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Preface

“The career structure and funding of the universities [. . . ] currently strongly dis-

courages academics and faculties from putting any investment into teaching – there
are no career or financial rewards in it. This is a great pity, because [. . . ] it is the
need to engage in dialogue, and to make things logical and clear, that is the primary
defence against obscurantism and abstraction.”

B. Ward-Perkins, The fall of Rome, Oxford (2005)

This is the first volume of a planned two-volume treatise on non-equilibrium
phase transitions. While such a topic might sound rather special and aca-
demic, non-equilibrium critical phenomena occur in much wider contexts
than their equilibrium counterparts, and without having to fine-tune ther-
modynamic variables to their ‘critical’ values in each case. As a matter of
fact, most systems in Nature are out of equilibrium. Given that the theme of
non-equilibrium phase transitions of second order is wide enough to amount
essentially to a treatment of almost all theoretical aspects of non-equilibrium
many-body physics, a selection of topics is required to keep such a project
within a manageable length. Therefore, Vol. 1 discusses a particular kind
of non-equilibrium phase transitions, namely those between an active, fluc-
tuating state and absorbing states. Volume 2 (to be written by one of us
(MH) with M. Pleimling) will be devoted to ageing phenomena. The book
is intended for readers who are familiar with general principles of statistical
mechanics, at the level of a standard university course, and who have had
some previous exposure to equilibrium critical phenomena and the renormal-
isation group. We aim at a presentation as self-contained and as accessible
for the non-expert as possible.

This work was conceived and begun by two of us (MH & SL) in the sum-
mer of 2005. A little later, during the participation of two of us (MH & HH)
in the workshop Principles of Dynamics of Non-Equilibrium Systems at the
Newton Institute in Cambridge in spring 2006, the formal decision to write
was made and a large part of the work was produced. We thank the New-
ton Institute and the organisers M. Evans, C. Godrèche, S. Franz and D.

v



vi Preface

Mukamel for the stimulating atmosphere which provided substantial encour-
agement with this project. Later, MH enjoyed the warm hospitality of and
thanks cordially the Dipartimento di Fisica of the Università di Firenze and
INFN - Sezione di Firenze, of the Centro de F́ısica Teórica e Computacional
(CFTC) at the Complexo Interdisciplinar of the Universidade de Lisboa, of
the Instituut voor Theoretische Fysica at the Katholieke Universiteit Leuven
and the Department of Theoretical Physics at the University of Saarbrücken
for their support, which permitted him to make progress.

Our views on non-equilibrium physics have been formed by many friends
and colleagues, sometimes through joint authorship on a paper, sometimes
through intensive discussions and sometimes by some piece of advice. We are
grateful to all of them, whether or not their contributions can be gleaned
from the pages of this volume. It is a pleasure to gratefully thank P. Alnot,
F. Baumann, B. Berche, G. Bonhomme, A. Capelli, E. Carlon, C. Chatelain,
S.R. Dahmen, D. Dhar, E. Domany, S.B. Dutta, T. Enß, G. Foltin, P. Fulde,
A. Gambassi, F. Ginelli, C. Godrèche, P. Grassberger, F. Hucht, W. Janke,
H.-K. Janssen, D. Karevski, W. Kinzel, J.K. Krüger, R. Livi, J.-M. Luck,
M. Lücke, C. Maes, S.S. Manna, J.F.F. Mendes, R.J. Meyer, G. Ódor, H.
Park, M. Paeßens, I. Peschel, A. Picone, I.R. Pimentel, M. Pleimling, A.
Politi, V.B. Priezzhev, J. Ramasco, J. Richert, V. Rittenberg, R. Sanctuary,
M.A.P. Santos, W. Selke, C.A. da Silva Santos, U. Schollwöck, R. Schott,
G.M. Schütz, S. Stoimenov, U.C. Täuber, L. Turban, E. Vincent, D.E. Wolf,
K.D. Usadel, J. Unterberger, C. Wagner, R.D. Willmann and J.-B. Zuber.

As everyone knows who is trying to compile a list of works from the lit-
erature, the exploding quantity of publications makes the production of a
complete bibliography a task beyond human capabilities. The references we
included are those which we needed in writing this volume and we sincerely
apologise to any authors whose important contribution we might not have
taken into account or might have covered inadequately.

We thank F. Hucht and the Institute of Theoretical Physics of the Uni-
versity of Duisburg for friendly support. The project has been overseen with
diligence and patience by T. Spicer and we thank him and C. Caron for their
help in bringing the first part of this work to completion.

Nancy, Würzburg, Gerlingen, Malte Henkel
April 2008 Haye Hinrichsen

Sven Lübeck



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Survey of Equilibrium Critical Phenomena . . . . . . . . . . . . . . . 7
2.1 Phase Transitions in Equilibrium Systems . . . . . . . . . . . . . . . . . 8

2.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Phase Transitions in Ferromagnetic Systems . . . . . . . . . 8
2.1.3 Power-law Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Scale-Invariance and Universality . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Scale-Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Scaling Functions and Data Collapses . . . . . . . . . . . . . . . 14
2.2.3 Universality Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Experimental Evidence of Universality . . . . . . . . . . . . . . 19

2.3 Mean-Field and Renormalisation Group Methods . . . . . . . . . . . 21
2.3.1 Mean-Field Theory of Ferromagnetic Systems . . . . . . . . 21
2.3.2 Universal Amplitude Ratios . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Remarks on Renormalisation-Group Theory . . . . . . . . . 23
2.3.4 Scaling Laws Induced by Renormalisation-Group

Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.5 Field-Theory and ε-Expansion . . . . . . . . . . . . . . . . . . . . . 30
2.3.6 Surface Critical Phenomena . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.7 Finite-Size Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Fluctuation-Dissipation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 From Scale-Invariance to Conformal Invariance . . . . . . . . . . . . . 44
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



viii Contents

3 Directed Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1 Directed Percolation at First Glance . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Directed Percolation as a Stochastic Process . . . . . . . . . . . . . . . 64

3.2.1 Basic Scaling Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.2 Universality and the DP Conjecture . . . . . . . . . . . . . . . . 66
3.2.3 Simple Mean-Field Approximation . . . . . . . . . . . . . . . . . . 66
3.2.4 Phenomenological Langevin Equation . . . . . . . . . . . . . . . 68
3.2.5 Update Schemes and Evolution Equations . . . . . . . . . . . 69

3.3 Lattice Models of Directed Percolation . . . . . . . . . . . . . . . . . . . . 73
3.3.1 Domany-Kinzel Automaton . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.2 Contact Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.3 Pair-Contact Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.4 Threshold Transfer Process . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.5 Ziff-Gulari-Barshad Model . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.6 Further Non-equilibrium Phenomena Related to DP . . 84

3.4 Experiments Related to Directed Percolation . . . . . . . . . . . . . . . 87
3.4.1 Experiments Resembling DP Dynamics . . . . . . . . . . . . . 87
3.4.2 Growth Processes Related to DP . . . . . . . . . . . . . . . . . . . 90
3.4.3 Intermittent Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Scaling Properties of Absorbing Phase Transitions . . . . . . . . 101
4.1 Scaling in the Steady-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1.1 Order Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.1.2 Rapidity-Reversal Symmetry of Directed Percolation . . 104
4.1.3 The Correlation Lengths ξ⊥ and ξ‖ . . . . . . . . . . . . . . . . . 105
4.1.4 Scale-Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.1.5 Two-Point Correlation Function in the Steady-State . . 108
4.1.6 Empty-Interval Probabilities in the Steady-State . . . . . 109
4.1.7 The External Field h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.1.8 Fluctuations of the Order-Parameter in the

Steady-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.1.9 Finite-Size Scaling in the Steady-State . . . . . . . . . . . . . . 118

4.2 Dynamical Scaling Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.2.1 Homogeneously Active Initial State . . . . . . . . . . . . . . . . . 121
4.2.2 Pair-Connectedness Function, I . . . . . . . . . . . . . . . . . . . . 122



Contents ix

4.2.3 Spreading Profile at Criticality . . . . . . . . . . . . . . . . . . . . . 123
4.2.4 Clusters Generated from a Single Seed . . . . . . . . . . . . . . 124
4.2.5 Properties of Clusters in the Absorbing Phase . . . . . . . . 126
4.2.6 Pair-Connectedness Function, II . . . . . . . . . . . . . . . . . . . . 127
4.2.7 Response Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.2.8 Early-Time Behaviour and Critical Initial Slip . . . . . . . 131
4.2.9 Fractal Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2.10 Influence of an External Field . . . . . . . . . . . . . . . . . . . . . . 135
4.2.11 Finite-Size Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.2.12 Universality of Finite-Size Amplitudes . . . . . . . . . . . . . . 138

4.3 Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.3.1 Exact Diagonalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.3.2 Yang-Lee and Fisher Zeros . . . . . . . . . . . . . . . . . . . . . . . . 145
4.3.3 Series Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.3.4 Field-Theoretical Methods . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.3.5 Methods for Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . 157
4.3.6 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.3.7 Universal Moment Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.3.8 Density-Matrix Renormalisation-Group Methods . . . . . 167

4.4 Other Critical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.4.1 Surface Critical Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.4.2 Persistence Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5 Universality Classes Different from Directed Percolation . . 197
5.1 Parity-Conserving Universality Class . . . . . . . . . . . . . . . . . . . . . . 198
5.2 Voter Universality Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.2.1 The Classical Voter Model . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.2.2 Voter-Type Phase Transitions . . . . . . . . . . . . . . . . . . . . . . 201

5.3 Compact Directed Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.4 Tricritical Directed Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.4.1 Mean-Field Approximation of TDP . . . . . . . . . . . . . . . . . 206
5.4.2 Numerical Simulations of TDP . . . . . . . . . . . . . . . . . . . . . 208

5.5 Dynamical Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.6 Long-Range Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
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Chapter 1

Introduction

Curiously, and interestingly, there is an almost dialectical relationship be-
tween equilibrium and non-equilibrium systems. Almost all systems occur-
ring in Nature are open systems coupled to external reservoirs such that the
exchange of energy, particles, or other conserved quantities between the sys-
tem and the reservoirs leads to currents through the system and which may
drive the temporal evolution of the system. Such currents may be realised dif-
ferently, for example as an electric current, or as a flow of particles, or heat
conduction, or even as spin transport, to name just a few. On the microscopic
level, such non-equilibrium effects manifest themselves as a breaking of de-
tailed balance, which means that between pairs of microstates there is in
general a non-vanishing flow of probability. Then one may also say that an in-
trinsic microscopic irreversibility will produce a macroscopic non-equilibrium
behaviour.

In equilibrium systems, one considers situations where such currents have
decayed away to zero such that internal probability currents are absent and
the thermodynamic state variables of the system are fixed by the correspond-
ing properties of the reservoirs. For the theoretical description of such sys-
tems, it has been understood for more than a century, mainly through the
efforts of Boltzmann and Gibbs, how to formulate a general statistical descrip-
tion of equilibrium systems in terms of the probabilities of the micro-states
and how to derive from this the thermodynamic behaviour at thermal equi-
librium. Unfortunately, such a canonical and generally valid formalism does
not yet exist for general non-equilibrium systems, in spite of recent efforts.
In practise, for each non-equilibrium system afresh, first one has to find the
probability distribution of the micro-states or some equivalent information.
A common way of doing this is to write down either a Fokker-Planck equa-
tion or, more generally, a master equation for the probability distribution
or alternatively a stochastic Langevin equation for some averages of phys-
ical observables. Such equations are in general no longer fully microscopic,
but should rather be seen as some kind of coarse-grained description on a

1
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mesoscopic level, large enough with respect to the truly microscopic level
which involves the details of the individual motion of atoms and molecules
and yet still small compared to the scales of macroscopic observation. Hence
the discussion of non-equilibrium behaviour will be almost always formulated
in terms of phenomenological models. Of course it must then be understood
to what extent such an approach is justified and useful and this will be one
of the main themes of this book.

Since in contrast to equilibrium systems, for non-equilibrium systems time
is an essential degree of freedom, one of the first questions is under what con-
ditions a relaxation towards an equilibrium steady-state may occur. It turns
out that, again, the condition of detailed balance in combination with some
ergodicity requirements is sufficient. On the other hand, for choices of the
dynamics which no longer respect detailed balance, a much richer behaviour,
both at the steady-states as well as for the time-dependent relaxation pro-
cesses, is to be expected. Of particular interest is the frequently found situa-
tion where a complex system is made up of many strongly interacting parts
and where a collective behaviour over large scales results [422, 576]. At equi-
librium, this occurs if the system undergoes a second-order phase transition
which requires the fine-tuning of its thermodynamic variables (e.g. temper-
ature fixed to the ‘critical value’ Tc) in order to be realised. In many non-
equilibrium situations, however, this kind of constraint can be considerably
relaxed.

At equilibrium, second-order phase transitions are the consequence of dy-
namically created long-range correlations, even if the original microscopic
interactions are short-ranged.1 Probably the best-known example of an equi-
librium second-order phase transition is related to the Ising model which is
used to describe liquid-gas transitions or the order-disorder transition in uni-
axial magnets. In simple systems with a conventional phase transition, such
as those described by the Ising model, the long-range correlations close to
the transition are known to be universal, that is independent of microscopic
‘details’ of the model. This universality was originally introduced experimen-
tally from observations that the critical exponents (and certain amplitude
ratios) which describe the divergence of observables, such as the magnetic
susceptibility, in the immediate vicinity of the critical point, turned out to
have essentially the same values for a large range of a priori very different
systems. By now, conceptually understood from the renormalisation-group
description of critical phenomena, the concept of universality has become one

1 The first physical example of a second-order equilibrium phase transition (in three di-
mensions) seems to have been discovered by Cagniard de la Tour in 1822 who observed
critical opalescence in mixtures of alcohol and water, which become opaque close to the
critical point when the size of the spatial correlations becomes comparable to the wave-
length of visible light. The terminology of a second-order critical point as it is used today
goes back to Andrews (1869). On the other hand, the first equilibrium phase-transition
in two dimensions was found only in 1970 by Thomy and Duval for Xenon adsorbed on
graphite.
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of the pillars of statistical physics. In particular, second-order phase transi-
tions are now cast into distinct universality classes such that the critical
behaviour of different systems (experimental or theoretical), if they only have
the same symmetry properties, should have the same critical exponents and
the same scaling functions. For instance, generically the values of the critical
exponents are expected to depend only on the spatial dimensionality of the
system, the number of components of the order-parameter and the global
symmetry of the interactions (any other property of the system being con-
sidered as an ‘irrelevant detail’ in the sense of the renormalisation group).
One may therefore use the critical exponents to label the distinct universal-
ity classes. One of the remaining open questions is whether there exists a
classification of possible universality classes. A breakthrough in this direc-
tion was the discovery of conformal invariance and the relevance of the
Virasoro algebra (previously discovered in a string-theory context) for equi-
librium critical phenomena in two dimensions, which not only complements
many of the more qualitative insights of the renormalisation group by precise
quantitative information on the values of critical exponents, any correlation
function at criticality or on the scaling functions but also provides a (partial)
classification of possible kinds of second-order transitions in two dimensions
through a list of the modular-invariant partition functions of the so-called
minimal models.

Much of what is known about equilibrium phase-transitions can be ex-
tended to the non-equilibrium case as well. Even if new types of continuous
phase transitions, which can only be observed under non-equilibrium condi-
tions, are found, the central concept of universality, which proved to be so
useful at equilibrium, can as well be applied to non-equilibrium systems. The
present two-volume work is intended as an introduction to and as a survey of
the field of non-equilibrium phase transitions. Specifically, in volume 1 we fo-
cus on situations where one may consider the microscopic dynamics to be fun-
damentally irreversible such that detailed balance is broken and the steady-
states cannot be equilibrium states. In this situation, one has second-order
phase transitions from fluctuating (ordered) states into so-called absorbing
states. By definition, a system can never leave an absorbing state once it has
reached it. Analogously to the equilibrium phase-transitions, such absorbing
phase transitions exhibit universal features, determined by symmetry prop-
erties and conservation laws, which allows one to cast these into universality
classes. So far, only a few classes of non-equilibrium phase transitions into
absorbing states are known. Therefore, an ambitious task would be to spec-
ify all possible universality classes of second-order absorbing non-equilibrium
phase transitions.

The most important class of absorbing phase transitions is directed per-
colation (DP). Directed percolation was originally introduced, as a model
for directed random connectivity, in 1957 by Broadbent and Hammersley [87].
It exhibits a phase transition that is characterised by a well-defined set of



4 1 Introduction

universal critical exponents. The same type of transition occurs in models
for the spreading of an infectious disease, certain catalytic reactions, perco-
lation in porous media, intermittent turbulence and even in the context of
certain hadronic interactions. Since all these models share the same symmetry
properties and follow essentially the same reaction-diffusion scheme, they all
belong generically to a single universality class, called the directed percolation
universality class, irrespective of the microscopic details of their dynamical
rules. In view of its robustness, the directed percolation universality class is
widely considered as the analogue of the Ising model for the field of absorb-
ing phase transitions. In contrast to equilibrium critical phenomena, where
a lot of information on critical behaviour has come from the integrability of
many two-dimensional classical models (or their one-dimensional quantum
analogues) [50], only relatively few non-equilibrium models have turned out
to be integrable and directed percolation does not appear to belong to them.
Although directed percolation is very easily defined, its critical behaviour is
highly non-trivial. This is probably one of the reasons why directed percola-
tion continues to fascinate.

The attentive reader will have noticed that we have been referring to ‘mod-
els’ only. Indeed, it has been (and still continues to be) one of the most chal-
lenging questions in the field why the apparently so robust universality class
of directed percolation has been so difficult to encounter reliably in experi-
mental studies on non-equilibrium phase transitions. This might be about to
change with important recent progress, coming from studies on intermittent
turbulence, which we shall describe in Chap. 3.

The standard reference for directed percolation was, for more than two
decades, a review by Kinzel [390]. Meanwhile, enormous progress in our un-
derstanding of non-equilibrium phase transitions was made, new numerical
and analytical methods have been developed and new universality classes of
absorbing phase transitions have been identified. Still, many open problems
remain, see for example the list compiled by Grassberger [243] (Sect. 5.13).
Similarly, the book by Marro and Dickman [462] devoted several chapters to
non-equilibrium phase transitions into absorbing states. Three relatively re-
cent reviews [287, 496, 433] described absorbing phase transitions from differ-
ent points of view, two of them having been written by two of us (HH and SL).
In particular with studies of systems in reduced dimensionality, as is currently
becoming increasingly fashionable in connexion with expected nano-scale ap-
plications, the consideration of integrable non-equilibrium systems provides
different kinds of insight, see [13, 565, 271]. Field-theory methods will be cov-
ered in a forthcoming book by Täuber, see [593, 592] for shorter reviews. For
phase-transitions in systems with external currents, see either [462] or the
review [557]. Similarly, phase transitions related to Langevin equations with
so-called multiplicative noise will not be considered in this book because such
systems do not have an absorbing state in a strict sense and we refer to the re-
view [232]. A recent workshop at the Newton Instute at Cambridge discussed
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many advanced topics on the dynamics of non-equilibrium critical phenom-
ena.2 The exciting new developments on the foundations of non-equilibrium
statistical mechanics near to equilibrium cannot yet be applied to the topics
discussed here, see [453].

In Vol. 2, written by one of us (MH) together with M. Pleimling, a dif-
ferent kind of non-equilibrium criticality will be taken up, which arises when
a system is rapidly brought out of an equilibrium initial state by suddenly
changing the value of a thermodynamic control parameter to ‘quench’ the sys-
tem into the ordered phase (with at least two equivalent stationary states)
or onto a critical point of the stationary state. The resulting ageing phe-
nomena have been empirically studied since prehistoric times (for example in
metallurgical materials processing) but a systematic study of its scaling and
dynamical symmetry properties was only started in 1978 with the book by
Struik [585].

The purpose of this volume is to give an overview of the field of absorb-
ing phase transitions and to present the present knowledge coherently and in
a self-contained way. By emphasising phenomenological scaling descriptions,
we hope that this volume will be useful as an accessible and comprehensive
introduction for beginners, as well as a reference for researchers. In Chap. 2
we recall basic notions, especially about scaling, the renormalisation group
and universality, from the field of equilibrium critical phenomena. Besides es-
tablishing a consistent notation, another purpose of this chapter is to prepare
the study of non-equilibrium phase-transitions by providing the background
for establishing later analogies with the already well-understood equilibrium
case. Then, in Chap. 3 we introduce the model of directed percolation, ar-
guably representing the most important universality class of non-equilibrium
absorbing phase transitions. A variety of lattice realisations of the DP uni-
versality class is presented and we also discuss in detail various attempts to
find experimental realisations of this universality class. The phenomenological
scaling theory for absorbing phase transitions is discussed in detail in Chap. 4,
taking for the first time the metric factors systematically into consideration.
Using the model of directed percolation as a scaffold, we discuss a large va-
riety of generally applicable methods for the analysis of theoretical models.
Having thus developed a general scaling picture, we then turn to absorbing
critical phenomena different from directed percolation in Chap. 5 and present
a survey of recent results.

A lot of background and detailed numerical information, usually being
considered folklore knowledge but rather widely scattered in the literature,
is collected in a large set of tables gathered in this volume (see the list of
tables to find them rapidly) and in the appendices for, hopefully, easy refer-
ence. Problem sections with exercises of quite variable degrees of difficulty are
provided at the end of each chapter; their solutions are outlined in a special

2 See http://www.iop.org/EJ/journal/-page=extra.focus4/jstat for the proceedings of
the workshop, in the form of a series of reviews.
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section at the end of this volume. These exercises are essentially analytical,
since we consider it natural that readers might wish to write computer pro-
grammes simulating one or the other of the models discussed by themselves,
even without our explicit request.

Progress in physics depends crucially on a close interaction of theory and
experiment. However, so far absorbing phase transitions were primarily the
focus of theoretical physicists while the subject started to attract the at-
tention of experimentalists only recently. This book – written by theoretical
physicists – reflects this situation as it discusses experimental applications
in a rather limited way. Still, we hope that the phenomenology presented
in detail will motivate readers to go on to more specialised techniques for
theoretical analysis or else to receive some inspiration on how to conduct
experiments in order to put the concepts developed here to a test. Physics is
a natural science, after all. And why should mathematicians not find some
inspiration from the model-specific results presented here? At times, it might
be useful to recall a sentence of Lichtenberg (1779):

“Keine Untersuchung muß für zu schwer gehalten werden und keine Sache für zu
sehr ausgemacht.”
G.C. Lichtenberg, Aphorismen, Insel (Frankfurt, 1976)

One might add the more contemporary voice of Bottéro (1982) [74]:

“Yes, the university of sciences is useless; for profit, yes, philosophy is useless,
. . . history, oriental studies and assyriology are useless, entirely useless. That is why
we hold them in such high esteem!”
J. Bottéro, Apologie d’une science inutile, Akkadica 30, 12 (1982)

Problems

1. A simple case study of an absorbing phase transition may be formulated
in terms of a population of n(t) individuals with a reproduction rate λ and
a death rate 1.

Consider the balance between the term increasing and reducing the prob-
ability Pn(t) of having exactly n individuals at time t and write down the
master equation for Pn(t). Use the solution to analyse, in dependence of
λ, the indefinite survival of the population. Study the influence of the initial
conditions by comparing the cases (i) of a single individual and (ii) an initial
Poisson distribution Pn(0) = µn

n! e
−µ.

2. Derive for the population model of the previous exercise 1 the mean
particle-number 〈n〉(t) and its variance σ2(t) = 〈n2〉(t) − 〈n〉2(t). How do
you interpret your results ?



Chapter 2

Survey of Equilibrium Critical
Phenomena

Equilibrium and non-equilibrium critical phenomena are similar in many re-
spects. Therefore, this book starts with a brief survey of some basic con-
cepts of equilibrium critical phenomena, providing this background in a self-
consistent way and establishing basic notations. This chapter may be used to
recall the main features of modern theories of phase transitions for beginners
who are not entirely familiar with the concepts of scaling and universality.

Although this introduction is kept as general as possible, for the sake of
concreteness we shall use the language of ferromagnetic phase transitions.
Following the historical perspective, we discuss the concepts of scaling and
universality. In particular, critical exponents, generalised homogeneous func-
tions, scaling forms and universal amplitude combinations are introduced.
The basis for a deeper understanding of scaling and universality is provided
by Wilson’s renormalisation group theory [629, 630], which is a topic on
its own and not presented in this book. Instead, we focus on its implica-
tions on universal scaling and illustrate the main results, e.g. by sketching
how renormalisation-group theory allows one to identify the relevant sys-
tem parameters which determine the universality class. The renormalisation
group also provides tools for computing critical exponents as well as uni-
versal scaling functions and explains the existence of an upper critical di-
mension. As a reference and preparation for the second volume of this book
we also comment on the extension of scale-invariance in equilibrium systems
to conformal invariance and recall the fluctuation-dissipation theorem in the
context of relaxation phenomena. For a rigorous substantiation of scaling,
universality and conformal invariance the interested reader is referred to es-
tablished textbooks (e.g. [520, 525, 640, 122, 168, 270]) and review articles
[632, 219, 621, 120, 112]. The fluctuation-dissipation theorem is discussed in
various textbooks, see e.g. [144, 122].

7
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2.1 Phase Transitions in Equilibrium Systems

2.1.1 Notations

Studying continuous phase transitions, one is often interested in the asymp-
totic behaviour of certain quantities. In this book, we shall follow the standard
notation used by most authors, i.e., the symbols ∝ , O,∼, and � denote that
two functions f(x) and g(x) are1

f(x) ∝ g(x) ⇐⇒ f(x)
g(x)

= c , ∀x (proportional) ,

f(x) = g(x) + O(xn) ⇐⇒
∣∣∣∣ f(x) − g(x)

xn

∣∣∣∣ < c ,∀x > x0 (order of),

f(x) ∼ g(x) ⇐⇒ lim
x→xc

f(x)
g(x) = c (asymptotically proportional),

f(x) � g(x) ⇐⇒ lim
x→xc

f(x)
g(x)

= 1 (asymptotically equal) .

In the following, the mathematical limit x → xc corresponds to the physical
situation that a phase transition is approached (usually x → 0 or x → ∞).

For the specification of numerical estimates and their error bars we use
the standard bracket notation x(y), where y denotes the expected statistical
error in the last digit. For example, the estimate 0.2765(3) = 0.2765± 0.0003
means that the true value is expected to be between 0.2762 and 0.2768.

For easy reference, frequently used symbols and abbreviations are listed
on pages 343 and 344.

2.1.2 Phase Transitions in Ferromagnetic Systems

Phase transitions in equilibrium systems are characterised by singularities
in the free energy and its derivatives [503, 639, 417]. This singularity causes
a discontinuous behaviour of various physical quantities when the transition
point is approached. Phenomenologically, the phase transition is described by
an order parameter, having a non-zero value in the ordered phase whereas
it vanishes in the disordered phase [407]. Prototype systems for equilibrium
phase transitions are simple ferromagnets, superconductors, liquid-gas sys-
tems, ferroelectrics, as well as systems exhibiting superfluidity.

1 This notation differs from the traditional Landau notation [406, 2], which uses the
symbol ∼ for ‘asymptotically equal’ instead of ‘asymptotically proportional’.



2.1 Phase Transitions in Equilibrium Systems 9

The paradigmatic example is the transition between the ferromagnetic and
paramagnetic phases in the Ising model.2 The standard version of the Ising
model is defined on a d-dimensional lattice with N sites and associated spins
σi = ±1 at site i. A given configuration {σ} of spins has the energy

E({σ}) = −J

2

∑
(i,j)

σiσj − h
∑

i

σi , (2.1)

where J > 0 is a coupling constant and h denotes an external homogeneous
magnetic field. The first sum runs over all pairs of nearest-neighbour lattice
sites (i, j). Since the energy functional is invariant under reversal of all spins
and the external field, the Ising model has the finite group Z2 as a global
symmetry. The group Z2 is the cyclic group with two elements which is used
to describe reflection symmetries. In the present case the group elements are
the identity and the simultaneous reversal of all spins and the external field.

According to the postulates of (classical) equilibrium statistical mechanics
for a system in contact with a thermal reservoir at temperature T each config-
uration of spins {σ} occurs with a probability proportional to e−E({σ})/kBT .
All physical quantities of interest can be derived from the partition func-
tion

ZN =
∑
{σ}

exp(−E({σ})/kBT ) , (2.2)

in which the sum runs over all possible configurations {σ} and N denotes the
total number of sites. At thermal equilibrium the system is then in a state that
minimises the Gibbs potential3 G = −kBT lnZN . In the Gibbs functional
G = G(T, h), temperature T and the external field h are the independent
thermodynamic parameters, while the free energy F = F (T,M) = G+Mh
depends on T and the magnetisation

M =
1
N

∑
i

σi. (2.3)

Only in the limit N → ∞, thermodynamic observables, such as specific heats
or susceptibilities, derived from either G or F , converge to each other (see
exercise 3).

The Ising model without external field exhibits a phase transition at a
certain critical temperature Tc. The transition separates the ferromagnetic
phase with non-zero magnetisation from the paramagnetic phase with
zero magnetisation. This phase transition is caused by the competition be-
tween the ordering due to the energy minimisation (surface tension) on the

2 Definitions and some equilibrium critical properties of several common spin systems are
collected in appendix A.
3 We shall usually work with units such that the Boltzmann constant kB = 1.
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                     Tc                   T

h

Tc T

m(T,h)

Fig. 2.1 Sketch of the phase diagram of a ferromagnet (left) and the behaviour of the
corresponding order parameter (right). The phase diagram comprises a line of first-order
transitions at zero field (dashed line) that ends in a critical point at temperature Tc. The
temperature dependence of the magnetisation is sketched for h = 0 (bold line) and three
different values of the the external field h > 0. Reprinted with permission from [433].
Copyright (2004) World Scientific Publishing Company.

one hand and the entropy production by thermal fluctuations on the other
hand.

Following Landau, the average magnetisation per site

m(T, h) =
1
N

∑
i

〈σi〉 = − 1
N

∂G

∂h
(2.4)

is the order parameter of the ferromagnetic phase transition [407]. Fur-
thermore the temperature T is the control parameter of the phase transition
and the external field h is conjugate to the order parameter.

The phase diagram of the Ising model is sketched in Fig. 2.1. Due to the
Z2-symmetry of ferromagnets the transition occurs at zero external field h.
The phase diagram exhibits a transition line along the temperature axis, ter-
minating at the critical point Tc. Crossing the boundary for T < Tc by
varying h the magnetisation changes discontinuously, i.e. the system under-
goes a first-order phase transition. The magnitude of the discontinuity
decreases if one approaches the critical temperature. At T = Tc the mag-
netisation varies continuously but its derivatives are discontinuous. Here the
system is said to undergo a continuous or second-order phase transition.
For T > Tc no singularities of the free energy occur and the systems changes
continuously from a state of positive to a state of negative magnetisation.

Crossing the critical point in the horizontal direction by varying the tem-
perature T , the transition can be characterised as follows. Without an exter-
nal field (h = 0) the high-temperature or paramagnetic phase is characterised
by a vanishing magnetisation. Decreasing the temperature, a phase transi-
tion takes place at the critical temperature and for T < Tc one observes an
ordered phase which is spontaneously magnetised (see Fig. 2.1). Figure 2.2
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c c cT = T T = 1.05 TT=0.98 T

Fig. 2.2 Typical configurations of the two-dimensional Ising model at thermal equilibrium
below, at, and above criticality.

shows snapshots of typical equilibrium configurations below, at and above
criticality.

2.1.3 Power-law Scaling

Systems with continuous phase transitions sufficiently close to the critical
point are habitually characterised by power laws. For example, in a ferro-
magnetic system the order parameter m = m(T, h) varies as (for τ > 0)

m(T, 0) ∼ τβ (2.5)

with the reduced temperature

τ = (Tc − T )/Tc, (2.6)

where β is a so-called critical exponent.4 As we shall see below, critical
exponents play a key role as they characterise specific types of critical be-
haviours at continuous phase transitions.

For a non-zero external field h, the magnetisation increases smoothly with
decreasing temperature. At the critical isotherm (τ = 0) for h → 0 the
magnetisation obeys a power law

m(Tc, h) ∼ |h|1/δ (2.7)

4 Note that in order to have a common notation with the absorbing phase transitions in
the rest of this volume, τ is defined here with the opposite sign as usually found in the
literature.
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with another critical exponent δ. Further critical exponents are introduced to
describe the singularities of the order parameter susceptibility χ = χ(T, h),
the specific heat C = C(T, h), as well as the correlation length ξ =
ξ(T, h):

χ(T, 0) ∼ |τ |−γ , (2.8)
C(T, 0) ∼ |τ |−α , (2.9)
ξ(T, 0) ∼ |τ |−ν . (2.10)

Another important quantity is the correlation function

G(r1, r2;T, h) = 〈σ1σ2〉 − 〈σ1〉〈σ2〉 , (2.11)

where r1 and r2 denote the vectors pointing to the sites 1 and 2. For transla-
tionally and rotationally invariant systems, the correlation function depends
only the distance r = |r1 − r2| but not on the direction.

At criticality, the correlation function decays as

G(r;Tc, 0) ∼ r−d+2−η , (2.12)

defining yet another critical exponent η. Here, d denotes the dimensionality
of the system. Away from criticality, the correlation function is characterised
by an exponential decay of the form

G(r;T, 0) ∼ r−ϑ e−r/ξ , (2.13)

where ξ is the correlation length. Unlike the previously introduced exponents,
ϑ may take different values below and above the transition. For example, in
the two-dimensional Ising model, one has ϑ = 2 above and ϑ = 1/2 below
the transition point [467].

The exponents α, β, γ, δ, η, and ν are called critical exponents. Notice
in (2.8-2.10) the equality of the critical exponents below and above the critical
point, which is an assumption of the scaling theory.

Sometimes it may happen that an exponent is zero. Such a vanishing
exponent corresponds either to a discontinuity of the corresponding quantity
at the critical point or to a logarithmic singularity since

lim
s→0

|τ |−s − 1
s

= − ln |τ | . (2.14)

In many cases it is notoriously difficult, given either experimental or numeri-
cal data, to distinguish between a logarithmic singularity and a small absolute
value of the exponent.

The phenomenological scaling theory for ferromagnetic systems was devel-
oped by several authors in the 1960s (e.g. [210, 189, 627, 368, 512, 250]) and
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has been confirmed by experiments as well as simulations. In particular, the
scaling theory predicts that the six critical exponents introduced above are
connected by four scaling laws

α+ 2β + γ = 2 (Rushbrooke), (2.15)
γ = β (δ − 1) (Widom), (2.16)
γ = (2 − η) ν (Fisher), (2.17)

2 − α = ν d (Josephson) . (2.18)

In this way the critical behaviour of an equilibrium system is determined by
only two independent critical exponents. In the following we shall recall how
these scaling laws can be derived.5

The Josephson law is special in so far as it includes the spatial dimension d
of the system. Such scaling relations are termed hyperscaling relations and
are valid only below the so-called upper critical dimension dc, as will be
explained in Sect. 2.3.3.

2.2 Scale-Invariance and Universality

2.2.1 Scale-Invariance

It is generally recognised that thermodynamic potentials, such as the den-
sity of the Gibbs potential, can be decomposed, via g(τ, h) = greg(τ, h) +
gsing(τ, h), into a regular part greg(τ, h) without any critical behaviour and a
singular part gsing(τ, h) one is interested in.6 The phenomenological scaling
theory for equilibrium phase transitions rests on the assumption that close to
the critical point the singular part of a thermodynamic potential is asymp-
totically given by a generalised homogeneous function (see e.g. [266]).
Mathematically, a function f(x1, x2, . . .) is called a generalised homogeneous
function if it satisfies the relation

λ f(x1, x2 . . .) = f(x1λ
s1 , x2λ

s2 , . . .) (2.19)

for all positive values of λ ∈ R+. The exponents s1, s2, . . . are usually termed
scaling powers or scaling dimensions and the variables x1, x2, . . . are
called scaling fields. In physics, the singular part of the Gibbs potential

5 From the convexity of the equilibrium free energy, one may derive the following exponent
inequalities: α + 2β + γ ≥ 2, 2 − α ≤ dν, γ ≥ (2 − η)ν and α + β(δ + 1) ≥ 2.
6 The analysis of the scaling behaviour always refers to the singular parts of the thermo-
dynamics potentials. In the following, we shall always assume that any regular parts have
been subtracted off.
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per spin gsing(τ, h) is assumed to scale asymptotically as

gsing(τ, h) � λα−2 g̃(τ λ, h λβδ) , (2.20)

where g̃(x, y) is the corresponding scaling function. The scaling power of the
conjugate field is often denoted as the gap exponent ∆ = β δ = β + γ.
It should be emphasised that (2.20) is only asymptotically valid, i.e., only
when τ and h tend to zero. Away from this limit (as e.g. in any numerical
simulation or experiment) one expects corrections to occur.7

It can be shown that Legendre transforms and partial derivatives of gener-
alised homogeneous functions are again generalised homogeneous functions.
Thus with the Gibbs potential, all thermodynamic functions that are express-
ible as derivatives of thermodynamic potentials (such as the magnetisation,
specific heat, etc.) are generalised homogeneous functions as well.

Consider, for example, the magnetisation and the corresponding suscepti-
bility. Differentiating (2.20) with respect to the conjugate field h one has

m(τ, h) = −
(
∂ gsing

∂ h

)
T

� λα−2+βδ m̃(τ λ, h λβδ) , (2.21)

χ(τ, h) = −
(
∂2 gsing

∂ h2

)
T

� λα−2+2βδ χ̃(τ λ, h λβδ) , (2.22)

where the scaling functions are given by

m̃(x, y) = −
(
∂ g̃(x, y)
∂ y

)
x

, χ̃(x, y) = −
(
∂2 g̃(x, y)
∂ y2

)
x

. (2.23)

As usual, the indices at the brackets indicate which of the quantities are kept
fixed.

2.2.2 Scaling Functions and Data Collapses

Since the relation (2.19) for generalised homogeneous functions is valid for
all positive values of λ, one can make a particular choice in order to derive a
certain scaling form. For example, we may choose λ = |x1|−1/s1 to obtain
an expression in which the first argument of the r.h.s. is constant. In this
manner the function f , which depends on n arguments x1, . . . , xn, is reduced
to

7 In view of these co-variant transformations of physical observables under scale-
transformation, the reader might wonder why this situation is commonly referred to as
scale-in-variance. Indeed, at T = Tc the microscopic configurations (see middle panel of
Fig. 2.2) are on average scale-invariant, which on a more formal level is reflected by the
scale-invariance of the partition function.
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f(x1, . . . , xn) = |x1|1/s1 f̃(1, |x1|−1/s1x2, . . . |x1|−1/s1xn) (2.24)

with a scaling function f̃ which depends effectively on n − 1 arguments.
Plotting |x1|−1/s1f(x1, . . . , xn) as a function of these n−1 arguments various
data sets for different x1 should collapse onto a single manifold given by f̃ . In
particular, for n = 2 different data sets collapse onto a single curve described
by f̃ .

Data collapses are not unique because there are several possibilities to
choose λ, leading to different but mathematically equivalent scaling forms.
For example, for n = 2 the scaling forms

|x1|−1/s1 f(x1, x2) = f̃(±1, x2 |x1|−s2/s1) , (2.25)

|x2|−1/s2 f(x1, x2) = ˜̃f(x1 |x2|−s1/s2 ,±1) (2.26)

are both equally legitimate [266]. As an example, let us consider (2.21-2.22).
Choosing λ = 1/|τ | one obtains for a vanishing external field h = 0

m(τ, 0) � τ−(α−2+βδ) m̃(−1, 0) , (2.27)
χ(τ, 0) � |τ |−(α−2+2βδ) χ̃(±1, 0) , (2.28)

where the magnetisation is defined for τ < 0 only. Notice that one generally
expects χ̃(+1, 0) �= χ̃(−1, 0), i.e., the amplitudes of the susceptibility are
different below (T < Tc) and above (T > Tc) the transition. Comparing these
equations with (2.5) and (2.8), one has

β = −α+ 2 − β δ , γ = α− 2 + 2 β δ , (2.29)

reproducing the Rushbrooke (2.15) and Widom (2.16) scaling laws. The
Fisher scaling law can be obtained in a similar way from the scaling form
of the correlation function while the Josephson law requires the combination
of both thermodynamic scaling forms and correlation scaling forms and is
left as an exercise (see e.g. [640] or Sect. 2.5).

Scaling theory implies even more. Consider for instance the M -h-τ equa-
tion of state (2.21). Choosing hλβδ = 1 in (2.21) one finds

m(τ, h) � λ−β m̃(τ λ, h λβδ)
∣∣
λ=h−1βδ = h1/δ m̃(τ h−1/βδ, 1) . (2.30)

At the critical isotherm (τ = 0) we recover the relation m(Tc, h) ∼ |h|1/δ in
(2.7). Furthermore, the equation of state may be written in the rescaled form

mh � m̃(τh, 1) with mh = mh−1/δ , τh = τ h−1/βδ . (2.31)

In this way, the equation of state is described by the single curve m̃(x, 1)
and all M -h-τ data points will collapse onto the single curve m̃(x, 1) if one
plots the rescaled order parameter mh as a function of the rescaled control
parameter τh. Such a data collapse is shown in the left panel of Fig. 2.3 using
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Fig. 2.3 Data collapse of the M -h-τ equation of state derived within mean-field theory
for the same three values of h as in Fig. 2.1. Left: m̃(x, 1) according to the Hankey-Stanley

scaling form (2.31). Right: h̃(x, 1) as described by the Widom-Griffiths scaling form (2.31).
In both cases all points collapse exactly onto a single curve. The circles mark the nor-
malisation conditions (2.37) and (2.41). Reprinted with permission from [433]. Copyright
(2004) World Scientific Publishing Company.

the data of Fig. 2.1 (see Sect. 2.3.1 for the derivation). The function m̃(x, 1)
is usually referred to as the Hankey-Stanley scaling function [266].

A different scaling form is obtained if one considers instead of the Gibbs
potential the Helmholtz8 potential or free energy f = g + mh via a Legen-
dre transformation. Since Legendre transformations of generalised homoge-
neous functions are again generalised homogeneous, the singular part of the
Helmholtz potential obeys the scaling form

fsing(τ,m) � λα−2 f̃(τ λ,mλβ) . (2.32)

This equation leads to the scaling form of the conjugate field

h(τ,m) =
(
∂ fsing

∂ m

)
T

� λ−βδ h̃(τ λ,mλβ) . (2.33)

Choosing mλβ = 1, one finds

hm � h̃(τm, 1) with hm = hm−δ , τm = τ m−1/β . (2.34)

The function h̃(x, 1) is often called the Widom-Griffiths scaling func-
tion [627, 250], as shown in the right panel of Fig. 2.3.

Both scaling functions, h̃(x, 1) and m̃(x, 1) are analytic in the neighbour-
hood of x = 0, i.e., at the critical temperature. The Hankey-Stanley scaling

8 While considering the Gibbs potential with h fixed is natural for ferromagnets, the study
of the Helmholtz potential is more useful for fluids or alloys, where m is proportional to
the concentration/density difference of the pure states.
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form is just the order parameter curve as a function of the control parameter
in a fixed conjugate field and thus it is more natural and perhaps more ele-
gant to study. But often the mathematical formulae of the Hankey-Stanley
functions are rather complicated, whereas the Widom-Griffiths scaling forms
are analytically tractable. Therefore h̃(x, 1) is often calculated within certain
approximation schemes, e.g. ε- or 1/n-expansions within a renormalisation-
group approach.

2.2.3 Universality Classes

According to the four scaling laws (2.15-2.18), equilibrium phase transitions
are characterised by two independent critical exponents. In the 1950s and
1960s, it was experimentally recognised that quantities like Tc depend sen-
sitively on the details of the interactions whereas the critical exponents are
universal, i.e., they do not depend on microscopic details but only on a small
number of general features such as the dimension or the symmetries of the
system. This led to the celebrated universality hypothesis which was first
clearly formulated by Kadanoff [369], but based on earlier works including
e.g. [217, 345, 618, 251, 63]. The universality hypothesis reduces the large va-
riety of critical phenomena to a small number of equivalence classes, so-called
universality classes, which depend only on a few fundamental parameters.
All systems belonging to a given universality class have the same critical
exponents and the corresponding scaling functions become identical near
the critical point.

For short-range interacting equilibrium systems, the fundamental param-
eters determining the universality class are the symmetry of the order pa-
rameter and the dimensionality of space [369, 251].9 The specific nature of
the transition, i.e. the details of the interactions such as the lattice struc-
ture and the range of interactions (as long as it remains finite), do not affect
the scaling behaviour. For instance, ferromagnetic systems with a preferred
direction of magnetisation are characterised by a one-component order pa-
rameter (n = 1) and belong to the universality class of the Ising ferromagnet
[148, 134]. The Ising universality class includes also liquid-gas transitions
at the end points of the coexistence line of first-order transitions separating
the liquid from the gaseous state [314, 86, 302, 568, 570, 569, 41], binary mix-
tures of liquids [34], as well as systems exhibiting an order-disorder transition
in alloys such as beta-brass which are described by a scalar order parameter
(see e.g. [18]). Even certain phase transitions occurring in high-energy physics
are expected to belong to the Ising universality class. For example, in the
electroweak theory the early universe exhibits a transition from a symmetric
high-temperature phase to a spontaneously broken Higgs phase [377]. The

9 Implicitly, one assumes here the absence of so-called marginal scaling fields.
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predicted line of first-order phase transitions terminates at a second-order
point which is argued to belong to the Ising universality class.

Ferromagnetic systems, which can be magnetised in two different direc-
tions, are characterised by a two-component order parameter (n = 2). In this
case ferromagnetic ordering breaks the rotational symmetry below the criti-
cal temperature, giving rise to the so-called XY universality class. Repre-
sentatives of this universality class are the magnetic XY model [148, 134]
(see appendix A for the definition),10 superconductors, as well as liquid
crystals that undergo a phase transition from a smectic-A to a nematic
phase [263, 262, 127]. The most impressive prototype, however, is the su-
perfluid transition of 4He along the λ-line. Due to its characteristic features
like the exceptional purity of the samples, the weakness of the singularity in
the compressibility of the fluid, as well as the reasonably short thermal relax-
ation times, superfluid 4He is more suitable for high-precision experiments
than any other system [7, 23]. For example, heat-capacity measurements un-
der micro-gravity conditions of liquid helium within 2 nK of the λ-transition
provide the extremely precise estimate α = −0.0127 ± 0.0003 [424]. Thus,
the λ-transition of 4He offers an exceptional opportunity to test theoretical
predictions, obtained from renormalisation-group theory or simulations.11 An
excellent recent review on micro-gravity experiments for measuring critical
exponents and amplitudes, their interpretation and comparison with theoret-
ical results for the O(n) model with n = 1, 2 is [41].

The Heisenberg universality class describes isotropic ferromagnetic
systems that are characterised by a three-component order parameter (n = 3)
[148, 134]. Besides the Ising, XY, and Heisenberg universality classes, various
other classes with O(n) global symmetry and n ≥ 4 have been discussed in the
literature (where O(n) stands for the Lie group of orthogonal transformations
in n dimensions). For instance, the n = 5 universality class is expected to be
relevant for the description of high-Tc superconductors [643, 155] whereas n =
18 is reported in the context of superfluid 3He [364]. Furthermore, the limit
n → 0 corresponds to the critical behaviour of polymers and self-avoiding
random walks [521]. The other limiting case n → ∞ corresponds to the
exactly solvable spherical model [61, 577, 366]. In appendix A, we recall

10 In very thin films of magnetic materials, interactions with the substrate may break the
full rotation-symmetry of the spins. If the spins are oriented perpendicular to the substrate,
the phase transition is in the Ising universality class while if the spin are parallel to the
surface, one has XY-behaviour.
11 For example, re-summed field-theoretic six- and seven-loop expansions give α =
−0.0129(6) [392] or α = −0.0112(21) [344] and extensive Monte Carlo simulations com-
bined with re-summed high-temperature series lead to α = −0.0151(3) [101]. While the
overall agreement between different theoretical methods and experiments is satisfying, it
is remarkable that exponent differences of the order ∆α ≈ 1 − 3 · 10−3 are by now con-
sidered significant. Substantial further effort will be needed to resolve the remaining small
discrepancies.
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Fig. 2.4 Experimental evidence for universal scaling. The figure displays the universal
Widom-Griffiths scaling function H̃(x, 1) for five different fluids, undergoing a liquid-gas
phase transition. The scaling variable is defined as x = ∆T |∆	|−1/β and x0 is related to
the amplitude B of the power-law for the coexistence curve ∆	 = B ∆T β . The figure is
taken from [570].

the definitions of these models and summarise some of their main equilibrium
properties.

2.2.4 Experimental Evidence of Universality

An impressive example of universal scaling plots, perhaps the most strik-
ing experimental evidence for the concept of universality at all, is shown in
Fig. 2.4. It presents data for five different fluids undergoing a fluid-gas tran-
sition. All fluids are characterised by different inter-atomic interactions. The
data are plotted according to the Widom-Griffiths scaling form. As can be
seen, the rescaled data of the chemical potential of five different gases collapse
onto a single universal curve, providing evidence that all these transitions
should belong to the Ising universality class [570].



20 2 Survey of Equilibrium Critical Phenomena

2.2.4.1 Metric Factors

In the scaling theory presented above, the exponents are universal but the
scaling functions are still written in a form that contains non-universal el-
ements. These non-universal features can be absorbed by introducing three
non-universal parameters, called metric factors. For example, we may relate
the scaling function m̃ to a standardised universal scaling function M̃

cm m(τ, h) � λ−β M̃(−cT τ λ, chhλ
βδ) (2.35)

which we shall denote by the corresponding capital letter. Physically, the
metric factors encode the units which may differ from model to model. In this
way, any scaling function m can be reduced to a universal scaling function
M̃ which is the same for all models belonging to the same universality class,
while the non-universal system-dependent features are contained in metric
factors like cm, cT , and ch [535].

Since the above scaling form is valid for all positive values of λ, the number
of metric factors can be reduced by a scale transformation. For the sake of
convenience it is customary to choose c1/β

m λ �→ λ, giving

m(τ, h) � λ−β M̃(−aTτ λ, ahhλ
βδ) (2.36)

with aT = cT c
−1/β
m and ah = chc

−δ
m , respectively. Moreover, it is convenient

to normalise the universal scaling function M̃ by the conditions

M̃(−1, 0) = 1 , M̃(0, 1) = 1 , (2.37)

so that the non-universal metric factors can be determined by the amplitudes
of

m(τ, 0) � λ−β M̃(−aT τ λ, 0)
∣∣∣
aT τ λ=−1

= (aT τ)β , (2.38)

m(0, h) � λ−β M̃(0, ahhλ
βδ)

∣∣∣
ahh λβδ=1

= (ahh)1/δ . (2.39)

Similarly, any other scaling function can be standardised by introducing suit-
able metric factors. For example, the universal Widom-Griffiths scaling form
is given by

ah h(τ,m) � λ−βδ H̃(−aT τ λ,mλβ) . (2.40)

Here the universal scaling function H̃ is usually normalised by the conditions

H̃(−1, 1) = 0 , H̃(0, 1) = 1 , (2.41)

which correspond to (2.37), i.e., the metric factors are again determined by
the amplitudes of the power-laws m(τ, 0) ∼ (aT τ)β and m(0, h) ∼ (ahh)1/δ,
respectively.
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2.3 Mean-Field and Renormalisation Group Methods

2.3.1 Mean-Field Theory of Ferromagnetic Systems

To illustrate the handling of universal scaling functions and metric factors,
let us consider a mean-field theory of a simple ferromagnet (with a scalar
order parameter). Following Landau, the free energy density is given by [407]

f(τ,m) − f0 = −1
2
b2 τ m

2 +
1
4
b4 m

4, (2.42)

where the factors b2 > 0 and b4 > 0 are system-dependent non-universal
parameters. Variation of the free energy with respect to the magnetisation
yields the equation of state

h = −b2 τ m + b4 m
3 . (2.43)

At zero-field, one has

m = 0 or m =
√
b2
b4
τ =⇒ β =

1
2
, aT =

b2
b4

, (2.44)

whereas at the critical isotherm

m = 3

√
1
b4
h =⇒ δ = 3 , ah =

1
b4

. (2.45)

From (2.43) one derives the scaling function

H̃(x, y) = x y + y3 , (2.46)

leading to the universal Widom-Griffiths scaling form

ahhm
−δ = H̃(−aT τ m

−1/β , 1) with H̃(x, 1) = 1 + x . (2.47)

Since the magnetisation is a cube-root function (δ = 3) the universal
Hankey-Stanley scaling form for y > 0 is given by

M̃(x, y) =

(
27y +

√
108x3 + 729y2

)1/3

3 21/3
− 21/3 x(

27y +
√

108x3 + 729y2
)1/3

.

(2.48)
This example demonstrates that the Hankey-Stanley scaling form is usually
more complicated than the corresponding Widom-Griffiths form.
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Using these mean-field results, we generated the curves shown in Fig. 2.1
and Fig. 2.3. In addition the normalisations (2.37) and (2.41) are marked in
Fig. 2.3 by a black dot.

2.3.2 Universal Amplitude Ratios

Universal properties are ascribed not only to critical exponents and scal-
ing functions but also to certain amplitude combinations (see [536] for
an excellent review and [41] for an update on experimental results). These
quantities are very useful in identifying the universality class of a phase tran-
sition since amplitude combinations are often more sensitive to numerical
differences between the classes than critical exponents. Furthermore, the mea-
surement of amplitude combinations in experiments or numerical simulations
serves as a reliable test of theoretical predictions and approximations.

As an example, let us consider the singular behaviour of the susceptibility
χ(τ, h) when approaching the transition point from above and below

χ(τ, 0) � aχ,+ (−τ)−γ if T > Tc or τ < 0, (2.49)
χ(τ, 0) � aχ,− τ

−γ if T < Tc or τ > 0. (2.50)

The amplitudes aχ,+ and aχ,− involve non-universal metric factors as well as
special values of universal scaling functions. To see this, consider the universal
scaling form of the susceptibility derived from (2.36)

χ(τ, h) =
(
∂ m(τ, h)

∂ h

)
T

� ah λ
γ X̃(−aTτ λ, ahhλ

βδ) (2.51)

with X̃(x, y) = ∂yM̃(x, y). Setting aT |τ |λ = 1, one obtains for the amplitudes

aχ,+ = ah a
−γ
T X̃(+1, 0) (2.52)

aχ,− = ah a
−γ
T

X̃(−1, 0) . (2.53)

Clearly, the amplitudes aχ,+ and aχ,− are non-universal but the ratio

aχ,+

aχ,−
=

X̃(+1, 0)
X̃(−1, 0)

(2.54)

is a universal quantity. For example, the mean-field behaviour of the suscep-
tibility takes the form

χ(τ, 0) =
1

−b2 τ + 3 b4m2
, (2.55)
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leading to [cf. (2.44)]

aχ,+ =
1
b2
, aχ,− =

1
2 b2

, =⇒ aχ,+

aχ,−
= 2 . (2.56)

Similarly, one can define a large variety of other amplitude ratios. Well-known
and experimentally significant is the quantity [536]

Rχ = Γ Dc B
δ−1 . (2.57)

Here, Γ , Dc, B are the traditional, but unfortunately unsystematic, notations
for the amplitudes of

χ ∼ Γ |τ |−γ
∣∣
T>Tc

, h ∼ Dc m
δ
∣∣
T=Tc

, m ∼ B τβ
∣∣
T<Tc

. (2.58)

These amplitudes correspond to the values [see (2.36)]

Γ = aχ,+ = ah a
−γ
T

X̃(1, 0) , Dc = a−1
h

M̃(0, 1)−δ , B = aβ
T
M̃(−1, 0) .

(2.59)
Using the normalisations M̃(−1, 0) = M̃(0, 1) = 1 one finds for the amplitude
combination

Rχ = X̃(1, 0) (2.60)

which is obviously a universal quantity, reducing to Rχ = 1 within mean-field
theory. These two examples demonstrate how the universality of amplitude
combinations emerges naturally from the universality of the scaling func-
tions, i.e., universal amplitude combinations are nothing but special values
of universal scaling functions.

The phenomenological concepts of scaling and universality have been
tested in a large variety of systems with remarkable success. Nevertheless they
have certain shortcomings. For example, in many cases there is no way of de-
termining the critical exponents and scaling functions explicitly. To remedy
these shortcomings different methods such as Wilson renormalisation group
theory are needed, as will be sketched in the following.

2.3.3 Remarks on Renormalisation-Group Theory

A deeper understanding of scaling and universality is provided by Wilson’s
renormalisation-group (RG) theory [629, 630]. In equilibrium systems the
RG theory relates the critical point to a fixed point of a certain trans-
formation of the system’s Hamiltonian (for introductions to this topic see
e.g. [219, 520, 640, 525]). In case of the instructive real-space RG [368] the
transformation rescales a microscopic length scale, e.g. the lattice spacing a,
by a factor b (a �→ b a) combined with the elimination of those degrees of
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freedom that correspond to the range between a and b a. This rescaling will
change the system’s properties away from the critical point, where the system
exhibits only finite characteristic length scales. However, at criticality there
are no finite correlation lengths and thus the properties of the system remain
unaffected by the rescaling procedure. In this way, criticality corresponds to
a fixed point of the renormalisation transformation. Exercise 4 illustrates the
procedure in the context of the one-dimensional Ising model.

Denoting the system’s Hamiltonian by H and the rescaled Hamiltonian
by H′ the renormalisation transformation is described by an appropriate
operator R that maps H to H′:

H′ = R ◦ H . (2.61)

Fixed point Hamiltonians H∗ satisfy the equation

H∗ = R ◦ H∗ . (2.62)

It turns out that different fixed point Hamiltonians correspond to different
universality classes [219]. For the sake of concreteness consider the reduced
Ising Hamiltonian (cf (2.1))

H̃ = − H
kBT

=
J

2 kBT

∑
〈i,j〉

σiσj +
h

kBT

∑
i

σi (2.63)

with the spin variables σi = ±1, the nearest neighbour interaction coupling J ,
and the homogeneous external field h, taking the first sum over all pairs of
neighbouring spins on a given d-dimensional lattice. The partition function
for a system of N spins is

ZN (K1,K2) =
∑
{σ}

eH̃(K1,K2) , (2.64)

where the sum runs over all possible spin configurations, introducing the
couplings

K1 =
J

2 kBT
, K2 =

h

kBT
. (2.65)

More generally, a given Hamiltonian may be written as a sum over the cou-
plings

H̃(K) =
∑

i

Ki Oi , (2.66)

where Oi are the operators appearing in the Hamiltonian.
A renormalisation-group transformation reduces the number of lat-

tice sites
N �→ N ′ = N/bd (2.67)

and leads to a rescaled Hamiltonian characterised by the couplings
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K ′
1 = K ′

1(K1,K2) , K ′
2 = K ′

2(K1,K2) , K ′
3 = K ′

3(K1,K2) , . . . .
(2.68)

Here the K ′
i>2 account for additional coupling terms of the renormalised

Hamiltonian which may appear as a result of the renormalisation transfor-
mation even if they are not present in the initial Hamiltonian. These so-called
RG recursion relations generate trajectories in the space spanned by the
couplings, i.e., the couplings K flow under successive renormalisation

K −→
R

K(1) −→
R

K(2) −→
R

. . . −→
R

K(n) −→
R

K(n+1) −→
R

. . . (2.69)

along the RG trajectories towards a certain fixed point K∗. If the system is
not initially at criticality the couplings will flow towards a trivial fixed point,
e.g., a fixed point that corresponds to zero or infinite temperature.

Linearising the problem close to a fixed point yields

R ◦ H̃(K∗ + δK) = H̃∗ + R ◦
∑

m

δKm Om

≈ H̃∗ +
∑

m

δKm

∑
n

Lm,n On

= H̃∗ +
∑

n

(∑
m

δKm Lm,n

)
On

= H̃∗ +
∑

n

δK ′
n On , (2.70)

where L can be thought of as a first-order approximation of R. Assuming
that the diagonalised operator L has the eigenoperators Ωi and eigenvalues
Λi such that LΩi = ΛiΩi we find that the couplings transform in the diagonal
representation (δκ) according to δκ′

i
= Λiδκi, thus

R ◦ H̃(K∗ + δK) = H̃∗ +
∑

i

Λi δκi Ωi . (2.71)

The couplings δκi are called scaling fields and their recursion relation can
be expressed by the rescaling factor b as

δκ′i = byi δκi with Λi = byi , (2.72)

where the yi are the scaling exponents. Successive renormalisation steps
correspond to

δκi −→
R

byi δκi −→
R

b2yi δκi −→
R

b3yi δκi −→
R

. . . . (2.73)

Thus, the renormalisation flow in the vicinity of a given fixed point H̃∗ de-
pends on the exponents yi. For yi > 0 (Λi > 1) the corresponding scaling field
δκi is called relevant since successive renormalisation transformations drive
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the system away from H̃∗. In case of a negative exponent yi < 0 (Λi < 1) the
system approaches the fixed point under repeated transformations and the
scaling field is said to be irrelevant. Marginal scaling fields correspond to
yi = 0 (Λi = 1) and require higher than linear order in the expansion, and
may lead to critical exponents depending continuously on the corresponding
interaction parameters. In this way each fixed point is characterised by its
associated scaling fields and by a domain of attraction which corresponds
to the set of points flowing eventually to the fixed point. This set forms a
hypersurface in the space of couplings and is termed the critical surface.

In summary, a fixed point H̃∗ is approached if all associated relevant scal-
ing fields are zero, otherwise the system flows away from H̃∗. Examples of
relevant scaling fields in ferromagnetism are the reduced temperature τ and
the conjugate field h. Criticality is only achieved for τ → 0 and h → 0,
therefore we may identify

δκ1 = δκT = aτ τ , y1 = yτ > 0 , (2.74)
δκ2 = δκh = ahh , y2 = yh > 0 , (2.75)

and yi>2 < 0. Moreover, all Hamiltonians that differ from the fixed point
H̃∗ only by irrelevant scaling fields flow towards H̃∗. For example the five
magnetic materials presented in Fig. 2.4 differ only by irrelevant scaling fields.
It is this irrelevance of higher-order scaling fields that causes universality.

Although the linear recursion relations (2.72) describe the RG trajectories
only in the vicinity of fixed points they provide some insight into the topology
of the entire RG flow (see Fig. 2.5). These RG flow diagrams are useful to
illustrate the RG transformations schematically and provide a classification
scheme in terms of fixed point stability. The stability of a given fixed point
is determined by the number of relevant and irrelevant scaling fields. Unsta-
ble fixed points are characterised by at least one relevant scaling field since
Hamiltonians arbitrarily close to the fixed point will flow away under suc-
cessive RG iterations. Ordinary critical points correspond to singly unstable
fixed points, i.e., unstable with respect to the control parameter (e.g. tem-
perature) of the phase transition. Tricritical points are characterised by a
second instability. An applied external field conjugate to the order parameter
gives rise to an additional instability of the fixed point.

Furthermore, the stability of fixed points depends on the spatial dimen-
sionality d of a system. It turns out that above a certain dimension dc, called
the upper critical dimension, the scaling behaviour is usually determined
by a trivial fixed point with classical mean-field exponents, whereas a dif-
ferent fixed point with non-classical exponents determines the scaling be-
haviour below dc. This sudden change of the scaling behaviour is caused
by an exchange of the stability of the corresponding fixed points below
and above dc [520, 621, 83]. At the upper critical dimension dc both fixed
points are identical and marginally stable and the corresponding scaling be-
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Fig. 2.5 Sketch of the renormalisation-group flow of an Ising ferromagnet (see [(2.63)]) on
a hierarchical lattice. Hierarchical lattices are iteratively constructed lattices [60, 379] where
the so-called Migdal-Kadanoff scheme of renormalisation is exact [476, 370]. The flowlines
show the motion of the coupling constants x = exp (2K1) (temperature-like variable) and
y = exp (K2) (field-like variable) under successive iterations of the recursion relations x′ =
(x2+y2)(x−2+y2)(1+y2)−2 and y′ = y2(1+x2y2)(x2+y2)−1. The flowlines are attracted
and repelled by the fixed points (1, 1), (1,∞), (∞, 1), and (xc, 1) with xc = 3.38298 . . ..
The phase transition corresponds to the non-trivial fixed point (xc, 1) with the eigenvalues
Λ1 ≈ 1.6785 and Λ2 ≈ 3.6785, leading to β ≈ 0.16173 and δ ≈ 15.549. Reprinted with
permission from [433]. Copyright (2004) World Scientific Publishing Company.

haviour is characterised by mean-field exponents modified by logarithmic
corrections [622, 632]. We shall discuss the scaling behaviour of certain non-
equilibrium phase transitions at the upper critical dimension in detail in the
following chapters.

2.3.4 Scaling Laws Induced by Renormalisation-Group
Theory

Let us now demonstrate how scaling emerges from the renormalisation trans-
formation. To this end it is essential to note that the partition function is
invariant under the renormalisation operation R [219]

ZN (δκT , δκh, δκ3, . . .) = ZN ′(δκ′T , δκ
′
h, δκ

′
3, . . .) . (2.76)

Therefore, the free energy12 per degree of freedom transforms according to

f(δκT , δκh, δκ3, . . .) = b−d f(δκ′
T
, δκ′

h
, δκ′3, . . .) . (2.77)

Combining this equation with (2.72) and using the identities (2.74) and (2.75)
yields the scaling form

12 From now on, the term ‘free energy’ is meant to include ‘Gibbs potential’, ‘Helmholtz
potential’ and so on.



28 2 Survey of Equilibrium Critical Phenomena

f(aT τ, ahh, δκ3, . . .) � b−d f(byτ aT τ, b
yh ahh, b

y3 δκ3, . . .) . (2.78)

Introducing λ = byτ , one obtains the scaling form of the free energy [see
(2.20)]

f(aT τ, ahh, δκ3, . . .) � λα−2 f(aTτ λ, ahhλ
βδ, δκ3 λ

φ3 , . . .) , (2.79)

where one has identified the exponents

yτ =
1
ν
, yh =

β δ

ν
, yi>2 =

φi>2

ν
. (2.80)

The possible additional scaling fields δκi>2 deserve some comments. It turns
out that irrelevant scaling fields (φi>2 < 0) may cause corrections to the
asymptotic scaling behaviour [620]. For example, choosing λ = 1/|aTτ | one
obtains at zero field

f(aT τ, 0, δκ3) � |aT τ |2−α f(±1, 0, δκ3 |aTτ ||φ3|)
≈ |aT τ |2−α f(±1, 0, 0) (2.81)

+|aTτ |2−α+|φ3| δκ3 ∂xf(±1, 0, x)
∣∣
x=0

+ . . . .

The non-universal corrections to the leading-order term ∼ |τ |2−α are called
confluent singularities and they determine the size of the critical region.
In many cases, confluent singularities have to be taken into account, in order
to obtain reliable estimates of the universal critical parameters. Impressive
examples of confluent singularity effects of superfluid Helium are reviewed
in [7]. The above expansion of f(±1, 0, x) implies that the free energy is an
analytic function in δκ3. If the free energy is non-analytic, the scaling field δκ3

is termed a dangerous irrelevant variable [218, 534]. In that case, the free
energy exhibits e.g. a power-law divergence

f(x, y, z) = z−µ f̂(x, y) (2.82)

characterised by the exponent µ > 0. Singularities of this type occur for
example in the mean-field regime of the well-known Landau-Ginzburg-Wilson
Hamiltonian for short-range interacting ferromagnets (see e.g. [80]). There,
the dangerous irrelevant variable corresponds to the coupling constant of the
φ4 interactions. The non-analytic behaviour leads to the modified scaling
form of the free energy

f(aT τ, ahh, δκ3) � λ−νd f(aT τ λ, ahhλ
βδ, δκ3 λ

φ3)

= λ−νd−µφ3 δκ−µ
3 f̂(aT τ λ, ahhλ

βδ)
∣∣∣

h=0

= |aTτ |νd+µφ3 δκ−µ
3 f̂(±1, 0) . (2.83)
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Compared to the standard behaviour f ∼ |τ |2−α, the above result reflects the
breakdown of the hyperscaling law 2−α = νd. Moreover, dangerous irrelevant
variables may also cause the breakdown of common finite-size scaling within
the mean-field regime d > dc [82, 534, 201]. This is well-established in equi-
librium, and can be seen analytically in the n → ∞ limit of the O(n) model
[82, 447, 201]. We shall come back to this point in detail in Sect. 5.10, where
we consider non-equilibrium phase transitions in high-dimensional systems.

The situation is different when the scaling field δκ3 is relevant, i.e., φ3 > 0.
In that case the free energy at zero field is given by

f(aTτ, 0, δκ3) � |aT τ |2−α f(±1, 0, δκ3 |aT τ |−φ3) . (2.84)

For sufficient small arguments (|δκ3|τ |−φ3 | � 1) the relevant scaling field
leads again to corrections to the asymptotic scaling behaviour. However, ap-
proaching the transition point (τ → 0) the scaling argument diverges and
gives rise to a different critical behaviour, i.e., the system crosses over to
a different universality class. Finally, a marginal scaling field may generate
logarithmic corrections via

δκ3 |aT τ |−φ3 = δκ3 exp (−φ3 ln |aT τ |)
−→
φ3→0

δκ3 ( 1 − φ3 ln |aT τ | + . . .) . (2.85)

Often, these logarithmic contributions mask the power law singularities and
can make the analysis of experimental or numerical data notoriously difficult.

Analogous to the free energy, the renormalisation group determines the
scaling form of the correlation length ξ. Performing a renormalisation trans-
formation, the correlation length ξ, like all length scales, is decreased by the
factor b,

ξ′ = b−1 ξ . (2.86)

It is essential for the understanding of phase transitions that fixed points are
characterised by an infinite (or trivial zero) correlation length since ξ satisfies
at a fixed point

ξ′ = ξ . (2.87)

In this way, a singular correlation length characterizes a critical point. In
other words, scale-invariance is the hallmark of criticality.

The scaling form of the correlation length is obtained from (2.86)

ξ(δκT , δκh, δκ3, . . .) = b ξ(δκ′T , δκ
′
h, δκ

′
3, . . .) , (2.88)

yielding with λ = byτ and (2.72)

ξ(aT τ, ahh, δκ3, . . .) � λν ξ(aT τ λ, ahhλ
βδ, δκ3 λ

φ3 , . . .) . (2.89)
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2.3.5 Field-Theory and ε-Expansion

Instead of the real-space renormalisation considered so far, it is often more
convenient to work in momentum space. This can be achieved by reformu-
lating the above derivations in terms of Fourier transforms. We refer the
interested reader to the reviews in [632, 219, 520]. The momentum-space
formulation allows one to study a perturbative RG theory, leading to a field-
theoretical formulation in terms of Feynman graphs. The appropriate small
parameter for the perturbation expansion is the dimensionality difference to
the upper critical dimension ε = dc − d [631]. This so-called ε-expansion
gives systematic corrections to mean-field theory in powers of ε.

The ε-expansion provides a powerful tool for calculating the critical ex-
ponents and the scaling functions. For example, the exponents ν and γ
for n-component magnetic systems with short range interactions and global
O(n)-symmetry can be found from a two-loop calculation to second order in
ε = 4 − d (see e.g. [83, 8, 648])13

ν =
1
2

+ ε
n+ 2

4(n+ 8)
+ ε2

n+ 2
8(n+ 8)3

(n2 + 23n+ 60) + O(ε3)

γ = 1 + ε
n + 2

2(n+ 8)
+ ε2

(n + 2)
4(n+ 8)3

(n2 + 22n+ 52) + O(ε3) . (2.90)

Furthermore, the Widom-Griffiths scaling function can be written as a power
series in ε

H̃(x, 1) = 1 + x + ε H̃1(x, 1) + ε2 H̃2(x, 1) + O(ε3) . (2.91)

As expected, the mean-field scaling behaviour (2.47) is retrieved for ε = 0.
These scaling functions become more complicated with increasing order.

For example, the first-order term is given by [84]

H̃1(x, 1) =
1

2(n+ 8)

[
3(x+ 3) ln (x+ 3) + (n− 1)(x+ 1) ln (x + 1)

+ 6 x ln 2 − 9(x+ 1) ln 3
]

(2.92)

while for the second-order term H̃2(x, 1) we refer to the reviews [83, 8]. Thus
the ε-expansion provides estimates of almost all quantities of interest as an
asymptotic expansion in powers of ε around the mean-field values. Unfortu-
nately it is impossible to estimate the corresponding error bars within this
approximation scheme since the extrapolation to larger values of ε is uncon-
trolled.

13 Presently, these expansions have been carried up to seven-loop order. The numerical
evaluation of the resulting ε-series (which a priori are divergent) requires the use of non-
trivial resummation methods.
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A detailed analysis reveals that the critical exponents are more accurately
estimated than the scaling functions and the corresponding amplitude ratios.
For example, the ε2-approximation (2.90) for the susceptibility exponent of
the two-dimensional Ising model (n = 1, ε = 2) yields γ ≈ 1.642. This value
differs by 6% from the exact value γ = 7/4 [43]. On the other hand, the
amplitude ratio of the susceptibility (2.54) can be expanded as [486]

X̃(+1, 0)
X̃(−1, 0)

= 2γ(ε)−1 γ(ε)
β(ε)

(2.93)

suggesting the estimate 81.14 . . . for ε = 2. This result differs significantly
(115%) from the exact value 37.69 . . . [43, 154]. The different accuracy re-
flects a conceptual difference between the universality of critical exponents
and the universality of scaling functions. As pointed out in [536], the uni-
versality of exponents arises from the linearised RG flow in the vicinity of
the fixed point, whereas the scaling functions are obtained from the entire,
i.e., non-linear, RG flow. More precisely, the relevant trajectories from the
fixed point of interest to other fixed points determine the actual functional
form of universal scaling functions. This also explains why exponents be-
tween different universality classes may change only slightly while the scaling
functions and therefore the amplitude combinations vary much more signifi-
cantly. Thus, the identification of a system’s universality class by considering
the scaling functions and amplitude combinations instead of critical expo-
nents is expected to be more sensitive and provides a useful diagnostic tool.
Hence, one of the most convincing demonstrations of universality is by means
of a universal data-collapse of various systems, as illustrated for experimental
data in Fig. 2.4.

2.3.6 Surface Critical Phenomena

In the vicinity of surfaces and boundaries, new and important aspects of criti-
cal behaviour arise as will be summarised briefly in the following. Throughout
this book, many of the quantities (especially exponents) related to surfaces
and boundaries will be distinguished by an index ‘1’ from their bulk coun-
terparts.

Restricting ourselves to the particularly simple case of a flat surface with
a free boundary, one expects that for the density of the Gibbs potential

g = gb(T, h, V,N ) +
2
L
g1(T, h, h1, V,N ) + . . . , (2.94)

where gb is the density of the bulk Gibbs potential studied so far and g1 is
the surface Gibbs potential, often loosely referred to as the surface free



32 2 Survey of Equilibrium Critical Phenomena

(a)

(d)(c)

(b)

λ- r r

r r

bm

1m
bm

1m
1m

bm

1m

Fig. 2.6 Schematic local order parameter profiles m(r) in dependence of the temperature
and the extrapolation length λ. After [68], reproduced from [270] with kind permission of

Springer Science and Business Media.

energy density. Besides the bulk magnetic field h a surface magnetic field
h1 located at the surface itself has to be included as well. The factor 2 takes
the presence of two free interfaces into account. Using mean-field results as
an example, Fig. 2.6 shows schematic profiles of the order parameter as a
function of the distance r from the boundary. Denoting by Tc,b the usual
bulk critical temperature, the following different kinds of behaviour are seen
[68, 183, 523].

1. For T < Tc,b and a positive extrapolation length λ > 0, as shown
in Fig. 2.6a, the transition from the disordered state to this state is called
the ordinary transition O. Here mb = m(∞) is the magnetisation deep
inside the bulk and m1 = m(0) is the magnetisation at the surface.

2. For T = Tc,b, the extrapolation length is infinite. In this case the transition
from the disordered state to this state is called the special transition
SP . It is a surface tricritical point, see Fig. 2.6b.

3. For Tc,b < T < Tc,s, the extrapolation length is negative and Tc,s is some
surface critical temperature. The transition from the disordered state into
this state is called the surface transition S, see Fig. 2.6c.

4. For T < Tc,b and a negative extrapolation length, the transition from the
state of Fig. 2.6c to this state is called the extraordinary transition E,
see Fig. 2.6d.

Note, however, that in two dimensions in the absence of the surface field and
for short-ranged interactions only the ordinary transition can exist.
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We illustrate the distinct thermodynamic and critical behaviour near to
a surface in the case of the local order parameter m = m(r). One must
distinguish the bulk magnetisation mb, the surface magnetisation m1 and
the excess magnetisation ms. These quantities scale with three distinct
critical exponents

mb = m(∞) = −∂gb

∂h
∼ τβ

m1 = m(0) = − ∂g1
∂h1

∼ τβ1 (2.95)

ms =
∫ ∞

0

dr [m(r) −mb] = −∂g1
∂h

∼ τβs .

For an ordinary transition, there is only a relevant surface magnetic field h1.
Hence one has the scaling form for the singular part of the Gibbs potential
density

gsing
1 � |τ |2−αsW±

1

(
h|τ |−β−γ , h1|τ |−∆1

)
, (2.96)

where ∆1 = (ν/2)(d− η‖) is the surface gap exponent. Analogous to the
hyperscaling condition gsing

b ∼ ξ−d
b , which is valid below the upper critical

dimension d < dc, one expects for a free surface gsing
1 ∼ ξ

−(d−1)
b where ξb is the

bulk correlation length. Hence αs = α+ν. It is now obvious that the exponent
βs = β − ν of the excess magnetisation is related to bulk exponents, too. On
the one hand, the surface magnetisation exponent β1 cannot be expressed
in terms of bulk critical exponents. However, it is related to the surface
exponents of the two-point correlation functions via the scaling relation β1 =
(ν/2)(d − 2 + η‖). This means that the ordinary transition is characterised
by a single independent surface exponent.

The surface exponents of the correlators are defined as follows. Using the
notation rs = (r‖, 0) and r = (r‖, r⊥), one has correlations parallel and
perpendicular to the free surface at r⊥ = 0

G‖(r‖ − r′
‖) := G(rs, r

′
s) , G⊥(r⊥, r′⊥) := G(r, r′)|r‖=r′

‖
. (2.97)

The surface exponents are then defined exactly at the critical point τ = h =
h1 = 0

G‖(r‖) ∼ |r‖|−d+2−η‖ , G⊥(r⊥, r′⊥) ∼ |r⊥ − r′⊥|−d+2−η⊥ . (2.98)

These definitions apply to the ordinary, special and extraordinary transi-
tions.14 Moreover, the exponents are related by the scaling relation 2η⊥ =
η+ η‖. In the O(n)-model, a two-loop calculation gives at the ordinary tran-
sition to second order in ε = 4 − d

14 Exponents belonging to the surface transition can be defined by replacing τ by τs :=
(Tc,s − T )/Tc,s.
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η‖ = 2 − ε
n+ 2
n+ 8

− ε2
n+ 2

2(n+ 8)3
(17n+ 76) + O(ε3) (2.99)

We refer to the excellent reviews [68, 183, 184, 523] for more systematic
expositions. In appendix A, values of some surface exponents are listed for
several spin systems.

2.3.7 Finite-Size Scaling

Having looked in the previous section into the local scaling behaviour near to
a flat surface, we now recall the main features of a system confined to a finite
geometry [220, 37, 201, 536]. The Gibbs functional/free energy G(T, V,N ) of
the system can be written as (V=volume, A=surface area)

G(T, V,N ) = V gb(T, ρ) +Ag1(T, ρ) + . . . (2.100)

where T is the temperature, N the number of particles and we have sup-
pressed other thermodynamic variables. Writing this, a limit V → ∞,
N → ∞ such that ρ = N/V is kept fixed is implied, that is, the bulk
Gibbs potential density gb(T, ρ) is defined by

gb(T, ρ) = lim
N→∞,V →∞

G(T, V,N )/V with ρ = N/V fixed. (2.101)

A similar limit is implied for the definition of the density of the surface
Gibbs potential g1(T, ρ).

How many of such terms, describing the contribution of surfaces, edges and
so on, should one expect? At least for systems sufficiently far away from a crit-
ical point, it has been proposed that an answer might be formulated in terms
of Minkowski functionals [396].15 According to Hadwiger’s theorem,
any continuous motion-invariant and additive functional can be decomposed
into Minkowski functionals, viz. f(Ω) =

∑d
n=0 fnMn(Ω). Furthermore, the

d + 1 Minkowski functionals Mn(Ω), n = 1, . . . , d, are complete in d di-
mensions [261, 469].16 If the mathematical theory of Minkowski functionals
should apply to statistical systems at equilibrium, one would expect that the
expansion (2.100) should contain d + 1 terms depending algebraically on L,
up to exponentially small corrections (often, the finite size is L ∼ N 1/d).

15 By definition, a Minkowski functional is a continuous map M : Ω → R of a geometric
object Ω ⊂ Rd embedded into an d-dimensional space which is (i) motion-invariant, that
is M(Ω) = M(gΩ) if g is a translation or rotation and (ii) satisfies the additivity property
M(Ω1 ∪ Ω2) = M(Ω1) + M(Ω2) − M(Ω1 ∩ Ω2).
16 In 3D, the four independent Minkowski functionals are: (i) volume, (ii) area, (iii) integral
mean curvature and (iv) Euler characteristic.
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Fig. 2.7 Finite-size be-

haviour of the correla-
tion length ξL in the 2D
Ising model in infinitely
long slabs of finite width
L = [2, 4, 8, 16, 32] from
bottom to top.
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As an illustration of what may happen to a finite system, which on an
infinite lattice undergoes a second-order phase transition, we show in Fig. 2.7
the correlation length ξL of the 2D Ising model [97] as a function of the tem-
perature and for a vanishing external field h = 0, considered on an infinitely
long slab of finite width L with periodic boundary conditions.

There are two basic observations to be made:

1. Rather than a divergence of the form ξ∞ ∼ |τ |−ν , the finite-size data ξL
show a maximum at some pseudo-critical temperature Tc(L). For suffi-
ciently large system sizes, one expects

(Tc(L) − Tc(∞)) /Tc(∞) ∼ L−λ if L → ∞. (2.102)

This defines the shift exponent λ.
2. The curves for finite L are broadened with respect to the bulk behaviour.

One may describe this in terms of a rounding temperature T ∗(L),
defined such that if |T − Tc|/Tc ≥ |T ∗ − Tc|/Tc, then the finite-size corre-
lation length is close to the bulk value: ξL(T ) � ξ∞(T ). For sufficiently
large systems, one may define the rounding exponent θ via

(T ∗(L) − Tc(∞)) /Tc(∞) ∼ L−θ if L → ∞. (2.103)

Asymptotically, θ characterises the size of the finite-size scaling region.

The basic hypothesis of finite-size scaling, as first formulated by Fisher
and Barber [220], asserts that there should be only one relevant length de-
scribing the rounding and shifting of the thermodynamic singularities. Hence
ξ(T ∗(L)) ∼ L, which implies

λ = θ = 1/ν (2.104)
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bulk finite-size

specific heat Csing |τ |−α Lα/ν

magnetic susceptibility χ |τ |−γ Lγ/ν

correlation length ξ |τ |−ν L
free-energy density gsing |τ |2−α L−d

order parameter(a) M τβ L−β/ν

latent heat(a) �h τ1−α L(α−1)/ν

Table 2.1 Bulk scaling near to τ = 0 and finite-size scaling close to Tc and for L large.
(a) Special care is needed to define non-vanishing lattice expressions for M and �h in the
ordered phase where τ > 0, see [270].

which means that the shift and the rounding are of the same order. For a list
of experimental tests of finite-size scaling in thin magnetic films, see [270].

Close to a critical point, finite-size effects will be important in the so-
called finite-size scaling limit where one takes simultaneously L → ∞ and
T → Tc such that the finite-size scaling variable z := L/ξ∞(T ) remains
finite. Changing z from large values to values z � 1, one goes over from
the bulk critical behaviour to the finite-size region where shift and rounding
effects will be very important. For example, the bulk scaling behaviour close
to the critical point τ = 0 can be traded for a singular finite-size behaviour
which holds for a finite value of z. Table 2.1 gives some examples and indicates
how the systematic study of finite-size effects may be turned into a tool for
the determination of critical points and exponents. For further details on this,
see appendix F.

For a systematic analysis of finite-size scaling, it appears natural to gen-
eralise (2.77) and to write the singular part of the Gibbs functional g as17

g(τ, h;L) ∼ A1|τ |2−αW̃±(A2h|τ |−β−γ ;L/ξ∞), (2.105)

where the metric factors A1,2 are related to the metric factors aτ,h used
above, W̃± are universal scaling functions and ξ∞ ∼ ξ0τ

−ν (as τ → 0) is the
bulk correlation length. Note that there is no extra metric factor associated
with L/ξ∞ [220, 535].18 Similarly, one expects for the (connected) correlation
function

G(r; τ, h) := 〈s0sr〉 − 〈s0〉〈sr〉 (2.106)
∼ D1r

2−d−ηX±(r/ξ∞, D2h|τ |−β−γ),

17 We implicitly assume here either a slab geometry with only one finite direction or else a
fully finite hypercube geometry. Otherwise, the shape-dependence of the scaling functions
must be included in the discussion which may involve further non-universal metric factors.
See the literature for further details [130, 185, 595].
18 This holds true if d < dc, but is invalid for d ≥ dc, due to the presence of dangerous
irrelevant variables, see [82, 447] for explicit spherical model calculations.
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where X± are universal functions and D1, D2 are metric factors. The mag-
netic susceptibility is obtained from the static fluctuation-dissipation theorem
(see Sect. 2.4)

χ∞(τ, h) =
∫

dr G(r; τ, h) ∼ D1ξ
2−η
∞ X̃±(D2h|τ |−β−γ). (2.107)

The same scaling behaviour is also expected for the total correlation function

Γ (r; τ, h) := 〈s0sr〉 ∼ D1r
2−d−ηZ±(r/ξ∞, D2h|τ |−β−γ) (2.108)

with a new universal scaling function Z±. In the limit r → ∞, Γ (r) → m2
∞,

where m∞ is the magnetisation per spin. Thus

m2
∞(τ, h) ∼ D1ξ

2−d−η
∞ Z̃±(D2h|τ |−β−γ). (2.109)

From the bulk scaling behaviour one has, taking the required derivatives

m∞(τ, h) ∼ A1A2|τ |βW±
1 (A2h|τ |−β−γ)

χ∞(τ, h) ∼ A1A
2
2|τ |−γW±

2 (A2h|τ |−β−γ), (2.110)

where W±
1 (x) = ∂xW

±(x) and W±
2 (x) = ∂xW

±
1 (x). Comparing coefficients,

one recovers the bulk scaling relations and obtains relationships between the
universal scaling functions W±

1,2 and X± and Z±. As the result, the metric
factors become related and one can identify the universal combinations [535]

A1ξ
d
0 =: Q1

A2/D2 =: Q2 (2.111)

D1A
−ψ
1 A−2

2 =: Q3 if ψ = 1 + γ/(dν)

whose universality follows from the universality of the scaling functions. This
universality is a little stronger than the universality of, say, the ratio of the
specific heat amplitudes above and below Tc, since one has now a so-called
hyperuniversality relation [535]

lim
τ→±0

gsing(τ)ξd(τ) = u± = universal. (2.112)

This is known as two-scale factor universality or the Privman-Fisher hy-
pothesis. One often writes this statement in the following form

gsing(τ, h) = L−dY (C1τL
1/ν , C2hL

(β+γ)/ν)
ξ−1(τ, h) = L−1S(C1τL

1/ν , C2hL
(β+γ)/ν) (2.113)

with the same metric factors C1, C2 in both observables and universal finite-
size scaling functions Y (x1, x2) and S(x1, x2). In particular, one expects the
following amplitudes to be universal [535]
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Y (0, 0), S(0, 0), lim
z→±∞Y (z, 0)S−d(z, 0), lim

µ→±∞ Y (0, µ)S−d(0, µ) (2.114)

Since universal amplitudes often vary much more between distinct universal-
ity classes than critical exponents [536], the consideration of those amplitudes
in a specific system may be of diagnostic value. In 2D their values can be
calculated from conformal invariance, see Sect. 2.5.

2.4 Fluctuation-Dissipation Theorem

In the second volume of this book we shall study time-dependent phenomena,
in particular ageing which occurs far from the stationary states. In these
studies, the precise relationship between correlators and responses will play
an important role. At equilibrium, this relation is given by the celebrated
fluctuation-dissipation theorem. This theorem relates the response of an
equilibrium system to an applied external field with the internal fluctuations
of the same equilibrium system. Such fluctuations are usually described in
terms of time-dependent equilibrium correlation functions

CAB(t) := 〈A(t)B(0)〉0 (2.115)

of two time-dependent observables A and B, where we assumed time-transla-
tional invariance. When considering a perturbation of an equilibrium system
through an external field, it is useful to distinguish three basic situations:

(i) response, which considers the temporal evolution of a system under the
influence of a time-independent force (Fig. 2.8a)

(ii) relaxation, where an external force is turned off and the free decay of a
system is studied (Fig. 2.8b) and

(iii)alternation, where the effects of an oscillatory force (Fig. 2.8c) are in-
vestigated.

The discussion below follows closely [144] and concentrates first on the
response and later on its relation to the equilibrium correlations of the system.
The fluctuation-dissipation theorem is first presented abstractly, followed by
concrete physical illustrations from several distinct relaxation phenomena.

Initially, one considers a quantum system in thermal equilibrium at tem-
perature T which is described by a density matrix

ρ0 := Z−1
0 exp

(
− 1
T
H0

)
, (2.116)

where H0 is the Hamiltonian and Z0 = tr[exp(−H0/T )] the partition func-
tion. Then, starting at time t = 0, one perturbs the system with a steady
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Fig. 2.8 Schematic equilibrium responses χ to (a) a constant external field h, (b) the
turning-off of a constant external field and (c) an oscillatory external field h(t). The in-
stantaneous response χinst and the time-dependent ‘an-elastic’ and ‘aftereffect’ responses
χan,ae(t) are indicated.

external force F which couples to an operator A. For times t > 0 the Hamil-
tonian becomes

H = H0 −AF (2.117)

and the density matrix ρ(t) is determined by the Liouville equation

∂ρ(t)
∂t

= −iLρ(t) (2.118)

with the initial condition ρ(0) = ρ0, where the Liouville operator is defined
by19

L. =
1
�

[H, .] . (2.119)

Now one considers how the time-dependent average 〈B〉(t) of some operator
B is perturbed by the force F , quantified through the response function

RBA(t) :=
δ〈B〉(t)
δF

∣∣∣∣
F=0

. (2.120)

In the context of linear-response theory it can be shown that for perturbations
around equilibrium, for classical systems (such that � → 0), this function is
given by

RBA(t) =
i
�

∫ t

0

dτ 〈[A(0), B(τ)]〉0 (2.121)

= T−1 〈B(0)A(0)〉0 − T−1 〈B(t)A(0)〉0 ,

where the average 〈.〉0 is taken for the unperturbed system at temperature
T . This relationship is the celebrated fluctuation-dissipation theorem.

19 For classical systems, replace the commutator by the Poisson bracket.
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Proof: Here we outline how the fluctuation-dissipation theorem can be de-
rived, following [144]. Under a small perturbation (2.117), the Liouville op-
erator can be decomposed as L = L0 + LA. Writing the density matrix
as ρ(t) = ρ0 + δρ(t) the Liouville equation yields an equation for δρ(t).
The basic assumption of linear response theory is that terms of the order
LAδρ(t) are sufficiently small to be neglected. It is then straightforward to
show from (2.118) that

δρ(t) =
∫ t

0

dt′ e−i(t−t′)L0 (−iLAρ0) =
i
�
F

∫ t

0

dt′ e−i(t−t′)L0 [A(0), ρ0] .

Similarly, one shows that the average of an observable B is, to leading order

〈B〉(t) = tr (ρ(t)B(0)) = 〈B〉0 +
i
�
F

∫ t

0

dt′ tr
(
e−i(t−t′)L0 [A(0), ρ0]B(0)

)
Next, one resorts to the Heisenberg picture and introduces time-dependent
operators through (see exercise 9)

A(t) := eitL0A(0) = eiH0t/�A(0)e−iH0t/� . (2.122)

Furthermore, the operators A and B can be assumed to be Hermitean since
they represent physical observables. The proof of the Hermiticity of the Li-
ouville operator (2.119) is left as an exercise. Then, using the cyclicality of
the trace

〈δB〉(t) = 〈B〉(t) − 〈B〉0

=
iF
�

∫ t

0

dτ tr (ρ0 [A(0), B(τ)])

= − iF
�

∫ t

0

dτ tr ([ρ0, A(0)]B(τ))

= − iF
�

∫ t

0

dτ tr
((

ρ0A(0) − eH0/TA(0)e−H0/Tρ0

)
B(τ)

)
=

iF
�

∫ t

0

dτ tr

(
ρ0

∫ 1/T

0

dβ
d
dβ

(
eβH0A(0)e−βH0

)
B(τ)

)

=
iF
�

∫ t

0

dτ tr

(
ρ0

∫ 1/T

0

dβ
(
eβH0 [H0, A(0)] e−βH0

)
B(τ)

)
.

From the second line we get the first part of (2.121). We stress that in these
transformations is it essential that there exists an equilibrium Hamiltonian
H0 which gives the density matrix ρ0 through (2.116). If one introduces

dA
dt

(0) :=
i
�

[H0, A(0)]
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the response function RBA(t) becomes

RBA(t) =
∫ t

0

dτ
∫ 1/T

0

dβ
〈
eβH0

dA
dt

(0)e−βH0B(τ)
〉

0

.

Let us now assume that the unperturbed state is stationary which means
that two-time averages should satisfy time-translation invariance, viz.

〈A(t)B(t + τ)〉0 = 〈A(0)B(τ)〉0

such that these correlators do not depend on t. This further implies〈(
d
dt
A(t)

)
B(t + τ)

〉
0

= −
〈
A(t)

(
d
dt
B(t+ τ)

)〉
0

and the response function finally becomes

RBA(t) = −
∫ t

0

dτ
∫ 1/T

0

dβ
〈
eβH0A(0)e−βH0

dB
dt

(τ)
〉

0

=
∫ 1/T

0

dβ
〈
eβH0A(0)e−βH0 (B(0) −B(t))

〉
0

=
∫ 1/T

0

dβ 〈A(−i�β) (B(0) −B(t))〉0 (2.123)

which is the quantum version of the fluctuation-dissipation theorem. Since
β ≤ 1/T , the argument of A tends to zero in the classical limit � → 0 and
one recovers (2.121). This completes the proof. �

We need to point out here that in the definition (2.120) of the response
function, the external force F was assumed to be applied statically at all
times τ , 0 ≤ τ ≤ t. For later considerations of non-equilibrium systems, it is
more useful to consider the response to a short impulse δF (s) at time s. The
response function to such an impulse is defined by

RBA(t, s) =
δ〈B〉(t)
δF (s)

∣∣∣∣
F=0

. (2.124)

At equilibrium, the response function RBA(t, s) = RBA(t − s) only depends
on the time-difference τ = t− s. The fluctuation-dissipation theorem (2.121)
may then be written in the form

RBA(τ) =
dRBA(τ)

dτ
= − 1

T

∂

∂τ
〈B(τ)A(0)〉0 = − 1

T

∂CBA(τ)
∂τ

(2.125)

to which we shall refer when coming to the study of ageing phenomena in
the second volume of this book.
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Secondly, we consider relaxation effects. In this situation, the system is
initially in an equilibrium state characterised by the density matrix ρ(0) =
Z−1 exp(−H/T ) and the time-dependent density matrix is given by the for-
mal solution ρ(t) = exp(−iL0t)ρ0 of the Liouville equation, where the Li-
ouville operator L0 is determined from the unperturbed Hamiltonian H0.
One considers the relaxation of the average 〈B〉(t) from its initial value
〈B〉0 = tr[ρ(0)B] towards its stationary value 〈B〉(∞) = tr[ρ0B]. This is
described by the relaxation function

ΦBA(t) := RBA(0) − RBA(t) (2.126)
〈B〉(t) = 〈B〉0 + FΦBA(t) .

Thirdly, we may also consider oscillating forces of the form F cosωt. A
straightforward calculation shows that to first order in F

〈δB〉(t) =
F

�

∫ t

0

dτ cos(ω(t− τ)) 〈[A(0), B(τ)]〉0 . (2.127)

In many situations, and in keeping with the above treatment, one is mainly
interested in non-transient effects. A simple way to obtain them is to wait
‘sufficiently long’ such that the response can be described faithfully through
a single Fourier component with angular frequency ω and one may mimic
this by extending the upper limit from t to ∞ in the above equation. This
then leads to

〈δB〉nt(t) =
F

i�

∫ ∞

0

dτ cos(ω(t− τ)) 〈[A(0), B(τ)]〉0

= �
(
χBA(ω)Fe−iωt

)
, (2.128)

where we defined the complex alternating susceptibility

χBA(ω) = χ′
BA(ω)− iχ′′

BA(ω) =
1
i�

∫ ∞

0

dτ exp(iωτ) 〈[A(0), B(τ)]〉0 (2.129)

whose real part χ′
BA(ω) describes the frequency-dependent response in phase

with the external force while its imaginary part χ′′
BA(ω) describes the out-

of-phase response. In Fig. 2.8c, we schematically indicated that the linear
response to an external oscillating field h(t) is in general out of phase with
respect to h(t) and besides the oscillating part, it may also contain contri-
butions which vary monotonously as a function of time (in experiments, one
usually averages over at least one period of the external field h(t)).

If the reference system is at equilibrium, the three functions RBA(t),
ΦBA(t) and χBA(ω) are related. The first two are related by the fluctuation-
dissipation theorem (2.121) while the remaining ones are related as follows.
Denoting by
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f(s) =
∫ ∞

0

dt e−stf(t) (2.130)

the Laplace transform f(s) of a function f and comparing the first identity
of (2.121) with the definition (2.129), one easily finds that

χBA(ω) = lim
ε→0

(−iω+ε)RBA(−iω+ε) = ΦBA(0)− lim
ε→0

(−iω+ε)ΦBA(−iω+ε).

(2.131)
These relations are known as the response-relaxation relations. It is in-
structive to further illustrate the content of the fluctuation-dissipation theo-
rem. For an oscillating external force, the power absorbed or the average rate
of work done on the system is

Q(t) = − d
dt

〈H0 −AF cosωt〉 = 〈A(t)〉ωF sinωt . (2.132)

Since experiments are often carried out in the non-transient domain, one
recalls the definition

〈A(t)〉nt = 〈A〉0 + Fχ′
AA(ω) cosωt+ Fχ′′

AA(ω) sinωt . (2.133)

Experiments actually measure the averaged power Q̄ absorbed over at least
one cycle, of period 2π/ω, and one has

Q̄ =
ω

2π

∫ 2π/ω

0

dt Qnt(t) =
1
2
ωF 2χ′′

AA(ω) (2.134)

which makes the relationship of the imaginary part χ′′(ω) with dissipation
explicit.

In the vicinity of an equilibrium phase transition, the extension of the
equilibrium scaling arguments towards dynamical scaling (see exercise 13)
predicts the scaling behaviour of the alternating susceptibility, in the low-
frequency limit ω → 0

χ′(ω, τ) ∼ |τ |−γ , χ′′(ω, τ) ∼ ω|τ |−γ−νz. (2.135)

It is convenient to take magnets as physical systems of reference (as we
shall do from now on), although many studies on relaxation phenomena
are performed in different physical contexts, for example through dielectric
and/or elastic measurements. In Table 2.2 we illustrate the above abstract
discussion by giving concrete physical interpretations of the quantities dis-
cussed. At the same time, this table provides a short glossary between mag-
netic, dielectric and an-elastic relaxations.

A few more comments are required concerning an-elastic relaxation [144].
It is a well-known fact that a mechanical system subjected to a stress shows
first an elastic response for small stress, where Hooke’s law is valid (the
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symbol magnetic dielectric an-elastic

force magnetic field Hz electric field Ez stress tensor V σzz

conjugate operator magn. moment µz el. dipole moment dz strain εzz

interaction Hamiltonian −Hz · µz cos ωt −Ez · dz cos ωt −V σzzεzz cos ωt
macroscopic observable magnetisation M polarisation P an-elastic strain εan

response function magnetic response polarisation response creep function
relaxation function magnetic aftereffect elastic aftereffect
alternating susceptibility magn. susc. χ(ω) permittivity D(ω) compliance J(ω)
power absorbed χ′′(ω) D′′(ω) internal friction F (ω)

Table 2.2 Glossary for magnetic, dielectric and an-elastic relaxation, listing quantities
corresponding to the force F , its canonically conjugate operator A and the associated
macroscopic observable 〈A〉, the response function RAA(t), the relaxation function ΦAA(t),
and the alternating susceptibility χAA(ω).

induced strain is proportional to the applied external stress), and a plastic
regime with a non-linear response which will not be considered here. Also,
we have ignored completely the important tensorial aspects20 of stress and
restrict our analysis to uniaxial stresses and strains.

An-elastic relaxation as discussed above in terms of the response func-
tions is measured in so-called creep experiments. In response to a uni-
axial, homogeneous and constant stress σ0 applied from time t = 0 onward
the corresponding strain is given by ε(t) = εinst + εan(t), see Fig. 2.8a. Here
the component εinst builds up almost instantaneously and obeys Hooke’s
law, whereas the an-elastic strain εan(t) evolves slowly in time and shows
a saturation (much as the magnetisation or polarisation in magnetic or di-
electric systems). The measured response function is called the creep func-
tion Ran(t) = limσ0→0 εan(t)/σ0. Similarly, in relaxation experiments one
observes an instantaneous jump in the strain, followed by a slow decay of the
an-elastic strain, called the an-elastic aftereffect, see Fig. 2.8b. Therefore,
an an-elastic material completely recovers upon removal of an external stress,
which is very different from what is seen e.g. in plastic materials. Physically,
this is plausible since an-elastic relaxation comes from the stress-modulated
motion of defects in materials, which on a microscopic level should be essen-
tially random.

2.5 From Scale-Invariance to Conformal Invariance

In the second volume, we shall study the possibility of extending a scale-
symmetry towards larger symmetry groups. The basic idea is perhaps most
easily gleaned from the extension of scale-invariance at an equilibrium critical
point towards conformal invariance.

20 See e.g. [252] for an introduction.
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In order to do so, we first reconsider scale-invariance. While we had pre-
viously started from the assumption that the thermodynamic potentials are
generalised homogeneous functions which may be justified through renor-
malisation group arguments, we wish to take here the scaling of (connected)
correlation functions as a starting point. For a simple ferromagnet at a critical
point, consider the two-point functions

Gσ(r1 − r2) = 〈σ(r1)σ(r2)〉 − 〈σ(r1)〉〈σ(r2)〉
Gε(r1 − r2) = 〈ε(r1)ε(r2)〉 − 〈ε(r1)〉〈ε(r2)〉 (2.136)

where σ(r) and ε(r) stand for the densities of the order parameter and the
energy at site r, respectively. In terms of the reduced variables τ = (Tc−T )/T
and h, dynamical scaling asserts that under a length rescaling with a constant
rescaling factor b (suppressing metric factors) Gσ and Gε are generalised
homogeneous functions

Gσ(r; τ, h) = b−2xσGσ(r/b; τbyτ , hbyh)
Gε(r; τ, h) = b−2xεGε(r/b; τbyτ , hbyh) . (2.137)

Here xσ and xε are the scaling dimensions of σ and ε while yτ , yh are, by abuse
of language, called renormalisation-group eigenvalues. Rather than us-
ing the RG to derive (2.137), one may also adopt an axiomatic approach to
scale-invariance and then use (2.137) as the definition of scaling. In other
words, one assumes Gσ and Gε to be generalised homogeneous functions.
The densities σ(r) and ε(r), which are conjugate to the scaling fields h and
τ , respectively, are called scaling operators [122].

Let us recall how to recover the scaling behaviour of the thermody-
namic potentials from (2.137). This is obtained from the static fluctuation-
dissipation theorem (FDT) discussed in the previous section (exercise 11)

χ =
1
T

∑
r

Gσ(r ) � 1
T

∫
ddrGσ(r ) ,

C =
1
T 2

∑
r

Gε(r ) � 1
T 2

∫
ddrGε(r ) . (2.138)

Integrating (2.137), one obtains for the scaling of the susceptibility per site

χ(τ, h) = bd−2xσχ(τbyτ , hbyh). (2.139)

Recall that χ = −∂2g/∂h2, where g = G/N is the density of the Gibbs
potential. Therefore, integrating twice with respect to h, one arrives at

g(τ, h) = bd−2xσ−2yhg(τbyτ , hbyh). (2.140)

Similarly, one has for the scaling of the specific heat
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C(τ, h) = bd−2xεC(τbyτ , hbyh) (2.141)

and consequently, since C = −∂2g/∂t2, up to factors which are constant and
non-zero close to criticality, one obtains

g(τ, h) = bd−2xε−2yτ g(τbyτ , hbyh). (2.142)

Comparing the two forms for the scaling of g, one arrives at xε + yτ =
xσ + yh. In fact, a similar relationship in the scaling of the Gibbs potential
(free energy) could be derived for any pair of scaling fields coupled to their
conjugates.

Since the above constant is independent of the scaling operators, it should
have simple value. A plausible choice in view of the scaling of the density of
the Gibbs potential g = G/N is (equivalent to hyperscaling)

xε + yτ = xσ + yh = d (2.143)

and finally the scaling law for the Gibbs potential density becomes

g(τ, h) = b−dg(τbyτ , hbyh) . (2.144)

The relationship with the conventional equilibrium critical exponents can be
read from

xε = d− yτ =
1 − α

ν
, xσ = d− yh =

β

ν
. (2.145)

From these considerations, it appears natural to assume that the co-variance
of certain two-point correlation functions under dilatation really comes from
the co-variance of the local operators σ(r) or ε(r) from which they are built.
If we let φ(r) stand for any local scaling operator, the covariance conditions
under dilatations (2.137) can be reduced to φ(r) = b−xφ(r/b), where x = xφ

is the scaling dimension of the field φ.
While so far we have only studied global scale-transformation with a con-

stant dilatation factor b, one may enquire whether there is a generalisation
of global scale-invariance to a local scale-invariance, such that b = b(r)
becomes space-dependent, quite analogous to the generalisation of global to
local gauge symmetry in particle physics. Using again the notation of local
fields φ(r), the natural generalisation of global scale-invariance (2.137) is

φ(r) �→ φ′(r) = J(r)x/dφ(r/b(r)) , (2.146)

where J(r) is the Jacobian of the transformation r �→ r′ = r/b(r). From this,
the transformation of correlators built from φ(r) is easily derived. Indeed,
such extended space-time symmetries occur in many known situations, for
example in Maxwell’s equations in a vacuum, which are not only scale- but
also conformally invariant. It is therefore tempting to ask whether scale-
invariance in critical equilibrium systems may be extended to conformal
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(a) (b) (c)

Fig. 2.9 Coordinate transformations. The transformation from the square lattice in (a)
onto the lattice in (b) is conformal while the transformation onto the lattice in (c) is not.
Reproduced from [270] with kind permission of Springer Science and Business Media.

invariance. Indeed, this extension appears to be true quite generally and
appears to depend essentially on the locality of the underlying field-theory.

The discovery of conformal invariance in equilibrium phase-transitions in
the 1970’s [527] and the tremendous development in 2D in the 1980’s, start-
ing with the work of Belavin, Polyakov and Zamolodchikov [51] and of Cardy
[117, 118] has been one of the most fruitful recent developments in equilib-
rium statistical physics, especially in two spatial dimensions. While in d > 2
dimensions, conformal invariance determines the form of the two- and three-
point correlators, in 2D the form of any n-point correlator is determined in
terms of the scaling dimensions. Furthermore, there exists a class of so-called
conformal minimal models which contain a finite number of independent
primary scaling operators whose scaling dimensions are known rational num-
bers. Hence all exponents, amplitudes and scaling functions can be found, the
cross-over between different critical points can be analysed and much more.

In the following, we give a short summary of those properties of conformal
invariance which will be useful for possible extensions to non-equilibrium
phase-transitions in Vol. 2 of this book. For more detailed information, see
e.g. [120, 122, 168, 270, 112].

1. By definition, a conformal transformation r �→ r′ maps the en-
tire space Rd into itself such that angles are preserved while length scales
may vary. Locally, a conformal transformation is a combination of rotations,
dilatations and translations. For example, in Fig. 2.9 the mapping from the
square lattice in panel (a) to panel (b) is conformal since all angles are locally
conserved, while for the non-conformal mapping from (a) to (c) they are not.
Geometrically, a non-conformal mapping can be recognised by its shear.

The predictive power of conformal invariance depends on the dimension-
ality of the system. In d > 2 spatial dimensions, the conformal group is
finite-dimensional and is generated by translations r �→ r + a, rotations
r �→ Dr, where D is a rotation matrix in d dimensions, dilatations (scale-
transformation) r �→ br, and the so-called special conformal transforma-
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tions

r �→ r′ =
r + ar2

1 + 2 a · r + a2r2
. (2.147)

The geometric meaning of the special transformation (2.147) becomes clear
when rewriting it as

r ′

r′2
=

r

r2
+ a, (2.148)

which is the combination of an inversion r �→ r/r2 followed by a translation
r �→ r+a and again an inversion. In d > 2 dimensions, there are 1

2 (d+1)(d+2)
independent types of conformal transformations.

2. Because of the small number of conformal transformations in d > 2
dimensions, the imposed constraints should not be too strong. In two dimen-
sions, however, the conformal group is generated by infinitely many genera-
tors. Here it is useful to work with complex coordinates

z = r1 + ir2 , z̄ = r1 − ir2 (2.149)

instead with two-dimensional vectors r = (r1, r2). In this formulation, any
transformation z �→ w(z) or z̄ �→ w̄(z̄) where w and w̄ are, respectively,
complex analytic and anti-analytic functions, is a conformal transformation.
For illustration, consider again Fig. 2.9, where the conformal transformation
wa→b(z) = z2 is clearly analytic while the non-conformal transformation
wa→c(z) = z|z| is not.21

Writing w(z) = z + ε(z), w̄(z̄) = z̄ + ε̄(z̄), the infinitesimal conformal
transformations are formally given by

εn = −εzn+1 , ε̄n = −ε̄z̄n+1. (2.150)

When these transformations are applied to a scaling operator φ = φ(z, z̄),
they generate the following infinitesimal changes δφ = ε�nφ and δ̄φ = ε̄�̄nφ
with the explicit Lie algebra generators

�n = −zn+1∂z −∆(n + 1)zn , �̄n = −z̄n+1∂z̄ −∆(n+ 1)z̄n . (2.151)

Here the non-derivative terms express the transformation of the local field
φ(r) = φ(z, z̄) itself and the terms containing derivatives describe the changes
in the coordinates z and z̄. The real numbers ∆ and ∆ are (misleadingly) re-
ferred to as complex scaling dimensions or conformal weights of the scaling
operator φ. Indeed, its scaling dimension x and its spin s are given by

x = ∆+∆ , s = ∆−∆. (2.152)

21 In complex coordinates, only the conformal Möbius transformations z �→ (αz +
β)/(γz + δ), αδ − βγ = 1 (also called projective transformations) have an analogue
in d > 2. Moreover, they are the only conformal transformations which map the entire
complex plane C ∼= R2 surjectively onto itself.
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The generators (2.151) satisfy the following commutation relations

[�n, �m] = (n−m) �m+n

[�̄n, �̄m] = (n−m) �̄m+n (2.153)
[�n, �̄m] = 0.

This algebra is also called the loop algebra and decomposes into the direct
sum of two commuting Lie algebras, one generated by the set 〈�n〉n∈Z and
the other by 〈�̄n〉n∈Z. Because of this simple structure, it is often enough to
consider merely the z-dependence of correlators.

3. Next, we remind the reader of the conformal invariance of Laplace’s
equation ∆Lφ = (∂2

r1
+∂2

r2
)φ = 0 in two dimensions. In complex coordinates,

the Laplace operator becomes ∆L = 4∂z∂z̄. The conformal invariance of
Laplace’s equation can be simply expressed through the commutator (and
similarly for �̄n)

[∆L, �n] = −4(n+ 1)zn ∂2

∂z∂z̄
− 4∆(n+ 1)nzn−1 ∂

∂z̄
(2.154)

which means the following. If the conformal weight of the function φ(z, z̄)
vanishes, viz. ∆ = 0, then [∆L, �n]φ = −(n + 1)zn∆Lφ. Therefore, solutions
of the Laplace equation ∆Lφ = 0 with a vanishing conformal weight and
hence of vanishing scale dimension x = ∆+∆ = 0 are mapped under any 2D
conformal transformation into other solutions φ �→ (1 + ε�n)φ of the Laplace
equation, for any integer n ∈ Z.

4. Invariance under the finite-dimensional subgroup of the conformal group
fixes some correlation functions built from a certain class of scaling operators,
which are referred to as quasiprimary [51]. By definition, a quasiprimary
scaling operator transforms covariantly according to (2.151) under projec-
tive conformal transformations. Covariance under translations, dilatations
and the special transformation generated by �−1, �0 and �1 implies the so-
called projective Ward identity for n-point correlation functions built
from quasiprimary scaling operators φi = φi(zi, z̄i)

n∑
i=1

∂

∂zi
〈φ1 . . . φn〉 = 0 ,

n∑
i=1

(
zi

∂

∂zi
+∆i

)
〈φ1 . . . φn〉 = 0

n∑
i=1

(
z2

i

∂

∂zi
+ 2∆izi

)
〈φ1 . . . φn〉 = 0 . (2.155)

A similar set of equations holds for the dependence on the variables z̄i.
We illustrate how the conditions (2.155) determine the form of the confor-

mally covariant two-point function Φ(z1, z2; z̄1, z̄2) = 〈φ1(z1, z̄1)φ2(z2, z̄2)〉.
To this end it is enough to study the dependence on z1 and z2 explicitly.
First, from translation invariance it is clear that Φ = Φ(z) with z = z1 − z2.
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Then dilatation-invariance implies

�0Φ(z) = (−z∂z −∆1 −∆2)Φ(z) = 0 (2.156)

with the obvious solution Φ(z) = Φ0z
−∆1−∆2 , whereas invariance under the

special transformation gives

�1Φ(z) =
(
−
(
z2
1 − z2

2

)
∂z − 2∆1z1 − 2∆2z2

)
Φ(z) (2.157)

=
(
−z2∂z − 2∆1z

)
Φ(z) + 2z2 (−z∂z −∆1 −∆2)Φ(z) = 0 ,

where we used the decomposition z2
1 − z2

2 = (z1 − z2)2 + 2z2(z1 − z2).
The last term in the second line of (2.157) vanishes because of dilatation-
invariance (2.156). Next, multiply (2.156) by z and subtract it from (2.157).
This leads to the result

(∆1 −∆2) zΦ(z) = 0 (2.158)

which means that the conformal weights of the two scaling operators have to
be equal. Combining these results and restoring the conjugate part as well,
the two-point function of quasi-primary scaling operators must be [527]

〈φ1 φ2〉 = δ∆1,∆2 δ∆1,∆2
φ0 (z1 − z2)

−2∆1 (z̄1 − z̄2)
−2∆1 , (2.159)

where φ0 is an arbitrary normalisation constant. For scalars φ1,2, one has
∆i = ∆i = xi/2 and the covariant two-point function becomes, reverting to
real coordinates

〈φ1(r)φ2(0)〉 = φ0 δx1,x2

(
r21 + r22

)−x1 = φ0 δx1,x2 |r|−2x1 . (2.160)

Similarly, one can determine the conformal three-point function [527]

〈φ1φ2φ3〉 = C123 z
−(∆1+∆2−∆3)
12 z

−(∆2+∆3−∆1)
23 z

−(∆1+∆3−∆2)
13

×z̄−(∆1+∆2−∆3)
12 z̄

−(∆2+∆3−∆1)
23 z̄

−(∆1+∆3−∆2)
13 , (2.161)

where we wrote zij = zi − zj . We point out that the value of the coefficient
C123 is not arbitrary.22 Although these results were specifically derived in two
dimensions, they are readily generalised to d > 2 for scalar fields. This can be
seen as follows. By a rotation the two points z1 and z2 can always be moved
onto a predetermined line and the three points z1, z2, z3 of the three-point
function can always be made to fall into a given plane. Hence the restriction
to d = 2 is enough to obtain the form of both two- and three-point functions.

5. Often it is useful to describe the critical behaviour of a statistical sys-
tem through a field-theory with action S[φ]. The standard procedure of the
Hubbard-Stratonovich transformation allows one to find this action with a

22 With the normalisation Cij = δij in (2.159), the Cijk are universal.
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continuum field φ systematically for any given lattice model with discrete
spin variables, see exercise 16 for an example. Then thermodynamic averages
can be calculated from the functional integral

〈A〉 =
1
Z

∫
DφA[φ]e−S[φ]/T , (2.162)

where Z =
∫
Dφe−S[φ]/T is the partition function. Here Dφ =

∏
r

∫
dφ(r) is a

shorthand for the functional integration over the values of the continuum field
at all space points and which replaces the sum over all spin configurations
in the lattice model. Symmetries of the model, such as conformal invariance,
can be studied through the transformation properties of the action. At an RG
fixed point, the action will be invariant under global scale-transformations.
If one considers an arbitrary coordinate transformation (not necessarily con-
formal) r �→ r′ = r + ε(r) with a ‘small’ ε(r), the action should change
according to

δS =
∫

dr Tµν(r)∂µεν , (2.163)

where µ, ν = 1, . . . , d and Einstein’s summation convention is used. Transla-
tion invariance is already implemented here and one has also used the fact
that the action S is a scalar. This kind of expansion implicitly assumes suf-
ficiently short-ranged interactions in order to be valid. Since the coordinate
change r �→ r′ may be interpreted as the stretching of an elastic medium, Tµν

is referred to as stress-energy tensor or energy-momentum tensor.23

For a rotation-invariant theory, one easily sees that Tµν = Tνµ is a sym-
metric tensor. Moreover, for a system at an RG fixed point, the action S is
invariant under dilatations, hence T µ

µ = 0, i.e., the stress-energy tensor is
traceless. Finally, for a special conformal transformation

εµ(r) = ηµr2 − 2rµη · r (2.164)

where η is some constant infinitesimal vector, one has

Tµν∂
µεν = 2Tµν (rµην − ηµrν) − 2T µ

µ η · r = 0 (2.165)

and the action (2.163) is invariant. Roughly speaking, the above arguments
assert that [100]

translation-invariance
rotation-invariance
scale-invariance
short-ranged interactions

⎫⎪⎪⎬⎪⎪⎭ =⇒ conformal invariance. (2.166)

23 The standard construction of the canonical energy-momentum tensor from the La-
grangian density of a classical field-theory may omit divergence terms. In order to obtain
continuity equations for the conserved quantities, it may be necessary to include those
terms and one then arrives at an ‘improved’ energy-momentum tensor, see e.g. [168].
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We point out that in 2D, this argument can be generalised and ensures the
invariance of S under the full infinite-dimensional conformal group. If one of
the conditions in (2.166) is not met, full conformal invariance will not hold.24

6. The invariance of a critical two-dimensional equilibrium system under
any analytic mapping of its coordinate space combined with an appropri-
ate rescaling of local operators essentially determines the form of the scaling
functions of all n-point correlation functions and the possible values of crit-
ical exponents. In fact, conformal invariance provides a partial classification
scheme of phase transitions in two dimensions, see e.g. [51, 120, 122, 168, 270]
for further information. This comes about from the inclusion of the effects of
thermal fluctuations into the conformal generators, �n �→ Ln, which modifies
the conformal algebra to the so-called Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 (2.167)

(and similarly for �̄n). The Virasoro algebra is characterised by a real num-
ber c, the central charge. The mathematical representation theory of the
Virasoro algebra leads, via the celebrated Kac table, to a classification of
modular-invariant partition functions of equilibrium critical phenomena in
two dimensions. The most simple models of equilibrium critical phenomena
correspond to the unitary representations of the Virasoro algebra which are
possible if either c ≥ 1 or c = 1 − 6/(m(m + 1)) with m = 2, 3, 4 . . . which
for each value of m defines a conformal minimal model. For example,
the 2D Ising model at criticality corresponds to c = 1/2 (m = 3) and the
allowed conformal weights are ∆ = 0, 1

16 ,
1
2 . Since both magnetisation and

energy densities are scalars, one has xσ = ∆σ + ∆σ = 1
16 + 1

16 = 1
8 and

xε = ∆ε +∆ε = 1
2 + 1

2 = 1. The conventional critical exponents of the Ising
model can now be obtained from (2.145). Remarkably, all critical exponents
derived from the conformal minimal models turn out to be rational.

This last result seems to be specific to two spatial dimensions. So far, there
is no convincing evidence that the critical exponents in three dimensions,
where an analogue of the Virasoro algebra does not exist, are rational.

7. Two-dimensional conformal invariance allows us to relate universal
finite-size amplitudes to critical exponents [117]. To see this, consider the
logarithmic conformal transformation

w =
L

2π
ln z (2.168)

24 It can be checked explicitly (see exercise 17) that the improved energy-momentum tensor
for free fields is symmetric and furthermore traceless for vanishing masses of the field φ, but
we warn the reader that the above argument does contain hidden subtleties the existence
of which have been exposed recently [526, 551, 14].
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which maps the infinite complex z-plane onto an infinitely long strip of finite
width L, with periodic boundary conditions. Under a finite transformation
w = w(z) and w̄ = w̄(z̄), the two-point function built from conformal primary
scaling operator φ = φ(z, z̄) with conformal weights (∆,∆) transforms as

〈φ(z1, z̄1)φ(z2, z̄2)〉z = (2.169)(
dw
dz

(z1)
dw
dz

(z2)
)∆ (

dw̄
dz̄

(z̄1)
dw̄
dz̄

(z̄2)
)∆

〈φ(w1, w̄1)φ(w2, w̄2)〉w.

Using the explicit form (2.159) of the two-point function, one obtains for the
transformation (2.168), with z = exp(2πL−1w) = exp(2πL−1(u + iv))

〈φ(w1, w̄1)φ(w2, w̄2)〉w =
(

2π
L

)2∆+2∆
(
z
1/2
1 z

1/2
2

z1 − z2

)2∆ (
z̄
1/2
1 z̄

1/2
2

z̄1 − z̄2

)2∆

=
(

2π
L

exp[ π
L(w1 + w2)]

exp(2π
L w1) − exp(2π

L w2)

)2∆

·
(

2π
L

exp[ π
L(w̄1 + w̄2)]

exp(2π
L w̄1) − exp(2π

L w̄2)

)2∆

=
(
π

L

1
sinh[ π

L(w1 − w2)]

)2∆

·
(
π

L

1
sinh[ π

L (w̄1 − w̄2)]

)2∆

, (2.170)

where w1 − w2 = (u1 − u2) + i(v1 − v2). To understand the meaning of this
result, consider the limits:

1. u1 −u2 � L. By a rotation of the coordinate system in the plane, one can
always arrange for v1 = v2 and one recovers the bulk form.

2. u1 − u2 � L. One finds an asymptotic exponential decay

〈φ(u1, v1), φ(u2, v2)〉strip �
(

2π
L

)2x

(2.171)

× exp
[
−2π
L

(∆+∆)(u1 − u2) − i
2π
L

(∆−∆)(v1 − v2)
]
,

which is the usual way to define a correlation length ξ via 〈φ(u, v)φ(0, 0)〉∼
exp(−u/ξ). Because of x = ∆+∆, one reads off [117]

ξ = L/(2πx). (2.172)

Therefore, two-dimensional conformal invariance confirms the Privman-Fisher
hypothesis (2.113), in the case of a slab geometry. The universal finite-size
amplitudes (2.114) become [117, 70, 4]

Si(0, 0) =
{

2πxi ; periodic
πxi,s ; free , Y (0, 0) =

{
−πc/6 ; periodic
−πc/24 ; free (2.173)



54 2 Survey of Equilibrium Critical Phenomena

where xi is the bulk scaling dimension related to the correlation length as-
sociated with the two-point function of the primary scaling operator φi and
xi,s is the corresponding surface scaling dimension. For the order parameter
σ, one has xσ = β/ν and xσ,s = β1/ν. The relations (2.173) permit a very
efficient calculation of the central charge c and the scaling dimensions xi, xi,s

in a given model.
The other universal amplitude combinations of (2.114) can also be found

and read, for the slab geometry with periodic boundary conditions [119]

lim
τ→0

gsing(τ, 0)ξ̄2
ε(τ, 0) = lim

z→±∞Y (z, 0)S−2
ε (z, 0) = − c

48π
2 − α

1 − α

lim
h→0

gsing(0, h)ξ̄2
σ(0, h) = lim

µ→±∞Y (0, µ)S−2
σ (0, µ) = − c

48π
2 − γ

1 − γ
(2.174)

where α and γ are the usual bulk critical exponents. Here, the correlation
lengths ξ̄i are defined from the normalised second moments

ξ̄2
i :=

1
4

∫
R2

dr r2〈φi(r)φi(0)〉∫
R2

dr 〈φi(r)φi(0)〉
(2.175)

It is an open problem if, or to what extent, ideas and methods of con-
formal invariance might be used in the description of non-equilibrium phase
transitions. This question will be taken up in Vol. 2 of this book.

Problems

3. Consider the Ising model on a lattice with N sites. Write down the par-
tition functions Z = Z(T, h) = exp(−G(T, h)/T ) and Z̃ = Z̃(T,M) =
exp(−F (T,M)/T ) for fixed field h and fixed magnetisation M , respectively.
Show that in the limit N → ∞, one recovers the Legendre transformation
F = G+Mh, together with M = −∂G/∂h.

4. Consider the Ising model in an external magnetic field on a one-dimensional
ring with L sites. If T is the transfer matrix, recall that the partition function
Z = tr TL. Derive an explicit real-space renormalisation group transforma-
tion in terms of the model’s parameters by defining the matrix T2 := T2 such
that Z = tr T2

L/2 and study its fixed points.

5. For a system with a plane boundary, define for τ = 0 the exponents ms ∼
h1/δs , m1 ∼ h1/δ1 and m1 ∼ h

1/δ11
1 and show that [183]
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δs =
β + ν

βs
, δ1 =

β + ν

β1
, δ11 =

ν

2
d− η‖
β1

6. Fill in the details of the derivation of the two-scale-factor universality
(2.113) in the finite-size scaling at equilibrium.

7. Consider the Brownian motion of a particle of mass m and submitted to
an external force F (t). The velocity (for simplicity, take d = 1) satisfies the
equation of motion

dv(t)
dt

= −γv(t) + η(t) +
1
m
F (t) (2.176)

where η(t) is a centred Gaussian noise with variance 〈η(t)η(t′)〉 = 2Bδ(t−t′).
First, consider the case F = 0 without an external force. From the condition
that at equilibrium 〈v2〉eq = kBT/m, derive the Einstein relation B =
γkBT/m. Next, at equilibrium, calculate the two-time correlation function
C = C(t − t′) = 〈v(t)v(t′)〉 and the linear response function R = R(t −
t′) = δ〈v(t)〉/δF (t′)|F=0. Show that they satisfy the fluctuation-dissipation
theorem �R̂(ω) =

(
ω/(2γkBT )

)
Ĉ(ω) and verify the equivalence with (2.125).

Explain the relationship with the Einstein relation.

8. Consider a classical system with interaction Hamiltonian H0 described by
a canonical ensemble with temperature T . If φ(t) denotes the order-parameter
field, add a time-dependent perturbation

∫
dt h(t)φ(t) to the Hamiltonian and

show directly that the linear response function is

Req(t, t′) =
δ〈φ(t)〉
δh(t′)

∣∣∣∣
h=0;eq

=
1
T

(
〈φ(t)〉〈φ(t′)〉 − 〈φ(t)φ(t′)〉

)
where all averages are taken at equilibrium.

9. Prove the following identity involving the n-fold commutator

[H, [H, . . . , [H,A] . . .]]n times =
n∑

k=0

(
n
k

)
(−1)n−kHkAHn−k (2.177)

and use this to prove the Heisenberg representation (2.122) by expanding
both sides in powers of t and comparing coefficients.

10. The Liouville operator L : V → V acts on the vector space

V :=
{
A : H → H|A linear and trA†A < ∞

}
of linear operators A on a Hilbert space H such that trA†A is finite. This
vector space V has a Hilbert-space structure with the scalar product

S(A,B) := tr
(
A†B

)
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Show that L as defined in (2.119) is Hermitean with respect to this scalar
product and conclude that if A is Hermitean, then A(0)e−i�tL0 = A(−t).

11. Show from the fluctuation-dissipation theorem that in the long-time limit

lim
t→∞RBA(t) = Rstat

BA =
∫ 1/T

0

dβ
(
〈A(−i�β)B(0)〉0 − 〈A〉0〈B〉0

)
�→0� 1

T

(
〈A(0)B(0)〉0 − 〈A〉0〈B〉0

)
(2.178)

which reproduces the well-known static fluctuation-dissipation theorem, since
Rstat

BA is the static susceptibility of equilibrium statistical mechanics. Also
check that in the limit N → ∞ the integral form (2.138) of the static
fluctuation-dissipation theorem can be reproduced.

12. Prove the following form of the fluctuation-dissipation theorem

χ′′
AA(ω) =

i
�

∫ ∞

0

dt sin(ωt)〈[A(0), A(t)]〉0 (2.179)

Can one write an analogous representation for the real part χ′
AA(ω)?

13. The dynamical behaviour at an equilibrium phase transition can be de-
scribed in terms of dynamical scaling, which for the correlation function
may be cast in the form

C(t, r; τ) = |r|−(d−2+η)C
(
|r|t−1/z; |r||τ |ν

)
(2.180)

with the usual equilibrium exponents and z is the dynamical exponent.
For an infinitesimal periodic perturbation, with angular frequency ω, around
the equilibrium state, derive (2.135).

14. Consider the infinitesimal conformal transformations as given by the com-
plex generators (2.151). Rewrite them in terms of the infinitesimal transfor-
mations of the components of the 2D vector r = (r1, r2).

15. Verify the conformally co-variant three-point function (2.161). For scalar
fields, extend to any dimension d ≥ 2.

16. Consider a d-dimensional hypercubic lattice with N sites. The Ising
model partition function can be written as

Z =
1

2N
∑
{σ}

exp

⎛⎝∑
(a,b)

Kab σaσb

⎞⎠ , σa = ±1, (2.181)

where K̂ is a matrix of coupling constants. Recalling the identity
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−∞
dNy exp

(
−1

2
yQ̂y

)
= (2π)N/2(det Q̂)−1/2. (2.182)

where Q̂ is an N × N matrix, derive the Hubbard-Stratonovich trans-
formation which relates the partition function Z to the functional integral
of a scalar φ4 theory.

17. Construct the energy-momentum tensor for a free scalar field. Does your
construction agree with (2.166)?

18. Consider a two-dimensional critical system in a semi-infinite geometry,
e.g. in the upper half-plane. Derive the form of the two-point function from
conformal invariance [116].

19. Use a conformal transformation to derive the relationship between the
universal finite-size scaling amplitude Si(0, 0) and the surface scaling dimen-
sion xi,s for a system defined on an infinitely long strip of width L with free
boundary conditions [117].



Chapter 3

Directed Percolation

The term percolation (from the Latin percolare = to filter) means to make
a liquid to pass through fine interstices and is often used in the context
of filtering.1 A filter is usually made of a porous substance such as cloth,
paper, sand or charcoal, through which a liquid may be passed to cleanse
it of the solid or impure matter held in suspension. The retained material
accumulates, clogging the pores so that the filter becomes impermeable after
some time and needs to be replaced. Therefore, it is important to understand
how the transition from percolation to congestion takes place, and we shall
use a particular formulation of this problem as a paradigm for absorbing
phase transitions.

3.1 Directed Percolation at First Glance

Various simple models for percolation have been introduced and intensively
studied. In such models the pores of the filter are represented by the sites
of a lattice. Neighbouring pores are connected by small channels which are
represented by the bonds of the lattice that connect adjacent sites. In order to
mimic irregularities in the network, each of these channels is randomly open
with probability p or closed otherwise. An important question would be how
the percolation probability p, which controls the microscopic connectivity
of the channels, influences the macroscopic permeability of the filter.

It turns out that in a sufficiently large system there is a phase transition
from a macroscopically permeable phase to another phase, where the filter
becomes clogged so that the penetration depth is finite. This transition is
continuous and takes place at a well-defined critical threshold pc. As in

1 The french word percolateur=coffee machine makes this even more explicit and, because
of the direction imposed by the gravitational field, refers to directed, rather than isotropic,
percolation.

59



60 3 Directed Percolation

Fig. 3.1 Bond percolation: The figures show a finite lattice in a particular configuration
of open and closed bonds. Water is injected from above in the middle, as indicated by the
arrows. Left panel: In the case of isotropic (=undirected) percolation the water percolates
through open channels in any direction, leading to a certain cluster of wet sites. Right
panel: In the case of directed percolation the water can only propagate downwards, leading
to a much smaller and more elongated cluster.

equilibrium statistical mechanics, the large-scale properties of percolation
models close to the critical threshold turn out to be universal, i.e., they are
determined by basic symmetries rather than microscopic details of the model.
It is this universality which continues to fascinate theoretical physicists.

There are two fundamentally different versions of percolation. In isotropic
(undirected) percolation, the agent can pass through open channels in any
direction, while in directed percolation (DP) the water is restricted to flow
along a preferred direction in space. For example, in a porous medium such
a directed flow may be caused by a gravitational field, forcing the liquid to
flow downwards. As shown in Fig. 3.1, the resulting clusters of wet sites are
very different in both cases. Although both models exhibit percolation tran-
sitions, they take place at different critical thresholds and are characterised
by different universal properties.

The two models also differ in so far as isotropic percolation in two
space dimensions can be mapped exactly to the equilibrium q-state Potts
model [529, 635] in the limit q → 1 [224, 223] so that in two dimensions the
critical exponents are known exactly [156, 487], see also appendix A. On the
other hand, directed percolation is apparently not exactly solvable. An ex-
cellent introduction to isotropic percolation can be found in the textbook by
Stauffer and Aharony [578]. In the present book, however, we are primarily
concerned with directed percolation, which we shall from now on interpret as
a stochastic many-particle process far from equilibrium.

The interpretation of DP as a stochastic process becomes possible by virtue
of the strict order of cause and effect which allows one to interpret the pre-
ferred direction as a temporal coordinate. For example, in bond directed
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Fig. 3.2 Bond directed percolation as a stochastic process evolving in time. The process
shown here starts with a single wet site at the origin. It then evolves through a sequence
of configurations along horizontal lines enumerated by a temporal index t. An important
quantity to study is the number N(t) of wet sites at time t.

percolation, where bonds are randomly blocked, we may enumerate hori-
zontal rows by a temporal index t, commonly referred to as ‘time’, as shown
in Fig. 3.2.2 Knowing the configuration of wet sites at time t we can compute
the next configuration at time t + 1 by means of simple probabilistic rules.
The same applies to site directed percolation, where sites instead of bonds
are randomly blocked.3

Interpreting wet (active) sites as particles A and dry (inactive) sites as
vacancies ∅ these probabilistic rules can be regarded as update rules of a
reaction-diffusion process. For example, if both channels to the nearest
neighbours at time t+1 are blocked, the trajectory of the particle terminates,
meaning that the particle disappears by a death process A → ∅. If only one
channel is open the particle effectively diffuses to the left or right with equal
probability. Finally, if both channels are open the particle duplicates creating
an offspring, i.e., it undergoes the reaction A → 2A. However, each site can
be occupied by at most one particle. Therefore, if two particles happen to
reach the same site, they merge to a single one by a coalescence process
2A → A. Therefore, DP can be interpreted as a reaction-diffusion process
which involves

• particle removal (death) A → ∅
• offspring production A → 2A
• coalescence 2A → A

combined with single-particle diffusion, as demonstrated in Fig. 3.3. As will
be discussed below, any stochastic particle process that effectively follows

2 It is common to refer to a lattice with d directions perpendicular to the single ‘time’
direction as ‘(d + 1)-dimensional’.
3 In site percolation, the sites of a lattice are occupied with probability p and the occupied
sites are linked by nearest-neighbour bonds to form clusters. In bond percolation, all sites
are occupied and bonds are drawn between nearest-neighbour sites with probability p.
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this reaction-diffusion scheme belongs generically to the universality class of
DP.

Using this dynamical interpretation it is straightforward to generate ex-
plicit realisations of DP-clusters on a computer. To this end one simply iter-
ates over all active sites at time t and activates their nearest neighbours at
time t+ 1 independently with probability p. Usually a simple non-optimised
source code takes less than a page. For example, the simple C-code shown in
Fig. 3.4 measures the number of particles N(t) in a bond DP process starting
with a single seed, averaging the result over R independent runs.

To get a first impression of what DP clusters look like it is useful to
plot the generated clusters for various percolation probabilities, as shown in
Fig. 3.5. Obviously, if p is small, the generated clusters have the shape of a
finite droplet, as shown in the left panel of the figure. On the other hand,
if p is sufficiently large, activity may spread over the entire system within
a cone-like region in space-time, generating an infinite cluster of active sites
(see right panel of Fig. 3.5). However, even for large values of p it may happen
that some of these clusters die out at an early stage.

Increasing the computational effort and analysing the cluster sizes statisti-
cally one observes the following phenomenology: Below a certain well-defined
threshold p < pc all generated clusters remain finite while for p > pc some
of the clusters (but not all of them) spread infinitely over the entire system.
These two phases are separated by a sharp transition point at a specific crit-
ical threshold p = pc which in the case of bond DP in one space dimension is
close to 0.6447. At this point finite clusters of all sizes are generated. These
critical clusters are sparse and remind one of self-similar fractal structures.
As will be explained below, the large-scale properties of critical clusters are
universal, i.e., they do not depend on the microscopic details of the model
under consideration.

At this point it is instructive to study the average number of active par-
ticles 〈N(t)〉 generated by the short C-program listed in Fig. 3.4. The result
is shown in Fig. 3.6 in a double-logarithmic plot. Below the critical threshold
the average number of particles 〈N(t)〉 first increases until it crosses over to
an exponential decay. Above the critical point the increase accelerates un-
til it crosses over to a linear increase. Precisely at the critical point p = pc

the corresponding curve in the log-log plot appears to be straight, indicating
power-law behaviour. In fact, it is found that 〈N(t)〉 measured at criticality
increases for large t as tΘ, where the exponent Θ ≈ 0.302 is just the slope of

t

t+1
death coalescenceoffspringdiffusion

Fig. 3.3 Interpretation of bond directed percolation as a reaction-diffusion process of
interacting particles (see text).
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#include <fstream.h> 
using namespace std;

const int T=1000;           // number of updates
const int R=10000;          // number of independent runs
const double p=0.6447;      // percolation probability

double RND(void) { return (double)rand()/0x7FFFFFFF; } 

int main (void) {
int s[T][T],N[T],i,t,r;     // array of sites, N(t), indices
for (t=0; t<T; t++) N[t]=0; // clear particle counters 
for (r=0; r<R; r++) {       // loop over R runs 
   s[0][0]=1;              // place initial seed
   for (t=0; t<T-1; t++) { // temporal loop
       for (i=0; i<=t+1; ++i) s[t+1][i]=0;    // clear new config
       for (i=0; i<=t; ++i) if (s[t][i]==1) { // loop over wet sites
           N[t]++;                        // count wet sites
           if (RND()<p) s[t+1][i]=1;      // random activation left
           if (RND()<p) s[t+1][i+1]=1;    // random activation right
   }   }   }

ofstream os ("N.dat");      // write average N(t) to file
for (t=0; t<T-1; t++) os << t << ' ' << (double)N[t]/R << endl;
}

t

i

Fig. 3.4 Simple C-program generating a bond DP cluster, at p=0.6447.

p<p c cc p=p p>p

i i i

t t t

Fig. 3.5 Typical DP clusters grown from a single seed in 1+1 dimensions.

the straight line in the log-log plot. For small t, however, especially during
the first few time steps, we observe deviations from the anticipated power-law
behaviour. These so-called initial transients are caused by the discrete lattice
structure and depend on non-universal details of the model. The asymptotic
notation

〈N(t)〉 ∼ tΘ (3.1)

intentionally ignores such initial transients as well as the model-dependent
proportionality constant and thus allows one to concentrate on the interesting
universal behaviour valid in the limit of large times t and for large system
sizes. The exponent Θ, however, is the same in all DP models, i.e., it is
universal with respect to microscopic details of the model. It is this robust
universality combined with its simplicity which makes DP so fascinating.
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Fig. 3.6 Average number of particles 〈N(t)〉 as a function of time t (measured in units of
Monte Carlo steps) for various percolation probabilities p.

3.2 Directed Percolation as a Stochastic Process

3.2.1 Basic Scaling Behaviour

As outlined in the previous section, DP can be interpreted as a stochastic
process of diffusing particles which react as A → ∅, A → 2A. In addition,
each site can be occupied by at most one particle, effectively introducing a
coalescence process 2A → A. On a descriptive level the DP phase transi-
tion may be thought of as being caused by a competition of spontaneous
reproduction and self-annihilation of particles. If the rate for offspring pro-
duction A → 2A is sufficiently large, the (infinite) system is able to maintain
a fluctuating active state characterised by a non-vanishing stationary particle
density � > 0. Contrarily, if the dynamics is dominated by death processes
the system approaches a configuration without particles.

Such a configuration, from where the system cannot escape, is called ab-
sorbing. More specifically, an absorbing state is a configuration (or a set
of several configurations) that can be reached by the dynamics but not be
left by them. Obviously such absorbing states cannot obey detailed balance
with any other active state, hence the system is by definition out of ther-
mal equilibrium. Therefore, DP is said to display a non-equilibrium phase
transition from a fluctuating phase into an absorbing state or, more con-
cisely, an absorbing phase transition.

As in equilibrium statistical mechanics, it turns out that continuous phase
transitions in systems out of equilibrium can be grouped into universality
classes which are associated with certain critical exponents. Absorbing phase
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transitions are characterised by at least three independent critical exponents4

β, ν⊥, and ν‖. The exponent β describes how the stationary density of particles
in the active phase of an infinitely large system scales5 close to criticality, i.e.,

� ∼ (p− pc)β . (3.2)

Here p is the percolation probability that controls the effective rate for off-
spring production while pc denotes its critical value where the transition takes
place. Such a stationary state is characterised by a correlation length ξ⊥
and a correlation time ξ‖. They both diverge close to criticality as

ξ⊥ ∼ (p− pc)−ν⊥ , ξ‖ ∼ (p− pc)−ν‖ . (3.3)

Since there is no symmetry between space and time, the two exponents ν⊥
and ν‖ are generally different (see Table 4.3 on page 159 for numerical values
of these and other non-equilibrium exponents of DP).

In contrast to equilibrium statistical mechanics, stochastic models involve
time as an independent degree of freedom on equal footing with the spatial
degrees of freedom, allowing one to study dynamical properties such as relax-
ation phenomena. This requires one to specify an initial state. For example,
starting with a fully occupied lattice at the transition p = pc, the density of
particles (active sites) decays algebraically as

�(t) ∼ t−α , (3.4)

where α = β/ν‖. Similarly, the spatial correlation length grows as

ξ⊥(t) ∼ t1/z , (3.5)

where z = ν‖/ν⊥ is the so-called dynamical exponent.
In finite systems one observes deviations from these asymptotic power laws.

For example, on a finite lattice there is always a non-vanishing probability
of reaching the absorbing configuration. Typically this leads to a breakdown
of the power laws (3.4) and (3.5) when the correlation length ξ⊥ becomes
comparable with the lateral size (diameter) of the system. Generally such
finite-size effects set in after a typical time that grows with the system
size. For example, if L is the lateral size of the system (so that N ∝ Ld is
the total number of sites), the absorbing state is reached at a characteristic
time tf that scales as tf ∼ Lz.

4 As will be shown in Sect. 4.1 there are actually two exponents β and β′, meaning that
absorbing phase transitions are generally described by four independent critical exponents.
In the case of DP these two exponents coincide because of a special symmetry under time-
reversal.
5 See Table 4.1 on p. 102 for a collection of the definitions of the conventional critical
exponents of absorbing phase transitions.
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3.2.2 Universality and the DP Conjecture

As mentioned before there are a large variety of models which exhibit a DP
phase transition. This means that the term ‘directed percolation’ does not
refer to a particular model; rather it stands for a whole universality class of
models which display the same type of transition, characterised by a certain
set of critical exponents and scaling functions. The DP class comprises di-
verse types of systems, including models for epidemic spreading, forest fires,
catalytic reactions, synchronisation of maps, and surface growth, to name
only a few. In order to delineate this range of models, Janssen and Grass-
berger formulated their celebrated DP-conjecture [326, 240]. According to
this conjecture, it is thought that a given model should generically belong to
the DP universality class if

1. the model displays a continuous phase transition from a fluctuating active phase

into a unique absorbing state,

2. the transition is characterised by a non-negative one-component order parameter,

3. the dynamic rules are short-ranged,

4. the system has no special attributes such as unconventional symmetries, conser-
vation laws, or quenched randomness.

Apart from multicritical extensions of directed percolation (e.g. tricritical
directed percolation, see Sect. 5.4) which violate the above hypothesis in the
strict sense, no counterexamples have been found so far. In fact, the DP class
seems to be even more general as it has been identified in models that violate
some of the four conditions, for example in certain models with several [483,
482] or fluctuating absorbing states [470] or even in spreading processes with
several particle species and multicomponent order parameters [254, 360, 11,
468, 505, 645, 310]. This means that the DP universality class is extremely
robust.

In contrast to well-known equilibrium universality classes such as the 2D
Ising model, even in 1+1 dimensions DP has not yet been solved exactly.
Despite its simplicity and robustness all attempts to compute the critical
exponents exactly have failed so far. In fact, numerical estimates suggest that
the values of the critical exponents might turn out to be irrational numbers,
rather than the simple rational values found in 2D integrable systems at
equilibrium.

3.2.3 Simple Mean-Field Approximation

Most models that belong to the DP universality class can be interpreted
directly as a stochastic particle processes. Let us now introduce effective
reaction rates (probabilities per unit time) µr,µp, and µc for particle removal,
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offspring production, and coalescence:

A −→ 2A with rate µp

A −→ ∅ with rate µr

2A −→ A with rate µc

Starting with such an effective reaction-diffusion scheme, it is straightforward
to set up a simple mean-field approximation in terms of the mean parti-
cle density �(t), which neglects any spatial information (cf. appendix E and
exercises 20,21,23,29). In this approximation the unary reactions A −→ 2A
and A −→ ∅ correspond to a linear term for particle gain and loss while
the binary coalescence process 2A −→ A gives rise to a quadratic loss term,
leading to the mean-field equation

∂t�(t) = τ�(t) − g�(t)2 . (3.6)

Here we introduced the so-called control parameter τ = µp − µr which, as
we shall see below, is proportional to the distance from the critical point.
Moreover we used the abbreviation g = µc since in a field-theoretic context
this parameter will play the role of a coupling constant.

In the asymptotic limit of large t the solution of the mean-field equation
is given to leading order by

�(t) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−τ

(
g − τ

�0

)−1

eτt −→
t→∞

0 if τ < 0(
�−1

0 + gt
)−1 −→

t→∞
0 if τ = 0

τ
g + τ

g2

(
g − τ

�0

)
e−τt −→

t→∞
τ
g if τ > 0 ,

(3.7)

where �0 denotes the initial density at t = 0. Obviously the steady-state
solution � = 0 corresponds to the absorbing state. For τ > 0 the solution
approaches a steady-state with a non-vanishing stationary density of active
sites � = τ/g while for τ = 0 one obtains an algebraic decay. Therefore,
within mean-field theory the transition takes place at the critical threshold
τc = 0. Comparing these results with (3.2) and (3.4) one obtains the mean-
field exponents βMF = 1 and αMF = 1, respectively.

In order to obtain the third independent exponent, one has to include
an additional term in the mean-field equation which provides spatial infor-
mation. Since in DP active sites create offspring at nearest neighbours, the
particles are subject to an effective diffuse motion. This can be accounted for
by adding a term for diffusion in the mean-field equation

∂t�(t, r) = τ�(t, r) − g�(t, r)2 +D∇2�(t, r) , (3.8)
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where D is the diffusion constant. Inserting the scaling ansatz �(t, r) =
(gt)−1f(r/t1/z), where z = ν‖/ν⊥ is the dynamical critical exponent, one
obtains a consistent differential equation for f only if zMF = 2. Therefore, the
mean-field exponents of directed percolation are given by

βMF = 1, ν⊥,MF = 1/2, ν‖,MF = 1. (3.9)

3.2.4 Phenomenological Langevin Equation

The mean-field exponents are expected to be valid in sufficiently high space
dimensions, where diffusive mixing is strong enough to suppress correlations.
As we shall see now, the mean-field approximation is actually valid in space
dimensions above the so-called upper critical dimension dc = 4. To see
this let us consider the phenomenological stochastic Langevin equation
for DP which accounts for fluctuation effects on a coarse-grained level. This
Langevin equation can be derived rigorously from the master equation of the
contact process [326] and looks like the mean-field equation (3.8) extended
by a suitable noise term:

∂t�(t, r) = τ�(t, r) − g�(t, r)2 +D∇2�(t, r) + η(t, r) . (3.10)

Here η(t, r) stands for a density-dependent Gaussian noise field with the
correlations

〈η(t, r)〉 = 0 , (3.11)
〈η(t, r)η(t′, r′)〉 = κ �(t, r) δ(t− t′) δd(r − r′) , (3.12)

where κ controls the global noise amplitude. Note that the density appears
on the right-hand side of the correlator, meaning that the amplitude of the
noise is effectively proportional to

√
�(t, r). This ensures that the absorbing

state �(t, r) = 0 does not fluctuate. The square-root behaviour is related to
the fact that the noise describes density fluctuations on a coarse-grained
scale, which can be viewed as the sum of individual noise contributions gen-
erated by each particle averaged over some mesoscopic box size. According
to the central limit theorem, the distribution of the sum η =

∑N
i=1 ηi of

N identically distributed random variables ηi (such that their average and
variance are both finite) tends in the limit N → ∞ to a Gaussian. Hence one
expects η(t, r) to be drawn from a Gaussian distribution with an amplitude
proportional to the square root of the number of active sites in the box.

By a dimensional analysis of the Langevin equation, one observes that
the noise is irrelevant in d > 4, marginal in d = 4, and relevant in d < 4
dimensions (see exercise 43). This means that dc = 4 is the upper critical
dimension of directed percolation above which the mean-field exponents are
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correct. Below dc fluctuation effects become relevant and the exponents have
to be determined by a renormalisation group study of the corresponding field
theory, as will be discussed in Sect. 4.3.4.

We note that (3.10) is the minimal Langevin equation needed to describe
DP. It may also include higher order terms such as �3(t, r), ∇4�(t, r), or
higher-order contributions of the noise. The irrelevance of such higher-order
terms can be understood from the renormalisation group (RG), as we shall
explain later, and is the origin of universality in DP. Furthermore we note that
Langevin equations for systems with absorbing states are difficult to iterate
numerically. To our knowledge the most efficient method was proposed by
Dornic et al. in [192].

3.2.5 Update Schemes and Evolution Equations

The dynamical rules of stochastic models can be defined in terms of various
update schemes, the most important ones being parallel (synchronous) and
random-sequential (asynchronous) updates.

3.2.5.1 Parallel Updates:

In models with parallel updates such as directed bond percolation (see
Sect. 3.1) the time parameter t is discrete. For an update from time t to
time t+1 the configuration c is mapped to a new configuration c′ with prob-
ability pc→c′. Consequently the probability distribution Pt(c) of finding the
system at time t in the configuration c evolves as

Pt+1(c) = Pt(c) +
∑
c′

pc′→cPt(c′)︸ ︷︷ ︸
gain

−
∑
c′

pc→c′Pt(c)︸ ︷︷ ︸
loss

. (3.13)

In this evolution equation gain and loss terms balance one another so that it
conserves the total probability

∑
c Pt(c) = 1. Note that the evolution equa-

tion – unlike the process itself – is fully deterministic.
In a more compact form the evolution equation may be written as

|Pt+1〉 = T |Pt〉 , (3.14)

where |Pt〉 denotes a vector whose entries are the probabilities Pt(c). This
means that the corresponding vector space has a dimension equal to the num-
ber of possible configurations of the lattice. The so-called transfer matrix
T is a linear operator that iterates the probability vector forward in time. Its
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matrix elements are given by

〈c′|T |c〉 = δc,c′
(
1 −

∑
c′′

pc→c′′
)

+ (1 − δc,c′)pc→c′ . (3.15)

The transfer matrix is real but in general non-symmetric, expressing the
fact that stochastic processes are generally irreversible, i.e., they are not
invariant under time-reversal. Moreover, the transfer matrix is constrained as
it has to conserve probability. In order to express the condition for probability
conservation in an elegant form let us define the bra vector as a sum over all
possible configurations

〈s| =
∑

c

〈c| , (3.16)

where 〈c| denotes the canonical basis of bra-vectors in terms of configura-
tions c. Obviously, the system conserves probability if 〈s|Pt〉 = 1 for all t.
This implies the identity

〈s|T = 〈s| , (3.17)

meaning that 〈s| is a left eigenvector of T with eigenvalue 1. Consequently
there exists also at least one right eigenvector |s〉 that obeys T |s〉 = |s〉. If
the eigenvalue 1 is non-degenerate this state represents the stationary state of
the stochastic process under consideration. However, in contrast to quantum
mechanics, the components of |s〉 in the canonical representation may differ
from those of 〈s| and may be non-trivial since T is generally non-symmetric.
In other words, ket and bra vectors are no longer related by a simple trans-
position.

Diagonalising T , the real part of the eigenvalues is found to lie between
0 and 1 and its reciprocal negative logarithm gives the relaxation time of
corresponding eigenmode. In principle, any stochastic system with parallel
dynamics can be solved by diagonalising the transfer matrix, expanding the
initial distribution |P0(c)〉 =

∑
n cn|n〉 in terms of the eigenvectors |n〉. The

formal solution is then given by

|Pt(c)〉 =
∑

n

cn q
t
n |n〉 , (3.18)

where qn are the eigenvalues corresponding to |n〉. However, in practise exact
diagonalisation by solving the eigenvalue problem

T |n〉 = qn|n〉 (3.19)

is a very challenging task and is usually restricted to small system sizes.
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3.2.5.2 Random-Sequential Updates:

In models with random-sequential updates local transitions occur sponta-
neously just as in a radioactive decay. In this case the time parameter t
is continuous and the probability distribution Pt(c) evolves according to a
master equation

∂

∂t
Pt(c) =

∑
c′

wc′→cPt(c′)︸ ︷︷ ︸
gain

−
∑
c′

wc→c′Pt(c)︸ ︷︷ ︸
loss

. (3.20)

Again the gain and loss terms balance one another so that the probability
distribution remains normalised as time proceeds. It is important to note that
the coefficients wc→c′ are rates rather than probabilities and carry the unit
[time]−1. Therefore, their numerical values may be larger than 1 and can be
rescaled by changing the overall time scale.

Using again the vector notation this set of equations may be written as

∂t|Pt〉 = −L|Pt〉 . (3.21)

Here the Liouville operator L, sometimes also called the quantum Hamil-
tonian because of its closeness to the Hamiltonians of magnetic quantum spin
systems (see exercise 25), generates the temporal evolution. In the canonical
representation it is defined by the matrix elements

〈c′|L|c〉 = δc,c′
∑
c′′

wc→c′′ − (1 − δc,c′)wc→c′ . (3.22)

Conservation of probability 〈s|Pt〉 = 1 now implies the existence of a left
eigenvector with eigenvalue zero:

〈s|L = 0 . (3.23)

This means that the sum over each column of the matrix L vanishes. Gener-
ally the corresponding right eigenvector |s〉 is a zero mode that represents the
stationary state of the system. A formal solution of this first-order differential
equation can be written in terms of a matrix exponential function as

|Pt〉 =
∑

c

exp(−Lt)P0(c)|c〉 = exp(−Lt)|P0〉 , (3.24)

where |P0〉 denotes the initial probability distribution at t = 0.
Like the transfer matrix T , the Liouville operator L is generally non-

symmetric and its form is restricted by probability conservation (3.23) and
the positivity of the rates. In the mathematical literature such matrices are
called intensity matrices or generator matrices , meaning that all diagonal
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(off-diagonal) entries are real and positive (negative) and that the sum over
each column of the matrix vanishes. The eigenvalues of an intensity ma-
trix may be complex, indicating oscillatory behaviour, but their real part
is always non-negative. The non-vanishing eigenvalues represent relaxational
eigenmodes which decay exponentially with time. A more formal statement
may be given as follows:
Theorem: [315, 381, 558] For a Liouville operator L which satisfies the
master equation (3.21) and with 〈s| =

∑
c 〈c| as a left eigenstate such that

〈s| L = 0, the following holds. (i) There is a stationary state

|s〉 =
∑

c

P∞(c) |c〉 (3.25)

such that L |s〉 = 0. (ii) Consider the eigenvalue problem L |n〉 = En |n〉, with
n = 0, 1, 2 . . .. Then

�En ≥ E0 = 0 (3.26)

(iii) Let |P0〉 =
∑

c P0(c)|c〉 be the normalised initial state such that the
weights of the individual configurations satisfy 0 ≤ P0(c) ≤ 1 and 〈s|P0〉 = 1.
Then for all times t ≥ 0, one has

0 ≤ Pt(c) ≤ 1 and 〈s|Pt〉 = 1 (3.27)

(iv) Let L : Rn → Rn be a linear map such that for the elements Lij of L
holds

Lij ≤ 0 for i �= j ,

n∑
i=1

Lij = 0 ∀j ∈ {1, . . . , n} (3.28)

Then L is a Liouville operator of a Markov process described by the master
equation (3.21).

If all relaxational modes decay exponentially, how can the density of ac-
tive sites in a DP process decay algebraically as �(t) ∼ t−α? In fact, such
an algebraic decay is only possible in an infinite system with infinitely many
eigenmodes and a quasi-continuous spectrum. The eigenmodes are then su-
perposed in such a way that an algebraic decay is obtained. For example, an
integral over exponential functions e−t/tr weighted by the amplitude t−1−α

r

gives ∫ ∞

0

dtr t−1−α
r e−t/tr ∼ t−α . (3.29)

In a finite system, however, where the spectrum is discrete, such an algebraic
behaviour can only be maintained within a certain temporal window until
the system crosses over to an exponential decay towards the steady-state.
We shall discuss such finite-size effects in more detail in Sect. 4.1.9.
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Fig. 3.7 The (1+1)-dimensional Domany-Kinzel automaton. Occupied sites are marked
by full circles. The state of the system at time t + 1 is obtained by an iteration of the
dynamic rules according to the conditional probabilities P [si,t+1|si−1,t, si+1,t]. This means
that the state si,t+1 of a given site i at time t+1 depends on the state of the left and right
neighbours (si−1,t, si+1,t) at the previous time step t.

Another use of the Liouville operator is that it allows one to derive rela-
tions between different stochastic processes via stochastic similarity transfor-
mations, see exercises 26, 27.

3.3 Lattice Models of Directed Percolation

In this section we consider various lattice models that belong to the uni-
versality class of directed percolation. First, we discuss the Domany-Kinzel
automaton which exhibits a non-trivial phase diagram controlled by two pa-
rameters. This model is very robust, easy to implement on a computer, and
its phase diagram comprises a special point which allows one to study how the
directed-percolation behaviour breaks down in presence of an additional sym-
metry. Secondly, we revisit the contact process which is a well-studied model
in the mathematical literature. Thirdly, we consider the pair-contact process
as an example of a model with infinitely many absorbing states. Finally, we
also discuss the threshold transfer process as well as the Ziff-Gulari-Barshad
model for heterogeneous catalysis, before briefly mentioning some further
processes related to DP.

3.3.1 Domany-Kinzel Automaton

An important lattice model, which includes bond and site directed percolation
as special cases, is the celebrated Domany-Kinzel automaton (DK) [188,
391]. The DK model is a stochastic cellular automaton defined on a tilted
square lattice (see Fig. 3.7) whose sites si can be either occupied (si = 1) or
empty (si = 0). Generally a cellular automaton is a discrete model consisting
of a regular grid of cells, each in one of a finite number of states, evolving by
parallel updates with a discrete time variable t ∈ N [634]. The DK model
evolves stochastically according to certain conditional transition probabilities
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Fig. 3.8 Phase diagram of the (1+1)-dimensional Domany-Kinzel model. The inactive
phase (	 = 0) is separated from the active phase (0 < 	 < 1) by a line of second-order
transitions (solid line). Bond directed percolation corresponds to the line p2 = p1(2 − p1)
whereas site directed percolation (see Sect. 3.1) is obtained for p1 = p2. For p2 = 0 the
Domany-Kinzel automaton reduces to the cellular automata rule ‘18’ of Wolfram’s clas-
sification scheme [634]. For p2 = 1 the system is characterised by a particle-hole symme-
try, leading to a different universal scaling behaviour called compact directed percolation,
see Sect. 5.3.

P [si,t+1|si−1,t, si+1,t], which depend on two parameters p1, p2 and are defined
by

P [1|0, 0] = 0 , P [1|0, 1] = P [1|1, 0] = p1 , P [1|1, 1] = p2 , (3.30)

with P [0|·, ·] = 1−P [1|·, ·]. The Domany-Kinzel model is widely used because
it can be implemented efficiently on a computer. In order to determine the
next configuration of active sites at time t + 1, one simply has to iterate
over all sites i which have at least one active nearest neighbour at time t.
For those sites, one generates a random number zi ∈ (0, 1) and performs the
local update

si,t+1 =

⎧⎨⎩1 if si−1,t �= si+1,t and zi(t) < p1 ,
1 if si−1,t = si+1,t = 1 and zi(t) < p2 ,
0 otherwise .

(3.31)

This means that a site becomes active with probability p2 if the two nearest
neighbours at the previous time step were both active while it is activated
with probability p1 if only one of them was active. Thus the model is con-
trolled by two parameters p1 and p2, giving rise to a two-dimensional phase
diagram which is shown in Fig. 3.8. As can be seen, the active and the inactive
phase are now separated by a line of phase transitions.
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model p1,c p2,c µ Ref.

Wolfram rule 18 0.811(1) 0 [435]
0.8015(4) 0.08015 1.5747(34) [435]
0.7894(3) 0.19735 1.4876(32) [435]
0.7668(2) 0.3834 1.3957(31) [435]
0.74515(7) 0.521605 1.3195(30) [435]
0.73300(10) 0.5864 1.2809(34) [435]

site DP 0.70548515(20) 0.70548515 1.1902(30) [355]
0.67316(11) 0.807792 1.1046(26) [435]

bond DP 0.644700185(5) 0.873762052 1 [355]
0.62585(9) 0.9074825 0.93737(20) [435]
0.594305(15) 0.950888 0.82363(22) [435]
0.57870(8) 0.966429 0.76165(26) [435]
0.54865(7) 0.98757 0.60868(24) [435]

0.52469(6) 0.996911 0.44501(30) [435]
0.5124250(15) 0.99922875 0.31626(38) [435]
0.5024969(15) 0.99996903 0.14060(44) [435]

compact DP 1/2 1 – [390]

Table 3.1 Critical points of the (1+1)-dimensional Domany–Kinzel model. The column
labelled µ gives the scaling factor between the particle density 	 and the survival probability
Psur, as expected from rapidity-reversal-invariance (4.183), see Sect. 4.3.4.2.

The Domany-Kinzel model includes bond and site DP as special cases.
For example, in bond directed percolation, the site si,t+1 is activated with
probability p if only one of its nearest neighbours was active at time t, while it
is activated with probability 1−(1−p)2 = 2p−p2 if both of them were active.
Comparing these probabilities with the DK update rule we retrieve bond
directed percolation by setting p1 = p and p2 = p(2 − p), shown as a dashed
curve in the phase diagram Fig. 3.8. Similarly, the special case of directed site
percolation [390], where sites instead of bonds are permeable with probability
p and blocked otherwise, corresponds to the choice p1 = p2 = p. Finally, the
special case p2 = 0 is equivalent to the rule ‘W18’ of Wolfram’s classification
scheme of stochastic cellular automata [634]. Numerical estimates for the
corresponding critical thresholds are listed in Table 3.1.

There is strong numerical evidence that the critical behaviour along the
entire phase transition line (except for its upper terminal point) is that of
DP, meaning that the model always exhibits the same type of long-range cor-
relations. The short-range correlations, however, are non-universal and may
change when moving along the phase transition line. They may even influence
the visual appearance of the clusters, as illustrated in Fig. 3.9, where four typ-
ical snapshots of critical clusters are compared. As can be seen, the large-scale
structure of the clusters in the first three cases is roughly the same although
the microscopic texture seems to become bolder as one moves upwards along
the phase transition line. As shown in [287], this visual impression can be
traced back to an increase of the mean size of active droplets.
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Approaching the upper terminal point the mean size of active droplets
diverges and the generated clusters become compact (cf. Fig. 3.9), which ex-
plains why this special point is usually referred to as compact directed
percolation (CDP). The exceptional behaviour at this point is due to an
additional symmetry between active and inactive sites if p2 = 1. Here the
system has two symmetric absorbing states, namely, the empty and the fully
occupied lattice. Moreover, the dynamic rules are invariant under the replace-
ment p1 ↔ 1− p1 so that the transition point is located exactly at p1 = 1/2.
It turns out that the dynamics at this point of the phase diagram is the
same as in the (1+1)-dimensional Glauber-Ising model at zero temperature
(or, equivalently, the voter model [422, 191]). As these models belong to a
different universality class the term ‘compact directed percolation’ may be
misleading. We shall come back to CDP in Sect. 5.3.

The transfer matrix of the (1+1)-dimensional Domany-Kinzel cellular au-
tomaton can be constructed as follows. Denoting by c = {s1, s2, . . . , sN} the
configuration of a row of N sites, the transfer matrix factorises into

〈c′|T |c〉 =
N∏

j=1

T s′
j

sj−1,sj+1 (3.32)

with appropriate (e.g. periodic) boundary conditions. According to the defi-
nition of the model the factors are given by

T 1
0,0 = 0 , T 1

0,1 = T 1
1,0 = p1 , T 1

1,1 = p2 (3.33)

and conserve probability separately, i.e., T 0
sj−1,sj+1

+T 1
sj−1,sj+1

= 1. Note that
for an even or infinite number of sites, the transfer matrix decomposes into
two commuting factors on the even and the odd sublattices.

The Domany-Kinzel model can be generalised easily to higher spatial
dimensions (see e.g. [241, 249, 445]). In the d+1-dimensional DK model
the activation probability of site i at time t + 1 depends on the number
ni(t) =

∑
j∈<i> sj(t) of active nearest neighbours at time t, i.e., the condi-

site DP bond DP compact DPWolfram rule 18

Fig. 3.9 Domany-Kinzel automaton: Critical clusters generated from a single active seed
at different points of the phase transition line (cf. Fig. 3.8).
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tional probabilities

P [1|0] = 0 ,

P [1|n] = pn , (1 ≤ n ≤ 2d) (3.34)

are now controlled by 2d parameters p1, . . . , p2d. The special case of bond
directed percolation corresponds to the choice pn = 1−(1−p)n while for equal
parameters pn = p one obtains site directed percolation in d+1 dimensions.

3.3.2 Contact Process

Another important model for directed percolation, frequently used in math-
ematically oriented communities, is the contact process (CP), sometimes
also called the Gribov process. The contact process was originally intro-
duced by Harris [267] as a model for epidemic spreading. It is defined on a
d-dimensional square lattice whose sites can be either active (si(t) = 1) or
inactive (si(t) = 0). Unlike the DK automaton, which uses parallel updates,
the contact process evolves by asynchronous updates, meaning that the three
processes (offspring production, on-site removal, and diffusion) occur sponta-
neously at certain rates. Although the contact process and the DK automaton
differ significantly, they both display the same type of critical behaviour at
the phase transition.

On a computer, the contact process can be implemented as follows. First,
one defines an array with N = Ld sites and specifies the initial state. For
each attempted update, a site i is randomly selected. Depending on its state
si(t) and the number of active neighbours ni(t) =

∑
j∈〈i〉 sj(t), a new value

si(t + dt) = 0, 1 is assigned according to certain transition rates w[si(t) →
si(t+ dt), ni(t)]. In the standard contact process these rates are defined by

w[0 → 1, n] = (λn)/(2d) , w[1 → 0, n] = 1 . (3.35)

Here the parameter λ controls the infection rate and plays the same role as
the percolation probability p in bond directed percolation. Its critical value
λc depends on the dimension d and is listed in Table 3.2. On a computer this
means that the transitions are carried out with the probabilities λn/(2d(1 +
λ)) and 1/(1 + λ), respectively, incrementing time by ∆t = 1/N (1 + λ) for
each attempted update.6

In 1+1 dimensions, the dynamical rules of the contact process defined
above can be recast as a two-site process as follows (see Fig. 3.10). For each

6 An often-used alternative notation denotes empty sites by ◦ and occupied sites by •.
Then the rates of the (1+1)-dimensional contact process are • 1−→ ◦, • ◦ ◦ λ/2−→ • • ◦ and

• ◦ • λ−→ • • •.
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model d 1 2 3 4 5

CP λc 3.297848(22) 1.64877(3) 1.31686(1) 1.19505(15) 1.13846(11)
PCP pc 0.077092(1) 0.20053(9) 0.25803(13) – 0.29874(15)
sDP pc 0.70548515(20) 0.34457(1) 0.160958(6) 0.0755850(3) 0.0359725(2)
bDP pc 0.644700185(5) 0.287339(2) – – –

Table 3.2 Critical points of the contact process [359, 171, 445] and the pair-contact
process [151, 444] on a hypercubic lattice in d dimensions and for site and bond directed
percolation on a bcc lattice [355, 249, 433] in d dimensions.

attempted update a pair of adjacent sites i and i+ 1 is randomly selected. If
this pair is occupied by at least one particle they are updated according to
the transition rates

w10→11 = w01→11 = λ/2 , (3.36)
w10→00 = w01→00 = w11→01 = w11→10 = 1/2 ,

while the rates for all other transitions vanish. It is easy to verify that this
definition of the dynamics is equivalent to the definition (3.35) in d = 1
spatial dimensions.

The formulation in terms of two-site updates allows one to write down the
master equation (see (3.20))

∂

∂t
Pt(s′1, . . . , s

′
N ) =

N∑
i=1

[ ∑
si,si+1,s′

i,s
′
i+1

wsi,si+1→s′
i,s

′
i+1

Pt(s1, . . . , si, si+1, . . . , sN )

−
∑

si,si+1,s′
i,s

′
i+1

ws′
i,s′

i+1→si,si+1Pt(s1, . . . , s′i, s
′
i+1, . . . , sN )

]
(3.37)

together with appropriate boundary conditions (e.g. periodic boundary con-
ditions by identifying sN+1 ≡ s1). Using the vector notation ∂t|Pt〉 = −L|Pt〉
as in (3.21) the Liouville operator L can be written as a sum of two-site
processes

λ/2 λ/2 1/2 1/2 1/21/2

is i+1s

t

t+dt

Fig. 3.10 Update rules for the (1 + 1)-dimensional contact process.
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L =
N∑

i=1

1 ⊗ . . .⊗ 1 ⊗ Li,i+1 ⊗ 1 ⊗ . . .⊗ 1 , (3.38)

where 1 is a 2 × 2 identity matrix and Li,i+1 denotes a 4 × 4 interaction
matrix acting on sites i and i+ 1:

Li,i+1 =
1
2

⎛⎜⎜⎝
0 −1 −1 0
0 1 + λ 0 −1
0 0 1 + λ −1
0 −λ −λ 2

⎞⎟⎟⎠ . (3.39)

The spectrum of this operator will be analysed in Sect. 4.3.1.
Because of these compelling analytical properties the contact process is

the preferred realisation of DP in the mathematical literature. Although an
exact solution of the contact process is still lacking, a number of rigorous
results could be derived. For example, it is possible to find lower and up-
per bounds for the critical parameter in the contact process [422], although
they are useless for a precise numerical determination of the critical point
λc.7 Moreover, it was proven rigorously that a supercritical contact process
starting from a single seed spreads within a well-defined light cone as long
as it survives [198]. With the help of a limit theorem, it was also possible
to prove that the supercritical phase of the contact process is ergodic [199].
More recently, it was proven in [85] that a contact process on a finite lat-
tice in one dimension always terminates while a contact process in a slab
([−K,K] × Rd−1) in d > 1 dimensions has a critical threshold λK

c which
converges to the usual value λc in d dimensions for K → ∞. Although these
results are not too surprising for physicists working in this field, it is quite
hard to derive them rigorously.

3.3.3 Pair-Contact Process

The pair-contact process (PCP) was introduced by Jensen [350] and is
one of the simplest models with infinitely many absorbing states showing
a continuous phase transition. The process is defined on a d-dimensional
hypercubic lattice with sites that may be either occupied or empty. The model
evolves by asynchronous dynamics (random sequential updates) as follows.
For each attempted update, a pair of adjacent sites is randomly selected. If
both sites are occupied, they annihilate with probability p, otherwise another
site adjacent to the selected pair is chosen and a particle is created, provided
that the target site is empty (see Fig. 3.11). Solitary particles are not allowed
to diffuse.

7 For example, for d = 1, one has the rather loose bounds 3.078 < λc < 3.884.
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t+dt

t

1p1−p

t

Fig. 3.11 The (1 + 1)-dimensional pair-contact process [350]. Left: Lattice sites may be
either empty (open circles) or occupied by a particle (full circles). Pairs of occupied sites
(solid bonds) are considered as active whereas isolated particles remain inactive. A pair is
annihilated with rate p, otherwise an offspring is created at an empty neighbouring site
selected at random. Right: Simulation of a subcritical PCP, terminating in an absorbing
configuration of immobile solitary particles.

In this model only pairs of particles can annihilate and create offspring
while isolated particles are completely frozen. Therefore any configuration
without pairs of particles is absorbing. For example, on a one-dimensional
chain with L sites and periodic boundary conditions the number Na of ab-
sorbing states is asymptotically given by a power of the golden mean [126]

Na �
( 1 +

√
5

2

)L

(3.40)

and diverges in the thermodynamic limit L → ∞, see exercise 31. Therefore,
the pair-contact process is said to have infinitely many absorbing states (in
the limit L → ∞).

The pair-contact process displays a continuous phase transition from a fluc-
tuating active phase into a frozen state. In one spatial dimension, the current
best estimate for the critical point is pc = 0.077092(1) [151]. However, in con-
trast to the DK model and the contact process, the order parameter � of the
PCP is the density of nearest-neighbour pairs of particles. As in the contact
process and the Domany-Kinzel automaton, the conjugated field corresponds
to spontaneous particle creation [444].

As demonstrated in Fig. 3.11 the PCP can be interpreted as a directed per-
colation process of pairs running on a disordered background of solitary par-
ticles. As the PCP has infinitely many absorbing states, the DP-conjecture by
Janssen and Grassberger (see Sect. 3.2.2) cannot be applied. For this reason
the critical behaviour of the pair-contact process was intensely investigated
by simulations (including [357, 351, 175, 170, 177, 151]), showing that the
critical scaling behaviour of the (d + 1)-dimensional pair-contact process is
indeed characterised by the same critical exponents as DP [350, 357, 433, 151].
Moreover, it was shown that the steady-state, dynamical and finite-size scal-
ing functions coincide below and above the upper critical dimension dc = 4
[444, 176, 446, 151], confirming a renormalisation-group study that predicts



3.3 Lattice Models of Directed Percolation 81

DP universal behaviour [483] for the PCP in all dimensions. Thus, despite
the different structure of the absorbing phase, the pair-contact process still
belongs to the directed percolation universality class.

A modification of the pair-contact process, the so-called pair-contact pro-
cess with diffusion (PCPD), has attracted a lot of attention in the last few
years (see [274] for a recent review). The PCPD differs from the original PCP
in so far as isolated particles are allowed to diffuse. In particular, the PCPD
has only two absorbing states, namely, the empty lattice as well as a state
with a single diffusing particle. This modification changes entirely the struc-
ture of the absorbing phase. The scaling behaviour of the PCPD is not yet
understood and will be discussed in more detail in Sect. 5.8.

3.3.4 Threshold Transfer Process

The threshold transfer process (TTP) introduced in [470] is an example
of a model with fluctuating absorbing states. Here, the lattice sites may be
empty (n = 0), occupied by a single particle (n = 1), or by two particles
(n = 2). The model evolves by random sequential updates, i.e., for each
attempted update a site i is randomly selected and the following moves are
carried out:

- If ni = 0 a particle is created with probability r by setting ni := 1
- If ni = 1 the particle is removed with probability 1− r by setting ni := 0.
- If ni = 2 the two particles may move to two different randomly selected

neighbouring sites. The moves are carried out only if the target site hosts
less than two particles.

In the TTP double-occupied sites are considered as active and their density
is identified as the order parameter of the process. Consequently, the absorb-
ing phase consists of all configurations devoid of double-occupied sites. This
subspace is in fact absorbing, i.e., it can be reached by the dynamics but
it cannot be left by them. Moreover, it is a fluctuating phase because each
site switches randomly between ni = 0 and ni = 1. Therefore, the absorbing
state is a fluctuating steady-state where the density of particles is controlled
by the parameter r.

The phase transition in the TTP can be interpreted as a DP-like pro-
cess of double-occupied sites running on top of the fluctuating absorbing
state. Since the likelihood of such an active site generating another double-
occupied site depends on the particle density in the absorbing state, this
process is indirectly controlled by the parameter r. In fact, steady-state nu-
merical simulations of the (1 + 1)-dimensional and (2 + 1)-dimensional TTP
yield critical exponents and universal scaling functions that are in agreement
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Fig. 3.12 Schematic phase diagram of the Ziff-Gulari-Barshad model for catalytic carbon-
monoxide oxidation. The steady-state concentrations of CO and O2 on the catalytic surface
are plotted as functions of the CO concentration y in the gas phase. The system undergoes
a second-order phase transition to the oxygen-poisoned state whereas a first order phase
transition takes place if the CO-passivated phase is approached. The right figure shows the
density of vacant lattice sites ρfree and its fluctuations ∆ρfree. Reprinted with permission
from [433]. Copyright (2004) World Scientific Publishing Company.

with the corresponding DP values [470, 446]. In 1D, rc = 0.6894(3) and in
2D, rc = 0.5876(5).

In order to obtain universal scaling functions, an external field has to
be applied that is conjugated to the order parameter. In contrast to the
previously discussed models the conjugated field cannot be implemented by
simple particle creation at rate h, since particle creation would affect the
particle density, i.e., the control parameter of the phase transition. Instead,
the conjugated field has to be implemented as an additional term for particle
diffusion [446], i.e., a particle moves to a randomly selected neighbour with
probability h provided that n < 2.

3.3.5 Ziff-Gulari-Barshad Model

Many catalytic reactions such as the oxidation of carbon monoxide on a
platinum surface exhibit transitions into so-called catalytically poisoned
states where the system becomes trapped in a frozen configuration. If such
a transition is continuous, it may mimic the reaction scheme of directed
percolation. For this reason, catalytic reactions are promising candidates for
a possible experimental realisation of DP (see Sect. 3.4).

A well-known model for heterogeneous catalysis which exhibits a DP-like
absorbing phase transition is the Ziff-Gulari-Barshad model (ZGB) [647].
This model mimics catalysis of carbon monoxide oxidation
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2 CO + O2 −→ 2 CO2 (3.41)

on a catalytic surface exposed to a gas composed of CO and O2 molecules
with fixed concentrations y and 1 − y, respectively. The catalytic surface is
represented by a square lattice whose sites can either be empty, occupied by a
CO molecule, or occupied by an O atom. The ZGB model evolves by random
sequential updates according to the following probabilistic rules:

- O2 molecules dissociate on the surface into two O atoms and fill pairs of
adjacent vacant sites at rate 1 − y.

- CO molecules are adsorbed at empty sites at rate y.
- Adjacent CO molecules and O atoms recombine instantaneously to O2 and

desorb from the surface, leaving two empty sites behind.

Obviously, the system is trapped in catalytically poisoned states as soon as
the lattice is completely covered either by carbon monoxide or by oxygen.
These absorbing states attract the dynamics for sufficiently large CO and O2

concentrations, which are controlled by the parameter y (see exercise 30 for
a simple mean-field treatment). Numerical simulations show that catalytic
activity occurs only in the range 0.390 < y < 0.525 [360] (see Fig. 3.12) and
that the system exhibits two different phase transitions. The transition into
the oxygen-poisoned state is continuous while the other transition into the
CO-passivated state is a first-order transition.

There is strong numerical evidence that the continuous phase transition
belongs to the universality class of directed percolation [254, 360, 612]. At
first glance, this might be surprising since the process involves two distinct
chemical components, CO and O. However, in the ZGB model catalytic ac-
tivity is related to the density of vacant sites, i.e., to a single component
order parameter [254]. In this sense, the observed directed percolation be-
haviour is in full agreement with the universality hypothesis of Janssen and
Grassberger.

Concerning possible experimental realisations we note that the ZGB model
may be oversimplified. For example, a more realistic modelling of catalytic
reactions has to incorporate mobility and desorption processes as well as
a repulsive interaction between adsorbed oxygen molecules, see [647, 425].
These features affect the critical behaviour and drive the system away from
the directed percolation universality class.
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3.3.6 Further Non-equilibrium Phenomena Related to
DP

Directed percolation plays an important role in various other models, where
the connection to a spreading process is not immediately obvious. In the
following, we consider five examples.

3.3.6.1 Roughening Transitions

DP-related roughening transitions can also be observed in certain solid-on-
solid growth processes with random-sequential updates [17, 16]. As a key
feature of these models, atoms are deposited everywhere but they can desorb
only at the edges of existing layers. Moreover, the dynamics is constrained
such that the heights at neighbouring lattice sites may differ at most by one
unit. By varying the growth rate, such growth processes display a roughening
transition from a non-moving smooth phase to a moving rough phase.

In this case the sites at zero height correspond to active sites A of a DP
process. Deposition corresponds to the death process A → ∅ while evapo-
ration at the edges resembles offspring production A → 2A. If the growth
rate is small, the interface is effectively anchored to its bottom layer and a
smooth phase is maintained. As the growth rate is increased, more islands on
top of the bottom layer are produced until above a certain critical threshold
they merge forming new layers at a finite rate, giving rise to a finite growth
velocity. In an infinite system, the growth velocity scales near the transition
as

v ∼ ξ−1
‖ ∼ (p− pc)ν‖ , (3.42)

where ν‖ is the temporal scaling exponent of DP.

3.3.6.2 Phase Coexistence in Non-Equilibrium Wetting

Recently there has been increasing interest in wetting phenomena far from
thermal equilibrium. Such non-equilibrium wetting processes are mod-
elled by a growth process on top of an inert substrate [296, 297, 149]. The
substrate breaks translational invariance in the direction of growth, leading to
a non-equilibrium wetting transition with an associated surface critical expo-
nent. Imposing an additional attractive short-range force between substrate
and interface, an additional phase emerges, where the bound and the mov-
ing phase coexist, becoming thermodynamically stable in the limit of infinite
system size [298]. It was argued and confirmed by numerical simulations that
one of the boundaries of the phase coexistence region, where the interface
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detaches from the bottom layer, is governed by a DP transition [233]. In this
case the contact points, where the interface touches the substrate, correspond
to the active sites of a DP process.

3.3.6.3 Synchronisation Transitions in Coupled Map Lattices

We briefly mention here that DP was also encountered in the study of coupled
lattices of chaotic maps [42, 9, 234]. Roughly, a chaotic map is an iteration
of real or complex numbers of the form xn+1 = f(xn) with n ∈ N which am-
plifies small perturbations.8 Examples of discrete dynamical systems related
to chaotic maps are the logistic map xn+1 = rxn(1− xn) or the tent map
xn+1 = r

4

(
1 − |2x − 1|

)
. A map lattice consists of many mutually coupled

maps x
(j)
n living on a given lattice with sites j, e.g. on a one-dimensional

line. The idea is to couple two lattices x(j)
n and y

(j)
n , each of them evolving

chaotically according to the same rules. Depending on the coupling constant
these chains either evolve independently or they synchronise in a common
chaotic state, i.e., the system displays a synchronisation transition. This
transition was found to belong either to the universality class of multiplica-
tive noise or to directed percolation. The order parameter is the so-called
Hamming distance h :=

∑
j |x

(j)
n − y

(j)
n |, which measures the difference

between the states of the two chains.

3.3.6.4 Directed Lattice Animals

A randomly branched polymer, also called a lattice animal, is a con-
nected graph on a lattice. The statistics of such graphs may be formulated
in terms of a generating function Z =

∑
n,b,k an,b,kx

nybτk, where n is the
number of occupied sites, b is the number of bonds between two occupied
nearest-neighbour sites and k is the number of contacts, that is occupied near-
est neighbour sites which are not linked by a bond and x, y, τ are fugacities.
Finally, an,b,k counts all animals with specified values of n, b, k. Depending

8 For a discrete dynamical system xn+1 = f(xn), where the map f : [0, 1] → [0, 1] is three
times differentiable, is symmetric, viz. f(x) = f(1−x), is strictly increasing (i.e. f ′(x) > 0)

for 0 ≤ x < 1
2

and satisfies f
(

1
2

)
= 1, there is a simple necessary and sufficient criterion

for chaotic maps [35]: Under the conditions stated above, a map f is chaotic if and only
if the conditions (i) f ′(0) > 1 and (ii) f ′(x)2 {f, x} < 0 ∀x �= 1

2
are satisfied. Here

{f, z} :=
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

is the Schwarzian derivative. The reader should check this on the logistic map with
r = 4 or on maps like f(x) = sin(πx), f(x) = 1 − (2x − 1)4.
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on the values of the fugacities, a large lattice animal may be preferably either
in a spread-out or a collapsed state and one may become curious about the
way the transition between the extended and collapsed states may occur, see
e.g. [604] for an introduction.

Here, we exclusively consider directed lattice animals, which (i) must all
‘start’ from a single lattice site, (ii) all bonds must have a component in
a preferred direction (for example the diagonal of a square lattice) and (iii)
bonds and contacts are only counted if they have a component in the preferred
direction. One speaks of the strong embedding of a lattice animal, if the
only links between occupied sites are bonds (that is, contacts are absent).
Dhar [163] showed that strongly embedded lattice animals are related to
directed percolation. To understand his precise statement, consider a lattice
gas with either empty or occupied sites labelled by ni,j = 0, 1 and define the
Hamiltonian

H = −J1

∑
i,j

ni,j

(
ni+1,j + ni,j+1

)
− J2

∑
i,j

ni,jni+1,j+1 (3.43)

such that J1 describes the interactions between nearest neighbour sites and J2

is the interaction between two sites which have a common predecessor. Then
one defines a partition function Z = ZN (J1, J2) =

∑
{A} e

−H where the
sum runs over the strongly embedded directed lattice animal configurations.
The remarkable observation is that the Boltzmann weights for any strongly
embedded lattice animal, as generated by this partition function, are exactly
the same as those found for a directed site-bond percolation problem, with
the correspondence [163]

eJ1 =
(2 − pB)(1 − pBpS)
1 − 2pBpS + p2

BpS
, eJ2 =

1 − 2pBpS + p2
BpS

1 − 2pBpS + p2
Bp

2
S

(3.44)

where pB and pS are the directed percolation parameters for the bond and
the site problem, respectively. Since there are quite a few exact results known
for lattice animals, see [76] for a review, one might hope that some interesting
lessons for directed percolation could be learnt. This correspondence has been
checked numerically in detail [394] and furthermore can be extended to lattice
animals without the constraint of strong embedding [282].

3.3.6.5 Damage Spreading

A few years ago, so-called damage spreading studies of non-equilibrium
systems were very popular (see e.g. [294] and references therein). In these
numerical studies, one simulates two copies of the same non-equilibrium sys-
tem, using the same sequence of random numbers, but with slightly different
initial conditions. Depending on the parameters, this initial ‘damage’ either
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disappears or it may spread over the entire system. The hope was that this
would allow one to introduce the notion of chaos in the field of stochastic
non-equilibrium systems. Grassberger was the first to notice that damage
spreading transitions – irrespective of the model under investigation – be-
long generically to the DP universality class [242]. Later it was realised that
the damage spreading technique is ambiguous in so far as it depends on the
specific implementation of random numbers [301].

3.4 Experiments Related to Directed Percolation

Except for a very recent experiment by Takeuchi, Kuroda, Chaté and Sano
[589], there are so far no experiments which reliably reproduce the critical
behaviour of directed percolation, especially the set of critical exponents, on
a quantitative level. In view of the simplicity of DP lattice models and the
prominent role of DP as the basic universality class of absorbing-phase tran-
sitions, one might anticipate that experiments should not be too difficult to
perform. The rareness of reliable experimental evidence is surprising, espe-
cially as various possible experimental realisations have been suggested in the
past, and it is an open question why experiments of DP are so difficult to
perform. Clearly, designing and performing further experiments in different
settings is a challenging problem for the future.

In this section we describe various suggested experiments, discussing their
particular advantages and problems. The aforementioned experiment by
Takeuchi et al. [589], where DP exponents were clearly identified for the
first time, will be discussed at the end in Sect. 3.4.3.3.

3.4.1 Experiments Resembling DP Dynamics

3.4.1.1 Catalytic Reactions

A necessary condition for any experiment related to DP is the existence of a
clean absorbing state. As a candidate let us first discuss catalytic reactions
on surfaces. Here the absorbing configuration corresponds to a so-called cat-
alytically poisoned state, where the reactive surface is completely covered
by one type of molecule, blocking any further dynamics.

An example is the catalytic reaction 2CO + O → 2CO2 on a platinum
surface. As discussed in Sect. 3.3.5, this process can be described in a simpli-
fied manner by the Ziff-Gulari-Barshad (ZGB) model. This model displays
two transitions, namely, a discontinuous transitions into a CO-poisoned state
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Fig. 3.13 Catalytic reactions in theory (left) and experiment (right). The schematic
graphs show the concentrations of oxygen (solid line) and carbon-monoxide (dashed line)
as a function of the CO adsorption rate.

and a DP transition into an O-poisoned state. However, in experiments such
as the one on a Pt(210) surface in [202], only the discontinuous transition
is seen. Similar results were obtained for Pt(111) and for other catalytic
materials. Typically, the measured curves look like the one sketched on the
right-hand side of Fig. 3.13, indicating that poisoning with oxygen does not
occur. Instead the reactivity increases almost linearly with the CO pressure.

Why is the DP transition obscured or even destroyed under experimen-
tal conditions? As a likely explanation, the deviations may be caused by an
imperfect absorbing state. For example, in the O-poisoned state a small
amount of oxygen may still desorb from the surface, which in the language of
DP would correspond to spontaneous creation of active sites by an external
field h. The DP scaling behaviour may also be affected by inhomogeneities
of the catalytic material, i.e. by spatially quenched disorder (see Sect. 5.11).
Moreover, the effective reaction scheme may not be as simple as in the ZGB
model. For example, it was observed that the catalytic reactions preferably
take place at the perimeter of oxygen islands [633]. Furthermore, it was found
that the adsorbed CO molecules on Pt(111) may form three different rota-
tional patterns representing the c(4×2) structure of CO on platinum, leading
to three competing absorbing states. Nevertheless, catalytic surface reactions
remain a promising candidate for possible experimental realisations of DP in
the future.

3.4.1.2 Percolation in Porous Media

Another possible realisation of DP is percolating water in a porous medium
subjected to an external driving force. The medium could be a porous rock
in a gravitational field where neighbouring pores are connected by channels
with a certain probability. Depending on this probability, the penetration
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depth is either finite or the water may ‘percolate’ over infinitely long dis-
tances through the medium. Because of the gravitational field, the water can
only flow downwards so that the percolation process is directed in space. Al-
though this application seems to be quite natural and even gave DP its name,
it is extremely difficult to realise experimentally. While the model assumes a
non-conserved spreading agent, percolation in porous media is strongly influ-
enced by the conserved volume of the fluid and the analysis is aggravated by
various unwanted interactions such as capillary forces. Moreover, many ma-
terials have a broad distribution of pore sizes [283] and thus they are highly
disordered.

3.4.1.3 Avalanches of Flowing Granular Matter

Some time ago it was proposed that simple systems of flowing sand on an in-
clined plane, e.g. the experiments performed by Douady and Daerr [194, 139],
could serve as experimental realisations of DP [293, 294]. In these experiments
glass beads are poured uniformly on to the top of an inclined plane covered by
a rough velvet cloth. As the beads flow down a thin layer settles and remains
immobile. Increasing the angle of inclination φ by ∆φ the layer becomes dy-
namically unstable, i.e., by locally perturbing the system at the top of the
plane an avalanche of flowing granular matter is released. In the experiment
these avalanches have the shape of a fairly regular triangle with an opening
angle Θ. As the increment ∆ϕ decreases, the value of Θ was found to scale
as tanΘ ∼ (∆ϕ)xa with xa ≈ 1.

In order to explain the experimentally observed triangular form of the
avalanches, Bouchaud et al. proposed a mean-field theory [75], predicting
xa = 1/2. As an alternative explanation, it was proposed that flowing sand
may be understood as a nearest-neighbour spreading process [293, 294]. A
corresponding lattice model showed a crossover from compact DP, where
xa = 1, to ordinary DP, where xa = ν‖ − ν⊥ ≈ 0.6. The crossover from
CDP to DP is very slow and probably not accessible on laboratory scales.
However, in principle the Douady-Daerr experiment, when performed on very
large scales, may serve as a physical realisation of DP. As a precondition for
the crossover, initially compact avalanches should thus be able to break up
into several branches.

Such a breakup in several branches can be observed in the experiment
in the limit of high angles of inclination [139]. Yet here the avalanches have
no well-defined front, the propagation velocity of separate branches rather
depends on their thickness. It is therefore no longer possible to interpret the
vertical axis as a time coordinate. Also visually the branches are qualitatively
different from DP clusters. Therefore, it remains an open question to what
extent avalanches of flowing granular matter can be related to DP.
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3.4.1.4 Calcium Dynamics in Living Cells

DP transitions may also occur in certain kinetic models for the dynamics of
Calcium ions in living cells. Ca2+ ions play an important physiological role as
second messenger for various purposes ranging from hormonal release to the
activation of egg cells by fertilisation [62, 382]. The cell uses nonlinear prop-
agation of increasing intra-cellular Ca2+ concentration, a so-called calcium
wave, as a tool to transmit signals over distances which are much longer than
the diffusion length. For example, propagating Ca2+ waves can be observed
in the immature Xenopus laevis oocyte [412].

While most theoretical works on Calcium waves are based on mean-field
methods [322], some authors have introduced models which also take the
stochastic nature of Calcium release into account [383, 77]. In these models
the transition between survival and extinction was found to belong to the DP
universality class. However, inhomogeneities and finite-size effects of living
cells make it practically impossible to identify the universal properties of
such a transition.

3.4.1.5 Electron-Positron Collisions

There is a similar heuristic argument that directed percolation might be
useful to describe some aspects of elementary particle fragmentation. For ex-
ample, such a fragmentation takes place following the production of a quark-
antiquark pair in a high-energy electron-positron collision e+e− → qq, where
further quark-antiquark pairs are subsequently created out of the vacuum
through the Schwinger mechanism, see [39]. In a confining theory such as
quantum chromodynamics (QCD) one expects that qq pairs are linked by
essentially one-dimensional flux tubes and the colour flux is modelled by the
state of the lattice of directed bond percolation (the quarks and antiquarks
are on the dual lattice). The creation of a new qq pair generates a supplemen-
tary colour field which compensates exactly for the one which generated the
new pair and the creation probability can be expressed as a bond percolation
problem [277].

3.4.2 Growth Processes Related to DP

3.4.2.1 Depinning Transitions

Some time ago Buldyrev et al. [94] reported measurements of an interface
formed when a wet front propagates in paper by imbibition. Measuring the
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Fig. 3.14 Simple model exhibiting a depinning transition. The pores are represented by
cells on a tilted square lattice. The permeability across the edges of the cells depends on
the direction of the flow: If the fluid moves downwards all edges are permeable whereas in
the upwards direction they are permeable with probability p and impermeable otherwise.
The right panel of the figure shows a particular configuration of open (dashed) and closed
(solid) edges. Water entering from below will be pinned along a directed path of solid lines,
leading to a finite cluster of wet cells (shaded region). The dashed arrow is an example of
an open path in order to illustrate how the water flows.

width w (the standard deviation of the heights) over a finite length � of the
interface, they found a power-law dependence w ∼ �αr with a roughness
exponent αr = 0.63(4).

It was proposed that this process and in particular the value of αr can be
explained in terms of DP [591, 458]. To this end, one considers a simple model
for interface pinning which is sketched in Fig. 3.14. In this model the pores
of the paper are represented by cells of a tilted square lattice. The liquid
can flow to neighbouring cells by crossing the edges of a cell. Depending
on the direction of the flow these edges can either be open or closed. The
symmetry in the vertical direction is broken by assuming that all edges are
permeable in downwards direction, whereas in the upwards direction they can
only be crossed with a certain probability p. Thus, starting with a horizontal
row of wet cells at the bottom, one obtains a compact cluster of wet cells,
as illustrated in the figure. Obviously, the size of the cluster (and thus the
penetration depth of the liquid) depends on p. If p is large enough, the cluster
is infinite, corresponding to a moving interface. If p is sufficiently small, the
cluster is bound from above, i.e., the interface becomes pinned. Both regimes
are separated by a depinning transition.

The depinning transition is related to DP as follows. As can be seen, a
pinned interface is blocked along a path of impermeable edges running from
one boundary of the system to the other. Obviously, the interface becomes
pinned as soon as there is a directed path of impermeable bonds connecting
the boundaries of the system. Hence the depinning transition is related to
an underlying DP process oriented perpendicular to the direction of growth.
Figure 3.15 shows a possible situation where the interface is pinned. The
cluster’s backbone (see below in Sect. 4.2.6), which consists of all bonds
that connect the two boundaries, is indicated by bold dots. The shaded region
denotes the resulting cluster of wet cells. As can be seen, the interface will
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Fig. 3.15 Interface pinned along the backbone of a directed percolation cluster running
from left to right.

be pinned at the lowest lying branch of the DP backbone. Therefore, the
roughening exponent is expected to coincide with the meandering exponent

αr =
ν⊥
ν‖

≈ 0.63 (3.45)

of the backbone. Comparing the prediction (3.45) with the experimental re-
sult αr = 0.63(4) obtained by Buldyrev et al. [94] one finds an excellent
coincidence, confirming the validity of the model introduced above. However,
in subsequent experimental studies the relation to DP could not be confirmed.
For example, Dougherty and Carle measured the dynamical avalanche distri-
bution of an air/water interface moving through a porous medium made of
glass beads [195]. Assuming an underlying DP process, the distribution P (s)
of avalanche sizes s is predicted to behave algebraically. In their experiment,
however, they observed an essentially exponential behaviour P (s) ∼ s−be−s/L

and the estimates for the exponent b varied between −0.5 and 0.85. Moreover,
Albert et al. [12] measured the propagation velocity of locally tilted parts of
the interface, concluding that interfaces propagating in glass beads are re-
lated to the random-field Ising model rather than DP. As the experimental
results are scattered over a wide range, most authors agree that depinning
experiments should not yet be considered as a firmly established realisation
of DP. Further experimental effort in this direction would be desirable.

Similar experiments were carried out in 2+1 dimensions with a spongy-like
material used by florists, as well as fine-grained paper rolls [95]. In this case,
however, the exponent αr is not related to (2+1)-dimensional DP, instead it
would correspond to the dynamic exponent of percolating directed interfaces
in 2+1 dimensions. In experiments as well as in numerical simulations a
roughness exponent α = 0.50(5) was obtained.
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Fig. 3.16 Polynuclear growth model. In the first half time step atoms are deposited with
probability p. In the second half time step islands grow deterministically by one step and
coalesce.

3.4.2.2 Polynuclear Growth

DP also determines the critical behaviour of roughening transitions in certain
growth processes. As an example let us consider so-called polynuclear growth
(PNG) models [388, 418, 596], where particles first nucleate with probability
p and then expand laterally (see Fig. 3.16). A key feature of PNG models
is the use of parallel updates, giving rise to a maximal propagation velocity
of one monolayer per time step. For a high adsorption rate the interface is
smooth, propagating at maximal velocity v = 1. Decreasing the adsorption
rate below a certain critical threshold, PNG models exhibit a roughening
transition to a rough phase with v < 1. This transition can be observed even
in one spatial dimension.

The relation to DP can be established as follows. Starting from a flat
interface hi(0) = 0, let us interpret sites at maximal height hi(t) = t as
active sites of a DP process. Sites where particles are deposited remain active
while all other sites become inactive. Similarly, lateral growth corresponds to
offspring production of active sites. Therefore, the density of sites at maximal
height

� =
1
N

∑
i

δhi,t (3.46)

corresponds to the density of active sites in a DP process and is expected to
scale as � ∼ (pc − p)β as the deposition probability p is varied. Although this
mapping to DP is not exact, it is supported by numerical simulations.

Concerning experimental realisations of PNG models, the major problem
is the use of parallel updates. In realistic experiments, atoms do not move
synchronously, instead the adsorption events occur spontaneously, so that
random sequential updates may be more appropriate to describe such ex-
periments. However, using random-sequential updates in PNG models, the
transition is lost since in this case there is no maximum velocity. It thus
remains an open question to what extent PNG processes can be realised in
experiments.
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3.4.2.3 Growth with Evaporation at the Edges of Plateaus

As described in Sect. 3.3.6.1, certain growth processes, where evaporation
is allowed only at the edges of plateaus, may exhibit a transition from a
non-moving smooth phase to a moving rough phase which is driven by an
underlying DP process [17, 16]. In particular, the growth velocity is found
to scale as v ∼ (p − pc)ν‖ . Such a growth process may be interpreted as a
PNG-process turned upside down. However, in contrast to the PNG model,
which requires the use of parallel updates, the models introduced in [17, 16]
work with random-sequential updates as well. Therefore, they may be suit-
able candidates for an experimental realisation. However, so far no experi-
mental realisation of this type of growth process is known, probably because
in experiments evaporation from the middle of a plateau (corresponding to
spontaneous creation of activity in the language of DP) cannot be fully sup-
pressed.

3.4.3 Intermittent Turbulence

3.4.3.1 Spiking Magnetic Fluids

A possible way of realising directed percolation in intermittent turbulence
has been proposed by Pomeau [528]. The idea is that the transition to the
turbulent state in a liquid should be similar to the transition of non-linear
oscillators from a regular to an intermittent state. Coupling many of these
oscillators, their interaction can be interpreted as a contamination process.
The situation is similar to that of laminar convection rolls in Taylor-Couette
flow which do not break up spontaneously into a turbulent state unless they
are ‘infected’ by a turbulent neighbour.

An interesting experiment based on this idea has been carried out by
Rupp et al. [554]. The experiment consists of a cylindrical electromagnet
with a sharp edge at which a magnetic fluid is trapped in a ring. Due to the
Rosensweig instability, the magnetic fluid forms spikes if the magnetic field is
strong enough. Using a strong oscillating magnetic field, the spikes display an
intermittent behaviour in space and time. Varying the field amplitude, Rupp
et al. studied the onset of intermittency, finding the exponents β and ν⊥
in agreement with the predictions of DP while ν‖ differed significantly, see
Table 3.3. Even the visual appearance of spatio-temporal clusters seemed
to differ from those of critical DP. Therefore, it is unlikely that such an
experiment can provide evidence for DP critical behaviour.
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3.4.3.2 Intermittent Patterns of Falling Liquid Columns

A closely related experiment was carried out by Brunet and Limat [93], who
studied spatiotemporal disorder in the patterns of falling liquid columns. In
this experiment a liquid trickles down from a ring driven by gravity, form-
ing small columns of liquid. The points from where these columns originate
are not constant, instead they either oscillate around their rest position or
they may even move to a different position. Moreover, sometimes columns
disappear by coalescence and new columns may be born.

Depending on the flow rate, the authors find a continuous transition be-
tween transient and permanent chaos. Brunet and Limat raised the question
whether this transition observed might be related to DP. However, as in the
case of magnetic spikes there is a strong correlation between the sites and
the resulting spatio-temporal patterns of turbulent sites do not look like typ-
ical DP clusters at criticality. In fact, Brunet and Limat find the exponents
ν‖ = 0.80(25) and α = 0.60(15), which differ significantly from the DP values
ν‖ ≈ 1.734 and α ≈ 0.159 in one dimension.

3.4.3.3 Turbulent Liquid Crystals

In a recent study, a new attempt to experimentally realise a steady-state
transition in the DP class has been reported by Takeuchi et al. [589]. The
system is a quasi-2D thin layer (thickness 12µm) of the nematic liquid crystal
MBBA in the electrohydrodynamic convection regime, subject to an exter-
nal voltage in order to trigger the Carr-Helfrich instability. In this way, one
obtains a transition between two different turbulent states, referred to as
dynamic scattering modes DSM1 and DSM2. Close to the voltage threshold
Vc for the appearance of DSM2, it is asserted in [589] that a regime of spa-
tiotemporal intermittency is found where DSM2 plays the role of the active
state and DSM1 corresponds to the absorbing state. It is also argued that the
system under study should be less sensitive to two main problems of previous
experiments:

(i) since it is macroscopic, sensitivity to quenched disorder is much less than
in small systems on a molecular scale and

(ii) since it is turbulent in both states, it is less sensitive to long-range inter-
actions [589].

As the order parameter is simply the density of DSM2, its observation
gives an estimate of the non-universal threshold Vc and the exponent β
for which Takeuchi et al. report the estimate β = 0.59(4). Furthermore,
the distributions of the size ∆l and the duration ∆t of the inactive re-
gions are measured. From the expected power laws e⊥(∆l) ∼ (∆l)−ε⊥/ν⊥

and e‖(∆t) ∼ (∆t)−ε‖/ν‖ with the scaling relations ε‖,⊥/ν‖,⊥ = 2 − β/ν‖,⊥
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Fig. 3.17 Turbulent liquid crystals. (a) Experimental data obtained by Takeuchi et al.,
reprinted with permission from [589]. Copyright (2007) by the American Physical Society.
(b) Data collapse of the experimental data. (c) Data collapse obtained by simulations.

(see p. 110) they find ν⊥,x = 0.66(17), ν⊥,y = 0.77(7) and ν‖ = 1.51(25),
where the index x, y refers to the spatial direction in which the distribution
is measured. According to [589], their results for β and ν⊥ compare quite well
with the theoretical expectation for the DP class β ≈ 0.583, ν⊥ ≈ 0.733, and
ν‖ ≈ 1.295 (see Table 4.3), while the agreement for ν‖ is less satisfactory.

They hence carried out a different experiment by bringing the system first
deep into the regime with a large DSM2 before ‘quenching’ the system to
close to the voltage threshold. Measuring the relaxation of the DSM2 they
extract a second estimate for β/ν‖. This leads to ν‖ = 1.181+(14)

−(21), in better
agreement with the theoretical prediction. Finally, they present their data in
the form of a data collapse and find that their scaling function matches quite
well with the corresponding scaling function of the contact process [589], as
demonstrated in Fig. 3.17.

In this experiment, it has been possible for the first time to obtain esti-
mates for all three independent exponents which are in fair agreement with
the theoretical values for the DP class in 2+1 dimensions, as well as the en-
tire scaling function. If these findings can be substantiated by further tests
and improved estimates the turbulent liquid crystal studied by Takeuchi et
al. would be the first experimental realisation of directed percolation.

3.4.4 Discussion

The results of various experiments to try to identify the critical behaviour of
directed percolation in quasi-one-dimensional systems are listed in Table 3.3.
In spite of considerable experimental effort, many of the measured exponents
are not nearly precise enough to allow for a quantitative comparison with
theoretical predictions.9 It is remarkable that in various cases the largest de-

9 In principle, one needs to measure four independent exponents, for example β, β′, ν‖, ν⊥,
in order to determine a universality class of absorbing phase transitions [470].



3.4 Experiments Related to Directed Percolation 97

viations have been observed in the estimates for ν‖, hence future experiments
should focus particularly on this exponent.

Why is it so difficult to perform experiments related to DP? It seems that
the basic features of DP, which can be implemented so easily on a computer,
are quite difficult to realise in nature. One of these assumptions is the exis-
tence of an absorbing state. In reality, such a non-fluctuating state is hard to
realise. For example, a poisoned catalytic surface is never completely frozen,
rather it will allow for small fluctuations which could be strong enough to
‘soften’ the transition, making it impossible to quantify the critical exponents.
Another fundamental problem is quenched disorder due to microscopic in-
homogeneities of the system. Depending on the type of disorder, even weak
inhomogeneities might obscure or even destroy the DP transition.

In spite of all these difficulties, many physicists believe that DP should
have a counterpart in reality, mostly because of its simplicity and robustness.
Therefore, designing and performing such experiments remains one of the
most important problems of non-equilibrium statistical physics. The recent
liquid crystal experiment by Takeuchi et al. may be an important step in this
direction.

experiment geometry β ν⊥ ν‖ ε⊥/ν⊥ Ref.

RBC annular 0.5 [109]
RBC linear 0.30(5) 0.50(5) 0.50(5) 1.6(2) [146, 145]
RBC linear 0.5 0.5 1.7(1) [146, 145]
viscous fingering linear 0.45(5) 0.5 0.63(2) [475]
line of vortices linear 0.5 [628]
Taylor-Dean linear 1.30(26) ≈ 0.64 ≈ 0.73 1.67(14) [153]
ferrofluidic spikes annular 0.30(5) 1.2(1) 0.70(5) 1.70(5) [554]
DP theory 1D 0.28 1.10 1.73 1.75

Rayleigh-Taylor 2D 0.56(5) [522]

turbulent liquid 2D 0.59(4) 0.66(17)x 1.51(25) 1.10(22)x [589]
crystal MBBA 0.77(7)y 1.23(4)y

1.18
+(14)
−(21)

DP theory 2D 0.58 0.73 1.30 1.20

Table 3.3 Experimentally measured critical exponents in quasi-one-dimensional or two-
dimensional systems. In 1D the geometry is either annular or linear. RBC stands for
Rayleigh-Bénard convection. The exponent ε⊥/ν⊥ = 2 − β/ν⊥ describes the distribution
of spatial gaps. The numbers in brackets give the estimated error in the last digit(s) (most
data are taken from [554]). In [589], indices x and y refer to the spatial direction in which
the exponent was measured. The experimental data have to be compared to the theoretical
values of DP, here rounded to two digits.
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Problems

20. Consider the DP equation of motion on a mean-field level (also referred
to as Schlögl’s first model)

λ−1∂t�(t) = τ�(t) − g�(t)2 , (3.47)

where we neglect the noise and spatial fluctuations of the order parameter.
Derive how the order parameter relaxes in leading order to the steady state
values � = τ/g for τ > 0 and � = 0 for τ < 0, respectively. Discuss the
behaviour of the temporal correlation time ξ‖ on which order parameter re-
laxations takes place. Consider in particular the case τ = 0.

21. Taking spatial fluctuations of the order parameter into account, the
Langevin equation of directed percolation is given by

λ−1∂t�(t, r) =
(
τ − g �(t, r) + ∇2

)
�(t, r) + h. (3.48)

Consider small spatial deviations from the homogeneous steady-state order
parameter �s(τ, h) by introducing δ�(t, r) = �(t, r)−�s(τ, h). Derive within a
linear approximation (Ornstein-Zernicke-like approach) in δ�(t, r) the spatial
correlation length ξ⊥(τ, h) as well as the temporal correlation length ξ‖(τ, h).

22. The relaxation of magnetic systems towards their steady-state is often
described in terms of a stochastic Langevin equation for the coarse-grained
time-dependent order-parameter (magnetisation) m(t)

dm(t)
dt

= −δF [m]
δm(t)

+ η(t)

where η(t) is a Gaussian centred noise with variance 〈η(t)η(t′)〉 = 2Tδ(t− t′)
and F [m] is the equilibrium free energy for which we take here the mean-field
form F [m] = − 3

2λ
2m2 + 1

4m
4. Averaging over the noise, one has the mean-

field equation ṁ = 3λ2 m−m3. Find the stationary solutions and discuss the
relaxation from an initial magnetisation m(0) = m0 �= 0 towards them.

23. Consider the diffusive contact process on a one-dimensional lattice, where
in addition to the particle reactions admitted in the contact process, a particle
may also hop to an empty nearest-neighbour site. Discuss the behaviour of
the model within the site- as well as the pair-approximation and study the
role of the diffusion rate D.

24. Consider Schlögl’s second model defined by the reactions of particles
of the single species A: A+A+∅ λ→ A+A+A and A

1→ ∅ where the spatially
reflected reactions are understood to be included with the same rate. Analyse
the model using the site-approximation.
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25. Particles of a single species A can move on a chain of L sites such that
each site is either empty (state ∅) or occupied by a single particle (state A).
The following microscopic movements are admitted between any two nearest
neighbours on the chain

A+ ∅ DR−→ ∅ +A , ∅ +A
DL−→ A+ ∅

where DR,L are the diffusion rates to the right or the left, respectively. Find
the Liouville operator L for that problem. Show that through a similarity
transformation, it can be related to the quantum Hamiltonian of a Heisenberg
ferromagnetic chain [15].

26. Consider the same system as in the previous exercise, with symmetric
diffusion DR = DL = D. Furthermore, admit the following ‘chemical reac-
tions’ between nearest-neighbour particles: (i) annihilation A+A

2α−→ ∅ + ∅,
(ii) coagulation A + A

γ−→ A + ∅ and A + A
γ−→ ∅ + A and (iii) death

A + ∅ δ−→ ∅ + ∅ and ∅ + A
δ−→ ∅ + ∅. If δ �= 2α + γ, show through a simi-

larity transformation of the Liouville operator that the n-particle correlator
cn(t, {r}) = 〈ar1 . . . arn〉(t), where ar is the time-dependent density at site r,
can be found either from the case without coagulation (γ = 0) or without
annihilation (α = 0) [399, 276, 573].

27. Analyse the diffusion-annihilation-coagulation process of exercises 25,26
by using non-equilibrium field-theory. Show how to re-derive the relationship
between the correlation functions for different values of the reaction rates
[31].

28. Consider a stochastic process, described by a master equation such that
the detailed balance condition wαβP

eq
β = wβαP

eq
α holds and that the equilib-

rium probabilities P eq
α > 0 for all configurations α. Show that the Liouville

operator L is similar to a symmetric matrix M.

29. Analyse the Domany-Kinzel automaton, using the site-approximation.

30. Study the phase-transition in the ZGB model in a simple mean-field
approximation (for simplicity, consider first a one-dimensional version of the
ZGB model before looking at the two-dimensional case). How many phase
transitions do you find and are they of first or of second order?

31. Consider the pair-contact process on a chain with L sites and either open
or periodic boundary conditions. Calculate the number Na(L) of stationary
states for L large and prove in particular (3.40).

32. The triplet-contact process is characterised by the reactions of a single
species A of particles, such that each site of the lattice is either empty or else
occupied by exactly one particle and with the reactions
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3A −→ 4A , 3A −→ ∅ (3.49)

For a one-dimensional lattice with L sites, show that for L large the number
of steady-states is given by [274]

Na(L) � N0g
L , N0 =

{
1 ; periodic boundary conditions
1.137 . . . ; free boundary conditions

(3.50)
and where g � 1.839 . . ..

δ z β ν‖ Ref.

0.32(1) 1.75(10) – 2.5(2) [507]
0.27(1) 1.8(1) 0.90(5) – [395]
0.33(1) – 0.99(5) – [497]

Table 3.4 Estimates for the critical exponents of the (1+1)-dimensional diffusive triplet-
contact process TCPD.

If one adds diffusion of single particles, one obtains the triplet-contact
process with diffusion (TCPD) [507]. Table 3.4 lists some estimates for critical
exponents along the line of second-order phase transitions. The upper critical
dimension should be dc = 1. We leave it to the reader to work out the
cluster approximations for this model (why should one go beyond the pair-
approximation here?).

33. Show that the generating function of a directed lattice animal can always
be reduced to the case of strong embedding [282].



Chapter 4

Scaling Properties of Absorbing Phase
Transitions

In this chapter, scaling properties of directed percolation will be generalised
into a scaling theory for absorbing phase transitions. A large set of tools for
their analysis will be presented.

4.1 Scaling in the Steady-State

As already outlined in Sect. 3.2.1, the continuous phase transition of DP
exhibits universal scaling laws which can be described by a suitable phe-
nomenological scaling theory. The most common way to characterise univer-
sality classes is in terms of critical exponents. For the convenience of the
reader, we collect in Table 4.1 the definitions of the conventional critical ex-
ponents, as we shall use them in this book.1 The various observables listed
here will be introduced later in this chapter.

In fact, it turns out that the concept of scale-invariance, which proved to
be so successful in equilibrium statistical mechanics (see Sect. 2.2), can be ap-
plied to non-equilibrium phase transitions as well.2 The starting point is the
assumption that the long-range properties of a critical many-particle process
are scale-free and thus invariant under an appropriate multiplicative change
of scales. Such scale-invariant systems are expected to exhibit power-law be-
haviour with certain universal critical exponents and scaling functions which
are governed by symmetries and conservation laws rather than microscopic

1 One should not confuse the control parameter τ with the exponent τ . In the older
literature, R2(t) ∼ tz̃ and N(t) ∼ tη were frequently used. We warn the reader that the
exponents of absorbing phase transitions are not always the direct analogues of equilibrium
critical exponents.
2 In the exercises for this chapter, the long-time behaviour of diffusion-annihilation-
coagulation processes are studied, which provide another instance of statistical systems
at an absorbing phase transition, including experimental illustrations.
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observable exponent relation conditions

order parameter β 	s(τ) ∼ τβ τ > 0 h = 0 t → ∞
β/σ 	s(h) ∼ hβ/σ τ = 0 h �= 0 t → ∞

α 	(t) ∼ t−α τ = 0 h = 0

survival probability β′ Ps(τ) ∼ τβ′
τ > 0 h = 0 t → ∞

δ P (t) ∼ t−δ τ = 0 h = 0

susceptibility γ χ = ∂	s/∂h ∼ |τ |−γ τ �= 0 h = 0 t → ∞
variance γ′ ∆	(τ) ∼ |τ |−γ′

τ �= 0 h = 0 t → ∞
correlation lengths ν⊥ ξ⊥(τ) ∼ |τ |−ν⊥ τ �= 0 h → 0 t → ∞

ν‖ ξ‖(τ) ∼ |τ |−ν‖ τ �= 0 h = 0 t → ∞
autocorrelator c(t) ∼ tΘ−d/z τ = 0 h = 0

temporal empty interval ε‖ e‖(∆t) ∼ (∆t)−ε‖/ν‖ τ = 0 h = 0 t → ∞
spatial empty interval ε⊥ e⊥(∆r) ∼ (∆r)−ε⊥/ν⊥ τ = 0 h = 0 t → ∞
number of active sites Θ N(t) ∼ tΘ τ = 0 h = 0

mean square spreading z R2(t) ∼ t2/z τ = 0 h = 0

mean mass of cluster γ M(τ) ∼ (−τ)−γ τ < 0 h = 0

mean size of cluster σ S(τ) ∼ (−τ)−σ τ < 0 h = 0

mean survival time τ T (τ) ∼ (−τ)−τ τ < 0 h = 0

mean spatial cluster volume υ V (τ) ∼ (−τ)−υ τ < 0 h = 0

Table 4.1 Definition of the conventional critical exponents of absorbing phase transitions,
either in the stationary state depending on the control parameters τ and h, or for the
dynamical behaviour at criticality (τ = h = 0). Here τ < 0 refers to the inactive/absorbing
phase and τ > 0 refers to the active phase. For the definition of the exponent α, the initial
state should be the fully occupied lattice.

details of the model under consideration. This leads to numerous scaling re-
lations between the exponents listed in Table 4.1, which are summarised in
appendix B and will be derived in this chapter. Exponents for more specific
kinds of critical behaviour (tricritical, surface,. . . ) will be introduced when
needed.

In the following, we introduce the reader to a generic scaling theory of
absorbing phase transitions. We shall present this scaling theory on a phe-
nomenological level in the context of DP, although it can be applied to other
classes of continuous phase transitions into absorbing states as well. The
essential difference compared to the equilibrium case lies in a separate treat-
ment of space and time since in non-equilibrium statistical physics time plays
the role of an independent degree of freedom. Moreover, there is no obvious
symmetry between spatial and temporal degrees of freedom.
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4.1.1 Order Parameters

We consider a generic many-particle system on a lattice that exhibits a con-
tinuous phase transition from a fluctuating active phase into one or several
absorbing states. Unless stated otherwise, the system size is assumed to be in-
finite. The process is controlled by a control parameter τ which is zero at the
transition and positive (negative) in the active (absorbing) phase. For exam-
ple, in the contact process this parameter is proportional to the distance from
criticality τ ∝ λ− λc. In addition, each site carries a local observable which
tells us whether it is active or not. In the most simple examples of directed
percolation, this observable is just the occupation number si(t), while in the
(1+1)-dimensional pair-contact process it would correspond to the product
si(t)si+1(t), which represents a pair density.

We are now interested in the properties of such a model in the active
phase τ > 0. Here the system relaxes towards a fluctuating steady-state
whose space-time trajectory can be interpreted as an infinite cluster of active
sites. So far the situation is similar to isotropic percolation (see Sect. 3.1
and Fig. 3.1), where an infinite cluster of connected sites emerges in the active
phase. However, in contrast to the isotropic case, the cluster is now directed
in time. This allows one to characterise such a cluster in two different ways:

(a)We may ask for the probability that a given site belongs to an infinite cluster that
was generated in the past at t = −∞ from a fully occupied lattice. Obviously,
this probability is just the density 	 of active sites in the stationary state.

(b)Alternatively we may ask for the probability that an isolated seed of activity (a
single occupied site in an empty lattice) will generate an infinite cluster extending
to t = +∞. This quantity is related to the percolation probability Pperc.

In general, these two quantities are different, although similar in character.
They can both be used as equally legitimate order parameters, one of them
probing the past and the other one probing the future. Both order parameters
vanish in the absorbing phase and assume finite values in the active phase.
Nevertheless, they may give different results since in general, the dynamic
rules are not symmetric under time-reversal. In the active phase we therefore
expect the two order parameters to scale algebraically as

� ∼ τβ , Pperc ∼ τβ′
(4.1)

with two, in general different exponents, β and β′.
A field-theoretic formulation of absorbing phase transitions (see Sect. 4.3.4)

shows that the two order parameters are associated with a field φ and its asso-
ciated response field φ̃ which can be interpreted as creation- and annihilation
operators. Roughly speaking the exponent β emerges whenever the density
of particles is measured. The exponent β′, on the other hand, is related to
the creation of particles, e.g. by applying an external field or by specifying
the initial configuration. In correlation functions, which involve both creation
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Fig. 4.1 Exact rapidity-reversal symmetry in bond directed percolation (see text).

and annihilation operators, both exponents are expected to appear. It should
be emphasised that the emergence of two different order parameters with
generally different exponents is a consequence of the directed nature of time
and as such is a novel feature of non-equilibrium critical phenomena.

4.1.2 Rapidity-Reversal Symmetry of Directed
Percolation

The emergence of two different order parameters (with two in general differ-
ent exponents β and β′) is a generic property of continuous phase transitions
in models with a directed time-like dimension. In DP, however, a special
invariance property under time-reversal, called rapidity-reversal symme-
try [246], ensures that the two exponents coincide.3 This means that DP is
characterised by only three instead of four independent critical exponents.

In order to understand this symmetry heuristically, let us consider the
special case of bond directed percolation (see Sect. 3.1), where this time-
reversal symmetry is fulfilled exactly on the microscopic level. To see this,
consider a particular realisation of open and closed bonds, as shown in the
left panel of Fig. 4.1. Activating a single site at t = 0, a certain cluster
represented by bold bonds is generated. At a given time t, we may ask for
the so-called survival probability Psur(t) of finding at least one active site.
In the active phase, there is a finite probability that the cluster survives
forever, hence Psur(t) tends to a positive constant as t → ∞. Clearly, this
ultimate survival probability is just the percolation probability

Pperc = lim
t→∞Psur(t) . (4.2)

which is non-zero in the active phase.

3 The name rapidity-reversal comes from an application of directed percolation to high-
energy collisions of elementary particles, in the context of Reggeon field-theory.
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The right panel of Fig. 4.1 shows the same realisation of open and closed
bonds turned upside down. Provided this time-reversed configuration has the
same statistical weight as the original one, which is indeed the case for a
bond DP process as we shall show later, a bond DP process running backward
in time can be interpreted as a bond DP process evolving forward in time
following exactly the same dynamical rules, the only difference being the
exchange of initialisation and measurement.

In the time-reversed realisation of open and closed bonds we now consider
the cluster which is generated by a fully occupied initial state at t = 0. Since
the statistical weight of the time-reversed path in bond DP is the same as
that of the original one, the probability of finding the central site at time t
in the active state is exactly the same as the survival probability Psur(t) in
the original realisation. On the other hand, in a system with a fully occupied
initial state this probability is just the density of active sites �(t). In other
words, in bond DP the probability of finding a directed path from a single site
at t = 0 to a horizontal line at time t coincides exactly with the probability
of finding a directed path from a horizontal line at t = 0 to a particular site
at time t. This leads to the remarkable identity [246]

Psur(t) = �(t) . (4.3)

Consequently, in the active phase the two order parameters saturate at the
same value Pperc = � which implies that the corresponding critical exponents
β = β′ have to be identical ((4.3) is expressed by µ = 1 for bond DP in
Table 3.1).

It should be stressed that the exact rapidity-reversal symmetry in (4.3)
is a special property of bond DP. In other realisations of DP, e.g. in site
DP or the contact process, this symmetry is generally not exact. Instead
one finds an asymptotic symmetry in the sense that Psur(t) and �(t) become
proportional in the limit t → ∞. This proportionality implies that for all
models belonging to the DP class the exponents β and β′ are equal. We shall
return to the rapidity-reversal symmetry in the context of a field-theoretical
description of directed percolation in Sect. 4.3.4. In other models, which are
not related to DP, this symmetry is not always fulfilled.

4.1.3 The Correlation Lengths ξ⊥ and ξ‖

In equilibrium statistical mechanics, continuous phase transitions are char-
acterised by a single correlation length ξ that diverges at the critical tem-
perature as |T − Tc|−ν . In the non-equilibrium case of an absorbing phase
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Fig. 4.2 Interpretation of the correlation lengths ξ⊥ and ξ‖ in an almost critical station-
ary (1+1)-dimensional bond DP process (see text). The dotted lines indicate the expected
slopes −β/ν⊥ and −β/ν‖, respectively.

transition,4 where ‘space’ and ‘time’ are different in character, there are in-
stead two different correlation lengths ξ⊥ and ξ‖, where the indices ⊥ and ‖
denote spatial and temporal properties, respectively. Approaching the critical
point, these correlation lengths are expected to diverge as

ξ⊥ ∼ |τ |−ν⊥ , ξ‖ ∼ |τ |−ν‖ (4.4)

with generally different critical exponents ν⊥ and ν‖. Therefore, in the scaling
regime, the two correlation lengths are related by

ξ‖ ∼ ξz
⊥ , (4.5)

where z = ν‖/ν⊥ is the dynamical exponent. Roughly speaking this expo-
nent tells us how fast a local perturbation spreads, ranging from z = 1 (deter-
ministic ‘light-cone’ spreading) over 1 < z < 2 (superdiffusive spreading)
and z = 2 (diffusive spreading) to z > 2 (subdiffusive spreading). In
many-particle models with short-range interactions one usually finds the dy-
namical exponent in the range 1 < z ≤ 2. Like the other critical exponents
z is a universal quantity, i.e. its value is fully determined by the universality
class and the dimensionality of the system.

Figure 4.2 illustrates the physical meaning of the correlation lengths ξ⊥
and ξ‖ visually. The left panel shows the space-time trajectory of a stationary
(1+1)-dimensional DP process in the active phase. As can be seen, the cluster
consists of active branches enclosing elongated inactive voids. The size of
these voids is broadly distributed and extends up to certain maximal scales
in space and time. These maximal scales may be interpreted as the correlation
lengths ξ⊥ and ξ‖.

4 In contrast, in driven diffusive systems in d ≥ 2 spatial dimensions, three distinct length
scales are expected: (i) ξ⊥ ∼ |τ |−ν⊥ perpendicular to the direction of the external driving,
(ii) ξ‖ ∼ |τ |−ν‖ parallel to it and (iii) the correlation time τrel ∼ |τ |−νrel . Hence, there is
a dynamical exponent z = νrel/ν⊥ and an anisotropy exponent θ = ν‖/ν⊥, which a priori
are distinct. Systems of that kind will not be considered in this book.
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As an alternative approach, the other two panels in Fig. 4.2 show the
equal-time correlation function

c⊥(r) = c⊥(t, r) = 〈si(t)si+r(t)〉 (4.6)

and the autocorrelation function

c‖(∆t) = 〈si(t)si(t + ∆t)〉 (4.7)

measured numerically in a stationary DP process above criticality. In both
cases the correlations first decay algebraically as r−β/ν⊥ and (∆t)−β/ν‖ , re-
spectively, until they saturate at the same constant value. In the saturated
regime the two sites become uncorrelated so that this value is just equal to
the squared stationary density �2. The crossovers take place at certain typi-
cal scales in space and time (indicated by vertical dashed lines in the figure)
which correspond to the correlation lengths ξ⊥ and ξ‖.

4.1.4 Scale-Invariance

The phenomenological scaling theory for absorbing phase transitions assumes
simple scaling (as opposed to multiscaling), meaning that the critical be-
haviour can be characterised in terms of only two diverging length scales ξ⊥
and ξ‖. In this case, all bulk exponents can be expressed in terms of the four
independent critical exponents β, β′, ν‖, ν⊥ by means of simple scaling rela-
tions.5 The starting point is the hypothesis that a multiplicative change of
the control parameter

τ �→ λτ (4.8)

rescales the order parameters and the correlation lengths by

� �→ λβ� (4.9)

Pperc �→ λβ′
Pperc (4.10)

ξ⊥ �→ λ−ν⊥ξ⊥ (4.11)
ξ‖ �→ λ−ν‖ξ‖ (4.12)

Likewise, all other measurable quantities and parameters have to be mul-
tiplied by λ raised to suitable powers, the so-called scaling powers. For
example, all spatial and temporal quantities such as distances r and time
intervals ∆t have to be rescaled in the same way as the correlation lengths,
i.e.,

r �→ λ−ν⊥r , ∆t �→ λ−ν‖∆t . (4.13)

5 As explained above in Sect. 4.1.2, the exponents β and β′ coincide in systems with a
rapidity-reversal symmetry such as DP.
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Scale-invariance implies that any function with n parameters can be expressed
as a leading power law times a scaling function that depends on only n − 1
parameters (cf. Sect. 2.2.2). In many cases, scaling functions are universal in
the same sense as the critical exponents, i.e., they are determined by a small
number of fundamental parameters, while they do not depend on microscopic
‘details’ of the dynamics.

In order to demonstrate how this mechanism works, let us first consider
the density of active sites �s(τ) in the stationary state with τ > 0. Scale-
invariance implies that the order parameter �s can be written as a generalised
homogeneous function

λβ�s(τ) = r̄
(
λτ
)
. (4.14)

Choosing λ = τ−1 one obtains the well-known power law

�s(τ) = τβ r̄(1) . (4.15)

Thus the function �s(τ), which depends on only one parameter, is fully de-
termined (up to a prefactor) by scale-invariance.

4.1.5 Two-Point Correlation Function in the
Steady-State

As another example we consider the two-point correlation function

c(t1, t2; r1, r2) = 〈s(t1, r1)s(t2, r2)〉 (4.16)

in the stationary active state with τ > 0. Because of translational invariance
in space and time this function depends on three parameters

c(∆t, r; τ) = 〈s(t1, r1)s(t2, r2)〉 , (4.17)

where ∆t = t2 − t1 and r = |r2 − r1|. Scale-invariance implies that a scale
transformation according to (4.8) and (4.13) changes the correlation func-
tion by a factor λκ with some unknown exponent κ, i.e., sufficiently close
to the critical point the correlation function can be described in terms of a
generalised homogeneous function

c(λ−ν‖∆t, λ−ν⊥r; λτ) � λκc(∆t, r; τ) . (4.18)

This relation holds for arbitrary λ > 0. Thus, choosing λ in such a way that
one of the arguments on the left-hand side becomes constant, we may express
c(r,∆t, τ) as a leading power law times a scaling function which depends on
only two parameters. For example, setting λ = τ−1 the above relation reduces
to
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c(∆t, r; τ) = τκc( τν‖∆t, τν⊥r; 1) = τκ f(∆t/ξ‖, r/ξ⊥) , (4.19)

where f is a scaling function that depends on only two arguments.
The unknown exponent κ in the leading power law can be determined by

considering the limit r → ∞ in the stationary active phase. In this case, the
two points become uncorrelated so that c(∆t,∞; τ) = �2. Since � scales as
τβ we obtain

κ = 2β. (4.20)

As in equilibrium statistical mechanics, it is often useful to introduce met-
ric factors (cf. Sect. 2.2), by which the scaling function can be expressed
in terms of dimensionless and appropriately normalised arguments. For any
parameter x we shall denote the corresponding metric factor by ax. More-
over, we shall denote the normalised scaling functions by the corresponding
capital letters with a tilde symbol. For example, in the case of the two-point
correlation function we use the notation

c(∆t, r; τ) � λ−2β C̃(λ−ν‖at∆t, λ−ν⊥arr; λaτ τ) . (4.21)

The metric factors contain all non-universal system-dependent features of
the scaling form and may depend e.g. on the lattice structure, the interaction
range, and the update scheme. With a suitable convention for the choice of
the metric factors, the scaling function C̃ is fully universal, hence it should
be the same for all systems within a given universality class. For example,
for the two-point correlation function given above, a possible normalisation
would be

C̃(0, 1; 0) = C̃(1, 0; 0) = C̃(0, 0; 1) = 1 . (4.22)

With this convention the non-universal metric factors are just the amplitudes
(proportionality factors) of the corresponding power laws. For example, at
criticality the equal-time correlation function decays as

c(∆t, r; τ)
∣∣∣
∆t=0,τ=0

� λ−2β C̃(0, λ−ν⊥arr; 0)
∣∣∣

λ−ν⊥arr=1

= (arr)−2β/ν⊥ C̃(0, 1; 0) = (arr)−2β/ν⊥ .

4.1.6 Empty-Interval Probabilities in the Steady-State

Let us now consider the stationary active phase of a system with an absorbing
phase transition and analyse the time series of subsequent activations at a
particular site (see Fig. 4.3). What is the size distribution e‖(∆t, τ) of empty
(=inactive) intervals ∆t between subsequent activations at this particular
site?
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Fig. 4.3 Temporal and spatial empty-interval distribution in a stationary (1+1)-
dimensional DP process.

The distribution e‖(∆t, τ) is an example of a so-called empty-interval
probability. It is important to note that empty-interval distribution func-
tions differ significantly from the ordinary two-point correlation function
discussed above. While two-point functions probe correlated activity of two
points ignoring intermediate configurations, empty-interval functions require
the absence of activity along a line that connects the two points. In this sense
such quantities may be regarded as multipoint correlation functions. While
two-point correlation functions saturate at �2 > 0 in the stationary state,
empty-interval functions tend to zero if the distance between the two points
increases.

4.1.6.1 Scaling of the Temporal Empty-Interval Distribution
Functions

We now postulate that empty-interval distribution functions have scaling
properties analogous to those of two-point correlation functions, although
with different asymptotic limits and different scaling indices. This means
that under a scale-transformation (4.8) and (4.13) we expect them to scale
as e‖ �→ λε‖ e‖ with some unknown exponent ε‖, leading to the scaling form

e‖(∆t; τ) = λ−ε‖ ẽ‖(λ−ν‖∆t; λτ) . (4.23)

Choosing λ = ∆t1/ν‖ one obtains (where spatial translation-invariance was
also assumed)

e‖(∆t; τ) = ∆t−ε‖/ν‖ ẽ‖(∆t1/ν‖τ) (4.24)

with some unnormalised scaling function ẽ‖. The exponent ε‖ can be deter-
mined as follows. On the one hand, the temporal interval distribution has to
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be normalised, i.e.
∞∑

∆t=1

e‖(∆t; τ) = 1 (4.25)

for all τ > 0, including the critical limit τ → 0+. This means that for small
arguments the scaling function ẽ‖ tends to a constant and the exponent ε‖/ν‖
has to be larger than 1. On the other hand, it is easy to see that the reciprocal
of the density of active sites �−1 is by definition exactly equal to the mean
interval-size

∆t =
∞∑

∆t=1

∆t e‖(∆t; τ). (4.26)

In the continuum limit this sum can be approximated by an integral

∆t ≈
∫ ∞

a

d∆t ∆t e‖(∆t, τ) (4.27)

with a suitable lower cutoff a that accounts for the discreteness of the sum for
small ∆t. Assuming that 1 < ε‖/ν‖ < 2 and inserting the scaling form (4.24)
one finds by substituting ∆t �→ τ−ν‖ ∆t that the average interval size scales
as

∆t ≈
∫ ∞

a

d∆t ∆t1−ε‖ ẽ‖(∆t1/ν‖τ) ∼ τ ε‖−2ν‖ , (4.28)

where we substituted ∆t → τ−ν‖ ∆t in the integrand. Comparing this expres-
sion with ∆t = �−1 ∼ τ−β , we arrive at the scaling relation

ε‖ = 2ν‖ − β . (4.29)

Hence, as the main result, the distribution of temporal empty intervals is
found to scale as

e‖(∆t; τ) � ∆t−(2−β/ν‖) ẽ‖(∆t1/ν‖τ) . (4.30)

In particular, at criticality the distribution decays algebraically, i.e.,

e‖(∆t, 0) � ∆t−(2−β/ν‖). (4.31)

Consequently, at criticality the time-series of subsequent activations forms a
fractal set with the (box) fractal dimension (see appendix H and exercise 46)

df,‖ = 1 − β

ν‖
. (4.32)

Note that this scaling ansatz requires ε‖/ν‖ to be larger than 1, which in turn
implies that β < 1. For all absorbing phase transitions known so far, this is
indeed the case, at least to a very good approximation.
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4.1.6.2 Scaling of the Spatial Empty-Interval Distribution
Functions

Similarly, we may study the spatial distribution e⊥(r; τ) of active sites along a
line at a given time t in a (1+1)-dimensional system (see Fig. 4.3). Denoting
by ∆r the spatial size of empty intervals (see Fig. 4.3) and repeating the
calculation, one arrives at the analogous result

e⊥(∆r; τ) � (∆r)−(2−β/ν⊥) ẽ⊥(∆r1/ν⊥τ) (4.33)

with the scaling relation
ε⊥ = 2ν⊥ − β . (4.34)

At criticality the spatial empty-interval distribution decays as

e⊥(∆r; 0) ∼ (∆r)−(2−β/ν⊥) (4.35)

and thus the fractal dimension along a one-dimensional line in space is df,⊥ =
1−β/ν⊥. More generally, in a d+1-dimensional system the set of active sites
at a given time, i.e. a spatial cut of the cluster, has according to this simple
scaling argument a fractal structure with the fractal dimension6

df,⊥ = d− β

ν⊥
. (4.36)

4.1.7 The External Field h

In equilibrium statistical mechanics, order parameters are associated with
certain conjugated fields. If such a field is applied externally, it causes a
response of the corresponding order parameter. Off-criticality, this response
grows to lowest order linearly with the external field. The corresponding
proportionality constant, called susceptibility, depends on the temperature
and diverges algebraically at the critical point (cf. Sect. 2.2).

In absorbing phase transitions the situation is similar. Here the conjugated
field h of the order paramater �s corresponds to spontaneous creation of

6 Precise calculations of the fractal dimensions in (1 + 1)D directed percolation [269]
found a small non-zero value for the Renyi codimension D̄ = β/ν⊥ − d̄ = 0.018(5), where
d̄ = d − df,⊥ is the fractal codimension, whereas (4.36) implies D̄ = 0. This finding was
supported by an analysis of the scaling behaviour of the factorial moments [64, 65]
Fq := 〈n(n − 1) · · · (n − q + 1)〉/〈n〉q ∼ δ−(q−1)D̄ as a function of the binning size δ = ∆r,
which is in agreement with simple scaling and led to D̄ = 0.022(4) [277]. This suggests
that intermittency effects might modify the scaling arguments used to derive (4.36). The
same calculations also indicate that the calculation of df,‖, see (4.32), might be affected
by so-called multifractal generalisations of the simple scaling examined in this book.
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activity. In ordinary DP, this field can simply be implemented as spontaneous
particle creation at rate h. In other realisations of DP, e.g. in the threshold
transfer process (see Sect. 3.3.4), the definition of h is more subtle. Being
a conjugated field, the application of h destroys the absorbing state and
causes a linear response of � in the off-critical regime. The corresponding
susceptibility

χ =
∂

∂h
�s(τ, h) (4.37)

turns out to diverge at zero field as

χ ∼ |τ |−γ (4.38)

with the susceptibility exponent γ. At criticality τ = 0, one finds that the
stationary density varies with the external field as

�s ∼ hβ/σ (4.39)

which defines the so-called gap exponent or field exponent σ. This equa-
tion is analogous to the one for the magnetisation at the critical isotherm of
equilibrium systems, cf. Sect. 2.2.2.

4.1.7.1 General Scaling Properties of the External Field

Dimensional analysis of the asymptotic power laws in (4.38) and (4.39) sug-
gest that χ and h have to be rescaled as

χ �→ λ−γχ , h �→ λσh , (4.40)

where γ and σ are the exponents associated with χ and h. Scaling theory
predicts that in presence of an external field the order parameter and the
susceptibility can be expressed in terms of generalised homogeneous functions
as

�s(τ, h) � λ−β R̃(aττλ, ahhλ
σ) , (4.41)

aχ χ(τ, h) � λγ X̃(aττλ, ahhλ
σ) . (4.42)

In what follows, we shall normalise the universal scaling function of the order
parameter by

R̃(1, 0) = R̃(0, 1) = 1 . (4.43)

Thus, the metric factors aτ and ah can be determined for each model from
the amplitudes of the power laws

�s(τ, 0) � (aττ)β and �s(0, h) � (ahh)β/σ . (4.44)
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Since the susceptibility is defined as the derivative of the order parameter
with respect to the conjugated field, the scaling functions and amplitudes are
related by

X̃(x, y) = ∂yR̃(x, y) , aχ = a−1
h

, (4.45)

leading to the scaling relation

γ = σ − β . (4.46)

This scaling law corresponds to the well-known Widom law of equilibrium
phase transitions (see Sect. 2.2 and (2.16)). Moreover, an additional hyper-
scaling law, to be derived in Sect. 4.2.10, can be used to relate the exponents
γ and σ to the standard exponents β, ν‖, and ν⊥ by

γ = ν‖ + dν⊥ − β − β′ ,
σ = ν‖ + dν⊥ − β′ . (4.47)

We note that special values of scaling function are often useful for checking
the consistency of numerical results. For example, comparing (4.42) for τ = 0

aχ χ(0, h) � (ahh)−γ/σ X̃(0, 1) , (4.48)

with the definition of the susceptibility

χ = ∂h �s = ∂h (ahh)β/σ (4.49)

one finds that the special value X̃(0, 1) of the scaling function for the suscepti-
bility is equal to the quotient β/σ. This relation can be used as a consistency
check for numerical estimates of the susceptibility. It also illustrates that
critical exponents may sometimes be expressed as special values of scaling
functions.

4.1.7.2 The External Field Within Mean-Field Theory

We now demonstrate that the scaling relations derived above can be applied
consistently within the mean-field approximation of directed percolation. Ex-
tending the mean-field equation (3.6) by a term for spontaneous particle cre-
ation at rate h, one obtains

∂t�(t) = τ�(t) − g�(t)2 + (1 − �(t))h . (4.50)

The stationary solution reads

�s(τ, h) =
τ − h

2g
±

√(
τ − h

2g

)2

+
h

g
. (4.51)
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Fig. 4.4 Left: The order parameter 	s of DP as a function of τ for various external fields
h as predicted by mean-field theory. Right: The corresponding susceptibility χ = ∂	s/∂h.
For h > 0 the susceptibility displays a finite peak which diverges in the limit h → 0 at the
critical point.

The solution with the positive sign is the physical one (the other one yields
negative densities) and is plotted in the left panel of Fig. 4.4. As expected, the
state without particles (�s = 0) is no longer absorbing. At criticality (τ = 0)
this solution reduces to

�s(0, h) =
1
2g

(√
h2 + 4gh− h

)
=

√
h

g
+ O (h) . (4.52)

Comparing this result to (4.39) one finds that the mean-field value of the gap
exponent is given by

σMF = 2 . (4.53)

Next, we examine the order parameter close to the critical point. To this end
we perform in (4.51) the limits �s → 0, τ → 0, and h → 0 with the constraints
that �s/

√
h and �s/τ are finite, giving

�s(τ, h) � τ

2g
+

√(
τ

2g

)2

+
h

g
. (4.54)

The corresponding order parameter susceptibility

χ(τ, h) =
∂�s(τ, h)

∂h
� 1

2g

[(
τ

2g

)2

+
h

g

]−1/2

(4.55)

diverges at the transition point as

χ(τ, 0) � |τ |−1 , χ(0, h) � 1
2

(gh)−1/2. (4.56)
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Comparing this result with (4.38), we obtain the mean-field susceptibility
exponent

γMF = 1 . (4.57)

These results are consistent with the scaling relation (4.46).

4.1.8 Fluctuations of the Order-Parameter in the
Steady-State

The steady-state of an infinite system in the active phase is characterised
by a stationary density of active sites with a constant value �s > 0 which
does not fluctuate. In numerical simulations, however, where the system size
is finite, the density is a fluctuating quantity. Depending on the system size,
two different situations have to be distinguished:

(a) If the lateral system size L is of the same order or smaller than the correla-
tion length ξ⊥, the critical properties are affected by so-called finite-size
effects. In particular, the system may enter the absorbing state after some
time. Finite-size effects can be described in terms of scaling laws and will
be discussed in the following subsection.

(b) If the lateral system size L is finite but much larger than ξ⊥, the active
state is practically stable and the order parameter fluctuates around a
stationary value.

The fluctuations in the latter case can be explained as follows. For system
sizes L � ξ⊥ the system effectively consists of (L/ξ⊥)d uncorrelated subsys-
tems that contribute independently to fluctuations of �s. According to the
central limit theorem, the sum of these fluctuations is expected to be Gaus-
sian in the limit L → ∞ with a statistical spread decreasing as

√
Ld. This

allows one to define a variance per unit volume by

∆� = ∆�(τ) = lim
L→∞

Ld
(
〈�2〉 − 〈�〉2

)
, (4.58)

where 〈. . .〉 denotes the temporal average

〈�k〉 := lim
T→∞

1
T

T∑
t=1

�(t)k . (4.59)

To approximate this limit in a numerical simulation, the averaging time has
to be much larger than the correlation time ξ‖. Especially close to criticality,
where ξ‖ is large, the estimation of ∆� is thus a numerically challenging task.

The decay of �(t) towards a stationary value �s, as well as its fluctuations
in the steady-state of a (1+1)-dimensional bond DP process are demonstrated
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Fig. 4.5 Order-parameter fluctuations in the steady-state of a (1 + 1)-dimensional bond
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in Fig. 4.5. Performing simulations for different values of τ one finds that the
order parameter variance grows algebraically as

∆�(τ) ∼ |τ |−γ′
. (4.60)

In order to determine the exponent γ′, we apply the scale transformation(4.9)-
(4.13) to (4.58):

Ld
(
〈�2〉 − 〈�〉2

)
∼ |τ |−γ′

(4.61)

⇒ (λ−ν‖L)d
(
〈λ2β�2〉 − 〈λ2β�〉2

)
∼ |λτ |−γ′

Obviously, scale-invariance requires that

γ′ = dν⊥ − 2β . (4.62)

Scale-invariance also allows one to express the variance of steady-state fluc-
tuations in terms of a scaling form as

a∆ ∆�(τ, h) � λγ′
D̃(aττλ, ahhλ

σ) . (4.63)

Normalising D̃(0, 1) = 1, the metric factor a∆ can be determined from the
amplitude of the power-law

∆�(0, h) � (a∆ h)−γ′/σ . (4.64)

For an explicit illustration, we mention that steady-state fluctuations can be
studied by adding an appropriate noise term in (4.50) representing rapidly-
varying degrees of freedom. In that case, the mean-field fluctuations are given
by [480]
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∆� ∝
τ
2g +

√(
τ
2g

)2

+ h
g√(

τ
2g

)2

+ h
g

. (4.65)

For zero field, the fluctuations vanish in the absorbing phase (τ < 0) whereas
they remain constant in the active phase (τ > 0). In other words, the fluctua-
tions do not diverge at the critical point, they rather exhibit a finite jump. As
in equilibrium phase transitions, a finite jump of a quantity corresponds to
a vanishing exponent, i.e., γ′MF = 0. However, in the present case a vanishing
exponent is obtained only within the mean-field approximation.

We note that in equilibrium statistical mechanics, the intensity of order
parameter fluctuations is known to scale in the same way as the susceptibil-
ity, meaning that γ′ equals γ. This relationship is at the core of the so-called
fluctuation-dissipation theorem (see Sect. 2.4). In the non-equilibrium
case, however, comparison of (4.47) and (4.62) shows that the exponents γ
and γ′ are in general distinct and therefore the fluctuation-dissipation theo-
rem cannot be valid.

4.1.9 Finite-Size Scaling in the Steady-State

Most of the scaling laws derived so far are valid in infinite systems. However,
numerical methods such as Monte Carlo simulations or series expansions are
restricted to finite systems. It is therefore important to understand how far
finite-size effects influence the properties of the system. Generally finite-size
effects are expected when the spatial correlation length becomes comparable
with the lateral size of the system. As known from equilibrium statistical me-
chanics (see Chap. 2), this is the reason why finite-size effects are particularly
strong close to the critical point [220].

4.1.9.1 Finite-Size Scaling Forms

For absorbing phase transitions, finite-size effects emerge in two different
ways:

(a) Approaching criticality the spatial correlation length ξ⊥ increases but the
finite lateral size L prevents it from becoming infinite. As a result, the
phase transition is destroyed and its singularities become rounded and
shifted.

(b) In a finite system, there is always a small but non-zero probability of
reaching the absorbing state. Consequently the system always reaches the



4.1 Scaling in the Steady-State 119

absorbing state within a certain typical time depending on L, even if τ > 0,
meaning that the steady-state in the active state is no longer stable. How-
ever, applying an external conjugated field h, which destroys the absorbing
state by spontaneous creation of activity, the steady-state is non-trivial and
depends on τ , h, as well as on the system size L [437].

As in equilibrium, finite-size effects can be controlled by finite-size scaling
laws. To this end one has to include the system size as an additional param-
eter in the corresponding scaling functions. Being a length, the parameter L
changes under rescaling as

L �→ λ−ν⊥L . (4.66)

Therefore, the appropriate scaling form for the stationary density reads

�s(τ, h, L) � λ−β R̃pbc(λaτ τ, λ
σahh, λ

−ν⊥aLL) . (4.67)

Note that the universal finite-size scaling function R̃ depends on the partic-
ular choice of the boundary conditions, as well as on the shape of the finite
system (see e.g. [311, 312, 375, 374, 22]) while all information concerning the
structure of the lattice is contained in the metric factor aL. In this book,
we are primarily concerned with hypercubic lattices of size Ld with aspect
ratio 1 and periodic boundary conditions (pbc).

In the so-called thermodynamic limit L → ∞, all finite-size effects
disappear and the universal scaling function (4.41) is recovered, i.e.,

R̃pbc(x, y,∞) = R̃(x, y) . (4.68)

Finite-size effects can be included in any scaling function by adding an L-
dependent argument in the same way as in (4.67). For example, it is straight-
forward to set up finite-size scaling forms for the fluctuations ∆� and the
susceptibility χ [433].

4.1.9.2 Finite-Size Cumulants

In equilibrium statistical mechanics, it is particularly useful to consider ratios
or combinations of order parameter moments. The most important one is the
fourth order cumulant Q, also called the Binder cumulant, which is defined
as [67]

Q = 1 − 〈�4
s 〉

3〈�2
s 〉

2 . (4.69)

If the order parameter is characterised by a centred Gaussian distribution (as
e.g. in the Ising model for T > Tc), this cumulant tends to zero at the critical
point. In a finite system, the Binder cumulant obeys the scaling form
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Q(τ, h, L) � Q̃pbc(aττλ, ahhλ
σ, aLLλ

−ν⊥) . (4.70)

Notice that the Binder cumulant is dimensionless, so that no metric factor
aQ has to be introduced. Setting aLLλ

−ν⊥ = 1, one has for zero field at
criticality

Q(0, 0, L) = Q(τ, 0, L)
∣∣∣
τ=0

� Q̃pbc(aττ (aLL)−ν⊥ , 0, 1)
∣∣∣
τ=0

= Q̃pbc(0, 0, 1) (4.71)

which is L-independent and universal for given boundary conditions and a
fixed shape of the system. At equilibrium, the universal value Q̃pbc(0, 0, 1)
would correspond to an intersection point if one plotted Q as a function
of the control parameter τ for various system sizes L at zero field. Thus it
is possible to determine the transition point from the common intersection
point. This cumulant intersection method is very useful and has been
applied in numerous works.

Cumulants have also been investigated for several absorbing phase tran-
sitions [175, 137, 176, 279]. However, in this case the order parameter in
the active phase has a non-zero mean and therefore the cumulant tends to
Q = 2/3 in the thermodynamic limit. Moreover, in finite systems with ab-
sorbing states the order parameter and its moments 〈�k〉 vanish as soon as
O(ξ⊥) = L even in the active phase. Thus the powerful cumulant intersection
method cannot be applied to absorbing phase transitions.

In order to circumvent this problem, one could keep the system at τ = 0
artificially active by means of an external field h > 0, studying the limit
h → 0. In this case it is convenient to normalise the universal scaling function
Q̃pbc by the condition

Q̃pbc(0, 1, 1) = 0 (4.72)

which fixes the metric factor aL. However, carrying out the limit it turns out
that Q diverges at the critical point, reflecting the non-fluctuating absorbing
state.

A ratio that remains finite at criticality is obtained via [440]

U =
〈�2

s 〉〈�3
s 〉 − 〈�s〉〈�2

s 〉2
〈�s〉〈�4

s 〉 − 〈�s〉〈�2
s 〉2

. (4.73)

This ratio is as useful for absorbing phase transitions as the Binder cumu-
lant Q is for equilibrium, i.e., its value at criticality characterises the univer-
sality class.
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4.2 Dynamical Scaling Behaviour

So far, we have studied the steady-state properties of a system with an ab-
sorbing phase transition in the active phase τ > 0. Let us now address the
question how a system prepared in a certain initial configuration evolves in
time. It turns out that the time-dependent order parameters exhibit dy-
namical scaling. In the corresponding dynamical scaling forms, the time
parameter t appears as an additional variable. Obviously, t has to scale in
the same way as the temporal correlation length ξ‖, i.e.,

t �→ λ−ν‖t . (4.74)

As we shall see in the following, dynamical scaling implies certain scaling
forms which do depend on the initial configuration.

4.2.1 Homogeneously Active Initial State

Let us first consider the decay of the particle-density �(t; τ) in an infinite
system starting with a fully active initial configuration. For zero external
field h = 0 scale-invariance implies the scaling form

�(t; τ) � λ−βR̃full(λ−ν‖att;λaττ). (4.75)

Here the subscript ‘full’ is used to indicate that the process starts with a
fully active initial configuration. Setting λ−ν‖att = 1, the scaling form turns
into

�(t; τ) � (att)−β/ν‖ R̃full(1; aττ(att)1/ν‖) . (4.76)

In particular, at criticality (τ = 0) the density decays according to a power
law

�(t) ∼ t−α , (4.77)

where α = β/ν‖. Normalising the scaling function by Rfull(0, 1) = 1 the non-
universal metric factor at can be determined from the amplitude of this power
law.

The scaling form (4.76) can be verified by plotting �(t; τ) tα versus t|τ |ν‖
for different values of τ near criticality. As shown in the right panel of Fig. 4.6,
all data sets collapse onto two different curves depending on the sign of τ . As
will be discussed in Sect. 4.3.6, such a data collapse can be used to determine
critical exponents numerically.

In numerical simulations with a homogeneously active initial state, one
usually starts with a fully occupied lattice �0 = 1. However, the scaling forms
given above can be applied to any type of homogeneous initial configuration
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point. The left graph shows simulation data starting with a fully occupied lattice for
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without in-built long-range correlations. For example, in simulations starting
with a finite-density random initial state, where each site is occupied with
probability p0 < 1, one observes an initial increase of the order parameter
followed by a crossover to the predicted scaling behaviour. This so-called
critical initial slip will be discussed in more detail at the end of this sub-
section.

4.2.2 Pair-Connectedness Function, I

The dynamical scaling behaviour of systems starting with non-trivial ini-
tial configurations can be derived from the so-called pair-connectedness
function Υ (t1, t2; r1, r2; τ) that probes the existence of a causal connection
between two points in space-time. In DP the pair-connectedness function is
defined as the probability of finding a conducting directed path of open bonds
from site (t1, r1) to site (t2, r2). More generally, the pair-connectedness func-
tion is defined as the probability that a cluster generated at site r1 at time t1
in an otherwise empty system activates site r2 at time t2. Because of transla-
tional invariance in space and time the pair-connectedness function depends
only on the differences r := |r2 − r1| and t := t2 − t1 ≥ 0 so that we may
write Υ (t, r; τ).

Note that the pair-connectedness function differs from ordinary two-point
correlation functions and empty-interval functions (see (4.17) and (4.23)) in
so far as it probes the actual existence of a causal path between the two
points. For example, in the case of equal times (t = t2 − t1 = 0) the pair
connectedness function in a directed process with short-range interactions
is always zero while the corresponding two-point or empty-interval function
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measured in a DP process with a positive density of active sites may be
non-zero.

In the steady-state limit t → ∞, the asymptotic behaviour of the pair-
connectedness function can be determined as follows. On the one hand, the
probability that the seed placed at (t1, r1) generates an infinite cluster is just
the ultimate survival probability. On the other hand, in the limit t2 → ∞ the
probability that a randomly chosen site belongs to the infinite cluster is just
the steady-state density �s, hence

lim
t→∞ Υ (t, r; τ) = Pperc(τ)�s(τ) ∼ τβ+β′

. (4.78)

This suggest that the pair-connectedness function has to be rescaled as

Υ �→ λβ+β′
Υ (4.79)

leading to the scaling form

Υ (t, r; τ) � λ−β−β′
Υ̃ ( atλ

−ν‖t, arλ
−ν⊥r; λτ) . (4.80)

Note that in this expression the two exponents β and β′ play a symmetric
role.

4.2.3 Spreading Profile at Criticality

The pair-connectedness function provides information on how fast a cluster
generated from a single seed in an otherwise empty system spreads in space
and time. Monitoring the cluster at time t after generation at the origin one
obtains a certain density profile �(t, r; τ) = Υ (t, r; τ).

Figure 4.7 shows the numerically determined spreading profile of �(t, r) in
a (1 + 1)-dimensional contact process at criticality τ = 0 for various times.
According to the scaling form (4.80), these profiles are expected to scale as

�(t, r; 0) � (att)−α−δ Υ̃
(
1, arr(att)−1/z ; 0

)
(4.81)

with α = β/ν‖ and δ = β′/ν‖. As demonstrated in the central panel of Fig. 4.7,
one obtains an excellent data collapse by plotting �(t, r)tα+δ as a function
of r/t1/z. The right panel shows the same data in a semi-logarithmic repre-
sentation, demonstrating that the relative deviations are most pronounced in
the tails of the distribution. Moreover, one finds that the asymptotic scaling
function Υ̃ (1, r; 0) is not a Gaussian, reflecting that critical DP differs signifi-
cantly from a simple random walk. To illustrate the non-Gaussian behaviour,
the dashed line indicates a normal distribution fitted to the data in the centre,
which turns out to deviate significantly in the tails. Analysing the asymptotic
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profile for large r in more detail it seems to decay as Υ̃ (1, r; 0) ∼ exp(−a rφ)
with an exponent φ ≈ 2.4. The exact form of Υ̃ , however, is still unknown.

4.2.4 Clusters Generated from a Single Seed

The generation of clusters from a localised active seed in an otherwise inactive
system is an important numerical technique for the study of absorbing phase
transitions and the estimation of critical exponents. This technique was first
introduced by Grassberger and de la Torre [246] and exploits the scaling
properties of the pair-connectedness function.

In the absorbing phase τ < 0, all clusters are finite while in the active
phase τ > 0, there is a finite probability of generating an infinite cluster. To
characterise the growth of the clusters in both phases, one usually measures

- the survival probability Psur(t) averaged over many clusters,
- the number of active sites Na(t) at time t averaged over all clusters, and
- the mean square spreading (e.g. the squared radius of gyration) from the

origin R2
s (t) averaged over surviving clusters.

At criticality these quantities display asymptotic power laws of the form

Psur(t) ∼ t−δ , Na(t) ∼ tΘ , R2
s (t) ∼ tz̃ (4.82)

with the survival probability exponent δ, the so-called slip exponent Θ,
and the spreading exponent z̃ which is different from the usual dynamical
exponent z (see below). Sufficiently close to criticality, these quantities obey
the scaling forms
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aPPsur(t; τ) � λ−δν‖ P̃seed(atλ
−ν‖t; aτλτ) (4.83)

aNNa(t; τ) � λΘν‖ Ñseed(atλ
−ν‖ t; aτλτ) (4.84)

aRRs(t; τ) � λν⊥ R̃seed(atλ
−ν‖t; aτλτ) . (4.85)

By definition the percolation probability equals the ultimate survival proba-
bility, i.e., Pperc(τ) = limt→∞ Psur(t, τ) ∼ τβ′

in the active phase, hence

δ = β′/ν‖ . (4.86)

In order to determine Θ, we express the average number of particles Na(t, τ)
in terms of the pair-connectedness function by

aNNa(t; τ) =
∫

dr Υ (t, |r|; τ)

=
∫

dr λ−β−β′
Υ̃ (atλ

−ν‖t, arλ
−ν⊥r; aτλτ) (4.87)

� λdν⊥−β−β′
∫

dr Υ̃ (atλ
−ν‖t, arr; aτλτ) ,

where we used (4.80) and substituted r �→ λν⊥r. Carrying out the integral
one obtains a function depending on two arguments

aNNa(t; τ) = λdν⊥−β−β′
Ñseed(atλ

−ν‖t; aτλτ) . (4.88)

Comparison with (4.84) yields the so-called generalised hyperscaling re-
lation [470]

d

z
= Θ +

β

ν‖
+

β′

ν‖
(4.89)

which holds for almost all universality classes of absorbing phase transitions
below their upper critical dimension. With α = β/ν‖ and δ = β′/ν‖ the
hyperscaling relation is often written as

Θ =
d

z
− α − δ. (4.90)

In DP, where the rapidity-reversal symmetry (see Sect. 4.1.2) implies α = δ,
the hyperscaling relation reduces to

Θ =
d

z
− 2δ. (4.91)

We shall come back to the rapidity-reversal symmetry in a field-theoretic
context in Sect. 4.3.4.

Finally, we can compute the exponent z̃ by evaluating the integral (see
also exercise 45)
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R2(t; τ) = 〈|r|2〉 =
1

N(t)

∫
dr r2 Υ (t, |r|; τ)

� 1
N(t)

∫
dr r2 λ−β−β′

Υ̃ (atλ
−ν‖ t, arλ

−ν⊥r; aτλτ)

=
1

N(t)
λ(d+2)ν⊥−β−β′

∫
dr r2 Υ̃ (atλ

−ν‖t, arr; aτλτ)

= λ2ν⊥R̃2(atλ
−ν‖t; aτλτ) , (4.92)

leading to the relation7

z̃ =
2
z

=
2ν⊥
ν‖

. (4.93)

This result can also be obtained from dimensional analysis of R2
s (t) ∼ tz̃.

4.2.5 Properties of Clusters in the Absorbing Phase

The pair-connectedness function can also be used to derive the scaling be-
haviour of various other quantities which characterise a cluster generated
from a single seed in the absorbing phase. For example, the mean cluster
mass M is given by the pair-connectedness function integrated over space
and time

M(τ) =
∫

dr

∫ ∞

0

dt Υ (t, r; τ) . (4.94)

Inserting the scaling relation (4.80) and substituting the scaling variables
we obtain a scaling law for the average cluster mass measured in an infinite
system below criticality:

M �
∫

dr

∫ ∞

0

dt λ−β−β′
Υ̃ (atλ

−ν‖t, arλ
−ν⊥r; aτλτ)

=
∫

dr

∫ ∞

0

dt t−α−δ Υ̃ (at, art
−ν⊥/ν‖r; aτ t

1/ν‖τ) (4.95)

∼ |τ |−ν‖(1+Θ) .

Similarly, the mean survival time T , the mean spatial volume V , and the
mean cluster size S of a cluster in the inactive phase read (exercise 45)

T =
∫

dt Psur(t) ∼ |τ |−ν‖(1−δ) , (4.96)

7 In the original work by Grassberger and de la Torre [246], and various other papers, z and
z̃ have been denoted as Z and z, which in the past led to frequent misunderstandings with
respect to the definition of z. We strongly encourage the reader to use the by now commonly
accepted convention that z stands exclusively for the dynamical exponent ν‖/ν⊥ = z.
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Fig. 4.8 Left: Backbone (bold dots) of a two-point correlation function in a critical DP
process. Right: In a random diode network the backbone consists of all elements carrying
a non-zero electric current.

V =
∫

dt Psur(t)td/z−1 ∼ |τ |−ν‖(d/z−δ) , (4.97)

S =
∫

dt Psur(t)td/z ∼ |τ |−ν‖(d/z+1−δ) . (4.98)

For these quantities, we obtain the following scaling relations8

M ∼ |τ |−γ , γ = ν‖(1 +Θ) = ν‖ + dν⊥ − β − β′ , (4.99)
T ∼ |τ |−τ , τ = ν‖(1 − δ) = ν‖ − β′ , (4.100)
V ∼ |τ |−v , v = ν‖(d/z − δ) = dν⊥ − β′ , (4.101)
S ∼ |τ |−σ , σ = ν‖(d/z + 1 − δ) = ν‖ + dν⊥ − β′ . (4.102)

4.2.6 Pair-Connectedness Function, II

The pair-connectedness function Υ (t2 − t1, r2 − r1; τ) can be determined nu-
merically by generating a cluster at the point (t1, r1) in an otherwise inactive
system and measuring the response at the point (t2, r2), averaging over many
realisations. However, as illustrated in Fig. 4.8, only a subset of the cluster
actually contributes to a response at this point. This subset of sites and bonds
connecting the two points (t1, r1) and (t2, r2) is called the backbone of the
pair-connectedness function. Roughly speaking the backbone consists of all
sites and bonds that are connected with the sites (t1, r1) and (t2, r2) by di-
rected paths, cutting off all dangling ends of the cluster. For example, in a
random resistor-diode network [339, 580, 581, 300] as shown in Fig. 4.8 the
backbone would consist of all diodes which carry a non-zero current.

The probability that a given site (t, r) with t1 < t < t2 belongs to the
backbone is proportional to the product of the probabilities Υ (t−t1, |r−r1|; τ)
and Υ (t − t2, |r2 − r|; τ) of finding both a directed path from the origin to

8 On should not confuse here the control parameter τ with the critical exponent τ of the
mean survival time T .
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this intermediate site and another directed path from this site to the terminal
point, divided by the probability Υ (t2 − t1, |r2 − r1|, ; τ) that the backbone
exists. Hence the average number of backbone sites Nb(t) at time t can be
expressed as

Nb(t) �
∫

dr
Υ (t− t1, |r − r1|; τ)Υ (t2 − t1, |r2 − r|; τ)

Υ (|r2 − r1|, t2 − t1; τ)
. (4.103)

At criticality τ = 0 the scaling form (4.80) implies

Nb(t) ∼
(

(t− t1) (t2 − t)
t2 − t1

)Θ

(4.104)

and therefore the total mass of a critical backbone scales as

N tot
b =

∫ t2

t1

dt Nb(t) ∼ (t2 − t1)1+Θ . (4.105)

Interpreting the backbone as the subset of a random-diode network which
actually contributes to the conductivity between the two points (see Fig. 4.8),
one observes that for most of the time the electric current is distributed
among several conducting branches. Sometimes, however, the full current
passes a single site. These so-called red sites (or red bonds) are particularly
important since they are the weakest links of the backbone and the first to
break when the control parameter is varied.

The total number of red bonds can be calculated by varying the control
parameter τ infinitesimally and monitoring the linear response of the pair-
connectedness function. For example, decreasing the percolation threshold
by p → (1 − ε)p in a bond DP process a fraction ε of all bonds will be
removed. Therefore, to lowest order in ε the probability that the backbone is
cut into two pieces is εN red

b , where N red
b denotes the number of red bonds.

Consequently the number of red bonds is given by

N red
b =

∂τΥ (t2 − t1, |r2 − r1|; τ)
Υ (t2 − t1, |r2 − r1|; τ)

= ∂τ ln Υ (t2 − t1, |r2 − r1|; τ) . (4.106)

Inserting the scaling form for the pair-connectedness function (4.80) one is
led to

N red
b � λ Ñ red

b (atλ
−ν‖t, arλ

−ν⊥r; λτ). (4.107)

For critical backbones probing the same location in space (r1 = r2, τ = 0)
this scaling form implies that the number of red bonds increases with time
as

N red
b = (t2 − t1)1/ν‖ . (4.108)

Note that in bond DP the backbone is statistically invariant under time-
reversal, reflecting the rapidity-reversal symmetry (4.3) discussed previously
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Fig. 4.9 Response to an external perturbation in the contact process at criticality. Left:
The creation of a particle at time t1 in a DP process starting with a fully occupied lat-
tice increases the average density of active sites for t > t1. Right: Data collapse of the
autoresponse function R(t2, t1) according to the scaling form (4.113) for various values of
t1 = 26, . . . , 216. The dashed lines indicate the expected asymptotic slopes of the scaling
function.

in Sect. 4.1.2. In other realisations of DP this symmetry is not exact but
emerges asymptotically for large distances in space and time.

4.2.7 Response Function

A similar quantity is the response function R(t2, t1; r2, r1; τ) which is de-
fined as the average response measured at site (t2, r2) to a local perturbation
by an external field at site (t1, r1) in a system starting with a certain initial
configuration:

R(t2, t1; r2, r1; τ) :=
∂�(t2, r2)
∂h(t1, r1)

∣∣∣∣
h(t1,r1)=0

. (4.109)

Usually it is assumed that the system starts with a homogeneously active
state (fully occupied lattice) and that the process is perturbed by creating
activity at site (t1, r1). The response function is translationally invariant
in space and thus depends only on r = |r2 − r1|. However, in contrast to
the pair-connectedness function, the response function is not translationally
invariant in time, since time-translation-symmetry is broken by the presence
of a non-absorbing initial state.

In a simulation the response function can be determined by measuring
the difference between �(t2, r2) with and without perturbation at site (t1, r1)
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averaged over many realisations. Such simulations are numerically challenging
and can be optimised by parallel processing of several perturbations, see
appendix G.

Since the response function is the connected two-point correlation function
of the conjugated field and the order parameter, it has to be rescaled as

R �→ λβ+β′
R , (4.110)

leading to the scaling form

R(t2, t1; r; τ) � λ−β−β′
R̃(atλ

−ν‖t2, atλ
−ν‖t1, arλ

−ν⊥r; λτ) . (4.111)

At criticality τ = 0, choosing λ = (att1)−ν‖ , this scaling form reduces to

R(t2, t1; r) � (att1)−α−δ R̃
(
1, t2/t1, arr(att)−1/z; 0

)
. (4.112)

In particular, the autoresponse function at criticality can be expressed as

R(t2, t1) ∼ t−α−δ
1 R̃(1, t2/t1, 0; 0) =: t−α−δ

1 fR(t2/t1) . (4.113)

The asymptotic behaviour of this scaling function at criticality can be deter-
mined as follows. Keeping t2 − t1 fixed and taking t1 → ∞ one measures the
response to perturbation in an empty system which should be given by the
pair-connectedness function

lim
t2−t1=∆t

t1→∞
R(t2, t1) = Υ (t2 − t1) ∼ (t2 − t1)−α−δ (4.114)

hence
fR(1 + ε) ∼ ε−α−δ for 0 < ε � 1 . (4.115)

However, keeping t1 fixed and taking t2 → ∞ one finds an algebraic decay

fR(ξ) ∼ ξ−λR/z (4.116)

with a new exponent λR, the so-called autoresponse exponent. Recently it
was shown that in DP this exponent is related to the standard exponents [45]

λR = d+ z + β/ν⊥ . (4.117)

A proof of this relation will be outlined in the second volume of this book.
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Fig. 4.10 Critical initial slip of the particle density measured in three different (1+1)-
dimensional DP processes at criticality. The left figure shows the particle density 	(t) in
bond-DP for various initial densities 	0 = 0.001, 0.0033, 0.01, 0.033, 0.1, 0.33, 1 as a
function of time. The dashed lines indicate the slopes +Θ and −α. The right figure shows
a collapse of the universal scaling function R̃slip(1, x, 0) measured in site and bond DP as
well as in the contact process. The data sets are restricted to the scaling regime of the
models and rescaled according to (4.119). The dashed lines indicate the asymptotic scaling
behaviour (4.121).

4.2.8 Early-Time Behaviour and Critical Initial Slip

So far, we have considered two types of initial configurations, namely, the
entirely active state (fully occupied lattice) and a localised active seed (a
single particle) at the origin. Now we turn to homogeneous initial conditions
with a density of active sites �0 < 1 in which the lattice sites are uncorrelated.

While for a fully occupied lattice (�0 = 1), the particle density in a critical
system decreases as �(t) ∼ t−β/ν‖ , one observes that the average number of
particles in simulations starting with a single seed increases as N(t) ∼ tΘ. For
low-density initial states, where active sites are separated by a certain typical
distance, we therefore expect a crossover from an initial increase caused by
the growth of individual clusters to a subsequent decay when the clusters
begin to interact.

Figure 4.10 shows the density of active sites in a bond-DP process for
various initial densities. As can be seen, the density first increases until it
crosses over to the usual asymptotic decay. This crossover is known as the
critical initial slip of non-equilibrium systems [338].

To describe the scaling properties of the initial slip we assume that the
initial particle density �0 appears as an additional scaling field in the scaling
forms. Since an uncorrelated homogeneous state with a finite density of parti-
cles may be created by applying the conjugated field at t = 0 homogeneously
in the whole system, this additional scaling field should be rescaled in the
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same way as
∫

ddr h(t, r), hence

�0 �→ λdν⊥−β′
�0 . (4.118)

The corresponding scaling form is then given by

�(t; �0, τ) � λ−β R̃slip(att λ
−ν‖ ; a0�0 λ

dν⊥−ν‖δ, aττλ) . (4.119)

Choosing λ = (att)1/ν‖ , this scaling form reduces at criticality to

�(t; �0) � (att)−α R̃slip(1; a0�0 (att)dz−δ , 0) . (4.120)

In order to recover �(t) ∼ t−α for �0 = 1 and Na(t) ∼ tΘ for �0 → 0 (see
equations (4.77) and (4.82)) this scaling function behaves asymptotically as

R̃slip(1;x, 0) �
{
x for x � 1
const for x � 1 . (4.121)

Furthermore, the scaling function R̃slip is related to the functions Ñseed

and R̃full via, see (4.84) and (4.75)

R̃full = R̃slip

∣∣∣
�0=1

(4.122)

Ñseed = Ld R̃slip

∣∣∣
�0=L−d

. (4.123)

On a more descriptive level, the initial slip can be interpreted as follows. In
a low-density initial state, the active sites are separated by a certain average
distance r0 = �

−1/d
0 . Initially, each of them generates an independent cluster

so that the density of active sites first increases as � ∼ �0t
Θ. However, only a

fraction ∝ t−δ of these clusters survives, each of them spanning a volume of
ξd
⊥ ∼ td/z. The surviving clusters start touching each other when this volume
becomes comparable with (�0t

−δ)−1, i.e.

O(a0�0 (attc)d/z−δ) = 1 (4.124)

or, ignoring the amplitudes,

tc ∼ �1/(δ−d/z)
0 . (4.125)

Note that this condition is in agreement with the assumed scaling power
in (4.118). Right at the crossover, the density of active sites scales as

�(tc) ∼ tδ−d/z+Θ
c ∼ t−α

c , (4.126)

where we used the hyperscaling relation (4.89). Therefore, the system crosses
over to the expected asymptotic decay � ∼ t−α with an amplitude indepen-
dent of �0. In fact, as shown in the left panel of Fig. 4.10, all curves are not
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only asymptotically parallel but even collapse onto each other. This means
that tc marks the time at which the memory of the initial conditions is lost.

In the right panel of Fig. 4.10 we plot the order parameter for three differ-
ent lattice models as a function of time. The data are rescaled according to
the universal scaling form (4.120). The excellent data collapse confirms the
validity of the scaling form and demonstrates that the observed crossover is
indeed a universal phenomenon. It is worth mentioning that the models use
different update schemes, namely, random-sequential and parallel updates.
Thus the data-collapse affirms that non-universal features caused by differ-
ent update schemes are completely absorbed in the metric factors at and do
not affect the form of the universal scaling function.

4.2.9 Fractal Initial Conditions

In the last section, we have considered how homogeneous initial states with
a finite density �0 of uncorrelated particles influence the scaling behaviour.
This raises the question how a critical system starting with a correlated con-
figuration evolves in time. As an example, we consider initial states which
are characterised by a fractal dimension df ∈ [0, d]. To simplify matters, we
assume the fractal to be simple (opposed to multifractality9) and further-
more require that the different fractal dimensions which one may define (see
appendix H) coincide.

As an example, consider an artificially generated fractal distribution on a
one-dimensional line. As described in [299] this can be done by successively
placing active sites separated by uncorrelated empty intervals of size �. These
interval sizes are algebraically distributed as P (�) ∼ �−1−df , where the fractal
dimension df > 0 plays the role of a control parameter, see exercise 46.

Since the density of active sites would be zero for df < 1, an appropriate
cutoff in form of a maximal interval size has to be introduced. In numerical
simulations, a natural upper cutoff is the system size. Below this cutoff the
two-point correlation function in the initial configuration decays as

〈sisi+r〉 ∼ rdf−1 , (4.127)

We can now use such a fractal initial state to study the temporal evolution
of a critical DP process, interpolating continuously between the homoge-
neous and localised case. In fact, for df = 1 the particles are homogeneously
distributed, leading to the usual long-time behaviour �(t) ∼ t−α, while for
df → 0, the fractal dimension tends to zero, corresponding to the localised
case of a single seed, where we expect the density to increase as �(t) ∼ tΘ.

9 A multifractal is characterised by a continuous distribution of dimensions, rather than
a single one. In this book, multifractals will not be considered.
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In between we find a power-law decay

�(t) ∼ t−α(df ) (4.128)

with a continuously varying exponent

α(df) =
{

−Θ for df ≤ d∗f
− 1

z (d− df − β/ν⊥) for df > d∗f ,
. (4.129)

As can be seen in Fig. 4.11, this power law extends over the whole dynami-
cal range and thus differs significantly from the critical initial slip discussed
above. For very low values of df the exponent α(df) saturates at the value
−Θ. In this limit, the initial configuration is so sparse that it behaves in the
same way as a single seed. For df > d∗f = β/ν⊥, however, correlations in the
initial state become relevant and modify the entire temporal evolution.

As shown in [603] the relation (4.129) can be proved by a field-theoretic
calculation. Interestingly, this calculation does not depend on the specific
form of correlations in the initial state but only on its scaling dimension
df . This has an interesting consequence: No matter how the particles are
distributed – as long as the initial distribution exhibits simple scaling with a
certain fractal dimension, the particle-density decays according to the scaling
form (4.128) and (4.129).

It is interesting to note that a critical DP process itself generates two-point
correlations of the form 〈sisi+r〉 ∼ r−β/ν⊥ , corresponding to the ‘natural’
fractal dimension df,⊥ = d − β/ν⊥ of DP (cf. (4.36)). In other words, DP
itself creates a fractal distribution of active sites, and it would be interesting
to know what happens if a state with the same fractal dimension is used as
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initial configuration. In fact, starting a (1+1)-dimensional DP process with an
artificial initial configuration of uncorrelated intervals with dimension df,⊥ =
1 − β/ν⊥ one observes that the density of particles remains almost constant
(see dashed lines in Fig. 4.11). Nevertheless the process is non-stationary as
it generates higher-order correlations between the intervals.

The formula (4.129) works nicely in higher dimensions and is even valid
for an initially active dh-dimensional hyperplane embedded in d > dh spatial
dimensions. For example, Fig. 4.12 shows the evolution of the number of par-
ticles in a two-dimensional contact process starting with a one-dimensional
line of active sites. With d = 2 and dh = 1 (4.129) yields

α(df) =
2 − 1 − β/ν⊥

z
≈ 0.116 . (4.130)

This prediction is in convincing agreement with the numerical simulation.

4.2.10 Influence of an External Field

Let us now investigate how an external field h influences the dynamics. As
discussed in Sect. 4.1.7, such an external field h can be introduced by adding
a process for spontaneous creation of activity in the bulk. This field is con-
jugated to the order parameter and destroys the absorbing state.

In (4.40) it was postulated that the external field scales as h �→ λσh
with a certain exponent σ. This exponent can be determined as follows. A
homogeneous initial condition with density �0 can be imposed by applying
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the external field
h = �0 δ(t) . (4.131)

Since the δ-function scales as δ(t) �→ λν‖δ(t) while �0 scales according to
(4.118), dimensional counting allows one to express the field and susceptibility
exponents in terms of the four standard exponents (β, β′, ν‖, ν⊥) as

σ = dν⊥ + ν‖ − β′ , (4.132)

γ = dν⊥ + ν‖ − β′ − β , (4.133)

proving the relations (4.47) in Sect. 4.1.7. In the case of the DP universality
class (β = β′), the field and susceptibility exponents are given by β, ν‖, and
ν⊥. Furthermore, the average mass of a cluster generated from a single seed
can be considered as the response of the system to a perturbation such as
(4.131). Thus both, the mean cluster mass and the susceptibility diverge at
the critical point in the same way, see (4.38) and (4.99).

Since the external field scales as h �→ λσh it can be included by adding
a scale-invariant combination ahλ

σh to the list of arguments in the scaling
form (4.63), where ah is the corresponding scale factor:

�(t; τ, h) � λ−β R̃(atλ
−ν‖t; aττ λ, ahh λ

σ) . (4.134)

Therefore, in a critical system (τ = 0) with a non-vanishing external field the
density first decays and then saturates at a positive constant according to

�(t;h) ∼ t−α R̃(aht
σ/ν‖h) . (4.135)

Hence, by plotting �(t;h)tα over against tσ/ν‖h, it is possible to estimate the
exponent σ by a data collapse.

4.2.11 Finite-Size Scaling

As in the static case, the dynamical scaling behaviour may be affected by
finite-size effects. Typically such finite-size effects set in when the spatial
correlation length becomes comparable with the system size, allowing the
system to terminate in the absorbing state.

In order to take finite-size effects into account, one may extend the scaling
forms by an additional argument. For example, in a finite system with N = Ld

sites, the order parameter obeys the finite-size scaling form

�(t; τ ;L) � λ−β R̃full,pbc(λ−ν‖att; λ−ν⊥aLL, λaττ) , (4.136)
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Fig. 4.13 The order parameter decay at the critical point for d = 1. The left figure shows

the raw data of one-dimensional site DP for L = 64, 128, 256 (from left to right). The
rescaled data, i.e., the universal scaling function R̃full,pbc(x; 1, 0) [see (4.138)] is presented in
the right figure for site DP, the contact process and the pair-contact process, all collapsing
onto a single curve. The long-dashed line corresponds to the power-law behaviour of the
infinite system [(4.77)]. Reprinted with permission from [433]. Copyright (2004) World
Scientific Publishing Company.

The indices ‘full’ and ‘pbc’ indicate that the scaling function R̃ depends on
both the initial state, the shape of the system, and the particular choice of
the boundary conditions (here periodic boundaries).

Initially, the spatial correlation length ξ⊥ is smaller than the system size L
and finite-size effects can be neglected, i.e., R̃full,pbc ≈ R̃full. Finite-size effects
set in when O(ξ⊥) = L which happens at a typical time tFSS with

tFSS = a−1
t

(aLL)z . (4.137)

For example, setting λ−ν⊥aLL = 1 in (4.136), one obtains at the critical
point

�(t; 0;L) � (aLL)−α/z R̃full,pbc(att(aLL)−z; 1, 0) (4.138)

= (aLL)−α/z R̃full,pbc(t/tFSS; 1, 0) .

For t � tFSS the scaling function obeys the power-law R̃pbc(x; 1, 0) ∼ x−α

whereas R̃pbc(x; 1, 0) decays exponentially in the finite-size scaling regime
t � tFSS. This is illustrated in Fig. 4.13, where the raw and rescaled data are
shown for a finite DP process in one spatial dimension. Again the data of
models with different update schemes collapse onto a unique universal curve
R̃full,pbc(x; 1, 0). A similar finite-size scaling analysis can be performed for
the survival probability Psur or the number of active sites Na. We refer the
interested reader to [433].

In numerical simulations, it may sometimes be necessary to avoid finite-size
effects. A simple but very reliable method is to simulate a series of finite-size
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systems with L = 2, 4, 8, 16, . . . growing in powers of 2 and to monitor how
tFSS scales with L. This allows one to extrapolate how large the system should
be so that for a given simulation time, finite-size effects can be neglected. If
finite-size effects cannot be ignored, it may be best to turn them into a tool,
along the lines described in appendix F.

4.2.12 Universality of Finite-Size Amplitudes

We now describe an extension of the Privman-Fisher hypothesis, which we
discussed in Chap. 2 for equilibrium systems, to absorbing phase transitions
and especially to directed percolation, following [279]. Since the derivation
requires us to keep trace of many metric factors, we begin by considering first
the phenomenological scaling behaviour for the infinite system and shall only
introduce the specific finite-size scaling properties when really needed.

Assuming spatial translation-invariance, the order parameter �, the sur-
vival probability P and the pair-connectedness function Υ are expected to
scale as (in a notation close to that of Chap. 2, see also exercise 47)

�(t, r; τ, h) = D1� ξ
−β/ν⊥
⊥ E±

(
D0

t

ξz
⊥
,

r

ξ⊥
;D2h|τ |−β−γ

)
P (t, r; τ, h) = D1P ξ

−β′/ν⊥
⊥ F±

(
D0

t

ξz
⊥
,

r

ξ⊥
;D2h|τ |−β−γ

)
Υ (t, r; τ, h) = D1Υ ξΘz−d

⊥ U±
(
D0

t

ξz
⊥
,

r

ξ⊥
;D2h|τ |−β−γ

)
(4.139)

where the D’s are non-universal metric factors, E ,F ,U are universal scaling
functions where the index distinguishes between the cases τ > 0 and τ < 0,
ξ⊥ = ξ0|τ |−ν⊥ is the spatial correlation length, ξ‖ = ξz

⊥/D0 is the temporal
correlation length and z is the dynamical exponent.

In the steady-state, and for h = 0, one expects �s ∼ τβ and Pperc ∼ τβ′
.

Then the scaling forms of �s, of Pperc and of the autoconnectedness are

�s(τ, h) = D1� ξ
−β/ν⊥
0 Ẽ± (

D2h|τ |−β−γ
)
|τ |β

Pperc(τ, h) = D1P ξ
−β′/ν⊥
0 F̃± (

D2h|τ |−β−γ
)
|τ |β′

(4.140)

Υs(0; τ, h) =: Υs(τ, h) = D1P ξΘz−d
0 Ũ± (

D2h|τ |−β−γ
)
|τ |β+β′

,

where Ẽ± = limr‖→∞ E± and similarly for F and U . In the active phase (τ >
0), the surviving clusters will create an average density ∼ τβ in the interior of
the spreading cone. Therefore, the auto-connectedness should in the steady-
state saturate at the value Υs(τ, h) = �s(τ, h)Pperc(τ, h). Comparison of the
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scaling forms then yields, setting h = 0,

D1Υ = D1�D1P
Ẽ±(0)F̃±(0)

Ũ±(0)
(4.141)

The mean cluster mass (4.94) scales as

M(τ, h) =
D1Υ

D0
ξ

γ/ν⊥
⊥ U± (

D2h|τ |−β−γ
)

(4.142)

where (4.139) was used and U±
is a new universal function related to U±.

So far the discussion has been completely general. For systems in the DP
class, we consider (i) the effect of a weak external field h (related to the
rate of a particle creation process ◦ → •). A site at a given time becomes
active if it was connected with at least one active site in the past, where
a particle was created by the field. The number of such sites is equal to
the cluster size, the probability of becoming active is given by the density
�s(τ, h) � 1 − (1 − h)M(τ,h) � hM(τ, h) for h small. Therefore,

M(τ, 0) =
∂�s(τ, h)

∂h

∣∣∣∣
h→0

(4.143)

Comparison with the scaling forms for �s and M leads to

D1P = D0D2ξ
−(β+γ)/ν⊥
0 A± (4.144)

where A± is an universal amplitude. Recall that (ii) directed (bond) perco-
lation is rapidity-reversal-invariant, hence

�s(τ, h) = Pperc(τ, h) (4.145)

As a consequence, β = β′ and D1� = D1P . Therefore, combining the equa-
tions (4.140,4.142,4.144) and using the hyperscaling relation (4.133), we have

�s(τ, h) = D0D2ξ
−d−z
0 |τ |βM̂±

1

(
D2h|τ |−β−γ

)
M(τ, h) = D0D

2
2ξ

−d−z
0 |τ |−γM̂±

2

(
D2h|τ |−β−γ

)
(4.146)

with universal functions M̂±
n (x) := dnM̂±(x)/dxn. Finally, we define a new

function µ = µ(τ, h) by �s(τ, h) = ∂µ(τ, h)/∂h, which implies

µ(τ, h) = D0ξ
−d−z
0 |τ |(d+z)ν⊥M̂± (

D2h|τ |−β−γ
)

(4.147)

In particular, because of ξ‖ = ξz
⊥/D0 we obtain the extension of the Privman-

Fisher hyperuniversality (2.112) [535] to the DP class in the form [279]

µ(τ, 0)ξd
⊥(τ, 0)ξ‖(τ, 0)−→

τ→0
universal constant (4.148)
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We can now include finite-size effects in the discussion. To be specific,
consider a rod geometry, such that the lattice is infinite in the ‘time’ direction,
but is hypercubic with finite width L in the ‘space’ directions. Adopting the
usual expectations of finite-size scaling, we expect that the scaling functions
should now be written as follows:

M̂±
n = M̂±

n

(
D2h|t|−β−γ ;Lξ−1

⊥
)

(4.149)

and without introducing any further metric factor. Scaling out L and using
(4.148) we have for the DP class the following finite-size scaling forms for the
temporal and spatial correlation lengths, generalising the equilibrium form
(2.113) [279]

ξ−1
‖,i = L−zD0Ri

(
C1τL

1/ν⊥
)

, ξ−1
⊥,i = L−1Si

(
C1τL

1/ν⊥
)
, (4.150)

where (for given boundary conditions) Ri and Si are universal scaling func-
tions, the index i refers to the observable of which the correlators are studied
and the entire non-universality can be absorbed into the non-universal met-
ric factors C1 and D0 (since in finite systems, the only stationary state is
the absorbing state, there is no non-trivial analogue of the equilibrium Gibbs
functional).

Therefore, the finite-size scaling amplitudes Si(0) of the spatial correlation
lengths ξ−1

⊥ are universal, as are ratios of temporal correlation lengths

ξ−1
‖,i /ξ

−1
‖,j = Ri(0)/Rj(0).

The latter ones are easily calculated from the spectrum of the Liouvil-
lian/quantum Hamiltonian L, see appendix C and Sect. 4.3.1.

A different consequence of the above argument now concerns the univer-
sality of certain moments. Since

〈|r|n〉 =

∫
Ω(L)

dr

∫ ∞

0

dt |r|nΥ (t, r;L/ξ⊥)∫
Ω(L)

dr

∫ ∞

0

dt Υ (t, r;L/ξ⊥)

= ξn
⊥

∫
Ω(L/ξ⊥)

dr

∫ ∞

0

dt |r|n−(β+β′)/ν⊥U±(t, r;L/ξ⊥)∫
Ω(L/ξ⊥)

dr

∫ ∞

0

dt |r|−(β+β′)/ν⊥U±(t, r;L/ξ⊥)

= ξn
⊥Ξ̄n(L/ξ⊥) = LnΞn(L/ξ⊥) (4.151)

where Ω(L) is a d-dimensional hypercube of linear extent L, the scaling
functions Ξ̄n and Ξn are indeed universal functions, at least for the DP
universality class [279].
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It still is an open problem whether the above argument can be extended to
situations where the two auxiliary assumptions (i,ii) made above (see p. 139)
and which are specific to directed percolation, no longer hold true. However,
explicit results in some models indicate that the results derived here in a
relatively restricted context, might be of a more general validity.

1. The diffusive pair-contact process (PCPD) is described by the reactions,
together with their rates

• • ◦ (1−p)(1−D)/2−→ • • • , •• p(1−D)−→ ◦◦ , •◦ D←→ ◦ • . (4.152)

(here and below, the spatially symmetric counterparts are understood to
occur with the same rates). The phase diagram is shown in Fig. S.5. We
concentrate on the region where pair-annihilation dominates, such that
the mean particle-density � ∼ t−1/2 in 1D. On a finite lattice, the inverse
relaxation time ξ−1

‖,L = ΓL is given by the lowest energy gap of the Li-
ouville operator L. Through a combination of Bethe-ansatz solutions and
numerical diagonalisation and extrapolation, one finds in 1D [279]

ΓL =
aD

L2

(
1 + O(L−2)

)
, a =

{
2π2 ; periodic boundary conditions
π2 ; free boundary conditions

(4.153)
throughout the entire absorbing phase p ≤ pc(D) (see Sect. 5.8 for a
discussion of the behaviour at the critical line). Up to a normalisation,
this indicates the universality of the finite-size scaling amplitude.

2. The diffusion-annihilation-coagulation process is given by the reactions

•• Dγ−→ •◦ , •• 2Dα−→ ◦◦ , •◦ D←→ ◦• , (4.154)

If α + γ = 1, the 1D mean steady-state particle density can be found
from free-fermion methods, see exercise 37. One has limL→∞ L�L,s = (1+
α/γ)/(1 + 2α/γ) which depends on the branching ratio α/γ. Remarkably,
the finite-size amplitude of the inverse relaxation time ξ−1

‖,L = ΓL for a
chain with L sites can be found from Bethe ansatz methods, for both
periodic and free boundary conditions, and turns out to be independent of
α and γ [271]. This nicely confirms hyperuniversality.

3. The diffusion-coagulation-production process is given by the reactions

•◦ D←→ ◦• , •• D−→ •◦ , • ◦ • 2Dλ−→ • • • . (4.155)

It is known that the long-time behaviour of the 1D mean particle-density
is, independently of λ, � ∼ t−1/2 [273], see also exercise 39. Again, for
a periodic chain with L sites, the exact inverse relaxation time ξ−1

‖,L =
2π2DL−2

(
1 + O(L−2)

)
is λ-independent and hence universal, up to nor-

malisation.
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An extension of studies of this kind to different universality classes would be
of interest and could become of diagnostic value for the identification of new
universality classes.

4.3 Methods of Analysis

Despite the simplicity of directed percolation as a lattice model, an exact
treatment, let alone a rigorous solution that explains its critical behaviour
quantitatively, is still lacking. As at equilibrium, the mean-field theory pro-
vides correct results only above the upper critical dimension dc. Below the
upper critical dimension, however, fluctuation effects and correlations change
the critical behaviour entirely, in particular the values of the critical expo-
nents and the form of scaling functions. For this reason, directed percolation
has been studied by a variety of approximate methods, as will be discussed
in the following.

4.3.1 Exact Diagonalisation

In principle, any stochastic model defined on a finite lattice can be solved
exactly by diagonalisation of the time evolution operator. For example, in
models with parallel updates, which evolve by the linear evolution equation

|Pt+1〉 = T |Pt〉 , (4.156)

the general solution can be expanded in terms of the eigenfunctions of T ,
see (3.18). Similarly, in models with random sequential updates evolving by
a master equation (3.21)

∂t|Pt〉 = −L|Pt〉 . (4.157)

the probability distribution |Pt〉 can be computed by diagonalising the Liou-
ville operator L. In the case of two-state models such as DP with N = Ld

sites the evolution operator T (or L) is a 2N × 2N matrix.
Since it is often very difficult to determine eigenvalues and eigenvectors

exactly by analytical methods, such matrices are usually diagonalised nu-
merically on a computer. However, depending on the computational capa-
bilities the system size is strongly limited. For example, directly solving a
(2+1)-dimensional contact process on a 4 × 4 lattice means to diagonalise
a 65 536 × 65 536 matrix which requires about 17 gigabytes of memory, not
to mention the CPU time needed for its diagonalisation, although the mem-
ory requirements are the limiting factor in this kind of calculation. Even
when using optimised algorithms (exploiting symmetries and simplifications
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Fig. 4.14 Real part of the eigenvalue spectrum of the (1+1)-dimensional contact process
with periodic boundary conditions. Left: Low-lying eigenvalues for system size L = 8 as a
function of λ. The dashed line marks the critical point λc � 3.2978 of an infinite system.
Right: Eigenvalue µ1 as a function of λ for system sizes L = [2, 3, 4, . . . , 11] from top to
bottom (dotted lines) extrapolated to L → ∞ (solid line). The inset demonstrates how the
eigenvalue µ1 varies with L at the critical point λ = λc.

for sparsely occupied matrices) the numerical effort grows exponentially, lim-
iting the manageable system size.10 Nevertheless, the method of exact diag-
onalisation can be used as an approximation. Moreover, it is of conceptual
interest.

In appendix C, we show how the matrix L of a (1+1)-dimensional contact
process with periodic boundary conditions can be constructed explicitly by
using a symbolic programming language. Solving the eigenvalue problem

L(λ) |ψi〉 = µi |ψi〉 (4.158)

numerically by standard numerical diagonalisation techniques [531], one ob-
tains a spectrum of eigenvalues {µi}. The real part of the spectrum for a chain
with L = 8 sites is shown in Fig. 4.14. As in all reaction-diffusion models, the
lowest eigenvalue µ0 is zero, representing the stationary state. In the contact
process, this zero mode is simply the absorbing configuration while the other
eigenvectors represent the relaxational modes of the system. As can be seen,
all relaxational eigenmodes have a short lifetime, except for the first excited
state |ψ1〉, whose eigenvalue µ1 tends to zero as λ increases. This eigenvector
represents the active state of the system shortly before it becomes trapped
in the absorbing state. As the smallest eigenvalues determine the life time of
the process we may identify µ−1

1 with the temporal correlation length ξ‖.
In finite systems, there is always a finite probability of reaching the absorb-

ing state, hence µ1 > 0. In infinite systems, however, this eigenvalue decreases

10 It is one of the attractive features of the density-matrix renormalisation group [625, 626]
that it solves this difficulty.
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with λ and eventually vanishes at the critical point (see extrapolated curve
in the right panel of Fig. 4.14). At criticality λ = λc, where ξ‖ ∼ Lz, one
expects that

µ1(L) ∼ L−z , (4.159)

where z = ν‖/ν⊥ is the dynamical exponent. In fact, plotting µ1(L) versus L
in a double-logarithmic plot and measuring the slope (see inset of Fig. 4.14))
for L = 2 to L = 11 one obtains the estimate z ≈ 1.55, which is in fair
agreement with the DP value z = 1.580745(10), see Table 4.3.

Near criticality, the first gap of the spectrum µ1(λ, L) is expected to obey
the finite-size scaling form

µ1(λ, L) = L−z h(Lτν⊥) , (4.160)

where τ = λ − λc. Thus, by plotting µ1L
z over against Lτν⊥ , the exponents

z and ν⊥ can be determined by data collapse. In order to determine the third
exponent β, it would be necessary to analyse the eigenvector |ψ1〉 and to
compute the average density of active sites which obeys a similar scaling
form.11

Larger system sizes can be reached by using sparse-matrix methods, see
appendix C and especially Sect. 4.3.8 on the density-matrix renormalisation
group (DMRG). The specific techniques of finite-size scaling combined with
sequence extrapolation, which go beyond simple visual collapse, are explained
in appendix F and further illustrations can be found again in Sect. 4.3.8 on the
DMRG. These methods allow a considerable increase in numerical precision,
although for DP they are by now inferior to the series expansion methods
(see Sect. 4.3.3).

For studies of the stationary states only, an interesting alternative using the
quasi-stationary distribution has been proposed recently [173]. If pc(t) is
the probability that a non-absorbing configuration c occurs at time t and if
P (t) is the survival probability of the system until time t, the quasi-stationary
distribution is defined by

p̄c := lim
t→∞

pc(t)
P (t)

(4.161)

such that p̄A = 0 for any absorbing configuration A and one has the nor-
malisation

∑
c 
=A p̄c = 1. Denote by rc :=

∑
c′ wc′→cp̄c′ the quasi-stationary

probability flux into configuration c, according to the master equation (3.20),
and by rA the flux into the absorbing state A. Further, let wc =

∑
c′ wc→c′

denote the total rate of transitions out of configuration c. Then, starting from
some initial guess for p̄c, the quasi-stationary distribution is found from the
iteration scheme [173]

11 Computationally, it is considerably more efficient to adapt Yang’s technique (1952) for
the calculation of the spontaneous magnetisation in the 2D Ising model and to look at
the matrix element of the density operator between the two lowest eigenstates of L, see
[270, 125] and Sect. 4.3.8.
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p̄′c = ap̄c +
(1 − a)rc

wc − rA
(4.162)

and the free parameter a ∈ [0, 1] is chosen for optimal convergence (values
of a ≈ 0.1 are recommended [173]). For example, the order parameter on
a lattice of linear extent L is estimated as �s = L−1

∑
c ncp̄c, where nc is

the number of occupied sites of the configuration c. Analysing these data by
the finite-size scaling methods described in appendix F, practical experience
suggests that the method outlined is a useful general purpose-method, with an
accuracy comparable to other general methods. For example, considering the
(1+1)-dimensional contact process on rings up to L = 23 sites, an estimate
for the critical point λc = 3.29791(1) is obtained [173], after extrapolation
with the BST algorithm, see appendix F.2. Similarly, numerical estimates
of several exponents and universal moment ratios, for both the 1D contact
process and the (non-diffusive) pair-contact process, are in good agreement
with each other, often to more than three or four digits (in agreement with
the expected universality), as well as with the precise estimates collected in
Table 4.3 [173].

Therefore, absorbing phase transitions are described by the same mathe-
matical mechanism as equilibrium critical phenomena: in the absorbing phase,
the largest eigenvalue of the transfer matrix (or, respectively, the lowest eigen-
value of the Liouville operator/quantum Hamiltonian) is non-degenerate, but
becomes degenerate at the critical point. On a finite lattice, this degeneracy
is lifted such that at criticality, the lifting of the degeneracy (lowest gap) is of
order O(L−z) in the linear size of the system, while the lifting is exponentially
small throughout the ordered phase.

4.3.2 Yang-Lee and Fisher Zeros

In equilibrium statistical mechanics, a large variety of continuous phase tran-
sitions has been analysed by studying the distribution of so-called Fisher
zeros (obtained when varying the control parameter τ) and Yang-Lee zeros
(obtained when varying the external field h) [639, 638, 159]. The starting
point is the observation that a second-order phase transition of an infinite
system is characterised by a non-analyticity (a discontinuous derivative) of
various measurable quantities at the critical point. Hence, approximating
them by a power series in the control parameter, the zeroes in the complex
plane should approach the transition point in a forcipate manner.

At equilibrium, one usually expresses the partition function of a finite
system as a polynomial in a control parameter and investigates the roots of
this polynomial in the complex plane. If the control parameter is related to the
temperature T , these roots are called Fisher zeros. For example, in the case
of the Ising model, the Fisher zeros lie on a circle in the complex plane and
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approach the real line from both sides in the vicinity of the phase transition
as the system size increases. In the thermodynamic limit, any neighbourhood
of the critical point captures infinitely many of these zeroes, causing non-
analytic behaviour at the transition. Alternatively, the control parameter
may be related to the external field h, in which case the roots are called
Yang-Lee zeros.

Recently, it has been shown that the concept of Yang-Lee zeros can also
be applied to non-equilibrium systems [24, 72]. For example, in the case of
DP [25, 142], one has to consider the survival probability Psur(t) (see (4.82))
of a finite percolation tree as a function of the percolation probability p in
the complex plane. The survival probability of DP and the partition sum of
an equilibrium system are similar in many respects. They are both positive
in the physically accessible regime and can be expressed as polynomials in
finite systems. As the system size tends to infinity, infinitely many Yang-Lee
zeros approach the real line at the critical point, in both cases giving rise to
a non-analytic behaviour at the transition. In different models, such as the
asymmetric exclusion process, one tries to define a non-equilibrium analogue
of the partition function and then proceeds to analyse its zeros, see [72].

In bond DP, the survival probability Psur(t) is given by the sum over the
weights of all possible configurations of bonds, where each conducting bond
contributes to the weight with a factor p, while each non-conducting bond
contributes with a factor 1 − p. As shown in [142], the polynomial for the
survival probability can be expressed as a sum over all cluster configurations c
reaching the horizontal row at time t. Therefore, the polynomial is of the form

Psur(t) =
∑

c

pn(1 − p)m , (4.163)

where n denotes the number of bonds in the interior of the cluster while m is
the number of bonds belonging to its hull. Summing up all weights in (4.163),
one obtains a polynomial of degree t2 + t. For example, for bond DP the first
five polynomials in one spatial dimension are given by

Psur(0) = 1 (4.164)
Psur(1) = 2p− p2

Psur(2) = 4p2 − 2p3 − 4p4 + 4p5 − p6

Psur(3) = 8p3 − 4p4 − 10p5 − 3p6 + 18p7 + 5p8 − 30p9 + 24p10 − 8p11 + p12

Psur(4) = 16p4 − 8p5 − 24p6 − 8p7 + 6p8 + 84p9 − 29p10 − 62p11 − 120p12

+ 244p13 + 75p14 − 470p15 + 495p16 − 268p17 + 83p18 − 14p19 + p20 .

As t increases, the number of possible configurations grows rapidly, leading
to complicated polynomials with very large coefficients.

The distribution of zeros in the complex plane for t = 15 is shown
in Fig. 4.15. As can be seen, the zeros are not arranged regularly on a circle,
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instead their distribution reminds one of a fractal, perhaps being a signa-
ture of the non-integrable nature of DP. As expected, the zeros approach
the phase transition point from above and below. Their distance from the
transition point is found to scale as t−1/ν‖ in agreement with basic scaling
arguments.
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Fig. 4.15 Distribution of Yang–Lee zeros of the polynomial Psur(15) in the complex plane.
The critical point is marked by an arrow. After [142].

4.3.3 Series Expansion

The most precise estimates of the critical exponents of DP in 1+1 dimensions
have been obtained by series expansions combined with Padé approximants.
This technique is very similar to low- or high-temperature expansions in equi-
librium statistical physics, i.e., the order parameter is expressed as a power
series in terms of the control parameter. In what follows we demonstrate how
this method works in the example of the (1+1)-dimensional contact process,
following [359].

Firstly, the Liouville operator (3.38) of the contact process is separated
into two parts

L(λ) = L0 + λL1 , (4.165)
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where L0 describes spontaneous removal of particlesA → ∅ while L1 describes
offspring production A → 2A at neighbouring sites. The starting point of a
series expansion in the inactive phase is to consider λ as a small parameter
and to expand the probability distribution |Pt〉 in terms of λ. To this end it
is convenient to introduce the Laplace transform of |Pt〉 and to expand it as
a power series in λ:

|P (µ)〉 =
∫ ∞

0

dt e−µt |Pt〉 =
∞∑

n=0

λn |Pn(µ)〉 . (4.166)

Applying µ+ L(λ) from the left, then using the master equation (3.21), and
finally integrating by parts, this equation turns into

(µ+ L0 + λL1)
∞∑

n=0

λn|Pn(µ)〉 = |P0〉 , (4.167)

where |P0〉 denotes the initial particle configuration. Comparing the coeffi-
cients, one may readily derive the recursion relation

(µ+ L0) |Pn(µ)〉 =
{

|P0〉 if n = 0
−L1|Pn−1(µ)〉 if n ≥ 1

. (4.168)

Let us further assume that the process starts with a single particle at the
origin. Following [359], we denote this initial state as |P0〉 = |•〉, where the
bullet indicates a single active site. Since L0 can only destroy a particle, the
vector |P 0(µ)〉 is a superposition of configurations with at most one particle.
Applying (4.168), it is then easy to show that

|P 0(µ)〉 =
1

µ(µ+ 1)
|0〉 +

1
1 + µ

|•〉. (4.169)

Similarly, the vector |P 1(µ)〉 is a superposition of configurations with at most
two particles:

|P 1(µ)〉 = − 1
(µ+ 1)2(µ+ 2)

|0〉 +
µ

(µ+ 1)2(µ+ 2)
|•〉 +

1
(µ+ 1)(µ+ 2)

| • •〉.
(4.170)

Repeating this procedure the vectors |Pn(µ)〉 can be constructed iteratively.
As n increases, the expressions for the coefficients become very complex and
have to be generated by symbolic computer programs up to a certain order.

Having determined the vectors |Pn(µ)〉, one can express the temporal be-
haviour of any observable X(t) = 〈s|X |Pt〉 as a power series in λ, where
〈s| = (1, 1, 1, . . . , 1) denotes the sum over all configurations introduced in
(3.16). In particular, the temporal integral over such an observable is given
by
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0

dt X(t) = lim
µ→0

〈s|X |P (µ)〉 =
∞∑

n=0

λn lim
µ→0

〈s|X |Pn(µ)〉 . (4.171)

As an example let us consider the survival probability Psur(t) that the system
has not yet reached the absorbing state at time t. This quantity may be
expressed as

Psur(t) = 1 − 〈0|Pt〉 = 〈s|Pt〉 − 〈0|Pt〉 , (4.172)

where 〈0| = (1, 0, 0, . . . , 0) projects onto the absorbing state. The mean sur-
vival time T of clusters (4.96) in the inactive phase can then be expanded in
powers of λ by

T =
∫ ∞

0

dt Psur(t) = lim
µ→0

P a(µ) =
∞∑

n=0

λn lim
µ→0

(
〈s|P n(µ)〉 − 〈0|Pn(µ)〉

)
.

(4.173)
Since T ∼ (−τ)β′−ν‖ we can estimate λc and β − ν‖ by determining the
location and the amplitude of the singularity in the logarithmic derivative

d
dλ

ln T � ν‖ − β′

λc − λ
+ const (4.174)

by using Padé approximants [259, 367].
A general review on series expansion can be found in [259]. Series expan-

sions were applied to (1+1)-dimensional DP for the first time in [209], where
the critical exponents could be determined with a relative accuracy of about
10−3. Refined simulations [211] led the authors to the conjecture that the DP
exponents might be given by the rational values β = 199/720, ν⊥ = 26/15,
and ν‖ = 79/72. In a sequence of papers [359, 358, 361, 352, 353] the error
margins could be further reduced down to 10−4 . . . 10−5. These improved esti-
mates showed that the conjectured rational values were incorrect, suggesting
that the critical exponents of DP are probably irrational numbers. In addi-
tion, the exponents were found to be independent of the type of lattice under
consideration. Currently, the most precise estimates are given in [355, 356].
Series expansions for DP were also performed in two spatial dimensions [362],
see Table 4.3 on p. 159 for the numerical values.

4.3.4 Field-Theoretical Methods

Field-theoretic Renormalisation group theory is probably the most fascinat-
ing analytical approach to directed percolation. While the predictive power
concerning the values of exponents is limited, field-theory offers a deep in-
sight into the origin of universality, the justification of scaling relations, and
the crossover to mean-field behaviour in high dimensions.
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4.3.4.1 Field-Theoretic Action

As we have seen in Sect. 3.2.4, the critical behaviour of the DP universality
class is described by a minimal stochastic Markovian process represented by
the Langevin equation [326, 330]

λ−1∂t�(t, r) =
(
τ − g �(t, r) + ∇2

)
�(t, r) + h+ η(t, r) (4.175)

with the field-dependent Gaussian noise

〈η(t, r)η(t′, r′)〉 = λ−1 κ �(t, r) δ(t− t′) δ(r − r′) , (4.176)

where we have absorbed the diffusion constant D in a parameter λ on the
left-hand side for later convenience. Higher-order terms such as �3, �4, or ∇4�
turn out to be irrelevant under renormalisation as long as g > 0. Negative
values of g give rise to a first-order transition, whereas the special case g = 0
is associated with a tricritical point, which will be discussed in Sect. 5.4.

Simple dimensional counting gives the mean-field exponents (see exer-
cise 43)

βMF = β′
MF = 1 , ν⊥,MF =

1
2

, ν‖,MF = 1 (4.177)

and further shows that the noise is irrelevant for d > 4, while it is relevant for
d < 4. This confirms that dc = 4 is the upper critical dimension of directed
percolation. Above the upper critical dimension dc mean-field theories are
valid and present instructive insight into the critical behaviour (cf. Sect. 3.2.3,
Sect. 4.1 as well as [480]).

In dimensions d < dc, fluctuation effects become important and lead to
a behaviour that deviates from the mean-field prediction. In this case, the
Langevin equation (4.175) in its bare form is no longer valid, since a con-
tinuum description in the form of a partial differential equation cannot ac-
count for the fractal structure of the emerging percolation clusters. However,
field-theoretic renormalisation group methods provide a way to restore the
discreteness of the underlying lattice through the back-door, either in form
of a cutoff in momentum space or by some other regularisation procedure. In
this case path integral representations are more adequate than the Langevin
equation approach (the connection between Langevin equations and path
integrals is outlined in appendix D).

In the past two decades, field-theoretic renormalisation-group techniques
have been applied to estimate the critical exponents and universal scaling
functions (see [342, 593, 592] for comprehensive reviews of the field-theoretical
treatment of DP). Stationary correlation functions as well as response func-
tions can be determined by calculating path integrals with weight exp (−J ),
where the dynamic functional J describes the considered stochastic process.
Up to higher-order terms which are irrelevant in the RG sense, the dynamic
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functional describing DP is given by [325, 190, 326]

J [�̃, �] = λ

∫
dt dr �̃

[
λ−1∂t�− (τ + ∇2)�−

(κ
2
�̃− g �

)
� − h

]
(4.178)

where �̃(t, r) denotes the response field conjugated to the Langevin noise
field [463]. Remarkably, the above functional is well-known from high en-
ergy physics and corresponds to the Lagrangian of Reggeon field-theory
[1, 123]. Since DP represents the simplest realisation of a non-equilibrium
phase transition, its field-theory is often regarded as the non-equilibrium
counterpart of the famous φ4-theory of equilibrium critical phenomena (which
by a Hubbard-Stratonovich transformation is equivalent to the Ising model,
see exercise 16).

4.3.4.2 Rapidity-Reversal Symmetry

Rescaling the fields in (4.178) by

�̃(t, r) = µ ñ(t, r) , �(t, r) = µ−1 n(t, r) , h = µ−1 h̄ (4.179)

with µ2 = 2g/κ, turns the functional J into

J [ñ, n] = λ

∫
dt dr ñ

[
λ−1∂tn− (τ + ∇2)n −

√
gκ

2
(ñ− n)n − h̄

]
.

(4.180)
In this form, the cubic terms ñ2n and ñn2 have the same coefficient and thus
play a symmetric role. In fact, for h = 0 the action (4.180) is now invariant
under the duality transformation

ñ(t, r) ←→ −n(−t, r) . (4.181)

Note that this duality symmetry, also called rapidity-reversal symmetry
in Reggeon field-theory, is a simple consequence of the path integral formu-
lation while it is considerably less evident in the Langevin equation.

Usually, a duality transformation defines a dual stochastic process that
might differ from the original one [422], relating dual pairs of order parame-
ters. For example, the survival probability Psur(t) that a cluster generated by
a single seed is still active after t time steps, is mapped by the duality trans-
formation to the density of active sites �dual(t) in the dual process starting
with a fully occupied lattice [331] (see exercise 48)

Psur(t) � µ2 �dual(t) . (4.182)

The invariance of the action (4.180) under the transformation (4.181) tells
us that the dual process is again a DP process running backwards in time,
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Fig. 4.16 Self-duality of DP: The order parameter decay 	(t) (starting with a fully occu-
pied lattice) and the survival probability Psur(t) (starting with a single seed) for two distinct
critical points of the Domany-Kinzel automaton (left figure). For bond-DP the duality sym-
metry is fulfilled microscopically, leading to 	(t) = Psur(t). In general, this equivalence is
only obeyed asymptotically, i.e., 	(t) � µ2Psur(t). Here, the curves for p2 = p1/2 are shown.
Moving along the critical line of the phase diagram, the parameter µ decreases (see right
figure) until it vanishes at the termination point which reflects the violation of the rapidity
reversal for compact DP. Thus µ parametrises the critical line of the one-dimensional DK
automaton. Reprinted with permission from [435].

meaning that directed percolation is self-dual. Therefore, �(t) and �dual(t)
coincide, leading to the relation

Psur(t) � µ2 �(t) . (4.183)

Thus, the duality symmetry can be identified as the field-theoretic equivalent
of the rapidity-reversal symmetry discussed in Sect. 4.1.2. However, the field-
theoretic treatment shows that this duality symmetry is not just a special
property of bond-DP, rather it is a characteristic symmetry of the universal-
ity class of DP. This means that all models belonging to the DP universality
class obey, at least asymptotically, the rapidity-reversal symmetry after suit-
able coarse-graining. In other words, the duality is not necessarily an exact
symmetry of the microscopic dynamics [326]. For example, in bond-DP the
duality symmetry is exact with µ = 1, while for contact process and the
pair-contact process (see below in Sect. 5.5) the symmetry holds only asymp-
totically with µ �= 1. Numerical values of µ are listed in Table 3.1 for the
(1+1)-dimensional Domany-Kinzel automaton, and the asymptotic nature of
self-duality is shown in Fig. 4.16.

Irrespective of the particular value of µ, the asymptotic equivalence leads
to the relation [246]

δ = α . (4.184)

or by means of α = β/ν‖ and δ = β′/ν‖ to the scaling law
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β = β′ . (4.185)

Thus, compared to general absorbing phase transitions, DP is characterised
by three instead of four independent critical exponents.

4.3.4.3 Field-Theoretic ε-Expansion of Critical Exponents

By a field-theoretic renormalisation group calculation it is possible to calcu-
late the critical exponents as a power series (loop expansion) in ε = dc − d.
For example, the standard exponents β, ν⊥, ν‖, and z are given in two loop
order by [89, 88, 90, 326]

β = 1 − ε

6

[
1 −

(
11
288

− 53
144

ln
4
3

)
ε + O(ε2)

]
, (4.186)

ν⊥ =
1
2

+
ε

16

[
1 +

(
107
288

− 17
144

ln
4
3

)
ε + O(ε2)

]
, (4.187)

ν‖ = 1 +
ε

12

[
1 +

(
109
288

− 55
144

ln
4
3

)
ε + O(ε2)

]
, (4.188)

z = 2 − ε

12

[
1 +

(
67
288

− 59
144

ln
4
3

)
ε + O(ε2)

]
. (4.189)

4.3.4.4 Equation of State

Field-theoretic methods allow one to calculate scaling functions as a power
series in ε. The Widom-Griffiths scaling form of the equation of state close
to the transition point (to be specific for x < 0 and |x| � 1) is given by [332]

H̃(x, 1) = 1 − x +
ε

6
K [(2 − x) ln (2 − x) − 2(1 − x) ln 2]

+
ε2

72
[
(4 − x) ln2 (2 − x) − 4(1 − x) ln2 2

]
+ O(ε3), (4.190)

where

K = 1 + ε

(
85
288

+
29
72

ln 2 − 53
144

ln 3
)
. (4.191)

As in equilibrium statistical physics, the equation of state may be ex-
pressed in a much simpler form if one chooses a suitable parametric repre-
sentation [559, 365]. For example, introducing the parameters aττ = R(1−θ)
and � = Rβθ/2 the equation of state given above turns into [332]
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ah h =
(
Rβ

2

)σ/β

H(θ) (4.192)

with metric factors aτ , ah and the scaling function

H(θ) = θ (2 − θ) + O(ε3) . (4.193)

In this parametrisation, the whole phase diagram lies in the range R ≥ 0 and
θ ∈ [0, 2]. It is remarkable that the scaling forms for DP are less complicated
than e.g. those of the Ising model [8].

It is straightforward to calculate the susceptibility from the above results.
In particular, the universal amplitude ratio X̃(+1, 0)/ X̃(−1, 0) can be esti-
mated at two-loop order to be [332]

X̃(+1, 0)
X̃(−1, 0)

= 1 − 2β + O(ε3) (4.194)

= 1 − ε

3

[
1 −

(
11
288

− 53
144

ln
4
3

)
ε + O(ε2)

]
.

As we shall see below, critical exponents and universal amplitude combi-
nations are approximated by the ε-expansion with a similar accuracy (see
Sect. 4.3.6). This is different with respect to equilibrium, where the expo-
nents are usually estimated more accurately by ε-expansion than amplitude
combinations [536].

Quite recently, a new approach to renormalised field-theory, applied to ab-
sorbing phase transitions, was developed, which is not based on a perturbative
improvement around the Gaussian fixed point - and is therefore called the
non-perturbative renormalisation group [107, 104, 105, 106, 108, 102].
A detailed description of the method is beyond the scope of this book, but
we emphasise that the non-perturbative character of this technique, which
comes about through an exact integral equation for the correlators, provides
a complementary and useful point of view on the collective behaviour close to
an absorbing phase transition. See e.g. [103] for a pedagogical introduction.

4.3.4.5 Breakdown of Finite-Size Scaling

The field-theoretic renormalisation group allows us to estimate not only criti-
cal exponents, the equation of state and the related susceptibility but also cor-
relation functions and response functions, the survival and percolation proba-
bilities, as well as finite size-scaling functions (see e.g. [326, 336, 331, 440, 333]
and references therein). Moreover, the field-theoretic analysis reveals an in-
teresting anomaly of finite-size scaling above the upper critical dimension,
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the so-called breakdown of finite-size scaling which we shall discuss in
the following.

As an example, let us consider the so-called zero-momentum approxi-
mation. Introducing the spatial Fourier transforms of the fields n and ñ

n(t, r) =
∑

q

eiq·rn̂(q, t) (4.195)

in a system of linear size L and periodic boundary conditions, a dynamic
functional for the homogeneous zero mode q = 0 can be constructed as
follows. First the fields n, ñ are decomposed into homogeneous modes Φ̃(t),
Φ(t) and inhomogeneous orthogonal complements Ψ̃(t, r), Ψ(t, r), i.e.

n(t, r) = Φ(t) + Ψ(t, r) (4.196)

with Φ(t) = L−d
∫

ddr n(t, r). This leads to a decomposition of the response
functional into J = J0[Φ, Φ̃] + J1[Φ, Φ̃;Ψ, Ψ̃ ] with

J0 = λLd

∫
dt Φ̃

[
λ−1∂tΦ− τΦ −

√
gκ

2
(Φ̃− Φ)Φ − h̄

]
. (4.197)

The inhomogeneous modes Ψ̃ and Ψ can be eliminated by a functional integra-
tion and it turns out that J1 contributes to the leading scaling behaviour for
d ≤ dc (see [336, 342] for a detailed analysis). Here, we follow [440] and focus
our attention to the mean-field regime. For d > dc, J1 can be neglected, be-
cause it provides only corrections to the leading asymptotic scaling behaviour.
In order to analyse J0, it is convenient to define the rescaled quantities

ϕ(s) = Ld/2Φ(t) and s =
√

2gκL−d/2λ t . (4.198)

Then, introducing the rescaled control parameter and the rescaled field

T =
√

2gκ
−1

Ld/2τ and H =
√

2gκ
−1

Ld h̄ (4.199)

the functional (4.197) reads

J0 =
∫

ds ϕ̃
[
∂sϕ− Tϕ − 1

2
(ϕ̃− ϕ)ϕ − H

]
. (4.200)

Note that the whole dynamic functional depends on the rescaled parameters
T and H only. Furthermore, the rescaled parameters contain the irrelevant
variable g in a dangerous, i.e., singular way. Comparing (4.199) to the finite-
size scaling form [(4.67) with βMF = 1 and σMF = 2] one obtains the finite-size
scaling exponent for periodic boundary conditions

ν∗⊥ =
2
d
. (4.201)
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The symbol ∗ indicates that the scaling exponent differs from the mean-field
value of the correlation length exponent ν⊥,MF = 1/2 for d > 4. Thus within
the mean-field regime, the finite-size scaling forms are not controlled by the
ratio L/ξ⊥ ∼ L|τ |ν⊥ but by the ratio L|τ |ν∗

⊥ . This scaling anomaly is often
termed breakdown of finite-size scaling and is related to the appearance of an
additional length scale l∞ [69, 201], which diverges as l∞ ∼ |τ |−ν∗

⊥ . Analogous
to equilibrium, this length scale coincides with ξ below dc, meaning that
ν⊥ = ν∗⊥ . Thus, the exponent ν∗⊥ fulfils the hyperscaling relation ν∗⊥d = 2β+γ′

in all dimensions.
In addition to the finite-size scaling exponent ν∗⊥ , it is also possible to derive

universal scaling functions. The dynamic functional (4.197) is associated with
a Fokker-Planck equation [336] which leads to the following moments of the
order parameter, for τ = 0 [440]

〈ϕk〉 = 2k/2 Γ (H + k/2) / Γ (H). (4.202)

In this way, the universal finite-size scaling functions of the order parameter,
the order parameter fluctuations as well as certain ratios can be derived. For
example, the ratios U and Q ((4.73) and (4.69)) are given by
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U =
1
2

and Q =
2
3

(
1 − 1

2H

)
. (4.203)

Note that the ratio Q is not finite at the critical point (H → 0). As already
mentioned, this reflects the different nature of the phases with vanishing order
parameter in equilibrium and in absorbing phase transitions. This scaling
scenario is also observed in numerical investigations. Corresponding data of
the five-dimensional contact process as well as of five-dimensional site-DP
are shown in Fig. 4.17. As can be seen, the numerical data fits perfectly to
(4.203), an impressive demonstration of the usefulness of field-theory in non-
equilibrium critical phenomena.12

4.3.5 Methods for Exact Solution

Although it has not yet been possible to find an exact solution for a model
in the DP universality class, we briefly comment on methods to solve sys-
tems with an absorbing phase transition exactly. Indeed, since there are many
integrable two-dimensional classical spin systems and their one-dimensional
quantum counter parts [50], one might hope to identify stochastic processes
with an integrable Liouville operator L and which might then be solved by
Bethe ansatz techniques. For example, the master equation for simple sym-
metric diffusion can be exactly mapped onto the Schrödinger equation of the
XXZ Heisenberg ferromagnet [15]. A systematic investigation of integrable
stochastic systems was started in [13, 563, 566]. However, although very in-
teresting mathematical structures related to Hecke algebras, quantum groups
and their quotients have been discovered, it turned out that the number of
integrable non-equilibrium models, even in one spatial dimension, is rather
limited. A detailed discussion of integrable models and Bethe-ansatz methods
is beyond the scope of this book, see e.g. [565, 271] and references therein.13

12 The breakdown of finite-size scaling discussed in this section follows the lines of danger-
ously irrelevant variables such that the scaling functions may become singular for d > dc.
However, it is also possible that scaling functions may vanish. An example occurs in the

surface tension σ(τ) of Reggeon field-theory, defined by ξ‖,L(τ) ∼ exp
(
σ(τ)Ld

)
in the

active phase τ > 0, in close analogy with Ising models for T < Tc. From standard scaling
arguments including hyperscaling, one would expect σ(τ) ∼ τdν⊥ . However, from the Li-
ouville operator associated to (1 + 1)D Reggeon field-theory, one obtains σ(τ) ∼ τµ, with
µ = 1.74(6), considerably larger than the expectation µ ≈ 1.1 [278]. Qualitatively, this
means that the so-called ‘node-link-blob picture’ of undirected percolation, which states
that percolation clusters should be described as collections of nodes at distances ∼ ξbulk,
separated by tenuous links, should not be valid for directed percolation, since it implies
µ = dν⊥ [278]. Similar effects also arise in certain first-order transitions [317].
13 http://www.iop.org/EJ/journal/-page=extra.topical2/jstat gives a list of recent
topical articles on the Bethe ansatz.
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model reactions conditions

I •◦ D←→ ◦• ◦◦ ν−→ ◦• • ◦ −→ ◦ ◦ D = ν

II •◦ D←→ ◦• •• γ−→ •◦ • ◦ −→ • • D = γ
III •◦ −→ •• •◦ −→ ◦◦
IV •◦ D←→ ◦• •• 2α−→ ◦◦ ◦◦ 2σ−→ •• α + σ = D

V •◦ D←→ ◦• •• 2α−→ ◦◦ •• γ−→ ◦◦ α + γ = D

VI •◦ D←→ ◦• ◦◦ 2σ−→ •• ◦◦ ν−→ •◦ σ + ν = D

VII •◦ ←→ ◦◦ •• ←→ •◦
VIII • −→ ◦ ◦ −→ •

Table 4.2 Schematic list of the parity-symmetric reaction schemes of stochastic systems
whose Liouville operator can be reduced to a free-fermion form by a local stochastic similar-
ity transformation. For reversible reactions, the forward and backwards rates are assumed
to be equal.

On the other hand, a formal discussion of integrable Liouville operators
sometimes allows one to use stochastic similarity transformations in order
to obtain an overview of at least certain classes of integrable models. For
example, if the Liouville operator can be brought into the form

L = −
L∑

�=1

[
D
(
σ−

� σ
+
�+1 + σ+

� σ
−
�+1

)
+ η

(
σ+

� σ
+
�+1 + σ−

� σ
−
�+1

)
+ hσz

�

]
(4.204)

then standard free-fermion methods can be applied [276, 565] to diagonalise
L exactly and to find explicit time-dependent solutions for the observables
(see exercises). In Table 4.2 we list those stochastic systems, in one spatial
dimension, which describe the evolution of a single species of particles which
can be reduced to the Liouville operator (4.204) by a local similarity transfor-
mation L′ = BLB−1 with B =

⊗L
�=1 B�, see [276, 275, 565, 271].14 In writing

these schematic reaction schemes, we assume that all reactions are symmetric
under a global left-right inversion (parity symmetry) and only specify one of
the reactions involved. Reactions rates are only indicated in order to spell out
relations between various reaction rates (within a given model), unspecified
reaction rates remain arbitrary. These correspondences remain valid if biased
diffusion and reaction rates are admitted.

The models in Table 4.2 can be identified as follows. Models I/II are
the diffusion-coagulation-decoagulation process and its conjugate under a
particle-hole exchange. Model III is the voter model, see Sect. 5.2. Model
IV is related to the 1D kinetic Ising model with Glauber dynamics [276]
(see Vol. 2 of this book) and models V/VI are the diffusion-annihilation-
coagulation process and its conjugate under a particle-hole exchange. Model

14 A very interesting idea [565] is to consider enantiodromy transformations L′ =
BLTB−1, where T denotes the transpose, but this does not yet seem to have been ex-
plored systematically.
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d = 1 [353] d = 2 [612, 249] d = 3 [349] Mean-field

β = β′ 0.276486(8) 0.5834(30) 0.813(9) 1
ν⊥ 1.096854(4) 0.7333(75) 0.584(5) 1/2
ν‖ 1.733847(6) 1.2950(60) 1.110(10) 1
σ 2.554216(13) 2.1782(171) 2.049(26) 2
γ′ 0.543882(16) 0.2998(162) 0.126(23) 0
γ 2.277730(5) 1.5948(184) 1.237(23) 1
η⊥ 1.504144(19) 1.5912(148) 1.783(16) 2

δ = α 0.159464(6) 0.4505(10) 0.732(4) 1
Θ 0.313686(8) 0.2295(10) 0.114(4) 0
z 1.580745(10) 1.7660(16) 1.901(5) 2

D̃(1, 0) [445] 1.46(12) 1.65(9) 1.83(11) 2
X̃(+1,0)

X̃(−1,0)
[445] 0.033(4) 0.25(1) 0.65(3) 1

Rχ [445] 0.60(4) 0.72(4) 0.86(8) 1
U [440] 0.833(11) 0.704(13) 0.61(2) 1/2

Table 4.3 The critical exponents and various universal amplitude combinations of the
directed percolation universality class. For d = 1, the exponents γ, ν⊥, and ν‖ are obtained
from a series expansion by Jensen [351]. For d = 2 and d = 3 activity spreading simulations
are performed yielding δ, Θ, as well as the dynamical exponent z [612, 349]. In addition,
the exponent ν‖ is determined [249, 349] in order to estimate the full set of exponents via
scaling laws. The numbers in brackets give the estimated uncertainty in the last digit(s).

VII is a zero-temperature Glauber-Ising model in a weak magnetic field and
domain-wall driving [565] and model VIII describes particles which exhibit
free decay and creation.

4.3.6 Monte Carlo Simulations

Non-equilibrium phase transitions of non-integrable models such as DP are
often investigated by Monte Carlo simulations. In contrast to equilibrium,
where one has to construct a dynamics for a given model (see appendix G),
the simulation of a non-equilibrium process is much easier because the model
is already defined as a time-dependent stochastic process.

One of the aims of numerical simulations is to find precise estimates of the
critical point, the critical exponents and of the scaling functions. For systems
with absorbing states, there are two main simulation techniques, which dif-
fer by their initial condition, namely, simulations with homogeneous initial
states and simulations starting from a single active seed. In the following,
we summarise these methods, using directed percolation as the paradigmatic
example. For reference, Table 4.3 gives a list of recent estimates of critical
exponents and universal amplitudes of the DP universality class.
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4.3.6.1 Homogeneous Initial States

The first task is to find the critical point of the system. To this end, one
first simulates the system starting with a fully occupied lattice, measuring
the density of active sites as a function of time. To avoid finite-size effects
in this type of simulation, the system has to be sufficiently large, typically
larger than T 1/z, where T is the total simulation time and z = ν‖/ν⊥ is
the expected dynamical critical exponent. Moreover, the density has to be
averaged over many runs in order to reduce the statistical error. Equivalently,
one may perform a single run using a very large system.

The typical scenario is shown in Fig. 4.6 in the example of bond DP. If the
system is in the absorbing phase (p < pc), the curves veer down, whereas they
veer up and saturate if the system is in the active phase. By a successive ad-
justment of the critical parameter (most efficiently by halving the remaining
interval) one can estimate the critical point within a certain margin, depend-
ing on the simulation time and the quality of the statistical average. To find
out whether a curve veers up or down, just divide by the expected slope and
trust your eyes, which are often more reliable in detecting a curvature than
any other tool.

Having determined the critical parameter, one can estimate the exponent
α = β/ν‖ by measuring the slope of the straight line in a double logarithmic
plot. As mentioned before, never use the χ2 error displayed by a regression
algorithm, instead try different slopes and check their compatibility with the
numerical results visually. As a rough rule of thumb, one expects the relative
error in the estimate of a critical exponent to be at least 10 times larger than
the error in the critical parameter.

Next, one can determine the exponent ν‖ by plotting different data sets in
the vicinity of the critical point rescaled according to the scaling form (4.76)
by plotting �(t)tα versus t(p− pc)ν‖ , as shown in the right panel of Fig. 4.6.
This can be done manually but it is advisable to write a short program that
carries out the data collapse and displays the graph directly on the screen,
which allows one to adjust α and ν‖ quite easily. The error bars are then
determined by varying the exponents until the data collapse breaks down.

Finally, the third exponent is determined by a finite-size scaling analysis.
Here it is advisable to increase the lateral system size in powers of 2 (L =
2, 4, 8, 16, . . .) and to measure the decay of the density �(t). Plotting �(t)tα

versus t/Lz the dynamical exponent z has to be adjusted in such a way that
all curves collapse. Note that for small systems, lattice effects may lead to
severe corrections, so it may be impossible to collapse all curves. In this case
these data sets have to be discarded.
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4.3.6.2 Seed Simulations

Seed simulations provide an alternative method of analysing absorbing phase
transitions. Here one starts with a single active site in an otherwise inac-
tive system. This site serves as the seed of a growing cluster whose scaling
properties were already discussed in Sect. 4.2.4. In seed simulations one usu-
ally measures three time-dependent quantities, namely the survival probabil-
ity Psur(t), the average number of active sites Na(t), and their mean square
spreading from the origin R2

s (t) averaged over surviving runs. At criticality
these quantities are expected to obey power laws of the form

Psur(t) ∼ t−δ , Na(t) ∼ tΘ , R2
s (t) ∼ t2/z (4.205)

The process is first simulated at criticality. Empirically, it turned out that
Na(t) is the most sensitive quantity with respect to deviations from criticality
and should be used to determine or verify the critical point. Simulations at
criticality permit one to estimate two independent exponents (δ = β′/ν‖ and
z = ν‖/ν⊥), while the exponent Θ allows one to verify the generalised hyper-
scaling relation Θ = d/z−α−δ. The third exponent ν‖ can be determined by
off-critical simulations, plotting e.g. Na(t)t−Θ versus t(p−pc)ν‖ and adjusting
ν‖ in such a way that the curves collapse.

Seed simulations can be optimised in various ways. The most efficient one
is to keep the positions of active sites in a dynamically generated list. Such
list structures are provided by standard software packages such as the C++
Standard Template Library (STL).15 This method virtually eliminates finite-
size effects because the possible values of the coordinates are only limited by
the range of integer numbers.

4.3.6.3 Comparison of Scaling Functions

For the identification of a universality class, the analysis of scaling functions is
often more reliable than a simple comparison of critical exponents. While for
the latter the numerical differences between different universality classes are
often small, the scaling functions may differ significantly. Thus the agreement
of universal scaling functions provides not only additional but also indepen-
dent and more convincing evidence in favour of a conjecture that the phase
transitions of two models belong to the same universality class. For exam-
ple, let us consider the scaling behaviour of the equation of state. Setting
ahhλ

σ = 1 in (4.41) we obtain the scaling form

�s(τ, h) � (ahh)β/σ R̃(aττ (ahh)−1/σ, 1) . (4.206)

15 See e.g. http://www.sgi.com/tech/stl/ for more information.
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Fig. 4.18 The universal scaling function R̃(x, 1) of the order parameter of the two-
dimensional directed percolation universality class (left panel). The data of all considered
models collapse onto to the same scaling function, which is an impressive manifestation of
the robustness of the directed percolation universality class with respect to variations of
the microscopic interactions. If the metric factors aτ and ah are not taken into account,
each model is characterised by its own scaling function (right panel). The bold circles mark
the condition R̃(0, 1) = 1. Reprinted with permission from [433]. Copyright (2004) World
Scientific Publishing Company.

Plotting the rescaled stationary order parameter �s(τ, h) (ahh)−β/σ as a func-
tion of the rescaled control parameter aττ(ahh)−1/σ, the data sets of different
models belonging to the DP universality class have to collapse onto a single
universal curve R̃(x, 1). This is shown in Fig. 4.18 for six different lattice
models. Despite the different interaction details of e.g. bond-DP (bDP) and
site-DP (sDP), despite the fact that the activity is coupled to a frozen (PCP)
or fluctuating (TTP) background of inactive particles, despite the different
nature of the absorbing phase (a unique state for e.g. the CP and infinitely
many states for the PCP), despite the fact that the ZGB model contains two
distinct components in contrast to the other models, despite the different
implementation of the conjugated field (particle creation or diffusion), and
despite the different lattice structures and update schemes used, – all rescaled
data collapse onto a unique universal scaling function! This data collapse is
an impressive manifestation of the robustness of the DP universality class.
Furthermore, it allows one to identify irrelevant parameters, i.e., those pa-
rameters and interaction details which do not affect the scaling behaviour.

A similar analysis can be performed in various dimensions and the re-
sults are displayed in Fig. 4.19. The universal scaling functions depend on
the dimension d below the upper critical dimension dc = 4. In this regime
it is worth comparing the numerical results with those of analytical approx-
imations such as renormalisation group results derived by the powerful and
versatile ε-expansion. As expected, the differences increase with increasing
perturbation parameter ε, i.e., with increasing distance to the upper critical
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Fig. 4.19 The universal scaling function R̃(x, 1) of the directed percolation universality
class below (left) and above (right) the upper critical dimension dc = 4. The two- and
three-dimensional data are vertically shifted in order to avoid overlaps. The bold circles
mark the condition R̃(0, 1) = 1. For d < dc we compare the numerical data to those of
an ε-expansion (grey lines, see (4.193) and (4.192) and [332]). For d > dc the analytically
known mean-field scaling function (4.207) fits perfectly to the numerical data. Reprinted
with permission from [433]. Copyright (2004) World Scientific Publishing Company.

dimension. The deviations are particularly strong in d = 1, indicating that
higher orders of the expansion than ε2 are necessary to describe the scaling
behaviour in low dimensions.

Above the upper critical dimension, the scaling behaviour of the lat-
tice models has to equal the analytically known mean-field scaling function,
e.g. for the equation of state (see (4.54))

R̃MF(x, y) =
x

2
+

√(x
2

)2

+ y . (4.207)

Rescaled data of three different five-dimensional models are shown in Fig. 4.19.
The agreement between the numerical and the analytical results confirm that
all considered models exhibit the same type of simple mean-field behaviour.
In other words, the value of the upper critical dimension is less than five.
In this way, a reliable upper bound on dc can be obtained just by checking
whether the numerical or experimental data are consistent with the ana-
lytically known mean-field scaling function. This method was also applied
successfully in universality classes different from DP where the value of dc is
not known exactly [438].

Right at the upper critical dimension, the scaling behaviour is charac-
terised by mean-field power laws modified by logarithmic corrections. For
example, the order parameter at zero field behaves as

�s ∼ τ | ln τ |1/3 . (4.208)
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Recent numerical investigations [10, 438, 446, 255] as well as analytical re-
sults [341] have shown that the concept of universal scaling functions can also
be applied to systems at the upper critical dimension. Instead of going into
details we refer the interested reader to the review [433].

As in the equation of state, the universality also manifests itself in the
scaling functions of the fluctuations and the susceptibility, respectively. For
example, Fig. 4.20 shows the universal susceptibility scaling function X̃(x, 1),
see (4.42). The susceptibility is obtained by computing the numerical deriva-
tive of the order parameter with respect to the conjugated field. All scaling
functions exhibit a clear maximum signalling the divergence of χ at the crit-
ical point.

As already discussed in Sect. 4.1.9, a universality class is not only char-
acterised by critical exponents and universal scaling functions but also by
various universal amplitude combinations [536, 279]. These amplitude
combinations emerge from the universality of the scaling functions since uni-
versal amplitude combinations are just particular values of the scaling func-
tions. In particular, the measurement of amplitude combinations in experi-
ments or simulations provides a reliable test for theoretical predictions. For
example, approximation schemes of the renormalisation group, such as ε- or
1/n-expansions, are widely used to obtain explicit and systematic estimates
of the amplitude combinations (see Sect. 4.3.4). Here, we shall focus on the
amplitude ratio of the susceptibility. Other universal amplitude combinations
of DP are discussed in [433], see also Table 4.3.

Consider the singular behaviour of the susceptibility below and above the
transition for h = 0

χ(τ, 0) �
{
aχ,+ τ−γ ; if τ > 0

aχ,− (−τ)−γ ; if τ < 0
. (4.209)

Using the scaling form (4.42), the susceptibility ratio

χ(τ > 0, h)
χ(τ < 0, h)

=
X̃( aττ λ, ahhλ

σ)
X̃(−aττ λ, ahhλσ)

∣∣∣∣∣
aτ |τ |λ=1

=
X̃(+1, x)
X̃(−1, x)

(4.210)

is clearly a universal quantity for all values of the scaling argument x =
ahh|aττ |−σ . In particular it equals the ratio aχ,+/aχ,− for a vanishing field

aχ,+

aχ,−
= lim

h→0

X̃(+1, x)
X̃(−1, x)

=
X̃(+1, 0)
X̃(−1, 0)

. (4.211)

Within the mean-field approximation (4.55) leads to the result

X̃MF(+1, x)
X̃MF(−1, x)

= 1 (4.212)
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Fig. 4.20 The universal scaling function X̃(x, 1) of the directed percolation universality
class below the upper critical dimension (left figure). The two- and three-dimensional
data are vertically shifted in order to avoid overlaps. The bold circles mark the condition
X̃(0, 1) = β/σ for each d, reflecting the accuracy of the numerical analysis. The right figure
displays the universal scaling function X̃(1, x)/X̃(−1, x) for various dimensions and models
(closed symbols site-DP, open symbols PCP and CP). The dashed lines correspond to
an ε-expansion of a renormalisation group approach (see (4.195) and [332]). The universal
amplitude X̃(1, 0)/X̃(−1, 0) is obtained from the extrapolation ahh|aτ τ |−σ → 0. Reprinted
with permission from [433]. Copyright (2004) World Scientific Publishing Company.

for all x. The susceptibility ratio X̃(+1, x)/X̃(−1, x) is shown in Fig. 4.20 for
various models and different dimensions. The five-dimensional data agrees
well with the mean-field prediction. Far away from the transition point, the
critical fluctuations are suppressed and the behaviour of all systems is well
described by the mean-field solution. Approaching criticality, the critical fluc-
tuations increase and a crossover to the d-dimensional behaviour takes place.

It is instructive to compare these results with field-theoretic findings [332]
since the theoretical curve reflects the accuracy of the RG estimates of all
involved quantities, namely the exponent, the scaling functions, as well as
the non-universal metric factors. The perfect agreement between the numer-
ical data and the RG curve for d = 3 indicates that all quantities are ap-
proximated well. In the two-dimensional case, a horizontal shift is observed
between the numerical data and the RG-estimates. Thus the RG-approach
yields good estimates for the exponents and the scaling functions, but the
metric factors are less precise. For d = 1, the ε2-approximation does not
render appropriate estimates of the DP scaling behaviour, similarly for the
equation of state (see Fig. 4.19).

The investigation of the universal amplitude ratio X̃(+1, 0)/X̃(−1, 0) for a
vanishing field offers a more quantitative check of the renormalisation group
results. Numerically this ratio is obtained by an extrapolation of the sus-
ceptibility ratio X̃(+1, x)/X̃(−1, x) to x → 0. The estimated values listed in
Table 4.3 may be compared to (4.195). Despite the negative and therefore
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unphysical results for d = 1 the RG results agree well with the numerical data
(see also Fig. 4.20). For example, the two-dimensional values differ only by
3%. That has to be compared to the difference of the critical exponents. The
RG estimate of e.g. the order parameter exponent (4.186) differs for d = 2
from the best known numerical value by 6% (see Table 4.3). The comparable
accuracy of the critical exponent and of the amplitude combination is con-
trary to what is observed in critical equilibrium systems, where the exponents
are usually calculated more accurately by ε-expansions (e.g. 6% difference for
γ) than universal amplitude combinations (e.g. 115% for the susceptibility
ratio). A possible explanation is that the ε2-approximation yields for ε = 1, 2
much better results for DP than e.g. for the Ising model. This is also reflected
by the remarkably simple form of the equation of state within the ε-expansion
(see (4.193)).

So far we have considered universal scaling functions and amplitude combi-
nations of infinite systems in the steady-state. This analysis can be extended
easily to steady-state and dynamical finite-size scaling functions and ampli-
tude combinations. For example, we already have presented the universal
scaling behaviour of the fourth-order cumulant Q above dc in Fig. 4.17 and
the dynamical order parameter behaviour in Fig. 4.13. We refer the interested
reader to [433] for a systematic review on the analysis of these universal quan-
tities.

4.3.7 Universal Moment Ratios

A different set of quantities, which may be useful for diagnostic purposes,
considers universal ratios of moments of the order parameter [175, 176, 172,
151]. Let

mn := 〈�n
s 〉 (4.213)

denote the nth moment of the order parameter. From the usual scaling argu-
ments, one expects that ratios such as m2/m

2
1, m3/(m1m2) or m4/m

2
2 should

be universal. Similarly, if one considers the cumulants

K2 := m2 −m2
1 , K4 := m4 − 4m3m1 − 3m2

2 + 12m2m
2
1 − 6m4

1, (4.214)

the ratioK4/K
2
2 should be universal. In Table 4.4, results for several moments

ratios as estimated by quasi-stationary simulations are listed for the contact
process and the non-diffusive pair-contact process, which are thought to be
in the same universality class. Also included are the pair-contact process
with diffusion, the parity-conserved universality class and compact directed
percolation, which will be defined in Chap. 5.

A comparison of these numbers allows one to appreciate quantitatively a
few points. It is satisfying to see that the estimates for the contact process
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d model m2/m2
1 m3/(m1m2) m4/m2 K4/K2

2 Ref.

1 DP 1.1736(1) 1.301(3) 1.554(2) -0.505(3) [175]
PCP 1.1738(2) 1.303(3) 1.558(2) -0.493(3) [175]
D = 0.1 1.140(15) 1.27(2) 1.55(3) 0.1(2) [151]
D = 0.5 1.166(8) 1.310(15) 1.61(2) 0.0(1) [151]
D = 0.85 1.170(6) 1.301(3) 1.61(4) -0.1(1) [151]
PC 1.3340(4) [176]
CDP 1.142(8) [172]

2 DP 1.3257(5) 1.569(1) 2.093(8) -0.088(4) [175]
PCP 1.323(3) 1.56(1) 2.07(1) [175]

Table 4.4 Universal moment ratios for several systems in d = 1 and 2 spatial dimen-
sions. The moments are calculated from the particle- or pair-density, respectively, accord-
ing to which is related to the physical order parameter [151]. The models are: contact
process/directed percolation (DP), pair-contact process (PCP), diffusive pair-contact pro-
cess (PCPD), labelled by the value of the diffusion constant D ∈ [0, 1], parity-conserving

class (PC) and compact directed percolation (CDP).

and the pair-contact process, for both dimensions d = 1, 2, are practically
identical. We also see that distinct universality classes (PC, CDP) may be
distinguished by different values of the moment ratios or the cumulants. These
observations confirm what one finds by studying the critical exponents in
these systems. With respect to the diffusive pair-contact process, the situation
is not so clear. If the diffusion constantD is large enough, most of the moment
ratios in d = 1 appear to be close to the DP-values, although the (rather
imprecise) cumulants are quite different. On the other hand, the data for D
small might be seen as an indication of a critical behaviour different from
DP, or else as an example of especially large corrections to scaling.16 This
illustrates the difficulties which may sometimes arise in interpreting purely
numerical data. We shall come back to the PCPD in Sect. 5.8. Certainly, it
will be useful to build up a database of universal moment ratios, in order to
create a tool for future analysis.

The form of the distribution of the order parameter and its scaling be-
haviour is also analysed in [176, 151].

4.3.8 Density-Matrix Renormalisation-Group Methods

Diagonalising large matrices such as Liouville operators and transfer matri-
ces can in certain cases be greatly helped through a relatively recent method
invented by S. White and called the density-matrix renormalisation-
group (DMRG). As compared with exact diagonalisation, it allows one to

16 Interestingly, the study of the finite-size scaling of the universal ratios of correlation
times rather suggests particularly strong corrections to scaling for large values of D [279].
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treat considerably larger systems, with a numerical precision which may even
exceed what can be achieved by Monte Carlo methods. On the other hand,
the technique is only efficient for systems with extremely short-ranged inter-
actions. In non-equilibrium systems, efficient implementations only exist in
one spatial dimension. Since the method is well-presented in a lecture-notes
volume [518] and recent developments are brilliantly covered in two recent
reviews [560, 561], we limit ourselves here to a brief illustration on how the
DMRG might be used to study steady-states or time-dependent averages.
Adopting the language used in DMRG studies, we use in this section the
terms ‘Liouville operator L’ and ‘quantum Hamiltonian H ’ synonymously.

In the following we shall consider two models as illustration for the ap-
plication of the DMRG to non-equilibrium systems. Both models describe
particles of a single species A on a chain with N sites such that each site is
either empty (∅) or occupied by a single particle (A). Throughout, we shall
use open (free) boundary conditions, since they facilitate the application of
the DMRG. The two models are defined by the following dynamical rules:

1. Diffusion-annihilation model: Particles hop to neighbouring sites with
unit rate. If the target site is empty the particle diffuses by A∅ ↔ ∅A.
Otherwise, if the target site is occupied, the two particles annihilate pair-
wise (2A → ∅∅). This model has two stationary states, namely, the empty
lattice and the state with only one diffusing particle. The smallest non-
vanishing eigenvalue of the Liouville operator L can be found exactly from
the Bethe ansatz [279]

E2(N) = 2p
(

1 − cos
π

N + 1

)
∼ N−2 (4.215)

which implies a dynamical exponent z = 2.
2. Branching-fusing process: Here the reactions 2A → ∅∅, A → ∅ and

A∅ ↔ ∅A occur with rate p and the reactions A∅, ∅A → AA occur with
rate 1− p. This model exhibits a transition between an empty state and a
fluctuating active steady-state at some critical threshold pc. This transition
is expected to be in the DP universality class, confirmed by estimates of
both bulk and surface exponents, as shown in Table 4.5. Quantitatively,
the results indicate that the DMRG is a viable general-purpose method,
which produces results comparable in precision to other well-established
techniques.

4.3.8.1 Density Matrix Renormalisation Group Algorithm

The DMRG algorithm [626] finds selected approximate eigenvalues and eigen-
vectors of a given (symmetric) time evolution operator L. That desired eigen-
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exponent series simulation DMRG best DP estimate

β/ν⊥ 0.2520(1) 0.25208(4) 0.249(3) 0.2520
β1/ν⊥ 0.6690(1) 0.664(7) 0.667(2) 0.6689

ν⊥ 1.0969(1) 1.09684(1) 1.08(2) 1.0968
z = ν‖/ν⊥ 1.5806(2) 1.58074(4) 1.580(1) 1.5807

Table 4.5 Comparison of some critical exponents (bulk and surface) in 1+1 dimensions
as found for the branching-fusion model by the DMRG [125] with results from directed
percolation as obtained from series data [212] and Monte Carlo simulations [482, 409]. The
numbers in brackets give the estimated uncertainty. The best estimates for DP are taken
from Table 4.3 and (4.238), rounded to four digits.

vector |ψ〉 is called a target state and the process of selecting |ψ〉 is referred
to as targeting (it is possible to target several states, see below). One as-
sumes that L is defined on an open chain with L sites and has the local
structure

L =
N−1∑
i=1

Li,i+1 (4.216)

where Li,i+1 is a local time evolution operator acting on two neighbouring
sites. The method is iterative and proceeds in two steps. The first one is the
so-called infinite-system method (ISM). Suppose we are interested in the
ground state of L. As the starting point, consider a chain of four lattice sites
which can be represented as B(1)

l • •B(1)
r , where • denotes a single site and

B
(1)
r,l are blocks at the left and right side of the chain. Initially, they contain

only one spin, that is B
(1)
r,l = •. At this point, the main loop begins. The

time evolution operator L is easily written down and its ground state wave
function ψ0(αl, il, jr, βr) can be found via standard diagonalisation routines
[531], where αl and βr denote degrees of freedom of the blocks B(1)

r and B
(1)
l

and the indices il, jr refer to the spin degrees of freedom of the single lattice
points in the middle of the chain. The density matrix for the left part of the
system is defined as

ρ(l)(αl, il; γl, kl) =
∑
jr ,βr

ψ0(αl, il, jr, βr)ψ0(γl, kl, jr, βr) . (4.217)

As a shortcut, one may write instead ρ(l) = trl(|ψ0〉〈ψ0|), where trl,r denotes
a partial trace either in the left or right part of the system. Next, one solves
the non-sparse eigenvalue problem ρ|Ωi〉 = ωi|Ωi〉 via some standard routine.
The eigenvalues of the density matrix are non-negative and can be ordered
according to ω1 ≥ ω2 ≥ ω3 ≥ . . . ≥ 0. Furthermore, if the ground state
vector of L is normalised according to 〈ψ0|ψ0〉 = 1, one has

∑
i ωi = 1. Each

eigenvalue ωi is equal to the probability of finding the left part of the chain in
the corresponding density matrix eigenvector |Ωi〉 when the whole system is
in the ground state |ψ0〉. The configurational space reduction is then obtained
by keeping only the first m dominant density matrix eigenvectors |Ωi〉 with
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i = 1, 2, . . .m, corresponding to the m largest ωi. Formally, the truncation
can be represented by

OT
m

(
B

(1)
l •

)
Om = B

(2)
l , (4.218)

where Om = [|Ω1〉, . . . , |Ωm〉]. The accuracy of the projection operation can
be described by the truncation error ε = 1 −

∑m
i=1 ωi. This projection

operation is repeated for the right part as well to obtain B
(2)
r . Combining the

two blocks with new sites one gets B(2)
l • •B(2)

r , e.g. a chain of N = 6 sites
after the first pass through the main loop. The next pass through the main
loop begins by writing down L for this longer chain.

Applying this procedure repeatedly at the left and right part of the system,
one generates larger and larger systems. At each iteration step, two new sites
are added in the middle of the chain and the boundaries are pushed further
away from each other. Schematically, this may be illustrated as

B
(1)
l • •B(1)

r → B
(2)
l • •B(2)

r → . . . → B
(N/2−1)
l • •B(N/2−1)

r .

This ISM method is repeated, often until N ≈ 103. However, for systems
close to criticality, the numerical precision achieved is not sufficient and a
second step, the so-called finite-size method (FSM), is needed.

The starting point of the FSM is the target vector |ψ〉 for a chain of given
length N , as generated by the ISM described above. At this point another
sequence of iterations is started. First, one calculates better approximations
for the blocks on the left part representing more than N/2 − 1 sites, using
as before (4.218), while for the blocks on the right part, one uses blocks
generated in previous iterations in order to keep the total length of the system
fixed at N . Schematically this looks as follows:

B
(N/2−1)
l • •B(N/2−1)

r → B
(N/2)
l • •B(N/2−2)

r → . . . → B
(N−3)
l • •B(1)

r .

Second, this procedure is reversed and the larger blocks on right part of the
system are refined. Schematically, this may be written as

B
(N−3)
l • •B(1)

r → B
(N−2)
l • •B(2)

r → . . . → B
(1)
l • •B(N−3)

r .

In these steps, the Br are updated according to (4.218), while the Bl are
taken from the blocks calculated previously. Finally, the Bl are updated again
through the sequence

B
(1)
l • •B(N−3)

r → B
(2)
l • •B(N−4)

r → . . . → B
(N/2−1)
l • •B(N/2−1)

r

until one is back at the left-right symmetric partition. This completes a so-
called ‘sweep’ of the renormalisation procedure. The target vector extracted
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at this stage can be used as starting point for the next FSM iteration. Usually,
two or three such sweeps achieve convergence.

In practise, critical exponents are found from combining the DMRG with
finite-size scaling so that estimates for several values of N are required. For
better efficiency, one uses the FSM to calculate from the same run quantities
for chains of different lengths simultaneously as follows. The blocks generated
at the end of the FSM for a chain of length N0 are used as starting point
for further DMRG calculation: first, one uses the ISM to enlarge the system
symmetrically until a length N1 > N0 is reached and then one switches back
to the FSM.

In carrying out these calculations for reaction-diffusion systems, one has
the additional difficulty that the time evolution operator L to be diagonalised
is non-symmetric. This can create serious problems concerning the numerical
stability of the algorithm. A good way to find both eigenvalues and eigenvec-
tors of L is through the Arnoldi algorithm for which efficient implemen-
tations are available.17 But we warn the reader that even the convergence
of the extreme eigenvalues is not always completely regular, meaning that
subsequent estimates do not always form Sturm chains.

The Arnoldi algorithm iteratively generates one sequence of orthonormal
vectors |qi〉 forming the columns of a matrix Qn = [|q1〉, . . . , |qn〉] and a Hes-
senberg matrix Ln = QT

nLQn with elements Lij . One starts from a random
vector |q0〉 of unit length and h10 = 1 and iterates using

hk+1,k|qk+1〉 = L|qk〉 −
k∑

i=1

hik|qi〉 (4.219)

with hij = 〈qi|L|qj〉, where 〈qi| = |qi〉T and hk+1,k is determined by enforcing
unit length for |qk+1〉.

The non-symmetric Hessenberg matrix is then diagonalised using the stan-
dard QR algorithm. Some of the eigenvalues of Ln will converge towards some
of those of L, and associated eigenvectors of Ln can be transformed into those
of L using Qn. The subtleties in assuring the convergence are dealt with in
the available packages.18

4.3.8.2 The Choice of the Density-Matrix

The choice of the density-matrix is an important issue in DMRG studies. For
the reaction-diffusion type models at hand, it turned out that

17 See ftp://caam.rice.edu in the directory pub/people/software/ARPACK
18 An alternative is to use a non-symmetric Lanczos method, see [125] for details.
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Nl Nr usual precision high precision
6 6 0.0211852795111 0.0211852795111
7 7 0.0173940538620 0.0173940538302
8 8 0.0146003960454 0.0146003961355
9 7 0.0146003960889 0.0146003961161
10 6 0.0146003961644 0.0146003961865
9 7 0.0146003961642 0.0146003961866
8 8 0.0146003962502 0.0146003962379
7 9 0.0146003963897 0.0146003962378
6 10 0.0146003962420 0.0146003962377
7 9 0.0146003961645 0.0146003962378
8 8 0.0146003961420 0.0146003962379
9 9 0.0124729862108 0.0124729862559
10 8 0.0124729861363 0.0124729862333
11 7 0.0124729861847 0.0124729862262
12 6 0.0124729861234 0.0124729862244
11 7 0.0124729861816 0.0124729862251
10 8 0.0124729861765 0.0124729862258
9 9 0.0124729869859 0.0124729861961

Table 4.6 Energy gap Γ = E1(p, N) for the branching-fusing model with p = 0.8403578
and with m = 32 states retained, as determined by the FSM of the DMRG. Nl and Nr

indicate the lengths of the left and right parts, which vary during the application of the
finite-system method. ‘Usual precision’ refers to 14-digit precision arithmetics and ‘high
precision’ to 30 digits. After [125].

ρi :=
1
2

tr
{
|ψ(l)

i 〉〈ψ(l)
i | + |ψ(r)

i 〉〈ψ(r)
i |

}
(4.220)

appears to give the best convergence, where |ψ(l)
i 〉 and |ψ(r)

i 〉 denote the
(normalised) left and right eigenvectors corresponding to the i-th eigenvalue
of the non-symmetric time evolution operator L. It is the optimal choice in
the sense that it minimises simultaneously the distance of the trial vectors
from the exact right and left eigenstates |ψ(l)

i 〉 and |ψ(r)
i 〉, see [125].19

When applied to the first excited state of the branching-fusing model, one
finds a convergence for the energy up to the 11th digit. Even the ground-
state energy is estimated as E0 � 10−8, very close indeed to the exact value
of zero, although the first excited state was used as the target state, see [125]
for details. We remark that targeting simultaneously the ground-state and
the first excited state may improve the precision of the ground-state energy
but leads to a loss of accuracy in the excited state.

In Tables 4.6 and 4.7 the convergence of the non-symmetric DMRG with
the FSM included is illustrated. We stress that for critical systems the use of
the FSM is necessary in order to achieve data of sufficient accuracy. At least
for the cases considered here, an increase in m did not lead to an increase
of accuracy. On the other hand, for chains with more than N ≈ 50 sites the

19 Still, the choice (4.220) may not be the best in all situations. For example, in the q-
symmetric quantum Heisenberg chain a non-symmetric choice for the density-matrix was
preferable [380].
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Nl Nr DMRG exact
6 6 0.0581163651488 0.0581163651479
7 7 0.0437047728086 0.0437047985324
8 8 0.0340537551881 0.0340538006322
9 7 0.0340537521644
10 6 0.0340537779114
9 7 0.0340537779110
8 8 0.0340538006303 0.0340538006322
7 9 0.0340538006306
6 10 0.0340538006308
7 9 0.0340538006312
8 8 0.0340538006323 0.0340538006322
9 9 0.0272774426890 0.0272773931946
9 9 0.0272773931864 0.0272773931946
9 9 0.0272773931999 0.0272773931946

Table 4.7 Lowest gap Γ = E2(p, N) for the diffusion-annihilation model with p = 1 and
with m = 32 states, found from the FSM. Nl and Nr indicate the lengths of the left and
right parts. The last column gives the exact result (4.215). For total length 18, only the
three results for equal lengths are given. After [125].

DMRG lost its numerical stability, presumably because of an accumulation
of small errors in the diagonalisation processes.

4.3.8.3 Exponents from Finite-Size Scaling

Close to criticality, one expects for the energy gap the following finite-size
scaling form

Γ (p,N) = N−ΘG
(
|p− pc|N1/ν⊥

)
, (4.221)

where G(x) is a scaling function. A finite-size estimate pc(N) for the critical
point, along with an estimate z(N) is found by solving the equation

ln [Γ (p,N + 2)/Γ (p,N)]
ln[N/(N + 2)]

=
ln [Γ (p,N)/Γ (p,N − 2)]

ln[(N − 2)/N ]
=: z(N) . (4.222)

In addition, density profiles can be found. If n̂(�) is the density operator at
position �, the density profile is naturally calculated from the ground states
|s〉 = |ψ(r)

0 〉 and 〈s| = 〈ψ(l)
0 |, normalised as 〈s|s〉 = 1, by

n(�) = 〈ψ(l)
0 |n̂(�)|ψ(r)

0 〉 = �−β/ν⊥F1(�/N) , (4.223)

where F1 is a scaling function. The quantity n(�) will be non-vanishing only
if the boundary reaction ∅ → A is included with rate p′ at the two sites at
the edges. Of course, one must then analyse the behaviour of the function
in p′ (see below). According to (4.223) the quantity Nβ/ν⊥n(�) depends on �
only through the scaling variable �/N , see the left panel in Fig. 4.21.
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Fig. 4.21 Finite-size scaling of the particle-density profile in the critical branching-fusing
model with p = 0.84036 and p′ = 0.3 (left panel) and p′ = 0.002 (right panel). The inset
shows the collapse of the scaled densities onto a single curve as expected from (4.225)),
with ρ′ = (β1 − β)/ν⊥. Reproduced from [125] with kind permission of Springer Science
and Business Media.

In particular, for the particle density taken in the centre at � = N/2 one
expects the scaling form

n(N/2; p) = N−β/ν⊥F2

(
|p− pc|N1/ν⊥

)
(4.224)

and one can again obtain estimates for the critical point pc(N) and the ex-
ponent β/ν⊥.

The boundary rate p′ leads, below the upper critical dimension, to non-
monotonic profiles. This counter-intuitive effect is analogous to short-time
critical dynamics, giving rise to the slip exponent [343] (see also Sect. 4.2.4).
In analysing the role of p′ for the scaling behaviour, it can be shown that [125]

n(�, p′) = �−β/ν⊥F3(�/N, p′�x1) ∼ �(β1−β)/ν⊥F4(�/N) , (4.225)

where the last relation is expected to hold for p′ → 0. Here the scaling
function F3 should first satisfy limλ→∞ F3(�/N, λ) = F1(�/N) and second
F3(�/N, λ) ∼ λ in analogy to what is known [549, 550] in equilibrium surface
critical phenomena where furthermore x1 = β1/ν⊥ is related to the surface
exponent β1 of the order parameter.20 The change in the finite-size scaling
behaviour as a function of p′ is illustrated in Fig. 4.21.

Finally, profiles may also be found from matrix elements which allow one
to avoid the cumbersome double limit p′ → 0 followed by N → ∞ altogether.
If |ψ(r)

1 〉 and 〈ψ(l)
1 | are the first excited eigenstates of L, consider

20 Surface critical phenomena of DP, where an analogous exponent β1 appears, will be
discussed below in Sect. 4.4.1
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from Γ from n(�) from n(�)
N pc(N) z(N) (z − 1/ν⊥)(N) pc(N) β/ν⊥(N) β/ν⊥(N) β1/ν⊥(N)
10 0.815486295 0.830071389 0.177917024
12 0.822241704 0.923515450 0.248868030 0.211498060 0.524156106
14 0.826556808 0.996672190 0.303005003 0.214641534 0.540022433
16 0.829477408 1.055258740 0.345372694 0.844595690 0.174469664 0.217449273 0.552833181
18 0.831547147 1.103159519 0.379339662 0.219928645 0.563377349
20 0.833068754 1.143030157 0.406998719 0.843578941 0.183190533 0.222113618 0.572197559
22 0.834221223 1.176727177 0.430122954 0.224042959 0.579677788
24 0.835115836 1.205580740 0.449620922 0.842813911 0.191175959 0.225753163 0.586096418
26 0.835824726 1.230565614 0.466327849 0.227274607 0.591673398
28 0.836396350 1.252411806 0.480376056 0.842276687 0.197772094 0.228648854 0.596559909
30 0.229893751 0.600879333
32 0.841894149 0.203168874 0.230988495 0.604833883
34 0.231983300 0.608060181
36 0.841617080 0.207584161 0.232890344 0.611490572
40 0.841415905 0.211176020
∞ 0.84036(1) 1.580(1) 0.66(2) 0.8406(3) 0.24(1) 0.249(3) 0.667(2)

Table 4.8 Finite-size estimates of the critical point pc and of various exponents for the
branching-fusing model, obtained from the gap Γ , from the density profile n(�), as well
as from the matrix element n(�). The last row shows the N → ∞ limit obtained by the
BST algorithm. The numbers in brackets give the estimated uncertainties in the last digit.
After [125].

n(�) := 〈ψ(l)
1 |n̂(�)|ψ(r)

1 〉 ∼
{
N−β/ν⊥ ; if �/N ≈ 1/2
N−β1/ν⊥ ; if �/N ≈ 0, 1

, (4.226)

where one may simply set p′ = 0 and which again gives access to bulk and
surface exponents, depending on whether one measures deep inside the bulk
or close to a surface.

The results from these three different methods are compared in Table 4.8.
We see that the finite-size data themselves for the exponents still move con-
siderably with the number of sites N , and a precise sequence extrapolation
towards N → ∞ is needed. In this kind of application, the so-called BST
algorithm [96, 280, 270] (see appendix F) has proved to give very reliable
results. Because of the free boundary conditions used, the final results are
quite far from the finite-N data, but it is very satisfying to see that results
obtained from different quantities are in agreement with each other and also
with the literature, see also Table 4.5.

4.3.8.4 Light-Cone Transfer Matrix Renormalisation-Group

In order to make the 1D contact process suitable for a DMRG-treatment, it is
useful to slightly modify the rules, as illustrated in Fig. 4.22. It is also common
to parametrise the critical parameter of the contact process by p := (1+λ)−1.
With this parametrisation the dynamics can be recast as follows: If a lattice
site i is occupied, the particle is removed with probability p or a particle is
created at a randomly chosen neighbouring site of i with probability 1 − p.
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Fig. 4.22 Dynamical rules for the contact process on a 1D lattice. Upper line: updat-
ing rules for a Monte-Carlo simulation. Lower line: updating rules for the LCTMRG.
After [287].

A variant of the DMRG, the so-called light-cone transfer-matrix den-
sity matrix renormalisation group (LCTMRG) [384], provides an alter-
native route to the calculation of time-dependent quantities. The algorithm
we describe here is an improvement on earlier DMRG approaches [385, 205]
and has the following advantages:

• There is no need for random numbers and ensemble averages since all
relevant ensembles and correlations (in the sense explained below) are
taken into account. One LCTMRG run takes a few minutes while 1000 MC
runs may take days. The resulting correlation functions are very smooth
and no repeated runs, e.g. for improved statistics, are needed.

• The transfer matrix enables us to take the thermodynamic limit N → ∞
exactly.

However, the LCTMRG is still plagued by numerical instabilities whose exact
origin is unclear, restricting the calculation to about 1000 time steps. The
LCTMRG is not very useful for models where each site may have many
different states (n � 2), or where the interaction spans more than two or
three sites.

We now give a brief description of the algorithm as devised by Kemper et
al. [384] and with the extensions [204] needed to measure two-time quantities,
as we will be required to do in Vol. 2 of this book in the studies of ageing.
The dynamics of the one-dimensional stochastic process can be mapped by a
Trotter-Suzuki checkerboard decomposition onto a two-dimensional classical
model: This is the geometric interpretation of DP in two spatial dimensions,
directed along one of the two axes.

The checkerboard is made up of plaquettes τ (“local transfer-matrices”)
encoding the local interaction according to the rules in Fig. 4.22:
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Fig. 4.23 (a) Trotter-Suzuki decomposition of 2∆t time steps. The resulting 2D lattice
consists of local plaquette interactions τ and is infinitely extended in the space direction.

The dimension of the time direction is finite and the boundary conditions are fixed by
〈
1
∣∣∣

and
∣∣∣P (0)

〉
. (b) Reduction of the 2D lattice to a triangle structure. All other plaquettes

trivialise, i.e. do not contribute to the state of the top of the triangle. Reprinted with
permission from [384].

(τ)l1l2
r1r2

=
〈
l2r2

∣∣e−∆t·h∣∣l1r1〉 =

l1 r1

l2 r2

with li, ri ∈ {0, 1} (4.227)

where h is the local transition-rate matrix from two neighbouring sites l1, r1
at time t to the same sites at time t + ∆t. The time step ∆t � 1 should be
chosen sufficiently small.

One determines the thermodynamic properties of the system by a transfer
matrix: this ensures that the system is truly infinite in space, while we can
follow the short-time dynamics for a certain number of time steps.

Because of probability conservation in (4.228) and causality (at each time
step, only a neighbouring site may be affected by the local interaction), the
measurement of a local observable ni(t) at time step t and site i depends
only on the ‘past light-cone’ of this site on the classical 2D lattice [205]
(see Fig. 4.23):

∀l1, r1 :
∑
l2r2

(τ)l1l2
r1r2

= 1,

r1l1

Σl2 Σr2

= 1. (4.228)

As the dimension of the exact transfer-matrix grows exponentially with
the number of time steps, we use the density-matrix renormalisation group
(DMRG) idea to decimate the state space by splitting the system into two
strongly correlated parts, called the ‘system’ and ‘environment’. Kemper et
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Fig. 4.24 Splitting the light-cone into four corner transfer-matrices by diagonal cuts.
Reprinted with permission from [384].

al. [384] have proposed an efficient realisation of the DMRG algorithm applied
to corner transfer-matrices. These are obtained by diagonal cuts through the
checkerboard: the light cone is split into four parts diagonally along the future
and past light cone of the centre point of the triangle (see Fig. 4.24).

A modification of the algorithm is required [204] in order to be able to
compute the autocorrelation and autoresponse functions necessary for in-
vestigation of the ageing behaviour, which will be discussed in the second
volume of this book. Usually for a local observable ni(t) the expectation
value N(t) := 〈ni(t)〉 is obtained by multiplying the local transfer-matrix at
site i and time t with ni(t) before applying the initial and final conditions
and taking the trace over temporal indices. But for studies on ageing, one is
also interested in the two-time autocorrelation 〈ni(t)ni(s)〉 and its connected
counterpart C(t, s), along with the autoresponse function

C(t, s) = 〈ni(t)ni(s)〉 − 〈ni(t)〉〈ni(s)〉 , R(t, s) =
δ〈ni(t)〉
δhi(s)

∣∣∣∣
h=0

, (4.229)

where the external field h is realised as a rate of spontaneous creation of
particles on the site i. In order to find the autocorrelator 〈ni(t)ni(s)〉, the
algorithm has been modified to multiply the local transfer matrices τ adja-
cent to site i with ni both at time steps s and t before the trace. Then the
connected autocorrelation C(t, s) is computed via (4.229), and the deriva-
tive of the connected autocorrelation function is computed from a symmetric
difference, i.e.

∂C(t, s)
∂s

:=
C(t, s +∆t/2) − C(t, s−∆t/2)

∆t
(4.230)

which is sufficiently accurate (i.e. independent of ∆t for ∆t = 0.01 . . .0.05).
Likewise, when applying an external field hi in order to compute R(t, s),

the local τ adjacent to site i at time step t = s is modified to include particle
production at rate hi. However, as we are interested in the derivative with
respect to the external field, it is better to compute this derivative analyti-
cally: the time evolution operator in the presence of an external field hi on
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Fig. 4.25 Comparison of the mean particle-density N(t) found by Monte Carlo (MC) and
by the LCTMRG for the critical 1D contact process. Direct estimates for −δ are shown
in the inset. The LCTMRG becomes numerically unstable around t = 1000. Times are
measured in units of ∆t = 0.02. Reprinted with permission from [204].

site i is

Lhi = L + id1,...,i−1 ⊗ hi

(
−1 0
1 0

)
i

⊗ idi+1,...,N

where L is the Liouville operator (or Hamiltonian) for the CP. Then using
the state at time t = s, |P (s)〉 = e−Ls |P (t = 0)〉, and the final state 〈s|, see
(3.16)

R(t, s) = lim
hi,∆t′→0

〈s| e−L(t−s−∆t′)

(
e−Lhi

∆t′ − e−L∆t′

hi∆t′

)
|P (s)〉 (4.231)

= lim
hi,∆t′→0

〈s| e−L(t−s−∆t′)
(

(L − Lhi)∆t′ + O((∆t′)2)
hi∆t′

)
|P (s)〉

= 〈s| e−L(t−s)

(
id...,i−1 ⊗ −

(
−1 0
1 0

)
i

⊗ idi+1,...

)
|P (s)〉 ,

where the matrix is written in terms the local basis (0, A) on site i. This has
two advantages:

1. The limit hi → 0 is taken exactly, thus there is no danger of triggering a
phase transition by inserting extra particles into the system.

2. No numerical derivative is necessary which would have included the dif-
ference of two very similar quantities, so this method is numerically more
accurate.

In Fig. 4.25, we compare the results for N(t) ∼ t−δ of the critical contact
process in 1D obtained from Monte Carlo (MC) or the LCTMRG, respec-
tively. First, we observe that the LCTMRG data are fairly smooth, as is espe-



180 4 Scaling Properties of Absorbing Phase Transitions

cially evident when studying the exponent δ directly (see inset). However, we
also see that the LCTMRG becomes numerically unstable around t = 1000
time steps. This happens because the basis vectors of the reduced state space
offered during the renormalisation by the LCTMRG method step become in-
adequate: the expectation value of the identity operator 〈1〉 is around 1 (as it
should be) only for the first several hundred time steps, but it then decreases
to below 0.1. However, the onset of instability can in practice always be iden-
tified very reliably. The reason for this instability is that DMRG works best
if system and environment are quite strongly entangled, which is not the case
here.

4.4 Other Critical Properties

4.4.1 Surface Critical Behaviour

In a critical system that generates scale-free long range correlations as time
proceeds a local defect may cause a non-local response of the order parameter.
This applies in particular to boundary conditions, which usually affect the
entire critical behaviour of a system. In equilibrium, for example, fixing the
spins of a critical semi-infinite Ising model at the boundary, one observes a
non-local response of the magnetisation which decays algebraically with the
distance from the boundary. In equilibrium statistical physics, the critical
behaviour at surfaces induces an additional surface exponent β1 for the
order parameter field in the vicinity of the wall [68, 115, 183, 316, 523]. This
exponent is generally independent of the usual bulk exponents and describes
how deviations of the order parameter caused by the boundary decay in the
bulk of the system, see also Sect. 2.3.6.

A similar picture emerges in non-equilibrium statistical physics. However,
as non-equilibrium systems involve time as an extra dimension, one has to
distinguish between spatial, temporal, and mixed boundary conditions. For
example, in non-equilibrium statistical physics a ubiquitous type of temporal
boundary condition is the initial configuration of a dynamical process. On
the other hand, the simplest example of a spatial boundary is a static (d−1)-
dimensional hyperplane, on which we shall focus in the following.

As a (d − 1)-dimensional hyperplane breaks translational invariance in
space the order parameter �(t, r; τ) will depend on the perpendicular dis-
tance r⊥ = |r⊥| from the hyperplane. Assuming that r⊥ scales like a length
and invoking usual scaling arguments the order parameter in a semi-infinite
system is expected to obey the scaling form

�(t, r⊥; τ) � t−α w̃(r⊥/t1/z, r⊥τν⊥ ) , (4.232)
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Fig. 4.26 Directed percolation with a wall. The figure shows a configuration of a (1+1)-
dimensional bond DP process. Left: Initially inactive system with an active wall. Right:
Initially active system with an absorbing wall.

where we have suppressed the metric factors for simplicity.
In models with an absorbing phase transition two important types of

boundary conditions have been studied (see Fig. 4.26). One possibility is to
keep all sites on the hyperplane in the active state. Such a boundary is usually
referred to as an active wall. The other possibility is to keep the boundary
sites inactive, imposing a so-called absorbing wall. As we shall see below,
these two types of boundary conditions correspond to different scaling func-
tions w̃act and w̃abs.

4.4.1.1 DP with an Active Wall

Let us first consider an active wall (see left panel of Fig. 4.26) and study
the corresponding mean-field theory. This will be the directed percolation
analogue of the extraordinary transition, see Sect. 2.3.6. In the continuum
limit an active wall can be considered as a hyperplane at which the particle
density diverges. The wall acts as a permanent source of activity, destroys
the absorbing state, and leads to a finite response of the order parameter
field which becomes stationary in the limit t → ∞.

In order to compute the stationary profile as a function of r⊥ we have to
solve the stationary mean-field equation (cf. (3.8))

λ−1∂t�(t, r) = τ�(t, r) − g�2(t, r) + ∇2�(t, r) = 0 (4.233)

together with the boundary condition

�(t, r)
∣∣∣
r⊥=0

= ∞ , (4.234)
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where r⊥ denotes the coordinate perpendicular to the wall. At criticality
τ = 0 the stationary mean-field solution is of the form �s(r) ∼ r−2

⊥ . Thus
the stationary density profile of an active wall decays algebraically with the
distance from the wall.

Let us now turn to the question of how such a profile is formed over the
course of time in a critical and initially inactive system. Clearly, the density
in close proximity to the wall will become constant after only a short time.
Since for τ = 0 the order parameter obeys the simplified scaling form

�(t, r⊥) � t−α w̃act(r⊥/t1/z, 0) (4.235)

the stationarity of the profile nearby implies that the scaling function
w̃act(y, 0) behaves as w̃act(y, 0) ∼ y−β/ν⊥ for small arguments y � 1. Hence
in the limit t → ∞ the profile becomes stationary and has the form

�s(r) ∼ r
−β/ν⊥
⊥ (4.236)

in agreement with the previous mean-field result. For finite t, however, this
power-law profile extends only over a finite range until it crosses over to
an exponential decay when y ≈ 1. This crossover takes place at a distance
r⊥ ∼ t1/z and moves away from the wall as time advances.

The left panel of Fig. 4.27 shows snapshots of density profiles taken at cer-
tain times in a critical (1+1)-dimensional contact process with a permanently
active site at the origin starting with an empty lattice. Plotting �(t, r⊥) tα as
a function of r⊥/t1/z one obtains an excellent data collapse, confirming the
scaling form (4.235) as well as the expected crossover from an initial algebraic
decrease w̃act(r, 0) ∼ r−β/ν⊥ to an exponential decay.

Including the control parameter τ the above scaling form allows one to
examine the off-critical behaviour at the surface. For example, in the active
phase the profile becomes stationary within the correlation time ξ‖ ∼ τ−ν‖

and the influence of the wall extends over a range proportional to the corre-
lation length ξ⊥ ∼ τ−ν⊥ .

Note that the surface critical behaviour near an active wall involves only
the usual bulk exponents, i.e., in DP an active wall does not induce an inde-
pendent surface exponent.

4.4.1.2 DP with an Absorbing Wall

In the case of an absorbing wall the situation is different (see [337, 212, 409,
408, 228] as well as [307, 229] for recent reviews). Here the order parameter
is set to zero at the wall and the system still has an absorbing state. This
is analogous to the ordinary transition of equilibrium systems described in
Sect. 2.3.6. In the active phase of a semi-infinite system, we therefore expect
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Fig. 4.27 Directed percolation with a wall. The left (right) panel shows a data collapse
of the averaged density profiles near an active (absorbing) wall measured in a critical
(1+1)-dimensional contact process at t = 1, 2, 4, . . . , 16384. The dashed lines indicate the
expected slopes −β/ν⊥ and (β1−β)/ν⊥, respectively. The insets display the corresponding
raw data used for the data collapses.

to find the usual stationary density �s in the bulk and a depletion zone next
to the wall whose thickness is related to the correlation length ξ⊥ ∼ τ−ν⊥ .

A suitable order parameter that characterises the depth of the depletion
zone is the average activity �s of lattice sites adjacent to the wall. In numerical
simulations this surface activity is found to scale as

�1 ∼ τβ1 (4.237)

with a new exponent β1. This surface critical exponent is larger than the bulk
exponent β and takes the values [354, 229]

β1 =
{

0.73371(2) in d = 1 ,
1.07(5) in d = 2 . (4.238)

Again it is instructive to study the mean-field limit. In the continuum for-
mulation the surface density �s(t) may be expressed as the average activity

�1(t) = �(t, r)
∣∣∣
r⊥=a

(4.239)

measured at a fixed microscopically small distance away from the wall which
may be interpreted as the lattice spacing a. In order to determine βMF,1 within
a mean-field approximation, we now have to solve (3.8) with the Dirichlet
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boundary condition
�(t, r)

∣∣∣
r⊥=0

= 0 , (4.240)

i.e., the order parameter vanishes along the hyperplane. Next to the wall,
where the density is small and the non-linear term of the mean-field equa-
tion can be neglected, �(t, r) has to increase linearly with r⊥. Therefore, the
surface density is proportional to the first derivative of the density profile

�1(t) ∼ ∂

∂r⊥
�(t, r)

∣∣∣∣
r⊥=0

. (4.241)

Multiplying the one-dimensional stationary mean-field equation

τ�s(r⊥) − g�2
s (r⊥) + �′′s (r⊥) = 0 (4.242)

by �′s(r⊥) and integrating over r⊥ one obtains the equation

1
2
τ�2

s (r⊥) − 1
3
g�3

s(r⊥) +
[
�′s(r⊥)

]2 = C , (4.243)

where C is an integration constant. Since �s = τ/g is the stationary solution
in the bulk, this constant takes the value C = τ3/6g2. Hence the derivative of
the order parameter at the wall (and therewith the surface density) is given
by

�1 ∼ �′s(0) =

√
τ3

3g2
(4.244)

and thus scales as τ3/2, i.e., the surface exponent in the mean-field limit is

βMF,1 = 3/2 . (4.245)

This value has to be compared with the bulk exponent βMF = 1, confirming
the inequality βMF,1 > βMF in the mean-field case.

To describe the scaling properties of an absorbing wall in the general case,
we can again use the scaling form (4.235), although with a different scaling
function w̃abs. For example, starting with a fully occupied lattice at criticality
the growing depletion zone is described by the scaling form

�(t, r⊥) � t−α w̃abs(r⊥/t1/z, 0) . (4.246)

This scaling function differs from the one considered in (4.235) and has the
following asymptotic properties. For large arguments, i.e., deep in the bulk,
the process does not feel the influence of the absorbing wall so the density of
active sites decays as t−α, hence w̃abs(r, 0) � const for r � 1. Similarly, in
the vicinity of the wall the order parameter is expected to decay as �1(t) ∼
t−α1 , where α1 = β1/ν‖, meaning that the scaling function has to increase
as w̃abs(r, 0) = r(β1−β)/ν⊥ for r � 1. As demonstrated in the right panel
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d = 1 [354] d = 2 [229] mean-field one-loop [228]

β = β′ 0.276486(8) 0.583(3) 1 1 − ε/6
ν⊥ 1.096854(4) 0.733(8) 1/2 1/2 + ε/16
ν‖ 1.733847(6) 1.295(6) 1 1 + ε/12

β1 = β′
1 0.73371(2) 1.07(5) 3/2 3/2 − 7ε/48

Table 4.9 Bulk and surface exponents of directed percolation with an absorbing wall
(ordinary transition).

of Fig. 4.27 for DP in 1+1 dimensions, this is indeed the case. A similar
observation can also be made within the context of finite-size scaling, as was
already shown in Fig. 4.21.

In early papers, the numerical value of the surface exponent β1 ≈ 0.734
compared to the DP bulk exponent ν‖ ≈ 1.734 in 1 + 1-dimensions led to

speculation about a possible scaling relation ν‖
?= 1+β1. However, more recent

estimates (see Table 4.9) rather indicate that this relation does not hold [354].
In fact, by dimensional analysis it seems to be unlikely that β1 and ν‖ are
related by a simple linear scaling relation. Moreover, in 2+1 dimensions, the
numerical value β1 = 1.07(5) cannot be simply related to the other exponents.
Similarly, a field-theoretic one-loop approximation [228]

β1 =
3
2
− 7

48
ε+ O(ε2) (ε = 4 − d) (4.247)

indicates that the surface exponent is generally independent of the other
exponents. See Table 4.5 for a comparison of the results found for β1/ν⊥,
β/ν⊥, ν⊥ and z from different numerical techniques.

As discussed in Sect. 4.1.1, other universality classes of absorbing phase
transitions are generally described in terms of two independent bulk expo-
nents β and β′. Similarly, the scaling theory of surface critical behaviour next
to an absorbing wall requires us to introduce two surface exponents β1 and
β′

1 which may be different. In DP, however, the rapidity-reversal symmetry
(which is still valid in presence of an absorbing wall) forces them to be equal.

4.4.1.3 Critical Behaviour at Edges

In d ≥ 2 dimensions the intersection of two d − 1-dimensional absorbing
walls defines an absorbing edge with opening angle ψ. Near the edge the
order parameter is known to scale with an exponent βed(ψ) which varies
continuously with ψ (see [228, 229] for details). For ψ = π the two walls
coincide, forming a single absorbing wall, hence βed = β1. Other numerical
values are shown in Table 4.10.

Interestingly, in the limit ψ → 2π the bulk exponent βMF,ed = β is re-
covered. This case corresponds to a semi-infinite absorbing half-plane. For
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example, in 2+1 dimensions such a boundary would be an absorbing semi-
infinite line. Although the critical behaviour is changed in the vicinity of the
line, it is apparently not affected at the tip.

4.4.1.4 Moving Absorbing Wall

The simplest type of a time-dependent boundary condition is a moving
absorbing wall. As an example let us consider an absorbing hyperplane
in a DP process that moves away with constant velocity v = d

dtr⊥, where
r⊥ again denotes the coordinate perpendicular to the wall (see Fig. 4.28).
Remarkably, in such a system one observes a continuous surface transition in
the active phase, where the bulk-process is off-critical.

The transition is caused by two competing velocities, namely, the bulk
propagation velocity v0 ∼ ξ⊥/ξ‖ of the DP process in the active phase, and
the velocity v of the moving wall. Obviously, a non-zero density next to the
surface can only be maintained if the DP process expands faster than the wall
moves away, i.e., v > v0. As shown in Fig. 4.28, the stationary surface density
�s,1 measured at the co-moving boundary sites decreases continuously and
eventually vanishes when v = v0. Although the numerical results suggest a
linear decrease, a scaling theory for this transition is not yet known. Even
the mean-field equation subjected to a linearly moving Dirichlet boundary
condition does not provide a simple scaling solution.

4.4.1.5 DP Confined by an Absorbing Parabola

As a critical DP cluster is known to spread in a typical region r ∼ t1/z it is
interesting to study the influence of an absorbing boundary condition in the
form of a generalised parabola r = ±ctψ, where ψ is a control exponent. This
problem was investigated by Kaiser and Turban in [371, 372]. As expected, it
turns out that the boundary is relevant for ψ > 1/z and irrelevant if ψ < 1/z.
Since under scaling transformations (4.8) and (4.13) the amplitude c scales
as c �→ λν‖ψ−ν⊥c, the impact of such a boundary can be taken into account
by adding the scale-invariant argument c/tψ−1/z to the parameters of the
corresponding scaling functions. For example, the survival probability of DP
confined by a generalised parabola scales as

ψ π/2 3π/4 π 5π/4 2π (bulk)

βed(ψ) 1.6(1) 1.23(7) 1.07(5) 0.98(5) 0.583(4)
βMF,ed(ψ) 2 5/3 3/2 7/5 1

Table 4.10 Edge exponent βed in DP for various opening angles ψ in 2+1 dimensions
and the corresponding mean-field values. Values taken from [229].
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Fig. 4.29 Illustration of bond directed percolation confined to a generalised parabola.

Psur(t) � t−δ p̃seed(τt1/ν‖ , c/tψ−1/z) . (4.248)

Instead of going further into the details we refer the interested reader to the
reviews [307, 229].

4.4.2 Persistence Exponents

Having looked at length into the behaviour of densities and correlators, we
now consider a completely different class of observables, related to the the
study of so-called first-passage problems [543]. Rather than looking at
averages, one rather looks for the probability that a certain event happens at
time t for the first time. For example, one may ask for the time at which the
magnetisation of an Ising ferromagnet first changes its sign. More generally,
one may ask for the probability that a certain observable in a random process
did not cross its expectation value until time t. At a critical point, the study
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of such quantities may shed a different light on their fluctuation properties.
Such persistence probabilities have a surprisingly rich behaviour.

We shall first briefly state some results from equilibrium critical systems
before considering the persistence properties of absorbing phase transition,
again for the paradigmatic case of directed percolation.

4.4.2.1 Global and Local Persistence Probabilities

There are mainly two types of persistence studies. For global observables
such as the total magnetisation or the average particle density, one studies
the global persistence probability Pg(t) that an order parameter does
not cross its expectation value up to time t [454, 413, 474, 562, 193, 499, 455,
567]. In critical dynamical systems, it is observed that the global persistence
probability decays algebraically as Pg(t) ∼ t−Θg . For Markovian dynamics
one can show that the global persistence exponent can be expressed by
the scaling relation Θgz = λC − d + 1 + η/2, where η and λC are the static
and the autocorrelation exponent,21 respectively.

The other category of persistence studies, on which we shall focus here,
deals with local observables such as the occupation number or spin orien-
tation at individual sites. Here one is interested in the local persistence
probability p�(t, r) that the local state at a given position r in space has
not changed up to time t. For example, in spin models p�(t, r) may be de-
fined as the probability that a spin at a given site does not flip until time t.
If the system is translationally invariant, the persistence probability does not
depend on r so that p�(t) is just the fraction of spins that did not flip until
time t.

In many systems evolving towards a scale-free state the local persistence
probability is found to decay algebraically as

p�(t) ∼ t−Θ� , (4.249)

where Θ� is the so-called local persistence exponent [81, 158, 121, 160,
161, 162, 157, 308, 295, 555, 143, 567, 200]. This exponent is generally differ-
ent from Θg and seems to have certain universal features, i.e., its numerical
value may coincide in various models belonging to the same universality class.
However, in contrast to Θg, which can be expressed in terms of the bulk ex-
ponents by a scaling relation, Θ� is believed to be an independent exponent.
One of the most important exact results was obtained by Derrida, Hakim
and Pasquier [160, 161], who were able to compute the persistence exponent

21 In the context of ageing phenomena, we shall see in Vol. 2 that the exponent λC describes
the decay of two-time autocorrelation functions.
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Fig. 4.30 Local persistence in DP. The figure shows a (1+1)-dimensional critical DP
process starting with a fully occupied lattice. The persistent sites are marked by black
vertical lines. The right panel shows the persistent sites of the same run without the active
sites.

Θ�(q) = −1
8

+
2
π2

[
arccos

(
2 − q√

2 q

)]2

(4.250)

in the one-dimensional zero-temperature Ising and Potts-q models with heat-
bath dynamics, see appendix G. This exact solution maps the Glauber-Ising
dynamics to a time-reversed coagulation process with a special boundary
condition and relates Θ� to a universal amplitude close to the boundary.

4.4.2.2 Local Persistence in Directed Percolation

In models with absorbing states, local persistence may be defined as the
probability that a given site – monitored from a moment shortly after the
initial state up to time t – remains locally absorbing (inactive). For example,
in a DP process starting with a fully occupied infinite lattice, p�(t) would be
the density of sites which have been never activated up to time t, excluding
the fully occupied initial state at t = 0. A typical run of a critical DP process
in 1+1 dimensions is shown in Fig. 4.30, where locally persistent sites are
represented as vertical lines.

In [295] the local persistence exponent of (1+1)-dimensional DP was deter-
mined by simulating a Domany-Kinzel cellular automaton, which led to the
estimate Θ� = 1.50(2). This value suggested that Θ� is probably unrelated
to the other bulk exponents of DP, β, ν‖ and ν⊥. Moreover, it was specu-
lated whether Θ� is exactly equal to the rational value 3/2 or not. However,
extensive Monte-Carlo simulations of the (1+1)-dimensional contact process
shown in Fig. 4.31 led to the improved estimate [230]

Θ� = 1.512(6) (4.251)

which appears to be inconsistent with the possibility of a rational value 3/2.
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Fig. 4.31 High-precision measurement of local persistence in the 1d contact process. The
plot shows p�(t) multiplied by tΘ� with Θ� = 1.512. The dotted lines indicate the error
margin of the estimated exponent ±0.006. The inset shows the raw data produced by
simulation.

The measurement of the local persistence exponent in higher dimensions
is extremely difficult because of strong finite-size effects and very long tran-
sients. So far no conclusive results exist.

4.4.2.3 Off-Critical and Finite-Size Scaling of the Persistence
Probability

If the local persistence probability is a well-behaved order parameter, it
should exhibit similar scaling laws as e.g. the density of active sites. This
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dimensional contact process with L = 8, 16, 32, 64, 128 sites, plotted as a data collapse
according to the scaling form (4.252). Right: Corresponding graph for off-critical simula-
tions with a distance from criticality τ = λ − λc = 0.0512, 0.1024, . . . , 0.8192.
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means that one expects a scaling law of the form

p�(t) = t−Θ� F̃

(
t

Lz
,

t

τ−ν‖

)
, (4.252)

where F̃ is a scaling function. In order to demonstrate the validity of this scal-
ing form numerically, we present in Fig. 4.32 numerical data for two special
cases:

(a) Finite-size scaling: A finite (1+1)-dimensional contact process at criti-
cality reaches the absorbing state within finite time such that there is a
finite probability of persistent sites surviving forever. Therefore, the persis-
tence probability saturates at a constant value. Hence, plotting p�(1, t)LΘ�z

over against t/Lz all curves collapse onto a single one, as demonstrated
in Fig. 4.32.

(b) Off-critical simulations: For an infinite (1+1)-dimensional contact pro-
cess below (above) the percolation threshold, we expect the persistence
probability to saturate (decay exponentially). According to the scaling
form (4.252) the curves should collapse onto two different curves for either
case when p�(1, t)τ−Θ�ν‖ is plotted over against tτν‖ . As shown in the right
panel of Fig. 4.32, this is indeed the case.

4.4.2.4 Local Persistence as a Quantity Depending on Two Time
Parameters

In models with absorbing states, local persistence is usually introduced as the
probability that a given site is not activated until time t, excluding the initial
configuration at t = 0 where all sites are active. This definition suggests that
the persistence probability p�(t) depends only on a single time parameter t.
However, with only one parameter t, it is impossible to define a meaningful
continuum limit of the persistence probability. For example, a fully occupied
initial state in the lattice model translates into an infinite δ-peak-like density
of active sites at t = 0 in the continuum description so that the probability
for a given site to remain inactive in the interval 0 < τ ≤ t would be zero.
Therefore, the only way to introduce persistence consistently is to define p�

as the probability that a given site remains inactive in some interval [t0, t].
This means that local persistence should actually be defined as a quantity
p�(t, t0) that depends on two time parameters t0 and t.

The inset of Fig. 4.33 shows the temporal decay of the persistence prob-
ability p�(t0, t) in a critical (1+1)-dimensional contact process as a function
of t for various values of t0. As can be seen, by increasing t0 the initial
transient becomes more pronounced. Moreover, the curves are shifted to the
right. However, the asymptotic slope, i.e., the persistence exponent Θ�, is not
affected.
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Fig. 4.33 Measurement of the local persistence probability p�(t, t0) in a (1+1)-
dimensional critical contact process as a function of two variables t and t0. The inset shows
the original data while the main graph demonstrates a data collapse according to (4.253).

For an infinite system at criticality, the usual scaling arguments imply the
scaling form p�(t, t0) = t−κ/ν‖ F̃ (t/t0) with an unknown exponent κ. This
exponent can be determined by keeping the difference ∆t = t− t0 fixed and
taking t to infinity. In this limit the critical system approaches the absorbing
state and therefore the probability p�(t, t0) of finding no activity between t0
and t0 +∆t tends to 1. This implies that κ = 0, i.e., we arrive at the scaling
form

p�(t, t0) = F̃ (t/t0) , (4.253)

where F̃ is a scaling function with the asymptotic behaviour

F̃ (z) ∼ z−Θ� for z � 1, (4.254)
F̃ (z) → 1 for z → 1.

In order to verify the scaling form (4.253) and its asymptotic behaviour (4.254)
we simulated a (1+1)-dimensional contact process and measured the proba-
bility that a given site is not activated in the time interval between t0 and
t. The left graph in Fig. 4.33 shows the raw data for fixed t0 as a function of
t. The graph on the right side demonstrates the corresponding data collapse
according to the scaling form (4.253), plotting p�(t, t0) versus the quotient
t/t0−1. As can be seen, one obtains a convincing data collapse. However, the
collapse is not entirely perfect. Possible reasons for the observed deviations
are discussed in [230].
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Problems

34. Show that the Janssen-deDominicis functional of directed percolation
(4.180) is invariant under the rapidity-reversal (4.181) at zero field.

35. Consider a single species A of particles moving diffusively on a lattice
and undergoing pair annihilation 2A → ∅ with a rate λ which occurs when
two particles meet each other. Using a stochastic Langevin equation for the
coarse-grained space-time-dependent particle-density �(t, r), after averaging
over the noise one writes down the following reaction-diffusion equation

∂t� = D∆�− λ�2 (4.255)

where ∆ is the spatial Laplacian and D,λ are positive constants. It is well-
known that for spatially homogeneous initial conditions, the density decays
algebraically as �(t) = �0/(1 + �0λt) � (λt)−1 for t → ∞.

Derive (or bound), for any initial distribution of particles, the time-
dependence of the average particle-density �̄(t) := |Ω|−1

∫
Ω

dr �(t, r) in some
spatial domain Ω of volume |Ω|. Consider the cases of (i) Dirichlet boundary
conditions �|∂Ω = 0 and (ii) Neumann boundary conditions n · ∇�|∂Ω = 0,
where ∂Ω denotes the boundary of Ω ⊂ Rd and n is a unit vector orthogonal
to ∂Ω. Show in particular that for large volumes |Ω| → ∞ and large times
t → ∞, one has �̄(t) ∼ (λt)−1 for both boundary conditions.

A useful technical tool are the Poincaré inequalities. For Dirichlet and
Neumann boundary conditions, they read (see [575] for an elementary proof)∫

Ω

dr |∇u|2 ≥ C−1|Ω|−2/d

∫
Ω

dr |u|2 ; Dirichlet u|∂Ω = 0 (4.256)∫
Ω

dr |∇u|2 ≥ C−1|Ω|−2/d

∫
Ω

dr |u− ū|2 ; Neumann n · ∇u|∂Ω = 0

where C is some constant independent of |Ω| (but a priori dependent on the
boundary conditions) and ū = |Ω|−1

∫
Ω

dr |u|.

36. Consider the diffusion-coagulation model of a single species A with the
rates A + ∅ D↔ ∅ + A and A + A

γ−→ A + ∅, ∅ + A and consider the special
case when γ = D (what is the physical interpretation of this condition?) on a
one-dimensional lattice with L+ 1 sites which contains at least one particle.
Consider the empty-interval probability En(t) that n consecutive sites are
empty. Show that the En(t) satisfy a closed system of equations of motion
[53]. In the continuum limit, En(t) → E(x, t) which satisfies

∂E

∂t
= 2D

∂2E

∂x2
+ 2β

∂E

∂x
(4.257)

together with the boundary conditions
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material y reaction(s) Reference

C10H8 0.52 − 0.59 •• →
{ ◦◦
•◦ [530]

P1VN/PMMA film 0.47(3) •• →
{ ◦◦
•◦ [397]

TMMC 0.48(4) •• → •◦ [401]

Table 4.11 Measured decay exponent y of the mean exciton density 	̄(t) ∼ t−y on poly-
mer chains. The error bar for TMMC comes from averaging over the results of [401] for
different initial particle densities.

E(0, t) = 1 , E(∞, t) = 0. (4.258)

How does one obtain the mean particle-density �̄(t) ?

37. Find from the empty-interval (4.257) together with the boundary condi-
tion (4.258), for the special case β = 0 of a pure diffusion-coagulation model,
the long-time behaviour by making a scaling ansatz E(x, t) = f(x t−1/z)
where the dynamical exponent z is to be determined. Derive in particular the
long-time behaviour of the mean particle-density and show that �̄(t) ∼ t−1/2.

Use the results of exercise 26 to show that the same conclusion also applies
to the diffusion-coagulation-annihilation model, where one has in addition
to the above also the reaction A + A

2α−→ ∅ + ∅ such that D = α + γ.
Compare the exact result derived here with the expectation of mean-field
theory as obtained in the previous exercise 35 and the experimental results
listed in Table 4.11 on the kinetics of excitons moving on long polymeric
chains. The experimental examples correspond to different branching ratios
Γ (•• −→ ◦◦)/Γ (•• −→ •◦) = 2α/γ of about 10% in the first two examples
[530, 397] and essentially zero in the last case [401].

38. Use a random-walk argument to re-derive the decay law for the mean-
particle density of the diffusion-coagulation process 2A → A of a sin-
gle species A [598]. Try to generalise to a two-species annihilation pro-
cess A + B → ∅, where initially both species A and B occur equally fre-
quently and where both kinds of particles diffuse with the same diffusion
rate DA = DB = D.

39. Consider the 1D diffusion-coagulation-production process, where
particles of a single species A diffuse on a chain and undergo coagulation
reactions 2A → A and production A∅A → 3A. Analyse the case where the
diffusion and coagulation rates are equal, by the empty-interval method [273].

40. Analyse the triplet-annihilation process, which is described by a sys-
tem of particles of a single species A, such that single particles move diffu-
sively and if three particles meet on neighbouring sites of the lattice, they
may undergo the reaction 3A → ∅.
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Within simple mean-field, use Hölder’s inequality, for a domain Ω ⊂ Rd

∫
Ω

dr |u(r)v(r)| ≤
(∫

Ω

dr |u(r)|p
)1/p (∫

Ω

dr |v(r)|q
)1/q

(4.259)

and with 1
p + 1

q = 1, to derive a (rough) upper bound on the mean particle-
density �̄(t) = 1

|Ω|
∫

Ωdr �(t, r) and then study the system in the pair-
approximation, especially for D = 0.

41. Consider the reaction-diffusion equation for a density � = �(t, r)

∂t� = D∆� + τ�− �2 (4.260)

which arises either from simple mean-field in DP or, for τ = 0, in a
diffusion-coagulation process. Show that (4.260) is invariant under the scale-
transformation

t �→ t′ = Λzt , r �→ r′ = Λr , τ �→ τ ′ = Λ−1/ν⊥τ , � �→ �′ = Λ−β/ν⊥�
(4.261)

and derive the corresponding mean-field values of z, 1/ν⊥ and β/ν⊥.

42. Perform the same kind of scaling analysis as in exercise 41 for the
reaction-diffusion process 3A → ∅, A → 2A.

43. Perform a dimensional analysis of the field-theoretic action associated
to directed percolation (or Reggeon field-theory). What do you find from a
dimensional analysis directly on the Langevin equation?

44. Consider the contact process on the half-infinite line r ≥ 0. If a(t, r)
denotes the mean particle-density at time t and position r, the mean-field
kinetic equation (site approximation) can be written as

ȧ = Da′′ + 4(p− 1/2) a− 2a2 (4.262)

In the steady state, ȧ = 0. We write for the steady-state density a(r) =
a∞ϕ(r/ξ⊥), where a∞ = 2p − 1 ∼ ξ−2

⊥ is the bulk density and ξ⊥ =√
D/(p− 1/2) the spatial correlation length. Show that the mean-field profile

is given by [125]

ϕ(y) =
3
2

( √
(2ϕ0 + 1)/3 + tanh(y)

1 +
√

(2ϕ0 + 1)/3 tanh(y)

)2

− 1
2

(4.263)

where ϕ0 = a(0)/a∞ is related to the boundary density. Show that ϕ(y) → 1
as y → ∞ monotonously.
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45. Use the field-theoretical formulation of absorbing phase transitions to
show that the survival probability

Psur(t) =
∫

dr Υ (t, r)∫
dr �(t, r)

= lim
t1→∞

∫
dr 〈�(t + t1, r)�̃(t1,0)〉empty∫

dr 〈�(t, r)〉full

where �̃ is the response field conjugate to the order parameter � and ‘empty’
and ‘full’ refer to the initial state of the lattice.

Use this result to derive equations (4.96-4.98).

46. Consider the empty intervals of size � of the Cantor set (see appendix
H). Show that at each step of its iterative construction, empty intervals of
a certain size � are added and that their number n(�) ∼ �−df , where df is
the fractal dimension of the Cantor set. Deduce that the probability P (�) of
empty intervals is

P (�) ∼ �−1−df

47. Relate the metric factors in (4.139) to those used habitually in this book,
as in equations (4.41) and (4.80).

48. Derive the duality relation (4.182) between the stationary density and
the survival probability for bond directed percolation [330].



Chapter 5

Universality Classes Different from
Directed Percolation

As we have seen in the previous chapters, universality classes of continuous
phase transitions are usually characterised by the dimensionality, the type of
order parameters, and a set of certain symmetries. For example, in equilib-
rium statistical mechanics, the hallmark of an Ising transition is a discrete Z2-
symmetry under spin reversal. Sometimes these symmetries are implemented
as exact symmetries on the microscopic level. In many cases, however, they
emerge only as asymptotic symmetries. A simple example is directed perco-
lation, which is symmetric under rapidity-reversal (see Sect. 4.1.2) within the
corresponding path integral formulation [496, 331]. Generally this symmetry
is not present on the level of the microscopic dynamics, instead it emerges
only asymptotically on a coarse-grained scale near criticality, where all irrele-
vant terms of the underlying field theory can be neglected. It is therefore not
always possible to determine a system’s universality class just by identifying
the symmetries of its microscopic dynamics.

Fortunately, the DP universality class can be characterised by very few
properties: According to the DP-conjecture by Janssen and Grassberger [326,
240] (see Sect. 3.2.2), systems with short-range interactions, exhibiting a con-
tinuous phase transition into a single absorbing state, belong generically to
the DP universality class, provided that they are characterised by a one-
component order parameter without additional symmetries and without un-
conventional features such as quenched disorder. Non-DP behaviour is ex-
pected to occur in systems where at least one of these requirements is not
fulfilled. Therefore, it is interesting to search systematically for other univer-
sality classes of non-equilibrium phase transitions.

In this chapter, we shall consider several universality classes different from
DP. First we consider absorbing phase transitions with additional symme-
tries, namely, the parity-conserving (PC) universality class, the voter uni-
versality class, and the universality class of compact directed percolation
(CDP). Additional sections are devoted to dynamical percolation (DyP), the
special case of tricritical directed percolation, and the Manna universality

197
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class. An open problem is the critical behaviour of the pair-contact process
(PCPD) with diffusion and this remains a matter of controversial discussions
at present. Another section deals with first-order transitions. At the end of
this chapter, we consider crossover phenomena between different universality
classes.

We also comment on attempted classifications of absorbing phase tran-
sitions [395, 203]. The interesting recent idea [203] to relate the dynamics
to a classical Hamiltonian and study its topological properties might be an
important ingredient for more comprehensive studies.

5.1 Parity-Conserving Universality Class

The parity-conserving universality class (PC), comprises phase transi-
tions that occur in reaction-diffusion processes of the form

A → (n+ 1)A
2A → ∅ (5.1)

combined with single-particle diffusion, where the number of offspring n is
assumed to be even.1 Sometimes, models in this class are also referred to as
branching-annihilating random walks with an even number of offspring.
As an essential feature, these processes conserve the number of particles mod-
ulo 2. This is meant when one speaks, in the context of absorbing phase tran-
sitions, of systems with conserved parity, and should not be confused with
the parity quantum number which arises under spatial reflections at the ori-
gin (or left-right exchanges in one dimension) and plays an important role in
elementary particle physics. A particularly simple one-dimensional model in
this class with n = 2 was proposed by Zhong and ben-Avraham [644]. The
estimated critical exponents in 1D

β = β′ = 0.92(2) , ν‖ = 3.22(6) , ν⊥ = 1.83(3) (5.2)

differ significantly from those of DP in one dimension, establishing PC tran-
sitions as an independent universality class.

In contrast to DP, the actual values of δ and Θ of parity-conserving tran-
sitions in seed simulations turn out to depend on the initial condition. If one
starts with a pair of particles at the origin, one obtains as usual the expo-
nents δ = β′/ν‖ = 0.285(5) and the slip exponent Θ = 0.00(5). However, if
the process starts with a single particle, it will never stop because of parity
conservation, hence the survival probability is constant so the survival expo-

1 With an odd number of offspring the transition turns out to belong to the DP universality
class.
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nent δ has to vanish, meaning that the usual relation δ = β′/ν‖ no longer
holds. Instead the slip exponent now takes the value Θ = 0.285(5), i.e., the
roles of δ and Θ are exchanged. The theoretical reason for this exchange is
not yet fully understood.

The relaxational properties in the subcritical phase differ significantly from
the standard DP behaviour. While in DP, the particle density below the crit-
ical point decays exponentially as �(t) ∼ e−t/ξ‖ , in PC models it decays alge-
braically as t−1/2 since the asymptotic decay is governed by the annihilation
process 2A → ∅.

The same conclusion of PC models being in a universality class different
from DP is also reached by considering the surface critical behaviour. In
1+1 dimensions, and for an absorbing surface (ordinary transition), estimates
β1/ν⊥ = 0.73(1) and 0.720(2) were reported from Monte Carlo simulations
[228] and the DMRG [40], respectively. For an active wall (extraordinary
transition), however, β1/ν⊥ = 1.11(1) is found in Monte Carlo simulations
[228] and the DMRG gives β1/ν⊥ = 1.10(1) [40].

A systematic field-theory for PC models can be found in [124, 114], con-
firming the existence of the annihilation fixed point in the inactive phase.
However, the traditional perturbative field-theoretic treatment at critical-
ity is extremely difficult as there are two critical dimensions: dc = 2, above
which mean-field theory applies, and d′c ≈ 4/3, where for d > d′c (d < d′c)
the branching process is relevant (irrelevant) at the annihilation fixed point.
Therefore, the physically interesting spatial dimension d = 1 cannot be ac-
cessed by a controlled ε-expansion down from upper critical dimension dc = 2.
Here, the new method of the non-perturbative renormalisation group allows
much easier access to the structure of the phase diagram and to genuinely
non-gaussian fixed points [104, 105].

5.2 Voter Universality Class

Order-disorder transitions in models with a Z2-symmetry which are driven
by interfacial noise belong to the so-called voter universality class [191]. As
will be explained below, the voter class and the parity-conserving class are
identical in one spatial dimension but differ in higher dimensions.

5.2.1 The Classical Voter Model

The classical voter model [422] is a simple lattice model which caricatures
the formation of opinions before an election (schematically, this may also be
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Glauber−Ising model at T=0 Classical voter model

Fig. 5.1 Coarsening of a random initial state in the Glauber-Ising model at zero tem-
perature compared to the coarsening in the classical voter model with two opinions. Both
snapshots were taken after 1000 Monte Carlo updates.

described in terms of the competing reactions ◦• −→ ◦◦ and ◦• −→ ••). The
lattice sites represents voters, each of them having a certain political opinion.
The process evolves by random-sequential updates by randomly selecting a
voter who then adopts the opinion of a randomly chosen nearest neighbour.
More specifically, if si ∈ N denotes the ‘opinion’ at site i the update consists
of the following steps:

1. Select a random site i.
2. Select one of its nearest neighbours j of i randomly.
3. Set si := sj .
4. Increase time by t = t+ 1/N , where N is the total number of sites.

Obviously, the process reaches an absorbing state when all voters arrive at the
same opinion. Starting with random initial conditions (see Fig. 5.1) the time-
evolution of the voter model is characterised by coarsening domains. Note
that the process is invariant under permutation of the opinions, in particular
it has a Z2-symmetry in the case of two opinions. The classical voter model
has no order parameter and no phase transition. The study of coarsening
phenomena can be included into the studies of ageing phenomena, and will
be taken up in Vol. 2. In Sect. 3.3.1 we discussed the relation with the DK
automaton.

At this point, it is worthwhile comparing the classical voter model with
two opinions to the Glauber-Ising model at zero temperature. Both models
are Z2-symmetric and have two absorbing states. Starting with a random
initial configuration, one observes in both cases a coarsening process forming
ordered domains whose linear size grows as L(t) ∼

√
t. However, as can be

seen in Fig. 5.1, in two spatial dimensions the form of the domains is clearly
different. This exemplifies that symmetry alone does not always specify the
asymptotic dynamical behaviour. In the Ising model at T = 0, domain growth
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is curvature-driven, leading to an effective surface tension of the domain walls.
This is the reason why domains in the Ising model appear to be smooth.
Contrarily, in the voter model domains are much more fuzzy and seem to
coarsen only by fluctuation effects. In fact, in the voter model the density of
domain walls decays only logarithmically as 1/ ln t. This marginal behaviour is
usually attributed to the exceptional character of its analytic properties [135,
556, 227] and may be interpreted physically as the absence of surface tension,
see Vol. 2 for further information.

5.2.2 Voter-Type Phase Transitions

Let us now turn to the question of how one can generate an order-disorder
phase transition in both Ising and voter models. For the Ising model, the
answer is simple: One has to increase temperature until the long-range or-
der is destroyed. As discussed before, temperature leads to spin flips inside
ordered domains, forming oppositely oriented minority islands. For small tem-
peratures, the influence of surface tension is still strong enough to eliminate
these minority islands, stabilising the ordered phase. However, increasing T
above a certain critical threshold Tc, this mechanism breaks down, leading
to the well-known order-disorder phase transition in the Ising model. Thus,
from the perspective of a dynamical process, the Ising transition results from
competition between the surface tension of domain walls and bulk noise.

On the other hand, in the voter model, even very weak thermal bulk noise
would immediately destroy global order. Therefore, thermally induced noises
are too strong to allow for a phase transition at a finite Tc.2 However, adding
interfacial noise one observes a non-trivial continuous phase transition at a
finite value of the noise amplitude. Unlike bulk noise, which flips spins every-
where inside the ordered domains, interfacial noise restricts spin flips to sites
adjacent to domain walls. It turns out that transitions of this type consti-
tute a new universality class, the so-called voter universality class [191].
Such transitions were first observed in the so-called non-equilibrium Ising
model [473] (NEKIM) and in models with several absorbing states [285].

In one spatial dimension, kinks between domain walls may be interpreted
as particles. Using this interpretation the one-dimensional classical voter
model corresponds to diffusing particles which annihilate by the reaction
2A → ∅. On the other hand, interfacial noise at the boundaries splits domain
walls locally into three domain walls. In the particle language, this process
can be interpreted as offspring production A → 3A which conserves parity.
For this reason the voter class and the parity-conserving class coincide in one
spatial dimension. However, in higher dimensions they are expected to be dif-

2 One could also argue that such a ‘transition’ would take place at zero temperature.
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ferent. Roughly speaking, the parity-conserving class deals with the dynamics
of zero-dimensional objects (particles), while in the voter class the dynamical
objects of interest are (d-1)-dimensional manifolds (domain walls).

Recently, Al Hammal, Chaté, Dornic and Muñoz [265] introduced a
Langevin equation describing voter transitions. It is given by

∂

∂t
� = (a�− b�3)(1 − �2) +D∇2�+ σ

√
1 − �2 η , (5.3)

where η is a Gaussian noise with constant amplitude. For b > 0, this equation
is found to exhibit separate Ising and DP transitions [197], while for b ≤ 0,
a genuine voter transition is observed. With these new results, the voter
universality class is now on a much firmer basis than before.

Voter-type phase transitions can also be interpreted as non-equilibrium
phase transitions into several symmetric absorbing states.3 A model de-
fined in the spirit of this interpretation is the generalised Domany-Kinzel
model [285].This model has n + 1 possible states per site: one active state
A and n different inactive states I1, I2, . . . , In. The conditional probabilities
for the local updates are given by (k, l = 1, . . . , n; k �= l)

P [Ik | Ik, Ik] = 1 ,
P [A|A,A] = 1 − nP [Ik|A,A] = q ,

P [A|Ik, A] = P [A|A, Ik] = p , (5.4)
P [Ik|Ik, A] = P [Ik|A, Ik] = 1 − p ,

P [A|Ik, Il] = 1 .

For n = 1 the model defined above reduces to the original Domany-Kinzel
model in Sect. 3.3.1, see page 73. For n = 2 one has two competing types
of absorbing domains. The transition I1, I2 → A creates active sites between
two inactive domains of different colours and thus it can be interpreted as
interfacial noise. Varying p, one observes a non-equilibrium phase transition
which belongs to the voter universality class.4 For n > 2 one obtains a trivial
behaviour, as discussed in [296].

3 With two absorbing states such transitions are also said to belong to the DP2 universality
class.
4 For example, if one sets p = q for n = 2, one has in one dimension, pc = 0.5673(5). The
exponent estimates δ = 0.285(10), z = 1.15(1), β = 0.90(5) and Θ = 0.00(1) agree with
those of the PC class [296].
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5.3 Compact Directed Percolation

The term compact directed percolation (CDP) stands for a universal-
ity class of absorbing phase transitions, where the percolation clusters are
compact objects [188, 208].

CDP can be regarded as a special limit of DP, where an additional Z2-
symmetry emerges. To see this, let us recall the (1+1)-dimensional Domany-
Kinzel (DK) automaton introduced in Sect. 3.3.1. The phase diagram of
this model (see Fig. 3.8 and Fig. 3.9) comprises a critical line of second-order
phase transitions, belonging to the DP-universality class. This critical line
terminates at the upper point p1 = 1/2 and p2 = 1, where a different critical
behaviour is observed. This special point is characterised by an additional
particle-hole symmetry

� ←→ 1 − � . (5.5)

Along the upper line p2 = 1, the DK model has two absorbing states, namely
the empty and the fully occupied lattice. Here the dynamics is special in
so far as particles can no longer disappear spontaneously in the interior of
fully active domains. Therefore, the dynamics can be described in terms of
diffusing and annihilating domain walls. The random walk of these domain
walls is generally biased: For p1 > 1/2 active domains preferentially grow
while for p1 < 1/2 they tend to shrink. Right at the CDP critical point, the
random walk of the diffusing domain walls is unbiased and one recovers a
simple annihilating random walk or, equivalently, the classical voter model
in one dimension.

The situation is particularly simple if one starts with a single active site. In
this case, one has only a single domain, bounded by a pair of random walkers
which annihilate each other when they meet. This allows one to calculate the
percolation probability exactly [208]

Pperc(p1) =

{
0 ; if p1 < 1/2 ,

(2 p1 − 1)/p2
1 ; if p1 > 1/2 ,

(5.6)

yielding the percolation exponent β′ = 1. Furthermore, the probability that
the two walkers have not annihilated each other at time t scales as t−1/2,
yielding the survival exponent δ = 1/2. In that way all exponents are related
to the scaling behaviour of the random walkers. A complete list of critical
exponents is given in Table 5.1.

According to these results, CDP stands for a transition with a continu-
ously vanishing order parameter Pperc and algebraically diverging correlation
lengths [208], indicating a second order phase transition. On the other hand,
the stationary density of active sites �s is zero below p1 = 1/2 and �s = 1
above p1 = 1/2, exhibiting a discontinuous jump. This discontinuity at the
critical point implies that the critical exponent β vanishes. Because of
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d β ν⊥ ν‖ df β′ δ Θ z

1 0 1 2 1 1 1/2 0 2
> 2 0 1/2 1 2 1 1 0 2

Table 5.1 The critical exponents of the compact directed percolation (CDP) universality
class [180]. At criticality, the 1D CDP is equivalent to the so-called voter model [422]. The
crossover exponent from CDP to ordinary DP is given by φ = 2/d [331]. At the upper
critical dimension dc = 2 the scaling behaviour is affected by logarithmic corrections.

β �= β′ , (5.7)

CDP has four instead of three independent critical exponents.
Phase transitions in the CDP universality class can be described by an

effective Langevin equation [331]

λ−1 ∂t� = τ�(1 − �) + ∇2� + η (5.8)

with noise correlations of the form

〈η(t, r)η(t′, r′)〉 = λ−1κ �(t, r) [1 − �(t, r)] δ(t− t′) δ(r − r′) . (5.9)

Note that the Langevin equation and the noise are constructed in such a
way that they obey the particle-hole symmetry (5.5). Simple dimensional
counting reveals that the noise is irrelevant for d > 2, i.e., the value of the
upper critical dimension of CDP is dc = 2. The corresponding field-theoretic
response functional [331]

J [�̃, �] = λ

∫
ddr dt �̃

[
λ−1∂t�− τ�(1 − �) − ∇2�− κ

2
�̃�(1 − �)

]
(5.10)

is invariant under the transformation

�(t, r) ←→ 1 − �(−t, r) ,
�̃(t, r) ←→ − �̃(−t, r) , (5.11)

τ ←→ −τ ,

characterising the symmetry of the CDP universality class. For τ = 0, one
recovers the response functional of annihilating random walks and the corre-
sponding relevant diagrams can be summed exactly (see e.g. [516, 415, 416,
331]). In Sect. 5.10.2, we shall consider the crossover from the CDP to the
ordinary DP universality class in the example of the Domany-Kinzel automa-
ton.
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5.4 Tricritical Directed Percolation

A universality class of absorbing phase transitions which is different but di-
rectly related to DP is tricritical directed percolation (TDP). As for
tricritical phenomena at equilibrium [411], where the tricritical points are
usually the meeting points of lines of first- and second-order transitions,5 the
TDP emerges as a special point in the phase diagram of DP, where the coef-
ficient of a non-linear term in the action vanishes such that the next-leading
term takes over. To see this explicitly, let us consider the Langevin equation
of DP with an additional cubic term

∂t� = τ�− g�2 − c�3 + ∇2� + h+ η , (5.12)

〈η(t, r)η(t′, r′)〉 = κ �(t, r) δ(t− t′) δd(r − r′). (5.13)

Dynamical stability requires the coefficient c to be positive. Under generic
conditions, i.e. when g > 0, this additional term is irrelevant under RG
transformation and thus it merely generates corrections to the leading DP-
like scaling behaviour. However, in a suitably parametrised phase diagram
it is possible to follow a line of DP-like critical points such that g decreases
and eventually vanishes. At this so-called tricritical point the additional
term −c�3 becomes relevant.6 Obviously, the presence of this term violates
the rapidity reversal symmetry of DP, leading to a different type of universal
critical behaviour. Following the transition line further, where g is negative,
the transitions become of first order. Therefore, the tricritical point separates
a line of continuous transitions from a line of first-order transitions.

The study of TDP started with the seminal work by Grassberger [240]
in 1982. Later, a field-theoretical analysis was performed by Ohtsuki and
Keyes [502, 501] (see also [331, 334]), where several tricritical exponents were
estimated by means of an ε-expansion. A systematic numerical analysis of
the TDP was carried out only recently in [436, 244].

There are three fundamental differences between ordinary and tricritical
directed percolation. Firstly, as mentioned above, the response functional of
TDP no longer satisfies the rapidity-reversal symmetry. This implies that
TDP is characterised by four instead of three independent critical exponents.
Secondly, the upper critical dimension is dc = 3 for TDP while for DP, one
has dc = 4 [123, 489, 502, 501]. Thirdly, in contrast to DP, it is impossible
to observe TDP transitions in one spatial dimension d = 1. This is due

5 In a field-theoretical setting, tricritical points may be described in terms of a φ6-theory,
with the action

S[φ] =

∫
dr

[
1

2
(∇φ)2 +

µ2

2
φ2 +

g

4
φ4 +

g′

6
φ6

]
,

where g′ > 0 for stability. The tricritical point corresponds to µ = g = 0.
6 Note that the bare parameter g is in general not in one-to-one correspondence with the
corresponding physical parameters of lattice models.
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to the circumstance that first-order transitions cannot occur in fluctuating
one-dimensional systems where the surface tension does not depend on the
domain size (see Sect. 5.9 for a detailed discussion). Thus in one-dimensional
systems it is impossible to have a tricritical point that separates a first-order
regime from a second-order regime.

5.4.1 Mean-Field Approximation of TDP

We start by recalling a simple but instructive mean-field calculation. Neglect-
ing the noise term as well as spatial variations of the order parameter the
mean-field equation for zero field

∂t� = τ�− g�2 − c�3 (5.14)

has two stationary solutions. One is the absorbing state �s = 0 which is stable
for τ < 0 and unstable for τ > 0. The other solution represents a fluctuating
state with the particle density

�s = − g

2c
+

√
τ

c
+
( g

2c

)2

. (5.15)

For g > 0, the second solution is real-valued and stable in the active phase τ >
0 but is in general complex and unstable otherwise. Close to the transition,
i.e. for small τ , (5.15) may be approximated by

�s =
τ

g
− c

τ2

g3
+ O(τ3) . (5.16)

Thus, to leading order the density scales linearly with βMF = 1 as in ordi-
nary DP while the additional term merely leads to a correction to scaling.
The amplitude of this correction, compared to the leading term, diverges in
the limit g → 0, signalling the crossover to the tricritical behaviour. This
crossover will be analysed in more detail in Sect. 5.10.

For negative g the solution (5.15) is stable for τ > −g2/4c. This means that
the system can be in a stable active state even when the control parameter
is negative. Therefore a new region emerges in the phase diagram (shown
as a shaded region in Fig. 5.2), where the nontrivial active phase and the
absorbing state are both thermodynamically stable. In other words, for g < 0
the absorbing state and the active phase coexist between the spinodal τ =
−g2/4c and the line τ = 0, giving rise to a first-order phase transition.

The tricritical behaviour is observed for g = 0. In the active phase τ > 0
the order parameter varies as
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τ

g

inactive

tricritical

active

Fig. 5.2 The mean-field phase diagram of tricritical directed percolation (TDP) as a
function of the coarse-grained variables τ and g [see (5.12)]. The thick lines represent the
second-order phase transitions with βDP = 1. The bold circle at the origin marks the TDP
transition point. In the shaded area the absorbing state (	 = 0) and the active phase
(	 > 0) are found to coexist (see text). The thin dashed lines illustrate the crossover to
the tricritical behaviour. Reproduced from [436] with kind permission of Springer Science
and Business Media.

�s = (τ/c)βt (5.17)

with the tricritical order parameter exponent βt = 1/2. To determine the
other mean-field tricritical exponents we consider how the stationary order
parameter at criticality depends on the field

�s = (h/c)βt/σt , (5.18)

giving the exponent σt = 3/2. Furthermore, the order parameter decays at
the tricritical point as

� =
(
�−2

0 + 2ct
)−1/2 −→

t→∞ (2ct)−αt (5.19)

with αt = 1/2. Finally, in the active phase the density relaxes towards its
stationary value according to

�(t; τ) =
√
τ

c

[
1 − c0e−t/ξ‖ + O(e−2t/ξ‖)

]
. (5.20)

Here, the constant c0 contains information about the initial state and ξ‖
denotes the temporal correlation length

ξ‖ = (2τ)−ν‖,t (5.21)

with ν‖,t = 1. Incorporating spatial variations of the order parameter, the
spatial correlation length ξ⊥ can be derived via an Ornstein-Zernicke ap-
proach. The resulting correlation length exponent ν⊥,t = 1/2 leads to the
dynamical exponent zt = ν‖,t/ν⊥,t = 2. This completes the computation of
the mean-field tricritical exponents, which are summarised in Table 5.2.
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d = 2 d > 3

βt 0.100(4) 1/2
ν⊥,t 0.547(3) 1/2
ν‖,t 1.156(4) 1
σt 0.848(12) 3/2
γ′
t 0.894(10) 1/2

γt 0.748(11) 1
η⊥,t 0.366(16) 1
df,t 1.817(8) 2

β′
t 1.408(10) 1

δt 1.218(7) 1
αt 0.087(3) 1/2
Θt −0.353(9) 0
zt 2.110(6) 2

X̃t(+1,0)

X̃t(−1,0)
[436] 0.35(5) 1/2

Ut 0.84(4)

Table 5.2 The critical exponents and various universal amplitude combinations of tricrit-
ical directed percolation (TDP). The crossover exponent from tricritical to ordinary DP is
given in 2D by φ = 0.36(4) and φMF = 1/2. The values of the exponents are obtained from
spreading simulations [244]. Note that the estimates of some exponents are the subject of
controversy in the literature. The numbers in brackets give the estimated uncertainty in

the last given digit(s).

Note that the tricritical exponent of the order parameter fluctuations is
given by γ′⊥,t = 1/2 [502]. This value reflects a qualitative difference between
the mean-field scaling behaviour of DP and TDP. In the latter case the fluc-
tuations diverge at the transition point whereas they remain finite (with a
discontinuous jump) in case of DP [480, 445].

5.4.2 Numerical Simulations of TDP

Lattice models for TDP can be obtained by modifying the dynamical rules
of an ordinary DP process in a suitable manner. For example, tricritical
behaviour may occur if higher-order reactions, such as the pair reaction [502,
501]

2A −→ 3A (5.22)

are added to the reaction scheme of DP

A −→ 0 , A −→ 2A . (5.23)

Examples are the tricritical contact process (TCP), which may be defined by
the following reactions [436]
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• (1−q)(1−p)−→ ◦ , ◦• q(1−p)−→ ◦◦ , ◦• (1−q)p−→ •• , •• (1−q)(1−p)−→ ◦• , ◦ • • q−→ • • •

controlled by the parameters p and q such that for q = 0, one is back to
the contact process. The tricritical point is at qt = 0.9055, pt = 0.29931(3)
[435]. Analogous modifications of the Domany-Kinzel automaton have also
been studied [26, 244].

A numerical or experimental analysis of the scaling behaviour of tricritical
systems poses particular challenges. First, an accurate determination of the
tricritical point is pivotal since the numerical accuracy of universal quantities
is ultimately limited by the uncertainty of the tricritical point.7 Moreover,
the parameters of the model do not always coincide with the scaling parame-
ters of the Langevin equation, meaning that it matters from which direction
the tricritical point is approached [547]. Despite these difficulties, numerical
simulations of TDP have been successfully performed. The existing estimates
of the tricritical exponents are listed in Table 5.2.

It is worth comparing the numerical estimates with the field-theoretical
results in linear order of ε = dc − d (with dc = 3) [502, 501, 331]

βt =
1
2

− ε 0.4580 . . . , β′
t = 1 + O(ε2) , zt = 2 + ε 0.0086 . . . ,

γt = 1 + O(ε2) , γ′t =
1
2

+ ε 0.4386 . . . , ν⊥,t =
1
2

+ ε 0.0075 . . . ,

φ =
1
2

− ε 0.0121 . . . . (5.24)

The last exponent φ describes the crossover from TDP to DP. The existing
numerical values are still controversially discussed in the literature [436, 244]
and the agreement between numerical and field-theoretical results is rather
poor. Thus further numerical as well as analytical work, in particular an
ε-expansion in two-loop order, would be desirable.

In addition to the critical exponents, universal scaling functions of the
TDP universality class have been determined numerically [436]. For example,
Fig. 5.3 shows the universal scaling form for the equation of state. Sufficiently
close to the tricritical point (g = 0) the order parameter obeys the scaling
form

�(τpath, h) � λ−βt R̃(λapathτpath, 0, ahhλ
σt) , (5.25)

where τpath describes the distance to the tricritical point along a certain path
in the phase diagram. Different paths, often referred to as different scaling
directions, lead to different corrections to scaling but do not affect the lead-
ing order of the scaling behaviour. This can be seen in Fig. 5.3, where the

7 Since tricritical points are, in the RG sense, more unstable than ordinary critical points,
one must be very close to them in order to see the distinctive tricritical behaviour, rather
than the cross-over to ordinary criticality.
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Fig. 5.3 Left: Phase diagram of the tricritical contact process (TCP). The parameter p
controls spreading A → 2A while the parameter q controls the pair creation process 2A →
3A. The solid line marks continuous phase transitions belonging to the DP universality
class while the dashed line stands for first-order phase transitions. Both lines are separated
by a tricritical point marked by the bold circle. Right: Universal scaling function of the
equation of state, measured along three different paths crossing the tricritical point in the
p-q-plane: i) along q = const, ii) along p = const, and iii) perpendicular to the phase
boundary. For all three paths at least four different curves are plotted corresponding to
four different field values which all collapse onto a single curve. The circle marks the
normalisation point R̃(0, 0, 1) = 1. The dashed line corresponds to the universal scaling
function of ordinary DP, proving that both universality classes are different. Reproduced

from [436] with kind permission of Springer Science and Business Media.

tricritical point is crossed along three different paths. All curves collapse onto
a single one, namely, the universal scaling function of the equation of state of
the TDP universality class. Furthermore, the tricritical scaling function dif-
fers significantly from the corresponding scaling function of DP, confirming
that the two universality classes are indeed different.

For a detailed analysis of the tricritical scaling behaviour, including dy-
namical and steady-state universal scaling functions of the order parameter
fluctuations and of the susceptibility as well as an investigation of universal
finite size scaling functions, we refer the interested reader to [436, 244]. Be-
yond the tricritical scaling behaviour itself, systems exhibiting tricriticality
provide us with an opportunity to study crossover effects as well as first-order
transitions (cf. Sect. 5.9 and Sect. 5.10).

5.5 Dynamical Percolation

Dynamical percolation (DyP) is a universality class of phase transitions
which differs significantly from directed percolation. In the language of epi-
demic spreading, dynamical percolation is most easily introduced as a gen-
eralisation of directed percolation including the effect of immunisation.
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An often-studied model is the so-called generalised epidemic process
(GEP) [111, 113, 327]. In this model a lattice site can be in three differ-
ent states, namely, susceptible, infected, and immune. Initially all sites are
susceptible and an infected seed is placed at the origin. The model then
evolves in the same way as a contact process, the only difference being that a
recovered site becomes immune. The immunisation is assumed to be perfect,
i.e. a recovered site cannot be infected again.

The GEP has the following phenomenological properties. If the infection
rate is small, activity will spread locally for a short time until it dies out,
leaving a certain cluster of immune sites behind. This is the inactive phase
of the system. On the other hand, if the infection rate is large, there is a
finite probability that a front of active sites will spread concentrically over
the whole system, constituting the phase of annular growth. Both phases
are separated by a non-equilibrium phase transition which belongs to the
universality class of dynamical percolation.

As first suggested by Cardy [111], the effect of immunisation can be im-
plemented by adding a term on the right hand side of the DP Langevin
equation (3.10)

∂t�(t, r) = τ�(t, r) − g�(t, r)2 +D∇2�(t, r) + η(t, r)

+µ�(t, r) exp
(
−w

∫ t

0

dt′ �(t′, r)
)
. (5.26)

In this term, the integral sums up the past activity at position r between
the initial condition t = 0 and the actual time t. If this integrated activity
is still small, the exponential function is essentially equal to 1, marking a
non-immune site. However, when the integrated activity exceeds a certain
threshold of the order 1/w, the exponential function ‘switches’ to zero, rep-
resenting an immunised site. Since the exponential function is coupled to
the order parameter �(r, t), the effect of immunisation effectively modifies
the spreading rate τ [245]. More specifically, non-immune sites are infected
with rate τ + µ, while immune sites are infected with rate τ . This allows
one to control the rates for the first and all subsequent infections of an indi-

exponent d = 2 d = 3 d = 4 d = 5 d ≥ 6
[578, 481] [481, 141] [33, 141] [33, 141] mean-field

β′ 5/36 0.417 ≈ 0.64 ≈ 0.84 1
ν⊥ 4/3 0.875 ≈ 0.68 ≈ 0.57 1/2
ν‖ 1.506 1.169 1

δ 0.092 0.346(6) 0.595(8) 0.806(12) 1
Θ 0.586 0.488(7) 0.30(1) 0.134(10) 0
z 1.1295 1.375(5) 1.605(9) 1.815(10) 2

Table 5.3 Critical exponents of dynamical percolation. Empty entries indicate unknown
estimates. The values for ν⊥ and for β′ are those of isotropic percolation (where β′ is
commonly denoted by β) [578, 635, 636].
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Fig. 5.4 Phase diagram of the general epidemic process (see text).

vidual separately. The additional term modifies the critical behaviour of the
transition, leading to a universality class which is different from DP. This
so-called GEP-class comprises all models which are defined in the spirit of
this Langevin equation.

Using the Janssen-de Dominicis formalism by introducing a response field
�̃(r, t) and integrating out the Gaussian noise, one is led to a field-theoretic
action [111, 113]

J [�̃, �] =
∫

dt dr �̃

[
λ−1∂t�− (τ + ∇2)�−

(κ
2
�̃− g �

)
(5.27)

+
µ

2
� exp

(
−
∫ t

0

dt′ �(t′, r)
)]

which is expected to be valid in arbitrary dimensions. By dimensional analysis
one can see that the upper critical dimension of the GEP is dc = 6. Moreover,
this action is invariant under the replacement

∂

∂t
�̃(t, r) ↔ �(−t, r) . (5.28)

which differs from the rapidity-reversal symmetry of DP discussed in Sect. 4.1.2,
see e.g. [496, 481, 331, 342] for further details.

Apart from the interpretation as an epidemic process with immunisation,
dynamical percolation has the important properties that it produces isotropic
(undirected) percolation clusters in d dimensions. More specifically, whenever
the process terminates, it leaves behind a certain cluster of immune sites. This
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cluster can be shown to be an ordinary isotropic (undirected) percolation
cluster [578]. In this sense the GEP has infinitely many absorbing states [482]
and can be used as a dynamical prescription or as an algorithmic tool to grow
ordinary percolation clusters.

The critical exponents of isotropic percolation are known (in two dimen-
sions even exactly) and can be expressed in terms of two standard exponents
β and ν ≡ ν⊥. In dynamical percolation, the additional temporal degree of
freedom induces another exponent, namely, the dynamical exponent z. Know-
ing β, ν, and z, the exponents for the survival probability P (t) ∼ t−δ and
the average number of particles N(t) ∼ tΘ can be expressed as

δ =
β

ν‖
, Θ =

d

z
− 2β

ν‖
− 1 , (5.29)

where ν‖ = zν⊥. The exponents of dynamical percolation are summarised
in Table 5.5.

The form of the action (5.27) suggests that dynamical percolation can also
be observed in models with partial immunisation, where an immune site can
be re-infected, although with a lower probability than susceptible sites. The
phase diagram of a contact process with separate rates for first infections and
re-infections [245, 482, 363] is shown in Fig. 5.4. Along the diagonal, where
both rates coincide, the model reduces to the usual contact process with a
DP transition while for perfect immunisation one recovers the GEP. Both
transition points are connected by a curved transition line, which belongs to
the DyP universality class.

More recently, Janssen and Stenull investigated dynamical percolation at
the upper critical dimension dc = 6 by field-theoretical methods, computing
logarithmic corrections [340]. A tricritical version of DyP was investigated
in [334].

5.6 Long-Range Interactions

So far we have considered spreading processes with local interactions, where
activity spreads to nearest-neighbour sites. However, in many realistic sit-
uations one observes that the spreading agent is occasionally transported
over long distances. For example, infections may be carried by insects or the
spreading agent may be transported by a turbulent flow.

There are two important types of long-range interactions. One possibil-
ity is to consider models with a large but finite interaction range. In these
models one expects a crossover between an effective mean-field behaviour on
small scales, where diffusive mixing dominates, to an effective short-range
behaviour on large scales. For example, such a crossover is observed in pro-
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cesses where the infection spreads within a given radius R (see Sect. 5.10.3
for further details).

Another possibility, on which we shall focus in the following, is to study
situations in which the interaction range is in principle unlimited. For exam-
ple, one could study a DP-like process with infections over long distances r
which are randomly distributed according to a power law. In the literature
such long-range moves are known as Lévy flights. More specifically, one
assumes that the distribution P (r) of the spreading distance r decays as

P�(r) ∼ 1
rd+σ�

, (5.30)

controlled by an exponent σ� which may be regarded as an external param-
eter. Here the index ‘�’ stands for ‘long range’.

Similarly, one may also study an analogous long-range mechanism in the
temporal direction. Such ‘temporal’ Lévy flights can be interpreted as wait-
ing times∆t before an infected site can infect another site. As in the previous
case, these waiting times are assumed to be algebraically distributed as

P (∆t) ∼ 1
(∆t)1+κ�

(5.31)

with a control exponent κ�. Generally, it turns out that such long-range inter-
actions in systems with absorbing states may change the critical behaviour
at the transition in a certain range of the control exponents. In the following
we summarise some of the main results. For a more detailed account we refer
the reader to a recent review [290].

5.6.1 DP with Spatial Lévy Flights

Let us first consider directed percolation with long-range spreading by spatial
Lévy flights [335, 292]. On the level of the Langevin equation (4.175), long-
range infections by Lévy flights can be implemented by replacing the term
for short-range diffusion by a non-local integral expression

λ−1∂t�(t, r) = [(τ − g �(t, r)] �(t, r) + η(t, r)

+ D

∫
dr′ P (|r − r′|) [�(t, r′) − �(t, r)] (5.32)

with the power-law kernel P (r) in (5.30). Keeping the most relevant terms
in a small-momentum expansion, this equation may also be written as [335]

λ−1∂t�(t, r) =
[
(τ − g �(t, r) + ∇2 +D�∇σ�

]
�(t, r) + η(t, r) , (5.33)
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where ∇σ� is a linear operator representing the action of the integral in (5.32).
This operator is a so-called fractional derivative ∇σ� , which is most easily
defined through its action in momentum space

∇σ�eik·r = −kσ�eik·r . (5.34)

The term for ordinary diffusion ∇2 is retained in (5.33), reflecting the short-
range component of the Lévy flights on a lattice. It is important to note that
this term, even if it were not included initially, would be generated under
renormalisation.

Neglecting spatial fluctuations as well as the noise in (5.33), we obtain the
mean-field values of the critical exponents

βMF,� = 1 , ν‖,MF,� = 1 . (5.35)

which coincide with those of ordinary DP. Moreover, analysing (5.34) by an
Ornstein-Zernicke-like approach one gets the correlation length exponent

ν⊥,MF,� =

{
1/2 if σ� ≥ 2

1/σ� if σ� < 2
(5.36)

which varies continuously with the control exponent σ� over a certain range.
Finally, dimensional analysis of the noise term in (5.34) shows that the upper
critical dimension is given by

dc =

{
4 if σ� > 2

2σ� if σ� < 2 .
(5.37)

Thus, for σ� < 2 the Lévy flights are relevant, such that the exponent ν⊥,MF,�

as well as dc vary continuously with σ�, while for σ� ≥ 2 the distribution
decays sufficiently fast that the Lévy flights remain irrelevant and one is back
to the usual nearest-neighbour (diffusive) motion of individual particles.

We note that within the mean-field regime, the boundary between the
short-range (ν⊥ = 1/2) and the long-range (ν⊥ = 1/σ�) scaling behaviour is
exactly σ∗

�
= 2. However, as a surprising result, one finds that fluctuation ef-

fects below the upper critical dimension shift this threshold to slightly higher
values. The resulting phase structure is sketched in Fig. 5.5.

5.6.1.1 Spatial Lévy flights: Field-Theoretical Results

The starting point of a field-theoretic renormalisation group analysis is the
dynamic functional [335]
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Fig. 5.5 Four different scaling regimes of directed percolation with long-range interactions
by means of isotropic Lévy flights. The phase boundaries reflect the stability and instability
of the corresponding renormalisation group fixed points. The indices ‘lr’ and ‘sr’ denote
the long-range and the short-range fixed points, respectively. Along the phase boundaries,
the stability of the fixed points is exchanged, leading to logarithmic corrections on top of
the usual power-laws. The long-range (lr) interactions remain irrelevant for σ� > σ∗

� . In
the non-mean-field regime, one would naively expect that σ∗

� = 2 (solid line) but a more
careful analysis reveals σ∗

� = 2 − η⊥ + z (dashed line).

J [�̃, �] = λ

∫
dt dr �̃

[
λ−1∂t�− (τ + ∇2 +D�∇σ�)�

−
(κ

2
�̃− g �

)
�
]
. (5.38)

Note that the additional long-range operator ∇σ� appears in the free part
of the action. Therefore, the structure of the Feynman diagrams in a loop
expansion is exactly the same as in ordinary DP, the only difference being
that the free propagator in the loop integrals has to be replaced by its gener-
alised counterpart. Moreover, the functional still obeys the rapidity-reversal
symmetry [335], although the critical exponents and scaling functions are
generally different from those of short-range DP.

Within an ε-expansion to one-loop order, the critical exponents in the
non-MF regime are given by [335, 292]

β� = 1 − 2ε
7σ�

+ O(ε2) , (5.39)

ν⊥,� =
1
σ�

+
2ε
7σ2

�

+ O(ε2) , (5.40)
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d 1 2 3 ≥ 4 (MF)

σ∗
� 2.076660(21) 2.179(15) 2.118(17) 2

Table 5.4 The values of the borderline exponent σ∗
� , separating the long-range scaling

regime (σ� < σ∗
� ) from the short-range scaling regime (σ� > σ∗

� ). The values are determined
by inserting the numerically known DP exponents into the scaling relation (5.48).

ν‖,� = 1 +
ε

7σ�

+ O(ε2) , (5.41)

z� = σ� − ε

7
+ O(ε2) , (5.42)

where ε = d − dc denotes the distance from the upper critical dimension
dc = 2σ�. Note that all exponents depend continuously on the external pa-
rameter σ�. Furthermore, the usual DP hyperscaling relation (4.91)

d

z
= Θ + 2δ (5.43)

holds for all values of σ� outside the mean-field regime below the upper critical
dimension. Thus the dynamical exponents are given by

Θ� =
ε

7σ�

+ O(ε2) , (5.44)

δ� = 1 − 7ε
σ�

+ O(ε2) . (5.45)

At the upper critical dimension, the scaling behaviour is characterised by
the mean-field exponents modified by logarithmic corrections. For example,
along the line dc = 2σ� the order parameter obeys

� ∼ τ |lnτ |2/7 (5.46)

for τ > 0 and h = 0 [335].
As a remarkable result of the field-theoretic calculation one finds that the

fractional operator ∇σ� does not renormalise itself, instead it renormalises its
short-range counterpart ∇2 to all orders of perturbation theory. This implies
an additional exact scaling relation of the form [292]

ν⊥σ� = dν⊥,� − 2β� + ν‖,� (5.47)

valid within the long-range scaling regime. Using the Fisher scaling law (B12)
this relation can also be written as σ� = 2− η⊥,� + z�. Because of this scaling
relation, DP with spatial Lévy flights is characterised by three exponents,
e.g. β, ν‖, and σ�. Only two of them are independent since the latter plays
the role of an external control parameter.
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The real importance of the scaling relation (5.47), however, lies in a dif-
ferent aspect. Since renormalisation group analysis indicates that the critical
exponents change continuously from the long-range to the short-range scal-
ing regime [335] the threshold σ∗

�
between the long-range and the short-range

regime can be computed by inserting the numerically known exponents of
short-range DP into (5.47). This then leads to the expression

σ∗
�

= 2 − η⊥ + z , (5.48)

where z and η⊥ denote the exponents of short-range DP. Remarkably, σ∗
� is

shifted away from the mean-field threshold σ∗
�

= 2 in (5.36) towards higher
values (see Table 5.4 and Fig. 5.5). Therefore, in an interacting field theory be-
low its upper critical dimension, fluctuation effects may modify the boundary
between the long-range and the short-range regime. Only recently, a similar
shift of such a boundary was also observed in the φ4-theory at equilibrium
(see e.g. [449] and references therein), although in that case σ∗

�
= 2 − η is

shifted to values smaller than 2.

5.6.2 DP with Temporal Long-Range Interactions

Finally, we briefly mention that long-range interactions can also be estab-
lished in the temporal direction and may be investigated separately [537] or
in combination with the previously studied spatial Lévy flights [3]. In the lan-
guage of epidemic spreading, such temporal long-range interactions can be
implemented as stochastically distributed waiting times ∆t before an infected
individual can infect other individuals. These ‘incubation times’ are assumed
to be distributed algebraically according to (5.31), where κ� is an external
parameter. In the functional J [�̃, �] such waiting times can be taken into
account by adding a term with a fractional derivative in time. This fractional
operator differs from the one in (5.33) in so far as it is directed forward in
time respecting causality and therefore acts differently in Fourier space (see
e.g. [290]).

A field-theoretic analysis (see [537, 3]) leads to the phase diagram shown in
Fig. 5.6. It comprises seven different phases, namely, three mean-field phases
where either long-range flights (MFL), incubation times (MFI), or both
of them (MF) are relevant. Similarly, there are three different fluctuation-
dominated regimes, while in the short range limit of large σ� and κ� one
recovers ordinary DP. The mean-field phase MF is characterised by the ex-
ponents

βMF,� = 1 , ν⊥,MF,� =
1
σ�

, ν‖,MF,� =
1
κ�

, (5.49)

which are valid above the upper critical dimension
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Fig. 5.6 Phase diagram for DP with spatio-temporal long-range interactions in one spatial
dimension (see text).

dc =
(

3 − 1
κ�

)
σ� . (5.50)

Below dc in the mixed phase (LI), the exponents vary continuously with the
external parameter σ� and κ� [3]:

β� = 1 − ε

4σ�

+ O(ε2) , (5.51)

ν⊥,� =
1
σ�

+
1ε
4σ2

�

+ O(ε2) , (5.52)

ν‖,� =
1
κ�

+
ε

4κ�σ�

+ O(ε2) . (5.53)

Neither of the fractional derivatives renormalise themselves, implying two
additional scaling laws

σ� = 2 − η⊥,� + z� , κ�z� = 2 − η⊥,� + z� (5.54)

and leading to the intuitively reasonable result [221]

z� =
σ�

κ�

. (5.55)

Apparently the combined effect of spatial and temporal long-range inter-
actions predominates the scaling behaviour and the dynamical exponent is
locked onto the ratio of σ� and κ� [3].

An interesting aspect of phase transitions with long-range interactions
is the possibility to modify the upper critical dimension continuously. In
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numerical simulations this allows one to tune the upper critical dimension
to a value close to the actual physical dimension, in which the simulation is
carried out. In this way it is possible to verify the results of a field-theoretic
ε-expansion quantitatively.

5.6.3 Other Models with Long-Range Interactions by
Lévy Flights

In principle, any stochastic model involving short-range diffusion can be
generalised to spatial long-range interactions by Lévy flights. For exam-
ple, the simple annihilation process 2A → ∅ with long-range interactions
was studied both numerically and by field-theoretical methods in [292].
Branching-annihilating random walks, normally belonging to the parity-
conserving universality class, were generalised to long-range flights by Vernon
and Howard [606]. Moreover, the classical voter model with long-range inter-
actions was studied in [641]. Similarly, the general epidemic process (GEP)
discussed in Sect. 5.5 can be endowed with infections by spatial Lévy flights,
leading to a long-ranged version of dynamical percolation [335, 423].

Algebraically distributed waiting times can be implemented in any model,
where the temporal derivative ∂t in the evolution equation can be replaced
by a directed fractional derivative ∂κ�

t . However, compared to spatial Lévy
flights there are less studies since the physical motivation of algebraically dis-
tributed waiting times is not always clear. Besides epidemic spreading with
incubation times, temporal long-range interactions may play a role in disor-
dered systems [291]. Moreover, such waiting times can be used to describe
algebraically distributed first-return probabilities in an effective manner [36].
Stochastic processes with waiting times are conceptually challenging as they
are intrinsically non-Markovian.

5.6.4 Simulating Models with Long-Range Interactions

Let us finally outline how models with long-range interactions can be simu-
lated numerically.

1. A Lévy flight from site i over distance r on an infinite one-dimensional
lattice can be generated as follows. Let z ∈ [0, 1] be an ordinary random
number and let r = z−1/σ� . As can be shown easily, r ∈ [1,∞] is distributed
as P (r) = σ�r

1+σ� . In one spatial dimension the target site of the Lévy
flight is i± r! with equal probability, where  r! denotes truncation to an
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integer. In higher dimensions, a Box-Müller-type algorithm can be used to
determine a direction isotropically [423].

2. Systems with spatial long-range interactions are extremely sensitive to
finite-size effects. For this reason one should prefer simulation methods
where finite-size effects are virtually absent as, for example, seed sim-
ulations using a dynamically generated list of particle coordinates (see
Sect. 4.3.6.2). On a finite lattice, past experience has shown that one should
cut off the flight distance, instead the best results are obtained if one works
with periodic boundary conditions. For example, on a one-dimensional lat-
tice with L sites, the target site would be located at (i±  r!) mod L.

3. In seed simulations with spatial Lévy flights the measurement of the
mean square spreading from the origin, defined as an arithmetic average
R2(t) = 〈|x(t)|2〉 may not converge as the second moment of the flight dis-
tance diverges after only a single update. To circumvent this problem, one
should instead study the geometric average R2(t) = exp

[
〈ln(|x(t)|2)〉

]
.

This average is finite for all σ� > 0 and yields consistent results in the
short-range limit.

4. In order to simulate a system with waiting times, one has to implement
an event queue for activations in the future. Moreover, in seed simulations
the survival probability Psur(t) is no longer defined and has to be replaced
by the probability of finding at least one active site at time t.

5.7 Manna Universality Class

In this section, we discuss a class of absorbing phase transitions in which
the number of particles is strictly conserved. This additional conservation
law leads to another type of universal scaling behaviour different from DP.
Analogous to the DP-conjecture by Janssen and Grassberger [326, 240]
(cf. Sect. 3.2.2) it is believed that continuous transitions in stochastic models
with an infinite number of absorbing states, where the order parameter is cou-
pled to a non-diffusive conserved field, define a unique universality class [552],
the so-called Manna universality class. As we shall see, this class is re-
lated to the concept of self-organised criticality (SOC) introduced in the
study of avalanches of sandpiles (see e.g. [29, 30, 28, 601]) and is therefore
of particular interest. Table 5.5 below collects estimates of critical exponents
and amplitudes.

Compared to directed percolation, the Manna universality class is not
yet well established. Beside field-theoretical approaches [181, 510, 602, 331],
series expansions [583] and path integral representations [182] most quanti-
tative results have been obtained by simulations. In particular, a systematic
ε-expansion is still lacking. In the following we present several lattice models
belonging to the Manna universality class and focus again on the universal
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scaling behaviour. At the end of this section, we shall discuss the relation to
self-organised criticality.

A comment is worth making concerning the designation of the universality
class. In the literature numerous names have been used, causing never-ending
misunderstandings and confusion. However, the so-called Manna model
(see below) has always been considered as a paradigmatic and particularly
simple example of a model exhibiting an absorbing phase transition with a
conserved non-diffusing field. Since universality classes are often named after
the simplest model belonging to them, this class will be termed the Manna
universality class throughout this book.

It is worth mentioning that the DP and the Manna universality class are
characterised by the same value of the upper critical dimension dc = 4. Fur-
thermore, their mean-field scaling behaviour above the upper critical dimen-
sion is identical, while below dc the classes are clearly different (see [433] for
a detailed discussion). Such a scenario is quite familiar in statistical physics.
For example, the Ising model, the XY-model as well as the Heisenberg model
exhibit different scaling behaviours below dc but share the same type of mean-
field behaviour above dc.

5.7.1 Manna Model

The simplest representative of the Manna universality class is the Manna
model. Manna introduced this model as a stochastic cellular automaton in
order to describe the dynamics of sandpiles in the context of self-organised
criticality [460]. In this lattice model the sites of a lattice are associated
with integer values representing e.g. local energies, number of sand-grains or
particles (see Fig. 5.7). The Manna model is a bosonic lattice model, i.e., it
allows for an unlimited number of particles per site n = 0, 1, 2, . . . ,∞. Lattice
sites are considered as inactive if the particle occupation is below a certain
threshold n < Nc, e.g. Nc = 2 in all dimensions d or Nc = d [442]. On the
other hand, lattice sites with n ≥ Nc are considered as active. The model
evolves in time by the dynamical rules that all active sites redistribute their
particles among randomly chosen nearest neighbours, setting

n −→ 0 for all sites with n ≥ Nc . (5.56)

Apart from this original version of the Manna model [460], some authors have
considered a modified version, where the occupation number of active lattice
sites is not set to zero but reduced by randomly redistributing Nc particles:

n −→ n − Nc for all sites with n ≥ Nc . (5.57)
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In the latter case the Manna model is analytically tractable if the active
particles are distributed in a particular way [165]. In both versions the redis-
tribution process conserves the number of particles.

The properties of the Manna model depend crucially on the boundary
conditions. In the context of SOC, one uses open boundary conditions where
particles can disappear, combined with a slow driving by continuous deposi-
tion of grains in the bulk. In this case, the system self-organises in a critical
state where arbitrarily large sequences of redistribution events can be ob-
served. The sizes of such avalanches are distributed algebraically, reflecting
the critical properties of the Manna universality class.

As another possibility, one may consider periodic boundary conditions
without external driving, so that the total number of particlesN is conserved.
In this case the model exhibits a continuous phase transition from an active
into an inactive phase when the particle density �n = N/Ld, which now
plays the role of a control parameter, is varied. The order parameter, which
characterises this transition, is the density � of lattice sites occupied by at
least Nc particles [608]. Obviously a configuration is absorbing if all sites
contain less than Nc particles. Thus the Manna model is characterised by an
infinite number of absorbing configurations in the thermodynamic limit.

As in DP it is possible to apply an external field h which is conjugated
to the order parameter. This field must be defined in a way that it does not
violate the conservation law. A possible realisation was proposed in [431],
where h is implemented as some kind of diffusion-like field, allowing particles
in locally frozen configurations to move to nearest neighbours.

The driven-dissipative version (with open boundaries and slow external
driving) of the Manna model was investigated intensely in the context of
self-organised criticality (see e.g. [56, 165, 131, 429, 428, 174, 66]). Following
the arguments by Ben-Hur and Biham [56] the universality class of a self-
organised critical system is determined by the way in which active particles
are distributed to the nearest neighbours (deterministic, stochastic, directed,
undirected, etc.) and the symmetries of the system. For finite Nc the Manna
model is characterised by a stochastic redistribution of particles. However, in
the limit Nc → ∞ the active particles are equally distributed to the nearest
neighbours, i.e., the stochastic character of the process is lost. In fact, it
can be shown that in this limit the Manna model exhibits a different type
of scaling behaviour. The crossover between the two universality classes was
studied in numerical simulations [428], confirming the conjecture of [56].

5.7.2 Conserved Threshold Transfer Process (CTTP)

A second lattice model belonging to the Manna universality class is the con-
served threshold transfer process (CTTP) [552]. It is a modification of
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Fig. 5.7 Sketch of the dynamics of the Manna model, the CTTP, and the CLG in one
dimension. Filled (hollow) circles mark active (inactive) particles. The arrows denote the
possible directions in which the particles may be moved stochastically in the next update. In
the CLG model particles move deterministically. In the case of the CTTP the redistribution
can be either stochastic (left) or deterministic (right). Only the one-dimensional Manna
model with Nc = 2 has a fully stochastic redistribution process. Reprinted with permission
from [437]. Copyright (2003) by the American Physical Society.

the ordinary threshold transfer process discussed above in Sect. 3.3.4. Again
lattice sites may be empty, occupied by one particle, or occupied by two
particles. Empty and singly occupied lattice sites are considered as inactive,
whereas doubly occupied lattice sites are considered as active. In the latter
case the model evolves in that it tries to transfer both particles of a given
active site to randomly chosen empty or singly occupied sites. In contrast to
the threshold transfer process creation and annihilation of isolated particles
is forbidden so that the number of particles is conserved. As in the Manna
model the conjugated field can be implemented by a diffusion-like field [430].
Numerical simulations reveal that the CTTP exhibits the same scaling be-
haviour as the Manna model in d ≥ 2 dimensions [432]. In one dimension a
splitting of the universality class occurs [437] since in this case a significant
amount of the relaxation events is deterministic. Thus in d = 1 dimensions
the CTTP differs from the pure stochastic Manna model.

The CTTP can be considered as a modification of the Manna model in
which the maximal number of particles per site is restricted. This restric-
tion simplifies the analytical treatment significantly. For example, the CTTP
can be analysed easily within a mean-field approximation [439] whereas the
unrestricted configuration space of the Manna model leads to a system of
coupled equations (see [433] and references therein). Denoting the density of
unoccupied (empty) sites by �e, the density of single occupied sites by �i, and
the density of double occupied sites by �, the conditions for normalisation
and particle conservation can be expressed as [433]
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�e + �i + � = 1 , �n = �i + 2� (5.58)

leading to the mean-field equation for the CTTP:

∂t�(�n, h) = � (−1 + 2�n − 4�+ �2) + h(�n − 2�)2 . (5.59)

For zero conjugated field h = 0, the steady-state condition ∂t� = 0 yields the
stationary order parameter as a function of the particle density [439, 179]

�s = 2 −
√

5 − 2�n for �n ≥ �n,c = 1/2 . (5.60)

The order parameter vanishes to leading order as � ∝ τβ with τ = (�n −
�n,c)/�n,c and β = 1. For non-zero conjugated field the asymptotic behaviour
of the equation of state is given by [439]

�s � τ

8
+

√
h

16
+

( τ

8

)2

. (5.61)

Thus the mean-field solution of the Manna universality class coincides with
the mean-field behaviour of DP.

5.7.3 Conserved Lattice Gas (CLG) and Other
Reaction-Diffusion Processes

A further lattice model belonging to the Manna universality class is the so-
called conserved lattice gas (CLG) [552] which is a stochastic variant of
a model introduced by Jensen [346]. In contrast to the Manna model the
lattice sites of the CLG-model may be empty or occupied by a single par-
ticle. Motivated by experiments on flux flow in type-II superconductors one
assumes a repulsive interaction [346], i.e., a particle is considered as active
if at least one of its neighbouring sites is occupied as well. Otherwise, if all
neighbouring sites are empty, the particle remains inactive. Active particles
are moved in the next update step to one of their empty nearest neighbour
sites selected at random. Obviously, the CLG conserves the number of par-
ticles. Moreover, all configurations with solitary particles are absorbing. As
for the Manna model and the CTTP, the conjugated field is implemented by
particle diffusion [431].

As in the Manna model, the CLG exhibits a continuous transition con-
trolled by the particle density. In d ≥ 2 dimensions this transition belongs to
the Manna universality class, taking place at a critical threshold �n,c < 1/2.
In one dimension, however, the phase transition is trivial and the critical
density is �n,c = 1/2 (see [552] and references therein). This is due to the fact
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Fig. 5.8 The universal scaling function R̃(x, 1) of the equation of state of the Manna
universality class in various dimensions. The curves are plotted according to the scaling
form (4.206). For d = 2 the CTTP data are obtained from simulations on a square (sq) and
honeycomb (hc) lattice. In the case of the Manna model, data of the original model (5.56)
using random sequential (rs) and parallel (p) updates as well as data of the modified model
in the limit n → 0 (5.57) are presented. As shown in the left panel, all curves collapse onto
a single one. Moreover, the scaling functions depend on the dimension and differ from
the corresponding scaling functions of DP (see right panel). Reprinted with permission
from [433]. Copyright (2004) World Scientific Publishing Company.

that the CLG in one dimension is characterised by a deterministic dynamics,
hence it does not belong to the Manna universality class.

Finally let us mention the reaction-diffusion process [400, 603, 510, 511]

A −→ B , A + B −→ 2A , (5.62)

where A-particles and B-particles diffuse with diffusion rates DA and DB,
respectively. Obviously, this process conserves the total number of particles
N = NA + NB. By varying the particle density, the model exhibits a con-
tinuous phase transition. In the limit DB → 0 the order parameter ρA is
coupled to a non-diffusive field, hence this transition belongs to the Manna
universality class. Unfortunately, field-theoretic renormalisation group ap-
proaches for this model run into difficulties and are a matter of great contro-
versy [496, 510, 602, 331].

5.7.4 Scaling Properties

In Fig. 5.8 we present the scaling form of the equation of state as an impressive
exemplification of the universal scaling behaviour of the Manna class. Despite
the different lattice structures and update schemes, the data of the Manna
model, the CTTP and of the CLG collapse onto a single curve. This result
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d = 1 d = 2 d = 3 Mean-field

Manna CTTP

β 0.38(2) 0.382(19) 0.639(9) 0.840(12) 1
β′ 0.32(5) 0.42(8) 0.624(29) 0.827(34) 1
ν⊥ 1.35(9) 1.76(6) 0.799(14) 0.593(13) 1/2
ν‖ 1.88(14) 2.45(11) 1.225(29) 1.081(27) 1

σ 2.710(40) 1.770(58) 2.229(32) 2.069(43) 2
γ′ 0.550(40) 0.670(40) 0.367(19) 0.152(17) 0
γ 2.328(44) 1.388(40) 1.590(33) 1.229(45) 1

η⊥ 1.592(40) 1.619(28) 1.541(25) 1.744(29) 2

α 0.141(24) 0.14(2) 0.419(15) 0.745(17) 1
δ 0.170(25) 0.170(25) 0.510(20) 0.765(25) 1
Θ 0.35(3) 0.35(3) 0.310(30) 0.140(30) 0
z 1.393(37) 1.39(5) 1.533(24) 1.823(23) 2

D̃(1, 0) 1.81(3) 1.91(8) 2
X̃(+1,0)

X̃(−1,0)
0.41(5) 0.80(5) 1

U 0.80(4) 0.69(3) 0.60(1) 1/2

Table 5.5 The critical exponents and various universal amplitude combinations of the
Manna and the CTTP models, below the upper critical dimension dc = 4. In 1D, the Manna
model and the CTTP are in different universality classes. The data of the exponents β, σ,
ν⊥, and γ′ are obtained from steady-state simulations [430, 437], whereas seed simulations
were used to determine the values of α, δ, Θ, and z [437]. The exponents β′ and ν‖ are

derived via scaling laws. Note that the values of ν‖ are in good agreement with those of
direct measurements of the order parameter persistence distribution [441].

is a strong manifestation of the robustness of the Manna universality class
with respect to variations of the microscopic interactions.

The right panel of Fig. 5.8 compares the scaling functions R̃(x, 1) of the
Manna and the DP class. As can be seen both classes are characterised by
significantly different scaling functions. Evidently, these differences become
less important with increasing dimension since both classes converge to the
same type of mean-field behaviour at the upper critical dimension.

A complete analysis of the scaling behaviour of the Manna universality can
be found in [433], including an investigation of universal scaling functions of
the order parameter fluctuations and of the susceptibility as well as of finite
size scaling functions. Numerical estimates of the critical exponents and of
various universal amplitude combinations are listed in Table 5.5. As a field
theoretical treatment is still lacking, it is not yet known how many of these
exponents are independent. Numerical investigations indicate that the general
hyperscaling law

Θ +
β

ν‖
+ δ =

d

z
(5.63)

is fulfilled. Furthermore, the values of β/ν‖ and δ agree within the error-
bars. This suggests that β = β′ although the Manna universality class does
not obey the rapidity-reversal symmetry. In addition, the Manna class does
exhibit a scaling anomaly [552, 433], i.e., it is numerically observed that
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α �= β

ν‖
(5.64)

So far no scaling law is known involving the order parameter decay exponent α
(see also [541]). This indicates that the number of independent exponents of
the Manna universality class is at least four or perhaps even five. To clarify
this point further numerical as well as analytical work is desirable.

5.7.5 Relationship Between Absorbing Phase
Transitions and Self-Organised Criticality (SOC)

Let us finally discuss the close relationship between absorbing phase transi-
tions and self-organised criticality. The term SOC refers to driven-dissipative
systems that naturally evolve towards a critical state, characterised by power-
law distributions of relaxation events (see [29, 30, 601, 166] for introductory
reviews). Such systems differ from ordinary critical phenomena in that they
self-organise into a critical state without fine-tuning of an obvious control
parameter to a critical value. In this critical state the systems jump among
absorbing configurations via avalanche-like relaxation processes, triggered by
a slow external driving. Scale-invariance manifests itself as an algebraic be-
haviour of certain distribution functions, e.g. for the size and duration of
avalanches.

The paradigmatic realisations of SOC are sandpile models such as the
Bak-Tang-Wiesenfeld model (BTW) [29] and the aforementioned Manna
sandpile model [460]. The BTW model is analytically tractable because of
its Abelian structure, allowing one to determine height distributions and
the corresponding correlation functions [164, 457, 456, 532, 318]. However,
the dynamical properties of the avalanches are not yet fully understood.
Progress was achieved by decomposing the avalanches into a sequence of
relaxation events termed waves [321, 533, 320] which can be mapped to
spanning trees and loop-erased random walks [403]. Nevertheless, the be-
haviour of the avalanches is a complex phenomenon and the correspond-
ing exponents are not known analytically (see [433] for a detailed discus-
sion). Since reliable numerical estimates are difficult to obtain due to a
lack of simple finite-size scaling, their interpretation is discussed controver-
sially (see e.g. [459, 247, 442, 472, 594, 132, 471]). Contrarily, the Manna
model was investigated successfully by numerical simulations (see for exam-
ple [460, 56, 442, 133, 594, 429, 174, 66]) but no exact results are known so
far.

The mechanism that drives the system into a critical state is also not
completely understood. Phenomenologically, the critical stationary state is
reached by a delicate balance of driving and dissipation in the slow driving
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limit, leading to a separation of time scales [253, 605, 610]. An impor-
tant advance was achieved by mapping sandpile models to absorbing phase
transitions, i.e., to a conventional non-equilibrium critical phenomenon. This
mapping (see the next subsection) was first discussed by Tang and Bak within
a mean-field approach [590] and elaborated further in a series of works, in-
cluding [609, 181, 610, 607]. As discussed above, the Manna model exhibits
an absorbing phase transition in closed ensembles (often called fixed-energy
sandpiles [181]), where the particle density is strictly conserved.

5.7.6 Absorbing Phase Transitions and SOC:
Mean-Field Approximation

In the following we show by a mean-field treatment how a system self-
organises into a critical state when moving from a closed to an open ensemble
with dissipation and external driving. In contrast to numerous other mean-
field studies of SOC systems [590, 20, 167, 324, 231, 642, 319, 378, 605, 99,
610], which focus primarily on the determination of the avalanche exponents,
we present here an instructive mean-field approach [433] for the CTTP which
explains the attraction towards the critical state by the dynamics.

Contrariwise to the CTTP with global particle conservation (see (5.59))
we now consider a driven-dissipative modification. Firstly, we introduce an
external driving by adding particles from outside with probability p at empty
or single-occupied lattice sites. Obviously this driving breaks the global con-
servation law. Secondly we incorporate particle dissipation at rate ε which
competes with the external driving. The corresponding rate equations lead
to coupled differential equations of the form [433]

∂t� = p (�n − 2 �) + � [−1 + 2(1 − ε)�n − 4(1 − ε)� + (1 − ε)2�2] (5.65)

+ h (�n − 2�)2 ,

∂t�n = p(1 − �) − 2 ε � . (5.66)

In the slow driving limit (p � 1) the steady-state solution can be expressed
in terms of the drive-dissipation ratio κ = p/ε:

�s =
κ

2 + κ
, �n =

2 + 6 κ + 2 κ2

(2 + κ)2
. (5.67)

It turns out that the parameter κ, which was phenomenologically intro-
duced by Grinstein [253], is the appropriate parameter to describe the self-
organisation to the critical point. Eliminating κ one recovers (5.60), describ-
ing the order parameter behaviour in the active phase of the closed systems.
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In this way the control parameter in the active phase �n ∈ [�n,c, 2] is mapped
onto the interval of the drive-dissipative ratio κ ∈ [0,∞]. In the weak driving
limit p � ε (κ → 0) we find to leading order [433]

�s =
κ

2
, �n = �n,c + κ . (5.68)

Therefore, as κ → 0, the driven-dissipative system approaches the critical
point of the corresponding absorbing phase transition (�n = �n,c, �s = 0). The
fundamental role of the Grinstein parameter κ is even valid beyond mean-
field. In fact, simulations of the driven-dissipative CTTP in two dimensions
indicate that the critical point is approached as �s = κ/2 and �n = �n,c +κ1/β

for κ → 0 [433].
Let us now turn to the dynamical behaviour in the vicinity of the steady-

state. Here (5.66) and (5.68) lead to

∂pt�n = O(κ) , ∂εt�n = O(κ2) . (5.69)

In other words, the control parameter varies for κ → 0 only on the perturba-
tion scale τperp = 1/p, whereas �n can be considered as approximately constant
on the dissipation scale τdiss = 1/ε. Furthermore, it is assumed that the sys-
tem displays an avalanche-like response for infinitesimal driving (p → 0), i.e.,
no further perturbations take place until an absorbing configuration (� = 0)
is reached. This extreme separation of time scales (κ → 0) is necessary in
order to identify individual relaxation events (avalanches). Therefore, one
can justify characterisation of the scale-invariance via avalanche distribution
functions [253].

Within this approximation, the dynamics of avalanches is determined
by (5.65) with p = 0. At criticality (�n = �c) the order parameter decays
for sufficiently small ε as [433]

�(t) � 1
�−1

0 + 4 (1 − ε) t
for ε t � 1 , (5.70)

�(t) � ε

4(1 − ε)
e−ε t for ε t � 1 . (5.71)

Thus close to the critical point (κ → 0) an avalanche, caused by the per-
turbation �0, decays algebraically before an exponential cutoff occurs. This
cutoff is caused by the particle dissipation and takes place at τcutoff = 1/ε. A
pure power-law behaviour is obtained in the limit ε → 0 only. Therefore the
driven-dissipative CTTP self-organises itself to the critical point and exhibits
scale-invariant avalanches in the limit κ → 0 and ε → 0 which is often termed
the SOC limit [605, 610].

In conclusion, the key to understand SOC is the insight that the limit
κ → 0 tunes the control parameter to the boundary of the active phase, i.e., to
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the critical point. This explains why the trivial limit κ → 0 in an open system
corresponds to a fine-tuning of the control parameter to the critical point
of an absorbing phase transition in a closed system. Remarkably, this limit
occurs frequently in driven-dissipative systems in nature, i.e., many physical
processes are characterised by a large separation of timescales that makes κ
extremely small [28, 253]. For example, the motion of the tectonic plates that
causes earthquakes is extremely slow compared to the time scale on which
earthquakes proceed (see [253]). Thus, the dissipation and driving rate are
separated by many orders of magnitude. Although the drive-dissipation rate
remains finite, the system is very close to the critical point (κ = 0) and
displays a power-law behaviour over several decades, namely, the celebrated
Gutenberg-Richter law [257].

5.7.7 Relating Critical Exponents of SOC and
Absorbing Phase Transitions

The avalanches of SOC systems are characterised by several quantities (see for
example [56, 443]), e.g. the size s (number of elementary relaxation events),
the area a (number of distinct relaxed sites), the time t (number of parallel
updates until the configuration is stable), as well as the radius exponent r
(radius of gyration). In the critical steady-state the corresponding probability
distributions are found to decay algebraically

Px ∼ x−τx (5.72)

with the so-called avalanche exponents τx where x ∈ {s, a, t, r}. Assuming
that the four quantities scale relative to each other by power laws of the form
x ∼ x′γxx′ one obtains the scaling relation

γxx′ =
τx′ − 1
τx − 1

. (5.73)

For example, the exponent γtr is equal to the dynamical exponent z, the ex-
ponent γar corresponds to the fractal dimension of the avalanches, and the
exponent γsa indicates whether multiple relaxations of a lattice site are rele-
vant (γsa > 1) or irrelevant (γsa = 1). This relationship [481, 608, 437], com-
bined with certain hyperscaling laws [433], allows the avalanche exponents to
be expressed in terms of the ordinary critical exponents of the corresponding
absorbing phase transition:

τr = 1 + z δ = 1 +
β′

ν⊥
, (5.74)
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τt = 1 + δ = 1 +
β′

ν‖
, (5.75)

τa = 1 +
z δ

d
= 1 +

β′

dν⊥
, (5.76)

τs = 1 +
δ

1 +Θ + δ
= 1 +

β′

ν‖ + ν⊥d− β
. (5.77)

In this way, the critical state of SOC systems is related to the critical state
of an ordinary second-order phase transition.

Eventually, we briefly comment about the relation of SOC to the famous
1/f -noise, to be precise a 1/fα-decay of the power-spectrum of a certain
signal with a non-trivial exponent α < 2. Originally, the concept of SOC
aimed to explain the ubiquity of 1/fα [29]. But this idea is criticised in
a series of works, including [348, 387, 347, 73], where a simple Lorentzian
spectrum with a trivial 1/f2-decay is observed. This result has recently been
questioned. According to [410], SOC leads rather generally to an 1/fα-noise
with the exponent α = γst, calling for an re-investigation of numerical and
experimental results.

5.8 Pair-Contact Process with Diffusion

A controversially discussed model is the so-called pair-contact process
with diffusion (PCPD). This model generalises the ordinary pair-contact
process (PCP) without diffusion (see Sect. 3.3.3). More specifically the PCPD
is a stochastic process of diffusing particles A which interact according to the
reaction-diffusion scheme

fission: 2A → 3A ,

annihilation: 2A → ∅ .

The PCPD was originally suggested by Grassberger [240] and after 15
years rediscovered by Howard and Täuber [309], in the form of a (non-
renormalisable) field-theory which does not take into account the ‘fermionic’
constraint that each site can be occupied by at most a single particle. Non-
perturbative studies of lattice models with the ‘fermionic’ constraint were
started in [126]. The model exhibits a continuous non-equilibrium phase tran-
sition caused by the competing character of fission and annihilation. At the
time of writing, no consensus has been achieved on whether this transition
belongs to one of the known universality classes or else represents a new kind
of absorbing phase transition. A recent review article [274] discusses in detail
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t

Fig. 5.9 One-dimensional pair-contact process starting with a fully occupied lattice at
criticality. Left: In the pair-contact process without diffusion (PCP) solitary particles can-
not diffuse, leading to frozen patterns of separated vertical lines. Right: In the PCPD, where
individual particles are allowed to diffuse, offspring production can be restarted after long
times when two diffusing particles meet, leading to a very different visual appearance of
the process. Reprinted with permission from [272].

the ongoing debate about the PCPD. In the following we summarise (and
slightly update) the main points.

As we have seen in Sect. 3.3.3, the pair-contact process without diffusion is
a model with infinitely many absorbing states which nevertheless falls into the
DP universality class. The pair-contact process with diffusion, however, has
only two absorbing states, namely, the empty lattice and a homogeneous state
with a single diffusing particle. Hence, introducing diffusion into the pair-
contact process can be regarded as a singular perturbation which changes the
structure of the absorbing phase. In fact, even the visual appearance changes
significantly, as may be seen by comparing the left and right panels of Fig. 5.9.

In contrast to DP, the absorbing phase of the PCPD is characterised by an
algebraic decay driven by particle annihilation. This has been taken by some
as an indication that the PCPD might represent a universality class different
from DP. This view is supported by the numerically confirmed observation
that the upper critical dimension of the process is dc = 2 instead of 4. The
mostly studied form of the PCPD considers the evolution of a population of
particles of a single species A, with the following reactions⎧⎪⎪⎨⎪⎪⎩

AA∅ −→ AAA ; with rate (1 − p)(1 −D)/2
∅AA −→ AAA ; with rate (1 − p)(1 −D)/2
AA −→ ∅∅ ; with rate p(1 −D)
A∅ ←→ ∅A ; with rate D

(5.78)

There is a second-order phase transition, and a general agreement on its loca-
tion pc(D) exists between different groups, see Fig. S.5 for the phase diagram
in 1D. However, even after intensive efforts, the numerical results for the crit-



234 5 Universality Classes Different from Directed Percolation

ical exponents are unclear, so a surprising variety of possible scenarios have
been proposed: Some authors believe that the PCPD should represent a novel
universality class with a unique set of critical exponents, while others expect
to find two different universality classes along the critical line, depending on
the diffusion rate and/or the number of space dimensions. According to an-
other viewpoint, the exponents might depend continuously on the diffusion
constant. According to yet a third opinion, the PCPD in 1+1 dimensions can
be interpreted as a cyclically coupled DP- and annihilation-process which
crosses over to ordinary DP behaviour after very long time, in spite of the
algebraic behaviour in the inactive phase. Table 5.6 documents the different
conclusions reached by several authors by using different numerical methods.8

See Table 4.4 for an illustrative example of the difficulties, encountered in the
necessarily purely numerical studies, in reaching a clear and non ambiguous
conclusion on the truly asymptotic scaling behaviour of the PCPD.

The broad spectrum of opinions is caused by numerical and conceptual
difficulties. It turns out that various quantities, such as the particle or the
pair densities, do not exhibit clean power laws, rather they are superseded
by strong corrections to scaling which extend over the entire numerically
accessible range. A reliable interpretation of the existing numerical results
is made difficult by the lack of understanding of what these corrections to
scaling in the PCPD really are. It is intriguing that the entire arsenal of
available techniques should fail so utterly in attempts to clarify the scaling
behaviour. Considerably more work will be needed in order to clarify the
widely different and partially contradicting conclusions formulated so far on
this apparently so simple-looking model.

5.9 First-Order Phase Transitions

So far, we have discussed continuous (second-order) phase transitions. In
this section, we shall focus on discontinuous (first-order) phase transitions.
Although theoretical physicists often prefer to study continuous phase tran-
sitions because of their universal properties, discontinuous transitions do oc-
cur frequently in nature and in general require less fine-tuning of control
parameters. Already, but not only, for this reason, the study of discontinuous
phase transitions under non-equilibrium conditions, especially with absorbing
states, is in important field.

Here, we first address the question of whether first-order transitions can
occur in low-dimensional non-equilibrium systems. In particular we shall
study characteristic phenomena attributed to first-order transitions such as

8 Concerning the critical behaviour near to a surface, β1/ν⊥ = 0.72(1) was estimated for
the ordinary transition and β1/ν⊥ � 1.11 for the extraordinary transition, both in 1+1
dimensions and for D � 0.5 [40].
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Authors Ref. D δ β z β/ν⊥
Carlon, Henkel 0.1 - - 1.87(3) 0.50(3)
and Schollwöck [126] 0.15 - - 1.84(3) 0.49(3)

0.2 - - 1.83(3) 0.49(3)
0.35 - - 1.72(3) 0.47(3)
0.5 - - 1.70(3) 0.48(3)
0.8 - - 1.60(5) 0.51(3)

Hinrichsen [288] 0.1 0.25 < 0.67 1.83(5) 0.50(3)

0.05 0.273(2) 0.57(2) - -

Ódor [490, 496] 0.1 0.275(4) 0.58(1) - -
0.2 0.268(2) 0.58(1) - -
0.5 0.21(1) 0.40(2) - -
0.9 0.20(1) 0.39(2) - -

Park, Hinrichsen * 0.236(10) 0.50(5) 1.80(2) -
and Kim [506]

Park and Kim [508] * 0.241(5) 0.496(22) 1.80(10) -
* 0.242(5) 0.519(24) 1.78(5) -

Dickman and 0.1 0.249(5) 0.546(6) 2.04(4) 0.503(6)
de Menezes [176] 0.5 0.236(3) 0.468(2) 1.86(2) 0.430(2)

0.85 0.234(5) 0.454(2) 1.77(2) 0.412(2)

0.05 0.216(9) 0.411(10) 2.0(2) 0.53(7)

Ódor [492] 0.1 0.206(7) 0.407(7) 1.95(1) 0.49(2)
0.2 0.217(8) 0.402(8) 1.95(1) 0.46(3)
0.5 0.206(7) 0.402(8) 1.84(1) 0.41(2)
0.7 0.214(5) 0.39(1) 1.75(1) 0.38(2)

Kockelkoren, Chaté [395] * 0.200(5) 0.37(2) 1.70(5) -

0.1 0.17 - - -
Barkema and Carlon [40] 0.2 0.17 - 1.70(1) 0.28(4)

0.5 0.17(1) - - 0.27(4)
0.9 0.17 - 1.61(3) -

Noh and Park [488] 0.1 0.27(4) 0.65(12) 1.8(2) 0.50(5)

Park and Park [509] * 0.20(1) - - -

Hinrichsen [289] * < 0.185 < 0.34 < 1.65 -

de Oliveira and 0.1 - - 2.08(15) 0.505(10)
Dickman [151] 0.5 - - 2.04(5) 0.385(11)

0.85 - - 1.88(12) 0.386(5)

Kwon and Kim [404] * - - 1.61(1) -

Smallenburg 0.5 0.16(1) 0.28(2) 1.58 -
and Barkema [574]

Table 5.6 Estimates for the critical exponents of the 1D PCPD, according to various
authors. The diffusion rate D is as in (5.78) and with sequential update; a star in the
D-column is used for PCPD models with a different microscopic definition.

phase coexistence, hysteresis cycles and nucleation effects. Several lattice
models are known which exhibit a first-order absorbing phase transition.
Besides the ZGB model [647, 646, 91] and models with several absorbing
states [178, 27], tricritical systems give us an opportunity to study first-order
transitions [436, 244].



236 5 Universality Classes Different from Directed Percolation

5.9.1 Stabilisation by Elimination of Minority Islands

In equilibrium statistical mechanics, it is not uncommon that systems, which
exhibit a first-order phase transition in high space dimensions d, may display
a second-order transition below a certain upper critical dimension. The reason
is that in low dimensions fluctuations become more pronounced, destabilising
the ordered phase. In non-equilibrium statistical physics the situation is sim-
ilar. Therefore, the question arises under which conditions first-order phase
transitions can be observed in low-dimensional, especially one-dimensional
models.

Systems with a first-order phase transition are usually characterised by at
least two stable ordered phases. For example, in the subcritical regime T < Tc

of the two-dimensional Ising model there are two stable magnetised states.
To ensure their stability, the Ising model provides a robust mechanism for the
elimination of minority islands of the opposite phase generated by thermal
fluctuations. In the kinetic Ising model this mechanism relies on the fact
that the boundary of an island costs energy, leading to an effective surface
tension. Attempting to minimise surface tension, the island feels an attractive
‘force’ and begins to shrink. This force decreases algebraically as 1/r with
the typical radius r of the island so that thermal fluctuations of any size are
safely eliminated.

Because of the Z2-symmetry under spin reversal, the ordered phases of
the Ising model are both equally attracting. Thus, starting from a disordered
state with zero magnetisation, one observes coarsening patterns of ordered
domains. However, if an external field is applied, one type of minority is-
land becomes unstable above a certain critical size. Since there is a finite
probability of generating such islands by fluctuations, one of the two ordered
phases eventually takes over, i.e., the system undergoes a first-order phase
transition.

line
first-order

spinodal lines

tricritical point

h

T

Fig. 5.10 Schematic phase diagram of Toom’s north-east-centre voting model as a func-

tion of the temperature T and the external magnetic field h. In the coexistence region
between the two spinodal lines the ordered phases are both thermodynamically stable.

Turning to non-equilibrium systems, there are even more efficient mech-
anisms for the elimination of minority islands. An interesting example is



5.9 First-Order Phase Transitions 237

Toom’s two-dimensional north-east-centre voting model [597, 57]. In con-
trast to the ordinary Ising model with heat bath dynamics, where spins are
oriented probabilistically according to the field of the neighbouring spins plus
the external field h, a spin in Toom’s model is oriented according to the field
produced by the spin itself and its ‘northern’ and ‘eastern’ neighbours only.
It can be shown that this type of spatially biased update does not obey de-
tailed balance in the stationary state, hence the model is genuinely out of
equilibrium.

Like the kinetic Ising model, Toom’s model displays a discontinuous phase
transition between two stable ordered phases below Tc. However, in contrast
to the Ising model, where smooth domain walls perform an unbiased diffusive
motion, the domain walls in Toom’s model propagate with a velocity that
depends on their orientation. Because of this anisotropy, minority islands
quickly assume a triangular shape and begin to shrink at constant velocity.
Thus, the effective ‘force’ by which an island shrinks is independent of its size,
leading to much more stable phases as in the standard kinetic Ising model. In
fact, the elimination mechanism is so robust that the ordered phases may even
remain stable if an oppositely oriented external field h is applied. In order
to flip the whole system, the intensity of this field has to exceed a certain
threshold. The corresponding phase stability boundaries (also called spinodal
lines) are sketched in Fig. 5.10. Between these lines, the two ordered states
are both thermodynamically stable, i.e., they coexist in a whole region of
the parameter space. Crossing the coexistence region by varying the external
field, the magnetisation of the system follows in a hysteresis loop.

5.9.2 First-Order Transitions in One Spatial
Dimension

According to a classical theorem by Landau, first-order phase transitions
are impossible in one-dimensional equilibrium systems. In non-equilibrium
statistical mechanics, however, several models have been shown to display
a first-order transition even in one spatial dimension. For example, the
(1+1)-dimensional Ziff-Gulari-Barshad model [647] for heterogeneous catal-
ysis (cf. Sect. 3.3.5 and exercise 30) is known to exhibit a first-order phase
transition which relies on the interplay of three different kinds of particles.
Similarly, models for phase separation on a ring [213] use more than two dif-
ferent species of particles. Another example is the so-called bridge model [237]
for bidirectional traffic on a single lane, where special boundary conditions
induce a discontinuous transition in the currents. Even more subtle is the
mechanism in the two-species model introduced by Oerding et al., where
a first-order phase transition is induced by fluctuations [500]. Therefore, in
attempting to comprehend the full range of first-order phase transition un-
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der non-equilibrium conditions, it would be interesting to seek the simplest
(1+1)-dimensional model which exhibits a discontinuous transition. By ‘sim-
ple’ we mean that such a model should involve only one species of particle
evolving by local dynamic rules without macroscopic currents, conservation
laws, and unconventional symmetries. Moreover, the choice of the boundary
conditions should be irrelevant.

The prototype of such a dynamic process is the one-dimensional Glauber-
Ising model at zero temperature in a magnetic field, which is also known
as compact directed percolation (see Sect. 5.3). The model evolves random-
sequentially by randomly selecting a pair of adjacent sites. If the two spins
are in opposite states, they are aligned with the probabilities p and 1 − p,
respectively:

↑↓, ↓↑ p−→ ↑↑ ; ↑↓, ↓↑ 1−p−→ ↓↓ . (5.79)

As there are no fluctuations inside ordered domains, the two fully ordered
configurations are absorbing.

Obviously, p− 1/2 plays the role of an external field h. For h �= 0, one of
the two absorbing states is stable while the other one is unstable under small
perturbations. Therefore, starting with random initial conditions, the system
approaches one of the fully magnetised states in an exponentially short time
since minority islands of the opposite phase shrink linearly with time. For
h = 0, however, the two absorbing states of the Glauber model are only
marginally stable against perturbations. For example, by flipping a single
spin in a fully magnetised domain, a pair of kinks is created. These kinks
perform an unbiased random walk until they annihilate one another. Thus,
minority islands do not shrink by virtue of an attractive force, rather they are
eliminated solely by the circumstance that random walks in one dimension
are recurrent [543]. On the one hand the survival probability of such an island
is known to decay as 1/

√
t, on the other hand it reaches a typical size of the

order
√
t. Therefore, averaging over many independent samples, the mean

size of minority islands is asymptotically constant. This demonstrates that
the ordered phase is only marginally stable against perturbations at T = 0.
In fact, raising the temperature above zero by introducing a small rate for
spontaneous spin flips, the first-order transition in the Glauber-Ising model
is lost.

5.9.3 Impossibility of Discontinuous Phase Transitions
in Fluctuating One-Dimensional Systems

Is it generally possible to observe first-order transitions in fluctuating (1+1)-
dimensional two-state systems with short-range interactions? Regarding this
question it is instructive to study the (1+1)-dimensional triplet creation pro-
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Fig. 5.11 Apparent first-order behaviour in the triplet creation process 3A → 4A, A → ∅.
The space coordinate x is rescaled by the mean cluster extension t1/2 and plotted versus
ln t. Initially the domains appear to be compact. Only after a transient of 106 update steps
the ordered phase disintegrates and one eventually observes DP-like branching.

cess introduced by Dickman and Tomé [178] which resembles the reaction
scheme

3A → 4A , A → ∅ (5.80)

combined with single particle diffusion. In this model, the high-density phase
is not strictly absorbing, rather islands of unoccupied sites are spontaneously
created in the bulk so that one of the ordered states fluctuates. In numerical
simulations, it was observed that above a certain tricritical point the second-
order DP transition line splits up into two spinodal lines, where the transition
becomes first order. Moreover, the order parameter seemed to follow a hys-
teresis loop when the parameter for offspring production was varied. However,
refined simulations [286] revealed that the transition only appears to be a dis-
continuous one but actually crosses over to DP after a sufficiently long time.
Therefore, it seems that the entire transition line in this model belongs to
DP. The gradual disintegration of ordered domains can also be observed in a
rescaled logarithmic space-time plot, as demonstrated in Fig. 5.11.

This example illustrates that is very difficult, if not impossible, to find a
short-range model with fluctuating ordered states that displays a first-order
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Fig. 5.12 Domain wall between two stable ordered phases A and B in one spatial dimen-
sion. In models with short-range interactions and no conservation laws the derivative of
the profile is expected to decay exponentially.

transition in 1+1 dimensions. Obviously such a model would need a much
more robust mechanism for the elimination of minority islands than in the
Glauber model. A simple random walk of a pair of kinks is not sufficient,
rather there has to be an attractive force which prevents small minority
islands from growing. However, without long-range interactions (mediated
by explicit interactions or conservation laws) a domain wall between two
ordered domains should always have a finite width, i.e. the order parameter
profile is localised and its derivative is expected to decay exponentially, as
sketched in Fig. 5.12. If the ordered phase fluctuates there is always a finite
probability of generating a minority island which is sufficiently large that its
domain walls do not interact. As in the Glauber model such an island could
reach any size and therefore disintegrate the ordered phase. Consequently,
on scales much larger than this critical island size, the process is expected to
cross over to DP.

These considerations suggest that numerical evidence for first-order transi-
tions in one-dimensional models with fluctuating ordered states should always
be taken with caution, unless one can clearly identify the mechanism that
stabilises the ordered phase. Usually such a mechanism requires long-range
interactions or conservation laws.

The impossibility of a discontinuous transition in one spatial dimension in
models with short-range interactions explains the behaviour of the tricritical
contact process discussed in Sect. 5.4. This model displays a first-order tran-
sition with an associated tricritical point only in two or more dimensions,
whereas in one spatial dimension the transition always belongs to the DP
universality class.
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Fig. 5.13 Hysteresis loop of the order parameter in the first-order regime of the tricritical
contact process (TCP). The solid line is obtained from steady-state measurements at zero
field for various system sizes. During the simulations the control parameter p is slowly
decreased until the absorbing state is reached. The circles correspond to data which are
obtained from finite-field simulations and slowly increasing parameter p. In the shadowed
area the active and the absorbing phase coexist. The dashed line marks the transition
point pc obtained from a stability analysis of separated phases (see text). The inset shows
how the order parameter switches back for growing p. Here the three dashed lines corre-
spond to three different field values (from h = 4·10−4 (top) to h = 3·10−5). As can be seen,
there exists a well defined upper limit of the supercooled low density phase. Reproduced
from [436] with kind permission of Springer Science and Business Media.

5.9.4 Phase Coexistence and Hysteresis Cycles

A general phenomenon associated with first-order transitions is the presence
of hysteresis cycles when the transition is crossed. In equilibrium, hysteresis
effects manifest themselves as supercooling and superheating.

Analogous effects occur in the case of first-order absorbing phase transi-
tions [436]. This is shown in Fig. 5.13 for the first-order regime of the tricritical
contact process in two dimensions (see Sect. 5.4). Decreasing the control pa-
rameter τ the order parameter jumps at a certain point po from a finite value
to zero. On the other hand, the order parameter jumps back to a finite value
at pu on cooling, i.e., with increasing control parameter. Note that this part
of the hysteresis can only be observed if a small external field is applied which
allows the system to escape from the absorbing state (see inset of Fig. 5.13
and [436] for details). Thus the first-order regime of the tricritical contact
process exhibits a finite hysteresis, where the two phases coexist between
po < p < pu.

Snapshots of the system within the supercooled and superheated state are
shown in Fig. 5.14. Analogous to equilibrium, the dynamics of the discontin-
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Fig. 5.14 Snapshots of the two coexisting phases in the first-order regime of the tricriti-
cal contact process. The left figure shows a typical low density configuration (supercooled
phase), where small droplets are triggered by a weak external field. The right figure displays
a typical high density configuration (superheated phase). Here, order parameter fluctua-
tions lead to droplets of various sizes. In both cases the droplets are subcritical, i.e., they
disappear after a certain lifetime. Reproduced from [436] with kind permission of Springer
Science and Business Media.

uous transition is characterised by nucleation effects, i.e., the formation of
critical seeds or droplets. The weak external field creates small fluctuating
droplets of the minority phase within the majority phase. Subcritical droplets
disappear after a certain lifetime whereas critical droplets grow continuously,
creating larger and larger domains of the favoured phase. Examples of sub-
critical droplets can be seen in Fig. 5.14.

A crucial problem of non-equilibrium first-order transitions concerns the
location of the transition point. In equilibrium, the transition point is re-
lated to a thermodynamical potential such as the free energy. At the critical
temperature the free energy of both phases are equal. Unfortunately, this def-
inition cannot be applied to non-equilibrium phase transition. Alternatively
one can define the first-order transition point in terms of the drift velocity of
a moving interface between both phases. In equilibrium the interface velocity
is zero whereas it is non-zero if one of the phases is favoured by the dynamics.

This definition allows one to estimate the critical point as follows. First,
the system is prepared in a state with a stripe of the active phase bounded by
two interfaces [91, 436, 244]. Depending on the control parameter, the active
phase grows or shrinks, i.e., the system reaches after a transient either the
absorbing phase or a steady-state of a homogeneous non-zero particle density
(see Fig. 5.15). Typically one obtains a parameter range where both phases
are equally favoured by the dynamics. As the system size and the simulation
time are increased, the size of this parameter range shrinks, leading to a
well-defined value of the transition point [436].

In the case of the TCP the estimate of the critical point pc indicates that
the hysteresis is asymmetric and quite narrow (see Fig. 5.13). Finally we men-
tion that the interface behaves like generic fluctuating non-equilibrium sur-
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Fig. 5.15 Estimating the critical point of a first-order phase transition by analysing the
interface motion. The figure shows snapshots of the tricritical contact process with periodic
boundary conditions close to the first-order transition. Starting with a stripe of particles
the dynamics is attracted either by the empty lattice (left, p < pc) or by a steady-state of
a homogeneous non-zero particle density (right, p > pc). Reproduced from [436] with kind
permission of Springer Science and Business Media.

faces at first-order transition points, i.e., the width of the interface increases
for sufficiently small time as t1/3 [376, 244].

In summary, discontinuous non-equilibrium transitions share many prop-
erties with their equilibrium counterparts. For example, one can observe
hysteresis loops and metastability effects such as supercooling and super-
heating. As in equilibrium, first-order transitions do not occur in fluctuat-
ing one-dimensional systems. Nevertheless first-order transitions under non-
equilibrium conditions may differ from discontinuous equilibrium transitions.
For example, in Fig. 5.15 an initially planar interface between the two phases
roughens as t1/3 at the transition point [376, 244], while under equilibrium
conditions one expects the width to grow only as t1/4.
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5.10 Crossover Phenomena

Crossovers, i.e., passages from one universality class to another, are well-
known from equilibrium phase transitions. In the topological language of
renormalisation group theory crossover phenomena are understood in terms
of competing fixed points (see e.g. [520]). Suppose that more than one fixed
point are embedded into the critical surface and suppose that one of the two
fixed points is characterised by a certain number of irrelevant scaling fields
and one relevant scaling field. If this relevant scaling field is weak, a trajectory
will approach that fixed point until it is eventually driven away to another
fixed point.

In the framework of phenomenological scaling theory, crossover effects can
be described by including the relevant scaling field as an additional param-
eter in the corresponding scaling forms. For example, if this parameter was
denoted by κ, the equation of state would read

�s(τ, h, κ) � λ−β r̃(λτ, λσh, λφκ) , (5.81)

where τ denotes the distance from criticality. The exponent φ which is as-
sociated with the scaling field κ is the so-called crossover exponent. A
negative exponent φ, meaning that the scaling field is irrelevant, gives rise
to corrections to the leading scaling behaviour [620] (cf. Sect. 2.3.4). These
non-universal corrections are often termed confluent singularities.

The situation is different for a relevant scaling field, i.e., φ > 0. Setting
λτ = 1 the above scaling form reads for τ > 0 and h = 0

�s(τ, κ) � τβ r̃(1, 0, κτ−φ) . (5.82)

For small κ � τφ one observes again corrections to ordinary scaling. How-
ever, approaching the transition point, τ → 0, the scaling argument diverges,
leading to a different scaling behaviour. Thus, (5.81) describes a crossover
between two different universality classes controlled by the scaling field κ.
Usually, the point at which

O(κ|τ |−φ) = 1 (5.83)

is considered as the point where the crossover takes place [546].
Classical examples of crossover phenomena are ferromagnetic systems ex-

hibiting weak uniaxial spin anisotropy (see for e.g. [6]). Similar crossover
phenomena are also known from non-equilibrium systems, including crossover
effects in self-organised critical systems [196, 588, 428], absorbing phase tran-
sitions [432, 434, 436], as well as depinning transitions [553]. Here we shall
consider three different examples which are related to the models considered
so far. First, the crossover from ordinary DP to tricritical DP is reviewed. Sec-
ond, we study the crossover from DP to compact DP in the one-dimensional
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Domany-Kinzel automaton. Third, we discuss systems with variable interac-
tion ranges which cross over to mean-field behaviour when the interaction
range is increased.

5.10.1 Crossover from DP to TDP

The starting point of the analysis is the mean-field approximation of tricritical
directed percolation in Sect. 5.4. In this approximation the steady-state of
the order parameter is given, at zero-field h = 0, by

�s(τ, g) = − g

2c
+

√
τ

c
+
( g

2c

)2

. (5.84)

Obviously, the order parameter behaviour can be described in terms of a
generalised homogeneous function, i.e.,

�s(τ, κ) = λ−βt r̃(τλ, 0, gλφ) (5.85)

with the crossover scaling field κ = g and the exponents βt = 1/2 and
φ = 1/2. Omitting the metric factor c, the crossover scaling function reads

r̃(x, 0, y) = −y

2
+

√
x+

(y
2

)2

. (5.86)

The scaling function r̃(x, 0, 1) is of particular interest since its asymptotic
behaviour

r̃(x, 0, 1) ∼
{
xβt with βt = 1/2 for x → ∞
xβDP with βDP = 1 for x → 0 (5.87)

reflects the crossover between both universality classes.
Beyond mean-field theory, an analogous scaling behaviour can be observed,

e.g. for the tricritical contact process (TCP). As discussed in Sect. 5.4, the
microscopic model parameters p and q of the TCP are not identical to the
scaling fields τ and g. Instead there is a certain window of scaling, where
the coarse-grained variables τ and g can be replaced by p− pc(q) and qt − q,
respectively [436]. In this case the scaling form at zero field h = 0 is given by

�s(p, q) � λ−βt r̃q(δpλ, 0, δqλφ) , (5.88)

with δp = p− pc(q) and δq = qt − q. As indicated by the index q this scaling
form is valid only if the critical point pc(q) is approached along paths with
constant q. Moreover, the simulations have to be performed in a way that the
distance to the phase boundary is smaller than the distance to the tricritical
point, i.e., δp � δq.
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Fig. 5.16 The crossover scaling function of the order parameter at zero field (left). The
dashed lines indicate the asymptotic power laws of ordinary and tricritical DP. The right
figure shows the associated effective exponent βeff . Both asymptotic scaling regimes (βt

and βDP) as well as the crossover regime are clearly recovered. Reproduced from [436] with
kind permission of Springer Science and Business Media.

If both conditions are fulfilled, then different curves corresponding to dif-
ferent values of q collapse onto a single curve if the rescaled order param-
eter � δq−βt/φ is plotted as a function of the rescaled control parameter
δp δq−1/φ. Such a data collapse is shown in the left panel of Fig. 5.16. As
can be seen, both asymptotic behaviours, tricritical as well as ordinary di-
rected percolation, are recovered. However, as the entire crossover region
spans several decades it is usually difficult to identify small but systematic
differences between different curves. It is therefore instructive to scrutinise
the quality of the representation by plotting the so-called effective expo-
nent [548, 448, 110, 432, 434]

βeff =
∂

∂lnx
lnr̃q(x, 0, 1) . (5.89)

The effective exponent is shown in the right panel of Fig. 5.16. The data
collapse of βeff over more than six decades reflects the crossover between the
universality class of TDP and DP. A detailed discussion of this crossover
scenario, including an analysis of the order parameter fluctuations and of the
dynamical scaling behaviour, is presented in [436] and [244], respectively.

5.10.2 Crossover from DP to CDP

In Sect. 3.3.1 we have seen that the phase diagram of the one-dimensional
Domany-Kinzel (DK) automaton comprises two different universal scaling
behaviours: A critical line of second-order DP-like phase transitions and its
upper terminal point which belongs to the universality class of compact DP
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(CDP). Moving along the critical line it is possible to examine the crossover
from the DP to the CDP scaling behaviour. For the sake of concreteness,
we focus here on the order parameter decay �(t) at various critical points
along the DP-line. As pointed out in Sect. 4.3.4 the duality-symmetry factor
µ can be used to parametrise the critical line, or more precisely, to parame-
terise the distance to the terminal point along the critical line. Approaching
the terminal point the parameter µ vanishes, reflecting the violation of the
rapidity-reversal for CDP (see Fig. 4.16). On a phenomenological level the
crossover can be understood as a growing mean size of active islands when
approaching the terminal point (see [287]).

Similar to (5.81) this crossover is described by the scaling form

� � λ−βCDP r̃(tλ−ν‖,CDP ; τλ, κλφ) . (5.90)

The crossover exponent φ = 2/d is known exactly from a field theoretical
treatment [331]. Sufficiently close to the terminal point the phase transition
line is given by κ = (1 − p2) ∝ (p1 − 1/2)φ. As can be seen from Fig. 4.16,
the parameter µ2 vanishes linearly with p1 − 1/2, leading to κ ∝ µ2φ. Setting
κλφ = 1, the order parameter is described along the critical line (τ = 0) by

� � r̃(tµ2ν‖,CDP ; 0, 1) , (5.91)

where βCDP = 0 is already recognised. The asymptotic scaling behaviour of
the scaling function r̃ is given by

r̃(x; 0, 1) ∼
{
x−αDP for x → ∞ ,
const for x → 0 . (5.92)

10
0

10
2

10
4

10
6

t

1.0

0.5

0.2

ρ  (t
)

10
−4

10
−2

10
0

10
2

10
4

µ4 
t

1.0

0.5

0.2

ρ  (t
)

DK, d=1

Fig. 5.17 The order parameter decay along the critical line of the one-dimensional
Domany-Kinzel (DK) automaton. Unscaled data is shown in the left figure (p1 = 0.54865,
p1 = 0.52469, p1 = 0.512425, p1 = 0.5024969, from left to right). A data collapse is obtained
by rescaling the order parameter according to (5.91) with ν‖,CDP = 2 and φ = 2/d = 2 [331]
(see right figure). Both asymptotic scaling regimes (αCDP = 0 and αDP) are recovered.
Reprinted with permission from [435].



248 5 Universality Classes Different from Directed Percolation

Numerical simulations confirm this crossover scaling form. Corresponding nu-
merical data are shown in Fig. 5.17. A crossover between both scaling regimes
(αCDP = 0 and αDP) takes place at

O(κν‖,CDP/φt) = O(µ4t) = 1 . (5.93)

Note that the full crossover again spans several decades. Alternatively, the
crossover from the DP to the CDP universality class can be described via
the scaling functions of the survival probability Psur or in terms of the scaling
function of the number of active sites Na, respectively.

5.10.3 Crossover to Mean-Field Scaling Behaviour

The critical behaviour of a system exhibiting a second order phase transi-
tion with non-mean-field scaling behaviour is strongly affected by the range
of interactions R. The longer the range of interactions, the stronger will be
the reduction of the critical fluctuations, and in the limit of infinite inter-
action the system will be characterised by mean-field scaling. According to
the Ginzburg criterion [235, 19], mean-field-like behaviour occurs even for
finite interaction ranges sufficiently far away from the critical point. If one ap-
proaches the transition point in such a situation, a crossover from mean-field
to a different type of scaling behaviour is observed.

From the renormalisation group point of view, the crossover reflects the
instability of the mean-field fixed point associated with the mean-field scaling.
This crossover is described by a corresponding exponent φ which is known
exactly due to the Ginzburg criterion. This crossover scenario is considered
as a paradigm of crossover phenomena and it was intensively investigated in
equilibrium (including [21, 52, 477, 450, 451, 448, 513, 514, 110, 389]) as well
as in non-equilibrium systems [432, 434].

Here, we discuss several systems belonging to the Manna universality class.
Changing the range of interactions the full crossover from the non-mean-field
to mean-field critical behaviour can be observed. In the standard versions of
the CLG model, the CTTP, and the Manna model (see Sect. 5.7), particles of
active sites are moved to nearest neighbours only, i.e., the interaction range is
R = 1. It is straightforward to generalise these models to a finite interaction
range [432] by moving particles not only to nearest neighbours but to sites
randomly selected within a radius R. It is important that the simulations are
performed in the so-called critical crossover limit, i.e., the associated correla-
tion length has to be sufficiently large in the whole crossover region [451, 513].
For any finite interaction range R the phase transition is characterised by a
non-mean-field scaling behaviour, whereas mean-field scaling occurs for infi-
nite interactions. For example, the order parameter � of the two-dimensional
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Fig. 5.18 The order parameter (left) of the two-dimensional Manna model for various
values of the interaction range R. With increasing range the critical density tends to the
mean-field value 	n,c,R = 1/2. As can be seen, the power-law behaviour of 	 changes with
increasing R. The data is obtained from simulations of various system sizes L ≤ 2048.
The right figure shows the corresponding scaling plot. The curves are rescaled according to
(5.95). The scaling variable τR = 	n −	n,c,R denotes the distance to the critical point. The
dashed lines correspond to the power-law behaviour of the two-dimensional model and to
the mean-field scaling behaviour, respectively.

Manna model is plotted in Fig. 5.18 for various interaction ranges at zero
field. As can be seen, the transition point �n,c,R depends on the range of
interactions and the power-law behaviour of � changes with increasing R.

As mentioned above, the crossover scaling function has to incorporate the
range of interactions as a third scaling field. But the parameter R is not
an appropriate quantity to describe the scaling behaviour since it describes
the maximum range of interactions. Furthermore, the actual strength of the
interactions may depend on the given lattice structure. Thus instead of R the
effective interaction range [477]

R2
eff =

1
zn

∑
i
=j

|ri − rj|2 , for |ri − rj| ≤ R (5.94)

is often used for the scaling analysis. Here, zn denotes the number of lattice
sites within radius R. The values of the effective interaction ranges are listed
for two- and three dimensional simple cubic lattices e.g. in Tables 6 and Ta-
ble 7 of [433]. Using the effective range of interactions the equation of state
obeys the scaling form (κ = R−1

eff )

�s(τ, h,Reff) � λ−βMF r̃(τRλ, hλ
σMF , R−1

eff λ
φ) . (5.95)

Here, the distance to the critical point τ = �n − �n,c,R depends on the inter-
action range R. At zero-field, both scaling regimes are recovered
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r̃(x, 0, 1) ∼
{
xβMF for x → ∞
xβd for x → 0 . (5.96)

The crossover exponent φ is exactly known due to the Ginzburg criterion [235,
19]. It states that the mean-field picture is self-consistent in the active phase
as long as the fluctuations within a correlation volume are small compared
to the order parameter itself

∆� � ξd �2
s . (5.97)

In the steady-state, ξ corresponds to the spatial correlation length that di-
verges at the critical point according to ξ⊥ ∝ τRR

−ν⊥,MF
eff . Thus, for zero-field

the mean-field theory applies if

1 � Rd
eff τ

γ′
MF+2βMF−ν⊥,MFd

R =
(
Reffτ

(4−d)/2d
)d

, (5.98)

where we have used the power-laws

�s ∼ τβMF
R , ∆� ∼ τ

−γ′
MF

R (5.99)

as well as the mean-field values of the Manna universality class βMF = 1,
ν⊥,MF = 1/2, and γ′MF = 0. On the other hand, mean-field scaling behaviour
occurs as long as 1 � Reff τ

φ
R . Consequently, the crossover exponent is given

by

φ =
4 − d

2d
. (5.100)

According to the scaling form (5.95), data obtained from simulations at zero
field and various interaction ranges have to collapse onto a single curve by
plotting �sR

βMF/φ
eff as a function of τR R

1/φ
eff . The corresponding plot of the

two-dimensional Manna model is shown in Fig. 5.18. A fairly good collapse
is observed over the entire crossover which spans roughly six decades. The
asymptotic power-law behaviour of the two-dimensional Manna class as well
as of the mean-field scaling behaviour are convincingly recovered. A corre-
sponding scaling plot of three-dimensional models can be found in [433].

In order to obtain universal crossover scaling functions metric factors have
to be taken into account [432]:

�s(τ, h,Reff) � λ−βMF R̃(aττRλ, ahhλ
σMF , aRR

−1
eff λ

φ) . (5.101)

Once the non-universal metric factors aτ , ah, and aR are chosen in a specified
way, the universal scaling function R̃(x, y, z) is the same for all systems within
the same universality class. Since the mean-field scaling function should be
recovered for R → ∞, i.e.,

R̃(x, y,∞) = R̃MF(x, y) , (5.102)
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it is convenient to require

R̃(1, 0,∞) = R̃MF(1, 0) = 1 , R̃(0, 1,∞) = R̃MF(0, 1) = 1 . (5.103)

In this way, aτ , ah, and aR can be expressed in terms of the metric factors
and critical parameters of the ordinary model (R = 1) and of the mean-field
limit (R → ∞). A straightforward calculation yields [432]

aτ =
aτ,R→∞

ρc,R→∞
, ah = ah,R→∞ , aR =

(
ρc,R=1

aτ,R=1

aτ,R→∞

ρc,R→∞

)φβd/(βMF−βd)

.

(5.104)
In this case the asymptotic scaling behaviour of the universal function R̃
equals

R̃(x, 0, 1) �
{
xβMF for x → ∞
xβd for x → 0 . (5.105)

According to the universal scaling form (5.101), the rescaled order param-
eter is plotted in Fig. 5.19 for three different two-dimensional systems. An
excellent data-collapse is observed over the entire range of the crossover. The
quality of the data-collapse is confirmed by the analysis of the associated
effective exponent

βeff =
∂

∂lnx
lnR̃(x, 0, 1) . (5.106)

Thus, the full crossover region can be described in terms of universal scaling
functions. This is a remarkable result since the range where the universal
scaling behaviour applies is usually restricted to a small vicinity around the
critical point. For a detailed discussion of this issue we refer the interested
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reader to [432, 433, 434] and references therein. An analysis of universal order
parameter fluctuations and the order parameter susceptibility can be found
in the same works.

5.11 Quenched Disorder

One of the possible reasons why DP is so difficult to realise experimentally
(see Sect. 3.4) is quenched disorder. For example, the local density of open
channels in a porous rock will vary because of inhomogeneities of the material.
It is therefore important to investigate how quenched disorder affects the
critical properties of a spreading process. It turns out that even small disorder
can affect or even destroy the critical behaviour of DP.

In the DP Langevin equation (3.10), the control parameter τ plays the
role of the percolation probability. Quenched disorder may be introduced by
random variations of τ , i.e., by adding another noise field χ

τ → τ + χ(t, r) . (5.107)

Thus, the resulting Langevin equation reads

∂t�(t, r) = τ�(t, r)−g�(t, r)2+D∇2�(t, r)+η(t, r)+�(t, r)χ(t, r) . (5.108)

The noise χ is quenched in the sense that quantities like the particle density
are averaged over many independent realisations of the intrinsic noise η while
the disorder field χ is kept fixed. In the following we distinguish two different
types of quenched disorder χ, namely spatially quenched disorder χs(r) and
temporally quenched disorder χt(t).

5.11.1 Temporally Quenched Disorder

Temporally quenched disorder is defined by the correlations

χt(t)χt(t′) = γ δ(t− t′) . (5.109)

In this case the additional term scales as a relevant perturbation �χt �→
λ−ν‖/2−β�χt. Therefore, we expect the critical behaviour and the associ-
ated critical exponents to change entirely. The influence of spatio-temporally
quenched randomness was investigated in detail in [351]. Employing series
expansion techniques it was demonstrated that the three exponents β, ν⊥, ν‖
vary continuously with the disorder strength. Thus the transition no longer
belongs to the DP universality class.
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5.11.2 Spatially Quenched Disorder

For spatially quenched disorder, the disorder field χ = χs(r) is defined
through the correlations

χs(r)χs(r′) = γ δd(r − r′) , (5.110)

where the bar denotes the average over independent realisations of the dis-
order field (in contrast to averages 〈. . .〉 over the intrinsic noise η). The pa-
rameter γ is an amplitude which controls the intensity of disorder. In order
to find out whether this type of noise affects the critical behaviour of DP,
let us again consider the properties of the Langevin equation under the scal-
ing transformation (4.9) and (5.110). Checking the scaling behaviour of the
additional term �χs in (5.108) at the critical dimension, we observe that it
scales as

�χs �→ λ−β−dcν⊥/2�χs , (5.111)

i.e., spatially quenched disorder is a marginal perturbation. Therefore, it may
seriously affect the critical behaviour at the transition. Janssen [329] showed
by a field-theoretic analysis that the stable fixed point is shifted to an unphys-
ical region, leading to runaway solutions of the flow equations in the physical
region of interest. Therefore, spatially quenched disorder is expected to cru-
cially disturb the critical behaviour of DP. The findings are in agreement with
earlier numerical results by Moreira and Dickman [479] who reported non-
universal logarithmic behaviour instead of power laws. Later Cafiero et al. [98]
showed that DP with spatially quenched randomness can be mapped onto a
non-Markovian spreading process with memory.

Fig. 5.20 (1+1)-dimensional DP with spatially quenched disorder. Left: in the glassy
phase the disorder forces active sites to percolate in ‘channels’ where the local percolation
probability is high. Right: Supercritical disordered DP process starting from a single seed,
leading to avalanches (marked by the arrows) where the spreading agent overcomes a local
barrier. Figure reprinted with permission from [287].
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From a more physical point of view, spatially quenched disorder in (1+1)-
dimensional systems was studied by Webman et al. [619]. It turns out that
even very weak randomness drastically modifies the phase diagram. Instead
of a single critical point one obtains a whole phase of very slow glassy-like dy-
namics. The glassy phase is characterised by non-universal exponents which
depend on the percolation probability and the disorder amplitude. For exam-
ple, in an absorbing (1+1)-dimensional DP process without quenched disorder
the boundaries of a cluster propagate at constant velocity v. However, in the
glassy phase v decays algebraically with time. The corresponding exponent
turns out to vary continuously with the mean percolation probability. The
power-law behaviour is due to ‘blockages’ at certain sites where the local
percolation probability is small (see Fig. 5.20). Similarly, in the active edge
of the glassy phase, the spreading agent becomes localised at sites with high
percolation probability. In d > 1, however, numerical simulations indicate
that a glassy phase does not exist.

More recently, Hooyberghs et al. [303, 304] applied the Hamiltonian for-
malism to the contact process with spatially quenched disorder. Using a
strong-disorder renormalisation group technique developed by Ma-Dasgupta-
Hu [452] they demonstrated that the transition for sufficiently strong disorder
is controlled by an infinite-randomness fixed point with a non-algebraic be-
haviour. Vojta [613] showed that the sharp transition is in fact destroyed
due to the fact that strongly coupled spatial regions can undergo local phase
transitions independent from the bulk system. In subsequent studies of the
diluted contact process [614, 615, 140] a Griffiths phase and a multicritical
point with unconventional scaling behaviour could be identified.

5.12 Attempts of Classification

The reader might have become impressed by the immense variety of absorbing
phase transitions we have mentioned in this volume. It may therefore not be
entirely inappropriate to summarise some recent attempts to put some order
into these many universality classes.

1. Kockelkoren and Chaté [395, 128] suggested that the universality class
of absorbing phase transitions in reaction-diffusion processes of the form

mA → (m + k)A , nA → (n− l)A , (5.112)

is determined by the ordersm,n of creation and removal, while the numbers k
and l determine additional symmetries such as parity conservation. In terms
of m,n, they propose the general classification scheme shown in Table 5.7.
In addition, they investigate the role of parity-conservation in more detail
and find that such a symmetry does not alter the universality class whenever
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m\n 1 2 3 4

1 DP DP/PC DP DP

2 DP PCPD PCPD PCPD

3 DP DP TCPD TCPD

4 DP DP DP ?

Table 5.7 Classification scheme of 1D absorbing phase transitions described by (5.112),
according to [395, 128].

every sector includes an absorbing state. Their conjecture is in agreement
with the observation, based on 1D numerical simulations, that an additional
parity-conservation does not change the critical behaviour of the PCPD [506]
and evidence of a PCPD transition in the diffusive 2A → 3A, 4A → ∅ system,
where m = 2, n = 4 [494].9

2. A very interesting approach has been proposed by Elgart and Kamenev
[203]. They consider a Hamiltonian action

J [p, q] =
∫

dt dr [p∂tq +D∇p · ∇q −HR(p, q)] , (5.113)

where q = q(t, r) represents the order parameter such that �(t, r) = 〈q(t, r)〉,
p = p(t, r) is the canonically conjugate momentum and the reaction Hamil-
tonian HR(p, q) describes the reactions allowed in a given model. The
Hamiltonian is determined from the (imaginary-time) Schrödinger equation
∂tF = HR(p, q)F satisfied by the generating function

F ({p}, t) =
∑
{n}

pn1
1 · · · pnN

N P (n1, . . . , nN ; t) (5.114)

and with qi = ∂
∂pi

, see exercise 52 for an explicit example. The time-
dependence follows from the associated variational equations (classical equa-
tions of motion in a physicist’s terminology)

∂tq = ∂pHR(p.q) , ∂tp = −∂qHR(p.q) . (5.115)

Because of the conservation law d
dtHR(p, q) = 0, absorbing phase transitions

are characterised by the zero-energy condition

HR(p, q) = 0 (5.116)

The corresponding zero-energy curves acts as separatrices which decompose
the phase space in disjoint sectors.

According to Elgart and Kamenev [203], close to phase transitions the
topology of the phase space should be determined by the form of HR(p, q)

9 In two spatial dimensions, a re-entrant phase diagram is seen [493].
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model reactions HR(p, q) dc symmetries

kA −→ (k + 1)A
kCPD (k + 1)A −→ kA (m + up − vq)pqk 4/k –

kA −→ ∅
kPC kA −→ (k + 2)A (upk−1 − vhk(p)q) p �→ −p k even

(k + 1)A −→ A ×p(p2 − 1)qk 2/k q �→ −q hk even

kPC kA −→ (k + 2)A (upk − vhk+1(p)q) p �→ −p k odd
(k + 1)A −→ A ×p(p2 − 1)qk 2/k q �→ −q hk+1 odd

kR kA ↔ (k + 1)A (p − 1)(u − vq)pkqk 2/k p �→ v
u

q

q �→ u
v

p

t �→ −t

kRPC kA ↔ (k + 2)A (p2 − 1)(u − vq)pkqk 2/(k + 1) i) p �→ −p, q �→ −q
ii) p �→ v

u
q, q �→ u

v
p

t �→ −t

Table 5.8 List of the four series of models (k ∈ N) with absorbing phase transitions and
a scalar order parameter as identified in [203]. For a typical set of reactions, the reaction
Hamiltonian is given in normal form and m, u, v are control parameters. For the model
1CPD=DP, one can arrange for u = v and then one has, for m = 0, the rapidity-reversal
symmetry p �→ −q, q �→ −p, t �→ −t.

only. By suitable shifts of variables, they identify, for non-disordered systems
described by a single scalar order parameter, four infinite series of models
with absorbing phase transitions and we list their main results in Table 5.8.
One has two series of intrinsically irreversible models and two series of re-
versible models. The four series are essentially distinguished by their global
symmetry properties, although it may happen that for certain members of a
series, a richer symmetry arises. For example, this is the case for directed per-
colation (=1CPD), which is rapidity-reversal-invariant. From the upper crit-
ical dimensions, the following five universality classes with an upper critical
dimension dc > 1 are read off: DP = 1CPD, PCPD=2CPD, TCPD=3CPD,
PC=1PC and 1R. There are four marginal classes with dc = 1, namely 4CPD,
2PC, 2R and 1RPC. All other models are fully described by simple mean-field
for the physically interesting dimensions d ≥ 1.

This approach does have some predictive power: for example, if one adds
to the 2PC process the reaction 2A −→ ∅ and considers the process

2A −→ 4A , 3A −→ A , 2A −→ ∅ , (5.117)

the reduced Hamiltonian HR(p, q) = (m+u(p2−1)−vpq)(p2−1)q2, although
it does obey the characteristic symmetry of the PC universality class, leads
indeed to the same phase-space topology as the model 2CPD=PCPD [203],
in agreement with 1D numerical simulations [506, 498]. Similarly, the kPC
processes with competition in the k-particle channel belong to the kCPD
universality class [203]. These result emphasise that the PC universality class,
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in spite of its usual name, may be better characterised in terms of phase-space
topology rather than by the conservation of parity.

These thought-provoking studies [395, 203] deserve a few comments: First,
both approaches are essentially based on some symmetry arguments but
are also capable of going beyond too rigid an application of symmetry re-
quirements, as seems to be required by the results of numerical simulations.
Second, the PCPD is treated as an independent universality class in both
schemes. In view of the repeated assertions that the PCPD should at truly
long times cross over to directed percolation [40, 289, 574], it remains to be
seen whether this is a really non-trivial prediction or rather a failure of the
proposed classification schemes. Third, the mere facts that (i) the two clas-
sifications disagree with each other and (ii) some of the classes discussed in
this book do not appear to be represented suggest that both might capture
some important aspects of a larger and still unknown structure. For example,
both schemes are based on models where the strict ‘fermionic’ constraint of
at most one particle per lattice site is relaxed and allow, in principle, for
an arbitrary number of particles per site, leading to ‘bosonic’ variants of
the models discussed in this volume. However, as we shall show explicitly
in Vol. 2, the bosonic variants of the contact process and the pair-contact
process (with single-particle diffusion) are exactly solvable on the critical
line [305, 504, 46], but their critical behaviour is completely different from
the one of their ‘fermionic’ counterparts which we have described in this
volume. Furthermore, the construction of HR(p, q) and the analysis of the re-
sulting phase-space topology completely neglects possible spatial variations.
While this already suppresses phenomena related to the difference between
diffusive transport and Lévy flights, the bosonic contact and pair-contact
processes may show a different kind of phase transition, related to the even-
tual collapse of all particles on a single site (but where the total number
of particles is conserved on average), quite analogous to a (real-space) Bose-
Einstein condensation, and with a tricritical point in the bosonic pair-contact
process [504, 46, 48]. Fourth, classification attempts such as those discussed
here are based directly on the microscopic reaction schemes. However, as
pointed out earlier in this chapter, it is not always possible to determine
a universality class by identifying the symmetries of a system’s microscopic
dynamics. Rather, universality classes are fixed by (hidden) asymptotic sym-
metries which emerge on a coarse-grained scale close to a critical point. Fu-
ture attempts for the classification of absorbing phase transitions will have to
take into account that these are ultimately described by renormalised field-
theories. Since these field-theories are still unknown for many models, the
goal of classification appears to be remote at present.
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5.13 Some Open Questions

Progress in science can sometimes be appreciated by returning to questions
asked some time ago. In 1997, Grassberger [243] raised some intriguing ques-
tions in relationship to directed percolation and we close this volume with a
short discussion of them.

1. “Designing and performing [...] an experiment is the outstanding problem
in this field”. The long-standing and “anomalous” [243] absence of any
reliable experimental evidence for the DP universality class might begin
to change [589], as described in Sect. 3.4.

2. “Verify by renormalisation-group methods whether systems with fluctuat-
ing passive states are in the DP universality class”. This still seems to be
an open problem.

3. “Relevance of frozen randomness”. We reviewed some results on quenched
randomness in Sect. 5.11. Adding either temporally or spatially correlated
quenched randomness may change the universality class of the transition.

4. “The relationship of self-organised criticality (SOC) with DP”. We dis-
cussed in Sect. 5.7 the relationship of SOC with absorbing phase transi-
tions, in the context of the Manna model and the CTTP.

5. “It is frustrating that the DP model [...] cannot be solved exactly in the
lowest dimensions”. This still stands unsolved and may well turn out to
be an unsolvable problem.

All in all, absorbing phase transitions have provoked researchers to apply
tremendous ingenuity to their precise study and they have served as an im-
portant stimulus in the development of many new theoretical tools. In this
wider perspective, it seems appropriate to terminate this volume with the
following quotation [243]:

“Since DP in its epidemic interpretation shows one of the most basic non-equilibrium
phase transitions, similar only to the Ising model in equilibrium statistical mechan-
ics, it is certain to provide the stimulus for further studies.”
P. Grassberger, Directed percolation: results & open problems (1997)

Problems

49. Consider the Langevin equation of long-range interacting directed perco-
lation (5.32). Consider small spatial deviations from the homogeneous steady-
state order parameter �s(τ) by introducing δ�(t, r) = �(t, r) − �s(τ). Derive
within an linear approximation (Ornstein-Zernicke-like approach) in δ�(t, r)
the spatial correlation length ξ⊥(τ). Derive the correlation exponent ν⊥ as a
function of the interaction parameter σ�.
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50. Consider the pair-contact process with diffusion in one spatial dimension.
Find the phase diagram in the site and pair approximations.

51. Consider a reaction-diffusion system, consisting of two species A,B of
particles, with the allowed reactions

2A λ→ ∅ , 2B λ→ ∅ , AB
δ→ ∅

together with diffusion of the single particles. What kind of behaviour would
you expect, depending on the ratio λ/δ ?

Analyse the system with the site-approximation. Show that for the ratio
ρ = b/a, where a and b denote the mean densities of As and Bs, respectively

dρ
dτ

= (λ− δ)
ρ(1 − ρ)
λ+ δρ

(5.118)

with the fictitious time τ = − lna, in order to analyse the long-time behaviour
[587].

52. Reconsider the simple model of a population of n(t) particles with pro-
creation rate λ and death rate 1, studied in exercises 1 and 2. Consider the
generating function F (p, t) :=

∑∞
n=0 p

nPn(t) and derive the reaction Hamil-
tonian HR(p, q) from the Schrödinger equation ∂tF = HRF . Analyse the
zero-energy solutions and the flow, according to the variational equations.

53. An often-studied, albeit very simple, model of population dynamics is the
Volterra-Lotka model, which at the level of simple mean-field is described
by the normalised equation

ṗ = p− xp , ẋ = −x+ βxp (5.119)

where p represents a plant/prey population, x represents an animal/predator
and β is a rate constant. Show that this model predicts oscillations by finding
a conserved quantity.

More modern approaches are sceptical about the applicability of the law
of mass-action implicit in (5.119) to population dynamics. A recent proposal
is [571]

ṗ = p− p1−λxλ , ẋ = −x+ β1−λp1−λxλ (5.120)

with 0 ≤ λ ≤ 1. Analyse these mean-field equations and compare with
(5.119).



Appendices

A. Equilibrium Models

We recall briefly the definition and some basic properties of the most impor-
tant equilibrium models. For two-dimensional models, a lot of information
has been found either by exact solutions [50] or by methods based on con-
formal invariance [270]. We refer to the sources quoted for more detailed
information.

A.1 Potts Model

The q-state Potts model is defined by the Hamiltonian

H = −J
∑
(i,j)

δ(σi, σj) , δ(a, b) =
{

1 ; if a = b
0 ; if a �= b

(A1)

where the local variables σi can take the values σi = 0, 1, . . . q − 1, J is
the coupling constant, and the sum runs over the nearest neighbours of a
hypercubic (or any other) lattice. The global symmetry of the Potts model
is the permutation group Sq of q elements. For q = 2 one recovers the Ising
model with T replaced by 2T because of δ(σ, σ′) = (1 + σσ′)/2. The case
q = 1 corresponds to the universality class of isotropic percolation.

In two dimensions, the Potts-q model1 is self-dual and its critical point
is given by 1/Tc = ln(1 +

√
q). The phase-transition is continuous (second

order) if q ≤ 4 and discontinuous (first order) if q > 4. The values of the
critical exponents are listed in Table A1. In three dimensions, the transition

1 For brevity, we shall sometimes refer to the q-states Potts model as the Potts-q model.
Similar conventions will apply to other spin models with a discrete global symmetry.
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remains continuous if q = 2 but is of first order already for q = 3. A very
detailed review can be found in [635, 636].

We also include, besides the usual bulk critical exponents, surface expo-
nents such as η‖ which describes the decay of the two-point correlation func-
tion close to a plane free surface, and the local magnetisation exponent β1.
Here and throughout we assume that the surface does not order before the
bulk (i.e. we have the case without an external field located at the surface)
and are therefore dealing with the ordinary transition.

Although there is no obvious up-down symmetry, an order parameter is
readily defined by

〈M(t)〉 =
1
Ns

1
(q − 1)Ld

Ns∑
n=1

Ld∑
i=1

[
qδ(σi,[n](t), 1) − 1

]
, (A2)

where σi,[n](t) denotes the ith spin of sample number n at the Monte Carlo
sweep t; Ns is the number of Monte Carlo samples and N = Ld is the total
number of lattice sites. This is repeated NB times for the final estimates
of the order parameter as a function of t. See appendix G for simulational
methods.

A.2 Clock Model

The clock model is a variant of the Potts model and is defined by the
Hamiltonian

H = −J
∑
(i,j)

cos(ϑi − ϑj) , ϑi =
2π
p
ni (A3)

where ni = 0, 1, . . . , p− 1. Here the global symmetry is the cyclic group Zq,
which is a true subgroup of Sq. For p = 2 and p = 3 one recovers the Ising
and Potts-3 models, respectively, whereas in the limit p → ∞ one retrieves
the XY model. In two dimensions, for p ≤ 4, there is a single equilibrium
phase-transition with conventional power-law behaviour. On the other hand,
for p > 4, there exist two distinct transitions at temperatures T1 and T2 > T1.

q α ν β γ δ η η‖ β1

1 −2/3 4/3 5/36 43/18 91/5 5/24 2/3 8/9
2 0(log) 1 1/8 7/4 15 1/4 1 1/2
3 1/3 5/6 1/9 13/9 14 4/15 4/3 5/9
4 2/3 2/3 1/12 7/6 15 1/4 2 2/3

Table A1 Some equilibrium bulk and surface critical exponents (ordinary transition) of
the q-state Potts model in two dimensions.



A Equilibrium Models 263

The system is paramagnetic for T > T2 and ferromagnetic for T < T1 whereas
one has a Kosterlitz-Thouless phase with a non-local order parameter in
between. Both phase transitions at T1 and at T2 are of Kosterlitz-Thouless
type with exponentially diverging correlation lengths, susceptibilities etc.

A.3 Turban Model

In this model, also referred to in the literature as the multispin Ising
model, one studies the combined effect of the standard nearest-neighbour
interactions and a higher-order term in one direction [600, 599]. The Hamil-
tonian is

H(m) = −
∑
(i,j)

(
Jysi,jsi+1,j + Jx

m−1∏
�=0

si,j+�

)
, (A4)

where si,j = ±1 is an Ising spin on the site (i, j) of a square lattice. The
model is self-dual with a critical line given by sinh(2Jx/T ) sinh(2Jy/T ) =
1 [600, 599, 152, 517]. A symmetry analysis suggests that the model has the
same equilibrium properties as the q-state Potts model, where q = 2m−1. In
particular, for m = 3 one recovers the four-state Potts model [152]. On the
other hand, for m ≥ 4, one expects a first-order transition. This conjecture
has been well confirmed numerically, see [572, 524, 398] and references therein.

A.4 Baxter-Wu Model

This model is named after its exact solution and is defined in terms of Ising
spins si = ±1 on a triangular lattice with the Hamiltonian

H = −J
∑

(i,j,k)

sisjsk , (A5)

where the sum involves the three spins on each triangle of the lattice. Since
the triangular lattice can be decomposed into three sublattices, H is invariant
under reversal of all spin belonging to two of the sublattices and the ground
state is hence four-fold degenerate. The model is self-dual and undergoes a
second-order phase-transition at 1/Tc = 1

2 ln(1 +
√

2). The exact solution
gives the same equilibrium critical exponents (e.g. α = ν = 2/3 and η = 1/4)
as for the Potts-4 model, see [50].
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T/J η ηSW η‖ η‖,SW

0.1 0.017(1) 0.016 0.032(1) 0.032
0.2 0.036(3) 0.032 0.069(1) 0.064
0.3 0.052(5) 0.048 0.103(2) 0.095
0.4 0.074(6) 0.064 0.143(4) 0.127
0.5 0.100(8) 0.186(5)
0.6 0.122(13) 0.231(8)
0.7 0.154(14) 0.298(12)
0.8 0.188(22) 0.374(17)
0.893 0.250(28) 0.542(22)

Table A2 Equilibrium bulk exponent η and surface exponent η‖ in the low-temperature
phase of the 2D XY model as a function of temperature T . The corresponding results from
the spin-wave approximation (sw) are also listed. After [58].

A.5 Blume-Capel Model

This model is defined in terms of spin variables Si = −1, 0, 1 and the Hamil-
tonian

H = −J
∑
(i,j)

SiSj +D
∑

i

S2
i , (A6)

where in addition to the exchange coupling J a crystal field D is introduced.
The model shows a line of phase transitions which are of second order if
D/J is small (and which is in the Ising equilibrium universality class) but
which become of first order for sufficiently large values of D. The meeting
point of first- and second-order transitions is a tricritical point with a
completely different critical behaviour [411] which occurs at D/J � 1.9655
and Tc/J = 0.610 [138].

A.6 XY Model

The XY model (or planar rotator model) is defined by the Hamiltonian

H = −J
∑
(i,j)

cos(ϑi − ϑj) = −J
∑
(i,j)

Si · Sj , (A7)

where ϑi ∈ [0, 2π] or, equivalently, Si ∈ R2 is a two-dimensional unit vector.
In more than two dimensions, the model undergoes a conventional second-
order phase-transition between a paramagnetic and a ferromagnetic phase. In
two dimensions, however, the Mermin-Wagner theorem asserts that a sponta-
neous magnetisation is impossible. Rather, the whole low-temperature phase
in two dimensions remains critical in that the magnetic correlation func-
tions decay algebraically as C(r) ∼ |r|−η(T ) with a temperature-dependent
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exponent η(T ). Using conformal-invariance techniques, precise numerical es-
timates for the bulk exponent η(T ) and also the surface exponent η‖(T )
(ordinary transition) were found [58], see Table A2. The transition occurs at
TKT/J � 0.893 [386] and is of Kosterlitz-Thouless type, meaning that the
correlation length, susceptibility and other quantities diverge according to a
stretched exponential, viz. ξ(T ) ∼ exp(b/(T − TKT)1/2). At T = TKT, the
spin-spin correlator decays as C(r) = 〈S(r) ·S(0)〉 ∼ |r|−1/4 ln(|r|)1/8 [478],
which implies η(TKT) = 1

4 .

A.7 O(n) Model

These systems are defined in terms of unit spin vectors Si ∈ Rn and |Si| = 1
and the Hamiltonian

H = −J
∑
(i,j)

Si · Sj . (A8)

For n = 1 and n = 2 one recovers the Ising and the XY model, respectively,
while the case n = 3 defines the Heisenberg universality class. In d > 2 dimen-
sions, O(n) models have a conventional second-order ferromagnetic phase-
transition while for d = 2 dimensions, the Mermin-Wagner theorem excludes
a phase-transition if n > 2. Equilibrium critical exponents have been deter-
mined by several different methods, see [648, 515]. In Table A3 conservative
estimates for values of critical exponents, as well as for Tc(n), are listed for
some values of n, but the reader should be aware that a lot of effort continues
to be invested in further improving the exponent values. We refer to the very
extensive reviews of Pelissetto and Vicari [515] and of Barmartz et al. [41]
for details, in particular for universal amplitude combinations and for the
comparison with experimental results. Re-summed variational perturbation
theory with lists of exponents for 0 ≤ n ≤ 28 is presented in [393]. A recent
review for surface exponents is [184].

In the limit n → ∞, the O(n)-model reduces to the exactly solvable spher-
ical model. Rather than through infinite-dimensional unit spin vectors, one
may also define the spherical model in terms of real spin variables Si ∈ R at-
tached to each site i of a d-dimensional lattice Λ with N sites and subject to
the spherical constraint

∑
i∈Λ S

2
i = N . The Hamiltonian is usually chosen

to describe the habitual nearest-neighbour interactions H = −J
∑

(i,j) SiSj

[61] but it is one of the attractive features of the model that it may be solved
for considerably more general interactions and that one may even include
external fields. A classical review of many of the equilibrium properties is
[366], for more recent discussions see [50, 80]. Calculations are considerably
simplified if the spherical constraint is only imposed on average [419, 420].
The equilibrium bulk critical behaviour of the spherical model is the same as
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n Tc/J α β γ ν η η‖ β1

1 4.5115279(6) 0.110(1) 0.3265(3) 1.2375(5) 0.6301(4) 0.0364(5) 1.528 0.796
2 2.20183(1) −0.0146(8) 0.3485(3) 1.3177(3) 0.6715(3) 0.0380(4) 1.422 0.810
3 1.44299(1) −0.134(2) 0.3689(3) 1.3960(9) 0.7112(5) 0.0375(5) 1.338 0.824
4 1.068535(9) −0.247(6) 0.388(3) 1.471(4) 0.749(2) 0.0365(10)
5 0.8559(3) −0.298 0.396 1.506 0.766 0.034
10 0.41187(1) −0.61(2) 0.44(1) 1.721(14) 0.871(7) 0.025(20)

∞ −1 1
2

2 1 0 1 1

sm 3.956776 . . . −1 1
2

2 1 0 2 3
2

Table A3 Critical temperatures and equilibrium critical exponents of the 3D O(n) model.
The bulk exponents for 1 ≤ n ≤ 5 are from [515], the estimates of Tc(n) for n = 1, 2, 3, 10
and the bulk exponents for n = 10 are from [623], Tc(4) is from [32] and Tc(5) is from [313].
The estimates of surface exponents η‖, β1 at the ordinary transition are from [68, 184]. sm
denotes the 3D spherical model.

in the n → ∞ limit of the O(n) model [577] but we warn the reader that this
no longer holds true for the surface critical behaviour [68, 183].

A.8 Double Exchange Model

This model plays a role in the study of perovskite manganites and is defined
in terms of classical spin vectors Si ∈ R

3 by the Hamiltonian

H = −J
∑
(i,j)

√
1 + Si · Sj (A9)

with nearest-neighbour interactions on a simple hypercubic lattice. It under-
goes in 3D a second-order phase transition at Tc/J = 0.74515. Some 3D
equilibrium exponents are ν = 0.68(2) and β = 0.356(6), see [215] and ref-
erences therein. It is believed that the equilibrium phase transition is in the
universality class of the 3D Heisenberg model.

A.9 Frustrated Spin Models

A different kind of very rich behaviour is found in spin systems with a non-
random competition such that there is a macroscopic number of equilibrium
states [421, 637]. The best-known example is probably the triangular Ising
antiferromagnet. On the square lattice, one may consider the fully frus-
trated Ising/Potts model which is defined by the Hamiltonian
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(a) (b)

Fig. A1 Patterns of coupling constants for (a) checkerboard and (b) domino-tiled modu-
lations of the square lattice. The antiferromagnetic bonds are indicated by the thick grey
lines.

H = −J
∑
i,j

[
δ(σi,j , σi+1,j) + (−1)f(i,j)δ(σi,j , σi,j+1)

]
(A10)

where the frustration variable f(i, j) is chosen such that on each plaquette
of the square lattice one bond is antiferromagnetic while the other three are
ferromagnetic. The choices f(i, j) = i+ j and f(i, j) = i, respectively, led to
the checkerboard and domino-tile pattern of frustration, see Fig.A1.

The triangular Ising antiferromagnet [306, 616, 617] and the fully frus-
trated Ising model (both with checkerboard and domino-tile modulation)
[611] are disordered for any T > 0 but the zero-temperature state, which has
a finite entropy, is critical. From an exact mapping onto the Baxter model,
the equilibrium exponent η = 1/2 [582, 222] and the surface exponent η‖ = 1
if Js/J = 1

2 and η‖ = 2 if Js/J > 1
2 [256] can be found, where Js is the cou-

pling constant at the surface. The finite-size scaling of the correlation length
and of the free energy are in agreement with conformal invariance, and a
central charge c = 1 is found [256].

The fully frustrated three-states Potts model with checkerboard modula-
tion is disordered for any T > 0 but critical at T = 0. The exponent ν = 1.139
was estimated from transfer matrix calculations [226]. On the other hand, for
a domino-tile modulation, one has a second-order phase-transition between
a paramagnetic and a ferromagnetic state at Tc/J = 0.365(1), while the
exponent ν may be compatible with the pure Potts-3 result ν = 5

6 [225].
Equilibrium properties of the fully frustrated XY model are reviewed in

detail in [268].

A.10 Hilhorst-van Leeuven Model

This model is a variant of the 2D Ising model on a semi-infinite square lattice.
The Hamiltonian is [284]
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H = −
∑
r‖∈Z

∑
r⊥∈N

[
J1σr‖,r⊥σr‖+1,r⊥ + J2(r⊥)σr‖,r⊥σr‖,r⊥+1

]
(A11)

and the coupling perpendicular to the surface varies as follows [71]

J2(r⊥) = J2(∞) +
Tc sinh(2J2(∞)/Tc)

4
A

rω
⊥
. (A12)

While the bulk critical behaviour is the same as in the usual 2D Ising model,
the surface critical behaviour depends on the form of J2(r⊥), see [316] for
a review. For ω > 1 the modified couplings are irrelevant, while for ω < 1
they are relevant. The case ω = 1 is marginal. Then the surface exponent of
the order parameter depends continuously on the amplitude A. If one takes
J1 = J2(∞) and A < 1, this reads simply

x1 =
β1

ν
=

1
2
(
1 −A

)
(A13)

and one recovers the usual semi-infinite 2D Ising model for A = 0.

B. Scaling Laws for Absorbing Phase Transitions

In general, absorbing phase transitions are characterised by four independent
exponents, for example β, β′, ν⊥, and ν‖ (see [287, 496, 433] and Table 4.1
for the definitions). All other exponents can be expressed in terms of these
exponents. The spreading exponents δ, Θ, and the dynamical exponent z are
given by

δ =
β′

ν‖
, Θ =

d

z
− β

ν‖
− β′

ν‖
, z =

ν‖
ν⊥

. (B1)

The steady-state critical exponents γ, γ′ and σ are related to the standard
exponents (β, β′, ν⊥, ν‖) via

γ = σ − β , σ = d ν⊥ + ν‖ − β′ , γ′ = d ν⊥ − 2 β . (B2)

Furthermore, the fractal dimension of the spreading clusters is given by

df = z (Θ + δ) = d− z δ = d− β

ν⊥
. (B3)

(where possible contributions from intermittency, as they may arise in DP
[269, 277], are neglected). Simple dimensional analysis offers a convenient
way to derive these scaling laws. Therefore, we remind ourselves that the
various quantities of interest enter the scaling forms in combinations with
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their scaling powers, e.g.,

λ τ, λβ�, λσh, λ−γχa, λ−γ′
∆�, λ−ν⊥x, λ−ν⊥L,

λ−ν⊥R, λ−ν‖t, λdν⊥−ν‖δ�0, λ−Θν‖Na, λδν‖Psur, . . . . (B4)

In the language of real-space renormalisation, the rescaling is usually related
to the transformation x �→ bx, corresponding to λ = b1/ν⊥ . Enforcing scale-
invariance, the definition of e.g. the susceptibility leads to

χ =
∂ �s

∂ h
=⇒ γ = σ − β . (B5)

Similarly, the hyperscaling law of the fluctuation exponent is obtained from

∆� = Ld (〈�2
s 〉 − 〈�s〉2) =⇒ γ′ = dν⊥ − 2β . (B6)

Taking into account that an initial homogeneous particle density �0 may be
represented by the external (conjugated) field we find

h = �0 δ(t) =⇒ σ = dν⊥ + ν‖ − ν‖δ . (B7)

Considering activity spreading, the average number of active sites (usually
averaged over all runs) scales as

Na = const �Psur R
d =⇒ ν‖Θ = dν⊥ − β − ν‖δ . (B8)

Finally, the connected correlation function of active sites

Γ (ri, rj; τ, h) =
〈 (

�(ri) − 〈�(ri)〉
) (

�(rj) − 〈�(rj)〉
) 〉

(B9)

is expected to decay for translational invariant systems (r = ri − rj) as

Γ (r,0; 0, 0) ∼ r−d+2−η⊥ . (B10)

The correlation function is related to the order parameter fluctuations

∆�(τ, h) =
∑

r

Γ (r,0; τ, h) , (B11)

yielding the scaling power of the correlation function 2β. Thus, the correlation
function exponent η⊥ obeys the scaling law

(2 − η⊥) ν⊥ = d ν⊥ − 2 β = γ′ (B12)

which corresponds to the Fisher scaling law of equilibrium phase transitions.
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C. Diagonalisation of Time-Evolution Operators

In this appendix, we demonstrate for the technically interested reader how
the Liouville operator of a reaction-diffusion model with random-sequential
updates such as the contact process can be constructed using a symbolic com-
puter language such as Mathematica2 and then briefly comment on sparse-
matrix methods for obtaining low-lying eigenvalues of Liouville operators.

Starting point is the 2-site interaction matrix �CP which in case of the
contact process is given by (3.39):

lcp = {{0,-1,-1,0}, {0,1+λ,0,-1}, {0,0,1+λ,-1}, {0,-λ,-λ,2}};

In order to construct a chain of L sites, we need to carry out tensor products.
The following function performs the tensor product of two arbitrary (not
necessarily quadratic) matrices in the standard basis:

CircleTimes[a ,b ]:=

Transpose[Flatten[Transpose[Flatten[Transpose[

Outer[Times,a,b],{1,3,2,4}],1],{3,1,2}],1]];

The function CircleTimes can be accessed conveniently using the infix no-
tation ⊗ by typing ESC c * ESC. With the n-site identity matrix

Id[n ]:=IdentityMatrix[2∧n];

the interaction matrix acting at sites i and i+ 1 is just given by

Id[i-1]⊗ lcp ⊗ Id[L-i-1]

However, periodic boundary conditions require us to handle the interaction
between site L and site 1 separately. To this end one first defines a set of
basis matrices eij through

e[i ,j ]:=Table[If[i1==i && j1==j,1,0],{i1,1,2},{j1,1,2}]

as well as the function

PlaceAtSite[matrix ,j ,L ]:=Module[{k,l}, If[j<L,

Id[j-1]⊗matrix⊗Id[L-j-1],

Sum[matrix[[Range[2*k-1,2*k],Range[2*l-1,2*l]]]

⊗Id[L-2]⊗e[k,l], {k,1,2},{l,1,2}]]];

To construct a chain with periodic boundary conditions we have to perform
the sum in (3.38), i.e.:

2 Version 5.0 or higher. Mathematica is a registered trademark of Wolfram Research Inc.,
see http://www.wolfram.com
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PeriodicChain[matrix ,L ]:=

Sum[PlaceAtSite[matrix,j,L],{j,1,L}];

Using these functions the Liouville operator of a (1+1)-dimensional contact
process with 3 sites and periodic boundary conditions is obtained by typing

PeriodicChain[lcp,3]

rendering the output⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 −2 0 −2 0 0 0
0 2λ + 2 0 −2 0 −2 0 0
0 0 2λ + 2 −2 0 0 −2 0
0 −λ −λ 2λ + 4 0 0 0 −2
0 0 0 0 2λ + 2 −2 −2 0
0 −λ 0 0 −λ 2λ + 4 0 −2
0 0 −λ 0 −λ 0 2λ + 4 −2
0 0 0 −2λ 0 −2λ −2λ 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Now we can compute the first four eigenvalues of the Liouville operator for
a contact process with 10 sites at λ = λc by typing

λ=3.297847;
ev=Eigenvalues[PeriodicChain[lcp,10]];

Take[Sort[ev],4]

After approximately 20 seconds Mathematica has diagonalised this 1024 ×
1024 matrix, printing

{0., 0.0585524, 1.39426, 1.49716}

The first value vanishes since the absorbing state is stationary. The second
value corresponds to the non-trivial eigenvalue µ1 whose scaling properties
are analysed in Sect. 4.3.1.

For larger system sizes, sparse-matrix techniques will become more effi-
cient. A workhorse for a long time has been the Lanczos algorithm [136]. In
the context of absorbing phase transitions, the Liouvillian/quantum Hamil-
tonian matrices to be diagonalised are in general non-symmetric and also,
because detailed balance is not valid in general, cannot be brought to a sym-
metric form by a known similarity transformation. For real non-symmetric
matrices the Arnoldi algorithm can be an useful alternative, which brings
the n×n Liouvillian matrix L to an upper Hessenberg form. We indicate the
main loop:

w = Lvj

hij = vi · w ; i = 1, . . . , j
w′ = w −

∑j
i=1 hijvi

hj+1,j = (w′ · w′)1/2

vj+1 = w′/hj+1,j

(C1)
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where vi, w, w
′ are n-component vectors. A normalised starting vector v1,

which should not coincide with one of the eigenvectors of H , must be given.
The numbers hi,j form an upper Hessenberg matrix. Rapidly converging esti-
mates for the lowest eigenvalues can be found by diagonalising the Hessenberg
submatrix obtained after a moderate number m of iterations.

In practise, the vi should always be re-orthogonalised, since the Hessen-
berg matrix is more sensitive to rounding errors than the tridiagonal ma-
trix encountered with the Lanczos algorithm. Extended numerical precision
(quadruple) may be required.

D. Langevin Equations and Path Integrals

Instead of describing a stochastic process by a Langevin equation it is often
more convenient to use a path integral representation. In particular, corre-
lation functions as well as response functions can be expressed conveniently
in terms of path integrals [325, 49, 190]. Furthermore, the path integrals can
be treated by well established methods of normalised perturbation theory
such as the ε-expansion. Here, we sketch the equivalence of both approaches,
considering stochastic processes as described by the Langevin equation

λ−1∂t�(t, r) = F [�(t, r)] + η(t, r) , (D1)

with the noise correlator

〈η(t, r)η(t′, r′)〉 = λ−1 κN [�(t, r)] δd(r − r′) δ(t− t′) . (D2)

Here, F [�(t, r)] denotes the deterministic part of the Langevin equation. For
example, the Langevin equation of DP is obtained for

F [�(t, r)] =
(
τ − g �(t, r) + ∇2

)
�(t, r) + h , (D3)

N [�(t, r)] = �(t, r) . (D4)

Similarly, for a relaxing ferromagnet without any conservation laws but cou-
pled to a bath of temperature T one has

F [�(t, r)] = −δH[�]
δ�

+ h , κN [�(t, r)] = 2T (D5)

where H is the equilibrium Ginzburg-Landau functional. Note that both
F [�(t, r)] and N [�(t, r)] may include in general differential operators. For
example, N [�(t, r)] involves a Laplacian operator in the case of conserved
fields.
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The partition sum of the stochastic process is defined as the functional
integral over all realisations of the field �(t, r) and the noise η(t, r) which
satisfy the above Langevin equation, i.e.,

Z =
∫

Dη P (η)
∫

D� δ
(
λ−1∂t�(t, r) − F [�(t, r)] − η(t, r)

)
, (D6)

where the noise field is distributed according to a Gaussian, i.e.

P (η) ∼ exp
(
−
∫

dt dr
η2

2κN [�]

)
. (D7)

In order to eliminate the integration over the noise η, auxiliary fields �̃(t, r)
are introduced [463, 325], making use of the identity

δ(x) =
1
2π

∫
R

d�̃ exp (i�̃x) . (D8)

Applying this to the functional δ-function in (D6) one finds after an appro-
priate Wick rotation within the complex plane

Z ∼
∫

D�D�̃ e−
∫
dt dr �̃ (λ−1∂t�−F [�])

∫
Dη P (η) e−

∫
dt ddr �̃ η . (D9)

Performing the integration over η by completing the square yields

Z ∼
∫

D�D�̃ e−J [�,�̃] (D10)

with the so-called Janssen-DeDominicis functional

J [�, �̃] =
∫

dt dr �̃
(
λ−1∂t�− F [�] − κ

2
N [�]�̃

)
. (D11)

This allows one to derive correlation functions from the path integral, e.g.

〈�(t, r)�(t′, r′)〉 ∼
∫

D�D�̃ �(t, r)�(t′r′) e−J [�,�̃] . (D12)

The auxiliary field �̃ has the following physical meaning. Applying the ex-
ternal conjugated field h the linear response of the order parameter is given
by

δ〈�〉
δh

∣∣∣∣
h→0

= 〈��̃〉 . (D13)

Therefore, the auxiliary field is often referred to as the response field. Note
that the two-point correlation function (D12) and the response function 〈��̃〉
are different, reflecting the violation of the fluctuation-dissipation theorem in
non-equilibrium systems.
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Non-stationary initial conditions can be included within the present for-
malism as follows [338, 328]. The paradigmatic example is a distribution of
initial states with mean order parameter 〈�(0, r)〉 = m0(r) and short-ranged
Gaussian fluctuations〈[

�(0, r) −m0(r)
][
�(0, r′) −m0(r′)

]〉
= τ−1

0 δd(r − r′) . (D14)

The corresponding contribution to the action will be a Gaussian of the form

J0[�] =
∫

dr
τ0
2
[
�(0, r) −m0(r)

]2
. (D15)

Since the canonical dimension of the parameter τ0 is 2, the only fixed-point
value which leads to a normalisable distribution is τ0 = ∞. Since corrections
coming from a finite value of τ0 will be irrelevant, one can set from the outset
τ0 = ∞, unless in situations where terms vanish in this limit. Using the short-
time relation �(0, r) = τ−1

0 �̃(0, r) [328], the Janssen-de Dominicis functional
now turns into

Jeff [�, �̃] = J [�, �̃] +
∫

dr

(
1

2τ0
�̃2(0, r) −m0�̃(0, r)

)
. (D16)

E. Mean-Field Approximations

Mean-field theories are useful in order to obtain a first survey of the possible
critical behaviour of a statistical system. Here we describe a technique for a
particle-reaction model with the following random-sequential updates:

A∅, ∅A → AA with rate σ
AA → ∅∅ with rate λ (E1)
A∅ ↔ ∅A with rate D ,

where σ, λ and D are the control parameters. This model exhibits a non-
equilibrium phase transition which belongs to the DP universality class.

All mean-field treatments must to some extent neglect correlations. A
systematic way of constructing a sequence of improving mean-field theo-
ries was devised by ben-Avraham and Köhler [55] on the basis of earlier
work [258, 169]. In their so-called (n,m)-approximation one considers clus-
ters of n sites, assuming that clusters with more than n sites factorise in terms
of n-site probabilities with an overlap of m sites between adjacent clusters.
More specifically, if A,B,C are such overlapping clusters of a one-dimensional
system, and if P (A|B) = P (A)/P (B) is the conditional probability to find
A for given B, one uses the approximation
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reaction ∆N• rate

•◦ → •• +1 1
2
σ 	(1 − 	)

◦• → •• +1 1
2
σ 	(1 − 	)

•• → ◦◦ – 2 λ 	2

Table E1 Rates in the site approximation for the process (E1).

P (ABC) ≈ P (AB)P (BC|B) , (E2)

meaning that correlations up to n sites are taken into account. It is assumed
throughout that the cluster probabilities are spatially translation-invariant.
For example, consider a five-site cluster in the state ABCDE. In the (3, 1)-
and (3, 2)-approximations, respectively, the probability P (ABCDE) of this
cluster is expressed in terms of mutually overlapping 3-site probabilities as

P (3,1)(ABCDE) ≈ P (ABC)P (CDE|C) =
P (ABC)P (CDE)

P (C)
(E3)

P (3,2)(ABCDE) ≈ P (ABC)P (BCDE|BC)

≈ P (ABC)
P (BCD)P (CDE|CD)

P (BC)

=
P (ABC)P (BCD)P (CDE)

P (BC)P (CD)
. (E4)

It has been argued that the (n, n − 1)-approximations are qualitatively the
most reliable [55] and this conclusion has been generally accepted. The sim-
plest of these schemes is the (1, 0)-approximation, also called the site ap-
proximation or simple mean-field approximation. Similarly, the (2, 1)-
approximation is called the pair approximation while the (3, 2)- and (4, 3)-
approximations are referred to as the triplet approximation and quartet
approximation, respectively.

In what follows we give examples of these approximation schemes. For
simplicity we consider the one-dimensional case, denoting an occupied site
by • and an empty site by ◦. For example, a three-site cluster AA∅ will then
be denoted as • • ◦ and has the probability P (AA∅) = P••◦.

E.1 Simple Mean-Field/Site Approximation

The simplest mean-field approach considers only the single-site probabilities.
Assuming that the density �(t) = P•(t) is translational invariant the corre-
sponding rate equation is easily derived. In Table E1 we summarise those
reactions from (E1) which change the mean particle-density, together with
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the change ∆N• in the number of occupied sites N• by each of these reactions.
Adding all these contributions one easily finds

d�(t)
dt

= σ �(t)
(
1 − �(t)

)
− 2λ�(t)2 = σ�(t) − (σ + 2λ)�(t)2 (E5)

which has of course the same structure as the simple mean-field equa-
tion (3.6).

E.2 Pair-Approximation

Treating our model in (E1) in the pair-approximation, we assume again that
the probabilities P (AB) are translation-invariant and furthermore that the
system is left/right-invariant, viz. P•◦(t) = P◦•(t). Then, because of P• =
P•◦ + P•• and P•• + 2P•◦ + P◦◦ = 1, there are two independent variables
which may be chosen as the particle-density �(t) = P•(t) and the pair-density
u(t) = P••(t).

The equations of motion of the pair-approximation are now found in a
straightforward way. Introducing the shortcuts v = P•◦ = � − u and w =
P◦◦ = 1 − 2� + u, the reactions changing N• and N•• are listed with their
rates in Table E2, grouped into three separate groups corresponding to the
three reactions. In the last group, we only need to take into account those
reactions A → 2A which modify the particle-configuration on a given site.
Furthermore, there are three kinds of symmetry factors. For diffusion, an
extra factor 2 comes from the inverse reaction. For pair-annihilation, parity-
symmetric configurations need only be calculated explicitly once. Finally,
for particle-creation, the two reactions of (E1) contribute equally. Collecting
these contributions one obtains

�̇(t) = −2λu(t) + σ
(
�(t) − u(t)

)
(E6)

u̇(t) = −2D
(�(t) − u(t))(u(t) − �(t)2)

�(t)(1 − �(t))
− 2λu(t)

2u(t) + �(t)
�(t)

+σ
(
�(t) − u(t)

)
. (E7)

The pair-approximation is the lowest-order cluster approximation which al-
lows the effects of diffusion to be treated explicitly. In particular, in theD → 1
limit, the site-approximation (E5) is recovered for �(t), while the pair density
becomes u(t) = �(t)2 as if the two sites were uncorrelated.
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reaction ∆N• ∆N•• rate symmetry factor

• • ◦◦ → • ◦ •• 0 – 1 D uvw/	(1 − 	) ×2

◦ • ◦• → ◦ ◦ •• 0 +1 D v3/	(1 − 	) ×2

• • •• → • ◦ ◦• – 2 – 3 λ u3/	2

• • •◦ → • ◦ ◦◦ – 2 – 2 λ u2v/	2 ×2

◦ • •◦ → ◦ ◦ ◦◦ – 2 – 1 λ uv2/	2

• ◦ • → • • • +1 +2 1
2
σ v2/(1 − 	) ×2

• ◦ ◦ → • • ◦ +1 +1 1
2
σvw/(1 − 	) ×2

Table E2 Rates in the pair-approximation for the process (E1).

E.3 The ‘Hop-Away’ Mean-Field Approximation

The long-time behaviour of the simple model (E1) has been analysed in great
detail by renormalisation-group methods. From the standard perturbative
renormalisation-group [124, 114] it was concluded that simple mean-field was
qualitatively correct in d > 2 dimensions, but for d ≤ 2 a minimal branching
rate σc > 0 is needed for an active state to exist. On the other hand, recent
results from the non-perturbative renormalisation group [107, 104] show that
for all dimensions d > 2 there is a finite value λc such that

(i) for λ < λc there is an active state for all σ > 0, and
(ii) for λ > λc an active state only exists if σ > σc(λ).

This result has been qualitatively confirmed in numerical simulations [495].
In order to get a better qualitative understanding of these results, Canet and
Hilhorst [108] have recently proposed a new type of mean-field theory which
we shall now briefly present.

Rather than writing a continuum kinetic equation, Canet and Hilhorst
[108] modify the system, allowing multiple occupancy per site. The stochastic
rules are as follows.

1. Each particle is subject to the on-site creation reaction A → 2A at rate σ.
2. Each pair of particles on the same site is subject to the on-site annihilation

reaction 2A → 0 at rate λ.
3. Each particle may hop away from its site at a rate D to another (not

necessarily neighbouring) site which is empty (of some abstract lattice
that need not be specified).

While the first two rules are merely the translation of (E1) into a particle
language, the third rule introduces an important modification which makes
the problem exactly solvable. As the third rule ignores spatial correlations,
the so defined model is called the hop-away mean-field model. One may
hope that for D → 0 this model might provide a good qualitative agreement
with the behaviour of the original system.
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The solution of the hop-away mean-field model proceeds in two steps: First,
one considers the evolution on a single site. If P (n, t) is the probability that
a specific site contains exactly n particles at time t, it satisfies the master
equation

d
dt
P (n, t) = σ(n− 1)P (n− 1, t) − σnP (n, t)

+ 1
2λ(n + 1)(n+ 2)P (n+ 2, t) − 1

2λn(n− 1)P (n, t)
+D(n+ 1)P (n + 1, t) −DnP (n, t) (E8)

for n = 0, 1, 2, . . . and with the convention that P (−1, t) = 0. Defining the
vector P (t) = (P (0, t), P (1, t), . . .) this may be rewritten in a matrix form
dP /dt = MP , where

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 D λ 0 0 · · ·
0 −D − σ 2D 3λ 0 · · ·
0 σ −2D − 2σ − λ 3D 6λ · · ·
0 0 2σ −3D − 3σ − 3λ 4D · · ·
0 0 0 3σ −4D − 4σ − 6λ · · ·
..
.

..

.
..
.

..

.
..
.

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (E9)

Writing Gn,n0(t − t0) for the solution with the initial condition P (n, t0) =
δn,n0 the analysis of Canet and Hilhorst is based on the assumption that, for
σ > 0, Gn,n′(t) ∼ exp(µ1t) for t → ∞, where µ1 = µ1(σ, λ,D) is the smallest
non-vanishing eigenvalue of M.

Second, the coupling between sites is treated as follows. There are Sn(t)
sites with occupation number n and the total particle number is N(t) =∑∞

n=1 nSn(t). Some sites are already occupied initially while others be-
come occupied only during the evolution of the system. Hence 〈Sn(t)〉 =
〈Sn(t)〉(ini) + 〈Sn(t)〉(evo) where the average is taken over the initial distri-
bution and over the temporal evolution. For the initially occupied sites one
has

〈Sn(t)〉(ini) =
∞∑

n′=1

Gn,n′(t)Sn′(0) . (E10)

Since new occupied sites are created at time t′ with a rate D〈N(t′)〉, one also
has

〈Sn(t)〉(evo) = D

∫ ∞

0

dt′ Gn,1(t− t′)〈N(t′)〉 . (E11)

Adding these two contributions and assuming the initial condition Sn(0) =
N(0)δn,1 one finally obtains, with H(t) =

∑∞
n=1 nGn,1(t)

〈N(t)〉 = N(0)H(t) +D

∫ ∞

0

dt′ H(t− t′)〈N(t′)〉 (E12)

which can be solved by a Laplace-transformation.
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With the assumptions made above on Gn,n′(t), this leads to 〈N(t)〉 �
N(0) exp(−(µ1−D)t) and this will only vanish for large times if µ1−D > 0. In
the special case D = 0, the single-site master equation describes the evolution
of each site independently and µ1 = µ1(σ, λ, 0) > 0 for σ > 0. In addition, one
expects that limσ→∞ µ1(σ, λ, 0) = ∞ since then the metastable state present
in the system decays infinitely slowly. If furthermore µ1 is continuous in D,
the condition µ1 − D > 0 will indeed be satisfied for D small enough, i.e.
at least up to a threshold D ≤ Dc(σ, λ). Conversely, this means that for all
ratios σ/λ there exists a Dc(σ/λ) such that for

λ

D
>

1
Dc(σ/λ)

(E13)

the stationary state is absorbing [108], in qualitative agreement with the
results of the non-perturbative renormalisation group. See [108] for further
details, in particular quantitative comparisons.

F. Finite-Size Scaling Techniques

F.1 Sequences of Finite-Size Estimates

We illustrate the use of finite-size scaling techniques for the determination
of critical points and critical exponents [37, 201, 270]. Since in transfer
matrix/Liouvillian/quantum Hamiltonian calculations the size of the lattices
within reach is often quite small, finite-size methods are particularly useful
in this context. In Fig. F1a, the finite-size behaviour of the lowest energy gap
ΓL(τ) = E1(τ) − E0(τ) of the quantum Hamiltonian [264]

H = −
L∑

�=1

σz
� − (1 + τ)

L∑
�=1

σx
� σ

x
�+1 (F1)

defined on a periodic chain with L sites is shown,3 where the σx,z
� are Pauli

matrices attached to the site �. For L large enough, the data converge to
the limit Γ∞(τ) = 2|τ | for τ < 0, but a direct estimate of the critical value
τc is difficult. Because of the expected finite-size scaling behaviour ΓL ∼
L−1, estimates for pseudo-critical points τc(L) may be found by looking for

3 In view of the recent fashion in nano-physics, this quantum system may be studied in its
own right, but we remind the reader that its phase transition is in the same universality
class as the classical 2D Ising model, see e.g. [270]. The ground state energy E0 of H
corresponds to the classical free energy and the lowest energy gap Γ = E1 − E0 ∼ ξ−1

is related to the inverse magnetic correlation length. Finally, τ corresponds to the control
parameter of the 2D Ising model.
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Fig. F1 (a) Finite-size behaviour of the smallest energy gap of the Ising quantum chain
(F1) for L = [4, 6, 8, 16, 32] from top to bottom. The grey line gives the limit Γ∞(τ) = 2|τ |.
(b) Estimating the pseudo-critical point τc(L) from intersections of LΓL(τ).

intersections of LΓL(τ) for different values of L, as illustrated in Fig. F1b,
and from which it can be seen that very likely τc(L) ≈ 0 (τc = 0 can be
verified by an exact analytic calculation [264]).

In principle, the same kind of technique may also be used for systems
with non-equilibrium steady-states, since then the lowest gap should display
the finite-size scaling ΓL ∼ L−1/z in the critical region, see Fig. 4.14 for an
illustration in the contact process. However, there are cases when the critical
line in the phase diagram of a non-equilibrium model separates a non-critical
ordered phase from a critical disordered phase. Known examples are the
branching-annihilating random walk with an even number of offspring or the
pair-contact process with diffusion. In these cases, the analysis of finite-size
data needs some modifications.

Consider, following [126], the finite-size scaling of the lowest gap Γ of the
time evolution operator. As usual, we begin with the finite-size scaling form

ΓL(τ) = L−zf
(
(τ − τc)L1/ν⊥

)
, (F2)

where τ is the control variable which measures the distance to the critical
point τc and f is assumed to be continuously differentiable. One expects the
asymptotic behaviour

ΓL(τ) ∼
{
eσL ; if τ < τc
L−2 ; if τ > τc

(F3)

where σ = σ(τ) is a constant. In the usual case, one would have instead
ΓL(τ) ∼ Γ∞ for τ > τc. From (F3), one finds for the scaling function
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f(z) ∼
{

exp(−A|z|ν⊥) ; if z → −∞
z(z−2)ν⊥ ; if z → +∞ (F4)

where A is a positive constant. Therefore, since f(z) > 0, it follows that for
z < 2 the scaling function f must have a maximum at some finite value zmax.
Next, consider the logarithmic derivative

YL(τ) :=
ln[Γ (τ ;L + 1)/Γ (τ ;L− 1)]

ln[(L+ 1)/(L− 1)]
= −z +

ln[f(z+)/f(z−)]
ln[(L+ 1)/(L− 1)]

(F5)

where z± = (τ − τc)(L± 1)1/ν⊥ .
The standard method [37, 201] of finding estimates for both the critical

point τc and the exponent z generalises the procedure for equilibrium systems,
as illustrated in Fig. F1, by now considering two lattices of sizes L and L′

and looking for the intersection of the two curves

YL(τ∗) = YL′(τ∗) = −zL,L′ , (F6)

where the intersection point τ∗ = τL,L′ defines a sequence of estimates con-
verging towards τc as L,L′ → ∞ and similarly zL,L′ converges towards z. A
correlation length exponent can be found by forming first

ZL(τ) :=
ln
[
∂ΓL+1/∂τ

]
− ln

[
∂ΓL/∂τ

]
ln(L+ 1) − lnL

(F7)

and since
1
2
(
ZL+1 + ZL

)
= ζ =

1
ν⊥

− z (F8)

estimates for ν⊥ can be obtained when the derivatives are taken at τ = τc,L

which solves (F6)). In practice, finite-size corrections are often minimised by
choosing L and L′ as close as possible, i.e. L′ = L± 1.

We illustrate how this may work, using as an example the quantum Hamil-
tonian/Liouvillian [542, 272]

L = −1
2

L∑
j=1

[
τσz

j + σx
j σ

x
j+1 + σy

j σ
y
j+1 − σz

jσ
z
j+1

+i
(
(1 − σz

j )σy
j+1 + σy

j (1 − σz
j+1)

)]
(F9)

which can be derived from a transfer matrix in (1 + 1)D Reggeon field-
theory and hence is in the universality class of directed percolation [123].
Although L is complex and non-hermitean, because of the global quasi-
symmetry ULU+ = L+ with U =

∏L
�=1 σ

z
� , the eigenvalues of L are either

real or occur in complex conjugate pairs. For τ ≥ 2, the ground-state energy
is E0 = − 1

2 (τ − 1)L.
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sizes τc z ζ

2,3,4 2.61575 1.47580 -0.76573
3,4,5 2.62261 1.45710 -0.72164
4,5,6 2.62043 1.46444 -0.70633
5,6,7 2.61773 1.47542 -0.69918
6,7,8 2.61553 1.48589 -0.69518
7,8,9 2.61384 1.49508 -0.69265
8,9,10 2.61255 1.50298 -0.69089
9,10,11 2.61155 1.50974 -0.68958
10,11,12 2.61078 1.51556 -0.68854
11,12,13 2.61016 1.52059 -0.68769
12,13,14 2.60966 1.52497 -0.68696
13,14,15 2.60925 1.52881 -0.68633
14,15,16 2.60892 1.53219 -0.68577

∞ 2.60640(7) 1.5807(10) -0.6728(25)

Table F1 Finite-size estimates for the critical point τc and the exponents z and ζ, obtained
from the quantum Hamiltonian (F9) of (1+1)D Reggeon field-theory. The line labelled ∞
gives the infinite-lattice estimated obtained from the BST algorithm.

In Table F1, we list finite-size estimates [272] for the critical point τc, and
the exponents z and ζ, which were obtained by calculating the intersections of
YL,L′(τ) and ZL for triplets of three lattices. These estimates appear to form
convergent sequences, whose limit may be estimated by using extrapolation
methods such as the BST algorithm, to be described below. We already notice
here that the estimate for the critical point τc is in excellent agreement with
an estimate τc = 2.60628(4) [542] which comes from a series-expansion study
of (F9). Also, the resulting exponent estimates z = 1.5807(10) and ν⊥ =
1.101(3) are in good agreement with the more precise values known from
other methods, as listed in Table 4.3 on page 159.

A similar application of the method to the (1+1)D contact process gives,
after extrapolation of the finite-size data with the BST algorithm, the esti-
mate λc = 3.29792(4) for the critical point and the exponents z = 1.58077(2),
ν⊥ = 1.09681(2) and δ = 0.162(2) [150].

However, it may happen that the logarithmic derivatives YL(τ) do not
intersect. A priori, there is no guarantee that they should do so, since the
intersection of the curves YL(τ) for different values of L depends on the
structure of the corrections to the leading finite-size scaling behaviour. A
known example for non-intersection is furnished by the 1D PCPD with free
boundary-conditions, where the curves YL(p) do not intersect for different
values of L. We illustrate this in Fig. F2.

It is easy to see from (F5) that in the scaling limit τ → τc and L → ∞
such that z = (τ − τc)L1/ν⊥ is kept fixed, one has

lim
dYL

dτ
�
{
L1/ν⊥A(2 − ν⊥)(−z)ν⊥−1 ; if z → −∞
L1/ν⊥(z − 2)z−1 ; if z → +∞ (F10)
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Fig. F2 Finite-size behaviour of the logarithmic derivative YL(p) in the one-dimensional
PCPD as a function of p and for several lattice sizes L. The main plot shows D = 0.5 and
the inset shows D = 0.2. Reprinted with permission from [126]. Copyright (2001) by the
American Physical Society.

Provided that z < 2 and ν⊥ < 2, from Rolle’s theorem there must exist a
finite z∗ such that dYL/dτ |z=z∗ = 0. However, since

YL(z∗) = −z +
1
ν⊥

z∗f ′(z∗)
f(z∗)

(F11)

that maximum value of YL cannot be used to estimate the dynamical expo-
nent z. This is the main difference with respect to the more usual situation.
Rather, one has to form first a sequence of estimates τL of the critical point
τc from the above extremal criterion which should converge according to
τL � τc + z∗L−1/ν⊥ . Having found τc, estimates of z can finally be obtained
from the extrapolation z = limL→∞ YL(τc).

F.2 Sequence Extrapolation

Having a found a sequence of finite-size estimates for either critical points or
exponents, the limit for L → ∞ of such a sequence must be estimated and
we outlined how such an extrapolation might be attempted. Ideally, “. . . the
method should be able to represent the underlying singular structure of the
function under investigation” [259]. But since in practice it is never really
clear whether the assumed asymptotic behaviour is sufficiently well realised
by the data available, there is nothing like a straightforward and foolproof
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extrapolation method and the use of any extrapolation technique does require
a considerable amount of care and judgement. This means that necessarily
the final estimates and in particular their error estimates are to some extent
subjective. Formally, if fN are the elements of a convergent sequence with
f = limN→∞ fN , one considers

ρ := lim
N→∞

fN+1 − f

fN − f
. (F12)

in order to define two important types of convergence of sequences [259, 624].

1. The case of linear convergence is defined by 0 < |ρ| < 1. As an example,
take for N → ∞

fN = f + a exp(−bN) + . . . , (F13)

where a and b > 0 are constants.
2. The case of logarithmic convergence is defined by ρ = 1. Examples of

this are, for N → ∞

fN = f + a1N
−ω1 + a2N

−ω2 + . . . (F14)
fN = f + a exp(−bNω) + . . . ; ω < 1, (F15)

where a1, a2, a and b, ω1, ω2, ω > 0 are constants.

Finite-size sequences obtained from observables close to a critical point are
in general logarithmically convergent. In practise, it has turned out that the
BST algorithm (originally devised as a method for numerical integration
[96], before having been slightly adapted for applications to critical phenom-
ena [280]) is probably the best-performing generic method known at present,
in the context of this particular kind of application. It is defined as follows
[96, 280].

Consider a sequence hN (N = 0, 1, 2, . . .) converging to zero as N → ∞.
Form a table of extrapolants

T
(0)
0

T
(0)
1

T
(1)
0 T

(0)
2

T
(1)
1

T
(2)
0

. . .

(F16)

where

T
(N)
−1 = 0 (F17)

T
(N)
0 = T (hN) = fN (F18)
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T (N)
m = T

(N+1)
m−1 +

(
T

(N+1)
m−1 − T

(N)
m−1

)
×
[(

hN

hN+m

)ω
(

1 −
T

(N+1)
m−1 − T

(N)
m−1

T
(N+1)
m−1 − T

(N+1)
m−2

)
− 1

]−1

(F19)

with ω as a free parameter. This algorithm arises from approximating the
function T (h) by a sequence of rational functions in the variable hω. One
expects that T (N)

1 converges faster than T
(N)
0 to the desired limit f = T (0)

and so on. One tries to choose ω such as to minimise simultaneously the
differences T (N+1)

m − T
(N)
m .

For detailed reviews on the extrapolation methods by sequence-transfor-
mation, see [259, 624]. In the context of applications to finite-size scaling, it
has been shown [38] that the so-called VBS algorithm performs better than
its many alternatives. On the other hand, the VBS algorithm is outperformed
by the BST method [280], see also [270].

As a practical example, consider the determination of the critical point
of the quantum Hamiltonian/Liouvillian (F9). The finite-size estimates for
the pseudo-critical point τc, see Table F1, for L = 8, 9, . . . 15 are listed in
the first column of Table F2. The following columns show the construction
of the extrapolation table, with an assumed value ω = 1.94. If that value
were indeed the final one, one might read off the estimate τc � 2.60641.
Of course, the effects of varying ω must be thoroughly investigated and in
general, the precision of the final estimate increases with the length of the
sequence available.

2.6138388
2.6075368

2.6125490 2.6063534
2.6071762 2.6064220

2.6115541 2.6063865 2.6064067
2.6069493 2.6064116 2.6064131

2.6107756 2.6063975 2.6064099 2.6064068
2.6068001 2.6064107 2.6064121 2.6064107

2.6101573 2.6064029 2.6064029 2.6064103
2.6066987 2.6064029 2.6064109

2.6096593 2.6064029 2.6064029
2.6066275 2.6064321

2.6092529 2.6064141
2.6065788

2.6089176

Table F2 Finite-lattice extrapolation with the bst algorithm, ω = 1.94.
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G. Numerical Methods

We recall some background knowledge on Monte Carlo simulation and de-
tailed balance, before describing some methods for the numerical computation
of response functions. For further information, see [323, 485, 405, 59].

G.1 Simulational Techniques

Classical spin systems do not have a natural dynamics. In order to describe
the relaxational behaviour of such systems, it is common to create an artificial
dynamics. The most simple (and most usual) way to do this is through a
Markov process. If one denotes by {σ} a configuration of spins and by
P ({σ}; t) the probability to find this configuration at time t, the change of
this probability over a short time interval δt is given by a master equation

P ({σ}; t+ δt) − P ({σ}; t)
δt

=
∑
{τ}

[
w(τ → σ)P ({τ}; t) − w(σ → τ)P ({σ}; t)

]
(G1)

where w(τ → σ) is the (time-independent) transition rate from the config-
uration {τ} to the configuration {σ}. Clearly, the change of the probability
P ({σ}; t) only depends on that same probability and not on the configura-
tional probabilities of earlier times. This is the defining property of a Markov
process. From a physical point of view it is not trivial at all that a descrip-
tion of the dynamics of a given classical system in terms of a Markov process
should be adequate.

In many instances, Markov processes are used in order to generate an im-
portance sampling for the calculation of averages at equilibrium, where im-
plicitly an ergodicity hypothesis is used in order to be able to relate averages
of a thermodynamic ensemble to a time-average over the Markov dynam-
ics. In this context, the condition of detailed balance is important, which
involves the stationary probability distribution

P∞({σ}) := lim
t→∞P ({σ}; t) (G2)

and reads
w(τ → σ)P∞({τ}) − w(σ → τ)P∞({σ}) = 0 (G3)

If P∞({σ}) �= 0 for all configurations {σ}, one may define an equilibrium
Hamiltonian H through P∞({σ}) = Z−1 exp(−H[{σ}]/T ) where T is the
temperature (implicitly contained in the rates w) and Z the canonical parti-
tion function. It can then be shown that for Markov processes with detailed
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balance, for t → ∞ one always has convergence to this unique equilibrium
state.

A simple argument can be given through a Boltzmann H-theorem. The
derivation given here follows [484]. First, sincew(σ → σ) = 1−

∑
{τ}
={σ} w(σ →

τ) is the probability that the system remains in the state {σ} during one up-
date, one has, for all configurations {τ}, the normalisation∑

{σ}
w(τ → σ) = 1. (G4)

Consider now the time-dependent quantity

G(t) :=
∑
{τ}

[P ({τ}; t) − Peq({τ})]2
Peq({τ})

=
∑
{τ}

P ({τ}; t)2
Peq({τ})

− 1 (G5)

and also define ∆G := G(t + δt) −G(t). Then

∆G =
∑
{τ}

(
P ({τ}; t+ δt)2

Peq({τ})
− P ({τ}; t)2

Peq({τ})

)

=
∑
{τ}

⎛⎝∑
{σ,ρ}

w(σ → τ)w(ρ → τ)
P ({σ}; t)P ({ρ}; t)

Peq({τ})
− P ({τ}; t)2

Peq({τ})

⎞⎠
=

∑
{τ,σ,ρ}

w(τ → σ)w(τ → ρ)Peq({τ})
P ({σ}; t)
Peq({σ})

P ({ρ}; t)
Peq({ρ})

−
∑
{τ,σ}

w(σ → τ)
P ({σ}; t)2
Peq({σ})

where in the second line the master equation (G1) was used twice. In the third
line detailed balance (G3) was used twice and in the last term the normali-
sation condition (G4) was used and the summation indices were exchanged.
The second term in the last line is rewritten in a symmetrised way as follows

∑
{τ,σ}

w(τ → σ)Peq({τ})
(
P ({τ}; t)
Peq({τ})

)2

·

=1︷ ︸︸ ︷∑
{ρ}

w(τ → ρ)

=
1
2

∑
{τ,σ,ρ}

w(τ → σ)w(τ → ρ)Peq({τ})
[(

P ({σ}; t)
Peq({σ})

)2

+
(
P ({ρ}; t)
Peq({ρ})

)2
]

and upon inserting this into ∆G one finally arrives at
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∆G = −1
2

∑
{τ,σ,ρ}

w(τ → σ)w(τ → ρ)Peq({τ})
[
P ({σ}; t)
Peq({σ})

− P ({ρ}; t)
Peq({ρ})

]2

≤ 0

Consequently, G(t) will always decrease unless all states {σ} which one can
reach by a single move from the state {τ} satisfy P ({σ}; t) ∼ Peq({σ}). This
calculation only depends on (i) detailed balance and (ii) that w(σ → σ) �= 0
for all configurations {σ}. In order for the argument to be applicable, one
finally needs (iii) that the system is ergodic, or in other words, that the con-
figuration space cannot be decomposed into independent components. Under
these conditions, the master equation has a unique stationary solution which
is given by the equilibrium distribution Peq({σ}) and for any initial state,
the evolution according to the master equation will lead to that equilibrium
solution [484].

We now list a few popular choices for the transition rates which give rise
to several stochastic algorithms.4 They all satisfy ergodicity and detailed bal-
ance. We begin with several algorithms where configurations are modified by
changing a single spin-variable at a time. These correspond to dynamics with
a non-conserved order parameter which is often also referred to as Glauber
dynamics.

Metropolis Algorithm

This well-known algorithm was introduced in 1953 by Metropolis et al. and
is given by the rates

w(τ → σ) =
{

exp(−(H[{σ}] − H[{τ}])/T ) ; if H[{σ}] − H[{τ}] > 0
1 ; otherwise

(G6)

Glauber Algorithm

This is a specific algorithm which should be carefully distinguished from the
Glauber dynamics defined above, of which it is merely a special case. The
rates are

w(τ → σ) =
1
2

(
1 + tanh

[
1

2T
(H[{σ}] − H[{τ}])

])
(G7)

4 In the simulation of equilibrium systems, the relaxation towards the equilibrium state
can often be increased considerably by using so-called cluster algorithms. Since these imply
non-local update schemes, they are beyond the scope of this book, see e.g. [323].
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Heatbath Algorithm

While in the two algorithms discussed so far, the change of the state depends
on the current state {σ}, the flips of the heatbath algorithm are independent
of the current state. For illustration, consider a spin system where the local
variable σi at the site i has q possible values (e.g. the q-states Potts model).
In order to go from the old configuration {τ} to the new configuration {σ},
one selects a single site i and sets the spin variable σi to an assigned value n
(which may be the same value as before). The transition rate is

w(τ → σ) =
exp(−Hn/T )∑q

m=1 exp(−Hm/T )
(G8)

where Hn = H[{σ}] is the energy with the spin variable σi set to n. For the
Ising model, the Glauber and the heatbath algorithms are equivalent.

Between these algorithms, the Glauber algorithm and the heatbath al-
gorithms are considerably more efficient than the Metropolis algorithm, al-
though they all give a dynamical exponent z = 2 when applied to phase-
ordering kinetics. When selecting an algorithm for, say, the study of phase-
ordering kinetics, it is sensible to choose an algorithm which moves slowly
through phase space (measured in terms of updates required), in order to
obtain a time range as large as possible for measurements of time-dependent
quantities. Test runs easily show (e.g. [426]) that according to this criterion
the Metropolis algorithm is inferior to both the Glauber and the heatbath
algorithm.

Another important aspect is the choice of the update scheme. While a
näıve sequential update scheme is likely to introduce unphysical correlations,
reasonable choices are either (i) random update, where an additional random
number is drawn to select the next site to be visited and (ii) checkerboard up-
date, where the hypercubic lattice is divided into two sublattices such that all
the neighbours of each site of the first sublattice are on the second sublattice
and conversely. Now, first all sites on the first sublattice are updated, and only
then all sites on the second sublattice, which can be efficiently implemented
e.g. for the heatbath algorithm.

In comparing the efficiency of these two schemes, two considerations are
important. First, the extra random number needed for the random update
considerably slows down the calculation (a factor 8 between the two schemes
was reported for the Ising/Potts model [426]). On the other hand, the passage
through the phase space is somewhat faster for the checkerboard update. In
order to understand by how much, observe that for the checkerboard update,
each spin is updated exactly once for a passage over the entire lattice (a
sweep). For a random update, the probability of a given spin having not
been visited in one try is pnot = 1 − N−1. During a sweep, one makes N
tries, hence an arbitrary spin has been visited
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pvisit = 1 −
(
1 − N−1

)N N→∞� 1 − e−1 ≈ 0.63 (G9)

which means that the checkerboard update passes about 1.6 times faster
through the phase space than the random update [426, 427]. Hence checker-
board update is more efficient than random update if the generation of the
extra random number slows execution by at least a factor 1.6.

In contrast to Glauber dynamics, whose elementary moves modify a single
spin, Kawasaki dynamics select a pair σi, σj of distinct spins (i �= j) and
then perform a spin exchange σi �→ σ′

i = σj , σj �→ σ′
j = σi. This may then

be combined with a Metropolis, Glauber or heatbath algorithm. We quote
here the transition rate for the heatbath algorithm of the Ising model with
Kawasaki dynamics [236]

wij(τ → σ) =
exp[σi(hi − hj + hW

ij )/T ]
2 cosh[(hi − hj + hW

ij )/T ]

∏
k 
=i,j

δτk,σk
(G10)

and the Weiss field is given by

hW
ij =

∑
k∈∂i\j

Jikσk −
∑

�∈∂i\j

Jj�σ� (G11)

and ∂i\j is the set of neighbours of the site i, with the site j excluded.

G.2 Computation of Response Functions

Obtaining a precise estimate of response functions is notoriously difficult
because of the functional derivative in their definition. As a rule, this will lead
to very noisy data, considerably more then ever obtained for correlations.

G.2.1 Finite External Magnetic Field

We first discuss the method proposed by Barrat [44] around this difficulty. We
begin with the case of a non-conserved order parameter. Barrat’s proposal is
to consider integrated response functions and apply a magnetic field, accord-
ing to some time protocol. Since for ferromagnetic systems the application
of even rather small spatially homogeneous magnetic fields rapidly leads to a
relaxation of the unique thermodynamic state, one rather chooses a spatially
disordered magnetic field hi = ±h on the sites i of the lattice Λ with |λ| = N
sites. Then the thermoremanent magnetisation is for the Ising model with
spin variables σi = ±1 given by [44]
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TMTRM(t, s) =
1
N

∑
i∈Λ

〈σi(t)hi(s)〉 (G12)

where 〈.〉 denotes the thermal average and . the average over the disor-
dered magnetic field. The corresponding integrated response function is then
χTRM(t, s) = MTRM(t, s)/h =

∫ s

0
duR(t, u).

For the q-states Potts model, this may be generalised as follows [427]

TMTRM(t, s) =
1

q − 1

(
q

N
∑
i∈Λ

〈
δσi(t),hi(s)

〉
− 1

)
(G13)

Here σi = 1, . . . q is a Potts spin and the field hi takes the values 1, . . . , q
randomly and with an amplitude h in the classical Potts Hamiltonian H.

While this method works rather well, it has the obvious disadvantages
that (i) only integrated response functions can be found and (ii) it contains
explicitly an amplitude h which must be carefully chosen (large enough for a
tolerable signal/noise ratio and small enough to remain in the linear response
regime). In practice, it may be necessary to repeat the simulation several
times, with different values of h. Statements found in the literature such as
“ . . . a magnetic field h = 0.05 was used . . . ” are at best statements about
the results of such a detailed study (in a certain time regime of a specific
model) and cannot be taken over to a different model or even to a different
realisation of the same universality class.

Obviously, the same idea can also be applied to systems with a conserved
order parameter.

For the measurement of the surface thermoremanent magnetisation of an
Ising model, defined on a slab with two free surfaces of length L, one may
use [47]

TMTRM,1(t, s) =
1

2L

∑
i∈∂Λ

〈σi(t)hi(s)〉 (G14)

where ∂Λ denotes the total boundary of the lattice Λ.

G.2.2 Infinitesimal Magnetic Field

We next describe the method of Ricci-Tersenghi [545] which allows one to
find integrated response functions, with an infinitesimal field. Consider the
integrated response

χj,k(t; t1, t2) :=
∫ t2

t1

du R(t, u; j − k) (G15)
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where R(t, u; j−k) = δ〈φ(t, j)〉/δh(s; k)|h=0 is the usual space-time response
function of the order parameter and for the simplicity of notation, we assumed
spatial translation-invariance although that is not necessary for what follows.
The integrated responses usually considered are recovered as special cases:
for t1 = s, t2 = t we have χZFC(t, s) = χr,r(t; s, t), for t1 = 0, t2 = s we have
χTRM(t, s) = χr,r(t; 0, s), finally, for t1 = s/2, t2 = s we obtain χInt(t, s) =
χr,r(t; s/2, s).

To be specific, we restrict the discussion from now on to the Ising model,
but generalisations are obvious. We begin with the case of a non-conserved
order parameter. Using the heatbath algorithm, the transition rate between
the configurations {τ} and {σ} through a spinflip at site i reads

wi(τ → σ) =
exp[σi(hi + hW

i )/T ]
2 cosh[(hi + hW

i )/T ]

∏
j 
=i

δτj ,σj (G16)

where hi is the external magnetic field at site i and hW
i is the Weiss field

which describes the interactions of the spin variable σi with its neighbours.
For a spin Hamiltonian H =

∑
i,j Jijσiσj with binary interactions, the Weiss

field is given by hW
i =

∑
j 
=i Jijσj . Since the average magnetisation at site j

is given by

〈σj(t)〉 =
∑

{σ(t′)}

[
σj(t)

t∏
t′=1

wI(t′)(σ(t′ − 1) → σ(t′))

]
(G17)

where I(t) is the site index of the spin to be updated at time t, a straight-
forward calculation now gives the susceptibility [545]

Tχj,k(t; t1, t2) = 〈σj(t)∆σk(t1, t2)〉

∆σk(t1, t2) =
t2∑

u=t1+1

δI(u),k

(
σk(u) − tanh

(
hW

I(u)(u)/T
))

(G18)

Here, the time is discretised in units of Monte Carlo steps.
Following [545], we point out that ∆σk is a centred random variable with

variance 〈∆σ2
k〉 ∼ t2 − t1. This means that the calculation of the long-time

behaviour of χ using this method requires a computational effort which in-
creases with time (in particular, if quantities such as χTRM, χZFC or χInt

are required). On the other hand, since no longer a small field has to be
introduced by hand, one is automatically in the linear response regime. Fur-
thermore, a single simulation can be used to produce data for correlators
and responses. The method was tested in several ageing systems, with and
without disorder [545].

A very similar method works for the case of a conserved order parameter.
It is enough to quote the result [236]
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Tχj,k(t; t1, t2) = 〈σj(t)∆σk(t1, t2)〉

∆σk(t1, t2) =
t2∑

u=t1+1

{
δI(u),k

(
σk(u) − tanh

(
hW

I(u)J(u)(u)/T
))

(G19)

+δJ(u),k

(
σk(u) − tanh

(
hW

I(u)J(u)(u)/T
))}

and where the Weiss field hW
ij was given in (G11).

G.2.3 Direct Calculation of the Response Function in the Ising
Model

Chatelain [129] has shown how to calculate the response function directly
from a certain correlation function, without having to apply a field at all. For
an Ising model with Glauber dynamics, he obtains

R(t, s; j − i) =
1
T

(
1 +

∂

∂t
+

∂

∂s

)〈
σj(t)

(
σi(s) − tanh

(
hW

I(s)/T
))〉

δI(s),i

(G20)
In the derivation of this result, a slight modification of the usual Glauber
dynamics with a sequential update scheme was used which makes the tran-
sition rates time-dependent but which should reduce to the usual one in the
large-size limit N → ∞. Also Chatelain’s method starts from a discrete-time
master equation. It can be shown that from this form of the response function,
one does recover the correct equilibrium limit and the fluctuation-dissipation
theorem [129].

For practical applications, the same kind of remarks as for the method of
[545] apply. In addition, the response function is intrinsically more noisy than
the integrated responses so that a larger computational effort is required to
obtain data which can be analysed. On the other hand, in many cases the
functional form of the response function is considerably more simple than for
the integrated responses.

It is possible to obtain also non-linear responses from the consideration of
higher derivatives. We quote two examples [129]

Rj;ii′(t; s, s′) :=
δ2〈σk(t)〉

δh(s, i)δh(s′, i′)

∣∣∣∣
h=0

(G21)

=
1
T

(
1 +

∂

∂t
+

∂

∂s

)(
1 +

∂

∂t
+

∂

∂s
+

∂

∂s′

)
×
〈
σj(t)

(
σi(s) − tanh

(hW
I(s)

T

))(
σi(s′) − tanh

(hW
I(s)

T

))〉
×δI(s),iδI(s′),i′
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R
(2)
j;i (t; s) :=

δ2〈σk(t)〉
δh(s, i)2

∣∣∣∣
h=0

(G22)

= − 2
T

(
1 +

∂

∂t
+

∂

∂s

)
×
〈
σj(t) tanh

(hW
I(s)

T

)(
σi(s′) − tanh

(hW
I(s)

T

))〉
δI(s),i

Extensions to other spin models are easily implemented if one replaces
tanh(hW

I(s)/T ) by the appropriate expression [129].

G.2.4 Alternative Method to Compute the Response Function of
the Ising Model

Finally, we present an alternative algorithm [291] for the Ising model with
standard heat bath dynamics. The main idea is to process perturbations at all
sites simultaneously – a trick which allows one to obtain reasonable statistical
averages within short time. A similar algorithm was already used for the
contact process (see [289]). For the Ising model with heat bath dynamics
the algorithm is somewhat more complicated, as will be explained in the
following. However, it is conceptually simpler than the approaches described
before in so far as it measures the response function directly.

Let us consider an Ising model with heat-bath dynamics which is prepared
in a disordered state, where all spins independently take the values ±1 with
equal probability. Starting at time t = 0, the system evolves at finite temper-
ature β = 1/kBT by random-sequential updates according to the following
dynamical rules:

• Select a random site i.
• Calculate the local field hi =

∑
j σj , where j runs over the 2D nearest

neighbours of site i, respecting the chosen boundary conditions.
• Generate a random number z ∈ (0, 1) and set

σ
(new)
i :=

{
+1 if z < 1

2

(
1 + tanh(βhi)

)
−1 otherwise . (G23)

The third step of this update procedure can be reformulated equivalently by
defining a threshold field

h
(c)
i := β−1atanh(2z − 1) , (G24)

where z ∈ (0, 1) is a random number, and setting
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σ
(new)
i :=

{
+1 if hi > h

(c)
i

−1 otherwise
. (G25)

In order to measure the autoresponse function R(t, s) directly we would have
to apply a weak external field 0 < h

(ext)
i � 1 at time s locally at a ran-

domly chosen site i and to study how much the ensemble average of the local
magnetisation 〈σj(t)〉 at a different site j changes at some later time t > s.
However, such a measurement is hard to perform since a localised weak field
leads only to occasional spin flips in the future so that the average response
to such a single spin flip is hard to quantify. This is probably the reason
why most researchers avoid a direct measurement of the autoresponse func-
tion and prefer to study the integrated response. In the kinetic Ising model,
however, there are two ways to optimise a direct measurement, namely, by
(i) reweighting the probability of spin flips and (ii) simultaneous tagging of
all spins in the system.

(i) Reweighting spin flip probabilities

As a first optimisation we study the response of an infinitely strong external
perturbation instead of a weak one and extract the limit h(ext)

j → 0 by an
appropriate reweighting procedure. Reweighting is a standard technique in
Monte-Carlo simulations to enhance their efficiency (see e.g. [216, 323]). The
starting point is the observation that in heat bath dynamics as described
above a weak perturbation by a positive localised external field h

(ext)
j � 1

changes the probability of getting a positively oriented spin σ
(new)
j = +1 to

lowest order as

1
2
(
1 + tanh

[
β(hj + h

(ext)
j )

])
=

1
2
(
1 + tanh

[
βhj

])
+
(β

2
cosh−2[βhj ]

)
h

(ext)
j

+O([h(ext)
j ]2) . (G26)

Therefore, we may equivalently turn up the spin σj with 100% probabil-
ity and compensate this intervention by weighting the resulting response in
the ensemble average by the corresponding first-order coefficient. Thus, the
reweighting scheme consists of the following steps:

1. Select random site i at time s.
2. Define a weight wi = 1

2β cosh−2(βhi), where hi =
∑

j σj is the local field
caused by the nearest neighbours of site i at time s, and store them in the
memory.

3. Set σi := +1.
4. Measure how much this modification increases the magnetisation at site j

at some later time t > s.



296 Appendices

a b c

d e f

g h i

aeh

aef

aeh

t=3

t=4 t=5 t=6 t=7

t=s=2t=0 t=1

ae

aeae

aef e

aeh aeh aeh

ae

aef ae

ae
fh ae

ae

ae aeh

aef e

ae aeh

ae

ae

ae

aeae

aef

aef

e

h

Fig. G1 Computation of the response function for a small system with 4 × 4 sites and
periodic boundary conditions without quenched disorder. The figure shows eight snapshots
at t = 0, 1, . . . , 7. The sequence starts with a random initial state. Throughout the whole
simulation the system evolves as an ordinary unperturbed Ising model with heat bath
dynamics at T = Tc, where black boxes represent positive spin variables σi = 1 while
white or grey boxes represent negative spin variables σi = −1. At time t = s = 2 all

negatively oriented sites (white boxes) are tagged by individual labels a, b, . . . , i and the
corresponding weights are recorded (wa � 0.024482, wb = wc = wd = wg � 0.110172,
we = wf = wh = wi � 0.220343). Subsequently the simulation tracks how the application
of an external local field h > 0 would have changed the configuration. For example, if an
external field would have turned up the spin in the left upper corner at time t = s = 2
(marked by label a) it would have changed the configuration at t = 8 in such a way that
all sites marked by label a (in addition to those marked by black boxes) are positive as
well. Note that each site may carry several labels, requiring a dynamically generated set
structure in the code. At any time t > s the autoresponse function is the sum over all sites
which carry their original label assigned at t = s (indicated by grey boxes), multiplied by
the corresponding weight factor.

5. Multiply the measured response by the weight factor wi and then perform
the average over many independent realisations.

(ii) Simultaneous tagging of all possible spin flips caused by an external field

Even with the reweighting procedure described above the measurement of
the autoresponse function is still difficult to perform since the response to a
perturbation at a single site is quite small and fluctuates strongly. However,
in the special case of the Ising model with heat bath dynamics it is possible
to study the response to a perturbation of all spins simultaneously. The
reason is that for a given set of random numbers used in the simulation



G Numerical Methods 297

a positive external field can only increase the magnetisation in the future,
turning spins up but never turning spins down. Consequently, the cluster of
positively oriented spins generated in a system without perturbation by an
external field is always a subset of the actual cluster that would have been
generated if the perturbation was applied. Thus, for each site i, where the
field may have generated a spin flip, it is possible to trace and mark the
cluster of all spins in the future that would have been turned up by this
perturbation.

The other special property of the Ising model with heat bath dynamics,
which is exploited by the algorithm, is the circumstance that these clusters
do not interact. More specifically, if the external field had generated two spin
flips, the resulting cluster would just be the union of the respective individual
clusters. This allows one to tag all spins at time s with non-interfering labels
and to identify the percolation cluster for each of the labels (see Fig. G1).
The response of a particular site j is then proportional to the number of its
labels (re-weighted as described above). This trick accelerates simulations by
a factor of the order N , where N is the total number of sites.

The tagging algorithm can be implemented as follows. In addition to the
local spin variables σi we attach to each site i a dynamically generated set
Si of labels. For example, in C++ such a dynamical set is provided by the
class set<...> S[N] of the standard template library STL. Initially all these
sets are empty (Si = ∅) and the simulation evolves as usual. At time s,
however, each site i is tagged with an individual label Λi and the weight wi

is recorded as described above. Therefore, at time s each set Si has exactly
one element, namely, Si = {Λi}. During the subsequent simulation the spin
variables σi evolve according to the usual heat bath dynamics as if there was
no perturbation. However, in each update step the following additional steps
are carried out

• When updating spin i, first clear the corresponding set by setting Si =
∅ and let Ui =

⋃
j Sj be the union of all tags carried by the nearest

neighbours.

• For all labels Λ ∈ Ui count the number nΛ of nearest neighbours which are
oriented in the negative direction σj = −1 and carry the tag Λ. Obviously,
if an external field had flipped the spin corresponding to the label Λ at
time s it would have increased the local field hj in the present update by
2nΛ.

• If hj < h
(c)
j and hj + 2nΛ > h

(c)
j add label Λ to set Si.

The autoresponse function R(t, s) is then proportional to the weighted sum
over all sets tagged by their original label, averaged over many independent
realisations:
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(a) (b)

Fig. H1 First three steps, from top to bottom, in the construction of (a) the Cantor set
and (b) the Koch curve.

R(t, s) ∝
〈

1
N

∑
j

wjδΛj∈Sj

〉
(G27)

H. Fractal Dimensions

To make this volume a little more self-contained, we briefly collect the def-
initions of fractal dimensions, following [584]. For more than a century,
mathematicians have studied so-called fractal ensembles which do not fit
into standard continuum Euclidean geometry. Figure H1 shows two classic
examples. The Cantor set is constructed, starting from the real interval
I = [0, 1], by taking out the middle third of each line, for each iteration step,
see Fig.H1a. It is not hard to see that the Cantor set has measure zero in
the sense that it can be covered by intervals whose total length can be made
arbitrarily small and yet, because of Cantor’s famous diagonal argument, it
is not countable. Similarly, Fig. H1b illustrates the construction of the Koch
curve, again starting from I = [0, 1]. For each step, one replaces the middle
third of each straight line by an equilateral triangle. Since the length of the
curve increases by a factor 4

3 in each step, the total curve has infinite length,
yet it can be embedded into a finite volume.

These and other non-standard ensembles may be characterised in terms
of a non-integer, fractal dimension. Some possible definitions of a fractal
dimension follow [214, 584]:

1. Consider a self-similar ensemble E ⊂ Rd. By self-similarity, it is meant
that E is made out of m copies of itself, but of a size reduced by a factor
r. The fractal similarity dimension is then

dself :=
lnm
ln r

(H1)
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For example, both the Cantor set and the Koch curve are self-similar and

dself =

⎧⎨⎩
ln 2
ln 3 ≈ 0.63 . . . ; Cantor set
ln 4
ln 3 ≈ 1.26 . . . ; Koch curve

(H2)

2. Consider an ensemble E ⊂ Rd which need not be self-similar. Cover the
set with a set of hypercubic boxes, of linear size ε, and then count the
number N(ε) of boxes needed to cover E. The fractal box dimension is
then

dbox := − lim
ε→0

lnN(ε)
ln ε

(H3)

For the Cantor set and the Koch curve, one has

dbox =

⎧⎨⎩
ln 2
ln 3 ≈ 0.63 . . . ; Cantor set
ln 4
ln 3 ≈ 1.26 . . . ; Koch curve

(H4)

Sometimes, dbox is referred to as capacity.
3. A method to find fractal dimensions which has become standard proceeds

as follows [248]. Consider a possibly fractal ensemble E ⊂ Rd and a set of
points xi ∈ E, with i = 1, . . . ,N . Set

Nxi(ε) := {number of points x ∈ E such that |xi − x| < ε}.

Average over many points xi ∈ E to obtain the correlation C(ε) :=
limN→∞ N−1

∑N
i=1 Nxi(ε). Then the fractal correlation dimension is

dcorr := lim
ε→0

lnC(ε)
ln ε

(H5)

In general, one has dcorr ≤ dbox, altough the numerical values are usually
close to each other.
As an example, consider the logistic equation xn+1 = rxn(1 − xn),
n ∈ N and with r = r∞ = 3.5699 . . . where, after an infinite series of
period-doublings, the transition to chaos occurs. The fractal dimensions
of the attractor are dcorr = 0.500(5) [248] and dbox � 0.538 [239].

4. If one considers a covering of the ensemble E by sets of variable size, one
arrives at the fractal Hausdorff dimension dHaus. While it is nicely invari-
ant under a large class of geometric transformations, its actual computa-
tion is difficult. One has dHaus ≤ dbox. We refer to [214, 579] for further
information.

For fractal sets, the probability P (�) of empty intervals of size � scales as

P (�) ∼ �−1−df (H6)
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where df is one of the fractal dimensions. Exercise 46 illustrates this for the
Cantor set.



Solutions

Problems of Chapter 1

1 The only non-vanishing rates are

w(n → n + 1) = λn ; if procreation
w(n → n− 1) = n ; if death

These are irreversible reactions and (non-trivial) detailed balance is not pos-
sible. Considering the change in Pn(t), one obtains the following master
equation

Ṗn(t) = (n+ 1)Pn+1(t) + λ(n− 1)Pn−1(t) − n(1 + λ)Pn(t)

which is valid for all n ∈ N. Infinite recurrences of this kind are often solved
by introducing a generating function

F (x, t) :=
∞∑

n=0

xnPn(t).

Using the master equation, it follows

∂F

∂t
=

∞∑
n=0

xnṖn(t) = (1 − x)(1 − λx)
∂F

∂x
(S.1)

and F (x, 0) is given by the initial condition. The partial differential equation
(S.1) may be solved by the method of characteristics [373], but in practise,
the following two simple rules are often sufficient.

Lemma: (i) Let f = f(x, y) be a solution of

301
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a
∂f

∂x
+ b

∂f

∂y
= 0 (S.2)

where a, b are functions depending on x and y. Then F (f(x, y)) is also a
solution of (S.2), where F is an arbitrary differentiable function.
(ii) Consider the differential equation

a(x)
∂f

∂x
+ b(y)

∂f

∂y
= 0

A solution of this equation is (provided a(x) �= 0 and b(y) �= 0)

f(x, y) =
∫ x dx′

a(x′)
−
∫ y dy′

b(y′)

Proof: Both statements are verified by direct computation. �
Applying this to (S.1), for λ �= 1 a special solution is∫ t

dt +
∫ x dx′

(1 − x)(1 − λx)
= t +

1
1 − λ

ln
1 − λx

1 − x
.

Hence the general solution of (S.1) can be written in the form

F (x, t) = f

(
e(1−λ)t 1 − λx

1 − x

)
and the function f has to be found from the initial condition. If one has
initially a single particle, F (x, 0) = x, which leads to f

(
1−λx
1−x

)
= x. To solve

such a functional equation, let y := 1−λx
1−x . Solving this for x, we obtain5

f(y) = x(y) = 1−y
λ−y . Hence the generating function is

F (x, t) =
(1 − λx)e(1−λ)t − (1 − x)
(1 − λx)e(1−λ)t − λ(1 − x)

and from this Pn(t) = n! ∂n

∂xnF (x, t)
∣∣
x=0

. On the other hand, for an initial
Poisson distribution Pn(0) = µn

n! e
−µ, one has F (x, 0) = eµ(x−1). In the same

way as before, we find f(y) = exp µ(λ−1)
y−λ , hence

F (x, t) = exp
µ(λ − 1)(1 − x)(

e(1−λ)t − 1
)

+ x
(
e(1−λ)t − λ

) .
The unpopulated state n = 0 is an absorbing state, since it can be

reached but once there, one cannot leave it. Therefore, P0(t) = F (0, t) is
the extinction probability until time t and P (t) := 1 − P0(t) is the survival

5 As a check, note that one must have F (1, t) =
∑∞

n=0 Pn(t) = 1, hence f(∞)
!
= 1.
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Fig. S.1 Survival proba-
bility P∞ as a function of
the rate λ. Full line: a single
initial particle. Dashed line:
initial Poisson distribution
with µ = λ.
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probability until time t. We are interested in the (ultimate) survival prob-
ability P∞ := limt→∞ P (t). For the case of a single initial particle, we have
P (t) = (λ− 1)/(λ− e(1−λ)t) and

P∞ =
{

0 ; if λ < 1
1 − λ−1 ; if λ > 1 .

For an initial Poisson distribution, P (t) = 1 − exp
[
µ(λ − 1)/(e(1−λ)t − 1)

]
and

P∞ =
{

0 ; if λ < 1
1 − e−µ(λ−1) ; if λ > 1

.

As can be seen from Fig. S.1, there are two phases. For λ < 1, the pop-
ulation will certainly become extinct. For λ > 1, there is a non-vanishing
probability for indefinite survival. Hence P∞ serves as an order parameter
to distinguish these phases.6 At the critical point λc = 1 of this example of
an absorbing phase transition, one finds, for a single initial particle, in a
similar way F (x, t) = (1+(t−1)(1−x))/(1+t(1−x)), hence P (t) = (1+t)−1

and P∞ = 0. For an initial Poisson distribution, F (x, t) = exp
(
− µ(1−x)

t(1−x)+1

)
and P (t) = 1−e−µ/(t+1) � µ

t+1 for t → ∞. The approach towards the steady
state is, for large times

P (t) − P∞ ∼
{
e−t/τrel , τrel = 1

|1−λ| ; if λ �= 1
1/t ; if λ = 1

.

The long-time behaviour close to the critical point λc = 1 is independent of
the initial conditions, but we also see that away from criticality, the behaviour

6 In contrast to equilibrium phase transitions, we have continuous phase transitions in a
formally zero-dimensional system, without any long-range interaction. Still, P∞ is singular
at λ = λc = 1.
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of P (t) and P∞ does depend on the initial state. In particular, we observe the
typical distinction between an exponential approach away from criticality and
an algebraic approach at criticality, which in turn is reflected in the divergence
of the relaxation time τrel as λ → 1.

2 One has

〈n〉(t) =
∞∑

n=0

nPn(t) , 〈n2〉(t) =
∞∑

n=0

n2Pn(t)

Using the explicit form of the generating function found in exercise 1, these
may be obtained from 〈n〉(t) = x∂F

∂x

∣∣
x=1

and 〈n2〉(t) = x ∂
∂x

(
x∂F

∂x

)∣∣
x=1

,
but carrying out these calculations explicitly is cumbersome. Therefore, we
present here an alternative and derive equations of motion for the averages
from the master equation. This gives

d
dt

〈n〉 =
∞∑

n=0

nṖn = (λ− 1)
∞∑

n=0

nPn = (λ− 1)〈n〉

d
dt

〈n2〉 =
∞∑

n=0

n2Ṗn = 2(λ− 1)
∞∑

n=0

n2Pn + (λ+ 1)
∞∑

n=0

nPn

= 2(λ− 1)〈n2〉 + (λ+ 1)〈n〉

with the initial conditions 〈n〉(0) = n0 and 〈n2〉(0) = n2
0. Therefore, 〈n〉(t) =

n0e
(λ−1)t. For λ < 1, the population dies out rapidly, while for λ > 1 it will

grow beyond any bound (reminding us of Malthusian scenarios). In particular,
at criticality the mean density 〈n〉(t) = n0 is constant ! In order to understand
how this may be compatible with a survival probability P∞ = 0, see Fig. S.1,
consider the fluctuations around this result. We have for λ �= 1

〈n2〉(t) =
(
n2

0 + n0
λ+ 1
λ− 1

)
e2(λ−1)t − n0

λ+ 1
λ− 1

e(λ−1)t

and for λ = 1
〈n2〉(t) = 2n0t + n2

0

At criticality, the variance σ2(t) = 2n0t grows unboundedly with time such
that an extremely unlikely fluctuation will drive the system to extinction.

In Vol. 2 of this book, we shall meet this model again as the zero-
dimensional case of the bosonic contact process [305].

Problems of Chapter 2

3 On a lattice Λ with |Λ| = N sites, the Ising model Hamiltonian is H =
−J

∑
(n,n′)∈Λ⊗Λσnσn′−h

∑
n∈Λ σn, where the first sum is over pairs of nearest
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neighbours. For a fixed magnetisation M =
∑

n∈Λ σn, the partition function
is, with K = J/T and δn,0 = 1

2π

∫ π

−π
dα eiαn

Z̃(T,M) =
∑
{σ}

e−H/T δ∑
n σn,M

=
1
2π

∫ π

−π

dα e−iαM
∑
{σ}

exp

⎡⎣K ∑
(n,n′)

σnσn′ + iα
∑

n

σn

⎤⎦ .
Writing M = Nm, F (T,M) = Nf(T,m) and G(T, h) = N g(T, h), the rela-
tionship between f and g is given by

exp
[
−N
T
f(T,m)

]
=

1
2π

∫ π

−π

dα exp
[
−N

(
1
T
g(T, iαT ) + iαm

)]
. (S.3)

For N large, integrals of this kind can be estimated from the saddle-point
method, which in this simple case amounts to the identity∫

R

dx e−λf(x) � e−λf(x0)

√
2π

λf ′′(x0)
(
1 + O

(
λ−2

))
; f ′(x0) = 0

Applied to (S.3), the extremal condition ∂α

(
T−1g + iαm

) != 0 leads to the
standard thermodynamic relationm = −∂g/∂h, as it should be. The estimate
of the integral in (S.3) gives

exp
[
−N
T
f(T,m)

]
= exp

[
−N
T

(
g + hm

)
+

1
2

ln
(

2π
NTχ

)] (
1 + O

(
N−2

))
where χ = ∂m/∂h is the susceptibility. Hence

f(T,m) = g(T, h) + hm+ O
(

lnN
N

)
reproduces in the limit N → ∞ the standard equilibrium thermodynamics,
where the two thermodynamic potentials f = f(T,m) and g = g(T, h) are
related by a Legendre transformation.

For illustration, one may calculate the mean energy 〈E〉 = Z−1∂Z/∂(1/T ).
Writing 〈E〉 = N ε, from the above it is easily seen that ε|m = ε|h +O

(
N−1

)
.

For an explicit check in the 1D Ising model, one may calculate the two par-
tition functions on a periodic chain of N = 2N sites, for h = 0 and M = 0,
respectively. The result is

Z(T, 0) = (2 coshK)2N + (2 sinhK)2N ; if h = 0

Z̃(T, 0) = (2 sinh 2K)N
[
PN (coth 2K) − PN−1(coth 2K)

]
; if M = 0 (S.4)
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Fig. S.2 Specific heat
of the Ising model on a
periodic chain. The full
lines give the case M = 0
for 30 sites (lower curve)
and 60 sites (upper curve).
The dashed lines give the
case h = 0 for 30 sites
(upper curve) and 60 sites
(lower curve).
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where Pn is the nth Legendre polynomial [2].
In Fig. S.2 the specific heats, calculated from either Z̃(T, 0) (fixed mag-

netisation – full curves) or Z(T, 0) (fixed field – dashed curves) are shown
for two periodic lattices of different size. We see that for fixed magnetisa-
tion, the specific heat is lower than for a fixed magnetic field (as it should
be for an equilibrium system) and that for N → ∞, the two sets of curves
converge towards each other. This convergence is very rapid for sufficiently
large temperatures but becomes notably more slow for more small values of
T and evolves in opposite directions for M = 0 fixed and h = 0 fixed.

While the calculation of Z(T, 0) can be found in many textbooks [640],
the analogous calculation for Z̃(T,M) contains some technical complications
which we now outline. Using the identity δn,0 = 1

2π

∫ π

−πdα eiαn, one has for a
periodic chain with 2N sites

Z̃(T,M) =
∑
{s}

e−H/T δ∑
i si,M

=
1
2π

∫ π

−π

dα eiαM
∑
{s}

exp

[
K
∑

n

snsn+1 + iα
∑

n

sn

]
︸ ︷︷ ︸

Z(T,iαT )

where K = J/T and we need the canonical partition function of the Ising
chain in an imaginary external field. From the explicit expression of Z(T, h)
[640] and using the binomial theorem, we have

Z̃(T,M) =
1
π

∫ π

−π

dα eiαM
N∑

n=0

(
2N
2n

)
e2nK

(
e−2K − e2K sin2 α

)N−n
cos2n α
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=
e2KN

π

N∑
n=0

(
2N
2n

)
e−4Kn

∫ π

−π

dα eiαM cos2(N−n) α
(
1 − e4K sin2 α

)n

=
e2KN

π

N∑
n=0

(
2N
2n

) n∑
j=0

(
n
j

)(
1 − x

x

)n−j ∫ π

−π

dα cos(αM) cos2(N−n+j) α

where we have set x := e4K . Next, we use the identity∫ π

−π

dα cos(αM) cos2B α =
π

22B

[(
2B

B +M/2

)
+
(

2B
B −M/2

)]
and find

Z̃(T,M) = 2e2KN
N∑

j=0

(
2(N − j)

N − j −M/2

)
4j−N

(
1 − x

x

)j N∑
n=0

(
2N
2n

)(
n
j

)

Using the identity [538, eq. (4.2.5.79)]

N∑
k=m

(
2N
2k

)(
k
m

)
= 22N−2m−1 N

N −m

(
2N −m− 1

m

)
and using identities between binomial coefficients, we finally have

Z̃(T,M) = 2Ne2KN
N∑

�=0

1
2N − �

(
2N − �
N +M/2

)(
N +M/2

�

)(
1 − x

x

)�

(S.5)
The case M = 0 of vanishing magnetisation is now found from the identities,
where Pn is the nth Legendre polynomial [2]

n∑
k=0

(
n
k

)(
n + k
n

)
xk = Pn(1 + 2x)

∫ Y

1

dy (y − 1)N−1PN (y) =
1

2N
(Y − 1)N [PN (Y ) + PN−1(Y )] .

The first of these is [538, eq. (4.2.7.12)] and the second one follows from [539,
eq. (1.14.6.4)], [540, eq. (7.3.1.141)] and [2, eq. (22.7.19)]. Then (S.4) follows.

The difference in the analytical effort required between the cases h = 0
and M = 0 is remarkable. We finally point out that in the often-invoked
applications of the equilibrium Ising model to binary alloys or liquids, in full
rigour, the case with M fixed is required.

4 The Hamiltonian is H = −J
∑

i σiσi+1 − H
2

∑
i(σi + σi+1) − TC and the

transfer matrix may be written as
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T =
(
eJ/T+H/T+C e−J/T+C

e−J/T+C eJ/T−H/T+C

)
and hence its square is

T2 = T2 =
(
e2J/T+2H/T+2C + e−2J/T+2C eH/T+2C + e−H/T+2C

eH/T+2C + e−H/T+2C e2J/T−2H/T+2C + e−2J/T+2C

)
.

Since the partition function Z = tr TL = tr T2
L/2 is invariant under the

summing over every second spin, one has the following renormalisation-group
relations between the couplings, written here using the new variables x =
e−4J/T , y = e−2H/T and z = e−4C

x′ =
x(1 + y)2

(x+ y)(1 + xy)
, y′ =

y(x+ y)
1 + xy

, z′ =
z2xy2(1 + y)2

(x+ y)(1 + xy)
.

The third of these does not influence the behaviour of x and y and will
be discarded from now on. The fixed points are (i) (x∗, y∗) = (1, y∗) with
0 ≤ y∗ < 1 which corresponds to infinite temperature and describes a para-
magnetic state, (ii) (x∗, y∗) = (0, 0) which corresponds to zero temperature
and an infinite magnetic field and (iii) (x∗, y∗) = (1, 0) which is a critical point
at zero temperature and zero field. Linearisation around this fixed point gives
x′ � 4x, (y−1)′ � 2(y−1). Since one has performed a change of length scale
by a factor two, from the above eigenvalues the critical exponents yτ = 2 and
yh = 1 are read off. We leave it to the reader to derive from this the scaling
of the singular part of the free energy, see (2.144), and to compare this with
the exact solution [640].

5 The scaling relations follow from recalling the definitions of surface and
excess magnetisation and a direct application of the scaling form (2.96).

6 The comparison of the derivatives gives explicitly, first for the susceptibility

A1A
2
2|τ |−γW±

2 (A2h|τ |−β−γ) = D1ξ
2−η
0 |τ |−(2−η)νX̃±(D2h|τ |−β−γ)

which returns the well-known scaling relation γ = (2 − η)ν, and for the
magnetisation density

A2
1A

2
2|τ |2βW± 2

1 (A2h|τ |−β−γ) = D1ξ
2−η−d
0 |τ |−(2−η−d)νZ̃±(D2h|τ |−β−γ)

which implies the hyperscaling relation 2β = (d−2+η)ν and (2.111) follows.
Very similar arguments can be raised for equilibrium systems with spatially

strongly anisotropic interactions, as they may arise in systems with axial com-
peting interactions between nearest neighbours and next-nearest neighbours
[279]. An example for equilibrium critical points whose anisotropies lead to
different correlation length exponents ν⊥ �= ν‖ in different spatial directions
are so-called Lifchitz points to which we shall return in Vol. 2 of this book.
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7 With the initial condition v(0) = v0, the solution of (2.176) is for F = 0

v(t) = v0e
−γt + e−γt

∫ t

0

dt′ eγt′η(t′)

Squaring and averaging leads for large times to 〈v2(∞)〉 = B/γ and the
Einstein relation follows from the stated equipartition condition, valid at
equilibrium. Next, for the calculation of the equilibrium response function,
recall that 〈v(t)〉 =

∫
R
dt′ R(t− t′)F (t′) is a convolution. Hence, introducing

the Fourier transform f̂(ω) =
∫

R
dt eiωtf(t), one has 〈v̂(ω)〉 = R̂(ω)F̂ (ω).

Averaging over the noise in (2.176) then gives

R̂(ω) =
1
m

1
γ − iω

For F = 0, the correlation function C(t) = C(−t) = (kBT/m)e−γ|t| is sym-
metric in time (check it). Its Fourier transform is Ĉ(ω) = (2kBT/m)γ/(γ2 +
ω2) and comparison with R̂(ω) gives the fluctuation-dissipation theorem

�R̂(ω) =
ω

2γkBT
Ĉ(ω)

In order to see the equivalence of this with the form (2.125), one notes that

2�R̂(ω) =
1
i

∫ ∞

0

dt
(
eiωt − e−iωt

)
R(t)

where the lower integration limit comes from the causality condition R(t −
t′) = 0 for t < t′. In the second term, one now changes t �→ −t and defines the
analytic continuation R(−t) �→ R(t) for t > 0. On the other hand, rewriting
ωĈ(ω) = i

∫
R
dt eiωt∂tC(t) and comparing with the above form of the FDT

leads back to (2.125), if one further scales γkB
!= 1.

Lastly, since x(t) = x(0) +
∫ t

0
dt′ v(t′) (arrange for x(0) = 0) one has for

the diffusion constant

D = lim
t→∞

〈x2(t)〉
2t

= lim
t→∞

1
t

∫ t

0

dt′
∫ t′

0

dτ 〈v(τ)v(0)〉 =
∫ ∞

0

dτ 〈v(τ)v(0)〉 = Ĉ(0)

where the limit t → ∞ of the double integral was estimated by using
l’Hôpital’s rule. From this Einstein’s expression of the diffusion constant is
recovered.

8 The full Hamiltonian is H = H0 +
∫
dt h(t)φ(t) whereas the average order-

parameter is given by a functional integral

〈φ(t)〉 =
1
Z

∫
Dφ φ(t)e−H/T
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where Z is the partition function. Physically, this is justified if the relaxation
time of the system is small compared to the time-scale on which h(t) is varied.
The announced result follows by straightforward functional differentiation
and is equivalent to the FDT (2.121).

9 The proof of the commutator identity is straightforward via induction and
will not be detailed here. Then, on one hand,

eitL0A =
∞∑

�=0

(it)�

�!
L�

0A =
∞∑

�=0

1
�!

(
it
�

)� �∑
k=0

(
�
k

)
(−1)�−kHkAH�−k

where the iterated commutator (�L0)�A was used. On the other hand,

eiHt/�Ae−iHt/� =
∞∑

k=0

∞∑
m=0

(−1)m

k!m!

(
it
�

)k+m

HkAHm

which after a change of variables � = k+m reduces to the above expression.

10 The verification of the hermiticity of L with respect to the scalar prod-
uct on V amounts to the straightforward check that S(LA,B) = S(A,LB).
Clearly, for any pair of hermitean operators A,B : V → V one has

(
AB

)† =
BA for the natural definition of the adjoint operator. Then the assertion
follows by expanding the exponential and term-wise application of (2.122).

11 Starting from (2.123), recognise that for t → ∞ and local operators A
and B, one should have, for widely separated time, the asymptotic relation
〈A(−i�β)B(t)〉0 � 〈A(−i�β)〉0〈B(t)〉0 = 〈A(0)〉0〈B(0)〉0 and the last step
follows from time-translation-invariance. Since β ≤ 1/T , the limit � → 0 can
now be taken and this leads to the assertion.

12 Straightforward consequence of (2.129).

13 Close to equilibrium, the dynamical scaling form (2.180) of the correla-
tion function gives, via the fluctuation-dissipation theorem, the instantaneous
(and spatially averaged) response function

R(t; τ) = − 1
T

∂

∂t

∫
Rd

dr C(t, r; τ) = |τ |−γ+νz R(t|τ |νz)

where R is a scaling function. The real and imaginary parts of the alternating
susceptibility are now obtained from (see exercise 12)

χ′(ω, τ) =
∫ ∞

0

dt′ cos(ωt′)R(t′; τ)

� |τ |−γ

∫ ∞

0

dv R(v)
(
1 + O(ω2)

)
∼ |τ |−γ
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χ′′(ω, τ) =
∫ ∞

0

dt′ sin(ωt′)R(t′; τ)

� ω|τ |−γ−νz

∫ ∞

0

dv vR(v)
(
1 + O(ω2)

)
∼ ω|τ |−γ−νz .

See [207, 206] for confirmations of these, in the context of non-equilibrium
thermodynamics (and within a mean-field approximation).

14 The single-particle generators, when acting on scalar fields with scaling
dimension x = ∆ = ∆, are given by Xα = α ·∇+ x

d∇ ·α, where α = α(r) is
either a translation (generators �−1, �̄−1), a rotation (i(�0 − �̄0)), a dilatation
(�0+�̄0) or a special conformal transformation eq. (2.147) (�1, �̄1). From these,
n-particle generators are readily written down.

15 Because of the factorised structure, it is enough to check that the z-
dependent and the z̄-dependent factors satisfy separately the projective con-
formal Ward identities. Since for scalar fields, one may use rotation-invariance
to bring the three points into the plane, and furthermore ∆i = ∆i, the ex-
tension to d ≥ 2 is immediate and we have for the two- and three-point
functions

〈φ1(r1)φ2(r2)〉 = C12 |r1 − r2|−2x1 δx1,x2

〈φ1(r1)φ2(r2)φ3(r3)〉 =

C123 |r1 − r2|−(x1+x2−x3) |r2 − r3|−(x2+x3−x1) |r3 − r1|−(x3+x1−x2)

16 If one defines P̂ := P0 · 1 + K̂ such that P0 ≥ maxa

∑
b Kab, then P̂ is

positive definite. Then, where σ = (σ1, . . . , σN )

Z = e−NP0/2 2−N ∑
{σ}

exp
(

1
2
σP̂σ

)
.

Under a change of variables y = s + Q̂−1σ, one has yQ̂y = sQ̂s + 2s · σ +
σQ̂−1σ and with the choice Q̂ = P̂−1 = (P0 · 1 + K̂)−1, it follows

(2π)N/2(det P̂ )1/2 = exp
(
−1

2
σP̂σ

)∫ ∞

−∞
dN s exp

(
−1

2
sQ̂s −

N∑
a=1

saσa

)

and consequently

Z = e−f02−N ∑
{σ}

∫ ∞

−∞
dNs exp

⎡⎣−∑
(a,b)

′
Qabsasb − 1

2

∑
a

Qaas
2
a −

∑
a

saσa

⎤⎦ ,
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where a �= b in the sum and e−f0 = e−NP0/2 (2π)−N/2(det P̂ )−1/2 is a smooth
background term. Carrying out the sum, one has

Z = e−f0

∫ ∞

−∞
dNs exp

⎡⎣−∑
(a,b)

′
Qabsasb −

∑
a

(
1
2
Qaas

2
a − ln cosh sa

)⎤⎦ (S.6)

The first term in (S.6) describes the interactions between the continuous
spin variables s, related to the original interaction matrix K̂ via −P 2

0 Q̂ =
−P0 · 1 + K − P−1

0 K̂2 + P−2
0 K̂3 + · · ·. The second term in (S.6) is a weight

factor w(sa) = 1
2Qaas

2
a − ln cosh sa = 1

2 (Qaa − 1)s2a + 1
12s

4
a + · · ·. If K̂ de-

scribes nearest-neighbour interactions, the higher powers of K̂ are suppressed
with powers of P0. In a formal continuum limit sa �→ φ(r), the interactions
described by K̂ will create a leading term ∼ (∂µφ)2. At least close to the
upper critical dimension dc = 4, the reader should show by standard power-
counting arguments that all other terms are irrelevant. Hence the partition
function becomes formally a functional integral Z ∼

∫
Dφ e−S[φ] with the

Landau-Ginsburg action S[φ] =
∫
dr

[
1
2 (∇φ)2 + m2

2 φ2 + g
4!φ

4
]
.

17 The Lagrangian density is L = 1
2

(
∂µφ

)2 where ∂µ = ∂rµ
, µ = 1, . . . , d.

The classical equations of motion are ∂µ∂
µφ = 0. In Euclidean space, the

canonical energy-momentum tensor is given by [648, 168]

T̃µν = ∂µφ
∂L

∂ (∂νφ)
− δµνL = ∂µφ∂νφ− 1

2
δµν

(
∂σφ

)2
While this is symmetric T̃µν = T̃νµ and conserved ∂µT̃µν = 0 (the equations
of motion must be used), T̃ is in general not traceless, since

T̃ µ
µ =

(
1 − d

2

)(
∂µφ

)2 =
(

1 − d

2

)[
∂µ
(
φ∂µφ

)
− φ∂µ∂

µφ
]

where the last term vanishes because of the equations of motion but the first
one is a divergence and non-vanishing if d �= 2. Such terms were neglected
in the derivation of the canonical energy-momentum tensor. An improved
energy-momentum tensor, which is symmetric, conserved and traceless, reads

Tµν = ∂µφ∂νφ− 1
2
δµν

(
∂σφ

)2 +
1
4
d− 2
d− 1

(δµν∂σ∂
σ − ∂µ∂ν)φ2

18 We write r = (r‖, r⊥) = (u, v) or z = u + iv such that the boundary
is at v = 0 and the system is defined for v ≥ 0 only. From the projective
conformal transformations, only the diagonal subalgebra 〈�−1+�−1, �0+�0, �1+
�1〉 remains. Imposing conformal invariance leads to the following projective
Ward identities for the two-point function G = 〈φ1(u1, v1)φ2(u2, v2)〉 of two
quasiprimary scaling operators φ1,2 with scaling dimensions x1,2:
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2∑
i=1

[
∂

∂ui

]
G = 0

2∑
i=1

[
ui

∂

∂ui
+ vi

∂

∂vi
+ xi

]
G = 0

2∑
i=1

[(
u2

i − v2
i

) ∂

∂ui
+ 2uivi

∂

∂vi
+ 2xiui

]
G = 0.

Because of translation-invariance parallel to the surface, one has

G = G(u; v1, v2),

with u = u1 − u2 and the two other identities become

u
∂G

∂u
+ v1

∂G

∂v1
+ v2

∂G

∂v2
+ (x1 + x2)G = 0(

v2
2 − v2

1

) ∂G
∂u

+ uv1
∂G

∂v1
− uv2

∂G

∂v2
+ u(x1 − x2)G = 0.

Using the methods of characteristics [373] or the method outlined in exer-
cise 1, the general solution

G(r1, r2) = v−x1
1 v−x2

2 Φ12

(
(u1 − u2)2 + v2

1 + v2
2

v1v2

)
is readily found, where Φ12 remains an undetermined scaling function. In
contrast to the bulk result (2.159), there is no constraint on the scaling di-
mensions x1 and x2 [270].

19 The logarithmic transformation w = L
π ln z maps the upper half-plane

onto the strip with free boundary conditions. The remainder of the argument
is based on the definition of the surface critical exponents.

Problems of Chapter 3

20 The solution of the mean-field equation of motion (3.47)

λ−1∂t�(t) = τ�(t) − g�(t)2 ,

is found by direct integration and reads

�(t) =
τ

g + (τ�0 − g) exp (−λτt)
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for τ �= 0. The initial order-parameter at t = 0 is denoted by �0. Asymptoti-
cally (t � 1/λ|τ |) the order-parameter behaves as

�(t)
∣∣
τ<0

∼ −τ
(
g − τ

�0

)−1

eλτt

�(t)|τ>0 ∼ τ

g
+

τ

g2

(
g − τ

�0

)
e−λτt .

Apart from criticality (τ �= 0), the steady-state solutions � = τ/g and � = 0
are approached exponentially, independent of the initial value �0. The asso-
ciated correlation (relaxation) time

ξ‖ = (λ|τ |)−1 . (S.7)

diverges at the critical point. At the critical point, the order-parameter decays
as

�(t) =
1

�−1
0 + λgt

−→
t→∞

1
λgt

21 The steady-state order-parameter is given by

�s(τ, h) =
τ

2g
+

√
h

g
+
(
h

2g

)2

.

Small deviations of the order-parameter δ�(r, t) = �(r, t)− �s(τ, h) obey the
equation of motion

λ−1∂tδ�(r, t) = [τ − 2g�s(τ, h)] δ�(r, t) + ∇2δ�(r, t) + O(δ�2) . (S.8)

In Fourier space, small deviations with vector k decay as

λ−1∂t δ�(k, t) = −
[
k2 + ξ−2

⊥
]
δ�(k, t) (S.9)

with the characteristic length scale

ξ⊥ =
(
4gh + τ2

)−1/4

leading to the mean-field exponent ν⊥,MF = 1/2. The temporal correlation
length ξ‖ is obtained by the solution of (S.9)

δ�(k, t) ∝ e−t/ξ‖

with

ξ‖(k) =
1

λ(k2 + ξ−2
⊥ )

∣∣∣∣
k=0

=
ξ2
⊥

λ
, (S.10)
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Fig. S.3 Vector field
(m(t), ṁ(t)) for the re-
laxation of a simple magnet
with a non-conserved order-
parameter for (a) ordered
phase with λ2 > 0 (T < Tc)
and (b) disordered phase
with λ2 < 0 (T > Tc).
The fixed points m∞ are
shown, where filled points
are stable and open points
are unstable.
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yielding zMF = 2 and ν‖,MF = 1, respectively. Equation (S.10) shows that
different modes of the order parameter decay on different correlation times.
In the case of the homogeneous order parameter (k = 0) we recover (S.7).

22 The stationary solutions are m∞ = 0,±
√

3λ. In order to analyse the
stability of these, consider the vector field (m(t), ṁ(t)) associated to the
mean-field equation of motion, illustrated in Fig. S.3. Letting δm(t) = m(t)−
m∞, a fixed point of the equation dm

dt = f(m) is stable, if f ′(m∞) < 0 and is
unstable, if f ′(m∞) > 0. Clearly, for λ2 > 0 the fixed points m∞ = ±

√
3λ are

stable, and the sign of m0 decides to which fixed point the system evolves.
On the other hand, for λ2 < 0 the only stable fixed point is m∞ = 0. Unless
m0 = 0, there is for large times an exponential relaxation m(t) − m∞ ∼
e−t/τrel , with the finite relaxation time

1
τrel

=
{

3|λ2| ; if λ2 < 0
6λ2 ; if λ2 > 0

23 (i) Using the techniques and notations of appendix E, the mean particle-
density is �(t) = P•(t). On a one-dimensional lattice, one has from the site-
approximation (simple mean-field)

�̇ = − �︸ ︷︷ ︸
free decay

+ λ�2(1 − �)︸ ︷︷ ︸
reaction •◦•−→•••

+
λ

2
�(1 − �)2 · 2︸ ︷︷ ︸

2 reactions •◦◦−→••◦
= (λ − 1)�− λ�2

into which the diffusion constant D does not enter explicitly. The stationary
solutions are �∞ = 0, 1 − λ−1. As in exercise 22, by plotting the vector field
(�̇, �) one easily sees that the absorbing fixed point �∞ = 0 is stable for λ < 1
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while the active fixed point �∞ = 1 − λ−1 is stable for λ > 1. Therefore the
critical point (or the bifurcation) occurs at λc = 1. Explicit integration of
the simple mean-field equation gives

�(t) =

⎧⎪⎨⎪⎩
�∞

(
1 − e−�∞λ(t−t0)

)−1 ; if λ > 1
�0

1 + �0t
; if λ = 1

�1e
−(1−λ)t ; if λ = 1

where t0, �0, �1 are constants. The long-time behaviour is

�(t) �

⎧⎨⎩
�∞(1 + e−t/τ ) , 1/τ = λ− 1 ; if λ > 1
t−1 ; if λ = 1
�1e

−t/τ ′
, 1/τ ′ = 1 − λ ; if λ < 1

and the reader may identify the mean-field exponents from these expressions.
(ii) Working with the mean particle-density �(t) = P•(t) and the mean pair-
density u(t) = P••(t), and using the abbreviations v = � − u = P•◦ = P◦•
and w = 1 − 2� + u = P◦◦, the relevant reactions and their rates of the
pair-approximation are listed in the following table, including the symmetry
factors. Reactions which change neither N• nor N•• can be discarded.

event rate ∆N• ∆N••
• ◦ • → • • • λv2/(1 − �) 1 2
• ◦ ◦ → • • ◦ 1

2λvw/(1 − �) 1 1 ×2
• • • → • ◦ • u2/� −1 −2
• • ◦ → • ◦ ◦ uv/� −1 −1 ×2
◦ • ◦ → ◦ ◦ ◦ v2/� −1 0
• • ◦◦ → • ◦ •◦ Duvw/(�(1 − �)) 0 −1 ×2
◦ • ◦• → ◦ ◦ •• Dv3/(�(1 − �)) 0 1 ×2

Adding the various contributions, one obtains the equations of motion of the
contact process in the pair-approximation

�̇ = λ(�− u) − �

u̇ = λ
(�− u)(1 − u)

1 − �
− 2u− 2D

(�− u)(u− �2)
�(1 − �)

We observe the following. (a) For D = 0, the stationary solution is �∞ =
(λ−2)/(λ−1) and u∞ = (λ−2)/λ, hence λc = 2 in the pair-approximation.
This is already closer to the simulational result λc = 3.29785 . . . than the
site-approximation. (b) In the other extreme limit D → ∞, a stationary
solution u̇ = 0 is only possible if either u = �, corresponding to the trivial
solution, or else u = �2. Then �̇ = λ(� − �2) − � and one is back to the
site-approximation. (c) In the intermediate case, the stationary densities are
related, viz. u∞ = λ−1

λ �∞ which further leads to
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�∞ =
(λ− 1)(1 + 2D/λ) − 1

(λ− 1)(1 + 2D/λ)
≤ 1

The positive zero of �∞(λ) gives the D-dependent critical point

λc(D) = 1 −D +
√

1 +D2 � 1 +
1

2D
+ . . .

As in the site-approximation, the approach to the steady-state is exponential
if λ �= λc(D) and �(t) ∼ u(t) ∼ t−1 at the critical point. This may be easily
checked by solving the above equations numerically.

24 The rate equation for the mean particle-density is

�̇ = λ�2(1 − �) − �

with the stationary solutions �∞ = 0, 1
2 (1±

√
1 − 4/λ ). The last two solutions

only exist for λ ≤ 4. Since �∞ = 0 is always stable, a state with a density
�(t) � 1

2 jumps to zero when λ is increased beyond the spinodal line λsp =
4. The reader should draw the vector field himself in order to analyse the
stability more fully. We point out that in this simple model, the spinodal line
λsp coincides with the critical point which, however, is not true in general
(exercise 30 below gives an example).

25 Since we only have nearest-neighbour interactions, the Liouvillian may
be decomposed as L =

∑
n Ln,n+1 in terms of two-site operators Ln,n+1. In

a natural basis, this may be written as

Ln,n+1 =

⎛⎜⎜⎝
0

DR −DL

−DR DL

0

⎞⎟⎟⎠
Alternatively, it is useful to re-express this in terms of the unit matrices

E00 =
(

1 0
0 0

)
, E01 =

(
0 1
0 0

)
, E10 =

(
0 0
1 0

)
, E11 =

(
0 0
0 1

)
and one has in a tensor-product representation

Ln,n+1 = −DR

(
E01 ⊗ E10 − E11 ⊗ E00

)
−DL

(
E10 ⊗ E01 − E00 ⊗ E11

)
Here, we use the correspondence |∅〉 =

(
1
0

)
and |A〉 =

(
0
1

)
. Using the re-

lationships with the Pauli matrices σx,y,z, namely E01 = σ+, E10 = σ−,
E00 = 1

2 (1 + σz) and E11 = 1
2 (1 − σz), where σ± := 1

2 (σx ± iσy), the Liou-
villian becomes, for periodic boundary conditions
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L = −
L∑

n=1

[
DRσ

+
n σ

−
n+1 +DLσ

−
n σ

+
n+1 +

DR +DL

4
(
σz

nσ
z
n+1 − 1

)
+
DR −DL

4
(
σz

n − σz
n+1

)]
(S.11)

In order to see the relationship with the Heisenberg model, consider the
similarity transformation generated by

U := exp

⎛⎝πg

L∑
j=1

jσz
j

⎞⎠ , Uσ±
j U

−1 = exp(±2πgj)σ±
j

Next, we introduce a parameter q by setting

DR

DR +DL
=

q

q + q−1
,

DL

DR +DL
=

q−1

q + q−1

and if one further lets q = e2πg, one has

L′ = ULU−1

= −
√
DRDL

L∑
n=1

[
σ+

n σ
−
n+1 + σ−

n σ
+
n+1 +

q + q−1

4
(
σz

nσ
z
n+1 − 1

)
+
q − q−1

4
(
σz

n − σz
n+1

)]
= −D

2

L∑
n=1

[
σx

nσ
x
n+1 + σy

nσ
y
n+1 +∆

(
σz

nσ
z
n+1 − 1

)
+
q − q−1

2
(
σz

n − σz
n+1

)]
This is indeed the familiar XXZ Heisenberg Hamiltonian with anisotropy
∆ = 1

2 (q+ q−1) and global diffusion constant D =
√
DRDL . From the above

similarity transformation one has the boundary conditions σ±
L+1 = q∓Lσ±

1

and σz
L+1 = σz

1 [281] and the surface field generated by the last term vanishes.
In the case of biased diffusion (q �= 1), the choice of the boundary con-

ditions is important for the critical behaviour [402] and can be worked out
from the low-energy spectrum of L, for example using the Bethe ansatz, see
[260, 281]. Indeed, for a periodic ring and any value of q, the low-lying spec-
trum becomes continuous in the L → ∞ limit, which physically corresponds
to particles freely diffusing along the ring, with a mean velocity ∼ ln q. On
the other hand, for free boundary conditions (open chain), there is a finite
gap between the ground state and the lowest excited state even in the L → ∞
limit. Physically, this corresponds to the particles ‘piling up’ at one end of
the open chain, with a density-profile depending on q.

Finally, note that the unbiased case q = 1 is also referred to as the sym-
metric exclusion process, whereas the case q �= 1 is often called the asym-
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metric exclusion process. In these models [565], one considers more gen-
eral boundary conditions, such that particles may enter or leave at both ends.
See [147] for a recent Bethe ansatz treatment of the asymmetric exclusion
process with the most general open boundary conditions.

26 Because of the nearest-neighbour interactions, the Liouvillian is com-
pletely characterised by its two-body form, where we have also set D = 1

Ln,n+1 =

⎛⎜⎜⎝
0 −δ −δ −2α
0 1 + δ −1 −γ
0 −1 1 + δ −γ
0 0 0 2(α+ γ)

⎞⎟⎟⎠ . (S.12)

Consider the following similarity transformation

L̃ = BLB−1 , B =
L⊗

j=1

Bj , (S.13)

where Bj acts only on the site j. If F is a physical observable, its average
transforms as follows

〈F 〉(t) = 〈s|Fe−Lt |P0〉 = 〈s| F̃ e−L̃t
∣∣∣P̃0

〉
with the transformed observable F̃ = FB−1 and initial state

∣∣∣P̃0

〉
= B |P0〉.

The form of the single-site matrix B is found by considering a single-site
state, which must be of the form |�〉 =

(
1 − �

�

)
, with 0 ≤ � ≤ 1. Since also

in the transformed state B |�〉, the probabilities must sum to unity, it follows
∀�: (b11 + b12)(1 − �) + (b21 + b22)� = 1, hence

B =
(

b1 1 − b2
1 − b1 b2

)
and consequently 〈s|B = 〈s|, as it should be. In what follows, consider an
uncorrelated initial state |P0〉 =

⊗L
j=1

(
1 − �j

�j

)
with 0 ≤ �j ≤ 1 for all sites

j = 1, . . . , L.
A similarity transformation S �→ S̃ between two systems, each charac-

terised by its Liouvillian L and its densities {�j}j is called a stochastic
similarity transformation (SST) if (i) (S.13) holds true with a non-singular
B and (ii)

∣∣∣P̃〉 = B |P 〉 is again a probability distribution for each probability
distribution |P 〉. The particle-density aj at the site j is represented by the
matrix

(
0 0
0 1

)
j

. Then, for the Liouvillian (S.12), explicit matrix multiplica-

tions show that:
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1. for δ > 2α + γ there is an SST such that D̃ = D, and the correlators
transform as

Cn(t, {r};α, γ, δ, �) =
(
δ − α− γ

δ − 2α− γ

)n

Cn(t, {r}; 0, α+ γ, δ,
δ − 2α− γ

δ − α− γ
�)

such that the transformed annihilation rate α̃ = 0.
2. on the other hand, for δ < 2α+ γ, one has

Cn(t, {r};α, γ, δ, �) =
(
δ − α− γ

δ − 2α− γ

)n

Cn(t, {r};α+ γ, 0, δ,
2α+ γ − δ

2α+ 2γ − δ
�)

and now the transformed coagulation rate γ̃ = 0.

These results imply that the universal aspects of the dynamics are inde-
pendent of the branching ratio α/γ between annihilation and coagulation
reactions. Since the densities between these processes are also transformed,
the precise relationship between coagulation and annihilation configuration
must be specified. For the map between pure annihilation (γ = 0) and pure
coagulation (α = 0) is has been shown [92] that a configuration of the pure
annihilation process is turned into a configuration of pure coagulation by
randomly eliminating half of the particles, but without stretching the space.

See [276, 275, 565] for systematic discussions of SSTs for two-state models
and their relationship to 1D systems treatable with free-fermion methods.

27 Recall first the construction of the field-theory, following [186, 187]. The
creation and destruction of particles is conveniently described in a Fock space
formalism, where the state vector becomes

|P (t)〉 =
∑
{σ}

p(n1, n2, . . . ; t)
(
a†1

)n1 (
a†2

)n2 · · · |0〉

where a†i creates a particle at site i and p(n1, n2, . . . ; t) is the probability of
having n1 particles at site 1, n2 particles at site 2 and so on at time t. In the
case when only diffusion and annihilation occur, the Hamiltonian is

H = D
∑
(i,j)

(a†i − a†j) (ai − aj) − 2α
∑

i

(
a2

i − a†
2

i a
2
i

)
→

∫
dr

[
D(∇a†)(∇a) − 2α

(
a2 − a†

2
a2
)]

,

where a formal continuum limit is taken. It is common to perform a shift
a∗ = 1 + ã and the non-equilibrium action becomes,

J [ã, a] =
∫

dt dr ã
(
∂t −D∇2

)
a

+
∫

dt dr dr′ V (|r − r′|) [ã(r)ã(r′) + λã(r)] a(r)a(r′)
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such that for λ = 1 only coagulation and for λ = 2 only annihilation reactions
occur. Following [31], consider the potentials Vα,γ for pure annihilation and
coagulation, respectively, to be of the form Vα(r) = αV (r) and Vγ(r) =
γV (r). Then λ = 2α+γ

α+γ . Thus, through the transformation a → λa, ã → λ−1ã,
the coagulation-annihilation model can be reduced to pure coagulation and
the results of exercise 26 are recovered.

The field-theoretical renormalisation-group treatment of the more general
process kA → ∅ with diffusion of single particles gives for the long-time
behaviour of the mean particle density � = 〈a〉 [414]

�̄(t) ∼

⎧⎪⎨⎪⎩
(Dt)−d/2 ; if d < dc(
ln t/(Dt)

)1/(k−1) ; if d = dc

(Dt)1/(k−1) ; if d > dc

with dc = 2/(k−1). The amplitudes are universal. They have been calculated
to second order in ε = dc−d [414] and rigorously estimated for k = 2 [78, 79].
See [544] for a field-theoretical treatment with an additional creation ∅ → A.

28 The Liouville operator is Lαβ = −wαβ

(
1 − δαβ

)
+ δαβ

∑
γ wγα and by

hypothesis, the transition rates wαβ = wβ→α satisfy detailed balance. If one
chooses a diagonal transformation matrix Vαβ = vαδαβ, then the transformed
matrix

Mαβ :=
(
VLV−1

)
αβ

= −vα

vβ
wαβ

(
1 − δαβ

)
+ δαβ

∑
γ

wγα.

This is symmetric for the choice vα =
(
P eq

α

)−1/2
.

29 It is useful to rewrite the rates (3.30) of the Domany-Kinzel automaton
in terms of binary reaction rates of particles of a single species A. Denoting
the empty and occupied state of a single site by ◦ and •, respectively, one
has

◦ ◦
• = 0 ; • ◦

• = p1 ; • •
• = p2

In Table S.1 we collect several notations commonly used in the literature for
the rates of reaction-diffusion processes involving only two-site interactions.
Here, we shall restrict ourselves furthermore to the case with left-right sym-
metry, that is, with the notation of [275, 271], DR = DL = D, βR = βL = β,
γR = γL = γ, δR = δL = δ and so on. Since the evolution of a site only
depends on the state of its neighbours, one may write schematically (where
the upper line indicates the state of the pair at the initial time and the lower
line the one at the final time)
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diffusion to the left ◦• → •◦ DL a32 w32 w1,1(1, 0) Γ 01
10

diffusion to the right •◦ → ◦• DR a23 w23 w1,1(0, 1) Γ 10
01

pair annihilation •• → ◦◦ 2α a14 w14 w1,1(0, 0) Γ 11
00

coagulation to the right •• → ◦• γR a24 w24 w1,0(0, 1) Γ 11
01

coagulation to the left •• → •◦ γL a34 w34 w0,1(1, 0) Γ 11
10

death at the left •◦ → ◦◦ δL a13 w13 w1,0(0, 0) Γ 10
00

death at the right ◦• → ◦◦ δR a12 w12 w0,1(0, 0) Γ 01
00

decoagulation to the left ◦• → •• βL a42 w42 w1,0(1, 1) Γ 01
11

decoagulation to the right •◦ → •• βR a43 w43 w0,1(1, 1) Γ 10
11

birth at the right ◦◦ → ◦• νR a21 w21 w0,1(0, 1) Γ 00
01

birth at the left ◦◦ → •◦ νL a31 w31 w1,0(1, 0) Γ 00
10

pair creation ◦◦ → •• 2σ a41 w41 w1,1(1, 1) Γ 00
11

Rates defined after reference [275] [564] [565] [13] [519]

Table S.1 Two-sites reaction-diffusion processes of a single species and their rates as
denoted by various authors. After [271].

• ◦
• =

• ◦
• ◦ +

• ◦
• • =

• ◦
◦ • +

• ◦
• •

by summing over the possible states of the right or left nearest neighbours.
This implies p1 = (1−D− β− δ) +β = D+ β. Similar relations hold for the
other rates and one obtains

p1 =
1
2
(1 + β − δ) , p2 = 1 − 2α− γ

and the diffusion rate is constrained to be 2D = 1 − β − δ (and furthermore
νR = νL = σ = 0). Therefore, on the level of the site-approximation, the
mean density a(t) satisfies

ȧ = (2β − δ)a− 2(α+ γ + β)a2

Upon identification of parameters, this is the same structure as for the mean-
field theory of directed percolation, see exercise 23. On the other hand, the
above identification suggests that for many choices of reaction rates in typi-
cal reaction-diffusion systems, there is a phase-transition in the steady-state
which might be in the same universality class as directed percolation.

30 One must distinguish between an attempted deposition of a CO radical
on a single site (probability y) and of an O2 molecule on two sites (probability
1− y). If one first considers the restriction of the ZGB model to a 1D lattice,
the CO adsorption is controlled by the state of the two neighbours of the
selected site and the O2 adsorption is also controlled by the two sites left and
right of the two selected sites. The mean-field rates are then as follows.
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1D event rate ∆NO ∆NCO

O2 +2∅ → 2 O (1 − y)�2
∅(1 − �CO)2 2 0

O2 +2∅ → O + ∅ + CO2 (1 − y)�2
∅(1 − �CO)�CO 1 -1 ×2

O2 +2∅ → 2∅ + 2CO2 (1 − y)�2
∅�

2
CO 0 -2

CO + ∅ → CO y�∅(1 − �O)2 0 1
CO + ∅ → ∅ + CO2 y�∅(1 − (1 − �O)2) -1 0

Here the underlined states represent the adsorbing surface, �∅, �CO, �O

are the concentrations of vacant sites, of CO and of O on the surface, and
∆NO, ∆NCO give the change in the number of O or CO units on the surface
after one time step. The last column gives an eventual symmetry factor.
Writing a := �O and b := �CO, hence �∅ = 1 − a − b, one has the 1D
equations of motion

ȧ = 2(1 − y)(1 − a− b)2(1 − b) − y(1 − a− b)(1 − (1 − a)2)
ḃ = y(1 − a− b)(1 − a)2 − 2(1 − y)(1 − a− b)2b (S.14)

On the other hand, in the full 2D model, the state of the four neighbours of
the site selected for CO adsorption and the six neighbours of the pair of sites
selected for O2 adsorption must be considered. The rates are

2D event rate ∆NO ∆NCO

O2 +2∅ → 2 O (1 − y)	2
∅(1 − 	CO)6 2 0

O2 +2∅ → O + ∅ + CO2 (1 − y)	2
∅(1 − 	CO)3(1 − (1 − 	CO)3) 1 -1 ×2

O2 +2∅ → 2∅ + 2CO2 (1 − y)	2
∅(1 − (1 − 	CO)3)2 0 -2

CO + ∅ → CO y	∅(1 − 	O)4 0 1
CO + ∅ → ∅ + CO2 y	∅(1 − (1 − 	O)4) -1 0

which finally yields the following 2D equations of motion

ȧ = 2(1 − y)(1 − a− b)2(1 − b)3 − y(1 − a− b)(1 − (1 − a)4)
ḃ = y(1 − a− b)(1 − a)4 − 2(1 − y)(1 − a− b)2(1 − (1 − b)3)

We shall concentrate here on the 1D case, since its analysis is more simple
and the results are qualitatively similar to the 2D case. Consider the steady-
state, where ȧ = ḃ = 0. Taking the difference of (S.14), one has the stationary
density of the empty sites Z := �∅,st = 1

2y/(1 − y). Then the other equation
gives in the steady-state the condition a2 − a + Z = 0, from which the
stationary densities follow

a =
1
2
± 1

2

√
1 − 4Z , b =

1
2

+ Z ∓
√

1 − 4Z .

These are real-valued for Z ≤ 1
4 , hence Zsp = 1

4 is the spinodal line. There-
fore y ≤ ysp = 2Zsp/(1 + 2Zsp) = 1

3 and one expects a first-order transition
at some yc ≤ 1

3 . In order to find yc, one must consider the (linear) stabil-
ity of the possible stationary solutions, namely (i) �∅,st = 0 or equivalently
a = 1 − b and (ii) a = 1

2 (1 −
√

1 − 4Z ) and (iii) a = 1
2 (1 +

√
1 − 4Z ). The
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eigenvalues of the Jacobian of (S.14) of the first solution are 0 and y(1− b2),
hence this one is stable, if b ≥ 1/

√
2. For the second one, a straightforward

numerical calculation gives stability for y < yc � 0.27838 . . . and we note
that a(yc) � 0.2610 . . . and b(yc) � 0.4539 . . .. The third solution is never
stable. Therefore, there is a first-order transition at y = yc where the order-
parameter �∅,st jumps from � 0.285 to 0. The spinodal line is at ysp = 1

3 .
For the 2D case, one finds similarly that, again, Z = �∅,st = 1

2y/(1 − y)
and has the further condition (b+Z)4 +(1− b)3 −1 = 0. The spinodal line is
now at Zsp � 0.638986 . . ., hence ysp � 0.561013 . . ., whereas the first-order
transition occurs at yc � 0.4787 . . .. This mean-field estimate is not too far
from the simulational estimate yc � 0.525.

31 (i) Free boundary conditions. Obviously, Na(1) = 2 and Na(2) = 3. Fix
the leftmost site. If it is occupied, its neighbour must be empty in order to
obtain a steady-state and it remains to consider an open chain of L− 2 sites.
Otherwise, if the leftmost site is empty, consider the remaining open chain
of L − 1 sites. Hence we have Na(L) = Na(L − 2) + Na(L − 1) which is the
recursion relation of the Fibonacci numbers FL. Therefore,

Na(L) = FL+1 =
gL+2
+ − gL+2

−
g+ − g−

� 1.17gL
+

where g± = (1 ±
√

5)/2 are the golden numbers.
(ii) Periodic boundary conditions. Fix one of the sites. If that site is oc-

cupied, both its left and right nearest neighbours must be empty and we are
left with an open chain of L− 3 sites. But if the site we have fixed is empty,
we are left with an open chain of L− 1 sites. Therefore

N (per)
a (L) = Na(L − 3) +Na(L− 1) = gL

+ + gL
− � gL

+.

In general, recursions of the form encountered here may be analysed by
considering the associated generating function G(z) :=

∑∞
n=0 Na(L)zL. The

recursion relation then implies a linear equation for G(z), which for the case
at hand gives, for free boundary conditions G(z) = z(2+ z)/(1− z− z2). The
coefficients of rational generating functions such as G(z) may now be readily
found by applying the following
Lemma: Let P (z) be an entire function and Q(z) be polynomials of order q
such that Q(z) = q0(1 − zρ1) · · · (1 − zρq), where the ρi are pairwise distinct
for i = 1, . . . , q and q0 is a constant. Then

f(z) =
P (z)
Q(z)

=
∞∑

n=0

fnz
n , fn = −

q∑
j=1

ρn+1
j P (1/ρj)
Q′(1/ρj)

(S.15)

In [238, 274], this formula was proven under the additional conditions that
P (z) is a polynomial of order p and that p < q.
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Proof: Step 1: we first prove the assertion for P (z) = 1, that is, we show
that

1
Q(z)

= −
∞∑

n=0

⎡⎣ q∑
j=1

ρn+1
j

Q′(1/ρj)

⎤⎦ zn (S.16)

For P (z) = 1 we have, using Cauchy’s formula

fn =
1
n!
f (n)(0) =

1
2πi

∮
C

dw
f(w)
wn+1

=
1

2πi

∮
C′

du
un

uQ(1/u)

where we have set u = 1/w. The contour C is a circle around the origin with
a radius smaller than the convergence radius of f(z) and C′ encloses all the
points ρj , j = 1, . . . , q. The only singularities of u−1f(1/u) are the simple
poles located at u = ρj . If we concentrate on the singularity at u = ρ1, we have
uQ(1/u) = (u−ρ1)q0

∏q
j=2 (1 − ρj/u) such that the product is regular at u =

ρ1. On the other hand, the derivative Q′(1/ρ1) = −ρ1q0
∏q

j=2 (1 − ρj/ρ1).
Therefore, close to u � ρ1, we have

uQ(1/u) � −(u− ρ1)
Q′(1/ρ1)

ρ1

From the residue theorem and summing over all simple poles, (S.16) follows.
Step 2: Let now P (z) =

∑∞
n=0 pnz

n. Then, using (S.16)

f(z) =
P (z)
Q(z)

=
∞∑

n=0

∞∑
m=0

⎡⎣− q∑
j=1

ρm+1
j

Q′(1/ρj)

⎤⎦ pnz
n+m

=
∞∑

N=0

⎡⎣− q∑
j=1

ρN+1
j

Q′(1/ρj)

( ∞∑
n=0

ρ−n
j pn

)⎤⎦ zN

=
∞∑

N=0

⎡⎣− q∑
j=1

ρN+1
j P (1/ρj)
Q′(1/ρj)

⎤⎦ zN

and the proof of (S.15) is complete. �
We leave it to the reader to verify that the Fibonacci numbers Na(L) =

FL+1 can be recovered.

32 Analogously to the pair-contact process, one has for free boundary condi-
tions the recursion Na(L) = Na(L−1)+Na(L−2)+Na(L−3), together with
the initial conditions Na(1) = 2, Na(2) = 4 and Na(3) = 7. The generating
function is

G(z) =
∞∑

n=0

Na(L)zL =
z(2 + 2z + z2)
1 − z − z2 − z3
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From the determination of its simple poles and using the expansion lemma
(S.15) of the previous exercise, the first part of the assertion follows. For
periodic boundary conditions, we have

N (per)
a (L) = Na(L− 1) +Na(L − 3) + 2Na(L− 4)

from which the second part is established.

33 Since the strong embedding constraint is broken if some of the bonds
between nearest-neighbour occupied sites of the lattice animal are replaced
by contacts, one must ask when that is possible. For directed lattice animals,
replacing a bond by a contact is admissible if the animal contains closed
loops and each loop contains exactly one ‘final’ site, such that only one of the
two bonds leading to this final site can be replaced by a contact. Consider
a directed animal with c loops. Let g(c, k) be the number of ways one may
replace exactly k of the bonds by contacts. Clearly, g(c, k) = 0 if k > c and
g(c, 0) = 1 and g(c, 1) = 2c. For k ≥ 2, we have the recursion

g(c, k) = 2g(c− 1, k − 1) + g(c− 1, k)

and find the generating function, for all c ≥ 0

f(c; τ) :=
c∑

k=0

g(c, k)τk =
(
1 + 2τ

)c
.

On the square lattice, one has 2n = b+k+s, where b is the number of bonds,
k the number of contacts and s the solvent contact, that is the number of links
between an occupied site of the animal with its empty nearest neighbours.
In the strongly embedded case, one has k = 0. Then the Euler relation
c = b − n + 1 may be rewritten as c = n − s + 1 and the directed-animal
generating function becomes

Z =
∑
{A}

an,k,s x
nybτk

=
∑

{Astr}

′
an,0,s x

nys
(
1 + 2τ

)c

= (1 + 2τ)
∑

{Astr}

′
an,0,s

[
x(1 + 2τ)

]n ( y

1 + 2τ

)s

where A is any directed animal and Astr are the strongly embedded directed
animals. Up to a redefinition of the fugacity y and a constant prefactor,
Dhar’s model [163] is recovered.
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Problems of Chapter 4

34 The Janssen-deDominicis functional of directed percolation at zero field
is given by

J [ñ, n] = λ

∫
dt dr ñ

[
λ−1∂tn− (τ + ∇2)n −

√
gκ

2
(ñ− n)n

]
. (S.17)

In order to show that this functional is invariant under the rapidity-reversal

ñ(t, r) ←→ −n(−t, r) (S.18)

we consider the terms separately:

ñt∂tnt −→
t→−t

−ñ−t∂tn−t −→
RR

−nt∂tñt −→
PI

ñt∂tnt

−ñtrnt −→
t→−t

−ñ−trn−t −→
RR

−ñtrnt

−ñt∇2nt −→
t→−t

−ñ−t∇2n−t −→
RR

−nt∇2ñt −→
PI2

ñt∇2nt

−ñtg(ñt − nt)nt −→
t→−t

−ñ−tg(ñ−t − n−t)n−t −→
RR

−ñtg(ñt − nt)nt

where RR denotes a transformation according to the rapidity reversal and
PI indicates a partial integration.

35 We begin with a domain Ω of finite volume |Ω| < ∞ and shall eventually
consider the limit |Ω| → ∞ at the end. A useful auxiliary quantity is A(t) :=
|Ω|−1

∫
Ωdr �(t, r)2. Integrating (4.255), one has with Gauß’ theorem

∂t�̄ = −λA+
1

|Ω|

∫
∂Ω

dσ · ∇�︸ ︷︷ ︸
≤0 , since particles escape

≤ −λA.

Applying the Cauchy-Schwarz inequality, it follows that ∂t�̄(t) ≤ −λ�̄(t)2,
hence �̄(t) ≤ �0/(1 + �0λt) ≤ 1/(λt) and independently of the boundary
condition [53]. However, this upper bound may be too loose in certain cases.

Sharper bounds may be obtained by estimating A(t).7 From (4.255), it
follows 1

2∂t�
2 = D�∆� − λ�3. Integrating, we have for the case of Dirichlet

boundary conditions

∂tA(t) =
2D
|Ω|

∫
∂Ω

dσ · (�∇�)︸ ︷︷ ︸
=0

−2D
|Ω|

∫
Ω

dr (∇�)2 − 2λ
|Ω|

∫
Ω

dr �3

≤ −1
τ
A(t) − 2λA(t)3/2

7 From now on we implicitly assume that 	(t, r) ≥ 0, which can be justified rigorously
[575], but which is also physically reasonable, since 	 = 0 is an absorbing steady-state.
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with τ−1 = 2DC−1|Ω|−2/d and Poincaré’s and Hölder’s inequalities have
been used in the second and third term, respectively. This readily gives,
where A0 is a constant

A(t) ≤ A0e
−t/τ

[1 + 2λτA1/2
0 (1 − e−t/(2τ))]1/2

.

Now, a sharper upper bound on � is given by �̄(t) ≤ A(t)1/2 and a lower bound
is, since the above results imply �̄(t) → 0 for t → ∞, �̄(t) ≥ λ

∫∞
t dt′ A(t′).

Define the finite-size scaling limit

t → ∞ , τ → ∞ , such that z := t/(2τ) is kept fixed.

Then
1

ez − 1
≥ 2λτ�̄(t) ≥ 1

ez − 1
+ ln

(
1 − e−z

)
(S.19)

which is universal in the sense that the bounds on the scaling function do not
depend on the unknown constant C.

For systems evolving in such a large domain Ω that z � 1, both upper
and lower bounds in (S.19) are � z−1 and consequently the algebraic decay
�̄(t) � (λt)−1 becomes exact. On the other hand, for finite volumes and
large times such that z � 1, we have e−z ≥ 2λτ�̄(t) ≥ 1

2e
−2z leading to an

exponential decay. Since |Ω| ∼ Ld, where L is the typical linear size of the
domain Ω, the relaxation time τ ∼ L2, and the dynamical exponent z = 2,
which is natural for this kind of mean-field treatment.

In the case of Neumann boundary conditions, we have ∂t�̄ = −λA, from
which Poincaré’s and Hölder’s inequalities imply

∂tA(t) ≤ −1
τ
(A− �̄2) − 2λA3/2 (S.20)

Because of

∂t(A− �2) ≤ −1
τ
(A− �̄2) − 2λA3/2 − 2�̄∂t�̄

= −1
τ
(A− �̄2) − 2λA3/2 + 2λ�̄A

≤ −1
τ
(A− �̄2)

the variance α(t) := A(t)−�̄(t)2 satisfies 0 ≤ α(t) ≤ α0e
−t/τ , is exponentially

small and will merely make a negligible contribution to (S.20). Therefore,
for times t � τ , one has again, from identical upper and lower bounds,
�̄(t) � (λt)−1 and this time independently of whether the limit |Ω| → ∞ was
taken or not.
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In conclusion, in the limit |Ω| → ∞ the average density has the same
behaviour as found in the case of spatially homogeneous systems, for both
Dirichlet and Neumann boundary conditions. Remarkably, this rather slow
algebraic decay of �̄(t) remains valid for Neumann boundary conditions for
finite values of |Ω|, whereas for Dirichlet boundary conditions the particle
density decays exponentially if |Ω| < ∞ and t is large enough.

36 One writes En(t) = P (◦ · · · ◦︸ ︷︷ ︸
n

; t) = P ([n]; t) for the probability of

finding n consecutive empty sites. Since the average particle-density is
〈�〉(t) = �•P (•; t) + �◦P (◦; t) = P (•; t) = 1 − P (◦; t) = 1 − E1(t). Simi-
larly, since P (• ◦ · · · ◦︸ ︷︷ ︸

n

; t) + P (◦ ◦ · · · ◦︸ ︷︷ ︸
n

; t) = P (◦ · · · ◦︸ ︷︷ ︸
n

; t), one has P (•[n]; t) =

En(t)−En+1(t) and from P (•• [n−1]; t)+P (•◦ [n−1]; t)+P (◦• [n−1]; t)+
P (◦◦ [n−1]; t) = P ([n−1]; t) it follows that P (•• [n−1]; t)+P (◦• [n−1]; t) =
En−1(t) − En(t).

For deriving an equation of motion for En(t), notice that a change of the
configuration [n] = ◦ · · · ◦︸ ︷︷ ︸

n

can only arise through the boundaries. Therefore,

for n = 2, . . . , L, where the number of sites of the chain is L+ 1, one has

Ėn(t) = 2γP (• • [n− 1]; t) + 2DP (◦ • [n− 1]; t) − 2(β +D)P (•[n]; t)
γ=D
= 2D(En−1(t) − En(t)) − 2(β +D)(En(t) − En+1(t))
= 2D(En−1(t) + En+1(t) − 2En(t)) + 2β(En+1(t) − En(t)) (S.21)

For the last remaining case n = 1, one has

Ė1(t) = 2γP (••; t) − 2βP (•◦; t)

Since P (•◦) = E1 − E2 and P (••) = 1 − 2E1 + E2, it follows that if one
imposes the boundary condition E0(t) = 1 and for γ = D, (S.21) also holds
true for n = 1. A further boundary condition is obtained as follows: if one
has L+1 sites and at least a single particle (which can never disappear) then
the largest possible hole can have at most L sites and EL+1(t) = 0.

Physically, the condition D = γ means that if two particles land on the
same site, they react instantaneously such that one of them disappears from
the system.

Taking the continuum limit by sending the lattice spacing a → 0, and
rescaling Da2 �→ D and βa �→ β, the equation of motion (4.257), together
with the boundary conditions (4.258), for continuum density of empty inter-
vals E(x, t) readily follows and the mean density is given by

�̄(t) = − ∂E(x, t)
∂x

∣∣∣∣
x=0

. (S.22)
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More details on the empty-interval method can be found in a recent book
[54], which also treats an extension of the method to the diffusion-annihilation
process 2A → ∅. For a list of 1D models with two-particle reactions solvable
by the empty-interval method, see [5].

37 The scaling ansatz is only compatible with (4.257) if z = 2, when it
leads to 4Df ′′(u) + uf ′(u) = 0 with u = x/

√
t . A first integration gives

f ′(u) = f1 exp(− u2

8D ) and further leads to f(u) = f0 + f1

√
2πD erf

(
x√
8Dt

)
and where erf is the error function [2]. The boundary conditions (4.258) fix
the constants f0,1 such that, for D = γ and β = 0 one has

E(x, t) = 1 − erf
(

x√
8Dt

)
.

Using (S.22), the long-time behaviour of the mean particle-density becomes

�̄(t) = − ∂E(x, t)
∂x

∣∣∣∣
x=0

=
1√
8Dt

2√
π

exp
(
− x2

8Dt

)∣∣∣∣
x=0

=
1√

2πD
· t−1/2

This is an algebraic decay, where the amplitude is universal in the sense
that it is independent of the initial density. While this is qualitatively similar
to the results of the mean-field analysis of exercise 35, the decay exponent
y = 1/2 is different from the mean-field result yMF = 1. The experimental
data in Table 4.11 for the exponent y are close to 1/2 and are clearly distinct
from 1. This confirms the importance of fluctuation effects for the correct
description of the kinetics of excitons on long confined polymer chains and
in particular shows that mean-field equations such as the reaction-diffusion
equations (4.255) are not applicable in low dimensions d < dc. The indepen-
dence of the exponent y of the initial density has also been confirmed for
TMMC [401].

A Green’s function method gives the solution for all times and in particular
reproduces the above long-time behaviour [53, 54].

38 Since the mean density changes only if two particles react, consider
the average time between two collisions. To find this, assume [598] that
one of the particles is mobile and starts a random walk from the ori-
gin, while the second particle sits at a fixed distance |r| from the origin.
The normalised Green’s function of the diffusion equation ∂t� = D∆� is
G(t, r) = (4πDt)−d/2 exp

(
−|r|2/(4Dt)

)
. The squared distance in a single

direction, say x, covered during the time t is then

〈x2〉 =

∫
Rd

dr x2G(t, r)∫
Rd

dr G(t, r)
∼ t
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Hence the total volume covered is V ∼ td/2 and the mean density should
behave as �(t) ∼ V −1 ∼ t−d/2. For d = 1 this agrees with the exact calcula-
tion of exercise 37. For d > 2, this is slower than the homogeneous diffusive
behaviour, and �(t) ∼ t−1 for d > 2. Therefore dc = 2 is the upper critical
dimension for diffusion-coagulation.

For a two-species annihilation A+B → ∅, one observes first that the par-
ticles will rapidly separate into A-rich and B-rich regions. The mean distance
covered by the particles is � ∼ t1/2. Consider a region with an excess of, say,
A particles, and of linear size �. The remaining particles are those which are
spared by a fluctuation, hence there will remain n ∼ nA − nB ∼

√
�d ∼ td/4

particles at time t. Hence the density of either species is �A,B(t) ∼ td/4�d ∼
t−d/4. The upper critical dimension for this process is dc = 4 [598].

We mention rigorous bounds which confirm these heuristic arguments [78,
79]. If the initial densities of A’s and B’s are equal, �A(0) = �B(0), then there
exist positive constants cd, Cd such that

cd ≤ td/4�A(t) = td/4�B(t) ≤ Cd ; if d < 4
cd ≤ t�A(t) = t�B(t) ≤ Cd ; if d > 4

However, if initially �A(0) < �B(0), then

cd exp (−λdγgd(t)) ≤ �A(t) ≤ Cd exp (−Λdγgd(t))

where γ = �B(0) − �A(0), λd and Λd are positive constants and

gd(t) =

⎧⎨⎩
√
t ; if d = 1

t/ ln t ; if d = 2
t ; if d > 2

Also, ρB(t) → γ as t → ∞.

39 The allowed reactions are, between pairs or triplets of nearest neighbour
sites

A∅ D↔ ∅A , AA
γ→ A∅, ∅A , A∅A 2Dλ→ AAA

The empty-interval method works for D = γ and we set D = 1 from now
on. If En(t) is the probability that n consecutive sites are empty, the mean
particle-density is �(t) = (1 − E1(t)) a−1, where a is the lattice constant. On
a periodic chain with L sites, we have the equations of motion

E0(t) = 1, EL(t) = 0

dE1

dt
(t) = 2 [E0(t) − 2E1(t) + E2(t)] − 2λ [E1(t) − 2E2(t) + E3(t)] (S.23)

dEn

dt
(t) = 2 [En−1(t) − 2En(t) + En+1(t)] ; 2 ≤ n ≤ L− 1
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where the last boundary condition holds if one has at least one particle on the
lattice. The λ-dependent term follows from the relations P (• ◦ ◦) = E2 −E3

and P (• ◦ •)+P (• ◦ ◦) = P (•◦) = E1 −E2, hence P (• ◦ •) = E1 − 2E2 +E3.
These equations are solved through the ansatz En(t) =

∑
ω an(ω)e−2ωt

which leads to the eigenvalue problem⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
1 −2 − λ 1 + 2λ −λ 0 · · · 0
0 1 −2 1 0 · · · 0

0 1 −2 1 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 1 −2 1 0
0 1 −2 1

0 · · · 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2

...

aL−1

aL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2

...

aL−1

aL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
involving an (L+1)×(L+1) matrix Ω̂. Since the solution an(0) = 1−n/L with
eigenvalue ω = 0 describes the steady state with a single diffusing particle, the
model has two steady states, one corresponding to the empty lattice and the
other one being the translation-invariant superposition of all single-particle
states with an average density �av = 1/L. The other boundary condition
implies aL(ω) = 0 and we reduce to an eigenvalue problem of a (L−1)×(L−1)
matrix if ω �= 0⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 − λ 1 + 2λ −λ 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 0
...

. . . . . . . . . . . . . . .
...

0 1 −2 1 0
0 1 −2 1

0 · · · 0 1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

...

aL−2

aL−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

...

aL−2

aL−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (S.24)

Equation (S.24) is solved through the ansatz

an(ω) = Aeikn +Be−ikn ; ω �= 0

which leads to the dispersion relation ω = ω(k) = 2(1 − cos k). The allowed
values of k are obtained by inserting the ansatz into the first line of (S.24)
and taking the boundary condition aL(ω) = 0 into account. The resulting
system of two linear equations

A
(
λ
(
eik − 2e2ik + e3ik

)
+ 1

)
+B

(
λ
(
e−ik − 2e−2ik + e−3ik

)
+ 1

)
= 0

AeikL +Be−ikL = 0

has a non-trivial solution if k is a solution of
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Fig. S.4 Mean particle-
density for the 1D diffusion-
coagulation-production
process with D = γ and for
several values of the pro-
duction rate λ. Reprinted
with permission from [273].
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λ=1

λ=10

tan kL =
4λ sin(2k) sin2(k/2)

4λ cos(2k) sin2(k/2) − 1
. (S.25)

We call the solutions of (S.25) km, where m = 1, . . . , L − 1. In addition, we
can include the stationary solution by letting k0 = 0. Then

En(t) =
(
1 − n

L

)
+

L−1∑
m=0

Cm sin (km(n− L)) e−2 ωm t ,

where ωm = ω(km) = 2(1 − cos km) and the Cm are real constants which
must be determined from the initial conditions.

Closed-form solutions of (S.25) exist for λ = 0, where km = mπ/L and for
λ → ∞, where km = mπ/(L− 2). For general values of λ, we have

km =
mπ

L
− 2π3λm3

L4
+ . . . ; m = 0, 1, . . . , L− 1

Since asymptotically km ∼ L−1 for all values of λ, the production reaction
cannot induce a phase transition, at least if D = γ. This is illustrated in
Fig. S.4 which shows that for sufficiently long times, one always returns to
the asymptotic form �(t) ∼ t−1/2.

However, for D > γ a phase transition can be found [491]. This may
already be seen at the level of the pair-approximation (we leave it to the
reader to work out the details for himself). Using the parametrisation γ =
p(1 −D) and 2Dλ = (1 − p)(1 −D), the critical line is

D =
p(p− 1)

p2 + 3p− 2

Simulational results for the critical point and some exponents in 1D are listed
in Table S.2.
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Table S.2 Estimates for the critical point pc(D) and of some exponents of the 1D
diffusion-coagulation-production process. The data are from [491].

D 0.1 0.2 0.4 0.7

pc 0.1129(1) 0.17975(8) 0.2647(1) 0.3528(2)
α 0.263(9) 0.268(8) 0.275(8)
β 0.57(1) 0.58(1) 0.57(1)

It was pointed out recently [466] that through a stochastic similarity
transformation (see exercise 26) the model treated here may be related to
a diffusion-annihilation process 2A → ∅ with the additional back reaction
A → 3A, see [464, 465].

40 From the master equation, one has the reaction-diffusion equation

∂t�(t, r) = D∆�(t, r) − λ�3(t, r)

where ∆ is the spatial Laplacian. Hölder’s inequality implies

1
|Ω|

∫
Ω

dr � ≤
(

1
|Ω|

∫
Ω

dr �3

)1/3

and therefore

d�̄(t)
dt

=
1

|Ω|

∫
Ω

dr ∂t�(t, r)

=
D

|Ω|

∫
∂Ω

dσ · ∇�(t, r)︸ ︷︷ ︸
≤0

− λ

|Ω|

∫
Ω

dr �3(t, r)

≤ −λ�̄(t)3

which implies �̄(t) ≤ �0/
√

1 + 2�2
0λ t ≤ (2λ)−1/2 t−1/2. For finite volumes

|Ω| < ∞, this can be considerably strengthened to exponentially small
bounds. The bound obtained here is already close to the exact behaviour,
since the system is at its upper critical dimension.

For the pair mean-field theory, we write � = p(•) and u = p(••). With
the usual abbreviations v = p(•◦) = � − u and w = p(◦◦) = 1 − 2� + u, the
reaction rates are given in the following table.

event rate ∆N• ∆N••
• • • • • → • ◦ ◦ ◦ • λu4/�3 −3 −4
• • • • ◦ → • ◦ ◦ ◦ ◦ λu3v/�3 −3 −3 ×2
◦ • • • ◦ → ◦ ◦ ◦ ◦ ◦ λu2v2/�3 −3 −2
• • ◦◦ → • ◦ •◦ Duvw/(�(1 − �)) 0 −1 ×2
◦ • ◦• → ◦ ◦ •• Dv3/(�(1 − �)) 0 1 ×2
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The equations of motion are

ȧ = −3λ
u2

�

u̇ = −2λ
u2(� + u)

�2
+ 2D

(�− u)(�2 − u)
�(1 − �)

such that for D → ∞, one has u = �2 and recovers the site-approximation
�̇ = −3λ�3.

In general, the discussion reduces to the analysis of the dynamical system

du
d�

=
2
3
�+ u

�
− 2D

(�− u)(�2 − u)
(1 − �)u2

For D = 0, only triplets will remain active. Their density is, in the pair-
approximation, ϑ = u2/�. Then

u− 2�
u0 − 2�0

=
(
�

�0

)2/3

from which ϑ ∼ �1/3 � t−1/6 follows (for large times, when � → 0).

41 Since ∂�′
∂t′ = Λ−β/ν⊥ ∂�′

∂t
∂t
∂t′ = Λ−β/ν⊥−z ∂�

∂t and similarly
∂�′
∂r′ = Λ−β/ν⊥−1 ∂�

∂r , (4.260), first taken with the primed variables, reduces to

∂t� = DΛz−2∆� + Λz−1/ν⊥τ�− Λz−β/ν⊥�2

which is identical to (4.260) if one takes z = 1
ν⊥

= β
ν⊥

= 2. Then the mean-
field exponents zMF = 2, ν⊥,MF = 1

2 and βMF = 1 are recovered.

42 The mean-field equation is (λ, µ are reaction rates)

∂t� = D∆�− λ�3 + µ�(1 − �)

At the critical point µ = 0, one finds �(t) ∼ t−1/2, see exercise 40. Under
the transformation (4.261), with λ,D assumed to be fixed, the mean-field
equation becomes

∂t� = DΛz−2∆� + Λz−1/ν⊥µ�− Λz−β/ν⊥−1/ν⊥µ�2︸ ︷︷ ︸
∼Λ−1µ�2

−Λz−2β/ν⊥λ�3

This is indeed invariant, if z = 1
ν⊥

= 2 β
ν⊥

= 2. However, the quadratic term in
� is suppressed by a factor Λ−1, which means that this term is irrelevant (in
the RG sense) for the long-time behaviour. One therefore has some freedom in
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specifying the mean-field equation without modifying the scaling properties
of the theory.

43 The Janssen-de Dominicis functional for DP may be written in the form

J [�̃, �] =
∫

dt dr
[
�̃∂t�−D�̃∆�− τ �̃�+ µ�̃�

(
�− �̃

)]
Under a scale-transformation r �→ Λr. t �→ Λzt, � �→ Λx� and �̃ �→ Λx�̃ (here
the rapidity-reversal-symmetry of DP is used, see exercise 34), one has

J =
∫

dt dr
[
Λd+2x�̃∂t�− Λz−2D�̃∆�− Λz+d+2xτ �̃� + Λz+d+3xµ�̃�

(
�− �̃

)]
The requirement of invariance of J fixes z = 2 and x = x̃ = −d/2 from the
kinetic terms and implies the transformations

τ �→ τ ′ = Λ2τ , µ �→ µ′ = Λ(4−d)/2µ

Therefore, a scale-invariance is only possible exactly at the critical point
τ = 0. For d > 4, µ → 0 on increasingly larger scales while the opposite is
true for d < 4. Hence dc = 4 is the upper critical dimension of DP and for
d > dc = 4 the non-linearity does not influence the leading critical behaviour
which is therefore described by mean-field theory.

An analogous conclusion can be reached by considering directly the scaling
behaviour of the Langevin equation (3.10,3.11). Under a dilation r �→ Λr.
t �→ Λzt, � �→ Λx� and η �→ Λχη, the Langevin equation becomes

∂t� = Λz−2D∆+ Λzτ�− Λx+zg�2 + Λχ−x+zη (S.26)

with the noise correlator 〈ηη〉 = Λx−z−d−2χκ�δ(t − t′)δ(r − r′). Scale-
invariance of the noise requires 2χ = x− z − d and of the Langevin equation
z = 2 and x = −z = −2. Hence the noise term in (S.26) changes by a factor
Λ(4−d)/2, which means that the noise becomes irrelevant for d > dc = 4.

44 The profile follows from a straightforward integration of the stationary
case ȧ = 0.

45 Combine equations (4.78) with (4.114) with (D13). From the usual scaling
forms of the density and the pair connectedness, one now easily establishes

Psur(t; τ) = λ−β′
P̃ (λ−ν‖att;λaτ τ) ∼ t−β′/ν‖Π̃

(
t1/ν‖τ

)
as it should be and where P̃ and Π̃ are scaling functions. Equations (4.96-
4.98) now readily follow.
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46 Consider the iterative construction of the Cantor set as indicated in
Fig. H1a. At the gth iteration (‘generation’), the empty intervals of size � =
(1/3)g are added, hence g = − ln �

ln 3 . By inspection, the number ng of added
empty intervals is n1 = 1, n2 = 2, . . . , ng = 2g−1. Hence

n(�) = 2g−1 = e(g−1) ln 2 = exp
[(

−1 − ln �
ln 3

)
ln 2

]
∼ �−df

where df = dself = ln 2
ln 3 is the fractal dimension of the Cantor set.

Finally, since P (�) ∼ dn(�)
d� , one arrives at P (�) ∼ �−1−df .

47 The scaling of the density, the survival probability and the pair connect-
edness is

�(t, r; τ, h) = λ−βR̃
(
λ−ν‖att, λ

−ν⊥arr;λaτ τ, λ
σahh

)
Psur(t, r; τ, h) = λ−β′

P̃
(
λ−ν‖att, λ

−ν⊥arr;λaτ τ, λ
σahh

)
Υ (t, r; τ, h) = λ−β−β′

Υ̃
(
λ−ν‖att, λ

−ν⊥arr;λaττ, λ
σahh

)
In order to make contact with (4.139), one sets |aτ τλ| = 1. Then

�(t, r; τ, h) = (aτ |τ |)β
R̃

(
ata

ν‖
τ |τ |ν‖ t, ara

ν⊥
τ |τ |ν⊥r;±1,

ah

aσ
τ

h

|τ |σ

)
where ±1 refers to τ > 0 and τ < 0, respectively. From this, one may identify
the spatial correlation length

ξ−1
⊥ = ara

ν⊥
τ |τ |ν⊥ =: ξ−1

0 |τ |ν⊥

and the metric factors in (4.139) become

ξ0 = (ara
ν⊥
τ )−1

, D2 = aha
−1
τ , D0 = ata

−z
r

D1� = a−β/ν⊥
r , D1P = a−β′/ν⊥

r , D1Υ = a−(β+β′)/ν⊥
r

48 The derivation given here follows Janssen [330]. Consider the probability
pN (τ) of a bDP cluster of exactly N particles, created from a single seed at
the origin of the space-time lattice. For N sufficiently large, one has

pN(τ) ≈ PN (τ) =
〈
δ(N − N )eñ(0,0)

〉
where N =

∫∞
0 dt

∫
dr n(t, r). Define further the generating function F (τ, k) :=∑∞

N=0 pN(τ)e−kN and one can show that

lim
k→+0

F (τ, k) =
{

1 ; if τ ≤ 0
1 − Pperc ; if τ > 0
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Taking a formal continuum limit,

F (τ, k) − F (−|τ |, k) =
∫ ∞

0

dN (PN (τ) − PN (−|τ |)) e−kN

=
〈
eñ(0,0)−kN

〉
(τ) −

〈
eñ(0,0)−kN

〉
(−|τ |)

In the absorbing phase with τ < 0, one has limk→+0

〈
e−kN eñ(0,0)

〉
= 1, hence

Pperc(τ) = 1 − lim
k→+0

〈
eñ(0,0)−kN

〉
= − lim

k→+0

〈
ñ(0,0)e−kN 〉

+ · · ·

where the neglected terms merely create corrections to scaling.
For bDP one may now use the duality transformation (4.182), with the

result
Pperc(τ) = − lim

k→+0

〈
n(0,0)e+kÑ

〉
= �s(τ)

with Ñ =
∫
dt
∫
dr ñ(t, r) and k now corresponds to a constant particle source

which is turned off at the end of the calculation.
Comparison of the scaling forms gives β = β′.
We stress that the presentation sketched here glosses over several impor-

tant conceptual points which are carefully described in [330] but which are
beyond the scope of this book. There, the reader may also find an extension
of the above argument to the time-dependent survival probability Psur(t) and
density �(t).

Problems of Chapter 5

49 The calculation is analogous to exercise 21.

50 The diffusive pair-contact process is defined by the rates (the two states
are denoted by A = •, ∅ = ◦)

• • ◦, ◦ • • → • • • with rate (1 − p)(1 −D)/2
•• → ◦◦ with rate p(1 −D)
•◦ ↔ ◦• with rate D ,

where 0 ≤ p ≤ 1 and 0 ≤ D ≤ 1 are the control parameters. If we let
�(t) = P•(t) and also assume that it is space-independent, one easily finds,
using the techniques of appendix E

d�(t)
dt

= (1 − p) �(t)2
(
1 − �(t)

)
− 2p �(t)2 (S.27)
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where time was rescaled according to t �→ t(1−D)−1. The long-time behaviour
of the mean density is [126]

�(t) �

⎧⎪⎪⎨⎪⎪⎩
1−3p
1−p + a exp(−t/τrel) ; if p < 1/3√

3/4 · t−1/2 ; if p = 1/3

(3p− 1)−1 · t−1 ; if p > 1/3

where τrel = (1 − p)/(1 − 3p)2 and a is a constant which depends on the
initial conditions. One distinguishes an active phase, where �(t) → �∞ > 0
for large times, and an absorbing phase, where limt→∞ �(t) = 0. Throughout
the absorbing phase, density decays algebraically, although mean-field theory
is not capable of reproducing the correct decay �(t) ∼ t−1/2.

For the derivation of the pair approximation, one considers the particle
density �(t) = P•(t) and the pair density u(t) = P••(t) which again are
assumed to be space-independent. Introducing the short-hands v = P•◦ =
� − u and w = P◦◦ = 1 − 2� + u, the reactions are listed in the following
table, where the symmetry factors are noted explicitly

reaction ∆N• ∆N•• rate
• • ◦◦ → • ◦ •• 0 – 1 Duvw/�(1 − �) ×2
◦ • ◦• → ◦ ◦ •• 0 +1 Dv3/�(1 − �) ×2
• • •• → • ◦ ◦• – 2 – 3 p(1 −D)u3/�2

• • •◦ → • ◦ ◦◦ – 2 – 2 p(1 −D)u2v/�2 ×2
◦ • •◦ → ◦ ◦ ◦◦ – 2 – 1 p(1 −D)uv2/�2

• • ◦• → • • •• +1 +2 1
2 (1 − p)(1 −D)uv2/�(1 − �) ×2

• • ◦◦ → • • •◦ +1 +1 1
2 (1 − p)(1 −D)uvw/�(1 − �) ×2

Adding the contributions, we have the equations of motion [126]

�̇(t) = −2(1 −D)p u(t) + (1 −D)(1 − p) (�(t) − u(t))
u(t)
�(t)

u̇(t) = −(1 −D)p u(t)
2u(t) + �(t)

�(t)
− 2D

(�(t) − u(t))(u(t) − �(t)2)
�(t)(1 − �(t))

+(1 −D)(1 − p)
(�(t) − u(t))(1 − u(t))u(t)

�(t)(1 − �(t))

In the limit D → ∞, one has u(t) = �(t)2 and the site-approximation (S.27)
for �(t) is recovered. The critical line is given by

pc(D) =

⎧⎨⎩
1
3 ; if D ≥ 1

7
1
5

1 + 3D
1 −D ; if D ≤ 1

7

The scaling of both �(t) and of u(t), within the pair-approximation, depends
on the value of D. If D > 1

7 , one has u ∼ �2 and if D < 1
7 , then u ∼ �. The
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Fig. S.5 Phase diagram of the 1D PCPD. The full curves give the critical line according
to cluster mean-field theory, from the site- (N = 1) to the quartet-approximation (N = 4).
The filled dots give estimates of pc(D) from the DMRG and the open triangles from Monte
Carlo simulations. The grey diamond gives the critical point pc(0) of the PCP. Reprinted
with permission from [274].

steady-state particle density �∞ ∼ pc(D)− p for all D, and if D �= 1
7 one has

u(t) ∼ t−1 along the critical line. In Fig. S.5 the resulting phase diagram is
shown.

However, the expectation of the pair-approximation that there should be
a multi-critical point is not confirmed in higher-order approximations when
formulated for the 1D case. Indeed, because of the three-site interactions,
the pair-approximation is still insufficient as is indicated by its prediction
u∞ = �∞(1− 3p)/(1− p), in contrast with simulational studies, in particular
for D = 0. This may be corrected in the triplet approximation [461, 444],
where the independent variables may be chosen as P•••, P••◦, P•◦◦ and P•◦•.
Then pc(0) � 0.128 and the steady-state pair density u∞ ∼ pc(0)−p vanishes
linearly, but the critical particle density �∞,c � 0.23 remains finite, as it
should be (see [586] for cluster approximations at D = 0 up to N = 12).

As can be seen from Fig. S.5, the available evidence, either from cluster
approximation or numerical simulation (Monte Carlo or DMRG) strongly
suggests a single universality class along the transition line, see [492, 274].
However, as we shall see in Vol. 2 of this book, the conclusion of the pair-
approximation on the existence of a multi-critical point is confirmed for d > 2
in the so-called bosonic variant of the PCPD, where an arbitrary number of
particles is allowed per site. Furthermore, unpublished simulations of the
higher-dimensional PCPD are in qualitative agreement with the pair approx-
imation [178].



Solutions 341

51 Intuitively, for λ > δ, equal pairs (AA and BB) should disappear more
rapidly than unequal pairs (AB). For long times, a typical state should be of
the form

· · ·A · · ·B · · ·A · · ·B · · ·A · · ·B · · ·B · · ·A · · ·B · · ·A · · ·B · · ·

(only the particles A,B were indicated) with many interfaces AB. For λ < δ,
the opposite should occur, leading to phase-separated typical states

· · ·A · · ·A · · ·A · · ·A · · ·A · · ·B · · ·B · · ·B · · ·B · · ·A · · ·A · · ·A · · ·

and the minority species should disappear first.
In simple mean-field, one has

ȧ = −λa2 − δab , ḃ = −λb2 − δab

hence, with ρ = b/a, ρ̇ = (λ − δ)ρ(1 − ρ)a. Introducing the fictitious time
τ = − ln a such that τ → ∞ as a → 0 and since dρ

da = dρ
dτ

dτ
da = − 1

a
dρ
dτ , (5.118)

follows.
Tracing the vector field (ρ, ρ̇), it follows that for λ > δ, the fixed point

ρ∗ = 1 is stable, indicating a homogeneous phase with equal numbers of As
and Bs. For λ < δ, ρ∗ = 1 is unstable and ρ → ∞ for ρ0 > 1 and ρ → 0
for ρ0 < 1, mimicking the separation of phases with the disappearance of the
minority species.

We leave it to the reader to work out the pair-approximation [587].

52 The solution follows the lines of [203]. From (S.1), we have

∂F

∂t
= (1 − p)(1 − λp)

∂F

∂p

!= HR(p, q)F

hence
HR(p, q) = (1 − p)(1 − λp)q , q :=

∂

∂p
.

The variational equations are

∂tq =
∂HR

∂p
= q(2λp− 1 − λ)

∂tp = −∂HR

∂q
= −(1 − p)(1 − λp).

Since p = 1 is always a solution, one finds in this case q̇ = (λ − 1)q, which
agrees with the equation of motion for 〈n〉(t), derived in exercise 2. Hence,
for p = 1, one may identify q(t) = 〈n〉(t).

In order to understand the topology of the phase space of the model,
consider the zero-energy curves HR(p, q) = 0. These are the three lines q = 0,
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p p

q q

1/λ 1 1 1/λ

λ>1 λ<1

Fig. S.6 Topology of the phase space of the population model and the zero energy curves
(thick solid lines) HR(p, q) = 0. The dashed lines indicate the evolution according to the
variational equations.

p = 1 and p = 1/λ. In Fig. S.6, we show the resulting diagrams for λ > 1 and
for λ < 1 and observe the change of stability at the critical point λc = 1.

We leave it to the reader to analyse the contact process or the pair-contact
process along the same lines [203].

53 The Volterra-Lotka equation has a fixed point at (p∗, x∗) = (β−1, 1)
which is neither stable nor instable. A conserved quantity is

C = ln(xp) − x− βp (S.28)

From (5.119) is it easily checked that Ċ = 0, but it is more instructive to
construct C by considering

ẋ

ṗ
=

dx
dp

=
x(βp − 1)
p(1 − x)

=
x

1 − x

βp− 1
p

Separating the variables and integrating gives (S.28). Hence the system moves
along closed curves for a given C, determined from the initial conditions.

The model (5.120) has zero-clines (ṗ = 0 and ẋ = 0, respectively) on the
lines x = p and x = βp. These only cöıncide for β = 1 when x = p becomes
a fixed line; otherwise only the origin is a fixed point. Equations (5.120) can
be decoupled by introducing the ratio ρ := x/p. Then

ρ̇ = −2ρ+ ρλ(β1−λ + ρ) , ṗ = p(1 − ρλ)

Tracing the vector field (ρ, ρ̇), one easily sees that there is a first-order transi-
tion at βc = 21/λ(1−λ)λ1/(λ−1)(1−λ)1/λ and ρc =

(
2(1−λ)

)1/λ such that real
fixed points for ρ only exist for β ≤ βc. At ρ = ρc one has ṗ = p(2λ− 1) and
the long-time evolution depends only on the sign of λ − 1

2 . For β < βc, one
has p(t) → 0 for large times t if the stable fixed point ρ∗ > 1 and p(t) → ∞
if ρ∗ < 1.
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List of frequently used Symbols

O(x) of the order of x
� asymptotically equal
∼ asymptotically proportional
N total number of sites
H Hamiltonian of an equilibrium model
R renormalisation-group transformation
pc, Tc critical percolation threshold/temperature
N(t) number of active sites in seed simulations
〈. . .〉 average over many independent realisations
A, • symbol for a site occupied by a particle
∅, ◦ symbol for a vacant site
� order parameter – density of active sites
�̃ response field associated to order parameter �
τ generic notation for control parameter
L lateral system size
z dynamical exponent z = ν‖/ν⊥
dc upper critical dimension
Pt(c) probability of finding the system in configuration c
pc→c′ transition probabilities for parallel updates
|Pt〉 state vector, listing all values of Pt(c)
T transfer matrix for parallel updates
〈s| sum state over all configurations
wc→c′ transition rates for random sequential updates
L Liouville operator for random sequential updates
Psur(t), P (t) survival probability
Pperc, P∞ percolation probability

(ultimate survival probability)
c⊥(r) equal-time correlation function 〈si(t)si+r(t)〉
c‖(∆t) autocorrelation function 〈si(t)si(t + ∆t)〉
c(t, r; τ) two-point correlation function
e‖(∆t; τ) temporal empty-interval distribution function
e⊥(∆r; τ) spatial empty-interval distribution function
df,‖ temporal fractal dimension
df,⊥ spatial fractal dimension
df spatio-temporal fractal dimension
pbc subscript indicating periodic boundary conditions
full subscript denoting a fully occupied initial state
Υ (t, r; τ) pair connectedness function
Na(t) average number of active sites in seed simulations
Rs(t) mean square spreading from the origin
Θ critical initial slip exponent
Nb(t) number of backbone sites
N red

b total number of red bonds
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List of commonly used Abbreviations
BTW Bak-Tang-Wiesenfeld
CDP compact directed percolation
CLG conserved lattice gas
CP contact process
CTTP conserved threshold transfer process
DK Domany-Kinzel model
DMRG density-matrix renormalisation group
DP directed percolation
bDP bond directed percolation
sDP site directed percolation
DyP dynamical percolation
FDT fluctuation-dissipation theorem
FDR fluctuation-dissipation ratio
FSS finite-size scaling
GEP general epidemic process
LCTMRG light-cone transfer matrix renormalisation group
OJK Ohta-Jasnow-Kawasaki
PC parity-conserved model
PCP pair-contact process
PCPD pair-contact process with diffusion
PNG polynuclear growth
QCD quantum chromodynamics
RG renormalisation group
TDGL time-dependent Ginsburg-Landau
TDP tricritical directed percolation
TMRG transfer matrix renormalisation group
TTP threshold transfer process
SOC self-organised criticality
SOS solid-on-solid model
ZGB Ziff-Gulari-Barshad model
2D, 3D two-dimensional, three-dimensional
Zp cyclic group of p elements
Sp permutation group of p elements
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114. J. L. Cardy and U.C. Täuber. Field-theory of branching and annihilating random

walks. J. Stat. Phys., 90:1, 1998.
115. J.L. Cardy. Critical behaviour at an edge. J. Phys. A Math. Gen., 16:3617, 1983.
116. J.L. Cardy. Conformal invariance and surface critical behaviour. Nucl. Phys., B240

[FS 12]:514, 1984.
117. J.L. Cardy. Conformal invariance and universality in finite-size scaling. J. Phys. A

Math. Gen., 17:L385, 1984.
118. J.L. Cardy. Effect of boundary conditions on the operator content of two-dimensional

conformally invariant theories. Nucl. Phys., B275:200, 1986.



350 References

119. J.L. Cardy. Central charge and universal combinations of amplitudes in two-
dimensional theories away from criticality. Phys. Rev. Lett., 60:2709, 1988.

120. J.L. Cardy. Conformal invariance and statistical mechanics. In É. Brézin and J. Zinn-
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125. E. Carlon, M. Henkel, and U. Schollwöck. Density-matrix renormalization group and
reaction–diffusion processes. Eur. Phys. J., B12:99, 1999.
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178. R. Dickman and T. Tomé. First-order phase-transition in a one-dimensional nonequi-
librium model. Phys. Rev., A44:4833, 1991.
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tion. Akademische Verlagsgesellschaft, Leipzig, 1959.
374. K. Kaneda and Y. Okabe. Finite-size scaling for the Ising model on the Möbius strip
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408. K. B. Lauritsen, P. Fröjdh, and M. Howard. Surface critical behavior in systems with
absorbing states. Phys. Rev. Lett., 81:2104, 1998.

409. K. B. Lauritsen, K. Sneppen, M. Markosová, and M. H. Jensen. Directed percolation
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474. N. Menyhárd and G. Ódor. Non-Markovian persistence at the parity conserving

point of a one-dimensional nonequilibrium kinetic Ising model. J. Phys. A Math.
Gen., 30:8515, 1997.

475. S. Michalland, M. Rabaud, and Y. Couder. Transition to chaos by spatio-temporal
intermittency in directional viscous fingering. Europhys. Lett., 22:17, 1993.

476. A.A. Migdal. Phase transitions in gauge and spin-lattice systems. Sov. Phys. JETP,
42:743, 1976.

477. K.K. Mon and K. Binder. Finite-size scaling and the crossover to mean-field criti-
cal behaviour in the two-dimensional Ising model with medium-ranged interactions.
Phys. Rev., E48:2498, 1993.

478. L. Mondaini and E.C. Marino. Sine-Gordon/Coulomb-gas soliton correlation func-
tions and an exact evaluation of the Kosterlitz–Thouless critical exponent. J. Stat.
Phys., 118:767, 1995.

479. A.G. Moreira. Critical dynamics of the contact process with quenched disorder. Phys.
Rev., E54:3090, 1996.

480. H. Mori and K.J. McNeil. Critical dimensionality for normal fluctuations of
macrovariables in nonequilibrium states. Prog. Theor. Phys., 57:770, 1977.
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