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Preface

In 1879, Picard established the well-known and beautiful result that a transcen-
dental entire function assumes all values infinitely often with one exception. Since
then Hadamard (1893), Borel (1897) and Blumenthal (1910) had tried to give Pi-
card’s result a quantitative description and extend it to meromorphic functions.
It was R. Nevanlinna, who achieved such an attempt in (1925) by establishing the
so-called value distribution theory of meromorphic functions which was praised
by H. Weyl (1943) as “One of the few great mathematical events of our century”.
Moreover, part of the significance of Nevanlinna’s approach is that the concept
of exceptional values can be given a geometric interpretation in terms of geomet-
ric objects like curves and mappings of subspaces of holomorphic curves from a
complex plane C to a projective space P". In the years since these results were
achieved, mathematicians of comparable stature have made efforts to derive an
analogous theory for meromorphic mappings and p-adic meromorphic functions.
Besides the value distribution, the theory has had many applications to the an-
alyticity, growth, existence, and unicity properties of meromorphic solutions to
differential or functional equations. More recently, it has been found that there is
a profound relation between Nevanlinna theory and number theory. C.F. Osgood
[310], [311] first noticed a similarity between the 2 in Nevanlinna’s defect relation
and the 2 in Roth’s theorem. S. Lang [230] pointed to the existence of a structure
to the error term in Nevanlinna’s second main theorem, conjectured what could be
essentially the best possible form of this error term in general (based on his con-
jecture on the error term in Roth’s theorem), and gave a quite detailed discussion
in [235]. P.M. Wong [433] used a method of Ahlfors to prove Lang’s conjecture in
the one-dimensional case. As for higher dimensions, this problem was studied by
S. Lang and W. Cherry [235], A. Hinkkanen [159], and was finally completed by
Z. Ye [443]. The best possible form of error terms has been used in our present
work to produce some sharp results.

In 1987, P. Vojta [415] gave a much deeper analysis of the situation, and
compared the theory of heights in number theory with the characteristic functions
of Nevanlinna theory. In his dictionary, the second main theorem, due to H. Car-
tan, corresponds to Schmidt’s subspace theorem. Further, he proposed the general
conjecture in number theory by comparing the second main theorem in Carlson-
Griffiths-King’s theory, or particularly influenced by Griffiths’ conjecture, which



< Preface

also can be translated into a problem of non-Archimedean holomorphic curves
posed by Hu and Yang [176]. Along this route, Shiffman’s conjecture on hyper-
surface targets in value distribution theory corresponds to a subspace theorem for
homogeneous polynomial forms in Diophantine approximation. Vojta’s (1, 1)-form
conjecture is an analogue of an inequality of characteristic functions of holomor-
phic curves for line bundles. Being influenced by Mason’s theorem, Oesterlé and
Masser formulated the abc-conjecture. The generalized abc-conjectures for integers
are counterparts of Nevanlinna’s third main theorem and its variations in value
distribution theory, and so on.

Roughly speaking, a significant analogy between Nevanlinna theory and Dio-
phantine approximation seems to be that the sets X (k) of k-rational points of a
projective variety X defined over number fields k are finite if and only if there
are no non-constant holomorphic curves into X. Mordell’s conjecture (Faltings’
theorem) and Picard’s theorem are classic examples in this direction. In higher-
dimensional spaces, this corresponds to a conjecture due to S. Lang, that is,
Kobayashi hyperbolic manifolds (which do not contain non-constant holomorphic
curves) are Mordellic. Bloch-Green-Griffiths’ conjecture on degeneracy of holo-
morphic curves into pseudo-canonical projective varieties is an analogue of the
Bombieri-Lang conjecture on pseudo canonical varieties. We have introduced these
problems and the related developments in this book. Generally, topics or problems
in number theory are briefly introduced and translated as analogues of topics in
value distribution theory. We have omitted the proofs of theorems in number the-
ory. However, we have discussed the problems of value distribution in detail. In
this book, we will not discuss value distribution theory of moving targets, say, K.
Yamanoi’s work [437], and their counterparts in number theory.

When a holomorphic curve f into X is not constant, we have to distinguish
whether it is degenerate in Nevanlinna theory, that is, whether its image is con-
tained or not in a proper subvariety. If it is degenerate, usually it is difficult to
deal with it in value distribution theory. If f is non-degenerate, we can study its
value distributions and measure its growth well by a characteristic function T (r).
Similarly, we should distinguish whether or not certain rational points are degen-
erate. Related to the degeneracy, it seems that for each number field k, X (k) is
contained in a proper Zariski closed subset if and only if there are no algebraically
non-degenerate holomorphic curves into X. To compare with Nevanlinna theory,
therefore, we need to rule out degenerate k-rational points that are contained in
a subspace of lower dimension, and give a proper measure for non-degenerate x-
rational points. By integrating heights over non-degenerate k-rational points, we
can obtain quantitative measurements T} (r).

They have the following basic properties:
(i) f is constant if and only if T¢(r) is bounded; there are no non-degenerate
k-rational points if and only if T, (r) is bounded .
(ii) f is rational if and only if T¢(r) = O(logr); there are only finitely many
non-degenerate s-rational points if and only if T}, (r) = O(logr).
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It has been observed that there exist non-constant holomorphic curves into elliptic
curves such that they must be surjective. Thus it is possible that there are infinitely
many rational points on some elliptic curves. However, since non-constant holo-
morphic curves into elliptic curves have normal properties, say, they are surjective,
then distribution of rational points on elliptic curves should be “normal”. Really,
elliptic curves are modular according to the Shimura-Taniyama-Weil conjecture,
which was proved by Breuil, Conrad, Diamond, and Taylor [37] by extending work
of Wiles [431], Taylor and Wiles [390]. Moreover, as a result of studies of the anal-
ogous results between Nevanlinna’s value distribution theory and Diophantine ap-
proximation, some novel ideas and generalizations have been developed or derived
in the two topics, with many open problems posed for further investigations.

The book consists of seven chapters: In Chapter 1, we introduce some basic
notation and terminology on fields and algebraic geometry which are mainly used
to explain clearly the topics in Chapter 3 related to number theory. Chapter 2 is
a foundation of value distribution theory which is used in Chapter 4, Chapter 6
and Chapter 7 to introduce the analogues related to number theory in Nevanlinna
theory, say, abc-problems, meromorphic solutions of Fermat’s equations and the
Waring problem, Green-Griffiths’ conjecture, Griffiths’ and Lang’s conjectures,
Riemann’s (-function, and so on. Chapter 5 contains value distribution theory
over non-Archimedean fields and some applications related to topics in number
theory. Moreover, a few equidistribution formulae illustrating the differences with
the classical Nevanlinna theory have been exhibited. Each chapter of this book
is self-contained and this book is appended with a comprehensive and up-dated
list of references. The book will provide not just some new research results and
directions but challenging open problems in studying Diophantine approximation
and Nevanlinna theory. One of the aims of this book is to make timely surveys on
these new results and their related developments; some of which are newly obtained
by the authors and have not been published yet. It is hoped that the publication
of this book will stimulate, among our peers, further researches on Nevanlinna’s
value distribution theory, Diophantine approximation and their applications.

We gratefully acknowledge support for the related research and for writing of
the present book from the Natural Science Fund of China (NSFC) and the Research
Grant Council of Hong Kong during recent years. Also the authors would like to
thank the staff of Birkh&user, in particular, the Head of Editorial Department
STM, Dr. Thomas Hempfling, and last but not least, we want to express our
thanks to Dr. Michiel Van Frankenhuijsen for his thorough reviewing, valuable
criticism and concrete suggestions.

Pei-Chu Hu
Chung-Chun Yang



Chapter 1

Heights

In this chapter, we will introduce some basic notation, terminology and proposi-
tions on fields and algebraic geometry, which will be used in this book.

1.1 Field extensions

We will denote the fields of complex, real, and rational numbers by C, R, and Q,
respectively, and let Z be the ring of integers. If k is a set, we will write

K" = {(fE],...,iCn) | x; € I{} =R X XK (n—times).
If k is partially ordered, write

k(s,r)={zer|s<xz<r}, r(s,r={xeckls<z<r}
kls,r)={zer|s<xz<r}, k[lsrl={xer|s<z<r}

ki = K[0,00), KT =k(0,00).

For example, Z[s, r] means the set of integers i satisfying s < i <r, R is the set
of positive real numbers, and so on.

For later discussions, we will need some notions of rings. When we speak of
a ring, we shall always mean a commutative ring with a multiplicative identity. A
vector subspace I in a ring A is called an ideal if AI C I, that is, if zy € I for
allz € Aand y € I. If I # A, we say that the ideal is proper. A proper ideal I
in A is said to be prime if xy € I for x,y € A means x € [ or y € I. The set
of multiples of a particular element a € A, or equivalently, the set of elements
divisible by a, forms an ideal called the principal ideal generated by a. Elements
x,y of a ring are said to be zero divisors if x # 0, y # 0, and xy = 0. We define
a ring to be entire (or a domain, or an integral domain) if 1 # 0, and if there are
no zero divisors in the ring. A field is a domain in which every non-zero element
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is a unit, i.e., has a multiplicative inverse. Any domain A has a quotient field or
field of fractions k, which is a field containing A as a subring, and any element
in kK may be written (not necessarily uniquely) as a ratio of two elements of A. A
ring is called Noetherian if every ideal in the ring is finitely generated. Fields are
Noetherian rings. A basic fact is the following Hilbert basis theorem:

Theorem 1.1. If A is a Noetherian ring, then the ring A[X1, ..., Xy] of polynomials
in n variables over A is a Noetherian ring.

Proof. See Fulton [109], Atiyah-Macdonald [7], Theorem 7.5 or Lang [227], Section
6.2. g

Proposition 1.2 (cf. [109]). The following conditions on a ring A are equivalent:

(i) The set of non-units in A forms an ideal.

(ii) A has a unique mazimal ideal which contains every proper ideal of A.

A ring satisfying the conditions of Proposition 1.2 is called a local ring. A
sequence 1, ..., x, of elements of a ring A is called a regular sequence for A if x;
is not a zero divisor in A, and for all i = 2,...,r, x; is not a zero divisor in the
ring A/(z1,...,2;—1), where

(acl, S 71'1’71) = {a1$1 + -4 ai_17i1 | a; € A}

is the ideal generated by x1,...,2;—1. If A is a local ring with maximal ideal m,
then the depth of A is the maximum length of a regular sequence 1, ..., z, for
A with all z; € m. We say that a local Noetherian ring A is Cohen-Macaulay if
depthA = dim A. Now we list some properties of Cohen-Macaulay rings.

Proposition 1.3. Let A be a local Noetherian ring with maximal ideal m.

(a) If A is regular, that is, dim, m/m? = dim A, where kK = A/m is the residue
class field, then it is Cohen-Macaulay.

(b) If A is Cohen-Macaulay, then any localization A, of A at a prime ideal p is
also Cohen-Macaulay, where Ay = {a/b | a,be A,b ¢ p}.

(c) If A is Cohen-Macaulay, then a set of elements x1,...,z, € m forms a
reqular sequence for A if and only if dim A/(xq,...,2,) =dim A —r.

(d) If A is Cohen-Macaulay, and x1,...,x,. € m is a reqular sequence for A,
then A/(x1,...,x,) is also Cohen-Macaulay.

(e) If A is Cohen-Macaulay, and x1, . . ., z, € m is a reqular sequence, let I be the
ideal (x1,...,x,). Then the natural mapping (A/I)[t1,...,t,] — @p>ol™ /1",
defined by sending t; — x;, is an isomorphism. In other words, I/I? is a free
A/I-module of rank v, and for each n > 1, the natural mapping S™(I/1?) —
I"/I"Y s an isomorphism, where S™ denotes the nth symmetric power.

Proof. Matsumura [260]: (a) p. 121; (b) p. 104; (c) p. 105; (d) p. 104; (e) p. 110
or Hartshorne[148], Theorem 8.21A. O
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An element x in a ring A is irreducible if for any factorization x = ab, a,b € A,
either a or b is a unit. A domain A is a unique factorization domain if every non-
zero element in A can be factored uniquely, up to units and the ordering of the
factors, into a product of irreducible elements. A subring A of the field & is called a
valuation ring if it has the property that for any 2 € x we have z € Aor 7! € A.

Proposition 1.4 (cf. [109]). Let A be a domain which is not a field. Then the
following conditions are equivalent:

(I) A is Noetherian and local, and the mazimal ideal is principal.

(II) There is an irreducible element t € A such that every non-zero z € A may
be written uniquely in the form z = ut™, u a unit in A, n a non-negative
integer.

A ring A satisfying the conditions of Proposition 1.4 is called a discrete val-
uation ring. An element ¢ as in Proposition 1.4 is called a uniformizing parameter
for A; any other uniformizing parameter is of the form ut, v a unit in A. Let k be
the quotient field of A. Then any non-zero element z € k has a unique expression
z=wut", uaunit in A, n € Z, The exponent n is called the order of z, and written
n = ord(z); we define ord(0) = +o00. Then

A={z €k |ord(z) > 0},

and
m = {z € x| ord(z) > 0}

is the maximal ideal in A.

Let k be a field and A a subring of k. An element « of k is said to be integral
over A if it satisfies a monic equation over A:

a" + a1+t a, =0,

where a; € A for i =1,...,n. If every element of k integral over A lies in A, then
A is said to be integrally closed in k. An integral domain is called integrally closed
if it is integrally closed in its field of fractions. The set of all elements of x integral
over A is called the integral closure of A in k; it always includes A itself because
any « in A satisfies the equation  — a = 0 and so is integral over A. Moreover,
the integral closure of A is a subring of .

Let k be a field and denote the multiplicative group x — {0} by x.. If k is a
subfield of a field K, then we also say that K is an extension field of x, which will
be denoted by K/k. The field K can always be regarded as a vector space over k.
The dimension dim, K of K as a k-vector space is called the degree of K over k.
It will be denoted by

[K : k] = dim, K.

If [K : k] < 00, K is called a finite extension of k, otherwise, an infinite extension
of k. The following proposition is a basic fact of extension fields:
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Proposition 1.5. Let k be a field and F C K extension fields of k. Then
[K : k] =[K : F|[F : K]. (1.1.1)

If {xi}icr is a basis for F over k and {y;}jes is a basis for K over F, then
{2y} i)erx s s a basis for K over k.

Let x be a subfield of a field K. Take an element « in K. The field extension
of k, which is generated by «, will be denoted by k(«), that is, k() is the smallest
field containing x and «. We denote the ring generated by « over s by x[a].
It consists of all elements of K that can be written as polynomials in « with
coeflicients in :

ana” + - +ara+ag, a; € kK. (1.1.2)

The field x(«) is isomorphic to the field of fractions of k[«]. Its elements are ratios
of elements of the form (1.1.2). The element « is said to be algebraic over k if it is
the root of some non-zero polynomial with coefficients in k, otherwise, transcen-
dental over k. The lowest degree irreducible monic polynomial with coefficients in
k such that f(a) = 0 is called the minimal polynomial of  over k. The degree
of the polynomial is also called the degree of a over k, which is determined as
follows:

Proposition 1.6. Let « be algebraic over k. Then k(o) = k[a], and k() is finite
over k. The degree [k(a) : K| is equal to the degree of the minimal polynomial for
« over K.

A field extension K of k is called an algebraic extension, or K is said to be
algebraic over k, if all its elements are algebraic over k. One important case of a
tower of field extensions is that K is a given extension of k and « is an element
of K. The field k() is an intermediate field:

Kk C k(o) C K.

Thus, one has

[K : k] = [K : k(a)][k() : K]
Note that [x(a) : k] is the degree of « over & if « is algebraic, otherwise [x(a) :
k] = co. Hence one shows the property:

Proposition 1.7. If K is a finite extension of k, then K 1is algebraic over k.

Let k be a subfield of K and let ag, ..., a, be elements of K. We denote by
k(aq,...,a,) the smallest subfield of K containing x and aq, . . ., ay,. Its elements
consist of all quotients

Plaag,...,ap)

Qlar,...,ap)
where P, @) are polynomials in n variables with coefficients in x, and Q(aq, ...,
ay) # 0. We say that K is finitely generated over k if there is a finite family of
elements a1, ..., q, of K such that K = k(aq,...,a,). We exhibit an example of
such fields as follows:
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Proposition 1.8. If K is a finite extension of k, then K is finitely generated over k.

A field extension K of k is said to be an algebraic closure of k if K is algebraic
over k, and K is algebraically closed, that is, every polynomial f(z) € K[z] of
positive degree has a root in K.

Proposition 1.9. FEvery field k has an algebraic closure.

Let K be an extension of a field x and let
oc:k— L

be an embedding (i.e., an injective homomorphism) of « into a field L. Then o
induces an isomorphism of x with its image o(x). An embedding 7 of K in L will
be said to be over ¢ if the restriction of 7 to  is equal to 0. We also say that 7
extends o. If o is the identity, then we say that 7 is an embedding of K over k.

Assume that L is algebraically closed. We analyze the extensions of o to
algebraic extensions K of k. First of all, we consider the special case K = k(«),
where « is algebraic over . Let P, be the minimal polynomial of a over k. Let
8 be a root of o(P,) in L. Given an element of x(«) = k[a], we can write it in
the form f(«) with some polynomial f over k. We define an extension of o by
mapping

fla) = a(f)(B)-

This is in fact well defined, i.e., independent of the choice of polynomial f used
to express our element in k[a]. Indeed, if g(X) is in k[X] such that g(a) = f(«a),
then (g — f)(«) =0, whence P, (X) divides g(X) — f(X). Hence o(P,)(X) divides
o(g)(X) —o(f)(X), and thus o(g)(8) = o(f)(B). It is clear that the mapping is a
homomorphism inducing ¢ on &, and that it is an extension of o to x(«). Hence
we get:

Proposition 1.10. The number of possible extensions of o to k() is < the number
of roots of P,,, and is equal to the number of distinct roots of P,,.

We are interested in extensions of ¢ to arbitrary algebraic extensions of k.
By using Zorn’s lemma, one can prove the following result:

Proposition 1.11. Let x be a field, K an algebraic extension of k, and 0 : Kk —
L an embedding of k into an algebraically closed field L. Then there exists an
extension of o to an embedding of K in L. If K is algebraically closed and L is
algebraic over o(k), then any such extension of o is an isomorphism of K onto L.

As a corollary, we have a certain uniqueness for an algebraic closure of a
field k.

Corollary 1.12. If L, L' are two algebraic closures of a field k, there is an isomor-
phism \: L — L', which is the identity mapping on k.
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Let K be an algebraic extension of a field x and let
og:k— L

be an embedding of x into an algebraically closed field L. Let S, be the set of
extensions of ¢ to an embedding of K in L. Assume that L is algebraic over o(k),
hence is equal to an algebraic closure of o(k). Let L’ be another algebraically closed
field, and let 7 : Kk — L’ be an embedding. Let S, be the set of embeddings of
K in L' extending 7. We also assume that L’ is an algebraic closure of 7(k). By
Proposition 1.11, there exists an isomorphism A : L — L’ extending the mapping
700! applied to the field o (k). If 0* € S, is an extension of o to an embedding
of K in L, then A oo* is an extension of 7 to an embedding of K in L', because
for the restriction to x we have

Aoog* =700 too=r

Thus A induces a mapping from S, into S;. It is clear that the inverse mapping
is induced by A~!, and hence that S,, S, are in bijection under the mapping
0* +— Ao co*. In particular, the cardinality of S,, S; are the same. Thus this
cardinality depends only on the extension K/k, and will be denoted by [K : &]s.
We shall call it the separable degree of K over k. A basic fact is listed as follows:

Proposition 1.13. Let x be a field and F C K be algebraic extensions of k. Then
[K : kls = [K : F|5[F : K]s.
Furthermore, if K is finite over k, then [K : ks is finite and divides [K : k).

Let k be a field and let f be a polynomial over k of degree > 1. By a splitting
field K of f we shall mean an extension K of k such that f splits into linear factors
in K, ie.,

f(@) =clz—ar)--(z—an)

with a; € K, ¢ = 1,...,n, and such that
K =k(ag,...,an)

is generated by all roots of f. A splitting field of a polynomial f over k is unique
in the sense of isomorphism:

Proposition 1.14. Let K be a splitting field of a polynomial f over k. If F 1is
another splitting field of f, there is an isomorphism o : F — K, which is the
identity mapping on k. If K C K C Kk, where k is an algebraic closure of k, then
any embedding of F' in k inducing the identity on k must be an isomorphism of F
onto K.

Let I be a set of indices and let {f;}ier be a family of polynomials over & of
degrees > 1. By a splitting field for this family we shall mean an extension K of
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k such that every f; splits into linear factors in K, and K is generated by total
roots of the polynomials f;, ¢ € I. Let x be an algebraic closure of , and let K;
be a splitting field of f; in k. Then the smallest subfield of x containing all fields
K;, i € I is a splitting field for the family {fi}ier.

Corollary 1.15. Let K be a splitting field for the family {fi}icr. If F is another
splitting field for {fi}icr, any embedding of F into k inducing the identity on K
gives an isomorphism of F' onto K.

The following result gives characteristic conditions that an algebraic exten-
sion of k is a splitting field of a family of polynomials over &.

Theorem 1.16 (cf. [227]). Let K be an algebraic extension of k, contained in an
algebraic closure k of k. Then the following conditions are equivalent:

1) K is the splitting field of a family of polynomials over k.
2) Every embedding o of K in K over k is an automorphism of K.

3) Ewvery irreducible polynomial over k which has a root in K splits into linear
factors in K.

An extension K of k satisfying one of the hypotheses 1)-3) in Theorem 1.16
will be said to be normal. If K is an algebraic extension of k, then there exists
a smallest normal extension E of x containing K. The field F can be given by
taking the intersection of all normal extensions of x containing K.

Let k be a field, and 0 # f(x) € k[z]. If f(z) has no multiple root in an
algebraic closure k of k, then f is called a separable polynomial. Let K be an
extension of k, and a € K. If « is algebraic over k and the minimal polynomial of
it over k is separable, then « is called a separable algebraic element over k. We see
that this condition is equivalent to saying that [k(«) : k]s = [k(@) : k] according
to the following criterion:

Proposition 1.17. Let K be an algebraic closure of k. Take a € K and let P,
be the minimal polynomial of o over k. If char k = 0, then all roots of P, have
multiplicity 1 (P, is separable). If char kK = p > 0, then there exists an integer
1 >0 such that every root of Py has multiplicity p*. We have

[T
and of" is separable over k.

If all elements in K are separable algebraic over k, then K is called a separable
algebraic extension of k. If K is separable over x, we can choose a smallest normal
extension E of k containing K such that E is separable over x. One has the
following condition determining a separable algebraic extension:

Proposition 1.18. Let K be a finite extension of a field k. Then K is separable
over £ if and only if [K : k]s = [K : K.
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Let K be an extension of a field . If « € K is a separable algebraic element
over k, then x[a] is a separable algebraic extension of k. Further, if K is generated
by a family of separable algebraic elements {«;};cr over k, then K is separable
over k. Then one has the theorem of the primitive element:

Theorem 1.19. Let K be a finite extension of a field k. There exists an element
a € K such that K = k(«) if and only if there exists only a finite number of
fields F such that k C FF C K. If K is separable over k, then there exists such an
element o.

Proof. Zariski and Samuel [448], Ch. II, Theorem 19, p. 84. O

A field k of characteristic p > 0 is called perfect if {zF | z € K} = k.
Every field of characteristic zero is also called perfect. It is well known that if & is
perfect, every algebraic extension of x is separable and perfect (cf. [227]). If K is
an extension field of x which is not algebraic, the transcendence degree of K/k is
the maximum number of elements of K that are algebraically independent over x.
A subset S of K which is algebraically independent over k£ and is maximal with
respect to the inclusion ordering will be called a transcendence base of K over k.
If K is a finitely generated extension of k, K = k(x), it is said to be separably
generated if we can find a transcendence base t = (t1,...,t,) of K/k such that K is
separably algebraic over k(). Such a transcendence base is said to be a separating
transcendence base for K over k.

Proposition 1.20 (cf. [63]). Let x be a perfect field and K an extension of  of
transcendence degree 1. Then there exists x € K such that K/k(x) is a separable
extension. The element x is called a separating element of the extension.

Let k be a field and let G be a group of automorphisms of k. Let F'(G) be
the set of invariants of G, namely,

F(G)={z ]|z €k, ox)=ucforall o € G}.

Then the set F'(G) is a subfield of «, which is called the invariant field of G, or the
fized field of G. Let K be an algebraic extension of x and let G/, be the group
of automorphisms of K over k. The field K is called a Galois extension of k if K
is a normal separable extension of x. If K is a Galois extension of «, then G/,
is called the Galois group of K over k. For the convenience of the reader, we shall
now state the main theorem of Galois theory for finite Galois extensions.

Theorem 1.21 (cf. [272]). Let K be a finite Galois extension of k. Then we have

(1) Let E be an intermediate field between K and k, namely k C E C K. Then
(a) K is a Galois extension of E. G g is a subgroup of Gk .
(B) The order of the group G/ is [K : EJ.
(v) The invariant field F(Gk/g) of Gk g is E.
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(2) Let H be a subgroup of Gg,.. Then
(0) The invariant field F(H) is an intermediate field between K and k.
(€) The order of H is [K : F(H)].
(¢) The Galois group G pay = H.
Therefore, there is a bijective mapping between the set of subfields E of K contain-
ing K, and the set of subgroups H of G/, given by E = F(H) (resp., H = Gg /).
The E is Galois over k if and only if H is normal in G ., and if that is the case,
then the mapping o — o|E induces an isomorphism of Gk,./H onto the Galois
group Gy of E over k.
Let K be a finite field extension of . Take o € K. Then « induces a k-linear
mapping
A, K— K

defined by A, (z) = ax. Let {w1,...,wy} be a base of K over k. Write
Aa(wi) = Qw; = Z Qi Ws.
j=1

The characteristic polynomial
Xao(x) = det(z] — Ay)

of the matrix form A, = (a;;) of A, is called the field polynomial of . The field
polynomial x,, is independent of the base {ws,...,w,} selected for K over .
Obviously, « is a root of its field polynomial.

Lemma 1.22. Let K be a finite field extension of a field F' which is a finite field
extension of k, and o € F. Let the field polynomial of o as an element of K be
Xa(x), the field polynomial of o as an element of F' be G(z), and the minimal
polynomial of a over k be Py(x). Then we have

(A) K = k(a) if and only if xo(x) = Py(x).

(B) Xa(w) = G(z)FF.

Proof. (A) Since « is a root of y,, therefore we have P,(x) | xo(x). Since their
degrees are equal, and both are monic polynomials, then they must be equal.

(B) Let [F': k] = s. Let {uq,...,us} be abasis for F over &, and {vy,..., v}
be a basis for K over F. Let K; be the subspace

S
K;, = @j:IUjUZ'FL.

Then we have
K=K,

Each K; is an invariant subspace of A, with the characteristic polynomial of the
restriction of A, to K; equaling G(z). Therefore, we have xq(z) = G(z)'F]. O



10 Chapter 1. Heights

Let P, € k[z] be the minimal polynomial of « over k. Let x, be the field
polynomial of o. Then one has

Xa(O) = (—]_)[K:x] det(Aa) = POC(O)[K:/@(OL)]7

and hence

det(Aa) = {1 P} = {c1iRa))

where d = deg(P,) = [s(a) : x]. We will denote the element of x by Ng . (c),
called the norm of o over k. Define the trace Trg () of o over s as trace(Ay) =
> ai;. In other words, in the following field polynomial x, of «, we have

Xo(®) = 2" = Tri/p(@)a™ ! 4 - 4 (=1)"Ng/x (@),
where n = [K : k]. The norm of K over &
Ng/w: K — &
is a multiplicative homomorphism of K, into k., namely
Ng/w(af) = Ng/u(@)Ng/o(B) € iy, o, 8 € K.

The trace of K over k,
Try. : K — K,

determines a k-linear mapping of K to k. When « € k, the formula
Try/o(a) = [K : kla, Ngj.(a) = alf (1.1.3)

is trivial. By Lemma 1.22, if K is a finite field extension of a field F' which is a
finite field extension of k, and « € F', then we have

Triu(a) = [K : F]Trp (o), Ng/olo) = NF/K(Q)[K:F]' (1.1.4)
Let K be a finite extension of a field k. Let [K : k]s = r, and let
by [K : K]
[K : K]s
if the characteristic of x is p > 0, and 1 otherwise. Let k be an algebraic closure
of k and let o1,..., 0, be the distinct embeddings of K in k. Then for a € K, one
has

Ni/w(a) = [ o: (ap“) , Trge(@) =Y oi(a). (1.1.5)
i=1 =1

When K = k(«), it is easy to show that (1.1.5) holds by using Proposition 1.10.
Generally, the mappings of K into x defined by (1.1.5) are transitive, in other
words, if we have three fields k C F' C K, then (cf. [227])

Trr/woTrg/p=Trk/w, NpjwoNg/p=Ngjy. (1.1.6)
Thus (1.1.5) follows from (1.1.4) and (1.1.6) applied to F' = x(a).
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Theorem 1.23. Let K be a finite separable extension of a field k. Then Trg, :
K — & is a non-zero functional. The mapping (x,y) — Trg,.(vy) of K x K —
k 1s bilinear, and identifies K with its dual space.

Proof. Trivially, Trg,,, : K — k is a non-zero functional. For each x € K, the
mapping
Trg/we: K—=&k

such that Trg . »(y) = Trg/.(2y) is obviously a -linear mapping, and the map-
ping
T = 'I‘I'K/n,z

is a k-homomorphism of K into its dual space K*. If Trg/,, , is the zero mapping,
then Trg . (zK) = 0. If # # 0 then 2K = K. Hence the kernel of x +— Trg , »
is 0. Hence we get an injective homomorphism of K into K™*. Since these spaces
have the same finite dimension, it follows that we get an isomorphism. 0

Let wi,...,w, be a basis of K over x. Then Trg /. w,,- -, Trg/ww, 15 a
basis of K*. Thus we can find vq,...,v, € K to satisfy

Tr /. (wivs) = dij.

Obviously, vy, ..., v, forms a basis of K over k.

1.2 Fields with valuations

We will introduce basic properties of absolute values over a field and their ex-
tensions to extension fields. In particular, classification of absolute values will be
exhibited, which includes the first and second theorems of Ostrowski.

1.2.1 Absolute values
Definition 1.24. An absolute value on a field k is a function
|- ]tk — Ry

that satisfies the following conditions:

1) |z| =0 if and only if x = 0;
2) |wy| = |ally| for all x,y € k;
3) lz+y| < x|+ |yl for all x,y € k.

If instead of 3) the absolute value satisfies the stronger condition

4) |z +y| < max{|zl], [y|} for all z,y € K,
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then the absolute value is called ultrametric or non-Archimedean. Otherwise, it is
called Archimedean.

Let x be a field with an absolute value |- |. If | - | is non-Archimedean, in fact
we have
|z 4yl = max{|z], [y}, |=] # [y].

The absolute value | - | is said to be trivial if
|a:| . 1 : x € k,,
10 : z=0,

and dense if the set
k| = {|z| | x € K}

is dense in R.
Generally, an absolute value |- | on k induces a distance function d defined by
d((E, y) = |1’ - y|7

for any two elements x,y € x, and hence induces a topology on k. For a positive
real number r and a point x € k, denote the open and closed balls of radius r
centered at x, respectively, by

s(ayr) ={y € r|d(xz,y) <r}, klrr]={yer|d(z,y) <r},
and denote the circle by
w(zir) ={y € v | d(z,y) = r} = Klz;r] — r(z;7).

By using the distance, then |- | is non-Archimedean if and only if the induced
metric satisfies

For this case, we know that
Y € Klx;r] = kly;r] = K[z 7];

y € k{z;ry = k(y;r) C K{z;T).

Thus s[z;7], k(z;7) and x(x;r) all are open and closed. Such sets are usually
called clopen.

Example 1.25. Let p € ZT be a prime number. For x = a/b € Q., there emist
integers vy(x),a’,b" such that

z = pr@? pta'b.
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Define

—vp(xz) .
_Jp oz #0,
Jlp = { 0 : z=0.

The function | - |, is a non-Archimedean absolute value on Q, called the p-adic
absolute value and was first introduced by Hensel in 1994.

According to the standard theory in p-adic analysis, the completion of Q
relative to the topology induced by ||, is just the field Q, of p-adic numbers, and
the absolute value | - |, on Q extends to a non-Archimedean absolute value on Q,,
which is also denoted by | - |,. The set of values of Q and Q, under |- |, is the
same, which is equal to the set

{p" [ nezyu{o}.
Let | - | denote the ordinary Archimedean absolute value on Q and set
Mg = {oo} U {primes}.
For any x € Q., we have the product formula

IT Il =1. (1.2.1)

ve Mg

Theorem 1.26 (Ostrowski [314]). Let |- | be a non-trivial absolute value on Q. If
| | is Archimedean, then there exists o with 0 < a <1 such that

x| = |z|%, xe€Q.
If | - | is non-Archimedean, then there exist a prime p and real 5 > 0 such that
|z| = |$|g, z e Q.

A proof can be found in [338]. Usually, Theorem 1.26 is called Ostrowski’s
first theorem.

There is another characterization for non-Archimedean absolute values. We
begin by noting that for any field k there is a mapping ¢ : Z — & defined by

14+1+--4+1 : n>0,
- -~ d

t(n) = 0 : n=0,
—Q+1+--+1 : n<0,

where 1 is the unit of &, and its kernel :~1(0) is an ideal generated by an integer
p > 0. The number p is called the characteristic of the field x, which is either 0 or
a prime number. In the first case, k contains as a subfield an isomorphic image of
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the rational numbers, and in the second case, it contains an isomorphic image of
F, = Z/pZ. We will identify Z with its image under the mapping in k. Then an
absolute value | - | on k is Archimedean if and only if

sup |n| = +oo,
nez

and is non-Archimedean if and only if

sup|n| = 1.
nez

Two absolute values on k are said to be equivalent (or dependent) if they
induce the same topology on k. An equivalence class of non-trivial absolute values
on a field k will be called a prime or place of k, and sometimes be denoted by a
German letter p. A place p is called non-Archimedean or finite (resp., Archimedean
or infinite) if its absolute value is non-Archimedean (resp., Archimedean). We have
the following more accessible criterion (cf. [117]):

Lemma 1.27. Let |- |1 and |- |2 be absolute values on a field k. The following
statements are equivalent:
(i) |- |1 and |- |2 are equivalent absolute values;
(i) |zl <1 if and only if |x|2 < 1 for any = € K;
(iil) there exists a positive real number « such that for each x € Kk, one has
|z = |25
Lemma 1.27 and Theorem 1.26 shows that Mg is just the set of all places on Q.

Definition 1.28. A wvaluation on a field k is a function v from k into R U {+oo}
satisfying:

(a) v(xz) = +o0 if and only if x = 0.

(b) v(zy) = v(x) +v(y) for all z,y € k.

(¢) v(z+y) > min{v(z),v(y)} for all z,y € k.

A valuation v is said to be trivial if

(@) = 0 : €Ky,

T 4o : xz=0.
Two valuations v; and vy are equivalent if and only if there is a real positive
constant A such that vy (x) = Ava(x) for all x € &.

Let v be a valuation on a field x. For a real constant ¢ > 1, a non-Archimedean
absolute value
|2y = V@) 2 ek
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is well defined. Conversely, if | - | is a non-Archimedean absolute value on &, a
valuation v, : Kk — R U {400} is defined by
| —log.|x| : x € ks,
UC(J;)_{ +oo : x=0,

and is named the (additive) valuation associated to the absolute value, where log,,
is the real logarithm function of base c¢. Thus a non-Archimedean absolute value
can be characterized by a valuation.

Example 1.29. Let p € Z™" be a prime number. If v € Q, set

_J —log, |z, : z#0,
vp(x)—{ +oo : xz=0.

The function v, on Q is called the p-adic valuation on Q.

The image of k. by a valuation v is a subgroup of the additive group (R, +)
called the wvaluation group of k. The valuation of x is said to be discrete (resp.,
dense) if its valuation group is a discrete (resp., dense) subgroup of R. For the
trivial valuation, the valuation group consists of 0 alone. If v is a non-trivial
valuation, its valuation group I' either has a least positive element A\ or I' has no
least positive element. For the former, I' = MZ. For the latter, I' is clearly dense
in R. For a discrete valuation we can always find an equivalent one with precise
valuation group Z; such a valuation is said to be normalized or an order function
on k. The function v, on Q is an order function. Krull [217] has observed that a
valuation uses only the addition and the ordering of the real numbers. This means
that we can take the values to lie in any ordered additive group. For discussion of
the general extensions, see Cohn [63].

Lemma 1.30. If k is algebraically closed, then the valuation v associated with a
non-trivial absolute value | - | is dense and hence the absolute value |- | also is
dense.

Proof. Since |- | is non-trivial, then there is an element a € k. with |a| # 0,1. We
may assume 0 < |a| < 1. Since & is algebraically closed, then the equation

2" —a? (n€Z, g€ )

always has solutions. Thus, we have

Obviously, the set
{Zv(a) |neZ", q¢ Z}

is dense in R. Thus, the valuation v is dense. O
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If ||, is a non-Archimedean absolute value on the field x given by a valuation
v, the subset
O, =k[0;1]={z €k ||z, <1}

is a subring of « that is called the valuation ring of v; its elements are the valuation
integers or v-integers. Its subset x(0;1) is an ideal of O, which is called the
valuation ideal of v. Furthermore, x£(0;1) is a maximal ideal in O, and every
element of the complement £(0; 1) is invertible in O,. Thus, O, is a local ring of
. The field

F(k) =F,(k) =9,/k(0;1)

is called the residue class field of k. The characteristic of F(k) is named the residue
characteristic of k. In particular, the valuation ring

Ly = DQp = Qp[()? 1] = Qp(0;p)

is both open and closed, which is called the ring of p-adic integers.

1.2.2 Extensions of absolute values

Definition 1.31. Let V be a vector space over a field k and let | - | be a non-trivial
absolute value on k. A norm on V (compatible with the absolute value of k) is a
Sfunction

[ ]:V—Ry

that satisfies the following conditions:

(@) |X| =0 if and only if X =0;

B) | X+Y|<|X[+]Y] for all X, Y € V;

(7) laX| =la|-|X]| for alla € k and all X € V.

A wector space V' with a norm is called a normed vector space over k.

Let V be a normed vector space. Then any norm | - | induces a metric d,
d(X7Y) = |X _Y|a

which makes V' a topological space. We say two norms |- |; and | - |2 on V are
equivalent if they define the same topology on V. Equivalently, there are positive
real numbers ¢; and co such that

al-h <|-|l2<c| |-

If V is finite-dimensional and if x is complete under a non-trivial absolute value,
then any two norms on V are equivalent, and V is complete with respect to the
metric induced by any norm. Further, if x is locally compact, then V' is also locally
compact.
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Let K be an extension of a field x. An absolute value w of K is said to be
an extension of an absolute value v of k if

|| = |z]y, = € k.

We will denote the relation between v and w by w|v. Obviously, if w|v, then ||, is
also a norm on K as a k-vector space, and, further, if v is non-Archimedean, then
w has to be non-Archimedean because this depends only on the absolute values
of the elements of Z, which are in k.

Theorem 1.32. Let K be a field extension of k. Then an absolute value on k has
an extension to K. If K is an algebraic extension of k, and if k is complete, then
there is a unique absolute value on K extending the absolute value of k. If K is
finite over k, then K is complete.

Proof. We prove only the uniqueness. For the rest, see [227]. Suppose | - |; and
| - |2 are two absolute values on K that extend the absolute value | - | of k. For
any x € K, it is easy to show that £ — 0 with respect to the topology induced
by |- |1 (resp., | - |2) if and only if |z|; < 1 (resp., |x|]2 < 1). Note that | - |; and
| - |2 are equivalent as norms on the k-vector space K, i.e., they define the same
topology. Therefore, we have convergence with respect to | - |1 if and only if we
have convergence with respect to | - |2, or |z|; < 1 if and only if |z|]2 < 1. Hence
|- |1 and |- |2 also are two equivalent absolute values. Thus, there exists a positive
real number « such that for each x € K, one has |z|; = |z|$, and hence o = 1
since |z|1 = |x|2 = |z| when z € k, i.e., the two absolute values are the same. [

Let K be a field extension of x. We shall now examine ways of extending a
valuation on k to K. By induction it will be enough to look at simple extensions,
K = k(a), and we shall treat the cases where « is algebraic or transcendental
separately. Thus our first task is to extend a non-Archimedean valuation v on x to
the rational function field x(t), where ¢ is transcendental over k. We shall give a
simple construction of a valuation w on x(t) which extends v. Given a polynomial

f@) =ant” + -+ a1t + ao € Klt],
define
w(f) = min v(a;). (1.2.2)

0<i<n

It is clear that this reduces to v on x, and moreover satisfies

w(f +g) = min{w(f), w(g)};

further, the argument used to prove Gauss’ lemma shows that

w(fg) = w(f) +w(g),
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cf. Lemma 1.97. Hence we obtain a valuation w on k[t]; it extends in a unique way
to a valuation on (t), still denoted w, by the rule

w (J; ) —w(f)—wlg), fog €t (1.2.3)

The valuation thus defined is called the Gaussian extension of v to k(t). Clearly
v and w have the same value groups.

Consider next a finite extension K/x, and so an algebraic extension. We will
assume that k is complete under an absolute value | - |,. There can be at most
one valuation extension | - |, to K, by Theorem 1.32. Observe first that if K is a
normal extension of k, and ¢ is an automorphism of K over k, then ¢ induces an
absolute value | - |, on K defined by

|#w,o = lo(@)|w, =€ K.

Since the restriction of o on & is the identity, then |- |, , also is an extension of
the absolute value of x, and hence

|Z|w,o = |2|lw, =€ K.
Since K is algebraic over k, if o is an embedding of K in s over x, where k is

an algebraic closure of k, then the same conclusion remains valid, as one sees
immediately by embedding K in a normal extension of . In particular, if « is

algebraic over k, and if 01, ...,0, are the distinct embeddings of k(a) in &, then
one has
r [k(@):k]/T
|Nn(a)/,§(a)|v = Hoi(a) = |a|q[f5(a):n]’
i=1

v

and taking the root, we get (cf. [63], [95], [117]):

Theorem 1.33. Let k be a field which is complete under a non-trivial absolute value
| - |» and let K/k be a finite field extension. Then v has a unique extension w to
K, given by

1/[K:K]

lafw = |Ng/p(a)] (1.2.4)

We recall from standard field theory that a general field extension is obtained
by taking a purely transcendental extension, followed by an algebraic extension.
Thus if we are given a complete field k with respect to a non-Archimedean val-
uation, we can form the rational function field x(¢) with the Gaussian extension.
Repeating this process and applying Theorem 1.33 to the final algebraic exten-
sion, we have found an extension of a complete valuation to any finitely generated
extension. It is not difficult to extend the argument to extensions that are not
finitely generated.
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Example 1.34. Let K/Q, be a finite extension. The unique absolute value on K
that extends the p-adic absolute value on Qy, is called the p-adic absolute value on
K, which also is denoted by |-|,. It makes K a locally compact topological field, and
makes K complete. From the formula for the absolute value on K, we immediately
see that for any a € K,

1 1
’ U}(Ck) = [K . Qp] UP(NK/QP (a)) € [K . Qp] Z.

|l :piw(a)

The unique rational number w(a) is also denoted by v,(c). Setting v,(0) = +oo,
one obtains a valuation v, on K, which also is called the p-adic valuation on K.

Now we show that the p-adic absolute value on Q, can be extended to an
algebraic closure Q, of Q. In fact, given any x € Q,, then z is in the finite
extension Q,(x), and hence one can define |z|, by using the unique extension of
the p-adic absolute value to Q,(x). Therefore, one obtains a function

|'|:Qp_)R+

that extends the p-adic absolute value on Q,, and it is easy to prove that this
function is an absolute value. The unique absolute value on @, is also called the

p-adic absolute value. However, QQ, is not complete with respect to the p-adic

P
absolute value. The completion of Q, relative to the topology induced by |- |,
is a field that is denoted by C,, and the absolute value | - [, on Q,, extends to a
non-Archimedean absolute value on C,, which is also denoted by | - |, such that
Q, is dense in C,, and C, is complete, algebraically closed. The image of Cp.

under v, is Q.

Let k be a field with a non-trivial absolute value v. The completion of k
relative to the topology induced by v is a field which is denoted by k,. If v is
non-Archimedean, then «, is a finite extension of Q, for some prime p. If v is
Archimedean, then k, = R or C, which is just contents of Ostrowski’s second
theorem:

Theorem 1.35. Let K be a field with an Archimedean absolute value for which it
is complete. Then K is isomorphic either to R or to C.

We know that a non-trivial absolute value v of k can be extended to x,,, and
then uniquely to its algebraic closure x,. Let K be an extension of x. Given two
embeddings 0,7 : K — k,, we shall say that they are conjugate over k, if there
exists an automorphism A of k,, over k, such that c = Ao 7.

Proposition 1.36 (cf. [225]). Let K be an algebraic extension of k. Two embeddings
0,7 : K — Kk, give rise to the same absolute value on K if and only if they are
conjugate over K.

If v is non-Archimedean, we have the canonical isomorphism

F(k) =2 F(ky).
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Let K be a finite extension of x, and let w be an absolute value of K extending
v. Then the residue class field F(K) is an extension of F(x), and its degree is
called the residue class degree of the extension K/k. The valuation group v(k.)
of k is a subgroup of the valuation group w(K,) of K, whose index is called the
ramification indez of the extension K /k. By the definition, the index is the number
of cosets of the subgroup v(k.) in w(K,). The extension is said to be ramified if
its ramification index > 1, unramified otherwise.

Proposition 1.37 (cf. [63], [225]). Let K/k be an extension of valuated fields with
ramification index e and residue class degree d, where the valuation w of K extends
that of K, v say. If K/k is finite, then

ed < [K : K], (1.2.5)

and if v is trivial or discrete, then so is w. If v is discrete and k is complete, then
equality holds in (1.2.5).

The following result describes the extensions of an incomplete field:

Theorem 1.38 (cf. [63]). Let x be a field with a discrete valuation v and let K/k
be a separable extension of degree n. Then there are at most n extensions of v to
K, say wy,...,w,, where r < n. If e; denotes the ramification index and d; the
residue class degree of w;, then

.
Z eidi =n.
i=1
Further, if the completion of k under v is Kk, and that of K under w; is K,,,, then
K@k, =2 Ky, X - X Ky,

Finally, we consider the absolute value defined by an irreducible polynomial
p(x) over a field x with the associated valuation v given by v(p) = v if

<P=p”f, p1fg.
g

This valuation is trivial on x. We also say that v is a valuation of k(z) over k. We
can now determine all valuations of x(z) over &:

Proposition 1.39 (cf. [63]). Let k be any field. Any general valuation on the rational
function field k(x) over k which is non-trivial is either associated to an irreducible
polynomial over k, or to x 1.

Consider the case k = C; here the irreducible polynomials are x —a (a € C),
so every complex number defines a valuation on C(z); in addition we have a
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valuation corresponding to ~!. These valuations just correspond to the points on
the Riemann sphere, and the representation

v f(z) 1

o) = { (@=-ai), pe)=o—a
g(z)’

p(x) =2~

may be regarded as indicating the leading term of ¢ at the point x = a or z = oc.

1.3 Discriminant of field extensions

In this section, discriminants of field extensions will be defined. Mainly, we will
show an important formula of discriminants on a tower of field extensions.

1.3.1 Discriminant

Let k be a field, and K a finite field extension of x with a basis {wy,...,wy,}.
Then the discriminant of the basis {w,...,wn}, Dg (w1, ..., wy), is defined as

DK/K(wla s 7wn) = det(r]:‘rK/K(wzw]))

Let {w},...,w]} be another basis of K over x. Set

n

’ 2 :
w; = bikwk.

k=1

Then we have

= det Z bikbji Tr g/ (wrwy)
k.l

{det(bi;g)}2 det(TrK/,_i(wkwl))
det(bik)}2DK/,€(w1, ‘e ,U}n).

Theorem 1.40. Let K be a finite extension of k, and {wy, ..., wy} a basis of K over
k. Then Dk (w1, ..., wy) # 0 if and only if K is a separable algebraic extension
of k.

Proof. (=) Let k% be a separable closure of s in K. If k% = K, then K is
separable algebraic over x, and we are done. Otherwise, /{f( # K, K is purely

inseparable over x%-, and

K k] =p", r>1
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Let a be any element in K. We claim that Trg . (o) = 0, and so Dy, (w1, ...,
wy,) = 0. We distinguish two cases, (i) a € 3, (i) a & k7.

Case (i). Let the field polynomial of v as an element in x%- (resp. K) be G(z)
(resp. Xa(x)), and write

G)=z"+az™ '+ +an.
It follows from Lemma 1.22, that
Xa(z) = G(a)P" = 2™ +0z™ ' 4.

Therefore, Trg /. (a) = 0.

Case (ii). There is an integer [ > 1 such that the minimal polynomial P, (x)
of o over k is in k[z?']. It follows from Lemma 1.22 that the field polynomial x ()
of a as an element in K is of the form

Xa(x) = Po(2)° € Ii[l‘pl].

Therefore, Trg /(o) = 0.

(«) Since K is a finite separable algebraic extension of k, then there exists
an element a € K such that K = k[a]. Let us take {1,a,a?,...,a" 1} as a
basis of K over k. Let K be an algebraic closure of K, and P, (z) be the minimal
polynomial of a over k. Note that the field polynomial of « is P, (). Let Py(x)
be split completely in K:

n

Po(z) = [J(x = ), o1 = a, o # a; (i # j).

i=1
Then we have

T‘I‘K/K(Oé) = Zai-
=1

We claim
n

Try,.(a?) = Zaf.
i=1
Let the splitting field of P, (x) in K be E which is a Galois extension of x with Ga-
lois group G'g /.. In the collection {a7, a7, . .., ad }, some elements may be identical.
It is easy to see that each element appears with the same multiplicities. Picking
all distinct elements from it to form a set {01, ..., Bm}. Then we have that m | n,
and the polynomial Q(z) defined as

m

Q) =[x - 8)

i=1
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is the minimal polynomial of o/ over k. Then we have

’I‘rk[cw /m aj Zﬁu

Tre/u(0”) Zﬁz iazﬁ
i=1

Therefore, we have the following computation:

n
7
nfl)_ Zal Za% Za?

Dg/e(l,a,...

1 1 1 1 a apt

o % ap 1 o ay~t

a7t oapt an—1 1 oy, an—t

2
i>7 O
Let K be a finite separable algebraic extension of x, of degree n. Let o1, ..., 0y,
be the distinct embeddings of K in k over k, where & is an algebraic closure of k.
Then the discriminant of a basis {wy, ..., w,} of K over k satisfies

DK/K(wl, ‘e ,wn) = {det(ai(wj))}2.

In fact, by (1.1.5), we have
Try/n(wiwj) = Y  om(wiw;) = >  om(w;)om(w;),

which means
(Tri/w(wiwy)) = (03 (w;)) (03 (w;)),
and hence the claim follows.
Let K be a finite separable algebraic extension of k, and let k C F C K.
Every element of K is separable over F', and every element of F' is an element of

K, so separable over . Hence each step in the tower is separable. Then there exist
elements o € K, 8 € F such that K = Fla], F = &[f]. Set

p=|K:F]|, g=[F:k], n=pg=[K :«&].
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Let us take {1,a,a?,...,a?71} (resp. {1,3,...,897'}) as a basis of K (resp. F)
over F' (resp. k). Let K be an algebraic closure of K, and P(x) (resp. Q(z)) be the
minimal polynomial of a (resp. ) over F (resp. ). Note that the field polynomial
of a (resp. B) is P(x) (resp. Q(x)). Let P(x) and Q(x) be split completely in K

as follows
p

P(z) = H(m —), =, a; # o  (1F#7),

=1

q

Q(z) = [[(x = B8i), Br =8, Bi # B (i # ).

=1

Then we have
p
Try/p(a Zau Tri/p(a') = Z :
=1

q

Trpe(B) =D B Trpm(8™) =Y B

i=1 i=1

Therefore
Tri/.(6") = Trp). o Trg p(8™) = Trp.(p8™) pz Bi".

In the collection {aﬁﬁ}" |1 <i<p,1<j<q}, some elements may be identical.
It is easy to see that each element appears with the same multiplicities. Pick all
distinct elements from it to form a set {71,...,7s}. Then we have that s | n, and
the polynomial R(x) defined as

S

R(z) = [J (@ — )

i=1

is the minimal polynomial of /3™ over k. Then we have

Tryjqrgm) /e Z%

s p q
Tri/x(a!f™) = Z D= alpr.
i=1

i=1 j=1
Abbreviate
<I>=(1,0¢,...,Ozp71), qj:(laﬂa"')ﬂqil)'
OV = (0,30,...,3171®).
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Then ®W is a basis of K over . Consider the Vandermonde matrices

p—1 q—1
al DY al 1 1 61 DY 1 1
1 as -+ of” 1 . a-
A= 2 2 . B= B2 g
1 ap ab=1 1 B, a1

n QZ% Zaf_lﬂq_l
; 2 paq—1
D@y = | 2% 4 2 0if,

..... T T S
Yo BT Yapl e Yt
A BA - 55*1,4 2

| A BA I tA
A BA BItA

= det(A)* det(B)* = Dy/p(®)I D, (V).
Therefore we obtain a relation
Dieyn(®0) = Dy (W) FI Do ()1, (1.3.1)

Further if Dg/p(®) € &, then

DK/F((I))[FK] = NF/K(DK/F(¢))
Therefore we also have

D /w(®0) = Dy (W) FINp) (D (). (1.3.2)

1.3.2 Dedekind domain

For any subring o of a field k we define a fractional ideal of 0 as an o-module 2 in
k such that
uo C A C vo

for some u,v € k.. An ordinary ideal 21 of 0 is a fractional ideal precisely if it is
non-zero; this is also called an integral ideal. Clearly a fractional ideal is integral
if and only if it is contained in o.

The usual ideal multiplication can be carried out for fractional ideals by

defining
AUy = {Z%yu | xz, € A1, yy € le}.
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Then u;0 C A; C v;0 imply that ujuso C A1As C vyvs0. Hence the product is
again a fractional ideal. This multiplication is clearly associative, with o as unit
element, so the set F' of all fractional ideals is a monoid. Moreover, there is a
generalized inverse:

(o0:A)={z€o]|2ACo}.

If uo C 2 C wo, then v=1o C (0: A) Cu~lo, and for any ¢ € o we see that 22 C o
implies
cxA C co Co.

Therefore (o : 2) is again a fractional ideal. Further, we have
(0:2)A Co, (1.3.3)

as is easily verified. If the equality in (1.3.3) holds, we also write 20=! in place

of (o0 : 2A) and call 2 invertible. For example, any non-zero principal ideal ao is

invertible: (a0)~! = a"to.

Let S be a family of non-trivial and pairwise inequivalent absolute values
of a field k. Then the members of S are equivalence classes of absolute values,
also called prime divisors or simply places. Here we shall denote the members
of S by small Gothic (or Fraktur) letters: p, q,... and write vy, vg,... for the
corresponding valuation. With each p € S we associate its valuation ring

op ={z €K |vp(z) >0}

Suppose that o is the ring of integers for S, i.e.,
0= ﬂ 0p.
pes

We define the divisor group D of k with respect of S as the free Abelian group on
S as generating set. The typical element is written

a=]]p,

where the a are integers, almost all zero, and a is called a divisor. Our aim will
be to explore the relations between D and the monoid F' of all fractional ideals.
We define a mapping ¢ : F — D by the rule: for any 2 € F' we put

vp(A) = min{v, (x) | z € A} (1.3.4)

If wo C A C wo, then clearly v,(u) > vy () > vp(v) for all p; this shows that
vp (2A) = 0 for almost all p. We can therefore define

o) = [ o™ (1.3.5)



1.3. Discriminant of field extensions 27

It is easy to show that ¢ is a homomorphism. For if ¢ € 2B, say,
c= Zaibi, a; €A, b; € B,

then
vp(c) > miin{vp(ai) +vp(bi) } > vy (A) + v, (B),

therefore
Up (AB) = vp (A) + v, (B),

and here equality holds, as we see by taking ¢ = ab, where a, b are chosen in 2, 8
so as to attain the minimum in (1.3.4). Hence

vp (AB) = vp (A) + vp(B),
and it follows that (1.3.5) is a homomorphism.

An integral domain whose fractional ideals form a group under ideal multi-
plication is called a Dedekind domain. The following fact comes from Cohn [63],
Theorem 4.5.

Theorem 1.41. If o is a Dedekind domain with field of fractions k, then o can
be defined as the intersection of principal valuation rings for a family of absolute
values.

If 0 is a Dedekind domain with field of fractions x, then the mapping ¢
from the fractional ideals to the divisors is an isomorphism. E. Noether gives the
following equivalence conditions of Dedekind domain with the more usual form
(see Cohn [63], Theorem 4.6):

Theorem 1.42. An integral domain o with field of fractions k is a Dedekind domain
if and only if it satisfies the following three conditions:
(i) o is Noetherian;
(ii) o is integrally closed in k;
(iii) every non-zero prime ideal in o is maximal.
The following result comes from Cohn [63], Theorem 5.1.

Theorem 1.43. Let A be a Dedekind domain with field of fractions k, let K be a
finite separable algebraic extension of k and denote by B the integral closure of A
in K. Then B is again a Dedekind domain.

Given a Dedekind domain A with field of fractions x, we have a homomor-
phism 6, of k. into the divisor group D = D, of k given by

On(x) =T ™. (1.3.6)
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The kernel of this mapping is the group of units in A, because the mapping ¢ from
the fractional ideals to the divisors is an isomorphism.

If K is a finite separable extension of x and 0 is the corresponding mapping
defined by (1.3.6) for K, then for P|p we have

vp(z) = epvyp(2), z € K,
where eq is the ramification index for 8. Hence for any = € K we have

vp (%)

- Hmvm(w) - H H&pvm(w) — H Hq:geqs
B

p\Blp P\ Blp

Thus we obtain a commutative diagram yo 68, = 0k ot as shown below by defining
a mapping v : D, — Dk,

v(p) =[] B, (1.3.7)

Blp

where ¢ : Kk — K is the inclusion. The mapping (1.3.7) is an embedding of D,; in
Dy, sometimes called the conorm mapping.

In the other direction we have the norm mapping. Given a place p of «, let
the divisors of p in K be By, ..., B, and let Ky, ..., K, be the corresponding
extensions of kp, the completion of k (cf. Theorem 1.38). As we saw, we have

[Ki : Iip] =nNn; = eidi7

hence

and so we obtain

NK//-; va NK /xp Zd Uqgl

In terms of divisors this may be written as

N/ (Bi) = p% (1.3.8)

Hence we find that

Ni/n(7(p)) = N (B5 - Per) = p= i = p,

where we have used Theorem 1.38.
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1.3.3 Different

Let K be a finite separable algebraic extension of a field k. Take A to be a Dedekind
domain with k as its field of fractions and B its integral closure in K. Then B
is again a Dedekind domain. Given X C K, we define its complementary set or
simply complement as

X'={ye K| Trg,.(yX) C A}.
Clearly X’ is a subgroup of the additive group of K. Moreover, we have

hence
(2X) =27'X".
We also have
XCcY=X DY (1.3.9)
2XCX=z2X'CcX'. (1.3.10)
Let uy, ..., u, be a basis of K/x. Since Trg . is non-singular, that is, Trg /.. (ax) =

0 for all z € K implies a = 0, the mapping K — k™ defined by
v (Trg)e(ui),. .., Trg) . (u,))
is injective, and hence an isomorphism. Thus we can find v1, ..., v, in K to satisfy

1 1= j7
Tr)n(uivy) = 0ij = {() : otherwise.

The v’s form the dual basis for the u’s.

Lemma 1.44 (cf. [63]). Let x, K, A, B be as above and [K : k] = n. If U is a free
A-submodule of K of rank n, then its complement U’ is also free of rank n, and
we obtain a basis of U’ by taking the dual of a basis of U.

Theorem 1.45 (cf. [63]). Let A be a principal ideal domain with a field of fractions
k, K a finite separable algebraic extension of k, and B the integral closure of A
in K. Then B and generally every fractional ideal of B is a free A-module of rank
[K : k.

Proof. Let uy,...,u, beabasis of K over k,n = [K : k]. On multiplying the u’s by
suitable elements we may assume that u; € B (i = 1,...,n). Then the A-module
U spanned by the u’s satisfies U C B, hence U’ D B’. Since Trg,.(B - B) C A,
we have B C B’ and so

UcBcCcB cU.
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By Lemma 1.44, U’ is free of rank n, hence B as submodule of U’ is also free of
rank at most n. In fact the rank must be n because B contains U of rank n. Now
the result follows for any fractional ideal 2l because we have ¢cB C 2 C dB, hence

d'B'cd cc B,
and so the theorem is proved. (|

If A is an invertible ideal, we have the following explicit formula for the
complement:
A = B'AL. (1.3.11)

In fact, we have
Try ;. (B'A'A) = Trg,,.(B'B) C A,

hence B/~ C 2, and conversely,
Trg (A AB) C Trg,,.(A'A) C A,

hence 2'A C B’ and so 2’ C B’2~!, which proves equality in (1.3.11).

Theorem 1.46 (cf. [63]). Let A be a Dedekind ring with a field of fractions k, K
a finite separable algebraic extension of k, and B the integral closure of A in K.
Then its complement B’ is an invertible ideal whose complement is integral:

2= (B, (1.3.12)

and for any fractional ideal A of B, its inverse is related to its complement by the
formula:
A =0, (1.3.13)

Proof. We have seen that B’ O B and it is clear that BB’ C B’, by (1.3.10).
Moreover, B’ is finitely generated as an A-module, by ¢y, ..., ¢, say. Writing the
¢; as fractions with a common denominator in B, say ¢; = a;b~', where a;,b € B,
we have (B’)~! C B and so 0 defined by (1.3.12) is an integral ideal. Now (1.3.13)
follows on multiplying both sides of (1.3.11) by 0. O

The ideal @ = 0 /,, defined by (1.3.12) is called the different of the extension
B over A (or also of K over k). In the particular case where B is generated by a
single element over A, there is an explicit formula for ? which also explains the
name.

Theorem 1.47 (cf. [63]). Let A be a Dedekind domain, B = Ala] a separable
extension generated by a single element o integral over A, and let f be the minimal
polynomial for o over A. Then B’ = B/(f'(«)), where [’ denotes the derivative,
and so

0= (f'()). (1.3.14)
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Let K/k again be a finite separable extension with rings of integers B, A, and
consider any A-module U of K which is free of rank n = [K : k] as an A-module.

Let 01, ..., 0, be the distinct embeddings of K in k over k, where k is an algebraic
closure of k. We define the discriminant of U relative to any A-basis {u1,...,un}
of U as

Dy (U) := Dgype(ut, ..., up) = det(Trg . (usuy;)) = {det P}z,

where P = (0;(u;)). If we replace uy,...,un by aus,...,quy,, where a € K, then
P becomes PC where C = diag(o1(a),...,on(a)). It is clear that det C is the
product of the conjugates of a, i.e., Ng/, (). Hence we have

Dy (Ua) = {det PC}* = Nk (a)? D, (U). (1.3.15)

Let 2 = [[B;" be any fractional ideal in B. For a given place P3; we defined
its norm in (1.3.8) as

N/ (Pi) = p, (1.3.16)

where p is the place of £ which 3; divides and d; is the corresponding residue
degree. Thus we may define the norm of 2 by

Nic/(@) = [ [ Ny (B) (1.3.17)

We apply this result to (1.3.15), taking U = B, Ua = B’. Locally, i.e., at a
place 3;, we can do this because in the corresponding valuation ring every ideal
is principal; we thus obtain

Dic/x(B') = Ni/n(B')* Dic/n(B). (1.3.18)

Suppose now that {u;},{v;} are dual bases for B, B’ respectively and put
Q = (04(vj)). Then

Zgl(ui)al(%‘) = Trg . (uvy) = 0ij,
7

hence PQ = I, and since
Dgyw(B) = {det P}*, Dy, (B') = {det Q}?,

we have
DK/H(B)DK/K(BI) =1

Combining this with (1.3.18), we find
Dk, (B')? = Ng,.(B')?.
Now the discriminant Dy ., of K/k is Dg/,.(B), hence we have

Dy = Diyo(B') ™' =Ngyu(B)
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Thus in terms of fractional ideals we have the equation

which identifies the discriminant as the norm of the different.

Theorem 1.48 (cf. [63]). Let A be a Dedekind domain with field of fractions k, let
k C F C K be finite separable algebraic extensions and C, B the integral closures
of A in F, K respectively. Then

O/ = 0K /FOF/k, (1.3.20)
Dy = NF/K(DK/F)DEI‘I?;{F]- (1.3.21)

Proof. In order to establish equation (1.3.20) we must show that

ki = Bi/rCr /s (1.3.22)

where the prime means the complement in the extension indicated by the suffix.
We have
Trg/e =Trp) o Trgp,

hence
Tric/x (B}(/FC}’/HB) = Trpyx (C'F/HTPK/F (Bk/FB))
C Trp), (O’F/KO> c A

This shows that the left-hand side of (1.3.22) includes the right-hand side. To
obtain the reverse inclusion, take v € B}{/K; then

Trp), (C Trg p(vB)) C Tri/.(7B) C A,
hence Trg/p(vB) C C}?/H and so

Trg/p (C}_/i ‘WB> = C;ﬂ_/,liTrK/F (vB) c C.
Therefore C’;/iv C B’K/F and so v € B%/FC}/W which shows that equality holds
in (1.3.22). This proves (1.3.20), and now (1.3.21) follows by taking norms. O

The following Dedekind discriminant theorem provides more precise informa-
tion about the discriminant divisors.

Theorem 1.49. Let K/k be a finite separable algebraic extension, A a Dedekind
domain with field of fractions k and B the integral closure of A in K, and express
the discriminant as a product of prime divisors in A:

DK/K = Hpﬁp'
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For any prime divisor p of A let P, ..., P, be its extensions to B and write e;, d;
for the ramification index and residue class degree of the P;-adic valuation. Then

5p 2 Zdi(ei — ].)

For the proof, we refer to Cohn [63], Theorem 6.6.

1.4 Product formula

We will show that the product formula (1.2.1) over @ can be extended to finite
extension fields of Q with a proper modification.

Let « be a field with a non-trivial absolute value v. Let x, be the completion
of k for v. Let K be an extension of k. If w is an absolute value on K extending
an absolute value v on k, we write w|v. If w|v and if [K : k] is finite, then we shall
call [, : Ky the local degree, which satisty

Z[Kw K] < [K K]
wlv
Proposition 1.50 (cf. [225]). If K is a finite separable extension of k, then
[K : k] = Z[Kw : Kyl
wlv

Whenever v is a non-trivial absolute value on k such that for any finite
extension K of x we have

[K : k] = Z[Kw D Kol
wlv

we shall say that v is well behaved. Suppose we have a tower of finite extensions,
k C K C E. Let w range over the absolute values of K extending v, and u over
those of F extending v. If u|w, then E, contains K. Since

S IBu: k] = [Bu: Kul[Ky : k]

ulv wlv ulw
= [Ku: k] Y [Bu: Ky,
wlv ulw

thus we have

Y [Bu: k) < Ky w][E: K]

ulv wlv
<[K :k|[F:K]=[E:K]

From this we immediately see that if v is well behaved, K finite over k, and w
extends v on K, then w is well behaved.
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Proposition 1.51 (cf. [225]). Let K be a finite extension of k, and assume that v
is well behaved. Take o € K. Then

Ng/p(a) = HNK“,/KU (@),

wlv

Tri () =Y Tr, s, (a).

wlv

Let k be a field. An absolute value v on k is said to be proper if it is non-
trivial, well behaved, and if, x having characteristic 0, its restriction to Q is either
the ordinary absolute value or a p-adic absolute value. A set M, of absolute values
on k is said to be proper if every absolute value in it is proper, if any two distinct
absolute values are not equivalent, and if, given x € k., there exists only a finite
number of v € M, such that |z|, # 1. In particular, if M, is proper, there can be
only a finite number of Archimedean absolute values in M. If K is an algebraic
extension of x, we shall denote by Mg the set of absolute values on K extending
some absolute value in M,,. If K is finite over k, then M is proper if M, is proper.

Let M, be a proper set of absolute values on k. For each v € M,, let n,
be a real number > 0. We shall say that M, satisfies the product formula with
multiplicities n,, if for each x € k., we have

I] I«

vEM,

Ny
w1,

We shall say that M, satisfies the product formula if all n, = 1. When we deal
with a fixed set of multiplicities n,,, then we write for convenience

n (1.4.1)

llo =l

so that the product formula reads

IT liallo = 1.

veEM,

Suppose now that we have a field F with a proper set Mg of absolute values
satisfying the product formula with multiplicities 1. Let x be a finite extension of
F, and let M, be the set of absolute values on k which extend the absolute values
of Mg. Then M, is also a proper set of absolute values on k. If £ € Mg and v € M,
with v|t, set n, = [k, : Ft]. Then for any o € k., we get by Proposition 1.51:

1= ] Nor@], = T TTledee = TT ledie.

teMg teMp vt veEM,

This shows that M,; satisfies the product formula with multiplicities n,,.
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The classical example is that of the rational numbers Q. For each prime
number p we have the p-adic absolute value | - |,. The ordinary Archimedean
absolute value will be said to be at infinity, denoted by | - |». Thus the set

Mg = {0} U {primes} = {0, 2,3,5,...}
is proper, and satisfies the product formula.

We assume that x is a number field, i.e., a finite extension of Q. By the
arguments as above, the set M, of absolute values extending those of Mg is a
proper set of absolute values on k satisfying the product formula with multiplicities
Ny, where n, = [k, : Qp] if v|p for some p € Mg such that

va =[k:Q).

For convenience, we also write
2l = ]y, 2 € k. (1.4.2)

If we have a tower of finite extensions, Q C k C K, and if w|v for w € Mk, v € M,,
then K, contains x, with
Ny = [Kuw : Ky N,

and hence n
> nw = [Ku: k] = [K : . (1.4.3)
wlv v wlv
The set M,, will be called the canonical set. Let Sg° be the subset of Archimedean
absolute values in M. It is called the set of absolute values at infinity. If S is a
finite subset of M, containing the set Sg°, denote by O, s the ring of S-integers
of k, i.e.,
Ows={zerllzl, <1, p¢S). (14.4)

If v € M, is one of the absolute values extending the ordinary absolute value
on Q, then k, is either R or C. We also say that v is real or complex, accordingly.
The multiplicity n, is given by

1 :if k, =R,

nv:[nv:Qw]:{Q :if k, = C.

In other words, if x has r; real embeddings mapping = € k respectively into
M. 2" and ry pairs of complex conjugate embeddings mapping x into

x(r1+1)’ x(r1+1)’ L. 7$(7“1+T’2)7 p(ritr2)
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where r1 4+ 2ro = [k : Q], then the absolute values dividing oo are

‘x(l)‘ Yoy ‘x(”)

’ ‘x(r1+l)‘ e ‘x(T’1+T2)

The first 1 of these have n, = 1 and the last ro have n, = 2.

If v € M, is one of the absolute values extending the p-adic absolute value
on Q, its multiplicity is

ny = [ky : Qp] = epdyp,
where p is the prime containing v, and e, and d, are the ramification index and
residue class degree, respectively. We see that the number of elements in F(k),
which we denote by Np, is
Np = p®,

since F(k) is of degree d, over IF,.
Proposition 1.52. Let 0 : Kk — K be an isomorphism. If v € Mg, for x € Kk put

|| = |o(x)]y. Then w € M,, and this gives a one-to-one mapping Mx — M,,
and in this correspondence N, = Ny .

1.5 Hermitian geometry

We will introduce some technical lemmas, basic operators and their gauges on a
projective space associated to a vector space. A good reference is Stoll [385] for
the complex case.

1.5.1 Gauges of elementary operators

Let V be a vector space of finite dimension n + 1 > 0 over a field k. Write the
projective space P(V) = V/k, and let P : V, — P(V) be the standard projection,
where V, =V — {0}. If A C V, abbreviate

P(A) = P(ANTL).

The dual vector space V* of V' consists of all x-linear functions a: V — &, and
we shall call

(& a) = a(f)
the inner product of £ € V and a € V*. If o # 0, the n-dimensional linear subspace

Ela] = E[a] = Ker(a) = a~*(0)

depends on a = P(a) € P(V*) only, and E[a] = P(E[a]) is a hyperplane in P(V).
Thus P(V*) bijectively parameterizes the hyperplanes in P(V).
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Identify V** =V by (£, a) = (o, £) and (kHV) = Ny~ by

(Co N ANEpyao A= ANag) = det((&, o)),

where k/+\1 V' is the ezterior product of V of order k+1, and where §; € V, a; € V*
for i =0,...,k. Take k,l € Z[0,n] and take § € k/Jr\lV and o € 14\1 V*, where

Zim,n)={i€Z|m<i<n}.
If & > 1, the interior product £La € k/_\LV is uniquely defined by
(§4a, B) = (& A )

forall 3 € AV* 1f k =1, then

la=(a)er=NV

0

by definition. If & < [, we define the interior product éZa € l/_\k V* such that if
ne \v,
(n,&La) = (§ A m, ).

Take a base e = (eq,...,e,) of V and take a valuation v on k. For £ =
foeg + -+ - + &nen € V, define the norm

1
€]p.e = (|&l2 + -+ &al2)? : if vis Archimedean,
’ maxo<i<n{|&lo} : if v is non-Archimedean.

Obviously, the norm depends on the base e, and will be called a norm over the
base e. If | - |, e is another norm over a base ¢ = (eg, ..., e}), it is easy to prove
that there exist positive constants ¢, and ¢, such that

Cv|£|v,e S |§|v,e/ S C;|§|v,e

hold for all £ € V| i.e., norms over bases are equivalent, where ¢, = 1, ¢, =1 for
all but finitely many v € M,,. We will abbreviate

|§|v = |§|v,e-

Further if x is a number field with a proper set M, satisfying the product formula
of multiplicities n,,, we will use notations

1€l = €2, M€l = 1€l =2 (1.5.1)
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Let € = (eg,...,€,) be the dual base of e = (eq,...,e,). Then the norm on
V induces a norm on V* defined by

1
lafy = (laol2+ -+ +|anl?)® : if v is Archimedean,
Y maxo<;<n{|ails} : if v is non-Archimedean,

where a = ageg + - - - + ap€n. Schwarz inequality

(& a)lo < [€lo - o
holds for € € V, a € V*. The distance from = = P(¢) to Ela] with a = P(a) €
P(V*) is defined by

0<|z,al, = ||£<| |>|r <1. (1.5.2)

Further if x is a number field with a proper set M, satisfying the product formula
of multiplicities n,,, we will use the normalization

ledle =laly,  ll,alle = |2, aly", (1.5.3)

and the notations
lallle = llalls/™%, |z, al [l = [, afl /1. (1.5.4)
In particular, if V' = s"t!, we may take the standard base eg,e1,...,en,

where e; = (0,...,0,1,0,...,0) € Z’}fl in which 1 is the (5 4+ 1)th component of
e;. Take £ € k"1 — {0} and write

£:§0€0+£161+'”+§n6n = (607§17---7§n)'

We usually denote P(£) by [€o,&1, - - -, &,] which are called the homogeneous coor-
dinates of P (k"*1), and abbreviate

P" =P"(k) =P (k"*").

We can embed ™ into P™ by using the mapping (&1, ...,&,) — [1,&1, ..., &), and
obtain the disjoint union P = ™ UP"~!. Particularly, P’ = P(k) consists of one
point denoted by oo, and so P! = kU {oo}. If v is non-Archimedean, set

‘z_a‘v .
Vi L T,a €K,
Xo (2, a) :{ |zl lals (1.5.5)

||y Loa=0oQ0,

where, by definition, 7 = max{1,7} (r € R). If v is Archimedean, set

|z—al, .
21211/ al2)1/ I x,a €K,
Xo(T,a) = { (1+]z[3)* 2(1J:|/ I?[)1 2 e oo (1.5.6)
Itz ’
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1 _
700_

If we set (1) =00 0, then we have

11
Xo ( , ) =xu(z,a), z,a€ kU{c0}.
z' a

Identify k"1 = (k"1)* such that

(€, ) = o + - -+ + &y

for £ = (€o,...,&n),a = (o, ...,qy) € K"TL Tt is easy to show that
_ |[17I]a[_a7 1]|U IT,a ER,
MW@—{ La], L0l : a=oc. (1.5.7)

Take non-negative integers a and b with a < b. Let J? be the set of all
increasing injective mappings A : Z[0, a] — Z[0,b]. Then J? = {1}, where ¢ is the
inclusion mapping. If a < b, there exists one and only one A+ € Jfﬁkl for each
A € J? such that ImA N ImA+ = (. The mapping L: J? — Jf_a_l is bijective. A
permutation (A, A1) of Z[0,b] is defined by

) Ai) : i€Z0,d
i _ s U]y
(*A)“*‘{Alu—a_l): i€ Zla+1,] .
The signature of the permutation is denoted by sign(\, A*).
The norm on V also induces norms on k/+\1 V and k/+\1 V*. Take € € k/+\1 V, ac

A V* and write
=D e, a= > ae,

k+1

xeJp AeJT
where

ex =exo) N Aeik)-

Then we can define the norms

1
2 o .
1€lo = |€]oe = (Z/\ew |§A|3> . if v is Archimedean,
maxyesp{|€xlv} ¢ if v is non-Archimedean,
and
2
o = |afo.e = (ZAEJ,? |a,\|3) : if v is Archimedean,
maxyesp{|arlv} @ if v is non-Archimedean.
Generally, let Vi,...,V,, and W be normed vector spaces over k. Let

O:Vix---xV, —W
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be an m-linear mapping over k. If £ = (§1,...,&n) € Vi X --- x V,,,, we write

OE) =60 O&n,

and say that £ is free for the operation © if ©(§) # 0. Take z; € P(V;) (j =
1,...,m). We will say that x1, ...,z are free for © if there exist £; € V; such that
z; =P(§;) and € = (&, ...,&n) is free for the operation @. For free z1, ..., ZTm,
we can define

xl@...me:P(&@...@gm).

Also, the gauge of x1, ..., T, for ® is defined to be

|61@ O &mlo
|I1®®xm|v =
|£1|v e |£m|v
which is well defined. If z1, . . ., ., are not free for ®, we define |21 ®- - - O x|, = 0.

In the following, we will prove some elementary but useful inequalities about
multi-vectors and give several gauges. Take a positive number r. For each v € M,
we define

Sur = (1.5.8)

V/r if v is Archimedean,
1 if v is non-Archimedean.

First and easiest to prove is of course the following generalized Schwarz’s inequality:

Lemma 1.53. Take k,l € Z[0,n] and take & € k/+\1V and « € 14\1 V*. Then

§Laly < <v,(;:g)|§|v oo,

where p = min{k, [}, ¢ = max{k,[}.

Proof. Without loss of generality, we may assume k > [, and write

E= ) &en a= > aen.

AeJr AeJr

First of all, we consider the non-Archimedean case. If [ = k, noting that

§Za=(&a) =) L,

reJp

we have

cal, < pax e, < (maxlol, ) - (o, ) = Il .
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and so the inequality follows. If [ < k, by Laplace’s theorem of determinant ex-
pansion

((eg A---Nep)La,B) = (egA---Neg,anfp)
= Z sign(v, v)(ey, a) e, 1, B)
VEJf
— < Z sign(v, Vl)(6y7a>€ui76>
uEJf

holds for any 3 € k/\ V*, that is,

—1
(eo N+ Neg)La = Z sign(v, vt){e,, a)e, . = Z sign(v, v Haye, . (1.5.9)
velJf velJf
Then

l(eo A -+ Aeg)Zal, = max{|{e,, @)y} < |aly.
ule

Thus, we have

€Zale = | Y &exla| < max{|&loleasalu} < [Elo - |afo-
AeJr
AeJp .
Finally, assume that v is Archimedean. We have
1/2

€2al, = | Y bendal < D [allensaly <[€lo [ Y leasal;

AeJp , eI AeJp

For A € JJ}, set
J={veJ'|vcil,

where v C A means {v(0),...,v()} C {A(0),..., (k)}. By (1.5.9), we obtain

lexzol? = > Jay[*. (1.5.10)

VEJ?

Since, by applying (1.5.10),

> leasal; Yo =0 >

AEJP AeJy ved) veJr vCAEJ)
n—1 Z 2 n—1 2
= (@) = «
(: ) X = (22 ek
l

the inequality in Lemma 1.53 follows. g
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Now assume £ # 0 and o # 0 and set x =P(§) € P (k/Jr\lV) and a = P(«) €
(14\1 V*) We can define the gauge of x and a for Z,

1£Zal,

. 1.5.11
|§|v : |a|v ( )

|xZal, =

In particular, if k =1 = 0, then |zZal, = |z, al,. The projective space P ( A V*)

n+1
consists of one and only one point denoted by oc.

Lemma 1.54. For all z € P(V), |x£oo|, = 1.
Proof. Take £ € V — {0} with = P(£). Put

§ =¢&oeo+&ier + -+ Enen.

Then

gj:<§76j>7 j:0,17...,’n
For j € Z|0, n], setting
gj:(_1)j60/\---/\6j,1/\6j+1/\"'/\6n7
we have

EL(co A Aen)lo = |D (6 €50 Z@eg = [&]o-
=

v v

Since oo =P(eg A - -+ A €p), then

[€L(eg A=+ Aen)lw _

xr/o0l, =
200k = 1) o Ao Al .

Next we show a more subtle inequality (cf. Wu [436]):
Lemma 1.55. Take p,q € Z[1,n] withp+q<n+1.If{ € /)V and n € /q\V, then

[E AN < gvy(P:‘I)|§|v|77|v-

Proof. First of all, note that a norm on the p-fold tensor product ®,V of V can

be defined as follows: Taking a base {eg,...,e,} of V and writing an element
E=) Enigein @ @ ey, (1.5.12)
then

1
il = (X 1&iin2)® ¢ if v is Archimedean,
ve max{|&,...i,|v} : if vis non-Archimedean.



1.5. Hermitian geometry 43
Let J, be the permutation group on Z[1, p|. For each A € J,, a linear isomorphism
A ®pV — ®,V is uniquely defined by

Ma®-®&) =11y @ Q& -1, &GEV (i=1,...,p).

The linear mapping

Ap | Z sgn(A)A 1 ®,V — @,V

1
p: ATy

is called the anti-symmetrizer of ®,V with ImA, = /} V', where sgn()\) is the sign

of the permutation A, that is,

1 if A is even permutation,

sgn(A) = {

—1 if X is odd permutation.
For the tensor (1.5.12), we have
Ap(§) = Zfz‘l»--ipeil N---Nej, € /)1/7

and hence it is easy to show that |A,(&)|v < Suptl€lv,@, Where the elementary
inequality
(a1 +---+an)” <nlaf+--+ap) (0 €Ry)

is used for the proof of the Archimedean case. In particular, if £ € /p\V, then
Ap(§) = & We can obtain the equality [£], = c}[¢],,@, where

p:

, Vp!  if v is Archimedean,
|p!l,  if v is non-Archimedean.

Further, if 7 € AV, noting that

EAN=Apq(E@n), [£@0)ve = Elvellve

then we have

1
enal < Vot atenle = (717) i,
if v is Archimedean. If v is non-Archimedean, writing
n = anl”'jqejl N Nej,,
then
ENn = Z§i1~~~z‘p77j1---jq€i1 N Neg, Nej N+ Ney,

:p!q! Z Z gil"'ipnjl“‘jqeil /\"'/\(iip/\ej1 /\"'/\qu
i1 < <dp J1< - <Jg
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and hence

1€ Anle < |plg!y maX|§i1---ip77j1~-jq|v < |p!q!|v|§|v7®|77|v,® = [&lvnlo-

Therefore Lemma 1.55 is proved. U

Take z; € P(V) (j =0,...,k < n) and take {; € V such that z; = P(;).
The gauge of xg, ...,z for A is well defined to be

S0 A= ALkl
[€olo - - [kl

|zo A+ Ay, = (1.5.13)

which satisfies
0< |(E0 VANRERIAN $k|v < $v,260,3 * " S, k+1 = Sy, (k+1)!-

When k = n this is a form of Hadamard’s determinant inequality (see [142], [143]).

Lemma 1.56. For x € P(V), a; € P(V*),5=0,1,...,n, then

|a0 AERIAS an|v < Sv,(n41)! Or%l]agxn |£L'7 aj|'u'

Proof. If |lag A -+ - A ap|, = 0, the inequality is trivial. If |ag A -+ A any, > 0, then
ag A -+ A ap = co. Thus Lemma 1.54 implies |zZ(ag A -+ A ap)]y = 1. For each
J € Z[0,n], take a;; € V* — {0} with P(cj) = a;. Also take £ € V' — {0} with
P(§) = 2. We have

lag A= Nanly = lag A ANaply - |2Llao A+ Aap)ly
_ ao A Aanle [€4(a0 A Aoy
lao v - - Jan | I€lulao A - Ay

|30 (6 )l

|£|v|a0|v T |an|v ’

and hence

(€ aj) ol

apgN---Na < Gyn41 Max
| n|v vt 0<j<n |§|v|a0|v"'|an|v
= Gunt1 Max |z,a5lplao A ANaj—1 Aajpr A Aagly
0<j<n
<

S | max |(X,04|y-
v7(n+1).OSan| ) ]|’L)

This finishes the proof. U



1.5. Hermitian geometry 45

1.5.2 Hypersurfaces

Let V be a normed vector space of dimension n+1 > 0 over a field . Take a positive
integer d. Let Jy be the permutation group on Z[1,d] and let ®,V be the d-fold
tensor product of V. For each A € Jy, a linear isomorphism A : @4V — ®4V is
uniquely defined by

AMa®-®@&) =61 ®- @& -1, GEV (i=1,...,d).

A vector € € ®,4V is said to be symmetric if A(§) = & for all A € Jy. The set of all
symmetric vectors in ®4V is a linear subspace of @4V, denoted by 11V, called
the d-fold symmetric tensor product of V. Then

dim 11,V = (" ; d).

The linear mapping
1
Sd:d! Z ARV — ®4V
AETq

is called the symmetrizer of ®4V with ImSy = V. If £ € II;V and n € I}V, the
symmetric tensor product

§lln =S4 ®@n)

is defined with { Il n = n I §. Similarly, for §; € V (j = 1,...,d), we can define
the symmetric tensor product

£1H"'H§d:Sd(£l®"'®£d)-
Let €19 be the dth symmetric tensor power of € € V, and define
(EHd _ P(é—ﬂd)

for x = P(£). Thus a mapping ¢4 : P(V) — P(I1;V) is well defined by setting
@aq(x) = 2% which is called the Veronese mapping. We can identify II;V* =
(aV)* by

1
(G ---U&g,a 1T+ Mag) = | Z (1, any) - (Eas an(ay)
AeTa
forallz; € Viay € V¥, j=1,...,d.

Let Jy, 4 be the set of all mappings A : Z[0,n] — Z[0, d] such that

A= A0) + -+ A(n) = d.



46 Chapter 1. Heights

For A € Jy.a,e = (eq,...,e,) € VL define

A= A0) A, e = MO T I e 1,V

If e = (ep,...,€,) is a base of V, then {e"}\c,, , is a base of II;V, and
{ e} xe, . is the dual base of I1;V*, where € = (o, . .., €,) is the dual of e. The
norm |-| on V induces norms on 115V and I1;V* as follows: For n € IV, 8 € I, V*
with
d'
Z )\lme - Z A!ﬂ“ '
AETpa AEJpa
define
2
! . . .
il = |nl. = (Z/\eJn,d 4 |m|2) :if || is Archimedean,
maxyes, .47} : if || is non-Archimedean
and
2 . . .
18] = |8]. = (Z)\EJn 4 Al |ﬂA|2) ¢ if [+ | is Archimedean,
maxxes, ,{/6x]} : if|-|is non-Archimedean,

where e is orthonormal if | - | is Archimedean. Note that

gﬂd: Z ;i\!'gé\(o)'”57);@)611)\7 Qld — ;\i" A(0) --aﬁ(”)eux,
XEdna AeJn.a

where
E=&eg+ -+ E€nen €V, a=aqpeg+ -+ anén.

Then we obtain a formula

€M =1¢14, oM = |l (1.5.14)

Let Vig be the vector space of all homogeneous polynomials of degree d on
V. We obtain a linear isomorphism

~ IV — Vg

defined by
a(€) = (" a), €€V, aellV*.

Thus if £ # 0 and « # 0, the distance |#"%, a| is well defined for z!'¢ = P(¢1)
and a = P(a). If a # 0, the n-dimensional subspace

E%a] = Ker(a) = a*(0)
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in V depends on a only, and E4a] = P(E%[a]) is a hypersurface of degree d in
P(V). Thus P(I14V*) bijectively parameterizes the hypersurfaces in P(V'). Take a
sequence {do,d1,...,dq} of positive integers. Let o/ = {ag, a1, ..., aq} be a family
of points a; € P (Ilg,V*). Take a; € 14, V* — {0} with P(a;) = a;, and define

dj(g):<£udjuaj>a feuj:071,,q
According to Eremenko and Sodin [94], we will use the following notation:

Definition 1.57. The family o/ = {ao,a1,...,aq} (¢ > n) is said to be admissible
(or in general position) if, for every \ € J4, the system

ary(§) =0, i=0,1,....n (1.5.15)

has only the trivial solution &€ =0 in V.

1.5.3 Nochka weights

Let V be a vector space of finite dimension n + 1 > 0 over a field k. Let &/ =
{ao,a1,... a4} be a family of points a; € P(V*). Take a; € V* — {0} with
P(a;) = aj. For A € J}, set o\ = {ax(0),---,arp)}, and let E(/) be the linear
subspace generated by {a(),--.,xq)} in V*. Define

Jl(d) = {)\ S qu | Q' )\(0) /\"'/\Oé)\(l) #0}

Then 7 is said to be in general position if dim E(<#y) = | + 1 for any A € J/
with | < min{n, ¢}. If so the hyperplanes Efaq], ..., F[a,] also are called in general
position. Following Chen [56], we also use the concept of subgeneral position as

follows:

Definition 1.58. Let &/ = {ao,a1,...,aq} be a family of points a; € P(V*). For
1<n<u<ygq, then & is said to be in u-subgeneral position if E(</\) = V* for
any A € JI.

In particular, if uw = n this concept agrees with the usual concept of hyper-
planes in general position. The notion of subgeneral position will play a key role in
the proof of Cartan’s conjecture due to Nochka in Section 2.8. To prove Cartan’s
conjecture, Nochka used the following technical lemma:

Lemma 1.59. Let &/ = {ao,a1,...,aq} be a family of points a; € P(V*) in u-
subgeneral position with 1 < n < wu < q. Then there exists a function w : &/ —
R(0,1] and a real number 6 > 1 satisfying the properties:

1) 0<w(a)0 <1, j=0,1,...,q;

2) q—2u+n=0( " wlay) —n—1);
u+1 2u—n+1 .
3) 1< il <g < 2unit
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4) S8 wlaey) < dim B(eZ,) if o € J{ with 0 < k < u;

5) Let ro,...,rq be a sequence of real numbers with r; > 1 for all j. Then for
any o € J with 0 < k < u, setting dim E(4,) = 1 + 1, then there exists
X € Ji(#) such that

ImA = {A0),..., A1)} € {0(0),....,0(k)}, E() = E(dy),

and

The function w and the real number 6 are respectively called a Nochka weight
and a Nochka constant of the family &/ in u-subgeneral position. If u = n, then
6 =1 and w(a;) =1 for each j = 0,1,...,¢. From Lemma 1.59, it follows that
values of the function w become small if u is large. Hence Nochka weight is a gauge
of a subgeneral position leaving a general position. Nochka’s original paper (see
[299],[300],[301]) on the weights of Nochka was quite sketchy; a complete proof can
be found in Chen’s thesis [56] (or see Fujimoto [107], Hu and Yang [176]). Here
we omit the proof since it is very long.

Let & = {ag,a1,...,a4} (n < u < g) be in u-subgeneral position. Define the
gauge I'(«/) of &7 on a valuation v of k by

1
I'(o) = inf Ao A e
() Su,(n+1)! Ae}lﬂ(gf){'%(o) ax(m) v}

with 0 < I'(&7) < 1. Let #P be the cardinality of a set P.
Lemma 1.60. For x € P(V), 0 <r € R, define

A (x,r) ={j € Z[0,q] | |z, a5y <r}.
If (&) > r, then # (x,r) < u.

Proof. Assume, to the contrary, that #47(x,7) > w + 1. Then A € J, (&) exists
such that ImA C &7 (x,r). Hence

|z, axgylo <7, j=0,...,n.
Then Lemma 1.56 implies

0<I() laxoy A=+ A axm)lo/So,(ns1)!

<
< Jnax. |z, ax(jylo <r < T(),

which is impossible. Hence we have #.47 (z,7) < u. O
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Lemma 1.61. Toke x € P(V) such that |z,a;j|, >0 for j=0,...,q. Then

a L\ @) Lo\ no
< max , 1.5.16
jl;[o <|$aay‘|v> - (F(d)> AeJn(Mjl;[O |z, axg)lo ( )

where w : &/ — R(0, 1] is the Nochka weight. In particular, if u =n we also have

q 1 1 qg+1—m n—1 1
< max 1.5.17
1L 0, (cey) Iy, o (1517

n— 1

Proof. Take r = I'(&/). Lemma 1.60 implies #.7(x,r) < w. Thus ¢ € JJ exists
such that o/ (x,r) C Imo. Note that E(4,) = V*. By Lemma 1.59, there exists
A € Jp (/) with ImA C Imo such that E(,Q%\) = F(4,), and such that

() <L

(1.5.18)
izo N asle

|z, ax()lo

Set C'=Z[0, ¢ — Imo. Thus |z, a;|, > r for j € C. Hence

(0 ) < Hd = () ()

jeC

Thus the inequality (1.5.16) follows.
If u = n, then 0 = X and ImA— &/ (x, r) # 0, that is, there is some jy € Z[0, n)
such that |z, ayg,)|» > 7. Now (1.5.18) becomes

H |l‘ QA (5 H |l‘ a)\(J)|v

and so (1.5.17) follows. O

Finally, let k be the field C of complex numbers. A positive definite Hermitian
form

(,):VxV—C

is called a Hermitian product or a Hermitian metric on V. It defines a norm

€] = (€,6)2, €eV.

A complex vector space together with a Hermitian product is called a Hermitian
vector space. For each £ € V', one and only one dual vector £* € V* is defined by
(n,8) = (n,&*) for all n € V. The mapping £ — £* is an anti-linear isomorphism
of V onto V*. Here V* becomes a Hermitian vector space by setting

&) =08, &neV.
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Then &* = £ and V** = V| as Hermitian vector space. A Hermitian product is
uniquely defined on p/+\1 V' by the requirement

(Eo N N,mo N+ Amp) =det((&5,m%)), &,m € V.

1.6 Basic geometric notions

Let k be a field and let & be an algebraic closure of k. The space " is called
the affine n-space (over k), which is usually denoted by A™ or A"(%). The set of
k-rational points of A™ is the set

A"(k) ={(#z1,...,2n) € A" | z; € K}.

We will introduce some geometric notation in spaces A" and P = P(A"+1).

1.6.1 Varieties

Let I,; be an ideal in the polynomial ring in n variables k[z1, ..., z,|. The Hilbert
basis theorem says that I, is generated by a finite number of polynomials Py, ...,
P.. Assume that Py, ..., P, generate a prime ideal in the ring &[z1, ..., 2,]. The
set of zeros of I,

Z={2€ A" | P(z)=0forall P eI},

is called an affine algebraic variety or affine variety defined over k, which in fact
is the set of common zeros of the finite collection of polynomials P, ..., P,..
Especially, if r = 1, the affine variety Z is usually called an affine hypersurface.

Remark. The condition that the polynomials generate a prime ideal is to insure
what is called the irreducibility of the variety. Under our condition, it is not possi-
ble to express a variety as the finite union of proper subvarieties. In the definition
of the affine algebraic variety Z, if the ideal I,; is not assumed prime, then we
obtain an affine algebraic set Z. The set Z is a finite union of its irreducible
components (affine algebraic varieties).

Let Z be an affine variety, defined by an ideal I,; in k[z1, ..., z,]. The ring
K[Z) = Klz1, .-y 20]/ 1k

is called the affine coordinate ring of Z, or simply the affine ring of Z. This ring
has no zero divisors, and its quotient field is called the function field of Z over k,
denoted by k(Z). An element of x(Z) is called a rational function on Z, which is
the quotient of two polynomial functions on Z such that the denominator does
not vanish identically on Z.

If K is a field containing k, the set of zeros of I,; with coordinate (z1,...,2,) €
K™ is called the set of K-rational points of Z, and is denoted by Z(K). It is equal
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to the set of solutions of the finite number of equations
Pi(z1,...,20) =0, j=1,...,r, (21,...,2n) € K™

By a projective variety X over a field k we mean the set of solutions in a
projective space P* = P(A"*1) of a finite number of equations

fj(goa"'vfn)207 jzl,...,T

such that each f; is a homogeneous polynomial in n + 1 variables with coefficients
in k, and f1, ..., fr generate a prime ideal in the polynomial ring &[o, ..., &)
If » = 1, the variety X is called a projective hypersurface, and the degree of f;
is called the degree of the hypersurface. Further, if » = 1 and if f; is linear, X is
called a hyperplane.

If K is a field containing , by X (K) we mean the set of such zeros having

some projective coordinates [&p,...,&,] with & € K for all ¢« = 0,...,n, called
the set of K-rational points of X. The set of points in X (&) is called the set of
algebraic points over k. For a point x = [&,...,&,] € P, we denote by x(z) the
field

K‘('T) = K‘(g(% e 76”)
such that at least one of the projective coordinates is equal to 1, which is called

the field of definition of the point x or the residue class field of the point. It does
not matter which such coordinate is selected. If for instance &y # 0, then

o 51 gn
R(I)—Iﬂl(go,...,&J).

We can define the Zariski topology on P (resp., A™) by prescribing that a
closed set is a finite union of varieties. A Zariski open set is defined to be the
complement of a closed set. The Zariski topology on a variety X is the topology
induced by the inclusion X C P" (resp., X C A™). By a quasi-projective variety,
we mean the open subset of a projective variety obtained by omitting a closed
subset.

A projective variety X is covered by a finite number of affine varieties as

follows. Set
& 0<i<l—1;
lel+1 = ngl

6 I <i<n,
and let
H,j('zlJv ey Zlﬂ’L) = fj(zl,lv ceey 2l ]-7 Zll415 -, Zl,n)'
Then the polynomials P, 1, ..., P, generate a prime ideal in R[z;1, ..., 21|, and

the set of solutions of the equations

Pi(zia,.yzn) =0, j=1,...,7
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is an affine variety, which is an open subset of X, denoted by Uj. It consists of those
points [£o, ..., &,] € X such that { # 0. The projective variety X is covered by
the open sets Uy, ..., U,. The function fields x(Uyp), ..., k(U,) are all equal, and
are generated by the restrictions to X of the quotients &; /& ( for all i, such that
&1 is not identically 0 on X). The function field of X over k is defined to be x(U;)
(for any 1), and is denoted by x(X). A rational function can also be expressed as
a quotient of two homogeneous polynomial functions P (&, ..., &.)/Q (o, ---,&n)
where P, have the same degree.

A variety X is complete or proper if for any variety Y, the projection X x
Y — Y is closed, i.e., the image of every closed subset is closed. Projective
varieties are complete.

1.6.2 Function fields

We here give a more intrinsic definition of the function field of a variety X. Let z
be a point on X. A function f : X — & is regular at x if there is an open affine
neighborhood U C X of z, say U C A", and two polynomials P,Q € R[z1,. .., 2]
such that Q(z) # 0 and f = P/Q on U. We say that f is reqular on X if it is
regular at every point of X. We denote by O(X) the ring of all regular functions
on X. A regular function on a projective variety is constant (see [148], 1.3.4(a)).

Note that the property of being regular is open, that is, if f is regular at =z,
then it is regular at every point in some neighborhood of x. This suggests looking
at the collection of functions that are regular at a given point. If x is a point on a
variety X, we define the local ring of X at x to be the ring of germs of functions
that are regular at x. This ring is denoted by Ox(z), or simply by O(x) if no
confusion is likely to arise. In other words, an element of O(x) is a pair (U, f)
where U is an open subset of X containing x, and f is a regular function on U,
and where we identify two such pairs (U, f) and (W, g) if there is a neighborhood
V c UNW of x such that f = g on V. Note that O(z) is indeed a local ring:
its maximal ideal m(x) is the set of germs of regular functions which vanish at x.
For if f(x) # 0, then 1/f is regular in some neighborhood of z. A variety is called
normal if the local ring of every point is integrally closed. A non-singular variety
is normal.

By a subvariety of a variety X we shall always mean a closed subvariety
unless otherwise specified. Let Y C X be a subvariety of a variety X. The local
ring of X along Y, denoted by Ox(Y), is the set of pairs (U, f), where U is an
open subset of X with UNY # 0 and f € O(U) is a regular function on U, where
we identify two pairs (U, f) = (W,g) if f = g on UNW. The ring Ox(Y) is a
local ring, its unique maximal ideal being given by

mx(Y)={fecOx(Y)| f(z) =0forall z € Y}.

The function field of X, denoted by &(X), is defined to be Ox (X), the local ring
of X along X. The elements of #(X) are called rational functions on X over . In
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other words, £(X) is the set of pairs (U, f), where U is a non-empty open subset
of X and f is a regular function on U, subject to the identification (U, f) = (W, g)
if f=gonUNW.Ttis easy to check that kK(X) is a field that contains every local
ring Ox (YY) of X for any subvariety Y C X, and that we have

Ox(V)/mx(Y)=ZR(Y).

The function fields of A™ and P" are both equal to R(z1,...,2,), the field of
rational functions in n variables.

A mapping ¢ : X — Y between varieties is a morphism if it is continuous,
and if for every open set V' C Y and every regular function g on V, the function
g o ¢ is regular on p~1(V). Note that the image of a projective variety by a
morphism is a projective variety (see [158], Theorem A.1.2.3).

A mapping ¢ : X — Y between varieties is reqular at a point x € X if it is
a morphism on some open neighborhood of x. One can show that ¢ is regular at
a if there is an affine neighborhood U C A™ of  in X and an affine neighborhood
V C A" of p(z) in Y such that ¢ sends U into V' and such that ¢ can be defined
on U by n polynomials in m variables. That these definitions are equivalent comes
from the fact that a morphism of affine varieties is defined globally by polynomials,
as can be deduced readily from Theorem 1.62 below. If ¢ : X — Y is regular at
each point of X, then ¢ is said to be a regular mapping.

A regular mapping ¢ : X — Y is an isomorphism if it has an inverse, that
is, if there exists a regular mapping ¢ : ¥ — X such that both po¢y : Y — Y
and Yoy : X — X are the identity mappings. In this case we say that X and Y
are isomorphic. An isomorphism from X to itself is also called an automorphism on
X. The group Aut(X) of automorphisms of X is an extremely interesting object.
For example, some examples of Aut(A?) are simple to construct: the affine linear
mappings, and elementary mappings of the form

y1=ax1 + f(x2), y2 = PBr2+7, (1.6.1)

where «, 3,7 are constants with a8 # 0, and f a polynomial. It is known that
the whole group Aut(A?) is generated by these automorphisms in the sense that
every element of Aut(A?) is a finite composition of the affine linear mappings
and the elementary mappings (cf. [198]). A famous unsolved problem related to
automorphisms of A™ is the Jacobian conjecture. This asserts that, if the ground
field x has characteristic 0, a mapping given by

yi = filx1, ..., zn), 1=1,...,n

with f; € E[z1,...,2,] is an automorphism of A™ if and only if the Jacobian
determinant det (gg

j
the case n = 2, this conjecture is proved when the degrees of f; and f are not
too large (the order of 100).

) is a non-zero constant (cf. [16]). The necessity is easy. For
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A rational mapping from a variety X to a variety Y is a mapping that is a
morphism on some non-empty open subset of X. Let ¢ : X — Y be a rational
mapping. Then there is a largest open subset {2 on which ¢ is a morphism. This
open subset is called the domain of definition of ¢, denoted dom(p). The rational
mapping ¢ is said to be dominant if p(U) is dense in Y for some (and consequently
every) non-empty open set U C X on which it is a morphism. A birational mapping
is a rational mapping that has a rational inverse. Two varieties are said to be
birationally equivalent if there is a birational mapping between them.

Theorem 1.62. Let Z and Z' be affine varieties. Then
(i) O(Z) =2 k[Z].
(i1) A morphism ¢ : Z — Z' induces a ring homomorphism ¢* : R[Z'] — R[Z]
defined by g — g o . The natural mapping
Mor(Z, Z") — Homg(k[Z'], K[ Z])
defined by @ — ©* is a bijection.
Proof. Hartshorne [148], 1.3.2. O
If ¢ : Z — Z’ is a morphism between affine varieties, we may view &[Z] as
a k[Z']-module by means of ¢*. The morphism ¢ is called finite if £[Z] is a finitely
generated %[Z']-module. A morphism ¢ : X — Y between varieties is finite if

for every affine open subset V C Y, the set ¢~ 1(V) is affine and the mapping
0@ Y(V) — V is finite.

A mapping ¢ between affine varieties is dominant if and only if ¢* is injective,
so we say that ¢ is finite surjective if it is finite and ¢* is injective. If ¢ : X — Y
is a finite mapping, then it is a closed mapping and all fibers p~!(y) consist of

a finite number of points. Further, there is an integer d and a non-empty open
V C p(X) such that

#o ' (y)=d, ye V.

The degree d can be described algebraically as the degree of the associated field
extension, and we define this quantity to be the degree of the finite mapping ¢,

deg(p) = [R(X) : "R(Y)].

An algebraic group defined over k is a variety G defined over k, a point
e € G(k), and morphisms m : G Xx G — G and ¢ : G — @ satisfying the axioms
of a group law:

(@) m(e,x) = m(z,e) = x.
(8) m(i(x), z) = m(z,i(x)) = e.
(v) m(m(x,y),z) = m(x,m(y, 2)).

An Abelian variety is a projective variety that is also an algebraic group.
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1.6.3 Dimensions

The dimension of a variety X is defined to be the transcendence degree of its
function field &(X) over & (cf. [109], [158]), denoted by dim X. There is another
definition of dimension. Consider a maximal chain of subvarieties

YocYiC---CY,, =X,

where Yy is a point and Y; # Y;41 for all i. Then all such chains have the same
number of elements m, and m is the dimension of X (cf. [158], [232]). In particular,
we have the following useful corollary.

Proposition 1.63. Let X be a variety, and let Y be a subvariety of X. If Y # X,
then dimY < dim X.

Proof. Hindry-Silverman [158], Corollary A.1.3.3 or Shafarevich [342], 1.6, Theo-
rem 1. U

If Y C X is a closed subvariety of X, then the number dim X —dim Y is called
the codimension of Y in X, and written codim(Y") or codimx (Y'). Not surprisingly,
both A™ and P™ have dimension n. Similarly, the dimension of a hypersurface in
A™ or P" is n — 1. In fact, a kind of converse is true.

Theorem 1.64. A wvariety of dimension n — 1 is birational equivalent to a hyper-
surface in A" or P™.

Proof. See Hindry and Silverman [158], or Hartshorne [148], Ch. I, Proposition
4.9. The main idea is that the function field %(X) of the variety X of dimen-
sion n — 1 over K is a finitely generated extension of % so that &(X) is sep-
arably generated (see Zariski and Samuel [448], Ch. II, Theorem 31, p. 105,
or Matsumura [260], Ch. 10, Corollary, p. 194). Hence we can find a transcen-
dence base {z1,...,2,—1} C R(X) such that %(X) is a finite separable exten-
sion of ®(x1,...,%n—1). Then by Theorem 1.19, we can find one further element
xn, € R(X) such that R(X) = R(z1,...,Zn—1,%,). Now z, is algebraic over
R(z1,...,Zn_1), so it satisfies a polynomial equation with coefficients which are
rational functions in x4, . .., z,_1. Clearing denominators, we obtain an irreducible
polynomial f(z1,...,z,) = 0. This defines a hypersurface in A™ with function field
R(X), which is birational to X. Its projective closure is a hypersurface in P*. O

The dimension of an algebraic subset V' is the maximum of the dimensions of
its irreducible components. If all the irreducible components of V' have the same
(finite) dimension d, then V is said to be of pure dimension d. If V is an algebraic
subset of A™ (or P™) of dimension n — r, defined by r equations

fJ:07 j:]-v‘”ara

then we say that V is a complete intersection.
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Theorem 1.65. Any affine variety of dimension d can be realized as an irreducible
component of some affine complete intersection of pure dimension d.

Proof. C. Musili [284], Theorem 25.7. O

To conform with the usual terminology, a variety of dimension 1 is called a
curve, and a variety of dimension 2 is called a surface. If k is a subfield of C, then
X (C) is a complex analytic space of complex analytic dimension 1. Now a curve
is also sometimes called a Riemann surface.

In order to compute the dimension of a variety, we need to know how the
dimension behaves for intersections of algebraic sets, which is answered by the
affine (or projective) dimension theorem:

Theorem 1.66. Let X and Y be varieties in A™ (or P") of dimensions | and m,
respectively. Then every component of X N'Y has dimension at least | +m — n.

Proof. Hindry-Silverman [158] or Shafarevich [342] or Hartshorne [148], Ch. I,
Proposition 7.1 and Theorem 7.2. U

Theorem 1.67. Let ¢ : X — Y be a surjective morphism of varieties. Then
(I) dimp~(y) >dim X —dimY forally €Y.
(II) There is a non-empty open subset V- C'Y such that for ally € V,
dim ¢~ !(y) = dim X — dim Y.

Proof. Shafarevich [342], 1.6, Theorem 7. O

Let Z be an affine variety in affine space A", with coordinates (z1,...,2,),
and defined over a field k. Let a = (a1, ...,a,) be a point of Z. Suppose x alge-
braically closed and a; € « for all i. Let

Pi(z1,...,2n) =0, j=1,...,7

be a set of defining equations for Z. We say that the point a is regular (or non-

singular or smooth) if
OP;
rank T(a)) =n—m,
(3Zi ( )>
where m is the dimension of Z, otherwise, is singular. We say that Z is non-

singular or smooth if every point on Z is regular. A projective variety is called
non-singular if all the affine open sets Uy, ..., U, above are non-singular.

Theorem 1.68. Let ¢ be a rational mapping from a smooth variety X to a projective
variety. Then
codim(X — dom(y)) > 2.

Proof. See Shafarevich [342], I1.3, Theorem 3. O
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Let C be a curve, so its function field £(C) is of transcendence degree 1. It
follows that 7(C) is algebraic over any subfield %(z) generalized by a non-constant
function z € R(C). Hence we may write i(C) = k(x,y), where x and y are non-
constant functions on C' satisfying an algebraic relation

P(z,y) =0.

Let Cy € A? denote the affine plane curve defined by P, and let C; C P? be the
projective plane curve defined by the homogenized equation

XY
Zdeg(P)P - 0.
YAA 0

Clearly, C is birational to both Cy and Cy. Any curve birational to C' is called a
model of C, so we can say that every curve has a plane affine model and a plane
projective model. Theorem 1.68 yields immediately the following result:

Theorem 1.69. A rational mapping from a smooth curve to a projective variety
extends to a morphism defined on the whole curve.

Theorem 1.70. Any algebraic curve is birational to a unique (up to isomorphism)
smooth projective curve, which is called a normalization of the algebraic curve.

Proof. See Fulton [109], VIL5, Theorem 3, Hartshorne [148], I, Corollary 6.11, or
Hindry and Silverman [158], Theorem A.4.1.4. O

1.6.4 Differential forms

Let x be a point on a variety X. The tangent space to X at x is the k-vector space
T.(X) = Homg (m(z)/m(z)?, &).

In other words, the tangent space is defined to be the dual of the vector space
m(z)/m(z)?. We naturally call m(x)/m(x)? the cotangent space to X at x, de-
noted by T (X). It is not difficult to check that T,(X) and T.;(X) are vector
spaces over K since

O(z)/m(z) = R.

Theorem 1.71. Let X be a variety. Then dimTy(X) > dim X for all z € X.
Furthermore, there is a non-empty open set U C X such that dimT,,(X) = dim X
forxzelU.

Proof. See Hartshorne [148], 1.5, Proposition 2A and Theorem 3 or Shafarevich
(342], T1.1, Theorem 3. O

According to Jacobian criterion (see [148], I.5), a point « in an affine variety
Z is regular if and only if dim7,(Z) = dim Z. An ordinary singularity in a curve
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is a singularity whose tangent cone is composed of distinct lines. The multiplicity
of an ordinary singularity is the number of lines in its tangent cone.

Consider a rational mapping ¢ : X — Y between two varieties that is
regular at z, and let y = ¢(z). According to Hartshorne [148], I.4, Theorem 4, the

mapping
" Oy(y) — Ox(z), g—goyp

is a homomorphism of local rings, in particular,

p"(m(y)) C m(z), ¢ (m(y)*) C m(2)?,

and hence it induces a R-linear mapping
" T, (Y) — T (X).
The tangent mapping or differential of ¢ at x
do(x) : Tp(X) — Ty(Y)
is defined to be the transpose of the mapping ¢*.

Let X be a variety. Take a function f € R(X). and fix a point = in the
domain of f. We obtain a tangent mapping

df () : To(X) — Ty (A') =R,

so df (x) is a linear form on T (X), that is, df (z) € T,;(X). Obviously, the classical
rules

d(f +9) = df +dg, d(fg) = fdg + gdf (1.6.2)

are valid. Thus we may view df as a mapping that associates to each point z €
dom(f) a cotangent vector in T(X). According to Hindry and Silverman [158],
such a mapping is called an abstract differential 1-form. A reqular differential 1-
form on X is an abstract differential 1-form w such that for all z € X there is a
neighborhood U of x and regular functions f;, g; € O(U) such that

w(x) = Zgi(ac)dfi(ac)7 rz e U

We denote the set of regular differential 1-forms on X by Q'[X]. It is clearly a
R-vector space, and in fact, it is an O(X)-module.

Let  be a non-singular point on a variety X of dimension n. Functions
t1,...,tn € O(z) are called local parameters at x if each t; € m(x), and if the
images of t1,...,t, form a basis of T} (X). The functions ¢4, ...,t, give local coor-
dinates on X if u; := t; — t;(x) give local parameters at all  in X. It is easy to see
that ¢1,...,t, are local parameters if and only if » linear forms dt; (z), ..., dt,(x)
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on T, (X) are linearly independent. Since dim 7, (X) = n, this in turn is equivalent
to saying that in T, (X),

nker(dti(x)) = {0}.

According to Shafarevich [342], III.5, Theorem 1, any non-singular point z of a

variety X has local parameters t1,...,t, defined on a neighborhood U of = such
that .
Ul = P o). (1.6.3)
i=1

The abstract differential 1-forms considered were mappings sending each
point £ € X to an element of T(X). We now consider more general abstract
differential r-forms that send € X to a skew symmetric r-linear form on T,(X),
that is, to an element of the rth exterior product /T\T; (X) of T} (X), or equiva-
lently, to a linear mapping ATm (X) — k. A regular differential r-form w on X
is an abstract differential r-form such that for all x € X there is a neighborhood
U containing = and functions f;, g, ,...;. € O(U) such that

W= Ginidfis Ao Adfi,.

We denote the set of regular differential r-forms on X by Q"[X]. It is clearly an
O(X)-module. The analogue of (1.6.3) is true. If ¢,...,t, are local coordinates
on U, then

= @ owydti, A---Adt,. (1.6.4)

i1 < <ip

We now introduce a new object, consisting of an open set U C X and a
differential r-form w € Q"[U]. On pairs (U, w) we introduce the equivalence relation
(w,U) ~ (", U') fw=w"on UNU’. Note that the set of points at which a regular
differential form is 0 is closed (see Shafarevich [342], II1.5.4, Lemma). It is enough
to require that w = w’ on some open subset of U N U’. The transitivity of the
equivalence relation follows from this. An equivalence class under this relation is
called a rational differential r-form on X. We denote the set of rational differential
r-forms on X by Q"(X), which is a vector space of dimension () over #(X) (see
Shafarevich [342], II1.5.4, Theorem 3). Obviously,

QX)) = R(X).
If t1,...,t, is a separable transcendence basis of (X ), then the forms
{dtil /\-'-/\dtiT | 1< < <iT§n}

form a basis of Q7 (X) over (X)) (see Shafarevich [342], II1.5.4, Theorem 4). Each
element w € Q7(X) has a largest open U C X such that w defines a regular r-form
on U, called the domain of regqularity of w.
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Let ¢ : X — Y be a morphism of smooth varieties. Then there is a mapping
o QY] — Q7[X]
defined by the formula

o (Zgil,..mdfn AREE /\dfz;) = (Girip 0 9)A(fir 0 @) A=+ Nl fi, 0 0).

1.6.5 Divisors

Next we describe divisors on an algebraic variety X. There are two kinds. The
group of Weil divisors on X is the free Abelian group generated by the subvarieties
of codimension 1 on X. It is denoted by Div(X). In other words, a Weil divisor
can be written as a linear combination

D= Zinv

where Y; is a subvariety of codimension 1, and n; € Z. The support of the divisor D
is the union of all those Y;’s for which the multiplicity n; is non-zero. It is denoted
by supp(D). If all n; > 0 then D is called effective or positive. We write D > 0 for
D effective.

Let Y be a subvariety of codimension 1 of X. For any regular point « € X,
Y can be given in a neighborhood U C X of x as the zeros of a regular function
g € O(U). Moreover, any function f € O(z) vanishing on U NY is divisible by g.
The function g is called a local defining function, g = 0 is called the local equation
of Y at z, and is unique, up to multiplication by a function non-zero at x (see
Shafarevich [342], I1.3, Theorem 1). We recall that Ox(Y) is the local ring of
functions regular in a neighborhood of some point of Y. In particular, if X is non-
singular along Y, then Ox (Y) is a discrete valuation ring. Take f € Ox(Y) —{0}.
Let € X be a regular point, and g a local defining function for Y near x. Since
f € Ox(z) and Ox(x) is a discrete valuation ring, there exist a unit u in Ox(z)
and an non-negative integer d such that

f=ug.

Note that the integer d is independent of the choice of regular points in X NY and
will be called the order of f along Y, denoted by ordy (f). We can extend ordy
to R(X )4 in the usual way. Its main properties are summarized as follows:

Proposition 1.72. Fiz f € K(X).. The order function ordy : kK(X). — Z has the
following properties:
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ordy (fg) = ordy (f) + ordy (g) for all g € R(X)s.

ordy (f 4+ ¢g) > min{ordy (f),ordy (g)} for all g € R(X). with f + g # 0.
There are only finitely many Y ’s with ordy (f) # 0.

ordy (f) > 0 if and only if f € Ox(Y). Similarly, ordy (f) = 0 if and only if
fis a unit in Ox(Y).

(e) Assume further that X is projective. Then the following are equivalent:

(el) ordy (f) >0 for all Y.

(e2) ordy (f) =0 for all Y.

(€3) f € Rs.

Proof. Hindry-Silverman [158], Lemma A.2.1.2 or Shafarevich [342], IIL.1.1, (2).
0

Let f € R(X). be a rational function on X. The divisor of f is the divisor

(f) = ordy(f)Y.
Y

Usually we say that f has a zero of order d along Y if ordy (f) = d > 0, and
that f has a pole of order d along Y if ordy (f) = —d < 0. A divisor is said to be
principal if it is the divisor of a function. Two divisors D and D’ are said to be
linearly equivalent, denoted by D ~ D', if their difference is a principal divisor. The
divisor class group of X is the group of divisor classes modulo linear equivalence.
It is denoted by Cl(X). A divisor class is called effective if it contains an effective
divisor.

A Cartier divisor on a variety X is an (equivalence class of) collections of
pairs {(U;, fi) }icr satistying the following conditions:

(A) The U,’s are Zariski open sets that cover X.
(B) The f;’s are non-zero rational functions f; € &(U;). = R(X)..
(©) fif;l e OU;NU,j)* (ie., fif;1 has no poles or zeros on U; N Uj).

Two collections {(U;, fi)}ier and {(Vj, g;)}jes are considered to be equivalent
(define the same divisor) if fig;1 € OU;NV;)* for all i € I and j € J. The
support of a Cartier divisor {(U;, fi)}ier is the set of zeros and poles of the f;’s.
A pair (U;, f;) is said to represent the divisor locally, or on the open set U;. The
Cartier divisor is said to be effective if for all representing pairs (U;, f;) the rational
function f; is regular at all points of U;, that is, f; has no poles on U;. We then view
the Cartier divisor as a hypersurface on X, defined locally on U; by the equation
fi = 0. The Cartier divisors form a group, denoted by CaDiv(X ). Indeed, if Cartier
divisors are respectively {(U;, fi) }ier and {(V}, g;)}jes, then their sum is

{Us, fi) Yyier +{(V}, 95) }ies = {(Us OV}, figi) Yijyerxs-
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Associated to a function f € &(X). is its principal Cartier divisor, denoted by

div(f) = {(X, )}-

Two divisors are said to be linearly equivalent if their difference is a principal
Cartier divisor. The group of Cartier divisor classes of X is the group of divisor
classes modulo linear equivalence. It is called the Picard group of X and is denoted
by Pic(X).

We now compare the two types of divisors. Let Y be an irreducible subvariety
of codimension 1 in X, and let D be a Cartier divisor defined by {(U;, f;)}icr. We
define the order of D along Y, denoted by ordy (D), as follows. Choose one of the
open sets U; such that U; N'Y # 0 and set

ordy (D) = ordy (f;).

It is easily seen that ordy (D) is independent of the choice of (U, f;), so that we
obtain a map from Cartier divisors to Weil divisors by sending D to > ordy (D)Y.
In general, this mapping is neither surjective nor injective. For example, see Fulton
[110], Examples 2.1.2 and 2.1.3 or Hartshorne [148], 11.6.11.3.

Theorem 1.73. If X is a smooth variety, then the natural mappings
CaDiv(X) — Div(X), Pic(X) — CI(X)
are isomorphisms.
Proof. Hartshorne [148], I1.6.11. O

In the sequel we will consider only Cartier divisors when the variety in ques-
tion might be singular, and we will freely identify Weil and Cartier divisors when
we work with smooth varieties.

Let X be a smooth variety of dimension n, and let w be a non-zero rational
differential n-form on X. We cover X by affine open subsets U; of X with local

; (@) (@) , :
coordinates ¢t;7,...,ty . In U;, we can write

w= g(i)dtgi) A NdtD),

In particular, we have the expression

At =3 hapdty, a=1,...,n. (1.6.5)
B=1

Since dtgi)(ac)7 L dt (x) form a basis of T, (X) for each z € U, it follows from
(1.6.5) that the Jacobian determinant of the functions t§1)7 R &) with respect to
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tgj),..., ng) satisfies

D (tg“, L ,tSf))
5 (tgj), N ’tsij)) = det(hag) # 0.

Substituting (1.6.5) in the expression for w and simple calculations in the exterior
algebra shows that on the intersection U; N Uj;, we get

. D(tg“,...,tSf))
gV =g 4 e
D(tgj),...,t;]))

Since the Jacobian determinant is regular and nowhere zero in U; N Uy, the collec-
tion of pairs (U;, g*)) defines a divisor on X. This divisor is called the divisor of
w, and is denoted by div(w).

Any other non-zero rational differential n-form w’ on X has the form o’ = fw
for some rational function f € &(X).. It follows that

div(w') = div(w) + div(f),

so that the divisor class associated to an n-form is independent of the chosen form.
This divisor class is called the canonical class of X. By abuse of language, any
divisor in the canonical class is called a canonical divisor and is denoted by K, as
well as its class, or by Kx if we wish to emphasize the dependence on X.

Let ¢ : X — Y be a morphism of varieties, let D € CaDiv(Y) be a Cartier
divisor defined by {(V}, g;)};es, and assume that ¢(X) is not contained in the
support of D. Then the Cartier divisor ¢*(D) € CaDiv(X) is the divisor defined by

" (D) ={(¢7"(V}), 95 0 @) }je-

Let ¢ : X — Y be a finite mapping of smooth projective varieties, let Z be
an irreducible divisor on X, and let Z’ = ¢(Z) be the image of Z under ¢. Note
that the dimension theorem (Theorem 1.67) tells us that Z’ is an irreducible divisor
on Y. Let sz be a generator of the maximal ideal of Ox (Z), and similarly let sz be
a generator of the maximal ideal of Oy (Z’), that is, sz and sz are local equations
for Z and Z'. The ramification index of f along Z is defined to be the integer

ez =ez(p) = ordz(sz o),
where we recall that ordy : Ox(Z) — Z is the valuation on Ox (Z). Equivalently,
szrop=us?, ue Ox(2)".

The mapping ¢ is said to be ramified along Z if ez(p) > 2. We have the following
Hurwitz formula:
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Theorem 1.74. Let ¢ : X — Y be a finite mapping between smooth projective
varieties.

(1) The mapping ¢ is ramified only along a finite number of irreducible divisors.

(2) If we assume further either that the characteristic of k is 0 or that the char-
acteristic of k does not divide any of the ramification indices, then we have
the formula

Kx ~ ¢ (Ky)+ ) _(ez(p) —1)Z.
zZ

Proof. Hindry-Silverman [158], Proposition A.2.2.8. O

1.6.6 Linear systems

Let D be a divisor on a variety X. The associated vector space or Riemann-Roch
space of D is defined to be the subset of rational functions

L(D)=L(X,D)={f€kr(X).| D+ (f) >0} uU{0}. (1.6.6)

This set is a vector space over k under the usual algebraic operations on functions.
Indeed, if D = > n;Y; then f € R(X). belongs to £(D) if and only if

-ng;, Y =Y
ordy (f) > { 0, Y #£Y; for all 4,

and because of this, our assertion follows at once from (b) in Proposition 1.72.
The dimension of £(D) is denoted by ¢(D) (which is called the dimension of D
by some authors).

Theorem 1.75. Let D be a divisor on a projective variety. Then (D) is finite.

Proof. See, for example, Hartshorne [148], Theorem I11.2, Hindry and Silverman
[158], Corollary A.3.2.7, or Shafarevich [342], I11.2.3, Theorem 5. O

We know £(D) = ¢(D’) if D ~ D’ (see [342], I11.1.5, Theorem 3). Thus we
see that it makes sense to speak of the dimension £(c) of a divisor class ¢, that
is, the common dimension of all the divisors of this class. This number has the
following meaning. If D € ¢ and f € £(D), then the divisor

Df=D+(f)EC

is effective. Conversely, any effective divisor D’ € ¢ is of the form Dy for some
f € L(D). Obviously, if X is projective, f is uniquely determined by Dy up to a
constant factor. Thus we can set up a one-to-one correspondence between effective
divisors in the class ¢ and points of P(£(D)) = P“P)—1,

The following definition slightly generalizes this construction. A linear system
L on a variety X is a subset of effective divisors all linearly equivalent to a fixed
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divisor D and parametrized by a linear subvariety of P(£(D)). The dimension of
the linear system L is the dimension of the linear subvariety. The set of base points
of L is the intersection of the supports of all divisors in L. We will say that L is
base-point free if this intersection is empty. The set of effective divisors linearly
equivalent to D is a linear system, called the complete linear system of D. It is de-
noted by | D|. If | D| is base-point free, the divisor D is also said to be base-point free.

Let L be a linear system of dimension n parametrized by a projective space
P(V) C P(L(D)), where V is a subspace of £(D) of dimension n + 1 over &. Let
By, be the set of base points of L. When x € X — By, the subspace of V'

Vo ={f eV | [f(x)=0}
has dimension n. Thus there exists unique element ¢y, (z) € P(V*) such that
Elpr(x)] = Va.
It is easy to show that if L # @), then
v : X — B, — P(V")
is regular, which further extends a rational mapping
o X — PV (1.6.7)

called the dual classification mapping.

Next we explain it clearly. Select a basis fo,..., f, of V and let eg,..., e,
be the dual basis in V*. Choose ¢ (z) € V* — {0} such that P(¢r(z)) = ¢r(x).
Thus we can write

gr(x) =Y Gilx)ei
=0

By the definition,

ElpL(z)] = {5 =Y GHEV | (&) =) &Gpilx) = 0} .
=0

=0

Since E[pr(x)] = Vi, then € € E[pr(x)] means that
§(z) =) &ifilz) =0,
i=0

that is, [fo(z),..., fn(z)] can serve as the homogeneous coordinates of ¢y, (z).
Therefore we can identify

o = [fo, s fn] 1 X — P". (1.6.8)

We will abbreviate
YD = ¥P|D|-
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A linear system L on a projective variety X is very ample if the associated
mapping ¢, is an embedding, that is, ¢ is a morphism that maps X isomorphi-
cally onto its image o, (X). A divisor D is said to be very ample if the complete
linear system |D| is very ample, and to be ample if some positive multiple of D is
very ample.

Proposition 1.76. Let X be a projective variety. Given a divisor D and an ample
divisor E, there exists a positive integer n such that D + nE s very ample. In
particular, every divisor D 1is linearly equivalent

DNEl_E27

where Ey and Ey are very ample.

Proof. Lang [232], Proposition 1.1, or Hindry-Silverman [158], Theorem A.3.2.3.
O

The dimension of a divisor D on a projective variety X is the quantity

dim D = mg)lcdimgomp(X);

that is, it is the maximal dimension of the image of X under the dual classifica-
tion mapping @.,p, which is also called D-dimension of X. If L(mD) is always
empty, then let dim D = —1 by convention (some authors instead prefer to set
dim D = —o0 in this situation). If dim D = dim X, then we say that D is pseudo
ample, which means that there exists some positive integer m such that ¢,,p is
an imbedding of some non-empty Zariski open subset of X into a locally closed
subset of P(L(mD)). Usually, dim K'x is called the Kodaira dimension of X. It is
a result of Kodaira that:

Theorem 1.77. On a non-singular projective variety, a divisor D is pseudo ample
if and only if there exists some positive integer m such that mD ~ E + Z, where
E is ample and Z is effective.

Proof. See [210], Appendix; [415], Proposition 1.2.7; [208], Lemma 7.3.6 and Lem-
ma 7.3.7; or Lemma 2.30. U

A non-singular projective variety X is defined to be canonical if the canonical
class K x is ample, very canonical if Kx is very ample, and pseudo canonical if K x
is pseudo ample. Instead of pseudo canonical, a variety has been called of general
type. This new notion comes from Lang and Griffiths (cf. [232]). Generally, a
projective variety (possibly singular) is called pseudo canonical if X is birationally
equivalent to a projective non-singular pseudo canonical variety.

If k has characteristic 0, resolution of singularities is known, and due to
Hironaka. This means that given X a projective variety, there exists a birational
morphism

P X—X
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such that X is projective and non-singular and ¢ is an isomorphism over the Zariski
open subset of X consisting of the regular points. The non-singular projective
variety X is called a normalization of X.

An important characterization of a subvariety of an Abelian variety being
pseudo canonical was given by Ueno [401] (or see litaka [191], [192]):

Theorem 1.78. Let X be a subvariety of an Abelian variety over an algebraically
closed field. Then X is pseudo canonical if and only if the group of translations
which preserve X is finite.

We have quite generally Ueno’s theorem (see [401], Theorem 3.10):

Theorem 1.79. Let X be a subvariety of an Abelian variety A, and let B be the
connected component of the group of translations preserving X . Then the quotient
¢ : X — X/B is a morphism, whose image is a pseudo canonical subvariety of
the Abelian quotient A/ B, and whose fibers are translations of B. In particular,
if X does not contain any translations of Abelian subvarieties of dimension > 1,
then X is pseudo canonical.

Proof. See Iitaka [193], Theorem 10.13, and Mori [281], Theorem 3.7. O

The mapping ¢ is called the Ueno fibration of X. Lang [232] formulated the
Kawamata theorem [200] into the following Kawamata’s structure theorem:

Theorem 1.80. Let X be a pseudo canonical subvariety of an Abelian variety A
in characteristic 0. Then there exists a finite number of proper subvarieties Z;
with Ueno fibrations p; : Z; — Y; whose fibers have dimension > 1, such that
every translate of an Abelian subvariety of A of dimension > 1 contained in X is
actually contained in the union of the subvarieties Z;.

The union of the subvarieties Z; is called the Ueno-Kawamata fibrations in
X when X is pseudo canonical. Note that the set of Z; is empty if and only if X
does not contain any translations of an Abelian subvariety of dimension > 1.

Let C be a smooth projective curve. A divisor on C is simply a finite formal

sum
D= npP,
and we can define the degree of D to be
deg(D) = Z np.

The following Riemann-Roch theorem which allows us to compute the dimension
£(D) in most cases, is of inestimable value in the study of algebraic curves.

Theorem 1.81. Let C be a smooth projective curve. There exists an integer g > 0
such that for all divisors D € Div(C),

{(D) —U¢(Kc — D) =deg(D) — g+ 1.
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Proof. See Serre [340], 11.9, Théoreme 3, Hartshorne [148], IV, Theorem 1.3 or
Fulton [109], VIIL6. O

The Riemann-Roch theorem implies immediately
U(Kc) =g, deg(Kc) =29 — 2.
Further, if C' is of degree n, we also have (cf. [158])

(n—1)(n-2)
5 )

The integer g is called the genus of smooth projective curve C. When C' is not
necessarily smooth or projective, its genus is defined to be the genus of a normal-
ization of C.

Theorem 1.82. Let C' be a projective plane curve of degree n with only ordinary
singularities. Then its genus is given by the formula

o (n—l)(n—2) 513(513—1)
g = 9 - Z 9 )
pesS
where S is the set of singular points and dp the multiplicity of C' at P.
Proof. See Fulton [109], VIIL.3, Proposition 5. O

We now describe a useful formula, called the Riemann-Hurwitz formula, that
can frequently be used to compute the genus of a curve.

Theorem 1.83. Let C be a curve of genus g, let C' be a curve of genus g, and let
p: C — C’ be a finite separable mapping of degree d > 1. For each point P € C,
write ep for the ramification index of ¢ at P, and assume either that char(k) =0
or else that char(k) does not divide any of the ep’s. Then

29-2=d(2¢' —=2)+ > (ep —1). (1.6.9)
PeC
Proof. See Hindry and Silverman [158], Theorem A.4.2.5. O

Since the number 2 — 2g is just the Euler characteristic x(C) of C, then
(1.6.9) also assumes the following form:

X(C) =dx(C)+ > (1—ep). (1.6.10)
peC

The formula (1.6.10) for functions may be regarded as a logarithmic analogue of
the formula (1.3.21) for numbers.
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1.7 Weil functions

In this section, we discuss a class of functions on varieties, called Weil functions,
which have logarithmic singularities on a given divisor, and are parameterized by
a proper set of absolute values over a number field. Associated to Weil functions
of divisors, proximity functions, valence functions and heights are well defined by
the divisors, up to O(1).

Let  be a number field with a proper set of absolute values M,;. Take v € M,.
Let x, be the completion of k for v and extend | - |, to an absolute value on the
algebraic closure . Let D be a Cartier divisor on a variety X, given by a collection
{(Ui, fi) Yier- A local Weil function for D relative to v is a function

Apw : X(ky) —suppD — R
with the following form:

Ap (@) = —log|||fi(@)[lo + hi(x),

where h; is a continuous function on Uj;(k,). We sometimes think of Ap, as a
function of X (k) —suppD or X (k) — suppD by implicitly choosing an embedding
K K.

Let s denote the collection {f;}ic;. Then v induces a metric of s if there
exists a set of continuous positive functions

piw: Ui(ky) — RT
satisfying

Piv = ’fz‘ffl’v Pj.v
on Uj(ky) NUj(ky). Thus we can define

_ | fi(@)]o

|S((E)|U pi,v(I)

, T € Ui(ﬁv)

so that
Apw(r) = —log|[|s(z)]l

is a local Weil function for D at v.

We define an M, -constant v to be a real-valued function
v: M, —R

such that «v(v) = 0 for almost all v € M,; (all but a finite number of v in M,,). If
w is an extension of an element v in M, to the algebraic closure k, then we define

Y(w) =~(v).
Thus 7 is extended to a function of M, into R.
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Let X be a variety defined over k. A subset A of X (k) x M, is said to be
affine bounded if there exists a coordinated affine open subset U of X (k) with
coordinates (z1,...,%,) and an M,-constant v such that for all (z,v) € E we
have

max |2, < e,

If there is only one absolute value and & is algebraically closed, this notion coincides
with the notion of a bounded set of points on an affine variety. The subset FE is
called bounded if it is contained in the finite union of affine bounded subsets. In
particular, if X is a projective variety, then X (k) x M, is bounded (see [225]).

A function
h:X(k)x M, —R

is called bounded from above if there exists an M,-constant  such that
h(z,v) <v(v), (x,v) € X (k) X M,.

We define similarly bounded from below and bounded. We say that h is locally
bounded if it is bounded on every bounded subset of X (k) x M,; and define locally
bounded from above or below similarly. The function h is called continuous if for
each v € M, the function

x — h(z,v) = hy(x)

is continuous on X (k).

Let D be a divisor on X. According to Lang [225], by a (global) Weil function
associated with D we mean a function

Ap : (X (k) —suppD) x M,, — R

having the following property. Let (U, f) be a pair representing D. Then there
exists a locally bounded continuous function

h:U(k)x M, —R
such that for any point in U(k) — suppD we have
Ap(z,v) = —log||[ f(2)[[[s + h(z,v).

The function & is then uniquely determined by Ap and the pair (U, f).

We sometimes think of A\p as a function over k, that is, Ap is defined on
(X (k) —suppD) x M,.. If E is a finite extension of the number field x and Ap is
a Weil function for D over k, then

[Ew : Ky

[E: 5] Ap(z,v)

Ap(z,w) =
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is a Weil function for D over E. Thus, if z € X (x), then

Ap(x,v) = Z/\D(x,w) +0(1),

wlv
where O(1) means a bounded function of x.

If f is a rational function on X, a Weil function associated with the principal
divisor (f) is given by
Ap(x,v) = —log|| f(@)|[|o-

Proposition 1.84. Weil functions satisfy the following properties:

(a) If Ap and Ap: are Weil functions for D and D', then Ap + A\p/ is a Weil
function for D+ D' and —A\p is a Weil function for —D.

(b) Assume that X (k) x M, is bounded. If D is an effective divisor, then its Weil
functions are bounded from below.

(¢) Assume that X is projective. If \, N are Weil functions with the same divisor,
then A — X is bounded.

(d) Let ¢ : X! — X be a morphism of varieties and let D be a divisor on X
not containing the image of w. If Ap is a Weil function for D on X, then
Ap o @ is a Weil function for ¢*D on X'.

(e) Let Dy,...,D, and D be divisors on X such that D;— D are effective divisors
with no points in common. Then

/\D = 1nf /\Di

1s a Weil function for D.

See [225] for the proof of Proposition 1.84. The existence of a Weil function
associated with a given divisor on a projective variety is also due to S. Lang [225]:

Theorem 1.85. Let X be a projective variety. Let D be a divisor on X. Then there
exists a Weil function having this divisor.

Let S be a finite set of places containing S7°. Let A = Ap be a Weil function
for a divisor D on X. For any point € X(k) not in the support of D, the
prozimity function for X is defined by

ma(x) =mys(x) = Z Az, v).
vES
Then
Ni(z) = Ny g(z) = Z A, v)

vEM, —S
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serves as the valence function for X\. The associated height is defined by

ha(z) = Z Az, v) = ma(x) + Na(z).

veEM,

A Weil function A’ for another divisor D’ on X is said to be linearly equivalent
to A if there exists a rational function f such that

N =A=A;+7,

where v is an M,-constant. Thus if A’ is linearly equivalent to A, by the product
formula we have

hy(x) = ha(x) + O(1), x & suppD UsuppD’.

Now we can extend the definition of hy to suppD as follows. For each point x €
suppD, there exists a rational function f such that = does not lie in the support
of D — (f). Put N = X — Ay. We then define

h)\(l') = h)\/(x).
This value is independent of the choice of f.

Suppose that X is projective. If A\, \" are Weil functions with the same divisor
D, Proposition 1.84, (c¢) implies that there exists a positive M -constant v such
that
[N (z,0) = Az, )] < v(v)

for all x € X (k) and all v € M,,. Then

ma —mal <D 4(v),

veES

INv —=Nal < Y7 A(w),
vEM,,—S

and hence

i =Tl < > A(w).

vEM,
Thus the functions my(z), Nx(x) and hy(z) are well determined by the divisor D,
up to O(1), and will be denoted by m(z, D), N(z, D) and h(x, D), respectively.
Further, if D is an effective divisor, by Proposition 1.84 (b), we may assume

m(z,D) >0, N(z,D) >0, h(z,D) >0

by using a proper Weil function of D.
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Let D be an effective divisor on X and let R be a subset of X (&) — suppD.
Then R is a set of (S, D)-integralizable points if there exists a global Weil function
Ap and a M,-constant y such that for allz € R, allv € M,;—S, and all embeddings
of R in Ry,

Ap(z,v) < v(v).
As easy consequences of the properties of Weil functions, one finds (cf. [415], p.11):
If K is a finite extension field of x, and if T is the set of places of K lying over
places in S, then R C X (&) is a set of (S, D)-integralizable points if and only if it
is a set of (T, D)-integralizable points.

1.8 Heights in number fields

Based on the product formula in Section 1.4, one defines new heights on projec-
tive spaces defined over number fields, and further defines heights on varieties
associated to divisors, which will be compared with the heights defined by using
WEeil functions of the divisors. The corresponding first main theorems can also be
exhibited.

We assume that k is a number field. Let M, be a proper set of absolute
values on x with multiplicities n,. Let Vi be a vector space of finite dimension
n+1> 0 over k. Set V =V, and take { € V.. Then [{|, = 1 for all but finitely
many v € M,.. We can define the height of £ by

Hy(&) =[] &l

vEM,

Write € = £pep + -+ - + &ney, for a fixed basis e = (eg, ..., e,) of V. If, e.g., & # 0,
then ||, > ||, for each v, which implies H,(§) > 1. Also |A¢|y, = |A|v|€]w, sO

H.(A\) = Hi(§), M€k

by the product formula.
If we have a tower of finite extensions Q C k C K and if £ € V, is defined

over k, then
He@) = [T lee= 11 I e~
weMg vEM, wEMp ,wl|v

By using (1.4.3), we have

Hg(§) = H €

vEM,

Zv[K:x] — Hn(é-)[K:fi]7

and so
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The absolute height is defined by

H(€) = Hy(€) w0,

which does not depend on finite field extensions of Q, that is, we obtain the

function
H: Vg — R[1,+00).

We often use the absolute (logarithmic) height h(£) which is defined by

h(§) = log H(E) = log H,(¢).

1
[£:Q]

Definition 1.86. Two heights Hy and Hs (resp. logarithmic heights hy and ha) are
called equivalent if

cHy < Hy < ¢ Hy (resp. ha = hy + O(1))

holds for some positive constants ¢ and c'.

Hence if the base of V' is changed, we obtain a equivalent height. Take x €
P(V). Then there exists £ € Vi such that x = P(£). The relative (multiplicative)
height of x is defined by

Hy(x) = Ho(&) = T l€llo-

vEM,

Similarly, the absolute height

and the absolute (logarithmic) height of x

ha) =h©) = g 2 logllcl = 3 logllell,

veEM, veEM,

are defined respectively. By the product formula, this does not depend on the
choice of &.

Let 0 be an isomorphism of x over Q (i.e., leaving Q fixed). Let x be a
point as above, with coordinates (&, ..., &,) rational over k. Then we can define
the point o(z), rational over o(k), and having coordinates (o(&),...,0(&,)). By
transport of structure, we get immediately

H,{(.T) = Ha(m) (O’(I))

whence in particular,
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Proposition 1.87 ([225]). Take a € P(VY), and let A\ be a Weil function whose
divisor is the hyperplane E[a]. Then hy — h is bounded on P(V,).

Proof. Let Hy,...,H, be the hyperplane corresponding to the coordinate func-
tions. There exist rational functions f; such that

(fi) = H; — Ela].

For any point = & E|a], it is easy to obtain

h(z) = suplog || fi(x)[]. + O(1),

vEM, ¢

or equivalently,

hiz)=— Y inf Ay, (z,v) + O(1),

vEM,
where Ay, is a Weil function associated with the principal divisor (f;). We conclude
the proof by applying Proposition 1.84 (a), (c) and (e). O

In particular, we define the height of an element = € K to be the height of
the point [1, 2] in P!(k) = P(k?), so that we have

How) = T] el = | TT (Vi+lal2)™ || T (max{tjelh™ |.

veEM, veESZ vEM, —S°
and we see that if x # 0, then
Hy(z) = Ho(z71).

To really see what the logarithmic height is telling you it is perhaps best to look at
the simplest example: let x = a/b € Q denote a rational number in lowest terms.
It is then easy to see that

1
mmzzmgf+¥)
It is then clear that there are only finitely many rational numbers with bounded

height. More generally, any point € P(Q"*!) has a set of coordinates (&, - . ., &)
which are relatively prime integers, and we then see that

Hole) = /@3 +- -+ &

In particular, the set of points in P(Q"*!) of height < a fixed number is finite.
Such a fact is also true in a number field (see Theorem 1.102).
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Let S be a finite set of places containing S °. Take a € P(V;). Abbreviate

the prozimity function and the valence function for hyperplane E[a],
m(x,a) =mg(xz,a) =m (z, E[a]) ,

N(z,a) = Ng(z,a) = N (z,E[a]) .
By Proposition 1.87, one obtains the first main theorem:
m(z,a) + N(z,a) = h(z) + O(1), =z ¢ Elal, (1.8.1)

and therefore, )
m(z,a) < h(z)+O(1), =z ¢ Fla).

Proposition 1.88. For = € P(Vi) — Ela], the prozimity function m(x,a) is given

by
1

+0(1).
2, allls

m(x,a) = Z log
Proof. By Theorem 1.85, there exists a Weil function A having the divisor E [a].

Define
1 .
N(z,v) = 10g | 1ga, VES
)\(‘T,’U) LU g S

It is easy to check that \ is a Weil function for Ela], and so we complete the proof

according to the discussion in Section 1.7. 0
Note that
1 .
Z log = h(z) + h(a), =z ¢ Flal. (1.8.2)
2 el
Thus (1.8.1), (1.8.2) and Proposition 1.88 imply
1
N(z,a)= Y log +0(1). (1.8.3)
o B alll,

Let X be a projective variety defined over x and let D be a very ample divisor
on X. Let ¢p : X — P(V*) be the associated dual classification mapping, where
V = L(D). Then the absolute (multiplicative) height of x € X for D is defined by

Hp(z) = H(ep(2)),
and the absolute (logarithmic) height of x for D is defined as
hp(z) = h(ep(z)) = 0.

Up to equivalence, the height depends only on D.
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Theorem 1.89 ([225]). Let X be a projective variety over k and let X be a Weil
function of a very ample divisor D on X. Then hyx — hp is bounded on X (k).

Proof. Note that there exists a € P(V) such that D = @5 Ela]. Let X be a
Weil function of Efa]. By Proposition 1.84, (d), N o pp is a Weil function for D.
Proposition 1.87 implies that

hxogp (€) = hp(z) = hy (¢p(2)) = (¢ (z))

is bounded on X (x). Therefore Theorem 1.89 follows from Proposition 1.84, (c).
O

Take s € V with (s) = D and set a = P(s). For x & D, the prozimity function
m(x, D) and the valence function N(x, D) are given respectively by

1
m(x, D) = m(¢p(x),a) = ZIOg lep(x),alll,’

and
N D)= Nipo(@ha) = 3 gy o) o
By Theorem 1.89, one obtains the first main theorem:
m(x, D)+ N(z,D) = hp(z) + O(1). (1.8.4)
Lemma 1.90. If D and D’ are two very ample divisors on X, then
m(x, D + D") = m(z, D) +m(z,D’),
N(z,D+ D'") = N(z,D)+ N(z,D").

Proof. Set V! = L(D’). Take s € V,s' € V' with (s) = D,(s') = D’ and set
a=P(s),a’ =P(s'). Then (s ® s') = D+ D’, and hence

(s @) (@) _ [s(2)]o]s' ()]
|

oD+ (2),blo = = " =lep(2), alylep (@), a'l,,

s @ 'l |slvls’ |
where b =P(s ® s') € P(V ® V’). Hence the lemma follows. O

Furthermore, the formula (1.8.4) and Lemma 1.90 imply
Lemma 1.91 ([225]). If D and D’ are two very ample divisors on X, then

hp+p = hp + hp + O(1).
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Now, given any divisor D, we can write D = E — E’ where E and E’ are
very ample, and define
hp = hg — hg.

This definition depends on the choices of E and E’, but by Lemma 1.91, hp is
well defined up to equivalence. If X is a Weil function for D, Proposition 1.84, (a)
and Theorem 1.89 imply

hy=hp + O(l)

Further we have
m(x7 D) = m(x, E) - m(I7 E/)a

and
N(z,D) = N(z,E) — N(z,E").

Hence the first main theorem
m(z,D) 4+ N(x,D) = hp(z) + O(1) (1.8.5)
holds.

Let D be a divisor on a non-singular projective variety X over x. let A be
a Weil function of the divisor D. Theorem 1.89 and Proposition 1.84, (a) imply
that hy — hp is bounded on X (k). If D is effective, by Proposition 1.84, (b), we
have hp > —O(1), in other words we can choose hp in its equivalence class such
that hp > 0. If D is ample, by the definition there exists m € Z* such that mD
is very ample, and so
0 < hyp = mhp + O(1).

Without loss of generality we may assume hp > 0. If D is pseudo ample, by
Theorem 1.77 there exists some positive integer m such that mD ~ E + Z, where
FE is ample and Z is effective. Hence

hmp = hg +hz + O(].)

Thus we can choose hp in its equivalence class such that hp > 0.

1.9 Functorial properties of heights

By using heights, one can describe completely growth of morphisms between pro-
jective spaces (cf. Theorem 1.95). An interesting question due to Lehmer will be
introduced.

Let k be a number field with a proper set of absolute values M, satisfying
the product formula with multiplicities n,. Let X be a variety defined over . Let
@ : X — P™ be a morphism of X into a projective space, defined over x. Then
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for each point = of X, if p(z) is a point of P"(k), rational over k, we can thus
define its relative height

Hyo(z) = Hy(p(2)).

If x is algebraic over Q, then there exists a finite extension k of Q over which it is
rational, and hence the relative height H, ,(x) can be defined too.

We can then define its absolute height

Hy(w) = H(p(2)) = Ha(p(z)) o
and the absolute (logarithmic) height
he(x) = log Hy(x).
Thus H, , is a function on X (x) while H,, is a function on X (k) = X (Q).

Let X be a projective variety defined over k. Suppose its points are rep-
resented by homogeneous coordinates [zg, ..., Zn]. Let (a;;) (i = 0,...,n, j =
0,...,m) be a matrix with coefficients in , and put

Yi = ajoxo + -+ + AimTmn.

Then the mapping
[0y -y Zm] — [Y0s- -+, Yn]

defines a rational mapping ¢ : X — P". If x € X is a point with homogeneous
coordinates [z, ..., %] such that not all y; are equal to 0 in the above formula,
then ¢ is defined at . A mapping ¢ obtained in the manner just described is
called a linear projection, defined over k.

Lemma 1.92 ([225]). Let X be a projective variety defined over k. Let p : X — P™
be a linear projection defined over k. There exists a number ¢ > 0 depending
only on ¢ such that if x is a point of X, algebraic over k, such that not all the
coordinates y; above are 0, then

H,(x) < cH(z), (1.9.1)

where H(x) is the height in the given projective embedding of X .

Proof. Let Sy be the subset of M, containing all those absolute values v for which
some |a;;|, is not 1, and all Archimedean absolute values. Then Sy, is a finite set.
If our coordinates are in a finite extension K of k, then for any w € M extending
some v € M,;, one has

miax|yi|w <y m;lxlﬂfjlw,

where
o _ (m+ 1) max; ;{1, |aijlv}, v € Sk;
v 1, v &Sk
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Hence the inequality (1.9.1) in which

c= H H(gv,n+1cv)nw

vEM,; wlv

follows easily. O

Lemma 1.93 ([225]). Let fo,..., fn be homogeneous polynomials of degree d with
coefficients in Kk, and in m + 1 variables Xg, ..., Xm. Let A be the set of points
x = [xo,...,ZTm] in projective space P™ (k) such that not all polynomials f;(x)
vanish, i = 0,...,n. Let f : A — P"(k) be the morphism defined by = +—

[fo(x), ..., fu(z)]. Then
hy(x) < dh(x) + c

for some constant ¢ independent of x € A.

Proof. Trivial estimates using the triangle inequality show that for any point x €
P™(k), x € A we have
Hy(f(2)) < CUH, (2)".

Taking the [k : Q] root and the logarithm yield the lemma. O
For the next discussion in this section, we will need Hilbert’s Nullstellensatz:

Theorem 1.94. Take polynomials Py, ..., P. and P in K[ Xy, ..., X;m]. If P vanishes
at all the common zeros of Py, ..., Py, then there exist polynomials Q1,...,Q, in
R[Xo,..., Xm] such that

PSZQ1P1+"'+QTPT

holds for some natural number s.

Proof. Van der Waerden [409] or Lang [234] or Atiyah-Macdonald [7], p. 85 or
Zariski-Samuel [448], vol. 2, p. 164. O

Theorem 1.95 ([225], [362]). Let f : P™ — P™ be a morphism of degree d, defined
over k. Then
hy =dh+ O(1).

Proof. One inequality was proved in Lemma 1.93. Next we prove the inequality in
the other direction. It is well known that the morphism f : P"™ — P™ is given in

homogeneous coordinates by [fo, ..., fn], where the polynomials fo,..., f, in the
variables Xy, ..., X,, have no common zero except the origin. By Theorem 1.94,
there exist polynomials b;; € £[X, ..., X;,] and a non-negative integer [ such that

d+l
X =" f;.
j=0
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Disregarding the monomials in b;; of degree # [, we can assume without loss of
generality that b;; is homogeneous of degree . Extending  if necessary, we may
assume that the b;; and f; have coefficients in .

It is also convenient to clear denominators, so we pick an element a in &,
integral at all valuations of M, such that a is a denominator for all the coefficients
of the polynomials b;;. Multiplying by a, we may assume without loss of generality
that we have the equation

n
d+1
aXi = Z bijfj,
§=0
where the coefficients of b;; are integral in x. Take
x = [xg,...,Tm| € P™(kK)

with z; integral in k. Take a € {0,...,m} such that

|Zalo = max |-
If v € My is non-Archimedean, then

lalolzaly™ < fzal; max | f; ()],

whence

s

64407 < a7 max £ ()

|aly” max |z;
K3
If v € M, is Archimedean, then

m+1

elfeatt®t < 1) (™

)Colinlt max o).

where C\, is a constant giving the bound for the coefficients of the polynomials
baj (7 =0,...,n). We then obtain

Jafy max |z {0 < O™ max [ | max | ()]}
% % 7

Taking the product yields

[=:Q)

H, () < {(m+ 1)<d+l)/2o} Hy () Hy(f(2)).

This proves the theorem. O
Corollary 1.96. Let P and Q be two coprime polynomials in K[X]. Then we have

h (gg;) = max{deg(P), deg(Q)}h(z) + O(1). (1.9.2)
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In many references, the height of an element x € k is defined by

()= [] max{L |z},

vEM,
so that we see that if z # 0, then
Hy(z) = Ho(x™h).
Furthermore, we have trivially
Hy(xy - mp) < He(w1) - He(20)

and for x € k,
H,(2™) = Hq(x)".

The absolute logarithmic height of an element = € & is often defined by

h(z) = e IQ] log H, () = » :IQ

] Z max {0, log |z[3"}.

vEM,
Obviously, we have
Eghgi’w;logz
For = # 0, h(x) = 0 if and only if = is a root of unity (see [225]).
Suppose that « is algebraic of degree d over the rational numbers, and let
F(X)=agX+aq1 X+ + a9 =0, ag > 0,

be its irreducible equation, with coefficients a; € Z, and ged(ao, - ..,aq) = 1. If
k = Q(«), then one has the formula

d
Hy(a) = ag | [ max{(1, o[},
=1

where || is the complex absolute value, and a4, . . ., a4 are the distinct conjugates
of ain C. It is an old conjecture of Lehmer [240] that when « is of degree d over
@, and is not 0 or a root of unity, then

h(a) > logdo‘o (1.9.3)

where ag = 1.1762808 - - - is the larger real root of the 10th-degree polynomial

2042 — " — a2 St a1
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Note that

h (21/d) _ 1052.

The example shows that (1.9.3) would be best possible on the order of d. The best
result in this direction is due to Dobrowolski [81] and says that if d > 3, then

h(a) > ¢ (loglogd\® (19.4)
Y7 a\ logd e

with an absolute constant ¢ > 0.

In contrast, there is the following result of Zhang [449]: Suppose « is algebraic
but not 0, 1, (1 £ +/—3)/2. Then

ha)+h(l—a)>c>0 (1.9.5)

with an absolute constant ¢ > 0. Zagier [445] gave a more natural proof and
determined the best value of the constant

oo Llpg LT V5
9% o

1.10 Gauss’ lemma

By using absolute height h on a projective space P™ defined over a number field «,
we can define a closed ball P"*[O; r] of center O and radius r > 0. Further, by using
Gauss’ lemma, one can show that the number of k-rational points in P"[O;r] is
finite.

We assume that k is a number field. Let M, be a proper set of absolute
values on k with multiplicities n,. An element f in the ring x[X1,..., X,] can be

written as a sum
f= Z aipi,
il
where I is a finite set of distinct elements in Z, a; € &, and

0i(X1,. ., Xn) = X1 X i = (i, i) € 2T

Then we define

1
1flo = (Yierlail?)? :  if vis Archimedean,
Y max;er{|aily} : if vis non-Archimedean.
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The absolute height H(f) of f is defined to be the height H(P) of the point P
having the a; (in any order) as coordinates, and we define its relative height H,(f)
in a similar way. If ¢ is an isomorphism of x over QQ, then we get the polynomial

a(f) =) ola)ei,
iel
and thus, as for points, we have H(f) = H(o(f)).

If v is non-Archimedean, Gauss’ lemma for valuations then asserts that | - |,
is a valuation.

Lemma 1.97 (cf. [225]). Take f,g € k[X1,...,Xy,]. If v is a non-trivial non-
Archimedean valuation, then |fgl, = |flvlglv-

Lemma 1.98. Let | - | be an absolute value which coincides with the ordinary one
on Q. Let f € k[X] be a polynomial of degree d, and let

d

70 =[x - )

i=1

be a factorization in k. We assume that our absolute value is extended to k. Then

d d
st [[Vi+lal <If1 <2 T]V1+]al
i=1 =1

Proof. The right inequality is trivially proved by induction, estimating the coef-
ficients in a product of a polynomial g(X) by (X — «). We prove the other by
induction on the number of indices ¢ such that |a;| > 2. If |a;| < 2 for all 4, our
assertion is obvious. Suppose that

f(X) =9(X)(X —a)
with |a| > 2 and suppose that our assertion is true for
g(X) =X+ by 1 X4 4 b
We have .,
FOX) = XD 4 by — abi) XY,
i=0

where by =1, b_1 = 0. Then

d 2 d
|fl= <1 + Z |bi1 — abi|2> > (1 + Z(labil - |bi1|)2>
i=0 =0

1
2

1
2

> (ol - lal = V' 1P

d
2G+§NM—DWM#—M4W>
=0

and our lemma is now obvious. O
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Lemma 1.99. Let | - | be an absolute value which coincides with the ordinary one
on Q. Take d € Z4. If f and g are two polynomials in k[X1,...,Xy] such that
deg(f) + deg(g) < d, then

10772 fg| < | fllg] < 104"/2| fg].

Proof. Let us first assume that f, ¢g are polynomials in one variable, so we can
write

I
.E"@

Il
-

f(X)=a]](X —ai),

(2

b

|
AEQ

I
-

9(X) (X = 05j)-

J

Without loss of generality, we may assume a = b = 1, and that we have extended
our absolute value to k. By Lemma 1.98, we get

P q
d__ d__ d d
£llgl < 22 1<H¢1+|ai|2>H¢1+|ﬁj|2<22 '5%|fg| < 10%|fg].
i=1 j=1

Similarly, we can obtain
_d
|fllgl = 1072 fg].

Now let f be a polynomial in n variables X1, ..., X, of degree < d. Then the
polynomial in one variable

Sl = £ (v.y?. v

has the same set of non-zero coefficients as f. Thus, if f and g are two polynomials
in n variables X1, ..., X, such that the sum of their degrees is < d, then

Sa(fg) = Sa(f)Salg)

has the same non-zero coefficients as fg. From this our reduction of the n-variable
case to the 1-variable case is clear. O

From Lemma 1.99 we can deduce analogous results for heights.

Lemma 1.100. Take d € Zy. If f and g are two polynomials in k[ X1, ..., X,] such
that deg(f) + deg(g) < d, then

10~ H(fg) < H(f)H(g) <10 H(fg).
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Proof. Set
”f”v = |f :)l’ua v e va

We have
H.(fg) = H 1fglle = H coll fllvllgllo,

veEM, veEM,

. . . . _an .
where ¢, = 1 if v is non-Archimedean, and otherwise, ¢, = 10~ 2 "™*. Since

whence

and the inequality on the left follows immediately. The one on the right follows in
a similar way. O

Let o be algebraic over Q, and let f(X) be its irreducible polynomial over

Q. Then
d

70 =[] = ),

Jj=1

where d is the degree of o over Q and «; are the conjugates of a.. In view of the
above results we get:

Proposition 1.101. Take d € Z*. There exist two numbers ci,ca > 0 depending
on d, such that if a is algebraic over Q of degree d, and f(X) is its irreducible
polynomial over Q, then

c1H(a) < H(f) < coH(a).

Theorem 1.102 ([304], [305]). Let dy, 7o be two fized positive numbers. Then the
set of points x in P"(k) algebraic over Q, and such that

[Q(z) : Q] < doy, H(z) <19
is finite.

Proof. Take a point x = [&p,...,&,] € P"(k) of degree d and consider the polyno-
mial
f(Xo,. .., X)) =&Xo+ -+ & Xn.

Then H(f) is the height of the point z. Let

g=11c
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be the product being taken over all distinct isomorphisms o of k over Q. Then
g has coefficients in Q, and H(g), H(f)? have the same order of magnitude. We
have already seen in Section 1.8 that the number of points with height less than a
fixed number, in a projective space, and rational over Q is bounded. Consequently
Theorem 1.102 follows. O

Finally, we introduce a quantitative result related to Theorem 1.102. Let &
be a number field. A real function v on P™ will be said to be a weight function for
k if v(z) = 0 for each x ¢ P (k). Denote the center of absolute height h on P™ by

O = {z €P" | h(z) = 0}.

If x = [&, ..., &) € P"(k) with & # 0 for some ¢, Kronecker’s theorem (see [158],
Corollary B.2.3.1) shows that maxo<;<n |£;/&lv = 1 hold for all v € M, if and
only if the ratio §;/&; is a root of unity or zero for every 0 < j < n. Thus h(z) =0
if and only if £ =0 (j # ¢).

Let v be a weight function on P for k. Take a subset A C P™. For r > 0, set
AlO;r] ={z € A| h(z) <r}.

Based on Theorem 1.102, we can define the spherical image of k for v by

ny,(r) = Z v(z). (1.10.1)

z€P"[O;r]

Fix rg > 0. For r > ro, we define the characteristic function of k for v by

" dt
N, (r) = Ny(r,r0) = / (), - (1.10.2)
0
A basic weight function of k is the characteristic function
|1, ifxeP(k);
Xx(T) = { 0 ifzdP(r). (1.10.3)

Theorem 1.103 ([333]). Let k be a number field and set [k : Q] = d. Then there
exists a constant ¢ such that
O(Ted”) ifd=1 n=1,

_ o dn+1)r
n r) =ce +
(1) {O (e(d”+d_1)r) otherwise.

Recall that we will use O(1) to denote a bounded function. Generally, if h(r)
is a non-negative function, we will denote

O(h(r)) := O(1)h(r).

We also use the symbol o(h(r)) to denote a function such that o(h(r))/h(r) — 0
as T — 00.



Chapter 2

Nevanlinna Theory

In this chapter, corresponding to height theory we will introduce Nevanlinna the-
ory in higher-dimensional spaces, say, the first main theorems and second main
theorems, which is a basic tool for our study, and discuss the Griffiths and Lang
conjectures. We also introduce Kobayashi hyperbolic varieties and some related
problems. Some connections between height theory and Nevanlinna theory will be
exhibited in the sequent.

2.1 Notions in complex geometry

We will introduce basic notation, terminology and technical results of complex
geometry used in value distribution theory.
2.1.1 Holomorphic functions
Take a positive integer m and let
R2m = {(5517341: oo 7xm7ym) | Tj,Yj € R}

denote the 2m-dimensional Euclidean space. Let Q be an open set in R>™ and let
C*(Q) be the space of k times continuously differentiable complex-valued functions
in Q, where 0 < k < co. Let i = v/—1 be the imaginary unit. We identify C™ with
R?™ by setting

C"™ ={(21,.--,2m) | zj = xj +1iy;; xj,y; € R}

Thus we can regard ) as an open set in C™, and so the differential df of a
complex-valued function f in C1(£2) can be expressed as a linear combination of
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the differentials dz; and dz;,
df = dz; dz; 2.1.1

where we have used the notation

de = de + Zdyj ) de = d'rj - idyj’

o _1(0o 0 o _1(o 0
6Zj N 2 65@ ayj ’ 82j N 2 65@ 6yj '

With the notation
of = JE:I 0% dz;, Of = JE:l o2, dzj, (2.1.2)

we may also write (2.1.1) in the form
df =0f +0f. (2.1.3)

Differential forms which are linear combinations of the differentials dz; are said to
be of type (1,0), and those which are linear combinations of dz; are said to be of
type (0,1). Thus Of (resp. Of) is the component of df of type (1,0) (resp. (0, 1)).

A function f € C1(Q) is called holomorphic or analytic in Q if df is of type
(1,0), that is, if f satisfies the Cauchy-Riemann equations

af = 0.

The set of all holomorphic functions in 2 is denoted by A(£2). The differential
operators 0 and d are obviously linear and satisfy the product rule. Hence A(2)
is a ring.

Theorem 2.1 (cf.[162]). Let f be a complez-valued function defined in the open set
Q C C™. The following three conditions are equivalent:
(1) f is a holomorphic function in Q;

(2) for every point a = (a1, ...,ay) €  there exists a neighborhood U C ) of a
such that f can be expressed in U as a convergent series

o0

f(z) = Z Chy oty (21 — @)PL - (2 — @) P

klwu;knl:O

(3) f is holomorphic in each variable z; when the other variables are given arbi-
trary fized values.
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The following Weierstrass preparation theorem describes a local property of
holomorphic functions in C™.

Theorem 2.2. Let f be holomorphic in a neighborhood 2 of 0 in C™ and assume
that £(0, zm) /2t is holomorphic and # 0 at 0. Then one can find a polydisc A C Q
such that every g which is holomorphic and bounded in A can be written in the
form

g=aqf +r, (2.1.4)
where q and r are holomorphic in A, r is a polynomial in z,, of degree < u (with
coefficients depending on 2z’ = (21,...,2m—1)) and

sup |q(2)] < esup |g(2)], (2.1.5)
zZEA ZEA

where ¢ is independent of g. The expression (2.1.4) is unique. The coefficients of
power series expansions of q¢ and r are finite linear combinations of those in the
expansion of g.

Proof. Hérmander [162], Theorem 6.1.1. O

A set D C C™ is called a polydisc if there are discs D1, ..., D,, in C such
that

m
H 21,...,zm)€(cm|zj6Dj,j:l,...,m}.
In particular, when g(z) = z#,, Theorem 2.2 shows that one can write f in one

and only one way in the form f = AW, where h and W are holomorphic in a
neighborhood of 0, h(0) # 0, and W is a Weierstrass polynomial, that is,

p—1
W(z) =2k + Z a; (221,

J=0

where a; are holomorphic functions in a neighborhood of 0 vanishing when 2’ = 0.
Note that, conversely, every f which can be represented as above must satisfy the
hypotheses of Theorem 2.2.

Let f: Q — C™ be a holomorphic mapping, that is,

f:(f17"'afn)7

where each component f; is holomorphic in Q. If g € C'(W) for some open set W
containing the image f(£2) of f, the function f*g = go f is in C*(2) and we have

dg dg
Za df +Zafjdf
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Since df; is of type (1,0) and df; of type (0,1) in €, it follows that
dg
d , frg) = d
S -3 0,

Hence f*g is holomorphic if g is holomorphic. More generally, the decomposition of
d as 0+ 0 and the notion of holomorphic function are invariant under holomorphic
mappings.

The definition of the d and 9 operators can be extended to arbitrary differ-
ential forms. Take non-negative integers a and b with a <b. Let nya be the set of
all increasing injective mappings

A:Z[1,a) — Z[1,D].
A differential form w on € is said to be of type (p,q) if it can be written in the
form
w= > > fapdza Ndzg, (2.1.6)
agJy, BEIT,
where the coefficients f, s are differentiable on €2, and where we have used the
notation

dzo = dza(l) VANKIERIVAN Clzoé(p)7 dzg = dig(l) VANRERIVAN dig(q).

Every differential form can be written in one and only one way as a sum of forms
of type (p,q); 0 < p,q <m. If wis of type (p, q), the exterior differential

do= > > dfaphdza Adzg

acJy, BeIT,

can be written -
dw = 0w + 0w,

where

Oow

D> Ofap Ndza Adzg,

aeJ, BeJ,

dw > OfapNdza Adzs

aeJ BEJ

are of type (p + 1, ¢) and (p,q + 1), respectively. Since
0 = d?w = 9*w + (90 + 90)w + P*w
and all terms are of different types, we obtain

9*=0, 30+ 00 =0, 0° =0. (2.1.7)
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We shall use the notation AP9(Q) for the space of differential forms of type (p, q)
with coefficients belonging to C°° ().

If f:Q — C" is a holomorphic mapping, and if

n= Z Z Ja,pdwe N divg

acJy, BEIT,

is a form defined in an open neighborhood of the image of f, we can define a form
f*nin Q by
Fn= 2 . F'9apdf"wa ndf*wg,

agJp, BEIT,

where
df*wy, = d(wy o f), df*w, = d(wg o f)

are differential forms in  of type (1,0) and (0,1) for k£ = 1,...,n, respectively,
since wy, is holomorphic. Hence f*n is of type (p, q) if 7 is of type (p, q), and since

d(f*n) = f*(dn),

it follows that ~ -
a(f*n) = f(9n), o(f™n) = f(9n).

2.1.2 Complex manifolds

A Hausdorff topological space M with a countable basis is called a manifold of
dimension m if every point in M has a neighborhood which is homeomorphic to
an open set in R™. The concept of complex manifolds is defined by means of a
family of such homeomorphisms:

Definition 2.3. A manifold M of dimension 2m is called a complex (analytic)
manifold of (complex) dimension m if there exists a family F = {(Uy, va)}, called
a complex structure of M, which satisfies the following conditions:

(i) {Ua} is an open covering of M;
(ii) po : Uy — UL, is a homeomorphism onto an open subset U!, of C™;
(iii) pg ot @a(Us NUg) — C™ is a holomorphic mapping if Uy, N Ug # 0.
The pair (Uy, ¢q) is called a holomorphic coordinate atlas of M, and ¢, =
(21,-..,2m) is said to be a local holomorphic coordinate system on U, or at ev-
ery point of U,. Take a point p € U,. If f1,..., fin are holomorphic functions

in a neighborhood of ¢, (p) in C™, then (f1(2),..., fm(z)) is another system of
coordinates at p if and only if

e (1 (goa<p>>)m 40

9z, k,j=1
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This follows from the implicit function theorem (see [162], Theorem 2.1.2). Usually,
a complex manifold of dimension 1 is called a curve or Riemann surface, and a
complex manifold of dimension 2 is called a surface.

Given another complex manifold N, a continuous mapping f : M — N
is called holomorphic or analytic if for every p € M, there exist a holomorphic
coordinate atlas (U, ¢) around p and a holomorphic coordinate atlas (V1) around
f(p) such that f(U) C V, and such that

Yo fop i) — (V)

is holomorphic. Let Hol(M, N) be the set of holomorphic mappings from M into N.
In particular, if N = C we have now defined the concept of holomorphic functions
in a complex manifold M; the set of such functions with the topology of uniform
convergence on compact subsets of M will be denoted by A(M). The elements in
A(M) are also called entire functions on M. Let A*(M) be the subset of A(M)
such that f € A*(M) if and only if f vanishes nowhere.

If a homeomorphism f : M — N between complex manifolds M and N
is holomorphic such that f~! : N — M is also holomorphic, then f is said to
be biholomorphic or an analytic isomorphism. Such complex manifolds are called
analytic isomorphic. If f is a biholomorphic self-mapping on M, then f is said to
be an automorphism on M. Let Aut(M) be the group of automorphisms on M.
The group operation is composition.

It is clear that every open subset of a complex manifold M has a complex
structure, so the concept of a holomorphic function (mapping) on an open subset
is also well defined. Note that if f is holomorphic in U/ C C™, then f o @, is
holomorphic in U,. Hence by the definition of a complex manifold, holomorphic
functions do exist locally.

Let M be a complex manifold of dimension m, p € M any point, and z =
(21, .., 2m) a holomorphic coordinate system around p. There are three different
notions of a tangent space to M at p. First of all, if we consider M as a real
manifold of dimension 2m, we have the usual real tangent space T,(M) to M at p,
which can be realized as the space of R-linear derivations on the ring of real-valued
C* functions in a neighborhood of p. Setting z; = x;+1iy;, then T,(M) is spanned

by { aij , 82]- } over R. Secondly, we have the complexified tangent space
Tpy(M)c =Tp(M) ®@r C.

Elements in T,,(M )¢ are called complex tangent vectors at p. It can be realized as
the space of C-linear derivations on the ring of complex-valued C*° functions in a

a‘zj, a‘zj } over C. Finally, there is

the holomorphic tangent space T,(M ), which is the subspace of T),(M )¢ spanned

neighborhood of p, which can be spanned by {
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by { a‘zj} over C. The subspace T,(M) = C{ a‘zj} is called the antiholomorphic
tangent space to M at p; clearly

TP(M)(C = Tp(M) D TP(M)'

A complex tangent vector (field) is of type (1,0) (resp. (0,1)) if it belongs to
T,(M) (resp. Tp(M)).

Observe that for complex manifolds M, N, any smooth mapping f : M — N
induces the (real) differential of f at p,

df (p) : Tp(M) — Ty (N),

and hence a mapping
Tp(M)c — Ty (N)e,

also denoted by df (p), but do not in general induce a linear mapping from T, (M)
to Ty (V). In fact, a smooth mapping f : M — N is holomorphic if and only if

df (p)(Tp(M)) C T (N)

for all p € M. If so, we denote the induced mapping by
f'(p) : Tp(M) — Ty (N),

which is called the holomorphic differential of f at p.

Let 2 = (z1,...,2m) be local holomorphic coordinates centered at p € M,
and w = (wy, ..., w,) holomorphic coordinates centered at f(p) € N. Locally, the
holomorphic mapping f : M — N can be expressed by holomorphic functions

wi = fr(z1,..,2m), k=1,...,n.

Then the Jacobi’s matrix J(f'(p)) corresponding to the linear mapping f’(p) is
given by

O fr

J(f =

o= (5o

w) .
1<k<n,1<j<m
We may define the rank of f by

rank, (f) = rankJ(f'(p)), rank(f) = sup rank,(f).
peM

In particular, if m = n it is not difficult to show that the determinant of the
2m x 2m real Jacobi’s matrix J(df (p)) corresponding to the linear mapping df (p)
satisfies

det J(df (p)) = | det J(f'(p)|*.

Hence holomorphic mappings are orientation preserving, which further means that
complex manifolds are orientable.
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Let M be a complex manifold of dimension m. If we consider M as a real
manifold of dimension 2m, we have the space A(M,R) of smooth differential forms
on M which may be graded as follows:

2m
A(M,R) =Y " A"(M,R),
r=0

where A"(M,R) is the space of smooth differential r-forms on M. Denote the
subspace of closed r-forms by

Z"(M,R) = {w € A"(M,R) | dw = 0}.
Since
d®=0, d(A"'(M,R)) C Z"(M,R),

the quotient groups
Hpg(M,R) = Z"(M,R)/d (A"~ (M,R))

of closed forms modulo ezact forms are called the de Rham cohomology groups
of M.

An element of the complexification A(M) of A(M,R) is called a complex
differential form on M. The space A(M) may be graded as follows:

2m
AM) =" A (0),
r=0

where A" (M) is just the complexification of A™(M,R). An element of A"(M) is
called a complex r-form on M. Every complex r-form w may be written uniquely
as wy + iwy, where wy and wy are real r-forms, that is, w; = w; for j = 1,2. If we
denote by T*(M)c the complexification of the dual space T, (M) (cotangent space
to M at x) of T,,(M) at « € M, then a complex r-form w on M gives an element

w(x) of AT; (M)c at each point x of M; in other words, a skew-symmetric r-linear
mapping
w@) : Ty(M)e X -+ x Tpy(M)c — C

at each point = of M. The differential operator d on A(M,R) can be easily extended
to A(M). Let Z"(M) denote the space of closed complex r-forms on M, and let

Hpp(M) = Z"(M)/d (A"~ (M))
be the corresponding quotient; clearly

Hpr(M) = Hpr(M,R) ® C.
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Each space A"(M) can be split into a direct sum

AT(M) = " API(M).

ptg=r

An element of AP2(M) is called a (complex) form of type (p, q). Obviously, AP*9(M)
is a C°°(M)-module. The differential operator d on A(M) has the basic property

dAP (M) C APTLU(M) + APITH(M).
As a consequence, one can split d into 9 + 9, where

81 APU(M) — APTLI(M), 9« APU(M) —s APITL(DT)

)

which also satisfy the relations in (2.1.7). Let Z(M) denote the space of d-closed
forms of type (p, q). Since & =0on AP4(M), and we have

A(APU(M)) € ZbTH (M),
accordingly, we define the Dolbeault cohomology groups to be

HP(M) = Z09(M) /9(AP4~1 (M)).

Associated to the differential operator d = 0 + 0 on A(M), we also use the
operator

c __ { _
&=, (0-9).

Then .

i

dd® = _ 00.

2w
A form w € APO(M) with Ow = 0 is called a holomorphic form of degree p. Note
that all coefficients of a holomorphic form are holomorphic. Usually, the space
of holomorphic forms of degree p on M is denoted by QP(M). Thus we obtain a
sheaf QP on M associated to the gth Cech cohomology group H(M,QP) of QP on
M. Specially, O = A = QY denotes the sheaf whose sections are given locally by
holomorphic functions, that is, O(U) = A(U) for an open set U C M. Dolbeault’s
theorem (cf. [127]) shows

~ P,q
HY(M, Q) = H?(M).

Note that a form 1 of type (p, q) attaches to each z € M a bilinear mapping
over C,

d(x) s AT (M) x AT, (M) — C.
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For the case ¢ = p, the (p, p)-form 1 is said to be positive (resp. non-negative) as
long as

V(@) (Y1 A Ayp, iy Ao Ady,) >0 (resp. > 0)

for any set of linearly independent vectors yi,...,y, in Ty(M) at each point
of M. If ¢ is positive (resp. non-negative), we will write ¢y > 0 (resp., ¢ > 0).
We also write ¥ > n (resp. » > 1) for another (p,p)-form 7 if ¢» —n > 0 (resp.
¥ —n > 0). Especially, if ¢ is a (1, 1)-form given locally by

Y(x) =1 Z ap(x)dzy A dzy,
kil

then ¢ > 0 (resp. ¢ > 0) if and only if the matrix (ag;(z)) is positive definite
(resp. positive semidefinite) at each point x of M.

Let M be an m-dimensional complex manifold. If p is a point on M, we
define the local ring of holomorphic functions of M at p to be the ring of germs
of functions that are holomorphic in a neighborhood of p. This ring is denoted
by Oarp, or simply by O, if no confusion is likely to arise. In other words, an
element of O, is a pair (U, f) where U is an open subset of M containing p, and
f is a holomorphic function on U, and where we identify two such pairs (U, f)
and (W, g) if there is a neighborhood V- C U NW of p such that f = g on V.
Note that O, is indeed a local ring: its maximal ideal m,, is the set of germs of
holomorphic functions which vanish at p. For if f(p) # 0, then 1/f is holomorphic
in some neighborhood of p. Further, O, is a unique factorization domain (see [162],
Theorem 6.2.2), and a Noetherian ring (see [162], Theorem 6.3.3).

A subset X in the complex manifold M is called an analytic subset if for
every point p € M there is an open neighborhood U C M and a family of functions
fr € A(U), X €T, such that

UNnX={zeU| fa(z) =0, A€ A}

The definition implies that X is closed. It turns out that A can always be taken
finite (see [162], Theorem 6.5.2), that is, for every point p € M there is an open
neighborhood U C M and a finite number of functions fi,..., f, € A(U) such
that

I(X)={(U,[) € Op | flxru =0} (2.1.8)
is the ideal in O, generated by f1,..., fr. In particular,
UNX={zcU|fiz)=- = fr(z) = 0}.

Those fi,..., fr are called the local defining functions, and f; = --- = f, =0
is called the local equation of X at p. If we always have r = 1, then X is called
an analytic hypersurface. Let X be an analytic subset of M. Then X is called
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reducible if there are non-empty distinct analytic subsets X; and Xs of M such
that
X=X1UXy, X#X, (j=1,2),

otherwise, X is called irreducible. A point z € X is called regular or non-singular
if there is a neighborhood U of = in M such that X NU is a complex submanifold,
otherwise, is singular. We say that X is non-singular or smooth if every point on
X is regular.

Let {Xx}rea be a family of analytic hypersurfaces of M. Assume that it is
locally finite, i.e., for any compact subset K of M, {A € A | X, N K # 0} is finite.

Then a formal sum
D= Z n)\X)\

with coefficients ny € Z is called a divisor on M. Without loss of generality, we may
assume that X,’s are irreducible and mutually distinct, and that every ny # 0.
Then we define the support supp(D) of the divisor D by

supp(D) = U X
AeA
If all n) > 0 then D is called effective or positive. We write D > 0 for D effective.
If U C M is an open subset, we define the intersection of D with U by

DNU =Y ny(XxnU).
AEA

A divisor D on M is said to have normal crossings if D is locally given by
an equation zq ---zx = 0, where (z1,...,2y,) are local holomorphic coordinates
on M. If D has normal crossings, and if after expressing D = ) X as a sum of
irreducible components, all X; are non-singular, then we say that D has simple
normal crossings. In case M = P(V') is a complex projective space associated to
a complex vector space V of dimension m + 1, and if D = Efay] + - - -+ E[a,] is a
linear combination of hyperplanes, then D has normal crossings if and only if the
family a;(j = 1,...,q) are in general position in P(V*).

Definition 2.4. A complex manifold M of dimension m is said to be a Stein man-
ifold if

() M is countable at infinity, that is, there exists a countable number of compact
subsets K1, Ko, ... such that every compact subset of M is contained in some
K;.

(8) M s holomorphic convez, that is,

K= { e M ] ()| < sup |£(p)] for every f A(M)}

peEK

18 a compact subset of M for every compact subset K of M.
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(v) If z1 and zo are different points in M, then f(z1) # f(z2) for some f € A(M).

(6) For every z € M, one can find m functions f1,..., fm € A(M) which form
a coordinate system at z.

In fact, if a complex manifold M is countable at infinity, a topology in A(M)
is then defined by the seminorms

|f| = sup sup |f(p)|, fe€ AM),

Jj=>1peK;
and the completeness is obvious.

Let M be a complex manifold of dimension m. Then M is said to have
holomorphic rank n if there exist n analytically independent holomorphic functions
on M, that is, there exist holomorphic functions fi,..., f, on M such that

dfi N---Ndf, #0

on each connected component of M; equivalently, a holomorphic mapping

f:(flaafn)M—>Cn

of strict rank n exists (see [5] or [380]). Such a mapping f is called regular if it has
rank m at every point in M, that is, if for any point in M there is a coordinate
system formed by m of the functions fi,..., f,. If the inverse image of every
compact subset of C" is a compact subset of M, the mapping is called proper. It
is clear that the image of a proper mapping f is closed, for every compact set is
mapped on a compact set. If, in addition, the mapping is regular and one-to-one,
the image is a complex submanifold of C™ which is isomorphic to M.

Theorem 2.5 (cf. [162]). If M is a Stein manifold of dimension m, there exists an
element f € A(M)?>™+! which defines a one-to-one regular proper mapping of M
into C*™+1. In particular, M has holomorphic rank m.

Consider C™ as a vector space and let w1, ...,ws,, be any basis of C™ over
the field R. Let A be the subgroup of C™ generated by wy, ..., wam:

A:{n1w1+-~-+n2mw2m| TLJ‘GZ}.

The quotient group C™/A is a connected compact complex manifold with the
natural projection m : C™ — C™/A being holomorphic. We call C™/A an m-
dimensional complex torus. If z1,..., z,, is the natural coordinate system in C™,
then the holomorphic 1-forms dz1,...,dz, can be considered as forms on a com-
plex torus C™/A. Every holomorphic 1-form on C™/A is a linear combination of
dz,...,dzy, with constant coefficients. In fact, every holomorphic 1-form on C™/A
is a linear combination of dz1, ..., dz, with holomorphic functions as coefficients
and since C™ /A is compact, these coefficients functions are constant functions.
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An m-dimensional complex manifold M is said to be complex parallelizable if
there exist m holomorphic vector fields Z1, ..., Z,, which are linearly independent
at every point of M. Every complex torus is complex parallelizable. More gener-
ally, let G be a complex Lie group of complex dimension m. Taking m linearly
independent complex vectors of type (1,0) at the identity element of G and ex-
tending them by left translations, we obtain m left invariant holomorphic vector
fields 71, ..., Z,, on G which are linearly independent at every point of G. If I is
a discrete subgroup of G, then Zi, ..., Z,, induce m holomorphic vector fields on
the quotient complex manifold G/T" which are linearly independent at every point
of G/T, showing that G/I' is complex parallelizable (see [209], Vol. II, Chapter
IX, Example 2.3). H. C. Wang [425] proved the converse:

Theorem 2.6. Fvery compact complex parallelizable manifold may be written as a
quotient space G/T of a complex Lie group G by a discrete subgroup T.

For the complex case, here we explain Theorem 1.70 on normalization of
algebraic curves clearly. Let f(x,y) be an irreducible polynomial of two variables
x and y over C and consider the equation

f(z,y) =0. (2.1.9)

If the degree of f is d, then put
Fle,y,2) == (7.7,
2z

so that F' is homogeneous of degree d. Recall that the set C of solutions [z,y, 2] €
P? of the equation
F(z,y,2)=0 (2.1.10)

is called an algebraic curve on P2. The degree of F is said to be the degree of the
curve. If the point (zo,yo) lies on the affine curve (2.1.9), then [z, yo, 1] lies on
C'. Conversely, if [zg, yo, 20] lies on C' with 2o # 0, then (zq/20, y0/20) lies on the
affine curve (2.1.9). Points on C with z = 0 are called the points at infinity of the
affine curve.

In affine space, we say the singular points on C correspond to

af of

f(x,y) = ax(xvy) = Ay

(z,y) =0.

Without loss of generality, we may assume that p = (0,0) is a point on the affine
curve (2.1.9). Write

f(fE, ) = fk(ffJJ) +fk)+1(‘ray) + - +fd(‘ray)7

Y
= k,...,d) is a homogeneous polynomial of degree j with
Jfe(z,y) # 0, and & > 1 since f(0,0) = 0. Note that p is a singular point if
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and only if £ > 2. Recall that when k& > 2, the singular point p is called a k-fold
point, say, double point for the case k = 2, triple point when k = 3, and so on. Now
there are k tangent lines (counting multiplicity) at p given by the equation

Jre(z,y) =0.

Further, if k£ tangent lines at p are distinct, then p is called an ordinary k-fold
point of the affine curve (2.1.9).

A point p € C' is singular if

Flo) = 0 ()= (0) = 5 () =0

By Euler’s formula of homogeneous functions, we know

oF oF oF
deg(F)F(x,yﬂ) - xax ((E,y72) + y 6y ((E,y72) + z 82 (@y,z).

Hence a point p € C is singular if and only if

oF oF oF

It is a simple lemma to prove that if an affine point is non-singular, then the
corresponding projective point is also non-singular, and conversely. If the algebraic
curve C defined by (2.1.10) is irreducible, then C has at most finitely many singular
points (cf. [126]). Thus we may state Theorem 1.70 in the following form:

Theorem 2.7 (cf. [126]). Let C be an irreducible algebraic curve in P? and let S
be the set of singular points of C. There exist a compact Riemann surface M and
a holomorphic mapping 1 : M — P? such that n(M) = C, n=(S) is finite, and
n:M—n"1(S) — C — S is one-to-one.

Recall that (M, n) is called the normalization (or resolution of singularity) of
C'. We also know that if (M’,n’) is another normalization of C, then there exists
a biholomorphic mapping o : M — M’ such that n = 1’ o 0. The genus of M is
also called that of C'. Conversely, we also have the following basic fact:

Theorem 2.8 (cf. [127]). Any compact Riemann surface M can be realized as a nor-
malization of some plane algebraic curve C' whose only singularities are ordinary
double points, that is, there exists a holomorphic mapping

n:M — P?

such that n(M) is an algebraic curve which has at most ordinary double points.
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2.1.3 Meromorphic mappings

Let M and N be connected complex manifolds of dimensions m and n, respectively.
Let S be a thin analytic subset of M, where thin means that A = M — S is dense
in M. Let f4 : A — N be a holomorphic mapping. Recall that a continuous
mapping is said to be proper if the inverse images of compact sets are compact.
The mapping f4 is said to be meromorphic on M and denoted by f: M — N if
the closure G(f4) of the graph

G(fa) ={(z, fa(z)) | x € M}

of fain M x N is analytic in M x N and if the projection 7ps : G(fa) — M
is proper. We set G(f) = G(fa) which is called the graph of the meromorphic
mapping f determined by f4. A meromorphic mapping f : M — N from an affine
algebraic variety M into a projective algebraic variety N is said to be rational if it
can be extended to a meromorphic mapping f : M — N, where M is a projective
closure of M. If N is embedded, then f is given by rational functions.

Assume that f : M — N is meromorphic and that 7 : G(f) — N is the
projection. For each x € M, the set

Sy(x) = wn(myf (@) = {y € N | (z,9) € G(f)}
is analytic and not empty. The indeterminacy
Iy = {we M| #3(2) > 1}

is analytic and contained in S. If x € Iy and y € ¥¢(z), then dim, ¥¢(x) > 0. The
holomorphic mapping fa : A — N extends to a holomorphic mapping fu—r, :
M — Iy — N. We also write f(z) = Xy(z) for all z € M. Here dim Iy < m — 2.
The rank of f is defined by

rank, f = dim, M — dim, f~*(f(z)), =€ M —1Iy, (2.1.11)

rankf = max, rank, f. (2.1.12)
—If

AS

If N =P(V), where V is a Hermitian vector space of dimension n +1 > 1,
another equivalent definition of a meromorphic mapping exists. Assume M, S, A
as above and let f4 : A — P(V) be a holomorphic mapping. Let U # () be a
connected open subset of M. A holomorphic vector function f : U — V is said
to be a representation of f4 on U if f #£ 0 and if

P(f(z)) = fa(z), zeU-—f10).

For each x € U, we also say that f is a representation of fa at z. Further, the
representation is said to be reduced if dim f~1(0) < m — 2. Then the mapping fa
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is meromorphic on M if and only if there is a representation of f4 at every point
of M. If fa is meromorphic, then there is even a reduced representation of f4
at every point of M. A (reduced) representation of f also is called a (reduced)
representation of the meromorphic mapping f : M — P(V) determined by f4. If

f:U — V is a reduced representation of f on an open subset U of M, then
Uuni;=f0).

If M = C™ and if f : C™ — P(V) is meromorphic, there exists a reduced

representation f : C™ — V of f.

A meromorphic mapping f : M — P! into the Riemann sphere P' with
f(M) # oo is called a meromorphic function on M. All meromorphic functions
on M naturally form a field, called the meromorphic function field of M, which is
denoted by M(M). The transcendence degree of M(M), denoted dimaie (M), is
called the algebraic dimension of M. Then dimaz(M) < m when M is compact.
If M is compact with dimai(M) = m, then M is called a Moishezon space. A
Moishezon space does not differ very much from a projective variety.

Take f € M(M) and let f = (h,g) : U — C2 be a reduced representation
of f on an open subset U of M. Then

Fo = 9
h(z)
Since f(M) # oo, then h=1(0) is thin. Further, g, h and U can be taken such that

dim, h~1(0)Ng 1 0)<m—2, ze€h 1(0)ng (0), (2.1.13)

ze U —h~Y0).

and so
I;nU =h"0)Ng 0).
Therefore we obtain analytic hypersurfaces Zy and Py of M by defining locally
Z;NU ={g=0}, PpNU ={h=0},

which are called the zeros and the poles of f, respectively. Note that Z; and Py
have no common irreducible component. Put

X =Z;uP =7,
A
where Y) are irreducible components of X. According to the arguments in Sec-
tion 1.6.5, we also can define the order of f € A(U) along an irreducible analytic

hypersurface Y in M, also denoted by ordy (f). Thus we obtain the zero divisor
(f)o and the pole divisor (f)co of f by defining locally

(fonU = > ordy,(9)(YanU),
ordyk (g)>0
(Nl NU = Z ordy, (h)(YaNU).

ordy, (h)>0
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The divisor of f is defined by

The question arises whether or not an arbitrarily given divisor D on a com-
plex manifold M is always a principal divisor. That is, whether there is a mero-
morphic function f on M such that (f) = D. Cousin answered this question
affirmatively if M satisfies certain assumptions, and we therefore call this problem
Cousin’s problem. However, it was later shown by Oka that Cousin’s problem is
not necessarily solvable under certain topological conditions on M.

Theorem 2.9. Cousin’s problem is solvable for complex space C™.
Proof. Siegel [360], Chapter 5, Section 5, Theorem 2. O

In the case of a single variable, Theorem 2.9 yields Weierstrass’ theorem
about the existence of entire functions with prescribed zeros. This is the reason
for calling Theorem 2.9 the theorem of Weierstrass and Cousin. As consequence,
for each f € M(C™) there exist two relatively prime entire functions g and h # 0
on C™ satisfying f = 7.

Let I" be a discrete subgroup of Aut(M). A meromorphic function f on M
is called a (multiplicative) automorphic function for T' if each v € T determines an
element j, € A*(M) such that

f(r(2) = 45 (2)f(2), z € M.

In particular, f is called a multiplicative function if all j, are constants, an au-
tomorphic function if j, = 1 for each v € I', and called an automorphic form of
weight k if

(@) = ()7 v €T,

where J, is the Jacobian determinant of . Usually, automorphic forms of weight &
are assumed to be holomorphic, and satisfy some additional conditions at “infinite
points”.

For g € A(M), the zero multiplicity of g at a point x € M is defined to be
the order of vanishing of g at x, denoted by p(x). In terms of local coordinates
z=(z1,...,2m), that is the greatest integer u such that all partial derivatives

@) =0, Wl <p-1,

where we denote the length of a multi-index v = (i1,...,%y,) € ZT by |v| =
i1+ -+ + im, and write
0"g = .8‘1"9 -
0z -+ Ozry
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For a meromorphic function f € M(M), define the a-multiplicity u$ of f as
follows: Write locally as f = g/h with g, h holomorphic and

dimg=1(0) A1 0) <m —2

on an open subset U of M and define

0

ol = 1y _an if a€C,
! 1 if a=o0.

If s: M — V is a holomorphic vector function, we also can assign a mul-
tiplicity us to s. Take x € M. Then there exist an open connected neighborhood
U of x, a holomorphic vector function ¢ and a holomorphic function h on U such
that s = ht on U and such that dim¢=1(0) < m — 2. Then us(z) = uf (z) is well
defined.

2.1.4 Holomorphic vector bundles

We begin with the general notion of holomorphic vector bundles.

Definition 2.10. Let N be a complex manifold of dimension n. We call a triple
(E,m,N) a holomorphic vector bundle of rank q if the following conditions are
satisfied:

(a) E is an (n + q)-dimensional complex manifold;

(b) m: E — N is a surjective holomorphic mapping, called the projection;

(c) For every x € N, the fiber E, = 7~ 1(x) is a complex vector space of complex
dimension q;

(d) For every x € N, there exist an open neighborhood U of x and a biholomor-
phic mapping
ou:UxC! — 771 (U) = By,

called a local trivialization of E over U, such that
WOSDU(pvy) =p, pE U7 Yy e (qu

and py,p : C1 — E, is a linear isomorphism for each p € U, where
eup(y) = pu(p,y), y € C*

If no confusion occurs, we usually write 7 : E — N or E instead of (E, m, N).
In particular, if ¢ = 1, then F is called a holomorphic line bundle over N. Let {2 be
an open subset of N. A holomorphic mapping s : Q2 — FE is called a holomorphic
(cross) section over ) if

mos(p)=p, pe€
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The vector space of holomorphic sections of E over (2 is denoted by I'(2, E).

Let {e1,...,e4} be the standard base in C9, that is,

We can obtain ¢ holomorphic sections on U

SUj(p):(pU(paej)v pEUa j:]-v"‘vqa (2114)

such that {sy1(p), ..., suq(p)}isabase of E, at every p € U. Such (sy1, ..., Suq) is
called a holomorphic local frame of E over U. Conversely, if there is a holomorphic
local frame over an open subset U C N, there is a local trivialization of E over U.

Let B={U,W,Z,...} be an open covering of N such that for each element
in B, say U, there is a biholomorphic mapping ¢y of U x C? onto E|y with the
properties listed above. Then

guw = ¢g' opw : UNW — GL(g,C) (2.1.15)

can be regarded as a holomorphic mapping into the group GL(gq,C) of invertible
q X q matrices with complex coefficients, and we have

(e) guwgwu is the identity in U N W,
(f) quwagw z9zu is the identity mUNWnNZ.

A system of such ¢ x ¢ matrices gyw with coefficients holomorphic in U N W is
called a system of transition matrices. Conversely, if there exist an open covering
B={UW,Z, ...} of N and a family {guw} of holomorphic mappings (2.1.15)
satisfying the conditions (e) and (f), then there is a holomorphic vector bundle
(E, 7, N) such that {gyw} is the system of transition matrices.

Let 7 : E — N be a holomorphic vector bundle over N and 2 an open
subset of N. Let s :  — FE be a holomorphic section over . If we have a
covering B as above, this means that @61 o s = sy is a holomorphic mapping of
QNU into C? such that in QNUNW # 0,

SU = gUW SW - (2.1.16)

Conversely, any system of holomorphic mappings sy of Q N U into C? with these
properties corresponds to precisely one holomorphic section of E over 2.

An E-valued (r,t)-form w on  means to give for every U € B an ¢-tuple wy
of forms in A™*(Q N U) such that

WU = Juwww
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in QNUNW # (). The vector space of E-valued (r,t)-forms w on  is denoted by
A™H(Q, E). Since gyw is holomorphic, it follows that

5wU = gUW&UW7

hence the g-tuples dwy of forms of type (r,t + 1) define an element Jw in
A™HL(Q) E). The operator

§: A™M(Q, B) — A™(Q, E)

satisfies 92 = 0. Set
AFQE)= Y A"HQ,E),
r+t=k

and so A%(Q, E) is just the C*°-sections of E over (.

Let th(N , E) denote the space of O-closed E-valued differential forms of
type (r,t) on N, and we define the Dolbeault cohomology groups Hg’t(E) of FE to
be

7,1 _ 1t 3 AT E—
HJY(E) = Z7'(N,E)/0A™ (N, E).

Note that Q"(N, E) = Zg’O(N ,E) is just E-valued holomorphic forms of degree
r on N. We obtain a sheaf Q"(FE) on N whose sections are given locally by E-
valued holomorphic forms of degree r, that is, Q"(E)(U) = Q"(U, E) for an open
set U C N. Specially, O(E) = Q°(E) denotes the sheaf whose sections are given
locally by holomorphic sections of E, that is, O(E)(U) = I'(U, E) for an open set
U C M. Thus the tth Cech cohomology group H'(N,Q"(E)) of Q"(E) on N is well
defined. Similarly, Dolbeault’s theorem (cf. [127]) holds:

H'(N,Q"(E)) = Hy'(E).

Let (E,7,N) and (E’, 7', N) be holomorphic vector bundles. A holomorphic
mapping f : E — E’ is called a bundle homomorphism if ©’ o f = 7 and the
restriction

fle, : Bp — E;

is a linear mapping for any p € N. If f is moreover a biholomorphic mapping,
then f is called a bundle isomorphism. In this case, F and E’ are said to be
isomorphic. A holomorphic vector bundle is said to be trivial if it is isomorphic
to the holomorphic vector bundle (N x C%, 7, N) with the natural projection 7 :
N xC? — N.

Let 7 : E — N be the holomorphic vector bundle given in Definition 2.10.
The dual holomorphic vector bundle 7* : E* — N is defined as follows: For any
p € N, let E} be the dual vector space of Ej, and set

E*=|]J E;; n(Ej)=p peN.
peEN
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Then E* naturally becomes an (n + g)-dimensional complex manifold. In fact,
using the holomorphic local frame defined by (2.1.14), for every p € U, define
tuk(p) € E, uniquely by the dual relation

L j=k
(sujstuk) = 6jk :{ 0, £k (2.1.17)

Then {ty1(p),...,tuq(p)} is a base of E; at every p € U. Define a bijective
mapping
¢UZUXCq—>E*|U

by setting

u(p,Av) = Z Avktuk(p

Note that ¢y, : C? — E, is a linear isomorphism for each p € U, and so

pa yU ZyUJSU]

For any p € U NW # (), we see that the relation

vu(p,yv) = ewp,yw), yu,yw € C?

holds if and only if
Yu = guwyw,

where we regard y’s as column vectors. Thus when
Yu(p, Av) = Yw(p: Aw), Au, Aw € C,

we have

Awyw = Avyu = Avguwyw,

where we regard \’s as row vectors, and so

)\U - gUll/VAWa
where we regard \’s as column vectors. Therefore the mapping wgl oy is given by
Vit ovw = ‘g = ‘gwu :UNW — GL(q,C).

By this observation, (E*,7*, N) becomes a holomorphic vector bundle in the nat-
ural manner so that ¢y is a local trivialization of E over U.
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Example 2.11. Let N be a complex manifold. As usual, we have the holomorphic
tangent bundle
T(N) = [ T,(N),
pEN

such that the system {Jyw} of transition matrices consists of the Jacobi matrices
Juw of holomorphic coordinate transforms on U N'W. The system of transition
matrices of the holomorphic cotangent bundle

T'(N) = |J T, (V)
peEN

is just { *Jgw }. Hence T*(N) is the dual holomorphic vector bundle of T(N).

Example 2.12. Let E and E’ be two holomorphic vector bundles over N with the
systems {guw } and {gyw } of transition matrices, respectively. Then we have

(g) Define
hUW _ ( guw 0 ) )
0 gfjw

Then {hyw} satisfies the conditions (e) and (f), and so determines a holo-
morphic vector bundle over N called the direct sum of E and E’, denoted
EqFE.

(h) The tensor product guw @ gyw of guw and gy, satisfies the conditions (e)
and (f), and so determines a holomorphic vector bundle over N called the
tensor product of E and E’', denoted E @ E'.

Furthermore, the exterior product bundle AE (1 < r < q) is naturally
defined as a holomorphic vector bundle over N. In particular, /q\E is called the
determinant bundle of E and denoted by det(E). It is a holomorphic line bundle
such that it is trivial over U and the system of transition functions is given by

{det(gUW)}.

Example 2.13. A complex submanifold F C E is called a holomorphic vector sub-
bundle if F is itself a holomorphic vector bundle of rank r (0 < r < q) over N
whose fiber structure is compatible with that of E. Then there is the associated
quotient bundle E/F which is a holomorphic vector bundle of rank q¢ — r, and
there is the exact sequence

0—F—FE-—E/F—0.

Let m: E — N be a holomorphic vector bundle over a connected complex
manifold N. For s € T'(N, E), let s71(0) be the zero set. If dim, s 7' (0) < dim N —2,
then s is said to be reduced at p € N. If dims~!(0) < dim N — 2, then s is
reduced. If s # 0, the zero divisor (s) of s is defined by the following property:
choosing a reduced section ¢ € I'(U, E) over an open connected subset U of N
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and a holomorphic function f over U such that s|y = ft, then (s) NU = (f).
If U is a Cousin II domain, such ¢ and f exist. Let us be the multiplicity of the
divisor (s). Obviously, ps > 0 and suppus C s 1(0). For line bundles one has

suppps = s~ (0).
A connection of E means a mapping
V:AN,E) — AY(N,E)
satisfying the following conditions:

() V(s+1t) =Vs+Vt, s,t € A°(N, E);
(k) V(as) =da® s+ aVs, a € C®°(N), s€ A°(N,E).

Assume that V is a connection of E. Take Z € I'(N, T(N)), s € A°(N, E). By
using the dual relation (,) between T(N) and T*(N), the covariant derivative
Vzs € A°(N, E) of s in the direction of Z is defined by

Vzs=(Z,Vs).
Locally, by using the holomorphic local frame (2.1.14), we can write
q
Vspga = nga ® sug, wga c AYU).
B=1
Let sy = “(sy1,...,Suq) denote the column vector and set
wy = (wga), 1<a,8<q.

Then we can rewrite the expression into the following matrix form:

Vsy =wy ® sy.
The matrix wy is called the connection matriz of V for sy. If UNW # (), then

sw = Awusu, (2.1.18)

where Ay y is a ¢ X ¢ matrix consisting of holomorphic functions on U N W such
that det(Awv) € A*(U NW). Since

Vsw = dAwy ® sy + AwuVsy
= (dAwu + Awvwu) ® su
= (dAwu Ay + AwvwoAyly) © sw,

we obtain the transformation formula:

ww = dAWUA;VlU + AWUWUA{jleo (2].].9)
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Differentiating (2.1.19), we have
dww Awy — ww NdAwy = dAwy A wy + Awpdwy . (2120)
Substituting
dAwyu = ww Awu — Awvwu

into (2.1.20), we obtain
QwAwu = AwuvQu, (2.1.21)

where
Qu = dwy — wy A\ wy (2122)

is the curvature matriz of V on U.

Let E* be the dual holomorphic vector bundle of E. The dual pairing
(,):E;xE; —C
induces a dual pairing
(,):A"(N,E) x A°(N,E*) — A°(N).

Given a connection V in F, we define a connection, also denoted by V, in E* by
the following formula:

d(s,n) = (Ds,n) + (s,Dn), s € A°(N,E), ne€ A°(N, E*). (2.1.23)

By using the local holomorphic frame (¢y1, ..., tyq) of E* defined by (2.1.17), we
have

q
Vive ==Y wits ® tus. (2.1.24)
B=1

If n = > Matve is an arbitrary section of E* over U, then (2.1.24) implies

Vn = Z dne, — ngang R tua- (2.1.25)
« B

Example 2.14. Take E = T(N) and so E* = T*(N). Let 21, ..., 2, be local holo-
morphic coordinates on U. Hence

0
SUG‘:aZ :8a7a:1,...,n

define a holomorphic local frame on U with the dual holomorphic local frame

tva =dzo, a=1,...,n.
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Write
an ZF Jdzy, 1<, 5 <n.

Take f € A°(N). Then (2.1.25) implies
Vof =Y | doaf > T8,0sfdzy | @ dza.
a By

Let X andY be holomorphic vector fields on U and set
X = 0o, Y =) 130p.
o B

Then we have

VOf(X,Y) = Z”a XOof — Zr L08f& | = XY f—VxYF.

The tensor field VOf is called the Hessian of f.
Here we compare the connection V with the operator
d:A°(N,E) — A“Y(N, E).

Take s € A°(N, E) and write

q
slu = ZaasUa, aq € C(U).

a=1
Then
— q —
dsly = Z 0ag ® SUa-

a=1

On the other hand, the connection V has a decomposition
V=vtlp vt

such that
Vs e AYY(N,E), V%sec A%Y(N,E).

By using the above expression of the section s, we have

Vs = Zdaa ® sya + Z aaan ® syg-
a,B

113

(2.1.26)

(2.1.27)
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If wy is of type (1,0), i.e., the matrix wy consists of (1,0)-forms, then

V071$ = Zéaa Q SUua = 887

that is, V agrees with 0 in the (0, 1)-direction. Since dAyw = 0, the formula
(2.1.19) shows that wy is a matrix of (1,0)-forms if and only if wy does so, that
is, the property that wy is of type (1,0) do not depend on choice of the holomorphic
local frame. If the connection matrices of V for holomorphic local frames consist
of (1,0)-forms, then V is called a connection of type (1,0).

A function h of class C* on E & F is called an Hermitian metric along the
fibers of E if for each p € N the restriction

hlp:E,® E, — C
defines an Hermitian metric on the vector space E,. Define
lwlp = Vh(w,w), weE,.

Also F together with h is called an Hermitian vector bundle. A connection V of
type (1,0) of E with an Hermitian metric h is called an Hermitian connection if
V is compatible with the metric h, that is,

dh(s,t) = h(Vs,t) + h(s, Vi) (2.1.28)

holds for any s,t € A°(N, E). Such a connection exists uniquely. Locally, by using
the holomorphic local frame (2.1.14) and setting

hag = h(sva, sug),

then (2.1.28) is equivalent to

dhop =Y wlohyp + Y w]ghan, (2.1.29)
v v

or the matrix form
dH = wyH + H 'wy, (2.1.30)

where
H = (haﬁ)7 1 < O‘76 < q.

Since V is of type (1,0), we have
OH = wyH. (2.1.31)

Conversely, we can define uniquely the Hermitian connection by (2.1.31).
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Differentiating (2.1.31) and using (2.1.30), we see that the curvature matrix
of the Hermitian connection satisfies

Qu=—-00HH ' +0OHH * NOHH ™, (2.1.32)
which consists of (1,1)-forms. Differentiating (2.1.30), we have
QuH + H 'Qy = 0. (2.1.33)

The formula (2.1.21) shows that the jth Chern form c;(E,h) € A% (N) of E for
h exists such that

. q
i
det <1+ 2W9U> = ch(E,h)|U, (2.1.34)
=0
where [ is the ¢ x ¢ unit matrix, and ¢ is the imaginary unit. The 2j-form ¢;(E, h)

is closed (see [209]). The formula (2.1.33) further shows that ¢;(E,h) is real. In
particular, we have

c1(E, )|y = Q;tr(QU) = —dd°log det(H). (2.1.35)

The jth Chern form ¢;(E, h) determines an element ¢;(E) in the de Rham coho-
mology group H%%(N, R) of N, called the jth Chern class of E. The jth Chern
class ¢;(N) of N is defined to be the jth Chern class ¢j(T(N)) of the holomorphic
tangent bundle T(N).

If f: M — N is a holomorphic mapping, the pullback bundle 7 : f*(E) —
M is defined only up to an isomorphism such that f o7 = mo f, where 7 is the
bundle projection and f : f*(E) — FE is a bundle homomorphism over f. The
standard model is defined by

fH(E) ={(p,w) e M x E | f(p) = n(w)},

where 7 : f*(E) — M with 7(p,w) = p is a vector bundle and where f:
f*(F) — E with f(p,w) = w is a bundle homomorphism over f. Anyway, the
restriction

fP =f: Y (E)p — Ejp)
is an isomorphism. If s € T'(V, E), then a lifted section sy € T'(M, f*(E)) of s for
f is uniquely defined by

si(p) = [, (s(fp)), pe M.

Assume s # 0 and f(M) ¢ s7'(0). The lifted section sy exists with sy # 0.
Also the pullback divisor f*D of D = (s) exists such that us, > py-p, where the
equality holds for line bundles.

If (f*(E),, f) is the pullback of E under the holomorphic mapping f :
M — N, then a Hermitian metric A in E induces an Hermitian metric f*h along
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the fibers of f*(F) defined by f*h = ho (f@ f) The Hermitian metric h along
the fibers of E induces the dual metric h* along the fibers of the dual vector
bundle E* and an Hermitian metric h\" along the fibers of the exterior product
AE. If (B, h;) (1 <@ <r) are Hermitian vector bundles, then Hermitian metrics
hy & --- @ h, along the fibers of the direct sum Fy & --- @ E, and h1 ® --- ® h,
along the fibers of the tensor product £y ® - -- ® E. are defined.

Now we end this subsection by the following facts:

Theorem 2.15. Let E be a holomorphic vector bundle over a Stein manifold M.
For every zo € M and every so € E,,, one can find an holomorphic section s of
E over M such that s(zp) = so.

Proof. See [162], Corollary 5.6.3. O

Theorem 2.16. Every holomorphic vector bundle on a non-compact Riemann sur-
face is trivial.

Proof. See [100], Theorem 30.4. O

2.1.5 Holomorphic line bundles

Let N be a connected complex manifold and let 7 : L — N be a holomorphic
line bundle over N. Let B = {U,W, Z,...} be an open covering of N with the
trivialization of L,

v : U xC — Ly =7 YU).

Let £y be the holomorphic local frame of L over U defined by
§v(p) =vulp, 1), peU.
Then the system {gyw } of transition functions satisfies
§w = Euguw. (2.1.36)

Let x be an Hermitian metric along fibers of L. Then xky = k(€y, &) is a positive
C*°-function on U satisfying

ku = lguw | kw. (2.1.37)

Conversely, positive C*>°-functions xy defined on U satisfying (2.1.37) determine
an Hermitian metric along fibers of L. By (2.1.35), the (1th) Chern form ¢1(L, k)
of type (1,1) of L for & is given by

c1(L, )|y = —dd®log ky .
Then

dei(L,k) =0, ci(L* k") =—ci(L,k), a(f*L, f*k) = f"(c1(L, K)).
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If (L;,k;) (1 <1i<p) are Hermitian line bundles, then

p
(L1 ® - @ Lp, k1 @ @ kp) = ch(Li,Féi)-

i=1

The line bundle L is said to be non-negative (respectively positive) if there ex-
ists a Hermitian metric x along the fibers of L such that ¢; (L, k) > 0 (respectively
c1(L, k) > 0). Write L > 0 (respectively L > 0).

Given a holomorphic section s € I'(N, L), that is, a collection s = {sy} of
holomorphic functions sy € A(U) satisfying

SU = gUWSW - (2.1.38)

By using the relation (2.1.36), we have syéy = swéw on U N W # (. Hence we
often write s|y = sy&y. We can define the norm |s|,; of s on U as follows:

|12 = k(suéu, suéu) = kulsul?,

and obtain the relation
c1(L, k) = —dd®log |s|?.

The section s defines a divisor D := (s) on N as follows:
DNU = (sp). (2.1.39)

More generally, a collection s = {sy} of meromorphic functions sy € M(U)
satisfying (2.1.38) is called a meromorphic section of L, which also defines a divisor
by using (2.1.39).

Let D be a divisor on N. For an arbitrary point p € N, there are irreducible,
mutually coprime holomorphic functions fi, ..., f, in a neighborhood U of p such
that f1---f, = 0 is the local equation of supp(D) in U. Taking U smaller if
necessary, we may assume that the analytic hypersurfaces

Xo={zeU]| falz)=0}, A=1,...,r

are distinct and irreducible. Then we may write uniquely

DQUZZTL)\X)” ny € 7.
A=1

Putting

ni N

su =it
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we obtain the relation (2.1.39). In this way, we can obtain an open covering B =
{U,W,Z,...} of N and a family {sy }uep of meromorphic functions such that the
relation (2.1.39) holds for U € B. Set

gow = U (2.1.40)

Sw
on UNW # (. Then guw € A*(UNW) satisfy the cocycle conditions (e) and (f),
and so determine a holomorphic line bundle over N, denoted by [D], such that
[D] is trivial over U, {sy}uen forms a meromorphic section s of [D] and {guw }
is the system of transition functions. The line bundle [D] is uniquely determined
by D, up to isomorphisms of line bundles. By the construction, we have

(s)=D, [-D]=[D], (2.1.41)

[D+ D'~ [D]®[D'], D,D" € Div(N). (2.1.42)

Let V be a complex vector space of dimensions n + 1 > 1. Then the trivial
bundle P(V) x V contains the tautological bundle

H™ = {(z,n) e P(V) x V | n € E(x)}

as a holomorphic subbundle, where E(z) = H_ ! is the fiber over z € P(V).
The quotient bundle Q(V) = (P(V) x V)/H~! has fiber dimension n. An exact
sequence

0= H ' SP(V)xV 7 Q) =0 (2.1.43)
is defined as the classifying sequence. Taking the dual one obtains the dual classi-
fying sequence

0= Q(V) = P(V)x V' = H =0, (2.1.44)

where H = (H~1)* is a holomorphic line bundle, called the hyperplane bundle over
P(V). If a € V*, a global holomorphic section s, of H over P(V) is defined by

Sa(x) =€e(z,a) = a|E(x), xeP(V). (2.1.45)
If o # 0 and a = P(«), the section s, is a holomorphic frame of H over P(V)— E[a),
whose dual s}, is defined by

st (B(€)) = ¢eV—Ell

a(§)’
Let £ be an Hermitian metric on V. Then ¢ induces Hermitian metrics ¢ along the
fibers of P(V) x V, H=! and H, and a Fubini-Study form Q on P(V) ([103], [388]).
Then

a(H0)=Q, ci(H ') =-Q. (2.1.46)
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In particular, if n = 1, then P(V) =2 CU {cc}. Restricted to C, we have

; dz Ndz
O(2) = —dd°1 2= " 2.1.4
(2) ogx(z,00)" =, (14 [2[2)2° (2.1.47)
where x is defined by (1.5.6).

Lemma 2.17 (Weyl[430], Stoll[384]). Take a € P(V*), then

n

1 1
I Qr = .
/ 8 | @ =3

2€P(V) J=1

Next we recall some notations in Section 1.6.6 in terms of line bundles. As-
sume that N is a connected compact complex manifold of dimension n. Let L be a
holomorphic line bundle over N with a Hermitian metric s along its fibers. Then
the Hodge theorem implies that I'(IV, L) is a vector space of finite dimension &+ 1.
Assume k > 0 and let |L| = P(T'(N, L)) be the complete linear system of L. Set

BL = ﬂ 8_1(0).
sel'(N,L)

Then B, # N, and By, is a (possibly empty) analytic subset of N, called the set
of base points of the system |L|. Consider the evaluation mapping

er: N xT(N,L) — L (2.1.48)

defined by
er(z,s) =s(x), (z,s) e NxI'(N,L). (2.1.49)

Obviously, er,({z} xI'(N, L)) = L, if & € N—By,. Let E be the kernel of er,|n_p,, .
An exact sequence

0—-F—{N-Bp}xI'(N,L)— L|y-p, — 0 (2.1.50)

is defined. Here E has fiber dimension k. If € N — By, one element ¢ (z) €
P(I'(N, L)*) exists such that E[pr(x)] = E,. Since By, is thin, the mapping

or: N— B — P(I'(N,L)")

is holomorphic and extends to a meromorphic mapping ¢y, : N — P(I'(N, L)*),
which is called a dual classification mapping (cf. [380]). If By, = (), then

L=y} H, (2.1.51)

where H is the hyperplane bundle on P(I'(N, L)*). An Hermitian metric ¢ on
I'(N, L) induces Hermitian metrics ¢ along the fibers of H and L such that

ci(L,0) = ¢pp(ei(H, 0)) = p1(Q), (2.1.52)
where 2 is the Fubini-Study form on P(I'(V, L)*).
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The line bundle L is said to be wvery ample if B = (, and ¢ : N —
P(I'(N, L)*) gives a projective imbedding. If L7 is very ample for some j > 1,
then L is said to be ample. By definition, L is pseudo ample if the image pr;(N)
is n-dimensional for some positive integer j. If L is ample with L7 very ample,
according to (2.1.52), a metric #/ on L’ induces a metric £ on L satisfying

jer(L,6) = ¢y (L7, 07) = 07 (©2) >0,

where Q is the Fubini-Study form on P(I'(N, L7)*), that is, L is positive. Con-
versely, the Kodaira imbedding theorem (cf. [127]) shows that L is ample if L is
positive.

Generally, the so-called L-dimension (N, L) of N is defined by

k(N,L) = max dim ¢ (N), (2.1.53)
iz
provided I'(N, L7) # {0} for some j > 1. If (N, L7) = {0} for all j > 1, then by
convention we set k(N, L) = —1. We have in general
K(N, L) < dimag(N) < n. (2.1.54)

The L-dimension (N, L) is equal to the complex dimension n of N if and only if
L is pseudo ample. In this case, N is clearly Moishezon space. Set

Z(N,L)={j = 1| T(N,L7) # {0} }.

Then Z(N, L) is a semigroup under addition. Let d denote the greatest common
divisor of Z(N, L). One of the fundamental theorems on L-dimension states

Theorem 2.18. Let N be a connected compact complex manifold and let L be a
holomorphic line bundle over N. Then there exist positive numbers a, b and a
positive integer jo such that

aj" ML) < dimD(N, L) < b0 5 > .

Proof. Ueno [402] or Iitaka [190]. Iitaka [190] used the inequality in the above
theorem to define the L-dimension. O

Particularly, the line bundle L is pseudo ample if and only if

1 .
lim sup jn dimT'(N, L7) > 0, (2.1.55)
j——+oo

where n is the dimension of N. In fact, when L is pseudo ample, we have the
meromorphic imbedding

ok : N — P(T'(N, LF)*)
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for some positive integer k. Let zg be a point where ¢« is holomorphic. We choose
a basis Yo, V1, ..., ¥n, ...of T'(N, L¥) in such a way that

Yo(20) # 0, Y1(20) =+ = Pn(20) = -+ =0,

and 1 /1, ..., ¥n /1o form a local coordinate system around zg. For any positive
integer m, the set

{shisthiy -1y, |0 < iy i <0 v < <}

is a linearly independent subset of I'(N, L*™). Hence

dimT(N, L*™) > (” + m) > em™,
m
where ¢ is a positive number, and hence (2.1.55) follows. Conversely, if (2.1.55)
holds, then L is pseudo ample (see Lemma 2.30 and the remark after Lemma 2.30).

Let N be a complex manifold of dimension n. Let T(N) be the holomorphic
tangent bundle on N and let T(IV) be its conjugate. Then T(N)@®T(N) = T(N)c
is the complexified differential tangent bundle. Let T*(N) and T*(N) be the dual
of T(N) and T(N), respectively. The canonical bundle of N is defined by

Ky = det(T*(N)) = /\ T*(N).

According to S. Lang [229], recall that N is said to be canonical if Ky is ample,
very canonical if Ky is very ample, and pseudo canonical if K is pseudo ample.
Usually, a pseudo canonical manifold is said to be of general type. Generally, if N
is a singular variety, we say that N is of general type or pseudo canonical if some
desingularization has this property. The following fact is due to Kobayashi [208],
Proposition 7.4.3:

Proposition 2.19. For a compact complex manifold N of dimension n, the following
are equivalent:
(I) Kn is pseudo ample.
(II) dim Ky = n, i.e., the Kodaira dimension of N is equal to n.
(IT) limsup;_ ., . dimT(N, K3,) > 0.

2.1.6 Hermitian manifolds

Let N be a complex manifold of dimension n. An Hermitian metric along the fibers
of holomorphic tangent bundle T(N) on N also is called an Hermitian metric of
N, and N is called an Hermitian manifold if an Hermitian metric is given on N.
An Hermitian metric h on N is given by a positive definite Hermitian structure

hlp : Tp(N) x Tp(N) — C



122 Chapter 2. Nevanlinna Theory

on the holomorphic tangent space at p for each p € N, depending smoothly on p,
that is, such that for a local coordinate system (U; z1, ..., 2,) of N, the functions
hkl =h (Zk, Zl) are COO, where

In terms of the local coordinates z = (21, . .., 25, ), the Hermitian metric is given by

h = Z hidzy, ® dz;.
k,l

A coframe for the Hermitian metric is an n-tuple (64,...,6,) of forms of type
(1,0) such that
h = Z O ® Oy,
k

i.e., such that, in terms of the Hermitian structure induced on T5(N) by hl, on
Ty (N), (01(p), - - -, 0n(p)) is an orthonormal basis for T (V). From this description
it is clear that coframes always exit locally. The dual of a coframe is a frame.

The real and imaginary parts of an Hermitian inner product on a complex
vector space give an ordinary inner product and an alternating quadratic form,
respectively, on the underlying real vector space. We see that for an Hermitian
metric h on N,

ds% = 2Re(h) : T,(N) ® T,(N) — R

is a Riemann metric on NNV, called the induced Riemann metric of the Hermitian
metric. When we speak of distance, area, or volume on a complex manifold with
an Hermitian metric, we always refer to the induced Riemann metric. It is then
customary to write

dS?V =2 Z hkldzkdzl,
k,l

where )
dzpdz; = 2(d2k Rdz;+dz ® dzk).

We also see that since the quadratic form
p=2Im(h) : T,(N)®T,(N) — R

is alternating, it represents a real differential form of degree 2. In terms of the
local coordinates z = (z1, ..., z), the form is given by

p=—2i thldzk ANdz.
Kl
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Usually we use the form
i
w=-_ = o kgl hidzy N dzy,

which is called the associated (1,1)-form (or Kdihler form) of the metric. If the
Kahler form is closed, that is, dw = 0, then N is called a Kdhler manifold, and
the metric is called the Kdahler metric.

Let V be the Hermitian connection of N, that is, the Hermitian connection of
holomorphic tangent bundle T(N) for an Hermitian metric h. Write the covariant
derivatives V z, Z, as follows:

V2, T = Zl"fnkZJ
J

where Fim are the connection components (or connection coefficients or Christoffel
symbols) of V. By (2.1.31), we have

; Oh
L= Z R
51 8zk
where (h*7) is the inverse matrix of (hy;).

For another local coordinate system (W;wi,...,w,) of N, we set

0

X— =
J awj

, J=1,...,n.

When U NW # 0, we have
X =JwuZ,
where Z = Y(Zy,...,2Z,), and
Oz
JWU:( Zﬂ), 1<jk<n

8wk

is the Jacobian matrix of coordinate transformation. Then (2.1.19) implies

ww = dJWUJﬁ/lU + JWUQJUJ‘;,}U, (2.1.56)
that is,
; 0z, \ Ow; 0z, Ow;
ji d P j p OWj
“wi ; (61112) 0zp Z ow; 6zq
If we write

J o =J k
Wy = E :‘_‘ikdw ’

k
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then the coordinate transformation of connection coefficients is given by

: dw; Bz, 02, 9z, Ow,
= =31 w; Ozp Oz +Za . O (2.1.57)
p,T,q p

PT 0z, Ow; Owy, w; 0wy, Dz
Express the curvature matrix Qy on U of the Hermitian connection V by

QU:(Q{,L)7 1<m,j<n.

We can write _ _
O, =Y K7, dz. Adz,
k1

where Kfnkl are the curvature components. By the definition (2.1.22), we obtain

: orJ
K] —— mk .
mkl azl
Define .
Kmjia =) Ky jahsj-
B=1
hen 9%h Ohmyp Oh
Kojrr = — . ppa " me CTaT 2.1.58
gkl 02107 + Zq Oz 07 ( )
If we set
H = (h'aﬂ)a 1 é aaﬁ é n,
and write )
chl = Z ij'klv
J
then

—ey(T(N), h) = dd° log det(H) = — 2’ " Kudz, A dz
7T
k.l

is just the Ricci form. Fix p € N and take two non-zero tangent vectors

Z=Y MZr€Ty(N), W= mZi€TyN)
k k

Then

hRW,W)Z,Z Ko ikt A Nk
K(Z,W) _ ( ( ’ ) ) ) — Z ]]El T B (2159)
MZ, Z)h(W, W) (32 himjAmAj) (32 hamiin)
is what is called the holomorphic bisectional curvature determined by Z and W in
Goldberg and Kobayashi [115]. In particular, K(Z, Z) is called the holomorphic
sectional curvature determined by Z.
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Definition 2.20. A variety N is called negatively curved if there exists an Hermitian
metric h on N all of whose holomorphic sectional curvatures are bounded from
above by a negative constant.

For each p € Z*, define

ip = (é:)p (—1)"% " . (2.1.60)

A positive form U of bidegree (n,n) and of class C* on N is called a volume form
on N. The volume form ¥ on N induces a metric Ky on the canonical bundle Ky
as follows. If U # () is open in N and if £ and 7 are forms of bidegree (n,0) and
class C*° on U, then

inE An=rw(,n)T. (2.1.61)
The Ricci form of U is defined to be the Chern form of the metric kg on Ky, so
that

RIC(\I/) = Cl(KN, Iﬁ:q;). (2162)
In terms of holomorphic coordinates z1,..., z,, such a form is one which can be
written .
i _
U(z) = p(z) H 2ﬂ_dzj A dZj,

Jj=1
where p is a positive C*° function. In practice one often has

p(z) = h(2)lg(2)]*,

where h is a positive C'* function, ¢ > 0 is some fixed rational number, and g is
holomorphic not identically zero. According to S. Lang [228], such a form is called
a pseudo volume form. It is a continuous (n,n)-form and is C* outside a proper
analytic subset. The Ricci form of ¥ can be given by

: c _ o o _
Ric(¥) = dd“logp = dd*logh = — ;Kkldzk Adz,

where

0%logh
B 021,07 ’
define the Ricci tensor of N with respect to W. Associated with the form ¥, the
Griffiths function

Kkl: lgk,lgn

G(T) = ;'Ric(\ll)”/\ll (2.1.63)

is defined. In particular, if n = 1 and if z is a complex coordinate, then the Griffiths
function is given by

1 92 log p

Cp 020%

The function —G(¥) is called the Gauss curvature.

G(T)



126 Chapter 2. Nevanlinna Theory

2.1.7 Parabolic manifolds
Let M be a connected complex manifold of dimension m. A non-negative function
T: M —R4

of class C°° is said to be an ezhaustion of M if it is proper, that is, 771(K) is
compact whenever K is. Assume that 7 is an exhaustion of M. Define

v=dd°r, w=ddlogT, o=dlogT Aw™ L. (2.1.64)

Then it is easy to show the relations
TPTLP = 70P — pdr A d°T AUPTL (2.1.65)
dlog T AwP = 77P71der AP, (2.1.66)

Denote the center for 7 by
O =0, =71%0).

For AC M and r > s > 0, define

A(O;7) = {x € Alr(z) < r?},
AlO;7] = {z € Alr(z) <%},

AO;7) = {z € Alr(z) =%},
AlO; s, 1] = AlO;7] — A(O; s).

Further, if ¢ is a (p, p)-form on M, write

M[O;r; @] = r?P=2m / pAUTTP, (2.1.67)
M[O;r]
M(O;r;p) = / @ ANd°logT Aw™ P (2.1.68)
M{(O;r)
MIO;s,r;¢] = / pAWmTP, (2.1.69)
M[O;s,r]

as long as the integrals exist, where 0 < p < m. For the case p = 1, we will write

T(r,s: ) :/TM[O;t;@]dt (r>s>0). (2.1.70)

We know that every open manifold, real or complex, always admits an ex-
haustion function 7 such that 7 has only isolated critical points in M — M (O;r(r))
for some r(7). Let

C, ={r* €R, |dr(z) =0 for some x € M(O;r)} (2.1.71)
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be the set of critical values of 7, and define a set
R, = {rlr* e R, —C,}. (2.1.72)

Then C. NR[r(7), +oc) is discrete. By Sard’s theorem, C, has measure zero. If r €
R+, the boundary M (O;r) = M{O;r) is a real, compact, (2m — 1)-dimensional
C*°-submanifold of M, oriented to the exterior of M(O;r).

An exhaustion function 7 of M is called concave if v < 0on M — M(O;r(7))
for some r(7) > 0, i.e., the eigenvalues of the Levi form dd°r are non-positive from
r(7) upward, convez if v > 0 on M —M(O;r(7)) for some r(7), logarithmic concave
or logarithmic convex if log 7 is concave or convex, and eventually parabolic if there
exists a number r(7) > 0 such that on M — M[O;r(7)],

w>0, w"=0, v™£0, (2.1.73)

where w™ = 0 is just the Monge-Ampere homogeneous differential equation on
u = log 7 in complex analysis. This equation is closely related to the study of the
curvature of the manifold M. The formulae (2.1.73) will play important role in
value distribution theory.

Assume that 7 is eventually parabolic, and restricts 7 on M — M|[O; r(7)].
Then 7 also is convex since

v =dd°r > 7ddlogT = Tw > 0.
Further, we have
0™ = mdr A d°T Av™T = mr™dr Ao, (2.1.74)
do=wm =0, (2.1.75)
so Stokes theorem implies that
M{O;r;1) = M{(O;s;1) (2.1.76)
for 5,7 € R, with r(T) < s < r. Denote this common number by ¢. Obviously,
M[O;r;1ll=¢>0 (r>r(n)). (2.1.77)

Particularly, if »(7) = 0, the exhaustion is simply called parabolic. A parabolic
exhaustion 7 is said to be strict if v > 0 on M. According to Stoll [380], a com-
plex manifold M is said to be parabolic if there exists an unbounded parabolic
exhaustion on M.

Let V' be a Hermitian vector space of dimension m, say, V = C". Define an
unbounded exhaustion function 7 of V' by

TV —Ry, 7(2) =2 (2.1.78)

Then
v=dd°T >0, w=ddlogT > 0.
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One closed positive form €2 of bidegree (1.1) on P(V') exists such that P*(Q) = w
on V. The form  is just the Fubini-Study form. It determines the Fubini-Study
Kéehler metric on P(V'). Obviously

W™ =P Q™) = 0, (2.1.79)

that is, the exhaustion 7 is strict parabolic, and so V is a parabolic manifold.
Further, if M has holomorphic rank m, i.e., there exists a holomorphic mapping
7 : M — C™ of rank m, it follows that 7 = |7|? is an unbounded parabolic
exhaustion of M (cf. [380]), and hence M is parabolic.

Strict parabolic exhaustion functions are completely determined by Stoll (cf.
[381], [382]) as follows:

Theorem 2.21. If a complex manifold M of dimension m admits a strict unbounded
parabolic exhaustion T, then there exists a biholomorphic mapping h : C™ — M
such that

m

T(h(z)) = |2 = Iz

j=1
forall z = (z1,...,2m) € C™.

Alternative proofs were given by Burns [44] and Wong [432]. Bott-Chern [31]
and Wu [435] used concave or convex exhaustion. Griffiths and King [128] consid-
ered a special parabolic exhaustion which has only finitely many critical values and
such that log 7 has only finitely many logarithmic singularities. Such exhaustion
exists on smooth affine algebraic varieties. The properties of parabolic exhaustion
were discussed by Stoll [380]. For example, Stoll proved that a non-compact Rie-
mann surface has a parabolic exhaustion if and only if every subharmonic function
which is bounded above is constant. Classically the Riemann surfaces satisfying
the latter property are called parabolic. Hence Stoll’s result shows the consistency
of the nomenclature in the non-compact case. However a compact Riemann surface
is also parabolic in the classical sense but does not admit a parabolic exhaustion.
For dd°T > 0 would imply that 7 is constant which contradicts ddT # 0.

2.1.8 Inequalities on symmetric polynomials

We begin with a result (cf. Hardy, Littlewood, and Pdlya [146], pp. 104-105,
Beckenbach and Bellman [17] , p.11 or [271], pp. 70-71), which is an immediate
consequence of Rolle’s theorem:

Lemma 2.22. If the polynomial
P(.]j, Z/) = cox" + Cll‘n_ly 4+ Cny"

has all its zeros x/y real, then the same is true of all polynomials obtained from
it by differentiating with respect to x ory.
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Consider now the polynomial
Play) = [[@+aw).
where x; are real. We find
==j§:pkx"‘kyk
k=0

where po = 1, and for k = 1,2,...,n, pp = pr(z1,...,z,) is the kth elementary
symmetric polynomial. Writing
n
Pk = Pk/ (k>u

and by repeated differentiation with respect to  and y, we obtain

O MP(x,y) ! =K kel kem
oxtoy™ Z ( )pk k— m) (n—k—l)!x o

k=m

Ifwetakem=r—1landl=n—7r—1with1l <r <n-—1, we have

otmP(z,y)  n! 9
' = r— 2p, T 2 .
dzloym 9 (Pr—12” + 2pray + pri1y”)
By Lemma 2.22, this polynomial has both its zeros real, so that we have
Py —prapri1 >0, 1<r<n-—1 (2.1.80)

This inequality holds for all real x;, positive, negative, or zero.
Using (2.1.80), when all the x; are positive, we get

k k
H(pT 1p7“+1 Hpr )
r=1 r=1
or N L
P <pi, 1<k<n—1, (2.1.81)

which is a result of Maclaurin [250]. Thus by (2.1.81), we obtain the inequalities
for the elementary symmetric polynomials

1

L 1

=)

1

pr S Dp1,
the geometric-mean—arithmetic-mean inequality.

where

From (2.1.81) we obtain
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2.2 Kobayashi hyperbolicity

There exists a rich theory and many research results on Kobayashi hyperbolicity.
Here we only introduce simple notations and some open problems related to topics
in this book. For more details, see Kobayashi [207], [208], and Lang [229].

2.2.1 Hyperbolicity

Let D be the open unit disc {z € C | |z| < 1}. We have the classic Schwarz-Pick
lemma (cf. Kobayashi [207]):

Theorem 2.23. Assume f € Hol(D,D). Then

()l 1

< , zeD,
L=f)P ~ 1=z

and equality at a single point z implies that f € Aut(D).

We consider the Hermitian metric h on D given by

2
h = (1 B |Z|2)2d2 (29 dZ7
which induces the Riemann metric
4
2 _
dsp = (1- |Z|2)2dzdz.

Then the inequality in Theorem 2.23 may be written as
frds? < ds3,

dn(f(2), f(2)) < dn(2,2)

for the associated distance function dj,. The metric h (or ds3) is called the Poincaré
metric or the Poincaré-Bergman metric of D. We note that the Gaussian curvature
of the metric h is equal to —1 everywhere. By a simple calculation we have

1+«

dilzw) =log |

(z,w e D),

where
w2z
R
Definition 2.24. Let M be a complex space. Let x,y € M be arbitrary points.
A holomorphic chain o from x to y is the collection of holomorphic mappings

fi € Hol(D, M) and p;,q; € D fori=0,...,l such that

folpo) =2z, fi(gs) = firi(lpitr) (0Zi<1-1), filaq) =y.
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Then the Kobayashi pseudo distance dys is given by

l
dyr(z,y) = inf {Z dh(pi7qi)} , (2.2.1)

i=0
where the infimum is taken for all holomorphic chains a from x to y.

For the existence of a holomorphic chain from x to y, the reader is referred
to S. Lang [229]. It is easy to see that for x,y,z € M,

du(z,2) =0, dy(z,y) =du(y, @), du(z,2) <du(z,y) +dm(y, 2).  (2.2.2)

In general, a mapping dy; : M x M — R, satisfying the relation above is called a
pseudo distance which may identically vanish. If M and N are two complex spaces,
then the Kobayashi pseudo distances satisfy

dn(f(x), f(y)) < dm(x,y), f€Hol(M,N), {x,y} C M. (2.2.3)

Example 2.25. Let M = C with the Euclidean metric. Then dc(xz,y) = 0 for
all x,y € C. In fact, given two points x,y € C and an arbitrarily small positive
number €, there is a mapping f € Hol(D,C) such that f(0) = x and f(e) = y.

Hence de(z,y) < log %ti

It will be useful to consider the following generalization. Let M be a subset
of a complex Hermitian manifold M. We can define dy; on M by taking the
mappings f; to lie in M, and to be holomorphic as mappings into M. Then we
obtain a pseudo distance on M. We say that M is Kobayashi hyperbolic in M if this
pseudo distance is a distance, that is if z # y implies dps(x,y) # 0. For simplicity,
we shall say hyperbolic instead of Kobayashi hyperbolic. If M is a complex space
imbedded in a complex manifold M, then a mapping into M is analytic if and
only if it is analytic viewed as a mapping into M. Therefore the definition of the
Kobayashi pseudo distance on M is intrinsic, independent of the imbedding of M
into a manifold.

If M is hyperbolic, then directly from (2.2.3) and Example 2.25, there cannot
be a non-constant holomorphic mapping f : C — M. The converse is due to
Brody [38]:

Theorem 2.26 ([38]). Let M be a relatively compact complex subspace of a complex
Hermitian manifold M, and suppose M is not hyperbolic. Then there erists a
non-constant holomorphic mapping f : C — M such that

I OI=1 [f)l<1 z€C.
Recall that the induced linear mapping

f'(z) : T.(C) =C — Ty, (M),
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is the holomorphic differential at each z € C. Each complex tangent space has
its norm: T(,)(M) has the Hermitian norm, and T, (C) = C has the Euclidean
norm. The norm of the linear mapping f/(z) is defined as usual:

17 = sup 1 )0

, veT,(C), v#0.
P o ©

Based on this theorem, it is useful to define a complex space M to be Brody
hyperbolic if every holomorphic mapping of C into M is constant.

Let M be any variety. Lang [228], [232] introduces the holomorphic special
set Sppol(M) of M to be the Zariski closure of the union of all images of non-
constant holomorphic mappings f : C — M. Thus M is hyperbolic if and only if
this special set is empty. In general the special set may be the whole variety. Here
we consider a smooth toroidal compactification M of D/T', where D is a bounded
symmetric domain of C"™ and I' C Aut(D) is an arithmetic subgroup. In general,
I' may not act freely on D, but a subgroup of finite index will act without fixed
points, and we lose no essential generality in assuming that this is true for D. It
is well known that D/T is negatively curved since in fact the Bergman metric on
D has negative holomorphic sectional curvatures < —c¢ < 0 and is I'-invariant.
Further, D/I" is hyperbolic (see [207], [286]), and so Spy, (M) ¢ D/T. It is a
basic theorem of Baily-Borel [11] that D/T is quasi-projective. It is natural to ask
whether Spy, (M) C M —D/T'?

Kiernan and Kobayashi [204] discuss the notion of M being hyperbolic modulo
a subset S, meaning that the Kobayashi pseudo distance in M satisfies dps(z,y) #
0 unless x = y or =,y € S. According to S. Lang [228], the variety M is said to be
pseudo Brody hyperbolic if the special set Spy;(M) is a proper subset; and M is
pseudo Kobayashi hyperbolic if there exists a proper algebraic subset S such that
M is hyperbolic modulo S. S. Lang [228] conjectures that the two definitions are
equivalent with S = Spy o (M).

2.2.2 Measure hyperbolicity

Let M be a complex manifold with volume or pseudo volume form . Let Cy (M)
be the set of continuous functions with compact support. Then ¥ defines a positive

functional on Co(M) by
Q= / V.
M

Hence there is a unique regular positive measure pg such that

/sodu\IU:/ oW, € Co(M).
M M

For example, on the ball of radius r in C™ with center at O:

C™(051) = {(1,- o, 2m) €C™ | 2P = a1 + -+ 2l® < 12,
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there is the standard positive (1, 1)-form

2

w=2i Z ) ! o dzi AN dZy, + 42| ,0z| A O2] (2.2.4)

— 7% — |2|? (r2 —|2[?)?

with
0, = lwm— 2 szz Ndz (2.2.5)
N G CD k- -
1
Ric(0,) = —(m+1)ddclog(r2—|z|2):m4+ w (2.2.6)
i

Thus the Einstein-Kéhler metric on C™(0;7) is given by

Z de ® dzy, t |Z|2 (Z zkdzk> ® <Z zkdzk> (2.2.7)
k=1

such that holomorphic sectional curvatures are —1 everywhere.

Lemma 2.27. Let M be a complex manifold of dimension m and let ¥ be a pseudo
volume form on M such that Ric(¥) is positive, and such that there exists a
constant ¢ > 0 satisfying ¢cG(V) > 1. Then for all holomorphic mappings f :
C™(0;7) — M, we have

1 m
o< c<m+ ) O,.
4T
Proof. See [207], Theorem 4.4; [208], Corollary 2.4.15; or [174]. O

For r = 1, we write © for ©;. The unit ball C"™(0;1) will be denoted B™.

Definition 2.28. Let M be a complex manifold of dimension m. Let A be a Borel
measurable subset of M. A holomorphic chain a for A is the collection of holo-
morphic mappings f; € Hol(B™, M) and open sets U; in B™ for i =1,2,... such

that

The space M is said to be covered by holomorphic chains if there exists a holo-
morphic chain for M. Then the Kobayashi measure uy; is defined by

i (A) = ingN@(Ui)a (2.2.8)

where the infimum is taken for all holomorphic chains o for A, where peo is the
regular measure on B™ induced by ©. If up (W) > 0 for all non-empty open sets
W in M, then M is called measure hyperbolic.
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Since the open sets generate the o-algebra of Borel measurable sets, it follows
that if B is measurable in B™ and f is holomorphic, then f(B) is measurable.
Furthermore, a regular measure satisfies the property that the measure of a set is
the infimum of the measures of the open sets containing it. Hence in the definition
of the Kobayashi measure, instead of taking open sets U; we could take measurable
sets B; in B™. A basic fact is that if p is a measure on a complex manifold M of
dimension m such that every holomorphic mapping f : B™ — M satisfies

u(f(B)) < pe(B)

for every Borel measurable set B in B™, then p < pas (cf. [207], Proposition 1.5;
[208], Theorem 7.2.6). Thus the complex manifold M satisfying the conditions in
Lemma 2.27 is measure hyperbolic (cf. [208], Theorem 7.4.1).

We let

N —div O

denote the property that n tends to infinity, ordered by divisibility. In speaking of
estimates, we use the standard notation of number theorists

A(n) < B(n), n— o

to mean that there is a constant ¢ such that A(n) < ¢B(n) for all sufficiently large
n. Here, sufficiently large may mean with respect to the divisibility ordering. We
recall two lemmas from basic algebraic geometry (cf. [208], [228]).

Lemma 2.29. Let X be a variety of dimension n. Let L be a holomorphic line
bundle on X. Then

dim H°(X,0(L™)) <« m", m — oo.

Proof. Let H be an ample line bundle such that £ = L ® H is ample. If m is large
enough so that H™ is very ample, then the exact sequence of sheaves (cf. [127],
p. 139)

0— O(L™) — O(E™) — O(E™|p) — 0

where D is a smooth effective divisor of X obtained as the zero set of a general
holomorphic section of H™, and E™|p denotes the restriction of E™ to D, induces
an exact sequence

0 — HY(X,0(L™)) — HO(X,0(E™)) — H'(D,O(E™|p))
which further implies
dim H(X,O(L™)) < dim H(X, O(E™)).
Furthermore, since E™ is ample, then Kodaira’s vanishing theorem implies

dim H°(X, O(E™)) = x(X, E™).
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On the other hand (Hirzebruch [161], p. 150), we have
X(Xa Em) =ay+am+---+ anmna

where ag, a1, ..., a, are rational numbers determined by characteristic classes of
X and E, thus proving the lemma. O

Lemma 2.30. Let X be a non-singular variety of dimension n. Let L be a holo-
morphic line bundle on X such that

dim H°(X, O(L™)) > m™, m —a;, 0.
Then for a very ample line bundle E on X,
dim H°(X, O(L™ @ E*)) > m™, m — g, 00,
in particular, H°(X, O(L™ ® E*)) # {0}.

Proof. Let D be a non-singular effective divisor of X obtained as the zero set of a
general holomorphic section of E. We have the exact sequence of sheaves

0—O(L™®E*)— O(L™) - O(L™|p) — 0,
whence the exact cohomology sequence
0— HYX,0(L™ ® E*)) — H°(X,0(L™)) — H° (D,O(L™|p)) .

Applying Lemma 2.29 to this invertible sheaf on D we conclude that the dimension
of the term on the right is < m™~ !, so for m large

dim H°(X, O(L™ @ E*)) > m™,
and in particular is positive for m large, whence the lemma follows. O

Conversely, if L is a holomorphic line bundle on X, and if F is a very ample
line bundle on X such that

H°(X,0(L™ @ E")) # {0}

for some positive integer m, then L is pseudo ample (see [208], Lemma 7.3.7). In
fact, let a be a non-trivial holomorphic section of L™ ® E* and set

I'x ={as|sel'(X,E)} CcT(X,L™).

A holomorphic projective imbedding of X is well defined by using only the sub-
space ['x, i.e., the sections of L™ that are divisible by «. The imbedding thus
obtained is none other than the imbedding ¢g obtained by using I'(X, E). If we
use I'(X, L™), then we obtain only a meromorphic imbedding ¢r= of X into a
projective space.
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Theorem 2.31 (Kodaira [213], Kobayashi-Ochiai [210]). Let X be a non-singular
pseudo canonical variety. Then X admits a pseudo volume form U with Ric(P)
positive, and X is measure hyperbolic.

Proof. Set n = dim X. Since X is pseudo canonical, then
dim H°(X, O(K%)) > m"

for m large, so we can apply Lemma 2.30. Let L be a very ample line bundle on X.
We shall obtain a projective imbedding of X by means of some of the sections in
H°(X,0(K%)). By Lemma 2.30, for m large there exists a non-trivial holomorphic
section o of K @ L*. Let {so,...,sn} be a basis of H*(X,O(L)). Then

a®S8g,...,xQ SN

are linearly independent sections of H?(X, O(K%)). Since [s, . . ., sn] gives a pro-
jective imbedding of X into P because L is assumed very ample, it follows that
a® sg,...,a® sy vanish simultaneously only at the zeros of «, but nevertheless
give the same projective imbedding, which is determined only by their ratios. Then

N
ac R E S ® s;
Jj=0
may be considered as a section of

(KPLYL® (KYyL )L =K9® Ky,

and can be locally expressed in terms of complex coordinates in the form
N
9(2)1> Y lg; ()@ (2)*™,
j=0

where as usual ®(z) is the standard Euclidean volume form on C", while g(z),
9go(2),- - ., gn(z) are local holomorphic functions representing a, so, . . ., Sy respec-
tively. Set

N m
h(z)= (> lg; (=)
j=0
Then there is a unique pseudo volume form ¥ on X which has the local expression
2
U(z) = |g(2)| h(z)®(2).

Furthermore Ric(¥) is positive, because Ric(¥) is the pull-back of the Fubini-
Study form on PV by the projective imbedding. O
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Its converse is due to Burt Totaro [400] (or see Kobayashi [208]), that is, if
a non-singular projective variety X admits a pseudo volume form ¥ with Ric(¥)
positive, then X is pseudo canonical. In fact, take an open cover {U;} of X with
holomorphic coordinates z7, ..., zZ on U;, where n = dim X. We obtain a non-
vanishing holomorphic section of Kx on each Uj:

& =dz] N Ndzi.
According to (2.1.61), ¥ induces a “pseudo” metric k = kg on Kx such that
in&j N = 1120
Then our assumption on ¥ means
U = hylg;[*in&; A&,

where h; is a positive C*° function on Uj, ¢ > 0 is some fixed rational number,
and g; is holomorphic not identically zero. Hence we have

€512 = hylgs].

Write ¢ = p/m for coprime positive integers p and m. If & = A;jx&; on U; N Uy,
then
W g5 = [P Ry gl
Define
Xjk = AJj, (gk)gj_l)p
so that
hy™ = el 72hy ™

Since g gj_1 is a holomorphic function on U; N Uy without zeroes, we can define a

line bundle H by the system of transition functions {x;x}. Then {h;™} define a
metric p on H such that

c1(H, p)lu; = —dd®logh;™ = mRic(¥)|u;, > 0,

that is, H is positive, and so H is ample. Hence £ = H! is very ample for some
positive integer [. Since the transition functions for K ®E* are given by {z\}’}j xj_kl }

and since
1 mi.,—l pl
g, = )\jlejkgz J
{gfl} represents a holomorphic section of K @ E*. This shows that T'(X, K ®
E*) # {0}. Therefore Kx is pseudo ample according to the remark after Lem-
ma 2.30.
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2.2.3 Open problems

Problem 2.32. Let M be a projective algebraic variety. Determine which of the
following conditions are equivalent:

1) M is Kobayashi hyperbolic;

2) All subvarieties of M (including M itself) are pseudo canonical;

4
5

(1)
(2)
(3) Ewvery subvariety of M is measure hyperbolic;
(4) M is negatively curved;

(5)

M is Brody hyperbolic.

Now we know that (1) <= (5). Kobayashi has shown that (4) implies (1);
otherwise all equivalences above remain unproved. He stated (1) = (4) as a
problem; other implications in the above list are conjectures of Lang.

Problem 2.33. Let M be a projective algebraic variety. Determine which of the
following conditions are equivalent:

(i) M is pseudo Kobayashi hyperbolic;
(ii) M is pseudo canonical;

(iii) M is measure hyperbolic;

(iv) There exists a pseudo volume form ¥ for which Ric(¥) > 0;

)
)
)
(v) M s pseudo Brody hyperbolic.

Currently what is known is that (ii) <= (iv) (see Kodaira [213], Totaro [400]),
(ii) = (iii) (see Kobayashi-Ochiai [210]), (i) = (iii) (see Kobayashi [207]), and

(iii) = (ii) for surfaces (see Mori-Mukai [282]). Kobayashi [207] posed (iii) =
(ii) as a problem; other implications are conjectures of Lang.

If M is a non-singular projective variety over C, Kobayashi and Ochiai [211]
conjectured that if M is hyperbolic then the canonical class K, is pseudo ample,
but Lang [232] made the stronger conjecture:

Conjecture 2.34. If M is non-singular and hyperbolic, then Ky is ample.

Here we consider a non-singular hypersurface M of degree d in P*(C). When
d <n—1, then M contains a line through every point (cf. [228]). The adjunction
formula immediately implies

Ky = (Kpocy ® [M]) [ar = (H[a)* "7,

where H is the hyperplane line bundle on P"(C). Then d > n + 2 is precisely the
condition that makes the canonical bundle Kj; ample. When n > 3, since the
Fermat hypersurface
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contains a line
z2€Cr——[z,¢12,...,Cr2,Crq1y .y Cro1, 1] € P*(C),
where 1 <r <n—2,and ¢q,...,c,_1 are numbers such that
1+c‘f+~-~—|—c7‘f:0, cf+1+~-~+cfl_1+1:0,

we see that in general the condition that M has ample canonical bundle does not
imply M hyperbolic. However, in 1970, S. Kobayashi ([207], p. 132) made the
following conjecture:

Conjecture 2.35. A generic hypersurface of degree > 2n+1 of P™(C) is hyperbolic,
and that its complement is complete hyperbolic.

This conjecture is still open, but there has been some progress on the exis-
tence of hyperbolic hypersurfaces of P"(C). Examples of hyperbolic hypersurfaces
were constructed by R. Brody and M. Green [39], M. Zaidenberg [446], A.M. Nadel
[285], H.-K. Ha [138], M. McQuillan [266], J.-P. Demailly and J. El Goul [78], B
Shiffman and M. Zaidenberg [348] in dimension 2, M. Shirosaki [353], C. Ciliberto
and M. Zaidenberg [62] in dimension 3, and finally by K. Masuda and J. Noguchi
[257], Y.T. Siu and S.K. Yeung [367], B. Shiffman and M. Zaidenberg [349], and
H. Fujimoto [108] in any dimension. J. El Goul [90] gave a construction of a hy-
perbolic surface of degree 14 and J.-P. Demailly [77] later reduced the degree in
El Goul’s construction to 11. Y.T. Siu and S.K. Yeung [367] also obtained an
elegant hyperbolic surface of degree 11 by using their generalized Borel lemma
(Theorem 4.34). M. Shirosaki [354] constructed a hyperbolic surface of degree 10.
H. Fujimoto [108] improved Shirosaki’s construction to give examples of degree 8.
J. Duval [86] gave hyperbolic surfaces of degree 6 in P3(C). We will introduce a
method constructing hyperbolic surfaces of lower degrees in Section 4.9.

2.3 Characteristic functions

In this section, we will define characteristic (or order) functions of meromor-
phic functions (or mappings) in Nevanlinna theory, which are the counterparts
of heights in number theory, and derive the corresponding first main theorem
from Jensen’s formula similar to the case in Section 1.8, the latter is an analogue
of the product formula in Section 1.4.

Recall that C™ is a parabolic manifold. By (2.1.78) and (2.1.79), a strict
unbounded parabolic exhaustion function 7 on C™ is defined by

|Z|2 lej| z = Zlv"‘azm) G(Cm (231)
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Obviously, the center O = 771(0) of 7 contains only one element 0. For the case
M = C™, we will use the notations

C™0;r] = M[O; 7], C™[0;7;0] = M[O;75¢], C™(0;750) = M(O; 75 9),
and so on. Further, putting

Zj:.l‘j—F\/—lyj, j=1,....,m,

we have
V-1& I
v= Z dzj NdzZ; = - Z dz; A dy;, (2.3.2)
j=1 Jj=1
and hence
m!
v = mdml Adyp A« ANdxm A Ay, -
e
Since the volume of ball C™[0; 7] of radius r > 0 in R*™ is ”W;:f ", we obtain
1 !
S= o / v = yanzm / dx1dyy -+ - dzymdy, = 1. (2.3.3)
r Cmosr] e Cm{0;7]

For r > s > 0, applying Stokes theorem to do = w™ = 0 on C™[0; s, 7], we have

/ o= / oc=¢=1 (2.3.4)
C™(0;r) C™(0;s)

m, 2m—1

Thus the volume of sphere C™(0;7) of radius r in R*™ is 2™

Let v be a multiplicity on C™. For ¢t > 0, the counting function n, is de-
fined by

n,(t) = 272 / vo™ ! (2.3.5)
A[0;t]

where A = supp v. Here if m =1, we define

n(t)= Y v(2) (2.3.6)

z€A[0;t]
Then n,(t) — n,(0) as t — 0 and (cf. [380])
n,(t) = / vw™ ™ 4 n,(0). (2.3.7)

A(0;t)

If v is non-negative, then n, increases. Fix rg > 0. The wvalence function of v is

defined by
dt

; (r>mp). (2.3.8)

Nof) = Nolrro) = [ (0
To
Similarly, we can define n,(t) and N, (r) for a multiplicity v on a parabolic mani-

fold.
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Take f € M(C™) and a € P'. We will denote the counting function

ns (1) = {” (1 h) ifacc (2.3.9)

n(t, f) ifa =00

and the valence function

N(r ! ) ifaeC
Nya(r) = " foa ’ 2.3.10
w3 (1) {N(r,f) if a = 0. ( )

If f #£ 0, we have Jensen’s formula (cf. [396], [151], [128], [380]):

1
N (r, f) —N(r, f) = /(Cm(O;r> log |flo — /(Cm<0;r0>log|f|a. (2.3.11)

The following simple result can be derived directly by using Jensen’s formula.

Lemma 2.36. If f1 (#20) and f2 (£ 0) are meromorphic functions in C™, then for
r > 0 we have

N (r, fllfz) CN(r, fufa) = N (r, ;1) N (r, ;2> ~N(r, f1) — N(r, fo).

For every real number o > 0, write

loga, a>1,

log™ o := max{0, lo =
g o= max{0,loga} {0, 0<a<l,

If f € M(C™) — {0}, define the prozimity function of f by
mir )= [ og*llo =0 (2.3.12)
Cm™(0;r)

The (Nevanlinna) characteristic function of f is defined by
T(r, f) =m(r, f) + N(r, f). (2.3.13)

Then we can rewrite the Jensen formula (2.3.11) as follows:

T (T, Jlf) =T f)— /(memJ> log | f|o. (2.3.14)

Take a € C. By applying (2.3.14) to f — a, we have

1
T (r, f —a) =T(r,f—a)— /(me;m) log |f — alo.
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Note that
T(r,f —a) <T(r,f)+log™ |a] +log?2,

and
T(r,f)=T(r,f—a+a)
<T(r,f —a)+log" |a| +log2.

One obtains the first main theorem (cf. [292], [151], [128], [380])

m(n L )en(r L) =T rom. s
);

Related to Zhang’s inequality (1.9.5), an interesting question is whether there ex-
ists a minimal positive constant r* such that when ry > r*, there is a positive
constant ¢(rg) which depends only on 79 such that for each non-constant mero-
morphic function f on C,

T(r, f)+T(r,1 = f) > c(ro), r=>ro. (2.3.16)

Generally, we consider a meromorphic mapping f : C"™ — P(V'), where V
is a Hermitian vector space of dimension n + 1 > 1. Let Q be the Fubini-Study
form on P(V). Then for t > 0,

Af(t) = t2’2m/c L S@ (2.3.17)

is just the spherical image of f. The (Ahlfors-Shimizu) characteristic function of
f is defined by

" dt
Ty¢(r) =Tg(r,ro) = / Agf(t) ) (r >ro). (2.3.18)
T0
The (growth) order of the mapping f is defined by
log™ T’
Ord(f) = limsup ©8 f(r). (2.3.19)

r——+00 log r

If f: C™ — V is a global representation of f, then f induces a multiplicity s
One has (cf. Stoll [384], (6.64))

:rf(r):/(C . >log|f|a—/(c o loalflr = N, ). (2.3.20)
m ;r m ;,’,,0

In particular, if f is reduced, then

Tf(r):/(C o >log|f|c7—/(C o >log|f|c7. (2.3.21)
m ;r’n m ;r’no
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Further if f (0) # 0, then limit 79 — 0 implies
7y(r.0) = [ tog|flo ~log | ). (2.3.22)
Cm(0;r)
If f is not constant, then As(¢) > 0 when ¢ > 0 and T¥(r) — oo as r — oo (see

Proposition 2.78).

Take a base e = (eq, ...,e,) of V and let
f=foeo+ -+ faen : C" —V (2.3.23)

be a representation of the meromorphic mapping f : C™ — P(V). The base e
is said to be allowable for f if fy # 0. Thus the jth coordinate function of f is
defined by

fi=", j=0,...,n (2.3.24)
0

Lemma 2.37 ([386]). Let f: C™ — P(V) be a meromorphic mapping and take a
base e = (eo,...,en) of V which is allowable for f. Let f; be the jth coordinate
function of f. Then

Ty(r) < ) _T(r f;) +0Q), (2.3.25)

WE

1
Tf(T) > T(Tv f]) + N#

<.
I

(r)4+0(Q), jeZ1,n], (2.3.26)

(fo.F})
where iz, . is the multiplicity of the zero divisor Dz 7 of (fo. fj)

Proof. Let f = foeo + -+ + fnen : C™ — V be a reduced representation of f.
Then the inequality

uy, < > oug (2.3.27)
j=1

holds on C™ — I;. In fact, the estimate (2.3.27) holds obviously at zy € C™ — I
if fo(z0) # 0. When fo(20) = 0, an index i € Z[1,n] exists such that fi(20) # 0
since Iy = f~1(0). Hence

p}, (20) = nf (20) < > 1 (20)-
=1

Now (2.3.27) implies
N (n ! ) <> N f)). (2.3.28)
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Then

2 2

1P =12 Fies| < | Do Ifilles]
§=0 §=0

<c[DOIAP] <dflP (14D 152
j=0 j=1

where ¢ = 377 |ej|*. By (2.3.21), we obtain
Ty (r) = C™(0;7;1og | f|) — C™(0;mo; log | f1)
<D C™0;r3log™ [ f3]) + C™(0; 75 log | fol) + O(1). (2.3.29)
j=1
Further the Jensen formula (2.3.11) implies

N (r, ; ) = (Cm<0;r;log|f0|> — (Cm<0;r0;log|f0|>.
0

Thus, by (2.3.28) and (2.3.29), we obtain

n

Tr(r) <> Am(r. ;) + N(r, f;)} + 0(1) = > _T(r, f;) + O(1),

Jj=1 Jj=1

which proves (2.3.25).
There exists a constant ¢’ > 0 such that for all £ = zgeq+ -+ xne, €V we
have
|[ol® + a1 ]? + - + |za | <

Because f; = fj/fo, a representation (fo,fj) of f; : C™ — P! is given. Hence
(2.3.20) yields

75 5) 4 N (1) = € {0ritog fl2 + 1) + O
< ™0 rslog | ) + O(1)
— Ty(r) + O(1),
and so (2.3.26) follows. O

Let f be a reduced representation of f. Take a € P(V*), o € V* such that
a = P(c). Suppose f(C™) € Ela). Then F = (f,a) (£ 0) is holomorphic on C™.
Write
= pp-
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The counting function and the wvalence function of f for a are defined respec-
tively by
ng(r,a) =nua(r) (2.3.30)

and
Ng(r,a) = Nya(r). (2.3.31)

For r > 0, the prozimity function (or compensation function) is defined by
1
my(r,a) = / log o >0. (2.3.32)
cmory - Ifsal

Then the first main theorem (cf. [128], [385]) states

T¢(r) = N¢(r,a) + ms(r,a) —mys(ro, a). (2.3.33)

The meromorphic mapping f : C™ — P(V) is said to be linearly non-
degenerate, if f(C™) € FEla] for all a € P(V*). If f is linearly non-degenerate,
Lemma 2.17 implies

(r>0). (2.3.34)

acP(V*) J

Then (2.3.33) and (2.3.34) give us the integral average theorem (cf. [295], [128],
[380])

Ty(r) = / N¢(r,a)Q"(a) (r>ro). (2.3.35)
a€P(V*)

Since f is linearly non-degenerate, then f is not constant, and hence T (r) — oo
as r — o0o. The defect of f for a is defined by

6¢(a) = lim inf mj{;@? > 0. (2.3.36)

The first main theorem (2.3.33) implies

Sp(a) =1-— liirisgp Nj{;:;)a) <1.

The integral average theorem (2.3.35) gives
0f(a)Q"(a) = 0. (2.3.37)
a€P(V*)

Hence 6¢(a) = 0 for almost all a € P(V*). As a direct consequence, one obtains
the Casorati-Weierstrass theorem (cf. Griffiths-King [128], Stoll [384], p. 141)
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Theorem 2.38. A linearly non-degenerate meromorphic mapping from C™ into a
complex projective space intersects almost all hyperplanes.

Next we compare the functions T (r) and T'(r, f) for f € M(C™). Obviously,
we have
N (r, sz) ifa € C,

(2.3.38)
N(r, f) if a = o0.

N¢(r,a) = {

By applying the first main theorem (2.3.33) to a = oo and (1.5.6), we have

Ty(r) = N(r, f) + /

Cm(0;r)

log /1 + |f|2o——/ logv/1+ |f|20.  (2.3.39)

C™ {0579

It is easy to show the inequality
minf)< [ log /14110 < mir,f) + log2.
Cm™(0;r)

Thus we obtain

T¢(r) =T(r, f) + O(1). (2.3.40)
Therefore the defect of f for a can be calculated by
N (r, fia>
df(a) =1 —limsup . (2.3.41)

r—co T(r,f)

An element a € P! is said to be a Picard (ezceptional) value of f if a & f(C™).
Obviously, d¢(a) =1 if a is a Picard value of f.

2.4 Growth of rational functions

Corresponding to heights of morphisms discussed in Section 1.9, characteristic
functions of rational functions (or mappings) have similar properties. For example,
compare the formula (1.9.2) with (2.4.6).
Take { € C™ —{0}. Define a holomorphic mapping j¢ : C — C™ by je(z) =
z€ and write
Fe=1Foje
for a function F'in C™. The Crofton formula for divisor (cf. [375]) reads as follows:

Theorem 2.39. Take 0 < R < 4o00. Let D be a divisor on C™(0; R) and let F :
C™(0; R) — C be a function such that upFw™ ! is integrable over A = suppD.

Then
JE) = Y mp(2)Fe(2)

0<|z|<R
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converges for almost all & € C™(0;1) such that
J(e?€) =J(), i=vV-1, peR

A function J exists almost everywhere on P™~1 such that JoP = J almost every-
where on C™(0;1). Moreover,

/me_lz/ Jcr:/ Jom1,
A Cm (0;1) pm—1

where Q is the Fubini-Study form on P™~1,

For 0 < r < R, the Crofton formula and (2.3.7) imply

M @)= [ o)

and hence

Ny (r) = /(C o Nz (1) (€). (2.4.1)

Let f : C™ — P(V) be a non-degenerate meromorphic mapping. Take
a € P(V*). Note that

fe=foje:C—B(V), €eC™— {0}
is a holomorphic mapping. By (2.4.1), one obtains (cf. [379])

N¢(r,a) = /(Cm(O;1> Ny (r,a)o(§).

The following result is due to Stoll [378]:

Lemma 2.40. Take r > 0. Let F : C™(0;r) — C be a function. Assume that Fo
is integrable over C™(0;r). Then

1 27 )
FO':/ ( / Fe (re*? dgo)of.
/(Cm(O;r> C™(0;1) 27 Jo ¢ ( ) ©

By Lemma 2.40, one obtains (cf. [379])

rwmwzf my, () (€).
Cm™(0;1)

The first main theorem (2.3.33) implies

Ty = [ T me©) (242
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Assume that f is holomorphic at 0 € C™. Then there exists a reduced rep-
resentation f : C™ — V with f(0) # 0. For { € C™ — {0}, fe = fojeis a
representation of fe. Hence (2.3.20) and the above arguments show

27
T (r0) < o [ Toglfe (re'®) i ~ log F0). (243
T Jo

A non-negative pluri-subharmonic function w, on C™ is defined by

2m B ) B
wl@) =y [ 1oB1fe (re'®) do 105 | FO0)]

Then (2.3.22) and Lemma 2.40 yield

Ty (r,0) = / UypO.
C™(0;1)

The following result is due to Kneser [205]:

Theorem 2.41. Take 0 < r < R < 400 and let 0 be a number with 0 < 6 < 1. Let
u be a pluri-subharmonic function on C™(0; R). Then

ug) <52 |

Cm™(0;r

712 - |<|2 o C™(0:
> U(U) |,,7 _ <|2m (77), C € (07 71)‘

If u is pluri-harmonic, the equality holds. If ¢ € C™|0; 6r], then

146 / +
U < uo,
O = (L=6)>""1 Jemom)

where u™ = max{0, u}.

Take # € R with 0 < # < 1 and £ € C™[0;1] — {0}. Then (2.4.3) and
Theorem 2.41 imply the following inequality (cf. [379]):

146 r
Tr(0) < () groms T (0,0). (2.4.4)

Lemma 2.42 (cf. [302]). Let P be a non-constant polynomial in C™. We have
T(r, P) = deg(P)logr + O(1). (2.4.5)
Proof. Write d = deg(P). Then there exists a positive constant C' such that
[Pl < Cl¢l?
holds when |¢| > 1. Hence for r > 1, we obtain

T(r,P) =m(r,P) < dlogr+ O(1).
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On the other hand, there exists a homogeneous polynomial H of degree d
such that deg(P — H) < d. Take £ € C™(0;1) with H() # 0. Then P; = P o j¢ is
a polynomial of degree d in C. It is well known that (cf. [168])

T(r, Pe) =dlogr+ O(1).

However, the equality (2.4.2) and (2.3.40) imply
T(r,P)= / T(r, Pe)o(§) + O(1) = dlogr + O(1).
C™(0;1)

Hence Lemma 2.42 follows. O

If @ is another non-constant polynomial in C™ such that P and @ are co-
prime, by using (2.3.40), (2.3.21), (2.4.2) and the method in Lemma 2.42 we can
prove that

T (r, g) = max{deg(P),deg(Q)}logr + O(1) (2.4.6)
holds.

An effective divisor D on C™ is said to be algebraic if D is the zero divisor
of a polynomial. For the multiplicity v of an effective divisor on C™, define

N,
ny,(00) = lim n,(r) = lim log(r)
T—00 T—00 T

The following fact is due to Rutishauser [332] and Stoll [377].

Proposition 2.43. An effective divisor D on C™ is algebraic if and only if the
counting function n,,, is bounded. Moreover, if n,,(c0) =n < oo, then D is the
divisor of a polynomial of degree n.

Lemma 2.44. Let f : C™ — P" be a meromorphic mapping with a reduced rep-
resentative (fo, f1,..., fn) : C™ — C"*1 defined by polynomials fo, fi,..., fn in
C™. Then

. . Ty(r)
Ap(o0) = lim Ay(r) = lim logr onax {deg(f;)}- (2.4.7)
Proof. By using (2.3.21), it is easy to show the following inequality:
Ty(r) < max {deg(f;)}logr+ O(1).
0<j<n

The inequality (2.3.26) in Lemma 2.37 yields

Ty(r) > T (n ;g) + Ny 1, (0 +01), G=1,...m.
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We can choose polynomials fjo, fo; and hj; such that fjo, fo; are coprime, and
fi=hjfjo, fo=hjfo;.
Thus (2.4.6) implies

717
Jo
Note that s, ) = ,u,%j. By Proposition 2.43, we have

J

T ( fﬂ‘) — max{deg(f0), deg(foy)} log + O(1),

. Nug ,fj>(r) 1
rlggo lc:gr =n (oq hj) = deg(h;). (2.4.8)
Therefore, for j =1,...,n, we obtain
lim Ty (r) > max{deg(f;o0), deg(fo;)} + deg(h;) = max{deg(f;),deg(fo)}
THOCIOgri glJj0), Aegl Joj g\h;) = g\Jj),degljo)rs,
and so (2.4.7) follows. O

The following more general theorem given in [170] is essentially due to Valiron
[406].

Theorem 2.45. Let f(z) be a non-constant meromorphic function in C™. Take
{ao, ..., ap,bo,...,bg} C M(C™)

with ap # 0 and by # 0 such that the rational function in w,

?:0 a;j(z)w’

;1‘:0 bj(z)w?

R(z,w) = , (2.4.9)

is wrreducible. Then the function R¢(z) = R(z, f(2)) satisfies the estimation

T(r, Ry) = max{p,¢}T(r, f) + O | Y T(r,a;)+ > T(r,b) | . (2.4.10)

=0 =0

Proof. See A.Z. Mokhon’ko [273], F. Gackstatter and I. Laine [111], P.C. Hu, P.
Li and C. C. Yang [168]. O

2.5 Lemma of the logarithmic derivative

From the Poisson-Jensen formula (see Theorem 7.17), A. Gol’dberg and A. Grin-
shtein [114] estimated sharply growth of logarithmic derivatives of meromorphic
functions in C.
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Lemma 2.46. Let f be a non-constant meromorphic function in C, and let 0 <
a < 1. Then, for r,p € RT with r < p, we have

2177/ o)) @ < Lol (m(”’f”m<p’;>>o}a

f(rei)
2-&-2370‘ n(p,f)—&-n(m})

am
COSs 2 r

For a meromorphic function f in C™, following Stoll [375] (or Biancofiore
and Stoll [24]) one restricts it to a complex line of C™ passing through the origin,
applies the result of Gol’dberg and Grinshtein, and then averages over the set of
all complex lines. Z. Ye [443] proved the following fact (or cf. [168]):

Lemma 2.47. Let v = (vy,...,vpy) € ZT be a multi-index with length |v| = vy +

o« + Up. Let f be a non-constant meromorphic function in C™. Then for any «

with 0 < a|v] < é, there is a constant C > 1 such that for anyrg <r < p < R,
o f

we have v
« 2777471 |V
/ agc{(") T(R,f)} _
Cm™(0;r) f

r p—r
Proof of the following lemma can be found in Hinkkanen [159] (also see [295],
[151]).

Lemma 2.48. Let p(r) and ¥(r) be positive non-decreasing functions defined for
r>ry >0 and r > re > 0, respectively, such that

/OO wcévr") % /OO rj(rr) < 0. (2.5.1)

Let T(r) be a positive non-decreasing function defined for r > rg > 1 and T(r) >
ro. Then if C is real with C > 1, one has

¢(r)
T (r + w(T(r))> < CT(r) (2.5.2)

whenever r > rg and r € E, where

dr 1 C * dr
/ESD(T) = P(w) + C-1 /w rp(r) <0 (2.5.3)
and w = max{ry, T(r3)}.

Let a and b be real-valued functions on Rt. We will use the notation

| a(r) < b(r)
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to denote that the inequality a(r) < b(r) holds as r — oo outside of a possible
exceptional set E/ with [ dr/¢(r) < co. Next we assume

w(r) =0(r) (2.5.4)
and put ) -
_, o(r _ R+r _, o(r
Bt ywey P72 T ey (255)
Lemma 2.48 implies
P () .
I T(R)= T( + ¢(T(r))> < CT(r). (2.5.6)
On the other hand, for all large r,
b _opy, 1 L 2(T6) (257
. Cper T ) >
Hence we have T(R) T (T()
p 2m—1 _ r r
I (T) P —O( o) ) (2.5.8)

We usually choose the functions ¥ and ¢ as follows

Y(r) = (logr)1+8 (e>0), o(r)=r. (2.5.9)

Thus the inequality (2.5.8) assumes the following form:

I <P>2m—1 T(R) _0 (T(T)(logT(r))1+s> |

2.5.10
r p—r r ( )

The lemma of logarithmic derivative due to Nevanlinna [292] and Vitter [414] can
be improved as follows:

Lemma 2.49. Let ¢ and ¢ be defined as in (2.5.1) satisfying p(r) = O(r) and as-
sume that f is a non-constant meromorphic function in C™. Letv = (v1,...,vp) €
77 be a multi-indez. Then

| m (r, 6;f> < u|log* T f)j(g(’"’ D on).

Proof. By the concavity of the logarithmic function and Lemma 2.48, we obtain

m (r, 8;f) < ; log™ C™ <0;r; B;f 0‘> +0(1)
< whog ()" BN vony @san

for any R > p > r > ro. Therefore the lemma follows by applying the estimate
(2.5.8) to the characteristic function T'(R, f). O
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If one applies the estimate (2.5.10) to T'(R, f), one obtains the following form
of the lemma of the logarithmic derivative (cf. [443]):

Lemma 2.50. Assume that f is a non-constant meromorphic function in C™. Let
v=(V1,...,Vm) €LY be a multi-index. Then for any e >0,

| m ( f ) < v|log* T(r ) + [v](1 + £) log* log T(r. J) + O(1).

f
Take multi-indices v; € Z7 (i = 0,1,...,n) with vg = 0 and |v;| > 0 (i =
1,...,n). For meromorphic functions fo,..., f, in C™, denote the generalized
Wronskian determinant with respect to multi-indices v; € Z7* (i =1,...,n) by
fo f1 e
ovL ovt - o1 "
W) = Wonw (o o) = | 70 200 0 .
o fo O f1 o f.
(2.5.12)
and define the generalized logarithmic Wronskian
W (fo, - fn
S(forevoJo) = Sure (oo fo) = 0 0o, (2.5.13)

Following Vitter [414] and Fujimoto [106], first of all, we introduce some basic
properties of generalized Wronskians.

Lemma 2.51 (cf.[414], [106]). Let fo, f1,..., fn be linearly independent meromor-
phic functions in C™. Write f = (fo, f1,---, [n). Then there are multi-indices
vi € 2% (i =1,...,n) such that 0 < |v;] < i and f,0" f,...,0" f are linearly
independent over C™.

Proof. Set Fo = {f}, and for any positive integer k, write
Fro={0"f |veZy, |v| =k}

We first claim that there is at least one element in F; which is independent of f.
Assume, to the contrary, that 0., f and f are linearly dependent for j =1,...,m,
that is, there exist constants c; such that

a.,f=cif, j=1,....m. (2.5.14)

By using (2.5.14) and induction, it follows that any g € (Jr—; Fi and f are linearly
dependent. Take zo = (201, .. ., 2om) € C™ such that u3’(20) =0 (i =0,1,...,n).
Then f has the Taylor expansion near z,

f(2)

f(20) +Zaz]f (20)(2; — 205) + -+~

j=1
m

f(20) +fZOZ — Zoj) +
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where z = (21,...,2m), that is, f(z) = f(20)h(z) for a holomorphic function h
near zg. Hence

fl(Z):fl(Zo)h(Z)7 i:0317"-7na

which implies that fo, f1,..., fn are linearly dependent in a neighborhood of zj,
and therefore in C™ by the identity theorem. This is a contradiction. Hence the
claim is proved.

Next suppose that

f£,00f,...,07 f (Jui] <i,1<s<mn)

are linearly independent over C™. We will prove that there exists vs41 € Z such
that |vsy1| < s+1and f,0" f,...,0" f,0V"+' f are linearly independent. Assume,
to the contrary, that the claim is false. Then f,0"' f,..., 0 f forms a maximal
linearly independent set in UZE) Fi, and hence in UZO:() Fi by induction. Thus
the Taylor expansion of f at the point zg € C™ gives

f(z) = f(z0)ho(2) + 0" f(z0)h1(2) + - -+ + 0" f(20)hs(2),
where h; (1 =0,...,s) are holomorphic functions near zg. In particular, we have
fi(2) = fi(20)ho(2) + 0" fi(z0)h1(2) + -+ + 0" fi(20)hs(2), i=0,...,n.

Hence fo, f1,..., fn are linearly dependent in a neighborhood of zy, and so in C™
by the identity theorem. This is a contradiction. Hence the lemma is proved. [

According to the proof of Lemma 2.51, we can choose carefully the multi-
indices v; € Z' such that they satisfy the following properties:

Corollary 2.52 (cf. [106]). Let fo, f1,..., fn be linearly independent meromorphic

Junctions in C™. Write f = (fo, f1,..., fn). Then there are multi-indices v; € Z]
such that

0<|VZ|SZ(Z:177n)3 |V1|S"'S|Vn|7
0" f ..., 0" f are linearly independent over C™, and we have the partition

{1/17...71/71}:]1U12U"'UIS (ISSS’R)

such that
0#Lc{velZl | |v|=k} k=1,...,s,

and when 1 < k < s, each element in {0"f | v € ZT', |v| =k, v & I} can be
expressed as a linear combination of the family {f,0"f |v € [ UL, U---UI;}.
For such multi-indices, the identity

W (hfo, ..., hfn) = K" YW (fo,..., fn)

holds for any mnon-zero meromorphic function h on C™.
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Berenstein, Chang and Li [19] proved the following result:

Lemma 2.53. Let fo, f1,..., fn be n + 1 meromorphic functions in C™. Assume
that there are X € J)'_, and multi-indices v; € 27" with 0 < || <4, 1 <i<n—1
such that

Wi (a©)s Fa@ys -5 fam—1)) Z 0.
Assume that for all 0 <i<n—1, 1 <j<m, one has

Wul---un,l,erLj (va fla sy fnfla fn) = 07

where 0" =1, 1; = (0,...,0,1,0,...,0) € Z7 in which 1 is the jth component of
tj. Then fo, f1,..., fn are linearly dependent.

By Lemma 2.53, we can choose the subset I in Corollary 2.52 such that

Worw, (fo,-- 5 fn) # 0.

If #I; = 1 in Corollary 2.52, then v,, € I, and Lemma 2.53 shows that we may
choose v, such that v, = v+ ¢; for some v € I,_1,j € Z[1,m)].

From now on, we will assume that the multi-indices v; € Z7" in Corollary 2.52
satisfy the above property. Set

l=|n|+-+lvnl, w=lvl (2.5.15)

The integers | and w will be called the (Wronskian) index and the Wronskian
degree of the family { fo, f1,..., fn}, respectively. Obviously, the numbers w and !
satisfy the following properties:

l<w<n<l< ”(”; b, (2.5.16)
In particular, if m = 1, we have
w=n, l= ”(”; b (2.5.17)
Set
Jfo f1 fic1 fin fa) .
& = (&ity- s &in =< S ) et ,i=0,1,...,n.
(G = fi ki fi

Denote the union of the sets of poles of the §;’s by

Pr=J & (),

i=0j=1
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and define
8z1 &1 67.152'2 e 8z1 gzn
| g onge o audn |
02,61 02,62 - 0:,.6m
v= Zeg}'?‘zipf Oréllagxn rank (J;(2)) . (2.5.18)
Note that

W(fosfis-os ) = (1 fIW(L &y Gn)-
Then there exist integers ji,...,j, with 1 < 51 < --- < jy < m such that
J:0x, foo o ,8% [ are linearly independent. Thus the multi-indices v; € ZT (i =
1,...,n) satisfy
Wl =1(1<i<q), 2<<i—qy+1(y+1<i<n),  (2519)

and hence
(n—7)(n—v+3)

w<n—-—vy+1, [ <~v+ 9 (2.5.20)
Lemma 2.47 implies directly the following result:
Lemma 2.54 (cf. [168]). Let fo,..., fn be non-constant meromorphic functions in

C™. Assume that there exists a positive non-decreasing function T(r) in RT such
that

T(r, f;) =0T(r)), j=0,...,n.
Then for any real number o with 0 < «alv;| <
such that for any ro <r < p < R, we have

2(n1+1), there is a constant C' > 1

T p—r
Further we can easily get the following lemma from Lemma 2.54.

Lemma 2.55 (cf. [168]). Given a family F = {fo,..., fq} of meromorphic functions
in C™ such that ¢ > n and W (fr), .-, fam)) #Z0 for some X € J1. Assume that
there exists a positive non-decreasing function T (r) in RY such that

T(r, f;) =0T(r)), j=0,...,q.
Then for any ro < r < p < R, we have

cm <O;T;10g Z |S(f)\(0), ceey f)\(n))|> <llog { (f)szl T(R) } + 0(1)

-
AeJE p

e st g < { (07 TN

In particular, if T(r) = O(r*) for some p > 0, we have

cm <0;7";10g > 8- -7f>\(n))|> <I(p—1)logr +O(1).

\EJE
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2.6 Second main theorem

To state the second main theorem in Nevanlinna theory, we need some notation.
Let V be a complex vector space of dimensions n + 1 > 1. We consider a linearly
non-degenerate meromorphic mapping f : C™ — P(V). Take an orthonormal
basis e = (eg,...,en) of V and let

f="foeo+ -+ fnen :C" —V

be a reduced representation of f. Since f is linearly non-degenerate, it is equivalent
to the fact that fo,..., f, are linearly independent in C™. Set

= =0 2.6.1
fi i j R (2.6.1)

By Corollary 2.52, there are multi-indices v; € Z7* (i = 1,...,n) such that 0 <
|I/i| S 7 and

W(fo, -y fn) =Wy .0 (fo, -, [n) Z0.
The multi-indices v; € Z7 in Corollary 2.52 do not depend on the choice of

a reduced representation f of f. The index | = |v1| 4 --- 4 |vpn| of the family
{fo,- -, fn} will be called the (Wronskian) indez of f. The number |v,| is said to
be the Wronskian degree of f.

Let 7 be the rank of f. Then 1 < < min{m,n}. According to Lemma 2.51
and Corollary 2.52, the multi-indices v; € Z" (i = 1,...,n) satisfy

il=1(1<i<7y), 2<|y|<i—-y+1(y+1<i<n), (2.6.2)
and hence

(n—=7)(n—7+3)

w<<n—vy+1, [I<y+ 9

(2.6.3)

The ramification term

NRram(r, f) = N (r, W (2.6.4)

i)
(fo,---s fn)
is well defined with respect to the multi-indices v; € Z'* in Corollary 2.52.

In particular, if f is a non-constant meromorphic function in C, one can find
two entire functions g and h without common zeros such that Af = g. Hence

f=(hg):C—C*—{0}
is a reduced representative of f. It follows that

W(h,g) = hg' — gh' = h*f’.
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Therefore we have

Niram(r, f) =2N(r, f) = N(r, f') + N (7‘7 ;/) . (2.6.5)

Now we state and prove the second main theorem (cf. [295], [151], [384], [414],
[159], [443]).

Theorem 2.56. Let f : C™ — P(V) be a linearly non-degenerate meromorphic
mapping and let of = {ag,a1,...,aq} be a family of points a; € P(V*) in general
position. Let 1 be the index of f. Then

(¢—mTHr) < 3 Np(r.a;) — Nam(r. f)
§=0

+log { (f)mil ifERT) } +o(1)

holds for any ro < r < p < R, and hence for any € > 0,
(q_an ZNf Ta] NRam(raf)

+l {long( )+ (1 +¢)loglog T (r) — logr} + O(1)

holds for all large r outside a set E with fEdlogr < 0. In particular, if f is of
finite order A, then for any € > 0, one has

q

(g —n)Tf(r) < ZNf (rya5) — Nram(7, f)
7=0
+l(A+e—1)logr 4+ O(1).

Proof. We prove Theorem 2.56 for the case ¢ > n. For the case 0 < ¢ < n, see the
next section. Take a; € V* — {0} with |a;| = 1 and P(a;) = a;. Write

@i = @io€o + - -+ + Ain€n, 1=0,...,q,

where € = (e, ..., €,) is the dual of e. For i = 0,1,...,q, set
. e R F;
E:<f7a,i>:ai0f0+ai1f1+"'+ainfna Gz:f:
0

Since f is linearly non-degenerate, then F; # 0. Because ./ is in general position,
we have ¢y = det (@x(;);) # 0 for any A € JZ. We abbreviate the Wronskian

W =W (fovflv---vfn> . Wi =W (Fxo), Fxays-- - Fay) -
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It follows that W) = ¢ W. Lemma 1.61 implies

q 1 1 q—n n 1
< max .
jl;[o | f, a4 (F(ﬁf)> /\EJﬁil;[ |y axel

0
Since
ﬁ 1 :ﬁ £l :|f|n+1ls(FMO)vFA(l)a---vFA(n))| (2.6.6)
“o ool g 1ol [eA W]

by using Corollary 2.52 we have

q 1 1 g—n+1 |f~|n+l
H |f Cl‘| < (F(%)) |W| Z |S (G)\(O)aG)\(l)a"'aG)\(n))|7
j=0 117" AeJd
which yields, for r > rg,
q
S mp(ra;) < (n+1)C™ (0575 log | 1) — C™(0; 73 log [W]) (2.6.7)
i=0

+Ccm <O;r;10g Z |S (G)\(O),G)\(l), RN G)\(n))|> +0(1).
AeJl
According to the definition (2.3.13) of characteristic functions, it is easy to get the
inequality
1
T(r,G;) < C™(0;r;log™ |Gi]) + N (r, i ) .
0
The Schwarz inequality yields |F;| < |f], and so |Gi| < |f|/|fo]. Thus we have

TG < N (1. 1 ) = € (0ol ol + €™ (0sritog 7).
o

By Jensen’s formula (2.3.11) and (2.3.21), the inequality
T(r,Gi) < Ty(r) + O(1)

holds for ¢ = 0,1,...,q.

Applying (2.3.21), Jensen’s formula (2.3.11) and Lemma 2.55 in (2.6.7), The-
orem 2.56 follows from (2.6.7) and the first main theorem (2.3.33). The second
inequality in Theorem 2.56 can be easily deduced from the method in § 2.5. O

The second main theorem was established by Nevanlinna [292] for meromor-
phic functions in C, and was extended to holomorphic curves into projective spaces
by Cartan [51]. The case of several complex variables was first proved by W. Stoll
[375], [376] by using Ahlfors’ theory of associated mappings (cf. [436]). The refined
estimates of error terms in the second main theorem was obtained by Z. Ye [443]
(or see Hinkkanen [159], Lang and Cherry [235] and Wong [433]). For the case
m =n =1, Z. Ye shows that Theorem 2.56 is sharp in the following sense:
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Theorem 2.57 (cf. [235]). Given € > 0, there exists an entire function f of finite
order on C and a finite set o7/ = {ap,a1,...,aq} such that for all large r,

q

(¢=1T(r, f)=>_ N (r, / _1%) + Nram (1, f) > (1 — &) log T(r, f).

J=0
From Theorem 2.56, we obtain directly the following result of A. Bloch [28]
and H. Cartan [49].

Corollary 2.58. Let o/ = {ag,a1,...,an41} be a family of points a; € P(V*)
in general position, n > 2. If f : C™ — P(V) — U, Ela;] is a non-constant
meromorphic mapping, then its image lies in a hyperplane.

Take a € P(V*). For a positive integer k, we define the truncated multiplicity
function of order k on C™ by

wgx(2) = min{uf(2), k}, =€C™, (2.6.8)
the truncated counting function of order k,
nyk(r,a) == nye, (1), (2.6.9)
and the truncated valence function of order k,
Nyx(r,a) = Nya  (r). (2.6.10)

Take a € V*—{0} with P(a) = a. Write @ = @gpeo+- - -+ané€n, where e = (g, ..., €)
is the dual of e and set

F=(f.a) =aofo+arfi+ +anfa

Then )
Nf,;g(r, a) = Nk (T, F) . (2.6.11)
Define the truncated defect of order k of f for a by
) Ny w(r,a)
drr(a) =1—limsup (2.6.12)
! r—oo Ty(r)
Note that when f is a reduced representation of f, we also have
1
Ny¢(r,a) =N (r, F) . (2.6.13)

If n = 1, that is, P(V*) = P!, we usually denote the truncated counting
function

. Nk (tv fia) if v= /’l’?,ka

n,(t) = (2.6.14)
n (t, fia> ifv= 2T
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and the truncated valence function

() it =ag

N,(t) = 2.6.15
) N (t, fia> ifv=pf,. ( )

In particular, if a = co, we often write

1 1
N <t7 f—a) = N(t, f)7 Ny, (t7 f—a) = Nk(t, f)7

and so on.

We continue to study Theorem 2.56 and give applications of the index [ and
Wronskian degree w of f. Using the symbols in the proof of Theorem 2.56, we can
define a meromorphic function by

FyFy ---F,

H= 2.6.1
o (2.6.16)
By (2.6.13) and the Jensen formula (2.3.11), we obtain
I 1
> Ny(r,a;) = Npam(r, f) = N (r, H) — N(r,H). (2.6.17)
§=0
There exist three entire functions u, hy and he on C™ such that H = Z; and

dimh;H(0) N Ay H(0) <m —2, W = uhs.

If ) (x) > 0 for some z € C"™ — (I U h5*(0)), then

#{i | Fj(z) =0} <n+1
since .7 is in general position. Without loss of generality, we assume ¢ > n, and

{j | Fj(z) =0} C {\0),...,A(n)}
for some A € J1. Then one has
q
() = iy () = 1y, (@) = > max {uf, (@) = w, 0},
j=0

where w is the Wronskian degree of f, which means

pgr () =Y ph () — iy (z) <D p (@),
=0 =0
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Thus we can obtain the following estimate:

1 q
N (n H) < ;Nf,w(n a;). (2.6.18)

Similarly, we can prove

131 (2) = piny..., () — b (@) < plgy e, 1 ()

by estimating the multiplicity of zero of each term in the Laplace expansion of W

at x, and hence
1 1
< . .0.
N(T’H>Nl(r’F0"'Fq> (2.6.19)

Therefore Theorem 2.56 yields immediately the following truncated form of the
second main theorem:

Corollary 2.59. Let f : C™ — P(V) be a linearly non-degenerate meromorphic
mapping and let o/ = {ag,a1,...,aq} be a family of points a; € P(V*) in general
position. Let I, w be the index and Wronskian degree of f, respectively. Then

q
p\#m=1 Ty (R)
—n)Tf(r) < — N(r,H 1 1
(€= Ty £ 32 Nyl o) = N o (1) o)
holds for any ro < r < p < R, and hence for any € > 0,
(g —n)Ts(r) ZNﬁ r,a;) — N(r,H) + llog Ty ()

—H(l +¢)loglog T¢(r) — llogr + O(1)

holds for all large r outside a set E with fE dlogr < oco. In particular, if f is of
finite order A, then for any € > 0, one has

(g—n)Ty(r <Zwaraj —N(r,H)+1I(A+e—1)logr+ O(1).

The Wronskian degree w of f occurring in Corollary 2.59 was observed by
Fujimoto [106]. In [229], Chapter VII, Section 6 (or see [135]), it was observed that
Cartan’s proof [51] can be easily adjusted so that the term —N(r, H) appears in
the inequalities in Corollary 2.59.

Corollary 2.60. Let f : C™ — P(V) be a linearly non-degenerate meromorphic
mapping and let o/ = {ag,a1,...,aq} be a family of points a; € P(V*) in general

position. Then
q
Z dr(aj) < Z )<n+1,
Jj=

where w is the Wronskzan degree of f.
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The inequality in Corollary 2.60 is usually called the defect relation of f.
In particular, if ¢ = n + 1, it means that there exists j € {0,1,...,n 4+ 1} such
that f(C™) N Efa;] # 0 (Borel [29]). Further, this implies that a non-constant
meromorphic function on C™ omits at most two values of P!, which is just the
classic Picard’s little theorem.

2.7 Notes on the second main theorem

We continue the situation of Section 2.6 to consider a linearly non-degenerate
meromorphic mapping f : C™ — P(V'), where V is a complex vector space of
dimensions n+ 1 > 1, and use the symbols in Section 2.6. First of all, we consider
the case ¢ = n, and restate Theorem 2.56 as follows:

Theorem 2.61. Let f : C™ — P(V) be a linearly non-degenerate meromorphic
mapping and let o = {ag,a1,...,a,} be a family of points a; € P(V*) in general
position. Let | be the index of f. Then

- 2m=1T¢(R
Niam (7, f) S;Nf(r,aj)wlog{(f) pfﬁ T)}+o(1)
holds for any ro <r < p < R.
Proof. We prove it again. Take an orthonormal base e = (eg,...,e,) of V and let
f=Joeo+ -+ foen : C" —V

be a reduced representation of f. Let € = (e, ...,€,) be the dual of e. Without
loss of generality, we may assume that

CI,jZP(Gj), j:O,l,...,n.

The ramification term

1
Nam 9 :N 9 ~ ~
aen(1 f) <T W(fm...,fn))

is well defined with respect to the multi-indices v; € Z* in Corollary 2.52. Then
the Jensen formula (2.3.11) implies

Nram(r, f) = (Cm<0;r;log|W(f07...,fn)|>—|—O(1)

S

= Yo (0smitoglfil) + €7 (05milog S (o, -, fu)l) + O(1)
0

<
Il

[
NE

Ny(r,a;) + C™ (0;7;1og [S(L, f1,..., fu)l) + O(1).

<.
Il
o

Therefore Theorem 2.61 follows from Lemma 2.55 and Lemma 2.37. O
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When 0 < g < n, Theorem 2.61 and the first main theorem (2.3.33) imply

N 1) €3 Ny(r.ay) + = oty + o { (7)o,

=0 p=r
(2.7.1)
that is, Theorem 2.56 holds for ¢ > 0. Further, we have

n=1 Ty(R)

Nian 1. ) <+ 125(r) + 1og { (7).

} +0(1), (2.7.2)

which is Theorem 5.12 in Stoll [383] with a good error term. If f is a non-constant
meromorphic function on C™, we have

2m=1T(R, [)
p—r

Nram(r, f) < N(r, ) + N (n ;) +log { (f) } +0(1). (2.7.3)

In particular, if f omits ¢+ 1 hyperplanes in general position with 0 < g < n,
then

Nram(r £) < (n— Q)T (r) + Llog { (f)%*l if@ } Lo), (274
and so
Ram; = lim inf NR;;“(% D cn_y

Conversely, if Ramy > n, then f can not omit any hyperplane.

Secondly, if the condition of general position on &/ is omitted, then Theo-
rem 2.56 assumes the following form (cf. [418], [328]):

Theorem 2.62. Let f : C™ — P(V) be a linearly non-degenerate meromorphic
mapping and let &7 = {ag,a1,...,aq} be a family of points a; € P(V*). Let | be
the index of f. Then

cm <0, T max 10 H |f axg > < (n + I)Tf(r) B NRam(T’ f)
o\ Ty(R)
+llog{<r> pf_r }+O(1)

holds for ro < r < p < R, where the mazimum is taken over all X € Ji (&) with
0<k<n.

Proof. In fact, for A € Ji(7), we can take by 1,...,bxn—r in P(V*) such that

B = {axoy; - k), a1y ban—k}
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is a family in general position. Take by ; € V* — {0} with |by ;| = 1 and P(by ;) =
by,i, and set

. Fy,
Fri= <f7b)\,i>7 G = M

0

According to the proof of Theorem 2.56, then there exists a positive constant ¢
depending on ¢/ and {by ;} such that

max ﬁ 1 < max ﬁ |f| ’ﬁ“ |f|
AT () - Ifyaxi@| — Aede(e) =0 |F,\(i)| =1 I3w1

|l
< S (F .. F Fyi,... Fx e
scC |W| Aerglli};)l ( A(0)s s TX(k)s £A 1 y LA, k)|
< | S (G G G G
= lw Z 1S (Ga0)s- -+ Gak)» Gats - - - Gan—k) |,
XE T (o)
and so Theorem 2.62 follows from the arguments of Theorem 2.56. 0

Thirdly, for a positive integer d, by using the notations in Section 1.5.2, a
non-constant meromorphic mapping f : C™ — P(V) induces a meromorphic

mapping
fl =g 0f:C"™ — P(I4V)

such that the characteristic function of f¢ satisfies
Tfud(r) = de(?"),
where ¢q : P(V) — P(I14V) is the Veronese mapping.

Take a € P(II4V*) such that the pair (f19, a) is free for the interior prod-
uct Z. Applying (2.3.33) to f!¢ and a, we obtain the first main theorem for a
hypersurface £%a),

dTy(r) = Nyua(r,a) +mma(r,a) — mgua(re, a). (2.7.5)

Further, if the mapping f : C™ — P(V) is algebraically non-degenerate, that is,
the image of f is not contained in any proper algebraic subvariety of P(V'), one
has the second main theorem:

Theorem 2.63. Let &7 be a finite admissible family of P(LL;V*). Let f : C™ —
P(V) be an algebraically non-degenerate meromorphic mapping. Then

I Y {dTs(r) = Nyua(r,a)} < {n+ 1+ o(1)}dTy(r). (2.7.6)
acod
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Originally, Theorem 2.63 was a conjecture due to Shiffman [346]. For some
discussion related to Theorem 2.63, we refer the reader to [173], [176], [175] and
[330]. A proof will be introduced in Section 3.8.3.

Finally, as a simple application of Corollary 2.59, we can derive simply the
following abc-theorem for entire functions over C™.

Theorem 2.64. Let a, b and ¢ be non-zero entire functions in C™ with a +b = c.
Assume that a, b, ¢ are not all constants, and dim I < m — 2, where

I={ze€C™ | a(z) =b(z) =c(z) = 0}.

Then the inequality

T(r) < N (n azc> +log { (p)Qm_l T(R) } +0(1) (2.7.7)

r p—r

holds for ro < r < p < R, where

Proof. Write
a
f=, 9=
c

Then both f and g are not constant by our assumptions, and satisfy f + g = 1.
By the second main theorem (cf. Corollary 2.59), for ro < r < p < R we obtain

T(rf) < N(r,f)+N<r7}>+N(T’fil>

+log{(f)2m_l Tp(]j’f)} +0(1).

Wy a) = () = ()
ACHEICHERICH

+log{(p)2m ' Z(Rz} +0(1)

Noting that

we obtain

T(r, f)

IN

r

N (r, a})c) +log { (f)m_l Z(_RZ} +0(1),

Symmetrically, this inequality is true for g. O
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If m = 1, Theorem 2.64 was proved by M. van Frankenhuysen [410]. How-
ever, the error term in van Frankenhuysen’s result is not better than that of
Theorem 2.64.

Take a positive integer k. For a polynomial f in C™, we have

Ng (r, L
N (oo,J{) = lim ny (T’ch> = lim k(r f>.

T—00 T—00 log T

This number will be simply denoted by ri(f). We also abbreviate
r(f) =r1(f)-

If the functions a, b and c in Theorem 2.64 are polynomials, dividing the inequality
(2.7.7) by logr and letting » — oo, then (2.7.7) and (2.4.6) yield immediately
Stothers-Mason’s theorem ( [252],[253],[254], [387], or cf. [231], [415]):

Theorem 2.65. Let a(z), b(2), c(z) be relatively prime polynomials in C and not
all constants such that a +b = c. Then

max{deg(a),deg(b), deg(c)} < r(abc) — 1. (2.7.8)
In particular, if
a(z) = (14 2)%, b(z) = —(1 = 2)%, ¢(z) = 4z,

then the inequality in Theorem 2.65 becomes the equality 2 = 2 (cf. [135]). Thus
the inequality is sharp. Elementary proofs of Theorem 2.65 without using Nevan-
linna theory are due to [119] and [231]. For applications of Theorem 2.65, see [253];
[288], pp. 183-185.

2.8 The Cartan-Nochka theorem

In this section, we use the estimates of the error terms of the second main theorem
from Ye [443] to restate the results on Cartan’s conjecture due to Nochka [301]
(see Theorem 2.66 and Theorem 2.70).

Let V be a Hermitian vector space of dimension n+ 1 over C. First of all, we
show the second main theorem of meromorphic mappings into P(V') for a family
of P(V*) in subgeneral position.

Theorem 2.66. Let o7 = {aj}g‘:o be a finite family of points a; € P(V*) in u-
subgeneral position with u < 2u —n < q. Let f : C™ — P(V) be a linearly
non-degenerate meromorphic mapping. Let | be the index of f. Then

(@=2u+n)T(r) < > Ow(a;)Ns(r,a;) — ONgam(r, f)
=0

+l910g{(f)2m_1 ifg? } +0(1)  (2.8.1)
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holds for any ro < r < p < R, where 8 > 1 is a Nochka constant, and w : of —
R(0,1] is a Nochka weight.

Proof. We will adopt the notations that were used in the proof of Theorem 2.56,
and without loss of generality, assume ||a;|| = 1 for j = 0,...,¢. Lemma 1.61

implies
q w(aj) q—u
1 ’ 1
|I < Il
j=0 (”f’ a.7||> a (F(M)> AGJ" ||f’ a}\(])”

Then from (2.6.6) and Corollary 2.52, we obtain

- “@) ) f
<c S (Gr0)s Gaqays - -+ Gam) |
H<Ilf7agll> =7 |w| 218G Gry Am)) |

reJ

where ¢ is a positive constant. According to the proof of Theorem 2.56, we obtain
wlaj)me(r,a;) < (n+1)T¢(r) — Nram(r, f)

+ilog { (ﬁ)2m_1 ifﬁf? } +0(1). (282

M-

<
Il
o

By (2.8.2) and the first main theorem (2.3.33), we obtain

> wla)—n—1|Te(r) < Y w(a;)Ns(r,a;) = Nram(r, f)

§=0 §=0
P\t Tr(R)
+llog{(r) S+ 00).(283)
Thus (2.8.1) follows from (2.8.3) and 2) in Lemma 1.59. O

Lemma 2.67. Let o = {aj}g‘:o be a finite family of points a; € P(V*) in u-
subgeneral position with u < 2u —n < q. Let f : C™ — P(V) be a linearly
non-degenerate meromorphic mapping. Then for z € C™,

q q
> wlagu, (=) = 1y (2) £ Y wla) min {p (), 0}
7=0 j=0

where w : &/ — R(0,1] is a Nochka weight, and w is the Wronskian degree of f.

Proof. We follow the methods of Lemma 3.2.13 in Fujimoto [107] to prove Lem-
ma 2.67. It suffices to show that

z) > Zw(aj) max {u%j (z) —w, 0} = v(z). (2.8.4)
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In fact, since

min { 4, (2),w} +max {f, (2) = w,0} = uf, (2),

then (2.8.4) implies

q

> wlajul, (2) = 1 (2)

j=0 §=0 ' j=0

IN
(7=
£
S
<~
=
!
©
|
(7=
£
S
<
=
)
"
=
=
qu
O
|
&
o
——

Il
(-
£
S
<S
=
=
—
=
ol
X
g
——

To prove (2.8.4), take an arbitrary zp € C™ — Iy and set

S:{j|/J“%j(ZO)ZU/-l-l}C{(Ll,...,q}.

We may assume that S # (). Then #S < u. Otherwise, by the assumption of u-
subgeneral position, there is A € J¢ with Im(\) C S such that dim E(&)) = n+1,
and so fo,..., fn are represented as linear combinations F(g,. .., F\().- Then
fo, R fn vanish at zg, which is a contradiction.

Now we consider the sets S; (0 <14 <) such that

So 22(2)7551C52C"'C51 =9
and ,u,%j (20) equals some constant w; for each j € S; — S;_1, where
wyp > wg > - > Wy

Then we have
E(ds,) C E(ds,) C -+ C E(s,).

For each i take a subset T; of S; such that
Ti—1 C T;, dim E(os,) = dim E(ofy,) = #7T5.
Then we have

#(Tl — Tifl) = dim E(dgb) — dim E(,,Q{SFI).

Abbreviate
w; =w; —w
We have
l
v(z) = Y wlag) (uh(z0) —w) =D D wlayu}
JES i=0 j€S8;—S; 1
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Thus 4) in Lemma 1.59 yields
v(zo) < (w] —w;)dim B (s, ) + (wi — w;) dim E(ls, ) + - - - + w] dim E(s,)
= #Twi +#(T2 = T)wy + -+ #(T — Ti-1)wy.
Assume #1; = k + 1 with 0 < k < n. We can choose o € J,’j such that T} =
m(o). Since dim E (%, ) = k+1, after a suitable non-singular linear transformation
of homogeneous coordinates we may assume that
fo= Foeo), -+ fr = Fo(ky-

Then, with the Laplace expansion theorem for the determinant, the Wronskian W
is expanded as the sum of the products of some minors of degree n — k and some
minors of degree k + 1 whose components consist of the < wth partial derivatives
of the functions Fy gy, ..., Fiy(x). This implies

i (20) = 3 (1 (20) = w) -
JET

Since u%j (z0) = w; for every j € T; — T;_1, this quantity coincides with the last

term of the above inequalities. This completes the proof of Lemma 2.67. g
Note that .
> wlajuy, — = pt -,
j=0
where
q
pE) = maxd S wlau (2) - (2,0
=0
q
po(z) = max< y(z) = Y wla;)uf (2
=0
Set

_ | Fp|«(@o) ... |Fq|w(aq)
|W(f07' . 7fn)|

)

and formally write

N (n 12) = N,i(r), N(rH) =N, (r).

Then Lemma 2.67 implies

N (Ta I;) < iW(aj)Nf,w(h aj)-

0
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Corollary 2.68. Assumptions as in Theorem 2.66. Then

(g —2u+n)Ty(r) < Z Ow(a;)Nyw(r,a;) — ON(r, H)
3=0

+10log { (ﬁ)2m_1 ifERT) } +O(1), (28.5)

where I, w are the index and Wronskian degree of f, respectively.

Corollary 2.69. Assumptions as in Theorem 2.66. Then

> wlag)dp(az) <Y wlag)dpwlay) <n+1,

=0 =0

Q

Now we eliminate the restriction of non-degeneracy on f. Take a reduced
representation f : C™ — V of a non-constant meromorphic mapping f : C" —
P(V) and define a linear subspace of V* as follows:

E[f]={aeV* | (f,a)=0}, (2.8.6)
which will be called the null space of f, and write
EdeimE[f], kzn—ﬁf.

The number £ is non-negative, i.e., 0 < £y < n. In fact, if £ < 0, that is, £y = n+1,
there is {ap, ..., an} C E[f] such that

ao A ANa, #0; (fa))=0(0<j<n).

By Cramer’s rule, f = 0, which is impossible. Then V* is decomposed into a direct
sum

Vi=Ww"®o E[f],

where W* is a k 4+ 1 dimensional subspace of V*. Then f is said to be k-flat. In
order to simplify our notation, we define £; = 0 if f is linearly non-degenerate,
that is, E[f] = {0}, and say that f is n-flat.

From now on, we assume that & = {a;}J_ is in general position and assume
that f is non-constant and k-flat with 0 < k < n < ¢ such that each pair (f,a;)
is free for j = 0,...,q. We take an orthonormal base ¢ = (e,...,€,) of V*
such that €g,...,e; and €x11,...,€, is a base of W* and E|[f], respectively. Let
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e = (eo,...,en) be the dual base of e. Let W be the vector space spanned by
€, - - .,ex over C. Thus the reduced representation f : C™ — V is given by

k k
f=2_Tfie; = Al ei)es
=0 =0

such that (f,€o),...,(f,ex) are holomorphic and linearly independent over C.
Hence a linearly non-degenerate meromorphic mapping f : C™ — P(W) is de-
fined with a reduced representation

- _ k ~
F=7=> (fe)ej:C" — W.
j=0

The mapping f will be called a simplified mapping of f. Therefore by (2.3.21), we
obtain

Ty(r) = C™(0;r5log || f]]) + O(1) = Ty (r) + O(1). (2.8.7)

If k = 0, then T4(r) is constant. The relation (2.8.7) will be impossible since
Ty (r) — oo as r — oo. Thus, we must have k > 1. Set

Nram (7, f) = Nram (7, f). (2.8.8)

The index | and Wronskian degree w of f will be called the (Wronskian) index
and Wronskian degree of f. By (2.6.3), we have

(k=) (k—~+3)

I1<w<k—vy+1, kE<I<~y+ 5 ,

(2.8.9)

where v = rank(f).

Theorem 2.70. Let of = {aj}g:o be a finite family of points a; € P(V*) in general
position. Take an integer k with 1 <k <n <2n—k <gq. Let f:C™ — P(V) be
a non-constant meromorphic mapping that is k-flat such that each pair (f,a;) is
free for j =0,...,q. Let I, w be the index and Wronskian degree of f, respectively.
Then

q

(¢ 20+ R)T;(r) <3 Nyulr,a +wbg{63%llnua}+00)

= p=r
holds for any ro <r < p < R, where 6 is a Nochka constant with

n+1<9<2n—k+1
k+1~" = k41
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Proof. Take a; € V* — {0} with P(@;) = a; and write

n

&j =Z<€i,6~lj>€¢, j:O,...,q.

=0

&j :Z<€1‘,aj>€i € W*_{O}v &j :]P)(é'j) GP(W*)a J=0,...,¢q.
1=0

Then the family o = {dj}gzo is in m-subgeneral position. In fact, take o € J4.
Then @y = (o) A+ A Gy(n) 7 0 since & is in general position, and hence

det((es, () #0 (0 <i,5 <mn).
Therefore, there is a A € J,g with ImA C Imo such that
det((es,arw))) #0 (0 <s,t <k).

We have

ay = det((es, are)))eo A - Nex # 0.
Hence A € J;,(«). Thus </ is in n-subgeneral position.
Note that

n k

=0 =0

We obtain .
Wy =u®, =0

By applying Theorem 2.66 to f, we have

(q—2n+ k)T SZ Nj(r,a;) — ONgam(r, f)
p\2m—1 T4(R)
+l910g{(r) ) }+O(1).

Thus Lemma 2.67 and the facts above yield
q
(¢=2n+k)Tr(r) < Y 0w(@;)Nyw(r.a;) = ON(r, H)
§=0

+l910g{(f)2m_1 :;fﬁ) } +0(1), (2.8.10)
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where
B |F0|w(do) e |Fq|w(dq)
W (fo,.. fo)l
and so Theorem 2.70 follows from 1) in Lemma 1.59. O

Corollary 2.71. With the assumptions as in Theorem 2.70,

q

q
S 6p(a) <Y 6pulag) < 20—k + 1.
=0

§=0
The defect relation in Corollary 2.71 refers to the Cartan conjecture which
has been proved by Nochka [301].

Corollary 2.72. Tuke an integer k with 1 < k < n. Let &/ = {a; ?26’““ be a
finite family of points a; € P(V*) in general position. If a meromorphic mapping
f:C™ — P(V) has its image in the complement of 2n — k+ 2 hyperplanes E[ao],
e E[agn,kﬂ], then this image is contained in a linear subspace of dimension
<k-1.

Corollary 2.72 which strengthens Corollary 2.58 is due to H. Dufresnoy ([84],
Théoreme XVI), see also Fujimoto [104], [105], Green [120], Kobayashi [208],
Lang [229].

Corollary 2.73. If a meromorphic mapping f : C™ — P(V) misses 2n + 1 or
more hyperplanes in general position, then it is a constant mapping.

Corollary 2.74 (cf. [208]). The complement of 2n+1 or more hyperplanes in general
position in P(V) is complete Kobayashi hyperbolic.

P.J. Kiernan [203] proved that P(V') minus 2n hyperplanes in general position
is not hyperbolic, and conjectured that the complement of 2n hyperplanes in any
position in P(V') is never hyperbolic; he verified the conjecture for n < 5. His
conjecture was proved by Snurnitsyn (cf [208]). Originally, Corollary 2.74 was a
conjecture proposed by S. Kobayashi [207] and H. Wu [436] in the end of their book.

Eremenko and Sodin [94] obtained the following second main theorem of
holomorphic curves which was conjectured by Shiffman [346] by an argument
completely different from that of Shiffman [346]:

Theorem 2.75. Let f : C — P(V) be a holomorphic mapping and let </ be a
finite admissible family of P(L1yV*) such that for each a € <, ("% a) is free for
the interior product Z. Then

I {dT(r) = Nyua(r,a)} < {2n+ o(1)}dTy(r). (2.8.11)
acd
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Based on Theorem 2.70 and Theorem 2.75, we suggest the following question:

Conjecture 2.76. Let f : C™ — P(V) be a non-constant meromorphic mapping.
Let k be the minimal dimension of algebraic subvarieties containing the image of f
inP(V). If & is a finite admissible family of P(I1yV*) such that for each a € o,
(fU9, a) is free for the interior product £, then

I {dTy(r) = Npua(r,a)} < {2n— &+ 1+ o(1)}dTy(r). (2.8.12)
acd

2.9 First main theorem for line bundles

Corresponding to heights for divisors in number theory, in this section we define
characteristic functions of meromorphic mappings for divisors (or line bundles) in
Nevanlinna theory. The first main theorem similar to (1.8.5) will be exhibited. We
also introduce a counterpart of Theorem 1.102.

Let M and N be connected complex manifolds of dimensions m and n, respec-
tively. Let m : L — N be a holomorphic line bundle over N with an Hermitian
metric x along the fibers of L. Let f : M — N be a meromorphic mapping.
Assume that 7 is an unbounded parabolic exhaustion of the complex manifold M.
The spherical image of f for (L, k) is defined by

Af(r,L, k) = M[O;r; f*(e1(L, K))], 7> 0. (2.9.1)
Define the characteristic function or order function of f for (L, k) by

" dt
Ty (r,70, L, k) z/ Af(t,L, k) ¢ T >70. (2.9.2)
T0

The following fact shows that characteristic functions of f have a similar property
with heights associated to Weil functions.

Proposition 2.77 (cf. [128], [380]). If N is compact, and if k,x’ are Hermitian
metrics along the fibers of L, then

T¢(r,ro, L, k") — T¢(r,r0, L, k) = O(1). (2.9.3)
Proof. There exists a function u of class C* on N such that
c1(L,k') = c1(L, k) + dd°u.

First of all, assume ro,r € R, with 7 > ro > 0. Let B be the difference of two
characteristic functions in (2.9.3). Then

B= / / fH(ddCu) A2
ro J M[O;t]
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Stokes’s formula implies
B= / / fr(deu) Ao™ Mt
ro J M{O;t)
1
= / T Mdr AdC(uo f) Av™TL
2 M[O;ro,r]

Note that if ¢, 9, x have bidegree (p,p), (¢, q), (I,1) respectively with p + ¢+ 1 =
m — 1, then

de Nd°Y AN x =dip Nd°¢ A x. (2.9.4)
Hence we have
1
B= / ™ ™d(uwo f) Adér Av™Th
2 JM(Osr0,1)
Further, by using (2.1.66), we obtain
1
B= / d(uo fyNo
2 M[O;ro,r)

1 1
| wene—, [ wepe
M{O;r) M(O;ro)

|B| < ¢max |u(z)] < oo.
zeN

which implies

Continuity shows the estimate for all r > r¢ > 0. O
Abbreviate
Af(r,L)=Af(r,L,k), Ty¢(r,L)="T¢(r,r0,L,K).

Then when N is compact and rg is fixed, the function T¢(r, L) is well defined,
up to O(1). According to the basic properties of Chern forms in Section 2.1.5, we
have

Ty(r, L") = =Ty (r, L),

and
Tr(r,L1 @@ Ly) =Tg(r, L1) + -+ T¢(r, Ly),

where Ly, ..., L, are Hermitian line bundles. In particular, if L = N x C is the
trivial line bundle, then
T¢(r,L) =0.

Proposition 2.78 (cf. [380]). Let x be an Hermitian metric along the fibers of a line
bundle L on N such that ¢1(L, k) > 0. If the meromorphic mapping f: M — N
is non-constant, then Az(r,L) >0 for r > 0. In particular,

Ty(r, L
lim s L) _ lim Ag(r,L) > 0.
r—+00 log r r—+o00
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Proof. An open set in M can be defined by
Mt ={zeM|v"(z)>0}={xeM|v(x) >0}

since v = dd°r > 7dd®log T > 0. We know that O = 771(0) # () and ¢ > 0 because
7 is parabolic (cf. [380]). Hence

/ Um — / ,Um — §7"2m
M[Osr] M(Osr)

implies that M™(O;r) is a non-empty open set for all r > 0.
Let S be the set of all x € M such that the Jacobian of f at x has rank
0. Then S is thin analytic in M. Fix r > 0 and take p € M (O;r) — {S U If}.

We can choose local holomorphic systems (U; 21, ..., zy,) and (W;ws, ..., w,) of
p and f(p) respectively such that f(U) C W, and

V-l $

v(p) = o Zdzj A dz;.
j=1
Write
a(L,k) = V-l Zh dwy, N\ dw
14, o 2 kLW ls
and so
Fle@rm)=")_ zj:gijdzi A dzj,

where

Ofr Of1
gij:;hklofaziazj7 fk:wkof.

Then we have

el m) () Avp)™ ™t = | (m - 1)!Zgjj(p) H \é;ldzj Adz; >0 (2.9.5)

since p € S. By continuity, a neighborhood Uy of p exists in M*(O;r) — {SU I}
such that
f*(ei(L, k) Av™ Ly, >0,

and hence Af(r, L) > 0. This completes the proof of Proposition 2.78. O

Consequently, Proposition 2.78 implies that f is constant if and only if
T¢(r,L) is bounded. Note that the fact corresponding to this property in number
theory is that the number of rational points with bounded heights is finite. Hence
Proposition 2.78 is an analogue of Theorem 1.102 in Nevanlinna theory.
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Take s € I'(N, L) and let D be the divisor (s) of s. Assume that f(M) ¢
supp(D). The counting function and valence function of f for the divisor D on N
are respectively defined by

ng(r, D) =ny,. () (2.9.6)

and
Ny(r,D) = Ny (7). (2.9.7)

For 0 < r € R,, the prozimity function or compensation function is defined by
1
my(r,D) =M <O;r;log 50 fl > . (2.9.8)
so flx

Since f : M — Iy — N is holomorphic, the lifted section sy is well defined
on M — Iy. The zero divisor of sy on M — Iy continues uniquely to a divisor (sy)
on M since dim Iy < m — 2. Let pu} = p,, denote the multiplicity of (sy) which
is just equal to pi«p. Let G # () be an open, relative compact subset of M such
that the boundary 0G = G — G is either empty or a real (2m — 1)-dimensional
C*° submanifold of M oriented to the exterior of G. Let £ be a form of class C!
and degree 2m — 1 on M such that log|s o f|2¢ is integrable over G. Then the
singular Stokes formula

[ toglsorpde+ [ doglsofEng= [ loglsesize (2.9.9)
G G oG

holds.

Let x be a form of class C* and bidegree (m — 1,m — 1) on M such that
x A d¢log|s o f|? is integrable over dG. Assume that A Nsuppx|ag has measure
zero on A = suppuy. Then the residue formula

—/dd01og|sof|i/\x=/ ﬂfcx—/ d°loglso fI2 A x
G ANG oG

—|—/ dx Ad°log|so f|? (2.9.10)
G
holds. If we take £ = d°y, then
dx Nd°loglso f|2 = dloglso f[2 Ad°x,
and hence the Green residue formula
—/ dd®logl|s o fI2 A x =/ Mjcx—/ d°logls o f|2 A x
G ANG oG
-|-/ log|sof|idcx—/ log|so f|2dd®x  (2.9.11)
oG G

follows from (2.9.9) and (2.9.10). Proofs of these formulae can be found in Stoll
[380].
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For z > 0, y > 0, define a function
¢(I7y) _ 2ml,2 (wznll—z - y217];.—2> :om>1,
logy —logz : m=1,
and write
Yr(z) = min{y(x,r), ¥(ro,r)}, r>rg>0.
Use the symbols in (2.1.64), then on M[O;7] — M(O;r), we have
2d° (1 0 /T) ANV = —0,  2dd°(r o /T) AU = —w™ =0, (2.9.12)
Take ro,7 € 7%7 and assume
X = (/wr © \/T)Umil‘

Applying the residue formula (2.9.10) and Green residue formula (2.9.11) to
M(O;19) and G = M (O;r)—M]O; ro], respectively, and using the formula (2.9.12),
one obtains

—/ ddclogISOfliAx=/ #?x—/ d°log|so fI2 A x,
M(O;iro) A(O5ro) M(O;sro)

(2.9.13)
where dy = 0 on M(O;r9) is used, and
- [datoglso s ax= [ uper [ drloglse flEax
el ANG M(Oiro)
—/ 10g|50f|,€o+/ log|so fl|.o.
M{O;r) M(Osro)
(2.9.14)

Adding (2.9.13) and (2.9.14), one obtains the first main theorem

—/ ddlogl|so fI2 Ax = / ujcx—/ log|s o f|xo
M(O;r) A(O;r) M{(O;r)
—|—/ log|so f|.o. (2.9.15)
M{(O;ro)
Lemma 2.79 ([384]). Let A be a pure k-dimensional analytic subset of M. Let n

be a form of bidegree (k,k) on M which is locally integrable over A. Take 0 < s <
r < oo. Let h : R[s,r] — C be a function of class C1. Then

/ hoven=h) [ g-ne) [
A[O;r]—A[O;s] A[O;r] Al[O;s]

_ / (/A[O;t] n) W (t)dt, (2.9.16)

where the integrals are sums if k = 0.
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Proof. Define an auxiliary function

( ) = 0 : s<z<y<nm,
NLY) =9 1 . s<y<z<r,

and set

r=n) [ nen) [ ho v,
AlO;7] A[O;s] A[O;r]-A[O;s]

which can be expressed by the integral

I:/ ( h’(t)dt) n.
A[O;r]—A[O;8] VT

By using the simple equation

' R (t)dt = /T’y(t, VT) W (t)dt,
VT s

and exchanging order of the integrals, we obtain

j= /: (/A[O;T]_A[O;s] ¥ (t,/7) n) R (t)dt
N /: (/A[O;t]—A[O;s] 77) W (t)dt
-/ ( . n) i () his) [

and so Lemma 2.79 follows.

Further, put A = suppf*D. Lemma 2.79 implies

Ny(r, D) = / e (r 0 /T,

A[O;r]

T D)= [ e vnf ) ae

(2.9.17)

(2.9.18)

Then (2.9.15) immediately yields the first main theorem (cf. [128], [344], [380])

Tf(’l“, L) = Nf(r, D) + mf(r,D) — mf(’l“o,D).

(2.9.19)

The identity (2.9.19) can be used to show that the compensation function extends
to a continuous function on all positive real numbers such that (2.9.19) holds for all
0 < ro < r. Obviously, the formula (2.9.19) is an analogue of (1.8.5) in Nevanlinna

theory.
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Remark. If u is a function of class C? on M[O;r], according to the proof of the
formula (2.9.15) and by Lemma 2.79 we can prove

T (r,ro;ddu) = ;M(O;r;w - ;M(O;ro;u>. (2.9.20)

A special case is given in Chapter 6 (see (6.1.3)). For the case M = C™, Noguchi
and Ochiai ([302], Lemma 3.3.39) show that (2.9.20) holds for a plurisubharmonic
function u on C™[0;7].

Lemma 2.80. Let N be a non-singular projective variety of dimension n. Let H
be a very ample line bundle on N and let L be a pseudo ample line bundle on N.
Then 1

limsup . dimT(N, L/ @ H*) > 0.

j—too J"

Lemma 2.80 follows easily from Lemma 2.30 (or see [229]). A meromorphic
mapping f : M — N into an algebraic variety N is called algebraically non-
degenerate if the image of f is not contained in any proper algebraic subvariety of
N, otherwise f is said to be algebraically degenerate.

Proposition 2.81. Assume that N is a non-singular projective variety. Suppose that
L is a pseudo ample line bundle on N. Then there exists a proper algebraic subset
Z of N such that for any meromorphic mapping f : M — N with f(M) ¢ Z,
there exists a positive constant ¢ satisfying

clogr <Ty(r,L)+ O(1).

Proof. Since N is projective algebraic, there exists a very ample line bundle H
on N. By Lemma 2.80, for j large there exists a non-trivial holomorphic section
s of L7 ® H*. An Hermitian metric  along the fibers of L7 ® H* exists such that
|s|x < 1 because N is compact. Take Z = supp((s)). When f(M) ¢ Z, by (2.9.19),
we have

Ny(r,(s)) < Tp(r, LY © H*) + O(1)
=jTy(r, L) = Ty(r, H) + O(1),
which implies
Ty(r,H) < jT¢(r,L) + O(1). (2.9.21)
Now Proposition 2.81 follows from Proposition 2.78. U
In particular, Proposition 2.81 holds if the meromorphic mapping f : M —

N is algebraically non-degenerate. We end this section by the following result (see
[128], [380]):

Proposition 2.82. Let M be a smooth affine variety. Assume that N is a non-
singular projective variety with a positive holomorphic line bundle L. Then a holo-
morphic mapping f : M — N is rational if and only if

T¢(r,L) = O(logr).
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2.10 Jacobian sections

We will use the notation of Jacobian sections in the proof of the second main
theorem for line bundles. A good reference is Stoll [380], but for completeness,
here we give a brief introduction.

Let M be a complex manifold of dimension m. Let N be a complex manifold
of dimension n. Let f : M — N be a holomorphic mapping. Then

K(f)=Ku® [*(Ky)

is called the Jacobian bundle, where K7 is the dual of K. A holomorphic section
F of K(f) over M is said to be a Jacobian section. The section F' is called effective
if #71(0) is thin. The zero divisor (F') of F is called the ramification divisor
of f for F.

Let F be a Jacobian section. Let U be an open subset in N such that U =
f~YU) # 0. The inner product

() Ky@o Ky —C

is well defined and pulls back to

() ff(Ky) e ff(Kn) —C
which further induces a Kj/-valued inner product

() K(f) @ fH(KN) — Ku.
The section F' defines a linear mapping

F:T(U,Ky) — (U, K)
by F[U] = (F,Uy) for all ¥ € I'(U, Kyn). If (V;21,...,2m,m) and (W;ws,...,w,)
are holomorphic coordinate charts on M and N respectively with W C U and
f(V) C W, then ¥ = Uydw on W and F = Fywdz ® d*wy on V, where

dw =dwy A -+ Ndw,, d'w= 0 A A 6,
Ow Oowy,

and where Wy, and Fyw are holomorphic functions. Then on V' we have
F[V] = Fyw (¥w o f)dz.
Further, a linear mapping

F: A*M(U) — A*™(U)
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is uniquely defined as follows: If Q € A%"(U) is expressed by
Q =ippwdw A dw
in the term of the holomorphic coordinate chart (W;ws,...,w,) on N, then
F[Q| s = im(pw o f)F[dw] A Fldw] = iy (pw o f)|Fyw|?dz Adz.  (2.10.1)

If £ is a Hermitian metric along the fibers of K (f), then |F|2 = ky|Fyw|?* with
ky = |dz @ d*ws|2 > 0, and so © € A*™(U) exists such that

FQ] = |F[Z0, Oy =im(pw o f)fi(/ldz Adz.
Obviously, © > 0 if and only if 2 > 0.

Now we discuss the existence of Jacobian sections. First assume
p=m—mn>0.
Then there exists a holomorphic section D f of (/n\T* (M)) ® f*(K}) such that
Dflg = f*(¥) ® ¥}

whenever U is open in N with U = f~(U) # 0 and ¥ € T'(U, Ky) vanishes
nowhere, where U* is the dual frame to W. If (V;21,...,2,) and (Wi wy, ..., wy,)
are holomorphic coordinate charts on M and N respectively with f(V) C W, then

f*(dw): Z A)\CZZ)\7
reJm

1,n

where
ow; o f

Ay = det
g ( 0zx(j)

), dZ)\ZdZ)\(l)/\“-/\dZ)\(n),

and so

Df|v = Z A,\dz,\®d*wf.
reJm

1,n

Hence zeros of D f is the set of all x € M such that the rank of the Jacobian matrix
at x is smaller than n, which is called the branching set of f. We distinguish two
cases:

(a) If m = n, Df is a Jacobian section which is effective if and only if f has
strict rank n. In this case the divisor (D f) of D f also is called the branching
divisor of f.
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(b) If m > n, and if there exists a holomorphic form ¢ of degree p on M, then ¢
induces a Jacobian section
F,=pANDf.

The form is said to be effective for f if F, is effective, where the wedge product
extends from AT*(M), AT*(M) to AT*(M), (/n\T*(M)> ® f*(K%) and
so becomes K (f)-valued. Equivalently F,, can be described by its action

Fo[¥] =9 f1(¥)
whenever ¥ € I(U, Ky) and U open in N with U = f~1(U) # 0.

We will unify Jacobian sections in the cases (a) and (b) by writing F, = ¢ ADf,
where we think ¢ = 1 for the case (a). If ¥ € A?"(U), it is not difficult to show
that

Fo[v] = (mnj n) imnp AP A FH(D), (2.10.2)

If M is connected, and has holomorphic rank m, then there exists a holo-
morphic mapping
g:M—C™

of strict rank m. For € M, the differential
B'(x) : To(M) — Tp() (C™)

is a linear mapping. The branching set & of all x € M such that 3'(x) is not an
isomorphism is an analytic subset of M. Then there exists a thin analytic set B
of C™ with 8(#) C B such that

g:M—-p31B)—C™-B

is a proper, surjective, local biholomorphic mapping, hence a covering space of
finite sheet number v. Here v is called the sheet number of 3. We will use the
parabolic exhaustion 7 = ||3|? of M and use the notations in (2.1.64).

Lemma 2.83 (Stoll [380]). Let M and N be connected complex manifolds of di-
mension m and n respectively, and let f : M — N be a holomorphic mapping of
rank n. Assume that a holomorphic mapping

=B Pm): M — C"
of strict rank m exists. Then there exists {ji,...,Jm-n} C Z[1, m] such that
p=4dgj N---NdBj,._.
satisfies that F;*(0) is thin, and

m—-n

Im—n@ N < v
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Proof. The case m = n is trivial. We may assume p = m —n > 0. Set
S={zxe M |rank,f <n}.
Then S is a thin analytic set. Define
Mo =M —{B~"(B) U s~ (B(5))}-

Take zy € M. There exist a local holomorphic coordinate system (W; w1, ..., wy,)
of f(z0) and an open connected neighborhood U of zy in My with f(U) C W such
that 8 : U — B(U) is biholomorphic. Define f; = w; o f and set

df; Zijkdﬁk, j=1,...,n.

k=1

Then
0£dfi A Adfy= Y AdBy,

vem,
where for v € J",,

A, = det(fj,j(k))7 dg, = dﬂu(l) Ao A dﬂu(n).

Therefore v € Ji", exists such that A, # 0 on U. Then v+ € Ji", is uniquely
defined such that (v*,v) is a permutation of Z[1,m]. Then ¢ = dB,. is a holo-
morphic form of degree p on M such that

Foldwi A--- ANdwp] =@ A f*(dwi A--- A dwy,)
=dB,. Ndfit A+ Ndfp, = AdB,. ANdB,
= A,,sign(yl7 vYdB1 A+ ANdBm £0

hold on U. Since F;'(0) N U = A;'(0) is thin in U and since M is connected,
then F;*(0) is thin. Finally, since v = dd°||3||* we have

v-1y"
vP = pl ( o Z dByy N By N NdByp) NdB. )
YEJT,

which yields
v Z Z.pd/Bz/J- A dﬁzﬂ- = ZPSO A ¥,

and so Lemma 2.83 follows. O

Secondly we consider the case

qg=n—m>0.
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Note that a unique homomorphism

(AT ) — AT ()

exists such that f(¢ f)=f"¢) forall { €T (U, QT*( )), where U is open in N
with U = f~1(U) # 0. The interior product

Z:Ky® NT(N) — A\T*(N)

also pulls back to an interior product
Zip )@ (AT)) — (AT an).

Take a holomorphic section ¢ € T’ (M7 fr (/q\T(N))), which is called a holo-

morphic field on f over M of degree q. Then ¢ induces a Jacobian section F,
defined by
Folg = (\Ilfégo) QR U3,

where ¥ € I'(U,Ky) vanishes nowhere for the open subset of N with U =
f7HU) # 0 and ¥* is the dual frame. Equivalently F,, can be described by its
action

Fy[¥] = f(¥Zp)

for all W € T'(U, K ), where U is open in N with U = f~'(U) # §. The section ¢
is said to be effective for f if F, is effective.

Theorem 2.84 ([380]). Assume M is Stein and ¢ =n —m > 0. Then there exists
a holomorphic field ¢ on f over M of degree q such that ¢ is effective for f if and
only if f has strict rank m.

Proof. We may assume that M is connected. Let ¢ be an effective holomorphic
field on f over M of degree q and let S be the set of all x € M such that the
rank of the Jacobian of f at x is smaller than m. Take zy € M. There exist local
holomorphic coordinate systems (U; z1,...,2m) of zo in M and (W;wy,...,wy,)
of f(z0) in N with f(U) C W. Set

0
d* = k=1,... 2.10.3
Wy awk7 ) , 1, ( )
and write
> oad way, (2.10.4)
xeJp,
where

d*wy = d*w)\(l) VANRERAN d*w)\(q). (2.10.5)
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We also write

[H(dw,) = Aydz, vedl,. (2.10.6)
Then
SnU= () 4,40
veldy,,

If X e J',, then A= € Jf, is uniquely defined such that (A", \) is a permutation
of {1,...,n}. Then L : JI', — Ji',, is bijective. Since dw = dw; A --- A dw, and

dwslo = Z sign()\l,)\)goAdeLf,
AeJp,

then we have

F[dw] = f(dwsZe) = Z sign( A1, N)pr A,y L dz. (2.10.7)
XeJ7,

Thus we obtain

(F)nU = [ Y sign(A, Neadye | 250U
AeJ{ﬁq

Therefore S N U is thin since the support of the divisor (F,,) is thin, and so S is
thin since M is connected. Hence f has rank m.

Assume that f has rank m on M. Take S, zg, z, w, A, as above. Note that we
can choose zgp € M — S since S is thin. Then ¢ € J7',,, exists such that A,(z) # 0.
Since M is Stein, Theorem 2.15 implies that global holomorphic sections s; €
I'(M, f*(T(N))) exist such that

sj(z0) = d"wjf(20), j=1,...,n. (2.10.8)

Define
p=s.€T (M7 /q\f*(T(N)))

with
©(20) = 5,1 (20) = d*w,1 £ (20).
Hence (2.10.4) holds;

(20) = 1, if A=t
PARIZ 0, it £ Ae Jp,.

Also (2.10.7) holds with

F,[dw](z0) = sign(c, ") A, (20)dz # 0.
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Note that
(Foldw))NU = (F,)NU.

Hence zp € M — supp((F,)), that is, the analytic set supp((F)) is thin. Hence ¢
is effective for f. O

If M is a non-compact Riemann surface, Theorem 2.16 and (2.1.14) imply
that the sections defined by (2.10.8) can be chosen such that (s1,. .., s,) is a global
holomorphic frame of f*(T(N)) over M.

Lemma 2.85 ([167]). Assume that ¢ =n—m > 0, and that f has strict rank m. If
there exist holomorphic vector fields Z1,...,Z, on N such that

Z=Z1N---NZp#0,
and if f(M) & supp((Z)), then there exists X\ € J7', such that a holomorphic field
=2z = (D) N Nt
on f over M of degree q is effective for f.

Proof. We may assume that M is connected. Under the conditions of Lemma 2.85,
a lifted section Zy € T'(M, f*(K}%)) of Z for f exists with Zy # 0. Let S be the
set of all x € M such that the rank of the Jacobian of f at z is smaller than m.
Take zg € M — S such that f(z9) € supp((Z)) since S and supp((Zy)) are thin.
There exist local holomorphic coordinate systems (U; z1, . .., zm) of zo in M and
(Wiwr,...,wy) of f(20) in N with f(U) C W such that Z;,...,Z, form a frame
of T(N) on W. Let 91, ...,1, be the dual frame in T*(N) and write

Y, = ¢u(1) A A ¢V(m), f*(¢y) = B,dz

for v € J7',,,. Then v € J7',, exists such that B,(z9) # 0. Take A = .+ € Ji, and
define
o=2Zy el (M, /q\f*(T(N))) .

Set U =1 A--- A, and note that
VLo = sign(e, 1)y,

then we have
F V] = f(U;ZLp) = sign(s, 1) B,dz.

Hence zy € M — supp((F,,)) since
(Fo[¥))NU = (Fp)N U,

that is, the analytic set supp((F,)) is thin. Hence ¢ is effective for f. O
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Lemma 2.86 ([167]). Take M = C™ and define

Zz::'f/(éiﬂ> 5 izilw..,ﬂL

Assume ¢ = n —m > 0. Then a holomorphic field ¢ on f over C™ of degree q
such that ¢ is effective for f if and only if

Z=Z0g NN Zmy A 2 0.
Further, we have (F,) = (Z).

Proof. We will use the symbols in the proof of Theorem 2.84. Relative to the local
holomorphic coordinates wy, ..., w, on an open subset W of N, set

fk:wkof7 k:]‘V"‘Jn?

express ¢ by (2.10.4), and write

Then we have
Zig N Ny =Y Aydiwyy,

ulem

Ofu(
)

Zi

where

Hence we obtain
Z = Z sign( A", N)or Ay d wy.
reJy,

On the other hand, we also have (2.10.6) and (2.10.7). Therefore we obtain
(Fo)nU=(Z)NnU,
and hence Lemma 2.86 follows. O

Lemma 2.87 ([167]). Let M and N be complex manifolds of dimensions m and n,
respectively, and let 6 and 1 be the associated 2-forms of Hermitian metrics on M
and N, respectively. Assume g =n —m > 0. Let f : M — N be a holomorphic
mapping of strict rank m. Let ¢ be a holomorphic field on f over M of degree q.
Define a non-negative function g by

Fo[y") = g f*(v™).
Then g < |¢|.
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Proof. In terms of a coframe (1, ...,%,) on N and a coframe (61,...,60,,) on M,
we have

i — i >
V= %;%wa, 6= %;ekmk.
Further define a function ug by
T @™ = uf™
and set
f W) =400 N ANOp, v E I s

where
Yy =) Nuy A Auimy-
Trivially, we see

up= Y |Af#0.

velJyp

1,m

Relative to the dual frame o7, ..., ¥ of ¥1,..., 1, write

o= ety

AeJT,

where
WX =V AN N A
Set W =11 A--- A,. We have

Uplp= Y sign(A\", Northae .
reap,

Hence )
Fo[W] = f(WyLp) = > sign(A\", \paAxsby A A b,
Aleq

which means
g’ ug = Z sign( AT, \)pa AL
xeJy,
By Schwarz’s inequality, we obtain

2

Z Sign()\J‘,)\)QD)\A)\J_ < UO|QP|2’
AGJﬁq

and so g < |¢| follows. O
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Finally we consider a holomorphic mapping
f:C" — C"/A.
Note that the complex m-space C™ with the metric
m
ds* = dz;dz
j=1

(where (21, ..., 2m) is the natural coordinate system) is a complete Kéhler mani-
fold. Let (w1, ..., w,) be the natural coordinate system of C"* and p : C* — C"/A
be the natural projection. We fix the Kéhler form ¢ on C"/A given by

P = ;ﬁ 3 dw; A dw;. (2.10.9)

j=1

The complex tori are the only compact complex parallelizable manifolds which
admit Kéhler metrics (see Wang [425]).

Lemma 2.88 ([167]). Assume ¢ =n—m > 0. Let f : C™ — C"™/A be a holomor-
phic mapping of rank m. Then there exists a holomorphic field ¢ on f over C™ of
degree q and effective for f such that |p| < ¢ for some constant ¢ > 0.

Proof. Since C™/A is complex parallelizable, there exist n holomorphic vector

fields 7y, ..., Z, which are linearly independent at every point of C"/A. We may
assume
Z o 1
;= ,j=1,...,n.
J 611]]‘ J

By Lemma 2.85, there exists A € J7', such that a holomorphic field
=2y =Dy N Nxg)s
on f over C™ of degree ¢ is effective for f. We have
lpl =1Zx] =1,

and so Lemma 2.88 follows. O

2.11 Stoll’s theorems

Stoll [380] defines a Ricci function associated to a parabolic exhaustion of a com-
plex manifold, which describes characteristics of curvature of the manifold in a
sense. Here we introduce two Stoll’s theorems related to the Ricci function. Fi-
nally, we estimate growth of integrals on logarithmic functions.
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Let 7 be a parabolic exhaustion of a complex manifold M of dimension m.
Take a positive form © of degree 2m and class C? on M and define a non-negative
function w on M by

v™ = u?0.

The 2m-form (log u)v™ is locally integrable over M. Define

RO =SreR, | (logu)o exists » . (2.11.1)
M{(O;r)

The set R? does not depend on the choice of © and R, — R has measure zero.
For 7,5 € RY with r > s > 0, the Ricci function of 7 is defined by

Ric,(r, s) = 7 (r, s; Ric(O)) —|—/ (logu)o — / (logu)o. (2.11.2)
M{O;r) M(O;s)

The Ricci function Ric, of 7 does not depend on the choice of © (see Stoll [380]).

Theorem 2.89 ([380]). Let 3 : M — C™ be a proper holomorphic mapping of strict
rank m. Let p be the multiplicity of the branching divisor of 3. Then T = ||3||? is
a parabolic exhaustion of M and for r > 1o,

Ric.(r,ro) = N, (). (2.11.3)

Proof. Let w = (w1, ..., wy,) be the coordinates of C™ and set dw = dwy A--- A
dw,,,. Then
D = 3 (dw) @ d"wy

is a Jacobian section. Hence
s=F"(dw) e T'(M, Ky ), (s)=(DfB), v™ =imsAS.
Take a positive form O of class C* and degree 2m on M. Then
imsAS=s|2, 0.
Applying the first main theorem (2.9.19) to the identity M — M, we have
7 (r,s;Ric(©)) = N, (r) + M(O;ro;log |s|kg) — M(O; 13108 |s|ke ).  (2.11.4)
Since v™ = [s|%_ O, the definition of Ric, gives (2.11.3). O

If M is an affine algebraic variety, then a proper surjective holomorphic
mapping 8 : M — C™ is well defined. Further, if M is smooth, then the branching
divisor of 3 is affine algebraic, and so (2.11.3), Proposition 2.43 imply

Ric,(r,70) . Nu(r)

rll»ngo logr rli>nolo logr rll»lgo n,(r) < oo. (2.11.5)

See Stoll [380], Theorem 20.4 or Griffiths-King [128].
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Let F' be an effective Jacobian section of f. Let (F') be the zero divisor of F’
and let p(py be the multiplicity function of the divisor (F). Define the ramification
term Nram(r, f) of f for F by

Nram (7, ) = Ny (7). (2.11.6)

The following Stoll’s theorem (cf. [380]) will play an important role in the proof
of the second main theorem below (Theorem 2.95).

Theorem 2.90. Let M and N be complex manifolds of dimensions m and n, respec-
tively. Let T be a parabolic exhaustion of M. Let f : M — N be a holomorphic
mapping. Let F' be an effective Jacobian section of f. Let Q be a positive volume
form of class C>= and degree 2n on N. A function h of class C* on M — F~1(0)
1s defined by

F[Q] = h?0™.
If r,ro € RY with r > rg > 0, then

Ty (r, Kv) + Nitam (1, f) = Rics (r,70) + / (log h)or — / (log h)o.
M{(O;r) M{O;ro)
(2.11.7)

Proof. Take a positive form © of class C*° and degree 2m on M. Then © and
) induce metrics kg and kg on the canonical bundles K, and K, respectively,
and further induce a metric k = kg ® f*(k§) on the Jacobian bundle K (f) such
that

F[Q] =|F?e.

Hence
v™ = hT2F[Q] = h?|F?0.

For r,rg € R% with r > ro > 0, then (2.11.2) implies
: _ R [Fle s
Ric,(r,m9) = 7T (r,r0; Ric(O)) + log o log o. (2.11.8)
M(O;r) h M(O;ro) h
By (2.10.1), it is easy to show that
Ric(F[2]) = f*(Ric()). (2.11.9)
However,
Ric(F[Q]) = dd°log |F|2 + Ric(0) = —c1 (K (f), ) + Ric(©).

Then
T (r,ro; Ric(©)) =Ty (r, Kn) + T (r,70; c1 (K(f), K))- (2.11.10)
Applying the first main theorem (2.9.19) to the identity M — M, we obtain
T(r,ro;er(K(f), &) = Nram(r, ) — M{O;7;log | F|,.) + M{O;rg;log |F|,).
(2.11.11)
Now (2.11.7) follows from (2.11.8), (2.11.10) and (2.11.11). O
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When m = 1, that is, M is a Riemann surface, we compare Theorem 2.90 with
a theorem due to L.V. Ahlfors [2], H. Weyl and J. Weyl [430]. Now a multiplicity
function pgp : M — Z4 is well defined as follows: g (2z0) = the stationary index
of f at zq if 29 is a critical point of f (see Wu [436]), otherwise, pi4r(20) = 0. Since
T is a parabolic exhaustion of M, then w = dd®log ™ = 0, that is, log 7 is harmonic.
Let 6 be the conjugate harmonic function of é log 7. Then

1
¢ = 210g7'+\/—19

is a coordinate function locally whenever 7 is free of critical points (cf. Wu [436],
Lemma 2.4). Let ¢ be the associated (1, 1)-form of an Hermitian metric on N. A
non-negative function pg is defined by

* \/_1 -
W) =8, dCAde.
™
which satisfies the Ahlfors-Weyl formula (cf. Wu [436], or Yang-Hu [439])
T (r,ro; Ric(f*(¥))) = —E(r)— Nyas (r)
+M{O;r;log po) — M{O;ro;log po), (2.11.12)
in which
" dt
B0) = [ (i)
0o

where x (MO;t]) denotes the Euler characteristic of M[O; t].

We consider the non-negative function p defined by

() = pv. (2.11.13)
Note that
1 V-1 _
v=dd°T= dr Nd°T =T d¢ A dC. (2.11.14)
T 27
Then pg = py/7. We know that (cf. [439], Part 1)
Ric,(r,m0) = <log "o E(r). (2.11.15)
To

Therefore, by (2.11.12) and (2.11.15), we obtain

T(r,ro; Ric(f*(¥))) = Ricr(r,r0) = Ny (r)
+M{O;r;log p) — M{O;ro;logp), (2.11.16)

which is quite similar to the formula (2.11.7).

Define a non-negative function g on M by

Flp") = g*f*(4). (2.11.17)
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Taking 2 = ¢™ in Theorem 2.90, we have h = pg. Hence (2.11.7) and (2.11.16)
yield

Tf(?”, KN) + NRam(Tv f) = T(T, To; Rlc(f*(¢))) + Nudf (T)
+M(0;r;log g) — M(O;70;log g).
By (2.11.17), we obtain
f*(Ric(y™)) = Ric(F[y"]) = dd°log g* + Ric(f* ().
Therefore
T (r,ro;ddlog g?) = Ny (1) = NrRam(7, f)
+M{O;r;log g) — M{O;ro;logg), (2.11.18)

which may be referred to as a kind of Jensen’s formula.

The following lemma is due to R. Nevanlinna [294].

Lemma 2.91. Let h > 0, g > 0 and a > 0 be increasing continuous functions on
R*. Assume g is of class C* on R* and

/OO dx <o
s ofz)
for all s > 0. Then a measurable subset E of RT exists such that

0< / g (z)dz < 0o
E
and such that
0 <h'(z) < ¢ (x)a(h(z)), z€RT-E.
Proof. If E is not empty, then for z € E and dx > 0,

dh(z) = W' (x)dx > a(h(z))dg(z);

therefore, dg < QLEZ), from which the assertion follows by means of integration

over F. O

Lemma 2.92 ([166]). Let n > 0 be a form of bidegree (1,1) on M such that
T(r,ro;n) exists for r > ro > 0. Let u be a non-negative function on M satis-

fying
m—1 .

uv™ <nAv

Then for any e > 0,

I / loguo < (14 2¢e)logT (r,70; 1) + 4se log .
M{O;r)
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Proof. Define

1
B(r,u) = / log uo. (2.11.19)
S JM(O;r)
Note that for almost all ¢t > ¢,
0 < t*"2M[O;t;uv] = / w™ =m ur™ tdr Ao
MIOst] MIOst]

¢ ¢
= 2m/ / uo p ™y = 2m/ M{O;r;u)r®™ dr
0 M{(O;r) 0

< "2 M[O; 1),

which means that M (O;r;u) exists for almost all » > 0.

Set . .
H(x) :/ {/ exp(B(r, u))er_ldr} ti=2ma,
T0 0
Since MO
B(r,u) < log MO
S
we have

x t
H(x) < ! / {/ M(O;r;u>r2m1dr} t2mat
C T0 0

1 1
= T ; < T in).
(.T,’I”(),U’U) = 2mc (33,7"0777)

2mg

Applying Lemma 2.91 to the functions

with € > 0 and A > 1, we obtain

| H'(x) =x1_2m/ 2 exp(B(r,u))dr
0

< 2*(H(2)) < z° (;KT(Q;, ro; n)>A.

Keeping the same g and « and taking h(z) = 2*™ 1H'(z) in Lemma 2.91, we
have

I " exp(B(r,u) = B (r) < r*(h(r)*

1 au
< p€ 2m—1+e€ T .
=T <71 (ch (7", To;3 77)) )
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which implies
| B(r,u) < Xlog T (r,r0;n) + c(\, ) logr — A log(2ms),

where
cAhe)=A2m—-14+¢)+1-2m+e.

Take § € R such that
0 <6 <min{l,e}, e(440)+06(2m — 1) < 6¢,
and take
A=1+ o
Then A\? < 1 + 2¢ and

Liet15) £ 52m — 1)} < 3¢,

c(Ne) = N

Hence Lemma 2.92 follows if r is large enough.

2.12 Carlson-Griffiths-King theory

197

J. Carlson and P. Griffiths [47], P. Griffiths and J. King [128] studied value dis-
tribution theory of holomorphic mappings from affine varieties into projective
varieties for line bundles. At the same time, P. Griffiths [125] (or cf. [345]) pro-
posed a conjecture of second main theorem type. Lately, W. Stoll [380] extended
this theory to parabolic spaces by using Jacobian sections. Y.T. Siu [363], [364],
[365] studied the Griffiths conjecture by applying meromorphic connections. We

will follow these methods to discuss the Griffiths conjecture.

2.12.1 Second main theorem for line bundles
First of all, we make a few general assumptions:
(Al) Let N be a compact complex manifold of dimension n.

(A2) Let L be a positive holomorphic line bundle over N.

(A3)Let 0 # s; € I'(N,L),j = 1,...,q, be given such that the divisor D =

Di + .-+ D, has normal crossings in N, where D; = (s;).

(A4) Let M be a parabolic connected complex manifold of dimension m.

(A5) Let f: M — N be a holomorphic mapping.
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Theorem 2.93. Assume that (Al), (A2) and (A3) hold and further assume that
each D; (1 < j < gq) is smooth, that is, D has simple normal crossings. There are
a positive number X\, a volume form Q on N and a metric k of L such that

1
0<[sifi< . j=1.q (2.12.1)

Ager (L, k) + Ric(Q) > 0, (2.12.2)
and such that the Ricci form
¥ = Ric(V) (2.12.3)
of the following Carlson-Griffiths form

U= 2 (2.12.4)

i1 |52 (log [s4]2)?
satisfies ¢ > 0, [y 9" < oo, and

Q

. 2.12.5
9 [;[2 (logs;[2)? (212.5)

(=

Proof. Here we follow Carlson-Griffiths [47], Griffiths-King [128] and Stoll [380] to
give a proof. There is a metric kg of L satisfying ¢1(L, ko) > 0 since L is positive.
Take a volume form Qg on N. Since N is compact, there is a positive number A
such that

X = Ager (L, ko) + Ric(Qg) > 0.

Further, a constant ¢y > 1 exists such that
—cox < c1(L, ko) < coX-
Take § > 0 so small that

1 < 4gco < —logmax{d|s;(x) io}
Jia

Then
0 < 6|Sj|ioe é maX{(SlSJ({[) io}e4q00 < 1
2,T

Multiplying the metric k¢ by §, we obtain a metric x such that |sj|i < et for
each j, and
c1(L, k) = c1(L, ko) > 0.
Define
Qo

Uy = .
11 s (log |s;2)?
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It is easy to show that

c1(L, k) dlog |s;|2 A d¢log |s;|2
Ric(Wo) 2§: }: . 2.12.6
=X g1 TP (log s )2 (2120

Since

then

dlog|s;j|2 A d¢log|s;|2
Ric(¥g) > + 22 (log s;12)? > 0.

The latter form is > 0 because

dh A d°h = ‘/_lahAéh >0
2
for any real h.

We claim that for any € N, there exist an open neighborhood U(z) of z
and a constant ¢(z) such that on U(z),

q
Ric(Wo)" > | c(x) [ Is;12*72 | o > 0. (2.12.7)

j=1
If £ € N — supp(D), this is trivial. Take z € supp(D). Then p € Z[1,q] and
p € JY , exist such that « € supp(D;) if and only if j € Im(u). Since D has normal

crossings, then p < n, and also coordlnates (w1,...,wy) in a neighborhood U of
x exists such that w(ac) =(0,...,0) and

P
Unsupp(D)=UnN U supp(Dy(v))s

v=1
UND,uy = (w,), v=1,...,p.

Also U is taken so small that L|U is trivial. We can write s,(,) = w, X, where x,,
is a non-zero holomorphic section of L over U. Then

|Su(u | - b |wu|
where b, = |x,|? > 0. Note that

V—1dw, A dw,

Y (2.12.8)

Ny = leg |Su(u)|i Ad° log |Su(u)|i =
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The form B B
V-1 (819,, A Ob, N 0b, A dw, N dw, A 8b,,>

&= on b2 by, wyby
has the property that |w, |20, is a smooth form whose coefficients vanish on D)
Therefore on U we obtain

2
( + Z log|su(,, )

n! (X)n—p L iy
A 2P .
(n—p)t \2 L1 (105 5,027

A form p of class C*° and bidegree (p, p) exists on U such that o(x) = 0 and such
that

RiC(\Ilo)n

v

v

p \/_1 P
leul2nu:( %) dwy A dwy A -+ A dwy A dwy, + o.

An open neighborhood U(z) of x and a constant ¢; > 0 exists such that U(z) is
compact and contained in U and such that on U(x),

|wy| < r<l,v=1,...,p,

c1 Z dwy A dwy,,
v=p+1
X\"P (n_p)' n—p - \/_1 _
‘Q/\(Q) 9 e H 9 dw, A dw,.

Since p > 1, this implies

p n
. —2 V-1 _
Ric(¥o)" > ]~ (H |w, | log |5H(V)|i) ) H 9 dw, N dw,

v=1

on U(z). A constant cq exists such that on U(z),
n
_ V-1 _
p 1;[1 o dw, N dw, > ca.
Constants c3 and ¢4 exist such that

p
ca [T 00> a5 Isililogs;[)? > s (j & Im(p)).

v=1
Therefore
Qo

RiC(\Ifo)n > c;;cZ—p
i1 Isilz (log s;2)?

q
c;;c?fpl_[ 5512272 | W

Hence the claim (2.12.7) is satisfied with ¢(z) = cscd *.
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By the Heine-Borel theorem, there exist finitely many points x1, ..., % on
N such that
N=U(z)U---UU(z).

Define ¢ = mini<;<g ¢(x;). Then ¢ > 0 is constant and ¥ = ¢¥y with Q = Qg
satisfies Ric(¥) = Ric(¥o) > 0, (2.12.5) and (2.12.2) since Ric(2) = Ric().

To prove |, N Y™ < oo, it suffices to show that 9" is integrable over each
neighborhood U(z) constructed. This is trivial if x € N — supp(D). Take = €
supp(D). Set ¢5 = 1 4 2qcp. Then (2.12.1) and (2.12.6) imply

dl 2 Ade]
Ric(¥) < e5x + 22 0g|sy| Og|83|n

(log |s4[%)? ’
which yields immediately
2dlog |s ;|2 A d¢log |s; |2
Ric(¥)" < CsX R ( J J 7
2 (n H (o8 5 2)°
where the summation runs over all k; € {0,1} for j =1,..., ¢ such that

0<ki+-+ky=k<n.

A constant ¢g > 1 exists such that |logb,| < ¢ on U(x). If log |w,| < —cg, then

1 1
—cp > log > log

lo .
& | = e |

! =1lo ! +lo ! >lo !
|S,u(y)|2 it |wu|2 gbu =08 |wu|2

If log |w, | > —cg, then

Therefore on U(z),
(log [wy [*)?

< < 4¢3,
(10g|su(u)|£)2 6

If j & Im(p), then s;(z) # 0 for all z € U(x). We see by our previous calculations
that a constant c¢; exists such that

Cn c V| ~
Ric(¥)" < 7 )2 H dw, A dw,
1

,zj:1 |w, |2 (log |w,|? 2

which implies

/ Ric(¥)™ < crr?" 2P| logr?|7P.
U
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Lemma 2.94 ([47],[128],[380]). Under the assumptions (A1)—(Ab), there exist con-
stants c1 <0, co >0, c3 > 0 such that for r > ro,

Cc1 é )‘qTf(ra L) + Tf('l", KN) - T(T‘, To;3 f*(¢))
< qslog{Ty(r,L) + ca} + cs. (2.12.9)
Proof. By (2.12.4), we have
q
Y = Ric(Q) + Ager (L, k) — Z dd®log(log |s;|2)?, (2.12.10)
j=1
which implies

T(Ta TOaf*(’(p)) = Tf(?", KN) +>\qTf(T,L)

q
= T (r,ro;dd"log(log|s; o f[2)?).  (2.12.11)

j=1
By (2.9.20) (or see Stoll [380], Theorem A13), we obtain
T (r,r0; dd" log(logs; o f[1)*) = M(O;r;log [log |s; o f[3])
— M{(O;rg;log |log |sj o fI2]). (2.12.12)

The condition (2.12.1) and the first main theorem (2.9.19) show that

0 < M({O;r;log|logls; o fI2])
1 1
< <lo M O;r;lo
) g(c < g|8j0f|£>>
< <log{T¢(r,L) +my(ro,D;)} —slogs, (2.12.13)
and hence (2.12.9) follows. O

Now we can prove the following second main theorem (cf. [47], [128], [167],
[344], [380]):

Theorem 2.95. Assume that (A1)—(A5) hold and further assume that D has simple
normal crossings. Suppose that f(M) ¢ supp(D) and assume that F is an effective
Jacobian section of f. Set b= min{m,n} and define a non-negative function g by

Flp" = g* f* (") Ao " (2.12.14)

Then for any e > 0,

a
I qTy(r, L) + Ty(r, Kn) < ) Ny(r, Dj) = Niam(r, f) + Ricr (7, 70)
j=1
+ M{(O;r;log g) + O(log™ Ty (r, L)) + O(e log ).
(2.12.15)
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Proof. The first main theorem (2.9.19) implies

Y ATy(r L) = Ny(r,Dj)} =Y M <O;7‘;10g
j=1

Jj=1

1
5y f1) HOW
= M(O;r;logQo f) + S(r, f),

where
1

29
i=11551% (log s;]%)

Q=

S(r, f) =>_ M {O;r;log [log|s; o fI2]) .

j=1
By (2.12.13), we know

S(r, f) < clog™ Ty(r, L) + O(1), (2.12.16)

where ¢ is a positive constant which is independent of r.
Define a positive function G on N by

P = G

Then (2.12.5) yields G > Q. A function h of class C* on M — F~1(0) also is
defined by
F[Q] = h%v™.

By Theorem 2.90, we obtain

q
qTy(r,L) = > N¢(r,D;) < =T¢(r, Kn) — Nram(r, f) + Ric,(r,70)
j=1

+ M{O;7;log{(G o f)h}) + clog® Ty(r, L) + O(1).

Set
Mt ={zeM|v(x)>0}.
For an integer ¢ with 1 < i < m, define a function p; on M™ by
Fr@) Ao = ppo™. (2.12.17)
Then a pointwise relation among the p;’s is provided by the inequality (2.1.82) (or
see [48], p. 239)
1 1
p; <cijpi (J=1). (2.12.18)

Since

(Go fPh*™ = (Go fPFIQ) = FIG?Q) = F[v") = ¢*f*(0") Av™ ",
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we have
G h\?® 1
(( O.f) > :pé’gclbpl’
g
and hence )
((G quf)h’> Um S Clbf*(¢)/\vm_1-

By Lemma 2.92, for any £ > 0 we obtain

I / log ((G ° f)h> ' o < (14 2¢e)log T (r,70; f* (1)) + O(elogr).
M{O;r) g

By Lemma 2.94, one has
T (r,ro; f*()) < cTp(r,L) + .
Therefore
I M{O;7;1og{(G o f)h}) < M(O;r;log g) + O(log™ Ty(r, L)) + O(elog).
Hence Theorem 2.95 is proved. g

If the divisor D = D1+ - -+ D, has normal crossingsin V, but D; (1 < j <gq)
may have singularities, by Hironaka’s resolution of singularities [160] there exists a
proper modification p : N — N, where N is an algebraic manifold, such that the
set D = p~1(D) is the union of a collection of smooth hypersurfaces with normal
crossings. Let f : M — N be the lift of f : M — N given by po f=f. By
applying (2.12.15) to f, we conclude that (2.12.15) is valid for D (cf. Shiffman

[344]).
Next we consider the case m > n and make two additional assumptions:
(A6) Let f: M — N be a holomorphic mapping of rank n.

(A7) Assume that M has holomorphic rank m, i.e., there exists a holomorphic
mapping 3 : M — C™ of strict rank m. Let p be the multiplicity of the
branching divisor of (.

Under the conditions (A6) and (A7), a holomorphic form ¢ of degree m —n on M
exists such that the induced Jacobian section F,, is effective for f. Note that

m

Elor) = (" Yimeno h o £ (2.12.19)

m—-n

By Lemma 2.83, the function g defined by (2.12.14) for F' = F|, satisfies

g < (m"j n) (2.12.20)
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Hence when f(M) Z supp(D), the formulae (2.11.3) and (2.12.15) imply

I aTy(r, L) + Ty (r, Kn) < Z = Nram(r, f) + Npu(r)

}log+ T¢(r,L)) + O(elogr). (2.12.21)

For a positive integer k£ and a divisor D on N, we define the truncated mul-
tiplicity function of order k of D on M by

fip-px(2) = min{pp-p(2),k}, 2 €M, (2.12.22)
and the truncated valence function of order k of D,
Nyw(r, D) = Nypopy (7). (2.12.23)

Usually, we write
N¢(r,D) = Nya1(r, D). (2.12.24)

Theorem 2.96 ([83]). Assume that (A1)-(AT7) hold. Then

| qTy(r,L) + Ty(r, Ky) < Z Np(r)
(log+ T¢(r,L)) + O(clogr). (2.12.25)

A proof of Theorem 2.96 can be found in [168].

2.12.2 Griffiths’ and Lang’s conjectures

One of the major unsolved problems in value distribution theory is whether the
inequality (2.12.21) for the case m > n = rank f holds for more general mero-
morphic mappings. Note that under the conditions (A1) and (A2), N is projective
algebraic. It is natural to study algebraically non-degenerate meromorphic map-
pings. Conjecture 2.97 below restates this question, which has been previously
asked by P. Griffiths [125] and M. Green (or cf. B. Shiffman [345]).

Conjecture 2.97. Assume that (Al)—(A4) and (A7) hold. If f : M — N is a
meromorphic mapping which is algebraically non-degenerate, then there exists a
number w = w(n, D) such that

q
I aTy(r,L) + Ty (r, Kn) < Z Ny.o(r, D;) + Ny (r)

O(log™ Ty(r, L)) + O(elog ). (2.12.26)
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In consideration of the analogues in number theory, S. Lang [229] weakens
the condition of algebraic non-degeneracy in Conjecture 2.97 as follows:

Conjecture 2.98. Assume that (A7) holds. Let D be a divisor with normal crossings
on an algebraic manifold N. There exists a proper algebraic subset Zp of N having
the following property. Let f : M — N be a meromorphic mapping such that
f(M) ¢ Zp. Let E be an ample divisor. Then there exists a number w = w(n, D)
such that

| Ty(r,[D]) + Ty (r, Kn) < Ny (r, D) + Ny(r)
+ O(log™ Ty (r, [E])) + O(log ). (2.12.27)

When M =C, D =0 and Ky is ample, the inequality (2.12.27) becomes
| T¢(r,Kn) = O(logr),

which implies that f is rational, so degenerate when dim N > 1. Thus the following
theorem (Green-Griffiths’ conjecture) is a special case of Conjecture 2.98.

Theorem 2.99. Let N be a projective algebraic variety with Ky ample. Then there
are no algebraically non-degenerate holomorphic curves in N.

Theorem 2.99 for the case dim NV = 1 follows from Liouville’s theorem and
the fact that the compact complex curves of genus greater than 1 are uniformized
by the disc (see Theorem 4.57). Generally, a proof of Theorem 2.99 will be given
in Chapter 6 (see Theorem 6.17). As a special case of Conjecture 2.97, B. Shiffman
[345] listed Theorem 2.99 as a conjecture.

Qualitatively, Conjecture 2.98 also has the following simple consequence.

Conjecture 2.100. Let N be a non-singular complex projective variety. Let K be
the canonical divisor of N, and D a normal crossings divisor on N. Suppose that
K + D is pseudo ample. Then N — D is pseudo Brody hyperbolic.

Related to Conjecture 2.100, A. Levin [244] gave a main Picard-type conjec-
ture as follows:

Conjecture 2.101. Let N be a complex projective variety. Let D = Dy 4+ ---+ Dy
be a divisor on N with the D;’s effective Cartier divisors for all i. Suppose that at
most k D;’s meet at a point, so that the intersection of any k + 1 distinct D;’s is
empty. Suppose that dim D; > ng > 0 for all i. If ¢ > k + fo, then there does not
ezist a holomorphic mapping f : C — N — D with Zariski-dense image.

Picard’s theorem is the case k = ng = dim N = 1 of Conjecture 2.101. When
N is a surface, k < 2, and the D;’s have no irreducible components in common, A.
Levin [244] proved Conjecture 2.101. At the extreme of ng, there is the following
special case.
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Conjecture 2.102. Let N be a complex projective variety. Let D = Dy + ---+ D,
be a divisor on N with the D;’s effective Cartier divisors for all i. Suppose that at
most k D;’s meet at a point. If D; is pseudo ample for all i and q¢ > k + dir’;N,
then N — D is pseudo Brody hyperbolic.

When ¢ > 2kdim N, A. Levin [244] proved Conjecture 2.102. Further, A.
Levin [244] proved that N — D is complete hyperbolic if D; is ample for all 7. To
relate Conjecture 2.100 with Conjecture 2.102, we recall the following theorem,
which is a consequence of Mori theory (cf. [280], Lemma 1.7).

Theorem 2.103. Let N be a non-singular complex projective variety of dimension
n with the canonical divisor K. If D1, ..., Dy1o are ample divisors on N, then
K+ Dy+---+ Dpyo is ample.

So when N is non-singular, the D;’s are ample, and D = D+ --+D, has nor-
mal crossings, we see that Conjecture 2.102 is a consequence of Conjecture 2.100.
Particularly, if N is the complex projective space P”, and if D; is a hyperplane for
each i, Corollary 2.72 with k = n is a special case of Conjecture 2.102.

Here we make a remark for the case m < n. To prove Conjecture 2.97, based
on Theorem 2.95 it is sufficient to obtain the estimate

| M (O;r;logg) < O(log™ Ty(r, L)) + O(clogr). (2.12.28)

By using Lemma 2.87, it is sufficient to find a holomorphic field ¢ on f over M of
degree n — m which is effective for f such that the estimate

| M {O;r;log|p|) < O(log™ Ty(r, L)) + O(elogr) (2.12.29)
holds. Generally, we have the following expression (cf. Proof of Theorem 2.84):
(p:fr]l/\.../\fr]n_m

for some n; € I'(M, f*(T(N))) (j =1,...,n—m). By Lemma 1.55, there exists a
constant ¢ > 0 such that

|<,0| = |771/\"'/\77n—m| §C|771|"'|77n—m|-

To estimate M (O;7r;log |¢), it is sufficient to find a bound of M (O;r;log |nk|)
for each k. The difficult point for estimating M (O;r;log|nk|) is that the norm
|| is measured by a “singular” metric induced by . We will introduce two
ways to construct an effective holomorphic field ¢ on f. One way is to use ample
holomorphic vector fields on NV as shown in Lemma 2.85. Another way is to use
meromorphic connections which will be discussed in detail in Chapter 6.

Let #1,...,%, be a coframe in an open set of N such that the Hermitian
metric of N is given by

s} =2 tata.
a=1
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Write
¥ = Ric(¥ Z Raptha A s

and define the associated scalar curvature

= tr(y Z Raa- (2.12.30)

Since R and det(Rap) are respectively the sum and product of eigenvalues of the
matrix (Rap), which are positive, the geometric-mean-arithmetic-mean inequality
implies .
R > n{det(Rap)}~ > 0.
Define a positive C*°-function on N by
R = tr(A\ger (L, ) + Rie(Q))

and set
17
L g s, 202
Then the formula (2.12.10) implies

1
R=R+ 4Alog/\D, (2.12.31)

where
Alog Ap = 4tr(dd‘log Ap)
is just the Laplacian of log Ap.

Lemma 2.104 ([184]). Assume that (A1)—(A3) hold. Then for any continuous sec-
tion X of T(N) over N, there exists a positive constant ¢ such that

X2 < R, (2.12.32)

where we used the metric induced by 1.

Proof. By using (2.12.10), we can write ¢ = 1)’ 4+ ¢”, where
q
L
W' = Mg (L, k) + Ric(9) +2 i “2)

is continuous on IV, and

dlog|s;|? A d¢log|s;|?
// —9 J J
Z (log |s;[%)?



2.12. Carlson-Griffiths-King theory 209

In fact, according to the construction of ¥, we have ¢’ > 0 (see [380]). Denoting
the norm |X|y induced by 1, then | X |, is bounded on N, and so

1X[5, < dtr(@') < dtr(v) = R (2.12.33)
holds for a constant ¢’ > 0.
Next we estimate | X @”' Take local holomorphic coordinates wy, . .., w, and
set
dwa:Zaakd)k, a=1,...,n.
k
Write 5 2
loglog |5,z
bja = gawga| J , Cjk = ijaaak~
Then

.q . g
P = 7Zr Z Z bjagjﬁdwa A dwg = :T Z chkéjl¢k A J’l-

j=1 a,8 j=1 ki

Let e1,...,e, be a frame field which is dual to the coframe (¢1,...,1,). Write

X = Zn: Eneq-
a=1

We have

q q 2

X150 =23 > eineneli =2

J=1 k,l j=1

Z ik

k=1

The Schwarz inequality implies

X[ <2) ( |Cjk|2> (Z |§k|2> :
k=1 k=1

j=1

Since X is continuous on N, there is a positive constant ¢’ such that

n
Dol <,
=1

and hence

q n

X5, <2¢” Z Z lejrl® = "tr(v”) < 'tr(y) = "R (2.12.34)
j=1 k=1

Since
X5 = XT3 + X [50,

therefore (2.12.32) follows from (2.12.33) and (2.12.34). O
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Under the conditions (A1)-(A5), we define a function associated to D and f:
R¢(r) = M (O;r;logRo f). (2.12.35)

Theorem 2.105 ([184]). Assume that (A1)—(A5) hold with m < n, and further
assume that D has simple normal crossings. Assume that there exist holomorphic
vector fields Z1,...,Z, on N such that

Z =71 N+ NZy, Z£O.
Suppose that f has strict rank m such that

M) & supp(D), f(M) & supp((2)),

where (Z) denotes the zero divisor of Z. Then for any € > 0, we have

q
I qTy(r, L)+ Ty(r, Kn) <D Ny = Nram (7, f) + Ric(r,70)

j=1

+ "7 " Rp(r) + Ollog Ty (r, 1)) + O(e log ).

2
(2.12.36)
Proof. By Lemma 2.85, there exists A € J7',,_,, such that a holomorphic field
o ="2Zxt = (Zxy N NZxtn—m)) ¢

on f over M of degree n — m is effective for f. By Lemma 1.55, there exists a
constant ¢ > 0 such that

| Zx) A A Zanemy| < €] Zay ]

and hence
n—m 2
M{(O;r;log|el) < Z M<O;r;log | Zxk) © f] >+O(1). (2.12.37)
k=1
By Lemma 2.104, we have
M <0; rilog | Zagry o f\2> < M (O;r;log®o f) + O(1). (2.12.38)
Thus Theorem 2.105 follows from Theorem 2.95 and Lemma 2.87. O

If N is a complex torus, then there exist n holomorphic vector fields Z1,...,2,
which are linearly independent at every point of N. If N is the complex projec-
tive space P™(C), we define n holomorphic vector fields Z1, ..., Z, over P*(C) as
follows. We consider the natural projection

P:C"* — {0} — P"(C)



2.12. Carlson-Griffiths-King theory 211

defined by (&, ...,&n) — [0, - -, &n], which induces the holomorphic differential

P’ : T(C""! — {0}) — T(P"(C)).

Zi:IE’”<82>7 i=0,1,...,n.

Then Zj, ..., Z, span the holomorphic tangent space at every point of P*(C). For
example, denoting the local coordinates

Define

S
zi=",7=1,....n
e
on the domain Uy = {&, # 0} of P"(C), we have
510821_, if1<i<n;
T X, dfi=o.

Hence 71, ..., Z, satisfy the condition in Theorem 2.105.



Chapter 3

Topics in Number Theory

In this chapter, we will introduce some results and problems in number theory that
have an analogue in Nevanlinna theory, say, the abc-conjecture, Roth’s theorem,
Schmidt’s subspace theorem, Vojta’s conjecture, and so on.

3.1 Elliptic curves

We think that if a variety admits non-constant holomorphic curves, it would have
a rich and complicated distribution theory of rational points. It is well known
that rational and elliptic curves admit non-constant holomorphic curves (see Sec-
tion 3.1.5 and 4.8). These also are total compact Riemann surfaces satisfying the
above property. The difference between rational and elliptic curves is that map-
pings of non-constant holomorphic curves into elliptic curves must be surjective
(cf. Theorem 4.50), but the case for rational curves is not so. The phenomenon
reflects a difference of distribution of rational points on two classes of curves. Gen-
erally speaking, distribution of rational points on elliptic curves is “normal”. In
this section, we will give an elementary exhibit of the more beautiful theory.

3.1.1 The geometry of elliptic curves

An algebraic curve E defined over a field x is called an elliptic curve if a normal-
ization of the curve has genus 1, usually written E/x if E is defined over k as a
curve. In this section, we will discuss smooth elliptic curves. However, there are
non-smooth elliptic curves. For example, the algebraic curve defined over C by the
following equation of degree 4,

v (ax?® + bz +¢) + ax® + Bz +v =0,

has generally two ordinary double points. The genus formula implies that the curve
has genus 1. Hence it is elliptic, but not smooth.
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Proposition 3.1 (cf. [362]). Let E be an elliptic curve defined over k.

(al) There exist functions x,y € K(E) such that the mapping [z,y,1] : E — P2
gives an isomorphism of E/k onto a curve given by a generalized Weierstrass
equation

y? + a1zy + asy = 2° + asx? + aux + ag (3.1.1)

with a; € k.

(a2) Any two generalized Weierstrass equations for E as in (al) are related by a
linear change of variables of the form

r =l +r,
= 3y + su’s +t,

with u,r,s,t € K, u # 0.

(a3) Conversely, every smooth cubic curve given by a generalized Weierstrass
equation as in (al) is an elliptic curve defined over k.

As usual, the curve defined by the generalized Weierstrass equation in (al)
is the locus of the homogeneous coordinate equation

Y2Z + a1 XYZ +asYZ% = X2 + as X%Z + au X Z? + ag 2>

in P? with only one point [0, 1,0] on the line at co. The functions z,y € &(E) in
(al) are called Weierstrass coordinate functions on E, which have the property

=

(E) = k(x,y), [R(E) : k(z)] = 2.

The point in E corresponding to [0, 1,0] under the mapping in (al) is called a base
point of E, or the origin of E, denoted by O. Obviously, O must be a pole of order
2 of z, and a pole of order 3 of y.

If char(r) # 2, then we can simplify the equation by completing the square.
Thus replacing y by é(y — a1z — ag) gives an equation of the form

y2 = 42> + byz® + 2047 + bg,
where

by = das+al,
ba 2a4 + a1as,
bg = dag+ ag.
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The following quantities are usually used:

by = a%ag + dasag — araszay + agag — ai,
ca = —24by+ b3,
c6 = —216bg+ 36bsby — b3,
A = —b3bg — 8b3 — 27b2 + babybg,

. i

N

dx dy

w =

2y + ar1x + as - 322 4+ 2a97 + ag — a1y’

One easily verifies that they satisfy the relations
Abg = bobg — b3, 1728A = ¢} — c2.

The quantity A is called the discriminant of the generalized Weierstrass equation,
j is called the j-invariant of the elliptic curve E, and w is the invariant differential
associated with the generalized Weierstrass equation. The following properties are
due to Silverman [362], Propositions 1.4 and 1.5.

Proposition 3.2.

(bl) The curve given by a generalized Weierstrass equation is non-singular if and
only if A #0.

(b2) The invariant differential w on an elliptic curve associated to a generalized
Weierstrass equation is reqular and non-vanishing, i.e., div(w) = 0.

If further char(®) # 2, 3, then replacing (z,y) by ((z — 3b2)/36,y/108) elim-
inates the 2 term, yielding the simple Weierstrass equation

V=24 azr+b

with @ = —27¢4, b = —54¢g. The only change of variables preserving this form of
the equation is
r=u?2, y=udy (3.1.2)

for some u € R4, and then
uta' = a, WSV =b, u?A = A.
We summarize the above discussion as follows:

Theorem 3.3 (cf. [126], [362]). For each smooth elliptic curve E defined over a
field k of characteristic # 2,3, there exists a coordinate system such that the affine
equation of E may be expressed by a Weierstrass equation

v =2 far+b (3.1.3)
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with a,b € k, and

1728(—4a)?
A= —16(d4a® +270%) £0, j= 8(A )" (3.1.4)

The only change of variables preserving this form of the equation is (3.1.2).

The condition that the discriminant A is non-zero is equivalent to the curve
being smooth. It is also equivalent to the cubic 23 4+ ax + b having three different
roots since

16(561 — I2)2(I2 — I3)2(.1‘3 - .731)2 = A,
where x1, x2, x3 are the three zeros of the polynomial 23 + az + b.

Let E be an elliptic curve given by a generalized Weierstrass equation (3.1.1).
Remember that E C P? consists of the points P = (x,y) satisfying the equation
together with the point O = [0,1,0] at infinity. Let L C P? be a line. Then since
the equation has degree 3, L intersects E at exactly three points, say P,Q, R.
Note that if L is tangent to E, then P,Q, R may not be distinct. The fact that
LN E (counting multiplicity) consists of three points is a special case of Bezout’s
theorem. One can use this fact to define an addition law on E. Namely, given
P,Q € E, draw the line L through P and @ (tangent line to F if P = Q). Let
R be the third point of intersection of L with E. Let L’ be the line connecting
R and O. Define P + @ to be the third point of intersection of E with L’. The
composition law makes F into an Abelian group with identity element O. Further,

E(r) = {solutions (z,y) € k2 of (3.1.1)} U {O}
is a subgroup of E (see [362], Proposition 2.2).

Example 3.4 (cf. [429]). Let E/Q be an elliptic curve defined by the equation
(3.1.3). Ifa=—1,b=0, then

E(Q) = {(070), (170), (—1, 0)7 O}

Let E be an elliptic curve defined over x and m € Z — {0}. The m-torsion
subgroup of E, denoted E[m], is the set of points of order m in F,

Elm|] ={P € E | [m]P = O},

where
[m]P=P+ P+---4+ P (m terms)

if m > 0, [m|P = [-m](—P) if m <0, and [0]P = O. The torsion subgroup of E,
denoted E}..s, is the set of points of finite order,

Eiors = | Elm].
m=1

Then Fios(x) will denote the points of finite order in E(k).
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Proposition 3.5 ([362]). Let E/x be an elliptic curve and m € Z—{0}. Let p denote
the characteristic of K.
(cl) If p=0 or if m is prime to p, then

E[m] = (Z/mZ) x (Z/mZ).
(¢2) If p > 0, then either

E[p] =2 {0}, e=1,2,3,...;

or
Ep° | =2 Z/p°L, e=1,2,3,....

Let E/k be an elliptic curve and £ € Z a prime. The (¢-adic) Tate module of
FE is the group
Ty(E) = lim E[¢"],

the inverse limit being taken with respect to the natural mappings
[€] : B[¢"t) — E[¢").

Since each E[¢"] is a Z/¢"Z-module, we see that the Tate module has a natural
structure as a Zg-module. Note that since the multiplication mappings [¢] are
surjective, the inverse limit topology on Ty(F) is equivalent to the ¢-adic topology
it gains as a Zg-module. Proposition 3.5 implies immediately

Proposition 3.6 ([362]). The Tate module has the following structure:

(dl) Ty(E) 2 Zy X Zy if € # char(k).
(d2) T,(E) =2 {0} or Z, if p = char(x) > 0.

Let m > 2 be an integer (prime to char(x) if char(x) > 0). Note that each
element o of the Galois group G/, acts on E[m] since, if [m]P = O, then

[mlo(P) = o([m]P) = O.
We thus obtain a representation
Gr/w — Aut(E[m]) = GL(2,Z/mZ),

where the latter isomorphism involves choosing a basis for E[m]. The action of
Gr/w on each E[{"] commutes with the multiplication mappings [£] used to form
the inverse limit, so G/, also acts on Ty(E). The (-adic representation (of Gy
on E), denoted pg ¢, is the mapping

PE: G,g/,.i — Aut(Tg(E))
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giving the action of G/, on T;(E) as described above. If £ # char(x), by choosing
a Zg-basis for Ty(E) we obtain a representation

Gr/w — GL(2,Z4);
and then the natural inclusion Z, C Q, gives
Gk/n - GL(27Q/)

Remark. If k is a local field, complete with respect to a discrete valuation v, we
can find a generalized Weierstrass equation (3.1.1) for E/k with all coefficients
a; € O, = £[0; 1] since replacing (z,y) by (u=2z,u"3y) causes each a; to become
a;u’, if we choose u divisible by a large power of a uniformizing parameter ¢ for
the valuation ring O,. Since v is discrete, we can look for an equation with v(A)
as small as possible, called a minimal (Weierstrass) equation for E at v. The
natural reduction mapping O, — F(x) = 9,/k(0;1) is denoted z — Z. Now
having chosen a minimal Weierstrass equation (3.1.1) for E/k, we can reduce its
coefficients modulo ¢ to obtain a (possibly singular) curve over F(x), namely

E: y2+C~Ll$y+5t3y:$3+62x2—|—d4x—|—dﬁ.

The curve E/F(k) is called the reduction of E modulo t. Further, E is said to
have good (or stable) reduction over k if E is non-singular, otherwise, it has bad
reduction. In the case of having bad reduction, F is also said to have multiplicative
(or semi-stable) reduction over k if E has an ordinary double point, otherwise, it
has additive (or unstable) reduction over k. If E has multiplicative reduction, then
the reduction is said to be split (respectively non-split) if the slopes of the tangent
lines at the double point are in F(x) (respectively not in F(x)). One knows that
E has good reduction if and only if v(A) = 0 (cf. [362]).

3.1.2 Modular functions
We usually use the following form of Theorem 3.3 over C (cf. [359], [126]):

Theorem 3.7. Every algebraic curve of genus 1 over C can be transformed bira-
tionally into a cubic curve of the special form

y?> =42® — Az — B (3.1.5)

with constants A, B satisfying A = A3 — 27B% £ 0. Two such cubic curves are
birationally equivalent if and only if they agree on the invariant
1728 A3
= . 3.1.6
I a3 - 212 (3.1.6)
If this is the case, then the two curves go over into each other under an affine
transformation of the form x — u?x, y — udy, with constant u # 0.
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Take wi,ws € C such that they are linearly independent over R, that is,
w; # 0, wa/wy € R. Let A be the discrete subgroup of C generated by wy and ws:

A = [wy,ws] = {mw1 + nws | m,n € Z},

which is called a lattice over Z. Here we simply introduce meromorphic functions
on the quotient space C/A; or equivalently, meromorphic functions on C which are
periodic with respect to the lattice A. An elliptic function (relative to the lattice
A) is a meromorphic function f on C which satisfies

fz+w)=f(z), z€C, weA.
The set of all such functions is clearly the field M(C/A).
The Eisenstein series of weight 2k (for A) is the series
Gok = Gar(A) = Y w ™,
weA—{0}

which is absolutely convergent for all k > 1. The Weierstrass @ function (relative
to A) is defined by the series

1 1 1
2 weA—{0} ((Z —w)? wz)

which converges absolutely and uniformly on every compact subset of C — A. It
defines an even elliptic function on C having a double pole with residue 0 at each
lattice point and no other poles.

Theorem 3.8. Every elliptic function is a rational combination of @ and g', i.e.,
M(C/A) =C(p,¢).
Proof. Siegel [358], Chapter 1, Section 14, Theorem 6, or Silverman [362]. O
It is standard notation to set
g2 = g2(A) = 60Gy4, g3 = g3(A) = 140Gs. (3.1.7)

A basic theorem (cf. [358]) in elliptic function theory shows that g3 — 27g2 # 0,
and the inverse function of the elliptic integral of the first kind in the Weierstrass
normal form

_ (" dg
Z_/oo VA — gol — g3

formed with these gs, g3 coincides with the Weierstrass g function which also is a
unique even meromorphic function in C satisfying the differential equation

(9)? =49 — g2 — g3. (3.1.8)

Conversely, one has the following uniformization theorem:
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Theorem 3.9. Let A, B € C satisfy A3 — 27B? # 0. Then there exists a unique
lattice A C C such that go(A) = A and g3(A) = B.

Proof. See Apostol [6], Theorem 2.9; Robert [325], 1.3.13; Shimura [351], Section
4.2; Serre [341], VII Proposition 5, or Siegel [358], Chapter 1, Sections 11-13. O

By possibly reversing the order of w; and ws, we can assume that the imag-
inary part of the ratio 7 = wa/wy is positive. By (3.1.7), the quantity

. 172843
J=3J) =
95 — 2793
associated with the algebraic curve
y* = 42® — gox — g3

depends solely on the period lattice and is homogeneous of degree 0 in w1, ws, that
is, it is the same if we replace wq,ws by cwi, cwy for any complex number ¢ # 0.
Thus we have j(cA) = j(A), and we may define j(7) = j(A). But C/A is a complex
torus of dimension 1, and the above arguments show that j is the single invariant
for isomorphism classes of such toruses. It follows that j = j(7), considered in the
upper half-plane H, is a holomorphic function of 7 alone which has the invariance

property
far+b\ . (7)
J er+d) J
with integers a, b, ¢, d and ad — bc = 1. Note that the transformation
T T = , {a,b,c,d} CZ, ad—bc=1 (3.1.9)
T

maps H into itself. Such transformations form a group, called the modular group
SL(2,7) or, more precisely, the elliptic modular group.

We denote the relation (3.1.9) between 7 and 7/ by
7=171"mod SL(2,7Z), (3.1.10)

and call two points 7 and 7/ equivalent. As usual, we define the fundamental region
B of SL(2,Z) as a subset of H satisfying conditions:

(el) If 7 € H, there exists 7/ € B such that (3.1.10) holds;
(e2) If 7,7 € B, then 7 # 7/ mod SL(2,Z).

For example,

%:{x—kiyeH

1 1
2h2>1, - < —1
r“+y =1, 27x<2 R
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where
l= {x+iy eH

1
w2497 =1, 0<:c<2}.

Now ‘B contains exactly one representative of each equivalence class. In view of
Theorem 3.7, the function j(7) has the important property of separating every
two points of H by its values if these points are not equivalent with respect to the
modular group, that is,

j(r) #j(r'), 7#7 mod SL(2,Z),
which gives a holomorphic isomorphism (cf. [341])

j:H/SL(2,Z) — C.

The space H/SL(2,7Z) is a non-compact Riemann surface. Its natural com-
pactification is P1(C), obtained by adding a single extra point at infinity. Define

H* = HUPYQ).

Here one should think of the points [z, 1] € P1(Q) as forming the usual copy of Q
in C; and the point [1,0] € P1(Q) as a point at infinity. Notice that SL(2,Z) acts
on P}(Q) in the usual manner,

( Z Z ) s [2,y] — laz + by, cx + dy].

The quotient space H*/SL(2,7Z) can be given the structure of a Riemann surface,
and one can show that the j-function then defines a holomorphic isomorphism

j:H*/SL(2,7Z) — P(C).

See Shimura [351], Sections 1.3, 1.4 and 1.5 for details. Since SL(2,Z) acts tran-
sitively on P!(Q), the net effect has been to add a single point, called a cusp, to
H/SL(2,Z).

More generally, we consider an automorphic function f(7) of one complex
variable 7, which is meromorphic in H including the point of B at infinity and
which is invariant under the modular group. More precisely, the condition on the
behavior at infinity states that there exists a Laurent expansion

o0

[0 =3 el

n=—m

which converges for sufficiently small values of |z| and contains only finitely many
negative powers of z. Here the variable z = e>™". Every function satisfying all
these conditions is called a modular function or, more precisely, an elliptic modular
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function. The function j(7) is an elliptic modular function with (cf. [6], Theorem
1.18, 1.19, 1.20, or [341], VII Proposition 4, 5, 8)

. 1 - n
Jj(r) = . + 744—1—7;10(11)2 , ¢(n) € Z.

The elliptic modular functions obviously form a field which consists precisely of
the rational functions of j(7) (see [358], [359], [360], [362]).

3.1.3 Cusp forms

Let N be a positive integer. One defines subgroups of SL(2,Z) as follows:

To(N) = {( “? ) € SL(2,7) czO(modN)}7 (3.1.11)
Ty (N) = {7 € SL(2,7) ‘ y= ( oY ) (modN)}, (3.1.12)
" I(N) = {7 € SL(2,7) ’ v = ( (1) ; ) (modN)}. (3.1.13)

More generally, a congruence subgroup of SL(2,7Z) is defined to be a subgroup T’
of SL(2,Z) which contains I'(/V) for some integer N > 1. If I is a congruence
subgroup of SL(2,7Z), then I' acts on H*, and we can form the quotient space
H*/T', which has a natural structure as a Riemann surface (see Shimura [351],
Sections 1.3 and 1.5). The action of T' on P1(Q) gives finitely many orbits; the
images of these orbits in H*/T" are called the cusps of T'.

We may view 1/N as a point of order N on the torus C/[1,7]. Let Zy be
the cyclic group generated by 1/N. Then we may consider the pair (C/[1,7], Zn)
as consisting of a torus and a cyclic subgroup of order N. One has the following
parametrizations:

(f1) The association 7 — (C/[1,7],1/N) gives a bijection between H/T';(N) and
isomorphism classes of toruses together with a point of order N.
(f2) The association 7 — (C/[1,7], Zn) gives a bijection between H/T'¢(/N) and

isomorphism classes of toruses together with a cyclic subgroup of order V.

Furthermore, there exist affine curves Y3 (N) and Y5 (V), defined over Q, such that
Yi(N)(C) = H/T1(N), Yo(N)(C) ~ H/I'o(N)

and such that Y7 (N) parametrizes isomorphism classes of pairs (E, P) algebrai-
cally, where E is an elliptic curve and P is a point of order N, in the following sense.
If k is a field containing @Q, then a point of Y7 (IV)(k) corresponds to such a pair
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(E, P) with E defined over « and P rational over . Similarly, Yy(N) parametrizes
pairs (E, Z), where F is defined over x and Z is invariant under the Galois group
G./q- The affine curve Y;(N) can be compactified by adjoining the points which
lie above j = oco. Its completion, denoted by X;(N), is a smooth projective curve
which contains Y3 () as a dense Zariski open subset. Similarly, we have the com-
pletion Xo(N) of Y5(V). Thus one obtains the holomorphic isomorphisms

X1(N)(€) ~ H/T1(N), Xo(N)(C) ~ H*/To(N).
See Shimura [351], or Silverman [362].

An automorphic form f € M(H) of weight ’2“ for a congruence subgroup
[ of SL(2,Z) is said to be a modular function of weight k for T' if f also is
meromorphic at each of the cusps of H*/I" (see Shimura [351], Section 2.1 for the
precise definition). A modular function is called a modular form if it is holomorphic
on H and at each of the cusps of H*/T'; and it is a cusp form if it is a modular
form which vanishes at every cusp. Take

atr+b

a b
7_(c d)eF'THV(T)_CT—&—d'

Note that the Jacobian determinant J, of v is just
dry 1

dr — (et +d)?’
By the definition, a modular function f of weight k for I' satisfies

P05 =t rem (3114

The Eisenstein series Goi (1) = Gar(A) of weight 2k for the lattice A = [1, 7]
is a modular form of weight 2k for SL(2,Z). Its Fourier series is given by
(27i)%k
(2k—-1)

2minT

Gor (1) = 2¢(2k) + 2 ook—1(n)e ,

!
n=1
where o,(n) is the divisor function
oa(n) = d*
d|n

See [6], Theorem 1.18, 1.19, 1.20, or [341], VII Proposition 4, 5, 8. Related to the
definition of Gay(7), here one introduces the function

E(r,s) = ! Z Y

26(29) (m,n)€z?—{0} fm e

S

T=z+iy € H. (3.1.15)
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This series converges absolutely and uniformly in any compact subset of the region
Re(s) > 1. Selberg [339] proved that E(r,s) has a meromorphic continuation to
the whole complex s-plane and satisfies the functional equation

£(2s—1)

E(r1,s) = £(25)

E(r,1—s). (3.1.16)

The discriminant function A(7) is a classic cusp form of weight 12 for SL(2,Z).
Its Taylor expansion in z = e2™" assumes the form

A(T) = (2m)? i 7(n)2" = (27)*22 ﬁ(l — )% (3.1.17)

with 7(1) = 1 and 7(n) € Z (see [6], Theorem 1.18, 1.19, 1.20, or [341], VII
Proposition 4, 5, 8). The integer-valued function n +— 7(n) is called the Ramanujan
T-function. Ramanujan also conjectured that the Hecke L-series associated to A
has an Fuler product:

0o —1
L(As) =Y m(n) _ I1 (1 _Te) 231_11> . (3.1.18)

This was proved by Mordell [276]. Further L(A, s) satisfies the functional equation
Aa(s) = Aa(12 — ), (3.1.19)

where
Aa(s) = (2m) 7 °T'(s)L(A, s). (3.1.20)

The study of modular forms is facilitated by the existence of certain linear
operators. For each integer n > 1, we define the Hecke operator T,, on modular
forms of weight k for SL(2,7Z) by the formula

d—1 .
=Y L s (M.

din i=0

For a more intrinsic definition, see Apostol [6], Section 6.8; Serre [341], VII, Section
5.1; or Shimura [351], Ch. 3. The Hecke operator satisfies the following basic
properties:

(gl) If f is a modular form (respectively cusp form) of weight k for SL(2,Z), then
T,(f) is also.

(g2) For all integers m and n, T,,T,, = T, T},

(g3) If m and n are relatively prime, then T, = 10, T,
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See Apostol [6], Theorem 6.11 and 6.13; Serre [341], VII, Sections 5.1 and 5.3.

The Hecke operators defined above also act on the space of modular forms
relative to congruence subgroups.

Proposition 3.10. Let I' be a congruence subgroup of SL(2,Z), say I’ D T'(N) and
let f be a modular form of weight k for T'. Then for each integer n > 1 relatively
prime to N, the function T,,(f) is again a modular form of weight k for T'. Further,
if [ is a cusp form, then so is Tp,(f).

Proof. See Shimura [351], Proposition 3.37. O

For a positive integer IV, a cusp form of weight k£ > 1 for I'; (IV) is also called
a cusp form of weight k and level N, which is a holomorphic function f on H such
that

(1) f(475) = (er + )" J(7) for all 7 € H and all ( ot ) € Tu(N);

(h2) |£(7)|>(Im(7))* is bounded on H.

The space Sk(N) of cusp forms of weight k and level N is a finite-dimensional
complex vector space. If f € S(IV), then it has a Taylor expansion in e27":

F) =) ealf)e™m.

n=1

We define the L-series of f to be
00 Cn
L =30,
n=1

For all primes p t N, the Hecke operators T}, can be simultancously diagonalised on
Sk(N) and a simultaneous eigenvector is called an eigenform. If f is an eigenform,
then the corresponding eigenvalues, a,(f), are algebraic integers,

alf)#0, (f)=a(falf),
and one has

-1
L(f,s) = a(H]] (1 - af;)(sf) + pQS_lkH) . (3.1.21)

Conversely, if (3.1.21) holds, then for each prime p, one has (see [351])
Tp(f) = ap(f)]-
In particular, for each prime p we have

Tp(A) = 7(p)A.
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For any prime p over p, we let D,, and I, denote respectively the decompo-
sition and inertial groups of p. Thus

Dy ={o[alp) =p},

and I, is the kernel of the reduction mapping D, — Gr,/r,. This reduction
mapping is surjective, and we let Frob, denote an element of D, that maps to the
Frobenius o — oP . It is well defined up to an element of I, (and up to conjugation).

Let X\ be a place of the algebraic closure of Q in C above a rational prime
¢ and let Q, denote the algebraic closure of Q; thought of as a Q algebra via
A If f € Sk(N) is an eigenform, then there is a unique continuous irreducible
representation

PFX: GQ/Q — GL(2,Q,)

such that for any prime p { N4, py » is unramified at p and

trppa(Froby) = a,(f).

The existence of py x is due to Shimura [351] if k = 2, to Deligne [75] if k£ > 2 and
to Deligne and Serre [76] if k = 1. Its irreducibility is due to Ribet [321] if & > 1
and to Deligne and Serre [76] if k = 1. Moreover py » is potentially semi-stable at
¢ in the sense of Fontaine.

Let p: Gg/g — GL(2,Q,) be a continuous representation which is unram-
ified outside finitely many primes and for which the restriction of p to a decom-
position group at £ is potentially semi-stable in the sense of Fontaine. It is known
by work of Carayol and others that the following two conditions are equivalent:

(i1) p ~ pg for some eigenform f and some place A|¢;

(i2) p ~ pys for some eigenform f of level N(p) and weight k(p) and some place
AL

In (h2), N(p) and k(p) are respectively the conductor and the weight of p. When
these equivalent conditions are met we call p modular.

3.1.4 Problems in elliptic curves

Next we assume that E is an elliptic curve over Q defined by (3.1.3), where a, b € Z.
By (3.1.4), since A = —4a and B = —4b satisfies

A® —27B? = —16(4a® + 27b%) = A # 0,

the uniformization theorem shows that there exists a unique lattice A C C such
that
g2 = g2(A) = —4a, g3 =g3(A) = —4b.
/

Hence the equation (3.1.3) has non-constant meromorphic solutions z=p, y= ép .
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Conjecture 3.11 (Lang, Stark [226]). If (z,y) € Z? is a point on the elliptic curve
E, then for e > 0, there exists a number C(g) such that

7| < C(e) max{|al?, |2} 5 <. (3.1.22)

Lang originally posed the conjecture with an unknown exponent; then Stark
suggested that the exponent should be 5/3.

Question 3.12. Given polynomials a,b satisfying (3.1.4). If polynomials x,y satisfy
(3.1.3), does the following relation hold

? deg(z) < max{3deg(a),2deg(b)}? (3.1.23)

Theorem 3.13. If E is an elliptic curve over a number field k, then the commutative
group E(k) is finitely generated.

The theorem as stated here is actually due to Mordell [278] whose original
statement is for rational points, while Weil has generalized it to arbitrary number
fields and to Abelian varieties of higher dimension (see [158]). According to the
Mordell-Weil theorem, we can write

E(ff) =7"® Etors("{)a

where the torsion subgroup FEiows(k) is finite and the rank r of E(k) is a non-
negative integer. A deep theorem of Mazur [261], [262] states which finite groups
can occur as torsion subgroups of elliptic curves:

Theorem 3.14. If E is an elliptic curve, then Eis(Q) is one of the following 15
groups:

(A1) Z/nZ, with 1 <n <10 orn =12,
(A2) Z/2mZ x L)2Z, with 1 < m < 4.

Each of the groups in Theorem 3.14 occurs infinitely often as the torsion
subgroup of an elliptic curve over Q. For an example of each possible group, see
exer. 8.12 in Silverman [362]. For arbitrary number fields, there is the following
result of Manin [251]:

Theorem 3.15. Let xk be a number field and p € Z a prime. There is a constant
N = N(k,p) so that for all elliptic curves E/k, the p-primary component of E(k)
has order dividing p™ .

For those torsion subgroups which are allowed in Mazur’s Theorem 3.14, it is
a classical result that the elliptic curves F/k having the specified torsion subgroup
all lie in a 1-parameter family. See Exercise 8.13a, b in Silverman [362]. A complete
list is given in Kubert [218]. Taken together, Theorem 3.14 and Theorem 3.15
provide the best evidence to date for the following longstanding conjecture (cf.
Silverman [362]):
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Conjecture 3.16. Let k be a number field. There is a constant N depending on K
so that for all elliptic curves E/k,

|Et0rs("<5)| é N

The rank of F(Q) is called the rank of E and is written rank(E). The rank
of the Mordell-Weil group is much more mysterious and much more difficult to
compute. There are infinitely many elliptic curves E over Q with rank(E) = 0 (see
[362], Corollary 6.2.1), but there are many elliptic curves E such that rank(E) > 1
(see [331]). The following conjecture is due to Lang [231], Silverman [362], or
Hindry and Silverman [158]:

Conjecture 3.17. There exist elliptic curves E over Q whose Mordell-Weil rank is
arbitrarily large.

Fix an elliptic curve E defined by (3.1.3) over Q. For every prime number p
not dividing A = —16(4a® + 27b?), we can reduce a and b modulo p and view F
as an elliptic curve over the finite field IF,,. For every prime number p not dividing
A let

N, =#E[F,) =1+#{0 <2,y <p—1]y*=2"+ax + b(mod p)},

and set
ap, =1+p—Np.

H. Hasse ([149], [150]) proved that
—2./p < a, < 2/p. (3.1.24)
Define the Hasse-Weil L-function of E by

—1 00
L(E,s)=]] (1 gt 251_1> [E s =>" Z’;, (3.1.25)

N p* P
where [,,(E, s) is of the form
a
IL(E,s)=1—""
p(E,s) 0
for some well-defined integer a, = 1,—1, or 0 (cf. [232], p. 97; [362], p. 240; [389)],
p- 196), which is defined as follows:

1, if F has split multiplicative reduction over Q at p;
ap =4 —1, if E has non-split multiplicative reduction over Q at p;
0, if F has additive reduction over Q at p.

The coefficients a,, are constructed easily from a, for prime p. It follows from
(3.1.24) that L(E,s) converges absolutely and uniformly on compact subsets of
the complex half-plane {s € C | Re(s) > 3/2}.
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Let N(E) be the conductor of the elliptic curve E,

N(E) = pr(p)’
plA

in which f(p) is 0 if p+ A and > 1 if p|A (see [232], p. 97; [362], p. 361; [389), p.
196), called the exponent of the conductor of E at p. In particular, f(p) = 1if E
has multiplicative reduction over Q at p.

Let pg, denote the representation of GQ /g On the f-adic Tate module of
E(Q). The following conditions are equivalent (cf. [37]):

(B1) The L-function L(E,s) of E equals the L-function L(f,s) for some eigen-
form f.

(B2) The L-function L(E,s) of E equals the L-function L(f,s) for some eigen-
form f of weight 2 and level N(E).

(B3) For some prime ¢, the representation pg ¢ is modular.
(B4) For all primes ¢, the representation pg ¢ is modular.

(B5) There is a non-constant holomorphic mapping X;(N)(C) — E(C) for some
positive integer N.

(B6) There is a non-constant morphism X; (N (E)) — E which is defined over Q.

The implications (B2) = (B1), (B4) = (B3) and (B6) = (B5) are tautological.
The implication (B1) = (B4) follows from the characterization of L(E, s) in terms
of pg ¢. The implications (B3) = (B2) follows from a theorem of Carayol [45]. The
implications (B2) = (B6) follows from a construction of Shimura [351] and a
theorem of Faltings [98]. The implications (B5) = (B3) follows from Mazur [263].
When these equivalent conditions are satisfied we call E modular.

Theorem 3.18. If E is an elliptic curve over Q, then E is modular.

It has become a standard conjecture that all elliptic curves over Q are modu-
lar. Taniyama made a suggestion along the line (B1) as one of a series of problems
collected at the Tokyo-Nikko conference in September 1955. However his formula-
tion did not make clear whether the function f defined by coefficients of L(E, s)
should be a cusp form or some more general automorphic form. He also suggested
that constructions as in (B5) and (B6) might help attack this problem at least for
some elliptic curves. In private conversations with a number of mathematicians
(including Weil) in the early 1960s, Shimura suggested that assertions along the
lines of (B5) and (B6) might be true (see Shimura [352] and Weil [428]). How-
ever, it only became widely known through its publication in a paper of Weil [427]
in 1967, in which Weil gave conceptual evidence for the conjecture. That asser-
tion (B1) is true for CM elliptic curves follows at once from work of Hecke and
Deuring. Shimura [350] went on to check the assertion (B5) for these curves. The
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Shimura-Taniyama-Weil conjecture (Theorem 3.18) was finally proved by Breuil,
Conrad, Diamond, and Taylor [37] by extending work of Wiles [431], Taylor and
Wiles [390].

In 1985, Frey [101] made the remarkable observation that the Shimura-
Taniyama-Weil conjecture should imply Fermat’s last theorem. The precise mech-
anism relating the two was formulated by Serre as the e-conjecture and this was
then proved by Ribet in the summer of 1986, which enabled Ribet to show that
the conjecture only for semistable elliptic curves implies Fermat’s last theorem
(see [322], [232]). However, one still needed to know that the curve in question
would have to be modular, and this is accomplished by Wiles [431], Taylor and
Wiles [390] via studying associated Galois representations of elliptic curves.

Theorem 3.18 implies the following long-standing conjecture of Hasse and
Weil (cf. Silverman [362]): L(E,s) has an analytic continuation to all of C and
satisfies a functional equation

AE(S) :wEAE(Z—s), (3126)
where wg = *1, called the sign of the functional equation, and
Ag(s) = N(E)z(27m)*T(s)L(E, s). (3.1.27)

Note that the Euler product (3.1.25) for L(E, s) may not in general converge at
s = 1. Goldfeld [116] proved that if there exist constants C' € R™ and r € R such

that N
H P~ C(logx)",
p<z,ptA P
then r = ords—1 L(E, s), the order of vanishing of L(F,s) at s = 1, and
L(E, s) ry -1 -1
Ty = Veer e [ (B )7

plA

;
o1 (s

where 7y is Euler’s constant. In particular, if » = 0 then

-1

LE 1) =v2(]] JZP < [[0(E.1)

pfA plA
Conjecture 3.19 (Birch and Swinnerton-Dyer [26]). For every elliptic curve E,
rank(E) = ords—1 L(E, s).

The following theorem, a combination of work of Kolyvagin [214], [215], Gross
and Zagier [129], and others, is the best result to date in the direction of the Birch
and Swinnerton-Dyer conjecture.
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Theorem 3.20.

(Cl) ords=1L(E,s) = 0= rank(E) =0,
(C2) ords—1L(E,s) =1 = rank(E) = 1.

The sign wg in the functional equation (3.1.26) for L(FE,s) determines the
parity of the integer ords—1 L(F, s), that is, ords—1 L(FE, s) is even when wg = 1,
and is odd when wg = —1. Thus the following parity conjecture is a consequence
of the Birch and Swinnerton-Dyer conjecture.

Conjecture 3.21. The integer rank(E) is even when wg = 1, and is odd when
WE = —1.

There may be many parametrizations ¢ : Xo(N(E)) — E. An interesting
question is to find one of the ones of smallest degree, or at least to determine its
degree. The following modular parametrization conjecture is due to Hindry and
Silverman [158]:

Conjecture 3.22. There is an absolute constant d such that for all elliptic curves
E/Q, there is a finite covering o : Xo(N(E)) — E such that deg(p) < N(E)<.

3.1.5 Hyperelliptic and rational curves

A curve of genus g > 2 is called a hyperelliptic if it is a double covering of the
projective line P1. Next we assume char(i) # 2. The function field of a hyperelliptic
curve C is a quadratic extension of %(P!), hence has the shape &(x,y), where

y* = P(x) (3.1.28)

for some polynomial P(z) € &[z]. This equation gives an affine model for C. If the
polynomial P has a double root, say «, then we can replace y by (z — a)y and
cancel (z — )2, So we may assume that C' is given by an affine equation (3.1.28)
for some P(z) € R[z] with distinct roots. Then the affine curve C is smooth.

Proposition 3.23 (cf. [126], [158]). Every curve of genus 2 is hyperelliptic.

A compact Riemann surface M defined on C of genus > 2 is hyperelliptic if
and only if there exists a meromorphic function f on M with only two poles. Any
hyperelliptic Riemann surface of genus g can be realized as a smooth normalization
of a plane algebraic curve (3.1.28) in C2, for P a polynomial of degree 2g + 2.
Conversely, for distinct 2g+2 complex numbers a1, ag, . .., a2g+2, @ normalization
of the plane algebraic curve

2g+2

y? = H(m—ai)

i=1

is a hyperelliptic Riemann surface of genus g (cf. [126], [127]). Generally, if P is
a polynomial of degree n > 3 such that its discriminant is not identically zero,
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the hyperelliptic equation (3.1.28) determines a Riemann surface of genus g =
[(n — 1)/2] which can be derived from the Riemann-Hurwitz formula (1.6.9) (cf.
[338]), where [z] denotes the maximal integer < z.

A natural question is how one obtains all the irreducible algebraic curves
which have a rational parametric representation in an independent variable z. In
other words, if

flz,y)=0 (3.1.29)

is an irreducible equation of the curve, then we require two rational functions

of a variable z, not both constant, which satisfy the equation (3.1.29) identically
in z. An algebraic curve of this type is said to be a rational algebraic curve.

Theorem 3.24 (cf. [359]). An algebraic curve is rational if and only if it is of
genus 0.

Hence algebraic curves of genus 0 admit a lot of holomorphic curves.

3.2 The abc-conjecture

Many results for Diophantine equations in integers are analogous to results for
Diophantine equations in polynomials. Lang ([234], p. 196) said: “One of the most
fruitful analogies in mathematics is that between the integers Z and the ring of
polynomials F[t] over a field F.” Given Mason’s wonderfully simple inequality for
polynomial solutions to a + b = ¢ (namely Theorem 2.65), one wonders whether
there is a similar result for integers.

In Theorem 2.65 we note that (cf. [288], p. 182 or [135])

r(f) = deg(rad(f)),

where rad(f) is the radical of a polynomial f on C, which is the product of distinct
irreducible factors of f. On the other hand, the radical of a non-zero integer A is

defined to be
r(4) =[],
plA

i.e., the product of distinct primes dividing A. It was conjectured by Erdos and
Woods that there exists an absolute constant & > 2 such that for every positive
integers x and y, if r(x +4) = r(y+1i) fori =1,2,... k, then x = y. No examples
with different x and y are known. It seems that the five-value theorem of Nevan-
linna in value distribution theory is an analogue of the Erdés-Woods Conjecture,
and so maybe k = 5 is possible.
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There is a classical analogy between polynomials and integers, that is, prime
factors of an integer are often considered to be an appropriate analogy to irre-
ducible factors of a polynomial. Under that analogy, r(f) of a polynomial f corre-
sponds to logr(A) of an integer A, and in addition, the value log|A| of an integer
A is a measure of how “large” the integer is, while the degree of a polynomial is a
measure of how “large” the polynomial is (cf. [231] or [119]). Thus for polynomials
we had an inequality formulated additively, whereas for integers we formulate the
corresponding inequality multiplicatively.

After being influenced by Stothers-Mason’s theorem (see Theorem 2.65), and
based on considerations of Szpiro and Frey, Oesterlé [308] and Masser [256] for-
mulated the abc-conjecture for integers as follows:

Conjecture 3.25. Given ¢ > 0, there exists a number C(g) having the following
property. For any non-zero relatively prime integers a, b, c¢ such that a +b = ¢,
we have

max{|al, |b], ||} < C(e)r (abe)" <. (3.2.1)

An interesting discussion in [119] illustrates how one is naturally led from
Theorem 2.65 to the formulation of the abc-conjecture. In this setting Stewart and
Tijdeman [372] proved that the conjecture would be false without the €. In other
words, it is not true that

max{|al, |b], |c|} < Cr (abe).

To prove or disprove the abc-conjecture would be an important contribution to
number theory. For instance, some results that would follow from the abc-conjec-
ture are in [288], pp. 185-188, [92], [412] (or see [119], [231], [234], [415]). Langevin
([236], [237]) proved that the abc-conjecture implies the Erdds-Woods conjecture
with k = 3 except perhaps a finite number of counter examples.

Although the abc-conjecture seems completely out of reach, there are some
results towards the truth of this conjecture. In 1986, C.L. Stewart and R. Tijdeman
[372] proved

max{|al, [b], ||} < exp {Cr(abc)'®}.
In 1991, C.L. Stewart and Kunrui Yu [373] obtained

max{|al, ||, |c|} < exp {C(g)r(abc)2/3+€} .
In 1996, C.L. Stewart and Kunrui Yu [374] further proved

max{|al, |b], |¢|} < exp {C’(s)r(abc)l/ngE} .

Next we show that the abc-conjecture is equivalent to the following:
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Conjecture 3.26. Let A, B be fized non-zero integers. Take positive integers m, n
with
1 1
a=1-— — >0. (3.2.2)
m n

Let x,y,z € Z be variables such that x,y are relatively prime and
Ax 4+ By =z #0.

Assume that for a prime p (resp. q), p | x (resp. q | y) implies p™ | x (resp. q" | y).
Then for any € > 0 there exists a number C = C(e, m,n, A, B) such that

max{|z[*, [y[*, |2|*} < Cr(z)'*=. (3.2.3)

Remark. We introduce a notation related to Conjecture 3.26. A positive integer
A is powerful if for every prime p dividing A, p? also divides A. Every powerful
number can be written as a2b3, where a and b are positive integers. The Erdos-
Mollin-Walsh conjecture asserts that there do not exist three consecutive powerful
integers. The abc-conjecture implies the weaker assertion that the set of triples of
consecutive powerful integers is finite.

Here we first show that Conjecture 3.25 implies Conjecture 3.26. To simplify
notation in dealing with the possible presence of constants C, if a,b are positive
functions, we write

a<<b

to mean that there exists a constant C' > 0 such that a < Cb. Thus a < b means
a = O(b) in the big oh notation. By the abc-conjecture, we get

1 1 1+¢
max{fe], lyl,|2]} < {lol* lyl *r(2) }

If, say, |Az| < |By| then |z| < |y|. We substitute this estimate for x to get an
inequality entirely in terms of y, namely

11 1+e¢
yl < {lyl" i)}

We first bring all powers of y to the left-hand side, and take care of the extra ¢,
S0 we obtain

ly|* < (=)',

and then also
|z]* < T(Z)1+E

because the situation is symmetric in = and y. Again by the abc-conjecture, we
have

1 1 1+¢
2] < {Jal yl 7 r(2) }
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By using the estimate for |zy| coming from the product of the inequalities above
we find

|2|* < r(z)tte.

Conversely, Conjecture 3.25 can be derived from Conjecture 3.26. To do this,
we see that Conjecture 3.26 contains obviously the following generalized Szpiro
congecture (cf. [231], [415]):

Conjecture 3.27. Take integers x and y with D = 42> — 27y% # 0 such that the
common factor of x,y is bounded by M. Then for any e > 0, there exists a constant
C = C(e, M) satisfying

max{|z|*,y*, |D[} < Cr(D)"*<. (3.2.4)

This is trivial if z, y are relatively prime. Suppose that x, y have some common
factor, say d, bounded by M. Write

r=ud, y=wvd
with u, v relatively prime. Then
D = 4du® — 27d%0°.

Now we can apply the inequality (3.2.3) with A = 4d*,m = 3; B = —27d*,n = 2,
and we find the same inequality (3.2.4), with the constant depending also on M.

Further, it is well known that the generalized Szpiro conjecture implies the
abe-conjecture (cf. [232], [415]). Here we introduce the proof roughly. Let a+b = ¢,
and consider the Frey elliptic curve ([101], [102]),

y? = x(x —a)(z + D).

The discriminant of the right-hand side is the product of the differences of the
roots squared, and so
D = (abc)?.

We make a translation

h—
&=z + 3

to get rid of the z2-term, so that the equation can be rewritten

Yy =8 —mt— s,

where

L (0 b)(2a + b)(a + 20).

1
Yo = 3(a2+ab+b2), M= o
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The discriminant does not change because the roots of the polynomial in & are
translations of the roots of the polynomial in z. Then

D = 473 — 272
One may avoid the denominator 27 by using the curve
y? = 2(x — 3a)(z + 3b),

so that 792,73 then come out to be integers, and one can apply the generalized
Szpiro conjecture to the discriminant

D = 3%(abc)? = 43 — 2772,

and obtain

max { €/|abc|, \/|72|7 \3/|73|} < T(U,bc)1+€.

A simple algebraic manipulation shows that the estimates on ~s,73 imply the
desired estimates on |al, |b].

The following conjecture by Hall, Szpiro, and Lang-Waldschmidt (cf. [415],
[231]) becomes a special case of Conjecture 3.26:

Conjecture 3.28. Let A, B be fixed non-zero integers and take positive integers m
and n satisfying (3.2.2). Let x,y,z € Z be variables such that z,y are relatively
prime and

Az™ + By" = z £ 0.

Then for any € > 0 there exists a number C = C(e, m,n, A, B) such that

max{ |z, [y|"?, |2|*} < Cr(2)'*=. (3.2.5)

In particular, take non-zero integers z,y with z = 22 — y2 # 0. If =,y are
relatively prime, then Conjecture 3.28 implies that there exists a constant C' =
C(g) such that

max {|o]}, |yl } < Ce)r(a® — ?)', (3.2.6)

which further yields

|x|§ < |x3 - y2|1+6. (3.2.7)
This is just the content of Hall’s conjecture:
Conjecture 3.29 ([144]). There exists a constant C = C(e) such that

|2 — 42| > C(e)|x|> ¢ (3.2.8)

holds for integers x,y with x3 # y>.
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The inequality (3.2.8) is equivalent to the form (3.2.7). Danilov [71] has
proved that 1/2 is the best possible exponent. Actually, the original conjecture
made by M. Hall Jr. [144] states the following: There exists a constant C' such
that

2% — 4% > Clz|2 (3.2.9)

holds for integers x,y with 23 # y2. The final setting of the proofs in the simple
abc context which we gave above had to await Mason and the abc-conjecture a
decade later.

Another special case of Conjecture 3.28 is the following Hall-Lang- Wald-
schmidt congecture (cf. [415]):

Conjecture 3.30. For all integers m,n,x,y with £™ # y™,
max{[z[™, [y|"*} < C(e) [2™ — y" |+, (3.2.10)

where C(g) is a constant depending on €.

3.3 Mordell’s conjecture and generalizations

In 1909, A. Thue [391] proved the following result: Take m € Z and let

Tly+ o+ agy?

with a; € Z be a form of degree d > 3 which is irreducible over Q. Then the Thue
equation

flz,y) = aoz? + a1z

fla,y) =m (3:3.1)
has only finitely many integer solutions (x,y). A simple proof by using Roth’s
theorem is due to Schmidt [338].

Theorem 3.31. Let P(x) be a polynomial of degree n > 2 over a number field k
such that its discriminant is not identically zero. Let S be a finite subset of My,
containing all of the Archimedean absolute values. Then a superelliptic equation

vyl = P(x) (3.3.2)
with d > 2 and (d,n) # (2,2) has only finitely many solutions x,y € O, g.

The special case of an elliptic equation, that is, d = 2, n = 3, was done by
Mordell [277], [278]. The general case is due to Siegel [356]. A proof can be found
in [338]. Further, Siegel [357] proved that the number of integer points (z,y) of
any irreducible curve, say (2.1.9), of genus > 0 is finite. The same conclusion holds
for the affine curve C' defined by (2.1.9) if #(M — C) > 2, where M is a projective
closure of C.

Mordell [278] had originally conjectured that on a curve of genus greater
than 1 there are only finitely many rational points. Faltings [98] proved Mordell’s
conjecture by showing the following more general result:
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Theorem 3.32. If M is an irreducible algebraic curve of genus greater than 1 and
k is a number field of finite degree over Q, then the set M (k) of k-rational points
on M is a finite set.

Elkies [92] (or see [158]) showed that using an explicit version of the abc-
conjecture (that is, with a value assigned to C(e) in (3.2.1) for each ¢), one can
deduce an explicit version of the Mordell-Faltings theorem.

Let M be a variety defined over an algebraically closed field of characteristic
0. We shall say that M is Mordellic if M (k) is finite for every finitely generated
field k over Q. In this context, it is natural to define a variety M to be pseudo
Mordellic if there exists a proper Zariski closed subset Y of M such that M — Y
is Mordellic. Since the counterpart of algebraic curves of genus > 1 in higher-
dimensional spaces are Kobayashi hyperbolic varieties, accordingly the analogue
of the Mordell-Faltings theorem is just Lang’s conjecture (cf. [224], [228], [232]):

Conjecture 3.33. A projective variety is hyperbolic if and only if it is Mordellic.
The following problem is due to Shiffman [345].

Conjecture 3.34. Let M be a projective algebraic variety that contains no rational
or elliptic curves. Then there are no holomorphic curves in M.

Let M be a projective variety. According to Lang [228], [232], the algebraic
special set Sp,, (M) is defined to be the Zariski closure of the union of all images
of non-constant rational mappings A — M, where A is an Abelian variety or P'.
Thus Sp,, (M) = () if and only if every rational mapping of an Abelian variety
or P! into M is constant. In the case of subvarieties of Abelian varieties, a clear
description of this special set is well known, that is, the Ueno-Kawamata fibrations
in a subvariety of an Abelian variety constitute the special set (see Lang [232]).
A variety M is said to be algebraically hyperbolic if Sp,, (M) = (). Then one says
that M is pseudo algebraically hyperbolic if Spalg(M ) is a proper subset. Ballico
[15] proved that a generic hypersurface of large degree in P™(C) is algebraically
hyperbolic.

Conjecture 3.35 ([228], [232]).

(1) Spalg(M) = Sphol(M)'
(ii) The complements of the special sets are Mordellic.

(iii) A projective variety M is Mordellic if and only if the special sets are empty.

Recall that the holomorphic special set Spy,,;(M) is the Zariski closure of the
union of all images of non-constant holomorphic mappings f : C — M. Observe
that the claim (i) would give an algebraic characterization of hyperbolicity. The
fundamental Diophantine condition conjecturally satisfied by pseudo canonical
varieties is the following problem:

Conjecture 3.36. Let M be a pseudo canonical variety defined over a number field
k. Then M (k) is not Zariski dense in M.
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Bombieri posed Conjecture 3.36 for pseudo canonical surfaces, and Lang
(independently) formulated the general conjecture in its refined form of the ex-
ceptional Zariski closed subset. Conjecture 3.35 allows us to state the final form
of the Bombieri-Lang conjecture.

Conjecture 3.37 ([228], [232]). The following conditions are equivalent for a pro-
jectiwe variety M.

(1) M is pseudo canonical;

(2) Spag(M) is a proper subset;

(3) M is pseudo Mordellic. The Zariski closed subset Y can be taken to be
Spalg(M )

In the case of Abelian varieties, there is the following Lang’s conjecture over
finitely generated fields (cf. Lang [221], [232]):

Conjecture 3.38. Let M be a subvariety of an Abelian variety over a field k finitely
generated over Q. Then M contains a finite number of translations of Abelian
subvarieties which contain all but a finite number of points of M (k).

The following especially important case from Lang [222] has now been proved
by Faltings [99]:

Theorem 3.39. Let M be a subvariety of an Abelian variety, and suppose that M
does mot contain any translation of an Abelian subvariety of dimension > 1. Then
M is Mordellic.

Hilbert’s tenth problem asks whether there is a general algorithm to deter-
mine, given any polynomial in several variables, whether there exists a zero with
all coordinates in Z. It was solved in the negative by Yu. Matiyasevich [258] in
1970; for a general reference, see [259]. J. Richard Biichi attempted to prove a
similar statement in which there may be any (finite) number of polynomials, but
they must be quadratic and of a certain form:

n

2 .
E aijszbi, Z=1,...,m
j=1

with {a;;,b;} C Z, {m,n} C Z". Biichi was able to show that a negative resolution
of this question would be implied by the following “n-squares problem”:

Conjecture 3.40. For large enough n, the only integer solutions of the system of
equations
T A, =207 1 +2, k=2,...,n—1 (3.3.3)

satisfy +xp = i1 + 1.
Let M be the projective variety in P"(C) defined by the equations

T o =228 +22% k=2,...,n—1
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in the homogeneous coordinates [z, g, ...,2Z,—1]. Vojta [421] observed that for
n > 6 the variety M is a pseudo canonical surface, and then showed:

Theorem 3.41.

(i) Formn > 8, the only curves on M of geometric genus 0 and 1 are the “trivial”
lines
t+xp =t+x9+kx, k=0,...,n—1.

(ii) Let m > 8 be an integer and let f : C — M be a non-constant holomorphic
curve. Then the image of [ lies in one of the “trivial” lines.

The statement (i) of Theorem 3.41 has a consequence that if Conjecture 3.36
is true, then Biichi’s problem has a positive answer. Statement (ii) shows that the
analogue of Biichi’s problem for holomorphic functions has a positive answer.

3.4 Fermat equations and Waring’s problem

Fermat’s conjecture, now a theorem proved by Wiles [431], Taylor and Wiles [390],
states that there cannot be non-zero integers x, y, z and an integer d, where d > 3,
such that

x4yt =24, (3.4.1)

Related to Fermat’s equation (3.4.1) is Catalan’s equation
ab — gyl =1 (3.4.2)

In 1844, Eugeéne Catalan [54] conjectured that this equation had only the trivial
solution
((E, Y, ka l) = (37 2u 27 3)

About 100 years before Catalan (1814-1894) sent his letter to Crelle, Euler had
proven that 8 and 9 are the only consecutive integers among squares and cubes,
that is, the only solution of the Diophantine equations

2?2 —y3 =41, >0, y>0.

To prove Catalan’s conjecture, it obviously suffices to consider the equation
2’ —yi=1 >0, y>0, (3.4.3)

where p and ¢ are different primes. The case ¢ = 2 was solved in 1850 by V.A.
Lebesgue [238]. Chao Ko [206] proved the case p = 2. In 1976, E.Z. Chein [55]
published a new, very elegant proof.

Next we may assume that p and ¢ are different odd primes. One of the early
observations was that the number of solutions (x,y) to (3.4.3), for fixed exponents
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p and g, is at most finite. This is a consequence of a general theorem about integer
points on a curve, published by C.L. Siegel in 1929. For other results about the
number of solutions, see the introductory section in Tijdeman [392].

By way of multiplicatization of the equation, rewrite (3.4.3) as

P —1
x—1 =y
(@-1) | =v
By considering the identity 2? = ((z — 1) + 1)? one easily finds that there are
two possibilities: the greatest common divisor of the two factors on the left-hand
side is either 1 or p. When the greatest common divisor equals 1, we obtain the
equations

where a and b are coprime and not divisible by p. In 1960, J.W.S. Cassels [53]
showed that these equations yield a contradiction.
When the greatest common divisor equals p, we obtain the equations

P —1

1 = pb?, y = pab,

z—1=pitad,

where again a and b are coprime and p does not divide b. Preda Miha&ilescu [269],
[270] showed that these equations also yield a contradiction. A deep theorem about
cyclotomic fields plays a crucial role in his proof. For a survey about the proof of
Catalan’s conjecture, see [268].

Generally, the following conjecture was made by Pillai [317].
Conjecture 3.42. Given integers A >0, B > 0, C > 0, the equation

Az* — Byt =C

in integers x > 1,y > 1, k > 1,1 > 1 and with (k,l) # (2,2) has only a finite
number of solutions.

If k, I were fixed, this would be a special case of an algebraic Diophantine
equation, the superelliptic equation. Pillai’s conjecture can be derived from the
abe-conjecture (see [338]). A more general application is as follows. Tijdeman [393]
proved that for given non-zero integers A, B, C' the Diophantine equation

Az® + Byl = C2" (3.4.4)

has only finitely many solutions in positive integers z > 1, y > 1, 2 > 1, k, I, n
subject to ged(Az, By, Cz) = 1 and

1 1 1
1. 4.
k+l+n< (3.4.5)
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On the other hand, Hindry has shown that for each triple k, [, n with

1+1+1>1
E 1l n=7

there exist A, B,C such that the above equation has infinitely many solutions

x, y, z with ged(Az, By,Cz) = 1.

Waring’s problem states that for a fixed positive integer d, there exists an
integer n = n(d) such that an arbitrary positive integer N can be expressed as a
sum of dth powers of n non-negative integers x;, that is,

{4+ +al =N (3.4.6)

In 1909, Hilbert confirmed this problem. Further, it is natural to find the smallest
number n = g*(d) such that each positive integer N can be expressed as a sum
(3.4.6) of dth powers of n non-negative integers x ;. Lagrange proved that g*(2) < 4.
On the other hand, it is easy to show that 7 can not be expressed as a sum of
squares of three integers, and so g*(2) = 4. We also know that ¢*(3) = 9. Dickson,
Pillai and Niven obtained

g*(d) = 2% + Bj} -2

if d satisfies the following condition

3d
d>6, 3%-2942<(29-1) [211}'

Now the number g*(d) is completely determined except for d = 4.

When d > 3, let n = g(d) be the smallest number such that for any positive
integer N > Ny(d), there exist non-negative integers x1, ..., x, satisfying (3.4.6).
Then ¢(2) =4,

4<g(3) <7, ¢g(4) =16 (Davenport).

Generally, it is known that the integer ¢g(d) satisfies the inequalities
d < g(d) < cdlogd,
where c is a constant. Hardy and Littlewood conjectured

g(d)=4d (d=2", m>1); g(d) <2d+1(d#2™, m>1).
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3.5 Thue-Siegel-Roth’s theorem

In this section, we introduce simply Roth’s theorem, and show that abc-conjecture
implies Roth’s theorem. Further, following Vojta [415], we compare the analogy
between Roth’s theorem and Nevanlinna’s second main theorem.

In a relatively early version of determining the best approximations of alge-
braic numbers by rational numbers, one had the Thue-Siegel-Dyson-Gelfond result
(see [391], [355], [87], [113]): Given € > 0 and an algebraic number « of degree n
over Q, there are only finitely many rational numbers z/y (z,y € Z, y > 0) such

that
1

< y\/2n+s ’

T
a—
)

In 1958, K.F. Roth received a Fields prize for his result:

Theorem 3.43 ([327]). If « is algebraic and € > 0, there are only finitely many
rational numbers 2’; with

1
<y2+6.

T
Y
In 1842, Dirichlet [80] proved that given o« € R and N > 1, there exist

integers z,y with 1 < y < N and |ay — z| < 1/N, which means that when « is
irrational, there are infinitely many reduced fractions z/y with

o —

Hence Dirichlet’s theorem shows that Roth’s result is best possible. An unknown
conjecture (cf. Bryuno [42]; Lang [223]; Richtmyer, Devaney and Metropolis [323])
is the following: If « is algebraic and € > 0, there are only finitely many rational

numbers ; with

x < 1
o — .
y|  y*(logy)t+e

In other words, given € and « algebraic, the inequality

—log | —

x’ <2logy+ (1 +¢)loglogy
holds for all but a finite number of fractions x/y in lowest form. A theorem due
to A. Khintchine [202] shows that this is true for almost all «. Note that this

conjecture is similar to the case n = 1 of Theorem 2.56 in Nevanlinna theory,
which will be further formulated lately.

Suppose that F(z,y) € Z[x,y] is a binary homogenous form without repeated
factors. In other words, if F' has degree d, then F'(t,1) is a polynomial of degree
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> d — 1, without repeated roots, and
x
F(x,y) =de( 71> :
Y
For any coprime integers « and y, Roth’s theorem yields

[F(z,y)l >yl ]

F(a,1)=0

a— "> |y, (3.5.1)

) ‘

except at most finitely many rational numbers ; This statement is actually equiv-
alent to Roth’s theorem.

The abc-conjecture implies something that is somewhat stronger than Roth’s
theorem: For any coprime integers x and v,

r(F(z,y)) > max{|z], [y|}¢ 2. (3.5.2)

Note that by taking
F(z,y) = zy(z +y),

the original abc-conjecture is recovered. Thus the conjecture (3.5.2) is equivalent to
the abc-conjecture, although it appears far stronger. One sketchy proof of (3.5.2)
following from the abc-conjecture is due to [119] (see also [411]).

In an algebraic number field, Roth’s theorem can be formulated as follows
(cf. [415]). The set of algebraic numbers, that is, the algebraic closure of Q, is
denoted by Q.

Theorem 3.44. Let k be a number field and let S be a finite subset of M. Let e
and ¢ be positive constants. For each v € S, fix a number a, € Q. Then there are
only finitely many x € k such that

: c
vl;[Smm{l, |z = ayvlo} < A ()2 (3.5.3)

S. Lang [225] noted that if a,,a] are two distinct elements of Q for some
v, and if z approximates a,, then x stays away from a]. As x approaches a,, its
distance from a] approaches the distance between a, and a). Hence it would add
no greater generality to the statement if we took a product over several a, for
each v. Based on this observation, we have the following fact:

Theorem 3.45. Let S be a finite subset of M. For each v € S, let P,(X) be a
polynomial in k[X] (one variable) and assume that the multiplicity of their roots
is at most r for some integer r > 0. Let ¢ > 0 be a number, and € > 0. Then there
are only finitely many x € k such that

I minfL IR} < g (3.0 (3:5.4)
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Proof. We may assume that P, has leading coefficient 1 for each v € S, and say

qu

Py(X) = [[(X = aw)™

Jj=0

is a factorization in Q. The expression on the left-hand side of our inequality is
greater than or equal to

qu
TT IT min{, llz — aull} ",

veS j=0

which is itself greater than or equal to the expression obtained by replacing r,; by
r for all v and j. Now we are in the situation of Theorem 3.44; taking into account
the above remark following it, the solutions x of the inequality

Qv

: - c
H H min{1, ||z — avjll}" < A, ()2 o) (3.5.5)

veS j=0

are only finite in number, hence the same is true for the solutions of original
inequality. U

Particularly, take r = 1, ¢, = g for each v € S. The inequality (3.5.5) implies
that all but finitely many x € k satisfy

S ot

veES j=0

|z — aw;]| < (2+¢e)h(z) +0(1), (3.5.6)

which is similar to Theorem 2.56 with n = 1, that is, the inequality (3.5.6) is an
analogue of Nevanlinna’s second main theorem in number theory.

3.6 Schmidt’s subspace theorem

Following Vojta [415], we simply introduce Schmidt’s subspace theorem, and com-
pare the analogy with Cartan’s second main theorem.

Let x be a number field and let S be a finite subset of M, containing the set
See. Let V = Vi be a vector space of finite dimension n + 1 > 0 over . Take a
basis e = (eq, ..., e,) of V. We will identify V' = A"*!(k) by the correspondence
relation

oo+ -+ E€pen €V — (go,...,fn) EAn_H(H), §j € K.

A point & = Epeg + - - - +Epen, €V is said to be an S-integral point if & € O, g for
all 0 < i < n. An algebraic point £ € V; should be integral if its coordinates lie
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in the integral closure of O, g in k. Denote by Oy g the set of S-integral points of
V, that is,
Ovs={SeV [, <1, p&5}. (3.6.1)

According to the identity V =2 A"*1(k), we have
Ov,s = Op k. (3.6.2)

Similarly, an affine variety Z C A"*! defined over s inherits a notion of integral
point from the definition for A"*1. We state the Schmidt subspace theorem as
follows:

Theorem 3.46. For p € S, i € {0,...,n}, take oo, ; € V* — {0} such that for each
pES, 0po,...,0py are linearly independent. Fix € > 0. Let Q be the set of all
& € Oy,s satisfying

TTIT 1 ansil < {max e}

peS i=0
Then Q is contained in a finite union of hyperplanes of V.

Theorem 3.46 is a generalization of Roth’s theorem due to Schmidt [337]
and Schlickewei ([334],[335],[336]) in the non-Archimedean case. The following
subspace theorem will turn out to be equivalent to Theorem 3.46 (see [338], [415],
[176] or Section 3.8.2):

Theorem 3.47. Take ¢ > 0, ¢ > n. Assume that for each p € S, the family
Ay ={ap0,...,0pq} CPV™)

is in general position. Then there exists a finite set {b1,...,bs} of P(V¥) such that
the inequality

Zilog ! <(n+1+4+¢e)h(x)

pES j=0 I, a5l
holds for all x € P(V) — Ui E[bl]

Theorem 3.47 is an analogue of Theorem 2.56. A.J. van der Poorten [408]
generalized an idea of Schlickewei [335] to obtain the following result:

Theorem 3.48. Let k be a number field and let n > 1 be an integer. Let T be
a finitely generated subgroup of k.. Then all but finitely many solutions of the
equation

up+ur +--+u, =1, u; €T, (3.6.3)

lie in one of the diagonal hyperplanes Hr defined by the equation ), ;x; = 0,
where I is a subset of {0,1,...,n} with at least two, but no more than n, elements.
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The proof is due to Vojta [415]. Further, Vojta noted that such infinite fam-
ilies are restricted to finite unions of linear subspaces of dimension < [n/2].

According to Vojta [415], a set I of k-rational points of a variety is called
degenerate if it is not dense in the Zariski topology. Here the x-rational points
in the complement of I are called non-degenerate relative to I. We will regard
P(V) as a “holomorphic curve” of P(V3), that is, the image of a mapping from
k into P(V%), and establish the theory of value distribution by integrating the
characteristic functions over non-degenerate k-rational points relative to I.

We fix a proper subset I = I; of P(Vx) which will be chosen later, and define
a weight function of k (relative to I) as follows:

1, ifzeP(V)-1;

() = po, 1 (7) = { 0, otherwise. (3.6.4)

We can define the spherical height of k (relative to I) by

A 1(r) = npon(r) = Y pe(@)h(), (3.6.5)

h(z)<r

and the spherical characteristic function of k (relative to I) by
" dt
TH)I(T) = T,i)[(T7 7’0) = A,i)[(t) " . (366)
T0

If there is no confusion, we will abbreviate
Ap(r) = A 1(r), Te(r)=T.1(r).

Obviously, there are infinitely many non-degenerate s-rational points on P(V;)
relative to I if and only if

i o) = Jim Au(r) = o (36.1

Take a € P(V*) such that E[a](x) C I. By definition, we have

m(z,a) = log .,z & Ela],
21 g, = B P
and 1
N(z,a) = log 7x€Ea.
@ay= 2 oy, g, *%Ed

pEM,—S

Hence the integrated prozimity function

dt

, (3.6.8)

my(r,a) =my 1(r,a) = /T Z e (z)m(z, a)

o \h(z)<t
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and the integrated valence function

Nio(r,a) = N1 (r,a) = / S ()N (,0) Cff (3.6.9)

7o\ h(z)<t

are well defined. Therefore the first main theorem (1.8.1) yields the integrated first
main theorem

My(r,a) + Ne(r,a) = Te(r) + O (N, (1)) . (3.6.10)
By the definitions, we obtain the relation
T.(r) = O(logr) <= N, (r) = O(logr).

If there are infinitely many non-degenerate k-rational points on P(V) relative to
I, we have

N
T T Y (3.6.11)
and hence (3.6.10) has the following form:

my(r,a) + Ni(r,a) =T (r) + o (T (1)) . (3.6.12)
When T, (r) — oo as r — o0, define the defect of x for a (relative to I) by

5.(a) = 0x 1(a) = limint "7V (3.6.13)

PR T

In particular, if A,(r) — 0o as r — oo, the integrated first main theorem (3.6.12)
implies

Ny (r,
bs(a) = 1~ limsup T:x) (3.6.14)
with 0 < d,.(a) < 1.
Next we consider a family & = {ao, ..., aq} C P(V*) in general position for
q > n. Theorem 3.47 gives that
q
> m(z,a;) < (n+1+e)h() (3.6.15)

j=0

for all x € P(V)—J; E[b;]. Further, if I contains all k-rational points of the variety

&I U Elay)),

1,9
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integrating (3.6.15), we obtain the integrated second main theorem

im,{(r, a;) < (n+14+¢e)Tk(r). (3.6.16)
5=0

If T.(r) — oo as r — oo, then (3.6.16) immediately yields the defect relation:

q
du(a;) <n+1. (3.6.17)
3=0

Problem 3.49. When q > 2n, does T (r) = O(logr) hold?

When £ = C and ¢ > 2n, Corollary 2.74 implies that the complement of
hyperplanes defined by elements in 7 is complete hyperbolic. Based on Conjec-
ture 3.33, it seems that Problem 3.49 is sure. It is known that if f € M(C) assumes
the extreme defect relation

S dpla) =2,

then f has order ©, where p is a positive integer or 400, which was originally
conjectured by F. Nevanlinna [289] and R. Nevanlinna [293]. Is there an analogue

of this result for a number field k7

3.7 Vojta’s conjectures

Let x be a number field and let S be a finite subset of M. P. Vojta [415] observed
that some conditions of the second main theorem (2.12.21) in Carlson-Griffiths-
King’s theory may be relaxed somewhat, and then translated (2.12.21) into the
following main conjecture in number theory.

Conjecture 3.50. Let X be a non-singular complete variety over k. Let K be the
canonical divisor of X, and let D be a normal crossings divisor on X. If € > 0,
and if E is a pseudo ample divisor, then there exists a proper Zariski closed subset
Z =7(X,D,k, E,&,8) such that for all x € X (k) — Z,

m(z, D) + hg(z) < ehp(z) + O(1). (3.7.1)

The requirement in Conjecture 3.50 that D have only normal crossings is
necessary, since it is easy to produce counterexamples if this condition is dropped.

Example 3.51. Each hyperplane E of P™(R) is very ample with
dim L(E) =n+1,

and hence the dual classification mapping ¢ is the identity. Thus hg(z) = h(x),
and hence
hi(x) = —(n+1)h(z)
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since K = —(n+ 1)E. Let D = Y, Ela;] be a sum of hyperplanes in general
position. Then the conjecture reduces to

Zm(m, a;) < (n+1+¢e)h(x)

which follows from Schmidt’s subspace theorem.

P. Vojta [420] proved that Conjecture 3.25 of Masser and Oesterlé would be
derived from a weakening of Conjecture 3.50.

Conjecture 3.50 implies the Bombieri-Lang Conjecture 3.36. Recall that a
variety X is said to be pseudo canonical if its canonical bundle Kx is pseudo
ample. Indeed, if X is such a variety, we may assume X non-singular since both
the notion of pseudo canonicity and non-denseness in the Zariski topology are
birational invariants. Then Conjecture 3.50 with D = 0 implies that

hi < ehg +O(1) (3.7.2)

on an open dense set. But taking F = K and € < 1 implies that hx is bounded,
which is a contradiction unless X (k) is contained in a Zariski closed subset of X,
that is, X (k) is degenerate.

Conjecture 3.50 also implies the Mordell conjecture since curves are pseudo
canonical if and only if their genus is at least 2, and degeneracy on curves reduces
to finiteness.

Conjecture 3.50 is known for curves. Thus for curves of genus 0 it is equivalent
to Roth’s theorem, and for curves of genus g > 2 it is a consequence of Faltings’
theorem. As for curves of genus 1, it is equivalent to Siegel’s theorem.

Let A denote an Abelian variety and let D be an ample divisor on A. Lang
[222] conjectured that A has only finitely many (S, D)-integralizable points. Vojta
[415] showed that Lang’s conjecture follows from the main conjecture. Qualita-
tively, Conjecture 3.50 also has the following simple consequence.

Conjecture 3.52. Let X be a non-singular projective variety defined over a number
field k. Let K be the canonical divisor of X, and D a normal crossings divisor on
X. Suppose that K + D is pseudo ample. Then X — D is pseudo Mordellic.

Related to Conjecture 3.52 and based on the analogy with Conjecture 2.101,
A. Levin [244] proposed a main Siegel-type conjecture as follows:

Conjecture 3.53. Let X be a projective variety defined over a number field k. Let
D = Di+---4+ Dy be a divisor on X with the D;’s effective Cartier divisors for all
1. Suppose that at most m D;’s meet at a point, so that the intersection of any m+1
distinct D;’s is empty. Suppose that dim D; > ng > 0 for alli. If ¢ > m+ ny then
there does not exist a Zariski-dense set of k-rational (S, D)-integralizable points
on X.



3.7. Vojta’s conjectures 251

Siegel’s theorem [357] is the case m = ng = dim X = 1 of Conjecture 3.53,
or see [67] for a new proof of Siegel’s theorem. When X is a surface, m < 2,
and the D;’s have no irreducible components in common, A. Levin [244] proved
Conjecture 3.53. At the extreme of ng, there is the following special case.

Conjecture 3.54. Let X be a projective variety defined over a number field k. Let
D =D+ -+ Dy be a divisor on X with the D;’s effective Cartier divisors for
all i. Suppose that at most m D;’s meet at a point. If D; is pseudo ample for all
i and g >m+ ," then X — D is pseudo Mordellic.

When ¢ > 2mdim X, A. Levin [244] proved Conjecture 3.54 based on a
formulation of Corvaja-Zannier theorems in [67] and [69]. Further, A. Levin [244]
proved that X — D is Mordellic if D; is ample for all ¢. By using Theorem 2.103,
when X is non-singular, the D;’s are ample, and D = Dq + --- + D, has normal
crossings, we see that Conjecture 3.54 is a consequence of Conjecture 3.52.

Following P. Vojta [415] one introduces the absolute (logarithmic) discrimi-
nant

1
dy = : Ql log D, /q- (3.7.3)

If @ C k C K are finite separable algebraic extensions, then (1.3.21) implies
dx —dg = 1 log N, /0(Dg/x) (3.7.4)
K K — [K : Q] ENk/Q\WK/kK)- -

By abuse of notation, let d(z) = d,(,) if = is a closed point of a variety. Vojta
compares the discriminant term as follows:

Theorem 3.55. Let m: X — W be a generically finite separable surjective mor-
phism of complete non-singular varieties over a number field x, with ramification
divisor R. Let S be a finite set of absolute values. Then for all P € X (R) — R, we
have

d(P) —d(r(P)) < N(P,R)+ O(1).

Vojta’s Theorem 3.55 is a generalization to the ramified case of a classical
theorem of Chevalley-Weil. Further, P. Vojta [415] proposed the following general
conjecture:

Conjecture 3.56. Let X be a complete non-singular variety over k. Let K be the
canonical divisor of X, and let D be a normal crossings divisor on X . Let € > 0 and
let E be a pseudo ample divisor. If m : X — W is a finite surjective morphism to
a non-singular complete variety W, then there exists a proper Zariski closed subset
Z=27Z(n,X,D,k,E, ¢,5) such that for all x € X — Z with w(z) € W(k),

m(z, D) + hg(z) < d(z) + ehp(x) + O(1). (3.7.5)
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P. Vojta in [415] showed that Conjecture 3.25 of Masser and Oesterlé is an
easy consequence of Conjecture 3.56, and in [420] noted that Conjecture 3.50 is
possibly weaker than Conjecture 3.56. Conversely, van Frankenhuysen [412] proved
that the abc-conjecture implies Vojta’s general conjecture for curves, i.e., when X
is one-dimensional. Lang [232] conjectures that Vojta’s general conjecture is best
possible for any curve of non-zero genus over a number field.

A. Levin [244] gave the following conjectural upper bound on the logarithmic
discriminant in terms of heights.

Conjecture 3.57. Let X be a non-singular projective variety of dimension n defined
over a number field k with canonical divisor K. Let E be a pseudo ample divisor
on X. Let r be a positive integer and let € > 0. Then there exists a proper Zariski
closed subset Z such that

d(z) < hg(x) + 2[r(x) : kK] +n —1+¢e)hg(z) + O(1) (3.7.6)
for all x € X(R) — Z with [k(x) : k] <7.

If E is ample, A. Levin [244] conjectured that the set Z in Conjecture 3.57
is empty. It is a result of Silverman [361] that Conjecture 3.57 is true for X = P"
with ¢ = 0 and r = oo, i.e., the inequality holds for all x € X (k). For a curve,
Conjecture 3.57 is true by a result of Song and Tucker [370] (cf. Eq. 2.0.3). They
proved the stronger statement.

Theorem 3.58. Let X be a non-singular projective curve defined over a number
field k with canonical divisor K. Let E be an ample divisor on X. Let r be a
positive integer and let € > 0. Then

A(z) < dalz) < hic(e) + @U(x) : K]+ Ohp(@) +0(1)  (3.7.7)
for all x € X (R) with [k(x) : k] <.

In the inequality (3.7.7), dq(x) is the arithmetic discriminant of . For the
definition and properties, see Vojta [416]. Related to the arithmetic discriminant,
Vojta [417] proved the following generalization of Falting’s theorem on rational
points on curves.

Theorem 3.59. Let X be a non-singular projective curve defined over a number field
Kk with canonical divisor K. Let D be an effective divisor on X with no multiple
components and E ample divisor on X. Let r be a positive integer and let € > 0.
Then the inequality

m(z, D) + hk(z) < do(z) + ehg(x) + O(1) (3.7.8)
holds for all x € X (R) — D with [k(z) : k] < 7.

Generalizing the main Siegel-type conjecture, A. Levin [244] further proposed
a general Siegel-type conjecture as follows:
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Conjecture 3.60. Let X be a projective variety defined over a number field k. Let
D =Dy +---+ Dy be a divisor on X with the D;’s effective Cartier divisors for
all i. Suppose that at most m D;’s meet at a point. Suppose that dim D; > ng > 0
for alli. Let d be a positive integer. If ¢ > m + m(znd_l) then there does not exist
a Zariski-dense set of (S, D)-integralizable points on X of degree d over k.

According to the definition, the degree of a set R C X (&) over & is defined

to be
deg,. R = sup[x(z) : K.
r€ER

Based on Conjecture 3.57, A. Levin [244] shows that Vojta’s general conjecture
implies general Siegel-type conjecture if D; is ample for all ¢ and D has normal
crossings. Theorem 3.58 and Theorem 3.59 imply that Levin’s general Siegel-type
conjecture is true for curves.

In [415], Vojta also proposed the following (1, 1)-form conjecture:

Conjecture 3.61. Let X be a complete non-singular variety over a number field k
contained in C and let D be a normal crossings divisor on X. Let w be a positive
(1,1)-form on X — D whose holomorphic sectional curvatures are bounded from
above by —c < 0, i.e., for any non-constant holomorphic mapping f : U — X
(U C C is an open subset), one has

Ric(f*w) > cf*w.

Also assume that w > ¢1(L, p) for some metric p on a line bundle L on X. Let E
be a pseudo ample divisor on X. Let S be a finite set of absolute values. Let I be
a set of (S, D)-integralizable points of bounded degree over k. Let € > 0. Then for
all points P € I we have

hi(P) < id(P) +ehu(P) +O(1).

Vojta [415] applies the (1, 1)-form conjecture to deduce several number the-
oretic applications in which he proves that Conjecture 3.61 implies a conjecture
of Shafarevich on the finiteness of curves with good reduction, proved by Faltings
[97], [98].

Assume that X C P” is a non-singular projective variety over k. Let h be
the absolute logarithmic height on P". Fix r > rg > 0. Let D be a divisor on X.
We fix a proper subset I of X (x), and modify a little the weight function pu, of
on P" defined by (3.6.4), which we denote by u, x and define as follows:

1, ifzeX(k)—I;

N'“X(x) - M“’I’X(x) - { 0 otherwise. (3'7’9)
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Note that X (k) N X[O;r] is finite, where O = X N h~1(0) is the center of h in X.
We can define the spherical height of k for D by

Ae(r,D) = A r(r,D) = > pex(x)hp(x), (3.7.10)
z€X[O;r]

and the spherical characteristic function of k for D by

dt

. (3.7.11)

T.(r,D) =T, 1(r,D) = /T A (t, D)

To integrate the inequality in Conjecture 3.50, we have to assume supp(D)(x) C I.
Thus the integrated proximity function

dt

. (3.7.12)

my(r, D) = /T Z s, x (x)m(z, D)

"o \zeX([Ot]

and the integrated valence function

No(r, D) = / S pex(@)N(z, D) Cff (3.7.13)

"0\ zeX[0;t]

are well defined. Therefore the first main theorem (1.8.5) yields the integrated first
main theorem

my(r, D) + Ny (r, D) = Ty(r, D) + O (N, (1)) (3.7.14)
If X has only finitely many non-degenerate x-rational points relative to I, then
Ti(r,D) = O(logr), N, x(r)=0O(ogr).

If X has infinitely many non-degenerate s-rational points relative to I, and if D is
pseudo ample, then hp is unbounded on these non-degenerate x-rational points,
and so
1. Nﬂﬁ,x (7") _ 1 n#n,x (7") _ O
oo Ty(r,D) — roo0 Ag(r,D)
Conjecture 3.50 and (3.7.14) imply the following problem:

Conjecture 3.62. Let X be a non-singular projective variety over k. Let K be the
canonical divisor of X, and let D be a normal crossings divisor on X. If € > 0,
and if E is a pseudo ample divisor, then there exists a proper Zariski closed subset
Z =7(X,D,k, E,¢&,8) containing supp(D) such that

My (r, D) + Ti(r, K) < T (r, E) + O(Ny, « (1))

holds for I = Z(k).



3.7. Vojta’s conjectures 255

For the covering case in Conjecture 3.56, we choose a proper subset I of
X (), and have to modify the weight function (3.7.9) as follows:

1, ifeeX—1I 7(x) e W(k);

s, () = pg, 1,7 (2) :{ 0. otherwise. (3.7.15)

We will assume that W C P™ is a non-singular projective variety. Let h be the
absolute logarithmic height on P". Fix r > rg > 0. Thus the set

WIO;r] ={we W | h(w) <r}

is well defined, where O = WNh~1(0) is the center of h in W. The spherical height
of k for (D, ) is modified as follows:

AH7W(T’ D) = Z ,LLK,‘IT(I)hD(I)- (3716)
w(x)EW|[O;r]

The spherical characteristic function of k for (D, ) still keeps the form

dt

. (3.7.17)

T~ (r, D) :/ Ay =(t,D)

If supp(D)(k) C I, the integrated proximity function
" dt
My (1, D) = > bea(z)m(z, D) , (3.7.18)
o\ w(z)eW[0;t]
and the integrated valence function
" dt
Ny x(r,D) = > pwn(@)N(z, D) . (3.7.19)
o\ w(z)eW|[0;st]

are well defined. Therefore the first main theorem (1.8.5) yields the integrated first
main theorem

My (1, D) + Ny (r, D) = Ty (1, D) + O (N, (1)) - (3.7.20)

Further, set

A (r) = / S @) |

w(z)EW[O;t] t

Conjecture 3.56 and (3.7.20) imply the following problem:
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Conjecture 3.63. Let X be a projective non-singular variety over k. Let K be the
canonical divisor of X, and let D be a normal crossings divisor on X. Let € > 0
and let E be a pseudo ample divisor. If m : X — W is a finite surjective morphism
to a non-singular projective variety W, then there exists a proper Zariski closed
subset Z = Z(m, X, D, Kk, E,e,5) containing supp(D) such that

My, 7 (1, D) + Ty (1, K) < dpx(r) + €Ty (r, E) + O (Num,w (r))

holds for I = Z(k).

3.8 Subspace theorems on hypersurfaces

In this section, we will give an elegant example of formulation between Diophan-
tine approximation and Nevanlinna theory, which shows how to translate Theo-
rem 2.63 in value distribution into a subspace theorem on hypersurfaces, that is,
Theorem 3.65.

3.8.1 Main results and problems

Let x be a number field and let V' = V,; be a normed vector space of dimension
n+ 1> 0 over k. Let E be a hyperplane on P(V;). Take a positive integer d. The
dual classification mapping

par : P(Vs) — P(LaVk)
is just the Veronese mapping, that is,
ap(z) = 214,
Then the absolute (multiplicative) height of 2 € P(V;) for dFE is given by
Hyp(x) = H(pap(r)) = H (") = H(z)",
and the absolute (logarithmic) height of z for dF is given as
hag(x) = h(pae(r)) = dh(zx).

Take o € II;V* with («) = dE and set a = P(«a). For « ¢ dE, the proximity
function m(z,dE) is given by

m(z,dE) =m (acud, a).
Similarly, the valence function is given by

N(z,dE) = N (2", q) .
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Thus equation (1.8.4) yields the following first main theorem:

m (z"%,a) + N (2", a) = dh(z) + O(1). (3.8.1)

Fix r > ro > 0. If E%[a](k) C I, the integrated prozimity function

my(rya) = my 1(r,a) = / Z i (T)m (J:Hd‘,a) Cit (3.8.2)
To \ h(z)<t
and the integrated valence function
Ny(rya) = Ny 1(r,a) = Z pr(2)N (2", a) ; (3.8.3)

To \ h(z)<t

are well defined, where p,, is defined by (3.6.4). Similar to the proofs of (3.6.10),
we obtain the integrated first main theorem

my(r,a) + Ni(r,a) = dT.(r) + O (N, (1)) . (3.8.4)

By using Theorem 3.47, we can obtain directly the following result:

Theorem 3.64. Takee >0,q> N = ("ji‘d’). Assume that for each p € S, a family
{G’P,lﬂ e 7ap,q} C ]P)(Hdv*)

is in general position. Then there exists a finite set {b1,...,bs} of P(U4VZ) such
that the inequality

holds for all x € P(V)) — U, E4[bi].

If the families in general position in Theorem 3.64 are replaced by admissible
families, then N in the bound of the main inequality of Theorem 3.64 can be
replaced by n—+1, that is, we have the following subspace theorem on hypersurfaces:

Theorem 3.65 ([187]). Take € > 0, ¢ > n. Assume that for p € S, a family
Ay ={ap0,...,0pq} CPIGV™)
is admissible. Then there exist points

b e Py, Vi) 1<d;€Z,i=1,...,s <)
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such that the inequality
<dn+1+¢e)h(z)+0(1)

holds for all x € B(V)) — U, E%[b;].

Originally, Theorem 3.65 was a conjecture proposed by Hu and Yang [176] (or
see [181]) based on analogy with Theorem 2.63. It extends the Schmidt subspace
theorem. We will introduce the proof in Section 3.8.3 by using methods of P.
Corvaja and U. Zannier [68]. In particular, Theorem 3.65 implies the following
integrated form:

Theorem 3.66. Take ¢ > 0, ¢ > n. Assume that a family
o ={ag,...,asr CPIgV")

is admissible. Then for any € > 0, there exists a proper Zariski closed subset
Z C P(Vz) containing |J; E4a;] such that

im,{(ﬁ aj) < d(n + 1+ E)Tn(r)
=0

holds for I = Z(k).
Theorem 3.67 immediately yields the defect relation:

q
D dulag) <n+1, (3.8.5)
=0

where the defect of x for a; is defined by
. om(rag)
0x(aj) = lim inf dTH(T)J .

In particular, if A,(r) — oo as r — oo, the integrated first main theorem (3.8.4)
implies

(3.8.6)

Nm s Uj
dx(a;) =1 —limsup dj(f(f)J) (3.8.7)

with 0 < d.(a;) < 1.
Theorem 3.46 implies the following result:

Theorem 3.67. Forpe S, i € {1,...,N}, where N = ("Zd), take o, € LgV™* —
{0} such that for each p € S, ap1,...,ap N are linearly independent. Then for
any € > 0 there exists a finite set {b1,...,bs} of P(LVF) such that the inequality

H H II( £Hd ap )l < {glggllﬁllp}

peSi=1

holds for all S-integral points € € Oy.s — J; E%[bi].
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Related to Theorem 3.67, we have:

Theorem 3.68 ([187]). For pe S, i =0,...,n, take a,; € IIzV* — {0} such that
the system
(€ a,) =0, i=0,...,n

has only the trivial solution & =0 in Vz. Then for any € > 0 there exist points
b e Py, Vy) 1<d;€Z,i=1,...,s <)
such that the inequality
e
HH e oy, < {25161}
holds for all S-integral points & € Ov,s — J, E%[b;].

Hu and Yang suggested Theorem 3.68 in [176] (or see [181]). We will prove
that Theorem 3.65 is equivalent to Theorem 3.68.

Conjecture 3.50 corresponds to the following conjecture:

Conjecture 3.69. Take a; € P(I1,V7) such that Y, E%[a;] has normal crossings.
Then for € > 0 there exists a proper Zariski closed subset Z such that for all
xeP(V)-Z,

Zm (2", a;) < (n+1+¢)h(z).

Conjecture 3.69 or Conjecture 3.62 implies the following integrated form:

Conjecture 3.70. Tuke a; € P(I1,V) such that 3, E%a;] have normal crossings.
Then for any e > 0, there exists a proper Zariski closed subset Z C P(Vg) con-
taining \J; E%]a;] such that

Zmﬁral (n+14¢e)Tk(r)

holds for I = Z(k).
Finally, we translate Conjecture 2.76 into the following conjecture:

Conjecture 3.71. Take a positive real number € > 0 and integers g > n > r > 1.
Assume that for p € S, a family

y ={ap0,..-,0pq} CPILGV™)
is admissible. Then the set of points of P(V') — UEd[ap,j] satisfying
ZZlog 14 >d2n —r+1+e¢e)h(z) + O(1)
s j=0 [l apj|||p
is contained in a finite union of subvarieties of dimension <r —1 of P(Vz).

In [176] (or see [181]), we proposed this conjecture for the case r = 1.
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3.8.2 Equivalence of Theorems 3.65 and 3.68

We will need some basic facts. Take a positive integer ¢ > n and take an admissible
family & = {ao,a1,..., a4} of points a; € P (Ilg, V). Let | - | be a norm defined
over a base e = (eg,...,e,) of V. Write £ = {peog + - - - + &€ By Theorem 1.94,
for each k € {0,...,n}, the identity

& = Zb&(&)dA(i)(é) (A e Jg) (3.8.8)

is satisfied for some natural number s with

s> d= max dj,

0<75<q
where bf‘k € k[&o, . . ., &n] are homogeneous polynomials of degree s—dy ;) whose co-
efficients are integral-valued polynomials at the coefficients of &\ (1 =0,...,n).
Write
O = Y &V g™ B, ek (3.8.9)
O’EJn,s—dA“)

First of all, assume that the norm |- | is non-Archimedean. From (3.8.8) and
(3.8.9), we have

e (€)1
s < A . ) s N
€k l® < (H;%XIbm\ |am>|> fax { €920 oo | ¢l (3.8.10)
Note that

qmax (&l = g%, 18;(O)] < eVl (3.8.11)

By maximizing the inequalities (3.8.10) over k, 0 < k < n, and using (3.8.11), we
obtain

1< max ’bgik’ “axg - (3.8.12)
Define the gauge
1
I'(«/) = min min , (3.8.13)
AEJS kiio { ’bézk’ . |Oé)\(i)| }

with 0 < I'(«/) < 1. From (3.8.10), (3.8.11) and (3.8.13), we obtain

Ft) < x| 1B0E] ]
022 | Jgl faxo)

that is,

I'(«) < max xud*(i)7a>\(i)|, reJi, xeP(Vi). (3.8.14)

0<i<n
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If the norm |- | is Archimedean, now (3.8.8) and (3.8.9) imply

|O~‘)\(z ( )|
€kl” < (ZZ |3k -l ) { y 3¢ (3.8.15)
=0 o O<z<n |§| Mb)|a)\(z |
where |£]. = maxy |{|. Without loss of generality, we may assume
1
€= (1&l” + -+ [€n]*) .
Since [£] < v/n + 1[€]+, inequality (3.8.15) yields

4 n
1< 1 Al 5l 8.1
< (n+ )amlgx;;\bm\ x| (3.8.16)
Define the gauge
I(o) = 1)~¢ b ; 7 3.8.17
(@) =(n+1)" 2§r61{,r},mm{§§o;\ Sk Iaml} (3.8.17)

with 0 < T'(«/) < 1. From (3.8.15) and (3.8.17), we also obtain the inequality
(3.8.14).

Lemma 3.72. For x € P(V;),0 <r € R, define
A (x,r) ={j | |2M il <, 0< 5 < q}- (3.8.18)
If0 < r <T(&), then # (z,1) < n.
Proof. Assume that #.47(z,7) > n+ 1. Then A € JZ exists such that
{N0),...,A(n)} C o (x,r).

Hence
|IHdMi) ’ a’)\(i)| <r S F("Q‘()v i = Oa s Ty

which is impossible according to (3.8.14). O
Lemma 3.73. Take x € P(Vy) such that |21% a;| > 0 for j =0,...,q. Then

q q—n
1 1
< 3.8.19
I i = () i*é‘i‘i%{nmﬂdww |} 519
1\ - 1
. (3.8.20
(N&‘@) AT g|ﬂfud*“%ax(i)| ( )

n—1

IN

Proof. Take r = I'(«7). Lemma 3.72 implies #/(x,r) < n. Thus 0 € JZ exists
such that o7 (z,r) C {0(0),...,0(n)}. Note that ImA— o7 (z,r) # 0 for any A € JJ.
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Then we have

e 1
oty =11

|£C o )7aa'(i)|

1\
<
- (N»‘Z@) Q&},’&{H 2t @, ax()l}
1 \7 1
< .
- (N&‘@) Aes {g |deMi)7a>\(i)|}

n—1

0

We will need the following fact (see [176]):

Lemma 3.74. For z € P(V), we can choose £ € Oy g such that © =P(§), and the
relative height of x satisfies

#5
e d max el TT Il < i) < {maxlel, |

peES
where ¢ is a constant depending only on S but independent of x.

Obviously, Theorem 3.65 yields immediately Theorem 3.68 by taking ¢ = n
and using Lemma 3.74. Conversely, Theorem 3.68 implies also Theorem 3.65. In
fact, by Lemma 3.73 and Theorem 3.68, there exist points

bZEP(HdIV;) (ISdZ'EZ, iZl,...,S<OO)

such that the inequality

q
1 1 (e )
<
1Ly joa g, = 11 U 14, 0, s
d n 1
< e | 1110l I STre—
peES pES] 0 ’Oépvgp(ﬂ) 4
d(n+1)
1>
< aT00el ) (maxliell,) .
peES
peES
holds for all points © = P(§) € — U; E%[b;], where ¢; is constant, and

a,; € V*—{0} with a,; = ]P’(apj) By Lemma 3.74, there exists a constant ¢y

such that
11

< C2H(l’)d(n+1)+67
pES = 0||| i apj|||p

and hence Theorem 3.65 follows.
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3.8.3 Proof of Theorem 3.65

In this section, we prove Theorem 3.65 based on methods of P. Corvaja and U.
Zannier [68]. First of all, we state several lemmas from [68] (or see [330]). We shall
use the lexicographic ordering on the p-tuples v = (v(1),...,v(p)) € Z% , namely,
w > v if and only if for some | € {1,...,p} we have u(k) = v(k) for k < I and
w(l) > v(l).

Lemma 3.75. Let A be a commutative ring and let {g1,. .., gp} be a reqular sequence
in A generating the ideal I, C A. Suppose that for some y,x1,...,zn € A we have
an equation

h
g;-/(l) .. .g;(p)y e Zg‘i"k(l) .. 'ggk(p)fk,
k=1

where p, > v fork=1,...,h. Then y € I,.

Proof. We prove Lemma 3.75 by induction on p. Since g; is not a zero divisor in
A, the assertion is trivial for p = 1. Assume that p > 1 and that Lemma 3.75 is
true up to p — 1. Since pg > v for k = 1,..., h, renumbering the indices 1,...,h
we may assume that

>v(l), k=1,...,s
=v(l), k=s+1,...,h

for some 0 < s < h. Since g; is not a zero divisor in A we may write
h
921/(2),,,95(p)y = gib+ Z ggk(2),..ggk(p)xk’ be A
k=s+1

Reducing modulo g7, denoting the reduction with a bar, and working in the ring
A/I, we have

h
95(2) .. .g;(?)g _ Z gg‘k@) .. -§5k(”)fk.
k=s+1
Note that (ur(2),...,uP)) > W(2),...,v(p)) for k = s+ 1,...,h and that
{g2,-..,5p} is aregular sequence in A/I;. We may apply the inductive assumption
with p — 1 in place of p and A/l in place of A. Then § lies in the ideal of A/I;
generated by g, ..., gp, i.e., y € I, as required. O

Let x be a number field and let & be an algebraic closure of k. Let V = Vi
be a normed vector space of dimension n + 1 > 0 over k.

Lemma 3.76. Let Bl, e ,Bp be homogeneous polynomials in K[, ..., &]. Assume
that they define a subvariety of (V') of dimension n — p. Then {f1,...,0p} is a
reqular sequence.

Proof. This follows from Hilbert’s basis theorem and Proposition 1.3. g
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Lemma 3.77. Let (1, . .. ,Bn be homogeneous polynomials in E[&o, ..., &]. Assume
that they define a subvariety of P(V') of dimension 0. Then, for all large N,

dim Viny /{(B1, - - Bn) N Vin) } = deg(B1) - - - deg ().

Proof. Tt is a classical fact from the theory of Hilbert polynomials that the dimen-
sion of the quotient in Lemma 3.77 is constant for large N, equal to the degree of
the variety defined by (1, ..., B, (see [148], Ch. 1.7) which is just the product of
the degrees of 3; (see [342], Ch. IV). O

Take p € S and take a positive integer d. Let o7, = {a,;}j_, be a finite
admissible family of points a, ; € P (II4V,") with ¢ > n. Take o, ; € HgV,F — {0}
with P(a, ;) = a, ;, and define

(€)= (" a,5), €€V, j=0,1,....q

Without loss of generality, assume |« ;|, = 1 for j =0,...,¢. Lemma 3.73 implies

I e, = (i) e 1T
||$H aPJ”P () AeTE ||$Hd apx(i)llo

n—1 ;-0

(3.8.21)

for z € P(V,) — U?ZOEd [ap,;]. P. Corvaja and U. Zannier [68] estimated the terms
on the right-hand side of (3.8.21) as follows.

Now pick A € JI_,. Since <7, is admissible, Gy 7(0)s -+ - Xp a(n—1) define a
subvariety of P(V') of dimension 0. Take a multi-index v = (v(1),...,v(n)) € Z7
with the length

vl =v(1)+-- +v(n) <

IE
For any v = (y(1),...,7(n)) € Z7, abbreviate
~ &7 ~v(n)
Apn = 8p50) " Ty a(n)

and define the spaces
N =Y @)\ Vin-dp)

y=v

with Vo=V and Vi, C Vi, if > v. Thus the V , define a filtration of
Viny-

Next we consider quotients between consecutive spaces in the filtration. Sup-
pose that V , follows V., in the filtration:

VinyD - DVnN,DVy, D - D{0}. (3.8.22)
Lemma 3.78. There is an isomorphism

VN /VNu Z Vin—ap /L @p a0 - @pamn—1)) N ViN—dp))}-
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Proof. A vector space homomorphism ¢ : Viy_g;,) — VN ,,/VNM is defined as
follows: For 3 € ViN—djv)], we define @(ﬂ) as the class of & )/\ﬂ modulo Vy ,.
Obviously, ¢ is surjective.

Suppose (3 € ker(¢) = ¢~ (0), which means that

Gy B €D a) \Vin—ap)-

y>v

Thus we may write
~ > _ ~’Y s
apB= a8,
y>v

for elements ﬁ,y € VIN—d|y|)- Lemma 3.75 implies that £ lies in the ideal generated
by &, a0)s -+ -5 Gpr(n—1)- Therefore

where 7; (0 < i < n—1) are homogeneous with deg(7;) = deg(3) — d, that is,
ni € VIN—d(vj+1)]s ¢ =0,...,n— L

Hence & A is a sum of terms in V ,, which concludes the proof of the lemma.
a

By Lemma 3.77 and Lemma 3.78, there exists an integer Ny depending only
O Q) A(0)s - - - » Xp A(n—1) Such that

=dn, if djv| < N — No;

< dim V]y,), otherwise. (3.8.23)

Ay = dimVN,y/VN,y {

Now we choose inductively a suitable basis of Vy in the following way. We
start with the last non-zero Vy , in the filtration (3.8.22) and pick any basis of
it. Suppose p > v are consecutive n-tuples such that d|v|,d|u| < N. It follows
directly from the definition that we may pick representatives &y \3 € Vn,, of
elements in the quotient space V., /Vn ,, where B € Vin_aj)- We extend the
previously constructed basis in V  , by adding these representatives. In particular,
we have obtained a basis for V,,, and our inductive procedure may go on unless
Vi, = Vinj, in which case we stop. In this way, we obtain a basis {1/;1, ... ,@[NJM}
of V|n), where M = dim V.

For a fixed k € {1,..., M}, assume that @k is constructed with respect to
Vn./Vn . We may write

U =a5,08, B € Vineaw)-
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Then we have a bound

1)1l 16 A 6115E)

< dlagA©lolely—",

where ¢’ is a positive constant depending only on 1@;@7 not on &. Observe that there
are precisely A, such functions v in our basis. Hence, taking the product over
all functions in the basis, and then taking logarithms, we get

logHsz)k W, < ZZAV 1)log ||&p i) ()]l

+ (Z Ay (N - leI)) log|léll, +¢,  (3.8.24)

A

where ¢ is a positive constant depending only on va;@, not on &. Here v in the
summations is taken over the n-tuples in the filtration (3.8.22) with |v| < N/d.

Note that

+O(N" 1), (3.8.25)

N

N\ N©
J\J:dimvm]:(”+ ): '
n:

T
n+T
S HInrs=H#Inr = ( T ) Tez?,
t=0
and that, since the sum below is independent of j, we have that, for any positive
integer T' and for every 0 < j < n,

n+lzz +1ZT

veJn, T vedy,,r j=0 AeJn, T

_ T (n+T\ (n+T
a1\ T C\T-1
Tn+1
= oTm). 3.8.26
CEERAA (3.8.26)
Then, for N divisible by d and for every 0 <i <n —1, (3.8.23) and (3.8.26) with
T = N/d yield

N
—~
<

Il

. (n+T
ZAV2+ —d”;y(z+l)+K1:d<;_l>+K1, (3.8.27)
where
K, = Y (A —dw(i+1)=0(T").

T—No/d<|v|<T
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Therefore, we obtain
ZA v(i+1) = d(n +1)!+O(N ).

Further we have

n—1
. n+T
A lv| = A, 1) = nd" Ky, 8.2
ZV: V] ;ZV: v(ii+1)=nd (T_1>+n 1 (3.8.28)
and hence N”“
ZA lv| = o +O(N™).
On the other hand, we have
n + T
Z AT = Zd“T + Ky =d"T + Ko, (3.8.29)
where
Ky = Yoo (A, -d)T=0(1T").
T—No/d<|v|<T
Hence T
Z AT —|v|) = (7;: ) + Ky — nkj. (3.8.30)

Therefore, by (3.8.24), (3.8.27) and (3.8.30), we have

n—1

nfn+T
1ogH||wk Ol = {e(307) + 5 b I lamo @l
=0
T
+{d" (;t 1) + K —nKl}dlog||§||p+c

n—1
< K {mg TT 160 ()l + dlog ||5||p} e (3831)

=0

where K = K(d,n,N) is a positive constant such that

K= dé\jjl)! <1+0(J1V)>. (3.8.32)

Let 1, ...,éun be a fixed basis of Viny such that when § € V' — {0},

E=(d1(6), ..., om(€)) € ’M — {0}.
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Then ), can be expressed as a linear form Ly, in ¢1, . .., ¢ar so that ¢y (&) = Li(E).
The linear forms Ly, ..., Ly are linearly independent. By (3.8.31), we obtain

IOgHHLk e < {logHH%A ||p+d10g||§||p}

_ K{%IIMWQ?M+W+UM%MM}+C

=0

which implies

)\(z

ﬁ-nw ; MH
o 13pa@©ll,  — IILk Mo
+(n+ 1)dlog €]l 5, (3.8.33)
or, equivalently
1
v wp " g
€] 5rTe. (3.8.34)
H ”ap,)\(z ”p H ”L ”P P
Fix ¢ > 0. By Theorem 3.46, for all A € J;!_,, the set Q of all = € Oy, 5 satisfying
—
[T IT 154 < {mas )
peS k=1 s

is contained in a finite union of hyperplanes of V|yj. Note that @ is just a finite
union of hypersurfaces of degree N in V, say,

= J ENby), b e PNV,

and that there is a positive constant ¢ such that

12N, <éliglly, pes.
Then we have
1 (n+1)d

n—1 d X
111 ”5” N {ec (I;lggéﬂifﬂf)\[) } 11 1l ’

GSZO” PyA(i peS

where

¢¢ U UPNapslue

peS j=0
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If we choose N large enough such that
d|N, No+2d<N<K,

then Lemma 3.74 implies that there is a constant ¢ depending only on S but
independent of £ such that

= |||§|||d
1111 < cH(g)nHited, (3.8.35)

pES im 0|” mA@ mp

Therefore Theorem 3.65 follows from (3.8.21) and (3.8.35).

Remark on (3.8.35). If we take A € JZ, Lemma 3.72 means that there exists an
index ig € {0,1,...,n} such that

12", ap xi)llp > T(,), ©=P(£).

Without loss of generality, we may assume ig = n. Thus from (3.8.34), according
to the arguments leading up to (3.8.35) we can obtain

H H ll&p, a0 ()l =¢ (r;lea?llg”p) ) (3.8.36)

pEeS i=0
Hence the above method yields also a proof of Theorem 3.68.

Now we exhibit the original subspace theorem of P. Corvaja and U. Zannier
[68] as follows:

Theorem 3.79. Forp € S, let fip, i =1,...,n—1, be polynomials in k[ X1, ..., X,]
of degrees §;, > 0. Put

n—1
8, = max d; = mi ip
p = Maxod;,, [ = min .
i peS 4 7 5p

1=

Fiz € > 0 and consider the Zariski closure H in P™ of the set of solutions
r €Oy g of

11 H [ fio (2 IIIS” < H([L,2])" (3.8.37)
peS i=1

Suppose that, for p € S, Xy and the f,
dimension 0. Then dimH <n — 1.

ipr &= 1,...,n — 1, define a variety of

Here for a polynomial h € k[X1,...,X,], we denote by h the homogenized
polynomial in k[Xy, ..., X,]; namely, h is the unique homogeneous polynomial
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in k[Xo,...,X,], of the same degree as h and such that h(1,Xy,...,X,) =
h(Xy,...,X,). For the special cases

dip=d, 1<i<n, peSb,

by setting
fOp(XOaXlu'“aXn):Xga pesv

and applying the above argument to f;, (0 < i < n — 1) replacing &, ), - - -
@y \(n—1), the proof of Theorem 3.79 follows.
3.8.4 Proof of Theorem 2.63

The methods in Section 3.8.3 serve also as a proof of Theorem 2.63. Next we
assume £ = C and so V is a complex vector space of dimensions n +1 > 1. We
consider an algebraically non-degenerate meromorphic mapping f : C"™ — P(V).
Fix a positive integer d. Then f induces a meromorphic mapping

fHd.cm — P(11,V)
such that the characteristic function of f1¢ satisfies
Tfud(r) = de(?").

Let o/ = {a;}j_, be a finite admissible family of points a; € P (I;V*) with
q > n. Take a; € HgV* — {0} with P(c;) = a;, and define

dj(é-):<§ud7aj>7 66‘/7]:0,].7,q

Without loss of generality, assume |a;| =1 for j =0,...,q. Write
Fj:@jof:<fudvaj>a j:O717"'7Qa

where f: C™ — V is a reduced representation of f. Lemma 3.73 implies

q 1 1 q+1—n n—1 1
H < ( ) max H
L4105 = \T() serts, | ay |

n—1 i=0
which yields
q
> mpua(r,a;) <I—(q+1—n)logT (), (3.8.38)
j=0

where

n—1
1
I=C™"{0;r; max lo Il . 3.8.39
< AeJ? gZ:O |fHd7a)\(’L)|> ( )

n—1
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Hu and Yang observed the inequality (3.8.38) and estimated the corresponding
term I over non-Archimedean fields (see [175], [176], or Theorem 5.22). For the
complex case, M. Ru [330] estimated the integral I in (3.8.39) as follows.

According to the arguments in the proof of Theorem 3.65, replacing = we
now have a meromorphic mapping g = gy : C™ — PM~1 induced by

g:(&lof7"')&Mof):Cm—>(CM7

which is linearly non-degenerate from the assumption of algebraic non-degeneracy
of f, so that 9y o f = Ly o g. Now the inequality (3.8.33) becomes

n—1 e M ~
logH 1 < L logH g ., — Mlog|g|+ ¢
- | Fxg)l K Pt |Ly o g|
+(n+ 1)dlog|f). (3.8.40)

Since there are only finitely many choices A € J!_,, we have a finite collection
of linear forms Ly, ..., L,. Hence (3.8.40) implies that

FeaFiC
I = C™(0;r; max lo
< reJ? gg |FA(¢)|>

n—1

L) am /g |9l ™0 oo |5
< K{(C <0,r,m?X10gH |Lko§|>_MC (O,r,log|g|>+c}
keJ
+(n+1)dC™ <0;r;log |f|> , (3.8.41)
where max; is taken over all subsets J of {1,...,u} such that the linear forms

Ly (k € J) are linearly independent. Applying Theorem 2.62, we have

m 1]
C <0,r,m}xlogH ILs

) S MTy(r) — Nram(7, g
Il om> () (r.9)

RUCIESY log { (p)szl T,(R)

) p_r}+0(1)

for any ro < r < p < R. The formulae (2.3.20) and (2.3.21) imply respectively
C™ (0;r;log g]) = Ty(r) + O(1)

and
™ (0s731og| 1) = Ty (1) + O(1).

Obviously,
Ty(r) < NTy(r) + O(1),
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and so (3.8.41) yield

I<(n+1)dTy(r) + MU;IK_ 2 log { (ﬁ)zm_l iff) } +0(1),  (3.842)

where O(1) is a constant independent of r, p and R, but depends on N and f.
Finally, by (3.8.38) and (3.8.42), we obtain the following result (cf. [330]):

Theorem 3.80. Let [ : C™ — P(V) be an algebraically non-degenerate meromor-
phic mapping. Fix a positive integer d. Let of = {aj}g:o be a finite admissible
family of points a; € P (LLzV*). Then for any ro <r < p < R, we have

< M(M —1) p\2m—1 T¢(R)
j;omfud(n a;) < (n+1)dT¢(r) + oK log {( ) ! } +0(1).

T p—r
(3.8.43)
Related to the above theorem, Conjecture 2.97 assumes the following form:

Conjecture 3.81. Let f : C™ — P(V) be an algebraically non-degenerate mero-
morphic mapping. Fix a positive integer d. Let of = {aj}g:o be a finite family
of points a; € P (1l4V*) such that the divisor E%ao] + --- + E%a,] has normal
crossings. Then

> myua(r,a;) < (n+ D)T¢(r) + O(log® Ty(r)) + O(clogr). (3.8.44)
j=0

This conjecture is an analogue of Conjecture 3.69 in value distribution theory.
A part of this result was given by Biancofiore [23].

3.9 Vanishing sums in function fields

In this section, we will introduce some inequalities over algebraic function fields,
which will deliver some supporting evidence to generalized abc-conjectures dis-
cussed in Chapter 4. Further, some methods in this section will be used to prove
abc-theorems for meromorphic functions.

3.9.1 Algebraic function fields

Let k be any field. An algebraic function field over k is a finitely generated extension
field K of xk which is not algebraic. If the transcendence degree is r, then K is a
field of r variables over k. In what follows we shall take r = 1 and assume that
k is perfect. By Proposition 1.20, there exists an element « € K — k such that K
is separable over k(x). Thus for the rest of this section, function field will mean
“algebraic function field of one variable over a perfect ground field”. As a finite
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separable extension K/k(z) can be generated by a single element y; the minimal
equation for y over k(z) defines an algebraic curve, and in this sense a function
field represents the field of all rational functions on an algebraic curve.

Proposition 3.82 (cf. [63]). Let K/k be a function field, where k is perfect of prime
characteristic p. Then for any x € K the following conditions are equivalent:

(a) x is a separating element for K/k;
(b) dz is a K-basis for the space of differentials;
(¢) x is not of the form y? for somey € K.

Let K/k be a function field. We note that if x € K — k, then all valuations
of k(x)/k are discrete (cf. Proposition 1.39), and that all valuations of K/k are
obtained by extending those of x(x)/k (cf. Theorem 1.38), and they are again
discrete. Although the latter depend on z, the set of all valuations of K/k does
not depend on the choice of z. Every function field has infinitely many places (cf.
[63]). Let p be any place of K/k, with associated valuation v, and residue class
field F(K). Then F(K) is a finite algebraic extension of «; for we have v, (o) = 0
for all @ € K., so the residue class mapping = — Z of K into F(K) U {oco} is
injective when restricted to k, hence k is embedded in F(K). The restriction to
k(z) has as residue class field a finite extension of k, of degree equal to the degree
of the irreducible polynomial defining the place q on x(z) such that plq. It follows
that d, = [F(K) : x| is finite too, which is called the absolute residue degree or
simply the degree of p. Its relation to the relative degree is given by the formula

dy = [F(K) : F(F)]dq (3.9.1)
for k C F C K, where plq for a place q of F/k.

Given any f € K and any place p of K/k, with normalized valuation vy,
there are three possibilities:

(a) If vp(f) > 0, we say that f has a zero at p of order v, (f);
(B) If vp(f) <0, we say that f has a pole at p of order —uv,(f);

(v) vp(f) = 0.

Usually we also denote the number v, (f) by ord, f. In a function field, any non-
constant element has finitely many zeros and at least one zero; similarly for poles.
With each element f € K, we can associate a divisor

(1) =TLe".
p

called a principal divisor, which is usually expressed additively

(f)=>_ordy(f)p.
p
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To examine (f) more closely, let us write it as

where

(flo= [ {po% [ordpf >0}, (floo =[] {p7%/ | oxdpf < 0}.
P

p

The divisor (f)o is called the divisor of zeros of f, (f)so is the divisor of poles of
f-

We recall that the divisor group D is the free Abelian group on the set of all
places as free generating set; its elements are called divisors. The general divisor

has the form
a=][p@ =pi--por. (3.9.2)

Each divisor has a degree, given by

deg(a) = Z dpvp(a),

where d,, is the degree of p as defined earlier. Of course when & is algebraically
closed, then d, =1 and it can be omitted. In particular, for f € K — k (cf. [63]),

deg((f)o) = deg((f)oc) = [K : £(f)].

To express the fact that f € K has a zero of order at least o; at p; (i =1,...,7)
we shall write
f = 0(moda), (3.9.3)

where a is given by (3.9.2). Associated with the divisor (3.9.2) we have a vector
space over k given by the equation

L(a)={f€ K| f=0(moda)}. (3.9.4)

Theorem 3.83 (Riemann’s theorem, cf. [63]). Let K/k be a function field. Then
as a runs over all diwvisors, dim,, L£(a)+ deg(a) is bounded below. Thus there exists
an integer g such that

dimy £(a) 4 deg(a) > 1 —g. (3.9.5)
Moreover, given f € K — k, the lower bound is attained by a = (f)J", for all

large m.

The constant g in (3.9.5) is an important invariant of K, called the genus.
It can assume any non-negative integer value, and it has geometrical and function
theoretic interpretations, some of which we shall meet later.

Assume that x is algebraically closed. Take a separating element = of K.
At any place p of K with the valuation v, choose an element ¢ generating the
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unique maximal ideal of the valuation ring, which is called a prime element or a
uniformizer, and also is a separating element for K, and define a divisor

dx
A= ,
(a)
called the canonical divisor of K. This definition is easily seen to be independent
of the choice of t. If a is any divisor, then we have the Riemann-Roch formula

(cf. [63])
dim, £ (a') = deg(a) + 1 — g+ dim, £ (aR '), (3.9.6)

which implies specially
deg(R) =29 — 2. (3.9.7)

3.9.2 Mason’s inequality

Let x be an algebraically closed field of zero characteristic, and let K be a function
field of genus g in one variable over x. We normalize each valuation v on K so that
its order group consists of all rational integers. For n > 1, {fo, f1,..., fa} C K
not all zero, we define the projective height as

h(foo f1,---s fu) = =Y min{ord, fo,ord, fi, ..., ordy f }. (3.9.8)

The sum formula on K shows that this is really a height on the projective space
P(K™t1). R. C. Mason [253], [255] proved essentially the following result:

Theorem 3.84. Let {fo, f1,..., fn} C K (n > 2) be such that

fit+ =1 (3.9.9)
but f1,..., fn are linearly independent over k. Then
h(fo, fr, oo fn) S AN #S +29 - 2), (3.9.10)

where S is the set of places of K where some f; is not a unit.

By the definition, here #5S is the cardinality of S. Actually Mason’s Lemma
2 in [255] is stated differently, since he deals with the inhomogeneous equation
fi+ -+ fn = 1. This form is given in [447]. The work of Mason generalized his
previous result with n = 2 (see [254]) which he had used to solve effectively certain
classical Diophantine equations over function fields. Write

p(p—1)

,  (020)

v-1=0, Y=

W.D. Brownawell and D.W. Masser [41] improved Theorem 3.84 as follows:
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Theorem 3.85. Let {fo, f1,...,fn} C K (n > 2) be such that (3.9.9) holds but

fis- -y fn are linearly independent over k. For each valuation v, let m = m(v) =
m(v; fo, ..., fn) be the number of elements among fo, ..., fn which are units at v.
Then

h(fo, frree s fn) S 29 =2) + ) (9 — Ym-1). (3.9.11)

Proof. Fix a separating element z of K, and we write ddz for the corresponding

derivation on K. Let

At

W, = Wz(flaafn) = det ( dzi—1

) asiisw
be the Wronskian of f1,..., f, (with respect to z) and define

SZ :Sz(fla"'vfn) :(flfn)ilwz(flaafn)

Then W, # 0 since fi,..., f, are linearly independent. Taking derivatives on
both sides of the identity (3.9.9) yields

e P e SN A S

dzi—1 dzi—1 B e S R

The above equation and (3.9.9) yield W, = W; (7 =1,2,...,n), where

sz - Wz(fla- -'7fj—17f07fj+17' afn)

(j=1,2,...,n).

Hence
S:fj =8zfo, J=1,....n, (3.9.12)
where S; is defined by W_; =S, f1--- fi—i1fofj+1 - fn. The equations (3.9.12)

yield
h(fo, f1,---s fn) = h(S2,S:1,--.,S:n). (3.9.13)

For each valuation v on K there is a separating element { = (, in K with
ord,( = 1 such that every element of K can be expressed as a Laurent series in
¢ with only finitely many negative exponents. Let j denote the corresponding
derivation on K. For any non-zero f in K, and any valuation v, we have an
expansion

f=alm+ - (a £ 0)
Thus if m # 0, that is, f is not a unit at v, then for any non-negative integer j we
obtain ‘
@ f
S =m

1 =mm = 1) m 1

f

and hence

ord, (flzilz{) > 7. (3.9.14)
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If m = 0, that is, f is a unit at v, then it is easier to show that

ord, (fl ZJCJ;) > 0. (3.9.15)

By the formula for change of variable in a Wronskian (see [283], p. 662 or [436],
p. 69) we have

dC Tn
W,=W . 3.9.16
(%) (39.16)
Suppose that exactly p among fi,..., f, are units at v. To estimate ord,S¢ we

apply (3.9.14) and (3.9.15) to each of the columns, and get
ord,S¢ = —{(n—1)+(n—2) +- -+ p}t = —{v — %}

Therefore by (3.9.16), we obtain
dz
ord, S, > —vyyord, &~ {vn — .} (3.9.17)
Now we have by definition

h(S:,S:1,...,8:n) = — »_minford,S.,ord,S.1,...,0rd,S:, }.

Fix j with 0 < j < n and any valuation v. Since m elements of fy, ..., f, are units
at v, it follows that at least m — 1 elements of {fo,..., fn} — {f;} are units at v.
Thus in (3.9.17) we have y > m — 1, so v, > ym—1 and we conclude

d
OrdUSZj > _’Ynordv dz - {/Vn - mel}v

where S,o = S.. Therefore
dz
h(Szv Szlu ey Szn) é Yn gordv dC + ;{Vn - ’mel}'

But we know (see for example [255], equation (6); or [63])

and we end up with

h’(SZ7 Sz17 ey Szn) < ’Yn(2g - 2) + Z{’Yn - '}/m—l}-

Theorem 3.85 follows from this and (3.9.13). O
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Recall that if S is a finite set of valuations, an element f of K is said to be
an S-unit if it is a unit at v for all v not in S.

Corollary 3.86 ([41]). Let {fo, f1,---,fn} C K (n > 2) be such that (3.9.9) holds
but f1,..., fn are linearly independent over k. If fy,..., fn are S-units for some
finite set S, then

(n—1)

h(for froee i fa) < )

{#S +2g — 2}. (3.9.18)

3.9.3 No vanishing subsums

W.D. Brownawell and D.W. Masser [41] further proved that the inequality of
Theorem 3.85 remains true, in slightly modified form, if the assumption of linear
independence is replaced by a weaker hypothesis of no vanishing subsums. To
introduce this result, according to W.D. Brownawell and D.W. Masser [41], a
finite function family F = {f; | ¢ € J} will be called minimal if F is linearly
dependent, and for any proper subset I of J the family {f; | ¢ € I} is linearly
independent. For simplicity, we also call the indices J minimal.

Lemma 3.87 ([41]). Assume fo + -+ fn, = 0 but no non-empty proper subsum
vanishes. Then there exists a partition of indices

{0,1,...,n}=ILhU---UI
satisfying the following properties:

(i) I, are non-empty disjoint sets;
(ii) There exist subsets I, of {0,1,...,n} with

=0, 0£I,CLhu---Ulyq (a=1,...,k)
such that the set I, U I’ is minimal for each o =0, ... k.
Proof. Consider a non-empty subspace of C"*! as follows:
V ={(ag,...,an) € C" | agfo+ -+ anfn = 0}.
Then each element A in V' can be written as

A:ZCJAJ (c;jeC, Ay =(ajo,...,a) €V) (3.9.19)
J

such that aj; = 0 when ¢ € J, where J is minimal. Next we prove the expression
(3.9.19) by induction on the number I(A) of non-zero components in A. The cases
[(A) = 1,2 are trivial. Assume that for some ! > 2 the fact (3.9.19) holds for all
elements A of V with I(A) < . Next take A € V with [(A) = [; without loss of
generality, we may assume that

A:(ao,...,al,ho,...,O), al;«éO(z:O,,l—l)
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Then we are done if J ={0,...,l — 1} is minimal. Otherwise, there is an element
B= (bo,...,bl,1,07...,0) eV

with 2 < [(B) < [l. Without loss of generality, we may assume that by # 0.
Then I(bgA — agB) < I, and so the induction hypothesis can be applied to B and
C = bgA — aoB. Therefore .
ao
A= bo B+ bo C
has the desired decomposition.
Next we show that if

D fi#0

icE
for some E C Z ={0,...,n}, then there is a minimal set J such that
JNE#0, JOE®#0, (3.9.20)

where E° is the complement of E in Z. In fact, if this is false, applying (3.9.19)
to A=(1,...,1) € V, then every J in (3.9.19) is contained either in F or in E€,

and so
A= ZCJAJ+ Z cjAj.

JCE JCEe
Especially, we have
Zfz = Z CJ(aJOfO +---+ aJnfn) = Oa
icE JCE

which leads to a contradiction.

Now we can prove Lemma 3.87. If each proper subset of {fo,..., fn} is lin-
early independent, then we can take £ = 0 in Lemma 3.87. So we may assume
that some proper subset of {fo,..., fn} is linearly dependent. According to the
hypothesis, the set Z is not minimal. Thus applying (3.9.20) to, say, E = {0}, we
may choose a proper minimal subset Jy of Z, and so

Y fi#o.
i€Jo
Applying (3.9.20) to E = Jy, there exists a minimal set J; such that
JINE#0, JiNE®#0.

Set
Ih=FE, I,=J NE° I{:JlﬂE

If Z = IyU I, then we are done. Otherwise, applying (3.9.20) to E = IyU I3, there
exists a minimal set Jy such that

JoNE#0, JonNE®#0.
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Set
L=JNnE* I,=J,NE.

If Z=1yU I Uls, then we are done. Otherwise, we repeat the above procedures
until the union reaches Z. O

Theorem 3.88. Let {fo, f1,--., fu} C K (n >2) be such that (3.9.9) holds but no
subsum of (3.9.9) vanishes. For each valuation v, let m = m(v) = m(v; fo,..., fn)
be the number of elements among fo, ..., fn which are units at v. Then

W(fos frs- oo fn) < nmax{0,29 =2} + > (Yn = Ym-1). (3.9.21)

Proof. By Theorem 3.85, we can suppose that fi,..., f, are linearly dependent
over k. By Lemma 3.87, there exists a partition of indices

{0,1,...,n}=IThU---UI
satisfying the properties (i) and (ii) in Lemma 3.87 with k > 1. Set
nog+1=#I >2; ng=#I (a=1,...k)

and write

sazl—i—an, a=0,1,... k.
B=0
Then
no+ny+---+ng=n

Without loss of generality, we may assume that
In={0,...,n0}, Ion={Sa-1,---,8a—1} (a=1,...,k).

Since Iy is minimal, then fo, fi,..., fn, are linearly dependent, and so there is a
linear relation
ao0,0fo + -+ ao,nefrno =0,

with ag; # 0 for 7 € Iy. Set ag; = 0 for all ¢ > ng. Then
ao,0fo + -+ agnfn =0.
Similarly, for « = 1,...,k, {f; | ¢ € I, UI.} are linearly dependent, and so there

is a linear relation
E aa,ifi =0,
i€l Ul

with aq; # 0. Set aq,; =0 for all ¢ ¢ I, U I,. Then

aao0fo+ -+ aanfn=0.
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Fix any z as in the proof of Theorem 3.85. We consider the following nx (n+1)

a,0 fo co,nfn
—1 —1
Clo,of(gnO ) ao,nfT(LnO )

al,OfO a'l,nfn

D, = . .

—1 —1
arofimY ayn fiM Y
1 1
ak,ofénk ) .. Gk.n (1)

Let D; be the determinant of the matrix obtained by deleting the jth column of
D.. Note that the sum of each row of D, is zero. We have

D, =(-1)D,, j=1,...,n

It is easy to show that

k
D.o= AW.o - W, A=qagg [[ [] @i #0.

a=0i€l,

where

WZO :Wz(f17°"7fno) 7& Oa Wza = Wz(fsafmn'afsafl) 7é 0 (Oé = ]-77k)
because the property (ii) in Lemma 3.87. Define

(—=1)'Dy;
S.i=8.:(foreos fimts fittnens fu) = .
! o Tzt Jy fn) Jorfi—ifjr1 - fau

Then
Szjfo=S:z0fj (3.9.22)

which means

h(fo,- -y fn) =h(Sz0,---,S:n)-
With respect to the corresponding local variable (, then we also have
S¢jfo=Scofj, (3.9.23)

as in (3.9.22), and the formula (3.9.16) applied to D, gives

¢\
S.; = S¢j <d2> , (3.9.24)
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where i
v = Z Vrg - (3.9.25)
a=0
According to the proof of Theorem 3.85, we conclude that

h(San Sz17 ey Szn) S 7(29 - 2) + Z{’Yn - '}/m—l}a

and hence

h(fo fve- s fu) < ymax{0,29 = 2} + > {30 —Ym-1}.

Finally, it is easily checked that

Yo+ V4 = Vptaq

for all p > 0, ¢ > 0, and repeated application to (3.9.25) gives v < +,,. This yields
the theorem. g

J.F. Voloch [423], independently of W.D. Brownawell and D.W. Masser [41],
considered similar questions and, by methods different from Mason’s, obtained
results which easily implied Corollary 3.86. U. Zannier [447] further proved the
following

Theorem 3.89. Let fi,...,f, € K be S-units such that ), ; fi # 0 for every
non-empty I C {1,...,n}. Put fo=f1+ -+ fun. Then

Z {ordvfo — 1%1271 ordvfi} < va{#S + 29 — 2}, (3.9.26)

veS
where d =dim Y kf;.

Proof. We follow [447] and the proof of Theorem 3.85 to treat the case d = n first.
Since fi,..., fn are linearly independent over the constant field  of the derivation
ddz, the Wronskian W, of fi,..., f, does not vanish. Let v be any place of K and
choose a local parameter ( = (,, at v. Also let [ = [, be an index such that

ord, fi = min{ord, fi1,...,ord, f, }.
By using the equality W, = W; and applying the inequality (3.9.17) to S,; with
i = 0, the following inequality holds:

dz

ord, W + y,ord, dc

+m > ordy fo+ Y ordy f;
i£1,0

n
= ord, fo — 11%1}%171 ord, f; + 2; ord, f;.
i—
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Now sum over v € S and note that

Zordvfizo, i=1,...,n

veS

since the f; are S-units. We have

d
Z {ordvfo - 1I<nii£1n ordvfi} < S+ Z {ordvWZ + ypord, Z} . (3.9.27)

veES veS dC

On the other hand, applying (3.9.17) with u = n we get

d
ord, W, + ~,ord, “ >0, vé&s,

d¢
whence
Z ord, W, + ~,ord, dz < Z ord, W, + ~y,ord, dz . (3.9.28)
veES dC B v dC

Now it suffices to use (3.9.27) and to recall that
Y ord,W. =0, > ord, = _ 9y 2. (3.9.29)
v v dC

To deal with the general case we argue by induction on n, the case n = 1
being trivial. Let f1,..., fq be a basis for kf1 + -+ 4+ kf,, and set, renumbering
indices if necessary,

Jo :f1+"'+fn:Zaifi7 (3.9.30)
i=1

where a1---a, # 0, and 1 < v < d. Since each f; is a linear combination of
f1, ..., fa with coefficients in k, we have

min ord, f; = min ord, f;. (3.9.31)

1<i<d 1<i<n

If d = n Theorem 3.89 follows at once from the particular case treated above. If
v = d, we could apply the previous result with a; f1,...,aqfq in place of f1,..., fn.

Next we may assume 1 < v < d < n. By the inductive assumption applied
to (3.9.30), we get

Z {ordvfo - 121}3” ordvfl} <y A{#S +2g9 — 2}. (3.9.32)

veS
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We now construct recursively a finite sequence {d;} of integers such that

(I) do=v, dy>d;_q forl > 1,
(I1) max{d;} =d,
(ITI) there is a renumbering of the indices v + 1,...,d such that

Z {ordvfo - 12i<ndl ordvfl} < ya, {#S + 29 — 2}.

veS

Clearly this construction, in view of (II) and of (3.9.31), will complete the proof.
The first step, namely the construction of dp, is just (3.9.32). Assume do,...,d,
have been constructed. For any index j we have

d 4 d
szzbijfizzbijfi+ Z bijfi=F; + G
im1 i—1

i=d;+1

say, the b;; being suitable elements of . If d; = d, as already observed, we are
done, so assume d; < d. We contend that, for some j, both F; and G; are non-zero.
In fact, assume the contrary. Then either G; = 0 or f; = G;. Since d; > v, the
equation (3.9.30) clearly implies

G =) aifi—Y Fj=0,
=1 i=1 =1

and so

> fi=o. (3.9.33)

G;#£0
However, the set I = {j | G; # 0} is non-empty. In fact, d; < d and thus d € I.
The equation (3.9.33) would contradict our assumptions.

Pick jo such that both F}, and G, are non-zero. Certainly jo > d. Renumber
the indices d; + 1,...,d to write

diy1

Gjo= Y bijofir bijo #0 (di+1<i<di), (3.9.34)
i=d;+1

which defines dj+1 with d; < di+1 < d. Apply the induction assumption to Fj,
in place of fo and f;), —bijofi (di +1 < i < diy1) in place of fi,..., fn. The
assumptions are in fact satisfied, for

diy1

Fjy = fjo — Z bijo fis

1=d;+1
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and moreover no non-empty subsum of the right-hand side vanishes since Fj, # 0,
the f1,..., fq are linearly independent and (3.9.34) holds. Setting

J: {]O}U{dl + 1,...7dl+1}7

we obtain

Z {ordvFj0 - rlrély ordvfl} < Va—di+1{#S + 29 — 2}

veS
Adding this inequality to that in (IIT) above and putting K = {1,...,d;} yields

Z {ordvfo + ord, F}j, — Ilrg? ord, f; — EIEHII{l ord, fi}

veS
< {va + Ydigr—ai1 ) {#5 + 29 — 2}
< Vi A#S + 29 — 2} (3.9.35)
Next we will deal with the left-hand side. Since
d; diy1
Fjy = bijofi=Ftis— Y bijfis
i=1 i=d;+1

for any v we have
ord, Fj, > max { min ord, f;, minord, f; ;.
icJ €K

Hence each term in the sum on the left of (3.9.35) is bounded below by

ord, fo — min ord, f; > ord, fo — min ord,f;.
of i€ JUK vfi Z ordy f 1<i<di41 vfi

Thus we complete the verification of (I), (III) for [+1 in place of [ (in case d; < d),
and so finish the proof of Theorem 3.89. g

Corollary 3.90 ([447]). If fo, f1,-.., fn € K are S-units such that fi+---+ fn = fo
but no subsum of the f; vanishes, then

h(fo, [, fn) < va{#S + 29 — 2}, (3.9.36)
where d =dim Y K f;.
Proof. Now the inequality (3.9.26) holds. On the other hand, we have
ord, f; =0 (v &S, i=0,1,...,n).

Hence the range of summation in the left-hand side of (3.9.26) may be extended
to all v. To get Corollary 3.90, it now suffices to use the equations

ord =0 min ord, f; = min ord, f;
Z v,fO ) 1<i<n vfz 0<i<n v,fu
v

the last one following from the basic assumption fo = f1 + -+ fn. O



Chapter 4

Function Solutions of
Diophantine Equations

In this chapter, we will give analogues of the abc-conjecture, Hall’s conjecture,
Fermat’s conjecture and Waring’s problem in Nevanlinna theory, and formulate
these problems into more general forms accordingly. In Section 3.1, we saw that
elliptic curves are modular, that is, the distribution of rational points on elliptic
curves have normal properties, we will show correspondingly that mappings of non-
constant holomorphic curves into elliptic curves all are surjective. In Section 3.3,
we introduced Lang’s conjecture that a projective variety is hyperbolic if and only
if it is Mordellic. To comprehend the question well, we need to know more examples
and properties of hyperbolic spaces. Some Kobayashi hyperbolic spaces of lower
dimensions will be exhibited accordingly. Referring to factorization of integers, we
will introduce basic notation and questions of factorization of meromorphic func-
tions in Section 4.10. To understand Nevanlinna theory of meromorphic functions
over non-Archimedean fields in Chapter 5 well, we simply discuss Wiman-Valiron
theory in Section 4.11, which contains a few interesting problems.

4.1 Nevanlinna’s third main theorem

In Section 3.2, we introduce the analogy between the abc-conjecture and the
Stothers-Mason’s Theorem 2.65. To seek generalized abe-conjectures, we first ex-
tend Theorem 2.64 to more general cases. A generalization of Theorem 2.64 due
to Nevanlinna [292] and its variations will be exhibited. To do this, we will use the
following assumption:

(M) Let fo, f1,---, fn (n > 2) be non-zero meromorphic functions in C™ satisfying

fo=fi+t ot + fa. (4.1.1)
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Assume that no proper subsum of (4.1.1) is equal to 0, and that the f; are
not all constant.

Under the assumption (M), replacing the projective height (3.9.8) we will use the
following two characteristic functions to study the equation (4.1.1)

m(r) = C™ <0;r;log (Ifol?+---+ |fn|2)1/2>, (4.1.2)
fr
T(r) = 1r£n}32<nT (r, fo) . (4.1.3)

First of all, we prove the main theorem in this section.

Theorem 4.1. If the condition (M) holds such that f1, fa,..., fn are linearly inde-
pendent, then for R > p > r > rg, we have

m(r) < g:o {N (r, ;k) ~ NG, fk)} + N, W)

N (r, Vlv) +llog { (f)mil Z(_RZ} +0(1), (4.1.4)

where W = Wy, ... (f1, fa,-. ., fn) £ 0 is a Wronskian determinant, and

(n-1)

n
n—l<l=nl+-H+lmal<

(4.1.5)

Proof. Taking partial derivatives on both sides of the identity (4.1.1) yields
O f14+ 0" fo+ -+ 0" fr,=0"fo (k=1,2,...,n—1).

Since f1(z), f2(2), ..., fn(z) are linearly independent, Lemma 2.51 implies that
there exist multi-indices v; € ZT7 in Theorem 4.1. The above equation and (4.1.1)
yield

W=W, (j=12,...,n),

where
W, =Wy,  (fi,--o fim1s fos fi+tse oo fn)
Hence
Sof; = S; fo, (4.1.6)
where
1 1 1
"1 f1 0”1 fa 0”1 fr
So=S(fid=, o= Tt
o¥n=1f  9'n=1fy  9'n-1f,

f1 f2 In



4.1. Nevanlinna’s third main theorem 289

and S; is defined by W; =S, f1--- fi—1fofj+1--- fn. Set

fi

gi = 1=1,...,n.

fo’
Then we also have
So=5(g1,---,9n), S; =891, 95-1, 1, gj1, - gn)-
By (4.1.6), a simple computation shows
m(r) = C™(0; r;log | fo|) — C™ (0;7;1og |Sol)

+ € (0:3log([Sof? + -+ + [Sa[1)2) (4.1.7)

Applying the Jensen formula (2.3.11), we get

™ (05 log | fol) = N ( ! ) N fo) + O(L), (4.1.8)

fo

and

—C™(0; r;1og |So|) = Z(Cm<0;r;log|fk|> — C™(0;7;1og [W|)

k=1
£ )
N W) = N (n V1V> +o(1). (4.1.9)

By the concavity of the logarithmic function and Lemma 2.54, for any rp < r <
p < R we have

c™ <0;r;10g \/Z |Sj|2> = i(Cm <0;T;10g (Z |Sj|2> §>
< g {YoCmirss )
< llog{(p>2m_1 T(R)} +o(1), (4.1.10)

r p—r

where « is a real number with 0 < o < 1. Thus (4.1.4) follows from (4.1.7) to
(4.1.10). O

For the case m = 1, n = 2, by using Theorem 4.1, a simple computation
shows that
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Theorem 4.2. Assume that fy, f1, fo are meromorphic functions in C without com-
mon zeros, without common poles and not all constants such that f1 + fo = fo.
Then for ro <r < p < R, we have

m(r) < N (n fo;1f2> + 1og{r’£<_R2) } +0(1).

Theorem 4.2 is a direct generalization of Theorem 2.64 to the case of mero-
morphic functions. It shows that Theorem 4.1 may be regarded as a generalized
abe-theorem for meromorphic functions. By using the Jensen formula (2.3.11), we
may rewrite the inequality (4.1.4) into the following form:

m(r) < N (r, ;1) ~ N(r,H) +zlog{(f)2ml f(_Rr)} +o(1),  (41.11)

where

:fOfl"'fn‘

H
\\%

(4.1.12)

Observing the formula (2.6.17), the inequality (4.1.11) assumes a similar form with
the main inequality in Second Main Theorem 2.56.

Next we continue to study the general equation (4.1.1). By (2.3.40) and
(2.3.39), we obtain

T (n ;;) =N (n ;;) +C" <0;r;log \/1 + |fj/f0|2> +O(1). (4.1.13)

The Jensen formula (2.3.11) implies
cm <0;r;log \/|fo|2 + |fj|2> =C"™(0;7;log | fo|) + C™ <0;r;log \/1 + |fj/f0|2>
= (r )= N
Jo
+C™ <0;r;log \/1 + |fj/f0|2> +0(1). (4.1.14)

Note that

e (orrstog /6l +1512) < m(r).

Applying Theorem 4.1, we obtain the following type of Nevanlinna’s theorem [292],
sometimes called Nevanlinna’s third main theorem (cf. Baesch and Steinmetz [10]).
For the version of several variables, see Hu-Yang [172] or [168].
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Theorem 4.3. If the condition (M) holds such that f1, fa,..., fn are linearly inde-
pendent, then for 1 < j<n, R>p>r>rg,

T <r, ;g) <N (r, j:;) + é {N (r, f1k> — N(r, fk)} + N(r,W)
N (n vlv> +llog { (f)Qm_l T(R) } +0(1), (4.1.15)

p—r
where W = Wy, ... . (f1, f2,..., fn) # 0 is a Wronskian determinant, and
I, T(r) are defined by (4.1.5) and (4.1.3), respectively.

Therefore, the abc-theorems for meromorphic functions are only variations
of Nevanlinna’s third main theorem. Note that fy = 1 in the original theorem of
Nevanlinna [292]. In Section 3.5, we showed that the abc-conjecture implies Roth’s
theorem. Here we derive Nevanlinna’s second main theorem from Nevanlinna’s
third main theorem. The former is an analogue of Roth’s theorem, the latter is a
counterpart of the abc-conjecture. For simplicity, we consider only the case of one
variable. Let f be a non-constant meromorphic function on C. Then f and 1 — f
are linearly independent such that the equation f 4 (1 — f) = 1 holds. Note that

W(fa]-_f):_fl‘

By Theorem 4.3, for any R > p > r > 1y, we obtain

T(nf)<N(T,f)+N(T’J1c>+N<T’fi1>

— Nram (7, f) +10g{i1(;§}j’f))}+0(1). (4.1.16)

This is the original second main theorem due to R. Nevanlinna [291] with a sharp
error term. The general form of the second main theorem was given by Collingwood
[64] and Littlewood.

Recall that if f1,f2, ... ,f, arelinearly independent, we may take multi-indices
v; € 27 such that

O<|m|<i@=1,...,n=1), || < || < < |vp_1],
and W, ..., ., (f1, f2,.-., fn) Z 0. Define two integers
w=|vp_1|, 1 =|v1| + -+ |vn—-1]

and set
1 s—1
A, = Joax. { ) Zl |u,”-|} . (4.1.17)

By using Theorem 4.3 and a more precise estimation on the zeros and poles of
the Wronskian determinant in Theorem 4.3, we can obtain the truncated form of
Nevanlinna’s third main theorem:
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Theorem 4.4. Under the condition (M), we further assume that fo = 1, and that

fi,f2, ..., fn are linearly independent. Then the inequalities
- 1 s p\2m—1 T(R)
T(r, f;) < ;Nw (r, fi) + N;(r) + llog { (T) g RECIORNCRRL)

hold forro <r < p < R and for all j =1,2,... n, where

Ry() = N, (r Aw) = min 4 A, SN £ SN £
i=1 i#j

It is easy to show the estimates

1
1<w<n-1, 1—- <A, <Y, (4.1.19)
n
where
é? n = 27
On =4 273, n=3,4,5, (4.1.20)

2n+1;2\/2n n>6.

Specially, if w = 1, then
A, =1-— .
n

We do not know the best upper bound of A, or the best form of terms N;(r)
in the inequality (4.1.18). For the one-variable case, a proof of Theorem 4.4 is
given in [245]. In [172], Hu-Yang prove the case of entire functions. This version
of Theorem 4.4 is given in Hu-Yang [185] (or see [168]). For the basic methods in
the proof of Theorem 4.4, the reader is refereed to the proof of Theorem 4.47.

The assumption of linear independence in Theorem 4.1 is not crucial; it can
be replaced by the weaker hypothesis (M) of no vanishing subsums according to
the idea of W.D. Brownawell and D.W. Masser [41] introduced in Section 3.9. Here
we restate it again. Assume that (M) holds and write the equation (4.1.1) in the
form

—fo+fit ot fa=0 (4.1.21)

By Lemma 3.87, there exists a partition of indices
{0,1,...,n}=IThU---UI
satisfying the properties (i) and (ii) in Lemma 3.87. Set

no+1=#Iy;, no=#I, (a=1,...,k)
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and write

[e%
$a=1—|—2n5, a=0,1,... k.
B=0

Then
no+mny+---+ng=n

Without loss of generality, we may assume that

In={0,...,n0}, In={Sa-1,---,8a—1} (a=1,...,k).

Since Iy is minimal, then fi,..., fy, are linearly independent. Lemma 2.51
implies that there exist multi-indices vo; € Z7 such that

Wo = WD()l“‘I/O,nO—l(f17 ctty an) 7_é 0.

Similarly, the functions fs,_,,..., fs,—1 are linearly independent, and so
Lemma 2.51 implies that there exist multi-indices vo; € Z7" such that

W, = Wuaynua,na_l (fsa_u .- -vfsa—l) 7_é 07 o = 17 .- '7k'

Write
k ng—1
W=W;,.--W = ils = T — 4.1.22
o We 1= 30 3 Il w= g Vo] (4122

and similarly define H by (4.1.12). For convenience, we also call [ and w the
index and the Wronskian degree of the family {f1,..., fn}, respectively. Then the
following estimates are trivial:

k
w<d-1, w_lgzno‘(";_l) < "("2_ b, (4.1.23)
a=0

where d is the dimension of the vector space spanned by the f; over C.

Theorem 4.5. If the condition (M) holds, then for R > p > r > rg, the inequality
(4.1.4) is true, where W and | are defined by (4.1.22).

Proof. If f1, fa, ..., fn are linearly independent, then this is a consequence of The-
orem 4.1. Next we suppose that fi, fo,..., f,, are linearly dependent. Since I is
minimal, then fo, fi,..., fn, are linearly dependent, and so there is a linear rela-
tion

a,o7ofo + -+ ao,nofno =0,

with ag; # 0 for ¢ € Iy. Set ag; = 0 for all ¢ > ng. Then

apofo+ -+ aonfn =0.
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Similarly, for a = 1,...,k, {f; | ¢ € I, UI/} are linearly dependent, and so there

is a linear relation
E aa,ifi =0,
i€l Ul

with aq; # 0. Set aq,; =0 for all ¢ € I, U I/,. Then
aa70f0 R aa)nfn =0.

Further, we consider the following n x (n + 1) matrix:

ao,0.fo e co,nfn
ag,00" 0=  fo oo ag 000t fy,
a1,0fo e a1,nfn
D= . .
a1708y1’n1_1f0 - al,nam’nl_l fn
ak7oayk,nk71 fo e ak7nayk,nk71 fn

Let D; be the determinant of the matrix obtained by deleting the jth column of
D. Note that the sum of each row of D is zero. We have

Dy = (-1D;, j=1,...,n.

It is easy to show that

k
Do = AWo - Wi, A=agg [ [] da: # 0.

a=0:€l,
Define )
(—=1)’D;

Sj :Sj(f077f]—17f]+17afn): fijflfJ+lfn

Then (4.1.6) still holds with

S] = S](go, ceeG5—15095415 - - 7gn),

where
gj = fj, i=0,1,...,n.
fo
Hence (4.1.7) to (4.1.10) hold, and so Theorem 4.5 follows. O

According to the proof of Theorem 4.3, Theorem 4.5 yields immediately
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Theorem 4.6. Under the condition (M), the inequality (4.1.15) holds for 1 < j <
n, R>p>r>ry, where W, are defined by (4.1.22).

Multiplying (4.1.1) by a universal denominator, we may change the condition
(M) into the following form:

(E) Let fo, f1,-.., fn (n > 2) be non-zero entire functions in C™ satisfying (4.1.1).
Assume that no proper subsum of (4.1.1) is equal to 0, the f; are not all
constant, and that dim I < m — 2, where

I'={z€C™| fo(z) = fi(z) = -+ = fu(2) = 0}.

Note that if m = 1, the condition dim I < m — 2 in (E) means that fi, fa,..., fn
have no common zeros.

Under the condition (E), a meromorphic mapping f : C"™ — P"(C) with

a reduced representative f = (fo, f1,...,fn) is well defined. Thus the formula
(2.3.21) implies

m(r) =Ty (r) + O(1). (4.1.24)

By (4.1.24) and Lemma 2.37, we obtain the inequality
T(r)—0(1) <m(r) <nT(r) + O(1). (4.1.25)

The following generalized abc-theorem for entire functions is due to Hu and Yang
[180] (or see [168]):

Theorem 4.7. Under the condition (E), for ro <1 < p < R, we have
n 1 p\2m—1 m(R)
m(r) < ;m (n fi> — N(r,H) +llog { (T) P } +O(1),  (4.1.26)

m(r) < N, (r, f0-~1-fn> ~ N(r,H) +11og{(ff)2ml 7:(_]? } +O(1), (4.1.27)

where [, w are respectively the index and the Wronskian degree of the family

{fi, -y fn}-

Proof. Without loss of generality, we may assume that fi, fo,..., f, are linearly
independent. Applying Theorem 4.1 and the inequality (4.1.25), we obtain

m(r) < g:ON <r, flk) N (r, V1V> +llog{(f)2ml ZL(_R: } +O(1). (4.1.28)

The Jensen formula (2.3.11) implies

an:_ON (r, flk> - N (r, VlV) =N (r, ;I> — N(r,H). (4.1.29)
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According to the proof of (2.6.18), we can obtain

N (r, 11{> <> Ny <r, flk) . (4.1.30)

k=0

Hence (4.1.26) follows from (4.1.28), (4.1.29) and (4.1.30). Similarly, according to
the proof of (2.6.19) we can prove the inequality (4.1.27). O

Under the condition (E), a meromorphic mapping F': C™ — P(V) with a
reduced representative F' = (f1,..., f) is well defined, where V = C". By using
the formula (2.3.21), it is easy to show that

Tp(r) = C™(0;r;log A) + O(1), (4.1.31)
where
AG) = max 11,2)].
Thus the formulae (2.3.21), (4.1.31) and the equation (4.1.1) imply
m(r) =Tr(r) + O(1). (4.1.32)

Forj=1,...,n, set
e; =(0,...,0,1,0,...,0) e V

in which 1 is the jth component of e;. Then ey, ..., e, constitute the standard
basis of V. Let V* be the dual space of V' and let €1, ..., €, be the dual basis of
€1, ..., en. Write

€g = €1+ + €.

Then the family o/ = {P(¢;)}}_ is in general position in P(V*). Further, if fi,
.., fn arelinearly independent, then Theorem 4.7 yields immediately a truncated
form of the second main theorem of F' for the family &/ (see Corollary 2.59).

4.2 Generalized Mason’s theorem

Following Section 4.1, we particularly study the abc-problem of polynomials in C™.
For convenience, we divide the condition (E) on polynomials into the following two
parts:

(P1) Let fo, f1,---, fn (n > 2) be non-zero polynomials in C[zy, . .., 2] satisfying
fo=h+fat 4 fn (4.2.1)

Assume that no proper subsum of (4.2.1) is equal to 0, and that the f; are
not all constant.
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(P2) Let fi1, f2,..., fn (n > 2) be polynomials in Clz1, ..., zm,] such that dim I <
m — 2, where

I={2eC™| fi(z) = fa(z) = --- = fu(z) =0}, (4.2.2)
and that the f; are not all constant.

Theorem 4.7, Lemma 2.44 and (4.1.24) yield immediately the following generalized
abe-theorem for polynomials (cf. Hu and Yang [180]):

Theorem 4.8. Under the assumptions (P1) and (P2), the inequalities

(max {deg(f;)} < 3 (fi) = n(oe, H) ~ 1, (4.2.3)
- k=0
guax {deg(f;)} <71 (for fu) = n(oo, H) — 1, (4.2.4)

hold, where I, w is the index and the Wronskian degree of f1, fo,..., fn, TESPEC-
tively.

Remark 1. For 0 <i < j <n, set

&ij = Eijas- o Cijn1) = (fos oo, fimt, fivt, s fim1s fivts s f)s

02851 02852 - 0x&5n—1
¢ = 02,851 0,852 - 0265n—1
1/‘7 ................................. ’
0., 851 0:.&52 - 0:.&jn-1
v = max max rank ({;(z)). (4.2.5)

zeCm 0<i<j<n

If vy =n —1, then we can take w =1,  =n — 1 in Theorem 4.8. If fi1, fo,..., fn
are linearly independent, we have

(n—y=1)(n-7+2)

I<w<n-vy n-1<I<y+ 5

(4.2.6)
Remark 2. Assume m = 1. If n = 2, Theorem 4.8 yields the Mason Theorem 2.65.
If n > 2, the example

h@)=@+1W*,.ﬁu@%z(fd>f@=0wum—lh (4.2.7)

7

which obviously satisfies the conditions in Theorem 4.8, shows that the inequal-
ities (4.2.3) and (4.2.4) in fact are equalities for this example, that is, the two
inequalities in Theorem 4.8 are sharp.
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For any positive integer k, a € P! and any meromorphic function f on C™,

ote ]lal
n o0 1 < kn o0 1
k k) f ) r *

Theorem 4.8 yields immediately the following facts:
Corollary 4.9. Under the assumptions (P1) and (P2), the inequalities

(wax {deg(f;)} < wkZ:Or (fr) =1, (4.2.8)
e {deg(f)} < I (o fu) 1, (4.29)

hold, where I, w denote the index and the Wronskian degree of fi, fo,..., fn,
respectively.

For the case m = 1, it follows that

1
l= Qn(n —1).
The inequality (4.2.9) was obtained independently by J.F. Voloch [423], W.D.
Brownawell and D. Masser [41]. A previous result of R.C. Mason [255] yields this
estimate with [ replaced by 477!

Corollary 4.10. Under the assumptions (P1) and (P2), we have the inequalities

Jnax {deg(f;)} < (d—1) (Z r(fi) — 1) : (4.2.10)
T k=0
max {deg(fj)} < n(n— 1) (T(fofn) — 1)7 (4.2.11)

0<j<n 2
where d is the dimension of the vector space spanned by the f; over C.

Let rad(f;) be the radical of f;, which is the product of the distinct irreducible
factors of f;, i. e., rad(/f;) is the squarefree part of f;, and define

7(fi) = deg(rad(f;)).

Proposition 2.43 implies

rif)=n (OQ }z> = (007 fadl(fi)) =)

Thus a theorem of Shapiro and Sparer [343] follows from Corollary 4.10:

Theorem 4.11. If the condition (P1) holds such that the f; are relatively prime by
pairs, then

max {deg(f;)} < (n— 1) {F (fo--- fu) — 1}. (4.2.12)

0<j<n
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For polynomials on a field of characteristic zero, J. Browkin and J. Brzezinski
[40] proposed a conjecture as follows:

Conjecture 4.12. Let f;(j = 0,...,n) be non-zero polynomials on a field K of
characteristic zero with n > 2 such that fo, ..., fn have no non-constant common
divisors, at least one of the f; is not a constant, (4.2.1) holds and no proper subsum
of (4.2.1) is equal to 0. Then

gnax {deg(f;)} < (2n —=3) (7(fo - fn) = 1). (4.2.13)

Corollary 4.10 shows that Conjecture 4.12 is true if the number 2n — 3 in
(4.2.13) is replaced by "("271) . For the case n = 2, the conditions in Conjecture 4.12
mean that f; and fo are linearly independent. Hence it follows from (4.2.9). It also
is easy to show from (4.2.9) that Conjecture 4.12 is true for the case n = 3. Note
that these are all cases such that 2n — 3 = én(n — 1) holds for a positive integer

n.

J. Browkin and J. Brzeziiiski [40] studied the following example: For every
k > 0, define a polynomial of positive integral coefficients by

k k .
. 21y
fr(z) = H(z+2—2cosaj):Zssz, %= (4.2.14)
j=1 j=0
which satisfies (cf. [40])
$2k+1 -1 A (m _ 1)2
= . 4.2.1
= (U0 (12.15)
If in (4.2.15) we put k =n — 2 and = —b/a, then, in view of (4.2.14), one gets
n—2 ) )
a3 b7 =N s (a4 b)Y (—ab) T = 0. (4.2.16)
§=0

J. Browkin and J. Brzeziriski use the example (4.2.16) by putting a = 7*+1 (k > 0)
and b = —1, that is,

n—2
(rF 1) =3 1 —pF Z ;2R (rF 4 1) 72 = 0 (4.2.17)
§=0

to show that the number 2n — 3 in Conjecture 4.12 is a sharp lower bound (also
see [74]).

Based on Corollary 3.90 and Corollary 4.10, we suggest the following esti-
mate:
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Conjecture 4.13. Under the conditions of Conjecture 4.12, the inequality

max {deg(;)} < 7@ Y

0<j<n 2

(7 (for-fn) = 1) (4.2.18)

holds, where d is the dimension of the vector space spanned by the f; over K.

Now for any positive integer k, it is natural to ask what is the minimal
numbers ty, »(k) and 9, » (k) such that under the assumptions (P1) and (P2), we
have the inequalities

Jnax. {deg(f;)} < Z;mn )re(fi) — 1, (4.2.19)
mas {des([;)) < (R G- ) — 1. (4.2.20)

Abbreviate
Theorem 4.8, the example (4.2.7) and Corollary 4.10 show that

?n(k){ <n-1, if1<k<n-1 (4.2.21)

and

=1 if k> ",
n(k o 4.2.22
U(){SH(WQI)7 1f1<k<nn 1). ( )
We can prove easily
-1
w) <" 1<k<n-1,
. (n-1) (n—1)
n(n — n(n —
W(k) < 1<k< .
k)< o 2
Theorem 4.14. Assume that the condition (P2) holds such that fi, fa, ..., fn
are linearly independent. Take a positive integer ¢ > n and let [aji,...,a5m] (J =

1,...,q) be a family of points of P(C™) in general position. Then the inequalities

q

(g — n) max {deg i)} Z (ajifr+ -+ ajnfn) —n(oco,H) =1, (4.2.23)

q
(¢ —n) max {deg(f;)} < [T(@fi+ - +ajufa) | = nloo, H) —1 (4.2.24)
<< ot
hold, where I, w is the index and the Wronskian degree of f1, fo,..., fn, TESPEC-
tively.
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Proof. Let f:C™ — P(C") be the meromorphic mapping with a reduced repre-
sentation f = (f17 ey fn) Set aj = [Cl,jl, ey ajn]. Then

. . Nyw(ra;
rw(@gifit et ajafa) = B npw(ra;) = lim f7lo(gr 2

Since the mapping f is linearly non-degenerate under the assumptions of Theo-
rem 4.14, then Corollary 2.59 and (2.4.7) imply the inequality (4.2.23). Similarly,
we can prove (4.2.24) by using Theorem 2.56, (2.6.17) and (2.6.19). O

Theorem 4.15. Assume that (P2) holds. Let d be the dimension of the vector
space spanned by the f; over C. Take a positive integer ¢ > 2n — d and let
[aj1,...,a;,) (j = 1,...,q9) be a family of points of P(C™) in general position
such that

aiifi+ - +apmfn 0, j=1,...,q

Then we have the inequality
q
@—2n+®ﬁg§ﬂkgﬁﬂg};mmﬂﬁ+~~+amﬁﬂ—w, (4.2.25)
j=
where |, w is the index and the Wronskian degree of f = [f1, fo,..., fn] : C™ —

P(C™), respectively, such that

d(d — 1)

l<w<d-1<I< 0,

and where 0 is a Nochka constant with n < 6d < 2n — d.
Proof. Note that the holomorphic mapping
f=1f1,f2- -, fa] : C" — P(C")

is (d — 1)-flat with d > 2. By using Theorem 2.70, the proof of Theorem 4.15 can
be completed according to that of Theorem 4.14. O

4.3 Generalized abc-conjecture

In this section, we will study the following analogues of conditions (P1) and (P2)
in Section 4.2 for integers:

(N1) Let ag,az,...,a, (n > 2) be non-zero integers satisfying
ap=ai+as+ -+ a,. (4.3.1)

Assume that no proper subsum of (4.3.1) is equal to 0.
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(N2) Let aj,aq,...,a, (n > 2) be integers satisfying ged(as,...,a,) = 1, where
the symbol ged(ayq, . . ., a,) denotes the greatest common divisor of aq,. .., ay.

For a non-zero integer a, write
a=+plt ... pl (4.3.2)

for distinct primes p,...,ps and (i1,...,is) € (ZT)%, and define

ri (a) = ] ppmtikt. (4.3.3)
v=1

Based on the classical analogy between polynomials and integers, we think
that the number r(f) of a polynomial f corresponds to logri(a) of an integer a.
Thus Theorem 4.8 can be translated into the following generalized abc-conjecture
for integers (see Hu and Yang [182]).

Conjecture 4.16. If (N1) and (N2) are true, then for e >0, k € Z", there exists
a number C = C(n, k,€) satisfying

n tn(k)+e
max {|a;|} <C (H Tk (aﬁ) , (4.3.4)
i=0

0<j<n

wax {Ja;[} < Cry (agar -+ -an)"™ 7. (4.3.5)

In [176], [180] (or see [181]), we proposed the conjecture for the case

ta(n—1)=1, , (n(n; 1)> =1 (4.3.6)

If n = 2, Conjecture 4.16 corresponds to the well-known abc-conjecture.

We discuss the example (4.2.16) studied by J. Browkin and J. Brzeziriski [40].
If we choose a = 2%, where i > n — 2, and b = —1, then we have

ai+ -+ an = ao,
where
aji = s;(20 — 1)PH20=270) (0 < j<n—2), a, =1, ag = 2",

Obviously, it has no proper subsum equal to zero. Since a,, = 1, hence the greatest
common divisor of all a; is 1. Therefore the conditions in Conjecture 4.16 are
satisfied. Now we have

_ N — , _ 9i(2n—3)
My, = max {Ja;|} = ao =2 :



4.3. Generalized abc-conjecture 303

A positive integer x, > 2n — 3 exists such that
n n—2
L, = HT‘n,1 (al) =9on2 H Tn—1 (Sj(Ql — 1)2j+122(n727”>
i=0 §j=0

n—2
> 9(n=2)(n-2) H Poo1 ((21 _ 1)2j+1) — 2(71*2)(”*2)(21' —1)xn,
=0

Since there are infinitely many i > n —2 such that the numbers 2! —1 are relatively
prime (e.g., all prime ¢ > n — 2), there exists a positive constant C'(n) which is
independent of ¢ such that

21’(27173)

2(n—2)(n—2) (22 _ 1)Xn < C(n)7

that is, M,, < C(n)L,. We can also show that for some constant C(n),
M, < Cn)rnm-n (agar - -an).
2

Thus for the case (4.3.6), Conjecture 4.16 holds for such a;.

Next we exhibit a few conjectures related to Conjecture 4.16. If a;(j =
0,...,n) are non-zero integers such that a;, a; are coprime for ¢ # j, then

n

k
[T 7+ (@) = i (a0as -~ an) <7 (agas---an)”.
1=0

Hence Conjecture 4.16 implies immediately the following conjecture due to W.M.
Schmidt [338]:

Conjecture 4.17. If (N1) holds such that a; and a; are coprime for i # j, then for
e > 0, there exists a number C = C(n,e) such that

) . n—1+e¢
Oréljagnﬂaﬂ} < Cr(apay - --ay) . (4.3.7)

It was indicated by Vojta in [419] that Conjecture 3.56 could derive the
following conjecture:

Conjecture 4.18. If ag,...,a, are non-zero integers satisfying (4.3.1) and (N2),
then for € > 0, there exists a number C = C(n,e) such that

1+€
oglgagxn{'aﬂ} < Cr(apay---an) (4.3.8)
hold for all ag, ..., a, as above outside a proper Zariski-closed subset of the hyper-

plane x1 + -+ + x, = ¢ in P™.
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J. Browkin and J. Brzezifiski [40] conjectured as follows:

Conjecture 4.19. If (N1) and (N2) are true, then for e > 0, there exists a number
C = C(n,e) such that

2n—3+¢
opax {la[} < Cr (agar -+~ an) (4.3.9)

J. Browkin and J. Brzezinski use the above example to show that the number
2n — 3 is a sharp lower bound. Thus the number p,,(1) should satisfy

(n-1)

m-3<n, (1)<

(4.3.10)

Generally, we think that Theorem 4.14 corresponds to the following problem:

Conjecture 4.20. Assume that (N2) holds and further assume that there exist in-
tegers M and N with M < N such that

Biay + -+ Bpa, #0, (By,...,B,) € Z|[M,N]" — {0}.

Take an integer g with ¢ > n and let a family {[Aj1,...,An] | j=1,...,q¢} of
P(C™) be in general position with Aj; € Z|M,N)]. Then for e > 0, k € Z™", there
exists a number C = C(n, k,q, M, N,¢e) satisfying

1<j<n

J

q Fn(k)‘i’e
max {|a;|"""} < C Hl?“k (Ajrar +-- -+ Ajnan) ; (4.3.11)
j=
q 9n(k)+e
max {|a;|77 "} < Cry, (Ajrar + -+ Ajnan) . (4.3.12)

1

The inequalities (4.3.4) and (4.3.5) in Conjecture 4.16 follow from Conjec-
ture 4.20 by taking M =0, N=1and g=n+1.

4.4 Generalized Hall’s conjecture

We continue to study the case (E) in Section 4.1. To compare with the conditions
in Section 4.2 and 4.3 accordingly, we divide it into two parts:

(E1) Let fo, f1,---, fn (n > 2) be non-zero entire functions in C™ satisfying

fo=fi+fo+-+ fn. (4.4.1)

Assume that no proper subsum of (4.4.1) is equal to 0, and that the f; are
not all constant.
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(E2) Let f1, fo,..., fn (n > 2) be entire functions in C™ such that dim I < m —2,
where

I={zeC™| fi(z) = fa(z) = --- = fn(z) =0}, (4.4.2)

and that the f; are not all constant.

In this section, we will study entire functions with higher multiplicity of zeros.
Thus we make the following additional assumption:

(E3) Let fi, fa,..., fn (n > 2) be entire functions in C™. Assume that there exist
positive integers d; such that the multiplicity of each root of f; in C™ — I is
not less than d; for j =1,...,n.

Theorem 4.21. Under the conditions (E1), (E2) and (E3), forro <r < p < R
the meromorphic mapping f : C™ — P" with a reduced representative f =
(fo, f1,-- -y fn) : C™ — C™*1 satisfies the following inequalities:

1- XZZ Ty(r) < Ny (r, ;0> +llog{(i>2ml i;fERr) } +0(1), (4.4.3)

where [, w are respectively the indexr and the Wronskian degree of the family

{fla"'afn}'
Proof. Note that for j =1,...,n,

1 1 w 1 w
Ny |7, <wN (r, < Nimr < “Ts(r)+O(1).
( fj) ( fj) d; ( fj) d; s(r) +0)
Hence Theorem 4.21 follows from Theorem 4.7. O

Theorem 4.21 implies directly the following fact:

Theorem 4.22. Let fo, f1,..., fn be polynomials in C™ satisfying the conditions
(E1), (E2) and (E3). Then the inequality

0<j<n

1= ZZ; max deg (f;) < rw (fo) —1 (4.4.4)
j=1"7

holds, where |, w 1is the index and the Wronskian degree of {f1, fa,..., fn}, Te-
spectively.

Obviously, Theorem 4.22 also follows directly from Theorem 4.8. As a con-
sequence, we obtain the following fact (see [186]):

Theorem 4.23. Let fo, f1,..., fn be polynomials in C™ satisfying (E1) and (E2).
Assume that there exist positive integers d; and polynomials Pj in C™ such that

fi=PY, j=1,...n



306 Chapter 4. Function Solutions of Diophantine Equations

Then the inequality

" w
b 2 g [ 022, 4 deg (Fy) < 1w (fo) = (4.4.5)
j:

holds, where I, w is the index and the Wronskian degree of {Pldl, ooy PInY ) re-
spectively.

Since w <n —1 <, (4.4.5) implies

n

n—1 —~ d;

_ . ) < — - — . .

1 E ., Oréljagxn dijdeg(Pj) < (n—1)¢r E 1 P 1 (4.4.6)
= j=

In particular, if f and g are non-zero polynomials in C with f2 — g% # 0, and are
not all constant, then (4.4.6) yields

1

6 max{2deg(f),3deg(9)} <7 (f*—g°) — 1 (4.4.7)
when f and g have no common zeros, which provides the inequality in the following
Davenport theorem (or see [25], [387]):

Theorem 4.24 ([72]). If f and g are non-constant polynomials in C with f? — g #
0, then

; deg (g) < deg (f2 — 93) — 1. (4.4.8)

The analogue of Theorem 4.24 in number theory is just Hall’s conjecture.
The inequality (4.4.7) is an analogue of (3.2.6). For the case

n = 27 d1 = k, d2 =n, (449)
and
=1 fa=2Ag, (4.4.10)
where A is a constant such that A™ = —1, the inequality (4.4.6) yields
1 1 k n k n
l_k_n max{deg (f*),deg (¢")} <7 (f*—g¢") -1 (4.4.11)
when f and g have no common zeros, which implies
1 1
{1 Tk n}max{deg (/%) deg(g")} < deg (f* —g") — 1. (4.4.12)

This inequality is an analogue of the Hall-Lang-Waldschmidt conjecture (3.2.10)
for polynomials.
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For integers, the conditions (E1), (E2) and (E3) are respectively replaced by:

(N1) Let Aq,..., A, (n>2) be fixed non-zero integers and let z;(j =0,1,...,n)
be non-zero integers satisfying

Aizy + -+ Apzy, = 20 (4.4.13)
Assume that no proper subsum of (4.4.13) is equal to 0.
(N2) Let @1, o, ..., z, (n > 2) be integers satisfying ged(z1, ..., 2,) = 1.
(N3) Suppose that there are positive integers d; such that for each j =1,...,n,
p | zj for some prime p implies p% | z;.

We conjectured that the analogue of Theorem 4.22 in number theory would be
the following problem:

Conjecture 4.25. If (N1), (N2) and (N3) hold such that for some k € 7",

a=1- Zn: ken (k) o, (4.4.14)

then for € > 0, there exists a number C = C(n,k,e, Aq,..., A,) such that

max {|z;]*} < Cry (o) *Te . (4.4.15)
0<j<n
Conjecture 4.25 is a generalization of Conjecture 3.26. Note that when zq is
fixed, the equation (4.4.13) has integer solutions 1, ..., z, if and only if the fixed
non-zero integers Ai, ..., A, satisfy

ng(Ala cee 7An) | Zo-

According to the discussion in Section 3.2, it is easy to show that Conjecture 4.25
follows from Conjecture 4.16.

Conjecture 4.26. Assume that (N1) and (N2) hold and suppose that there are
positive integers d; and integers a; such that

d; .
z; =a;’, j=1,...,n.

If (4.4.14) holds, then for e > 0, there is a number C = C(n,k,e, A1,..., A,) such
that

max {|a;|°%} < Cr (o) M+, (4.4.16)
0<j<n

where ag = Tg, dg = 1.
Conjecture 4.26 is a generalization of Conjecture 3.28, and follows easily

from Conjecture 4.25. Some special cases of Conjecture 4.26 were suggested in
[186] and [181].
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4.5 Borel’s theorem and its analogues

In this section, we first establish a general Borel theorem. Based on the theorem,
we suggest a generalized Fermat conjecture. To do this, we need some notation.
Take f € M(C™) and a € P! For a positive integer k, denote the truncated
multiplicity functions on C™ by

10 <pg(z) <k,
a = 4.5.1
uf)k(z) {0 otherwise , ( )
1 if pf(z) >k,
a = 4.5.2
9 (2) {0 ) < b (45.2)

and further define the truncated valence functions by

Nk) t, fia ifv= /’l’;)kv

N, (t) = (4.5.3)

N (¢, fia ifv= ,u,?(k.

Let A(r) be a continuous, increasing non-negative unbounded function of
r € RT. Let M(C™) be the field of meromorphic functions a on C"™ such that

I T(r,a) = o(A(r)).
If T'(r) is a non-negative function on R*, we will use the notation

I T(r) # o(A(r))

to denote that

T
lim sup (r)

>0
EZr—oo (T)

for any subset £ C Rt with [, dlogr < oo.

4.5.1 Borel’s theorem

In this part, we will study meromorphic functions satisfying the following condi-
tions:

(M1) Let fo, f1,---, fn (n > 2) be non-zero meromorphic functions on C™. As-
sume that there exists a; € M (C™) satisfying the equation

aofo+aifi+ -+ anfn=0. (4.5.4)
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(M2) Take positive integers n and d; (j = 0,1,...,n) with n > 2 and set
d = max{d;}. Let fo, f1, ..., fn be non-zero meromorphic functions on
C™ satisfying the following condition:

n

I E:{Nwhﬁiﬁ+AMrD(né)}zo&&ﬁ. (4.5.5)

3=0
If the functions a; in (M1) are constants, we usually replace the condition (M2)
by the stronger condition:

(M2') Take positive integers n and d; (j = 0,1,...,n) with n > 2 and set
d = max{d;}. Let fo, f1, ..., fn be non-zero meromorphic functions on
C™ satisfying the following condition:

EFya1 = a1 =0, 5=0,1,...,n. (4.5.6)

Here we give a generalization of a result due to Borel [29] and Nevanlinna [292] as
follows:
Theorem 4.27. If (M1) and (M2) hold such that

n

n—1
= 1 —_ ..
B Z e 0, (4.5.7)
7=0
then we have

1) the functions ay f1,...,anfn are linearly dependent if
i .

I 7 (5 ) # o0

2) aj:OfoerO,LQ,...,nif

||T(n£)#dMﬂLj¢k

Proof. We prove Theorem 4.27, 2) by induction on n. First of all, we consider the
case n = 1. Since f; # 0 (j = 0,1), then ap # 0 and a; # 0 if one of ap and a, is
not zero. Hence

| T (r, §O> =T (r, a1> <T(r,a1) +T(r,ap) + O(1) = o(A(r))
1 ao
which is a contradiction. Hence ag = a; = 0.
Assume that Theorem 4.27 holds up to n — 1. It is sufficient to show that
one of ag, ...,a, is zero. Assume, to the contrary, that a; # 0 for j =0,1,...,n.
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Then agfo,...,an—1fn_1 are linearly independent over C. In fact, if there exists
cj € Cfor j =0,...,n—1 such that

coaofo+ -+ cp—1an-1fn-1 =0,

by induction, then ¢ja; =0 (j=0,...,n—1). Thus¢; =0 (j =0,...,n—1). Let
V be a complex vector space of dimension n. Take a base eg,...,e,_1 of V and
let €, ..., €,—1 be the dual base in V*. Let A (£ 0) be a universal denominator of
{aofo,- - an-1fn—1}, that is, Aa;f; is holomorphic for each i = 0,...,n — 1 with

dim{z € C™ | (Aaofo)(z) =+ = (Aap—1fn-1)(2) =0} <m — 2.

Then a meromorphic mapping F : C™ — P(V) is defined with a reduced repre-
sentation R
F = Aagfoeg+ -+ Aap_1fn16p_1 : C" — V.

Obviously, F' is linearly non-degenerate. Set

n—1
bi=P(e;) (0<i<n—1), bnzﬂ”(Zei).

=0

Then the family {bg,...,b,} is in general position. Then Corollary 2.59 implies

| Tr(r) < ZNF,L 1(r,b;) + O(log Tr (1)), (4.5.8)
=0

where, by definition,

1 1
N n— ;01) = Nn— ) < - 1)N ) .
rn-1(nb) ' (r Aaifi) (n=1) (T Aaifi)
According to the definition of A, we can show easily that the inequality
1
I Nacy (7 parg,) < Vao () + §3Ng1> P £5) oA (1) = o(A()

holds for each i € {0,1,...,n}. Note that

1 1 1
N (T’ Aaifi) =Na-—y (T’ Aaifi) N (T’ Aa; fi>

N (1 g1 )+ 000
and

1 1
diN(di (T, Aalfz> <N (7”, Aalfz> = ]\/vF(T7 bi) < TF(T) + O(l)
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hold for ¢ =0, ...,n. Therefore the inequality (4.5.8) yields
| {8 —0o(1)} Tr(r) < o(A(r)). (4.5.9)

On another hand, we have

fi Tr(r) + o(\(r)), 1<j<n-—1;
T (T’ f0> < { (n~1)Tw(r) + o(A(F)), j = n. (4.5.10)

In fact, for each j = 1,...,n — 1, Lemma 2.37 implies

17 (n B) <7 (n B0 ) 4 oar) < Tele) + oA,

1r(r5) = T () v
< 35T<n2£> )

< (n=1)Tk(r) +o(A(r)).
According to (4.5.9), (4.5.10) and the assumption
fi
17 () 2 o000,

we may choose an unbounded subset S; C RT and a positive constant ¢; such
that (4.5.9) and (4.5.10) hold on S;, and such that

and so

)\()<CJT( fj) reS;.
" fo

Thus we obtain

{8-0Q1)}Tr(r) <o(Tr(r)), res;, (4.5.11)

which implies 8 < 0. This contradicts the assumption.
The claim 1) is trivial if either ag is equal to 0 or a1 f1,. .., ay, fr are linearly
dependent, otherwise, ag fo, ..., an_1fn_1 are also linearly independent, and so a
contradiction follows from the argument of case 1). O

Some special cases of Theorem 4.27 were given by Berenstein, Chang and Li
[20], Fujimoto [107], Narasimhan [287], and Hu and Yang (cf. [172], [174], [168]).

Corollary 4.28. If (M1), (M2) and (4.5.7) hold, then there exists a partition of
indices
{071,...,TL}ZI0UI1U-"UI]€
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such that In # 0 (a« =0,1,...,k), I, NIg =0 (a # B),

> aifi=0, a=0,1,...,k

1€l

and f;/ f; € MA(C™) for any i,j € I,. In particular, if a; #0 fori=0,1,...,n,
each I, contains at least two indices.

Proof. Consider the partition {0,1,...,n} = IyUI; U---UI such that two indices
i and j are in the same class if and only if f;/f; € Mx(C™). Then we have

n k k
Zaifi = Z Z a; fy = chafia =0
=0 a=0

a=0i€l,

for any fixed i, € I, and some ¢}, € M(C™). Corollary 4.28 is trivial for the case
k = 0. Suppose k > 1. Then

Note that fi, /fi, & MA(C™) (a # ), that is,
fia
I 7 (r =) oA, a8
fig
By Theorem 4.27, we obtain ¢/, = 0 for « = 0,1, ..., k, which yields Corollary 4.28.
O
Corollary 4.28 improves the related result of H. Fujimoto [107].

Corollary 4.29. Assume that (M1), (M2') and (4.5.7) hold. If the functions a; in
(M1) are constants, then there exists a partition of indices

{0,1,...,71}:[0U11U'--U1k

such that In #0 (a« =0,1,...,k), I, NIg =0 (a # 3),
Y aifi=0, a=0,1,... .k
i€l,

and f;/ f; is constant for any i,j € In. In particular, if a; # 0 for i =0,1,...,n,
each I, contains at least two indices.

If dy = --- =d,, Corollary 4.29 was proved by Y. Aihara [3].

Corollary 4.30 (Green [121]). Take positive integers n and d with d > n? > 4. We
have the following three equivalent statements:
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(i) If non-zero meromorphic functions f1, fa,..., fn on C™ satisfy
flfid ot fi=1,

then fi, fd, ..., f¢ are linearly dependent;
(ii) Under the same assumption as in (i), then at least one of the f;’s is constant;

(iii) Assume that non-zero meromorphic functions fo, f1,..., fn on C™ satisfy
i+ ++fi=0
Then there exists a partition of indices
{0,1,...;n} =L UL U---UI

such that f;/f; is constant for anyi,j € I, and

S t=0, a=01,.. k

i€lq

Proof. The claim (iii) follows directly from Corollary 4.29. We derive (ii) from (i)
as follows: Since the functions f{, ..., f¢ are linearly dependent, without loss of
generality, we may assume the following linear relation:

elff + a1 S+ i =0,
By subtracting this identity from ff +---+ f¢ =1, we have
A—c)ff++A—ca)f =1

We could use the relation to get a shorter linear combination of the f¢ to equal 1,
and hence (i) can be used again. Finally, it follows that a constant ¢ exists such
that cf¢ = 1 for some i.

In order to derive (iii) from (ii), we have
n k k
D =2 2 0= aafi,=0
1=0 a=01:€1, a=0

for some a,, € C and any fixed i, € I,,. Then (iii) follows if a, =0 fora =0,..., k.
Assume that (iii) does not hold. Without loss of generality, we may assume that

ao Z0(0<a<s, s>1), an=0(s+1<a<k).

We may choose g, € M(C™) satisfying

d
d __ Ao fs, -1
go=— ., a=1,...s

aop io
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so that g + --- + g% = 1. Then one of the g,’s, say g, is constant by (ii). This
means that f;, /fi, is constant, contradicting the definition of I,.

Finally, we derive (i) from (iii). We choose a constant fy satisfying f§ = —1
so that f&+ fi+---+ f4 =0, and apply (iii) to this identity. Let Iy be the index
set that contains 0. If I = Iy, then the functions f{, ..., f¢ are all constant and
hence linearly dependent. If I # Iy, then

Yo f=0, a#o,
i€l
thus yielding a non-trivial linear relation. 0

Corollary 4.31. One has the following three equivalent statements:

(A) Assume that entire functions f1, fa, ..., fn vanish nowhere on C™ such that

fit ot fa=1

Then f1, fa, ..., fn are linearly dependent.
(B) Under the same assumption as in (A), then at least one of the f;’s is constant.

(C) Assume that entire functions fo, f1,..., fn vanish nowhere on C™ such that

fotrfit+t-+ fo=0.

Partition the index set I ={0,1,...,n} into subsets I,, I = U*_,1,, putting
two indices i and j in the same subset I, if and only if f;/f; is constant.

Then we have
> fi=0, a=0,1,... .k
i€l,

Corollary 4.31 is the classic Borel theorem. E. Borel [29] originally observed
that the Picard theorem of entire functions on C may be restated in the following
form: If two entire functions f and g on C vanish nowhere and satisfy the identity
f + g =1, then they are constant. S. Kobayashi [208] shows equivalence of three
statements in Corollary 4.31 (or see [168]).

We may weaken the condition (4.5.7) for the family
Mi(C™) = {f € M(C™) | Ord(f) < 1}.

We also define
A (C™) ={f € A(C™) | Ord(f) < 1}.

Theorem 4.32. Assume that (M2') holds for f; € M1(C™) (j =0,1,...,n) and

suppose
n

ﬁ:1—§:n;120. (4.5.12)

j=0
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=gz ()

1s unbounded, then fo,..., fn are linearly independent.

If the function

Proof. Assume that there are constants a; € C satisfying the equation ag fo+-- -+
anfrn = 0. We can prove Theorem 4.32 similar to Theorem 4.27, where by using
Corollary 2.59, the inequality (4.5.8) is replaced by

| Te(r) <> Nena(r,bi) +1(A+& —1)logr+ O(1), (4.5.13)
=0

in which A (< 1) is the order of F', and [ is the index of F. We can take ¢ sufficiently
small such that A +¢ < 1. 0

Corollary 4.33. Assume that (M1), (M2') and (4.5.12) hold for f; € M1(C™) and
a; €C (j=0,...,n). Then there exists a partition of indices

{0,1,...,71}:[0U11U"-U1k

such that In #0 (a« =0,1,...,k), I, NIz =0 (a # B),
Y aifi=0, a=0,1,...k
1€l

and f;/ f; is constant for any i,j € In. In particular, if a; # 0 for i =0,1,...,n,
each I, contains at least two indices.

4.5.2 Siu-Yeung’s theorem

Siu and Yeung [367] further extend Corollary 4.30 as follows:

Theorem 4.34. Let Pj(xo,...,%,) be a homogeneous polynomial of degree §; for
0 <j<mn. Let fo,..., fn be holomorphic functions on C satisfying the following
equation:

ST F P (foy . fa) = 0.

Jj=0

Ifd >n?+ E;L:[) 0j, there is a non-trivial linear relation among f{i%l Pi(fo, -,

fn); sy fgiénpn(va'”afn)'

Proof. For convenience, we write

-3 .
Fy=f{""Pi(fo,.... fn), 5=0,...,n.
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Theorem 4.34 is trivial if one of Fy, ..., F, is equal to 0. Assume that
F; #0, j=0,...,n,

and without loss of generality, assume that Fp, ..., F, have no common zeros.
Thus we obtain a holomorphic curve f : C — P" with a reduced representation

f:(f07"'7fn):(c—>(cn+l.

Assume, to the contrary, that Fy, ..., F, are linearly independent, which
means that Fy, ..., Fj,_1 also are linearly independent. Using the notations in the
proof of Theorem 4.27, we obtain a holomorphic curve F' : C — P(V) with a
reduced representation

F=Feg+-+Fy1e,-1:C—V,
which satisfies (4.5.8). We claim that

Tr(r) =dTs(r) + O(1). (4.5.14)
Define
Alz) = max |1;(2)].
Then (2.3.21) implies
Ty(r) = / log Ao + O(1). (4.5.15)
C(0;7)

Obviously, there exists a constant C' > 0 such that |F| < CA%, and so (2.3.21)
and (4.5.15) yield

Tr(r) < de(’I“) +0(1). (4.5.16)
On the other hand, by using the formula (4.5.15) and the equation Fy+- - -+F,, = 0,
it is not difficult to show that

1 n
Tp(r) = 2/@(@ >1og SOIFP ) o+ 0(). (4.5.17)

3=0
Take a point z € C(0;r). Then there exists j, € {0,...,n} such that A(z) =
|fi. (2)]. Note that

Fi.(2) = £,.(2)7Q;.(2), Qj.(2) = (fO( z) fn(2)>

fi(2) 7 £iu(2)
with |Q;,(z)| < C" for a constant C’ > 0. Thus we have

ZIF () > A(2)*|Q;. (=),
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which means
Tr(r) > de(’I“) +0(1). (4.5.18)

Therefore (4.5.14) follows from (4.5.16) and (4.5.18).
Now we can estimate the terms Np,_1(r,b;) in (4.5.8). Note that

Npn_1(r,bs) = No_1 (r, é) <N (n ;) +(n—1)N (n Jt) :

The first main theorem (2.3.33) and (2.7.5) imply respectively

1
N (r, f) <Tg(r)+0(1)
and
1
N (r, P-) < 6;Tf(r) + O(1).
Thus by using (4.5.14), we obtain

0;+n—1

Npp_1(r,b;) < d

Tr(r) + O(1). (4.5.19)

Therefore (4.5.8) and (4.5.19) yield
| (1 - ; ’ e 1) Tr(r) < Olog Tr(r)),

which means d <n2—1+ Z?:o 6;. This is a contradiction. O

4.5.3 Analogue of Borel’s theorem
For integers, the conditions (M1) and (M2) are respectively replaced by

(N1) Let xg,x1,...,z, (n > 2) be non-zero integers satisfying the equation

(N2) Take positive integers n and d; (j =0,1,...,n) with n > 2. Let xq, 21, ...,
@, be non-zero integers such that for each i € {0,1,...,n}, there is no prime

p satisfying
0< ’Up(Ii) < d;. (4521)

Note that C[z] € M;(C). According to the classic analogy between polynomials
and integers, we think that the analogue of Corollary 4.33 in number theory should
be the following problem:
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Conjecture 4.35. If (N1), (N2) and (4.5.12) hold, then either there are a finite
number of coprime integers xg, ..., T, satisfying these properties, or there exists
a partition of indices

(0,1,....n} =IULU---UI
such that In # 0 (a =0,1,...,k), I NIg =0 (a # B),
d ai=0, a=0,1,... .k
i€l
zi/x; € {—1,1} for any i,j € I, and each I, contains at least two indices.

If d; =d for i =0,...,n, we think that this conjecture can be strengthened
as follows:

Conjecture 4.36. If (N1) and (N2) hold for di =d > n* —1 (i =0,...,n), then
there exists a partition of indices

{0,1,...;n} =T UL U---UI
such that In # 0 (a =0,1,...,k), I NIg =0 (a # B),
d wi=0, a=0,1,... .k
i€l,
and x;/x; € {—1,1} for any i,j € I,.
This conjecture yields the following special case:

Conjecture 4.37. Assume that (N1) holds. If there are integers d > n?>—1, a; = &1
and y; such that
T; :aiyf; 1=0,1,...,n,

then there exists a partition of indices
{071,...,71}210U11U"'U1k

such that In # 0 (a =0,1,...,k), I NIg =0 (a # B),

Zaiyg:(), a=0,1,...,k,
i€l

and y;/y; € {—1,1} for any i,j € I,.

Obviously, the Fermat-Wiles theorem is a special case of Conjecture 4.37.
Assume that yo,y1,...,yn (n > 2) are non-zero integers satisfying

aoyy + aryf + -+ + anys =0, (4.5.22)

where d > n? — 1 and a; = +1 for each 1.
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Further we may assume ged(yo,y1,---,9n) = L. If (yo,91,-..,Yn) is a non-
trivial solution of (4.5.22), that is, no proper subsum of (4.5.22) is equal to 0,
then Conjecture 4.16 implies that for ¢ > 0, there exists a number C' = C(n,¢)
satisfying

1+e
max {|y;|} < € (Hrn 1 (v ) < Clyoys -+ yn| " HEF)

which implies
d—n’+1-(n?=1)e <
Ogljagn{ly 1} C(n,e).
In particular, taking € = 2(n271) and d > n?, so
d—n*+1—(n*—1)>
n” + (TL )5 — 2’

we deduce from Conjecture 4.16 that

qmax {ly|} < C ( 2(n21— 1))2”2 '

We have thus proved that in any non-trivial solution of (4.5.22) with d > n?, the
numbers |y; |4 are all less than some absolute bound depending only on n, and so
there are no more than finitely many such solutions. If we had an explicit version
of Conjecture 4.16 (that is, with the values of C(n,e) given), then we could give
an explicit bound on all non-trivial solutions to the equation (4.5.22) and compute
up to that bound to finally determine whether there are any non-trivial solutions.

Euler had a false intuition when he guessed that the Fermat hypersurface
v+t =g

would have no non-trivial rational solutions for d = n+ 1. Lander and Parkin [220]
found the solution in degree 5:

275 + 845 4+ 110° + 133° = 1445.
Then Elkies [91] found infinitely many solutions in degree 4, including
2682440* + 15365639* + 18796760* = 20615673,

4.6 Meromorphic solutions of Fermat equations

We continue with the situation of Section 3.4. Meromorphic solutions of Fermat-
Catalan equations and their general forms will be discussed first in this section.
Concretely, it is interesting to find the smallest integer G, (F) such that when
d > G,(F), there do not exist non-constant functions fi,...,f, (n > 2) in a
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certain function class F satisfying
A+ + =1 (4.6.1)

First of all, we prove the following fact:

Theorem 4.38 (cf. [168]). Take positive integers k and | with k > 1> 2 and set

Then the Fermat-Catalan equation
ffrg =1 (4.6.2)

has no solutions f,g € F — C satisfying one of the following cases

(1) a>;, F=M(C™);
(2) a>0, F = AC™),
(3) a> ., F=M(C");
(4) a >0, F = A (Cm).

Proof. Assume, to the contrary, that there exist two non-constant meromorphic
functions f and g on C™ satisfying (4.6.2). Let ay,...,ax be the zeros of 2% — 1
in C. Then for each j =1,...,k, each zero of f — a; has order > [, and hence

1 1 1 1
N<T7f—aj> < lN(nf_aj) < ZT(va)—ﬁ-O(l).

By using the second main theorem (cf. Corollary 2.59), for any § > 0 one has

I (k=1)T(r,f) < N(r,f)+ I;T(r, H+1+9) log™ T(r, f)—logr+0O(1). (4.6.3)

Define a characteristic number € for f and g by

€= {0 H /o9 € ACT), (4.6.4)

1 : otherwise.

Then we have
N(r, f) < €T (r, f).

Thus (4.6.3) yields

I (k —1- I; - e) T(r, f) +logr < (1+8)logt T(r, f) + O(1), (4.6.5)
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that is
| (koo —e)T(r, f) +logr < (1 +6)logt T(r, f) + O(1).

This inequality contradicts any one of the hypothesis (1)-(4). The proof of the
theorem is completed. O

If we replace the second main theorem in the proof of Theorem 4.38 by using
abc-theorem on meromorphic functions, say, Theorem 4.4, we obtain

|70 < N (n g )48 () NG+ N
+(1 4 8)log™ T(r, f) — logr + O(1) (4.6.6)

for small § > 0. Theorem 2.45 and the first main theorem (2.3.15) further yields
the inequality

| ET(r, f) < (1 + ;) T(r) + (1+0)logm T(r) —logr +O(1),  (4.6.7)

where
T(r)y=T(r,f)+T(r,g).
Similarly, we have
|19 < (1+ ;) T(r) + (1 + 8) log" T(r) — logr + O(1). (4.6.8)
Summing (4.6.7) and (4.6.8), we obtain
I {(+ ;) a— ;}T(r)+(1—a) logr < (148)(1—a)logt T(r)+0(1). (4.6.9)

Thus we still obtain the cases (2) and (4) in Theorem 4.38. According to (4.6.9),
now (1) and (3) in Theorem 4.38 assume the following forms:

1) a> :137 F = M(C™);

3) a> :157 F = My(C™).

However, we still obtain the same conclusion as Theorem 4.38. We know that the
abc-conjecture would imply the asymptotic Fermat conjecture. Here we show that

the abc-theorem on meromorphic functions implies that the Fermat equation has
no meromorphic solutions.

In particular, if d > 4 there are no non-constant solutions f and ¢ in the
class M(C) satisfying the Fermat equation

fi4gt=1. (4.6.10)

Baker [12] has characterized all f, g in the class M(C) such that (4.6.10) holds
for d = 3. Thus we have
G2(M(C)) = 4.



322 Chapter 4. Function Solutions of Diophantine Equations

By Theorem 4.38, if d > 3 there are no non-constant solutions f and g satisfying
(4.6.10) in the class Clz], C(z), and A(C), respectively, which are due to Montel
[275], Jategaonkar [197], Yang [438], and Gross [130], [131] (or see [33], [35], [132],
[176] ). Since the rational functions (cf. [130])

2z 22 -1
f(Z)—22+1, g(Z) 22+1
satisfy the equation
P+g*=1, (4.6.11)
we have
G2(C(2)) = 3.

On the other hand, if f and g are non-constant entire solutions of the equation
(4.6.11), then we have

f=sinw, g¢g=-cosw
for some entire function w (see [196]). It is easy to see
G2 (A(C) =3, G2(Clz]) =2.

Related to the equation (3.4.4), Corollary 4.29 yields directly the following result:

Theorem 4.39. Take positive integers k,l,n satisfying (3.4.5). If f, g and h are
non-zero entire functions on C™ such that the equation

g =n" (4.6.12)

holds, then f*/h™ and g'/h™ are constants.

Theorem 4.40 (cf. [168]). Let k, I and n be positive integers and set

_1 2 2 2
R T
The functional equation
fFrgd+n=1 (4.6.13)

has no solutions f,g,h € F — C satisfying one of the following cases:

>0, F = A(C™);
Z 11;7 F = Ml((cm)’

(A)
(B)
(©)
(D) a >0, F= A (C™).
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Proof. Assume, to the contrary, that there exist three non-constant meromorphic
functions f, g and h on C™ satisfying (4.6.13). Then f*, g' and A" are linearly
independent. Otherwise, there is (a,b,c) € C* — {0} such that

aff 4+ bgl + ch™ = 0.

Without loss of generality, we may assume ¢ # 0. Thus

(1—Z>fk+<l—i>gl:1.

Since f and g are non-constant, then a # ¢ and b # c¢. Since we can take v, g € C,
such that

then
(V" + (Bg) =1,
which is impossible by Theorem 4.38.
By Theorem 4.4, for any § > 0 we have

| kT(r,f) = T(r,f* <Ny (r, flk> + Na (r, gll> + Na (r, h1”>

+N(r, f¥) + N(r,g") + N(r, k™)
+(1 4 8)log® T(r) — viogr 4+ O(1)
< 24T(r) + (1+8)log™ T(r) —viogr + O(1),

where v is the index of f*, ¢! and h", € is defined by (4.6.4) and
T(r)=T(r f)+T(r,g)+T(rh).

Similarly,

| 1T(r,9) < 2+ )T (r) + (1 +6)log™ T(r) — viogr + O(1),
and

| nT(r,h) <2+ e)T(r)+ (1+0)log™ T(r)) —viogr + O(1).
Therefore,

I (1 _ @2+ 6)2(1 B a)) T(r)+ V(1 2_ @) logr < (1+ 5)2(1 —a) log™ T'(r)+0(1),

or, equivalently,

2+ea—e

- o T(r) +vlogr < (1+6)log* T'(r) + O(1),

which is impossible under one of the conditions (A)-(D). O
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Hayman [153] proved that for d > 9 (resp., d > 6), there do not exist three
non-constant meromorphic (resp., entire) functions f, g and h on C satisfying the
equation

fitgt+nt=1. (4.6.14)

When d = 3 ([243]) or d = 4 ([131]), the equation (4.6.14) has solutions in A(C)—
Thus we have

5 < G3(A(C)) <6.

)
For the cases d =5 and d = 6, Gundersen [133], [134] (or cf. [153]) gave examples
of non-constant meromorphic solutions of (4.6.14). Therefore

1
7 < G3(M(C)) <0.

Ishizaki [194] proved that if there exist transcendental meromorphic functions
fyg,h over C satisfying (4.6.14) with d = 8, then they also satisfy the differential
equation

W(f% g% h®) = a(fgh)®,
where a is a small function with respect to f, g and h, and W(f8, g%, h®) is the
Wronskian determinant of f8, g® and h®. For more examples, also see Tohge [399].

Generally, by induction and Theorem 4.4, we can prove the following version
of results due to Toda [398], Hayman [153] and Yu-Yang [444], respectively:

Theorem 4.41 (cf. [168]). Take positive integers n(> 3), di,...,d, and set

" n—1

=1—-
07 dj

Jj=1

If A, is the number defined in Theorem 4.4, then the functional equation

S =1 (4.6.15)
has no solutions {f1,..., fn} C F — C satisfying one of the following cases:
(i) a>, 1_”;14 , F=M(C™);
(ii) o >0, F = AC™);
(iii) o> 1_;114 , F =My (C™);
(iv) >0, F = A (C™).
For the case (i) of Theorem 4.41 with m = 1, Yu and Yang [444] obtained ?
replacing the number nff; A, Obviously,
An Un 3

< > 3.
n—14+A4, " n-1+9, "=

Based on Theorem 4.38 and Theorem 4.40, we conjecture that the restrictions of
o in Theorem 4.41, (i) and (iii) would be replaced by o > !. By Corollary 4.29 or
Corollary 4.30, we can obtain a partial answer to the problem as follows:
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Theorem 4.42. For n > 2 and d > n?, there do not exist non-constant meromor-
phic functions f1,..., fn on C™ satisfying (4.6.1).

Corollary 4.33 yields immediately the following fact:

Theorem 4.43. Forn > 2 and d > n? — 1, there do not exist non-constant mero-
morphic functions f1,..., fn of order <1 on C™ satisfying the equation (4.6.1).

Theorem 4.42 is a several variable version of a result in [153], which implies
Gp(M(C™)) < n?.
Theorem 4.43 yields
Gn(M1(C™) <n? —1.
By Theorem 4.41, we obtain

G, (ACM) <n(n-1)+1, G, (A (C")) <n(n-1).
Assume d > n? and assume that there exist non-zero meromorphic functions
f1,..., fn on C™ satisfying (4.6.1). M. L. Green [121] observed that the image of
the meromorphic mapping

1, fi,..., fu] : C™ — P

n—1

5|, where the bracket [z] means

is contained in a linear subspace of dimension [
the integer with [x] < z < [z] + 1.

Theorem 4.44. Take positive integers n,dy, . . .,d, and meromorphic functions f1,
<y fn in C satisfying (4.6.15). Then f&, ..., fd are linearly dependent if

>_dyzn’+(n—1) max {d;}.

j=1
Proof. Set
d= max {d;}
and choose holomorphic functions go, g1, ..., g in C such that f; = g;/go. Then

the equation (4.6.15) implies
~ 4, dd
> 979 =g
j=1

Theorem 4.34 shows that gf’lgg_dl7 ceey g;‘f"gg‘_d" are linearly dependent, and so

ldﬂ ..., fdn are linearly dependent. O
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Given a subset F of M(C™) such that C is a proper subfield of F. Related
to Waring’s problem, it is interesting that for any fixed positive integer d, find the
smallest integer n = G £(d) such that there exist non-constant functions fi,..., f,
in F satisfying (4.6.1). Theorem 4.41 implies

1 1
GAl(Cm)(d) > 9 + \/d + 4 d> 2, (4.6.16)
G (d)>1+\/d+1 d>?2 (4.6.17)
A(Cm) el 2 4, el . ..
Theorem 4.42 and Theorem 4.43 show, respectively
Gpcmy(d) > Vd + 1, d>2, (4.6.18)
G, cmy(d) > Vd+1, d>2. (4.6.19)

These estimates are due to Toda [398], Green [121], Hayman [153], and Yu-Yang
[444] (or see [168]).

We now give examples for equation (4.6.1). First note that [153]

2 2
1+2 1-2 .9
+ + (22)° =1, 4.6.20
( V2 ) ( V2 ) ) (1620)
which shows that G¢,)(2) < 3. By the remark after Theorem 4.38, it follows that

Ge)(2) =3, Gae)(2) = Gume)(2) = Ge)(2) = 2.

In [274], Molluzzo considered
1
> (At wiz)? =1+ a2 + a2 4 - 4 gy Y (4.6.21)
p =

where

(il
w; = exp » ,J1=1,...,p.

This gives 1 as the sum of p + [d/p] dth powers. The minimum of p 4 [d/p] for all
pis [(4d + 1)'/?] (see [296]). Therefore

Gep(d) < Vad+1, d>2.

When p =2 and d = 3 in (4.6.21), we obtain the following identity:

;(1 +2%)3 + ;(1 -2 3% =1 (4.6.22)
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On the other hand [12], f and g are non-constant meromorphic solutions of the
equation

fPrgd=1 (4.6.23)

if and only if f and g are certain non-constant elliptic functions composed with
an entire function. Combining this result with (4.6.22) gives

Gme)(3) =2, Gui)(3) = Gep(3) = Gex)(3) = 3.

Newman and Slater [296] studied the following identity

p d)d
1 +wjz -
Z o 1§d — b0+blzpd+b2z2pd+..._|_b[(d+1)/p]7lz([(d+l)/17] Drd - (4.6.24)

where each b; is a positive integer, that is, there exist non-constant rational func-
tions f1, fo, ..., fn satisfying the equation (4.6.1), where
n=mn(p)=p+[(d+1)/p] -1
Since the minimum of n(p) for all p is [(4d + 5)*/2] — 1 (see [153]), we obtain
Gr(d) <V4d+5-1, d>2, Fe{AC), C(z), M(C)}.

When F = A(C), we can see this, by replacing z with e* in (4.6.24). When p =3
and d = 4 in (4.6.24), we have the following identity:

1 (1424\" 1 . 1 !
TE) e (Pre) per fireesy g (4.6.25)
18 22 18 22 18 22
By combining (4.6.25) with the estimates (4.6.16) to (4.6.19), we obtain

Gmc)(4) = Gace)(4) = Gz (4) = 3.

Examples in [133], [134], [136], [320], together with the estimates (4.6.16) to
(4.6.19), show that

Gme)(5) = Gaw)(5) = Gz (5) =3,

and
Gm)(6) =3, Gae)(l4) =5.
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4.7 Waring’s problem for meromorphic functions

We continue with the situation of Section 3.4. Meromorphic solutions of Waring’s
problem will be discussed in this section. Concretely, we may ask whether, for
a function f in a certain function class F of M(C), there exist non-constant
functions f1, ..., fn in the class F such that

4t fi=r (4.7.1)

holds. The problem of representing any function in F as a sum of dth powers of
functions in F is known as the Waring problem for the family F. Here it is enough
to suppose that f(z) = z, that is, we need to consider only the equation

HE)T++ fa(2) =2 (4.7.2)

To see this, suppose first that F = C[z], C(z) or A(C) and that the equation
(4.7.2) is satisfied by n functions f1, ..., fn in F. Then for any f € F, we have

AU+ falf(2) = f(2).

For the class M(C) this argument must be modified slightly as follows (see [153],
[135]): Suppose that (4.7.2) holds for n functions fi, ..., f, in M(C). Take f €
M(C). Then there exist g,h € A(C) such that f = g/h?, and so (4.7.2) yields

(flf(jg))>d+_..+ (fn}%?))d = f(2).

Let n = gr(d) be the smallest number such that there exist non-constant
functions fi, ..., f, in the class F such that (4.7.2) holds. We have gc[.](2) = 2

since
z+1)2 n z—1\?
= z.
2 29
The following theorem is due to Hayman [153].
Theorem 4.45. The number gz(d) satisfies the following estimates:

1 1
gez)(d) > o + \/d o 423 (4.7.3)
1 1
gae(d) =2, + \/d tp 422 (4.7.4)
gmcy(d) > Vd+1, d>2, (4.7.5)
go(z)(d) > Vd +1, d>2. (4.7.6)
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Proof. Here we follow Gundersen and Hayman [135] to prove this theorem. The
numbers gz (d) and Gz(d) are related by the following inequality [153]:

Gr(d) < g7(d), d =2, F € {A(C), M(C), C(2)}. (4.7.7)
In fact, if there exist n functions fi, ..., f, in F satisfying (4.7.2), then by
replacing z in (4.7.2) with either 2? or e?*, we deduce that there exist n non-
constant functions hy, ..., h, in F satisfying h{+- - -+h< = 1. Thus the estimates
(4.7.4) to (4.7.6) follow from (4.6.17) to (4.6.19).

To show (4.7.3), take d € Z with d > 3 and suppose that fi, ..., f, are

polynomials satisfying (4.7.2). Then

— d
k= lrgjagxn deg(fj) > 0.

Since d > 3, we obtain that n > 3 from (4.7.6). By Theorem 4.8,

" n(n —1) nk(n—1) nn—-1) nk(n—-1)
k<1 o1 (f4) — <1 - ,
<1+ JZ:;T 1 (fj ) 9 <1+ d 9 < d
which yields d < n? — n. This proves (4.7.3). O

For d € Z™, set

2mjv/—1
wj:exp<7rjzl/ ),j:l,...,d.

Then
d

Y wl'=0(0<|m|<d, meZ).
j=1

Thus we obtain the representation given by Heilbronn (cf. [152])

d
1 o (1 +w;z)?
D DR
j=1 /

and so
gac)(d) < gepz(d) < d.
Further, by using Theorem 4.45, we have
9ci21(3) = gac)(3) = ge(2)(3) = 3.

On the other hand [132], there exist f,g € M(C) satisfying f(2)3 + g(2)3 = z,
which shows that g (3) = 2.
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It is natural to ask how many d;th powers of positive integers x; are necessary
to represent an arbitrary positive integer N so that

Here we do not study the problem in number theory, but the problem of repre-
senting any function in F as a sum of d;th powers of functions in F.
Theorem 4.46. Tuke positive integers d; > 2 (j =1,...,n) and set

n

a=1-3" 1

J

j=1
If n > 2 and if there exist non-constant entire functions f1,..., fn on C satisfying
[T+ F fu(2)d = 2, (4.7.9)
then o < 0.
Proof. Assume that there exist non-constant entire functions fi, ..., f, satisfying
(4.7.9). First of all, we consider the case that f{h7 ..., f% are linearly independent.
By the equation (4.7.9), it is easy to see that fi,..., f, have no common

zeros. Hence a non-degenerate holomorphic curve
F.C—P(C")

is well defined with a reduced representation

where

Set Fy(z) = z. By Corollary 2.59, for R > p > r > ¢ we obtain

Tr(r) <3 Nuos (n ;) + ”<”2_ 2 1og{7f’(€f_(?) } +0(1)
=0 i

<logr+ Z nd— 1N <r7 ~1 ) + n(n2— 2 log{pTF(R) } +O(1).
i=1 E

j r(p=7)

The first main theorem implies

1
N(’I“, N ) <Tp(r)4+0(1), j=1,...,n.
Ej
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Therefore we have

pTr(R)
r(p—r)

Specially, if fi1,..., fn are polynomials, then (4.7.10) yields

aTr(r) <logr+ n(n2— 2 log{ } +O(1). (4.7.10)

=

) Yoy (4.7.11)

n
o max {d;deg(f;)} <1 -

If one of functions f; is transcendental, then Tx#(r)/logr — oo as r — oo, and so
the inequality (4.7.10) yields o < 0 and Theorem 4.46 follows again.

Finally, we study the case that fldl7 ..., fdn are linearly dependent. Without

loss of generality, we may assume that ff"l7 e ld‘ are linearly independent (1 <

[ <n), but ff"l7 e ldl, f;lj are linearly dependent for each j =1+ 1,...,n. Thus
there is a (a1, ...,a;) € C' — {0} such that (4.7.9) becomes the following form:

arfi(2)" + -+ afi(z)" = 2. (4.7.12)

We may assume a; # 0 for each ¢ = 1,...,[, otherwise, deleting the terms with
null coefficients in (4.7.12). Since

l
-1

a<l-— g
i—1

the proof of Theorem 4.46 can be completed by applying the above arguments to
the equation (4.7.12). O

To study meromorphic solutions of (4.7.9), we will need the following result:

Theorem 4.47. Let f1, fo,..., fn (n > 2) be linearly independent meromorphic
functions in C such that

f1i(z) + fa(2) + -+ fu(z) = 2.
Then for j =1,2,...,n, the inequalities
n 1 *
T(r f;) < Zanl (T, f) + N;(r) +logtr
i=1 ¢

nin —1) pT(R)
2 bg{mp—m

hold for ro < r < p < R, where T(r) = maxi<;<,{T(r, fi)}, and

} +0(1) (4.7.13)

*

Nj(r) =min{ 9y > N(r, fi),(n —1) > N(r, i)

i=1 i#£]
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Proof. Set fo(z) = z. Note that

I
fo

According to the proof of Theorem 4.3, we can obtain

T(r, f;) < N (r, f;) + Z":{ ( ) N(r,fi)}+N(r,W)

) e o

forrg <r < p<R,j=1,...,n, where W = W(f1,..., fn) is a Wronskian
determinant.

Without loss of generality, we consider only the case j = 1. Clearly, Theo-
rem 4.47 follows from (4.7.14) and the inequalities

T(r, f;) < N(r f;) +m (r, ) +log™ .

n n
po= Y HG =Y EE A — i
i=1 i=2
n n
< Z /“L%,nfl + 19” Z /“L]O”il = M1, (4715)
i=1 i=1
and
n n
p< Z,u"(;hnfl +(n—1) Z/J]off,l = 2. (4.7.16)
i=1 i=2
Take zg € C. We distinguish several cases to show the inequality
11(z0) < min{p1(20), p2(20)}-
If zp is not a pole of f; for any i = 1,...,n, obviously we have

u?cgj>(20) > p,(20) = 1, ;(20) = 1, (20) = 1, 1 (20), 1<i<m, 1<j<n-—1,

and hence .
W(z0) =) {uf,(20) = 1 n1(20)},
i=1
that is
= iﬂ?f (20) = pw (20) < iﬂ?ﬁ,n_l(%) = p11(20) = p2(20)-
i= i=1
Next, suppose that zg is a pole of f; for each ¢ = 1,...,n. Note that we can

find holomorphic functions g; and h; such that

fi=9 g7 0) Nk 0) = 0.
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Hence zy € h; *(0) (1 < i < n). Fix one 4. We can write

fi(Z)

+
(z—z0)l’ hel’,

fi(z) =

where fi is a holomorphic function near zg which does not vanish at zg. Thus we
have

13 (20) = 13 (20) +J = 1 (20) + Jnfa(20), G €ZT. (4.7.17)

Let D;; be the algebraic minor of fi(j ) in W. Then
W = foDio + Di1.

Therefore
pw < max{up, . 4D, }s

and so, for the case i =1,

W) < Youen+ Y

n - n n -
= Zﬂfi (20) + 9 Zlu‘fi,l(ZO)
i—2 i—2

n—1«—

D ACOE I BT ACHE
=2 i=1

which implies

n) < uw<zo>—§juﬁ<zo><mm{ ) Zufi,AZo)agZufi,l(zO)}
i=1 =2

i=2
< min{ua(20), p2(20)}-

If n = 2, these are all possible cases, and therefore Theorem 4.47 is proved.
Assume n > 3. Except for the above two cases, the following case may occur:
Case 3: u%;(20) > 0, but pf(20) = 0 for some 4, j € VAR
To study Case 3, without loss of generality, assume that p$°(z9) > 0 for

i=1,...,s(<n), and uf(20) = 0 for i > s. Obviously, we have s > 2. Note that

o0 oo oo oo
< max < max 1 ine1
Hw = {UDlovﬂDll} =8 /v‘fQ( W), fli(n=1)

holds, where 7,1 is the permutation group on Z[1,n — 1]. Since the poles of

f2i(1)) L fs(i(s—l))
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and the zeros of
f(Z 5)) Co flitn=D)

may cancel each other, when pgy(z0) > 0 we have

s s—1 n
5 (20) < Do)+ =)= 3 L (o) = i s G0},

1=s+1

which means

M(ZO) < Z M%,nfl(zO) + (271 — 5)(8 — 1)

) 2
1=s+1
= Z ,U;f“n 1 ZO ( )Z'ufn
1=s+1
= (2n—s)(s—1) o
= D ufw(z0)+ 0 Z/ing( 0)
i=s+1 i=1
< min{yu (20), p2(20)}-
Otherwise, when pdy (z0) = 0 we have
n s—1
0) > Z {,u,(}i(zo :u’f“n 1(20)} — Z,U’fb 20) Z(”—i)v
i=s+1 i=1
and, similarly, we have the inequality u(zo) < min{pg(20), t2(z0)}- O

Theorem 4.48. Take positive integers d; > 2 (j =1,...,n) and set
P

If n > 2 and if there exist non-constant meromorphic functions fi,..., fn on C
satisfying the equation(4.7.9), then

< Un :
—n-—-14+19,
Proof. Assume that there exist non-constant meromorphic functions fi, ..., fy

satisfying (4.7.9). First of all, we consider the case that fo,..., f» are linearly
independent. By Theorem 4.47, we have

T(rf) < ZNn1<, >+19ZN f)

n(n —1) pT(R)
+ 5 log{r(p_r)}+log+r+0(l)
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forrg<r<p<R,j=1,...,n, where
_ d;
1) = max {7 (n1)}.
Since
1 n—1 1 n—1
Nn— P S N I . — T 1 )
1 (r fidi> d <r f{h) d; (r)+ O(1)
and 1 1
) < di) <
N f)< N (rfl) < 10,

then we obtain the estimate

n

T(r) < Z " ilj— In T(r) + n(n—1) log { TKEZ(_R

=N

} +log® r+0O(1),
or equivalently,

"9, n(n —1) pT(R)
<oz—iz_; di) T(r) < 9 log{r(p_r)} Flogtr + O(1). (4.7.18)

Specially, if fi1,..., f, are rational, then (4.7.18) yields

(a - ; d; ) max {d; deg(f;)} <1 - "("2 ) <o, (4.7.19)

and so Theorem 4.48 follows.
If one of functions f; is transcendental, then T'(r)/logr — oo as r — oo, and
so the inequality (4.7.18) yields

a—ii? <0
i=1

and Theorem 4.48 follows again.

Finally, if f{il, ..., fd are linearly dependent, we can complete the proof of
Theorem 4.48 by applying the arguments in the proof of Theorem 4.46. g
Let a be a non-zero integer. A set of n positive integers {ai,as,...,a,} is

said to have the property Dy(a) if a;a; +a is a dth power of an integer for all 1 <
i < j < n. Such a set is called a Diophantine n-tuple (with the property Dg(a)).
Diophantus found the quadruple {1,33, 68,105} with the property D2(256). The
first Diophantine quadruple with the property Ds(1), the set {1,3,8,120}, was
found by Fermat (see [79]). A famous conjecture is that there does not exist a
Diophantine quintuple with the property Da(1). Set

Ad(a) = sup{#5S | S has the property Dy(a) },
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where #S denotes the number of elements in the set S. A. Dujella [85] proved
that A2(a) is finite for all a € Z — {0}.

Let {a1,az,...,a,} be a Diophantine n-tuple (with the property Dg(a)).
Then there exist integers b;; such that

d

aaj+a="by, 1<i<j<n.

Set
n
N = E i = .
)3 (aia; +a), s <2>
1<i<j<n

Then we have

Z be, = N.

1<i<j<n
When d > 3, N > Ny(d), it is well known that the integer s satisfies the inequalities

s> g(d) > d.

Analogously for a function f in a certain function class F of M(C), a set of
n functions {fi, fa2,..., fn} in F is said to have the property Dgy(f) if fif; + f is
a dth power of a non-constant function in F for all 1 < i < 57 < n. Such a set is
called a Diophantine n-tuple (with the property D4(f)) over F. Here it is enough
to suppose that f(z) is 1 or the identity function z.

Example 4.49 ([85]). If f € F is non-constant, then {f, f+2,4f +4,16 f3+48 2+
44f + 12} has the property Da(1).

Assume that {f1, fa,..., fn} C F have the property Dy(f), that is, there
exist non-constant functions g;; in F such that

fifi+f=g% 1<i<j<n.

> i=F

1<i<j<n

Hence we have

where

F= > (fifi+5):

1<i<j<n
Thus according to F' = 0, non-zero constant or non-constant, we may apply Corol-
lary 4.29, (4.6.16) to (4.6.19) or Theorem 4.45 to study Diophantine n-tuples (with
the property Dy(f)) over C[z] (resp., A(C), C(z), M(C)).

4.8 Holomorphic curves into a complex torus

In this section, we will show that non-constant holomorphic curves into a complex
torus have normal properties.
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4.8.1 Elliptic curves

Theorem 4.50. Each non-constant holomorphic curve ¢ : C — E(C) into a
smooth elliptic curve E(C) is surjective.

Proof. Assume, to the contrary, that ¢ is not surjective, say ¢(C) C E(C) — {O}.
Let (3.1.3) be the Weierstrass equation of E, that is,

y? =2+ ax +0.
Then

E(C) — {0} = {[z,y, 1] € P* | y* = 2° + az + b},
and so ¢ can be given by
¢=1[f91]

with two entire functions f and g on C such that

9> =f>+af+b.

Without loss of generality, we may assume that f is not constant. Let eq, es, e3 be
three distinct roots of the equation 2> + ax + b = 0. Then we have

g =(f—e))(f —e2)(f —e3),

which means that for each i, f — e; has no simple zeros. Hence
1
5f,1(ei) > 2, 1= ].72,3.

Note that dy,1(c0) = 1. Thus the defect relation (cf. Corollary 2.60) yields

3
3
9 < ;5f,1(€¢) <1,

which is impossible. Hence Theorem 4.50 is proved. 0
Corollary 4.51. Each smooth elliptic curve omitting one point is Brody hyperbolic.

According to the remark in Section 3.1.4, there exists a unique lattice A C C
such that

g2 = g2(A) = —4a, g3 =g3(A) = —4b.
Hence the equation (3.1.3) has non-constant meromorphic solutions z = g, y =
wg', where w is a constant with w? = }L. Thus we obtain non-constant holomorphic
curves
[p,wp’, 1] : C — E(C).
A natural question is to characterize all non-constant holomorphic curves into
E(C).

S.S. Chern [57] and H. Wu [434] studied systematically Nevanlinna theory
of holomorphic mappings of Riemann surfaces, and obtained stronger results than
Theorem 4.50. Here we recall some of their results.
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Theorem 4.52. Let ® be a C*° real 2-form on a compact Riemann surface M such

that
/ d=c>0.
M

Let a € M be a fixed point of M. Then there exists a real-valued non-negative
function u, with the following properties:
(1) uq is C= in M — {a};
(2) dduq = 1 ® in M — {a};
(3) If z is any a-centered holomorphic coordinate function in a neighborhood U
of a (i.e., z(a) = 0), then uq(2) + log|z|* is C> on U.

The compact Riemann surface M can be given a Hermitian metric ds3, of
constant Gaussian curvature such that its volume element 2 satisfies

[ o=t
M

Fix a € M. By Theorem 4.52, there exists a function u, such that on M — {a},
ddug = Q.

Let f : C — M be a non-constant holomorphic mapping. Let ny(r, a) denote
the number of pre-images of a (counting multiplicity) in the closed disc C[0;7] of
radius 7 and define the wvalence function

" dt
N¢(r,a) :/ ng(t, a) . (4.8.1)
T0
for r > rg > 0. Write
Ag(r) = / fQ (4.8.2)
C[0;7]
and define the characteristic function of f by
" dt
Ty (r) :/ Af(t) ;e (4.8.3)
T0
Then the first main theorem
Ty(r) = Ny(r,a) + my(r,a) —mg(ro, a) (4.8.4)
holds, where
1
my(r,a) = / fruao (4.8.5)
2 C(0;7)

serves as the proximity function of f for a. If M is the Riemann sphere equipped
with the constant curvature metric, then

ua(‘r) = - logXoo(x7 a)2a
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where xo is just the chordal distance defined by (1.5.6) for the ordinary absolute
value v = oco. This retrieves Nevanlinna’s original result cast in the form of Ahlfors-
Shimizu.

Further, if a1, ..., aq are distinct points of M, Chern [57] proved the defect
relation

> 6(ay) < x(M), (4.8.6)
j=1

where x (M) is the Euler characteristic of M, and where d¢(a;) is the defect of f
for a; defined by
) N¢(r,a;)
dr(a;) =1 —limsup . (4.8.7)
AN s Ty (r)
S.S. Chern uses the following singular volume form approach towards the second
main theorem: R

q
U= Hexp(uaj) Q, 1<Aa<l,
j=1

where ¢; is so chosen that [,, ¥ = 1. S. Lang [230] (or see [235]) pointed out that
Chern correctly obtains an inequality of second main theorem type valid outside
an exceptional set with what is an inefficient error term in his formula (48). When
Chern writes, “Letting A — 1 and using (48) we get (49),” he overlooks the fact
that the exceptional set depends on A, and so he cannot take the limit as A — 1
to get rid of that error term and get (49). Chern’s previous inequality is enough,
of course, to give the defect relation, which was his main purpose at the time.
Chern’s idea is however essentially correct; what one really has to do is to allow A
to be a function in the singular volume form (see [433]).

When x(M) < 0, the defect relation (4.8.6) means that there are no non-
constant holomorphic mappings from C into M, which is just the classic Picard
theorem. In particular, when M = E(C), we have x(E(C)) = 0 and so (4.8.6)
implies

) N¢(r,a)
lim sup =
7—00 Tf (T)

for each a € E(C).

4.8.2 Complex torus

Generally, the growth of holomorphic mappings into a complex torus is described
by the following fact (cf. [302]):

Proposition 4.53. Let C™/A be a complex torus with the Kihler form 1 defined by
(2.10.9). If f : C™ — C" /A is a non-constant holomorphic mapping, then there
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exists a positive constant ¢ such that

T (r,r0; [*()) > er?
holds for larger r.
Proof. There exists a lifting of f,

f=(fi, o fn): C" —C",
satisfying po f = f, where p : C* — C™/A is the projection. Then
T (r,ro: f*($)) = T (r,ro; dd°| 7).
It follows from (2.9.20) that

T (r,ro; f*(¢)) = ;Cm <0;T; |f|2> - ;Cm <0;ro; |f|2>-

By Lemma 2.40, we have

e o) = [ (3 [ w0 55)t0

Since f is not constant, there is some f; which is not constant. Let

fj(z) = ZPk(zl, ey Zm)

k>0

be the Taylor expansion with homogeneous polynomials Py of degree k. Then there
is some P, # 0 with ¢ > 1 and

e (onlit)= [ (] 15 ) Pag) ot

However,
1 2 ) ) Tk+l 27 (k l)
(rol? do = PO P(&)d
N ARSI DR A YOG
k,1>0
= > PO = PO
k>0
Therefore

cr <0§7”§|JE|2> 27"2#/ |Pu|20'27“2/ |P,u|2(7a
Cm™(0;1) Cm™(0;1)

and so Proposition 4.53 is proved. g
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By using Lemma 2.88 and Theorem 2.105, we have

Theorem 4.54. Let D be a divisor of simple normal crossings on a complex torus
C"™ /A such that L = [D] is positive. Suppose that f : C — C™ /A is a non-constant
holomorphic mapping such that f(C) € supp(D). Then we have

| TynL) < Ny(r.D)— Nuanlr. /) + " Rs0)
+O0(log™ Ty (r, L)) + O(log ). (4.8.8)

Siu and Yeung [367], [368] (or see [303]) show a stronger inequality as follows:

Theorem 4.55. Let A be an Abelian variety of complex dimension n and D be an
ample divisor in A. Inductively let kg =0, ky =1 and

kjv1 =k +3" 7 Hd(k; + 1)} D"

for 1 < j < n, where D™ is the Chern number of D. Then for any holomorphic
mapping [ : C — A whose image is not contained in any translate of D,

| Ty(r,[D]) < Ny, (r, D) + O(log™ Ty(r,[D])) + O(log 7).

Thus Theorem 4.55 yields immediately the Lang conjecture, which was
proved by Siu and Yeung in [366]:

Theorem 4.56. Let A be an Abelian variety. Let D be an ample divisor in A.
If f : C — A is a non-constant holomorphic mapping, the image of f must
intersect D.

The analogues of Lang’s conjecture in number theory is the Theorem 3.39.

4.9 Hyperbolic spaces of lower dimensions

To understand Lang’s Conjecture 3.33 well, one way is to find concrete examples of
hyperbolic varieties, and further prove that they are Mordellic. In this section, we
will give some hyperbolic curves and surfaces by applying Nevanlinna theory and a
generalized Borel theorem, say, Siu-Yeung’s theorem. In particular, the important
role of Nevanlinna theory and the Borel theorem for finding hyperbolic varieties
is presented clearly.

4.9.1 Picard’s theorem

The Mordell-Faltings theorem states that on a curve of genus greater than 1 there
are only finitely many rational points. According to analogy between Diophantine
approximation and Nevanlinna theory, this curve could not contain non-constant
holomorphic curves, which is just answered by the classic Picard theorem:
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Theorem 4.57. A holomorphic mapping f : C — M C P? to an irreducible
algebraic curve of genus greater than 1 must be constant.

Proof. See Green [121]. Here we give a sketchy proof according to the idea from B.
Shiffman [345]. The universal covering M of M is a well-defined simply connected
Riemann surface with a canonical projection mapping 7 : M — M. A lifting
mapping f : C — M of f is defined with 7o f = f. However, the uniformization
theorem states that any simply connected Riemann surface is biholomorphically
isomorphic either to the plane C, or to the open unit disk D, or to the Riemann
sphere P! 2 CU {oo}. It follows that M = D since the genus of M is greater than
1. Thus Liouville’s theorem implies that f is constant, and so f does. 0

In fact, the converse of Theorem 4.57 is also true.

Theorem 4.58. If each holomorphic mapping f : C — M C P? to an irreducible
algebraic curve is constant, then the genus of M must be greater than 1.

Proof. By the normalization (or resolution of singularity), there exist a compact
Riemann surface M and a holomorphic mapping 7 : M — P? such that n(M )=

M, and 7 is one-to-one on smooth points of M. Note that M has only finitely many
singular points. Each holomorphic mapping h : C — M induces a holomorphic
mapping b = noh : C — M which must be constant by the assumption. Therefore
h is constant. Thus M is Kobayashi hyperbolic by Brody’s theorem [38]. Hence M
possesses a unique Poincaré metric (cf. [174]), that is, M is conformally isomorphic
to the open unit disc in C. Hence the genus of M is greater than 1. O

Let f(x,y) be an irreducible polynomial of two variables « and y over C. We
consider the algebraic curve M in P? defined by

Fle,y.2) =21 (0.7) =0,

where d is the degree of f. If there are meromorphic functions ¢ and h on C
satisfying the equation

flz,y) =0, (4.9.1)

that is, f(g,h) = 0, we can find entire functions gp, g1 and g» on C such that
9 =91/90, h = g2/g0 and g, g1, g2 have no common zeros. Then

F(gl7g27go) = g(c)lf(ga h) =0.

By Theorem 4.57, if the genus of M is greater than 1, then g and A must be con-
stant. Hence by counting the genus of a curve, for example, by using Theorem 1.82,
we may use Theorem 4.57 to distinguish algebraic curves without meromorphic
solutions. Usually it is not easy to find the genus of a general curve. Conversely,
we may use Theorem 4.58 to find hyperbolic algebraic curves, which will be done
in the sequent by using Nevanlinna theory and a generalized Borel theorem.
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Let P and @ be polynomials of respectively degree p and ¢ with ¢ > p. We
will consider the following special affine curve

f(z,y) = P(x) = Qy) =0, (4.9.2)

and hence an algebraic curve
F(z,y,z) = zP (j) —21Q (i) (4.9.3)

in P2(C) is well defined.

Here we make a remark on entire solutions of (4.9.2). Assume that p and ¢
are coprime. If there exist two non-constant entire functions g and h on C such
that f(g,h) = 0, that is, P(g) = Q(h), we know (cf. [61], Lemma 3.6) that there
are a non-constant entire function 3 and two polynomials R and S of degree g and
p, respectively, such that

g=R(B), h=S5(3).
Since 5(C) contains an open subset of C, the identity theorem shows that

P(R) = Q(S). (4.9.4)

Further, Ritt (cf. [61], Lemma 3.7) proved that the polynomials P and @ are one
of the following cases:

(A) there exist L; € Aut(C) (i = 1,...,4) such that
LioPoLy=T, LioQoLs=T,
Ly'oRoLy=T, L3'oSoLy=T,,
where T, (z) = cos(parccos z) is the Tschebyscheff polynomial.
(B) when p > g, there exist L; € Aut(C) (i =1,...,4) and T € C[z] such that
LioPolLy(z)=2"T(2)?, LioQoLs(z)=29

Ly'oRo Ly(z) = 27, L3_1 0So0Ly(z) =2"T(27).

4.9.2 Hyperbolic curves

In this part, we study meromorphic solutions of the equation (4.9.2). Ha and Yang
[141] obtained the following result:

Theorem 4.59. Take P,Q € C[z] with ¢ > p, where p = deg(P) and q = deg(Q).
Assume that the affine curve (4.9.2) is irreducible, and has no singular points. If

q >4 and if p=gq or p=q—1, then there are no non-constant meromorphic
functions g and h on C such that P(g) = Q(h).
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Proof. Let M C P? be the algebraic curve defined by (4.9.3). If M has a singular
point [zg, Yo, 20, then zo = 0 by our assumption. Set

P(z) = Zaizi, Qz) = ijzj
; =

with ap # 0, by # 0. If ¢ = p, we have

oF 1 oF 1
Oz (I07 Yo, O) = qaqxg = 07 ay (I07 Yo, 0) = qbqyg = Oa

which means xg = 0 and yg = 0. This is impossible. If p = ¢ — 1, similarly we have
yo = 0. So we may assume zy = 1. Note that

a
F(l,y,z) =apz+---+aoz? + ijyqu_j.
=0

Hence [1,0, 0] is not a singular point. Therefore there are no singular points on M.

Assume that there are meromorphic functions g and h on C such that P(g) =
Q(h). Then we can find entire functions go, g1 and g2 on C such that g = ¢1/9o,
h = g2/go and g, g1, g2 have no common zeros. Note that

g g
%P(l>—%Q(2):0
9o 9o

Thus we obtain a holomorphic mapping
G = [90a91a92] :C— M.

Since the genus of M is (¢ — 1)(¢ — 2)/2 > 1, the mapping G is constant by
Theorem 4.57. Therefore g and h are constant. O

Theorem 4.59 gives conditions in which the curve (4.9.2) is hyperbolic. Note
that if ¢ —p > 2, then the curve (4.9.2) has a singular point at infinity [1,0, 0],
which is a non-ordinary singular point of multiple ¢ — p.

A point (¢, d) € C? is a singular point of the affine algebraic curve (4.9.2) if
and only if P and @ satisfy

P(c) = Q(d), P'(c) =Q'(d) =0,
that is, the affine algebraic curve (4.9.2) has no singular points if and only if
{P(c) | P'(c) =0} n{Q(d) | Q'(d) = 0} = 0.

Yang and Li [441] gave more refined results by weakening the condition on singular
points. To introduce their results, we first strengthen the lemmas in [441] as follows:
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Theorem 4.60. Suppose that P(z) and Q(z) are respectively two polynomials of
degrees p and q with ¢ > p > 2. Let S be a non-empty subset of zeros of P’ and
let T be the set of zeros of Q' such that P(S) N Q(T) = (. If there exist two
non-constant meromorphic functions g and h satisfying

P(g) = Q(h), (4.9.5)

then the inequality

lg q_ pT(n g) < N(r,g)+log ifp(lj’f)) +0(1) (4.9.6)

holds for any ro <r < p < R, where l = s 1% (c). In particular, we have

(1) if ¢ > p, then q—p = (p,q), S has only one element which is a simple zero
of P';

(I1) if ¢ =p and p%. (c) > 2 for some c € S, then p%. (c) =2, S = {c};

(II1) if ¢ = p and #S > 2, then #S = 2, and the elements in S are simple zeros
of P'.

Proof. From (4.9.5), we obtain
pT(r,g) = qT(r,h) + O(1). (4.9.7)
Set n = (p, ¢). Then there exist two coprime integers p; and ¢; such that
p=pn, q=qn. (4.9.8)
Suppose that zg is a pole of g. Then from (4.9.5), zo is also a pole of h, and
Py (20) = quy” (20),

which means
piig (20) = qipp(20), @1 | pg” (20)

since p; and ¢; are relatively prime to each other. Hence the multiplicity of any
pole of g is at least ¢;. This implies

@N(r,g) < N(r,9). (4.9.9)
There exists a partition
S=51U---USg

such that
Sa #0 (a=1,...,k), SanNSg=0(a#0),
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and such that
P(c) = P(c) (¢,d € Sa), P(c) # P(c") (c € Sa, " € S, a#B).

Take ¢, € S,. Since ¢, is a root of P/(z) = 0, there exists a polynomial R, (z)
such that

P(z) — P(cq) = Ra(2) H (z—=c)’c, Ra(c) #0 (c € Sq). (4.9.10)
cESy
Consequently,
Ra(9) ] (9 =)= =Q(h) = P (ca). (4.9.11)
cESy
We put

I = Z (Sae—1) = ZN%’(C)
lceSa

a= ceS

with [ > k since by definition
Sq,62>2, CE Sy, a=1,... k.

Since, by hypothesis, @ — P(c,) does not vanish at any zero of @', this implies
that it has no multiple root and hence it has a factorization

Q(z) = P(ca) = Ao H (z — bozyj)a

Jj=1

where b, ; are all distinct for each fixed a.
On the other hand, we claim that

bai # bpj» (1) # (8, 7)-

In fact, if ba,; = bg, ; for some (c, i) # (5,7), then a # 3, and so P(cqa) # P(cp),
therefore

Q= (Q - Plca) — (Q — P(cs)) = const # 0,

but since by,; = bg,j, we have Q(ba,;) = 0, a contradiction. Take
ac€C—Q (P(9)).

By Nevanlinna’s second main theorem (cf. Corollary 2.59), for any rq < r < p < R,
we have

kE q
1 1
kqT(r,h) < ZZN(r,h_b _)—i—N(r,h_a)
. j

a=1j=1
pT (R, h)

+N(r, h) + log r(p—1)
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or, equivalently,

kqT'(r,h) < éNQ‘ Q(h)—lP(ca)> +N(r’ hia)

+N(r,h) + log +0(1). (4.9.12)

By (4.9.11), we have

N ( o) P(ca>> <2 N ( ) ) o ( Ra1<g>>

cESy

< {p - Z (Sa,c - 1)} T(Tv g) + O(]-)

cESy
Noting that N(r,h) = N(r, g), the above inequalities and (4.9.7) lead to

) (ﬁ 1 ) + 1P g) < N(r,g) + log ‘;(Tp(f_i f))

o . +O(1). (4.9.13)

Hence the inequality (4.9.6) follows from (4.9.13).
By (4.9.9), we have

1 1
N(r,g)< ~N(r,g)< T(rg). (4.9.14)
q1 q1
Then (4.9.13) yields
lg—p 1 pT (R, g)
T(r,g)< T(r,g)+log +0(1), 4.9.15
T < Tng) w10 00 (4.9.15)
which implies that
lg—p < 1
g @

Since p/q = p1/q1, the above inequality is equivalent to
lgp <pr+ 1. (4.9.16)

Now we can prove the case (I). When p < ¢, we also have p; +1 < ¢.
Therefore from (4.9.16) we can deduce

1<k<I<1, q=pi+1.

Furthermore,
g—p= (g —p)n=n=(pq).
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Since I = 1, from (4.9.10) we see that S has only one element ¢ which just is a
simple zero of P’(z). The case (I) in Theorem 4.60 is proved.

Next we prove the case (II). Since ¢ = p and ¢ € S is a multiple zero of P’(z),
then (4.9.16) implies [ = 2, and so

S = Sl = {C}7 Sl,c = 3, ,u(};,(c) =2.

Finally, we show the case (III). When ¢ = p and #S > 2, then (4.9.16)
implies [ = 2, and so #S5 = 2. Hence the elements in S are simple zeros of P’. [

Note that the set S in Theorem 4.60 may be a proper subset of zeros of P’.
In particular, if S is the set of zeros of P/, then the condition P(S)NQ(T) = 0 in
Theorem 4.60 implies that the affine curve (4.9.2) has no singular points. When
q > p > 2, the case (I) in Theorem 4.60 claims that the curve (4.9.2) is elliptic or
hyperelliptic (see Section 3.1). In fact, case (I) means that p = 2 and ¢ = 3 or 4.
If ¢ = p > 3, the case (II) and (IIT) show that the curve (4.9.2) is of degree 3 (see
Section 4.6). If ¢ = p = 2, Theorem 4.60 is nothing.

Corollary 4.61 ([441]). Suppose that P(z) and Q(z) are respectively two polynomi-
als of degrees p and q with ¢ > p > 2. Let S be a non-empty subset of zeros of P’
and let T be the set of zeros of Q' such that P(S)N Q(T) = 0. Then there do not
exist non-constant meromorphic functions g and h satisfying (4.9.5) if P(z) and
Q(2) satisfy one of the following conditions:

(a) p<a, qa—p# (.0

(b) p < q and u%/(c) > 2 for some c € S.

(¢) p<q and #S > 2.

(d) p<gq, #S > 2 and 1%/ (c) > 2 for some c € S.
(&) p<gand #5 >3,

(f) p < q and u%,(c) > 3 for some c € S.

Thus when the affine curve (4.9.2) is irreducible, Theorem 4.58 implies that
the curve (4.9.3) has genus > 1 if P and @ further satisfy the conditions in
Corollary 4.61, that is, the curve (4.9.3) is hyperbolic. A simple example is the
Fermat curve

2yl =1.
Setting
P(I) = Ida Q(y) = _yd =+ 17
when d > 4 the polynomials P and @ satisfy the conditions in Corollary 4.61. Also
note that the Fermat curve has the genus (d — 1)(d —2)/2 > 1 when d > 4. Thus

there are no non-constant meromorphic functions satisfying the Fermat equation,
which re-proves part of Theorem 4.38.
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Theorem 4.62. Let p and q be positive integers with p > 1, ¢ > 1 and (p, q) # (2,2).
Given non-zero complex numbers A, B and C, the equation AxP — By? = C has
only finitely many rational solutions except at most the cases

(p7 q) = (27 3)3 (35 2)7 (37 3)3 (2a 4)7 (4a 2) (4917)
Proof. Without loss of generality, we may assume p < q. Set
P(z) = Az, Q(y) = By?+ C.

When (p, q) # (2,3), (3,3), (2,4), Corollary 4.61 implies that there exist no non-
constant meromorphic functions g and h satistying (4.9.5). Hence the curve (4.9.3)
has genus > 1, and so Theorem 4.62 follows from Theorem 3.32. 0

Take b € C and set d = 61+3 for a positive integer I. A.M. Nadel [285] proved
that if I > 3, the plane curve C' C P?(C) defined by

X4 yd4 73(X43 4 yi=3) = pz4
is hyperbolic, and that if [ > 2, the plane curve C C P?(C) defined by
X'+ Y?4 28X =z
is hyperbolic. In fact, taking {a, A, b} C C and setting
P(z) =2’ —az®*,  Q(y) = —y’ + Ay** +,

if we choose a, b and A such that the sets S and T of zeros of P’ and Q' respectively
satisfy P(S) N Q(T) = 0, then Yang-Li’s theorem implies that the plane curve
C C P?(C) defined by

X4 vd— Z*(axdF 4 Ay k) = pzd (4.9.18)

is hyperbolic when d > k > 3. As an illustration of another approach to this type
of question, we give the following result under the assumption that d > k > 4.

Theorem 4.63 ([188]). Take integers d and k with d > k > 4 and take {a, A} C C
such that 2* +1 = 0 and az?* + A = 0 have no common zeros. Then for any
b € C, the plane curve C C P?(C) defined by (4.9.18) is hyperbolic.

Proof. From the Picard theorem, it is sufficient to show that if there is a holomor-
phic curve
[F07F17F2] :C — PQ((C)

such that
F + F — F¥(aF{™F + AFJ™%) = bFd,

then it must be constant. We may assume that Fy, F; and F» have no common
ZEros.



350 Chapter 4. Function Solutions of Diophantine Equations

If F5, =0, we have
F — F¥(aF= +bE§™F) = 0.

Obviously, Fi = 0 if Fy = 0. This is impossible. If Fy # 0, we have

¢ 4 »
R) “\rR) 7
which implies that Fj/Fy must be a constant, and so the holomorphic curve
[Fy, F1, F3] = [1, F1/ Fy, 0] is constant. Assume that F» # 0 and write

Fy h:FO

9= g 2%

Then the meromorphic functions g, h in C satisfy
g% — n*(ag?F + bhiTF 4 A) = —1. (4.9.19)

It is sufficient to show that g and h are constant.

First of all, we show that one of g and & is constant. Assume, to the contrary,
that g and h are non-constant. When k£ > 4 Theorem 4.34 means that the functions
g? and h*(ag?=* + bh?=* + A) are linearly dependent. Then there is an element
¢ € C— {0} such that

h*(ag®™" 4+ bh?F 4+ A) = cg?,

and hence (1 — ¢)g? = —1. This is a contradiction since g is non-constant.
Hence one of g and h is constant. Obviously, (4.9.19) means that g is constant
if h is constant. If g = ¢ is a constant, then

bh? + (ac™F + A)RF = ¢ + 1,

which implies that h also is constant since at least one of ¢ 4+ 1 and ac®* + A is
not zero. g

4.9.3 Hyperbolic surfaces

In Section 4.9.2, we introduce two methods for finding hyperbolic curves based on
the classic Picard theorem. In higher-dimensional spaces, we may use the Brody
theorem (cf. Theorem 2.26) to seek hyperbolic varieties. Here we introduce some
examples in this direction.

Take positive integers d, k with d — k > 2 and take a € C — {0} such that the
equation
2 — a4 1=0
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has no multiple roots, that is,

d d
a® # cap = KF(d — k)i
Nadel [285] proved the following result:

Theorem 4.64. Let e > 3 be an integer and take k = 3,d = 6e+ 3. Further assume
that the non-zero complex number a satisfies

1
as ¢ {\3/%37 ) \3/Cd73} .
The surface M C P3(C) defined by
X+ 28+ WYY —aX T —aW i) =0

18 hyperbolic.

Siu and S.K. Yeung [367] proved that when d > 11, the surface in P3(C)
defined by

X424 Wh YT 2(Y? — apX? — a1 2% —aaW?) =0
is hyperbolic if

al # (=) a§ (i # ), af #ca2 (0<j<2).

R. Brody and M. Green [39] proved that the surface of P3(C) defined by
X4z wd 4 yk(ydk —oxd=F —pzik) =0 (4.9.20)

is hyperbolic for even degree d = 2k > 50 and for generic a,b € C — {0}. Based
on this example, K. Azukawa and M. Suzuki [8] constructed a smooth hyperbolic
curve of P?(C) in which complement is hyperbolic. Related to this kind of surfaces,
we prove the following results:

Theorem 4.65 ([188]). Take b € C— {0} and take (ao, a1, az) € C> —{0} satisfying
the following conditions:

(i) 2¢—b=0 and a12?* + ag = 0 have no common zeros;
(i) 24 —b=0 and a22?"* + ag = 0 have no common zeros;

(iii) 2%+ 1 =0 and a22?* 4+ a; = 0 have no common zeros.

Ifd >k > 9, then the surface in P3(C) defined by
X4 24 yR(yak —qawidk —q  XITF gy 297F) = pivd

1s hyperbolic.
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Proof. From a theorem due to Brody (cf. Theorem 2.26), it is sufficient to show
that if there is a holomorphic curve

[F07F17F2aF3] :C —>]P’3((C)
such that
Fi+ B + PSP — aoB{* — ay i — o) = bR,

then it must be constant. We may assume that Fy, Fy, F> and F3 have no common
ZEros.

If Fy =0, we have
Fe 4+ Fd + Fd — F¥(a FF 4 axFF) = 0.

If F, = 0, then F; # 0 and F3/F; is constant. Hence the holomorphic curve
[Fo, F1, Fo, F5] is constant, and we are done. Assume that Fy # 0 and set
F Fs

= H= _".
¢ F’ Fs

Then we obtain
G4+ H — (a1GF agHYF) = —1.

If G is non-constant, then H also is non-constant. When k& > 9, Theorem 4.34
implies that G?, H? and 1 are linearly dependent, that is, there is (bo, b1,be) €
C3 — {0} such that

b1G? + by HY = by,

Theorem 4.38 implies that by = 0, and so H = ¢G for some ¢ € C — {0}. Thus we
have
(c? +1)G? = (apc®™* +a1)G47F = -1,

which implies that G is constant since (c¢? + 1, azc?* 4 a1) € C% — {0} according
to our assumption. This is a contradiction. Hence G is constant, and so H also is
constant. We are done.

Assume that Fy # 0 and write
Fy F3

F;
Loh= f=0
Fy Fy Fy

g =
Then meromorphic functions g, h, f in C satisfy
g%+ fEHRE(RF —a1g?F —aa fTF —ag) = b. (4.9.21)

It is sufficient to show that g, h and f are constant.
First of all, we show that at least one of g, h and f is constant. Assume, to the
contrary, that g, h and f all are non-constant. When k& > 9, Theorem 4.34 implies
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that ¢¢, f¢ and b are linearly dependent, that is, there is (co,c1,c2) € C> — {0}
such that

c1g® + caf? = co.
Theorem 4.38 implies that ¢g = 0, and so f = cg for some ¢ € C — {0}. Then
(4.9.21) has the form

(c? 4+ 1)g% + h¥(h?F — (a1 + aoc?F)g?F —ag) = b.

If c?+1 # 0, then Theorem 4.34 implies that (c?+1)g? and b are linearly dependent,
that is, ¢ is constant. This is a contradiction. Hence c¢?+1 = 0, and so a; +azc?™* #
0. Since

ht — ¥ (a1 + agc?F)g?F 4+ ag) = b,

Theorem 4.34 again implies that A% and b are linearly dependent, that is, h is
constant. This is a contradiction. Hence at least one of g, h and f is constant.
Assume that g = c is a constant. If h also is a constant, then (4.9.21) means
that f is constant, and we are done. Assume, to the contrary, that h is non-
constant. Then f also is non-constant. The equation (4.9.21) has the form

fd + hk(hd*’C — agfdfk —apctF — ag) =b— . (4.9.22)
It follows that ¢¢ — b = 0 from Theorem 4.34. Thus we have
FE4 bt = h¥(agfF + a1 + ag).

Since a1c?~* + ag # 0, Theorem 4.34 implies that f = ¢h for some ¢ € C — {0},
and hence

(¢4 — aped™% + 1)hd = b (aycF + ap),
which means that h is constant. This is a contradiction.

Assume, to the contrary, that g is not a constant. If & is not a constant, then
f must be a constant c. Now the equation (4.9.21) has the form

g+ RE(RIF — a1ghF — apctF —ag) = b— o,

A contradiction follows according to the proof related to the equation (4.9.22).
Hence h must be a constant c.

Now f is not a constant, otherwise, it follows that g is a constant. Thus
(4.9.21) becomes

g+ = P arg?F +asfF) = b — ¢+ aget. (4.9.23)

Theorem 4.38 implies that ¢ # 0. Further, by Theorem 4.38 and Theorem 4.34,
we can prove f = ¢g for some ¢ € C — {0}. Thus we obtain

(@ 4+ 1)g% — F (a1 + ¢ F)g?™* = b — ¢ 4 apcF
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which implies that g is constant since
(&4 4+ 1,a1 + agé?™") € C* — {0}.
This is a contradiction. Therefore g, h and f all are constant. O

In [188], we also constructed other hyperbolic surfaces of lower degrees and
hyperbolic hypersurfaces in P4(C) by using the above methods, say,

Theorem 4.66. Tuke positive integers d and k with d > k and 2k > d + 16. Take
complex numbers b, a; and b; for i =0,1,2,3 with b # 0 and asby # 1 satisfying
the following conditions:

(1) 22 +1=0 and a12?* 4 ag = 0 have no common zeros

(2) 23 +1=0 and b12?* + by = 0 have no common zeros;

(3) 24— bz +1 =0 and a22?* + ag = 0 have no common zeros;

(4) 2% —apz* +1=0 and ba2?=% + by = 0 have no common zeros;

(5) 24 —b=0 and a12?* + a3 = 0 have no common zeros;

(6) 24 —b=0 and (a1 + biaz)z9=* 4+ asbs + az = 0 have no common zeros;

(7) 24 —b=0 and b12%7% + b3 = 0 have no common zeros;

(8) 24 —b=0 and (by + arby)z%"F + byaz + b3 = 0 have no common zeros;

9) 2% +y? =b, apxr?* + ayy?F + a3 = 0 and box?* + biy?* + b3 = 0 have

no common zeros;

24 4+1=0 and (ay + braz)z¥* + boas + ap = 0 have no common zeros;

(10)

(11) 24 —a3z® — b =0 and byz%=* + b3 = 0 have no common zeros;

(12) 2%+ 1 =0 and (by + a1b2)2?* + agby + by = 0 have no common zeros;
(

13) 2% —b32F —b=0 and azz?* + a3 = 0 have no common zeros.
Then the hypersurface in P4(C) defined by
bV = X9y YRR qqWwiak gy X9k g7k _ gy
4 Zk(Z97k _po Wik b XAk _ pyyd—h =k ppd
1s hyperbolic.

For example, take non-zero complex numbers b, ag, by, a3 and bz such that
as/ag # bz /by and set
a1:a2=b1:b220.

When d > k and 2k > d + 16, the conditions in Theorem 4.66 are satisfied, and
so the hypersurface in P4(C) defined by

Wi = XApyRydk — Witk — aveith)
+ZF(Z47F — bW R — bgV iRy W

is hyperbolic.
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4.9.4 Uniqueness polynomials

We make a remark on the equation (4.9.2). Related to finding non-constant mero-
morphic solutions of (4.9.2), we hope to characterize the polynomials P and @ such
that if (4.9.2) has non-constant meromorphic solutions (z, y) = (g, k), then it must
be the case that g = h. If P and @ are such two polynomials, then P(g) = Q(g)
means

pT(T, g) = qT(T’ g) + O(l)a

and so p = ¢ since T'(r, g) — 00 as r — oo. Further, by comparing the multiplicity
of zeros of P(g) and Q(g), it is not difficult to show that @ = AP for some
A € C.. Hence the question turns to characterizing a polynomial P such that if
P(g) = AP(h) holds for non-constant meromorphic functions g, h and some non-
zero constant A, then g = h. Such a polynomial P is called a strong uniqueness
polynomial of meromorphic functions or a uniqueness polynomial for the case \ =
1. Similarly, we may define (strong) uniqueness polynomials of n variables with
respect to a family of non-constant meromorphic mappings [1, f1,..., f,] into a
complex projective space P™(C).

Theorem 4.67 ([4]). Let P be a polynomial of degree n over C and
Pl(z)=clz—c1)™ - (z —a)™,
where ¢ is a non-zero constant and

Ci#Cj, P(CZ')#P(CJ'), 1§Z7éj§l

Then P is a uniqueness polynomial for rational functions if and only if | > 3,
orl =2 and min{my, ma} > 2. Further, P is a strong uniqueness polynomial for
rational functions if and only if no non-trivial affine transformation of C preserves
the set of zeros of P and one of the following conditions is satisfied.

() 1 >3, except whenn =4, my =mo=mg =1 and
=w, WwWtw+1=0;

(8) 1 =2 and min{my,ma} > 2.
Theorem 4.68 ([4]). Let P be a polynomial of degree n over C and
Pl(z)=clz—c1)™ (2 —a)™,
where ¢ is a non-zero constant and
¢ #c¢j, Ple) # Plej), 1<i#j <l

Then P is a uniqueness polynomial for meromorphic functions if and only if one
of the following conditions is satisfied:
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(v) 1> 3, except when n =4, m; = ma =m3 = 1;

(0) 1 =2 and min{mq,ma} > 2 except when n =5, m; = mg = 2.

Further, P is a strong uniqueness polynomial for meromorphic functions if and
only if no non-trivial affine transformation of C preserves the set of zeros of P
and one of the conditions (v) and (9) is satisfied.

For more general equations, we mention a result due to Osgood. Let n > 1
and suppose that F(y,y1,...,yn) is a not identically zero irreducible polynomial
in the variables indicated, where the coefficients of F' are meromorphic functions.
Let g,¢1,...,9n be n+ 1 meromorphic functions. Suppose that each coefficient,
say a, of F' satisfies

T(r,a) = o (max{T(r,g),T(r,g:)})-

Let n(r,g1,...,9n) be the number of distinct poles of the functions g1,..., gn,
occurring in the disc of radius r centered at the origin, where each pole is counted
with the highest multiplicity occurring among the functions in {g¢1, ..., gn}. Write

G(2) = max [gi(2)],

where ggp = 1, and define

"nt, g1, 9n 1 [ ,
T('r, g1y .. 7gn) — / TL( g1 ) g )dt + o A 10g+ G (7‘627”9) do.
ro

C. F. Osgood [312] claimed the following result:

Theorem 4.69. Let F' and g,91,-..,gn be as above. Let M denote the total degree
of F in y1,...,Yn. Suppose that on a sequence of r values tending to infinity one
has the limit
li T(Tvglu'“agn)
im
r T(r.g)

If deg, F' > nuM, then F(g,g1,...,9n) Z 0.

= p < 0.

4.10 Factorization of functions

After being influenced by the unique factorization of integers into prime factors,
P.C. Rosenbloom, F. Gross and C.C. Yang defined prime (or pseudo-prime) mero-
morphic functions, and tried to comprehend the uniqueness of factorization of
meromorphic (or entire) functions in the sense of composition. However, the case
of functions is very complicated. Some basic questions are not clear. Here we ex-
hibit this topic roughly.

A meromorphic function F' on C is said to have a (meromorphic) factorization
if there exist two meromorphic functions f and g on C with F' = fog. Here f and
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g are called respectively a left factor and a right factor of F. To make f o g well
defined, we have to assume that the left factor f is rational if the right factor g
has poles, and that g is entire if f is transcendental. Following P.C. Rosenbloom,
the function F is called prime (resp., pseudo-prime) if every factorization f o g of
F implies either f € Aut(P!) (resp., f € C(2)) or g € Aut(P') (resp., g € C(2)).
Thus when F' is prime, we obtain only trivial factorizations. The function F' is left
(resp., right) prime if left (resp. right) factors are in Aut(P') when right (resp.,
left) factors are transcendental. Similarly, we can define left (resp., right) pseudo-
primeness.

Usually, for entire functions we also use the following definition. An entire
function F' is called E-prime (resp., E-pseudo-prime) if every entire factorization
fogof F,that is, f and g are entire, implies either f € Aut(C) (resp., f € C[z])
or g € Aut(C) (resp., g € C[z]). We also can define left (resp., right) E-prime or
E-pseudo-prime.

Lemma 4.70 (Clunie). Let f be a transcendental meromorphic function on C and
let g be a non-constant entire function on C. Then

1- T(T’ f © g) _
1m =0
oo T(r,9)

Theorem 4.71 (Gross). A transcendental non-periodic entire function is prime if
and only if it is E-prime.

Proof. The necessity is trivial. Let F' be a transcendental non-periodic entire func-
tion on C. Next we assume that F' is E-prime and assume, to the contrary, that
F is not prime. Thus F has a factorization f o g such that f,g ¢ Aut(P!), and f
is a meromorphic function on C with poles.

First of all, we suppose that f is transcendental, and so g must be entire.
Then f and g must be of the following forms:

f&) =(E—a) o), g(z) =a+e*,

where n is a positive integer, fy is a transcendental entire function, and « is a
non-constant entire function. Hence we obtain

F(z)=fog(z)= e_”a(z)fo (a + ea(z)) = fioa(z),

where
&) =e " fo (a+e)

is a non-constant entire function. We claim f; ¢ Aut(C), otherwise there exists
(b,c) € C2 — {0} such that f1(£) = b + c. Set go(&) = a + €5. Then

T(r,foogo) =T (n e”g(bg + c)) <nT (n ef) + O(logT),
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and hence
lim sup T(r, foo 90)
r—00 T(T‘, gO)

This is impossible by Lemma 4.70. Therefore o € Aut(C) since F' is E-prime, which
means that g is a periodic function, and so F' is as well. This is a contradiction.

Next assume that f is rational. If g is entire, we can derive a contraction as
above. Assume that g has poles. We distinguish two cases as follows:

(I) f has a pole at a. Then f and g assume the following forms:

1

ﬂ )

where n is a positive integer, P, is a polynomial of degree m, and (3 is a transcen-
dental entire function with zeros. Then

f(g):(g_a)inpm(g)ﬂ g=a-+

F=fog=@"P, (a+;) —Prog,

which implies m < n since F is entire, where

P(§) =¢"Pn <a+ 1) e Cle).

3
Note that P* ¢ Aut(C) since f & Aut(P!). Then 8 € Aut(C) since F is E-prime.
This is impossible because g is transcendental.

(IT) f has two distinct poles a and b. Then f and g assume the following
forms:

1

F€) = (€ —a) (€~ D) "Qu(E), g=a+ o g=b+ i’

ﬂ7
where n, m are positive integers, QQ; is a polynomial of degree k, and 3, 7 are
two transcendental entire functions with zeros. Then

ﬂn+m

1 *
F=lo0= 0 @-nsm® (“*ﬁ)ZQ o0

where
§n+m

@O gm0+ ) eco

We can show k& < n + m, and also obtain a contradiction according to the proof
of the first part. O

It is well known that if a (# 0) and b are constant, and if P is a non-constant
polynomial, then e?**® + P(z) is prime. The function cos z is pseudo-prime. The
non-trivial factorizations f o g of cosz have only the following three forms:
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(i) f(&) =cos V¢, g(2) = 2%
(ii) f(§) = Tn(&) = cos(narccos§), g(z) = cos -, where T, is the Tschebyscheff
polynomial of degree n (> 2);

—n V—1z
(ifi) () = 3" +&™) gz)=e”w, neZ—{0}.
Further, N. Steinmetz [371] obtained the following result:

Theorem 4.72. Take a positive integer n and let w = w(z) be a transcendental
meromorphic function on C satisfying the differential equation

w™ + 4w 4 A w4 Apw + Ay =0,
where Aj (j =1,...,n+ 1) are rational functions. Then w is pseudo-prime.

Let 7(z) be the number of primes < z. Then n(z) — 400 as x — +o0
(Euclid). C.F. Gauss conjectured

lim m(x)logx
T ——+00 X

—1. (4.10.1)

At almost the same time (1896), J. Hadamard and Ch. de la Vallée-Poussin proved
(4.10.1) which now is called the prime number theorem.

The prime number theorem gives a class of density of prime numbers dis-
tributed in real numbers. A natural question is how to describe the qualitative or
quantitative distribution of prime meromorphic (resp. entire) functions in M(C)
(resp., A(C))? For example, there is the compact-open topology on M(C). Are
prime meromorphic functions dense in M(C) under the topology?

We can define the C°-topology of M(C) as follows. Let x be the distance
function on P! 2 C U {oo} defined by (1.5.6). For f,g € M(C), set

x(f,9) = supx(f(2),9(2))-

zeC

It is easy to see that x is a metric on M(C). The topology generated by the metric
x is called the C°-topology of M(C). Given f € M(C), let By(x) be the closed
ball of center f and radius xz in M(C). We hope to know the density of prime
meromorphic functions in By(x) under the C%-topology. Related to the above
questions, we introduce a result due to Noda. The following two lemmas will be
needed:

Lemma 4.73 (Ozawa). Let F' be a transcendental entire function on C such that
the inequality

1
N (r, F’) > AT (r, F')
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holds in a subset of RT with infinite measure, where X\ is a positive constant.
Assume that for any constant c, the system of equations

F(z) =g
{F,(Z) . (4.10.2)

has only finitely many solutions. Then F' is left E-prime.

Lemma 4.74. If f is a transcendental entire function on C, then there exists a
countable subset S in C such that for any ¢ € C, a € C — S, the system of
equations

(4.10.3)

has at most one solution.

Theorem 4.75 (Noda). If f is a transcendental entire function on C, then the set
Ey ={a e C| f(z) — az is not prime}
is countable.

Proof. Take A € R with 0 < A < ; By Lemma 4.74 and the second main theorem,
there exists a countable subset S in C such that Lemma 4.74 holds, and for a & S,
the inequality

N (n It 1_ a) > NI (r, ') (4.10.4)

holds in a subset of R* with infinite measure. Thus Lemma 4.73 implies that
f(z) —az (a &€ 95) is left E-prime.
Next we consider an entire factorization

f(z) —az = g(P(z)),
where P is a polynomial of degree d > 2, g is a transcendental entire function on
C. Since
f'(z) —a=g'(P(2))P'(2),
so the inequality (4.10.4) implies that ¢’ has infinitely many zeros, say, {w,}5 ;.

We may choose n sufficiently large such that P(z) = w,, has d distinct roots which
also satisfy the equation system

f(z) —az = g(wy),
f'(z) —a =0.

This is in contradiction with Lemma 4.74. Hence f(z) — az (a ¢ S) is E-prime.
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Finally, we prove that f(z) —az (a € S) is prime. First of all, we claim that
f(2) — az is non-periodic except for at most one exceptional value a in C. Assume,
to the contrary, that there are two distinct values a,b € C such that f(z) — az
and f(z) — bz are periodic with periods p and v, respectively. Then p and v also
are periods of f’. Hence p/v is real, and so f(z) — az and f(z) — bz are bounded
on the line {tu | ¢ € R}. That is impossible. Hence Theorem 4.75 follows from
Theorem 4.71. 0

In 1742, C. Goldbach proposed the following conjecture in a letter to L. Euler:
Each even number (> 6) can be expressed as a sum of two odd primes. If f is a
transcendental entire function on C, by Theorem 4.75 we can choose a € C — {0}
such that

pi(e) = H{f(2) —azh, pa(e) = {f(2) +az)

are prime. Thus we have f = p; + p2, which is a version of Goldbach’s conjecture
for entire functions.

Finally we consider the question on uniqueness of factorization of entire func-

tions. If @ is a positive integer, we know that there are distinct primes p1,...,pn
and positive integers 1, .. .,[, such that
!
a=p-- 'pizn .

The factorization is unique up to the ordering of the primes p;. However, for entire
functions, the case is much more complicated.

Let p1, p2,p3,... denote the sequence of primes 2,3,5,... and set
Ap = P1° " Pn, Pn(z):zp".

However, for n > 2, the polynomial

F(z) =2z (4.10.5)
has many factorizations
F=P,0P,0---0F,
independent of the ordering of factors, where (iy,...,4,) is a permutation of
(1,...,n).
For a prime p, the function
F(z) = zPe® (4.10.6)

has two factorizations
F=Pofi=/faoP
into prime entire functions

2P

P()=2%, filz)=ze¥, fal2) = 2¢".
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The example shows that we have to consider the ordering of factors in factoriza-
tions of functions. Thus we define the notation of unique factorization of entire
functions as follows:

Definition 4.76. Two entire functions f and g are called equivalent if there are
Ly, Ly € Aut(C) such that g = Ly o f o Ly. A transcendental entire function F' is
called uniquely factorizable if any two factorizations

F(z)=fiofoo-- 0 fn

and
F(z)=gi10g20--0gn
into non-linear prime entire factors mean that m = n, and that f; is equivalent to

g; for each j =1,...,n. The unique number n is called the length of factorization
of F.

According to the definition, the functions F' in (4.10.6) and (4.10.5) are not
uniquely factorizable. Generally, if any two factorizations of an entire function F
into non-linear prime entire factors have the same length, and if the corresponding
factors are equivalent up to an interchangeable factorization, F' may be called
universally uniquely factorizable, for example, the function in (4.10.5) is. However,
the problem of studying universally uniquely factorizable entire functions becomes
more difficult. Urabe [403], Urabe and Yang [404] and Ozawa [315] gave many
examples of uniquely factorizable entire functions of length 2 or 3.

To further understand the complication of factorization of entire functions,
we check more examples. For any n > 1, we have factorizations

e*=Po---0P,0ean, (4.10.7)

that is, e® can not be factored into a composition of finitely many prime entire
functions.

The following example is even stranger. The function
F(z) = (sinz)%e?c* (4.10.8)

has a finite factorization
F = Pl o f

into two prime entire functions
Pi(z) = 2%, f(2) = sin ze®*7,
but it also has factorizations

F(z) =goQ°" ocos :

o on=12 ...
gn? "
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where QQ°" means the nth composition of @), and where

g(2) = (1 —2%)e?*, Q(z) =42 — 3z

Ng ([297], [298]) confirms that there are convergent infinite compositions of
prime entire factors by proving the following result: There exists a sequence of
positive real numbers c1, ¢o, ... such that the sequence of functions

gno---og, n=1,2,... (4.10.9)
converges uniformly on compact subsets to an entire function F', where
gn(2) = cne® + z.
Furthermore, for each n € Z7T, there exists some entire function F,, such that

F:Fnogno"'ogl-

Based on the above examples, to make the uniquely factorizable problem
of entire functions more challenging, we have to rule out polynomial factors and
restrict to factorizations of finitely many transcendental prime entire functions.
Thus we make the following definition. A factorization of an entire function is
called canonical if it is a composition of finitely many transcendental prime entire
factors. Related to the definitions, the following problems are interesting:

Problem 4.77. Let f and g be two transcendental prime entire functions such that
fog=go f. Is it true that f and g must be equivalent to each other?

Problem 4.78. Do any two canonical factorizations of a transcendental entire func-
tion have the same length?

Problem 4.79. If a transcendental entire function F' has an canonical factorization,
18 F' uniquely factorizable?

Entire functions admit other kinds of factorizations. For example, the entire
function -
F(z) =e° *¢ (4.10.10)

has a factorization
F=fog
into two functions )
flz)=e"T=, g(z)=¢

such that f is defined only on the image g(C) = C — {0} of g, that is, is defined
in the complement of Picard values of g. Such factorization will be referred as
a right entire factorization. Generally, if an entire function F has a right entire
factorization fog, that is, g is entire and f is a non-constant holomorphic function
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in the region consisting of the complex plane minus any possible value omitted
by g, then we call g a right factor of F' in the sense of Eremenko and Rubel (cf.
[93]). Obviously, if g has no finite Picard value, then f also is entire, and so a
right entire factorization becomes an entire factorization. A natural question is to
determine a class of entire functions such that any right factor of each function in
this family has no finite Picard value.

For entire functions g and F on C, define g < F if g(z) = g(w) implies
F(z) = F(w), z,w € C. Eremenko and Rubel (cf. [93]) show that ¢ < F if and
only if g is an Eremenko-Rubel right factor of F. Thus the non-constant entire
functions on C have been made into a lattice. It is natural to ask about greatest
lower bounds within this lattice. For a family {F,,} of entire functions, we say that
g is a common right factor of {F,} in the sense of Eremenko and Rubel if F, has
a right entire factorization of the form f, o g for each a. A non-constant entire
function g on C is said to be a (strong) greatest common right factor of {Fy} if
g < F, for all a, and if h < F, for all « implies h < g.

Theorem 4.80 ([93]). Any family of non-constant entire functions of one complex
variable has a (unique) strong greatest common right factor.
4.11 Wiman-Valiron theory

In this part, we introduce the main methods in classic Wiman-Valiron theory.
This will deliver the historical background of methods we used in Chapter 5.
Some problems will be presented.

Take f € A(C) and write

fz) = an2". (4.11.1)
n=0

For r > 0, we can define the mazimum term:
p(r, ) = maxan|r™,
and the central index:
v(r, f) = maxin | u(r, f) = lan|r"}.
We also define

,U'(Oa f) :T,E%l+/1'(r7f)v V(Ov f) = lim V(T,f).

r—0+

Proposition 4.81. If f is a non-constant entire function on C, then u(r, f) is a
continuous increasing function such that u(r, f) — oo as r — oo.
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Corresponding to the Jensen formula (2.3.11), one has the following Valiron
formula:

Theorem 4.82 ([405]). For the entire function f defined by (4.11.1), one has
T u(t, ) — (0,
log,u,(r,f)zlog|al,(0)f)|—|—/ v(t. f) t”( Dt 400, Hlogr.  (4.11.2)
0

Proof. According to the definition of central index, we may assume v(t, f) = vi_1
for t € [r—1,7) (k=1,2,...), where

0<yy<uri<-, O=rog<r; <---.
Thus we have
,U'(ta f) = |avk71|tykilv te [Tk—laTk)'

Set
- w(t f)

tvo

p(t
Then we have

I/(t,f)—V((Lf)

() = (vh—1 — o) |ay, [t = t

w(t), t € [rg—1,7%).

Since u(t, f) is continuous, and so is u(t), we obtain
" (t) "t f) —v(0,f)
log pu(r) — log u(0) = / dt = dt,
o A(t) 0 t
and so the formula (4.11.2) follows. O

Fix ro > 0 and set

NMf=O%=/TW%ﬁﬁ.

To

Then the formula (4.11.2) assumes the form
N(r, f = 0) = log u(r, f) — log (ro, f). (411.3)

Next we assume f € M;(C). Then according to Nevanlinna’s factorization
theorem (cf. [151]), there exist g,h € A;(C) such that g and h have no common
zeros, and f = g/h. Thus for r > 0, the quotient

pu(r, f) = ZE: z; (4.11.4)

is well defined. Take a € C U {oco}. Write

v | v(r,g—ah), ifaeC;
vir,f=a)= { v(r h), if 0 — oo, (4.11.5)
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and set

N(r, f = a) = / ”(t’ft: D . (4.11.6)
We also define
+ 1 : ,
mir, f—a) =4 108 K (T’ f*ﬂ) , Hfaely (4.11.7)
log™ u(r, f), if a = 0.

A characteristic function of f can be defined as follows:
T(r, f) =m(r, f =o00) + N(r, f = 00). (4.11.8)

Applying the formula (4.11.3) to g and h respectively and then minus each
other, we obtain

N(r, f =0) = N(r, f = 00) = log u(r, f) — log pu(ro, f), (4.11.9)

which implies

*

1 *
T (r, f) =T(r, f) —log u(re, f)- (4.11.10)
When a € C, applying (4.11.9) to f — a and noting that

1

1
it = =utrnl <l w(n )= 0

we obtain .
m(r,f=a)+ N(r,f =a)=T(r, f) + O(1). (4.11.11)
For two distinct a,b € C, it is not difficult to show that

* f_b B * .,
T (r, f_a> =T(r, f)+O(1). (4.11.12)

On the other hand, we have

max{log uu(r, g),log u(r,h)} = max {logu(r, f),0} + log u(r, h)
m(r, f = oco) + log p(r, h)
= m(r, f =00) + N(r, f = 00) +log u(ro, h),

that is,
T(r, f) = max{log u(r, ), log u(r, h)} — log u(ro, h).
Further, by the formula (4.11.3), we obtain

T(r, f) = max{N(r, f = 0), N(r, f = 00)} + O(1). (4.11.13)
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By using (4.11.12) and (4.11.13), we can prove

T(r, f) = max{N(r, f = a), N(r, f = b)} + O(1) (4.11.14)
for any distinct a,b € CU {oo}.
In particular, we consider a non-constant polynomial
Piz)=as+ar1z+ -+ apz"

with a, # 0. Set
Tp:max{|a0| |a1| |an| )\},

|an|7 |an|7”.’ |an|’

where A is the maximal absolute value of roots of P. Then when r > rp, we have

1
v(r,P)=mn (r, P) =n.
Problem 4.83. Is there a real number r¢ such that when r > vy, the relation
vir,f)=n (r, }) holds for f € A;1(C)?
If Problem 4.83 is sure, naturally we can confirm the following question:

Problem 4.84. Given a non-constant meromorphic function f € M1(C) and take
a € CU{oo}. Find sharp relations between N (r, fia) and N(r, f = a), say,

N(r, f = a) :N(r, fia> +0(1).

We make a few remarks for a transcendental f € A4;(C). It is well known
that (cf. [154])

log 1 1
lim sup oglog u(r, f) = limsup ogv(r. f) =p (4.11.15)
r—00 logr r—00 log r

where p = Ord(f), and (cf. [151])

logn (r, })
lim sup

=p. 4.11.16
r—00 logr P ( )

The limits (4.11.15) and (4.11.16) give part of the evidence for the solution of
Problem 4.83.

In 1908 Littlewood and Lindelof conjectured independently that when
0<p<l1,

1
liﬂsip l(c))ggj\rz((?) > cosmp, (4.11.17)
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where

M(r) = ng)zz}éﬂ ‘f (rew)

, m(r)= Ogné}i<n27r ‘f (rew)

)

and this was later proved independently by Wiman and Valiron; closely allied
results have occupied the attention of many authors since (cf. [52], [396]).
When p < }, it follows that there exists a sequence {r,} tending to +oo such

that |
iy 1087 ()

> >0,
n—oo log M (ry,) — cosmp

which means that ‘f (rnew)’ — 400 holds uniformly for 0 < 6 < 27 as n — +o0.
Hence for any a € C, we have

! = 1/27T10+ ! do =0
T\ r—a) T fy B 1 rae®) —al T T

if n is sufficiently large. Then the first main theorem implies

N(rn, fia> = T(ra, f) + O(L). (4.11.18)
Note that for 0 < r < R (cf. [168]),
T(r, f) = m(r, f) < log* M(r) < ﬁ TR g), (4.11.19)
and (cf. [154])
log M(r) _, (4.11.20)

im
r—oo log u(r, f)
Thus by (4.11.18) and (4.11.3), we obtain

1
N (md) T
lim sup = limsup

< 1. 4.11.21
n—oo N(Tn, f=0) n—oo 10gpu(rn, f) ~ ( :

On the other hand, we choose € > 0 with cosmp — e > 0, and so
(cosmp —€)log M (ry,) < logm(ry) < T'(rn, f)
if n is sufficiently large. Therefore (4.11.18) and (4.11.3) yield

lim inf v (Tm }>

> . 4.11.22
n—oo N(Tn,fzo) = cosmp ( )

Pélya [318] (or cf. [157]) obtained the classical inequality

1
n(rn})
lim sup ! > ST

4.11.2
rooo logM(r) = m ( 3)
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Based on (4.11.20) and Problem 4.83, we suggest the estimate

lim sup v(r. f) > ST (4.11.24)
r—oo log u(r, f) m
Valiron [407] (or cf. [88]) observed
N (7"7 11‘) sinmp
li > 4.11.25
i logM(r) = mp ( )
if f € A;1(C) with order p > 0. Similarly, we conjecture the estimate:
N = i
limsup ~ S = 0) 5 sinmp (4.11.26)
r—oo log u(r, f) P

Problem 4.85. Given a non-constant meromorphic function f € My (C), find sharp
relations between T(r, ) and T(r, f).

When § < p < 1, the entire function (cf. [442])

=11 <1+ Zl) (4.11.27)
n=1 ne
is of order p such that
N (r, })
lim sup = sin prr.
r—00 T(’f‘, f)
However, the formula (4.11.13) implies
im YOS =0
T(r, f)

Thus if either Problem 4.83 or Problem 4.84 is sure, we should obtain

*

lim sup

= sin pm.
r—00 (71, ) P

If f € My(C) with order p, Edrei and Fuchs [88] (or cf. [151]) improved
sharply a result due to R. Nevanlinna [292] as follows:

N(r ! N(r,
K(p) = limsup (T f>+ 9

e T(r, f) > k(p), (4.11.28)

where .
1 ifo<p<y;

k(p) = ] 1 27

(p) { sinmp, 1f§ <p<l



370 Chapter 4. Function Solutions of Diophantine Equations

However, the formula (4.11.13) yields
T(r,f) < N(r,f =0)+ N(r, f = o0) + O(1). (4.11.29)
Thus based on Problem 4.83, we suggest the estimate

*

K (p) > lim sup gg: j:; > k(p): (4.11.30)

Particularly, if f is entire, we conjecture

*

1> limsup i(’” S ko). (4.11.31)

r—oo T(r, f)



Chapter 5

Functions over
Non-Archimedean Fields

In this chapter, we introduce the value distribution theory of meromorphic func-
tions defined on a non-Archimedean algebraically closed field, and give non-Archi-
medean analogues of some results and problems in number theory. Wiman-Valiron
theory and Nevanlinna theory will be unified. In particular, one basic formula
(5.1.5) and three equidistribution formulae (5.1.15), (5.3.7), (5.5.2) illustrating
the differences with the ordinary Nevanlinna theory will be exhibited. Some uni-
versal properties appeared in height theory and Nevanlinna theory will be further
presented.

5.1 Equidistribution formula

Let x be an algebraically closed field of characteristic p > 0, complete for a non-
trivial non-Archimedean absolute value |- |. We will show that the Valiron formula
over k plays the role of Jensen’s formula based on the formula (5.1.5), and further
derive the important formula (5.1.15) showing equidistribution of values.

Take a € k. For a positive real number r, define
kKla;r] ={z € k| |z —a|] <r}.

Let v be a function from x into Z such that suppr N &[0; 7] is finite for any r > 0.
The counting function n, for v is defined by

n(r)= Y v(a). (5.1.1)
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If v is non-negative, then n, increases. Fix rg > 0. The wvalence function of v is
defined by
dt

. (r>ro). (5.1.2)

N,(r) = N,(r,r) = /T’ n,(t)

70

Let A(k) be the set of entire functions on x. The field of fractions of A(x) will
be denoted by M(k). An element f in the set M(k) will be called a meromorphic
function on k. Take f € M(k). For a € kU {oc}, let u$(20) denote the a-valued
multiplicity of f at 29, that is, u$(z0) = m if and only if

f(z):{ a+t(z—z)"h(z) : a# oo,

(z—20)"™h(z) : a=o0
with h(zo) # 0, 00. By the definition, we obtain a function
Wk — Ly

with p$(z0) > 0 for some 29 € r if and only if f(20) = a. Define the counting
function and the valence function of f for poles respectively by

n(r.f) = ny (). N(r,f) = N ().

For a € k, the counting function
and the wvalence function

of f for a are also well defined.

Each f € A(k) can be given by a power series

f2) =) anz", (an €r), (5.1.3)
n=0

such that
1
limsup |a,|~ =0,

n—oo

that is, the series (5.1.3) converges for any z € k. For r > 0, we can define the
maximum term:

w(r, f) = rgggclanlr”,
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and the central indez:
v(r, f) = max(n | lan|r™ = u(r. f)}.
We also define

,U'(Oa f) Zrlir{)l+,[l,(7",f), V(Ov f) = lim I/(T,f).

r—0+

The central index v(r, f) increases as r — oo and satisfies the Valiron formula:

ry(t7f)—y((]’f)

log u(r, ) = o augo.p | + | 0D a0, frogr (519)
0

See the proof of (4.11.2), or [176], [405]. Basic properties of the maximum term
are summarized as follows:

Theorem 5.1 ([176]). For r > 0, the function p(r,-) : A(k) — R4 satisfies
properties:

1) w(r, f) =0 if and only if f = 0;
2) plr, f+9) < max{u(r, f), u(r, 9)};
3) ,U,(T‘, fg) = ,U,(T‘, f)u(r, g)'

By the Weierstrass preparation theorem, we know that the counting function
of zeros of f is just the central index (see [176]), that is,

n (r, ;) — o, f). (5.1.5)

The formula (5.1.5) is an important connection between Wiman-Valiron theory
and Nevanlinna theory. Based on (5.1.5), the Valiron formula (5.1.4) becomes the
following Valiron-Jensen formula (see [176]):

1
N (r, f) = log p(r, f) — log p(ro, f). (5.1.6)
The proxzimity function (or compensation function)

m(r, f) =log" u(r, f) = log max{1, u(r, f)}
serves as the characteristic function T (r, f) of the entire function f.

Lemma 5.2 ([95]). If f € A(k) has m zeros in k[0;7] with m > 1 (taking multi-
plicities into account), then for b € f(k[0;r]), the function f — b also admits m
zeros in k[0; 7] (counting multiplicity).
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Proof. We expand f into the series (5.1.3) and set

s = sup |a,|r".
n>1

We claim f(k[0;7]) = k[ao;s]. On the one hand, it is trivial that f(x[0;7]) C
klao; s].
On the other hand, we prove f(k[0;7]) 2 klao; s]. If s = 0, it is obvious that

f(k[0;7]) = klao; s] = {ao}-

If s > 0, we take b € k[ao; s] and consider the function
g(z)=f(z) —b=ap— b+ Zanz”.
n=1

It follows that v(r, g) > 1 since

lag — b] < s = sup |a,|r".
n>1

1
n\r, =virg Z]-a
( 9) (r.8)

which means that ¢ admits at least one zero in x[0;7] and hence b € f(x[0;7]).
Thus the claim is proved.
Finally, we prove Lemma 5.2. By the assumption, we have

Therefore

mzn(r,}) =v(r, f)>1,

and hence )
g |7 > lag|r™, ifn<m;
m > |ap|r™,  ifn>m.

Take b € f(x[0;7]). By the claim, we obtain

lag — b] < suplanlr”,
n>1

() = (e ) vt

Therefore f — b also admits m zeros in k[0;7]. a

and hence

Theorem 5.3. Assume that f is a non-constant entire function. Then for anyb € K,

we have ) )
N(r, f—b) =N (r, f) +0(1).
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Proof. Note that f and f — b each have at least one zero since f — b also is a
non-constant entire function. Thus there is an ' € RT such that f has at least
one zero in k[0;7’'] and such that b € f(k[0;7']). By Lemma 5.2, one obtains

() () e

Therefore when r > 7', we have

1 r 1\ dt ;1
N(’"’f—b) - /rfn(t’f—b>t+N<r’f—b)

and Theorem 5.3 follows. O

Let f be a non-constant entire function in k. Then

N ( J{) — log u(r, f) — log u(ro, f) — +00

as r — 0o, and hence pu(r, f) > 1 when 7 is sufficiently large. Therefore

N (n }) — T, f) + O(1), (5.1.7)

and hence Theorem 5.3 implies

1
N (n f—a) =T(r,f)+0(Q1) (5.1.8)
for all @ € k. In particular, if P is a polynomial, the formula (5.1.7) implies

T(r, P) = deg(P)logr + O(1). (5.1.9)

Let f be a non-constant meromorphic function in x. Since greatest common
divisors of any two elements in A(k) exist, there are g,h € A(x) with f = 7 such
that g and h do not have common factors in the ring A(x). We can uniquely extend
the mazimum term p for entire functions to the meromorphic function f = 7 by
defining

_ u(rg)
wulr, f) = (b’ 0<r<o0.

Then the Valiron-Jensen formula

N (r, ;) — N(r, f) =log u(r, f) —log u(ro, f) (5.1.10)
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follows from (5.1.6), where

1
N =N (r)
h
is the valence function of f for poles. Note that

,U;(?",flfz)ZM(T,fl)M(T,fQ), flvf2€M(K‘)'

Thus the Valiron-Jensen formula implies

1 1 1
N(r, f1f2> —N(r,f1f2)=N<r, f1> —|—N(r7 f2>

= N(r, f1) = N(r, f2). (5.1.11)

Define the compensation function by
m(r, f) = log* (r. ) = log max{1, u(r, f)}.
As usual, we define the characteristic function:
T(r,f)=m(r,f) + N(r, f) (ro <r < c0).

Then the Valiron-Jensen formula (5.1.10) can be rewritten as

1
T (r, f) =T(r, f) —log p(ro, f)- (5.1.12)
Usually, the mapping

f=(hg):r— r*—{0}

is called a reduced representation of f. Define

u(r, f) = max{u(r, h), u(r, 9)}-
Noting that

logp(r, f) = max {0, log ZE: z; } + log pu(r, h)

= max{0,logu(r, f)} + log u(r, h)
= m(r, f) +logpu(r, h),

and by the Valiron-Jensen formula

N(r,f)=N (n ;) = log u(r, h) — log u(ro, h),
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we obtain

T(T, f) = log U(Ta f) — log ,U,(To, h),

or equivalently

T(r, f) = log u(r, f) —log u(ro, f) +m(ro, f). (5.1.13)

By (5.1.13) and the Valiron-Jensen formula, the formula

T, f) :maX{N(r, )N (r, })} +0(1) (5.1.14)

holds for a non-constant meromorphic function f in x. Thus it is easy to prove
that the equidistribution formula

g —ms{(n 1 ) (L ) 0w s

holds for any two distinct elements a,b € kU {oo}. Particularly, if P and @ (# 0)
are coprime polynomials, the formula (5.1.14) yields

T (r, g) = max{deg(P),deg(Q)}logr + O(1). (5.1.16)

The following result is called the first main theorem (cf. [32], [65], [137], [140],
[176]).

Theorem 5.4. Let f be a non-constant meromorphic function in k. Then for every
a € Kk we have

m(r,fia)wv(r,fia):T(r,f)+0(1) (r — +00).

Proof. By (5.1.12), we have

m(r,fia)—&—N(r,fia):T<r7fia):T(nf—a)—log,u(ro,f—a).

Then the theorem follows from the simple properties

T(r,f—a) < T(r,f) +1log" |al,
T(r,f) <T(r, f —a)+log" |al. O

Theorem 5.5 ([176],[440]). Take {ao,...,ak, bo,...,by} C M(k) with ay # 0 and
by # 0 such that

k
A(z,w) =) aj(z)w’ (5.1.17)
J=0
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and

B(z,w) = > bi(z)w’ (5.1.18)

R(z,w) = gz’ Z; (5.1.19)
If f € M(k) is non-constant, then
k q
T(r,Ro f) =max{k,q}T(r,f) + O ZT(T, a;) + ZT(T, bj) |, (5.1.20)
§=0 §=0

where Ro f is defined by Ro f(z) = R(z, f(2)).

Finally, we make a remark on the first main theorem. Take f € M(k). For
a € K, set

my(r,a) = —log x(f(2),a) (r = |z]), (5.1.21)

where y is defined by (1.5.5) for v = | - |. Fix an element z € k with |z| = r > r.
Assume f(z) # 0, a,00. Then

my(r,a) =log" |f(2)| +log™ |a| —log|f(z) — a
=log" pu(r, f) +log™ |a| —log u(r, f — a).

Applying the Valiron-Jensen formula (5.1.10) to f — a, we obtain

mg(r,a) + N (n ) =T(r, f) +log" |a| — log u(ro, f — a), (5.1.22)

1
f—a
which shows that the definition (5.1.21) is independent of the choice of z on the
circle {|z] = r}. Since the set |k| — {|z] | f(z) = 0,a,00} is dense in RT, we may
extend the definition of my(r, a) by applying (5.1.22) to all » > rq. We also write

my(r,00) =m(r, f).

R. L. Benedetto [18] presents analogs for non-Archimedean (or p-adic) ana-
lytic functions of well-known mapping theorems in complex function theory proved
by Koebe, Bloch, Schottky, Landau, and Ahlfors. Of particular interest is the au-
thor’s analogue of the Ahlfors island theorem. In accord once again with the style
of this book, we do not discuss these results.
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5.2 Second main theorem of meromorphic functions

Let x be an algebraically closed field of characteristic p > 0, complete for a non-
trivial non-Archimedean absolute value | - |. We will show that the second main
theorem of meromorphic functions over x can be simply derived from the equidis-
tribution formula (5.1.15) and the Valiron-Jensen formula.

First of all, we make a simple remark for the case p > 0. Then we have the
following rules of arithmetic:

Note that

Therefore, we have the simple rule
(e £B)P =af £ 7. (5.2.1)
As usual, we have
(aB)P = aPp, (B71)" = (")~ (5.2.2)
Hence the mapping p defined as
pla) =a? (5.2.3)

is a field injection from k to k, which is called the Frobenius mapping of the field.
Note that the Frobenius mapping is also surjective since & is algebraically closed.
Hence the Fj,-automorphism © can be defined as

0(z) = p~Hz) == ¥ (5.2.4)

More generally this mapping has a continuation to a k-algebra automorphism of
k[X] as

C] aH(X —aj) | =06(a) H(X — 0O(ay)).
Take f € M(k). Set
pp =g — py.
It is easy to show (cf. [34])
=pp(z) =1, i pfus(2);
T X i

Note that if p = 0, then a meromorphic function f on « is constant if and only if
f/ = 0. For the case p > 0, Boutabaa and Escassut [34] give the following fact:
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Theorem 5.6. Assume p # 0 and let f € M(k) be non-constant. Then there exists
g € M(k) such that f = g” if and only if f' = 0. Moreover, there exist h € M(k)
and a unique s € Z+ such that f = h*" and h' # 0.

Proof. If f is of the form g? with g € M(k), then of course we have f' = pgP~1g' =
0. Next assume that f' = 0. If f € A(k), then it is obvious that all non-zero
coefficients of

FE) =3 anz"
n=0

have an index that is a multiple of p, hence f = ¢gP with g € A(k).

We now consider the general case when f € M (k). Then there are fo, f1 €
A(k) such that f = jﬁé Clearly f2f = f2='f; € A(k) and satisfies

81 =pf8 o f + J5F =0.
Consequently, f§ f is of the form f} with fo € A(k), and therefore

fo
On the other hand, it is immediate that if there exists h € M(k) such that ™ = f
holds for n € Z*, then

n | ged{pus(z) | pny(z) # 0}.

Hence the set of integers s such that f = h?" with h € M(k) is bounded and
therefore admits a biggest element, which satisfies the property in Theorem 5.6.
O

When « has characteristic p > 0, given f € M(k) — k, we will mean by the
ramification index of f the integer s such that »/f € M(x) and (~/f)" # 0,
and denote it by e(f). Moreover, in order to simplify notation, if p = 0, for any
f € M(k) — k, we put e(f) = 0. Thus e(f) = 0 if and only if f’ # 0. Assume
p > 0. In fact,

p_e(f) = |dlp,

where
d = ged(uy () | piy(2) #0).
If f,g € M(k) — k; P € k(X) satisfy an equation
9(z) = P(f(2)),
then e(g) > e(f), and
Wg=Qo W[ Q=0(P) s=ef)

The following fact is usually referred to as the lemma of the logarithmic
derivative (see [1], [32], [60], [140], [176]):
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Lemma 5.7. Let f be a meromorphic function in k. Then for any integer k > 0,

M (r, f;?) < le (r>0).

Proof. This is trivial if f(*) = 0. Next we assume f*) #£ 0. If f € A(k), set

o0

f(z) = Z anz".

n=0
Then -
f1(z) =) manz""",
n=1

and hence for r > 0,
! n—1 1 n 1
wu(r, f1) = max|na,|r" ™" < max|a,|r" = ulr, f)
n r n r

which implies

Therefore
k X k )
f) B f@ B f@ 1
Hw (Tv f =7 ljll f(ifl) - 1_[1/1' T, f(ifl) S T'k7
where f(©) = f. Now let f = g/h € M(x). Then
f/ B hg’ —gh’ . h B g/ B B
wlmp ) = e g o) =\,
gl h/
< max{u(r, >7M(T, >}< ,
g h r

and similarly, we can obtain
f(k)> 1
wir, < .
( f Tk O

Define the ramification term of f by
1
Nram(r, f) =2N(r, f) = N(r, f') + N (n f’) :

We have the second main theorem (cf. [32], [34], [60], [65], [66], [140], [176]):
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Theorem 5.8. Let [ be a meromorphic function in k with f' # 0 and let aq, ..., a4
be distinct numbers of k. Then for r > rg, we have

(q—=1)T(r, f) < N(r, f)-i—ZN (r, f—la ) — Ngram(r, f) —logr+O(1). (5.2.5)
j=1

J
Proof. For each r > ry there exists an index i(r) € {1,..., ¢} such that

1 1
N (r, ) = min N (r, ) .
I —aiw) 1<j<q f—a;

Then the equidistribution formula (5.1.15) implies

(¢=1)T(r f)= iN (r, f_laj> - N (n f—lai(r)> +0(1). (5.2.6)

Jj=1

By the Valiron-Jensen formula (5.1.10), we have

1
Y (r’ f—ay )) = N(r, [) =log pu(r, f = ai(r)) = log p(ro, [ = ai(r)),

and

Aan})-—N@af>=hgﬂmnf>—kgﬂwmf»

One formula minus the other yields

1 1
—N |, = N(r,f)—=N(r, —N(r, )
() ) = Mo =N =N (n
fl
+ lo (r, ) + O(1),
g 1 F = i (1)
and hence Lemma 5.7 implies
1
-N (r, f—a > < N(r, f) — Nram(r, f) —logr + O(1). (5.2.7)
— G4(r)
Hence (5.2.5) follows from (5.2.6) and (5.2.7). O

Take f € M(k) and take a € kU {oo}. For a positive integer k, define a
function p% by

L f minfud(z) k) it ud(2)
(”‘{0, ! i | 13 (2).
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The truncated counting function of f for a by k is defined by
u ng (r, ia> if a # oo,
ms (1) = S 1 4(2) = { r=a) (5.2.8)
2=r ng(r, f) if a = o0,

and denote the truncated valence function of f for a by

Nyg  (r) = {Nk <r7 fia) ?f 7o
Ni(r, f) if a = oc.
As usual, we also write
n(r, f) = n(r, ), Ni(r, f) = N(r, f),
and so on.

Assume that ' # 0 and let &7 = {a1,...,aq} be distinct numbers of k. A
simple calculation shows

ST YOI PR ) I

=1
where
1% (2), if /,sz (2) = 0 for all j;
0<pfw(z) =14 () —pf(2), ifpy(z)>0andp|py (2) for some j;
0, otherwise.

We also have the estimate

N(T,f’)—N(T,f) SN(r7f)_Nﬂf,oo(T)a

where

_ | uF () = pF(2),  if pF(z) > 0and p | pF(2);
< =
0 < if,00(2) { 0, otherwise.

Particularly, if f € A(k), by (5.1.8) and (5.2.9), we obtain

qT(r, f) = ilN (n ; _1 aj) +N (r, ;) —N,,.,(n+0(1).  (52.10)

Thus by Theorem 5.8, we obtain the truncated form of the second main theorem:
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Theorem 5.9. Let [ be a meromorphic function in k with f' # 0 and let aq, ..., aq
be distinct numbers of k. Then for r > rg, we have

(q—1)T(r,f) < N(rf) +ZN (7"7 f_laj>
_Nuf,oo (r) — Nuf,d (r) —logr +O(1).

Finally, we replace the condition f’ # 0 in Theorem 5.9 by using the ramifi-
cation index of f. Denote the characteristic exponent of k by

| p, ifp>0;
P=Y1, ifp=o0.
Take f € M(k) —  and set

h = ﬁe(f\)/f, bj = ﬁe(f\)/aj (_]: ].7...,(]).
Applying Theorem 5.9 to h, and noting that

T(r,h) = %f)T(r,f)7 N(r,h_lb_):N(nfl )(jzl,...,q),
j

p© —a;
we have the following form of Theorem 5.9 (cf. [34]):

Theorem 5.10. Let f be a non-constant meromorphic function in x and let aq,
.., aq be distinct numbers of k. Then for r > o, we have

q—1 1 1
ﬁe(f)T(T,f) < N(Taf)+;N(rﬂf_aj)

~Nup oo (1) = Npyy, 5 (r) —logr +0(1),  (5.2.11)
where B = {b1,...,bq}.

5.3 Equidistribution formula for hyperplanes

Let k be an algebraically closed field, complete for a non-trivial non-Archimedean
absolute value | - |. We will extend (5.1.15) to the equidistribution formula (5.3.7)
of holomorphic curves into projective spaces over x, and use it to show the second
main theorem for hyperplanes.

Lemma 5.11. Let f1, ..., fn be non-zero meromorphic functions in k and let
W =W (f1,..., fn) be the Wronskian determinant of f1,..., fn. Then for r >0,

we have
n(n—1)

pu(r,S) <r= 2,

where
W

S:S(fluafn):flf .
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Proof. The value of S is clearly
(n—1)
Zifjl . J/'2 f’n.
fiv Jia fin

summed for the n! permutations (ji,j2,...,Jn) of (1,2,...,n), the positive sign
being taken for a positive permutation, the negative sign for a negative permuta-
tion. The relations

/ (n—1) ’ (n—1)
r,S) < max r, 72 =maxp(r 7). o n
pr.8) s < i fin : i : fin

follow trivially from the non-Archimedean property. By Lemma 5.7, we obtain

1 1 1 _n(n-1)
pnS) < e =
and so Lemma 5.11 is proved. g
Let V be a vector space of dimension n+1 > 0 over x and let e = (eg, . .., €y)

be a basis of V. By a (non-Archimedean) holomorphic curve
i —P(V),
we mean an equivalence class of (n + 1)-tuples of entire functions
(for. oo fn) i 5 — k"1

such that fo, . fn have no common factors in the ring of entire functions on x
and such that not all of the f; are identically zero. The mapping

f=foeo+ + fuen 6 —V (5.3.1)

will be called a reduced representation of f. Define

p(r, f) = max p(r, fi).

0<i<n
Then the characteristic function
T (r, f) = logp (T, f) (5.3.2)

is well defined for all » > 0, up to O(1).

By the Valiron-Jensen formula (5.1.6), it is easy to obtain the formula

T(r,f) = max N (r, ; ) o), (5.3.3)

0<i<n ;
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where we think N (n fl) = 0 if f; is constant for some 4. If f is non-constant, we

i

have T'(r, f) — oo as r — 0o. Obviously, f is rational if and only if
T(r, f) = O(logr).

Let V* be the dual space of V and let € = (eq, ..., €,) be the dual basis of e.
Take a € P(V*) and take v € V* with P(«) = a. Write

= ap€g + -+ + Apén.
Then the inner product
(foo) =aofo+-+anfn
defines an entire function on x. Assume (f, o) # 0. Let K= p- | denote the 0-

- (f,00)
valued multiplicity of (f, ). Then the valence function of f for a is well defined by

For a positive integer u, we also write
1
Nyy(r,a) = Ny (r, - ) .
(f,a)
For convenience, we define Ny (r,a) = 0 if f(x) C Ela], that is, (f,a) = 0.

Take an element z € k with |z| = r > r¢ such that (f(2),a) # 0. Define the
compensation function of f for a by

my(r,a) = —log|f(2),al. (5.3.4)
Then

my(r,a) =log|f(2)| +log|a| —log |(f(2), )]

= log pu(r, f) + log |a| —log u(r, (f(2), @)).
Applying the Valiron-Jensen formula (5.1.10) to (f, @), we obtain
mf(’l“, Cl) + Nf(?", a’) = T(Ta f) + log |Oé| - lOg U(TOa <fa Oé>), (535)

which shows that the definition (5.3.4) is independent of the choice of z on the
circle {|z| = r}. Since the set

6] = {l=] | (f(2), ) = 0}

is dense in RY, we may extend the definition of my(r,a) by using (5.3.5) to all
r > ro. The equality (5.3.5) is referred to as the first main theorem, which yields

N¢(r,a) <T(r, f)+ O(1). (5.3.6)
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Theorem 5.12 ([176]). Let &/ = {ao,a1,...,aq} be a family of points a; € P(V*)
in general position with ¢ > n. Let f : & — P(V') be a non-constant holomorphic
curve. Then for any A € J1, we have the equidistribution formula

T(r, f) = max Ny (r,axs) + O(1). (5.3.7)

0<i<n
Proof. Take a; € V* — {0} with P(c;) = a;. Write
Qj = ajoeg + -+ ajnen, 7 =0,...,q,
where € = (e, ..., €,) is the dual of e. For j =0,1,...,q, set
Fj= <f7 aj> = ajofo +aj1f1 +oee +ajnfn.
Then R
/J,(T‘,Fj):O<,u, (r,f))7 ji=0,...,q.

On the other hand, since 7 is in general position, for each A € JZ? there exist
by €  such that

fi=2 5P, 3=0,....m, (5:38)
=0

and so we also obtain

W (r, f) =0 (Orgzagxnu (n F)\(i))> .
Thus, by the definition of characteristic functions, we have
T(r, f) =logp (r, f) = max log" i (r, F)) + O(1).

Finally, by the Valiron-Jensen formula (5.1.6), we obtain

T(r, f) = max Ny (n aA(i)) + O(1),

0<i<n
and hence Theorem 5.12 follows. O
Given a reduced representation (5.3.1) of f, let W =W (fo, ce fn> be the

Wronskian determinant of f07 R fn When k has characteristic zero, we know
that W #£ 0 if and only if f is linearly non-degenerate (cf. [176]), but this is not
so if k has characteristic p > 0. Here the mapping f will be called analytically
non-degenerate if W # 0, so we may define the ramification term by

Niam(r, f) = N (n vlv> . (5.3.9)
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Using the symbols in the proof of Theorem 5.12, for the family o/ ={ag,a1,...,a4}
we can define a meromorphic function by
FF - F
H= %1779 (5.3.10)
W(fo,----fn)

Now we use the equidistribution formula (5.3.7) to derive the second main theorem:

Theorem 5.13 (cf.[176]). Let f : kK — P(V) be an analytically non-degenerate
holomorphic curve and let of = {ag,a1,...,aq} be a family of points a; € P(V*)
i general position. Then

(g— §Z (r,a) N(nH)_n(n—&-l)
j=0

logr + O(1).

Proof. We will use the symbols in the proof of Theorem 5.12. For A € JZ, we
abbreviate the Wronskian

Wy =W (Fyo), Faays - - - Famy)) -

Then
Wiy =caW, c¢\=det (a)\(i)j) #0.

For each r > ry, we can choose A, € JZ such that

> .
Ny (r,a;) Orgfgxn Ny (r a, (l)) j€ Jn

where
Jr=40,1,...,q} — {A(0),..., A (n)}.
Theorem 5.12 and the Valiron-Jensen formula (5.1.6) imply

Nf(T’, aj) — Z Nf (7", a)\r(i)) + O(l)
=0

M=

(g—n)T(r,f) =

<.
Il
o

Ny(ryaj) — Zlogu (r, Fx.5)) +O(1).
=0

I
M=

<.
Il
o

However,

- W,
—> logp(r, Fy, (i) = logpu (T, ; ) —log u(r, W) + O(1).
P LPWORE SWE)

From Lemma 5.11, we have

W, > n(n+1)
lo T, i < - log r.
g#( Ex 0 Fx.(n) 2 &
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Thus by applying the Valiron-Jensen formula (5.1.6) to W, we obtain

(q - n)T(Tv ) < ZNf (7", aj) - NRam(ry f) - n(n; 1) IOgT + 0(1) (5.3.11)

Jj=0

By the Valiron-Jensen formula (5.1.10), we also have

> Ny(r,a;) = Nram(r, f) = N (r, é) — N(r,H). (5.3.12)

Jj=0

The inequality in Theorem 5.13 can be derived easily from (5.3.11) and (5.3.12).
O

Theorem 5.13 means directly the following defect relation:

q
> Spnlag) <n+1, (5.3.13)
§=0

where d¢,(a;) is the defect of f for a; defined by

: an(Tvaj)
Orn(a;) =1—limsup
I, ( ]) oo T('I", f)

with 0 < 607,(a;) < 1. However, from the equidistribution formula (5.3.7), we
obtain

N .
5(aj) = 1 — limsup jf((:;;) =0 (5.3.14)

except for n elements of &/ at most.

5.4 Non-Archimedean Cartan-Nochka theorem

Let k be an algebraically closed field, complete for a non-trivial non-Archimedean
absolute value | - |. Let V' be a vector space of dimension n +1 > 0 over x. We
continue to study a holomorphic curve f : Kk — P(V). First of all, we prove the
second main theorem for a family in subgeneral position.

Theorem 5.14. Let &/ = {aj}g‘:o be a finite family of points a; € P(V*) in u-
subgeneral position with u < 2u —n < q. Let f : k — P(V) be a holomorphic
curve which is analytically non-degenerate. Then

n(n+1)

(g—2u+n)T(r,f) < ZGw(aj)Nf(n a;) — ONRam (7, f) — 9

=0

flogr+ O(1),

where 8 > 1 is a Nochka constant, and w : o — R(0,1] is a Nochka weight.



390 Chapter 5. Functions over Non-Archimedean Fields

Proof. We will adopt the notations that were used in the proof of Theorem 5.13,

and without loss of generality, assume |o;| = 1 for j = 0,...,¢. Lemma 1.61
implies
w(aj) q—u n
1 J 1 1
< max
J]:[O<|faaj|) (F("Q‘()) A€J7l(d)g|f7aA(j)|

which yields

: ) Ly Tl
< max
1;[ (If, ayl) N (F(ﬂ)) AEJnW)jl;[O [Eao)|

( 1 )q e 1 (Wl
= max .
') W xedn(e) |ex] [Fao) - Faml

‘We obtain

> wlaj)my(r,a;) < (n+ DT (r, f) =N (r, vlv) - ”(”; Y logr+001). (5.4.1)
j=0

According to the proof of Theorem 2.66 and by the properties of the Nochka
weights, we can obtain the inequality in Theorem 5.14. g

According to the proof of Lemma 2.67, we can also obtain
q q
Zw(aj)ﬂ%j — iy < Zw(aj) min {,u%j , n} . (5.4.2)
Thus Theorem 5.14 yields immediately the truncated form of the second main

theorem and the defect relations.

Corollary 5.15. Assumptions as in Theorem 5.14. Then

n(n+1)

5 Ologr +O(1). (5.4.3)

(q—2u+n)T(r, f) < 6w(a;)Nyn(r,a;) —
) =0

Corollary 5.16. Assumptions as in Theorem 5.14. Then

q q
> wla;)d(a;) <Y wla;)dsmla;) <n+1, (5.4.4)
Jj=0 Jj=0
q q
> op(ag) <Y dpmla;) <2u—n+1. (5.4.5)
Jj=0 Jj=0
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Let f: k — P(V) be a non-constant holomorphic curve. For a finite family

g = {aj}g»zo of points a; € P(V*) in u-subgeneral position with n < u < g,
Theorem 5.12 yields immediately

T(r, f)= max Ny (r,axu)) +O(1) (5.4.6)

for any A € JI. According to the proof of Theorem 5.13, by using the formula

(5.4.6) we can prove the following second main theorem without Nochka weights.

Theorem 5.17. Let o/ = {a;}i_, be a finite family of points a; € P(V*) in u-
subgeneral position with n < u < q. Let f : Kk — P(V) be a holomorphic curve
which is analytically non-degenerate. Then

(g—w)T(r, f) < ZNf(T’ a;) — Npam (1, f) — n(n +1)

J=0

logr +0O(1). (54.7)

Next we assume that the field £ has characteristic zero and eliminate the
restriction of non-degeneracy on f. Take a reduced representation f : kK — V, of a
non-constant holomorphic curve f : Kk — P(V') and define a linear subspace of V*,

E(f]={aeV* | (f.a) =0},

and write
fdeimE[fL k:n—ff.

The number £ is non-negative, i.e., 0 < £y < n.If k£ <0, that is, £ = n+1, there
is {ap,...,an} C E[f] such that

ap A ANa, #0; (fa)=0(0<j<n).

By Cramer’s rule, f = 0, which is impossible. Then V* is decomposed into a direct
sum

Vi=Ww"®o E[f],

where W* is a (k + 1)-dimensional subspace of V*. The mapping f will be said
to be k-flat. In order to simplify our notation, we define £; = 0 if f is linearly
non-degenerate, that is, E[f] = 0, and say that f is n-flat.

Assume that &/ = {aj}?:o is in general position and assume that f is non-
constant and k-flat with 0 < & < n < ¢ such that each pair (f,a;) is free for
j =0,...,q. We take a basis ¢ = (eg,...,€,) of V* such that €p,...,e; and
€k+1,---,€n 1S a basis of W* and E[f], respectively. Let e = (eq,...,ey) be the
dual basis of €. Let W be the vector space spanned by ey, ..., e over k. Thus the
reduced representation f : k — V. is given by
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such that ( 1, €0)y .-y 1, €r) are holomorphic and linearly independent over k.
Hence a linearly non-degenerate holomorphic curve f : kK — P(W) is defined
with a reduced representation

~ k
f= =Zf,ej tk— W,

Therefore, we obtain
T(r, f) = log u(r, f) + O(1) = T(r, f) + O(1). (5.4.8)

If k = 0, then T'(r, f) is constant. But then the inequality (5.4.8) is violated. Thus,
we must have k > 1. Define

Nram(7, f) = Nram (7, f)
Now we prove the second main theorem of f, which is an analogue of Cartan-

Nochka’s Theorem 2.70 over k.

Theorem 5.18. Let of = {aj}g:o be a finite family of points a; € P(V*) in general
position. Take an integer k with 1 <k <n <2n—k <gq. Let f : Kk — P(V) be
a non-constant holomorphic curve that is k-flat such that each pair (f,a;) is free
for j=0,...,q. Then

q
k(k+1)
-2 < I 1
(¢ n+k)T(r, f) < 520 k(7 a;) 5 flogr + O(1),

where 0 is a Nochka constant with

n—|—1<0<2n—k+1
k+1~— — k+1

Proof. Take a; € V* — {0} with P(@;) = a; and write

n

a’j:z<eiaaj>€’ia .]:O7aq

=0
Define a new family &/ = {a;} as follows:

k
&j :Z<€1‘,aj>€i € W*_{O}v &j :]P)(&j) GP(W*)a J=0,...,¢

=0

Take o € J1. Then a, # 0 since o7 is in general position, and hence

det((es, () #0 (0 <i,5 <mn).
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Therefore, there is a A € J,g with ImA C Imo such that
det({es,ar))) #0 (0 <s,t < k).
We have 3
ay = det((es, d)\(t)>)60 A---Neg #0.
Hence A € J;,(«). Thus </ is in n-subgeneral position.
Note that

n k

(Fag) = S (Foedlenas) = S (Foelenas) = ().

i=0 i=0
We obtain R
a; a;j .
Nf]:ijvj:07'~'aq~

By applying Theorem 5.14 to f7 then

(g—2n+ k)T (r, f) < Zq: Hw(dj)Nf(r, ;) — 0 Nram (7, f) — k(k;_ 1) flogr+ O(1).
3=0
In particular, Corollary 5.15 and the facts above imply
(¢ —2n+ k)T (r, gi w(a;)Nyi(r, a;) — k(k; 1)910gr—&-0(1)7
j=0
and so Theorem 5.18 follows from 1) in Lemma 1.59. O

Corollary 5.19. With the assumptions as in Theorem 5.18, we have the defect
relation

q
Zaf (a;) < 0prla;) <2n—k+1. (5.4.9)
= 7=0

By Theorem 5.12, it is easy to show that if there exists a family # =
{bo,b1,...,bs} of points b; € P(V*) in general position such that

5;(bj) >0, j=0,1,...,s

hold for a non-constant holomorphic curve f : k — P(V), then s < n. This
property was observed by Cherry and Ye [60]. Thus the left part of (5.4.9) assumes

the bound .

> 6¢(a) < n. (5.4.10)

Jj=0

If we apply Theorem 5.17 to the mapping f and the family o directly, we
can obtain the following form of the second main theorem without Nochka weights
and the condition that the pairs (f,a;) are free.
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Theorem 5.20. Let of = {aj}g:o be a finite family of points a; € P(V*) in general
position. Take an integer k with 1 < k < n < q. Let f : Kk — P(V) be a non-
constant holomorphic curve that is k-flat. Then

(4= )T £) < S Ny(ra3) — Neam(r, £) — "D

Jj=0

logr+O(1). (5.4.11)

5.5 Holomorphic curves into projective varieties

In this section, we further extend (5.1.15) to the equidistribution formula (5.5.2)
of holomorphic curves for targets of hypersurfaces, and formulate Griffiths’ and

Lang’s conjectures into a question of holomorphic curves over non-Archimedean
fields.

5.5.1 Equidistribution formula for hypersurfaces

Let k be an algebraically closed field of characteristic p, complete for a non-trivial
non-Archimedean absolute value | - |. Assume that V is a normed vector space of
dimension n +1 > 0 over k. Let f : Kk — P(V') be a non-constant holomorphic
curve. For a positive integer d, let pq : P(V) — (II4V') be the Veronese mapping.
Then f induces a holomorphic curve

fHdzgpdof : K;—>P(HL1V)
such that the characteristic function of f1¢ satisfies
T (r, f1) = dT(r, f).

Take a € P(II;V*) such that the pair (f1¢ a) is free for the interior product /.
Applying (5.3.5) to f1¢ and a, we obtain the first main theorem for a hypersurface
Ea),

dT'(r, f) = Nyua(r,a) + msua(r,a) + O(1). (5.5.1)

Further, we have the following equidistribution formula:

Theorem 5.21. Let o/ = {a;}i_, be a finite admissible family of points a; €
P(LI4V*) withq > n andd > 0. Let f : K — P(V') be a non-constant holomorphic
curve. Then

dT'(r, f) = max Nyua (n aA(i)) +0(1), rxeJl (5.5.2)

0<i<n
Proof. Take a; € I;V* — {0} with P(c;) = a;, and define

dj(g):<§ud7aj>7 £€Kj20,17,q
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Without loss of generality, assume |o;| =1 for j =0,...,q. Write
Fj:@jof:<f~udvaj>a j:O717"'7Qa

where f : k — V, is a reduced representation of f. Since f is non-constant, then
pu(r, f) — 0o as r — co. So we may assume j (r, f) > 1 for r > 9. Obviously, we

have .
M(T7Fj)<0<ﬂ(r,f~) ), i=0,...,q. (5.5.3)
On the other hand, by using the identity (3.8.8), we obtain
=05 Py (AeJl j=0,...,n) (5.5.4)
i=0
for some integer s > d, where bf‘j € k[&o, - - ., &) are homogeneous polynomials of

degree s — d. Note that (Fyy,. .., F\mn)) # 0 since the family </ is admissible.

Hence s s—d
u(rf) <o (u () ) aax p(r Fa)

which implies immediately

(r, f)d <0 (Om?xnu (r, F,\(Z))> . (5.5.5)

Therefore the inequalities (5.5.3) and (5.5.5) yield
— + )
dT(r, f) = Jax log™ p (r, Fygiy) + O(1).
Finally, by using the Valiron-Jensen formula (5.1.6), we derive the formula (5.5.2).
O

For fields of characteristic zero, the equidistribution formula (5.5.2) is due to
Hu and Yang [176]. Here we give a simple application of Theorem 5.21. For any
fixed r > 0, without loss of generality, we may assume that

Nfud(r,a,o) S Nfud(r,al) S S Nfud(r,aq).
By using (5.5.2), we have
dT(Ta f) :Nfud(r7a'j)+0(1)a .] > n,
which means (cf. [176], [181])
q
dg+1—n)T(r, szfud ra;) +O(1) < Nyua(r,a;) + O(1).  (5.5.6)
j=n 7=0

This inequality was also observed by Min Ru [329] by using the first main theorem.
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A holomorphlc curve f : Kk — P(V) is said to be algebraically non-degenerate
of order d if f(k) ¢ Ed ] holds for all a € P(II4V*), and is called algebraically
non-degenerate if f is algebralcaﬂy non-degenerate of order d for each d > 0. Now

we can prove the second main theorem which exhibits a stronger inequality than
(5.5.6).

Theorem 5.22 ([176]). Assume p = char(x) = 0. Let & = {a;}i_, be a finite
admissible family of points a; € P (UgV*) with ¢ > n and d > 0. Let f : k —
P(V) be a holomorphic curve which is algebraically non-degenerate of order d.
Then forl € {n —1,n}, we have

i —; 1 logr +O(1), (5.5.7)

d(q - Z)T(T’ f) < ZNfHd(r7 a’j) - NRam(r7 f) -

§=0
where Nram (7, f) is defined in the proof.

Proof. Since f is algebraically non-degenerate of order d, for each A € JJ', Fy(),
, F\@) are linearly independent, and hence

Wi =W(Fxq),--- Faqy) #0.

Without loss of generality, we may assume ju(r, f) > 1 for r > r9. Lemma 3.73

implies
q a—
1 1
| I < maxl |
o |f1e, a;l (F(d)) AeJi s |fHd axg

which yields

! | 14|
)i~ <
H |fHd aj| ~ f{gfén | Fxeal

\L\% 1
< (HDd ax A .
- |f| AeJ? F)\( 0) ~-F)\(l) |W>\|
It follows that
q
> mpua(ra;) < d(l+DT(r, f) = Nram(r, f)
141
_U ; Vlogr +0(1), (5.5.8)
where .
Nram(r, f) = ;reanqN< WA) : (5.5.9)
Then theorem 5.22 follows from (5.5.8) and the first main theorem. O

According to the proof of Theorem 5.13, by using the equidistribution formula
(5.5.2) we can give another proof of Theorem 5.22.
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5.5.2 Characteristic functions for divisors

We assume that F is a very ample divisor over a projective variety M = M (R) C
P(&N). Let f : kK — M be a holomorphic curve. Let ¢ : M — P(V*) be the dual
classification mapping, where V- = L(E). The characteristic function of f for E

Tg(r) =Tpp(r) =T(r,eo f)

is well defined, up to O(1). If f is not constant, then ¢ o f is also non-constant
since ¢ : M — P(V*) is an embedding. Hence Ty g(r) — oo as r — oo.

For any s € V — {0}, set a = P(s) and write D = (s). If f satisfies f(k) ¢ D,
the functions

Ni(r, D) = Ngog(r;a),  my(r, D) = myof(r; a)
are well defined. These functions are related by the first main theorem
Ty e(r) = N¢(r,D) +mg(r, D) + O(1). (5.5.10)
Proposition 5.23. If E and E' are very ample divisors, then
Tetrp (r) =Tr(r) + Te(r). (5.5.11)

Proof. Let op : M — P(V*) and ¢p : M — P(V'*) be the dual classification
mappings of E and E’, respectively, given in projective coordinates by

@E = Z@ieiv @E' ZSD'L €i»
=0

where e, ...,e, and €, ..., el are bases of V* and V/*, respectively. Then the
dual classification mapping of E + E’, denoted by pgip : M — P(V* ® V/*), is
given in projective coordinates by

Poip = Y Gifjei ® €.

Hence
Teyp(r) = T(r,(¢pye)o f)=logu(r,ppof®@p of)

= og(maxur%of%of))
= log(

maxu T, i of)max,u,(r % Of))

= log (u(r,pE o f)u(r, ¢ o f))
= Tp(r)+Tp(r),

and so Proposition 5.23 follows. g
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Given any divisor D on M, we can write D = E — E’, where E and E’ are
very ample, and define

Ny(r, D) = Ny(r, E) = Ny(r, E'),

my(r, D) = mys(r, E) —my(r, E'),

and finally set
TD(’I“) = TE(T) - TE/(’I“).

It follows that (5.5.11) holds for arbitrary divisors D and D’. If two divisors D and
D’ on M are linearly equivalent, that is, D = D’ + (h) for some rational function
h on M, then

TD/ (7") = TD(’I“) + 0(1)

Lemma 5.24. If D is an effective divisor, then Tp(r) > 0.

Proof. There exist very ample divisors E and E’ such that D = E — E’. Let
{fo,..., fn} be a basis for L(E"). Then we can extend this choice of functions to
a basis {fo, ..., fnt1} for L(E) because D is effective. Let g = [fo, ..., fn] and
©E = [fo,- -, fnti] be the dual classification mapping of E’ and E, respectively.
It then follows from the definition of Th(r) that

Tp(r) =Te(r) — Te(r) 20,
and so the lemma is proved. O

We suggested the following problem (cf. [176]):

Conjecture 5.25. Let M be a non-singular projective variety over k. Let K be the
canonical divisor of M, and let D be a simple normal crossings divisor on M.
Let E be a pseudo ample divisor. Let f : k — M be a non-constant holomorphic
curve. Then there exists a proper algebraic subset Zp having the following property:
when f(v) ¢ Zp,

my(r, D) + Tk (r) < o(Tg(r)).

In value distribution theory of complex variables, this corresponds to the
conjecture due to P. Griffiths [125] and S. Lang [229].

Finally, we consider the case M = P(V), where V is a normed vector space
of dimension n + 1 > 0 over k.

Example 5.26. Each hyperplane E of P(V) is very ample with
dimL(F) =n+1,

and hence the dual classification mapping @ is the identity. Thus we have Tg(r) =
T(r, f), and hence
Tk(r) = —(n+1T(r, f)
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since K = —(n+ 1)E. Let D = Y, Ela;] be a sum of hyperplanes in general
position. Then the conjecture reduces to

Z mg(r,a;) < (n+1)T(r, f) + o(T(r, f))

which follows from Theorem 5.12.
For hypersurfaces, Conjecture 5.25 corresponds to the following form:

Conjecture 5.27. Take finite many of a; € P(LgV*) such that ), E%a;] have nor-
mal crossings. Let f : k — P(V') be an algebraically non-degenerate holomorphic
curve. Then

Z myua(r,a;) < (n+1)T(r, f) +o(T(r, f)).

5.6 The abc-theorem for meromorphic functions

Let x be an algebraically closed field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | - |. For an integer n > 2, we will study
the functional equation

fi+-+ fo=fo, (5.6.1)
and prove the generalized abc-theorem of meromorphic functions over x as follows:

Theorem 5.28. Let f;(j =1,...,n) be linearly independent meromorphic functions
on k and define fo by (5.6.1). Then

n

Oglgagxnlogﬂ(n f]) < Z {N (TV .]](:z> - N(T‘, fz)} + N(T‘, W)

=0

~N (r, vlv> - "("2_ Yiogr+001),  (5.6.2)

where W = W (f1,..., fn) is the Wronskian of f1,..., fn-

Proof. Since f1, ..., f, are linearly independent, the Wronskian W # 0. By (5.6.1)
and _ . _
FO 4O =0 =1,

we have
WZWj (j = 1,27...,TL)7
where
WJ = W(fla' "7fj—17f07fj+17" afn)
Set

) W 10
So_s(fl,...,fn)—fl...fn _det< f])
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Then
Sofj =Sjfo, J=1....,n, (5.6.3)
where
S; =S(f1,---s fim1, fo, fix1,- - fn)-
By (5.6.3), we have

_ fo
Jnax log pu(r, f3) = Jnax log (r, S, S;
= log u(r, fo) — log pu(r, So) + Jpax log u(r,S;).  (5.6.4)

The Valiron-Jensen formula (5.1.10) gives

log 1u(r, fo) = N (r, ;0> ~N(r, fo) + O(1), (5.6.5)
and
—logu(r,So) = —logu(r,W)+ ilog p(r, fi)
— N(W)—N (r, VIV)

+i {N (Ta ;) - N(r, fi)} +0(1).  (5.6.6)

By Lemma 5.11, we obtain

n(n—1)

i) < — . .6.
j2ax log u(r, S;) < o,  logr (5.6.7)
Hence (5.6.2) follows from (5.6.4) to (5.6.7). O

By using the Valiron-Jensen formula (5.1.10), we may rewrite the inequality
(5.6.2) into the simple form

max logu(r, f;) <N (n I;> — N(r,H) - n(n2— 1) logr + O(1), (5.6.8)

0<j<n

where
fofi--fn
W .

By the definitions of the characteristic functions, we obtain

fi\ _ i fi
T(r, fo) —N<r7 f0> —&—m(n f0>7

H= (5.6.9)



5.6. The abc-theorem for meromorphic functions 401

and however,

m (r, ;;) = max {O,logu (r, ;;)}
= max {IOgﬂ(Tv fO)alogu(Tv f])} _log,u(Ta fO) (5610)

Applying Theorem 5.28 and using (5.6.10) and (5.6.5), we obtain the non-Archi-
medean Nevanlinna third main theorem as follows (cf. [176]):

Theorem 5.29. Let f;(j =1,...,n) be linearly independent meromorphic functions
on k and define fo by (5.6.1). Then for 1 <j<mn,

T <r, ;g) < N <r, ;g) +§{N (r, ;) —N(r,fi)}

N W)~ N (r, vlv) - ”(”2_ Y logr + 0(1),(5.6.11)

where W = W (f1,..., fn) is the Wronskian of f1,..., fn-

Similar to Theorem 4.4, we also have the truncated form of Nevanlinna’s
third main theorem (see [176], Corollary 2.27).

Theorem 5.30. Suppose that f1, ..., fn are linearly independent meromorphic func-
tions in k satisfying the equation (5.6.12) with fo = 1. Then for j =1,...,n, we
have B
T(r, f;) <> N, (r ! ) N = "D e o)
5 J ] vt n—1 ) fz 7 2 )
where

*

Nj(r) =min {9, > N(r, fi),(n —1) > N(r, i)

i=1 i#£]

Next we replace the assumption of linear independence in Theorem 5.28 by
a weaker hypothesis of no vanishing subsums. Write the equation (5.6.1) in the
form

—fo+fit ot fu=0 (5.6.12)

Assume that no proper subsum of (5.6.12) is equal to 0. By Lemma 3.87, there
exists a partition of indices

{0,1,...,n}=IThU---UI
satisfying the properties (i) and (ii) in Lemma 3.87. Set

no+1=#Iy;, no=#I, (a=1,...,k)
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and write N
$a=1—|—2n5, a=0,1,... k.
B=0
Then
no+ny+---+ng=n

Without loss of generality, we may assume that

Ip={0,...,n0}, Ion={Sa-1,---18a—1} (@ =1,...,k).

Since Iy is minimal, fi,..., fy, are linearly independent. Hence
Wo=W(f1,..., fn,) Z0.
Similarly, the functions fs__,,..., fs.—1 are linearly independent, and so

Wo=W (forssooor fsum1) 20, a=1,... k.
Write

k
@ a_]-
W =W, W, l:Z”<n2 ), w= max {na—1}  (5.6.13)
a=0 -

and similarly define H by using (5.6.9). Obviously, we have

(n—1)
2

w<d—1, w<l<' , (5.6.14)
where d is the dimension of the vector space spanned by the f; over . According
to the proof of Theorem 4.5 and Theorem 5.28, we can obtain the following results
(cf. [182]):

Theorem 5.31. Suppose that fo, f1,..., fn are meromorphic functions in k satis-
fying the equation (5.6.12). Assume that no proper subsum of (5.6.12) is equal to
0. Then we have

1
< — — . .0.
o%agxn log u(r, f;) <N (r, H) N(r,H) —llogr + O(1) (5.6.15)
Theorem 5.32. Suppose that fo, f1,..., fn are meromorphic functions in k satis-

fying the equation (5.6.12). Assume that no proper subsum of (5.6.12) is equal to
0. Then for 1 < j<mn,

r( 1) = ) el -en)

+N(r, W)= N (r,

V1V> —llogr+0(1),  (5.6.16)

where W, | are defined by (5.6.13).
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5.7 The abc-theorem for entire functions

Let x be an algebraically closed field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value |- |. We give the analogue of Theorem 4.7
over k£ which further yields counterparts of the main theorems in Section 4.2 and
4.4. The following result extends Stothers-Mason’s Theorem 2.65, which can be
regarded as an analogue of the abc-conjecture over A(k).

Theorem 5.33 ([177]). Let a(z), b(z) and c(z) be entire functions in k without
common zeros and not all constants such that a +b = c. Then

1
max{T(r,a),T(r,b),T(r,c)} <N (r, abc) —logr + O(1). (5.7.1)
Proof. Write
a b
f=_, 9= .
¢ c

Then f and g are both not constant by our assumptions, and satisfy f+ g = 1.
By the second main theorem, and noting that

Wy )= () = ()

N(r,f)+N<r,Jlt> +N<r, fil) —logr+ O(1)

N(r7 1) +N(r, 1) —|—N<r7 1) —logr+0O(1)
c a b

1
N (n abc) —logr+0O(1).

we obtain

T(r, f)

IN

Similarly, we have
1
< — .
T(r,g) <N (r, abc) logr + O(1)
By (5.1.15) and (5.1.8),
T, f) = max{ ,N(r,f>}+0 1)

o (1) e 1))

= max{T(r,c),T(r,a)} + O(1).

Similarly,
T(r,g) = max {T(r,c), T(r,b)} + O(1),

and, hence, the theorem follows from the above estimates. O
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Theorem 5.33 implies immediately that Theorem 2.65 holds over the field k.
Boutabaa and Escassut [34] claimed that the term —N (r, ]{,) occurs in the right
side of the inequality (5.7.1) by showing the inequality

Ny o (r) + Ny (1) > N ( jf) ,

where & = {0,1}. However, this is wrong by a simple example,
flz)=1-2" g(2)=2".

We can prove that the term —N (r, abflfca,b> occurs in the right side of the in-

equality (5.7.1) (see Theorem 5.34). If the field k has characteristic p > 0, noting
that

e (Ccl) = min{e(a),e(c)}, e(f)=-e(g),

by applying Theorem 5.10 to the proof of Theorem 5.33, we can obtain
1
p*max{T(r,a),T(r,b),T(r,c)} <N (n b ) —logr + O(1), (5.7.2)
abc

where s = min{e(a), e(b), e(c

)} (cf. [34]). Thus Vaserstein’s result [413] about
polynomials follows from (5.7.2).

Next we will study the more general functional equation

fi+- A4 fn = fo (5.7.3)

and prove the generalized abc-theorem for entire functions over x, which is an
analogue of Theorem 4.7 over the non-Archimedean field.

Theorem 5.34 ([178]). Let f;(j = 0,...,n) be entire functions on r such that
fo, .-, fn have no common zeros, f; (j =1,...,n) are linearly independent on k
and the equation (5.7.3) holds. Then we have

max T(r, f;) <ZNn 1(, ) —N(r,H)_n(n2— 1) logr + O(1),

0<j<n
n(n—1)
2

1
s T(r, 1) < Nt ( o fn) NG H) logr + O(1).

Proof. By Theorem 5.28, we have

masx log (. f;) < ZN ( ) (r, V1V> - ”(”2_ Y iogr +0(1). (5.7.4)

0<5<
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The Valiron-Jensen formula (5.1.6) and (5.1.8) imply

log u(r, f3) = T(r, f5) + O(1), §=0,1,....n. (5.7.5)
By the Valiron-Jensen formula (5.1.6), we also obtain

iN(r, }) —N(r,vlv> :N(T,EI) _ N(r,H). (5.7.6)

=0

Thus Theorem 5.34 follows from (5.7.4), (5.7.5), (5.7.6) and the estimates

S oub =y <Y u%ns (5.7.7)
=0 i=0
S <u s
i=0
Take zp € k. Then M(}S (z0) = 0 for some s € {0,...,n} since fo,..., fn have no

common zeros. Note that, by the identity (5.7.3),

W = W(f17...,fsflvf07fs+lv'"7f1’l)'

Obviously we have
126 (20) > 1% (20) — 1%, 5(20) > % (20) — 1%, 1(20), i#s, 1<j<n-—1
ff” 0) Z My, (2o By 5 20) = g, (20 Ky n—1(20), , 1 <7< ,

and, hence,

i (20) = > {1 (20) = 1%, n-1(20)},
i#s

that is,
> 15, (20) = by (20) = > 1§, (20) — 1S (20)
=0 i#s

< Zﬂ(;i,n—l(zo) = Zﬂgi,n—l(%)'
1=0

i#s

The inequality (5.7.8) can be obtained similarly by comparing the multiplicities of
zeros of fo--- f,, and W. Then Theorem 5.34 follows from (5.7.4), (5.7.5), (5.7.7)
and (5.7.8). O

Similarly, we can prove the following result:
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Theorem 5.35 ([182]). Let f;(j =0,...,n) be entire functions on k satisfying the
equation (5.7.3) in which no proper subsum is equal to 0 such that fo,..., fn have
no common zeros. Then we have

0<5<n

max T'(r, f;) SZ ( )—N(T,H)—llogr+0(1)7
1

Jnax. T(r, f;) < N, (r, fo- "fn> — N(r,H) —llogr + O(1),

where w, 1 are defined by (5.6.13).

Hence Theorem 4.8 and Theorem 4.22 also hold over the field . These further
deliver supporting evidence for the generalized abc-conjectures in Section 4.3 and
the generalized Hall’s conjecture in Section 4.4.

5.8 Non-Archimedean Borel theorem

Let x be an algebraically closed field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | - |. We prove a counterpart of Theo-
rem 4.27 over k, and further show that the characterization in Borel’s theorem
(cf. Corollary 4.33) is “universal”, which supports the corresponding conjecture in
number theory.

Theorem 5.36. Tuke positive integers n, d; (j =0,1,...,n) with
Sy
j=0 dj

Let f; (j = 0,1,...,n) be non-zero meromorphic functions on k satisfying the
following condition:

Hf)a—1 = u(}j)dj—l =0(=0,1,...,n),

where d = max{d;}. If the function

o) =i {7 (7))

1s unbounded, then fo,..., fn are linearly independent.

Proof. We prove Theorem 5.36 by induction on n. First of all, we consider the
case n = 1. Assume that there are {ag, a1} C & such that agfo + a1 f1 = 0. Since
fi #0 (j =0,1), then ap # 0 and a1 # 0 if one of ag and a; is not zero. Hence

T(r)<T (r, ;2) =T (r, Z;) =0(1)
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which is a contradiction. Hence a9 = a; = 0, that is, fo, f1 are linearly indepen-
dent.

Assume that Theorem 5.36 holds up to n—1. We will show that Theorem 5.36
holds too for the case n > 2. Assume that there are {ao,...,a,} C k such that
aofo+ -+ anfn = 0. It is sufficient to show that one of aq,...,a, is zero.
Assume, to the contrary, that a; # 0 for j = 0,1,...,n. Then fo,..., frn_1 are
linearly independent over x. Let V be a vector space of dimension n over k.

Take a base eg,...,e,_1 of V and let €g,...,€e,_1 be the dual base in V*. Let
A (# 0) be a universal denominator of { fo, ..., fn—1}, that is, Af; is holomorphic
for each i = 0,...,n — 1 such that Afy,..., Af,_1 have no common zeros. Then

a meromorphic mapping F': kK — P(V) is defined with a reduced representation
F = Aagfoeo + -+ Aap_1fo1n1:k — V.

Obviously, F' is linearly non-degenerate. Set

n—1
bi=P(e;) (0<i<n—1), by :P<Zei> .
i=0
Then the family {bg,...,b,} is in general position. Then Theorem 5.13 implies

)_n(n—l)

T(T, F) < ZNFm_l(T, bj 9

J=0

logr 4+ O(1), (5.8.1)

where, by definition,

Nppn—1(r,b;) = Npy (7‘7 Alf) .

By the formulae (5.1.15) and (5.3.6), for each i = 1,...,n — 1, we have

T(r)<T (n JJ:()) < max{N (r, Alfo> N (r, Alfi>} < T(r,F)+O(1).

According to the definition of A, it is easy to show that the inequality

n—1
1 1
Ng, 1) (T, Afi> < Ng,—1) (T, fz') + ;Nd—n(h fi)=0

holds for each i € {0,1,...,n}. Note that

1 1 1
N (r’ Aﬂ-) = Na-y (T’ Afi) N (T’ Afi)
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and
diN (g, (n Alf) <N (n Alf) = Np(r,b;) < T(r, F) +O(1)

hold for ¢ =0,...,n. Hence for i =0, ..., n, we obtain

.2\71:'7»,171(7’7 bz) S (TL — ].)N (7’7 A1f>

<(n—1)N, (r, Alfz) < d, T(r,F)+ O(1).

Therefore the inequality (5.8.1) yields
(n—1)

oI (r, F) + " logr < O(1).
This is a contradiction since o > 0, n > 2. O
Corollary 5.37. Let fo,..., fn (n > 2) be non-zero meromorphic functions on k
such that there are constants a; € k satisfying the equation agfo+ -+ anfn = 0.
Assume that there exist positive integers d; (i =0,...,n) such that
“n—1
_ 0 .
1- di 207 :u;)‘j)d—l ::u’fi)di—l =0 (ZZO,...77'L),

i=0
where d = maxd;. Then there exists a partition of indices
{0,1,...;n} =T UL U---UI
such that In # 0 (a =0,1,...,k), I NIg =0 (a # B),
> aifi=0, a=0,1,...,k
icl,
and f;/ f; is constant for any i,j € In. In particular, if a; # 0 for i =0,1,...,n,

each I, contains at least two indices.

Proof. Consider the partition {0,1,...,n} = IgUI; U---UI} such that two indices
i and j are in the same class if and only if f;/f; is constant. Then we have

n k k
Zaifi = Z Z a;f; = chafia =0
1=0 a=0

a=01€l,

for any fixed i, € I, and some ¢/, € k. Corollary 5.37 is trivial for the case k = 0.
Suppose k£ > 1. Then
k n
k—1 n—1
1-— >1-— > 0.

j=
By Theorem 5.36, we obtain ¢, = 0 for a = 0,1, ..., k, which yields Corollary 5.37.
O
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Theorem 5.38 ([169]). Take positive integers n and d withn > 2, d > n? —1. The
following three statements are equivalent:

(i) If meromorphic functions fi, fa,..., fn on k satisfy
tfi+ - +fi=1

then f&, f4,..., f% are linearly dependent;
(ii) Under the same assumption as in (i), then at least one of the f;’s is constant;

(iii) Assume that entire functions fo, f1,-.., fn on K satisfy
fo+ I+ 4 fi=0

Partition the index set I = {0,1,...,n} into subsets I,, I = U¥_,1,, putting
two indices i and j in the same subset I, if and only if f;/f; is constant.

Then we have
Y f=0, a=0,... k.
i€l,

Proof. The claim (iii) follows directly from Corollary 5.37. Next we show (ii) =
(iii) = (i) = (ii). In order to derive (iii) from (ii), we have

n k k
D= D =D aaff =0
=0 a=01€l, a=0

for some a,, € C and any fixed i, € I,,. Then (iii) follows if a, =0 fora =0,... k.
Assume that (iii) does not hold. Without loss of generality, we may assume that

ao 20 (0<a<s, s>1), an=0(s+1<a<k).

Choose &, € k such that

a
gi:_a:7 Oé—l, y S
and set
fia
gazgaf7 a:17"'75
1o

so that g¢ + --- + g? = 1. Then one of the g,’s, say g1, is constant by (ii). This
means that f;, /fi, is constant, contradicting the definition of I,.

We derive (i) from (iii). We can choose £ € k and entire functions Fy, ..., F),
in k such that

F,
d i .
-1, fi= 'l i=1,...,
£ fi er ! m
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so that Fl + Ff +. .-+ F¢ =0, and apply (iii) to this identity. Let I be the index

set that contains 0. If I = Iy, then the functions fi,..., f, are all constant and
hence linearly dependent. If I # I, then

Y Fr=0, a#0,

i€l

thus yielding a non-trivial linear relation of {f? | i € I,,}.

Finally, we derive (ii) from (i) as follows: Since the functions f{,..., f¢ are
linearly dependent, without loss of generality, we may assume the following linear
relation:

d d d_
lel + o+ Cﬂ—lfn—l + fn = 0.
By subtracting this identity from ff +---+ f¢ =1, we have

(I—c)ff+-+Q—ca)fi, =1

We could use the relation to get a shorter linear combination of the fid to equal 1,
and hence (i) can be used again. Finally, it follows that a constant ¢ exists such
that cf¢ = 1 for some i. O

Theorem 5.38, (iii) was proved by Ha, Huy Khéai and Mai, Van Tu [139],
which is a non-Archimedean version of Green’s theorem [121]. Note that, in the
complex case, the hypothesis is d > n?, but d > n? — 1 for the non-Archimedean
case. Similarly, according to the proof of Theorem 4.34, it is not difficult to give
the analogue of Theorem 4.34 over k:

Theorem 5.39. Let P;(zo,...,x,) be a homogeneous polynomial of degree &; over
k for 0 < j < n. Let fo,..., fn be holomorphic functions on k satisfying the
following equation:

N Ld—s,
DV Pi(for- i fa) = 0.
j=0
There is a non-trivial linear relation among f{i%l Pi(fo, s fn)s s f3700 Py (fo,

co fa) if .
d>n*—1+> 4.

Jj=0

5.9 Waring’s problem over function fields

Let x be an algebraically closed field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | - |. For Waring’s problem in a family F
of M(k), it is interesting that, for any fixed positive integer d, one can find the
smallest integer n = g (d) such that there exist non-constant functions fi,..., f,
in F satisfying (4.7.2), that is,

AE) + -+ fa(2) =2
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Theorem 5.40 ([169]). The number gz(d) satisfies the following inequalities:

1 1
gawm(d) >, + \/d+ p 123 (5.9.1)
Iy (d) > Vd + 1, d>3. (5.9.2)
Proof. Assume that there exist non-constant meromorphic functions fi, ..., fy
satisfying (4.7.2). Assume, to the contrary, that (5.9.1) and (5.9.2) are not true.
First of all, we consider the case that ff,..., f¢ are linearly independent.
If f1,..., fn are entire functions, then by the assumption we have
1 1
< d
nSa T \/ T

that is, d > n(n — 1). Obviously, n > 2 since d > 3. By the equation (4.7.2),
it is easy to see that f1,..., f, have no common zeros. Hence a non-degenerate
holomorphic curve

F:rx— P(k")

is well defined with a reduced representation F' = (Fh el Fn), where
Fyj=fj=1...n

By Theorem 5.13, we obtain

T(r,F) < zn:Nn_l <r, ;}) - "("2_ Y 1ogr + 0(1)

“n—1 1 -1
<logr+ "TON (r, ﬁ’) - n(n2 )logr+0(1)

where Fy(z) = z, and hence

(1 - "("d_ U) T(r,F) < (1 - "("2_ U) logr + O(1). (5.9.3)

Since T'(r, F') — oo as r — 00, the inequality (5.9.3) is not true since d > n(n—1).
Thus (5.9.1) is proved for the special case.

When fy, ..., f, are meromorphic functions, by the assumption we have d >
n? —1 > 3. There exist entire functions h, gi,..., g, such that
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Note that h can be chosen such that g1, . .., gn have no common zeros. Now (4.7.2)
becomes

G (2)4 4+ gu(2)? = 2h(2)% (5.9.4)
Also a non-degenerate holomorphic curve G : k — P(x") is well defined with a
reduced representation G = (G, ..., G,,), where

Gi=g,i=1,...,n

Set Go(z) = zh(z)?%. Then Theorem 5.13 implies

and hence

(1 _(n+ 12(” - U) T(r,G) < (1 - ”;1 - ”(”2_ 1)> logr + O(1). (5.9.5)

Since T(r,G) — oo as r — o0, the inequality (5.9.5) is not true sine d > (n +
1)(n —1). Thus (5.9.2) is proved for the special case.

Finally, we study the case that f{,..., f¢ are linearly dependent. Without
loss of generality, we may assume that ff,..., fld are linearly independent (1 <
1 <n), but fi,..., fld7fjd are linearly dependent for each j =1+ 1,...,n. Thus
there is a (a1, ...,a;) € k' — {0} such that (4.7.2) becomes the following form:

ar fi(2) 4+ afi(2)? = = (5.9.6)

We may assume a; # 0 for each ¢ = 1,...,[, otherwise, deleting the terms with
null coefficients in (5.9.6). Thus the proof of Theorem 5.40 can be completed by
applying the above arguments to the equation (5.9.6). O

By considering (d — 1)th differences of 2? it can be shown [147] that z is
representable as the sum of d dth powers. The construction is as follows:

d—1
Ad=1d = Z (d . 1) () e+ i) = (d— 1)z +a.

. 1
=0
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Setting z = (w — a)/(d — 1)!, we have the desired representation. Thus

1 1

We may ask for the smallest number n = G£(d) such that there exist non-
constant functions fi,..., f,, in the class F such that

fld o+ fi=1. (5.9.7)

Following the proof of Theorem 5.40, we can obtain the result:

Theorem 5.41 ([169]). Owver the field k, the number G £(d) satisfies the following
iequalities:

1 1
GA(K)(d) > 9 + \/d+ % d>3, (5.9.8)

Gy (d) > Vd + 1, d>3. (5.9.9)

Some special cases of Theorem 5.41 can be found in [33], [35], and [176]. For
the case d = 2, we can prove easily that there do not exist two non-constant entire
functions f; and fy on k satisfying

fi+fi=1

Hence (5.9.8) and (5.9.9) are true for d = 2 (cf. [176]).

5.10 Picard-Berkovich’s theorem

Let x be an algebraically closed field of characteristic p > 0, complete for a non-
trivial non-Archimedean absolute value | - |. Boutabaa and Escassut [34], [35] ob-
tained the following two results:

Theorem 5.42. Let A and B be two relatively prime polynomials of degrees k and
q over Kk, respectively, and assume that B has no factor whose power is multiple
of p. Let t be the number of distinct zeros of B, and let g € M(k) be such that
all poles of g have order either multiple of p, or > m > 1, except maybe a finite
number | of them. Suppose that there exists a function f € M(k) with f' # 0
satisfying

Then

(a) mt < qg+mif f e Alk) — klz];
(b) mt < g+ 2m if f € M(k)— k(z). Moreover, if k > ¢, then mt < min{q +
2m, k +m};
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(c) mt < qg+2mif f € M(k) andl = 0 or 1. Moreover, if k > q, then mt <
min{q + 2m, k + m};

(d) mt<g+miffeAk) andl =0 or 1.
Proof. The inequalities are trivial if ¢ < 2. So we may suppose t > 2. Write
B(z)=(z—=b))® - (z — by).

Since A and B have no common zeros, each zero zy of B(f(z)) is a pole of g(z).
Hence 7z is a zero of B(f(z)) of order either multiple of p, or > m except maybe
a finite number [ of them. Note that f(z9) — b; = 0 for some j € {1,...,t}. Then
when p ) (20) > m, we also have

q] bj — ]' 0 >1
m/Jf (20) mMB(f)(Zo) = L.

Let I; be the number of zeros of f —b; whose order in B(f(z)) is neither a multiple
of p nor superior or equal to m. At such a point zg, we have ,ul}j (z0) > 0, and so

qj b, 4 _ Q5 b, 1
1< J 1-— < J 1-—
= mﬂf (20) + m = mﬂf (20) + m

Therefore

=
N
3
\
[I——
>
.
~__
|

qj 1 ] _ 1
mN <r7f—bj> +1; (1 m) logr + O(1)

z{LT(r, 41 (1 - ;) logr + O(1),

IN

where the last inequality is obtained by the first main theorem, and hence

t

1 I(m—1
SN < i)+ " Vg £ 01). (5.10.1)
= f=10; m m

On the other hand, by using the second main theorem, one has
t
1
t—DT(r, f) < N(r, f)+ ZN (r, Fob ) —logr +O(1).
j=1 e

The estimate (5.10.1) implies

(t—1)T(r, f) < N(r, f) + ;{LT(T, )+ (l(mW: b_ 1) logr + O(1),  (5.10.2)

which means

mt —m Ilm—1)

m m

T ) < NG+ ( - 1) logr + O(1). (5.10.3)
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In particular, this yields

mt_im_qT(r, £ < (l(mﬂ; b_ 1) logr + O(1). (5.10.4)
If f € A(k) —k[z] (resp., f € M(k)—£(2)), it follows from (5.10.3) (resp, (5.10.4))

that mt < m + ¢ (resp., mt < 2m + q) since

lim T f)

= +00.
r—oo logr

Therefore we have proven (a) and the first part of (b).
Next suppose that k& > ¢. Then each pole of f also is a pole of g with
pg® = (k — q)u3°. Hence

k—q k—q
Ny <t ING ) <0 ).
Thus the inequality (5.10.3) yields
—m— -1
mt=m =k p) < (l(m ) _ 1) log 7+ O(1). (5.10.5)
m m

If f € M(k) — k(z), it follows from (5.10.5) that mt < m + k, and so the second
part of (b) is proved.

Suppose f € M(k) and that 0 <[ < 1. Since the term about logr is negative
as r is sufficiently large, then mt < 2m + ¢ follows from (5.10.4). In the same way,
if k > ¢, we obtain mt < m + k by (5.10.5), which proves (c).

Suppose [ € A(k) and that 0 <! < 1. Since the term about logr is negative

as r is sufficiently large, it follows from (5.10.3) that m¢ < m + ¢, which proves
(d). O

Theorem 5.43. Given two relatively prime polynomials
K t
A@) =a-a)*, B =b]]—b)"
i=1 j=1

of respective degrees k and q over r, where all a; and b; are distinct. Let m € Z+
be relatively prime with p. Suppose that there exist two functions f,g € M(k)
satisfying

(9(z))"B(f(2)) = A(f(2)), z€r.

Then both f and g are constant if
1) f e A(k) and if

S

t
1
t>1 ;ki » 45 ;
s+ +m E(m )—&—g(mqj)

i=1 j=1

where (m,n) is the largest common factor of m and n, or
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2) f,g € M(k) and if

1 - t
sHt>1+ (. [k = qloo) + Y _(m k) + D (m. ;)
j=1

i=1

Proof. 1t is clear that if f is constant so is g. Suppose, to the contrary, that f is
not constant. Then

k = deg(A Zku q = deg(B Z‘JJ

If f’ is identically zero, then so is ¢'. Let
fu=X/1. 91 =Yg, A =0O(4), B =0(B),
where O is defined by (5.2.4). Then we can see that
(91(2))" B1(f1(2)) = A1 (f1(2)),

and that Ay, By, fi, g1 respectively respect the hypotheses of A, B, f, g. So we
are led to the same problem, and therefore we can go on e(f) times, until we get
a similar equation where the function playing the role of f has a non-identically
zero derivative. Thus we can assume that f’ is not identically zero.

Obviously, we have
km;i = mﬂg, 1=1,...,s,

and

It follows that

a; m
‘ b - ]‘7' 787
K52 k)
and m
bj
pi = J=1...1
f (m,qj)

Hence we obtain

N(r,f L ) < (m’ki)N(r,fl )g k) e o), i=1,.. s,

—a m —a; m
and
1 (m. ;) 1 (m. ;) :
< < =1,...,¢.
T e U e (YRR R R RO
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By using the second main theorem, one has

(s+t=1)T(r,f) < ZSZN(Taf_lai) +iN<r’f—16j>

< Xk + e | 760)
+N(r, f) —logr + O(1). (5.10.6)

Note that if 5 (20) > 0,

We have

—logr+ O(1). (5.10.7)
Then (5.10.7) implies

S

sht—1 <7711 (m, = qloo) + S (mo ki) + 3 (m, ) (5.10.8)

i=1 j=1

since logr — +o00, which contradicts with the hypothesis in 2). Hence f (and so
g) is constant.

In particular, if f lies in A(x), then (5.10.6) implies

S

s+t—1§”11 > (mki) + ) (m,q;)

i=1 j=1
This is a contradiction with the hypothesis in 1). Hence f is constant. 0

Particularly, an elliptic curve defined by Weierstrass equation (3.1.3) under
the condition (3.1.4) has no non-constant meromorphic solutions z,y € M (k).
Theorem 5.43 yields easily the following fact:
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Corollary 5.44. Let M be an algebraic curve of genus 1 or 2 on k and let f,g €
M(k) be such that (f(2),9(2)) € M when z € k. Then f and g are constant.

In fact, according to Picard [316] (or Theorem 3.7, Proposition 3.23), ev-
ery algebraic curve of genus 1 (resp. 2) is birationally equivalent to a smooth
elliptic (resp. hyperelliptic) curve. Hence one can apply Theorem 5.43 with m =
2,deg(B) = 0,deg(A) = s = 3 and m = 2,deg(B) = 0, deg(A) = s > 4 in Corol-
lary 5.44, respectively (see [35]). According to the proof of Theorem 4.60, we can
obtain the following result:

Theorem 5.45. Suppose that P(z),Q(z) € k[z] are respectively two polynomials of
degrees k and q with ¢ > k > 2 and P'Q’ not identically 0. Let S be a non-empty
subset of zeros of P’ and let T be the set of zeros of Q' such that P(S)NQ(T) = 0.
If there exist two meromorphic functions f and g in k with ' # 0 satisfying

P(f)=Q(9), (5.10.9)

then
lg—k

. T(r,f) < N(r, f) —logr + O(1), (5.10.10)

wherel =3 g u%,(c). Further, we have ¢ = k, 1 =1, and S has only one element
which is a simple zero of P’.

Theorem 5.45 improves a result in [96]. Note that when p > 0, if there exist
two non-constant meromorphic functions f and g in k satisfying (5.10.9), then f
and g have the same ramification index s and

VP (W) = Q).
Thus when p # 2, 3, we obtain Corollary 5.44 again by using Theorem 5.45.

Picard-Berkovich’s theorem claims that the conclusion in Corollary 5.44 holds
if the genus of M is not less than 1:

Theorem 5.46 (Berkovich [21]). Let M be an irreducible curve of genus > 1 of
equation F(x,y) = 0, where F(x,y) is an irreducible polynomial in two variables
with coefficients in k. There do not exist non-constant meromorphic functions f
and g in Kk such that F(f(2),g(2)) is identically zero.

Cherry [58] shows that this also holds if M is an Abelian variety, and obtains
a non-Archimedean analogue of Bloch’s conjecture. Further, in [59] Cherry proves
that each Abelian variety over k carries a Kobayashi distance. Here we suggest an
analogue of Green-Griffiths’ conjecture (cf. Chapter 6) as follows:

Conjecture 5.47. If f : Kk — M is a holomorphic curve into a non-singular pseudo
canonical projective variety, then the image of f is contained in a proper algebraic
subvariety.
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Finally, we list two analogues of Theorem 4.67 and Theorem 4.68 in non-
Archimedean fields:

Theorem 5.48 ([426]). Let P € k[z] be of degree n, have no multiple zeros, and
Pl(z)=clz—c1)™ (2 —a)™,
where ¢ is a non-zero constant, such that

Cl';éCj, P(Ci)#P(Cj), 1§Z7éj§l

Moreover, if p > 0, we assume that the multiplicity of the factor z — ¢; in P(z) —
P(e;) ism;+1 for 1 <i <1, and if p | n, we also assume that the coefficient of
2"~ 1 in P(z) is not zero. Then the following are equivalent:

(i) P is a uniqueness polynomial for M(k);

)
(ii) P is a uniqueness polynomial for k(z);
)

(ifi) (n —2)(n —3) > oi_; mi(m; - 1);

(iv) I>24fp|n;andl >3 orl=2 and min{my,ma} >2 if p=0 orpfn.
Theorem 5.49 ([426]). Let P € k[z] be of degree n, have no multiple zeros, and

P()=clz—c))™ - (z—c)™,
where ¢ is a non-zero constant, such that

Cl';éCj, P(Ci)#P(Cj), 1§Z7éj§l

Moreover, if p > 0, we assume that the multiplicity of the factor z — ¢; in P(z) —
P(e;) ism;+1 for 1 <i <1, and if p | n, we also assume that the coefficient of
2"~ Y in P(2) is not zero. Then the following are equivalent:

(I) P is a strong uniqueness polynomial for M(k);

(IT) P is a strong uniqueness polynomial for k(z);
(III) no non-trivial affine transformation of C preserves the set of zeros of P,
and1>2 ifp|n; andl >3 if p=0 or ptn, except P satisfies

P(Cl) - P(Cg) - P(Cg)

2
; = = =w, wtw+1=0;
Ples) ~ Ples)  Pler)

n=4, my =mo=mg=

orl =2 and min{my,ma} > 2 if p=0 or ptn, except P satisfies

n=>5 my =mg =2, Plc;) =—Pl(ca).



Chapter 6

Holomorphic Curves in
Canonical Varieties

In this chapter, we will prove the degeneracy of holomorphic curves into pseudo
canonical projective varieties by using meromorphic connections introduced by
Siu, which is originally a conjecture due to Green and Griffiths. It can be regarded
as the analogue of Bombieri-Lang’s Conjecture 3.37 for holomorphic curves. A
counterpart of Vojta’s (1, 1)-form conjecture in value distribution theory will be
exhibited (see Theorem 6.2). We also discuss conjectures of Griffiths and Lang by
applying meromorphic connections.

6.1 Variations of the first main theorem

To show the Green-Griffiths’ conjecture, in this section we first prove an inequality
of characteristic functions of holomorphic mappings for line bundles by using the
first main theorem. A special integral term related to Jacobian sections appears
in this inequality. We will use Siu’s inequality to estimate the integral term.

6.1.1 Green’s formula

We begin with the Green formula which will be used to prove Siu’s inequality. First
of all, we introduce some notation. Let z = x + iy be the standard coordinate of
C, where z,y € R, and ¢ is the imaginary unit. By a regular arc in C we mean a
complex function

At) = x(t) +ay(t), tel

of t in an interval I with the property that A(t) is of class C' in I, and N (t) # 0
for all ¢ in I. A finite sequence of regular arcs Cj,j = 1,...,n, of class C* placed
end to end is called a Jordan arc of class C*. If the end points of a Jordan arc are
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equal, the Jordan arc is said to be closed. A simple closed Jordan arc or curvilinear
polygon is a closed Jordan arc which has no multiple points. A regular component
of a curvilinear polygon is called an edge of the polygon and the point between
two edges is called a vertez of the polygon.

Let D be a bounded connected open set in C such that the boundary 0D of
D consists of finitely many simple closed Jordan arcs of class C!. Let 8‘21 be the
operator of directional derivative along the unit normal vector to D pointed to
the interior of D. Assume that 0D has a positive orientation induced from D, i.e.,
the rotation direction from the unit tangent direction to dD to the unit normal
vector to D pointed to the interior of D is same as that from the z-axis to the
y-axis. For P,Q € C'(D), Green’s formula

/ (8@ — 8P> dxdy = / Pdx + Qdy
p \ Oz oy oD

holds, where D is the closure D U 8D of D. Taking u,w € C?(D) and setting

ow ow
P = — =
Yoy 9T U
in Green’s formula, we have
Oudw  Oudw ow dw
A dxdy = dy — d
/D(u w+6x8x+6y8y> vy /C?D“ax Y u@y o
=— / uaw ds
8D an
where ds is the arc element, and
0? 0?
A= .
Ox? + oy?

By symmetry, we can obtain a similar formula by changing the order of v and w.
Thus we easily obtain

ow ou
Aw — wAu)dzdy = — - ds. 1.1
/D(uw wAu)drdy /9D<u8n w@n) s (6.1.1)
Further, we let D = C(0;r) be the disc of radius r > 0 in C. Set
0  z 0 9 .
az_az, az_az, 7(2) = |z]%, v =dd°r.

Then we have 1
0,0,u = 4Au.
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Note that along the circle 9D = C(0;r),

o 0
on  or
We apply Green’s formula to w = —1 as follows:
Cl0; r; Auwv] = 1/ Audzdy = 1/ auds
T Jclosr] ™ Jc(or) or
T a 2 i0
= *)do
mor u(re™)dd,
and hence
1 27 . 1 27 .
T (r,ro; Auv) = / u(re??)dd — / u(roe'®)dd. (6.1.2)
T Jo T Jo
Note that &0
Auv = 40,0,uv = 4dd“u, o = .
2m
We can change the formula (6.1.2) into the following form:
1 1
T (r,ro;ddu) = 2(C(O;r; uy — 2(C(O;ro;u>. (6.1.3)

The formula (6.1.3) further explains the formula (2.9.20).

6.1.2 Analogue of Vojta’s conjecture

We will assume that M is a parabolic complex manifold of dimension m, N is a
compact complex manifold of dimension n, and there exists a positive holomorphic
line bundle L > 0 on N. Take a metric x of L such that the Chern form

Y =-c1(L,k) > 0.

Let By(L) be the base locus of the linear system I'(N, KX ® L*) and set

B(L) =) Bw(L), (6.1.4)
k

where the intersection goes over all positive integers k with
Pi(L) = dim (N, K% @ L*) > 0.
If P,(L) =0 for all kK > 0, we define B(L) = N.

We give some examples with B(L) = N based on the following Kodaira-
Nakano vanishing theorem (cf. [127]):
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Theorem 6.1. If L — N is a positive line bundle, then
HYN,QP(L)) =0, p+q >n.
By Kodaira-Serre duality
HIY(N,QP (L)) =2 H" 1N, Q""P(L")),

we have

I(N,L*) = H(N,O(L*)) = 0.

In particular, when N = P"™ and H is the hyperplane section line bundle of the
complex projective space P", we have B(H) = P". If N = C*/A is a complex
torus, then B(L) = N since K is trivial.

If N is a pseudo canonical non-singular projective variety, without loss of
generality, we may assume that L is very ample. Then Lemma 2.30 implies that
Py(L) > k™ when k —4;,, 00, and hence B(L) # N. Conversely, if B(L) # N, then
Py (L) > 0 for some k > 0, which means that there exists an effective divisor Z on
N such that K% ® L* = [Z]. By Theorem 1.77 or the remark after Lemma 2.30,
N is pseudo canonical.

Assume B(L) # N and let f : M — N be a holomorphic mapping with
M) ¢ B(L). Then there exists a positive integer k such that

Py(L) #0, f(M) L By(L)

We can take a non-trivial section o € I'(N, K% ® L*) with f(M) ¢ a~1(0), and
a metric p of K% ® L* such that |a(z)|, < 1 for all z € N. Then there ex1sts a
volume form 2 on N such that

ci(KX © L*, p) = kRic(Q) — 1.

Denote the zero divisor («) of a by D,. Then the first main theorem (2.9.19) for
the divisor D, implies

kT¢(r, Kn) — Ty(r,L) = Ny (r, Do) +my(r, Do) — mg(ro, Do) (6.1.5)
For a Jacobian section F' of f, define a non-negative function g by
F" = g2 f* (") Av™ ", b =min{m,n}. (6.1.6)

Theorem 6.2. If F is effective and if f(M) ¢ B(L) # N, then there exists a
positive constant ¢ such that

|| CTf(Ta L) < RiCT(T7 TO) - NRam(Ta f) + M<Ov s IOg g> + O(E log T)

holds for any € > 0.
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Proof. By Theorem 2.90 and (6.1.5), we have
1
. Lr(r, L) < Ricr (r,70) = Nram(r, ) + M(O; 3 log h) + O(1)

for r,rg € RY with r > rg > 0, where h is defined by
F[y"] = h*o™. (6.1.7)

Set
Mt ={ze M| v(x)>0}.
For an integer i with 1 < i < m, define a function p; on M by
FrWH Av™ = po™. (6.1.8)
Then a pointwise relation among the p;’s is provided by the inequality (2.1.82) or
(2.12.18)

1 1

pi < cijpi (5 =1). (6.1.9)
Thus we obtain )
h2 b 1
<g2) =py < cppr,

which implies
h2 i 1
<g2> " < e fr(W) AT
By Lemma 2.92, for any € > 0 we obtain

h2 b
I / log ( 2) 0 <¢(1+42¢)logTy(r,L)+ O(elogr).
M{O;r) g

Hence Theorem 6.2 follows from these estimates. O

When m > n = rank(f), Stoll [380] proved a version of Theorem 6.2. Further,
Hu [167] formulated Stoll’s theorem into the form of Theorem 6.2.

According to the proof of Theorem 6.2, we see that the condition B(L) # N
can be replaced by By (L) # N for a positive integer k. It is sufficient to assume that
Chern classes of L and Ky in de Rham cohomology H2y (N, R) satisfy kei (Ky) >
c1(L), that is,

Cl(KN) > ]]{;Cl(L), (6].].0)

the constant ¢ in Theorem 6.2 assumes the form ,i — 9 for sufficiently small § > 0.
Hence Theorem 6.2 may be viewed as an analogue of Conjecture 3.61 in value
distribution theory. Speaking correctly, the counterpart of Theorem 6.2 in number
theory should be the following form:
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Conjecture 6.3. Let X be a complete non-singular variety over a number field k.
Let D be a divisor on X satisfying |kK — D| # 0 for a positive integer k. Let E be
a pseudo ample divisor on X. Let € > 0. Then there exists a proper Zariski closed
subset Z such that for all points P € X (k) — Z we have

hp(P) < kd(P) + chp(P) + O(1). (6.1.11)

Recall that |k K — D] is the complete linear system of kK — D in which K is a
canonical divisor of X. Conjecture 6.3 could be derived by Conjecture 3.56 simply.
In fact, since |[kK — D| contains at least one effective divisor, say, D’, which is
linearly equivalent to kK — D, we have

khxg —hp = hp + O(].) > —O(].)
Thus (6.1.11) follows from (3.7.5) by taking D = 0.

Here we exhibit some examples in which the term M{O;r;logg) in Theo-

rem 6.2 is bounded from above. Note that Ric,(r,r9) = 0 for the special case
M =Cm.

Corollary 6.4. If f : C™ — N is a holomorphic mapping of rank n, then we have
B(L)=N.

Proof. By Lemma 2.83, there exists a holomorphic form ¢ of degree m —n on C™
such that the induced Jacobian section F|, is effective for f, and

im—np A @ < 0™,
Thus the function g defined by F' = F,, satisfies the estimate (2.12.20). If B(L) #
N, then f(C™) ¢ B(L) since B(L) is a proper subvariety of N and f(C™) contains
an open set of N. Theorem 6.2 implies

| cT¢(r,L) < O(elogr) + O(1).

Thus we obtain Tolr L
Af(oo, L) = lim #(r L) =0,
r—oo logr
that is, f is constant (see Proposition 2.78). This is a contradiction. Hence it

follows that B(L) = N. O

Corollary 6.5. Let N be a smooth pseudo canonical projective algebraic variety.
Then any holomorphic mapping f : C™ — N has everywhere rank less than
n = dimc N.

Corollary 6.5 is due to Kodaira [213], which was further improved by Griffiths
[124]. These results all are special cases of the following Griffiths-King’s theorem
(cf. [128], Proposition 8.1 or [380], Corollary 21.3):
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Corollary 6.6. Let M be an algebraic variety. Let N be a smooth pseudo canonical
projective algebraic variety. Then any holomorphic mapping f : M — N whose
image contains an open set is necessarily rational.

Proof. Obviously it will suffice to assume that M is smooth and affine. Then
(2.11.5) implies that there exists a parabolic exhaustion 7 of M satisfying

Ric,(r,m9) = O(logr).

By Lemma 2.83, there exists a holomorphic form ¢ of degree m —n on M such
that the induced Jacobian section F,, is effective for f, and

Im—ne AN @ < 0",
Thus the function g defined by F' = F, satisfies the estimate (2.12.20). Theo-
rem 6.2 implies

| cT¢(r,L) < O(logr) + O(1).

By Proposition 2.82, f is rational. U

Based on Problem 2.32, there is a result related closely to the above corol-
lary. That is Kwack’s theorem which shows that in case N is negatively curved
and projective, any holomorphic mapping f : M — N from an algebraic variety
M into N is rational. Griffiths and King (cf. [128], Proposition 9.20) further ex-
tends Kwack’s theorem to a quasi-projective, negatively curved complex manifold
N having a bounded ample line bundle L — N, say, N = D/T for a bounded
symmetric domain D of C™ (cf. 132; [128], Lemma 9.19). Here L is an ample line
bundle on N satisfying the condition that there exist a metric p in L and sec-
tions s, ...,sr € I'(N, L) such that (i) 0 < ¢1(L, p) < Aw, where A is constant,
and w is the (1,1)-form associated to the Hermitian metric ds%, with negative
holomorphic sectional curvatures; (ii) the sections sy, .. ., s have bounded length
and [s,...,sk] : N — P¥ induces an algebraic embedding of N. This theorem
supports Vojta’s conjecture using (1,1)-forms (cf. [415]): if there are a complete
variety X and a divisor D on X such that N = X — D as above, then any set
of (S, D)-integralizable points on X is finite. If N = D/T", this is just the proved
Shafarevich conjecture.

Finally we give a property of the function A in the proof of Theorem 6.2.

Theorem 6.7 (Hu [167]). Take M = C™. If F is effective and if f(C™) € B(L) #
N, for any p > 0 then there exists a positive constant ¢ such that

cm [O;T;hl/p} >c

holds for larger r.
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Proof. By using (6.1.5) and Theorem 2.90, we obtain

1
C™(0;7;logh) > C™(0;79;logh) +

kmf(To,Da) =c1,

and so
c1 < plogC™ <0;r; hl/p>

for any positive number p. Note that

r2mem [0; r; hl/p} =m P =ldr A o
Cm™[057]

= 2m/ 21005 7 BY/P)dt.
0
Therefore we have

r2mcm [O;T; hl/p] >co+2m exp(cl/p)/ t2m=1dt
To

= ¢35 + exp(c1 /p)r*™,
and hence Theorem 6.7 follows. O

Theorem 6.7 generalizes a theorem due to Kodaira [213].

Let f : C™ — N be a holomorphic mapping of rank min{m,n}. There exist
effective Jacobian sections for f. If we can find one effective Jacobian section F
for f such that g2 < ¢ for some constant ¢ > 0, we have

2. m __ n * b m—b __ m
B2™ = P[] < of*(67) Av™ b = ey
which means
h2/b’Um < Cl/bp})/bl}m < c/plvm _ C/f*(”Q/J) A Um—l
for some constant ¢’ > 0. Hence we have

cm [O;T; h2/b} < r2Cm 05 fF ()] = 2 Ap(r, L).

Thus if C™ [0;7; h%/*] is bounded low by a positive number, there exists a constant
¢ > 0 such that

Af(r,L) > cr?.
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6.2 Meromorphic connections

Let N be a compact complex manifold of dimension n. Suppose L is a holomorphic
line bundle over N and L carries a Hermitian metric x with Chern form

Y =c1(L, k).

From the Hermitian metric k of L, we have a Hermitian connection V for the
holomorphic line bundle L which is compatible with the metric x and agrees with
0 in the (0,1)-direction. Let ¢y : U x C — Ly be a trivialization of L over an
open set U of N. Set

§u(z) = pu(z,1).

Then a section s € I'(U, L) can be represented by s = sy&y, where sy : U — C
is a holomorphic function such that

|52 = |sul?I€vl} = Kulsul?
holds for some positive smooth function ky. Then we have
Vs = (dsv)éu + (9log ku)suéu-
In general, Vs is not holomorphic. As a matter of fact,
OVs = (00log ky)s = —2mis,
where i = y/—1 is the imaginary unit.

Let Ly be a holomorphic line bundle over N which is generated by its global
holomorphic sections such that

H'(N, Q' (L)) = 0.

If Ly is a negative line bundle, when n > 2 this is true by the Kodaira-Nakano
vanishing theorem. Bott’s formula (see [30], or [364]) implies

(d+gfp)(d;1)7 ifg=0,0<p<n,d>p;
ifd=0,0<p=q<n;

1

1 q n Y4 d _ 9
dim HY(P", QP (H?)) = (—g-fll-p)(—d—l)’ ifg=n, 0<p<n,d<p—n;

0

n—p
, otherwise,

where H is the hyperplane section line bundle of the complex projective space P™.
In particular, one has

HY (P, Q' (HY) =0, d>0, n>2.

Generally, we can take Lo = L? for a positive line bundle L and a large integer d
based on the following theorem:
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Theorem 6.8 (cf. [127]). Let N be a compact complex manifold and let L — N a
positive line bundle. Then for any holomorphic vector bundle E, there exists dy
such that

HYN,O(L*®@ E)) =0, ¢ >0, d> dp.

Take to € I'(N, L) with to # 0. From the vanishing of H'(N,Q!(Lg)) we
have a smooth section 7 of Q!(Lg) over N such that

677 = —27Ti1bt0.

For s € I'(U, L), define
toZs =tyVs — ns.

Then toZs is a holomorphic section of Q(Ly ® L) over U for s € T'(U,L). We
obtain a connection for L defining &, but it is not a smooth connection. However,
toZ is a smooth operator. According to Siu ([363], [364], [365]), the connection 2
is called a meromorphic connection for L with pole order Lg.

We give N a Kihler metric ds%. For a local coordinate system (U 21, . . . , 2,
on N, it can be expressed as

sy =2 hapdzadzp.
o,

Then the metric determines uniquely the Hermitian connection V such that the
connection coefficients I") 5 are given by

0

r,= h*70ghay, O = .
= 2N Db 9z

However, we will use also another connection D for the holomorphic tangent bun-

dle T(N) of N with the coefficients T' 5 of the connection D over U. It is not

necessarily symmetric and may not even be smooth. It is assumed to satisfy the

following property:

(i) There exists a holomorphic line bundle E over N with a global holomorphic
section ¢ # 0 such that tD is holomorphic, i.e., for each Christoffel symbol
')z of D, tT') 5 is holomorphic on U.

According to Siu ([363], [364], [365]), a connection D satisfying the condition (i)
is called a meromorphic connection for T(N) with pole order E (or pole order d
in the case when N = P” and F is the dth power H? of the hyperplane section
line bundle H of P").

Siu [363], [364] and Nadel [285] estimated the pole order of a meromorphic
connection on projective space in terms of its Christoffel symbols relative to one
given inhomogeneous coordinate system. Let D be a meromorphic connection on
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P™ and let Flﬁ be the Christoffel symbols of D relative to the inhomogeneous

coordinates z1, ..., z,. Let Xg, ..., X, be homogeneous coordinates on P" so that
X;
Zi:Xg’ 1=1,...,n.

Assume that Alﬁ (Xo,...,Xy) and B(Xo,...,X,) are homogeneous polynomials
of degree g such that
A7

af

B

as rational functions on P™ for each fixed a, 3, 7.

v
Ls=

Theorem 6.9 ([285]). Let t be the global holomorphic section of the line bundle
H973 defined by the homogeneous polynomial

t = X3B(Xo,...,X,).
Then tD is holomorphic. In particular, the pole order of D is < g+ 3.

Proof. We must check that ¢tD is holomorphic on each inhomogeneous coordinate
chart. Set
U, = {Xz 7é 0} c P

First we note that tD is holomorphic on the coordinate chart Uy on which z1,...,2,
are defined because B(1, 21, .. ., zn)I‘lB is a holomorphic function on Uy for each
fixed «, 3, 7.

Next we check tD on some other coordinate chart, say U,. On U, we have
inhomogeneous coordinates

w; = 3 1 S71<na
Zn
where zp = 1, and
w; .
(2 Z+17 1<Z§n7
w1

where wy,+1 = 1. Let Ef;,, be the Christoffel symbols of D relative to the inhomo-
geneous coordinates wy, ..., w,. We must show that

wiB(wy, ..., wy, 1)E

is a holomorphic function on U, for each fixed u, v, A.



432 Chapter 6. Holomorphic Curves in Canonical Varieties

Recalling the following transformation law for Christoffel symbols:

0zq 0z Ow 0%z
=A = v * R A -
—puv Z I‘aﬁ awu awu 327 Z 8111“31111, aza
B,y

by assumption we know that
B(wi, ..., w,, )T 5 = Alﬁ(wl, ey Wy, 1)
is holomorphic on U,,. Note that

0 0 ifvy#n,A—1,
owy 1 .
= z = w1 if Y= A — 1,
82’7 Za—1 . _
22 —wiwy if vy =n,
and
0 ifpu#1,a+1,
0zq 1 .
— w lfu:a+ ].,
ow,, Yooin -
—o3t ifp=1
1

For fixed 2 < p < n all entries of the matrix (8%z,/0w,0w,) with 1 < a < n as
the row index and 1 < v < n as the column index are zero except the (u — 1)th
entry in the first column which is —1/w?. For the case p = 1, we have

0 ifr#l,a+1,
62Za 1 .
D fv=a+1,
Oow; 0w, ol ]
=Tt v =1
1

Therefore, ““ is smooth on U, and vanishes to at least first order along w; = 0.

However, gi)i (resp. af}ig‘; ) has poles of order at most 2 (resp. 3) along w; =0
and is otherwise smooth on U,,. The proof now follows. g

An analytic subset M of N is said to be totally geodesic (relative to D) if the
following two conditions hold:

(ii) No component of M is contained identically in the support of pole divisor
(t) of D;

(iii) For any two holomorphic vector fields X and Y defined locally on N and
tangent to M, the meromorphic vector field DxY is also tangent to M.

If M is a totally geodesic submanifold of NV, then it is clear that D restricts to a
meromorphic connection D|;; on M, and moreover that ¢|,/D|s is holomorphic
on M.

Let 2 be a meromorphic connection for the holomorphic line bundle L over
N. Take s € I'(N, L) — {0}. Following Siu [363] and Nadel [285], we will use the
following assumption:
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iv) There exist meromorphic tensors A,, Bg, Cys on N such that
p B B

DoDys — Y X5, Dys = AaDps + BgDus + Caps (6.2.1)
vy

holds, where Z,s is the covariant derivative of s in the direction of aia'

The left-hand side of (6.2.1) is called the Hessian of s and sometimes written

Hess(s)ap = Hess(s) (86»;7 82ﬁ> .
Locally, the condition (6.2.1) is clearly equivalent to the condition

Oaps — Y _T},0ys = AaOps + Badas + Caps, (6.2.2)
ol

or in invariant notation,
DxDyvs— Dpyyvs=AX)Pys+ B(Y)Dxs+C(X,Y)s (6.2.3)
for any local holomorphic vector fields X, Y.

Let M be the support of the zero divisor (s) of s. If no component of M is
contained identically in the pole sets of 2, A,, Bz and Cyg, then M is totally
geodesic. In fact, if there are two holomorphic vector fields X and Y defined locally
on N and tangent to M, then all terms in (6.2.3) other than Zp , y's clearly vanish
along M. Therefore Zp, y s also vanishes along M. Hence DxY is tangent to M.
This explains the geometric meaning of (6.2.1). Siu [363] actually assumes that
tAq, tBg and tCyp are smooth.

Next we introduce some local results due to Nadel [285], and so we work
with holomorphic connections rather than meromorphic ones. Let N be a complex
manifold of dimension n > 2, D a symmetric holomorphic connection on N with
Christoffel symbols T} 5 L a'holomorphic line bundle over IV, and & a holomorphic
connection for L. Let f: A — N be a holomorphic mapping from the unit disc
A whose Wronskian (relative to D) vanishes identically:

AN A F =0, (6.2.4)

Here f’ is the derivative of f with respect to the coordinate z of A which is a
mapping from A to the holomorphic tangent bundle T(N) of N and

FED =Dy 0> 1.
By (6.2.4), we can write

O =hof' 4+t by fOY (6.2.5)
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for some k (2 < k < n), where hq,...,hr_1 are meromorphic functions. By re-
placing A by a subdisc (not necessarily centered at the origin) if necessary, we can
assume without loss of generality that hq, ..., hx—1 are in fact holomorphic. Let
z denote the FEuclidean coordinate on A.

Lemma 6.10 ([285]). Fiz s € I'(N,L) — {0} and assume that (6.2.1) holds for
holomorphic tensor fields An, Bg and Cop on N. Then fori=2,3,..., Dpis —
(241)'s is a linear combination of s, Dy1s, (Z51)?s, ..., (Z4)~'s with coefficients
which are holomorphic functions of z.

Proof. Note that
Hess(s)(X,Y) = IxDvs — Ppyvys

for any vector fields X, Y. Take X = f/, Y = f0=1 and combine this formula
with (6.2.3) to obtain
Dy D s — Dyns = A(f)Dyiv s+ B(f TN Dps + C(f, f)s.

This formula gives us the desired result for ¢ = 2, and gives us also the inductive
step to get from ¢ — 1 to ¢. The lemma follows. O

Theorem 6.11 ([285]). Fiz s € I'(N,L) — {0} and assume that (6.2.1) holds for
holomorphic tensor fields A, Bg and Cop on N. Let f : A — N be a holomor-
phic mapping which satisfies (6.2.4) and (6.2.5). Assume that

(1) s(f(0)) =0, and
(2) (2s)(fD(0)) =0 fori=1,2,...,n—1.
Then s(f(z)) =0 for all z € A.

Proof. We must show that S = f*s is the zero section of f*(L). By (6.2.5), we

can write
k—1

DS =Y hi%»S.
=1
By Lemma 6.10, we see that
k—1
(25)FS =) Hi(27)'S, (6.2.6)
1=0

where Hy, H1, ..., Hi_1 are holomorphic functions. Therefore S is a holomorphic
solution of a kth order linear homogeneous holomorphic ordinary differential equa-
tion. Furthermore, we have by assumption the zero initial conditions

s(£(0)) =0, (2s)(fP(0) =0 (1 <i<k—1)
By Lemma 6.10, we can convert these initial conditions into the more familiar
(24)1S|.=0=0, i=0,1,....,k—1. (6.2.7)
Hence by uniqueness of solutions to (6.2.6) and (6.2.7), we obtain S = 0. O
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6.3 Siu theory

Siu [363], [364] [365] proved a defect relation of holomorphic curves into projective
varieties. By using meromorphic connections, Siu constructed a class of associated
curves of holomorphic curves, and estimated its growth. In this section, we will
introduce a main method and result of Siu which will be used in the proof of
Green-Griffiths’ conjecture.

6.3.1 Siu’s inequality

Let N be a compact complex manifold of dimension n. Suppose L is a holomorphic
line bundle over N and L carries a Hermitian metric £ whose Chern form

v =c(L,k)>0.

For a local coordinate system (W;ws,...,wy) of N, the Chern form ¢ can be
expressed as

¥ 21

> hapdwa A divg,
a,f

and hence define a Hermitian metric

dsy =2 hapdwadivg
.0

such that ¢ is the Kdhler form. Let V be the Hermitian connection of N. We will
write

Let f : C — N be a non-constant holomorphic mapping. Let z be the
coordinate of C and f’ be the derivative of f with respect to z which is a mapping
from C to the holomorphic tangent bundle T(N') of N. Under the local coordinates
w = (w1,...,w,) on N near f(z), writing f, = w, o f, that is,

f(2) = (f1(2),- -, fu(2)),

then f’ can be expressed as
n
=" fia;
a=1

where

0

[ —
fa_azfav az_az
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Let D be a meromorphic connection for T(N) with pole order E such that
tD is holomorphic for some ¢t € T'(V, E') — {0}. Fix a Hermitian metric ! in E. For
a positive integer k, define

fOHY — D)% . C — E* @ T(N),

where D, is the covariant derivative with respect to the connection D and the
coordinate z of C (i.e., in the direction of f’(z)). In the term of local coordinates,
we have

sz/ = i szclyaaa
a=1

where

D.fl,=> fiDafl,=0.f,+> T§ f5f..
B By

Then a holomorphic mapping

n(n—1)

FAfOA A . C—E"™ @K

is well defined, where the exterior product is taken in the holomorphic tangent
bundle T(N) of N. In particular, we obtain a holomorphic mapping

n(n—1)

fON At —E" o AT(V). (6.3.1)
The image of f is called autoparallel with respect to the connection D if

FIAFEO N A =0, (6.3.2)

Next we prove Siu’s inequality (cf. [363]):

Theorem 6.12. Let f : C — N be a non-constant holomorphic mapping. Take
peER with0<p< ,'. Then

_1
|7 (roro; 17920 <c{Tf(nL)4’“ 2“—&-7“4}7

where ¢ s some positive constant.

Proof. Since f is non-constant, then T¢(r, L) — 400 as r — +oo. Without loss of
generality, we may assume Ty(r, L) > 1. First of all, we consider the case k = 1.
Now when 0 < p < 1 the Holder inequality implies

T (r,ro; |[f'[P*v) < T (r,70; |f'|2v)“7(r7ro;v)17“.
Note that y
* _1 _
Fr@) ="y " D> hasfifydz Adz = |f .
a,B
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We have
1
T (ryro; | f')?v) = Ty(r, L), T (r,ro;v) = 2(7“2 —73), (6.3.3)

and hence when r > 1,

T (r,70; |f’|2“v) Ty (r, L)*" + T (r,70; U)272H

<
< Ty(r, L) 41

Therefore Theorem 6.12 holds for the case &k = 1.

Following Siu [363], we then study the case k = 2. Since tI') ; is smooth, it
is clear that

[fPP = DL f' 2 < {IVf17 + 111, (6.3.4)

where

Vo1l =Y £5Vsf
B

is the covariant derivative of f/ in the direction of f’ with respect to the Kahler
metric hop of N. Note that

0.0:10g [ 1+ Y hapflt}
a,B

_Zaﬁ,%ts Kaﬁyéf&féf;fé + Eaﬁ haﬁvfo;vZf[g
2
+ (S hasfafs) (SashasVefaVady) = [SaphasfaVefs
2
(14 S hanftfh)

2

The last term on the right-hand side is non-negative because of the Schwarz in-
equality. Thus

Ka & 1 eloel
0.0.108 (14 Y hapfisy | 2 — oo Fesrslalslsls
a,f 1+Za76 haﬁfafﬁ

Ea,ﬁ haﬁvzfclyvzf[/;
9-
(1+ S s has i)
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From Green’s formula (6.1.3) it follows that

Ka C/VII/ ahavzc/yvz/
T (T’TO;Za,ama 8o, Jjﬁ{vf&y) 7 | YaphasVaf ngU
1+Za,ﬁ hoﬁfafﬁ (1"’_2(1,5 haﬁf&fé)
1
S2C<O;r;log 1+2[;haﬁf;fé >

1
- 2C<0;ro;log L+ hapfifl >

a,B

By Lemma 2.92, we obtain

[ (C<0;r;log 1+ hapfith ><(1+26)10g7 rros v+ Y hapfo S

o, a,B
+ 4elogr.
Hence
2
ha vz &vz : (Za, hozﬁf&f’)
| 7| rro; g hes Vsl fﬁ2v < CT | 7,703 ’ ! U
1 hasfl [ 1+Za,6haﬁf(;fﬁ
+Ea7ﬁ aﬁfafﬁ
1 '
+ 2—|—5 log T r,ro;v—&-Zhagfafﬁfu + 2¢elogr, (6.3.5)
a,B
where
KOC «
O = sup 200 Kamaabolsbs (6.3.6)

2
e ’Za,ﬁ haﬁfaiﬁ‘

It follows that

Za7ﬁ haﬁvzf&vzf;j v

2 STf(TaL)+T27
(1+ s hastis})

|| T 5703

where we have used (6.3.3).
Take p € R with 0 < p < }1. By using elementary inequality

V. f'?

2p
2V, f 2 < ((1+ |f’|2)2> (AP
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and the Holder inequality, we have

112 2p
27 (r,ro; Vo f'|PH0) < T (rﬂ"o;( V=T )

L+ [f]?)?
+T(T,To,( +12)%) )
v 72 2H
ST(TaT()v 1|_~_|; :2 2U TTO? 1 2

+T (r,ro; (1 + ') U)4# (rro; ) M,
and hence
| T (n r0; |sz'|2”v) (Ty(r,L) + r2)21p2(1=20)
(7 + Ty(r, D)0,
Therefore
| T (r, 0; |sz’|2“v) < Ty(r,L)* + rt. (6.3.7)

So our estimate for 7 (r,ro; | f?|?*#v) is given by

I 7 (T, To; |f(2) |2#U) <c {T (T’ T0; |sz/|2'uv) +7 (T’ To; |f/|4'uv)}

<d {Tf(r, L) % + Ty (r, L)**T (r,70; v)172“}

< "{Ty(r,L)* + 1} . (6.3.8)
Now we use induction to prove Theorem 6.12. Assume that Theorem 6.12

holds up to k (> 1). Next we consider the case k + 1. By simple calculation, we
can prove the following inequality:

0] < e{[9.50) 1+ |0 ). (6:3.9)

Locally, we can write

. 0
(k) _ ¢k—1
1= ®a§:jlfakaw7

e}

where £ is a local holomorphic frame for E, and so

PP =0 hagforfo
a,B

with a = [¢ |2(k Y Without loss of generality, we may assume a = 1 since |f (k)|2
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is locally equivalent to > hagfar fak. Since

0.0, log [ 1+ Z hag fok fak
a,B

Za,ﬁ,’y,zﬁ Kaﬁ'yéfakfﬁkf»/yfé Za,ﬁ haﬁvZfakafﬁk
2
1+>2, 5hapfarfor (1 +as haﬁfakfﬁk)
2
(Eaﬁ haafakfﬂk) (Zaﬁ haﬂvzfakvzf6k> - ‘Eaﬁ hapfarV=fax
+ 2
(1 + Za,ﬁ haﬁfakfﬁk>

following the argument of the inequality (6.3.5), we can also obtain

ha VZ @ VZ
|7 gy e esVeSVadon
(1 + 205 haﬁfakfﬁk)
1/1
< 2elogr + K*T (r,r0;|f'[*v) + (2+€>IOgT(Tyro;erlf(’“)F“v),
0
where Kt = max{K,0}, and

K = sup Za,ﬁ,fy,& Kaﬁvégagﬁnwné
N,&n (Zaﬁ hogﬁgagﬂ) (Z%(S h,y(;n,yng)
and where Lemma 2.92 yields
1
| C <0§ r;log (1 + |f(k)|2>> < C <0; r;log (1 + |f(k)|2“)>
I
< 1+ 2¢

< 400, (6.3.10)

log T (r, ro; U + |f(k)|2“v>
4

€
+ logr.
I

By (6.3.3) and the induction assumption, it follows that

Za,ﬁ hozﬁvzfakvzfﬂk

LU | S Tp(r, L) + 1% (6.3.11)
(1 + 20 haﬁfakfﬁ’C)

I T | rro;
Take p € R with 0 < p < 41k. Using the elementary inequality

2p vzf(k’) 2 2u 2u
2 ‘sz(k)‘ < ((1|+ |f(k)||2)2> + ((1 + |f(k)|2)2)
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and the Holder inequality, we have

v, fR) 2 21
QT@WWJWWQSTQ“(J+WJW>”

+7 (r, T0; (1 + |f(k)|2)4# v)

2p
VLR C\1-2u
< (7"7 Tos3 (1 + |f(k)|2)2v T(Ta TO,U)

and hence
| T (1“7 r0; |sz(k)|2“v) < (Ty(r, L)+ 7’2)2“7”2(1_2“)
1
+ 7t + Ty (r, L)4k+2“.

Therefore )
k
| e (rros |92 £ O o) < Ty, L) 20 40 (6.3.12)

The induction assumption implies
| 7 (r, T0; |f(k)|4“v) <c {Tf(r,L)4k“ + 7"4} .
So our estimate for 7 (r, ro; | f**+1)|?#v) is given by
I T (roros L7 0P0) < {T (v m0s |2 f 9 20) T (7051 40)
+7 (r, r0; |f(k)|4“v>}

1
< Ty D" T DT (i)

1" L 4
<" {Ty(r,L) Bpr® s,

and hence Theorem 6.12 is proved. g

6.3.2 Generalization of Siu’s theorem

Siu [363] uses the inequality in Theorem 6.12 to prove a defect relation. A special
case of Siu’s Theorem is presented by Nadel [285] as follows:

Theorem 6.13. Let f : C — N be a transcendental holomorphic mapping into
a smooth projective algebraic variety N of dimension n. Let Ky @ E~"("=1/2 pe
ample. Then either f(C) is contained in the pole divisor (t) of the meromorphic
connection D or the image of f is autoparallel with respect to D.
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Further, Nadel notes that in Theorem 6.13, the hypothesis on transcendence
of f is not needed because one may always replace f(z) by f(e*). We can omit the
ampleness condition of the line bundle in Theorem 6.13 and obtain the following
result:

Theorem 6.14 ([167]). Let f : C — N be a transcendental holomorphic mapping
into a smooth projective algebraic variety N of dimension n. Then either f(C) C
B(L) for any positive line bundle L on N, or the image of f is autoparallel with
respect to meromorphic connections on N.

Proof. Assume, to the contrary, that f(C) ¢ B(L) for a positive line bundle L on
N and

f’/\f(Q)/\~--/\f(”)§é0

for a meromorphic connection D on N. The condition f(C) ¢ B(L) implies
B(L) # N. Since f is not rational, by Proposition 2.82, we have

Af(oco,L) = lim Ay(r,L) = oo. (6.3.13)

T™—00

Since any line bundle on C is trivial (cf. Theorem 2.16), the pullback f; *) o
f® under f can be identified with a section of f*(T(N)) under the 1dent1ﬁcat10n

FH(E* @ T(N)) = f*(T(N))
such that )
FEAFD A A f £,
By Lemma 2.86 and (6.3.1), the holomorphic field
o= FD g

on f over C of degree n — 1 is effective, that is, ¢ induces an effective Jacobian
section F, of f. Define a non-negative function g by

Fo["] = ¢ f* (), (6.3.14)

where ¥ = ¢1(L, k) > 0. By Lemma 2.87, we have g < |p|, where the metric of
f*(T(N)) is induced by the metric on N defined by 1.
By Lemma 1.55, there exists a constant ¢ > 0 such that

57 A A

<ol |

and so an elementary inequality implies

713 n—1 2
gnzlglf]gm...”fn) o ¢ Z’f(k)’, (6.3.15)
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Take p € R with 0 < p < 4n1,1. By Lemma 2.92, we obtain

1 .
[ C<0;T;logg>=n2u <C<0;r;10gg"2*1>

n2— l(C <0;r;logi ‘f(k)‘2ﬂ> +0(1)
H k=2

IN

-1 n
<" (142¢)logT r7r0;2|f(k)|2“v +4elogr ;.
2u k=2
(6.3.16)
Further, by Theorem 6.12, we have
|| C(0;7;logg) = O(log T¢(r, L)) + O(logr). (6.3.17)
By Theorem 6.2, we obtain
| T¢(r,L) = O(logr). (6.3.18)
Therefore we have T L)
Ag(oo, L) = lim "
sloo, L) = Hm =y . <
which contradicts (6.3.13). Hence Theorem 6.14 is proved. O

Theorem 6.15 ([167]). Let f : C — N be a holomorphic mapping into a pseudo-
canonical smooth projective algebraic variety N. Then either f is algebraically
degenerate, or the image of f is autoparallel with respect to meromorphic connec-
tions on N.

Proof. If dim N = 1, Theorem 6.15 follows from Theorem 4.57. Thus we may
assume dim N > 1. If f is rational, then it is degenerate, so we may assume that f
is transcendental. It is well known that there exist very ample line bundles over the
projective algebraic variety IV, which are also positive. Since N is pseudo canonical
(or general type), according to Lemma 2.30 (or see Kodaira [213], Kobayashi and
Ochiai [210], Lang [228]) any very ample line bundle L satisfies Py (L) > 0 for some
sufficiently large k. Hence we have B(L) # N, and consequently Theorem 6.15
follows from Theorem 6.14. 0

If we use Lemma 2.85 to construct effective Jacobian sections by replacing
Lemma 2.86 in the proof of Theorem 6.14, we can prove the following fact: If
f : C — N is a non-constant holomorphic mapping into a pseudo canonical
smooth projective algebraic variety N of dimension n with holomorphic vector
fields Z1, ..., Z, on N satisfying

Z=0\ N NZy 20,
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then we have either f(C) C supp((Z)) or f(C) C B(L) for any positive line bundle
L on N, where (Z) is the zero divisor of Z.

In fact, assume, to the contrary, that f(C) ¢ supp((Z)) and f(C) ¢ B(L) for
a positive line bundle L on N. By using Lemma 2.85, then there exists A € Ji',,_
such that a holomorphic field

o=2xp=(Zxy N+ NZxn—1))s

on f over C of degree n—1 is effective for f. Hence ¢ induces an effective Jacobian
section F, of f which, further, defines a non-negative function ¢ by (6.3.14). By
Lemma 2.87, we have g < |¢| < ¢ for a constant ¢. Then a contradiction follows
from Theorem 6.2.

Generally, there is no such Z € I'(N, K}%). For example, when N is canonical,
that is, Ky is ample, then K is positive, and so I'(N, K% ) = 0 by the remark
after Theorem 6.1.

6.4 Bloch-Green’s conjecture

Let H be the hyperplane bundle on P™ and let X, ..., X,, be homogeneous coordi-
nates on P". Fix a positive integer d. A holomorphic section of H? over P* will be

identified with a homogeneous polynomial of degree d in homogeneous coordinates
X0y Xn-

Take a family
{50,81,...,8,} CD(P", H?)
such that

8si
By = det (axj) £ 0. (6.4.1)

Next we follow Siu [363] and Nadel [285] to construct a meromorphic connection
D on P™. Fix a, 8 with 1 < «, 8 < n and consider the system of equations

50 so O1s0 -+ Onso |
dts | 1| = z - (6.4.2)
Sn Sp 018, -+ OnSn I'ts
where 5
X;
ai = s Ri— ) | = ]-7 )
02, z X, i n

It is clear that the determinant of the square matrix in (6.4.2) is equal to

1 (n1)(d—
B:= Xy B, 20,
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Thus we can solve I'? 3 for each choice of «, 3 to obtain a symmetric meromorphic
connection D on the coordinate patch Uy = {Xy # 0} C P". Note that we do
not use I'); to define D. By using the transformation law for a connection we
can get easily all the components of the connection for other coordinate charts
UZ':{Xi?éO}C]Pm,Z'ZI,...,TL.

We use Cramer’s rule to write

A'Y

y o _ ap
Tls= B
where A} 5, B are polynomials of degree < (d—1)(n+1)+1 in the inhomogeneous
coordinates zi,...,z, on P™. By Theorem 6.9, there exists a global holomorphic
section
te (P, HI™) — {0}, g<(d—-1)(n+1)+1 (6.4.3)
such that tD is holomorphic. If s is any linear combination of sg,...,s,, then
(6.4.2) gives
0aOps = T1,0,5+T9 s, (6.4.4)
il

which is the same as (6.2.2) with Cpg = I‘gﬁ and A, = 0= B,.

Theorem 6.16 ([167]). Let W be a hypersurface of degree d in P™ with d > n + 2
and let f : C — W be a holomorphic mapping. Then f is algebraically degenerate.

Proof. Without loss of generality, we may assume that W is irreducible. The line
bundle [W] is of the form H?. The adjunction formula immediately implies that

KW == (K]Pn ® [W]) |W == Ldinil,

where L = H|w. Then d > n+2 is precisely the condition that makes the canonical
bundle Ky ample. The line bundle

K‘I/CV ®L* — Lk(d—n—l)—l
also is ample for d > n + 2, k > 2. Hence
B(L) C Ba(L) £ W.

The hypersurface W is the zero locus of a section s’ of H?. However, all
sections of H? are defined by homogeneous polynomials of degree d in homogeneous
coordinates X, ..., X, on P™ and so

W = (s') = (G(Xo, ..., Xn) = 0)

for some homogeneous irreducible polynomial G of degree d. Observing that

d
dim (P, HY) = (”+ ) >n+l,
n



446 Chapter 6. Holomorphic Curves in Canonical Varieties

we can choose sg, 81, .. ., 8, in I'(P?, H?) such that
s =coso+ci51+ -+ CnSn, (6.4.5)
where cq, ..., c, are complex numbers, not all zero, and such that
8si
By = det 0.
0T <3Xj> 7
For example, without loss of generality we may assume that
0s'
# 0,
09X

and so we can choose

Thus we have
, 05’

By = d"(X; - ..Xn)df X,

Z 0.

If f(C) C {aa;'(; = 0} or f(C) C {X; =0} for some i € {0,1,...,n}, then we are

done. So we may assume that

1O { gy, =0} SO & 1K= 0} (1=0.1,00.0m)

By using (6.4.2), we can define a meromorphic connection D such that ¢D
is holomorphic, where ¢ is given in (6.4.3). In particular, s’ satisfies the equation
(6.4.4). Hence W is totally geodesic. Then D restricts to a meromorphic connection
D|w on W, and moreover that (¢|w )D|w is holomorphic on W.

If f(C) C B(L) or f(C) C (t) N W, then we are done. Assume now that

F(C) € B(L), f(C)Z(HnW.
Theorem 6.14 implies
f//\f///\.__/\f(nfl) =0.

Pick zop € C such that f(z9) € W — (t). Let V be the vector space of all s €
I'(P", H%) such that the following conditions hold:

(i) s is a complex linear combination of s, ..., sp;

(ii) s(f(20)) = 0;
(iit) (2s)(fP(20)) =0fori=1,2,...,n—2.
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Here 2 is any meromorphic connection on H? which is holomorphic in a neighbor-
hood of f(zp). Since there are n + 1 linearly independent sections s, ..., s, from
which to form s (see the condition (i) above) but only n — 1 constraints (given by
the conditions (ii) and (iii)), we see that dim V' > 2. Pick one particular s” € V
such that s’ and s are linearly independent. By Theorem 6.11, we have

s"(f(z)) =0, z € C.
Thus f(C) C W N (s”). The proof is completed. O

Classically, Theorem 6.16 was known for n = 1 and n = 2 respectively. For
the case n = 3, this is a question due to A. Bloch [27]. Generally, Theorem 6.16
was stated as a conjecture by Mark Lee Green [121], who proved it for Fermat
hypersurfaces of degree at least n?. A.M. Nadel [285] also obtained it for certain
hypersurfaces of high degree.

6.5 Green-Griffiths’ conjecture

In this section, we prove a more general result than Theorem 2.99.

Theorem 6.17 ([183]). Let f : C — N be a holomorphic mapping into a pseudo-
canonical projective algebraic variety N. Then f is algebraically degenerate.

Proof. In general, the variety N may have singularities. However, by resolution of
singularities, we may assume that N is smooth. Also it is sufficient to work on a
component of N. Without loss of generality, we may assume that N is connected,
and so is irreducible.

Let N be of the dimension n. We know that N can be embedded into a
complex projective space, say, N C P*"*™ for some positive integer m > 1. Let
H be the hyperplane bundle on P**™ and let Xy, ..., X, 1,» be homogeneous
coordinates on P*"*™. By Theorem 1.65 or Theorem 1.64, we may assume that
the variety N is expressible as the zero locus of m linearly independent sections

sh,...,sl of Hh, ... H9m. Here s is given by a homogeneous polynomial in

rem

Xo, .-+, Xpntm of degree d; for each i = 1,...,m such that on NV,

0s;
rank ')=m
(an
since N is smooth. Further we may assume that each s; is irreducible since N is

irreducible.

There exists an integer ip with 0 < 49 < n + m such that s},...,s},,X;
are linearly independent. Without loss of generality, we may assume iy = 0. If
f(C) € Nn{Xy = 0}, we are done. So we may assume that f(C) Z NN{X, = 0}.

Further we can assume that

d1:d2:~-~:dm2:d7
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otherwise it is sufficient to consider

sl = Xg~%s, i=1,...,m, d=max{d}.
T

79
Observing that

n+m+d

dim(P"t™ HY) = (
n—+m

) >n+m+1,

we can choose 5, 81, - ., Sptm in D(P?"™ H9) such that
/
$; = CinS0 + €151+ + CintmSntm, (6.5.1)

where cjo, ..., ¢ ntm are complex numbers, not all zero, and such that on N,

8si
BO = det <8X]> 5_'50

Thus according to the construction in Section 6.4, we can define a meromorphic
connection D on P**t™ such that ¢tD is holomorphic, where

te D(P™t™ HIT3) — {0}, g<(d—1)(n+m+1)+1. (6.5.2)
In particular, by the construction of D we have

Oadps; =Y T0 0,8, +T0ss;, i=1,...,m. (6.5.3)
vy

By using (6.5.3), similar to the argument in Section 6.2, we may show that N is
totally geodesic. Thus D restricts to a meromorphic connection D|y on N, and
moreover that (¢|5)D]|n is holomorphic on N.

Set L =H|y.If f(C) C B(L) or f(C) C (¢) N N, then we are done. Assume
now that

f(C)Z B(L), [f(C)Z(t)NN.
Theorem 6.14 implies
PN A A FT =0,
Pick zp € C such that f(z9) € N — (¢). Let V be the vector space of all s €
['(P"*t™, H%) such that the following conditions hold:

(i) s is a complex linear combination of s, ..., Sptm;
(ii) s(f(20)) = 0;
(iit) (2s)(fP(20)) =0fori=1,2,...,n— 1.
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Here 2 is any meromorphic connection on H? which is holomorphic in a neighbor-
hood of f(zp). Since there are n+m+1 linearly independent sections so, - . ., Sntm
from which to form s (see the condition (i) above) but only n constraints (given
by the conditions (ii) and (iii)), we see that dimV > m + 1. Pick one particular
Spy1 € V osuch that s7, ..., s, are linearly independent. By Theorem 6.11, we
have

S;n+l(f(z)) = 07 zeC.
Thus f(C) € NN (s)],,1)- The proof is completed. O

Originally, Theorem 6.17 was a conjecture due to M. Green and P. Griffiths
[123]. In [228], S. Lang formulated the Green-Griffiths conjecture into the form
in Theorem 6.17. McQuillan [265], Lu and Yau [249] proved Theorem 6.17 for
surfaces with ¢ > cp. In fact, according to the proof of Theorem 6.17 we can
obtain the following result:

Theorem 6.18. If f : C — N is a holomorphic curve into a projective algebraic
variety such that the image of f is autoparallel with respect to a meromorphic
connection of N, then [ is algebraically degenerate.

Theorem 6.17 implies directly the following result:

Theorem 6.19. If N is a pseudo-canonical projective algebraic variety such that
all subvarieties are pseudo-canonical, then N 1is hyperbolic.

Proof. By Theorem 6.17 and the assumptions of N, each holomorphic curve f :
C — N must be constant. By a theorem of Brody [38], then N is hyperbolic. O

Theorem 6.19 is Lang’s conjecture [228] in which he observed that Theo-
rem 6.19 can be deduced simply by Theorem 6.17.

Let N be a non-singular complex projective algebraic variety and g(N) the
dimension of the vector space of holomorphic 1-forms on N, that is,

g(N) =dim (N, T*(N)),

and ¢(NN) is called the irregularity of N. Related to Theorem 6.17, there is the
following result:

Theorem 6.20. Let N be a non-singular complex projective algebraic variety with
q(N) > dim N. Then any holomorphic curve f : C — N 1is algebraically degen-
erate.

Theorem 6.20 was called Bloch’s conjecture. Bloch [27] stated the theorem
with an incomplete sketchy proof. Ochiai [307] filled the gaps substantially and
proved it in several special cases. The final step for the general case is due to M.
Green. Lately, M. Green and P. Griffiths [123] gave another proof by using certain
metrics. Kawamata [200] proved the same result by a different method. A new
proof was given by McQuillan [264].
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In fact, according to Ochiai [307], if N is a connected projective algebraic
manifold of dimension n with irregularity > n, then we can construct a regular
rational mapping (Albanese map)

a: N — A

into a certain Abelian variety A such that X = «(N) is in good position in A, that
is, X # A and X satisfies the following conditions:

(I) if w is a non-zero regular rational 1-form on A, then the restriction w
non-zero, where X,¢, is the set of regular points of X;

Xreg is

(IT) if B is a connected algebraic subgroup of A such that B leaves X invariant,
then B is either {0} or A.

By Ueno’s theorem (see Theorems 1.78, 1.79), the condition (II) is equivalent to
saying that the proper subvariety X of A is pseudo-canonical, and so Theorem 6.17
can be applied.

On the other hand, by Kawamata [200] or Smyth [369] for non-singular X,
there exists a system {w1,...,wi+1} (I = dim X) of regular 1-forms on A such that
the restriction of the system of [-forms

{wl/\~--/\wj,1/\wj+1/\~--/\wl+1 |j:1,...,l+1}

onto X;ce is linearly independent. Let ¢ : X — X be the resolution of the
singularity of X. If cwo f(C) is in the singular locus of X, f is clearly algebraically
degenerate. If

ao f(C) N Xyeg # 0,

there exists a holomorphic curve f :C— X such that ¢ o f = ao f. Hence, by
Ochiai [307], the image of the holomorphic curve f : C — X is contained in a
canonical divisor of the form

+1
a;it*wi A ANFwi_ g ANFwigg A AN Cwie =0
J 1 j—1 7+1 I+1 .
Jj=1

Therefore f is algebraically degenerate.

6.6 Notes on Griffiths’ and Lang’s conjectures

We continue with the situation f : M — N of Section 2.12, where we will take
M = C. In terms of a local coordinate system wy, ..., w, of N we may write

: V-1 }
v =Ric(¥) =, azg Rapdwe A divg.



6.6. Notes on Griffiths’ and Lang’s conjectures 451

The singular positive form v induces a metric on N — D defined by
hy =2 hapdwadig
a,B
which has a “singularity” on D. Further, we may define the curvature tensor of

the singular metric hy on N as

OFhas 5 Ohay Ohus

Ka = - )
7107 dw, dws Ow., Ows

where (h*”) is the inverse matrix of (hag).

Lemma 6.21 ([184]). The holomorphic bisectional curvatures of hy is bounded
above.

Proof. By using (2.12.4), we have

c1(L, k) dlog |s;]2 A d¢log |s;|2
Ric(¥) =x +2 ” " 6.6.1
Z1og| 5512 Z (log |s512)2 (66.1)
where
X = Ager (L, k) + Ric(Q).
Around any point « € D, one can choose coordinates (wq,...,w,) in a neighbor-

hood U of z such that = = (0,...,0) and for instance D; = (w;) in U, this being
because D has normal crossings. Hence we can write s; = w;X;, where x; is a
non-zero holomorphic section of L over U. Thus

log |s;|2 = log |w;|* + logb;,

where b; = |Xj|i > 0 is a C* function. We can choose w; and x; properly such

that the connection matrix
0 = 0logh; = > _ Ou, logb;dw;
i=1

vanishes at z, which also implies
0 =0logh; = > _ O, logbjd;
i=1

vanishes at x.
Note that

V—=1dw; A dw;

dlog|s;|2 A d°log|s;|2 = o Juyl?

+ 0j. (6.6.2)
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The form

0j = \/—1 <6bj Aébj i 6bj /\du?j n dwj /\8bj>

21 b? bj’lI}j wjbj
has the property that |w;|?p; is a smooth form whose coefficients vanish on D;.

Thus the matrix (hqg) has the following form:

204, logb;

* e @, 2 J + * ce k
J
204, logb; 2 20, logb;
A gl + ¥ T (663)
" 20w, logb] + % »

’LU]’LL

where
u; = log |s;|2 = log |w;|* + log b;.

Simple calculations show that
0 1 B 1 2 2 ouy
ow; \ |wj[u3 wjoiu  wiwiud  ws|2udb; 0wy’

o ([ 1\ 2 2 o,
dw; \ |wj[*u3 wiju? wQU’JJ;’ [w [Pudb; Ow;’

3 ity J
and
2 1 B 1 n 4 " 6 T
Ow; 0w, |wj|2u? _|1Uj|4u? |wj|4u§? |wj|4u;¥ M55
where
2 oy 6 ob 2 o 6 ob;
W wgatudb; oy wwtudb; ow;  wdinulh, 0w wijuth; 0w,
2 9%logh; 6  Odlogb; dlogb;

B |wj|2u?- 8wj6wj |wj|2u§ 8wj 8@

Since §(x) = 0 = 6(x), the matrix (6.6.3) yields

2H;; 1
Aethes) = oz {1 e <U> }
J J

near x, where Hj; is the algebraic minor of h;;. Thus

H; 1 1
i — i 2,2
h det(hag) 2|w]| {1+O<u?>}'
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Then
Ohj; Ohjj 4 16 16 1
= 6,4 6,5 6,6 T O dy5 015
6wj 6wj |U/J| U, |U/]| ujy |wj| U |w3| W5 u;
and so )
Kjjjs = o st {=4+o(L)}-

We consider cases (a, 8) # (4,7), (7,0) # (4, 7). Since

1
Hyj =0 2 |V 7é Js
|wj|uj

then =
v _ vio _ . ;
det(haﬁ) O(leD (V#j),
and hence
Kaopys = O(1)

near w; = 0.
Next assume (7,0) # (4, 7). It is easy to show

1
J
but
Kjjye = O(1)

near w; = 0.
Take two non-zero continuous tangent vector fields X and Y of T(M) over

U, and write
X=3 kg V=Y,
= - kawk7 = k nkawk'
Then when p € U — D, the holomorphic bisectional curvature determined by X,
and Y,
208,75 Kapys€alpiyns
(Eaﬁ haﬁifaifﬂ) (2%5 hwnws) ,

is well defined. The above argument shows

K(XZHY;?) =

K(X;,Y;) = limsup K(X,,Y,) < +oc.
U—-D>p—=zx
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When z € N — D, s; = x; vanishes nowhere near x, but we have to check
the case b;(z) = |x;(z)|2 — 0. Now we have

-1 _
dlog|s;j|2 Ad°log|s;|2 = \/2 Ologb; A dlogh;.
s
Note that

0 [ Ow,b;du,b; 20,0, 0;0,b; 0, b 1 D5 (D, 0Oy b;)
2,2 - 3,,2 L+ +
O0ws bjuj bjuj

) 24,2 ’
U b]uj

0 6wabj8wubj _28wabj8wubj8wwbj 14 1 4 8w7(8wabj8wubj)
dw, b?uf b?u?

) 2.2 ’
U bjuj
vanish at z, and

02 < awa bj aﬁ)@ bj

1
ow 005\ B2 ) = y2u3 (O Ousbs000uubs + Do, BucbiDoDasbs) + G

where (; vanishes at x. Denote the quantity in brackets by K,g+s. Then

Z Raﬁ%ﬁaéﬁ”’ﬂ% =0,
@,B,7,8

and so
limsup K (X,,Y,) < +oo.
bj (I)HO

Finally, we have

a Kopys€a )
K — sup Z ,B,7,0 By 5 5577’}’77
N,§m (Za,ﬁ haﬁ§a§ﬁ> <2775 h’yén’yné)

< o0,

and so Lemma 6.21 follows. O

Let D be a meromorphic connection for T(N) with pole order E such that tD
is holomorphic for some ¢ € I'(N, E) — {0}. We will use the notions in Section 6.3.

Lemma 6.22 ([184]). For k > 1, we have

1
T (r, ro; dd°log(1 + |f(k)|2)> < Ny(r,D)+ 2C(O;T; log(1 + |f(k)|2)>

1
—2C<0; ro;log(1 + [ F*]?)).
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Proof. Here we show only the case k = 1. Other cases can be proved similarly.
Note that f*(D) consists of discrete points in C. Without loss of generality, we
may assume that f*(D) N C(0;r) = 0. Set

supp(f* (D)) N C[0; 7] = {21, ., 21}

Let C(z;;€) denote the open disc centered at z; with radius €. Choose a positive €
sufficient small such that

C(z;e) C ClOs7], i =1,...,1.
By using the symbols in the proof of Lemma 6.21, and set
fa=waof, a=1,....n

There exist integers [; and m,; with

m; >0, 0<[; < 2Nf*(D)(Zi)v i=1,...,1,
such that

Gi(z)

(log |z — 22 )2

hold on C(z;;¢€), by choosing ¢ sufficiently small if necessary, where G; is a con-
tinuous positive function. Applying (6.1.1) to the domain

' (2)? =

= s i=1,...,1
1

l
A=C(0;r) — U Clzs; €],

i=1
we obtain

/12
/ Alog(1 + |f'|*)dxdy = / Olog(1 +1f] )ds
A C(0;7) or

B dlog(1 + |f| ),
Z/SC[Z“ s. (6.6.4)

Simple calculation shows that

12
lim Olog(L+[f'FF) . _

=27l 1=1,...,1.
€0 JaC zi5¢] O

Thus from (6.6.4), we obtain
1 1 72
/ Alog(1 4+ |f'|*)dxdy < / Dlog(1 + | )ds+47rnf(r,D),
C(0;7) C(0;7) or

and hence our claim follows according to the proof of (6.1.3). O
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We choose a finite open covering B = {W,U,...} of N with coordinates
w = (W1,...,wy), 4 = (U1,...,Uy),..., and the coefficients I'Ss, B9, of the
meromorphic connection D, respectively. Let xyw be a holomorphic local frame of
E over W and write t = hy xw. We can define holomorphic vector fields of T(V)
over W by

0
w _ «@
X’y& - Z hWI"yzS 8U)a’
and then extend Xffg continuously to vector fields of T(N) over N.

Theorem 6.23 ([184]). Let f : C — N be a non-constant holomorphic mapping.
Then there exists a positive constant ¢ such that

| C <0;r;10g+ |f(k)|> < max {2(4]“2 -1+ 170} R¢(r) 4+ O {log(rT¢(r,L))}
+ cmax{k — 2,0} log™ R (r). (6.6.5)

Proof. Since f is non-constant, then T (r, L) — 400 as r — +oo. Without loss of
generality, we may assume that T¢(r, L) > 1, and that

R = tr(y) = tr(Ric(¥)) > 1.
First of all, we consider the case k = 1. Lemma 2.94 yields
T (r, 70; |f’|2v) < Ty(r, L).

By Lemma 2.92, we obtain

1
I C{osmlogh ) < C(0:rlog(1+|f%))
1
< (2+s> log T (r,70; (1+ | f'[*)v) + 2¢logr
<

1
(2 + s) log Ty (r, L) + O(log r),

and hence the inequality (6.6.5) follows with k = 1.
Next we consider the case k = 2. The inequality (6.3.4) has the following
form:

fOP =MD f'P < eIV P+ D [ D 1X5%5 , (6.6.6)
weB \ v,

where |f'|; is the norm of f’ with respect to the Hermitian metric on N induced
by ¢1(L, k). By Lemma 6.21 and Lemma 6.22, the estimate (6.3.6) holds for the
singular metric, and so we can obtain (6.3.7) again. Thus Lemma 2.92 implies

| C(0;r;1og™ [V f') < Oflog Ty(r, L)} 4+ O(log ).
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Note that when 0 < 4 < 1, by the Holder inequality we have

T (r,70; |f’|iv)4u T (r,ro;v)

Ty(r, L)®* + 1. (6.6.7)

T (ryros [f/[¥0) <
<

Then Lemma 2.92 yields
I C(0sm3log™ |f|n) < O{log Ty (r, L)} + O(log ).

Hence by using (6.6.6) and Lemma 2.104, we can prove (6.6.5) for the case k = 2.
When using induction to consider the case k + 1, the inequality (6.3.9) be-
comes the following form:

4
2
R R A R I S P 4
weB \ 7.0
2
reflrf ez i) (663

According to the remarks for the case k = 2 and the proof in Theorem 6.12, the
inequality (6.3.11) has the form

(VB2
| T | rro; ( |f(’f)|2)2v < Ty(r,L) + Ry (r) + 12 (6.6.9)
14

if we do not use Lemma 2.92; but directly estimate (C<0;r;log (1 + |f(k)|2)> by
using the induction assumption. Since

1 R (k) |2
| C{osmog” [v.fW]) < 2@<o;r;log+ Nk >

(L4170
+C <0; r;log (1 + |f(k)|2)> ,

then (6.6.9), Lemma 2.92 and the induction assumption imply

| C <0;r;log+ |vzf<’f>|> <2 (2(4“ 1)+ 1) Ry(r) (6.6.10)
+ O {log(rTs(r, L))} + O(log™ Ry (r)).

Hence the inequality (6.6.5) of case k+1 follows from (6.6.8), (6.6.10), Lemma 2.92,
Theorem 6.12, Lemma 2.104 and the induction assumption. U

Now we can estimate the term M(O;r;logg) in Theorem 2.95 for the case
M =C.
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Theorem 6.24 ([184]). Let N be a compact complex manifold of dimension n. Let
L be a positive holomorphic line bundle on N. Take 0 # s; € T'(N,L),j =1,...,q,
such that the divisor D = Dy + ---+ Dg has simple normal crossings in N, where
Dj = (s;). Let f : C — N be a holomorphic curve such that f(C) sj_l(O) for
all j. Assume that the image of f is not autoparallel with respect to a meromorphic
connection of N. Then

M=

| qTy(r,L) +Ts(r, Kn) < > Ny(r,Dj) — Nram(r, ) + cn By (r)

O(log™ Ry(r)) + O{log(rTy(r,L))}, (6.6.11)

+Q.

where )
Cn = 9(5 x 4" —6n 4 1).

Proof. Since the image of f is not autoparallel with respect to a meromorphic
connection D on N, then

FAFAON A £ (6.6.12)

where the exterior product f'A f) A---A f(") is taken in the holomorphic tangent
bundle T(N) of N so that it defines a holomorphic mapping from C to the line

n(n—1)

bundle £ 2 = ® Ky of N.

Since any line bundle on C is trivial, the pullback £} of f®) under f can
be identified with a section of f*(T(N)) under the identification

f1(B*' @ T(N)) 2 f*(T(N))

such that )
FEAFD A A f £ 0,
By Lemma 2.86, the holomorphic field

on f over C of degree n — 1 is effective, that is, ¢ induces an effective Jacobian
section F, of f. Define a non-negative function g by

Fy[p" = ¢ (), (6.6.13)

where ¢ = Ric(¥) > 0. Lemma 2.87 also is true for the singular metric hg on N.
Thus we have g < ||, where the metric of f*(T(N)) is induced by the singular
metric on N defined by the form .

By Lemma 1.55, there exists a constant ¢ > 0 such that

g< |7 A n g

<cJ] ’f(k)’ . (6.6.14)
k=2
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Thus we obtain an inequality

n

C(0;rilogg) <. C <0;r;log‘f(k)‘> +Oo(1). (6.6.15)

k=2
The inequality (6.6.5)) implies

| C(0;r;logg) < cnRy(r) + O(log™® (rTy(r, L)) + O(log™ Ry(r)),  (6.6.16)
and hence Theorem 6.24 follows from Theorem 2.95. O

If there exists a meromorphic connection of N, Theorem 6.18 implies that
there is a proper algebraic subset Zp ¢ of N depending on f such that the image
of f is not autoparallel with respect to the meromorphic connection of N if f(C) ¢
Zp,s. Thus Theorem 6.24 implies the following result:

Theorem 6.25. Let N be an algebraic manifold of dimension n with a meromorphic
connection and let D be an ample divisor on N with normal crossings. Let f :

C — N be a holomorphic curve. There exists a proper algebraic subset Zp s of
N such that when f(C) € Zp, s, we have

I Ty (r, [D]) + Ty (r, Kn) < Nj(r, D) = Nram (7, ) + ca By (r)
+ O{log(rTy (r, [D]))} + O(log™ Ry(r)).  (6.6.17)



Chapter 7

Riemann’s (-function

In this chapter, we will give a few necessary and sufficient conditions on Riemann’s
hypothesis by using several formulae in analytic function theory, say, Nevanlinna
formula, Carleman formula, Levin formula, and so on. Since these formulae can
be used to define characteristic functions similar to Nevanlinna’s fashion based
on Jensen’s formula, we hope to use value distribution theory derived from these
formulae to study Riemann’s hypothesis. The main idea will be exhibited in the
following sections. It is interesting to find connections between Diophantine ap-
proximation and value distribution theory derived from these formulae.

7.1 Riemann’s functional equation

This tract is intended for readers who already have some knowledge of the zeta-
function and its role in the analytical theory of numbers; but for the sake of
completeness we give a brief sketch of its elementary properties (or see [394]).

The function is defined by the Dirichlet series
((s)=)_n"*, seC (7.1.1)
n=1

The series is convergent, and the function analytic, for Re(s) > 1. We have also
Euler’s infinite product representation

() =JJa-p"")"" Re(s)>1, (7.1.2)

where p runs though all prime numbers. From the convergence of the product
(7.1.2) one deduces that ((s) has no zeros for Re(s) > 1.
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Summing
n°IT'(s) :/ 5 e " dy
0

with respect to n and inverting the order of summation and integration, a third
representation of the function is obtained as follows:

o] ‘,Esfl
((s) = F(ls) /0 o ldfv7 Re(s) > 1. (7.1.3)

By using (7.1.3), it is easy to show the following representation:

1 [/ 1 1 .
= - 7 0 <R 1. 714
€6 = piy [ (b)) e s 0<Re(s) < (714
Further, (7.1.3) can be used to extend the domain of definition of ¢ to all C. We
replace the integral by the contour integral

(1 —s) / (—w)*~t
s)=— dw, 7.1.5
¢(s) 2mi c ev—1 ( )
where the contour C' starts at infinity on the positive real axis, encircles the origin
once in the positive direction (but excludes all the poles of 1/(e® — 1) other than
0, i.e., the points +2im, £4im,...) and returns to its starting point. Here we define

(—w)*~" = exp{(s — 1) log(~w)},

where the logarithm is real on the negative real axis. This formula is deduced
from (7.1.3) in the case Re(s) > 1 by shrinking the contour C into the real axis
described twice, and taking into account the different value of the logarithm on
the two parts. This integral is uniformly convergent in any finite region, and so
represents an entire function of s. This enables us to continue ((s) over the whole
plane C. Hence ((s) is analytic for all values of s except for a simple pole at s =1,
with residue 1. Since

w Y= 1B
ew_]_ w+z 2n7

where the coefficients B,, are rational numbers, called Bernoulli numbers, by the
theorem of residues one finds the following values of {(s):
B

C(0) =~y C-2m) =0, CA—2m) = (-1 )" (m=1,2,..).  (7.16)

The points z = —2, —4, ... are called the trivial zeros of {(z). Euler proved

22m— 17T.2m BQm

oyt =120, (7.1.7)

¢(2m) =
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Deform the contour C into the contour C,, consisting of the square with
centre the origin and sides parallel to the axes, length of side (4n + 2)7, together
with the positive real axis from (2n + 1) to infinity, in which it includes the poles
of the integrand at +2im, ..., £2nimw. The sum of the residues at these points is
found to be

- s
2 2mm)* " Lsin .
mZ::l( ) 5
If Re(s) < 0 we can make n — oo; the integral around C,, tends to zero, and one
obtains Riemann’s functional equation

C(s) = 2°7° Lsin W;F

(1=s)¢(1—29),
which is equivalent to the functional equation

C(1—s)=2"%1"%cos 5 T'(s)¢(s). (7.1.8)
By continuation, this holds for all values of s. It follows from this that {(s) has no

zeros in the half-plane Re(s) < 0 except simple zeros at s = —2,—4,.... Writing

s T
§(s) = 5 (s =50 (5 ) (o), (7.1.9)
the functional equation (7.1.8) takes the simple form

£(1 - s) = £(s). (7.1.10)

Next we introduce the original proof of the functional equation (7.1.10) due

to Riemann. Riemann wrote only a single, ten-page paper in number theory [324].

In it he not only initiated the study of ((s) as a function of a complex variable, but

also introduced the Riemann Hypothesis and outlined the eventual proof of the

prime number theorem. At the core of Riemann’s paper is the Poisson summation
formula

> fm)y=>" fn), (7.1.11)

neZ nez

which relates the sum over the integers of a function f and its Fourier transform

fla) = [ sy, (7.1.12)

The Poisson summation formula is valid for functions f with suitable regularity,
such as Schwartz functions: smooth functions which, along with all their deriva-
tives, decay faster than any power of I;I as |z| — oo (cf. [212], 11, § 4, Proposi-

tion 6).
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Riemann’s own, rigorous argument proceeds by applying the Poisson sum-
mation formula (7.1.11) to the Gaussian

flx) = el >0,

whose Fourier transform is

f)= e

The Gaussian is a Schwartz function and can be legitimately inserted in (7.1.11).
Thus one obtains Jacobi’s transformation identity

o(iz) = \/13:9 <Z> (7.1.13)

T

where

1 , 1 = .
9(2) = N Zeﬂ'm2z _ ) + Z eﬂ'm2z (7114)
n=1

neEZ
is holomorphic in the upper half-plane H = {z | Im(z) > 0}; moreover,

-1 Z\ 2
9( ) ) - (Z) 0(z), 0(z+2)=0(2). (7.1.15)
By using the expression,

I(s) z/ ¥ le™®dx, Re(s) >0,
0

Riemann then obtained an integral representation as follows:

Z/ (mn?) Sz e % dx

n=170
> s—1 . 1 1

= x 0(ix) — . ) dx, Re(s)> .. (7.1.16)
o 2 2

7 °T(s)((29)

Note that

572 0(ix)dx —
/0 x (ixz)dx 95
> —s—1 i _ 1
/1 x 0 (x) dx 9
R 1 1 1
_ ;—s—1 - _ _ _
= /1 x (0(233) 2) dx 95 " 1—9s"

Indeed, replacing s by s/2, the above expressions read

N
iy
8
w
|
—
/N
>
—~
.
8
S~—
|
[N
~__
U
8
Il

&(s) = ; + ;(s - 1)/100 (xéfl +g;155*1) (G(i:v) - ;) dz. (7.1.17)
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Further for > 1, we note that

—TT

e
1—e 7™

f(iz) — ; <y e = =0 (e7™) (7.1.18)
n=1

and - -
/ ’xse_”’ dx < / 2Pe ™ dr < oo, Re(s) < b.
1 1

Hence for any value of s, the integral in (7.1.17) converges to an entire function
which is bounded for s in vertical strips. Obviously, Riemann’s functional equation
(7.1.10) follows from (7.1.17).

For further discussion, we will need the partial summation formula (cf. [199]),
which is also called Abel’s transformation:

Lemma 7.1. Suppose that f € C*([a,b]) and e(n) are arbitrary complex numbers.
Then we have the relation

b
S etn)fn) = E0)0) - [ B@)f @i, (7.1.19)

a<n<b

where

Proof. Obviously, we have

I=B0)f0)~ Y em)fn)= Y e@){f®)—fn)}

a<n<b a<n<b
b b
=Y ) [ F@d= Y el [ ol @
a<n<b n a<n<b a
where
() = 0 ra<z<n,
Xnl®) = 1 :n<z<b,
and hence
b b
I:/ f'(z) Z e(n)xn(z) dac:/ f'(z) Z e(n) p d.
a a<n<b a a<n<z =

Let [z] denote the maximal integer < z, and set

{z} =2 — [z].

Next we show Euler’s summation formula (cf. [199]):



466 Chapter 7. Riemann’s {-function
Lemma 7.2. Suppose that f € C'([a,b]). Then

S fn) = {a}bf(a) — (b} (D) / Fw)dz + / (o} (7.1.20)

a<n<b

Proof. Take e(n) =1 in Lemma 7.1. Then we obtain

b
> ) = B0 - [ E@f @)

a<n<b
where
Z 1=[z]—[a)=2—{z} —a+ {a}.
a<n<b
Therefore
F(b) = (b —{b} —a+{a})f(b)
b b

- [[e—tahr@d+ (o= ) [ @

— (@@ - 0+ [ @t [
We have thus proved the statement of the lemma. O

Now for Re(s) > 0, we show the formula

)= Ti + o 11)NS_1 - S/NOO xx;[f] da. (7.1.21)

n=1

Take positive integers M and N with M > N and apply (7.1.20) to the sum

Ryy = Z ;s-

N<n<M

Then we have

M M
Rym = / x”%dx — s/ {z}z*tdx
N N

1 M
Nl—s _ —s—ld )
l—s s—1 s N {z}x x

Suppose firstly that Re(s) > 1. Then we obtain

N
((s)=)_ 4+ lim Ryuy

M ——~+oco

= Z + Ni=s s/ {z}z™" 1da.
ns 1 N



7.2. Converse theorems 467

But the last improper integral defines an analytic function in the half-plane
Re(s) > 0. From this, by virtue of the analytic continuation principle, we get
the formula (7.1.21).

One shows that the order of the entire function £(s) defined by (7.1.9) is 1.
By (7.1.10) it is sufficient to consider the half-plane Re(s) > 1. Set s = o + it and
take 0 < 0 < 1. We deduce from (7.1.21) that for o > 0, |t| > 1,

((s)=O0(N'"®)+O(tN?) =0 (t'7) (7.1.22)

on taking N = [t]. Since

rG)l=lr(Gl=ow).

it follows from (7.1.9) that £(s) is of order 1 at most. By considering positive real
values of s it is easily seen that the order is exactly 1.

7.2 Converse theorems

The following Phragmen-Lindeldf principle (cf. [52], [396], [233]) can be used to
obtain estimates on ((s) in vertical strips from ones on their edges:

Theorem 7.3. Let f(s) be meromorphic in a strip
Q={seC|a<Re(s) <b}, {a,b} CR.

Suppose that there exists some p > 0 such that f(s) satisfies the inequality

f(s)=0 (e‘s|p>
on Q for [Im(s)| large and obeys the estimate
flo+it)y=0(|t|M), o€ {a,b}, [t| > o0
for some positive integer M. Then
flo+ity=0(|t/M), a <o <b, |t| — occ.

A modular form of weight k and multiplier condition C for the group G(\)
of substitutions generalized by

z—2z4+ Nz —
z

is a holomorphic function f(z) on the upper half-plane H satisfying
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i) flz+ ) = f(2);
G) (1) =c(2)" f2);

(iii) f(z) has a Taylor expansion in e~ :
o0
2winz
flz)= Z anpe .
n=0

We denote the space of such f by Ay i.c(H); f is a cusp form if ap = 0. The
conditions (i) and (ii) mean

f (Zjig) = Oy (cz+ ) f(2), v = ( “ ) el  (12.1)

with |C,| = 1. Obviously, one has C;* = 1if k is an integer, and Cy = £1 if £k is
even. In particular, when A = 1, G(1) is the modular group SL(2,Z).

Example 7.4. Those two equations in (7.1.15) say that 6(z2) is a modular form of
weight ; for the group G(2). The space As 1 2,1(H) is one-dimensional and consists
of multiples of the 0-function.

Given a sequence {ag, ai, as, ...} of complex numbers and given

A>0, k>0, C==£1,

set -
F(2) = ane’™7, (7.2.2)
n=0
o3} an
L = 2.
(£:9) ; e (7.2.3)
and

Ag(s) = (2;) TG s). (7.2.4)

First of all, we assume that for some d > 0,
an = O(n?). (7.2.5)

Then L(f,s) converges for Re(s) > d+1 and f is holomorphic in H. The following
Hecke converse theorem ([155], [156]) gives a deep relation between Ay and f:

Theorem 7.5. Under the above conditions, the function f belongs to Ay y,c(H) if
and only if the function

ag Cag
Ag(s) + 5 + b s (7.2.6)

is an entire function which is bounded in vertical strips and satisfies

As(s) = CA(k —s). (7.2.7)
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Proof. Here we follow S.S. Gelbart and S.D. Miller [112] to prove Theorem 7.5.
According to the proof of (7.1.16), one also has

2 [ 2mn\ ~°
A — " s—1 -z
0 = 3 [T () e
= /Ooxs_l(f(ix)—ao)dx, Re(s) > d+ 1. (7.2.8)
0

Then Mellin inversion implies

fliz) —ag = ,/R e x” Ay (s)ds, (7.2.9)

forz>0,c>d+1.
Now assume that Ay satisfies the conditions in Theorem 7.5. Take ¢ > k and
consider the contour 0€,. consisting of the boundary of the region

Q. ={o+iteClk—c<o<e¢, —r<t<r}

Then the residue theorem yields

1

. / 75N ¢ (s)ds = Capr ™" — ag. (7.2.10)
27 99,

Next we show that the integrals of 7 ®*Af(s) over the horizontal paths tend to
zero as 1 — oo0. When Re(s) > ¢ > d+ 1, L(f, s) converges absolutely, and so

IL(f9) < i |z’;| = i o (ncld) =0(1).
n=1 n=1
Stirling’s formula gives that, for Re(s) > 1/2,
L(s) ~vV2me ™ s5 2, |s| — oo, (7.2.11)

which implies that Af(s) satisfies the estimate

As()| =0 (7)), Re(s) 2, =>0.
By the functional equation, Af(s) does as well in the reflected region Re(s) < k—c,
and the bounded assumption in Theorem 7.5 handles the missing strip. Therefore

the function in (7.2.6) is of order 1 on C. Since sFl(s) is entire and of order 1, the

function
(5= mers) = =0 () T4
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is also entire and of order 1. Another form of Stirling’s formula states that

i

ID(o +it)] ~ V2rlt|” 2e 2, |t| = oo (7.2.12)

holds uniformly for a < ¢ < b. Thus the functional equation

2w> 27k Pk — s)

L(f,s)zc(A r(s) L(f.k—s)

shows that
IL(f,o+it)| =0 (t* %), o=k —c<0. (7.2.13)
We conclude from the Phragmen-Lindel6f principle that there exists some K > 0

such that
IL(f,o0+it)] = O ([t|¥), [t| = oo
holds uniformly in the strip £ — ¢ < ¢ < ¢. Thus the claim follows easily.

Letting r — oo in (7.2.10) and using (7.2.9), one obtains

1

fliz) - Cage™ = /R A (7.2.14)

The functional equation (7.2.7) implies
C

fliz) — Cagz™ = . x °Ar(k — s)ds
(ix) 2 Jreorepe (k= s)

= ¢ / 2 FAs(s)ds

211

that is,

which is the property (ii) of the definition of Ay ;¢ (H). Properties (i) and (iii)
are immediate from the definition of f(z).
Next suppose f € Ay i,c(H). Note that

1 1
/0 ¥ (f(iz) — ag)dr = /0 57 f(ix)dx — ZO

Oo7571 i ao
= dr —
Jora()et

C’/ aF =7 (f(ix) — ag) dx — ZO _ Cao
1

k—s
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The equation (7.2.8) yields

C o0
M)+ %0+ :/ (a5~ + C2*Y) (f(iz) — ao)dz,  (7.2.15)
- 1
which implies clearly the conclusions in Theorem 7.5. g

The following Hamburger converse theorem [145] shows that ¢ is uniquely
determined by the Riemann functional equation subject to a certain regularity
condition.

Theorem 7.6. Let

>, n >, b’ﬂ
L{f.s) =3 " Ligs)=) "
n=1 n=1

be an absolutely convergent Dirichlet series for Re(s) > 1, and suppose that both
(s = 1)L(f,s) and (s — 1)L(g, s) are entire functions of finite order. Assume the
functional equation

W_§F<;> L(f,s):w—l?r<1;$> L(g,1— s). (7.2.16)

Then L(f,s) = L(g,s) = a1{(s).
Proof. Here we also follow [112]. For simplicity, suppose that

anp="b, n=12,....

1(5) = (5) e

is holomorphic in Re(s) > 0, except perhaps for a simple pole at s = 1. The
functional equation (7.2.16), that is,

Now the function

A(s) = A (; - s) : (7.2.17)

means that A(s) has an analytic continuation to C except for potential simple
poles at s = 0 and 1/2. Because of (7.2.17) the residues of A(s) at those points
are negatives of each other, and thus

is entire, where ag is the residue of A(s) at s =k = J.
On the other hand, the assumption of absolute convergence implies that

IL(f.o+it) <) anl o o5 1.
nU

n=1
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Then for any € > 0, |L(f, s)| is uniformly bounded in the region Re(s) > 1+ ¢.
Using the functional equation, we see that

L(f.o+it)] = O (t1377) , [t = o0

for 0 < —e, and uniformly so in vertical strips. Thus the Phragmen-Lindel6f
principle shows that

|L(f,a+it)|:0<|t|§+5)7 —e<o<l+te

Stirling’s estimate (7.2.12) yields that A(s) decays rapidly as |t| — oo in any
vertical strip a < ¢ < b, and hence is bounded there. Theorem 7.5 produces a
modular form f in Aj /91 (H), which is a one-dimensional space spanned by 6.
So f must in fact be a multiple of the #-function, and we conclude that L(f, s) is
a multiple of {(s). O

Morduhai-Boltovskoi [279], and Ostrowski [313] proved Hilbert’s conjecture
by showing that the Riemann {-function does not satisfy any algebraic differential
equation with rational functions as the coefficients. Liao and Yang [247] confirmed
that {(s) is a prime function, and there does not exist a non-constant polynomial
P € Clz,y, #] such that

P(T(2),¢(2),2)=0.

Hence Riemann’s functional equation is almost the unique relation satisfied by

¢(s).

In 1967, A. Weil completed Hecke’s theory by similarly characterizing mod-
ular forms for congruence subgroups, such as I'o(N) C SL(2,Z). By the definition,
a modular form of weight k > 0 for the group I'o(N) is a holomorphic function
f(2) on the upper half-plane H satisfying

O f (gjig) = (c2 + d)* f(2) for all ( . Z ) € To(N);

(I) f(z) has a Taylor expansion in e*™: f(z) = > 7 a,e?™"*.

We denote the space of such f by Ag n(H). Weil’s breakthrough was to twist the
series L(f, s) by Dirichlet characters.

Let r be a positive integer. A Dirichlet character modulo r is a non-trivial
function x : Z — C satisfying the following conditions:
(1) x is a periodic function with period r;
(2) x is completely multiplicative, i.e., x(nm) = x(n)x(m) for any n,m € Z;
3) x(1) =1, x(n) =01if (n,r) > 1.
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A Dirichlet character x modulo r is called non-primitive if there exist a proper
factor d (# r) of r and a Dirichlet character x" modulo d such that

x(n) =x(n), (n,r) = 1.
If there exists no such x°, then x is called a primitive character.

Theorem 7.7 ([427]). Fiz positive integers N and k. Then

f(2) =" ane®™™* € Ay y(H)

n=1
if L(f,s) satisfies the following conditions:

(a) L(f,s) is absolutely convergent for Re(s) sufficiently large;
(b) for each primitive character x of modulus r with (r,N) =1,

Apn(o) = 20)(5) 3 X

continues to an entire function of s, bounded in vertical strips;

(c) each such A, (s) satisfies the functional equation
Ap(s) = wr AN B A g = 9),
where
wy = i x(N)g(x)?

and the Gauss sum

g = > x(m)e",

n(mod r)

where n in the sum runs on a complete residue system modulo T, that is,
Z]rZ.

For a proof, see [43], [195] or [309].

7.3 Riemann’s hypothesis
Writing
1
Et)=¢ (2 + it) , (7.3.1)
the functional equation (7.1.8) takes the simple form

(1) =

[1]
(1]

(t). (7.3.2)
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It follows that Z(/z) is an entire function of order j, and so has an infinity of zeros.
From this, one deduces that ((s) has an infinity of zeros other than the real ones
already observed. These zeros must be complex and lie in the strip 0 < Re(s) < 1,
called the critical strip of ((s). Further G. H. Hardy proved that there are an
infinity of zeros on Re(s) = 5 (see [394]).
Since ) ) )
1—s
(1-2"7%¢(s)=1 23+3s 4s—&-~-~>0

for 0 < s < 1 and ¢(0) # 0, it follows that {(s) has no zeros on the real axis
between 0 and 1. Therefore all possible zeros of {(s) in the critical strip are complex
numbers. If sy is a zero of {(s) located in the strip, then the functional equation
(7.1.8) implies that 1 — s¢ also is a zero of ((s). Since ((o) is real when o € R,
Schwarz’s reflection principle shows that ((s) = {(s). Hence sq also is a zero of
((s). Therefore zeros of ((s) in the strip are symmetric on the lines Re(s) = } and
Im(s) = 0.

Conjecture 7.8 (Riemann hypothesis [324]). If sq is a zero of {(s) in the critical

strip, then Re(sg) = 3.

As to the zeros of ((s), it is known that there are none on the line o =
Re(s) = 1. We derive from (7.1.2) the formula

log((s) =) Z mpms7 (7.3.3)

p m=1

which implies

(o) +in]*IC(o +2it)] = ex {223”“’59“‘)8”}7 (7.3.4)

where 0 = mtlogp. Since
3+4cosf + cos20 = 2(1 + cos6)?

every term in the exponent on the right of (7.3.4) is positive, and hence the left-
hand side is not less than 1. Putting 0 =1+ € (0 < € < 1), and noting that

(e =

10

e 1 2
| —|—/ i e =1+ < 7,
1 € €

we have ]
IC(1 4 € +it)| 1

> i i1
€ 2e4|C(1 4 €+ 2it)|4

Since ((s) is analytic, the left-hand side would tend to |[¢'(1 + it)| as € — 0, if
1+ it were a zero of ((s). But the right-hand side tends to infinity. Hence {(s)
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cannot have a zero on Re(s) = 1. The smallest zeros of = in the horizontal strip
lIm(2)| < §, Re(z) > 0 have been calculated with great accuracy. They are

t1=14.13 -+, t2=21.02---, t3=25.01---,
ty =3042---, t5=23293---, t5=237.58 -,
t; =40.91--+, tg=43.32---, t9=148.00--,

ti0 = 49.77---, and so on. They are all real.

The number N(T') of zeros of {(s) between Im(s) = 0 and Im(s) = T is given
approximately by the formula

T 1+ log?2
N(T) = logT— 7 °8°T

T+ O(logT). (7.3.5)
2w 2w

An immediate consequence of (7.3.5) is

N(T +1) — N(T) = +0(log T). (7.3.6)

Next we will need Perron’s summation formula (cf. [199]):

Lemma 7.9. Suppose that the Dirichlet series
o a(n)
fls)=> s (7.3.7)
n=1

converges absolutely for Re(s) > 1, |a(n)| < A(n), where A(n) is a positive mono-
tonically increasing function of n, and for a > 0,

- la(n)] _ 1
=0t
as1 <o — 1. Then
1 b+iT x® x? zA(2z)log x
=i ] a0 (7 )+ (OF).

where the constant under the symbol O depends only on by for any by >b>1, T >
1, z=N+} (N €Z).

For Re(s) > 1, if we take logarithms in (7.1.2) and differentiate it, we have

() _ = A)
e _n; s (7.3.8)
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where A(n) is von Mangoldt’s function:

logp :ifn=pF, pis prime,
A(n) = . k
0 s if n #£ p".

Define

x) = Z A(n)

n<zx
which is called Chebyshev’s function. Chebyshev proved that if one of the limits
lim ¥(z)
Tr——+00 X

or
T\T 1( )g a
hm ( )

T——+00 €T

(7.3.9)

existed, then so would the other limit and these limits would be equal to 1. The
exact behavior is given by the prime number theorem (4.10.1). In fact, Ch. de la
Vallée Poussin proved a stronger claim, that is, there is a constant ¢ > 0 such that

Y(x)=2+0 (xe_c\/log"”> ,

m(x) = /; du +0 (xe_g\/logx> .

logu
Theorem 7.10. The Riemann hypothesis is true if and only if the estimate

W(z)=z+0 (ﬁ“) (7.3.10)
is valid for any positive €.

Proof. Note that

= An logn logz , 1
S s [T o ( ).

Take

1
b=1+ ,2<T <z, An)=logn, a =2
log x

in Lemma 7.9. We obtain

1 VHT () a® zlog® x
Y(x) = ~ 9 /biiT (s) s ds+ O ( T ) . (7.3.11)
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Transferring the line of integration in (7.3.11) to the left, onto the straight line

Re(s) = — ) by using a rectangular contour, the residue theorem implies
xP zlog?
=T — O 7.3.12
v =am 3 oY) (7312)
Im(p)|<T

for 2 < T < x, where the summation in the last sum is carried out over all the
complex zeros of ¢(s). Thus if Riemann’s hypothesis is true, we can take Re(p) = §

in (7.3.12) with T'= \/z, and so
Y(z) =240 (Vrlog®z). (7.3.13)

Conversely, suppose that (7.3.13) or a slightly weaker statement (7.3.10) holds
for an arbitrary e > 0. Let us prove that Riemann’s hypothesis is true. Applying
Lemma 7.1 to (7.3.8) with

for Re(s) > 1 we get
¢'(s) > P(x) U(x
— =3 dm——s +1+s/ 31

¢(s) 1wttt

!
RO _1+S/ e
¢(s) wsﬂ
By the assumption, the improper integral on the right-hand side converges ab-
solutely and uniformly in the half-plane Re(s) > é + 0 for any 4 > 0, and con-
sequently, it is a regular function by Weierstrass’s theorem. It follows that all
singular points of the left-hand side, including the complex zeros of {(s), lie in the
half-plane Re(s) < 1, and so they all lie in Re(s) = } since they are symmetri-
cal with respect to the straight line Re(s) = 1 . We have thus proved Riemann’s

hypothesis. O

or

For Re(s) > 1 we have

Zns7

where p(n) is the Mébius’ function,

(=1)%, if n=py---px, p; are different prime numbers;
u(n) =< 0, if p? | n for some prime number p;
1 ifn=1.

9

Similar to the proof above, one has the following fact:
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Theorem 7.11. For Riemann’s hypothesis to hold true, it is necessary and sufficient
that the estimate
1
Z win) =0 (a:?“)
n<zx
is valid for every positive €.

Let p(x) be the function defined for > 0 equal to the representative of x
modulo 1; thus

z = [z] + p(z)
where [z] is the largest integer < x. The linear space .# consisting of functions of
the form
N 0,
i) =Zakp($) 7
k=1
where

N
0<bp <1(k=1,...,N), > arbp =0,
k=1

then consists of bounded, measurable functions vanishing for

x> m}gx[@k]

and therefore vanishing for > 1. Nyman [306] and Beurling [22] established the
following criterion:

Theorem 7.12. ./ is dense in LP(0,1), 1 < p < oo, if and only if the Riemann
C-function has no zeros in the half-plane o > ;.

A complete proof can be found in [82]. The necessity follows from the relation

1 N
S/O ¥ f(x)dr = —((s) ; ab;

valid for any f € ..

Thus Riemann’s hypothesis holds if and only if .# is dense in L?(0,1).
Nyman-Beurling’s criterion has been extended by Baez-Duarte, who showed that
one may restrict attention to integral values of 1/6. Balazard and Saias [13] have
rephrased this by showing that Riemann’s hypothesis holds if and only if

. > . 1
1%f/_00‘1—14<2+2t><<2+2t>

where the infimum is over all Dirichlet polynomials A.

2 dt
1 t2 :O’
iy




7.3. Riemann’s hypothesis 479

Further, if dy denotes the infimum over all Dirichlet polynomials

N a
Als) =3

n=1

of length N, they conjecture that

Burnol has proved that

where m,, is the multiplicity of the zero p.
Here are a few other easy-to-state equivalences of Riemann’s hypothesis:

(i) Hardy and Littlewood (1918): Riemann’s hypothesis holds if and only if
o (0" (ot
2 a1~ ().

(ii) Redheffer (1977): Riemann’s hypothesis holds if and only if for every £ > 0
there is a C'(¢) > 0 such that

| det(A(n))| < C(e)n2e,

where A(n) is the n x n matrix of 0’s and 1’s defined by A(i,j) =1if j =1
or if ¢ divides j, and A(i,j) = 0 otherwise.
(iii) Lagarias ([219], 2002): Riemann’s hypothesis holds if and only if

o1(n) < Hp(0) + exp(Hy(0)) log H,(0), n=1,2,...,

where 01(n) denotes the sum of the positive divisors of n.

Related to a Dirichlet character y modulo 7, one has the Dirichlet L-function:
L(x, s) = i x(n) Re(s) > 1.
n=1 n?

The analog of Euler’s formula

s =] (1- X;f))17 Re(s) > 1.
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is valid. If y is non-primitive, that is, there exist a proper factor d of r and a
Dirichlet character x° modulo d such that x(n) = x°(n) when (n,r) = 1, then

ses =208 [T (1- 40

pS
plr

Assume that y is a primitive character modulo 7. Obviously, we have L(x, s) = {(s)
if r = 1. When r > 1, it is well known that L(y,s) is entire with L(y,1) # 0.

Further, setting
T 1, ify(-1)=-1

and

Ay(s) = (T)ZF(S;“) Lx, 9), (7.3.14)

™

the Dirichlet L-function of a primitive character y modulo r satisfies the functional
equation
(=1

T
where g(x) is the Gauss sum. The proof of (7.3.15) is the same as for zeta and is
based on the Poisson summation formula (cf. [73]).

The generalized Riemann hypothesis states that if L(x,s) = 0, then either
s is a negative integer (a “trivial zero”) or Re(s) = . It had been shown, for a
sufficiently small constant ¢ > 0, that if L(x,s) = 0 with

g A5 (1 =), (7.3.15)

c

R >1- ,
e(s) logr

then s is real, x is a quadratic real character, and there is at most one such value

of r between R and R? for any sufficiently large R. Such zeros are known as

Siegel zeros. In 1995, Granville and Stark proved, assuming the abc-conjecture,

that L(x, s) has no Siegel zeros for all x (mod r) with » = 3 (mod 4).

7.4 Hadamard’s factorization

‘We can now write
bs

)= 55— 1r (5+1) 1;[ (1 N p) " (741)

where p runs through the complex zeros of ((s) in the strip 0 < Re(s) < 1. For by
Hadamard’s factorization theorem
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Here £(0) = —((0) = 3, and

1
b:b0+210g7r:10g27r—1—;, (7.4.2)

where 7 is Euler’s constant

1 1
v = lim (1+ 4+ 4+ —logn>.
2 n

n—-+o0o

To prove (7.4.2), we first show Kronecker’s limit formula

Jim {C(s) . } — . (7.4.3)

s—1 S — ]_
For Re(s) > 0, by (7.1.21) we have

1 Y1 Ndr K11
C(S)_s—lzz:n_/l x+;(ns_n)

n=1

N ')
1 1 x — [z]
—/1 (Is—a)dm—s/N . dz.

We can choose N so large that the last term is as small as we please, and at
the same time so that the first term differs from ~ by as little as we please, and
this independently of Re(s). Having fixed N, the remaining terms tend to zero
with s — 1. This proves (7.4.3). We now calculate ¢’(0) by differentiating (7.1.8)
logarithmically, making s — 0, and using (7.1.6) and (7.4.3) and the fact that
I'(1) = —.

We obtain 1

¢'(0) = 5 log 2. (7.4.4)
Finally by = ¢’(0)/£(0), and (7.4.2) follows from (7.4.4).

We will use the following value (see [164], [165]):

(o) _m v, 1
= log 8. 7.4.5
c(y 4 + 9 + 5 log 87 ( )
This can be seen as follows: Differentiating logarithmically the Weierstrass formula
! —675ﬁ<1+8>6_5 (7.4.6)
I(s+1) ot n ’ o

we have
IV(s+1) = /1 1
F(s—&—l)__v—’_ngl n n+4s)
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Set
= 1
H,(s) = .
() Z k+s
k=1
By the definition of Euler’s constant -y, we know
H,(0) = logn + 7+ o(1)

as n — o0o. Thus we have

b, o(1). (7.4.7)

Moreover, we obtain directly

1 " 1 1
- = = n - n = 1'
Hn( 2)—2212]{; 1—2{H2 (0) 2H (0)}—logn+’y+log4+o()

Comparing with (7.4.7) for s = —, we have
" (3)
= —v —log4. 7.4.8
r (1) v — log (7.4.8)
Differentiating logarithmically the functional equation (7.1.8), we obtain
I'(s)  C'(s) m s ¢'(1—s)
—log2 + + — _ tan =logm — ,
7T s T2 e C(1-s)
and hence ) .
! !
2C (12) = log 2w — (12) + tan "
¢(3) (3)

Thus (7.4.5) follows.

Differentiating logarithmically Legendre’s formula
1 &
I'(s)I' (S + 2) = 5261 I'(2s)

and the functional equation

P —s) = Sirzrws7
we have )T ( ) 25)
(s "(s "(2s
I'(s) * I (s 12) = ~logd+2 I(2s)’
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. '(s) (1)
S -5
T(s) — (1 — s) = —mcotTs.
In particular, setting s = }1, we obtain
() _ o
no=—, 7 —logs. (7.4.9)
rG) 2

Denote the zeros of ((s) on the semi-line {Re(s) = 1, Im(s) > 0} by

1
sv= o ity = sl v=12,... (7.4.10)

Then we have

Vs
t, >0, 0<ay,<

=1,2,....
2a v 9y <

Assume that
0<ty§ty+1§"', V:13273a--"

Further, denote the zeros of ((s) on the region {1 > Re(s) > 5, Im(s) > 0} (if
they exist) by ,
2y =xy F iy, = |zule®, p=1,2,.... (7.4.11)

Thus all zeros of ((s) in the critical strip are
{sv,su | v >1}U{zp, 20,1 — 24,1 — 2 | 0> 1}
Theorem 7.13 ([165]). Riemann’s hypothesis is true if and only if
=1 vl
=1 — _log4mr.
2o, Ty T plosd
Proof. Differentiating logarithmically the formula (7.4.1), we have
<) T(3) 1 ( )
+ + ot .
o Far(p) T a1 P
Setting s = }, and using (7.4.2), (7.4.5) and (7.4.9),

1 1 v 1
Z( — 1)—1+2—210g47r.

0 p P— 9

we obtain

Note that the series in the left-hand side is absolutely convergent so that the order
of terms in the sum can be changed arbitrarily. Since

1 1
1t ; =0,
Sy =5 Su—
1 1 1 1
1 T 1 T 1 =0,
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we obtain
1 1 /1 1 11 1 1
S )= (e e (e e e )
p 14 pP— 2 v—1 Sy Sy P ZH Z:U' 1-— Z:U' 1— Z#
> 1 T 1—=x
1o ( " u)
V;Isul"’ z#: 12,2 1= 2,2
1
—1+;/—210g477.

Thus Riemann’s hypothesis is true if and only if

T, 11—z, )
+ =0,
;(|2u|2 11— z,[?

that is, z, do not exist, or equivalently

=1 1
Z , =1+ T log 4.
v=1 |SD| 2

2 g
Let 0 be defined by (7.1.14) and consider the function
- 1 - —n’rx
O(x) = b(iz) — , = n; e : (7.4.12)

Then Riemann’s formula (7.1.17) yields

1 1 e t
Et)=_ - [t*+ / @(m)xfi cos | _logz | dx. (7.4.13)
2 4) 2
If one integrates by parts and uses the relation
1
40'(1)+06(1) = —

which follows at once from (7.1.13), one obtains

° t
=(t) = a:g T a:_éllcos ogzx | dx 4.
2(t) =4 o’ 1 d 7.4.14
1 dxr 2
and can write it in the form (see [394])
=) = 8/ & () cos 2txdr, (7.4.15)
0
where -
O(x) = Z (2m?n*e® — 3mn?e®”) e (7.4.16)

n=1
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The Taylor series expansion of = about the origin can be written in the form

2(t SZ O (7.4.17)
=0

where the constants By are defined by
By :/ 22 o(z)dr, k=0,1,2,.... (7.4.18)
0

Theorem 7.14 ([70]). Let {t,}22;, 0 < t1 < 3 < ---, denote the real zeros of =
in the right half-plane. Then the Riemann hypothesis is true if and only if

PR

v=1

[t

(7.4.19)

NIV

Proof. The Riemann hypothesis is the statement that all zeros of = are real. Note
that = is an even entire function of order 1, all of whose zeros lie in the horizontal
strip [Im(z)| < 5. Thus if 2 = a+1b is a zero of =, then —a+ib, —a—ib and a —ib
are also zeros of Z. By the Hadamard factorization theorem = can be represented
in the form
oo 22
E(z) =2(0) [] (1 - 2) (7.4.20)
= W
k=1
where the zeros wy of = lie in the right half-plane, and are numbered according
to increasing moduli, i.e., 0 < |wi| < |wg| < ---. Thus the derivative of the
logarithmic derivative of Z(z) is

E(z)E”(z)—{E’(Z)}QZ_i{( L. } (7.4.21)

pt z—w)? (24 wg)?
Obviously, Z'(0) = 0 since = is an even function, and
2(0) =8By > 0, E"(0) = —32B;
by using (7.4.17). Setting z = 0 in (7.4.21), we obtain
=1 OO1 Re(wg)? — Im(wy,)?
:;w Z_: 5t (wzk:m ( )|wk|4 (wi)* (7.4.22)

But if = has zeros wy with Im(wy) > 0, then the second summand on the right-
hand side of (7.4.22) is positive since all zeros of E lie in the strip |Im(z)| < } and
= has no zeros in the closed unit square centered at the origin. Thus we infer from
(7.4.22) that the Riemann hypothesis is true if and only if (7.4.19) holds. O
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G. Csordas and C.C. Yang [70] gave the following numerical calculations:

1
1+ ; —  logdr = 0.023005708.....,
100000 1
Z = 0.023073645.. .,
v=1 |SV|2
2B
b = 0.023104993 . . .,
By
100000
Z = 0.023082929 . . ..
t2
v=1 v

7.5 Nevanlinna’s formula

Let D be a bounded connected open set in C such that the boundary 0D of D
consists of a finite number of simple closed Jordan arcs of class Ct. We will use
Green’s function G, (¢) of the domain D, which is uniquely defined for { € D, z €
D, ¢ # z such that

(i) when z € D is fixed, G,(¢) can be expressed as

G.(¢) = —10g|C - Zl + h2(¢),

where h({) is harmonic on D and continuous on D;

(ii) when ¢ € 9D, z€ D or ( € D, z € 9D, one has G,(¢) = 0.
It is easy to show G.(¢) > 0 when ¢ € D, z € D by the minimum modulus
principle. If D is simply connected, the Riemann mapping theorem shows that for
z € D, there is a unique analytic function G, : D — C having the properties:

(a) G.(2) =0 and G.(z) > 0;

(b) G. is one-one;

(¢) G.(D)={z€eC||z| <1}

Then Green’s function of D is given by

G=(¢) = —log|G=({)I- (7.5.1)

Next we will assume that the domain D is simply connected. Let vi,...,7p
be the edges of the curvilinear polygon dD. Let A; be the common vertex of ; and
Yit+1, where yp11 = 1. Let ym (0 < oy <2, 1 =1,...,p) be the angle between ~,
and 7;41. By the Riemann-Schwarz symmetric principle, the function G, can be
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analytically continued to a domain containing D — {44,...,A,}. We will assume
that the function G, can be expressed as

1
G.(Q) = (¢ — A1 u(C) + wy (7.5.2)
near A; for l = 1,...,p, where ; is analytic near A; with ¢;(A;) # 0, and |w;| = 1.

Theorem 7.15. Let D be a bounded simple connected open set in C such that
the boundary 0D of D is a curvilinear polygon of class C*. Take distinct points
1y ¢q in D and a function u € C*(D — {c1,...,cq}). Assume

uw(z) =dilog|z —ci| +ur(z), k=1,...,q,

near ¢, where dy are constant, and uj are of class C? near ci,. Then for z €
D —{ci,...,cq}, one has

1 1
ZA - -
u(z)—|—27T/DG udrdy = o Jon 6n uds C§EdeG ck)-

Proof. For a € C, € > 0, denote
Claie) = {C€C[[¢ —al <&}, Claze)={CeC||—al=¢}.
Set S ={z,c1,...,¢q,A1,...,Ap} and choose ¢ sufficient small such that
C(a;e) NC(b;e) =0, {a,b} C S, a#b,

C(a;e) € D if a € DN S, and such that G, is analytic in C(a;e) — {a} if a €
{Al, . 7Ap}. Write

I. =D — O{@D NC(A;;e)},

=1

D.=D— U C(a;€).
acs

Applying Green’s formula (6.1.1) to u = u(¢), w = G,(¢) on D. and noting

Aw = 0, one has
/ / (uan -G, au) ds.
(a;€) qes—p 7 Cla;e)NODe on on

/ G, Audzdy = {/
) (7.5.3)

Since G, (¢) = 0 when ¢ € 9D, we immediately obtain

. aG au G,

€ aeSND
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When ¢ € C(z;¢), one has the following estimates:

G-(Q)=~log=+0(1), 3O =~ +00),
u(Q) =) +o1), 5" =00)

as ¢ — 0. By the integral mean value theorem, there is (* € C(z;¢) such that
0G, ou 0G, ou
-G, ds =2 -G, “)s
/(C<Z;€> (u on 871) s Ane (u on 871) (¢

lim ( 9G: _ G, 6u> ds = —2mu(z).
C(z;e)

U
£e—0 on on

and hence

When ¢ € C{cg;e) for some ¢ € D, one has the following estimates:

oG,

G2(0) = Galex) +o(1). 7% (¢) = O(1),
u(¢) = dy loge + O(1), gz - Ci‘“ +0(1)

as € — (. Similarly, by using the integral mean value theorem one can obtain

lim ( 0G. -G, 8u> ds = —2md G, (cx).
C(ckse)

U
e—0 on on

When ¢ € C(a;e) for some a € S — D, one has the following estimates:

=o0( ),

w0 =olloge), 5t =o(])

€

G=(¢) = o(1),

as ¢ — 0, where the relations (7.5.1) and (7.5.2) are used. Thus, by using the
integral mean value theorem one can obtain

lim (uaGZ -G, 6u> ds = 0.
e—0 C(a;e)NOD. on on

Therefore the proof of Theorem 7.15 is completed by letting € — 0 in (7.5.3). O

Applying Theorem 7.15 to the function u = log|f|, we obtain Nevanlinna’s
formula (cf. [290], [52]):
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Theorem 7.16. Let D be a bounded simple connected open set in C such that the
boundary OD of D is a curvilinear polygon of class C*. Let f (£ 0) be meromorphic
in D. Leta, (p=1,...,m) and b, (v =1,...,n) be respectively zeros and poles
of fin D. Then for z € D —{a1,...,am,b1,...,bn}, one has

log () = 5. [ 1oglf1', ds—ZG ) +ZG

In particular, for the disc D = C(0; R) (R > 0), we know

| R
G-(O) =8| p 3.
and hence
an o Rz— |Z|2 . <+Z _ 0
on (s = I — 2|? d9—Re<C_Z>d97 ¢ = Re™.

Therefore the Poisson-Jensen formula follows.

Theorem 7.17. Let f (# 0) be meromorphic in C[0; R]. Let a, (u = 1,...,m)
and b, (v = 1,...,n) be respectively zeros and poles of f in C(0;R). Then for
z€C(0;R) —{a1,...,am,b1,...,by,}, one has

2
oz £ = o [ log\f(Re“’)\R <R629+Z>d9

—z
— Z:llog R(» Zlog
=

Theorem 7.17 implies that there is a real number ¢ such that

z—b)'

log f(2) = o /0 log |f (Re’9)| Riw B zdﬁ

G R?—a,z & R? — b,z
— 1 H 1 v iC. 54
28 B g T 2 Ry e (O
p=1 v=1
Differentiating (7.5.4), one obtains
ANz g 7T ” 2Re
= 1 ¢ , do
(d2> f(2) 27r/o o8|/ (BN (peio _ yamn

Dy Lo e )

(z —au)?

—(g-1)! 1 { - _bybyz)q B (Z(:lb)j)q } (7.5.5)
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Further if f is meromorphic in C such that

lim sup T(R, f)

R—o0 R4 - 07

then (see [151])

1 d q—1 fI(Z) . 1 B )

by |<R lan|<R

Theorem 7.18. Let f be a meromorphic function of finite order p such that f(0) #
0,00. Then for any integer g > [p] +1 > p, we have

Z1_21_ 1 (d)ql(f’(z)>
~ bl - af, (¢—1)! \dz f(z) ).
where a,, and b, are respectively zeros and poles of f.

Proof. 1t is trivial to show
. T(R,f)
| =0.
R1—r>noo Rq 0
Let po and po be the convergence exponents of the zeros and poles of f, respec-
tively. Then

logn(R7}>
— i <p<q
Po= P gr =P
. logn(R, f)
=1 <p<q.
Poo =P logr =P

By the definition of convergence exponent, we know that two series in Theo-
rem 7.18 are convergent, and hence the theorem follows from (7.5.6). O

Using the notations of § 7.4 to denote the zeros of ((s), we prove the following
result:

Theorem 7.19 ([165]). Riemann’s hypothesis is true if and only if there exists an
integer ¢ > 2 such that ((s) has no zeros in the region

{SE(C | ; < Re(s) <1, 0 <arg(s) < (q;ql)w}’

and
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Proof. Since ((s) is of order 1, Theorem 7.18 implies that the equation
<1 1 1 A O)
]_ — — =
E o Zmainla) (@)

holds for any integer ¢ > 2, where p runs through the complex zeros of {(s) in the
strip 0 < Re(s) < 1, which yields

>\ cos o, cosqB,  cosqp,
22 s ”Z{ |2l +|1—zu|q}

Z :
1= (=) - () (69

where , .
1— 2z, =|1— 2z, (O <u < 2) .

Hence the necessity follows easily.
Next we show the sufficiency. The sufficiency condition implies

Z {cosqﬂu N oS gy, } _o,
m |Zu|q |1_Zu|q

and

Set - -
e“zq(ﬁ“_2>’ w":q<¢”_2)

with 0 > 1, > 6, > —7. Then the above equation becomes
0
Z{COS by oM } =0 (geven),
m |24 11— 2[4

Z{sin9M+ sin, }:0 (g odd ).
m

20| 11— 2[4
This is impossible if some z, exist. Hence Theorem 7.19 is proved. g

Similar to the proof of Theorem 7.19, applying Theorem 7.18 to ¢ (s + é) we
can prove the following result:

Theorem 7.20 ([165]). Let {é +it,}52, 0 <ty <tg < ---, denote the zeros of
((s) on the semi-line Re(s) = 3, Im(s) > 0. Then the Riemann hypothesis is true
if and only if there exists an even q such that ((s) has no zeros in the region

1 (¢g—Dm
< — <
{56C|0arg(s 2) 2% }7
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and
2(—1)2 i ,jg =29 —qu (4m11)q - (q—ll)! (;i)q_l (il((j))>s—; '

We consider zeros p; = o; +it; of ( with ¢; > 0 and assume that the zeros
p; are counted according to their multiplicities and ordered so that 0 < t; <¢;41
(and 0; < gj41 if t; = tj41) for j > 1. By “the first n zeros of ¢(” we mean
P1,---,pn. For brevity we let H(n) denote the statement that the first n zeros
of ¢ are simple and lie on the critical line. Gram [118], Backlund [9], Hutchinson
[189], and Titchmarsh and Comrie [395] established H(10), H(79), H(138) and
H(1,041), respectively. For a description of these computations see Edwards [89].

D.H. Lehmer [241], [242] performed the first extensive computation of zeros
of ¢ on a digital computer and established H(25,000). Using similar methods,
Meller [267], Lehman [239], and Rosser, Yohe and Schoenfeld [326] established

H(35,337), H(250,000), and H(3,500,000),

respectively. Using essentially the method introduced by Lehmer, R.P. Brent [36]
has established H(75,000,001). Moreover, there are precisely 75,000,000 zeros
with 0 < ¢; < 32,585,736.4. Thus the condition without zeros in the regions of
Theorem 7.19 and Theorem 7.20 is satisfied for small q.

Similar to the proof of Theorem 7.19, applying Theorem 7.18 to Z(z) we can
prove the following result:

Theorem 7.21. Let {t,}52,, 0 < t; <ty < ---, denote the real zeros of E in the
right half-plane. Then the Riemann hypothesis is true if and only if there exists
an even q such that Z(z) has no zero in the region

{26C| ;qgarg(z)gg},

2;;; = _(q—l 1)! (iz)q_l (EE/((A:DZ—O'

If ¢ = 2, this is just Theorem 7.14. X. J. Li [246] proved that Riemann’s
hypothesis is equivalent to

and

1 d\", .-
A = (g 1) (ds) (s97 " log&(s))

for each ¢ = 1,2,.... The necessity of the non-negativity condition is immediate

from the equation
1 q
we{-(m) )
P

p

>0

s=1
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where p runs over the complex (non-trivial) zeros of the zeta-function. The suffi-
ciency argument is based on considerations of the Taylor series ([201], [246])

’ S o)
¢'(2) = Z )\qz‘Fl and 20(z) =1+ Zajzj
plz) = =

satisfying the recurrence relation

1—=2

q—1
1
Ag = qaq — E Ag—jAj,s where p(z)=¢ ( ) .
=1

7.6 Carleman’s formula

Take R, p € RT with R > p > 0. We will consider the domain
D={zeC|p<|z| <R, Im(z) > 0}.

Theorem 7.22. Take distinct points c1,...,¢q in D — C(0; p) and a function u €
C*(D —{c1,...,¢cq4}). Assume

u(z) = dilog|z — c| +ur(z), k=1,...,q,

near c, where dy are constant, and uy, are of class C? near cx. Then one has
1 1 ¢ 1 T N
_27T/DIm<C+R2)Au(C)dmdy:7rR/O u (Re") sin 0d6
1 1o
+ 2w/p (t2 - R2> ) + u(—))dt

+ 2 dklm(l + Ck)+Q(R,p;u),

2
ck€D Ck R
(7.6.1)
where Q(R, p;u) = O(1) as R — oo.

Proof. Applying the proof of Theorem 7.15 to the functions

u=u((), w=-Im (2—&— 152)’

and noting that
(a) Aw = 0;
(b) w(¢) =0, 2(¢) = 2 sinf, ¢ = Re';

(C) w(t) :Oa gzj(t) = t12 - Rlz,tER,
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then the formula (7.6.1) follows, where

1 ow ou
Q(R,p;u) = / (u —w )ds 7.6.2
(R, piu) 27 Jpnciopy \ On on ( )
_ [ 1 1 i0
- 277/0 {(p2 i R2>u(pe )
1 p\ou, 41 .
+ (p R2> op (pe )} sin 0d6. -

Now we can prove Carleman’s formula (cf. [46], [52], [396]):
Theorem 7.23. Let f(z) be meromorphic in C[0; R] N {Im(z) > 0} with f(0) =1,

and suppose that it has the zeros e, roe'?2, .. rpem and the poles sie**,
s0€'?2 ... s,e'n inside C(0; R) N {Im(z2) > 0}. Then
(1 N, (1 s\ I vl
; (Tu = R2> sinf,, — ; (Su — R2> sin g, = WR/O log | f (Re")| sin 6d6

R
T ;ﬂ/o (tlz - ;) log | f(t)f(=t)|dt + ;Im(f’(())).

Proof. We can choose p € R sufficiently small such that p < R, and f has no
zeros or poles in C[0; p]. Applying Theorem 7.22 to the function u = log|f]|, we
obtain

n 1 T . - 1 Sy . 1 T 1 .
Z (m - R‘;) sind, —Z (Su — R2> sin g, = WR/O log | f (Re™)| sin 0d¢

p=1 v=1

1 R /q 1
i QW/,) <t2 B Rz) log | f(t)f(—t)|dt + Q(R, p; u).

For ¢ = pe', we have

u(¢) = Re(f'(0)¢) + O(p?),

Hence (7.6.2) implies
1
lim Q(R, p;u) = Im(f'(0)),
p—0 2

and the theorem follows. O
Theorem 7.24. Let f(z) be meromorphic in C[0; R] N {Re(z) > 0} with f(0) =1,
and suppose that it has the zeros e, roe®2, .. rpem and the poles sie*#,
$2€2 ... sp,en inside C(0; R) N {Re(z) > 0}. Then

v=1

= 1 r n 1 s, 1
l;l ('r# B Ré) COSGM - Z (SV - R2> COS(pD = Cf(R) _ 21%(3(.]('1(0))7
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where
1 5 )
Cs(R) = WR/_glog|f(Rezg)|cosﬁd0
b [ (= ) rosl i =i (763)
2r Jo \y? R?
Proof. Theorem 7.24 follows from Theorem 7.23 applied to f(—iz). O

Theorem 7.25 ([164]). Riemann’s hypothesis is true if and only if

1
lim Cey(R) = © + |+ log8r — 2,

R—o0 8 4 4
where v is Euler’s constant, and
C(s+2)
Go(s) = (7.6.4)
¢(z)

Proof. Note that

1

, 1
2:r#ew“ (r#>0, O<0H<7r), 2y —

A 2 2

would be the zeros of o in the half-plane Re(s) > 0, and s = } is the unique pole
of {p in Re(s) > 0. Hence Theorem 7.24 implies

1 Ty 1 1 ,
2 ) (m - 32) cosf, — (2 - 2R2> = C¢,(R) = ,Re((3(0)).
ru<R
Since (j is of order 1, then the convergence exponent of zeros for (j is at most 1.
Hence the series 1
ZH: Tlli+€
is convergent for any € > 0, and so
cos 0, rycosf, 1 1
1B DR DAL D DS
I 2 w

By (7.3.5), we find

7, cosf N(R)
< i k< — — .
! B TZ<R R T 2R " (R OO)

Thus by using (7.4.5) we obtain

. _ cosf, mw v 1
H}gréoCCO(R)_QZ - + +4+4log87r 2.

b B 8
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Riemann’s hypothesis is true if and only if the zeros z, do not exist, that is,

Z cos 0, _o,

PR
equivalently,

. o oy, 1 -
H}EnooCCO(R)— 8+4+4log87r 2. .

Further, Theorem 7.25 yields

Theorem 7.26 ([164]). The Riemann hypothesis is true if and only if

1 [ dt © ~v 1
1 it = 1 — 2.
L sl = §+ )+ ) tosse

Proof. Next we estimate the integral C¢,(R) in Theorem 7.25. We know (cf. [394])

[ leG2)

By the concavity of the logarithmic function, we obtain

1 B 5 1 1 (R 2 loglog R
1 ) < 1 j = . .6.
| sl tofas og{R/O i ary =0 (5 PER) o

On the other hand, for

2
dt = O(Rlog R).

1 1
—1<o0=Re(s) <2, T—2 St:lm(s)ﬁT—&—T
we have (cf. [394])
log|¢(s)| = > logls — p|+O(log T), (7.6.6)

|T—p6<1

where p = a 4 i8 runs through zeros of {(s), which implies

log|¢(s)] > Y loglt— |+ O(logT).

IT—B<1
It is easily seen from a graph that the integral

T+3
/ log |t — Bldt,
1

2
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considered as a function of g, is a minimum when 3 = T'; and it is then equal to
—log2 — 1. Since there are O(log T') terms in the sum, it follows that

T+
/ Z log |t — Bldt > —AlogT,
2 |[T—pl<1

where A is a positive constant. Thus we have

T+}
/ log |((o +it)|dt > O(log T).
T_1

2

Hence

[R]—} [R]—1 Kt}
[ log |C(0 + it)|dt = Z/ log |C(o + it)|dt > O(log([R] — 1))).

2

Similarly we can show

R
/ Z log |t — Bldt > —Alog[R],
R

[Rl=2 |[R]—p|<1

where R < [R] + }, and

/R Z log |t — Bldt > —Alog(|R] + 1),

[Bl+2 | (r)+1-p)<1

where R > [R] + . Then we also have

R
/[R ) log |((o + it)|dt > O(log[R)).

]7 2
Therefore

R
/1 log [¢(o + it)|dt > O(log[R]!).

2

Stirling’s formula yields

log[R]! = ([R] + ;) log[R] — [R] + O(1).

Hence we have

R
/ log |¢(o + it)|dt > O(Rlog R).

2
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Particularly,

logR> . (7.6.7)

1 (B N
R2/0 log |Co (it)] dt>0< .

Finally, the inequalities (7.6.5) and (7.6.7) imply
1 R L2 log R
o /O log |Go (it)[2 dt = O ( s ) . (7.6.8)

Set 1
6 = arcsi .
ICS1n R

Then we can take R sufficiently large such that
1
R— Rcosd < 9

For § —0 <6 < 7, the estimate (7.6.6) implies

log

1 )
<(2+Re”)‘> > log|Rsinf — B| + O(log R),
|R—p|<1

where p = a 4 i runs though zeros of {(s). Note that

T R
’ Z 10g|t—ﬁ|dt>—AlORgR.

Z log |Rsin @ — 3| cos 8df =
Rcosd |R—B|<1

1
29 |rR—pl<1 R

1 i
C(2+Re )

((s) = O(logt)

Then

T

2
/ log
5

2

cos0df > O(log R).

We also know

uniformly in any region

1 <o =Re(s) <2, t =1Im(s) > to,

B logt

and

((s)=0 (t%—é’ 1ogt)
uniformly in 0 < o <1 (cf. [394]), which yield immediately

- ) '
/2 log C( +Rezg>
T_§ 2

2

cosfdf < O(log R).
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1 i0
C(2+Re )

[¢(s)] < (o),
for all values of ¢ (cf. [394]). Therefore

T_5
1 .
/2 log C( +Rezg>
O 2

Since log ’( (é + Rew)’ is an even function of 6, these estimates give
3

1 .
/ log |¢ (2 +Rezg>

Therefore Theorem 7.26 follow from Theorem 7.25, (7.6.8) and (7.6.9). O

Thus we obtain

cos0df = O(log R).

2
/ log
T s

2

If o0 > 1, then

cosBdf = O(1).

cos0df = O(log R). (7.6.9)

Take a € R with % < a < 1. According to the proof of Theorem 7.25, we can
show that Riemann’s (-function has no zeros in Re(s) > « if and only if

. _ ((a) 1
ngnooCC“(R) T 2€(a) 1-d
where C(s+a)
s+a
o(s) = . 7.6.10
G = (7.6.10)
We also have .
/2 log |¢ (a + Re™)| cos0df = O(log R)
and R
1 . log R
e / log |Ca (it)[ dt = O ( Oi ) (7.6.11)

by using the estimate (cf. [394])

. 1
ngréoR/ (o +it)[> dt = ¢(2 )(o’>2>.

Thus we obtain the following result:

Theorem 7.27. Take a € R with ; < a < 1. Riemann’s {-function has no zeros in
Re(s) > a if and only if

1 [ Cla+it)|dt  ('(a) 1
| IOg‘ (@)

2 2¢(a) 1-—a
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Related to Theorems 7.25, 7.26, Fu Traing Wang [424] proved the following

formula:
T x
1 dt 2 , 1 )
1 - _ —1i0 1 0
/1 ogC<2+zt> 2 /o Re{e ogC(2+e >}d0

=\ cosf logT
2 " . .6.12
+ w; N +O( T ) (7.6.12)

Consequently, a necessary and sufficient condition for the truth of the Riemann

hypothesis is that
dt B , 1
o= / Re {e” log ¢ (2 + e“") } de. (7.6.13)
0

/loolog C(;—H’t)

V.V. Volchkov [422] proved that Riemann’s hypothesis is equivalent to the

equality
< 11212 [ , (3 —7)
1 = . .6.14
/o (1 + 42)7 /; n|¢(o + it)|dodt 39 (7.6.14)

M. Balazard, E. Saias and M. Yor [14] obtained that

1 log ¢ (s)]
ds| = 1
o /Re(s)—é |S|2 | 5| Z 0og 1

Re(p)> 3

i (7.6.15)

where p’s are zeros of the Riemann zeta function (counted with multiplicity). In
particular, the Riemann hypothesis is equivalent to the vanishing of the integral
on the left (above).

Andriy A. Kondratyuk [216] proved a Carleman-Nevanlinna theorem for a
rectangle, which is close to Littlewood’s proof of a counterpart of the Jensen
theorem for a rectangle [248]. The theorem is applied to the summation of the
logarithm of the Riemann zeta-function on the critical and other vertical lines. In

particular, for € > 0, set
1
(b i)

I(g) :/ e 'log
0
and let {p;} be non-trivial zeros of {(s), then

™

6.1
5’ (7.6.16)

g > ’Re(ﬂj) - ;‘ = I(+0) +

where I(+0) = lim._,¢ I(¢) exists (not necessarily finitely). Thus, the Riemann
hypothesis holds if and only if I(+0) = —7.
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The size of |((s)| in the critical strip is quite difficult to pin down. In fact,
one of the central unsolved problems in analytic number theory is the following
Lindelof hypothesis and its generalizations.

Conjecture 7.28. For any firted € > 0 and o > é,
C(o +it) = O(|t]?), |t| — oo. (7.6.17)

The implied constant in the O-notation here depends implicitly on the value

of €. In particular,
1
¢ (2 +it> = O(|t])

for |¢| large. This case turns out to be equivalent to (7.6.17) via the Phragmen-
Lindeldf principle (cf. Theorem 7.3). The Lindeldf hypothesis is implied by the
Riemann hypothesis and conversely implies that very few zeros disobey it (see
[397], Section 13). Hardy and Littlewood proved that

¢ (; —H’t) =0 (|t|i+€) |t = oo.

Weyl improved the bound to |t|¢+¢ with his new ideas for estimating special
trigonometric sums, now called Weyl sums.

7.7 Levin’s formula

Take R, p € RT with R > p > 0. We will consider the domain

R

zZ — 27,

D:{ZE(C|

<R |z| >
9 po-

Theorem 7.29. Take distinct points c1,...,¢q in D — C(0; p) and a function u €
C*(D —{c1,...,cq}). Assume

u(z) = dilog|z — ci| +ur(z2), k=1,...,q,
near ci, where dy, are constant, and uy, are of class C? near cx. Then one has

1 1 Y PN
_QW/DIm< +R> Au(Q)dzdy = 27TR/5 u (R sin fe )sin20

+ Y dyIm (Clk + ;,) +Q(R, p;u), (7.7.1)

ck€D

where 6 = arcsin £, and Q(R, p;u) = O(1) as R — co.

R’
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Proof. Applying the proof of Theorem 7.15 to the following functions

and noting that

(a) Aw =0;

(b) w(() =0, 9°(C) = pag2g, ¢ =Rsinbe® (5<0<7m—95),
then the formula (7.7.1) follows, where

1 ow ou
Q(R,p;u) = / (u —w ) ds 7.7.2
( P ) 21 DNC(0;p) on on ( )
1 [™9 (sin6 i0 . P\ Ou
__27T/5 { ) u(pe )—|—<sm0—R) 9p (pe )}d@. -

Next we prove Levin’s formula:

Theorem 7.30. Let f(z) be meromorphic in C[iR/2; R/2] with f(0) =1, and sup-
pose that it has the zeros et roet®2 . r e and the poles 5111, s9e'%2,

.., spet inside C(iR/2; R/2). Then

> (- ) - > (e - ) = o)

p=1 Uz v=1
IR v dB
+27TR%1—I>% i log | f (R sinfe )|sin29'

Proof. We can choose p € R sufficiently small such that p < R, and f has no
zeros or poles in C[0; p]. Applying Theorem 7.29 to the function u = log|f]|, we
obtain

"L (sing, 1 N (sing, 1\ 1 [0 iy 40
Z( . R) Z( 5 R) - 27TR/5 log | (Rsinde™)| 2y
n=1 v=1

+ Q(R, p;u).
For ¢ = pe', we have
u(¢) = Re(f'(0)¢) + O(p*),

Hence (7.7.2) implies
1
lim Q(R, p;u) = Im(f'(0)),
p—0 2

and the theorem follows. O



7.7. Levin’s formula 503

Theorem 7.31. Let f(z) be memmorphzc in C[R/2; R/2] with f(0) =1, and sup-
pose that it has the zeros r1et,roe®®? ... rne® and the poles sle“"l, 596192,
.., spe®n inside C(R/2; R/2). Then

S (0 L) -2 (- L) = s - yrets O

p=1 Uz v=1
where .
Li(R) = L i ” log | f (Rcos@e™)| a0
! 2rR 60 ) _x 5 cos2 6’
Proof. Theorem 7.31 follows from Theorem 7.30 applied to f(—iz). O

Theorem 7.32 ([165]). Riemann’s hypothesis is true if and only if

1
lim L, (R) = 7T+7+410g87r—2

R—oo 8 4
where ( 1)
C(s+ 4
Co(s) = -
¢(2)
Proof. Note that
1 i T 1
ST =7, (Tu>0a 0<0,< 2), g

would be the zeros of (o in the half-plane Re(s) > 0, and s = ; is the unique pole
of {p in Re(s) > 0. Hence Theorem 7.31 implies

2 > (L) - (2 ) = LelR) - RGO,

r
ru<Rcosf, H

By (7.3.5), we find

1 N(VR
Z < (g ) — 0 (R — o0)
ru<Rcosf,
Thus by using (7.4.5) we obtain
cosf,
Am Lo (R —22 r “retaty ,loBsT 2.

Riemann’s hypothesis is true if and only if the zeros z, do not exist, that is,
cosf
> =0
PR

equivalently,

. Ty 1 _
RIEnOOECO(R)— 8 +4+4log87r 2. -
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7.8 Notes on Nevanlinna’s conjecture
It is easy to verify that for the sector
D =C(0;R)Nn{z € C | Re(z) > 0},

its Green’s function is

R?2—2C (+z

G:() =log| . "L

Let H, be a conjugate of GG, such that

R?2—2C (+z )

6.0+t =10 (T 27 507

where i = y/—1 is the imaginary unit. Putting ( = Re’®, z = re??, on C(0; R) we
have

dH, (d(GZ + z’Hz)>
=Im
dy de
R2 _ 7,2 R2 _ 7,2
T R242Rrcos(0+¢)+12  R2—2Rrcos(f — @) + 12

e (C=2\ L ¢tz
el ()
On Re(z) = 0, putting ¢ = it we have

di, _ (d itz dy R? —itz
at dt it — 2 dt ® R4tz
B 21 cos 6 2R?r cos 6

T2 _2trsinf+12  RY— 2R2trsinf + 202

1 z
= 2Re (z —it) —2Re (R2 +itz> ’

Note that along the boundary of D, we have

0G, OH,

on ds
Thus Theorem 7.16 implies the following fact:

Theorem 7.33. Let f (# 0) be meromorphic in D = C[0; R] N {Re(z) > 0}. Let
ay, (p=1,...,m) and b, (v =1,...,n) be respectively zeros and poles of f in D.
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Then for z € D —{ay,...,am,b1,...,b,}, one has

1 (2 (Re¥ 42 Re ™ —2 i
log f(z) = 2m / (Rew —z Re ¥+ z) log |f (fe ¢)| dv

_7
2

1 (R 1 -
- 1 it)|dt
+”/R(Z—it R2+itz> og | f(it)|

i R?—a,z z+a " R?Z—b,z z+1b
_ 1 m m 1 v v .
Zog( z—ay R2+auz>+20g< z2—0b, R2+b,z tie
p=1 v=1
where ¢ is constant.

Let f(z) be a non-constant meromorphic function in {Re(z) > 0} with f(0) =
1, and suppose that it has the poles s1e'1, s9e2 ..., s,e!" inside C(0;7) N
{Re(z) > 0} for some r > 0. Set

Ay = g [ (= L) ost st

21 t2
1 /1 1
- log™ | f(—it)|dt
tor [ (2 ) tor rina

B(r, f) = er /i log™ | f (re'®)| cos 6df,

cif)=> (81 B i;) cos ¢,

v=1

and define a characteristic function of f by
S(r, f) = A(r, ) + B(r, f) + C(r, f).
Theorem 7.24 yields
1 1 ,
S{r )=S0 f)— Re(f(0)).
f 2
In 1925, Nevanlinna proposed the following conjecture on the logarithmic deriva-

tive: ) (7"7 J;’) B (7"7 J;) =o(S(r, f))

as r — oo outside a set of r which has finite linear measure. Generally, we will
show that it is not true.

Next we estimate S(r,(p) for the function (p defined in Section 7.6. Since
Co(—it) = (o(it), we have

A(r, o) ! /0 ( - r12> log™ [o (it)|dt.

o t2
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By using Weyl’s estimation in Section 7.6, we obtain

[ 108" ettt = o).

Hence the estimations in Section 7.6 imply

A(r,Go) = 0(1), B(r.¢o) = O (k’g?") .

r

Obviously, when r > 1/2 we have

1
2r2°

O(T7 CO) =2-

Therefore we obtain
S(T, Co) = 0(1)

(7.8.1)

This example shows that the characteristic function S(r, f) usually grows
slowly. To make sense for Nevanlinna’s conjecture, we have to assume growth
conditions of f, say, S(r, f) — oo as r — oo. Theorem 7.33 can be applied to

study Nevanlinna’s conjecture (see Hu [163]).
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