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Preface

In 1879, Picard established the well-known and beautiful result that a transcen-
dental entire function assumes all values infinitely often with one exception. Since
then Hadamard (1893), Borel (1897) and Blumenthal (1910) had tried to give Pi-
card’s result a quantitative description and extend it to meromorphic functions.
It was R. Nevanlinna, who achieved such an attempt in (1925) by establishing the
so-called value distribution theory of meromorphic functions which was praised
by H. Weyl (1943) as “One of the few great mathematical events of our century”.
Moreover, part of the significance of Nevanlinna’s approach is that the concept
of exceptional values can be given a geometric interpretation in terms of geomet-
ric objects like curves and mappings of subspaces of holomorphic curves from a
complex plane C to a projective space Pn. In the years since these results were
achieved, mathematicians of comparable stature have made efforts to derive an
analogous theory for meromorphic mappings and p-adic meromorphic functions.
Besides the value distribution, the theory has had many applications to the an-
alyticity, growth, existence, and unicity properties of meromorphic solutions to
differential or functional equations. More recently, it has been found that there is
a profound relation between Nevanlinna theory and number theory. C.F. Osgood
[310], [311] first noticed a similarity between the 2 in Nevanlinna’s defect relation
and the 2 in Roth’s theorem. S. Lang [230] pointed to the existence of a structure
to the error term in Nevanlinna’s second main theorem, conjectured what could be
essentially the best possible form of this error term in general (based on his con-
jecture on the error term in Roth’s theorem), and gave a quite detailed discussion
in [235]. P.M. Wong [433] used a method of Ahlfors to prove Lang’s conjecture in
the one-dimensional case. As for higher dimensions, this problem was studied by
S. Lang and W. Cherry [235], A. Hinkkanen [159], and was finally completed by
Z. Ye [443]. The best possible form of error terms has been used in our present
work to produce some sharp results.

In 1987, P. Vojta [415] gave a much deeper analysis of the situation, and
compared the theory of heights in number theory with the characteristic functions
of Nevanlinna theory. In his dictionary, the second main theorem, due to H. Car-
tan, corresponds to Schmidt’s subspace theorem. Further, he proposed the general
conjecture in number theory by comparing the second main theorem in Carlson-
Griffiths-King’s theory, or particularly influenced by Griffiths’ conjecture, which



x Preface

also can be translated into a problem of non-Archimedean holomorphic curves
posed by Hu and Yang [176]. Along this route, Shiffman’s conjecture on hyper-
surface targets in value distribution theory corresponds to a subspace theorem for
homogeneous polynomial forms in Diophantine approximation. Vojta’s (1, 1)-form
conjecture is an analogue of an inequality of characteristic functions of holomor-
phic curves for line bundles. Being influenced by Mason’s theorem, Oesterlé and
Masser formulated the abc-conjecture. The generalized abc-conjectures for integers
are counterparts of Nevanlinna’s third main theorem and its variations in value
distribution theory, and so on.

Roughly speaking, a significant analogy between Nevanlinna theory and Dio-
phantine approximation seems to be that the sets X(κ) of κ-rational points of a
projective variety X defined over number fields κ are finite if and only if there
are no non-constant holomorphic curves into X . Mordell’s conjecture (Faltings’
theorem) and Picard’s theorem are classic examples in this direction. In higher-
dimensional spaces, this corresponds to a conjecture due to S. Lang, that is,
Kobayashi hyperbolic manifolds (which do not contain non-constant holomorphic
curves) are Mordellic. Bloch-Green-Griffiths’ conjecture on degeneracy of holo-
morphic curves into pseudo-canonical projective varieties is an analogue of the
Bombieri-Lang conjecture on pseudo canonical varieties. We have introduced these
problems and the related developments in this book. Generally, topics or problems
in number theory are briefly introduced and translated as analogues of topics in
value distribution theory. We have omitted the proofs of theorems in number the-
ory. However, we have discussed the problems of value distribution in detail. In
this book, we will not discuss value distribution theory of moving targets, say, K.
Yamanoi’s work [437], and their counterparts in number theory.

When a holomorphic curve f into X is not constant, we have to distinguish
whether it is degenerate in Nevanlinna theory, that is, whether its image is con-
tained or not in a proper subvariety. If it is degenerate, usually it is difficult to
deal with it in value distribution theory. If f is non-degenerate, we can study its
value distributions and measure its growth well by a characteristic function Tf(r).
Similarly, we should distinguish whether or not certain rational points are degen-
erate. Related to the degeneracy, it seems that for each number field κ, X(κ) is
contained in a proper Zariski closed subset if and only if there are no algebraically
non-degenerate holomorphic curves into X . To compare with Nevanlinna theory,
therefore, we need to rule out degenerate κ-rational points that are contained in
a subspace of lower dimension, and give a proper measure for non-degenerate κ-
rational points. By integrating heights over non-degenerate κ-rational points, we
can obtain quantitative measurements Tκ(r).
They have the following basic properties:

(i) f is constant if and only if Tf (r) is bounded; there are no non-degenerate
κ-rational points if and only if Tκ(r) is bounded .

(ii) f is rational if and only if Tf (r) = O(log r); there are only finitely many
non-degenerate κ-rational points if and only if Tκ(r) = O(log r).
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It has been observed that there exist non-constant holomorphic curves into elliptic
curves such that they must be surjective. Thus it is possible that there are infinitely
many rational points on some elliptic curves. However, since non-constant holo-
morphic curves into elliptic curves have normal properties, say, they are surjective,
then distribution of rational points on elliptic curves should be “normal”. Really,
elliptic curves are modular according to the Shimura-Taniyama-Weil conjecture,
which was proved by Breuil, Conrad, Diamond, and Taylor [37] by extending work
of Wiles [431], Taylor and Wiles [390]. Moreover, as a result of studies of the anal-
ogous results between Nevanlinna’s value distribution theory and Diophantine ap-
proximation, some novel ideas and generalizations have been developed or derived
in the two topics, with many open problems posed for further investigations.

The book consists of seven chapters: In Chapter 1, we introduce some basic
notation and terminology on fields and algebraic geometry which are mainly used
to explain clearly the topics in Chapter 3 related to number theory. Chapter 2 is
a foundation of value distribution theory which is used in Chapter 4, Chapter 6
and Chapter 7 to introduce the analogues related to number theory in Nevanlinna
theory, say, abc-problems, meromorphic solutions of Fermat’s equations and the
Waring problem, Green-Griffiths’ conjecture, Griffiths’ and Lang’s conjectures,
Riemann’s ζ-function, and so on. Chapter 5 contains value distribution theory
over non-Archimedean fields and some applications related to topics in number
theory. Moreover, a few equidistribution formulae illustrating the differences with
the classical Nevanlinna theory have been exhibited. Each chapter of this book
is self-contained and this book is appended with a comprehensive and up-dated
list of references. The book will provide not just some new research results and
directions but challenging open problems in studying Diophantine approximation
and Nevanlinna theory. One of the aims of this book is to make timely surveys on
these new results and their related developments; some of which are newly obtained
by the authors and have not been published yet. It is hoped that the publication
of this book will stimulate, among our peers, further researches on Nevanlinna’s
value distribution theory, Diophantine approximation and their applications.

We gratefully acknowledge support for the related research and for writing of
the present book from the Natural Science Fund of China (NSFC) and the Research
Grant Council of Hong Kong during recent years. Also the authors would like to
thank the staff of Birkhäuser, in particular, the Head of Editorial Department
STM, Dr. Thomas Hempfling, and last but not least, we want to express our
thanks to Dr. Michiel Van Frankenhuijsen for his thorough reviewing, valuable
criticism and concrete suggestions.

Pei-Chu Hu
Chung-Chun Yang



Chapter 1

Heights

In this chapter, we will introduce some basic notation, terminology and proposi-
tions on fields and algebraic geometry, which will be used in this book.

1.1 Field extensions

We will denote the fields of complex, real, and rational numbers by C, R, and Q,
respectively, and let Z be the ring of integers. If κ is a set, we will write

κn = {(x1, . . . , xn) | xi ∈ κ} = κ× · · · × κ (n-times).

If κ is partially ordered, write

κ(s, r) = {x ∈ κ |s < x < r}, κ(s, r] = {x ∈ k|s < x ≤ r},
κ[s, r) = {x ∈ κ |s ≤ x < r}, κ[s, r] = {x ∈ κ |s ≤ x ≤ r},

κ+ = κ[0,∞), κ+ = κ(0,∞).

For example, Z[s, r] means the set of integers i satisfying s ≤ i ≤ r, R+ is the set
of positive real numbers, and so on.

For later discussions, we will need some notions of rings. When we speak of
a ring, we shall always mean a commutative ring with a multiplicative identity. A
vector subspace I in a ring A is called an ideal if AI ⊂ I, that is, if xy ∈ I for
all x ∈ A and y ∈ I. If I �= A, we say that the ideal is proper. A proper ideal I
in A is said to be prime if xy ∈ I for x, y ∈ A means x ∈ I or y ∈ I. The set
of multiples of a particular element a ∈ A, or equivalently, the set of elements
divisible by a, forms an ideal called the principal ideal generated by a. Elements
x, y of a ring are said to be zero divisors if x �= 0, y �= 0, and xy = 0. We define
a ring to be entire (or a domain, or an integral domain) if 1 �= 0, and if there are
no zero divisors in the ring. A field is a domain in which every non-zero element
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is a unit, i.e., has a multiplicative inverse. Any domain A has a quotient field or
field of fractions κ, which is a field containing A as a subring, and any element
in κ may be written (not necessarily uniquely) as a ratio of two elements of A. A
ring is called Noetherian if every ideal in the ring is finitely generated. Fields are
Noetherian rings. A basic fact is the following Hilbert basis theorem:

Theorem 1.1. If A is a Noetherian ring, then the ring A[X1, . . . , Xn] of polynomials
in n variables over A is a Noetherian ring.

Proof. See Fulton [109], Atiyah-Macdonald [7], Theorem 7.5 or Lang [227], Section
6.2. �
Proposition 1.2 (cf. [109]). The following conditions on a ring A are equivalent:

(i) The set of non-units in A forms an ideal.
(ii) A has a unique maximal ideal which contains every proper ideal of A.

A ring satisfying the conditions of Proposition 1.2 is called a local ring. A
sequence x1, . . . , xr of elements of a ring A is called a regular sequence for A if x1

is not a zero divisor in A, and for all i = 2, . . . , r, xi is not a zero divisor in the
ring A/(x1, . . . , xi−1), where

(x1, . . . , xi−1) = {a1x1 + · · ·+ ai−1xi−1 | aj ∈ A}

is the ideal generated by x1, . . . , xi−1. If A is a local ring with maximal ideal m,
then the depth of A is the maximum length of a regular sequence x1, . . . , xr for
A with all xi ∈ m. We say that a local Noetherian ring A is Cohen-Macaulay if
depthA = dimA. Now we list some properties of Cohen-Macaulay rings.

Proposition 1.3. Let A be a local Noetherian ring with maximal ideal m.

(a) If A is regular, that is, dimκ m/m2 = dim A, where κ = A/m is the residue
class field, then it is Cohen-Macaulay.

(b) If A is Cohen-Macaulay, then any localization Ap of A at a prime ideal p is
also Cohen-Macaulay, where Ap = {a/b | a, b ∈ A, b �∈ p}.

(c) If A is Cohen-Macaulay, then a set of elements x1, . . . , xr ∈ m forms a
regular sequence for A if and only if dimA/(x1, . . . , xr) = dimA− r.

(d) If A is Cohen-Macaulay, and x1, . . . , xr ∈ m is a regular sequence for A,
then A/(x1, . . . , xr) is also Cohen-Macaulay.

(e) If A is Cohen-Macaulay, and x1, . . . , xr ∈m is a regular sequence, let I be the
ideal (x1,...,xr). Then the natural mapping (A/I)[t1,...,tr]→⊕n≥0I

n/In+1,
defined by sending ti �→ xi, is an isomorphism. In other words, I/I2 is a free
A/I-module of rank r, and for each n ≥ 1, the natural mapping Sn(I/I2) →
In/In+1 is an isomorphism, where Sn denotes the nth symmetric power.

Proof. Matsumura [260]: (a) p. 121; (b) p. 104; (c) p. 105; (d) p. 104; (e) p. 110
or Hartshorne[148], Theorem 8.21A. �
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An element x in a ring A is irreducible if for any factorization x = ab, a, b ∈ A,
either a or b is a unit. A domain A is a unique factorization domain if every non-
zero element in A can be factored uniquely, up to units and the ordering of the
factors, into a product of irreducible elements. A subring A of the field κ is called a
valuation ring if it has the property that for any x ∈ κ we have x ∈ A or x−1 ∈ A.

Proposition 1.4 (cf. [109]). Let A be a domain which is not a field. Then the
following conditions are equivalent:

(I) A is Noetherian and local, and the maximal ideal is principal.
(II) There is an irreducible element t ∈ A such that every non-zero z ∈ A may

be written uniquely in the form z = utn, u a unit in A, n a non-negative
integer.

A ring A satisfying the conditions of Proposition 1.4 is called a discrete val-
uation ring. An element t as in Proposition 1.4 is called a uniformizing parameter
for A; any other uniformizing parameter is of the form ut, u a unit in A. Let κ be
the quotient field of A. Then any non-zero element z ∈ κ has a unique expression
z = utn, u a unit in A, n ∈ Z, The exponent n is called the order of z, and written
n = ord(z); we define ord(0) = +∞. Then

A = {z ∈ κ | ord(z) ≥ 0},

and
m = {z ∈ κ | ord(z) > 0}

is the maximal ideal in A.

Let κ be a field and A a subring of κ. An element α of κ is said to be integral
over A if it satisfies a monic equation over A:

αn + a1α
n−1 + · · ·+ an = 0,

where ai ∈ A for i = 1, . . . , n. If every element of κ integral over A lies in A, then
A is said to be integrally closed in κ. An integral domain is called integrally closed
if it is integrally closed in its field of fractions. The set of all elements of κ integral
over A is called the integral closure of A in κ; it always includes A itself because
any α in A satisfies the equation x − α = 0 and so is integral over A. Moreover,
the integral closure of A is a subring of κ.

Let κ be a field and denote the multiplicative group κ− {0} by κ∗. If κ is a
subfield of a field K, then we also say that K is an extension field of κ, which will
be denoted by K/κ. The field K can always be regarded as a vector space over κ.
The dimension dimκ K of K as a κ-vector space is called the degree of K over κ.
It will be denoted by

[K : κ] = dimκ K.

If [K : κ] < ∞, K is called a finite extension of κ, otherwise, an infinite extension
of κ. The following proposition is a basic fact of extension fields:
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Proposition 1.5. Let κ be a field and F ⊂ K extension fields of κ. Then

[K : κ] = [K : F ][F : κ]. (1.1.1)

If {xi}i∈I is a basis for F over κ and {yj}j∈J is a basis for K over F , then
{xiyj}(i,j)∈I×J is a basis for K over κ.

Let κ be a subfield of a field K. Take an element α in K. The field extension
of κ, which is generated by α, will be denoted by κ(α), that is, κ(α) is the smallest
field containing κ and α. We denote the ring generated by α over κ by κ[α].
It consists of all elements of K that can be written as polynomials in α with
coefficients in κ:

anαn + · · ·+ a1α + a0, ai ∈ κ. (1.1.2)

The field κ(α) is isomorphic to the field of fractions of κ[α]. Its elements are ratios
of elements of the form (1.1.2). The element α is said to be algebraic over κ if it is
the root of some non-zero polynomial with coefficients in κ, otherwise, transcen-
dental over κ. The lowest degree irreducible monic polynomial with coefficients in
κ such that f(α) = 0 is called the minimal polynomial of α over κ. The degree
of the polynomial is also called the degree of α over κ, which is determined as
follows:

Proposition 1.6. Let α be algebraic over κ. Then κ(α) = κ[α], and κ(α) is finite
over κ. The degree [κ(α) : κ] is equal to the degree of the minimal polynomial for
α over κ.

A field extension K of κ is called an algebraic extension, or K is said to be
algebraic over κ, if all its elements are algebraic over κ. One important case of a
tower of field extensions is that K is a given extension of κ and α is an element
of K. The field κ(α) is an intermediate field:

κ ⊂ κ(α) ⊂ K.

Thus, one has
[K : κ] = [K : κ(α)][κ(α) : κ].

Note that [κ(α) : κ] is the degree of α over κ if α is algebraic, otherwise [κ(α) :
κ] = ∞. Hence one shows the property:

Proposition 1.7. If K is a finite extension of κ, then K is algebraic over κ.

Let κ be a subfield of K and let α1, . . . , αn be elements of K. We denote by
κ(α1, . . . , αn) the smallest subfield of K containing κ and α1, . . . , αn. Its elements
consist of all quotients

P (α1, . . . , αn)
Q(α1, . . . , αn)

where P , Q are polynomials in n variables with coefficients in κ, and Q(α1, . . . ,
αn) �= 0. We say that K is finitely generated over κ if there is a finite family of
elements α1, . . . , αn of K such that K = κ(α1, . . . , αn). We exhibit an example of
such fields as follows:
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Proposition 1.8. If K is a finite extension of κ, then K is finitely generated over κ.

A field extension K of κ is said to be an algebraic closure of κ if K is algebraic
over κ, and K is algebraically closed, that is, every polynomial f(x) ∈ K[x] of
positive degree has a root in K.

Proposition 1.9. Every field κ has an algebraic closure.

Let K be an extension of a field κ and let

σ : κ −→ L

be an embedding (i.e., an injective homomorphism) of κ into a field L. Then σ
induces an isomorphism of κ with its image σ(κ). An embedding τ of K in L will
be said to be over σ if the restriction of τ to κ is equal to σ. We also say that τ
extends σ. If σ is the identity, then we say that τ is an embedding of K over κ.

Assume that L is algebraically closed. We analyze the extensions of σ to
algebraic extensions K of κ. First of all, we consider the special case K = κ(α),
where α is algebraic over κ. Let Pα be the minimal polynomial of α over κ. Let
β be a root of σ(Pα) in L. Given an element of κ(α) = κ[α], we can write it in
the form f(α) with some polynomial f over κ. We define an extension of σ by
mapping

f(α) �→ σ(f)(β).

This is in fact well defined, i.e., independent of the choice of polynomial f used
to express our element in κ[α]. Indeed, if g(X) is in κ[X ] such that g(α) = f(α),
then (g−f)(α) = 0, whence Pα(X) divides g(X)−f(X). Hence σ(Pα)(X) divides
σ(g)(X)− σ(f)(X), and thus σ(g)(β) = σ(f)(β). It is clear that the mapping is a
homomorphism inducing σ on κ, and that it is an extension of σ to κ(α). Hence
we get:

Proposition 1.10. The number of possible extensions of σ to κ(α) is ≤ the number
of roots of Pα, and is equal to the number of distinct roots of Pα.

We are interested in extensions of σ to arbitrary algebraic extensions of κ.
By using Zorn’s lemma, one can prove the following result:

Proposition 1.11. Let κ be a field, K an algebraic extension of κ, and σ : κ −→
L an embedding of κ into an algebraically closed field L. Then there exists an
extension of σ to an embedding of K in L. If K is algebraically closed and L is
algebraic over σ(κ), then any such extension of σ is an isomorphism of K onto L.

As a corollary, we have a certain uniqueness for an algebraic closure of a
field κ.

Corollary 1.12. If L, L′ are two algebraic closures of a field κ, there is an isomor-
phism λ : L −→ L′, which is the identity mapping on κ.
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Let K be an algebraic extension of a field κ and let

σ : κ −→ L

be an embedding of κ into an algebraically closed field L. Let Sσ be the set of
extensions of σ to an embedding of K in L. Assume that L is algebraic over σ(κ),
hence is equal to an algebraic closure of σ(κ). Let L′ be another algebraically closed
field, and let τ : κ −→ L′ be an embedding. Let Sτ be the set of embeddings of
K in L′ extending τ . We also assume that L′ is an algebraic closure of τ(κ). By
Proposition 1.11, there exists an isomorphism λ : L −→ L′ extending the mapping
τ ◦ σ−1 applied to the field σ(κ). If σ∗ ∈ Sσ is an extension of σ to an embedding
of K in L, then λ ◦ σ∗ is an extension of τ to an embedding of K in L′, because
for the restriction to κ we have

λ ◦ σ∗ = τ ◦ σ−1 ◦ σ = τ.

Thus λ induces a mapping from Sσ into Sτ . It is clear that the inverse mapping
is induced by λ−1, and hence that Sσ, Sτ are in bijection under the mapping
σ∗ �→ λ ◦ σ∗. In particular, the cardinality of Sσ, Sτ are the same. Thus this
cardinality depends only on the extension K/κ, and will be denoted by [K : κ]s.
We shall call it the separable degree of K over κ. A basic fact is listed as follows:

Proposition 1.13. Let κ be a field and F ⊂ K be algebraic extensions of κ. Then

[K : κ]s = [K : F ]s[F : κ]s.

Furthermore, if K is finite over κ, then [K : κ]s is finite and divides [K : κ].

Let κ be a field and let f be a polynomial over κ of degree ≥ 1. By a splitting
field K of f we shall mean an extension K of κ such that f splits into linear factors
in K, i.e.,

f(x) = c(x− α1) · · · (x− αn)

with αi ∈ K, i = 1, . . . , n, and such that

K = κ(α1, . . . , αn)

is generated by all roots of f . A splitting field of a polynomial f over κ is unique
in the sense of isomorphism:

Proposition 1.14. Let K be a splitting field of a polynomial f over κ. If F is
another splitting field of f , there is an isomorphism σ : F −→ K, which is the
identity mapping on κ. If κ ⊂ K ⊂ κ, where κ is an algebraic closure of κ, then
any embedding of F in κ inducing the identity on κ must be an isomorphism of F
onto K.

Let I be a set of indices and let {fi}i∈I be a family of polynomials over κ of
degrees ≥ 1. By a splitting field for this family we shall mean an extension K of
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κ such that every fi splits into linear factors in K, and K is generated by total
roots of the polynomials fi, i ∈ I. Let κ be an algebraic closure of κ, and let Ki

be a splitting field of fi in κ. Then the smallest subfield of κ containing all fields
Ki, i ∈ I is a splitting field for the family {fi}i∈I .

Corollary 1.15. Let K be a splitting field for the family {fi}i∈I. If F is another
splitting field for {fi}i∈I , any embedding of F into κ inducing the identity on κ
gives an isomorphism of F onto K.

The following result gives characteristic conditions that an algebraic exten-
sion of κ is a splitting field of a family of polynomials over κ.

Theorem 1.16 (cf. [227]). Let K be an algebraic extension of κ, contained in an
algebraic closure κ of κ. Then the following conditions are equivalent:

1) K is the splitting field of a family of polynomials over κ.
2) Every embedding σ of K in κ over κ is an automorphism of K.
3) Every irreducible polynomial over κ which has a root in K splits into linear

factors in K.

An extension K of κ satisfying one of the hypotheses 1)-3) in Theorem 1.16
will be said to be normal. If K is an algebraic extension of κ, then there exists
a smallest normal extension E of κ containing K. The field E can be given by
taking the intersection of all normal extensions of κ containing K.

Let κ be a field, and 0 �= f(x) ∈ κ[x]. If f(x) has no multiple root in an
algebraic closure κ of κ, then f is called a separable polynomial. Let K be an
extension of κ, and α ∈ K. If α is algebraic over κ and the minimal polynomial of
it over κ is separable, then α is called a separable algebraic element over κ. We see
that this condition is equivalent to saying that [κ(α) : κ]s = [κ(α) : κ] according
to the following criterion:

Proposition 1.17. Let K be an algebraic closure of κ. Take α ∈ K and let Pα

be the minimal polynomial of α over κ. If char κ = 0, then all roots of Pα have
multiplicity 1 (Pα is separable). If char κ = p > 0, then there exists an integer
µ ≥ 0 such that every root of Pα has multiplicity pµ. We have

[κ(α) : κ] = pµ[κ(α) : κ]s,

and αpµ

is separable over κ.

If all elements in K are separable algebraic over κ, then K is called a separable
algebraic extension of κ. If K is separable over κ, we can choose a smallest normal
extension E of κ containing K such that E is separable over κ. One has the
following condition determining a separable algebraic extension:

Proposition 1.18. Let K be a finite extension of a field κ. Then K is separable
over κ if and only if [K : κ]s = [K : κ].
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Let K be an extension of a field κ. If α ∈ K is a separable algebraic element
over κ, then κ[α] is a separable algebraic extension of κ. Further, if K is generated
by a family of separable algebraic elements {αi}i∈I over κ, then K is separable
over κ. Then one has the theorem of the primitive element:

Theorem 1.19. Let K be a finite extension of a field κ. There exists an element
α ∈ K such that K = κ(α) if and only if there exists only a finite number of
fields F such that κ ⊂ F ⊂ K. If K is separable over κ, then there exists such an
element α.

Proof. Zariski and Samuel [448], Ch. II, Theorem 19, p. 84. �

A field κ of characteristic p > 0 is called perfect if {xp | x ∈ κ} = κ.
Every field of characteristic zero is also called perfect. It is well known that if κ is
perfect, every algebraic extension of κ is separable and perfect (cf. [227]). If K is
an extension field of κ which is not algebraic, the transcendence degree of K/κ is
the maximum number of elements of K that are algebraically independent over κ.
A subset S of K which is algebraically independent over κ and is maximal with
respect to the inclusion ordering will be called a transcendence base of K over κ.
If K is a finitely generated extension of κ, K = κ(x), it is said to be separably
generated if we can find a transcendence base t = (t1, . . . , tr) of K/κ such that K is
separably algebraic over κ(t). Such a transcendence base is said to be a separating
transcendence base for K over κ.

Proposition 1.20 (cf. [63]). Let κ be a perfect field and K an extension of κ of
transcendence degree 1. Then there exists x ∈ K such that K/κ(x) is a separable
extension. The element x is called a separating element of the extension.

Let κ be a field and let G be a group of automorphisms of κ. Let F (G) be
the set of invariants of G, namely,

F (G) = {x | x ∈ κ, σ(x) = x for all σ ∈ G}.

Then the set F (G) is a subfield of κ, which is called the invariant field of G, or the
fixed field of G. Let K be an algebraic extension of κ and let GK/κ be the group
of automorphisms of K over κ. The field K is called a Galois extension of κ if K
is a normal separable extension of κ. If K is a Galois extension of κ, then GK/κ

is called the Galois group of K over κ. For the convenience of the reader, we shall
now state the main theorem of Galois theory for finite Galois extensions.

Theorem 1.21 (cf. [272]). Let K be a finite Galois extension of κ. Then we have

(1) Let E be an intermediate field between K and κ, namely κ ⊂ E ⊂ K. Then
(α) K is a Galois extension of E. GK/E is a subgroup of GK/κ.
(β) The order of the group GK/E is [K : E].
(γ) The invariant field F (GK/E) of GK/E is E.
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(2) Let H be a subgroup of GK/κ. Then
(δ) The invariant field F (H) is an intermediate field between K and κ.
(ε) The order of H is [K : F (H)].
(ζ) The Galois group GK/F (H) = H.

Therefore, there is a bijective mapping between the set of subfields E of K contain-
ing κ, and the set of subgroups H of GK/κ, given by E = F (H) (resp., H = GK/E).
The E is Galois over κ if and only if H is normal in GK/κ, and if that is the case,
then the mapping σ �→ σ|E induces an isomorphism of GK/κ/H onto the Galois
group GE/κ of E over κ.

Let K be a finite field extension of κ. Take α ∈ K. Then α induces a κ-linear
mapping

Aα : K −→ K

defined by Aα(x) = αx. Let {w1, . . . , wn} be a base of K over κ. Write

Aα(wi) = αwi =
n∑

j=1

aijwj .

The characteristic polynomial

χα(x) = det(xI −Aα)

of the matrix form Aα = (aij) of Aα is called the field polynomial of α. The field
polynomial χα is independent of the base {w1, . . . , wn} selected for K over κ.
Obviously, α is a root of its field polynomial.

Lemma 1.22. Let K be a finite field extension of a field F which is a finite field
extension of κ, and α ∈ F . Let the field polynomial of α as an element of K be
χα(x), the field polynomial of α as an element of F be G(x), and the minimal
polynomial of α over κ be Pα(x). Then we have

(A) K = κ(α) if and only if χα(x) = Pα(x).
(B) χα(x) = G(x)[K:F ].

Proof. (A) Since α is a root of χα, therefore we have Pα(x) | χα(x). Since their
degrees are equal, and both are monic polynomials, then they must be equal.

(B) Let [F : κ] = s. Let {u1, . . . , us} be a basis for F over κ, and {v1, . . . , vm}
be a basis for K over F . Let Ki be the subspace

Ki = ⊕s
j=1ujviκ.

Then we have
K = ⊕m

i=1Ki.

Each Ki is an invariant subspace of Aα with the characteristic polynomial of the
restriction of Aα to Ki equaling G(x). Therefore, we have χα(x) = G(x)[K:F ]. �
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Let Pα ∈ κ[x] be the minimal polynomial of α over κ. Let χα be the field
polynomial of α. Then one has

χα(0) = (−1)[K:κ] det(Aα) = Pα(0)[K:κ(α)],

and hence

det(Aα) =
{
(−1)dPα(0)

}[K:κ(α)]
=
{
(−1)dPα(0)

} [K:κ]
d ,

where d = deg(Pα) = [κ(α) : κ]. We will denote the element of κ by NK/κ(α),
called the norm of α over κ. Define the trace TrK/κ(α) of α over κ as trace(Aα) =∑

aii. In other words, in the following field polynomial χα of α, we have

χα(x) = xn −TrK/κ(α)xn−1 + · · ·+ (−1)nNK/κ(α),

where n = [K : κ]. The norm of K over κ

NK/κ : K −→ κ

is a multiplicative homomorphism of K∗ into κ∗, namely

NK/κ(αβ) = NK/κ(α)NK/κ(β) ∈ κ∗, α, β ∈ K∗.

The trace of K over κ,
TrK/κ : K −→ κ,

determines a κ-linear mapping of K to κ. When α ∈ κ, the formula

TrK/κ(α) = [K : κ]α, NK/κ(α) = α[K:κ] (1.1.3)

is trivial. By Lemma 1.22, if K is a finite field extension of a field F which is a
finite field extension of κ, and α ∈ F , then we have

TrK/κ(α) = [K : F ]TrF/κ(α), NK/κ(α) = NF/κ(α)[K:F ]. (1.1.4)

Let K be a finite extension of a field κ. Let [K : κ]s = r, and let

pµ =
[K : κ]
[K : κ]s

if the characteristic of κ is p > 0, and 1 otherwise. Let κ be an algebraic closure
of κ and let σ1, . . . , σr be the distinct embeddings of K in κ. Then for α ∈ K, one
has

NK/κ(α) =
r∏

i=1

σi

(
αpµ
)

, TrK/κ(α) = pµ
r∑

i=1

σi(α). (1.1.5)

When K = κ(α), it is easy to show that (1.1.5) holds by using Proposition 1.10.
Generally, the mappings of K into κ defined by (1.1.5) are transitive, in other
words, if we have three fields κ ⊂ F ⊂ K, then (cf. [227])

TrF/κ ◦TrK/F = TrK/κ, NF/κ ◦NK/F = NK/κ. (1.1.6)

Thus (1.1.5) follows from (1.1.4) and (1.1.6) applied to F = κ(α).
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Theorem 1.23. Let K be a finite separable extension of a field κ. Then TrK/κ :
K −→ κ is a non-zero functional. The mapping (x, y) �→ TrK/κ(xy) of K×K −→
κ is bilinear, and identifies K with its dual space.

Proof. Trivially, TrK/κ : K −→ κ is a non-zero functional. For each x ∈ K, the
mapping

TrK/κ,x : K −→ κ

such that TrK/κ,x(y) = TrK/κ(xy) is obviously a κ-linear mapping, and the map-
ping

x �→ TrK/κ,x

is a κ-homomorphism of K into its dual space K∗. If TrK/κ,x is the zero mapping,
then TrK/κ(xK) = 0. If x �= 0 then xK = K. Hence the kernel of x �→ TrK/κ,x

is 0. Hence we get an injective homomorphism of K into K∗. Since these spaces
have the same finite dimension, it follows that we get an isomorphism. �

Let w1, . . . , wn be a basis of K over κ. Then TrK/κ,w1 , . . . ,TrK/κ,wn
is a

basis of K∗. Thus we can find v1, . . . , vn ∈ K to satisfy

TrK/κ(wivj) = δij .

Obviously, v1, . . . , vn forms a basis of K over κ.

1.2 Fields with valuations

We will introduce basic properties of absolute values over a field and their ex-
tensions to extension fields. In particular, classification of absolute values will be
exhibited, which includes the first and second theorems of Ostrowski.

1.2.1 Absolute values

Definition 1.24. An absolute value on a field κ is a function

| · | : κ −→ R+

that satisfies the following conditions:

1) |x| = 0 if and only if x = 0;

2) |xy| = |x||y| for all x, y ∈ κ;

3) |x + y| ≤ |x|+ |y| for all x, y ∈ κ.

If instead of 3) the absolute value satisfies the stronger condition

4) |x + y| ≤ max{|x|, |y|} for all x, y ∈ κ,
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then the absolute value is called ultrametric or non-Archimedean. Otherwise, it is
called Archimedean.

Let κ be a field with an absolute value | · |. If | · | is non-Archimedean, in fact
we have

|x + y| = max{|x|, |y|}, |x| �= |y|.
The absolute value | · | is said to be trivial if

|x| =
{

1 : x ∈ κ∗,
0 : x = 0,

and dense if the set
|κ| = {|x| | x ∈ κ}

is dense in R+.

Generally, an absolute value | · | on κ induces a distance function d defined by

d(x, y) = |x− y|,

for any two elements x, y ∈ κ, and hence induces a topology on κ. For a positive
real number r and a point x ∈ κ, denote the open and closed balls of radius r
centered at x, respectively, by

κ(x; r) = {y ∈ κ | d(x, y) < r}, κ[x; r] = {y ∈ κ | d(x, y) ≤ r},

and denote the circle by

κ〈x; r〉 = {y ∈ κ | d(x, y) = r} = κ[x; r]− κ(x; r).

By using the distance, then | · | is non-Archimedean if and only if the induced
metric satisfies

d(x, y) ≤ max{d(x, z), d(z, y)}, x, y, z ∈ κ.

For this case, we know that

y ∈ κ[x; r] =⇒ κ[y; r] = κ[x; r];

y ∈ κ〈x; r〉 =⇒ κ(y; r) ⊂ κ〈x; r〉.
Thus κ[x; r], κ(x; r) and κ〈x; r〉 all are open and closed. Such sets are usually
called clopen.

Example 1.25. Let p ∈ Z+ be a prime number. For x = a/b ∈ Q∗, there exist
integers vp(x), a′, b′ such that

x = pvp(x) a
′

b′
, p � a′b′.
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Define

|x|p =
{

p−vp(x) : x �= 0,
0 : x = 0.

The function | · |p is a non-Archimedean absolute value on Q, called the p-adic
absolute value and was first introduced by Hensel in 1994.

According to the standard theory in p-adic analysis, the completion of Q
relative to the topology induced by | · |p is just the field Qp of p-adic numbers, and
the absolute value | · |p on Q extends to a non-Archimedean absolute value on Qp,
which is also denoted by | · |p. The set of values of Q and Qp under | · |p is the
same, which is equal to the set

{pn | n ∈ Z} ∪ {0}.

Let | · |∞ denote the ordinary Archimedean absolute value on Q and set

MQ = {∞} ∪ {primes}.

For any x ∈ Q∗, we have the product formula∏
v∈MQ

|x|v = 1. (1.2.1)

Theorem 1.26 (Ostrowski [314]). Let | · | be a non-trivial absolute value on Q. If
| · | is Archimedean, then there exists α with 0 < α ≤ 1 such that

|x| = |x|α∞, x ∈ Q.

If | · | is non-Archimedean, then there exist a prime p and real β > 0 such that

|x| = |x|βp , x ∈ Q.

A proof can be found in [338]. Usually, Theorem 1.26 is called Ostrowski’s
first theorem.

There is another characterization for non-Archimedean absolute values. We
begin by noting that for any field κ there is a mapping ι : Z −→ κ defined by

ι(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

: n > 0,

0 : n = 0,
−(1 + 1 + · · ·+ 1︸ ︷︷ ︸

−n

) : n < 0,

where 1 is the unit of κ, and its kernel ι−1(0) is an ideal generated by an integer
p ≥ 0. The number p is called the characteristic of the field κ, which is either 0 or
a prime number. In the first case, κ contains as a subfield an isomorphic image of
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the rational numbers, and in the second case, it contains an isomorphic image of
Fp = Z/pZ. We will identify Z with its image under the mapping in κ. Then an
absolute value | · | on κ is Archimedean if and only if

sup
n∈Z

|n| = +∞,

and is non-Archimedean if and only if

sup
n∈Z

|n| = 1.

Two absolute values on κ are said to be equivalent (or dependent) if they
induce the same topology on κ. An equivalence class of non-trivial absolute values
on a field κ will be called a prime or place of κ, and sometimes be denoted by a
German letter p. A place p is called non-Archimedean or finite (resp., Archimedean
or infinite) if its absolute value is non-Archimedean (resp., Archimedean). We have
the following more accessible criterion (cf. [117]):

Lemma 1.27. Let | · |1 and | · |2 be absolute values on a field κ. The following
statements are equivalent:

(i) | · |1 and | · |2 are equivalent absolute values;
(ii) |x|1 < 1 if and only if |x|2 < 1 for any x ∈ κ;
(iii) there exists a positive real number α such that for each x ∈ κ, one has

|x|1 = |x|α2 .

Lemma 1.27 and Theorem 1.26 shows that MQ is just the set of all places on Q.

Definition 1.28. A valuation on a field κ is a function v from κ into R ∪ {+∞}
satisfying:

(a) v(x) = +∞ if and only if x = 0.

(b) v(xy) = v(x) + v(y) for all x, y ∈ κ.
(c) v(x + y) ≥ min{v(x), v(y)} for all x, y ∈ κ.

A valuation v is said to be trivial if

v(x) =
{

0 : x ∈ κ∗,
+∞ : x = 0.

Two valuations v1 and v2 are equivalent if and only if there is a real positive
constant λ such that v1(x) = λv2(x) for all x ∈ κ.

Let v be a valuation on a field κ. For a real constant c > 1, a non-Archimedean
absolute value

|x|v = c−v(x), x ∈ κ
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is well defined. Conversely, if | · | is a non-Archimedean absolute value on κ, a
valuation vc : κ −→ R ∪ {+∞} is defined by

vc(x) =
{
− logc |x| : x ∈ κ∗,

+∞ : x = 0,

and is named the (additive) valuation associated to the absolute value, where logc

is the real logarithm function of base c. Thus a non-Archimedean absolute value
can be characterized by a valuation.

Example 1.29. Let p ∈ Z+ be a prime number. If x ∈ Q, set

vp(x) =
{
− logp |x|p : x �= 0,

+∞ : x = 0.

The function vp on Q is called the p-adic valuation on Q.

The image of κ∗ by a valuation v is a subgroup of the additive group (R, +)
called the valuation group of κ. The valuation of κ is said to be discrete (resp.,
dense) if its valuation group is a discrete (resp., dense) subgroup of R. For the
trivial valuation, the valuation group consists of 0 alone. If v is a non-trivial
valuation, its valuation group Γ either has a least positive element λ or Γ has no
least positive element. For the former, Γ = λZ. For the latter, Γ is clearly dense
in R. For a discrete valuation we can always find an equivalent one with precise
valuation group Z; such a valuation is said to be normalized or an order function
on κ. The function vp on Q is an order function. Krull [217] has observed that a
valuation uses only the addition and the ordering of the real numbers. This means
that we can take the values to lie in any ordered additive group. For discussion of
the general extensions, see Cohn [63].

Lemma 1.30. If κ is algebraically closed, then the valuation v associated with a
non-trivial absolute value | · | is dense and hence the absolute value | · | also is
dense.

Proof. Since | · | is non-trivial, then there is an element a ∈ κ∗ with |a| �= 0, 1. We
may assume 0 < |a| < 1. Since κ is algebraically closed, then the equation

zn − aq (n ∈ Z+, q ∈ Z)

always has solutions. Thus, we have

v(z) =
q

n
v(a) ∈ v(κ∗).

Obviously, the set { q

n
v(a) | n ∈ Z+, q ∈ Z

}
is dense in R. Thus, the valuation v is dense. �



16 Chapter 1. Heights

If | · |v is a non-Archimedean absolute value on the field κ given by a valuation
v, the subset

Oκ = κ[0; 1] = {x ∈ κ | |x|v ≤ 1}

is a subring of κ that is called the valuation ring of v; its elements are the valuation
integers or v-integers. Its subset κ(0; 1) is an ideal of Oκ, which is called the
valuation ideal of v. Furthermore, κ(0; 1) is a maximal ideal in Oκ, and every
element of the complement κ〈0; 1〉 is invertible in Oκ. Thus, Oκ is a local ring of
κ. The field

F(κ) = Fv(κ) = Oκ/κ(0; 1)

is called the residue class field of κ. The characteristic of F(κ) is named the residue
characteristic of κ. In particular, the valuation ring

Zp = OQp = Qp[0; 1] = Qp(0; p)

is both open and closed, which is called the ring of p-adic integers.

1.2.2 Extensions of absolute values

Definition 1.31. Let V be a vector space over a field κ and let | · | be a non-trivial
absolute value on κ. A norm on V (compatible with the absolute value of κ) is a
function

| · | : V −→ R+

that satisfies the following conditions:

(α) |X | = 0 if and only if X = 0;
(β) |X + Y | ≤ |X |+ |Y | for all X, Y ∈ V ;
(γ) |aX | = |a| · |X | for all a ∈ κ and all X ∈ V .

A vector space V with a norm is called a normed vector space over κ.

Let V be a normed vector space. Then any norm | · | induces a metric d,

d(X, Y ) = |X − Y |,

which makes V a topological space. We say two norms | · |1 and | · |2 on V are
equivalent if they define the same topology on V . Equivalently, there are positive
real numbers c1 and c2 such that

c1| · |1 ≤ | · |2 ≤ c2| · |1.

If V is finite-dimensional and if κ is complete under a non-trivial absolute value,
then any two norms on V are equivalent, and V is complete with respect to the
metric induced by any norm. Further, if κ is locally compact, then V is also locally
compact.
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Let K be an extension of a field κ. An absolute value w of K is said to be
an extension of an absolute value v of κ if

|x|w = |x|v, x ∈ κ.

We will denote the relation between v and w by w|v. Obviously, if w|v, then | · |w is
also a norm on K as a κ-vector space, and, further, if v is non-Archimedean, then
w has to be non-Archimedean because this depends only on the absolute values
of the elements of Z, which are in κ.

Theorem 1.32. Let K be a field extension of κ. Then an absolute value on κ has
an extension to K. If K is an algebraic extension of κ, and if κ is complete, then
there is a unique absolute value on K extending the absolute value of κ. If K is
finite over κ, then K is complete.

Proof. We prove only the uniqueness. For the rest, see [227]. Suppose | · |1 and
| · |2 are two absolute values on K that extend the absolute value | · | of κ. For
any x ∈ K, it is easy to show that xn → 0 with respect to the topology induced
by | · |1 (resp., | · |2) if and only if |x|1 < 1 (resp., |x|2 < 1). Note that | · |1 and
| · |2 are equivalent as norms on the κ-vector space K, i.e., they define the same
topology. Therefore, we have convergence with respect to | · |1 if and only if we
have convergence with respect to | · |2, or |x|1 < 1 if and only if |x|2 < 1. Hence
| · |1 and | · |2 also are two equivalent absolute values. Thus, there exists a positive
real number α such that for each x ∈ K, one has |x|1 = |x|α2 , and hence α = 1
since |x|1 = |x|2 = |x| when x ∈ κ, i.e., the two absolute values are the same. �

Let K be a field extension of κ. We shall now examine ways of extending a
valuation on κ to K. By induction it will be enough to look at simple extensions,
K = κ(α), and we shall treat the cases where α is algebraic or transcendental
separately. Thus our first task is to extend a non-Archimedean valuation v on κ to
the rational function field κ(t), where t is transcendental over κ. We shall give a
simple construction of a valuation w on κ(t) which extends v. Given a polynomial

f(t) = antn + · · ·+ a1t + a0 ∈ κ[t],

define
w(f) = min

0≤i≤n
v(ai). (1.2.2)

It is clear that this reduces to v on κ, and moreover satisfies

w(f + g) ≥ min{w(f), w(g)};

further, the argument used to prove Gauss’ lemma shows that

w(fg) = w(f) + w(g),
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cf. Lemma 1.97. Hence we obtain a valuation w on κ[t]; it extends in a unique way
to a valuation on κ(t), still denoted w, by the rule

w

(
f

g

)
= w(f)− w(g), f, g ∈ κ[t]. (1.2.3)

The valuation thus defined is called the Gaussian extension of v to κ(t). Clearly
v and w have the same value groups.

Consider next a finite extension K/κ, and so an algebraic extension. We will
assume that κ is complete under an absolute value | · |v. There can be at most
one valuation extension | · |w to K, by Theorem 1.32. Observe first that if K is a
normal extension of κ, and σ is an automorphism of K over κ, then σ induces an
absolute value | · |w,σ on K defined by

|x|w,σ = |σ(x)|w , x ∈ K.

Since the restriction of σ on κ is the identity, then | · |w,σ also is an extension of
the absolute value of κ, and hence

|x|w,σ = |x|w, x ∈ K.

Since K is algebraic over κ, if σ is an embedding of K in κ over κ, where κ is
an algebraic closure of κ, then the same conclusion remains valid, as one sees
immediately by embedding K in a normal extension of κ. In particular, if α is
algebraic over κ, and if σ1, . . . , σr are the distinct embeddings of κ(α) in κ, then
one has ∣∣Nκ(α)/κ(α)

∣∣
v

=

∣∣∣∣∣
r∏

i=1

σi(α)

∣∣∣∣∣
[κ(α):κ]/r

v

= |α|[κ(α):κ]
w ,

and taking the root, we get (cf. [63], [95], [117]):

Theorem 1.33. Let κ be a field which is complete under a non-trivial absolute value
| · |v and let K/κ be a finite field extension. Then v has a unique extension w to
K, given by

|α|w =
∣∣NK/κ(α)

∣∣1/[K:κ]

v
. (1.2.4)

We recall from standard field theory that a general field extension is obtained
by taking a purely transcendental extension, followed by an algebraic extension.
Thus if we are given a complete field κ with respect to a non-Archimedean val-
uation, we can form the rational function field κ(t) with the Gaussian extension.
Repeating this process and applying Theorem 1.33 to the final algebraic exten-
sion, we have found an extension of a complete valuation to any finitely generated
extension. It is not difficult to extend the argument to extensions that are not
finitely generated.
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Example 1.34. Let K/Qp be a finite extension. The unique absolute value on K
that extends the p-adic absolute value on Qp is called the p-adic absolute value on
K, which also is denoted by |·|p. It makes K a locally compact topological field, and
makes K complete. From the formula for the absolute value on K, we immediately
see that for any α ∈ K∗,

|α|p = p−w(α), w(α) =
1

[K : Qp]
vp(NK/Qp

(α)) ∈ 1
[K : Qp]

Z.

The unique rational number w(α) is also denoted by vp(α). Setting vp(0) = +∞,
one obtains a valuation vp on K, which also is called the p-adic valuation on K.

Now we show that the p-adic absolute value on Qp can be extended to an
algebraic closure Qp of Qp. In fact, given any x ∈ Qp, then x is in the finite
extension Qp(x), and hence one can define |x|p by using the unique extension of
the p-adic absolute value to Qp(x). Therefore, one obtains a function

| · | : Qp −→ R+

that extends the p-adic absolute value on Qp, and it is easy to prove that this
function is an absolute value. The unique absolute value on Qp is also called the
p-adic absolute value. However, Qp is not complete with respect to the p-adic
absolute value. The completion of Qp relative to the topology induced by | · |p
is a field that is denoted by Cp, and the absolute value | · |p on Qp extends to a
non-Archimedean absolute value on Cp, which is also denoted by | · |p, such that
Qp is dense in Cp, and Cp is complete, algebraically closed. The image of Cp∗
under vp is Q.

Let κ be a field with a non-trivial absolute value v. The completion of κ
relative to the topology induced by v is a field which is denoted by κv. If v is
non-Archimedean, then κv is a finite extension of Qp for some prime p. If v is
Archimedean, then κv = R or C, which is just contents of Ostrowski’s second
theorem:

Theorem 1.35. Let K be a field with an Archimedean absolute value for which it
is complete. Then K is isomorphic either to R or to C.

We know that a non-trivial absolute value v of κ can be extended to κv, and
then uniquely to its algebraic closure κv. Let K be an extension of κ. Given two
embeddings σ, τ : K −→ κv, we shall say that they are conjugate over κv if there
exists an automorphism λ of κv over κv such that σ = λ ◦ τ .

Proposition 1.36 (cf. [225]). Let K be an algebraic extension of κ. Two embeddings
σ, τ : K −→ κv give rise to the same absolute value on K if and only if they are
conjugate over κv.

If v is non-Archimedean, we have the canonical isomorphism

F(κ) ∼= F(κv).
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Let K be a finite extension of κ, and let w be an absolute value of K extending
v. Then the residue class field F(K) is an extension of F(κ), and its degree is
called the residue class degree of the extension K/κ. The valuation group v(κ∗)
of κ is a subgroup of the valuation group w(K∗) of K, whose index is called the
ramification index of the extension K/κ. By the definition, the index is the number
of cosets of the subgroup v(κ∗) in w(K∗). The extension is said to be ramified if
its ramification index > 1, unramified otherwise.

Proposition 1.37 (cf. [63], [225]). Let K/κ be an extension of valuated fields with
ramification index e and residue class degree d, where the valuation w of K extends
that of κ, v say. If K/κ is finite, then

ed ≤ [K : κ], (1.2.5)

and if v is trivial or discrete, then so is w. If v is discrete and κ is complete, then
equality holds in (1.2.5).

The following result describes the extensions of an incomplete field:

Theorem 1.38 (cf. [63]). Let κ be a field with a discrete valuation v and let K/κ
be a separable extension of degree n. Then there are at most n extensions of v to
K, say w1, . . . , wr, where r ≤ n. If ei denotes the ramification index and di the
residue class degree of wi, then

r∑
i=1

eidi = n.

Further, if the completion of κ under v is κv and that of K under wi is Kwi , then

K ⊗ κv
∼= Kw1 × · · · ×Kwr .

Finally, we consider the absolute value defined by an irreducible polynomial
p(x) over a field κ with the associated valuation v given by v(ϕ) = ν if

ϕ = pν f

g
, p � fg.

This valuation is trivial on κ. We also say that v is a valuation of κ(x) over κ. We
can now determine all valuations of κ(x) over κ:

Proposition 1.39 (cf. [63]). Let κ be any field. Any general valuation on the rational
function field κ(x) over κ which is non-trivial is either associated to an irreducible
polynomial over κ, or to x−1.

Consider the case κ = C; here the irreducible polynomials are x− a (a ∈ C),
so every complex number defines a valuation on C(x); in addition we have a
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valuation corresponding to x−1. These valuations just correspond to the points on
the Riemann sphere, and the representation

ϕ(x) =

{
(x− a)ν f(x)

g(x) , p(x) = x− a;

x−ν f(x)
g(x) , p(x) = x−1

may be regarded as indicating the leading term of ϕ at the point x = a or x = ∞.

1.3 Discriminant of field extensions

In this section, discriminants of field extensions will be defined. Mainly, we will
show an important formula of discriminants on a tower of field extensions.

1.3.1 Discriminant

Let κ be a field, and K a finite field extension of κ with a basis {w1, . . . , wn}.
Then the discriminant of the basis {w1, . . . , wn}, DK/κ(w1, . . . , wn), is defined as

DK/κ(w1, . . . , wn) = det(TrK/κ(wiwj)).

Let {w′
1, . . . , w

′
n} be another basis of K over κ. Set

w′
i =

n∑
k=1

bikwk.

Then we have

DK/κ(w′
1, . . . , w

′
n) = det

(
TrK/κ(w′

iw
′
j)
)

= det

⎛
⎝∑

k,l

bikbjlTrK/κ(wkwl)

⎞
⎠

= {det(bik)}2 det(TrK/κ(wkwl))

= {det(bik)}2DK/κ(w1, . . . , wn).

Theorem 1.40. Let K be a finite extension of κ, and {w1, . . . , wn} a basis of K over
κ. Then DK/κ(w1, . . . , wn) �= 0 if and only if K is a separable algebraic extension
of κ.

Proof. (⇒) Let κS
K be a separable closure of κ in K. If κS

K = K, then K is
separable algebraic over κ, and we are done. Otherwise, κS

K �= K, K is purely
inseparable over κS

K , and

[K : κS
K ] = pr, r ≥ 1.
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Let α be any element in K. We claim that TrK/κ(α) = 0, and so DK/κ(w1, . . . ,
wn) = 0. We distinguish two cases, (i) α ∈ κS

K , (ii) α �∈ κS
K .

Case (i). Let the field polynomial of α as an element in κS
K (resp. K) be G(x)

(resp. χα(x)), and write

G(x) = xm + a1x
m−1 + · · ·+ am.

It follows from Lemma 1.22, that

χα(x) = G(x)pr

= xmpr

+ 0xmpr−1 + · · · .

Therefore, TrK/κ(α) = 0.
Case (ii). There is an integer l ≥ 1 such that the minimal polynomial Pα(x)

of α over κ is in κ[xpl

]. It follows from Lemma 1.22 that the field polynomial χα(x)
of α as an element in K is of the form

χα(x) = Pα(x)s ∈ κ[xpl

].

Therefore, TrK/κ(α) = 0.
(⇐) Since K is a finite separable algebraic extension of κ, then there exists

an element α ∈ K such that K = κ[α]. Let us take {1, α, α2, . . . , αn−1} as a
basis of K over κ. Let K be an algebraic closure of K, and Pα(x) be the minimal
polynomial of α over κ. Note that the field polynomial of α is Pα(x). Let Pα(x)
be split completely in K:

Pα(x) =
n∏

i=1

(x− αi), α1 = α, αi �= αj (i �= j).

Then we have

TrK/κ(α) =
n∑

i=1

αi.

We claim

TrK/κ(αj) =
n∑

i=1

αj
i .

Let the splitting field of Pα(x) in K be E which is a Galois extension of κ with Ga-
lois group GE/κ. In the collection {αj

1, α
j
2, . . . , α

j
n}, some elements may be identical.

It is easy to see that each element appears with the same multiplicities. Picking
all distinct elements from it to form a set {β1, . . . , βm}. Then we have that m | n,
and the polynomial Q(x) defined as

Q(x) =
m∏

i=1

(x− βi)
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is the minimal polynomial of αj over κ. Then we have

Trk[αj ]/κ(αj) =
m∑

i=1

βi,

TrK/κ(αj) =
n

m

m∑
i=1

βi =
n∑

i=1

αj
i .

Therefore, we have the following computation:

DK/κ(1, α, . . . , αn−1) =

∣∣∣∣∣∣∣∣
n

∑
αi · · ·

∑
αn−1

i∑
αi

∑
α2

i · · ·
∑

αn
i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∑
αn−1

i

∑
αn

i · · ·
∑

α2n−2
i

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 1 · · · 1
α1 α2 · · · αn

. . . . . . . . . . . . . . . . . . . . . . . .
αn−1

1 αn−1
2 · · · αn−1

n

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣

1 α1 · · · αn−1
1

1 α2 · · · αn−1
2

. . . . . . . . . . . . . . . . . .
1 αn · · · αn−1

n

∣∣∣∣∣∣∣∣
=

⎧⎨
⎩∏

i>j

(αi − αj)

⎫⎬
⎭

2

�= 0.

�

Let K be a finite separable algebraic extension of κ, of degree n. Let σ1, . . . , σn

be the distinct embeddings of K in κ over κ, where κ is an algebraic closure of κ.
Then the discriminant of a basis {w1, . . . , wn} of K over κ satisfies

DK/κ(w1, . . . , wn) = {det(σi(wj))}2.

In fact, by (1.1.5), we have

TrK/κ(wiwj) =
n∑

m=1

σm(wiwj) =
n∑

m=1

σm(wi)σm(wj),

which means
(TrK/κ(wiwj)) = t((σi(wj))((σi(wj)),

and hence the claim follows.

Let K be a finite separable algebraic extension of κ, and let κ ⊂ F ⊂ K.
Every element of K is separable over F , and every element of F is an element of
K, so separable over κ. Hence each step in the tower is separable. Then there exist
elements α ∈ K, β ∈ F such that K = F [α], F = κ[β]. Set

p = [K : F ], q = [F : κ], n = pq = [K : κ].
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Let us take {1, α, α2, . . . , αp−1} (resp. {1, β, . . . , βq−1}) as a basis of K (resp. F )
over F (resp. κ). Let K be an algebraic closure of K, and P (x) (resp. Q(x)) be the
minimal polynomial of α (resp. β) over F (resp. κ). Note that the field polynomial
of α (resp. β) is P (x) (resp. Q(x)). Let P (x) and Q(x) be split completely in K
as follows

P (x) =
p∏

i=1

(x− αi), α1 = α, αi �= αj (i �= j),

Q(x) =
q∏

i=1

(x− βi), β1 = β, βi �= βj (i �= j).

Then we have

TrK/F (α) =
p∑

i=1

αi, TrK/F (αl) =
p∑

i=1

αl
i,

TrF/κ(β) =
q∑

i=1

βi, TrF/κ(βm) =
q∑

i=1

βm
i .

Therefore

TrK/κ(βm) = TrF/κ ◦TrK/F (βm) = TrF/κ(pβm) = p

q∑
i=1

βm
i .

In the collection {αl
iβ

m
j | 1 ≤ i ≤ p, 1 ≤ j ≤ q}, some elements may be identical.

It is easy to see that each element appears with the same multiplicities. Pick all
distinct elements from it to form a set {γ1, . . . , γs}. Then we have that s | n, and
the polynomial R(x) defined as

R(x) =
s∏

i=1

(x− γi)

is the minimal polynomial of αlβm over κ. Then we have

Trk[αlβm]/κ(αlβm) =
s∑

i=1

γi,

TrK/κ(αlβm) =
n

s

s∑
i=1

γi =
p∑

i=1

q∑
j=1

αl
iβ

m
j .

Abbreviate
Φ = (1, α, . . . , αp−1), Ψ = (1, β, . . . , βq−1).

ΦΨ = (Φ, βΦ, . . . , βq−1Φ).
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Then ΦΨ is a basis of K over κ. Consider the Vandermonde matrices

A =

⎛
⎜⎜⎝

1 α1 · · · αp−1
1

1 α2 · · · αp−1
2

. . . . . . . . . . . . . . . . . .
1 αp · · · αp−1

p

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

1 β1 · · · βq−1
1

1 β2 · · · βq−1
2

. . . . . . . . . . . . . . . . . .
1 βq · · · βq−1

q

⎞
⎟⎟⎠ .

We have the following computation:

DK/κ(ΦΨ) =

∣∣∣∣∣∣∣∣
n q

∑
αi · · ·

∑
αp−1

i βq−1
j

q
∑

αi q
∑

α2
i · · ·

∑
αp

i β
q−1
j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∑
αp−1

i βq−1
j

∑
αp

i β
q−1
j · · ·

∑
α2p−2

i β2q−2
j

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
A β1A · · · βq−1

1 A

A β2A · · · βq−1
2 A

. . . . . . . . . . . . . . . . . . . . . .
A βqA · · · βq−1

q A

∣∣∣∣∣∣∣∣
2

= det(A)2q det(B)2p = DK/F (Φ)qDF/κ(Ψ)p.

Therefore we obtain a relation

DK/κ(ΦΨ) = DF/κ(Ψ)[K:F ]DK/F (Φ)[F :κ]. (1.3.1)

Further if DK/F (Φ) ∈ κ, then

DK/F (Φ)[F :κ] = NF/κ(DK/F (Φ)).

Therefore we also have

DK/κ(ΦΨ) = DF/κ(Ψ)[K:F ]NF/κ(DK/F (Φ)). (1.3.2)

1.3.2 Dedekind domain

For any subring o of a field κ we define a fractional ideal of o as an o-module A in
κ such that

uo ⊆ A ⊆ vo

for some u, v ∈ κ∗. An ordinary ideal A of o is a fractional ideal precisely if it is
non-zero; this is also called an integral ideal. Clearly a fractional ideal is integral
if and only if it is contained in o.

The usual ideal multiplication can be carried out for fractional ideals by
defining

A1A2 =

{∑
ν

xνyν | xν ∈ A1, yν ∈ A2

}
.
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Then uio ⊆ Ai ⊆ vio imply that u1u2o ⊆ A1A2 ⊆ v1v2o. Hence the product is
again a fractional ideal. This multiplication is clearly associative, with o as unit
element, so the set F of all fractional ideals is a monoid. Moreover, there is a
generalized inverse:

(o : A) = {x ∈ o | xA ⊆ o}.

If uo ⊆ A ⊆ vo, then v−1o ⊆ (o : A) ⊆ u−1o, and for any c ∈ o we see that xA ⊆ o
implies

cxA ⊆ co ⊆ o.

Therefore (o : A) is again a fractional ideal. Further, we have

(o : A)A ⊆ o, (1.3.3)

as is easily verified. If the equality in (1.3.3) holds, we also write A−1 in place
of (o : A) and call A invertible. For example, any non-zero principal ideal ao is
invertible: (ao)−1 = a−1o.

Let S be a family of non-trivial and pairwise inequivalent absolute values
of a field κ. Then the members of S are equivalence classes of absolute values,
also called prime divisors or simply places. Here we shall denote the members
of S by small Gothic (or Fraktur) letters: p, q, . . . and write vp, vq, . . . for the
corresponding valuation. With each p ∈ S we associate its valuation ring

op = {x ∈ κ | vp(x) ≥ 0}.

Suppose that o is the ring of integers for S, i.e.,

o =
⋂
p∈S

op.

We define the divisor group D of κ with respect of S as the free Abelian group on
S as generating set. The typical element is written

a =
∏

pαp ,

where the αp are integers, almost all zero, and a is called a divisor. Our aim will
be to explore the relations between D and the monoid F of all fractional ideals.
We define a mapping φ : F −→ D by the rule: for any A ∈ F we put

vp(A) = min{vp(x) | x ∈ A}. (1.3.4)

If uo ⊆ A ⊆ vo, then clearly vp(u) ≥ vp(A) ≥ vp(v) for all p; this shows that
vp(A) = 0 for almost all p. We can therefore define

φ(A) =
∏

pvp(A). (1.3.5)
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It is easy to show that φ is a homomorphism. For if c ∈ AB, say,

c =
∑

aibi, ai ∈ A, bi ∈ B,

then
vp(c) ≥ min

i
{vp(ai) + vp(bi)} ≥ vp(A) + vp(B),

therefore
vp(AB) ≥ vp(A) + vp(B),

and here equality holds, as we see by taking c = ab, where a, b are chosen in A, B
so as to attain the minimum in (1.3.4). Hence

vp(AB) = vp(A) + vp(B),

and it follows that (1.3.5) is a homomorphism.

An integral domain whose fractional ideals form a group under ideal multi-
plication is called a Dedekind domain. The following fact comes from Cohn [63],
Theorem 4.5.

Theorem 1.41. If o is a Dedekind domain with field of fractions κ, then o can
be defined as the intersection of principal valuation rings for a family of absolute
values.

If o is a Dedekind domain with field of fractions κ, then the mapping φ
from the fractional ideals to the divisors is an isomorphism. E. Noether gives the
following equivalence conditions of Dedekind domain with the more usual form
(see Cohn [63], Theorem 4.6):

Theorem 1.42. An integral domain o with field of fractions κ is a Dedekind domain
if and only if it satisfies the following three conditions:

(i) o is Noetherian;

(ii) o is integrally closed in κ;

(iii) every non-zero prime ideal in o is maximal.

The following result comes from Cohn [63], Theorem 5.1.

Theorem 1.43. Let A be a Dedekind domain with field of fractions κ, let K be a
finite separable algebraic extension of κ and denote by B the integral closure of A
in K. Then B is again a Dedekind domain.

Given a Dedekind domain A with field of fractions κ, we have a homomor-
phism θκ of κ∗ into the divisor group D = Dκ of κ given by

θκ(x) =
∏

pvp(x). (1.3.6)
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The kernel of this mapping is the group of units in A, because the mapping φ from
the fractional ideals to the divisors is an isomorphism.

If K is a finite separable extension of κ and θK is the corresponding mapping
defined by (1.3.6) for K, then for P|p we have

vP(x) = ePvp(x), x ∈ K,

where eP is the ramification index for P. Hence for any x ∈ K we have

θK(x) =
∏
P

PvP(x) =
∏
p

⎛
⎝∏

P|p
PvP(x)

⎞
⎠ =

∏
p

⎛
⎝∏

P|p
PeP

⎞
⎠vp(x)

.

Thus we obtain a commutative diagram γ ◦θκ = θK ◦ ι as shown below by defining
a mapping γ : Dκ −→ DK ,

γ(p) =
∏
P|p

PeP , (1.3.7)

where ι : κ −→ K is the inclusion. The mapping (1.3.7) is an embedding of Dκ in
DK , sometimes called the conorm mapping.

In the other direction we have the norm mapping. Given a place p of κ, let
the divisors of p in K be P1, . . . , Pr and let K1, . . . , Kr be the corresponding
extensions of κp, the completion of κ (cf. Theorem 1.38). As we saw, we have

[Ki : κp] = ni = eidi,

hence

vPi(x) =
1
ni

vPi

(
NKi/κp

(x)
)

=
ei

ni
vp

(
NKi/κp

(x)
)
,

and so we obtain

vp

(
NK/κ(x)

)
=
∑

vp

(
NKi/κp

(x)
)

=
∑

divPi(x).

In terms of divisors this may be written as

NK/κ(Pi) = pdi . (1.3.8)

Hence we find that

NK/κ(γ(p)) = NK/κ(Pe1
1 · · ·Per

r ) = p
∑

eidi = pn,

where we have used Theorem 1.38.
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1.3.3 Different

Let K be a finite separable algebraic extension of a field κ. Take A to be a Dedekind
domain with κ as its field of fractions and B its integral closure in K. Then B
is again a Dedekind domain. Given X ⊆ K, we define its complementary set or
simply complement as

X ′ = {y ∈ K | TrK/κ(yX) ⊆ A}.

Clearly X ′ is a subgroup of the additive group of K. Moreover, we have

TrK/κ(yz ·X) = TrK/κ(y · zX),

hence
(zX)′ = z−1X ′.

We also have

X ⊂ Y ⇒ X ′ ⊃ Y ′, (1.3.9)
zX ⊂ X ⇒ zX ′ ⊂ X ′. (1.3.10)

Let u1, . . . , un be a basis of K/κ. Since TrK/κ is non-singular, that is, TrK/κ(ax) =
0 for all x ∈ K implies a = 0, the mapping K → κn defined by

x �→ (TrK/κ(u1x), . . . ,TrK/κ(unx))

is injective, and hence an isomorphism. Thus we can find v1, . . . , vn in K to satisfy

TrK/κ(uivj) = δij =

{
1 : i = j,

0 : otherwise.

The v’s form the dual basis for the u’s.

Lemma 1.44 (cf. [63]). Let κ, K, A, B be as above and [K : κ] = n. If U is a free
A-submodule of K of rank n, then its complement U ′ is also free of rank n, and
we obtain a basis of U ′ by taking the dual of a basis of U .

Theorem 1.45 (cf. [63]). Let A be a principal ideal domain with a field of fractions
κ, K a finite separable algebraic extension of κ, and B the integral closure of A
in K. Then B and generally every fractional ideal of B is a free A-module of rank
[K : κ].

Proof. Let u1, . . . , un be a basis of K over κ, n = [K : κ]. On multiplying the u’s by
suitable elements we may assume that ui ∈ B (i = 1, . . . , n). Then the A-module
U spanned by the u’s satisfies U ⊂ B, hence U ′ ⊃ B′. Since TrK/κ(B · B) ⊂ A,
we have B ⊂ B′ and so

U ⊂ B ⊂ B′ ⊂ U ′.
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By Lemma 1.44, U ′ is free of rank n, hence B as submodule of U ′ is also free of
rank at most n. In fact the rank must be n because B contains U of rank n. Now
the result follows for any fractional ideal A because we have cB ⊂ A ⊂ dB, hence

d−1B′ ⊂ A′ ⊂ c−1B′,

and so the theorem is proved. �

If A is an invertible ideal, we have the following explicit formula for the
complement:

A′ = B′A−1. (1.3.11)

In fact, we have
TrK/κ(B′A−1A) = TrK/κ(B′B) ⊂ A,

hence B′A−1 ⊂ A′, and conversely,

TrK/κ(A′AB) ⊂ TrK/κ(A′A) ⊂ A,

hence A′A ⊂ B′ and so A′ ⊂ B′A−1, which proves equality in (1.3.11).

Theorem 1.46 (cf. [63]). Let A be a Dedekind ring with a field of fractions κ, K
a finite separable algebraic extension of κ, and B the integral closure of A in K.
Then its complement B′ is an invertible ideal whose complement is integral:

d = (B′)−1, (1.3.12)

and for any fractional ideal A of B, its inverse is related to its complement by the
formula:

A−1 = dA′. (1.3.13)

Proof. We have seen that B′ ⊃ B and it is clear that BB′ ⊂ B′, by (1.3.10).
Moreover, B′ is finitely generated as an A-module, by c1, . . . , cr say. Writing the
ci as fractions with a common denominator in B, say ci = aib

−1, where ai, b ∈ B,
we have (B′)−1 ⊂ B and so d defined by (1.3.12) is an integral ideal. Now (1.3.13)
follows on multiplying both sides of (1.3.11) by d. �

The ideal d = dK/κ defined by (1.3.12) is called the different of the extension
B over A (or also of K over κ). In the particular case where B is generated by a
single element over A, there is an explicit formula for d which also explains the
name.

Theorem 1.47 (cf. [63]). Let A be a Dedekind domain, B = A[α] a separable
extension generated by a single element α integral over A, and let f be the minimal
polynomial for α over A. Then B′ = B/(f ′(α)), where f ′ denotes the derivative,
and so

d = (f ′(α)). (1.3.14)
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Let K/κ again be a finite separable extension with rings of integers B, A, and
consider any A-module U of K which is free of rank n = [K : κ] as an A-module.
Let σ1, . . . , σn be the distinct embeddings of K in κ over κ, where κ is an algebraic
closure of κ. We define the discriminant of U relative to any A-basis {u1, . . . , un}
of U as

DK/κ(U) := DK/κ(u1, . . . , un) = det(TrK/κ(uiuj)) = {detP}2,

where P = (σi(uj)). If we replace u1, . . . , un by αu1, . . . , αun, where α ∈ K, then
P becomes PC where C = diag(σ1(α), . . . , σn(α)). It is clear that det C is the
product of the conjugates of α, i.e., NK/κ(α). Hence we have

DK/κ(Uα) = {detPC}2 = NK/κ(α)2DK/κ(U). (1.3.15)

Let A =
∏

Pαi

i be any fractional ideal in B. For a given place Pi we defined
its norm in (1.3.8) as

NK/κ(Pi) = pdi , (1.3.16)

where p is the place of κ which Pi divides and di is the corresponding residue
degree. Thus we may define the norm of A by

NK/κ(A) =
∏

NK/κ(Pi)αi . (1.3.17)

We apply this result to (1.3.15), taking U = B, Uα = B′. Locally, i.e., at a
place Pi, we can do this because in the corresponding valuation ring every ideal
is principal; we thus obtain

DK/κ(B′) = NK/κ(B′)2DK/κ(B). (1.3.18)

Suppose now that {ui}, {vi} are dual bases for B, B′ respectively and put
Q = (σi(vj)). Then ∑

l

σl(ui)σl(vj) = TrK/κ(uivj) = δij ,

hence PQ = I, and since

DK/κ(B) = {detP}2, DK/κ(B′) = {detQ}2,

we have
DK/κ(B)DK/κ(B′) = 1.

Combining this with (1.3.18), we find

DK/κ(B′)2 = NK/κ(B′)2.

Now the discriminant DK/κ of K/κ is DK/κ(B), hence we have

DK/κ = DK/κ(B′)−1 = NK/κ(B′)−1.
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Thus in terms of fractional ideals we have the equation

DK/κ = NK/κ(d), (1.3.19)

which identifies the discriminant as the norm of the different.

Theorem 1.48 (cf. [63]). Let A be a Dedekind domain with field of fractions κ, let
κ ⊂ F ⊂ K be finite separable algebraic extensions and C, B the integral closures
of A in F, K respectively. Then

dK/κ = dK/F dF/κ, (1.3.20)

DK/κ = NF/κ(DK/F )D[K:F ]
F/κ . (1.3.21)

Proof. In order to establish equation (1.3.20) we must show that

B′
K/κ = B′

K/F C′
F/κ, (1.3.22)

where the prime means the complement in the extension indicated by the suffix.
We have

TrK/κ = TrF/κ ◦TrK/F ,

hence

TrK/κ

(
B′

K/F C′
F/κB

)
= TrF/κ

(
C′

F/κTrK/F

(
B′

K/F B
))

⊂ TrF/κ

(
C′

F/κC
)
⊂ A.

This shows that the left-hand side of (1.3.22) includes the right-hand side. To
obtain the reverse inclusion, take γ ∈ B′

K/κ; then

TrF/κ

(
C ·TrK/F (γB)

)
⊂ TrK/κ(γB) ⊂ A,

hence TrK/F (γB) ⊂ C′
F/κ and so

TrK/F

(
C

′−1
F/κ · γB

)
= C

′−1
F/κTrK/F (γB) ⊂ C.

Therefore C
′−1
F/κγ ⊂ B′

K/F and so γ ∈ B′
K/F C′

F/κ, which shows that equality holds
in (1.3.22). This proves (1.3.20), and now (1.3.21) follows by taking norms. �

The following Dedekind discriminant theorem provides more precise informa-
tion about the discriminant divisors.

Theorem 1.49. Let K/κ be a finite separable algebraic extension, A a Dedekind
domain with field of fractions κ and B the integral closure of A in K, and express
the discriminant as a product of prime divisors in A:

DK/κ =
∏

pδp .
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For any prime divisor p of A let P1, . . . , Pr be its extensions to B and write ei, di

for the ramification index and residue class degree of the Pi-adic valuation. Then

δp ≥
∑

di(ei − 1).

For the proof, we refer to Cohn [63], Theorem 6.6.

1.4 Product formula

We will show that the product formula (1.2.1) over Q can be extended to finite
extension fields of Q with a proper modification.

Let κ be a field with a non-trivial absolute value v. Let κv be the completion
of κ for v. Let K be an extension of κ. If w is an absolute value on K extending
an absolute value v on κ, we write w|v. If w|v and if [K : κ] is finite, then we shall
call [Kw : κv] the local degree, which satisfy∑

w|v
[Kw : κv] ≤ [K : κ].

Proposition 1.50 (cf. [225]). If K is a finite separable extension of κ, then

[K : κ] =
∑
w|v

[Kw : κv].

Whenever v is a non-trivial absolute value on κ such that for any finite
extension K of κ we have

[K : κ] =
∑
w|v

[Kw : κv],

we shall say that v is well behaved. Suppose we have a tower of finite extensions,
κ ⊂ K ⊂ E. Let w range over the absolute values of K extending v, and u over
those of E extending v. If u|w, then Eu contains Kw. Since∑

u|v
[Eu : κv] =

∑
w|v

∑
u|w

[Eu : Kw][Kw : κv]

=
∑
w|v

[Kw : κv]
∑
u|w

[Eu : Kw],

thus we have ∑
u|v

[Eu : κv] ≤
∑
w|v

[Kw : κv][E : K]

≤ [K : κ][E : K] = [E : κ].

From this we immediately see that if v is well behaved, K finite over κ, and w
extends v on K, then w is well behaved.
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Proposition 1.51 (cf. [225]). Let K be a finite extension of κ, and assume that v
is well behaved. Take α ∈ K. Then

NK/κ(α) =
∏
w|v

NKw/κv
(α),

TrK/κ(α) =
∑
w|v

TrKw/κv
(α).

Let κ be a field. An absolute value v on κ is said to be proper if it is non-
trivial, well behaved, and if, κ having characteristic 0, its restriction to Q is either
the ordinary absolute value or a p-adic absolute value. A set Mκ of absolute values
on κ is said to be proper if every absolute value in it is proper, if any two distinct
absolute values are not equivalent, and if, given x ∈ κ∗, there exists only a finite
number of v ∈ Mκ such that |x|v �= 1. In particular, if Mκ is proper, there can be
only a finite number of Archimedean absolute values in Mκ. If K is an algebraic
extension of κ, we shall denote by MK the set of absolute values on K extending
some absolute value in Mκ. If K is finite over κ, then MK is proper if Mκ is proper.

Let Mκ be a proper set of absolute values on κ. For each v ∈ Mκ, let nv

be a real number > 0. We shall say that Mκ satisfies the product formula with
multiplicities nv if for each x ∈ κ∗, we have∏

v∈Mκ

|x|nv
v = 1.

We shall say that Mκ satisfies the product formula if all nv = 1. When we deal
with a fixed set of multiplicities nv, then we write for convenience

‖x‖v = |x|nv
v (1.4.1)

so that the product formula reads∏
v∈Mκ

‖x‖v = 1.

Suppose now that we have a field F with a proper set MF of absolute values
satisfying the product formula with multiplicities 1. Let κ be a finite extension of
F, and let Mκ be the set of absolute values on κ which extend the absolute values
of MF. Then Mκ is also a proper set of absolute values on κ. If t ∈MF and v ∈Mκ

with v|t, set nv = [κv : Ft]. Then for any α ∈ κ∗, we get by Proposition 1.51:

1 =
∏

t∈MF

∣∣Nκ/F(α)
∣∣
t
=
∏

t∈MF

∏
v|t
|α|nv

v =
∏

v∈Mκ

|α|nv
v .

This shows that Mκ satisfies the product formula with multiplicities nv.
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The classical example is that of the rational numbers Q. For each prime
number p we have the p-adic absolute value | · |p. The ordinary Archimedean
absolute value will be said to be at infinity, denoted by | · |∞. Thus the set

MQ = {∞} ∪ {primes} = {∞, 2, 3, 5, . . .}

is proper, and satisfies the product formula.

We assume that κ is a number field, i.e., a finite extension of Q. By the
arguments as above, the set Mκ of absolute values extending those of MQ is a
proper set of absolute values on κ satisfying the product formula with multiplicities
nv, where nv = [κv : Qp] if v|p for some p ∈MQ such that∑

v|p
nv = [κ : Q].

For convenience, we also write

|‖x|‖v = ‖x‖1/[κ:Q]
v , x ∈ κ. (1.4.2)

If we have a tower of finite extensions, Q ⊂ κ ⊂ K, and if w|v for w ∈MK , v ∈Mκ,
then Kw contains κv with

nw = [Kw : κv]nv,

and hence ∑
w|v

nw

nv
=
∑
w|v

[Kw : κv] = [K : κ]. (1.4.3)

The set Mκ will be called the canonical set. Let S∞
κ be the subset of Archimedean

absolute values in Mκ. It is called the set of absolute values at infinity. If S is a
finite subset of Mκ containing the set S∞

κ , denote by Oκ,S the ring of S-integers
of κ, i.e.,

Oκ,S = {z ∈ κ | ‖z‖ρ ≤ 1, ρ �∈ S}. (1.4.4)

If v ∈ Mκ is one of the absolute values extending the ordinary absolute value
on Q, then κv is either R or C. We also say that v is real or complex, accordingly.
The multiplicity nv is given by

nv = [κv : Q∞] =

{
1 : if κv = R,

2 : if κv = C.

In other words, if κ has r1 real embeddings mapping x ∈ κ respectively into
x(1), . . . , x(r1) and r2 pairs of complex conjugate embeddings mapping x into

x(r1+1), x(r1+1), . . . , x(r1+r2), x(r1+r2)
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where r1 + 2r2 = [κ : Q], then the absolute values dividing ∞ are∣∣∣x(1)
∣∣∣ , . . . , ∣∣∣x(r1)

∣∣∣ , ∣∣∣x(r1+1)
∣∣∣ , . . . , ∣∣∣x(r1+r2)

∣∣∣ .
The first r1 of these have nv = 1 and the last r2 have nv = 2.

If v ∈ Mκ is one of the absolute values extending the p-adic absolute value
on Q, its multiplicity is

nv = [κv : Qp] = epdp,

where p is the prime containing v, and ep and dp are the ramification index and
residue class degree, respectively. We see that the number of elements in F(κ),
which we denote by Np, is

Np = pdp ,

since F(κ) is of degree dp over Fp.

Proposition 1.52. Let σ : κ −→ K be an isomorphism. If v ∈ MK, for x ∈ κ put
|x|w = |σ(x)|v . Then w ∈ Mκ, and this gives a one-to-one mapping MK −→ Mκ,
and in this correspondence nv = nw.

1.5 Hermitian geometry

We will introduce some technical lemmas, basic operators and their gauges on a
projective space associated to a vector space. A good reference is Stoll [385] for
the complex case.

1.5.1 Gauges of elementary operators

Let V be a vector space of finite dimension n + 1 > 0 over a field κ. Write the
projective space P(V ) = V/κ∗ and let P : V∗ −→ P(V ) be the standard projection,
where V∗ = V − {0}. If A ⊂ V , abbreviate

P(A) = P(A ∩ V∗).

The dual vector space V ∗ of V consists of all κ-linear functions α : V −→ κ, and
we shall call

〈ξ, α〉 = α(ξ)

the inner product of ξ ∈ V and α ∈ V ∗. If α �= 0, the n-dimensional linear subspace

E[a] = E[α] = Ker(α) = α−1(0)

depends on a = P(α) ∈ P(V ∗) only, and Ë[a] = P(E[a]) is a hyperplane in P(V ).
Thus P(V ∗) bijectively parameterizes the hyperplanes in P(V ).
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Identify V ∗∗ = V by 〈ξ, α〉 = 〈α, ξ〉 and
( ∧

k+1
V
)∗

=
∧

k+1
V ∗ by

〈ξ0 ∧ · · · ∧ ξk, α0 ∧ · · · ∧ αk〉 = det(〈ξi, αj〉),

where
∧

k+1
V is the exterior product of V of order k+1, and where ξi ∈ V, αi ∈ V ∗

for i = 0, . . . , k. Take k, l ∈ Z[0, n] and take ξ ∈
∧

k+1
V and α ∈

∧
l+1

V ∗, where

Z[m, n] = {i ∈ Z | m ≤ i ≤ n}.

If k ≥ l, the interior product ξ∠α ∈
∧

k−l
V is uniquely defined by

〈ξ∠α, β〉 = 〈ξ, α ∧ β〉

for all β ∈
∧

k−l
V ∗. If k = l, then

ξ∠α = 〈ξ, α〉 ∈ κ =
∧
0

V

by definition. If k < l, we define the interior product ξ∠α ∈
∧

l−k
V ∗ such that if

η ∈
∧

l−k
V ,

〈η, ξ∠α〉 = 〈ξ ∧ η, α〉.

Take a base e = (e0, . . . , en) of V and take a valuation v on κ. For ξ =
ξ0e0 + · · ·+ ξnen ∈ V , define the norm

|ξ|v,e =

{ (
|ξ0|2v + · · ·+ |ξn|2v

) 1
2 : if v is Archimedean,

max0≤i≤n{|ξi|v} : if v is non-Archimedean.

Obviously, the norm depends on the base e, and will be called a norm over the
base e. If | · |v,e′ is another norm over a base e′ = (e′0, . . . , e

′
n), it is easy to prove

that there exist positive constants cv and c′v such that

cv|ξ|v,e ≤ |ξ|v,e′ ≤ c′v|ξ|v,e

hold for all ξ ∈ V , i.e., norms over bases are equivalent, where cv = 1, c′v = 1 for
all but finitely many v ∈ Mκ. We will abbreviate

|ξ|v = |ξ|v,e.

Further if κ is a number field with a proper set Mκ satisfying the product formula
of multiplicities nv, we will use notations

‖ξ‖v = |ξ|nv
v , |‖ξ|‖v = ‖ξ‖1/[κ:Q]

v . (1.5.1)
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Let ε = (ε0, . . . , εn) be the dual base of e = (e0, . . . , en). Then the norm on
V induces a norm on V ∗ defined by

|α|v =

{ (
|α0|2v + · · ·+ |αn|2v

) 1
2 : if v is Archimedean,

max0≤i≤n{|αi|v} : if v is non-Archimedean,

where α = α0ε0 + · · ·+ αnεn. Schwarz inequality

|〈ξ, α〉|v ≤ |ξ|v · |α|v

holds for ξ ∈ V, α ∈ V ∗. The distance from x = P(ξ) to Ë[a] with a = P(α) ∈
P(V ∗) is defined by

0 ≤ |x, a|v =
|〈ξ, α〉|v
|ξ|v · |α|v

≤ 1. (1.5.2)

Further if κ is a number field with a proper set Mκ satisfying the product formula
of multiplicities nv, we will use the normalization

‖α‖v = |α|nv
v , ‖x, a‖v = |x, a|nv

v , (1.5.3)

and the notations

|‖α|‖v = ‖α‖1/[κ:Q]
v , |‖x, a|‖v = ‖x, a‖1/[κ:Q]

v . (1.5.4)

In particular, if V = κn+1, we may take the standard base e0, e1, . . . , en,
where ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn+1

+ in which 1 is the (j + 1)th component of
ej. Take ξ ∈ κn+1 − {0} and write

ξ = ξ0e0 + ξ1e1 + · · ·+ ξnen = (ξ0, ξ1, . . . , ξn).

We usually denote P(ξ) by [ξ0, ξ1, . . . , ξn] which are called the homogeneous coor-
dinates of P

(
kn+1

)
, and abbreviate

Pn = Pn(κ) = P
(
κn+1

)
.

We can embed κn into Pn by using the mapping (ξ1, . . . , ξn) �→ [1, ξ1, . . . , ξn], and
obtain the disjoint union Pn = κn ∪ Pn−1. Particularly, P0 = P(κ) consists of one
point denoted by ∞, and so P1 = κ ∪ {∞}. If v is non-Archimedean, set

χv(x, a) =

{ |x−a|v
|x|∨v |a|∨v : x, a ∈ κ,

1
|x|∨v : a =∞,

(1.5.5)

where, by definition, r∨ = max{1, r} (r ∈ R). If v is Archimedean, set

χv(x, a) =

{ |x−a|v
(1+|x|2v)1/2(1+|a|2v)1/2 : x, a ∈ κ,

1√
1+|x|2v

: a = ∞.
(1.5.6)



1.5. Hermitian geometry 39

If we set 1
0 = ∞, 1

∞ = 0, then we have

χv

(
1
x

,
1
a

)
= χv(x, a), x, a ∈ κ ∪ {∞}.

Identify κn+1 = (κn+1)∗ such that

〈ξ, α〉 = ξ0α0 + · · ·+ ξnαn

for ξ = (ξ0, . . . , ξn), α = (α0, . . . , αn) ∈ κn+1. It is easy to show that

χv(x, a) =
{
|[1, x], [−a, 1]|v : x, a ∈ κ,
|[1, x], [1, 0]|v : a =∞.

(1.5.7)

Take non-negative integers a and b with a ≤ b. Let Jb
a be the set of all

increasing injective mappings λ : Z[0, a] −→ Z[0, b]. Then Jb
b = {ι}, where ι is the

inclusion mapping. If a < b, there exists one and only one λ⊥ ∈ Jb
b−a−1 for each

λ ∈ Jb
a such that Imλ ∩ Imλ⊥ = ∅. The mapping ⊥: Jb

a −→ Jb
b−a−1 is bijective. A

permutation (λ, λ⊥) of Z[0, b] is defined by

(λ, λ⊥)(i) =
{

λ(i) : i ∈ Z[0, a],
λ⊥(i− a− 1) : i ∈ Z[a + 1, b] .

The signature of the permutation is denoted by sign(λ, λ⊥).

The norm on V also induces norms on
∧

k+1
V and

∧
k+1

V ∗. Take ξ ∈
∧

k+1
V, α ∈∧

k+1
V ∗ and write

ξ =
∑

λ∈Jn
k

ξλeλ, α =
∑

λ∈Jn
k

αλελ,

where
eλ = eλ(0) ∧ · · · ∧ eλ(k).

Then we can define the norms

|ξ|v = |ξ|v,e =

⎧⎨
⎩
(∑

λ∈Jn
k
|ξλ|2v

) 1
2

: if v is Archimedean,
maxλ∈Jn

k
{|ξλ|v} : if v is non-Archimedean,

and

|α|v = |α|v,e =

⎧⎨
⎩
(∑

λ∈Jn
k
|αλ|2v

) 1
2

: if v is Archimedean,
maxλ∈Jn

k
{|αλ|v} : if v is non-Archimedean.

Generally, let V1, . . . , Vm and W be normed vector spaces over κ. Let

� : V1 × · · · × Vm −→W
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be an m-linear mapping over κ. If ξ = (ξ1, . . . , ξm) ∈ V1 × · · · × Vm, we write

�(ξ) = ξ1 � · · · � ξm,

and say that ξ is free for the operation � if �(ξ) �= 0. Take xj ∈ P(Vj) (j =
1, . . . , m). We will say that x1, . . . , xm are free for � if there exist ξj ∈ Vj such that
xj = P(ξj) and ξ = (ξ1, . . . , ξm) is free for the operation �. For free x1, . . . , xm,
we can define

x1 � · · · � xm = P(ξ1 � · · · � ξm).

Also, the gauge of x1, . . . , xm for � is defined to be

|x1 � · · · � xm|v =
|ξ1 � · · · � ξm|v
|ξ1|v · · · |ξm|v

which is well defined. If x1, . . . , xm are not free for �, we define |x1�· · ·�xm|v = 0.

In the following, we will prove some elementary but useful inequalities about
multi-vectors and give several gauges. Take a positive number r. For each v ∈Mκ,
we define

ςv,r =

{√
r if v is Archimedean,

1 if v is non-Archimedean.
(1.5.8)

First and easiest to prove is of course the following generalized Schwarz’s inequality:

Lemma 1.53. Take k, l ∈ Z[0, n] and take ξ ∈
∧

k+1
V and α ∈

∧
l+1

V ∗. Then

|ξ∠α|v ≤ ςv,(n−p
q−p)|ξ|v · |α|v,

where p = min{k, l}, q = max{k, l}.

Proof. Without loss of generality, we may assume k ≥ l, and write

ξ =
∑

λ∈Jn
k

ξλeλ, α =
∑

λ∈Jn
l

αλελ.

First of all, we consider the non-Archimedean case. If l = k, noting that

ξ∠α = 〈ξ, α〉 =
∑

λ∈Jn
k

ξλαλ,

we have

|ξ∠α|v ≤ max
λ∈Jn

k

|ξλαλ|v ≤
(

max
λ∈Jn

k

|ξλ|v
)
·
(

max
λ∈Jn

k

|αλ|v
)

= |ξ|v · |α|v
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and so the inequality follows. If l < k, by Laplace’s theorem of determinant ex-
pansion

〈(e0 ∧ · · · ∧ ek)∠α, β〉 = 〈e0 ∧ · · · ∧ ek, α ∧ β〉
=

∑
ν∈Jk

l

sign(ν, ν⊥)〈eν , α〉〈eν⊥ , β〉

=

〈∑
ν∈Jk

l

sign(ν, ν⊥)〈eν , α〉eν⊥ , β

〉

holds for any β ∈
∧

k−l
V ∗, that is,

(e0 ∧ · · · ∧ ek)∠α =
∑

ν∈Jk
l

sign(ν, ν⊥)〈eν , α〉eν⊥ =
∑

ν∈Jk
l

sign(ν, ν⊥)ανeν⊥ . (1.5.9)

Then
|(e0 ∧ · · · ∧ ek)∠α|v = max

ν∈Jk
l

{|〈eν , α〉|v} ≤ |α|v.

Thus, we have

|ξ∠α|v =

∣∣∣∣∣∣
∑

λ∈Jn
k

ξλeλ∠α

∣∣∣∣∣∣
v

≤ max
λ∈Jn

k

{|ξλ|v|eλ∠α|v} ≤ |ξ|v · |α|v.

Finally, assume that v is Archimedean. We have

|ξ∠α|v =

∣∣∣∣∣∣
∑

λ∈Jn
k

ξλeλ∠α

∣∣∣∣∣∣
v

≤
∑

λ∈Jn
k

|ξλ|v|eλ∠α|v ≤ |ξ|v

⎛
⎝∑

λ∈Jn
k

|eλ∠α|2v

⎞
⎠1/2

.

For λ ∈ Jn
k , set

Jλ
l = {ν ∈ Jn

l | ν ⊂ λ},
where ν ⊂ λ means {ν(0), . . . , ν(l)} ⊂ {λ(0), . . . , λ(k)}. By (1.5.9), we obtain

|eλ∠α|2v =
∑

ν∈Jλ
l

|αν |2. (1.5.10)

Since, by applying (1.5.10),∑
λ∈Jn

k

|eλ∠α|2v =
∑

λ∈Jn
k

∑
ν∈Jλ

l

|αν |2 =
∑

ν∈Jn
l

∑
ν⊂λ∈Jn

k

|αν |2

=
(

n− l

k − l

) ∑
ν∈Jn

l

|αν |2 =
(

n− l

k − l

)
|α|2v,

the inequality in Lemma 1.53 follows. �
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Now assume ξ �= 0 and α �= 0 and set x = P(ξ) ∈ P
( ∧

k+1
V
)

and a = P(α) ∈

P
( ∧

l+1
V ∗
)
. We can define the gauge of x and a for ∠,

|x∠a|v =
|ξ∠α|v
|ξ|v · |α|v

. (1.5.11)

In particular, if k = l = 0, then |x∠a|v = |x, a|v. The projective space P
( ∧

n+1
V ∗
)

consists of one and only one point denoted by ∞.

Lemma 1.54. For all x ∈ P(V ), |x∠∞|v = 1.

Proof. Take ξ ∈ V − {0} with x = P(ξ). Put

ξ = ξ0e0 + ξ1e1 + · · ·+ ξnen.

Then
ξj = 〈ξ, εj〉, j = 0, 1, . . . , n.

For j ∈ Z[0, n], setting

ε̂j = (−1)jε0 ∧ · · · ∧ εj−1 ∧ εj+1 ∧ · · · ∧ εn,

we have

|ξ∠(ε0 ∧ · · · ∧ εn)|v =

∣∣∣∣∣∣
n∑

j=0

〈ξ, εj〉ε̂j

∣∣∣∣∣∣
v

=

∣∣∣∣∣∣
n∑

j=0

ξj ε̂j

∣∣∣∣∣∣
v

= |ξ|v.

Since ∞ = P(ε0 ∧ · · · ∧ εn), then

|x∠∞|v =
|ξ∠(ε0 ∧ · · · ∧ εn)|v
|ξ|v · |ε0 ∧ · · · ∧ εn|v

= 1.
�

Next we show a more subtle inequality (cf. Wu [436]):

Lemma 1.55. Take p, q ∈ Z[1, n] with p+ q ≤ n+1. If ξ ∈
∧
p

V and η ∈
∧
q

V , then

|ξ ∧ η|v ≤ ςv,(p+q
p )|ξ|v|η|v.

Proof. First of all, note that a norm on the p-fold tensor product ⊗pV of V can
be defined as follows: Taking a base {e0, . . . , en} of V and writing an element
ξ ∈ ⊗pV by

ξ =
∑

ξi1···ipei1 ⊗ · · · ⊗ eip , (1.5.12)

then

|ξ|v,⊗ =

{ (∑
|ξi1···in |2v

) 1
2 : if v is Archimedean,

max{|ξi1···in |v} : if v is non-Archimedean.
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Let Jp be the permutation group on Z[1, p]. For each λ ∈ Jp, a linear isomorphism
λ : ⊗pV −→ ⊗pV is uniquely defined by

λ(ξ1 ⊗ · · · ⊗ ξp) = ξλ−1(1) ⊗ · · · ⊗ ξλ−1(p), ξj ∈ V (j = 1, . . . , p).

The linear mapping

Ap =
1
p!

∑
λ∈Jp

sgn(λ)λ : ⊗pV −→ ⊗pV

is called the anti-symmetrizer of ⊗pV with ImAp =
∧
p

V , where sgn(λ) is the sign
of the permutation λ, that is,

sgn(λ) =

{
1 if λ is even permutation,

−1 if λ is odd permutation.

For the tensor (1.5.12), we have

Ap(ξ) =
∑

ξi1···ipei1 ∧ · · · ∧ eip ∈
∧
p

V,

and hence it is easy to show that |Ap(ξ)|v ≤ ςv,p!|ξ|v,⊗, where the elementary
inequality

(a1 + · · ·+ an)2 ≤ n(a2
1 + · · ·+ a2

n) (ai ∈ R+)

is used for the proof of the Archimedean case. In particular, if ξ ∈
∧
p

V , then
Ap(ξ) = ξ. We can obtain the equality |ξ|v = c′p|ξ|v,⊗, where

c′p =

{√
p! if v is Archimedean,

|p!|v if v is non-Archimedean.

Further, if η ∈
∧
q

V , noting that

ξ ∧ η = Ap+q(ξ ⊗ η), |ξ ⊗ η|v,⊗ = |ξ|v,⊗|η|v,⊗,

then we have

|ξ ∧ η|v ≤
√

(p + q)!|ξ ⊗ η|v,⊗ =
(

p + q

p

) 1
2

|ξ|v|η|v

if v is Archimedean. If v is non-Archimedean, writing

η =
∑

ηj1···jq ej1 ∧ · · · ∧ ejq ,

then

ξ ∧ η =
∑

ξi1···ipηj1···jq ei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ ejq

= p!q!
∑

i1<···<ip

∑
j1<···<jq

ξi1···ipηj1···jq ei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ ejq
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and hence

|ξ ∧ η|v ≤ |p!q!|v max |ξi1···ipηj1···jq |v ≤ |p!q!|v|ξ|v,⊗|η|v,⊗ = |ξ|v|η|v.

Therefore Lemma 1.55 is proved. �

Take xj ∈ P(V ) (j = 0, . . . , k ≤ n) and take ξj ∈ V such that xj = P(ξj).
The gauge of x0, . . . , xk for ∧ is well defined to be

|x0 ∧ · · · ∧ xk|v =
|ξ0 ∧ · · · ∧ ξk|v
|ξ0|v · · · |ξk|v

(1.5.13)

which satisfies

0 ≤ |x0 ∧ · · · ∧ xk|v ≤ ςv,2ςv,3 · · · ςv,k+1 = ςv,(k+1)!.

When k = n this is a form of Hadamard’s determinant inequality (see [142], [143]).

Lemma 1.56. For x ∈ P(V ), aj ∈ P(V ∗), j = 0, 1, . . . , n, then

|a0 ∧ · · · ∧ an|v ≤ ςv,(n+1)! max
0≤j≤n

|x, aj |v.

Proof. If |a0 ∧ · · · ∧ an|v = 0, the inequality is trivial. If |a0 ∧ · · · ∧ an|v > 0, then
a0 ∧ · · · ∧ an = ∞. Thus Lemma 1.54 implies |x∠(a0 ∧ · · · ∧ an)|v = 1. For each
j ∈ Z[0, n], take αj ∈ V ∗ − {0} with P(αj) = aj . Also take ξ ∈ V − {0} with
P(ξ) = x. We have

|a0 ∧ · · · ∧ an|v = |a0 ∧ · · · ∧ an|v · |x∠(a0 ∧ · · · ∧ an)|v

=
|α0 ∧ · · · ∧ αn|v
|α0|v · · · |αn|v

· |ξ∠(α0 ∧ · · · ∧ αn)|v
|ξ|v|α0 ∧ · · · ∧ αn|v

=
|
∑n

j=0〈ξ, αj〉α̂j |v
|ξ|v|α0|v · · · |αn|v

,

and hence

|a0 ∧ · · · ∧ an|v ≤ ςv,n+1 max
0≤j≤n

|〈ξ, αj〉|v|α̂j |v
|ξ|v|α0|v · · · |αn|v

= ςv,n+1 max
0≤j≤n

|x, aj |v|a0 ∧ · · · ∧ aj−1 ∧ aj+1 ∧ · · · ∧ an|v

≤ ςv,(n+1)! max
0≤j≤n

|x, aj |v.

This finishes the proof. �
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1.5.2 Hypersurfaces

Let V be a normed vector space of dimension n+1 > 0 over a field κ. Take a positive
integer d. Let Jd be the permutation group on Z[1, d] and let ⊗dV be the d-fold
tensor product of V . For each λ ∈ Jd, a linear isomorphism λ : ⊗dV −→ ⊗dV is
uniquely defined by

λ(ξ1 ⊗ · · · ⊗ ξd) = ξλ−1(1) ⊗ · · · ⊗ ξλ−1(d), ξj ∈ V (j = 1, . . . , d).

A vector ξ ∈ ⊗dV is said to be symmetric if λ(ξ) = ξ for all λ ∈ Jd. The set of all
symmetric vectors in ⊗dV is a linear subspace of ⊗dV , denoted by �dV , called
the d-fold symmetric tensor product of V . Then

dim�dV =
(

n + d

d

)
.

The linear mapping

Sd =
1
d!

∑
λ∈Jd

λ : ⊗dV −→ ⊗dV

is called the symmetrizer of ⊗dV with ImSd = �dV . If ξ ∈ �dV and η ∈ �lV , the
symmetric tensor product

ξ � η = Sd+l(ξ ⊗ η)

is defined with ξ � η = η � ξ. Similarly, for ξj ∈ V (j = 1, . . . , d), we can define
the symmetric tensor product

ξ1 � · · · � ξd = Sd(ξ1 ⊗ · · · ⊗ ξd).

Let ξ�d be the dth symmetric tensor power of ξ ∈ V , and define

x�d = P(ξ�d)

for x = P(ξ). Thus a mapping ϕd : P(V ) −→ P(�dV ) is well defined by setting
ϕd(x) = x�d, which is called the Veronese mapping. We can identify �dV

∗ =
(�dV )∗ by

〈ξ1 � · · · � ξd, α1 � · · · � αd〉 =
1
d!

∑
λ∈Jd

〈ξ1, αλ(1)〉 · · · 〈ξd, αλ(d)〉

for all xj ∈ V, αj ∈ V ∗, j = 1, . . . , d.

Let Jn,d be the set of all mappings λ : Z[0, n] −→ Z[0, d] such that

|λ| = λ(0) + · · ·+ λ(n) = d.
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For λ ∈ Jn,d, e = (e0, . . . , en) ∈ V n+1, define

λ! = λ(0)! · · ·λ(n)!, e�λ = e
�λ(0)
0 � · · · � e�λ(n)

n ∈ �dV.

If e = (e0, . . . , en) is a base of V , then {e�λ}λ∈Jn,d
is a base of �dV , and

{ d!
λ! ε

�λ}λ∈Jn,d
is the dual base of �dV

∗, where ε = (ε0, . . . , εn) is the dual of e. The
norm |·| on V induces norms on �dV and �dV

∗ as follows: For η ∈ �dV, β ∈ �dV
∗

with
η =

∑
λ∈Jn,d

d!
λ!

ηλe�λ, β =
∑

λ∈Jn,d

d!
λ!

βλε�λ,

define

|η| = |η|e =

⎧⎨
⎩
(∑

λ∈Jn,d

d!
λ! |ηλ|2

) 1
2

: if | · | is Archimedean,
maxλ∈Jn,d

{|ηλ|} : if | · | is non-Archimedean

and

|β| = |β|e =

⎧⎨
⎩
(∑

λ∈Jn,d

d!
λ! |βλ|2

) 1
2

: if | · | is Archimedean,
maxλ∈Jn,d

{|βλ|} : if | · | is non-Archimedean,

where e is orthonormal if | · | is Archimedean. Note that

ξ�d =
∑

λ∈Jn,d

d!
λ!

ξ
λ(0)
0 · · · ξλ(n)

n e�λ, α�d =
∑

λ∈Jn,d

d!
λ!

α
λ(0)
0 · · ·αλ(n)

n ε�λ,

where
ξ = ξ0e0 + · · ·+ ξnen ∈ V, α = α0ε0 + · · ·+ αnεn.

Then we obtain a formula

|ξ�d| = |ξ|d, |α�d| = |α|d. (1.5.14)

Let V[d] be the vector space of all homogeneous polynomials of degree d on
V . We obtain a linear isomorphism

∼: �dV
∗ −→ V[d]

defined by
α̃(ξ) =

〈
ξ�d, α

〉
, ξ ∈ V, α ∈ �dV

∗.

Thus if ξ �= 0 and α �= 0, the distance |x�d, a| is well defined for x�d = P(ξ�d)
and a = P(α). If α �= 0, the n-dimensional subspace

Ed[a] = Ker(α̃) = α̃−1(0)
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in V depends on a only, and Ëd[a] = P(Ed[a]) is a hypersurface of degree d in
P(V ). Thus P(�dV

∗) bijectively parameterizes the hypersurfaces in P(V ). Take a
sequence {d0, d1, . . . , dq} of positive integers. Let A = {a0, a1, . . . , aq} be a family
of points aj ∈ P

(
�dj V

∗). Take αj ∈ �dj V
∗ − {0} with P(αj) = aj , and define

α̃j(ξ) =
〈
ξ�dj , αj

〉
, ξ ∈ V, j = 0, 1, . . . , q.

According to Eremenko and Sodin [94], we will use the following notation:

Definition 1.57. The family A = {a0, a1, . . . , aq} (q ≥ n) is said to be admissible
(or in general position) if, for every λ ∈ Jq

n, the system

α̃λ(i)(ξ) = 0, i = 0, 1, . . . , n (1.5.15)

has only the trivial solution ξ = 0 in V .

1.5.3 Nochka weights

Let V be a vector space of finite dimension n + 1 > 0 over a field κ. Let A =
{a0, a1, . . . , aq} be a family of points aj ∈ P(V ∗). Take αj ∈ V ∗ − {0} with
P(αj) = aj . For λ ∈ Jq

l , set Aλ = {aλ(0), . . . , aλ(l)}, and let E(Aλ) be the linear
subspace generated by {αλ(0), . . . , αλ(l)} in V ∗. Define

Jl(A ) = {λ ∈ Jq
l | αλ(0) ∧ · · · ∧ αλ(l) �= 0}.

Then A is said to be in general position if dimE(Aλ) = l + 1 for any λ ∈ Jq
l

with l ≤ min{n, q}. If so the hyperplanes Ë[a0], . . . , Ë[aq] also are called in general
position. Following Chen [56], we also use the concept of subgeneral position as
follows:

Definition 1.58. Let A = {a0, a1, . . . , aq} be a family of points aj ∈ P(V ∗). For
1 ≤ n ≤ u ≤ q, then A is said to be in u-subgeneral position if E(Aλ) = V ∗ for
any λ ∈ Jq

u.

In particular, if u = n this concept agrees with the usual concept of hyper-
planes in general position. The notion of subgeneral position will play a key role in
the proof of Cartan’s conjecture due to Nochka in Section 2.8. To prove Cartan’s
conjecture, Nochka used the following technical lemma:

Lemma 1.59. Let A = {a0, a1, . . . , aq} be a family of points aj ∈ P(V ∗) in u-
subgeneral position with 1 ≤ n ≤ u < q. Then there exists a function ω : A −→
R(0, 1] and a real number θ ≥ 1 satisfying the properties:

1) 0 < ω(aj)θ ≤ 1, j = 0, 1, . . . , q;
2) q − 2u + n = θ(

∑q
j=0 ω(aj)− n− 1);

3) 1 ≤ u+1
n+1 ≤ θ ≤ 2u−n+1

n+1 ;
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4)
∑k

j=0 ω(aσ(j)) ≤ dimE(Aσ) if σ ∈ Jq
k with 0 ≤ k ≤ u;

5) Let r0, . . . , rq be a sequence of real numbers with rj ≥ 1 for all j. Then for
any σ ∈ Jq

k with 0 ≤ k ≤ u, setting dimE(Aσ) = l + 1, then there exists
λ ∈ Jl(A ) such that

Imλ = {λ(0), . . . , λ(l)} ⊂ {σ(0), . . . , σ(k)}, E(Aλ) = E(Aσ),

and
k∏

j=0

r
ω(aσ(j))

σ(j) ≤
l∏

j=0

rλ(j).

The function ω and the real number θ are respectively called a Nochka weight
and a Nochka constant of the family A in u-subgeneral position. If u = n, then
θ = 1 and ω(aj) = 1 for each j = 0, 1, . . . , q. From Lemma 1.59, it follows that
values of the function ω become small if u is large. Hence Nochka weight is a gauge
of a subgeneral position leaving a general position. Nochka’s original paper (see
[299],[300],[301]) on the weights of Nochka was quite sketchy; a complete proof can
be found in Chen’s thesis [56] (or see Fujimoto [107], Hu and Yang [176]). Here
we omit the proof since it is very long.

Let A = {a0, a1, . . . , aq} (n ≤ u ≤ q) be in u-subgeneral position. Define the
gauge Γ(A ) of A on a valuation v of κ by

Γ(A ) =
1

ςv,(n+1)!
inf

λ∈Jn(A )
{|aλ(0) ∧ · · · ∧ aλ(n)|v}

with 0 < Γ(A ) ≤ 1. Let #P be the cardinality of a set P .

Lemma 1.60. For x ∈ P(V ), 0 < r ∈ R, define

A (x, r) = {j ∈ Z[0, q] | |x, aj |v < r}.

If Γ(A ) ≥ r, then #A (x, r) ≤ u.

Proof. Assume, to the contrary, that #A (x, r) ≥ u + 1. Then λ ∈ Jn(A ) exists
such that Imλ ⊆ A (x, r). Hence

|x, aλ(j)|v < r, j = 0, . . . , n.

Then Lemma 1.56 implies

0 < Γ(A ) ≤ |aλ(0) ∧ · · · ∧ aλ(n)|v/ςv,(n+1)!

≤ max
0≤j≤n

|x, aλ(j)|v < r ≤ Γ(A ),

which is impossible. Hence we have #A (x, r) ≤ u. �
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Lemma 1.61. Take x ∈ P(V ) such that |x, aj |v > 0 for j = 0, . . . , q. Then

q∏
j=0

(
1

|x, aj |v

)ω(aj)

≤
(

1
Γ(A )

)q−u

max
λ∈Jn(A )

n∏
j=0

1
|x, aλ(j)|v

, (1.5.16)

where ω : A −→ R(0, 1] is the Nochka weight. In particular, if u = n we also have

q∏
j=0

1
|x, aj |v

≤
(

1
Γ(A )

)q+1−n

max
λ∈Jq

n−1

n−1∏
j=0

1
|x, aλ(j)|v

. (1.5.17)

Proof. Take r = Γ(A ). Lemma 1.60 implies #A (x, r) ≤ u. Thus σ ∈ Jq
u exists

such that A (x, r) ⊂ Imσ. Note that E(Aσ) = V ∗. By Lemma 1.59, there exists
λ ∈ Jn(A ) with Imλ ⊂ Imσ such that E(Aλ) = E(Aσ), and such that

u∏
j=0

(
1

|x, aσ(j)|v

)ω(aσ(j))

≤
n∏

j=0

1
|x, aλ(j)|v

. (1.5.18)

Set C = Z[0, q]− Imσ. Thus |x, aj |v ≥ r for j ∈ C. Hence

∏
j∈C

(
1

|x, aj |v

)ω(aj)

≤
∏
j∈C

1
|x, aj |v

≤
(

1
r

)#C

=
(

1
Γ(A )

)q−u

.

Thus the inequality (1.5.16) follows.
If u = n, then σ = λ and Imλ−A (x, r) �= ∅, that is, there is some j0 ∈ Z[0, n]

such that |x, aλ(j0)|v ≥ r. Now (1.5.18) becomes

n∏
j=0

1
|x, aσ(j)|v

≤ 1
r

∏
j �=j0

1
|x, aλ(j)|v

,

and so (1.5.17) follows. �

Finally, let κ be the field C of complex numbers. A positive definite Hermitian
form

(, ) : V × V −→ C

is called a Hermitian product or a Hermitian metric on V . It defines a norm

|ξ| = (ξ, ξ)
1
2 , ξ ∈ V.

A complex vector space together with a Hermitian product is called a Hermitian
vector space. For each ξ ∈ V , one and only one dual vector ξ∗ ∈ V ∗ is defined by
(η, ξ) = 〈η, ξ∗〉 for all η ∈ V . The mapping ξ �→ ξ∗ is an anti-linear isomorphism
of V onto V ∗. Here V ∗ becomes a Hermitian vector space by setting

(ξ∗, η∗) = (η, ξ), ξ, η ∈ V.
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Then ξ∗∗ = ξ and V ∗∗ = V , as Hermitian vector space. A Hermitian product is
uniquely defined on

∧
p+1

V by the requirement

(ξ0 ∧ · · · ∧ ξp, η0 ∧ · · · ∧ ηp) = det((ξj , ηk)), ξj , ηj ∈ V.

1.6 Basic geometric notions

Let κ be a field and let κ̄ be an algebraic closure of κ. The space κ̄n is called
the affine n-space (over κ), which is usually denoted by An or An(κ̄). The set of
κ-rational points of An is the set

An(κ) = {(z1, . . . , zn) ∈ An | zi ∈ κ}.
We will introduce some geometric notation in spaces An and Pn = P(An+1).

1.6.1 Varieties

Let Iκ be an ideal in the polynomial ring in n variables κ[z1, . . . , zn]. The Hilbert
basis theorem says that Iκ is generated by a finite number of polynomials P1, . . . ,
Pr. Assume that P1, . . . , Pr generate a prime ideal in the ring κ̄[z1, . . . , zn]. The
set of zeros of Iκ,

Z = {z ∈ An | P (z) = 0 for all P ∈ Iκ},
is called an affine algebraic variety or affine variety defined over κ, which in fact
is the set of common zeros of the finite collection of polynomials P1, . . . , Pr.
Especially, if r = 1, the affine variety Z is usually called an affine hypersurface.

Remark. The condition that the polynomials generate a prime ideal is to insure
what is called the irreducibility of the variety. Under our condition, it is not possi-
ble to express a variety as the finite union of proper subvarieties. In the definition
of the affine algebraic variety Z, if the ideal Iκ is not assumed prime, then we
obtain an affine algebraic set Z. The set Z is a finite union of its irreducible
components (affine algebraic varieties).

Let Z be an affine variety, defined by an ideal Iκ in κ[z1, . . . , zn]. The ring

κ[Z] = κ[z1, . . . , zn]/Iκ

is called the affine coordinate ring of Z, or simply the affine ring of Z. This ring
has no zero divisors, and its quotient field is called the function field of Z over κ,
denoted by κ(Z). An element of κ(Z) is called a rational function on Z, which is
the quotient of two polynomial functions on Z such that the denominator does
not vanish identically on Z.

If K is a field containing κ, the set of zeros of Iκ with coordinate (z1, . . . , zn) ∈
Kn is called the set of K-rational points of Z, and is denoted by Z(K). It is equal
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to the set of solutions of the finite number of equations

Pj(z1, . . . , zn) = 0, j = 1, . . . , r, (z1, . . . , zn) ∈ Kn.

By a projective variety X over a field κ we mean the set of solutions in a
projective space Pn = P(An+1) of a finite number of equations

fj(ξ0, . . . , ξn) = 0, j = 1, . . . , r

such that each fj is a homogeneous polynomial in n+1 variables with coefficients
in κ, and f1, . . . , fr generate a prime ideal in the polynomial ring κ̄[ξ0, . . . , ξn].
If r = 1, the variety X is called a projective hypersurface, and the degree of f1

is called the degree of the hypersurface. Further, if r = 1 and if f1 is linear, X is
called a hyperplane.

If K is a field containing κ, by X(K) we mean the set of such zeros having
some projective coordinates [ξ0, . . . , ξn] with ξi ∈ K for all i = 0, . . . , n, called
the set of K-rational points of X . The set of points in X(κ̄) is called the set of
algebraic points over κ. For a point x = [ξ0, . . . , ξn] ∈ Pn, we denote by κ(x) the
field

κ(x) = κ(ξ0, . . . , ξn)

such that at least one of the projective coordinates is equal to 1, which is called
the field of definition of the point x or the residue class field of the point. It does
not matter which such coordinate is selected. If for instance ξ0 �= 0, then

κ(x) = κ

(
ξ1

ξ0
, . . . ,

ξn

ξ0

)
.

We can define the Zariski topology on Pn (resp., An) by prescribing that a
closed set is a finite union of varieties. A Zariski open set is defined to be the
complement of a closed set. The Zariski topology on a variety X is the topology
induced by the inclusion X ⊂ Pn (resp., X ⊂ An). By a quasi-projective variety,
we mean the open subset of a projective variety obtained by omitting a closed
subset.

A projective variety X is covered by a finite number of affine varieties as
follows. Set

zl,i+1 =

{
ξi

ξl
, 0 ≤ i ≤ l − 1;

ξi+1
ξl

, l ≤ i < n,

and let
Pl,j(zl,1, . . . , zl,n) = fj(zl,1, . . . , zl,l, 1, zl,l+1, . . . , zl,n).

Then the polynomials Pl,1, . . . , Pl,r generate a prime ideal in κ̄[zl,1, . . . , zl,n], and
the set of solutions of the equations

Pl,j(zl,1, . . . , zl,n) = 0, j = 1, . . . , r
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is an affine variety, which is an open subset of X , denoted by Ul. It consists of those
points [ξ0, . . . , ξn] ∈ X such that ξl �= 0. The projective variety X is covered by
the open sets U0, . . . , Un. The function fields κ(U0), . . . , κ(Un) are all equal, and
are generated by the restrictions to X of the quotients ξi/ξl ( for all i, l such that
ξl is not identically 0 on X). The function field of X over κ is defined to be κ(Ul)
(for any l), and is denoted by κ(X). A rational function can also be expressed as
a quotient of two homogeneous polynomial functions P (ξ0, . . . , ξn)/Q(ξ0, . . . , ξn)
where P, Q have the same degree.

A variety X is complete or proper if for any variety Y , the projection X ×
Y −→ Y is closed, i.e., the image of every closed subset is closed. Projective
varieties are complete.

1.6.2 Function fields

We here give a more intrinsic definition of the function field of a variety X . Let x
be a point on X . A function f : X −→ κ̄ is regular at x if there is an open affine
neighborhood U ⊂ X of x, say U ⊂ An, and two polynomials P, Q ∈ κ̄[z1, . . . , zn]
such that Q(x) �= 0 and f = P/Q on U . We say that f is regular on X if it is
regular at every point of X . We denote by O(X) the ring of all regular functions
on X . A regular function on a projective variety is constant (see [148], I.3.4(a)).

Note that the property of being regular is open, that is, if f is regular at x,
then it is regular at every point in some neighborhood of x. This suggests looking
at the collection of functions that are regular at a given point. If x is a point on a
variety X , we define the local ring of X at x to be the ring of germs of functions
that are regular at x. This ring is denoted by OX(x), or simply by O(x) if no
confusion is likely to arise. In other words, an element of O(x) is a pair (U, f)
where U is an open subset of X containing x, and f is a regular function on U ,
and where we identify two such pairs (U, f) and (W, g) if there is a neighborhood
V ⊂ U ∩W of x such that f = g on V . Note that O(x) is indeed a local ring:
its maximal ideal m(x) is the set of germs of regular functions which vanish at x.
For if f(x) �= 0, then 1/f is regular in some neighborhood of x. A variety is called
normal if the local ring of every point is integrally closed. A non-singular variety
is normal.

By a subvariety of a variety X we shall always mean a closed subvariety
unless otherwise specified. Let Y ⊂ X be a subvariety of a variety X . The local
ring of X along Y , denoted by OX(Y ), is the set of pairs (U, f), where U is an
open subset of X with U ∩Y �= ∅ and f ∈ O(U) is a regular function on U , where
we identify two pairs (U, f) = (W, g) if f = g on U ∩W . The ring OX(Y ) is a
local ring, its unique maximal ideal being given by

mX(Y ) = {f ∈ OX(Y ) | f(x) = 0 for all x ∈ Y }.

The function field of X , denoted by κ̄(X), is defined to be OX(X), the local ring
of X along X . The elements of κ̄(X) are called rational functions on X over κ̄. In
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other words, κ̄(X) is the set of pairs (U, f), where U is a non-empty open subset
of X and f is a regular function on U , subject to the identification (U, f) = (W, g)
if f = g on U ∩W . It is easy to check that κ̄(X) is a field that contains every local
ring OX(Y ) of X for any subvariety Y ⊂ X , and that we have

OX(Y )/mX(Y ) ∼= κ̄(Y ).

The function fields of An and Pn are both equal to κ̄(z1, . . . , zn), the field of
rational functions in n variables.

A mapping ϕ : X −→ Y between varieties is a morphism if it is continuous,
and if for every open set V ⊂ Y and every regular function g on V , the function
g ◦ ϕ is regular on ϕ−1(V ). Note that the image of a projective variety by a
morphism is a projective variety (see [158], Theorem A.1.2.3).

A mapping ϕ : X −→ Y between varieties is regular at a point x ∈ X if it is
a morphism on some open neighborhood of x. One can show that ϕ is regular at
x if there is an affine neighborhood U ⊂ Am of x in X and an affine neighborhood
V ⊂ An of ϕ(x) in Y such that ϕ sends U into V and such that ϕ can be defined
on U by n polynomials in m variables. That these definitions are equivalent comes
from the fact that a morphism of affine varieties is defined globally by polynomials,
as can be deduced readily from Theorem 1.62 below. If ϕ : X −→ Y is regular at
each point of X , then ϕ is said to be a regular mapping.

A regular mapping ϕ : X −→ Y is an isomorphism if it has an inverse, that
is, if there exists a regular mapping ψ : Y −→ X such that both ϕ ◦ ψ : Y −→ Y
and ψ ◦ϕ : X −→ X are the identity mappings. In this case we say that X and Y
are isomorphic. An isomorphism from X to itself is also called an automorphism on
X . The group Aut(X) of automorphisms of X is an extremely interesting object.
For example, some examples of Aut(A2) are simple to construct: the affine linear
mappings, and elementary mappings of the form

y1 = αx1 + f(x2), y2 = βx2 + γ, (1.6.1)

where α, β, γ are constants with αβ �= 0, and f a polynomial. It is known that
the whole group Aut(A2) is generated by these automorphisms in the sense that
every element of Aut(A2) is a finite composition of the affine linear mappings
and the elementary mappings (cf. [198]). A famous unsolved problem related to
automorphisms of An is the Jacobian conjecture. This asserts that, if the ground
field κ has characteristic 0, a mapping given by

yi = fi(x1, . . . , xn), i = 1, . . . , n

with fi ∈ κ̄[x1, . . . , xn] is an automorphism of An if and only if the Jacobian
determinant det

(
∂fi

∂yj

)
is a non-zero constant (cf. [16]). The necessity is easy. For

the case n = 2, this conjecture is proved when the degrees of f1 and f2 are not
too large (the order of 100).
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A rational mapping from a variety X to a variety Y is a mapping that is a
morphism on some non-empty open subset of X . Let ϕ : X −→ Y be a rational
mapping. Then there is a largest open subset Ω on which ϕ is a morphism. This
open subset is called the domain of definition of ϕ, denoted dom(ϕ). The rational
mapping ϕ is said to be dominant if ϕ(U) is dense in Y for some (and consequently
every) non-empty open set U ⊂ X on which it is a morphism. A birational mapping
is a rational mapping that has a rational inverse. Two varieties are said to be
birationally equivalent if there is a birational mapping between them.

Theorem 1.62. Let Z and Z ′ be affine varieties. Then

(i) O(Z) ∼= κ̄[Z].
(ii) A morphism ϕ : Z −→ Z ′ induces a ring homomorphism ϕ∗ : κ̄[Z ′] −→ κ̄[Z]

defined by g �→ g ◦ ϕ. The natural mapping

Mor(Z, Z ′) −→ Homκ̄(κ̄[Z ′], κ̄[Z])

defined by ϕ �→ ϕ∗ is a bijection.

Proof. Hartshorne [148], I.3.2. �

If ϕ : Z −→ Z ′ is a morphism between affine varieties, we may view κ̄[Z] as
a κ̄[Z ′]-module by means of ϕ∗. The morphism ϕ is called finite if κ̄[Z] is a finitely
generated κ̄[Z ′]-module. A morphism ϕ : X −→ Y between varieties is finite if
for every affine open subset V ⊂ Y , the set ϕ−1(V ) is affine and the mapping
ϕ : ϕ−1(V ) −→ V is finite.

A mapping ϕ between affine varieties is dominant if and only if ϕ∗ is injective,
so we say that ϕ is finite surjective if it is finite and ϕ∗ is injective. If ϕ : X −→ Y
is a finite mapping, then it is a closed mapping and all fibers ϕ−1(y) consist of
a finite number of points. Further, there is an integer d and a non-empty open
V ⊂ ϕ(X) such that

#ϕ−1(y) = d, y ∈ V.

The degree d can be described algebraically as the degree of the associated field
extension, and we define this quantity to be the degree of the finite mapping ϕ,

deg(ϕ) = [κ̄(X) : ϕ∗κ̄(Y )].

An algebraic group defined over κ is a variety G defined over κ, a point
e ∈ G(κ), and morphisms m : G×G −→ G and i : G −→ G satisfying the axioms
of a group law:

(α) m(e, x) = m(x, e) = x.

(β) m(i(x), x) = m(x, i(x)) = e.
(γ) m(m(x, y), z) = m(x, m(y, z)).

An Abelian variety is a projective variety that is also an algebraic group.
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1.6.3 Dimensions

The dimension of a variety X is defined to be the transcendence degree of its
function field κ̄(X) over κ̄ (cf. [109], [158]), denoted by dimX . There is another
definition of dimension. Consider a maximal chain of subvarieties

Y0 ⊂ Y1 ⊂ · · · ⊂ Ym = X,

where Y0 is a point and Yi �= Yi+1 for all i. Then all such chains have the same
number of elements m, and m is the dimension of X (cf. [158], [232]). In particular,
we have the following useful corollary.

Proposition 1.63. Let X be a variety, and let Y be a subvariety of X. If Y �= X,
then dimY < dimX.

Proof. Hindry-Silverman [158], Corollary A.1.3.3 or Shafarevich [342], I.6, Theo-
rem 1. �

If Y ⊂ X is a closed subvariety of X , then the number dimX−dimY is called
the codimension of Y in X , and written codim(Y ) or codimX(Y ). Not surprisingly,
both An and Pn have dimension n. Similarly, the dimension of a hypersurface in
An or Pn is n− 1. In fact, a kind of converse is true.

Theorem 1.64. A variety of dimension n − 1 is birational equivalent to a hyper-
surface in An or Pn.

Proof. See Hindry and Silverman [158], or Hartshorne [148], Ch. I, Proposition
4.9. The main idea is that the function field κ̄(X) of the variety X of dimen-
sion n − 1 over κ̄ is a finitely generated extension of κ̄ so that κ̄(X) is sep-
arably generated (see Zariski and Samuel [448], Ch. II, Theorem 31, p. 105,
or Matsumura [260], Ch. 10, Corollary, p. 194). Hence we can find a transcen-
dence base {x1, . . . , xn−1} ⊂ κ̄(X) such that κ̄(X) is a finite separable exten-
sion of κ̄(x1, . . . , xn−1). Then by Theorem 1.19, we can find one further element
xn ∈ κ̄(X) such that κ̄(X) = κ̄(x1, . . . , xn−1, xn). Now xn is algebraic over
κ̄(x1, . . . , xn−1), so it satisfies a polynomial equation with coefficients which are
rational functions in x1, . . . , xn−1. Clearing denominators, we obtain an irreducible
polynomial f(x1, . . . , xn) = 0. This defines a hypersurface in An with function field
κ̄(X), which is birational to X . Its projective closure is a hypersurface in Pn. �

The dimension of an algebraic subset V is the maximum of the dimensions of
its irreducible components. If all the irreducible components of V have the same
(finite) dimension d, then V is said to be of pure dimension d. If V is an algebraic
subset of An (or Pn) of dimension n− r, defined by r equations

fj = 0, j = 1, . . . , r,

then we say that V is a complete intersection.
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Theorem 1.65. Any affine variety of dimension d can be realized as an irreducible
component of some affine complete intersection of pure dimension d.

Proof. C. Musili [284], Theorem 25.7. �

To conform with the usual terminology, a variety of dimension 1 is called a
curve, and a variety of dimension 2 is called a surface. If κ is a subfield of C, then
X(C) is a complex analytic space of complex analytic dimension 1. Now a curve
is also sometimes called a Riemann surface.

In order to compute the dimension of a variety, we need to know how the
dimension behaves for intersections of algebraic sets, which is answered by the
affine (or projective) dimension theorem:

Theorem 1.66. Let X and Y be varieties in An (or Pn) of dimensions l and m,
respectively. Then every component of X ∩ Y has dimension at least l + m− n.

Proof. Hindry-Silverman [158] or Shafarevich [342] or Hartshorne [148], Ch. I,
Proposition 7.1 and Theorem 7.2. �
Theorem 1.67. Let ϕ : X −→ Y be a surjective morphism of varieties. Then

(I) dim ϕ−1(y) ≥ dimX − dimY for all y ∈ Y .
(II) There is a non-empty open subset V ⊂ Y such that for all y ∈ V ,

dimϕ−1(y) = dim X − dim Y.

Proof. Shafarevich [342], I.6, Theorem 7. �

Let Z be an affine variety in affine space An, with coordinates (z1, . . . , zn),
and defined over a field κ. Let a = (a1, . . . , an) be a point of Z. Suppose κ alge-
braically closed and ai ∈ κ for all i. Let

Pj(z1, . . . , zn) = 0, j = 1, . . . , r

be a set of defining equations for Z. We say that the point a is regular (or non-
singular or smooth) if

rank
(

∂Pj

∂zi
(a)
)

= n−m,

where m is the dimension of Z, otherwise, is singular. We say that Z is non-
singular or smooth if every point on Z is regular. A projective variety is called
non-singular if all the affine open sets U0, . . . , Un above are non-singular.

Theorem 1.68. Let ϕ be a rational mapping from a smooth variety X to a projective
variety. Then

codim(X − dom(ϕ)) ≥ 2.

Proof. See Shafarevich [342], II.3, Theorem 3. �
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Let C be a curve, so its function field κ̄(C) is of transcendence degree 1. It
follows that κ̄(C) is algebraic over any subfield κ̄(x) generalized by a non-constant
function x ∈ κ̄(C). Hence we may write κ̄(C) = κ̄(x, y), where x and y are non-
constant functions on C satisfying an algebraic relation

P (x, y) = 0.

Let C0 ⊂ A2 denote the affine plane curve defined by P , and let C1 ⊂ P2 be the
projective plane curve defined by the homogenized equation

Zdeg(P )P

(
X

Z
,
Y

Z

)
= 0.

Clearly, C is birational to both C0 and C1. Any curve birational to C is called a
model of C, so we can say that every curve has a plane affine model and a plane
projective model. Theorem 1.68 yields immediately the following result:

Theorem 1.69. A rational mapping from a smooth curve to a projective variety
extends to a morphism defined on the whole curve.

Theorem 1.70. Any algebraic curve is birational to a unique (up to isomorphism)
smooth projective curve, which is called a normalization of the algebraic curve.

Proof. See Fulton [109], VII.5, Theorem 3, Hartshorne [148], I, Corollary 6.11, or
Hindry and Silverman [158], Theorem A.4.1.4. �

1.6.4 Differential forms

Let x be a point on a variety X . The tangent space to X at x is the κ̄-vector space

Tx(X) = Homκ̄(m(x)/m(x)2, κ̄).

In other words, the tangent space is defined to be the dual of the vector space
m(x)/m(x)2. We naturally call m(x)/m(x)2 the cotangent space to X at x, de-
noted by T ∗

x (X). It is not difficult to check that Tx(X) and T ∗
x (X) are vector

spaces over κ̄ since
O(x)/m(x) ∼= κ̄.

Theorem 1.71. Let X be a variety. Then dimTx(X) ≥ dim X for all x ∈ X.
Furthermore, there is a non-empty open set U ⊂ X such that dimTx(X) = dimX
for x ∈ U .

Proof. See Hartshorne [148], I.5, Proposition 2A and Theorem 3 or Shafarevich
[342], II.1, Theorem 3. �

According to Jacobian criterion (see [148], I.5), a point x in an affine variety
Z is regular if and only if dimTx(Z) = dimZ. An ordinary singularity in a curve
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is a singularity whose tangent cone is composed of distinct lines. The multiplicity
of an ordinary singularity is the number of lines in its tangent cone.

Consider a rational mapping ϕ : X −→ Y between two varieties that is
regular at x, and let y = ϕ(x). According to Hartshorne [148], I.4, Theorem 4, the
mapping

ϕ∗ : OY (y) −→ OX(x), g �→ g ◦ ϕ

is a homomorphism of local rings, in particular,

ϕ∗(m(y)) ⊂m(x), ϕ∗(m(y)2) ⊂m(x)2,

and hence it induces a κ̄-linear mapping

ϕ∗ : T ∗
y (Y ) −→ T ∗

x (X).

The tangent mapping or differential of ϕ at x

dϕ(x) : Tx(X) −→ Ty(Y )

is defined to be the transpose of the mapping ϕ∗.

Let X be a variety. Take a function f ∈ κ̄(X)∗ and fix a point x in the
domain of f . We obtain a tangent mapping

df(x) : Tx(X) −→ Tf(x)(A1) = κ̄,

so df(x) is a linear form on Tx(X), that is, df(x) ∈ T ∗
x (X). Obviously, the classical

rules
d(f + g) = df + dg, d(fg) = fdg + gdf (1.6.2)

are valid. Thus we may view df as a mapping that associates to each point x ∈
dom(f) a cotangent vector in T ∗

x (X). According to Hindry and Silverman [158],
such a mapping is called an abstract differential 1-form. A regular differential 1-
form on X is an abstract differential 1-form ω such that for all x ∈ X there is a
neighborhood U of x and regular functions fi, gi ∈ O(U) such that

ω(x) =
∑

gi(x)dfi(x), x ∈ U.

We denote the set of regular differential 1-forms on X by Ω1[X ]. It is clearly a
κ̄-vector space, and in fact, it is an O(X)-module.

Let x be a non-singular point on a variety X of dimension n. Functions
t1, . . . , tn ∈ O(x) are called local parameters at x if each ti ∈ m(x), and if the
images of t1, . . . , tn form a basis of T ∗

x (X). The functions t1, . . . , tn give local coor-
dinates on X if ui := ti− ti(x) give local parameters at all x in X . It is easy to see
that t1, . . . , tn are local parameters if and only if n linear forms dt1(x), . . . , dtn(x)
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on Tx(X) are linearly independent. Since dimTx(X) = n, this in turn is equivalent
to saying that in Tx(X), ⋂

i

ker(dti(x)) = {0}.

According to Shafarevich [342], III.5, Theorem 1, any non-singular point x of a
variety X has local parameters t1, . . . , tn defined on a neighborhood U of x such
that

Ω1[U ] =
n⊕

i=1

O(U)dti. (1.6.3)

The abstract differential 1-forms considered were mappings sending each
point x ∈ X to an element of T ∗

x (X). We now consider more general abstract
differential r-forms that send x ∈ X to a skew symmetric r-linear form on Tx(X),
that is, to an element of the rth exterior product

∧
r

T ∗
x (X) of T ∗

x (X), or equiva-
lently, to a linear mapping

∧
r

Tx(X) −→ κ̄. A regular differential r-form ω on X
is an abstract differential r-form such that for all x ∈ X there is a neighborhood
U containing x and functions fi, gi1,...,ir ∈ O(U) such that

ω =
∑

gi1,...,irdfi1 ∧ · · · ∧ dfir .

We denote the set of regular differential r-forms on X by Ωr[X ]. It is clearly an
O(X)-module. The analogue of (1.6.3) is true. If t1, . . . , tn are local coordinates
on U , then

Ωr[U ] =
⊕

i1<···<ir

O(U)dti1 ∧ · · · ∧ dtir . (1.6.4)

We now introduce a new object, consisting of an open set U ⊂ X and a
differential r-form ω ∈ Ωr[U ]. On pairs (U, ω) we introduce the equivalence relation
(ω, U) ∼ (ω′, U ′) if ω = ω′ on U∩U ′. Note that the set of points at which a regular
differential form is 0 is closed (see Shafarevich [342], III.5.4, Lemma). It is enough
to require that ω = ω′ on some open subset of U ∩ U ′. The transitivity of the
equivalence relation follows from this. An equivalence class under this relation is
called a rational differential r-form on X . We denote the set of rational differential
r-forms on X by Ωr(X), which is a vector space of dimension

(
n
r

)
over κ̄(X) (see

Shafarevich [342], III.5.4, Theorem 3). Obviously,

Ω0(X) = κ̄(X).

If t1, . . . , tn is a separable transcendence basis of κ̄(X), then the forms

{dti1 ∧ · · · ∧ dtir | 1 ≤ i1 < · · · < ir ≤ n}

form a basis of Ωr(X) over κ̄(X) (see Shafarevich [342], III.5.4, Theorem 4). Each
element ω ∈ Ωr(X) has a largest open U ⊂ X such that ω defines a regular r-form
on U , called the domain of regularity of ω.
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Let ϕ : X −→ Y be a morphism of smooth varieties. Then there is a mapping

ϕ∗ : Ωr[Y ] −→ Ωr[X ]

defined by the formula

ϕ∗
(∑

gi1,...,irdfi1 ∧ · · · ∧ dfir

)
=
∑

(gi1,...,ir ◦ ϕ)d(fi1 ◦ ϕ) ∧ · · · ∧ d(fir ◦ ϕ).

1.6.5 Divisors

Next we describe divisors on an algebraic variety X . There are two kinds. The
group of Weil divisors on X is the free Abelian group generated by the subvarieties
of codimension 1 on X . It is denoted by Div(X). In other words, a Weil divisor
can be written as a linear combination

D =
∑

i

niYi,

where Yi is a subvariety of codimension 1, and ni ∈ Z. The support of the divisor D
is the union of all those Yi’s for which the multiplicity ni is non-zero. It is denoted
by supp(D). If all ni ≥ 0 then D is called effective or positive. We write D ≥ 0 for
D effective.

Let Y be a subvariety of codimension 1 of X . For any regular point x ∈ X ,
Y can be given in a neighborhood U ⊂ X of x as the zeros of a regular function
g ∈ O(U). Moreover, any function f ∈ O(x) vanishing on U ∩ Y is divisible by g.
The function g is called a local defining function, g = 0 is called the local equation
of Y at x, and is unique, up to multiplication by a function non-zero at x (see
Shafarevich [342], II.3, Theorem 1). We recall that OX(Y ) is the local ring of
functions regular in a neighborhood of some point of Y . In particular, if X is non-
singular along Y , then OX(Y ) is a discrete valuation ring. Take f ∈ OX(Y )−{0}.
Let x ∈ X be a regular point, and g a local defining function for Y near x. Since
f ∈ OX(x) and OX(x) is a discrete valuation ring, there exist a unit u in OX(x)
and an non-negative integer d such that

f = ugd.

Note that the integer d is independent of the choice of regular points in X∩Y and
will be called the order of f along Y , denoted by ordY (f). We can extend ordY

to κ̄(X)∗ in the usual way. Its main properties are summarized as follows:

Proposition 1.72. Fix f ∈ κ̄(X)∗. The order function ordY : κ̄(X)∗ −→ Z has the
following properties:
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(a) ordY (fg) = ordY (f) + ordY (g) for all g ∈ κ̄(X)∗.
(b) ordY (f + g) ≥ min{ordY (f), ordY (g)} for all g ∈ κ̄(X)∗ with f + g �= 0.
(c) There are only finitely many Y ’s with ordY (f) �= 0.
(d) ordY (f) ≥ 0 if and only if f ∈ OX(Y ). Similarly, ordY (f) = 0 if and only if

f is a unit in OX(Y ).
(e) Assume further that X is projective. Then the following are equivalent:

(e1) ordY (f) ≥ 0 for all Y .
(e2) ordY (f) = 0 for all Y .
(e3) f ∈ κ̄∗.

Proof. Hindry-Silverman [158], Lemma A.2.1.2 or Shafarevich [342], III.1.1, (2).
�

Let f ∈ κ̄(X)∗ be a rational function on X . The divisor of f is the divisor

(f) =
∑
Y

ordY (f)Y.

Usually we say that f has a zero of order d along Y if ordY (f) = d > 0, and
that f has a pole of order d along Y if ordY (f) = −d < 0. A divisor is said to be
principal if it is the divisor of a function. Two divisors D and D′ are said to be
linearly equivalent, denoted by D ∼ D′, if their difference is a principal divisor. The
divisor class group of X is the group of divisor classes modulo linear equivalence.
It is denoted by Cl(X). A divisor class is called effective if it contains an effective
divisor.

A Cartier divisor on a variety X is an (equivalence class of) collections of
pairs {(Ui, fi)}i∈I satisfying the following conditions:

(A) The Ui’s are Zariski open sets that cover X .
(B) The fi’s are non-zero rational functions fi ∈ κ̄(Ui)∗ = κ̄(X)∗.
(C) fif

−1
j ∈ O(Ui ∩ Uj)∗ (i.e., fif

−1
j has no poles or zeros on Ui ∩ Uj).

Two collections {(Ui, fi)}i∈I and {(Vj , gj)}j∈J are considered to be equivalent
(define the same divisor) if fig

−1
j ∈ O(Ui ∩ Vj)∗ for all i ∈ I and j ∈ J . The

support of a Cartier divisor {(Ui, fi)}i∈I is the set of zeros and poles of the fi’s.
A pair (Ui, fi) is said to represent the divisor locally, or on the open set Ui. The
Cartier divisor is said to be effective if for all representing pairs (Ui, fi) the rational
function fi is regular at all points of Ui, that is, fi has no poles on Ui. We then view
the Cartier divisor as a hypersurface on X , defined locally on Ui by the equation
fi = 0. The Cartier divisors form a group, denoted by CaDiv(X). Indeed, if Cartier
divisors are respectively {(Ui, fi)}i∈I and {(Vj , gj)}j∈J , then their sum is

{(Ui, fi)}i∈I + {(Vj , gj)}j∈J = {(Ui ∩ Vj , figj)}(i,j)∈I×J .
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Associated to a function f ∈ κ̄(X)∗ is its principal Cartier divisor, denoted by

div(f) = {(X, f)}.

Two divisors are said to be linearly equivalent if their difference is a principal
Cartier divisor. The group of Cartier divisor classes of X is the group of divisor
classes modulo linear equivalence. It is called the Picard group of X and is denoted
by Pic(X).

We now compare the two types of divisors. Let Y be an irreducible subvariety
of codimension 1 in X , and let D be a Cartier divisor defined by {(Ui, fi)}i∈I . We
define the order of D along Y , denoted by ordY (D), as follows. Choose one of the
open sets Ui such that Ui ∩ Y �= ∅ and set

ordY (D) = ordY (fi).

It is easily seen that ordY (D) is independent of the choice of (Ui, fi), so that we
obtain a map from Cartier divisors to Weil divisors by sending D to

∑
ordY (D)Y .

In general, this mapping is neither surjective nor injective. For example, see Fulton
[110], Examples 2.1.2 and 2.1.3 or Hartshorne [148], II.6.11.3.

Theorem 1.73. If X is a smooth variety, then the natural mappings

CaDiv(X) −→ Div(X), Pic(X) −→ Cl(X)

are isomorphisms.

Proof. Hartshorne [148], II.6.11. �

In the sequel we will consider only Cartier divisors when the variety in ques-
tion might be singular, and we will freely identify Weil and Cartier divisors when
we work with smooth varieties.

Let X be a smooth variety of dimension n, and let ω be a non-zero rational
differential n-form on X . We cover X by affine open subsets Ui of X with local
coordinates t

(i)
1 , . . . , t

(i)
n . In Ui, we can write

ω = g(i)dt
(i)
1 ∧ · · · ∧ dt(i)n .

In particular, we have the expression

dt(i)α =
n∑

β=1

hαβdt
(j)
β , α = 1, . . . , n. (1.6.5)

Since dt
(i)
1 (x), . . . , dt

(i)
n (x) form a basis of T ∗

x (X) for each x ∈ Ui, it follows from
(1.6.5) that the Jacobian determinant of the functions t

(i)
1 , . . . , t

(i)
n with respect to
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t
(j)
1 , . . . , t

(j)
n satisfies

D
(
t
(i)
1 , . . . , t

(i)
n

)
D
(
t
(j)
1 , . . . , t

(j)
n

) := det(hαβ) �= 0.

Substituting (1.6.5) in the expression for ω and simple calculations in the exterior
algebra shows that on the intersection Ui ∩ Uj , we get

g(j) = g(i)
D
(
t
(i)
1 , . . . , t

(i)
n

)
D
(
t
(j)
1 , . . . , t

(j)
n

) .

Since the Jacobian determinant is regular and nowhere zero in Ui ∩Uj , the collec-
tion of pairs (Ui, g

(i)) defines a divisor on X . This divisor is called the divisor of
ω, and is denoted by div(ω).

Any other non-zero rational differential n-form ω′ on X has the form ω′ = fω
for some rational function f ∈ κ̄(X)∗. It follows that

div(ω′) = div(ω) + div(f),

so that the divisor class associated to an n-form is independent of the chosen form.
This divisor class is called the canonical class of X . By abuse of language, any
divisor in the canonical class is called a canonical divisor and is denoted by K, as
well as its class, or by KX if we wish to emphasize the dependence on X .

Let ϕ : X −→ Y be a morphism of varieties, let D ∈ CaDiv(Y ) be a Cartier
divisor defined by {(Vj , gj)}j∈J , and assume that ϕ(X) is not contained in the
support of D. Then the Cartier divisor ϕ∗(D) ∈ CaDiv(X) is the divisor defined by

ϕ∗(D) = {(ϕ−1(Vj), gj ◦ ϕ)}j∈J .

Let ϕ : X −→ Y be a finite mapping of smooth projective varieties, let Z be
an irreducible divisor on X , and let Z ′ = ϕ(Z) be the image of Z under ϕ. Note
that the dimension theorem (Theorem 1.67) tells us that Z ′ is an irreducible divisor
on Y . Let sZ be a generator of the maximal ideal ofOX(Z), and similarly let sZ′ be
a generator of the maximal ideal of OY (Z ′), that is, sZ and sZ′ are local equations
for Z and Z ′. The ramification index of f along Z is defined to be the integer

eZ = eZ(ϕ) = ordZ(sZ′ ◦ ϕ),

where we recall that ordZ : OX(Z) −→ Z is the valuation on OX(Z). Equivalently,

sZ′ ◦ ϕ = useZ

Z , u ∈ OX(Z)∗.

The mapping ϕ is said to be ramified along Z if eZ(ϕ) ≥ 2. We have the following
Hurwitz formula:



64 Chapter 1. Heights

Theorem 1.74. Let ϕ : X −→ Y be a finite mapping between smooth projective
varieties.

(1) The mapping ϕ is ramified only along a finite number of irreducible divisors.
(2) If we assume further either that the characteristic of κ is 0 or that the char-

acteristic of κ does not divide any of the ramification indices, then we have
the formula

KX ∼ ϕ∗(KY ) +
∑
Z

(eZ(ϕ)− 1)Z.

Proof. Hindry-Silverman [158], Proposition A.2.2.8. �

1.6.6 Linear systems

Let D be a divisor on a variety X . The associated vector space or Riemann-Roch
space of D is defined to be the subset of rational functions

L(D) = L(X, D) = {f ∈ κ̄(X)∗ | D + (f) ≥ 0} ∪ {0}. (1.6.6)

This set is a vector space over κ̄ under the usual algebraic operations on functions.
Indeed, if D =

∑
niYi then f ∈ κ̄(X)∗ belongs to L(D) if and only if

ordY (f) ≥
{
−ni, Y = Yi;
0, Y �= Yi for all i,

and because of this, our assertion follows at once from (b) in Proposition 1.72.
The dimension of L(D) is denoted by �(D) (which is called the dimension of D
by some authors).

Theorem 1.75. Let D be a divisor on a projective variety. Then �(D) is finite.

Proof. See, for example, Hartshorne [148], Theorem III.2, Hindry and Silverman
[158], Corollary A.3.2.7, or Shafarevich [342], III.2.3, Theorem 5. �

We know �(D) = �(D′) if D ∼ D′ (see [342], III.1.5, Theorem 3). Thus we
see that it makes sense to speak of the dimension �(c) of a divisor class c, that
is, the common dimension of all the divisors of this class. This number has the
following meaning. If D ∈ c and f ∈ L(D), then the divisor

Df = D + (f) ∈ c

is effective. Conversely, any effective divisor D′ ∈ c is of the form Df for some
f ∈ L(D). Obviously, if X is projective, f is uniquely determined by Df up to a
constant factor. Thus we can set up a one-to-one correspondence between effective
divisors in the class c and points of P(L(D)) ∼= P
(D)−1.

The following definition slightly generalizes this construction. A linear system
L on a variety X is a subset of effective divisors all linearly equivalent to a fixed
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divisor D and parametrized by a linear subvariety of P(L(D)). The dimension of
the linear system L is the dimension of the linear subvariety. The set of base points
of L is the intersection of the supports of all divisors in L. We will say that L is
base-point free if this intersection is empty. The set of effective divisors linearly
equivalent to D is a linear system, called the complete linear system of D. It is de-
noted by |D|. If |D| is base-point free, the divisor D is also said to be base-point free.

Let L be a linear system of dimension n parametrized by a projective space
P(V ) ⊂ P(L(D)), where V is a subspace of L(D) of dimension n + 1 over κ̄. Let
BL be the set of base points of L. When x ∈ X −BL, the subspace of V

Vx = {f ∈ V | f(x) = 0}

has dimension n. Thus there exists unique element ϕL(x) ∈ P(V ∗) such that

E[ϕL(x)] = Vx.

It is easy to show that if L �= ∅, then

ϕL : X −BL −→ P(V ∗)

is regular, which further extends a rational mapping

ϕL : X −→ P(V ∗) (1.6.7)

called the dual classification mapping.
Next we explain it clearly. Select a basis f0, . . . , fn of V and let e0, . . . , en

be the dual basis in V ∗. Choose ϕ̃L(x) ∈ V ∗ − {0} such that P(ϕ̃L(x)) = ϕL(x).
Thus we can write

ϕ̃L(x) =
n∑

i=0

ϕ̃i(x)ei.

By the definition,

E[ϕL(x)] =

{
ξ =

n∑
i=0

ξifi ∈ V

∣∣∣∣∣ 〈ξ, ϕ̃L(x)〉 =
n∑

i=0

ξiϕ̃i(x) = 0

}
.

Since E[ϕL(x)] = Vx, then ξ ∈ E[ϕL(x)] means that

ξ(x) =
n∑

i=0

ξifi(x) = 0,

that is, [f0(x), . . . , fn(x)] can serve as the homogeneous coordinates of ϕL(x).
Therefore we can identify

ϕL = [f0, . . . , fn] : X −→ Pn. (1.6.8)

We will abbreviate
ϕD = ϕ|D|.
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A linear system L on a projective variety X is very ample if the associated
mapping ϕL is an embedding, that is, ϕL is a morphism that maps X isomorphi-
cally onto its image ϕL(X). A divisor D is said to be very ample if the complete
linear system |D| is very ample, and to be ample if some positive multiple of D is
very ample.

Proposition 1.76. Let X be a projective variety. Given a divisor D and an ample
divisor E, there exists a positive integer n such that D + nE is very ample. In
particular, every divisor D is linearly equivalent

D ∼ E1 − E2,

where E1 and E2 are very ample.

Proof. Lang [232], Proposition 1.1, or Hindry-Silverman [158], Theorem A.3.2.3.
�

The dimension of a divisor D on a projective variety X is the quantity

dimD = max
m≥1

dimϕmD(X);

that is, it is the maximal dimension of the image of X under the dual classifica-
tion mapping ϕmD, which is also called D-dimension of X . If L(mD) is always
empty, then let dimD = −1 by convention (some authors instead prefer to set
dimD = −∞ in this situation). If dimD = dimX , then we say that D is pseudo
ample, which means that there exists some positive integer m such that ϕmD is
an imbedding of some non-empty Zariski open subset of X into a locally closed
subset of P(L(mD)). Usually, dimKX is called the Kodaira dimension of X . It is
a result of Kodaira that:

Theorem 1.77. On a non-singular projective variety, a divisor D is pseudo ample
if and only if there exists some positive integer m such that mD ∼ E + Z, where
E is ample and Z is effective.

Proof. See [210], Appendix; [415], Proposition 1.2.7; [208], Lemma 7.3.6 and Lem-
ma 7.3.7; or Lemma 2.30. �

A non-singular projective variety X is defined to be canonical if the canonical
class KX is ample, very canonical if KX is very ample, and pseudo canonical if KX

is pseudo ample. Instead of pseudo canonical, a variety has been called of general
type. This new notion comes from Lang and Griffiths (cf. [232]). Generally, a
projective variety (possibly singular) is called pseudo canonical if X is birationally
equivalent to a projective non-singular pseudo canonical variety.

If κ has characteristic 0, resolution of singularities is known, and due to
Hironaka. This means that given X a projective variety, there exists a birational
morphism

ϕ : X̃ −→ X
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such that X̃ is projective and non-singular and ϕ is an isomorphism over the Zariski
open subset of X consisting of the regular points. The non-singular projective
variety X̃ is called a normalization of X .

An important characterization of a subvariety of an Abelian variety being
pseudo canonical was given by Ueno [401] (or see Iitaka [191], [192]):

Theorem 1.78. Let X be a subvariety of an Abelian variety over an algebraically
closed field. Then X is pseudo canonical if and only if the group of translations
which preserve X is finite.

We have quite generally Ueno’s theorem (see [401], Theorem 3.10):

Theorem 1.79. Let X be a subvariety of an Abelian variety A, and let B be the
connected component of the group of translations preserving X. Then the quotient
ϕ : X −→ X/B is a morphism, whose image is a pseudo canonical subvariety of
the Abelian quotient A/B, and whose fibers are translations of B. In particular,
if X does not contain any translations of Abelian subvarieties of dimension ≥ 1,
then X is pseudo canonical.

Proof. See Iitaka [193], Theorem 10.13, and Mori [281], Theorem 3.7. �

The mapping ϕ is called the Ueno fibration of X . Lang [232] formulated the
Kawamata theorem [200] into the following Kawamata’s structure theorem:

Theorem 1.80. Let X be a pseudo canonical subvariety of an Abelian variety A
in characteristic 0. Then there exists a finite number of proper subvarieties Zi

with Ueno fibrations ϕi : Zi −→ Yi whose fibers have dimension ≥ 1, such that
every translate of an Abelian subvariety of A of dimension ≥ 1 contained in X is
actually contained in the union of the subvarieties Zi.

The union of the subvarieties Zi is called the Ueno-Kawamata fibrations in
X when X is pseudo canonical. Note that the set of Zi is empty if and only if X
does not contain any translations of an Abelian subvariety of dimension ≥ 1.

Let C be a smooth projective curve. A divisor on C is simply a finite formal
sum

D =
∑

nP P,

and we can define the degree of D to be

deg(D) =
∑

nP .

The following Riemann-Roch theorem which allows us to compute the dimension
�(D) in most cases, is of inestimable value in the study of algebraic curves.

Theorem 1.81. Let C be a smooth projective curve. There exists an integer g ≥ 0
such that for all divisors D ∈ Div(C),

�(D)− �(KC −D) = deg(D)− g + 1.
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Proof. See Serre [340], II.9, Théorème 3, Hartshorne [148], IV, Theorem 1.3 or
Fulton [109], VIII.6. �

The Riemann-Roch theorem implies immediately

�(KC) = g, deg(KC) = 2g − 2.

Further, if C is of degree n, we also have (cf. [158])

g =
(n− 1)(n− 2)

2
.

The integer g is called the genus of smooth projective curve C. When C is not
necessarily smooth or projective, its genus is defined to be the genus of a normal-
ization of C.

Theorem 1.82. Let C be a projective plane curve of degree n with only ordinary
singularities. Then its genus is given by the formula

g =
(n− 1)(n− 2)

2
−
∑
P∈S

δP (δP − 1)
2

,

where S is the set of singular points and δP the multiplicity of C at P .

Proof. See Fulton [109], VIII.3, Proposition 5. �

We now describe a useful formula, called the Riemann-Hurwitz formula, that
can frequently be used to compute the genus of a curve.

Theorem 1.83. Let C be a curve of genus g, let C′ be a curve of genus g′, and let
ϕ : C −→ C′ be a finite separable mapping of degree d ≥ 1. For each point P ∈ C,
write eP for the ramification index of ϕ at P , and assume either that char(κ̄) = 0
or else that char(κ̄) does not divide any of the eP ’s. Then

2g − 2 = d(2g′ − 2) +
∑
P∈C

(eP − 1). (1.6.9)

Proof. See Hindry and Silverman [158], Theorem A.4.2.5. �

Since the number 2 − 2g is just the Euler characteristic χ(C) of C, then
(1.6.9) also assumes the following form:

χ(C) = dχ(C′) +
∑
P∈C

(1− eP ). (1.6.10)

The formula (1.6.10) for functions may be regarded as a logarithmic analogue of
the formula (1.3.21) for numbers.



1.7. Weil functions 69

1.7 Weil functions

In this section, we discuss a class of functions on varieties, called Weil functions,
which have logarithmic singularities on a given divisor, and are parameterized by
a proper set of absolute values over a number field. Associated to Weil functions
of divisors, proximity functions, valence functions and heights are well defined by
the divisors, up to O(1).

Let κ be a number field with a proper set of absolute values Mκ. Take v ∈Mκ.
Let κv be the completion of κ for v and extend | · |v to an absolute value on the
algebraic closure κv. Let D be a Cartier divisor on a variety X , given by a collection
{(Ui, fi)}i∈I . A local Weil function for D relative to v is a function

λD,v : X(κv)− suppD −→ R

with the following form:

λD,v(x) = − log |‖fi(x)|‖v + hi(x),

where hi is a continuous function on Ui(κv). We sometimes think of λD,v as a
function of X(κ)− suppD or X(κ)− suppD by implicitly choosing an embedding
κ �→ κv.

Let s denote the collection {fi}i∈I . Then v induces a metric of s if there
exists a set of continuous positive functions

ρi,v : Ui(κv) −→ R+

satisfying
ρi,v =

∣∣fif
−1
j

∣∣
v
ρj,v

on Ui(κv) ∩ Uj(κv). Thus we can define

|s(x)|v =
|fi(x)|v
ρi,v(x)

, x ∈ Ui(κv)

so that
λD,v(x) = − log |‖s(x)|‖v

is a local Weil function for D at v.

We define an Mκ-constant γ to be a real-valued function

γ : Mκ −→ R

such that γ(v) = 0 for almost all v ∈ Mκ (all but a finite number of v in Mκ). If
w is an extension of an element v in Mκ to the algebraic closure κ, then we define

γ(w) = γ(v).

Thus γ is extended to a function of Mκ into R.
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Let X be a variety defined over κ. A subset A of X(κ) ×Mκ is said to be
affine bounded if there exists a coordinated affine open subset U of X(κ) with
coordinates (x1, . . . , xm) and an Mκ-constant γ such that for all (x, v) ∈ E we
have

max
i
|xi|v ≤ eγ(v).

If there is only one absolute value and κ is algebraically closed, this notion coincides
with the notion of a bounded set of points on an affine variety. The subset E is
called bounded if it is contained in the finite union of affine bounded subsets. In
particular, if X is a projective variety, then X(κ)×Mκ is bounded (see [225]).

A function
h : X(κ)×Mκ −→ R

is called bounded from above if there exists an Mκ-constant γ such that

h(x, v) ≤ γ(v), (x, v) ∈ X(κ)×Mκ.

We define similarly bounded from below and bounded. We say that h is locally
bounded if it is bounded on every bounded subset of X(κ)×Mκ; and define locally
bounded from above or below similarly. The function h is called continuous if for
each v ∈Mκ the function

x �→ h(x, v) = hv(x)

is continuous on X(κ).

Let D be a divisor on X . According to Lang [225], by a (global) Weil function
associated with D we mean a function

λD : (X(κ)− suppD)×Mκ −→ R

having the following property. Let (U, f) be a pair representing D. Then there
exists a locally bounded continuous function

h : U(κ)×Mκ −→ R

such that for any point in U(κ)− suppD we have

λD(x, v) = − log |‖f(x)|‖v + h(x, v).

The function h is then uniquely determined by λD and the pair (U, f).

We sometimes think of λD as a function over κ, that is, λD is defined on
(X(κ)− suppD)×Mκ. If E is a finite extension of the number field κ and λD is
a Weil function for D over κ, then

λD(x, w) =
[Ew : κv]
[E : κ]

λD(x, v)
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is a Weil function for D over E. Thus, if x ∈ X(κ), then

λD(x, v) =
∑
w|v

λD(x, w) + O(1),

where O(1) means a bounded function of x.

If f is a rational function on X , a Weil function associated with the principal
divisor (f) is given by

λf (x, v) = − log |‖f(x)|‖v.

Proposition 1.84. Weil functions satisfy the following properties:

(a) If λD and λD′ are Weil functions for D and D′, then λD + λD′ is a Weil
function for D + D′ and −λD is a Weil function for −D.

(b) Assume that X(κ)×Mκ is bounded. If D is an effective divisor, then its Weil
functions are bounded from below.

(c) Assume that X is projective. If λ, λ′ are Weil functions with the same divisor,
then λ− λ′ is bounded.

(d) Let ϕ : X ′ −→ X be a morphism of varieties and let D be a divisor on X
not containing the image of ϕ. If λD is a Weil function for D on X, then
λD ◦ ϕ is a Weil function for ϕ∗D on X ′.

(e) Let D1, . . . , Dr and D be divisors on X such that Di−D are effective divisors
with no points in common. Then

λD = inf
i

λDi

is a Weil function for D.

See [225] for the proof of Proposition 1.84. The existence of a Weil function
associated with a given divisor on a projective variety is also due to S. Lang [225]:

Theorem 1.85. Let X be a projective variety. Let D be a divisor on X. Then there
exists a Weil function having this divisor.

Let S be a finite set of places containing S∞
κ . Let λ = λD be a Weil function

for a divisor D on X . For any point x ∈ X(κ) not in the support of D, the
proximity function for λ is defined by

mλ(x) = mλ,S(x) =
∑
v∈S

λ(x, v).

Then
Nλ(x) = Nλ,S(x) =

∑
v∈Mκ−S

λ(x, v)
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serves as the valence function for λ. The associated height is defined by

hλ(x) =
∑

v∈Mκ

λ(x, v) = mλ(x) + Nλ(x).

A Weil function λ′ for another divisor D′ on X is said to be linearly equivalent
to λ if there exists a rational function f such that

λ′ − λ = λf + γ,

where γ is an Mκ-constant. Thus if λ′ is linearly equivalent to λ, by the product
formula we have

hλ′(x) = hλ(x) + O(1), x �∈ suppD ∪ suppD′.

Now we can extend the definition of hλ to suppD as follows. For each point x ∈
suppD, there exists a rational function f such that x does not lie in the support
of D − (f). Put λ′ = λ− λf . We then define

hλ(x) = hλ′(x).

This value is independent of the choice of f .

Suppose that X is projective. If λ, λ′ are Weil functions with the same divisor
D, Proposition 1.84, (c) implies that there exists a positive Mκ-constant γ such
that

|λ′(x, v)− λ(x, v)| ≤ γ(v)

for all x ∈ X(κ) and all v ∈ Mκ. Then

|mλ′ −mλ| ≤
∑
v∈S

γ(v),

|Nλ′ −Nλ| ≤
∑

v∈Mκ−S

γ(v),

and hence
|hλ′ − hλ| ≤

∑
v∈Mκ

γ(v).

Thus the functions mλ(x), Nλ(x) and hλ(x) are well determined by the divisor D,
up to O(1), and will be denoted by m(x, D), N(x, D) and h(x, D), respectively.
Further, if D is an effective divisor, by Proposition 1.84 (b), we may assume

m(x, D) ≥ 0, N(x, D) ≥ 0, h(x, D) ≥ 0

by using a proper Weil function of D.
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Let D be an effective divisor on X and let R be a subset of X(κ̄)− suppD.
Then R is a set of (S, D)-integralizable points if there exists a global Weil function
λD and a Mκ-constant γ such that for all x ∈ R, all v ∈ Mκ−S, and all embeddings
of κ̄ in κ̄v,

λD(x, v) ≤ γ(v).

As easy consequences of the properties of Weil functions, one finds (cf. [415], p.11):
If K is a finite extension field of κ, and if T is the set of places of K lying over
places in S, then R ⊂ X(κ̄) is a set of (S, D)-integralizable points if and only if it
is a set of (T, D)-integralizable points.

1.8 Heights in number fields

Based on the product formula in Section 1.4, one defines new heights on projec-
tive spaces defined over number fields, and further defines heights on varieties
associated to divisors, which will be compared with the heights defined by using
Weil functions of the divisors. The corresponding first main theorems can also be
exhibited.

We assume that κ is a number field. Let Mκ be a proper set of absolute
values on κ with multiplicities nv. Let Vκ̄ be a vector space of finite dimension
n + 1 > 0 over κ̄. Set V = Vκ and take ξ ∈ V∗. Then |ξ|v = 1 for all but finitely
many v ∈Mκ. We can define the height of ξ by

Hκ(ξ) =
∏

v∈Mκ

|ξ|nv
v .

Write ξ = ξ0e0 + · · ·+ ξnen for a fixed basis e = (e0, . . . , en) of V . If, e.g., ξ0 �= 0,
then |ξ|v ≥ |ξ0|v for each v, which implies Hκ(ξ) ≥ 1. Also |λξ|v = |λ|v|ξ|v, so

Hκ(λξ) = Hκ(ξ), λ ∈ κ∗

by the product formula.
If we have a tower of finite extensions Q ⊂ κ ⊂ K and if ξ ∈ V∗ is defined

over κ, then
HK(ξ) =

∏
w∈MK

|ξ|nw
w =

∏
v∈Mκ

∏
w∈MK ,w|v

|ξ|nw
v .

By using (1.4.3), we have

HK(ξ) =
∏

v∈Mκ

|ξ|nv [K:κ]
v = Hκ(ξ)[K:κ],

and so
HK(ξ)

1
[K:Q] = Hκ(ξ)

[K:κ]
[K:Q] = Hκ(ξ)

1
[κ:Q] .
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The absolute height is defined by

H(ξ) = Hκ(ξ)
1

[κ:Q] ,

which does not depend on finite field extensions of Q, that is, we obtain the
function

H : VQ̄ −→ R[1, +∞).

We often use the absolute (logarithmic) height h(ξ) which is defined by

h(ξ) = log H(ξ) =
1

[κ : Q]
log Hκ(ξ).

Definition 1.86. Two heights H1 and H2 (resp. logarithmic heights h1 and h2) are
called equivalent if

cH1 < H2 < c′H1 (resp. h2 = h1 + O(1))

holds for some positive constants c and c′.

Hence if the base of V is changed, we obtain a equivalent height. Take x ∈
P(V ). Then there exists ξ ∈ V∗ such that x = P(ξ). The relative (multiplicative)
height of x is defined by

Hκ(x) = Hκ(ξ) =
∏

v∈Mκ

‖ξ‖v.

Similarly, the absolute height

H(x) = H(ξ) = Hκ(ξ)
1

[κ:Q]

and the absolute (logarithmic) height of x

h(x) = h(ξ) =
1

[κ : Q]

∑
v∈Mκ

log ‖ξ‖v =
∑

v∈Mκ

log |‖ξ|‖v,

are defined respectively. By the product formula, this does not depend on the
choice of ξ.

Let σ be an isomorphism of κ over Q (i.e., leaving Q fixed). Let x be a
point as above, with coordinates (ξ0, . . . , ξn) rational over κ. Then we can define
the point σ(x), rational over σ(κ), and having coordinates (σ(ξ0), . . . , σ(ξn)). By
transport of structure, we get immediately

Hκ(x) = Hσ(κ)(σ(x))

whence in particular,
H(x) = H(σ(x)).
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Proposition 1.87 ([225]). Take a ∈ P(V ∗̄
κ ), and let λ be a Weil function whose

divisor is the hyperplane Ë[a]. Then hλ − h is bounded on P(Vκ).

Proof. Let H0, . . . , Hn be the hyperplane corresponding to the coordinate func-
tions. There exist rational functions fi such that

(fi) = Hi − Ë[a].

For any point x �∈ Ë[a], it is easy to obtain

h(x) =
∑

v∈Mκ

sup
i

log |‖fi(x)|‖v + O(1),

or equivalently,
h(x) = −

∑
v∈Mκ

inf
i

λfi(x, v) + O(1),

where λfi is a Weil function associated with the principal divisor (fi). We conclude
the proof by applying Proposition 1.84 (a), (c) and (e). �

In particular, we define the height of an element x ∈ κ to be the height of
the point [1, x] in P1(κ) = P(κ2), so that we have

Hκ(x) =
∏

v∈Mκ

|[1, x]|nv
v =

⎛
⎝ ∏

v∈S∞
κ

(√
1 + |x|2v

)nv

⎞
⎠
⎛
⎝ ∏

v∈Mκ−S∞
κ

(max{1, |x|v})nv

⎞
⎠,

and we see that if x �= 0, then

Hκ(x) = Hκ(x−1).

To really see what the logarithmic height is telling you it is perhaps best to look at
the simplest example: let x = a/b ∈ Q denote a rational number in lowest terms.
It is then easy to see that

h(x) =
1
2

log(a2 + b2).

It is then clear that there are only finitely many rational numbers with bounded
height. More generally, any point x ∈ P(Qn+1) has a set of coordinates (ξ0, . . . , ξn)
which are relatively prime integers, and we then see that

HQ(x) =
√

ξ2
0 + · · ·+ ξ2

n.

In particular, the set of points in P(Qn+1) of height ≤ a fixed number is finite.
Such a fact is also true in a number field (see Theorem 1.102).
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Let S be a finite set of places containing S∞
κ . Take a ∈ P(V ∗̄

κ ). Abbreviate
the proximity function and the valence function for hyperplane Ë[a],

m(x, a) = mS(x, a) = m
(
x, Ë[a]

)
,

N(x, a) = NS(x, a) = N
(
x, Ë[a]

)
.

By Proposition 1.87, one obtains the first main theorem:

m(x, a) + N(x, a) = h(x) + O(1), x �∈ Ë[a], (1.8.1)

and therefore,
m(x, a) ≤ h(x) + O(1), x �∈ Ë[a].

Proposition 1.88. For x ∈ P(Vκ̄) − Ë[a], the proximity function m(x, a) is given
by

m(x, a) =
∑
v∈S

log
1

|‖x, a|‖v
+ O(1).

Proof. By Theorem 1.85, there exists a Weil function λ having the divisor Ë[a].
Define

λ′(x, v) =

{
log 1

|‖x,a|‖v
: v ∈ S,

λ(x, v) : v �∈ S.

It is easy to check that λ′ is a Weil function for Ë[a], and so we complete the proof
according to the discussion in Section 1.7. �

Note that ∑
v∈Mκ

log
1

|‖x, a|‖v
= h(x) + h(a), x �∈ Ë[a]. (1.8.2)

Thus (1.8.1), (1.8.2) and Proposition 1.88 imply

N(x, a) =
∑

v∈Mκ−S

log
1

|‖x, a|‖v
+ O(1). (1.8.3)

Let X be a projective variety defined over κ and let D be a very ample divisor
on X . Let ϕD : X −→ P(V ∗) be the associated dual classification mapping, where
V = L(D). Then the absolute (multiplicative) height of x ∈ X for D is defined by

HD(x) = H(ϕD(x)),

and the absolute (logarithmic) height of x for D is defined as

hD(x) = h(ϕD(x)) ≥ 0.

Up to equivalence, the height depends only on D.
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Theorem 1.89 ([225]). Let X be a projective variety over κ and let λ be a Weil
function of a very ample divisor D on X. Then hλ − hD is bounded on X(κ).

Proof. Note that there exists a ∈ P(V ) such that D = ϕ∗
DË[a]. Let λ′ be a

Weil function of Ë[a]. By Proposition 1.84, (d), λ′ ◦ ϕD is a Weil function for D.
Proposition 1.87 implies that

hλ′◦ϕD (x)− hD(x) = hλ′(ϕD(x)) − h(ϕD(x))

is bounded on X(κ). Therefore Theorem 1.89 follows from Proposition 1.84, (c).
�

Take s ∈ V with (s) = D and set a = P(s). For x �∈ D, the proximity function
m(x, D) and the valence function N(x, D) are given respectively by

m(x, D) = m(ϕD(x), a) =
∑
v∈S

log
1

|‖ϕD(x), a|‖v
,

and

N(x, D) = N(ϕD(x), a) =
∑

v∈Mκ−S

log
1

|‖ϕD(x), a|‖v
.

By Theorem 1.89, one obtains the first main theorem:

m(x, D) + N(x, D) = hD(x) + O(1). (1.8.4)

Lemma 1.90. If D and D′ are two very ample divisors on X, then

m(x, D + D′) = m(x, D) + m(x, D′),

N(x, D + D′) = N(x, D) + N(x, D′).

Proof. Set V ′ = L(D′). Take s ∈ V, s′ ∈ V ′ with (s) = D, (s′) = D′ and set
a = P(s), a′ = P(s′). Then (s⊗ s′) = D + D′, and hence

|ϕD+D′(x), b|v =
|(s⊗ s′)(x)|v
|s⊗ s′|v

=
|s(x)|v |s′(x)|v
|s|v|s′|v

= |ϕD(x), a|v|ϕD′(x), a′|v,

where b = P(s⊗ s′) ∈ P(V ⊗ V ′). Hence the lemma follows. �

Furthermore, the formula (1.8.4) and Lemma 1.90 imply

Lemma 1.91 ([225]). If D and D′ are two very ample divisors on X, then

hD+D′ = hD + hD′ + O(1).
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Now, given any divisor D, we can write D = E − E′ where E and E′ are
very ample, and define

hD = hE − hE′ .

This definition depends on the choices of E and E′, but by Lemma 1.91, hD is
well defined up to equivalence. If λ is a Weil function for D, Proposition 1.84, (a)
and Theorem 1.89 imply

hλ = hD + O(1).

Further we have
m(x, D) = m(x, E)−m(x, E′),

and
N(x, D) = N(x, E)−N(x, E′).

Hence the first main theorem

m(x, D) + N(x, D) = hD(x) + O(1) (1.8.5)

holds.

Let D be a divisor on a non-singular projective variety X over κ. let λ be
a Weil function of the divisor D. Theorem 1.89 and Proposition 1.84, (a) imply
that hλ − hD is bounded on X(κ). If D is effective, by Proposition 1.84, (b), we
have hD ≥ −O(1), in other words we can choose hD in its equivalence class such
that hD ≥ 0. If D is ample, by the definition there exists m ∈ Z+ such that mD
is very ample, and so

0 ≤ hmD = mhD + O(1).

Without loss of generality we may assume hD ≥ 0. If D is pseudo ample, by
Theorem 1.77 there exists some positive integer m such that mD ∼ E + Z, where
E is ample and Z is effective. Hence

hmD = hE + hZ + O(1).

Thus we can choose hD in its equivalence class such that hD ≥ 0.

1.9 Functorial properties of heights

By using heights, one can describe completely growth of morphisms between pro-
jective spaces (cf. Theorem 1.95). An interesting question due to Lehmer will be
introduced.

Let κ be a number field with a proper set of absolute values Mκ satisfying
the product formula with multiplicities nv. Let X be a variety defined over κ. Let
ϕ : X −→ Pn be a morphism of X into a projective space, defined over κ. Then
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for each point x of X , if ϕ(x) is a point of Pn(κ), rational over κ, we can thus
define its relative height

Hκ,ϕ(x) = Hκ(ϕ(x)).

If x is algebraic over Q, then there exists a finite extension κ of Q over which it is
rational, and hence the relative height Hκ,ϕ(x) can be defined too.

We can then define its absolute height

Hϕ(x) = H(ϕ(x)) = Hκ(ϕ(x))
1

[κ:Q]

and the absolute (logarithmic) height

hϕ(x) = log Hϕ(x).

Thus Hκ,ϕ is a function on X(κ) while Hϕ is a function on X(κ̄) = X(Q̄).

Let X be a projective variety defined over κ. Suppose its points are rep-
resented by homogeneous coordinates [x0, . . . , xm]. Let (aij) (i = 0, . . . , n, j =
0, . . . , m) be a matrix with coefficients in κ, and put

yi = ai0x0 + · · ·+ aimxm.

Then the mapping
[x0, . . . , xm] �−→ [y0, . . . , yn]

defines a rational mapping ϕ : X −→ Pn. If x ∈ X is a point with homogeneous
coordinates [x0, . . . , xm] such that not all yi are equal to 0 in the above formula,
then ϕ is defined at x. A mapping ϕ obtained in the manner just described is
called a linear projection, defined over κ.

Lemma 1.92 ([225]). Let X be a projective variety defined over κ. Let ϕ : X −→ Pn

be a linear projection defined over κ. There exists a number c > 0 depending
only on ϕ such that if x is a point of X, algebraic over κ, such that not all the
coordinates yi above are 0, then

Hϕ(x) ≤ cH(x), (1.9.1)

where H(x) is the height in the given projective embedding of X.

Proof. Let Sκ be the subset of Mκ containing all those absolute values v for which
some |aij |v is not 1, and all Archimedean absolute values. Then Sκ is a finite set.
If our coordinates are in a finite extension K of κ, then for any w ∈MK extending
some v ∈Mκ, one has

max
i
|yi|w ≤ cv max

j
|xj |w,

where

cv =
{

(m + 1)maxi,j{1, |aij |v}, v ∈ Sκ;
1, v �∈ Sκ.
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Hence the inequality (1.9.1) in which

c =

⎛
⎝ ∏

v∈Mκ

∏
w|v

(ςv,n+1cv)nw

⎞
⎠

1
[K:Q]

follows easily. �
Lemma 1.93 ([225]). Let f0, . . . , fn be homogeneous polynomials of degree d with
coefficients in κ, and in m + 1 variables X0, . . . , Xm. Let A be the set of points
x = [x0, . . . , xm] in projective space Pm(κ) such that not all polynomials fi(x)
vanish, i = 0, . . . , n. Let f : A −→ Pn(κ) be the morphism defined by x �→
[f0(x), . . . , fn(x)]. Then

hf (x) ≤ dh(x) + c

for some constant c independent of x ∈ A.

Proof. Trivial estimates using the triangle inequality show that for any point x ∈
Pm(κ), x ∈ A we have

Hκ(f(x)) ≤ C [κ:Q]Hκ(x)d.

Taking the [κ : Q] root and the logarithm yield the lemma. �

For the next discussion in this section, we will need Hilbert’s Nullstellensatz:

Theorem 1.94. Take polynomials P1, . . . , Pr and P in κ̄[X0, . . . , Xm]. If P vanishes
at all the common zeros of P1, . . . , Pr, then there exist polynomials Q1, . . . , Qr in
κ̄[X0, . . . , Xm] such that

P s = Q1P1 + · · ·+ QrPr

holds for some natural number s.

Proof. Van der Waerden [409] or Lang [234] or Atiyah-Macdonald [7], p. 85 or
Zariski-Samuel [448], vol. 2, p. 164. �
Theorem 1.95 ([225], [362]). Let f : Pm −→ Pn be a morphism of degree d, defined
over κ. Then

hf = dh + O(1).

Proof. One inequality was proved in Lemma 1.93. Next we prove the inequality in
the other direction. It is well known that the morphism f : Pm −→ Pn is given in
homogeneous coordinates by [f0, . . . , fn], where the polynomials f0, . . . , fn in the
variables X0, . . . , Xm have no common zero except the origin. By Theorem 1.94,
there exist polynomials bij ∈ κ̄[X0, . . . , Xm] and a non-negative integer l such that

Xd+l
i =

n∑
j=0

bijfj .
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Disregarding the monomials in bij of degree �= l, we can assume without loss of
generality that bij is homogeneous of degree l. Extending κ if necessary, we may
assume that the bij and fj have coefficients in κ.

It is also convenient to clear denominators, so we pick an element a in κ,
integral at all valuations of Mκ such that a is a denominator for all the coefficients
of the polynomials bij . Multiplying by a, we may assume without loss of generality
that we have the equation

aXd+l
i =

n∑
j=0

bijfj ,

where the coefficients of bij are integral in κ. Take

x = [x0, . . . , xm] ∈ Pm(κ)

with xi integral in κ. Take α ∈ {0, . . . , m} such that

|xα|v = max
i
|xi|v.

If v ∈Mκ is non-Archimedean, then

|a|v|xα|d+l
v ≤ |xα|lv max

j
|fj(x)|v ,

whence
|a|nv

v max
i
|xi|(d+l)nv

v ≤ max
i
|xi|lnv

v max
j
|fj(x)|nv

v .

If v ∈Mκ is Archimedean, then

|a|v|xα|d+l
v ≤ (n + 1)

(
m + l

l

)
Cα|xα|lv max

j
|fj(x)|v ,

where Cα is a constant giving the bound for the coefficients of the polynomials
bαj (j = 0, . . . , n). We then obtain

|a|nv
v max

i
|xi|(d+l)nv

v ≤ Cnv max
i
|xi|lnv

v max
j
|fj(x)|nv

v .

Taking the product yields

Hκ(x)d+l ≤
{

(m + 1)(d+l)/2C
}[κ:Q]

Hκ(x)lHκ(f(x)).

This proves the theorem. �
Corollary 1.96. Let P and Q be two coprime polynomials in κ̄[X ]. Then we have

h

(
P (x)
Q(x)

)
= max{deg(P ), deg(Q)}h(x) + O(1). (1.9.2)
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In many references, the height of an element x ∈ κ is defined by

H̄κ(x) =
∏

v∈Mκ

max{1, |x|nv
v },

so that we see that if x �= 0, then

H̄κ(x) = H̄κ(x−1).

Furthermore, we have trivially

H̄κ(x1 · · ·xn) ≤ H̄κ(x1) · · · H̄κ(xn)

and for x ∈ κ,
H̄κ(xn) = H̄κ(x)n.

The absolute logarithmic height of an element x ∈ κ is often defined by

h̄(x) =
1

[κ : Q]
log H̄κ(x) =

1
[κ : Q]

∑
v∈Mκ

max {0, log |x|nv
v } .

Obviously, we have

h̄ ≤ h ≤ h̄ +
1
2

log 2.

For x �= 0, h̄(x) = 0 if and only if x is a root of unity (see [225]).

Suppose that α is algebraic of degree d over the rational numbers, and let

f(X) = adX
d + ad−1X

d−1 + · · ·+ a0 = 0, ad > 0,

be its irreducible equation, with coefficients ai ∈ Z, and gcd(a0, . . . , ad) = 1. If
κ = Q(α), then one has the formula

H̄κ(α) = ad

d∏
i=1

max{1, |αi|},

where | · | is the complex absolute value, and α1, . . . , αd are the distinct conjugates
of α in C. It is an old conjecture of Lehmer [240] that when α is of degree d over
Q, and is not 0 or a root of unity, then

h̄(α) ≥ log α0

d
(1.9.3)

where α0 = 1.1762808 · · · is the larger real root of the 10th-degree polynomial

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.
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Note that

h̄
(
21/d

)
=

log 2
d

.

The example shows that (1.9.3) would be best possible on the order of d. The best
result in this direction is due to Dobrowolski [81] and says that if d ≥ 3, then

h̄(α) >
c

d

(
log log d

log d

)3

(1.9.4)

with an absolute constant c > 0.
In contrast, there is the following result of Zhang [449]: Suppose α is algebraic

but not 0, 1, (1±
√
−3)/2. Then

h̄(α) + h̄(1− α) ≥ c > 0 (1.9.5)

with an absolute constant c > 0. Zagier [445] gave a more natural proof and
determined the best value of the constant

c =
1
2

log
1 +

√
5

2
.

1.10 Gauss’ lemma

By using absolute height h on a projective space Pn defined over a number field κ,
we can define a closed ball Pn[O; r] of center O and radius r > 0. Further, by using
Gauss’ lemma, one can show that the number of κ-rational points in Pn[O; r] is
finite.

We assume that κ is a number field. Let Mκ be a proper set of absolute
values on κ with multiplicities nv. An element f in the ring κ[X1, . . . , Xn] can be
written as a sum

f =
∑
i∈I

aiϕi,

where I is a finite set of distinct elements in Zn
+, ai ∈ κ, and

ϕi(X1, . . . , Xn) = X i1
1 · · ·X in

n , i = (i1, . . . , in) ∈ Zn
+.

Then we define

|f |v =

{ (∑
i∈I |ai|2v

) 1
2 : if v is Archimedean,

maxi∈I{|ai|v} : if v is non-Archimedean.
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The absolute height H(f) of f is defined to be the height H(P ) of the point P
having the ai (in any order) as coordinates, and we define its relative height Hκ(f)
in a similar way. If σ is an isomorphism of κ over Q, then we get the polynomial

σ(f) =
∑
i∈I

σ(ai)ϕi,

and thus, as for points, we have H(f) = H(σ(f)).

If v is non-Archimedean, Gauss’ lemma for valuations then asserts that | · |v
is a valuation.

Lemma 1.97 (cf. [225]). Take f, g ∈ κ[X1, . . . , Xn]. If v is a non-trivial non-
Archimedean valuation, then |fg|v = |f |v|g|v.
Lemma 1.98. Let | · | be an absolute value which coincides with the ordinary one
on Q. Let f ∈ κ[X ] be a polynomial of degree d, and let

f(X) =
d∏

i=1

(X − αi)

be a factorization in κ̄. We assume that our absolute value is extended to κ̄. Then

5−
d
2

d∏
i=1

√
1 + |αi|2 ≤ |f | ≤ 2

d−1
2

d∏
i=1

√
1 + |αi|2.

Proof. The right inequality is trivially proved by induction, estimating the coef-
ficients in a product of a polynomial g(X) by (X − α). We prove the other by
induction on the number of indices i such that |αi| > 2. If |αi| ≤ 2 for all i, our
assertion is obvious. Suppose that

f(X) = g(X)(X − α)

with |α| > 2 and suppose that our assertion is true for

g(X) = Xd + bd−1X
d−1 + · · ·+ b0.

We have

f(X) = Xd+1 +
d∑

i=0

(bi−1 − αbi)X i,

where bd = 1, b−1 = 0. Then

|f | =
(

1 +
d∑

i=0

|bi−1 − αbi|2
) 1

2

≥
(

1 +
d∑

i=0

(|αbi| − |bi−1|)2
) 1

2

≥
(

1 +
d∑

i=0

(|α| − 1)(|α||bi|2 − |bi−1|2)
) 1

2

≥ (|α| − 1)|g| ≥
√

1 + |α|2√
5

|g|

and our lemma is now obvious. �
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Lemma 1.99. Let | · | be an absolute value which coincides with the ordinary one
on Q. Take d ∈ Z+. If f and g are two polynomials in κ[X1, . . . , Xn] such that
deg(f) + deg(g) ≤ d, then

10−dn/2|fg| ≤ |f ||g| ≤ 10dn/2|fg|.

Proof. Let us first assume that f, g are polynomials in one variable, so we can
write

f(X) = a

p∏
i=1

(X − αi),

g(X) = b

q∏
j=1

(X − βj).

Without loss of generality, we may assume a = b = 1, and that we have extended
our absolute value to κ̄. By Lemma 1.98, we get

|f ||g| ≤ 2
d
2−1

(
p∏

i=1

√
1 + |αi|2

)
q∏

j=1

√
1 + |βj |2 ≤ 2

d
2−15

d
2 |fg| ≤ 10

d
2 |fg|.

Similarly, we can obtain

|f ||g| ≥ 10−
d
2 |fg|.

Now let f be a polynomial in n variables X1, . . . , Xn of degree ≤ d. Then the
polynomial in one variable

Sd(f)(Y ) = f
(
Y, Y d, . . . , Y dn−1

)
has the same set of non-zero coefficients as f . Thus, if f and g are two polynomials
in n variables X1, . . . , Xn such that the sum of their degrees is ≤ d, then

Sd(fg) = Sd(f)Sd(g)

has the same non-zero coefficients as fg. From this our reduction of the n-variable
case to the 1-variable case is clear. �

From Lemma 1.99 we can deduce analogous results for heights.

Lemma 1.100. Take d ∈ Z+. If f and g are two polynomials in κ[X1, . . . , Xn] such
that deg(f) + deg(g) ≤ d, then

10−
dn

2 H(fg) ≤ H(f)H(g) ≤ 10
dn

2 H(fg).
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Proof. Set
‖f‖v = |f |nv

v , v ∈Mκ.

We have
Hκ(fg) =

∏
v∈Mκ

‖fg‖v ≥
∏

v∈Mκ

cv‖f‖v‖g‖v,

where cv = 1 if v is non-Archimedean, and otherwise, cv = 10−
dn

2 nv . Since∑
v∈S∞

κ

nv = [κ : Q],

whence ∏
v∈Mκ

cv = 10−
dn

2 [κ:Q]

and the inequality on the left follows immediately. The one on the right follows in
a similar way. �

Let α be algebraic over Q, and let f(X) be its irreducible polynomial over
Q. Then

f(X) =
d∏

j=1

(X − αj),

where d is the degree of α over Q and αj are the conjugates of α. In view of the
above results we get:

Proposition 1.101. Take d ∈ Z+. There exist two numbers c1, c2 > 0 depending
on d, such that if α is algebraic over Q of degree d, and f(X) is its irreducible
polynomial over Q, then

c1H(α)d ≤ H(f) ≤ c2H(α)d.

Theorem 1.102 ([304], [305]). Let d0, r0 be two fixed positive numbers. Then the
set of points x in Pn(κ) algebraic over Q, and such that

[Q(x) : Q] < d0, H(x) < r0

is finite.

Proof. Take a point x = [ξ0, . . . , ξn] ∈ Pn(κ) of degree d and consider the polyno-
mial

f(X0, . . . , Xn) = ξ0X0 + · · ·+ ξnXn.

Then H(f) is the height of the point x. Let

g =
∏
σ

σ(f)
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be the product being taken over all distinct isomorphisms σ of κ over Q. Then
g has coefficients in Q, and H(g), H(f)d have the same order of magnitude. We
have already seen in Section 1.8 that the number of points with height less than a
fixed number, in a projective space, and rational over Q is bounded. Consequently
Theorem 1.102 follows. �

Finally, we introduce a quantitative result related to Theorem 1.102. Let κ
be a number field. A real function ν on Pn will be said to be a weight function for
κ if ν(x) = 0 for each x �∈ Pn(κ). Denote the center of absolute height h on Pn by

O = {x ∈ Pn | h(x) = 0}.

If x = [ξ0, . . . , ξn] ∈ Pn(κ) with ξi �= 0 for some i, Kronecker’s theorem (see [158],
Corollary B.2.3.1) shows that max0≤j≤n |ξj/ξi|v = 1 hold for all v ∈ Mκ if and
only if the ratio ξj/ξi is a root of unity or zero for every 0 ≤ j ≤ n. Thus h(x) = 0
if and only if ξj = 0 (j �= i).

Let ν be a weight function on Pn for κ. Take a subset A ⊂ Pn. For r ≥ 0, set

A[O; r] = {x ∈ A | h(x) ≤ r}.

Based on Theorem 1.102, we can define the spherical image of κ for ν by

nν(r) =
∑

x∈Pn[O;r]

ν(x). (1.10.1)

Fix r0 > 0. For r > r0, we define the characteristic function of κ for ν by

Nν(r) = Nν(r, r0) =
∫ r

r0

nν(t)
dt

t
. (1.10.2)

A basic weight function of κ is the characteristic function

χκ(x) =
{

1, if x ∈ Pn(κ);
0, if x �∈ Pn(κ). (1.10.3)

Theorem 1.103 ([333]). Let κ be a number field and set [κ : Q] = d. Then there
exists a constant c such that

nχκ(r) = ced(n+1)r +

{
O
(
redr

)
if d = 1, n = 1,

O
(
e(dn+d−1)r

)
otherwise.

Recall that we will use O(1) to denote a bounded function. Generally, if h(r)
is a non-negative function, we will denote

O(h(r)) := O(1)h(r).

We also use the symbol o(h(r)) to denote a function such that o(h(r))/h(r) → 0
as r →∞.



Chapter 2

Nevanlinna Theory

In this chapter, corresponding to height theory we will introduce Nevanlinna the-
ory in higher-dimensional spaces, say, the first main theorems and second main
theorems, which is a basic tool for our study, and discuss the Griffiths and Lang
conjectures. We also introduce Kobayashi hyperbolic varieties and some related
problems. Some connections between height theory and Nevanlinna theory will be
exhibited in the sequent.

2.1 Notions in complex geometry

We will introduce basic notation, terminology and technical results of complex
geometry used in value distribution theory.

2.1.1 Holomorphic functions

Take a positive integer m and let

R2m = {(x1, y1, . . . , xm, ym) | xj , yj ∈ R}

denote the 2m-dimensional Euclidean space. Let Ω be an open set in R2m and let
Ck(Ω) be the space of k times continuously differentiable complex-valued functions
in Ω, where 0 ≤ k ≤ ∞. Let i =

√
−1 be the imaginary unit. We identify Cm with

R2m by setting

Cm = {(z1, . . . , zm) | zj = xj + iyj ; xj , yj ∈ R}.

Thus we can regard Ω as an open set in Cm, and so the differential df of a
complex-valued function f in C1(Ω) can be expressed as a linear combination of
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the differentials dzj and dz̄j ,

df =
m∑

j=1

∂f

∂zj
dzj +

m∑
j=1

∂f

∂zj
dzj , (2.1.1)

where we have used the notation

dzj = dxj + idyj , dzj = dxj − idyj,

∂

∂zj
=

1
2

(
∂

∂xj
− i

∂

∂yj

)
,

∂

∂zj
=

1
2

(
∂

∂xj
+ i

∂

∂yj

)
.

With the notation

∂f =
m∑

j=1

∂f

∂zj
dzj , ∂̄f =

m∑
j=1

∂f

∂zj
dzj , (2.1.2)

we may also write (2.1.1) in the form

df = ∂f + ∂̄f. (2.1.3)

Differential forms which are linear combinations of the differentials dzj are said to
be of type (1, 0), and those which are linear combinations of dz̄j are said to be of
type (0, 1). Thus ∂f (resp. ∂̄f) is the component of df of type (1, 0) (resp. (0, 1)).

A function f ∈ C1(Ω) is called holomorphic or analytic in Ω if df is of type
(1, 0), that is, if f satisfies the Cauchy-Riemann equations

∂f = 0.

The set of all holomorphic functions in Ω is denoted by A(Ω). The differential
operators ∂ and ∂̄ are obviously linear and satisfy the product rule. Hence A(Ω)
is a ring.

Theorem 2.1 (cf.[162]). Let f be a complex-valued function defined in the open set
Ω ⊂ Cm. The following three conditions are equivalent:

(1) f is a holomorphic function in Ω;
(2) for every point a = (a1, . . . , am) ∈ Ω there exists a neighborhood U ⊂ Ω of a

such that f can be expressed in U as a convergent series

f(z) =
∞∑

k1,...,km=0

ck1···km(z1 − a1)k1 · · · (zm − am)km ;

(3) f is holomorphic in each variable zj when the other variables are given arbi-
trary fixed values.
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The following Weierstrass preparation theorem describes a local property of
holomorphic functions in Cm.

Theorem 2.2. Let f be holomorphic in a neighborhood Ω of 0 in Cm and assume
that f(0, zm)/zµ

m is holomorphic and �= 0 at 0. Then one can find a polydisc ∆ ⊂ Ω
such that every g which is holomorphic and bounded in ∆ can be written in the
form

g = qf + r, (2.1.4)

where q and r are holomorphic in ∆, r is a polynomial in zm of degree < µ (with
coefficients depending on z′ = (z1, . . . , zm−1)) and

sup
z∈∆

|q(z)| ≤ c sup
z∈∆

|g(z)|, (2.1.5)

where c is independent of g. The expression (2.1.4) is unique. The coefficients of
power series expansions of q and r are finite linear combinations of those in the
expansion of g.

Proof. Hörmander [162], Theorem 6.1.1. �

A set D ⊂ Cm is called a polydisc if there are discs D1, . . . , Dm in C such
that

D =
m∏

j=1

Dj = {(z1, . . . , zm) ∈ Cm | zj ∈ Dj , j = 1, . . . , m}.

In particular, when g(z) = zµ
m, Theorem 2.2 shows that one can write f in one

and only one way in the form f = hW , where h and W are holomorphic in a
neighborhood of 0, h(0) �= 0, and W is a Weierstrass polynomial, that is,

W (z) = zµ
m +

µ−1∑
j=0

aj(z′)zj
m,

where aj are holomorphic functions in a neighborhood of 0 vanishing when z′ = 0.
Note that, conversely, every f which can be represented as above must satisfy the
hypotheses of Theorem 2.2.

Let f : Ω −→ Cn be a holomorphic mapping, that is,

f = (f1, . . . , fn),

where each component fj is holomorphic in Ω. If g ∈ C1(W ) for some open set W
containing the image f(Ω) of f , the function f∗g = g ◦ f is in C1(Ω) and we have

d(f∗g) =
n∑

j=1

∂g

∂fj
dfj +

n∑
j=1

∂g

∂f j

df j .
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Since dfj is of type (1, 0) and df̄j of type (0, 1) in Ω, it follows that

∂(f∗g) =
n∑

j=1

∂g

∂fj
dfj , ∂̄(f∗g) =

n∑
j=1

∂g

∂f j

df j .

Hence f∗g is holomorphic if g is holomorphic. More generally, the decomposition of
d as ∂+ ∂̄ and the notion of holomorphic function are invariant under holomorphic
mappings.

The definition of the ∂ and ∂̄ operators can be extended to arbitrary differ-
ential forms. Take non-negative integers a and b with a ≤ b. Let Jb

1,a be the set of
all increasing injective mappings

λ : Z[1, a] −→ Z[1, b].

A differential form ω on Ω is said to be of type (p, q) if it can be written in the
form

ω =
∑

α∈Jm
1,p

∑
β∈Jm

1,q

fα,βdzα ∧ dz̄β , (2.1.6)

where the coefficients fα,β are differentiable on Ω, and where we have used the
notation

dzα = dzα(1) ∧ · · · ∧ dzα(p), dz̄β = dz̄β(1) ∧ · · · ∧ dz̄β(q).

Every differential form can be written in one and only one way as a sum of forms
of type (p, q); 0 ≤ p, q ≤ m. If ω is of type (p, q), the exterior differential

dω =
∑

α∈Jm
1,p

∑
β∈Jm

1,q

dfα,β ∧ dzα ∧ dz̄β

can be written
dω = ∂ω + ∂̄ω,

where

∂ω =
∑

α∈Jm
1,p

∑
β∈Jm

1,q

∂fα,β ∧ dzα ∧ dz̄β ,

∂̄ω =
∑

α∈Jm
1,p

∑
β∈Jm

1,q

∂̄fα,β ∧ dzα ∧ dz̄β

are of type (p + 1, q) and (p, q + 1), respectively. Since

0 = d2ω = ∂2ω + (∂∂̄ + ∂̄∂)ω + ∂̄2ω

and all terms are of different types, we obtain

∂2 = 0, ∂∂̄ + ∂̄∂ = 0, ∂̄2 = 0. (2.1.7)
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We shall use the notation Ap,q(Ω) for the space of differential forms of type (p, q)
with coefficients belonging to C∞(Ω).

If f : Ω −→ Cn is a holomorphic mapping, and if

η =
∑

α∈Jn
1,p

∑
β∈Jn

1,q

gα,βdwα ∧ dw̄β

is a form defined in an open neighborhood of the image of f , we can define a form
f∗η in Ω by

f∗η =
∑

α∈Jn
1,p

∑
β∈Jn

1,q

f∗gα,βdf∗wα ∧ df∗wβ ,

where
df∗wk = d(wk ◦ f), df∗wk = d(wk ◦ f)

are differential forms in Ω of type (1, 0) and (0, 1) for k = 1, . . . , n, respectively,
since wk is holomorphic. Hence f∗η is of type (p, q) if η is of type (p, q), and since

d(f∗η) = f∗(dη),

it follows that
∂(f∗η) = f∗(∂η), ∂̄(f∗η) = f∗(∂̄η).

2.1.2 Complex manifolds

A Hausdorff topological space M with a countable basis is called a manifold of
dimension m if every point in M has a neighborhood which is homeomorphic to
an open set in Rm. The concept of complex manifolds is defined by means of a
family of such homeomorphisms:

Definition 2.3. A manifold M of dimension 2m is called a complex (analytic)
manifold of (complex) dimension m if there exists a family F = {(Uα, ϕα)}, called
a complex structure of M , which satisfies the following conditions:

(i) {Uα} is an open covering of M ;
(ii) ϕα : Uα −→ U ′

α is a homeomorphism onto an open subset U ′
α of Cm;

(iii) ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) −→ Cm is a holomorphic mapping if Uα ∩ Uβ �= ∅.

The pair (Uα, ϕα) is called a holomorphic coordinate atlas of M , and ϕα =
(z1, . . . , zm) is said to be a local holomorphic coordinate system on Uα or at ev-
ery point of Uα. Take a point p ∈ Uα. If f1, . . . , fm are holomorphic functions
in a neighborhood of ϕα(p) in Cm, then (f1(z), . . . , fm(z)) is another system of
coordinates at p if and only if

det
(

∂fk

∂zj
(ϕα(p))

)m

k,j=1

�= 0.
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This follows from the implicit function theorem (see [162], Theorem 2.1.2). Usually,
a complex manifold of dimension 1 is called a curve or Riemann surface, and a
complex manifold of dimension 2 is called a surface.

Given another complex manifold N , a continuous mapping f : M −→ N
is called holomorphic or analytic if for every p ∈ M , there exist a holomorphic
coordinate atlas (U, ϕ) around p and a holomorphic coordinate atlas (V, ψ) around
f(p) such that f(U) ⊂ V , and such that

ψ ◦ f ◦ ϕ−1 : ϕ(U) −→ ψ(V )

is holomorphic. Let Hol(M, N) be the set of holomorphic mappings from M into N .
In particular, if N = C we have now defined the concept of holomorphic functions
in a complex manifold M ; the set of such functions with the topology of uniform
convergence on compact subsets of M will be denoted by A(M). The elements in
A(M) are also called entire functions on M . Let A∗(M) be the subset of A(M)
such that f ∈ A∗(M) if and only if f vanishes nowhere.

If a homeomorphism f : M −→ N between complex manifolds M and N
is holomorphic such that f−1 : N −→ M is also holomorphic, then f is said to
be biholomorphic or an analytic isomorphism. Such complex manifolds are called
analytic isomorphic. If f is a biholomorphic self-mapping on M , then f is said to
be an automorphism on M . Let Aut(M) be the group of automorphisms on M .
The group operation is composition.

It is clear that every open subset of a complex manifold M has a complex
structure, so the concept of a holomorphic function (mapping) on an open subset
is also well defined. Note that if f is holomorphic in U ′

α ⊂ Cm, then f ◦ ϕα is
holomorphic in Uα. Hence by the definition of a complex manifold, holomorphic
functions do exist locally.

Let M be a complex manifold of dimension m, p ∈ M any point, and z =
(z1, . . . , zm) a holomorphic coordinate system around p. There are three different
notions of a tangent space to M at p. First of all, if we consider M as a real
manifold of dimension 2m, we have the usual real tangent space Tp(M) to M at p,
which can be realized as the space of R-linear derivations on the ring of real-valued
C∞ functions in a neighborhood of p. Setting zj = xj +iyj, then Tp(M) is spanned

by
{

∂
∂xj

, ∂
∂yj

}
over R. Secondly, we have the complexified tangent space

Tp(M)C = Tp(M)⊗R C.

Elements in Tp(M)C are called complex tangent vectors at p. It can be realized as
the space of C-linear derivations on the ring of complex-valued C∞ functions in a
neighborhood of p, which can be spanned by

{
∂

∂zj
, ∂

∂zj

}
over C. Finally, there is

the holomorphic tangent space Tp(M), which is the subspace of Tp(M)C spanned
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by { ∂
∂zj
} over C. The subspace Tp(M) = C{ ∂

∂zj
} is called the antiholomorphic

tangent space to M at p; clearly

Tp(M)C = Tp(M)⊕Tp(M).

A complex tangent vector (field) is of type (1, 0) (resp. (0, 1)) if it belongs to
Tp(M) (resp. Tp(M)).

Observe that for complex manifolds M, N , any smooth mapping f : M −→ N
induces the (real) differential of f at p,

df(p) : Tp(M) −→ Tf(p)(N),

and hence a mapping
Tp(M)C −→ Tf(p)(N)C,

also denoted by df(p), but do not in general induce a linear mapping from Tp(M)
to Tf(p)(N). In fact, a smooth mapping f : M −→ N is holomorphic if and only if

df(p)(Tp(M)) ⊂ Tf(p)(N)

for all p ∈M . If so, we denote the induced mapping by

f ′(p) : Tp(M) −→ Tf(p)(N),

which is called the holomorphic differential of f at p.
Let z = (z1, . . . , zm) be local holomorphic coordinates centered at p ∈ M ,

and w = (w1, . . . , wn) holomorphic coordinates centered at f(p) ∈ N . Locally, the
holomorphic mapping f : M −→ N can be expressed by holomorphic functions

wk = fk(z1, . . . , zm), k = 1, . . . , n.

Then the Jacobi’s matrix J(f ′(p)) corresponding to the linear mapping f ′(p) is
given by

J(f ′(p)) =
(

∂fk

∂zj
(p)
)

1≤k≤n,1≤j≤m

.

We may define the rank of f by

rankp(f) = rankJ(f ′(p)), rank(f) = sup
p∈M

rankp(f).

In particular, if m = n it is not difficult to show that the determinant of the
2m× 2m real Jacobi’s matrix J(df(p)) corresponding to the linear mapping df(p)
satisfies

detJ(df(p)) = | detJ(f ′(p))|2.
Hence holomorphic mappings are orientation preserving, which further means that
complex manifolds are orientable.
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Let M be a complex manifold of dimension m. If we consider M as a real
manifold of dimension 2m, we have the space A(M, R) of smooth differential forms
on M which may be graded as follows:

A(M, R) =
2m∑
r=0

Ar(M, R),

where Ar(M, R) is the space of smooth differential r-forms on M . Denote the
subspace of closed r-forms by

Zr(M, R) = {ω ∈ Ar(M, R) | dω = 0}.

Since
d2 = 0, d

(
Ar−1(M, R)

)
⊂ Zr(M, R),

the quotient groups

Hr
DR(M, R) = Zr(M, R)/d

(
Ar−1(M, R)

)
of closed forms modulo exact forms are called the de Rham cohomology groups
of M .

An element of the complexification A(M) of A(M, R) is called a complex
differential form on M . The space A(M) may be graded as follows:

A(M) =
2m∑
r=0

Ar(M),

where Ar(M) is just the complexification of Ar(M, R). An element of Ar(M) is
called a complex r-form on M . Every complex r-form ω may be written uniquely
as ω1 + iω2, where ω1 and ω2 are real r-forms, that is, ωj = ωj for j = 1, 2. If we
denote by T ∗

x (M)C the complexification of the dual space T ∗
x (M) (cotangent space

to M at x) of Tx(M) at x ∈M , then a complex r-form ω on M gives an element
ω(x) of

∧
r

T ∗
x (M)C at each point x of M ; in other words, a skew-symmetric r-linear

mapping
ω(x) : Tx(M)C × · · · × Tx(M)C −→ C

at each point x of M . The differential operator d on A(M, R) can be easily extended
to A(M). Let Zr(M) denote the space of closed complex r-forms on M , and let

Hr
DR(M) = Zr(M)/d

(
Ar−1(M)

)
be the corresponding quotient; clearly

Hr
DR(M) = Hr

DR(M, R)⊗ C.
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Each space Ar(M) can be split into a direct sum

Ar(M) =
∑

p+q=r

Ap,q(M).

An element of Ap,q(M) is called a (complex)form of type (p, q). Obviously, Ap,q(M)
is a C∞(M)-module. The differential operator d on A(M) has the basic property

dAp,q(M) ⊂ Ap+1,q(M) + Ap,q+1(M).

As a consequence, one can split d into ∂ + ∂, where

∂ : Ap,q(M) −→ Ap+1,q(M), ∂ : Ap.q(M) −→ Ap,q+1(M),

which also satisfy the relations in (2.1.7). Let Zp,q

∂
(M) denote the space of ∂-closed

forms of type (p, q). Since ∂
2

= 0 on Ap,q(M), and we have

∂(Ap,q(M)) ⊂ Zp,q+1

∂
(M),

accordingly, we define the Dolbeault cohomology groups to be

Hp,q

∂
(M) = Zp,q

∂
(M)/∂(Ap,q−1(M)).

Associated to the differential operator d = ∂ + ∂ on A(M), we also use the
operator

dc =
i

4π
(∂ − ∂).

Then
ddc =

i

2π
∂∂.

A form ω ∈ Ap,0(M) with ∂ω = 0 is called a holomorphic form of degree p. Note
that all coefficients of a holomorphic form are holomorphic. Usually, the space
of holomorphic forms of degree p on M is denoted by Ωp(M). Thus we obtain a
sheaf Ωp on M associated to the qth Čech cohomology group Hq(M, Ωp) of Ωp on
M . Specially, O = A = Ω0 denotes the sheaf whose sections are given locally by
holomorphic functions, that is, O(U) = A(U) for an open set U ⊂M . Dolbeault’s
theorem (cf. [127]) shows

Hq(M, Ωp) ∼= Hp,q

∂
(M).

Note that a form ψ of type (p, q) attaches to each x ∈ M a bilinear mapping
over C,

ψ(x) :
∧
p
Tx(M)×

∧
q
Tx(M) −→ C.
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For the case q = p, the (p, p)-form ψ is said to be positive (resp. non-negative) as
long as

ψ(x)(y1 ∧ · · · ∧ yp, iy1 ∧ · · · ∧ iyp) > 0 (resp. ≥ 0)

for any set of linearly independent vectors y1, . . . , yp in Tx(M) at each point x
of M . If ψ is positive (resp. non-negative), we will write ψ > 0 (resp., ψ ≥ 0).
We also write ψ > η (resp. ψ ≥ η) for another (p, p)-form η if ψ − η > 0 (resp.
ψ − η ≥ 0). Especially, if ψ is a (1, 1)-form given locally by

ψ(x) = i
∑
k,l

akl(x)dzk ∧ dzl,

then ψ > 0 (resp. ψ ≥ 0) if and only if the matrix (akl(x)) is positive definite
(resp. positive semidefinite) at each point x of M .

Let M be an m-dimensional complex manifold. If p is a point on M , we
define the local ring of holomorphic functions of M at p to be the ring of germs
of functions that are holomorphic in a neighborhood of p. This ring is denoted
by OM,p, or simply by Op if no confusion is likely to arise. In other words, an
element of Op is a pair (U, f) where U is an open subset of M containing p, and
f is a holomorphic function on U , and where we identify two such pairs (U, f)
and (W, g) if there is a neighborhood V ⊂ U ∩W of p such that f = g on V .
Note that Op is indeed a local ring: its maximal ideal mp is the set of germs of
holomorphic functions which vanish at p. For if f(p) �= 0, then 1/f is holomorphic
in some neighborhood of p. Further, Op is a unique factorization domain (see [162],
Theorem 6.2.2), and a Noetherian ring (see [162], Theorem 6.3.3).

A subset X in the complex manifold M is called an analytic subset if for
every point p ∈ M there is an open neighborhood U ⊂M and a family of functions
fλ ∈ A(U), λ ∈ Γ, such that

U ∩X = {z ∈ U | fλ(z) = 0, λ ∈ Λ}.

The definition implies that X is closed. It turns out that Λ can always be taken
finite (see [162], Theorem 6.5.2), that is, for every point p ∈ M there is an open
neighborhood U ⊂ M and a finite number of functions f1, . . . , fr ∈ A(U) such
that

Ip(X) = {(U, f) ∈ Op | f |X∩U = 0} (2.1.8)

is the ideal in Op generated by f1, . . . , fr. In particular,

U ∩X = {z ∈ U | f1(z) = · · · = fr(z) = 0}.

Those f1, . . . , fr are called the local defining functions, and f1 = · · · = fr = 0
is called the local equation of X at p. If we always have r = 1, then X is called
an analytic hypersurface. Let X be an analytic subset of M . Then X is called
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reducible if there are non-empty distinct analytic subsets X1 and X2 of M such
that

X = X1 ∪X2, X �= Xj (j = 1, 2),

otherwise, X is called irreducible. A point x ∈ X is called regular or non-singular
if there is a neighborhood U of x in M such that X ∩U is a complex submanifold,
otherwise, is singular. We say that X is non-singular or smooth if every point on
X is regular.

Let {Xλ}λ∈Λ be a family of analytic hypersurfaces of M . Assume that it is
locally finite, i.e., for any compact subset K of M , {λ ∈ Λ | X̄λ ∩K �= ∅} is finite.
Then a formal sum

D =
∑
λ∈Λ

nλXλ

with coefficients nλ ∈ Z is called a divisor on M . Without loss of generality, we may
assume that Xλ’s are irreducible and mutually distinct, and that every nλ �= 0.
Then we define the support supp(D) of the divisor D by

supp(D) =
⋃
λ∈Λ

Xλ.

If all nλ ≥ 0 then D is called effective or positive. We write D ≥ 0 for D effective.
If U ⊂ M is an open subset, we define the intersection of D with U by

D ∩ U =
∑
λ∈Λ

nλ(Xλ ∩ U).

A divisor D on M is said to have normal crossings if D is locally given by
an equation z1 · · · zk = 0, where (z1, . . . , zm) are local holomorphic coordinates
on M . If D has normal crossings, and if after expressing D =

∑
Xj as a sum of

irreducible components, all Xj are non-singular, then we say that D has simple
normal crossings. In case M = P(V ) is a complex projective space associated to
a complex vector space V of dimension m + 1, and if D = Ë[a1] + · · ·+ Ë[aq] is a
linear combination of hyperplanes, then D has normal crossings if and only if the
family aj(j = 1, . . . , q) are in general position in P(V ∗).

Definition 2.4. A complex manifold M of dimension m is said to be a Stein man-
ifold if

(α) M is countable at infinity, that is, there exists a countable number of compact
subsets K1, K2, . . . such that every compact subset of M is contained in some
Kj.

(β) M is holomorphic convex, that is,

K̂ =
{

z ∈M

∣∣∣∣ |f(z)| ≤ sup
p∈K

|f(p)| for every f ∈ A(M)
}

is a compact subset of M for every compact subset K of M .
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(γ) If z1 and z2 are different points in M , then f(z1) �= f(z2) for some f ∈ A(M).
(δ) For every z ∈ M , one can find m functions f1, . . . , fm ∈ A(M) which form

a coordinate system at z.

In fact, if a complex manifold M is countable at infinity, a topology in A(M)
is then defined by the seminorms

|f | = sup
j≥1

sup
p∈Kj

|f(p)|, f ∈ A(M),

and the completeness is obvious.

Let M be a complex manifold of dimension m. Then M is said to have
holomorphic rank n if there exist n analytically independent holomorphic functions
on M , that is, there exist holomorphic functions f1, . . . , fn on M such that

df1 ∧ · · · ∧ dfn �≡ 0

on each connected component of M ; equivalently, a holomorphic mapping

f = (f1, . . . , fn) : M −→ Cn

of strict rank n exists (see [5] or [380]). Such a mapping f is called regular if it has
rank m at every point in M , that is, if for any point in M there is a coordinate
system formed by m of the functions f1, . . . , fn. If the inverse image of every
compact subset of Cn is a compact subset of M , the mapping is called proper. It
is clear that the image of a proper mapping f is closed, for every compact set is
mapped on a compact set. If, in addition, the mapping is regular and one-to-one,
the image is a complex submanifold of Cn which is isomorphic to M .

Theorem 2.5 (cf. [162]). If M is a Stein manifold of dimension m, there exists an
element f ∈ A(M)2m+1 which defines a one-to-one regular proper mapping of M
into C2m+1. In particular, M has holomorphic rank m.

Consider Cm as a vector space and let ω1, . . . , ω2m be any basis of Cm over
the field R. Let Λ be the subgroup of Cm generated by ω1, . . . , ω2m:

Λ = {n1ω1 + · · ·+ n2mω2m | nj ∈ Z} .

The quotient group Cm/Λ is a connected compact complex manifold with the
natural projection π : Cm −→ Cm/Λ being holomorphic. We call Cm/Λ an m-
dimensional complex torus. If z1, . . . , zm is the natural coordinate system in Cm,
then the holomorphic 1-forms dz1, . . . , dzm can be considered as forms on a com-
plex torus Cm/Λ. Every holomorphic 1-form on Cm/Λ is a linear combination of
dz1, . . . , dzm with constant coefficients. In fact, every holomorphic 1-form on Cm/Λ
is a linear combination of dz1, . . . , dzm with holomorphic functions as coefficients
and since Cm/Λ is compact, these coefficients functions are constant functions.
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An m-dimensional complex manifold M is said to be complex parallelizable if
there exist m holomorphic vector fields Z1, . . . , Zm which are linearly independent
at every point of M . Every complex torus is complex parallelizable. More gener-
ally, let G be a complex Lie group of complex dimension m. Taking m linearly
independent complex vectors of type (1, 0) at the identity element of G and ex-
tending them by left translations, we obtain m left invariant holomorphic vector
fields Z1, . . . , Zm on G which are linearly independent at every point of G. If Γ is
a discrete subgroup of G, then Z1, . . . , Zm induce m holomorphic vector fields on
the quotient complex manifold G/Γ which are linearly independent at every point
of G/Γ, showing that G/Γ is complex parallelizable (see [209], Vol. II, Chapter
IX, Example 2.3). H. C. Wang [425] proved the converse:

Theorem 2.6. Every compact complex parallelizable manifold may be written as a
quotient space G/Γ of a complex Lie group G by a discrete subgroup Γ.

For the complex case, here we explain Theorem 1.70 on normalization of
algebraic curves clearly. Let f(x, y) be an irreducible polynomial of two variables
x and y over C and consider the equation

f(x, y) = 0. (2.1.9)

If the degree of f is d, then put

F (x, y, z) = zdf
(x

z
,
y

z

)
,

so that F is homogeneous of degree d. Recall that the set C of solutions [x, y, z] ∈
P2 of the equation

F (x, y, z) = 0 (2.1.10)

is called an algebraic curve on P2. The degree of F is said to be the degree of the
curve. If the point (x0, y0) lies on the affine curve (2.1.9), then [x0, y0, 1] lies on
C. Conversely, if [x0, y0, z0] lies on C with z0 �= 0, then (x0/z0, y0/z0) lies on the
affine curve (2.1.9). Points on C with z = 0 are called the points at infinity of the
affine curve.

In affine space, we say the singular points on C correspond to

f(x, y) =
∂f

∂x
(x, y) =

∂f

∂y
(x, y) = 0.

Without loss of generality, we may assume that p = (0, 0) is a point on the affine
curve (2.1.9). Write

f(x, y) = fk(x, y) + fk+1(x, y) + · · ·+ fd(x, y),

where fj(x, y) (j = k, . . . , d) is a homogeneous polynomial of degree j with
fk(x, y) �≡ 0, and k ≥ 1 since f(0, 0) = 0. Note that p is a singular point if
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and only if k ≥ 2. Recall that when k ≥ 2, the singular point p is called a k-fold
point, say, double point for the case k = 2, triple point when k = 3, and so on. Now
there are k tangent lines (counting multiplicity) at p given by the equation

fk(x, y) = 0.

Further, if k tangent lines at p are distinct, then p is called an ordinary k-fold
point of the affine curve (2.1.9).

A point p ∈ C is singular if

F (p) =
∂F

∂x
(p) =

∂F

∂y
(p) =

∂F

∂z
(p) = 0.

By Euler’s formula of homogeneous functions, we know

deg(F )F (x, y, z) = x
∂F

∂x
(x, y, z) + y

∂F

∂y
(x, y, z) + z

∂F

∂z
(x, y, z).

Hence a point p ∈ C is singular if and only if

∂F

∂x
(p) =

∂F

∂y
(p) =

∂F

∂z
(p) = 0.

It is a simple lemma to prove that if an affine point is non-singular, then the
corresponding projective point is also non-singular, and conversely. If the algebraic
curve C defined by (2.1.10) is irreducible, then C has at most finitely many singular
points (cf. [126]). Thus we may state Theorem 1.70 in the following form:

Theorem 2.7 (cf. [126]). Let C be an irreducible algebraic curve in P2 and let S
be the set of singular points of C. There exist a compact Riemann surface M and
a holomorphic mapping η : M −→ P2 such that η(M) = C, η−1(S) is finite, and
η : M − η−1(S) −→ C − S is one-to-one.

Recall that (M, η) is called the normalization (or resolution of singularity) of
C. We also know that if (M ′, η′) is another normalization of C, then there exists
a biholomorphic mapping σ : M −→ M ′ such that η = η′ ◦ σ. The genus of M is
also called that of C. Conversely, we also have the following basic fact:

Theorem 2.8 (cf. [127]). Any compact Riemann surface M can be realized as a nor-
malization of some plane algebraic curve C whose only singularities are ordinary
double points, that is, there exists a holomorphic mapping

η : M −→ P2

such that η(M) is an algebraic curve which has at most ordinary double points.
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2.1.3 Meromorphic mappings

Let M and N be connected complex manifolds of dimensions m and n, respectively.
Let S be a thin analytic subset of M , where thin means that A = M − S is dense
in M . Let fA : A −→ N be a holomorphic mapping. Recall that a continuous
mapping is said to be proper if the inverse images of compact sets are compact.
The mapping fA is said to be meromorphic on M and denoted by f : M −→ N if
the closure G(fA) of the graph

G(fA) = {(x, fA(x)) | x ∈M}

of fA in M × N is analytic in M × N and if the projection πM : G(fA) −→ M
is proper. We set G(f) = G(fA) which is called the graph of the meromorphic
mapping f determined by fA. A meromorphic mapping f : M −→ N from an affine
algebraic variety M into a projective algebraic variety N is said to be rational if it
can be extended to a meromorphic mapping f̃ : M̄ −→ N , where M̄ is a projective
closure of M . If N is embedded, then f̃ is given by rational functions.

Assume that f : M −→ N is meromorphic and that πN : G(f) −→ N is the
projection. For each x ∈ M , the set

Σf (x) = πN (π−1
M (x)) = {y ∈ N | (x, y) ∈ G(f)}

is analytic and not empty. The indeterminacy

If = {x ∈ M | #Σf (x) > 1}

is analytic and contained in S. If x ∈ If and y ∈ Σf (x), then dimy Σf (x) > 0. The
holomorphic mapping fA : A −→ N extends to a holomorphic mapping fM−If

:
M − If −→ N . We also write f(x) = Σf (x) for all x ∈ M . Here dim If ≤ m− 2.
The rank of f is defined by

rankxf = dimx M − dimx f−1(f(x)), x ∈M − If , (2.1.11)

rankf = max
x∈M−If

rankxf. (2.1.12)

If N = P(V ), where V is a Hermitian vector space of dimension n + 1 > 1,
another equivalent definition of a meromorphic mapping exists. Assume M, S, A
as above and let fA : A −→ P(V ) be a holomorphic mapping. Let U �= ∅ be a
connected open subset of M . A holomorphic vector function f̃ : U −→ V is said
to be a representation of fA on U if f̃ �≡ 0 and if

P(f̃(x)) = fA(x), x ∈ U − f̃−1(0).

For each x ∈ U , we also say that f̃ is a representation of fA at x. Further, the
representation is said to be reduced if dim f̃−1(0) ≤ m− 2. Then the mapping fA
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is meromorphic on M if and only if there is a representation of fA at every point
of M . If fA is meromorphic, then there is even a reduced representation of fA

at every point of M . A (reduced) representation of fA also is called a (reduced)
representation of the meromorphic mapping f : M −→ P(V ) determined by fA. If
f̃ : U −→ V is a reduced representation of f on an open subset U of M , then

U ∩ If = f̃−1(0).

If M = Cm and if f : Cm −→ P(V ) is meromorphic, there exists a reduced
representation f̃ : Cm −→ V of f .

A meromorphic mapping f : M −→ P1 into the Riemann sphere P1 with
f(M) �= ∞ is called a meromorphic function on M . All meromorphic functions
on M naturally form a field, called the meromorphic function field of M , which is
denoted by M(M). The transcendence degree of M(M), denoted dimalg(M), is
called the algebraic dimension of M . Then dimalg(M) ≤ m when M is compact.
If M is compact with dimalg(M) = m, then M is called a Moishezon space. A
Moishezon space does not differ very much from a projective variety.

Take f ∈ M(M) and let f̃ = (h, g) : U −→ C2 be a reduced representation
of f on an open subset U of M . Then

f(z) = P(f̃(z)) =
g(z)
h(z)

, z ∈ U − h−1(0).

Since f(M) �=∞, then h−1(0) is thin. Further, g, h and U can be taken such that

dimz h−1(0) ∩ g−1(0) ≤ m− 2, z ∈ h−1(0) ∩ g−1(0), (2.1.13)

and so
If ∩ U = h−1(0) ∩ g−1(0).

Therefore we obtain analytic hypersurfaces Zf and Pf of M by defining locally

Zf ∩ U = {g = 0}, Pf ∩ U = {h = 0},
which are called the zeros and the poles of f , respectively. Note that Zf and Pf

have no common irreducible component. Put

X = Zf ∪ Pf =
⋃
λ

Yλ,

where Yλ are irreducible components of X . According to the arguments in Sec-
tion 1.6.5, we also can define the order of f ∈ A(U) along an irreducible analytic
hypersurface Y in M , also denoted by ordY (f). Thus we obtain the zero divisor
(f)0 and the pole divisor (f)∞ of f by defining locally

(f)0 ∩ U =
∑

ordYλ
(g)>0

ordYλ
(g)(Yλ ∩ U),

(f)∞ ∩ U =
∑

ordYλ
(h)>0

ordYλ
(h)(Yλ ∩ U).
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The divisor of f is defined by

(f) = (f)0 − (f)∞.

The question arises whether or not an arbitrarily given divisor D on a com-
plex manifold M is always a principal divisor. That is, whether there is a mero-
morphic function f on M such that (f) = D. Cousin answered this question
affirmatively if M satisfies certain assumptions, and we therefore call this problem
Cousin’s problem. However, it was later shown by Oka that Cousin’s problem is
not necessarily solvable under certain topological conditions on M .

Theorem 2.9. Cousin’s problem is solvable for complex space Cm.

Proof. Siegel [360], Chapter 5, Section 5, Theorem 2. �

In the case of a single variable, Theorem 2.9 yields Weierstrass’ theorem
about the existence of entire functions with prescribed zeros. This is the reason
for calling Theorem 2.9 the theorem of Weierstrass and Cousin. As consequence,
for each f ∈M(Cm) there exist two relatively prime entire functions g and h �= 0
on Cm satisfying f = g

h .

Let Γ be a discrete subgroup of Aut(M). A meromorphic function f on M
is called a (multiplicative) automorphic function for Γ if each γ ∈ Γ determines an
element jγ ∈ A∗(M) such that

f(γ(z)) = jγ(z)f(z), z ∈M.

In particular, f is called a multiplicative function if all jγ are constants, an au-
tomorphic function if jγ = 1 for each γ ∈ Γ, and called an automorphic form of
weight k if

jγ(z) = Jγ(z)−k, γ ∈ Γ,

where Jγ is the Jacobian determinant of γ. Usually, automorphic forms of weight k
are assumed to be holomorphic, and satisfy some additional conditions at “infinite
points”.

For g ∈ A(M), the zero multiplicity of g at a point x ∈ M is defined to be
the order of vanishing of g at x, denoted by µ0

g(x). In terms of local coordinates
z = (z1, . . . , zm), that is the greatest integer µ such that all partial derivatives

∂νg(x) = 0, |ν| ≤ µ− 1,

where we denote the length of a multi-index ν = (i1, . . . , im) ∈ Zm
+ by |ν| =

i1 + · · ·+ im, and write

∂νg =
∂|ν|g

∂zi1
1 · · · ∂zim

m

.
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For a meromorphic function f ∈M(M), define the a-multiplicity µa
f of f as

follows: Write locally as f = g/h with g, h holomorphic and

dim g−1(0) ∩ h−1(0) ≤ m− 2

on an open subset U of M and define

µa
f |U =

{
µ0

g−ah if a ∈ C,

µ0
h if a = ∞.

If s : M −→ V is a holomorphic vector function, we also can assign a mul-
tiplicity µs to s. Take x ∈ M . Then there exist an open connected neighborhood
U of x, a holomorphic vector function t and a holomorphic function h on U such
that s = ht on U and such that dim t−1(0) ≤ m − 2. Then µs(x) = µ0

h(x) is well
defined.

2.1.4 Holomorphic vector bundles

We begin with the general notion of holomorphic vector bundles.

Definition 2.10. Let N be a complex manifold of dimension n. We call a triple
(E, π, N) a holomorphic vector bundle of rank q if the following conditions are
satisfied:

(a) E is an (n + q)-dimensional complex manifold;
(b) π : E −→ N is a surjective holomorphic mapping, called the projection;
(c) For every x ∈ N , the fiber Ex = π−1(x) is a complex vector space of complex

dimension q;
(d) For every x ∈ N , there exist an open neighborhood U of x and a biholomor-

phic mapping
ϕU : U × Cq −→ π−1(U) = E|U ,

called a local trivialization of E over U , such that

π ◦ ϕU (p, y) = p, p ∈ U, y ∈ Cq,

and ϕU,p : Cq −→ Ep is a linear isomorphism for each p ∈ U , where

ϕU,p(y) = ϕU (p, y), y ∈ Cq.

If no confusion occurs, we usually write π : E −→ N or E instead of (E, π, N).
In particular, if q = 1, then E is called a holomorphic line bundle over N . Let Ω be
an open subset of N . A holomorphic mapping s : Ω −→ E is called a holomorphic
(cross) section over Ω if

π ◦ s(p) = p, p ∈ Ω.
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The vector space of holomorphic sections of E over Ω is denoted by Γ(Ω, E).

Let {e1, . . . , eq} be the standard base in Cq, that is,

ej = (0, . . . , 0, 1,
jth

0, . . . , 0), j = 1, . . . , q.

We can obtain q holomorphic sections on U

sUj(p) = ϕU (p, ej), p ∈ U, j = 1, . . . , q, (2.1.14)

such that {sU1(p), . . . , sUq(p)} is a base of Ep at every p ∈ U . Such (sU1, . . . , sUq) is
called a holomorphic local frame of E over U . Conversely, if there is a holomorphic
local frame over an open subset U ⊂ N , there is a local trivialization of E over U .

Let B = {U, W, Z, . . .} be an open covering of N such that for each element
in B, say U , there is a biholomorphic mapping ϕU of U × Cq onto E|U with the
properties listed above. Then

gUW = ϕ−1
U ◦ ϕW : U ∩W −→ GL(q, C) (2.1.15)

can be regarded as a holomorphic mapping into the group GL(q, C) of invertible
q × q matrices with complex coefficients, and we have

(e) gUW gWU is the identity in U ∩W ,

(f) gUW gWZgZU is the identity in U ∩W ∩ Z.

A system of such q × q matrices gUW with coefficients holomorphic in U ∩W is
called a system of transition matrices. Conversely, if there exist an open covering
B = {U, W, Z, . . . } of N and a family {gUW } of holomorphic mappings (2.1.15)
satisfying the conditions (e) and (f), then there is a holomorphic vector bundle
(E, π, N) such that {gUW } is the system of transition matrices.

Let π : E −→ N be a holomorphic vector bundle over N and Ω an open
subset of N . Let s : Ω −→ E be a holomorphic section over Ω. If we have a
covering B as above, this means that ϕ−1

U ◦ s = sU is a holomorphic mapping of
Ω ∩ U into Cq such that in Ω ∩ U ∩W �= ∅,

sU = gUW sW . (2.1.16)

Conversely, any system of holomorphic mappings sU of Ω ∩ U into Cq with these
properties corresponds to precisely one holomorphic section of E over Ω.

An E-valued (r, t)-form ω on Ω means to give for every U ∈ B an q-tuple ωU

of forms in Ar,t(Ω ∩ U) such that

ωU = gUW ωW
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in Ω∩U ∩W �= ∅. The vector space of E-valued (r, t)-forms ω on Ω is denoted by
Ar,t(Ω, E). Since gUW is holomorphic, it follows that

∂̄ωU = gUW ∂̄ωW ,

hence the q-tuples ∂̄ωU of forms of type (r, t + 1) define an element ∂̄ω in
Ar,t+1(Ω, E). The operator

∂̄ : Ar,t(Ω, E) −→ Ar,t+1(Ω, E)

satisfies ∂̄2 = 0. Set
Ak(Ω, E) =

∑
r+t=k

Ar,t(Ω, E),

and so A0(Ω, E) is just the C∞-sections of E over Ω.

Let Zr,t

∂̄
(N, E) denote the space of ∂̄-closed E-valued differential forms of

type (r, t) on N , and we define the Dolbeault cohomology groups Hr,t

∂̄
(E) of E to

be
Hr,t

∂̄
(E) = Zr,t

∂̄
(N, E)/∂̄Ar,t−1(N, E).

Note that Ωr(N, E) = Zr,0

∂̄
(N, E) is just E-valued holomorphic forms of degree

r on N . We obtain a sheaf Ωr(E) on N whose sections are given locally by E-
valued holomorphic forms of degree r, that is, Ωr(E)(U) = Ωr(U, E) for an open
set U ⊂ N . Specially, O(E) = Ω0(E) denotes the sheaf whose sections are given
locally by holomorphic sections of E, that is, O(E)(U) = Γ(U, E) for an open set
U ⊂ M . Thus the tth Čech cohomology group Ht(N, Ωr(E)) of Ωr(E) on N is well
defined. Similarly, Dolbeault’s theorem (cf. [127]) holds:

Ht(N, Ωr(E)) ∼= Hr,t

∂̄
(E).

Let (E, π, N) and (E′, π′, N) be holomorphic vector bundles. A holomorphic
mapping f : E −→ E′ is called a bundle homomorphism if π′ ◦ f = π and the
restriction

f |Ep : Ep −→ E′
p

is a linear mapping for any p ∈ N . If f is moreover a biholomorphic mapping,
then f is called a bundle isomorphism. In this case, E and E′ are said to be
isomorphic. A holomorphic vector bundle is said to be trivial if it is isomorphic
to the holomorphic vector bundle (N × Cq, π, N) with the natural projection π :
N × Cq −→ N .

Let π : E −→ N be the holomorphic vector bundle given in Definition 2.10.
The dual holomorphic vector bundle π∗ : E∗ −→ N is defined as follows: For any
p ∈ N , let E∗

p be the dual vector space of Ep and set

E∗ =
⋃

p∈N

E∗
p ; π∗(E∗

p ) = p, p ∈ N.



2.1. Notions in complex geometry 109

Then E∗ naturally becomes an (n + q)-dimensional complex manifold. In fact,
using the holomorphic local frame defined by (2.1.14), for every p ∈ U , define
tUk(p) ∈ E∗

p uniquely by the dual relation

〈sUj , tUk〉 = δjk =
{

1, j = k;
0, j �= k. (2.1.17)

Then {tU1(p), . . . , tUq(p)} is a base of E∗
p at every p ∈ U . Define a bijective

mapping
ψU : U × Cq −→ E∗|U

by setting

ψU (p, λU ) =
q∑

k=1

λUktUk(p).

Note that ϕU,p : Cq −→ Ep is a linear isomorphism for each p ∈ U , and so

ϕU (p, yU ) =
q∑

j=1

yUjsUj(p).

For any p ∈ U ∩W �= ∅, we see that the relation

ϕU (p, yU ) = ϕW (p, yW ), yU , yW ∈ Cq

holds if and only if
yU = gUW yW ,

where we regard y’s as column vectors. Thus when

ψU (p, λU ) = ψW (p, λW ), λU , λW ∈ Cq,

we have
λW yW = λUyU = λUgUW yW ,

where we regard λ’s as row vectors, and so

λU = tg−1
UW λW ,

where we regard λ’s as column vectors. Therefore the mapping ψ−1
U ◦ψW is given by

ψ−1
U ◦ ψW = tg−1

UW = tgWU : U ∩W −→ GL(q, C).

By this observation, (E∗, π∗, N) becomes a holomorphic vector bundle in the nat-
ural manner so that ψU is a local trivialization of E over U .
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Example 2.11. Let N be a complex manifold. As usual, we have the holomorphic
tangent bundle

T(N) =
⋃

p∈N

Tp(N),

such that the system {JUW } of transition matrices consists of the Jacobi matrices
JUW of holomorphic coordinate transforms on U ∩W . The system of transition
matrices of the holomorphic cotangent bundle

T∗(N) =
⋃

p∈N

T∗
p(N)

is just { tJ−1
UW }. Hence T∗(N) is the dual holomorphic vector bundle of T(N).

Example 2.12. Let E and E′ be two holomorphic vector bundles over N with the
systems {gUW } and {g′UW } of transition matrices, respectively. Then we have

(g) Define

hUW =
(

gUW 0
0 g′UW

)
.

Then {hUW } satisfies the conditions (e) and (f), and so determines a holo-
morphic vector bundle over N called the direct sum of E and E′, denoted
E ⊕ E′.

(h) The tensor product gUW ⊗ g′UW of gUW and g′UW satisfies the conditions (e)
and (f), and so determines a holomorphic vector bundle over N called the
tensor product of E and E′, denoted E ⊗ E′.

Furthermore, the exterior product bundle
∧
r

E (1 ≤ r ≤ q) is naturally
defined as a holomorphic vector bundle over N . In particular,

∧
q

E is called the
determinant bundle of E and denoted by det(E). It is a holomorphic line bundle
such that it is trivial over U and the system of transition functions is given by
{det(gUW )}.
Example 2.13. A complex submanifold F ⊂ E is called a holomorphic vector sub-
bundle if F is itself a holomorphic vector bundle of rank r (0 ≤ r ≤ q) over N
whose fiber structure is compatible with that of E. Then there is the associated
quotient bundle E/F which is a holomorphic vector bundle of rank q − r, and
there is the exact sequence

0 −→ F −→ E −→ E/F −→ 0.

Let π : E −→ N be a holomorphic vector bundle over a connected complex
manifold N . For s ∈ Γ(N, E), let s−1(0) be the zero set. If dimp s−1(0) ≤ dimN−2,
then s is said to be reduced at p ∈ N . If dim s−1(0) ≤ dimN − 2, then s is
reduced. If s �≡ 0, the zero divisor (s) of s is defined by the following property:
choosing a reduced section t ∈ Γ(U, E) over an open connected subset U of N
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and a holomorphic function f over U such that s|U = ft, then (s) ∩ U = (f).
If U is a Cousin II domain, such t and f exist. Let µs be the multiplicity of the
divisor (s). Obviously, µs ≥ 0 and suppµs ⊂ s−1(0). For line bundles one has
suppµs = s−1(0).

A connection of E means a mapping

∇ : A0(N, E) −→ A1(N, E)

satisfying the following conditions:

(j) ∇(s + t) = ∇s +∇t, s, t ∈ A0(N, E);
(k) ∇(as) = da⊗ s + a∇s, a ∈ C∞(N), s ∈ A0(N, E).

Assume that ∇ is a connection of E. Take Z ∈ Γ(N,T(N)), s ∈ A0(N, E). By
using the dual relation 〈, 〉 between T(N) and T∗(N), the covariant derivative
∇Zs ∈ A0(N, E) of s in the direction of Z is defined by

∇Zs = 〈Z,∇s〉.

Locally, by using the holomorphic local frame (2.1.14), we can write

∇sUα =
q∑

β=1

ωβ
Uα ⊗ sUβ , ωβ

Uα ∈ A1(U).

Let sU = t(sU1, . . . , sUq) denote the column vector and set

ωU = (ωβ
Uα), 1 ≤ α, β ≤ q.

Then we can rewrite the expression into the following matrix form:

∇sU = ωU ⊗ sU .

The matrix ωU is called the connection matrix of ∇ for sU . If U ∩W �= ∅, then

sW = AWU sU , (2.1.18)

where AWU is a q × q matrix consisting of holomorphic functions on U ∩W such
that det(AWU ) ∈ A∗(U ∩W ). Since

∇sW = dAWU ⊗ sU + AWU∇sU

= (dAWU + AWUωU )⊗ sU

= (dAWU A−1
WU + AWU ωUA−1

WU )⊗ sW ,

we obtain the transformation formula:

ωW = dAWU A−1
WU + AWU ωUA−1

WU . (2.1.19)
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Differentiating (2.1.19), we have

dωW AWU − ωW ∧ dAWU = dAWU ∧ ωU + AWUdωU . (2.1.20)

Substituting
dAWU = ωW AWU −AWU ωU

into (2.1.20), we obtain
ΩW AWU = AWUΩU , (2.1.21)

where
ΩU = dωU − ωU ∧ ωU (2.1.22)

is the curvature matrix of ∇ on U .

Let E∗ be the dual holomorphic vector bundle of E. The dual pairing

〈 , 〉 : Ex × E∗
x −→ C

induces a dual pairing

〈 , 〉 : A0(N, E)×A0(N, E∗) −→ A0(N).

Given a connection ∇ in E, we define a connection, also denoted by ∇, in E∗ by
the following formula:

d〈s, η〉 = 〈Ds, η〉+ 〈s, Dη〉, s ∈ A0(N, E), η ∈ A0(N, E∗). (2.1.23)

By using the local holomorphic frame (tU1, . . . , tUq) of E∗ defined by (2.1.17), we
have

∇tUα = −
q∑

β=1

ωα
Uβ ⊗ tUβ . (2.1.24)

If η =
∑

ηαtUα is an arbitrary section of E∗ over U , then (2.1.24) implies

∇η =
∑

α

⎛
⎝dηα −

∑
β

ωβ
Uαηβ

⎞
⎠⊗ tUα. (2.1.25)

Example 2.14. Take E = T(N) and so E∗ = T∗(N). Let z1, . . . , zn be local holo-
morphic coordinates on U . Hence

sUα =
∂

∂zα
= ∂α, α = 1, . . . , n

define a holomorphic local frame on U with the dual holomorphic local frame

tUα = dzα, α = 1, . . . , n.
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Write
ωβ

Uα =
∑

γ

Γβ
αγdzγ , 1 ≤ α, β ≤ n. (2.1.26)

Take f ∈ A0(N). Then (2.1.25) implies

∇∂f =
∑
α

⎛
⎝d∂αf −

∑
β,γ

Γβ
αγ∂βfdzγ

⎞
⎠⊗ dzα. (2.1.27)

Let X and Y be holomorphic vector fields on U and set

X =
∑
α

ξα∂α, Y =
∑

β

ηβ∂β .

Then we have

∇∂f(X, Y ) =
∑

α

ηα

⎛
⎝X∂αf −

∑
β,γ

Γβ
αγ∂βfξγ

⎞
⎠ = XY f −∇XY f.

The tensor field ∇∂f is called the Hessian of f .

Here we compare the connection ∇ with the operator

∂̄ : A0(N, E) −→ A0,1(N, E).

Take s ∈ A0(N, E) and write

s|U =
q∑

α=1

aαsUα, aα ∈ C∞(U).

Then

∂̄s|U =
q∑

α=1

∂̄aα ⊗ sUα.

On the other hand, the connection ∇ has a decomposition

∇ = ∇1,0 +∇0,1

such that
∇1,0s ∈ A1,0(N, E), ∇0,1s ∈ A0,1(N, E).

By using the above expression of the section s, we have

∇s =
∑
α

daα ⊗ sUα +
∑
α,β

aαωβ
Uα ⊗ sUβ .
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If ωU is of type (1, 0), i.e., the matrix ωU consists of (1, 0)-forms, then

∇0,1s =
∑

α

∂̄aα ⊗ sUα = ∂̄s,

that is, ∇ agrees with ∂ in the (0, 1)-direction. Since ∂̄AUW = 0, the formula
(2.1.19) shows that ωW is a matrix of (1, 0)-forms if and only if ωU does so, that
is, the property that ωU is of type (1, 0) do not depend on choice of the holomorphic
local frame. If the connection matrices of ∇ for holomorphic local frames consist
of (1, 0)-forms, then ∇ is called a connection of type (1, 0).

A function h of class C∞ on E ⊕ E is called an Hermitian metric along the
fibers of E if for each p ∈ N the restriction

h|p : Ep ⊕ Ep −→ C

defines an Hermitian metric on the vector space Ep. Define

|w|h =
√

h(w, w), w ∈ Ep.

Also E together with h is called an Hermitian vector bundle. A connection ∇ of
type (1, 0) of E with an Hermitian metric h is called an Hermitian connection if
∇ is compatible with the metric h, that is,

dh(s, t) = h(∇s, t) + h(s,∇t) (2.1.28)

holds for any s, t ∈ A0(N, E). Such a connection exists uniquely. Locally, by using
the holomorphic local frame (2.1.14) and setting

hαβ = h(sUα, sUβ),

then (2.1.28) is equivalent to

dhαβ =
∑

γ

ωγ
Uαhγβ +

∑
γ

ωγ
Uβhαγ , (2.1.29)

or the matrix form
dH = ωUH + H tωU , (2.1.30)

where
H = (hαβ), 1 ≤ α, β ≤ q.

Since ∇ is of type (1, 0), we have

∂H = ωUH. (2.1.31)

Conversely, we can define uniquely the Hermitian connection by (2.1.31).
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Differentiating (2.1.31) and using (2.1.30), we see that the curvature matrix
of the Hermitian connection satisfies

ΩU = −∂∂HH−1 + ∂HH−1 ∧ ∂HH−1, (2.1.32)

which consists of (1, 1)-forms. Differentiating (2.1.30), we have

ΩUH + H tΩU = 0. (2.1.33)

The formula (2.1.21) shows that the jth Chern form cj(E, h) ∈ A2j(N) of E for
h exists such that

det
(

I +
i

2π
ΩU

)
=

q∑
j=0

cj(E, h)|U , (2.1.34)

where I is the q× q unit matrix, and i is the imaginary unit. The 2j-form cj(E, h)
is closed (see [209]). The formula (2.1.33) further shows that cj(E, h) is real. In
particular, we have

c1(E, h)|U =
i

2π
tr(ΩU ) = −ddc log det(H). (2.1.35)

The jth Chern form cj(E, h) determines an element cj(E) in the de Rham coho-
mology group H2j

DR(N, R) of N , called the jth Chern class of E. The jth Chern
class cj(N) of N is defined to be the jth Chern class cj(T(N)) of the holomorphic
tangent bundle T(N).

If f : M −→ N is a holomorphic mapping, the pullback bundle π̃ : f∗(E) −→
M is defined only up to an isomorphism such that f ◦ π̃ = π ◦ f̃ , where π̃ is the
bundle projection and f̃ : f∗(E) −→ E is a bundle homomorphism over f . The
standard model is defined by

f∗(E) = {(p, w) ∈M × E | f(p) = π(w)},

where π̃ : f∗(E) −→ M with π̃(p, w) = p is a vector bundle and where f̃ :
f∗(E) −→ E with f̃(p, w) = w is a bundle homomorphism over f . Anyway, the
restriction

f̃p = f̃ : f∗(E)p −→ Ef(p)

is an isomorphism. If s ∈ Γ(N, E), then a lifted section sf ∈ Γ(M, f∗(E)) of s for
f is uniquely defined by

sf (p) = f̃−1
p (s(f(p))), p ∈ M.

Assume s �≡ 0 and f(M) �⊂ s−1(0). The lifted section sf exists with sf �≡ 0.
Also the pullback divisor f∗D of D = (s) exists such that µsf

≥ µf∗D, where the
equality holds for line bundles.

If (f∗(E), π̃, f̃) is the pullback of E under the holomorphic mapping f :
M −→ N , then a Hermitian metric h in E induces an Hermitian metric f∗h along
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the fibers of f∗(E) defined by f∗h = h ◦ (f̃ ⊕ f̃). The Hermitian metric h along
the fibers of E induces the dual metric h∗ along the fibers of the dual vector
bundle E∗ and an Hermitian metric h∧r along the fibers of the exterior product∧

r
E. If (Ei, hi) (1 ≤ i ≤ r) are Hermitian vector bundles, then Hermitian metrics

h1 ⊕ · · · ⊕ hr along the fibers of the direct sum E1 ⊕ · · · ⊕ Er and h1 ⊗ · · · ⊗ hr

along the fibers of the tensor product E1 ⊗ · · · ⊗Er are defined.

Now we end this subsection by the following facts:

Theorem 2.15. Let E be a holomorphic vector bundle over a Stein manifold M .
For every z0 ∈ M and every s0 ∈ Ez0 , one can find an holomorphic section s of
E over M such that s(z0) = s0.

Proof. See [162], Corollary 5.6.3. �
Theorem 2.16. Every holomorphic vector bundle on a non-compact Riemann sur-
face is trivial.

Proof. See [100], Theorem 30.4. �

2.1.5 Holomorphic line bundles

Let N be a connected complex manifold and let π : L −→ N be a holomorphic
line bundle over N . Let B = {U, W, Z, . . .} be an open covering of N with the
trivialization of L,

ϕU : U × C −→ L|U = π−1(U).

Let ξU be the holomorphic local frame of L over U defined by

ξU (p) = ϕU (p, 1), p ∈ U.

Then the system {gUW } of transition functions satisfies

ξW = ξUgUW . (2.1.36)

Let κ be an Hermitian metric along fibers of L. Then κU = κ(ξU , ξU ) is a positive
C∞-function on U satisfying

κU = |gUW |−2κW . (2.1.37)

Conversely, positive C∞-functions κU defined on U satisfying (2.1.37) determine
an Hermitian metric along fibers of L. By (2.1.35), the (1th) Chern form c1(L, κ)
of type (1, 1) of L for κ is given by

c1(L, κ)|U = −ddc log κU .

Then

dc1(L, κ) = 0, c1(L∗, κ∗) = −c1(L, κ), c1(f∗L, f∗κ) = f∗(c1(L, κ)).



2.1. Notions in complex geometry 117

If (Li, κi) (1 ≤ i ≤ p) are Hermitian line bundles, then

c1(L1 ⊗ · · · ⊗ Lp, κ1 ⊗ · · · ⊗ κp) =
p∑

i=1

c1(Li, κi).

The line bundle L is said to be non-negative (respectively positive) if there ex-
ists a Hermitian metric κ along the fibers of L such that c1(L, κ) ≥ 0 (respectively
c1(L, κ) > 0). Write L ≥ 0 (respectively L > 0).

Given a holomorphic section s ∈ Γ(N, L), that is, a collection s = {sU} of
holomorphic functions sU ∈ A(U) satisfying

sU = gUW sW . (2.1.38)

By using the relation (2.1.36), we have sUξU = sW ξW on U ∩W �= ∅. Hence we
often write s|U = sUξU . We can define the norm |s|κ of s on U as follows:

|s|2κ = κ(sUξU , sUξU ) = κU |sU |2,

and obtain the relation
c1(L, κ) = −ddc log |s|2κ.

The section s defines a divisor D := (s) on N as follows:

D ∩ U = (sU ). (2.1.39)

More generally, a collection s = {sU} of meromorphic functions sU ∈ M(U)
satisfying (2.1.38) is called a meromorphic section of L, which also defines a divisor
by using (2.1.39).

Let D be a divisor on N . For an arbitrary point p ∈ N , there are irreducible,
mutually coprime holomorphic functions f1, . . . , fr in a neighborhood U of p such
that f1 · · · fr = 0 is the local equation of supp(D) in U . Taking U smaller if
necessary, we may assume that the analytic hypersurfaces

Xλ = {x ∈ U | fλ(x) = 0}, λ = 1, . . . , r

are distinct and irreducible. Then we may write uniquely

D ∩ U =
r∑

λ=1

nλXλ, nλ ∈ Z.

Putting
sU = fn1

1 · · · fnr
r ,
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we obtain the relation (2.1.39). In this way, we can obtain an open covering B =
{U, W, Z, . . .} of N and a family {sU}U∈B of meromorphic functions such that the
relation (2.1.39) holds for U ∈ B. Set

gUW =
sU

sW
(2.1.40)

on U ∩W �= ∅. Then gUW ∈ A∗(U ∩W ) satisfy the cocycle conditions (e) and (f),
and so determine a holomorphic line bundle over N , denoted by [D], such that
[D] is trivial over U , {sU}U∈B forms a meromorphic section s of [D] and {gUW }
is the system of transition functions. The line bundle [D] is uniquely determined
by D, up to isomorphisms of line bundles. By the construction, we have

(s) = D, [−D] = [D]∗, (2.1.41)

[D + D′] ∼= [D]⊗ [D′], D, D′ ∈ Div(N). (2.1.42)

Let V be a complex vector space of dimensions n + 1 ≥ 1. Then the trivial
bundle P(V )× V contains the tautological bundle

H−1 = {(x, η) ∈ P(V )× V | η ∈ E(x)}

as a holomorphic subbundle, where E(x) = H−1
x is the fiber over x ∈ P(V ).

The quotient bundle Q(V ) = (P(V ) × V )/H−1 has fiber dimension n. An exact
sequence

0 → H−1 → P(V )× V →
φ

Q(V )→ 0 (2.1.43)

is defined as the classifying sequence. Taking the dual one obtains the dual classi-
fying sequence

0→ Q(V )∗ → P(V )× V ∗ →
ε

H → 0, (2.1.44)

where H = (H−1)∗ is a holomorphic line bundle, called the hyperplane bundle over
P(V ). If α ∈ V ∗, a global holomorphic section sα of H over P(V ) is defined by

sα(x) = ε(x, α) = α|E(x), x ∈ P(V ). (2.1.45)

If α �= 0 and a = P(α), the section sα is a holomorphic frame of H over P(V )−Ë[a],
whose dual s∗α is defined by

s∗α(P(ξ)) =
ξ

α(ξ)
, ξ ∈ V − E[a].

Let � be an Hermitian metric on V . Then � induces Hermitian metrics � along the
fibers of P(V )×V , H−1 and H , and a Fubini-Study form Ω on P(V ) ([103], [388]).
Then

c1(H, �) = Ω, c1(H−1, �) = −Ω. (2.1.46)
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In particular, if n = 1, then P(V ) ∼= C ∪ {∞}. Restricted to C, we have

Ω(z) = −ddc log χ(z,∞)2 =
i

2π
· dz ∧ dz

(1 + |z|2)2 , (2.1.47)

where χ is defined by (1.5.6).

Lemma 2.17 (Weyl[430], Stoll[384]). Take a ∈ P(V ∗), then∫
x∈P(V )

log
1

|x, a|2 Ωn(x) =
n∑

j=1

1
j
.

Next we recall some notations in Section 1.6.6 in terms of line bundles. As-
sume that N is a connected compact complex manifold of dimension n. Let L be a
holomorphic line bundle over N with a Hermitian metric κ along its fibers. Then
the Hodge theorem implies that Γ(N, L) is a vector space of finite dimension k+1.
Assume k ≥ 0 and let |L| = P(Γ(N, L)) be the complete linear system of L. Set

BL =
⋂

s∈Γ(N,L)

s−1(0).

Then BL �= N , and BL is a (possibly empty) analytic subset of N , called the set
of base points of the system |L|. Consider the evaluation mapping

eL : N × Γ(N, L) −→ L (2.1.48)

defined by
eL(x, s) = s(x), (x, s) ∈ N × Γ(N, L). (2.1.49)

Obviously, eL({x}×Γ(N, L)) = Lx if x ∈ N−BL. Let E be the kernel of eL|N−BL .
An exact sequence

0 → E → {N −BL} × Γ(N, L)→ L|N−BL → 0 (2.1.50)

is defined. Here E has fiber dimension k. If x ∈ N − BL, one element ϕL(x) ∈
P(Γ(N, L)∗) exists such that E[ϕL(x)] = Ex. Since BL is thin, the mapping

ϕL : N −BL −→ P(Γ(N, L)∗)

is holomorphic and extends to a meromorphic mapping ϕL : N −→ P(Γ(N, L)∗),
which is called a dual classification mapping (cf. [380]). If BL = ∅, then

L = ϕ∗
LH, (2.1.51)

where H is the hyperplane bundle on P(Γ(N, L)∗). An Hermitian metric � on
Γ(N, L) induces Hermitian metrics � along the fibers of H and L such that

c1(L, �) = ϕ∗
L(c1(H, �)) = ϕ∗

L(Ω), (2.1.52)

where Ω is the Fubini-Study form on P(Γ(N, L)∗).
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The line bundle L is said to be very ample if BL = ∅, and ϕL : N −→
P(Γ(N, L)∗) gives a projective imbedding. If Lj is very ample for some j ≥ 1,
then L is said to be ample. By definition, L is pseudo ample if the image ϕLj (N)
is n-dimensional for some positive integer j. If L is ample with Lj very ample,
according to (2.1.52), a metric �j on Lj induces a metric � on L satisfying

jc1(L, �) = c1(Lj , �j) = ϕ∗
Lj (Ω) > 0,

where Ω is the Fubini-Study form on P(Γ(N, Lj)∗), that is, L is positive. Con-
versely, the Kodaira imbedding theorem (cf. [127]) shows that L is ample if L is
positive.

Generally, the so-called L-dimension κ(N, L) of N is defined by

κ(N, L) = max
j≥1

dimϕLj (N), (2.1.53)

provided Γ(N, Lj) �= {0} for some j ≥ 1. If Γ(N, Lj) = {0} for all j ≥ 1, then by
convention we set κ(N, L) = −1. We have in general

κ(N, L) ≤ dimalg(N) ≤ n. (2.1.54)

The L-dimension κ(N, L) is equal to the complex dimension n of N if and only if
L is pseudo ample. In this case, N is clearly Moishezon space. Set

Z(N, L) = {j ≥ 1 | Γ(N, Lj) �= {0} }.

Then Z(N, L) is a semigroup under addition. Let d denote the greatest common
divisor of Z(N, L). One of the fundamental theorems on L-dimension states

Theorem 2.18. Let N be a connected compact complex manifold and let L be a
holomorphic line bundle over N . Then there exist positive numbers a, b and a
positive integer j0 such that

ajκ(N,L) ≤ dimΓ(N, Ljd) ≤ bjκ(N,L), j ≥ j0.

Proof. Ueno [402] or Iitaka [190]. Iitaka [190] used the inequality in the above
theorem to define the L-dimension. �

Particularly, the line bundle L is pseudo ample if and only if

lim sup
j→+∞

1
jn

dim Γ(N, Lj) > 0, (2.1.55)

where n is the dimension of N . In fact, when L is pseudo ample, we have the
meromorphic imbedding

ϕLk : N −→ P(Γ(N, Lk)∗)
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for some positive integer k. Let z0 be a point where ϕLk is holomorphic. We choose
a basis ψ0, ψ1, . . . , ψn, . . . of Γ(N, Lk) in such a way that

ψ0(z0) �= 0, ψ1(z0) = · · · = ψn(z0) = · · · = 0,

and ψ1/ψ0, . . . , ψn/ψ0 form a local coordinate system around z0. For any positive
integer m, the set

{ψi1ψi2 · · ·ψim | 0 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ n}

is a linearly independent subset of Γ(N, Lkm). Hence

dimΓ(N, Lkm) ≥
(

n + m

m

)
≥ cmn,

where c is a positive number, and hence (2.1.55) follows. Conversely, if (2.1.55)
holds, then L is pseudo ample (see Lemma 2.30 and the remark after Lemma 2.30).

Let N be a complex manifold of dimension n. Let T(N) be the holomorphic
tangent bundle on N and let T̄(N) be its conjugate. Then T(N)⊕T̄(N) = T (N)C

is the complexified differential tangent bundle. Let T∗(N) and T̄∗(N) be the dual
of T(N) and T̄(N), respectively. The canonical bundle of N is defined by

KN = det(T∗(N)) =
∧
n

T∗(N).

According to S. Lang [229], recall that N is said to be canonical if KN is ample,
very canonical if KN is very ample, and pseudo canonical if KN is pseudo ample.
Usually, a pseudo canonical manifold is said to be of general type. Generally, if N
is a singular variety, we say that N is of general type or pseudo canonical if some
desingularization has this property. The following fact is due to Kobayashi [208],
Proposition 7.4.3:

Proposition 2.19. For a compact complex manifold N of dimension n, the following
are equivalent:

(I) KN is pseudo ample.
(II) dim KN = n, i.e., the Kodaira dimension of N is equal to n.

(III) lim supj→∞
1
jn dimΓ(N, Kj

N ) > 0.

2.1.6 Hermitian manifolds

Let N be a complex manifold of dimension n. An Hermitian metric along the fibers
of holomorphic tangent bundle T(N) on N also is called an Hermitian metric of
N , and N is called an Hermitian manifold if an Hermitian metric is given on N .
An Hermitian metric h on N is given by a positive definite Hermitian structure

h|p : Tp(N)×Tp(N) −→ C
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on the holomorphic tangent space at p for each p ∈ N , depending smoothly on p,
that is, such that for a local coordinate system (U ; z1, . . . , zn) of N , the functions
hkl = h (Zk, Zl) are C∞, where

Zj =
∂

∂zj
, j = 1, . . . , n.

In terms of the local coordinates z = (z1, . . . , zn), the Hermitian metric is given by

h =
∑
k,l

hkldzk ⊗ dzl.

A coframe for the Hermitian metric is an n-tuple (θ1, . . . , θn) of forms of type
(1, 0) such that

h =
∑

k

θk ⊗ θk,

i.e., such that, in terms of the Hermitian structure induced on T∗
p(N) by h|p on

Tp(N), (θ1(p), . . . , θn(p)) is an orthonormal basis for T∗
p(N). From this description

it is clear that coframes always exit locally. The dual of a coframe is a frame.
The real and imaginary parts of an Hermitian inner product on a complex

vector space give an ordinary inner product and an alternating quadratic form,
respectively, on the underlying real vector space. We see that for an Hermitian
metric h on N ,

ds2
N = 2Re(h) : Tp(N)⊗ Tp(N) −→ R

is a Riemann metric on N , called the induced Riemann metric of the Hermitian
metric. When we speak of distance, area, or volume on a complex manifold with
an Hermitian metric, we always refer to the induced Riemann metric. It is then
customary to write

ds2
N = 2

∑
k,l

hkldzkdzl,

where

dzkdzl =
1
2
(dzk ⊗ dzl + dzl ⊗ dzk).

We also see that since the quadratic form

ϕ = 2Im(h) : Tp(N)⊗ Tp(N) −→ R

is alternating, it represents a real differential form of degree 2. In terms of the
local coordinates z = (z1, . . . , zn), the form is given by

ϕ = −2i
∑
k,l

hkldzk ∧ dzl.
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Usually we use the form

ω = − 1
4π

ϕ =
i

2π

∑
k,l

hkldzk ∧ dzl,

which is called the associated (1, 1)-form (or Kähler form) of the metric. If the
Kähler form is closed, that is, dω = 0, then N is called a Kähler manifold, and
the metric is called the Kähler metric.

Let ∇ be the Hermitian connection of N , that is, the Hermitian connection of
holomorphic tangent bundle T(N) for an Hermitian metric h. Write the covariant
derivatives ∇Zk

Zm as follows:

∇Zk
Zm =

∑
j

Γj
mkZj ,

where Γj
mk are the connection components (or connection coefficients or Christoffel

symbols) of ∇. By (2.1.31), we have

Γj
mk =

n∑
β=1

hβj ∂hmβ

∂zk
,

where (hkj) is the inverse matrix of (hkj).

For another local coordinate system (W ; w1, . . . , wn) of N , we set

Xj =
∂

∂wj
, j = 1, . . . , n.

When U ∩W �= ∅, we have
X = JWUZ,

where Z = t(Z1, . . . , Zn), and

JWU =
(

∂zj

∂wk

)
, 1 ≤ j, k ≤ n

is the Jacobian matrix of coordinate transformation. Then (2.1.19) implies

ωW = dJWUJ−1
WU + JWUωUJ−1

WU , (2.1.56)

that is,

ωj
Wi =

∑
p

d

(
∂zp

∂wi

)
∂wj

∂zp
+
∑
p,q

∂zp

∂wi

∂wj

∂zq
ωq

Up.

If we write
ωj

Wi =
∑

k

Ξj
ikdwk,
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then the coordinate transformation of connection coefficients is given by

Ξj
ik =

∑
p,r,q

Γq
pr

∂wj

∂zq

∂zp

∂wi

∂zr

∂wk
+
∑

p

∂2zp

∂wi∂wk

∂wj

∂zp
. (2.1.57)

Express the curvature matrix ΩU on U of the Hermitian connection ∇ by

ΩU =
(
Ωj

m

)
, 1 ≤ m, j ≤ n.

We can write
Ωj

m =
∑
k,l

Kj
mkldzk ∧ dz̄l,

where Kj
mkl are the curvature components. By the definition (2.1.22), we obtain

Kj
mkl = −∂Γj

mk

∂zl
.

Define

Kmjkl =
n∑

β=1

Kβ
mklhβj.

Then

Kmjkl = − ∂2hmj

∂zk∂z̄l
+
∑
p,q

hpq ∂hmp

∂zk

∂hqj

∂z̄l
. (2.1.58)

If we set
H = (hαβ), 1 ≤ α, β ≤ n,

and write
Kkl =

∑
j

Kj
jkl,

then
−c1(T(N), h) = ddc log det(H) = − i

2π

∑
k,l

Kkldzk ∧ dz̄l

is just the Ricci form. Fix p ∈ N and take two non-zero tangent vectors

Z =
∑

k

λkZk ∈ Tp(N), W =
∑

k

ηkZk ∈ Tp(N).

Then

K(Z, W ) =
h(R(W, W )Z, Z)
h(Z, Z)h(W, W )

=
∑

Kmjklλmλ̄jηkη̄l

(
∑

hmjλmλ̄j)(
∑

hklηkη̄l)
(2.1.59)

is what is called the holomorphic bisectional curvature determined by Z and W in
Goldberg and Kobayashi [115]. In particular, K(Z, Z) is called the holomorphic
sectional curvature determined by Z.



2.1. Notions in complex geometry 125

Definition 2.20. A variety N is called negatively curved if there exists an Hermitian
metric h on N all of whose holomorphic sectional curvatures are bounded from
above by a negative constant.

For each p ∈ Z+, define

ip =
(√

−1
2π

)p

(−1)
p(p−1)

2 p!. (2.1.60)

A positive form Ψ of bidegree (n, n) and of class C∞ on N is called a volume form
on N . The volume form Ψ on N induces a metric κΨ on the canonical bundle KN

as follows. If U �= ∅ is open in N and if ξ and η are forms of bidegree (n, 0) and
class C∞ on U , then

inξ ∧ η = κΨ(ξ, η)Ψ. (2.1.61)

The Ricci form of Ψ is defined to be the Chern form of the metric κΨ on KN , so
that

Ric(Ψ) = c1(KN , κΨ). (2.1.62)

In terms of holomorphic coordinates z1, . . . , zn, such a form is one which can be
written

Ψ(z) = ρ(z)
n∏

j=1

i

2π
dzj ∧ dz̄j ,

where ρ is a positive C∞ function. In practice one often has

ρ(z) = h(z)|g(z)|2q,

where h is a positive C∞ function, q > 0 is some fixed rational number, and g is
holomorphic not identically zero. According to S. Lang [228], such a form is called
a pseudo volume form. It is a continuous (n, n)-form and is C∞ outside a proper
analytic subset. The Ricci form of Ψ can be given by

Ric(Ψ) = ddc log ρ = ddc log h = − i

2π

∑
k,l

Kkldzk ∧ dz̄l,

where

Kkl = −∂2 log h

∂zk∂z̄l
, 1 ≤ k, l ≤ n

define the Ricci tensor of N with respect to Ψ. Associated with the form Ψ, the
Griffiths function

G(Ψ) =
1
n!

Ric(Ψ)n/Ψ (2.1.63)

is defined. In particular, if n = 1 and if z is a complex coordinate, then the Griffiths
function is given by

G(Ψ) =
1
ρ

∂2 log ρ

∂z∂z̄
.

The function −G(Ψ) is called the Gauss curvature.
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2.1.7 Parabolic manifolds

Let M be a connected complex manifold of dimension m. A non-negative function

τ : M −→ R+

of class C∞ is said to be an exhaustion of M if it is proper, that is, τ−1(K) is
compact whenever K is. Assume that τ is an exhaustion of M . Define

υ = ddcτ, ω = ddc log τ, σ = dc log τ ∧ ωm−1. (2.1.64)

Then it is easy to show the relations

τp+1ωp = τυp − pdτ ∧ dcτ ∧ υp−1, (2.1.65)

dc log τ ∧ ωp = τ−p−1dcτ ∧ υp. (2.1.66)

Denote the center for τ by
O = Oτ = τ−1(0).

For A ⊆M and r ≥ s ≥ 0, define

A(O; r) = {x ∈ A|τ(x) < r2},
A[O; r] = {x ∈ A|τ(x) ≤ r2},
A〈O; r〉 = {x ∈ A|τ(x) = r2},

A[O; s, r] = A[O; r] −A(O; s).

Further, if ϕ is a (p, p)-form on M , write

M [O; r; ϕ] = r2p−2m

∫
M [O;r]

ϕ ∧ υm−p, (2.1.67)

M〈O; r; ϕ〉 =
∫

M〈O;r〉

ϕ ∧ dc log τ ∧ ωm−p−1, (2.1.68)

M [O; s, r; ϕ] =
∫

M [O;s,r]

ϕ ∧ ωm−p, (2.1.69)

as long as the integrals exist, where 0 ≤ p ≤ m. For the case p = 1, we will write

T (r, s; ϕ) =
∫ r

s

M [O; t; ϕ]
t

dt (r > s > 0). (2.1.70)

We know that every open manifold, real or complex, always admits an ex-
haustion function τ such that τ has only isolated critical points in M−M(O; r(τ))
for some r(τ). Let

Cτ = {r2 ∈ R+ |dτ(x) = 0 for some x ∈M〈O; r〉} (2.1.71)
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be the set of critical values of τ , and define a set

R̂τ = {r|r2 ∈ R+ − Cτ}. (2.1.72)

Then Cτ ∩R[r(τ), +∞) is discrete. By Sard’s theorem, Cτ has measure zero. If r ∈
R̂τ , the boundary ∂M(O; r) = M〈O; r〉 is a real, compact, (2m− 1)-dimensional
C∞-submanifold of M , oriented to the exterior of M〈O; r〉.

An exhaustion function τ of M is called concave if υ ≤ 0 on M −M(O; r(τ))
for some r(τ) ≥ 0, i.e., the eigenvalues of the Levi form ddcτ are non-positive from
r(τ) upward, convex if υ ≥ 0 on M−M(O; r(τ)) for some r(τ), logarithmic concave
or logarithmic convex if log τ is concave or convex, and eventually parabolic if there
exists a number r(τ) ≥ 0 such that on M −M [O; r(τ)],

ω ≥ 0, ωm ≡ 0, υm �≡ 0, (2.1.73)

where ωm = 0 is just the Monge-Ampère homogeneous differential equation on
u = log τ in complex analysis. This equation is closely related to the study of the
curvature of the manifold M . The formulae (2.1.73) will play important role in
value distribution theory.

Assume that τ is eventually parabolic, and restricts τ on M −M [O; r(τ)].
Then τ also is convex since

υ = ddcτ ≥ τddc log τ = τω ≥ 0.

Further, we have

τυm = mdτ ∧ dcτ ∧ υm−1 = mτmdτ ∧ σ, (2.1.74)

dσ = ωm = 0, (2.1.75)

so Stokes theorem implies that

M〈O; r; 1〉 = M〈O; s; 1〉 (2.1.76)

for s, r ∈ R̂τ with r(τ) < s < r. Denote this common number by ς. Obviously,

M [O; r; 1] = ς > 0 (r > r(τ)). (2.1.77)

Particularly, if r(τ) = 0, the exhaustion is simply called parabolic. A parabolic
exhaustion τ is said to be strict if υ > 0 on M . According to Stoll [380], a com-
plex manifold M is said to be parabolic if there exists an unbounded parabolic
exhaustion on M .

Let V be a Hermitian vector space of dimension m, say, V = Cm. Define an
unbounded exhaustion function τ of V by

τ : V −→ R+, τ(z) = |z|2. (2.1.78)

Then
υ = ddcτ > 0, ω = ddc log τ ≥ 0.
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One closed positive form Ω of bidegree (1.1) on P(V ) exists such that P∗(Ω) = ω
on V∗. The form Ω is just the Fubini-Study form. It determines the Fubini-Study
Käehler metric on P(V ). Obviously

ωm = P∗(Ωm) = 0, (2.1.79)

that is, the exhaustion τ is strict parabolic, and so V is a parabolic manifold.
Further, if M has holomorphic rank m, i.e., there exists a holomorphic mapping
π : M −→ Cm of rank m, it follows that τ = |π|2 is an unbounded parabolic
exhaustion of M (cf. [380]), and hence M is parabolic.

Strict parabolic exhaustion functions are completely determined by Stoll (cf.
[381], [382]) as follows:

Theorem 2.21. If a complex manifold M of dimension m admits a strict unbounded
parabolic exhaustion τ , then there exists a biholomorphic mapping h : Cm −→ M
such that

τ(h(z)) = |z|2 =
m∑

j=1

|zj|2

for all z = (z1, . . . , zm) ∈ Cm.

Alternative proofs were given by Burns [44] and Wong [432]. Bott-Chern [31]
and Wu [435] used concave or convex exhaustion. Griffiths and King [128] consid-
ered a special parabolic exhaustion which has only finitely many critical values and
such that log τ has only finitely many logarithmic singularities. Such exhaustion
exists on smooth affine algebraic varieties. The properties of parabolic exhaustion
were discussed by Stoll [380]. For example, Stoll proved that a non-compact Rie-
mann surface has a parabolic exhaustion if and only if every subharmonic function
which is bounded above is constant. Classically the Riemann surfaces satisfying
the latter property are called parabolic. Hence Stoll’s result shows the consistency
of the nomenclature in the non-compact case. However a compact Riemann surface
is also parabolic in the classical sense but does not admit a parabolic exhaustion.
For ddcτ ≥ 0 would imply that τ is constant which contradicts ddcτ �≡ 0.

2.1.8 Inequalities on symmetric polynomials

We begin with a result (cf. Hardy, Littlewood, and Pólya [146], pp. 104–105,
Beckenbach and Bellman [17] , p.11 or [271], pp. 70–71), which is an immediate
consequence of Rolle’s theorem:

Lemma 2.22. If the polynomial

P (x, y) = c0x
n + c1x

n−1y + · · ·+ cnyn

has all its zeros x/y real, then the same is true of all polynomials obtained from
it by differentiating with respect to x or y.
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Consider now the polynomial

P (x, y) =
n∏

i=1

(x + xiy),

where xi are real. We find

P (x, y) =
n∑

k=0

ρkxn−kyk,

where ρ0 = 1, and for k = 1, 2, . . . , n, ρk = ρk(x1, . . . , xn) is the kth elementary
symmetric polynomial. Writing

pk = ρk/

(
n

k

)
,

and by repeated differentiation with respect to x and y, we obtain

∂l+mP (x, y)
∂xl∂ym

=
n−l∑
k=m

(
n

k

)
pk

k!
(k −m)!

(n− k)!
(n− k − l)!

xn−k−lyk−m.

If we take m = r − 1 and l = n− r − 1 with 1 ≤ r ≤ n− 1, we have

∂l+mP (x, y)
∂xl∂ym

=
n!
2
(
pr−1x

2 + 2prxy + pr+1y
2
)
.

By Lemma 2.22, this polynomial has both its zeros real, so that we have

p2
r − pr−1pr+1 ≥ 0, 1 ≤ r ≤ n− 1. (2.1.80)

This inequality holds for all real xi, positive, negative, or zero.
Using (2.1.80), when all the xi are positive, we get

k∏
r=1

(pr−1pr+1)r ≤
k∏

r=1

p2r
r ,

or
p

1
k+1
k+1 ≤ p

1
k

k , 1 ≤ k ≤ n− 1, (2.1.81)

which is a result of Maclaurin [250]. Thus by (2.1.81), we obtain the inequalities
for the elementary symmetric polynomials

ρ
1
j

j ≤ cijρ
1
i
i , 1 ≤ i ≤ j ≤ n, (2.1.82)

where

cij =
(

n

j

) 1
j
(

n

i

)− 1
i

.

From (2.1.81) we obtain

p
1
n
n ≤ p1,

the geometric-mean–arithmetic-mean inequality.
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2.2 Kobayashi hyperbolicity

There exists a rich theory and many research results on Kobayashi hyperbolicity.
Here we only introduce simple notations and some open problems related to topics
in this book. For more details, see Kobayashi [207], [208], and Lang [229].

2.2.1 Hyperbolicity

Let D be the open unit disc {z ∈ C | |z| < 1}. We have the classic Schwarz-Pick
lemma (cf. Kobayashi [207]):

Theorem 2.23. Assume f ∈ Hol(D, D). Then

|f ′(z)|
1− |f(z)|2 ≤

1
1− |z|2 , z ∈ D,

and equality at a single point z implies that f ∈ Aut(D).

We consider the Hermitian metric h on D given by

h =
2

(1 − |z|2)2 dz ⊗ dz,

which induces the Riemann metric

ds2
D =

4
(1 − |z|2)2 dzdz.

Then the inequality in Theorem 2.23 may be written as

f∗ds2
D ≤ ds2

D,

or
dh(f(z), f(z′)) ≤ dh(z, z′)

for the associated distance function dh. The metric h (or ds2
D) is called the Poincaré

metric or the Poincaré-Bergman metric of D. We note that the Gaussian curvature
of the metric h is equal to −1 everywhere. By a simple calculation we have

dh(z, w) = log
1 + |α|
1− |α| (z, w ∈ D),

where
α =

w − z

1− zw
.

Definition 2.24. Let M be a complex space. Let x, y ∈ M be arbitrary points.
A holomorphic chain α from x to y is the collection of holomorphic mappings
fi ∈ Hol(D, M) and pi, qi ∈ D for i = 0, . . . , l such that

f0(p0) = x, fi(qi) = fi+1(pi+1) (0 ≤ i ≤ l − 1), fl(ql) = y.
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Then the Kobayashi pseudo distance dM is given by

dM (x, y) = inf
α

{
l∑

i=0

dh(pi, qi)

}
, (2.2.1)

where the infimum is taken for all holomorphic chains α from x to y.

For the existence of a holomorphic chain from x to y, the reader is referred
to S. Lang [229]. It is easy to see that for x, y, z ∈M ,

dM (x, x) = 0, dM (x, y) = dM (y, x), dM (x, z) ≤ dM (x, y) + dM (y, z). (2.2.2)

In general, a mapping dM : M×M −→ R+ satisfying the relation above is called a
pseudo distance which may identically vanish. If M and N are two complex spaces,
then the Kobayashi pseudo distances satisfy

dN (f(x), f(y)) ≤ dM (x, y), f ∈ Hol(M, N), {x, y} ⊂ M. (2.2.3)

Example 2.25. Let M = C with the Euclidean metric. Then dC(x, y) = 0 for
all x, y ∈ C. In fact, given two points x, y ∈ C and an arbitrarily small positive
number ε, there is a mapping f ∈ Hol(D, C) such that f(0) = x and f(ε) = y.
Hence dC(x, y) ≤ log 1+ε

1−ε .

It will be useful to consider the following generalization. Let M be a subset
of a complex Hermitian manifold M̄ . We can define dM on M by taking the
mappings fi to lie in M , and to be holomorphic as mappings into M̄ . Then we
obtain a pseudo distance on M . We say that M is Kobayashi hyperbolic in M̄ if this
pseudo distance is a distance, that is if x �= y implies dM (x, y) �= 0. For simplicity,
we shall say hyperbolic instead of Kobayashi hyperbolic. If M is a complex space
imbedded in a complex manifold M̄ , then a mapping into M is analytic if and
only if it is analytic viewed as a mapping into M̄ . Therefore the definition of the
Kobayashi pseudo distance on M is intrinsic, independent of the imbedding of M
into a manifold.

If M is hyperbolic, then directly from (2.2.3) and Example 2.25, there cannot
be a non-constant holomorphic mapping f : C −→ M . The converse is due to
Brody [38]:

Theorem 2.26 ([38]). Let M be a relatively compact complex subspace of a complex
Hermitian manifold M̄ , and suppose M is not hyperbolic. Then there exists a
non-constant holomorphic mapping f : C −→ M̄ such that

‖f ′(0)‖ = 1; ‖f ′(z)‖ ≤ 1, z ∈ C.

Recall that the induced linear mapping

f ′(z) : Tz(C) = C −→ Tf(z)(M̄),
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is the holomorphic differential at each z ∈ C. Each complex tangent space has
its norm: Tf(z)(M̄) has the Hermitian norm, and Tz(C) = C has the Euclidean
norm. The norm of the linear mapping f ′(z) is defined as usual:

‖f ′(z)‖ = sup
v

‖f ′(z)v‖
‖v‖ , v ∈ Tz(C), v �= 0.

Based on this theorem, it is useful to define a complex space M to be Brody
hyperbolic if every holomorphic mapping of C into M is constant.

Let M be any variety. Lang [228], [232] introduces the holomorphic special
set Sphol(M) of M to be the Zariski closure of the union of all images of non-
constant holomorphic mappings f : C −→ M . Thus M is hyperbolic if and only if
this special set is empty. In general the special set may be the whole variety. Here
we consider a smooth toroidal compactification M of D/Γ, where D is a bounded
symmetric domain of Cm and Γ ⊂ Aut(D) is an arithmetic subgroup. In general,
Γ may not act freely on D, but a subgroup of finite index will act without fixed
points, and we lose no essential generality in assuming that this is true for D. It
is well known that D/Γ is negatively curved since in fact the Bergman metric on
D has negative holomorphic sectional curvatures ≤ −c < 0 and is Γ-invariant.
Further, D/Γ is hyperbolic (see [207], [286]), and so Sphol(M) �⊂ D/Γ. It is a
basic theorem of Baily-Borel [11] that D/Γ is quasi-projective. It is natural to ask
whether Sphol(M) ⊂ M −D/Γ?

Kiernan and Kobayashi [204] discuss the notion of M being hyperbolic modulo
a subset S, meaning that the Kobayashi pseudo distance in M satisfies dM (x, y) �=
0 unless x = y or x, y ∈ S. According to S. Lang [228], the variety M is said to be
pseudo Brody hyperbolic if the special set Sphol(M) is a proper subset; and M is
pseudo Kobayashi hyperbolic if there exists a proper algebraic subset S such that
M is hyperbolic modulo S. S. Lang [228] conjectures that the two definitions are
equivalent with S = Sphol(M).

2.2.2 Measure hyperbolicity

Let M be a complex manifold with volume or pseudo volume form Ψ. Let C0(M)
be the set of continuous functions with compact support. Then Ψ defines a positive
functional on C0(M) by

ϕ �→
∫

M

ϕΨ.

Hence there is a unique regular positive measure µΨ such that∫
M

ϕdµΨ =
∫

M

ϕΨ, ϕ ∈ C0(M).

For example, on the ball of radius r in Cm with center at 0:

Cm(0; r) = {(z1, . . . , zm) ∈ Cm | |z|2 = |z1|2 + · · ·+ |zm|2 < r2},
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there is the standard positive (1, 1)-form

ω = 2i

{∑
k

1
r2 − |z|2 dzk ∧ dz̄k +

4|z|2
(r2 − |z|2)2 ∂|z| ∧ ∂|z|

}
(2.2.4)

with

Θr =
1
m!

ωm =
2mr2

(r2 − |z|2)m+1

m∏
k=1

idzk ∧ dz̄k, (2.2.5)

Ric(Θr) = −(m + 1)ddc log(r2 − |z|2) =
m + 1

4π
ω. (2.2.6)

Thus the Einstein-Kähler metric on Cm(0; r) is given by

hr =
m∑

k=1

2
r2 − |z|2 dzk ⊗ dz̄k +

2
(r2 − |z|2)2

(
m∑

k=1

z̄kdzk

)
⊗
(

m∑
k=1

zkdz̄k

)
(2.2.7)

such that holomorphic sectional curvatures are −1 everywhere.

Lemma 2.27. Let M be a complex manifold of dimension m and let Ψ be a pseudo
volume form on M such that Ric(Ψ) is positive, and such that there exists a
constant c > 0 satisfying cG(Ψ) ≥ 1. Then for all holomorphic mappings f :
Cm(0; r) −→M , we have

f∗Ψ ≤ c

(
m + 1

4π

)m

Θr.

Proof. See [207], Theorem 4.4; [208], Corollary 2.4.15; or [174]. �

For r = 1, we write Θ for Θ1. The unit ball Cm(0; 1) will be denoted Bm.

Definition 2.28. Let M be a complex manifold of dimension m. Let A be a Borel
measurable subset of M . A holomorphic chain α for A is the collection of holo-
morphic mappings fi ∈ Hol(Bm, M) and open sets Ui in Bm for i = 1, 2, . . . such
that

A ⊂
⋃
i

fi(Ui).

The space M is said to be covered by holomorphic chains if there exists a holo-
morphic chain for M . Then the Kobayashi measure µM is defined by

µM (A) = inf
α

∞∑
i=1

µΘ(Ui), (2.2.8)

where the infimum is taken for all holomorphic chains α for A, where µΘ is the
regular measure on Bm induced by Θ. If µM (W ) > 0 for all non-empty open sets
W in M , then M is called measure hyperbolic.
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Since the open sets generate the σ-algebra of Borel measurable sets, it follows
that if B is measurable in Bm and f is holomorphic, then f(B) is measurable.
Furthermore, a regular measure satisfies the property that the measure of a set is
the infimum of the measures of the open sets containing it. Hence in the definition
of the Kobayashi measure, instead of taking open sets Ui we could take measurable
sets Bi in Bm. A basic fact is that if µ is a measure on a complex manifold M of
dimension m such that every holomorphic mapping f : Bm −→M satisfies

µ(f(B)) ≤ µΘ(B)

for every Borel measurable set B in Bm, then µ ≤ µM (cf. [207], Proposition 1.5;
[208], Theorem 7.2.6). Thus the complex manifold M satisfying the conditions in
Lemma 2.27 is measure hyperbolic (cf. [208], Theorem 7.4.1).

We let
n →div ∞

denote the property that n tends to infinity, ordered by divisibility. In speaking of
estimates, we use the standard notation of number theorists

A(n)� B(n), n →∞

to mean that there is a constant c such that A(n) ≤ cB(n) for all sufficiently large
n. Here, sufficiently large may mean with respect to the divisibility ordering. We
recall two lemmas from basic algebraic geometry (cf. [208], [228]).

Lemma 2.29. Let X be a variety of dimension n. Let L be a holomorphic line
bundle on X. Then

dimH0(X,O(Lm)) � mn, m→∞.

Proof. Let H be an ample line bundle such that E = L⊗H is ample. If m is large
enough so that Hm is very ample, then the exact sequence of sheaves (cf. [127],
p. 139)

0 −→ O(Lm) −→ O(Em) −→ O(Em|D) −→ 0

where D is a smooth effective divisor of X obtained as the zero set of a general
holomorphic section of Hm, and Em|D denotes the restriction of Em to D, induces
an exact sequence

0 −→ H0(X,O(Lm)) −→ H0(X,O(Em)) −→ H0(D,O(Em|D))

which further implies

dimH0(X,O(Lm)) ≤ dimH0(X,O(Em)).

Furthermore, since Em is ample, then Kodaira’s vanishing theorem implies

dimH0(X,O(Em)) = χ(X, Em).
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On the other hand (Hirzebruch [161], p. 150), we have

χ(X, Em) = a0 + a1m + · · ·+ anmn,

where a0, a1, . . . , an are rational numbers determined by characteristic classes of
X and E, thus proving the lemma. �
Lemma 2.30. Let X be a non-singular variety of dimension n. Let L be a holo-
morphic line bundle on X such that

dimH0(X,O(Lm)) � mn, m →div ∞.

Then for a very ample line bundle E on X,

dimH0(X,O(Lm ⊗ E∗)) � mn, m →div ∞,

in particular, H0(X,O(Lm ⊗ E∗)) �= {0}.

Proof. Let D be a non-singular effective divisor of X obtained as the zero set of a
general holomorphic section of E. We have the exact sequence of sheaves

0→ O(Lm ⊗ E∗)→ O(Lm)→ O(Lm|D)→ 0,

whence the exact cohomology sequence

0 → H0(X,O(Lm ⊗ E∗))→ H0(X,O(Lm)) → H0 (D,O(Lm|D)) .

Applying Lemma 2.29 to this invertible sheaf on D we conclude that the dimension
of the term on the right is � mn−1, so for m large

dimH0(X,O(Lm ⊗ E∗)) � mn,

and in particular is positive for m large, whence the lemma follows. �

Conversely, if L is a holomorphic line bundle on X , and if E is a very ample
line bundle on X such that

H0(X,O(Lm ⊗ E∗)) �= {0}

for some positive integer m, then L is pseudo ample (see [208], Lemma 7.3.7). In
fact, let α be a non-trivial holomorphic section of Lm ⊗ E∗ and set

ΓX = {αs | s ∈ Γ(X, E)} ⊂ Γ(X, Lm).

A holomorphic projective imbedding of X is well defined by using only the sub-
space ΓX , i.e., the sections of Lm that are divisible by α. The imbedding thus
obtained is none other than the imbedding ϕE obtained by using Γ(X, E). If we
use Γ(X, Lm), then we obtain only a meromorphic imbedding ϕLm of X into a
projective space.
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Theorem 2.31 (Kodaira [213], Kobayashi-Ochiai [210]). Let X be a non-singular
pseudo canonical variety. Then X admits a pseudo volume form Ψ with Ric(Ψ)
positive, and X is measure hyperbolic.

Proof. Set n = dimX . Since X is pseudo canonical, then

dimH0(X,O(Km
X )) � mn

for m large, so we can apply Lemma 2.30. Let L be a very ample line bundle on X .
We shall obtain a projective imbedding of X by means of some of the sections in
H0(X,O(Km

X )). By Lemma 2.30, for m large there exists a non-trivial holomorphic
section α of Km

X ⊗ L∗. Let {s0, . . . , sN} be a basis of H0(X,O(L)). Then

α⊗ s0, . . . , α⊗ sN

are linearly independent sections of H0(X,O(Km
X )). Since [s0, . . . , sN ] gives a pro-

jective imbedding of X into PN because L is assumed very ample, it follows that
α⊗ s0, . . . , α⊗ sN vanish simultaneously only at the zeros of α, but nevertheless
give the same projective imbedding, which is determined only by their ratios. Then

αα ⊗
N∑

j=0

sj ⊗ sj

may be considered as a section of

(Km
X L∗)L ⊗ (K

m

XL
∗
)L = Km

X ⊗K
m

X ,

and can be locally expressed in terms of complex coordinates in the form

|g(z)|2
N∑

j=0

|gj(z)|2Φ(z)⊗m,

where as usual Φ(z) is the standard Euclidean volume form on Cn, while g(z),
g0(z),. . . , gN (z) are local holomorphic functions representing α, s0, . . . , sN respec-
tively. Set

h(z) =

⎛
⎝ N∑

j=0

|gj(z)|2
⎞
⎠

1
m

.

Then there is a unique pseudo volume form Ψ on X which has the local expression

Ψ(z) = |g(z)| 2
m h(z)Φ(z).

Furthermore Ric(Ψ) is positive, because Ric(Ψ) is the pull-back of the Fubini-
Study form on PN by the projective imbedding. �
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Its converse is due to Burt Totaro [400] (or see Kobayashi [208]), that is, if
a non-singular projective variety X admits a pseudo volume form Ψ with Ric(Ψ)
positive, then X is pseudo canonical. In fact, take an open cover {Uj} of X with
holomorphic coordinates zj

1, . . . , zj
n on Uj , where n = dimX . We obtain a non-

vanishing holomorphic section of KX on each Uj :

ξj = dzj
1 ∧ · · · ∧ dzj

n.

According to (2.1.61), Ψ induces a “pseudo” metric κ = κΨ on KX such that

inξj ∧ ξj = |ξj |2κΨ.

Then our assumption on Ψ means

Ψ = hj |gj |2qinξj ∧ ξj ,

where hj is a positive C∞ function on Uj, q > 0 is some fixed rational number,
and gj is holomorphic not identically zero. Hence we have

|ξj |−2
κ = hj|gj |2q.

Write q = p/m for coprime positive integers p and m. If ξk = λjkξj on Uj ∩ Uk,
then

hm
j |gj |2p = |λjk|2mhm

k |gk|2p.

Define
χjk = λm

jk

(
gkg−1

j

)p
so that

h−m
j = |χjk|−2h−m

k .

Since gkg−1
j is a holomorphic function on Uj ∩Uk without zeroes, we can define a

line bundle H by the system of transition functions {χjk}. Then {h−m
j } define a

metric ρ on H such that

c1(H, ρ)|Uj = −ddc log h−m
j = mRic(Ψ)|Uj > 0,

that is, H is positive, and so H is ample. Hence E = H l is very ample for some
positive integer l. Since the transition functions for Kml

X ⊗E∗ are given by {λml
jk χ−l

jk}
and since

gpl
j = λml

jk χ−l
jkgpl

k ,

{gpl
j } represents a holomorphic section of Kml

X ⊗E∗. This shows that Γ(X, Kml
X ⊗

E∗) �= {0}. Therefore KX is pseudo ample according to the remark after Lem-
ma 2.30.
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2.2.3 Open problems

Problem 2.32. Let M be a projective algebraic variety. Determine which of the
following conditions are equivalent:

(1) M is Kobayashi hyperbolic;

(2) All subvarieties of M (including M itself ) are pseudo canonical;

(3) Every subvariety of M is measure hyperbolic;

(4) M is negatively curved;

(5) M is Brody hyperbolic.

Now we know that (1) ⇐⇒ (5). Kobayashi has shown that (4) implies (1);
otherwise all equivalences above remain unproved. He stated (1) =⇒ (4) as a
problem; other implications in the above list are conjectures of Lang.

Problem 2.33. Let M be a projective algebraic variety. Determine which of the
following conditions are equivalent:

(i) M is pseudo Kobayashi hyperbolic;

(ii) M is pseudo canonical;

(iii) M is measure hyperbolic;

(iv) There exists a pseudo volume form Ψ for which Ric(Ψ) > 0;

(v) M is pseudo Brody hyperbolic.

Currently what is known is that (ii)⇐⇒ (iv) (see Kodaira [213], Totaro [400]),
(ii) =⇒ (iii) (see Kobayashi-Ochiai [210]), (i) =⇒ (iii) (see Kobayashi [207]), and
(iii) =⇒ (ii) for surfaces (see Mori-Mukai [282]). Kobayashi [207] posed (iii) =⇒
(ii) as a problem; other implications are conjectures of Lang.

If M is a non-singular projective variety over C, Kobayashi and Ochiai [211]
conjectured that if M is hyperbolic then the canonical class KM is pseudo ample,
but Lang [232] made the stronger conjecture:

Conjecture 2.34. If M is non-singular and hyperbolic, then KM is ample.

Here we consider a non-singular hypersurface M of degree d in Pn(C). When
d ≤ n− 1, then M contains a line through every point (cf. [228]). The adjunction
formula immediately implies

KM =
(
KPn(C) ⊗ [M ]

)
|M = (H |M )d−n−1,

where H is the hyperplane line bundle on Pn(C). Then d ≥ n + 2 is precisely the
condition that makes the canonical bundle KM ample. When n ≥ 3, since the
Fermat hypersurface

xd
0 + · · ·+ xd

n = 0
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contains a line

z ∈ C �−→ [z, c1z, . . . , crz, cr+1, . . . , cn−1, 1] ∈ Pn(C),

where 1 ≤ r ≤ n− 2, and c1, . . . , cn−1 are numbers such that

1 + cd
1 + · · ·+ cd

r = 0, cd
r+1 + · · ·+ cd

n−1 + 1 = 0,

we see that in general the condition that M has ample canonical bundle does not
imply M hyperbolic. However, in 1970, S. Kobayashi ([207], p. 132) made the
following conjecture:

Conjecture 2.35. A generic hypersurface of degree ≥ 2n+1 of Pn(C) is hyperbolic,
and that its complement is complete hyperbolic.

This conjecture is still open, but there has been some progress on the exis-
tence of hyperbolic hypersurfaces of Pn(C). Examples of hyperbolic hypersurfaces
were constructed by R. Brody and M. Green [39], M. Zaidenberg [446], A.M. Nadel
[285], H.-K. Hà [138], M. McQuillan [266], J.-P. Demailly and J. El Goul [78], B.
Shiffman and M. Zaidenberg [348] in dimension 2, M. Shirosaki [353], C. Ciliberto
and M. Zaidenberg [62] in dimension 3, and finally by K. Masuda and J. Noguchi
[257], Y.T. Siu and S.K. Yeung [367], B. Shiffman and M. Zaidenberg [349], and
H. Fujimoto [108] in any dimension. J. El Goul [90] gave a construction of a hy-
perbolic surface of degree 14 and J.-P. Demailly [77] later reduced the degree in
El Goul’s construction to 11. Y.T. Siu and S.K. Yeung [367] also obtained an
elegant hyperbolic surface of degree 11 by using their generalized Borel lemma
(Theorem 4.34). M. Shirosaki [354] constructed a hyperbolic surface of degree 10.
H. Fujimoto [108] improved Shirosaki’s construction to give examples of degree 8.
J. Duval [86] gave hyperbolic surfaces of degree 6 in P3(C). We will introduce a
method constructing hyperbolic surfaces of lower degrees in Section 4.9.

2.3 Characteristic functions

In this section, we will define characteristic (or order) functions of meromor-
phic functions (or mappings) in Nevanlinna theory, which are the counterparts
of heights in number theory, and derive the corresponding first main theorem
from Jensen’s formula similar to the case in Section 1.8, the latter is an analogue
of the product formula in Section 1.4.

Recall that Cm is a parabolic manifold. By (2.1.78) and (2.1.79), a strict
unbounded parabolic exhaustion function τ on Cm is defined by

τ(z) = |z|2 =
m∑

j=1

|zj |2, z = (z1, . . . , zm) ∈ Cm. (2.3.1)
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Obviously, the center O = τ−1(0) of τ contains only one element 0. For the case
M = Cm, we will use the notations

Cm[0; r] = M [O; r], Cm[0; r; ϕ] = M [O; r; ϕ], Cm〈0; r; ϕ〉 = M〈O; r; ϕ〉,

and so on. Further, putting

zj = xj +
√
−1yj , j = 1, . . . , m,

we have

υ =
√
−1
2π

m∑
j=1

dzj ∧ dz̄j =
1
π

m∑
j=1

dxj ∧ dyj , (2.3.2)

and hence
υm =

m!
πm

dx1 ∧ dy1 ∧ · · · ∧ dxm ∧ dym.

Since the volume of ball Cm[0; r] of radius r > 0 in R2m is πmr2m

m! , we obtain

ς =
1

r2m

∫
Cm[0;r]

υm =
m!

πmr2m

∫
Cm[0;r]

dx1dy1 · · · dxmdym = 1. (2.3.3)

For r > s > 0, applying Stokes theorem to dσ = ωm = 0 on Cm[0; s, r], we have∫
Cm〈0;r〉

σ =
∫

Cm〈0;s〉
σ = ς = 1. (2.3.4)

Thus the volume of sphere Cm〈0; r〉 of radius r in R2m is 2πmr2m−1

m! .

Let ν be a multiplicity on Cm. For t > 0, the counting function nν is de-
fined by

nν(t) = t2−2m

∫
A[0;t]

νυm−1 (2.3.5)

where A = supp ν. Here if m = 1, we define

nν(t) =
∑

z∈A[0;t]

ν(z). (2.3.6)

Then nν(t) → nν(0) as t→ 0 and (cf. [380])

nν(t) =
∫

A(0;t)

νωm−1 + nν(0). (2.3.7)

If ν is non-negative, then nν increases. Fix r0 > 0. The valence function of ν is
defined by

Nν(r) = Nν(r, r0) =
∫ r

r0

nν(t)
dt

t
(r ≥ r0). (2.3.8)

Similarly, we can define nν(t) and Nν(r) for a multiplicity ν on a parabolic mani-
fold.
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Take f ∈M(Cm) and a ∈ P1. We will denote the counting function

nµa
f
(t) =

{
n
(
t, 1

f−a

)
if a ∈ C,

n(t, f) if a = ∞
(2.3.9)

and the valence function

Nµa
f
(r) =

{
N
(
r, 1

f−a

)
if a ∈ C,

N(r, f) if a = ∞.
(2.3.10)

If f �≡ 0, we have Jensen’s formula (cf. [396], [151], [128], [380]):

N

(
r,

1
f

)
−N(r, f) =

∫
Cm〈0;r〉

log |f |σ −
∫

Cm〈0;r0〉
log |f |σ. (2.3.11)

The following simple result can be derived directly by using Jensen’s formula.

Lemma 2.36. If f1 (�≡ 0) and f2 (�≡ 0) are meromorphic functions in Cm, then for
r > 0 we have

N

(
r,

1
f1f2

)
−N(r, f1f2) = N

(
r,

1
f1

)
+ N

(
r,

1
f2

)
−N(r, f1)−N(r, f2).

For every real number α ≥ 0, write

log+ α := max{0, logα} =

{
log α, α ≥ 1,

0, 0 ≤ α < 1.

If f ∈ M(Cm)− {0}, define the proximity function of f by

m(r, f) =
∫

Cm〈0;r〉
log+ |f |σ ≥ 0. (2.3.12)

The (Nevanlinna) characteristic function of f is defined by

T (r, f) = m(r, f) + N(r, f). (2.3.13)

Then we can rewrite the Jensen formula (2.3.11) as follows:

T

(
r,

1
f

)
= T (r, f)−

∫
Cm〈0;r0〉

log |f |σ. (2.3.14)

Take a ∈ C. By applying (2.3.14) to f − a, we have

T

(
r,

1
f − a

)
= T (r, f − a)−

∫
Cm〈0;r0〉

log |f − a|σ.
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Note that
T (r, f − a) ≤ T (r, f) + log+ |a|+ log 2,

and

T (r, f) = T (r, f − a + a)

≤ T (r, f − a) + log+ |a|+ log 2.

One obtains the first main theorem (cf. [292], [151], [128], [380])

m

(
r,

1
f − a

)
+ N

(
r,

1
f − a

)
= T (r, f) + O(1). (2.3.15)

Related to Zhang’s inequality (1.9.5), an interesting question is whether there ex-
ists a minimal positive constant r∗ such that when r0 > r∗, there is a positive
constant c(r0) which depends only on r0 such that for each non-constant mero-
morphic function f on C,

T (r, f) + T (r, 1− f) ≥ c(r0), r ≥ r0. (2.3.16)

Generally, we consider a meromorphic mapping f : Cm −→ P(V ), where V
is a Hermitian vector space of dimension n + 1 > 1. Let Ω be the Fubini-Study
form on P(V ). Then for t > 0,

Af (t) = t2−2m

∫
Cm[0;t]

f∗(Ω) ∧ υm−1 (2.3.17)

is just the spherical image of f . The (Ahlfors-Shimizu) characteristic function of
f is defined by

Tf(r) = Tf (r, r0) =
∫ r

r0

Af (t)
dt

t
(r ≥ r0). (2.3.18)

The (growth) order of the mapping f is defined by

Ord(f) = lim sup
r→+∞

log+ Tf(r)
log r

. (2.3.19)

If f̃ : Cm −→ V is a global representation of f , then f̃ induces a multiplicity µf̃ .
One has (cf. Stoll [384], (6.64))

Tf (r) =
∫

Cm〈0;r〉
log |f̃ |σ −

∫
Cm〈0;r0〉

log |f̃ |σ −Nµf̃
(r). (2.3.20)

In particular, if f̃ is reduced, then

Tf(r) =
∫

Cm〈0;r〉
log |f̃ |σ −

∫
Cm〈0;r0〉

log |f̃ |σ. (2.3.21)
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Further if f̃(0) �= 0, then limit r0 → 0 implies

Tf(r, 0) =
∫

Cm〈0;r〉
log |f̃ |σ − log |f̃(0)|. (2.3.22)

If f is not constant, then Af (t) > 0 when t > 0 and Tf (r) → ∞ as r → ∞ (see
Proposition 2.78).

Take a base e = (e0, . . . , en) of V and let

f̃ = f̃0e0 + · · ·+ f̃nen : Cm −→ V (2.3.23)

be a representation of the meromorphic mapping f : Cm −→ P(V ). The base e
is said to be allowable for f if f̃0 �≡ 0. Thus the jth coordinate function of f is
defined by

fj =
f̃j

f̃0

, j = 0, . . . , n. (2.3.24)

Lemma 2.37 ([386]). Let f : Cm −→ P(V ) be a meromorphic mapping and take a
base e = (e0, . . . , en) of V which is allowable for f . Let fj be the jth coordinate
function of f . Then

Tf(r) ≤
n∑

j=1

T (r, fj) + O(1), (2.3.25)

Tf(r) ≥ T (r, fj) + Nµ(f̃0,f̃j )
(r) + O(1), j ∈ Z[1, n], (2.3.26)

where µ(f̃0,f̃j)
is the multiplicity of the zero divisor D(f̃0,f̃j)

of (f̃0, f̃j).

Proof. Let f̃ = f̃0e0 + · · · + f̃nen : Cm −→ V be a reduced representation of f .
Then the inequality

µ0
f̃0
≤

n∑
j=1

µ∞
fj

(2.3.27)

holds on Cm − If . In fact, the estimate (2.3.27) holds obviously at z0 ∈ Cm − If

if f̃0(z0) �= 0. When f̃0(z0) = 0, an index i ∈ Z[1, n] exists such that f̃i(z0) �= 0
since If = f̃−1(0). Hence

µ0
f̃0

(z0) = µ∞
fi

(z0) ≤
n∑

j=1

µ∞
fj

(z0).

Now (2.3.27) implies

N

(
r,

1
f̃0

)
≤

n∑
j=1

N(r, fj). (2.3.28)
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Then

|f̃ |2 =

∣∣∣∣∣∣
n∑

j=0

f̃jej

∣∣∣∣∣∣
2

≤

⎛
⎝ n∑

j=0

|f̃j ||ej|

⎞
⎠2

≤ c

⎛
⎝ n∑

j=0

|f̃j |2
⎞
⎠ ≤ c|f̃0|2

⎛
⎝1 +

n∑
j=1

|fj |2
⎞
⎠ ,

where c =
∑n

j=0 |ej|2. By (2.3.21), we obtain

Tf(r) = Cm〈0; r; log |f̃ |〉 − Cm〈0; r0; log |f̃ |〉

≤
n∑

j=1

Cm〈0; r; log+ |fj |〉+ Cm〈0; r; log |f̃0|〉+ O(1). (2.3.29)

Further the Jensen formula (2.3.11) implies

N

(
r,

1
f̃0

)
= Cm〈0; r; log |f̃0|〉 − Cm〈0; r0; log |f̃0|〉.

Thus, by (2.3.28) and (2.3.29), we obtain

Tf (r) ≤
n∑

j=1

{m(r, fj) + N(r, fj)} + O(1) =
n∑

j=1

T (r, fj) + O(1),

which proves (2.3.25).
There exists a constant c′ > 0 such that for all ξ = x0e0 + · · ·+ xnen ∈ V we

have
|x0|2 + |x1|2 + · · ·+ |xn|2 ≤ c′|ξ|2.

Because fj = f̃j/f̃0, a representation (f̃0, f̃j) of fj : Cm −→ P1 is given. Hence
(2.3.20) yields

T (r, fj) + Nµ(f̃0,f̃j )
(r) = Cm

〈
0; r; log

√
|f̃0|2 + |f̃j|2

〉
+ O(1)

≤ Cm〈0; r; log |f̃ |〉+ O(1)
= Tf(r) + O(1),

and so (2.3.26) follows. �

Let f̃ be a reduced representation of f . Take a ∈ P(V ∗), α ∈ V ∗ such that
a = P(α). Suppose f(Cm) �⊆ Ë[a]. Then F = 〈f̃ , α〉 (�≡ 0) is holomorphic on Cm.
Write

µa
f = µ0

F .
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The counting function and the valence function of f for a are defined respec-
tively by

nf (r, a) = nµa
f
(r) (2.3.30)

and
Nf(r, a) = Nµa

f
(r). (2.3.31)

For r > 0, the proximity function (or compensation function) is defined by

mf (r, a) =
∫

Cm〈0;r〉
log

1
|f, a|σ ≥ 0. (2.3.32)

Then the first main theorem (cf. [128], [385]) states

Tf(r) = Nf (r, a) + mf (r, a)−mf (r0, a). (2.3.33)

The meromorphic mapping f : Cm −→ P(V ) is said to be linearly non-
degenerate, if f(Cm) �⊆ Ë[a] for all a ∈ P(V ∗). If f is linearly non-degenerate,
Lemma 2.17 implies ∫

a∈P(V ∗)

mf (r, a)Ωn(a) =
1
2

n∑
j=1

1
j

(r > 0). (2.3.34)

Then (2.3.33) and (2.3.34) give us the integral average theorem (cf. [295], [128],
[380])

Tf(r) =
∫

a∈P(V ∗)

Nf(r, a)Ωn(a) (r > r0). (2.3.35)

Since f is linearly non-degenerate, then f is not constant, and hence Tf (r) → ∞
as r →∞. The defect of f for a is defined by

δf (a) = lim inf
r→∞

mf (r, a)
Tf (r)

≥ 0. (2.3.36)

The first main theorem (2.3.33) implies

δf (a) = 1− lim sup
r→∞

Nf (r, a)
Tf(r)

≤ 1.

The integral average theorem (2.3.35) gives∫
a∈P(V ∗)

δf (a)Ωn(a) = 0. (2.3.37)

Hence δf (a) = 0 for almost all a ∈ P(V ∗). As a direct consequence, one obtains
the Casorati-Weierstrass theorem (cf. Griffiths-King [128], Stoll [384], p. 141)
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Theorem 2.38. A linearly non-degenerate meromorphic mapping from Cm into a
complex projective space intersects almost all hyperplanes.

Next we compare the functions Tf(r) and T (r, f) for f ∈M(Cm). Obviously,
we have

Nf (r, a) =

{
N
(
r, 1

f−a

)
if a ∈ C,

N(r, f) if a =∞.
(2.3.38)

By applying the first main theorem (2.3.33) to a =∞ and (1.5.6), we have

Tf(r) = N(r, f) +
∫

Cm〈0;r〉
log
√

1 + |f |2σ −
∫

Cm〈0;r0〉
log
√

1 + |f |2σ. (2.3.39)

It is easy to show the inequality

m(r, f) ≤
∫

Cm〈0;r〉
log
√

1 + |f |2σ ≤ m(r, f) + log 2.

Thus we obtain
Tf(r) = T (r, f) + O(1). (2.3.40)

Therefore the defect of f for a can be calculated by

δf (a) = 1− lim sup
r→∞

N
(
r, 1

f−a

)
T (r, f)

. (2.3.41)

An element a ∈ P1 is said to be a Picard (exceptional ) value of f if a �∈ f(Cm).
Obviously, δf (a) = 1 if a is a Picard value of f .

2.4 Growth of rational functions

Corresponding to heights of morphisms discussed in Section 1.9, characteristic
functions of rational functions (or mappings) have similar properties. For example,
compare the formula (1.9.2) with (2.4.6).

Take ξ ∈ Cm−{0}. Define a holomorphic mapping jξ : C −→ Cm by jξ(z) =
zξ and write

Fξ = F ◦ jξ

for a function F in Cm. The Crofton formula for divisor (cf. [375]) reads as follows:

Theorem 2.39. Take 0 < R ≤ +∞. Let D be a divisor on Cm(0; R) and let F :
Cm(0; R) −→ C be a function such that µDFωm−1 is integrable over A = suppD.
Then

J(ξ) =
∑

0<|z|<R

µj∗
ξ
D(z)Fξ(z)
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converges for almost all ξ ∈ Cm〈0; 1〉 such that

J(eiϕξ) = J(ξ), i =
√
−1, ϕ ∈ R.

A function J̈ exists almost everywhere on Pm−1 such that J̈ ◦P = J almost every-
where on Cm〈0; 1〉. Moreover,∫

A

Fωm−1 =
∫

Cm〈0;1〉
Jσ =

∫
Pm−1

J̈Ωm−1,

where Ω is the Fubini-Study form on Pm−1.

For 0 < r < R, the Crofton formula and (2.3.7) imply

nµD (r) =
∫

Cm〈0;1〉
nµj∗

ξ
D

(r)σ(ξ),

and hence
NµD (r) =

∫
Cm〈0;1〉

Nµj∗
ξ

D
(r)σ(ξ). (2.4.1)

Let f : Cm −→ P(V ) be a non-degenerate meromorphic mapping. Take
a ∈ P(V ∗). Note that

fξ = f ◦ jξ : C −→ P(V ), ξ ∈ Cm − {0}

is a holomorphic mapping. By (2.4.1), one obtains (cf. [379])

Nf (r, a) =
∫

Cm〈0;1〉
Nfξ

(r, a)σ(ξ).

The following result is due to Stoll [378]:

Lemma 2.40. Take r > 0. Let F : Cm〈0; r〉 −→ C be a function. Assume that Fσ
is integrable over Cm〈0; r〉. Then∫

Cm〈0;r〉
Fσ =

∫
Cm〈0;1〉

(
1
2π

∫ 2π

0

Fξ

(
reiϕ

)
dϕ

)
σ(ξ).

By Lemma 2.40, one obtains (cf. [379])

mf (r, a) =
∫

Cm〈0;1〉
mfξ

(r, a)σ(ξ).

The first main theorem (2.3.33) implies

Tf(r, r0) =
∫

Cm〈0;1〉
Tfξ

(r, r0)σ(ξ). (2.4.2)
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Assume that f is holomorphic at 0 ∈ Cm. Then there exists a reduced rep-
resentation f̃ : Cm −→ V with f̃(0) �= 0. For ξ ∈ Cm − {0}, f̃ξ = f̃ ◦ jξ is a
representation of fξ. Hence (2.3.20) and the above arguments show

Tfξ
(r, 0) ≤ 1

2π

∫ 2π

0

log |f̃ξ

(
reiϕ

)
|dϕ− log |f̃(0)|. (2.4.3)

A non-negative pluri-subharmonic function ur on Cm is defined by

ur(ξ) =
1
2π

∫ 2π

0

log |f̃ξ

(
reiϕ

)
|dϕ− log |f̃(0)|.

Then (2.3.22) and Lemma 2.40 yield

Tf (r, 0) =
∫

Cm〈0;1〉
urσ.

The following result is due to Kneser [205]:

Theorem 2.41. Take 0 < r < R ≤ +∞ and let θ be a number with 0 < θ < 1. Let
u be a pluri-subharmonic function on Cm(0; R). Then

u(ζ) ≤ r2m−2

∫
Cm〈0;r〉

u(η)
r2 − |ζ|2
|η − ζ|2m

σ(η), ζ ∈ Cm(0; r).

If u is pluri-harmonic, the equality holds. If ζ ∈ Cm[0; θr], then

u(ζ) ≤ 1 + θ

(1 − θ)2m−1

∫
Cm〈0;r〉

u+σ,

where u+ = max{0, u}.

Take θ ∈ R with 0 < θ < 1 and ξ ∈ Cm[0; 1] − {0}. Then (2.4.3) and
Theorem 2.41 imply the following inequality (cf. [379]):

Tfξ
(r, 0) ≤ 1 + θ

(1− θ)2m−1
Tf

(r

θ
, 0
)

. (2.4.4)

Lemma 2.42 (cf. [302]). Let P be a non-constant polynomial in Cm. We have

T (r, P ) = deg(P ) log r + O(1). (2.4.5)

Proof. Write d = deg(P ). Then there exists a positive constant C such that

|P (ζ)| ≤ C|ζ|d

holds when |ζ| > 1. Hence for r > 1, we obtain

T (r, P ) = m(r, P ) ≤ d log r + O(1).
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On the other hand, there exists a homogeneous polynomial H of degree d
such that deg(P −H) < d. Take ξ ∈ Cm〈0; 1〉 with H(ξ) �= 0. Then Pξ = P ◦ jξ is
a polynomial of degree d in C. It is well known that (cf. [168])

T (r, Pξ) = d log r + O(1).

However, the equality (2.4.2) and (2.3.40) imply

T (r, P ) =
∫

Cm〈0;1〉
T (r, Pξ)σ(ξ) + O(1) = d log r + O(1).

Hence Lemma 2.42 follows. �

If Q is another non-constant polynomial in Cm such that P and Q are co-
prime, by using (2.3.40), (2.3.21), (2.4.2) and the method in Lemma 2.42 we can
prove that

T

(
r,

P

Q

)
= max{deg(P ), deg(Q)} log r + O(1) (2.4.6)

holds.

An effective divisor D on Cm is said to be algebraic if D is the zero divisor
of a polynomial. For the multiplicity ν of an effective divisor on Cm, define

nν(∞) = lim
r→∞nν(r) = lim

r→∞
Nν(r)
log r

.

The following fact is due to Rutishauser [332] and Stoll [377].

Proposition 2.43. An effective divisor D on Cm is algebraic if and only if the
counting function nµD is bounded. Moreover, if nµD (∞) = n < ∞, then D is the
divisor of a polynomial of degree n.

Lemma 2.44. Let f : Cm −→ Pn be a meromorphic mapping with a reduced rep-
resentative (f0, f1, . . . , fn) : Cm −→ Cn+1 defined by polynomials f0, f1, . . . , fn in
Cm. Then

Af (∞) = lim
r→∞Af (r) = lim

r→∞
Tf (r)
log r

= max
0≤j≤n

{deg(fj)}. (2.4.7)

Proof. By using (2.3.21), it is easy to show the following inequality:

Tf(r) ≤ max
0≤j≤n

{deg(fj)} log r + O(1).

The inequality (2.3.26) in Lemma 2.37 yields

Tf (r) ≥ T

(
r,

fj

f0

)
+ Nµ(f0,fj )(r) + O(1), j = 1, . . . , n.
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We can choose polynomials fj0, f0j and hj such that fj0, f0j are coprime, and

fj = hjfj0, f0 = hjf0j .

Thus (2.4.6) implies

T

(
r,

fj

f0

)
= max{deg(fj0), deg(f0j)} log r + O(1).

Note that µ(f0,fj) = µ0
hj

. By Proposition 2.43, we have

lim
r→∞

Nµ(f0,fj)(r)

log r
= n

(
∞,

1
hj

)
= deg(hj). (2.4.8)

Therefore, for j = 1, . . . , n, we obtain

lim
r→∞

Tf(r)
log r

≥ max{deg(fj0), deg(f0j)}+ deg(hj) = max{deg(fj), deg(f0)},

and so (2.4.7) follows. �

The following more general theorem given in [170] is essentially due to Valiron
[406].

Theorem 2.45. Let f(z) be a non-constant meromorphic function in Cm. Take

{a0, . . . , ap, b0, . . . , bq} ⊂ M(Cm)

with ap �= 0 and bq �= 0 such that the rational function in w,

R(z, w) =

∑p
j=0 aj(z)wj∑q
j=0 bj(z)wj

, (2.4.9)

is irreducible. Then the function Rf (z) = R(z, f(z)) satisfies the estimation

T (r, Rf ) = max{p, q}T (r, f) + O

⎛
⎝ p∑

j=0

T (r, aj) +
q∑

j=0

T (r, bj)

⎞
⎠ . (2.4.10)

Proof. See A.Z. Mokhon’ko [273], F. Gackstatter and I. Laine [111], P.C. Hu, P.
Li and C. C. Yang [168]. �

2.5 Lemma of the logarithmic derivative

From the Poisson-Jensen formula (see Theorem 7.17), A. Gol’dberg and A. Grin-
shtein [114] estimated sharply growth of logarithmic derivatives of meromorphic
functions in C.
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Lemma 2.46. Let f be a non-constant meromorphic function in C, and let 0 <
α < 1. Then, for r, ρ ∈ R+ with r < ρ, we have

1
2π

∫ 2π

0

∣∣∣∣f ′(reiθ)
f(reiθ)

∣∣∣∣α dθ ≤
{

ρ

r(ρ − r)

(
m(ρ, f) + m

(
ρ,

1
f

))}α

+
2 + 23−α

cos απ
2

⎧⎨
⎩

n(ρ, f) + n
(
ρ, 1

f

)
r

⎫⎬
⎭

α

.

For a meromorphic function f in Cm, following Stoll [375] (or Biancofiore
and Stoll [24]) one restricts it to a complex line of Cm passing through the origin,
applies the result of Gol’dberg and Grinshtein, and then averages over the set of
all complex lines. Z. Ye [443] proved the following fact (or cf. [168]):

Lemma 2.47. Let ν = (ν1, . . . , νm) ∈ Zm
+ be a multi-index with length |ν| = ν1 +

· · ·+ νm. Let f be a non-constant meromorphic function in Cm. Then for any α
with 0 < α|ν| < 1

2 , there is a constant C > 1 such that for any r0 < r < ρ < R,
we have ∫

Cm〈0;r〉

∣∣∣∣∂νf

f

∣∣∣∣α σ ≤ C

{(ρ

r

)2m−1 T (R, f)
ρ− r

}α|ν|
.

Proof of the following lemma can be found in Hinkkanen [159] (also see [295],
[151]).

Lemma 2.48. Let ϕ(r) and ψ(r) be positive non-decreasing functions defined for
r ≥ r1 > 0 and r ≥ r2 > 0, respectively, such that∫ ∞

r1

dr

ϕ(r)
=∞,

∫ ∞

r2

dr

rψ(r)
<∞. (2.5.1)

Let T (r) be a positive non-decreasing function defined for r ≥ r3 ≥ r1 and T (r) ≥
r2. Then if C is real with C > 1, one has

T

(
r +

ϕ(r)
ψ(T (r))

)
≤ CT (r) (2.5.2)

whenever r ≥ r3 and r �∈ E, where∫
E

dr

ϕ(r)
≤ 1

ψ(w)
+

C

C − 1

∫ ∞

w

dr

rψ(r)
<∞ (2.5.3)

and w = max{r2, T (r3)}.

Let a and b be real-valued functions on R+. We will use the notation

‖ a(r) ≤ b(r)
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to denote that the inequality a(r) ≤ b(r) holds as r → ∞ outside of a possible
exceptional set E with

∫
E

dr/ϕ(r) < ∞. Next we assume

ϕ(r) = O(r) (2.5.4)

and put

R = r +
ϕ(r)

ψ(T (r))
, ρ =

R + r

2
= r +

ϕ(r)
2ψ(T (r))

. (2.5.5)

Lemma 2.48 implies

‖ T (R) = T

(
r +

ϕ(r)
ψ(T (r))

)
≤ CT (r). (2.5.6)

On the other hand, for all large r,

ρ

r
= O(1),

1
ρ− r

=
2ψ(T (r))

ϕ(r)
. (2.5.7)

Hence we have

‖
(ρ

r

)2m−1 T (R)
ρ− r

= O

(
T (r)ψ(T (r))

ϕ(r)

)
. (2.5.8)

We usually choose the functions ψ and ϕ as follows

ψ(r) = (log r)1+ε (ε > 0), ϕ(r) = r. (2.5.9)

Thus the inequality (2.5.8) assumes the following form:

‖
(ρ

r

)2m−1 T (R)
ρ− r

= O

(
T (r)(log T (r))1+ε

r

)
. (2.5.10)

The lemma of logarithmic derivative due to Nevanlinna [292] and Vitter [414] can
be improved as follows:

Lemma 2.49. Let ψ and ϕ be defined as in (2.5.1) satisfying ϕ(r) = O(r) and as-
sume that f is a non-constant meromorphic function in Cm. Let ν = (ν1, . . . , νm) ∈
Zm

+ be a multi-index. Then

‖ m

(
r,

∂νf

f

)
≤ |ν| log+ T (r, f)ψ(T (r, f))

ϕ(r)
+ O(1).

Proof. By the concavity of the logarithmic function and Lemma 2.48, we obtain

m

(
r,

∂νf

f

)
≤ 1

α
log+ Cm

〈
0; r;

∣∣∣∣∂νf

f

∣∣∣∣α
〉

+ O(1)

≤ |ν| log+

((ρ

r

)2m−1 T (R, f)
ρ− r

)
+ O(1) (2.5.11)

for any R > ρ > r > r0. Therefore the lemma follows by applying the estimate
(2.5.8) to the characteristic function T (R, f). �
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If one applies the estimate (2.5.10) to T (R, f), one obtains the following form
of the lemma of the logarithmic derivative (cf. [443]):

Lemma 2.50. Assume that f is a non-constant meromorphic function in Cm. Let
ν = (ν1, . . . , νm) ∈ Zm

+ be a multi-index. Then for any ε > 0,

‖ m

(
r,

∂νf

f

)
≤ |ν| log+ T (r, f) + |ν|(1 + ε) log+ log T (r, f) + O(1).

Take multi-indices νi ∈ Zm
+ (i = 0, 1, . . . , n) with ν0 = 0 and |νi| > 0 (i =

1, . . . , n). For meromorphic functions f0, . . . , fn in Cm, denote the generalized
Wronskian determinant with respect to multi-indices νi ∈ Zm

+ (i = 1, . . . , n) by

W (f0, . . . , fn) = Wν1···νn (f0, . . . , fn) =

∣∣∣∣∣∣∣∣
f0 f1 · · · fn

∂ν1f0 ∂ν1f1 · · · ∂ν1fn

. . . . . . . . . . . . . . . . . . . . . . . . . .
∂νnf0 ∂νnf1 · · · ∂νnfn

∣∣∣∣∣∣∣∣ ,
(2.5.12)

and define the generalized logarithmic Wronskian

S(f0, . . . , fn) = Sν1···νn(f0, . . . , fn) =
W (f0, . . . , fn)

f0 · · · fn
. (2.5.13)

Following Vitter [414] and Fujimoto [106], first of all, we introduce some basic
properties of generalized Wronskians.

Lemma 2.51 (cf.[414], [106]). Let f0, f1, . . . , fn be linearly independent meromor-
phic functions in Cm. Write f = (f0, f1, . . . , fn). Then there are multi-indices
νi ∈ Zm

+ (i = 1, . . . , n) such that 0 < |νi| ≤ i and f, ∂ν1f, . . . , ∂νnf are linearly
independent over Cm.

Proof. Set F0 = {f}, and for any positive integer k, write

Fk = {∂νf | ν ∈ Zm
+ , |ν| = k}.

We first claim that there is at least one element in F1 which is independent of f .
Assume, to the contrary, that ∂zj f and f are linearly dependent for j = 1, . . . , m,
that is, there exist constants cj such that

∂zj f = cjf, j = 1, . . . , m. (2.5.14)

By using (2.5.14) and induction, it follows that any g ∈
⋃∞

k=1 Fk and f are linearly
dependent. Take z0 = (z01, . . . , z0m) ∈ Cm such that µ∞

fi
(z0) = 0 (i = 0, 1, . . . , n).

Then f has the Taylor expansion near z0,

f(z) = f(z0) +
m∑

j=1

∂zj f(z0)(zj − z0j) + · · ·

= f(z0) + f(z0)
m∑

j=1

cj(zj − z0j) + · · · ,
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where z = (z1, . . . , zm), that is, f(z) = f(z0)h(z) for a holomorphic function h
near z0. Hence

fi(z) = fi(z0)h(z), i = 0, 1, . . . , n,

which implies that f0, f1, . . . , fn are linearly dependent in a neighborhood of z0,
and therefore in Cm by the identity theorem. This is a contradiction. Hence the
claim is proved.

Next suppose that

f, ∂ν1f, . . . , ∂νsf (|νi| ≤ i, 1 ≤ s < n)

are linearly independent over Cm. We will prove that there exists νs+1 ∈ Zm
+ such

that |νs+1| ≤ s+1 and f, ∂ν1f, . . . , ∂νsf, ∂νs+1f are linearly independent. Assume,
to the contrary, that the claim is false. Then f, ∂ν1f, . . . , ∂νsf forms a maximal
linearly independent set in

⋃s+1
k=0 Fk, and hence in

⋃∞
k=0 Fk by induction. Thus

the Taylor expansion of f at the point z0 ∈ Cm gives

f(z) = f(z0)h0(z) + ∂ν1f(z0)h1(z) + · · ·+ ∂νsf(z0)hs(z),

where hi (i = 0, . . . , s) are holomorphic functions near z0. In particular, we have

fi(z) = fi(z0)h0(z) + ∂ν1fi(z0)h1(z) + · · ·+ ∂νsfi(z0)hs(z), i = 0, . . . , n.

Hence f0, f1, . . . , fn are linearly dependent in a neighborhood of z0, and so in Cm

by the identity theorem. This is a contradiction. Hence the lemma is proved. �

According to the proof of Lemma 2.51, we can choose carefully the multi-
indices νi ∈ Zm

+ such that they satisfy the following properties:

Corollary 2.52 (cf. [106]). Let f0, f1, . . . , fn be linearly independent meromorphic
functions in Cm. Write f = (f0, f1, . . . , fn). Then there are multi-indices νi ∈ Zm

+

such that
0 < |νi| ≤ i (i = 1, . . . , n), |ν1| ≤ · · · ≤ |νn|,

f, ∂ν1f, . . . , ∂νnf are linearly independent over Cm, and we have the partition

{ν1, . . . , νn} = I1 ∪ I2 ∪ · · · ∪ Is (1 ≤ s ≤ n)

such that
∅ �= Ik ⊂ {ν ∈ Zm

+ | |ν| = k}, k = 1, . . . , s,

and when 1 ≤ k < s, each element in {∂νf | ν ∈ Zm
+ , |ν| = k, ν �∈ Ik} can be

expressed as a linear combination of the family {f, ∂νf | ν ∈ I1 ∪ I2 ∪ · · · ∪ Ik}.
For such multi-indices, the identity

W (hf0, . . . , hfn) = hn+1W (f0, . . . , fn)

holds for any non-zero meromorphic function h on Cm.
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Berenstein, Chang and Li [19] proved the following result:

Lemma 2.53. Let f0, f1, . . . , fn be n + 1 meromorphic functions in Cm. Assume
that there are λ ∈ Jn

n−1 and multi-indices νi ∈ Zm
+ with 0 < |νi| ≤ i, 1 ≤ i ≤ n− 1

such that
Wν1···νn−1(fλ(0), fλ(1), . . . , fλ(n−1)) �≡ 0.

Assume that for all 0 ≤ i ≤ n− 1, 1 ≤ j ≤ m, one has

Wν1···νn−1,νi+ιj(f0, f1, . . . , fn−1, fn) ≡ 0,

where ∂ν0 = 1, ιj = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zm
+ in which 1 is the jth component of

ιj. Then f0, f1, . . . , fn are linearly dependent.

By Lemma 2.53, we can choose the subset Is in Corollary 2.52 such that

Wν1···νn (f0, . . . , fn) �≡ 0.

If #Is = 1 in Corollary 2.52, then νn ∈ Is, and Lemma 2.53 shows that we may
choose νn such that νn = ν + ιj for some ν ∈ Is−1, j ∈ Z[1, m].

From now on, we will assume that the multi-indices νi ∈ Zm
+ in Corollary 2.52

satisfy the above property. Set

l = |ν1|+ · · ·+ |νn|, w = |νn|. (2.5.15)

The integers l and w will be called the (Wronskian) index and the Wronskian
degree of the family {f0, f1, . . . , fn}, respectively. Obviously, the numbers w and l
satisfy the following properties:

1 ≤ w ≤ n ≤ l ≤ n(n + 1)
2

. (2.5.16)

In particular, if m = 1, we have

w = n, l =
n(n + 1)

2
. (2.5.17)

Set

ξi = (ξi1, . . . , ξin) =
(

f0

fi
,
f1

fi
, . . . ,

fi−1

fi
,
fi+1

fi
, . . . ,

fn

fi

)
, i = 0, 1, . . . , n.

Denote the union of the sets of poles of the ξi’s by

Pf =
n⋃

i=0

n⋃
j=1

ξ−1
ij (∞),
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and define

Ji =

⎛
⎜⎜⎝

∂z1ξi1 ∂z1ξi2 · · · ∂z1ξin

∂z2ξi1 ∂z2ξi2 · · · ∂z2ξin

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂zmξi1 ∂zmξi2 · · · ∂zmξin

⎞
⎟⎟⎠ ,

γ = max
z∈Cm−Pf

max
0≤i≤n

rank (Ji(z)) . (2.5.18)

Note that
W(f0, f1, . . . , fn) = (−1)ifn+1

i W(1, ξi1, . . . , ξin).

Then there exist integers j1, . . . , jγ with 1 ≤ j1 < · · · < jγ ≤ m such that
f, ∂zj1

f, . . . , ∂zjγ
f are linearly independent. Thus the multi-indices νi ∈ Zm

+ (i =
1, . . . , n) satisfy

|νi| = 1 (1 ≤ i ≤ γ), 2 ≤ |νi| ≤ i− γ + 1 (γ + 1 ≤ i ≤ n), (2.5.19)

and hence

w ≤ n− γ + 1, l ≤ γ +
(n− γ) (n− γ + 3)

2
. (2.5.20)

Lemma 2.47 implies directly the following result:

Lemma 2.54 (cf. [168]). Let f0, . . . , fn be non-constant meromorphic functions in
Cm. Assume that there exists a positive non-decreasing function T (r) in R+ such
that

T (r, fj) = O(T (r)), j = 0, . . . , n.

Then for any real number α with 0 < α|νi| < 1
2(n+1) , there is a constant C > 1

such that for any r0 < r < ρ < R, we have

Cm 〈0; r; |S(f0, . . . , fn)|α〉 ≤ C

{(ρ

r

)2m−1 T (R)
ρ− r

}lα

.

Further we can easily get the following lemma from Lemma 2.54.

Lemma 2.55 (cf. [168]). Given a family F = {f0, . . . , fq} of meromorphic functions
in Cm such that q ≥ n and W(fλ(0), . . . , fλ(n)) �≡ 0 for some λ ∈ Jq

n. Assume that
there exists a positive non-decreasing function T (r) in R+ such that

T (r, fj) = O(T (r)), j = 0, . . . , q.

Then for any r0 < r < ρ < R, we have

Cm

〈
0; r; log

∑
λ∈Jq

n

|S(fλ(0), . . . , fλ(n))|
〉
≤ l log

{(ρ

r

)2m−1 T (R)
ρ− r

}
+ O(1).

In particular, if T (r) = O(rµ) for some µ > 0, we have

Cm

〈
0; r; log

∑
λ∈Jq

n

|S(fλ(0), . . . , fλ(n))|
〉
≤ l(µ− 1) log r + O(1).
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2.6 Second main theorem

To state the second main theorem in Nevanlinna theory, we need some notation.
Let V be a complex vector space of dimensions n + 1 ≥ 1. We consider a linearly
non-degenerate meromorphic mapping f : Cm −→ P(V ). Take an orthonormal
basis e = (e0, . . . , en) of V and let

f̃ = f̃0e0 + · · ·+ f̃nen : Cm −→ V

be a reduced representation of f . Since f is linearly non-degenerate, it is equivalent
to the fact that f̃0, . . . , f̃n are linearly independent in Cm. Set

fj =
f̃j

f̃0

, j = 0, . . . , n. (2.6.1)

By Corollary 2.52, there are multi-indices νi ∈ Zm
+ (i = 1, . . . , n) such that 0 <

|νi| ≤ i and
W(f0, . . . , fn) = Wν1···νn(f0, . . . , fn) �≡ 0.

The multi-indices νi ∈ Zm
+ in Corollary 2.52 do not depend on the choice of

a reduced representation f̃ of f . The index l = |ν1| + · · · + |νn| of the family
{f0, . . . , fn} will be called the (Wronskian) index of f . The number |νn| is said to
be the Wronskian degree of f .

Let γ be the rank of f . Then 1 ≤ γ ≤ min{m, n}. According to Lemma 2.51
and Corollary 2.52, the multi-indices νi ∈ Zm

+ (i = 1, . . . , n) satisfy

|νi| = 1 (1 ≤ i ≤ γ), 2 ≤ |νi| ≤ i− γ + 1 (γ + 1 ≤ i ≤ n), (2.6.2)

and hence
w ≤ n− γ + 1, l ≤ γ +

(n− γ) (n− γ + 3)
2

. (2.6.3)

The ramification term

NRam(r, f) = N

(
r,

1
W(f̃0, . . . , f̃n)

)
(2.6.4)

is well defined with respect to the multi-indices νi ∈ Zm
+ in Corollary 2.52.

In particular, if f is a non-constant meromorphic function in C, one can find
two entire functions g and h without common zeros such that hf = g. Hence

f̃ = (h, g) : C −→ C2 − {0}

is a reduced representative of f . It follows that

W(h, g) = hg′ − gh′ = h2f ′.
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Therefore we have

NRam(r, f) = 2N(r, f)−N(r, f ′) + N

(
r,

1
f ′

)
. (2.6.5)

Now we state and prove the second main theorem (cf. [295], [151], [384], [414],
[159], [443]).

Theorem 2.56. Let f : Cm −→ P(V ) be a linearly non-degenerate meromorphic
mapping and let A = {a0, a1, . . . , aq} be a family of points aj ∈ P(V ∗) in general
position. Let l be the index of f . Then

(q − n)Tf(r) ≤
q∑

j=0

Nf (r, aj)−NRam(r, f)

+l log
{(ρ

r

)2m−1 Tf (R)
ρ− r

}
+ O(1)

holds for any r0 < r < ρ < R, and hence for any ε > 0,

(q − n)Tf(r) ≤
q∑

j=0

Nf (r, aj)−NRam(r, f)

+l {log Tf(r) + (1 + ε) log log Tf (r) − log r} + O(1)

holds for all large r outside a set E with
∫

E d log r < ∞. In particular, if f is of
finite order λ, then for any ε > 0, one has

(q − n)Tf(r) ≤
q∑

j=0

Nf (r, aj)−NRam(r, f)

+l(λ + ε− 1) log r + O(1).

Proof. We prove Theorem 2.56 for the case q ≥ n. For the case 0 ≤ q < n, see the
next section. Take ãi ∈ V ∗ − {0} with |ãi| = 1 and P(ãi) = ai. Write

ãi = ãi0ε0 + · · ·+ ãinεn, i = 0, . . . , q,

where ε = (ε0, . . . , εn) is the dual of e. For i = 0, 1, . . . , q, set

Fi =
〈
f̃ , ãi

〉
= ãi0f̃0 + ãi1f̃1 + · · ·+ ãinf̃n, Gi =

Fi

f̃0

.

Since f is linearly non-degenerate, then Fi �≡ 0. Because A is in general position,
we have cλ = det

(
ãλ(i)j

)
�= 0 for any λ ∈ Jq

n. We abbreviate the Wronskian

W = W
(
f̃0, f̃1, . . . , f̃n

)
, Wλ = W

(
Fλ(0), Fλ(1), . . . , Fλ(n)

)
.
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It follows that Wλ = cλW. Lemma 1.61 implies
q∏

j=0

1
|f, aj|

≤
(

1
Γ(A )

)q−n

max
λ∈Jq

n

n∏
i=0

1
|f, aλ(i)|

.

Since
n∏

i=0

1
|f, aλ(i)|

=
n∏

i=0

|f̃ |
|Fλ(i)|

= |f̃ |n+1 |S
(
Fλ(0), Fλ(1), . . . , Fλ(n)

)
|

|cλW| , (2.6.6)

by using Corollary 2.52 we have
q∏

j=0

1
|f, aj |

≤
(

1
Γ(A )

)q−n+1 |f̃ |n+1

|W|
∑

λ∈Jq
n

|S
(
Gλ(0), Gλ(1), . . . , Gλ(n)

)
|,

which yields, for r ≥ r0,
q∑

i=0

mf (r, ai) ≤ (n + 1)Cm〈0; r; log |f̃ |〉 − Cm〈0; r; log |W|〉 (2.6.7)

+ Cm

〈
0; r; log

∑
λ∈Jq

n

∣∣S (Gλ(0), Gλ(1), . . . , Gλ(n)

)∣∣〉+ O(1).

According to the definition (2.3.13) of characteristic functions, it is easy to get the
inequality

T (r, Gi) ≤ Cm〈0; r; log+ |Gi|〉+ N

(
r,

1
f̃0

)
.

The Schwarz inequality yields |Fi| ≤ |f̃ |, and so |Gi| ≤ |f̃ |/|f̃0|. Thus we have

T (r, Gi) ≤ N

(
r,

1
f̃0

)
− Cm

〈
0; r; log |f̃0|

〉
+ Cm〈0; r; log |f̃ |〉.

By Jensen’s formula (2.3.11) and (2.3.21), the inequality

T (r, Gi) ≤ Tf(r) + O(1)

holds for i = 0, 1, . . . , q.
Applying (2.3.21), Jensen’s formula (2.3.11) and Lemma 2.55 in (2.6.7), The-

orem 2.56 follows from (2.6.7) and the first main theorem (2.3.33). The second
inequality in Theorem 2.56 can be easily deduced from the method in § 2.5. �

The second main theorem was established by Nevanlinna [292] for meromor-
phic functions in C, and was extended to holomorphic curves into projective spaces
by Cartan [51]. The case of several complex variables was first proved by W. Stoll
[375], [376] by using Ahlfors’ theory of associated mappings (cf. [436]). The refined
estimates of error terms in the second main theorem was obtained by Z. Ye [443]
(or see Hinkkanen [159], Lang and Cherry [235] and Wong [433]). For the case
m = n = 1, Z. Ye shows that Theorem 2.56 is sharp in the following sense:
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Theorem 2.57 (cf. [235]). Given ε > 0, there exists an entire function f of finite
order on C and a finite set A = {a0, a1, . . . , aq} such that for all large r,

(q − 1)T (r, f)−
q∑

j=0

N

(
r,

1
f − aj

)
+ NRam(r, f) > (1− ε) log T (r, f).

From Theorem 2.56, we obtain directly the following result of A. Bloch [28]
and H. Cartan [49].

Corollary 2.58. Let A = {a0, a1, . . . , an+1} be a family of points aj ∈ P(V ∗)
in general position, n ≥ 2. If f : Cm −→ P(V ) −

⋃
j Ë[aj ] is a non-constant

meromorphic mapping, then its image lies in a hyperplane.

Take a ∈ P(V ∗). For a positive integer k, we define the truncated multiplicity
function of order k on Cm by

µa
f,k(z) = min{µa

f (z), k}, z ∈ Cm, (2.6.8)

the truncated counting function of order k,

nf,k(r, a) := nµa
f,k

(r), (2.6.9)

and the truncated valence function of order k,

Nf,k(r, a) := Nµa
f,k

(r). (2.6.10)

Take ã ∈ V ∗−{0} with P(ã) = a. Write ã = ã0ε0+· · ·+ãnεn, where ε = (ε0, . . . , εn)
is the dual of e and set

F =
〈
f̃ , ã
〉

= ã0f̃0 + ã1f̃1 + · · ·+ ãnf̃n.

Then

Nf,k(r, a) = Nk

(
r,

1
F

)
. (2.6.11)

Define the truncated defect of order k of f for a by

δf,k(a) = 1− lim sup
r→∞

Nf,k(r, a)
Tf (r)

. (2.6.12)

Note that when f̃ is a reduced representation of f , we also have

Nf (r, a) = N

(
r,

1
F

)
. (2.6.13)

If n = 1, that is, P(V ∗) = P1, we usually denote the truncated counting
function

nν(t) =

⎧⎨
⎩nk

(
t, 1

f−a

)
if ν = µa

f,k,

n
(
t, 1

f−a

)
if ν = µa

f,1,
(2.6.14)
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and the truncated valence function

Nν(t) =

⎧⎨
⎩Nk

(
t, 1

f−a

)
if ν = µa

f,k,

N
(
t, 1

f−a

)
if ν = µa

f,1.
(2.6.15)

In particular, if a =∞, we often write

N

(
t,

1
f − a

)
= N(t, f), Nk

(
t,

1
f − a

)
= Nk(t, f),

and so on.

We continue to study Theorem 2.56 and give applications of the index l and
Wronskian degree w of f . Using the symbols in the proof of Theorem 2.56, we can
define a meromorphic function by

H =
F0F1 · · ·Fq

W
. (2.6.16)

By (2.6.13) and the Jensen formula (2.3.11), we obtain

q∑
j=0

Nf (r, aj)−NRam(r, f) = N

(
r,

1
H

)
−N(r,H). (2.6.17)

There exist three entire functions u, h1 and h2 on Cm such that H = h1
h2

, and

dimh−1
1 (0) ∩ h−1

2 (0) ≤ m− 2, W = uh2.

If µ0
h1

(x) > 0 for some x ∈ Cm − (If ∪ h−1
2 (0)), then

#{j | Fj(x) = 0} ≤ n + 1

since A is in general position. Without loss of generality, we assume q ≥ n, and

{j | Fj(x) = 0} ⊂ {λ(0), . . . , λ(n)}

for some λ ∈ Jq
n. Then one has

µ0
u(x) = µ0

W(x) = µ0
Wλ

(x) ≥
q∑

j=0

max
{
µ0

Fj
(x) − w, 0

}
,

where w is the Wronskian degree of f , which means

µ0
H(x) =

q∑
j=0

µ0
Fj

(x) − µ0
W(x) ≤

q∑
j=0

µ0
Fj ,w(x).
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Thus we can obtain the following estimate:

N

(
r,

1
H

)
≤

q∑
j=0

Nf,w(r, aj). (2.6.18)

Similarly, we can prove

µ0
H(x) = µ0

F0···Fq
(x)− µ0

W(x) ≤ µ0
F0···Fq,l(x)

by estimating the multiplicity of zero of each term in the Laplace expansion of W
at x, and hence

N

(
r,

1
H

)
≤ Nl

(
r,

1
F0 · · ·Fq

)
. (2.6.19)

Therefore Theorem 2.56 yields immediately the following truncated form of the
second main theorem:

Corollary 2.59. Let f : Cm −→ P(V ) be a linearly non-degenerate meromorphic
mapping and let A = {a0, a1, . . . , aq} be a family of points aj ∈ P(V ∗) in general
position. Let l, w be the index and Wronskian degree of f , respectively. Then

(q − n)Tf (r) ≤
q∑

j=0

Nf,w(r, aj)−N(r,H) + l log
{(ρ

r

)2m−1 Tf (R)
ρ− r

}
+ O(1)

holds for any r0 < r < ρ < R, and hence for any ε > 0,

(q − n)Tf(r) ≤
q∑

j=0

Nf,w(r, aj)−N(r,H) + l log Tf (r)

+l(1 + ε) log log Tf(r) − l log r + O(1)

holds for all large r outside a set E with
∫

E d log r < ∞. In particular, if f is of
finite order λ, then for any ε > 0, one has

(q − n)Tf(r) ≤
q∑

j=0

Nf,w(r, aj)−N(r,H) + l(λ + ε− 1) log r + O(1).

The Wronskian degree w of f occurring in Corollary 2.59 was observed by
Fujimoto [106]. In [229], Chapter VII, Section 6 (or see [135]), it was observed that
Cartan’s proof [51] can be easily adjusted so that the term −N(r,H) appears in
the inequalities in Corollary 2.59.

Corollary 2.60. Let f : Cm −→ P(V ) be a linearly non-degenerate meromorphic
mapping and let A = {a0, a1, . . . , aq} be a family of points aj ∈ P(V ∗) in general
position. Then

q∑
j=0

δf (aj) ≤
q∑

j=0

δf,w(aj) ≤ n + 1,

where w is the Wronskian degree of f .
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The inequality in Corollary 2.60 is usually called the defect relation of f .
In particular, if q = n + 1, it means that there exists j ∈ {0, 1, . . . , n + 1} such
that f(Cm) ∩ Ë[aj ] �= ∅ (Borel [29]). Further, this implies that a non-constant
meromorphic function on Cm omits at most two values of P1, which is just the
classic Picard’s little theorem.

2.7 Notes on the second main theorem

We continue the situation of Section 2.6 to consider a linearly non-degenerate
meromorphic mapping f : Cm −→ P(V ), where V is a complex vector space of
dimensions n +1 ≥ 1, and use the symbols in Section 2.6. First of all, we consider
the case q = n, and restate Theorem 2.56 as follows:

Theorem 2.61. Let f : Cm −→ P(V ) be a linearly non-degenerate meromorphic
mapping and let A = {a0, a1, . . . , an} be a family of points aj ∈ P(V ∗) in general
position. Let l be the index of f . Then

NRam(r, f) ≤
n∑

j=0

Nf(r, aj) + l log
{(ρ

r

)2m−1 Tf(R)
ρ− r

}
+ O(1)

holds for any r0 < r < ρ < R.

Proof. We prove it again. Take an orthonormal base e = (e0, . . . , en) of V and let

f̃ = f̃0e0 + · · ·+ f̃nen : Cm −→ V

be a reduced representation of f . Let ε = (ε0, . . . , εn) be the dual of e. Without
loss of generality, we may assume that

aj = P(εj), j = 0, 1, . . . , n.

The ramification term

NRam(r, f) = N

(
r,

1
W(f̃0, . . . , f̃n)

)
is well defined with respect to the multi-indices νi ∈ Zm

+ in Corollary 2.52. Then
the Jensen formula (2.3.11) implies

NRam(r, f) = Cm
〈
0; r; log |W(f̃0, . . . , f̃n)|

〉
+ O(1)

=
n∑

j=0

Cm
〈
0; r; log |f̃j |

〉
+ Cm

〈
0; r; log |S(f̃0, . . . , f̃n)|

〉
+ O(1)

=
n∑

j=0

Nf (r, aj) + Cm 〈0; r; log |S(1, f1, . . . , fn)|〉+ O(1).

Therefore Theorem 2.61 follows from Lemma 2.55 and Lemma 2.37. �
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When 0 ≤ q < n, Theorem 2.61 and the first main theorem (2.3.33) imply

NRam(r, f) ≤
q∑

j=0

Nf (r, aj) + (n− q)Tf (r) + l log
{(ρ

r

)2m−1 Tf(R)
ρ− r

}
+ O(1),

(2.7.1)
that is, Theorem 2.56 holds for q ≥ 0. Further, we have

NRam(r, f) ≤ (n + 1)Tf(r) + l log
{(ρ

r

)2m−1 Tf(R)
ρ− r

}
+ O(1), (2.7.2)

which is Theorem 5.12 in Stoll [383] with a good error term. If f is a non-constant
meromorphic function on Cm, we have

NRam(r, f) ≤ N(r, f) + N

(
r,

1
f

)
+ log

{(ρ

r

)2m−1 T (R, f)
ρ− r

}
+ O(1). (2.7.3)

In particular, if f omits q+1 hyperplanes in general position with 0 ≤ q ≤ n,
then

NRam(r, f) ≤ (n− q)Tf (r) + l log
{(ρ

r

)2m−1 Tf (R)
ρ− r

}
+ O(1), (2.7.4)

and so

Ramf = lim inf
r→∞

NRam(r, f)
Tf (r)

≤ n− q.

Conversely, if Ramf > n, then f can not omit any hyperplane.

Secondly, if the condition of general position on A is omitted, then Theo-
rem 2.56 assumes the following form (cf. [418], [328]):

Theorem 2.62. Let f : Cm −→ P(V ) be a linearly non-degenerate meromorphic
mapping and let A = {a0, a1, . . . , aq} be a family of points aj ∈ P(V ∗). Let l be
the index of f . Then

Cm

〈
0; r; max

λ∈Jk(A )
log

k∏
i=0

1
|f, aλ(i)|

〉
≤ (n + 1)Tf(r) −NRam(r, f)

+l log
{(ρ

r

)2m−1 Tf (R)
ρ− r

}
+ O(1)

holds for r0 < r < ρ < R, where the maximum is taken over all λ ∈ Jk(A ) with
0 ≤ k ≤ n.

Proof. In fact, for λ ∈ Jk(A ), we can take bλ,1, . . . , bλ,n−k in P(V ∗) such that

Bλ = {aλ(0), . . . , aλ(k), bλ,1, . . . , bλ,n−k}
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is a family in general position. Take b̃λ,i ∈ V ∗ − {0} with |b̃λ,i| = 1 and P(b̃λ,i) =
bλ,i, and set

Fλ,i =
〈
f̃ , b̃λ,i

〉
, Gλ,i =

Fλ,i

f̃0

.

According to the proof of Theorem 2.56, then there exists a positive constant c
depending on A and {bλ,j} such that

max
λ∈Jk(A )

k∏
i=0

1
|f, aλ(i)|

≤ max
λ∈Jk(A )

(
k∏

i=0

|f̃ |
|Fλ(i)|

)⎛⎝n−k∏
j=1

|f̃ |
|Fλ,j |

⎞
⎠

≤ c
|f̃ |n+1

|W| max
λ∈Jk(A )

|S
(
Fλ(0), . . . , Fλ(k), Fλ,1, . . . , Fλ,n−k

)
|

≤ c
|f̃ |n+1

|W|
∑

λ∈Jk(A )

|S
(
Gλ(0), . . . , Gλ(k), Gλ,1, . . . , Gλ,n−k

)
|,

and so Theorem 2.62 follows from the arguments of Theorem 2.56. �

Thirdly, for a positive integer d, by using the notations in Section 1.5.2, a
non-constant meromorphic mapping f : Cm −→ P(V ) induces a meromorphic
mapping

f�d = ϕd ◦ f : Cm −→ P (�dV )

such that the characteristic function of f�d satisfies

Tf�d(r) = dTf (r),

where ϕd : P(V ) −→ P(�dV ) is the Veronese mapping.

Take a ∈ P(�dV
∗) such that the pair (f�d, a) is free for the interior prod-

uct ∠. Applying (2.3.33) to f�d and a, we obtain the first main theorem for a
hypersurface Ëd[a],

dTf (r) = Nf�d(r, a) + mf�d(r, a)−mf�d(r0, a). (2.7.5)

Further, if the mapping f : Cm −→ P(V ) is algebraically non-degenerate, that is,
the image of f is not contained in any proper algebraic subvariety of P(V ), one
has the second main theorem:

Theorem 2.63. Let A be a finite admissible family of P(�dV
∗). Let f : Cm −→

P(V ) be an algebraically non-degenerate meromorphic mapping. Then

‖
∑
a∈A

{
dTf (r)−Nf�d(r, a)

}
≤ {n + 1 + o(1)}dTf (r). (2.7.6)
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Originally, Theorem 2.63 was a conjecture due to Shiffman [346]. For some
discussion related to Theorem 2.63, we refer the reader to [173], [176], [175] and
[330]. A proof will be introduced in Section 3.8.3.

Finally, as a simple application of Corollary 2.59, we can derive simply the
following abc-theorem for entire functions over Cm.

Theorem 2.64. Let a, b and c be non-zero entire functions in Cm with a + b = c.
Assume that a, b, c are not all constants, and dim I ≤ m− 2, where

I = {z ∈ Cm | a(z) = b(z) = c(z) = 0}.

Then the inequality

T (r) < N

(
r,

1
abc

)
+ log

{(ρ

r

)2m−1 T (R)
ρ− r

}
+ O(1) (2.7.7)

holds for r0 < r < ρ < R, where

T (r) = max
{

T
(
r,

a

c

)
, T

(
r,

b

c

)}
.

Proof. Write

f =
a

c
, g =

b

c
.

Then both f and g are not constant by our assumptions, and satisfy f + g = 1.
By the second main theorem (cf. Corollary 2.59), for r0 < r < ρ < R we obtain

T (r, f) ≤ N(r, f) + N

(
r,

1
f

)
+ N

(
r,

1
f − 1

)

+ log
{(ρ

r

)2m−1 T (R, f)
ρ− r

}
+ O(1).

Noting that

N

(
r,

1
f − 1

)
= N

(
r,

1
g

)
= N

(
r,

1
b

)
,

we obtain

T (r, f) ≤ N

(
r,

1
c

)
+ N

(
r,

1
a

)
+ N

(
r,

1
b

)

+ log
{(ρ

r

)2m−1 T (R)
ρ− r

}
+ O(1)

= N

(
r,

1
abc

)
+ log

{(ρ

r

)2m−1 T (R)
ρ− r

}
+ O(1).

Symmetrically, this inequality is true for g. �
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If m = 1, Theorem 2.64 was proved by M. van Frankenhuysen [410]. How-
ever, the error term in van Frankenhuysen’s result is not better than that of
Theorem 2.64.

Take a positive integer k. For a polynomial f in Cm, we have

nk

(
∞,

1
f

)
= lim

r→∞nk

(
r,

1
f

)
= lim

r→∞

Nk

(
r, 1

f

)
log r

.

This number will be simply denoted by rk(f). We also abbreviate

r(f) = r1(f).

If the functions a, b and c in Theorem 2.64 are polynomials, dividing the inequality
(2.7.7) by log r and letting r → ∞, then (2.7.7) and (2.4.6) yield immediately
Stothers-Mason’s theorem ( [252],[253],[254], [387], or cf. [231], [415]):

Theorem 2.65. Let a(z), b(z), c(z) be relatively prime polynomials in C and not
all constants such that a + b = c. Then

max{deg(a), deg(b), deg(c)} ≤ r(abc) − 1. (2.7.8)

In particular, if

a(z) = (1 + z)2, b(z) = −(1− z)2, c(z) = 4z,

then the inequality in Theorem 2.65 becomes the equality 2 = 2 (cf. [135]). Thus
the inequality is sharp. Elementary proofs of Theorem 2.65 without using Nevan-
linna theory are due to [119] and [231]. For applications of Theorem 2.65, see [253];
[288], pp. 183–185.

2.8 The Cartan-Nochka theorem

In this section, we use the estimates of the error terms of the second main theorem
from Ye [443] to restate the results on Cartan’s conjecture due to Nochka [301]
(see Theorem 2.66 and Theorem 2.70).

Let V be a Hermitian vector space of dimension n+1 over C. First of all, we
show the second main theorem of meromorphic mappings into P(V ) for a family
of P(V ∗) in subgeneral position.

Theorem 2.66. Let A = {aj}q
j=0 be a finite family of points aj ∈ P(V ∗) in u-

subgeneral position with u ≤ 2u − n < q. Let f : Cm −→ P(V ) be a linearly
non-degenerate meromorphic mapping. Let l be the index of f . Then

(q − 2u + n)Tf (r) ≤
q∑

j=0

θω(aj)Nf (r, aj)− θNRam(r, f)

+lθ log
{(ρ

r

)2m−1 Tf (R)
ρ− r

}
+ O(1) (2.8.1)
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holds for any r0 < r < ρ < R, where θ ≥ 1 is a Nochka constant, and ω : A −→
R(0, 1] is a Nochka weight.

Proof. We will adopt the notations that were used in the proof of Theorem 2.56,
and without loss of generality, assume ‖ãj‖ = 1 for j = 0, . . . , q. Lemma 1.61
implies

q∏
j=0

(
1

‖f, aj‖

)ω(aj)

≤
(

1
Γ(A )

)q−u

max
λ∈Jn(A )

n∏
j=0

1
‖f, aλ(j)‖

.

Then from (2.6.6) and Corollary 2.52, we obtain

q∏
j=0

(
1

‖f, aj‖

)ω(aj)

≤ c
‖f̃‖n+1

|W|
∑

λ∈Jq
n

|S
(
Gλ(0), Gλ(1), . . . , Gλ(n)

)
|,

where c is a positive constant. According to the proof of Theorem 2.56, we obtain

q∑
j=0

ω(aj)mf (r, aj) ≤ (n + 1)Tf(r) −NRam(r, f)

+l log
{(ρ

r

)2m−1 Tf(R)
ρ− r

}
+ O(1). (2.8.2)

By (2.8.2) and the first main theorem (2.3.33), we obtain⎛
⎝ q∑

j=0

ω(aj)− n− 1

⎞
⎠Tf(r) ≤

q∑
j=0

ω(aj)Nf (r, aj)−NRam(r, f)

+l log
{(ρ

r

)2m−1 Tf (R)
ρ− r

}
+ O(1). (2.8.3)

Thus (2.8.1) follows from (2.8.3) and 2) in Lemma 1.59. �
Lemma 2.67. Let A = {aj}q

j=0 be a finite family of points aj ∈ P(V ∗) in u-
subgeneral position with u ≤ 2u − n < q. Let f : Cm −→ P(V ) be a linearly
non-degenerate meromorphic mapping. Then for z ∈ Cm,

q∑
j=0

ω(aj)µ0
Fj

(z)− µ0
W(z) ≤

q∑
j=0

ω(aj)min
{

µ0
Fj

(z), w
}

,

where ω : A −→ R(0, 1] is a Nochka weight, and w is the Wronskian degree of f .

Proof. We follow the methods of Lemma 3.2.13 in Fujimoto [107] to prove Lem-
ma 2.67. It suffices to show that

µ0
W(z) ≥

q∑
j=0

ω(aj)max
{
µ0

Fj
(z)− w, 0

}
:= ν(z). (2.8.4)
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In fact, since

min
{
µ0

Fj
(z), w

}
+ max

{
µ0

Fj
(z)− w, 0

}
= µ0

Fj
(z),

then (2.8.4) implies
q∑

j=0

ω(aj)µ0
Fj

(z)− µ0
W(z) ≤

q∑
j=0

ω(aj)µ0
Fj

(z)−
q∑

j=0

ω(aj)max
{

µ0
Fj

(z)− w, 0
}

=
q∑

j=0

ω(aj)min
{
µ0

Fj
(z), w

}
.

To prove (2.8.4), take an arbitrary z0 ∈ Cm − If and set

S =
{

j | µ0
Fj

(z0) ≥ w + 1
}
⊂ {0, 1, . . . , q}.

We may assume that S �= ∅. Then #S ≤ u. Otherwise, by the assumption of u-
subgeneral position, there is λ ∈ Jq

n with Im(λ) ⊂ S such that dimE(Aλ) = n+1,
and so f̃0, . . . , f̃n are represented as linear combinations Fλ(0), . . . , Fλ(n). Then
f̃0, . . . , f̃n vanish at z0, which is a contradiction.

Now we consider the sets Si (0 ≤ i ≤ l) such that

S0 := ∅ �= S1 ⊂ S2 ⊂ · · · ⊂ Sl := S

and µ0
Fj

(z0) equals some constant wi for each j ∈ Si − Si−1, where

w1 > w2 > · · · > wl.

Then we have
E(AS1) ⊂ E(AS2) ⊂ · · · ⊂ E(ASl

).

For each i take a subset Ti of Si such that

Ti−1 ⊂ Ti, dimE(ASi) = dimE(ATi) = #Ti.

Then we have

#(Ti − Ti−1) = dimE(ASi)− dim E(ASi−1).

Abbreviate
w∗

i = wi − w.

We have

ν(z0) =
∑
j∈S

ω(aj)
(
µ0

Fj
(z0)− w

)
=

l∑
i=0

∑
j∈Si−Si−1

ω(aj)w∗
i

= (w∗
1 − w∗

2)
∑
j∈S1

ω(aj) + (w∗
2 − w∗

3)
∑
j∈S2

ω(aj) + · · ·+ w∗
l

∑
j∈Sl

ω(aj).
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Thus 4) in Lemma 1.59 yields

ν(z0) ≤ (w∗
1 − w∗

2) dim E(AS1) + (w∗
2 − w∗

3) dimE(AS2) + · · ·+ w∗
l dim E(ASl

)
= #T1w

∗
1 + #(T2 − T1)w∗

2 + · · ·+ #(Tl − Tl−1)w∗
l .

Assume #Tl = k + 1 with 0 ≤ k ≤ n. We can choose σ ∈ Jq
k such that Tl =

Im(σ). Since dim E(Aσ) = k+1, after a suitable non-singular linear transformation
of homogeneous coordinates we may assume that

f̃0 = Fσ(0), . . . , f̃k = Fσ(k).

Then, with the Laplace expansion theorem for the determinant, the Wronskian W
is expanded as the sum of the products of some minors of degree n− k and some
minors of degree k + 1 whose components consist of the ≤ wth partial derivatives
of the functions Fσ(0), . . . , Fσ(k). This implies

µ0
W(z0) ≥

∑
j∈Tl

(
µ0

Fj
(z0)− w

)
.

Since µ0
Fj

(z0) = wi for every j ∈ Ti − Ti−1, this quantity coincides with the last
term of the above inequalities. This completes the proof of Lemma 2.67. �

Note that
q∑

j=0

ω(aj)µ0
Fj
− µ0

W = µ+ − µ−,

where

µ+(z) = max

⎧⎨
⎩

q∑
j=0

ω(aj)µ0
Fj

(z)− µ0
W(z), 0

⎫⎬
⎭ ,

µ−(z) = max

⎧⎨
⎩µ0

W(z)−
q∑

j=0

ω(aj)µ0
Fj

(z), 0

⎫⎬
⎭ .

Set

H =
|F0|ω(a0) · · · |Fq|ω(aq)

|W(f̃0, . . . , f̃n)|
,

and formally write

N

(
r,

1
H

)
= Nµ+(r), N(r,H) = Nµ−(r).

Then Lemma 2.67 implies

N

(
r,

1
H

)
≤

q∑
j=0

ω(aj)Nf,w(r, aj).
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Corollary 2.68. Assumptions as in Theorem 2.66. Then

(q − 2u + n)Tf(r) ≤
q∑

j=0

θω(aj)Nf,w(r, aj)− θN(r,H)

+lθ log
{(ρ

r

)2m−1 Tf(R)
ρ− r

}
+ O(1), (2.8.5)

where l, w are the index and Wronskian degree of f , respectively.

Corollary 2.69. Assumptions as in Theorem 2.66. Then

q∑
j=0

ω(aj)δf (aj) ≤
q∑

j=0

ω(aj)δf,w(aj) ≤ n + 1,

q∑
j=0

δf (aj) ≤
q∑

j=0

δf,w(aj) ≤ 2u− n + 1.

Now we eliminate the restriction of non-degeneracy on f . Take a reduced
representation f̃ : Cm −→ V of a non-constant meromorphic mapping f : Cm −→
P(V ) and define a linear subspace of V ∗ as follows:

E[f ] = {α ∈ V ∗ | 〈f̃ , α〉 ≡ 0}, (2.8.6)

which will be called the null space of f , and write

�f = dimE[f ], k = n− �f .

The number k is non-negative, i.e., 0 ≤ �f ≤ n. In fact, if k < 0, that is, �f = n+1,
there is {α0, . . . , αn} ⊂ E[f ] such that

α0 ∧ · · · ∧ αn �= 0; 〈f̃ , αj〉 ≡ 0 (0 ≤ j ≤ n).

By Cramer’s rule, f̃ ≡ 0, which is impossible. Then V ∗ is decomposed into a direct
sum

V ∗ = W ∗ ⊕ E[f ],

where W ∗ is a k + 1 dimensional subspace of V ∗. Then f is said to be k-flat. In
order to simplify our notation, we define �f = 0 if f is linearly non-degenerate,
that is, E[f ] = {0}, and say that f is n-flat.

From now on, we assume that A = {aj}q
j=0 is in general position and assume

that f is non-constant and k-flat with 0 ≤ k ≤ n < q such that each pair (f, aj)
is free for j = 0, . . . , q. We take an orthonormal base ε = (ε0, . . . , εn) of V ∗

such that ε0, . . . , εk and εk+1, . . . , εn is a base of W ∗ and E[f ], respectively. Let
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e = (e0, . . . , en) be the dual base of ε. Let W be the vector space spanned by
e0, . . . , ek over C. Thus the reduced representation f̃ : Cm −→ V is given by

f̃ =
k∑

j=0

f̃jej =
k∑

j=0

〈f̃ , εj〉ej

such that 〈f̃ , ε0〉, . . . , 〈f̃ , εk〉 are holomorphic and linearly independent over C.
Hence a linearly non-degenerate meromorphic mapping f̂ : Cm −→ P(W ) is de-
fined with a reduced representation

˜̂
f = f̃ =

k∑
j=0

〈f̃ , εj〉ej : Cm −→ W.

The mapping f̂ will be called a simplified mapping of f . Therefore by (2.3.21), we
obtain

Tf̂(r) = Cm〈0; r; log ‖f̃‖〉+ O(1) = Tf (r) + O(1). (2.8.7)

If k = 0, then Tf̂(r) is constant. The relation (2.8.7) will be impossible since
Tf(r) →∞ as r →∞. Thus, we must have k ≥ 1. Set

NRam(r, f) = NRam(r, f̂). (2.8.8)

The index l and Wronskian degree w of f̂ will be called the (Wronskian) index
and Wronskian degree of f . By (2.6.3), we have

1 ≤ w ≤ k − γ + 1, k ≤ l ≤ γ +
(k − γ) (k − γ + 3)

2
, (2.8.9)

where γ = rank(f).

Theorem 2.70. Let A = {aj}q
j=0 be a finite family of points aj ∈ P(V ∗) in general

position. Take an integer k with 1 ≤ k ≤ n ≤ 2n− k < q. Let f : Cm −→ P(V ) be
a non-constant meromorphic mapping that is k-flat such that each pair (f, aj) is
free for j = 0, . . . , q. Let l, w be the index and Wronskian degree of f , respectively.
Then

(q − 2n + k)Tf (r) ≤
q∑

j=0

Nf,w(r, aj) + lθ log
{(ρ

r

)2m−1 Tf (R)
ρ− r

}
+ O(1)

holds for any r0 < r < ρ < R, where θ is a Nochka constant with

n + 1
k + 1

≤ θ ≤ 2n− k + 1
k + 1

.
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Proof. Take ãj ∈ V ∗ − {0} with P(ãj) = aj and write

ãj =
n∑

i=0

〈ei, ãj〉εi, j = 0, . . . , q.

Define

˜̂aj =
k∑

i=0

〈ei, ãj〉εi ∈ W ∗ − {0}, âj = P
(
˜̂aj

)
∈ P(W ∗), j = 0, . . . , q.

Then the family Â = {âj}q
j=0 is in n-subgeneral position. In fact, take σ ∈ Jq

n.
Then ãσ = ãσ(0) ∧ · · · ∧ ãσ(n) �= 0 since A is in general position, and hence

det(〈ei, ãσ(j)〉) �= 0 (0 ≤ i, j ≤ n).

Therefore, there is a λ ∈ Jq
k with Imλ ⊆ Imσ such that

det(〈es, ãλ(t)〉) �= 0 (0 ≤ s, t ≤ k).

We have
˜̂aλ = det(〈es, ãλ(t)〉)ε0 ∧ · · · ∧ εk �= 0.

Hence λ ∈ Jk(Â ). Thus Â is in n-subgeneral position.
Note that

Fj = 〈f̃ , ãj〉 =
n∑

i=0

〈f̃ , εi〉〈ei, ãj〉 =
k∑

i=0

〈f̃ , εi〉〈ei, ãj〉 = 〈 ˜̂
f, ˜̂aj〉.

We obtain
µ

aj

f = µ
âj

f̂
, j = 0, . . . , q.

By applying Theorem 2.66 to f̂ , we have

(q − 2n + k)Tf̂ (r) ≤
q∑

j=0

θω(âj)Nf̂ (r, âj)− θNRam(r, f̂)

+ lθ log

{(ρ

r

)2m−1 Tf̂ (R)

ρ− r

}
+ O(1).

Thus Lemma 2.67 and the facts above yield

(q − 2n + k)Tf(r) ≤
q∑

j=0

θω(âj)Nf,w(r, aj)− θN(r,H)

+lθ log
{(ρ

r

)2m−1 Tf(R)
ρ− r

}
+ O(1), (2.8.10)
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where

H =
|F0|ω(â0) · · · |Fq|ω(âq)

|W(f̃0, . . . , f̃k)|
,

and so Theorem 2.70 follows from 1) in Lemma 1.59. �

Corollary 2.71. With the assumptions as in Theorem 2.70,

q∑
j=0

δf (aj) ≤
q∑

j=0

δf,w(aj) ≤ 2n− k + 1.

The defect relation in Corollary 2.71 refers to the Cartan conjecture which
has been proved by Nochka [301].

Corollary 2.72. Take an integer k with 1 ≤ k ≤ n. Let A = {aj}2n−k+1
j=0 be a

finite family of points aj ∈ P(V ∗) in general position. If a meromorphic mapping
f : Cm −→ P(V ) has its image in the complement of 2n−k+2 hyperplanes Ë[a0],
. . . , Ë[a2n−k+1], then this image is contained in a linear subspace of dimension
≤ k − 1.

Corollary 2.72 which strengthens Corollary 2.58 is due to H. Dufresnoy ([84],
Théorème XVI), see also Fujimoto [104], [105], Green [120], Kobayashi [208],
Lang [229].

Corollary 2.73. If a meromorphic mapping f : Cm −→ P(V ) misses 2n + 1 or
more hyperplanes in general position, then it is a constant mapping.

Corollary 2.74 (cf. [208]). The complement of 2n+1 or more hyperplanes in general
position in P(V ) is complete Kobayashi hyperbolic.

P.J. Kiernan [203] proved that P(V ) minus 2n hyperplanes in general position
is not hyperbolic, and conjectured that the complement of 2n hyperplanes in any
position in P(V ) is never hyperbolic; he verified the conjecture for n ≤ 5. His
conjecture was proved by Snurnitsyn (cf [208]). Originally, Corollary 2.74 was a
conjecture proposed by S. Kobayashi [207] and H. Wu [436] in the end of their book.

Eremenko and Sodin [94] obtained the following second main theorem of
holomorphic curves which was conjectured by Shiffman [346] by an argument
completely different from that of Shiffman [346]:

Theorem 2.75. Let f : C −→ P(V ) be a holomorphic mapping and let A be a
finite admissible family of P(�dV

∗) such that for each a ∈ A , (f�d, a) is free for
the interior product ∠. Then

‖
∑
a∈A

{
dTf (r) −Nf�d(r, a)

}
≤ {2n + o(1)}dTf (r). (2.8.11)
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Based on Theorem 2.70 and Theorem 2.75, we suggest the following question:

Conjecture 2.76. Let f : Cm −→ P(V ) be a non-constant meromorphic mapping.
Let k be the minimal dimension of algebraic subvarieties containing the image of f
in P(V ). If A is a finite admissible family of P(�dV

∗) such that for each a ∈ A ,
(f�d, a) is free for the interior product ∠, then

‖
∑
a∈A

{
dTf (r) −Nf�d(r, a)

}
≤ {2n− k + 1 + o(1)}dTf (r). (2.8.12)

2.9 First main theorem for line bundles

Corresponding to heights for divisors in number theory, in this section we define
characteristic functions of meromorphic mappings for divisors (or line bundles) in
Nevanlinna theory. The first main theorem similar to (1.8.5) will be exhibited. We
also introduce a counterpart of Theorem 1.102.

Let M and N be connected complex manifolds of dimensions m and n, respec-
tively. Let π : L −→ N be a holomorphic line bundle over N with an Hermitian
metric κ along the fibers of L. Let f : M −→ N be a meromorphic mapping.
Assume that τ is an unbounded parabolic exhaustion of the complex manifold M .
The spherical image of f for (L, κ) is defined by

Af (r, L, κ) = M [O; r; f∗(c1(L, κ))], r > 0. (2.9.1)

Define the characteristic function or order function of f for (L, κ) by

Tf(r, r0, L, κ) =
∫ r

r0

Af (t, L, κ)
dt

t
, r ≥ r0. (2.9.2)

The following fact shows that characteristic functions of f have a similar property
with heights associated to Weil functions.

Proposition 2.77 (cf. [128], [380]). If N is compact, and if κ, κ′ are Hermitian
metrics along the fibers of L, then

Tf (r, r0, L, κ′)− Tf(r, r0, L, κ) = O(1). (2.9.3)

Proof. There exists a function u of class C∞ on N such that

c1(L, κ′) = c1(L, κ) + ddcu.

First of all, assume r0, r ∈ R̂τ with r > r0 > 0. Let B be the difference of two
characteristic functions in (2.9.3). Then

B =
∫ r

r0

∫
M [O;t]

f∗(ddcu) ∧ υm−1t1−2mdt.
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Stokes’s formula implies

B =
∫ r

r0

∫
M〈O;t〉

f∗(dcu) ∧ υm−1t1−2mdt

=
1
2

∫
M [O;r0,r]

τ−mdτ ∧ dc(u ◦ f) ∧ υm−1.

Note that if ϕ, ψ, χ have bidegree (p, p), (q, q), (l, l) respectively with p + q + l =
m− 1, then

dϕ ∧ dcψ ∧ χ = dψ ∧ dcϕ ∧ χ. (2.9.4)

Hence we have

B =
1
2

∫
M [O;r0,r]

τ−md(u ◦ f) ∧ dcτ ∧ υm−1.

Further, by using (2.1.66), we obtain

B =
1
2

∫
M [O;r0,r]

d(u ◦ f) ∧ σ

=
1
2

∫
M〈O;r〉

(u ◦ f)σ − 1
2

∫
M〈O;r0〉

(u ◦ f)σ,

which implies
|B| ≤ ς max

x∈N
|u(x)| < ∞.

Continuity shows the estimate for all r > r0 > 0. �

Abbreviate

Af (r, L) = Af (r, L, κ), Tf(r, L) = Tf(r, r0, L, κ).

Then when N is compact and r0 is fixed, the function Tf(r, L) is well defined,
up to O(1). According to the basic properties of Chern forms in Section 2.1.5, we
have

Tf (r, L∗) = −Tf(r, L),

and
Tf(r, L1 ⊗ · · · ⊗ Lp) = Tf(r, L1) + · · ·+ Tf(r, Lp),

where L1, . . . , Lp are Hermitian line bundles. In particular, if L = N × C is the
trivial line bundle, then

Tf (r, L) = 0.

Proposition 2.78 (cf. [380]). Let κ be an Hermitian metric along the fibers of a line
bundle L on N such that c1(L, κ) > 0. If the meromorphic mapping f : M −→ N
is non-constant, then Af (r, L) > 0 for r > 0. In particular,

lim
r→+∞

Tf(r, L)
log r

= lim
r→+∞Af (r, L) > 0.
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Proof. An open set in M can be defined by

M+ = {x ∈M | υm(x) > 0} = {x ∈M | υ(x) > 0}

since υ = ddcτ ≥ τddc log τ ≥ 0. We know that O = τ−1(0) �= ∅ and ς > 0 because
τ is parabolic (cf. [380]). Hence∫

M [O;r]

υm =
∫

M(O;r)

υm = ςr2m

implies that M+(O; r) is a non-empty open set for all r > 0.
Let S be the set of all x ∈ M such that the Jacobian of f at x has rank

0. Then S is thin analytic in M . Fix r > 0 and take p ∈ M+(O; r) − {S ∪ If}.
We can choose local holomorphic systems (U ; z1, . . . , zm) and (W ; w1, . . . , wn) of
p and f(p) respectively such that f(U) ⊂W , and

υ(p) =
√
−1
2π

m∑
j=1

dzj ∧ dzj .

Write

c1(L, κ) =
√
−1
2π

∑
k,l

hkldwk ∧ dwl,

and so

f∗(c1(L, κ)) =
√
−1
2π

∑
i,j

gijdzi ∧ dzj ,

where

gij =
∑
k,l

hkl ◦ f
∂fk

∂zi

∂fl

∂zj
, fk = wk ◦ f.

Then we have

f∗(c1(L, κ))(p)∧υ(p)m−1 =

⎛
⎝(m− 1)!

m∑
j=1

gjj(p)

⎞
⎠ m∏

j=1

√
−1
2π

dzj∧dzj > 0 (2.9.5)

since p �∈ S. By continuity, a neighborhood U0 of p exists in M+(O; r)− {S ∪ If}
such that

f∗(c1(L, κ)) ∧ υm−1|U0 > 0,

and hence Af (r, L) > 0. This completes the proof of Proposition 2.78. �

Consequently, Proposition 2.78 implies that f is constant if and only if
Tf(r, L) is bounded. Note that the fact corresponding to this property in number
theory is that the number of rational points with bounded heights is finite. Hence
Proposition 2.78 is an analogue of Theorem 1.102 in Nevanlinna theory.
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Take s ∈ Γ(N, L) and let D be the divisor (s) of s. Assume that f(M) �⊂
supp(D). The counting function and valence function of f for the divisor D on N
are respectively defined by

nf (r, D) = nµf∗D
(r) (2.9.6)

and
Nf (r, D) = Nµf∗D

(r). (2.9.7)

For 0 < r ∈ R̂τ , the proximity function or compensation function is defined by

mf (r, D) = M

〈
O; r; log

1
|s ◦ f |κ

〉
. (2.9.8)

Since f : M − If −→ N is holomorphic, the lifted section sf is well defined
on M − If . The zero divisor of sf on M − If continues uniquely to a divisor (sf )
on M since dim If ≤ m − 2. Let µs

f = µsf
denote the multiplicity of (sf ) which

is just equal to µf∗D. Let G �= ∅ be an open, relative compact subset of M such
that the boundary ∂G = G − G is either empty or a real (2m − 1)-dimensional
C∞ submanifold of M oriented to the exterior of G. Let ξ be a form of class C1

and degree 2m − 1 on M such that log |s ◦ f |2κξ is integrable over ∂G. Then the
singular Stokes formula∫

G

log |s ◦ f |2κdξ +
∫

G

d log |s ◦ f |2κ ∧ ξ =
∫

∂G

log |s ◦ f |2κξ (2.9.9)

holds.

Let χ be a form of class C∞ and bidegree (m − 1, m − 1) on M such that
χ ∧ dc log |s ◦ f |2κ is integrable over ∂G. Assume that A ∩ suppχ|∂G has measure
zero on A = suppµs

f . Then the residue formula

−
∫

G

ddc log |s ◦ f |2κ ∧ χ =
∫

A∩G

µs
fχ−

∫
∂G

dc log |s ◦ f |2κ ∧ χ

+
∫

G

dχ ∧ dc log |s ◦ f |2κ (2.9.10)

holds. If we take ξ = dcχ, then

dχ ∧ dc log |s ◦ f |2κ = d log |s ◦ f |2κ ∧ dcχ,

and hence the Green residue formula

−
∫

G

ddc log |s ◦ f |2κ ∧ χ =
∫

A∩G

µs
fχ−

∫
∂G

dc log |s ◦ f |2κ ∧ χ

+
∫

∂G

log |s ◦ f |2κdcχ−
∫

G

log |s ◦ f |2κddcχ (2.9.11)

follows from (2.9.9) and (2.9.10). Proofs of these formulae can be found in Stoll
[380].
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For x > 0, y > 0, define a function

ψ(x, y) =

{
1

2m−2

(
1

x2m−2 − 1
y2m−2

)
: m > 1,

log y − log x : m = 1 ,

and write
ψr(x) = min{ψ(x, r), ψ(r0, r)}, r > r0 > 0.

Use the symbols in (2.1.64), then on M [O; r]−M(O; r0), we have

2dc(ψr ◦
√

τ ) ∧ υm−1 = −σ, 2ddc(ψr ◦
√

τ ) ∧ υm−1 = −ωm = 0. (2.9.12)

Take r0, r ∈ R̂τ and assume

χ = (ψr ◦
√

τ )υm−1.

Applying the residue formula (2.9.10) and Green residue formula (2.9.11) to
M(O; r0) and G = M(O; r)−M [O; r0], respectively, and using the formula (2.9.12),
one obtains

−
∫

M(O;r0)

ddc log |s ◦ f |2κ ∧ χ =
∫

A(O;r0)

µs
fχ−

∫
M〈O;r0〉

dc log |s ◦ f |2κ ∧ χ,

(2.9.13)

where dχ = 0 on M(O; r0) is used, and

−
∫

G

ddc log |s ◦ f |2κ ∧ χ =
∫

A∩G

µs
fχ +

∫
M〈O;r0〉

dc log |s ◦ f |2κ ∧ χ

−
∫

M〈O;r〉
log |s ◦ f |κσ +

∫
M〈O;r0〉

log |s ◦ f |κσ.

(2.9.14)

Adding (2.9.13) and (2.9.14), one obtains the first main theorem

−
∫

M(O;r)

ddc log |s ◦ f |2κ ∧ χ =
∫

A(O;r)

µs
fχ−

∫
M〈O;r〉

log |s ◦ f |κσ

+
∫

M〈O;r0〉
log |s ◦ f |κσ. (2.9.15)

Lemma 2.79 ([384]). Let A be a pure k-dimensional analytic subset of M . Let η
be a form of bidegree (k, k) on M which is locally integrable over A. Take 0 ≤ s <
r < ∞. Let h : R[s, r] −→ C be a function of class C1. Then∫

A[O;r]−A[O;s]

h ◦
√

τη = h(r)
∫

A[O;r]

η − h(s)
∫

A[O;s]

η

−
∫ r

s

(∫
A[O;t]

η

)
h′(t)dt, (2.9.16)

where the integrals are sums if k = 0.
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Proof. Define an auxiliary function

γ(x, y) =
{

0 : s ≤ x ≤ y ≤ r,
1 : s ≤ y < x ≤ r ,

and set

I = h(r)
∫

A[O;r]

η − h(r)
∫

A[O;s]

η −
∫

A[O;r]−A[O;s]

h ◦
√

τη,

which can be expressed by the integral

I =
∫

A[O;r]−A[O;s]

(∫ r

√
τ

h′(t)dt

)
η.

By using the simple equation∫ r

√
τ

h′(t)dt =
∫ r

s

γ
(
t,
√

τ
)
h′(t)dt,

and exchanging order of the integrals, we obtain

I =
∫ r

s

(∫
A[O;r]−A[O;s]

γ
(
t,
√

τ
)
η

)
h′(t)dt

=
∫ r

s

(∫
A[O;t]−A[O;s]

η

)
h′(t)dt

=
∫ r

s

(∫
A[O;t]

η

)
h′(t)dt− (h(r) − h(s))

∫
A[O;s]

η,

and so Lemma 2.79 follows. �

Further, put A = suppf∗D. Lemma 2.79 implies

Nf(r, D) =
∫

A[O;r]

µf∗D(ψr ◦
√

τ)υm−1, (2.9.17)

Tf (r, L) =
∫

M [O;r]

(ψr ◦
√

τ)f∗(c1(L, κ)) ∧ υm−1. (2.9.18)

Then (2.9.15) immediately yields the first main theorem (cf. [128], [344], [380])

Tf (r, L) = Nf (r, D) + mf (r, D)−mf (r0, D). (2.9.19)

The identity (2.9.19) can be used to show that the compensation function extends
to a continuous function on all positive real numbers such that (2.9.19) holds for all
0 < r0 < r. Obviously, the formula (2.9.19) is an analogue of (1.8.5) in Nevanlinna
theory.
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Remark. If u is a function of class C2 on M [O; r], according to the proof of the
formula (2.9.15) and by Lemma 2.79 we can prove

T (r, r0; ddcu) =
1
2
M〈O; r; u〉 − 1

2
M〈O; r0; u〉. (2.9.20)

A special case is given in Chapter 6 (see (6.1.3)). For the case M = Cm, Noguchi
and Ochiai ([302], Lemma 3.3.39) show that (2.9.20) holds for a plurisubharmonic
function u on Cm[0; r].

Lemma 2.80. Let N be a non-singular projective variety of dimension n. Let H
be a very ample line bundle on N and let L be a pseudo ample line bundle on N .
Then

lim sup
j→+∞

1
jn

dimΓ(N, Lj ⊗H∗) > 0.

Lemma 2.80 follows easily from Lemma 2.30 (or see [229]). A meromorphic
mapping f : M −→ N into an algebraic variety N is called algebraically non-
degenerate if the image of f is not contained in any proper algebraic subvariety of
N , otherwise f is said to be algebraically degenerate.

Proposition 2.81. Assume that N is a non-singular projective variety. Suppose that
L is a pseudo ample line bundle on N . Then there exists a proper algebraic subset
Z of N such that for any meromorphic mapping f : M −→ N with f(M) �⊂ Z,
there exists a positive constant c satisfying

c log r ≤ Tf (r, L) + O(1).

Proof. Since N is projective algebraic, there exists a very ample line bundle H
on N . By Lemma 2.80, for j large there exists a non-trivial holomorphic section
s of Lj ⊗H∗. An Hermitian metric κ along the fibers of Lj ⊗H∗ exists such that
|s|κ ≤ 1 because N is compact. Take Z = supp((s)). When f(M) �⊂ Z, by (2.9.19),
we have

Nf (r, (s)) ≤ Tf(r, Lj ⊗H∗) + O(1)
= jTf(r, L)− Tf(r, H) + O(1),

which implies
Tf(r, H) ≤ jTf(r, L) + O(1). (2.9.21)

Now Proposition 2.81 follows from Proposition 2.78. �

In particular, Proposition 2.81 holds if the meromorphic mapping f : M −→
N is algebraically non-degenerate. We end this section by the following result (see
[128], [380]):

Proposition 2.82. Let M be a smooth affine variety. Assume that N is a non-
singular projective variety with a positive holomorphic line bundle L. Then a holo-
morphic mapping f : M −→ N is rational if and only if

Tf (r, L) = O(log r).
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2.10 Jacobian sections

We will use the notation of Jacobian sections in the proof of the second main
theorem for line bundles. A good reference is Stoll [380], but for completeness,
here we give a brief introduction.

Let M be a complex manifold of dimension m. Let N be a complex manifold
of dimension n. Let f : M −→ N be a holomorphic mapping. Then

K(f) = KM ⊗ f∗(K∗
N )

is called the Jacobian bundle, where K∗
N is the dual of KN . A holomorphic section

F of K(f) over M is said to be a Jacobian section. The section F is called effective
if F−1(0) is thin. The zero divisor (F ) of F is called the ramification divisor
of f for F .

Let F be a Jacobian section. Let U be an open subset in N such that Ũ =
f−1(U) �= ∅. The inner product

〈, 〉 : K∗
N ⊕KN −→ C

is well defined and pulls back to

〈, 〉 : f∗(K∗
N )⊕ f∗(KN ) −→ C

which further induces a KM -valued inner product

〈, 〉 : K(f)⊕ f∗(KN ) −→ KM .

The section F defines a linear mapping

F : Γ(U, KN) −→ Γ(Ũ , KM )

by F [Ψ] = 〈F, Ψf 〉 for all Ψ ∈ Γ(U, KN). If (V ; z1, . . . , zm) and (W ; w1, . . . , wn)
are holomorphic coordinate charts on M and N respectively with W ⊂ U and
f(V ) ⊂W , then Ψ = ΨW dw on W and F = FV W dz ⊗ d∗wf on V , where

dw = dw1 ∧ · · · ∧ dwn, d∗w =
∂

∂w1
∧ · · · ∧ ∂

∂wn
,

and where ΨW and FV W are holomorphic functions. Then on V we have

F [Ψ] = FV W (ΨW ◦ f)dz.

Further, a linear mapping

F : A2n(U) −→ A2m(Ũ)
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is uniquely defined as follows: If Ω ∈ A2n(U) is expressed by

Ω = inρW dw ∧ dw

in the term of the holomorphic coordinate chart (W ; w1, . . . , wn) on N , then

F [Ω]|W̃ = im(ρW ◦ f)F [dw] ∧ F [dw] = im(ρW ◦ f)|FV W |2dz ∧ dz. (2.10.1)

If κ is a Hermitian metric along the fibers of K(f), then |F |2κ = κV |FV W |2 with
κV = |dz ⊗ d∗wf |2κ > 0, and so Θ ∈ A2m(Ũ) exists such that

F [Ω] = |F |2κΘ, Θ|V = im(ρW ◦ f)κ−1
V dz ∧ dz.

Obviously, Θ > 0 if and only if Ω > 0.

Now we discuss the existence of Jacobian sections. First assume

p = m− n ≥ 0.

Then there exists a holomorphic section Df of
(∧

n
T∗(M)

)
⊗ f∗(K∗

N) such that

Df |Ũ = f∗(Ψ)⊗ Ψ∗
f

whenever U is open in N with Ũ = f−1(U) �= ∅ and Ψ ∈ Γ(U, KN) vanishes
nowhere, where Ψ∗ is the dual frame to Ψ. If (V ; z1, . . . , zm) and (W ; w1, . . . , wn)
are holomorphic coordinate charts on M and N respectively with f(V ) ⊂ W , then

f∗(dw) =
∑

λ∈Jm
1,n

∆λdzλ,

where

∆λ = det
(

∂wi ◦ f

∂zλ(j)

)
, dzλ = dzλ(1) ∧ · · · ∧ dzλ(n),

and so
Df |V =

∑
λ∈Jm

1,n

∆λdzλ ⊗ d∗wf .

Hence zeros of Df is the set of all x ∈M such that the rank of the Jacobian matrix
at x is smaller than n, which is called the branching set of f . We distinguish two
cases:

(a) If m = n, Df is a Jacobian section which is effective if and only if f has
strict rank n. In this case the divisor (Df) of Df also is called the branching
divisor of f .
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(b) If m > n, and if there exists a holomorphic form ϕ of degree p on M , then ϕ
induces a Jacobian section

Fϕ = ϕ ∧Df.

The form is said to be effective for f if Fϕ is effective, where the wedge product

extends from
∧
p
T∗(M),

∧
n
T∗(M) to

∧
p
T∗(M),

(∧
n
T∗(M)

)
⊗ f∗(K∗

N ) and
so becomes K(f)-valued. Equivalently Fϕ can be described by its action

Fϕ[Ψ] = ϕ ∧ f∗(Ψ)

whenever Ψ ∈ Γ(U, KN) and U open in N with Ũ = f−1(U) �= ∅.

We will unify Jacobian sections in the cases (a) and (b) by writing Fϕ = ϕ ∧Df ,
where we think ϕ = 1 for the case (a). If Ψ ∈ A2n(U), it is not difficult to show
that

Fϕ[Ψ] =
(

m

m− n

)
im−nϕ ∧ ϕ̄ ∧ f∗(Ψ). (2.10.2)

If M is connected, and has holomorphic rank m, then there exists a holo-
morphic mapping

β : M −→ Cm

of strict rank m. For x ∈ M , the differential

β′(x) : Tx(M) −→ Tβ(x)(Cm)

is a linear mapping. The branching set B of all x ∈ M such that β′(x) is not an
isomorphism is an analytic subset of M . Then there exists a thin analytic set B
of Cm with β(B) ⊆ B such that

β : M − β−1(B) −→ Cm −B

is a proper, surjective, local biholomorphic mapping, hence a covering space of
finite sheet number ν. Here ν is called the sheet number of β. We will use the
parabolic exhaustion τ = ‖β‖2 of M and use the notations in (2.1.64).

Lemma 2.83 (Stoll [380]). Let M and N be connected complex manifolds of di-
mension m and n respectively, and let f : M −→ N be a holomorphic mapping of
rank n. Assume that a holomorphic mapping

β = (β1, . . . , βm) : M −→ Cm

of strict rank m exists. Then there exists {j1, . . . , jm−n} ⊂ Z[1, m] such that

ϕ = dβj1 ∧ · · · ∧ dβjm−n

satisfies that F−1
ϕ (0) is thin, and

im−nϕ ∧ ϕ̄ ≤ υm−n.



2.10. Jacobian sections 185

Proof. The case m = n is trivial. We may assume p = m− n > 0. Set

S = {x ∈M | rankxf < n}.

Then S is a thin analytic set. Define

M0 = M − {β−1(B) ∪ β−1(β(S))}.

Take z0 ∈M0. There exist a local holomorphic coordinate system (W ; w1, . . . , wn)
of f(z0) and an open connected neighborhood U of z0 in M0 with f(U) ⊂ W such
that β : U −→ β(U) is biholomorphic. Define fj = wj ◦ f and set

dfj =
m∑

k=1

fjkdβk, j = 1, . . . , n.

Then
0 �= df1 ∧ · · · ∧ dfn =

∑
ν∈Jm

1,n

∆νdβν ,

where for ν ∈ Jm
1,n,

∆ν = det(fjν(k)), dβν = dβν(1) ∧ · · · ∧ dβν(n).

Therefore ν ∈ Jm
1,n exists such that ∆ν �≡ 0 on U . Then ν⊥ ∈ Jm

1,p is uniquely
defined such that (ν⊥, ν) is a permutation of Z[1, m]. Then ϕ = dβν⊥ is a holo-
morphic form of degree p on M such that

Fϕ[dw1 ∧ · · · ∧ dwn] = ϕ ∧ f∗(dw1 ∧ · · · ∧ dwn)
= dβν⊥ ∧ df1 ∧ · · · ∧ dfn = ∆νdβν⊥ ∧ dβν

= ∆νsign(ν⊥, ν)dβ1 ∧ · · · ∧ dβm �≡ 0

hold on U . Since F−1
ϕ (0) ∩ U = ∆−1

ν (0) is thin in U and since M is connected,
then F−1

ϕ (0) is thin. Finally, since υ = ddc‖β‖2 we have

υp = p!
(√

−1
2π

)p ∑
γ∈Jm

1,p

dβγ(1) ∧ dβγ(1) ∧ · · · ∧ dβγ(p) ∧ dβγ(p)

which yields
υp ≥ ipdβν⊥ ∧ dβν⊥ = ipϕ ∧ ϕ,

and so Lemma 2.83 follows. �

Secondly we consider the case

q = n−m > 0.
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Note that a unique homomorphism

f̂ : f∗
(∧

m
T∗(N)

)
−→

∧
m

T∗(M)

exists such that f̂(ξf ) = f∗(ξ) for all ξ ∈ Γ
(
U,
∧
m

T∗(N)
)
, where U is open in N

with Ũ = f−1(U) �= ∅. The interior product

∠ : KN ⊕
∧
q
T(N) −→

∧
m

T∗(N)

also pulls back to an interior product

∠ : f∗(KN )⊕ f∗
(∧

q
T(N)

)
−→ f∗

(∧
m

T∗(N)
)

.

Take a holomorphic section ϕ ∈ Γ
(
M, f∗

(∧
q
T(N)

))
, which is called a holo-

morphic field on f over M of degree q. Then ϕ induces a Jacobian section Fϕ

defined by
Fϕ|Ũ = f̂(Ψf∠ϕ)⊗Ψ∗

f ,

where Ψ ∈ Γ(U, KN) vanishes nowhere for the open subset of N with Ũ =
f−1(U) �= ∅ and Ψ∗ is the dual frame. Equivalently Fϕ can be described by its
action

Fϕ[Ψ] = f̂(Ψf∠ϕ)

for all Ψ ∈ Γ(U, KN), where U is open in N with Ũ = f−1(U) �= ∅. The section ϕ
is said to be effective for f if Fϕ is effective.

Theorem 2.84 ([380]). Assume M is Stein and q = n−m > 0. Then there exists
a holomorphic field ϕ on f over M of degree q such that ϕ is effective for f if and
only if f has strict rank m.

Proof. We may assume that M is connected. Let ϕ be an effective holomorphic
field on f over M of degree q and let S be the set of all x ∈ M such that the
rank of the Jacobian of f at x is smaller than m. Take z0 ∈ M . There exist local
holomorphic coordinate systems (U ; z1, . . . , zm) of z0 in M and (W ; w1, . . . , wn)
of f(z0) in N with f(U) ⊂ W . Set

d∗wk =
∂

∂wk
, k = 1, . . . , n, (2.10.3)

and write
ϕ =

∑
λ∈Jn

1,q

ϕλd∗wλf , (2.10.4)

where
d∗wλ = d∗wλ(1) ∧ · · · ∧ d∗wλ(q). (2.10.5)
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We also write
f∗(dwν) = Aνdz, ν ∈ Jn

1,m. (2.10.6)

Then
S ∩ U =

⋂
ν∈Jn

1,m

A−1
ν (0).

If λ ∈ Jn
1,q, then λ⊥ ∈ Jn

1,m is uniquely defined such that (λ⊥, λ) is a permutation
of {1, . . . , n}. Then ⊥ : Jn

1,q −→ Jn
1,m is bijective. Since dw = dw1 ∧ · · · ∧ dwn and

dwf∠ϕ =
∑

λ∈Jn
1,q

sign(λ⊥, λ)ϕλdwλ⊥f ,

then we have

Fϕ[dw] = f̂(dwf∠ϕ) =
∑

λ∈Jn
1,q

sign(λ⊥, λ)ϕλAλ⊥dz. (2.10.7)

Thus we obtain

(Fϕ) ∩ U =

⎛
⎝ ∑

λ∈Jn
1,q

sign(λ⊥, λ)ϕλAλ⊥

⎞
⎠ ⊇ S ∩ U.

Therefore S ∩ U is thin since the support of the divisor (Fϕ) is thin, and so S is
thin since M is connected. Hence f has rank m.

Assume that f has rank m on M . Take S, z0, z, w, Aν as above. Note that we
can choose z0 ∈ M − S since S is thin. Then ι ∈ Jn

1,m exists such that Aι(z0) �= 0.
Since M is Stein, Theorem 2.15 implies that global holomorphic sections sj ∈
Γ(M, f∗(T(N))) exist such that

sj(z0) = d∗wjf (z0), j = 1, . . . , n. (2.10.8)

Define
ϕ = sι⊥ ∈ Γ

(
M,
∧
q

f∗(T(N))
)

with
ϕ(z0) = sι⊥(z0) = d∗wι⊥f (z0).

Hence (2.10.4) holds;

ϕλ(z0) =
{

1, if λ = ι⊥,
0, if ι⊥ �= λ ∈ Jn

1,q.

Also (2.10.7) holds with

Fϕ[dw](z0) = sign(ι, ι⊥)Aι(z0)dz �= 0.



188 Chapter 2. Nevanlinna Theory

Note that
(Fϕ[dw]) ∩ U = (Fϕ) ∩ U.

Hence z0 ∈M − supp((Fϕ)), that is, the analytic set supp((Fϕ)) is thin. Hence ϕ
is effective for f . �

If M is a non-compact Riemann surface, Theorem 2.16 and (2.1.14) imply
that the sections defined by (2.10.8) can be chosen such that (s1, . . . , sn) is a global
holomorphic frame of f∗(T(N)) over M .

Lemma 2.85 ([167]). Assume that q = n−m > 0, and that f has strict rank m. If
there exist holomorphic vector fields Z1, . . . , Zn on N such that

Z := Z1 ∧ · · · ∧ Zn �≡ 0,

and if f(M) � supp((Z)), then there exists λ ∈ Jn
1,q such that a holomorphic field

ϕ = Zλf = (Zλ(1) ∧ · · · ∧ Zλ(q))f

on f over M of degree q is effective for f .

Proof. We may assume that M is connected. Under the conditions of Lemma 2.85,
a lifted section Zf ∈ Γ(M, f∗(K∗

N)) of Z for f exists with Zf �≡ 0. Let S be the
set of all x ∈ M such that the rank of the Jacobian of f at x is smaller than m.
Take z0 ∈ M − S such that f(z0) �∈ supp((Z)) since S and supp((Zf )) are thin.
There exist local holomorphic coordinate systems (U ; z1, . . . , zm) of z0 in M and
(W ; w1, . . . , wn) of f(z0) in N with f(U) ⊂ W such that Z1, . . . , Zn form a frame
of T(N) on W . Let ψ1, . . . , ψn be the dual frame in T∗(N) and write

ψν = ψν(1) ∧ · · · ∧ ψν(m), f∗(ψν) = Bνdz

for ν ∈ Jn
1,m. Then ι ∈ Jn

1,m exists such that Bι(z0) �= 0. Take λ = ι⊥ ∈ Jn
1,q and

define
ϕ = Zλf ∈ Γ

(
M,
∧
q

f∗(T(N))
)

.

Set Ψ = ψ1 ∧ · · · ∧ ψn and note that

Ψf∠ϕ = sign(ι, ι⊥)ψιf ,

then we have
Fϕ[Ψ] = f̂(Ψf∠ϕ) = sign(ι, ι⊥)Bιdz.

Hence z0 ∈ M − supp((Fϕ)) since

(Fϕ[Ψ]) ∩ U = (Fϕ) ∩ U,

that is, the analytic set supp((Fϕ)) is thin. Hence ϕ is effective for f . �
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Lemma 2.86 ([167]). Take M = Cm and define

Zi = f ′
(

∂

∂zi

)
, i = 1, . . . , m.

Assume q = n − m > 0. Then a holomorphic field ϕ on f over Cm of degree q
such that ϕ is effective for f if and only if

Z = Z1f ∧ · · · ∧ Zmf ∧ ϕ �≡ 0.

Further, we have (Fϕ) = (Z).

Proof. We will use the symbols in the proof of Theorem 2.84. Relative to the local
holomorphic coordinates w1, . . . , wn on an open subset W of N , set

fk = wk ◦ f, k = 1, . . . , n,

express ϕ by (2.10.4), and write

Zi =
n∑

k=1

∂fk

∂zi
d∗wk, i = 1, . . . , m.

Then we have
Z1f ∧ · · · ∧ Zmf =

∑
ν∈Jn

1,m

Aνd∗wνf ,

where

Aν = det
(

∂fν(j)

∂zi

)
.

Hence we obtain
Z =

∑
λ∈Jn

1,q

sign(λ⊥, λ)ϕλAλ⊥d∗wf .

On the other hand, we also have (2.10.6) and (2.10.7). Therefore we obtain

(Fϕ) ∩ U = (Z) ∩ U,

and hence Lemma 2.86 follows. �
Lemma 2.87 ([167]). Let M and N be complex manifolds of dimensions m and n,
respectively, and let θ and ψ be the associated 2-forms of Hermitian metrics on M
and N , respectively. Assume q = n −m > 0. Let f : M −→ N be a holomorphic
mapping of strict rank m. Let ϕ be a holomorphic field on f over M of degree q.
Define a non-negative function g by

Fϕ[ψn] = g2f∗(ψm).

Then g ≤ |ϕ|.
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Proof. In terms of a coframe (ψ1, . . . , ψn) on N and a coframe (θ1, . . . , θm) on M ,
we have

ψ =
i

2π

n∑
α=1

ψα ∧ ψα, θ =
i

2π

m∑
k=1

θk ∧ θk.

Further define a function u0 by

f∗(ψm) = u0θ
m

and set
f∗(ψν) = Aνθ1 ∧ · · · ∧ θm, ν ∈ Jn

1,m,

where
ψν = ψν(1) ∧ ψν(2) ∧ · · · ∧ ψν(m).

Trivially, we see
u0 =

∑
ν∈Jn

1,m

|Aν |2 �≡ 0.

Relative to the dual frame ψ∗
1 , . . . , ψ∗

n of ψ1, . . . , ψn, write

ϕ =
∑

λ∈Jn
1,q

ϕλψ∗
λf ,

where
ψ∗

λ = ψ∗
λ(1) ∧ ψ∗

λ(2) ∧ · · · ∧ ψ∗
λ(q).

Set Ψ = ψ1 ∧ · · · ∧ ψn. We have

Ψf∠ϕ =
∑

λ∈Jn
1,q

sign(λ⊥, λ)ϕλψλ⊥f .

Hence
Fϕ[Ψ] = f̂(Ψf∠ϕ) =

∑
λ∈Jn

1,q

sign(λ⊥, λ)ϕλAλ⊥θ1 ∧ · · · ∧ θm,

which means

g2u0 =

∣∣∣∣∣∣
∑

λ∈Jn
1,q

sign(λ⊥, λ)ϕλAλ⊥

∣∣∣∣∣∣
2

.

By Schwarz’s inequality, we obtain∣∣∣∣∣∣
∑

λ∈Jn
1,q

sign(λ⊥, λ)ϕλAλ⊥

∣∣∣∣∣∣
2

≤ u0|ϕ|2,

and so g ≤ |ϕ| follows. �
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Finally we consider a holomorphic mapping

f : Cm −→ Cn/Λ.

Note that the complex m-space Cm with the metric

ds2 =
m∑

j=1

dzjdz̄j

(where (z1, . . . , zm) is the natural coordinate system) is a complete Kähler mani-
fold. Let (w1, . . . , wn) be the natural coordinate system of Cn and p : Cn −→ Cn/Λ
be the natural projection. We fix the Kähler form ψ on Cn/Λ given by

p∗ψ =
i

2π

n∑
j=1

dwj ∧ dw̄j . (2.10.9)

The complex tori are the only compact complex parallelizable manifolds which
admit Kähler metrics (see Wang [425]).

Lemma 2.88 ([167]). Assume q = n−m > 0. Let f : Cm −→ Cn/Λ be a holomor-
phic mapping of rank m. Then there exists a holomorphic field ϕ on f over Cm of
degree q and effective for f such that |ϕ| ≤ c for some constant c > 0.

Proof. Since Cn/Λ is complex parallelizable, there exist n holomorphic vector
fields Z1, . . . , Zn which are linearly independent at every point of Cn/Λ. We may
assume

Zj =
∂

∂wj
, j = 1, . . . , n.

By Lemma 2.85, there exists λ ∈ Jn
1,q such that a holomorphic field

ϕ = Zλf = (Zλ(1) ∧ · · · ∧ Zλ(q))f

on f over Cm of degree q is effective for f . We have

|ϕ| = |Zλ| = 1,

and so Lemma 2.88 follows. �

2.11 Stoll’s theorems

Stoll [380] defines a Ricci function associated to a parabolic exhaustion of a com-
plex manifold, which describes characteristics of curvature of the manifold in a
sense. Here we introduce two Stoll’s theorems related to the Ricci function. Fi-
nally, we estimate growth of integrals on logarithmic functions.
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Let τ be a parabolic exhaustion of a complex manifold M of dimension m.
Take a positive form Θ of degree 2m and class C2 on M and define a non-negative
function u on M by

υm = u2Θ.

The 2m-form (log u)υm is locally integrable over M . Define

R0
τ =

{
r ∈ R̂τ |

∫
M〈O;r〉

(log u)σ exists

}
. (2.11.1)

The set R0
τ does not depend on the choice of Θ and R+ − R0

τ has measure zero.
For r, s ∈ R0

τ with r > s > 0, the Ricci function of τ is defined by

Ricτ (r, s) = T (r, s; Ric(Θ)) +
∫

M〈O;r〉
(log u)σ −

∫
M〈O;s〉

(log u)σ. (2.11.2)

The Ricci function Ricτ of τ does not depend on the choice of Θ (see Stoll [380]).

Theorem 2.89 ([380]). Let β : M −→ Cm be a proper holomorphic mapping of strict
rank m. Let µ be the multiplicity of the branching divisor of β. Then τ = ‖β‖2 is
a parabolic exhaustion of M and for r > r0,

Ricτ (r, r0) = Nµ(r). (2.11.3)

Proof. Let w = (w1, . . . , wm) be the coordinates of Cm and set dw = dw1 ∧ · · · ∧
dwm. Then

Dβ = β∗(dw) ⊗ d∗wβ

is a Jacobian section. Hence

s = β∗(dw) ∈ Γ(M, KM ), (s) = (Dβ), υm = ims ∧ s̄.

Take a positive form Θ of class C∞ and degree 2m on M . Then

ims ∧ s̄ = |s|2κΘ
Θ.

Applying the first main theorem (2.9.19) to the identity M −→M , we have

T (r, s; Ric(Θ)) = Nµ(r) + M〈O; r0; log |s|κΘ〉 −M〈O; r; log |s|κΘ〉. (2.11.4)

Since υm = |s|2κΘ
Θ, the definition of Ricτ gives (2.11.3). �

If M is an affine algebraic variety, then a proper surjective holomorphic
mapping β : M −→ Cm is well defined. Further, if M is smooth, then the branching
divisor of β is affine algebraic, and so (2.11.3), Proposition 2.43 imply

lim
r→∞

Ricτ (r, r0)
log r

= lim
r→∞

Nµ(r)
log r

= lim
r→∞nµ(r) <∞. (2.11.5)

See Stoll [380], Theorem 20.4 or Griffiths-King [128].
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Let F be an effective Jacobian section of f . Let (F ) be the zero divisor of F
and let µ(F ) be the multiplicity function of the divisor (F ). Define the ramification
term NRam(r, f) of f for F by

NRam(r, f) = Nµ(F )(r). (2.11.6)

The following Stoll’s theorem (cf. [380]) will play an important role in the proof
of the second main theorem below (Theorem 2.95).

Theorem 2.90. Let M and N be complex manifolds of dimensions m and n, respec-
tively. Let τ be a parabolic exhaustion of M . Let f : M −→ N be a holomorphic
mapping. Let F be an effective Jacobian section of f . Let Ω be a positive volume
form of class C∞ and degree 2n on N . A function h of class C∞ on M − F−1(0)
is defined by

F [Ω] = h2υm.

If r, r0 ∈ R0
τ with r > r0 > 0, then

Tf(r, KN ) + NRam(r, f) = Ricτ (r, r0) +
∫

M〈O;r〉
(log h)σ −

∫
M〈O;r0〉

(log h)σ.

(2.11.7)

Proof. Take a positive form Θ of class C∞ and degree 2m on M . Then Θ and
Ω induce metrics κΘ and κΩ on the canonical bundles KM and KN , respectively,
and further induce a metric κ = κΘ ⊗ f∗(κ∗

Ω) on the Jacobian bundle K(f) such
that

F [Ω] = |F |2κΘ.

Hence
υm = h−2F [Ω] = h−2|F |2κΘ.

For r, r0 ∈ R0
τ with r > r0 > 0, then (2.11.2) implies

Ricτ (r, r0) = T (r, r0; Ric(Θ)) +
∫

M〈O;r〉
log

|F |κ
h

σ −
∫

M〈O;r0〉
log

|F |κ
h

σ. (2.11.8)

By (2.10.1), it is easy to show that

Ric(F [Ω]) = f∗(Ric(Ω)). (2.11.9)

However,

Ric(F [Ω]) = ddc log |F |2κ + Ric(Θ) = −c1(K(f), κ) + Ric(Θ).

Then
T (r, r0; Ric(Θ)) = Tf(r, KN ) + T (r, r0; c1(K(f), κ)). (2.11.10)

Applying the first main theorem (2.9.19) to the identity M −→M , we obtain

T (r, r0; c1(K(f), κ)) = NRam(r, f)−M〈O; r; log |F |κ〉+ M〈O; r0; log |F |κ〉.
(2.11.11)

Now (2.11.7) follows from (2.11.8), (2.11.10) and (2.11.11). �
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When m = 1, that is, M is a Riemann surface, we compare Theorem 2.90 with
a theorem due to L.V. Ahlfors [2], H. Weyl and J. Weyl [430]. Now a multiplicity
function µdf : M −→ Z+ is well defined as follows: µdf (z0) = the stationary index
of f at z0 if z0 is a critical point of f (see Wu [436]), otherwise, µdf (z0) = 0. Since
τ is a parabolic exhaustion of M , then ω = ddc log τ = 0, that is, log τ is harmonic.
Let θ be the conjugate harmonic function of 1

2 log τ . Then

ζ =
1
2

log τ +
√
−1θ

is a coordinate function locally whenever τ is free of critical points (cf. Wu [436],
Lemma 2.4). Let ψ be the associated (1, 1)-form of an Hermitian metric on N . A
non-negative function ρ0 is defined by

f∗(ψ) = ρ2
0

√
−1

2π
dζ ∧ dζ̄,

which satisfies the Ahlfors-Weyl formula (cf. Wu [436], or Yang-Hu [439])

T (r, r0; Ric(f∗(ψ))) = −E(r)−Nµdf
(r)

+M〈O; r; log ρ0〉 −M〈O; r0; log ρ0〉, (2.11.12)

in which
E(r) =

∫ r

r0

χ (M [O; t])
dt

t
,

where χ (M [O; t]) denotes the Euler characteristic of M [O; t].

We consider the non-negative function ρ defined by

f∗(ψ) = ρ2υ. (2.11.13)

Note that

υ = ddcτ =
1
τ
dτ ∧ dcτ = τ

√
−1

2π
dζ ∧ dζ̄. (2.11.14)

Then ρ0 = ρ
√

τ . We know that (cf. [439], Part 1)

Ricτ (r, r0) = ς log
r

r0
− E(r). (2.11.15)

Therefore, by (2.11.12) and (2.11.15), we obtain

T (r, r0; Ric(f∗(ψ))) = Ricτ (r, r0)−Nµdf
(r)

+M〈O; r; log ρ〉 −M〈O; r0; log ρ〉, (2.11.16)

which is quite similar to the formula (2.11.7).

Define a non-negative function g on M by

F [ψn] = g2f∗(ψ). (2.11.17)
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Taking Ω = ψn in Theorem 2.90, we have h = ρg. Hence (2.11.7) and (2.11.16)
yield

Tf(r, KN ) + NRam(r, f) = T (r, r0; Ric(f∗(ψ))) + Nµdf
(r)

+M〈O; r; log g〉 −M〈O; r0; log g〉.

By (2.11.17), we obtain

f∗(Ric(ψn)) = Ric(F [ψn]) = ddc log g2 + Ric(f∗(ψ)).

Therefore

T (r, r0; ddc log g2) = Nµdf
(r) −NRam(r, f)

+M〈O; r; log g〉 −M〈O; r0; log g〉, (2.11.18)

which may be referred to as a kind of Jensen’s formula.

The following lemma is due to R. Nevanlinna [294].

Lemma 2.91. Let h ≥ 0, g ≥ 0 and α > 0 be increasing continuous functions on
R+. Assume g is of class C1 on R+ and∫ ∞

s

dx

α(x)
<∞

for all s > 0. Then a measurable subset E of R+ exists such that

0 ≤
∫

E

g′(x)dx <∞

and such that
0 ≤ h′(x) ≤ g′(x)α(h(x)), x ∈ R+ − E.

Proof. If E is not empty, then for x ∈ E and dx > 0,

dh(x) = h′(x)dx > α(h(x))dg(x);

therefore, dg < dh
α(h) , from which the assertion follows by means of integration

over E. �
Lemma 2.92 ([166]). Let η ≥ 0 be a form of bidegree (1, 1) on M such that
T (r, r0; η) exists for r > r0 > 0. Let u be a non-negative function on M satis-
fying

uυm ≤ η ∧ υm−1.

Then for any ε > 0,

‖
∫

M〈O;r〉
log uσ ≤ ς(1 + 2ε) logT (r, r0; η) + 4ςε log r.
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Proof. Define

B(r, u) =
1
ς

∫
M〈O;r〉

log uσ. (2.11.19)

Note that for almost all t > r0,

0 ≤ t2m−2M [O; t; uυ] =
∫

M [O;t]

uυm = m

∫
M [O;t]

uτm−1dτ ∧ σ

= 2m

∫ t

0

{∫
M〈O;r〉

uσ

}
r2m−1dr = 2m

∫ t

0

M〈O; r; u〉r2m−1dr

≤ t2m−2M [O; t; η],

which means that M〈O; r; u〉 exists for almost all r > 0.
Set

H(x) =
∫ x

r0

{∫ t

0

exp(B(r, u))r2m−1dr

}
t1−2mdt.

Since

B(r, u) ≤ log
M〈O; r; u〉

ς
,

we have

H(x) ≤ 1
ς

∫ x

r0

{∫ t

0

M〈O; r; u〉r2m−1dr

}
t1−2mdt

=
1

2mς
T (x, r0; uυ) ≤ 1

2mς
T (x, r0; η).

Applying Lemma 2.91 to the functions

h(x) = H(x), g(x) =
x1+ε

1 + ε
, α(x) = xλ

with ε > 0 and λ > 1, we obtain

‖ H ′(x) = x1−2m

∫ x

0

r2m−1 exp(B(r, u))dr

≤ xε(H(x))λ ≤ xε

(
1

2mς
T (x, r0; η)

)λ

.

Keeping the same g and α and taking h(x) = x2m−1H ′(x) in Lemma 2.91, we
have

‖ r2m−1 exp(B(r, u)) = h′(r) ≤ rε(h(r))λ

≤ rε

(
r2m−1+ε

(
1

2mς
T (r, r0; η)

)λ
)λ
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which implies

‖ B(r, u) ≤ λ2 log T (r, r0; η) + c(λ, ε) log r − λ2 log(2mς),

where
c(λ, ε) = λ(2m− 1 + ε) + 1− 2m + ε.

Take δ ∈ R+ such that

0 < δ < min{1, ε}, ε(4 + δ) + δ(2m− 1) < 6ε,

and take

λ = 1 +
δ

2
.

Then λ2 < 1 + 2ε and

c(λ, ε) =
1
2
{ε(4 + δ) + δ(2m− 1)} < 3ε.

Hence Lemma 2.92 follows if r is large enough. �

2.12 Carlson-Griffiths-King theory

J. Carlson and P. Griffiths [47], P. Griffiths and J. King [128] studied value dis-
tribution theory of holomorphic mappings from affine varieties into projective
varieties for line bundles. At the same time, P. Griffiths [125] (or cf. [345]) pro-
posed a conjecture of second main theorem type. Lately, W. Stoll [380] extended
this theory to parabolic spaces by using Jacobian sections. Y.T. Siu [363], [364],
[365] studied the Griffiths conjecture by applying meromorphic connections. We
will follow these methods to discuss the Griffiths conjecture.

2.12.1 Second main theorem for line bundles

First of all, we make a few general assumptions:

(A1) Let N be a compact complex manifold of dimension n.

(A2) Let L be a positive holomorphic line bundle over N .

(A3) Let 0 �= sj ∈ Γ(N, L), j = 1, . . . , q, be given such that the divisor D =
D1 + · · ·+ Dq has normal crossings in N , where Dj = (sj).

(A4) Let M be a parabolic connected complex manifold of dimension m.

(A5) Let f : M −→ N be a holomorphic mapping.
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Theorem 2.93. Assume that (A1), (A2) and (A3) hold and further assume that
each Dj (1 ≤ j ≤ q) is smooth, that is, D has simple normal crossings. There are
a positive number λ, a volume form Ω on N and a metric κ of L such that

0 ≤ |sj |2κ <
1
e
, j = 1, . . . , q, (2.12.1)

λqc1(L, κ) + Ric(Ω) > 0, (2.12.2)

and such that the Ricci form
ψ = Ric(Ψ) (2.12.3)

of the following Carlson-Griffiths form

Ψ =
Ω∏q

j=1 |sj |2λ
κ (log |sj |2κ)2

(2.12.4)

satisfies ψ > 0,
∫

N
ψn < ∞, and

ψn ≥ Ω∏q
j=1 |sj |2κ(log |sj |2κ)2

. (2.12.5)

Proof. Here we follow Carlson-Griffiths [47], Griffiths-King [128] and Stoll [380] to
give a proof. There is a metric κ0 of L satisfying c1(L, κ0) > 0 since L is positive.
Take a volume form Ω0 on N . Since N is compact, there is a positive number λ
such that

χ := λqc1(L, κ0) + Ric(Ω0) > 0.

Further, a constant c0 > 1 exists such that

−c0χ < c1(L, κ0) < c0χ.

Take δ > 0 so small that

1 < 4qc0 < − log max
j,x
{δ|sj(x)|2κ0

}.

Then
0 < δ|sj |2κ0

e ≤ max
j,x
{δ|sj(x)|2κ0

}e4qc0 < 1.

Multiplying the metric κ0 by δ, we obtain a metric κ such that |sj |2κ < e−1 for
each j, and

c1(L, κ) = c1(L, κ0) > 0.

Define

Ψ0 =
Ω0∏q

j=1 |sj |2λ
κ (log |sj |2κ)2

.
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It is easy to show that

Ric(Ψ0) = χ + 2
q∑

j=1

c1(L, κ)
log |sj |2κ

+ 2
q∑

j=1

d log |sj |2κ ∧ dc log |sj |2κ
(log |sj |2κ)2

. (2.12.6)

Since

χ + 2
q∑

j=1

c1(L, κ)
log |sj |2κ

≥

⎧⎨
⎩1 + 2c0

q∑
j=1

1
log |sj |2κ

⎫⎬
⎭χ ≥ χ

2
,

then

Ric(Ψ0) ≥
χ

2
+ 2

q∑
j=1

d log |sj |2κ ∧ dc log |sj |2κ
(log |sj |2κ)2

> 0.

The latter form is ≥ 0 because

dh ∧ dch =
√
−1
2π

∂h ∧ ∂̄h ≥ 0

for any real h.
We claim that for any x ∈ N , there exist an open neighborhood U(x) of x

and a constant c(x) such that on U(x),

Ric(Ψ0)n ≥

⎛
⎝c(x)

q∏
j=1

|sj |2λ−2
κ

⎞
⎠Ψ0 > 0. (2.12.7)

If x ∈ N − supp(D), this is trivial. Take x ∈ supp(D). Then p ∈ Z[1, q] and
µ ∈ Jq

1,p exist such that x ∈ supp(Dj) if and only if j ∈ Im(µ). Since D has normal
crossings, then p ≤ n, and also coordinates (w1, . . . , wn) in a neighborhood U of
x exists such that w(x) = (0, . . . , 0) and

U ∩ supp(D) = U ∩
p⋃

ν=1

supp(Dµ(ν)),

U ∩Dµ(ν) = (wν), ν = 1, . . . , p.

Also U is taken so small that L|U is trivial. We can write sµ(ν) = wνχν , where χν

is a non-zero holomorphic section of L over U . Then

|sµ(ν)|2κ = bν |wν |2,

where bν = |χν |2κ > 0. Note that

ην := d log |sµ(ν)|2κ ∧ dc log |sµ(ν)|2κ =
√
−1
2π

dwν ∧ dw̄ν

|wν |2
+ �ν . (2.12.8)
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The form

�ν =
√
−1
2π

(
∂bν ∧ ∂̄bν

b2
ν

+
∂bν ∧ dw̄ν

bνw̄ν
+

dwν ∧ ∂̄bν

wνbν

)
has the property that |wν |2�ν is a smooth form whose coefficients vanish on Dµ(ν).

Therefore on U we obtain

Ric(Ψ0)n ≥
(

χ

2
+ 2

p∑
ν=1

ην

(log |sµ(ν)|2κ)2

)n

≥ n!
(n− p)!

(χ

2

)n−p

∧ 2p

p∏
ν=1

ην

(log |sµ(ν)|2κ)2
.

A form � of class C∞ and bidegree (p, p) exists on U such that �(x) = 0 and such
that

p∏
ν=1

|wν |2ην =
(√

−1
2π

)p

dw1 ∧ dw̄1 ∧ · · · ∧ dwp ∧ dw̄p + �.

An open neighborhood U(x) of x and a constant c1 > 0 exists such that U(x) is
compact and contained in U and such that on U(x),

|wν | < r < 1, ν = 1, . . . , p,

χ

2
> c1

n∑
ν=p+1

√
−1

2π
dwν ∧ dw̄ν ,

∣∣∣∣� ∧ (χ

2

)n−p
∣∣∣∣ <

(n− p)!
2

cn−p
1

n∏
ν=1

√
−1
2π

dwν ∧ dw̄ν .

Since p ≥ 1, this implies

Ric(Ψ0)n ≥ cn−p
1

(
p∏

ν=1

(
|wν | log |sµ(ν)|2κ

)−2

)
n∏

ν=1

√
−1

2π
dwν ∧ dw̄ν

on U(x). A constant c2 exists such that on U(x),

cn−p
1

n∏
ν=1

√
−1

2π
dwν ∧ dw̄ν > c2Ω0.

Constants c3 and c4 exist such that

c2

p∏
ν=1

bν > c3; |sj |2κ(log |sj |2κ)2 > c4 (j �∈ Im(µ)).

Therefore

Ric(Ψ0)n ≥ c3c
q−p
4

Ω0∏q
j=1 |sj|2κ(log |sj |2κ)2

=

⎛
⎝c3c

q−p
4

q∏
j=1

|sj |2λ−2
κ

⎞
⎠Ψ0.

Hence the claim (2.12.7) is satisfied with c(x) = c3c
q−p
4 .
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By the Heine-Borel theorem, there exist finitely many points x1, . . . , xk on
N such that

N = U(x1) ∪ · · · ∪ U(xk).

Define c = min1≤j≤k c(xj). Then c > 0 is constant and Ψ = cΨ0 with Ω = cΩ0

satisfies Ric(Ψ) = Ric(Ψ0) > 0, (2.12.5) and (2.12.2) since Ric(Ω) = Ric(Ω0).
To prove

∫
N ψn < ∞, it suffices to show that ψn is integrable over each

neighborhood U(x) constructed. This is trivial if x ∈ N − supp(D). Take x ∈
supp(D). Set c5 = 1 + 2qc0. Then (2.12.1) and (2.12.6) imply

Ric(Ψ) ≤ c5χ + 2
q∑

j=1

d log |sj |2κ ∧ dc log |sj |2κ
(log |sj |2κ)2

,

which yields immediately

Ric(Ψ)n ≤
∑
kj

n!
(n− k)!

(c5χ)n−k ∧
q∏

j=1

(
2d log |sj |2κ ∧ dc log |sj |2κ

(log |sj |2κ)2

)kj

,

where the summation runs over all kj ∈ {0, 1} for j = 1, . . . , q such that

0 ≤ k1 + · · ·+ kq = k ≤ n.

A constant c6 > 1 exists such that | log bν | < c6 on U(x). If log |wν | ≤ −c6, then

log
1

|sµ(ν)|2κ
= log

1
|wν |2

+ log
1
bν
≥ log

1
|wν |2

− c6 ≥ log
1
|wν |

≥ 1
c6

log
1
|wν |

.

If log |wν | > −c6, then

log
1

|sµ(ν)|2κ
≥ 1 ≥ 1

c6
log

1
|wν |

.

Therefore on U(x),

0 ≤ (log |wν |2)2
(log |sµ(ν)|2κ)2

≤ 4c2
6.

If j �∈ Im(µ), then sj(z) �= 0 for all z ∈ U(x). We see by our previous calculations
that a constant c7 exists such that

Ric(Ψ)n ≤ c7∏p
ν=1 |wν |2 (log |wν |2)2

n∏
ν=1

√
−1
2π

dwν ∧ dw̄ν

which implies ∫
U(x)

Ric(Ψ)n ≤ c7r
2n−2p| log r2|−p.

�
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Lemma 2.94 ([47],[128],[380]). Under the assumptions (A1)–(A5), there exist con-
stants c1 ≤ 0, c2 ≥ 0, c3 ≥ 0 such that for r > r0,

c1 ≤ λqTf (r, L) + Tf(r, KN )− T (r, r0; f∗(ψ))
≤ qς log{Tf(r, L) + c2}+ c3. (2.12.9)

Proof. By (2.12.4), we have

ψ = Ric(Ω) + λqc1(L, κ)−
q∑

j=1

ddc log(log |sj |2κ)2, (2.12.10)

which implies

T (r, r0; f∗(ψ)) = Tf(r, KN ) + λqTf (r, L)

−
q∑

j=1

T (r, r0; ddc log(log |sj ◦ f |2κ)2). (2.12.11)

By (2.9.20) (or see Stoll [380], Theorem A13), we obtain

T (r, r0; ddc log(log |sj ◦ f |2κ)2) = M〈O; r; log | log |sj ◦ f |2κ|〉
−M〈O; r0; log | log |sj ◦ f |2κ|〉. (2.12.12)

The condition (2.12.1) and the first main theorem (2.9.19) show that

0 ≤ M〈O; r; log | log |sj ◦ f |2κ|〉

≤ ς log
(

1
ς
M

〈
O; r; log

1
|sj ◦ f |2κ

〉)
≤ ς log{Tf(r, L) + mf (r0, Dj)} − ς log ς, (2.12.13)

and hence (2.12.9) follows. �

Now we can prove the following second main theorem (cf. [47], [128], [167],
[344], [380]):

Theorem 2.95. Assume that (A1)–(A5) hold and further assume that D has simple
normal crossings. Suppose that f(M) � supp(D) and assume that F is an effective
Jacobian section of f . Set b = min{m, n} and define a non-negative function g by

F [ψn] = g2f∗(ψb) ∧ υm−b. (2.12.14)

Then for any ε > 0,

‖ qTf(r, L) + Tf (r, KN) ≤
q∑

j=1

Nf (r, Dj)−NRam(r, f) + Ricτ (r, r0)

+ M〈O; r; log g〉+ O(log+ Tf(r, L)) + O(ε log r).
(2.12.15)



2.12. Carlson-Griffiths-King theory 203

Proof. The first main theorem (2.9.19) implies

q∑
j=1

{Tf (r, L)−Nf(r, Dj)} =
q∑

j=1

M

〈
O; r; log

1
|sj ◦ f |κ

〉
+ O(1)

= M〈O; r; log Q ◦ f〉+ S(r, f),

where
Q2 =

1∏q
j=1 |sj |2κ (log |sj |2κ)2

,

S(r, f) =
q∑

j=1

M
〈
O; r; log

∣∣log |sj ◦ f |2κ
∣∣〉 .

By (2.12.13), we know

S(r, f) ≤ c log+ Tf (r, L) + O(1), (2.12.16)

where c is a positive constant which is independent of r.
Define a positive function G on N by

ψn = G2Ω.

Then (2.12.5) yields G ≥ Q. A function h of class C∞ on M − F−1(0) also is
defined by

F [Ω] = h2υm.

By Theorem 2.90, we obtain

qTf(r, L)−
q∑

j=1

Nf(r, Dj) ≤ −Tf(r, KN )−NRam(r, f) + Ricτ (r, r0)

+ M〈O; r; log{(G ◦ f)h}〉+ c log+ Tf(r, L) + O(1).

Set
M+ = {x ∈ M | υ(x) > 0}.

For an integer i with 1 ≤ i ≤ m, define a function ρi on M+ by

f∗(ψi) ∧ υm−i = ρiυ
m. (2.12.17)

Then a pointwise relation among the ρi’s is provided by the inequality (2.1.82) (or
see [48], p. 239)

ρ
1
j

j ≤ cijρ
1
i

i (j ≥ i). (2.12.18)

Since

(G ◦ f)2h2υm = (G ◦ f)2F [Ω] = F [G2Ω] = F [ψn] = g2f∗(ψb) ∧ υm−b,
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we have (
(G ◦ f)h

g

) 2
b

= ρ
1
b

b ≤ c1bρ1,

and hence (
(G ◦ f)h

g

) 2
b

υm ≤ c1bf
∗(ψ) ∧ υm−1.

By Lemma 2.92, for any ε > 0 we obtain

‖
∫

M〈O;r〉
log
(

(G ◦ f)h
g

) 2
b

σ ≤ ς(1 + 2ε) log T (r, r0; f∗(ψ)) + O(ε log r).

By Lemma 2.94, one has

T (r, r0; f∗(ψ)) ≤ cTf (r, L) + c′.

Therefore

‖ M〈O; r; log{(G ◦ f)h}〉 ≤ M〈O; r; log g〉+ O(log+ Tf (r, L)) + O(ε log r).

Hence Theorem 2.95 is proved. �

If the divisor D = D1+· · ·+Dq has normal crossings in N , but Dj (1 ≤ j ≤ q)
may have singularities, by Hironaka’s resolution of singularities [160] there exists a
proper modification ρ : Ñ −→ N , where Ñ is an algebraic manifold, such that the
set D̃ = ρ−1(D) is the union of a collection of smooth hypersurfaces with normal
crossings. Let f̃ : M −→ Ñ be the lift of f : M −→ N given by ρ ◦ f̃ = f . By
applying (2.12.15) to f̃ , we conclude that (2.12.15) is valid for D (cf. Shiffman
[344]).

Next we consider the case m ≥ n and make two additional assumptions:

(A6) Let f : M −→ N be a holomorphic mapping of rank n.

(A7) Assume that M has holomorphic rank m, i.e., there exists a holomorphic
mapping β : M −→ Cm of strict rank m. Let µ be the multiplicity of the
branching divisor of β.

Under the conditions (A6) and (A7), a holomorphic form ϕ of degree m−n on M
exists such that the induced Jacobian section Fϕ is effective for f . Note that

Fϕ[ψn] =
(

m

m− n

)
im−nϕ ∧ ϕ̄ ∧ f∗(ψn). (2.12.19)

By Lemma 2.83, the function g defined by (2.12.14) for F = Fϕ satisfies

g2 ≤
(

m

m− n

)
. (2.12.20)
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Hence when f(M) �⊆ supp(D), the formulae (2.11.3) and (2.12.15) imply

‖ qTf (r, L) + Tf (r, KN ) ≤
q∑

j=1

Nf (r, Dj)−NRam(r, f) + Nµ(r)

+ O(log+ Tf (r, L)) + O(ε log r). (2.12.21)

For a positive integer k and a divisor D on N , we define the truncated mul-
tiplicity function of order k of D on M by

µf∗D,k(z) = min{µf∗D(z), k}, z ∈M, (2.12.22)

and the truncated valence function of order k of D,

Nf,k(r, D) = Nµf∗D,k
(r). (2.12.23)

Usually, we write
Nf (r, D) = Nf,1(r, D). (2.12.24)

Theorem 2.96 ([83]). Assume that (A1)–(A7) hold. Then

‖ qTf (r, L) + Tf (r, KN ) ≤
q∑

j=1

Nf (r, Dj) + Nµ(r)

+ O(log+ Tf (r, L)) + O(ε log r). (2.12.25)

A proof of Theorem 2.96 can be found in [168].

2.12.2 Griffiths’ and Lang’s conjectures

One of the major unsolved problems in value distribution theory is whether the
inequality (2.12.21) for the case m ≥ n = rank f holds for more general mero-
morphic mappings. Note that under the conditions (A1) and (A2), N is projective
algebraic. It is natural to study algebraically non-degenerate meromorphic map-
pings. Conjecture 2.97 below restates this question, which has been previously
asked by P. Griffiths [125] and M. Green (or cf. B. Shiffman [345]).

Conjecture 2.97. Assume that (A1)–(A4) and (A7) hold. If f : M −→ N is a
meromorphic mapping which is algebraically non-degenerate, then there exists a
number w = w(n, D) such that

‖ qTf (r, L) + Tf (r, KN ) ≤
q∑

j=1

Nf,w(r, Dj) + Nµ(r)

+ O(log+ Tf (r, L)) + O(ε log r). (2.12.26)
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In consideration of the analogues in number theory, S. Lang [229] weakens
the condition of algebraic non-degeneracy in Conjecture 2.97 as follows:

Conjecture 2.98. Assume that (A7) holds. Let D be a divisor with normal crossings
on an algebraic manifold N . There exists a proper algebraic subset ZD of N having
the following property. Let f : M −→ N be a meromorphic mapping such that
f(M) �⊂ ZD. Let E be an ample divisor. Then there exists a number w = w(n, D)
such that

‖ Tf (r, [D]) + Tf(r, KN ) ≤ Nf,w(r, D) + Nµ(r)

+ O(log+ Tf (r, [E])) + O(log r). (2.12.27)

When M = C, D = 0 and KN is ample, the inequality (2.12.27) becomes

‖ Tf (r, KN ) = O(log r),

which implies that f is rational, so degenerate when dim N > 1. Thus the following
theorem (Green-Griffiths’ conjecture) is a special case of Conjecture 2.98.

Theorem 2.99. Let N be a projective algebraic variety with KN ample. Then there
are no algebraically non-degenerate holomorphic curves in N .

Theorem 2.99 for the case dim N = 1 follows from Liouville’s theorem and
the fact that the compact complex curves of genus greater than 1 are uniformized
by the disc (see Theorem 4.57). Generally, a proof of Theorem 2.99 will be given
in Chapter 6 (see Theorem 6.17). As a special case of Conjecture 2.97, B. Shiffman
[345] listed Theorem 2.99 as a conjecture.

Qualitatively, Conjecture 2.98 also has the following simple consequence.

Conjecture 2.100. Let N be a non-singular complex projective variety. Let K be
the canonical divisor of N , and D a normal crossings divisor on N . Suppose that
K + D is pseudo ample. Then N −D is pseudo Brody hyperbolic.

Related to Conjecture 2.100, A. Levin [244] gave a main Picard-type conjec-
ture as follows:

Conjecture 2.101. Let N be a complex projective variety. Let D = D1 + · · ·+ Dq

be a divisor on N with the Di’s effective Cartier divisors for all i. Suppose that at
most k Di’s meet at a point, so that the intersection of any k + 1 distinct Di’s is
empty. Suppose that dimDi ≥ n0 > 0 for all i. If q > k + k

n0
, then there does not

exist a holomorphic mapping f : C −→ N −D with Zariski-dense image.

Picard’s theorem is the case k = n0 = dimN = 1 of Conjecture 2.101. When
N is a surface, k ≤ 2, and the Di’s have no irreducible components in common, A.
Levin [244] proved Conjecture 2.101. At the extreme of n0, there is the following
special case.



2.12. Carlson-Griffiths-King theory 207

Conjecture 2.102. Let N be a complex projective variety. Let D = D1 + · · ·+ Dq

be a divisor on N with the Di’s effective Cartier divisors for all i. Suppose that at
most k Di’s meet at a point. If Di is pseudo ample for all i and q > k + k

dim N ,
then N −D is pseudo Brody hyperbolic.

When q > 2k dimN , A. Levin [244] proved Conjecture 2.102. Further, A.
Levin [244] proved that N −D is complete hyperbolic if Di is ample for all i. To
relate Conjecture 2.100 with Conjecture 2.102, we recall the following theorem,
which is a consequence of Mori theory (cf. [280], Lemma 1.7).

Theorem 2.103. Let N be a non-singular complex projective variety of dimension
n with the canonical divisor K. If D1, . . . , Dn+2 are ample divisors on N , then
K + D1 + · · ·+ Dn+2 is ample.

So when N is non-singular, the Di’s are ample, and D = D1+· · ·+Dq has nor-
mal crossings, we see that Conjecture 2.102 is a consequence of Conjecture 2.100.
Particularly, if N is the complex projective space Pn, and if Di is a hyperplane for
each i, Corollary 2.72 with k = n is a special case of Conjecture 2.102.

Here we make a remark for the case m < n. To prove Conjecture 2.97, based
on Theorem 2.95 it is sufficient to obtain the estimate

‖ M 〈O; r; log g〉 ≤ O(log+ Tf(r, L)) + O(ε log r). (2.12.28)

By using Lemma 2.87, it is sufficient to find a holomorphic field ϕ on f over M of
degree n−m which is effective for f such that the estimate

‖ M 〈O; r; log |ϕ|〉 ≤ O(log+ Tf (r, L)) + O(ε log r) (2.12.29)

holds. Generally, we have the following expression (cf. Proof of Theorem 2.84):

ϕ = η1 ∧ · · · ∧ ηn−m

for some ηj ∈ Γ(M, f∗(T(N))) (j = 1, . . . , n−m). By Lemma 1.55, there exists a
constant c > 0 such that

|ϕ| = |η1 ∧ · · · ∧ ηn−m| ≤ c |η1| · · · |ηn−m| .

To estimate M 〈O; r; log |ϕ|〉, it is sufficient to find a bound of M 〈O; r; log |ηk|〉
for each k. The difficult point for estimating M 〈O; r; log |ηk|〉 is that the norm
|ηk| is measured by a “singular” metric induced by ψ. We will introduce two
ways to construct an effective holomorphic field ϕ on f . One way is to use ample
holomorphic vector fields on N as shown in Lemma 2.85. Another way is to use
meromorphic connections which will be discussed in detail in Chapter 6.

Let ψ1, . . . , ψn be a coframe in an open set of N such that the Hermitian
metric of N is given by

ds2
N = 2

n∑
α=1

ψαψ̄α.
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Write
ψ = Ric(Ψ) =

i

2π

∑
α,β

Rαβψα ∧ ψ̄β

and define the associated scalar curvature

R = tr(ψ) =
∑

α

Rαα. (2.12.30)

Since R and det(Rαβ) are respectively the sum and product of eigenvalues of the
matrix (Rαβ), which are positive, the geometric-mean-arithmetic-mean inequality
implies

R ≥ n{det(Rαβ)} 1
n > 0.

Define a positive C∞-function on N by

R = tr(λqc1(L, κ) + Ric(Ω))

and set

λD =
q∏

j=1

1
(log |sj |2κ)2

.

Then the formula (2.12.10) implies

R = R +
1
4
∆ log λD, (2.12.31)

where
∆ log λD = 4tr(ddc log λD)

is just the Laplacian of log λD.

Lemma 2.104 ([184]). Assume that (A1)–(A3) hold. Then for any continuous sec-
tion X of T(N) over N , there exists a positive constant c such that

|X |2 ≤ cR, (2.12.32)

where we used the metric induced by ψ.

Proof. By using (2.12.10), we can write ψ = ψ′ + ψ′′, where

ψ′ = λqc1(L, κ) + Ric(Ω) + 2
q∑

j=1

c1(L, κ)
log |sj |2κ

is continuous on N , and

ψ′′ = 2
q∑

j=1

d log |sj |2κ ∧ dc log |sj |2κ
(log |sj |2κ)2

≥ 0.
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In fact, according to the construction of Ψ, we have ψ′ > 0 (see [380]). Denoting
the norm |X |ψ induced by ψ, then |X |ψ′ is bounded on N , and so

|X |2ψ′ ≤ c′tr(ψ′) ≤ c′tr(ψ) = c′R (2.12.33)

holds for a constant c′ > 0.
Next we estimate |X |2ψ′′ . Take local holomorphic coordinates w1, . . . , wn and

set
dwα =

∑
k

aαkψk, α = 1, . . . , n.

Write

bjα =
∂ log log |sj |2κ

∂wα
, cjk =

∑
α

bjαaαk.

Then

ψ′′ =
i

π

q∑
j=1

∑
α,β

bjαb̄jβdwα ∧ dw̄β =
i

π

q∑
j=1

∑
k,l

cjk c̄jlψk ∧ ψ̄l.

Let e1, . . . , en be a frame field which is dual to the coframe (ψ1, . . . , ψn). Write

X =
n∑

α=1

ξαeα.

We have

|X |2ψ′′ = 2
q∑

j=1

∑
k,l

cjk c̄jlξk ξ̄l = 2
q∑

j=1

∣∣∣∣∣
n∑

k=1

cjkξk

∣∣∣∣∣
2

.

The Schwarz inequality implies

|X |2ψ′′ ≤ 2
q∑

j=1

(
n∑

k=1

|cjk|2
)(

n∑
k=1

|ξk|2
)

.

Since X is continuous on N , there is a positive constant c′′ such that

n∑
k=1

|ξk|2 ≤ c′′,

and hence

|X |2ψ′′ ≤ 2c′′
q∑

j=1

n∑
k=1

|cjk|2 = c′′tr(ψ′′) ≤ c′′tr(ψ) = c′′R. (2.12.34)

Since
|X |2ψ = |X |2ψ′ + |X |2ψ′′ ,

therefore (2.12.32) follows from (2.12.33) and (2.12.34). �
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Under the conditions (A1)–(A5), we define a function associated to D and f :

Rf (r) = M 〈O; r; log R ◦ f〉 . (2.12.35)

Theorem 2.105 ([184]). Assume that (A1)–(A5) hold with m < n, and further
assume that D has simple normal crossings. Assume that there exist holomorphic
vector fields Z1, . . . , Zn on N such that

Z := Z1 ∧ · · · ∧ Zn �≡ 0.

Suppose that f has strict rank m such that

f(M) � supp(D), f(M) � supp((Z)),

where (Z) denotes the zero divisor of Z. Then for any ε > 0, we have

‖ qTf (r, L) + Tf (r, KN ) ≤
q∑

j=1

Nf (r, Dj)−NRam(r, f) + Ricτ (r, r0)

+
n−m

2
Rf (r) + O(log+ Tf(r, L)) + O(ε log r).

(2.12.36)

Proof. By Lemma 2.85, there exists λ ∈ Jn
1,n−m such that a holomorphic field

ϕ = Zλf = (Zλ(1) ∧ · · · ∧ Zλ(n−m))f

on f over M of degree n − m is effective for f . By Lemma 1.55, there exists a
constant c > 0 such that∣∣Zλ(1) ∧ · · · ∧ Zλ(n−m)

∣∣ ≤ c
∣∣Zλ(1)

∣∣ · · · ∣∣Zλ(n−m)

∣∣ ,
and hence

M〈O; r; log |ϕ|〉 ≤ 1
2

n−m∑
k=1

M
〈
O; r; log

∣∣Zλ(k) ◦ f
∣∣2〉+ O(1). (2.12.37)

By Lemma 2.104, we have

M
〈
O; r; log

∣∣Zλ(k) ◦ f
∣∣2〉 ≤ M 〈O; r; log R ◦ f〉+ O(1). (2.12.38)

Thus Theorem 2.105 follows from Theorem 2.95 and Lemma 2.87. �

If N is a complex torus, then there exist n holomorphic vector fields Z1,...,Zn

which are linearly independent at every point of N . If N is the complex projec-
tive space Pn(C), we define n holomorphic vector fields Z1, . . . , Zn over Pn(C) as
follows. We consider the natural projection

P : Cn+1 − {0} −→ Pn(C)
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defined by (ξ0, . . . , ξn) �→ [ξ0, . . . , ξn], which induces the holomorphic differential

P′ : T(Cn+1 − {0}) −→ T(Pn(C)).

Define

Zi = P′
(

∂

∂ξi

)
, i = 0, 1, . . . , n.

Then Z0, . . . , Zn span the holomorphic tangent space at every point of Pn(C). For
example, denoting the local coordinates

zj =
ξj

ξ0
, j = 1, . . . , n

on the domain U0 = {ξ0 �= 0} of Pn(C), we have

Zi =

{
1
ξ0

∂
∂zi

, if 1 ≤ i ≤ n;
−
∑n

j=1
ξj

ξ2
0

∂
∂zj

, if i = 0.

Hence Z1, . . . , Zn satisfy the condition in Theorem 2.105.



Chapter 3

Topics in Number Theory

In this chapter, we will introduce some results and problems in number theory that
have an analogue in Nevanlinna theory, say, the abc-conjecture, Roth’s theorem,
Schmidt’s subspace theorem, Vojta’s conjecture, and so on.

3.1 Elliptic curves

We think that if a variety admits non-constant holomorphic curves, it would have
a rich and complicated distribution theory of rational points. It is well known
that rational and elliptic curves admit non-constant holomorphic curves (see Sec-
tion 3.1.5 and 4.8). These also are total compact Riemann surfaces satisfying the
above property. The difference between rational and elliptic curves is that map-
pings of non-constant holomorphic curves into elliptic curves must be surjective
(cf. Theorem 4.50), but the case for rational curves is not so. The phenomenon
reflects a difference of distribution of rational points on two classes of curves. Gen-
erally speaking, distribution of rational points on elliptic curves is “normal”. In
this section, we will give an elementary exhibit of the more beautiful theory.

3.1.1 The geometry of elliptic curves

An algebraic curve E defined over a field κ is called an elliptic curve if a normal-
ization of the curve has genus 1, usually written E/κ if E is defined over κ as a
curve. In this section, we will discuss smooth elliptic curves. However, there are
non-smooth elliptic curves. For example, the algebraic curve defined over C by the
following equation of degree 4,

y2(ax2 + bx + c) + αx2 + βx + γ = 0,

has generally two ordinary double points. The genus formula implies that the curve
has genus 1. Hence it is elliptic, but not smooth.
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Proposition 3.1 (cf. [362]). Let E be an elliptic curve defined over κ.

(a1) There exist functions x, y ∈ κ̄(E) such that the mapping [x, y, 1] : E −→ P2

gives an isomorphism of E/κ onto a curve given by a generalized Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (3.1.1)

with ai ∈ κ.

(a2) Any two generalized Weierstrass equations for E as in (a1) are related by a
linear change of variables of the form

x = u2x′ + r,

y = u3y′ + su2x′ + t,

with u, r, s, t ∈ κ, u �= 0.

(a3) Conversely, every smooth cubic curve given by a generalized Weierstrass
equation as in (a1) is an elliptic curve defined over κ.

As usual, the curve defined by the generalized Weierstrass equation in (a1)
is the locus of the homogeneous coordinate equation

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3

in P2 with only one point [0, 1, 0] on the line at ∞. The functions x, y ∈ κ̄(E) in
(a1) are called Weierstrass coordinate functions on E, which have the property

κ̄(E) = κ̄(x, y), [κ̄(E) : κ̄(x)] = 2.

The point in E corresponding to [0, 1, 0] under the mapping in (a1) is called a base
point of E, or the origin of E, denoted by O. Obviously, O must be a pole of order
2 of x, and a pole of order 3 of y.

If char(κ̄) �= 2, then we can simplify the equation by completing the square.
Thus replacing y by 1

2 (y − a1x− a3) gives an equation of the form

y2 = 4x3 + b2x
2 + 2b4x + b6,

where

b2 = 4a2 + a2
1,

b4 = 2a4 + a1a3,

b6 = 4a6 + a2
3.
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The following quantities are usually used:

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = −24b4 + b2
2,

c6 = −216b6 + 36b4b2 − b3
2,

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6,

j =
c3
4

∆
,

ω =
dx

2y + a1x + a3
=

dy

3x2 + 2a2x + a4 − a1y
.

One easily verifies that they satisfy the relations

4b8 = b2b6 − b2
4, 1728∆ = c3

4 − c2
6.

The quantity ∆ is called the discriminant of the generalized Weierstrass equation,
j is called the j-invariant of the elliptic curve E, and ω is the invariant differential
associated with the generalized Weierstrass equation. The following properties are
due to Silverman [362], Propositions 1.4 and 1.5.

Proposition 3.2.

(b1) The curve given by a generalized Weierstrass equation is non-singular if and
only if ∆ �= 0.

(b2) The invariant differential ω on an elliptic curve associated to a generalized
Weierstrass equation is regular and non-vanishing, i.e., div(ω) = 0.

If further char(κ̄) �= 2, 3, then replacing (x, y) by ((x− 3b2)/36, y/108) elim-
inates the x2 term, yielding the simple Weierstrass equation

y2 = x3 + ax + b

with a = −27c4, b = −54c6. The only change of variables preserving this form of
the equation is

x = u2x′, y = u3y′ (3.1.2)

for some u ∈ κ̄∗, and then

u4a′ = a, u6b′ = b, u12∆′ = ∆.

We summarize the above discussion as follows:

Theorem 3.3 (cf. [126], [362]). For each smooth elliptic curve E defined over a
field κ of characteristic �= 2, 3, there exists a coordinate system such that the affine
equation of E may be expressed by a Weierstrass equation

y2 = x3 + ax + b (3.1.3)
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with a, b ∈ κ, and

∆ = −16(4a3 + 27b2) �= 0, j =
1728(−4a)3

∆
. (3.1.4)

The only change of variables preserving this form of the equation is (3.1.2).

The condition that the discriminant ∆ is non-zero is equivalent to the curve
being smooth. It is also equivalent to the cubic x3 + ax + b having three different
roots since

16(x1 − x2)2(x2 − x3)2(x3 − x1)2 = ∆,

where x1, x2, x3 are the three zeros of the polynomial x3 + ax + b.

Let E be an elliptic curve given by a generalized Weierstrass equation (3.1.1).
Remember that E ⊂ P2 consists of the points P = (x, y) satisfying the equation
together with the point O = [0, 1, 0] at infinity. Let L ⊂ P2 be a line. Then since
the equation has degree 3, L intersects E at exactly three points, say P, Q, R.
Note that if L is tangent to E, then P, Q, R may not be distinct. The fact that
L∩E (counting multiplicity) consists of three points is a special case of Bezout’s
theorem. One can use this fact to define an addition law on E. Namely, given
P, Q ∈ E, draw the line L through P and Q (tangent line to E if P = Q). Let
R be the third point of intersection of L with E. Let L′ be the line connecting
R and O. Define P + Q to be the third point of intersection of E with L′. The
composition law makes E into an Abelian group with identity element O. Further,

E(κ) = {solutions (x, y) ∈ κ2 of (3.1.1)} ∪ {O}

is a subgroup of E (see [362], Proposition 2.2).

Example 3.4 (cf. [429]). Let E/Q be an elliptic curve defined by the equation
(3.1.3). If a = −1, b = 0, then

E(Q) = {(0, 0), (1, 0), (−1, 0), O}.

Let E be an elliptic curve defined over κ and m ∈ Z − {0}. The m-torsion
subgroup of E, denoted E[m], is the set of points of order m in E,

E[m] = {P ∈ E | [m]P = O},

where
[m]P = P + P + · · ·+ P (m terms)

if m > 0, [m]P = [−m](−P ) if m < 0, and [0]P = O. The torsion subgroup of E,
denoted Etors, is the set of points of finite order,

Etors =
∞⋃

m=1

E[m].

Then Etors(κ) will denote the points of finite order in E(κ).



3.1. Elliptic curves 217

Proposition 3.5 ([362]). Let E/κ be an elliptic curve and m ∈ Z−{0}. Let p denote
the characteristic of κ̄.

(c1) If p = 0 or if m is prime to p, then

E[m] ∼= (Z/mZ)× (Z/mZ).

(c2) If p > 0, then either

E[pe] ∼= {O}, e = 1, 2, 3, . . . ;

or
E[pe] ∼= Z/peZ, e = 1, 2, 3, . . . .

Let E/κ be an elliptic curve and � ∈ Z a prime. The (�-adic) Tate module of
E is the group

T
(E) = lim←n
E[�n],

the inverse limit being taken with respect to the natural mappings

[�] : E[�n+1] −→ E[�n].

Since each E[�n] is a Z/�nZ-module, we see that the Tate module has a natural
structure as a Z
-module. Note that since the multiplication mappings [�] are
surjective, the inverse limit topology on T
(E) is equivalent to the �-adic topology
it gains as a Z
-module. Proposition 3.5 implies immediately

Proposition 3.6 ([362]). The Tate module has the following structure:

(d1) T
(E) ∼= Z
 × Z
 if � �= char(κ).
(d2) Tp(E) ∼= {0} or Zp if p = char(κ) > 0.

Let m ≥ 2 be an integer (prime to char(κ) if char(κ) > 0). Note that each
element σ of the Galois group Gκ̄/κ acts on E[m] since, if [m]P = O, then

[m]σ(P ) = σ([m]P ) = O.

We thus obtain a representation

Gκ̄/κ −→ Aut(E[m]) ∼= GL(2, Z/mZ),

where the latter isomorphism involves choosing a basis for E[m]. The action of
Gκ̄/κ on each E[�n] commutes with the multiplication mappings [�] used to form
the inverse limit, so Gκ̄/κ also acts on T
(E). The �-adic representation (of Gκ̄/κ

on E), denoted ρE,
, is the mapping

ρE,
 : Gκ̄/κ −→ Aut(T
(E))
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giving the action of Gκ̄/κ on T
(E) as described above. If � �= char(κ), by choosing
a Z
-basis for T
(E) we obtain a representation

Gκ̄/κ −→ GL(2, Z
);

and then the natural inclusion Z
 ⊂ Q
 gives

Gκ̄/κ −→ GL(2, Q
).

Remark. If κ is a local field, complete with respect to a discrete valuation v, we
can find a generalized Weierstrass equation (3.1.1) for E/κ with all coefficients
ai ∈ Oκ = κ[0; 1] since replacing (x, y) by (u−2x, u−3y) causes each ai to become
aiu

i, if we choose u divisible by a large power of a uniformizing parameter t for
the valuation ring Oκ. Since v is discrete, we can look for an equation with v(∆)
as small as possible, called a minimal (Weierstrass) equation for E at v. The
natural reduction mapping Oκ −→ F(κ) = Oκ/κ(0; 1) is denoted z �→ z̃. Now
having chosen a minimal Weierstrass equation (3.1.1) for E/κ, we can reduce its
coefficients modulo t to obtain a (possibly singular) curve over F(κ), namely

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x + ã6.

The curve Ẽ/F(κ) is called the reduction of E modulo t. Further, E is said to
have good (or stable) reduction over κ if Ẽ is non-singular, otherwise, it has bad
reduction. In the case of having bad reduction, E is also said to have multiplicative
(or semi-stable) reduction over κ if Ẽ has an ordinary double point, otherwise, it
has additive (or unstable) reduction over κ. If E has multiplicative reduction, then
the reduction is said to be split (respectively non-split) if the slopes of the tangent
lines at the double point are in F(κ) (respectively not in F(κ)). One knows that
E has good reduction if and only if v(∆) = 0 (cf. [362]).

3.1.2 Modular functions

We usually use the following form of Theorem 3.3 over C (cf. [359], [126]):

Theorem 3.7. Every algebraic curve of genus 1 over C can be transformed bira-
tionally into a cubic curve of the special form

y2 = 4x3 −Ax−B (3.1.5)

with constants A, B satisfying ∆ = A3 − 27B2 �= 0. Two such cubic curves are
birationally equivalent if and only if they agree on the invariant

j =
1728A3

A3 − 27B2
. (3.1.6)

If this is the case, then the two curves go over into each other under an affine
transformation of the form x �→ u2x, y �→ u3y, with constant u �= 0.
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Take ω1, ω2 ∈ C such that they are linearly independent over R, that is,
ωi �= 0, ω2/ω1 �∈ R. Let Λ be the discrete subgroup of C generated by ω1 and ω2:

Λ = [ω1, ω2] = {mω1 + nω2 | m, n ∈ Z},

which is called a lattice over Z. Here we simply introduce meromorphic functions
on the quotient space C/Λ; or equivalently, meromorphic functions on C which are
periodic with respect to the lattice Λ. An elliptic function (relative to the lattice
Λ) is a meromorphic function f on C which satisfies

f(z + ω) = f(z), z ∈ C, ω ∈ Λ.

The set of all such functions is clearly the field M(C/Λ).

The Eisenstein series of weight 2k (for Λ) is the series

G2k = G2k(Λ) =
∑

ω∈Λ−{0}
ω−2k,

which is absolutely convergent for all k > 1. The Weierstrass ℘ function (relative
to Λ) is defined by the series

℘(z) = ℘(z, Λ) =
1
z2

+
∑

ω∈Λ−{0}

(
1

(z − ω)2
− 1

ω2

)
,

which converges absolutely and uniformly on every compact subset of C − Λ. It
defines an even elliptic function on C having a double pole with residue 0 at each
lattice point and no other poles.

Theorem 3.8. Every elliptic function is a rational combination of ℘ and ℘′, i.e.,

M(C/Λ) = C(℘, ℘′).

Proof. Siegel [358], Chapter 1, Section 14, Theorem 6, or Silverman [362]. �

It is standard notation to set

g2 = g2(Λ) = 60G4, g3 = g3(Λ) = 140G6. (3.1.7)

A basic theorem (cf. [358]) in elliptic function theory shows that g3
2 − 27g2

3 �= 0,
and the inverse function of the elliptic integral of the first kind in the Weierstrass
normal form

z =
∫ w

∞

dζ√
4ζ3 − g2ζ − g3

formed with these g2, g3 coincides with the Weierstrass ℘ function which also is a
unique even meromorphic function in C satisfying the differential equation

(℘′)2 = 4℘3 − g2℘− g3. (3.1.8)

Conversely, one has the following uniformization theorem:
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Theorem 3.9. Let A, B ∈ C satisfy A3 − 27B2 �= 0. Then there exists a unique
lattice Λ ⊂ C such that g2(Λ) = A and g3(Λ) = B.

Proof. See Apostol [6], Theorem 2.9; Robert [325], I.3.13; Shimura [351], Section
4.2; Serre [341], VII Proposition 5, or Siegel [358], Chapter 1, Sections 11–13. �

By possibly reversing the order of ω1 and ω2, we can assume that the imag-
inary part of the ratio τ = ω2/ω1 is positive. By (3.1.7), the quantity

j = j(Λ) =
1728g3

2

g3
2 − 27g2

3

associated with the algebraic curve

y2 = 4x3 − g2x− g3

depends solely on the period lattice and is homogeneous of degree 0 in ω1, ω2, that
is, it is the same if we replace ω1, ω2 by cω1, cω2 for any complex number c �= 0.
Thus we have j(cΛ) = j(Λ), and we may define j(τ) = j(Λ). But C/Λ is a complex
torus of dimension 1, and the above arguments show that j is the single invariant
for isomorphism classes of such toruses. It follows that j = j(τ), considered in the
upper half-plane H, is a holomorphic function of τ alone which has the invariance
property

j

(
aτ + b

cτ + d

)
= j(τ)

with integers a, b, c, d and ad− bc = 1. Note that the transformation

τ �→ τ ′ =
aτ + b

cτ + d
, {a, b, c, d} ⊂ Z, ad− bc = 1 (3.1.9)

maps H into itself. Such transformations form a group, called the modular group
SL(2, Z) or, more precisely, the elliptic modular group.

We denote the relation (3.1.9) between τ and τ ′ by

τ = τ ′ mod SL(2, Z), (3.1.10)

and call two points τ and τ ′ equivalent. As usual, we define the fundamental region
B of SL(2, Z) as a subset of H satisfying conditions:

(e1) If τ ∈ H, there exists τ ′ ∈ B such that (3.1.10) holds;
(e2) If τ, τ ′ ∈ B, then τ �= τ ′ mod SL(2, Z).

For example,

B =
{

x + iy ∈ H

∣∣∣∣ x2 + y2 ≥ 1, −1
2
≤ x <

1
2

}
− l,
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where

l =
{

x + iy ∈ H

∣∣∣∣ x2 + y2 = 1, 0 < x <
1
2

}
.

Now B contains exactly one representative of each equivalence class. In view of
Theorem 3.7, the function j(τ) has the important property of separating every
two points of H by its values if these points are not equivalent with respect to the
modular group, that is,

j(τ) �= j(τ ′), τ �= τ ′ mod SL(2, Z),

which gives a holomorphic isomorphism (cf. [341])

j : H/SL(2, Z) −→ C.

The space H/SL(2, Z) is a non-compact Riemann surface. Its natural com-
pactification is P1(C), obtained by adding a single extra point at infinity. Define

H∗ = H ∪ P1(Q).

Here one should think of the points [x, 1] ∈ P1(Q) as forming the usual copy of Q
in C; and the point [1, 0] ∈ P1(Q) as a point at infinity. Notice that SL(2, Z) acts
on P1(Q) in the usual manner,(

a b
c d

)
: [x, y] �−→ [ax + by, cx + dy].

The quotient space H∗/SL(2, Z) can be given the structure of a Riemann surface,
and one can show that the j-function then defines a holomorphic isomorphism

j : H∗/SL(2, Z) −→ P1(C).

See Shimura [351], Sections 1.3, 1.4 and 1.5 for details. Since SL(2, Z) acts tran-
sitively on P1(Q), the net effect has been to add a single point, called a cusp, to
H/SL(2, Z).

More generally, we consider an automorphic function f(τ) of one complex
variable τ , which is meromorphic in H including the point of B at infinity and
which is invariant under the modular group. More precisely, the condition on the
behavior at infinity states that there exists a Laurent expansion

f(τ) =
∞∑

n=−m

cn(f)zn

which converges for sufficiently small values of |z| and contains only finitely many
negative powers of z. Here the variable z = e2πiτ . Every function satisfying all
these conditions is called a modular function or, more precisely, an elliptic modular
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function. The function j(τ) is an elliptic modular function with (cf. [6], Theorem
1.18, 1.19, 1.20, or [341], VII Proposition 4, 5, 8)

j(τ) =
1
z

+ 744 +
∞∑

n=1

c(n)zn, c(n) ∈ Z.

The elliptic modular functions obviously form a field which consists precisely of
the rational functions of j(τ) (see [358], [359], [360], [362]).

3.1.3 Cusp forms

Let N be a positive integer. One defines subgroups of SL(2, Z) as follows:

Γ0(N) =
{(

a b
c d

)
∈ SL(2, Z)

∣∣∣∣ c ≡ 0(modN)
}

, (3.1.11)

Γ1(N) =
{

γ ∈ SL(2, Z)
∣∣∣∣ γ ≡

(
1 b
0 1

)
(modN)

}
, (3.1.12)

and

Γ(N) =
{

γ ∈ SL(2, Z)
∣∣∣∣ γ ≡

(
1 0
0 1

)
(modN)

}
. (3.1.13)

More generally, a congruence subgroup of SL(2, Z) is defined to be a subgroup Γ
of SL(2, Z) which contains Γ(N) for some integer N ≥ 1. If Γ is a congruence
subgroup of SL(2, Z), then Γ acts on H∗, and we can form the quotient space
H∗/Γ, which has a natural structure as a Riemann surface (see Shimura [351],
Sections 1.3 and 1.5). The action of Γ on P1(Q) gives finitely many orbits; the
images of these orbits in H∗/Γ are called the cusps of Γ.

We may view 1/N as a point of order N on the torus C/[1, τ ]. Let ZN be
the cyclic group generated by 1/N . Then we may consider the pair (C/[1, τ ], ZN )
as consisting of a torus and a cyclic subgroup of order N . One has the following
parametrizations:

(f1) The association τ �→ (C/[1, τ ], 1/N) gives a bijection between H/Γ1(N) and
isomorphism classes of toruses together with a point of order N .

(f2) The association τ �→ (C/[1, τ ], ZN) gives a bijection between H/Γ0(N) and
isomorphism classes of toruses together with a cyclic subgroup of order N .

Furthermore, there exist affine curves Y1(N) and Y0(N), defined over Q, such that

Y1(N)(C) ≈ H/Γ1(N), Y0(N)(C) ≈ H/Γ0(N)

and such that Y1(N) parametrizes isomorphism classes of pairs (E, P ) algebrai-
cally, where E is an elliptic curve and P is a point of order N , in the following sense.
If κ is a field containing Q, then a point of Y1(N)(κ) corresponds to such a pair
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(E, P ) with E defined over κ and P rational over κ. Similarly, Y0(N) parametrizes
pairs (E, Z), where E is defined over κ and Z is invariant under the Galois group
Gκ/Q. The affine curve Y1(N) can be compactified by adjoining the points which
lie above j =∞. Its completion, denoted by X1(N), is a smooth projective curve
which contains Y1(N) as a dense Zariski open subset. Similarly, we have the com-
pletion X0(N) of Y0(N). Thus one obtains the holomorphic isomorphisms

X1(N)(C) ≈ H∗/Γ1(N), X0(N)(C) ≈ H∗/Γ0(N).

See Shimura [351], or Silverman [362].

An automorphic form f ∈ M(H) of weight k
2 for a congruence subgroup

Γ of SL(2, Z) is said to be a modular function of weight k for Γ if f also is
meromorphic at each of the cusps of H∗/Γ (see Shimura [351], Section 2.1 for the
precise definition). A modular function is called a modular form if it is holomorphic
on H and at each of the cusps of H∗/Γ; and it is a cusp form if it is a modular
form which vanishes at every cusp. Take

γ =
(

a b
c d

)
∈ Γ : τ �−→ γ(τ) =

aτ + b

cτ + d
.

Note that the Jacobian determinant Jγ of γ is just

dγ

dτ
=

1
(cτ + d)2

.

By the definition, a modular function f of weight k for Γ satisfies

f

(
aτ + b

cτ + d

)
= (cτ + d)k

f(τ), τ ∈ H. (3.1.14)

The Eisenstein series G2k(τ) = G2k(Λ) of weight 2k for the lattice Λ = [1, τ ]
is a modular form of weight 2k for SL(2, Z). Its Fourier series is given by

G2k(τ) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)e2πinτ ,

where σα(n) is the divisor function

σα(n) =
∑
d|n

dα.

See [6], Theorem 1.18, 1.19, 1.20, or [341], VII Proposition 4, 5, 8. Related to the
definition of G2k(τ), here one introduces the function

E(τ, s) =
1

2ζ(2s)

∑
(m,n)∈Z2−{0}

ys

|m + nτ |2s
, τ = x + iy ∈ H. (3.1.15)
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This series converges absolutely and uniformly in any compact subset of the region
Re(s) > 1. Selberg [339] proved that E(τ, s) has a meromorphic continuation to
the whole complex s-plane and satisfies the functional equation

E(τ, s) =
ξ(2s− 1)

ξ(2s)
E(τ, 1 − s). (3.1.16)

The discriminant function ∆(τ) is a classic cusp form of weight 12 for SL(2, Z).
Its Taylor expansion in z = e2πiτ assumes the form

∆(τ) = (2π)12
∞∑

n=1

τ(n)zn = (2π)12z
∞∏

n=1

(1 − zn)24 (3.1.17)

with τ(1) = 1 and τ(n) ∈ Z (see [6], Theorem 1.18, 1.19, 1.20, or [341], VII
Proposition 4, 5, 8). The integer-valued function n �→ τ(n) is called the Ramanujan
τ-function. Ramanujan also conjectured that the Hecke L-series associated to ∆
has an Euler product:

L(∆, s) =
∞∑

n=1

τ(n)
ns

=
∏
p

(
1− τ(p)

ps
+

1
p2s−11

)−1

. (3.1.18)

This was proved by Mordell [276]. Further L(∆, s) satisfies the functional equation

Λ∆(s) = Λ∆(12− s), (3.1.19)

where
Λ∆(s) = (2π)−sΓ(s)L(∆, s). (3.1.20)

The study of modular forms is facilitated by the existence of certain linear
operators. For each integer n ≥ 1, we define the Hecke operator Tn on modular
forms of weight k for SL(2, Z) by the formula

Tn(f)(τ) = nk−1
∑
d|n

1
dk

d−1∑
i=0

f

(
nτ + id

d2

)
.

For a more intrinsic definition, see Apostol [6], Section 6.8; Serre [341], VII, Section
5.1; or Shimura [351], Ch. 3. The Hecke operator satisfies the following basic
properties:

(g1) If f is a modular form (respectively cusp form) of weight k for SL(2, Z), then
Tn(f) is also.

(g2) For all integers m and n, TmTn = TnTm.

(g3) If m and n are relatively prime, then Tmn = TmTn.
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See Apostol [6], Theorem 6.11 and 6.13; Serre [341], VII, Sections 5.1 and 5.3.

The Hecke operators defined above also act on the space of modular forms
relative to congruence subgroups.

Proposition 3.10. Let Γ be a congruence subgroup of SL(2, Z), say Γ ⊃ Γ(N) and
let f be a modular form of weight k for Γ. Then for each integer n ≥ 1 relatively
prime to N , the function Tn(f) is again a modular form of weight k for Γ. Further,
if f is a cusp form, then so is Tn(f).

Proof. See Shimura [351], Proposition 3.37. �

For a positive integer N , a cusp form of weight k ≥ 1 for Γ1(N) is also called
a cusp form of weight k and level N , which is a holomorphic function f on H such
that

(h1) f
(

aτ+b
cτ+d

)
= (cτ + d)k f(τ) for all τ ∈ H and all

(
a b
c d

)
∈ Γ1(N);

(h2) |f(τ)|2(Im(τ))k is bounded on H.

The space Sk(N) of cusp forms of weight k and level N is a finite-dimensional
complex vector space. If f ∈ Sk(N), then it has a Taylor expansion in e2πiτ :

f(τ) =
∞∑

n=1

cn(f)e2πinτ .

We define the L-series of f to be

L(f, s) =
∞∑

n=1

cn(f)
ns

.

For all primes p � N , the Hecke operators Tp can be simultaneously diagonalised on
Sk(N) and a simultaneous eigenvector is called an eigenform. If f is an eigenform,
then the corresponding eigenvalues, ap(f), are algebraic integers,

c1(f) �= 0, cp(f) = ap(f)c1(f),

and one has

L(f, s) = c1(f)
∏
p

(
1− ap(f)

ps
+

1
p2s−k+1

)−1

. (3.1.21)

Conversely, if (3.1.21) holds, then for each prime p, one has (see [351])

Tp(f) = ap(f)f.

In particular, for each prime p we have

Tp(∆) = τ(p)∆.
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For any prime p over p, we let Dp and Ip denote respectively the decompo-
sition and inertial groups of p. Thus

Dp = {σ | σ(p) = p},

and Ip is the kernel of the reduction mapping Dp −→ GFp/Fp
. This reduction

mapping is surjective, and we let Frobp denote an element of Dp that maps to the
Frobenius α �→ αp. It is well defined up to an element of Ip (and up to conjugation).

Let λ be a place of the algebraic closure of Q in C above a rational prime
� and let Qλ denote the algebraic closure of Q
 thought of as a Q algebra via
λ. If f ∈ Sk(N) is an eigenform, then there is a unique continuous irreducible
representation

ρf,λ : GQ/Q −→ GL(2, Qλ)

such that for any prime p � N�, ρf,λ is unramified at p and

trρf,λ(Frobp) = ap(f).

The existence of ρf,λ is due to Shimura [351] if k = 2, to Deligne [75] if k > 2 and
to Deligne and Serre [76] if k = 1. Its irreducibility is due to Ribet [321] if k > 1
and to Deligne and Serre [76] if k = 1. Moreover ρf,λ is potentially semi-stable at
� in the sense of Fontaine.

Let ρ : GQ/Q −→ GL(2, Q
) be a continuous representation which is unram-
ified outside finitely many primes and for which the restriction of ρ to a decom-
position group at � is potentially semi-stable in the sense of Fontaine. It is known
by work of Carayol and others that the following two conditions are equivalent:

(i1) ρ ∼ ρf,λ for some eigenform f and some place λ|�;
(i2) ρ ∼ ρf,λ for some eigenform f of level N(ρ) and weight k(ρ) and some place

λ|�.

In (h2), N(ρ) and k(ρ) are respectively the conductor and the weight of ρ. When
these equivalent conditions are met we call ρ modular.

3.1.4 Problems in elliptic curves

Next we assume that E is an elliptic curve over Q defined by (3.1.3), where a, b ∈ Z.
By (3.1.4), since A = −4a and B = −4b satisfies

A3 − 27B2 = −16(4a3 + 27b2) = ∆ �= 0,

the uniformization theorem shows that there exists a unique lattice Λ ⊂ C such
that

g2 = g2(Λ) = −4a, g3 = g3(Λ) = −4b.

Hence the equation (3.1.3) has non-constant meromorphic solutions x=℘, y= 1
2℘′.
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Conjecture 3.11 (Lang, Stark [226]). If (x, y) ∈ Z2 is a point on the elliptic curve
E, then for ε > 0, there exists a number C(ε) such that

|x| ≤ C(ε)max{|a|3, |b|2} 5
3+ε. (3.1.22)

Lang originally posed the conjecture with an unknown exponent; then Stark
suggested that the exponent should be 5/3.

Question 3.12. Given polynomials a, b satisfying (3.1.4). If polynomials x, y satisfy
(3.1.3), does the following relation hold

3
5

deg(x) ≤ max{3 deg(a), 2 deg(b)}? (3.1.23)

Theorem 3.13. If E is an elliptic curve over a number field κ, then the commutative
group E(κ) is finitely generated.

The theorem as stated here is actually due to Mordell [278] whose original
statement is for rational points, while Weil has generalized it to arbitrary number
fields and to Abelian varieties of higher dimension (see [158]). According to the
Mordell-Weil theorem, we can write

E(κ) = Zr ⊕ Etors(κ),

where the torsion subgroup Etors(κ) is finite and the rank r of E(κ) is a non-
negative integer. A deep theorem of Mazur [261], [262] states which finite groups
can occur as torsion subgroups of elliptic curves:

Theorem 3.14. If E is an elliptic curve, then Etors(Q) is one of the following 15
groups:

(A1) Z/nZ, with 1 ≤ n ≤ 10 or n = 12,

(A2) Z/2mZ× Z/2Z, with 1 ≤ m ≤ 4.

Each of the groups in Theorem 3.14 occurs infinitely often as the torsion
subgroup of an elliptic curve over Q. For an example of each possible group, see
exer. 8.12 in Silverman [362]. For arbitrary number fields, there is the following
result of Manin [251]:

Theorem 3.15. Let κ be a number field and p ∈ Z a prime. There is a constant
N = N(κ, p) so that for all elliptic curves E/κ, the p-primary component of E(κ)
has order dividing pN .

For those torsion subgroups which are allowed in Mazur’s Theorem 3.14, it is
a classical result that the elliptic curves E/κ having the specified torsion subgroup
all lie in a 1-parameter family. See Exercise 8.13a, b in Silverman [362]. A complete
list is given in Kubert [218]. Taken together, Theorem 3.14 and Theorem 3.15
provide the best evidence to date for the following longstanding conjecture (cf.
Silverman [362]):
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Conjecture 3.16. Let κ be a number field. There is a constant N depending on κ
so that for all elliptic curves E/κ,

|Etors(κ)| ≤ N.

The rank of E(Q) is called the rank of E and is written rank(E). The rank
of the Mordell-Weil group is much more mysterious and much more difficult to
compute. There are infinitely many elliptic curves E over Q with rank(E) = 0 (see
[362], Corollary 6.2.1), but there are many elliptic curves E such that rank(E) ≥ 1
(see [331]). The following conjecture is due to Lang [231], Silverman [362], or
Hindry and Silverman [158]:

Conjecture 3.17. There exist elliptic curves E over Q whose Mordell-Weil rank is
arbitrarily large.

Fix an elliptic curve E defined by (3.1.3) over Q. For every prime number p
not dividing ∆ = −16(4a3 + 27b2), we can reduce a and b modulo p and view E
as an elliptic curve over the finite field Fp. For every prime number p not dividing
∆ let

Np = #E(Fp) = 1 + #{0 ≤ x, y ≤ p− 1 | y2 ≡ x3 + ax + b(mod p)},

and set
ap = 1 + p−Np.

H. Hasse ([149], [150]) proved that

−2
√

p < ap < 2
√

p. (3.1.24)

Define the Hasse-Weil L-function of E by

L(E, s) =
∏
p�∆

(
1− ap

ps
+

1
p2s−1

)−1∏
p|∆

lp(E, s)−1 =
∞∑

n=1

an

ns
, (3.1.25)

where lp(E, s) is of the form

lp(E, s) = 1− ap

ps

for some well-defined integer ap = 1,−1, or 0 (cf. [232], p. 97; [362], p. 240; [389],
p. 196), which is defined as follows:

ap =

⎧⎨
⎩

1, if E has split multiplicative reduction over Q at p;
−1, if E has non-split multiplicative reduction over Q at p;
0, if E has additive reduction over Q at p.

The coefficients an are constructed easily from ap for prime p. It follows from
(3.1.24) that L(E, s) converges absolutely and uniformly on compact subsets of
the complex half-plane {s ∈ C | Re(s) > 3/2}.
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Let N(E) be the conductor of the elliptic curve E,

N(E) =
∏
p|∆

pf(p),

in which f(p) is 0 if p � ∆ and ≥ 1 if p|∆ (see [232], p. 97; [362], p. 361; [389], p.
196), called the exponent of the conductor of E at p. In particular, f(p) = 1 if E
has multiplicative reduction over Q at p.

Let ρE,
 denote the representation of GQ/Q on the �-adic Tate module of
E(Q). The following conditions are equivalent (cf. [37]):

(B1) The L-function L(E, s) of E equals the L-function L(f, s) for some eigen-
form f .

(B2) The L-function L(E, s) of E equals the L-function L(f, s) for some eigen-
form f of weight 2 and level N(E).

(B3) For some prime �, the representation ρE,
 is modular.

(B4) For all primes �, the representation ρE,
 is modular.

(B5) There is a non-constant holomorphic mapping X1(N)(C) −→ E(C) for some
positive integer N .

(B6) There is a non-constant morphism X1(N(E)) −→ E which is defined over Q.

The implications (B2) ⇒ (B1), (B4) ⇒ (B3) and (B6) ⇒ (B5) are tautological.
The implication (B1)⇒ (B4) follows from the characterization of L(E, s) in terms
of ρE,
. The implications (B3)⇒ (B2) follows from a theorem of Carayol [45]. The
implications (B2) ⇒ (B6) follows from a construction of Shimura [351] and a
theorem of Faltings [98]. The implications (B5) ⇒ (B3) follows from Mazur [263].
When these equivalent conditions are satisfied we call E modular.

Theorem 3.18. If E is an elliptic curve over Q, then E is modular.

It has become a standard conjecture that all elliptic curves over Q are modu-
lar. Taniyama made a suggestion along the line (B1) as one of a series of problems
collected at the Tokyo-Nikko conference in September 1955. However his formula-
tion did not make clear whether the function f defined by coefficients of L(E, s)
should be a cusp form or some more general automorphic form. He also suggested
that constructions as in (B5) and (B6) might help attack this problem at least for
some elliptic curves. In private conversations with a number of mathematicians
(including Weil) in the early 1960s, Shimura suggested that assertions along the
lines of (B5) and (B6) might be true (see Shimura [352] and Weil [428]). How-
ever, it only became widely known through its publication in a paper of Weil [427]
in 1967, in which Weil gave conceptual evidence for the conjecture. That asser-
tion (B1) is true for CM elliptic curves follows at once from work of Hecke and
Deuring. Shimura [350] went on to check the assertion (B5) for these curves. The
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Shimura-Taniyama-Weil conjecture (Theorem 3.18) was finally proved by Breuil,
Conrad, Diamond, and Taylor [37] by extending work of Wiles [431], Taylor and
Wiles [390].

In 1985, Frey [101] made the remarkable observation that the Shimura-
Taniyama-Weil conjecture should imply Fermat’s last theorem. The precise mech-
anism relating the two was formulated by Serre as the ε-conjecture and this was
then proved by Ribet in the summer of 1986, which enabled Ribet to show that
the conjecture only for semistable elliptic curves implies Fermat’s last theorem
(see [322], [232]). However, one still needed to know that the curve in question
would have to be modular, and this is accomplished by Wiles [431], Taylor and
Wiles [390] via studying associated Galois representations of elliptic curves.

Theorem 3.18 implies the following long-standing conjecture of Hasse and
Weil (cf. Silverman [362]): L(E, s) has an analytic continuation to all of C and
satisfies a functional equation

ΛE(s) = wEΛE(2− s), (3.1.26)

where wE = ±1, called the sign of the functional equation, and

ΛE(s) = N(E)
s
2 (2π)−sΓ(s)L(E, s). (3.1.27)

Note that the Euler product (3.1.25) for L(E, s) may not in general converge at
s = 1. Goldfeld [116] proved that if there exist constants C ∈ R+ and r ∈ R such
that ∏

p≤x,p�∆

Np

p
� C(log x)r ,

then r = ords=1L(E, s), the order of vanishing of L(E, s) at s = 1, and

lim
s→1

L(E, s)
(s− 1)r

=
√

2erγC−1
∏
p|∆

lp(E, 1)−1,

where γ is Euler’s constant. In particular, if r = 0 then

L(E, 1) =
√

2

⎛
⎝∏

p�∆

Np

p
×
∏
p|∆

lp(E, 1)

⎞
⎠−1

.

Conjecture 3.19 (Birch and Swinnerton-Dyer [26]). For every elliptic curve E,

rank(E) = ords=1L(E, s).

The following theorem, a combination of work of Kolyvagin [214], [215], Gross
and Zagier [129], and others, is the best result to date in the direction of the Birch
and Swinnerton-Dyer conjecture.
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Theorem 3.20.

(C1) ords=1L(E, s) = 0 =⇒ rank(E) = 0,
(C2) ords=1L(E, s) = 1 =⇒ rank(E) = 1.

The sign wE in the functional equation (3.1.26) for L(E, s) determines the
parity of the integer ords=1L(E, s), that is, ords=1L(E, s) is even when wE = 1,
and is odd when wE = −1. Thus the following parity conjecture is a consequence
of the Birch and Swinnerton-Dyer conjecture.

Conjecture 3.21. The integer rank(E) is even when wE = 1, and is odd when
wE = −1.

There may be many parametrizations ϕ : X0(N(E)) −→ E. An interesting
question is to find one of the ones of smallest degree, or at least to determine its
degree. The following modular parametrization conjecture is due to Hindry and
Silverman [158]:

Conjecture 3.22. There is an absolute constant d such that for all elliptic curves
E/Q, there is a finite covering ϕ : X0(N(E)) −→ E such that deg(ϕ) ≤ N(E)d.

3.1.5 Hyperelliptic and rational curves

A curve of genus g ≥ 2 is called a hyperelliptic if it is a double covering of the
projective line P1. Next we assume char(κ̄) �= 2. The function field of a hyperelliptic
curve C is a quadratic extension of κ̄(P1), hence has the shape κ̄(x, y), where

y2 = P (x) (3.1.28)

for some polynomial P (x) ∈ κ̄[x]. This equation gives an affine model for C. If the
polynomial P has a double root, say α, then we can replace y by (x − α)y and
cancel (x− α)2. So we may assume that C is given by an affine equation (3.1.28)
for some P (x) ∈ κ̄[x] with distinct roots. Then the affine curve C is smooth.

Proposition 3.23 (cf. [126], [158]). Every curve of genus 2 is hyperelliptic.

A compact Riemann surface M defined on C of genus ≥ 2 is hyperelliptic if
and only if there exists a meromorphic function f on M with only two poles. Any
hyperelliptic Riemann surface of genus g can be realized as a smooth normalization
of a plane algebraic curve (3.1.28) in C2, for P a polynomial of degree 2g + 2.
Conversely, for distinct 2g+2 complex numbers a1, a2, . . . , a2g+2, a normalization
of the plane algebraic curve

y2 =
2g+2∏
i=1

(x− ai)

is a hyperelliptic Riemann surface of genus g (cf. [126], [127]). Generally, if P is
a polynomial of degree n ≥ 3 such that its discriminant is not identically zero,
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the hyperelliptic equation (3.1.28) determines a Riemann surface of genus g =
[(n − 1)/2] which can be derived from the Riemann-Hurwitz formula (1.6.9) (cf.
[338]), where [x] denotes the maximal integer ≤ x.

A natural question is how one obtains all the irreducible algebraic curves
which have a rational parametric representation in an independent variable z. In
other words, if

f(x, y) = 0 (3.1.29)

is an irreducible equation of the curve, then we require two rational functions

x = ϕ(z), y = ψ(z)

of a variable z, not both constant, which satisfy the equation (3.1.29) identically
in z. An algebraic curve of this type is said to be a rational algebraic curve.

Theorem 3.24 (cf. [359]). An algebraic curve is rational if and only if it is of
genus 0.

Hence algebraic curves of genus 0 admit a lot of holomorphic curves.

3.2 The abc-conjecture

Many results for Diophantine equations in integers are analogous to results for
Diophantine equations in polynomials. Lang ([234], p. 196) said: “One of the most
fruitful analogies in mathematics is that between the integers Z and the ring of
polynomials F [t] over a field F .” Given Mason’s wonderfully simple inequality for
polynomial solutions to a + b = c (namely Theorem 2.65), one wonders whether
there is a similar result for integers.

In Theorem 2.65 we note that (cf. [288], p. 182 or [135])

r(f) = deg(rad(f)),

where rad(f) is the radical of a polynomial f on C, which is the product of distinct
irreducible factors of f . On the other hand, the radical of a non-zero integer A is
defined to be

r(A) =
∏
p|A

p,

i.e., the product of distinct primes dividing A. It was conjectured by Erdös and
Woods that there exists an absolute constant k > 2 such that for every positive
integers x and y, if r(x + i) = r(y + i) for i = 1, 2, . . . , k, then x = y. No examples
with different x and y are known. It seems that the five-value theorem of Nevan-
linna in value distribution theory is an analogue of the Erdös-Woods Conjecture,
and so maybe k = 5 is possible.
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There is a classical analogy between polynomials and integers, that is, prime
factors of an integer are often considered to be an appropriate analogy to irre-
ducible factors of a polynomial. Under that analogy, r(f) of a polynomial f corre-
sponds to log r(A) of an integer A, and in addition, the value log |A| of an integer
A is a measure of how “large” the integer is, while the degree of a polynomial is a
measure of how “large” the polynomial is (cf. [231] or [119]). Thus for polynomials
we had an inequality formulated additively, whereas for integers we formulate the
corresponding inequality multiplicatively.

After being influenced by Stothers-Mason’s theorem (see Theorem 2.65), and
based on considerations of Szpiro and Frey, Oesterlé [308] and Masser [256] for-
mulated the abc-conjecture for integers as follows:

Conjecture 3.25. Given ε > 0, there exists a number C(ε) having the following
property. For any non-zero relatively prime integers a, b, c such that a + b = c,
we have

max{|a|, |b|, |c|} ≤ C(ε)r (abc)1+ε
. (3.2.1)

An interesting discussion in [119] illustrates how one is naturally led from
Theorem 2.65 to the formulation of the abc-conjecture. In this setting Stewart and
Tijdeman [372] proved that the conjecture would be false without the ε. In other
words, it is not true that

max{|a|, |b|, |c|} ≤ Cr (abc) .

To prove or disprove the abc-conjecture would be an important contribution to
number theory. For instance, some results that would follow from the abc-conjec-
ture are in [288], pp. 185–188, [92], [412] (or see [119], [231], [234], [415]). Langevin
([236], [237]) proved that the abc-conjecture implies the Erdös-Woods conjecture
with k = 3 except perhaps a finite number of counter examples.

Although the abc-conjecture seems completely out of reach, there are some
results towards the truth of this conjecture. In 1986, C.L. Stewart and R. Tijdeman
[372] proved

max{|a|, |b|, |c|} < exp
{
Cr(abc)15

}
.

In 1991, C.L. Stewart and Kunrui Yu [373] obtained

max{|a|, |b|, |c|} < exp
{
C(ε)r(abc)2/3+ε

}
.

In 1996, C.L. Stewart and Kunrui Yu [374] further proved

max{|a|, |b|, |c|} < exp
{
C(ε)r(abc)1/3+ε

}
.

Next we show that the abc-conjecture is equivalent to the following:
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Conjecture 3.26. Let A, B be fixed non-zero integers. Take positive integers m, n
with

α = 1− 1
m
− 1

n
> 0. (3.2.2)

Let x, y, z ∈ Z be variables such that x, y are relatively prime and

Ax + By = z �= 0.

Assume that for a prime p (resp. q), p | x (resp. q | y) implies pm | x (resp. qn | y).
Then for any ε > 0 there exists a number C = C(ε, m, n, A, B) such that

max{|x|α, |y|α, |z|α} ≤ Cr(z)1+ε. (3.2.3)

Remark. We introduce a notation related to Conjecture 3.26. A positive integer
A is powerful if for every prime p dividing A, p2 also divides A. Every powerful
number can be written as a2b3, where a and b are positive integers. The Erdös-
Mollin-Walsh conjecture asserts that there do not exist three consecutive powerful
integers. The abc-conjecture implies the weaker assertion that the set of triples of
consecutive powerful integers is finite.

Here we first show that Conjecture 3.25 implies Conjecture 3.26. To simplify
notation in dealing with the possible presence of constants C, if a, b are positive
functions, we write

a � b

to mean that there exists a constant C > 0 such that a ≤ Cb. Thus a � b means
a = O(b) in the big oh notation. By the abc-conjecture, we get

max{|x|, |y|, |z|} �
{
|x| 1

m |y| 1n r(z)
}1+ε

.

If, say, |Ax| ≤ |By| then |x| � |y|. We substitute this estimate for x to get an
inequality entirely in terms of y, namely

|y| �
{
|y| 1

m + 1
n r(z)

}1+ε

.

We first bring all powers of y to the left-hand side, and take care of the extra ε,
so we obtain

|y|α � r(z)1+ε,

and then also
|x|α � r(z)1+ε

because the situation is symmetric in x and y. Again by the abc-conjecture, we
have

|z| �
{
|x| 1

m |y| 1n r(z)
}1+ε

.
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By using the estimate for |xy| coming from the product of the inequalities above
we find

|z|α � r(z)1+ε.

Conversely, Conjecture 3.25 can be derived from Conjecture 3.26. To do this,
we see that Conjecture 3.26 contains obviously the following generalized Szpiro
conjecture (cf. [231], [415]):

Conjecture 3.27. Take integers x and y with D = 4x3 − 27y2 �= 0 such that the
common factor of x, y is bounded by M . Then for any ε > 0, there exists a constant
C = C(ε, M) satisfying

max{|x|3, y2, |D|} ≤ Cr(D)6+ε. (3.2.4)

This is trivial if x, y are relatively prime. Suppose that x, y have some common
factor, say d, bounded by M . Write

x = ud, y = vd

with u, v relatively prime. Then

D = 4d3u3 − 27d2v2.

Now we can apply the inequality (3.2.3) with A = 4d3, m = 3; B = −27d2, n = 2,
and we find the same inequality (3.2.4), with the constant depending also on M .

Further, it is well known that the generalized Szpiro conjecture implies the
abc-conjecture (cf. [232], [415]). Here we introduce the proof roughly. Let a+b = c,
and consider the Frey elliptic curve ([101], [102]),

y2 = x(x − a)(x + b).

The discriminant of the right-hand side is the product of the differences of the
roots squared, and so

D = (abc)2.

We make a translation

ξ = x +
b− a

3

to get rid of the x2-term, so that the equation can be rewritten

y2 = ξ3 − γ2ξ − γ3,

where

γ2 =
1
3
(a2 + ab + b2), γ3 =

1
27

(a− b)(2a + b)(a + 2b).
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The discriminant does not change because the roots of the polynomial in ξ are
translations of the roots of the polynomial in x. Then

D = 4γ3
2 − 27γ2

3 .

One may avoid the denominator 27 by using the curve

y2 = x(x − 3a)(x + 3b),

so that γ2, γ3 then come out to be integers, and one can apply the generalized
Szpiro conjecture to the discriminant

D = 36(abc)2 = 4γ3
2 − 27γ2

3 ,

and obtain
max

{
3
√
|abc|,

√
|γ2|, 3

√
|γ3|
}
� r(abc)1+ε.

A simple algebraic manipulation shows that the estimates on γ2, γ3 imply the
desired estimates on |a|, |b|.

The following conjecture by Hall, Szpiro, and Lang-Waldschmidt (cf. [415],
[231]) becomes a special case of Conjecture 3.26:

Conjecture 3.28. Let A, B be fixed non-zero integers and take positive integers m
and n satisfying (3.2.2). Let x, y, z ∈ Z be variables such that x, y are relatively
prime and

Axm + Byn = z �= 0.

Then for any ε > 0 there exists a number C = C(ε, m, n, A, B) such that

max{|x|mα, |y|nα, |z|α} ≤ Cr(z)1+ε. (3.2.5)

In particular, take non-zero integers x, y with z = x3 − y2 �= 0. If x, y are
relatively prime, then Conjecture 3.28 implies that there exists a constant C =
C(ε) such that

max
{
|x| 12 , |y| 13

}
≤ C(ε)r(x3 − y2)1+ε, (3.2.6)

which further yields
|x| 12 �

∣∣x3 − y2
∣∣1+ε

. (3.2.7)

This is just the content of Hall’s conjecture:

Conjecture 3.29 ([144]). There exists a constant C = C(ε) such that

|x3 − y2| > C(ε)|x| 12−ε (3.2.8)

holds for integers x, y with x3 �= y2.
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The inequality (3.2.8) is equivalent to the form (3.2.7). Danilov [71] has
proved that 1/2 is the best possible exponent. Actually, the original conjecture
made by M. Hall Jr. [144] states the following: There exists a constant C such
that

|x3 − y2| > C|x| 12 (3.2.9)

holds for integers x, y with x3 �= y2. The final setting of the proofs in the simple
abc context which we gave above had to await Mason and the abc-conjecture a
decade later.

Another special case of Conjecture 3.28 is the following Hall-Lang-Wald-
schmidt conjecture (cf. [415]):

Conjecture 3.30. For all integers m, n, x, y with xm �= yn,

max{|x|mα, |y|nα} < C(ε) |xm − yn|1+ε
, (3.2.10)

where C(ε) is a constant depending on ε.

3.3 Mordell’s conjecture and generalizations

In 1909, A. Thue [391] proved the following result: Take m ∈ Z and let

f(x, y) = a0x
d + a1x

d−1y + · · ·+ ady
d

with ai ∈ Z be a form of degree d ≥ 3 which is irreducible over Q. Then the Thue
equation

f(x, y) = m (3.3.1)

has only finitely many integer solutions (x, y). A simple proof by using Roth’s
theorem is due to Schmidt [338].

Theorem 3.31. Let P (x) be a polynomial of degree n ≥ 2 over a number field κ
such that its discriminant is not identically zero. Let S be a finite subset of Mκ,
containing all of the Archimedean absolute values. Then a superelliptic equation

yd = P (x) (3.3.2)

with d ≥ 2 and (d, n) �= (2, 2) has only finitely many solutions x, y ∈ Oκ,S.

The special case of an elliptic equation, that is, d = 2, n = 3, was done by
Mordell [277], [278]. The general case is due to Siegel [356]. A proof can be found
in [338]. Further, Siegel [357] proved that the number of integer points (x, y) of
any irreducible curve, say (2.1.9), of genus > 0 is finite. The same conclusion holds
for the affine curve C defined by (2.1.9) if #(M −C) > 2, where M is a projective
closure of C.

Mordell [278] had originally conjectured that on a curve of genus greater
than 1 there are only finitely many rational points. Faltings [98] proved Mordell’s
conjecture by showing the following more general result:



238 Chapter 3. Topics in Number Theory

Theorem 3.32. If M is an irreducible algebraic curve of genus greater than 1 and
κ is a number field of finite degree over Q, then the set M(κ) of κ-rational points
on M is a finite set.

Elkies [92] (or see [158]) showed that using an explicit version of the abc-
conjecture (that is, with a value assigned to C(ε) in (3.2.1) for each ε), one can
deduce an explicit version of the Mordell-Faltings theorem.

Let M be a variety defined over an algebraically closed field of characteristic
0. We shall say that M is Mordellic if M(κ) is finite for every finitely generated
field κ over Q. In this context, it is natural to define a variety M to be pseudo
Mordellic if there exists a proper Zariski closed subset Y of M such that M − Y
is Mordellic. Since the counterpart of algebraic curves of genus > 1 in higher-
dimensional spaces are Kobayashi hyperbolic varieties, accordingly the analogue
of the Mordell-Faltings theorem is just Lang’s conjecture (cf. [224], [228], [232]):

Conjecture 3.33. A projective variety is hyperbolic if and only if it is Mordellic.

The following problem is due to Shiffman [345].

Conjecture 3.34. Let M be a projective algebraic variety that contains no rational
or elliptic curves. Then there are no holomorphic curves in M .

Let M be a projective variety. According to Lang [228], [232], the algebraic
special set Spalg(M) is defined to be the Zariski closure of the union of all images
of non-constant rational mappings A −→M , where A is an Abelian variety or P1.
Thus Spalg(M) = ∅ if and only if every rational mapping of an Abelian variety
or P1 into M is constant. In the case of subvarieties of Abelian varieties, a clear
description of this special set is well known, that is, the Ueno-Kawamata fibrations
in a subvariety of an Abelian variety constitute the special set (see Lang [232]).
A variety M is said to be algebraically hyperbolic if Spalg(M) = ∅. Then one says
that M is pseudo algebraically hyperbolic if Spalg(M) is a proper subset. Ballico
[15] proved that a generic hypersurface of large degree in Pn(C) is algebraically
hyperbolic.

Conjecture 3.35 ([228], [232]).

(i) Spalg(M) = Sphol(M).
(ii) The complements of the special sets are Mordellic.
(iii) A projective variety M is Mordellic if and only if the special sets are empty.

Recall that the holomorphic special set Sphol(M) is the Zariski closure of the
union of all images of non-constant holomorphic mappings f : C −→ M . Observe
that the claim (i) would give an algebraic characterization of hyperbolicity. The
fundamental Diophantine condition conjecturally satisfied by pseudo canonical
varieties is the following problem:

Conjecture 3.36. Let M be a pseudo canonical variety defined over a number field
κ. Then M(κ) is not Zariski dense in M .



3.3. Mordell’s conjecture and generalizations 239

Bombieri posed Conjecture 3.36 for pseudo canonical surfaces, and Lang
(independently) formulated the general conjecture in its refined form of the ex-
ceptional Zariski closed subset. Conjecture 3.35 allows us to state the final form
of the Bombieri-Lang conjecture.

Conjecture 3.37 ([228], [232]). The following conditions are equivalent for a pro-
jective variety M .

(1) M is pseudo canonical;
(2) Spalg(M) is a proper subset;
(3) M is pseudo Mordellic. The Zariski closed subset Y can be taken to be

Spalg(M).

In the case of Abelian varieties, there is the following Lang’s conjecture over
finitely generated fields (cf. Lang [221], [232]):

Conjecture 3.38. Let M be a subvariety of an Abelian variety over a field κ finitely
generated over Q. Then M contains a finite number of translations of Abelian
subvarieties which contain all but a finite number of points of M(κ).

The following especially important case from Lang [222] has now been proved
by Faltings [99]:

Theorem 3.39. Let M be a subvariety of an Abelian variety, and suppose that M
does not contain any translation of an Abelian subvariety of dimension ≥ 1. Then
M is Mordellic.

Hilbert’s tenth problem asks whether there is a general algorithm to deter-
mine, given any polynomial in several variables, whether there exists a zero with
all coordinates in Z. It was solved in the negative by Yu. Matiyasevich [258] in
1970; for a general reference, see [259]. J. Richard Büchi attempted to prove a
similar statement in which there may be any (finite) number of polynomials, but
they must be quadratic and of a certain form:

n∑
j=1

aijx
2
j = bi, i = 1, . . . , m

with {aij , bi} ⊂ Z, {m, n} ⊂ Z+. Büchi was able to show that a negative resolution
of this question would be implied by the following “n-squares problem”:

Conjecture 3.40. For large enough n, the only integer solutions of the system of
equations

x2
k + x2

k−2 = 2x2
k−1 + 2, k = 2, . . . , n− 1 (3.3.3)

satisfy ±xk = ±xk−1 + 1.

Let M be the projective variety in Pn(C) defined by the equations

x2
k + x2

k−2 = 2x2
k−1 + 2x2, k = 2, . . . , n− 1
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in the homogeneous coordinates [x, x0, . . . , xn−1]. Vojta [421] observed that for
n ≥ 6 the variety M is a pseudo canonical surface, and then showed:

Theorem 3.41.

(i) For n ≥ 8, the only curves on M of geometric genus 0 and 1 are the “trivial”
lines

±xk = ±x0 + kx, k = 0, . . . , n− 1.

(ii) Let n ≥ 8 be an integer and let f : C −→ M be a non-constant holomorphic
curve. Then the image of f lies in one of the “trivial” lines.

The statement (i) of Theorem 3.41 has a consequence that if Conjecture 3.36
is true, then Büchi’s problem has a positive answer. Statement (ii) shows that the
analogue of Büchi’s problem for holomorphic functions has a positive answer.

3.4 Fermat equations and Waring’s problem

Fermat’s conjecture, now a theorem proved by Wiles [431], Taylor and Wiles [390],
states that there cannot be non-zero integers x, y, z and an integer d, where d ≥ 3,
such that

xd + yd = zd. (3.4.1)

Related to Fermat’s equation (3.4.1) is Catalan’s equation

xk − yl = 1. (3.4.2)

In 1844, Eugène Catalan [54] conjectured that this equation had only the trivial
solution

(x, y, k, l) = (3, 2, 2, 3).

About 100 years before Catalan (1814-1894) sent his letter to Crelle, Euler had
proven that 8 and 9 are the only consecutive integers among squares and cubes,
that is, the only solution of the Diophantine equations

x2 − y3 = ±1, x > 0, y > 0.

To prove Catalan’s conjecture, it obviously suffices to consider the equation

xp − yq = 1, x > 0, y > 0, (3.4.3)

where p and q are different primes. The case q = 2 was solved in 1850 by V.A.
Lebesgue [238]. Chao Ko [206] proved the case p = 2. In 1976, E.Z. Chein [55]
published a new, very elegant proof.

Next we may assume that p and q are different odd primes. One of the early
observations was that the number of solutions (x, y) to (3.4.3), for fixed exponents
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p and q, is at most finite. This is a consequence of a general theorem about integer
points on a curve, published by C.L. Siegel in 1929. For other results about the
number of solutions, see the introductory section in Tijdeman [392].

By way of multiplicatization of the equation, rewrite (3.4.3) as

(x− 1)
xp − 1
x− 1

= yq.

By considering the identity xp = ((x − 1) + 1)p one easily finds that there are
two possibilities: the greatest common divisor of the two factors on the left-hand
side is either 1 or p. When the greatest common divisor equals 1, we obtain the
equations

x− 1 = aq,
xp − 1
x− 1

= bq, y = ab,

where a and b are coprime and not divisible by p. In 1960, J.W.S. Cassels [53]
showed that these equations yield a contradiction.

When the greatest common divisor equals p, we obtain the equations

x− 1 = pq−1aq,
xp − 1
x− 1

= pbq, y = pab,

where again a and b are coprime and p does not divide b. Preda Mihăilescu [269],
[270] showed that these equations also yield a contradiction. A deep theorem about
cyclotomic fields plays a crucial role in his proof. For a survey about the proof of
Catalan’s conjecture, see [268].

Generally, the following conjecture was made by Pillai [317].

Conjecture 3.42. Given integers A > 0, B > 0, C > 0, the equation

Axk −Byl = C

in integers x > 1, y > 1, k > 1, l > 1 and with (k, l) �= (2, 2) has only a finite
number of solutions.

If k, l were fixed, this would be a special case of an algebraic Diophantine
equation, the superelliptic equation. Pillai’s conjecture can be derived from the
abc-conjecture (see [338]). A more general application is as follows. Tijdeman [393]
proved that for given non-zero integers A, B, C the Diophantine equation

Axk + Byl = Czn (3.4.4)

has only finitely many solutions in positive integers x > 1, y > 1, z > 1, k, l, n
subject to gcd(Ax, By, Cz) = 1 and

1
k

+
1
l

+
1
n

< 1. (3.4.5)
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On the other hand, Hindry has shown that for each triple k, l, n with

1
k

+
1
l

+
1
n
≥ 1,

there exist A, B, C such that the above equation has infinitely many solutions
x, y, z with gcd(Ax, By, Cz) = 1.

Waring’s problem states that for a fixed positive integer d, there exists an
integer n = n(d) such that an arbitrary positive integer N can be expressed as a
sum of dth powers of n non-negative integers xj , that is,

xd
1 + · · ·+ xd

n = N. (3.4.6)

In 1909, Hilbert confirmed this problem. Further, it is natural to find the smallest
number n = g∗(d) such that each positive integer N can be expressed as a sum
(3.4.6) of dth powers of n non-negative integers xj . Lagrange proved that g∗(2) ≤ 4.
On the other hand, it is easy to show that 7 can not be expressed as a sum of
squares of three integers, and so g∗(2) = 4. We also know that g∗(3) = 9. Dickson,
Pillai and Niven obtained

g∗(d) = 2d +
[
3d

2d

]
− 2

if d satisfies the following condition

d ≥ 6, 3d − 2d + 2 ≤ (2d − 1)
[
3d

2d

]
.

Now the number g∗(d) is completely determined except for d = 4.

When d ≥ 3, let n = g(d) be the smallest number such that for any positive
integer N ≥ N0(d), there exist non-negative integers x1, . . . , xn satisfying (3.4.6).
Then g(2) = 4,

4 ≤ g(3) ≤ 7, g(4) = 16 (Davenport).

Generally, it is known that the integer g(d) satisfies the inequalities

d ≤ g(d) ≤ cd log d,

where c is a constant. Hardy and Littlewood conjectured

g(d) = 4d (d = 2m, m > 1); g(d) ≤ 2d + 1 (d �= 2m, m > 1).
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3.5 Thue-Siegel-Roth’s theorem

In this section, we introduce simply Roth’s theorem, and show that abc-conjecture
implies Roth’s theorem. Further, following Vojta [415], we compare the analogy
between Roth’s theorem and Nevanlinna’s second main theorem.

In a relatively early version of determining the best approximations of alge-
braic numbers by rational numbers, one had the Thue-Siegel-Dyson-Gelfond result
(see [391], [355], [87], [113]): Given ε > 0 and an algebraic number α of degree n
over Q, there are only finitely many rational numbers x/y (x, y ∈ Z, y > 0) such
that ∣∣∣∣α− x

y

∣∣∣∣ < 1
y
√

2n+ε
.

In 1958, K.F. Roth received a Fields prize for his result:

Theorem 3.43 ([327]). If α is algebraic and ε > 0, there are only finitely many
rational numbers x

y with ∣∣∣∣α− x

y

∣∣∣∣ < 1
y2+ε

.

In 1842, Dirichlet [80] proved that given α ∈ R and N > 1, there exist
integers x, y with 1 ≤ y ≤ N and |αy − x| < 1/N , which means that when α is
irrational, there are infinitely many reduced fractions x/y with∣∣∣∣α− x

y

∣∣∣∣ < 1
y2

.

Hence Dirichlet’s theorem shows that Roth’s result is best possible. An unknown
conjecture (cf. Bryuno [42]; Lang [223]; Richtmyer, Devaney and Metropolis [323])
is the following: If α is algebraic and ε > 0, there are only finitely many rational
numbers x

y with ∣∣∣∣α− x

y

∣∣∣∣ < 1
y2(log y)1+ε

.

In other words, given ε and α algebraic, the inequality

− log
∣∣∣∣α− x

y

∣∣∣∣ ≤ 2 log y + (1 + ε) log log y

holds for all but a finite number of fractions x/y in lowest form. A theorem due
to A. Khintchine [202] shows that this is true for almost all α. Note that this
conjecture is similar to the case n = 1 of Theorem 2.56 in Nevanlinna theory,
which will be further formulated lately.

Suppose that F (x, y) ∈ Z[x, y] is a binary homogenous form without repeated
factors. In other words, if F has degree d, then F (t, 1) is a polynomial of degree
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≥ d− 1, without repeated roots, and

F (x, y) = ydF

(
x

y
, 1
)

.

For any coprime integers x and y, Roth’s theorem yields

|F (x, y)| � |y|d
∏

F (α,1)=0

∣∣∣∣α− x

y

∣∣∣∣� |y|d−2−ε, (3.5.1)

except at most finitely many rational numbers x
y . This statement is actually equiv-

alent to Roth’s theorem.
The abc-conjecture implies something that is somewhat stronger than Roth’s

theorem: For any coprime integers x and y,

r(F (x, y)) � max{|x|, |y|}d−2−ε. (3.5.2)

Note that by taking
F (x, y) = xy(x + y),

the original abc-conjecture is recovered. Thus the conjecture (3.5.2) is equivalent to
the abc-conjecture, although it appears far stronger. One sketchy proof of (3.5.2)
following from the abc-conjecture is due to [119] (see also [411]).

In an algebraic number field, Roth’s theorem can be formulated as follows
(cf. [415]). The set of algebraic numbers, that is, the algebraic closure of Q, is
denoted by Q̄.

Theorem 3.44. Let κ be a number field and let S be a finite subset of Mκ. Let ε
and c be positive constants. For each v ∈ S, fix a number av ∈ Q̄. Then there are
only finitely many x ∈ κ such that∏

v∈S

min{1, ‖x− av‖v} <
c

H̄κ(x)2+ε
. (3.5.3)

S. Lang [225] noted that if av, a
′
v are two distinct elements of Q̄ for some

v, and if x approximates av, then x stays away from a′
v. As x approaches av, its

distance from a′
v approaches the distance between av and a′

v. Hence it would add
no greater generality to the statement if we took a product over several av for
each v. Based on this observation, we have the following fact:

Theorem 3.45. Let S be a finite subset of Mκ. For each v ∈ S, let Pv(X) be a
polynomial in κ[X ] (one variable) and assume that the multiplicity of their roots
is at most r for some integer r > 0. Let c > 0 be a number, and ε > 0. Then there
are only finitely many x ∈ κ such that∏

v∈S

min{1, ‖Pv(x)‖v} <
c

H̄κ(x)r(2+ε)
. (3.5.4)
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Proof. We may assume that Pv has leading coefficient 1 for each v ∈ S, and say

Pv(X) =
qv∏

j=0

(X − avj)rvj

is a factorization in Q̄. The expression on the left-hand side of our inequality is
greater than or equal to

∏
v∈S

qv∏
j=0

min{1, ‖x− avj‖v}rvj ,

which is itself greater than or equal to the expression obtained by replacing rvj by
r for all v and j. Now we are in the situation of Theorem 3.44; taking into account
the above remark following it, the solutions x of the inequality

∏
v∈S

qv∏
j=0

min{1, ‖x− avj‖v}r <
c

H̄κ(x)r(2+ε)
(3.5.5)

are only finite in number, hence the same is true for the solutions of original
inequality. �

Particularly, take r = 1, qv = q for each v ∈ S. The inequality (3.5.5) implies
that all but finitely many x ∈ κ satisfy

∑
v∈S

q∑
j=0

log+ 1
|‖x− avj |‖v

≤ (2 + ε)h(x) + O(1), (3.5.6)

which is similar to Theorem 2.56 with n = 1, that is, the inequality (3.5.6) is an
analogue of Nevanlinna’s second main theorem in number theory.

3.6 Schmidt’s subspace theorem

Following Vojta [415], we simply introduce Schmidt’s subspace theorem, and com-
pare the analogy with Cartan’s second main theorem.

Let κ be a number field and let S be a finite subset of Mκ containing the set
S∞

κ . Let V = Vκ be a vector space of finite dimension n + 1 > 0 over κ. Take a
basis e = (e0, . . . , en) of V . We will identify V ∼= An+1(κ) by the correspondence
relation

ξ0e0 + · · ·+ ξnen ∈ V �−→ (ξ0, . . . , ξn) ∈ An+1(κ), ξj ∈ κ.

A point ξ = ξ0e0 + · · ·+ ξnen ∈ V is said to be an S-integral point if ξi ∈ Oκ,S for
all 0 ≤ i ≤ n. An algebraic point ξ ∈ Vκ̄ should be integral if its coordinates lie
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in the integral closure of Oκ,S in κ̄. Denote by OV,S the set of S-integral points of
V , that is,

OV,S = {ξ ∈ V | ‖ξ‖ρ ≤ 1, ρ �∈ S}. (3.6.1)

According to the identity V ∼= An+1(κ), we have

OV,S
∼= On+1

κ,S . (3.6.2)

Similarly, an affine variety Z ⊂ An+1 defined over κ inherits a notion of integral
point from the definition for An+1. We state the Schmidt subspace theorem as
follows:

Theorem 3.46. For ρ ∈ S, i ∈ {0, . . . , n}, take αρ,i ∈ V ∗ − {0} such that for each
ρ ∈ S, αρ,0, . . . , αρ,n are linearly independent. Fix ε > 0. Let Q be the set of all
ξ ∈ OV,S satisfying

∏
ρ∈S

n∏
i=0

‖〈ξ, αρ,i〉‖ρ <

{
max
ρ∈S

‖ξ‖ρ

}−ε

.

Then Q is contained in a finite union of hyperplanes of V .

Theorem 3.46 is a generalization of Roth’s theorem due to Schmidt [337]
and Schlickewei ([334],[335],[336]) in the non-Archimedean case. The following
subspace theorem will turn out to be equivalent to Theorem 3.46 (see [338], [415],
[176] or Section 3.8.2):

Theorem 3.47. Take ε > 0, q ≥ n. Assume that for each ρ ∈ S, the family

Aρ = {aρ,0, . . . , aρ,q} ⊂ P(V ∗)

is in general position. Then there exists a finite set {b1, . . . , bs} of P(V ∗̄
κ ) such that

the inequality ∑
ρ∈S

q∑
j=0

log
1

|‖x, aρ,j |‖ρ
< (n + 1 + ε)h(x)

holds for all x ∈ P(V )−
⋃

i Ë[bi].

Theorem 3.47 is an analogue of Theorem 2.56. A.J. van der Poorten [408]
generalized an idea of Schlickewei [335] to obtain the following result:

Theorem 3.48. Let κ be a number field and let n ≥ 1 be an integer. Let Γ be
a finitely generated subgroup of κ∗. Then all but finitely many solutions of the
equation

u0 + u1 + · · ·+ un = 1, ui ∈ Γ, (3.6.3)

lie in one of the diagonal hyperplanes HI defined by the equation
∑

i∈I xi = 0,
where I is a subset of {0, 1, . . . , n} with at least two, but no more than n, elements.
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The proof is due to Vojta [415]. Further, Vojta noted that such infinite fam-
ilies are restricted to finite unions of linear subspaces of dimension ≤ [n/2].

According to Vojta [415], a set I of κ-rational points of a variety is called
degenerate if it is not dense in the Zariski topology. Here the κ-rational points
in the complement of I are called non-degenerate relative to I. We will regard
P(V ) as a “holomorphic curve” of P(Vκ̄), that is, the image of a mapping from
κ into P(Vκ̄), and establish the theory of value distribution by integrating the
characteristic functions over non-degenerate κ-rational points relative to I.

We fix a proper subset I = Iκ of P(Vκ̄) which will be chosen later, and define
a weight function of κ (relative to I) as follows:

µκ(x) = µκ,I(x) =
{

1, if x ∈ P(V )− I;
0, otherwise. (3.6.4)

We can define the spherical height of κ (relative to I) by

Aκ,I(r) = nµκh(r) =
∑

h(x)≤r

µκ(x)h(x), (3.6.5)

and the spherical characteristic function of κ (relative to I) by

Tκ,I(r) = Tκ,I(r, r0) =
∫ r

r0

Aκ,I(t)
dt

t
. (3.6.6)

If there is no confusion, we will abbreviate

Aκ(r) = Aκ,I(r), Tκ(r) = Tκ,I(r).

Obviously, there are infinitely many non-degenerate κ-rational points on P(Vκ̄)
relative to I if and only if

lim
r→∞

Tκ(r)
log r

= lim
r→∞Aκ(r) =∞. (3.6.7)

Take a ∈ P(V ∗) such that Ë[a](κ) ⊂ I. By definition, we have

m(x, a) =
∑
ρ∈S

log
1

|‖x, a|‖ρ
, x �∈ Ë[a],

and
N(x, a) =

∑
ρ∈Mκ−S

log
1

|‖x, a|‖ρ
, x �∈ Ë[a].

Hence the integrated proximity function

mκ(r, a) = mκ,I(r, a) =
∫ r

r0

⎛
⎝ ∑

h(x)≤t

µκ(x)m(x, a)

⎞
⎠ dt

t
(3.6.8)
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and the integrated valence function

Nκ(r, a) = Nκ,I(r, a) =
∫ r

r0

⎛
⎝ ∑

h(x)≤t

µκ(x)N(x, a)

⎞
⎠ dt

t
(3.6.9)

are well defined. Therefore the first main theorem (1.8.1) yields the integrated first
main theorem

mκ(r, a) + Nκ(r, a) = Tκ(r) + O (Nµκ(r)) . (3.6.10)

By the definitions, we obtain the relation

Tκ(r) = O(log r) ⇐⇒ Nµκ(r) = O(log r).

If there are infinitely many non-degenerate κ-rational points on P(Vκ̄) relative to
I, we have

lim
r→∞

Nµκ(r)
Tκ(r)

= lim
r→∞

nµκ(r)
Aκ(r)

= 0, (3.6.11)

and hence (3.6.10) has the following form:

mκ(r, a) + Nκ(r, a) = Tκ(r) + o (Tκ(r)) . (3.6.12)

When Tκ(r) →∞ as r →∞, define the defect of κ for a (relative to I) by

δκ(a) = δκ,I(a) = lim inf
r→∞

mκ(r, a)
Tκ(r)

. (3.6.13)

In particular, if Aκ(r) →∞ as r →∞, the integrated first main theorem (3.6.12)
implies

δκ(a) = 1− lim sup
r→∞

Nκ(r, a)
Tκ(r)

(3.6.14)

with 0 ≤ δκ(a) ≤ 1.

Next we consider a family A = {a0, . . . , aq} ⊂ P(V ∗) in general position for
q ≥ n. Theorem 3.47 gives that

q∑
j=0

m(x, aj) < (n + 1 + ε)h(x) (3.6.15)

for all x ∈ P(V )−
⋃

i Ë[bi]. Further, if I contains all κ-rational points of the variety⋃
i,j

(Ë[bi] ∪ Ë[aj ]),
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integrating (3.6.15), we obtain the integrated second main theorem

q∑
j=0

mκ(r, aj) < (n + 1 + ε)Tκ(r). (3.6.16)

If Tκ(r) →∞ as r →∞, then (3.6.16) immediately yields the defect relation:

q∑
j=0

δκ(aj) ≤ n + 1. (3.6.17)

Problem 3.49. When q ≥ 2n, does Tκ(r) = O(log r) hold?

When κ̄ = C and q ≥ 2n, Corollary 2.74 implies that the complement of
hyperplanes defined by elements in A is complete hyperbolic. Based on Conjec-
ture 3.33, it seems that Problem 3.49 is sure. It is known that if f ∈ M(C) assumes
the extreme defect relation ∑

δf (a) = 2,

then f has order p
2 , where p is a positive integer or +∞, which was originally

conjectured by F. Nevanlinna [289] and R. Nevanlinna [293]. Is there an analogue
of this result for a number field κ?

3.7 Vojta’s conjectures

Let κ be a number field and let S be a finite subset of Mκ. P. Vojta [415] observed
that some conditions of the second main theorem (2.12.21) in Carlson-Griffiths-
King’s theory may be relaxed somewhat, and then translated (2.12.21) into the
following main conjecture in number theory.

Conjecture 3.50. Let X be a non-singular complete variety over κ. Let K be the
canonical divisor of X, and let D be a normal crossings divisor on X. If ε > 0,
and if E is a pseudo ample divisor, then there exists a proper Zariski closed subset
Z = Z(X, D, κ, E, ε, S) such that for all x ∈ X(κ)− Z,

m(x, D) + hK(x) ≤ εhE(x) + O(1). (3.7.1)

The requirement in Conjecture 3.50 that D have only normal crossings is
necessary, since it is easy to produce counterexamples if this condition is dropped.

Example 3.51. Each hyperplane E of Pn(κ̄) is very ample with

dimL(E) = n + 1,

and hence the dual classification mapping ϕ is the identity. Thus hE(x) = h(x),
and hence

hK(x) = −(n + 1)h(x)
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since K = −(n + 1)E. Let D =
∑

i Ë[ai] be a sum of hyperplanes in general
position. Then the conjecture reduces to∑

i

m(x, ai) < (n + 1 + ε)h(x)

which follows from Schmidt’s subspace theorem.

P. Vojta [420] proved that Conjecture 3.25 of Masser and Oesterlé would be
derived from a weakening of Conjecture 3.50.

Conjecture 3.50 implies the Bombieri-Lang Conjecture 3.36. Recall that a
variety X is said to be pseudo canonical if its canonical bundle KX is pseudo
ample. Indeed, if X is such a variety, we may assume X non-singular since both
the notion of pseudo canonicity and non-denseness in the Zariski topology are
birational invariants. Then Conjecture 3.50 with D = 0 implies that

hK ≤ εhE + O(1) (3.7.2)

on an open dense set. But taking E = K and ε < 1 implies that hK is bounded,
which is a contradiction unless X(κ) is contained in a Zariski closed subset of X ,
that is, X(κ) is degenerate.

Conjecture 3.50 also implies the Mordell conjecture since curves are pseudo
canonical if and only if their genus is at least 2, and degeneracy on curves reduces
to finiteness.

Conjecture 3.50 is known for curves. Thus for curves of genus 0 it is equivalent
to Roth’s theorem, and for curves of genus g ≥ 2 it is a consequence of Faltings’
theorem. As for curves of genus 1, it is equivalent to Siegel’s theorem.

Let A denote an Abelian variety and let D be an ample divisor on A. Lang
[222] conjectured that A has only finitely many (S, D)-integralizable points. Vojta
[415] showed that Lang’s conjecture follows from the main conjecture. Qualita-
tively, Conjecture 3.50 also has the following simple consequence.

Conjecture 3.52. Let X be a non-singular projective variety defined over a number
field κ. Let K be the canonical divisor of X, and D a normal crossings divisor on
X. Suppose that K + D is pseudo ample. Then X −D is pseudo Mordellic.

Related to Conjecture 3.52 and based on the analogy with Conjecture 2.101,
A. Levin [244] proposed a main Siegel-type conjecture as follows:

Conjecture 3.53. Let X be a projective variety defined over a number field κ. Let
D = D1 + · · ·+Dq be a divisor on X with the Di’s effective Cartier divisors for all
i. Suppose that at most m Di’s meet at a point, so that the intersection of any m+1
distinct Di’s is empty. Suppose that dimDi ≥ n0 > 0 for all i. If q > m + m

n0
then

there does not exist a Zariski-dense set of κ-rational (S, D)-integralizable points
on X.
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Siegel’s theorem [357] is the case m = n0 = dim X = 1 of Conjecture 3.53,
or see [67] for a new proof of Siegel’s theorem. When X is a surface, m ≤ 2,
and the Di’s have no irreducible components in common, A. Levin [244] proved
Conjecture 3.53. At the extreme of n0, there is the following special case.

Conjecture 3.54. Let X be a projective variety defined over a number field κ. Let
D = D1 + · · · + Dq be a divisor on X with the Di’s effective Cartier divisors for
all i. Suppose that at most m Di’s meet at a point. If Di is pseudo ample for all
i and q > m + m

dim X then X −D is pseudo Mordellic.

When q > 2m dimX , A. Levin [244] proved Conjecture 3.54 based on a
formulation of Corvaja-Zannier theorems in [67] and [69]. Further, A. Levin [244]
proved that X −D is Mordellic if Di is ample for all i. By using Theorem 2.103,
when X is non-singular, the Di’s are ample, and D = D1 + · · · + Dq has normal
crossings, we see that Conjecture 3.54 is a consequence of Conjecture 3.52.

Following P. Vojta [415] one introduces the absolute (logarithmic) discrimi-
nant

dκ =
1

[κ : Q]
log Dκ/Q. (3.7.3)

If Q ⊂ κ ⊂ K are finite separable algebraic extensions, then (1.3.21) implies

dK − dκ =
1

[K : Q]
logNκ/Q(DK/κ). (3.7.4)

By abuse of notation, let d(x) = dκ(x) if x is a closed point of a variety. Vojta
compares the discriminant term as follows:

Theorem 3.55. Let π : X −→ W be a generically finite separable surjective mor-
phism of complete non-singular varieties over a number field κ, with ramification
divisor R. Let S be a finite set of absolute values. Then for all P ∈ X(κ̄)−R, we
have

d(P )− d(π(P )) ≤ N(P, R) + O(1).

Vojta’s Theorem 3.55 is a generalization to the ramified case of a classical
theorem of Chevalley-Weil. Further, P. Vojta [415] proposed the following general
conjecture:

Conjecture 3.56. Let X be a complete non-singular variety over κ. Let K be the
canonical divisor of X, and let D be a normal crossings divisor on X. Let ε > 0 and
let E be a pseudo ample divisor. If π : X −→W is a finite surjective morphism to
a non-singular complete variety W , then there exists a proper Zariski closed subset
Z = Z(π, X, D, κ, E, ε, S) such that for all x ∈ X − Z with π(x) ∈ W (κ),

m(x, D) + hK(x) ≤ d(x) + εhE(x) + O(1). (3.7.5)
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P. Vojta in [415] showed that Conjecture 3.25 of Masser and Oesterlé is an
easy consequence of Conjecture 3.56, and in [420] noted that Conjecture 3.50 is
possibly weaker than Conjecture 3.56. Conversely, van Frankenhuysen [412] proved
that the abc-conjecture implies Vojta’s general conjecture for curves, i.e., when X
is one-dimensional. Lang [232] conjectures that Vojta’s general conjecture is best
possible for any curve of non-zero genus over a number field.

A. Levin [244] gave the following conjectural upper bound on the logarithmic
discriminant in terms of heights.

Conjecture 3.57. Let X be a non-singular projective variety of dimension n defined
over a number field κ with canonical divisor K. Let E be a pseudo ample divisor
on X. Let r be a positive integer and let ε > 0. Then there exists a proper Zariski
closed subset Z such that

d(x) ≤ hK(x) + (2[κ(x) : κ] + n− 1 + ε)hE(x) + O(1) (3.7.6)

for all x ∈ X(κ̄)− Z with [κ(x) : κ] ≤ r.

If E is ample, A. Levin [244] conjectured that the set Z in Conjecture 3.57
is empty. It is a result of Silverman [361] that Conjecture 3.57 is true for X = Pn

with ε = 0 and r = ∞, i.e., the inequality holds for all x ∈ X(κ̄). For a curve,
Conjecture 3.57 is true by a result of Song and Tucker [370] (cf. Eq. 2.0.3). They
proved the stronger statement.

Theorem 3.58. Let X be a non-singular projective curve defined over a number
field κ with canonical divisor K. Let E be an ample divisor on X. Let r be a
positive integer and let ε > 0. Then

d(x) ≤ da(x) ≤ hK(x) + (2[κ(x) : κ] + ε)hE(x) + O(1) (3.7.7)

for all x ∈ X(κ̄) with [κ(x) : κ] ≤ r.

In the inequality (3.7.7), da(x) is the arithmetic discriminant of x. For the
definition and properties, see Vojta [416]. Related to the arithmetic discriminant,
Vojta [417] proved the following generalization of Falting’s theorem on rational
points on curves.

Theorem 3.59. Let X be a non-singular projective curve defined over a number field
κ with canonical divisor K. Let D be an effective divisor on X with no multiple
components and E ample divisor on X. Let r be a positive integer and let ε > 0.
Then the inequality

m(x, D) + hK(x) ≤ da(x) + εhE(x) + O(1) (3.7.8)

holds for all x ∈ X(κ̄)−D with [κ(x) : κ] ≤ r.

Generalizing the main Siegel-type conjecture, A. Levin [244] further proposed
a general Siegel-type conjecture as follows:
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Conjecture 3.60. Let X be a projective variety defined over a number field κ. Let
D = D1 + · · · + Dq be a divisor on X with the Di’s effective Cartier divisors for
all i. Suppose that at most m Di’s meet at a point. Suppose that dimDi ≥ n0 > 0
for all i. Let d be a positive integer. If q > m + m(2d−1)

n0
then there does not exist

a Zariski-dense set of (S, D)-integralizable points on X of degree d over κ.

According to the definition, the degree of a set R ⊂ X(κ̄) over κ is defined
to be

degκ R = sup
x∈R

[κ(x) : κ].

Based on Conjecture 3.57, A. Levin [244] shows that Vojta’s general conjecture
implies general Siegel-type conjecture if Di is ample for all i and D has normal
crossings. Theorem 3.58 and Theorem 3.59 imply that Levin’s general Siegel-type
conjecture is true for curves.

In [415], Vojta also proposed the following (1, 1)-form conjecture:

Conjecture 3.61. Let X be a complete non-singular variety over a number field κ
contained in C and let D be a normal crossings divisor on X. Let ω be a positive
(1, 1)-form on X − D whose holomorphic sectional curvatures are bounded from
above by −c < 0, i.e., for any non-constant holomorphic mapping f : U −→ X
(U ⊆ C is an open subset ), one has

Ric(f∗ω) ≥ cf∗ω.

Also assume that ω ≥ c1(L, ρ) for some metric ρ on a line bundle L on X. Let E
be a pseudo ample divisor on X. Let S be a finite set of absolute values. Let I be
a set of (S, D)-integralizable points of bounded degree over κ. Let ε > 0. Then for
all points P ∈ I we have

hL(P ) ≤ 1
c
d(P ) + εhE(P ) + O(1).

Vojta [415] applies the (1, 1)-form conjecture to deduce several number the-
oretic applications in which he proves that Conjecture 3.61 implies a conjecture
of Shafarevich on the finiteness of curves with good reduction, proved by Faltings
[97], [98].

Assume that X ⊂ Pn is a non-singular projective variety over κ. Let h be
the absolute logarithmic height on Pn. Fix r > r0 > 0. Let D be a divisor on X .
We fix a proper subset I of X(κ), and modify a little the weight function µκ of κ
on Pn defined by (3.6.4), which we denote by µκ,X and define as follows:

µκ,X(x) = µκ,I,X(x) =
{

1, if x ∈ X(κ)− I;
0, otherwise. (3.7.9)
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Note that X(κ) ∩X [O; r] is finite, where O = X ∩ h−1(0) is the center of h in X .
We can define the spherical height of κ for D by

Aκ(r, D) = Aκ,I(r, D) =
∑

x∈X[O;r]

µκ,X(x)hD(x), (3.7.10)

and the spherical characteristic function of κ for D by

Tκ(r, D) = Tκ,I(r, D) =
∫ r

r0

Aκ(t, D)
dt

t
. (3.7.11)

To integrate the inequality in Conjecture 3.50, we have to assume supp(D)(κ) ⊂ I.
Thus the integrated proximity function

mκ(r, D) =
∫ r

r0

⎛
⎝ ∑

x∈X[O;t]

µκ,X(x)m(x, D)

⎞
⎠ dt

t
(3.7.12)

and the integrated valence function

Nκ(r, D) =
∫ r

r0

⎛
⎝ ∑

x∈X[O;t]

µκ,X(x)N(x, D)

⎞
⎠ dt

t
(3.7.13)

are well defined. Therefore the first main theorem (1.8.5) yields the integrated first
main theorem

mκ(r, D) + Nκ(r, D) = Tκ(r, D) + O
(
Nµκ,X (r)

)
. (3.7.14)

If X has only finitely many non-degenerate κ-rational points relative to I, then

Tκ(r, D) = O(log r), Nµκ,X (r) = O(log r).

If X has infinitely many non-degenerate κ-rational points relative to I, and if D is
pseudo ample, then hD is unbounded on these non-degenerate κ-rational points,
and so

lim
r→∞

Nµκ,X (r)
Tκ(r, D)

= lim
r→∞

nµκ,X (r)
Aκ(r, D)

= 0.

Conjecture 3.50 and (3.7.14) imply the following problem:

Conjecture 3.62. Let X be a non-singular projective variety over κ. Let K be the
canonical divisor of X, and let D be a normal crossings divisor on X. If ε > 0,
and if E is a pseudo ample divisor, then there exists a proper Zariski closed subset
Z = Z(X, D, κ, E, ε, S) containing supp(D) such that

mκ(r, D) + Tκ(r, K) ≤ εTκ(r, E) + O(Nµκ,X (r))

holds for I = Z(κ).
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For the covering case in Conjecture 3.56, we choose a proper subset I of
X(κ), and have to modify the weight function (3.7.9) as follows:

µκ,π(x) = µκ,I,π(x) =
{

1, if x ∈ X − I, π(x) ∈ W (κ);
0, otherwise. (3.7.15)

We will assume that W ⊂ Pn is a non-singular projective variety. Let h be the
absolute logarithmic height on Pn. Fix r > r0 > 0. Thus the set

W [O; r] = {w ∈ W | h(w) ≤ r}

is well defined, where O = W ∩h−1(0) is the center of h in W . The spherical height
of κ for (D, π) is modified as follows:

Aκ,π(r, D) =
∑

π(x)∈W [O;r]

µκ,π(x)hD(x). (3.7.16)

The spherical characteristic function of κ for (D, π) still keeps the form

Tκ,π(r, D) =
∫ r

r0

Aκ,π(t, D)
dt

t
. (3.7.17)

If supp(D)(κ) ⊂ I, the integrated proximity function

mκ,π(r, D) =
∫ r

r0

⎛
⎝ ∑

π(x)∈W [O;t]

µκ,π(x)m(x, D)

⎞
⎠ dt

t
(3.7.18)

and the integrated valence function

Nκ,π(r, D) =
∫ r

r0

⎛
⎝ ∑

π(x)∈W [O;t]

µκ,π(x)N(x, D)

⎞
⎠ dt

t
(3.7.19)

are well defined. Therefore the first main theorem (1.8.5) yields the integrated first
main theorem

mκ,π(r, D) + Nκ,π(r, D) = Tκ,π(r, D) + O
(
Nµκ,π (r)

)
. (3.7.20)

Further, set

dκ,π(r) =
∫ r

r0

⎛
⎝ ∑

π(x)∈W [O;t]

µκ,π(x)d(x)

⎞
⎠ dt

t
.

Conjecture 3.56 and (3.7.20) imply the following problem:



256 Chapter 3. Topics in Number Theory

Conjecture 3.63. Let X be a projective non-singular variety over κ. Let K be the
canonical divisor of X, and let D be a normal crossings divisor on X. Let ε > 0
and let E be a pseudo ample divisor. If π : X −→W is a finite surjective morphism
to a non-singular projective variety W , then there exists a proper Zariski closed
subset Z = Z(π, X, D, κ, E, ε, S) containing supp(D) such that

mκ,π(r, D) + Tκ,π(r, K) ≤ dκ,π(r) + εTκ,π(r, E) + O
(
Nµκ,π (r)

)
holds for I = Z(κ).

3.8 Subspace theorems on hypersurfaces

In this section, we will give an elegant example of formulation between Diophan-
tine approximation and Nevanlinna theory, which shows how to translate Theo-
rem 2.63 in value distribution into a subspace theorem on hypersurfaces, that is,
Theorem 3.65.

3.8.1 Main results and problems

Let κ be a number field and let V = Vκ be a normed vector space of dimension
n + 1 > 0 over κ. Let E be a hyperplane on P(Vκ̄). Take a positive integer d. The
dual classification mapping

ϕdE : P(Vκ̄) −→ P(�dVκ̄)

is just the Veronese mapping, that is,

ϕdE(x) = x�d.

Then the absolute (multiplicative) height of x ∈ P(Vκ̄) for dE is given by

HdE(x) = H(ϕdE(x)) = H
(
x�d
)

= H(x)d,

and the absolute (logarithmic) height of x for dE is given as

hdE(x) = h(ϕdE(x)) = dh(x).

Take α ∈ �dV
∗ with (α) = dE and set a = P(α). For x �∈ dE, the proximity

function m(x, dE) is given by

m(x, dE) = m
(
x�d, a

)
.

Similarly, the valence function is given by

N(x, dE) = N
(
x�d, a

)
.



3.8. Subspace theorems on hypersurfaces 257

Thus equation (1.8.4) yields the following first main theorem:

m
(
x�d, a

)
+ N

(
x�d, a

)
= dh(x) + O(1). (3.8.1)

Fix r > r0 > 0. If Ëd[a](κ) ⊂ I, the integrated proximity function

mκ(r, a) = mκ,I(r, a) =
∫ r

r0

⎛
⎝ ∑

h(x)≤t

µκ(x)m
(
x�d, a

)⎞⎠ dt

t
(3.8.2)

and the integrated valence function

Nκ(r, a) = Nκ,I(r, a) =
∫ r

r0

⎛
⎝ ∑

h(x)≤t

µκ(x)N
(
x�d, a

)⎞⎠ dt

t
(3.8.3)

are well defined, where µκ is defined by (3.6.4). Similar to the proofs of (3.6.10),
we obtain the integrated first main theorem

mκ(r, a) + Nκ(r, a) = dTκ(r) + O (Nµκ(r)) . (3.8.4)

By using Theorem 3.47, we can obtain directly the following result:

Theorem 3.64. Take ε > 0, q ≥ N =
(
n+d

d

)
. Assume that for each ρ ∈ S, a family

{aρ,1, . . . , aρ,q} ⊂ P(�dV
∗)

is in general position. Then there exists a finite set {b1, . . . , bs} of P(�dV
∗̄
κ ) such

that the inequality

∑
ρ∈S

q∑
j=1

log
1

|‖x�d, aρ,j |‖ρ
< d(N + ε)h(x) + O(1)

holds for all x ∈ P(V )−
⋃

i Ëd[bi].

If the families in general position in Theorem 3.64 are replaced by admissible
families, then N in the bound of the main inequality of Theorem 3.64 can be
replaced by n+1, that is, we have the following subspace theorem on hypersurfaces:

Theorem 3.65 ([187]). Take ε > 0, q ≥ n. Assume that for ρ ∈ S, a family

Aρ = {aρ,0, . . . , aρ,q} ⊂ P(�dV
∗)

is admissible. Then there exist points

bi ∈ P(�diV
∗
κ̄ ) (1 ≤ di ∈ Z, i = 1, . . . , s <∞)
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such that the inequality∑
ρ∈S

q∑
j=0

log
1

|‖x�d, aρ,j|‖ρ
< d(n + 1 + ε)h(x) + O(1)

holds for all x ∈ P(V )−
⋃

i Ëdi [bi].

Originally, Theorem 3.65 was a conjecture proposed by Hu and Yang [176] (or
see [181]) based on analogy with Theorem 2.63. It extends the Schmidt subspace
theorem. We will introduce the proof in Section 3.8.3 by using methods of P.
Corvaja and U. Zannier [68]. In particular, Theorem 3.65 implies the following
integrated form:

Theorem 3.66. Take ε > 0, q ≥ n. Assume that a family

A = {a0, . . . , aq} ⊂ P(�dV
∗)

is admissible. Then for any ε > 0, there exists a proper Zariski closed subset
Z ⊂ P(Vκ̄) containing

⋃
j Ëd[aj ] such that
q∑

j=0

mκ(r, aj) < d(n + 1 + ε)Tκ(r)

holds for I = Z(κ).

Theorem 3.67 immediately yields the defect relation:
q∑

j=0

δκ(aj) ≤ n + 1, (3.8.5)

where the defect of κ for aj is defined by

δκ(aj) = lim inf
r→∞

mκ(r, aj)
dTκ(r)

. (3.8.6)

In particular, if Aκ(r) → ∞ as r → ∞, the integrated first main theorem (3.8.4)
implies

δκ(aj) = 1− lim sup
r→∞

Nκ(r, aj)
dTκ(r)

(3.8.7)

with 0 ≤ δκ(aj) ≤ 1.

Theorem 3.46 implies the following result:

Theorem 3.67. For ρ ∈ S, i ∈ {1, . . . , N}, where N =
(
n+d

d

)
, take αρ,i ∈ �dV

∗ −
{0} such that for each ρ ∈ S, αρ,1, . . . , αρ,N are linearly independent. Then for
any ε > 0 there exists a finite set {b1, . . . , bs} of P(�dV

∗
κ̄ ) such that the inequality

∏
ρ∈S

N∏
i=1

1
‖〈ξ�d, αρ,i〉‖ρ

≤
{

max
ρ∈S

‖ξ‖ρ

}ε

holds for all S-integral points ξ ∈ OV,S −
⋃

i Ed[bi].
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Related to Theorem 3.67, we have:

Theorem 3.68 ([187]). For ρ ∈ S, i = 0, . . . , n, take αρ,i ∈ �dV
∗ − {0} such that

the system
〈ξ�d, αρ,i〉 = 0, i = 0, . . . , n

has only the trivial solution ξ = 0 in Vκ̄. Then for any ε > 0 there exist points

bi ∈ P(�diV
∗
κ̄ ) (1 ≤ di ∈ Z, i = 1, . . . , s <∞)

such that the inequality∏
ρ∈S

n∏
i=0

1
‖〈ξ�d, αρ,i〉‖ρ

≤
{

max
ρ∈S

‖ξ‖ρ

}ε

holds for all S-integral points ξ ∈ OV,S −
⋃

i Edi [bi].

Hu and Yang suggested Theorem 3.68 in [176] (or see [181]). We will prove
that Theorem 3.65 is equivalent to Theorem 3.68.

Conjecture 3.50 corresponds to the following conjecture:

Conjecture 3.69. Take ai ∈ P(�dV
∗
κ̄ ) such that

∑
i Ëd[ai] has normal crossings.

Then for ε > 0 there exists a proper Zariski closed subset Z such that for all
x ∈ P(V )− Z, ∑

i

m
(
x�d, ai

)
≤ (n + 1 + ε)h(x).

Conjecture 3.69 or Conjecture 3.62 implies the following integrated form:

Conjecture 3.70. Take ai ∈ P(�dV
∗̄
κ ) such that

∑
i Ëd[ai] have normal crossings.

Then for any ε > 0, there exists a proper Zariski closed subset Z ⊂ P(Vκ̄) con-
taining

⋃
i Ëd[ai] such that∑

i

mκ(r, ai) ≤ (n + 1 + ε)Tκ(r)

holds for I = Z(κ).

Finally, we translate Conjecture 2.76 into the following conjecture:

Conjecture 3.71. Take a positive real number ε > 0 and integers q ≥ n ≥ r ≥ 1.
Assume that for ρ ∈ S, a family

Aρ = {aρ,0, . . . , aρ,q} ⊂ P(�dV
∗)

is admissible. Then the set of points of P(V )−
⋃

Ëd[aρ,j ] satisfying

∑
ρ∈S

q∑
j=0

log
1

|‖x�d, aρ,j |‖ρ
≥ d(2n− r + 1 + ε)h(x) + O(1)

is contained in a finite union of subvarieties of dimension ≤ r − 1 of P(Vκ̄).

In [176] (or see [181]), we proposed this conjecture for the case r = 1.
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3.8.2 Equivalence of Theorems 3.65 and 3.68

We will need some basic facts. Take a positive integer q ≥ n and take an admissible
family A = {a0, a1, . . . , aq} of points aj ∈ P

(
�dj V

∗̄
κ

)
. Let | · | be a norm defined

over a base e = (e0, . . . , en) of V . Write ξ = ξ0e0 + · · ·+ ξnen. By Theorem 1.94,
for each k ∈ {0, . . . , n}, the identity

ξs
k =

n∑
i=0

bλ
ik(ξ)α̃λ(i)(ξ) (λ ∈ Jq

n) (3.8.8)

is satisfied for some natural number s with

s ≥ d = max
0≤j≤q

dj ,

where bλ
ik ∈ κ̄[ξ0, . . . , ξn] are homogeneous polynomials of degree s−dλ(i) whose co-

efficients are integral-valued polynomials at the coefficients of α̃λ(i) (i = 0, . . . , n).
Write

bλ
ik(ξ) =

∑
σ∈Jn,s−dλ(i)

bλ
σikξ

σ(0)
0 · · · ξσ(n)

n , bλ
σik ∈ κ̄. (3.8.9)

First of all, assume that the norm | · | is non-Archimedean. From (3.8.8) and
(3.8.9), we have

|ξk|s ≤
(

max
i,σ

∣∣bλ
σik

∣∣ · |αλ(i)|
)

max
0≤i≤n

{
|α̃λ(i)(ξ)|
|ξ|dλ(i) |αλ(i)|

}
|ξ|s. (3.8.10)

Note that
max

0≤k≤n
|ξk|s = |ξ|s, |α̃j(ξ)| ≤ |ξ|dj |αj |. (3.8.11)

By maximizing the inequalities (3.8.10) over k, 0 ≤ k ≤ n, and using (3.8.11), we
obtain

1 ≤ max
k,i,σ

∣∣bλ
σik

∣∣ · |αλ(i)|. (3.8.12)

Define the gauge

Γ(A ) = min
λ∈Jq

n

min
k,i,σ

{
1∣∣bλ

σik

∣∣ · |αλ(i)|

}
, (3.8.13)

with 0 < Γ(A ) ≤ 1. From (3.8.10), (3.8.11) and (3.8.13), we obtain

Γ(A ) ≤ max
0≤i≤n

{
|α̃λ(i)(ξ)|
|ξ|dλ(i) |αλ(i)|

}
,

that is,

Γ(A ) ≤ max
0≤i≤n

|x�dλ(i) , aλ(i)|, λ ∈ Jq
n, x ∈ P(Vκ̄). (3.8.14)
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If the norm | · | is Archimedean, now (3.8.8) and (3.8.9) imply

|ξk|s ≤
(

n∑
i=0

∑
σ

∣∣bλ
σik

∣∣ · |αλ(i)|
)

max
0≤i≤n

{
|α̃λ(i)(ξ)|
|ξ|dλ(i)

∗ |αλ(i)|

}
|ξ|s∗, (3.8.15)

where |ξ|∗ = maxk |ξk|. Without loss of generality, we may assume

|ξ| = (|ξ0|2 + · · ·+ |ξn|2)
1
2 .

Since |ξ| ≤
√

n + 1|ξ|∗, inequality (3.8.15) yields

1 ≤ (n + 1)
d
2 max

k

n∑
i=0

∑
σ

∣∣bλ
σik

∣∣ · |αλ(i)|. (3.8.16)

Define the gauge

Γ(A ) = (n + 1)−
d
2 min

λ∈Jq
n

min
k

{
n∑

i=0

∑
σ

∣∣bλ
σik

∣∣ · |αλ(i)|
}−1

, (3.8.17)

with 0 < Γ(A ) ≤ 1. From (3.8.15) and (3.8.17), we also obtain the inequality
(3.8.14).

Lemma 3.72. For x ∈ P(Vκ̄), 0 < r ∈ R, define

A (x, r) =
{
j | |x�dj , aj | < r, 0 ≤ j ≤ q

}
. (3.8.18)

If 0 < r ≤ Γ(A ), then #A (x, r) ≤ n.

Proof. Assume that #A (x, r) ≥ n + 1. Then λ ∈ Jq
n exists such that

{λ(0), . . . , λ(n)} ⊆ A (x, r).

Hence
|x�dλ(i) , aλ(i)| < r ≤ Γ(A ), i = 0, . . . , n,

which is impossible according to (3.8.14). �
Lemma 3.73. Take x ∈ P(Vκ̄) such that |x�dj , aj | > 0 for j = 0, . . . , q. Then

q∏
j=0

1
|x�dj , aj |

≤
(

1
Γ(A )

)q−n

max
λ∈Jq

n

{
n∏

i=0

1
|x�dλ(i) , aλ(i)|

}
(3.8.19)

≤
(

1
Γ(A )

)q+1−n

max
λ∈Jq

n−1

{
n−1∏
i=0

1
|x�dλ(i) , aλ(i)|

}
. (3.8.20)

Proof. Take r = Γ(A ). Lemma 3.72 implies #A (x, r) ≤ n. Thus σ ∈ Jq
n exists

such that A (x, r) ⊆ {σ(0), . . . , σ(n)}. Note that Imλ−A (x, r) �= ∅ for any λ ∈ Jq
n.
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Then we have
q∏

j=0

1
|x�dj , aj |

≤ rn−q
n∏

i=0

1
|x�dσ(i) , aσ(i)|

≤
(

1
Γ(A )

)q−n

max
λ∈Jq

n

{
n∏

i=0

1
|x�dλ(i) , aλ(i)|

}

≤
(

1
Γ(A )

)q+1−n

max
λ∈Jq

n−1

{
n−1∏
i=0

1
|x�dλ(i) , aλ(i)|

}
.

�

We will need the following fact (see [176]):

Lemma 3.74. For x ∈ P(V ), we can choose ξ ∈ OV,S such that x = P(ξ), and the
relative height of x satisfies

max

⎧⎨
⎩max

ρ∈S
‖ξ‖ρ,

∏
ρ∈S

‖ξ‖ρ

⎫⎬
⎭ ≤ cHκ(x) ≤ c

{
max
ρ∈S

‖ξ‖ρ

}#S

,

where c is a constant depending only on S but independent of x.

Obviously, Theorem 3.65 yields immediately Theorem 3.68 by taking q = n
and using Lemma 3.74. Conversely, Theorem 3.68 implies also Theorem 3.65. In
fact, by Lemma 3.73 and Theorem 3.68, there exist points

bi ∈ P(�diV
∗
κ̄ ) (1 ≤ di ∈ Z, i = 1, . . . , s <∞)

such that the inequality

∏
ρ∈S

q∏
j=0

1
|‖x�d, aρ,j |‖ρ

≤
∏
ρ∈S

⎧⎨
⎩
(

1
Γ(Aρ)

)q−n n∏
j=0

1
|‖x�d, aρ,σρ(j)|‖ρ

⎫⎬
⎭

≤ c1

⎛
⎝∏

ρ∈S

|‖ξ|‖d
ρ

⎞
⎠n+1⎛⎝∏

ρ∈S

n∏
j=0

1
|‖〈ξ�d, αρ,σρ(j)〉|‖ρ

⎞
⎠

≤ c1

⎛
⎝∏

ρ∈S

|‖ξ|‖ρ

⎞
⎠d(n+1)(

max
ρ∈S

|‖ξ|‖ρ

)ε

,

holds for all points x = P(ξ) ∈ P(V ) −
⋃

i Ëdi [bi], where c1 is constant, and
αρ,j ∈ V ∗ − {0} with aρ,j = P(αρ,j). By Lemma 3.74, there exists a constant c2

such that ∏
ρ∈S

q∏
j=0

1
|‖x�d, aρ,j |‖ρ

≤ c2H(x)d(n+1)+ε,

and hence Theorem 3.65 follows.
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3.8.3 Proof of Theorem 3.65

In this section, we prove Theorem 3.65 based on methods of P. Corvaja and U.
Zannier [68]. First of all, we state several lemmas from [68] (or see [330]). We shall
use the lexicographic ordering on the p-tuples ν = (ν(1), . . . , ν(p)) ∈ Zp

+, namely,
µ > ν if and only if for some l ∈ {1, . . . , p} we have µ(k) = ν(k) for k < l and
µ(l) > ν(l).

Lemma 3.75. Let A be a commutative ring and let {g1, . . . , gp} be a regular sequence
in A generating the ideal Ip ⊂ A. Suppose that for some y, x1, . . . , xh ∈ A we have
an equation

g
ν(1)
1 · · · gν(p)

p y =
h∑

k=1

g
µk(1)
1 · · · gµk(p)

p xk,

where µk > ν for k = 1, . . . , h. Then y ∈ Ip.

Proof. We prove Lemma 3.75 by induction on p. Since g1 is not a zero divisor in
A, the assertion is trivial for p = 1. Assume that p > 1 and that Lemma 3.75 is
true up to p − 1. Since µk > ν for k = 1, . . . , h, renumbering the indices 1, . . . , h
we may assume that

µk(1)
{

> ν(1), k = 1, . . . , s;
= ν(1), k = s + 1, . . . , h

for some 0 ≤ s ≤ h. Since g1 is not a zero divisor in A we may write

g
ν(2)
2 · · · gν(p)

p y = g1b +
h∑

k=s+1

g
µk(2)
2 · · · gµk(p)

p xk, b ∈ A.

Reducing modulo g1, denoting the reduction with a bar, and working in the ring
A/I1, we have

ḡ
ν(2)
2 · · · ḡν(p)

p ȳ =
h∑

k=s+1

ḡ
µk(2)
2 · · · ḡµk(p)

p x̄k.

Note that (µk(2), . . . , µk(p)) > (ν(2), . . . , ν(p)) for k = s + 1, . . . , h and that
{ḡ2, . . . , ḡp} is a regular sequence in A/I1. We may apply the inductive assumption
with p − 1 in place of p and A/I1 in place of A. Then ȳ lies in the ideal of A/I1

generated by ḡ2, . . . , ḡp, i.e., y ∈ Ip, as required. �

Let κ be a number field and let κ̄ be an algebraic closure of κ. Let V = Vκ̄

be a normed vector space of dimension n + 1 > 0 over κ̄.

Lemma 3.76. Let β̃1, . . . , β̃p be homogeneous polynomials in κ̄[ξ0, . . . , ξn]. Assume
that they define a subvariety of P(V ) of dimension n − p. Then {β̃1, . . . , β̃p} is a
regular sequence.

Proof. This follows from Hilbert’s basis theorem and Proposition 1.3. �
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Lemma 3.77. Let β̃1, . . . , β̃n be homogeneous polynomials in κ̄[ξ0, . . . , ξn]. Assume
that they define a subvariety of P(V ) of dimension 0. Then, for all large N ,

dim V[N ]/{(β̃1, . . . , β̃n) ∩ V[N ]} = deg(β̃1) · · ·deg(β̃n).

Proof. It is a classical fact from the theory of Hilbert polynomials that the dimen-
sion of the quotient in Lemma 3.77 is constant for large N , equal to the degree of
the variety defined by β̃1, . . . , β̃n (see [148], Ch. I.7) which is just the product of
the degrees of β̃i (see [342], Ch. IV). �

Take ρ ∈ S and take a positive integer d. Let Aρ = {aρ,j}q
j=0 be a finite

admissible family of points aρ,j ∈ P (�dV
∗
κ ) with q ≥ n. Take αρ,j ∈ �dV

∗
κ − {0}

with P(αρ,j) = aρ,j , and define

α̃ρ,j(ξ) =
〈
ξ�d, αρ,j

〉
, ξ ∈ V, j = 0, 1, . . . , q.

Without loss of generality, assume |αρ,j |ρ = 1 for j = 0, . . . , q. Lemma 3.73 implies

q∏
j=0

1
‖x�d, aρ,j‖ρ

≤
(

1
Γ(Aρ)

)q+1−n

max
λ∈Jq

n−1

n−1∏
i=0

1
‖x�d, aρ,λ(i)‖ρ

(3.8.21)

for x ∈ P(Vκ)−∪q
j=0Ë

d[aρ,j ]. P. Corvaja and U. Zannier [68] estimated the terms
on the right-hand side of (3.8.21) as follows.

Now pick λ ∈ Jq
n−1. Since Aρ is admissible, α̃ρ,λ(0), . . . , α̃ρ,λ(n−1) define a

subvariety of P(V ) of dimension 0. Take a multi-index ν = (ν(1), . . . , ν(n)) ∈ Zn
+

with the length

|ν| = ν(1) + · · ·+ ν(n) ≤ N

d
.

For any γ = (γ(1), . . . , γ(n)) ∈ Zn
+, abbreviate

α̃γ
ρ,λ = α̃

γ(1)
ρ,λ(0) · · · α̃

γ(n)
ρ,λ(n−1)

and define the spaces
VN,ν =

∑
γ≥ν

α̃γ
ρ,λV[N−d|γ|]

with VN,0 = V[N ] and VN,µ ⊂ VN,ν if µ > ν. Thus the VN,ν define a filtration of
V[N ].

Next we consider quotients between consecutive spaces in the filtration. Sup-
pose that VN,µ follows VN,ν in the filtration:

V[N ] ⊃ · · · ⊃ VN,ν ⊃ VN,µ ⊃ · · · ⊃ {0}. (3.8.22)

Lemma 3.78. There is an isomorphism

VN,ν/VN,µ
∼= V[N−d|ν|]/{(α̃ρ,λ(0), . . . , α̃ρ,λ(n−1)) ∩ V[N−d|ν|]}.
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Proof. A vector space homomorphism ϕ : V[N−d|ν|] −→ VN,ν/VN,µ is defined as
follows: For β̃ ∈ V[N−d|ν|], we define ϕ(β̃) as the class of α̃ν

ρ,λβ̃ modulo VN,µ.
Obviously, ϕ is surjective.

Suppose β̃ ∈ ker(ϕ) = ϕ−1(0), which means that

α̃ν
ρ,λβ̃ ∈

∑
γ>ν

α̃γ
ρ,λV[N−d|γ|].

Thus we may write
α̃ν

ρ,λβ̃ =
∑
γ>ν

α̃γ
ρ,λβ̃γ

for elements β̃γ ∈ V[N−d|γ|]. Lemma 3.75 implies that β̃ lies in the ideal generated
by α̃ρ,λ(0), . . . , α̃ρ,λ(n−1). Therefore

β̃ =
n−1∑
i=0

η̃iα̃ρ,λ(i),

where η̃i (0 ≤ i ≤ n− 1) are homogeneous with deg(η̃i) = deg(β̃)− d, that is,

η̃i ∈ V[N−d(|ν|+1)], i = 0, . . . , n− 1.

Hence α̃ν
ρ,λβ̃ is a sum of terms in VN,µ, which concludes the proof of the lemma.

�

By Lemma 3.77 and Lemma 3.78, there exists an integer N0 depending only
on α̃ρ,λ(0), . . . , α̃ρ,λ(n−1) such that

∆ν := dimVN,ν/VN,µ

{
= dn, if d|ν| < N −N0;
≤ dimV[N0], otherwise. (3.8.23)

Now we choose inductively a suitable basis of V[N ] in the following way. We
start with the last non-zero VN,µ in the filtration (3.8.22) and pick any basis of
it. Suppose µ > ν are consecutive n-tuples such that d|ν|, d|µ| ≤ N . It follows
directly from the definition that we may pick representatives α̃ν

ρ,λβ̃ ∈ VN,ν of
elements in the quotient space VN,ν/VN,µ, where β̃ ∈ V[N−d|ν|]. We extend the
previously constructed basis in VN,µ by adding these representatives. In particular,
we have obtained a basis for VN,ν and our inductive procedure may go on unless
VN,ν = V[N ], in which case we stop. In this way, we obtain a basis {ψ̃1, . . . , ψ̃M}
of V[N ], where M = dimV[N ].

For a fixed k ∈ {1, . . . , M}, assume that ψ̃k is constructed with respect to
VN,ν/VN,µ. We may write

ψ̃k = α̃ν
ρ,λβ̃, β̃ ∈ V[N−d|ν|].
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Then we have a bound

‖ψ̃k(ξ)‖ρ = ‖α̃ν
ρ,λ(ξ)‖ρ‖β̃(ξ)‖ρ

≤ c′‖α̃ν
ρ,λ(ξ)‖ρ‖ξ‖N−d|ν|

ρ ,

where c′ is a positive constant depending only on ψ̃k, not on ξ. Observe that there
are precisely ∆ν such functions ψ̃k in our basis. Hence, taking the product over
all functions in the basis, and then taking logarithms, we get

log
M∏

k=1

‖ψ̃k(ξ)‖ρ ≤
n−1∑
i=0

∑
ν

∆νν(i + 1) log ‖α̃ρ,λ(i)(ξ)‖ρ

+

(∑
ν

∆ν(N − d|ν|)
)

log ‖ξ‖ρ + c, (3.8.24)

where c is a positive constant depending only on ψ̃k, not on ξ. Here ν in the
summations is taken over the n-tuples in the filtration (3.8.22) with |ν| ≤ N/d.

Note that

M = dimV[N ] =
(

n + N

N

)
=

Nn

n!
+ O

(
Nn−1

)
, (3.8.25)

T∑
t=0

#Jn−1,t = #Jn,T =
(

n + T

T

)
, T ∈ Z+,

and that, since the sum below is independent of j, we have that, for any positive
integer T and for every 0 ≤ j ≤ n,

∑
ν∈Jn,T

ν(j) =
1

n + 1

∑
ν∈Jn,T

n∑
j=0

ν(j) =
1

n + 1

∑
λ∈Jn,T

T

=
T

n + 1

(
n + T

T

)
=
(

n + T

T − 1

)

=
T n+1

(n + 1)!
+ O (T n) . (3.8.26)

Then, for N divisible by d and for every 0 ≤ i ≤ n− 1, (3.8.23) and (3.8.26) with
T = N/d yield

∑
ν

∆νν(i + 1) = dn
∑

ν

ν(i + 1) + K1 = dn

(
n + T

T − 1

)
+ K1, (3.8.27)

where
K1 =

∑
T−N0/d≤|ν|≤T

(∆ν − dn)ν(i + 1) = O (T n) .
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Therefore, we obtain

∑
ν

∆νν(i + 1) =
Nn+1

d(n + 1)!
+ O (Nn) .

Further we have

∑
ν

∆ν |ν| =
n−1∑
i=0

∑
ν

∆νν(i + 1) = ndn

(
n + T

T − 1

)
+ nK1, (3.8.28)

and hence ∑
ν

∆ν |ν| =
nNn+1

d(n + 1)!
+ O (Nn) .

On the other hand, we have

∑
ν

∆νT =
∑

ν

dnT + K2 = dnT

(
n + T

T

)
+ K2, (3.8.29)

where
K2 =

∑
T−N0/d≤|ν|≤T

(∆ν − dn)T = O (T n) .

Hence ∑
ν

∆ν(T − |ν|) = dn

(
n + T

T − 1

)
+ K2 − nK1. (3.8.30)

Therefore, by (3.8.24), (3.8.27) and (3.8.30), we have

log
M∏

k=1

‖ψ̃k(ξ)‖ρ ≤
{

dn

(
n + T

T − 1

)
+ K1

}
log

n−1∏
i=0

‖α̃ρ,λ(i)(ξ)‖ρ

+
{

dn

(
n + T

T − 1

)
+ K2 − nK1

}
d log ‖ξ‖ρ + c

≤ K

{
log

n−1∏
i=0

‖α̃ρ,λ(i)(ξ)‖ρ + d log ‖ξ‖ρ

}
+ c, (3.8.31)

where K = K(d, n, N) is a positive constant such that

K =
Nn+1

d(n + 1)!

(
1 + O

(
1
N

))
. (3.8.32)

Let φ̃1, . . . , φ̃M be a fixed basis of V[N ] such that when ξ ∈ V − {0},

Ξ = (φ̃1(ξ), . . . , φ̃M (ξ)) ∈ κ̄M − {0}.
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Then ψ̃k can be expressed as a linear form Lk in φ̃1, . . . , φ̃M so that ψ̃k(ξ) = Lk(Ξ).
The linear forms L1, . . . , LM are linearly independent. By (3.8.31), we obtain

log
M∏

k=1

‖Lk(Ξ)‖ρ ≤ K

{
log

n−1∏
i=0

‖α̃ρ,λ(i)(ξ)‖ρ + d log ‖ξ‖ρ

}
+ c

= K

{
log

n−1∏
i=0

‖α̃ρ,λ(i)(ξ)‖ρ

‖ξ‖d
ρ

+ (n + 1)d log ‖ξ‖ρ

}
+ c,

which implies

log
n−1∏
i=0

‖ξ‖d
ρ

‖α̃ρ,λ(i)(ξ)‖ρ
≤ 1

K

{
log

M∏
k=1

1
‖Lk(Ξ)‖ρ

+ c

}

+(n + 1)d log ‖ξ‖ρ, (3.8.33)

or, equivalently

n−1∏
i=0

‖ξ‖d
ρ

‖α̃ρ,λ(i)(ξ)‖ρ
≤
{

ec
M∏

k=1

1
‖Lk(Ξ)‖ρ

} 1
K

‖ξ‖(n+1)d
ρ . (3.8.34)

Fix ε > 0. By Theorem 3.46, for all λ ∈ Jq
n−1, the set Q of all Ξ ∈ OV[N ],S satisfying

∏
ρ∈S

N∏
k=1

‖Lk(Ξ)‖ρ <

{
max
ρ∈S

‖Ξ‖ρ

}−ε

is contained in a finite union of hyperplanes of V[N ]. Note that Q is just a finite
union of hypersurfaces of degree N in V , say,

Q =
r⋃

j=1

EN [bj], bj ∈ P (�NV ∗) ,

and that there is a positive constant c̃ such that

‖Ξ‖ρ ≤ c̃‖ξ‖N
ρ , ρ ∈ S.

Then we have

∏
ρ∈S

n−1∏
i=0

‖ξ‖d
ρ

‖α̃ρ,λ(i)(ξ)‖ρ
≤
{

ec

(
max
ρ∈S

c̃‖ξ‖N
ρ

)ε} 1
K

⎛
⎝∏

ρ∈S

‖ξ‖ρ

⎞
⎠(n+1)d

,

where

ξ �∈
⋃
ρ∈S

q⋃
j=0

Ed[aρ,j ] ∪Q.
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If we choose N large enough such that

d | N, N0 + 2d ≤ N ≤ K,

then Lemma 3.74 implies that there is a constant c depending only on S but
independent of ξ such that

∏
ρ∈S

n−1∏
i=0

|‖ξ|‖d
ρ

|‖α̃ρ,λ(i)(ξ)|‖ρ
≤ cH(ξ)(n+1+ε)d. (3.8.35)

Therefore Theorem 3.65 follows from (3.8.21) and (3.8.35).

Remark on (3.8.35). If we take λ ∈ Jq
n, Lemma 3.72 means that there exists an

index i0 ∈ {0, 1, . . . , n} such that

‖x�d, aρ,λ(i0)‖ρ ≥ Γ(Aρ), x = P(ξ).

Without loss of generality, we may assume i0 = n. Thus from (3.8.34), according
to the arguments leading up to (3.8.35) we can obtain

∏
ρ∈S

n∏
i=0

1
‖α̃ρ,λ(i)(ξ)‖ρ

≤ c

(
max
ρ∈S

‖ξ‖ρ

)ε

. (3.8.36)

Hence the above method yields also a proof of Theorem 3.68.

Now we exhibit the original subspace theorem of P. Corvaja and U. Zannier
[68] as follows:

Theorem 3.79. For ρ ∈ S, let fiρ, i = 1, . . . , n−1, be polynomials in k[X1, . . . , Xn]
of degrees δiρ > 0. Put

δρ = max
i

δiρ, µ = min
ρ∈S

n−1∑
i=1

δiρ

δρ
.

Fix ε > 0 and consider the Zariski closure H in Pn of the set of solutions
x ∈ On

κ,S of ∏
ρ∈S

n−1∏
i=1

|‖fiρ(x)|‖
1

δρ
ρ ≤ H([1, x])µ−n−ε. (3.8.37)

Suppose that, for ρ ∈ S, X0 and the f iρ, i = 1, . . . , n − 1, define a variety of
dimension 0. Then dimH ≤ n− 1.

Here for a polynomial h ∈ k[X1, . . . , Xn], we denote by h the homogenized
polynomial in k[X0, . . . , Xn]; namely, h is the unique homogeneous polynomial
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in k[X0, . . . , Xn], of the same degree as h and such that h(1, X1, . . . , Xn) =
h(X1, . . . , Xn). For the special cases

δiρ = d, 1 ≤ i < n, ρ ∈ S,

by setting
f0ρ(X0, X1, . . . , Xn) = Xd

0 , ρ ∈ S,

and applying the above argument to f iρ (0 ≤ i ≤ n − 1) replacing α̃ρ,λ(0), . . . ,
α̃ρ,λ(n−1), the proof of Theorem 3.79 follows.

3.8.4 Proof of Theorem 2.63

The methods in Section 3.8.3 serve also as a proof of Theorem 2.63. Next we
assume κ̄ = C and so V is a complex vector space of dimensions n + 1 ≥ 1. We
consider an algebraically non-degenerate meromorphic mapping f : Cm −→ P(V ).
Fix a positive integer d. Then f induces a meromorphic mapping

f�d : Cm −→ P (�dV )

such that the characteristic function of f�d satisfies

Tf�d(r) = dTf (r).

Let A = {aj}q
j=0 be a finite admissible family of points aj ∈ P (�dV

∗) with
q ≥ n. Take αj ∈ �dV

∗ − {0} with P(αj) = aj , and define

α̃j(ξ) =
〈
ξ�d, αj

〉
, ξ ∈ V, j = 0, 1, . . . , q.

Without loss of generality, assume |αj | = 1 for j = 0, . . . , q. Write

Fj = α̃j ◦ f̃ =
〈
f̃�d, αj

〉
, j = 0, 1, . . . , q,

where f̃ : Cm −→ V is a reduced representation of f . Lemma 3.73 implies

q∏
j=0

1
|f�d, aj |

≤
(

1
Γ(A )

)q+1−n

max
λ∈Jq

n−1

n−1∏
i=0

1
|f�d, aλ(i)|

,

which yields
q∑

j=0

mf�d(r, aj) ≤ I − (q + 1− n) log Γ(A ), (3.8.38)

where

I = Cm

〈
0; r; max

λ∈Jq
n−1

log
n−1∏
i=0

1
|f�d, aλ(i)|

〉
. (3.8.39)
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Hu and Yang observed the inequality (3.8.38) and estimated the corresponding
term I over non-Archimedean fields (see [175], [176], or Theorem 5.22). For the
complex case, M. Ru [330] estimated the integral I in (3.8.39) as follows.

According to the arguments in the proof of Theorem 3.65, replacing Ξ we
now have a meromorphic mapping g = gN : Cm −→ PM−1 induced by

g̃ = (φ̃1 ◦ f̃ , . . . , φ̃M ◦ f̃) : Cm −→ CM ,

which is linearly non-degenerate from the assumption of algebraic non-degeneracy
of f , so that ψ̃k ◦ f̃ = Lk ◦ g̃. Now the inequality (3.8.33) becomes

log
n−1∏
i=0

|f̃ |d
|Fλ(i)|

≤ 1
K

{
log

M∏
k=1

|g̃|
|Lk ◦ g̃| −M log |g̃|+ c

}

+(n + 1)d log |f̃ |. (3.8.40)

Since there are only finitely many choices λ ∈ Jq
n−1, we have a finite collection

of linear forms L1, . . . , Lu. Hence (3.8.40) implies that

I = Cm

〈
0; r; max

λ∈Jq
n−1

log
n−1∏
i=0

|f̃ |d
|Fλ(i)|

〉

≤ 1
K

{
Cm

〈
0; r; max

J
log
∏
k∈J

|g̃|
|Lk ◦ g̃|

〉
−MCm 〈0; r; log |g̃|〉+ c

}

+(n + 1)dCm
〈
0; r; log |f̃ |

〉
, (3.8.41)

where maxJ is taken over all subsets J of {1, . . . , u} such that the linear forms
Lk (k ∈ J) are linearly independent. Applying Theorem 2.62, we have

Cm

〈
0; r; max

J
log
∏
k∈J

|g̃|
|Lk ◦ g̃|

〉
≤MTg(r) −NRam(r, g)

+
M(M − 1)

2
log
{(ρ

r

)2m−1 Tg(R)
ρ− r

}
+ O(1)

for any r0 < r < ρ < R. The formulae (2.3.20) and (2.3.21) imply respectively

Cm 〈0; r; log |g̃|〉 ≥ Tg(r) + O(1)

and
Cm
〈
0; r; log |f̃ |

〉
= Tf(r) + O(1).

Obviously,
Tg(r) ≤ NTf (r) + O(1),
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and so (3.8.41) yield

I ≤ (n + 1)dTf(r) +
M(M − 1)

2K
log
{(ρ

r

)2m−1 Tf(R)
ρ− r

}
+ O(1), (3.8.42)

where O(1) is a constant independent of r, ρ and R, but depends on N and f .
Finally, by (3.8.38) and (3.8.42), we obtain the following result (cf. [330]):

Theorem 3.80. Let f : Cm −→ P(V ) be an algebraically non-degenerate meromor-
phic mapping. Fix a positive integer d. Let A = {aj}q

j=0 be a finite admissible
family of points aj ∈ P (�dV

∗). Then for any r0 < r < ρ < R, we have

q∑
j=0

mf�d(r, aj) ≤ (n + 1)dTf (r) +
M(M − 1)

2K
log
{(ρ

r

)2m−1 Tf (R)
ρ− r

}
+ O(1).

(3.8.43)

Related to the above theorem, Conjecture 2.97 assumes the following form:

Conjecture 3.81. Let f : Cm −→ P(V ) be an algebraically non-degenerate mero-
morphic mapping. Fix a positive integer d. Let A = {aj}q

j=0 be a finite family
of points aj ∈ P (�dV

∗) such that the divisor Ëd[a0] + · · · + Ëd[aq] has normal
crossings. Then

q∑
j=0

mf�d(r, aj) ≤ (n + 1)Tf(r) + O(log+ Tf(r)) + O(ε log r). (3.8.44)

This conjecture is an analogue of Conjecture 3.69 in value distribution theory.
A part of this result was given by Biancofiore [23].

3.9 Vanishing sums in function fields

In this section, we will introduce some inequalities over algebraic function fields,
which will deliver some supporting evidence to generalized abc-conjectures dis-
cussed in Chapter 4. Further, some methods in this section will be used to prove
abc-theorems for meromorphic functions.

3.9.1 Algebraic function fields

Let κ be any field. An algebraic function field over κ is a finitely generated extension
field K of κ which is not algebraic. If the transcendence degree is r, then K is a
field of r variables over κ. In what follows we shall take r = 1 and assume that
κ is perfect. By Proposition 1.20, there exists an element x ∈ K − κ such that K
is separable over κ(x). Thus for the rest of this section, function field will mean
“algebraic function field of one variable over a perfect ground field”. As a finite
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separable extension K/κ(x) can be generated by a single element y; the minimal
equation for y over κ(x) defines an algebraic curve, and in this sense a function
field represents the field of all rational functions on an algebraic curve.

Proposition 3.82 (cf. [63]). Let K/κ be a function field, where κ is perfect of prime
characteristic p. Then for any x ∈ K the following conditions are equivalent:

(a) x is a separating element for K/κ;
(b) dx is a K-basis for the space of differentials;
(c) x is not of the form yp for some y ∈ K.

Let K/κ be a function field. We note that if x ∈ K − κ, then all valuations
of κ(x)/κ are discrete (cf. Proposition 1.39), and that all valuations of K/κ are
obtained by extending those of κ(x)/κ (cf. Theorem 1.38), and they are again
discrete. Although the latter depend on x, the set of all valuations of K/κ does
not depend on the choice of x. Every function field has infinitely many places (cf.
[63]). Let p be any place of K/κ, with associated valuation vp and residue class
field F(K). Then F(K) is a finite algebraic extension of κ; for we have vp(α) = 0
for all α ∈ κ∗, so the residue class mapping x �→ x̄ of K into F(K) ∪ {∞} is
injective when restricted to κ, hence κ is embedded in F(K). The restriction to
κ(x) has as residue class field a finite extension of κ, of degree equal to the degree
of the irreducible polynomial defining the place q on κ(x) such that p|q. It follows
that dp = [F(K) : κ] is finite too, which is called the absolute residue degree or
simply the degree of p. Its relation to the relative degree is given by the formula

dp = [F(K) : F(F )]dq (3.9.1)

for κ ⊂ F ⊂ K, where p|q for a place q of F/κ.

Given any f ∈ K and any place p of K/κ, with normalized valuation vp,
there are three possibilities:

(α) If vp(f) > 0, we say that f has a zero at p of order vp(f);
(β) If vp(f) < 0, we say that f has a pole at p of order −vp(f);
(γ) vp(f) = 0.

Usually we also denote the number vp(f) by ordpf . In a function field, any non-
constant element has finitely many zeros and at least one zero; similarly for poles.
With each element f ∈ K∗ we can associate a divisor

(f) =
∏
p

pordpf ,

called a principal divisor, which is usually expressed additively

(f) =
∑

p

ordp(f)p.
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To examine (f) more closely, let us write it as

(f) = (f)0(f)−1
∞ ,

where

(f)0 =
∏
p

{
pordpf | ordpf > 0

}
, (f)∞ =

∏
p

{
p−ordpf | ordpf < 0

}
.

The divisor (f)0 is called the divisor of zeros of f , (f)∞ is the divisor of poles of
f .

We recall that the divisor group D is the free Abelian group on the set of all
places as free generating set; its elements are called divisors. The general divisor
has the form

a =
∏

pvp(a) = pα1
1 · · · pαr

r . (3.9.2)

Each divisor has a degree, given by

deg(a) =
∑

dpvp(a),

where dp is the degree of p as defined earlier. Of course when κ is algebraically
closed, then dp = 1 and it can be omitted. In particular, for f ∈ K − κ (cf. [63]),

deg((f)0) = deg((f)∞) = [K : κ(f)].

To express the fact that f ∈ K has a zero of order at least αi at pi (i = 1, . . . , r)
we shall write

f ≡ 0(moda), (3.9.3)

where a is given by (3.9.2). Associated with the divisor (3.9.2) we have a vector
space over κ given by the equation

L(a) = {f ∈ K | f ≡ 0(moda)}. (3.9.4)

Theorem 3.83 (Riemann’s theorem, cf. [63]). Let K/κ be a function field. Then
as a runs over all divisors, dimκ L(a)+deg(a) is bounded below. Thus there exists
an integer g such that

dimκ L(a) + deg(a) ≥ 1− g. (3.9.5)

Moreover, given f ∈ K − κ, the lower bound is attained by a = (f)−m
∞ , for all

large m.

The constant g in (3.9.5) is an important invariant of K, called the genus.
It can assume any non-negative integer value, and it has geometrical and function
theoretic interpretations, some of which we shall meet later.

Assume that κ is algebraically closed. Take a separating element x of K.
At any place p of K with the valuation vp choose an element t generating the
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unique maximal ideal of the valuation ring, which is called a prime element or a
uniformizer, and also is a separating element for K, and define a divisor

K =
(

dx

dt

)
,

called the canonical divisor of K. This definition is easily seen to be independent
of the choice of t. If a is any divisor, then we have the Riemann-Roch formula
(cf. [63])

dimκ L
(
a−1
)

= deg(a) + 1− g + dimκ L
(
aK−1

)
, (3.9.6)

which implies specially
deg(K) = 2g − 2. (3.9.7)

3.9.2 Mason’s inequality

Let κ be an algebraically closed field of zero characteristic, and let K be a function
field of genus g in one variable over κ. We normalize each valuation v on K so that
its order group consists of all rational integers. For n ≥ 1, {f0, f1, . . . , fn} ⊂ K
not all zero, we define the projective height as

h(f0, f1, . . . , fn) = −
∑

v

min{ordvf0, ordvf1, . . . , ordvfn}. (3.9.8)

The sum formula on K shows that this is really a height on the projective space
P(Kn+1). R. C. Mason [253], [255] proved essentially the following result:

Theorem 3.84. Let {f0, f1, . . . , fn} ⊂ K (n ≥ 2) be such that

f1 + · · ·+ fn = f0 (3.9.9)

but f1, . . . , fn are linearly independent over κ. Then

h(f0, f1, . . . , fn) ≤ 4n−1(#S + 2g − 2), (3.9.10)

where S is the set of places of K where some fi is not a unit.

By the definition, here #S is the cardinality of S. Actually Mason’s Lemma
2 in [255] is stated differently, since he deals with the inhomogeneous equation
f1 + · · ·+ fn = 1. This form is given in [447]. The work of Mason generalized his
previous result with n = 2 (see [254]) which he had used to solve effectively certain
classical Diophantine equations over function fields. Write

γ−1 = 0, γp =
p(p− 1)

2
(p ≥ 0).

W.D. Brownawell and D.W. Masser [41] improved Theorem 3.84 as follows:
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Theorem 3.85. Let {f0, f1, . . . , fn} ⊂ K (n ≥ 2) be such that (3.9.9) holds but
f1, . . . , fn are linearly independent over κ. For each valuation v, let m = m(v) =
m(v; f0, . . . , fn) be the number of elements among f0, . . . , fn which are units at v.
Then

h(f0, f1, . . . , fn) ≤ γn(2g − 2) +
∑

v

(γn − γm−1). (3.9.11)

Proof. Fix a separating element z of K, and we write d
dz for the corresponding

derivation on K. Let

Wz = Wz(f1, . . . , fn) = det
(

dj−1fi

dzj−1

)
(1 ≤ i, j ≤ n)

be the Wronskian of f1, . . . , fn (with respect to z) and define

Sz = Sz(f1, . . . , fn) = (f1 · · · fn)−1Wz(f1, . . . , fn).

Then Wz �= 0 since f1, . . . , fn are linearly independent. Taking derivatives on
both sides of the identity (3.9.9) yields

dj−1f1

dzj−1
+

dj−1f2

dzj−1
+ · · ·+ dj−1fn

dzj−1
=

dj−1f0

dzj−1
(j = 1, 2, . . . , n).

The above equation and (3.9.9) yield Wz = Wzj (j = 1, 2, . . . , n), where

Wzj = Wz(f1, . . . , fj−1, f0, fj+1, . . . , fn).

Hence
Szfj = Szjf0, j = 1, . . . , n, (3.9.12)

where Szj is defined by Wzj = Szjf1 · · · fj−1f0fj+1 · · · fn. The equations (3.9.12)
yield

h(f0, f1, . . . , fn) = h(Sz,Sz1, . . . ,Szn). (3.9.13)

For each valuation v on K there is a separating element ζ = ζv in K with
ordvζ = 1 such that every element of K can be expressed as a Laurent series in
ζ with only finitely many negative exponents. Let d

dζ denote the corresponding
derivation on K. For any non-zero f in K, and any valuation v, we have an
expansion

f = aζm + · · · (a �= 0).

Thus if m �= 0, that is, f is not a unit at v, then for any non-negative integer j we
obtain

f−1 djf

dζj
= m(m− 1) · · · (m− j + 1)ζ−j + · · · ,

and hence

ordv

(
f−1 djf

dζj

)
≥ −j. (3.9.14)
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If m = 0, that is, f is a unit at v, then it is easier to show that

ordv

(
f−1 djf

dζj

)
≥ 0. (3.9.15)

By the formula for change of variable in a Wronskian (see [283], p. 662 or [436],
p. 69) we have

Wz = Wζ

(
dζ

dz

)γn

. (3.9.16)

Suppose that exactly µ among f1, . . . , fn are units at v. To estimate ordvSζ we
apply (3.9.14) and (3.9.15) to each of the columns, and get

ordvSζ ≥ −{(n− 1) + (n− 2) + · · ·+ µ} = −{γn − γµ}.

Therefore by (3.9.16), we obtain

ordvSz ≥ −γnordv
dz

dζ
− {γn − γµ}. (3.9.17)

Now we have by definition

h(Sz ,Sz1, . . . ,Szn) = −
∑

v

min{ordvSz, ordvSz1, . . . , ordvSzn}.

Fix j with 0 ≤ j ≤ n and any valuation v. Since m elements of f0, . . . , fn are units
at v, it follows that at least m− 1 elements of {f0, . . . , fn} − {fj} are units at v.
Thus in (3.9.17) we have µ ≥ m− 1, so γµ ≥ γm−1 and we conclude

ordvSzj ≥ −γnordv
dz

dζ
− {γn − γm−1},

where Sz0 = Sz. Therefore

h(Sz ,Sz1, . . . ,Szn) ≤ γn

∑
v

ordv
dz

dζ
+
∑

v

{γn − γm−1}.

But we know (see for example [255], equation (6); or [63])

∑
v

ordv
dz

dζ
= 2g − 2,

and we end up with

h(Sz,Sz1, . . . ,Szn) ≤ γn(2g − 2) +
∑

v

{γn − γm−1}.

Theorem 3.85 follows from this and (3.9.13). �
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Recall that if S is a finite set of valuations, an element f of K is said to be
an S-unit if it is a unit at v for all v not in S.

Corollary 3.86 ([41]). Let {f0, f1, . . . , fn} ⊂ K (n ≥ 2) be such that (3.9.9) holds
but f1, . . . , fn are linearly independent over κ. If f0, . . . , fn are S-units for some
finite set S, then

h(f0, f1, . . . , fn) ≤ n(n− 1)
2

{#S + 2g − 2}. (3.9.18)

3.9.3 No vanishing subsums

W.D. Brownawell and D.W. Masser [41] further proved that the inequality of
Theorem 3.85 remains true, in slightly modified form, if the assumption of linear
independence is replaced by a weaker hypothesis of no vanishing subsums. To
introduce this result, according to W.D. Brownawell and D.W. Masser [41], a
finite function family F = {fi | i ∈ J} will be called minimal if F is linearly
dependent, and for any proper subset I of J the family {fi | i ∈ I} is linearly
independent. For simplicity, we also call the indices J minimal.

Lemma 3.87 ([41]). Assume f0 + · · · + fn = 0 but no non-empty proper subsum
vanishes. Then there exists a partition of indices

{0, 1, . . . , n} = I0 ∪ · · · ∪ Ik

satisfying the following properties:

(i) Iα are non-empty disjoint sets;
(ii) There exist subsets I ′α of {0, 1, . . . , n} with

I ′0 = ∅, ∅ �= I ′α ⊆ I0 ∪ · · · ∪ Iα−1 (α = 1, . . . , k)

such that the set Iα ∪ I ′α is minimal for each α = 0, . . . , k.

Proof. Consider a non-empty subspace of Cn+1 as follows:

V = {(a0, . . . , an) ∈ Cn+1 | a0f0 + · · ·+ anfn = 0}.

Then each element A in V can be written as

A =
∑

J

cJAJ (cJ ∈ C, AJ = (aJ0, . . . , aJn) ∈ V ) (3.9.19)

such that aJi = 0 when i �∈ J , where J is minimal. Next we prove the expression
(3.9.19) by induction on the number l(A) of non-zero components in A. The cases
l(A) = 1, 2 are trivial. Assume that for some l > 2 the fact (3.9.19) holds for all
elements A of V with l(A) < l. Next take A ∈ V with l(A) = l; without loss of
generality, we may assume that

A = (a0, . . . , al−1, 0, . . . , 0), ai �= 0 (i = 0, . . . , l− 1).
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Then we are done if J = {0, . . . , l− 1} is minimal. Otherwise, there is an element

B = (b0, . . . , bl−1, 0, . . . , 0) ∈ V

with 2 ≤ l(B) < l. Without loss of generality, we may assume that b0 �= 0.
Then l(b0A− a0B) < l, and so the induction hypothesis can be applied to B and
C = b0A− a0B. Therefore

A =
a0

b0
B +

1
b0

C

has the desired decomposition.
Next we show that if ∑

i∈E

fi �= 0

for some E ⊂ Z = {0, . . . , n}, then there is a minimal set J such that

J ∩E �= ∅, J ∩ Ec �= ∅, (3.9.20)

where Ec is the complement of E in Z. In fact, if this is false, applying (3.9.19)
to A = (1, . . . , 1) ∈ V , then every J in (3.9.19) is contained either in E or in Ec,
and so

A =
∑
J⊂E

cJAJ +
∑

J⊂Ec

cJAJ .

Especially, we have∑
i∈E

fi =
∑
J⊂E

cJ (aJ0f0 + · · ·+ aJnfn) = 0,

which leads to a contradiction.
Now we can prove Lemma 3.87. If each proper subset of {f0, . . . , fn} is lin-

early independent, then we can take k = 0 in Lemma 3.87. So we may assume
that some proper subset of {f0, . . . , fn} is linearly dependent. According to the
hypothesis, the set Z is not minimal. Thus applying (3.9.20) to, say, E = {0}, we
may choose a proper minimal subset J0 of Z, and so∑

i∈J0

fi �= 0.

Applying (3.9.20) to E = J0, there exists a minimal set J1 such that

J1 ∩E �= ∅, J1 ∩ Ec �= ∅.

Set
I0 = E, I1 = J1 ∩ Ec, I ′1 = J1 ∩ E.

If Z = I0∪I1, then we are done. Otherwise, applying (3.9.20) to E = I0∪I1, there
exists a minimal set J2 such that

J2 ∩E �= ∅, J2 ∩ Ec �= ∅.
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Set
I2 = J2 ∩ Ec, I ′2 = J2 ∩E.

If Z = I0 ∪ I1 ∪ I2, then we are done. Otherwise, we repeat the above procedures
until the union reaches Z. �
Theorem 3.88. Let {f0, f1, . . . , fn} ⊂ K (n ≥ 2) be such that (3.9.9) holds but no
subsum of (3.9.9) vanishes. For each valuation v, let m = m(v) = m(v; f0, . . . , fn)
be the number of elements among f0, . . . , fn which are units at v. Then

h(f0, f1, . . . , fn) ≤ γn max{0, 2g − 2}+
∑

v

(γn − γm−1). (3.9.21)

Proof. By Theorem 3.85, we can suppose that f1, . . . , fn are linearly dependent
over κ. By Lemma 3.87, there exists a partition of indices

{0, 1, . . . , n} = I0 ∪ · · · ∪ Ik

satisfying the properties (i) and (ii) in Lemma 3.87 with k ≥ 1. Set

n0 + 1 = #I0 ≥ 2; nα = #Iα (α = 1, . . . , k)

and write

sα = 1 +
α∑

β=0

nβ , α = 0, 1, . . . , k.

Then
n0 + n1 + · · ·+ nk = n.

Without loss of generality, we may assume that

I0 = {0, . . . , n0}, Iα = {sα−1, . . . , sα − 1} (α = 1, . . . , k).

Since I0 is minimal, then f0, f1, . . . , fn0 are linearly dependent, and so there is a
linear relation

a0,0f0 + · · ·+ a0,n0fn0 = 0,

with a0,i �= 0 for i ∈ I0. Set a0,i = 0 for all i > n0. Then

a0,0f0 + · · ·+ a0,nfn = 0.

Similarly, for α = 1, . . . , k, {fi | i ∈ Iα ∪ I ′α} are linearly dependent, and so there
is a linear relation ∑

i∈Iα∪I′
α

aα,ifi = 0,

with aα,i �= 0. Set aα,i = 0 for all i �∈ Iα ∪ I ′α. Then

aα,0f0 + · · ·+ aα,nfn = 0.
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Fix any z as in the proof of Theorem 3.85. We consider the following n×(n+1)
matrix

Dz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0,0f0 · · · c0,nfn

...
. . .

...
a0,0f

(n0−1)
0 · · · a0,nf

(n0−1)
n

a1,0f0 · · · a1,nfn

...
. . .

...
a1,0f

(n1−1)
0 · · · a1,nf

(n1−1)
n

...
. . .

...
ak,0f

(nk−1)
0 · · · ak,nf

(nk−1)
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let Dzj be the determinant of the matrix obtained by deleting the jth column of
Dz. Note that the sum of each row of Dz is zero. We have

Dzj = (−1)jDz0, j = 1, . . . , n.

It is easy to show that

Dz0 = λWz0 · · ·Wzk, λ = a−1
0,0

k∏
α=0

∏
i∈Iα

aα,i �= 0,

where

Wz0 = Wz(f1, . . . , fn0) �= 0, Wzα = Wz(fsα−1 , . . . , fsα−1) �= 0 (α = 1, . . . , k)

because the property (ii) in Lemma 3.87. Define

Szj = Szj(f0, . . . , fj−1, fj+1, . . . , fn) =
(−1)jDzj

f0 · · · fj−1fj+1 · · · fn
.

Then
Szjf0 = Sz0fj , (3.9.22)

which means
h(f0, . . . , fn) = h(Sz0, . . . ,Szn).

With respect to the corresponding local variable ζ, then we also have

Sζjf0 = Sζ0fj , (3.9.23)

as in (3.9.22), and the formula (3.9.16) applied to Dz0 gives

Szj = Sζj

(
dζ

dz

)γ

, (3.9.24)
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where

γ =
k∑

α=0

γnα . (3.9.25)

According to the proof of Theorem 3.85, we conclude that

h(Sz0,Sz1, . . . ,Szn) ≤ γ(2g − 2) +
∑

v

{γn − γm−1},

and hence

h(f0, f1, . . . , fn) ≤ γ max{0, 2g − 2}+
∑

v

{γn − γm−1}.

Finally, it is easily checked that

γp + γq ≤ γp+q

for all p ≥ 0, q ≥ 0, and repeated application to (3.9.25) gives γ ≤ γn. This yields
the theorem. �

J.F. Voloch [423], independently of W.D. Brownawell and D.W. Masser [41],
considered similar questions and, by methods different from Mason’s, obtained
results which easily implied Corollary 3.86. U. Zannier [447] further proved the
following

Theorem 3.89. Let f1, . . . , fn ∈ K be S-units such that
∑

i∈I fi �= 0 for every
non-empty I ⊂ {1, . . . , n}. Put f0 = f1 + · · ·+ fn. Then

∑
v∈S

{
ordvf0 − min

1≤i≤n
ordvfi

}
≤ γd{#S + 2g − 2}, (3.9.26)

where d = dim
∑

κfi.

Proof. We follow [447] and the proof of Theorem 3.85 to treat the case d = n first.
Since f1, . . . , fn are linearly independent over the constant field κ of the derivation
d
dz , the Wronskian Wz of f1, . . . , fn does not vanish. Let v be any place of K and
choose a local parameter ζ = ζv at v. Also let l = lv be an index such that

ordvfl = min{ordvf1, . . . , ordvfn}.

By using the equality Wz = Wzl and applying the inequality (3.9.17) to Szl with
µ = 0, the following inequality holds:

ordvWz + γnordv
dz

dζ
+ γn ≥ ordvf0 +

∑
i�=l,0

ordvfi

= ordvf0 − min
1≤i≤n

ordvfi +
n∑

i=1

ordvfi.
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Now sum over v ∈ S and note that∑
v∈S

ordvfi = 0, i = 1, . . . , n

since the fi are S-units. We have

∑
v∈S

{
ordvf0 − min

1≤i≤n
ordvfi

}
≤ γn#S +

∑
v∈S

{
ordvWz + γnordv

dz

dζ

}
. (3.9.27)

On the other hand, applying (3.9.17) with µ = n we get

ordvWz + γnordv
dz

dζ
≥ 0, v �∈ S,

whence

∑
v∈S

{
ordvWz + γnordv

dz

dζ

}
≤
∑

v

{
ordvWz + γnordv

dz

dζ

}
. (3.9.28)

Now it suffices to use (3.9.27) and to recall that

∑
v

ordvWz = 0,
∑

v

ordv
dz

dζ
= 2g − 2. (3.9.29)

To deal with the general case we argue by induction on n, the case n = 1
being trivial. Let f1, . . . , fd be a basis for κf1 + · · · + κfn and set, renumbering
indices if necessary,

f0 = f1 + · · ·+ fn =
ν∑

i=1

aifi, (3.9.30)

where a1 · · · aν �= 0, and 1 ≤ ν ≤ d. Since each fi is a linear combination of
f1, . . . , fd with coefficients in κ, we have

min
1≤i≤d

ordvfi = min
1≤i≤n

ordvfi. (3.9.31)

If d = n Theorem 3.89 follows at once from the particular case treated above. If
ν = d, we could apply the previous result with a1f1, . . . , adfd in place of f1, . . . , fn.

Next we may assume 1 ≤ ν < d < n. By the inductive assumption applied
to (3.9.30), we get

∑
v∈S

{
ordvf0 − min

1≤i≤ν
ordvfi

}
≤ γν{#S + 2g − 2}. (3.9.32)
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We now construct recursively a finite sequence {dl} of integers such that

(I) d0 = ν, dl > dl−1 for l ≥ 1,

(II) max{dl} = d,

(III) there is a renumbering of the indices ν + 1, . . . , d such that

∑
v∈S

{
ordvf0 − min

1≤i≤dl

ordvfi

}
≤ γdl

{#S + 2g − 2}.

Clearly this construction, in view of (II) and of (3.9.31), will complete the proof.
The first step, namely the construction of d0, is just (3.9.32). Assume d0, . . . , dl

have been constructed. For any index j we have

fj =
d∑

i=1

bijfi =
dl∑

i=1

bijfi +
d∑

i=dl+1

bijfi = Fj + Gj

say, the bij being suitable elements of κ. If dl = d, as already observed, we are
done, so assume dl < d. We contend that, for some j, both Fj and Gj are non-zero.
In fact, assume the contrary. Then either Gj = 0 or fj = Gj . Since dl ≥ ν, the
equation (3.9.30) clearly implies

n∑
j=1

Gj =
ν∑

i=1

aifi −
n∑

j=1

Fj = 0,

and so ∑
Gj �=0

fj = 0. (3.9.33)

However, the set I = {j | Gj �= 0} is non-empty. In fact, dl < d and thus d ∈ I.
The equation (3.9.33) would contradict our assumptions.

Pick j0 such that both Fj0 and Gj0 are non-zero. Certainly j0 > d. Renumber
the indices dl + 1, . . . , d to write

Gj0 =
dl+1∑

i=dl+1

bij0fi, bij0 �= 0 (dl + 1 ≤ i ≤ dl+1), (3.9.34)

which defines dl+1 with dl < dl+1 ≤ d. Apply the induction assumption to Fj0

in place of f0 and fj0 ,−bij0fi (dl + 1 ≤ i ≤ dl+1) in place of f1, . . . , fn. The
assumptions are in fact satisfied, for

Fj0 = fj0 −
dl+1∑

i=dl+1

bij0fi,
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and moreover no non-empty subsum of the right-hand side vanishes since Fj0 �= 0,
the f1, . . . , fd are linearly independent and (3.9.34) holds. Setting

J = {j0} ∪ {dl + 1, . . . , dl+1},
we obtain ∑

v∈S

{
ordvFj0 −min

i∈J
ordvfi

}
≤ γdl+1−dl+1{#S + 2g − 2}.

Adding this inequality to that in (III) above and putting K = {1, . . . , dl} yields∑
v∈S

{
ordvf0 + ordvFj0 −min

i∈J
ordvfi −min

i∈K
ordvfi

}
≤
{
γdl

+ γdl+1−dl+1

}
{#S + 2g − 2}

≤ γdl+1{#S + 2g − 2}. (3.9.35)

Next we will deal with the left-hand side. Since

Fj0 =
dl∑

i=1

bij0fi = fj0 −
dl+1∑

i=dl+1

bij0fi,

for any v we have

ordvFj0 ≥ max
{

min
i∈J

ordvfi, min
i∈K

ordvfi

}
.

Hence each term in the sum on the left of (3.9.35) is bounded below by

ordvf0 − min
i∈J∪K

ordvfi ≥ ordvf0 − min
1≤i≤dl+1

ordvfi.

Thus we complete the verification of (I), (III) for l+1 in place of l (in case dl < d),
and so finish the proof of Theorem 3.89. �
Corollary 3.90 ([447]). If f0, f1, . . . , fn ∈ K are S-units such that f1+· · ·+fn = f0

but no subsum of the fi vanishes, then

h(f0, f1, . . . , fn) ≤ γd{#S + 2g − 2}, (3.9.36)

where d = dim
∑

κfi.

Proof. Now the inequality (3.9.26) holds. On the other hand, we have

ordvfi = 0 (v �∈ S, i = 0, 1, . . . , n).

Hence the range of summation in the left-hand side of (3.9.26) may be extended
to all v. To get Corollary 3.90, it now suffices to use the equations∑

v

ordvf0 = 0, min
1≤i≤n

ordvfi = min
0≤i≤n

ordvfi,

the last one following from the basic assumption f0 = f1 + · · ·+ fn. �



Chapter 4

Function Solutions of
Diophantine Equations

In this chapter, we will give analogues of the abc-conjecture, Hall’s conjecture,
Fermat’s conjecture and Waring’s problem in Nevanlinna theory, and formulate
these problems into more general forms accordingly. In Section 3.1, we saw that
elliptic curves are modular, that is, the distribution of rational points on elliptic
curves have normal properties, we will show correspondingly that mappings of non-
constant holomorphic curves into elliptic curves all are surjective. In Section 3.3,
we introduced Lang’s conjecture that a projective variety is hyperbolic if and only
if it is Mordellic. To comprehend the question well, we need to know more examples
and properties of hyperbolic spaces. Some Kobayashi hyperbolic spaces of lower
dimensions will be exhibited accordingly. Referring to factorization of integers, we
will introduce basic notation and questions of factorization of meromorphic func-
tions in Section 4.10. To understand Nevanlinna theory of meromorphic functions
over non-Archimedean fields in Chapter 5 well, we simply discuss Wiman-Valiron
theory in Section 4.11, which contains a few interesting problems.

4.1 Nevanlinna’s third main theorem

In Section 3.2, we introduce the analogy between the abc-conjecture and the
Stothers-Mason’s Theorem 2.65. To seek generalized abc-conjectures, we first ex-
tend Theorem 2.64 to more general cases. A generalization of Theorem 2.64 due
to Nevanlinna [292] and its variations will be exhibited. To do this, we will use the
following assumption:

(M) Let f0, f1, . . . , fn (n ≥ 2) be non-zero meromorphic functions in Cm satisfying

f0 = f1 + f2 + · · ·+ fn. (4.1.1)
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Assume that no proper subsum of (4.1.1) is equal to 0, and that the fj are
not all constant.

Under the assumption (M), replacing the projective height (3.9.8) we will use the
following two characteristic functions to study the equation (4.1.1)

m(r) = Cm
〈
0; r; log

(
|f0|2 + · · ·+ |fn|2

)1/2
〉

, (4.1.2)

T (r) = max
1≤k≤n

T

(
r,

fk

f0

)
. (4.1.3)

First of all, we prove the main theorem in this section.

Theorem 4.1. If the condition (M) holds such that f1, f2, . . . , fn are linearly inde-
pendent, then for R > ρ > r > r0, we have

m(r) ≤
n∑

k=0

{
N

(
r,

1
fk

)
−N(r, fk)

}
+ N(r,W)

−N

(
r,

1
W

)
+ l log

{(ρ

r

)2m−1 T (R)
ρ− r

}
+ O(1), (4.1.4)

where W = Wν1···νn−1(f1, f2, . . . , fn) �≡ 0 is a Wronskian determinant, and

n− 1 ≤ l = |ν1|+ · · ·+ |νn−1| ≤
n(n− 1)

2
. (4.1.5)

Proof. Taking partial derivatives on both sides of the identity (4.1.1) yields

∂νkf1 + ∂νkf2 + · · ·+ ∂νkfn = ∂νkf0 (k = 1, 2, . . . , n− 1).

Since f1(z), f2(z), . . . , fn(z) are linearly independent, Lemma 2.51 implies that
there exist multi-indices νi ∈ Zm

+ in Theorem 4.1. The above equation and (4.1.1)
yield

W = Wj (j = 1, 2, . . . , n),

where
Wj = Wν1···νn−1(f1, . . . , fj−1, f0, fj+1, . . . , fn).

Hence
S0fj = Sjf0, (4.1.6)

where

S0 = S(f1, . . . , fn) =
W

f1 · · · fn
=

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
∂ν1f1

f1

∂ν1f2
f2

· · · ∂ν1fn

fn

...
...

. . .
...

∂νn−1f1
f1

∂νn−1f2
f2

· · · ∂νn−1fn

fn

∣∣∣∣∣∣∣∣∣∣
,
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and Sj is defined by Wj = Sjf1 · · · fj−1f0fj+1 · · · fn. Set

gi =
fi

f0
, i = 1, . . . , n.

Then we also have

S0 = S(g1, . . . , gn), Sj = S(g1, . . . , gj−1, 1, gj+1, . . . , gn).

By (4.1.6), a simple computation shows

m(r) = Cm 〈0; r; log |f0|〉 − Cm 〈0; r; log |S0|〉

+ Cm
〈
0; r; log(|S0|2 + · · ·+ |Sn|2)1/2

〉
. (4.1.7)

Applying the Jensen formula (2.3.11), we get

Cm 〈0; r; log |f0|〉 = N

(
r,

1
f0

)
−N(r, f0) + O(1), (4.1.8)

and

−Cm〈0; r; log |S0|〉 =
n∑

k=1

Cm〈0; r; log |fk|〉 − Cm〈0; r; log |W|〉

=
n∑

k=1

{
N

(
r,

1
fk

)
−N(r, fk)

}

+ N(r,W)−N

(
r,

1
W

)
+ O(1). (4.1.9)

By the concavity of the logarithmic function and Lemma 2.54, for any r0 < r <
ρ < R we have

Cm

〈
0; r; log

√∑
|Sj |2

〉
=

1
α

Cm

〈
0; r; log

(∑
|Sj |2

)α
2
〉

≤ 1
α

log
{∑

Cm 〈0; r; |Sj |α〉
}

≤ l log
{(ρ

r

)2m−1 T (R)
ρ− r

}
+ O(1), (4.1.10)

where α is a real number with 0 < α < 1. Thus (4.1.4) follows from (4.1.7) to
(4.1.10). �

For the case m = 1, n = 2, by using Theorem 4.1, a simple computation
shows that
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Theorem 4.2. Assume that f0, f1, f2 are meromorphic functions in C without com-
mon zeros, without common poles and not all constants such that f1 + f2 = f0.
Then for r0 < r < ρ < R, we have

m(r) ≤ N

(
r,

1
f0f1f2

)
+ log

{
ρT (R)

r(ρ− r)

}
+ O(1).

Theorem 4.2 is a direct generalization of Theorem 2.64 to the case of mero-
morphic functions. It shows that Theorem 4.1 may be regarded as a generalized
abc-theorem for meromorphic functions. By using the Jensen formula (2.3.11), we
may rewrite the inequality (4.1.4) into the following form:

m(r) ≤ N

(
r,

1
H

)
−N(r,H) + l log

{(ρ

r

)2m−1 T (R)
ρ− r

}
+ O(1), (4.1.11)

where

H =
f0f1 · · · fn

W
. (4.1.12)

Observing the formula (2.6.17), the inequality (4.1.11) assumes a similar form with
the main inequality in Second Main Theorem 2.56.

Next we continue to study the general equation (4.1.1). By (2.3.40) and
(2.3.39), we obtain

T

(
r,

fj

f0

)
= N

(
r,

fj

f0

)
+ Cm

〈
0; r; log

√
1 + |fj/f0|2

〉
+ O(1). (4.1.13)

The Jensen formula (2.3.11) implies

Cm

〈
0; r; log

√
|f0|2 + |fj |2

〉
= Cm 〈0; r; log |f0|〉+ Cm

〈
0; r; log

√
1 + |fj/f0|2

〉

= N

(
r,

1
f0

)
−N(r, f0)

+ Cm

〈
0; r; log

√
1 + |fj/f0|2

〉
+ O(1). (4.1.14)

Note that

Cm

〈
0; r; log

√
|f0|2 + |fj|2

〉
≤ m(r).

Applying Theorem 4.1, we obtain the following type of Nevanlinna’s theorem [292],
sometimes called Nevanlinna’s third main theorem (cf. Baesch and Steinmetz [10]).
For the version of several variables, see Hu-Yang [172] or [168].
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Theorem 4.3. If the condition (M) holds such that f1, f2, . . . , fn are linearly inde-
pendent, then for 1 ≤ j ≤ n, R > ρ > r > r0,

T

(
r,

fj

f0

)
≤ N

(
r,

fj

f0

)
+

n∑
k=1

{
N

(
r,

1
fk

)
−N(r, fk)

}
+ N(r,W)

−N

(
r,

1
W

)
+ l log

{(ρ

r

)2m−1 T (R)
ρ− r

}
+ O(1), (4.1.15)

where W = Wν1···νn−1(f1, f2, . . . , fn) �≡ 0 is a Wronskian determinant, and
l, T (r) are defined by (4.1.5) and (4.1.3), respectively.

Therefore, the abc-theorems for meromorphic functions are only variations
of Nevanlinna’s third main theorem. Note that f0 = 1 in the original theorem of
Nevanlinna [292]. In Section 3.5, we showed that the abc-conjecture implies Roth’s
theorem. Here we derive Nevanlinna’s second main theorem from Nevanlinna’s
third main theorem. The former is an analogue of Roth’s theorem, the latter is a
counterpart of the abc-conjecture. For simplicity, we consider only the case of one
variable. Let f be a non-constant meromorphic function on C. Then f and 1− f
are linearly independent such that the equation f + (1 − f) = 1 holds. Note that

W(f, 1− f) = −f ′.

By Theorem 4.3, for any R > ρ > r > r0, we obtain

T (r, f) ≤ N (r, f) + N

(
r,

1
f

)
+ N

(
r,

1
f − 1

)

−NRam (r, f) + log
{

ρT (R, f)
r(ρ− r)

}
+ O(1). (4.1.16)

This is the original second main theorem due to R. Nevanlinna [291] with a sharp
error term. The general form of the second main theorem was given by Collingwood
[64] and Littlewood.

Recall that if f1,f2, . . . ,fn are linearly independent, we may take multi-indices
νi ∈ Zm

+ such that

0 < |νi| ≤ i (i = 1, . . . , n− 1), |ν1| ≤ |ν2| ≤ · · · ≤ |νn−1|,

and Wν1···νn−1(f1, f2, . . . , fn) �≡ 0. Define two integers

w = |νn−1|, l = |ν1|+ · · ·+ |νn−1|

and set

An = max
2≤s≤n

{
1
s

s−1∑
i=1

|νn−i|
}

. (4.1.17)

By using Theorem 4.3 and a more precise estimation on the zeros and poles of
the Wronskian determinant in Theorem 4.3, we can obtain the truncated form of
Nevanlinna’s third main theorem:



292 Chapter 4. Function Solutions of Diophantine Equations

Theorem 4.4. Under the condition (M), we further assume that f0 = 1, and that
f1,f2, . . . ,fn are linearly independent. Then the inequalities

T (r, fj) <

n∑
i=1

Nw

(
r,

1
fi

)
+

∗
N j(r) + l log

{(ρ

r

)2m−1 T (R)
ρ− r

}
+ O(1) (4.1.18)

hold for r0 < r < ρ < R and for all j = 1, 2, . . . , n, where

∗
N j(r) =

∗
N j(r, An, w) = min

⎧⎨
⎩An

n∑
i=1

N(r, fi), w
∑
i�=j

N(r, fi)

⎫⎬
⎭ .

It is easy to show the estimates

1 ≤ w ≤ n− 1, 1− 1
n
≤ An ≤ ϑn, (4.1.19)

where

ϑn =

⎧⎪⎨
⎪⎩

1
2 , n = 2,
2n−3

3 , n = 3, 4, 5,
2n+1−2

√
2n

2 n ≥ 6.

(4.1.20)

Specially, if w = 1, then

An = 1− 1
n

.

We do not know the best upper bound of An or the best form of terms
∗
N j(r)

in the inequality (4.1.18). For the one-variable case, a proof of Theorem 4.4 is
given in [245]. In [172], Hu-Yang prove the case of entire functions. This version
of Theorem 4.4 is given in Hu-Yang [185] (or see [168]). For the basic methods in
the proof of Theorem 4.4, the reader is refereed to the proof of Theorem 4.47.

The assumption of linear independence in Theorem 4.1 is not crucial; it can
be replaced by the weaker hypothesis (M) of no vanishing subsums according to
the idea of W.D. Brownawell and D.W. Masser [41] introduced in Section 3.9. Here
we restate it again. Assume that (M) holds and write the equation (4.1.1) in the
form

−f0 + f1 + f2 + · · ·+ fn = 0. (4.1.21)

By Lemma 3.87, there exists a partition of indices

{0, 1, . . . , n} = I0 ∪ · · · ∪ Ik

satisfying the properties (i) and (ii) in Lemma 3.87. Set

n0 + 1 = #I0; nα = #Iα (α = 1, . . . , k)
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and write

sα = 1 +
α∑

β=0

nβ , α = 0, 1, . . . , k.

Then
n0 + n1 + · · ·+ nk = n.

Without loss of generality, we may assume that

I0 = {0, . . . , n0}, Iα = {sα−1, . . . , sα − 1} (α = 1, . . . , k).

Since I0 is minimal, then f1, . . . , fn0 are linearly independent. Lemma 2.51
implies that there exist multi-indices ν0i ∈ Zm

+ such that

W0 = Wν01···ν0,n0−1(f1, . . . , fn0) �≡ 0.

Similarly, the functions fsα−1 , . . . , fsα−1 are linearly independent, and so
Lemma 2.51 implies that there exist multi-indices ναi ∈ Zm

+ such that

Wα = Wνα1···να,nα−1

(
fsα−1 , . . . , fsα−1

)
�≡ 0, α = 1, . . . , k.

Write

W = W0 · · ·Wk, l =
k∑

α=0

nα−1∑
i=1

|ναi|, w = max
0≤α≤k

|να,nα−1| (4.1.22)

and similarly define H by (4.1.12). For convenience, we also call l and w the
index and the Wronskian degree of the family {f1, . . . , fn}, respectively. Then the
following estimates are trivial:

w ≤ d− 1, w ≤ l ≤
k∑

α=0

nα(nα − 1)
2

≤ n(n− 1)
2

, (4.1.23)

where d is the dimension of the vector space spanned by the fj over C.

Theorem 4.5. If the condition (M) holds, then for R > ρ > r > r0, the inequality
(4.1.4) is true, where W and l are defined by (4.1.22).

Proof. If f1, f2, . . . , fn are linearly independent, then this is a consequence of The-
orem 4.1. Next we suppose that f1, f2, . . . , fn are linearly dependent. Since I0 is
minimal, then f0, f1, . . . , fn0 are linearly dependent, and so there is a linear rela-
tion

a0,0f0 + · · ·+ a0,n0fn0 = 0,

with a0,i �= 0 for i ∈ I0. Set a0,i = 0 for all i > n0. Then

a0,0f0 + · · ·+ a0,nfn = 0.
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Similarly, for α = 1, . . . , k, {fi | i ∈ Iα ∪ I ′α} are linearly dependent, and so there
is a linear relation ∑

i∈Iα∪I′
α

aα,ifi = 0,

with aα,i �= 0. Set aα,i = 0 for all i �∈ Iα ∪ I ′α. Then

aα,0f0 + · · ·+ aα,nfn = 0.

Further, we consider the following n× (n + 1) matrix:

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0,0f0 · · · c0,nfn

...
. . .

...
a0,0∂

ν0,n0−1f0 · · · a0,n∂ν0,n0−1fn

a1,0f0 · · · a1,nfn

...
. . .

...
a1,0∂

ν1,n1−1f0 · · · a1,n∂ν1,n1−1fn

...
. . .

...
ak,0∂

νk,nk−1f0 · · · ak,n∂νk,nk−1fn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let Dj be the determinant of the matrix obtained by deleting the jth column of
D. Note that the sum of each row of D is zero. We have

D0 = (−1)jDj , j = 1, . . . , n.

It is easy to show that

D0 = λW0 · · ·Wk, λ = a−1
0,0

k∏
α=0

∏
i∈Iα

aα,i �= 0.

Define

Sj = Sj(f0, . . . , fj−1, fj+1, . . . , fn) =
(−1)jDj

f0 · · · fj−1fj+1 · · · fn
.

Then (4.1.6) still holds with

Sj = Sj(g0, . . . gj−1, gj+1, . . . , gn),

where

gj =
fj

f0
, j = 0, 1, . . . , n.

Hence (4.1.7) to (4.1.10) hold, and so Theorem 4.5 follows. �

According to the proof of Theorem 4.3, Theorem 4.5 yields immediately
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Theorem 4.6. Under the condition (M), the inequality (4.1.15) holds for 1 ≤ j ≤
n, R > ρ > r > r0, where W, l are defined by (4.1.22).

Multiplying (4.1.1) by a universal denominator, we may change the condition
(M) into the following form:

(E) Let f0, f1, . . . , fn (n ≥ 2) be non-zero entire functions in Cm satisfying (4.1.1).
Assume that no proper subsum of (4.1.1) is equal to 0, the fj are not all
constant, and that dim I ≤ m− 2, where

I = {z ∈ Cm | f0(z) = f1(z) = · · · = fn(z) = 0}.

Note that if m = 1, the condition dim I ≤ m− 2 in (E) means that f1, f2, . . . , fn

have no common zeros.

Under the condition (E), a meromorphic mapping f : Cm −→ Pn(C) with
a reduced representative f̃ = (f0, f1, . . . , fn) is well defined. Thus the formula
(2.3.21) implies

m(r) = Tf (r) + O(1). (4.1.24)

By (4.1.24) and Lemma 2.37, we obtain the inequality

T (r)−O(1) ≤ m(r) ≤ nT (r) + O(1). (4.1.25)

The following generalized abc-theorem for entire functions is due to Hu and Yang
[180] (or see [168]):

Theorem 4.7. Under the condition (E), for r0 < r < ρ < R, we have

m(r) <

n∑
i=0

Nw

(
r,

1
fi

)
−N(r,H) + l log

{(ρ

r

)2m−1 m(R)
ρ− r

}
+ O(1), (4.1.26)

m(r) < Nl

(
r,

1
f0 · · · fn

)
−N(r,H) + l log

{(ρ

r

)2m−1 m(R)
ρ− r

}
+ O(1), (4.1.27)

where l, w are respectively the index and the Wronskian degree of the family
{f1, . . . , fn}.

Proof. Without loss of generality, we may assume that f1, f2, . . . , fn are linearly
independent. Applying Theorem 4.1 and the inequality (4.1.25), we obtain

m(r) ≤
n∑

k=0

N

(
r,

1
fk

)
−N

(
r,

1
W

)
+ l log

{(ρ

r

)2m−1 m(R)
ρ− r

}
+ O(1). (4.1.28)

The Jensen formula (2.3.11) implies

n∑
k=0

N

(
r,

1
fk

)
−N

(
r,

1
W

)
= N

(
r,

1
H

)
−N(r,H). (4.1.29)
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According to the proof of (2.6.18), we can obtain

N

(
r,

1
H

)
≤

n∑
k=0

Nw

(
r,

1
fk

)
. (4.1.30)

Hence (4.1.26) follows from (4.1.28), (4.1.29) and (4.1.30). Similarly, according to
the proof of (2.6.19) we can prove the inequality (4.1.27). �

Under the condition (E), a meromorphic mapping F : Cm −→ P(V ) with a
reduced representative F̃ = (f1, . . . , fn) is well defined, where V = Cn. By using
the formula (2.3.21), it is easy to show that

TF (r) = Cm 〈0; r; log A〉+ O(1), (4.1.31)

where
A(z) = max

1≤j≤n
|fj(z)|.

Thus the formulae (2.3.21), (4.1.31) and the equation (4.1.1) imply

m(r) = TF (r) + O(1). (4.1.32)

For j = 1, . . . , n, set
ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ V

in which 1 is the jth component of ej . Then e1, . . . , en constitute the standard
basis of V . Let V ∗ be the dual space of V and let ε1, . . . , εn be the dual basis of
e1, . . . , en. Write

ε0 = ε1 + · · ·+ εn.

Then the family A = {P(εj)}n
j=0 is in general position in P(V ∗). Further, if f1,

. . . , fn are linearly independent, then Theorem 4.7 yields immediately a truncated
form of the second main theorem of F for the family A (see Corollary 2.59).

4.2 Generalized Mason’s theorem

Following Section 4.1, we particularly study the abc-problem of polynomials in Cm.
For convenience, we divide the condition (E) on polynomials into the following two
parts:

(P1) Let f0, f1, . . . , fn (n ≥ 2) be non-zero polynomials in C[z1, . . . , zm] satisfying

f0 = f1 + f2 + · · ·+ fn. (4.2.1)

Assume that no proper subsum of (4.2.1) is equal to 0, and that the fj are
not all constant.
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(P2) Let f1, f2, . . . , fn (n ≥ 2) be polynomials in C[z1, . . . , zm] such that dim I ≤
m− 2, where

I = {z ∈ Cm | f1(z) = f2(z) = · · · = fn(z) = 0}, (4.2.2)

and that the fj are not all constant.

Theorem 4.7, Lemma 2.44 and (4.1.24) yield immediately the following generalized
abc-theorem for polynomials (cf. Hu and Yang [180]):

Theorem 4.8. Under the assumptions (P1) and (P2), the inequalities

max
0≤j≤n

{deg(fj)} ≤
n∑

k=0

rw (fk)− n(∞,H)− l, (4.2.3)

max
0≤j≤n

{deg(fj)} ≤ rl (f0 · · · fn)− n(∞,H)− l, (4.2.4)

hold, where l, w is the index and the Wronskian degree of f1, f2, . . . , fn, respec-
tively.

Remark 1. For 0 ≤ i < j ≤ n, set

ξij = (ξij,1, . . . , ξij,n−1) = (f0, . . . , fi−1, fi+1, . . . , fj−1, fj+1, . . . , fn),

ξ′ij =

⎛
⎜⎜⎝

∂z1ξij,1 ∂z1ξij,2 · · · ∂z1ξij,n−1

∂z2ξij,1 ∂z2ξij,2 · · · ∂z2ξij,n−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂zmξij,1 ∂zmξij,2 · · · ∂zmξij,n−1

⎞
⎟⎟⎠ ,

γ = max
z∈Cm

max
0≤i<j≤n

rank
(
ξ′ij(z)

)
. (4.2.5)

If γ = n− 1, then we can take w = 1, l = n − 1 in Theorem 4.8. If f1, f2, . . . , fn

are linearly independent, we have

1 ≤ w ≤ n− γ, n− 1 ≤ l ≤ γ +
(n− γ − 1) (n− γ + 2)

2
. (4.2.6)

Remark 2. Assume m = 1. If n = 2, Theorem 4.8 yields the Mason Theorem 2.65.
If n ≥ 2, the example

f0(z) = (z + 1)n−1, fi+1(z) =
(

n− 1
i

)
zi (i = 0, . . . , n− 1), (4.2.7)

which obviously satisfies the conditions in Theorem 4.8, shows that the inequal-
ities (4.2.3) and (4.2.4) in fact are equalities for this example, that is, the two
inequalities in Theorem 4.8 are sharp.
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For any positive integer k, a ∈ P1 and any meromorphic function f on Cm,
note that

nk

(
∞,

1
f − a

)
≤ kn

(
∞,

1
f − a

)
.

Theorem 4.8 yields immediately the following facts:

Corollary 4.9. Under the assumptions (P1) and (P2), the inequalities

max
0≤j≤n

{deg(fj)} ≤ w

n∑
k=0

r (fk)− l, (4.2.8)

max
0≤j≤n

{deg(fj)} ≤ lr (f0 · · · fn)− l, (4.2.9)

hold, where l, w denote the index and the Wronskian degree of f1, f2, . . . , fn,
respectively.

For the case m = 1, it follows that

l =
1
2
n(n− 1).

The inequality (4.2.9) was obtained independently by J.F. Voloch [423], W.D.
Brownawell and D. Masser [41]. A previous result of R.C. Mason [255] yields this
estimate with l replaced by 4n−1.

Corollary 4.10. Under the assumptions (P1) and (P2), we have the inequalities

max
0≤j≤n

{deg(fj)} ≤ (d− 1)

(
n∑

k=0

r(fk)− 1

)
, (4.2.10)

max
0≤j≤n

{deg(fj)} ≤
n(n− 1)

2
(r (f0 · · · fn)− 1) , (4.2.11)

where d is the dimension of the vector space spanned by the fj over C.

Let rad(fi) be the radical of fi, which is the product of the distinct irreducible
factors of fi, i. e., rad(fi) is the squarefree part of fi, and define

r̄(fi) = deg(rad(fi)).

Proposition 2.43 implies

r(fi) = n

(
∞,

1
fi

)
≤ n

(
∞,

1
rad(fi)

)
= r̄(fi).

Thus a theorem of Shapiro and Sparer [343] follows from Corollary 4.10:

Theorem 4.11. If the condition (P1) holds such that the fj are relatively prime by
pairs, then

max
0≤j≤n

{deg(fj)} ≤ (n− 1) {r̄ (f0 · · · fn)− 1} . (4.2.12)
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For polynomials on a field of characteristic zero, J. Browkin and J. Brzeziński
[40] proposed a conjecture as follows:

Conjecture 4.12. Let fj(j = 0, . . . , n) be non-zero polynomials on a field K of
characteristic zero with n ≥ 2 such that f0, . . . , fn have no non-constant common
divisors, at least one of the fj is not a constant, (4.2.1) holds and no proper subsum
of (4.2.1) is equal to 0. Then

max
0≤j≤n

{deg(fj)} ≤ (2n− 3) (r̄(f0 · · · fn)− 1) . (4.2.13)

Corollary 4.10 shows that Conjecture 4.12 is true if the number 2n − 3 in
(4.2.13) is replaced by n(n−1)

2 . For the case n = 2, the conditions in Conjecture 4.12
mean that f1 and f2 are linearly independent. Hence it follows from (4.2.9). It also
is easy to show from (4.2.9) that Conjecture 4.12 is true for the case n = 3. Note
that these are all cases such that 2n− 3 = 1

2n(n− 1) holds for a positive integer
n.

J. Browkin and J. Brzeziński [40] studied the following example: For every
k ≥ 0, define a polynomial of positive integral coefficients by

fk(z) =
k∏

j=1

(z + 2− 2 cosαj) =
k∑

j=0

sjz
j, αj =

2πj

2k + 1
, (4.2.14)

which satisfies (cf. [40])

x2k+1 − 1
x− 1

= xkfk

(
(x− 1)2

x

)
. (4.2.15)

If in (4.2.15) we put k = n− 2 and x = −b/a, then, in view of (4.2.14), one gets

a2n−3 + b2n−3 −
n−2∑
j=0

sj(a + b)2j+1(−ab)n−2−j = 0. (4.2.16)

J. Browkin and J. Brzeziński use the example (4.2.16) by putting a = rk+1 (k > 0)
and b = −1, that is,

(rk + 1)2n−3 − 1− rk
n−2∑
j=0

sjr
2kj(rk + 1)n−2−j = 0 (4.2.17)

to show that the number 2n − 3 in Conjecture 4.12 is a sharp lower bound (also
see [74]).

Based on Corollary 3.90 and Corollary 4.10, we suggest the following esti-
mate:
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Conjecture 4.13. Under the conditions of Conjecture 4.12, the inequality

max
0≤j≤n

{deg(fj)} ≤
d(d− 1)

2
(r̄ (f0 · · · fn)− 1) (4.2.18)

holds, where d is the dimension of the vector space spanned by the fi over K.

Now for any positive integer k, it is natural to ask what is the minimal
numbers xm,n(k) and ym,n(k) such that under the assumptions (P1) and (P2), we
have the inequalities

max
0≤j≤n

{deg(fj)} ≤
n∑

j=0

xm,n(k)rk(fj)− l, (4.2.19)

max
0≤j≤n

{deg(fj)} ≤ ym,n(k)rk (f0 · · · fn)− l. (4.2.20)

Abbreviate
xn(k) = x1,n(k), yn(k) = y1,n(k).

Theorem 4.8, the example (4.2.7) and Corollary 4.10 show that

xn(k)
{

= 1, if k ≥ n− 1;
≤ n− 1, if 1 ≤ k < n− 1 (4.2.21)

and

yn(k)

{
= 1, if k ≥ n(n−1)

2 ;
≤ n(n−1)

2 , if 1 ≤ k < n(n−1)
2 .

(4.2.22)

We can prove easily

xn(k) ≤ n− 1
k

, 1 ≤ k ≤ n− 1,

and
yn(k) ≤ n(n− 1)

2k
, 1 ≤ k ≤ n(n− 1)

2
.

Theorem 4.14. Assume that the condition (P2) holds such that f1, f2, . . . , fn

are linearly independent. Take a positive integer q > n and let [aj1, . . . , ajn] (j =
1, . . . , q) be a family of points of P(Cn) in general position. Then the inequalities

(q − n) max
1≤j≤n

{deg(fj)} ≤
q∑

j=1

rw(aj1f1 + · · ·+ ajnfn)− n(∞,H)− l, (4.2.23)

(q − n) max
1≤j≤n

{deg(fj)} ≤ rl

⎛
⎝ q∏

j=1

(aj1f1 + · · ·+ ajnfn)

⎞
⎠− n(∞,H)− l (4.2.24)

hold, where l, w is the index and the Wronskian degree of f1, f2, . . . , fn, respec-
tively.
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Proof. Let f : Cm −→ P(Cn) be the meromorphic mapping with a reduced repre-
sentation f̃ = (f1, . . . , fn). Set aj = [aj1, . . . , ajn]. Then

rw(aj1f1 + · · ·+ ajnfn) = lim
r→∞nf,w(r, aj) = lim

r→∞
Nf,w(r, aj)

log r
.

Since the mapping f is linearly non-degenerate under the assumptions of Theo-
rem 4.14, then Corollary 2.59 and (2.4.7) imply the inequality (4.2.23). Similarly,
we can prove (4.2.24) by using Theorem 2.56, (2.6.17) and (2.6.19). �

Theorem 4.15. Assume that (P2) holds. Let d be the dimension of the vector
space spanned by the fj over C. Take a positive integer q > 2n − d and let
[aj1, . . . , ajn] (j = 1, . . . , q) be a family of points of P(Cn) in general position
such that

aj1f1 + · · ·+ ajnfn �≡ 0, j = 1, . . . , q.

Then we have the inequality

(q − 2n + d) max
1≤j≤n

{deg(fj)} ≤
q∑

j=1

rw(aj1f1 + · · ·+ ajnfn)− lθ, (4.2.25)

where l, w is the index and the Wronskian degree of f = [f1, f2, . . . , fn] : Cm −→
P(Cn), respectively, such that

1 ≤ w ≤ d− 1 ≤ l ≤ d(d− 1)
2

,

and where θ is a Nochka constant with n ≤ θd ≤ 2n− d.

Proof. Note that the holomorphic mapping

f = [f1, f2, . . . , fn] : Cm −→ P(Cn)

is (d− 1)-flat with d ≥ 2. By using Theorem 2.70, the proof of Theorem 4.15 can
be completed according to that of Theorem 4.14. �

4.3 Generalized abc-conjecture

In this section, we will study the following analogues of conditions (P1) and (P2)
in Section 4.2 for integers:

(N1) Let a0, a1, . . . , an (n ≥ 2) be non-zero integers satisfying

a0 = a1 + a2 + · · ·+ an. (4.3.1)

Assume that no proper subsum of (4.3.1) is equal to 0.
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(N2) Let a1, a2, . . . , an (n ≥ 2) be integers satisfying gcd(a1, . . . , an) = 1, where
the symbol gcd(a1, . . . , an) denotes the greatest common divisor of a1, . . . , an.

For a non-zero integer a, write

a = ±pi1
1 · · · pis

s (4.3.2)

for distinct primes p1, . . . , ps and (i1, . . . , is) ∈ (Z+)s, and define

rk (a) =
s∏

ν=1

pmin{iν ,k}
ν . (4.3.3)

Based on the classical analogy between polynomials and integers, we think
that the number rk(f) of a polynomial f corresponds to log rk(a) of an integer a.
Thus Theorem 4.8 can be translated into the following generalized abc-conjecture
for integers (see Hu and Yang [182]).

Conjecture 4.16. If (N1) and (N2) are true, then for ε > 0, k ∈ Z+, there exists
a number C = C(n, k, ε) satisfying

max
0≤j≤n

{|aj|} ≤ C

(
n∏

i=0

rk (ai)

)xn(k)+ε

, (4.3.4)

max
0≤j≤n

{|aj|} ≤ Crk (a0a1 · · · an)yn(k)+ε . (4.3.5)

In [176], [180] (or see [181]), we proposed the conjecture for the case

xn(n− 1) = 1, yn

(
n(n− 1)

2

)
= 1. (4.3.6)

If n = 2, Conjecture 4.16 corresponds to the well-known abc-conjecture.

We discuss the example (4.2.16) studied by J. Browkin and J. Brzeziński [40].
If we choose a = 2i, where i > n− 2, and b = −1, then we have

a1 + · · ·+ an = a0,

where

aj+1 = sj(2i − 1)2j+12i(n−2−j) (0 ≤ j ≤ n− 2), an = 1, a0 = 2i(2n−3).

Obviously, it has no proper subsum equal to zero. Since an = 1, hence the greatest
common divisor of all aj is 1. Therefore the conditions in Conjecture 4.16 are
satisfied. Now we have

Mn = max
0≤j≤n

{|aj|} = a0 = 2i(2n−3).
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A positive integer χn ≥ 2n− 3 exists such that

Ln :=
n∏

i=0

rn−1 (ai) = 2n−2
n−2∏
j=0

rn−1

(
sj(2i − 1)2j+12i(n−2−j)

)

≥ 2(n−2)(n−2)
n−2∏
j=0

rn−1

(
(2i − 1)2j+1

)
= 2(n−2)(n−2)(2i − 1)χn .

Since there are infinitely many i > n−2 such that the numbers 2i−1 are relatively
prime (e.g., all prime i > n − 2), there exists a positive constant C(n) which is
independent of i such that

2i(2n−3)

2(n−2)(n−2)(2i − 1)χn
≤ C(n),

that is, Mn ≤ C(n)Ln. We can also show that for some constant C(n),

Mn ≤ C(n)rn(n−1)
2

(a0a1 · · · an) .

Thus for the case (4.3.6), Conjecture 4.16 holds for such aj .

Next we exhibit a few conjectures related to Conjecture 4.16. If aj(j =
0, . . . , n) are non-zero integers such that ai, aj are coprime for i �= j, then

n∏
i=0

rk (ai) = rk (a0a1 · · · an) ≤ r (a0a1 · · · an)k
.

Hence Conjecture 4.16 implies immediately the following conjecture due to W.M.
Schmidt [338]:

Conjecture 4.17. If (N1) holds such that ai and aj are coprime for i �= j, then for
ε > 0, there exists a number C = C(n, ε) such that

max
0≤j≤n

{|aj|} ≤ Cr (a0a1 · · ·an)n−1+ε
. (4.3.7)

It was indicated by Vojta in [419] that Conjecture 3.56 could derive the
following conjecture:

Conjecture 4.18. If a0, . . . , an are non-zero integers satisfying (4.3.1) and (N2),
then for ε > 0, there exists a number C = C(n, ε) such that

max
0≤j≤n

{|aj|} ≤ Cr (a0a1 · · ·an)1+ε (4.3.8)

hold for all a0, . . . , an as above outside a proper Zariski-closed subset of the hyper-
plane x1 + · · ·+ xn = x0 in Pn.
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J. Browkin and J. Brzeziński [40] conjectured as follows:

Conjecture 4.19. If (N1) and (N2) are true, then for ε > 0, there exists a number
C = C(n, ε) such that

max
0≤j≤n

{|aj |} ≤ Cr (a0a1 · · · an)2n−3+ε
. (4.3.9)

J. Browkin and J. Brzeziński use the above example to show that the number
2n− 3 is a sharp lower bound. Thus the number yn(1) should satisfy

2n− 3 ≤ yn(1) ≤ n(n− 1)
2

. (4.3.10)

Generally, we think that Theorem 4.14 corresponds to the following problem:

Conjecture 4.20. Assume that (N2) holds and further assume that there exist in-
tegers M and N with M < N such that

B1a1 + · · ·+ Bnan �= 0, (B1, . . . , Bn) ∈ Z[M, N ]n − {0}.

Take an integer q with q > n and let a family {[Aj1, . . . , Ajn] | j = 1, . . . , q} of
P(Cn) be in general position with Aji ∈ Z[M, N ]. Then for ε > 0, k ∈ Z+, there
exists a number C = C(n, k, q, M, N, ε) satisfying

max
1≤j≤n

{|aj|q−n} ≤ C

⎛
⎝ q∏

j=1

rk (Aj1a1 + · · ·+ Ajnan)

⎞
⎠xn(k)+ε

, (4.3.11)

max
1≤j≤n

{|aj|q−n} ≤ Crk

⎛
⎝ q∏

j=1

(Aj1a1 + · · ·+ Ajnan)

⎞
⎠yn(k)+ε

. (4.3.12)

The inequalities (4.3.4) and (4.3.5) in Conjecture 4.16 follow from Conjec-
ture 4.20 by taking M = 0, N = 1 and q = n + 1.

4.4 Generalized Hall’s conjecture

We continue to study the case (E) in Section 4.1. To compare with the conditions
in Section 4.2 and 4.3 accordingly, we divide it into two parts:

(E1) Let f0, f1, . . . , fn (n ≥ 2) be non-zero entire functions in Cm satisfying

f0 = f1 + f2 + · · ·+ fn. (4.4.1)

Assume that no proper subsum of (4.4.1) is equal to 0, and that the fj are
not all constant.
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(E2) Let f1, f2, . . . , fn (n ≥ 2) be entire functions in Cm such that dim I ≤ m− 2,
where

I = {z ∈ Cm | f1(z) = f2(z) = · · · = fn(z) = 0}, (4.4.2)

and that the fj are not all constant.

In this section, we will study entire functions with higher multiplicity of zeros.
Thus we make the following additional assumption:

(E3) Let f1, f2, . . . , fn (n ≥ 2) be entire functions in Cm. Assume that there exist
positive integers dj such that the multiplicity of each root of fj in Cm − I is
not less than dj for j = 1, . . . , n.

Theorem 4.21. Under the conditions (E1), (E2) and (E3), for r0 < r < ρ < R
the meromorphic mapping f : Cm −→ Pn with a reduced representative f̃ =
(f0, f1, . . . , fn) : Cm −→ Cn+1 satisfies the following inequalities:⎧⎨
⎩1−

n∑
j=1

w

dj

⎫⎬
⎭Tf (r) < Nw

(
r,

1
f0

)
+ l log

{(ρ

r

)2m−1 Tf (R)
ρ− r

}
+ O(1), (4.4.3)

where l, w are respectively the index and the Wronskian degree of the family
{f1, . . . , fn}.

Proof. Note that for j = 1, . . . , n,

Nw

(
r,

1
fj

)
≤ wN

(
r,

1
fj

)
≤ w

dj
N

(
r,

1
fj

)
≤ w

dj
Tf(r) + O(1).

Hence Theorem 4.21 follows from Theorem 4.7. �

Theorem 4.21 implies directly the following fact:

Theorem 4.22. Let f0, f1, . . . , fn be polynomials in Cm satisfying the conditions
(E1), (E2) and (E3). Then the inequality⎧⎨

⎩1−
n∑

j=1

w

dj

⎫⎬
⎭ max

0≤j≤n
deg (fj) ≤ rw (f0)− l (4.4.4)

holds, where l, w is the index and the Wronskian degree of {f1, f2, . . . , fn}, re-
spectively.

Obviously, Theorem 4.22 also follows directly from Theorem 4.8. As a con-
sequence, we obtain the following fact (see [186]):

Theorem 4.23. Let f0, f1, . . . , fn be polynomials in Cm satisfying (E1) and (E2).
Assume that there exist positive integers dj and polynomials Pj in Cm such that

fj = P
dj

j , j = 1, . . . , n.
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Then the inequality⎧⎨
⎩1−

n∑
j=1

w

dj

⎫⎬
⎭ max

0≤j≤n
dj deg (Pj) ≤ rw (f0)− l (4.4.5)

holds, where l, w is the index and the Wronskian degree of {P d1
1 , . . . , P dn

n }, re-
spectively.

Since w ≤ n− 1 ≤ l, (4.4.5) implies⎧⎨
⎩1−

n∑
j=1

n− 1
dj

⎫⎬
⎭ max

0≤j≤n
dj deg (Pj) ≤ (n− 1)

⎧⎨
⎩r

⎛
⎝ n∑

j=1

P
dj

j

⎞
⎠− 1

⎫⎬
⎭ . (4.4.6)

In particular, if f and g are non-zero polynomials in C with f2 − g3 �= 0, and are
not all constant, then (4.4.6) yields

1
6

max{2 deg(f), 3 deg (g)} ≤ r
(
f2 − g3

)
− 1 (4.4.7)

when f and g have no common zeros, which provides the inequality in the following
Davenport theorem (or see [25], [387]):

Theorem 4.24 ([72]). If f and g are non-constant polynomials in C with f2−g3 �=
0, then

1
2

deg (g) ≤ deg
(
f2 − g3

)
− 1. (4.4.8)

The analogue of Theorem 4.24 in number theory is just Hall’s conjecture.
The inequality (4.4.7) is an analogue of (3.2.6). For the case

n = 2, d1 = k, d2 = n, (4.4.9)

and
f1 = f, f2 = λg, (4.4.10)

where λ is a constant such that λn = −1, the inequality (4.4.6) yields{
1− 1

k
− 1

n

}
max{deg

(
fk
)
, deg (gn)} ≤ r

(
fk − gn

)
− 1 (4.4.11)

when f and g have no common zeros, which implies{
1− 1

k
− 1

n

}
max{deg

(
fk
)
, deg (gn)} ≤ deg

(
fk − gn

)
− 1. (4.4.12)

This inequality is an analogue of the Hall-Lang-Waldschmidt conjecture (3.2.10)
for polynomials.
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For integers, the conditions (E1), (E2) and (E3) are respectively replaced by:

(N1) Let A1, . . . , An (n ≥ 2) be fixed non-zero integers and let xj(j = 0, 1, . . . , n)
be non-zero integers satisfying

A1x1 + · · ·+ Anxn = x0. (4.4.13)

Assume that no proper subsum of (4.4.13) is equal to 0.

(N2) Let x1, x2, . . . , xn (n ≥ 2) be integers satisfying gcd(x1, . . . , xn) = 1.

(N3) Suppose that there are positive integers dj such that for each j = 1, . . . , n,
p | xj for some prime p implies pdj | xj .

We conjectured that the analogue of Theorem 4.22 in number theory would be
the following problem:

Conjecture 4.25. If (N1), (N2) and (N3) hold such that for some k ∈ Z+,

α = 1−
n∑

j=1

kxn(k)
dj

> 0, (4.4.14)

then for ε > 0, there exists a number C = C(n, k, ε, A1, . . . , An) such that

max
0≤j≤n

{|xj |α} ≤ Crk (x0)
xn(k)+ε . (4.4.15)

Conjecture 4.25 is a generalization of Conjecture 3.26. Note that when x0 is
fixed, the equation (4.4.13) has integer solutions x1, . . . , xn if and only if the fixed
non-zero integers A1, . . . , An satisfy

gcd(A1, . . . , An) | x0.

According to the discussion in Section 3.2, it is easy to show that Conjecture 4.25
follows from Conjecture 4.16.

Conjecture 4.26. Assume that (N1) and (N2) hold and suppose that there are
positive integers dj and integers aj such that

xj = a
dj

j , j = 1, . . . , n.

If (4.4.14) holds, then for ε > 0, there is a number C = C(n, k, ε, A1, . . . , An) such
that

max
0≤j≤n

{|aj |αdj} ≤ Crk (x0)
xn(k)+ε

, (4.4.16)

where a0 = x0, d0 = 1.

Conjecture 4.26 is a generalization of Conjecture 3.28, and follows easily
from Conjecture 4.25. Some special cases of Conjecture 4.26 were suggested in
[186] and [181].
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4.5 Borel’s theorem and its analogues

In this section, we first establish a general Borel theorem. Based on the theorem,
we suggest a generalized Fermat conjecture. To do this, we need some notation.
Take f ∈ M(Cm) and a ∈ P1. For a positive integer k, denote the truncated
multiplicity functions on Cm by

µa
f)k(z) =

{
1 if 0 < µa

f (z) ≤ k,

0 otherwise ,
(4.5.1)

µa
f(k(z) =

{
1 if µa

f (z) ≥ k,

0 if µa
f (z) < k,

(4.5.2)

and further define the truncated valence functions by

Nν(t) =

⎧⎨
⎩Nk)

(
t, 1

f−a

)
if ν = µa

f)k,

N (k

(
t, 1

f−a

)
if ν = µa

f(k.
(4.5.3)

Let λ(r) be a continuous, increasing non-negative unbounded function of
r ∈ R+. Let Mλ(Cm) be the field of meromorphic functions a on Cm such that

‖ T (r, a) = o(λ(r)).

If T (r) is a non-negative function on R+, we will use the notation

‖ T (r) �= o(λ(r))

to denote that

lim sup
E ��r→∞

T (r)
λ(r)

> 0

for any subset E ⊂ R+ with
∫

E d log r <∞.

4.5.1 Borel’s theorem

In this part, we will study meromorphic functions satisfying the following condi-
tions:

(M1) Let f0, f1, . . . , fn (n ≥ 2) be non-zero meromorphic functions on Cm. As-
sume that there exists aj ∈Mλ(Cm) satisfying the equation

a0f0 + a1f1 + · · ·+ anfn = 0. (4.5.4)
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(M2) Take positive integers n and dj (j = 0, 1, . . . , n) with n ≥ 2 and set
d = max{dj}. Let f0, f1, . . . , fn be non-zero meromorphic functions on
Cm satisfying the following condition:

‖
n∑

j=0

{
Nd−1)(r, fj) + Ndj−1)

(
r,

1
fj

)}
= o(λ(r)). (4.5.5)

If the functions aj in (M1) are constants, we usually replace the condition (M2)
by the stronger condition:

(M2′) Take positive integers n and dj (j = 0, 1, . . . , n) with n ≥ 2 and set
d = max{dj}. Let f0, f1, . . . , fn be non-zero meromorphic functions on
Cm satisfying the following condition:

µ∞
fj)d−1 = µ0

fj)dj−1 = 0, j = 0, 1, . . . , n. (4.5.6)

Here we give a generalization of a result due to Borel [29] and Nevanlinna [292] as
follows:

Theorem 4.27. If (M1) and (M2) hold such that

β = 1−
n∑

j=0

n− 1
dj

> 0, (4.5.7)

then we have

1) the functions a1f1, . . . , anfn are linearly dependent if

‖ max
1≤j≤n

T

(
r,

fj

f0

)
�= o(λ(r));

2) aj = 0 for j = 0, 1, 2, . . . , n if

‖ T

(
r,

fj

fk

)
�= o(λ(r)), j �= k.

Proof. We prove Theorem 4.27, 2) by induction on n. First of all, we consider the
case n = 1. Since fj �= 0 (j = 0, 1), then a0 �= 0 and a1 �= 0 if one of a0 and a1 is
not zero. Hence

‖ T

(
r,

f0

f1

)
= T

(
r,

a1

a0

)
≤ T (r, a1) + T (r, a0) + O(1) = o(λ(r))

which is a contradiction. Hence a0 = a1 = 0.
Assume that Theorem 4.27 holds up to n − 1. It is sufficient to show that

one of a0, . . . , an is zero. Assume, to the contrary, that aj �= 0 for j = 0, 1, . . . , n.
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Then a0f0, . . . , an−1fn−1 are linearly independent over C. In fact, if there exists
cj ∈ C for j = 0, . . . , n− 1 such that

c0a0f0 + · · ·+ cn−1an−1fn−1 = 0,

by induction, then cjaj = 0 (j = 0, . . . , n−1). Thus cj = 0 (j = 0, . . . , n−1). Let
V be a complex vector space of dimension n. Take a base e0, . . . , en−1 of V and
let ε0, . . . , εn−1 be the dual base in V ∗. Let ∆ (�≡ 0) be a universal denominator of
{a0f0, . . . , an−1fn−1}, that is, ∆aifi is holomorphic for each i = 0, . . . , n− 1 with

dim{z ∈ Cm | (∆a0f0)(z) = · · · = (∆an−1fn−1)(z) = 0} ≤ m− 2.

Then a meromorphic mapping F : Cm −→ P(V ) is defined with a reduced repre-
sentation

F̃ = ∆a0f0e0 + · · ·+ ∆an−1fn−1en−1 : Cm −→ V.

Obviously, F is linearly non-degenerate. Set

bi = P(εi) (0 ≤ i ≤ n− 1), bn = P

(
n−1∑
i=0

εi

)
.

Then the family {b0, . . . , bn} is in general position. Then Corollary 2.59 implies

‖ TF (r) ≤
n∑

i=0

NF,n−1(r, bi) + O(log TF (r)), (4.5.8)

where, by definition,

NF,n−1(r, bi) = Nn−1

(
r,

1
∆aifi

)
≤ (n− 1)N

(
r,

1
∆aifi

)
.

According to the definition of ∆, we can show easily that the inequality

‖ Ndi−1)

(
r,

1
∆aifi

)
≤ Ndi−1)

(
r,

1
fi

)
+

n−1∑
j=0

Nd−1)(r, fj) + o(λ(r)) = o(λ(r))

holds for each i ∈ {0, 1, . . . , n}. Note that

‖ N

(
r,

1
∆aifi

)
= Ndi−1)

(
r,

1
∆aifi

)
+ N (di

(
r,

1
∆aifi

)

= N (di

(
r,

1
∆aifi

)
+ o(λ(r)),

and

diN (di

(
r,

1
∆aifi

)
≤ N

(
r,

1
∆aifi

)
= NF (r, bi) ≤ TF (r) + O(1)
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hold for i = 0, . . . , n. Therefore the inequality (4.5.8) yields

‖ {β − o(1)}TF (r) ≤ o(λ(r)). (4.5.9)

On another hand, we have

‖ T

(
r,

fj

f0

)
≤
{

TF (r) + o(λ(r)), 1 ≤ j ≤ n− 1;
(n− 1)TF (r) + o(λ(r)), j = n. (4.5.10)

In fact, for each j = 1, . . . , n− 1, Lemma 2.37 implies

‖ T

(
r,

fj

f0

)
≤ T

(
r,

ajfj

a0f0

)
+ o(λ(r)) ≤ TF (r) + o(λ(r)),

and so

‖ T

(
r,

fn

f0

)
≤ T

(
r,

anfn

a0f0

)
+ o(λ(r))

≤
n−1∑
j=0

T

(
r,

ajfj

a0f0

)
+ o(λ(r))

≤ (n− 1)TF (r) + o(λ(r)).

According to (4.5.9), (4.5.10) and the assumption

‖ T

(
r,

fj

f0

)
�= o(λ(r)),

we may choose an unbounded subset Sj ⊂ R+ and a positive constant cj such
that (4.5.9) and (4.5.10) hold on Sj , and such that

λ(r) ≤ cjT

(
r,

fj

f0

)
, r ∈ Sj .

Thus we obtain
{β − o(1)}TF (r) ≤ o(TF (r)), r ∈ Sj , (4.5.11)

which implies β ≤ 0. This contradicts the assumption.
The claim 1) is trivial if either a0 is equal to 0 or a1f1, . . . , anfn are linearly

dependent, otherwise, a0f0, . . . , an−1fn−1 are also linearly independent, and so a
contradiction follows from the argument of case 1). �

Some special cases of Theorem 4.27 were given by Berenstein, Chang and Li
[20], Fujimoto [107], Narasimhan [287], and Hu and Yang (cf. [172], [174], [168]).

Corollary 4.28. If (M1), (M2) and (4.5.7) hold, then there exists a partition of
indices

{0, 1, . . . , n} = I0 ∪ I1 ∪ · · · ∪ Ik
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such that Iα �= ∅ (α = 0, 1, . . . , k), Iα ∩ Iβ = ∅ (α �= β),∑
i∈Iα

aifi = 0, α = 0, 1, . . . , k,

and fi/fj ∈Mλ(Cm) for any i, j ∈ Iα. In particular, if ai �= 0 for i = 0, 1, . . . , n,
each Iα contains at least two indices.

Proof. Consider the partition {0, 1, . . . , n} = I0∪I1∪· · ·∪Ik such that two indices
i and j are in the same class if and only if fi/fj ∈ Mλ(Cm). Then we have

n∑
i=0

aifi =
k∑

α=0

∑
i∈Iα

aifi =
k∑

α=0

c′αfiα = 0

for any fixed iα ∈ Iα and some c′α ∈ Mλ(Cm). Corollary 4.28 is trivial for the case
k = 0. Suppose k ≥ 1. Then

1−
k∑

α=0

k − 1
diα

≥ 1−
n∑

j=0

n− 1
dj

> 0.

Note that fiα/fiβ
�∈ Mλ(Cm) (α �= β), that is,

‖ T

(
r,

fiα

fiβ

)
�= o(λ(r)), α �= β.

By Theorem 4.27, we obtain c′α = 0 for α = 0, 1, . . . , k, which yields Corollary 4.28.
�

Corollary 4.28 improves the related result of H. Fujimoto [107].

Corollary 4.29. Assume that (M1), (M2′) and (4.5.7) hold. If the functions aj in
(M1) are constants, then there exists a partition of indices

{0, 1, . . . , n} = I0 ∪ I1 ∪ · · · ∪ Ik

such that Iα �= ∅ (α = 0, 1, . . . , k), Iα ∩ Iβ = ∅ (α �= β),∑
i∈Iα

aifi = 0, α = 0, 1, . . . , k,

and fi/fj is constant for any i, j ∈ Iα. In particular, if ai �= 0 for i = 0, 1, . . . , n,
each Iα contains at least two indices.

If d0 = · · · = dn, Corollary 4.29 was proved by Y. Aihara [3].

Corollary 4.30 (Green [121]). Take positive integers n and d with d ≥ n2 ≥ 4. We
have the following three equivalent statements:
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(i) If non-zero meromorphic functions f1, f2, . . . , fn on Cm satisfy

fd
1 + fd

2 + · · ·+ fd
n = 1,

then fd
1 , fd

2 , . . . , fd
n are linearly dependent;

(ii) Under the same assumption as in (i), then at least one of the fi’s is constant;
(iii) Assume that non-zero meromorphic functions f0, f1, . . . , fn on Cm satisfy

fd
0 + fd

1 + · · ·+ fd
n = 0.

Then there exists a partition of indices

{0, 1, . . . , n} = I0 ∪ I1 ∪ · · · ∪ Ik

such that fi/fj is constant for any i, j ∈ Iα, and∑
i∈Iα

fd
i = 0, α = 0, 1, . . . , k.

Proof. The claim (iii) follows directly from Corollary 4.29. We derive (ii) from (i)
as follows: Since the functions fd

1 , . . . , fd
n are linearly dependent, without loss of

generality, we may assume the following linear relation:

c1f
d
1 + · · ·+ cn−1f

d
n−1 + fd

n = 0.

By subtracting this identity from fd
1 + · · ·+ fd

n = 1, we have

(1− c1)fd
1 + · · ·+ (1− cn−1)fd

n−1 = 1.

We could use the relation to get a shorter linear combination of the fd
i to equal 1,

and hence (i) can be used again. Finally, it follows that a constant c exists such
that cfd

i = 1 for some i.
In order to derive (iii) from (ii), we have

n∑
i=0

fd
i =

k∑
α=0

∑
i∈Iα

fd
i =

k∑
α=0

aαfd
iα

= 0

for some aα ∈ C and any fixed iα ∈ Iα. Then (iii) follows if aα = 0 for α = 0, . . . , k.
Assume that (iii) does not hold. Without loss of generality, we may assume that

aα �= 0 (0 ≤ α ≤ s, s ≥ 1), aα = 0 (s + 1 ≤ α ≤ k).

We may choose gα ∈M(Cm) satisfying

gd
α = −

aαfd
iα

a0fd
i0

, α = 1, . . . , s
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so that gd
1 + · · · + gd

s = 1. Then one of the gα’s, say g1, is constant by (ii). This
means that fi1/fi0 is constant, contradicting the definition of Iα.

Finally, we derive (i) from (iii). We choose a constant f0 satisfying fd
0 = −1

so that fd
0 + fd

1 + · · ·+ fd
n = 0, and apply (iii) to this identity. Let I0 be the index

set that contains 0. If I = I0, then the functions fd
1 , . . . , fd

n are all constant and
hence linearly dependent. If I �= I0, then∑

i∈Iα

fd
i = 0, α �= 0,

thus yielding a non-trivial linear relation. �
Corollary 4.31. One has the following three equivalent statements:

(A) Assume that entire functions f1, f2, . . . , fn vanish nowhere on Cm such that

f1 + f2 + · · ·+ fn = 1.

Then f1, f2, . . . , fn are linearly dependent.
(B) Under the same assumption as in (A), then at least one of the fi’s is constant.
(C) Assume that entire functions f0, f1, . . . , fn vanish nowhere on Cm such that

f0 + f1 + · · ·+ fn = 0.

Partition the index set I = {0, 1, . . . , n} into subsets Iα, I = ∪k
α=0Iα, putting

two indices i and j in the same subset Iα if and only if fi/fj is constant.
Then we have ∑

i∈Iα

fi = 0, α = 0, 1, . . . , k.

Corollary 4.31 is the classic Borel theorem. E. Borel [29] originally observed
that the Picard theorem of entire functions on C may be restated in the following
form: If two entire functions f and g on C vanish nowhere and satisfy the identity
f + g = 1, then they are constant. S. Kobayashi [208] shows equivalence of three
statements in Corollary 4.31 (or see [168]).

We may weaken the condition (4.5.7) for the family

M1(Cm) = {f ∈M(Cm) | Ord(f) < 1}.

We also define
A1(Cm) = {f ∈ A(Cm) | Ord(f) < 1}.

Theorem 4.32. Assume that (M2′) holds for fj ∈ M1(Cm) (j = 0, 1, . . . , n) and
suppose

β = 1−
n∑

j=0

n− 1
dj

≥ 0. (4.5.12)



4.5. Borel’s theorem and its analogues 315

If the function

T (r) = min
j �=k

{
T

(
r,

fj

fk

)}
is unbounded, then f0, . . . , fn are linearly independent.

Proof. Assume that there are constants ai ∈ C satisfying the equation a0f0 + · · ·+
anfn = 0. We can prove Theorem 4.32 similar to Theorem 4.27, where by using
Corollary 2.59, the inequality (4.5.8) is replaced by

‖ TF (r) ≤
n∑

i=0

NF,n−1(r, bi) + l(λ + ε− 1) log r + O(1), (4.5.13)

in which λ (< 1) is the order of F , and l is the index of F . We can take ε sufficiently
small such that λ + ε < 1. �

Corollary 4.33. Assume that (M1), (M2′) and (4.5.12) hold for fj ∈ M1(Cm) and
aj ∈ C (j = 0, . . . , n). Then there exists a partition of indices

{0, 1, . . . , n} = I0 ∪ I1 ∪ · · · ∪ Ik

such that Iα �= ∅ (α = 0, 1, . . . , k), Iα ∩ Iβ = ∅ (α �= β),∑
i∈Iα

aifi = 0, α = 0, 1, . . . , k,

and fi/fj is constant for any i, j ∈ Iα. In particular, if ai �= 0 for i = 0, 1, . . . , n,
each Iα contains at least two indices.

4.5.2 Siu-Yeung’s theorem

Siu and Yeung [367] further extend Corollary 4.30 as follows:

Theorem 4.34. Let Pj(x0, . . . , xn) be a homogeneous polynomial of degree δj for
0 ≤ j ≤ n. Let f0, . . . , fn be holomorphic functions on C satisfying the following
equation:

n∑
j=0

f
d−δj

j Pj(f0, . . . , fn) = 0.

If d ≥ n2 +
∑n

j=0 δj, there is a non-trivial linear relation among fd−δ1
1 P1(f0, . . . ,

fn), . . . , fd−δn
n Pn(f0, . . . , fn).

Proof. For convenience, we write

Fj = f
d−δj

j Pj(f0, . . . , fn), j = 0, . . . , n.
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Theorem 4.34 is trivial if one of F0, . . . , Fn is equal to 0. Assume that

Fj �= 0, j = 0, . . . , n,

and without loss of generality, assume that F0, . . . , Fn have no common zeros.
Thus we obtain a holomorphic curve f : C −→ Pn with a reduced representation

f̃ = (f0, . . . , fn) : C −→ Cn+1.

Assume, to the contrary, that F1, . . . , Fn are linearly independent, which
means that F0, . . . , Fn−1 also are linearly independent. Using the notations in the
proof of Theorem 4.27, we obtain a holomorphic curve F : C −→ P(V ) with a
reduced representation

F̃ = F0e0 + · · ·+ Fn−1en−1 : C −→ V,

which satisfies (4.5.8). We claim that

TF (r) = dTf (r) + O(1). (4.5.14)

Define
A(z) = max

0≤j≤n
|fj(z)|.

Then (2.3.21) implies

Tf(r) =
∫

C〈0;r〉
log Aσ + O(1). (4.5.15)

Obviously, there exists a constant C > 0 such that |F̃ | ≤ CAd, and so (2.3.21)
and (4.5.15) yield

TF (r) ≤ dTf (r) + O(1). (4.5.16)

On the other hand, by using the formula (4.5.15) and the equation F0+· · ·+Fn = 0,
it is not difficult to show that

TF (r) =
1
2

∫
C〈0;r〉

log

⎛
⎝ n∑

j=0

|Fj |2
⎞
⎠ σ + O(1). (4.5.17)

Take a point z ∈ C〈0; r〉. Then there exists jz ∈ {0, . . . , n} such that A(z) =
|fjz(z)|. Note that

Fjz (z) = fjz (z)dQjz (z), Qjz (z) = Pjz

(
f0(z)
fjz(z)

, . . . ,
fn(z)
fjz (z)

)
with |Qjz(z)| ≤ C′ for a constant C′ > 0. Thus we have

n∑
i=0

|Fi(z)|2 ≥ A(z)2d|Qjz (z)|2,
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which means
TF (r) ≥ dTf (r) + O(1). (4.5.18)

Therefore (4.5.14) follows from (4.5.16) and (4.5.18).
Now we can estimate the terms NF,n−1(r, bi) in (4.5.8). Note that

NF,n−1(r, bi) = Nn−1

(
r,

1
Fi

)
≤ N

(
r,

1
Pi

)
+ (n− 1)N

(
r,

1
fi

)
.

The first main theorem (2.3.33) and (2.7.5) imply respectively

N

(
r,

1
fi

)
≤ Tf (r) + O(1)

and

N

(
r,

1
Pi

)
≤ δiTf (r) + O(1).

Thus by using (4.5.14), we obtain

NF,n−1(r, bi) ≤
δi + n− 1

d
TF (r) + O(1). (4.5.19)

Therefore (4.5.8) and (4.5.19) yield

‖
(

1−
n∑

i=0

δi + n− 1
d

)
TF (r) ≤ O(log TF (r)),

which means d ≤ n2 − 1 +
∑n

i=0 δi. This is a contradiction. �

4.5.3 Analogue of Borel’s theorem

For integers, the conditions (M1) and (M2) are respectively replaced by

(N1) Let x0, x1, . . . , xn (n ≥ 2) be non-zero integers satisfying the equation

x0 + x1 + · · ·+ xn = 0. (4.5.20)

(N2) Take positive integers n and dj (j = 0, 1, . . . , n) with n ≥ 2. Let x0, x1, . . . ,
xn be non-zero integers such that for each i ∈ {0, 1, . . . , n}, there is no prime
p satisfying

0 < vp(xi) < di. (4.5.21)

Note that C[z] ⊂ M1(C). According to the classic analogy between polynomials
and integers, we think that the analogue of Corollary 4.33 in number theory should
be the following problem:
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Conjecture 4.35. If (N1), (N2) and (4.5.12) hold, then either there are a finite
number of coprime integers x0, . . . , xn satisfying these properties, or there exists
a partition of indices

{0, 1, . . . , n} = I0 ∪ I1 ∪ · · · ∪ Ik

such that Iα �= ∅ (α = 0, 1, . . . , k), Iα ∩ Iβ = ∅ (α �= β),∑
i∈Iα

xi = 0, α = 0, 1, . . . , k,

xi/xj ∈ {−1, 1} for any i, j ∈ Iα, and each Iα contains at least two indices.

If di = d for i = 0, . . . , n, we think that this conjecture can be strengthened
as follows:

Conjecture 4.36. If (N1) and (N2) hold for di = d ≥ n2 − 1 (i = 0, . . . , n), then
there exists a partition of indices

{0, 1, . . . , n} = I0 ∪ I1 ∪ · · · ∪ Ik

such that Iα �= ∅ (α = 0, 1, . . . , k), Iα ∩ Iβ = ∅ (α �= β),∑
i∈Iα

xi = 0, α = 0, 1, . . . , k,

and xi/xj ∈ {−1, 1} for any i, j ∈ Iα.

This conjecture yields the following special case:

Conjecture 4.37. Assume that (N1) holds. If there are integers d ≥ n2−1, ai = ±1
and yi such that

xi = aiy
d
i , i = 0, 1, . . . , n,

then there exists a partition of indices

{0, 1, . . . , n} = I0 ∪ I1 ∪ · · · ∪ Ik

such that Iα �= ∅ (α = 0, 1, . . . , k), Iα ∩ Iβ = ∅ (α �= β),∑
i∈Iα

aiy
d
i = 0, α = 0, 1, . . . , k,

and yi/yj ∈ {−1, 1} for any i, j ∈ Iα.

Obviously, the Fermat-Wiles theorem is a special case of Conjecture 4.37.
Assume that y0, y1, . . . , yn (n ≥ 2) are non-zero integers satisfying

a0y
d
0 + a1y

d
1 + · · ·+ anyd

n = 0, (4.5.22)

where d ≥ n2 − 1 and ai = ±1 for each i.
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Further we may assume gcd(y0, y1, . . . , yn) = 1. If (y0, y1, . . . , yn) is a non-
trivial solution of (4.5.22), that is, no proper subsum of (4.5.22) is equal to 0,
then Conjecture 4.16 implies that for ε > 0, there exists a number C = C(n, ε)
satisfying

max
0≤j≤n

{|yj|d} ≤ C

(
n∏

i=0

rn−1

(
yd

i

))1+ε

≤ C|y0y1 · · · yn|(n−1)(1+ε)

which implies
max

0≤j≤n
{|yj|}d−n2+1−(n2−1)ε ≤ C(n, ε).

In particular, taking ε = 1
2(n2−1) and d ≥ n2, so

d− n2 + 1− (n2 − 1)ε ≥ d

2n2
,

we deduce from Conjecture 4.16 that

max
0≤j≤n

{|yj|d} ≤ C

(
n,

1
2(n2 − 1)

)2n2

.

We have thus proved that in any non-trivial solution of (4.5.22) with d ≥ n2, the
numbers |yj |d are all less than some absolute bound depending only on n, and so
there are no more than finitely many such solutions. If we had an explicit version
of Conjecture 4.16 (that is, with the values of C(n, ε) given), then we could give
an explicit bound on all non-trivial solutions to the equation (4.5.22) and compute
up to that bound to finally determine whether there are any non-trivial solutions.

Euler had a false intuition when he guessed that the Fermat hypersurface

yd
1 + · · ·+ yd

n = yd
0

would have no non-trivial rational solutions for d = n+1. Lander and Parkin [220]
found the solution in degree 5:

275 + 845 + 1105 + 1335 = 1445.

Then Elkies [91] found infinitely many solutions in degree 4, including

26824404 + 153656394 + 187967604 = 206156734.

4.6 Meromorphic solutions of Fermat equations

We continue with the situation of Section 3.4. Meromorphic solutions of Fermat-
Catalan equations and their general forms will be discussed first in this section.
Concretely, it is interesting to find the smallest integer Gn(F) such that when
d ≥ Gn(F), there do not exist non-constant functions f1, . . . , fn (n ≥ 2) in a
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certain function class F satisfying

fd
1 + fd

2 + · · ·+ fd
n = 1. (4.6.1)

First of all, we prove the following fact:

Theorem 4.38 (cf. [168]). Take positive integers k and l with k ≥ l ≥ 2 and set

α = 1− 1
k
− 1

l
.

Then the Fermat-Catalan equation

fk + gl = 1 (4.6.2)

has no solutions f, g ∈ F − C satisfying one of the following cases

(1) α > 1
k , F = M(Cm);

(2) α > 0, F = A(Cm);

(3) α ≥ 1
k , F = M1(Cm);

(4) α ≥ 0, F = A1(Cm).

Proof. Assume, to the contrary, that there exist two non-constant meromorphic
functions f and g on Cm satisfying (4.6.2). Let a1, . . . , ak be the zeros of zk − 1
in C. Then for each j = 1, . . . , k, each zero of f − aj has order ≥ l, and hence

N

(
r,

1
f − aj

)
≤ 1

l
N

(
r,

1
f − aj

)
≤ 1

l
T (r, f) + O(1).

By using the second main theorem (cf. Corollary 2.59), for any δ > 0 one has

‖ (k−1)T (r, f) ≤ N(r, f)+
k

l
T (r, f)+(1+δ) log+ T (r, f)− log r+O(1). (4.6.3)

Define a characteristic number ε for f and g by

ε =

{
0 : f, g ∈ A(Cm),
1 : otherwise.

(4.6.4)

Then we have
N(r, f) ≤ εT (r, f).

Thus (4.6.3) yields

‖
(

k − 1− k

l
− ε

)
T (r, f) + log r ≤ (1 + δ) log+ T (r, f) + O(1), (4.6.5)
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that is
‖ (kα− ε)T (r, f) + log r ≤ (1 + δ) log+ T (r, f) + O(1).

This inequality contradicts any one of the hypothesis (1)-(4). The proof of the
theorem is completed. �

If we replace the second main theorem in the proof of Theorem 4.38 by using
abc-theorem on meromorphic functions, say, Theorem 4.4, we obtain

‖ T (r, fk) ≤ N

(
r,

1
fk

)
+ N

(
r,

1
gl

)
+

1
2
N(r, fk) +

1
2
N(r, gl)

+(1 + δ) log+ T (r, f)− log r + O(1) (4.6.6)

for small δ > 0. Theorem 2.45 and the first main theorem (2.3.15) further yields
the inequality

‖ kT (r, f) ≤
(
1 +

ε

2

)
T (r) + (1 + δ) log+ T (r)− log r + O(1), (4.6.7)

where
T (r) = T (r, f) + T (r, g).

Similarly, we have

‖ lT (r, g) ≤
(
1 +

ε

2

)
T (r) + (1 + δ) log+ T (r)− log r + O(1). (4.6.8)

Summing (4.6.7) and (4.6.8), we obtain

‖
{(

1 +
ε

2

)
α− ε

2

}
T (r)+(1−α) log r ≤ (1+δ)(1−α) log+ T (r)+O(1). (4.6.9)

Thus we still obtain the cases (2) and (4) in Theorem 4.38. According to (4.6.9),
now (1) and (3) in Theorem 4.38 assume the following forms:

(1′) α > 1
3 , F = M(Cm);

(3′) α ≥ 1
3 , F = M1(Cm).

However, we still obtain the same conclusion as Theorem 4.38. We know that the
abc-conjecture would imply the asymptotic Fermat conjecture. Here we show that
the abc-theorem on meromorphic functions implies that the Fermat equation has
no meromorphic solutions.

In particular, if d ≥ 4 there are no non-constant solutions f and g in the
class M(C) satisfying the Fermat equation

fd + gd = 1. (4.6.10)

Baker [12] has characterized all f , g in the class M(C) such that (4.6.10) holds
for d = 3. Thus we have

G2(M(C)) = 4.
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By Theorem 4.38, if d ≥ 3 there are no non-constant solutions f and g satisfying
(4.6.10) in the class C[z], C(z), and A(C), respectively, which are due to Montel
[275], Jategaonkar [197], Yang [438], and Gross [130], [131] (or see [33], [35], [132],
[176] ). Since the rational functions (cf. [130])

f(z) =
2z

z2 + 1
, g(z) =

z2 − 1
z2 + 1

satisfy the equation
f2 + g2 = 1, (4.6.11)

we have
G2(C(z)) = 3.

On the other hand, if f and g are non-constant entire solutions of the equation
(4.6.11), then we have

f = sinw, g = cosw

for some entire function w (see [196]). It is easy to see

G2 (A(C)) = 3, G2 (C[z]) = 2.

Related to the equation (3.4.4), Corollary 4.29 yields directly the following result:

Theorem 4.39. Take positive integers k, l, n satisfying (3.4.5). If f, g and h are
non-zero entire functions on Cm such that the equation

fk + gl = hn (4.6.12)

holds, then fk/hn and gl/hn are constants.

Theorem 4.40 (cf. [168]). Let k, l and n be positive integers and set

α = 1− 2
k
− 2

l
− 2

n
.

The functional equation
fk + gl + hn = 1 (4.6.13)

has no solutions f, g, h ∈ F − C satisfying one of the following cases:

(A) α > 1
3 , F =M(Cm);

(B) α > 0, F = A(Cm);

(C) α ≥ 1
3 , F =M1(Cm);

(D) α ≥ 0, F = A1(Cm).
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Proof. Assume, to the contrary, that there exist three non-constant meromorphic
functions f , g and h on Cm satisfying (4.6.13). Then fk, gl and hn are linearly
independent. Otherwise, there is (a, b, c) ∈ C3 − {0} such that

afk + bgl + chn = 0.

Without loss of generality, we may assume c �= 0. Thus(
1− a

c

)
fk +

(
1− b

c

)
gl = 1.

Since f and g are non-constant, then a �= c and b �= c. Since we can take γ, β ∈ C∗
such that

γk = 1− a

c
, βl = 1− b

c
,

then
(γf)k + (βg)l = 1,

which is impossible by Theorem 4.38.
By Theorem 4.4, for any δ > 0 we have

‖ kT (r, f) = T (r, fk) ≤ N2

(
r,

1
fk

)
+ N2

(
r,

1
gl

)
+ N2

(
r,

1
hn

)
+N(r, fk) + N(r, gl) + N(r, hn)
+(1 + δ) log+ T (r)− ν log r + O(1)

≤ (2 + ε)T (r) + (1 + δ) log+ T (r)− ν log r + O(1),

where ν is the index of fk, gl and hn, ε is defined by (4.6.4) and

T (r) = T (r, f) + T (r, g) + T (r, h).

Similarly,

‖ lT (r, g) ≤ (2 + ε)T (r) + (1 + δ) log+ T (r)− ν log r + O(1),

and
‖ nT (r, h) ≤ (2 + ε)T (r) + (1 + δ) log+ T (r))− ν log r + O(1).

Therefore,

‖
(

1− (2 + ε)(1− α)
2

)
T (r)+

ν(1 − α)
2

log r ≤ (1 + δ)(1− α)
2

log+ T (r)+O(1),

or, equivalently,

‖ (2 + ε)α− ε

1− α
T (r) + ν log r ≤ (1 + δ) log+ T (r) + O(1),

which is impossible under one of the conditions (A)-(D). �
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Hayman [153] proved that for d ≥ 9 (resp., d ≥ 6), there do not exist three
non-constant meromorphic (resp., entire) functions f , g and h on C satisfying the
equation

fd + gd + hd = 1. (4.6.14)

When d = 3 ([243]) or d = 4 ([131]), the equation (4.6.14) has solutions inA(C)−C.
Thus we have

5 ≤ G3(A(C)) ≤ 6.

For the cases d = 5 and d = 6, Gundersen [133], [134] (or cf. [153]) gave examples
of non-constant meromorphic solutions of (4.6.14). Therefore

7 ≤ G3(M(C)) ≤ 9.

Ishizaki [194] proved that if there exist transcendental meromorphic functions
f, g, h over C satisfying (4.6.14) with d = 8, then they also satisfy the differential
equation

W(f8, g8, h8) = a(fgh)6,

where a is a small function with respect to f , g and h, and W(f8, g8, h8) is the
Wronskian determinant of f8, g8 and h8. For more examples, also see Tohge [399].

Generally, by induction and Theorem 4.4, we can prove the following version
of results due to Toda [398], Hayman [153] and Yu-Yang [444], respectively:

Theorem 4.41 (cf. [168]). Take positive integers n(≥ 3), d1, . . . , dn and set

α = 1−
n∑

j=1

n− 1
dj

.

If An is the number defined in Theorem 4.4, then the functional equation

fd1
1 + fd2

2 + · · ·+ fdn
n = 1 (4.6.15)

has no solutions {f1, . . . , fn} ⊂ F − C satisfying one of the following cases:

(i) α > An

n−1+An
, F = M(Cm);

(ii) α > 0, F = A(Cm);
(iii) α ≥ An

n−1+An
, F = M1(Cm);

(iv) α ≥ 0, F = A1(Cm).

For the case (i) of Theorem 4.41 with m = 1, Yu and Yang [444] obtained 3
4

replacing the number An

n−1+An
. Obviously,

An

n− 1 + An
≤ ϑn

n− 1 + ϑn
<

3
4
, n ≥ 3.

Based on Theorem 4.38 and Theorem 4.40, we conjecture that the restrictions of
α in Theorem 4.41, (i) and (iii) would be replaced by α ≥ 1

n . By Corollary 4.29 or
Corollary 4.30, we can obtain a partial answer to the problem as follows:
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Theorem 4.42. For n ≥ 2 and d ≥ n2, there do not exist non-constant meromor-
phic functions f1, . . . , fn on Cm satisfying (4.6.1).

Corollary 4.33 yields immediately the following fact:

Theorem 4.43. For n ≥ 2 and d ≥ n2 − 1, there do not exist non-constant mero-
morphic functions f1, . . . , fn of order < 1 on Cm satisfying the equation (4.6.1).

Theorem 4.42 is a several variable version of a result in [153], which implies

Gn(M(Cm)) ≤ n2.

Theorem 4.43 yields
Gn(M1(Cm)) ≤ n2 − 1.

By Theorem 4.41, we obtain

Gn (A(Cm)) ≤ n(n− 1) + 1, Gn (A1(Cm)) ≤ n(n− 1).

Assume d ≥ n2 and assume that there exist non-zero meromorphic functions
f1, . . . , fn on Cm satisfying (4.6.1). M. L. Green [121] observed that the image of
the meromorphic mapping

[1, f1, . . . , fn] : Cm −→ Pn

is contained in a linear subspace of dimension
[

n−1
2

]
, where the bracket [x] means

the integer with [x] ≤ x < [x] + 1.

Theorem 4.44. Take positive integers n, d1, . . . , dn and meromorphic functions f1,
. . . , fn in C satisfying (4.6.15). Then fd1

1 , . . . , fdn
n are linearly dependent if

n∑
j=1

dj ≥ n2 + (n− 1) max
1≤j≤n

{dj}.

Proof. Set
d = max

1≤j≤n
{dj}

and choose holomorphic functions g0, g1, . . . , gn in C such that fj = gj/g0. Then
the equation (4.6.15) implies

n∑
j=1

g
dj

j g
d−dj

0 = gd
0 .

Theorem 4.34 shows that gd1
1 gd−d1

0 , . . . , gdn
n gd−dn

0 are linearly dependent, and so
fd1
1 , . . . , fdn

n are linearly dependent. �
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Given a subset F of M(Cm) such that C is a proper subfield of F . Related
to Waring’s problem, it is interesting that for any fixed positive integer d, find the
smallest integer n = GF (d) such that there exist non-constant functions f1, . . . , fn

in F satisfying (4.6.1). Theorem 4.41 implies

GA1(Cm)(d) >
1
2

+

√
d +

1
4
, d ≥ 2, (4.6.16)

GA(Cm)(d) ≥ 1
2

+

√
d +

1
4
, d ≥ 2. (4.6.17)

Theorem 4.42 and Theorem 4.43 show, respectively

GM(Cm)(d) ≥
√

d + 1, d ≥ 2, (4.6.18)

GM1(Cm)(d) >
√

d + 1, d ≥ 2. (4.6.19)

These estimates are due to Toda [398], Green [121], Hayman [153], and Yu-Yang
[444] (or see [168]).

We now give examples for equation (4.6.1). First note that [153](
1 + z√

2

)2

+
(

1− z√
2

)2

+ (iz)2 = 1, (4.6.20)

which shows that GC[z](2) ≤ 3. By the remark after Theorem 4.38, it follows that

GC[z](2) = 3, GA(C)(2) = GM(C)(2) = GC(z)(2) = 2.

In [274], Molluzzo considered

1
p

p∑
j=1

(1 + ωjz
d)d = 1 + a1z

pd + a2z
2pd + · · ·+ a[d/p]z

[d/p]pd, (4.6.21)

where

ωj = exp
(

2πj
√
−1

p

)
, j = 1, . . . , p.

This gives 1 as the sum of p + [d/p] dth powers. The minimum of p + [d/p] for all
p is [(4d + 1)1/2] (see [296]). Therefore

GC[z](d) ≤
√

4d + 1, d ≥ 2.

When p = 2 and d = 3 in (4.6.21), we obtain the following identity:

1
2
(1 + z3)3 +

1
2
(1− z3)3 − 3(z2)3 = 1. (4.6.22)
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On the other hand [12], f and g are non-constant meromorphic solutions of the
equation

f3 + g3 = 1 (4.6.23)

if and only if f and g are certain non-constant elliptic functions composed with
an entire function. Combining this result with (4.6.22) gives

GM(C)(3) = 2, GA(C)(3) = GC[z](3) = GC(z)(3) = 3.

Newman and Slater [296] studied the following identity

p∑
j=1

ωj(1 + ωjz
d)d

z(p−1)d
= b0+b1z

pd+b2z
2pd+· · ·+b[(d+1)/p]−1z

([(d+1)/p]−1)pd, (4.6.24)

where each bj is a positive integer, that is, there exist non-constant rational func-
tions f1, f2, . . . , fn satisfying the equation (4.6.1), where

n = n(p) = p + [(d + 1)/p]− 1.

Since the minimum of n(p) for all p is [(4d + 5)1/2]− 1 (see [153]), we obtain

GF (d) ≤
√

4d + 5− 1, d ≥ 2, F ∈ {A(C), C(z), M(C)}.

When F = A(C), we can see this, by replacing z with ez in (4.6.24). When p = 3
and d = 4 in (4.6.24), we have the following identity:

1
18

(
1 + z4

z2

)4

+
ω1

18

(
1 + ω1z

4

z2

)4

+
ω2

18

(
1 + ω2z

4

z2

)4

= 1. (4.6.25)

By combining (4.6.25) with the estimates (4.6.16) to (4.6.19), we obtain

GM(C)(4) = GA(C)(4) = GC(z)(4) = 3.

Examples in [133], [134], [136], [320], together with the estimates (4.6.16) to
(4.6.19), show that

GM(C)(5) = GA(C)(5) = GC(z)(5) = 3,

and
GM(C)(6) = 3, GA(C)(14) = 5.
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4.7 Waring’s problem for meromorphic functions

We continue with the situation of Section 3.4. Meromorphic solutions of Waring’s
problem will be discussed in this section. Concretely, we may ask whether, for
a function f in a certain function class F of M(C), there exist non-constant
functions f1, . . . , fn in the class F such that

fd
1 + · · ·+ fd

n = f (4.7.1)

holds. The problem of representing any function in F as a sum of dth powers of
functions in F is known as the Waring problem for the family F . Here it is enough
to suppose that f(z) = z, that is, we need to consider only the equation

f1(z)d + · · ·+ fn(z)d = z. (4.7.2)

To see this, suppose first that F = C[z], C(z) or A(C) and that the equation
(4.7.2) is satisfied by n functions f1, . . . , fn in F . Then for any f ∈ F , we have

f1(f(z))d + · · ·+ fn(f(z))d = f(z).

For the class M(C) this argument must be modified slightly as follows (see [153],
[135]): Suppose that (4.7.2) holds for n functions f1, . . . , fn in M(C). Take f ∈
M(C). Then there exist g, h ∈ A(C) such that f = g/hd, and so (4.7.2) yields

(
f1(g(z))

h(z)

)d

+ · · ·+
(

fn(g(z))
h(z)

)d

= f(z).

Let n = gF (d) be the smallest number such that there exist non-constant
functions f1, . . . , fn in the class F such that (4.7.2) holds. We have gC[z](2) = 2
since (

z + 1
2

)2

+
(

z − 1
2i

)2

= z.

The following theorem is due to Hayman [153].

Theorem 4.45. The number gF(d) satisfies the following estimates:

gC[z](d) >
1
2

+

√
d +

1
4
, d ≥ 3, (4.7.3)

gA(C)(d) ≥ 1
2

+

√
d +

1
4
, d ≥ 2, (4.7.4)

gM(C)(d) ≥
√

d + 1, d ≥ 2, (4.7.5)

gC(z)(d) >
√

d + 1, d ≥ 2. (4.7.6)
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Proof. Here we follow Gundersen and Hayman [135] to prove this theorem. The
numbers gF(d) and GF(d) are related by the following inequality [153]:

GF (d) ≤ gF(d), d ≥ 2, F ∈ {A(C), M(C), C(z)}. (4.7.7)

In fact, if there exist n functions f1, . . . , fn in F satisfying (4.7.2), then by
replacing z in (4.7.2) with either zd or edz, we deduce that there exist n non-
constant functions h1, . . . , hn in F satisfying hd

1 + · · ·+hd
n = 1. Thus the estimates

(4.7.4) to (4.7.6) follow from (4.6.17) to (4.6.19).
To show (4.7.3), take d ∈ Z with d ≥ 3 and suppose that f1, . . . , fn are

polynomials satisfying (4.7.2). Then

k = max
1≤j≤n

deg(fd
j ) > 0.

Since d ≥ 3, we obtain that n ≥ 3 from (4.7.6). By Theorem 4.8,

k ≤ 1 +
n∑

j=1

rn−1

(
fd

j

)
− n(n− 1)

2
≤ 1 +

nk(n− 1)
d

− n(n− 1)
2

<
nk(n− 1)

d
,

which yields d < n2 − n. This proves (4.7.3). �

For d ∈ Z+, set

ωj = exp
(

2πj
√
−1

d

)
, j = 1, . . . , d.

Then
d∑

j=1

ωm
j = 0 (0 < |m| < d, m ∈ Z).

Thus we obtain the representation given by Heilbronn (cf. [152])

1
d2

d∑
j=1

(1 + ωjz)d

ωj
= z,

and so
gA(C)(d) ≤ gC[z](d) ≤ d.

Further, by using Theorem 4.45, we have

gC[z](3) = gA(C)(3) = gC(z)(3) = 3.

On the other hand [132], there exist f, g ∈ M(C) satisfying f(z)3 + g(z)3 = z,
which shows that gM(C)(3) = 2.
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It is natural to ask how many djth powers of positive integers xj are necessary
to represent an arbitrary positive integer N so that

xd1
1 + · · ·+ xdn

n = N. (4.7.8)

Here we do not study the problem in number theory, but the problem of repre-
senting any function in F as a sum of djth powers of functions in F .

Theorem 4.46. Take positive integers dj ≥ 2 (j = 1, . . . , n) and set

α = 1−
n∑

j=1

n− 1
dj

.

If n ≥ 2 and if there exist non-constant entire functions f1, . . . , fn on C satisfying

f1(z)d1 + · · ·+ fn(z)dn = z, (4.7.9)

then α ≤ 0.

Proof. Assume that there exist non-constant entire functions f1, . . . , fn satisfying
(4.7.9). First of all, we consider the case that fd1

1 , . . . , fdn
n are linearly independent.

By the equation (4.7.9), it is easy to see that f1, . . . , fn have no common
zeros. Hence a non-degenerate holomorphic curve

F : C −→ P(Cn)

is well defined with a reduced representation

F̃ = (F̃1, . . . , F̃n),

where
F̃j = f

dj

j , j = 1, . . . , n.

Set F̃0(z) = z. By Corollary 2.59, for R > ρ > r > r0 we obtain

TF (r) ≤
n∑

j=0

Nn−1

(
r,

1
F̃j

)
+

n(n− 1)
2

log
{

ρTF (R)
r(ρ − r)

}
+ O(1)

≤ log r +
n∑

j=1

n− 1
dj

N

(
r,

1
F̃j

)
+

n(n− 1)
2

log
{

ρTF (R)
r(ρ− r)

}
+ O(1).

The first main theorem implies

N

(
r,

1
F̃j

)
≤ TF (r) + O(1), j = 1, . . . , n.
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Therefore we have

αTF (r) ≤ log r +
n(n− 1)

2
log
{

ρTF (R)
r(ρ− r)

}
+ O(1). (4.7.10)

Specially, if f1, . . . , fn are polynomials, then (4.7.10) yields

α max
1≤j≤n

{dj deg(fj)} ≤ 1− n(n− 1)
2

≤ 0. (4.7.11)

If one of functions fj is transcendental, then TF (r)/ log r →∞ as r →∞, and so
the inequality (4.7.10) yields α ≤ 0 and Theorem 4.46 follows again.

Finally, we study the case that fd1
1 , . . . , fdn

n are linearly dependent. Without
loss of generality, we may assume that fd1

1 , . . . , fdl

l are linearly independent (1 ≤
l < n), but fd1

1 , . . . , fdl

l , f
dj

j are linearly dependent for each j = l + 1, . . . , n. Thus
there is a (a1, . . . , al) ∈ Cl − {0} such that (4.7.9) becomes the following form:

a1f1(z)d1 + · · ·+ alfl(z)dl = z. (4.7.12)

We may assume ai �= 0 for each i = 1, . . . , l, otherwise, deleting the terms with
null coefficients in (4.7.12). Since

α ≤ 1−
l∑

i=1

l − 1
di

,

the proof of Theorem 4.46 can be completed by applying the above arguments to
the equation (4.7.12). �

To study meromorphic solutions of (4.7.9), we will need the following result:

Theorem 4.47. Let f1, f2, . . . , fn (n ≥ 2) be linearly independent meromorphic
functions in C such that

f1(z) + f2(z) + · · ·+ fn(z) ≡ z.

Then for j = 1, 2, . . . , n, the inequalities

T (r, fj) <

n∑
i=1

Nn−1

(
r,

1
fi

)
+

∗
N j(r) + log+ r

+
n(n− 1)

2
log
{

ρT (R)
r(ρ − r)

}
+ O(1) (4.7.13)

hold for r0 < r < ρ < R, where T (r) = max1≤i≤n{T (r, fi)}, and

∗
N j(r) = min

⎧⎨
⎩ϑn

n∑
i=1

N(r, fi), (n− 1)
∑
i�=j

N(r, fi)

⎫⎬
⎭ .
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Proof. Set f0(z) = z. Note that

T (r, fj) ≤ N(r, fj) + m

(
r,

fj

f0

)
+ log+ r.

According to the proof of Theorem 4.3, we can obtain

T (r, fj) ≤ N (r, fj) +
n∑

i=1

{
N

(
r,

1
fi

)
−N(r, fi)

}
+ N(r,W)

−N

(
r,

1
W

)
+

n(n− 1)
2

log
{

ρT (R)
r(ρ − r)

}
+ log+ r + O(1) (4.7.14)

for r0 < r < ρ < R, j = 1, . . . , n, where W = W(f1, . . . , fn) is a Wronskian
determinant.

Without loss of generality, we consider only the case j = 1. Clearly, Theo-
rem 4.47 follows from (4.7.14) and the inequalities

µ =
n∑

i=1

µ0
fi
−

n∑
i=2

µ∞
fi

+ µ∞
W − µ0

W

≤
n∑

i=1

µ0
fi,n−1 + ϑn

n∑
i=1

µ∞
fi,1 = µ1, (4.7.15)

and

µ ≤
n∑

i=1

µ0
fi,n−1 + (n− 1)

n∑
i=2

µ∞
fi,1 = µ2. (4.7.16)

Take z0 ∈ C. We distinguish several cases to show the inequality

µ(z0) ≤ min{µ1(z0), µ2(z0)}.

If z0 is not a pole of fi for any i = 1, . . . , n, obviously we have

µ0

f
(j)
i

(z0) ≥ µ0
fi

(z0)−µ0
fi,j(z0) ≥ µ0

fi
(z0)−µ0

fi,n−1(z0), 1 ≤ i ≤ n, 1 ≤ j ≤ n−1,

and hence

µ0
W(z0) ≥

n∑
i=1

{µ0
fi

(z0)− µ0
fi,n−1(z0)},

that is

µ(z0) =
n∑

i=1

µ0
fi

(z0)− µ0
W(z0) ≤

n∑
i=1

µ0
fi,n−1(z0) = µ1(z0) = µ2(z0).

Next, suppose that z0 is a pole of fi for each i = 1, . . . , n. Note that we can
find holomorphic functions gi and hi such that

fi =
gi

hi
, g−1

i (0) ∩ h−1
i (0) = ∅.
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Hence z0 ∈ h−1
i (0) (1 ≤ i ≤ n). Fix one i. We can write

fi(z) =
f̂i(z)

(z − z0)li
, li ∈ Z+,

where f̂i is a holomorphic function near z0 which does not vanish at z0. Thus we
have

µ∞
f
(j)
i

(z0) = µ∞
fi

(z0) + j = µ∞
fi

(z0) + jµ∞
fi,1(z0), j ∈ Z+. (4.7.17)

Let Dij be the algebraic minor of f
(j)
i in W. Then

W = f0Di0 + Di1.

Therefore
µ∞
W ≤ max{µ∞

Di0
, µ∞

Di1
},

and so, for the case i = 1,

µ∞
W(z0) ≤

n∑
i=2

µ∞
fi

(z0) +
n(n− 1)

2

=
n∑

i=2

µ∞
fi

(z0) +
n

2

n∑
i=2

µ∞
fi,1(z0)

=
n∑

i=2

µ∞
fi

(z0) +
n− 1

2

n∑
i=1

µ∞
fi

(z0),

which implies

µ(z0) ≤ µ∞
W(z0)−

n∑
i=2

µ∞
fi

(z0) ≤ min

{
n− 1

2

n∑
i=1

µ∞
fi,1(z0),

n

2

n∑
i=2

µ∞
fi,1(z0)

}

≤ min{µ1(z0), µ2(z0)}.

If n = 2, these are all possible cases, and therefore Theorem 4.47 is proved.
Assume n ≥ 3. Except for the above two cases, the following case may occur:
Case 3: µ∞

fi
(z0) > 0, but µ∞

fj
(z0) = 0 for some i, j ∈ Z+.

To study Case 3, without loss of generality, assume that µ∞
fi

(z0) > 0 for
i = 1, . . . , s(< n), and µ∞

fi
(z0) = 0 for i > s. Obviously, we have s ≥ 2. Note that

µ∞
W ≤ max{µ∞

D10
, µ∞

D11
} ≤ max

i∈Jn−1
µ∞

f
(i(1))
2 ···f(i(n−1))

n

holds, where Jn−1 is the permutation group on Z[1, n− 1]. Since the poles of

f
(i(1))
2 · · · f (i(s−1))

s
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and the zeros of
f

(i(s))
s+1 · · · f (i(n−1))

n

may cancel each other, when µ∞
W(z0) > 0 we have

µ∞
W(z0) ≤

s∑
i=2

µ∞
fi

(z0) +
s−1∑
i=1

(n− i)−
n∑

i=s+1

{µ0
fi

(z0)− µ0
fi,n−1(z0)},

which means

µ(z0) ≤
n∑

i=s+1

µ0
fi,n−1(z0) +

(2n− s)(s− 1)
2

=
n∑

i=s+1

µ0
fi,n−1(z0) +

(
n− s

2

) s∑
i=2

µ∞
fi,1(z0)

=
n∑

i=s+1

µ0
fi,w(z0) +

(2n− s)(s− 1)
2s

s∑
i=1

µ∞
fi,1(z0)

≤ min{µ1(z0), µ2(z0)}.

Otherwise, when µ∞
W(z0) = 0 we have

µ0
W(z0) ≥

n∑
i=s+1

{µ0
fi

(z0)− µ0
fi,n−1(z0)} −

s∑
i=2

µ∞
fi

(z0)−
s−1∑
i=1

(n− i),

and, similarly, we have the inequality µ(z0) ≤ min{µ1(z0), µ2(z0)}. �
Theorem 4.48. Take positive integers dj ≥ 2 (j = 1, . . . , n) and set

α = 1−
n∑

j=1

n− 1
dj

.

If n ≥ 2 and if there exist non-constant meromorphic functions f1, . . . , fn on C
satisfying the equation(4.7.9), then

α ≤ ϑn

n− 1 + ϑn
.

Proof. Assume that there exist non-constant meromorphic functions f1, . . . , fn

satisfying (4.7.9). First of all, we consider the case that fd1
1 , . . . , fdn

n are linearly
independent. By Theorem 4.47, we have

T
(
r, f

dj

j

)
<

n∑
i=1

Nn−1

(
r,

1
fdi

i

)
+ ϑn

n∑
i=1

N(r, fi)

+
n(n− 1)

2
log
{

ρT (R)
r(ρ− r)

}
+ log+ r + O(1)
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for r0 < r < ρ < R, j = 1, . . . , n, where

T (r) = max
1≤i≤n

{
T
(
r, fdi

i

)}
.

Since

Nn−1

(
r,

1
fdi

i

)
≤ n− 1

di
N

(
r,

1
fdi

i

)
≤ n− 1

di
T (r) + O(1),

and
N(r, fi) ≤

1
di

N
(
r, fdi

i

)
≤ 1

di
T (r),

then we obtain the estimate

T (r) ≤
n∑

i=1

n− 1 + ϑn

di
T (r) +

n(n− 1)
2

log
{

ρT (R)
r(ρ− r)

}
+ log+ r + O(1),

or equivalently,(
α−

n∑
i=1

ϑn

di

)
T (r) ≤ n(n− 1)

2
log
{

ρT (R)
r(ρ − r)

}
+ log+ r + O(1). (4.7.18)

Specially, if f1, . . . , fn are rational, then (4.7.18) yields(
α−

n∑
i=1

ϑn

di

)
max

1≤j≤n
{dj deg(fj)} ≤ 1− n(n− 1)

2
≤ 0, (4.7.19)

and so Theorem 4.48 follows.
If one of functions fj is transcendental, then T (r)/ log r →∞ as r →∞, and

so the inequality (4.7.18) yields

α−
n∑

i=1

ϑn

di
≤ 0

and Theorem 4.48 follows again.
Finally, if fd1

1 , . . . , fdn
n are linearly dependent, we can complete the proof of

Theorem 4.48 by applying the arguments in the proof of Theorem 4.46. �

Let a be a non-zero integer. A set of n positive integers {a1, a2, . . . , an} is
said to have the property Dd(a) if aiaj + a is a dth power of an integer for all 1 ≤
i < j ≤ n. Such a set is called a Diophantine n-tuple (with the property Dd(a)).
Diophantus found the quadruple {1, 33, 68, 105} with the property D2(256). The
first Diophantine quadruple with the property D2(1), the set {1, 3, 8, 120}, was
found by Fermat (see [79]). A famous conjecture is that there does not exist a
Diophantine quintuple with the property D2(1). Set

λd(a) = sup{#S | S has the property Dd(a) },
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where #S denotes the number of elements in the set S. A. Dujella [85] proved
that λ2(a) is finite for all a ∈ Z− {0}.

Let {a1, a2, . . . , an} be a Diophantine n-tuple (with the property Dd(a)).
Then there exist integers bij such that

aiaj + a = bd
ij , 1 ≤ i < j ≤ n.

Set

N =
∑

1≤i<j≤n

(aiaj + a), s =
(

n

2

)
.

Then we have ∑
1≤i<j≤n

bd
ij = N.

When d ≥ 3, N ≥ N0(d), it is well known that the integer s satisfies the inequalities

s ≥ g(d) ≥ d.

Analogously for a function f in a certain function class F of M(C), a set of
n functions {f1, f2, . . . , fn} in F is said to have the property Dd(f) if fifj + f is
a dth power of a non-constant function in F for all 1 ≤ i < j ≤ n. Such a set is
called a Diophantine n-tuple (with the property Dd(f)) over F . Here it is enough
to suppose that f(z) is 1 or the identity function z.

Example 4.49 ([85]). If f ∈ F is non-constant, then {f, f +2, 4f +4, 16f3+48f2+
44f + 12} has the property D2(1).

Assume that {f1, f2, . . . , fn} ⊂ F have the property Dd(f), that is, there
exist non-constant functions gij in F such that

fifj + f = gd
ij , 1 ≤ i < j ≤ n.

Hence we have ∑
1≤i<j≤n

gd
ij = F,

where
F =

∑
1≤i<j≤n

(fifj + f).

Thus according to F = 0, non-zero constant or non-constant, we may apply Corol-
lary 4.29, (4.6.16) to (4.6.19) or Theorem 4.45 to study Diophantine n-tuples (with
the property Dd(f)) over C[z] (resp., A(C), C(z), M(C)).

4.8 Holomorphic curves into a complex torus

In this section, we will show that non-constant holomorphic curves into a complex
torus have normal properties.
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4.8.1 Elliptic curves

Theorem 4.50. Each non-constant holomorphic curve ϕ : C −→ E(C) into a
smooth elliptic curve E(C) is surjective.

Proof. Assume, to the contrary, that ϕ is not surjective, say ϕ(C) ⊂ E(C)−{O}.
Let (3.1.3) be the Weierstrass equation of E, that is,

y2 = x3 + ax + b.

Then
E(C)− {O} = {[x, y, 1] ∈ P2 | y2 = x3 + ax + b},

and so ϕ can be given by
ϕ = [f, g, 1]

with two entire functions f and g on C such that

g2 = f3 + af + b.

Without loss of generality, we may assume that f is not constant. Let e1, e2, e3 be
three distinct roots of the equation x3 + ax + b = 0. Then we have

g2 = (f − e1)(f − e2)(f − e3),

which means that for each i, f − ei has no simple zeros. Hence

δf,1(ei) ≥
1
2
, i = 1, 2, 3.

Note that δf,1(∞) = 1. Thus the defect relation (cf. Corollary 2.60) yields

3
2
≤

3∑
i=1

δf,1(ei) ≤ 1,

which is impossible. Hence Theorem 4.50 is proved. �
Corollary 4.51. Each smooth elliptic curve omitting one point is Brody hyperbolic.

According to the remark in Section 3.1.4, there exists a unique lattice Λ ⊂ C
such that

g2 = g2(Λ) = −4a, g3 = g3(Λ) = −4b.

Hence the equation (3.1.3) has non-constant meromorphic solutions x = ℘, y =
ω℘′, where ω is a constant with ω2 = 1

4 . Thus we obtain non-constant holomorphic
curves

[℘, ω℘′, 1] : C −→ E(C).

A natural question is to characterize all non-constant holomorphic curves into
E(C).

S.S. Chern [57] and H. Wu [434] studied systematically Nevanlinna theory
of holomorphic mappings of Riemann surfaces, and obtained stronger results than
Theorem 4.50. Here we recall some of their results.



338 Chapter 4. Function Solutions of Diophantine Equations

Theorem 4.52. Let Φ be a C∞ real 2-form on a compact Riemann surface M such
that ∫

M

Φ = c > 0.

Let a ∈ M be a fixed point of M . Then there exists a real-valued non-negative
function ua with the following properties:

(1) ua is C∞ in M − {a};
(2) ddcua = 1

cΦ in M − {a};
(3) If z is any a-centered holomorphic coordinate function in a neighborhood U

of a (i.e., z(a) = 0), then ua(z) + log |z|2 is C∞ on U .

The compact Riemann surface M can be given a Hermitian metric ds2
M of

constant Gaussian curvature such that its volume element Ω satisfies∫
M

Ω = 1.

Fix a ∈ M . By Theorem 4.52, there exists a function ua such that on M − {a},

ddcua = Ω.

Let f : C −→M be a non-constant holomorphic mapping. Let nf (r, a) denote
the number of pre-images of a (counting multiplicity) in the closed disc C[0; r] of
radius r and define the valence function

Nf (r, a) =
∫ r

r0

nf (t, a)
dt

t
(4.8.1)

for r ≥ r0 > 0. Write

Af (r) =
∫

C[0;r]

f∗Ω (4.8.2)

and define the characteristic function of f by

Tf (r) =
∫ r

r0

Af (t)
dt

t
. (4.8.3)

Then the first main theorem

Tf (r) = Nf(r, a) + mf (r, a)−mf (r0, a) (4.8.4)

holds, where

mf (r, a) =
1
2

∫
C〈0;r〉

f∗uaσ (4.8.5)

serves as the proximity function of f for a. If M is the Riemann sphere equipped
with the constant curvature metric, then

ua(x) = − logχ∞(x, a)2,
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where χ∞ is just the chordal distance defined by (1.5.6) for the ordinary absolute
value v =∞. This retrieves Nevanlinna’s original result cast in the form of Ahlfors-
Shimizu.

Further, if a1, . . . , aq are distinct points of M , Chern [57] proved the defect
relation

q∑
j=1

δf (aj) ≤ χ(M), (4.8.6)

where χ(M) is the Euler characteristic of M , and where δf (aj) is the defect of f
for aj defined by

δf(aj) = 1− lim sup
r→∞

Nf(r, aj)
Tf (r)

. (4.8.7)

S.S. Chern uses the following singular volume form approach towards the second
main theorem:

Ψ = c1

⎛
⎝ q∏

j=1

exp(uaj )

⎞
⎠λ

Ω, 1 < λ < 1,

where c1 is so chosen that
∫

M
Ψ = 1. S. Lang [230] (or see [235]) pointed out that

Chern correctly obtains an inequality of second main theorem type valid outside
an exceptional set with what is an inefficient error term in his formula (48). When
Chern writes, “Letting λ → 1 and using (48) we get (49),” he overlooks the fact
that the exceptional set depends on λ, and so he cannot take the limit as λ → 1
to get rid of that error term and get (49). Chern’s previous inequality is enough,
of course, to give the defect relation, which was his main purpose at the time.
Chern’s idea is however essentially correct; what one really has to do is to allow λ
to be a function in the singular volume form (see [433]).

When χ(M) < 0, the defect relation (4.8.6) means that there are no non-
constant holomorphic mappings from C into M , which is just the classic Picard
theorem. In particular, when M = E(C), we have χ(E(C)) = 0 and so (4.8.6)
implies

lim sup
r→∞

Nf (r, a)
Tf (r)

= 1

for each a ∈ E(C).

4.8.2 Complex torus

Generally, the growth of holomorphic mappings into a complex torus is described
by the following fact (cf. [302]):

Proposition 4.53. Let Cn/Λ be a complex torus with the Kähler form ψ defined by
(2.10.9). If f : Cm −→ Cn/Λ is a non-constant holomorphic mapping, then there
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exists a positive constant c such that

T (r, r0; f∗(ψ)) > cr2

holds for larger r.

Proof. There exists a lifting of f ,

f̃ = (f1, . . . , fn) : Cm −→ Cn,

satisfying p ◦ f̃ = f , where p : Cn −→ Cn/Λ is the projection. Then

T (r, r0; f∗(ψ)) = T (r, r0; ddc|f̃ |2).

It follows from (2.9.20) that

T (r, r0; f∗(ψ)) =
1
2

Cm
〈
0; r; |f̃ |2

〉
− 1

2
Cm
〈
0; r0; |f̃ |2

〉
.

By Lemma 2.40, we have

Cm
〈
0; r; |f̃ |2

〉
=
∫

Cm〈0;1〉

(
1
2π

∫ 2π

0

|f̃
(
reiϕξ

)
|2dϕ

)
σ(ξ).

Since f is not constant, there is some fj which is not constant. Let

fj(z) =
∑
k≥0

Pk(z1, . . . , zm)

be the Taylor expansion with homogeneous polynomials Pk of degree k. Then there
is some Pµ �= 0 with µ ≥ 1 and

Cm
〈
0; r; |f̃ |2

〉
≥
∫

Cm〈0;1〉

(
1
2π

∫ 2π

0

|fj

(
reiϕξ

)
|2dϕ

)
σ(ξ).

However,

1
2π

∫ 2π

0

|fj

(
reiϕξ

)
|2dϕ =

∑
k,l≥0

rk+l

2π

∫ 2π

0

e(k−l)ϕPk(ξ)Pl(ξ)dϕ

=
∑
k≥0

r2k|Pk(ξ)|2 ≥ r2µ|Pµ(ξ)|2.

Therefore

Cm
〈
0; r; |f̃ |2

〉
≥ r2µ

∫
Cm〈0;1〉

|Pµ|2σ ≥ r2

∫
Cm〈0;1〉

|Pµ|2σ,

and so Proposition 4.53 is proved. �
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By using Lemma 2.88 and Theorem 2.105, we have

Theorem 4.54. Let D be a divisor of simple normal crossings on a complex torus
Cn/Λ such that L = [D] is positive. Suppose that f : C −→ Cn/Λ is a non-constant
holomorphic mapping such that f(C) � supp(D). Then we have

‖ Tf (r, L) ≤ Nf (r, D)−NRam(r, f) +
n− 1

2
Rf (r)

+O(log+ Tf (r, L)) + O(log r). (4.8.8)

Siu and Yeung [367], [368] (or see [303]) show a stronger inequality as follows:

Theorem 4.55. Let A be an Abelian variety of complex dimension n and D be an
ample divisor in A. Inductively let k0 = 0, k1 = 1 and

kj+1 = kj + 3n−j−1{4(kj + 1)}jDn

for 1 ≤ j < n, where Dn is the Chern number of D. Then for any holomorphic
mapping f : C −→ A whose image is not contained in any translate of D,

‖ Tf (r, [D]) ≤ Nf,kn(r, D) + O(log+ Tf (r, [D])) + O(log r).

Thus Theorem 4.55 yields immediately the Lang conjecture, which was
proved by Siu and Yeung in [366]:

Theorem 4.56. Let A be an Abelian variety. Let D be an ample divisor in A.
If f : C −→ A is a non-constant holomorphic mapping, the image of f must
intersect D.

The analogues of Lang’s conjecture in number theory is the Theorem 3.39.

4.9 Hyperbolic spaces of lower dimensions

To understand Lang’s Conjecture 3.33 well, one way is to find concrete examples of
hyperbolic varieties, and further prove that they are Mordellic. In this section, we
will give some hyperbolic curves and surfaces by applying Nevanlinna theory and a
generalized Borel theorem, say, Siu-Yeung’s theorem. In particular, the important
role of Nevanlinna theory and the Borel theorem for finding hyperbolic varieties
is presented clearly.

4.9.1 Picard’s theorem

The Mordell-Faltings theorem states that on a curve of genus greater than 1 there
are only finitely many rational points. According to analogy between Diophantine
approximation and Nevanlinna theory, this curve could not contain non-constant
holomorphic curves, which is just answered by the classic Picard theorem:
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Theorem 4.57. A holomorphic mapping f : C −→ M ⊂ P2 to an irreducible
algebraic curve of genus greater than 1 must be constant.

Proof. See Green [121]. Here we give a sketchy proof according to the idea from B.
Shiffman [345]. The universal covering M̃ of M is a well-defined simply connected
Riemann surface with a canonical projection mapping π : M̃ −→ M . A lifting
mapping f̃ : C −→ M̃ of f is defined with π ◦ f̃ = f . However, the uniformization
theorem states that any simply connected Riemann surface is biholomorphically
isomorphic either to the plane C, or to the open unit disk D, or to the Riemann
sphere P1 ∼= C∪ {∞}. It follows that M̃ ∼= D since the genus of M is greater than
1. Thus Liouville’s theorem implies that f̃ is constant, and so f does. �

In fact, the converse of Theorem 4.57 is also true.

Theorem 4.58. If each holomorphic mapping f : C −→ M ⊂ P2 to an irreducible
algebraic curve is constant, then the genus of M must be greater than 1.

Proof. By the normalization (or resolution of singularity), there exist a compact
Riemann surface M̃ and a holomorphic mapping η : M̃ −→ P2 such that η(M̃) =
M , and η is one-to-one on smooth points of M . Note that M has only finitely many
singular points. Each holomorphic mapping h : C −→ M̃ induces a holomorphic
mapping h̃ = η◦h : C −→M which must be constant by the assumption. Therefore
h is constant. Thus M̃ is Kobayashi hyperbolic by Brody’s theorem [38]. Hence M̃
possesses a unique Poincaré metric (cf. [174]), that is, M̃ is conformally isomorphic
to the open unit disc in C. Hence the genus of M̃ is greater than 1. �

Let f(x, y) be an irreducible polynomial of two variables x and y over C. We
consider the algebraic curve M in P2 defined by

F (x, y, z) = zdf
(x

z
,
y

z

)
= 0,

where d is the degree of f . If there are meromorphic functions g and h on C
satisfying the equation

f(x, y) = 0, (4.9.1)

that is, f(g, h) = 0, we can find entire functions g0, g1 and g2 on C such that
g = g1/g0, h = g2/g0 and g0, g1, g2 have no common zeros. Then

F (g1, g2, g0) = gd
0f(g, h) = 0.

By Theorem 4.57, if the genus of M is greater than 1, then g and h must be con-
stant. Hence by counting the genus of a curve, for example, by using Theorem 1.82,
we may use Theorem 4.57 to distinguish algebraic curves without meromorphic
solutions. Usually it is not easy to find the genus of a general curve. Conversely,
we may use Theorem 4.58 to find hyperbolic algebraic curves, which will be done
in the sequent by using Nevanlinna theory and a generalized Borel theorem.
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Let P and Q be polynomials of respectively degree p and q with q ≥ p. We
will consider the following special affine curve

f(x, y) = P (x)−Q(y) = 0, (4.9.2)

and hence an algebraic curve

F (x, y, z) = zqP
(x

z

)
− zqQ

(y

z

)
(4.9.3)

in P2(C) is well defined.

Here we make a remark on entire solutions of (4.9.2). Assume that p and q
are coprime. If there exist two non-constant entire functions g and h on C such
that f(g, h) = 0, that is, P (g) = Q(h), we know (cf. [61], Lemma 3.6) that there
are a non-constant entire function β and two polynomials R and S of degree q and
p, respectively, such that

g = R(β), h = S(β).

Since β(C) contains an open subset of C, the identity theorem shows that

P (R) = Q(S). (4.9.4)

Further, Ritt (cf. [61], Lemma 3.7) proved that the polynomials P and Q are one
of the following cases:

(A) there exist Li ∈ Aut(C) (i = 1, . . . , 4) such that

L1 ◦ P ◦ L2 = Tp, L1 ◦Q ◦ L3 = Tq,

L−1
2 ◦R ◦ L4 = Tq, L−1

3 ◦ S ◦ L4 = Tp,

where Tp(z) = cos(p arccos z) is the Tschebyscheff polynomial.
(B) when p > q, there exist Li ∈ Aut(C) (i = 1, . . . , 4) and T ∈ C[z] such that

L1 ◦ P ◦ L2(z) = zrT (z)q, L1 ◦Q ◦ L3(z) = zq,

L−1
2 ◦R ◦ L4(z) = zq, L−1

3 ◦ S ◦ L4(z) = zrT (zq).

4.9.2 Hyperbolic curves

In this part, we study meromorphic solutions of the equation (4.9.2). Hà and Yang
[141] obtained the following result:

Theorem 4.59. Take P, Q ∈ C[z] with q ≥ p, where p = deg(P ) and q = deg(Q).
Assume that the affine curve (4.9.2) is irreducible, and has no singular points. If
q ≥ 4 and if p = q or p = q − 1, then there are no non-constant meromorphic
functions g and h on C such that P (g) = Q(h).
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Proof. Let M ⊂ P2 be the algebraic curve defined by (4.9.3). If M has a singular
point [x0, y0, z0], then z0 = 0 by our assumption. Set

P (z) =
p∑

i=0

aiz
i, Q(z) =

q∑
j=0

bjz
j

with ap �= 0, bq �= 0. If q = p, we have

∂F

∂x
(x0, y0, 0) = qaqx

q−1
0 = 0,

∂F

∂y
(x0, y0, 0) = qbqy

q−1
0 = 0,

which means x0 = 0 and y0 = 0. This is impossible. If p = q− 1, similarly we have
y0 = 0. So we may assume x0 = 1. Note that

F (1, y, z) = apz + · · ·+ a0z
q +

q∑
j=0

bjy
jzq−j .

Hence [1, 0, 0] is not a singular point. Therefore there are no singular points on M .
Assume that there are meromorphic functions g and h on C such that P (g) =

Q(h). Then we can find entire functions g0, g1 and g2 on C such that g = g1/g0,
h = g2/g0 and g0, g1, g2 have no common zeros. Note that

gq
0P

(
g1

g0

)
− gq

0Q

(
g2

g0

)
= 0.

Thus we obtain a holomorphic mapping

G = [g0, g1, g2] : C −→M.

Since the genus of M is (q − 1)(q − 2)/2 > 1, the mapping G is constant by
Theorem 4.57. Therefore g and h are constant. �

Theorem 4.59 gives conditions in which the curve (4.9.2) is hyperbolic. Note
that if q − p ≥ 2, then the curve (4.9.2) has a singular point at infinity [1, 0, 0],
which is a non-ordinary singular point of multiple q − p.

A point (c, d) ∈ C2 is a singular point of the affine algebraic curve (4.9.2) if
and only if P and Q satisfy

P (c) = Q(d), P ′(c) = Q′(d) = 0,

that is, the affine algebraic curve (4.9.2) has no singular points if and only if

{P (c) | P ′(c) = 0} ∩ {Q(d) | Q′(d) = 0} = ∅.

Yang and Li [441] gave more refined results by weakening the condition on singular
points. To introduce their results, we first strengthen the lemmas in [441] as follows:
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Theorem 4.60. Suppose that P (z) and Q(z) are respectively two polynomials of
degrees p and q with q ≥ p ≥ 2. Let S be a non-empty subset of zeros of P ′ and
let T be the set of zeros of Q′ such that P (S) ∩ Q(T ) = ∅. If there exist two
non-constant meromorphic functions g and h satisfying

P (g) = Q(h), (4.9.5)

then the inequality

lq − p

q
T (r, g) ≤ N(r, g) + log

ρT (R, g)
r(ρ− r)

+ O(1) (4.9.6)

holds for any r0 < r < ρ < R, where l =
∑

c∈S µ0
P ′(c). In particular, we have

(I) if q > p, then q−p = (p, q), S has only one element which is a simple zero
of P ′;

(II) if q = p and µ0
P ′(c) ≥ 2 for some c ∈ S, then µ0

P ′(c) = 2, S = {c};

(III) if q = p and #S ≥ 2, then #S = 2, and the elements in S are simple zeros
of P ′.

Proof. From (4.9.5), we obtain

pT (r, g) = qT (r, h) + O(1). (4.9.7)

Set n = (p, q). Then there exist two coprime integers p1 and q1 such that

p = p1n, q = q1n. (4.9.8)

Suppose that z0 is a pole of g. Then from (4.9.5), z0 is also a pole of h, and

pµ∞
g (z0) = qµ∞

h (z0),

which means
p1µ

∞
g (z0) = q1µ

∞
h (z0), q1 | µ∞

g (z0)

since p1 and q1 are relatively prime to each other. Hence the multiplicity of any
pole of g is at least q1. This implies

q1N(r, g) ≤ N(r, g). (4.9.9)

There exists a partition

S = S1 ∪ · · · ∪ Sk

such that
Sα �= ∅ (α = 1, . . . , k), Sα ∩ Sβ = ∅ (α �= β),
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and such that

P (c) = P (c′) (c, c′ ∈ Sα), P (c) �= P (c′′) (c ∈ Sα, c′′ ∈ Sβ , α �= β).

Take cα ∈ Sα. Since cα is a root of P ′(z) = 0, there exists a polynomial Rα(z)
such that

P (z)− P (cα) = Rα(z)
∏

c∈Sα

(z − c)sα,c , Rα(c) �= 0 (c ∈ Sα). (4.9.10)

Consequently,
Rα(g)

∏
c∈Sα

(g − c)sα,c = Q(h)− P (cα) . (4.9.11)

We put

l =
k∑

α=1

∑
c∈Sα

(sα,c − 1) =
∑
c∈S

µ0
P ′(c)

with l ≥ k since by definition

sα,c ≥ 2, c ∈ Sα, α = 1, . . . , k.

Since, by hypothesis, Q − P (cα) does not vanish at any zero of Q′, this implies
that it has no multiple root and hence it has a factorization

Q(z)− P (cα) = λα

q∏
j=1

(z − bα,j) ,

where bα,j are all distinct for each fixed α.
On the other hand, we claim that

bα,i �= bβ,j, (α, i) �= (β, j).

In fact, if bα,i = bβ,j for some (α, i) �= (β, j), then α �= β, and so P (cα) �= P (cβ),
therefore

Q̃ := (Q− P (cα))− (Q− P (cβ)) = const �= 0,

but since bα,i = bβ,j, we have Q̃(bα,i) = 0, a contradiction. Take

a ∈ C−Q−1(P (S)).

By Nevanlinna’s second main theorem (cf. Corollary 2.59), for any r0 < r < ρ < R,
we have

kqT (r, h) ≤
k∑

α=1

q∑
j=1

N

(
r,

1
h− bα,j

)
+ N

(
r,

1
h− a

)

+N(r, h) + log
ρT (R, h)
r(ρ− r)

+ O(1),
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or, equivalently,

kqT (r, h) ≤
k∑

α=1

N

(
r,

1
Q(h)− P (cα)

)
+ N

(
r,

1
h− a

)

+N(r, h) + log
ρT (R, h)
r(ρ− r)

+ O(1). (4.9.12)

By (4.9.11), we have

N

(
r,

1
Q(h)− P (cα)

)
≤
∑
c∈Sα

N

(
r,

1
g − c

)
+ N

(
r,

1
Rα(g)

)

≤
{

p−
∑
c∈Sα

(sα,c − 1)

}
T (r, g) + O(1).

Noting that N(r, h) = N(r, g), the above inequalities and (4.9.7) lead to

T (r, h)−N

(
r,

1
h− a

)
+

lq − p

q
T (r, g) ≤ N(r, g)+ log

ρT (R, g)
r(ρ− r)

+O(1). (4.9.13)

Hence the inequality (4.9.6) follows from (4.9.13).
By (4.9.9), we have

N(r, g) ≤ 1
q1

N(r, g) ≤ 1
q1

T (r, g). (4.9.14)

Then (4.9.13) yields

lq − p

q
T (r, g) ≤ 1

q1
T (r, g) + log

ρT (R, g)
r(ρ − r)

+ O(1), (4.9.15)

which implies that
lq − p

q
≤ 1

q1
.

Since p/q = p1/q1, the above inequality is equivalent to

lq1 ≤ p1 + 1. (4.9.16)

Now we can prove the case (I). When p < q, we also have p1 + 1 ≤ q1.
Therefore from (4.9.16) we can deduce

1 ≤ k ≤ l ≤ 1, q1 = p1 + 1.

Furthermore,
q − p = (q1 − p1)n = n = (p, q).
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Since l = 1, from (4.9.10) we see that S has only one element c which just is a
simple zero of P ′(z). The case (I) in Theorem 4.60 is proved.

Next we prove the case (II). Since q = p and c ∈ S is a multiple zero of P ′(z),
then (4.9.16) implies l = 2, and so

S = S1 = {c}, s1,c = 3, µ0
P ′(c) = 2.

Finally, we show the case (III). When q = p and #S ≥ 2, then (4.9.16)
implies l = 2, and so #S = 2. Hence the elements in S are simple zeros of P ′. �

Note that the set S in Theorem 4.60 may be a proper subset of zeros of P ′.
In particular, if S is the set of zeros of P ′, then the condition P (S)∩Q(T ) = ∅ in
Theorem 4.60 implies that the affine curve (4.9.2) has no singular points. When
q > p ≥ 2, the case (I) in Theorem 4.60 claims that the curve (4.9.2) is elliptic or
hyperelliptic (see Section 3.1). In fact, case (I) means that p = 2 and q = 3 or 4.
If q = p ≥ 3, the case (II) and (III) show that the curve (4.9.2) is of degree 3 (see
Section 4.6). If q = p = 2, Theorem 4.60 is nothing.

Corollary 4.61 ([441]). Suppose that P (z) and Q(z) are respectively two polynomi-
als of degrees p and q with q ≥ p ≥ 2. Let S be a non-empty subset of zeros of P ′

and let T be the set of zeros of Q′ such that P (S) ∩Q(T ) = ∅. Then there do not
exist non-constant meromorphic functions g and h satisfying (4.9.5) if P (z) and
Q(z) satisfy one of the following conditions:

(a) p < q, q − p �= (p, q).

(b) p < q and µ0
P ′(c) ≥ 2 for some c ∈ S.

(c) p < q and #S ≥ 2.

(d) p ≤ q, #S ≥ 2 and µ0
P ′(c) ≥ 2 for some c ∈ S.

(e) p ≤ q and #S ≥ 3.

(f) p ≤ q and µ0
P ′(c) ≥ 3 for some c ∈ S.

Thus when the affine curve (4.9.2) is irreducible, Theorem 4.58 implies that
the curve (4.9.3) has genus > 1 if P and Q further satisfy the conditions in
Corollary 4.61, that is, the curve (4.9.3) is hyperbolic. A simple example is the
Fermat curve

xd + yd = 1.

Setting
P (x) = xd, Q(y) = −yd + 1,

when d ≥ 4 the polynomials P and Q satisfy the conditions in Corollary 4.61. Also
note that the Fermat curve has the genus (d− 1)(d− 2)/2 > 1 when d ≥ 4. Thus
there are no non-constant meromorphic functions satisfying the Fermat equation,
which re-proves part of Theorem 4.38.
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Theorem 4.62. Let p and q be positive integers with p > 1, q > 1 and (p, q) �= (2, 2).
Given non-zero complex numbers A, B and C, the equation Axp − Byq = C has
only finitely many rational solutions except at most the cases

(p, q) = (2, 3), (3, 2), (3, 3), (2, 4), (4, 2). (4.9.17)

Proof. Without loss of generality, we may assume p ≤ q. Set

P (x) = Axp, Q(y) = Byq + C.

When (p, q) �= (2, 3), (3, 3), (2, 4), Corollary 4.61 implies that there exist no non-
constant meromorphic functions g and h satisfying (4.9.5). Hence the curve (4.9.3)
has genus > 1, and so Theorem 4.62 follows from Theorem 3.32. �

Take b ∈ C and set d = 6l+3 for a positive integer l. A.M. Nadel [285] proved
that if l ≥ 3, the plane curve C ⊂ P2(C) defined by

Xd + Y d + Z3(Xd−3 + Y d−3) = bZd

is hyperbolic, and that if l ≥ 2, the plane curve C ⊂ P2(C) defined by

Xd + Y d + Z3Xd−3 = bZd

is hyperbolic. In fact, taking {a, A, b} ⊂ C and setting

P (x) = xd − axd−k, Q(y) = −yd + Ayd−k + b,

if we choose a, b and A such that the sets S and T of zeros of P ′ and Q′ respectively
satisfy P (S) ∩ Q(T ) = ∅, then Yang-Li’s theorem implies that the plane curve
C ⊂ P2(C) defined by

Xd + Y d − Zk(aXd−k + AY d−k) = bZd (4.9.18)

is hyperbolic when d > k ≥ 3. As an illustration of another approach to this type
of question, we give the following result under the assumption that d > k ≥ 4.

Theorem 4.63 ([188]). Take integers d and k with d > k ≥ 4 and take {a, A} ⊂ C
such that zd + 1 = 0 and azd−k + A = 0 have no common zeros. Then for any
b ∈ C, the plane curve C ⊂ P2(C) defined by (4.9.18) is hyperbolic.

Proof. From the Picard theorem, it is sufficient to show that if there is a holomor-
phic curve

[F0, F1, F2] : C −→ P2(C)

such that
F d

1 + F d
2 − F k

0 (aF d−k
1 + AF d−k

2 ) = bF d
0 ,

then it must be constant. We may assume that F0, F1 and F2 have no common
zeros.
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If F2 = 0, we have

F d
1 − F k

0 (aF d−k
1 + bF d−k

0 ) = 0.

Obviously, F1 = 0 if F0 = 0. This is impossible. If F0 �= 0, we have(
F1

F0

)d

− a

(
F1

F0

)d−k

= b,

which implies that F1/F0 must be a constant, and so the holomorphic curve
[F0, F1, F2] = [1, F1/F0, 0] is constant. Assume that F2 �= 0 and write

g =
F1

F2
, h =

F0

F2
.

Then the meromorphic functions g, h in C satisfy

gd − hk(agd−k + bhd−k + A) = −1. (4.9.19)

It is sufficient to show that g and h are constant.
First of all, we show that one of g and h is constant. Assume, to the contrary,

that g and h are non-constant. When k ≥ 4 Theorem 4.34 means that the functions
gd and hk(agd−k + bhd−k + A) are linearly dependent. Then there is an element
c ∈ C− {0} such that

hk(agd−k + bhd−k + A) = cgd,

and hence (1− c)gd = −1. This is a contradiction since g is non-constant.
Hence one of g and h is constant. Obviously, (4.9.19) means that g is constant

if h is constant. If g = c is a constant, then

bhd + (acd−k + A)hk = cd + 1,

which implies that h also is constant since at least one of cd + 1 and acd−k + A is
not zero. �

4.9.3 Hyperbolic surfaces

In Section 4.9.2, we introduce two methods for finding hyperbolic curves based on
the classic Picard theorem. In higher-dimensional spaces, we may use the Brody
theorem (cf. Theorem 2.26) to seek hyperbolic varieties. Here we introduce some
examples in this direction.

Take positive integers d, k with d− k ≥ 2 and take a ∈ C−{0} such that the
equation

zd − azd−k + 1 = 0
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has no multiple roots, that is,

ad �= cd,k =
dd

kk(d− k)d−k
.

Nadel [285] proved the following result:

Theorem 4.64. Let e ≥ 3 be an integer and take k = 3, d = 6e+3. Further assume
that the non-zero complex number a satisfies

a
d
3 �∈

{
3
√

cd,3,
1
2

3
√

cd,3

}
.

The surface M ⊂ P3(C) defined by

Xd + Zd + W d + Y 3(Y d−3 − aXd−3 − aW d−3) = 0

is hyperbolic.

Siu and S.K. Yeung [367] proved that when d ≥ 11, the surface in P3(C)
defined by

Xd + Zd + W d + Y d−2(Y 2 − a0X
2 − a1Z

2 − a2W
2) = 0

is hyperbolic if

ad
i �= (−1)d+1ad

j (i �= j), ad
j �= cd,2 (0 ≤ j ≤ 2).

R. Brody and M. Green [39] proved that the surface of P3(C) defined by

Xd + Zd + W d + Y k(Y d−k − aXd−k − bZd−k) = 0 (4.9.20)

is hyperbolic for even degree d = 2k ≥ 50 and for generic a, b ∈ C − {0}. Based
on this example, K. Azukawa and M. Suzuki [8] constructed a smooth hyperbolic
curve of P2(C) in which complement is hyperbolic. Related to this kind of surfaces,
we prove the following results:

Theorem 4.65 ([188]). Take b ∈ C−{0} and take (a0, a1, a2) ∈ C3−{0} satisfying
the following conditions:

(i) zd − b = 0 and a1z
d−k + a0 = 0 have no common zeros;

(ii) zd − b = 0 and a2z
d−k + a0 = 0 have no common zeros;

(iii) zd + 1 = 0 and a2z
d−k + a1 = 0 have no common zeros.

If d > k ≥ 9, then the surface in P3(C) defined by

Xd + Zd + Y k(Y d−k − a0W
d−k − a1X

d−k − a2Z
d−k) = bW d

is hyperbolic.
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Proof. From a theorem due to Brody (cf. Theorem 2.26), it is sufficient to show
that if there is a holomorphic curve

[F0, F1, F2, F3] : C −→ P3(C)

such that

F d
1 + F d

3 + F k
2 (F d−k

2 − a0F
d−k
0 − a1F

d−k
1 − a2F

d−k
3 ) = bF d

0 ,

then it must be constant. We may assume that F0, F1, F2 and F3 have no common
zeros.

If F0 = 0, we have

F d
1 + F d

2 + F d
3 − F k

2 (a1F
d−k
1 + a2F

d−k
3 ) = 0.

If F2 = 0, then F1 �= 0 and F3/F1 is constant. Hence the holomorphic curve
[F0, F1, F2, F3] is constant, and we are done. Assume that F2 �= 0 and set

G =
F1

F2
, H =

F3

F2
.

Then we obtain
Gd + Hd − (a1G

d−k + a2H
d−k) = −1.

If G is non-constant, then H also is non-constant. When k ≥ 9, Theorem 4.34
implies that Gd, Hd and 1 are linearly dependent, that is, there is (b0, b1, b2) ∈
C3 − {0} such that

b1G
d + b2H

d = b0.

Theorem 4.38 implies that b0 = 0, and so H = cG for some c ∈ C− {0}. Thus we
have

(cd + 1)Gd − (a2c
d−k + a1)Gd−k = −1,

which implies that G is constant since (cd + 1, a2c
d−k + a1) ∈ C2 − {0} according

to our assumption. This is a contradiction. Hence G is constant, and so H also is
constant. We are done.

Assume that F0 �= 0 and write

g =
F1

F0
, h =

F2

F0
, f =

F3

F0
.

Then meromorphic functions g, h, f in C satisfy

gd + fd + hk(hd−k − a1g
d−k − a2f

d−k − a0) = b. (4.9.21)

It is sufficient to show that g, h and f are constant.
First of all, we show that at least one of g, h and f is constant. Assume, to the

contrary, that g, h and f all are non-constant. When k ≥ 9, Theorem 4.34 implies
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that gd, fd and b are linearly dependent, that is, there is (c0, c1, c2) ∈ C3 − {0}
such that

c1g
d + c2f

d = c0.

Theorem 4.38 implies that c0 = 0, and so f = cg for some c ∈ C − {0}. Then
(4.9.21) has the form

(cd + 1)gd + hk(hd−k − (a1 + a2c
d−k)gd−k − a0) = b.

If cd+1 �= 0, then Theorem 4.34 implies that (cd+1)gd and b are linearly dependent,
that is, g is constant. This is a contradiction. Hence cd+1 = 0, and so a1+a2c

d−k �=
0. Since

hd − hk((a1 + a2c
d−k)gd−k + a0) = b,

Theorem 4.34 again implies that hd and b are linearly dependent, that is, h is
constant. This is a contradiction. Hence at least one of g, h and f is constant.

Assume that g = c is a constant. If h also is a constant, then (4.9.21) means
that f is constant, and we are done. Assume, to the contrary, that h is non-
constant. Then f also is non-constant. The equation (4.9.21) has the form

fd + hk(hd−k − a2f
d−k − a1c

d−k − a0) = b− cd. (4.9.22)

It follows that cd − b = 0 from Theorem 4.34. Thus we have

fd + hd = hk(a2f
d−k + a1c

d−k + a0).

Since a1c
d−k + a0 �= 0, Theorem 4.34 implies that f = ĉh for some ĉ ∈ C − {0},

and hence
(ĉd − a2ĉ

d−k + 1)hd = hk(a1c
d−k + a0),

which means that h is constant. This is a contradiction.
Assume, to the contrary, that g is not a constant. If h is not a constant, then

f must be a constant c. Now the equation (4.9.21) has the form

gd + hk(hd−k − a1g
d−k − a2c

d−k − a0) = b− cd.

A contradiction follows according to the proof related to the equation (4.9.22).
Hence h must be a constant c.

Now f is not a constant, otherwise, it follows that g is a constant. Thus
(4.9.21) becomes

gd + fd − ck(a1g
d−k + a2f

d−k) = b− cd + a0c
k. (4.9.23)

Theorem 4.38 implies that c �= 0. Further, by Theorem 4.38 and Theorem 4.34,
we can prove f = c̃g for some c̃ ∈ C− {0}. Thus we obtain

(c̃d + 1)gd − ck(a1 + a2c̃
d−k)gd−k = b− cd + a0c

k
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which implies that g is constant since

(c̃d + 1, a1 + a2c̃
d−k) ∈ C2 − {0}.

This is a contradiction. Therefore g, h and f all are constant. �

In [188], we also constructed other hyperbolic surfaces of lower degrees and
hyperbolic hypersurfaces in P4(C) by using the above methods, say,

Theorem 4.66. Take positive integers d and k with d > k and 2k ≥ d + 16. Take
complex numbers b, ai and bi for i = 0, 1, 2, 3 with b �= 0 and a2b2 �= 1 satisfying
the following conditions:

(1) zd + 1 = 0 and a1z
d−k + a0 = 0 have no common zeros

(2) zd + 1 = 0 and b1z
d−k + b0 = 0 have no common zeros;

(3) zd − b0z
k + 1 = 0 and a2z

d−k + a0 = 0 have no common zeros;
(4) zd − a0z

k + 1 = 0 and b2z
d−k + b0 = 0 have no common zeros;

(5) zd − b = 0 and a1z
d−k + a3 = 0 have no common zeros;

(6) zd − b = 0 and (a1 + b1a2)zd−k + a2b3 + a3 = 0 have no common zeros;
(7) zd − b = 0 and b1z

d−k + b3 = 0 have no common zeros;
(8) zd − b = 0 and (b1 + a1b2)zd−k + b2a3 + b3 = 0 have no common zeros;
(9) xd + yd = b, a0x

d−k + a1y
d−k + a3 = 0 and b0x

d−k + b1y
d−k + b3 = 0 have

no common zeros;
(10) zd + 1 = 0 and (a1 + b1a2)zd−k + b0a2 + a0 = 0 have no common zeros;
(11) zd − a3z

k − b = 0 and b2z
d−k + b3 = 0 have no common zeros;

(12) zd + 1 = 0 and (b1 + a1b2)zd−k + a0b2 + b0 = 0 have no common zeros;
(13) zd − b3z

k − b = 0 and a2z
d−k + a3 = 0 have no common zeros.

Then the hypersurface in P4(C) defined by

bV d = Xd + Y k(Y d−k − a0W
d−k − a1X

d−k − a2Z
d−k − a3V

d−k)
+Zk(Zd−k − b0W

d−k − b1X
d−k − b2Y

d−k − b3V
d−k) + W d

is hyperbolic.

For example, take non-zero complex numbers b, a0, b0, a3 and b3 such that
a3/a0 �= b3/b0 and set

a1 = a2 = b1 = b2 = 0.

When d > k and 2k ≥ d + 16, the conditions in Theorem 4.66 are satisfied, and
so the hypersurface in P4(C) defined by

bV d = Xd + Y k(Y d−k − a0W
d−k − a3V

d−k)
+Zk(Zd−k − b0W

d−k − b3V
d−k) + W d

is hyperbolic.
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4.9.4 Uniqueness polynomials

We make a remark on the equation (4.9.2). Related to finding non-constant mero-
morphic solutions of (4.9.2), we hope to characterize the polynomials P and Q such
that if (4.9.2) has non-constant meromorphic solutions (x, y) = (g, h), then it must
be the case that g = h. If P and Q are such two polynomials, then P (g) = Q(g)
means

pT (r, g) = qT (r, g) + O(1),

and so p = q since T (r, g)→∞ as r →∞. Further, by comparing the multiplicity
of zeros of P (g) and Q(g), it is not difficult to show that Q = λP for some
λ ∈ C∗. Hence the question turns to characterizing a polynomial P such that if
P (g) = λP (h) holds for non-constant meromorphic functions g, h and some non-
zero constant λ, then g = h. Such a polynomial P is called a strong uniqueness
polynomial of meromorphic functions or a uniqueness polynomial for the case λ =
1. Similarly, we may define (strong) uniqueness polynomials of n variables with
respect to a family of non-constant meromorphic mappings [1, f1, . . . , fn] into a
complex projective space Pn(C).

Theorem 4.67 ([4]). Let P be a polynomial of degree n over C and

P ′(z) = c(z − c1)m1 · · · (z − cl)ml ,

where c is a non-zero constant and

ci �= cj , P (ci) �= P (cj), 1 ≤ i �= j ≤ l.

Then P is a uniqueness polynomial for rational functions if and only if l ≥ 3,
or l = 2 and min{m1, m2} ≥ 2. Further, P is a strong uniqueness polynomial for
rational functions if and only if no non-trivial affine transformation of C preserves
the set of zeros of P and one of the following conditions is satisfied.

(α) l ≥ 3, except when n = 4, m1 = m2 = m3 = 1 and

P (c1)
P (c2)

=
P (c2)
P (c3)

=
P (c3)
P (c1)

= ω, ω2 + ω + 1 = 0;

(β) l = 2 and min{m1, m2} ≥ 2.

Theorem 4.68 ([4]). Let P be a polynomial of degree n over C and

P ′(z) = c(z − c1)m1 · · · (z − cl)ml ,

where c is a non-zero constant and

ci �= cj , P (ci) �= P (cj), 1 ≤ i �= j ≤ l.

Then P is a uniqueness polynomial for meromorphic functions if and only if one
of the following conditions is satisfied:
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(γ) l ≥ 3, except when n = 4, m1 = m2 = m3 = 1;
(δ) l = 2 and min{m1, m2} ≥ 2 except when n = 5, m1 = m2 = 2.

Further, P is a strong uniqueness polynomial for meromorphic functions if and
only if no non-trivial affine transformation of C preserves the set of zeros of P
and one of the conditions (γ) and (δ) is satisfied.

For more general equations, we mention a result due to Osgood. Let n ≥ 1
and suppose that F (y, y1, . . . , yn) is a not identically zero irreducible polynomial
in the variables indicated, where the coefficients of F are meromorphic functions.
Let g, g1, . . . , gn be n + 1 meromorphic functions. Suppose that each coefficient,
say a, of F satisfies

T (r, a) = o (max{T (r, g), T (r, gi)}) .

Let n(r, g1, . . . , gn) be the number of distinct poles of the functions g1, . . . , gn,
occurring in the disc of radius r centered at the origin, where each pole is counted
with the highest multiplicity occurring among the functions in {g1, . . . , gn}. Write

G(z) = max
0≤i≤n

|gi(z)|,

where g0 = 1, and define

T (r, g1, . . . , gn) =
∫ r

r0

n(t, g1, . . . , gn)
t

dt +
1
2π

∫ 2π

0

log+ G
(
re2πiθ

)
dθ.

C. F. Osgood [312] claimed the following result:

Theorem 4.69. Let F and g, g1, . . . , gn be as above. Let M denote the total degree
of F in y1, . . . , yn. Suppose that on a sequence of r values tending to infinity one
has the limit

lim
r

T (r, g1, . . . , gn)
T (r, g)

= µ < ∞.

If degy F > nµM , then F (g, g1, . . . , gn) �≡ 0.

4.10 Factorization of functions

After being influenced by the unique factorization of integers into prime factors,
P.C. Rosenbloom, F. Gross and C.C. Yang defined prime (or pseudo-prime) mero-
morphic functions, and tried to comprehend the uniqueness of factorization of
meromorphic (or entire) functions in the sense of composition. However, the case
of functions is very complicated. Some basic questions are not clear. Here we ex-
hibit this topic roughly.

A meromorphic function F on C is said to have a (meromorphic) factorization
if there exist two meromorphic functions f and g on C with F = f ◦ g. Here f and
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g are called respectively a left factor and a right factor of F . To make f ◦ g well
defined, we have to assume that the left factor f is rational if the right factor g
has poles, and that g is entire if f is transcendental. Following P.C. Rosenbloom,
the function F is called prime (resp., pseudo-prime) if every factorization f ◦ g of
F implies either f ∈ Aut(P1) (resp., f ∈ C(z)) or g ∈ Aut(P1) (resp., g ∈ C(z)).
Thus when F is prime, we obtain only trivial factorizations. The function F is left
(resp., right) prime if left (resp. right) factors are in Aut(P1) when right (resp.,
left) factors are transcendental. Similarly, we can define left (resp., right) pseudo-
primeness.

Usually, for entire functions we also use the following definition. An entire
function F is called E-prime (resp., E-pseudo-prime) if every entire factorization
f ◦ g of F , that is, f and g are entire, implies either f ∈ Aut(C) (resp., f ∈ C[z])
or g ∈ Aut(C) (resp., g ∈ C[z]). We also can define left (resp., right) E-prime or
E-pseudo-prime.

Lemma 4.70 (Clunie). Let f be a transcendental meromorphic function on C and
let g be a non-constant entire function on C. Then

lim
r→∞

T (r, f ◦ g)
T (r, g)

=∞.

Theorem 4.71 (Gross). A transcendental non-periodic entire function is prime if
and only if it is E-prime.

Proof. The necessity is trivial. Let F be a transcendental non-periodic entire func-
tion on C. Next we assume that F is E-prime and assume, to the contrary, that
F is not prime. Thus F has a factorization f ◦ g such that f, g �∈ Aut(P1), and f
is a meromorphic function on C with poles.

First of all, we suppose that f is transcendental, and so g must be entire.
Then f and g must be of the following forms:

f(ξ) = (ξ − a)−nf0(ξ), g(z) = a + eα(z),

where n is a positive integer, f0 is a transcendental entire function, and α is a
non-constant entire function. Hence we obtain

F (z) = f ◦ g(z) = e−nα(z)f0

(
a + eα(z)

)
= f1 ◦ α(z),

where
f1(ξ) = e−nξf0

(
a + eξ

)
is a non-constant entire function. We claim f1 �∈ Aut(C), otherwise there exists
(b, c) ∈ C2 − {0} such that f1(ξ) = bξ + c. Set g0(ξ) = a + eξ. Then

T (r, f0 ◦ g0) = T
(
r, enξ(bξ + c)

)
≤ nT

(
r, eξ

)
+ O(log r),
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and hence

lim sup
r→∞

T (r, f0 ◦ g0)
T (r, g0)

≤ n.

This is impossible by Lemma 4.70. Therefore α ∈ Aut(C) since F is E-prime, which
means that g is a periodic function, and so F is as well. This is a contradiction.

Next assume that f is rational. If g is entire, we can derive a contraction as
above. Assume that g has poles. We distinguish two cases as follows:

(I) f has a pole at a. Then f and g assume the following forms:

f(ξ) = (ξ − a)−nPm(ξ), g = a +
1
β

,

where n is a positive integer, Pm is a polynomial of degree m, and β is a transcen-
dental entire function with zeros. Then

F = f ◦ g = βnPm

(
a +

1
β

)
= P ∗ ◦ β,

which implies m ≤ n since F is entire, where

P ∗(ξ) = ξnPm

(
a +

1
ξ

)
∈ C[ξ].

Note that P ∗ �∈ Aut(C) since f �∈ Aut(P1). Then β ∈ Aut(C) since F is E-prime.
This is impossible because g is transcendental.

(II) f has two distinct poles a and b. Then f and g assume the following
forms:

f(ξ) = (ξ − a)−n(ξ − b)−mQk(ξ), g = a +
1
β

, g = b +
1
γ

,

where n, m are positive integers, Qk is a polynomial of degree k, and β, γ are
two transcendental entire functions with zeros. Then

F = f ◦ g =
βn+m

{1 + (a− b)β}m
Qk

(
a +

1
β

)
= Q∗ ◦ β,

where

Q∗(ξ) =
ξn+m

{1 + (a− b)ξ}m
Qk

(
a +

1
ξ

)
∈ C(ξ).

We can show k ≤ n + m, and also obtain a contradiction according to the proof
of the first part. �

It is well known that if a (�= 0) and b are constant, and if P is a non-constant
polynomial, then eaz+b + P (z) is prime. The function cos z is pseudo-prime. The
non-trivial factorizations f ◦ g of cos z have only the following three forms:
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(i) f(ξ) = cos
√

ξ, g(z) = z2;

(ii) f(ξ) = Tn(ξ) = cos(n arccos ξ), g(z) = cos z
n , where Tn is the Tschebyscheff

polynomial of degree n (≥ 2);

(iii) f(ξ) = 1
2 (ξn + ξ−n), g(z) = e

√−1z
n , n ∈ Z− {0}.

Further, N. Steinmetz [371] obtained the following result:

Theorem 4.72. Take a positive integer n and let w = w(z) be a transcendental
meromorphic function on C satisfying the differential equation

w(n) + A1w
(n−1) + · · ·+ An−1w

′ + Anw + An+1 = 0,

where Aj (j = 1, . . . , n + 1) are rational functions. Then w is pseudo-prime.

Let π(x) be the number of primes ≤ x. Then π(x) → +∞ as x → +∞
(Euclid). C.F. Gauss conjectured

lim
x→+∞

π(x) log x

x
= 1. (4.10.1)

At almost the same time (1896), J. Hadamard and Ch. de la Vallée-Poussin proved
(4.10.1) which now is called the prime number theorem.

The prime number theorem gives a class of density of prime numbers dis-
tributed in real numbers. A natural question is how to describe the qualitative or
quantitative distribution of prime meromorphic (resp. entire) functions in M(C)
(resp., A(C))? For example, there is the compact-open topology on M(C). Are
prime meromorphic functions dense in M(C) under the topology?

We can define the C0-topology of M(C) as follows. Let χ be the distance
function on P1 ∼= C ∪ {∞} defined by (1.5.6). For f, g ∈ M(C), set

χ(f, g) = sup
z∈C

χ(f(z), g(z)).

It is easy to see that χ is a metric onM(C). The topology generated by the metric
χ is called the C0-topology of M(C). Given f ∈ M(C), let Bf (x) be the closed
ball of center f and radius x in M(C). We hope to know the density of prime
meromorphic functions in Bf (x) under the C0-topology. Related to the above
questions, we introduce a result due to Noda. The following two lemmas will be
needed:

Lemma 4.73 (Ozawa). Let F be a transcendental entire function on C such that
the inequality

N

(
r,

1
F ′

)
> λT (r, F ′)
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holds in a subset of R+ with infinite measure, where λ is a positive constant.
Assume that for any constant c, the system of equations{

F (z) = c,

F ′(z) = 0
(4.10.2)

has only finitely many solutions. Then F is left E-prime.

Lemma 4.74. If f is a transcendental entire function on C, then there exists a
countable subset S in C such that for any c ∈ C, a ∈ C − S, the system of
equations {

f(z)− az = c,

f ′(z)− a = 0
(4.10.3)

has at most one solution.

Theorem 4.75 (Noda). If f is a transcendental entire function on C, then the set

Ef = {a ∈ C | f(z)− az is not prime}

is countable.

Proof. Take λ ∈ R with 0 < λ < 1
2 . By Lemma 4.74 and the second main theorem,

there exists a countable subset S in C such that Lemma 4.74 holds, and for a �∈ S,
the inequality

N

(
r,

1
f ′ − a

)
> λT (r, f ′) (4.10.4)

holds in a subset of R+ with infinite measure. Thus Lemma 4.73 implies that
f(z)− az (a �∈ S) is left E-prime.

Next we consider an entire factorization

f(z)− az = g(P (z)),

where P is a polynomial of degree d ≥ 2, g is a transcendental entire function on
C. Since

f ′(z)− a = g′(P (z))P ′(z),

so the inequality (4.10.4) implies that g′ has infinitely many zeros, say, {wn}∞n=1.
We may choose n sufficiently large such that P (z) = wn has d distinct roots which
also satisfy the equation system{

f(z)− az = g(wn),
f ′(z)− a = 0.

This is in contradiction with Lemma 4.74. Hence f(z)− az (a �∈ S) is E-prime.
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Finally, we prove that f(z)− az (a �∈ S) is prime. First of all, we claim that
f(z)−az is non-periodic except for at most one exceptional value a in C. Assume,
to the contrary, that there are two distinct values a, b ∈ C such that f(z) − az
and f(z)− bz are periodic with periods µ and ν, respectively. Then µ and ν also
are periods of f ′. Hence µ/ν is real, and so f(z)− az and f(z)− bz are bounded
on the line {tµ | t ∈ R}. That is impossible. Hence Theorem 4.75 follows from
Theorem 4.71. �

In 1742, C. Goldbach proposed the following conjecture in a letter to L. Euler:
Each even number (≥ 6) can be expressed as a sum of two odd primes. If f is a
transcendental entire function on C, by Theorem 4.75 we can choose a ∈ C− {0}
such that

p1(z) =
1
2
{f(z)− az}, p2(z) =

1
2
{f(z) + az}

are prime. Thus we have f = p1 + p2, which is a version of Goldbach’s conjecture
for entire functions.

Finally we consider the question on uniqueness of factorization of entire func-
tions. If a is a positive integer, we know that there are distinct primes p1, . . . , pn

and positive integers l1, . . . , ln such that

a = pl1
1 · · · pln

n .

The factorization is unique up to the ordering of the primes pi. However, for entire
functions, the case is much more complicated.

Let p1, p2, p3, . . . denote the sequence of primes 2, 3, 5, . . . and set

an = p1 · · · pn, Pn(z) = zpn .

However, for n ≥ 2, the polynomial

F (z) = zan (4.10.5)

has many factorizations
F = Pi1 ◦ Pi2 ◦ · · · ◦ Pin

independent of the ordering of factors, where (i1, . . . , in) is a permutation of
(1, . . . , n).

For a prime p, the function

F (z) = zpezp

(4.10.6)

has two factorizations
F = P ◦ f1 = f2 ◦ P

into prime entire functions

P (z) = zp, f1(z) = ze
zp

p , f2(z) = zez.
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The example shows that we have to consider the ordering of factors in factoriza-
tions of functions. Thus we define the notation of unique factorization of entire
functions as follows:

Definition 4.76. Two entire functions f and g are called equivalent if there are
L1, L2 ∈ Aut(C) such that g = L1 ◦ f ◦ L2. A transcendental entire function F is
called uniquely factorizable if any two factorizations

F (z) = f1 ◦ f2 ◦ · · · ◦ fm

and
F (z) = g1 ◦ g2 ◦ · · · ◦ gn

into non-linear prime entire factors mean that m = n, and that fj is equivalent to
gj for each j = 1, . . . , n. The unique number n is called the length of factorization
of F .

According to the definition, the functions F in (4.10.6) and (4.10.5) are not
uniquely factorizable. Generally, if any two factorizations of an entire function F
into non-linear prime entire factors have the same length, and if the corresponding
factors are equivalent up to an interchangeable factorization, F may be called
universally uniquely factorizable, for example, the function in (4.10.5) is. However,
the problem of studying universally uniquely factorizable entire functions becomes
more difficult. Urabe [403], Urabe and Yang [404] and Ozawa [315] gave many
examples of uniquely factorizable entire functions of length 2 or 3.

To further understand the complication of factorization of entire functions,
we check more examples. For any n ≥ 1, we have factorizations

ez = P1 ◦ · · · ◦ Pn ◦ e
z

an , (4.10.7)

that is, ez can not be factored into a composition of finitely many prime entire
functions.

The following example is even stranger. The function

F (z) = (sin z)2e2 cos z (4.10.8)

has a finite factorization
F = P1 ◦ f

into two prime entire functions

P1(z) = z2, f(z) = sin zecos z ,

but it also has factorizations

F (z) = g ◦Q◦n ◦ cos
z

3n
, n = 1, 2, . . . ,
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where Q◦n means the nth composition of Q, and where

g(z) = (1− z2)e2z , Q(z) = 4z3 − 3z.

Ng ([297], [298]) confirms that there are convergent infinite compositions of
prime entire factors by proving the following result: There exists a sequence of
positive real numbers c1, c2, . . . such that the sequence of functions

gn ◦ · · · ◦ g1, n = 1, 2, . . . (4.10.9)

converges uniformly on compact subsets to an entire function F , where

gn(z) = cnez + z.

Furthermore, for each n ∈ Z+, there exists some entire function Fn such that

F = Fn ◦ gn ◦ · · · ◦ g1.

Based on the above examples, to make the uniquely factorizable problem
of entire functions more challenging, we have to rule out polynomial factors and
restrict to factorizations of finitely many transcendental prime entire functions.
Thus we make the following definition. A factorization of an entire function is
called canonical if it is a composition of finitely many transcendental prime entire
factors. Related to the definitions, the following problems are interesting:

Problem 4.77. Let f and g be two transcendental prime entire functions such that
f ◦ g = g ◦ f . Is it true that f and g must be equivalent to each other?

Problem 4.78. Do any two canonical factorizations of a transcendental entire func-
tion have the same length?

Problem 4.79. If a transcendental entire function F has an canonical factorization,
is F uniquely factorizable?

Entire functions admit other kinds of factorizations. For example, the entire
function

F (z) = eez+e−z

(4.10.10)

has a factorization
F = f ◦ g

into two functions
f(z) = ez+ 1

z , g(z) = ez

such that f is defined only on the image g(C) = C − {0} of g, that is, is defined
in the complement of Picard values of g. Such factorization will be referred as
a right entire factorization. Generally, if an entire function F has a right entire
factorization f ◦g, that is, g is entire and f is a non-constant holomorphic function
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in the region consisting of the complex plane minus any possible value omitted
by g, then we call g a right factor of F in the sense of Eremenko and Rubel (cf.
[93]). Obviously, if g has no finite Picard value, then f also is entire, and so a
right entire factorization becomes an entire factorization. A natural question is to
determine a class of entire functions such that any right factor of each function in
this family has no finite Picard value.

For entire functions g and F on C, define g ≤ F if g(z) = g(w) implies
F (z) = F (w), z, w ∈ C. Eremenko and Rubel (cf. [93]) show that g ≤ F if and
only if g is an Eremenko-Rubel right factor of F . Thus the non-constant entire
functions on C have been made into a lattice. It is natural to ask about greatest
lower bounds within this lattice. For a family {Fα} of entire functions, we say that
g is a common right factor of {Fα} in the sense of Eremenko and Rubel if Fα has
a right entire factorization of the form fα ◦ g for each α. A non-constant entire
function g on C is said to be a (strong) greatest common right factor of {Fα} if
g ≤ Fα for all α, and if h ≤ Fα for all α implies h ≤ g.

Theorem 4.80 ([93]). Any family of non-constant entire functions of one complex
variable has a (unique) strong greatest common right factor.

4.11 Wiman-Valiron theory

In this part, we introduce the main methods in classic Wiman-Valiron theory.
This will deliver the historical background of methods we used in Chapter 5.
Some problems will be presented.

Take f ∈ A(C) and write

f(z) =
∞∑

n=0

anzn. (4.11.1)

For r > 0, we can define the maximum term:

µ(r, f) = max
n≥0

|an|rn,

and the central index:

ν(r, f) = max
n≥0

{n | µ(r, f) = |an|rn}.

We also define

µ(0, f) = lim
r→0+

µ(r, f), ν(0, f) = lim
r→0+

ν(r, f).

Proposition 4.81. If f is a non-constant entire function on C, then µ(r, f) is a
continuous increasing function such that µ(r, f) →∞ as r →∞.
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Corresponding to the Jensen formula (2.3.11), one has the following Valiron
formula:

Theorem 4.82 ([405]). For the entire function f defined by (4.11.1), one has

log µ(r, f) = log |aν(0,f)|+
∫ r

0

ν(t, f)− ν(0, f)
t

dt + ν(0, f) log r. (4.11.2)

Proof. According to the definition of central index, we may assume ν(t, f) = νk−1

for t ∈ [rk−1, rk) (k = 1, 2, . . . ), where

0 ≤ ν0 < ν1 < · · · , 0 = r0 < r1 < · · · .

Thus we have
µ(t, f) = |aνk−1 |tνk−1 , t ∈ [rk−1, rk).

Set

µ(t) =
µ(t, f)

tν0
.

Then we have

µ′(t) = (νk−1 − ν0)|aνk−1 |tνk−1−ν0−1 =
ν(t, f)− ν(0, f)

t
µ(t), t ∈ [rk−1, rk).

Since µ(t, f) is continuous, and so is µ(t), we obtain

log µ(r) − log µ(0) =
∫ r

0

µ′(t)
µ(t)

dt =
∫ r

0

ν(t, f)− ν(0, f)
t

dt,

and so the formula (4.11.2) follows. �

Fix r0 > 0 and set

N(r, f = 0) =
∫ r

r0

ν(t, f)
t

dt.

Then the formula (4.11.2) assumes the form

N(r, f = 0) = log µ(r, f)− log µ(r0, f). (4.11.3)

Next we assume f ∈ M1(C). Then according to Nevanlinna’s factorization
theorem (cf. [151]), there exist g, h ∈ A1(C) such that g and h have no common
zeros, and f = g/h. Thus for r > 0, the quotient

µ(r, f) =
µ(r, g)
µ(r, h)

(4.11.4)

is well defined. Take a ∈ C ∪ {∞}. Write

ν (r, f = a) =
{

ν(r, g − ah), if a ∈ C;
ν(r, h), if a = ∞, (4.11.5)
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and set
N(r, f = a) =

∫ r

r0

ν(t, f = a)
t

dt. (4.11.6)

We also define

m(r, f = a) =

{
log+ µ

(
r, 1

f−a

)
, if a ∈ C;

log+ µ(r, f), if a = ∞.
(4.11.7)

A characteristic function of f can be defined as follows:

∗
T (r, f) = m(r, f = ∞) + N(r, f = ∞). (4.11.8)

Applying the formula (4.11.3) to g and h respectively and then minus each
other, we obtain

N(r, f = 0)−N(r, f =∞) = log µ(r, f)− log µ(r0, f), (4.11.9)

which implies
∗
T

(
r,

1
f

)
=

∗
T (r, f)− log µ(r0, f). (4.11.10)

When a ∈ C, applying (4.11.9) to f − a and noting that

|µ(r, f − a)− µ(r, f)| ≤ |a|, µ

(
r,

1
f − a

)
=

1
µ(r, f − a)

,

we obtain
m(r, f = a) + N(r, f = a) =

∗
T (r, f) + O(1). (4.11.11)

For two distinct a, b ∈ C, it is not difficult to show that

∗
T

(
r,

f − b

f − a

)
=

∗
T (r, f) + O(1). (4.11.12)

On the other hand, we have

max{log µ(r, g), log µ(r, h)} = max {log µ(r, f), 0}+ log µ(r, h)
= m(r, f =∞) + log µ(r, h)
= m(r, f =∞) + N(r, f =∞) + log µ(r0, h),

that is,
∗
T (r, f) = max{log µ(r, g), log µ(r, h)} − log µ(r0, h).

Further, by the formula (4.11.3), we obtain

∗
T (r, f) = max{N(r, f = 0), N(r, f = ∞)}+ O(1). (4.11.13)
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By using (4.11.12) and (4.11.13), we can prove

∗
T (r, f) = max{N(r, f = a), N(r, f = b)}+ O(1) (4.11.14)

for any distinct a, b ∈ C ∪ {∞}.

In particular, we consider a non-constant polynomial

P (z) = a0 + a1z + · · ·+ anzn

with an �= 0. Set

rP = max
{
|a0|
|an|

,
|a1|
|an|

, . . . ,
|an|
|an|

, λ

}
,

where λ is the maximal absolute value of roots of P . Then when r ≥ rP , we have

ν(r, P ) = n

(
r,

1
P

)
= n.

Problem 4.83. Is there a real number rf such that when r ≥ rf , the relation

ν(r, f) = n
(
r, 1

f

)
holds for f ∈ A1(C)?

If Problem 4.83 is sure, naturally we can confirm the following question:

Problem 4.84. Given a non-constant meromorphic function f ∈ M1(C) and take
a ∈ C ∪ {∞}. Find sharp relations between N

(
r, 1

f−a

)
and N(r, f = a), say,

N(r, f = a) = N

(
r,

1
f − a

)
+ O(1).

We make a few remarks for a transcendental f ∈ A1(C). It is well known
that (cf. [154])

lim sup
r→∞

log log µ(r, f)
log r

= lim sup
r→∞

log ν(r, f)
log r

= ρ (4.11.15)

where ρ = Ord(f), and (cf. [151])

lim sup
r→∞

log n
(
r, 1

f

)
log r

= ρ. (4.11.16)

The limits (4.11.15) and (4.11.16) give part of the evidence for the solution of
Problem 4.83.

In 1908 Littlewood and Lindelöf conjectured independently that when
0 ≤ ρ < 1,

lim sup
r→∞

log m(r)
log M(r)

≥ cosπρ, (4.11.17)
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where
M(r) = max

0≤θ<2π

∣∣f (reiθ
)∣∣ , m(r) = min

0≤θ<2π

∣∣f (reiθ
)∣∣ ,

and this was later proved independently by Wiman and Valiron; closely allied
results have occupied the attention of many authors since (cf. [52], [396]).

When ρ < 1
2 , it follows that there exists a sequence {rn} tending to +∞ such

that

lim
n→∞

log m(rn)
log M(rn)

≥ cosπρ > 0,

which means that
∣∣f (rneiθ

)∣∣→ +∞ holds uniformly for 0 ≤ θ < 2π as n → +∞.
Hence for any a ∈ C, we have

m

(
rn,

1
f − a

)
=

1
2π

∫ 2π

0

log+ 1
|f (rneiθ)− a|dθ = 0

if n is sufficiently large. Then the first main theorem implies

N

(
rn,

1
f − a

)
= T (rn, f) + O(1). (4.11.18)

Note that for 0 < r < R (cf. [168]),

T (r, f) = m(r, f) ≤ log+ M(r) ≤ R + r

R − r
T (R, f), (4.11.19)

and (cf. [154])

lim
r→∞

log M(r)
log µ(r, f)

= 1. (4.11.20)

Thus by (4.11.18) and (4.11.3), we obtain

lim sup
n→∞

N
(
rn, 1

f

)
N(rn, f = 0)

= lim sup
n→∞

T (rn, f)
log µ(rn, f)

≤ 1. (4.11.21)

On the other hand, we choose ε > 0 with cosπρ− ε > 0, and so

(cosπρ− ε) log M(rn) < log m(rn) ≤ T (rn, f)

if n is sufficiently large. Therefore (4.11.18) and (4.11.3) yield

lim inf
n→∞

N
(
rn, 1

f

)
N(rn, f = 0)

≥ cosπρ. (4.11.22)

Pólya [318] (or cf. [157]) obtained the classical inequality

lim sup
r→∞

n
(
r, 1

f

)
log M(r)

≥ sin πρ

π
. (4.11.23)
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Based on (4.11.20) and Problem 4.83, we suggest the estimate

lim sup
r→∞

ν(r, f)
log µ(r, f)

≥ sin πρ

π
. (4.11.24)

Valiron [407] (or cf. [88]) observed

lim sup
r→∞

N
(
r, 1

f

)
log M(r)

≥ sin πρ

πρ
(4.11.25)

if f ∈ A1(C) with order ρ > 0. Similarly, we conjecture the estimate:

lim sup
r→∞

N(r, f = 0)
log µ(r, f)

≥ sin πρ

πρ
. (4.11.26)

Problem 4.85. Given a non-constant meromorphic function f ∈ M1(C), find sharp

relations between T (r, f) and
∗
T (r, f).

When 1
2 < ρ < 1, the entire function (cf. [442])

f(z) =
∞∏

n=1

(
1 +

z

n
1
ρ

)
(4.11.27)

is of order ρ such that

lim sup
r→∞

N
(
r, 1

f

)
T (r, f)

= sin ρπ.

However, the formula (4.11.13) implies

lim
r→∞

N (r, f = 0)
∗
T (r, f)

= 1.

Thus if either Problem 4.83 or Problem 4.84 is sure, we should obtain

lim sup
r→∞

∗
T (r, f)
T (r, f)

= sinρπ.

If f ∈ M1(C) with order ρ, Edrei and Fuchs [88] (or cf. [151]) improved
sharply a result due to R. Nevanlinna [292] as follows:

K(ρ) = lim sup
r→∞

N
(
r, 1

f

)
+ N(r, f)

T (r, f)
≥ k(ρ), (4.11.28)

where

k(ρ) =
{

1, if 0 ≤ ρ < 1
2 ;

sin πρ, if 1
2 ≤ ρ < 1.
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However, the formula (4.11.13) yields

∗
T (r, f) ≤ N (r, f = 0) + N(r, f = ∞) + O(1). (4.11.29)

Thus based on Problem 4.83, we suggest the estimate

K(ρ) ≥ lim sup
r→∞

∗
T (r, f)
T (r, f)

≥ 1
2
k(ρ). (4.11.30)

Particularly, if f is entire, we conjecture

1 ≥ lim sup
r→∞

∗
T (r, f)
T (r, f)

≥ k(ρ). (4.11.31)



Chapter 5

Functions over
Non-Archimedean Fields

In this chapter, we introduce the value distribution theory of meromorphic func-
tions defined on a non-Archimedean algebraically closed field, and give non-Archi-
medean analogues of some results and problems in number theory. Wiman-Valiron
theory and Nevanlinna theory will be unified. In particular, one basic formula
(5.1.5) and three equidistribution formulae (5.1.15), (5.3.7), (5.5.2) illustrating
the differences with the ordinary Nevanlinna theory will be exhibited. Some uni-
versal properties appeared in height theory and Nevanlinna theory will be further
presented.

5.1 Equidistribution formula

Let κ be an algebraically closed field of characteristic p ≥ 0, complete for a non-
trivial non-Archimedean absolute value | · |. We will show that the Valiron formula
over κ plays the role of Jensen’s formula based on the formula (5.1.5), and further
derive the important formula (5.1.15) showing equidistribution of values.

Take a ∈ κ. For a positive real number r, define

κ[a; r] = {z ∈ κ | |z − a| ≤ r}.

Let ν be a function from κ into Z such that suppν ∩ κ[0; r] is finite for any r > 0.
The counting function nν for ν is defined by

nν(r) =
∑

z∈κ[0;r]

ν(z). (5.1.1)
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If ν is non-negative, then nν increases. Fix r0 > 0. The valence function of ν is
defined by

Nν(r) = Nν(r, r0) =
∫ r

r0

nν(t)
dt

t
(r ≥ r0). (5.1.2)

Let A(κ) be the set of entire functions on κ. The field of fractions of A(κ) will
be denoted by M(κ). An element f in the set M(κ) will be called a meromorphic
function on κ. Take f ∈ M(κ). For a ∈ κ ∪ {∞}, let µa

f (z0) denote the a-valued
multiplicity of f at z0, that is, µa

f (z0) = m if and only if

f(z) =
{

a + (z − z0)mh(z) : a �=∞,
(z − z0)−mh(z) : a =∞

with h(z0) �= 0,∞. By the definition, we obtain a function

µa
f : κ −→ Z+

with µa
f (z0) > 0 for some z0 ∈ κ if and only if f(z0) = a. Define the counting

function and the valence function of f for poles respectively by

n(r, f) = nµ∞
f

(r), N(r, f) = Nµ∞
f

(r).

For a ∈ κ, the counting function

n

(
r,

1
f − a

)
= nµa

f
(r)

and the valence function

N

(
r,

1
f − a

)
= Nµa

f
(r)

of f for a are also well defined.

Each f ∈ A(κ) can be given by a power series

f(z) =
∞∑

n=0

anzn, (an ∈ κ), (5.1.3)

such that
lim sup

n→∞
|an|

1
n = 0,

that is, the series (5.1.3) converges for any z ∈ κ. For r > 0, we can define the
maximum term:

µ(r, f) = max
n≥0

|an|rn,
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and the central index:

ν(r, f) = max
n≥0

{n | |an|rn = µ(r, f)}.

We also define

µ(0, f) = lim
r→0+

µ(r, f), ν(0, f) = lim
r→0+

ν(r, f).

The central index ν(r, f) increases as r →∞ and satisfies the Valiron formula:

log µ(r, f) = log |aν(0,f)|+
∫ r

0

ν(t, f)− ν(0, f)
t

dt + ν(0, f) log r. (5.1.4)

See the proof of (4.11.2), or [176], [405]. Basic properties of the maximum term
are summarized as follows:

Theorem 5.1 ([176]). For r > 0, the function µ(r, ·) : A(κ) −→ R+ satisfies
properties:

1) µ(r, f) = 0 if and only if f ≡ 0;

2) µ(r, f + g) ≤ max{µ(r, f), µ(r, g)};
3) µ(r, fg) = µ(r, f)µ(r, g).

By the Weierstrass preparation theorem, we know that the counting function
of zeros of f is just the central index (see [176]), that is,

n

(
r,

1
f

)
= ν(r, f). (5.1.5)

The formula (5.1.5) is an important connection between Wiman-Valiron theory
and Nevanlinna theory. Based on (5.1.5), the Valiron formula (5.1.4) becomes the
following Valiron-Jensen formula (see [176]):

N

(
r,

1
f

)
= log µ(r, f)− log µ(r0, f). (5.1.6)

The proximity function (or compensation function)

m(r, f) = log+ µ(r, f) = log max{1, µ(r, f)}

serves as the characteristic function T (r, f) of the entire function f .

Lemma 5.2 ([95]). If f ∈ A(κ) has m zeros in κ[0; r] with m ≥ 1 (taking multi-
plicities into account), then for b ∈ f(κ[0; r]), the function f − b also admits m
zeros in κ[0; r] (counting multiplicity).
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Proof. We expand f into the series (5.1.3) and set

s = sup
n≥1

|an|rn.

We claim f(κ[0; r]) = κ[a0; s]. On the one hand, it is trivial that f(κ[0; r]) ⊆
κ[a0; s].

On the other hand, we prove f(κ[0; r]) ⊇ κ[a0; s]. If s = 0, it is obvious that

f(κ[0; r]) = κ[a0; s] = {a0}.

If s > 0, we take b ∈ κ[a0; s] and consider the function

g(z) = f(z)− b = a0 − b +
∞∑

n=1

anzn.

It follows that ν(r, g) ≥ 1 since

|a0 − b| ≤ s = sup
n≥1

|an|rn.

Therefore

n

(
r,

1
g

)
= ν(r, g) ≥ 1,

which means that g admits at least one zero in κ[0; r] and hence b ∈ f(κ[0; r]).
Thus the claim is proved.

Finally, we prove Lemma 5.2. By the assumption, we have

m = n

(
r,

1
f

)
= ν(r, f) ≥ 1,

and hence

|am|rm

{
≥ |an|rn, if n < m;
> |an|rn, if n > m.

Take b ∈ f(κ[0; r]). By the claim, we obtain

|a0 − b| ≤ sup
n≥1

|an|rn,

and hence

n

(
r,

1
f − b

)
= n

(
r,

1
g

)
= ν(r, g) = m.

Therefore f − b also admits m zeros in κ[0; r]. �
Theorem 5.3. Assume that f is a non-constant entire function. Then for any b ∈ κ,
we have

N

(
r,

1
f − b

)
= N

(
r,

1
f

)
+ O(1).
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Proof. Note that f and f − b each have at least one zero since f − b also is a
non-constant entire function. Thus there is an r′ ∈ R+ such that f has at least
one zero in κ[0; r′] and such that b ∈ f(κ[0; r′]). By Lemma 5.2, one obtains

n

(
r,

1
f − b

)
= n

(
r,

1
f

)
(r ≥ r′).

Therefore when r ≥ r′, we have

N

(
r,

1
f − b

)
=

∫ r

r′
n

(
t,

1
f − b

)
dt

t
+ N

(
r′,

1
f − b

)

=
∫ r

r′
n

(
t,

1
f

)
dt

t
+ N

(
r′,

1
f − b

)

= N

(
r,

1
f

)
+ N

(
r′,

1
f − b

)
−N

(
r′,

1
f

)
,

and Theorem 5.3 follows. �

Let f be a non-constant entire function in κ. Then

N

(
r,

1
f

)
= log µ(r, f)− log µ(r0, f)→ +∞

as r →∞, and hence µ(r, f) > 1 when r is sufficiently large. Therefore

N

(
r,

1
f

)
= T (r, f) + O(1), (5.1.7)

and hence Theorem 5.3 implies

N

(
r,

1
f − a

)
= T (r, f) + O(1) (5.1.8)

for all a ∈ κ. In particular, if P is a polynomial, the formula (5.1.7) implies

T (r, P ) = deg(P ) log r + O(1). (5.1.9)

Let f be a non-constant meromorphic function in κ. Since greatest common
divisors of any two elements in A(κ) exist, there are g, h ∈ A(κ) with f = g

h such
that g and h do not have common factors in the ring A(κ). We can uniquely extend
the maximum term µ for entire functions to the meromorphic function f = g

h by
defining

µ(r, f) =
µ(r, g)
µ(r, h)

, 0 < r < ∞.

Then the Valiron-Jensen formula

N

(
r,

1
f

)
−N(r, f) = log µ(r, f)− log µ(r0, f) (5.1.10)
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follows from (5.1.6), where

N(r, f) = N

(
r,

1
h

)

is the valence function of f for poles. Note that

µ(r, f1f2) = µ(r, f1)µ(r, f2), f1, f2 ∈ M(κ).

Thus the Valiron-Jensen formula implies

N

(
r,

1
f1f2

)
−N(r, f1f2) = N

(
r,

1
f1

)
+ N

(
r,

1
f2

)
−N(r, f1)−N(r, f2). (5.1.11)

Define the compensation function by

m(r, f) = log+ µ(r, f) = log max{1, µ(r, f)}.

As usual, we define the characteristic function:

T (r, f) = m(r, f) + N(r, f) (r0 < r < ∞).

Then the Valiron-Jensen formula (5.1.10) can be rewritten as

T

(
r,

1
f

)
= T (r, f)− log µ(r0, f). (5.1.12)

Usually, the mapping

f̃ = (h, g) : κ −→ κ2 − {0}

is called a reduced representation of f . Define

µ(r, f̃) = max{µ(r, h), µ(r, g)}.

Noting that

log µ(r, f̃) = max
{

0, log
µ(r, g)
µ(r, h)

}
+ log µ(r, h)

= max {0, log µ(r, f)}+ log µ(r, h)
= m(r, f) + log µ(r, h),

and by the Valiron-Jensen formula

N(r, f) = N

(
r,

1
h

)
= log µ(r, h)− log µ(r0, h),
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we obtain
T (r, f) = log µ(r, f̃)− log µ(r0, h),

or equivalently

T (r, f) = log µ(r, f̃)− log µ(r0, f̃) + m(r0, f). (5.1.13)

By (5.1.13) and the Valiron-Jensen formula, the formula

T (r, f) = max
{

N(r, f), N
(

r,
1
f

)}
+ O(1) (5.1.14)

holds for a non-constant meromorphic function f in κ. Thus it is easy to prove
that the equidistribution formula

T (r, f) = max
{

N

(
r,

1
f − a

)
, N

(
r,

1
f − b

)}
+ O(1) (5.1.15)

holds for any two distinct elements a, b ∈ κ∪ {∞}. Particularly, if P and Q (�= 0)
are coprime polynomials, the formula (5.1.14) yields

T

(
r,

P

Q

)
= max{deg(P ), deg(Q)} log r + O(1). (5.1.16)

The following result is called the first main theorem (cf. [32], [65], [137], [140],
[176]).

Theorem 5.4. Let f be a non-constant meromorphic function in κ. Then for every
a ∈ κ we have

m

(
r,

1
f − a

)
+ N

(
r,

1
f − a

)
= T (r, f) + O(1) (r → +∞).

Proof. By (5.1.12), we have

m

(
r,

1
f − a

)
+ N

(
r,

1
f − a

)
= T

(
r,

1
f − a

)
= T (r, f − a)− log µ(r0, f − a).

Then the theorem follows from the simple properties

T (r, f − a) ≤ T (r, f) + log+ |a|,
T (r, f) ≤ T (r, f − a) + log+ |a|. �

Theorem 5.5 ([176],[440]). Take {a0, . . . , ak, b0, . . . , bq} ⊂ M(κ) with ak �≡ 0 and
bq �≡ 0 such that

A(z, w) =
k∑

j=0

aj(z)wj (5.1.17)
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and

B(z, w) =
q∑

j=0

bj(z)wj (5.1.18)

are coprime polynomials in w. Define

R(z, w) =
A(z, w)
B(z, w)

. (5.1.19)

If f ∈ M(κ) is non-constant, then

T (r, R ◦ f) = max{k, q}T (r, f) + O

⎛
⎝ k∑

j=0

T (r, aj) +
q∑

j=0

T (r, bj)

⎞
⎠ , (5.1.20)

where R ◦ f is defined by R ◦ f(z) = R(z, f(z)).

Finally, we make a remark on the first main theorem. Take f ∈ M(κ). For
a ∈ κ, set

mf (r, a) = − log χ(f(z), a) (r = |z|), (5.1.21)

where χ is defined by (1.5.5) for v = | · |. Fix an element z ∈ κ with |z| = r > r0.
Assume f(z) �= 0, a,∞. Then

mf (r, a) = log+ |f(z)|+ log+ |a| − log |f(z)− a|
= log+ µ(r, f) + log+ |a| − log µ(r, f − a).

Applying the Valiron-Jensen formula (5.1.10) to f − a, we obtain

mf (r, a) + N

(
r,

1
f − a

)
= T (r, f) + log+ |a| − log µ(r0, f − a), (5.1.22)

which shows that the definition (5.1.21) is independent of the choice of z on the
circle {|z| = r}. Since the set |κ| − {|z| | f(z) = 0, a,∞} is dense in R+, we may
extend the definition of mf (r, a) by applying (5.1.22) to all r > r0. We also write

mf (r,∞) = m(r, f).

R. L. Benedetto [18] presents analogs for non-Archimedean (or p-adic) ana-
lytic functions of well-known mapping theorems in complex function theory proved
by Koebe, Bloch, Schottky, Landau, and Ahlfors. Of particular interest is the au-
thor’s analogue of the Ahlfors island theorem. In accord once again with the style
of this book, we do not discuss these results.
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5.2 Second main theorem of meromorphic functions

Let κ be an algebraically closed field of characteristic p ≥ 0, complete for a non-
trivial non-Archimedean absolute value | · |. We will show that the second main
theorem of meromorphic functions over κ can be simply derived from the equidis-
tribution formula (5.1.15) and the Valiron-Jensen formula.

First of all, we make a simple remark for the case p > 0. Then we have the
following rules of arithmetic:

(α + β)p =
p∑

i=0

(
p

i

)
αp−iβi.

Note that

p |
(

p

i

)
, 1 ≤ i < p.

Therefore, we have the simple rule

(α± β)p = αp ± βp. (5.2.1)

As usual, we have
(αβ)p = αpβp, (β−1)p = (βp)−1. (5.2.2)

Hence the mapping ρ defined as

ρ(α) = αp (5.2.3)

is a field injection from κ to κ, which is called the Frobenius mapping of the field.
Note that the Frobenius mapping is also surjective since κ is algebraically closed.
Hence the Fp-automorphism Θ can be defined as

Θ(z) = ρ−1(z) := p
√

z. (5.2.4)

More generally this mapping has a continuation to a κ-algebra automorphism of
κ[X ] as

Θ

⎛
⎝a

n∏
j=1

(X − aj)

⎞
⎠ = Θ(a)

n∏
j=1

(X −Θ(aj)).

Take f ∈M(κ). Set
µf = µ0

f − µ∞
f .

It is easy to show (cf. [34])

µf ′(z)
{

= µf (z)− 1, if p � µf (z);
≥ µf (z), if p | µf (z).

Note that if p = 0, then a meromorphic function f on κ is constant if and only if
f ′ = 0. For the case p > 0, Boutabaa and Escassut [34] give the following fact:
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Theorem 5.6. Assume p �= 0 and let f ∈ M(κ) be non-constant. Then there exists
g ∈ M(κ) such that f = gp if and only if f ′ = 0. Moreover, there exist h ∈ M(κ)
and a unique s ∈ Z+ such that f = hps

and h′ �= 0.

Proof. If f is of the form gp with g ∈ M(κ), then of course we have f ′ = pgp−1g′ =
0. Next assume that f ′ = 0. If f ∈ A(κ), then it is obvious that all non-zero
coefficients of

f(z) =
∞∑

n=0

anzn

have an index that is a multiple of p, hence f = gp with g ∈ A(κ).
We now consider the general case when f ∈ M(κ). Then there are f0, f1 ∈

A(κ) such that f = f1
f0

. Clearly fp
0 f = fp−1

0 f1 ∈ A(κ) and satisfies

(fp
0 f)′ = pfp−1

0 f ′
0f + fp

0 f ′ = 0.

Consequently, fp
0 f is of the form fp

2 with f2 ∈ A(κ), and therefore

f =
(

f2

f0

)p

.

On the other hand, it is immediate that if there exists h ∈ M(κ) such that hn = f
holds for n ∈ Z+, then

n | gcd{µf(z) | µf (z) �= 0}.

Hence the set of integers s such that f = hps

with h ∈ M(κ) is bounded and
therefore admits a biggest element, which satisfies the property in Theorem 5.6.

�

When κ has characteristic p > 0, given f ∈ M(κ)− κ, we will mean by the
ramification index of f the integer s such that ps√

f ∈ M(κ) and ( ps√
f)′ �= 0,

and denote it by e(f). Moreover, in order to simplify notation, if p = 0, for any
f ∈ M(κ) − κ, we put e(f) = 0. Thus e(f) = 0 if and only if f ′ �= 0. Assume
p > 0. In fact,

p−e(f) = |d|p,
where

d = gcd(µf (z) | µf (z) �= 0).

If f, g ∈M(κ)− κ; P ∈ κ(X) satisfy an equation

g(z) = P (f(z)),

then e(g) ≥ e(f), and

ps√g = Q ◦ ps
√

f, Q = Θs(P ), s = e(f).

The following fact is usually referred to as the lemma of the logarithmic
derivative (see [1], [32], [60], [140], [176]):
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Lemma 5.7. Let f be a meromorphic function in κ. Then for any integer k > 0,

µ

(
r,

f (k)

f

)
≤ 1

rk
(r > 0).

Proof. This is trivial if f (k) = 0. Next we assume f (k) �= 0. If f ∈ A(κ), set

f(z) =
∞∑

n=0

anzn.

Then

f ′(z) =
∞∑

n=1

nanzn−1,

and hence for r > 0,

µ(r, f ′) = max
n
|nan|rn−1 ≤ 1

r
max

n
|an|rn =

1
r
µ(r, f)

which implies

µ

(
r,

f ′

f

)
=

µ(r, f ′)
µ(r, f)

≤ 1
r
.

Therefore

µ

(
r,

f (k)

f

)
= µ

(
r,

k∏
i=1

f (i)

f (i−1)

)
=

k∏
i=1

µ

(
r,

f (i)

f (i−1)

)
≤ 1

rk
,

where f (0) = f . Now let f = g/h ∈M(κ). Then

µ

(
r,

f ′

f

)
= µ

(
r,

hg′ − gh′

h2
· h

g

)
= µ

(
r,

g′

g
− h′

h

)

≤ max
{

µ

(
r,

g′

g

)
, µ

(
r,

h′

h

)}
≤ 1

r
,

and similarly, we can obtain

µ

(
r,

f (k)

f

)
≤ 1

rk
.

�

Define the ramification term of f by

NRam(r, f) = 2N(r, f)−N(r, f ′) + N

(
r,

1
f ′

)
.

We have the second main theorem (cf. [32], [34], [60], [65], [66], [140], [176]):
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Theorem 5.8. Let f be a meromorphic function in κ with f ′ �= 0 and let a1, . . . , aq

be distinct numbers of κ. Then for r > r0, we have

(q− 1)T (r, f) ≤ N(r, f)+
q∑

j=1

N

(
r,

1
f − aj

)
−NRam(r, f)− log r +O(1). (5.2.5)

Proof. For each r > r0 there exists an index i(r) ∈ {1, . . . , q} such that

N

(
r,

1
f − ai(r)

)
= min

1≤j≤q
N

(
r,

1
f − aj

)
.

Then the equidistribution formula (5.1.15) implies

(q − 1)T (r, f) =
q∑

j=1

N

(
r,

1
f − aj

)
−N

(
r,

1
f − ai(r)

)
+ O(1). (5.2.6)

By the Valiron-Jensen formula (5.1.10), we have

N

(
r,

1
f − ai(r)

)
−N(r, f) = log µ(r, f − ai(r))− log µ(r0, f − ai(r)),

and

N

(
r,

1
f ′

)
−N(r, f ′) = log µ(r, f ′)− log µ(r0, f

′).

One formula minus the other yields

−N

(
r,

1
f − ai(r)

)
= N(r, f ′)−N(r, f)−N

(
r,

1
f ′

)

+ log µ

(
r,

f ′

f − ai(r)

)
+ O(1),

and hence Lemma 5.7 implies

−N

(
r,

1
f − ai(r)

)
≤ N(r, f)−NRam(r, f)− log r + O(1). (5.2.7)

Hence (5.2.5) follows from (5.2.6) and (5.2.7). �

Take f ∈ M(κ) and take a ∈ κ ∪ {∞}. For a positive integer k, define a
function µa

f,k by

µa
f,k(z) =

{
min{µa

f (z), k}, if p � µa
f (z);

0, if p | µa
f (z).
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The truncated counting function of f for a by k is defined by

nµa
f,k

(r) =
∑
|z|≤r

µa
f,k(z) =

{
nk

(
r, 1

f−a

)
if a �= ∞,

nk(r, f) if a = ∞,
(5.2.8)

and denote the truncated valence function of f for a by

Nµa
f,k

(r) =

{
Nk

(
r, 1

f−a

)
if a �= ∞,

Nk(r, f) if a = ∞.

As usual, we also write

n1(r, f) = n(r, f), N1(r, f) = N(r, f),

and so on.

Assume that f ′ �= 0 and let A = {a1, . . . , aq} be distinct numbers of κ. A
simple calculation shows

q∑
j=1

N

(
r,

1
f − aj

)
=

q∑
j=1

N

(
r,

1
f − aj

)
+ N

(
r,

1
f ′

)
−Nµf,A (r), (5.2.9)

where

0 ≤ µf,A (z) =

⎧⎨
⎩

µ0
f ′(z), if µ

aj

f (z) = 0 for all j;
µ0

f ′(z)− µ
aj

f (z), if µ
aj

f (z) > 0 and p | µaj

f (z) for some j;
0, otherwise.

We also have the estimate

N(r, f ′)−N(r, f) ≤ N(r, f)−Nµf,∞(r),

where

0 ≤ µf,∞(z) =
{

µ∞
f (z)− µ∞

f ′ (z), if µ∞
f (z) > 0 and p | µ∞

f (z);
0, otherwise.

Particularly, if f ∈ A(κ), by (5.1.8) and (5.2.9), we obtain

qT (r, f) =
q∑

j=1

N

(
r,

1
f − aj

)
+ N

(
r,

1
f ′

)
−Nµf,A (r) + O(1). (5.2.10)

Thus by Theorem 5.8, we obtain the truncated form of the second main theorem:
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Theorem 5.9. Let f be a meromorphic function in κ with f ′ �= 0 and let a1, . . . , aq

be distinct numbers of κ. Then for r > r0, we have

(q − 1)T (r, f) ≤ N(r, f) +
q∑

j=1

N

(
r,

1
f − aj

)
−Nµf,∞(r)−Nµf,A (r) − log r + O(1).

Finally, we replace the condition f ′ �= 0 in Theorem 5.9 by using the ramifi-
cation index of f . Denote the characteristic exponent of κ by

p̄ =
{

p, if p > 0;
1, if p = 0.

Take f ∈M(κ)− κ and set

h = p̄e(f)√
f, bj = p̄e(f)√aj (j = 1, . . . , q).

Applying Theorem 5.9 to h, and noting that

T (r, h) =
1

p̄e(f)
T (r, f), N

(
r,

1
h− bj

)
= N

(
r,

1
f − aj

)
(j = 1, . . . , q),

we have the following form of Theorem 5.9 (cf. [34]):

Theorem 5.10. Let f be a non-constant meromorphic function in κ and let a1,
. . . , aq be distinct numbers of κ. Then for r > r0, we have

q − 1
p̄e(f)

T (r, f) ≤ N(r, f) +
q∑

j=1

N

(
r,

1
f − aj

)
−Nµh,∞(r) −Nµh,B(r) − log r + O(1), (5.2.11)

where B = {b1, . . . , bq}.

5.3 Equidistribution formula for hyperplanes

Let κ be an algebraically closed field, complete for a non-trivial non-Archimedean
absolute value | · |. We will extend (5.1.15) to the equidistribution formula (5.3.7)
of holomorphic curves into projective spaces over κ, and use it to show the second
main theorem for hyperplanes.

Lemma 5.11. Let f1, . . . , fn be non-zero meromorphic functions in κ and let
W = W (f1, . . . , fn) be the Wronskian determinant of f1, . . . , fn. Then for r > 0,
we have

µ(r,S) ≤ r−
n(n−1)

2 ,

where
S = S (f1, . . . , fn) =

W
f1 · · · fn

.
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Proof. The value of S is clearly

∑
±fj1

fj1

·
f ′

j2

fj2

· · ·
f

(n−1)
jn

fjn

summed for the n! permutations (j1, j2, . . . , jn) of (1, 2, . . . , n), the positive sign
being taken for a positive permutation, the negative sign for a negative permuta-
tion. The relations

µ(r,S) ≤ maxµ

(
r,

f ′
j2

fj2

· · ·
f

(n−1)
jn

fjn

)
= maxµ

(
r,

f ′
j2

fj2

)
· · ·µ

(
r,

f
(n−1)
jn

fjn

)

follow trivially from the non-Archimedean property. By Lemma 5.7, we obtain

µ(r,S) ≤ 1
r
· 1
r2
· · · 1

rn−1
= r−

n(n−1)
2 ,

and so Lemma 5.11 is proved. �

Let V be a vector space of dimension n+1 > 0 over κ and let e = (e0, . . . , en)
be a basis of V . By a (non-Archimedean) holomorphic curve

f : κ −→ P(V ),

we mean an equivalence class of (n + 1)-tuples of entire functions

(f̃0, . . . , f̃n) : κ −→ κn+1

such that f̃0, . . . , f̃n have no common factors in the ring of entire functions on κ
and such that not all of the f̃j are identically zero. The mapping

f̃ = f̃0e0 + · · ·+ f̃nen : κ −→ V (5.3.1)

will be called a reduced representation of f . Define

µ(r, f̃) = max
0≤i≤n

µ(r, f̃i).

Then the characteristic function

T (r, f) = log µ
(
r, f̃
)

(5.3.2)

is well defined for all r > 0, up to O(1).

By the Valiron-Jensen formula (5.1.6), it is easy to obtain the formula

T (r, f) = max
0≤i≤n

N

(
r,

1
f̃i

)
+ O(1), (5.3.3)
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where we think N
(
r, 1

f̃i

)
= 0 if f̃i is constant for some i. If f is non-constant, we

have T (r, f)→∞ as r →∞. Obviously, f is rational if and only if

T (r, f) = O(log r).

Let V ∗ be the dual space of V and let ε = (ε0, . . . , εn) be the dual basis of e.
Take a ∈ P(V ∗) and take α ∈ V ∗ with P(α) = a. Write

α = a0ε0 + · · ·+ anεn.

Then the inner product

〈f̃ , α〉 = a0f̃0 + · · ·+ anf̃n

defines an entire function on κ. Assume 〈f̃ , α〉 �≡ 0. Let µa
f = µ0

〈f̃ ,α〉 denote the 0-

valued multiplicity of 〈f̃ , α〉. Then the valence function of f for a is well defined by

Nf (r, a) = N

(
r,

1
〈f̃ , α〉

)
.

For a positive integer u, we also write

Nf,u(r, a) = Nu

(
r,

1
〈f̃ , α〉

)
.

For convenience, we define Nf (r, a) = 0 if f(κ) ⊂ Ë[a], that is, 〈f̃ , α〉 = 0.

Take an element z ∈ κ with |z| = r > r0 such that 〈f̃(z), α〉 �= 0. Define the
compensation function of f for a by

mf (r, a) = − log |f(z), a|. (5.3.4)

Then

mf (r, a) = log |f̃(z)|+ log |α| − log |〈f̃(z), α〉|
= log µ(r, f̃) + log |α| − log µ(r, 〈f̃(z), α〉).

Applying the Valiron-Jensen formula (5.1.10) to 〈f̃ , α〉, we obtain

mf (r, a) + Nf(r, a) = T (r, f) + log |α| − log µ(r0, 〈f̃ , α〉), (5.3.5)

which shows that the definition (5.3.4) is independent of the choice of z on the
circle {|z| = r}. Since the set

|κ| − {|z| | 〈f̃(z), α〉 = 0}

is dense in R+, we may extend the definition of mf (r, a) by using (5.3.5) to all
r > r0. The equality (5.3.5) is referred to as the first main theorem, which yields

Nf (r, a) ≤ T (r, f) + O(1). (5.3.6)
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Theorem 5.12 ([176]). Let A = {a0, a1, . . . , aq} be a family of points aj ∈ P(V ∗)
in general position with q ≥ n. Let f : κ −→ P(V ) be a non-constant holomorphic
curve. Then for any λ ∈ Jq

n, we have the equidistribution formula

T (r, f) = max
0≤i≤n

Nf

(
r, aλ(i)

)
+ O(1). (5.3.7)

Proof. Take αj ∈ V ∗ − {0} with P(αj) = aj . Write

αj = aj0ε0 + · · ·+ ajnεn, j = 0, . . . , q,

where ε = (ε0, . . . , εn) is the dual of e. For j = 0, 1, . . . , q, set

Fj =
〈
f̃ , αj

〉
= aj0f̃0 + aj1f̃1 + · · ·+ ajnf̃n.

Then
µ (r, Fj) = O

(
µ
(
r, f̃
))

, j = 0, . . . , q.

On the other hand, since A is in general position, for each λ ∈ Jq
n there exist

bλ
ij ∈ κ such that

f̃j =
n∑

i=0

bλ
ijFλ(i), j = 0, . . . , n, (5.3.8)

and so we also obtain

µ
(
r, f̃
)

= O

(
max

0≤i≤n
µ
(
r, Fλ(i)

))
.

Thus, by the definition of characteristic functions, we have

T (r, f) = log µ
(
r, f̃
)

= max
0≤i≤n

log+ µ
(
r, Fλ(i)

)
+ O(1).

Finally, by the Valiron-Jensen formula (5.1.6), we obtain

T (r, f) = max
0≤i≤n

Nf

(
r, aλ(i)

)
+ O(1),

and hence Theorem 5.12 follows. �

Given a reduced representation (5.3.1) of f , let W = W
(
f̃0, . . . , f̃n

)
be the

Wronskian determinant of f̃0, . . . , f̃n. When κ has characteristic zero, we know
that W �≡ 0 if and only if f is linearly non-degenerate (cf. [176]), but this is not
so if κ has characteristic p > 0. Here the mapping f will be called analytically
non-degenerate if W �≡ 0, so we may define the ramification term by

NRam(r, f) = N

(
r,

1
W

)
. (5.3.9)
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Using the symbols in the proof of Theorem 5.12, for the family A ={a0,a1,...,aq}
we can define a meromorphic function by

H =
F0F1 · · ·Fq

W(f̃0, . . . .f̃n)
. (5.3.10)

Now we use the equidistribution formula (5.3.7) to derive the second main theorem:

Theorem 5.13 (cf.[176]). Let f : κ −→ P(V ) be an analytically non-degenerate
holomorphic curve and let A = {a0, a1, . . . , aq} be a family of points aj ∈ P(V ∗)
in general position. Then

(q − n)T (r, f) ≤
q∑

j=0

Nf,n(r, aj)−N(r,H)− n(n + 1)
2

log r + O(1).

Proof. We will use the symbols in the proof of Theorem 5.12. For λ ∈ Jq
n, we

abbreviate the Wronskian

Wλ = W
(
Fλ(0), Fλ(1), . . . , Fλ(n)

)
.

Then
Wλ = cλW, cλ = det

(
aλ(i)j

)
�= 0.

For each r > r0, we can choose λr ∈ Jq
n such that

Nf (r, aj) ≥ max
0≤i≤n

Nf

(
r, aλr(i)

)
, j ∈ Jr,

where
Jr = {0, 1, . . . , q} − {λr(0), . . . , λr(n)}.

Theorem 5.12 and the Valiron-Jensen formula (5.1.6) imply

(q − n)T (r, f) =
q∑

j=0

Nf(r, aj)−
n∑

i=0

Nf

(
r, aλr(i)

)
+ O(1)

=
q∑

j=0

Nf(r, aj)−
n∑

i=0

log µ
(
r, Fλr(i)

)
+ O(1).

However,

−
n∑

i=0

log µ
(
r, Fλr(i)

)
= log µ

(
r,

Wλr

Fλr(0) · · ·Fλr(n)

)
− log µ(r,W) + O(1).

From Lemma 5.11, we have

log µ

(
r,

Wλr

Fλr(0) · · ·Fλr(n)

)
≤ −n(n + 1)

2
log r.
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Thus by applying the Valiron-Jensen formula (5.1.6) to W, we obtain

(q − n)T (r, f) ≤
q∑

j=0

Nf (r, aj)−NRam(r, f)− n(n + 1)
2

log r + O(1). (5.3.11)

By the Valiron-Jensen formula (5.1.10), we also have

q∑
j=0

Nf (r, aj)−NRam(r, f) = N

(
r,

1
H

)
−N(r,H). (5.3.12)

The inequality in Theorem 5.13 can be derived easily from (5.3.11) and (5.3.12).
�

Theorem 5.13 means directly the following defect relation:

q∑
j=0

δf,n(aj) ≤ n + 1, (5.3.13)

where δf,n(aj) is the defect of f for aj defined by

δf,n(aj) = 1− lim sup
r→∞

Nf,n(r, aj)
T (r, f)

with 0 ≤ δf,n(aj) ≤ 1. However, from the equidistribution formula (5.3.7), we
obtain

δf (aj) = 1− lim sup
r→∞

Nf (r, aj)
T (r, f)

= 0 (5.3.14)

except for n elements of A at most.

5.4 Non-Archimedean Cartan-Nochka theorem

Let κ be an algebraically closed field, complete for a non-trivial non-Archimedean
absolute value | · |. Let V be a vector space of dimension n + 1 > 0 over κ. We
continue to study a holomorphic curve f : κ −→ P(V ). First of all, we prove the
second main theorem for a family in subgeneral position.

Theorem 5.14. Let A = {aj}q
j=0 be a finite family of points aj ∈ P(V ∗) in u-

subgeneral position with u ≤ 2u − n < q. Let f : κ −→ P(V ) be a holomorphic
curve which is analytically non-degenerate. Then

(q− 2u + n)T (r, f) ≤
q∑

j=0

θω(aj)Nf (r, aj)− θNRam(r, f)− n(n + 1)
2

θ log r + O(1),

where θ ≥ 1 is a Nochka constant, and ω : A −→ R(0, 1] is a Nochka weight.
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Proof. We will adopt the notations that were used in the proof of Theorem 5.13,
and without loss of generality, assume |αj | = 1 for j = 0, . . . , q. Lemma 1.61
implies

q∏
j=0

(
1

|f, aj |

)ω(aj)

≤
(

1
Γ(A )

)q−u

max
λ∈Jn(A )

n∏
j=0

1
|f, aλ(j)|

,

which yields

q∏
j=0

(
1

|f, aj |

)ω(aj)

≤
(

1
Γ(A )

)q−u

max
λ∈Jn(A )

n∏
j=0

|f̃ |
|Fλ(j)|

=
(

1
Γ(A )

)q−u |f̃ |n+1

|W| max
λ∈Jn(A )

1
|cλ|

|Wλ|
|Fλ(0) · · ·Fλ(n)|

.

We obtain

q∑
j=0

ω(aj)mf (r, aj) ≤ (n+1)T (r, f)−N

(
r,

1
W

)
− n(n + 1)

2
log r +O(1). (5.4.1)

According to the proof of Theorem 2.66 and by the properties of the Nochka
weights, we can obtain the inequality in Theorem 5.14. �

According to the proof of Lemma 2.67, we can also obtain

q∑
j=0

ω(aj)µ0
Fj
− µ0

W ≤
q∑

j=0

ω(aj)min
{
µ0

Fj
, n
}

. (5.4.2)

Thus Theorem 5.14 yields immediately the truncated form of the second main
theorem and the defect relations.

Corollary 5.15. Assumptions as in Theorem 5.14. Then

(q − 2u + n)T (r, f) ≤
q∑

j=0

θω(aj)Nf,n(r, aj)−
n(n + 1)

2
θ log r + O(1). (5.4.3)

Corollary 5.16. Assumptions as in Theorem 5.14. Then

q∑
j=0

ω(aj)δf (aj) ≤
q∑

j=0

ω(aj)δf,n(aj) ≤ n + 1, (5.4.4)

q∑
j=0

δf(aj) ≤
q∑

j=0

δf,n(aj) ≤ 2u− n + 1. (5.4.5)
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Let f : κ −→ P(V ) be a non-constant holomorphic curve. For a finite family
A = {aj}q

j=0 of points aj ∈ P(V ∗) in u-subgeneral position with n ≤ u ≤ q,
Theorem 5.12 yields immediately

T (r, f) = max
0≤i≤u

Nf

(
r, aλ(i)

)
+ O(1) (5.4.6)

for any λ ∈ Jq
u. According to the proof of Theorem 5.13, by using the formula

(5.4.6) we can prove the following second main theorem without Nochka weights.

Theorem 5.17. Let A = {aj}q
j=0 be a finite family of points aj ∈ P(V ∗) in u-

subgeneral position with n ≤ u ≤ q. Let f : κ −→ P(V ) be a holomorphic curve
which is analytically non-degenerate. Then

(q − u)T (r, f) ≤
q∑

j=0

Nf (r, aj)−NRam(r, f)− n(n + 1)
2

log r + O(1). (5.4.7)

Next we assume that the field κ has characteristic zero and eliminate the
restriction of non-degeneracy on f . Take a reduced representation f̃ : κ −→ V∗ of a
non-constant holomorphic curve f : κ −→ P(V ) and define a linear subspace of V ∗,

E[f ] = {α ∈ V ∗ | 〈f̃ , α〉 ≡ 0},

and write
�f = dimE[f ], k = n− �f .

The number k is non-negative, i.e., 0 ≤ �f ≤ n. If k < 0, that is, �f = n + 1, there
is {α0, . . . , αn} ⊂ E[f ] such that

α0 ∧ · · · ∧ αn �= 0; 〈f̃ , αj〉 ≡ 0 (0 ≤ j ≤ n).

By Cramer’s rule, f̃ ≡ 0, which is impossible. Then V ∗ is decomposed into a direct
sum

V ∗ = W ∗ ⊕ E[f ],

where W ∗ is a (k + 1)-dimensional subspace of V ∗. The mapping f will be said
to be k-flat. In order to simplify our notation, we define �f = 0 if f is linearly
non-degenerate, that is, E[f ] = ∅, and say that f is n-flat.

Assume that A = {aj}q
j=0 is in general position and assume that f is non-

constant and k-flat with 0 ≤ k ≤ n < q such that each pair (f, aj) is free for
j = 0, . . . , q. We take a basis ε = (ε0, . . . , εn) of V ∗ such that ε0, . . . , εk and
εk+1, . . . , εn is a basis of W ∗ and E[f ], respectively. Let e = (e0, . . . , en) be the
dual basis of ε. Let W be the vector space spanned by e0, . . . , ek over κ. Thus the
reduced representation f̃ : κ −→ V∗ is given by

f̃ =
k∑

j=0

f̃jej =
k∑

j=0

〈f̃ , εj〉ej
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such that 〈f̃ , ε0〉, . . . , 〈f̃ , εk〉 are holomorphic and linearly independent over κ.
Hence a linearly non-degenerate holomorphic curve f̂ : κ −→ P(W ) is defined
with a reduced representation

˜̂
f = f̃ =

k∑
j=0

〈f̃ , εj〉ej : κ −→W∗.

Therefore, we obtain

T (r, f̂) = log µ(r, f̃) + O(1) = T (r, f) + O(1). (5.4.8)

If k = 0, then T (r, f̂) is constant. But then the inequality (5.4.8) is violated. Thus,
we must have k ≥ 1. Define

NRam(r, f) = NRam(r, f̂).

Now we prove the second main theorem of f , which is an analogue of Cartan-
Nochka’s Theorem 2.70 over κ.

Theorem 5.18. Let A = {aj}q
j=0 be a finite family of points aj ∈ P(V ∗) in general

position. Take an integer k with 1 ≤ k ≤ n ≤ 2n − k < q. Let f : κ −→ P(V ) be
a non-constant holomorphic curve that is k-flat such that each pair (f, aj) is free
for j = 0, . . . , q. Then

(q − 2n + k)T (r, f) ≤
q∑

j=0

Nf,k(r, aj)−
k(k + 1)

2
θ log r + O(1),

where θ is a Nochka constant with

n + 1
k + 1

≤ θ ≤ 2n− k + 1
k + 1

.

Proof. Take ãj ∈ V ∗ − {0} with P(ãj) = aj and write

ãj =
n∑

i=0

〈ei, ãj〉εi, j = 0, . . . , q.

Define a new family Â = {âj} as follows:

˜̂aj =
k∑

i=0

〈ei, ãj〉εi ∈ W ∗ − {0}, âj = P
(
˜̂aj

)
∈ P(W ∗), j = 0, . . . , q.

Take σ ∈ Jq
n. Then ãσ �= 0 since A is in general position, and hence

det(〈ei, ãσ(j)〉) �= 0 (0 ≤ i, j ≤ n).
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Therefore, there is a λ ∈ Jq
k with Imλ ⊆ Imσ such that

det(〈es, ãλ(t)〉) �= 0 (0 ≤ s, t ≤ k).

We have
˜̂aλ = det(〈es, ãλ(t)〉)ε0 ∧ · · · ∧ εk �= 0.

Hence λ ∈ Jk(Â ). Thus Â is in n-subgeneral position.
Note that

〈f̃ , ãj〉 =
n∑

i=0

〈f̃ , εi〉〈ei, ãj〉 =
k∑

i=0

〈f̃ , εi〉〈ei, ãj〉 = 〈 ˜̂f, ˜̂aj〉.

We obtain
µ

aj

f = µ
âj

f̂
, j = 0, . . . , q.

By applying Theorem 5.14 to f̂ , then

(q− 2n + k)T (r, f̂) ≤
q∑

j=0

θω(âj)Nf̂ (r, âj)− θNRam(r, f̂)− k(k + 1)
2

θ log r + O(1).

In particular, Corollary 5.15 and the facts above imply

(q − 2n + k)T (r, f) ≤
q∑

j=0

θω(âj)Nf,k(r, aj)−
k(k + 1)

2
θ log r + O(1),

and so Theorem 5.18 follows from 1) in Lemma 1.59. �
Corollary 5.19. With the assumptions as in Theorem 5.18, we have the defect
relation

q∑
j=0

δf (aj) ≤
q∑

j=0

δf,k(aj) ≤ 2n− k + 1. (5.4.9)

By Theorem 5.12, it is easy to show that if there exists a family B =
{b0, b1, . . . , bs} of points bj ∈ P(V ∗) in general position such that

δf (bj) > 0, j = 0, 1, . . . , s

hold for a non-constant holomorphic curve f : κ −→ P(V ), then s < n. This
property was observed by Cherry and Ye [60]. Thus the left part of (5.4.9) assumes
the bound

q∑
j=0

δf(aj) ≤ n. (5.4.10)

If we apply Theorem 5.17 to the mapping f̂ and the family Â directly, we
can obtain the following form of the second main theorem without Nochka weights
and the condition that the pairs (f, aj) are free.
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Theorem 5.20. Let A = {aj}q
j=0 be a finite family of points aj ∈ P(V ∗) in general

position. Take an integer k with 1 ≤ k ≤ n ≤ q. Let f : κ −→ P(V ) be a non-
constant holomorphic curve that is k-flat. Then

(q − n)T (r, f) ≤
q∑

j=0

Nf(r, aj)−NRam(r, f)− k(k + 1)
2

log r + O(1). (5.4.11)

5.5 Holomorphic curves into projective varieties

In this section, we further extend (5.1.15) to the equidistribution formula (5.5.2)
of holomorphic curves for targets of hypersurfaces, and formulate Griffiths’ and
Lang’s conjectures into a question of holomorphic curves over non-Archimedean
fields.

5.5.1 Equidistribution formula for hypersurfaces

Let κ be an algebraically closed field of characteristic p, complete for a non-trivial
non-Archimedean absolute value | · |. Assume that V is a normed vector space of
dimension n + 1 > 0 over κ. Let f : κ −→ P(V ) be a non-constant holomorphic
curve. For a positive integer d, let ϕd : P(V ) −→ (�dV ) be the Veronese mapping.
Then f induces a holomorphic curve

f�d = ϕd ◦ f : κ −→ P (�dV )

such that the characteristic function of f�d satisfies

T
(
r, f�d

)
= dT (r, f).

Take a ∈ P(�dV
∗) such that the pair (f�d, a) is free for the interior product ∠.

Applying (5.3.5) to f�d and a, we obtain the first main theorem for a hypersurface
Ëd[a],

dT (r, f) = Nf�d(r, a) + mf�d(r, a) + O(1). (5.5.1)

Further, we have the following equidistribution formula:

Theorem 5.21. Let A = {aj}q
j=0 be a finite admissible family of points aj ∈

P (�dV
∗) with q ≥ n and d > 0. Let f : κ −→ P(V ) be a non-constant holomorphic

curve. Then

dT (r, f) = max
0≤i≤n

Nf�d

(
r, aλ(i)

)
+ O(1), λ ∈ Jq

n. (5.5.2)

Proof. Take αj ∈ �dV
∗ − {0} with P(αj) = aj , and define

α̃j(ξ) =
〈
ξ�d, αj

〉
, ξ ∈ V, j = 0, 1, . . . , q.
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Without loss of generality, assume |αj | = 1 for j = 0, . . . , q. Write

Fj = α̃j ◦ f̃ =
〈
f̃�d, αj

〉
, j = 0, 1, . . . , q,

where f̃ : κ −→ V∗ is a reduced representation of f . Since f is non-constant, then
µ(r, f̃) →∞ as r →∞. So we may assume µ

(
r, f̃
)
≥ 1 for r ≥ r0. Obviously, we

have

µ (r, Fj) ≤ O

(
µ
(
r, f̃
)d
)

, j = 0, . . . , q. (5.5.3)

On the other hand, by using the identity (3.8.8), we obtain

f̃s
j =

n∑
i=0

bλ
ij(f̃)Fλ(i) (λ ∈ Jq

n, j = 0, . . . , n) (5.5.4)

for some integer s ≥ d, where bλ
ij ∈ κ[ξ0, . . . , ξn] are homogeneous polynomials of

degree s − d. Note that (Fλ(0), . . . , Fλ(n)) �= 0 since the family A is admissible.
Hence

µ
(
r, f̃
)s

≤ O

(
µ
(
r, f̃
)s−d

)
max

0≤i≤n
µ
(
r, Fλ(i)

)
,

which implies immediately

µ
(
r, f̃
)d

≤ O

(
max

0≤i≤n
µ
(
r, Fλ(i)

))
. (5.5.5)

Therefore the inequalities (5.5.3) and (5.5.5) yield

dT (r, f) = max
0≤i≤n

log+ µ
(
r, Fλ(i)

)
+ O(1).

Finally, by using the Valiron-Jensen formula (5.1.6), we derive the formula (5.5.2).
�

For fields of characteristic zero, the equidistribution formula (5.5.2) is due to
Hu and Yang [176]. Here we give a simple application of Theorem 5.21. For any
fixed r > 0, without loss of generality, we may assume that

Nf�d(r, a0) ≤ Nf�d(r, a1) ≤ · · · ≤ Nf�d(r, aq).

By using (5.5.2), we have

dT (r, f) = Nf�d(r, aj) + O(1), j ≥ n,

which means (cf. [176], [181])

d(q + 1− n)T (r, f) =
q∑

j=n

Nf�d(r, aj) + O(1) ≤
q∑

j=0

Nf�d(r, aj) + O(1). (5.5.6)

This inequality was also observed by Min Ru [329] by using the first main theorem.
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A holomorphic curve f : κ −→ P(V ) is said to be algebraically non-degenerate
of order d if f(κ) � Ëd[a] holds for all a ∈ P(�dV

∗), and is called algebraically
non-degenerate if f is algebraically non-degenerate of order d for each d > 0. Now
we can prove the second main theorem which exhibits a stronger inequality than
(5.5.6).

Theorem 5.22 ([176]). Assume p = char(κ) = 0. Let A = {aj}q
j=0 be a finite

admissible family of points aj ∈ P (�dV
∗) with q ≥ n and d > 0. Let f : κ −→

P(V ) be a holomorphic curve which is algebraically non-degenerate of order d.
Then for l ∈ {n− 1, n}, we have

d(q − l)T (r, f) ≤
q∑

j=0

Nf�d(r, aj)−NRam(r, f)− l(l + 1)
2

log r + O(1), (5.5.7)

where NRam(r, f) is defined in the proof.

Proof. Since f is algebraically non-degenerate of order d, for each λ ∈ Jq
l , Fλ(0),

. . . , Fλ(l) are linearly independent, and hence

Wλ = W(Fλ(0), . . . , Fλ(l)) �≡ 0.

Without loss of generality, we may assume µ(r, f̃) ≥ 1 for r ≥ r0. Lemma 3.73
implies

q∏
j=0

1
|f�d, aj|

≤
(

1
Γ(A )

)q−l

max
λ∈Jq

l

l∏
i=0

1
|f�d, aλ(i)|

,

which yields

Γ(A )q−l

q∏
j=0

1
|f�d, aj |

≤ max
λ∈Jq

l

l∏
i=0

|f̃�d|
|Fλ(i)|

≤ |f̃ |(l+1)d max
λ∈Jq

l

∣∣∣∣ Wλ

Fλ(0) · · ·Fλ(l)

∣∣∣∣ 1
|Wλ|

.

It follows that
q∑

j=0

mf�d(r, aj) ≤ d(l + 1)T (r, f)−NRam(r, f)

− l(l + 1)
2

log r + O(1), (5.5.8)

where

NRam(r, f) = min
λ∈Jq

l

N

(
r,

1
Wλ

)
. (5.5.9)

Then theorem 5.22 follows from (5.5.8) and the first main theorem. �

According to the proof of Theorem 5.13, by using the equidistribution formula
(5.5.2) we can give another proof of Theorem 5.22.
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5.5.2 Characteristic functions for divisors

We assume that E is a very ample divisor over a projective variety M = M(κ̄) ⊂
P(κ̄N). Let f : κ −→M be a holomorphic curve. Let ϕ : M −→ P(V ∗) be the dual
classification mapping, where V = L(E). The characteristic function of f for E

TE(r) = Tf,E(r) = T (r, ϕ ◦ f)

is well defined, up to O(1). If f is not constant, then ϕ ◦ f is also non-constant
since ϕ : M −→ P(V ∗) is an embedding. Hence Tf,E(r) →∞ as r →∞.

For any s ∈ V −{0}, set a = P(s) and write D = (s). If f satisfies f(κ) �⊂ D,
the functions

Nf (r, D) = Nϕ◦f(r, a), mf (r, D) = mϕ◦f (r, a)

are well defined. These functions are related by the first main theorem

Tf,E(r) = Nf (r, D) + mf (r, D) + O(1). (5.5.10)

Proposition 5.23. If E and E′ are very ample divisors, then

TE+E′(r) = TE(r) + TE′(r). (5.5.11)

Proof. Let ϕE : M −→ P(V ∗) and ϕE′ : M −→ P(V
′∗) be the dual classification

mappings of E and E′, respectively, given in projective coordinates by

ϕ̃E =
n∑

i=0

ϕ̃iei, ϕ̃E′ =
n′∑

i=0

ϕ̃′
ie

′
i,

where e0, . . . , en and e′0, . . . , e′n′ are bases of V ∗ and V
′∗, respectively. Then the

dual classification mapping of E + E′, denoted by ϕE+E′ : M −→ P(V ∗⊗ V
′∗), is

given in projective coordinates by

ϕ̃E+E′ =
∑
i,j

ϕ̃iϕ̃
′
jei ⊗ e′j .

Hence

TE+E′(r) = T (r, (ϕE+E′) ◦ f) = log µ(r, ϕ̃E ◦ f ⊗ ϕ̃E′ ◦ f)

= log
(

max
i,j

µ(r, ϕ̃i ◦ fϕ̃′
j ◦ f)

)

= log
(

max
i

µ(r, ϕ̃i ◦ f)max
j

µ(r, ϕ̃′
j ◦ f)

)
= log (µ(r, ϕ̃E ◦ f)µ(r, ϕ̃E′ ◦ f))
= TE(r) + TE′(r),

and so Proposition 5.23 follows. �
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Given any divisor D on M , we can write D = E − E′, where E and E′ are
very ample, and define

Nf(r, D) = Nf (r, E)−Nf (r, E′),

mf (r, D) = mf (r, E)−mf (r, E′),

and finally set
TD(r) = TE(r) − TE′(r).

It follows that (5.5.11) holds for arbitrary divisors D and D′. If two divisors D and
D′ on M are linearly equivalent, that is, D = D′ + (h) for some rational function
h on M , then

TD′(r) = TD(r) + O(1).

Lemma 5.24. If D is an effective divisor, then TD(r) ≥ 0.

Proof. There exist very ample divisors E and E′ such that D = E − E′. Let
{f0, . . . , fn} be a basis for L(E′). Then we can extend this choice of functions to
a basis {f0, . . . , fn+l} for L(E) because D is effective. Let ϕE′ = [f0, . . . , fn] and
ϕE = [f0, . . . , fn+l] be the dual classification mapping of E′ and E, respectively.
It then follows from the definition of TD(r) that

TD(r) = TE(r) − TE′(r) ≥ 0,

and so the lemma is proved. �

We suggested the following problem (cf. [176]):

Conjecture 5.25. Let M be a non-singular projective variety over κ. Let K be the
canonical divisor of M , and let D be a simple normal crossings divisor on M .
Let E be a pseudo ample divisor. Let f : κ −→M be a non-constant holomorphic
curve. Then there exists a proper algebraic subset ZD having the following property:
when f(κ) �⊂ ZD,

mf (r, D) + TK(r) ≤ o(TE(r)).

In value distribution theory of complex variables, this corresponds to the
conjecture due to P. Griffiths [125] and S. Lang [229].

Finally, we consider the case M = P(V ), where V is a normed vector space
of dimension n + 1 > 0 over κ.

Example 5.26. Each hyperplane E of P(V ) is very ample with

dimL(E) = n + 1,

and hence the dual classification mapping ϕ is the identity. Thus we have TE(r) =
T (r, f), and hence

TK(r) = −(n + 1)T (r, f)
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since K = −(n + 1)E. Let D =
∑

i Ë[ai] be a sum of hyperplanes in general
position. Then the conjecture reduces to∑

i

mf(r, ai) < (n + 1)T (r, f) + o(T (r, f))

which follows from Theorem 5.12.

For hypersurfaces, Conjecture 5.25 corresponds to the following form:

Conjecture 5.27. Take finite many of ai ∈ P(�dV
∗) such that

∑
i Ëd[ai] have nor-

mal crossings. Let f : κ −→ P(V ) be an algebraically non-degenerate holomorphic
curve. Then ∑

i

mf�d(r, ai) ≤ (n + 1)T (r, f) + o(T (r, f)).

5.6 The abc-theorem for meromorphic functions

Let κ be an algebraically closed field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | · |. For an integer n ≥ 2, we will study
the functional equation

f1 + · · ·+ fn = f0, (5.6.1)

and prove the generalized abc-theorem of meromorphic functions over κ as follows:

Theorem 5.28. Let fj(j = 1, . . . , n) be linearly independent meromorphic functions
on κ and define f0 by (5.6.1). Then

max
0≤j≤n

log µ(r, fj) ≤
n∑

i=0

{
N

(
r,

1
fi

)
−N(r, fi)

}
+ N(r,W)

−N

(
r,

1
W

)
− n(n− 1)

2
log r + O(1), (5.6.2)

where W = W(f1, . . . , fn) is the Wronskian of f1, . . . , fn.

Proof. Since f1, . . . , fn are linearly independent, the Wronskian W �≡ 0. By (5.6.1)
and

f
(i)
1 + · · ·+ f (i)

n = f
(i)
0 , i = 1, . . . , n− 1,

we have
W = Wj (j = 1, 2, . . . , n),

where
Wj = W(f1, . . . , fj−1, f0, fj+1, . . . , fn).

Set

S0 = S(f1, . . . , fn) =
W

f1 · · · fn
= det

(
f

(i)
j

fj

)
.
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Then
S0fj = Sjf0, j = 1, . . . , n, (5.6.3)

where
Sj = S(f1, . . . , fj−1, f0, fj+1, . . . , fn).

By (5.6.3), we have

max
0≤j≤n

log µ(r, fj) = max
0≤j≤n

log µ

(
r,

f0

S0
Sj

)
= log µ(r, f0)− log µ(r,S0) + max

0≤j≤n
log µ(r,Sj). (5.6.4)

The Valiron-Jensen formula (5.1.10) gives

log µ(r, f0) = N

(
r,

1
f0

)
−N(r, f0) + O(1), (5.6.5)

and

− log µ(r,S0) = − log µ(r,W) +
n∑

i=1

log µ(r, fi)

= N(r,W)−N

(
r,

1
W

)

+
n∑

i=1

{
N

(
r,

1
fi

)
−N(r, fi)

}
+ O(1). (5.6.6)

By Lemma 5.11, we obtain

max
0≤j≤n

log µ(r,Sj) ≤ −
n(n− 1)

2
log r. (5.6.7)

Hence (5.6.2) follows from (5.6.4) to (5.6.7). �

By using the Valiron-Jensen formula (5.1.10), we may rewrite the inequality
(5.6.2) into the simple form

max
0≤j≤n

log µ(r, fj) ≤ N

(
r,

1
H

)
−N(r,H)− n(n− 1)

2
log r + O(1), (5.6.8)

where
H =

f0f1 · · · fn

W
. (5.6.9)

By the definitions of the characteristic functions, we obtain

T

(
r,

fj

f0

)
= N

(
r,

fj

f0

)
+ m

(
r,

fj

f0

)
,
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and however,

m

(
r,

fj

f0

)
= max

{
0, logµ

(
r,

fj

f0

)}
= max {log µ(r, f0), log µ(r, fj)} − log µ(r, f0). (5.6.10)

Applying Theorem 5.28 and using (5.6.10) and (5.6.5), we obtain the non-Archi-
medean Nevanlinna third main theorem as follows (cf. [176]):

Theorem 5.29. Let fj(j = 1, . . . , n) be linearly independent meromorphic functions
on κ and define f0 by (5.6.1). Then for 1 ≤ j ≤ n,

T

(
r,

fj

f0

)
≤ N

(
r,

fj

f0

)
+

n∑
i=1

{
N

(
r,

1
fi

)
−N(r, fi)

}

+N(r,W)−N

(
r,

1
W

)
− n(n− 1)

2
log r + O(1),(5.6.11)

where W = W(f1, . . . , fn) is the Wronskian of f1, . . . , fn.

Similar to Theorem 4.4, we also have the truncated form of Nevanlinna’s
third main theorem (see [176], Corollary 2.27).

Theorem 5.30. Suppose that f1, . . . , fn are linearly independent meromorphic func-
tions in κ satisfying the equation (5.6.12) with f0 = 1. Then for j = 1, . . . , n, we
have

T (r, fj) <

n∑
i=1

Nn−1

(
r,

1
fi

)
+

∗
N j(r) −

n(n− 1)
2

log r + O(1),

where
∗
N j(r) = min

⎧⎨
⎩ϑn

n∑
i=1

N(r, fi), (n− 1)
∑
i�=j

N(r, fi)

⎫⎬
⎭ .

Next we replace the assumption of linear independence in Theorem 5.28 by
a weaker hypothesis of no vanishing subsums. Write the equation (5.6.1) in the
form

−f0 + f1 + f2 + · · ·+ fn = 0. (5.6.12)

Assume that no proper subsum of (5.6.12) is equal to 0. By Lemma 3.87, there
exists a partition of indices

{0, 1, . . . , n} = I0 ∪ · · · ∪ Ik

satisfying the properties (i) and (ii) in Lemma 3.87. Set

n0 + 1 = #I0; nα = #Iα (α = 1, . . . , k)
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and write

sα = 1 +
α∑

β=0

nβ , α = 0, 1, . . . , k.

Then
n0 + n1 + · · ·+ nk = n.

Without loss of generality, we may assume that

I0 = {0, . . . , n0}, Iα = {sα−1, . . . , sα − 1} (α = 1, . . . , k).

Since I0 is minimal, f1, . . . , fn0 are linearly independent. Hence

W0 = W(f1, . . . , fn0) �≡ 0.

Similarly, the functions fsα−1 , . . . , fsα−1 are linearly independent, and so

Wα = W
(
fsα−1 , . . . , fsα−1

)
�≡ 0, α = 1, . . . , k.

Write

W = W0 · · ·Wk, l =
k∑

α=0

nα(nα − 1)
2

, w = max
0≤α≤k

{nα − 1} (5.6.13)

and similarly define H by using (5.6.9). Obviously, we have

w ≤ d− 1, w ≤ l ≤ n(n− 1)
2

, (5.6.14)

where d is the dimension of the vector space spanned by the fj over κ. According
to the proof of Theorem 4.5 and Theorem 5.28, we can obtain the following results
(cf. [182]):

Theorem 5.31. Suppose that f0, f1, . . . , fn are meromorphic functions in κ satis-
fying the equation (5.6.12). Assume that no proper subsum of (5.6.12) is equal to
0. Then we have

max
0≤j≤n

log µ(r, fj) ≤ N

(
r,

1
H

)
−N(r,H)− l log r + O(1). (5.6.15)

Theorem 5.32. Suppose that f0, f1, . . . , fn are meromorphic functions in κ satis-
fying the equation (5.6.12). Assume that no proper subsum of (5.6.12) is equal to
0. Then for 1 ≤ j ≤ n,

T

(
r,

fj

f0

)
≤ N

(
r,

fj

f0

)
+

n∑
i=1

{
N

(
r,

1
fi

)
−N(r, fi)

}

+N(r,W)−N

(
r,

1
W

)
− l log r + O(1), (5.6.16)

where W, l are defined by (5.6.13).
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5.7 The abc-theorem for entire functions

Let κ be an algebraically closed field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | · |. We give the analogue of Theorem 4.7
over κ which further yields counterparts of the main theorems in Section 4.2 and
4.4. The following result extends Stothers-Mason’s Theorem 2.65, which can be
regarded as an analogue of the abc-conjecture over A(κ).

Theorem 5.33 ([177]). Let a(z), b(z) and c(z) be entire functions in κ without
common zeros and not all constants such that a + b = c. Then

max{T (r, a), T (r, b), T (r, c)} ≤ N

(
r,

1
abc

)
− log r + O(1). (5.7.1)

Proof. Write

f =
a

c
, g =

b

c
.

Then f and g are both not constant by our assumptions, and satisfy f + g = 1.
By the second main theorem, and noting that

N

(
r,

1
f − 1

)
= N

(
r,

1
g

)
= N

(
r,

1
b

)
,

we obtain

T (r, f) ≤ N(r, f) + N

(
r,

1
f

)
+ N

(
r,

1
f − 1

)
− log r + O(1)

= N

(
r,

1
c

)
+ N

(
r,

1
a

)
+ N

(
r,

1
b

)
− log r + O(1)

= N

(
r,

1
abc

)
− log r + O(1).

Similarly, we have

T (r, g) ≤ N

(
r,

1
abc

)
− log r + O(1).

By (5.1.15) and (5.1.8),

T (r, f) = max
{

N(r, f), N
(

r,
1
f

)}
+ O(1)

= max
{

N

(
r,

1
c

)
, N

(
r,

1
a

)}
+ O(1)

= max {T (r, c), T (r, a)}+ O(1).

Similarly,
T (r, g) = max {T (r, c), T (r, b)}+ O(1),

and, hence, the theorem follows from the above estimates. �
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Theorem 5.33 implies immediately that Theorem 2.65 holds over the field κ.
Boutabaa and Escassut [34] claimed that the term −N

(
r, f

f ′

)
occurs in the right

side of the inequality (5.7.1) by showing the inequality

Nµf,∞(r) + Nµf,A (r) ≥ N

(
r,

f

f ′

)
,

where A = {0, 1}. However, this is wrong by a simple example,

f(z) = 1− zn, g(z) = zn.

We can prove that the term −N
(
r, abc

ab′−a′b

)
occurs in the right side of the in-

equality (5.7.1) (see Theorem 5.34). If the field k has characteristic p > 0, noting
that

e
(a

c

)
= min{e(a), e(c)}, e(f) = e(g),

by applying Theorem 5.10 to the proof of Theorem 5.33, we can obtain

p−s max{T (r, a), T (r, b), T (r, c)} ≤ N

(
r,

1
abc

)
− log r + O(1), (5.7.2)

where s = min{e(a), e(b), e(c)} (cf. [34]). Thus Vaserstein’s result [413] about
polynomials follows from (5.7.2).

Next we will study the more general functional equation

f1 + · · ·+ fn = f0, (5.7.3)

and prove the generalized abc-theorem for entire functions over κ, which is an
analogue of Theorem 4.7 over the non-Archimedean field.

Theorem 5.34 ([178]). Let fj(j = 0, . . . , n) be entire functions on κ such that
f0, . . . , fn have no common zeros, fj (j = 1, . . . , n) are linearly independent on κ
and the equation (5.7.3) holds. Then we have

max
0≤j≤n

T (r, fj) ≤
n∑

i=0

Nn−1

(
r,

1
fi

)
−N(r,H)− n(n− 1)

2
log r + O(1),

max
0≤j≤n

T (r, fj) ≤ Nn(n−1)
2

(
r,

1
f0 · · · fn

)
−N(r,H)− n(n− 1)

2
log r + O(1).

Proof. By Theorem 5.28, we have

max
0≤j≤n

log µ(r, fj) ≤
n∑

i=0

N

(
r,

1
fi

)
−N

(
r,

1
W

)
− n(n− 1)

2
log r + O(1). (5.7.4)
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The Valiron-Jensen formula (5.1.6) and (5.1.8) imply

log µ(r, fj) = T (r, fj) + O(1), j = 0, 1, . . . , n. (5.7.5)

By the Valiron-Jensen formula (5.1.6), we also obtain

n∑
i=0

N

(
r,

1
fi

)
−N

(
r,

1
W

)
= N

(
r,

1
H

)
−N(r,H). (5.7.6)

Thus Theorem 5.34 follows from (5.7.4), (5.7.5), (5.7.6) and the estimates

n∑
i=0

µ0
fi
− µ0

W ≤
n∑

i=0

µ0
fi,n−1, (5.7.7)

n∑
i=0

µ0
fi
− µ0

W ≤ µ0

f0···fn, n(n−1)
2

. (5.7.8)

Take z0 ∈ κ. Then µ0
fs

(z0) = 0 for some s ∈ {0, . . . , n} since f0, . . . , fn have no
common zeros. Note that, by the identity (5.7.3),

W = W(f1, . . . , fs−1, f0, fs+1, . . . , fn).

Obviously we have

µ0

f
(j)
i

(z0) ≥ µ0
fi

(z0)− µ0
fi,j(z0) ≥ µ0

fi
(z0)− µ0

fi,n−1(z0), i �= s, 1 ≤ j ≤ n− 1,

and, hence,

µ0
W(z0) ≥

∑
i�=s

{µ0
fi

(z0)− µ0
fi,n−1(z0)},

that is,

n∑
i=0

µ0
fi

(z0)− µ0
W(z0) =

∑
i�=s

µ0
fi

(z0)− µ0
W(z0)

≤
∑
i�=s

µ0
fi,n−1(z0) =

n∑
i=0

µ0
fi,n−1(z0).

The inequality (5.7.8) can be obtained similarly by comparing the multiplicities of
zeros of f0 · · · fn and W. Then Theorem 5.34 follows from (5.7.4), (5.7.5), (5.7.7)
and (5.7.8). �

Similarly, we can prove the following result:
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Theorem 5.35 ([182]). Let fj(j = 0, . . . , n) be entire functions on κ satisfying the
equation (5.7.3) in which no proper subsum is equal to 0 such that f0, . . . , fn have
no common zeros. Then we have

max
0≤j≤n

T (r, fj) ≤
n∑

i=0

Nw

(
r,

1
fi

)
−N(r,H)− l log r + O(1),

max
0≤j≤n

T (r, fj) ≤ Nl

(
r,

1
f0 · · · fn

)
−N(r,H)− l log r + O(1),

where w, l are defined by (5.6.13).

Hence Theorem 4.8 and Theorem 4.22 also hold over the field κ. These further
deliver supporting evidence for the generalized abc-conjectures in Section 4.3 and
the generalized Hall’s conjecture in Section 4.4.

5.8 Non-Archimedean Borel theorem

Let κ be an algebraically closed field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | · |. We prove a counterpart of Theo-
rem 4.27 over κ, and further show that the characterization in Borel’s theorem
(cf. Corollary 4.33) is “universal”, which supports the corresponding conjecture in
number theory.

Theorem 5.36. Take positive integers n, dj (j = 0, 1, . . . , n) with

α = 1−
n∑

j=0

n− 1
dj

≥ 0.

Let fj (j = 0, 1, . . . , n) be non-zero meromorphic functions on κ satisfying the
following condition:

µ∞
fj)d−1 = µ0

fj)dj−1 = 0 (j = 0, 1, . . . , n),

where d = max{dj}. If the function

T (r) = min
j �=k

{
T

(
r,

fj

fk

)}
is unbounded, then f0, . . . , fn are linearly independent.

Proof. We prove Theorem 5.36 by induction on n. First of all, we consider the
case n = 1. Assume that there are {a0, a1} ⊂ κ such that a0f0 + a1f1 = 0. Since
fj �= 0 (j = 0, 1), then a0 �= 0 and a1 �= 0 if one of a0 and a1 is not zero. Hence

T (r) ≤ T

(
r,

f0

f1

)
= T

(
r,

a1

a0

)
= O(1)
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which is a contradiction. Hence a0 = a1 = 0, that is, f0, f1 are linearly indepen-
dent.

Assume that Theorem 5.36 holds up to n−1. We will show that Theorem 5.36
holds too for the case n ≥ 2. Assume that there are {a0, . . . , an} ⊂ κ such that
a0f0 + · · · + anfn = 0. It is sufficient to show that one of a0, . . . , an is zero.
Assume, to the contrary, that aj �= 0 for j = 0, 1, . . . , n. Then f0, . . . , fn−1 are
linearly independent over κ. Let V be a vector space of dimension n over κ.
Take a base e0, . . . , en−1 of V and let ε0, . . . , εn−1 be the dual base in V ∗. Let
∆ (�≡ 0) be a universal denominator of {f0, . . . , fn−1}, that is, ∆fi is holomorphic
for each i = 0, . . . , n− 1 such that ∆f0, . . . ,∆fn−1 have no common zeros. Then
a meromorphic mapping F : κ −→ P(V ) is defined with a reduced representation

F̃ = ∆a0f0e0 + · · ·+ ∆an−1fn−1en−1 : κ −→ V.

Obviously, F is linearly non-degenerate. Set

bi = P(εi) (0 ≤ i ≤ n− 1), bn = P

(
n−1∑
i=0

εi

)
.

Then the family {b0, . . . , bn} is in general position. Then Theorem 5.13 implies

T (r, F ) ≤
n∑

j=0

NF,n−1(r, bj)−
n(n− 1)

2
log r + O(1), (5.8.1)

where, by definition,

NF,n−1(r, bi) = Nn−1

(
r,

1
∆fi

)
.

By the formulae (5.1.15) and (5.3.6), for each i = 1, . . . , n− 1, we have

T (r) ≤ T

(
r,

fi

f0

)
≤ max

{
N

(
r,

1
∆f0

)
, N

(
r,

1
∆fi

)}
≤ T (r, F ) + O(1).

According to the definition of ∆, it is easy to show that the inequality

Ndi−1)

(
r,

1
∆fi

)
≤ Ndi−1)

(
r,

1
fi

)
+

n−1∑
j=0

Nd−1)(r, fj) = 0

holds for each i ∈ {0, 1, . . . , n}. Note that

N

(
r,

1
∆fi

)
= Ndi−1)

(
r,

1
∆fi

)
+ N (di

(
r,

1
∆fi

)

= N (di

(
r,

1
∆fi

)
,
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and

diN (di

(
r,

1
∆fi

)
≤ N

(
r,

1
∆fi

)
= NF (r, bi) ≤ T (r, F ) + O(1)

hold for i = 0, . . . , n. Hence for i = 0, . . . , n, we obtain

NF,n−1(r, bi) ≤ (n− 1)N
(

r,
1

∆fi

)

≤ (n− 1)N (di

(
r,

1
∆fi

)
≤ n− 1

di
T (r, F ) + O(1).

Therefore the inequality (5.8.1) yields

αT (r, F ) +
n(n− 1)

2
log r ≤ O(1).

This is a contradiction since α ≥ 0, n ≥ 2. �
Corollary 5.37. Let f0, . . . , fn (n ≥ 2) be non-zero meromorphic functions on κ
such that there are constants ai ∈ κ satisfying the equation a0f0 + · · ·+ anfn = 0.
Assume that there exist positive integers di (i = 0, . . . , n) such that

1−
n∑

i=0

n− 1
di

≥ 0, µ∞
fi)d−1 = µ0

fi)di−1 = 0 (i = 0, . . . , n),

where d = max di. Then there exists a partition of indices

{0, 1, . . . , n} = I0 ∪ I1 ∪ · · · ∪ Ik

such that Iα �= ∅ (α = 0, 1, . . . , k), Iα ∩ Iβ = ∅ (α �= β),∑
i∈Iα

aifi = 0, α = 0, 1, . . . , k,

and fi/fj is constant for any i, j ∈ Iα. In particular, if ai �= 0 for i = 0, 1, . . . , n,
each Iα contains at least two indices.

Proof. Consider the partition {0, 1, . . . , n} = I0∪I1∪· · ·∪Ik such that two indices
i and j are in the same class if and only if fi/fj is constant. Then we have

n∑
i=0

aifi =
k∑

α=0

∑
i∈Iα

aifi =
k∑

α=0

c′αfiα = 0

for any fixed iα ∈ Iα and some c′α ∈ κ. Corollary 5.37 is trivial for the case k = 0.
Suppose k ≥ 1. Then

1−
k∑

α=0

k − 1
diα

≥ 1−
n∑

j=0

n− 1
dj

≥ 0.

By Theorem 5.36, we obtain c′α = 0 for α = 0, 1, . . . , k, which yields Corollary 5.37.
�
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Theorem 5.38 ([169]). Take positive integers n and d with n ≥ 2, d ≥ n2− 1. The
following three statements are equivalent:

(i) If meromorphic functions f1, f2, . . . , fn on κ satisfy

fd
1 + fd

2 + · · ·+ fd
n = 1,

then fd
1 , fd

2 , . . . , fd
n are linearly dependent;

(ii) Under the same assumption as in (i), then at least one of the fi’s is constant;

(iii) Assume that entire functions f0, f1, . . . , fn on κ satisfy

fd
0 + fd

1 + · · ·+ fd
n = 0.

Partition the index set I = {0, 1, . . . , n} into subsets Iα, I = ∪k
α=0Iα, putting

two indices i and j in the same subset Iα if and only if fi/fj is constant.
Then we have ∑

i∈Iα

fd
i = 0, α = 0, . . . , k.

Proof. The claim (iii) follows directly from Corollary 5.37. Next we show (ii) ⇒
(iii) ⇒ (i) ⇒ (ii). In order to derive (iii) from (ii), we have

n∑
i=0

fd
i =

k∑
α=0

∑
i∈Iα

fd
i =

k∑
α=0

aαfd
iα

= 0

for some aα ∈ C and any fixed iα ∈ Iα. Then (iii) follows if aα = 0 for α = 0, . . . , k.
Assume that (iii) does not hold. Without loss of generality, we may assume that

aα �= 0 (0 ≤ α ≤ s, s ≥ 1), aα = 0 (s + 1 ≤ α ≤ k).

Choose ξα ∈ κ such that

ξd
α = −aα

a0
, α = 1, . . . , s

and set

gα = ξα
fiα

fi0

, α = 1, . . . , s

so that gd
1 + · · · + gd

s = 1. Then one of the gα’s, say g1, is constant by (ii). This
means that fi1/fi0 is constant, contradicting the definition of Iα.

We derive (i) from (iii). We can choose ξ ∈ κ and entire functions F0, . . . , Fn

in κ such that

ξd = −1, fi =
Fi

ξF0
, i = 1, . . . , m
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so that F d
0 +F d

1 + · · ·+F d
n = 0, and apply (iii) to this identity. Let I0 be the index

set that contains 0. If I = I0, then the functions f1, . . . , fn are all constant and
hence linearly dependent. If I �= I0, then∑

i∈Iα

F d
i = 0, α �= 0,

thus yielding a non-trivial linear relation of {fd
i | i ∈ Iα}.

Finally, we derive (ii) from (i) as follows: Since the functions fd
1 , . . . , fd

n are
linearly dependent, without loss of generality, we may assume the following linear
relation:

c1f
d
1 + · · ·+ cn−1f

d
n−1 + fd

n = 0.

By subtracting this identity from fd
1 + · · ·+ fd

n = 1, we have

(1− c1)fd
1 + · · ·+ (1− cn−1)fd

n−1 = 1.

We could use the relation to get a shorter linear combination of the fd
i to equal 1,

and hence (i) can be used again. Finally, it follows that a constant c exists such
that cfd

i = 1 for some i. �

Theorem 5.38, (iii) was proved by Hà, Huy Khóai and Mai, Van Tu [139],
which is a non-Archimedean version of Green’s theorem [121]. Note that, in the
complex case, the hypothesis is d ≥ n2, but d ≥ n2 − 1 for the non-Archimedean
case. Similarly, according to the proof of Theorem 4.34, it is not difficult to give
the analogue of Theorem 4.34 over κ:

Theorem 5.39. Let Pj(x0, . . . , xn) be a homogeneous polynomial of degree δj over
κ for 0 ≤ j ≤ n. Let f0, . . . , fn be holomorphic functions on κ satisfying the
following equation:

n∑
j=0

f
d−δj

j Pj(f0, . . . , fn) = 0.

There is a non-trivial linear relation among fd−δ1
1 P1(f0, . . . , fn), . . . , fd−δn

n Pn(f0,
. . . , fn) if

d ≥ n2 − 1 +
n∑

j=0

δj .

5.9 Waring’s problem over function fields

Let κ be an algebraically closed field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | · |. For Waring’s problem in a family F
of M(κ), it is interesting that, for any fixed positive integer d, one can find the
smallest integer n = gF(d) such that there exist non-constant functions f1, . . . , fn

in F satisfying (4.7.2), that is,

f1(z)d + · · ·+ fn(z)d = z.
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Theorem 5.40 ([169]). The number gF(d) satisfies the following inequalities:

gA(κ)(d) >
1
2

+

√
d +

1
4
, d ≥ 3, (5.9.1)

gM(κ)(d) >
√

d + 1, d ≥ 3. (5.9.2)

Proof. Assume that there exist non-constant meromorphic functions f1, . . . , fn

satisfying (4.7.2). Assume, to the contrary, that (5.9.1) and (5.9.2) are not true.
First of all, we consider the case that fd

1 , . . . , fd
n are linearly independent.

If f1, . . . , fn are entire functions, then by the assumption we have

n ≤ 1
2

+

√
d +

1
4
,

that is, d ≥ n(n − 1). Obviously, n ≥ 2 since d ≥ 3. By the equation (4.7.2),
it is easy to see that f1, . . . , fn have no common zeros. Hence a non-degenerate
holomorphic curve

F : κ −→ P(κn)

is well defined with a reduced representation F̃ = (F̃1, . . . , F̃n), where

F̃j = fd
j , j = 1, . . . , n.

By Theorem 5.13, we obtain

T (r, F ) ≤
n∑

j=0

Nn−1

(
r,

1
F̃j

)
− n(n− 1)

2
log r + O(1)

≤ log r +
n∑

j=1

n− 1
d

N

(
r,

1
F̃j

)
− n(n− 1)

2
log r + O(1)

≤
(

1− n(n− 1)
2

)
log r +

n(n− 1)
d

T (r, F ) + O(1),

where F̃0(z) = z, and hence(
1− n(n− 1)

d

)
T (r, F ) ≤

(
1− n(n− 1)

2

)
log r + O(1). (5.9.3)

Since T (r, F )→∞ as r →∞, the inequality (5.9.3) is not true since d ≥ n(n−1).
Thus (5.9.1) is proved for the special case.

When f1, . . . , fn are meromorphic functions, by the assumption we have d ≥
n2 − 1 ≥ 3. There exist entire functions h, g1, . . . , gn such that

fj =
gj

h
, j = 1, . . . , n.
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Note that h can be chosen such that g1, . . . , gn have no common zeros. Now (4.7.2)
becomes

g1(z)d + · · ·+ gn(z)d = zh(z)d. (5.9.4)

Also a non-degenerate holomorphic curve G : κ −→ P(κn) is well defined with a
reduced representation G̃ = (G̃1, . . . , G̃n), where

G̃j = gd
j , j = 1, . . . , n.

Set G̃0(z) = zh(z)d. Then Theorem 5.13 implies

T (r, G) ≤
n∑

j=0

Nn−1

(
r,

1
G̃j

)
− n(n− 1)

2
log r + O(1)

≤ n− 1
d

N

(
r,

1
hd

)
+

n∑
j=1

n− 1
d

N

(
r,

1
G̃j

)

+
(

1− n(n− 1)
2

)
log r + O(1)

≤
(

1− n− 1
d

− n(n− 1)
2

)
log r

+
(n + 1)(n− 1)

d
T (r, G) + O(1),

and hence(
1− (n + 1)(n− 1)

d

)
T (r, G) ≤

(
1− n− 1

d
− n(n− 1)

2

)
log r + O(1). (5.9.5)

Since T (r, G) → ∞ as r → ∞, the inequality (5.9.5) is not true sine d ≥ (n +
1)(n− 1). Thus (5.9.2) is proved for the special case.

Finally, we study the case that fd
1 , . . . , fd

n are linearly dependent. Without
loss of generality, we may assume that fd

1 , . . . , fd
l are linearly independent (1 ≤

1 < n), but fd
1 , . . . , fd

l , fd
j are linearly dependent for each j = l + 1, . . . , n. Thus

there is a (a1, . . . , al) ∈ κl − {0} such that (4.7.2) becomes the following form:

a1f1(z)d + · · ·+ alfl(z)d = z. (5.9.6)

We may assume ai �= 0 for each i = 1, . . . , l, otherwise, deleting the terms with
null coefficients in (5.9.6). Thus the proof of Theorem 5.40 can be completed by
applying the above arguments to the equation (5.9.6). �

By considering (d − 1)th differences of zd it can be shown [147] that z is
representable as the sum of d dth powers. The construction is as follows:

∆d−1zd =
d−1∑
i=0

(
d− 1

i

)
(−1)d−1−i(z + i)d = (d− 1)!z + a.
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Setting z = (w − a)/(d− 1)!, we have the desired representation. Thus

d ≥ gκ[z](d) >
1
2

+

√
d +

1
4
, d ≥ 3.

We may ask for the smallest number n = GF (d) such that there exist non-
constant functions f1, . . . , fn in the class F such that

fd
1 + · · ·+ fd

n = 1. (5.9.7)

Following the proof of Theorem 5.40, we can obtain the result:

Theorem 5.41 ([169]). Over the field κ, the number GF (d) satisfies the following
inequalities:

GA(κ)(d) >
1
2

+

√
d +

1
4
, d ≥ 3, (5.9.8)

GM(κ)(d) >
√

d + 1, d ≥ 3. (5.9.9)

Some special cases of Theorem 5.41 can be found in [33], [35], and [176]. For
the case d = 2, we can prove easily that there do not exist two non-constant entire
functions f1 and f2 on κ satisfying

f2
1 + f2

2 = 1.

Hence (5.9.8) and (5.9.9) are true for d = 2 (cf. [176]).

5.10 Picard-Berkovich’s theorem

Let κ be an algebraically closed field of characteristic p ≥ 0, complete for a non-
trivial non-Archimedean absolute value | · |. Boutabaa and Escassut [34], [35] ob-
tained the following two results:

Theorem 5.42. Let A and B be two relatively prime polynomials of degrees k and
q over κ, respectively, and assume that B has no factor whose power is multiple
of p. Let t be the number of distinct zeros of B, and let g ∈ M(κ) be such that
all poles of g have order either multiple of p, or ≥ m ≥ 1, except maybe a finite
number l of them. Suppose that there exists a function f ∈ M(κ) with f ′ �= 0
satisfying

g(z)B(f(z)) = A(f(z)), z ∈ κ.

Then

(a) mt ≤ q + m if f ∈ A(κ)− κ[z];
(b) mt ≤ q + 2m if f ∈ M(κ) − κ(z). Moreover, if k > q, then mt ≤ min{q +

2m, k + m};



414 Chapter 5. Functions over Non-Archimedean Fields

(c) mt < q + 2m if f ∈ M(κ) and l = 0 or 1. Moreover, if k > q, then mt <
min{q + 2m, k + m};

(d) mt < q + m if f ∈ A(κ) and l = 0 or 1.

Proof. The inequalities are trivial if t < 2. So we may suppose t ≥ 2. Write

B(z) = (z − b1)q1 · · · (z − bt)qt .

Since A and B have no common zeros, each zero z0 of B(f(z)) is a pole of g(z).
Hence z0 is a zero of B(f(z)) of order either multiple of p, or ≥ m except maybe
a finite number l of them. Note that f(z0)− bj = 0 for some j ∈ {1, . . . , t}. Then
when µ0

B(f)(z0) ≥ m, we also have

qj

m
µ

bj

f (z0) =
1
m

µ0
B(f)(z0) ≥ 1.

Let lj be the number of zeros of f−bj whose order in B(f(z)) is neither a multiple
of p nor superior or equal to m. At such a point z0, we have µ

bj

f (z0) > 0, and so

1 ≤ qj

m
µ

bj

f (z0) + 1− qj

m
≤ qj

m
µ

bj

f (z0) + 1− 1
m

.

Therefore

N

(
r,

1
f − bj

)
≤ qj

m
N

(
r,

1
f − bj

)
+ lj

(
1− 1

m

)
log r + O(1)

≤ qj

m
T (r, f) + lj

(
1− 1

m

)
log r + O(1),

where the last inequality is obtained by the first main theorem, and hence

t∑
j=1

N

(
r,

1
f − bj

)
≤ q

m
T (r, f) +

l(m− 1)
m

log r + O(1). (5.10.1)

On the other hand, by using the second main theorem, one has

(t− 1)T (r, f) ≤ N(r, f) +
t∑

j=1

N

(
r,

1
f − bj

)
− log r + O(1).

The estimate (5.10.1) implies

(t− 1)T (r, f) ≤ N(r, f) +
q

m
T (r, f) +

(
l(m− 1)

m
− 1
)

log r + O(1), (5.10.2)

which means

mt−m− q

m
T (r, f) ≤ N(r, f) +

(
l(m− 1)

m
− 1
)

log r + O(1). (5.10.3)
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In particular, this yields

mt− 2m− q

m
T (r, f) ≤

(
l(m− 1)

m
− 1
)

log r + O(1). (5.10.4)

If f ∈ A(κ)−κ[z] (resp., f ∈M(κ)−κ(z)), it follows from (5.10.3) (resp, (5.10.4))
that mt ≤ m + q (resp., mt ≤ 2m + q) since

lim
r→∞

T (r, f)
log r

= +∞.

Therefore we have proven (a) and the first part of (b).
Next suppose that k > q. Then each pole of f also is a pole of g with

µ∞
g = (k − q)µ∞

f . Hence

N(r, f) ≤ k − q

m
N(r, f) ≤ k − q

m
T (r, f).

Thus the inequality (5.10.3) yields

mt−m− k

m
T (r, f) ≤

(
l(m− 1)

m
− 1
)

log r + O(1). (5.10.5)

If f ∈ M(κ) − κ(z), it follows from (5.10.5) that mt ≤ m + k, and so the second
part of (b) is proved.

Suppose f ∈ M(κ) and that 0 ≤ l ≤ 1. Since the term about log r is negative
as r is sufficiently large, then mt < 2m + q follows from (5.10.4). In the same way,
if k > q, we obtain mt < m + k by (5.10.5), which proves (c).

Suppose f ∈ A(κ) and that 0 ≤ l ≤ 1. Since the term about log r is negative
as r is sufficiently large, it follows from (5.10.3) that mt < m + q, which proves
(d). �
Theorem 5.43. Given two relatively prime polynomials

A(z) = a
s∏

i=1

(z − ai)ki , B(z) = b
t∏

j=1

(z − bj)qj

of respective degrees k and q over κ, where all ai and bj are distinct. Let m ∈ Z+

be relatively prime with p. Suppose that there exist two functions f, g ∈ M(κ)
satisfying

(g(z))mB(f(z)) = A(f(z)), z ∈ κ.

Then both f and g are constant if

1) f ∈ A(κ) and if

s + t > 1 +
1
m

⎛
⎝ s∑

i=1

(m, ki) +
t∑

j=1

(m, qj)

⎞
⎠ ,

where (m, n) is the largest common factor of m and n, or
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2) f, g ∈M(κ) and if

s + t ≥ 1 +
1
m

⎛
⎝(m, |k − q|∞) +

s∑
i=1

(m, ki) +
t∑

j=1

(m, qj)

⎞
⎠ .

Proof. It is clear that if f is constant so is g. Suppose, to the contrary, that f is
not constant. Then

k = deg(A) =
s∑

i=1

ki, q = deg(B) =
t∑

j=1

qj .

If f ′ is identically zero, then so is g′. Let

f1 = p
√

f, g1 = p
√

g, A1 = Θ(A), B1 = Θ(B),

where Θ is defined by (5.2.4). Then we can see that

(g1(z))mB1(f1(z)) = A1(f1(z)),

and that A1, B1, f1, g1 respectively respect the hypotheses of A, B, f, g. So we
are led to the same problem, and therefore we can go on e(f) times, until we get
a similar equation where the function playing the role of f has a non-identically
zero derivative. Thus we can assume that f ′ is not identically zero.

Obviously, we have

kiµ
ai

f = mµ0
g, i = 1, . . . , s,

and
qjµ

bj

f = mµ∞
g , j = 1, . . . , t.

It follows that
µai

f ≥ m

(m, ki)
, i = 1, . . . , s,

and
µ

bj

f ≥ m

(m, qj)
, j = 1, . . . , t.

Hence we obtain

N

(
r,

1
f − ai

)
≤ (m, ki)

m
N

(
r,

1
f − ai

)
≤ (m, ki)

m
T (r, f) + O(1), i = 1, . . . , s,

and

N

(
r,

1
f − bj

)
≤ (m, qj)

m
N

(
r,

1
f − bj

)
≤ (m, qj)

m
T (r, f) + O(1), j = 1, . . . , t.
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By using the second main theorem, one has

(s + t− 1)T (r, f) ≤
s∑

i=1

N

(
r,

1
f − ai

)
+

t∑
j=1

N

(
r,

1
f − bj

)
+N(r, f)− log r + O(1)

≤ 1
m

⎛
⎝ s∑

i=1

(m, ki) +
t∑

j=1

(m, qj)

⎞
⎠T (r, f)

+N(r, f)− log r + O(1). (5.10.6)

Note that if µ∞
f (z0) > 0,

(k − q)µ∞
f (z0) = m

(
µ∞

g (z0)− µ0
g(z0)

)
.

We have

N(r, f) ≤ (m, |k − q|∞)
m

N(r, f) ≤ (m, |k − q|∞)
m

T (r, f),

which with (5.10.6) yield

(s + t− 1)T (r, f) ≤ 1
m

⎛
⎝(m, |k − q|∞) +

s∑
i=1

(m, ki) +
t∑

j=1

(m, qj)

⎞
⎠T (r, f)

− log r + O(1). (5.10.7)

Then (5.10.7) implies

s + t− 1 <
1
m

⎛
⎝(m, |k − q|∞) +

s∑
i=1

(m, ki) +
t∑

j=1

(m, qj)

⎞
⎠ (5.10.8)

since log r → +∞, which contradicts with the hypothesis in 2). Hence f (and so
g) is constant.

In particular, if f lies in A(κ), then (5.10.6) implies

s + t− 1 ≤ 1
m

⎛
⎝ s∑

i=1

(m, ki) +
t∑

j=1

(m, qj)

⎞
⎠ .

This is a contradiction with the hypothesis in 1). Hence f is constant. �

Particularly, an elliptic curve defined by Weierstrass equation (3.1.3) under
the condition (3.1.4) has no non-constant meromorphic solutions x, y ∈ M(κ).
Theorem 5.43 yields easily the following fact:
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Corollary 5.44. Let M be an algebraic curve of genus 1 or 2 on κ and let f, g ∈
M(κ) be such that (f(z), g(z)) ∈M when z ∈ κ. Then f and g are constant.

In fact, according to Picard [316] (or Theorem 3.7, Proposition 3.23), ev-
ery algebraic curve of genus 1 (resp. 2) is birationally equivalent to a smooth
elliptic (resp. hyperelliptic) curve. Hence one can apply Theorem 5.43 with m =
2, deg(B) = 0, deg(A) = s = 3 and m = 2, deg(B) = 0, deg(A) = s ≥ 4 in Corol-
lary 5.44, respectively (see [35]). According to the proof of Theorem 4.60, we can
obtain the following result:

Theorem 5.45. Suppose that P (z), Q(z) ∈ κ[z] are respectively two polynomials of
degrees k and q with q ≥ k ≥ 2 and P ′Q′ not identically 0. Let S be a non-empty
subset of zeros of P ′ and let T be the set of zeros of Q′ such that P (S)∩Q(T ) = ∅.
If there exist two meromorphic functions f and g in κ with f ′ �= 0 satisfying

P (f) = Q(g), (5.10.9)

then
lq − k

q
T (r, f) ≤ N(r, f)− log r + O(1), (5.10.10)

where l =
∑

c∈S µ0
P ′(c). Further, we have q = k, l = 1, and S has only one element

which is a simple zero of P ′.

Theorem 5.45 improves a result in [96]. Note that when p > 0, if there exist
two non-constant meromorphic functions f and g in κ satisfying (5.10.9), then f
and g have the same ramification index s and

ps√
P
(

ps
√

f
)

= ps
√

Q ( ps√g) .

Thus when p �= 2, 3, we obtain Corollary 5.44 again by using Theorem 5.45.

Picard-Berkovich’s theorem claims that the conclusion in Corollary 5.44 holds
if the genus of M is not less than 1:

Theorem 5.46 (Berkovich [21]). Let M be an irreducible curve of genus ≥ 1 of
equation F (x, y) = 0, where F (x, y) is an irreducible polynomial in two variables
with coefficients in κ. There do not exist non-constant meromorphic functions f
and g in κ such that F (f(z), g(z)) is identically zero.

Cherry [58] shows that this also holds if M is an Abelian variety, and obtains
a non-Archimedean analogue of Bloch’s conjecture. Further, in [59] Cherry proves
that each Abelian variety over κ carries a Kobayashi distance. Here we suggest an
analogue of Green-Griffiths’ conjecture (cf. Chapter 6) as follows:

Conjecture 5.47. If f : κ −→M is a holomorphic curve into a non-singular pseudo
canonical projective variety, then the image of f is contained in a proper algebraic
subvariety.
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Finally, we list two analogues of Theorem 4.67 and Theorem 4.68 in non-
Archimedean fields:

Theorem 5.48 ([426]). Let P ∈ κ[z] be of degree n, have no multiple zeros, and

P ′(z) = c(z − c1)m1 · · · (z − cl)ml ,

where c is a non-zero constant, such that

ci �= cj , P (ci) �= P (cj), 1 ≤ i �= j ≤ l.

Moreover, if p > 0, we assume that the multiplicity of the factor z − ci in P (z)−
P (ci) is mi + 1 for 1 ≤ i ≤ l, and if p | n, we also assume that the coefficient of
zn−1 in P (z) is not zero. Then the following are equivalent:

(i) P is a uniqueness polynomial for M(κ);
(ii) P is a uniqueness polynomial for κ(z);

(iii) (n− 2)(n− 3) >
∑l

i=1 mi(mi − 1);
(iv) l ≥ 2 if p | n; and l ≥ 3 or l = 2 and min{m1, m2} ≥ 2 if p = 0 or p � n.

Theorem 5.49 ([426]). Let P ∈ κ[z] be of degree n, have no multiple zeros, and

P ′(z) = c(z − c1)m1 · · · (z − cl)ml ,

where c is a non-zero constant, such that

ci �= cj , P (ci) �= P (cj), 1 ≤ i �= j ≤ l.

Moreover, if p > 0, we assume that the multiplicity of the factor z − ci in P (z)−
P (ci) is mi + 1 for 1 ≤ i ≤ l, and if p | n, we also assume that the coefficient of
zn−1 in P (z) is not zero. Then the following are equivalent:

(I) P is a strong uniqueness polynomial for M(κ);

(II) P is a strong uniqueness polynomial for κ(z);
(III) no non-trivial affine transformation of C preserves the set of zeros of P ,

and l ≥ 2 if p | n; and l ≥ 3 if p = 0 or p � n, except P satisfies

n = 4, m1 = m2 = m3 = 1,
P (c1)
P (c2)

=
P (c2)
P (c3)

=
P (c3)
P (c1)

= ω, ω2+ω+1 = 0;

or l = 2 and min{m1, m2} ≥ 2 if p = 0 or p � n, except P satisfies

n = 5, m1 = m2 = 2, P (c1) = −P (c2).



Chapter 6

Holomorphic Curves in
Canonical Varieties

In this chapter, we will prove the degeneracy of holomorphic curves into pseudo
canonical projective varieties by using meromorphic connections introduced by
Siu, which is originally a conjecture due to Green and Griffiths. It can be regarded
as the analogue of Bombieri-Lang’s Conjecture 3.37 for holomorphic curves. A
counterpart of Vojta’s (1, 1)-form conjecture in value distribution theory will be
exhibited (see Theorem 6.2). We also discuss conjectures of Griffiths and Lang by
applying meromorphic connections.

6.1 Variations of the first main theorem

To show the Green-Griffiths’ conjecture, in this section we first prove an inequality
of characteristic functions of holomorphic mappings for line bundles by using the
first main theorem. A special integral term related to Jacobian sections appears
in this inequality. We will use Siu’s inequality to estimate the integral term.

6.1.1 Green’s formula

We begin with the Green formula which will be used to prove Siu’s inequality. First
of all, we introduce some notation. Let z = x + iy be the standard coordinate of
C, where x, y ∈ R, and i is the imaginary unit. By a regular arc in C we mean a
complex function

λ(t) = x(t) + iy(t), t ∈ I

of t in an interval I with the property that λ(t) is of class C1 in I, and λ′(t) �= 0
for all t in I. A finite sequence of regular arcs Cj , j = 1, . . . , n, of class Ck placed
end to end is called a Jordan arc of class Ck. If the end points of a Jordan arc are
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equal, the Jordan arc is said to be closed. A simple closed Jordan arc or curvilinear
polygon is a closed Jordan arc which has no multiple points. A regular component
of a curvilinear polygon is called an edge of the polygon and the point between
two edges is called a vertex of the polygon.

Let D be a bounded connected open set in C such that the boundary ∂D of
D consists of finitely many simple closed Jordan arcs of class C1. Let ∂

∂n be the
operator of directional derivative along the unit normal vector to ∂D pointed to
the interior of D. Assume that ∂D has a positive orientation induced from D, i.e.,
the rotation direction from the unit tangent direction to ∂D to the unit normal
vector to ∂D pointed to the interior of D is same as that from the x-axis to the
y-axis. For P, Q ∈ C1(D), Green’s formula∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫
∂D

Pdx + Qdy

holds, where D is the closure D ∪ ∂D of D. Taking u, w ∈ C2(D) and setting

P = −u
∂w

∂y
, Q = u

∂w

∂x

in Green’s formula, we have∫
D

(
u∆w +

∂u

∂x

∂w

∂x
+

∂u

∂y

∂w

∂y

)
dxdy =

∫
∂D

u
∂w

∂x
dy − u

∂w

∂y
dx

= −
∫

∂D

u
∂w

∂n
ds

where ds is the arc element, and

∆ =
∂2

∂x2
+

∂2

∂y2
.

By symmetry, we can obtain a similar formula by changing the order of u and w.
Thus we easily obtain∫

D

(u∆w − w∆u)dxdy = −
∫

∂D

(
u

∂w

∂n
− w

∂u

∂n

)
ds. (6.1.1)

Further, we let D = C(0; r) be the disc of radius r > 0 in C. Set

∂z =
∂

∂z
, ∂̄z =

∂

∂z̄
, τ(z) = |z|2, υ = ddcτ.

Then we have
∂z∂zu =

1
4
∆u.
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Note that along the circle ∂D = C〈0; r〉,

∂

∂n
= − ∂

∂r
.

We apply Green’s formula to w = −1 as follows:

C[0; r; ∆uυ] =
1
π

∫
C[0;r]

∆udxdy =
1
π

∫
C〈0;r〉

∂u

∂r
ds

=
r

π

∂

∂r

∫ 2π

0

u(reiθ)dθ,

and hence

T (r, r0; ∆uυ) =
1
π

∫ 2π

0

u(reiθ)dθ − 1
π

∫ 2π

0

u(r0e
iθ)dθ. (6.1.2)

Note that
∆uυ = 4∂z∂zuυ = 4ddcu, σ =

dθ

2π
.

We can change the formula (6.1.2) into the following form:

T (r, r0; ddcu) =
1
2

C〈0; r; u〉 − 1
2

C〈0; r0; u〉. (6.1.3)

The formula (6.1.3) further explains the formula (2.9.20).

6.1.2 Analogue of Vojta’s conjecture

We will assume that M is a parabolic complex manifold of dimension m, N is a
compact complex manifold of dimension n, and there exists a positive holomorphic
line bundle L > 0 on N . Take a metric κ of L such that the Chern form

ψ = c1(L, κ) > 0.

Let Bk(L) be the base locus of the linear system Γ(N, Kk
N ⊗ L∗) and set

B(L) =
⋂
k

Bk(L), (6.1.4)

where the intersection goes over all positive integers k with

Pk(L) = dim Γ(N, Kk
N ⊗ L∗) > 0.

If Pk(L) = 0 for all k > 0, we define B(L) = N .

We give some examples with B(L) = N based on the following Kodaira-
Nakano vanishing theorem (cf. [127]):
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Theorem 6.1. If L → N is a positive line bundle, then

Hq(N, Ωp(L)) = 0, p + q > n.

By Kodaira-Serre duality

Hq(N, Ωp(L)) ∼= Hn−q(N, Ωn−p(L∗)),

we have
Γ(N, L∗) = H0(N,O(L∗)) = 0.

In particular, when N = Pn and H is the hyperplane section line bundle of the
complex projective space Pn, we have B(H) = Pn. If N = Cn/Λ is a complex
torus, then B(L) = N since KN is trivial.

If N is a pseudo canonical non-singular projective variety, without loss of
generality, we may assume that L is very ample. Then Lemma 2.30 implies that
Pk(L)� kn when k →div ∞, and hence B(L) �= N . Conversely, if B(L) �= N , then
Pk(L) > 0 for some k > 0, which means that there exists an effective divisor Z on
N such that Kk

N ⊗ L∗ = [Z]. By Theorem 1.77 or the remark after Lemma 2.30,
N is pseudo canonical.

Assume B(L) �= N and let f : M −→ N be a holomorphic mapping with
f(M) � B(L). Then there exists a positive integer k such that

Pk(L) �= 0, f(M) � Bk(L).

We can take a non-trivial section α ∈ Γ(N, Kk
N ⊗ L∗) with f(M) � α−1(0), and

a metric ρ of Kk
N ⊗ L∗ such that |α(x)|ρ ≤ 1 for all x ∈ N . Then there exists a

volume form Ω on N such that

c1(Kk
N ⊗ L∗, ρ) = kRic(Ω)− ψ.

Denote the zero divisor (α) of α by Dα. Then the first main theorem (2.9.19) for
the divisor Dα implies

kTf(r, KN )− Tf(r, L) = Nf (r, Dα) + mf (r, Dα)−mf (r0, Dα). (6.1.5)

For a Jacobian section F of f , define a non-negative function g by

F [ψn] = g2f∗(ψb) ∧ υm−b, b = min{m, n}. (6.1.6)

Theorem 6.2. If F is effective and if f(M) � B(L) �= N , then there exists a
positive constant c such that

‖ cTf(r, L) < Ricτ (r, r0)−NRam(r, f) + M〈O; r; log g〉+ O(ε log r)

holds for any ε > 0.
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Proof. By Theorem 2.90 and (6.1.5), we have

1
k

Tf(r, L) ≤ Ricτ (r, r0)−NRam(r, f) + M〈O; r; log h〉+ O(1)

for r, r0 ∈ R0
τ with r > r0 > 0, where h is defined by

F [ψn] = h2υm. (6.1.7)

Set
M+ = {x ∈ M | υ(x) > 0}.

For an integer i with 1 ≤ i ≤ m, define a function ρi on M+ by

f∗(ψi) ∧ υm−i = ρiυ
m. (6.1.8)

Then a pointwise relation among the ρi’s is provided by the inequality (2.1.82) or
(2.12.18)

ρ
1
j

j ≤ cijρ
1
i
i (j ≥ i). (6.1.9)

Thus we obtain (
h2

g2

) 1
b

= ρ
1
b

b ≤ c1bρ1,

which implies (
h2

g2

) 1
b

υm ≤ c1bf
∗(ψ) ∧ υm−1.

By Lemma 2.92, for any ε > 0 we obtain

‖
∫

M〈O;r〉
log
(

h2

g2

) 1
b

σ ≤ ς(1 + 2ε) logTf (r, L) + O(ε log r).

Hence Theorem 6.2 follows from these estimates. �

When m ≥ n = rank(f), Stoll [380] proved a version of Theorem 6.2. Further,
Hu [167] formulated Stoll’s theorem into the form of Theorem 6.2.

According to the proof of Theorem 6.2, we see that the condition B(L) �= N
can be replaced by Bk(L) �= N for a positive integer k. It is sufficient to assume that
Chern classes of L and KN in de Rham cohomology H2

DR(N, R) satisfy kc1(KN ) >
c1(L), that is,

c1(KN ) >
1
k
c1(L), (6.1.10)

the constant c in Theorem 6.2 assumes the form 1
k − δ for sufficiently small δ > 0.

Hence Theorem 6.2 may be viewed as an analogue of Conjecture 3.61 in value
distribution theory. Speaking correctly, the counterpart of Theorem 6.2 in number
theory should be the following form:
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Conjecture 6.3. Let X be a complete non-singular variety over a number field κ.
Let D be a divisor on X satisfying |kK −D| �= ∅ for a positive integer k. Let E be
a pseudo ample divisor on X. Let ε > 0. Then there exists a proper Zariski closed
subset Z such that for all points P ∈ X(κ)− Z we have

hD(P ) ≤ kd(P ) + εhE(P ) + O(1). (6.1.11)

Recall that |kK−D| is the complete linear system of kK−D in which K is a
canonical divisor of X . Conjecture 6.3 could be derived by Conjecture 3.56 simply.
In fact, since |kK − D| contains at least one effective divisor, say, D′, which is
linearly equivalent to kK −D, we have

khK − hD = hD′ + O(1) ≥ −O(1).

Thus (6.1.11) follows from (3.7.5) by taking D = 0.

Here we exhibit some examples in which the term M〈O; r; log g〉 in Theo-
rem 6.2 is bounded from above. Note that Ricτ (r, r0) = 0 for the special case
M = Cm.

Corollary 6.4. If f : Cm −→ N is a holomorphic mapping of rank n, then we have
B(L) = N .

Proof. By Lemma 2.83, there exists a holomorphic form ϕ of degree m−n on Cm

such that the induced Jacobian section Fϕ is effective for f , and

im−nϕ ∧ ϕ̄ ≤ υm−n.

Thus the function g defined by F = Fϕ satisfies the estimate (2.12.20). If B(L) �=
N , then f(Cm) � B(L) since B(L) is a proper subvariety of N and f(Cm) contains
an open set of N . Theorem 6.2 implies

‖ cTf(r, L) < O(ε log r) + O(1).

Thus we obtain

Af (∞, L) = lim
r→∞

Tf (r, L)
log r

= 0,

that is, f is constant (see Proposition 2.78). This is a contradiction. Hence it
follows that B(L) = N . �

Corollary 6.5. Let N be a smooth pseudo canonical projective algebraic variety.
Then any holomorphic mapping f : Cm −→ N has everywhere rank less than
n = dimC N .

Corollary 6.5 is due to Kodaira [213], which was further improved by Griffiths
[124]. These results all are special cases of the following Griffiths-King’s theorem
(cf. [128], Proposition 8.1 or [380], Corollary 21.3):
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Corollary 6.6. Let M be an algebraic variety. Let N be a smooth pseudo canonical
projective algebraic variety. Then any holomorphic mapping f : M −→ N whose
image contains an open set is necessarily rational.

Proof. Obviously it will suffice to assume that M is smooth and affine. Then
(2.11.5) implies that there exists a parabolic exhaustion τ of M satisfying

Ricτ (r, r0) = O(log r).

By Lemma 2.83, there exists a holomorphic form ϕ of degree m − n on M such
that the induced Jacobian section Fϕ is effective for f , and

im−nϕ ∧ ϕ̄ ≤ υm−n.

Thus the function g defined by F = Fϕ satisfies the estimate (2.12.20). Theo-
rem 6.2 implies

‖ cTf (r, L) < O(log r) + O(1).

By Proposition 2.82, f is rational. �

Based on Problem 2.32, there is a result related closely to the above corol-
lary. That is Kwack’s theorem which shows that in case N is negatively curved
and projective, any holomorphic mapping f : M −→ N from an algebraic variety
M into N is rational. Griffiths and King (cf. [128], Proposition 9.20) further ex-
tends Kwack’s theorem to a quasi-projective, negatively curved complex manifold
N having a bounded ample line bundle L → N , say, N = D/Γ for a bounded
symmetric domain D of Cn (cf. 132; [128], Lemma 9.19). Here L is an ample line
bundle on N satisfying the condition that there exist a metric ρ in L and sec-
tions s0, . . . , sk ∈ Γ(N, L) such that (i) 0 < c1(L, ρ) < Aω, where A is constant,
and ω is the (1,1)-form associated to the Hermitian metric ds2

N with negative
holomorphic sectional curvatures; (ii) the sections s0, . . . , sk have bounded length
and [s0, . . . , sk] : N −→ Pk induces an algebraic embedding of N . This theorem
supports Vojta’s conjecture using (1,1)-forms (cf. [415]): if there are a complete
variety X and a divisor D on X such that N = X − D as above, then any set
of (S, D)-integralizable points on X is finite. If N = D/Γ, this is just the proved
Shafarevich conjecture.

Finally we give a property of the function h in the proof of Theorem 6.2.

Theorem 6.7 (Hu [167]). Take M = Cm. If F is effective and if f(Cm) � B(L) �=
N , for any p > 0 then there exists a positive constant c such that

Cm
[
0; r; h1/p

]
> c

holds for larger r.
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Proof. By using (6.1.5) and Theorem 2.90, we obtain

Cm〈0; r; log h〉 ≥ Cm〈0; r0; log h〉+
1
k

mf (r0, Dα) = c1,

and so
c1 ≤ p log Cm

〈
0; r; h1/p

〉
for any positive number p. Note that

r2mCm
[
0; r; h1/p

]
= m

∫
Cm[0;r]

h1/pτm−1dτ ∧ σ

= 2m

∫ r

0

t2m−1Cm〈0; r; h1/p〉dt.

Therefore we have

r2mCm
[
0; r; h1/p

]
≥ c2 + 2m exp(c1/p)

∫ r

r0

t2m−1dt

= c3 + exp(c1/p)r2m,

and hence Theorem 6.7 follows. �

Theorem 6.7 generalizes a theorem due to Kodaira [213].

Let f : Cm −→ N be a holomorphic mapping of rank min{m, n}. There exist
effective Jacobian sections for f . If we can find one effective Jacobian section F
for f such that g2 ≤ c for some constant c > 0, we have

h2υm = F [ψn] ≤ cf∗(ψb) ∧ υm−b = cρbυ
m

which means

h2/bυm ≤ c1/bρ
1/b
b υm ≤ c′ρ1υ

m = c′f∗(ψ) ∧ υm−1

for some constant c′ > 0. Hence we have

Cm
[
0; r; h2/b

]
≤ c′r−2Cm [0; r; f∗(ψ)] = c′r−2Af (r, L).

Thus if Cm
[
0; r; h2/b

]
is bounded low by a positive number, there exists a constant

c > 0 such that
Af (r, L) > cr2.
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6.2 Meromorphic connections

Let N be a compact complex manifold of dimension n. Suppose L is a holomorphic
line bundle over N and L carries a Hermitian metric κ with Chern form

ψ = c1(L, κ).

From the Hermitian metric κ of L, we have a Hermitian connection ∇ for the
holomorphic line bundle L which is compatible with the metric κ and agrees with
∂ in the (0, 1)-direction. Let ϕU : U × C −→ LU be a trivialization of L over an
open set U of N . Set

ξU (x) = ϕU (x, 1).

Then a section s ∈ Γ(U, L) can be represented by s = sUξU , where sU : U −→ C
is a holomorphic function such that

|s|2κ = |sU |2|ξU |2κ = κU |sU |2

holds for some positive smooth function κU . Then we have

∇s = (dsU )ξU + (∂ log κU )sUξU .

In general, ∇s is not holomorphic. As a matter of fact,

∂∇s = (∂∂ log κU )s = −2πiψs,

where i =
√
−1 is the imaginary unit.

Let L0 be a holomorphic line bundle over N which is generated by its global
holomorphic sections such that

H1(N, Ω1(L0)) = 0.

If L0 is a negative line bundle, when n > 2 this is true by the Kodaira-Nakano
vanishing theorem. Bott’s formula (see [30], or [364]) implies

dimHq(Pn, Ωp(Hd)) =

⎧⎪⎪⎨
⎪⎪⎩
(
d+n−p

d

)(
d−1

p

)
, if q = 0, 0 ≤ p ≤ n, d > p;

1, if d = 0, 0 ≤ p = q ≤ n;(−d+p
−d

)(−d−1
n−p

)
, if q = n, 0 ≤ p ≤ n, d < p− n;

0, otherwise,

where H is the hyperplane section line bundle of the complex projective space Pn.
In particular, one has

H1(Pn, Ω1(Hd)) = 0, d > 0, n ≥ 2.

Generally, we can take L0 = Ld for a positive line bundle L and a large integer d
based on the following theorem:
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Theorem 6.8 (cf. [127]). Let N be a compact complex manifold and let L → N a
positive line bundle. Then for any holomorphic vector bundle E, there exists d0

such that
Hq(N,O(Ld ⊗ E)) = 0, q > 0, d ≥ d0.

Take t0 ∈ Γ(N, L0) with t0 �≡ 0. From the vanishing of H1(N, Ω1(L0)) we
have a smooth section η of Ω1(L0) over N such that

∂η = −2πiψt0.

For s ∈ Γ(U, L), define
t0Ds = t0∇s− ηs.

Then t0Ds is a holomorphic section of Ω1(L0 ⊗ L) over U for s ∈ Γ(U, L). We
obtain a connection for L defining D , but it is not a smooth connection. However,
t0D is a smooth operator. According to Siu ([363], [364], [365]), the connection D
is called a meromorphic connection for L with pole order L0.

We give N a Kähler metric ds2
N . For a local coordinate system (U ; z1, . . . , zn)

on N , it can be expressed as

ds2
N = 2

∑
α,β

hαβdzαdzβ .

Then the metric determines uniquely the Hermitian connection ∇ such that the
connection coefficients Γγ

αβ are given by

Γγ
αβ =

∑
ν

hνγ∂βhαν , ∂β =
∂

∂zβ
.

However, we will use also another connection D for the holomorphic tangent bun-
dle T(N) of N with the coefficients Γγ

αβ of the connection D over U . It is not
necessarily symmetric and may not even be smooth. It is assumed to satisfy the
following property:

(i) There exists a holomorphic line bundle E over N with a global holomorphic
section t �≡ 0 such that tD is holomorphic, i.e., for each Christoffel symbol
Γγ

αβ of D, tΓγ
αβ is holomorphic on U .

According to Siu ([363], [364], [365]), a connection D satisfying the condition (i)
is called a meromorphic connection for T(N) with pole order E (or pole order d
in the case when N = Pn and E is the dth power Hd of the hyperplane section
line bundle H of Pn).

Siu [363], [364] and Nadel [285] estimated the pole order of a meromorphic
connection on projective space in terms of its Christoffel symbols relative to one
given inhomogeneous coordinate system. Let D be a meromorphic connection on
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Pn and let Γγ
αβ be the Christoffel symbols of D relative to the inhomogeneous

coordinates z1, . . . , zn. Let X0, . . . , Xn be homogeneous coordinates on Pn so that

zi =
Xi

X0
, i = 1, . . . , n.

Assume that Aγ
αβ(X0, . . . , Xn) and B(X0, . . . , Xn) are homogeneous polynomials

of degree g such that

Γγ
αβ =

Aγ
αβ

B

as rational functions on Pn for each fixed α, β, γ.

Theorem 6.9 ([285]). Let t be the global holomorphic section of the line bundle
Hg+3 defined by the homogeneous polynomial

t = X3
0B(X0, . . . , Xn).

Then tD is holomorphic. In particular, the pole order of D is ≤ g + 3.

Proof. We must check that tD is holomorphic on each inhomogeneous coordinate
chart. Set

Ui = {Xi �= 0} ⊂ Pn.

First we note that tD is holomorphic on the coordinate chart U0 on which z1,...,zn

are defined because B(1, z1, . . . , zn)Γγ
αβ is a holomorphic function on U0 for each

fixed α, β, γ.
Next we check tD on some other coordinate chart, say Un. On Un we have

inhomogeneous coordinates

wi =
Xi−1

Xn
, i = 1, . . . , n.

The relation between the two inhomogeneous coordinate systems is given by

wi =
zi−1

zn
, 1 ≤ i ≤ n,

where z0 = 1, and
zi =

wi+1

w1
, 1 ≤ i ≤ n,

where wn+1 = 1. Let Ξλ
µν be the Christoffel symbols of D relative to the inhomo-

geneous coordinates w1, . . . , wn. We must show that

w3
1B(w1, . . . , wn, 1)Ξλ

µν

is a holomorphic function on Un for each fixed µ, ν, λ.
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Recalling the following transformation law for Christoffel symbols:

Ξλ
µν =

∑
α,β,γ

Γγ
αβ

∂zα

∂wµ

∂zβ

∂wν

∂wλ

∂zγ
+
∑
α

∂2zα

∂wµ∂wν

∂wλ

∂zα
,

by assumption we know that

B(w1, . . . , wn, 1)Γγ
αβ = Aγ

αβ(w1, . . . , wn, 1)

is holomorphic on Un. Note that

∂wλ

∂zγ
=

⎧⎪⎨
⎪⎩

0
1
zn

− zλ−1
z2

n

=

⎧⎪⎨
⎪⎩

0 if γ �= n, λ− 1,

w1 if γ = λ− 1,

−w1wλ if γ = n,

and

∂zα

∂wµ
=

⎧⎪⎨
⎪⎩

0 if µ �= 1, α + 1,
1

w1
if µ = α + 1,

−wα+1

w2
1

if µ = 1.

For fixed 2 ≤ µ ≤ n all entries of the matrix (∂2zα/∂wµ∂wν) with 1 ≤ α ≤ n as
the row index and 1 ≤ ν ≤ n as the column index are zero except the (µ − 1)th
entry in the first column which is −1/w2

1. For the case µ = 1, we have

∂2zα

∂w1∂wν
=

⎧⎪⎨
⎪⎩

0 if ν �= 1, α + 1,

− 1
w2

1
if ν = α + 1,

− 2wα+1

w3
1

if ν = 1.

Therefore, ∂wλ

∂zγ
is smooth on Un and vanishes to at least first order along w1 = 0.

However, ∂zα

∂wµ
(resp. ∂2zα

∂wµ∂wν
) has poles of order at most 2 (resp. 3) along w1 = 0

and is otherwise smooth on Un. The proof now follows. �

An analytic subset M of N is said to be totally geodesic (relative to D) if the
following two conditions hold:

(ii) No component of M is contained identically in the support of pole divisor
(t) of D;

(iii) For any two holomorphic vector fields X and Y defined locally on N and
tangent to M , the meromorphic vector field DXY is also tangent to M .

If M is a totally geodesic submanifold of N , then it is clear that D restricts to a
meromorphic connection D|M on M , and moreover that t|MD|M is holomorphic
on M .

Let D be a meromorphic connection for the holomorphic line bundle L over
N . Take s ∈ Γ(N, L) − {0}. Following Siu [363] and Nadel [285], we will use the
following assumption:
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(iv) There exist meromorphic tensors Aα, Bβ , Cαβ on N such that

DαDβs−
∑

γ

Γγ
βαDγs = AαDβs + BβDαs + Cαβs (6.2.1)

holds, where Dαs is the covariant derivative of s in the direction of ∂
∂zα

.

The left-hand side of (6.2.1) is called the Hessian of s and sometimes written

Hess(s)αβ = Hess(s)
(

∂

∂zα
,

∂

∂zβ

)
.

Locally, the condition (6.2.1) is clearly equivalent to the condition

∂α∂βs−
∑

γ

Γγ
βα∂γs = Aα∂βs + Bβ∂αs + Cαβs, (6.2.2)

or in invariant notation,

DXDY s− DDXY s = A(X)DY s + B(Y )DXs + C(X, Y )s (6.2.3)

for any local holomorphic vector fields X, Y .

Let M be the support of the zero divisor (s) of s. If no component of M is
contained identically in the pole sets of D , Aα, Bβ and Cαβ , then M is totally
geodesic. In fact, if there are two holomorphic vector fields X and Y defined locally
on N and tangent to M , then all terms in (6.2.3) other than DDXY s clearly vanish
along M . Therefore DDXY s also vanishes along M . Hence DXY is tangent to M .
This explains the geometric meaning of (6.2.1). Siu [363] actually assumes that
tAα, tBβ and tCαβ are smooth.

Next we introduce some local results due to Nadel [285], and so we work
with holomorphic connections rather than meromorphic ones. Let N be a complex
manifold of dimension n ≥ 2, D a symmetric holomorphic connection on N with
Christoffel symbols Γγ

αβ , L a holomorphic line bundle over N , and D a holomorphic
connection for L. Let f : ∆ −→ N be a holomorphic mapping from the unit disc
∆ whose Wronskian (relative to D) vanishes identically:

f ′ ∧ f ′′ ∧ · · · ∧ f (n) ≡ 0. (6.2.4)

Here f ′ is the derivative of f with respect to the coordinate z of ∆ which is a
mapping from ∆ to the holomorphic tangent bundle T(N) of N and

f (k+1) = Df ′f (k), k ≥ 1.

By (6.2.4), we can write

f (k) = h1f
′ + · · ·+ hk−1f

(k−1) (6.2.5)
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for some k (2 ≤ k ≤ n), where h1, . . . , hk−1 are meromorphic functions. By re-
placing ∆ by a subdisc (not necessarily centered at the origin) if necessary, we can
assume without loss of generality that h1, . . . , hk−1 are in fact holomorphic. Let
z denote the Euclidean coordinate on ∆.

Lemma 6.10 ([285]). Fix s ∈ Γ(N, L) − {0} and assume that (6.2.1) holds for
holomorphic tensor fields Aα, Bβ and Cαβ on N . Then for i = 2, 3, . . . , Df(i)s−
(Df ′)is is a linear combination of s, Df ′s, (Df ′)2s, . . . , (Df ′)i−1s with coefficients
which are holomorphic functions of z.

Proof. Note that
Hess(s)(X, Y ) = DXDY s−DDXY s

for any vector fields X, Y . Take X = f ′, Y = f (i−1) and combine this formula
with (6.2.3) to obtain

Df ′Df(i−1)s−Df(i)s = A(f ′)Df(i−1)s + B(f (i−1))Df ′s + C(f ′, f (i−1))s.

This formula gives us the desired result for i = 2, and gives us also the inductive
step to get from i− 1 to i. The lemma follows. �
Theorem 6.11 ([285]). Fix s ∈ Γ(N, L) − {0} and assume that (6.2.1) holds for
holomorphic tensor fields Aα, Bβ and Cαβ on N . Let f : ∆ −→ N be a holomor-
phic mapping which satisfies (6.2.4) and (6.2.5). Assume that

(1) s(f(0)) = 0, and
(2) (Ds)(f (i)(0)) = 0 for i = 1, 2, . . . , n− 1.

Then s(f(z)) = 0 for all z ∈ ∆.

Proof. We must show that S = f∗s is the zero section of f∗(L). By (6.2.5), we
can write

Df(k)S =
k−1∑
i=1

hiDf(i)S.

By Lemma 6.10, we see that

(Df ′)kS =
k−1∑
i=0

Hi(Df ′)iS, (6.2.6)

where H0, H1, . . . , Hk−1 are holomorphic functions. Therefore S is a holomorphic
solution of a kth order linear homogeneous holomorphic ordinary differential equa-
tion. Furthermore, we have by assumption the zero initial conditions

s(f(0)) = 0, (Ds)(f (i)(0)) = 0 (1 ≤ i ≤ k − 1).

By Lemma 6.10, we can convert these initial conditions into the more familiar

(Df ′)iS|z=0 = 0, i = 0, 1, . . . , k − 1. (6.2.7)

Hence by uniqueness of solutions to (6.2.6) and (6.2.7), we obtain S ≡ 0. �
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6.3 Siu theory

Siu [363], [364] [365] proved a defect relation of holomorphic curves into projective
varieties. By using meromorphic connections, Siu constructed a class of associated
curves of holomorphic curves, and estimated its growth. In this section, we will
introduce a main method and result of Siu which will be used in the proof of
Green-Griffiths’ conjecture.

6.3.1 Siu’s inequality

Let N be a compact complex manifold of dimension n. Suppose L is a holomorphic
line bundle over N and L carries a Hermitian metric κ whose Chern form

ψ = c1(L, κ) > 0.

For a local coordinate system (W ; w1, . . . , wm) of N , the Chern form ψ can be
expressed as

ψ =
√
−1

2π

∑
α,β

hαβdwα ∧ dw̄β ,

and hence define a Hermitian metric

ds2
N = 2

∑
α,β

hαβdwαdw̄β

such that ψ is the Kähler form. Let ∇ be the Hermitian connection of N . We will
write

∂α =
∂

∂wα
, ∇α = ∇∂α .

Let f : C −→ N be a non-constant holomorphic mapping. Let z be the
coordinate of C and f ′ be the derivative of f with respect to z which is a mapping
from C to the holomorphic tangent bundle T(N) of N . Under the local coordinates
w = (w1, . . . , wn) on N near f(z), writing fα = wα ◦ f , that is,

f(z) = (f1(z), . . . , fn(z)),

then f ′ can be expressed as

f ′ =
n∑

α=1

f ′
α∂α,

where

f ′
α = ∂zfα, ∂z =

∂

∂z
.
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Let D be a meromorphic connection for T(N) with pole order E such that
tD is holomorphic for some t ∈ Γ(N, E)−{0}. Fix a Hermitian metric l in E. For
a positive integer k, define

f (k+1) = (tDz)kf ′ : C −→ Ek ⊗T(N),

where Dz is the covariant derivative with respect to the connection D and the
coordinate z of C (i.e., in the direction of f ′(z)). In the term of local coordinates,
we have

Dzf
′ =

n∑
α=1

Dzf
′
α∂α,

where
Dzf

′
α =

∑
β

f ′
βDβf ′

α = ∂zf
′
α +

∑
β,γ

Γα
βγf ′

βf ′
γ .

Then a holomorphic mapping

f ′ ∧ f (2) ∧ · · · ∧ f (n) : C −→ E
n(n−1)

2 ⊗K∗
N

is well defined, where the exterior product is taken in the holomorphic tangent
bundle T(N) of N . In particular, we obtain a holomorphic mapping

f (2) ∧ · · · ∧ f (n) : C −→ E
n(n−1)

2 ⊗
∧

n−1
T(N). (6.3.1)

The image of f is called autoparallel with respect to the connection D if

f ′ ∧ f (2) ∧ · · · ∧ f (n) ≡ 0. (6.3.2)

Next we prove Siu’s inequality (cf. [363]):

Theorem 6.12. Let f : C −→ N be a non-constant holomorphic mapping. Take
µ ∈ R with 0 < µ < 1

4k−1 . Then

‖ T
(
r, r0; |f (k)|2µυ

)
≤ c

{
Tf (r, L)4

k− 1
2 µ + r4

}
,

where c is some positive constant.

Proof. Since f is non-constant, then Tf(r, L)→ +∞ as r → +∞. Without loss of
generality, we may assume Tf(r, L) ≥ 1. First of all, we consider the case k = 1.
Now when 0 < µ < 1 the Hölder inequality implies

T
(
r, r0; |f ′|2µυ

)
≤ T

(
r, r0; |f ′|2υ

)µ T (r, r0; υ)1−µ
.

Note that

f∗(ψ) =
√
−1

2π

∑
α,β

hαβf ′
αf ′

βdz ∧ dz̄ = |f ′|2υ.
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We have

T
(
r, r0; |f ′|2υ

)
= Tf (r, L), T (r, r0; υ) =

1
2
(r2 − r2

0), (6.3.3)

and hence when r ≥ 1,

T
(
r, r0; |f ′|2µυ

)
≤ Tf (r, L)2µ + T (r, r0; υ)2−2µ

≤ Tf (r, L)2µ + r4.

Therefore Theorem 6.12 holds for the case k = 1.

Following Siu [363], we then study the case k = 2. Since tΓγ
αβ is smooth, it

is clear that

|f (2)|2 = |tDzf
′|2 ≤ c{|∇zf

′|2 + |f ′|4}, (6.3.4)

where

∇zf
′
α =

∑
β

f ′
β∇βf ′

α

is the covariant derivative of f ′
α in the direction of f ′ with respect to the Kähler

metric hαβ of N . Note that

∂z∂z log

⎛
⎝1 +

∑
α,β

hαβf ′
αf ′

β

⎞
⎠

= −
∑

α,β,γ,δ Kαβγδf
′
αf ′

βf ′
γf ′

δ

1 +
∑

α,β hαβf ′
αf ′

β

+

∑
α,β hαβ∇zf

′
α∇zf ′

β(
1 +
∑

α,β hαβf ′
αf ′

β

)2

+

(∑
α,β hαβf ′

αf ′
β

)(∑
α,β hαβ∇zf

′
α∇zf ′

β

)
−
∣∣∣∑α,β hαβf ′

α∇zf ′
β

∣∣∣2(
1 +
∑

α,β hαβf ′
αf ′

β

)2 .

The last term on the right-hand side is non-negative because of the Schwarz in-
equality. Thus

∂z∂z log

⎛
⎝1 +

∑
α,β

hαβf ′
αf ′

β

⎞
⎠ ≥ −∑α,β,γ,δ Kαβγδf

′
αf ′

βf ′
γf ′

δ

1 +
∑

α,β hαβf ′
αf ′

β

+

∑
α,β hαβ∇zf

′
α∇zf ′

β(
1 +
∑

α,β hαβf ′
αf ′

β

)2 .
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From Green’s formula (6.1.3) it follows that

−T
(

r, r0;

∑
α,β,γ,δ Kαβγδf

′
αf ′

βf ′
γf ′

δ

1 +
∑

α,β hαβf ′
αf ′

β

υ

)
+ T

⎛
⎜⎝r, r0;

∑
α,β hαβ∇zf

′
α∇zf ′

β(
1 +
∑

α,β hαβf ′
αf ′

β

)2 υ

⎞
⎟⎠

≤ 1
2

C

〈
0; r; log

⎛
⎝1 +

∑
α,β

hαβf ′
αf ′

β

⎞
⎠〉

− 1
2

C

〈
0; r0; log

⎛
⎝1 +

∑
α,β

hαβf ′
αf ′

β

⎞
⎠〉 .

By Lemma 2.92, we obtain

‖ C

〈
0; r; log

⎛
⎝1 +

∑
α,β

hαβf ′
αf ′

β

⎞
⎠〉 ≤ (1 + 2ε) logT

⎛
⎝r, r0; υ +

∑
α,β

hαβf ′
αf ′

βυ

⎞
⎠

+ 4ε log r.

Hence

‖ T

⎛
⎜⎝r, r0;

∑
α,β hαβ∇zf

′
α∇zf ′

β(
1 +
∑

α,β hαβf ′
αf ′

β

)2 υ

⎞
⎟⎠ ≤ CT

⎛
⎜⎝r, r0;

(∑
α,β hαβf ′

αf ′
β

)2

1 +
∑

α,β hαβf ′
αf ′

β

υ

⎞
⎟⎠

+
(

1
2

+ ε

)
log T

⎛
⎝r, r0; υ +

∑
α,β

hαβf ′
αf ′

βυ

⎞
⎠+ 2ε log r, (6.3.5)

where

C = sup
N,ξ

∑
α,β,γ,δ Kαβγδξαξβξγξδ∣∣∣∑α,β hαβξαξβ

∣∣∣2 < +∞. (6.3.6)

It follows that

‖ cT

⎛
⎜⎝r, r0;

∑
α,β hαβ∇zf

′
α∇zf ′

β(
1 +
∑

α,β hαβf ′
αf ′

β

)2 υ

⎞
⎟⎠ ≤ Tf(r, L) + r2,

where we have used (6.3.3).
Take µ ∈ R with 0 < µ < 1

4 . By using elementary inequality

2|∇zf
′|2µ ≤

(
|∇zf

′|2
(1 + |f ′|2)2

)2µ

+
(
(1 + |f ′|2)2

)2µ
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and the Hölder inequality, we have

2T
(
r, r0; |∇zf

′|2µυ
)
≤ T

(
r, r0;

(
|∇zf

′|2
(1 + |f ′|2)2

)2µ

υ

)

+ T
(
r, r0;

(
(1 + |f ′|2)2

)2µ
υ
)

≤ T
(

r, r0;
|∇zf

′|2
(1 + |f ′|2)2 υ

)2µ

T (r, r0; υ)1−2µ

+ T
(
r, r0; (1 + |f ′|2)υ

)4µ T (r, r0; υ)1−4µ
,

and hence

‖ cT
(
r, r0; |∇zf

′|2µυ
)
≤ (Tf (r, L) + r2)2µr2(1−2µ)

+ (r2 + Tf(r, L))4µr2(1−4µ).

Therefore
‖ cT

(
r, r0; |∇zf

′|2µυ
)
≤ Tf(r, L)8µ + r4. (6.3.7)

So our estimate for T
(
r, r0; |f (2)|2µυ

)
is given by

‖ T
(
r, r0; |f (2)|2µυ

)
≤ c
{
T
(
r, r0; |∇zf

′|2µυ
)

+ T
(
r, r0; |f ′|4µυ

)}
≤ c′

{
Tf (r, L)8µ + r4 + Tf (r, L)2µT (r, r0; υ)1−2µ

}
≤ c′′

{
Tf (r, L)8µ + r4

}
. (6.3.8)

Now we use induction to prove Theorem 6.12. Assume that Theorem 6.12
holds up to k (≥ 1). Next we consider the case k + 1. By simple calculation, we
can prove the following inequality:

∣∣∣f (k+1)
∣∣∣ ≤ c

{∣∣∣∇zf
(k)
∣∣∣+ |f ′|2 +

∣∣∣f (k)
∣∣∣2} . (6.3.9)

Locally, we can write

f (k) = ξk−1 ⊗
n∑

α=1

fαk
∂

∂wα
,

where ξ is a local holomorphic frame for E, and so

|f (k)|2 = a
∑
α,β

hαβfαkfβk

with a = |ξ|2(k−1)
l . Without loss of generality, we may assume a = 1 since |f (k)|2
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is locally equivalent to
∑

hαβfαkfβk. Since

∂z∂z log

⎛
⎝1 +

∑
α,β

hαβfαkfβk

⎞
⎠

= −
∑

α,β,γ,δ Kαβγδfαkfβkf ′
γf ′

δ

1 +
∑

α,β hαβfαkfβk

+

∑
α,β hαβ∇zfαk∇zfβk(

1 +
∑

α,β hαβfαkfβk

)2

+

(∑
α,β hαβfαkfβk

)(∑
α,β hαβ∇zfαk∇zfβk

)
−
∣∣∣∑α,β hαβfαk∇zfβk

∣∣∣2(
1 +
∑

α,β hαβfαkfβk

)2 ,

following the argument of the inequality (6.3.5), we can also obtain

‖ T

⎛
⎜⎝r, r0;

∑
α,β hαβ∇zfαk∇zfβk(

1 +
∑

α,β hαβfαkfβk

)2 υ

⎞
⎟⎠

≤ 2ε log r + K+T
(
r, r0; |f ′|2υ

)
+

1
µ

(
1
2

+ ε

)
log T

(
r, r0; υ + |f (k)|2µυ

)
,

where K+ = max{K, 0}, and

K = sup
N,ξ,η

∑
α,β,γ,δ Kαβγδξαξβηγηδ(∑

α,β hαβξαξβ

)(∑
γ,δ hγδηγηδ

) < +∞, (6.3.10)

and where Lemma 2.92 yields

‖ C
〈
0; r; log

(
1 + |f (k)|2

)〉
≤ 1

µ
C
〈
0; r; log

(
1 + |f (k)|2µ

)〉
≤ 1 + 2ε

µ
log T

(
r, r0; υ + |f (k)|2µυ

)
+

4ε

µ
log r.

By (6.3.3) and the induction assumption, it follows that

‖ cT

⎛
⎜⎝r, r0;

∑
α,β hαβ∇zfαk∇zfβk(

1 +
∑

α,β hαβfαkfβk

)2 υ

⎞
⎟⎠ ≤ Tf (r, L) + r2. (6.3.11)

Take µ ∈ R with 0 < µ < 1
4k . Using the elementary inequality

2
∣∣∣∇zf

(k)
∣∣∣2µ

≤
(

|∇zf
(k)|2

(1 + |f (k)|2)2

)2µ

+
(
(1 + |f (k)|2)2

)2µ
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and the Hölder inequality, we have

2T
(
r, r0; |∇zf

(k)|2µυ
)
≤ T

(
r, r0;

(
|∇zf

(k)|2
(1 + |f (k)|2)2

)2µ

υ

)

+ T
(

r, r0;
(
1 + |f (k)|2

)4µ

υ

)

≤ T
(

r, r0;
|∇zf

(k)|2
(1 + |f (k)|2)2 υ

)2µ

T (r, r0; υ)1−2µ

+ T
(
r, r0; υ + |f (k)|8µυ

)
,

and hence

‖ cT
(
r, r0; |∇zf

(k)|2µυ
)
≤ (Tf(r, L) + r2)2µr2(1−2µ)

+ r4 + Tf(r, L)4
k+ 1

2 µ.

Therefore
‖ cT

(
r, r0; |∇zf

(k)|2µυ
)
≤ Tf (r, L)4

k+ 1
2 µ + r4. (6.3.12)

The induction assumption implies

‖ T
(
r, r0; |f (k)|4µυ

)
≤ c
{
Tf (r, L)4

kµ + r4
}

.

So our estimate for T
(
r, r0; |f (k+1)|2µυ

)
is given by

‖ T
(
r, r0; |f (k+1)|2µυ

)
≤ c
{
T
(
r, r0; |∇zf

(k)|2µυ
)

+ T
(
r, r0; |f ′|4µυ

)
+T
(
r, r0; |f (k)|4µυ

)}
≤ c′

{
Tf(r, L)4

k+ 1
2 µ + Tf (r, L)2µT (r, r0; υ)1−2µ + r4

}

≤ c′′
{

Tf(r, L)4
k+ 1

2 µ + r4

}
,

and hence Theorem 6.12 is proved. �

6.3.2 Generalization of Siu’s theorem

Siu [363] uses the inequality in Theorem 6.12 to prove a defect relation. A special
case of Siu’s Theorem is presented by Nadel [285] as follows:

Theorem 6.13. Let f : C −→ N be a transcendental holomorphic mapping into
a smooth projective algebraic variety N of dimension n. Let KN ⊗ E−n(n−1)/2 be
ample. Then either f(C) is contained in the pole divisor (t) of the meromorphic
connection D or the image of f is autoparallel with respect to D.
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Further, Nadel notes that in Theorem 6.13, the hypothesis on transcendence
of f is not needed because one may always replace f(z) by f(ez). We can omit the
ampleness condition of the line bundle in Theorem 6.13 and obtain the following
result:

Theorem 6.14 ([167]). Let f : C −→ N be a transcendental holomorphic mapping
into a smooth projective algebraic variety N of dimension n. Then either f(C) ⊆
B(L) for any positive line bundle L on N , or the image of f is autoparallel with
respect to meromorphic connections on N .

Proof. Assume, to the contrary, that f(C) � B(L) for a positive line bundle L on
N and

f ′ ∧ f (2) ∧ · · · ∧ f (n) �≡ 0

for a meromorphic connection D on N . The condition f(C) � B(L) implies
B(L) �= N . Since f is not rational, by Proposition 2.82, we have

Af (∞, L) = lim
r→∞Af (r, L) = ∞. (6.3.13)

Since any line bundle on C is trivial (cf. Theorem 2.16), the pullback f
(k)
f of

f (k) under f can be identified with a section of f∗(T(N)) under the identification

f∗(Ek−1 ⊗T(N)) ∼= f∗(T(N))

such that
f ′

f ∧ f
(2)
f ∧ · · · ∧ f

(n)
f �≡ 0.

By Lemma 2.86 and (6.3.1), the holomorphic field

ϕ = f
(2)
f ∧ · · · ∧ f

(n)
f

on f over C of degree n − 1 is effective, that is, ϕ induces an effective Jacobian
section Fϕ of f . Define a non-negative function g by

Fϕ[ψn] = g2f∗(ψ), (6.3.14)

where ψ = c1(L, κ) > 0. By Lemma 2.87, we have g ≤ |ϕ|, where the metric of
f∗(T(N)) is induced by the metric on N defined by ψ.

By Lemma 1.55, there exists a constant c > 0 such that∣∣∣f (2)
f ∧ · · · ∧ f

(n)
f

∣∣∣ ≤ c
∣∣∣f (2)

f

∣∣∣ · · · ∣∣∣f (n)
f

∣∣∣ = c
∣∣∣f (2)

∣∣∣ · · · ∣∣∣f (n)
∣∣∣ ,

and so an elementary inequality implies

g
2

n−1 ≤
∣∣∣f (2)

f ∧ · · · ∧ f
(n)
f

∣∣∣ 2
n−1 ≤ c

2
n−1

n− 1

n∑
k=2

∣∣∣f (k)
∣∣∣2 . (6.3.15)
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Take µ ∈ R with 0 < µ < 1
4n−1 . By Lemma 2.92, we obtain

‖ C 〈0; r; log g〉 =
n− 1
2µ

C
〈
0; r; log g

2µ
n−1

〉

≤ n− 1
2µ

C

〈
0; r; log

n∑
k=2

∣∣∣f (k)
∣∣∣2µ
〉

+ O(1)

≤ n− 1
2µ

{
(1 + 2ε) logT

(
r, r0;

n∑
k=2

|f (k)|2µυ

)
+ 4ε log r

}
.

(6.3.16)

Further, by Theorem 6.12, we have

‖ C 〈0; r; log g〉 = O(log Tf(r, L)) + O(log r). (6.3.17)

By Theorem 6.2, we obtain

‖ Tf(r, L) = O(log r). (6.3.18)

Therefore we have

Af (∞, L) = lim
r→∞

Tf(r, L)
log r

<∞

which contradicts (6.3.13). Hence Theorem 6.14 is proved. �

Theorem 6.15 ([167]). Let f : C −→ N be a holomorphic mapping into a pseudo-
canonical smooth projective algebraic variety N . Then either f is algebraically
degenerate, or the image of f is autoparallel with respect to meromorphic connec-
tions on N .

Proof. If dim N = 1, Theorem 6.15 follows from Theorem 4.57. Thus we may
assume dim N > 1. If f is rational, then it is degenerate, so we may assume that f
is transcendental. It is well known that there exist very ample line bundles over the
projective algebraic variety N , which are also positive. Since N is pseudo canonical
(or general type), according to Lemma 2.30 (or see Kodaira [213], Kobayashi and
Ochiai [210], Lang [228]) any very ample line bundle L satisfies Pk(L) > 0 for some
sufficiently large k. Hence we have B(L) �= N , and consequently Theorem 6.15
follows from Theorem 6.14. �

If we use Lemma 2.85 to construct effective Jacobian sections by replacing
Lemma 2.86 in the proof of Theorem 6.14, we can prove the following fact: If
f : C −→ N is a non-constant holomorphic mapping into a pseudo canonical
smooth projective algebraic variety N of dimension n with holomorphic vector
fields Z1, . . . , Zn on N satisfying

Z = Z1 ∧ · · · ∧ Zn �≡ 0,
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then we have either f(C) ⊂ supp((Z)) or f(C) ⊂ B(L) for any positive line bundle
L on N , where (Z) is the zero divisor of Z.

In fact, assume, to the contrary, that f(C) �⊂ supp((Z)) and f(C) �⊂ B(L) for
a positive line bundle L on N . By using Lemma 2.85, then there exists λ ∈ Jn

1,n−1

such that a holomorphic field

ϕ = Zλf = (Zλ(1) ∧ · · · ∧ Zλ(n−1))f

on f over C of degree n−1 is effective for f . Hence ϕ induces an effective Jacobian
section Fϕ of f which, further, defines a non-negative function g by (6.3.14). By
Lemma 2.87, we have g ≤ |ϕ| ≤ c for a constant c. Then a contradiction follows
from Theorem 6.2.

Generally, there is no such Z ∈ Γ(N, K∗
N). For example, when N is canonical,

that is, KN is ample, then KN is positive, and so Γ(N, K∗
N ) = 0 by the remark

after Theorem 6.1.

6.4 Bloch-Green’s conjecture

Let H be the hyperplane bundle on Pn and let X0, . . . , Xn be homogeneous coordi-
nates on Pn. Fix a positive integer d. A holomorphic section of Hd over Pn will be
identified with a homogeneous polynomial of degree d in homogeneous coordinates
X0, . . . , Xn.

Take a family
{s0, s1, . . . , sn} ⊂ Γ(Pn, Hd)

such that

B0 = det
(

∂si

∂Xj

)
�≡ 0. (6.4.1)

Next we follow Siu [363] and Nadel [285] to construct a meromorphic connection
D on Pn. Fix α, β with 1 ≤ α, β ≤ n and consider the system of equations

∂α∂β

⎛
⎜⎝ s0

...
sn

⎞
⎟⎠ =

⎛
⎜⎝s0 ∂1s0 · · · ∂ns0

...
...

...
sn ∂1sn · · · ∂nsn

⎞
⎟⎠
⎛
⎜⎝

Γ0
αβ
...

Γn
αβ

⎞
⎟⎠ , (6.4.2)

where

∂i =
∂

∂zi
, zi =

Xi

X0
, i = 1, . . . , n.

It is clear that the determinant of the square matrix in (6.4.2) is equal to

B :=
1
d
X

−(n+1)(d−1)
0 B0 �≡ 0.
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Thus we can solve Γγ
αβ for each choice of α, β to obtain a symmetric meromorphic

connection D on the coordinate patch U0 = {X0 �= 0} ⊂ Pn. Note that we do
not use Γ0

αβ to define D. By using the transformation law for a connection we
can get easily all the components of the connection for other coordinate charts
Ui = {Xi �= 0} ⊂ Pn, i = 1, . . . , n.

We use Cramer’s rule to write

Γγ
αβ =

Aγ
αβ

B
,

where Aγ
αβ , B are polynomials of degree ≤ (d−1)(n+1)+1 in the inhomogeneous

coordinates z1, . . . , zn on Pn. By Theorem 6.9, there exists a global holomorphic
section

t ∈ Γ(Pn, Hg+3)− {0}, g ≤ (d− 1)(n + 1) + 1 (6.4.3)

such that tD is holomorphic. If s is any linear combination of s0, . . . , sn, then
(6.4.2) gives

∂α∂βs =
∑

γ

Γγ
αβ∂γs + Γ0

αβs, (6.4.4)

which is the same as (6.2.2) with Cαβ = Γ0
αβ and Aα = 0 = Bα.

Theorem 6.16 ([167]). Let W be a hypersurface of degree d in Pn with d ≥ n + 2
and let f : C −→W be a holomorphic mapping. Then f is algebraically degenerate.

Proof. Without loss of generality, we may assume that W is irreducible. The line
bundle [W ] is of the form Hd. The adjunction formula immediately implies that

KW = (KPn ⊗ [W ]) |W = Ld−n−1,

where L = H |W . Then d ≥ n+2 is precisely the condition that makes the canonical
bundle KW ample. The line bundle

Kk
W ⊗ L∗ = Lk(d−n−1)−1

also is ample for d ≥ n + 2, k ≥ 2. Hence

B(L) ⊆ B2(L) �= W.

The hypersurface W is the zero locus of a section s′ of Hd. However, all
sections of Hd are defined by homogeneous polynomials of degree d in homogeneous
coordinates X0, . . . , Xn on Pn and so

W = (s′) = (G(X0, . . . , Xn) = 0)

for some homogeneous irreducible polynomial G of degree d. Observing that

dimΓ(Pn, Hd) =
(

n + d

n

)
> n + 1,
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we can choose s0, s1, . . . , sn in Γ(Pn, Hd) such that

s′ = c0s0 + c1s1 + · · ·+ cnsn, (6.4.5)

where c0, . . . , cn are complex numbers, not all zero, and such that

B0 = det
(

∂si

∂Xj

)
�≡ 0.

For example, without loss of generality we may assume that

∂s′

∂X0
�≡ 0,

and so we can choose

s0 = s′, si = Xd
i (1 ≤ i ≤ n).

Thus we have

B0 = dn(X1 · · ·Xn)d−1 ∂s′

∂X0
�≡ 0.

If f(C) ⊆
{

∂s′
∂X0

= 0
}

or f(C) ⊆ {Xi = 0} for some i ∈ {0, 1, . . . , n}, then we are
done. So we may assume that

f(C) �

{
∂s′

∂X0
= 0
}

; f(C) � {Xi = 0} (i = 0, 1, . . . , n).

By using (6.4.2), we can define a meromorphic connection D such that tD
is holomorphic, where t is given in (6.4.3). In particular, s′ satisfies the equation
(6.4.4). Hence W is totally geodesic. Then D restricts to a meromorphic connection
D|W on W , and moreover that (t|W )D|W is holomorphic on W .

If f(C) ⊆ B(L) or f(C) ⊆ (t) ∩W , then we are done. Assume now that

f(C) �⊆ B(L), f(C) �⊆ (t) ∩W.

Theorem 6.14 implies
f ′ ∧ f ′′ ∧ · · · ∧ f (n−1) ≡ 0.

Pick z0 ∈ C such that f(z0) ∈ W − (t). Let V be the vector space of all s ∈
Γ(Pn, Hd) such that the following conditions hold:

(i) s is a complex linear combination of s0, . . . , sn;

(ii) s(f(z0)) = 0;

(iii) (Ds)(f (i)(z0)) = 0 for i = 1, 2, . . . , n− 2.
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Here D is any meromorphic connection on Hd which is holomorphic in a neighbor-
hood of f(z0). Since there are n + 1 linearly independent sections s0, . . . , sn from
which to form s (see the condition (i) above) but only n− 1 constraints (given by
the conditions (ii) and (iii)), we see that dimV ≥ 2. Pick one particular s′′ ∈ V
such that s′ and s′′ are linearly independent. By Theorem 6.11, we have

s′′(f(z)) = 0, z ∈ C.

Thus f(C) ⊆ W ∩ (s′′). The proof is completed. �

Classically, Theorem 6.16 was known for n = 1 and n = 2 respectively. For
the case n = 3, this is a question due to A. Bloch [27]. Generally, Theorem 6.16
was stated as a conjecture by Mark Lee Green [121], who proved it for Fermat
hypersurfaces of degree at least n2. A.M. Nadel [285] also obtained it for certain
hypersurfaces of high degree.

6.5 Green-Griffiths’ conjecture

In this section, we prove a more general result than Theorem 2.99.

Theorem 6.17 ([183]). Let f : C −→ N be a holomorphic mapping into a pseudo-
canonical projective algebraic variety N . Then f is algebraically degenerate.

Proof. In general, the variety N may have singularities. However, by resolution of
singularities, we may assume that N is smooth. Also it is sufficient to work on a
component of N . Without loss of generality, we may assume that N is connected,
and so is irreducible.

Let N be of the dimension n. We know that N can be embedded into a
complex projective space, say, N ⊂ Pn+m for some positive integer m ≥ 1. Let
H be the hyperplane bundle on Pn+m and let X0, . . . , Xn+m be homogeneous
coordinates on Pn+m. By Theorem 1.65 or Theorem 1.64, we may assume that
the variety N is expressible as the zero locus of m linearly independent sections
s′1, . . . , s′m of Hd1 , . . . , Hdm . Here s′i is given by a homogeneous polynomial in
X0, . . . , Xn+m of degree di for each i = 1, . . . , m such that on N ,

rank
(

∂s′i
∂Xj

)
= m

since N is smooth. Further we may assume that each s′i is irreducible since N is
irreducible.

There exists an integer i0 with 0 ≤ i0 ≤ n + m such that s′1, . . . , s
′
m, Xi0

are linearly independent. Without loss of generality, we may assume i0 = 0. If
f(C) ⊆ N ∩{X0 = 0}, we are done. So we may assume that f(C) �⊆ N ∩{X0 = 0}.
Further we can assume that

d1 = d2 = · · · = dm := d,
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otherwise it is sufficient to consider

s′′i = Xd−di
0 s′i, i = 1, . . . , m, d = max

i
{di}.

Observing that

dimΓ(Pn+m, Hd) =
(

n + m + d

n + m

)
> n + m + 1,

we can choose s0, s1, . . . , sn+m in Γ(Pn+m, Hd) such that

s′i = ci0s0 + ci1s1 + · · ·+ ci,n+msn+m, (6.5.1)

where ci0, . . . , ci,n+m are complex numbers, not all zero, and such that on N ,

B0 = det
(

∂si

∂Xj

)
�≡ 0.

Thus according to the construction in Section 6.4, we can define a meromorphic
connection D on Pn+m such that tD is holomorphic, where

t ∈ Γ(Pn+m, Hg+3)− {0}, g ≤ (d− 1)(n + m + 1) + 1. (6.5.2)

In particular, by the construction of D we have

∂α∂βs′i =
∑

γ

Γγ
αβ∂γs′i + Γ0

αβs′i, i = 1, . . . , m. (6.5.3)

By using (6.5.3), similar to the argument in Section 6.2, we may show that N is
totally geodesic. Thus D restricts to a meromorphic connection D|N on N , and
moreover that (t|N )D|N is holomorphic on N .

Set L = H |N . If f(C) ⊆ B(L) or f(C) ⊆ (t) ∩N , then we are done. Assume
now that

f(C) �⊆ B(L), f(C) �⊆ (t) ∩N.

Theorem 6.14 implies
f ′ ∧ f ′′ ∧ · · · ∧ f (n) ≡ 0.

Pick z0 ∈ C such that f(z0) ∈ N − (t). Let V be the vector space of all s ∈
Γ(Pn+m, Hd) such that the following conditions hold:

(i) s is a complex linear combination of s0, . . . , sn+m;

(ii) s(f(z0)) = 0;

(iii) (Ds)(f (i)(z0)) = 0 for i = 1, 2, . . . , n− 1.
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Here D is any meromorphic connection on Hd which is holomorphic in a neighbor-
hood of f(z0). Since there are n+m+1 linearly independent sections s0, . . . , sn+m

from which to form s (see the condition (i) above) but only n constraints (given
by the conditions (ii) and (iii)), we see that dim V ≥ m + 1. Pick one particular
s′m+1 ∈ V such that s′1, . . . , s′m+1 are linearly independent. By Theorem 6.11, we
have

s′m+1(f(z)) = 0, z ∈ C.

Thus f(C) ⊆ N ∩ (s′m+1). The proof is completed. �

Originally, Theorem 6.17 was a conjecture due to M. Green and P. Griffiths
[123]. In [228], S. Lang formulated the Green-Griffiths conjecture into the form
in Theorem 6.17. McQuillan [265], Lu and Yau [249] proved Theorem 6.17 for
surfaces with c2

1 > c2. In fact, according to the proof of Theorem 6.17 we can
obtain the following result:

Theorem 6.18. If f : C −→ N is a holomorphic curve into a projective algebraic
variety such that the image of f is autoparallel with respect to a meromorphic
connection of N , then f is algebraically degenerate.

Theorem 6.17 implies directly the following result:

Theorem 6.19. If N is a pseudo-canonical projective algebraic variety such that
all subvarieties are pseudo-canonical, then N is hyperbolic.

Proof. By Theorem 6.17 and the assumptions of N , each holomorphic curve f :
C −→ N must be constant. By a theorem of Brody [38], then N is hyperbolic. �

Theorem 6.19 is Lang’s conjecture [228] in which he observed that Theo-
rem 6.19 can be deduced simply by Theorem 6.17.

Let N be a non-singular complex projective algebraic variety and q(N) the
dimension of the vector space of holomorphic 1-forms on N , that is,

q(N) = dim Γ(N,T∗(N)),

and q(N) is called the irregularity of N . Related to Theorem 6.17, there is the
following result:

Theorem 6.20. Let N be a non-singular complex projective algebraic variety with
q(N) > dimN . Then any holomorphic curve f : C −→ N is algebraically degen-
erate.

Theorem 6.20 was called Bloch’s conjecture. Bloch [27] stated the theorem
with an incomplete sketchy proof. Ochiai [307] filled the gaps substantially and
proved it in several special cases. The final step for the general case is due to M.
Green. Lately, M. Green and P. Griffiths [123] gave another proof by using certain
metrics. Kawamata [200] proved the same result by a different method. A new
proof was given by McQuillan [264].
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In fact, according to Ochiai [307], if N is a connected projective algebraic
manifold of dimension n with irregularity > n, then we can construct a regular
rational mapping (Albanese map)

α : N −→ A

into a certain Abelian variety A such that X = α(N) is in good position in A, that
is, X �= A and X satisfies the following conditions:

(I) if ω is a non-zero regular rational 1-form on A, then the restriction ω|Xreg is
non-zero, where Xreg is the set of regular points of X ;

(II) if B is a connected algebraic subgroup of A such that B leaves X invariant,
then B is either {0} or A.

By Ueno’s theorem (see Theorems 1.78, 1.79), the condition (II) is equivalent to
saying that the proper subvariety X of A is pseudo-canonical, and so Theorem 6.17
can be applied.

On the other hand, by Kawamata [200] or Smyth [369] for non-singular X ,
there exists a system {ω1, . . . , ωl+1} (l = dimX) of regular 1-forms on A such that
the restriction of the system of l-forms

{ω1 ∧ · · · ∧ ωj−1 ∧ ωj+1 ∧ · · · ∧ ωl+1 | j = 1, . . . , l + 1}

onto Xreg is linearly independent. Let ι : X̃ −→ X be the resolution of the
singularity of X . If α ◦ f(C) is in the singular locus of X , f is clearly algebraically
degenerate. If

α ◦ f(C) ∩Xreg �= ∅,

there exists a holomorphic curve f̃ : C −→ X̃ such that ι ◦ f̃ = α ◦ f . Hence, by
Ochiai [307], the image of the holomorphic curve f̃ : C −→ X̃ is contained in a
canonical divisor of the form

l+1∑
j=1

ajι
∗ω1 ∧ · · · ∧ ι∗ωj−1 ∧ ι∗ωj+1 ∧ · · · ∧ ι∗ωl+1 = 0.

Therefore f is algebraically degenerate.

6.6 Notes on Griffiths’ and Lang’s conjectures

We continue with the situation f : M −→ N of Section 2.12, where we will take
M = C. In terms of a local coordinate system w1, . . . , wn of N we may write

ψ = Ric(Ψ) =
√
−1
2π

∑
α,β

hαβdwα ∧ dw̄β .
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The singular positive form ψ induces a metric on N −D defined by

hΨ = 2
∑
α,β

hαβdwαdw̄β

which has a “singularity” on D. Further, we may define the curvature tensor of
the singular metric hΨ on N as

Kαβγδ = − ∂2hαβ

∂wγ∂w̄δ
+
∑
µ,ν

hµν ∂hαµ

∂wγ

∂hνβ

∂w̄δ
,

where (hµν) is the inverse matrix of (hαβ).

Lemma 6.21 ([184]). The holomorphic bisectional curvatures of hΨ is bounded
above.

Proof. By using (2.12.4), we have

Ric(Ψ) = χ + 2
q∑

j=1

c1(L, κ)
log |sj |2κ

+ 2
q∑

j=1

d log |sj |2κ ∧ dc log |sj |2κ
(log |sj |2κ)2

, (6.6.1)

where
χ = λqc1(L, κ) + Ric(Ω).

Around any point x ∈ D, one can choose coordinates (w1, . . . , wn) in a neighbor-
hood U of x such that x = (0, . . . , 0) and for instance Dj = (wj) in U , this being
because D has normal crossings. Hence we can write sj = wjχj , where χj is a
non-zero holomorphic section of L over U . Thus

log |sj |2κ = log |wj |2 + log bj ,

where bj = |χj |2κ > 0 is a C∞ function. We can choose wj and χj properly such
that the connection matrix

θ = ∂ log bj =
n∑

i=1

∂wi log bjdwi

vanishes at x, which also implies

θ̄ = ∂̄ log bj =
n∑

i=1

∂w̄i log bjdw̄i

vanishes at x.
Note that

d log |sj |2κ ∧ dc log |sj |2κ =
√
−1
2π

dwj ∧ dw̄j

|wj |2
+ �j . (6.6.2)
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The form

�j =
√
−1
2π

(
∂bj ∧ ∂̄bj

b2
j

+
∂bj ∧ dw̄j

bjw̄j
+

dwj ∧ ∂̄bj

wjbj

)

has the property that |wj |2�j is a smooth form whose coefficients vanish on Dj .
Thus the matrix (hαβ) has the following form:⎛

⎜⎜⎜⎜⎜⎜⎝

∗ · · · 2∂w1 log bj

w̄ju2
j

+ ∗ · · · ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2∂w̄1 log bj

wju2
j

+ ∗ · · · 2
|wj |2u2

j
+ ∗ · · · 2∂w̄n log bj

wju2
j

+ ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∗ · · · 2∂wn log bj

w̄ju2
j

+ ∗ · · · ∗

⎞
⎟⎟⎟⎟⎟⎟⎠ , (6.6.3)

where
uj = log |sj |2κ = log |wj |2 + log bj .

Simple calculations show that

∂

∂w̄j

(
1

|wj |2u2
j

)
= − 1

wjw̄2
j u2

j

− 2
wjw̄2

j u3
j

− 2
|wj |2u3

jbj

∂bj

∂w̄j
,

∂

∂wj

(
1

|wj |2u2
j

)
= − 1

w2
j w̄ju2

j

− 2
w2

j w̄ju3
j

− 2
|wj |2u3

jbj

∂bj

∂wj
,

and
∂2

∂wj∂w̄j

(
1

|wj |2u2
j

)
=

1
|wj |4u2

j

+
4

|wj |4u3
j

+
6

|wj |4u4
j

+ ηj ,

where

ηj =
2

wjw̄2
j u3

jbj

∂bj

∂wj
+

6
wjw̄2

ju
4
jbj

∂bj

∂wj
+

2
w2

j w̄ju3
jbj

∂bj

∂w̄j
+

6
w2

j w̄ju4
jbj

∂bj

∂w̄j

− 2
|wj |2u3

j

∂2 log bj

∂wj∂w̄j
+

6
|wj |2u4

j

∂ log bj

∂wj

∂ log bj

∂w̄j
.

Since θ(x) = 0 = θ̄(x), the matrix (6.6.3) yields

det(hαβ) =
2Hjj

|wj |2u2
j

{
1 + o

(
1
u2

j

)}

near x, where Hjj is the algebraic minor of hjj . Thus

hjj =
Hjj

det(hαβ)
=

1
2
|wj |2u2

j

{
1 + o

(
1
u2

j

)}
.
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Then

∂hjj

∂wj

∂hjj

∂w̄j
=

4
|wj |6u4

j

+
16

|wj |6u5
j

+
16

|wj |6u6
j

+ O

(
1

|wj |4w̄ju5
j

)
,

and so
Kjjjj =

1
|wj |4u4

j

{−4 + o(1)} .

We consider cases (α, β) �= (j, j), (γ, δ) �= (j, j). Since

Hνj = o

(
1

|wj |u2
j

)
, ν �= j,

then

hjν =
Hνj

det(hαβ)
= o(|wj |) (ν �= j),

and hence
Kαβγδ = O(1)

near wj = 0.
Next assume (γ, δ) �= (j, j). It is easy to show

Kjβγδ = O

(
1

|wj |u2
j

)
(β �= j)

but
Kjjγδ = O(1)

near wj = 0.
Take two non-zero continuous tangent vector fields X and Y of T(M) over

U , and write

X =
∑

k

ξk
∂

∂wk
, Y =

∑
k

ηk
∂

∂wk
.

Then when p ∈ U −D, the holomorphic bisectional curvature determined by Xp

and Yp,

K(Xp, Yp) =

∑
α,β,γ,δ Kαβγδξαξβηγηδ(∑

α,β hαβξαξβ

)(∑
γ,δ hγδηγηδ

)
∣∣∣∣∣∣
p

,

is well defined. The above argument shows

K(Xx, Yx) = lim sup
U−D�p→x

K(Xp, Yp) < +∞.
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When x ∈ N −D, sj = χj vanishes nowhere near x, but we have to check
the case bj(x) = |χj(x)|2κ → 0. Now we have

d log |sj |2κ ∧ dc log |sj |2κ =
√
−1
2π

∂ log bj ∧ ∂̄ log bj .

Note that

∂

∂w̄δ

(
∂wν bj∂w̄β

bj

b2
ju

2
j

)
= −

2∂wν bj∂w̄β
bj∂w̄δ

bj

b3
ju

2
j

(
1 +

1
uj

)
+

∂w̄δ
(∂wν bj∂w̄β

bj)
b2
ju

2
j

,

∂

∂wγ

(
∂wαbj∂w̄µbj

b2
ju

2
j

)
= −

2∂wαbj∂w̄µbj∂wγ bj

b3
ju

2
j

(
1 +

1
uj

)
+

∂wγ (∂wαbj∂w̄µbj)
b2
ju

2
j

,

vanish at x, and

∂2

∂wγ∂w̄δ

(
∂wαbj∂w̄β

bj

b2
ju

2
j

)
=

1
b2
ju

2
j

(∂wγ ∂w̄β
bj∂w̄δ

∂wαbj + ∂wγ ∂wαbj∂w̄δ
∂w̄β

bj) + ζj ,

where ζj vanishes at x. Denote the quantity in brackets by K̃αβγδ. Then∑
α,β,γ,δ

K̃αβγδξαξβηγηδ ≥ 0,

and so
lim sup
bj(x)→0

K(Xx, Yx) < +∞.

Finally, we have

K = sup
N,ξ,η

∑
α,β,γ,δ Kαβγδξαξβηγηδ(∑

α,β hαβξαξβ

)(∑
γ,δ hγδηγηδ

) < ∞,

and so Lemma 6.21 follows. �

Let D be a meromorphic connection for T(N) with pole order E such that tD
is holomorphic for some t ∈ Γ(N, E)−{0}. We will use the notions in Section 6.3.

Lemma 6.22 ([184]). For k ≥ 1, we have

T
(
r, r0; ddc log(1 + |f (k)|2)

)
≤ Nf (r, D) +

1
2

C〈0; r; log(1 + |f (k)|2)〉

−1
2

C〈0; r0; log(1 + |f (k)|2)〉.
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Proof. Here we show only the case k = 1. Other cases can be proved similarly.
Note that f∗(D) consists of discrete points in C. Without loss of generality, we
may assume that f∗(D) ∩ C〈0; r〉 = ∅. Set

supp(f∗(D)) ∩ C[0; r] = {z1, . . . , zl}.

Let C(zi; ε) denote the open disc centered at zi with radius ε. Choose a positive ε
sufficient small such that

C(zi; ε) ⊂ C[0; r], i = 1, . . . , l.

By using the symbols in the proof of Lemma 6.21, and set

fα = wα ◦ f, α = 1, . . . , n.

There exist integers li and mi with

mi > 0, 0 ≤ li ≤ 2µf∗(D)(zi), i = 1, . . . , l,

such that

|f ′(z)|2 =
Gi(z)

|z − zi|li(log |z − zi|2mi)2
, i = 1, . . . , l

hold on C(zi; ε), by choosing ε sufficiently small if necessary, where Gi is a con-
tinuous positive function. Applying (6.1.1) to the domain

A = C(0; r)−
l⋃

i=1

C[zi; ε],

we obtain∫
A

∆log(1 + |f ′|2)dxdy =
∫

C〈0;r〉

∂ log(1 + |f ′|2)
∂r

ds

−
l∑

i=1

∫
∂C[zi;ε]

∂ log(1 + |f ′|2)
∂ε

ds. (6.6.4)

Simple calculation shows that

lim
ε→0

∫
∂C[zi;ε]

∂ log(1 + |f ′|2)
∂ε

ds = −2πli, i = 1, . . . , l.

Thus from (6.6.4), we obtain∫
C(0;r)

∆log(1 + |f ′|2)dxdy ≤
∫

C〈0;r〉

∂ log(1 + |f ′|2)
∂r

ds + 4πnf(r, D),

and hence our claim follows according to the proof of (6.1.3). �
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We choose a finite open covering B = {W, U, . . .} of N with coordinates
w = (w1, . . . , wn), u = (u1, . . . , un),. . . , and the coefficients Γα

γδ, Ξα
γδ,. . . , of the

meromorphic connection D, respectively. Let χW be a holomorphic local frame of
E over W and write t = hW χW . We can define holomorphic vector fields of T(N)
over W by

XW
γδ =

∑
α

hWΓα
γδ

∂

∂wα
,

and then extend XW
γδ continuously to vector fields of T(N) over N .

Theorem 6.23 ([184]). Let f : C −→ N be a non-constant holomorphic mapping.
Then there exists a positive constant c such that

‖ C
〈
0; r; log+ |f (k)|

〉
≤ max

{
5
3
(4k−2 − 1) + 1, 0

}
Rf (r) + O {log(rTf (r, L))}

+ c max{k − 2, 0} log+ Rf (r). (6.6.5)

Proof. Since f is non-constant, then Tf(r, L)→ +∞ as r → +∞. Without loss of
generality, we may assume that Tf(r, L) ≥ 1, and that

R = tr(ψ) = tr(Ric(Ψ)) ≥ 1.

First of all, we consider the case k = 1. Lemma 2.94 yields

T
(
r, r0; |f ′|2υ

)
≤ cTf(r, L).

By Lemma 2.92, we obtain

‖ C
〈
0; r; log+ |f ′|

〉
≤ 1

2
C
〈
0; r; log(1 + |f ′|2)

〉
≤

(
1
2

+ ε

)
log T

(
r, r0; (1 + |f ′|2)υ

)
+ 2ε log r

≤
(

1
2

+ ε

)
log Tf (r, L) + O(log r),

and hence the inequality (6.6.5) follows with k = 1.
Next we consider the case k = 2. The inequality (6.3.4) has the following

form:

|f (2)|2 = |tDzf
′|2 ≤ c

⎧⎪⎨
⎪⎩|∇zf

′|2 + |f ′|8κ +
∑

W∈B

⎛
⎝∑

γ,δ

|XW
γδf |

⎞
⎠4
⎫⎪⎬
⎪⎭ , (6.6.6)

where |f ′|κ is the norm of f ′ with respect to the Hermitian metric on N induced
by c1(L, κ). By Lemma 6.21 and Lemma 6.22, the estimate (6.3.6) holds for the
singular metric, and so we can obtain (6.3.7) again. Thus Lemma 2.92 implies

‖ C
〈
0; r; log+ |∇zf

′|
〉
≤ O{log Tf(r, L)} + O(log r).
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Note that when 0 < 4µ < 1, by the Hölder inequality we have

T
(
r, r0; |f ′|8µ

κ υ
)
≤ T

(
r, r0; |f ′|2κυ

)4µ T (r, r0; υ)1−4µ

≤ Tf(r, L)8µ + r4. (6.6.7)

Then Lemma 2.92 yields

‖ C
〈
0; r; log+ |f ′|κ

〉
≤ O{log Tf(r, L)}+ O(log r).

Hence by using (6.6.6) and Lemma 2.104, we can prove (6.6.5) for the case k = 2.
When using induction to consider the case k + 1, the inequality (6.3.9) be-

comes the following form:

∣∣∣f (k+1)
∣∣∣ ≤ c

⎧⎪⎨
⎪⎩
∣∣∣∇zf

(k)
∣∣∣+ ∣∣∣f (k)

∣∣∣2 +
∑

W∈B

⎛
⎝∑

γ,δ

|XW
γδf |

⎞
⎠4
⎫⎪⎬
⎪⎭

+c

{∣∣∣f (k)
∣∣∣2
κ

+ |f ′|2κ + |f ′|4κ
}

. (6.6.8)

According to the remarks for the case k = 2 and the proof in Theorem 6.12, the
inequality (6.3.11) has the form

‖ cT
(

r, r0;
|∇zf

(k)|2(
1 + |f (k)|2

)2 υ

)
≤ Tf(r, L) + Rf (r) + r2 (6.6.9)

if we do not use Lemma 2.92, but directly estimate C
〈
0; r; log

(
1 + |f (k)|2

)〉
by

using the induction assumption. Since

‖ C
〈
0; r; log+ |∇zf

(k)|
〉

≤ 1
2

C

〈
0; r; log+ |∇zf

(k)|2
(1 + |f (k)|2)2

〉
+C
〈
0; r; log

(
1 + |f (k)|2

)〉
,

then (6.6.9), Lemma 2.92 and the induction assumption imply

‖ C
〈
0; r; log+ |∇zf

(k)|
〉
≤ 2
(

5
3
(4k−2 − 1) + 1

)
Rf (r) (6.6.10)

+ O {log(rTf (r, L))}+ O(log+ Rf (r)).

Hence the inequality (6.6.5) of case k+1 follows from (6.6.8), (6.6.10), Lemma 2.92,
Theorem 6.12, Lemma 2.104 and the induction assumption. �

Now we can estimate the term M〈O; r; log g〉 in Theorem 2.95 for the case
M = C.
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Theorem 6.24 ([184]). Let N be a compact complex manifold of dimension n. Let
L be a positive holomorphic line bundle on N . Take 0 �= sj ∈ Γ(N, L), j = 1, . . . , q,
such that the divisor D = D1 + · · ·+ Dq has simple normal crossings in N , where
Dj = (sj). Let f : C −→ N be a holomorphic curve such that f(C) � s−1

j (0) for
all j. Assume that the image of f is not autoparallel with respect to a meromorphic
connection of N . Then

‖ qTf(r, L) + Tf(r, KN ) ≤
q∑

j=1

Nf (r, Dj)−NRam(r, f) + cnRf (r)

+ O(log+ Rf (r)) + O{log(rTf (r, L))}, (6.6.11)

where
cn =

1
9
(5× 4n−1 − 6n + 1).

Proof. Since the image of f is not autoparallel with respect to a meromorphic
connection D on N , then

f ′ ∧ f (2) ∧ · · · ∧ f (n) �≡ 0 (6.6.12)

where the exterior product f ′∧f (2)∧· · ·∧f (n) is taken in the holomorphic tangent
bundle T(N) of N so that it defines a holomorphic mapping from C to the line
bundle E

n(n−1)
2 ⊗K∗

N of N .
Since any line bundle on C is trivial, the pullback f

(k)
f of f (k) under f can

be identified with a section of f∗(T(N)) under the identification

f∗(Ek−1 ⊗T(N)) ∼= f∗(T(N))

such that
f ′

f ∧ f
(2)
f ∧ · · · ∧ f

(n)
f �≡ 0.

By Lemma 2.86, the holomorphic field

ϕ = f
(2)
f ∧ · · · ∧ f

(n)
f

on f over C of degree n − 1 is effective, that is, ϕ induces an effective Jacobian
section Fϕ of f . Define a non-negative function g by

Fϕ[ψn] = g2f∗(ψ), (6.6.13)

where ψ = Ric(Ψ) > 0. Lemma 2.87 also is true for the singular metric hΨ on N .
Thus we have g ≤ |ϕ|, where the metric of f∗(T(N)) is induced by the singular
metric on N defined by the form ψ.

By Lemma 1.55, there exists a constant c > 0 such that

g ≤
∣∣∣f (2)

f ∧ · · · ∧ f
(n)
f

∣∣∣ ≤ c

n∏
k=2

∣∣∣f (k)
∣∣∣ . (6.6.14)
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Thus we obtain an inequality

C 〈0; r; log g〉 ≤
n∑

k=2

C
〈
0; r; log

∣∣∣f (k)
∣∣∣〉+ O(1). (6.6.15)

The inequality (6.6.5)) implies

‖ C 〈0; r; log g〉 ≤ cnRf (r) + O(log+(rTf (r, L))) + O(log+ Rf (r)), (6.6.16)

and hence Theorem 6.24 follows from Theorem 2.95. �

If there exists a meromorphic connection of N , Theorem 6.18 implies that
there is a proper algebraic subset ZD,f of N depending on f such that the image
of f is not autoparallel with respect to the meromorphic connection of N if f(C) �
ZD,f . Thus Theorem 6.24 implies the following result:

Theorem 6.25. Let N be an algebraic manifold of dimension n with a meromorphic
connection and let D be an ample divisor on N with normal crossings. Let f :
C −→ N be a holomorphic curve. There exists a proper algebraic subset ZD,f of
N such that when f(C) � ZD,f , we have

‖ Tf (r, [D]) + Tf(r, KN ) ≤ Nf (r, D)−NRam(r, f) + cnRf (r)

+ O{log(rTf (r, [D]))} + O(log+ Rf (r)). (6.6.17)



Chapter 7

Riemann’s ζ-function

In this chapter, we will give a few necessary and sufficient conditions on Riemann’s
hypothesis by using several formulae in analytic function theory, say, Nevanlinna
formula, Carleman formula, Levin formula, and so on. Since these formulae can
be used to define characteristic functions similar to Nevanlinna’s fashion based
on Jensen’s formula, we hope to use value distribution theory derived from these
formulae to study Riemann’s hypothesis. The main idea will be exhibited in the
following sections. It is interesting to find connections between Diophantine ap-
proximation and value distribution theory derived from these formulae.

7.1 Riemann’s functional equation

This tract is intended for readers who already have some knowledge of the zeta-
function and its role in the analytical theory of numbers; but for the sake of
completeness we give a brief sketch of its elementary properties (or see [394]).

The function is defined by the Dirichlet series

ζ(s) =
∞∑

n=1

n−s, s ∈ C. (7.1.1)

The series is convergent, and the function analytic, for Re(s) > 1. We have also
Euler’s infinite product representation

ζ(s) =
∏
p

(1− p−s)−1, Re(s) > 1, (7.1.2)

where p runs though all prime numbers. From the convergence of the product
(7.1.2) one deduces that ζ(s) has no zeros for Re(s) > 1.
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Summing

n−sΓ(s) =
∫ ∞

0

xs−1e−nxdx

with respect to n and inverting the order of summation and integration, a third
representation of the function is obtained as follows:

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx, Re(s) > 1. (7.1.3)

By using (7.1.3), it is easy to show the following representation:

ζ(s) =
1

Γ(s)

∫ ∞

0

(
1

ex − 1
− 1

x

)
xs−1dx, 0 < Re(s) < 1. (7.1.4)

Further, (7.1.3) can be used to extend the domain of definition of ζ to all C. We
replace the integral by the contour integral

ζ(s) = −Γ(1− s)
2πi

∫
C

(−w)s−1

ew − 1
dw, (7.1.5)

where the contour C starts at infinity on the positive real axis, encircles the origin
once in the positive direction (but excludes all the poles of 1/(ew − 1) other than
0, i.e., the points ±2iπ,±4iπ, . . . ) and returns to its starting point. Here we define

(−w)s−1 = exp{(s− 1) log(−w)},

where the logarithm is real on the negative real axis. This formula is deduced
from (7.1.3) in the case Re(s) > 1 by shrinking the contour C into the real axis
described twice, and taking into account the different value of the logarithm on
the two parts. This integral is uniformly convergent in any finite region, and so
represents an entire function of s. This enables us to continue ζ(s) over the whole
plane C. Hence ζ(s) is analytic for all values of s except for a simple pole at s = 1,
with residue 1. Since

w

ew − 1
= 1− 1

2
w +

∞∑
n=1

(−1)n−1Bn

(2n)!
w2n,

where the coefficients Bn are rational numbers, called Bernoulli numbers, by the
theorem of residues one finds the following values of ζ(s):

ζ(0) = −1
2
, ζ(−2m) = 0, ζ(1 − 2m) = (−1)m Bm

2m
(m = 1, 2, . . . ). (7.1.6)

The points z = −2,−4, . . . are called the trivial zeros of ζ(z). Euler proved

ζ(2m) =
22m−1π2mB2m

(2m)!
(m = 1, 2, . . . ). (7.1.7)
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Deform the contour C into the contour Cn consisting of the square with
centre the origin and sides parallel to the axes, length of side (4n + 2)π, together
with the positive real axis from (2n+1)π to infinity, in which it includes the poles
of the integrand at ±2iπ, . . . ,±2niπ. The sum of the residues at these points is
found to be

2
n∑

m=1

(2mπ)s−1 sin
πs

2
.

If Re(s) < 0 we can make n →∞; the integral around Cn tends to zero, and one
obtains Riemann’s functional equation

ζ(s) = 2sπs−1 sin
πs

2
Γ(1− s)ζ(1 − s),

which is equivalent to the functional equation

ζ(1 − s) = 21−sπ−s cos
πs

2
Γ(s)ζ(s). (7.1.8)

By continuation, this holds for all values of s. It follows from this that ζ(s) has no
zeros in the half-plane Re(s) < 0 except simple zeros at s = −2,−4, . . . . Writing

ξ(s) =
s

2
(s− 1)π− s

2 Γ
(s

2

)
ζ(s), (7.1.9)

the functional equation (7.1.8) takes the simple form

ξ(1 − s) = ξ(s). (7.1.10)

Next we introduce the original proof of the functional equation (7.1.10) due
to Riemann. Riemann wrote only a single, ten-page paper in number theory [324].
In it he not only initiated the study of ζ(s) as a function of a complex variable, but
also introduced the Riemann Hypothesis and outlined the eventual proof of the
prime number theorem. At the core of Riemann’s paper is the Poisson summation
formula ∑

n∈Z

f(n) =
∑
n∈Z

f̂(n), (7.1.11)

which relates the sum over the integers of a function f and its Fourier transform

f̂(x) =
∫

R

f(y)e−2πixydy. (7.1.12)

The Poisson summation formula is valid for functions f with suitable regularity,
such as Schwartz functions: smooth functions which, along with all their deriva-
tives, decay faster than any power of 1

|x| as |x| → ∞ (cf. [212], II, § 4, Proposi-
tion 6).
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Riemann’s own, rigorous argument proceeds by applying the Poisson sum-
mation formula (7.1.11) to the Gaussian

f(x) = e−πx2t, t > 0,

whose Fourier transform is
f̂(x) =

1√
t
e−

πx2
t .

The Gaussian is a Schwartz function and can be legitimately inserted in (7.1.11).
Thus one obtains Jacobi’s transformation identity

θ(ix) =
1√
x

θ

(
i

x

)
, (7.1.13)

where

θ(z) =
1
2

∑
n∈Z

eπin2z =
1
2

+
∞∑

n=1

eπin2z (7.1.14)

is holomorphic in the upper half-plane H = {z | Im(z) > 0}; moreover,

θ

(
−1
z

)
=
(z

i

) 1
2

θ(z), θ(z + 2) = θ(z). (7.1.15)

By using the expression,

Γ(s) =
∫ ∞

0

xs−1e−xdx, Re(s) > 0,

Riemann then obtained an integral representation as follows:

π−sΓ(s)ζ(2s) =
∞∑

n=1

∫ ∞

0

(πn2)−sxs−1e−xdx

=
∫ ∞

0

xs−1

(
θ(ix) − 1

2

)
dx, Re(s) >

1
2
. (7.1.16)

Note that∫ 1

0

xs−1

(
θ(ix)− 1

2

)
dx =

∫ 1

0

xs−1θ(ix)dx − 1
2s

=
∫ ∞

1

x−s−1θ

(
i

x

)
dx− 1

2s

=
∫ ∞

1

x
1
2−s−1

(
θ(ix) − 1

2

)
dx− 1

2s
− 1

1− 2s
.

Indeed, replacing s by s/2, the above expressions read

ξ(s) =
1
2

+
s

2
(s− 1)

∫ ∞

1

(
x

s
2−1 + x

1−s
2 −1

)(
θ(ix)− 1

2

)
dx. (7.1.17)



7.1. Riemann’s functional equation 465

Further for x ≥ 1, we note that

θ(ix)− 1
2
≤

∞∑
n=1

e−πnx =
e−πx

1− e−πx
= O

(
e−πx

)
(7.1.18)

and ∫ ∞

1

∣∣xse−πx
∣∣ dx ≤

∫ ∞

1

xbe−πxdx <∞, Re(s) ≤ b.

Hence for any value of s, the integral in (7.1.17) converges to an entire function
which is bounded for s in vertical strips. Obviously, Riemann’s functional equation
(7.1.10) follows from (7.1.17).

For further discussion, we will need the partial summation formula (cf. [199]),
which is also called Abel’s transformation:

Lemma 7.1. Suppose that f ∈ C1([a, b]) and e(n) are arbitrary complex numbers.
Then we have the relation∑

a<n≤b

e(n)f(n) = E(b)f(b)−
∫ b

a

E(x)f ′(x)dx, (7.1.19)

where
E(x) =

∑
a<n≤x

e(n).

Proof. Obviously, we have

I = E(b)f(b)−
∑

a<n≤b

e(n)f(n) =
∑

a<n≤b

e(n){f(b)− f(n)}

=
∑

a<n≤b

e(n)
∫ b

n

f ′(x)dx =
∑

a<n≤b

e(n)
∫ b

a

χn(x)f ′(x)dx,

where

χn(x) =

{
0 : a < x < n,

1 : n ≤ x ≤ b,

and hence

I =
∫ b

a

f ′(x)

⎧⎨
⎩ ∑

a<n≤b

e(n)χn(x)

⎫⎬
⎭ dx =

∫ b

a

f ′(x)

⎧⎨
⎩ ∑

a<n≤x

e(n)

⎫⎬
⎭ dx.

�

Let [x] denote the maximal integer ≤ x, and set

{x} = x− [x].

Next we show Euler’s summation formula (cf. [199]):
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Lemma 7.2. Suppose that f ∈ C1([a, b]). Then∑
a<n≤b

f(n) = {a}f(a)− {b}f(b) +
∫ b

a

f(x)dx +
∫ b

a

{x}f ′(x)dx. (7.1.20)

Proof. Take e(n) = 1 in Lemma 7.1. Then we obtain

F (b) =
∑

a<n≤b

f(n) = E(b)f(b)−
∫ b

a

E(x)f ′(x)dx,

where
E(x) =

∑
a<n≤b

1 = [x]− [a] = x− {x} − a + {a}.

Therefore

F (b) = (b − {b} − a + {a})f(b)

−
∫ b

a

(x − {x})f ′(x)dx + (a− {a})
∫ b

a

f ′(x)dx

= {a}f(a)− {b}f(b) +
∫ b

a

f(x)dx +
∫ b

a

{x}f ′(x)dx.

We have thus proved the statement of the lemma. �

Now for Re(s) > 0, we show the formula

ζ(s) =
N∑

n=1

1
ns

+
1

(s− 1)Ns−1
− s

∫ ∞

N

x− [x]
xs+1

dx. (7.1.21)

Take positive integers M and N with M > N and apply (7.1.20) to the sum

RNM =
∑

N<n≤M

1
ns

.

Then we have

RNM =
∫ M

N

x−sdx − s

∫ M

N

{x}x−s−1dx

=
1

1− s
M1−s +

1
s− 1

N1−s − s

∫ M

N

{x}x−s−1dx.

Suppose firstly that Re(s) > 1. Then we obtain

ζ(s) =
N∑

n=1

1
ns

+ lim
M→+∞

RNM

=
N∑

n=1

1
ns

+
1

s− 1
N1−s − s

∫ ∞

N

{x}x−s−1dx.
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But the last improper integral defines an analytic function in the half-plane
Re(s) > 0. From this, by virtue of the analytic continuation principle, we get
the formula (7.1.21).

One shows that the order of the entire function ξ(s) defined by (7.1.9) is 1.
By (7.1.10) it is sufficient to consider the half-plane Re(s) ≥ 1

2 . Set s = σ + it and
take 0 < δ < 1. We deduce from (7.1.21) that for σ ≥ δ, |t| ≥ 1,

ζ(s) = O
(
N1−δ

)
+ O

(
tN−δ

)
= O

(
t1−δ

)
(7.1.22)

on taking N = [t]. Since∣∣∣Γ(s

2

)∣∣∣ ≤ ∣∣∣Γ(σ

2

)∣∣∣ = O
(
eAσ log σ

)
,

it follows from (7.1.9) that ξ(s) is of order 1 at most. By considering positive real
values of s it is easily seen that the order is exactly 1.

7.2 Converse theorems

The following Phragmen-Lindelöf principle (cf. [52], [396], [233]) can be used to
obtain estimates on ζ(s) in vertical strips from ones on their edges:

Theorem 7.3. Let f(s) be meromorphic in a strip

Ω = {s ∈ C | a ≤ Re(s) ≤ b}, {a, b} ⊂ R.

Suppose that there exists some ρ > 0 such that f(s) satisfies the inequality

f(s) = O
(
e|s|

ρ
)

on Ω for |Im(s)| large and obeys the estimate

f(σ + it) = O
(
|t|M

)
, σ ∈ {a, b}, |t| → ∞

for some positive integer M . Then

f(σ + it) = O
(
|t|M

)
, a ≤ σ ≤ b, |t| → ∞.

A modular form of weight k and multiplier condition C for the group G(λ)
of substitutions generalized by

z �→ z + λ, z �→ −1
z

is a holomorphic function f(z) on the upper half-plane H satisfying
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(i) f(z + λ) = f(z);

(ii) f
(−1

z

)
= C

(
z
i

)k
f(z);

(iii) f(z) has a Taylor expansion in e
2πiz

λ :

f(z) =
∞∑

n=0

ane
2πinz

λ .

We denote the space of such f by Aλ,k,C(H); f is a cusp form if a0 = 0. The
conditions (i) and (ii) mean

f

(
az + b

cz + d

)
= Cγ(cz + d)kf(z), γ =

(
a b
c d

)
∈ G(λ) (7.2.1)

with |Cγ | = 1. Obviously, one has C4
γ = 1 if k is an integer, and Cγ = ±1 if k is

even. In particular, when λ = 1, G(1) is the modular group SL(2, Z).

Example 7.4. Those two equations in (7.1.15) say that θ(z) is a modular form of
weight 1

2 for the group G(2). The space A2,1/2,1(H) is one-dimensional and consists
of multiples of the θ-function.

Given a sequence {a0, a1, a2, . . . } of complex numbers and given

λ > 0, k > 0, C = ±1,

set

f(z) =
∞∑

n=0

ane
2πinz

λ , (7.2.2)

L(f, s) =
∞∑

n=1

an

ns
, (7.2.3)

and

Λf (s) =
(

2π

λ

)−s

Γ(s)L(f, s). (7.2.4)

First of all, we assume that for some d > 0,

an = O(nd). (7.2.5)

Then L(f, s) converges for Re(s) > d+1 and f is holomorphic in H. The following
Hecke converse theorem ([155], [156]) gives a deep relation between Λf and f :

Theorem 7.5. Under the above conditions, the function f belongs to Aλ,k,C(H) if
and only if the function

Λf (s) +
a0

s
+

Ca0

k − s
(7.2.6)

is an entire function which is bounded in vertical strips and satisfies

Λf(s) = CΛf (k − s). (7.2.7)
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Proof. Here we follow S.S. Gelbart and S.D. Miller [112] to prove Theorem 7.5.
According to the proof of (7.1.16), one also has

Λf(s) =
∞∑

n=1

∫ ∞

0

an

(
2πn

λ

)−s

xs−1e−xdx

=
∫ ∞

0

xs−1 (f(ix)− a0) dx, Re(s) > d + 1. (7.2.8)

Then Mellin inversion implies

f(ix)− a0 =
1

2πi

∫
Re(s)=c

x−sΛf(s)ds, (7.2.9)

for x > 0, c > d + 1.
Now assume that Λf satisfies the conditions in Theorem 7.5. Take c > k and

consider the contour ∂Ωr consisting of the boundary of the region

Ωr = {σ + it ∈ C | k − c ≤ σ ≤ c, −r ≤ t ≤ r}.

Then the residue theorem yields

1
2πi

∫
∂Ωr

x−sΛf (s)ds = Ca0x
−k − a0. (7.2.10)

Next we show that the integrals of x−sΛf (s) over the horizontal paths tend to
zero as r →∞. When Re(s) ≥ c > d + 1, L(f, s) converges absolutely, and so

|L(f, s)| ≤
∞∑

n=1

|an|
nc

=
∞∑

n=1

O

(
1

nc−d

)
= O(1).

Stirling’s formula gives that, for Re(s) ≥ 1/2,

Γ(s) ∼
√

2πe−sss− 1
2 , |s| → ∞, (7.2.11)

which implies that Λf(s) satisfies the estimate

|Λf (s)| = O
(
e|s|

1+ε
)

, Re(s) ≥ c, ε > 0.

By the functional equation, Λf (s) does as well in the reflected region Re(s) ≤ k−c,
and the bounded assumption in Theorem 7.5 handles the missing strip. Therefore
the function in (7.2.6) is of order 1 on C. Since 1

sΓ(s) is entire and of order 1, the
function

(s− k)L(f, s) = (s− k)
(

2π

λ

)s

Γ(s)−1Λf (s)
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is also entire and of order 1. Another form of Stirling’s formula states that

|Γ(σ + it)| ∼
√

2π|t|σ− 1
2 e−

π|t|
2 , |t| → ∞ (7.2.12)

holds uniformly for a ≤ σ ≤ b. Thus the functional equation

L(f, s) = C

(
2π

λ

)2s−k Γ(k − s)
Γ(s)

L(f, k − s)

shows that
|L(f, σ + it)| = O

(
t2c−k

)
, σ = k − c < 0. (7.2.13)

We conclude from the Phragmen-Lindelöf principle that there exists some K > 0
such that

|L(f, σ + it)| = O
(
|t|K
)
, |t| → ∞

holds uniformly in the strip k − c ≤ σ ≤ c. Thus the claim follows easily.
Letting r →∞ in (7.2.10) and using (7.2.9), one obtains

f(ix)− Ca0x
−k =

1
2πi

∫
Re(s)=k−c

x−sΛf(s)ds. (7.2.14)

The functional equation (7.2.7) implies

f(ix)− Ca0x
−k =

C

2πi

∫
Re(s)=k−c

x−sΛf (k − s)ds

=
C

2πi

∫
Re(s)=c

xs−kΛf(s)ds

= Cx−k

(
f

(
i

x

)
− a0

)
,

that is,

f(ix) = Cx−kf

(
i

x

)
,

which is the property (ii) of the definition of Aλ,k,C(H). Properties (i) and (iii)
are immediate from the definition of f(z).

Next suppose f ∈ Aλ,k,C(H). Note that∫ 1

0

xs−1 (f(ix)− a0) dx =
∫ 1

0

xs−1f(ix)dx − a0

s

=
∫ ∞

1

x−s−1f

(
i

x

)
dx− a0

s

= C

∫ ∞

1

xk−s−1 (f(ix)− a0) dx− a0

s
− Ca0

k − s
.



7.2. Converse theorems 471

The equation (7.2.8) yields

Λf(s) +
a0

s
+

Ca0

k − s
=
∫ ∞

1

(
xs−1 + Cxk−s−1

)
(f(ix)− a0) dx, (7.2.15)

which implies clearly the conclusions in Theorem 7.5. �

The following Hamburger converse theorem [145] shows that ζ is uniquely
determined by the Riemann functional equation subject to a certain regularity
condition.

Theorem 7.6. Let

L(f, s) =
∞∑

n=1

an

ns
, L(g, s) =

∞∑
n=1

bn

ns

be an absolutely convergent Dirichlet series for Re(s) > 1, and suppose that both
(s − 1)L(f, s) and (s − 1)L(g, s) are entire functions of finite order. Assume the
functional equation

π− s
2 Γ
(s

2

)
L(f, s) = π− 1−s

2 Γ
(

1− s

2

)
L(g, 1− s). (7.2.16)

Then L(f, s) = L(g, s) = a1ζ(s).

Proof. Here we also follow [112]. For simplicity, suppose that

an = bn, n = 1, 2, . . . .

Now the function
Λ
(s

2

)
= π− s

2 Γ
(s

2

)
L(f, s)

is holomorphic in Re(s) > 0, except perhaps for a simple pole at s = 1. The
functional equation (7.2.16), that is,

Λ(s) = Λ
(

1
2
− s

)
, (7.2.17)

means that Λ(s) has an analytic continuation to C except for potential simple
poles at s = 0 and 1/2. Because of (7.2.17) the residues of Λ(s) at those points
are negatives of each other, and thus

Λ(s) +
a0

s
+

a0

k − s

is entire, where a0 is the residue of Λ(s) at s = k = 1
2 .

On the other hand, the assumption of absolute convergence implies that

|L(f, σ + it)| ≤
∞∑

n=1

|an|
nσ

< ∞, σ > 1.
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Then for any ε > 0, |L(f, s)| is uniformly bounded in the region Re(s) ≥ 1 + ε.
Using the functional equation, we see that

|L(f, σ + it)| = O
(
|t| 12−σ

)
, |t| → ∞

for σ < −ε, and uniformly so in vertical strips. Thus the Phragmen-Lindelöf
principle shows that

|L(f, σ + it)| = O
(
|t| 12+ε

)
, −ε < σ < 1 + ε.

Stirling’s estimate (7.2.12) yields that Λ(s) decays rapidly as |t| → ∞ in any
vertical strip a ≤ σ ≤ b, and hence is bounded there. Theorem 7.5 produces a
modular form f in A2,1/2,1(H), which is a one-dimensional space spanned by θ.
So f must in fact be a multiple of the θ-function, and we conclude that L(f, s) is
a multiple of ζ(s). �

Morduhăı-Boltovskŏı [279], and Ostrowski [313] proved Hilbert’s conjecture
by showing that the Riemann ζ-function does not satisfy any algebraic differential
equation with rational functions as the coefficients. Liao and Yang [247] confirmed
that ζ(s) is a prime function, and there does not exist a non-constant polynomial
P ∈ C[x, y, z] such that

P (Γ(z), ζ(z), z) ≡ 0.

Hence Riemann’s functional equation is almost the unique relation satisfied by
ζ(s).

In 1967, A. Weil completed Hecke’s theory by similarly characterizing mod-
ular forms for congruence subgroups, such as Γ0(N) ⊂ SL(2, Z). By the definition,
a modular form of weight k > 0 for the group Γ0(N) is a holomorphic function
f(z) on the upper half-plane H satisfying

(I) f
(

az+b
cz+d

)
= (cz + d)k

f(z) for all
(

a b
c d

)
∈ Γ0(N);

(II) f(z) has a Taylor expansion in e2πiz: f(z) =
∑∞

n=0 ane2πinz .

We denote the space of such f by Ak,N (H). Weil’s breakthrough was to twist the
series L(f, s) by Dirichlet characters.

Let r be a positive integer. A Dirichlet character modulo r is a non-trivial
function χ : Z −→ C satisfying the following conditions:

(1) χ is a periodic function with period r;

(2) χ is completely multiplicative, i.e., χ(nm) = χ(n)χ(m) for any n, m ∈ Z;

(3) χ(1) = 1, χ(n) = 0 if (n, r) > 1.
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A Dirichlet character χ modulo r is called non-primitive if there exist a proper
factor d (�= r) of r and a Dirichlet character χ0 modulo d such that

χ(n) = χ0(n), (n, r) = 1.

If there exists no such χ0, then χ is called a primitive character.

Theorem 7.7 ([427]). Fix positive integers N and k. Then

f(z) =
∞∑

n=1

ane2πinz ∈ Ak,N (H)

if L(f, s) satisfies the following conditions:

(a) L(f, s) is absolutely convergent for Re(s) sufficiently large;
(b) for each primitive character χ of modulus r with (r, N) = 1,

Λf,χ(s) = (2π)−sΓ(s)
∞∑

n=1

anχ(n)
ns

continues to an entire function of s, bounded in vertical strips;
(c) each such Λf,χ(s) satisfies the functional equation

Λf,χ(s) = wχr−1(r2N)
k
2−sΛf,χ̄(k − s),

where
wχ = ikχ(N)g(χ)2

and the Gauss sum
g(χ) =

∑
n(mod r)

χ(n)e
2πin

r ,

where n in the sum runs on a complete residue system modulo r, that is,
Z/rZ.

For a proof, see [43], [195] or [309].

7.3 Riemann’s hypothesis

Writing

Ξ(t) = ξ

(
1
2

+ it

)
, (7.3.1)

the functional equation (7.1.8) takes the simple form

Ξ(−t) = Ξ(t). (7.3.2)
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It follows that Ξ(
√

z) is an entire function of order 1
2 , and so has an infinity of zeros.

From this, one deduces that ζ(s) has an infinity of zeros other than the real ones
already observed. These zeros must be complex and lie in the strip 0 ≤ Re(s) ≤ 1,
called the critical strip of ζ(s). Further G. H. Hardy proved that there are an
infinity of zeros on Re(s) = 1

2 (see [394]).

Since
(1 − 21−s)ζ(s) = 1− 1

2s
+

1
3s
− 1

4s
+ · · · > 0

for 0 < s < 1 and ζ(0) �= 0, it follows that ζ(s) has no zeros on the real axis
between 0 and 1. Therefore all possible zeros of ζ(s) in the critical strip are complex
numbers. If s0 is a zero of ζ(s) located in the strip, then the functional equation
(7.1.8) implies that 1 − s0 also is a zero of ζ(s). Since ζ(σ) is real when σ ∈ R,
Schwarz’s reflection principle shows that ζ(s) = ζ(s). Hence s0 also is a zero of
ζ(s). Therefore zeros of ζ(s) in the strip are symmetric on the lines Re(s) = 1

2 and
Im(s) = 0.

Conjecture 7.8 (Riemann hypothesis [324]). If s0 is a zero of ζ(s) in the critical
strip, then Re(s0) = 1

2 .

As to the zeros of ζ(s), it is known that there are none on the line σ =
Re(s) = 1. We derive from (7.1.2) the formula

log ζ(s) =
∑

p

∞∑
m=1

1
mpms

, (7.3.3)

which implies

ζ3(σ)|ζ(σ + it)|4|ζ(σ + 2it)| = exp

{∑
p

∑
m

3 + 4 cos θ + cos 2θ

mpmσ

}
, (7.3.4)

where θ = mt log p. Since

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0,

every term in the exponent on the right of (7.3.4) is positive, and hence the left-
hand side is not less than 1. Putting σ = 1 + ε (0 < ε < 1), and noting that

ζ(1 + ε) =
∞∑

n=1

n−1−ε < 1 +
∫ ∞

1

x−1−εdx = 1 +
1
ε

<
2
ε
,

we have
|ζ(1 + ε + it)|

ε
>

1
2ε

1
4 |ζ(1 + ε + 2it)| 14

.

Since ζ(s) is analytic, the left-hand side would tend to |ζ′(1 + it)| as ε → 0, if
1 + it were a zero of ζ(s). But the right-hand side tends to infinity. Hence ζ(s)
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cannot have a zero on Re(s) = 1. The smallest zeros of Ξ in the horizontal strip
|Im(z)| < 1

2 , Re(z) > 0 have been calculated with great accuracy. They are

t1 = 14.13 · · · , t2 = 21.02 · · · , t3 = 25.01 · · · ,
t4 = 30.42 · · · , t5 = 32.93 · · · , t6 = 37.58 · · · ,
t7 = 40.91 · · · , t8 = 43.32 · · · , t9 = 48.00 · · · ,

t10 = 49.77 · · · , and so on. They are all real.

The number N(T ) of zeros of ζ(s) between Im(s) = 0 and Im(s) = T is given
approximately by the formula

N(T ) =
T

2π
log T − 1 + log 2π

2π
T + O(log T ). (7.3.5)

An immediate consequence of (7.3.5) is

N(T + 1)−N(T ) = +O(log T ). (7.3.6)

Next we will need Perron’s summation formula (cf. [199]):

Lemma 7.9. Suppose that the Dirichlet series

f(s) =
∞∑

n=1

a(n)
ns

(7.3.7)

converges absolutely for Re(s) > 1, |a(n)| ≤ A(n), where A(n) is a positive mono-
tonically increasing function of n, and for α > 0,

∞∑
n=1

|a(n)|
nσ

= O

(
1

(σ − 1)α

)

as 1 < σ → 1. Then

∑
n≤x

a(n) =
1

2πi

∫ b+iT

b−iT

f(s)
xs

s
ds + O

(
xb

T (b− 1)α

)
+ O

(
xA(2x) log x

T

)
,

where the constant under the symbol O depends only on b0 for any b0 ≥ b > 1, T ≥
1, x = N + 1

2 (N ∈ Z).

For Re(s) > 1, if we take logarithms in (7.1.2) and differentiate it, we have

−ζ′(s)
ζ(s)

=
∞∑

n=1

Λ(n)
ns

, (7.3.8)
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where Λ(n) is von Mangoldt’s function:

Λ(n) =

{
log p : if n = pk, p is prime,
0 : if n �= pk.

Define
ψ(x) =

∑
n≤x

Λ(n),

which is called Chebyshev’s function. Chebyshev proved that if one of the limits

lim
x→+∞

ψ(x)
x

or

lim
x→+∞

π(x) log x

x
(7.3.9)

existed, then so would the other limit and these limits would be equal to 1. The
exact behavior is given by the prime number theorem (4.10.1). In fact, Ch. de la
Vallée Poussin proved a stronger claim, that is, there is a constant c > 0 such that

ψ(x) = x + O
(
xe−c

√
log x
)

,

π(x) =
∫ x

2

du

log u
+ O

(
xe−

c
2

√
log x
)

.

Theorem 7.10. The Riemann hypothesis is true if and only if the estimate

ψ(x) = x + O
(
x

1
2+ε
)

(7.3.10)

is valid for any positive ε.

Proof. Note that

∞∑
n=1

Λ(n)
nσ

≤
∞∑

n=1

log n

nσ
≤
∫ ∞

1

log x

xσ
dx = O

(
1

(σ − 1)2

)
.

Take

b = 1 +
1

log x
, 2 ≤ T ≤ x, A(n) = log n, α = 2

in Lemma 7.9. We obtain

ψ(x) = − 1
2πi

∫ b+iT

b−iT

ζ′(s)
ζ(s)

xs

s
ds + O

(
x log2 x

T

)
. (7.3.11)
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Transferring the line of integration in (7.3.11) to the left, onto the straight line
Re(s) = − 1

2 by using a rectangular contour, the residue theorem implies

ψ(x) = x−
∑

|Im(ρ)|≤T

xρ

ρ
+ O

(
x log2 x

T

)
(7.3.12)

for 2 ≤ T ≤ x, where the summation in the last sum is carried out over all the
complex zeros of ζ(s). Thus if Riemann’s hypothesis is true, we can take Re(ρ) = 1

2
in (7.3.12) with T =

√
x, and so

ψ(x) = x + O
(√

x log2 x
)
. (7.3.13)

Conversely, suppose that (7.3.13) or a slightly weaker statement (7.3.10) holds
for an arbitrary ε > 0. Let us prove that Riemann’s hypothesis is true. Applying
Lemma 7.1 to (7.3.8) with

e(n) = Λ(n), E(x) = ψ(x), f(n) = n−s,

for Re(s) > 1 we get

−ζ′(s)
ζ(s)

= s

∫ ∞

1

ψ(x)
xs+1

dx =
1

s− 1
+ 1 + s

∫ ∞

1

ψ(x) − x

xs+1
dx

or

−ζ′(s)
ζ(s)

− 1
s− 1

= 1 + s

∫ ∞

1

ψ(x)− x

xs+1
dx.

By the assumption, the improper integral on the right-hand side converges ab-
solutely and uniformly in the half-plane Re(s) ≥ 1

2 + δ for any δ > 0, and con-
sequently, it is a regular function by Weierstrass’s theorem. It follows that all
singular points of the left-hand side, including the complex zeros of ζ(s), lie in the
half-plane Re(s) ≤ 1

2 , and so they all lie in Re(s) = 1
2 since they are symmetri-

cal with respect to the straight line Re(s) = 1
2 . We have thus proved Riemann’s

hypothesis. �

For Re(s) > 1 we have

1
ζ(s)

=
∞∑

n=1

µ(n)
ns

,

where µ(n) is the Möbius’ function,

µ(n) =

⎧⎨
⎩

(−1)k, if n = p1 · · · pk, pj are different prime numbers;
0, if p2 | n for some prime number p;
1, if n = 1.

Similar to the proof above, one has the following fact:
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Theorem 7.11. For Riemann’s hypothesis to hold true, it is necessary and sufficient
that the estimate ∑

n≤x

µ(n) = O
(
x

1
2+ε
)

is valid for every positive ε.

Let ρ(x) be the function defined for x > 0 equal to the representative of x
modulo 1; thus

x = [x] + ρ(x)

where [x] is the largest integer ≤ x. The linear space M consisting of functions of
the form

f(x) =
N∑

k=1

akρ

(
θk

x

)
,

where

0 < θk ≤ 1 (k = 1, . . . , N),
N∑

k=1

akθk = 0,

then consists of bounded, measurable functions vanishing for

x > max
k

[θk]

and therefore vanishing for x > 1. Nyman [306] and Beurling [22] established the
following criterion:

Theorem 7.12. M is dense in Lp(0, 1), 1 ≤ p ≤ ∞, if and only if the Riemann
ζ-function has no zeros in the half-plane σ > 1

p .

A complete proof can be found in [82]. The necessity follows from the relation

s

∫ 1

0

xs−1f(x)dx = −ζ(s)
N∑

k=1

akθs
k

valid for any f ∈M .

Thus Riemann’s hypothesis holds if and only if M is dense in L2(0, 1).
Nyman-Beurling’s criterion has been extended by Báez-Duarte, who showed that
one may restrict attention to integral values of 1/θk. Balazard and Saias [13] have
rephrased this by showing that Riemann’s hypothesis holds if and only if

inf
A

∫ ∞

−∞

∣∣∣∣1−A

(
1
2

+ it

)
ζ

(
1
2

+ it

)∣∣∣∣2 dt
1
4 + t2

= 0,

where the infimum is over all Dirichlet polynomials A.
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Further, if dN denotes the infimum over all Dirichlet polynomials

A(s) =
N∑

n=1

an

ns

of length N , they conjecture that

dN ∼ 1
log N

∑
ρ

1
|ρ|2 .

Burnol has proved that

dN ≥ 1
log N

∑
Re(ρ)= 1

2

mρ

|ρ|2 ,

where mρ is the multiplicity of the zero ρ.

Here are a few other easy-to-state equivalences of Riemann’s hypothesis:

(i) Hardy and Littlewood (1918): Riemann’s hypothesis holds if and only if

∞∑
n=1

(−χ)n

n!ζ(2n + 1)
= O

(
χ− 1

4

)
.

(ii) Redheffer (1977): Riemann’s hypothesis holds if and only if for every ε > 0
there is a C(ε) > 0 such that

| det(A(n))| < C(ε)n
1
2+ε,

where A(n) is the n× n matrix of 0’s and 1’s defined by A(i, j) = 1 if j = 1
or if i divides j, and A(i, j) = 0 otherwise.

(iii) Lagarias ([219], 2002): Riemann’s hypothesis holds if and only if

σ1(n) ≤ Hn(0) + exp(Hn(0)) log Hn(0), n = 1, 2, . . . ,

where σ1(n) denotes the sum of the positive divisors of n.

Related to a Dirichlet character χ modulo r, one has the Dirichlet L-function:

L(χ, s) =
∞∑

n=1

χ(n)
ns

, Re(s) > 1.

The analog of Euler’s formula

L(χ, s) =
∏
p

(
1− χ(p)

ps

)−1

, Re(s) > 1,
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is valid. If χ is non-primitive, that is, there exist a proper factor d of r and a
Dirichlet character χ0 modulo d such that χ(n) = χ0(n) when (n, r) = 1, then

L(χ, s) = L(χ0, s)
∏
p|r

(
1− χ0(p)

ps

)
.

Assume that χ is a primitive character modulo r. Obviously, we have L(χ, s) = ζ(s)
if r = 1. When r > 1, it is well known that L(χ, s) is entire with L(χ, 1) �= 0.
Further, setting

a =
{

0, if χ(−1) = 1;
1, if χ(−1) = −1

and

Λχ(s) =
( r

π

) s
2

Γ
(

s + a

2

)
L(χ, s), (7.3.14)

the Dirichlet L-function of a primitive character χ modulo r satisfies the functional
equation

Λχ(s) =
(−1)a

√
r

g(χ)Λχ̄(1− s), (7.3.15)

where g(χ) is the Gauss sum. The proof of (7.3.15) is the same as for zeta and is
based on the Poisson summation formula (cf. [73]).

The generalized Riemann hypothesis states that if L(χ, s) = 0, then either
s is a negative integer (a “trivial zero”) or Re(s) = 1

2 . It had been shown, for a
sufficiently small constant c > 0, that if L(χ, s) = 0 with

Re(s) > 1− c

log r
,

then s is real, χ is a quadratic real character, and there is at most one such value
of r between R and R2 for any sufficiently large R. Such zeros are known as
Siegel zeros. In 1995, Granville and Stark proved, assuming the abc-conjecture,
that L(χ, s) has no Siegel zeros for all χ (mod r) with r ≡ 3 (mod 4).

7.4 Hadamard’s factorization

We can now write

ζ(s) =
ebs

2(s− 1)Γ
(

s
2 + 1

) ∏
ρ

(
1− s

ρ

)
e

s
ρ , (7.4.1)

where ρ runs through the complex zeros of ζ(s) in the strip 0 ≤ Re(s) ≤ 1. For by
Hadamard’s factorization theorem

ξ(s) = ξ(0)eb0s
∏
ρ

(
1− s

ρ

)
e

s
ρ .
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Here ξ(0) = −ζ(0) = 1
2 , and

b = b0 +
1
2

log π = log 2π − 1− γ

2
, (7.4.2)

where γ is Euler’s constant

γ = lim
n→+∞

(
1 +

1
2

+ · · ·+ 1
n
− log n

)
.

To prove (7.4.2), we first show Kronecker’s limit formula

lim
s→1

{
ζ(s)− 1

s− 1

}
= γ. (7.4.3)

For Re(s) > 0, by (7.1.21) we have

ζ(s)− 1
s− 1

=
N∑

n=1

1
n
−
∫ N

1

dx

x
+

N∑
n=1

(
1
ns
− 1

n

)

−
∫ N

1

(
1
xs
− 1

x

)
dx− s

∫ ∞

N

x− [x]
xs+1

dx.

We can choose N so large that the last term is as small as we please, and at
the same time so that the first term differs from γ by as little as we please, and
this independently of Re(s). Having fixed N , the remaining terms tend to zero
with s → 1. This proves (7.4.3). We now calculate ζ′(0) by differentiating (7.1.8)
logarithmically, making s → 0, and using (7.1.6) and (7.4.3) and the fact that

Γ′(1) = −γ.

We obtain
ζ′(0) = −1

2
log 2π. (7.4.4)

Finally b0 = ξ′(0)/ξ(0), and (7.4.2) follows from (7.4.4).

We will use the following value (see [164], [165]):

ζ′
(

1
2

)
ζ
(

1
2

) =
π

4
+

γ

2
+

1
2

log 8π. (7.4.5)

This can be seen as follows: Differentiating logarithmically the Weierstrass formula

1
Γ(s + 1)

= eγs
∞∏

n=1

(
1 +

s

n

)
e−

s
n , (7.4.6)

we have
Γ′(s + 1)
Γ(s + 1)

= −γ +
∞∑

n=1

(
1
n
− 1

n + s

)
.
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Set

Hn(s) =
n∑

k=1

1
k + s

.

By the definition of Euler’s constant γ, we know

Hn(0) = log n + γ + o(1)

as n →∞. Thus we have

Hn(s) = log n− Γ′(s + 1)
Γ(s + 1)

+ o(1). (7.4.7)

Moreover, we obtain directly

Hn

(
−1

2

)
= 2

n∑
k=1

1
2k − 1

= 2
{

H2n(0)− 1
2
Hn(0)

}
= log n + γ + log 4 + o(1).

Comparing with (7.4.7) for s = − 1
2 , we have

Γ′ ( 1
2

)
Γ
(

1
2

) = −γ − log 4. (7.4.8)

Differentiating logarithmically the functional equation (7.1.8), we obtain

− log 2 +
Γ′(s)
Γ(s)

+
ζ′(s)
ζ(s)

− π

2
tan

πs

2
= log π − ζ′(1− s)

ζ(1 − s)
,

and hence

2
ζ′
(

1
2

)
ζ
(

1
2

) = log 2π −
Γ′ ( 1

2

)
Γ
(

1
2

) +
π

2
tan

π

4
.

Thus (7.4.5) follows.

Differentiating logarithmically Legendre’s formula

Γ(s)Γ
(

s +
1
2

)
=

√
π

22s−1
Γ(2s)

and the functional equation

Γ(s)Γ(1− s) =
π

sin πs
,

we have
Γ′(s)
Γ(s)

+
Γ′ (s + 1

2

)
Γ
(
s + 1

2

) = − log 4 + 2
Γ′(2s)
Γ(2s)

,
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and
Γ′(s)
Γ(s)

− Γ′(1 − s)
Γ(1− s)

= −π cotπs.

In particular, setting s = 1
4 , we obtain

Γ′ ( 1
4

)
Γ
(

1
4

) = −π

2
− γ − log 8. (7.4.9)

Denote the zeros of ζ(s) on the semi-line {Re(s) = 1
2 , Im(s) > 0} by

sν =
1
2

+ itν = |sν |eiαν , ν = 1, 2, . . . . (7.4.10)

Then we have
tν > 0, 0 < αν <

π

2
, ν = 1, 2, . . . .

Assume that
0 < tν ≤ tν+1 ≤ · · · , ν = 1, 2, 3, . . . .

Further, denote the zeros of ζ(s) on the region {1 > Re(s) > 1
2 , Im(s) > 0} (if

they exist) by
zµ = xµ + iyµ = |zµ|eiβµ , µ = 1, 2, . . . . (7.4.11)

Thus all zeros of ζ(s) in the critical strip are

{sν , sν | ν ≥ 1} ∪ {zµ, zµ, 1− zµ, 1− zµ | µ ≥ 1}.

Theorem 7.13 ([165]). Riemann’s hypothesis is true if and only if
∞∑

ν=1

1
|sν |2

= 1 +
γ

2
− 1

2
log 4π.

Proof. Differentiating logarithmically the formula (7.4.1), we have

ζ′(s)
ζ(s)

+
Γ′ ( s

2

)
2Γ
(

s
2

) +
1
s

+
1

s− 1
− b =

∑
ρ

(
1
ρ
− 1

ρ− s

)
.

Setting s = 1
2 , and using (7.4.2), (7.4.5) and (7.4.9), we obtain∑

ρ

(
1
ρ
− 1

ρ− 1
2

)
= 1 +

γ

2
− 1

2
log 4π.

Note that the series in the left-hand side is absolutely convergent so that the order
of terms in the sum can be changed arbitrarily. Since

1
sν − 1

2

+
1

sν − 1
2

= 0,

1
zµ − 1

2

+
1

zµ − 1
2

+
1

(1− zµ)− 1
2

+
1

(1− zµ)− 1
2

= 0,



484 Chapter 7. Riemann’s ζ-function

we obtain∑
ρ

(
1
ρ
− 1

ρ− 1
2

)
=

∞∑
ν=1

(
1
sν

+
1
sν

)
+
∑

µ

(
1
zµ

+
1
zµ

+
1

1− zµ
+

1
1− zµ

)

=
∞∑

ν=1

1
|sν |2

+ 2
∑

µ

(
xµ

|zµ|2
+

1− xµ

|1− zµ|2

)

= 1 +
γ

2
− 1

2
log 4π.

Thus Riemann’s hypothesis is true if and only if∑
µ

(
xµ

|zµ|2
+

1− xµ

|1− zµ|2

)
= 0,

that is, zµ do not exist, or equivalently

∞∑
ν=1

1
|sν |2

= 1 +
γ

2
− 1

2
log 4π.

�

Let θ be defined by (7.1.14) and consider the function

Θ(x) = θ(ix)− 1
2

=
∞∑

n=1

e−n2πx. (7.4.12)

Then Riemann’s formula (7.1.17) yields

Ξ(t) =
1
2
−
(

t2 +
1
4

)∫ ∞

1

Θ(x)x− 3
4 cos

(
t

2
log x

)
dx. (7.4.13)

If one integrates by parts and uses the relation

4Θ′(1) + Θ(1) = −1
2
,

which follows at once from (7.1.13), one obtains

Ξ(t) = 4
∫ ∞

1

d

dx
{x 3

2 Θ′(x)}x− 1
4 cos

(
t

2
log x

)
dx (7.4.14)

and can write it in the form (see [394])

Ξ(t) = 8
∫ ∞

0

Φ(x) cos 2txdx, (7.4.15)

where

Φ(x) =
∞∑

n=1

(
2π2n4e9x − 3πn2e5x

)
e−n2πe4x

. (7.4.16)
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The Taylor series expansion of Ξ about the origin can be written in the form

Ξ(t) = 8
∞∑

k=0

(−1)kBk

(2k)!
(2t)2k, (7.4.17)

where the constants Bk are defined by

Bk =
∫ ∞

0

x2kΦ(x)dx, k = 0, 1, 2, . . . . (7.4.18)

Theorem 7.14 ([70]). Let {tν}∞ν=1, 0 < t1 ≤ t2 ≤ · · · , denote the real zeros of Ξ
in the right half-plane. Then the Riemann hypothesis is true if and only if

∞∑
ν=1

1
t2ν

=
2B1

B0
. (7.4.19)

Proof. The Riemann hypothesis is the statement that all zeros of Ξ are real. Note
that Ξ is an even entire function of order 1, all of whose zeros lie in the horizontal
strip |Im(z)| < 1

2 . Thus if z = a+ ib is a zero of Ξ, then −a+ ib, −a− ib and a− ib
are also zeros of Ξ. By the Hadamard factorization theorem Ξ can be represented
in the form

Ξ(z) = Ξ(0)
∞∏

k=1

(
1− z2

w2
k

)
(7.4.20)

where the zeros wk of Ξ lie in the right half-plane, and are numbered according
to increasing moduli, i.e., 0 < |w1| ≤ |w2| ≤ · · · . Thus the derivative of the
logarithmic derivative of Ξ(z) is

Ξ(z)Ξ′′(z)− {Ξ′(z)}2
Ξ(z)2

= −
∞∑

k=1

{
1

(z − wk)2
+

1
(z + wk)2

}
. (7.4.21)

Obviously, Ξ′(0) = 0 since Ξ is an even function, and

Ξ(0) = 8B0 > 0, Ξ′′(0) = −32B1

by using (7.4.17). Setting z = 0 in (7.4.21), we obtain

2B1

B0
=

∞∑
k=1

1
w2

k

=
∞∑

ν=1

1
t2ν

+ 2
∑

Im(wk)>0

Re(wk)2 − Im(wk)2

|wk|4
. (7.4.22)

But if Ξ has zeros wk with Im(wk) > 0, then the second summand on the right-
hand side of (7.4.22) is positive since all zeros of Ξ lie in the strip |Im(z)| < 1

2 and
Ξ has no zeros in the closed unit square centered at the origin. Thus we infer from
(7.4.22) that the Riemann hypothesis is true if and only if (7.4.19) holds. �
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G. Csordas and C.C. Yang [70] gave the following numerical calculations:

1 +
γ

2
− 1

2
log 4π = 0.023095708 . . . ,

100000∑
ν=1

1
|sν |2

= 0.023073645 . . . ,

2B1

B0
= 0.023104993 . . . ,

100000∑
ν=1

1
t2ν

= 0.023082929 . . . .

7.5 Nevanlinna’s formula

Let D be a bounded connected open set in C such that the boundary ∂D of D
consists of a finite number of simple closed Jordan arcs of class C1. We will use
Green’s function Gz(ζ) of the domain D, which is uniquely defined for ζ ∈ D, z ∈
D, ζ �= z such that

(i) when z ∈ D is fixed, Gz(ζ) can be expressed as

Gz(ζ) = − log |ζ − z|+ hz(ζ),

where hz(ζ) is harmonic on D and continuous on D;
(ii) when ζ ∈ ∂D, z ∈ D or ζ ∈ D, z ∈ ∂D, one has Gz(ζ) = 0.

It is easy to show Gz(ζ) > 0 when ζ ∈ D, z ∈ D by the minimum modulus
principle. If D is simply connected, the Riemann mapping theorem shows that for
z ∈ D, there is a unique analytic function Gz : D −→ C having the properties:

(a) Gz(z) = 0 and G′
z(z) > 0;

(b) Gz is one-one;
(c) Gz(D) = {z ∈ C | |z| < 1}.

Then Green’s function of D is given by

Gz(ζ) = − log |Gz(ζ)|. (7.5.1)

Next we will assume that the domain D is simply connected. Let γ1, . . . , γp

be the edges of the curvilinear polygon ∂D. Let Al be the common vertex of γl and
γl+1, where γp+1 = γ1. Let αlπ (0 < αl ≤ 2, l = 1, . . . , p) be the angle between γl

and γl+1. By the Riemann-Schwarz symmetric principle, the function Gz can be
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analytically continued to a domain containing D − {A1, . . . , Ap}. We will assume
that the function Gz can be expressed as

Gz(ζ) = (ζ −Al)
1

αl ϕl(ζ) + wl (7.5.2)

near Al for l = 1, . . . , p, where ϕl is analytic near Al with ϕl(Al) �= 0, and |wl| = 1.

Theorem 7.15. Let D be a bounded simple connected open set in C such that
the boundary ∂D of D is a curvilinear polygon of class C1. Take distinct points
c1, . . . , cq in D and a function u ∈ C2(D − {c1, . . . , cq}). Assume

u(z) = dk log |z − ck|+ uk(z), k = 1, . . . , q,

near ck, where dk are constant, and uk are of class C2 near ck. Then for z ∈
D − {c1, . . . , cq}, one has

u(z) +
1
2π

∫
D

Gz∆udxdy =
1
2π

∫
∂D

∂Gz

∂n
uds−

∑
ck∈D

dkGz(ck).

Proof. For a ∈ C, ε > 0, denote

C(a; ε) = {ζ ∈ C | |ζ − a| < ε}, C〈a; ε〉 = {ζ ∈ C | |ζ − a| = ε}.

Set S = {z, c1, . . . , cq, A1, . . . , Ap} and choose ε sufficient small such that

C(a; ε) ∩C(b; ε) = ∅, {a, b} ⊂ S, a �= b,

C(a; ε) ⊂ D if a ∈ D ∩ S, and such that Gz is analytic in C(a; ε) − {a} if a ∈
{A1, . . . , Ap}. Write

Γε = ∂D −
p⋃

l=1

{∂D ∩C(Al; ε)},

Dε = D −
⋃
a∈S

C(a; ε).

Applying Green’s formula (6.1.1) to u = u(ζ), w = Gz(ζ) on Dε and noting
∆w = 0, one has

∫
Dε

Gz∆udxdy =

{∫
Γε

+
∑

a∈S∩D

∫
C〈a;ε〉

+
∑

a∈S−D

∫
C〈a;ε〉∩∂Dε

}(
u

∂Gz

∂n
−Gz

∂u

∂n

)
ds.

(7.5.3)
Since Gz(ζ) = 0 when ζ ∈ ∂D, we immediately obtain

lim
ε→0

∫
Γε

(
u

∂Gz

∂n
−Gz

∂u

∂n

)
ds =

∫
∂D

∂Gz

∂n
uds.
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When ζ ∈ C〈z; ε〉, one has the following estimates:

Gz(ζ) = − log ε + O(1),
∂Gz

∂n
(ζ) = −1

ε
+ O(1),

u(ζ) = u(z) + o(1),
∂u

∂n
= O(1)

as ε → 0. By the integral mean value theorem, there is ζ∗ ∈ C〈z; ε〉 such that∫
C〈z;ε〉

(
u

∂Gz

∂n
−Gz

∂u

∂n

)
ds = 2πε

(
u

∂Gz

∂n
−Gz

∂u

∂n

)
(ζ∗),

and hence

lim
ε→0

∫
C〈z;ε〉

(
u

∂Gz

∂n
−Gz

∂u

∂n

)
ds = −2πu(z).

When ζ ∈ C〈ck; ε〉 for some ck ∈ D, one has the following estimates:

Gz(ζ) = Gz(ck) + o(1),
∂Gz

∂n
(ζ) = O(1),

u(ζ) = dk log ε + O(1),
∂u

∂n
=

dk

ε
+ O(1)

as ε → 0. Similarly, by using the integral mean value theorem one can obtain

lim
ε→0

∫
C〈ck;ε〉

(
u

∂Gz

∂n
−Gz

∂u

∂n

)
ds = −2πdkGz(ck).

When ζ ∈ C〈a; ε〉 for some a ∈ S −D, one has the following estimates:

Gz(ζ) = o(1),
∂Gz

∂n
(ζ) = O

(
1√
ε

)
,

u(ζ) = O(| log ε|), ∂u

∂n
= O

(
1
ε

)

as ε → 0, where the relations (7.5.1) and (7.5.2) are used. Thus, by using the
integral mean value theorem one can obtain

lim
ε→0

∫
C〈a;ε〉∩∂Dε

(
u

∂Gz

∂n
−Gz

∂u

∂n

)
ds = 0.

Therefore the proof of Theorem 7.15 is completed by letting ε → 0 in (7.5.3). �

Applying Theorem 7.15 to the function u = log |f |, we obtain Nevanlinna’s
formula (cf. [290], [52]):
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Theorem 7.16. Let D be a bounded simple connected open set in C such that the
boundary ∂D of D is a curvilinear polygon of class C1. Let f (�≡ 0) be meromorphic
in D. Let aµ (µ = 1, . . . , m) and bν (ν = 1, . . . , n) be respectively zeros and poles
of f in D. Then for z ∈ D − {a1, . . . , am, b1, . . . , bn}, one has

log |f(z)| = 1
2π

∫
∂D

log |f |∂Gz

∂n
ds−

m∑
µ=1

Gz(aµ) +
n∑

ν=1

Gz(bν).

In particular, for the disc D = C(0; R) (R > 0), we know

Gz(ζ) = log
∣∣∣∣ R2 − zζ

R(ζ − z)

∣∣∣∣ ,
and hence

∂Gz

∂n
(ζ)ds =

R2 − |z|2
|ζ − z|2 dθ = Re

(
ζ + z

ζ − z

)
dθ, ζ = Reiθ.

Therefore the Poisson-Jensen formula follows.

Theorem 7.17. Let f (�≡ 0) be meromorphic in C[0; R]. Let aµ (µ = 1, . . . , m)
and bν (ν = 1, . . . , n) be respectively zeros and poles of f in C(0; R). Then for
z ∈ C(0; R)− {a1, . . . , am, b1, . . . , bn}, one has

log |f(z)| = 1
2π

∫ 2π

0

log
∣∣f (Reiθ

)∣∣Re
(

Reiθ + z

Reiθ − z

)
dθ

−
m∑

µ=1

log
∣∣∣∣ R2 − aµz

R(z − aµ)

∣∣∣∣+ n∑
ν=1

log
∣∣∣∣ R2 − bνz

R(z − bν)

∣∣∣∣ .
Theorem 7.17 implies that there is a real number c such that

log f(z) =
1
2π

∫ 2π

0

log
∣∣f (Reiθ

)∣∣ Reiθ + z

Reiθ − z
dθ

−
m∑

µ=1

log
R2 − aµz

R(z − aµ)
+

n∑
ν=1

log
R2 − bνz

R(z − bν)
+ ic. (7.5.4)

Differentiating (7.5.4), one obtains(
d

dz

)q−1
f ′(z)
f(z)

=
q!
2π

∫ 2π

0

log
∣∣f (Reiθ

)∣∣ 2Reiθ

(Reiθ − z)q+1
dθ

+ (q − 1)!
m∑

µ=1

{
aq

µ

(R2 − aµz)q
− (−1)q

(z − aµ)q

}

− (q − 1)!
n∑

ν=1

{
b
q

ν

(R2 − bνz)q
− (−1)q

(z − bν)q

}
. (7.5.5)
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Further if f is meromorphic in C such that

lim sup
R→∞

T (R, f)
Rq

= 0,

then (see [151])

1
(q − 1)!

(
d

dz

)q−1
f ′(z)
f(z)

= lim
R→∞

⎧⎨
⎩ ∑

|bν |<R

1
(bν − z)q

−
∑

|aµ|<R

1
(aµ − z)q

⎫⎬
⎭ . (7.5.6)

Theorem 7.18. Let f be a meromorphic function of finite order ρ such that f(0) �=
0,∞. Then for any integer q ≥ [ρ] + 1 > ρ, we have

∑
ν

1
bq
ν
−
∑

µ

1
aq

µ
=

1
(q − 1)!

(
d

dz

)q−1 (
f ′(z)
f(z)

)
z=0

,

where aµ and bν are respectively zeros and poles of f .

Proof. It is trivial to show

lim
R→∞

T (R, f)
Rq

= 0.

Let ρ0 and ρ∞ be the convergence exponents of the zeros and poles of f , respec-
tively. Then

ρ0 = lim sup
R→∞

log n
(
R, 1

f

)
log R

≤ ρ < q,

ρ∞ = lim sup
R→∞

log n(R, f)
log R

≤ ρ < q.

By the definition of convergence exponent, we know that two series in Theo-
rem 7.18 are convergent, and hence the theorem follows from (7.5.6). �

Using the notations of § 7.4 to denote the zeros of ζ(s), we prove the following
result:

Theorem 7.19 ([165]). Riemann’s hypothesis is true if and only if there exists an
integer q ≥ 2 such that ζ(s) has no zeros in the region{

s ∈ C | 1
2

< Re(s) < 1, 0 ≤ arg(s) ≤ (q − 1)π
2q

}
,

and

2
∞∑

ν=1

cos qαν

|sν |q
= 1−

(
−1

2

)q

ζ(q)− 1
(q − 1)!

(
d

ds

)q−1 (
ζ′(s)
ζ(s)

)
s=0

.
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Proof. Since ζ(s) is of order 1, Theorem 7.18 implies that the equation

1−
∞∑

m=1

1
(−2m)q

−
∑

ρ

1
ρq

=
1

(q − 1)!

(
d

ds

)q−1(
ζ′(s)
ζ(s)

)
s=0

holds for any integer q ≥ 2, where ρ runs through the complex zeros of ζ(s) in the
strip 0 < Re(s) < 1, which yields

2
∞∑

ν=1

cos qαν

|sν |q
+ 2
∑

µ

{
cos qβµ

|zµ|q
+

cos qϕµ

|1− zµ|q

}

= 1−
(
−1

2

)q

ζ(q)− 1
(q − 1)!

(
d

ds

)q−1 (
ζ′(s)
ζ(s)

)
s=0

,

where
1− zµ = |1− zµ|eiϕµ

(
0 < ϕµ <

π

2

)
.

Hence the necessity follows easily.
Next we show the sufficiency. The sufficiency condition implies∑

µ

{
cos qβµ

|zµ|q
+

cos qϕµ

|1− zµ|q

}
= 0,

and
π

2
> ϕµ > βµ >

(q − 1)π
2q

, µ ≥ 1.

Set
θµ = q

(
βµ −

π

2

)
, ψµ = q

(
ϕµ −

π

2

)
with 0 > ψµ > θµ > −π

2 . Then the above equation becomes

∑
µ

{
cos θµ

|zµ|q
+

cosψµ

|1− zµ|q

}
= 0 (q even ),

∑
µ

{
sin θµ

|zµ|q
+

sin ψµ

|1− zµ|q

}
= 0 (q odd ).

This is impossible if some zµ exist. Hence Theorem 7.19 is proved. �

Similar to the proof of Theorem 7.19, applying Theorem 7.18 to ζ
(
s + 1

2

)
we

can prove the following result:

Theorem 7.20 ([165]). Let { 1
2 + itν}∞ν=1, 0 < t1 ≤ t2 ≤ · · · , denote the zeros of

ζ(s) on the semi-line Re(s) = 1
2 , Im(s) > 0. Then the Riemann hypothesis is true

if and only if there exists an even q such that ζ(s) has no zeros in the region{
s ∈ C | 0 ≤ arg

(
s− 1

2

)
≤ (q − 1)π

2q

}
,
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and

2(−1)
q
2

∞∑
ν=1

1
tqν

= 2q − 2q
∞∑

m=1

1
(4m + 1)q

− 1
(q − 1)!

(
d

ds

)q−1 (
ζ′(s)
ζ(s)

)
s= 1

2

.

We consider zeros ρj = σj + itj of ζ with tj > 0 and assume that the zeros
ρj are counted according to their multiplicities and ordered so that 0 < tj ≤ tj+1

(and σj ≤ σj+1 if tj = tj+1) for j ≥ 1. By “the first n zeros of ζ” we mean
ρ1, . . . , ρn. For brevity we let H(n) denote the statement that the first n zeros
of ζ are simple and lie on the critical line. Gram [118], Backlund [9], Hutchinson
[189], and Titchmarsh and Comrie [395] established H(10), H(79), H(138) and
H(1, 041), respectively. For a description of these computations see Edwards [89].

D.H. Lehmer [241], [242] performed the first extensive computation of zeros
of ζ on a digital computer and established H(25, 000). Using similar methods,
Meller [267], Lehman [239], and Rosser, Yohe and Schoenfeld [326] established

H(35, 337), H(250, 000), and H(3, 500, 000),

respectively. Using essentially the method introduced by Lehmer, R.P. Brent [36]
has established H(75, 000, 001). Moreover, there are precisely 75, 000, 000 zeros
with 0 < tj < 32, 585, 736.4. Thus the condition without zeros in the regions of
Theorem 7.19 and Theorem 7.20 is satisfied for small q.

Similar to the proof of Theorem 7.19, applying Theorem 7.18 to Ξ(z) we can
prove the following result:

Theorem 7.21. Let {tν}∞ν=1, 0 < t1 ≤ t2 ≤ · · · , denote the real zeros of Ξ in the
right half-plane. Then the Riemann hypothesis is true if and only if there exists
an even q such that Ξ(z) has no zero in the region{

z ∈ C | π

2q
≤ arg (z) ≤ π

2

}
,

and

2
∞∑

ν=1

1
tqν

= − 1
(q − 1)!

(
d

dz

)q−1 (Ξ′(z)
Ξ(z)

)
z=0

.

If q = 2, this is just Theorem 7.14. X. J. Li [246] proved that Riemann’s
hypothesis is equivalent to

λq :=
1

(q − 1)!

(
d

ds

)q (
sq−1 log ξ(s)

)∣∣∣∣
s=1

≥ 0

for each q = 1, 2, . . . . The necessity of the non-negativity condition is immediate
from the equation

λq =
∑

ρ

{
1−
(

1− 1
ρ

)q}
,
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where ρ runs over the complex (non-trivial) zeros of the zeta-function. The suffi-
ciency argument is based on considerations of the Taylor series ([201], [246])

ϕ′(z)
ϕ(z)

=
∞∑

q=1

λqz
q−1 and 2ϕ(z) = 1 +

∞∑
j=1

ajz
j

satisfying the recurrence relation

λq = qaq −
q−1∑
j=1

aq−jλj , where ϕ(z) = ξ

(
1

1− z

)
.

7.6 Carleman’s formula

Take R, ρ ∈ R+ with R > ρ > 0. We will consider the domain

D = {z ∈ C | ρ < |z| < R, Im(z) > 0}.

Theorem 7.22. Take distinct points c1, . . . , cq in D − C〈0; ρ〉 and a function u ∈
C2(D − {c1, . . . , cq}). Assume

u(z) = dk log |z − ck|+ uk(z), k = 1, . . . , q,

near ck, where dk are constant, and uk are of class C2 near ck. Then one has

− 1
2π

∫
D

Im
(

1
ζ

+
ζ

R2

)
∆u(ζ)dxdy =

1
πR

∫ π

0

u
(
Reiθ

)
sin θdθ

+
1
2π

∫ R

ρ

(
1
t2
− 1

R2

)
[u(t) + u(−t)]dt

+
∑

ck∈D

dkIm
(

1
ck

+
ck

R2

)
+ Q(R, ρ; u),

(7.6.1)

where Q(R, ρ; u) = O(1) as R →∞.

Proof. Applying the proof of Theorem 7.15 to the functions

u = u(ζ), w = −Im
(

1
ζ

+
ζ

R2

)
,

and noting that

(a) ∆w = 0;
(b) w(ζ) = 0, ∂w

∂n (ζ) = 2
R2 sin θ, ζ = Reiθ;

(c) w(t) = 0, ∂w
∂n (t) = 1

t2 −
1

R2 , t ∈ R,
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then the formula (7.6.1) follows, where

Q(R, ρ; u) =
1
2π

∫
D∩C〈0;ρ〉

(
u

∂w

∂n
− w

∂u

∂n

)
ds (7.6.2)

= − ρ

2π

∫ π

0

{(
1
ρ2

+
1

R2

)
u
(
ρeiθ
)

+
(

1
ρ
− ρ

R2

)
∂u

∂ρ

(
ρeiθ
)}

sin θdθ.
�

Now we can prove Carleman’s formula (cf. [46], [52], [396]):

Theorem 7.23. Let f(z) be meromorphic in C[0; R] ∩ {Im(z) ≥ 0} with f(0) = 1,
and suppose that it has the zeros r1e

iθ1 , r2e
iθ2 , . . . , rmeiθm and the poles s1e

iϕ1 ,
s2e

iϕ2 , . . . , sneiϕn inside C(0; R) ∩ {Im(z) > 0}. Then
m∑

µ=1

(
1
rµ
− rµ

R2

)
sin θµ −

n∑
ν=1

(
1
sν
− sν

R2

)
sin ϕν =

1
πR

∫ π

0

log
∣∣f (Reiθ

)∣∣ sin θdθ

+
1
2π

∫ R

0

(
1
t2
− 1

R2

)
log |f(t)f(−t)|dt +

1
2
Im(f ′(0)).

Proof. We can choose ρ ∈ R+ sufficiently small such that ρ < R, and f has no
zeros or poles in C[0; ρ]. Applying Theorem 7.22 to the function u = log |f |, we
obtain

m∑
µ=1

(
1
rµ
− rµ

R2

)
sin θµ −

n∑
ν=1

(
1
sν
− sν

R2

)
sin ϕν =

1
πR

∫ π

0

log
∣∣f (Reiθ

)∣∣ sin θdθ

+
1
2π

∫ R

ρ

(
1
t2
− 1

R2

)
log |f(t)f(−t)|dt + Q(R, ρ; u).

For ζ = ρeiθ, we have

u(ζ) = Re(f ′(0)ζ) + O(ρ2),
∂u

∂ρ
(ζ) = Re

(
f ′(0)eiθ

)
+ O(ρ).

Hence (7.6.2) implies

lim
ρ→0

Q(R, ρ; u) =
1
2
Im(f ′(0)),

and the theorem follows. �
Theorem 7.24. Let f(z) be meromorphic in C[0; R] ∩ {Re(z) ≥ 0} with f(0) = 1,
and suppose that it has the zeros r1e

iθ1 , r2e
iθ2 , . . . , rmeiθm and the poles s1e

iϕ1 ,
s2e

iϕ2 , . . . , sneiϕn inside C(0; R) ∩ {Re(z) > 0}. Then
m∑

µ=1

(
1
rµ
− rµ

R2

)
cos θµ −

n∑
ν=1

(
1
sν
− sν

R2

)
cosϕν = Cf(R)− 1

2
Re(f ′(0)),
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where

Cf(R) =
1

πR

∫ π
2

−π
2

log
∣∣f (Reiθ

)∣∣ cos θdθ

+
1
2π

∫ R

0

(
1
y2
− 1

R2

)
log |f(iy)f(−iy)|dy. (7.6.3)

Proof. Theorem 7.24 follows from Theorem 7.23 applied to f(−iz). �
Theorem 7.25 ([164]). Riemann’s hypothesis is true if and only if

lim
R→∞

Cζ0(R) =
π

8
+

γ

4
+

1
4

log 8π − 2,

where γ is Euler’s constant, and

ζ0(s) =
ζ
(
s + 1

2

)
ζ
(

1
2

) . (7.6.4)

Proof. Note that

zµ −
1
2

= rµeiθµ

(
rµ > 0, 0 < θµ <

π

2

)
, zµ −

1
2

would be the zeros of ζ0 in the half-plane Re(s) > 0, and s = 1
2 is the unique pole

of ζ0 in Re(s) > 0. Hence Theorem 7.24 implies

2
∑

rµ<R

(
1
rµ
− rµ

R2

)
cos θµ −

(
2− 1

2R2

)
= Cζ0(R)− 1

2
Re(ζ′0(0)).

Since ζ0 is of order 1, then the convergence exponent of zeros for ζ0 is at most 1.
Hence the series ∑

µ

1
r1+ε
µ

is convergent for any ε > 0, and so

0 ≤
∑

µ

cos θµ

rµ
=
∑

µ

rµ cos θµ

r2
µ

≤ 1
2

∑
µ

1
r2
µ

< ∞.

By (7.3.5), we find

0 ≤
∑

rµ<R

rµ cos θµ

R2
≤ N(R)

2R2
→ 0 (R →∞).

Thus by using (7.4.5) we obtain

lim
R→∞

Cζ0(R) = 2
∑

µ

cos θµ

rµ
+

π

8
+

γ

4
+

1
4

log 8π − 2.
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Riemann’s hypothesis is true if and only if the zeros zµ do not exist, that is,

∑
µ

cos θµ

rµ
= 0,

equivalently,

lim
R→∞

Cζ0(R) =
π

8
+

γ

4
+

1
4

log 8π − 2.
�

Further, Theorem 7.25 yields

Theorem 7.26 ([164]). The Riemann hypothesis is true if and only if

1
π

∫ ∞

0

log |ζ0(it)|
dt

t2
=

π

8
+

γ

4
+

1
4

log 8π − 2.

Proof. Next we estimate the integral Cζ0(R) in Theorem 7.25. We know (cf. [394])

∫ R

0

∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣2 dt = O(R log R).

By the concavity of the logarithmic function, we obtain

1
R2

∫ R

0

log |ζ0 (it)|2 dt ≤ 1
R

log

{
1
R

∫ R

0

|ζ0 (it)|2 dt

}
= O

(
log log R

R

)
. (7.6.5)

On the other hand, for

−1 ≤ σ = Re(s) ≤ 2, T − 1
2
≤ t = Im(s) ≤ T +

1
2
,

we have (cf. [394])

log |ζ(s)| =
∑

|T−β|<1

log |s− ρ|+ O(log T ), (7.6.6)

where ρ = α + iβ runs through zeros of ζ(s), which implies

log |ζ(s)| >
∑

|T−β|<1

log |t− β|+ O(log T ).

It is easily seen from a graph that the integral

∫ T+ 1
2

T− 1
2

log |t− β|dt,
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considered as a function of β, is a minimum when β = T ; and it is then equal to
− log 2− 1. Since there are O(log T ) terms in the sum, it follows that

∫ T+ 1
2

T− 1
2

∑
|T−β|<1

log |t− β|dt > −A logT,

where A is a positive constant. Thus we have

∫ T+ 1
2

T− 1
2

log |ζ(σ + it)|dt > O(log T ).

Hence

∫ [R]− 1
2

1
2

log |ζ(σ + it)|dt =
[R]−1∑
k=1

∫ k+ 1
2

k− 1
2

log |ζ(σ + it)|dt > O(log([R]− 1)!).

Similarly we can show∫ R

[R]− 1
2

∑
|[R]−β|<1

log |t− β|dt > −A log[R],

where R ≤ [R] + 1
2 , and

∫ R

[R]+ 1
2

∑
|[R]+1−β|<1

log |t− β|dt > −A log([R] + 1),

where R > [R] + 1
2 . Then we also have

∫ R

[R]− 1
2

log |ζ(σ + it)|dt > O(log[R]).

Therefore ∫ R

1
2

log |ζ(σ + it)|dt > O(log[R]!).

Stirling’s formula yields

log[R]! =
(

[R] +
1
2

)
log[R]− [R] + O(1).

Hence we have ∫ R

1
2

log |ζ(σ + it)|dt > O(R log R).
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Particularly,
1

R2

∫ R

0

log |ζ0 (it)|2 dt > O

(
log R

R

)
. (7.6.7)

Finally, the inequalities (7.6.5) and (7.6.7) imply

1
R2

∫ R

0

log |ζ0 (it)|2 dt = O

(
log R

R

)
. (7.6.8)

Set
δ = arcsin

1
R

.

Then we can take R sufficiently large such that

R−R cos δ ≤ 1
2
.

For π
2 − δ ≤ θ ≤ π

2 , the estimate (7.6.6) implies

log
∣∣∣∣ζ
(

1
2

+ Reiθ

)∣∣∣∣ > ∑
|R−β|<1

log |R sin θ − β|+ O(log R),

where ρ = α + iβ runs though zeros of ζ(s). Note that∫ π
2

π
2 −δ

∑
|R−β|<1

log |R sin θ− β| cos θdθ =
1
R

∫ R

R cos δ

∑
|R−β|<1

log |t− β|dt > −A log R

R
.

Then ∫ π
2

π
2 −δ

log
∣∣∣∣ζ
(

1
2

+ Reiθ

)∣∣∣∣ cos θdθ > O(log R).

We also know
ζ(s) = O(log t)

uniformly in any region

1− A

log t
≤ σ = Re(s) ≤ 2, t = Im(s) > t0,

and
ζ(s) = O

(
t

1
2−σ

2 log t
)

uniformly in 0 ≤ σ ≤ 1 (cf. [394]), which yield immediately∫ π
2

π
2 −δ

log
∣∣∣∣ζ
(

1
2

+ Reiθ

)∣∣∣∣ cos θdθ < O(log R).
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Thus we obtain ∫ π
2

π
2 −δ

log
∣∣∣∣ζ
(

1
2

+ Reiθ

)∣∣∣∣ cos θdθ = O(log R).

If σ > 1, then

|ζ(s)| ≤ ζ(σ),
1

|ζ(s)| ≤
ζ(σ)
ζ(2σ)

for all values of t (cf. [394]). Therefore∫ π
2 −δ

0

log
∣∣∣∣ζ
(

1
2

+ Reiθ

)∣∣∣∣ cos θdθ = O(1).

Since log
∣∣ζ ( 1

2 + Reiθ
)∣∣ is an even function of θ, these estimates give∫ π
2

−π
2

log
∣∣∣∣ζ
(

1
2

+ Reiθ

)∣∣∣∣ cos θdθ = O(log R). (7.6.9)

Therefore Theorem 7.26 follow from Theorem 7.25, (7.6.8) and (7.6.9). �

Take a ∈ R with 1
2 ≤ a < 1. According to the proof of Theorem 7.25, we can

show that Riemann’s ζ-function has no zeros in Re(s) > a if and only if

lim
R→∞

Cζa(R) =
ζ′(a)
2ζ(a)

− 1
1− a

,

where
ζa(s) =

ζ (s + a)
ζ (a)

. (7.6.10)

We also have ∫ π
2

−π
2

log
∣∣ζ (a + Reiθ

)∣∣ cos θdθ = O(log R)

and
1

R2

∫ R

0

log |ζa (it)|2 dt = O

(
log R

R

)
(7.6.11)

by using the estimate (cf. [394])

lim
R→∞

1
R

∫ R

0

|ζ (σ + it)|2 dt = ζ(2σ)
(

σ >
1
2

)
.

Thus we obtain the following result:

Theorem 7.27. Take a ∈ R with 1
2 ≤ a < 1. Riemann’s ζ-function has no zeros in

Re(s) > a if and only if

1
π

∫ ∞

0

log
∣∣∣∣ζ(a + it)

ζ(a)

∣∣∣∣ dt

t2
=

ζ′(a)
2ζ(a)

− 1
1− a

.
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Related to Theorems 7.25, 7.26, Fu Traing Wang [424] proved the following
formula: ∫ T

1

log
∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣ dt

t2
=

∫ π
2

0

Re
{

e−iθ log ζ

(
1
2

+ eiθ

)}
dθ

+2π

∞∑
µ=1

cos θµ

rµ
+ O

(
log T

T

)
. (7.6.12)

Consequently, a necessary and sufficient condition for the truth of the Riemann
hypothesis is that∫ ∞

1

log
∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣ dt

t2
=
∫ π

2

0

Re
{

e−iθ log ζ

(
1
2

+ eiθ

)}
dθ. (7.6.13)

V.V. Volchkov [422] proved that Riemann’s hypothesis is equivalent to the
equality ∫ ∞

0

1− 12t2

(1 + 4t2)3

∫ ∞

1
2

ln |ζ(σ + it)|dσdt =
π(3− γ)

32
. (7.6.14)

M. Balazard, E. Saias and M. Yor [14] obtained that

1
2π

∫
Re(s)= 1

2

log |ζ(s)|
|s|2 |ds| =

∑
Re(ρ)> 1

2

log
∣∣∣∣ ρ

1− ρ

∣∣∣∣ , (7.6.15)

where ρ’s are zeros of the Riemann zeta function (counted with multiplicity). In
particular, the Riemann hypothesis is equivalent to the vanishing of the integral
on the left (above).

Andriy A. Kondratyuk [216] proved a Carleman-Nevanlinna theorem for a
rectangle, which is close to Littlewood’s proof of a counterpart of the Jensen
theorem for a rectangle [248]. The theorem is applied to the summation of the
logarithm of the Riemann zeta-function on the critical and other vertical lines. In
particular, for ε > 0, set

I(ε) =
∫ ∞

0

e−εt log
∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣ dt

and let {ρj} be non-trivial zeros of ζ(s), then

π

2

∑
j

∣∣∣∣Re(ρj)−
1
2

∣∣∣∣ = I(+0) +
π

2
, (7.6.16)

where I(+0) = limε→0 I(ε) exists (not necessarily finitely). Thus, the Riemann
hypothesis holds if and only if I(+0) = −π

2 .
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The size of |ζ(s)| in the critical strip is quite difficult to pin down. In fact,
one of the central unsolved problems in analytic number theory is the following
Lindelöf hypothesis and its generalizations.

Conjecture 7.28. For any fixed ε > 0 and σ ≥ 1
2 ,

ζ(σ + it) = O(|t|ε), |t| → ∞. (7.6.17)

The implied constant in the O-notation here depends implicitly on the value
of ε. In particular,

ζ

(
1
2

+ it

)
= O(|t|ε)

for |t| large. This case turns out to be equivalent to (7.6.17) via the Phragmen-
Lindelöf principle (cf. Theorem 7.3). The Lindelöf hypothesis is implied by the
Riemann hypothesis and conversely implies that very few zeros disobey it (see
[397], Section 13). Hardy and Littlewood proved that

ζ

(
1
2

+ it

)
= O

(
|t| 14+ε

)
, |t| → ∞.

Weyl improved the bound to |t| 16+ε with his new ideas for estimating special
trigonometric sums, now called Weyl sums.

7.7 Levin’s formula

Take R, ρ ∈ R+ with R > ρ > 0. We will consider the domain

D =
{

z ∈ C |
∣∣∣∣z − R

2
i

∣∣∣∣ < R

2
, |z| > ρ

}
.

Theorem 7.29. Take distinct points c1, . . . , cq in D − C〈0; ρ〉 and a function u ∈
C2(D − {c1, . . . , cq}). Assume

u(z) = dk log |z − ck|+ uk(z), k = 1, . . . , q,

near ck, where dk are constant, and uk are of class C2 near ck. Then one has

− 1
2π

∫
D

Im
(

1
ζ

+
i

R

)
∆u(ζ)dxdy =

1
2πR

∫ π−δ

δ

u
(
R sin θeiθ

) dθ

sin2 θ

+
∑

ck∈D

dkIm
(

1
ck

+
i

R

)
+ Q(R, ρ; u), (7.7.1)

where δ = arcsin ρ
R , and Q(R, ρ; u) = O(1) as R →∞.
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Proof. Applying the proof of Theorem 7.15 to the following functions

u = u(ζ), w = −Im
(

1
ζ

+
i

R

)
,

and noting that

(a) ∆w = 0;
(b) w(ζ) = 0, ∂w

∂n (ζ) = 1
R2 sin2 θ

, ζ = R sin θeiθ (δ ≤ θ ≤ π − δ),

then the formula (7.7.1) follows, where

Q(R, ρ; u) =
1
2π

∫
D∩C〈0;ρ〉

(
u

∂w

∂n
− w

∂u

∂n

)
ds (7.7.2)

= − 1
2π

∫ π−δ

δ

{
sin θ

ρ
u
(
ρeiθ
)

+
(
sin θ − ρ

R

) ∂u

∂ρ

(
ρeiθ
)}

dθ.
�

Next we prove Levin’s formula:

Theorem 7.30. Let f(z) be meromorphic in C[iR/2; R/2] with f(0) = 1, and sup-
pose that it has the zeros r1e

iθ1 , r2e
iθ2 , . . . , rmeiθm and the poles s1e

iϕ1 , s2e
iϕ2 ,

. . . , sneiϕn inside C(iR/2; R/2). Then

m∑
µ=1

(
sin θµ

rµ
− 1

R

)
−

n∑
ν=1

(
sin ϕν

sν
− 1

R

)
=

1
2
Im(f ′(0))

+
1

2πR
lim
δ→0

∫ π−δ

δ

log
∣∣f (R sin θeiθ

)∣∣ dθ

sin2 θ
.

Proof. We can choose ρ ∈ R+ sufficiently small such that ρ < R, and f has no
zeros or poles in C[0; ρ]. Applying Theorem 7.29 to the function u = log |f |, we
obtain

m∑
µ=1

(
sin θµ

rµ
− 1

R

)
−

n∑
ν=1

(
sin ϕν

sν
− 1

R

)
=

1
2πR

∫ π−δ

δ

log
∣∣f (R sin θeiθ

)∣∣ dθ

sin2 θ

+ Q(R, ρ; u).

For ζ = ρeiθ, we have

u(ζ) = Re(f ′(0)ζ) + O(ρ2),
∂u

∂ρ
(ζ) = Re

(
f ′(0)eiθ

)
+ O(ρ).

Hence (7.7.2) implies

lim
ρ→0

Q(R, ρ; u) =
1
2
Im(f ′(0)),

and the theorem follows. �
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Theorem 7.31. Let f(z) be meromorphic in C[R/2; R/2] with f(0) = 1, and sup-
pose that it has the zeros r1e

iθ1 , r2e
iθ2 , . . . , rmeiθm and the poles s1e

iϕ1 , s2e
iϕ2 ,

. . . , sneiϕn inside C(R/2; R/2). Then
m∑

µ=1

(
cos θµ

rµ
− 1

R

)
−

n∑
ν=1

(
cosϕν

sν
− 1

R

)
= Lf (R)− 1

2
Re(f ′(0)),

where

Lf (R) =
1

2πR
lim
δ→0

∫ π
2 −δ

−π
2 +δ

log
∣∣f (R cos θeiθ

)∣∣ dθ

cos2 θ
.

Proof. Theorem 7.31 follows from Theorem 7.30 applied to f(−iz). �
Theorem 7.32 ([165]). Riemann’s hypothesis is true if and only if

lim
R→∞

Lζ0(R) =
π

8
+

γ

4
+

1
4

log 8π − 2,

where

ζ0(s) =
ζ
(
s + 1

2

)
ζ
(

1
2

) .

Proof. Note that

zµ −
1
2

= rµeiθµ

(
rµ > 0, 0 < θµ <

π

2

)
, zµ −

1
2

would be the zeros of ζ0 in the half-plane Re(s) > 0, and s = 1
2 is the unique pole

of ζ0 in Re(s) > 0. Hence Theorem 7.31 implies

2
∑

rµ<R cos θµ

(
cos θµ

rµ
− 1

R

)
−
(

2− 1
R

)
= Lζ0(R)− 1

2
Re(ζ′0(0)).

By (7.3.5), we find ∑
rµ<R cos θµ

1
R
≤ N(

√
R)

R
→ 0 (R →∞).

Thus by using (7.4.5) we obtain

lim
R→∞

Lζ0(R) = 2
∑

µ

cos θµ

rµ
+

π

8
+

γ

4
+

1
4

log 8π − 2.

Riemann’s hypothesis is true if and only if the zeros zµ do not exist, that is,∑
µ

cos θµ

rµ
= 0,

equivalently,

lim
R→∞

Lζ0(R) =
π

8
+

γ

4
+

1
4

log 8π − 2.
�
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7.8 Notes on Nevanlinna’s conjecture

It is easy to verify that for the sector

D = C(0; R) ∩ {z ∈ C | Re(z) > 0},

its Green’s function is

Gz(ζ) = log
∣∣∣∣R2 − z̄ζ

ζ − z

ζ + z̄

R2 + zζ

∣∣∣∣ .
Let Hz be a conjugate of Gz such that

Gz(ζ) + iHz(ζ) = log
(

R2 − z̄ζ

ζ − z

ζ + z̄

R2 + zζ

)
,

where i =
√
−1 is the imaginary unit. Putting ζ = Reiϕ, z = reiθ, on C〈0; R〉 we

have

dHz

dϕ
= Im

(
d(Gz + iHz)

dϕ

)

=
R2 − r2

R2 + 2Rr cos(θ + ϕ) + r2
− R2 − r2

R2 − 2Rr cos(θ − ϕ) + r2

= Re
(

ζ̄ − z

ζ̄ + z

)
− Re

(
ζ + z

ζ − z

)
.

On Re(z) = 0, putting ζ = it we have

dHz

dt
= Im

(
d

dt
log

it + z̄

it− z
+

d

dt
log

R2 − itz̄

R2 + itz

)

=
2r cos θ

r2 − 2tr sin θ + t2
− 2R2r cos θ

R4 − 2R2tr sin θ + t2r2

= 2Re
(

1
z − it

)
− 2Re

(
z

R2 + itz

)
.

Note that along the boundary of D, we have

∂Gz

∂n
= −∂Hz

∂s
.

Thus Theorem 7.16 implies the following fact:

Theorem 7.33. Let f (�≡ 0) be meromorphic in D̄ = C[0; R] ∩ {Re(z) ≥ 0}. Let
aµ (µ = 1, . . . , m) and bν (ν = 1, . . . , n) be respectively zeros and poles of f in D.
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Then for z ∈ D − {a1, . . . , am, b1, . . . , bn}, one has

log f(z) =
1
2π

∫ π
2

−π
2

(
Reiϕ + z

Reiϕ − z
− Re−iϕ − z

Re−iϕ + z

)
log
∣∣f (Reiϕ

)∣∣ dϕ

+
1
π

∫ R

−R

(
1

z − it
− z

R2 + itz

)
log |f(it)|dt

−
m∑

µ=1

log
(

R2 − aµz

z − aµ

z + aµ

R2 + aµz

)
+

n∑
ν=1

log
(

R2 − bνz

z − bν

z + bν

R2 + bνz

)
+ ic,

where c is constant.

Let f(z) be a non-constant meromorphic function in {Re(z) ≥ 0} with f(0) =
1, and suppose that it has the poles s1e

iϕ1 , s2e
iϕ2 , . . . , sneiϕn inside C(0; r) ∩

{Re(z) > 0} for some r > 0. Set

A(r, f) =
1
2π

∫ r

0

(
1
t2
− 1

r2

)
log+ |f(it)|dt

+
1
2π

∫ r

0

(
1
t2
− 1

r2

)
log+ |f(−it)|dt,

B(r, f) =
1
πr

∫ π
2

−π
2

log+
∣∣f (reiθ

)∣∣ cos θdθ,

C(r, f) =
n∑

ν=1

(
1
sν
− sν

r2

)
cosϕν ,

and define a characteristic function of f by

S(r, f) = A(r, f) + B(r, f) + C(r, f).

Theorem 7.24 yields

S

(
r,

1
f

)
= S(r, f)− 1

2
Re(f ′(0)).

In 1925, Nevanlinna proposed the following conjecture on the logarithmic deriva-
tive:

A

(
r,

f ′

f

)
+ B

(
r,

f ′

f

)
= o(S(r, f))

as r → ∞ outside a set of r which has finite linear measure. Generally, we will
show that it is not true.

Next we estimate S(r, ζ0) for the function ζ0 defined in Section 7.6. Since
ζ0(−it) = ζ0(it), we have

A(r, ζ0) =
1
π

∫ r

0

(
1
t2
− 1

r2

)
log+ |ζ0(it)|dt.



506 Chapter 7. Riemann’s ζ-function

By using Weyl’s estimation in Section 7.6, we obtain∫ r

1

1
t2

log+ |ζ0(it)|dt = O(1).

Hence the estimations in Section 7.6 imply

A(r, ζ0) = O(1), B(r, ζ0) = O

(
log r

r

)
.

Obviously, when r > 1/2 we have

C(r, ζ0) = 2− 1
2r2

.

Therefore we obtain
S(r, ζ0) = O(1). (7.8.1)

This example shows that the characteristic function S(r, f) usually grows
slowly. To make sense for Nevanlinna’s conjecture, we have to assume growth
conditions of f , say, S(r, f) → ∞ as r → ∞. Theorem 7.33 can be applied to
study Nevanlinna’s conjecture (see Hu [163]).
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[271] Milovanović, G.V., Mitrinović, D.S. and Rassias, Th.M., Topics in polynomials:
extremal problems, inequalities, zeros, World Scientific Publishing Co. Pte. Ltd.,
1994.

[272] Moh, T.T., Algebra, Series on University Mathematics Vol. 5, World Scientific
Publishing Co. Pte. Ltd., 1992.

[273] Mohon’ko, A.Z., On the Nevanlinna characteristics of some meromorphic func-
tions, in “Theory of functions, functional analysis and their applications”, Izd-vo
Khar’kovsk. Un-ta 14(1971), 83–87.

[274] Molluzzo, J., Doctoral Thesis, Yeshiva University, 1972.
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Möbius function, 477
model, 57
modular, 226, 229

form, 223, 467, 472
function, 221, 223
group, 220
parametrization conjecture, 231

Moishezon space, 104, 120
Mokhon’ko, 150
Molluzzo, 326
Monge, 127
Monge-Ampère equation, 127
Montel, 322

Mordell, 224, 227, 237, 341
Mordellic, 238, 341
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powerful, 234
prime, 14, 357

divisor, 26
element, 275
ideal, 1
number theorem, 359, 476

primitive, 473
primitive element, 8
principal, 61

Cartier divisor, 62
divisor, 273
ideal, 1

product formula, 13, 34
projection, 36, 106
projective

dimension theorem, 56
hypersurface, 51
space, 36
variety, 51

proper, 1, 34, 52, 100
proper mapping, 103
proximity function, 71, 76, 77, 141,

145, 178, 256, 338, 373
pseudo

algebraically hyperbolic, 238
ample, 66, 120
Brody hyperbolic, 132
canonical, 66, 121
distance, 131
Kobayashi hyperbolic, 132
Mordellic, 238
volume form, 125

pseudo-prime, 357
pullback bundle, 115
pure dimension, 55

quasi-projective variety, 51, 132, 427
quotient field, 2

radical, 232, 298
Ramanujan τ -function, 224
ramification

divisor, 182
index, 20, 63, 380
term, 157, 193, 381, 387
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ramified, 20, 63
rank, 95, 103, 106, 227, 228
rational

algebraic curve, 232
differential form, 59
function, 50, 52
mapping, 54, 103

real, 35
real form, 96
Redheffer, 479
reduced, 103, 110
reduced representation, 376, 385
reducible, 99
reduction, 218
regular, 52, 53, 56, 99, 100

arc, 421
differential 1-form, 58
differential form, 59
local ring, 2
sequence, 2, 263

relative height, 79, 84
representation, 103
residue

characteristic, 16
class degree, 20
class field, 2, 16, 51
formula, 178

resolution of singularity, 66, 102
Ribet, 226
Ricci

form, 124, 125
function, 192
tensor, 125

Richtmyer, 243
Riemann, 461, 463

hypothesis, 474, 478
metric, 122, 130
surface, 56, 94

Riemann-Hurwitz formula, 68
Riemann-Roch

formula, 275
space, 64
theorem, 67

right entire factorization, 363
right factor, 357, 364
ring, 1

Ritt, 343

Robert, 220
Rosenbloom, 356
Rosser, 492
Roth, 243
Ru, 271, 395
Rubel, 364
Rutishauser, 149

S-integer, 35
S-integral point, 245
Saias, 478, 500
Samuel, 8, 55, 80
Sard’s theorem, 127
scalar curvature, 208
Schlickewei, 246
Schmidt, 237, 246, 303
Schoenfeld, 492
Schottky, 378
Schwarz, 130
Schwarz inequality, 38, 40
Schwarz-Pick lemma, 130
second main theorem, 158, 162, 165,

167, 174, 202, 249, 291, 381, 383,
388–393, 396

Selberg, 224
semi-stable reduction, 218
separable

algebraic element, 7
algebraic extension, 7
degree, 6
polynomial, 7

separably generated, 8
separating element, 8
separating transcendence base, 8
Serre, 68, 220, 224–226, 230, 424
Shafarevich, 55, 56, 61, 64, 253, 427
Shapiro, 298
sheet number, 184
Shiffman, 139, 166, 174, 204–206, 238,

342
Shimizu, 142
Shimura, 220–226, 229, 230
Shirosaki, 139
Siegel, 105, 219, 220, 237, 241, 243
Siegel zero, 480
Siegel-type conjecture, 250, 252
sign of functional equation, 230
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Silverman, 55–58, 61, 64, 66, 68, 215,
219, 223, 227, 228, 230, 231, 252

simple closed, 422

simple normal crossings, 99
simplified mapping, 172
singular, 56, 99

singular point, 101
Siu, 139, 197, 315, 341, 351, 430, 432,

435, 441, 444

Siu’s inequality, 436
Siu’s Theorem, 441
smooth, 56, 99

Smyth, 450
Snurnitsyn, 174
Sodin, 47, 174

Song, 252
Sparer, 298

spherical characteristic function, 247,
254, 255

spherical height, 247, 254, 255

spherical image, 87, 142, 175
split, 218
splitting field, 6

stable reduction, 218
Stark, 227, 480
Stein manifold, 99

Steinmetz, 290, 359
Stewart, 233
Stirling formula, 469, 497

Stokes formula, 178
Stoll, 36, 119, 127, 128, 142, 145, 147,

149, 151, 159, 164, 178, 182, 184,
191, 192, 197, 198, 202, 425

Stoll’s theorem, 193
Stothers, 167, 233

Stothers-Mason’s theorem, 167
strict, 127
Study, 118, 128

subgeneral position, 47
subspace theorem, 246, 257
subvariety, 52

superelliptic, 237
support, 60, 61, 99

surface, 56, 94
Suzuki, 351
Swinnerton-Dyer, 230

symmetric, 45

tensor power, 45
tensor product, 45

symmetrizer, 45
system of transition matrices, 107
Szpiro, 233, 235, 236

tangent mapping, 58
tangent space, 57, 94
Taniyama, 229, 230
Tate module, 217
tautological bundle, 118
Taylor, xi, 230, 240
tensor product, 45
thin, 103
third main theorem, 290, 291, 401
Thue, 237, 243
Thue equation, 237
Tijdeman, 233, 241
Titchmarsh, 492
Toda, 324
torsion, 216
torsion subgroup, 227
totally geodesic, 432, 446
Totaro, 137, 138
trace, 10
transcendence base, 8
transcendence degree, 8
transcendental, 4
triple point, 102
trivial, 12, 14
trivial bundle, 108
truncated

counting function, 160
counting function, 383
defect, 160
multiplicity, 160, 205, 308
valence function, 160, 205, 308, 383

Tucker, 252
type, 90, 92, 114

Ueno, 67, 120, 450
Ueno fibration, 67
Ueno’s theorem, 67
ultrametric, 12
uniformization theorem, 219, 342
uniformizer, 275
uniformizing parameter, 3
unique factorization domain, 3, 98
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uniqueness polynomial, 355
unit, 2
universal denominator, 310, 407
universally uniquely factorizable, 362
unramified, 20
unstable reduction, 218
Urabe, 362

v-integer, 16
valence function, 72, 76, 77, 140, 141,

145, 178, 256, 338, 372, 386
Valiron, 150, 368, 369, 371
Valiron formula, 365, 373
Valiron-Jensen formula, 373, 375
valuation, 14

group, 15
ideal, 16
integer, 16
ring, 3, 16

van der Poorten, 246
Van der Waerden, 80
van Frankenhuysen, 167, 252
vanishing theorem, 423
Veronese mapping, 45, 165, 256, 394
vertex, 422
very ample, 66, 120
very canonical, 66, 121
Vitter, 152, 153
Vojta, 240, 243, 245, 247, 249–253, 303,

427
Volchkov, 500
Voloch, 282, 298
volume form, 125
von Mangoldt’s function, 476

Waldschmidt, 236, 237, 306
Wang, 101, 191, 500
Waring problem, 242, 328
Weierstrass, 105

℘ function, 219
coordinate function, 214
equation, 214, 215
formula, 481
polynomial, 91
preparation theorem, 91

weight, 219, 223, 225, 226
weight function, 87, 247

Weil, 227–230, 251, 472
divisor, 60
function, 69, 70

well behaved, 33
Weyl, 119, 194, 501
Wiles, xi, 230, 240, 318
Wiman, 368, 371
Wong, 128, 159
Woods, 232
Wronskian, 276, 433

degree, 155, 157, 172, 293
determinant, 153

Wu, 42, 128, 174, 194, 337

Yang, 48, 150, 194, 258, 259, 271, 290,
292, 295, 297, 302, 311, 322, 324,
343, 356, 362, 395, 472, 486

Yau, 449
Ye, 151, 159, 393
Yeung, 139, 315, 341, 351
Yohe, 492
Yor, 500
Yu, 233

Zagier, 83
Zaidenberg, 139
Zannier, 251, 258, 263, 264, 269, 282
Zariski, 8, 55, 80

open set, 51
topology, 51

zero, 104, 273
zero divisor, 1, 104
Zhang, 83
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