞
ρ (Rn ⊕ R

n) are complex
vector spaces for the usual operations of addition and multiplication by complex
numbers. Moreover one easily checks that

a ∈ Γmρ (Rn ⊕ R
n) and b ∈ Γm

′
ρ (Rn ⊕ R

n) =⇒ ab ∈ Γm+m′
ρ (Rn ⊕ R

n);

a ∈ Γmρ (Rn ⊕ R
n) and α ∈ N

2n =⇒ ∂αz a ∈ Γm−|α|
ρ (Rn ⊕ R

n).

The first implication is proved by using the generalized Leibniz rule for the deriva-
tives of a product of functions; the second is obvious in view of the definition of
Γmρ (Rn ⊕ R

n). We also have

a ∈ Σm,µρ,δ (Rn ⊕ R
n) and b ∈ Σm

′,µ′
ρ′,δ′ (Rn ⊕ R

n)

=⇒ ab ∈ Σm+m′,µ+µ′
ρ′′,δ′′ (Rn ⊕ R

n) , ρ′′ = min(ρ, ρ′), δ′′ = max(δ, δ′).

The simplest and most typical example is the reduced harmonic oscillator
Hamiltonian H(z) = 1

2 |z|2 which obviously belongs to Γ2
1(R

n ⊕ R
n). In fact, we

may as well choose the “complete” Hamiltonian

H(z) =
n∑

j=1

1
2mj

(p2
j +m2

jω
2
jx

2
j )

as is shown by the following exercise (the property can also be derived from Propo-
sition 316 below):

Exercise 314. Show that any polynomial function in z of degree m is in
Γm1 (Rn ⊕ R

n).

The following exercise shows that S(Rn ⊕R
n) can be characterized in terms

of the Shubin classes Γmρ (Rn ⊕ R
n):
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Exercise 315. Show that Γ−∞
ρ (Rn ⊕ R

n) = ∩m∈RΓmρ (Rn ⊕ R
n) is identical with

the Schwartz space S(Rn ⊕ R
n) of rapidly decreasing functions on R

n ⊕ R
n.

The following result is an invariance property which shows that the class
Γmρ (Rn ⊕ R

n) is preserved by linear changes of variables:

Proposition 316. Let a ∈ Γmρ (Rn ⊕R
n) and φ a linear automorphism of R

n⊕R
n.

Then φ∗a = a ◦ φ is also in Γmρ (Rn ⊕ R
n).

Proof. Let us first show that |φ∗a(z)| ≤ Cφ 〈z〉m for some constant Cφ ≥ 0. Diag-
onalizing the symmetric automorphism φT ◦φ using an orthogonal transformation
we have

λmin|z|2 ≤ |φ(z)|2 ≤ λmax|z|2

where λmin > 0 and λmax > 0 are the smallest and largest eigenvalues of φT ◦ φ.
It follows that

〈φ(z)〉m ≤ max(1, λmax) 〈z〉m

if m ≥ 0, and
〈φ(z)〉m ≤ min(1, λmin) 〈z〉m

if m < 0. We thus have |φ∗a(z)| ≤ CF 〈z〉m. A similar argument shows that for
every multi-index α we have an estimate of the type

|∂αz (φ∗a)(z)| ≤ Cα,φ 〈z〉m−ρ|α|

where Cα,φ is a constant. �

This property of invariance under linear transformations allows us to tog-
gle between symbols (x, ξ) �−→ a(x, ξ) and (x, ξ) �−→ a(x, �ξ) = a(x, p) without
changing the symbol class.

Definition 317. The set of operators Â defined by

Âf(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y)a(1

2 (x+ y), ξ)f(y)dydξ

with a ∈ Γmρ (Rn ⊕ R
n) for some value of τ ∈ R is denoted by Gmρ (Rn).

The operators Â ∈ Gmρ (Rn) have many interesting regularity properties; the
following is important (even if not very surprising):

Proposition 318. Every operator Â ∈ Gmρ (Rn) is a continuous operator S(Rn) −→
S(Rn) and can be extended into a continuous operator Â : S′(Rn) −→ S′(Rn).

Proof. That we have a continuous extension Â : S′(Rn) −→ S′(Rn) follows from
the first statement by duality provided that we know that the transpose ÂT is also
in Gmρ (Rn), this fact is true and will established in Proposition 342. The proof of
the continuity property Â : S(Rn) −→ S(Rn) is classical; it is actually the same
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that one uses to prove the continuity of operators with symbols in the Hörmander
classes. Let us sketch the argument: we write Â in the Kohn–Nirenberg form (14.5):

Âf(x) =
(

1
2π

)n/2
∫

Rn

eix·ξa(x, ξ)Ff(ξ)dξ

and note that for every integer N ≥ 0 we have

(1 + |x|2)N Âf(x) =
(

1
2π

)n/2
∫

Rn

(1−∆ξ)Neix·ξa(x, ξ)Ff(ξ)dξ

=
(

1
2π

)n/2
∫

Rn

eix·ξ(1−∆ξ)N [a(x, ξ)Ff(ξ)]dξ

where the second inequality is obtained using integration by parts. Using Leibniz’s
formula for the derivatives of a product of functions and the properties of the
Fourier transform we thus have

(1 + |x|2)N Âf(x) =
∑

|α|+|β|≤2N

Cαβ

∫

Rn

eix·ξ∂αξ a(x, ξ)F (xβf)(ξ)dξ

where the Cαβ are complex constants. Since xβf ∈ S(Rn) and |∂αξ a(x, ξ)| ≤
Cα 〈z〉m−ρ|α| it follows that |(1 + |x|2)N Âf(x)| ≤ CN for some constant CN . Ap-
plying the same argument to

∂αx Âf(x) =
∑

β≤α
C′
αβ

∫

Rn

eix·ξ∂βxa(x, ξ)F (xβ−αf)(ξ)dξ

we have in fact (1 + |x|2)N∂αx Âf ≤ C′′
α,N for all α ∈ N

n and N ≥ 0 and hence
Âf ∈ S(Rn). Using the expressions above we also get estimates of the semi-norms
which imply the continuity of Â : S(Rn) −→ S(Rn). �

We next consider the case of �-dependent symbols; it is the most important
from a quantum mechanical perspective:

Definition 319. The set of operators Â defined by

Âf(x) =
(

1
2π�

)n
∫∫

R2n
e
i
�
p·(x−y)a(1

2 (x+ y), p, �)f(y)dydp

with a ∈ Σm,µρ,δ (Rn ⊕ R
n), µ > 0, δ ≤ 1/2 is denoted by Sm,µρ,δ (Rn ⊕ R

n).

The following boundedness results are important; they are consequences of
the properties of anti-Wick quantization studied in Chapter 11.

Proposition 320.

(i) Let a ∈ Γ0
ρ(R

n ⊕ R
n). The Weyl operator Â

Weyl←→ a is bounded on L2(Rn).

(ii) Every operator Â ∈ S0,µ
ρ,δ (Rn⊕R

n) with µ > 0, δ ≤ 1/2 is uniformly bounded
on L2(Rn) for 0 < � ≤ ε.
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Proof of (i). In view of Proposition 259 there exists an anti-Wick operator
B̂aW

AW←→b with |∂αz b(z)| ≤ Cα 〈z〉−ρ|α| for every α ∈ N
n and Â = B̂aW + R̂

where the kernel K of R̂ is in S(Rn × R
n). In view of Corollary 264 the operator

B̂aW is bounded on L2(Rn), so it suffices to show that R̂ is also bounded on
L2(Rn). Applying the Cauchy–Schwarz inequality to the relation

R̂ψ(x) =
∫

Rn

K(x, y)ψ(y)dy

we get
∫

Rn

|R̂ψ(x)|2dx ≤
∫

Rn

|K(x, y)|2dxdy
∫

Rn

|ψ(y)|2dy

hence ‖R̂ψ‖L2 ≤ ‖K‖L2‖ψ‖L2 which proves our assertion.

Proof of (ii): Omitted. �

Proposition 321. Every operator Â ∈ G0
ρ(R

n) is bounded on L2(Rn)

14.1.3 Asymptotic expansions of symbols

Let us now define and briefly study the notion of asymptotic expansion of a symbol
a ∈ Γmρ (Rn ⊕ R

n).

Definition 322. Let (aj)j be a sequence of symbols aj ∈ Γmjρ (Rn ⊕ R
n) such that

limj→+∞m→ −∞. Let a ∈ C∞(Rn ⊕ R
n). If for every integer r ≥ 2 we have

a−
r−1∑

j=1

aj ∈ Γmrρ (Rn ⊕ R
n) (14.10)

where mr = maxj≥rmj , we will write a ∼
∑∞

j=1 aj and call this relation an
asymptotic expansion of the symbol a.

The interest of the notion of asymptotic expansion comes from the fact that
every sequence of symbols (aj)j with aj ∈ Γmjρ (Rn ⊕ R

n), the degrees mj being
strictly decreasing and such thatmj → −∞ determines a symbol in some Γmρ (Rn⊕
R
n), that symbol being unique up to an element of S(Rn ⊕ R

n):

Proposition 323. Let (aj)j be a sequence of symbols aj ∈ Γmjρ (Rn ⊕R
n) such that

mj > mj+1 and limj→+∞m→ −∞. Then:

(i) There exists a function a, such that a ∼

∞∑

j=1

aj.

(ii) If another function a′ is such that a′ ∼

∞∑

j=1

aj, then a− a′ ∈ S(Rn ⊕ R
n).
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For the proof of this result we refer to Shubin [147], p. 176. Note that property
(ii) immediately follows from the fact that we have

⋂

m∈R

Γmρ (Rn ⊕ R
n) = S(Rn ⊕ R

n)

(cf. Exercise 315).
We also have:

Proposition 324. Let aj ∈ Γmjρ (Rn ⊕ R
n), j = 1, 2, . . ., where mj → −∞ when

j → +∞. Let a ∈ C∞(Rn ⊕ R
n) be such that for any multi-index α there exist

real constants µα and Cα such that the following estimate holds:

|∂αz a(z)| � Cα 〈z〉µα . (14.11)

Also assume that lj and Cj are such that lj → −∞ as j → +∞ and that we have

∣
∣
∣
∣
∣
∣

a(z)−
r−1∑

j=1

aj(z)

∣
∣
∣
∣
∣
∣

� Cr 〈z〉lr . (14.12)

Then we have the asymptotic expansion a ∼

∞∑

j=1

aj.

The interest of this lies in the fact that the conditions imposed on the function
a are rather weak: it is only required that a and its derivatives are polynomially
bounded at infinity.

14.2 More general operators . . . which
are not more general!

Formula (14.1) suggests that it could perhaps be interesting to replace the symbol
aτ ((1 − τ)x + τy, ξ) by some more arbitrary function a(x, y, ξ) and to consider
more general “Fourier integral operators” of the type

Âf(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y)a(x, y, ξ)f(y)dydξ (14.13)

or, equivalently,

Âf(x) =
(

1
2π�

)n
∫∫

R2n
e
i
�
p·(x−y)a(x, y, p)f(y)dydp.

We will see that nothing is actually gained in generality.
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14.2.1 More general classes of symbols

The consideration of such more general operators motivates the introduction of
the following extension of the class Γmρ (Rn ⊕ R

n):

Definition 325. The symbol class Πm
ρ (R3n) consists of all complex functions a ∈

C∞(R3n) such that for every α, β, γ ∈ N
n there exists a constant Cαβγ ≥ 0 such

that the following estimate holds for some m′ ∈ R:

|∂αξ ∂βx∂γy a(x, y, ξ)| ≤ Cαβγ 〈u〉m−ρ|α+β+γ| 〈x− y〉m′+ρ|α+β+γ| . (14.14)

We are using here the notation u = (x, y, ξ) and 〈u〉 = (1 + |x|2 + |y|2 + |ξ|2)1/2.
The following result, and its corollary, shows that Γmρ (Rn ⊕R

n) can be used
to construct symbols in Πm

ρ (R3n):

Proposition 326. Let f be a linear map R
2n → R

n such that the linear map
φ : R

2n → R
2n defined by φ(x, y) = (f(x, y), x − y) is an isomorphism. Let b ∈

Γmρ (R2n). Define a function a ∈ C∞(R3n) by the formula

a(x, y, ξ) = b(f(x, y), ξ). (14.15)

Then a ∈ Πm
ρ (R3n).

Proof. The functions |x|+ |y| and |f(x, y)|+ |x− y| give equivalent norms on R
2n.

Therefore, for the proof of the proposition it remains to use the easily verified
inequality

(1 + |f(x, y)|+ |ξ|)s
(1 + |f(x, y)|+ |x− y|+ |ξ|)s � C(1 + |x− y|)|s| (14.16)

valid for s ∈ R, from which the estimates follow for a(x, y, ξ) with m′ = |m|. �

Exercise 327. Prove Peetre’s inequality (1 + |a− b|)s ≤ 2|s|(1 + |a|)s(1 + |b|)|s|.
Exercise 328. Use Peetre’s inequality to prove the inequality (14.16).

It readily follows from the result above that:

Corollary 329. Let b ∈ Γmρ (Rn ⊕ R
n) and define

a1(x, y, ξ) = b(x, ξ) and a2(x, y, ξ) = b(y, ξ).

Then a1 and a2 both belong to the symbol class Γmρ (R3n).

Proof. We have a1(x, y, ξ) = b(f(x, y), ξ) with f(x, y) = x and φ(x, y) = (x, x− y)
obviously is an isomorphism, hence a1 ∈ Γmρ (R3n) in view of Proposition 326; a
similar argument shows that we have a2 ∈ Γmρ (R3n) as well. �
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Let us now give a meaning to the expression (14.13) defining the pseudo-
differential operator A. The expression

Âf(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y)a(x, y, ξ)f(y)dydξ (14.17)

perfectly makes sense if a ∈ Πm
ρ (R3n) is compactly supported and f ∈ C∞

0 (Rn)
(the compactly supported infinitely differentiable functions); the discussion below
actually works as well modulo a few minor modifications if we assume f ∈ S(Rn).
In fact the integration in the right-hand side of (14.17) is performed over a compact
set, so that we get an absolutely convergent integral. To deal with a general a ∈
Πm
ρ (R3n) we note that in view of the obvious identities

〈x− y〉−M 〈∂ξ〉M eiξ·(x−y) = eiξ·(x−y),

〈ξ〉−N 〈∂y〉N eiξ·(x−y) = eiξ·(x−y)

we can rewrite (14.17) as

Âf(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y) 〈x− y〉−M

× 〈∂ξ〉M 〈∂y〉N
[

〈ξ〉−N a(x, y, ξ)f(y)
]

dydξ.

For an arbitrary a ∈ Πm
ρ (R3n) we can take this expression as a definition of

the operator A as soon as we have m − N < −n and m′ + m −M < −n. The
estimates (14.14) imply that the double integral is convergent, and thus defines a
continuous function Af . One readily verifies that if we increase M and N then we
obtain integrals which are also convergent after differentiation with respect to the
variable x, hence A : C∞

0 (Rn) −→ S(Rn) (respectively A : S(Rn) −→ S(Rn)). We
leave the details to the reader.

14.2.2 A reduction result

The following result, which we dignify as a theorem, is due to Shubin ([147] The-
orem 23.2). It is very important because it shows that nothing is really gained by
the consideration of the more “exotic” operators of the type (14.17). It shows in
fact that every such pseudo-differential operator with symbol in Πmρ (R3n) can be
expressed as an operator belonging to the class ΠGmρ (Rn), and this in infinitely
many ways. The proof of this property is long and technical (it makes use of
several Taylor expansions), but we reproduce it in Section 14.5 for the sake of
completeness.

Theorem 330. Let τ be an arbitrary real number. Every pseudo-differential operator
Â ∈ Gmρ (R3n), that is

Âf(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y)a(x, y, ξ)f(y)dydξ (14.18)
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or, equivalently, setting p = �ξ:

Âf(x) =
(

1
2π�

)n
∫∫

R2n
e
i
�
p·(x−y)a(x, y, �−1p)f(y)dydp (14.19)

with a ∈ Πm
ρ (R3n), can be written in the form

Âf(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y)aτ ((1 − τ)x + τy, ξ)f(y)dydξ (14.20)

where aτ ∈ Γmρ (Rn ⊕ R
n); respectively

Âf(x) =
(

1
2π�

)n
∫∫

R2n
e
i
�
p·(x−y)aτ ((1 − τ)x+ τy, �−1p)f(y)dydp. (14.21)

We have in addition the following asymptotic expansion:

aτ (x, ξ) ∼
∑

β,γ

1
β!γ!

τ |β|(1− τ)|γ|∂β+γ
ξ (−Dx)βDγ

ya(x, y, ξ)|y=x. (14.22)

The following consequence of Theorem 330 is obvious; it links the theory of
Weyl operators to Shubin’s theory of pseudo-differential operators:

Corollary 331. Every pseudo-differential operator Â of the type

Âf(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y)a(x, y, ξ)f(y)dydξ

with a ∈ Πm
ρ (R3n) is a Weyl operator Â

Weyl←→ aw with symbol aw ∈ Γmρ (R2n) given
by the expression

aw(x, ξ) ∼
∑

β,γ

1
β!γ!

(
1
2

)|β|+|γ|
∂β+γ
ξ (−Dx)βDγ

ya(x, y, ξ)|y=x.

Proof. It suffices to take τ = 1
2 in formula (14.22). �

The following result shows that the correspondence between operators and
symbols (for a given τ) is one-to-one and onto.

Proposition 332. The τ-symbol of an operator Â ∈ Gmρ (R3n) is uniquely defined.
Thus, for each value of the parameter τ the correspondence Â τ←→a is bijective.

Proof. Let us first verify that if Â has a kernel KÂ ∈ S(Rn ⊕ R
n), then it has a

τ -symbol aτ ∈ S(Rn⊕R
n) and the correspondence between kernel and symbol is a

one-to-one correspondence. When a ∈ S(Rn ⊕R
n) it follows from formula (14.20)

that the correspondence between kernel and τ -symbol is given by

KÂ(x, y) =
(

1
2π

)n/2
F−1
ξ→x−yaτ ((1 − τ)x + τy, ξ), (14.23)

aτ (v, ξ) = (2π)n/2 Fw→ξKÂ(v + τw, v − (1− τ)w), (14.24)
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where formula (14.24) is obtained from formula (14.23) by a change of coordinates
and the Fourier inversion formula. In particular, for any KÂ ∈ S(R2n), we can
find aτ (v, ξ) ∈ S(Rn ⊕ R

n) using formula (14.24). �

The following consequence is of course an obvious extension of formulas
(10.14) and (10.15) in Proposition 205) relating the Weyl symbol and the ker-
nel of an operator:

Corollary 333. In the �-dependent case the symbol a and the kernel KÂ are related
by the formulas

KÂ(x, y) =
(

1
2π�

)n
∫

Rn

e
i
�
p·(x−y)a((1− τ)x + τy, p)dp, (14.25)

aτ (x, p) =
∫

Rn

e−
i
�
p·yKÂ(x+ τy, x− (1− τ)y)dy (14.26)

(the integrals being understood as Fourier transforms).

Proof. These formulas are just a formal restatement of (14.23) and (14.24) in the
case of �-dependent τ -pseudodifferential operators. �

We next show the uniqueness of the τ -symbol in the general case. For this
we note that (14.23) is always true when Â is given via a τ -symbol aτ (v, ξ) and
if the partial Fourier transform, which appears in this formula, is understood in
the distributional sense. It follows that the inversion formula is also true, leading
to (14.24) after the linear change of coordinates (14.62). Furthermore, the unique-
ness of a τ -symbol is obvious in view of formula (14.24), taking into account the
uniqueness of the kernel KÂ.

In particular, the Weyl correspondence Â
Weyl←→ a is also bijective. More gen-

erally:

Corollary 334. Every operator Â ∈ Gmρ (Rn) can always be written in any of the
following three forms:

Âu(x) =
(

1
2π

)n
∫∫

R2n
ei(x−y)·ξa�(x, ξ)u(y)dydξ, (14.27)

Âu(x) =
(

1
2π

)n
∫∫

R2n
ei(x−y)·ξar(y, ξ)u(y)dydξ, (14.28)

Âu(x) =
(

1
2π

)n
∫∫

R2n
ei(x−y)·ξaw(1

2 (x+ y), ξ)u(y)dydξ. (14.29)

In the expressions above the symbols a�, ar and aw belong to Γmρ (Rn ⊕ R
n), and

are uniquely defined by Â.
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The case of �-dependent operators is immediately obtained by the usual
modifications; for instance formula (14.29) becomes

Âψ(x) =
(

1
2π�

)n
∫∫

R2n
e
i
�
(x−y)·paw(1

2 (x+ y), p)ψ(y)dydp (14.30)

where one recognizes the usual Weyl correspondence Â
Weyl←→ aw.

These results motivate the following definition:

Definition 335. The functions a�, ar and aw in the formulae (14.27)–(14.29) and
corresponding to the choices τ = 0, τ = 1, τ = 1

2 are called, respectively, the left,
right and Weyl symbols of operator Â. When we speak about a “Weyl pseudo-
differential operator Â” it will be implicitly understood that its symbol is aw, and
it will be written a when no confusion can arise.

In this book we mainly use the Weyl symbol; as already emphasized, this
choice is in a sense “natural” in quantum mechanics (especially in deformation
quantization) because Weyl operators enjoy very nice covariance properties with
respect to the symplectic and metaplectic groups.

In ordinary pseudo-differential calculus one has continuity results in terms of
the usual Sobolev spaces Hs(Rn). Since the vocation of the operators studied in
this chapter is to incorporate global behavior, it is appropriate to introduce the
following variant of the usual Sobolev spaces:

Definition 336. For s ∈ R the global Sobolev space Qs(Rn) consists of all f ∈
S′(Rn) such that Lsf ∈ L2(Rn) where Ls ∈ Gs1(Rn) is the operator defined by

Lsf(x) =
(

1
2π

)n/2
∫

Rn

eix·ξ〈z〉s/2Ff(ξ)dξ.

The norm on Qs(Rn) is defined by ‖f‖Qs(Rn) = ‖Lsf‖L2(Rn).

It turns out that the study ofQs(Rn) is best understood within the framework
of the modulation spaces we will study in Chapter 17. Let us just mention at this
point that Qs(Rn) can be equipped with an inner product making it into a Hilbert
space, and that we have the equalities

⋂

s∈R

Qs(Rn) = S(Rn) and
⋃

s∈R

Qs(Rn) = S′(Rn)

and that the following regularity result holds:

Proposition 337. Every operator Â∈Γmρ (Rn) is continuous Qs(Rn)−→Qs−m(Rn).
In particular Â : S(Rn) −→ S′(Rn).



236 Chapter 14. Shubin’s Global Operator Calculus

14.3 Relations between kernels and symbols

In Chapter 10 we briefly discussed the relationship between Weyl operators, their
kernels, and their symbols. We are giving here a more detailed study within the
framework of τ -symbols. This will allow us to make explicit the relation between
the Wigner and the Rihaczek transformations.

14.3.1 A general result

We want to be able to compare the symbols aτ and aτ ′ of a given operator Â. For
instance, given the Kohn–Nirenberg symbol of Â, what is the Weyl symbol of that
operator? The following result (Shubin [147], p. 183) gives a method for passing
from one symbol to the other:

Proposition 338. The symbols aτ and aτ ′ of the same operator Â ∈ Gmρ (Rn) are
related by the formula

aτ (x, ξ) = ei(τ−τ
′)Dαx ·Dαξ aτ ′(x, ξ) (14.31)

where Dα
x ·Dα

ξ =
∑

j D
αj
xj ·Dαj

ξj
.

(i) The following asymptotic formula holds:

aτ (x, ξ) ∼
∑

α

1
α!

(τ ′ − τ)|α|∂αξ Dα
xaτ ′(x, ξ). (14.32)

(ii) We have aτ − aτ ′ ∈ Γm−2ρ
ρ (Rn ⊕ R

n).

Proof. The second statement immediately follows from the first. Notice that the
right-hand side of formula (14.31) is well defined because the exponential is a
Fourier multiplier. We begin by making the following remark. Consider a τ -
pseudodifferential operator with symbol a ∈ Πm

ρ (R3n):

Âf(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y)aτ ((1 − τ)x + τy, ξ)f(y)dydξ.

The expression of the τ -symbol in terms of the τ ′-symbol for a different τ , can be
easily obtained from Theorem 330 in the form of an asymptotic series. Indeed, if
an operator Â has the τ ′-symbol aτ′ (x, ξ), that symbol may be determined via

a(x, y, ξ) = aτ ′((1− τ ′)x+ τ ′y, ξ).

In view of formula (14.22) in Theorem 330 the τ -symbol has the asymptotic ex-
pansion

aτ (x, ξ) ∼
∑

β,γ

(−1)|β|

β!γ!
τ |β|(1− τ)|γ|(1− τ1)|β|τ ′|γ|∂β+γ

ξ Dβ+γ
x aτ ′
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or
aτ (x, ξ) ∼

∑

α

cα∂
α
ξ D

α
xaτ ′(x, ξ),

where cα is a real constant given by

cα =
∑

β+γ=α

(−1)|β|

β!γ!
[τ(1 − τ ′)]|β| [(1− τ)τ ′]|γ| ; (14.33)

in particular,we have c0 = 1. Now, transforming (14.33) using Newton’s binomial
formula, we obtain after a few calculations

cα =
1
α!

[(1− τ)τ ′e− τ(1 − τ ′)e]α

where e = (1, 1, . . . , 1), that is cα = 1
α! (τ

′ − τ)|α| which yields formula (14.32).
Formula (14.31) follows. �

One can also show that we have precise asymptotic expansions relating the
symbols left, right, and Weyl symbols a�, ar and aw:

a�(x, ξ) ∼

∑

α

1
α!
∂αξ D

α
y a(x, y, ξ)|y=x, (14.34)

ar(y, ξ) ∼

∑

α

1
α!
∂αξ (−Dx)αa(x, y, ξ)|y=x, (14.35)

aw(x, ξ) ∼

∑

β,γ

1
β!γ!

(
1
2

)|β+γ|
∂β+γ
ξ (−Dx)βDγ

ya(x, y, ξ)|y=x . (14.36)

14.3.2 Application: Wigner and Rihaczek distributions

Recall from Corollary 207 that the Weyl symbol of the projection operator Pψ :
L2(Rn) −→ {λψ : λ ∈ C} (ψ 
= 0) is (up to a constant) the Wigner transform of
ψ. In fact, more generally, the Weyl symbol of the operator with kernel Kψ,φ =
(2π�)−n/2ψ⊗φ is the cross-Wigner transformW (ψ, φ). Let us generalize this result
to the case of τ -pseudodifferential operators. Let us rewrite in a more tractable
form formulas(14.23) and (14.24) relating the τ -symbol and kernel of an operator

Âf(x) =
(

1
2π

)n
∫∫

R2n
eiξ·(x−y)aτ ((1 − τ)x + τy, ξ)f(y)dydξ.

Writing the Fourier transforms as integrals these formulas become

KÂ,τ (x, y) =
(

1
2π

)n
∫

Rn

eiξ·(x−y)aτ ((1 − τ)x + τy, ξ)dξ, (14.37)

aτ (x, ξ) =
∫

Rn

e−iξ·yKÂ,τ (x+ τy, x− (1 − τ)y)dy. (14.38)
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Having quantum-mechanical applications in perspective we restate this result
in terms of operators depending on �:

Lemma 339. The distributional kernel

KÂ,τ (x, y) =
(

1
2π�

)n
∫

Rn

e
i
�
p·(x−y)aτ ((1 − τ)x + τy, p)dp (14.39)

of the operator Â defined by

Âψ(x) =
(

1
2π�

)n
∫∫

R2n
e
i
�
p·(x−y)aτ ((1 − τ)x + τy, ξ)ψ(y)dydp (14.40)

is related to the τ-symbol of that operator by the formula

aτ (x, p) =
∫

Rn

e−
i
�
p·yKÂ,τ (x+ τy, x− (1− τ)y)dy. (14.41)

Proof. Let us check this formula directly. We have, using (14.39),

KÂ,τ (x+ τy, x− (1− τ)y) =
(

1
2π�

)n
∫

Rn

e
i
�
p·yaτ (x, p)dp;

formula (14.41) follows since the left-hand side is (2π�)−n/2 the inverse Fourier
transform of aτ . �

We have shown in Corollary 207 that the cross-Wigner transform

W (ψ, φ)(z) =
(

1
2π�

)n
∫

Rn

e−
i
�
p·yψ(x+ 1

2y)φ(x − 1
2y)dy

is the Weyl symbol of the operator Âψ⊗φ with kernel (2π�)−n ψ ⊗ φ. Thus:

Âψ⊗φ
Weyl←→W (ψ, φ).

In time-frequency analysis and signal theory one often uses the so-called Ri-
haczek distribution (also called Kirkwood–Rihaczek distribution in the literature).
Its definition, in units where � = 1/2π, is

R(f, g)(x, ω) = e−2πiω·xf(x)ĝ(ω); (14.42)

here ĝ is the unitary Fourier transform given by

ĝ(ω) =
∫

Rn

e−2πiω·xg(x)dx.

In more general units we may redefine the Rihaczek distribution in the obvious
way:

R(ψ, φ)(x, p) = e−
i
�
p·xψ(x)Fφ(p) (14.43)
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where Fψ is the �-dependent Fourier transform. (Some authors interchange ψ
and φ which amounts to replacing R(ψ, φ) by R(φ, ψ).) That this distribution is
related to the Wigner distribution as a particular case of a τ -dependent symbol
was noticed a long time ago by Kozek [110].

Proposition 340. Let Âψ⊗φ be the operator with kernel K = ψ ⊗ φ. We have:

(aψ⊗φ)� = (2π�)n/2R(ψ, φ). (14.44)

Proof. The left symbol corresponds to the choice τ = 0 in formula (14.41) and
hence

(aψ⊗φ)�(z) =
∫

Rn

e−
i
�
p·yψ(x)φ(x − y)dy

= ψ(x)
∫

Rn

e−
i
�
p·yφ(x− y)dy

= (2π�)n/2ψ(x)e−
i
�
p·xFφ(p)

as claimed. �
Exercise 341. Compute the right symbol (aψ⊗φ)r corresponding to the choice
τ = 1.

14.4 Adjoints and products

The Shubin classes “behave well” under the operations of transposition (or of
taking the adjoint) and composition. This leads to some useful formulas.

14.4.1 The transpose and adjoint operators

Let us now consider the transposed operator ÂT , defined by the formula
〈

Âu, v
〉

=
〈

u, ÂT v
〉

for u, v ∈ S(Rn),

where 〈·, ·〉 is the distributional pairing.

Proposition 342. If the operator Â has a τ-symbol aτ , then ÂT has the (1 − τ)-
symbol aT1−τ , given by the formula

aT1−τ (x, ξ) = aτ (x,−ξ). (14.45)

Proof. It is an immediate consequence of the equalities
〈

Âu, v
〉

=
(

1
2π

)n
∫

R3n
ei(x−y)·ξaτ ((1 − τ)x + τy, ξ)u(y)v(x)dydxdξ

=
(

1
2π

)n
∫

R3n
ei(y−x)·ξaτ ((1 − τ)x + τy,−ξ)u(y)v(x)dydxdξ. �
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One can also show using the methods above that one has the following asymp-
totic formula for the symbol of the transpose:

Proposition 343. If Â ∈ Gmρ (Rn) then ÂT ∈ Gmρ (Rn) and the τ-symbol aTτ (x, ξ)
of ÂT can be expressed in terms of the τ-symbol aτ (x, ξ) of Â by the asymptotic
formula

aTτ (x, ξ) ∼

∑

α

1
α!

(1− 2τ)|α|∂αξ D
α
xaτ (x,−ξ). (14.46)

We omit the proof since we will not need this result (see Shubin [147]).
Defining the formal adjoint of Â∗ of Â by

(Âu|v)L2(Rn) = (u|Â∗v)L2(Rn) for u, v ∈ S(Rn) (14.47)

one proves similarly that:

Proposition 344. If Â ∈ Gmρ (Rn), then Â∗ ∈ Gmρ (Rn) and the τ-symbol a∗τ (x, ξ) of
Â∗ is related to the (1− τ)-symbol a1−τ (x, ξ) of Â by the formula

a∗τ (x, ξ) = a1−τ (x, ξ), (14.48)

and it can be expressed in terms of the τ-symbol aτ (x, ξ) of Â via the asymptotic
series

aτ ∼

∑

α

1
α!

(1− 2τ)|α|∂αξ D
α
xaτ . (14.49)

As an immediate consequence of this result we recover the following well-
known property of Weyl operators:

Corollary 345. If Â ∈ Gmρ (Rn), then the Weyl symbol (aw)∗ of the formal adjoint
Â∗ is given by

(aw)∗(x, ξ) = aw(x, ξ). (14.50)

In particular, the condition Â = Â∗ is equivalent to the real-valuedness of the Weyl
symbol a(x, ξ).

14.4.2 Composition formulas

Another important result is the following, which gives asymptotic formulas for
composing operators in the Shubin classes:

Proposition 346. Let Â ∈ Gm1
ρ (Rn) and B̂ ∈ Gm2

ρ (Rn). Then ÂB̂ ∈ Gm1+m2
ρ (Rn)

and if aτ1 is the τ1-symbol of Â and bτ2 the τ2-symbol of B̂, then the τ-symbol cτ
of ÂB̂ has the asymptotic expansion

cτ ∼

∑

α,β,γ,δ

cαβγδ(∂αξ D
β
xaτ1)(∂

γ
ξD

δ
xbτ2) (14.51)
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where the sum runs over sets of multi-indices α, β, γ and δ such that α+γ = β+δ;
the cαβγδ are complex constants depending on τ, τ1 and τ2 such that c0000 = 1. In
particular, we have

cτ − aτ1bτ2 ∈ Γm1+m2−2ρ
ρ (Rn ⊕ R

n).

Proof. Taking Proposition 326 into account, we see that it suffices to consider only
one arbitrary triple of the numbers τ, τ1 and τ2. Let us take for simplicity τ1 = 0,
τ2 = 1. The operator B̂ can be written, using the symbol b1(y, ξ), as

B̂u(x) =
(

1
2π

)n
∫∫

R2n
ei(x−y)·ξb1(y, ξ)u(y)dydξ

or, equivalently,

F (B̂u)(ξ) =
∫

Rn

e−iy·ξb1(y, ξ)u(y)dy (14.52)

where F (B̂u) is the Fourier transform of B̂u. The operator Â has the form

Âv(x) =
(

1
2π

)n
∫∫

R2n
ei(x−y)·ξa0(x, ξ)u(y)dydξ (14.53)

=
(

1
2π

)n
∫

Rn

eix·ξa0(x, ξ)Fu(ξ)dξ. (14.54)

From (14.52) and (14.53) it follows that

ÂB̂u(x) =
(

1
2π

)n
∫∫

R2n
ei(x−y)·ξa0(x, ξ)b1(y, ξ)u(y)dydξ, (14.55)

i.e., ÂB̂ has symbol

c(x, y, ξ) = a0(x, ξ)b1(y, ξ) ∈ Πm1+m2
ρ (R3n).

It follows that we have ÂB̂ ∈ Gm1+m2
ρ (Rn). In view of Theorem 330 we have the

asymptotic expansion

cτ (x, ξ) ∼

∑

β,γ

(−1)|β|

β!γ!
τ |β|(1− τ)|γ|∂β+γ

ξ

[
(Dβ

xa0(x, ξ))(Dγ
xb1(x, ξ))

]
. (14.56)

Using Leibniz’s differentiation rule for functions of several variables this formula
can be rewritten as

cτ (x, ξ) ∼

∑ (−1)|β|(β + γ)!
β!γ!δ!ε!

τ |β|(1− τ)|γ|(∂δξDβ
xa0)(∂εξD

γ
xb1), (14.57)

where the sum is taken over all β, γ, δ, ε such that δ+ε = β+γ, which is the same
thing as (14.51). �
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Inserting into (14.57) the expressions for a′0, a′′1 in terms a′τ1 , a
′′
τ2 we obtain

formulae for the coefficients cαβγδ in (14.51), which may sometimes be simplified.
For instance, one can show that, similarly to Proposition (346) one has

a0(x, ξ) ∼

∑

α

1
α!
∂αξ a

′
0(x, ξ)D

α
x a

′′
0(x, ξ). (14.58)

In the case of Weyl operators we get the following important explicit result:

Corollary 347. If Â ∈ Gm1
ρ (Rn) and B̂ ∈ Gm2

ρ (Rn), then the Weyl symbol cw of
Ĉ = ÂB̂ is given by

cw ∼

∑

α,β

(−1)|β|

α!β!
2−|α+β|(∂αξ D

β
xaw))(∂βξD

α
x b
w). (14.59)

When Â, B̂, and Ĉ are expressed in the �-dependent form then this formula be-
comes

cw ∼

∑

α,β

(−1)|β|

α!β!

(
�

2

)|α+β|
(∂αξ D

β
xaw))(∂βξ D

α
x b
w). (14.60)

Proof. It is immediate, using formula (14.57) above. �

The property in the following problem is at the origin of many results in the
classical theory of pseudodifferential operators:

Problem 348. Show that the left symbol a� of an operator Â ∈ Gmρ (Rn) can be
expressed in terms of Â by the formula

a�(x, ξ) = e−ix·ξÂ(eix·ξ) (14.61)

where Â acts on the variable x.

For the applications to quantum mechanics (especially deformation quanti-
zation and its variants which will be studied in Chapter 19) the following result
for operators with �-dependent symbols is essential:

Theorem 349. Let Â ∈ Sm,µρ,δ (Rn) and B̂ ∈ Sm
′,µ′

ρ′,δ′ (Rn ⊕ R
n). Then Ĉ = ÂB̂ ∈

Sm+m′,µ+µ′
ρ′′,δ′′ (Rn) with ρ′′ = min(ρ, ρ′), δ′′ = max(δ, δ′) and the symbol c

Weyl←→ Ĉ
has the expansion

c =
∑

|α+β|<N

(−1)|β|

α!β!

(−i�
2

)|α+β|
(∂αξ ∂

β
xa)(∂

α
x ∂

β
ξ a) + �

NrN

with the following condition on the term rN :

rN ∈ Σm+m′−N(ρ+ρ′),µ+µ′−N(δ+δ′)
ρ,δ (Rn ⊕ R

n).

The proof of this result is long and technical; see [147], Appendix A.2.5,
pp. 245–248.
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14.5 Proof of Theorem 330

It is of course sufficient to give the proof in the case � = 1.
Setting v = (1 − τ)x + τy and w = x− y in a(x, y, ξ), that is, equivalently,

x = v + τw , y = v − (1− τ)w (14.62)

we have
a(x, y, ξ) = a(v + τw, v − (1− τ)w, ξ). (14.63)

Expanding the right-hand side of (14.63) in a Taylor series at w = 0, we get
a = aN + rN where

aN(x, y, ξ) =
∑

|β+γ|≤N−1

(−1)|γ|

β!γ!
τ |β| (1− τ)|γ| (x − y)β+γ(∂βx∂

γ
y a)(v, v, ξ) (14.64)

and the remainder term rN is given by the formula

rN (x, y, ξ) =
∑

|β+γ|=N
cβγ(x− y)β+γIβγ(x, y, ξ) with (14.65a)

Iβγ(x, y, ξ) =
∫ 1

0

(1 − t)N−1(∂βx∂
γ
y a)(v + tτw, v − t(1− τ)w, ξ)dt (14.65b)

where the cβγ are constants. In (14.64) the expression (∂βx∂
γ
y a)(v, v, ξ) signifies that

we have replaced x and y with v = (1− τ) x+ τy in the expression ∂βx∂γy a(x, y, ξ).
The expression

(∂βx∂
γ
y a)(v + tτw, v − t(1− τ)w, ξ)

in (14.65) should be understood in a similar way. We next note that the operator
with symbol (x− y)β+γ(∂βx∂γy a)(v, v, ξ) is the same as the one with symbol

(−Dξ)β+γ(∂βx∂
γ
y a)(v, v, ξ) = (−1)|β|+|γ|(∂β+γ

ξ Dβ
xD

γ
ya)(v, v, ξ).

It follows from (14.64) that Â = ÂN +R̂N where ÂN is an operator with τ -symbol

aN (x, ξ) =
∑

|β+γ|≤N−1

1
β!γ!

τ |β|(1− τ)|γ|∂β+γ
ξ (−Dx)ξDγ

ya(x, y, ξ)|y=x

and R̂N is an operator with symbol rN . Note that the operator R̂N is a linear
combination of a finite number of terms having symbols of the type

∫ 1

0

(∂β+γ
ξ ∂βx∂

γ
y a)(v + tτw, v − t(1− τ)w, ξ)(1 − t)N−1dt (14.66)

with |β + γ| = N . Let us now show that the rN symbol belongs to the class
Πm−2Nρ
ρ (R3n). For this it suffices to show that this is true for the integrand
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in (14.66), with all estimates uniform in t (note that this is obvious for each
fixed t 
= 0 and true for t = 0 by Proposition 326). Using the trivial relations

v = (1− τ)(v + tτw) + τ(v − t(1− τ)w),
tw = (v + tτw) − (v − t(1− τ)w)

it is easy to see that there exists a constant C > 0 independent of t ∈ [0, 1] such
that

C−1 � |v + tτw| + |v − t(1 − τ)w|
|v|+ |tw| � C

and we thus have the estimate
∣
∣
∣(∂β+γ

ξ ∂βx∂
β
y a)(v + tτw, v − t(1 − τ)w, ξ)

∣
∣
∣

≤ C(1 + |v|+ |tv|+ |ξ|)m−2ρN (1 + |tw|)m′+2ρN .

Since for m′ + 2ρN � 0 we have the inequality

(1 + |tw|)m′+2ρN ≤ (1 + |v|+ |tv|+ |ξ|)m′+2ρN (1 + |v|+ |ξ|)−(m′+2ρN),

it is clear that if, in addition, m+m′ � 0 and m− 2ρN � 0, then
∣
∣
∣(∂β+γ

ξ ∂βx∂
β
y a)(v + tτw, v − t(1− τ)w, ξ)

∣
∣
∣

≤ C′(1 + |v|+ |ξ|)−m′−2ρN (1 + |v|+ |tw|+ |ξ|)m′+m

≤ C′(1 + |v|+ |ξ|)m−2ρN (1 + |w|)m′+m

≤ C′(1 + |v|+ |w|+ |ξ|)m−2ρN (1 + |w|)m′+2m+2ρN

where C′ is independent of t. One estimates the derivatives in a similar way. Now,
let the symbol b′(x, ξ) ∈ Γm� (Rn ⊕ R

n) be such that

b′(x, ξ) ∼
∞∑

N=0

(bN (x, ξ) − bN−1(x, ξ)).

Then, if Â′ has τ -symbol b′(x, ξ) it is clear that the kernel of the operator Â− Â′

is in S(R2n).
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Applications



Chapter 15

The Schrödinger Equation

Schrödinger’s equation

i�
∂ψ

∂t
(x, t) = Ĥψ(x, t)

is considered by physicists as a postulate that cannot be rigorously derived from
Hamiltonian mechanics. It is however well known that in the case of linear Hamil-
tonian flows, the Schrödinger equation is obtained using the metaplectic repre-
sentation: this will be proven in the first part of this chapter (Section 15.1). In
the second part of this chapter (Section 15.2), which is somewhat tentative in
the sense that we pay little attention to domain questions, we will show that the
Schrödinger equation can be derived using Stone’s theorem on strongly continu-
ous one-parameter groups of unitary operators, if one requires in addition that
quantum states satisfy a certain covariance property. This derivation is made pos-
sible thanks to Theorem 356 (essentially due to Wong [163]) which says that Weyl
calculus is the only symplectically covariant pseudo-differential theory. We men-
tion that a more physical version of these results is to appear in de Gosson and
Hiley [73] (not surprisingly leading to negative emotional reactions from some
physicists); for those interested in the physical aspects (including the scientific on-
tology) of quantum mechanics, we recommend the texts [92, 93, 94, 95] by Hiley
and collaborators.

15.1 The case of quadratic Hamiltonians

Here is again a somewhat technical section; it gives explicit formulae for the solu-
tions of the Schrödinger equation associated with a Hamiltonian function which is
quadratic. Most physicists know these explicit formulae, but prefer to invoke the
“Feynman path integral” for their derivation. However the Feynman integral as
used in Physics has no precise mathematical meaning (even if it may be a useful
heuristic tool in some circumstances; see Schulman [144] for an exposition of the
techniques related to path integrals).

247M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics,  
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15.1.1 Preliminaries

It turns out that Schrödinger’s equation can be solved explicitly when the operator
Ĥ is the Weyl operator associated with a Hamiltonian function which is a quadratic
polynomial in the position and momentum variables:

H(z) = 1
2Mz · z

where M is some (arbitrary) real 2n × 2n symmetric matrix. Thus, H is a real
quadratic form in the xj , pj variables. To H we associate a partial differential
operator Ĥ by applying the ordering rules (1.34) discussed in the first chapter:

x −→ x̂ , p −→ p̂ , px −→ 1
2
(x̂p̂+ p̂x̂) (15.1)

where x̂ is the operator of multiplication by x and p̂ = −i�∂/∂x (this prescription
is sufficient to determine unambiguously the operator Ĥ since H is a polynomial
of degree 2). Writing

M =
(
Hxx Hxp

Hpx Hpp

)

, Hpx = HT
xp

we have the explicit formula

Ĥ = −�
2

2
Hpp∂x · ∂x − i�Hpxx · ∂x +

1
2
Hxxx · x− i

2
Tr(Hpx). (15.2)

One verifies, using the fact that

Problem 350. Prove formula (15.2) above and show by a direct calculation that
Ĥ∗ = Ĥ . What is Ĥ when H(x, p) = p · x?

The associated Schrödinger equation is

i�
∂ψ

∂t
(x, t) = Ĥψ(x, t)

where ψ is a function (or distribution) in the x, t variables. We are going to see that
this equation can be explicitly solved using the theory of the metaplectic group.
The solutions will in fact be expressed, except for exceptional values of time, as
quadratic Fourier transforms.

To prove this remarkable fact we will have to find an explicit description of
the Lie algebra of the metaplectic group (on the abstract level, this Lie algebra is
identical with that of the symplectic group).
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15.1.2 Quadratic Hamiltonians

Let us begin by shortly discussing the properties of quadratic Hamiltonians. These
intervene in many interesting problems from classical and quantum mechanics (for
instance in the study of motion near equilibrium, or for the calculation of the
energy spectrum of an electron in a uniform magnetic field).

Let H be a homogeneous polynomial in z ∈ R
2n and with coefficients de-

pending on t ∈ R:
H(z, t) = 1

2H
′′(t)z · z (15.3)

(H ′′(t) = D2
zH(z, t) is the Hessian matrix of H in the variables z = (x, p)); the

associated Hamilton equations can be written

ż(t) = JH ′′(t)(z(t)). (15.4)

Recall the following notation: (SHt,t′) is the time-dependent flow determined by H ,
that is if t �−→ z(t) is the solution of (15.4) with z(t′) = z′ then

z(t) = SHt,t′(z
′). (15.5)

We will set SHt,0 = SHt . Assume that H does not depend on t; then (SHt ) is the
one-parameter subgroup of Sp(2n,R) given by

SHt = etJH
′′
.

Conversely, if (St) is an arbitrary one-parameter subgroup of Sp(2n,R) then St =
etX for some X ∈ sp(2n,R) and we have (St) = (SHt ) where H is the quadratic
Hamiltonian

H(z) = − 1
2JXz · z. (15.6)

The following elementary result gives a useful relation between the Poisson bracket
of quadratic Hamiltonian functions and commutators in the symplectic Lie algebra:

Lemma 351. Let H and K be two quadratic Hamiltonians associated by (15.6) to
X,Y ∈ sp(2n,R), that is

H(z) = − 1
2JXz · z , K(z) = − 1

2JY z · z.
The Poisson bracket {H,K} is the quadratic Hamiltonian given by

{H,K}(z) = − 1
2J [X,Y ]z · z

where [X,Y ] = XY − Y X.

Proof. We have

{H,K}(z) = −σ(XH(z), XK(z))
= −σ(Xz, Y z)
= −JXz · Y z
= −Y TJXz · z.
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Now
Y TJXz · z = 1

2 (Y TJX −XTJY )z · z
that is, since Y TJ and XTJ are symmetric,

Y TJXz · z = − 1
2J(Y X −XY )z · z,

whence
{H,K}(z) = 1

2J(Y X −XY )z · z
which we set out to prove. �

The metaplectic group Mp(2n,R) is a covering group of Sp(2n,R); it follows
from the general theory of Lie groups that the Lie algebra mp(2n,R) of Mp(2n,R)
is isomorphic to sp(2n,R) (the Lie algebra of Sp(2n,R)). We are going to construct
explicitly an isomorphism F : sp(2n,R) −→ mp(2n,R) making the following dia-
gram commutative:

mp(2n,R) F−1−→ sp(2n,R)

exp


�



� exp

Mp(2n,R) −→
πMp

Sp(2n,R) .
(15.7)

Recall that sp(2n,R) denotes the Lie algebra of the symplectic group
Sp(2n,R); we will call mp(2n,R) the “metaplectic algebra”.

The following result generalizes Lemma 351:

Theorem 352.

(i) The linear mapping F , which to X ∈ sp(2n,R) associates the anti-Hermitian

operator F (X) = − i
�
Ĥ where Ĥ

Weyl←→ H with H given by (15.6), is injective,
and we have the equality

[F (X), F (X ′)] = F ([X,X ′]) (15.8)

for all X, X ′ ∈ sp(2n,R);
(ii) The image F (sp(2n,R)) of F is the metaplectic algebra mp(2n,R).

Proof. It is clear that the mapping F is linear and injective. Consider the matrices

Xjk =
(

∆jk 0
0 −∆jk

)

, Yjk =
1
2

(
0 ∆jk + ∆kj

0 0

)

,

Zjk =
1
2

(
0 0

∆jk + ∆kj 0

)

(1 ≤ j ≤ k ≤ n)

with 1 the only non-vanishing entry at the jth row and kth column; these ma-
trices form a basis of sp(2n,R) (you were asked to check this in Problem 79).
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For notational simplicity we will assume that n = 1 and set X = X11, Y = Y11,
Z = Z11:

X =
(

1 0
0 −1

)

, Y =
(

0 1
0 0

)

, Z =
(

0 0
1 0

)

;

the case of general n is studied in an exactly similar way. To the matrices X , Y ,
Z correspond via formula (15.6) the Hamiltonians

HX = px , HY = 1
2p

2, HZ = − 1
2x

2.

The operators ĤX = F (X), ĤY = F (Y ), ĤZ = F (Z) form a basis of the vector
space F (sp(1)); they are given explicitly by the formulas

ĤX = −i�x∂x − 1
2 i� , ĤY = − 1

2�
2∂2
x , ĤZ = − 1

2x
2.

Let us show that formula (15.8) holds. In view of the linearity of F it is sufficient
to check that

[ĤX , ĤX ] = Ĥ[X,Y ],

[ĤX , ĤZ ] = Ĥ[X,Z],

[ĤY , ĤZ ] = Ĥ[Y,Z].

We have thus proved that F is a Lie algebra isomorphism.
To show that F (sp(2,R)) = mp(2,R) it is thus sufficient to check that the

one-parameter groups

t �−→ Ut = e−
i
�
ĤX t,

t �−→ Vt = e−
i
�
ĤY t,

t �−→Wt = e−
i
�
ĤZt

are subgroups of Mp(1). Let ψ0 ∈ S(R) and set ψ(x, t) = Utψ0(x). The function
ψ is the unique solution of the Cauchy problem

i�
∂ψ

∂t
= −(i�x∂x + 1

2 i�)ψ , ψ(·, 0) = ψ0.

A straightforward calculation (using for instance the method of characteristics)
yields

ψ(x, t) = e−t/2ψ0(e−tx)

hence the group (Ut) is given by Ut = M̂L(t),0 where L(t) = e−t and we thus have
Ut ∈ Mp(1) for all t. Leaving the detailed calculations to the reader one similarly
verifies that

Vtψ0(x) =
(

1
2πi�t

)1/2
∫

e
i

2�t (x−x′)2ψ0(x′)dx′,

Wtψ0(x) = e−
1
2�
x2
ψ0(x)
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so that Vt is a quadratic Fourier transform corresponding to the generating func-
tionW = (x−x′)2/2t and Wt is the operator V̂−tI ; in both cases we have operators
belonging to Mp(1). �

We leave it to the reader to check that the diagram (15.7) is commutative.

Exercise 353. Show, using the generators of mp(2n,R) and sp(2n,R), that
exp ◦F−1 = πMp ◦ exp where exp is a collective notation for the exponentials
sp(2n,R) −→ Sp(2n,R) and mp(2n,R) −→ Mp(2n,R).

15.1.3 Exact solutions of the Schrödinger equation

Let us apply the result above to the Schrödinger equation associated to a quadratic
Hamiltonian (15.3). Since Mp(2n,R) covers Sp(2n,R) it follows from the unique
path lifting theorem from the theory of covering manifolds that we can lift the
path t �−→ SHt,0 = SHt in a unique way into a path t �−→ ŜHt in Mp(2n,R) such
that ŜH0 = I. Let ψ0 ∈ S(Rnx) and set

ψ(x, t) = Ŝtψ0(x).

It turns out that ψ satisfies Schrödinger’s equation

i�
∂ψ

∂t
= Ĥψ

where Ĥ is the Weyl operator Ĥ
Weyl←→ H . The results in the following problem will

be used to prove this property:

Problem 354.

(i) Verify that the operator Ĥ is given by

Ĥ = −�
2

2
Hpp∂x · ∂x − i�Hpxx · ∂x +

1
2
Hxxx · x− i

2
Tr(Hpx) (15.9)

where Tr(Hpx) is the trace of the matrixHpx. (Hpp,Hpx,Hxx are the matrices
of second derivatives of H in the corresponding variables.)

(ii) Let Ĥ
Weyl←→ H , K̂

Weyl←→ K where H and K are quadratic Hamiltonians (15.3).
Show that

[Ĥ, K̂] = i� ̂{H,K} = −i�σ(XH , XK)

where {·, ·} is the Poisson bracket.

Let us now show that ψ = Ŝtψ0 is a solution of Schrödinger’s equation as
claimed:
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Corollary 355. Let t �−→ Ŝt be the lift to Mp(2n,R) of the flow t �−→ SHt . For
every ψ0 ∈ S(Rnx) the function ψ defined by ψ(x, t) = Ŝtψ0(x) is a solution of the
partial differential equation

i�
∂ψ

∂t
= Ĥψ , ψ(·, 0) = ψ0

where Ĥ
Weyl←→ H. Equivalently, the function t �−→ Ŝt solves the abstract differential

equation

i�
d

dt
Ŝt = ĤŜt , Ŝ0 = I.

Proof. We have

i�
∂ψ

∂t
= i� lim

∆t→0

[
1

∆t
(Ŝ∆t − I)

]

Ŝtψ0,

hence it suffices to show that

lim
∆t→0

[
1

∆t
(Ŝ∆t − I)

]

f = Ĥf

for every function f ∈ S(Rn). But this equality is an immediate consequence of
Theorem 352. �

Here is an example. For instance, in the case n = 1 the generating function
for the harmonic oscillator Hamiltonian

H =
p2

2m
+
mω2

2
x2 (15.10)

is given by

W (x, x′; t, t′) =
mω

2 sinω(t− t′)
[
(x2 + x′2) cosω(t− t′)− 2xx′

]
, (15.11)

hence the solution of the corresponding Schrödinger’s equation

i�
∂ψ

∂t
=

(

− �
2

2m
∂2

∂x2
+
mω2

2
x2

)

ψ

is explicitly given for t /∈ πZ, by

ψ(x, t) =
(

1
2πi�

)1/2
i−[ω(t−t′)/π]

√∣
∣
∣
mω

sinωt

∣
∣
∣

∫ +∞

−∞
e
i
�
W (x,x;t,t′)ψ0(x′)dx′.

Physicists often see this formula as an application of the so-called “Feynman
path integral”, which is supposed to be calculable explicitly for the harmonic os-
cillator (and some other Hamiltonians; see Schulman [144]). However, the path
integral is only a heuristic device, and “derivations” using this device are math-
ematically meaningless. (See Kumano-go [112] for a rigorous theory of the path
integral using time-slicing methods.)
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15.2 The general case

While the fact that Schrödinger’s equation can be derived using the metaplectic
representation has been known for a long time in mathematics (at least among
people working in harmonic analysis and representation theory), the material we
present in this section is new.

15.2.1 Symplectic covariance as a characteristic
property of Weyl quantization

We have seen – and very much emphasized! – the fact that Weyl calculus is a
symplectically covariant theory. In particular, we proved in Chapter 10, Theorem
128, that if S ∈ Sp(2n,R) then

[

Â
Weyl←→ a

]

⇐⇒
[

a ◦ S Weyl←→ Ŝ−1ÂŜ
]

(15.12)

where Ŝ ∈ Mp(2n,R) is any one of the two metaplectic operators such that S =
πMp(Ŝ).

We are going to see that this property is characteristic of Weyl pseudo-
differential operators. More precisely: we have introduced in Chapter 14 a very
general notion of pseudo-differential operators, of the type

Aψ(x) =
(

1
2π�

)n
∫∫

Rn×Rn

e
i
�
p·(x−y)a(x, y, p)ψ(y)dydp.

We then showed that such operators can be written, for every value of the real
parameter τ in the form

Aψ(x) =
(

1
2π�

)n
∫∫

Rn×Rn

e
i
�
p·(x−y)aτ ((1− τ)x + τy, p)ψ(y)dydp

extending the quantizations px −→ τx̂p̂ + (1 − τ)p̂x̂; the symbol aτ is uniquely
determined by the operator A, the particular choice τ = 1

2 corresponding to the
Weyl correspondence. It is legitimate to ask the question whether the symplectic
covariance property (15.12) still holds for the general correspondence A←→aτ , at
least for some privileged values of the parameter τ . The answer is: no. The Weyl
correspondence is the only quantization which is symplectically covariant in the
sense above. That this property really is characteristic of Weyl quantization seems
to be somewhat ignored both in mathematics and physics. It will be crucial in our
derivation of the Schrödinger equation.

We are going to give a precise statement of this fundamental property below;
let us first introduce some notation. Viewing the space of tempered distributions
S′(Rn) as a space of “classical Hamiltonians”, we denote by L(S(Rn),S′(Rn)) the
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space of continuous operators S(Rn) −→ S′(Rn), and we assume that there is a
continuous and linear “quantization mapping”

Q : S′(Rn ⊕ R
n) −→ L(S(Rn),S′(Rn)) (15.13)

associating to a symbol a an operator A = Q(a).
The following result is hinted at in Stein’s book [153] (§7.6, Chapter 12) and

proven in detail in Chapter 30 of Wong [163]. It is really a fundamental result, be-
cause it shows that the quantization mapping Q must be the Weyl correspondence
if one makes three simple assumptions (we will see in a moment that the third is
actually superfluous).

Theorem 356. Assume that the quantization map (15.13) has the three following
properties:

(i) Q is continuous in the sense that if (ak) is a sequence in S′(Rn ⊕ R
n) then

limk→∞ ak = a in S′(Rn ⊕ R
n) implies limk→∞Q(ak) = Q(a);

(ii) For every S ∈ Sp(2n,R) we have Q(a ◦ S−1) = ŜQ(a)Ŝ−1 where Ŝ ∈
Mp(2n,R) is any of the two metaplectic operators with projection S;

(iii) If a(x, p) = a(x) with a ∈ L∞(Rn) then Q(a) is multiplication by the function
a, that is Q(a)ψ = aψ.

Then Q is the Weyl correspondence a
Weyl←→Â that is Q(a) = Â for every

a ∈ S′(Rn ⊕ R
n).

It turns out that the requirement (iii) can be relaxed. In fact, in view of the
Schwartz kernel theorem together with Theorem 330, condition (i) implies that
for every τ ∈ R there exists a symbol aτ ∈ S′(Rn⊕R

n) such that the quantization
map Q satisfies

[Qa]ψ(x) =
(

1
2π�

)n
∫∫

Rn×Rn

e
i
�
p·(x−y)aτ ((1− τ)x + τy, p)ψ(y)dydp.

Suppose that a only depends on x; then the formula above implies that

[Qa]ψ(x) =
(

1
2π�

)n
∫

Rn

[∫

Rn

e
i
�
p·(x−y)dp

]

aτ ((1− τ)x + τy)ψ(y)dy

=
∫

Rn

δ(x− y)aτ ((1 − τ)x + τy)ψ(y)dy

= aτ (x)ψ(x)

so that we must have aτ = a, hence condition (iii) is indeed fulfilled.

Summarizing:

If the quantization map Q is continuous and such that Q(a ◦ S−1) =
ŜQ(a)Ŝ−1 then it must be the Weyl correspondence.
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15.2.2 Quantum evolution groups and Stone’s theorem

Let A be a self-adjoint operator on some Hilbert space, say L2(Rn). If A is
bounded, we can define the exponential of itA by the usual power series

eitA =
∞∑

k=0

(it)k

k!
Ak

(the series is well defined, being normally convergent). When A is unbounded, one
can still define the exponential using a functional calculus of operators. The fol-
lowing properties are well known (see for instance Reed and Simon [136], §VIII.4):

Group 1 For each t ∈ R the operator Ut = eitA is unitary and we have UtUt′ =
Ut+t′ ;

Group 2 The one-parameter group (Ut)t∈R is strongly continuous: for each ψ ∈
L2(Rn) we have limt→t0 Utψ = Ut0ψ;

Group 3 For ψ ∈ DA (the domain of A) we have

lim
∆t→0

U∆tψ − ψ
∆t

= iA

and if the limit above exists for some ψ ∈ L2(Rn) then ψ ∈ DA.

The operator A is called the infinitesimal generator of the unitary one-
parameter group (Ut)t∈R. It turns out that every strongly continuous unitary
one-parameter group of operators in L2(Rn) arises as the exponential of a self-
adjoint operator; this is Stone’s theorem:

Theorem 357 (Stone). Let (Ut)t∈R be a strongly continuous one-parameter uni-
tary group on L2(Rn) (or, on an arbitrary Hilbert space). Then the infinitesimal
generator

A = −i lim
∆t→0

U∆tψ − ψ
∆t

(15.14)

is self-adjoint; in particular it is closed and densely defined. The domain DA con-
sists of all ψ ∈ L2(Rn) for which the limit (15.14) exists, and is invariant under
the action of each Ut.

For self-contained proofs of Stone’s theorem we refer to Abraham et al. [1],
pp. 529–536 or to Reed and Simon [136], §VIII.4.

15.2.3 Application to Schrödinger’s equation

Let us now apply Stone’s theorem to Schrödinger’s equation. We will call a non-
zero element ψ0 of L2(Rn) a “quantum state”. We assume that the time-evolution
of quantum states is determined by a strongly continuous one-parameter group of
operators (Ut)t∈R (“evolution group”). That is, the state at time t is ψt = Utψ0
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where the operators Ut satisfy UtUt′ = Ut+t′ and the map ψ0 �−→ ψt is continuous
for every ψ0. Stone’s theorem tells us that the operator

Ĥ = i�
d

dt
UtΨ0

∣
∣
∣
∣
t=0

= i� lim
∆t→0

U∆tΨ0 −Ψ0

∆t
(15.15)

exists, is self-adjoint, and is densely defined. We thus have

i�
dUt
dt

= ĤUt. (15.16)

This is an abstract and formal version of Schrödinger’s equation.

Definition 358. We will say that (Ut)t∈R is a “quantum evolution group” associated
with the Hamilton function H .

Let us now briefly return to the property of the metaplectic representation
of Sp(2n,R) mentioned above. It can be summarized as follows: to every family
(St) of symplectic matrices depending smoothly on t and such that Ŝ0 = I we can
associate, in a unique way, a family (Ŝt) of unitary operators on L2(Rn) belong-
ing to the metaplectic group Mp(2n,R) such that Ŝ0 is the identity; introducing
a rescaling constant � having the dimension of action, that family satisfies the
Schrödinger equation

i�
d

dt
Ŝt = ĤŜt

where Ĥ is the self-adjoint operator defined by applying the Weyl rule to the
(time-dependent) Hamiltonian H of which (St) is the flow. Such a Hamiltonian
always exists in view of our discussion of Banyaga’s theorem in Chapter 4. That
is, the correspondence H

Weyl←→ Ĥ is obtained by simple inspection of the flow
(φHt ) = (St). We thus have

Ŝt = e−iĤt/�

(generically Ĥ is not a bounded operator on L2(Rn) so that the exponential has
to be defined using some functional calculus; see, e.g., Reed and Simon [136]
§VIII.3). We now ask whether this property has an analogue for paths in the
group Ham(2n,R) of Hamiltonian canonical transformations. Let us introduce the
following notation:

• P Ham(2n,R) is the set of all one-parameter families (φt) in Ham(2n,R)
depending smoothly on t and passing through the identity at time t = 0;
in view of Banyaga’s theorem such a family of canonical transformations is
always the flow (φHt ) of some (usually time-dependent) Hamiltonian H ;
• PU(L2(Rn)) is the set of all strongly continuous one-parameter families (Ft)

of unitary operators on L2(Rn) depending smoothly on t and such that F0

is the identity operator, and having the following property: the domain of the
infinitesimal generator Ĥ of (Ft) contains the Schwartz space S(Rn).
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We will use Stone’s theorem to prove the hard part of our main result:

Theorem 359. There exists a bijective correspondence

C : PU(L2(Rn))←→ P Ham(2n,R)
(φt)←→ (Ut)

(15.17)

whose restriction to families (St) of symplectic matrices reduces to the metaplectic
representation, and which has the following symplectic covariance property: for
every (φt) in P Ham(2n,R) and for every S ∈ Sp(2n,R) we have

C(SφtS−1) = (ŜUtŜ−1) (15.18)

where S is any of the two operators in Mp(2n,R) such that πMp(Ŝ) = S. This
correspondence C is bijective and we have

i�
d

dt
Ut = ĤUt (15.19)

where Ĥ
Weyl←→ H, the Hamiltonian function H being determined by (φt).

It is perhaps worth observing that it is always preferable to take the family
(Ut) as the fundamental object, rather than Ĥ (and hence Schrödinger’s equation).
This was already remarked by Weyl who noticed that (Ft) is everywhere defined
and consists of bounded operators, while Ĥ is generically unbounded and only
densely defined (see the discussion in Mackey [121] for a discussion of related
questions).

Let us begin with derivation of Schrödinger’s equation in the case where (φt)
is the Hamiltonian flow determined by a time-independent Hamiltonian function
H = H(z). Then (φt) = (φHt ) is a one-parameter group of symplectomorphisms:
that is φHt φ

H
t′ = φHt+t′ . We thus want to associate to (φHt ) a strongly continuous

one-parameter group (Ft) = (FHt ) of unitary operators on L2(Rn) satisfying some
additional conditions. We proceed as follows: let Ĥ be the operator associated to H
by the Weyl correspondence: Ĥ

Weyl←→ H and define C(φHt ) = (Ut) by Ut = e−itĤ/�.
The Weyl operator Ĥ is self-adjoint and its domain obviously contains S(Rn). Let
us show that the covariance property (15.18) holds. We have

C(SφHt S−1) = C(φH◦S−1

t )

in view of formula (1.7), that is, by definition of C,
C(SφHt S−1) = (e−

i
�
tĤ◦S−1

).

In view of the symplectic covariance property a ◦ S−1 Weyl←→ SÂS−1 of Weyl oper-
ators we have Ĥ ◦ S−1 = SĤS−1, and hence

C(SφHt S−1) = (e−
i
�
tSĤS−1

) = (Se−
i
�
tĤS−1)

which is property (15.18).
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Let conversely (Ft) be in PU(L2(Rn)); we must show that we can find a
unique (φt) in P Ham(2n,R) such that C(φt) = (Ut). By Stone’s theorem and our
definition of PU(L2(Rn)) there exists a unique self-adjoint operator A, densely
defined, and whose domain contains S(Rn). Thus A is continuous on S(Rn) and
for each value of the parameter τ there exists an observable a such that A←→ aτ .
Choose τ = 1

2 ; then A = Ĥ
Weyl←→ H for some function H = H(x, p) and we have

C(φHt ) = (Ut).
There remains to show that the correspondence C restricts to the metaplectic

representation for semigroups (φt) = (St) in Sp(2n,R); but this is clear since (St)
is generated, as a flow, by a quadratic Hamiltonian, and the unitary one-parameter
group of operators determined by such a function precisely consists of metaplectic
operators.

We now no longer assume that (φt) and (Ft) are one-parameter groups. Recall
that we have reduced the study of a time-dependent Hamiltonian H = H(z, t) by
introducing

H̃(x, p, t, E) = H(x, p, t)− E (15.20)

which is a time-independent Hamiltonian on (Rn+1 ⊕ R
n+1) ≡ R

2n × RE × Rt

where E is viewed as a conjugate variable to t. The flow (φ̃Ht ) = (φH̃t ) on R
2n+2

generated by H̃ is related to the time-dependent flow (φHt,t′) by the formula

φ̃Ht (z′, t′, E′) = (φHt,t′(z
′), t+ t′, Et,t′) (15.21)

where Et,t′ − E′ is the variation of the energy in the time interval [t′, t]. The
advantage of this reformulation of the dynamics associated with H is that (φ̃Ht ) is
a one-parameter group of canonical transformations of R

2n+2. In the operator case
we can proceed in a quite similar way, noting that the Weyl operator associated
with H̃ is given by

̂̃
H = Ĥ − i� ∂

∂t
.

Of course ̂̃
H is self-adjoint if and only if Ĥ is, which is the case since H is real.

We will need the following elementary fact, which is a variant of the method of
separation of variables:

Lemma 360. Let E be an arbitrary real number. The function

Ψ(x, t; t′) = ψ(x, t)e
i
�
E(t−t′) (15.22)

is a solution of the extended Schrödinger equation

i�
∂Ψ
∂t′

= ̂̃
HΨ (15.23)

if and only if ψ = ψ(x, t) is a solution of the usual Schrödinger equation

i�
∂ψ

∂t
= Ĥψ. (15.24)
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Proof. We first note the obvious identity

i�
∂Ψ
∂t′

= EΨ. (15.25)

Writing for short Ĥ(t) = Ĥ(x,−i�∇x, t) we have, after a few calculations
(

Ĥ(t)− i� ∂
∂t

)

Ψ =
[

Ĥ(t)ψ − i�∂ψ
∂t

]

e
i
�
E(t−t′) + EΨ (15.26)

hence (15.23) is equivalent to (15.24) in view of (15.25). �

This result shows the following: choose an initial function ψ0 = ψ0(x) at time
t = 0 and solve the usual Schrödinger equation (15.24), which yields the solution
ψ = ψ(x, t). Then Ψ = Ψ(x, t; t′) defined by (15.22) is the solution of the extended
Schrödinger equation (15.23) with initial datum Ψ(x, t; t) = ψ(x, t) at time t′ = t.
In terms of flows we can rewrite this as

F̃t′−t(Ftψ0) = (Ftψ0)e
i
�
E(t−t′).



Chapter 16

The Feichtinger Algebra

We are now going to address a first topic from the theory of modulation spaces,
which was initiated by Feichtinger in the early 1980’s: the Feichtinger algebra
S0(Rn) (we will study the general notion of modulation space in the next chap-
ter). The elements of S0(Rn) are characterized by the property that their Wigner
transform is in L1(Rn ⊕ R

n), but it is not obvious at all that, with this defini-
tion, S0(Rn) is a vector space, even less an algebra! We will therefore need an
alternative, more tractable, equivalent definition.

The Feichtinger algebra S0(Rn) contains continuous non-differentiable func-
tions, such as

ψ(x) =
{

1− |x| if |x| ≤ 1
0 if |x| > 1

and it is thus a good substitute for the Schwartz space S(Rn) as long as one is
not interested in differentiation properties. It is moreover the smallest Banach
space containing S(Rn) and being invariant under the action of the inhomoge-
neous metaplectic group. The dual space S′

0(Rn) of S0(Rn) contains many basic
distributions such as the Dirac distribution δ or its translates. These properties,
together with the fact that Banach spaces are mathematically easier to deal with
than Fréchet spaces, makes the Feichtinger algebra into a tool of choice not only
for the study of wavepackets, but also of global regularity properties for quan-
tum mechanical operators. Of a particular interest for the study of the continuous
spectrum of such operators is the fact that (S0(Rn), L2(Rn), S′

0(R
n)) is a Gelfand

triple.

16.1 Definition and first properties

We begin by introducing some technical tools. Recall from Chapter 9 (formulas
(9.32) and (9.33)) that the short-time Fourier transform

Vφψ(z) =
∫

Rn

e−2πip·x′
ψ(x′)φ(x′ − x)dx′ (16.1)
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and is related to the cross-Wigner transform by the formula

W (ψ, φ)(z) =
(

2
π�

)n/2
e

2i
�
p·xVφ∨√

2π�

ψ√
2π�

(

z
√

2
π�

)

(16.2)

where ψ√
2π�

(x) = ψ(x
√

2π�) and φ∨(x) = φ(−x); equivalently

Vφψ(z) =
(

2
π�

)−n/2
e−iπp·xW (ψ1/

√
2π�

, φ∨
1/

√
2π�

)
(

z
√

π�

2

)

. (16.3)

16.1.1 Definition of S0(R
n)

Let us give a first definition of the Feichtinger algebra. In what follows φ will be
a non-zero element of S(Rn); we will call φ a “window”.

Definition 361. The Feichtinger algebra S0(Rn) (often also denoted by M1(Rn))
consists of all ψ ∈ S′(Rn) such that Vφψ ∈ L1(Rn ⊕R

n) for every window φ. The
number

‖ψ‖φ,S0(Rn) = ‖Vφψ‖L1(R2n) =
∫

R2n
|Vφψ(z)|dz (16.4)

is called the STFT norm of ψ relative to the window φ.

The notation M1(Rn) is used in the context of modulation spaces, of which
the Feichtinger algebra is a particular case. The more general modulation spaces
M q(Rn) and their weighted variants M q

v (Rn) will be discussed in the next chapter.

The reader is encouraged to verify the following property:

Exercise 362. Show that ‖ · ‖φ,S0 indeed is a norm on S0(Rn) for each φ ∈ S(Rn),
φ 
= 0.

There are several seemingly obscure points in the definition above. First,
while it is obvious that S0(Rn) is a vector space (because of the linearity of the
mapping ψ �→ Vφψ) it is much less obvious why it should be an algebra. We will
see that S0(Rn) is actually an algebra for both pointwise multiplication and for
the convolution product. Perhaps an apparently more serious shortcoming of the
definition above is the fact that the Feichtinger algebra seems to be defined in
terms of infinitely many “windows” φ. We are going to see that it actually suffices
that Vφψ ∈ L1(Rn ⊕ R

n) for one window! Let us first rewrite Definition 361 in
terms of the cross-Wigner transform:

Definition 363. The Feichtinger algebra S0(Rn) consists of all ψ ∈ S′(Rn) such
that W (ψ, φ) ∈ L1(Rn ⊕ R

n) for every window φ. The number

‖ψ‖�φ,S0(Rn) = ‖W (ψ, φ)‖L1(R2n) =
∫

R2n
|W (ψ, φ)(z)|dz (16.5)

is called the Wigner norm of ψ relative to the window φ.
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Let us verify that both Definitions 361 and 363 are equivalent. In view of
formula (9.32) relating the cross-Wigner transform and the STFT the condition
W (ψ, φ) ∈ L1(Rn) is equivalent to

∫

R2n
|Vφ∨√

2π�

ψ√
2π�

(z
√

2
π�

)|dz <∞

that is, performing the change of variables z �−→√
π�/2z, to

∫

R2n
|Vφ∨√

2π�

ψ√
2π�

(z)|dz <∞.

In view of the equality (9.31) in Lemma 178 this inequality can be rewritten as
∫∫

Rn×Rn

|Vφ∨ψ(x
√

2π�, p/
√

2π�)|dpdx <∞

that is, setting x′ = x
√

2π� and p′ = p/
√

2π�, Vφ∨ψ ∈ L1(Rn) which is equivalent
to ψ ∈ S0(Rn), since φ and hence φ∨ is arbitrary.

16.1.2 First properties of S0(R
n)

The main result of this section is the following:

Proposition 364. Let ψ ∈ S′(Rn) and (φ, φ′) be a pair of windows.

(i) Let γ ∈ S(Rn) be such that (γ|φ)L2(Rn) 
= 0. We have

‖ψ‖�φ′,S0(Rn) ≤
2n

(γ|φ)L2
‖ψ‖�φ,S0(Rn)‖γ‖�φ′∨,S0(Rn) (16.6)

with φ′∨(x) = φ′(−x);
(ii) We have ψ ∈ S0(Rn) if and only if there exists one window φ such that

W (ψ, φ) ∈ L1(Rn ⊕ R
n), hence we have W (ψ, φ) ∈ L1(Rn ⊕ R

n) for all
windows φ;

(iii) The Wigner norms ‖ · ‖�φ,S0(Rn) (resp. the STFT norms ‖ · ‖φ,S0(Rn)) are all
equivalent when φ ranges over S(Rn).

Proof. Property (ii) follows from property (i): suppose there exists a window φ
such that ‖ψ‖�φ,S0

<∞. Choose now an arbitrary window φ′ and γ ∈ S(Rn) such
that (γ|φ)L2 
= 0. We then have ‖ψ‖�φ′,S0

<∞ in view of the inequality (16.6). Let
us prove (i). Recall that we can express ψ in terms of W (ψ, φ) using the inversion
formula (9.51):

ψ(x) =
2n

(γ|φ)L2

∫

R2n
W (ψ, φ)(z0)T̂GR(z0)γ(x)dz0. (16.7)
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Let z′ ∈ R
2n and apply T̂GR(z′) to both sides of this equality; in view of the

product formula (8.37) we have

T̂GR(z′)ψ(x) =
2n

(γ|φ)L2

∫

R2n
W (ψ, φ)(z)e

2i
�
σ(z,z′)T̂ (2z − 2z′)γ(x)dz.

We now observe that by Definition (9.11) of the cross-Wigner transform we have

(T̂GR(z′)ψ|φ′) = (π�)nW (ψ, φ′)(z′)

and by Definition (9.1) of the cross-ambiguity function

(T̂ (2z − 2z′)γ|φ′)L2 = (2π�)nA(γ, φ′)(2z′ − 2z)
= (π�)nW (γ, φ′∨)(z′ − z)

where the second equality follows from formula (9.27) relating cross-ambiguity and
cross-Wigner transforms. Formula (16.7) above thus yields

W (ψ, φ′)(z′) =
2n

(γ|φ)L2

∫

R2n
W (ψ, φ)(z)e

2i
�
σ(z,z′)nW (γ, φ′∨)(z′ − z)dz

and hence

|W (ψ, φ′)(z′)| ≤ 2n

|(γ|φ)L2 |
∫

R2n
|W (ψ, φ)(z)| |W (γ, φ′∨)(z′ − z)|dz

that is
|W (ψ, φ′)| ≤ 2n

|(γ|φ)L2 | |W (ψ, φ)| ∗ |W (γ, φ′∨)|. (16.8)

Integrating both sides of this inequality with respect to z yields (16.6) in view of
the classical inequality ‖F ∗G‖L1 ≤ ‖F‖L1‖G‖L1 that is valid for any integrable
functions F and G. (iii) That the norms ‖ · ‖�φ,S0

are equivalent is clear from the
inequality (16.6); we leave it to the reader to show that the same is true of the
norms ‖ · ‖φ,S0. �

The following result shows that the “windows” used in the definition of
S0(Rn) can themselves be chosen in S0(Rn).

Proposition 365. Let both ψ and φ be in L2(Rn).

(i) If W (ψ, φ) ∈ L1(Rn ⊕ R
n) then both ψ and φ are in S0(Rn);

(ii) We have ψ ∈ S0(Rn) if and only if W (ψ, φ) ∈ L1(Rn ⊕ R
n) for one (and

hence every) φ ∈ S0(Rn).

Proof. Property (ii) immediately follows from (i). Let us prove property (i). The
condition that ψ, φ ∈ L2(Rn) implies that W (ψ, φ) is a square-integrable and
continuous function (Proposition 183). Recall that in the course of the proof of
Proposition 364 we proved the inequality (16.8).
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Choosing γ = φ′∨ this inequality becomes

|W (ψ, φ′)| ≤ 2n

|(γ|φ)L2 | |W (ψ, φ)| ∗ |Wφ′∨|

hence, integrating both sides,

‖ψ‖�φ′,S0(Rn) ≤
2n

|(γ|φ)L2 | ‖W (ψ, φ)‖L1‖Wφ′∨‖∞ <∞

which shows that ψ ∈ S0(Rn). Swapping ψ and φ the inequality above becomes

‖φ‖�φ′,S0(Rn) ≤
2n

|(γ|φ)L2 | ‖W (φ, ψ)‖L1‖W (φ′∨)‖∞ <∞

hence we also have φ ∈ S0(Rn). �

It immediately follows that:

Corollary 366. A function ψ ∈ L2(Rn) belongs to S0(Rn) if and only if Wψ ∈
L1(Rn ⊕ R

n).

Proof. In view of the statement (i) in Proposition 367 the conditionWψ ∈ L1(Rn⊕
R
n) implies that ψ ∈ S0(Rn). If conversely ψ ∈ S0(Rn) then Wψ ∈ L1(Rn ⊕ R

n)
in view of the statement (ii) in the same Proposition. �

Note that the condition Wψ ∈ L1(Rn ⊕R
n) could be taken as the definition

of S0(Rn) but then it would not be clear at all that S0(Rn) is a vector space!
The following result shows that S0(Rn) is a subspace of several “nice” spaces

of functions (in particular S0(Rn) consists of continuous integrable functions):

Proposition 367. We have the inclusions

S0(Rn) ⊂ C0(Rn) ∩ L1(Rn) ∩ F (L1(Rn)) (16.9)

where F (L1(Rn)) is the image of L1(Rn) by the Fourier transform.

Proof. Recall again the inversion formula

ψ(x) =
2n

(γ|φ)L2

∫

R2n
W (ψ, φ)(z0)T̂GR(z0)γ(x)dz0

valid for all γ ∈ S(Rn) such that (γ|φ)L2 
= 0. Putting ∆ψ = ψ(x + ∆x) − ψ(x)
we have

|∆ψ| ≤ 2n

|(γ|φ)L2 |
∫

R2n
|W (ψ, φ)(z0)| |T̂GR(z0)(γ(x+ ∆x)− γ(x))|dz0

≤ 2n

|(γ|φ)L2 | ‖W (ψ, φ)‖L1 sup
z0

|T̂GR(z0)(γ(x+ ∆x) − γ(x))|

=
2n

|(γ|φ)L2 | ‖W (ψ, φ)‖L1 sup
x0

|(γ(2x0 − x−∆x) − γ(2x0 − x))|
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where the last equality follows from the definition of T̂GR(z),from which readily
follows that lim∆x→0 ∆ψ = 0; hence S0(Rn) ⊂ C0(Rn). Let us next show that
S0(Rn) ⊂ L1(Rn). Let ψ ∈ S0(Rn). Using again the inversion formula we get,

|ψ(x)| ≤ 2n

|(γ|φ)L2 |
∫

R2n
|W (ψ, φ)(z0)| |γ(2x0 − x)|dz0

≤ 2n

|(γ|φ)L2 |
∫

R2n
|W (ψ, φ)(z0)| |γ(2x0 − x)|dz0

and hence, integrating in x,

‖ψ‖L1 ≤ 2n

(γ|φ)L2
‖ψ‖�φ,S0

‖γ‖L∞ <∞

so that ψ ∈ S0(Rn). To prove that S0(Rn) ⊂ F (L1(Rn)) it suffices to note that
S0(Rn) is invariant under Fourier transform: we have ψ ∈ S0(Rn) if and only
if W (ψ, F−1φ) ∈ L1(Rn ⊕ R

n) for every window φ since F is an automorphism
S(Rn) −→ S(Rn). Now,

W (F−1ψ, F−1φ)(z) = W (ψ, φ)(Jz) = W (ψ, φ)(p,−x)

in view of the symplectic covariance property (10.26) of the cross-Wigner trans-
form. It follows from the inclusion S0(Rn) ⊂ L1(Rn) that we have F−1ψ ∈ L1(Rn)
and hence ψ ∈ F (L1(Rn)) as claimed. �

16.2 Invariance and Banach algebra properties

We are going to see that the Feichtinger algebra is a Banach algebra; in addition
we will prove that this algebra is invariant under the action of the metaplectic
group, and that it enjoys a characteristic minimality property for the action of the
Heisenberg–Weyl operators.

16.2.1 Metaplectic invariance of the Feichtinger algebra

Another very nice property is that S0(Rn) is closed under the action of the inho-
mogeneous metaplectic group:

Proposition 368. Let ψ ∈ S0(Rn), Ŝ ∈Mp(2n,R), and z0 ∈ R
n. We have

(i) Ŝψ ∈ S0(Rn);

(ii) T̂ (z0)ψ ∈ S0(Rn);
(iii) In particular ψ ∈ S0(Rn) if and only if Fψ ∈ S0(Rn).
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Proof. We have ψ ∈ S0(Rn) if and only if Wψ ∈ L1(Rn). In view of the symplectic
covariance property W (Ŝψ)(z) = Wψ(S−1z) (see (10.27)) of the Wigner function
we have W (Ŝψ)(z) = Wψ(S−1z) where S ∈ Sp(2n,R) is the projection of Ŝ. Now,

∫

R2n
|Wψ(S−1z)|dz =

∫

R2n
|W (Ŝψ)(z)|dz

(because detS = 1) and hence W (Ŝψ) ∈ L1(Rn) if and only if Wψ ∈ L1(Rn). On
the other hand

W (T̂ (z0)ψ, φ) = e
i
�
σ(z,z0)W (ψ, φ)(z − 1

2z0)

in view of formula (9.25) hence, for every window φ ∈ S(Rn),
∫

R2n
|W (T̂ (z0)ψ, φ)(z)|dz =

∫

R2n
|Wψ(z − 1

2z0)|dz

=
∫

R2n
|Wψ(z)|dz

so that W (T̂ (z0)ψ) ∈ S0(Rn) if and only if Wψ ∈ L1(Rn). The statement (iii)
follows from the fact that the Fourier transform F is related to the generator Ĵ of
Mp(2n,R) by the formula F = in/2Ĵ . �

Corollary 369. A function ψ ∈ S0(Rn) is bounded and we have limz→∞ ψ = 0.

Proof. Since ψ is continuous it suffices to prove that limz→∞ ψ = 0. Since S0(Rn)
is invariant by Fourier transform, we have F−1ψ ∈ S0(Rn); now S0(Rn) ⊂ L1(Rn)
hence ψ = F (F−1ψ) has limit 0 at infinity in view of Riemann–Lebesgue’s lemma.

�

As we have seen the topology defined on S0(Rn) using the Wigner norm

‖ψ‖�φ,S0(Rn) = ‖W (ψ, φ)‖L1(Rn)

is independent of the choice of window φ. Let us prove that the normed space
S0(Rn) is complete.

Proposition 370. The Feichtinger algebra S0(Rn) has the following properties:

(i) It is a Banach space for the Wigner norm ‖ · ‖�φ,S0
(resp. the STFT norm,

‖ · ‖φ,S0).
(ii) The Schwartz space S(Rn) is dense in S0(Rn).

Proof of (i). We sketch the proof, and refer to [82], Theorem 11.3.5 for the tech-
nical details, replacing the STFT by the cross-Wigner transform. Let (ψj) be
a Cauchy sequence in S0(Rn); then (Ψj) = (W (ψj , φ)) is a Cauchy sequence
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in L1(Rn⊕R
n). The space L1(Rn⊕R

n) being complete, there exists Ψ ∈ L1(Rn⊕
R
n) such that

lim
j→∞

‖Ψ−W (ψj , φ)‖L1 = 0.

Defining ψ by the formula

ψ(x) =
2n

‖φ‖L2

∫

R2n
Ψ(z)T̂GR(z)φ(x)dz (16.10)

(cf. inversion formula (9.51) ) one then shows that ψ ∈ S0(Rn) and

‖ψ − ψj‖�φ,S0
= lim

j→∞
‖W (ψ − ψj , φ)‖L1

= lim
j→∞

‖Ψ−W (ψj , φ)‖L1 = 0

hence S0(Rn) is complete as claimed.

Proof of (ii). Let us first show that S(Rn) ⊂ S0(Rn). Let ψ ∈ S(Rn); for every
window φ we have W (ψ, φ) ∈ S(Rn ⊕ R

n) hence for every N > 0 there exists
CN > 0 such that

|W (ψ, φ)(z)| ≤ CN (1 + |z|)−N .
It follows, by definition of the norm ‖ · ‖�φ,S0

that

‖ψ‖�φ,S0
≤ CN

∫

R2n
(1 + |z|)−Ndz

and hence ‖ψ‖�φ,S0
< ∞ if we choose N > 2n. We defer the proof of the density

since it will be proven in a more general setting in next chapter (Proposition
399). �

16.2.2 The algebra property of S0(R
n)

We begin by proving the following result which is interesting by itself:

Proposition 371. Suppose that ψ ∈ L1(Rn) and ψ′ ∈ S0(Rn). Then ψ∗ψ′ ∈ S0(Rn)
and we have

‖ψ ∗ ψ′‖�φ,S0(Rn) ≤ ‖ψ‖L1(Rn)‖ψ′‖�φ,S0(Rn) (16.11)

for every window φ ∈ S(Rn). Thus, if ψ ∈ L1(Rn) and ψ′ ∈ S0 then ψ ∗ ψ′ ∈
S0(Rn):

L1(Rn) ∗ S0(Rn) ⊂ S0(Rn).

Proof. We begin by rewriting the cross-Wigner transform using Definition (9.11)
that is

W (ψ, φ)(z) =
(

1
π�

)n (T̂GR(z)ψ|φ)L2 ,
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where T̂GR(z0) is the Grossmann–Royer operator. This yields the formula

W (ψ, φ)(z0) =
(

1
π�

)n
e−

2i
�
p0·x0

∫

Rn

ψ(2x0 − x)φp0 (x)dx

with φp0(x) = e
2i
�
p0·xφ(x), that is

W (ψ, φ)(z0) =
(

1
π�

)n
e−

2i
�
p0·x0ψ ∗ φp0 (2x0). (16.12)

It follows, in particular, that

‖ψ‖�φ,S0
=

(
1

2π�

)n
∫

Rn

‖ψ ∗ φp0‖L1dp0. (16.13)

Formula (16.12) now shows that

W (ψ ∗ ψ′, φ)(z0) =
(

1
π�

)n
e−

2i
�
p0·x0ψ ∗ ψ′ ∗ φp0(2x0)

and hence, by (16.13),

‖ψ ∗ ψ′‖�φ,S0
=

(
1

2π�

)n
∫

Rn

‖ψ ∗ (ψ′ ∗ φp0)‖L1dp0.

Since L1(Rn) is a convolution algebra we have

‖ψ ∗ (ψ′ ∗ φp0)‖L1 ≤ ‖ψ‖L1‖ψ′ ∗ φp0‖L1;

we obtain the inequality

‖ψ ∗ ψ′‖�φ,S0
≤ (

1
2π�

)n ‖ψ‖L1

∫

Rn

‖ψ′ ∗ φp0‖L1dp0

that is, using again (16.13),

‖ψ ∗ ψ′‖�φ,S0
≤ ‖ψ‖L1‖ψ‖�φ,S0

which we set out to prove. �

The following result motivates the denomination “Feichtinger algebra”:

Corollary 372. The Banach space S0(Rn) is an algebra for both pointwise mul-
tiplication and convolution: if ψ and ψ′ are in S0(Rn) then ψψ′ ∈ S0(Rn) and
ψ ∗ ψ′ ∈ S0(Rn).

Proof. Since ψψ′ and ψ ∗ ψ′ are interchangeable by the Fourier transform F , and
S0(Rn) is invariant under F in view of Proposition 368(iii), it is sufficient to show
that ψ ∗ ψ′ ∈ S0(Rn) if ψ ∈ S0(Rn) and ψ′ ∈ S0(Rn). But this follows from the
inequality (16.11) since S0(Rn) ⊂ L1(Rn) in view of Proposition 367. �
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16.3 A minimality property for S0(R
n)

A remarkable property of the Feichtinger algebra is that of being the smallest
Banach space invariant under the action of the Heisenberg–Weyl operators. To
prove this we will need an alternative characterization of S0(Rn).

16.3.1 Heisenberg–Weyl expansions

Let φ ∈ S0(Rn) be a window, and consider the series

ψ =
∞∑

k=1

ckT̂ (zk)φ (16.14)

where (ck)k is a sequence of complex numbers and (zk)k is a sequence of points in
R

2n. We have

|ψ(z)| ≤
∞∑

k=1

|ck| |φ(z − zk)|.

We claim that the series is convergent if
∑∞

k=1 |ck| <∞. In fact, since φ ∈ S0(Rn) is
bounded in view of Corollary 369 there exists a constant Cφ such that |φ(z−zk)| ≤
Mφ and hence

|ψ(z)| ≤Mφ

∞∑

k=1

|ck| <∞.

Definition 373. The representation (16.14) of ψ is called a “Heisenberg–Weyl ex-
pansion (or representation)” and (T̂ (zk)φ)k a “Heisenberg–Weyl frame” (in time-
frequency analysis one would rather speak of “Gabor expansions” and “Gabor
frames”).

Let us now denote by M(Rn) the set of all functions ψ that have a Heisen-
berg–Weyl expansion (16.14); clearlyM(Rn) is a complex vector space under the
usual addition and multiplication by scalars. It is even a normed vector space if
one defines

‖ψ‖M(Rn) = inf

{ ∞∑

k=1

|ck| <∞ : ψ =
∞∑

k=1

ckT̂ (zk)φ

}

.

It turns out thatM(Rn) is identical with S0(Rn):

Proposition 374. We have M(Rn) = S0(Rn) and there exists a constant Cφ > 0
such that

1
Cφ
‖ψ‖�φ,S0(Rn) ≤ ‖ψ‖M(Rn) ≤ Cφ‖ψ‖�φ,S0(Rn)

hence the norms ‖ · ‖M(Rn) and ‖ · ‖�φ,S0(Rn) are equivalent.
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Proof. We omit the proof. See Gröchenig [82], Theorem 12.1.8, which is itself based
on the paper by Bonsall [17]. �

This result shows that every ψ ∈ S0(Rn) can be represented in a Heisenberg–
Weyl frame by an absolutely convergent series (16.14).

16.3.2 The minimality property

We are going to prove that Feichtinger’s algebra is the smallest Banach algebra in
S′(Rn) which is invariant under the Heisenberg–Weyl operators.

Proposition 375. Let (B(Rn), ‖ ·‖B) be a Banach algebra of tempered distributions
on R

n. Suppose that B(Rn) satisfies the two following conditions:

(i) there exists C > 0 such that ‖T̂ (z)ψ‖ ≤ C‖ψ‖ for all z ∈ R
2n and ψ ∈ B(Rn);

(ii) S0(Rn) ∩ B 
= {0}. Then S0(Rn) is continuously embedded in B(Rn) and
S0(Rn) is the smallest algebra having this property.

Proof. We are following Gröchenig [82]. Let φ ∈ S0(Rn) ∩ B(Rn), φ 
= 0. In view
of Proposition 374 the space S0(Rn) consists of all Heisenberg–Weyl expansions

ψ =
∞∑

k=1

ckT̂ (zk)φ ,
∞∑

k=1

|ck| <∞.

Thus,

‖ψ‖B ≤
∞∑

k=1

|ck|‖T̂ (zk)φ‖B ≤ C
( ∞∑

k=1

|ck|
)

‖φ‖B <∞

and hence ψ ∈ S0(Rn) so that S0(Rn) ⊂ B(Rn). Let us show that this embedding
is continuous. taking the infimum of the right-hand side of the inequality

‖ψ‖B ≤ C
( ∞∑

k=1

|ck|
)

‖φ‖B

for all Heisenberg–Weyl expansions of ψ we get

‖ψ‖B ≤ C‖ψ‖S0‖φ‖B
which proves the statement. �

16.4 A Banach Gelfand triple

Dirac already emphasized in his fundamental work [37] the relevance of rigged
Hilbert spaces for quantum mechanics1. Later Schwartz provided an instance of
1In quantum mechanics, to rig a Hilbert space means simply to equip that Hilbert space with
distribution theory [122].
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rigged Hilbert spaces based on his class of test functions and on tempered dis-
tributions. Later Gelfand and Shilov formalized the construction of Schwartz and
Dirac and introduced what is nowadays known as Gelfand triples. It has been
known for several decades that Dirac’s bra-ket formalism is mathematically jus-
tified not by the Hilbert space alone, but by the use of Gelfand triples; see de la
Madrid [122] (among other things we learn from that paper that the terminol-
ogy “rigged Hilbert space” is a direct translation of the phrase “osnashchyonnoe
Hilbertovo prostranstvo” from the original Russian). The prototypical example of
a Gelfand triple is

(S(Rn), L2(Rn),S′(Rn)).

In this section we will study the particular very interesting Gelfand triple

(S0(Rn), L2(Rn), S′
0(R

n))

whose properties are very interesting both from a theoretical and practical point
of view. For a very nice review of the topic with many historical remarks see the
contribution of Feichtinger et al. in [55].

16.4.1 The dual space S′
0(R

n)

Let us denote by S′
0(R

n) the dual Banach space of S0(Rn). It is the space of all
bounded linear functionals on S0(Rn). Since S0(Rn) is the smallest Banach space
isometrically invariant under the action of the affine metaplectic group (and hence
under the Heisenberg–Weyl operators) its dual is essentially the largest space of
distributions with this property.

The following result characterizes S′
0(Rn):

Proposition 376. The Banach space S′
0(R

n) consists of all ψ ∈ S′(Rn) such that
W (ψ, φ) ∈ L∞(Rn ⊕ R

n) for one (and hence all) window φ ∈ S0(Rn); the duality
bracket is given by the pairing

(ψ, ψ′) =
∫

R2n
W (ψ, φ)(z)W (ψ′, φ)(z)dz (16.15)

and the formula
‖ψ‖�φ,S′

0(R
n) = sup

z∈R2n
|W (ψ, φ)(z)| (16.16)

defines a norm on S′
0(R

n).

Proof. It is based on the fact that L∞(Rn⊕R
n) is the dual space of L1(Rn⊕R

n);
see [82], §11.3. �

It readily follows from this characterization that:

Proposition 377. The Dirac distribution δ is in S′
0(R

n); more generally δa ∈
S′

0(Rn) where δa(x) = δ(x − a).
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Proof. We have
W (δ, φ)(z0) =

(
1
π�

)n 〈T̂GR(z0)δ, φ〉
(formula (9.12)) and

T̂GR(z0)δ(x) = e
2i
�
p0·(x−x0)δ(2x0 − x) = e

2i
�
p0·x0δ(2x0 − x).

It follows that
W (δ, φ)(z0) =

(
1
π�

)n
e

2i
�
p0·x0φ(2x0)

and hence |W (δ, φ)(z0)| ≤
(

1
π�

)n ‖φ‖∞. It follows that δ ∈ S′
0(R

n). That we also
have δa ∈ S′

0(R
n) is proven by a similar argument (alternatively one can use

formula (9.25) in Proposition 174). One can show that, more generally, the “Dirac
comb”

∑

a∈Zn
δa belongs to S′

0(Rn). �

16.4.2 The Gelfand triple (S0, L
2, S′

0)

Let us begin by defining rigorously the notion of Banach Gelfand triple (also called
rigged, or nested, spaces):

Definition 378. A (Banach) Gelfand triple (B,H,B′) consists of a Banach space
B which is continuously and densely embedded into a Hilbert space H, which in
turn is w∗-continuously and densely embedded into the dual Banach space B′.

In this definition one identifies H with its dual H∗ and the scalar product on
H thus extends in a natural way into a pairing between B ⊂ H and B′ ⊃ H.

The use of the Gelfand triple (S0(Rn), L2(Rn), S′
0(R

n)) not only offers a
better description of self-adjoint operators but it also allows a simplification of
many proofs. Here is a typical situation, that will be slightly extended in Chapter
18, Subsection 19.1.2. Given a Gelfand triple (B,H,B′) one proves that every self-
adjoint operator A : B −→ B has a complete family of generalized eigenvalues
(ψα)α = {ψα ∈ B′ : α ∈ A} (A an index set), defined as follows: for every α ∈ A

there exists λα ∈ C such that

(ψα, Aφ) = λα(ψα, φ) for every φ ∈ B.

Completeness of the family (ψα)α means that there exists at least one ψα such
that (ψα, φ) 
= 0 for every φ ∈ B. A basic example, in the case n = 1, is the
operator x̂ of multiplication by x. This operator has no eigenfunctions in L2(R),
but since x̂δa(x) = xδ(x − a) = aδa(x) every a ∈ R is a generalized eigenvalue
(with associated eigenfunction δa ∈ S′

0(R)).
Given a Gelfand triple (B,H,B′) every φ ∈ B has an expansion with respect

to the generalized eigenvectors ψα which generalizes the usual expansion with
respect to a basis of eigenvectors. A classical example is the following: consider the
Gelfand triple (S0(Rn), L2(Rn), S′

0(R
n)) and choose Â = −i�∂xj . The generalized
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eigenvalues of Â are the functions χp(x) = eip·x/� (p ∈ R
n) and the corresponding

expansion can be written as the Fourier inversion formula

ψ(x) =
(

1
2π�

)n/2
∫

Rn

e
i
�
p·xFψ(p)dp (16.17)

(see Feichtinger et al. in [55] for a detailed discussion of the Fourier transform
within the context of the Banach Gelfand triple (S0(Rn), L2(Rn), S′

0(R
n))).

An important feature of Gelfand triples is the existence of a kernel theorem,
which is much more useful both for theoretical and practical purposes than the
usual kernel theorem of Schwartz. We denote as usual by 〈〈·, ·〉〉 the distributional
bracket for distributions on R

n ⊕ R
n.

Theorem 379 (Feichtinger). The following properties hold:

(i) Every linear bounded operator A : S0(Rn) −→ S′
0(Rn)has a kernel KA ∈

S′
0(R

n × R
n), that is 〈Aψ, φ〉 = 〈〈KA, φ⊗ ψ〉〉 for ψ and φ in S0(Rn).

(ii) Conversely, every K ∈ S′
0(R

n × R
n) defines by the formula above a bounded

operator S0(Rn) −→ S′
0(Rn).

Formally we can thus write

Aψ(x) =
∫

Rn

K(x, y)ψ(y)dy

for some K ∈ S′
0(R

n×R
n) when A : S0(Rn) −→ S′

0(R
n) is a continuous operator.

This result was announced by Feichtinger in [45] and proven in [52]. See [82], §11.4
for a detailed proof, comments, and various extensions. We will see in the next
chapter that this result can be generalized to a whole class of modulation spaces.

For instance, in the example above, one can interpret the Fourier inver-
sion formula (16.17) by saying that the kernel of the inverse Fourier transform
is K(x, p) = (2π�)n/2 eip·x/�.



Chapter 17

The Modulation Spaces Mq
s

If the choice of good symbol classes is essential in any pseudo-differential calcu-
lus, so is the choice of good functional spaces between which these operators act.
These spaces must reflect regularity properties (in the broad sense) of the op-
erators that are used. For instance, in Hörmander’s theory of pseudo-differential
operators a standard choice are the Sobolev spaces Hs and their variants. In Shu-
bin theory one has the global spaces Qs, where one can simultaneously control the
behavior in x and its dual variable (these are in fact already modulation spaces).
In our case, where we are interested in studying quantum mechanics in phase
space, it turns out that the best playground consists of a constellation of spaces
called the modulation spaces M q

s (Rn) = M q
vs(R

n) where 1 ≤ q ≤ ∞ and vs is
a polynomial weight. These are particular cases of the spaces Mp,q

v (Rn) whose
definition goes back to Feichtinger’s foundational papers [46, 48, 49]; for a recent
review see [50]. In addition, if one denotes by (M q

s (Rn))′ the dual of M q
s (Rn)

then (M q
s (Rn), L2(Rn), (M q

s (Rn))′) is a Gelfand triple which is a natural domain
for studying the generalized eigenvalues and eigenvectors of quantum mechanical
operators (in particular the continuous spectrum).

17.1 The Lq spaces, 1 ≤ q < ∞
In order to define modulation spaces we have to introduce weighted Lq spaces.
The number of books devoted to this topic (at various levels of difficulty) is huge;
a limpid recent treatment is given in Chapter 6 of Folland’s textbook [60].

We begin by reviewing the Lq theory.

17.1.1 Definitions

We will assume that R
m is equipped with the Lebesgue measure dx = dx1 · · · dxm.

Let q a real number such that 1 ≤ q <∞. If f : R
m −→ C is measurable we set

‖f‖q =
(∫

Rm

|f(x)|qdx
)1/q

;

275M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics,  
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‖f‖q is thus a real number, or ∞. We will write f ∼ g when f − g = 0 almost
everywhere for the measure dx. The relation ∼ is an equivalence relation for all
functions R

m −→ C.

Definition 380. The space Lq(Rm) consists of all ∼ equivalence classes of mea-
surable functions f : R

m −→ C such that ‖f‖q < ∞, equipped with the norm
f �−→ ‖f‖q.

That Lq(Rm) indeed is a vector space is seen as follows. First, it is clear that
λf ∈ Lq(Rm) if f ∈ Lq(Rm), for every λ ∈ C. Let now f and g be two elements
of Lq(Rm). Then

|f + g|q ≤ (2 sup(f, g))q ≤ 2q(|f |q + |g|q) (17.1)

(prove this!) and hence

‖f + g‖q ≤ 2(‖f‖q + ‖g‖q) <∞. (17.2)

Observe that the inequality (17.2) does not prove that ‖ · ‖q is a norm:
while it is clear that ‖λf‖q = |λ| ‖f‖q and that ‖f‖q = 0 implies f = 0 (almost
everywhere), we still have to prove the Minkowski inequality

‖f + g‖q ≤ ‖f‖q + ‖g‖q (17.3)

and this will require some extra work. The Minkowski inequality is actually a
consequence of the famous Hölder inequality:

Proposition 381. Let q and r be real numbers ≥ 1 such that 1/q + 1/r = 1. We
have

‖fg‖1 ≤ ‖f‖q‖g‖r (17.4)

for all f ∈ Lq(Rm) and g ∈ Lr(Rm).

Proof. We are going to use the elementary inequality

qrab ≤ raq + qbr (17.5)

(which is a generalization of the trivial inequality 2ab ≤ a2 + b2), valid for all non-
negative a, b when 1/q + 1/r = 1. Choosing a = |f(x)|, b = |g(x)| this inequality
becomes

qr|f(x)| |g(x)| ≤ r|f(x)|q + q|g(x)|r
and hence, integrating,

qr‖fg‖1 ≤ r‖f‖qq + q‖g‖rr.
Replacing f and g by f/‖f‖q and g/‖g‖r we get

qr

‖f‖q‖g‖r ‖fg‖1 ≤ r + q = 1

which yields Hölder’s inequality (17.4). �
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Definition 382. We will call the numbers q and r “conjugate exponents” when
they satisfy the conditions 1/q + 1/r = 1 above.

Exercise 383. Prove the inequality (17.5); show that we have equality if and only
if a = b. [Hint: study the variations of the function k(x) = rxq + qbr − qrxb.]

Let us now prove the main result of this subsection:

Theorem 384. Let q be such that 1 ≤ q <∞. We have:
(i) The mapping f �−→ ‖f‖q is a norm on Lq(Rm);
(ii) Lq(Rm) is a Banach space for the topology defined by this norm.

Proof. (i) There remains to prove the Minkowski inequality (17.3). The result
being obvious for q = 1 or ‖f + g‖q = 0 we assume q > 1 and that ‖f + g‖q > 0.
We next note that since |f + g| ≤ |f |+ |g| we have

|f + g|q ≤ |f | |f + g|q−1 + |g| |f + g|q−1.

Applying Hölder’s inequality to |f | |f + g|q−1 and |g| |f + g|q−1 we get:

‖(f + g)q‖1 ≤ ‖f‖q‖(f + g)q−1‖r + ‖g‖q‖(f + g)q−1‖r
= (‖f‖q + ‖g‖q)‖(f + g)q−1‖r.

Since r(q − 1) = q we have

‖(f + g)q−1‖r =
(∫

Rm

|f + g|r(q−1)dx

)1/r

=
(∫

Rm

|f + g|qdx
)1/r

and hence
‖(f + g)q‖1 ≤ (‖f‖q + ‖g‖q)‖f + g‖q/rq .

Now, ‖(f + g)q‖1 = ‖f + g‖qq so that we finally have, dividing both sides by
‖f + g‖q−1

q ,

‖f + g‖q ≤ (‖f‖q + ‖g‖q)‖f + g‖q/r+1−q
q

which is Minkowski’s inequality since q/r + 1 − q = 0 because q and r are con-
jugate exponents. (ii) It is sufficient to show that every absolutely convergent
series in Lq(Rm) is convergent. Let (fj) be a sequence in Lq(Rm) and assume that
∑∞
j=1 ‖fj‖q = M (M a real number). Setting Fk =

∑k
j=1 |fj| and F =

∑∞
j=1 |fj |

we have

‖Fk‖q ≤
k∑

j=1

‖fj‖k ≤M
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for all indices k, hence
∫

Rm

F qdx = lim
k→∞

∫

Rm

F qkdx ≤M q

so that F ∈ Lq(Rm). This implies that we must have F (x) <∞ almost everywhere,
and the series (

∑k
j=1 fj)k is thus convergent almost everywhere. Let f =

∑k
j=1 fj

be its limit; we have |f | ≤ F and hence f ∈ Lq(Rm). On the other hand |f −
∑k
j=1 fj |q ≤ (2F )p and F p ∈ L1(Rm) hence, using the dominated convergence

theorem,

lim
k→∞

‖f −
k∑

j=1

fj‖qq = lim
k→∞

∫

Rm

|f −
k∑

j=1

fj |qdx = 0.

This proves that the absolutely convergent series
∑k
j=1 fj converges in Lq(Rm),

and we are done. �

Another important property of the Lq spaces is the following:

Theorem 385. Let q and r be conjugate exponents, q > 1.

(i) For each Φ ∈ (Lq(Rm))∗ (the dual space of Lq(Rm)) there exists gΦ ∈ Lr(Rm)
such that

Φ[f ] =
∫

Rm

fgΦdx; (17.6)

two functions gΦ and hΦ satisfying this relation are equal almost everywhere;
(ii) The dual (Lq(Rm))∗ is isometrically isomorphic to Lr(Rm).

Proof. (i) The construction of g is rather lengthy and we omit it here (see Folland
[60], §6.2). The duality property (ii) immediately follows from (17.6). Consider the
mapping Φ �−→ gΦ defined by (17.6). In view of Hölder’s inequality (Proposition
381) we have |Φ[f ]| ≤ ‖f‖q‖gΦ‖r showing that Φ is a continuous linear functional
on Lq(Rm) and hence an element of (Lq(Rm))∗. The proof of the converse is left
to the reader. �

17.1.2 Weighted Lq spaces

The notion of weight plays an essential role in the theory of modulation spaces.
We begin with defining the notion of weight; our definition is rather restric-

tive, but sufficient for our purposes. For a more general definition see [82], §11.1.

Definition 386. A weight on R
2n is a real, non-negative, and locally integrable

function v : R
2n −→ C which is in addition sub-multiplicative: v(z+z′) ≤ v(z)v(z′)

for all z, z′ in R
2n.

Exercise 387. Show that an even weight v always satisfies v(0) ≥ 1.
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The study of weighted Lq spaces is not new, see for instance Benedik and
Panzone [12]. In particular these authors prove a more general result than the
following:

Proposition 388. The weighted spaces Lqv(Rn ⊕ R
n) have the two following prop-

erties:

(i) Lqv(R
n ⊕ R

n) is a Banach space;
(ii) Lqv(R

n ⊕ R
n) is invariant under the translations T (z0)Ψ(z) = Ψ(z − z0). In

fact:
‖T (z0)Ψ‖Lqv ≤ v(z0)‖Ψ‖Lqv ; (17.7)

Proof of (i). Let (Ψj) be a Cauchy sequence in Lqv(R
n ⊕ R

n); then (Φj) = (vΨj)
is a Cauchy sequence in Lq(Rn ⊕ R

n): this immediately follows from the equal-
ity ‖Ψj‖Lqv = ‖vΨj‖Lq . Let Φ be its limit and set Ψ = v−1Φ. We claim that
limj→∞ Ψj = Ψ in Lqv(R

n ⊕ R
n). In fact,

‖Ψj −Ψ‖Lqv = ‖Φj − Φ‖Lq
hence limj−→∞ ‖Ψj −Ψ‖Lqv = 0.

Proof of (ii). To prove that Lqv(R
n⊕R

n) is invariant under the translation operator
T (z0) it suffices to use the submultiplicative property of the weight: we have, for
q <∞,

‖T (z0)Ψ‖qLqv =
∫

R2n
|Ψ(z − z0)|qv(z)qdz

=
∫

R2n
|Ψ(z)|qv(z + z0)qdz

≤ v(z0)
∫

R2n
|Ψ(z)|qv(z)qdz. �

For our purposes it will be sufficient to limit ourselves to choosing for v the
standard weight function

vs(z) = (1 + |z|2)s/2 = 〈z〉s . (17.8)

Notation 389. When the weight v is given by (17.8) we will write Lqs(R
n ⊕ R

n)
instead of Lqv(R

n ⊕ R
n).

Exercise 390. Verify that the standard weight vs is submultiplicative.

Recall that for 1 ≤ q < ∞ the space Lq(Rn ⊕ R
n) consists of all complex

functions Ψ on R
n ⊕ R

n such that

‖Ψ‖Lq =
(∫

R2n
|Ψ(z)|qdz

)1/q

<∞.

The mapping Ψ �−→ ‖Ψ‖Lq is a norm on Lq(Rn⊕R
n) and Lq(Rn⊕R

n) is a Banach
space for the topology thus defined.
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Definition 391. The weighted space Lqs(Rn⊕R
n) consists of all Ψ such that 〈·〉s Ψ ∈

Lq(Rn ⊕ R
n) equipped with the norm ‖Ψ‖Lqs = ‖ 〈·〉sΨ‖Lq .

Exercise 392. Show that ‖ · ‖Lqs indeed is a norm on Lqv(R
n ⊕ R

n). [Hint: Use
Exercise 387.]

The following simple result is very useful:

Lemma 393. The weighted spaces Lqs(R
n⊕R

n) are invariant under linear changes
of variables: if Ψ ∈ Lqs(Rn ⊕ R

n) and F ∈ GL(2n,R) then Ψ ◦ F ∈ Lqs(Rn ⊕ R
n).

Proof. (Cf. the proof of Proposition 316). Diagonalizing FTF using an orthogonal
transformation we have

λmin|z|2 ≤ |F (z)|2 ≤ λmax|z|2

where λmin > 0 and λmax > 0 are the smallest and largest eigenvalues of FTF . It
follows that we have

〈F (z)〉s ≤ max(1, λmax) 〈z〉s
if s ≥ 0, and

〈F (z)〉s ≤ min(1, λmin) 〈z〉s

if s < 0. �

We will also need the following results about convolutions:

Proposition 394. Let s ∈ R.

(i) We have the estimate

‖Ψ ∗ Φ‖Lqs(R2n) ≤ Cs‖Ψ‖L1
s(R

2n)‖Φ‖Lqs(R2n) (17.9)

and hence

L1
s(R

n ⊕ R
n) ∗ Lqs(Rn ⊕ R

n) ⊂ Lqs(Rn ⊕ R
n).

(ii) If s > 2n then

‖Ψ ∗ Φ‖L∞
s (R2n) ≤ Cs‖Ψ‖L∞

s (R2n)‖Φ‖L∞
s (R2n) (17.10)

and hence

L∞
s (Rn ⊕ R

n) ∗ L∞
s (Rn ⊕ R

n) ⊂ L∞
s (Rn ⊕ R

n).
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Proof. (Cf. [82], Proposition 11.1.3). (i) Let Θ ∈ Lq′−s(Rn⊕R
n) with 1/q+1/q′ = 1.

We have, using Fubini’s theorem and the inequality (17.7),

|(Ψ ∗ Φ|Θ)L2 | =
∣
∣
∣
∣

∫∫

R4n
Ψ(u)Φ(z − u)Θ(u)dzdu

∣
∣
∣
∣

≤
∫

R2n
|Ψ(u)|

(∫

R2n
|T (u)Φ(z)| |Θ(z)|dz

)

du

≤
∫

R2n
|Ψ(u)|‖T (u)Φ‖Lqsdu · ‖Θ‖Lq′−s

≤ C
(∫

R2n
|Ψ(u)| 〈u〉s du

)

‖Φ‖Lqs‖Θ‖Lq′−s.

By duality we have

‖Ψ ∗ Φ‖Lqs = sup
{

|(Ψ ∗ Φ|Θ)L2 | : ‖Θ‖
Lq

′
−s
≤ 1

}

≤ Cs‖Ψ‖L1
s
‖Φ‖Lqs ,

hence the estimate (17.9).
(ii) Let Ψ,Φ ∈ L∞

s (Rn ⊕ R
n). We have

|Ψ(z)| ≤ ‖Ψ‖L∞
s (R2n) 〈z〉−s ,

|Φ(z)| ≤ ‖Φ‖L∞
s (R2n) 〈z〉−s

and hence

|Ψ ∗ Φ(z)| ≤ ‖Ψvs‖L∞
s
‖ 〈·〉sΦ‖L∞

s

∫

R2n
(1 + |u|2)−s/2(1 + |z − u|2)−s/2du

where we have used the convolution inequality

〈·〉−s ∗ 〈·〉−s ≤ Cs 〈·〉−s . (17.11)

(See exercise below.) Integrating in z the estimate (17.10) follows since the integral
is absolutely convergent for s > 2n. �
Exercise 395. Prove the convolution inequality (17.11); equivalently:

∫ ∞

−∞
(1 + |t|)−s(1 + |x− t|)−sdt ≤ Cs(1 + |x|)−s

(in case of emergency see [82], (11.5)).

17.2 The modulation spaces Mq
s

The modulation spaces M q
s
(Rn) we are going to study in this and the following

sections are in a sense rather straightforward extensions of the Feichtinger algebra
and of its its dual.
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17.2.1 Definition of Mq
s

Recall that the weight vs is defined by

vs(z) = (1 + |z|2)s/2 = 〈z〉s

and that the corresponding weighted Lq spaces are denoted by Lqs.

Definition 396. The modulation space M q
s (Rn) consists of all ψ ∈ S′(Rn) such

that Vφψ ∈ Lqs(Rn ⊕ R
n) for every window φ ∈ S′(Rn) (where Vφψ is the STFT

transform).

The definition of M q
s (R

n) can be restated in terms of the cross-Wigner trans-
form in the same way as was done for the Feichtinger algebra:

Proposition 397. We have ψ ∈M q
s (Rn) if and only if W (ψ, φ) ∈ Lqs(Rn ⊕R

n) for
every φ ∈ S(Rn).

Proof. It is, as in the Feichtinger algebra case, again based on formula (16.2)
relating the STFT Vφ to the cross-Wigner transform W (ψ, φ). Recall that we
denote by ψλ the function defined by ψλ(x) = ψ(λx). We have ψ ∈M q

s (R
n) if and

only if Vφψ ∈ Lqs(Rn ⊕ R
n) for every φ ∈ S(Rn), that is if and only if Vφ∨√

2π�

ψ ∈
Lqs(R

n ⊕R
n). Since, in addition, ψ ∈M q

s (R
n) if and only if ψ√

2π�
∈M q

s (R
n), we

thus have ψ ∈M q
s (Rn) if and only if

Vφ∨√
2π�

ψ√
2π�
∈ Lqs(Rn ⊕ R

n)

or, which amounts to the same,

ψ ∈M q
s (Rn)⇐⇒ 2ne

2i
�
p·xVφ∨√

2π�

ψ√
2π�
∈ Lqs(Rn ⊕ R

n). (17.12)

Now, a function Ψ is in Lqs(R
n ⊕ R

n) if and only if Ψλ is, as follows from the
inequality

∫

R2n
| 〈z〉s Ψ(λz)|qdz ≤ λ−2nq(1 + λ−2)s/2

∫

Rn

| 〈z〉sΨ(z)|qdz

obtained by performing the change of variable z �−→ λ−1z and using the trivial
estimate

(1 + |λ−1z|2)s/2 ≤ (1 + λ−2)s/2(1 + |z|2)s/2
valid for all s ≥ 0. Combining this property (with λ =

√
2/π�) and the equivalence

(17.12) we thus have ψ ∈M q
s (Rn) if and only if Wφψ ∈ Lqs(Rn ⊕ R

n). �

We can equip the modulation spaceM q
s (Rn) with a family of norms defined by

‖ψ‖�φ,Mq
s (Rn) = ‖W (ψ, φ)‖Lqs(R2n) =

∫

R2n
|W (ψ, φ)(z)|q 〈z〉s dz. (17.13)

We have defined M q
s (Rn) by requiring that W (ψ, φ) ∈ Lqs(Rn⊕R

n) for every
window φ. Not surprisingly, taking into account Proposition 364:
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Proposition 398. We have ψ ∈M q
s (Rn) if and only if W (ψ, φ) ∈ Lqs(Rn ⊕R

n) for
one window φ ∈ S(Rn). The topology of M q

s (Rn) is defined by using a single norm
‖ · ‖�φ,Mq

s
; moreover all the norms obtained by letting φ vary are equivalent.

Proof. It is similar to that of Proposition 364 with a few technical modification;
we therefore leave it to the reader. �

The following result is the analogue of Proposition 370 where it was stated
that the Feichtinger algebra M1(Rn) is a Banach space containing S(Rn) as a
dense subspace.

Proposition 399.

(i) The modulation space M q
s (Rn) is a Banach space for the topology defined by

the norm ‖ · ‖�φ,Mq
s
. It is the Feichtinger algebra S0(Rn) when q = 1.

(ii) The Schwartz space S(Rn) is a dense subspace of each of the modulation
spaces M q

s (R
n) for q <∞.

Proof of (i). See Gröchenig’s book [82], Theorem 11.3.5 for a detailed proof using
the short-time Fourier transform.

Proof of (ii). Let us first show that S(Rn) ⊂ M q
s (R

n). Let ψ ∈ S(Rn); for every
window φ we have W (ψ, φ) ∈ S(Rn ⊕ R

n) hence for every N > 0 there exists
CN > 0 such that |W (ψ, φ)(z)| ≤ CN 〈z〉−N . It follows, by definition of the norm
‖ · ‖�φ,Mq

s
that

‖ψ‖�φ,Mq
s
≤ CqN

∫

Rn⊕Rn

(1 + |z|2)(s−qN)/2dz

and hence ‖ψ‖�φ,Mq
s
< ∞ if we choose s − qN < −n, that is N > (s + n)/q. Let

us finally prove the density statement. Let us choose an exhaustive sequence (Kj)
of compact subsets of R

n ⊕ R
n (i.e., Kj ⊂ K̊j+1 and R

n ⊕ R
n = ∪jKj) and set

Ψj = W (ψ, φj)χj where χj is the characteristic function of Kj. Also set

ψj = W ∗
φΨj =

2n

(γ|φ)L2

∫

Rn⊕Rn

Ψj(z)T̂GR(z)γdz.

Since W (ψ, φ) ∈ S(Rn ⊕ R
n) we have ψj ∈ S(Rn) and

‖ψ − ψj‖�φ,Mq
s

= ‖W ∗
φ(Wφψ −Ψj)‖�φ,Mq

s

≤ C‖Wφψ −Ψj‖Lqs .

We have limj→∞ ‖Wφψ − Ψj‖�φ,Mq
s

= 0 and hence also limj→∞ ‖ψ − ψj‖�φ,Mq
s

proving our claim. �
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17.2.2 Metaplectic and Heisenberg–Weyl invariance properties

The modulation spaces M q
s (R

n) have two remarkable invariance properties, ex-
tending the similar properties of the Feichtinger algebra:

Proposition 400. The modulation spaces M q
s (Rn) have the following properties:

(i) Each space M q
s (R

n) is invariant under the action of the Heisenberg–Weyl
operators T̂ (z); in fact there exists a constant C > 0 such that

‖T̂ (z)ψ‖�φ,Mq
s
≤ C 〈z〉s ‖ψ‖�φ,Mq

s
. (17.14)

(ii) The space M q
s (R

n) is invariant under the action of the metaplectic group
Mp(2n,R): if Ŝ ∈ Mp(2n,R) then Ŝψ ∈M q

s (Rn) if and only if ψ ∈M q
s (Rn).

In particular M q
s (R

n) is invariant under the Fourier transform.

Proof of (i). The cross-Wigner transform satisfies

W (T̂ (z0)ψ, φ)(z) = e−
i
�
σ(z,z0)W (ψ, φ)(z − 1

2z0)

(property (9.25)) hence it suffices, in view of Proposition 397, to show that Lqs(R
n⊕

R
n) is invariant under the phase space translation T (z0) : z �−→ z + z0. In view

of the submultiplicative property of the weight vs (cf. Exercise 390) we have, for
q <∞,

‖T (z0)Ψ‖qLqv =
∫

Rn⊕Rn

|Ψ(z − z0)|q 〈z〉qs dz

=
∫

Rn⊕Rn

|Ψ(z)|q 〈z + z0〉qs dz

≤ 〈z〉s
∫

Rn⊕Rn

|Ψ(z)|q 〈z〉qs dz,

hence our claim; the estimate (17.14) follows.

Proof of (ii). In view of Proposition 398 we have ψ ∈ M q
s (R

n) if and only if
W (ψ, φ) ∈ Lqs(Rn ⊕ R

n) for one window φ ∈ S(Rn); if this property holds, then
it holds for all windows. In view of the symplectic covariance formula (10.26) for
the Wigner transform we have

W (Ŝψ, φ) = W (Ŝψ, Ŝ(Ŝ−1φ))(z)

= W (ψ, (Ŝ−1φ))(S−1z),

hence W (Ŝψ, φ) ∈ Lqs(Rn ⊕ R
n) if and only if the function

z �−→W (ψ, (Ŝ−1φ))(S−1z)

is in Lqs(R
n⊕R

n). But this condition is equivalent to W (ψ, (Ŝ−1φ)) ∈ Lqs(Rn⊕R
n)

in view of Lemma 393, hence Ŝψ ∈M q
s (R

n). �
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The following consequence of the result above is interesting:

Corollary 401. The modulation space M q
s (Rn) is invariant under the dilations

ψ �−→ ψλ where ψλ(x) = ψ(λx) where λ 
= 0. More generally, M q
s (Rn) is invariant

under every change of variables x �−→ Lx (detL 
= 0).

Proof. The unitary operatorsML withML,mψ(x) = im
√| detL|ψ(Lx) (detL 
= 0,

arg detL ≡ mπ mod 2π) belong to Mp(2n,R); the lemma follows since M q
s (R

n) is
a vector space. �

The class of modulation spaces M q
s (Rn) contains as particular cases many

of the classical function spaces. For instance, M2
s (Rn) coincides with the Shubin–

Sobolev space
Qs(Rn) = L2

s(R
n) ∩Hs(Rn)

(Shubin [147], p. 45). We also have

S(Rn) =
⋂

s≥0

M2
s (Rn).

17.3 The modulation spaces M∞
s

We now study the case q =∞.

17.3.1 The weighted spaces L∞
s

The spaces L∞
s (Rn ⊕ R

n) are defined as follows:

Definition 402. Let Ψ be a complex-valued measurable function on R
n ⊕ R

n. We
have Ψ ∈ L∞

s (Rn⊕R
n) if there exists a constant C > 0 such that ess sup(|Ψ|vs) ≤

C where “ess sup” stands for “essential supremum”.
Equivalently: |Ψ(z)| ≤ Cv−s(z) for almost every z ∈ R

n ⊕ R
n.

It is clear that L∞
s (Rn ⊕ R

n) is a vector space: if ess sup(|Ψ| 〈·〉s) ≤ C then
ess sup(|λΨ|vs) ≤ C|λ| for λ ∈ C and if ess sup(|Ψ′| 〈·〉s) ≤ C′ then

ess sup(|Ψ + Ψ′| 〈·〉s) ≤ C + C′.

The norm on L∞
s (Rn ⊕ R

n) is defined as follows: ‖Ψ‖L∞
s

is the infimum of all
constants C such that ess sup(|Ψ|vs) ≤ C:

‖Ψ‖L∞
s

= inf{C : ess sup(|Ψ| 〈·〉s) ≤ C}. (17.15)

Exercise 403. Prove in detail that Ψ �−→ ‖Ψ‖L∞
s

defines a norm on the vector
space L∞

s (Rn ⊕ R
n).

We invite the reader to prove the completeness of L∞
s (Rn⊕R

n) (it is standard,
and does not require any unexpected trick):
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Problem 404. Prove that L∞
s (Rn ⊕ R

n) is a Banach space for the norm ‖ · ‖L∞
s

.
(It is an adaptation of the proof of property (i) in Proposition 388.)

The dual of the Banach space L∞
s (Rn ⊕ R

n) is L1
−s(R

n ⊕ R
n) where the

duality bracket is defined by

(Φ,Ψ) =
∫

Rn⊕Rn

Φ(z)Ψ(z)dz

for Φ ∈ L1
−s(R

n ⊕ R
n) and Ψ ∈ L∞

s (Rn ⊕ R
n). In fact,

|(Φ,Ψ)| ≤
∫

Rn⊕Rn

|Φ(z)| |Ψ(z)|dz

=
∫

Rn⊕Rn

|Φ(z)| 〈z〉−sΨ(z)|vs(z)dz

≤ ‖Φ‖L1
−s
‖Ψ‖L∞

s
.

The following property is the extension to the L∞
s case of the invariance property

of Lqv under translations proven in Proposition 388:

Proposition 405. The space L∞
s (Rn ⊕ R

n) is invariant under translations

T (z0)Ψ(z) = Ψ(z − z0),

and we have:
‖T (z0)Ψ‖L∞

s
≤ 〈z0〉s ‖Ψ‖L∞

s
(17.16)

for every Ψ ∈ L∞
s (Rn ⊕ R

n).

Proof. It suffices to prove the estimate (17.16). By definition of the norm on
L∞
s (Rn⊕R

n) this is equivalent to proving that, if |Ψ(z− z0)|vs(z) ≤ C almost ev-
erywhere, then |Ψ(z)|vs(z) ≤ Cvs(z0) a.e. Now, the condition |Ψ(z−z0)|vs(z) ≤ C
a.e. is equivalent to Ψ(z)|vs(z + z0) ≤ C a.e. Noting that in view of the submulti-
plicativity property of the weight vs we have, writing vs(z) = vs(z + z0 − z0),

|Ψ(z)| 〈z〉s ≤ |Ψ(z)| 〈z + z0〉s 〈z0〉s ≤ C 〈z0〉s

which concludes the proof. �

17.3.2 The spaces M∞
s

The definition is a straightforward adaptation of that of M q
s for q <∞:

Definition 406. The modulation space M∞
s (Rn) consists of all ψ ∈ S′(Rn) such

that Vφψ ∈ L∞
s (Rn ⊕ R

n) for every window φ ∈ S′(Rn) (where Vφψ is the STFT
transform); equivalently W (ψ, φ) ∈ L∞

s (Rn ⊕ R
n).
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We leave it to the reader to check that the conditions Vφψ ∈ L∞
s (Rn ⊕ R

n)
and W (ψ, φ) ∈ L∞

s (Rn ⊕ R
n) (for all φ) are equivalent.

We equip M∞
s (Rn) with the norms

‖ψ‖φ,M∞
s (Rn) = ‖W (ψ, φ)‖L∞

s (Rn⊕Rn).

Not very surprisingly, we have:

Proposition 407. We have ψ ∈ M∞
s (Rn) if and only if W (ψ, φ) ∈ L∞

s (Rn ⊕ R
n)

for one window φ ∈ S(Rn). The norms ψ �−→ ‖ψ‖φ,M∞
s (Rn) are equivalent norms

on M∞
s (Rn).

Proof. It is similar to the proof of Proposition 397. �

The spaces M∞
s (Rn) can be seen as non-trivial refinements of the Schwartz

space S(Rn). In fact, we have the following beautiful result:

Proposition 408. We have the equalities

S(Rn) =
⋂

s≥0

M∞
s (Rn) , S′(Rn) =

⋃

s≥0

M∞
−s(R

n). (17.17)

Proof. Let us prove the first equality (17.17). Let ψ ∈ S(Rn); in view of the
estimate (9.59) in Proposition 192, for every N ≥ 0 there exists CN > 0 such that
|W (ψ, φ)(z)| ≤ CN 〈z〉−N . It follows that

|W (ψ, φ)(z)| 〈z〉s ≤ CN 〈z〉s−N ≤ CN
if we choose N ≥ s and hence ψ ∈ M∞

s (Rn) for every s. Suppose conversely that
ψ ∈ M∞

s (Rn) for every s ≥ 0; this is equivalent to |W (ψ, φ)(z)| ≤ Cs 〈z〉−s for
every s and hence ψ ∈ S(Rn) in view of the implication (iv)=⇒(i) in Proposition
192. Let us now prove the second equality (17.17). First of all it is clear that

⋃

s≥0

M∞
s (Rn) ⊂ S′(Rn)

since, by definition, the elements of each space M∞
s (Rn) are tempered distribu-

tions. Let ψ ∈ S′(Rn). Then, by Theorem 190(ii) there exist constants C ≥ 0 and
µ ≥ 0 such that |W (ψ, φ)(z)| ≤ C 〈z〉µ and hence |W (ψ, φ)| 〈z〉−µ is bounded, so
that ψ ∈Mµ

−s(R
n) for some s ≥ 0. �

17.4 The modulation spaces M∞,1
s

Let us now introduce a different class of modulation spaces, whose elements are
excellent candidates for being Weyl symbols. This class contains as a particu-
lar case the Sjöstrand classes which were defined by other methods in Sjöstrand
[150, 151].
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17.4.1 Definition and first properties

We will again use the weight function on R
2n defined for z ∈ R

2n and ζ ∈ R
2n by

〈z〉s = (1 + |z|2)s/2. We will assume that s ≥ 0.

Definition 409. The modulations space M∞,1
s (Rn ⊕ R

n) consists of all tempered
distributions Ψ ∈ S′(Rn ⊕ R

n) such that

sup
z∈R2n

|W (Ψ,Φ)(z, ζ)〈z〉s| ∈ L1(Rn ⊕ R
n) (17.18)

for every Φ ∈ S(Rn⊕R
n). When s = 0 the spaceM∞,1

0 (Rn⊕R
n) = M∞,1(Rn⊕R

n)
is called the Sjöstrand class. It thus consists of all Ψ ∈ S′(Rn ⊕ R

n) such that

sup
z∈R2n

|W (Ψ,Φ)(z, ζ)| ∈ L1(Rn ⊕ R
n)

for every Φ ∈ S(Rn ⊕ R
n).

Exercise 410. Verify that M∞,1
s (Rn ⊕R

n) is a complex vector space for the usual
operations.

The spaces M∞,1
s (Rn ⊕ R

n) are usually defined in terms of the short-time
Fourier transform VΦΨ instead of W (Ψ,Φ). That the choice of definition is irrele-
vant is easy to prove:

Exercise 411. Show that Ψ ∈M∞,1
s (Rn ⊕ R

n) if and only if

sup
z∈R2n

|VΦΨ(z, ζ)〈z〉s| ∈ L1(Rn ⊕ R
n)

by adapting the method in the proof of Proposition 397.

The following result is the analogue of Proposition 399; it shows in particular
that it suffices to check the bound (17.18) for one function Φ:

Proposition 412. We have Ψ ∈ M∞,1
s (Rn ⊕ R

n) if and only if (17.18) holds for
one Φ ∈ S(Rn ⊕ R

n), and

(i) The equalities

‖Ψ‖Φ
M∞,1
s

=
∫

R2n
sup
z∈R2n

|W (Ψ,Φ)(z, ζ)〈z〉s|dζ

define a family of equivalent norms on M∞,1
s (Rn ⊕ R

n) when Φ describes
S(Rn ⊕ R

n);
(ii) The space M∞,1

s (Rn⊕R
n) is a Banach space for the topology defined by any

of the norms ‖·‖Φ
M∞,1
s

and S(Rn⊕R
n) is a dense subspace of M∞,1

s (Rn⊕R
n).

An important property of the modulation spaces M∞,1
s (Rn ⊕ R

n) is their
invariance under linear changes of variables:
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Proposition 413. Let A ∈ GL(2n,R) and set A∗Ψ = Ψ ◦ A. We have Ψ ∈
M∞,1
s (Rn ⊕ R

n) if and only A∗Ψ ∈ M∞,1
s (Rn ⊕ R

n). There exists a constant
CA > 0 such that

‖A∗Ψ‖Φ
M∞,1
s
≤ CA‖Ψ‖A∗Φ

M∞,1
s

(17.19)

for every Φ ∈ S(Rn ⊕ R
n).

Proof. It is of course sufficient to prove the existence of a constant CA such that
(17.19) holds. Let us set Ψ′ = A∗Ψ and choose Φ ∈ S(Rn ⊕ R

n). We have, by
definition of the cross-Wigner transform on R

n ⊕ R
n,

W (Ψ′,Φ)(z, ζ) =
(

1
2π�

)2n
∫

R2n
e−

i
�
ζ·ηΨ(Az + 1

2Aη)Φ(z − 1
2η)dη,

that is, performing the change of variables ξ = Aη,

W (Ψ′,Φ)(z, ζ) =
(

1
2π�

)2n | detA|−1

×
∫

R2n
e−

i
�
ζ·A−1ξΨ(Az + 1

2ξ)Φ(z − 1
2A

−1ξ)dξ

and hence

W (Ψ′,Φ)(A−1z,AT ζ) =
(

1
2π�

)2n | detA|−1

×
∫

R2n
e−

i
�
ζ·ξΨ(z + 1

2ξ)(A
−1)∗Φ(z − 1

2ξ)dξ.

It follows that

W (Ψ′,Φ)(A−1z,AT ζ) = | detA|−1W (Ψ, (A−1)∗Φ)(z, ζ),

that is

W (Ψ′,Φ)(z, ζ) = | detA|−1W (Ψ, (A−1)∗Φ)(Az, (AT )−1ζ); (17.20)

taking the suprema of both sides of this equality we get

sup
z∈R2n

|W (Ψ′,Φ)(z, ζ)〈z〉s| = | detA|−1 sup
z∈R2n

|W (Ψ, (A−1)∗Φ)(z, ζ)〈A−1z〉s|

and hence

‖A∗Ψ‖Φ
M∞,1
s

= | detA|−1

∫

R2n
sup
z∈R2n

|W (Ψ, (A−1)∗Φ)(z, ζ)〈A−1z〉s|dζ.

Since we have 〈A−1z〉s ≤ C(A)〈z〉s for some constant C(A) > 0 the estimate
(17.19) follows. �
Exercise 414. Derive the equality (17.20) using the symplectic covariance property
(10.26) of the cross-Wigner transform.
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17.4.2 Weyl operators with symbols in M∞,1
s

For this subsection a good source is Gröchenig’s paper [84] (also see the older
paper [83] by Gröchenig and Heil), and Gröchenig [82].

It is interesting to view the modulation spaces M∞,1
s as symbol classes: in

contrast to the cases traditionally considered in the literature, membership of a
symbol a in M∞,1

s (Rn⊕R
n) does not imply any smoothness of a. It turns out that

this point of view allows us to recover many classical and difficult regularity prop-
erties (for instance the Calderón–Vaillancourt theorem) in a rather simple way.

Here is a first very interesting result. It says basically that the Weyl operators
with symbols in M∞,1

s (Rn ⊕ R
n) preserve phase-space concentration.

Proposition 415. Suppose that a ∈ M∞,1
s (Rn ⊕ R

n). Then the operator Â
Weyl←→ a

is bounded on each of the modulation spaces M q
s (R

n).

Proof. (Cf. ([82], Theorem 14.5.6). �

The interest of M∞,1
s (Rn ⊕ R

n) comes from the following property of the
Moyal product (Gröchenig [85]), namely that it equips these spaces with a ∗-
algebra structure. Recall that the Moyal product a �� b is the Weyl symbol of the
product ÂB̂ of the operators Â

Weyl←→ a and B̂
Weyl←→ b.

Proposition 416. Let a, b ∈ M∞,1
s (Rn ⊕ R

n). Then a �� b ∈ M∞,1
s (Rn ⊕ R

n). In
particular, for every window Φ there exists a constant CΦ > 0 such that

‖a �� b‖ΦM∞,1
s
≤ CΦ‖a‖ΦM∞,1

s
‖b‖Φ

M∞,1
s

.

Since obviously a ∈ M∞,1
s (Rn ⊕ R

n) if and only if a ∈ M∞,1
s (Rn ⊕ R

n), the
property above can be restated in the following concise way:

The modulation space M∞,1
s (Rn⊕R

n) is a Banach ∗-algebra with
respect to the Moyal product �� and the involution a �−→ a.

In the case of the Sjöstrand class M∞,1(Rn⊕R
n) one has the following more

precise results:

Proposition 417. We have the following properties:

(i) Every Weyl operator Â
Weyl←→ a with a ∈M∞,1(Rn⊕R

n) is bounded on L2(Rn);
(ii) If we have Ĉ = ÂB̂ with a, b ∈M∞,1(Rn ⊕ R

n) then c ∈M∞,1(Rn ⊕ R
n);

(iii) If Â with a ∈ M∞,1(Rn ⊕ R
n) is invertible with inverse B̂

Weyl←→ b then b ∈
M∞,1(Rn ⊕ R

n).

The Sjöstrand class M∞,1(Rn⊕R
n) contains, in particular, the symbol class

S0
0,0(R

n ⊕ R
n) consisting of all infinitely differentiable complex functions A on

R
n⊕R

n such that ∂αz A is bounded for all multi-indices α ∈ N
2n. Property (i) thus

extends the L2-boundedness property of operators with symbols in S0
0,0(R

n⊕R
n).

Property (iii) is called the Wiener property of M∞,1(Rn ⊕ R
n).
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Bopp Pseudo-differential Operators

Bopp pseudo-differential operators are the operators formally obtained from a
symbol by the quantization rules

x −→ x+ 1
2 i�∂p , p −→ p− 1

2 i�∂x (18.1)

instead of the usual correspondence x −→ x, p −→ −i�∂x. The terminology
comes from the fact that the operators x+ 1

2 i�∂p and p− 1
2 i�∂x are called “Bopp

shifts” in the physics literature. These operators act, not on functions defined on
R
n as ordinary Weyl operators do, but on functions (or distributions) defined on

the phase space R
n ⊕ R

n. The definition of Bopp pseudo-differential operators
is sensitive to the choice of symplectic structure on R

n ⊕ R
n; this property will

be exploited in the next chapter in the context of non-commutative quantum
mechanics where one is led to use other symplectic forms than the standard one.

We will call this quantization procedure “Bopp quantization” in honor of
the physicist Fritz Bopp, who was the first to consider (in 1956) operators of
this type in his paper [18] where he discussed some statistical implications of
quantization. We should also give credit to the mathematical physicist Ryogo Kubo
[111] who noticed in 1964 the relationship between operators of this type and Weyl
calculus. This possibility has been sporadically discussed in the physics literature
(see for instance Brodimas et al. [23] and Balazs and Pauli [4]), but their papers
seem to have been unfortunately more or less unnoticed. We will see in the next
chapter that the theory of Bopp pseudo-differential operators is a tool of choice
for the study of deformation quantization which it reduces to a Weyl calculus of
a particular type. We will also see that the study of non-commutative quantum
mechanics can also be reduced to Bopp calculus. (Another easy application is the
study of generalizations of the magnetic Landau problem.)

The study of phase space pseudo-differential operators (from a slightly dif-
ferent point of view) was initiated in de Gosson [67, 68, 69, 70, 71], and applied to
deformation quantization via the theory of modulation spaces in de Gosson and
Luef [76, 79].
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18.1 Introduction and motivation

To understand what Bopp pseudo-differential calculus is about, let us consider
the following simple example. In deformation quantization one studies “star prod-
ucts” of functions defined on phase space. The most commonly used, at least in
applications, is the Moyal product ��, which is one of the cornerstones of defor-
mation quantization, which we will discuss in more detail in the next chapter. By
definition c = a �� b where

c(z) =
(

1
4π�

)2n
∫∫

R4n
e
i

2�
σ(z′,z′′)a(z + 1

2z
′)b(z − 1

2z
′′)dz′dz′′.

This is immediately recognized as being the formula giving the symplectic Fourier
transform of the symbol of the product Ĉ = ÂB̂ of two Weyl operators (cf. The-
orem 213). Equivalently, the symplectic Fourier transform of c is given by the
formula

cσ(z) =
(

1
2π�

)n
∫

R2n
e
i
2�
σ(z,z′)aσ(z − z′)bσ(z′)dz′.

After a few calculations one sees that, in particular,

x �� a =
(
x+ 1

2 i�∂p
)
a , p �� a =

(
p− 1

2 i�∂x
)
a (18.2)

where ∂p and ∂x are the gradients in p and x, respectively.

Exercise 418. Prove these formulas. More generally, what is xα �� a (resp. pα �� a)
when α ∈ N

n?

The formulas (18.2) suggest that, more generally, the Moyal product a �� b
of two functions a, b could be rewritten in the form

a �� b = Ãb (18.3)

where Ã = A(x̃, p̃) is a pseudo-differential operator formally obtained by the “Bopp
quantization rules” x −→ x̃ and p −→ p̃ where x̃ and p̃ are the differential opera-
tors

x̃ = x+ 1
2 i�∂p , p̃ = p− 1

2 i�∂x; (18.4)

writing z̃ = (x̃, p̃) these relations can be written

z̃ = z + 1
2 i�J∂z (18.5)

which has the advantage of making explicit the relation of Bopp quantization
with the standard symplectic structure. This also opens the door to more general
quantizations associated with non-standard symplectic structures as we will see
in Chapter 19. Of course “formula” (18.3) only remains a notation as long as one
has not given a working definition of the operator Ã = a(z̃); and it is not at
all obvious what this definition should be except when a is a polynomial! Notice
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that by definition, such operators Ã act not on functions (or distributions) defined
on R

n but on functions (or distributions) defined on phase space R
n ⊕ R

n. We
can therefore consider the study of such operators as a study of a phase space
pseudo-differential calculus.

We will give below a rigorous definition of the Bopp operators Ã which can
be viewed as a Weyl operator of a very particular type acting on phase space
functions. We will see that “Bopp calculus” is intertwined with the usual Weyl
calculus by infinitely many partial isometries of L2(Rn) onto closed subspaces of
L2(Rn). This fact has very surprising consequences, and it leads (as a by-product)
to simple proofs for many regularity properties for the usual Weyl operators.

18.1.1 Bopp pseudo-differential operators

Recall that the Heisenberg–Weyl operator T̂ (z0) acts on functions defined on R
n

via the formula
T̂ (z0)ψ(x) = e

i
�
(p0·x− 1

2 p0·x0)ψ(x− x0);

a natural step is to extend the domain of T̂ (z0) by letting it act on functions (or
distributions) defined on R

n ⊕ R
n via the formula

T̂ (z0)Ψ(z) = e
i
�
(p0·x− 1

2p0·x0)Ψ(z − z0).

This approach was actually initiated in our monograph [67] in connection with the
study of the phase space Schrödinger equation (also see de Gosson [69, 68, 70]). For
our present purpose, which is the definition of Bopp pseudo-differential operators,
we prefer to use a variant of this redefinition of the Heisenberg–Weyl operator:

Definition 419. For z0 ∈ R
2n the operator T̃ (z0) is defined, for Ψ ∈ S′(Rn ⊕ R

n),
by

T̃ (z0)Ψ(z) = e−
i
�
σ(z,z0)Ψ(z − 1

2z0). (18.6)

This choice (as arbitrary as it can seem at first sight!) is consistent with the
quantization rules (18.4). This can be seen as follows. Recall from Chapter 8, for-
mula (8.3) that the introduction of the usual Heisenberg–Weyl operator T̂ (z0) =
e−iσ(ẑ,z0) can be motivated by the Weyl quantization of the translation Hamilto-
nian Hz0(z) = σ(z, z0); the operator with Weyl symbol is Ĥz0(z) = σ(ẑ, z0) with
ẑ = (x,−i�∂x) and the solution of the corresponding Schrödinger equation

i�
∂

∂t
ψ = Ĥz0ψ , ψ(x, 0) = ψ0(x)

is formally given by ψ(x, t) = eitσ(ẑ,z0)/�ψ0(x); a direct calculation then leads to
the explicit formula

u(x, t) = e
i
�
tσ(ẑ,z0)ψ0(x) = e

i
�
(tξ0·x− 1

2 t
2ξ0·x0)ψ0(x− tx0)
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and hence T̂ (z0)ψ(x, 0) = ψ(x, 1). To define the operators T̃ (z0) one proceeds
exactly in the same way: replacing the Hamiltonian operator Ĥz0(z) = σ(ẑ, z0)
with H̃z0(z) = σ(z̃, z0) where z̃ = z + 1

2 i�J∂z we are led to the “phase space
Schrödinger equation”

i�
∂

∂t
Ψ = σ(z̃, z0)Ψ , Ψ(z, 0) = Ψ0(z)

whose solution is

Ψ(z, t) = e
i
�
tσ(z̃,z0)Ψ0(z) = e−

i
�
tσ(z,z0)Ψ0(z − 1

2 tz0).

We thus have
Ψ(z, t) = T̃ (z0)Ψ(z) = e

i
�
σ(z̃,z0)Ψ0(z).

We also observe that the operators T̃ (z0) also appear (albeit in disguise) in
the translation formula (9.25) for Heisenberg–Weyl operators:

W (T̂ (z0)ψ, T̂ (z1)φ)(z) = e−
i
�
[σ(z,z0−z1)+ 1

2σ(z0,z1)]W (ψ, φ)(z − 〈z〉)

where 〈z〉 = (z0+z1)/2. In fact taking z1 = 0 in the formula above we immediately
get (18.6). It turns out that the operators T̃ (z0) satisfy commutation relations
which are similar to

T̂ (z0)T̂ (z1) = e
i
�
σ(z0,z1)T̂ (z1)T̂ (z0),

T̂ (z0 + z1) = e−
i

2�
σ(z0,z1)T̂ (z0)T̂ (z1),

which are satisfied by the Heisenberg–Weyl operators (formulae (8.8) and (8.9)).
In fact:

Proposition 420. We have

T̃ (z0 + z1) = e−
i

2�
σ(z0,z1)T̃ (z0)T̃ (z1), (18.7)

T̃ (z1)T̃ (z0) = e−
i
�
σ(z0,z1)T̃ (z0)T̃ (z1) (18.8)

for all z0, z1 ∈ R
2n.

Proof. Formula (18.8) follows from formula (18.7) noting that we can write

T̃ (z1)T̃ (z0) = e
i
2�
σ(z1,z0)T̃ (z1 + z0)

= e−
i
2�
σ(z0,z1)T̃ (z0 + z1)

= e−
i
�
σ(z0,z1)T̃ (z0)T̃ (z1).

The proof of (18.7) is similar and left to the reader. �
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These relations suggest that T̃ (z0) could correspond to a unitary representa-
tion of the Heisenberg group on phase space functions. We will see later on that
this is indeed the case.

In analogy with the formula

Âψ(x) =
(

1
2π�

)n
∫

R2n
aσ(z0)T̂ (z0)ψ(x)dz0

defining a Weyl operator we introduce:

Definition 421. Let a ∈ S′(Rn ⊕R
n); the operator Ã defined for Ψ ∈ S(Rn ⊕R

n)
by

ÃΨ(z) =
(

1
2π�

)n
∫

R2n
aσ(z0)T̃ (z0)Ψ(z)dz0

is called the Bopp operator with symbol a, and we will write Ã
Bopp←→ a or a

Bopp←→ Ã
(“Bopp correspondence”).

The definition of a Bopp operator can be reformulated in many different
ways. For instance, in terms of the distributional brackets 〈〈·, ·〉〉 on R

n ⊕ R
n we

have
ÃΨ =

(
1

2π�

)n 〈〈aσ, T̃ (·)Ψ〉〉.
This immediately shows that the definition of Ã still makes sense when the symbol
a is a tempered distribution on R

n⊕R
n. Thus, the Bopp correspondence a

Bopp←→ Ã
makes sense for a ∈ S′(Rn ⊕ R

n). We will see below that this is not surprising,
because Bopp pseudo-differential operators are just Weyl operators of a special
type.

Exercise 422. In Chapter 8 we defined the Grossmann–Royer operators by the
formula T̂GR(z0) = T̂ (z0)T̂GR(0)T̂ (z0)−1 where T̂GR(0)ψ(x) = ψ(−x). Show that
the operator T̃GR(z0) : S(Rn ⊕ R

n) −→ S(Rn ⊕ R
n) defined by T̃GR(z0) =

T̃ (z0)T̃GR(0)T̃ (z0)−1 where T̃GR(0)Ψ(x) = Ψ(−x) is explicitly given by

T̃GR(z0)Ψ(z) = e−
2i
�
σ(z,z0)Ψ(−z + z0).

18.1.2 Bopp operators viewed as Weyl operators

Let us view the linear operator Ã as a Weyl operator Ã : S(Rn⊕R
n) −→ S′(Rn⊕

R
n). We are going to identify the symbol of Ã below; we begin by calculating its

distributional kernel:

Lemma 423. The kernel of the operator Ã
Bopp←→ a is given by the formula

KÃ(z, z′) =
(

1
π�

)n
aσ[2(z − z′)]e 2i

�
σ(z,z′). (18.9)
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Proof. In view of Definition (18.6) of T̃ (z0)Ψ we have, performing the change of
variable z0 = 2(z − z′),

ÃΨ(z) =
(

1
2π�

)n
∫

R2n
aσ(z0)e−

i
�
σ(z,z0)Ψ(z − 1

2z0)dz0

=
(

1
π�

)n
∫

R2n
aσ[2(z − z′)]e 2i

�
σ(z,z′)Ψ(z′)dz′,

hence the kernel KÃ of Ã is given by formula (18.9). �

Theorem 424. Viewing Ã as a Weyl operator S(Rn ⊕ R
n) −→ S′(Rn ⊕ R

n), its

symbol ã
Weyl←→ Ã is obtained from the symbol a

Weyl←→ Â by

ã(z, ζ) = a(z − 1
2Jζ) (18.10)

that is, setting ζ = (ζx, ζp),

ã(z, ζ) = a(x− 1
2ζp, p+ 1

2ζx). (18.11)

Proof. It is a variant of the proof we have given in de Gosson [71] in a slightly
different context. In view of formula 10.15 with n replaced by 2n we can determine
the Weyl symbol ã of Ã by the formula

ã(z, ζ) =
∫

R2n
e−

i
�
ζ·ηK(z + 1

2η, z − 1
2η)dη.

We have, using the identity σ(z + 1
2η, z − 1

2η) = −σ(z, η),

K(z + 1
2η, z − 1

2η) =
(

1
π�

)n
aσ(2η)e−

2i
�
σ(z,η)

and hence
ã(z, ζ) =

(
1
π�

)n
∫

R2n
e−

i
�
ζ·ηe−

2i
�
σ(z,η)aσ(2η)dη

that is, setting ω = 2η,

ã(z, ζ) =
(

1
2π�

)n
∫

R2n
e−

i
2�
ζ·ωe−

i
�
σ(z,ω)aσ(ω)dω.

Now we observe that

1
2ζ · ω + σ(z, ω) = 1

2ζ · ω + Jz · ω
= J(z − 1

2Jζ) · ω
= σ(z − 1

2Jζ, ω)

so that
ã(z, ζ) =

(
1

2π�

)n
∫

R2n
e−

i
�
σ(z− 1

2Jζ,ω)aσ(ω)dω.
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Recalling that the symplectic Fourier transform is its own inverse we thus have

ã(z, ζ) = a(z − 1
2Jζ) (18.12)

which we set out to prove. �

Note that (z, ζ) is the generic point of the 4n-dimensional phase space R
2n⊕

R
2n; the variable ζ = (ζx, ζp) ∈ R

n×R
n is viewed as the dual variable of z = (x, p).

The result above justifies the interpretation of Ã as the operator obtained
from the usual Weyl symbol a by the quantization rule

z = (x, p) −→ (x+ 1
2 i�∂p, p− 1

2 i�∂x) = z̃ (18.13)

and thus legitimates the notation

Ã = a(x+ 1
2 i�∂p, p− 1

2 i�∂x) = a(z̃)

we introduced above.

18.1.3 Adjoints and a composition formula

The usual rules for calculating the adjoint and composing Weyl operators apply
to the case of Bopp operators as well.

Proposition 425.

(i) The Weyl symbol c̃ of the product C̃ = ÃB̃ of two Bopp operators is

c̃(z, ζ) = c
(
z − 1

2Jζ
)

(18.14)

where c is the usual Weyl symbol of the product ÂB̂. Hence

ÃB̃ = ÃB. (18.15)

(ii) The symbol of the adjoint Ã∗ is the complex conjugate ã of the symbol ã of
Ã. Hence Ã∗ is (essentially) self-adjoint if and only if a is real.

Proof of (i). In view of the composition formulas in Theorem 213 the Weyl symbol
of ÃB̃ is given by

c̃(z, ζ) =
(

1
4π�

)4n
∫

R4n
e
i
2σ(z′,ζ′;z′′,ζ′)a

[
1
2 (z + 1

2z
′)− J(ζ + 1

2ζ
′)
]

× b [1
2 (z − 1

2z
′′)− J(ζ − 1

2ζ
′′)

]
dz′dz′′dζ′dζ′′

where ω is the symplectic form on R
4n. Defining new variables u′ = 1

2z
′− Jζ′ and

u′′ = 1
2z

′′ − Jζ′′, this formula becomes

c̃(z, ζ) =
(

1
4π�

)4n
∫

R4n
I(u, u′′)a(z + u′ − 1

2Jζ)b(z − u′′ − 1
2Jζ)dz

′dz′′du′du′′
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with

I(u, u′′) =
∫

Rn

exp
[

− i

2�
(σ(z′, z′′ − u′′)− σ(u′, z′′))

]

dz′dz′′.

Using the properties of the Fourier transform, I(u, u′′) is easily calculated and one
finds that it is equal to (4π)2ne

i
2σ(u′,u′); formula (18.15) follows.

Proof of (ii). Part (ii) of the proposition follows from Proposition 212 about the
Weyl symbol of the adjoint of an operator and the fact that ã is the Weyl symbol
of Ã viewed as an operator S(Rn ⊕ R

n) −→ S(Rn ⊕ R
n). �

18.1.4 Symplectic covariance of Bopp operators

The calculus of Bopp pseudo-differential operators should inherit the symplectic
covariance properties of the usual Weyl calculus. This is indeed the case:

Proposition 426. Let a
Bopp←→Ã and S ∈ Sp(2n,R). We have

a ◦ S−1Bopp←→M̃SÃM̃
−1
S (18.16)

where M̃S is the unitary operator on L2(Rn ⊕ R
n) defined by M̃SΨ(z) = Ψ(Sz).

Equipping Sp(4n,R) with its standard symplectic structure σ ⊕ σ we have M̃S ∈
Mp(4n,R) where Mp(4n,R) is the corresponding metaplectic group.

Proof. That M̃S ∈Mp(4n,R) is clear, since we have

M̃SΨ(z) = M̂S,0Ψ(z) =
√

detSΨ(Sz)

(cf. the notation (7.9) in Chapter 7). With the notation of Chapter 3 (formula
(3.16)) set

MS =
(
S−1 0
0 ST

)

;

then MS is the projection on Sp(4n,R) of the metaplectic operator M̃S = M̂S,0.
To prove the covariance formula (18.16) we recall that the Weyl symbol of Ã is
given by ã(z, ζ) = a(z − 1

2Jζ). Let b be the Weyl symbol of the Bopp operator
with Weyl symbol a ◦ S−1; since S−1J = JST we have

b̃(z, ζ) = a(S−1(z − 1
2Jζ)) = ã(MS(z, ζ)).

This proves formula (18.16) applying the usual symplectic covariance formula
(10.25) for Weyl operators in Theorem 128 in our case. �

We notice that the symplectic covariance formula (18.16) is very simple com-

pared to the covariance formula a ◦ S−1Weyl←→ŜÂŜ because the operator M̃S is just
a symplectic change of variables.
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18.2 Intertwiners

As a rule, given a symbol a, the Weyl operator Â
Weyl←→ a is less complicated than the

corresponding Bopp operator Ã
Bopp←→ a, so one would like to deduce the properties

of the second from those of the first. For this we first have to find a procedure
allowing us to associate to a function ψ ∈ L2(Rn) a function Ψ ∈ L2(Rn ⊕ R

n);
that correspondence should be linear, and intertwine in some way the operators Â
and Ã. It turns out that there exist many procedures for transforming a function
of, say, x into a function of twice as many variables: the well-known and much
used Bargmann transform is an archetypical (and probably the oldest) example
of such a procedure (see Problem 429 below). However, the Bargmann transform
is not sufficient when one wants to recover all the spectral properties of Ã from
those of Â. For example, the eigenvalues of Ã are generally infinitely degenerate,
so it is illusory to attempt to recover the corresponding eigenvectors from those of
Â using one single transform! This difficulty is of course related to the fact that
no isometry from L2(Rn) to L2(Rn ⊕ R

n) can take a basis of the first space to a
basis of the other (intuitively L2(Rn) is “much smaller” than L2(Rn ⊕ R

n)). We
will overcome this difficulty by constructing an infinite family of partial isometries
Wφ : L2(Rn) −→ L2(Rn ⊕ R

n) parametrized by the Schwartz space S(Rn); these
partial isometries are easily defined in terms of the cross-Wigner transform.

18.2.1 Windowed wavepacket transforms

Here is the definition of the wavepacket transforms Wφ:

Definition 427. Let φ ∈ S(Rn) be such that ‖φ‖L2(Rn) = 1. The linear mapping
Wφ : S(Rn) −→ S(Rn ⊕ R

n) defined by

Wφψ = (2π�)n/2W (ψ, φ) (18.17)

whereW (ψ, φ) is the cross-Wigner distribution, is called the wavepacket transform
(for short WPT) with window φ.

Equivalently, taking into account Definition 171 of the cross-Wigner trans-
form,

Wφψ(z) =
(

2
π�

)n/2 (T̂GR(z)ψ|φ)L2(Rn) (18.18)

where T̂GR(z) is the Grossmann–Royer transform. In view of the formula (9.14)
the WPT is explicitly given by

Wφψ(z) =
(

1
2π�

)n/2
∫

Rn

e−
i
�
p·yψ(x+ 1

2y)φ(x − 1
2y)dy. (18.19)

Since W (ψ, φ) is defined for ψ ∈ S′(Rn) if φ ∈ S(Rn) the wavepacket trans-
form extends into a mapping S′(Rn) −→ S′(Rn). In fact:
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Proposition 428. For every φ ∈ S(Rn) the mapping Wφ : S(Rn) −→ S(Rn ⊕ R
n)

extends into an automorphism

Wφ : S′(Rn) −→ S′(Rn ⊕ R
n)

whose inverse (Wφ)−1 is calculated as follows: if Wφψ = Ψ then

ψ(x) = 1
(γ|φ)L2(Rn)

(
2
π�

)n/2
∫

R2n
Ψ(z0)T̂GR(z0)γ(x)dz (18.20)

for each γ ∈ S(Rn) such that (γ|φ)L2(Rn) 
= 0. In particular, since φ is normalized,

ψ(x) =
(

2
π�

)n/2
∫

R2n
Ψ(z0)T̂GR(z0)φ(x)dz. (18.21)

Proof. The fact that Wφ can be extended into an automorphism S′(Rn) −→
S′(Rn ⊕ R

n) is a consequence of Proposition 192 and its Corollary 194. The in-
version formulas (18.20) and (18.21) immediately follow from formula (9.51) in
Proposition 184. �

We mentioned at the beginning of the chapter that the Bargmann transform
is a device that allows one to turn functions on configuration space into functions
on phase space. In the following problem you are asked to make explicit the re-
lationship between the Bargmann transform and the wavepacket transform for a
special Gaussian window.

Problem 429. Bargmann [6] has introduced an integral transform defined on
L2(Rn) and whose values are functions on the complex space C

n. This transform
is defined by the somewhat cumbersome formula

Bψ(z) = 2n/4
∫

Rn

e2πu·z−πu
2−π

2 z
2
ψ(u)du.

(i) Show that the Bargmann transform is related to the short-time Fourier trans-
form defined in formula (16.1) by

Vφ0ψ(x,−p) = eiπx·pBψ(z)e−π|z|
2/2 (18.22)

where z = x + ip and φ0(z) = 2n/4e−π|x|
2
. [The proof of formula (18.22)

is purely computational; the reader who is in a hurry can find a proof in
Gröchenig’s book [82], pp. 53–54.]

(ii) Deduce from this a relation between the Bargmann transform and Wφ0 .

The WPT Wφ has several important function-analytical properties: let us
begin by showing that it is a partial isometry onto a closed subspace of the Hilbert
space L2(Rn ⊕ R

n).
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Theorem 430.

(i) The standard WPT Wφ is an isometry of L2(Rn) onto a closed subspace Hφ
of L2(Rn ⊕ R

n) and the adjoint W ∗
φ of Wφ is given by the formula

W ∗
φΨ =

(
2
π�

)n/2
∫

R2n
Ψ(z0)T̂GR(z0)φdz0 (18.23)

where T̂GR(z0) is the Grossmann–Royer operator;
(ii) The operator W ∗

φWφ is the identity on L2(Rn) and

Pφ = WφW
∗
φ : L2(Rn ⊕ R

n) −→ L2(Rn ⊕ R
n)

is the orthogonal projection of L2(Rn ⊕ R
n) onto Hφ.

Proof of (i). Let ψ ∈ S(Rn). In view of Moyal’s identity (formula (9.41)) in The-
orem 182) we have:

(Wφψ|Wφψ
′)L2 = (ψ|ψ′)L2(φ|φ)L2

that is, since φ has norm 1,

(Wφψ|Wφψ
′)L2 = (ψ|ψ′)L2

hence the operator Wφ extends into an isometry of L2(Rn) onto a subspace Hφ
of L2(Rn ⊕ R

n); that subspace is closed since it is homeomorphic to L2(Rn). Let
us prove formula (18.23) for the adjoint of Wφ. By definition of the adjoint of an
operator we have

(W ∗
φΨ|ψ)L2 = (Ψ|Wφψ)L2 ,

hence it suffices to show that
(

2
π�

)n/2
∫

R2n
Ψ(z0)(T̂GR(z0)φ|ψ)L2dz0 = (Ψ|Wφψ)L2 . (18.24)

Now, using Definitions (9.11) and (18.17) we have

(T̂GR(z0)φ|ψ)L2 = (π�)nW (φ, ψ)(z0) =
(
π�

2

)n/2
Wφψ(z0)

and hence
(

2
π�

)n/2
∫

R2n
Ψ(z0)(T̂GR(z0)φ|ψ)L2dz0 = (Ψ|Wφψ)L2

which was to be proven.

Proof of (ii). To prove that W ∗
φWφ is the identity on L2(Rn) we choose ψ ∈

L2(Rn) and observe that for every ψ′ ∈ L2(Rn) we have

(W ∗
φWφψ|ψ′)L2 = (Wφψ|Wφψ

′)L2 = (ψ|ψ′)L2 ;

it follows that W ∗
φWφψ = ψ. We have Pφ = P ∗

φ and PφP
∗
φ = Pφ hence Pφ is an

orthogonal projection. Since W ∗
φWφ is the identity on L2(Rn) the range of W ∗

φ is
L2(Rn) and that of Pφ is therefore precisely Hφ. �
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18.2.2 The intertwining property

The main interest of our wavepacket transforms comes from the fact that they
intertwine Bopp operators with the usual Weyl operators.

Proposition 431.

(i) The operator Wφ intertwines the operators T̃ (z0) and T̂ (z0), in the sense that

Wφ(T̂ (z0)ψ) = T̃ (z0)Wφψ; (18.25)

(ii) and hence
ÃWφ = WφÂ and W ∗

φ Ã = ÂW ∗
φ . (18.26)

Proof of (i). Making the change of variable y = y′ + x0 in Definition (18.17) of
Wφ we get

Wφ(T̂ (z0)ψ, φ)(z) = e−
i
�
σ(z,z0)Wφψ(z − 1

2z0)

which is precisely (18.25). Alternatively, this formula is a particular case of prop-
erty (9.25) of the cross-Wigner transform.

Proof of (ii). Applying Wφ to both sides of the formula

Âψ =
(

1
2π�

)n
∫

R2n
aσ(z0)T̂ (z0)ψdz0

defining the Weyl operator Â
Weyl←→ a, we get

WφÂψ =
(

1
2π�

)n
∫

R2n
aσ(z0)Wφ[T̂ (z0)ψ]dz0 = ÃWφψ

and hence

WφÂψ =
(

1
2π�

)n
∫

R2n
aσ(z0)[T̃ (z0)Wφψ]dz0 = Ã(Wφψ)

which is the first equality (18.26). To prove the second equality it suffices to apply
this equality to W ∗

φ Ã = (Ã∗Wφ)∗. �

Let us have a look at how the windowed wavepacket transform behaves under
the action of symplectic linear automorphisms.

Proposition 432. Let S ∈ Sp(2n,R) and ψ ∈ L2(Rn). We have

Wφψ(S−1z) = WŜφ(Sψ)(z) (18.27)

where Ŝ is any of the two operators in the metaplectic group Mp(2n,R) covering S.

Proof. It follows immediately from the symplectic covariance formula

W (ψ, φ) ◦ S−1 = W (Ŝψ, Ŝφ)

satisfied by the cross-Wigner distribution (Proposition 217). �
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18.3 Regularity results for Bopp operators

As a rule, to each regularity result for a Weyl operator Â
Weyl←→ a corresponds a

regularity result for the Bopp operator Ã
Bopp←→ a.

18.3.1 Boundedness results

We begin with a simple continuity statement:

Proposition 433. Let a ∈ L2(Rn ⊕ R
n). The operator Ã

Bopp←→ a is continuous on
L2(Rn ⊕ R

n) −→ L∞(Rn ⊕ R
n) and we have the estimate

‖ÃΨ‖∞ ≤
(

1
π�

)n ‖a‖L2(R2n)‖Ψ‖L2(R2n) (18.28)

for all Ψ ∈ L2(Rn ⊕ R
n).

Proof. It is of course sufficient to prove the inequality (18.28). By definition

ÃΨ(z) =
(

1
2π�

)n
∫

R2n
aσ(z0)T̃ (z0)Ψ(z)dz0

with T̃ (z0)Ψ(z) = e−
i
�
σ(z,z0)Ψ(z − 1

2z0). Hence, using Cauchy–Schwarz’s inequal-
ity:

|ÃΨ(z)|2 ≤ (
1

2π�

)2n ‖a‖L2(R2n)

∫

R2n
|Ψ(z − 1

2z0)|2dz0.

Setting u = z − 1
2z0 in the integral this inequality becomes

|ÃΨ(z)|2 ≤ (
1
π�

)2n ‖a‖L2(R2n)‖Ψ‖L2(R2n)

which we set out to prove. �

Let us now introduce the following notation: for an arbitrary window φ set

Lqφ(R2n) = Wφ(M q
s (R

n)) ⊂ Lqs(R2n). (18.29)

Clearly Lφ(R2n) is a closed linear subspace of Lqs(R
2n) (and hence a Banach space).

Proposition 434. Let Ã
Bopp←→ a be associated to the Weyl operator Â

Weyl←→ a. If
a ∈M∞,1

s (R2n) then
Ãω : Lqφ(R2n) −→ Lqφ(R2n)

(continuously) for every window φ ∈ S(Rn).

Proof. Let U ∈ Lqφ(R2n); by definition there exists u ∈ M q
s (Rn) such that U =

Wφu. In view of the first intertwining relation (18.26) we have

ÃWφu = WφÂu

hence Âu ∈M q
s (Rn) and Â is bounded. It follows that WφÂu ∈ Lqf,φ(R2n). �
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It is worthwhile (and important, in a quantum mechanical context) to note
that the spaces Lqφ(R2n) cannot contain functions which are “too concentrated”
around a point; this is reminiscent of the uncertainty principle. In particular the
Schwartz space S(R2n) is not contained in any of the Lqφ(R2n). This is an imme-
diate consequence of the Hardy uncertainty principle for the Wigner transform:
assume that u ∈ S(Rn) is such that Wu ≤ Ce−Mz·z for some C > 0 and a real
matrix M = MT > 0. Consider now the eigenvalues of JM ; these are of the form
±iλj with λj > 0. Then we must have λj ≤ 1 for all j = 1, . . . , n. Equivalently, the
symplectic capacity c(WM ) of the “Wigner ellipsoid” WM : Mz · z ≤ 1 satisfies
c(W) ≥ π. This result in fact also holds true for the cross-Wigner transform: if
|W (u, φ)(z)| ≤ Ce−Mz·z for some φ ∈ S(Rn) then c(W) ≥ π. Assume now that
U ∈ Lqf,φ(R2n) satisfies the sub-Gaussian estimate |U(z)| ≤ Ce−Mz·z; by defini-
tion of Lqφ(R2n) this is equivalent to |W (u, φ)(z)| ≤ Ce−Mz·z hence the ellipsoid
WM must have symplectic capacity at least equal to π.

Recall from Chapter 17 that the modulations space M∞,1
s (Rn⊕R

n) contains
the weighted Sjöstrand classes consisting of all tempered distributions Ψ ∈ S′(Rn⊕
R
n) such that

sup
z∈R2n

|W (Ψ,Φ)(z, ζ)〈z〉s| ∈ L1(Rn ⊕ R
n). (18.30)

We have seen that M∞,1
s (Rn⊕R

n) is a Banach ∗-algebra with respect to the Moyal
product �� and the involution a �−→ a and that for every window Φ ∈ S(Rn⊕R

n)
there exists a constant CΦ > 0 such that

‖a �� b‖ΦM∞,1
s
≤ CΦ‖a‖ΦM∞,1

s
‖b‖Φ

M∞,1
s

for a, b ∈M∞,1
s (Rn ⊕ R

n).

18.3.2 Global hypoellipticity properties

In Chapter 14 we introduced the global Shubin classes of symbols Γmρ ; we have
a ∈ Γmρ (Rn⊕R

n) if and only if a is a complex function in C∞(Rn⊕R
n) such that

for every α ∈ N
2n there exists a constant Cα ≥ 0 with

|∂αz a(z)| ≤ Cα 〈z〉m−ρ|α| for z ∈ R
2n. (18.31)

In the context of Bopp pseudo-differential operators it is interesting to consider
symbols belonging to a subclass of HΓm1,m0

ρ of Γmρ ; the consideration of these new
symbol spaces will enable us to prove both regularity and spectral results.

The following definition goes back to Shubin [147] (Chapter 4):

Definition 435. Letm0,m1, and ρ be real numbers such thatm0 ≤ m1 and 0 < ρ ≤
1. The symbol class HΓm1,m0

ρ (Rn⊕R
n) consists of all functions a ∈ C∞(Rn⊕R

n)
such that, for |z| sufficiently large, the following properties hold:

C0|z|m0 ≤ |a(z)| ≤ C1|z|m1 (18.32)
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for some C0, C1 ≥ 0 and, for every α ∈ N
n there exists Cα ≥ 0 such that

|∂αz a(z)| ≤ Cα|a(z)| |z|−ρ|α|. (18.33)

We denote by HGm1,m0
ρ (Rn) the class of operators Â : S(Rn) −→ S′(Rn) with

τ -symbols aτ belonging to HΓm1,m0
ρ (Rn ⊕ R

n).

Thus, Â ∈ HΓm1,m0
ρ (Rn ⊕ R

n) means that for every τ ∈ R there exists
aτ ∈ HΓm1,m0

ρ (Rn ⊕ R
n) such that

Âu(x) = (2π)−n
∫∫

R2n
ei(x−y)·ξaτ ((1− τ)x + τy, ξ)u(y)dydξ;

choosing τ = 1
2 this means, in particular, that every Weyl operator Â Weyl←→ a with

a ∈ HΓm1,m0
ρ (Rn ⊕ R

n) is in HGm1,m0
ρ (Rn ⊕R

n). It turns out that the condition
a ∈ HΓm1,m0

ρ (Rn ⊕ R
n) is also sufficient, because if aτ ∈ HΓm1,m0

ρ (Rn ⊕ R
n) is

true for some τ then it is true for all τ .
The spacesHΓm1,m0

ρ (Rn⊕R
n) andHGm1,m0

ρ (Rn) are subspaces of the Shubin
classes studied in Chapter 14:

HΓm1,m0
ρ (Rn ⊕ R

n) ⊂ Γm1
ρ (Rn ⊕ R

n),

HGm1,m0
ρ (Rn) ⊂ Gm1

ρ (Rn),

as trivially follows from their definition. An immediate consequence of Proposition
318 in Chapter 14 is the following:

Proposition 436. Every operator Â ∈ HΓm1,m0
ρ (Rn⊕R

n) is a continuous operator
S(Rn) −→ S(Rn).

The classes HGm1,m0
ρ (Rn ⊕ R

n) have an interesting “global hypoellipticity”
property, which motivated Shubin’s interest (also see the contribution by Bog-
giatto et al. [16], p. 70). Recall that an operator Â : S′(Rn) −→ S′(Rn) is C∞-
hypoelliptic if

ψ ∈ S′(Rn) and Âψ ∈ C∞(Rn) =⇒ ψ ∈ C∞(Rn).

Shubin’s notion of global hypoellipticity is more useful in applications to quantum
mechanics than C∞ hypoellipticity because it incorporates the decay at infinity
of the involved functions or distributions.

Definition 437. We will say that a linear operator Â : S′(Rn) −→ S′(Rn) is
“globally hypoelliptic” if we have

ψ ∈ S′(Rn) and Âψ ∈ S(Rn) =⇒ ψ ∈ S(Rn). (18.34)

Shubin ([147], Chapter IV, §23) has proved the existence of a left parametrix
of an operator Â ∈ HGm0,m1

ρ (Rn ⊕ R
n); more precisely he shows that:
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Proposition 438. Let Â ∈ HGm0,m1
ρ (Rn ⊕ R

n);

(i) There exists an operator B̂ ∈ GΓ−m1,−m0
ρ (Rn) such that B̂Â = I + R̂ where

the kernel of R̂ is in S(Rn × R
n) and hence R̂ : S′(Rn) −→ S(Rn);

(ii) Any Weyl operator Â belonging to the class HGm1,m0
ρ (Rn ⊕ R

n) is globally
hypoelliptic.

The statement (ii) actually immediately follows from the existence of the
parametrix B̂: let ψ ∈ S′(Rn) and assume that φ = Âψ ∈ S(Rn); then ψ =
B̂φ − R̂ψ. Now it is clear that B̂φ ∈ S(Rn) and we have R̂ψ ∈ S(Rn) in view of
the proposition above.

We cannot however use the result above to prove global hypoellipticity prop-
erties for the Bopp operator Ã

Bopp←→ a: while it is clear from the way in which Bopp
operators compose (Proposition 425 above) that we have B̃Ã = I + R̃ where R̃ is
the Bopp operator corresponding to the Weyl operator R̂, it is not true in general
that the kernel of R̃ is in S(R2n × R

2n).

Exercise 439. Check this statement in detail using the formulas in Theorem 424.

To be able to prove global hypoellipticity results for Bopp operators we can
use the following refinement of Proposition 438, also due to Shubin ([147], Chapter
IV, §25):

Proposition 440. Let Â ∈ HGm1,m0
ρ (Rn⊕R

n) be such that Ker Â = Ker Â∗ = {0}.
Then there exists B̂ ∈ HG−m1,−m0

ρ (Rn ⊕ R
n) such that B̂Â = ÂB̂ = I (i.e., B̂ is

a true inverse of Â).

An immediate consequence of this result is:

Corollary 441. The Bopp operator Ã associated to a ∈ GΓm1,m0
ρ (Rn ⊕ R

n) such
that Ker Â = Ker Â∗ = {0} is globally hypoelliptic.

Proof. In view of Proposition 440 the operator Â has an inverse B̂ belonging to
HG−m1,−m0

ρ (Rn ⊕ R
n). In view of formula (18.15) in Proposition 425 the Bopp

operator B̃ is then an inverse of Ã. Assume now that ÃΨ = Φ ∈ S(Rn⊕R
n); then

Ψ = B̃Φ. The result now follows from the observation that B̃ maps S(Rn ⊕ R
n)

into S(Rn ⊕ R
n) and S′(Rn ⊕ R

n) into S′(Rn ⊕ R
n). �



Chapter 19

Applications of Bopp Quantization

In this chapter we study a few selected applications of the techniques and material
introduced in the previous chapters. Needless to say, the list of topics we have
chosen is not exhaustive, and only limited due to constraints of place and space;
they very much reflect the taste – and knowledge. . . – of the author. Much is part
of ongoing research, and the interested reader is invited to consult the bibliographic
hints.

We begin by a rather straightforward application of the techniques of Bopp
calculus, and then show how it is a tool of choice for understanding deforma-
tion quantization from an operator point of view. We thereafter extend Bopp
calculus to a topic of current great interest in mathematical physics, namely “non-
commutative quantum mechanics” whose study we reduce to that of Bopp calculus.

19.1 Spectral results for Bopp operators

An essential property of the Bopp pseudo-differential operator Ã is that it has the
same (generalized) eigenvalues as the corresponding Weyl operator Â. Moreover,
the corresponding eigenfunctions are obtained from those of Â using wavepacket
transforms; this fact implies that in general the eigenvalues of Ã have infinite
degeneracy.

19.1.1 A fundamental property of the intertwiners

Another essential property of the WPT is the following, which was announced in
Proposition 188:

Theorem 442. Let (φj)j and (ψj)j be arbitrary orthonormal bases of L2(Rn); the
vectors Φj,k = Wφjψk form an orthonormal basis of L2(Rn ⊕ R

n). In particular
(Wψjψk)j,k is such a basis.

307M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics,  
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Proof. Using Moyal’s identity (9.41) we have

(Φj,k|Φj′,k′)L2 = (Wφjψk|Wφj′ψk′)L2

= (2π�)n(W (ψk, φj)|W (ψk′ , φj′ ))L2

= (ψk|ψk′ )L2(φj |φj′ )L2

hence the Φj,k form an orthonormal system of vectors in L2(Rn ⊕ R
n). It is thus

sufficient to show that, if Ψ ∈ L2(Rn ⊕ R
n) is orthogonal to the family (Φj,k)j,k

(and hence to all the spaces Hφj ), then Ψ = 0. Assume that (Ψ|Φjk)L2(R2n) = 0
for all indices j, k. Since we have

(Ψ|Φjk)L2 = (Ψ|Wφjψk)L2 = (W ∗
φjΨ|ψk)L2

it follows that W ∗
φj

Ψ = 0 for all j since (ψk)k is a basis. Using the sesquilinearity
of Wφ in φ we have in fact W ∗

φΨ = 0 for all φ ∈ L2(Rn) since (φj)j also is a basis.
Let us show that this property implies that we must have Ψ = 0. Recall (formula
(18.23)) that the adjoint of the wavepacket transform W ∗

φ is given by

W ∗
φΨ =

(
2
π�

)n/2
∫

R2n
Ψ(z0)T̂GR(z0)φdz0

where T̂GR(z0) is the Grossmann–Royer operator. Let now ψ be an arbitrary ele-
ment of S(Rn); we have, using Definition (9.11) of the cross-Wigner transform,

(W ∗
φΨ|ψ)L2 =

(
2
π�

)n/2
∫

R2n
Ψ(z)(T̂GR(z)φ|ψ)L2dz

= (2π�)n/2
∫

R2n
Ψ(z)W (ψ, φ)(z)dz.

Let us now view Ψ ∈ L2(Rn ⊕ R
n) as the Weyl symbol1 of an operator ÂΨ. In

view of formula (10.8) we have

(2π�)n/2
∫

R2n
Ψ(z)W (ψ, φ)(z)dz = (ÂΨψ|φ)L2

and the condition W ∗
φΨ = 0 for all φ ∈ S(Rn) is thus equivalent to (ÂΨψ|φ)L2 = 0

for all φ, ψ ∈ S(Rn). It follows that ÂΨψ = 0 for all ψ and hence ÂΨ = 0. Since
the Weyl correspondence is one-to-one we must have Ψ = 0 as claimed. �

Problem 443. State (and prove) a generalization of Theorem 442 to Weyl–Heisen-
berg frames.

1I am grateful to Harald Stockinger (NuHAG) for having pointed out this approach to me.
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19.1.2 Generalized eigenvalues and eigenvectors of a Bopp operator

In this subsection we give an application of the machinery developed above to spec-
tral results for Bopp operators. In order to avoid delicate domain questions we will
deal here with generalized eigenvalues and eigenvectors; more specific results will
be studied in the next subsection when we make some additional assumptions on
the symbols. In that context the Banach Gelfand triple (S0(Rn), L2(Rn), S′

0(R
n))

(where S0(Rn) is the Feichtinger algebra) is a useful device.
Let us slightly extend the notion of generalized eigenvalues and eigenfunctions

we briefly discussed in Subsection 16.4.2:

Definition 444. Let Â be an operator on L2(Rn). We assume that Â is continuous
on S(Rn) −→ S(Rn), and hence has a continuous extension S′(Rn) −→ S′(Rn).
Setting (ψ|θ) = 〈ψ, θ〉 for ψ ∈ S′(Rn) and θ ∈ S(Rn) a distribution ψ ∈ S′(Rn) is
called a generalized eigenvector of Â corresponding to the (generalized) eigenvalue
λ if ψ 
= 0 and we have

(ψ|Â∗θ) = λ(ψ|θ)
for all θ ∈ S(Rn) [observe that we do not require ψ to be in the domain DÂ of
Â]. We will similarly write ((Ψ|Θ)) = 〈〈Ψ,Θ〉〉 where 〈〈·, ·〉〉 is the distributional
bracket on R

n ⊕ R
n. The distribution Ψ ∈ S′(Rn ⊕ R

n) is a generalized eigen-
function of Ã : S(Rn ⊕ R

n) −→ S(Rn ⊕ R
n) if Ψ 
= 0 and there exists λ such

that
((Ψ|Ã∗Θ)) = λ((Ψ|Θ))

for all Θ ∈ S(Rn ⊕ R
n).

With this definition and notation we have the following result:

Theorem 445.

(i) The generalized eigenvalues of the operators Â and Ã are the same;
(ii) Let ψ be a generalized eigenvector of Â. Then, for every φ ∈ S(Rn) the vector

Ψ = Wφψ satisfies ((Ψ|Ã∗Θ)) = λ((Ψ|Θ)) for all for all Θ ∈ S(Rn ⊕R
n); in

particular if Ψ 
= 0 it is a generalized eigenvector of Ã corresponding to the
same generalized eigenvalue.

(iii) Conversely, if Ψ is a generalized eigenvector of Ã then ψ = W ∗
φΨ is a gen-

eralized eigenvector of Â corresponding to the same eigenvalue.

Proof. (i) Let us show that if

(ψ|Â∗θ) = λ(ψ|θ) for every θ ∈ S(Rn)
then

((Wφψ|Ã∗Θ)) = λ((Wφψ|Θ)) for every Θ ∈ S(Rn ⊕ R
n).
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We have

((Wφψ|Ã∗Θ)) = ((ψ|W ∗
φ Ã

∗Θ)) = ((ψ|Â∗W ∗
φΘ))

= λ((ψ|W ∗
φΘ)) = λ((Wφψ|Θ))

hence the claim since W ∗
φΘ ∈ S(Rn). Suppose conversely that ((Ψ|Ã∗Θ)) =

λ((Ψ|Θ)) for every Θ ∈ S(Rn ⊕ R
n). We have to show that (W ∗

φΨ|Â∗θ) =
λ(W ∗

φΨ|θ) for every θ ∈ S(Rn). Now,

(W ∗
φΨ|Â∗θ) = (Ψ|WφÂ

∗θ) = (Ψ|Ã∗Wφθ)

= λ((Ψ|Wφθ)) = λ((W ∗
φΨ|θ))

proving our claim. That every eigenvalue of Â also is an eigenvalue of Ã is clear:
if Âψ = λψ for some ψ 
= 0 then

Ã(Wφψ) = WφÂψ = λWφψ

and Ψ = Wφψ 
= 0; this proves at the same time that Wφψ is an eigenvector of
Â because Wφ has kernel {0}. (ii) Assume conversely that ÃΨ = λΨ for Ψ ∈
L2(Rn ⊕ R

n), Ψ 
= 0, and λ ∈ R. For every φ we have

ÂW ∗
φΨ = W ∗

φ ÃΨ = λW ∗
φΨ

hence λ is an eigenvalue of Â and ψ an eigenvector if ψ = W ∗
φΨ 
= 0. We have

Wφψ = WφW
∗
φΨ = PφΨ

where Pφ is the orthogonal projection on the range Hφ of Wφ. Assume that ψ = 0;
then PφΨ = 0 for every φ ∈ S(Rn), and hence Ψ = 0 in view of Theorem 442. �

Let us specialize the results above to the case where Ã is (essentially) self-
adjoint:

Corollary 446. Suppose that Â is an essentially self-adjoint operator on L2(Rn)
and that each of the eigenvalues λ0, λ1, . . . , λj, . . . has multiplicity 1. Let ψ0, ψ1,
. . . , ψj, . . . be the corresponding sequence of orthonormal eigenvectors. Let Ψj be
an eigenvector of Ã corresponding to the eigenvalue λj . There exists a sequence
(αj,k)k of complex numbers such that

Ψj =
∑

�

αj,�Ψj,� with Ψj,� = Wψ
ψj ∈ Hj ∩H�. (19.1)

Proof. We know from Theorem 445 above that Â and Ã have the same eigenvalues
and that Ψj,k = Wψkψj satisfies ÃΨj,k = λjΨj,k. Since Â is self-adjoint its eigen-
vectors ψj form an orthonormal basis of L2(Rn); it follows from Theorem 442 that
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the Ψj,k form an orthonormal basis of L2(Rn ⊕ R
n), hence there exist non-zero

scalars αj,k,� such that Ψj =
∑

k,� αj,k,�Ψk,�. We have, by linearity and using the
fact that ÃΨk,� = λkΨk,�,

ÃΨj =
∑

k,�

αj,k,�ÃΨk,� =
∑

k,�

αj,k,�λkΨk,�.

On the other hand we also have

ÃΨj = λjΨj =
∑

j,k

αj,k,�λjΨk,�

and this is only possible if αj,k,� = 0 for k 
= j; setting αj,� = αj,j,� formula
(19.1) follows. That Ψj,� ∈ Hj ∩ H� is clear using the definition of H� and the
sesquilinearity of the cross-Wigner transform. �

Besides the fact that they intervene in global hypoellipticity questions, one
of the main appeals of Shubin’s classes HΓm1,m0

ρ and HGm1,m0
ρ comes from the

following property, which is essential for the proof of the main result (Theorem
448) which we will prove in a moment:

Theorem 447. Let Â ∈ HGm1,m0
ρ (Rn ⊕ R

n) with m0 > 0. If Â is formally self-
adjoint, that is if (Âu|v)L2 = (u|Âv)L2 for all u, v ∈ C∞

0 (Rn), then Â is essen-
tially self-adjoint and has discrete spectrum in L2(Rn). Moreover there exists an
orthonormal basis of eigenfunctions φj ∈ S(Rn) (j = 1, 2, . . . ) with eigenvalues
λj ∈ R such that limj→∞ |λj | =∞.

We remark that the global hypoellipticity property of the operators Â−λI ∈
HGm1,m0

ρ automatically implies that the orthonormal basis of eigenfunctions φj
is in the Schwartz space S(Rn).

We now have all the elements we need to prove the main result of this section:

Theorem 448. Let Â ∈ HGm1,m0
ρ (Rn ⊕ R

n).

(i) The operators Â and Ã have the same eigenvalues; if ψ is an eigenfunction
of A corresponding to the eigenvalue λ then Ψφ = Wφψ is an eigenfunction
of Ã corresponding to λ, for every φ, and we have Ψφ ∈ S(Rn ⊕ R

n).

(ii) Assume in addition that m0 > 0 and that Â is formally self-adjoint. Then Ã
has discrete spectrum (λj)j∈N and limj→∞ |λj | =∞.

(iii) The eigenfunctions of Ã are in this case given by Φjk = Wφjφk where the φj
are the eigenfunctions of A.

(iv) We have Φjk ∈ S(Rn ⊕ R
n) and the Φjk form an orthonormal basis of

L2(Rn ⊕ R
n).
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Proof of (i). That every eigenvalue of Â also is an eigenvalue of Ã is clear: if
Âψ = λψ for some ψ 
= 0 then

Ã(Wφψ) = WφÂψ = λ(Wφψ)

and Wφψ 
= 0 because Wφ is injective; this proves at the same time that Wφψ is
an eigenfunction of Ã. Assume conversely that ÃΨ = λΨ for Ψ 
= 0. For every φ
we have, using the equality W ∗

φ Ã = ÂW ∗
φ ,

ÂW ∗
φΨ = W ∗

φ ÃΨ = λW ∗
φΨ,

hence λ is an eigenvalue of Â and W ∗
φΨ will be an an eigenfunction of Â if it is

different from zero. Let us prove this is indeed the case. Recall that WφW
∗
φ = Pφ

is the orthogonal projection on Hφ. Assume that W ∗
φΨ = 0; then PφΨ = 0 for

every φ ∈ S(Rn), and hence Ψ = 0 in view of Theorem 442; but this is not
possible since Ψ is an eigenfunction. That we have Ψφ ∈ S(Rn⊕R

n) is clear since
Wφ : S(Rn) −→ S(Rn ⊕ R

n).

Proof of (ii)–(iv). Properties (ii)–(iv) follow immediately from property (i) using
the properties of the Shubin classes HGm1,m0

ρ (Rn ⊕ R
n). �

19.1.3 Application: the Landau problem

The “Landau problem” is a classical topic from mathematical physics; it is basi-
cally the study of Hamiltonian operators arising in the study of particles moving
under the action of a magnetic field (see for instance Landau and Lifshitz [113]).
It has mathematically very interesting ramifications, such as the study of the Hall
effect (both classical and quantum); see for instance the overview [11] by Bellissard
et al. In our study of the spectral properties of the Landau problem for a uniform
magnetic field we are following the approach in our paper de Gosson [71] where
we showed the strong relationship between this problem and Bopp calculus.

The derivation of the so-called magnetic operator can be found in a multitude
of textbooks; we are following here our exposition in [65]. Consider a hydrogen
atom placed in a magnetic field

−→
B = (Bx, By, Bz). Neglecting spin and relativistic

effects the Hamiltonian function is

H(−→r ,−→p ) =
1

2m

(−→p − e

c

−→
A

)2

− e2

r

where we are using the notation −→r = (x, y, z), −→p = (pxpy, pz), r = |−→r |; the vector
potential

−→
A is a solution of the equation

−→
B = ∇−→r ×

−→
A (it is of course not uniquely

determined by this relation). Assuming that r is very large (which is the case for
instance when the atom is in a highly excited state) we neglect the term e2/r and
the Hamiltonian function becomes

H(−→r ,−→p ) =
1

2m

(−→p − e

c

−→
A

)2

.
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Supposing that the magnetic field
−→
B is constant and uniform, and that its direction

is the z-axis, the coordinates of the vector potential satisfy the equations

∂Ay
∂z
− ∂Az

∂y
=
∂Ax
∂z
− ∂Az

∂x
= 0 ,

∂Ay
∂x
− ∂Ax

∂y
= Bz .

Choosing the solution Ax = − 1
2Bz, Ay = 1

2Bzy, Az = 0 (it is called the “symmet-
ric gauge”) the Hamiltonian takes the explicit form

H(−→r ,−→p ) =
p2

2m
+
e2B2

z

8mc2
(x2 + y2)− eBz

2mc
(xpy − ypx) (19.2)

with p = |−→p |. Since the problem is essentially planar, we can actually assume
pz = 0; setting ωL = eBz/2mc (“Larmor frequency”) this can be rewritten in the
form

Hmag(−→r ,−→p ) =
1

2m
(p2
x + p2

y) +
mω2

L

2
(x2 + y2)− ωL(xpy − ypx). (19.3)

The corresponding Weyl operator is then given by

Ĥmag = − �
2

2m
∆x,y − i�ωL

(

y
∂

∂x
− x ∂

∂y

)

+
mω2

L

2
(x2 + y2) (19.4)

where ∆x,y is the Laplace operator in the variables x and y. Notice that the
associated Schrödinger equation can be solved exactly (in principle) using the
theory of the metaplectic group since the operator Ĥ is the “quantization” of the
quadratic Hamiltonian (19.3).

A closer look at formula (19.4) reveals that the magnetic operator Ĥmag is
obtained from the simple Hamiltonian function

H =
ω

2
(p2 + x2) (19.5)

on R
2 by setting ωL =

√
ω/m and using the “quantization rules” x −→ X̃ and

p −→ Ỹ where

X̃ = x+
i�√
mω

∂

∂y
, Ỹ = y − i�√

mω

∂

∂x
. (19.6)

Of course, these rules are just Bopp quantization when � is replaced with �/
√
mω

(and p with y). Thus, the theory developed in Chapter 18 applies mutatis mu-
tandis; for instance the intertwining operator Wφ should be replaced with a new
operatorWmag

φ defined as follows: first write the cross-Wigner transform by chang-
ing � into �/

√
mω; this leads to the formula

Wmag(ψ, φ)(z) =
(√

mω
2π�

)n
∫

Rn

e−
i
√
mω
�

p·yψ(x+ 1
2y)φ(x− 1

2y)dy. (19.7)
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Then, one replaces the formula Wφψ = W (ψ, φ) with

Wmag
φ ψ =

(
2π�√
mω

)n/2

Wmag(ψ, φ).

This leads to the following explicit form for the intertwiner Wmag
φ :

Wmag
φ ψ(z) =

(√
mω

2π�

)n/2
∫

Rn

e−
i
√
mω
�

p·yψ(x+ 1
2y)φ(x − 1

2y)dy. (19.8)

Let us choose units in which � = 1. The symbol of the Bopp operator (19.5)
is in the Shubin class HΓ2,2

1 (R2), hence Theorem 448 applies. The eigenvalues of
Ĥ are thus those of the operator

Ĥ =
ω

2
(−∂2

x + x2). (19.9)

These are well known, they are the numbers λj = 2j+ 1 (j = 0, 1, 2, . . . ); the cor-
responding eigenfunctions φj are conveniently rescaled Hermite functions. Using
well-known formulae expressing the cross-Wigner transforms of pairs of Hermite
functions in terms of Laguerre polynomial Lkj of degree j and order k (see, e.g.,
[163]) one recovers the usual expressions

Φj+k,k(z) = (−1)j 1√
2π

(
j!

(j+k)!

) 1
2

2−
k
2 zkLkj (1

2 |z|2)e−
|z|2
4

and Φj,j+k = Φj+k,k when k = 0, 1, 2, . . . for the eigenfunctions of H̃ found in the
physics literature (see, e.g., Landau and Lifschitz [113]).

Another very interesting property of the Landau Hamiltonian is the following:

Proposition 449. The partial differential operator

Ĥmag = − �
2

2m
∆x,y − i�ωL

(

y
∂

∂x
− x ∂

∂y

)

+
mω2

L

2
(x2 + y2)

is globally hypoelliptic: if Ψ ∈ S′(R2) is such that ĤmagΨ ∈ S(R2) then Ψ ∈ S(R2).

Proof. This immediately follows from Corollary 441 since the harmonic oscillator
symbol (19.9) is in HΓ2,2

1 (R2) and the corresponding operator has no eigenvalue
equal to zero. �

19.2 Bopp calculus and deformation quantization

We show here that “deformation quantization”, which is an alternative way of
doing quantum mechanics, is essentially the same thing as Bopp calculus. For a
very nice introduction to the topic (readable, following the authors, by an under-
graduate student. . . ) see Hancock et al. [90]. Deformation quantization originates
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from the pioneering work of Weyl, Wigner, Groenewold, Moyal; it is a very active
branch not only of physics, but also of mathematics: for instance Kontsevich’s
work [109] on the deformation quantization of Poisson algebras was part of the
reason he was awarded the Fields medal in 1998. More about the historical origins
below.

19.2.1 Deformation quantization: motivation

The basic philosophy of deformation quantization is that quantization can be
viewed as a deformation of the structure of the algebra of classical observables,
rather than a radical change in the nature of the observables. By “quantization” we
mean the procedure familiar from quantum mechanics which consists in associating
to an “observable” a self-adjoint operator; from a mathematical viewpoint, this is
just the Weyl correspondence (or one of its variants) which allows one to associate
to a real symbol an essentially self-adjoint operator.

The genesis of the modern theory of deformation quantization roughly goes
as follows (we are taking this historical account from Bordemann [19, 20]. In
1974 Flato, Lichnerowicz, and Sternheimer studied in [56, 57] deformations of the
Lie algebra structure defined by the Poisson brackets on the algebra of smooth
functions on a symplectic manifold. In 1975, Vey [157] pursued their work in a
differential context and constructed a deformation on R

n⊕R
n which turns out to

be precisely the Moyal bracket. This opened the path to deformation quantization
presented in 1976 by Flato, Lichnerowicz, and Sternheimer in [58]. Two years
later, in two brilliant papers [9, 10] Bayen, Flato, Fronsdal, Lichnerowicz, and
Sternheimer not only posed the mathematical foundations of deformation theory,
but also proposed physical applications. They moreover showed that the Moyal star
product could be defined on any symplectic manifold which admits a symplectic
connection. Their study of star products on manifolds used Gerstenhaber’s [61]
theory of deformations of associative algebras, where Hochschild cohomology plays
a central role. The work of Bayen et al. drew the attention of both physical and
mathematical communities to a well-posed mathematical problem of describing
and classifying up to some natural equivalence the formal associative differential
deformations of the algebra of smooth functions on a manifold; it can therefore be
viewed as the birth certificate of deformation quantization.

The notion of Poisson bracket, briefly reviewed in the introductory chapter
where the basics of Hamiltonian mechanics were exposed, can be generalized in
the following way. Let us call Poisson algebra a real vector space A equipped with
a commutative and associative algebra structure (f, g) �−→ fg and a Lie algebra
structure (f, g) �−→ {g, h} satisfying the Leibniz law

{fg, h} = f{g, h}+ {f, h}g.
Note that since {·, ·} is a Lie algebra structure, it satisfies in particular the Jacobi
identity

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0.
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Keeping this definition in mind, a Poisson manifold is a manifoldM such that
the space A = C∞(M) is a Poisson algebra for the usual (pointwise) multiplication
of functions and some prescribed Lie algebra structure. For instance, if M =
R
n ⊕ R

n one can choose the usual Poisson bracket.
Let us denote by C∞(M)[[�]] the ring of all formal series in � with coefficients

in C∞(M); here � is just viewed as a symbol (the “deformation parameter”). An
element f ∈ C∞(M)[[�]] can thus be symbolically written

f =
∞∑

j=0

(
i�
2

)j
fk

where the fk’s are in C∞(M); we prefer to choose 1
2 i� as deformation parameter

rather than �.
A starproduct on (or formal deformation of) C∞(M) is a map

� : C∞(M)× C∞(M) −→ C∞(M)[[�]]

associating to each pair satisfying (f, g) of function in C∞(M) a formal series

f � g =
∞∑

j=0

(
i�
2

)j
Cj(f, g)

the following rules:

• Formal associativity: (f � g) � h = f � (g � h);

• C0(f, g) = fg and the Cj ’s are bidifferential operators;

• C1(f, g) = 2{f, g} where {·, ·} is the Poisson bracket.

We will not pursue the abstract study of deformation quantization here and
refer to the aforementioned paper by Kontsevich [109].

19.2.2 The Moyal product and bracket

Recall (formula (10.21)) that by definition c = a �� b is the Weyl symbol of the

product Ĉ = ÂB̂ with Â
Weyl←→ a and B̂

Weyl←→ b:

a �� b
Weyl←→ ÂB̂

(assuming that ÂB̂ is defined as an operator S(Rn) −→ S′(Rn)). We thus have
the explicit formula

a �� b(z) =
(

1
4π�

)2n
∫∫

R4n
e
i
2�
σ(z′,z′′)a(z + 1

2z
′)b(z − 1

2z
′′)dz′dz′′. (19.10)
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This formula can be rewritten in several equivalent ways; for instance the change
of variables u = z + 1

2z
′, v = z − 1

2z
′′ leads to the formula

a �� b(z) =
(

1
π�

)2n
∫∫

R4n
e

2i
�
∂σ(u,z,v)a(u)b(v)dudv (19.11)

where ∂σ is the antisymmetric cocycle defined by

∂σ(u, z, v) = σ(u, z)− σ(u, v) + σ(z, v). (19.12)

Exercise 450. Show that for suitable symbols a and b the following identity holds:
∫

R2n
a �� b(z)dz =

∫

R2n
a(z)b(z)dz =

∫

R2n
b �� a(z)dz.

[Hint: use Proposition 284 in Chapter 12.]

The Moyal product is associative: when both sides are defined we have

(a �� b) �� c = a �� (b �� c) (19.13)

because composition of operators is associative. It is obviously also bilinear:

a �� (b + c) = a �� b+ a �� c,

(b+ c) �� a = b �� a+ c �� a.

Note that in general a �� b 
= b �� a.

Exercise 451. Show that a �� b = b �� a.

The important point is that the Moyal product can be defined in terms of
Bopp pseudo-differential operators:

Proposition 452. Let Â
Weyl←→ a and B̂

Weyl←→ b. We assume that b ∈ S(Rn⊕R
n) (or,

more generally, that Ĉ = ÂB̂ exists). We have

a �� b = Ãb. (19.14)

Proof. We have, by definition of the symplectic Fourier transform and the opera-
tors T̃ (z0),

Ãb(z) =
(

1
2π�

)2n
∫

R2n
e−

i
�
σ(z,z0)

[∫

R2n
e−

i
�
σ(z0,z

′)a(z′)dz′
]

× b(z − 1
2z0)dz0dz

′.

Setting v = z0 and u = 2(z − z′) and noting that by the antisymmetry of σ

σ(z, v) + σ(v, z + 1
2u) = − 1

2σ(u, v)

the right-hand side is precisely a �� b. �

The result above actually reduces the study of deformation quantization to
the study of an algebra of pseudo-differential operators (Bopp calculus); this ap-
proach was initiated in de Gosson and Luef [76] using the methods in de Gosson
[68, 69, 71].
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19.3 Non-commutative quantum mechanics

Admittedly, “non-commutative quantum mechanics” (NCQM) is a misnomer: one
of the most salient properties of traditional standard quantum mechanics is pre-
cisely that it deals with operators which do not commute! We will however stick
to this somewhat unfortunate terminology, which is standard among physicists.

The possibility of non-commuting position operators was already put forward
by Heisenberg in 1930, and taken up by many physicists (Peierls, Pauli, Snyder).
Even though Werner Heisenberg had already hinted, in the 1930s, at the possibility
of non-commuting position operators, one can say that the act of birth of NCQM
goes back to 1947 when Snyder [152] considered non-commuting coordinates on
space-time in order to discard the ultraviolet divergences in quantum field theory.
Snyder showed that his approach was compatible with Lorentz invariance, that is
with the theory of special relativity. One of the main incentives for studying NCQM
comes from the quest for a theory of quantum gravity, and it is widely expected
that such a theory will determine a modification of the structure of space-time of
some non-commutative nature [30, 36, 145, 155]; also see the excellent paper by
Binz et al. [14].

We are going to show that NCQM is just a variant of Bopp quantization,
which allows us to reduce its study to Bopp and Weyl calculus.

19.3.1 Background

The Weyl operators corresponding to the symbols xj and pj are the operators
X̂j =multiplication by xj and P̂j = −i�∂/∂xj. These operators trivially satisfy
the “canonical commutation relations”

[X̂j , X̂k] = [P̂j , P̂k] = 0 , [X̂j, P̂k] = i�δjk (19.15)

on their common domain. Setting Ẑα = X̂α if 1 ≤ α ≤ n and Z̃α = P̃α−n if
n+ 1 ≤ α ≤ 2n these relations can be written more compactly as

[Ẑα, Ẑβ] = i�jαβ , 1 ≤ α, β ≤ 2n (19.16)

where the jαβ are the entries of the standard symplectic matrix J =
(

0 I
−I 0

)

.

The passage to non-commutative quantum mechanics consists in replacing the
operators Ẑα by new operators, which we denote by Z̃α so that instead of (19.16)
we have the new commutation relations

[Z̃α, Z̃β] = i�ωαβ , 1 ≤ α, β ≤ 2n (19.17)

where Ω = (ωαβ)1≤α,β≤2n is the 2n× 2n antisymmetric matrix defined by

Ω =
(

�
−1Θ I
−I �

−1N

)

(19.18)
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where Θ = (θαβ)1≤α,β≤n andN = (ηαβ)1≤α,β≤n are antisymmetric matrices. Since

Ω = J + �
−1

(
Θ 0
0 N

)

the matrix Ω can be viewed as a perturbation of the standard symplectic matrix
J , and one can thus expect that it is invertible if Θ and n are small enough. In
fact, Bastos, Dias, and Prata (see [8]) prove the following:

Proposition 453. We have detΩ > 0 if the following conditions hold:

θαβηγδ < �
2 for 1 ≤ α < β ≤ n and 1 ≤ γ < δ ≤ n . (19.19)

We will from now on assume that these conditions are satisfied.
Writing Z̃α = X̃α if 1 ≤ α ≤ n and Z̃α = P̃α−n if n + 1 ≤ α ≤ 2n, this

amounts to replacing the CCR (19.15) with

[X̃α, X̃β] = θαβ , [P̃α, P̃β ] = ηαβ , [X̃α, P̃β ] = i�δαβ . (19.20)

Let us now make the following explicit choices for the operators X̃α and P̃α:
we set

X̃α = xα + 1
2 i�∂pα + 1

2 i
∑

β
θαβ∂xβ , (19.21)

P̃α = pα − 1
2 i�∂xα + 1

2 i
∑

β
ηαβ∂pβ . (19.22)

These relations suggest that we represent Z̃ = (Z̃1, . . . , Z̃2n) by the vector operator

Z̃ = z + 1
2 i�Ω∂z (19.23)

which acts on functions defined on the phase space R
n ⊕R

n. In analogy with the
theory of Bopp operators this formula suggests that we consider generalized Bopp
operators of the type

Ãω = a(z + 1
2 i�Ω∂z)

where ω is the symplectic form defined by

ω(z, z′) = z · Ω−1z′ = −Ω−1z · z′. (19.24)

Note that the invertibility of the antisymmetric matrix Ω implies that we must
have detΩ > 0 (this follows readily from the properties of the Pfaffian of an an-
tisymmetric matrix). Since JT = −J , the symplectic form ω reduces to the stan-
dard symplectic form σ when Ω = J . Let us denote by Σ a linear automorphism
of R

n ⊕ R
n such that σ = Σ∗ω; equivalently ΣJΣT = Ω. Thus Σ is a symplec-

tomorphism (Rn ⊕ R
n, σ) −→ (Rn ⊕ R

n, ω). Clearly (detΣ)2 = detΩ > 0 so we
are free to choose Σ such that detΣ > 0. The mapping Σ is sometimes called the
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“Seiberg–Witten map” in the physics literature; its existence is of course mathe-
matically a triviality, because all symplectic structures with constant coefficients

are isomorphic (see [67], §1.1.2). Writing Σ in block-matrix form
(
A B
C D

)

, the

condition ΣJΣT = Ω is equivalent to the relations

ABT −BAT = �
−1Θ , CDT −DCT = �

−1N , ADT −BCT = I.

Of course, the automorphism Σ is not uniquely defined: if Σ∗ω = Σ′∗ω then
Σ−1Σ′ ∈ Sp(2n,R).

19.3.2 The operators T̃ω(z0) and Fω

Let ω be an arbitrary symplectic form with constant coefficients on R
n ⊕R

n (not
necessarily the symplectic form (19.24)). It is thus represented by some invertible
antisymmetric matrix Ω with detΩ > 0:

ω(z, z′) = z · Ω−1z′ = (ΩT )−1z · z′.
To ω we associate the operator T̃ω(z0) : S(Rn ⊕ R

n) −→ S(Rn ⊕ R
n) defined, for

z0 ∈ R
2n, by

T̃ω(z0)Ψ(z) = e−
i
�
ω(z,z0)Ψ(z − 1

2z0). (19.25)

Of course T̃ω(z0) extends into an operator S′(Rn ⊕ R
n) −→ S′(Rn ⊕ R

n) whose
restriction to L2(Rn ⊕ R

n) is unitary: we have

‖T̃ω(z0)Ψ‖L2(R2n) = ‖Ψ‖L2(R2n)

for all Ψ ∈ L2(Rn⊕R
n). The operators T̃ω(z0) are of course strongly reminiscent of

the Heisenberg–Weyl operators; the major difference is that they act on functions
or distributions) defined on phase space R

n⊕R
n, and not on “configuration space”

R
n. It turns out that the operators T̃ω(z0) satisfy relations similar to those satisfied

by the operators T̃ (z0) defined in the previous chapter:

Proposition 454. We have, for all z0, z1 ∈ R
2n,

T̃ω(z0 + z1) = e−
i

2�
ω(z0,z1)T̃ω(z0)T̃ω(z1), (19.26)

T̃ω(z0)T̃ω(z1) = e
i
�
ω(z0,z1)T̃ω(z1)T̃ω(z0). (19.27)

Proof. It is straightforward, replacing σ by ω in Proposition 420. �
Definition 455. The ω-symplectic transform Fω is defined by the formula

Fωa(z) =
(

1
2π�

)n (detΩ)−1/2

∫

R2n
e−

i
�
ω(z,z′)a(z′)dz′ (19.28)

when a ∈ S(Rn ⊕ R
n).
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Clearly Fω extends in the same way as the ordinary Fourier transform into
an involutive automorphism of S′(Rn ⊕ R

n) (also denoted by Fω) and whose
restriction to L2(Rn ⊕ R

n) is unitary, and if ω = σ we recover the symplectic
Fourier transform previously studied.

Let us express the operator Ãω = a(z+ 1
2 i�Ω∂z) in terms of Fωa and T̃ω(z0).

Proposition 456. Let Ãω be the operator on R
n ⊕ R

n with Weyl symbol

ãΩ(z, ζ) = a(z − 1
2Ωζ). (19.29)

We have
Ãω =

(
1

2π�

)n (det Ω)−1/2

∫

R2n
Fωa(z)T̃ω(z)dz. (19.30)

Proof. Let us denote by B̃ the right-hand side of (19.30). We have, setting u =
z − 1

2z0,

B̃Ψ(z) =
(

1
2π�

)n (det Ω)−1/2

∫

R2n
Fωa(z0)e−

i
�
ω(z,z0)Ψ(z − 1

2z0)dz0

=
(

2
π�

)n (det Ω)−1/2

∫

R2n
Fωa[2(z − u)]e

2i
�
ω(z,u)Ψ(u)du,

hence the kernel of B̃ is given by

K(z, u) =
(

2
π�

)n (detΩ)−1/2Fωa[2(z − u)]e
2i
�
ω(z,u).

It follows that the Weyl symbol b̃ of B̃ is given by

b̃(z, ζ) =
∫

R2n
e−

i
�
ζ·ζ′K(z + 1

2ζ
′, z − 1

2ζ
′)dζ′

=
(

2
π�

)n (det Ω)−1/2

∫

R2n
e−

i
�
ζ·ζ′Fωa(2ζ′)e−

2i
�
ω(z,ζ′)dζ′,

that is, using the obvious relation

ζ · ζ′ + 2ω(z, ζ′) = ω(2z − Ωζ, ζ′)

together with the change of variables z′ = 2ζ′,

b̃(z, ζ) =
(

2
π�

)n (detΩ)−1/2

∫

R2n
e−

i
�
ω(2z−Ωζ,ζ′)Fωa(2ζ′)dζ′

=
(

1
2π�

)n (detΩ)−1/2

∫

R2n
e−

i
�
ω(z− 1

2Ωζ,z′)Fωa(z′)dz′,

that is, using the fact that FωFω is the identity,

b̃(z, ζ) = a(z − 1
2Ωζ) = ãΩ(z, ζ)

which concludes the proof. �



322 Chapter 19. Applications of Bopp Quantization

Definition 457. The operator Ãω = a(z + 1
2 i�Ω∂z) will be called the ω-Bopp

pseudo-differential operator with symbol a.

We are going to prove a very useful result which reduces the study of the
Bopp operators to the case where ω is the standard symplectic form on R

n ⊕R
n.

This result is closely related to the symplectic covariance of Weyl operators under
metaplectic conjugation as we will see below.

For Σ a linear automorphism of R
n⊕R

n we define the operatorMΣ : S′(Rn⊕
R
n) −→ S′(Rn ⊕ R

n) by

MΣΨ(z) =
√

| detΣ|Ψ(Σz). (19.31)

Clearly MΣ is a unitary operator when restricted to L2(Rn ⊕ R
n): we have

‖MΣΨ‖L2(R2n) = ‖Ψ‖L2(R2n)

for all Ψ ∈ L2(R2n).
The following result shows how the operator Ãω is related to the correspond-

ing Bopp operator Ã by an intertwining metaplectic operator:

Proposition 458. Let Σ be a linear automorphism such that σ = Σ∗ω and define
the automorphism MΣ : S′(Rn ⊕ R

n) −→ S′(Rn ⊕ R
n) by

MΣΨ(z) =
√

| detΣ|Ψ(Σz). (19.32)
We have MΣ ∈Mp(4n, σ ⊕ σ) (hence MΣ is unitary on L2(Rn ⊕ R

n)). We have

MΣT̃ω(z0) = T̃ (Σ−1z0)MΣ ,
(19.33)

MΣFω = FσMΣ

and hence
MΣÃω = B̃MΣ (19.34)

where B̃
Bopp←→ b with b = Σ∗a.

Proof. That MΣ ∈ Mp(4n, σ ⊕ σ) is clear (see [67], Chapter 7): it is one of the

two metaplectic operators belonging to the fiber of
(

Σ−1 0
0 Σ

)

∈ Sp(4n, σ ⊕ σ).

We have

MΣT̃ω(z0)Ψ(z) =
√

| detΣ|e− i
�
ω(Σz,z0)Ψ(Σz − 1

2z0))

=
√

| detΣ|e− i
�
ω(Σz,Σ(Σ−1z0))Ψ(Σ(z − 1

2Σ−1z0))

=
√

| detΣ|e− i
�
σ(z,Σ−1z0))Ψ(Σ(z − 1

2Σ−1z0))

= T̃ (Σ−1z0)MΣΨ(z).
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The second formula (19.33) follows by a similar argument. Let us prove formula
(19.34); using the identities (19.33) we have

ÃωΨ(z) =
(

1
2π�

)n (det Ω)−1/2

∫

R2n
Fωa(z0)T̃ω(z0)Ψ(z)dz0

and hence

MΣÃωΨ =
(

1
2π�

)n (det Ω)−1/2

∫

R2n
Fωa(z0)MΣ

[

T̃ω(z0)Ψ
]

dz0

=
(

1
2π�

)n (det Ω)−1/2

∫

R2n
Fωa(z0)T̃ (Σ−1z0)MΣΨdz0

=
(

1
2π�

)n (det Ω)−1/2| detΣ|
∫

R2n
Fωa(Σz0)T̃ (z0)MΣΨdz0

=
(

1
2π�

)n (det Ω)−1/2| detΣ|1/2
∫

R2n
MΣFωa(z0)T̃ (z0)MΣΨdz0

=
(

1
2π�

)n (det Ω)−1/2| detΣ|1/2
∫

R2n
Fσ(MΣa)(z0)T̃ (z0)MΣΨdz0

=
(

1
2π�

)n (det Ω)−1/2| detΣ|
∫

R2n
Fσb(z0)T̃ (z0)MΣΨdz0

= B̃MΣΨ

(the last equality because | detΩ|−1/2| det Σ| = 1). �

That we have MSσΨ(z) = Ψ(Sσz) is clear since detSσ = 1.
We note that formula (19.34) can be interpreted in terms of the symplectic

covariance property of Weyl calculus. To see this, let us equip the double phase
space R

2n ⊕ R
2n with the symplectic structure σ⊕ = σ ⊕ σ. In view of formula

(19.29) with Ω = J the Weyl symbols of operators Ã′′ and Ã′ are, respectively

ã′(z, ζ) = a
(
Σ(z − 1

2Jζ)
)

, ã′′(z, ζ) = a
(
Σ′(z − 1

2Jζ)
)

and hence, using the identities Σ−1Σ′ = Sσ ∈ Sp(Rn⊕R
n, σ) and SσJ = J(STσ )−1,

ã′′(z, ζ) = a′
(
Sσz − 1

2J(STσ )−1ζ)
)

= ã′(Sσz, (STσ )−1ζ).

Let now MSσ be the automorphism of R
2n ⊕ R

2n defined by

MSσ(z, ζ) = (S−1
σ z, STσ ζ);

formula(19.34) can thus be rewritten

Ã′′ = MSσÃ
′M−1

Sσ
with a

′′
= a′ ◦M−1

Sσ
. (19.35)

Recall now that each automorphism Σ of R
n ⊕ R

n induces an element MΣ of the
symplectic group Sp(4n,R), defined by mΣ(z, ζ) = (Σ−1z,ΣT ζ), and that MΣ

is the projection of the metaplectic operator M̂Σ ∈ Mp(R2n ⊕ R
2n, σ⊕) defined

by (19.31). Formulas (19.35) and (19.35) thus reflect the symplectic covariance
property of Weyl calculus.
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328 Bibliography

[48] H.G. Feichtinger, Banach spaces of distributions of Wiener type and interpo-
lation, In P. Butzer, S. Nagy, and E. Görlich, editors, Proc. Conf. Functional
Analysis and Approximation, Oberwolfach August 1980, number 69 in: Inter-
nat. Ser. Numer. Math., pages 153–165. Birkhäuser Boston, Basel, (1981).
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(2000)

[93] B.J. Hiley, Phase Space Descriptions of Quantum Phenomena, Proc. Int.
Conf. Quantum Theory: Reconsideration of Foundations 2, ed. Khrennikov,
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