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Introduction

This volume contains the Proceedings of the Twentieth International Workshop
on Operator Theory and Applications (IWOTA), held at Hotel Real de Minas
in Guanajuato, Mexico, during September 21–25, 2009. This was the twentieth
IWOTA; in fact, the workshop was held biannually since 1981, and annually in the
recent years (starting 2002) rotating among eleven countries on three continents.
Previous IWOTA meetings were held at:

Santa Monica, CA, USA (1981)
J.W. Helton, Chair

Rehovot, Israel (1983) – Oper. Theory Adv. Appl. 12;
H. Dym and I. Gohberg, Co-chairs

Amsterdam, Netherlands (1985) – Oper. Theory Adv. Appl. 19;
M.A. Kaashoek, Chair

Mesa, AZ, USA (1987) – Oper. Theory Adv. Appl. 35;
J.W. Helton and L. Rodman, Co-chairs

Rotterdam, Netherlands (1989) – Oper. Theory Adv. Appl. 50;
H. Bart, Chair

Sapporo, Japan (1991) – Oper. Theory Adv. Appl. 59;
T. Ando, Chair

Vienna, Austria (1993) – Oper. Theory Adv. Appl. 80;
H. Langer, Chair

Regensburg, Germany (1995) – Oper. Theory Adv. Appl. 102 and 103;
R. Mennicken, Chair

Bloomington, IN, USA (1996) – Oper. Theory Adv. Appl. 115;
H. Bercovici and C. Foiaş, Co-chairs

Groningen, Netherlands, (1998) – Oper. Theory Adv. Appl. 124;
A. Dijksma, Chair

Bordeaux, France (2000) – Oper. Theory Adv. Appl. 129;
N. Nikolskii, Chair

Faro, Portugal (2000) – Oper. Theory Adv. Appl. 142;
A.F. Dos Santos and N. Manojlovic, Co-chairs
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Blacksburg, VA, USA (2002) – Oper. Theory Adv. Appl. 149;
J. Ball, Chair

Cagliari, Italy (2003) – Oper. Theory Adv. Appl. 160;
S. Seatzy and C. van der Mee, Co-chairs

Newcastle, UK (2004) – Oper. Theory Adv. Appl. 171;
M.A. Dritshel and N. Young, Co-chairs

Storrs, CT, USA (2005) – Oper. Theory Adv. Appl. 179;
V. Olshevsky, Chair

Seoul, Korea (2006) – Oper. Theory Adv. Appl. 187;
Woo Young Lee, Chair

Potchefstroom, South Africa (2007) – Oper. Theory Adv. Appl. 195;
K. Grobler and G. Groenewald, Co-chairs

Williamsburg, VA, USA, (2008) – Oper. Theory Adv. Appl. 202 and 203;
L. Rodman, Chair

Guanajuato, Mexico (2009) – Oper. Theory Adv. Appl. 220;
N. Vasilevski, Chair

Berlin, Germany (2010) – Oper. Theory Adv. Appl. 221;
J. Behrndt, K.-H. Förster and C. Trunk, Co-chairs

Seville, Spain (2011)
A. Montes Rodŕıguez, Chair.

Consistent with the topics of recent IWOTA meetings, IWOTA 2009 was designed
as a comprehensive, inclusive conference covering all aspects of theoretical and
applied operator theory, ranging from classical analysis, differential and integral
equations, complex and harmonic analysis to mathematical physics, mathematical
systems and control theory, signal processing and numerical analysis. The con-
ference brought together international experts for a week-long stay at Hotel Real
de Minas, in an atmosphere conducive to fruitful professional interactions. These
Proceedings reflect the high quality of the papers presented at the conference. In
addition to fourteen plenary sessions, IWOTA 2009 included the following special
sessions:

Bergman and Segal-Bargmann spaces and Toeplitz operators

Factorization problems, Wiener-Hopf and Fredholm operators

Hypercomplex operator theory

Indefinite inner product spaces and spectral problems

Multivariable operator theory

Operators on function spaces

Pseudodifferential operators and related topics

Solution techniques for partial differential equations

Spectral theory and its applications

Toeplitz/rank structured tensors and matrices.
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This volume contains twenty-one solicited articles by speakers at the workshop,
ranging from expository surveys to original research papers, each carefully ref-
ereed. All contributions reflect recent developments in operator theory and its
applications.

The organizers gratefully acknowledge the support of the following institutions:

CONACYT (Consejo Nacional de Ciencia y Tecnoloǵıa, Mexico)

Sociedad Matemática Mexicana (Mexico)

Department of Mathematics, CINVESTAV (Mexico)

CIMAT (Centro de Investigación en Matemáticas, Mexico)

CONCYTEG (Consejo de Ciencia y Tecnoloǵıa del Estado de
Guanajuato, Mexico)

National Science Foundation (USA).

23 October 2011 Joseph Ball, Williamsburg, Virginia, USA
Raúl Curto, Iowa City, Iowa, USA

Sergei Grudsky, Mexico City, Mexico
J. William Helton, La Jolla, California, USA
Raúl Quiroga-Barranco, Guanajuato, Mexico

Nikolai Vasilevski, Mexico City, Mexico
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Exponential Decay of Semigroups
for Second-order Non-selfadjoint
Linear Differential Equations

Nikita Artamonov

Abstract. The Cauchy problem for second-order linear differential equation

𝑢′′(𝑡) +𝐷𝑢′(𝑡) + 𝐴𝑢(𝑡) = 0

in Hilbert space 𝐻 with a sectorial operator 𝐴 and an accretive operator
𝐷 is studied. Sufficient conditions for exponential decay of the solutions are
obtained.

Mathematics Subject Classification (2000). Primary 47D06, 34G10; Secondary
47B44, 35G15.

Keywords. Accretive operator, sectorial operator, 𝐶0-semigroup, second-order
linear differential equation, spectrum.

Many linearized equations of mechanics and mathematical physics can be reduced
to a linear differential equation

𝑢′′(𝑡) +𝐷𝑢′(𝑡) + 𝐴𝑢(𝑡) = 0, (0.1)

where 𝑢(𝑡) is a vector-valued function in an appropriate (finite- or infinite-dimen-
sional) Hilbert space 𝐻 , 𝐷 and 𝐴 are linear (bounded or unbounded) operators on
𝐻 . Properties of the differential equation (0.1) are closely connected with spectral
properties of a quadric pencil

𝐿(𝜆) = 𝜆2 + 𝜆𝐷 +𝐴, 𝜆 ∈ ℂ

which is obtained by substituting exponential functions 𝑢(𝑡) = exp(𝜆𝑡)𝑥, 𝑥 ∈ 𝐻
into (0.1). In many applications 𝐴 is a self-adjoint positive definite operator, 𝐷 is
a self-adjoint positive definite or an accretive operator (see definition in Section
1). In this case the differential equation (0.1) and spectral properties of the related
quadric pencil 𝐿(𝜆) are well studied, see [2, 6, 7, 8, 10, 11, 12, 13, 15] and ref-
erences therein. It was obtained a localization of the pencil’s spectrum, sufficient

This paper is supported by the Russian Foundation of Basic Research (project No 11-01-00790).



2 N. Artamonov

conditions of the completeness of eigen- and adjoint vectors of the pencil 𝐿(𝜆)
and it was proved, that all solutions of (0.1) exponentially decay. The exponen-
tial decay means, that the total energy exponentially decreases and corresponding
mechanical system is stable. In paper [16] was studied spectral properties of the
pencil 𝐿(𝜆) for a self-adjoint non-positive definite operator 𝐴 and an accretive
operator 𝐷.

But some models of continuous mechanics are reduced to differential equation
(0.1) with sectorial operator 𝐴, see [1, 9, 17] and references therein. In this cases
methods, developed for self-adjoint operator 𝐴, cannot be applied.

The aim of this paper is the study of a Cauchy problem for second-order
linear differential equation (0.1) in a Hilbert space 𝐻 with initial conditions

𝑢(0) = 𝑢0 𝑢′(0) = 𝑢1. (0.2)

The shiffness operator 𝐴 is assumed to be a sectorial operator, the damping oper-
ator 𝐷 is assumed to be an accretive operator.

By ℒ(𝐻 ′, 𝐻 ′′) denote a space of bounded operators acting from a Hilbert
space 𝐻 ′ to a Hilbert space 𝐻 ′′. ℒ(𝐻) = ℒ(𝐻,𝐻) is an algebra of bounded oper-
ators acting on Hilbert space 𝐻 .

1. Preliminary results

First let us recall some definitions [4, 14].

Definition 1.1. Linear operator 𝐵 with dense domain 𝒟(𝐵) is called accretive if
Re(𝐵𝑥, 𝑥) ≥ 0 for all 𝑥 ∈ 𝒟(𝐵) and m-accretive, if the range of operator 𝐵 + 𝜔𝐼
is dense in 𝐻 for some 𝜔 > 0.

An accretive operator 𝐵 is m-accretive iff 𝐵 has not accretive extensions [14].
For m-accretive operator

𝜌(𝐵) ⊃ {𝜆 ∈ ℂ : Re𝜆 < 0}.
Definition 1.2. An accretive operator 𝐵 is called sectorial or 𝜔-accretive if for
some 𝜔 ∈ [0, 𝜋/2) ∣∣Im(𝐵𝑥, 𝑥)

∣∣ ≤ tan(𝜔)Re(𝐵𝑥, 𝑥) 𝑥 ∈ 𝒟(𝐵).

If a sectorial operator has not sectorial extensions, then it is called m-sectorial or
m-𝜔-accretive.

The sectorial property means that the numerical range of the operator 𝐵
belongs to a sector

{𝑧 ∈ ℂ ∣ ∣ Im 𝑧∣ ≤ tan(𝜔)Re 𝑧}.
For a sectorial operator 𝐵 there exist [14] a self-adjoint non-negative operator 𝑇𝐵
and a self-adjoint operator 𝑆𝐵 ∈ ℒ(𝐻), ∥𝑆𝐵∥ ≤ tan(𝜔) such that

Re(𝐵𝑥, 𝑥) = (𝑇
1/2
𝐵 𝑥, 𝑇

1/2
𝐵 𝑥), 𝐵 ⊂ 𝑇 1/2𝐵 (𝐼 + 𝑖𝑆𝐵)𝑇

1/2
𝐵

and 𝐵 = 𝑇
1/2
𝐵 (𝐼 + 𝑖𝑆𝐵)𝑇

1/2
𝐵 iff 𝐵 is m-sectorial.
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Throughout this paper we will assume, that

(A) Operator 𝐴 : 𝒟(𝐴) ⊂ 𝐻 → 𝐻 is m-sectorial and for some positive 𝑎0

Re(𝐴𝑥, 𝑥) ≥ 𝑎0(𝑥, 𝑥) 𝑥 ∈ 𝒟(𝐴).

Since 𝐴 is m-sectorial there exist a self-adjoint positive definite operator 𝑇 and a
self-adjoint 𝑆 ∈ ℒ(𝐻), such that

Re(𝐴𝑥, 𝑥) = (𝑇 1/2𝑥, 𝑇 1/2𝑥) ≥ 𝑎0(𝑥, 𝑥), 𝑥 ∈ 𝒟(𝐴), 𝐴 = 𝑇 1/2(𝐼 + 𝑖𝑆)𝑇 1/2.

The operator 𝐴 is invertible and

𝐴−1 = 𝑇−1/2(𝐼 + 𝑖𝑆)−1𝑇−1/2.

By 𝐻𝑠 (𝑠 ∈ ℝ) denote a collection of Hilbert spaces generated by a self-adjoint
operator 𝑇 1/2:

∙ for 𝑠 ≥ 0 𝐻𝑠 = 𝒟(𝑇 𝑠/2) endowed with a norm ∥𝑥∥𝑠 = ∥𝑇 𝑠/2𝑥∥;
∙ for 𝑠 < 0 𝐻𝑠 is a closure of 𝐻 with respect to the norm ∥ ⋅ ∥𝑠.

Obviously𝐻0 = 𝐻 . The operator 𝑇 1/2 can be considered now as a unitary operator
mapping 𝐻𝑠 on 𝐻𝑠−1. 𝐴 is a bounded operator 𝐴 ∈ ℒ(𝐻2, 𝐻0) and it can be

extended to a bounded operator 𝐴 ∈ ℒ(𝐻1, 𝐻−1). The inverse operator 𝐴−1 can

be extended to a bounded operator 𝐴−1 ∈ ℒ(𝐻−1, 𝐻1).
By (⋅, ⋅)−1,1 denote a duality pairing on 𝐻−1×𝐻1. Note, that for all 𝑥 ∈ 𝐻−1

and 𝑦 ∈ 𝐻1 we have ∣∣∣(𝑥, 𝑦)−1,1

∣∣∣ ≤ ∥𝑥∥−1 ⋅ ∥𝑦∥1
and (𝑥, 𝑦)−1,1 = (𝑥, 𝑦) if 𝑥 ∈ 𝐻 . Further,

Re(𝐴𝑥, 𝑥)−1,1 = (𝑇𝑥, 𝑥)−1,1 = (𝑇 1/2𝑥, 𝑇 1/2𝑥) = ∥𝑥∥21, 𝑥 ∈ 𝐻1 = 𝒟(𝑇 1/2).

Denote 𝑆 = 𝑇 1/2𝑆𝑇 1/2 ∈ ℒ(𝐻1, 𝐻−1). Then, for the operator 𝐴 we have a repre-

sentation 𝐴 = 𝑇 + 𝑖𝑆 and

Im(𝐴𝑥, 𝑥)−1,1 = (𝑆𝑥, 𝑥)−1,1 𝑥 ∈ 𝐻1.

Also (𝑆𝑥, 𝑦)−1,1 = (𝑆𝑦, 𝑥)−1,1 for all 𝑥, 𝑦 ∈ 𝐻1.

Following paper [11] we will assume

(B) 𝐷 is a bounded operator 𝐷 ∈ ℒ(𝐻1, 𝐻−1), and

𝛽 = inf
𝑥∈𝐻1,𝑥 ∕=0

Re(𝐷𝑥, 𝑥)−1,1

∥𝑥∥2 > 0. (1.1)

Operator 𝑇−1/2 is a unitary operator mapping 𝐻𝑠 on 𝐻𝑠+1, therefore an operator
𝐷′ = 𝑇−1/2𝐷𝑇−1/2, acting on 𝐻 , is bounded. Let

𝐷1 =
1

2
𝑇 1/2
(
𝐷′ + (𝐷′)∗

)
𝑇 1/2 𝐷2 =

1

2𝑖
𝑇 1/2
(
𝐷′ − (𝐷′)∗

)
𝑇 1/2,

Obviously 𝐷1, 𝐷2 ∈ ℒ(𝐻1, 𝐻−1), 𝐷 = 𝐷1 + 𝑖𝐷2 and for all 𝑥 ∈ 𝐻1

Re(𝐷𝑥, 𝑥)−1,1 = (𝐷1𝑥, 𝑥)−1,1 ≥ 𝛽∥𝑥∥2, Im(𝐷𝑥, 𝑥)−1,1 = (𝐷2𝑥, 𝑥)−1,1.

Also (𝐷𝑗𝑥, 𝑦)−1,1 = (𝐷𝑗𝑦, 𝑥)−1,1 for all 𝑥, 𝑦 ∈ 𝐻1 (𝑗 = 1, 2).
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2. Main result

Definition 2.1. A vector-valued function 𝑢(𝑡) ∈ 𝐻1 is called a solution of the

differential equation (0.1) if 𝑢′(𝑡) ∈ 𝐻1, 𝑢
′′(𝑡) ∈ 𝐻 , 𝐷𝑢′(𝑡) +𝐴𝑢(𝑡) ∈ 𝐻 and

𝑢′′(𝑡) +𝐷𝑢′(𝑡) +𝐴𝑢(𝑡) = 0 (2.1)

If 𝑢(𝑡) is a solution of (2.1), then a vector-function

x(𝑡) =

(
𝑢′(𝑡)
𝑢(𝑡)

)
(formally) satisfies a first-order differential equation

x′(𝑡) = Ax(𝑡) (2.2)

with a block operator matrix

A =

(−𝐷 −𝐴
𝐼 0

)
.

From mechanical viewpoint it is most natural to consider the equation (2.2) in an
“energy” space ℋ = 𝐻 ×𝐻1 with a dense domain of the operator A [6, 7, 11, 16]

𝒟(A) =

{(
𝑥1
𝑥2

)∣∣∣∣𝑥1, 𝑥2 ∈ 𝐻1, 𝐷𝑥1 + 𝐴𝑥2 ∈ 𝐻
}
.

An inverse of A is formally defined by a block operator matrix

A−1 =

(
0 𝐼

−𝐴−1 −𝐴−1𝐷

)
.

Let y = (𝑦1, 𝑦2)
⊤ ∈ ℋ = 𝐻 ×𝐻1, then

A−1y =

(
𝑦2

−𝐴−1𝑦1 −𝐴−1𝐷𝑦2

)
=

(
𝑥1
𝑥2

)
.

Since 𝐴−1 ∈ ℒ(𝐻−1, 𝐻1) and 𝐷 ∈ ℒ(𝐻1, 𝐻−1), then 𝐴
−1𝐷 ∈ ℒ(𝐻1, 𝐻1). There-

fore −𝐴−1𝑦1 −𝐴−1𝐷𝑦2 ∈ 𝐻1 and A−1y ∈ 𝐻1 ×𝐻1. Moreover,

𝐷𝑥1 +𝐴𝑥2 = 𝐷𝑦2 +𝐴
(
−𝐴−1𝑦1 −𝐴−1𝐷𝑦2

)
= −𝑦1 ∈ 𝐻.

Thus A−1y ∈ 𝒟(A). Since 𝐼 ∈ ℒ(𝐻1, 𝐻) the operator A−1 is bounded and there-
fore the operator A is closed and 0 ∈ 𝜌(A).

Let (x,y)ℋ be a natural scalar product on ℋ = 𝐻×𝐻1 and ∥x∥2ℋ = (x,y)ℋ.
If operator 𝐴 is self-adjoint, the spectral properties of operator A are well

studied: −A is an m-accretive operator in the Hilbert space ℋ = 𝐻 × 𝐻1 (see
[2, 6, 7, 8, 10, 11] and references therein) and, consequently, A is a generator of
a 𝐶0-semigroup. Thus, differential equation (2.2) (and equation (2.1)) is correctly
solvable in the space ℋ for all x(0) = (𝑢1, 𝑢0)

⊤ ∈ 𝒟(A). Moreover, in this case op-
erator A is a generator of a contraction semigroup [7]. It implies, that all solutions
of (2.2) (and (2.1)) exponentially decay, i.e., for some 𝐶, 𝜔 > 0

∥x(𝑡)∥ℋ ≤ 𝐶 exp(−𝜔𝑡)∥x(0)∥ℋ 𝑡 ≥ 0.
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For non-selfadjoint 𝐴 operator (−A) is not longer accretive in the space ℋ with
respect to the standard scalar product. But, under some assumptions, one can
define a new scalar product onℋ, which is topologically equivalent to the given one,
such that an operator (−A− 𝑞𝐼) (for some 𝑞 ≥ 0) is m-accretive and therefore the
operator A is a generator of a 𝐶0-semigroup on ℋ. If 𝑞 > 0, then A is a generator
of a contraction semigroup and all solutions of (2.2) exponentially decay.

Let 𝑘 ∈ (0, 𝛽) (𝛽 is defined by (1.1)). Consider on the space ℋ a sesquilinear
form

[x,y]ℋ = (𝑇 1/2𝑥2, 𝑇
1/2𝑦2) + 𝑘(𝐷1𝑥2, 𝑦2)−1,1 − 𝑘2(𝑥2, 𝑦2) + (𝑥1 + 𝑘𝑥2, 𝑦1 + 𝑘𝑦2),

x = (𝑥1, 𝑥2)
⊤, y = (𝑦1, 𝑦2)

⊤ ∈ ℋ.
Obviously, [x,y] = [y,x] and

[x,x]ℋ = ∥𝑥2∥21 + 𝑘(𝐷1𝑥2, 𝑥2)−1,1 + ∥𝑥1∥2 + 2𝑘Re(𝑥1, 𝑥2).

Since (𝐷1𝑥, 𝑥)−1,1 = Re(𝐷𝑥, 𝑥)−1,1 ≥ 𝛽∥𝑥∥2 and

2∣Re(𝑥1, 𝑥2)∣ ≤ 2∣(𝑥1, 𝑥2)∣ ≤ 2∥𝑥1∥ ⋅ ∥𝑥2∥ ≤ ∥𝑥1∥2
𝛽

+ 𝛽∥𝑥2∥2,

then

[x,x]ℋ ≥ ∥𝑥2∥21 + 𝑘
(
(𝐷1𝑥, 𝑥)−1,1 − 𝛽∥𝑥2∥2

)
+

(
1 − 𝑘

𝛽

)
∥𝑥1∥2

≥ ∥𝑥2∥21 +
(
1 − 𝑘

𝛽

)
∥𝑥1∥2.

Inequalities1 ∣(𝐷1𝑥, 𝑥)−1,1∣ ≤ ∥𝐷1𝑥∥−1 ⋅ ∥𝑥∥1 ≤ ∥𝐷1∥ ⋅ ∥𝑥∥21 and ∥𝑥∥21 ≥ 𝑎0∥𝑥∥2
imply

[x,x]ℋ ≤
(
1 + 𝑘∥𝐷1∥

)
∥𝑥2∥21 + 𝑘𝛽∥𝑥2∥2 +

(
1 +

𝑘

𝛽

)
∥𝑥1∥2

≤
(
1 + 𝑘∥𝐷1∥ +

𝑘𝛽

𝑎0

)
∥𝑥2∥21 +

(
1 +

𝑘

𝛽

)
∥𝑥1∥2.

Thus, (
1 − 𝑘

𝛽

)
∥x∥2ℋ ≤ [x,x]ℋ ≤ const ∥x∥2ℋ

and [⋅, ⋅]ℋ is a scalar product on ℋ, which is topologically equivalent to the given
one. Denote ∣x∣2ℋ = [x,x]ℋ.

Theorem 2.2. Let the assumptions (A) and (B) hold and for some 𝑘 ∈ (0, 𝛽) and
𝑚 ∈ (0, 1]

𝜔1 = inf
𝑥∈𝐻1,𝑥 ∕=0

1
𝑘 (𝐷1𝑥, 𝑥)−1,1 − ∥𝑥∥2 − 1

4𝑚

∥∥( 1𝑘𝑆 −𝐷2)𝑥
∥∥

−1

∥𝑥∥2 ≥ 0. (2.3)

1∥𝐷1∥ is a norm of operator 𝐷1 ∈ ℒ(𝐻1, 𝐻−1), i.e., ∥𝐷1∥ = sup𝑥∈𝐻1,𝑥 ∕=0 ∥𝐷1𝑥∥−1/∥𝑥∥1.
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Then the operator A is a generator of a 𝐶0-semigroup 𝒯 (𝑡) = exp{𝑡A} (𝑡 ≥ 0)
and ∥∥𝒯 (𝑡)

∥∥
ℋ ≤ const ⋅ exp(−𝑡𝑘𝜃)

where

𝜃 = min

{
𝜔1
2
,
1 −𝑚
𝜔2

}
≥ 0

and2

𝜔2 = sup
𝑥∈𝐻1,𝑥 ∕=0

∥𝑥∥21 + 𝑘(𝐷1𝑥, 𝑥)−1,1 + 𝑘
2∥𝑥∥2

∥𝑥∥21
(2.4)

Proof. For x = (𝑥1, 𝑥2)
⊤ ∈ 𝒟(A) let us consider a quadric form

[Ax,x]ℋ = (𝑇 1/2𝑥1, 𝑇
1/2𝑥2) + 𝑘(𝐷1𝑥1, 𝑥2)−1,1 − 𝑘2(𝑥1, 𝑥2)

+ (−𝐷𝑥1 −𝐴𝑥2 + 𝑘𝑥1, 𝑥1 + 𝑘𝑥2)
= (𝑇𝑥1, 𝑥2)−1,1 + 𝑘(𝐷1𝑥1, 𝑥2)−1,1 − (𝐷𝑥1, 𝑥1)−1,1

− (𝐴𝑥2, 𝑥1)−1,1 + 𝑘(𝑥1, 𝑥1) − 𝑘(𝐷𝑥1, 𝑥2)−1,1 − 𝑘(𝐴𝑥2, 𝑥2)−1,1

= − (𝐷𝑥1, 𝑥1)−1,1 + 𝑘(𝑥1, 𝑥1) − 𝑘(𝐴𝑥2, 𝑥2)−1,1 − 𝑖𝑘(𝐷2𝑥1, 𝑥2)−1,1

+ (𝑇𝑥1, 𝑥2)−1,1 − (𝑇𝑥2, 𝑥1)−1,1 − 𝑖(𝑆𝑥2, 𝑥1)−1,1

We used decompositions 𝐴 = 𝑇 + 𝑖𝑆 and 𝐷 = 𝐷1 + 𝑖𝐷2. Consequently,

Re[Ax,x]ℋ = − (𝐷1𝑥1, 𝑥1)−1,1 + 𝑘(𝑥1, 𝑥1) − 𝑘(𝑇𝑥2, 𝑥2)−1,1

− Re
(
𝑖𝑘(𝐷2𝑥1, 𝑥2)−1,1 + 𝑖(𝑆𝑥2, 𝑥1)−1,1

)
= − (𝐷1𝑥1, 𝑥1)−1,1 + 𝑘∥𝑥1∥2 − 𝑘∥𝑥2∥21

− Im
(
(𝑆𝑥1, 𝑥2)−1,1 − 𝑘(𝐷2𝑥1, 𝑥2)−1,1

)
and

− 1

𝑘
Re[Ax,x]ℋ =

1

𝑘
(𝐷1𝑥1, 𝑥1)−1,1−∥𝑥1∥2+∥𝑥2∥21+Im

((1
𝑘
𝑆 −𝐷2

)
𝑥1, 𝑥2

)
−1,1

.

Since ∣∣∣∣∣
((

1

𝑘
𝑆 −𝐷2

)
𝑥1, 𝑥2

)
−1,1

∣∣∣∣∣ ≤
∥∥∥∥( 1𝑘𝑆 −𝐷2

)
𝑥1

∥∥∥∥
−1

⋅ ∥𝑥2∥1

≤ 1

4𝑚

∥∥∥∥(1𝑘𝑆 −𝐷2

)
𝑥1

∥∥∥∥2
−1

+𝑚∥𝑥2∥21,

then

− 1

𝑘
Re[Ax,x]ℋ ≥ 1

𝑘
(𝐷1𝑥1,𝑥1)−1,1−∥𝑥1∥2− 1

4𝑚

∥∥∥∥(1𝑘𝑆−𝐷2

)
𝑥1

∥∥∥∥2
−1

+(1−𝑚)∥𝑥2∥21
≥𝜔1∥𝑥1∥2+(1−𝑚)∥𝑥2∥21.

2Obviously, 𝜔2 ≤ 1 + 𝑘∥𝐷1∥+ 𝑘2/𝑎0.
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Further, an inequality

2𝑘∣Re(𝑥1, 𝑥2)∣ ≤ 2∣(𝑥1, 𝑘𝑥2)∣ ≤ 2∥𝑥1∥ ⋅ ∥𝑘𝑥2∥ ≤ ∥𝑥1∥2 + 𝑘2∥𝑥2∥2

implies

[x,x]ℋ ≤ 2∥𝑥1∥2+ ∥𝑥2∥21+ 𝑘(𝐷1𝑥2, 𝑥2)−1,1+ 𝑘
2∥𝑥2∥2 ≤ 2∥𝑥1∥2+𝜔2∥𝑥2∥21. (2.5)

Thus

− 1

𝑘
Re[Ax,x]ℋ ≥ 𝜔1∥𝑥1∥2 + (1 −𝑚)∥𝑥2∥21 ≥ 𝜃(2∥𝑥1∥2 + 𝜔2∥𝑥2∥21) ≥ 𝜃[x,x]ℋ

and an operator (−A − 𝑘𝜃𝐼) is accretive. Moreover, the operator (−A − 𝑘𝜃𝐼) is
m-accretive (since 0 ∈ 𝜌(A)) and3

𝜌 (−A− 𝑘𝜃𝐼) ⊂ {𝜆 ∈ ℂ, Re𝜆 < 0} ⇒ 𝜌(−A) ⊃ {𝜆 ∈ ℂ, Re𝜆 < 𝑘𝜃}.
Therefore, the operator A is a generator of a 𝐶0-semigroup [4, 5] 𝒯 (𝑡) = exp{𝑡A},
𝑡 ≥ 0 and ∣∣𝒯 (𝑡)

∣∣
ℋ ≤ exp(−𝑘𝜃𝑡), 𝑡 ≥ 0.

On the space ℋ norms ∣x∣ℋ and ∥x∥ℋ are equivalent and the inequality∥∥𝒯 (𝑡)
∥∥

ℋ ≤ const ⋅ exp(−𝑘𝜃𝑡), 𝑡 ≥ 0

holds for some positive constant. □

Corollary 2.3. Under the conditions of Theorem 2.2 for all x0 = (𝑢1, 𝑢0)
⊤ ∈ 𝒟(A)

vector-function

x(𝑡) =

(
𝑤(𝑡)
𝑢(𝑡)

)
= 𝒯 (𝑡)x0 ∈ 𝒟(A)

satisfies the first-order differential equation (2.2). 𝑢(𝑡) satisfies the second-order
differential equation (2.1) with the initial conditions (0.2) and an inequality

∥𝑢(𝑡)∥21 + ∥𝑢′(𝑡)∥2 ≤ const ⋅ exp{−2𝑘𝜃𝑡}
(
∥𝑢0∥21 + ∥𝑢1∥2

)
holds for all 𝑡 ≥ 0.

Consider now a more strong assumption on the operator 𝐷:

(C) 𝐷 ∈ ℒ(𝐻1, 𝐻−1) and

𝛿 = inf
𝑥∈𝐻1,𝑥 ∕=0

Re(𝐷𝑥, 𝑥)−1,1

∥𝑥∥21
> 0.

It is easy to show that the assumption (C) implies (B) and 𝛽 > 𝑎0𝛿.

By ∥𝑆∥ and ∥𝐷2∥ denote norms of the bounded operators 𝑆 ∈ ℒ(𝐻1, 𝐻−1)
and 𝐷2 ∈ ℒ(𝐻1, 𝐻−1). Then for all 𝑥 ∈ 𝐻1

∥𝑆𝑥∥−1 ≤ ∥𝑆∥ ⋅ ∥𝑥∥1, ∥𝐷2𝑥∥−1 ≤ ∥𝐷2∥ ⋅ ∥𝑥∥1
3Obviously, the operator (−A) is m-accretive as well.
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Theorem 2.4. Let the assumptions (A) and (C) are fulfilled and for some 𝑘 ∈ (0, 𝛽)
and some 𝑝, 𝑞 > 0 with 𝑝+ 𝑞 ≤ 1

𝜔′
1 = 𝑎0

(
𝛿

𝑘
− 1

4𝑝𝑘2
∥𝑆∥2 − 1

4𝑞
∥𝐷2∥2

)
≥ 1

Then the operator A is a generator of a 𝐶0-semigroup 𝒯 (𝑡) = exp{𝑡A} (𝑡 ≥ 0)
and ∥∥𝒯 (𝑡)

∥∥
ℋ ≤ const ⋅ exp(−𝑡𝑘𝜃′)

where

𝜃′ = min

{
𝜔′
1 − 1

2
,
1 − 𝑝− 𝑞
𝜔2

}
≥ 0

and 𝜔2 is defined by (2.4).

Proof. Consider on Hilbert space ℋ = 𝐻 ×𝐻1 the scalar product [x,y]ℋ. Then

− 1

𝑘
Re[Ax,x]ℋ =

1

𝑘
(𝐷1𝑥1, 𝑥1)−1,1 − ∥𝑥1∥2 + ∥𝑥2∥21 +

1

𝑘
Im(𝑆𝑥1, 𝑥2)−1,1

− Im(𝐷2𝑥1, 𝑥2)−1,1

(see the proof of Theorem 2.2). Since

∣ Im(𝐷2𝑥1, 𝑥2)−1,1∣ ≤ ∣(𝐷2𝑥1, 𝑥2)−1,1∣ ≤ ∥𝐷2𝑥1∥−1 ⋅ ∥𝑥2∥1
≤ 1

4𝑞
∥𝐷2𝑥1∥2−1 + 𝑞∥𝑥2∥21 ≤ 1

4𝑞
∥𝐷2∥2 ⋅ ∥𝑥1∥21 + 𝑞∥𝑥2∥21

1

𝑘
∣ Im(𝑆𝑥1, 𝑥2)−1,1∣ ≤ ∣

(
1

𝑘
𝑆𝑥1, 𝑥2

)
−1,1

∣ ≤
∥∥∥∥ 1𝑘𝑆𝑥1

∥∥∥∥
−1

⋅ ∥𝑥2∥1

≤ 1

4𝑝

∥∥∥∥1𝑘𝑆𝑥1
∥∥∥∥2

−1

+ 𝑝∥𝑥2∥21 ≤ 1

4𝑝𝑘2
∥𝑆∥2 ⋅ ∥𝑥1∥21 + 𝑝∥𝑥2∥21

and taking into account (𝐷1𝑥, 𝑥)−1,1 ≥ 𝛿∥𝑥∥21 and ∥𝑥∥21 ≥ 𝑎0∥𝑥∥2 we obtain

− 1

𝑘
Re[Ax,x]ℋ

≥ 1

𝑘
(𝐷1𝑥1, 𝑥1)−1,1 − ∥𝑥1∥2 − ∥𝑆∥2

4𝑝𝑘2
⋅ ∥𝑥1∥21 − ∥𝐷2∥2

4𝑞
⋅ ∥𝑥1∥21 + (1 − 𝑝− 𝑞)∥𝑥2∥21

≥
(
𝛿

𝑘
− ∥𝑆∥2

4𝑝𝑘2
− ∥𝐷2∥2

4𝑞

)
∥𝑥1∥21 − ∥𝑥1∥2 + (1 − 𝑝− 𝑞)∥𝑥2∥21

≥ (𝜔′
1 − 1)∥𝑥1∥2 + (1 − 𝑝− 𝑞)∥𝑥2∥21.

Using (2.5) we finally have

− 1

𝑘
Re[Ax,x]ℋ ≥ 𝜃′[x,x]ℋ.

Thus an operator (−A − 𝑘𝜃′𝐼) in m-accretive (since 0 ∈ 𝜌(A)) and

𝜌(−A) ⊃ {𝜆 ∈ ℂ, Re𝜆 < 𝑘𝜃′}.
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Therefore, the operator A is a generator of a 𝐶0-semigroup [4, 5] 𝒯 (𝑡) = exp{𝑡A}
(𝑡 ≥ 0) and ∣∣𝒯 (𝑡)

∣∣
ℋ ≤ exp(−𝑘𝜃′𝑡), 𝑡 ≥ 0.

Since the norms ∣x∣ℋ and ∥x∥ℋ are equivalent then we have an inequality∥∥𝒯 (𝑡)
∥∥

ℋ ≤ const ⋅ exp(−𝑘𝜃′𝑡), 𝑡 ≥ 0

for some positive constant. □
Corollary 2.5. Under the conditions of Theorem 2.4 for all x0 = (𝑢1, 𝑢0)

⊤ ∈ 𝒟(A)
a vector-valued function

x(𝑡) =

(
𝑤(𝑡)
𝑢(𝑡)

)
= 𝒯 (𝑡)x0 ∈ 𝒟(A)

satisfies the first-order differential equation (2.2). 𝑢(𝑡) satisfies the second-order
differential equation (2.1) with an initial conditions (0.2) and the inequality

∥𝑢(𝑡)∥21 + ∥𝑢′(𝑡)∥2 ≤ const ⋅ exp{−2𝑘𝜃′𝑡}(∥𝑢0∥21 + ∥𝑢1∥2
)

holds for all 𝑡 ≥ 0.

3. Related spectral problem

Let us consider a quadric pencil associated with the differential equation (0.1)

𝐿(𝜆) = 𝜆2𝐼 + 𝜆𝐷 +𝐴 𝜆 ∈ ℂ.

Since 𝐷 : 𝐻1 → 𝐻−1 it is more naturally to consider an extension of pencil

𝐿̃(𝜆) = 𝜆2𝐼 + 𝜆𝐷 +𝐴

mapping 𝐻1 to 𝐻−1. Moreover, 𝐿̃(𝜆) ∈ ℒ(𝐻1, 𝐻−1) for all 𝜆 ∈ ℂ.

Definition 3.1. The resolvent set of the pencil 𝐿̃(𝜆) is defined as

𝜌(𝐿̃) = {𝜆 ∈ ℂ : ∃𝐿̃−1(𝜆) ∈ ℒ(𝐻−1, 𝐻1)}
The spectrum of the pencil is 𝜎(𝐿̃) = ℂ∖𝜌(𝐿̃).

In [7, 16] it was proved that 𝜎(𝐿̃) = 𝜎(A) and for 𝜆 ∕= 0

(A − 𝜆𝐼)−1 =

(
𝜆−1
(
𝐿̃−1(𝜆)𝐴 − 𝐼

)
−𝐿̃−1(𝜆)

𝐿̃−1(𝜆)𝐴 −𝜆𝐿̃−1(𝜆)

)
This result allows to obtain a localization of the pencil’s spectrum in a half-plane.

Proposition 3.2.
1. Under the conditions of Theorem 2.2 the spectrum of the pencil 𝐿̃(𝜆) belongs
to a half-plane

𝜎(𝐿̃) ⊆ {Re ≤ −𝑘𝜃}.
2. Under the conditions of Theorem 2.4 the spectrum of the pencil 𝐿̃(𝜆) belongs
to a half-plane

𝜎(𝐿̃) ⊆ {Re ≤ −𝑘𝜃′}.
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pp. 358–385.

[17] N. Artamonov, Estimates of solutions of certain classes of second-order differential
equations in a Hilbert space. Sbornik Mathematics, 194:8 (2003), 1113–1123.

Nikita Artamonov
Dept. for Econometric and Mathematical methods in economics
Moscow State Institute of International Relations (University)
av. Vernadskogo 76, 119454 Moscow, Russia
e-mail: nikita.artamonov@gmail.com

mailto:nikita.artamonov@gmail.com


Operator Theory:
Advances and Applications, Vol. 220, 11–21
c⃝ 2012 Springer Basel AG

Infinite Norm Decompositions of C∗-algebras

F.N. Arzikulov

Abstract. In the given article the notion of infinite norm decomposition of
a C∗-algebra is investigated. The infinite norm decomposition is some gen-
eralization of Peirce decomposition. It is proved that the infinite norm de-
composition of any C∗-algebra is a C∗-algebra. C∗-factors with an infinite
and a nonzero finite projection and simple purely infinite C∗-algebras are
constructed.

Mathematics Subject Classification (2000). Primary 46L35, 17C65; Secondary
47L30.

Keywords. C∗-algebra, infinite norm decompositions.

Introduction

In the given article the notion of infinite norm decomposition of a C∗-algebra is
investigated. It is known that for any projection 𝑝 of a unital C∗-algebra 𝐴 the
next equality is valid 𝐴 = 𝑝𝐴𝑝⊕ 𝑝𝐴(1− 𝑝)⊕ (1− 𝑝)𝐴𝑝⊕ (1− 𝑝)𝐴(1− 𝑝), where ⊕
is a direct sum of spaces. The infinite norm decomposition is some generalization
of Peirce decomposition. First such infinite decompositions were introduced in [1]
by the author.

In this article a unital C∗-algebra 𝐴 with an infinite orthogonal set {𝑝𝑖} of
equivalent projections such that sup𝑖 𝑝𝑖 = 1, and the set

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 = {{𝑎𝑖𝑗} :

for any indexes 𝑖, 𝑗, 𝑎𝑖𝑗 ∈ 𝑝𝑖𝐴𝑝𝑗 , and ∥∑𝑘=1,...,𝑖−1(𝑎𝑘𝑖+𝑎𝑖𝑘)+𝑎𝑖𝑖∥ → 0 at 𝑖→ ∞}
are considered. Note that all infinite sets like {𝑝𝑖} are supposed to be countable.

The main results of the given article are the next:

– For any C∗-algebra 𝐴 with an infinite orthogonal set {𝑝𝑖} of equivalent pro-
jections such that sup𝑖 𝑝𝑖 = 1 the set

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a C∗-algebra with the

componentwise algebraic operations, the associative multiplication and the
norm.

– There exist a C∗-algebra 𝐴 and different countable orthogonal sets {𝑒𝑖}
and {𝑓𝑖} of equivalent projections in 𝐴 such that sup𝑖 𝑒𝑖 = 1, sup𝑖 𝑓𝑖 = 1,∑𝑜

𝑖𝑗 𝑒𝑖𝐴𝑒𝑗 ∕=∑𝑜
𝑖𝑗 𝑓𝑖𝐴𝑓𝑗 .
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– If 𝐴 is a W∗-factor of type II∞, then there exists a countable orthogonal set
{𝑝𝑖} of equivalent projections in 𝐴 such that

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a C∗-factor with a

nonzero finite and an infinite projection. In this case
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is not a von
Neumann algebra.

– If 𝐴 is a W∗-factor of type III, then for any countable orthogonal set {𝑝𝑖}
of equivalent projections in 𝐴. The C∗-subalgebra

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is simple and

purely infinite. In this case
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is not a von Neumann algebra.

– There exists a C∗-algebra 𝐴 with an orthogonal set {𝑝𝑖} of equivalent pro-
jections such that

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is not a two-sided ideal of 𝐴.

1. Infinite norm decompositions

Lemma 1. Let 𝐴 be a C∗-algebra, {𝑝𝑖} be an infinite orthogonal set of projections
with the least upper bound 1 in the algebra 𝐴 and let 𝒜 = {{𝑝𝑖𝑎𝑝𝑗} : 𝑎 ∈ 𝐴}. Then,
1) the set 𝒜 is a vector space with the next componentwise algebraic operations

𝜆{𝑝𝑖𝑎𝑝𝑗} = {𝑝𝑖𝜆𝑎𝑝𝑗}, 𝜆 ∈ ℂ

{𝑝𝑖𝑎𝑝𝑗} + {𝑝𝑖𝑏𝑝𝑗} = {𝑝𝑖(𝑎+ 𝑏)𝑝𝑗}, 𝑎, 𝑏 ∈ 𝐴,
2) the algebra 𝐴 and the vector space 𝒜 can be identified in the sense of the next
map

ℐ : 𝑎 ∈ 𝐴→ {𝑝𝑖𝑎𝑝𝑗} ∈ 𝒜.
Proof. Item 1) of the lemma can be easily proved.

Proof of item 2): We assert that ℐ is a one-to-one map. Indeed, it is clear, that for
any 𝑎 ∈ 𝐴 there exists a unique set {𝑝𝑖𝑎𝑝𝑗}, defined by the element 𝑎.

Suppose that there exist different elements 𝑎 and 𝑏 in 𝐴 such that 𝑝𝑖𝑎𝑝𝑗 =
𝑝𝑖𝑏𝑝𝑗 for all 𝑖, 𝑗, i.e., ℐ(𝑎) = ℐ(𝑏). Then 𝑝𝑖(𝑎 − 𝑏)𝑝𝑗 = 0 for all 𝑖 and 𝑗. Observe
that 𝑝𝑖((𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗) = ((𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗)𝑝𝑖 = 0 and (𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗ ≥ 0 for
all 𝑖, 𝑗. Therefore, the element (𝑎 − 𝑏)𝑝𝑗(𝑎 − 𝑏)∗ commutes with every projection
in {𝑝𝑖}.

We prove (𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗ = 0. Indeed, there exists a maximal commutative
∗-subalgebra 𝐴𝑜 of the algebra 𝐴, containing the set {𝑝𝑖} and the element (𝑎 −
𝑏)𝑝𝑗(𝑎− 𝑏)∗. Since (𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗𝑝𝑖 = 𝑝𝑖(𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗ = 0 for any 𝑖, then the
condition (𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗ ∕= 0 contradicts the equality sup𝑖 𝑝𝑖 = 1.

Indeed, in this case 𝑝𝑖 ≤ 1− 1/∥(𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗∥(𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗ for any 𝑖.
Since by (𝑎−𝑏)𝑝𝑗(𝑎−𝑏)∗ ∕= 0 we have 1 > 1−1/∥(𝑎−𝑏)𝑝𝑗(𝑎−𝑏)∗∥(𝑎−𝑏)𝑝𝑗(𝑎−𝑏)∗,
then we get a contradiction with sup𝑖 𝑝𝑖 = 1. Therefore (𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗ = 0.

Hence, since 𝐴 is a C∗-algebra, than ∥(𝑎− 𝑏)𝑝𝑗(𝑎− 𝑏)∗∥ = ∥((𝑎− 𝑏)𝑝𝑗)((𝑎−
𝑏)𝑝𝑗)

∗∥ = ∥((𝑎 − 𝑏)𝑝𝑗)∥∥((𝑎 − 𝑏)𝑝𝑗)∗∥ = ∥(𝑎 − 𝑏)𝑝𝑗∥2 = 0 for any 𝑗. Therefore
(𝑎 − 𝑏)𝑝𝑗 = 0, 𝑝𝑗(𝑎 − 𝑏)∗ = 0 for any 𝑗. Analogously, we can get 𝑝𝑗(𝑎 − 𝑏) = 0,
(𝑎 − 𝑏)∗𝑝𝑗 = 0 for any 𝑗. Hence the elements 𝑎 − 𝑏, (𝑎 − 𝑏)∗ commute with every
projection in {𝑝𝑖}. Then there exists a maximal commutative ∗-subalgebra 𝐴𝑜

of the algebra 𝐴, containing the set {𝑝𝑖} and the element (𝑎 − 𝑏)(𝑎 − 𝑏)∗. Since



Infinite Norm Decompositions of C∗-algebras 13

𝑝𝑖(𝑎−𝑏)(𝑎−𝑏)∗ = (𝑎−𝑏)(𝑎−𝑏)∗𝑝𝑖 = 0 for any 𝑖, then the condition (𝑎−𝑏)(𝑎−𝑏)∗ ∕= 0
contradicts the equality sup𝑖 𝑝𝑖 = 1.

Therefore, (𝑎 − 𝑏)(𝑎 − 𝑏)∗ = 0, 𝑎 − 𝑏 = 0, i.e., 𝑎 = 𝑏. Thus the map ℐ is
one-to-one. □

Lemma 2. Let 𝐴 be a C∗-algebra, {𝑝𝑖} be an infinite orthogonal set of projections
with the least upper bound 1 in the algebra 𝐴 and 𝑎 ∈ 𝐴. Then, if 𝑝𝑖𝑎𝑝𝑗 = 0 for
all 𝑖, 𝑗, then 𝑎 = 0.

Proof. Let 𝑝 ∈ {𝑝𝑖}. Observe that 𝑝𝑖𝑎𝑝𝑗𝑎
∗ = 𝑝𝑖(𝑎𝑝𝑗𝑎

∗) = 𝑎𝑝𝑗𝑎∗𝑝𝑖 = (𝑎𝑝𝑗𝑎
∗)𝑝𝑖 = 0

for all 𝑖, 𝑗 and 𝑎𝑝𝑗𝑎
∗ = 𝑎𝑝𝑗𝑝𝑗𝑎

∗ = (𝑎𝑝𝑗)(𝑝𝑗𝑎
∗) = (𝑎𝑝𝑗)(𝑎𝑝𝑗)

∗ ≥ 0. Therefore, the
element 𝑎𝑝𝑗𝑎

∗ commutes with all projections of the set {𝑝𝑖}.
We prove 𝑎𝑝𝑗𝑎

∗ = 0. Indeed, there exists a maximal commutative ∗-subalge-
bra 𝐴𝑜 of the algebra 𝐴, containing the set {𝑝𝑖} and the element 𝑎𝑝𝑗𝑎

∗. Since
𝑝𝑖(𝑎𝑝𝑗𝑎

∗) = (𝑎𝑝𝑗𝑎
∗)𝑝𝑖 = 0 for any 𝑖, then the condition 𝑎𝑝𝑗𝑎

∗ ∕= 0 contradicts the
equality sup𝑖 𝑝𝑖 = 1 (see the proof of Lemma 1). Hence 𝑎𝑝𝑗𝑎

∗ = 0.
Hence, since 𝐴 is a C∗-algebra, then

∥𝑎𝑝𝑗𝑎∗∥ = ∥(𝑎𝑝𝑗)(𝑎𝑝𝑗)∗∥ = ∥(𝑎𝑝𝑗)∥∥(𝑎𝑝𝑗)∗∥ = ∥𝑎𝑝𝑗∥2 = 0

for any 𝑗. Therefore 𝑎𝑝𝑗 = 0, 𝑝𝑗𝑎
∗ = 0 for any 𝑗. Analogously we have 𝑝𝑗𝑎 = 0,

𝑎∗𝑝𝑗 = 0 for any 𝑗. Hence the elements 𝑎, 𝑎∗ commute with all projections of the
set {𝑝𝑖}. Then there exists a maximal commutative ∗-subalgebra 𝐴𝑜 of the algebra
𝐴, containing the set {𝑝𝑖} and the element 𝑎𝑎∗. Since 𝑝𝑖𝑎𝑎∗ = 𝑎𝑎∗𝑝𝑗 = 0 for any
𝑖, then the condition 𝑎𝑎∗ ∕= 0 contradicts the equality sup𝑖 𝑝𝑖 = 1 (see the proof of
Lemma 1). Hence 𝑎𝑎∗ = 0 and 𝑎 = 0. □

Lemma 3. Let 𝐴 be a C∗-algebra on a Hilbert space 𝐻, {𝑝𝑖} be an infinite or-
thogonal set of projections in 𝐴 with the least upper bound 1 in the algebra 𝐵(𝐻)
and 𝑎 ∈ 𝐴. Then 𝑎 ≥ 0 if and only if for any finite subset {𝑝𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖} the
inequality 𝑝𝑎𝑝 ≥ 0 holds, where 𝑝 =

∑𝑛
𝑘=1 𝑝𝑘.

Proof. By positivity of the operator 𝑇 : 𝑎 → 𝑏𝑎𝑏, 𝑎 ∈ 𝐴 for any 𝑏 ∈ 𝐴, if 𝑎 ≥ 0,
then for any finite subset {𝑝𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖} the inequality 𝑝𝑎𝑝 ≥ 0 holds.

Conversely, let 𝑎 ∈ 𝐴. Suppose that for any finite subset {𝑝𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖} the
inequality 𝑝𝑎𝑝 ≥ 0 holds, where 𝑝 =

∑𝑛
𝑘=1 𝑝𝑘.

Let 𝑎 = 𝑐 + 𝑖𝑑 for some nonzero self-adjoint elements 𝑐, 𝑑 in 𝐴. Then (𝑝𝑖 +
𝑝𝑗)(𝑐+ 𝑖𝑑)(𝑝𝑖 + 𝑝𝑗) = (𝑝𝑖 + 𝑝𝑗)𝑐(𝑝𝑖 + 𝑝𝑗) + 𝑖(𝑝𝑖 + 𝑝𝑗)𝑑(𝑝𝑖 + 𝑝𝑗) ≥ 0 for all 𝑖, 𝑗. In
this case the elements (𝑝𝑖 + 𝑝𝑗)𝑐(𝑝𝑖 + 𝑝𝑗) and (𝑝𝑖 + 𝑝𝑗)𝑑(𝑝𝑖 + 𝑝𝑗) are self-adjoint.
Then (𝑝𝑖+𝑝𝑗)𝑑(𝑝𝑖+𝑝𝑗) = 0 and 𝑝𝑖𝑑𝑝𝑗 = 0 for all 𝑖, 𝑗. Hence by Lemma 2 we have
𝑑 = 0. Therefore 𝑎 = 𝑐 = 𝑐∗ = 𝑎∗, i.e., 𝑎 ∈ 𝐴𝑠𝑎. Hence, 𝑎 is a nonzero self-adjoint
element in 𝐴. Let 𝑏𝛼𝑛 =

∑𝑛
𝑘𝑙=1 𝑝

𝛼
𝑘𝑎𝑝

𝛼
𝑙 for all natural numbers 𝑛 and finite subsets

{𝑝𝛼𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖}. Then the set (𝑏𝛼𝑛) ultraweakly converges to the element 𝑎.
Indeed, we have 𝐴 ⊆ 𝐵(𝐻). Let {𝑞𝜉} be a maximal orthogonal set of minimal

projections of the algebra 𝐵(𝐻) such, that 𝑝𝑖 = sup𝜂 𝑞𝜂 for some subset {𝑞𝜂} ⊂
{𝑞𝜉} for any 𝑖. For arbitrary projections 𝑞 and 𝑝 in {𝑞𝜉} there exists a number
𝜆 ∈ ℂ such, that 𝑞𝑎𝑝 = 𝜆𝑢, where 𝑢 is an isometry in 𝐵(𝐻), satisfying the
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conditions 𝑞 = 𝑢𝑢∗, 𝑝 = 𝑢∗𝑢. Let 𝑞𝜉𝜉 = 𝑞𝜉, 𝑞𝜉𝜂 be such element that 𝑞𝜉 = 𝑞𝜉𝜂𝑞
∗
𝜉𝜂,

𝑞𝜂 = 𝑞∗𝜉𝜂𝑞𝜉𝜂 for all different 𝜉 and 𝜂. Then, let {𝜆𝜉𝜂} be a set of numbers such that

𝑞𝜉𝑎𝑞𝜂 = 𝜆𝜉𝜂𝑞𝜉𝜂 for all 𝜉, 𝜂. In this case, since 𝑞𝜉𝑎𝑎
∗𝑞𝜉 = 𝑞𝜉(

∑
𝜂 𝜆𝜉𝜂𝜆̄𝜉𝜂)𝑞𝜉 <∞ we

have the quantity of nonzero numbers of the set {𝜆𝜉𝜂}𝜂 (𝜉th string of the infinite-
dimensional matrix {𝜆𝜉𝜂}𝜉𝜂) is not greater then the countable cardinal number
and the sequence (𝜆𝜉𝑛) of all these nonzero numbers converges to zero. Let 𝑣𝑞𝜉 be
a vector of the Hilbert space 𝐻 which generates the minimal projection 𝑞𝜉. Then
the set {𝑣𝑞𝜉} forms a complete orthonormal system of the space 𝐻 . Let 𝑣 be an
arbitrary vector of the space 𝐻 and 𝜇𝜉 be a coefficient of Fourier of the vector 𝑣,
corresponding to 𝑣𝑞𝜉 in relative to the complete orthonormal system {𝑣𝑞𝜉}. Then,
since

∑
𝜉 𝜇𝜉𝜇̄𝜉 <∞ we have the quantity of all nonzero elements of the set {𝜇𝜉}𝜉

is not greater then the countable cardinal number and the sequence (𝜇𝑛) of all
these nonzero numbers converges to zero.

Let 𝜈𝜉 be the 𝜉th coefficient of Fourier (corresponding to 𝑣𝑞𝜉) of the vec-
tor 𝑎(𝑣) ∈ 𝐻 in relative to the complete orthonormal system {𝑣𝑞𝜉}. Then 𝜈𝜉 =∑

𝜂 𝜆𝜉𝜂𝜇𝜂 and the scalar product < 𝑎(𝑣), 𝑣 > is equal to the sum
∑

𝜉 𝜈𝜉𝜇𝜉. Since

the element 𝑎(𝑣) belongs to 𝐻 we have quantity of all nonzero elements in the set
{𝜈𝜉}𝜉 is not greater then the countable cardinal number and the sequence (𝜈𝑛) of
all these nonzero numbers converges to zero.

Let 𝜀 be an arbitrary positive number. Then, since quantity of nonzero num-
bers of the sets {𝜇𝜉}𝜉 and {𝜈𝜉}𝜉 is not greater then the countable cardinal number
and
∑

𝜉 𝜈𝜉𝜈𝜉 < ∞,
∑

𝜉 𝜇𝜉𝜇̄𝜉 < ∞ we have there exists {𝑓𝑘}𝑙𝑘=1 ⊂ {𝑝𝑖} such that

for the set of indexes Ω1 = {𝜉 : ∃𝑝 ∈ {𝑓𝑘}𝑙𝑘=1, 𝑞𝜉 ≤ 𝑝} the next equality holds∣∣∣∣∑
𝜉

𝜈𝜉𝜇𝜉 −
∑
𝜉∈Ω1

𝜈𝜉𝜇𝜉

∣∣∣∣ < 𝜀.
Then, since quantity of nonzero numbers of the sets {𝜇𝜉}𝜉 and {𝜆𝜉𝜂}𝜂 is not
greater then the countable cardinal number, and

∑
𝜂 𝜆𝜉𝜂𝜆̄𝜉𝜂 < ∞,

∑
𝜉 𝜇𝜉𝜇̄𝜉 < ∞

we have there exists {𝑒𝑘}𝑚𝑘=1 ⊂ {𝑝𝑖} such that for the set of indexes Ω2 = {𝜉 :
∃𝑝 ∈ {𝑒𝑘}𝑚𝑘=1, 𝑞𝜉 ≤ 𝑝} the next equality holds∣∣∣∣∑

𝜂

𝜆𝜉𝜂𝜇𝜂 −
∑
𝜂∈Ω2

𝜆𝜉𝜂𝜇𝜂

∣∣∣∣ < 𝜀.
Hence for the finite set {𝑝𝑘}𝑛𝑘=1 = {𝑓𝑘}𝑙𝑘=1 ∪ {𝑒𝑘}𝑚𝑘=1 and the set Ω = {𝜉 : ∃𝑝 ∈
{𝑝𝑘}𝑛𝑘=1, 𝑞𝜉 ≤ 𝑝} of indexes we have∣∣∣∣∑

𝜉

𝜈𝜉𝜇𝜉 −
∑
𝜉∈Ω

(∑
𝜂∈Ω
𝜆𝜉𝜂𝜇𝜂

)
𝜇𝜉

∣∣∣∣ < 𝜀.
At the same time, ⟨(∑𝑛

𝑘𝑙=1 𝑝𝑘𝑎𝑝𝑙)(𝑣), 𝑣⟩ =
∑

𝜉∈Ω(
∑

𝜂∈Ω 𝜆𝜉𝜂𝜇𝜂)𝜇𝜉. Therefore,∣∣∣∣⟨𝑎(𝑣), 𝑣⟩ −
〈( 𝑛∑

𝑘𝑙=1

𝑝𝑘𝑎𝑝𝑙

)
(𝑣), 𝑣

〉∣∣∣∣ < 𝜀.
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Hence, since the vector 𝑣 and the number 𝜀 are chosen arbitrarily we have the net
(𝑏𝛼𝑛) ultraweakly converges to the element 𝑎.

Now there exists a maximal orthogonal set {𝑒𝜉} of minimal projections of the
algebra 𝐵(𝐻) of all bounded linear operators on 𝐻 such that the element 𝑎 and
the set {𝑒𝜉} belong to some maximal commutative ∗-subalgebra 𝐴𝑜 of the algebra
𝐵(𝐻). We have for any finite subset {𝑝𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖} and 𝑒 ∈ {𝑒𝜉} the inequality
𝑒(
∑𝑛

𝑘𝑙=1 𝑝𝑘𝑎𝑝𝑙)𝑒 ≥ 0 holds by the positivity of the operator 𝑇 : 𝑏→ 𝑒𝑏𝑒, 𝑏 ∈ 𝐴.
By the previous part of the proof the net (𝑒𝜉𝑏

𝛼
𝑛𝑒𝜉)𝛼𝑛 ultraweakly converges

to the element 𝑒𝜉𝑎𝑒𝜉 for any index 𝜉. Then we have 𝑒𝜉𝑏
𝛼
𝑛𝑒𝜉 ≥ 0 for all 𝑛 and 𝛼.

Therefore, the ultraweak limit 𝑒𝜉𝑎𝑒𝜉 of the net (𝑒𝜉𝑏
𝛼
𝑛𝑒𝜉)𝛼𝑛 is a nonnegative element.

Hence 𝑒𝜉𝑎𝑒𝜉 ≥ 0. Therefore, since 𝑒𝜉 is chosen arbitrarily we have 𝑎 ≥ 0. □

Lemma 4. Let 𝐴 be a C∗-algebra on a Hilbert space 𝐻, {𝑝𝑖} be an infinite orthog-
onal set of projections in 𝐴 with the least upper bound 1 in the algebra 𝐵(𝐻) and
𝑎 ∈ 𝐴. Then

∥𝑎∥ = sup

{∥∥∥∥ 𝑛∑
𝑘𝑙=1

𝑝𝑘𝑎𝑝𝑙

∥∥∥∥ : 𝑛 ∈ 𝑁, {𝑝𝑘}𝑛𝑘=1 ⊆ {𝑝𝑖}
}
.

Proof. The inequality −∥𝑎∥1 ≤ 𝑎 ≤ ∥𝑎∥1 holds. Then −∥𝑎∥𝑝 ≤ 𝑝𝑎𝑝 ≤ ∥𝑎∥𝑝 for
all natural numbers 𝑛 and finite subsets {𝑝𝛼𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖}, where 𝑝 =

∑𝑛
𝑘=1 𝑝𝑘.

Therefore

∥𝑎∥ ≥ sup

{∥∥∥∥ 𝑛∑
𝑘𝑙=1

𝑝𝑘𝑎𝑝𝑙

∥∥∥∥ : 𝑛 ∈ 𝑁, {𝑝𝑘}𝑛𝑘=1 ⊆ {𝑝𝑖}
}
.

At the same time, since the finite subset {𝑝𝑘}𝑛𝑘=1 of {𝑝𝑖} is chosen arbitrarily and
by Lemma 6 we have

∥𝑎∥ = sup

{∥∥∥∥ 𝑛∑
𝑘𝑙=1

𝑝𝑘𝑎𝑝𝑙

∥∥∥∥ : 𝑛 ∈ 𝑁, {𝑝𝑘}𝑛𝑘=1 ⊆ {𝑝𝑖}
}
.

Otherwise, if

∥𝑎∥ > 𝜆 = sup

{∥∥∥∥ 𝑛∑
𝑘𝑙=1

𝑝𝑘𝑎𝑝𝑙

∥∥∥∥ : 𝑛 ∈ 𝑁, {𝑝𝑘}𝑛𝑘=1 ⊆ {𝑝𝑖}
}

then by Lemma 3 −𝜆1 ≤ 𝑎 ≤ 𝜆1. But the last inequality is a contradiction. □

Lemma 5. Let 𝐴 be a C∗-algebra on a Hilbert space 𝐻, {𝑝𝑖} be an infinite orthog-
onal set of projections in 𝐴 with the least upper bound 1 in the algebra 𝐵(𝐻), and
let 𝒜 = {{𝑝𝑖𝑎𝑝𝑗} : 𝑎 ∈ 𝐴}. Then,
1) the vector space 𝒜 is a unit-order space with respect to the order {𝑝𝑖𝑎𝑝𝑗} ≥ 0

({𝑝𝑖𝑎𝑝𝑗} ≥ 0 if for any finite subset {𝑝𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖} the inequality 𝑝𝑎𝑝 ≥ 0
holds, where 𝑝 =

∑𝑛
𝑘=1 𝑝𝑘) and the norm

∥{𝑝𝑖𝑎𝑝𝑗}∥ = sup

{∥∥∥∥ 𝑛∑
𝑘𝑙=1

𝑝𝑘𝑎𝑝𝑙

∥∥∥∥ : 𝑛 ∈ 𝑁, {𝑝𝑘}𝑛𝑘=1 ⊆ {𝑝𝑖}
}
.
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2) the algebra 𝐴 and the unit-order space 𝒜 can be identified as unit-order spaces
in the sense of the map

ℐ : 𝑎 ∈ 𝐴→ {𝑝𝑖𝑎𝑝𝑗} ∈ 𝒜.
Proof. This lemma follows by Lemmas 1, 3 and 4. □

Remark. Observe that by Lemma 4 the order and the norm in the unit-order
space 𝒜 = {{𝑝𝑖𝑎𝑝𝑗} : 𝑎 ∈ 𝐴} can be defined as follows to: {𝑝𝑖𝑎𝑝𝑗} ≥ 0 if 𝑎 ≥ 0;
∥{𝑝𝑖𝑎𝑝𝑗}∥ = ∥𝑎∥. By Lemmas 3 and 4 they are equivalent to the order and the
norm, defined in Lemma 5, correspondingly.

Let 𝐴 be a C∗-algebra, {𝑝𝑖} be a countable orthogonal set of equivalent
projections in 𝐴 such that sup𝑖 𝑝𝑖 = 1 and

𝑜∑
𝑖𝑗

𝑝𝑖𝐴𝑝𝑗 =

{
{𝑎𝑖𝑗} : for any indexes 𝑖, 𝑗, 𝑎𝑖𝑗 ∈ 𝑝𝑖𝐴𝑝𝑗 , and∥∥∥∥ ∑

𝑘=1,...,𝑖−1

(𝑎𝑘𝑖 + 𝑎𝑖𝑘) + 𝑎𝑖𝑖

∥∥∥∥→ 0 at 𝑖→ ∞
}
.

If we introduce a componentwise algebraic operations in this set then
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗
becomes a vector space. Also, note that

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a vector subspace of 𝒜.

Observe that
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a normed subspace of the algebra 𝒜 and ∥∑𝑛
𝑖,𝑗=1 𝑎𝑖𝑗 −∑𝑛+1

𝑖,𝑗=1 𝑎𝑖𝑗∥ → 0 at 𝑛→ ∞ for any {𝑎𝑖𝑗} ∈∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 .

Let
∑𝑜

𝑖𝑗 𝑎𝑖𝑗 := lim𝑛→∞
∑𝑛

𝑖,𝑗=1 𝑎𝑖𝑗 for any {𝑎𝑖𝑗} ∈∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 and

𝐶∗({𝑝𝑖𝐴𝑝𝑗}𝑖𝑗) :=
{ 𝑜∑

𝑖𝑗

𝑎𝑖𝑗 : {𝑎𝑖𝑗} ∈
𝑜∑
𝑖𝑗

𝑝𝑖𝐴𝑝𝑗

}
.

Then 𝐶∗({𝑝𝑖𝐴𝑝𝑗}𝑖𝑗) ⊆ 𝐴. By Lemma 5𝐴 and 𝒜 can be identified. We observe that,
the normed spaces

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 and 𝐶∗({𝑝𝑖𝐴𝑝𝑗}𝑖𝑗) can also be identified. Further,

without loss of generality we will use these identifications.

Theorem 6. Let 𝐴 be a unital C∗-algebra, {𝑝𝑖} be a countable orthogonal set of
equivalent projections in 𝐴 and sup𝑖 𝑝𝑖 = 1. Then

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a C

∗-subalgebra of
𝐴 with the componentwise algebraic operations, the associative multiplication and
the norm.

Proof. We have
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a normed subspace of the algebra 𝐴.

Let (𝑎𝑛) be a sequence of elements in
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 such that (𝑎𝑛) norm con-
verges to some element 𝑎 ∈ 𝐴. We have 𝑝𝑖𝑎𝑛𝑝𝑗 → 𝑝𝑖𝑎𝑝𝑗 at 𝑛 → ∞ for all 𝑖 and
𝑗. Hence 𝑝𝑖𝑎𝑝𝑗 ∈ 𝑝𝑖𝐴𝑝𝑗 for all 𝑖, 𝑗. Let 𝑏𝑛 =

∑𝑛
𝑘=1(𝑝𝑛−1𝑎𝑝𝑘 + 𝑝𝑘𝑎𝑝𝑛−1) + 𝑝𝑛𝑎𝑝𝑛

and 𝑐𝑛𝑚 =
∑𝑛

𝑘=1(𝑝𝑛−1𝑎𝑚𝑝𝑘 + 𝑝𝑘𝑎𝑚𝑝𝑛−1) + 𝑝𝑛𝑎𝑚𝑝𝑛 for any 𝑛. Then 𝑐𝑛𝑚 → 𝑏𝑛 at
𝑚→ ∞. It should be proven that ∥𝑏𝑛∥ → 0 at 𝑛→ ∞.

Let 𝜀 ∈ ℝ+. Then there exists 𝑚𝑜 such that ∥𝑎− 𝑎𝑚∥ < 𝜀 for any 𝑚 > 𝑚𝑜.
Also for all 𝑛 and {𝑝𝑘}𝑛𝑘=1 ⊂ {𝑝𝑖} ∥(∑𝑛

𝑘=1 𝑝𝑘)(𝑎 − 𝑎𝑚)(
∑𝑛

𝑘=1 𝑝𝑘)∥ < 𝜀. Hence
∥𝑏𝑛−𝑐𝑛𝑚∥ < 2𝜀 for any𝑚 > 𝑚𝑜. At the same time, ∥𝑏𝑛−𝑐𝑛𝑚1

∥ < 2𝜀, ∥𝑏𝑛−𝑐𝑛𝑚2
∥ < 2𝜀
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for all 𝑚𝑜 < 𝑚1, 𝑚2. Since (𝑎𝑛) ⊂ ∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 then for any 𝑚 ∥𝑐𝑛𝑚∥ → 0 at

𝑛 → ∞. Hence, since ∥𝑐𝑛𝑚1
∥ → 0 and ∥𝑐𝑛𝑚2

∥ → 0 at 𝑛 → ∞ we have there exists
𝑛𝑜 such that ∥𝑐𝑛𝑚1

∥ < 𝜀, ∥𝑐𝑛𝑚2
∥ < 𝜀 and ∥𝑐𝑛𝑚1

+ 𝑐𝑛𝑚2
∥ < 2𝜀 for any 𝑛 > 𝑛𝑜. Then

∥2𝑏𝑛∥ = ∥𝑏𝑛−𝑐𝑛𝑚1
+𝑐𝑛𝑚1

+𝑐𝑛𝑚2
+𝑏𝑛−𝑐𝑛𝑚2

∥ ≤ ∥𝑏𝑛−𝑐𝑛𝑚1
∥+∥𝑐𝑛𝑚1

+𝑐𝑛𝑚2
∥+∥𝑏𝑛−𝑐𝑛𝑚2

∥ <
2𝜀+ 2𝜀+ 2𝜀 = 6𝜀 for any 𝑛 > 𝑛𝑜, i.e., ∥𝑏𝑛∥ < 3𝜀 for any 𝑛 > 𝑛𝑜. Since 𝜀 is chosen
arbitrarily we have ∥𝑏𝑛∥ → 0 at 𝑛 → ∞. Therefore 𝑎 ∈ ∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 . Since the

sequence (𝑎𝑛) is chosen arbitrarily we have
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a Banach space.

Let {𝑎𝑖𝑗}, {𝑏𝑖𝑗} be arbitrary elements of the Banach space
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 . Let

𝑎𝑚 =
∑𝑚

𝑘𝑙=1 𝑎𝑘𝑙, 𝑏𝑚 =
∑𝑚

𝑘𝑙=1 𝑏𝑘𝑙 for all natural numbers 𝑚. We have the se-
quence (𝑎𝑚) converges to {𝑎𝑖𝑗} and the sequence (𝑏𝑚) converges to {𝑏𝑖𝑗} in∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 . Also for all 𝑛 and 𝑚 𝑎𝑚𝑏𝑛 ∈ ∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 . Then for any 𝑛 the se-

quence (𝑎𝑚𝑏𝑛) converges to {𝑎𝑖𝑗}𝑏𝑛 at 𝑚 → ∞. Hence {𝑎𝑖𝑗}𝑏𝑛 ∈ ∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 .

Note that
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 ⊆ 𝐴. Therefore for any 𝜀 ∈ ℝ+ there exists 𝑛𝑜 such that

∥{𝑎𝑖𝑗}𝑏𝑛+1 − {𝑎𝑖𝑗}𝑏𝑛∥ ≤ ∥{𝑎𝑖𝑗}∥∥𝑏𝑛+1 − 𝑏𝑛∥ ≤ 𝜀 for any 𝑛 > 𝑛𝑜. Hence the se-
quence ({𝑎𝑖𝑗}𝑏𝑛) converges to {𝑎𝑖𝑗}{𝑏𝑖𝑗} at 𝑛→ ∞. Since

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a Banach

space then {𝑎𝑖𝑗}{𝑏𝑖𝑗} ∈ ∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 . Since

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 ⊆ 𝐴 we have

∑𝑜
𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a

C∗-algebra. □

Let 𝐻 be an infinite-dimensional Hilbert space, 𝐵(𝐻) be the algebra of all
bounded linear operators. Let {𝑝𝑖} be a countable orthogonal set of equivalent
projections in 𝐵(𝐻) and sup𝑖 𝑝𝑖 = 1. Let {{𝑝𝑖𝑗}𝑗}𝑖 be the set of infinite subsets of

{𝑝𝑖} such that for all distinct 𝜉 and 𝜂 {𝑝𝜉𝑗}𝑗 ∩ {𝑝𝜂𝑗 }𝑗 = ⊘, ∣{𝑝𝜉𝑗}𝑗 ∣ = ∣{𝑝𝜂𝑗 }𝑗 ∣ and
{𝑝𝑖} = ∪𝑖{𝑝𝑖𝑗}𝑗 . Then let 𝑞𝑖 = sup𝑗 𝑝

𝑖
𝑗 in 𝐵(𝐻) for all 𝑖. Then sup𝑖 𝑞𝑖 = 1 and

{𝑞𝑖} be a countable orthogonal set of equivalent projections. Then we say that the
countable orthogonal set {𝑞𝑖} of equivalent projections is defined by the set {𝑝𝑖}
in 𝐵(𝐻). We have the next corollary.

Corollary 7. Let 𝐴 be a unital C∗-algebra on a Hilbert space 𝐻, {𝑝𝑖} be a count-
able orthogonal set of equivalent projections in 𝐴 and sup𝑖 𝑝𝑖 = 1. Let {𝑞𝑖} be a
countable orthogonal set of equivalent projections in 𝐵(𝐻) defined by the set {𝑝𝑖}
in 𝐵(𝐻). Then

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 is a C

∗-subalgebra of the algebra 𝐴.

Proof. Let {{𝑝𝑖𝑗}𝑗}𝑖 be the set of infinite subsets of {𝑝𝑖} such that for all distinct

𝜉 and 𝜂 {𝑝𝜉𝑗}𝑗 ∩ {𝑝𝜂𝑗 }𝑗 = ⊘, ∣{𝑝𝜉𝑗}𝑗 ∣ = ∣{𝑝𝜂𝑗 }𝑗∣ and {𝑝𝑖} = ∪𝑖{𝑝𝑖𝑗}𝑗 . Then let 𝑞𝑖 =

sup𝑗 𝑝
𝑖
𝑗 in 𝐵(𝐻) for all 𝑖. Then we have for all 𝑖 and 𝑗 𝑞𝑖𝐴𝑞𝑗 = {{𝑝𝑖𝜉𝑎𝑝𝑗𝜂}𝜉𝜂 : 𝑎 ∈ 𝐴}.

Hence 𝑞𝑖𝐴𝑞𝑗 ⊂ 𝐴 for all 𝑖 and 𝑗.
The rest part of the proof is the repeating of the proof of Theorem 6. □

Example. 1. Let ℳ be the closure on the norm of the inductive limit ℳ𝑜 of the
inductive system

𝐶 →𝑀2(𝐶) →𝑀3(𝐶) →𝑀4(𝐶) → ⋅ ⋅ ⋅ ,
where 𝑀𝑛(𝐶) is mapped into the upper left corner of 𝑀𝑛+1(𝐶). Then ℳ is a
C∗-algebra ([1]). The algebra ℳ contains the minimal projections of the form 𝑒𝑖𝑖,
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where 𝑒𝑖𝑗 is an infinite-dimensional matrix, whose (𝑖, 𝑖)th component is 1 and the
rest components are zeros. These projections form the countable orthogonal set
{𝑒𝑖𝑖}∞

𝑖=1 of minimal projections. Let

𝑀𝑜
𝑛(ℂ) =

{∑
𝑖𝑗

𝜆𝑖𝑗𝑒𝑖𝑗 : 𝜆𝑖𝑗 ∈ ℂ for any indexes 𝑖, 𝑗 and∥∥∥∥ ∑
𝑘=1,...,𝑖−1

(𝜆𝑘𝑖𝑒𝑘𝑖 + 𝜆𝑖𝑘𝑒𝑖𝑘) + 𝜆𝑖𝑖𝑒𝑖𝑖

∥∥∥∥→ 0 at 𝑖→ ∞
}
.

Then ℂ ⋅ 1 + 𝑀𝑜
𝑛(ℂ) = ℳ (see [2]) and by Theorem 6 𝑀𝑜

𝑛(ℂ) is a simple C∗-
algebra. Note that there exists a mistake in the formulation of Theorem 3 in [2].
ℂ ⋅1+𝑀𝑜

𝑛(ℂ) is a C∗-algebra. But the algebra ℂ ⋅1+𝑀𝑜
𝑛(ℂ) is not simple. Because

ℂ ⋅ 1 +𝑀𝑜
𝑛(ℂ) ∕=𝑀𝑜

𝑛(ℂ) and 𝑀
𝑜
𝑛(ℂ) is an ideal of the algebra ℂ ⋅ 1 +𝑀𝑜

𝑛(ℂ), i.e.,
[ℂ ⋅ 1 +𝑀𝑜

𝑛(ℂ)] ⋅𝑀𝑜
𝑛(ℂ) ⊆𝑀𝑜

𝑛(ℂ).

2. There exist a C∗-algebra 𝐴 and different countable orthogonal sets {𝑒𝑖} and
{𝑓𝑖} of equivalent projections in 𝐴 such that sup𝑖 𝑒𝑖 = 1, sup𝑖 𝑓𝑖 = 1,

∑𝑜
𝑖𝑗 𝑒𝑖𝐴𝑒𝑗 ∕=∑𝑜

𝑖𝑗 𝑓𝑖𝐴𝑓𝑗 . Indeed, let 𝐻 be an infinite-dimensional Hilbert space, 𝐵(𝐻) be the

algebra of all bounded linear operators. Let {𝑝𝑖} be a countable orthogonal set
of equivalent projections in 𝐵(𝐻) and sup𝑖 𝑝𝑖 = 1. Then

∑𝑜
𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 ⊂ 𝐵(𝐻).

Let {{𝑝𝑖𝑗}𝑗}𝑖 be the set of infinite subsets of {𝑝𝑖} such that for all distinct 𝜉 and

𝜂 {𝑝𝜉𝑗}𝑗 ∩ {𝑝𝜂𝑗 }𝑗 = ⊘, ∣{𝑝𝜉𝑗}𝑗 ∣ = ∣{𝑝𝜂𝑗 }𝑗 ∣ and {𝑝𝑖} = ∪𝑖{𝑝𝑖𝑗}𝑗. Then let 𝑞𝑖 = sup𝑗 𝑝
𝑖
𝑗

for all 𝑖. Then sup𝑖 𝑞𝑖 = 1 and {𝑞𝑖} be a countable orthogonal set of equivalent
projections. We assert that

∑𝑜
𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 ∕= ∑𝑜

𝑖𝑗 𝑞𝑖𝐵(𝐻)𝑞𝑗 . Indeed, let {𝑥𝑖𝑗} be

a set of matrix units constructed by the infinite set {𝑝1𝑗}𝑗 ∈ {{𝑝𝑖𝑗}𝑗}𝑖, i.e., for
all 𝑖, 𝑗, 𝑥𝑖𝑗𝑥

∗
𝑖𝑗 = 𝑝1𝑖 , 𝑥

∗
𝑖𝑗𝑥𝑖𝑗 = 𝑝1𝑗 , 𝑥𝑖𝑖 = 𝑝1𝑖 . Then the von Neumann algebra 𝒩

generated by the set {𝑥𝑖𝑗} is isometrically isomorphic to 𝐵(ℋ) for some Hilbert
space ℋ. We note that 𝒩 is not a subset of

∑𝑜
𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 . At the same time,

𝒩 ⊆∑𝑜
𝑖𝑗 𝑞𝑖𝐵(𝐻)𝑞𝑗 and

∑𝑜
𝑖𝑗 𝑝

1
𝑖𝒩𝑝1𝑗 ⊆∑𝑜

𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 .

Theorem 8. Let 𝐴 be a unital simple C∗-algebra on a Hilbert space 𝐻, {𝑝𝑖} be a
countable orthogonal set of equivalent projections in 𝐴 and sup𝑖 𝑝𝑖 = 1. Let {𝑞𝑖}
be a countable orthogonal set of equivalent projections in 𝐵(𝐻) defined by the set
{𝑝𝑖} in 𝐵(𝐻). Then

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 is a simple C

∗-algebra.

Proof. By Theorem 6
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is a C∗-algebra. Let {{𝑝𝑖𝑗}𝑗}𝑖 be the set of infinite
subsets of {𝑝𝑖} such that for all distinct 𝜉 and 𝜂 {𝑝𝜉𝑗}𝑗∩{𝑝𝜂𝑗}𝑗 = ⊘, ∣{𝑝𝜉𝑗}𝑗 ∣ = ∣{𝑝𝜂𝑗 }𝑗 ∣
and {𝑝𝑖} = ∪𝑖{𝑝𝑖𝑗}𝑗 . Then let 𝑞𝑖 = sup𝑗 𝑝

𝑖
𝑗 in 𝐵(𝐻), for all 𝑖. Then we have

𝑞𝑖𝐴𝑞𝑗 = {{𝑝𝑖𝜉𝑎𝑝𝑗𝜉} : 𝑎 ∈ 𝐴} for all 𝑖 and 𝑗. Hence 𝑞𝑖𝐴𝑞𝑗 ⊂ 𝐴 for all 𝑖 and 𝑗. By

Corollary 7
∑𝑜

𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 is a C∗-algebra.
Since projections of the set {𝑝𝑖} are pairwise equivalent we have the projection

𝑞𝑖 is equivalent to 1 ∈ 𝐴 for any 𝑖. Hence 𝑞𝑖𝐴𝑞𝑖 ∼= 𝐴 and 𝑞𝑖𝐴𝑞𝑖 is a simple C∗-
algebra for any 𝑖.
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Let 𝑞 be an arbitrary projection in {𝑞𝑖}. Then 𝑞𝐴𝑞 is a C∗-subalgebra of∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 . Let 𝐼 be a closed two-sided ideal of the algebra

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 . Then 𝐼𝑞𝐴𝑞 ⊂

𝐼 and 𝐼𝑞 ⋅ 𝑞𝐴𝑞 ⊂ 𝐼𝑞. Therefore 𝑞𝐼𝑞𝑞𝐴𝑞 ⊆ 𝑞𝐼𝑞, that is 𝑞𝐼𝑞 is a closed two-sided
ideal of the subalgebra 𝑞𝐴𝑞. Since 𝑞𝐴𝑞 is simple then 𝑞𝐼𝑞 = 𝑞𝐴𝑞.

Let 𝑞1, 𝑞2 be arbitrary projections in {𝑞𝑖}. We assert that 𝑞1𝐼𝑞2 = 𝑞1𝐴𝑞2 and
𝑞2𝐼𝑞1 = 𝑞2𝐴𝑞1. Indeed, we have the projection 𝑞1 + 𝑞2 is equivalent to 1 ∈ 𝐴. Let
𝑒 = 𝑞1 + 𝑞2. Then 𝑒𝐴𝑒 ∼= 𝐴 and 𝑒𝐴𝑒 is a simple C∗-algebra. At the same time
we have 𝑒𝐴𝑒 is a subalgebra of

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 and 𝐼 is a two-sided ideal of

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 .

Hence 𝐼𝑒𝐴𝑒 ⊂ 𝐼 and 𝐼𝑒 ⋅ 𝑒𝐴𝑒 ⊂ 𝐼𝑒. Therefore 𝑒𝐼𝑒𝑒𝐴𝑒 ⊆ 𝑒𝐼𝑒, that is 𝑒𝐼𝑒 is a closed
two-sided ideal of the subalgebra 𝑒𝐴𝑒. Since 𝑒𝐴𝑒 is simple then 𝑒𝐼𝑒 = 𝑒𝐴𝑒. Hence
𝑞1𝐼𝑞2 = 𝑞1𝐴𝑞2 and 𝑞2𝐼𝑞1 = 𝑞2𝐴𝑞1. Therefore 𝑞𝑖𝐼𝑞𝑗 = 𝑞𝑖𝐴𝑞𝑗 for all 𝑖 and 𝑗. We have
𝐼 is norm closed. Hence 𝐼 =

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 , i.e.,

∑𝑜
𝑖𝑗 𝑞𝑖𝐴𝑞𝑗 is a simple C∗-algebra. □

2. Applications

Definition. A C∗-algebra is called a C∗-factor, if it does not have nonzero proper
two-sided ideals 𝐼 and 𝐽 such that 𝐼 ⋅ 𝐽 = {0}, where 𝐼 ⋅ 𝐽 = {𝑎𝑏 : 𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽}.
Theorem 9. Let 𝒩 be a W∗-factor of type II∞ on a Hilbert space 𝐻, {𝑝𝑖} be a
countable orthogonal set of equivalent projections in 𝒩 and sup𝑖 𝑝𝑖 = 1. Then for
any countable orthogonal set {𝑞𝑖} of equivalent projections in 𝐵(𝐻) defined by the
set {𝑝𝑖} in 𝐵(𝐻) the C∗-algebra

∑𝑜
𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 is a C∗-factor with a nonzero finite

and an infinite projection. In this case
∑𝑜

𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 is not a von Neumann algebra.
Proof. By the definition of the set {𝑞𝑖} we have sup𝑖 𝑞𝑖 = 1 and {𝑞𝑖} be a countable
orthogonal set of equivalent infinite projections. By Theorem 6 we have

∑𝑜
𝑖𝑗 𝑞𝑖𝒩𝑝𝑗

is a C∗-subalgebra of 𝒩 . Let 𝑞 be a nonzero finite projection of 𝒩 . Then there
exists a projection 𝑝 ∈ {𝑞𝑖} such that 𝑞𝑝 ∕= 0. We have 𝑞𝒩 𝑞 is a finite von Neumann
algebra. Let 𝑥 = 𝑝𝑞. Then 𝑥𝒩𝑥∗ is a weakly closed C∗-subalgebra. Note that the
algebra 𝑥𝒩𝑥∗ has a center-valued faithful trace. Let 𝑒 be a nonzero projection of
the algebra 𝑥𝒩𝑥∗. Then 𝑒𝑝 = 𝑒 and 𝑒 ∈ 𝑝𝒩𝑝. Hence 𝑒 ∈∑𝑜

𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 . We have the

weak closure of
∑𝑜

𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 in the algebra 𝒩 coincides with this algebra 𝒩 . Then

by the weak continuity of the multiplication
∑𝑜

𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 is a C∗-factor. Note since

1 /∈ ∑𝑜
𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 then

∑𝑜
𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 is not weakly closed in 𝒩 . Hence the C∗-factor∑𝑜

𝑖𝑗 𝑞𝑖𝒩 𝑞𝑗 is not a von Neumann algebra. □

Remark. Note that, in the article [3] a simple C∗-algebra with an infinite and a
nonzero finite projection have been constructed by M.Rørdam. In the next corol-
lary we construct a simple purely infinite C∗-algebra. Note that simple purely
infinite C∗-algebras are considered and investigated, in particular, in [4] and [5].

Theorem 10. Let 𝒩 be a W∗-factor of type III on a Hilbert space 𝐻. Then for any
countable orthogonal set {𝑝𝑖} of equivalent projections in 𝒩 such that sup𝑖 𝑝𝑖 = 1,∑𝑜

𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 is a simple purely infinite C∗-algebra. In this case
∑𝑜

𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 is not a
von Neumann algebra.
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Proof. Let 𝑝𝑖𝑜 be a projection in {𝑝𝑖}. We have the projection 𝑝𝑖𝑜 can be exhibited

as a least upper bound of a countable orthogonal set {𝑝𝑗𝑖𝑜}𝑗 of equivalent projec-

tions in 𝒩 . Then for any 𝑖 the projection 𝑝𝑖 has a countable orthogonal set {𝑝𝑗𝑖}𝑗 of
equivalent projections in 𝒩 such that the set

∪
𝑖{𝑝𝑗𝑖}𝑗 is a countable orthogonal set

of equivalent projections in 𝒩 . Hence the set {𝑝𝑖} is defined by the set
∪

𝑖{𝑝𝑗𝑖}𝑗 in
𝐵(𝐻) (in 𝒩 ). Hence by Theorem 8

∑𝑜
𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 is a simple C∗-algebra. Note, since

1 /∈∑𝑜
𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 we have

∑𝑜
𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 is not weakly closed in 𝒩 . Hence

∑𝑜
𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 is

not a von Neumann algebra.
Suppose there exists a nonzero finite projection 𝑞 in

∑𝑜
𝑖𝑗 𝑝𝑖𝒩𝑝𝑗 . Then there

exists a projection 𝑝 ∈ {𝑝𝑖} such that 𝑞𝑝 ∕= 0. We have 𝑞(
∑𝑜

𝑖𝑗 𝑝𝑖𝒩𝑝𝑗)𝑞 is a finite
C∗-algebra. Let 𝑥 = 𝑝𝑞. Then 𝑥𝒩𝑥∗ is a C∗-subalgebra. Moreover 𝑥𝒩𝑥∗ is weakly
closed and 𝑥𝒩𝑥∗ ⊂ 𝑝𝒩𝑝. Hence 𝑥𝒩𝑥∗ has a center-valued faithful trace. Then
𝑥𝒩𝑥∗ is a finite von Neumann algebra with a center-valued faithful normal trace.
Let 𝑒 be a nonzero projection of the algebra 𝑥𝒩𝑥∗. Then 𝑒𝑝 = 𝑒 and 𝑒 ∈ 𝑝𝒩𝑝.
Hence 𝑒 ∈ 𝒩 . This is a contradiction. □

Example. Let 𝐻 be a separable Hilbert space and 𝐵(𝐻) the algebra of all bounded
linear operators on 𝐻 . Let {𝑞𝑖} be a maximal orthogonal set of equivalent minimal
projections in 𝐵(𝐻). Then

∑𝑜
𝑖𝑗 𝑞𝑖𝐵(𝐻)𝑞𝑗 is a two-sided closed ideal of the algebra

𝐵(𝐻). Using the set {𝑞𝑖} we construct a countable orthogonal set {𝑝𝑖} of equivalent
infinite projections such that sup𝑖 𝑝𝑖 = 1. Let {{𝑞𝑖𝑗}𝑗}𝑖 be the countable set of

countable subsets of {𝑞𝑖} such that for all distinct 𝑖1 and 𝑖2 {𝑞𝑖1𝑗 }𝑗 ∩ {𝑝𝑖2𝑗 }𝑗 = ⊘
and {𝑞𝑖} = ∪𝑖{𝑞𝑖𝑗}𝑗. Then let 𝑝𝑖 = sup𝑗 𝑞

𝑖
𝑗 for all 𝑖. Then sup𝑖 𝑝𝑖 = 1 and {𝑝𝑖} is

a countable orthogonal set of equivalent infinite projections in 𝐵(𝐻) defined by
{𝑞𝑖} in 𝐵(𝐻).

Let {𝑞𝑖𝑗𝑛𝑚} be the set of matrix units constructed by the set {{𝑞𝑖𝑗}𝑗}𝑖, i.e.,
𝑞𝑖𝑗𝑛𝑚𝑞

𝑖𝑗
𝑛𝑚

∗
= 𝑞𝑖𝑛, 𝑞

𝑖𝑗
𝑛𝑚

∗
𝑞𝑖𝑗𝑛𝑚 = 𝑞𝑗𝑚, 𝑞𝑖𝑖𝑛𝑛 = 𝑞𝑖𝑛 for all 𝑖, 𝑗,𝑛,𝑚. Then let 𝑎 = {𝑎𝑖𝑗𝑛𝑚𝑞𝑖𝑗𝑛𝑚}

be the decomposition of the element 𝑎 ∈ 𝐵(𝐻), where the components 𝑎𝑖𝑗𝑛𝑚 are
defined as follows

𝑎1111 = 𝜆, 𝑎
21
12 = 𝜆, 𝑎

31
13 = 𝜆, . . . , 𝑎

𝑛1
1𝑛 = 𝜆, . . . ,

and the rest components 𝑎𝑖𝑗𝑛𝑚 are zero, i.e., 𝑎𝑖𝑗𝑛𝑚 = 0. Then 𝑝1𝑎 = 𝑎. Then, since
𝑎 /∈ ∑𝑜

𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 and 𝑝1 ∈ ∑𝑜
𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 we have

∑𝑜
𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 is not a two-

sided ideal of 𝐵(𝐻). But by theorem 6
∑𝑜

𝑖𝑗 𝑝𝑖𝐵(𝐻)𝑝𝑗 is a C∗-algebra. Hence there
exists a C∗-algebra 𝐴 with an orthogonal set {𝑝𝑖} of equivalent projections such
that
∑𝑜

𝑖𝑗 𝑝𝑖𝐴𝑝𝑗 is not a two-sided ideal of 𝐴.
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Canonical Transfer-function Realization for
Schur-Agler-class Functions on Domains with
Matrix Polynomial Defining Function in ℂ𝒏

Joseph A. Ball and Vladimir Bolotnikov

Abstract. It is well known that a Schur-class function 𝑆(𝑧), i.e., a holomorphic
function on the unit disk whose values are contraction operators between two
Hilbert spaces 𝒰 (the input space) and 𝒴 (the output space), can be written as
the characteristic function 𝑆(𝑧) = 𝐷+ 𝑧𝐶(𝐼 − 𝑧𝐴)−1𝐵 of the unitary colliga-
tion U = [𝐴 𝐵

𝐶 𝐷 ] (or as the transfer function of the associated conservative lin-
ear system) whereU defines a unitary operator from 𝒳⊕𝒰 to 𝒳⊕𝒴 where the
Hilbert space 𝒳 is an appropriately chosen state space. Moreover, this trans-
fer function is essentially uniquely determined if U is also required to satisfy a
certain minimality condition (U should be “closely-connected”). In addition,
by choosing the state space 𝒳 to be the two-component de Branges-Rovnyak

reproducing kernel Hilbert space ℋ( ˆ𝐾), one can arrive at a unique canonical
functional-model form for a U meeting the minimality requirement. Recent
work of the authors and others has extended the notion of Schur class and
transfer-function representation for Schur-class functions to several-variable
complex domains with matrix-polynomial defining function. In this setting
the term “Schur-Agler class” is used since one also imposes that a certain
von Neumann inequality be satisfied. In this article we develop an analogue
of the two-component de Branges-Rovnyak reproducing kernel Hilbert space
for this more general setting and thereby arrive at a two-component canoni-
cal functional model colligation for the analogue of closely-connected unitary
transfer-function realization for this Schur-Agler class. A number of new tech-
nical issues appear in this setting which are not present in the classical case.
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Keywords. Operator-valued Schur-Agler functions, Agler decomposition, uni-
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1. Introduction

Let 𝒰 and 𝒴 be two Hilbert spaces and let ℒ(𝒰 ,𝒴) be the space of all bounded
linear operators between 𝒰 and 𝒴. We also let 𝐻2

𝒰 be the standard Hardy space of
the 𝒰-valued holomorphic functions on the unit disk 𝔻. The operator-valued ver-
sion of the classical Schur class 𝒮(𝒰 ,𝒴) is defined to be the set of all holomorphic,
contractive ℒ(𝒰 ,𝒴)-valued functions on 𝔻. With any function 𝑆 ∈ 𝒮(𝒰 ,𝒴), one
can associate the following three operator-valued kernels

𝐾𝑆(𝑧, 𝜁) =
𝐼𝒴 − 𝑆(𝑧)𝑆(𝜁)∗

1− 𝑧𝜁 , 𝐾̃𝑆(𝑧, 𝜁) =
𝐼𝒰 − 𝑆(𝑧)∗𝑆(𝜁)

1 − 𝑧𝜁 , (1.1)

𝐾̂𝑆(𝑧, 𝜁) =

⎡⎢⎢⎣ 𝐾𝑆(𝑧, 𝜁)
𝑆(𝑧)− 𝑆(𝜁)
𝑧 − 𝜁

𝑆(𝑧)∗ − 𝑆(𝜁)∗
𝑧 − 𝜁 𝐾̃𝑆(𝑧, 𝜁)

⎤⎥⎥⎦ . (1.2)

The following equivalent characterizations of the Schur class are well known.

Theorem 1.1. Let 𝑆 : 𝔻 → ℒ(𝒰 ,𝒴) be given. Then the following are equivalent:

(1a) 𝑆 ∈ 𝒮(𝒰 ,𝒴), i.e., 𝑆 is holomorphic on 𝔻 with ∥𝑆(𝑧)∥ ≤ 1 for all 𝑧 ∈ 𝔻.

(1b) 𝑆 satisfies the von Neumann inequality: ∥𝑆(𝑇 )∥ ≤ 1 for any strictly contrac-
tive operator 𝑇 on a Hilbert space ℋ, where 𝑆(𝑇 ) is defined by

𝑆(𝑇 ) =

∞∑
𝑛=0

𝑆𝑛 ⊗ 𝑇 𝑛 ∈ ℒ(𝒰 ⊗ ℋ,𝒴 ⊗ ℋ) if 𝑆(𝑧) =

∞∑
𝑛=0

𝑆𝑛𝑧
𝑛.

(2a) The kernel 𝐾𝑆(𝑧, 𝜁) is positive on 𝔻 × 𝔻.

(2b) The kernel 𝐾̃𝑆(𝑧, 𝜁) is positive on 𝔻 × 𝔻.

(2c) The kernel 𝐾̂(𝑧, 𝜁) is positive on 𝔻 × 𝔻.

(3) There is an auxiliary Hilbert space 𝒳 and a unitary connecting operator (or
colligation) U = [ 𝐴 𝐵

𝐶 𝐷 ] : [𝒳
𝒰 ] → [ 𝒳

𝒴
]
so that 𝑆(𝑧) can be expressed as

𝑆(𝑧) = 𝐷 + 𝑧𝐶(𝐼 − 𝑧𝐴)−1𝐵. (1.3)

(4) 𝑆(𝑧) has a realization as in (1.3) where the connecting operator U is any one
of (i) isometric, (ii) coisometric, or (iii) contractive.

The function on the right-hand side of (1.3) is called the transfer function
of the colligation U = [ 𝐴 𝐵

𝐶 𝐷 ] and thus, statement (3) in Theorem 1.1 asserts that
every Schur-class function can be realized as the transfer function of a unitary
colligation.

Two colligations U = [ 𝐴 𝐵
𝐶 𝐷 ] : [𝒳

𝒰 ] → [ 𝒳
𝒴
]
and U′ =

[
𝐴′ 𝐵′
𝐶′ 𝐷′

]
:
[ 𝒳 ′

𝒰
] → [ 𝒳 ′

𝒴
]

are called unitarily equivalent if there is a unitary operator 𝑈 : 𝒳 → 𝒳 ′ so that[
𝑈 0
0 𝐼𝒴

] [
𝐴 𝐵
𝐶 𝐷

]
=

[
𝐴′ 𝐵′

𝐶′ 𝐷′

] [
𝑈 0
0 𝐼𝒰

]
.
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It is readily seen that if two colligations are unitarily equivalent, then their transfer
functions coincide. The converse is true under certain minimality conditions which
we now recall. In what follows, the symbol

⋁
stands for the closed linear span.

Definition 1.2. The colligation U = [ 𝐴 𝐵
𝐶 𝐷 ] : [𝒳

𝒰 ] → [ 𝒳
𝒴
]
is called

1) observable (or closely outer-connected) if the pair (𝐶,𝐴) is observable, i.e., if⋁
𝑛≥0

Ran𝐴∗𝑛𝐶∗ = 𝒳 ;

2) controllable (or closely inner-connected) if the pair (𝐵,𝐴) is controllable, i.e.,

if
⋁
𝑛≥0

Ran𝐴𝑛𝐵 = 𝒳 ;

3) closely connected if
⋁
𝑛≥0

{Ran𝐴𝑛𝐵, Ran𝐴∗𝑛𝐶∗} = 𝒳 .

The positive kernel functions 𝐾𝑆, 𝐾̃𝑆 and 𝐾̂𝑆 given by (1.1), (1.2) and the

reproducing kernel Hilbert spaces ℋ(𝐾𝑆), ℋ(𝐾̃𝑆) and ℋ(𝐾̂𝑆) (called de Branges-
Rovnyak reproducing kernel Hilbert spaces) associated with the Schur-class function
𝑆 have been much studied over the years, both as an object in itself and as a tool
for other types of applications. Observe that the kernel 𝐾𝑆(𝑧, 𝜁) is analytic in
𝑧, 𝜁 and therefore, all functions in the associated space ℋ(𝐾𝑆) are analytic on 𝔻.

The kernel 𝐾̃𝑆 is analytic in 𝑧 and 𝜁 and the associated space ℋ(𝐾̃𝑆) consists of

conjugate-analytic functions. Similarly, the elements of ℋ(𝐾̂𝑆) are the functions of

the form 𝑓 =

[
𝑓+
𝑓−

]
where 𝑓+ is analytic and 𝑓− is conjugate-analytic. The special

role of the de Branges-Rovnyak spaces in connection with the transfer-function
realization for Schur-class functions is illustrated in the following three theorems.

Theorem 1.3. Suppose that the function 𝑆 is in the Schur class 𝒮(𝒰 ,𝒴) and let
ℋ(𝐾𝑆) be the associated de Branges-Rovnyak space. Define operators 𝐴, 𝐵, 𝐶,
𝐷 by

𝐴 : 𝑓(𝑧) +→ 𝑓(𝑧)− 𝑓(0)
𝑧

, 𝐵 : 𝑢 +→ 𝑆(𝑧)− 𝑆(0)
𝑧

𝑢,

𝐶 : 𝑓(𝑧) +→ 𝑓(0), 𝐷 : 𝑢 +→ 𝑆(0)𝑢.

Then the operator colligation U = [𝐴 𝐵
𝐶 𝐷 ] defines a coisometry from ℋ(𝐾𝑆)⊕𝒰 to

ℋ(𝐾𝑆) ⊕ 𝒴. Moreover, U is observable and its transfer function equals 𝑆(𝑧). Fi-

nally, any observable coisometric colligation
[
𝐴′ 𝐵′
𝐶′ 𝐷′

]
: [𝒳

𝒰 ] → [ 𝒳
𝒴
]
with its transfer

function equal to 𝑆 is unitarily equivalent to U.

Theorem 1.4. Suppose that the function 𝑆 is in the Schur class 𝒮(𝒰 ,𝒴) and let

ℋ(𝐾̃𝑆) be the associated dual de Branges-Rovnyak space. Define

𝐴 : 𝑔(𝑧) +→ 𝑧𝑔(𝑧)− 𝑆(𝑧)∗𝑔(0), 𝐵 : 𝑢 +→ (𝐼 − 𝑆(𝑧)∗𝑆(0))𝑢,
𝐶 : 𝑔(𝑧) +→ 𝑔(0), 𝐷̃ : 𝑢 +→ 𝑆(0)𝑢,
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where 𝑔(0) is the unique vector in 𝒴 such that

⟨𝑔(0), 𝑦⟩𝒴 =

〈
𝑔(𝑧),

𝑆(𝑧)∗ − 𝑆(0)∗
𝑧

𝑦

〉
ℋ(𝐾̃𝑆)

for all 𝑦 ∈ 𝒴.

Then the operator colligation Ũ =
[
𝐴 𝐵
𝐶 𝐷̃

]
defines an isometry from ℋ(𝐾̃𝑆) ⊕

𝒰 to ℋ(𝐾̃𝑆) ⊕ 𝒴. Moreover, Ũ is controllable and its transfer function equals

𝑆(𝑧). Finally any controllable isometric colligation
[
𝐴′ 𝐵′
𝐶′ 𝐷′

]
: [𝒳

𝒰 ] → [ 𝒳
𝒴
]
with its

transfer function equal to 𝑆 is unitarily equivalent to Ũ.

Theorem 1.5. Suppose that the function 𝑆 is in the Schur class 𝒮(𝒰 ,𝒴) and let

𝐾̂(𝑧, 𝜁) be the positive kernel on 𝔻 given by (1.2). Define operators 𝐴,𝐵,𝐶, 𝐷̂ by

𝐴 :

[
𝑓(𝑧)
𝑔(𝑧)

]
+→
[

[𝑓(𝑧)− 𝑓(0)]/𝑧
𝑧𝑔(𝑧)− 𝑆(𝑧)∗𝑓(0)

]
, 𝐵 : 𝑢 +→

[
𝑆(𝑧)−𝑆(0)

𝑧 𝑢
(𝐼 − 𝑆(𝑧)∗𝑆(0))𝑢

]
,

𝐶 :

[
𝑓(𝑧)
𝑔(𝑧)

]
+→ 𝑓(0), 𝐷̂ : 𝑢 +→ 𝑆(0)𝑢.

Then the operator colligation Û =
[
𝐴 𝐵
𝐶 𝐷̂

]
defines a unitary operator from ℋ(𝐾̂𝑆)⊕

𝒰 onto ℋ(𝐾̂𝑆) ⊕ 𝒴. Moreover, Û is closely connected and its transfer function

equals 𝑆(𝑧). Finally, any closely connected unitary colligation
[
𝐴′ 𝐵′
𝐶′ 𝐷′

]
: (𝒳 ⊕𝒰) →

(𝒳 ⊕ 𝒴) with its transfer function equal to 𝑆 is unitarily equivalent to Û.

Multivariable generalizations of these and many other related results have
been obtained recently in the following way: let Q be a 𝑝× 𝑞 matrix-valued poly-
nomial

Q(𝑧) =

⎡⎢⎣q11(𝑧) . . . q1𝑞(𝑧)
...

...
q𝑝1(𝑧) . . . q𝑝𝑞(𝑧)

⎤⎥⎦ : ℂ𝑛 → ℂ𝑝×𝑞 (1.4)

and let 𝒟Q ∈ ℂ𝑛 be the domain defined by

𝒟Q = {𝑧 ∈ ℂ𝑛 : ∥Q(𝑧)∥ < 1} .
Now we recall the Schur-Agler class 𝒮𝒜Q(𝒰 , 𝒴) that consists, by definition, of
ℒ(𝒰 , 𝒴)-valued functions 𝑆(𝑧) = 𝑆(𝑧1, . . . , 𝑧𝑛) analytic on 𝒟Q and such that
∥𝑆(𝑇 )∥ ≤ 1 for any collection of 𝑛 commuting operators 𝑇 = (𝑇1, . . . , 𝑇𝑛) on
a Hilbert space 𝒦, subject to ∥Q(𝑇 )∥ < 1. By [3, Lemma 1], the Taylor joint
spectrum of the commuting 𝑛-tuple 𝑇 = (𝑇1, . . . , 𝑇𝑛) is contained in 𝒟Q whenever
∥Q(𝑇 )∥ < 1, and hence 𝑆(𝑇 ) is well defined by the Taylor functional calculus
for any ℒ(𝒰 ,𝒴)-valued function 𝑆 which is analytic on 𝒟Q. The following result
appears in [2, 6] (see also [3] for the scalar-valued case 𝒰 = 𝒴 = ℂ) and is a
multivariable analog of Theorem 1.1. Here and in what follows, we use notation
ℋ𝑛 := ⊕𝑛

1ℋ for a Hilbert space ℋ. Also we will often abuse notation and will write
Q(𝑧) instead of Q(𝑧)⊗ 𝐼ℋ.
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Theorem 1.6. Let 𝑆 be a ℒ(𝒰 , 𝒴)-valued function defined on 𝒟Q. The following
statements are equivalent:

(1) 𝑆 belongs to 𝒮𝒜Q(𝒰 , 𝒴).
(2a) There exists a positive kernel

𝕂𝐿 =

⎡⎢⎣𝐾
𝐿
11 . . . 𝐾𝐿

1𝑝
...

...
𝐾𝐿

𝑝1 . . . 𝐾𝐿
𝑝𝑝

⎤⎥⎦ : 𝒟Q × 𝒟Q → ℒ(𝒴𝑝) (1.5)

such that for every 𝑧, 𝜁 ∈ 𝒟Q,

𝐼𝒴 − 𝑆(𝑧)𝑆(𝜁)∗ =

𝑝∑
𝑗=1

𝐾𝐿
𝑗,𝑗(𝑧, 𝜁) −

𝑞∑
𝑘=1

𝑝∑
𝑖,ℓ=1

q𝑖𝑘(𝑧)qℓ𝑘(𝜁)𝐾
𝐿
𝑖,ℓ(𝑧, 𝜁). (1.6)

(2b) There exists a positive kernel

𝕂𝑅 =

⎡⎢⎣𝐾
𝑅
11 . . . 𝐾𝑅

1𝑞
...

...
𝐾𝑅

𝑞1 . . . 𝐾𝑅
𝑞𝑞

⎤⎥⎦ : 𝒟Q × 𝒟Q → ℒ(𝒰𝑞) (1.7)

so that for every 𝑧, 𝜁 ∈ 𝒟Q,

𝐼𝒰 − 𝑆(𝑧)∗𝑆(𝜁) =
𝑞∑

𝑘=1

𝐾𝑅
𝑘,𝑘(𝑧, 𝜁)−

𝑝∑
𝑗=1

𝑞∑
𝑖,ℓ=1

q𝑗𝑖(𝑧)q𝑗ℓ(𝜁)𝐾
𝑅
𝑖,ℓ(𝑧, 𝜁). (1.8)

(2c) There exist kernels 𝕂𝐿 and 𝕂𝑅 of the form (1.5), (1.7) and satisfying iden-
tities (1.6), (1.8), and a kernel

𝕂𝐿𝑅 =

⎡⎢⎣𝐾
𝐿𝑅
1,1 . . . 𝐾𝐿𝑅

1,𝑞
...

...
𝐾𝐿𝑅

𝑝,1 . . . 𝐾𝐿𝑅
𝑝,𝑞

⎤⎥⎦ : 𝒟Q × 𝒟Q +→ ℒ(𝒰𝑞,𝒴𝑝) (1.9)

satisfying

𝑆(𝑧)− 𝑆(𝜁) =
𝑝∑

𝑖=1

𝑞∑
ℓ=1

(q𝑖ℓ(𝑧)− q𝑖ℓ(𝜁))𝐾
𝐿𝑅
𝑖,ℓ (𝑧, 𝜁) (1.10)

and such that the kernel

𝕂(𝑧, 𝜁) =

[
𝕂𝐿(𝑧, 𝜁) 𝕂𝐿𝑅(𝑧, 𝜁)
𝕂𝑅𝐿(𝑧, 𝜁) 𝕂𝑅(𝑧, 𝜁)

]
(1.11)

is positive on 𝒟Q × 𝒟Q, where 𝕂𝑅𝐿(𝑧, 𝜁) := 𝕂𝐿𝑅(𝜁, 𝑧)
∗.
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(3) There exist an auxiliary Hilbert space 𝒳 and a unitary connecting operator
(or colligation) U of the structured form

U =

[
𝐴 𝐵
𝐶 𝐷

]
=

⎡⎢⎢⎢⎣
𝐴11 . . . 𝐴1𝑝 𝐵1
...

...
...

𝐴𝑞1 . . . 𝐴𝑞𝑝 𝐵𝑞

𝐶1 . . . 𝐶𝑝 𝐷

⎤⎥⎥⎥⎦ :

[𝒳 𝑝

𝒰
]

→
[𝒳 𝑞

𝒴
]

(1.12)

so that 𝑆(𝑧) can be realized in the form

𝑆(𝑧) = 𝐷 + 𝐶 (𝐼𝒳 𝑝 − (Q(𝑧) ⊗ 𝐼𝒳 )𝐴)
−1

(Q(𝑧) ⊗ 𝐼𝒳 )𝐵 (𝑧 ∈ 𝒟Q). (1.13)

(4) 𝑆(𝑧) has a realization as in (1.13) where the connecting operator U is any
one of (i) isometric, (ii) coisometric, or (iii) contractive.

In what follows, formulas (1.6) and (1.8) will be called respectively a left and
a right Agler decomposition respectively.

The objective of this paper is to extend Theorems 1.3, 1.4 and 1.5 to the
present multivariable setting. In other words we are aiming at constructing real-
izations for a given Schur-Agler function 𝑆 ∈ 𝒮𝒜Q(𝒰 , 𝒴) satisfying certain metric
properties (such as being coisometric, isometric, or unitary) in a certain canonical
way. The latter means in particular, that we will point out a canonical choice of the
state spaces for these realizations and that under certain minimality conditions,
the constructed realizations will be unique up to unitary equivalence.

We say that a colligation U of the form (1.12) is unitarily equivalent to a
colligation

Ũ =

[
𝐴 𝐵

𝐶 𝐷

]
:

[𝒳 𝑝

𝒰
]

→
[𝒳 𝑞

𝒴
]

(1.14)

if there exists a unitary operator 𝑈 : 𝒳 → 𝒳 such that[⊕𝑞
𝑖=1𝑈 0
0 𝐼𝒴

] [
𝐴 𝐵
𝐶 𝐷

]
=

[
𝐴 𝐵

𝐶 𝐷

] [⊕𝑝
𝑖=1𝑈 0
0 𝐼𝒰

]
. (1.15)

Equality (1.15) is what we need to guarantee (as in the univariate case) that the
transfer functions of two unitarily equivalent colligations coincide. We next extend
Definition 1.2 to the present setting. We denote by ℐ𝑛,𝑖 : 𝒳 → 𝒳𝑛 the inclusion

map of the space 𝒳 into the 𝑖th slot in the direct-sum space 𝒳 𝑑 =
⊕𝑑

𝑘=1 𝒳 ; the
adjoint then is the orthogonal projection of 𝒳𝑛 down to the 𝑖th component:

ℐ𝑛,𝑖 : 𝑥𝑖 +→

⎡⎢⎢⎢⎢⎢⎢⎣
0
...
𝑥𝑖
...
0

⎤⎥⎥⎥⎥⎥⎥⎦ and ℐ∗
𝑛,𝑖 :

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1
...
𝑥𝑖
...
𝑥𝑛

⎤⎥⎥⎥⎥⎥⎥⎦ +→ 𝑥𝑖. (1.16)
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We will say that the output pair (𝐶,𝐴) isQ-observable if the observability subspace
ℋ𝒪

𝐶,𝐴 defined below is equal to 𝒳 :

ℋ𝒪
𝐶,𝐴 :=

⋁{ℐ∗
𝑝,𝑗(𝐼𝒳 𝑝 −𝐴∗Q(𝑧)∗)−1𝐶∗𝑦 : 𝑧 ∈ 𝒟Q, 𝑦 ∈ 𝒴, 𝑗 = 1, . . . , 𝑝

}
= 𝒳 .

We will say that the input pair (𝐴,𝐵) is Q-controllable if the controllability sub-
space ℋ𝒞

𝐴,𝐵 defined below is equal to 𝒳 :

ℋ𝒞
𝐴,𝐵 :=

⋁{ℐ∗
𝑞,𝑘(𝐼𝒳 𝑞 −𝐴Q(𝑧))−1𝐵𝑢 : 𝑧 ∈ 𝒟Q, 𝑢 ∈ 𝒰 , 𝑘 = 1, . . . , 𝑞

}
= 𝒳 .

Definition 1.7. The structured colligation (1.12) is calledQ-observable if the output
pair (𝐶,𝐴) is Q-observable. It is called Q-controllable if the input pair (𝐴,𝐵) is
Q-controllable and it is called closely connected if

ℋ𝒪
𝐶,𝐴

⋁
ℋ𝒞

𝐴,𝐵 = 𝒳 .

In analogy with the univariate case, a realization of the form (1.13) is called
coisometric, isometric, unitary or contractive if the operator U is respectively,
coisometric, isometric, unitary or just contractive. It turns out that a more useful
analogue of the notion of “isometric” or “coisometric” realization appearing in the
classical univariate case is not that the whole connecting operator U (or U∗) be
isometric, but rather that U (respectively, U∗) be isometric on a certain canonical
subspace of 𝒳 𝑝 ⊕ 𝒰 (of 𝒳 𝑞 ⊕ 𝒴, respectively).

Definition 1.8. The colligation U of the form (1.12) is called

1) weakly coisometric if the adjoint U∗ : 𝒳 𝑞 ⊕ 𝒴 → 𝒳 𝑝 ⊕ 𝒰 is contractive and
isometric on the subspace

𝒟U∗ :=
⋁

𝜁∈𝒟Q, 𝑦∈𝒴

[
Q(𝜁)∗(𝐼 −𝐴∗Q(𝜁)∗)−1𝐶∗𝑦

𝑦

]
⊂
[𝒳 𝑞

𝒴
]
; (1.17)

2) weakly isometric if U is contractive and isometric on the subspace

𝒟̃U :=
⋁

𝜁∈𝒟Q, 𝑢∈𝒰

[
Q(𝜁)(𝐼 −𝐴Q(𝜁))−1𝐵𝑢

𝑢

]
⊂
[𝒳 𝑝

𝒰
]
; (1.18)

3) weakly unitary if it is weakly isometric and weakly coisometric.

The paper is organized as follows. After the present Introduction, Section 2
sets up some matricial notation which helps to streamline the computations to
come and also explains why there is no loss of generality in assuming that 0 ∈ 𝒟Q

and Q(0) = 0. Sections 3 and 4 review needed material from [7] concerning weakly
coisometric and weakly isometric canonical functional models respectively and the
corresponding respective analogues of Theorems 1.3 and 1.4 to the multivariable
Q-setting. Section 5 introduces two-component canonical functional models asso-
ciated with a matrix polynomial Q and obtains the analogue of Theorem 1.5 in
complete detail and generality.
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We mention that special cases of the formalism here corresponding toQ equal
to a row linear matrix polynomial of the form Q(𝑧) =

[
𝑧1 ⋅ ⋅ ⋅ 𝑧𝑑

]
or Q equal

to a diagonal linear matrix polynomial Q(𝑧) =

[
𝑧1

. . .
𝑧𝑑

]
lead to more familiar

function theory over the unit ball 𝔹𝑑 = {𝑧 = (𝑧1, . . . , 𝑧𝑑) :
∑𝑑

𝑗=1 ∣𝑧𝑗 ∣2 < 1} and the

unit polydisk 𝔻𝑑 = {𝑧 = (𝑧1, . . . , 𝑧𝑑) : ∣𝑧𝑗 ∣ < 1 for 𝑗 = 1, . . . , 𝑑} respectively; these
specializations are explained in [7]. We present the special details and applications
of the two-component canonical functional model colligations for these two special
cases in separate articles [8, 9].

2. Preliminaries

In this section we collect some preliminaries needed for the subsequent analysis.
We first remark that realization formulas become much simpler if there exists a
point 𝑧0 ∈ 𝒟Q such that Q(𝑧0) = 0. In general, such a point may not exist.
However, as the next lemma shows, we may assume without loss of generality that
such a point does exist.

Lemma 2.1. Let 𝑧0 ∈ 𝒟Q so that the matrix 𝑄0 = Q(𝑧0) is a strictly contractive
matrix. Then

1. The 𝑝× 𝑞 matrix-valued function
Q̂(𝑧) = (𝐼𝑝 −𝑄0𝑄

∗
0)

− 1
2 (Q(𝑧)−𝑄0) (𝐼𝑞 −𝑄∗

0Q(𝑧))
−1

(𝐼𝑞 −𝑄∗
0𝑄0)

1
2 (2.1)

is the transfer function of the unitary colligation

U0 =

[
𝑄∗
0 (𝐼𝑞 −𝑄∗

0𝑄0)
1
2

(𝐼𝑝 −𝑄0𝑄
∗
0)

1
2 −𝑄0

]
. (2.2)

2. The domains 𝒟Q and 𝒟Q̂ coincide.

3. The classes 𝒮𝒜Q(𝒰 , 𝒴) and 𝒮𝒜Q̂(𝒰 , 𝒴) are the same.

Proof. Write (2.1) as

Q̂(𝑧) = − (𝐼𝑝 −𝑄0𝑄
∗
0)

− 1
2 𝑄0 (𝐼𝑞 −𝑄∗

0𝑄0)
1
2

+ (𝐼𝑝 −𝑄0𝑄
∗
0)

1
2 Q(𝑧) (𝐼𝑞 −𝑄∗

0Q(𝑧))
−1

(𝐼𝑞 −𝑄∗
0𝑄0)

1
2

and use self-evident equalities

(𝐼𝑝 −𝑄0𝑄
∗
0)

− 1
2 𝑄0 (𝐼𝑝 −𝑄∗

0𝑄0)
1
2 = 𝑄0,

Q(𝑧) (𝐼𝑞 −𝑄∗
0Q(𝑧))

−1
= (𝐼𝑝 − Q(𝑧)𝑄∗

0)
−1

Q(𝑧)

to get

Q̂(𝑧) = −𝑄0 + (𝐼𝑝 −𝑄0𝑄
∗
0)

1
2 (𝐼𝑝 − Q(𝑧)𝑄∗

0)
−1

Q(𝑧) (𝐼𝑞 −𝑄∗
0𝑄0)

1
2
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which means that Q̂(𝑧) is the transfer function of the Q-colligation U0 defined in
(2.2). Solving (2.1) for Q gives

Q(𝑧) = (𝐼𝑝 −𝑄0𝑄
∗
0)

1
2

(
𝐼𝑝 + Q̂(𝑧)𝑄∗

0

)−1 (
Q̂(𝑧) +𝑄0

)
(𝐼𝑞 −𝑄∗

0𝑄0)
− 1

2

= 𝑄0 + (𝐼𝑝 −𝑄0𝑄
∗
0)

1
2

(
𝐼𝑞 + Q̂(𝑧)𝑄∗

0

)−1

Q̂(𝑧) (𝐼𝑞 −𝑄∗
0𝑄0)

1
2 (2.3)

and thus Q(𝑧) is the transfer function of the Q̂-colligation

Û0 =

[
−𝑄∗

0 (𝐼𝑞 −𝑄∗
0𝑄0)

1
2

(𝐼𝑝 −𝑄0𝑄
∗
0)

1
2 𝑄0

]
.

It is readily seen that U0 and Û0 are unitary and therefore

𝐼𝑝 − Q̂(𝑧)Q̂(𝜁)∗ = (𝐼𝑝 −𝑄0𝑄
∗
0)

1
2 (𝐼𝑝 − Q(𝑧)𝑄∗

0)
−1

(𝐼𝑝 − Q(𝑧)Q(𝜁)∗)

× (𝐼𝑝 −𝑄0Q(𝜁)∗)−1
(𝐼𝑝 −𝑄0𝑄

∗
0)

1
2 ,

from which we conclude that ∥Q̂(𝑧)∥ < 1 if and only if ∥Q(𝑧)∥ < 1 which proves
the statement (2) of the lemma.

To prove statement (3), we take an arbitrary function 𝑆 ∈ 𝒮𝐴Q(𝒰 ,𝒴) which
admits a unitary realization (1.13) by Theorem 1.6. Substituting (2.3) into (1.13),
leads us to

𝑆(𝑧) = 𝐷̂ + 𝐶
(
𝐼𝒳 𝑝 − Q̂(𝑧)𝐴

)−1

Q̂(𝑧)𝐵 (2.4)

where

𝐴 = (𝐼 −𝑄∗
0𝑄0)

− 1
2 (𝐴−𝑄∗

0) (𝐼 −𝑄0𝐴)
−1

(𝐼 −𝑄0𝑄
∗
0)

1
2 ,

𝐵 = (𝐼 −𝑄∗
0𝑄0)

1
2 (𝐼 −𝐴𝑄0)

−1
𝐵,

𝐶 = 𝐶 (𝐼 −𝑄0𝐴)
−1

(𝐼 −𝑄∗
0𝑄0)

1
2 ,

𝐷̂ = 𝐷 + 𝐶 (𝐼 −𝑄0𝐴)
−1
𝑄0𝐵 = 𝑆(𝑧0). (2.5)

Representation (2.4) means that 𝑆 is the transfer function of the Q̂-colligation

Û =

[
𝐴 𝐵

𝐶 𝐷̂

]
:

[𝒳 𝑝

𝒰
]

→
[𝒳 𝑞

𝒴
]
.

The verification of the fact that the colligation Û is unitary is straightforward;
it involves the explicit formulas for its block entries and the fact that the op-

erators U and U0 are unitary. Since the Q̂-colligation Û is unitary, its transfer
function 𝑆 belongs to 𝒮𝒜Q̂(𝒰 , 𝒴), by Theorem 1.3. Thus, we verified the inclu-

sion 𝒮𝒜Q(𝒰 ,𝒴) ⊆ 𝒮𝒜Q̂(𝒰 ,𝒴). To check the converse inclusion, we start with a

function 𝑆 ∈ 𝒮𝒜Q̂(𝒰 ,𝒴) and substitute (2.1) into its unitary Q̂-realization (2.4).

Straightforward calculations show that 𝑆 is of the form (1.13) with the opera-
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tors 𝐴, 𝐵, 𝐶 and 𝐷 uniquely recovered from the system (2.5). By the preceding
arguments, the operator U = [ 𝐴 𝐵

𝐶 𝐷 ] is unitary and then, 𝑆 ∈ 𝒮𝒜Q(𝒰 ,𝒴), by
Theorem 1.6. □

Remark 2.2. This trick exhibited in Lemma 2.1 of reducing to the case where
𝑆(0) = 0 comes up in the context of control theory and there is known as loop-
shifting (see Exercise 8.11 page 277 in [13]).

From now on, we assume that

0 ∈ 𝒟Q and Q(0) = 0. (2.6)

We next represent identities (1.6), (1.8) and (1.10) in a more matricial form. In
what follows, {e1, . . . , e𝑝} and {ẽ1, . . . , ẽ𝑞} will stand for the standard bases for
ℂ𝑝 and ℂ𝑞 respectively. Let us define the operator-valued polynomials

𝑀𝑗(𝑧) =

[
𝑀𝐿

𝑗 0
0 𝑀𝑅

𝑗 (𝑧)

]
and 𝑁𝑘(𝑧) =

[
𝑁𝐿

𝑘 (𝑧) 0
0 𝑁𝑅

𝑘

]
(2.7)

for 𝑗 = 1, . . . , 𝑝 and 𝑘 = 1, . . . , 𝑞, where

𝑀𝐿
𝑗 = e𝑗 ⊗ 𝐼𝒴 , 𝑁𝑅

𝑘 = ẽ𝑘 ⊗ 𝐼𝒰 , (2.8)

𝑀𝑅
𝑗 (𝑧) = (Q⊤(𝑧)e𝑗) ⊗ 𝐼𝒰 =

⎡⎢⎣q𝑗1(𝑧)𝐼𝒰
...

q𝑗𝑞(𝑧)𝐼𝒰

⎤⎥⎦ =

𝑞∑
𝑘=1

q𝑗𝑘(𝑧)𝑁
𝑅
𝑘 , (2.9)

𝑁𝐿
𝑘 (𝑧) = (Q(𝑧)ẽ𝑘)⊗ 𝐼𝒴 =

⎡⎢⎣q1𝑘(𝑧)𝐼𝒴...

q𝑝𝑘(𝑧)𝐼𝒴

⎤⎥⎦ =

𝑝∑
𝑗=1

q𝑗𝑘(𝑧)𝑀
𝐿
𝑗 . (2.10)

Equalities (1.6), (1.8) and (1.10) can be written in terms of the notation (2.8)–
(2.10) as

𝐼𝒴 − 𝑆(𝑧)𝑆(𝜁)∗ =

𝑝∑
𝑗=1

𝑀𝐿∗
𝑗 𝕂𝐿(𝑧, 𝜁)𝑀

𝐿
𝑗 −

𝑞∑
𝑘=1

𝑁𝐿
𝑘 (𝑧)

∗𝕂𝐿(𝑧, 𝜁)𝑁
𝐿
𝑘 (𝜁), (2.11)

𝐼𝒰 − 𝑆(𝑧)∗𝑆(𝜁) =
𝑞∑

𝑘=1

𝑁𝑅∗
𝑘 𝕂𝑅(𝑧, 𝜁)𝑁

𝑅
𝑘 −

𝑝∑
𝑗=1

𝑀𝑅
𝑗 (𝑧)∗𝕂𝑅(𝑧, 𝜁)𝑀

𝑅
𝑗 (𝜁), (2.12)

𝑆(𝑧)− 𝑆(𝜁) =
𝑞∑

𝑘=1

𝑁𝐿
𝑘 (𝑧)

∗𝕂𝐿𝑅(𝑧, 𝜁)𝑁
𝑅
𝑘 −

𝑝∑
𝑗=1

𝑀𝐿∗
𝑗 𝕂𝐿𝑅(𝑧, 𝜁)𝑀

𝑅
𝑗 (𝜁). (2.13)

Taking adjoints in (2.13) and switching 𝑧 and 𝜁 we get

𝑆(𝑧)∗ − 𝑆(𝜁)∗ =

𝑝∑
𝑗=1

𝑀𝑅
𝑗 (𝑧)∗𝕂𝑅𝐿(𝑧, 𝜁)𝑀

𝐿
𝑗 −

𝑞∑
𝑘=1

𝑁𝑅∗
𝑘 𝕂𝑅𝐿(𝑧, 𝜁)𝑁

𝐿
𝑘 (𝜁) (2.14)
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and observe that the latter four identities are equivalent to the single block matrix
identity [

𝐼𝒴
𝑆(𝑧)∗

] [
𝐼𝒴 𝑆(𝜁)

]− [𝑆(𝑧)
𝐼𝒰

] [
𝑆(𝜁)∗ 𝐼𝒰

]
(2.15)

=

𝑝∑
𝑗=1

𝑀𝑗(𝑧)
∗𝕂(𝑧, 𝜁)𝑀𝑗(𝜁) −

𝑞∑
𝑘=1

𝑁𝑘(𝑧)
∗𝕂(𝑧, 𝜁)𝑁𝑘(𝜁),

where 𝕂 is the kernel of the form (1.11). We will also refer to equalities (2.11) and
(2.12) (which are the same as (1.6) and (1.8)) as left and right Agler decompositions
for 𝑆 respectively, while the equality (2.15) will be referred to simply as an Agler
decomposition.

3. Weakly coisometric realizations

For every function 𝑆 ∈ 𝒮𝒜Q(𝒰 ,𝒴) with a fixed left Agler decomposition (1.6),
one can construct a weakly coisometric realization in a certain canonical way. This
was shown in [7] and now will be recalled. For functions 𝑓 ∈ ℋ(𝕂𝐿)

𝑝, we use the
notation

𝑓 =

[
𝑓1

...
𝑓𝑝

]
where 𝑓𝑘 =

[
𝑓𝑘,1

...
𝑓𝑘,𝑝

]
∈ ℋ(𝕂𝐿).

We say that the operator 𝐴 : ℋ(𝕂𝐿)
𝑝 → ℋ(𝕂𝐿)

𝑞 solves the Q-coupled Gleason
problem for ℋ(𝕂𝐿) if

𝑝∑
𝑘=1

(𝑓𝑘,𝑘(𝑧) − 𝑓𝑘,𝑘(0)) =
𝑝∑

𝑗=1

𝑞∑
𝑘=1

q𝑗𝑘(𝑧) [𝐴𝑓 ]𝑘,𝑗 (𝑧) =

𝑝∑
𝑗=1

[Q(𝑧)𝐴𝑓 ]𝑗,𝑗 (𝑧) (3.1)

for all 𝑓 ∈ ℋ(𝕂𝐿)
𝑝. Observe that the second equality in (3.1) is a tautology and its

verification relies just on the definition of matrix multiplication. Similarly, we say
that the operator 𝐵 : 𝒰 → ℋ(𝕂𝐿)

𝑞 solves the Q-coupled ℋ(𝕂)-Gleason problem
for 𝑆 if the identity

𝑆(𝑧)𝑢− 𝑆(0)𝑢 =

𝑝∑
𝑗=1

𝑞∑
𝑘=1

q𝑗𝑘(𝑧)[𝐵𝑢]𝑘,𝑗(𝑧) =

𝑝∑
𝑗=1

[Q(𝑧)𝐵𝑢]𝑗,𝑗 (𝑧) (3.2)

holds for all 𝑢 ∈ 𝒰 , where similarly to (3.1), the second equality is a tautology.

Definition 3.1. We say that the operator-block matrix

U =

[
𝐴 𝐵
𝐶 𝐷

]
:

[ℋ(𝕂𝐿)
𝑝

𝒰
]

→
[ℋ(𝕂𝐿)

𝑞

𝒴
]

(3.3)

is a canonical functional-model (abbreviated to c.f.m. in what follows) colligation
for the given function 𝑆 ∈ 𝒮𝒜Q(𝒰 ,𝒴) with the left Agler decomposition 𝕂𝐿 if

1. U is contractive.
2. The operator 𝐴 solves the Q-coupled Gleason problem (3.1).
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3. The operator 𝐵 solves the Q-coupled Gleason problem (3.2) for 𝑆.
4. The operators 𝐶 : ℋ(𝕂𝐿)

𝑝 → 𝒴 and 𝐷 : 𝒰 → 𝒴 are given by

𝐶 :

⎡⎢⎣𝑓1(𝑧)...
𝑓𝑝(𝑧)

⎤⎥⎦ +→ 𝑓1,1(0) + ⋅ ⋅ ⋅ + 𝑓𝑝,𝑝(0), 𝐷 : 𝑢 +→ 𝑆(0)𝑢.

With a given left Agler decomposition 𝕂𝐿 of a function 𝑆 ∈ 𝒮𝐴Q(𝒰 ,𝒴), we
associate the kernel

𝕋𝐿(𝑧, 𝜁) :=

⎡⎢⎣ 𝕂𝐿(𝑧, 𝜁)𝑀
𝐿
1

...
𝕂𝐿(𝑧, 𝜁)𝑀

𝐿
𝑝

⎤⎥⎦ : 𝒟Q × 𝒟Q → ℒ(𝒴,𝒴𝑝2

). (3.4)

It is not hard to check using the reproducing kernel property, the definition (3.4)
of 𝕋𝐿 and equality (2.10), that for every 𝑧, 𝜁 ∈ 𝒟Q and 𝑦, 𝑦′ ∈ 𝒴,〈

𝕋𝐿(⋅, 𝜁)𝑦, 𝕋𝐿(⋅, 𝑧)𝑦′〉
ℋ(𝕂)𝑝

=

𝑝∑
𝑗=1

〈
𝑀𝐿∗

𝑗 𝕂𝐿(𝑧, 𝜁)𝑀
𝐿
𝑗 𝑦, 𝑦

′〉
𝒴 ,

〈
Q(𝜁)∗𝕋𝐿(⋅, 𝜁)𝑦, Q(𝑧)∗𝕋𝐿(⋅, 𝑧)𝑦′〉

ℋ(𝕂)𝑞
=

𝑞∑
𝑘=1

〈
𝑁𝐿

𝑘 (𝑧)
∗𝕂𝐿(𝑧, 𝜁)𝑁

𝐿
𝑘 (𝜁)𝑦, 𝑦

′〉
𝒴 .

Making use of the two latter equalities, one can write the identity
𝑞∑

𝑘=1

𝑁𝐿
𝑘 (𝑧)

∗𝕂𝐿(𝑧, 𝜁)𝑁
𝐿
𝑘 (𝜁) + 𝐼𝒴 =

𝑝∑
𝑗=1

𝑀𝐿∗
𝑗 𝕂𝐿(𝑧, 𝜁)𝑀

𝐿
𝑗 + 𝑆(𝑧)𝑆(𝜁)∗

(which is just a rearrangement of the left Agler decomposition (2.11)) in the inner
product form as〈[

Q(𝜁)∗𝕋𝐿(⋅, 𝜁)𝑦
𝑦

]
,

[
Q(𝑧)∗𝕋𝐿(⋅, 𝑧)𝑦′

𝑦′

]〉
ℋ(𝕂𝐿)𝑞⊕𝒴

=

〈[
𝕋𝐿(⋅, 𝜁)𝑦
𝑆(𝜁)∗𝑦

]
,

[
𝕋𝐿(⋅, 𝑧)𝑦′

𝑆(𝑧)∗𝑦′

]〉
ℋ(𝕂𝐿)𝑝⊕𝒰

.

Therefore the linear map

𝑉 :

[
Q(𝜁)∗𝕋𝐿(⋅, 𝜁)𝑦

𝑦

]
→
[

𝕋𝐿(⋅, 𝜁)𝑦
𝑆(𝜁)∗𝑦

]
(3.5)

extends to the isometry from

𝒟𝑉 =
⋁

𝜁∈𝒟Q, 𝑦∈𝒴

[
Q(𝜁)∗𝕋𝐿(⋅, 𝜁)𝑦

𝑦

]
⊂
[ℋ(𝕂𝐿)

𝑞

𝒴
]

onto

ℛ𝑉 =
⋁

𝜁∈𝒟Q, 𝑦∈𝒴

[
𝕋𝐿(⋅, 𝜁)𝑦
𝑆(𝜁)∗𝑦

]
⊂
[ℋ(𝕂𝐿)

𝑝)
𝒰

]
.
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Due to condition (2.6), 𝒟𝑉 splits into a direct sum 𝒟𝑉 = 𝒟 ⊕ 𝒴 where

𝒟 =
⋁

𝜁∈𝒟Q, 𝑦∈𝒴
Q(𝜁)∗𝕋𝐿(⋅, 𝜁)𝑦 ⊂ ℋ(𝕂𝐿)

𝑞. (3.6)

Furthermore, the defect spaces

𝒟⊥
𝑉 := (ℋ(𝕂𝐿)

𝑞 ⊕ 𝒴) ⊖ 𝒟𝑉
∼= 𝒟⊥ and ℛ⊥

𝑉 := (ℋ(𝕂𝐿)
𝑝 ⊕ 𝒰) ⊖ ℛ𝑉

can be characterized as

𝒟⊥ =

⎧⎨⎩𝑓 ∈ ℋ(𝕂𝐿)
𝑞 :

𝑞∑
𝑗=1

[Q𝑓 ]𝑗,𝑗 (𝑧) ≡ 0

⎫⎬⎭ , (3.7)

ℛ⊥
𝑉 =

⎧⎨⎩
[
𝑓
𝑢

]
∈
[ℋ(𝕂𝐿)

𝑝

𝒰
]
:

𝑝∑
𝑗=1

𝑓𝑗,𝑗(𝑧) + 𝑆(𝑧)𝑢 ≡ 0

⎫⎬⎭ . (3.8)

The following two results were proved in [7].

Theorem 3.2. Given a left Agler decomposition 𝕂𝐿 for a function 𝑆 ∈ 𝒮𝒜Q(𝒰 ,𝒴),
let 𝑉 be the isometric operator associated with this decomposition as in (3.5). A
block-operator matrix U of the form (3.3) is a c.f.m. colligation associated with
𝕂𝐿 if and only if U

∗ is a contractive extension of 𝑉 to all of ℋ(𝕂𝐿)
𝑞 ⊕ 𝒴, i.e.,

U∗∣𝒟⊕𝒴 = 𝑉 and ∥U∗∥ ≤ 1. (3.9)

Theorem 3.3. Let 𝑆 be a function in the Schur-Agler class 𝒮𝐴Q(𝒰 ,𝒴) with given
left Agler decomposition 𝕂𝐿. Then

1. There exists a c.f.m. colligation U = [𝐴 𝐵
𝐶 𝐷 ] associated with 𝕂𝐿.

2. Every c.f.m. colligation U associated with 𝕂𝐿 is weakly coisometric and ob-
servable and furthermore, 𝑆(𝑧) = 𝐷 + 𝐶(𝐼 − Q(𝑧)𝐴)−1Q(𝑧)𝐵.

3. Any observable weakly coisometric colligation U′ of the form (1.14) with the
transfer function equal 𝑆 is unitarily equivalent to some c.f.m. colligation U
for 𝑆.

4. Weakly isometric realizations

The results concerning weakly isometric colligations associated with a given right
Agler decompositions (1.8) of a function 𝑆 ∈ 𝒮𝒜Q(𝒰 ,𝒴) are parallel to the results
from the previous section and can be established in much the same way. We present
them here without proofs.

Assume we are given a function 𝑆 ∈ 𝒮𝒜Q(𝒰 ,𝒴) with a fixed right Agler
decompositions 𝕂𝑅. Let us introduce the kernel

𝕋𝑅(𝑧, 𝜁) :=

⎡⎢⎣ 𝕂𝑅(𝑧, 𝜁)𝑁
𝑅
1

...
𝕂𝑅(𝑧, 𝜁)𝑁

𝑅
𝑞

⎤⎥⎦ : 𝒟Q × 𝒟Q → ℒ(𝒰 ,𝒰𝑞2 ), (4.1)
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where 𝑁𝑅
1 , . . . , 𝑁

𝑅
𝑞 are given in (2.8) and let

𝒟̃ =
⋁

𝜁∈𝒟Q, 𝑢∈𝒰
Q(𝜁)𝕋𝑅(⋅, 𝜁)𝑢 ⊂ ℋ(𝕂𝑅)

𝑝. (4.2)

Definition 4.1. Given a function 𝑆 ∈ 𝒮𝒜Q(𝒰 ,𝒴), we shall say that the block-
operator matrix

Ũ =

[
𝐴 𝐵

𝐶 𝐷̃

]
:

[ℋ(𝕂𝑅)
𝑝

𝒰
]

→
[ℋ(𝕂𝑅)

𝑞

𝒴
]

(4.3)

is a dual canonical functional-model (abbreviated to d.c.f.m. in what follows) col-
ligation associated with right Agler decomposition 𝕂𝑅 for 𝑆 if

1. Ũ is contractive.
2. The restrictions of operators 𝐴 and 𝐶 to the subspace 𝒟̃ ⊂ ℋ(𝕂𝑅)

𝑝 defined
in (3.3) have the following action on special kernel functions:

𝐴∣𝒟̃ : Q(𝜁)𝕋𝑅(⋅, 𝜁)𝑢→ 𝕋𝑅(⋅, 𝜁)𝑢 − 𝕋𝑅(⋅, 0)𝑢,
𝐶∣𝒟̃ : Q(𝜁)𝕋𝑅(⋅, 𝜁)𝑢→ 𝑆(𝜁)𝑢 − 𝑆(0)𝑢.

3. The operators 𝐵 : 𝒰 → ℋ(𝕂𝑅)
𝑞 and 𝐷̃ : 𝒰 → 𝒴 are given by

𝐵 : 𝑢 +→ 𝕋𝑅(⋅, 0)𝑢, 𝐷̃ : 𝑢 +→ 𝑆(0)𝑢.

As in the coisometric case, one can write the rearrangement

𝑝∑
𝑗=1

𝑀𝑅
𝑗 (𝑧)∗𝕂𝑅(𝑧, 𝜁)𝑀

𝑅
𝑗 (𝜁) + 𝐼𝒰 =

𝑞∑
𝑘=1

𝑁𝑅∗
𝑘 𝕂𝑅(𝑧, 𝜁)𝑁

𝑅
𝑘 + 𝑆(𝑧)∗𝑆(𝜁)

of the right Agler decomposition (2.12) in the inner product form as〈[
Q(𝜁)𝕋𝑅(⋅, 𝜁)𝑢

𝑢

]
,

[
Q(𝑧)𝕋𝑅(⋅, 𝑧)𝑢′

𝑢′

]〉
ℋ(𝕂𝑅)𝑝⊕𝒰

=

〈[
𝕋𝑅(⋅, 𝜁)𝑢
𝑆(𝜁)𝑢

]
,

[
𝕋𝑅(⋅, 𝑧)𝑢′

𝑆(𝑧)𝑢′

]〉
ℋ(𝕂𝑅)𝑞⊕𝒴

to conclude then that the linear map

𝑉 :

[
Q(𝜁)𝕋𝑅(⋅, 𝜁)𝑢

𝑢

]
→
[

𝕋𝑅(⋅, 𝜁)𝑢
𝑆(𝜁)𝑢

]
(4.4)

extends by continuity to define the isometry 𝑉 : 𝒟𝑉 → ℛ𝑉 where

𝒟𝑉 = 𝐷̃ ⊕ 𝒰 and ℛ𝑉 =
⋁

𝜁∈𝒟Q, 𝑢∈𝒰

[
𝕋𝑅(⋅, 𝜁)𝑦
𝑆(𝜁)𝑢

]
⊂
[ℋ(𝕂𝑅)

𝑞

𝒴
]
.

The two following theorems are parallel to Theorems 3.2 and 3.3.
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Theorem 4.2. Given a right Agler decomposition 𝕂𝑅 for a function 𝑆 in the Schur-

Agler class 𝒮𝒜Q(𝒰 ,𝒴), let 𝑉 be the isometric operator associated with this decom-

position as in (4.4). A block-operator matrix Ũ of the form (4.3) is a d.c.f.m.

colligation associated with 𝕂𝑅 if and only if Ũ is a contractive extension of 𝑉 to
all of ℋ(𝕂𝑅)

𝑞 ⊕ 𝒴.
Theorem 4.3. Let 𝑆 be a function in the Schur-Agler class 𝒮𝐴𝑑(𝒰 ,𝒴) with given
right Agler decomposition 𝕂𝑅. Then

1. There exists a d.c.f.m. colligation U = [ 𝐴 𝐵
𝐶 𝐷 ] associated with 𝕂𝑅.

2. Every d.c.f.m. colligation U associated with 𝕂𝑅 is weakly isometric and con-
trollable and furthermore, 𝑆(𝑧) = 𝐷 + 𝐶(𝐼 − Q(𝑧)𝐴)−1Q(𝑧)𝐵.

3. Any controllable weakly isometric colligation U′ of the form (1.14) with trans-
fer function equal to 𝑆 is unitarily equivalent to some d.c.f.m. colligation U
for 𝑆.

5. Weakly unitary realizations

In this section we will study unitary realizations of an 𝑆 ∈ 𝒮𝒜Q(𝒰 ,𝒴) associated
with a fixed Agler decomposition (2.15). Following the streamlines of Section 2,
we let ℋ(𝕂) to be the reproducing kernel Hilbert space associated with the kernel
𝕂 from decomposition (2.15). For functions 𝑓 ∈ ℋ(𝕂)𝑛 (where in most cases, 𝑛
will be equal to 𝑝 or 𝑞), we will use the following representation and notation:

𝑓 =

𝑛⊕
𝑖=1

𝑓𝑖 :=

⎡⎢⎣ 𝑓1...
𝑓𝑛

⎤⎥⎦ ∈ ℋ(𝕂)𝑛 where 𝑓𝑖 =

[
𝑓𝑖,+
𝑓𝑖,−

]
: 𝒟Q →

[𝒴𝑝

𝒰𝑞

]
, (5.1)

so that

𝑓𝑖,+ =

⎡⎢⎣ 𝑓𝑖,+,1

...
𝑓𝑖,+,𝑝

⎤⎥⎦ (𝑓𝑖,+,𝑗 : 𝒟Q → 𝒴), 𝑓𝑖,− =

⎡⎢⎣ 𝑓𝑖,−,1

...
𝑓𝑖,−,𝑞

⎤⎥⎦ (𝑓𝑖,−,𝑘 : 𝒟Q → 𝒰).

We furthermore introduce the kernels

𝕋(𝑧, 𝜁) :=

𝑝⊕
𝑗=1

𝕂(𝑧, 𝜁)

[
𝑀𝐿

𝑗

0

]
: 𝒟Q × 𝒟Q → ℒ(𝒴, (𝒴𝑝 ⊕ 𝒰𝑞)𝑝), (5.2)

𝕋̃(𝑧, 𝜁) :=

𝑞⊕
𝑘=1

𝕂(𝑧, 𝜁)

[
0
𝑁𝑅

𝑘

]
: 𝒟Q × 𝒟Q → ℒ(𝒰 , (𝒴𝑝 ⊕ 𝒰𝑞)𝑞) (5.3)

where 𝑀𝐿
𝑗 and 𝑁𝑅

𝑘 are given in (2.8). We define two linear maps s : ℋ(𝕂)𝑝 →
ℋ(𝕂𝐿) and s̃ : ℋ(𝕂)𝑞 → ℋ(𝕂𝑅) as follows:

s : 𝑓 =

𝑝⊕
𝑗=1

𝑓𝑗 +→
𝑝∑

𝑗=1

𝑓𝑗,+,𝑗, s̃ : 𝑔 =

𝑞⊕
𝑘=1

𝑔𝑘 +→
𝑞∑

𝑘=1

𝑔𝑘,−,𝑘, (5.4)
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and observe the equalities

⟨𝑓, 𝕋(⋅, 𝜁)𝑦⟩ℋ(𝕂)𝑝 = ⟨(s𝑓)(𝜁), 𝑦⟩𝒴 , ⟨𝑔, 𝕋̃(⋅, 𝜁)𝑢⟩ℋ(𝕂)𝑞 = ⟨(s̃𝑓)(𝜁), 𝑢⟩𝒰 (5.5)

holding for all 𝜁 ∈ 𝒟Q, 𝑦 ∈ 𝒴 and 𝑢 ∈ 𝒰 . Indeed, for a function 𝑓 of the form
(5.1), we have from (5.2) by the reproducing kernel property

⟨𝑓, 𝕋(⋅, 𝜁)𝑦⟩ℋ(𝕂)𝑝 =

𝑝∑
𝑗=1

〈
𝑓𝑗 , 𝕂(⋅, 𝜁)

[
𝑀𝐿

𝑗 𝑦
0

]〉
ℋ(𝕂)

=

𝑝∑
𝑗=1

〈
𝑓𝑗(𝜁),

[
e𝑗 ⊗ 𝑦

0

]〉
𝒴⊕𝒰

=

𝑝∑
𝑗=1

⟨𝑓𝑗,+(𝜁), e𝑖 ⊗ 𝑦⟩𝒴 =

𝑝∑
𝑗=1

⟨𝑓𝑗,+,𝑗(𝜁), 𝑦⟩𝒴 = ⟨(s𝑓)(𝜁), 𝑦⟩𝒴

which proves the first equality in (5.5). The proof of the second is much the same.

Lemma 5.1. Let 𝕋 and 𝕋̃ be the kernels associated with the Agler decomposition
𝕂 (2.15) of an 𝑆 ∈ 𝒮𝒜Q(𝒰 ,𝒴) via formulas (5.2), (5.3). Let 𝑀𝑗(𝑧) and 𝑁𝑘(𝑧) be
defined as in (2.7)–(2.10). Then for every 𝑧, 𝜁 ∈ 𝒟Q, 𝑢, 𝑢

′ ∈ 𝒰 and 𝑦, 𝑦′ ∈ 𝒴,

⟨𝕋(⋅, 𝜁)𝑦, 𝕋(⋅, 𝑧)𝑦′⟩ℋ(𝕂)𝑝 =

𝑝∑
𝑗=1

〈
𝕂𝐿(𝑧, 𝜁)𝑀

𝐿
𝑗 𝑦, 𝑀

𝐿
𝑗 𝑦

′〉
𝒴𝑝 , (5.6)

〈
𝕋̃(⋅, 𝜁)𝑢, 𝕋̃(⋅, 𝑧)𝑢′

〉
ℋ(𝕂)𝑞

=

𝑞∑
𝑘=1

〈
𝕂𝑅(𝑧, 𝜁)𝑁

𝑅
𝑘 𝑢, 𝑁

𝑅
𝑘 𝑢

′〉
𝒰𝑞 , (5.7)

⟨Q(𝜁)∗𝕋(⋅, 𝜁)𝑦, Q(𝑧)∗𝕋(⋅, 𝑧)𝑦′⟩ℋ(𝕂)𝑞 =

𝑞∑
𝑘=1

〈
𝕂𝐿(𝑧, 𝜁)𝑁

𝐿
𝑘 (𝜁)𝑦, 𝑁

𝐿
𝑘 (𝑧)𝑦

′〉
𝒴𝑝 , (5.8)

〈
Q(𝜁)𝕋̃(⋅, 𝜁)𝑢, Q(𝑧)𝕋̃(⋅, 𝑧)𝑢′

〉
ℋ(𝕂)𝑝

=

𝑝∑
𝑗=1

〈
𝕂𝑅(𝑧, 𝜁)𝑀

𝑅
𝑗 (𝜁)𝑢, 𝑀𝑅

𝑗 (𝑧)𝑢′〉
𝒰𝑞 .

(5.9)

Proof. Equalities (5.6), (5.7) follow immediately from (5.2), (5.3). The two other
equalities follow since

Q(𝑧)∗𝕋(⋅, 𝑧) =
𝑞⊕

𝑘=1

𝑝∑
𝑗=1

q𝑗𝑘(𝑧)𝕂(⋅, 𝑧)
[
𝑀𝐿

𝑗

0

]
=

𝑞⊕
𝑘=1

𝕂(⋅, 𝑧)
[
𝑁𝐿

𝑘 (𝑧)
0

]
(5.10)

by (2.10) and since

Q(𝑧)𝕋̃(⋅, 𝑧) =
𝑝⊕

𝑗=1

𝑞∑
𝑘=1

q𝑗𝑘(𝑧)𝕂(⋅, 𝑧)
[

0
𝑁𝑅

𝑘

]
=

𝑝⊕
𝑗=1

𝕂(⋅, 𝑧)
[

0
𝑀𝑅

𝑗 (𝑧)

]
(5.11)

by (2.9). □
Definition 5.2. A contractive colligation

U =

[
𝐴 𝐵
𝐶 𝐷

]
:

[ℋ(𝕂)𝑝

𝒰
]

→
[ℋ(𝕂)𝑞

𝒴
]

(5.12)
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will be called a two-component canonical functional-model (abbreviated to t.c.f.m.
in what follows) colligation associated with a fixed Agler decomposition (2.15) of
a given 𝑆 ∈ 𝒮𝒜Q(𝒰 , 𝒴) if

1. The state space operator 𝐴 solves the structured Gleason problem

(s𝑓)(𝑧)− (s𝑓)(0) = s(Q(𝑧)𝐴𝑓)(𝑧) =

𝑝∑
𝑗=1

𝑞∑
𝑘=1

q𝑗𝑘(𝑧) [𝐴𝑓 ]𝑘,+,𝑗 (𝑧) (5.13)

for all 𝑓 ∈ ℋ(𝕂)𝑝 whereas the adjoint operator 𝐴∗ solves the dual structured
Gleason problem

(s̃𝑔)(𝑧)− (s̃𝑔)−(0) = s̃(Q(𝑧)∗𝐴∗𝑔)(𝑧) =
𝑞∑

𝑘=1

𝑝∑
𝑗=1

q𝑗𝑘(𝑧) [𝐴
∗𝑔]𝑗,−,𝑘 (𝑧) (5.14)

for all 𝑔 ∈ ℋ(𝕂)𝑞.
2. The operators 𝐶 : ℋ(𝕂)𝑝 → 𝒴, 𝐵∗ : ℋ(𝕂)𝑞 → 𝒰 and 𝐷 : 𝒰 → 𝒴 are of the

form

𝐶 : 𝑓 → (s𝑓)(0), 𝐵∗ : 𝑔 → (s̃𝑓)(0) and 𝐷 : 𝑢→ 𝑆(0)𝑢. (5.15)

Note that the second equalities in (5.13), (5.14) can be seen as follows:

s(Q(𝑧)𝐴𝑓)(𝑧) =

𝑝∑
𝑗=1

[Q(𝑧)𝐴𝑓 ]𝑗,+,𝑗 (𝑧) =

𝑝∑
𝑗=1

𝑞∑
𝑘=1

q𝑗𝑘(𝑧) [𝐴𝑓 ]𝑘,+,𝑗 (𝑧),

s̃(Q(𝑧)∗𝐴∗𝑔)(𝑧) =
𝑞∑

𝑘=1

[Q(𝑧)∗𝐴∗𝑔]𝑘,−,𝑘 (𝑧) =

𝑞∑
𝑘=1

𝑝∑
𝑗=1

q𝑗𝑘(𝑧) [𝐴
∗𝑔]𝑗,−,𝑘 (𝑧).

Proposition 5.3. Relations (5.12), (5.14) and (5.15) are equivalent respectively to
equalities

𝐴∗Q(𝜁)∗𝕋(⋅, 𝜁)𝑦 = 𝕋(⋅, 𝜁)𝑦 − 𝕋(⋅, 0)𝑦, (5.16)

𝐴Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 = 𝕋̃(⋅, 𝜁)𝑢 − 𝕋̃(⋅, 0)𝑢, (5.17)

𝐶∗𝑦 = 𝕋(⋅, 0)𝑦, 𝐵𝑢 = 𝕋̃(⋅, 0)𝑢, and 𝐷∗𝑦 = 𝑆(0)∗𝑦 (5.18)

holding for every 𝜁 ∈ 𝒟Q, 𝑦 ∈ 𝒴 and 𝑢 ∈ 𝒰 .
Proof. It follows from the first equality in (5.5) that

⟨(s𝑓)(𝑧)− (s𝑓)(0), 𝑦⟩𝒴 = ⟨𝑓, 𝕋(⋅, 𝜁)𝑦 − 𝕋(⋅, 0)𝑦⟩ℋ(𝕂)𝑝

and on the other hand,

⟨s(Q(𝑧)𝐴𝑓)(𝑧), 𝑦⟩ℋ(𝕂)𝑝 = ⟨Q(𝑧)𝐴𝑓, 𝕋(⋅, 𝑧)𝑦⟩ℋ(𝕂)𝑝 = ⟨𝑓, 𝐴∗Q(𝑧)∗𝕋(⋅, 𝑧)𝑦⟩ℋ(𝕂)𝑝 .

Since the two latter equalities hold for every 𝑓 ∈ ℋ(𝕂)𝑝 and 𝑦 ∈ 𝒴, the equivalence
(5.13) ⇔ (5.16) follows. The equivalence (5.14)⇔ (5.17) follows from (5.5) in much
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the same way; the formula for 𝐶∗ in (5.17) follows from

⟨𝑓, 𝐶∗𝑦⟩ = ⟨𝐶𝑓, 𝑦⟩ = ⟨(s𝑓)(0), 𝑦⟩ = ⟨𝑓, 𝕋(⋅, 0)𝑦⟩
and the formula for 𝐵 is a consequence of a similar computation. The formula for
𝐷∗ is self-evident. □

Proposition 5.4. Let 𝐵, 𝐶 and 𝐷 be the operators defined in (5.15). Then

𝐶𝐶∗ +𝐷𝐷∗ = 𝐼𝒴 and 𝐵∗𝐵 +𝐷∗𝐷 = 𝐼𝒴 . (5.19)

Furthermore,

𝐵∗ : Q(𝜁)∗𝕋(⋅, 𝜁)𝑦 → 𝑆(𝜁)∗𝑦 − 𝑆(0)∗𝑦, (5.20)

𝐵∗ : 𝕋̃(⋅, 𝜁)𝑢→ 𝑢− 𝑆(0)∗𝑆(𝜁)𝑢, (5.21)

for all 𝜁 ∈ 𝒟Q, 𝑦 ∈ 𝒴 and 𝑢 ∈ 𝒰 , where 𝕋 and 𝕋̃ are defined in (5.2), (5.3).

Proof. We first observe that

∥𝐶∗𝑦∥2 = ∥𝕋(⋅, 0)𝑦∥2 =
〈

𝑝∑
𝑗=1

𝑀𝐿∗
𝑗 𝕂𝐿(0, 0)𝑀

𝐿
𝑗 𝑦, 𝑦

〉
= ⟨(𝐼 − 𝑆(0)𝑆(0)∗)𝑦, 𝑦⟩ ,

∥𝐵𝑢∥2 =
∥∥∥𝕋̃(⋅, 0)𝑢∥∥∥2 = 〈 𝑞∑

𝑘=1

𝑁𝑅∗
𝑘 𝕂𝑅(0, 0)𝑁

𝑅
𝑘 𝑢, 𝑢

〉
= ⟨(𝐼 − 𝑆(0)∗𝑆(0))𝑢, 𝑢⟩ ,

where the first equalities follow from formulas (5.18) for 𝐵 and 𝐶∗, the second
equalities follow upon letting 𝑧 = 𝜁, 𝑢′ = 𝑢 and 𝑦′ = 𝑦 in (5.6), (5.7), and
finally, the third equalities follow from the decomposition formulas (2.11) and
(2.12) evaluated at 𝑧 = 𝜁 = 0. Taking into account the formulas (5.15) and (5.18)
for 𝐷 and 𝐷∗, we then have equalities

∥𝐶∗𝑦∥2 = ∥𝑦∥2 − ∥𝑆(0)∗𝑦∥2 = ∥𝑦∥2 − ∥𝐷∗𝑦∥2, (5.22)

∥𝐵𝑢∥2 = ∥𝑢∥2 − ∥𝑆(0)𝑢∥2 = ∥𝑢∥2 − ∥𝐷𝑢∥2

holding for all 𝑦 ∈ 𝒴 and 𝑢 ∈ 𝒰 which are equivalent to operator equalities (5.19).

To verify (5.20) and (5.21) we proceed as follows. By definitions (1.11), (5.3)

and (5.4) of 𝕂, 𝕋̃ and s̃,

s̃
(
𝕋̃(⋅, 𝜁)𝑢

)
=

𝑞∑
𝑘=1

[
𝕂(⋅, 𝜁)

[
0
𝑁𝑅

𝑘 𝑢

]]
−,𝑘

=

𝑞∑
𝑘=1

𝑁𝑅∗
𝑘 𝕂𝑅(⋅, 𝜁)𝑁𝑅

𝑘 𝑢.

By (5.11),

s̃ (Q(𝜁)∗𝕋(⋅, 𝜁)𝑦) =
𝑞∑

𝑘=1

[
𝕂(⋅, 𝜁)

[
𝑁𝐿

𝑘 (𝜁)𝑦
0

]]
−,𝑘

=

𝑞∑
𝑘=1

𝑁𝑅∗
𝑘 𝕂𝑅𝐿(⋅, 𝜁)𝑁𝐿

𝑘 (𝜁)𝑦.
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Combining the definition (5.15) of 𝐵∗ with the two last formulas evaluated at zero
gives

𝐵∗𝕋̃(⋅, 𝜁)𝑢 = s̃
(
𝕋̃(⋅, 𝜁)𝑢

)
(0) =

𝑞∑
𝑘=1

𝑁𝑅∗
𝑘 𝕂𝑅(0, 𝜁)𝑁

𝑅
𝑘 𝑢, (5.23)

𝐵∗Q(𝜁)∗𝕋(⋅, 𝜁)𝑦 = s̃ (Q(𝜁)∗𝕋(⋅, 𝜁)𝑦) (0) =
𝑞∑

𝑘=1

𝑁𝑅∗
𝑘 𝕂𝑅𝐿(0, 𝜁)𝑁

𝐿
𝑘 (𝜁)𝑦. (5.24)

Upon letting 𝑧 = 0 in (2.14) and (2.12) and taking into account that 𝑀𝑅
𝑗 (0) = 0

and 𝑁𝐿
𝑘 (0) = 0, we get

𝑆(𝜁)∗ − 𝑆(0)∗ =

𝑞∑
𝑘=1

𝑁𝑅∗
𝑘 𝕂𝑅𝐿(0, 𝜁)𝑁

𝐿
𝑘 (𝜁),

𝐼𝒰 − 𝑆(0)∗𝑆(𝜁) =
𝑞∑

𝑘=1

𝑁𝑅∗
𝑘 𝕂𝑅(0, 𝜁)𝑁

𝑅
𝑘 (5.25)

and combining the two latter equalities with (5.23) and (5.24) gives (5.20) and
(5.21). □

Formulas (5.20), (5.21) describing the action of the operator𝐵∗ on elementary
kernels of 𝒟 were easily obtained from the general formula (5.15) for 𝐵∗. Although
the operator 𝐴∗ is not defined in Definition 5.2 on the whole space ℋ(𝕂)𝑞, it
turns out that its action on elementary kernels of 𝒟 is completely determined
by conditions (5.13) and (5.14). One half of the job is handled by formula (5.16)
(which is equivalent to (5.13)). The other half is covered in the next proposition.

Proposition 5.5. Let U = [ 𝐴 𝐵
𝐶 𝐷 ] be a t.c.f.m. colligation associated with the Agler

decomposition (2.15) of a given 𝑆 ∈ 𝒮𝒜Q(𝒰 , 𝒴) and let 𝕋 be given by (5.2). Then

𝐴∗𝕋̃(⋅, 𝜁)𝑢 = Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 − 𝕋(⋅, 0)𝑆(𝜁)𝑢 (5.26)

for all 𝜁 ∈ 𝒟Q, 𝑦 ∈ 𝒴 and 𝑢 ∈ 𝒰 .

Proof. We have to show that formula (5.26) follows from conditions in Definition
5.2. To this end, we first verify the equality∥∥∥Q(𝜁)𝕋̃(⋅, 𝜁)𝑢

∥∥∥2
ℋ(𝕂)𝑝

−
∥∥∥𝐴Q(𝜁)𝕋̃(⋅, 𝜁)𝑢

∥∥∥2
ℋ(𝕂)𝑞

=
∥∥∥𝐶Q(𝜁)𝕋̃(⋅, 𝜁)𝑢

∥∥∥2
𝒰
. (5.27)

Upon letting 𝜁 = 𝑧 and 𝑢′ = 𝑢 in (5.9) we have∥∥∥Q(𝜁)𝕋̃(⋅, 𝜁)𝑢
∥∥∥2

ℋ(𝕂)𝑝
=

𝑝∑
𝑗=1

〈
𝑀𝑅

𝑗 (𝜁)∗𝕂𝑅(𝜁, 𝜁)𝑀
𝑅
𝑗 (𝜁)𝑢, 𝑢

〉
𝒰𝑞 . (5.28)
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Making use of (5.17) (which holds by Proposition 5.3) and of (5.7) we have∥∥∥𝐴Q(𝜁)𝕋̃(⋅, 𝜁)𝑢
∥∥∥2

ℋ(𝕂)𝑞
=
∥∥∥𝕋̃(⋅, 𝜁)𝑢 − 𝕋̃(⋅, 0)𝑢

∥∥∥2
ℋ(𝕂)𝑞

=

𝑞∑
𝑘=1

〈
𝑁𝑅∗

𝑘 (𝕂𝑅(𝜁, 𝜁) − 𝕂𝑅(𝜁, 0) − 𝕂𝑅(0, 𝜁) +𝕂𝑅(0, 0))𝑁
𝑅
𝑘 𝑢, 𝑢

〉
𝒰 . (5.29)

Upon letting 𝑧 = 𝜁 in (2.12) we get the identity

𝐼𝒰 − 𝑆(𝜁)∗𝑆(𝜁) =
𝑞∑

𝑘=1

𝑁𝑅∗
𝑘 𝕂𝑅(𝜁, 𝜁)𝑁

𝑅
𝑘 −

𝑝∑
𝑗=1

𝑀𝑅
𝑗 (𝜁)∗𝕂𝑅(𝜁, 𝜁)𝑀

𝑅
𝑗 (𝜁) (5.30)

which together with equality (5.25) implies

𝑞∑
𝑘=1

𝑁𝑅∗
𝑘 (𝕂𝑅(𝜁, 𝜁) − 𝕂𝑅(𝜁, 0) − 𝕂𝑅(0, 𝜁) +𝕂𝑅(0, 0))𝑁

𝑅
𝑘

−
𝑝∑

𝑗=1

𝑀𝑅
𝑗 (𝜁)∗𝕂𝑅(𝜁, 𝜁)𝑀

𝑅
𝑗 (𝜁))

= 𝐼𝒰 − 𝑆(𝜁)∗𝑆(𝜁) − (𝐼𝒰 − 𝑆(𝜁)∗𝑆(0))− (𝐼𝒰 − 𝑆(0)∗𝑆(𝜁)) + 𝐼𝒰 − 𝑆(0)∗𝑆(0)
= −(𝑆(𝜁)∗ − 𝑆(0)∗)(𝑆(𝜁) − 𝑆(0)).

Subtracting (5.29) from (5.28) and making use of the last identity gives us∥∥∥Q(𝜁)𝕋̃(⋅, 𝜁)𝑢
∥∥∥2 −

∥∥∥𝐴Q(𝜁)𝕋̃(⋅, 𝜁)𝑢
∥∥∥2 = ∥𝑆(𝜁)𝑢 − 𝑆(0)𝑢∥2𝒴 . (5.31)

On the other hand, it follows from the identity

𝑆(𝜁) − 𝑆(0) =
𝑝∑

𝑗=1

𝑀𝐿∗
𝑗 𝕂𝐿𝑅(0, 𝜁)𝑀

𝑅
𝑗 (𝜁)

(which is a consequence of (2.13)), formula (5.11) and the explicit formula (5.15)
for 𝐶 that

𝐶Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 = s

⎛⎝ 𝑝⊕
𝑗=1

𝕂(⋅, 𝜁)
[

0
𝑀𝑅

𝑗 (𝜁)

]⎞⎠ (0)

=

𝑝∑
𝑗=1

𝑀𝐿∗
𝑗 𝕂𝐿𝑅(0, 𝜁)𝑀

𝑅
𝑗 (𝜁) = 𝑆(𝜁)𝑢 − 𝑆(0)𝑢. (5.32)

Substituting the latter equality into (5.31) completes the proof of (5.27).

Writing (5.27) in the form〈
(𝐼 −𝐴∗𝐴− 𝐶∗𝐶)Q(𝜁)𝕋̃(⋅, 𝜁)𝑢, Q(𝜁)𝕋̃(⋅, 𝜁)𝑢

〉
ℋ(𝕂)𝑝

= 0
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and observing that the operator 𝐼 −𝐴∗𝐴− 𝐶∗𝐶 is positive semidefinite (since U
is contractive by Definition 5.2), we conclude that

(𝐼 −𝐴∗𝐴− 𝐶∗𝐶)Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 ≡ 0 for all 𝜁 ∈ 𝒟Q, 𝑢 ∈ 𝒰 . (5.33)

Applying the operator 𝐶∗ to both parts of (5.32) we get

𝐶∗𝐶Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 = 𝕋(⋅, 0) (𝑆(𝜁) − 𝑆(0))𝑢 (5.34)

by the explicit formula (5.18) for 𝐶∗. From the same formula and the formula
(5.15) for 𝐷 we get

𝐶∗𝐷𝑢 = 𝐶∗𝑆(0)∗𝑢 = 𝕋(⋅, 0)𝑆(0)𝑢. (5.35)

We next apply the operator 𝐴∗ to both parts of equality (5.17) to get

𝐴∗𝐴Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 = 𝐴∗𝕋̃(⋅, 𝜁)𝑢 −𝐴∗𝕋̃(⋅, 0)𝑢.
Due to the second formula in (5.18) (which holds by Proposition 5.3) the latter
equality can be written as

𝐴∗𝕋̃(⋅, 𝜁)𝑢 = 𝐴∗𝐴Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 +𝐴∗𝐵𝑢. (5.36)

Since U is contractive (by Definition 5.2) and since 𝐵 and 𝐷 satisfy the second
equality in (5.19), it then follows that 𝐴∗𝐵 + 𝐶∗𝐷 = 0. Thus,

𝐴∗𝐵𝑢 = −𝐶∗𝐷𝑢 = −𝐶∗𝑆(0)∗𝑢 = −𝕋(⋅, 0)𝑆(0)𝑢.
Taking the latter equality into account and making subsequent use of (5.33)–(5.35)
we then get from (5.36)

𝐴∗𝕋̃(⋅, 𝜁)𝑢 = (𝐼 − 𝐶∗𝐶)Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 − 𝐶∗𝐷𝑢

= Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 − 𝕋(⋅, 0) (𝑆(𝜁) − 𝑆(0))𝑢− 𝕋(⋅, 0)𝑆(0)𝑢
= Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 − 𝕋(⋅, 0)𝑆(𝜁)𝑢

which completes the proof of (5.26). □

Remark 5.6. Since any t.c.f.m. colligation is contractive, we have in particular that
𝐴𝐴∗ +𝐵𝐵∗ ≤ 𝐼. Therefore, formulas (5.20), (5.21) and (5.26), (5.16) defining the
action of operators 𝐵∗ and 𝐴∗ on elementary kernels of the space 𝒟 (see (5.46))
can be extended by continuity to define these operators on the whole space 𝒟.

Proposition 5.7. Any t.c.f.m. colligation U = [𝐴 𝐵
𝐶 𝐷 ] associated with a fixed Agler

decomposition (2.15) of a given 𝑆 ∈ 𝒮𝒜Q(𝒰 , 𝒴) is weakly unitary and closely
connected. Furthermore,

𝑆(𝑧) = 𝐷 + 𝐶(𝐼 − Q(𝑧)𝐴)−1Q(𝑧)𝐵. (5.37)
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Proof. Let U = [ 𝐴 𝐵
𝐶 𝐷 ] be a t.c.f.m. colligation of 𝑆 associated with a fixed Agler

decomposition (2.15). Then equalities (5.16)–(5.18) hold (by Proposition 5.3) and

can be solved for 𝕋(⋅, 𝑧)𝑦 and 𝕋̃(⋅, 𝑧)𝑢 as follows:

𝕋(⋅, 𝑧)𝑦 = (𝐼 −𝐴∗Q(𝑧)∗)−1𝕋(⋅, 0)𝑦 = (𝐼 −𝐴∗Q(𝑧)∗)−1𝐶∗𝑦, (5.38)

𝕋̃(⋅, 𝑧)𝑢 = (𝐼 −𝐴Q(𝑧))−1𝕋̃(⋅, 0)𝑢 = (𝐼 −𝐴Q(𝑧))−1𝐵𝑢. (5.39)

From (5.38) and (5.20) we conclude that equalities

(𝐷∗ +𝐵∗Q(𝑧)∗(𝐼 −𝐴∗Q(𝑧)∗)−1𝐶∗)𝑦 = 𝑆(0)∗𝑦 +𝐵∗Q(𝑧)∗𝕋(⋅, 𝑧)𝑦
= 𝑆(0)∗𝑦 + 𝑆(𝑧)∗𝑦 − 𝑆(0)∗𝑦
= 𝑆(𝑧)∗𝑦 (5.40)

hold for every 𝑧 ∈ 𝒟Q and 𝑦 ∈ 𝒴, which proves representation (5.37). Furthermore,
in view of (5.2) and (5.3),

ℋ𝒪
𝐶,𝐴 :=

⋁{ℐ∗
𝑝,𝑗(𝐼 −𝐴∗Q(𝑧)∗)−1𝐶∗𝑦 : 𝑧 ∈ 𝒟Q, 𝑦 ∈ 𝒴, 𝑗 = 1, . . . , 𝑝

}
=
⋁{ℐ∗

𝑝,𝑗𝕋(⋅, 𝑧)𝑦 : 𝑧 ∈ 𝒟Q, 𝑦 ∈ 𝒴, 𝑗 = 1, . . . , 𝑝
}

=
⋁{

𝕂(⋅, 𝑧)
[
e𝑗 ⊗ 𝑦

0

]
: 𝑧 ∈ 𝒟Q, 𝑦 ∈ 𝒴, 𝑗 = 1, . . . , 𝑝

}
=
⋁{

𝕂(⋅, 𝑧)
[
y
0

]
: 𝑧 ∈ 𝒟Q, y ∈ 𝒴

}
,

ℋ𝒞
𝐴,𝐵 :=

⋁{ℐ∗
𝑞,𝑘(𝐼 −𝐴Q(𝑧))−1𝐵𝑢 : 𝑧 ∈ 𝒟Q, 𝑢 ∈ 𝒰 , 𝑘 = 1, . . . , 𝑞

}
=
⋁{

ℐ∗
𝑞,𝑘𝕋̃(⋅, 𝑧)𝑢 : 𝑧 ∈ 𝒟Q, 𝑢 ∈ 𝒰 , 𝑘 = 1, . . . , 𝑞

}
=
⋁{

𝕂(⋅, 𝑧)
[

0
ẽ𝑘 ⊗ 𝑢

]
: 𝑧 ∈ 𝒟Q, 𝑢 ∈ 𝒴, 𝑘 = 1, . . . , 𝑞

}
=
⋁{

𝕂(⋅, 𝑧)
[
0
u

]
: 𝑧 ∈ 𝒟Q, u ∈ 𝒰𝑞

}
,

and therefore,

ℋ𝒪
𝐶,𝐴

⋁
ℋ𝒞

𝐴,𝐵 =
⋁{

𝕂(⋅, 𝑧)
[
y
0

]
, 𝕂(⋅, 𝑧)

[
0
u

]
: 𝑧 ∈ 𝒟Q, y ∈ 𝒴𝑝, u ∈ 𝒰𝑞

}
=
⋁{

𝕂(⋅, 𝑧)
[
y
u

]
: 𝑧 ∈ 𝒟Q,

[
y
u

]
∈ 𝒴𝑝 ⊕ 𝒰𝑞

}
= ℋ(𝕂)

where the last equality follows by the very construction of the reproducing kernel
Hilbert space. The colligation U = [ 𝐴 𝐵

𝐶 𝐷 ] is closely connected by Definition 1.7.
To show that U is weakly unitary, let us write the Agler decomposition (2.15) for
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𝑆 in the inner product form as the identity

⟨𝑦 + 𝑆(𝜁)𝑢, 𝑦′ + 𝑆(𝑧)𝑢′⟩𝒴 − ⟨𝑆(𝜁)∗𝑦 + 𝑢, 𝑆(𝑧)∗𝑦′ + 𝑢′⟩𝒰

=

〈
𝑝⊕

𝑗=1

𝕂(⋅, 𝜁)𝑀𝑗(𝜁)

[
𝑦
𝑢

]
,

𝑝⊕
𝑗=1

𝕂(⋅, 𝑧)𝑀𝑗(𝑧)

[
𝑦′

𝑢′

]〉
ℋ(𝕂)𝑝

−
〈

𝑞⊕
𝑘=1

𝕂(⋅, 𝜁)𝑁𝑘(𝜁)

[
𝑦
𝑢

]
,

𝑞⊕
𝑘=1

𝕂(⋅, 𝑧)𝑁𝑘(𝑧)

[
𝑦′

𝑢′

]〉
ℋ(𝕂)𝑞

(5.41)

holding for all 𝑧, 𝜁 ∈ 𝒟Q, 𝑦, 𝑦′ ∈ 𝒴 and 𝑢, 𝑢′ ∈ 𝒰 . We next observe that

𝑝⊕
𝑗=1

𝕂(⋅, 𝜁)𝑀𝑗(𝜁)

[
𝑦
𝑢

]
=

𝑝⊕
𝑗=1

𝕂(⋅, 𝜁)
[
𝑀𝐿

𝑗 𝑦
0

]
+

𝑝⊕
𝑗=1

𝕂(⋅, 𝜁)
[

0
𝑀𝑅

𝑗 (𝜁)𝑢

]
= 𝕋(⋅, 𝜁)𝑦 +Q(𝜁)𝕋̃(⋅, 𝜁)𝑢, (5.42)

where the first equality follows from definition (1.7) of 𝑀𝑗(𝜁) and the second is a
consequence of (5.2) and (5.11). Similarly, one can check the equality

𝑞⊕
𝑘=1

𝕂(⋅, 𝜁)𝑁𝑘(𝜁)

[
𝑦
𝑢

]
= Q(𝜁)∗𝕋(⋅, 𝜁)𝑦 + 𝕋̃(⋅, 𝜁)𝑢,

which, upon being substituted together with (5.42) into (5.41), leads us to〈[
Q(𝜁)∗𝕋(⋅, 𝜁)𝑦 + 𝕋̃(⋅, 𝜁)𝑢

𝑦 + 𝑆(𝜁)𝑢

]
,

[
Q(𝑧)∗𝕋(⋅, 𝑧)𝑦′ + 𝕋̃(⋅, 𝑧)𝑢′

𝑦′ + 𝑆(𝑧)𝑢′

]〉
ℋ(𝕂)𝑞⊕𝒴

=

〈[
𝕋(⋅, 𝜁)𝑦 +Q(𝜁)𝕋̃(⋅, 𝜁)𝑢

𝑆(𝜁)∗𝑦 + 𝑢

]
,

[
𝕋(⋅, 𝑧)𝑦′ +Q(𝑧)𝕋̃(⋅, 𝑧)𝑢′

𝑆(𝑧)∗𝑦′ + 𝑢′

]〉
ℋ(𝕂)𝑝⊕𝒰

.

(5.43)

Letting 𝑢 = 𝑢′ = 0 and 𝑦 = 𝑦′ in the latter equality gives∥∥∥∥[ Q(𝜁)∗𝕋(⋅, 𝜁)𝑦
𝑦

]∥∥∥∥ = ∥∥∥∥[ 𝕋(⋅, 𝜁)𝑦
𝑆(𝜁)∗𝑦

]∥∥∥∥
which on account of (5.38) can be written as∥∥∥∥[ Q(𝜁)∗(𝐼 −𝐴∗Q(𝜁)∗)−1𝐶∗𝑦

𝑦

]∥∥∥∥ = ∥∥∥∥[ (𝐼 −𝐴∗Q(𝜁)∗)−1𝐶∗𝑦
𝑆(𝜁)∗𝑦

]∥∥∥∥ . (5.44)

Since[
𝐴∗ 𝐶∗

𝐵∗ 𝐷∗

] [
Q(𝜁)∗(𝐼 −𝐴∗Q(𝜁)∗)−1𝐶∗𝑦

𝑦

]
=

[
(𝐼 −𝐴∗Q(𝜁)∗)−1𝐶∗𝑦

𝑆(𝜁)∗𝑦

]
(the top components in the latter formula are equal automatically whereas the
bottom components are equal due to (5.40)), equality (5.44) tells us that U is
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weakly coisometric by Definition 1.8. Similarly letting 𝑢 = 𝑢′ and 𝑦 = 𝑦′ = 0 in
(5.43) we get ∥∥∥∥[ 𝕋̃(⋅, 𝜁)𝑢

𝑆(𝜁)𝑢

]∥∥∥∥ = ∥∥∥∥[ Q(𝜁)𝕋̃(⋅, 𝜁)𝑢
𝑢

]∥∥∥∥
which in view of (5.39) can be written as∥∥∥∥[ (𝐼 −𝐴Q(𝜁))−1𝐵𝑢

𝑆(𝜁)𝑢

]∥∥∥∥ = ∥∥∥∥[ Q(𝜁)(𝐼 −𝐴Q(𝜁))−1𝐵𝑢
𝑢

]∥∥∥∥
and since[

𝐴 𝐵
𝐶 𝐷

] [
Q(𝜁)(𝐼 −𝐴Q(𝜁))−1𝐵𝑢

𝑢

]
=

[
(𝐼 −𝐴Q(𝜁))−1𝐵𝑢

𝑆(𝜁)𝑢

]
(again, the top components are equal automatically and the bottom components
are equal due to (5.37)), the colligation U is weakly isometric by Definition 1.8.

□

Proposition 5.7 establishes common features of t.c.f.m. colligations leaving the
question about the existence of at least one such colligation open. As was shown
in the proof of Proposition 5.7, the Agler decomposition (2.15) can be written in
the inner product form (5.43) from which we conclude that the map

𝑉 =

[
𝐴𝑉 𝐵𝑉

𝐶𝑉 𝐷𝑉

]
:

[
Q(𝜁)∗𝕋(⋅, 𝜁)𝑦 + 𝕋̃(⋅, 𝜁)𝑢

𝑦 + 𝑆(𝜁)𝑢

]
+→
[

𝕋(⋅, 𝜁)𝑦 +Q(𝜁)𝕋̃(⋅, 𝜁)𝑢
𝑆(𝜁)∗𝑦 + 𝑢

]
,

(5.45)
defined completely in terms of a given Agler decomposition 𝕂 of 𝑆, extends by
linearity and continuity to an isometry from

𝒟𝑉 =
⋁{[ Q(𝜁)∗𝕋(⋅, 𝜁)𝑦

𝑦

]
,

[
𝕋̃(⋅, 𝜁)𝑢
𝑆(𝜁)𝑢

]
: 𝜁 ∈ 𝒟Q, 𝑦 ∈ 𝒴, 𝑢 ∈ 𝒰

}
onto

ℛ𝑉 =
⋁{[ 𝕋(⋅, 𝜁)𝑦

𝑆(𝜁)∗𝑦

]
,

[
Q(𝜁)𝕋̃(⋅, 𝜁)𝑢

𝑢

]
: 𝜁 ∈ 𝒟Q, 𝑦 ∈ 𝒴, 𝑢 ∈ 𝒰

}
.

It is readily seen from (2.6) that 𝒟𝑉 and ℛ𝑉 contain respectively all vectors of
the form [ 𝑦0 ] and [ 0𝑢 ] and therefore they are split into direct sums

𝒟𝑉 = 𝒟 ⊕ 𝒴 and ℛ𝑉 = ℛ ⊕ 𝒰
where the subspaces 𝒟 ⊂ ℋ(𝕂)𝑞 and ℛ ⊂ ℋ(𝕂)𝑝 are given by

𝒟 =
⋁{

Q(𝜁)∗𝕋(⋅, 𝜁)𝑦, 𝕋̃(⋅, 𝜁)𝑢 : 𝜁 ∈ 𝒟Q, 𝑦 ∈ 𝒴, 𝑢 ∈ 𝒰
}
, (5.46)

ℛ =
⋁{

𝕋(⋅, 𝜁)𝑦, Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 : 𝜁 ∈ 𝒟Q, 𝑦 ∈ 𝒴, 𝑢 ∈ 𝒰
}
. (5.47)

It follows from the reproducing kernel formulas (5.5) that the orthogonal com-
plements to these subspaces can be described in terms of the linear maps (5.4)
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as

𝒟⊥ := ℋ(𝕂)𝑞 ⊖ 𝒟 = {𝑔 ∈ ℋ(𝕂)𝑞 : s(Q𝑔) ≡ 0 and s̃𝑔 ≡ 0} , (5.48)

ℛ⊥ := ℋ(𝕂)𝑝 ⊖ ℛ = {𝑓 ∈ ℋ(𝕂)𝑝 : s𝑓 ≡ 0 and s̃(Q𝑓) ≡ 0} . (5.49)

For the operators 𝐴𝑉 : 𝒟 → ℛ, 𝐵𝑉 : 𝒰 → ℛ, 𝐶𝑉 : 𝒟 → 𝒴, 𝐷𝑉 : 𝒰 → 𝒴 we
have from (5.45) the following relations:

𝐴𝑉 Q(𝜁)∗𝕋(⋅, 𝜁)𝑦 +𝐵𝑉 𝑦 = 𝕋(⋅, 𝜁)𝑦, (5.50)

𝐴𝑉 𝕋̃(⋅, 𝜁)𝑢 +𝐵𝑉 𝑆(𝜁)𝑢 = Q(𝜁)𝕋̃(⋅, 𝜁)𝑢, (5.51)

𝐶𝑉 Q(𝜁)∗𝕋(⋅, 𝜁)𝑦 +𝐷𝑉 𝑦 = 𝑆(𝜁)
∗𝑦, (5.52)

𝐶𝑉 𝕋̃(⋅, 𝜁)𝑢 +𝐷𝑉 𝑆(𝜁)𝑢 = 𝑢. (5.53)

Equalities (5.50) and (5.51) are obtained upon equating the top components in
(5.45) specialized to the respective special cases 𝑢 = 0 and 𝑦 = 0. Equalities (5.52)
and (5.53) are obtained similarly upon equating the bottom components in (5.45).
Letting 𝜁 = 0 in (5.50) and (5.52) gives

𝐵𝑉 𝑦 = 𝕋(⋅, 0)𝑦 and 𝐷𝑉 𝑦 = 𝑆(0)
∗𝑦. (5.54)

Substituting the first and the second formula in (5.54) respectively into (5.50),
(5.51) and into (5.52) and (5.53) results in equalities

𝐴𝑉 : Q(𝜁)∗𝕋(⋅, 𝜁)𝑦 → 𝕋(⋅, 𝜁)𝑦 − 𝕋(⋅, 0)𝑦, (5.55)

𝐴𝑉 : 𝕋̃(⋅, 𝜁)𝑢→ Q(𝜁)𝕋̃(⋅, 𝜁)𝑢− 𝕋(⋅, 0)𝑆(𝜁)𝑢, (5.56)

𝐶𝑉 : Q(𝜁)∗𝕋(⋅, 𝜁)𝑦 → 𝑆(𝜁)∗𝑦 − 𝑆(0)∗𝑦, (5.57)

𝐶𝑉 : 𝕋̃(⋅, 𝜁)𝑢→ 𝑢− 𝑆(0)∗𝑆(𝜁)𝑢 (5.58)

holding for all 𝜁 ∈ 𝒟Q, 𝑢 ∈ 𝒰 and 𝑦 ∈ 𝒴 and completely defining the operators
𝐴𝑉 and 𝐶𝑉 on the whole space 𝒟.

Lemma 5.8. Given the Agler decomposition 𝕂 for a function 𝑆 ∈ 𝒮𝒜Q(𝒰 ,𝒴), let 𝑉
be the isometric operator associated with this decomposition as in (5.45). A block-
operator matrix U = [𝐴 𝐵

𝐶 𝐷 ] of the form (5.12) is a t.c.f.m. colligation associated
with 𝕂 if and only if

∥U∗∥ ≤ 1, U∗∣𝒟⊕𝒴 = 𝑉 and 𝐵∗∣𝒟⊥ = 0, (5.59)

that is, U∗ is a contractive extension of 𝑉 from 𝒟⊕𝒴 to all of ℋ(𝕂)𝑞 ⊕𝒴 subject
to condition 𝐵∗∣𝒟⊥ = 0.

Proof. Let U = [ 𝐴 𝐵
𝐶 𝐷 ] be a t.c.f.m. colligation associated with 𝕂. Then U is con-

tractive by definition and relations (5.16)–(5.18) and (5.26) hold by Propositions
5.3 and 5.5. Comparing (5.16) and (5.26) with (5.55), (5.56) we see that 𝐴∗∣𝒟 =
𝐴𝑉 . Comparing (5.20), (5.21) with (5.57), (5.58) we conclude that 𝐵∗∣𝒟 = 𝐶𝑉 .
Also, it follows from (5.18) and (5.54) that 𝐶∗ = 𝐵𝑉 and 𝐷∗ = 𝐷𝑉 . Finally, we
see from formula (5.48) that 𝐵∗𝑓 = s̃𝑓 = 0 for every 𝑓 ∈ 𝒟⊥, which proves the
last equality in (5.59).
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Conversely, let us assume that a colligation U = [ 𝐴 𝐵
𝐶 𝐷 ] meets all the con-

ditions in (5.59). From the second relation in (5.59) we conclude the equalities
(5.54)–(5.58) hold with operators 𝐴𝑉 , 𝐵𝑉 , 𝐶𝑉 and 𝐷𝑉 replaced by 𝐴∗, 𝐶∗, 𝐵∗

and 𝐷∗ respectively. In other words, we conclude from (5.54) that 𝐶∗ and 𝐷∗

are defined exactly as in (5.18) which means (by Proposition 5.3) that they are
already of the requisite form. Equalities (5.57), (5.58) tell us that the operator 𝐵∗

satisfies formulas (5.20), (5.21). As we have seen in the proof of Proposition 5.5,
these formulas agree with the second formula in (5.15) defining 𝐵∗ on the whole
ℋ(𝕂)𝑞. From the third condition in (5.59) we now conclude that 𝐵∗ is defined by
formula (5.15) on the whole ℋ(𝕂)𝑞, and therefore 𝐵 is also of the requisite form.
The formula (5.55) (with 𝐴∗ instead of 𝐴𝑉 ) leads us to (5.16) which means that
𝐴 solves the Gleason problem (5.13). Then the hypotheses of Proposition 5.4 are
satisfied and we conclude that the identities (5.19), (5.20) and (5.21) all hold.

To complete the proof, it remains to show that 𝐴∗ solves the dual Gleason
problem (5.14) or equivalently, that (5.17) holds. Rather than (5.17), what we
know is equality (5.51) (with 𝐴∗ and 𝐶∗ instead of 𝐴𝑉 and 𝐵𝑉 respectively):

𝐴∗𝕋̃(⋅, 𝜁)𝑢 = Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 − 𝐶∗𝑆(𝜁)𝑢 (5.60)

We use (5.60) to show that equality∥∥∥𝕋̃(⋅, 𝜁)𝑢∥∥∥2
ℋ(𝕂)𝑝

−
∥∥∥𝐴∗𝕋̃(⋅, 𝜁)𝑢

∥∥∥2
ℋ(𝕂)𝑝

=
∥∥∥𝐵∗𝕋̃(⋅, 𝜁)𝑢

∥∥∥2
𝒰

(5.61)

holds for every 𝜁 ∈ 𝒟Q and 𝑢 ∈ 𝒰 . Indeed,∥∥∥𝕋̃(⋅, 𝜁)𝑢∥∥∥2 −
∥∥∥𝐴∗𝕋̃(⋅, 𝜁)𝑢

∥∥∥2 =∥∥∥𝕋̃(⋅, 𝜁)𝑢∥∥∥2 −
∥∥∥Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 − 𝐶∗𝑆(𝜁)𝑢

∥∥∥2
=
∥∥∥𝕋̃(⋅, 𝜁)𝑢∥∥∥2 −

∥∥∥Q(𝜁)𝕋̃(⋅, 𝜁)𝑢
∥∥∥2 − ∥𝐶∗𝑆(𝜁)𝑢∥2

−
〈
𝐶Q(𝜁)𝕋̃(⋅, 𝜁)𝑢, 𝑆(𝜁)𝑢

〉
−
〈
𝑆(𝜁)𝑢, 𝐶Q(𝜁)𝕋̃(⋅, 𝜁)𝑢

〉
. (5.62)

We next express all the terms on the right of (5.62) in terms of the function 𝑆:∥∥∥𝕋̃(⋅, 𝜁)𝑢∥∥∥2 −
∥∥∥Q(𝜁)𝕋̃(⋅, 𝜁)𝑢

∥∥∥2 = ⟨(𝐼𝒰 − 𝑆(𝜁)∗𝑆(𝜁))𝑢, 𝑢⟩ , (5.63)〈
𝐶Q(𝜁)𝕋̃(⋅, 𝜁)𝑢, 𝑆(𝜁)𝑢

〉
= ⟨𝑆(𝜁)∗(𝑆(𝜁) − 𝑆(0))𝑢, 𝑢⟩ , (5.64)〈

𝑆(𝜁)𝑢, 𝐶Q(𝜁)𝕋̃(⋅, 𝜁)𝑢
〉
= ⟨(𝑆(𝜁)∗ − 𝑆(0)∗)𝑆(𝜁)𝑢, 𝑢⟩ , (5.65)

∥𝐶∗𝑆(𝜁)𝑢∥2 = ∥𝑆(𝜁)𝑢∥2 − ∥𝑆(0)∗𝑆(𝜁)𝑢∥2. (5.66)

We mention that (5.64) follows from (5.7), (5.9) and (5.30); equality (5.63) is a
consequence of (5.32). Taking adjoints in (5.64) gives (5.65) and equality (5.66)
is obtained upon letting 𝑦 = 𝑆(𝜁)𝑢 in (5.22). We now substitute the four last
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equalities into (5.62) to get∥∥∥𝕋̃(⋅, 𝜁)𝑢∥∥∥2
ℋ(𝕂)𝑞

−
∥∥∥𝐴∗𝕋̃(⋅, 𝜁)𝑢

∥∥∥2
ℋ(𝕂)𝑝

= ⟨𝑅(𝜁)𝑢, 𝑢⟩𝒰 (5.67)

where

𝑅(𝜁) = 𝐼𝒰 − 𝑆(𝜁)∗𝑆(𝜁) + 𝑆(𝜁)∗ (𝑆(𝜁) − 𝑆(0))
+ (𝑆(𝜁)∗ − 𝑆(0)∗)𝑆(𝜁) − 𝑆(𝜁)∗𝑆(𝜁) + 𝑆(𝜁)∗𝑆(0)𝑆(0)∗𝑆(𝜁)

= 𝐼𝒰 − 𝑆(𝜁)∗𝑆(0)− 𝑆(0)∗𝑆(𝜁) + 𝑆(𝜁)∗𝑆(0)𝑆(0)∗𝑆(𝜁)
= (𝐼𝒰 − 𝑆(𝜁)∗𝑆(0)) (𝐼𝒰 − 𝑆(0)∗𝑆(𝜁)) .

By (5.21) we have

𝐵∗𝕋̃(⋅, 𝜁)𝑢 = 𝑢− 𝑆(0)∗𝑆(𝜁)𝑢 (5.68)

and therefore ∥∥∥𝐵∗𝕋̃(⋅, 𝜁)𝑢
∥∥∥2

𝒰
= ∥𝑢− 𝑆(0)∗𝑆(𝜁)𝑢∥2𝒰 = ⟨𝑅(𝜁)𝑢, 𝑢⟩𝒰 ,

which together with (5.67) completes the proof of (5.61). Writing (5.61) as

⟨(𝐼 −𝐴𝐴∗ −𝐵𝐵∗)𝕋̃(⋅, 𝜁)𝑢, 𝕋̃(⋅, 𝜁)𝑢⟩ = 0

and observing that the operator 𝐼 − 𝐴𝐴∗ − 𝐵𝐵∗ is positive semidefinite (since
U = [ 𝐴 𝐵

𝐶 𝐷 ] is a contraction), we conclude that

(𝐼 −𝐴𝐴∗ −𝐵𝐵∗)𝕋̃(⋅, 𝜁)𝑢 = 0 for all 𝜁 ∈ 𝒟Q, 𝑢 ∈ 𝒰 . (5.69)

Since the operators 𝐶 and 𝐷 satisfy the first equality (5.19) and since U = [ 𝐴 𝐵
𝐶 𝐷 ]

is a contraction, we have 𝐴𝐶∗ + 𝐵𝐷∗ = 0. We now combine this latter equality
with (5.68) and formula (5.18) for 𝐷∗ to get

𝕋̃(⋅, 0)𝑢 = 𝐵𝑢 = 𝐵(𝐵∗𝕋̃(⋅, 𝜁)𝑢 + 𝑆(0)∗𝑆(𝜁)𝑢)
= 𝐵𝐵∗𝕋̃(⋅, 𝜁)𝑢 +𝐵𝐷∗𝑆(𝜁)𝑢

= 𝐵𝐵∗𝕋̃(⋅, 𝜁)𝑢 −𝐴𝐶∗𝑆(𝜁)𝑢. (5.70)

We now apply the operator 𝐴 to both parts of (5.60):

𝐴𝐴∗𝕋̃(⋅, 𝜁)𝑢 = 𝐴Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 −𝐴𝐶∗𝑆(𝜁)𝑢

and solve the obtained identity for𝐴Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 with further simplifications based
on (5.69) and (5.70):

𝐴Q(𝜁)𝕋̃(⋅, 𝜁)𝑢 = 𝐴𝐴∗𝕋̃(⋅, 𝜁)𝑢 +𝐴𝐶∗𝑆(𝜁)𝑢

= 𝕋̃(⋅, 𝜁)𝑢 −𝐵𝐵∗𝕋̃(⋅, 𝜁)𝑢 −𝐵𝐷∗𝑆(𝜁)𝑢

= 𝕋̃(⋅, 𝜁)𝑢 − 𝕋̃(⋅, 0)𝑢.
This completes the proof of (5.17). □

As a consequence of Lemma 5.8 we get a description of all t.c.f.m. colligations
associated with a given Agler decomposition of a Schur-Agler function.
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Lemma 5.9. Let 𝕂 be a fixed Agler decomposition of a function 𝑆 ∈ 𝒮𝒜Q(𝒰 ,𝒴).
Let 𝑉 be the associated isometry defined in (5.45) with the defect spaces 𝒟⊥ and
ℛ⊥ defined in (5.48), (5.49). Then all t.c.f.m. colligations associated with 𝕂 are
of the form

U∗ =

[
𝑋 0
0 𝑉

]
:

[ 𝒟⊥

𝒟 ⊕ 𝒴
]

→
[ ℛ⊥

ℛ ⊕ 𝒰
]

(5.71)

where we have identified

[ℋ(𝕂)𝑞

𝒴
]
with

[ 𝒟⊥

𝒟 ⊕ 𝒴
]
and

[ℋ(𝕂)𝑝

𝒰
]
with

[ ℛ⊥

ℛ ⊕ 𝒰
]
and

where 𝑋 is an arbitrary contraction from 𝒟⊥ into ℛ⊥. The colligation U is iso-
metric (coisometric, unitary) if and only if 𝑋 is coisometric (isometric, unitary).

For the proof, it is enough to recall that 𝑉 is unitary as an operator from
𝒟𝑉 = 𝒟 ⊕ 𝒴 onto ℛ𝑉 = ℛ ⊕ 𝒰 and then to refer to Lemma 5.8. The meaning
of description (5.71) is clear: the operators 𝐵∗, 𝐶∗, 𝐷∗ and the restriction of 𝐴∗

to the subspace 𝒟 in the operator colligation U∗ are prescribed. The objective is
to guarantee U∗ be contractive by suitably defining 𝐴∗ on 𝒟⊥. Lemma 5.9 states
that 𝑋 = 𝐴∗∣𝒟⊥ must be a contraction with range contained in ℛ⊥.

We now are ready to formulate the multivariable counterpart of Theorem 1.5.

Theorem 5.10. Let 𝑆 be a function in the Schur-Agler class 𝒮𝐴𝑑(𝒰 ,𝒴) with given
Agler decomposition 𝕂. Then

1. There exists a t.c.f.m. colligation U = [ 𝐴 𝐵
𝐶 𝐷 ] associated with 𝕂.

2. Every t.c.f.m. colligation U associated with 𝕂 is weakly unitary and closely
connected and furthermore, 𝑆(𝑧) = 𝐷 + 𝐶(𝐼 − Q(𝑧)𝐴)−1Q(𝑧)𝐵.

3. Any weakly unitary closely connected colligation Ũ of the form (1.14) with
transfer function equal to 𝑆 is unitarily equivalent to some t.c.f.m. colligation
U for 𝑆.

Proof. Part (1) is contained in Lemma 5.9. Part (2) was proved in Proposition

5.7. To prove part (3) we assume that Ũ =
[
𝐴 𝐵
𝐶 𝐷

]
:
[ 𝒳 𝑝

𝒰
] → [ 𝒳 𝑞

𝒴
]
be a closely

connected weakly unitary colligation with the state space 𝒳 and such that

𝑆(𝑧) = 𝐷 + 𝐶(𝐼 − Q(𝑧)𝐴)−1Q(𝑧)𝐵. (5.72)

The proof of unitary equivalence of Ũ to some t.c.f.m. colligation for 𝑆 will be
broken into three steps below. Let 𝔾(𝑧) be the operator-valued function

𝔾(𝑧) =

[
𝔾𝐿(𝑧)
𝔾𝑅(𝑧)

]
:=

[ ⊕𝑝
𝑗=1 𝐶(𝐼 − Q(𝑧)𝐴)−1ℐ𝑝,𝑗⊕𝑞
𝑘=1 𝐵

∗(𝐼 − Q(𝑧)∗𝐴∗)−1ℐ𝑞,𝑘

]
(5.73)

where the inclusion operators ℐ𝑝,𝑗 and ℐ𝑞,𝑘 are defined via formula (1.16). Fur-
thermore, let 𝕂 be the positive kernel defined by

𝕂(𝑧, 𝜁) =

[
𝕂𝐿(𝑧, 𝜁) 𝕂𝐿𝑅(𝑧, 𝜁)
𝕂𝑅𝐿(𝑧, 𝜁) 𝕂𝑅(𝑧, 𝜁)

]
:=

[
𝔾𝐿(𝑧)
𝔾𝑅(𝑧)

] [
𝔾𝐿(𝜁)

∗ 𝔾𝑅(𝜁)
∗] (5.74)
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and let ℋ(𝕂) be the associated reproducing kernel Hilbert space. Let 𝑈 : 𝒳 →
ℋ(𝕂) be the linear map given by

𝑈 : 𝑥→ 𝔾(𝑧)𝑥 (5.75)

and define the operators 𝐴 : ℋ(𝕂)𝑝 → ℋ(𝕂)𝑞, 𝐵 : 𝒰 → ℋ(𝕂)𝑞 and 𝐶 : ℋ(𝕂)𝑝 → 𝒴
by

𝐴
(⊕𝑝

𝑗=1𝑈
)
= (⊕𝑞

𝑘=1𝑈)𝐴, 𝐵 = (⊕𝑞
𝑘=1𝑈)𝐵 and 𝐶

(⊕𝑝
𝑗=1𝑈

)
= 𝐶. (5.76)

Step 1: The Agler decomposition (2.15) holds for the kernel 𝕂 defined in (5.74).

Step 2: The linear map 𝑈 : 𝒳 → ℋ(𝕂) defined in (5.75) is unitary.

Step 3: The colligation U = [𝐴 𝐵
𝐶 𝐷 ] with the block entries defined in (5.76) is a

t.c.f.m. colligation associated with the Agler decomposition 𝕂 for 𝑆.

Since the colligations Ũ and U are unitarily equivalent by (5.76) and defi-
nition (1.15), part (3) of the theorem will then follow. Thus, it remains to justify
the three steps.

Proof of Step 1. It follows by straightforward calculations (see, e.g., [7]) that for

the transfer function 𝑆 (5.72) of the colligation Ũ =
[
𝐴 𝐵
𝐶 𝐷

]
,

𝐼 − 𝑆(𝑧)𝑆(𝜁)∗ = 𝐶(𝐼 − Q(𝑧)𝐴)−1 (𝐼 − Q(𝑧)Q(𝜁)∗) (𝐼 −𝐴∗Q(𝜁)∗)−1𝐶∗

+
[
𝐶(𝐼 − Q(𝑧)𝐴)−1Q(𝑧) 𝐼

] (
𝐼 − ŨŨ∗

) [
Q(𝜁)∗(𝐼 −𝐴∗Q(𝜁)∗)−1𝐶∗

𝐼

]
and

𝐼 − 𝑆(𝑧)∗𝑆(𝜁) = 𝐵∗(𝐼 − Q(𝑧)∗𝐴∗)−1 (𝐼 − Q(𝑧)∗Q(𝜁)) (𝐼 −𝐴Q(𝜁))−1𝐵

+
[
𝐵∗(𝐼 − Q(𝑧)∗𝐴∗)−1Q(𝑧)∗ 𝐼

] (
𝐼 − Ũ∗Ũ

)[
Q(𝜁)(𝐼 −𝐴Q(𝜁))−1𝐵

𝐼

]
,

from which it is clear that weak-coisometric property and weak-isometric proper-

ties of Ũ (see Definition 1.8) are exactly what is needed for the respective identities

𝐼 − 𝑆(𝑧)𝑆(𝜁)∗ = 𝐶(𝐼 − Q(𝑧)𝐴)−1 (𝐼 − Q(𝑧)Q(𝜁)∗) (𝐼 −𝐴∗Q(𝜁)∗)−1𝐶∗, (5.77)

𝐼 − 𝑆(𝑧)∗𝑆(𝜁) = 𝐵∗(𝐼 − Q(𝑧)∗𝐴∗)−1 (𝐼 − Q(𝑧)∗Q(𝜁)) (𝐼 −𝐴Q(𝜁))−1𝐵. (5.78)

Since Ũ is weakly unitary, the two latter identities hold. Also we observe that for
𝑆 of the form (5.72),

𝑆(𝑧)− 𝑆(𝜁) = 𝐶(𝐼 − Q(𝑧)𝐴)−1Q(𝑧)𝐵 − 𝐶Q(𝜁)(𝐼 −𝐴Q(𝜁))−1𝐵

= 𝐶(𝐼 − Q(𝑧)𝐴)−1 (Q(𝑧)− Q(𝜁)) (𝐼 −𝐴Q(𝜁))−1𝐵. (5.79)

On the other hand, for the function 𝔾𝐿 defined in (5.73) and for 𝑀𝐿
𝑗 given in

(2.8), we have

𝑀𝐿∗
𝑗 𝔾𝐿(𝑧) = 𝐶(𝐼 − Q(𝑧)𝐴)−1ℐ𝑝,𝑗 .
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Then we conclude from (2.10) that

𝑁𝐿
𝑘 (𝑧)

∗𝔾𝐿(𝑧) =

𝑝∑
𝑗=1

q𝑗𝑘(𝑧)𝑀
𝐿∗
𝑗 𝔾𝐿(𝑧) = 𝐶(𝐼 − Q(𝑧)𝐴)−1

𝑝∑
𝑗=1

q𝑗𝑘(𝑧)ℐ𝑝,𝑗

= 𝐶(𝐼 − Q(𝑧)𝐴)−1Q(𝑧)ℐ𝑞,𝑘

and since

𝑝∑
𝑗=1

ℐ𝑝,𝑗ℐ∗
𝑝,𝑗 = 𝐼𝒳 𝑝 and

𝑞∑
𝑘=1

ℐ𝑞,𝑘ℐ∗
𝑞,𝑘 = 𝐼𝒳 𝑞 , we have for the kernel 𝕂𝐿

defined in (5.74),

𝑝∑
𝑗=1

𝑀𝐿∗
𝑗 𝕂𝐿(𝑧, 𝜁)𝑀

𝐿
𝑗 −

𝑞∑
𝑘=1

𝑁𝐿
𝑘 (𝑧)

∗𝕂𝐿(𝑧, 𝜁)𝑁
𝐿
𝑘 (𝜁)

=

𝑝∑
𝑗=1

𝑀𝐿∗
𝑗 𝔾𝐿(𝑧)𝔾𝐿(𝜁)

∗𝑀𝐿
𝑗 −

𝑞∑
𝑘=1

𝑁𝐿
𝑘 (𝑧)

∗𝔾𝐿(𝑧)𝔾𝐿(𝜁)
∗𝑁𝐿

𝑘 (𝜁)

=

𝑝∑
𝑗=1

𝐶(𝐼 − Q(𝑧)𝐴)−1ℐ𝑝,𝑗ℐ∗
𝑝,𝑗(𝐼 −𝐴∗Q(𝜁)∗)−1𝐶∗

−
𝑞∑

𝑘=1

𝐶(𝐼 − Q(𝑧)𝐴)−1Q(𝑧)ℐ𝑞,𝑘ℐ∗
𝑞,𝑘Q(𝜁)∗(𝐼 −𝐴∗Q(𝜁)∗)−1𝐶∗

= 𝐶(𝐼 − Q(𝑧)𝐴)−1 (𝐼 − Q(𝑧)Q(𝜁)∗) (𝐼 −𝐴∗Q(𝜁)∗)−1𝐶∗.

Comparing the last equality with (5.77) we get the left Agler decomposition (2.11)
for the kernel 𝕂𝐿 from (5.73). It can be shown in much the same way that (5.78)
and (5.79) are equivalent to (2.12) and (2.13) respectively (with 𝕂𝑅 and 𝕂𝐿𝑅

chosen as in (5.73)). Since (2.14) follows upon taking conjugates in (2.13), we
arrive at (2.15).

Proof of Step 2. Due to factorization 𝕂(𝑧, 𝜁) = 𝔾(𝑧)𝔾(𝜁)∗ (see (5.74)), the re-
producing kernel Hilbert space ℋ(𝕂) can be characterized as the range space
ℋ(𝕂) = {𝑓(𝑧) = 𝔾(𝑧)𝑥 : 𝑥 ∈ 𝒳} with the lifted norm ∥𝔾𝑥∥ℋ(𝕂) = ∥(𝐼 − 𝜋)𝑥∥𝒳
where 𝜋 is the orthogonal projection onto the subspace 𝒳 ∘ = {𝑥 ∈ 𝒳 : 𝔾𝑥 ≡ 0}.
For every vector 𝑥 ∈ 𝒳 ∘ we have by (5.73),

𝐶(𝐼 − Q(𝑧)𝐴)−1ℐ𝑝,𝑗𝑥 = 0 and 𝐵∗(𝐼 − Q(𝑧)∗𝐴∗)−1ℐ𝑞,𝑘𝑥 = 0

for all 𝑗 = 1, . . . , 𝑝 and 𝑘 = 1, . . . , 𝑞. Then 𝑥 is orthogonal to the spaces ℋ𝒪
𝐶,𝐴

and ℋ𝒞
𝐴,𝐵

(see Definition 1.7) and since the colligation Ũ is closely connected, it

follows that 𝑥 = 0. Thus, 𝒳 ∘ is trivial and ∥𝔾𝑥∥ℋ(𝕂) = ∥𝑥∥𝒳 which means that
the operator 𝑈 : 𝑥→ 𝔾(𝑧)𝑥 is a unitary operator from 𝒳 to ℋ(𝕂).

Proof of Step 3. We first observe that the colligation U = [ 𝐴 𝐵
𝐶 𝐷 ] is a contraction

since it is unitarily equivalent to a weakly unitary colligation Ũ. It remains to
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show that 𝐴 solves the Gleason problems (5.13), (5.14) and that 𝐶 and 𝐵∗ are of
the form (5.15).

Take the generic element 𝑓 of ℋ(𝕂)𝑝 in the form

𝑓(𝑧) =

𝑝⊕
𝑗=1

𝔾(𝑧)𝑥𝑗 and let x :=

𝑝⊕
𝑗=1

𝑥𝑗 ∈ 𝒳 𝑝, (5.80)

so that 𝑓 = (⊕𝑝
𝑗=1𝑈)x by (5.75), or equivalently, x = (⊕𝑝

𝑗=1𝑈
∗)𝑓 , since 𝑈 is

unitary. By definitions (5.4) and (5.73) we have

(s𝑓)(𝑧) =

𝑝∑
𝑗=1

𝐶(𝐼 − Q(𝑧)𝐴)−1ℐ𝑝,𝑗𝑥𝑗 = 𝐶(𝐼 − Q(𝑧)𝐴)−1x. (5.81)

Upon evaluating the latter equality at 𝑧 = 0 and taking into account (2.6), we get
for the operator 𝐶 from (5.76)

𝐶𝑓 = 𝐶(⊕𝑝
𝑗=1𝑈

∗)𝑓 = 𝐶x = (s𝑓)(0)

so that the formula (5.15) for 𝐶 holds. We also have from (5.81)

(s𝑓)(𝑧) − (s𝑓)(0) = 𝐶(𝐼 − Q(𝑧)𝐴)−1x − 𝐶x = 𝐶(𝐼 − Q(𝑧)𝐴)−1Q(𝑧)𝐴x. (5.82)

On the other hand, for the operator 𝐴 defined in (5.76), we have

Q(𝑧)𝐴𝑓 = Q(𝑧)𝐴
(⊕𝑝

𝑗=1𝑈
)
x = Q(𝑧)(⊕𝑞

𝑘=1𝑈)𝐴x = (⊕𝑝
𝑘=1𝑈)Q(𝑧)𝐴x

and therefore, by formula (5.81) applied to Q(𝑧)𝐴x rather than to x we get

s(Q(𝑧)𝐴𝑓)(𝑧) = 𝐶(𝐼 − Q(𝑧)𝐴)−1Q(𝑧)𝐴x

which together with (5.82) implies (5.13).

We now take the generic element 𝑔 of ℋ(𝕂)𝑞 in the form

𝑔(𝑧) =

𝑞⊕
𝑘=1

𝔾(𝑧)𝑥𝑘 where now x̃ :=

𝑞⊕
𝑘=1

𝑥𝑘 ∈ 𝒳 𝑞, (5.83)

so that x̃ = (⊕𝑞
𝑘=1𝑈

∗)𝑔. By definitions (5.4) and (5.73) we have

(s̃𝑔)(𝑧) =

𝑞∑
𝑘=1

𝐵∗(𝐼 − Q(𝑧)∗𝐴∗)−1ℐ̃𝑞,𝑘𝑥𝑘 = 𝐵∗(𝐼 − Q(𝑧)∗𝐴∗)−1x̃. (5.84)

Upon evaluating the latter equality at 𝑧 = 0 and taking into account (2.6), we get
for the operator 𝐵∗ from (5.76)

𝐵∗𝑔 = 𝐵∗(⊕𝑞
𝑘=1𝑈

∗)𝑔 = 𝐵∗x̃ = (s̃𝑔)(0)

so that the formula (5.15) for 𝐵∗ holds. We also have from (5.84)

(s̃𝑔)(𝑧)− (s̃𝑔)(0) = 𝐵∗(𝐼 − Q(𝑧)∗𝐴∗)−1Q(𝑧)∗𝐴∗x̃. (5.85)

On the other hand, for the operator 𝐴 defined in (5.76), we have

Q(𝑧)∗𝐴∗𝑔 = Q(𝑧)∗𝐴∗(⊕𝑞
𝑘=1𝑈)x̃ = Q(𝑧)∗(⊕𝑝

𝑗=1𝑈)𝐴
∗x̃ = (⊕𝑞

𝑘=1𝑈)Q(𝑧)∗𝐴∗x̃
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and therefore, by formula (5.84) applied to Q(𝑧)∗𝐴∗x̃ instead of x̃ we get

s̃(Q(𝑧)∗𝐴∗𝑔)(𝑧) = 𝐵∗(𝐼 − Q(𝑧)∗𝐴∗)−1Q∗(𝑧)𝐴∗x̃

which together with (5.85) implies (5.14). This completes the proof of Step 3 and
therefore, of the theorem. □
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Generalized Lax Pair Operator Method
and Nonautonomous Solitons

T.L. Belyaeva, V.N. Serkin, Akira Hasegawa,
Jingsong He and Yishen Li

Abstract. The generalized Lax pair operator method and the concept of non-
autonomous solitons in nonlinear and dispersive nonautonomous physical sys-
tems are introduced. Novel soliton solutions for the nonautonomous nonlinear
Schrödinger equation (NLSE) models with linear and harmonic oscillator po-
tentials substantially extend the concept of classical solitons and generalize it
to the plethora of nonautonomous solitons that interact elastically and gen-
erally move with varying amplitudes, speeds and spectra adapted both to the
external potentials and to the dispersion and nonlinearity variations. The con-
cept of the designable integrability of the variable coefficients nonautonomous
NLSE is introduced. The nonautonomous soliton concept and the designable
integrability can be applied to different physical systems, from hydrodynam-
ics and plasma physics to nonlinear optics and matter-waves and offer many
opportunities for further scientific studies

Mathematics Subject Classification (2000). 47A40; 47F505; 35Q55; 35Q58;
37K10; 37K15; 37K35; 37K40.

Keywords. Lax operator method, Inverse Scattering Transform method, vary-
ing spectral parameter, nonautonomous solitons, nonlinear Schrödinger equa-
tion with linear and harmonic oscillator potentials, dispersion and nonlinearity
variations, Satsuma-Yajima breather, agitated breather.

1. Introduction

Zabusky and Kruskal [1] introduced for the first time the soliton concept to char-
acterize nonlinear solitary waves that do not disperse and preserve their identity
during propagation and after a collision. The Greek ending “on” is generally used
to describe elementary particles and this word was introduced to emphasize the
most remarkable feature of these solitary waves. This means that the energy can
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propagate in the localized form and that the solitary waves emerge from the inter-
action completely preserved in form and speed with only a phase shift. Because of
these defining features, the classical soliton is being considered as the ideal natu-
ral data bit. The optical soliton in fibers presents a beautiful example in which an
abstract mathematical concept has produced a large impact on the real world of
high technologies [2–6].

The classical soliton concept was developed for nonlinear and dispersive sys-
tems that have been autonomous; namely, time has only played the role of the
independent variable and has not appeared explicitly in the nonlinear evolution
equation. A not uncommon situation is one in which a system is subjected to
some form of external time-dependent force. Such situations could include repeated
stress testing of a soliton in nonuniform media with time-dependent density gra-
dients, these situations are typical both for experiments with temporal/spatial
optical solitons, soliton lasers and ultrafast soliton switches and logic gates [2–6].

How can we determine whether a given nonlinear evolution equation is in-
tegrable or not? The ingenious method to answer this question was discovered
by Gardner, Green, Kruskal and Miura (GGKM) [7]. Following this work, Lax
[8] formulated a general principle for associating of nonlinear evolution equations
with linear operators, so that the eigenvalues of the linear operator are integrals of
the nonlinear equation. Lax developed the method of inverse scattering transform
(IST) based on an abstract formulation of evolution equations and certain proper-
ties of operators in a Hilbert space, some of which are well known in the context of
quantum mechanics. Ablowitz, Kaup, Newell, Segur (AKNS) [9] have found that
many physically meaningful nonlinear models can be solved by IST method.

In the traditional scheme of the IST method, the spectral parameter Λ of the
auxiliary linear problem is assumed to be a time independent constant Λ′

𝑡 = 0,
and this fact plays a fundamental role in the development of analytical theory
[10]. The nonlinear evolution equations that arise in the approach of variable spec-
tral parameter, Λ′

𝑡 ∕= 0, contain, as a rule, some coefficients explicitly dependent
on time. The IST method with variable spectral parameter makes it possible to
construct not only the well-known models for nonlinear autonomous physical sys-
tems, but also discover many novel integrable and physically significant nonlinear
nonautonomous equations.

Historically, the study of soliton propagation through density gradients began
with the pioneering work of Tappert and Zabusky [11]. As early as in 1976 Chen
and Liu [12] substantially extended the concept of classical solitons to the accel-
erated motion of a soliton in a linearly inhomogeneous plasma. It was discovered
that for the nonlinear Schrödinger equation model (NLSE) with a linear external
potential, the IST method can be generalized by allowing the time-varying eigen-
value (TVE), and as a consequence of this, the solitons with time-varying velocities
(but with time invariant amplitudes) have been predicted [12]. At the same time
Calogero and Degaspieris [13] introduced the general class of soliton solutions for
the nonautonomous Korteweg-de Vries (KdV) models with varying nonlinearity
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and dispersion. It was shown that the basic property of solitons, to interact elas-
tically, was also preserved, but the novel phenomenon was demonstrated, namely
the fact that each soliton generally moves with variable speed as a particle acted
by an external force rather than as a free particle [13]. In particular, to appreciate
the significance of this analogy, Calogero and Degaspieris introduced the terms
boomeron and trappon instead of classical KdV solitons [13]. Some analytical ap-
proaches for the soliton solutions of the NLSE in the nonuniform medium were
developed by Gupta and Ray [14], Herrera [15], and Balakrishnan [16].

More recently, different aspects of soliton dynamics described by the nonau-
tonomous NLSE models were investigated in [17, 18]. The “ideal” soliton-like inter-
action scenarios among solitons have been studied in [17, 18] within the generalized
nonautonomous NLSE models with varying dispersion, nonlinearity and dissipa-
tion or gain. One important step was performed recently by Zhao, Luo and Chai
[19–22] and Shin [23]. It is well known that a nonlinear partial differential equation
is solvable by the IST method if every ordinary differential equation derived from
it satisfies the Painlevé property. The Painlevé analysis can be considered as a
practical test for the existence of the IST.

In this work, we clarify our algorithm based on the Lax pair generalization
and reveal generic properties of nonautonomous solitons. We consider the gener-
alized nonautonomous NLSE models with varying nonlinearities from the point of
view of their exact integrability both for confining and expulsive external poten-
tials. To test the validity of our predictions, the experimental arrangement should
be inspected to be as close as possible to the optimal map of parameters at which
the problem proves to be exactly integrable [24–26].

2. Lax operator method formulation and exact integrability
of nonautonomous nonlinear and dispersive models with
external potentials

The classification of dynamic systems into autonomous and nonautonomous is
often convenient and can correspond to different physical situations in which, re-
spectively, external time-dependent driving force is present or absent. The math-
ematical treatment of nonautonomous system of equations is considerably more
complicated then the treatment of autonomous ones. As a typical illustration we
may mention both a simple pendulum whose length changes with time and para-
metrically driven nonlinear Duffing oscillator [27].

In the framework of the IST method the nonlinear integrable equation arises
as the compatibility condition of the system of the eigenvalue linear matrix differ-
ential equations

𝜓𝑥 = ℱ̂𝜓(𝑥, 𝑡), 𝜓𝑡 = 𝒢𝜓(𝑥, 𝑡).
Here 𝜓(𝑥, 𝑡) = {𝜓1, 𝜓2}𝑇 is 2-component complex function, ℱ̂ and 𝒢 are complex-
valued (2 × 2) matrices.
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Considering the general case of the IST method with time-dependent spectral

parameter Λ(𝑇 ) and taking matrices ℱ̂ and 𝒢 in the form

ℱ̂(Λ) = ℱ̂
{
Λ(𝑇 ), 𝑞 [𝑆(𝑋,𝑇 ), 𝑇 ] ;

∂𝑞

∂𝑆

(
∂𝑆

∂𝑋

)
;
∂2𝑞

∂𝑆2

(
∂𝑆

∂𝑋

)2
; . . . ;

∂𝑛𝑞

∂𝑆𝑛

(
∂𝑆

∂𝑋

)𝑛
}

𝒢(Λ) = 𝒢
{
Λ(𝑇 ), 𝑞 [𝑆(𝑋,𝑇 ), 𝑇 ] ;

∂𝑞

∂𝑆

(
∂𝑆

∂𝑋

)
;
∂2𝑞

∂𝑆2

(
∂𝑆

∂𝑋

)2
; . . . ;

∂𝑛𝑞

∂𝑆𝑛

(
∂𝑆

∂𝑋

)𝑛
}

where 𝑆 = 𝑆(𝑥, 𝑡) and 𝑇 (𝑡) = 𝑡 are generalized (dependent) coordinates, whereas
𝑥 and 𝑡 are two independent variables, and the function 𝑞 [𝑆(𝑋,𝑇 ), 𝑇 ] denotes
scattering potentials 𝑄(𝑆, 𝑇 ) or 𝑅(𝑆, 𝑇 ), let us represent the desired nonlinear
evolution equation as the condition for the compatibility of the pair of linear
differential equations, to which the inverse scattering method can be applied

∂ℱ̂
∂𝑇

+
∂ℱ̂
∂𝑆
𝑆𝑡 − ∂𝒢

∂𝑆
𝑆𝑥 +

[
ℱ̂ ,𝒢
]
= 0, (1)

where

ℱ̂ = −𝑖Λ(𝑇 )𝜎3 + 𝑈𝜙, (2)

𝒢 =

(
𝐴 𝐵
𝐶 −𝐴

)
, (3)

𝜎3 is the Pauli spin matrix and matrices 𝑈 and 𝜙 are given by

𝑈 =
√
𝜎𝐹 𝛾 (𝑇 )

(
0 𝑄(𝑆, 𝑇 )

𝑅(𝑆, 𝑇 ) 0

)
, (4)

𝜙 =

(
exp[−𝑖𝜑/2] 0

0 exp[𝑖𝜑/2]

)
. (5)

Here 𝐹 (𝑇 ) and 𝜑(𝑆, 𝑇 ) are real unknown functions, 𝛾 is an arbitrary constant,

and 𝜎 = ±1. The desired AKNS elements of 𝒢 matrix: 𝒢̂ =
∑𝑘=3

𝑘=0𝐺𝑘Λ
𝑘,can be

constructed in the form

𝐴 = 𝐴0 +𝐴1Λ +𝐴2Λ
2 +𝐴3Λ

3

𝐵 = 𝐵0 +𝐵1Λ +𝐵2Λ
2 +𝐵3Λ

3

𝐶 = 𝐶0 + 𝐶1Λ + 𝐶2Λ
2 + 𝐶3Λ

3

with time varying spectral parameter given by

Λ𝑇 = 𝜆0 (𝑇 ) + 𝜆1 (𝑇 )Λ (𝑇 ) ,

where time-dependent functions 𝜆0 (𝑇 ) and 𝜆1 (𝑇 ) are the expansion coefficients
of Λ𝑇 in powers of the spectral parameter Λ (𝑇 ) .

Substituting Eqs. (2–5) into Eq. (1), we obtain

𝐴𝑆𝑆𝑥 = − 𝑖Λ𝑇 +
√
𝜎𝐹 𝛾
(
𝐶𝑄𝑒+ −𝐵𝑅𝑒−) , (6)



Generalized Lax Pair Operator Method 61

√
𝜎𝐹 𝛾𝑒+𝑄𝑆𝑆𝑡 = − 𝑖

2

√
𝜎𝐹 𝛾𝑒+𝑄 (𝜑𝑇 + 𝜑𝑆𝑆𝑡) − √

𝜎𝐹 𝛾𝑒+𝑄𝑇

− √
𝜎𝐹 𝛾𝑒+𝑄

(
𝛾
𝐹𝑇
𝐹

)
+ 2𝑖Λ𝐵 + 2

√
𝜎𝐹 𝛾𝑒+𝐴𝑄+𝐵𝑆𝑆𝑥, (7)

√
𝜎𝐹 𝛾𝑒−𝑅𝑆𝑆𝑡 = +

𝑖

2

√
𝜎𝐹 𝛾𝑒−𝑅 (𝜑𝑇 + 𝜑𝑆𝑆𝑡) − √

𝜎𝐹 𝛾𝑒−𝑅𝑇

− √
𝜎𝐹 𝛾𝑒−𝑅

(
𝛾
𝐹𝑇
𝐹

)
− 2𝑖Λ𝐶 − 2

√
𝜎𝐴𝐹 𝛾𝑅𝑒− + 𝐶𝑆𝑆𝑥, (8)

where we introduce the following notations 𝑒± = exp[±𝑖𝜑𝑆/2].
Solving the system (6–8), we find both the matrix elements 𝐴, 𝐵, 𝐶

𝐴 = − 𝑖𝜆0𝑆/𝑆𝑥 + 𝑎0 − 1

4
𝑎3𝜎𝐹

2𝛾(𝑄𝑅𝜑𝑆𝑆𝑥 + 𝑖𝑄𝑅𝑆𝑆𝑥 − 𝑖𝑅𝑄𝑆𝑆𝑥)

+
1

2
𝑎2𝜎𝐹

2𝛾𝑄𝑅+ Λ

(
−𝑖𝜆1𝑆/𝑆𝑥 +

1

2
𝑎3𝜎𝐹

2𝛾𝑄𝑅+ 𝑎1

)
+ 𝑎2Λ

2 + 𝑎3Λ
3,

𝐵 =
√
𝜎𝐹 𝛾𝑒+

{
− 𝑖
4
𝑎3𝑆

2
𝑥

(
𝑄𝑆𝑆 +

𝑖

2
𝑄𝜑𝑆𝑆 − 1

4
𝑄𝜑2𝑆 + 𝑖𝑄𝑆𝜑𝑆

)
− 𝑖

4
𝑎2𝑄𝜑𝑆𝑆𝑥 − 1

2
𝑎2𝑄𝑆𝑆𝑥

+ 𝑖𝑄

(
−𝑖𝜆1𝑆/𝑆𝑥 +

1

2
𝑎3𝜎𝐹

2𝛾𝑄𝑅+ 𝑎1

)
+ Λ

(
− 𝑖
4
𝑎3𝑄𝜑𝑆𝑆𝑥 − 1

2
𝑎3𝑄𝑆𝑆𝑥 + 𝑖𝑎2𝑄

)
+ 𝑖𝑎3Λ

2𝑄

}
,

𝐶 =
√
𝜎𝐹 𝛾𝑒−

{
− 𝑖
4
𝑎3𝑆

2
𝑥

(
𝑅𝑆𝑆 − 𝑖

2
𝑅𝜑𝑆𝑆 − 1

4
𝑅𝜑2𝑆 − 𝑖𝑅𝑆𝜑𝑆

)
− 𝑖

4
𝑎2𝑅𝜑𝑆𝑆𝑥 +

1

2
𝑎2𝑅𝑆𝑆𝑥

+ 𝑖𝑅

(
−𝑖𝜆1𝑆/𝑆𝑥 +

1

2
𝑎3𝜎𝐹

2𝛾𝑄𝑅+ 𝑎1

)
+ Λ

(
− 𝑖
4
𝑎3𝑅𝜑𝑆𝑆𝑥 +

1

2
𝑎3𝑅𝑆𝑆𝑥 + 𝑖𝑎2𝑅

)
+ 𝑖𝑎3Λ

2𝑅

}
,

and two general equations

𝑖𝑄𝑇 =
1

4
𝑎3𝑄𝑆𝑆𝑆𝑆

3
𝑥 +

3𝑖

8
𝑎3𝑄𝑆𝑆𝜑𝑆𝑆

3
𝑥 (9)

− 3𝑖

4
𝑎3𝜎𝐹

2𝛾𝑄2𝑅𝜑𝑆𝑆𝑥 − 3

2
𝑎3𝜎𝐹

2𝛾𝑄𝑅𝑄𝑆𝑆𝑥

− 𝑖
2
𝑎2𝑄𝑆𝑆𝑆

2
𝑥 + 𝑖𝑎2𝜎𝐹

2𝛾𝑄2𝑅
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+ 𝑖𝑄𝑆

(
−𝑆𝑡 + 𝜆1𝑆 + 𝑖𝑎1𝑆𝑥 − 𝑖

2
𝑎2𝜑𝑆𝑆

2
𝑥 +

3

8
𝑎3𝜑𝑆𝑆𝑆

3
𝑥 +

3𝑖

16
𝑎3𝜑

2
𝑆𝑆

3
𝑥

)
+𝑄

(
𝑖𝜆1 − 𝑖𝛾 𝐹𝑇

𝐹
+

1

2
𝑎2𝜑𝑆𝑆𝑆

2
𝑥 − 3

16
𝑎3𝜑𝑆𝜑𝑆𝑆𝑆

3
𝑥

)
+𝑄

[
2𝜆0𝑆/𝑆𝑥 + 2𝑖𝑎0 +

1

2
(𝜑𝑇 + 𝜑𝑆𝑆𝑡) − 1

2
𝜆1𝑆𝜑𝑆 − 𝑖

2
𝑎1𝜑𝑆𝑆𝑥

]
+𝑄

(
𝑖

8
𝑎2𝜑

2
𝑆𝑆

2
𝑥 − 𝑖

32
𝑎3𝜑

3
𝑆𝑆

3
𝑥 +

𝑖

8
𝑎3𝜑𝑆𝑆𝑆𝑆

3
𝑥

)
𝑖𝑅𝑇 =

1

4
𝑎3𝑅𝑆𝑆𝑆𝑆

3
𝑥 − 3𝑖

8
𝑎3𝑅𝑆𝑆𝜑𝑆𝑆

3
𝑥 (10)

+
3𝑖

4
𝑎3𝜎𝐹

2𝛾𝑅2𝑄𝜑𝑆𝑆𝑥 − 3

2
𝑎3𝜎𝐹

2𝛾𝑅2𝑄𝑆𝑆𝑥

+
𝑖

2
𝑎2𝑅𝑆𝑆𝑆

2
𝑥 − 𝑖𝑎2𝜎𝐹 2𝛾𝑅2𝑄

+ 𝑖𝑅𝑆

(
−𝑆𝑡 + 𝜆1𝑆 + 𝑖𝑎1𝑆𝑥 − 𝑖

2
𝑎2𝜑𝑆𝑆

2
𝑥 − 3

8
𝑎3𝜑𝑆𝑆𝑆

3
𝑥 +

3𝑖

16
𝑎3𝜑

2
𝑆𝑆

3
𝑥

)
+𝑅

(
𝑖𝜆1 − 𝑖𝛾 𝐹𝑇

𝐹
+

1

2
𝑎2𝜑𝑆𝑆𝑆

2
𝑥 − 3

16
𝑎3𝜑𝑆𝜑𝑆𝑆𝑆

3
𝑥

)
+𝑅

[
−2𝜆0𝑆/𝑆𝑥 − 2𝑖𝑎0 − 1

2
(𝜑𝑇 + 𝜑𝑆𝑆𝑡) +

1

2
𝜆1𝑆𝜑𝑆 +

𝑖

2
𝑎1𝜑𝑆𝑆𝑥

]
+𝑅

(
− 𝑖
8
𝑎2𝜑

2
𝑆𝑆

2
𝑥 +

𝑖

32
𝑎3𝜑

3
𝑆𝑆

3
𝑥 − 𝑖

8
𝑎3𝜑𝑆𝑆𝑆𝑆

3
𝑥

)
,

where the arbitrary time-dependent functions 𝑎0 (𝑇 ) , 𝑎1 (𝑇 ) , 𝑎2 (𝑇 ) , 𝑎3 (𝑇 ) have
been introduced.

By using the following reduction procedure 𝑅 = −𝑄∗, it is easy to find that
two equations (9) and (10) take the same form if the following conditions

𝑎0 = −𝑎∗
0, 𝑎1 = −𝑎∗

1, 𝑎2 = −𝑎∗
2, 𝑎3 = −𝑎∗

3,

𝜆0 = 𝜆
∗
0, 𝜆1 = 𝜆

∗
1, 𝐹 = 𝐹 ∗ (11)

are fulfilled.

3. Generalized nonlinear Schrödinger equation and solitary
waves in nonautonomous nonlinear and dispersive systems:
nonautonomous solitons

Let us study a special case of the reduction procedure for Eqs. (9–10) where 𝑎3 = 0

𝐴 = − 𝑖𝜆0𝑆/𝑆𝑥 + 𝑎0(𝑇 )− 1

2
𝑎2(𝑇 )𝜎𝐹

2𝛾 ∣𝑄∣2

− 𝑖𝜆1𝑆/𝑆𝑥Λ + 𝑎1(𝑇 )Λ + 𝑎2(𝑇 )Λ
2,
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𝐵 =
√
𝜎𝐹 𝛾 exp (𝑖𝜑/2)

{
− 𝑖
4
𝑎2(𝑇 )𝑄𝜑𝑆𝑆𝑥 − 1

2
𝑎2(𝑇 )𝑄𝑆𝑆𝑥

}
,

+ 𝑖 {𝑄 [−𝑖𝜆1𝑆/𝑆𝑥 + 𝑎1(𝑇 ) + Λ𝑎2(𝑇 )]}

𝐶 =
√
𝜎𝐹 𝛾 exp (−𝑖𝜑/2)

{
𝑖

4
𝑎2(𝑇 )𝑄

∗𝜑𝑆𝑆𝑥 − 1

2
𝑎2(𝑇 )𝑄

∗
𝑆𝑆𝑥

}
− 𝑖 {𝑄∗ [−𝑖𝜆1𝑥+ 𝑎1(𝑇 ) + Λ𝑎2(𝑇 )]} .

In accordance with conditions (11), the imaginary functions 𝑎0(𝑇 ), 𝑎1(𝑇 ), 𝑎2(𝑇 )
can be defined in the following way

𝑎0(𝑇 ) = 𝑖𝛾0(𝑇 ), 𝑎1(𝑇 ) = 𝑖𝑉 (𝑇 ),

𝑎2(𝑇 ) = −𝑖𝐷2(𝑇 ), 𝑅2(𝑇 ) = 𝐹
2𝛾𝐷2(𝑇 )

where𝐷2(𝑇 ), 𝑉 (𝑇 ), 𝛾0(𝑇 ) are arbitrary real functions. The coefficients 𝐷2(𝑇 ) and
𝑁2(𝑇 ) are positively defined functions ( for 𝜎 = −1, 𝛾 is assumed as a semi-entire
number).

Thus, Eqs. (9–10) can be transformed into

𝑖𝑄𝑇 = − 1

2
𝐷2(𝑇 )𝑄𝑆𝑆𝑆

2
𝑥 − 𝜎𝑅2(𝑇 ) ∣𝑄∣2𝑄

− 𝑖𝑄𝑆

(
1

2
𝐷2𝜑𝑆𝑆

2
𝑥 + 𝑆𝑡 + 𝑉 𝑆𝑥 − 𝜆1𝑆

)
+𝑄

(
1

8
𝐷2𝜑

2
𝑆𝑆

2
𝑥 − 2𝛾0(𝑇 ) + 2𝜆0𝑆/𝑆𝑥

)
+𝑄

(
1

2
𝜑𝑇 +

1

2
𝜑𝑆𝑆𝑡 +

1

2
𝑉 𝜑𝑆𝑆𝑥 − 1

2
𝜆1𝜑𝑆𝑆

)
+ 𝑖𝑄

(
−1

4
𝐷2𝜑𝑆𝑆𝑆

2
𝑥 − 𝛾𝐹𝑇

𝐹
+ 𝜆1

)
or

𝑖𝑄𝑇 = − 1

2
𝐷2𝑄𝑆𝑆𝑆

2
𝑥 − 𝜎𝑅2 ∣𝑄∣2𝑄

− 𝑖𝑉 𝑄𝑆 + 𝑖Γ𝑄+ 𝑈𝑄, (12)

where

𝑉 (𝑆, 𝑇 ) =
1

2
𝐷2𝑆

2
𝑥𝜑𝑆 + 𝑉 𝑆𝑥 + 𝑆𝑡 − 𝜆1𝑆,

𝑈(𝑆, 𝑇 ) =
1

8
𝐷2𝑆

2
𝑥𝜑

2
𝑆 − 2𝛾0 +

1

2
(𝜑𝑇 + 𝜑𝑆𝑆𝑡 + 𝑉 𝑆𝑥𝜑𝑆)

+ 2𝜆0𝑆/𝑆𝑥 − 1

2
𝜆1𝜑𝑆𝑆, (13)

Γ =

(
−𝛾𝐹𝑇
𝐹

− 1

4
𝐷2𝑆

2
𝑥𝜑𝑆𝑆 + 𝜆1

)
(14)

=

(
1

2

𝑊 (𝑅2, 𝐷2)

𝑅2𝐷2
− 1

4
𝐷2𝑆

2
𝑥𝜑𝑆𝑆 + 𝜆1

)
.
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Eq. (12) can be written down in the independent variables (𝑥, 𝑡)

𝑖𝑄𝑡 +
1

2
𝐷2(𝑡)𝑄𝑥𝑥 + 𝜎𝑅2(𝑡) ∣𝑄∣2𝑄− 𝑈(𝑥, 𝑡)𝑄 + 𝑖𝑉 ′𝑄𝑥 = 𝑖Γ(𝑡)𝑄. (15)

Let us transform Eq. (15) into the more convenient form

𝑖𝑄𝑡 +
1

2
𝐷2𝑄𝑥𝑥 + 𝜎𝑅2 ∣𝑄∣2𝑄− 𝑈𝑄 = 𝑖Γ𝑄 (16)

by using the following condition

𝑉 ′ =
1

2
𝐷2𝑆𝑥𝜑𝑆 + 𝑉 − 𝜆1𝑆/𝑆𝑥 = 0. (17)

If we apply a reduction 𝑉 = −𝑖𝑎1 = 0 accepted in the IST method [9], then Eq.
(17) defines a parameter 𝜆1

𝜆1 =
1

2
𝐷2𝑆

2
𝑥𝜑𝑆/𝑆, (18)

under which the real potential (13) is given by

𝑈(𝑆, 𝑇 ) = −2𝛾0 + 2𝜆0𝑆/𝑆𝑥 +
1

2
(𝜑𝑇 + 𝜑𝑆𝑆𝑡)− 1

8
𝐷2𝑆

2
𝑥𝜑

2
𝑆 (19)

and the gain or absorption coefficient (14) is represented by

Γ =
1

2

𝑊 (𝑅2, 𝐷2)

𝑅2𝐷2
− 1

4
𝐷2𝑆

2
𝑥𝜑𝑆𝑆 +

1

2
𝐷2𝑆

2
𝑥𝜑𝑆/𝑆. (20)

Let us consider some special choices of variables to specify the solutions of
(16). We assume that variables are factorized in the phase 𝜑(𝑆, 𝑇 )

𝜑 = 𝐶(𝑇 )𝑆𝛼

The first term in the real potential (19) represents some additional time-dependent
phase 𝑒2𝛾0(𝑡)𝑡 of the solution 𝑄(𝑥, 𝑡) for the equation (16) and, without loss of the
generality, 𝛾0 = 0. The second term in (19) depends linearly on 𝑆. The NLSE with
the linear spatial potential and constant 𝜆0, describing the case of Alfen waves, has
been studied in Ref. [12]. We will study the more general case of chirped solitons in
Part 4 of this article. Now, taking into account three last terms in (19), we obtain

𝑈(𝑆, 𝑇 ) = 2𝜆0𝑆/𝑆𝑥 +
1

2
𝐶𝑇𝑆

𝛼 +
1

2
𝛼𝐶𝑆𝛼−1𝑆𝑡 − 1

8
𝐷2𝐶

2𝑆2𝑥𝛼
2𝑆2𝛼−2. (21)

The gain or absorption coefficient (14) becomes

Γ(𝑇 ) =
1

2

𝑊 (𝑅2, 𝐷2)

𝑅2𝐷2
+
𝛼

4
(3 − 𝛼)𝐷2𝑆

2
𝑥𝐶𝑆

𝛼−2. (22)

It is assumed here that two functions Γ(𝑇 ) and 𝜆1(𝑇 ) depend only on 𝑇 and do
not depend on 𝑆, thus we conclude that 𝛼 = 0 or 𝛼 = 2.

Let us find the solutions of Eq. (16) with time and space phase modulation
(chirp) in the case 𝛼 = 2.

𝜑(𝑆, 𝑇 ) = 𝐶(𝑇 )𝑆2.
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In this case, Eq. (18) becomes

𝜆1 = 𝐷2𝑆
2
𝑥𝐶.

Now, the real spatial-temporal potential (21) takes the form

𝑈 [𝑆(𝑥, 𝑡), 𝑇 )] = 2𝜆0𝑆/𝑆𝑥 + 1
2

(
𝐶𝑇 −𝐷2𝑆

2
𝑥𝐶

2
)
𝑆2 + 𝐶𝑆𝑆𝑡

Let us consider the simplest option to choose the variable 𝑆(𝑥, 𝑡) when the variables
(𝑥, 𝑡) are factorized: 𝑆(𝑥, 𝑡) = 𝑃 (𝑡)𝑥. In this case, all main characteristic functions:
the phase modulation

𝜑(𝑥, 𝑡) = Θ(𝑡)𝑥2, (23)

the real potential

𝑈(𝑥, 𝑡) = 2𝜆0𝑥+
1

2
𝑃 2

(
𝐶𝑡 −𝐷2𝑃

2𝐶2 + 2
𝑃𝑡
𝑃
𝐶

)
𝑥2

= 2𝜆0𝑥+
1

2

(
Θ𝑡 −𝐷2Θ

2
)
𝑥2 ≡ 2𝜆0(𝑡)𝑥 +

1

2
Ω2(𝑡)𝑥2, (24)

the gain (or absorption) coefficient

Γ(𝑡) =
1

2

(
𝑊 (𝑅2, 𝐷2)

𝑅2𝐷2
+𝐷2𝑃

2𝐶

)
=

1

2

(
𝑊 (𝑅2, 𝐷2)

𝑅2𝐷2
+𝐷2Θ

)
(25)

and the spectral parameter 𝜆1

𝜆1(𝑡) = 𝐷2𝑃
2𝐶 = 𝐷2(𝑡)Θ(𝑡) (26)

are given by expressions (23–26) dependent on the self-induced soliton phase shift
Θ(𝑡). In Eq. (24) a notation Ω2(𝑡) ≡ Θ𝑡 −𝐷2Θ

2 has been introduced.
Now we can rewrite the generalized NLSE (16) with time-dependent nonlin-

earity, dispersion and gain or absorption in the form of the nonautonomous NLSE
with linear and parabolic potentials

𝑖𝑄𝑡 +
1

2
𝐷2(𝑡)𝑄𝑥𝑥 + 𝜎𝑅2(𝑡) ∣𝑄∣2𝑄− 1

2
Ω2(𝑡)𝑥2𝑄 = 𝑖Γ𝑄. (27)

Substituting the phase profile Θ(𝑡) from (25) into (24), it is straightforward to
verify that the frequency of the harmonic potential Ω2(𝑡) is related with dispersion
𝐷2(𝑡), nonlinearity 𝑅2(𝑡) and gain or absorption coefficient Γ(𝑡) by the following
conditions

Ω2(𝑡)𝐷2(𝑡) = 𝐷2(𝑡)
𝑑

𝑑𝑡

(
Γ(𝑡)

𝐷2(𝑡)

)
− Γ2(𝑡) − 𝑑

𝑑𝑡

(
𝑊 (𝑅2, 𝐷2)

𝑅2𝐷2

)
+

(
2Γ(𝑡) +

𝑑

𝑑𝑡
ln𝑅2(𝑡)

)
𝑊 (𝑅2, 𝐷2)

𝑅2𝐷2
(28)

= 𝐷2(𝑡)
𝑑

𝑑𝑡

(
Γ(𝑡)

𝐷2(𝑡)

)
− Γ2(𝑡)

+

(
2Γ(𝑡) +

𝑑

𝑑𝑡
ln𝑅2(𝑡)

)
𝑑

𝑑𝑡
ln
𝐷2(𝑡)

𝑅2(𝑡)
− 𝑑2

𝑑𝑡2
ln
𝐷2(𝑡)

𝑅2(𝑡)
, (29)

where 𝑊 (𝑅2, 𝐷) = 𝑅2𝐷
′
2𝑡 −𝐷2𝑅

′
2𝑡 is the Wronskian.
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After the substitutions

𝑄(𝑥, 𝑡) = 𝑞(𝑥, 𝑡) exp

[∫ 𝑡

0

Γ(𝜏)𝑑𝜏

]
,

𝑅(𝑡) = 𝑅2(𝑡) exp

[
2

∫ 𝑡

0

𝛾(𝜏)𝑑𝜏

]
,

𝐷(𝑡) = 𝐷2(𝑡),

Eq. (27) can be transformed to the generalized NLSE without gain or loss term

𝑖
∂𝑞

∂𝑡
+

1

2
𝐷(𝑡)

∂2𝑞

∂𝑥2
+

[
𝜎𝑅(𝑡) ∣𝑞∣2 − 2𝜆0(𝑡)𝑥− 1

2
Ω2(𝑡)𝑥2

]
𝑞 = 0. (30)

Finally, the Lax equation (1) with matrices (2–5) provides the nonautonomous
model (30) under condition that dispersion 𝐷(𝑡), nonlinearity 𝑅(𝑡), and the har-
monic potential satisfy to the following exact integrability conditions

Ω2(𝑡)𝐷(𝑡) =
𝑊 (𝑅,𝐷)

𝑅𝐷

𝑑

𝑑𝑡
ln𝑅(𝑡)− 𝑑

𝑑𝑡

(
𝑊 (𝑅,𝐷)

𝑅𝐷

)
=
𝑑

𝑑𝑡
ln𝐷(𝑡)

𝑑

𝑑𝑡
ln𝑅(𝑡) − 𝑑2

𝑑𝑡2
ln𝐷(𝑡) −𝑅(𝑡) 𝑑

2

𝑑𝑡2
1

𝑅(𝑡)
. (31)

The self-induced soliton phase shift is given by

Θ(𝑡) = −𝑊 [(𝑅(𝑡), 𝐷(𝑡)]

𝐷2(𝑡)𝑅(𝑡)
(32)

and the time-dependent spectral parameter is represented by

Λ(𝑡) = 𝜅(𝑡) + 𝑖𝜂(𝑡) =
𝐷0𝑅(𝑡)

𝑅0𝐷(𝑡)

⎡⎣Λ(0) + 𝑅0
𝐷0

𝑡∫
0

𝜆0(𝜏)𝐷(𝜏)

𝑅(𝜏)
𝑑𝜏

⎤⎦ , (33)

where the main parameters: time invariant eigenvalue Λ(0) = 𝜅0+𝑖𝜂0; 𝐷0 = 𝐷(0);
𝑅0 = 𝑅(0) are defined by the initial conditions. We call Eq. (31) as the law of the
soliton adaptation to the external potentials.

The basic property of classical solitons, to interact elastically, holds true,
but the novel feature of the nonautonomous solitons arises. Namely, both am-
plitudes and speeds of the solitons, and consequently, their spectra, during the
propagation and after the interaction are no longer the same as those prior to the
interaction. All nonautonomous solitons generally move with varying amplitudes
𝜂(𝑡) and speeds 𝜅(𝑡) adapted both to the external potentials and to the dispersion
𝐷(𝑡) and nonlinearity 𝑅(𝑡) changes.

Having obtained the eigenvalue equations for scattering potential, we can
write down the general solutions for bright (𝜎 = +1) and dark (𝜎 = −1) nonau-
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tonomous solitons applying the auto-Bäcklund transformation [28] and the recur-
rent relation

𝑞𝑛(𝑥, 𝑡) = −𝑞𝑛−1(𝑥, 𝑡) − 4𝜂𝑛Γ̃𝑛−1(𝑥, 𝑡)

1 +
∣∣∣Γ̃𝑛−1(𝑥, 𝑡)

∣∣∣2
√
𝐷(𝑡)

𝑅(𝑡)
exp[−𝑖Θ𝑥2/2], (34)

which connects the (𝑛−1) and 𝑛-soliton solutions by means of the so-called pseudo-

potential Γ̃𝑛−1(𝑥, 𝑡) = 𝜓1(𝑥, 𝑡)/𝜓2(𝑥, 𝑡) for the (𝑛−1)-soliton scattering functions
𝜓(𝑥, 𝑡) = (𝜓1𝜓2)

𝑇 .

Bright 𝑞+1 (𝑥, 𝑡) and dark 𝑞−1 (𝑥, 𝑡) soliton solutions are represented by the
following analytic expressions:

𝑞+1 (𝑥, 𝑡 ∣ 𝜎 = +1) = 2𝜂1(𝑡)

√
𝐷(𝑡)

𝑅(𝑡)
sech [𝜉1(𝑥, 𝑡)]

× exp

{
−𝑖
(
Θ(𝑡)

2
𝑥2 + 𝜒1(𝑥, 𝑡)

)}
; (35)

𝑞−1 (𝑥, 𝑡 ∣ 𝜎 = −1) = 2𝜂1(𝑡)

√
𝐷(𝑡)

𝑅(𝑡)

[√
(1 − 𝑎2) + 𝑖𝑎 tanh 𝜁 (𝑥, 𝑡)

]
× exp

{
−𝑖
(
Θ(𝑡)

2
𝑥2 + 𝜙(𝑥, 𝑡)

)}
, (36)

𝜁(𝑥, 𝑡) = 2𝑎𝜂1(𝑡)𝑥 + 4𝑎

𝑡∫
0

𝐷(𝜏)𝜂1(𝜏)𝜅1(𝜏)𝑑𝜏, (37)

𝜙(𝑥, 𝑡) = 2
[
𝜅1(𝑡) − 𝜂1(𝑡)

√
(1 − 𝑎2)

]
𝑥

+ 2

𝑡∫
0

𝐷(𝜏)
[
𝜅21 + 𝜂

2
1

(
3 − 𝑎2)− 2𝜅1𝜂1

√
(1 − 𝑎2)

]
𝑑𝜏. (38)

Dark soliton Eq. (36) has an additional parameter, 0 ≤ 𝑎 ≤ 1, which designates
the depth of modulation (the blackness of gray soliton) and its velocity against
the background. When 𝑎 = 1, dark soliton becomes black. For optical applica-
tions, Eq. (36) can be easily transformed into the Hasegawa and Tappert form for

the nonautonomous dark solitons [2] under the condition 𝜅0 = 𝜂0
√
(1 − 𝑎2) that

corresponds to the special choice of the retarded frame associated with the group
velocity of the soliton

𝑞−1 (𝑥, 𝑡 ∣ 𝜎 = −1) = 2𝜂1(𝑡)

√
𝐷(𝑡)

𝑅(𝑡)

[√
(1 − 𝑎2) + 𝑖𝑎 tanh 𝜁 (𝑥, 𝑡)

]
× exp

{
−𝑖
(
Θ(𝑡)

2
𝑥2 + 𝜙(𝑥, 𝑡)

)}
,
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𝜁(𝑥, 𝑡) = 2𝑎𝜂1(𝑡)𝑥+ 4𝑎

𝑡∫
0

𝐷(𝜏)𝜂1(𝜏)
[
𝜂1(𝜏)

√
(1 − 𝑎2) +𝐾(𝜏)

]
𝑑𝜏,

𝜙(𝑥, 𝑡) = 2𝐾(𝑡)𝑥+ 2

𝑡∫
0

𝐷(𝜏)
[
𝐾2(𝜏) + 2𝜂21(𝜏)

]
𝑑𝜏,

𝐾(𝑡) =
𝑅(𝑡)

𝐷(𝑡)

𝑡∫
0

𝜆0(𝜏)
𝐷(𝜏)

𝑅(𝜏)
𝑑𝜏.

Notice that the solutions considered here hold only when the nonlinearity, disper-
sion and confining harmonic potential are related by Eq. (31), and both 𝐷(𝑡) ∕= 0
and 𝑅(𝑡) ∕= 0 for all times by definition.

Two-soliton 𝑞2(𝑥, 𝑡) solution for 𝜎 = +1 follows from Eq. (34)

𝑞2(𝑥, 𝑡) = 4

√
𝐷(𝑡)

𝑅(𝑡)

N (𝑥, 𝑡)

D (𝑥, 𝑡)
exp

[
− 𝑖
2
Θ(𝑡)𝑥2

]
, (39)

where the numerator N (𝑥, 𝑡) is given by

N = cosh 𝜉2 exp (−𝑖𝜒1)
× [(𝜅2 − 𝜅1)2 + 2𝑖𝜂2(𝜅2 − 𝜅1) tanh 𝜉2 + 𝜂21 − 𝜂22 ]

+ 𝜂2 cosh 𝜉1 exp (−𝑖𝜒2)
× [(𝜅2 − 𝜅1)2 − 2𝑖𝜂1(𝜅2 − 𝜅1) tanh 𝜉1 − 𝜂21 + 𝜂22 ], (40)

and the denominator D (𝑥, 𝑡) is represented by

D = cosh(𝜉1 + 𝜉2)
[
(𝜅2 − 𝜅1)2 + (𝜂2 − 𝜂1)2

]
+ cosh(𝜉1 − 𝜉2)

[
(𝜅2 − 𝜅1)2 + (𝜂2 + 𝜂1)

2
]

− 4𝜂1𝜂2 cos (𝜒2 − 𝜒1) . (41)

Arguments and phases in Eqs. (39–41)

𝜉𝑖(𝑥, 𝑡) = 2𝜂𝑖(𝑡)𝑥 + 4

𝑡∫
0

𝐷(𝜏)𝜂𝑖(𝜏)𝜅𝑖(𝜏)𝑑𝜏, (42)

𝜒𝑖(𝑥, 𝑡) = 2𝜅𝑖(𝑡)𝑥+ 2

𝑡∫
0

𝐷(𝜏)
[
𝜅2𝑖 (𝜏) − 𝜂2𝑖 (𝜏)

]
𝑑𝜏 (43)

are related with the amplitudes

𝜂𝑖(𝑡) =
𝐷0𝑅(𝑡)

𝑅0𝐷(𝑡)
𝜂0𝑖, (44)
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and velocities

𝜅𝑖(𝑡) =
𝐷0𝑅(𝑡)

𝑅0𝐷(𝑡)

⎡⎣𝜅0𝑖 + 𝑅0
𝐷0

𝑡∫
0

𝜆0(𝜏)𝐷(𝜏)

𝑅(𝜏)
𝑑𝜏

⎤⎦ (45)

of the nonautonomous solitons, where 𝜅0𝑖 and 𝜂0𝑖 correspond to the initial velocity
and amplitude of the 𝑖th soliton (𝑖 = 1, 2).

Eqs. (39–45) describe the dynamics of two bounded solitons at all times and
all locations. Obviously, these soliton solutions reduce to classical soliton solutions
in the limit of autonomous nonlinear and dispersive systems given by conditions:
𝑅(𝑡) = 𝐷(𝑡) = 1, and 𝜆0(𝑡) = Ω(𝑡) ≡ 0 for canonical NLSE without external
potentials.

4. Chirped optical solitons with moving spectra in nonautonomous
systems: colored nonautonomous solitons

Both the nonlinear Schrödinger equations (27), (30) and the Lax pair equations
(1–5) are written down here in the most general form. The transition to the prob-
lems of optical solitons is accomplished by the substitution 𝑥→ 𝑇 (or 𝑥→ 𝑋); 𝑡→
𝑍 and 𝑞+(𝑥, 𝑡) → 𝑢+(𝑍, 𝑇 ( 𝑜𝑟 𝑋)) for bright solitons, and [𝑞−(𝑥, 𝑡)]∗ → 𝑢−(𝑍, 𝑇 (
𝑜𝑟 𝑋)) for dark solitons, where the asterisk denotes the complex conjugate, 𝑍 is
the normalized distance, and 𝑇 is the retarded time for temporal solitons, while
𝑋 is the transverse coordinate for spatial solitons.

The important special case of Eq. (30) arises under condition Ω2(𝑍) = 0. Let
us rewrite Eq. (30) by using the reduction Ω = 0, which denotes that the confining
harmonic potential is vanishing

𝑖
∂𝑢

∂𝑍
+
𝜎

2
𝐷(𝑍)

∂2𝑢

∂𝑇 2
+𝑅(𝑍) ∣𝑢∣2 𝑢− 2𝜎𝛼(𝑍)𝑇𝑢 = 0. (46)

This implies that the self-induced soliton phase shift Θ(𝑍), dispersion 𝐷(𝑍), and
nonlinearity 𝑅(𝑍) are related by the following law of soliton adaptation to external
linear potential

𝐷(𝑍)

𝐷0
=
𝑅(𝑍)

𝑅0
exp

⎧⎨⎩−Θ0𝐷0

𝑅0

𝑍∫
0

𝑅(𝜏)𝑑𝜏

⎫⎬⎭ . (47)

Nonautonomous exactly integrable NLSE model given by Eqs. (46, 47) can be
considered as the generalization of the well-studied Chen and Liu model [12] with
linear potential 𝜆0(𝑍) = 𝛼0 = 𝑐𝑜𝑛𝑠𝑡 and 𝐷(𝑍) = 𝐷0 = 𝑅(𝑍) = 𝑅0 = 1, 𝜎 = +1,
Θ0 = 0. We stress that the accelerated solitons predicted by Chen and Liu in
plasma have been discovered in nonlinear fiber optics only decade later [3 − −5].
Notice that nonautonomous solitons with nontrivial self-induced phase shifts and
varying amplitudes, speeds and spectra for Eq. (46) are given in quadratures by
Eqs. (35–38) under condition Ω2(𝑍) = 0.
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Let us show that the so-called Raman colored optical solitons can be ap-
proximated by this equation. Self-induced Raman effect (also called as soliton self-
frequency shift) is being described by an additional term in the NLSE: −𝜎𝑅𝑈∂ ∣
𝑈 ∣2 /∂𝑇 where 𝜎𝑅 originates from the frequency-dependent Raman gain [3 − 5].
Assuming that soliton amplitude does not vary significantly during self-scattering
∣ 𝑈 ∣2= 𝜂2sech2(𝜂𝑇 ), we obtain that

𝜎𝑅
∂ ∣ 𝑈 ∣2
∂𝑇

≈ −2𝜎𝑅𝜂
4𝑇 = 2𝛼0𝑇

and 𝑑𝑣/𝑑𝑍 = 𝜎𝑅𝜂
4/2, where 𝑣 = 𝜅/2. The result of soliton perturbation theory

[3 − 5] gives 𝑑𝑣/𝑑𝑍 = 8𝜎𝑅𝜂
4/15. This fact explains the remarkable stability of

colored Raman solitons that is guaranteed by the property of the exact integra-
bility of the Chen and Liu model [12]. More general model Eq. (46) and its exact
soliton solutions open the possibility of designing an effective soliton compressor,
for example, by drawing a fiber with 𝑅(𝑍) = 1 and 𝐷(𝑍) = exp(−𝑐0𝑍),where
𝑐0 = Θ0𝐷0. It seems very attractive to use the results of nonautonomous solitons
concept in ultrashort photonic applications and soliton lasers design.

Another interesting feature of the novel solitons, which we called colored
nonautonomous solitons here, is associated with the nontrivial dynamics of their
spectra. Frequency spectrum of the chirped nonautonomous optical soliton moves
in the frequency domain. In particular, if dispersion and nonlinearity evolve in
unison 𝐷(𝑡) = 𝑅(𝑡) or 𝐷 = 𝑅 = 1, the solitons propagate with identical spectra
but with totally different time-space behavior.

Consider in more details the case when the nonlinearity 𝑅 = 𝑅0 stays con-
stant but the dispersion varies exponentially along the propagation distance

𝐷(𝑍) = 𝐷0 exp (−𝑐0𝑍) , Θ(𝑍) = Θ0 exp (𝑐0𝑍) .

Let us obtain the one and two soliton solutions in this case with the lineal potential
that, for simplicity, does not depend on time: 𝜆0(𝑍) = 𝛼0 = const

𝑈1(𝑍, 𝑇 ) = 2𝜂01
√
𝐷0 exp (𝑐0𝑍)sech [𝜉1(𝑍, 𝑇 )]

× exp

[
− 𝑖
2
Θ0 exp (𝑐0𝑍)𝑇

2 − 𝑖𝜒1(𝑍, 𝑇 )
]
, (48)

𝑈2(𝑍, 𝑇 ) = 4
√
𝐷0 exp (−𝑐0𝑍)N (𝑍, 𝑇 )

D (𝑍, 𝑇 )
exp

[
− 𝑖
2
Θ0 exp (𝑐0𝑍)𝑇

2

]
, (49)

where the nominator N (𝑍, 𝑇 ) and denominator D (𝑍, 𝑇 ) are given by Eqs. (40,
41) and

𝜉𝑖(𝑍, 𝑇 ) = 2𝜂0𝑖𝑇 exp (𝑐0𝑍) + 4𝐷0𝜂0𝑖

×
{
𝜅0𝑖
𝑐0

[exp (𝑐0𝑍) − 1] +
𝛼0
𝑐0

[
exp (𝑐0𝑍)− 1

𝑐0
− 𝑍
]}
, (50)
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𝜒𝑖(𝑍, 𝑇 ) = 2𝜅0𝑖𝑇 exp (𝑐0𝑍) + 2𝐷0

(
𝜅20𝑖 − 𝜂20𝑖

) exp (2𝑐0𝑍) − 1

2𝑐0

+ 2𝑇
𝛼0
𝑐0

[exp (𝑐0𝑍) − 1] + 4𝐷0𝜅0𝑖
𝛼0
𝑐0

[
exp (𝑐0𝑍)− 1

𝑐0
− 𝑡
]

+ 2𝐷0

(
𝛼0
𝑐0

)2 [
exp (𝑐0𝑍) − exp (−𝑐0𝑍)

𝑐0
− 2𝑍

]
. (51)

The initial velocity and amplitude of the 𝑖th soliton (𝑖 = 1, 2) are denoted by 𝜅0𝑖
and 𝜂0𝑖.

The limit case of the Eqs. (48–51) appears when 𝑐0 → ∞ (that means𝐷(𝑍) =
𝐷0 =constant) and corresponds to the Chen and Liu model [12]. The solitons with
argument and phase

𝜉(𝑍, 𝑇 ) = 2𝜂0
(
𝑇 + 2𝜅0𝑍 + 𝛼0𝑍

2 − 𝑇0
)
,

𝜒(𝑍, 𝑇 ) = 2𝜅0𝑇 + 2𝛼0𝑇𝑍 + 2
(
𝜅20 − 𝜂20

)
𝑍 + 2𝜅0𝛼0𝑍

2 +
2

3
𝛼20𝑍

3

represents the particle-like solutions which may be accelerated and reflected from
the lineal potential.

5. Bound states of colored nonautonomous optical solitons.
Comparison of the Satsuma-Yajima canonical breather
with nonautonomous “agitated” breather

Let us now give the explicit formula of the soliton solutions for the case where all
eigenvalues are pure imaginary, or the initial velocities of the solitons are equal to
zero. In the case 𝑁 = 1 and 𝜆0(𝑍) = 0, and we obtain

𝑈1(𝑍, 𝑇 ) = 2𝜂01
√
𝐷0 exp (𝑐0𝑍)sech [2𝜂01𝑇 exp (𝑐0𝑍))]

× exp

[
− 𝑖
2
Θ0 exp (𝑐0𝑍)𝑇

2 + 𝑖2𝐷0𝜂
2
01

exp (2𝑐0𝑍)− 1

2𝑐0

]
. (52)

This result shows that the laws of soliton adaptation in external potentials Eq. (31)
allow to stabilize the soliton even without a trapping potential. In addition, Eq.
(52) indicates the possibility for the optimal compression of solitons. We stress that
direct computer experiment confirms the exponential in time soliton compression
scenario in full accordance with analytical expression Eq. (52).

The bound two-soliton solution for the case of the pure imaginary eigenvalues
is represented by

𝑈2(𝑍, 𝑇 ) = 4
√
𝐷0 exp (−𝑐0𝑍)N (𝑍, 𝑇 )

D (𝑍, 𝑇 )
exp

[
− 𝑖
2
Θ0 exp (𝑐0𝑍)𝑇

2

]
, (53)

where

N =
(
𝜂201 − 𝜂202

)
exp (𝑐0𝑍) [𝜂01 cosh 𝜉2 exp (−𝑖𝜒1) − 𝜂02 cosh 𝜉1 exp (−𝑖𝜒2)] , (54)
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D = cosh(𝜉1 + 𝜉2) (𝜂01 − 𝜂02)2 + cosh(𝜉1 − 𝜉2) (𝜂01 + 𝜂02)2
− 4𝜂01𝜂02 cos (𝜒2 − 𝜒1) , (55)

and

𝜉𝑖(𝑍, 𝑇 ) = 2𝜂0𝑖𝑇 exp (𝑐0𝑍) , (56)

𝜒𝑖(𝑍, 𝑇 ) = − 2𝐷0𝜂
2
0𝑖

exp (2𝑐0𝑍)− 1

2𝑐0
+ 𝜒𝑖0. (57)

For the particular case of 𝜂10 = 1/2, 𝜂20 = 3/2 Eqs. (53–57) transform to

𝑈2(𝑍, 𝑇 ) = 4
√
𝐷0 exp (−𝑐0𝑍) exp

[
− 𝑖
2
Θ0 exp (𝑐0𝑍)𝑇

2

]
(58)

× exp

[
𝑖

4𝑐0
𝐷0 [exp (2𝑐0𝑍) − 1] + 𝜒10

]
× cosh 3𝑋 − 3 cosh𝑋 exp {𝑖2𝐷0 [exp (2𝑐0𝑍) − 1] /𝑐0 + 𝑖Δ𝜑}

cosh 4𝑋 + 4 cosh 2𝑋 − 3 cos{2𝐷0 [exp (2𝑐0𝑍)− 1] /𝑐0 +Δ𝜑} ,

where 𝑋 = 𝑇 exp(𝑐0𝑍), Δ𝜑 = 𝜒20 − 𝜒10.
In the limit 𝐷(𝑍) = 𝐷0 = 1 and 𝑐0 = 0 this solution reduces to the well-

known breather solution, which was found by Satsuma and Yajima [29] and was
called as the Satsuma-Yajima breather:

𝑈2(𝑍, 𝑇 ) = 4
cosh 3𝑇 + 3 cosh𝑇 exp (4𝑖𝑍)

cosh 4𝑇 + 4 cosh2𝑇 + 3 cos 4𝑍
exp

(
𝑖𝑍

2

)
.

At 𝑍 = 0 it takes the simple form 𝑈(𝑍, 𝑇 ) = 2 sech(𝑇 ). An interesting property of
this solution is that its form oscillates with the so-called soliton period 𝑇sol = 𝜋/2.

According to Eq. (58), the soliton period becomes dependent on time. We
stress that the Satsuma and Yajima breather solution can be obtained from the
general solution if and only if the soliton phases are chosen properly, precisely
when Δ𝜑 = 𝜋. The intensity profiles of the wave build up a complex landscape of
peaks and valleys and reach their peaks at the points of the maximum. Decreas-
ing group velocity dispersion (or increasing nonlinearity) stimulates the Satsuma-
Yajima breather to accelerate its period of “breathing” and to increase its peak
amplitudes of “breathing”, that is why we call this effect as “agitated breather”
in nonautonomous system.

6. Designable integrability of the variable coefficient nonlinear
Schrödinger equation

Recently, Jingsong He and Yishen Li have found the possibility to solve the more
general NLSE with varying both in time and space coefficients and with arbitrary
potential 𝑉 (𝑥, 𝑡)

𝑖
∂

∂𝑡
𝜓(𝑥, 𝑡)+

1

2
𝐷(𝑥, 𝑡)

∂2

∂𝑥2
𝜓(𝑥, 𝑡)+𝑅(𝑥, 𝑡)∣𝜓(𝑥, 𝑡)∣2𝜓(𝑥, 𝑡)−𝑉 (𝑥, 𝑡)𝜓(𝑥, 𝑡) = 0, (59)
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where 𝐷(𝑥, 𝑡), 𝑉 (𝑥, 𝑡), 𝑅(𝑥, 𝑡) are three real functions of 𝑥 and 𝑡. Specifically, the
transformation

𝜓(𝑥, 𝑡) = 𝑞(𝑋,𝑇 )𝑝(𝑥, 𝑡)𝑒𝑖𝜙(𝑥,𝑡) (60)

maps Eq. (59) into the canonical NLSE with constant coefficients

𝑖
∂𝑞

∂𝑇
+

1

2

∂2𝑞

∂𝑋2
+ ∣𝑞∣2𝑞 = 0. (61)

Meanwhile, coefficients 𝐷(𝑥, 𝑡), 𝑉 (𝑥, 𝑡), 𝑅(𝑥, 𝑡) are given analytically with several
arbitrary functions appearing in the transformation. Thus we can design 𝐷(𝑥, 𝑡),
𝑉 (𝑥, 𝑡), 𝑅(𝑥, 𝑡) according to different physical considerations by means of the selec-
tions of the arbitrary functions so that the integrability is guaranteed. Therefore,
we show that the variable coefficients NLSE (VC NLSE) possesses the designable
integrability (DI), which originates from the rigid integrability of the NLSE and
the transformation Eq. (60).

Proposition. For the five real smooth functions 𝑐1(𝑡), 𝑐2(𝑡), 𝑐3(𝑡), 𝑇 (𝑡), 𝐹 (𝑥), set
𝐹 (𝑥)𝑐1(𝑡) > 0, if

𝐷(𝑥, 𝑡) =
𝑇𝑡

𝐹 (𝑥)2𝑐1(𝑡)2
, 𝑅(𝑥, 𝑡) =

𝐹 (𝑥)𝑇𝑡
𝑐1(𝑡)

, (62)

𝑉 (𝑥, 𝑡) = −1

8

−3𝑇𝑡𝐹
2
𝑥 + 2𝑇𝑡𝐹𝑥𝑥𝐹 + 8𝑐1(𝑡)

2𝜙𝑡𝐹
4 + 4𝑇𝑡(𝜙𝑥)

2𝐹 2

𝑐1(𝑡)2𝐹 (𝑥)4
, (63)

then the following transformation

𝜓(𝑥, 𝑡) = 𝑞(𝑋,𝑇 )𝑝(𝑥, 𝑡)𝑒𝑖𝜙(𝑥,𝑡) (64)

maps Eq. (59) to the standard NLSE Eq. (61). Here

𝑋 = 𝑋(𝑥, 𝑡)

=

∫
𝐹 (𝑥)𝑐1(𝑡)𝑑𝑥 + 𝑐3(𝑡), 𝑇 = 𝑇 (𝑡), (65)

𝑝 = 𝑝(𝑥, 𝑡)

=
𝑐1(𝑡)√
𝐹 (𝑥)𝑐1(𝑡)

, (66)

𝜙 = 𝜙(𝑥, 𝑡)

= −
∫ ( ∫

𝐹 (𝑥)𝑐1𝑡𝑑𝑥+ 𝑐3𝑡
)
𝐹 (𝑥)𝑐1(𝑡)

𝑇𝑡
𝑑𝑥+ 𝑐2(𝑡) (67)

To illustrate the wide applicability of our methodology, and motivated by the
importance of the external potentials in the BEC and nonlinear optics systems,
we designed two kinds of integrable VC NLSE with optical super-lattice potentials
(or periodic potentials) and multi-well potentials, respectively [30].
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7. Conclusions

In summary, the solution technique based on the generalized Lax pair operator
method opens the possibility to study in details the nonlinear dynamics of solitons
in nonautonomous nonlinear and dispersive physical systems. We have focused on
the situation in which the generalized nonautonomous NLSE model was found
to be exactly integrable from the point of view of the inverse scattering trans-
form method. We have derived the laws of a soliton adaptation to the external
potential. It is precisely this soliton adaptation mechanism which was of prime
physical interest in our paper. We clarified some examples in order to gain a bet-
ter understanding into this physical mechanism which can be considered as the
interplay between nontrivial time-dependent parabolic soliton phase and exter-
nal time-dependent potential. We stress that this nontrivial time-space dependent
phase profile of nonautonomous soliton depends on the Wronskian of nonlinearity
𝑅(𝑡) and dispersion 𝐷(𝑡) and this profile does not exist for canonical NLSE soliton
when 𝑅(𝑡) = 𝐷(𝑡) = 1. Nonautonomous solitons trapped inside the harmonic os-
cillator potential can form novel kind of colored solitons with periodically varying
(along the propagation distance Z) average frequency shifted into the “red” and
“blue” spectral regions for the case of optical solitons. For the case of trapped mat-
ter wave solitons, their average wave numbers K(T) periodically oscillate in time T.
We have studied the main features of nonautonomous optical and matter-wave soli-
tons, their bound states formation and the transformation of the Satsuma-Yajima
breather into “agitated” nonautonomous breather. Novel method for solution of
the variable coefficient nonlinear Schrödinger equation (called as designable inte-
grability) is also considered.

We would like to conclude by saying that the concept of adaptation is of
primary importance in nature and nonautonomous solitons that interact elastically
and generally move with varying amplitudes, speeds, and spectra adapted both to
the external potentials and to the dispersion and nonlinearity changes can be
fundamental objects of nonlinear science.
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a Class of Large Hessenberg Toeplitz Matrices
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Abstract. We study the asymptotic behavior of individual eigenvalues of the
𝑛-by-𝑛 truncations of certain infinite Hessenberg Toeplitz matrices as 𝑛 goes
to infinity. The generating function of the Toeplitz matrices is supposed to be
of the form 𝑎(𝑡) = 𝑡−1(1− 𝑡)𝛼𝑓(𝑡) (𝑡 ∈ 𝕋), where 𝛼 is a positive real number
but not an integer and 𝑓 is a smooth function in𝐻∞. The classes of generating
functions considered here and in a recent paper by Dai, Geary, and Kadanoff
are overlapping, and in the overlapping cases, our results imply in particular
a rigorous justification of an asymptotic formula which was conjectured by
Dai, Geary, and Kadanoff on the basis of numerical computations.

Mathematics Subject Classification (2000). Primary 47B35. Secondary 15A15,
15A18, 47N50, 65F15.

Keywords. Toeplitz matrix, eigenvalue, Fourier integral, asymptotic expan-
sion.

1. Introduction and main results

The 𝑛 × 𝑛 Toeplitz matrix generated by a complex-valued function 𝑎 ∈ 𝐿1 on

the unit circle 𝕋 is the matrix 𝑇𝑛(𝑎) =
(
𝑎𝑗−𝑘

)𝑛−1

𝑗,𝑘=0
, where 𝑎𝑘 is the 𝑘th Fourier

coefficient of the function 𝑎, that is, 𝑎𝑘 =
∫ 2𝜋
0
𝑎
(
𝑒𝑖𝜃
)
𝑒−𝑖𝑘𝜃 𝑑𝜃/2𝜋, 𝑘 ∈ ℤ. The

function 𝑎 is referred to as the symbol of the matrices 𝑇𝑛(𝑎).
If 𝑎 is real-valued, then the matrices 𝑇𝑛(𝑎) are all Hermitian, and in this case

a number of results on the asymptotics of the eigenvalues of 𝑇𝑛(𝑎) are known; see,
for example, [6], [7], [13], [16], [18], [20], [21], [23], [24], [26], [28], [29], [30]. We here
consider genuinely complex-valued symbols, in which case the overall picture is less
complete. Papers [12], [15], [19] describe the limiting behavior of the eigenvalues
of 𝑇𝑛(𝑎) if 𝑎 is a rational function, while papers [1] and [27] are devoted to the
asymptotic eigenvalue distribution in the case of non-smooth symbols. In [25] and

We acknowledge support of this work by a grant of the DAAD and by CONACYT grant 219345.
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[27], it is in particular shown that if 𝑎 ∈ 𝐿∞ and the essential range ℛ(𝑎) does
not separate the plane, then the eigenvalues of 𝑇𝑛(𝑎) approximate ℛ(𝑎). Many of
the results of the papers cited above can also be found in the books [5], [8], [9].

Throughout what follows we assume that 𝑎 is a complex-valued continuous
function on 𝕋. In that case ℛ(𝑎) = 𝑎(𝕋). When the eigenvalues of 𝑇𝑛(𝑎) approach
ℛ(𝑎) asymptotically in the sense that

lim
𝑛→∞

trace𝜑
(
𝑇𝑛(𝑎)

)
𝑛

=

∫ 2𝜋

0

𝜑
(
𝑎(𝑒𝑖𝜃)

) 𝑑𝜃
2𝜋

(1.1)

for a sufficiently rich supply of test functions 𝜑, one says that they have canonical
distribution. In 1990, Widom [27] showed that if ℛ(𝑎) is a Jordan curve and 𝑎 is
smooth on 𝕋 minus a single point but not smooth on all of 𝕋, then the spectrum of
𝑇𝑛(𝑎) has canonical distribution. He also raised the following intriguing conjecture,
which is still an open problem:

The eigenvalues of 𝑇𝑛(𝑎) are canonically distributed except when
𝑎 extends analytically to an annulus 𝑟 < ∣𝑧∣ < 1 or 1 < ∣𝑧∣ < 𝑅.

Results like (1.1) or of the type that the spectrum of 𝑇𝑛(𝑎) converges to some
limiting set in the Hausdorff metric do not provide us with information on the
asymptotic behavior of individual eigenvalues. The asymptotic behavior of the
extreme eigenvalues of Hermitian Toeplitz matrices is fairly well understood; see
the references cited above. Paper [6] contains asymptotic expansions for individual
inner eigenvalues of certain banded Hermitian Toeplitz matrices. The recent papers
[11] and [17] concern asymptotic formulas for individual eigenvalues of Toeplitz
matrices whose symbols are complex-valued and have a so-called Fisher-Hartwig
singularity. These are special symbols that are smooth on 𝕋 minus a single point
but not smooth on the entire circle 𝕋; see [8], [9].

To be more specific, Dai, Geary, and Kadanoff [11] considered symbols of the
form

𝑎(𝑡) =

(
2 − 𝑡− 1

𝑡

)𝛾

(−𝑡)𝛽 , 𝑡 ∈ 𝕋,

where 0 < 𝛾 < −𝛽 < 1. They conjectured that the eigenvalues 𝜆 = 𝜆𝑗,𝑛 satisfy

𝜆𝑗,𝑛 ≈ 𝑎
(
𝑛(2𝛾+1)/𝑛 exp

(
−2𝜋𝑖

𝑛
𝑗

))
, 𝑗 = 0, . . . , 𝑛− 1, (1.2)

and confirmed this conjecture numerically.

Let 𝐻∞ be the usual Hardy space of (boundary values of) bounded analytic
functions in the unit disk 𝔻. Given 𝑎 ∈ 𝐶(𝕋), we denote by wind𝜆(𝑎) the winding
number of 𝑎 about a point 𝜆 ∈ ℂ ∖ ℛ(𝑎) and by 𝒟(𝑎) the set of all 𝜆 ∈ ℂ for
which wind𝜆(𝑎) ∕= 0. In this paper we study the eigenvalues of 𝑇𝑛(𝑎) for symbols
𝑎(𝑡) = 𝑡−1ℎ(𝑡) with the following properties:

1. ℎ ∈ 𝐻∞ and ℎ0 ∕= 0;
2. ℎ(𝑡) = (1 − 𝑡)𝛼𝑓(𝑡), where 𝛼 ∈ [0,∞) ∖ ℤ and 𝑓 ∈ 𝐶∞(𝕋);



Eigenvalues of Large Hessenberg Toeplitz Matrices 79

3. ℎ has an analytic extension to an open neighborhood 𝑊 of 𝕋∖{1} not con-
taining the point 1;

4. ℛ(𝑎) is a Jordan curve in ℂ and wind𝜆(𝑎) = −1 for each 𝜆 ∈ 𝒟(𝑎).

Here ℎ0 is the zeroth Fourier coefficient of ℎ.
According to [27], in our case the spectrum of 𝑇𝑛(𝑎) has canonical distribu-

tion. Note that when 𝛽=𝛾−1 and 𝑓≡1, our symbol coincides with the one of [11].
Let 𝐷𝑛(𝑎) denote the determinant of 𝑇𝑛(𝑎). Thus, the eigenvalues 𝜆 of 𝑇𝑛(𝑎)

are the solutions of the equation 𝐷𝑛(𝑎−𝜆) = 0. Our assumptions imply that 𝑇𝑛(𝑎)
is a Hessenberg matrix, that is, it arises from a lower triangular matrix by adding
the super-diagonal. This circumstance together with the Baxter-Schmidt formula
for Toeplitz determinants allows us to express 𝐷𝑛(𝑎−𝜆) as a Fourier integral. The
value of this integral mainly depends on 𝜆 and on the singularity of (1 − 𝑡)𝛼 at
the point 1. Let 𝑊0 be a small open neighborhood of zero in ℂ. We show that for
every point 𝜆 ∈ 𝒟(𝑎) ∩ (𝑎(𝑊 ) ∖𝑊0

)
there exists a unique point 𝑡𝜆 /∈ 𝔻 such that

𝑎(𝑡𝜆) = 𝜆. After exploring the contributions of 𝜆 and the singular point 1 to the
Fourier integral, we get the following asymptotic expansion for 𝐷𝑛(𝑎− 𝜆).
Theorem 1.1. Let 𝑎(𝑡) = 𝑡−1ℎ(𝑡) be a symbol with properties 1 to 4. Then for every
small open neighborhood 𝑊0 of zero in ℂ and every 𝜆 ∈ 𝒟(𝑎) ∩ (𝑎(𝑊 ) ∖𝑊0

)
,

𝐷𝑛(𝑎− 𝜆) = (−ℎ0)𝑛+1
(

1

𝑡𝑛+2𝜆 𝑎′(𝑡𝜆)
− 𝑓(1)Γ(𝛼+ 1) sin(𝛼𝜋)

𝜋𝜆2𝑛𝛼+1
+𝑅1(𝑛, 𝜆)

)
, (1.3)

where 𝑅1(𝑛, 𝜆) = 𝒪(1/𝑛𝛼+𝛼0+1) as 𝑛 → ∞, uniformly in 𝜆 ∈ 𝑎(𝑊 ) ∖𝑊0. Here
𝛼0 = min{𝛼, 1}.

The first term in brackets is the contribution of 𝜆, while the second is the
contribution of the point 1. In the case where 𝑓 is identically 1, the previous
Theorem is essentially already in [3].

Here now are our main results. Let 𝑊0 be a small open neighborhood of the
origin in ℂ and put 𝜔𝑛:= exp(−2𝜋𝑖/𝑛). For each 𝑛 there exist integers 𝑛1 and
𝑛2 such that 𝜔𝑛1

𝑛 , 𝜔
𝑛−𝑛2
𝑛 ∈ 𝑎−1(𝑊0) but 𝜔𝑛1+1

𝑛 , 𝜔𝑛−𝑛2−1
𝑛 /∈ 𝑎−1(𝑊0). Recall that

𝑎(𝑡𝜆) = 𝜆.

Theorem 1.2. Let 𝑎(𝑡) = 𝑡−1ℎ(𝑡) be a symbol with properties 1 to 4. Then for every
small open neighborhood 𝑊0 of the origin in ℂ and every 𝑗 between 𝑛1 and 𝑛−𝑛2,

𝑡𝜆𝑗,𝑛 = 𝑛(𝛼+1)/𝑛𝜔𝑗𝑛

(
1 +

1

𝑛
log

(
𝑎2(𝜔𝑗𝑛)

𝐶1𝑎′(𝜔𝑗𝑛)𝜔2𝑗𝑛

)
+𝑅2(𝑛, 𝑗)

)
, (1.4)

where 𝑅2(𝑛, 𝑗) = 𝒪(1/𝑛𝛼0+1) + 𝒪(log 𝑛/𝑛2) as 𝑛 → ∞, uniformly with respect
to 𝑗 in (𝑛1, 𝑛− 𝑛2). Here 𝛼0 = min{𝛼, 1} and

𝐶1 =
𝑓(1)Γ(𝛼+ 1) sin(𝛼𝜋)

𝜋
.

Formula (1.4) proves conjecture (1.2) in the special case 𝛽 = 𝛾 − 1. It shows
that as 𝑛 increases, the point 𝑡𝜆𝑗,𝑛 is close to 𝑛(𝛼+1)/𝑛𝜔𝑗𝑛. Finally, we take the
value of 𝑎 at the point (1.4) to obtain the following expression for 𝜆𝑗,𝑛.
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Theorem 1.3. Let 𝑎(𝑡) = 𝑡−1ℎ(𝑡) be a symbol with properties 1 to 4. Then for every
small neighborhood 𝑊0 of zero in ℂ and every 𝑗 between 𝑛1 and 𝑛− 𝑛2,

𝜆𝑗,𝑛 = 𝑎(𝜔𝑗𝑛) + (𝛼+ 1)𝜔𝑗𝑛𝑎
′(𝜔𝑗𝑛)

log𝑛

𝑛

+
𝜔𝑗𝑛𝑎

′(𝜔𝑗𝑛)
𝑛

log

(
𝑎2(𝜔𝑗𝑛)

𝐶1𝑎′(𝜔𝑗𝑛)𝜔2𝑗𝑛

)
+𝑅3(𝑛, 𝑗), (1.5)

where 𝐶1 is as in Theorem 1.2 and 𝑅3(𝑛, 𝑗) = 𝒪(1/𝑛𝛼0+1) + 𝒪(log2 𝑛/𝑛2) as
𝑛→ ∞, uniformly with respect to 𝑗 in (𝑛1, 𝑛− 𝑛2).

The idea to use just the singularity (1 − 𝑡)𝛼 in order to study phenomena
connected with eigenvalue asymptotics was also employed in [4].

We remark that we wrote down only the first few terms in our asymptotic
expansions but that our method is constructive and would allow us to get as many
terms as we desire. Clearly, conjecture (1.2) corresponds to the first term in our
asymptotic expansion (1.4). Figure 1 illustrates Theorem 1.3. In the last section,
we present another simulation graphic and error tables made with Matlab software
to show that incorporating the second term of our expansion (1.4) (= third term
in (1.5)) reduces the error to nearly one tenth.

2. Toeplitz determinant

Lemma 2.1. Let 𝑎(𝑡) = 𝑡−1ℎ(𝑡) have properties 1 and 4. Then, for each 𝜆 ∈ 𝒟(𝑎)
and every 𝑛 ∈ ℕ, and with [ ]𝑛 denoting the 𝑛th Fourier coefficient,

𝐷𝑛(𝑎− 𝜆) = (−1)𝑛ℎ𝑛+10

[
1

ℎ(𝑡) − 𝜆𝑡
]
𝑛

. (2.1)

Proof. This can be deduced from the Baxter-Schmidt formula [2], which is also
in [5, p. 37]. For the reader’s convenience, we include a direct proof of (2.1).
Obviously,

𝑇𝑛+1(ℎ− 𝜆𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ℎ0 0 0 ⋅ ⋅ ⋅ 0 0
ℎ1 − 𝜆 ℎ0 0 ⋅ ⋅ ⋅ 0 0
ℎ2 ℎ1 − 𝜆 ℎ0 ⋅ ⋅ ⋅ 0 0
...

...
...

. . .
...

...
ℎ𝑛−1 ℎ𝑛−2 ℎ𝑛−3 ⋅ ⋅ ⋅ ℎ0 0
ℎ𝑛 ℎ𝑛−1 ℎ𝑛−2 ⋅ ⋅ ⋅ ℎ1 − 𝜆 ℎ0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.2)

and

𝑇𝑛(𝑎− 𝜆) =

⎡⎢⎢⎢⎢⎢⎣
ℎ1 − 𝜆 ℎ0 0 ⋅ ⋅ ⋅ 0
ℎ2 ℎ1 − 𝜆 ℎ0 ⋅ ⋅ ⋅ 0
...

...
...

. . .
...

ℎ𝑛−1 ℎ𝑛−2 ℎ𝑛−3 ⋅ ⋅ ⋅ ℎ0
ℎ𝑛 ℎ𝑛−1 ℎ𝑛−2 ⋅ ⋅ ⋅ ℎ1 − 𝜆

⎤⎥⎥⎥⎥⎥⎦ .
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Figure 1. The picture shows a piece of ℛ(𝑎) for the symbol 𝑎(𝑡) =
𝑡−1(1−𝑡)3/4 (solid line) located “far” from zero. The dots are sp𝑇4096(𝑎)
calculated by Matlab. The crosses and the stars are the approximations
obtained by using 2 and 3 terms of (1.5), respectively.

Applying Cramer’s rule to (2.2) we obtain

[
𝑇−1
𝑛+1(ℎ− 𝜆𝑡)]

(𝑛+1,1)
= (−1)𝑛+2

𝐷𝑛(𝑎− 𝜆)
𝐷𝑛+1(ℎ− 𝜆𝑡) . (2.3)

We claim that ℎ(𝑡) − 𝜆𝑡 is invertible in 𝐻∞. To see this, we must show that
ℎ(𝑡) ∕= 𝜆𝑡 for all 𝑡 ∈ 𝔻 and each 𝜆 ∈ 𝒟(𝑎). Let 𝜆 be a point in 𝒟(𝑎). For each 𝑡 ∈ 𝕋

we have ℎ(𝑡) ∕= 𝜆𝑡 because 𝜆 /∈ ∂𝒟(𝑎) = ℛ(𝑎). By assumption, wind𝜆(𝑎) = −1
and thus

−1 = wind0(𝑎− 𝜆) = wind0(𝑡
−1ℎ(𝑡)− 𝜆) = wind0(𝑡

−1
(
ℎ(𝑡) − 𝜆𝑡))

= wind0(𝑡
−1) + wind0(ℎ(𝑡) − 𝜆𝑡) = −1 + wind0(ℎ(𝑡) − 𝜆𝑡).

It follows that wind0(ℎ(𝑡)− 𝜆𝑡) = 0, which means that the origin does not belong
to the inside domain of the curve {ℎ(𝑡)−𝜆𝑡 : 𝑡 ∈ 𝕋} (see [10, p. 204]). As ℎ ∈ 𝐻∞,
this shows that ℎ(𝑡) ∕= 𝜆𝑡 for all 𝑡 ∈ 𝔻 and proves our claim.
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If 𝑏 is invertible in 𝐻∞, then 𝑇−1
𝑛+1(𝑏) = 𝑇𝑛+1(1/𝑏). Thus, the (𝑛+1, 1) entry

of the matrix 𝑇−1
𝑛+1(ℎ(𝑡)−𝜆𝑡) is in fact the 𝑛th Fourier coefficient of (ℎ(𝑡)−𝜆𝑡)−1,[

𝑇−1
𝑛+1(ℎ(𝑡) − 𝜆𝑡)]

(𝑛+1,1)
=

[
1

ℎ(𝑡) − 𝜆𝑡
]
𝑛

.

Inserting this in (2.3) we get

𝐷𝑛(𝑎− 𝜆) = (−1)𝑛+2𝐷𝑛+1(ℎ(𝑡) − 𝜆𝑡)
[

1

ℎ(𝑡) − 𝜆𝑡
]
𝑛

= (−1)𝑛ℎ𝑛+10

[
1

ℎ(𝑡) − 𝜆𝑡
]
𝑛

,

which completes the proof. □

Expression (2.1) says that the determinant 𝐷𝑛(𝑎 − 𝜆) can be expressed as
the Fourier integral

𝐷𝑛(𝑎− 𝜆) = (−1)𝑛ℎ𝑛+10

∫ 𝜋

−𝜋

𝑒−𝑖𝑛𝜃

ℎ
(
𝑒𝑖𝜃
)− 𝜆𝑒𝑖𝜃 𝑑𝜃2𝜋 ,

which is our starting point to find an asymptotic expansion for the eigenvalues of
𝑇𝑛(𝑎). There are two major contributions to this integral. The first comes from 𝜆,
when it is close to ℛ(𝑎), and the second results from the singularity at the point
1. We will analyze them in separate sections.

3. Contribution of 𝝀 to the asymptotic behavior of 𝑫𝒏

Defining

𝑏(𝑧, 𝜆):=
1

ℎ(𝑧) − 𝜆𝑧 ,
we have

𝑏𝑛(𝜆) =

∫ 𝜋

−𝜋

𝑏
(
𝑒𝑖𝜃, 𝜆
)
𝑒−𝑖𝑛𝜃 𝑑𝜃

2𝜋
. (3.1)

From (2.1) we conclude that

𝐷𝑛(𝑎− 𝜆) = (−1)𝑛ℎ𝑛+10 𝑏𝑛(𝜆). (3.2)

Lemma 3.1. Let 𝑎(𝑡) = 𝑡−1ℎ(𝑡) be a symbol such that ℛ(𝑎) is a Jordan curve in ℂ.
Let 𝑊0 be a small open neighborhood of zero in ℂ. Assume that ℎ has an analytic
extension to an open neighborhood 𝑊 of 𝕋 ∖ {1} in ℂ not containing the point 1.
Then, for each 𝜆 ∈ 𝒟(𝑎)∖𝑊0 sufficiently close to ℛ(𝑎), there exists a unique point
𝑡𝜆 in 𝑊 ∖ 𝔻 such that 𝑎(𝑡𝜆) = 𝜆. Moreover, the point 𝑡𝜆 is a simple pole for 𝑏.

Proof. Without loss of generality, we may assume that the extension of 𝑎 to 𝑊 is
bounded. As ℎ ∈ 𝐻∞, this extension must map 𝑊 ∖ 𝔻 to 𝒟(𝑎) ∩ 𝑎(𝑊 ). As the
range of 𝑎 has no loops, we have 𝑎′(𝑡) ∕= 0 for all 𝑡 ∈ 𝕋. Consider the compact
set 𝑆:= {𝑡 ∈ 𝕋 : 𝑎(𝑡) /∈ 𝑊0}. For every 𝑡 ∈ 𝑆, there exists an open neighborhood
𝑉𝑡 of 𝑡 in ℂ with 𝑉𝑡 ⊂ 𝑊 such that 𝑎′(𝑡) ∕= 0 for each 𝑡 ∈ 𝑉𝑡. Thus, there is an
open set 𝑈𝑡 such that 𝑡 ∈ 𝑈𝑡 ⊂ 𝑉𝑡 and 𝑎 is a conformal map (and hence bijective)
from 𝑈𝑡 to 𝑎(𝑈𝑡). As 𝑆 is compact, we can take a finite sub-cover from {𝑈𝑡}𝑡∈𝑆 ,
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say 𝑈 : = ∪𝑀
𝑖=1𝑈𝑡𝑖 . It follows that 𝑎 is a conformal map (and hence bijective)

from 𝑈 ⊃ 𝑆 to 𝑎(𝑈) ⊃ 𝑎(𝑆); see Figure 2. The lemma then holds for every
𝜆 ∈ 𝑎(𝑈) ∩ (𝒟(𝑎) ∖𝑊0). Finally, since 𝑎

′(𝑡𝜆) ∕= 0, the point 𝑡𝜆 must be a simple
pole of 𝑏. □

Figure 2. The map 𝑎(𝑡) over the unit circle.

Now using that 𝑡𝜆 is a simple pole of 𝑏, we split 𝑏 as follows:

𝑏(𝑧, 𝜆) =
1

𝑧(𝑎(𝑧)− 𝜆) =
1

𝑡𝜆𝑎′(𝑡𝜆)(𝑧 − 𝑡𝜆) + 𝑓0(𝑧, 𝜆). (3.3)

Here 𝑓0 is analytic with respect to 𝑧 in 𝑊 and uniformly bounded with respect
to 𝜆 in 𝑎(𝑊 ) ∖𝑊0. We calculate the Fourier coefficients of the first term in (3.3)
directly and integrate the second term to get

𝑏𝑛(𝜆) =
−1

𝑡𝑛+2𝜆 𝑎′(𝑡𝜆)
+ ℐ, (3.4)

where

ℐ:=
∫ 𝜋

−𝜋

𝑓0
(
𝑒𝑖𝜃, 𝜆

)
𝑒−𝑖𝑛𝜃 𝑑𝜃

2𝜋
.

The first term in (3.4) times (−1)𝑛ℎ𝑛+10 is the contribution of 𝑡𝜆 to the asymptotic
expansion of 𝐷𝑛(𝑎− 𝜆); see (3.2). The function 𝑓0 has a singularity at 𝑧 = 1 and
we use this fact to expand ℐ in the following section.

4. Contribution of 1 to the asymptotic behavior of 𝑫𝒏

In this section, we will show that the value of ℐ in (3.4) depends mainly on the
singularity at the point 1. Let us write 𝑏(𝜃, 𝜆) and 𝑓0(𝜃, 𝜆) instead of 𝑏

(
𝑒𝑖𝜃, 𝜆
)

and 𝑓0
(
𝑒𝑖𝜃, 𝜆

)
, respectively. Let {𝜙1, 𝜙2} be a smooth partition of unity over the

segment [−𝜋, 𝜋], which means that 𝜙1, 𝜙2 ∈ 𝐶∞[−𝜋, 𝜋], 𝜙1(𝜃) + 𝜙2(𝜃) = 1 for all
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𝜃 ∈ [−𝜋, 𝜋], the support of 𝜙1 is contained in [−𝜋,−𝜀] ∪ [𝜀, 𝜋], and the support of
𝜙2 is in [−𝛿, 𝛿], where 0 < 𝜀 < 𝛿 are small constants. By pasting segments [−𝜋, 𝜋]
in both directions, we can continue 𝜙1 and 𝜙2 to the entire real line ℝ, and we will
think of these two functions in that way.

Lemma 4.1. For every sufficiently small positive 𝛿, we have

ℐ =

∫ 𝛿

−𝛿

𝜙2(𝜃)𝑏(𝜃, 𝜆)𝑒
−𝑖𝑛𝜃 𝑑𝜃

2𝜋
+𝑄1(𝑛, 𝜆), (4.1)

where 𝑄1(𝑛, 𝜆) = 𝒪(1/𝑛∞) as 𝑛→ ∞, uniformly with respect to 𝜆 in 𝑎(𝑊 ) ∖𝑊0.

Proof. Using the partition of unity {𝜙1, 𝜙2}, we write ℐ = ℐ1 + ℐ2 where

ℐ1:=
∫ 2𝜋−𝜀

𝜀

𝜙1(𝜃)𝑓0(𝜃, 𝜆)𝑒
−𝑖𝑛𝜃 𝑑𝜃

2𝜋
, ℐ2:=

∫ 𝛿

−𝛿

𝜙2(𝜃)𝑓0(𝜃, 𝜆)𝑒
−𝑖𝑛𝜃 𝑑𝜃

2𝜋
.

The function 𝜙1(𝜃)𝑓0(𝜃, 𝜆) belongs to 𝐶
∞[𝜀, 2𝜋−𝜀]. Thus by [14, p. 95], we obtain

that ℐ1 = 𝒪(1/𝑛∞) as 𝑛→ ∞, uniformly with respect to 𝜆 in 𝑎(𝑊 ) ∖𝑊0.
Using (3.3) and writing ℎ(𝜃) instead of ℎ

(
𝑒𝑖𝜃
)
, we arrive at ℐ2 = ℐ21 + ℐ22

where

ℐ21:=
∫ 𝛿

−𝛿

𝜙2(𝜃)𝑒
−𝑖𝑛𝜃

ℎ(𝜃) − 𝜆𝑒𝑖𝜃
𝑑𝜃

2𝜋
, ℐ22:= −1

𝑡𝜆𝑎′(𝑡𝜆)

∫ 𝛿

−𝛿

𝜙2(𝜃)𝑒
−𝑖𝑛𝜃

𝑒𝑖𝜃 − 𝑡𝜆
𝑑𝜃

2𝜋
. (4.2)

Once more, the function 𝜙2(𝜃)/
(
𝑒𝑖𝜃 − 𝑡𝜆

)
belongs to 𝐶∞[−𝛿, 𝛿], we thus conclude

that ℐ22 = 𝒪(1/𝑛∞) as 𝑛→ ∞, uniformly with respect to 𝜆 in 𝑎(𝑊 ) ∖𝑊0. □

Expression (4.1) says that the value of ℐ basically depends on the integrand
𝑏(𝜃, 𝜆)𝑒−𝑖𝑛𝜃 at 𝜃 = 0. As we can take 𝛿 as small as we desire, we can assume
that 𝜃 is arbitrarily close to zero. Keeping this idea in mind, we will develop an
asymptotic expansion for 𝑏. For future reference, we rewrite (4.1) as

ℐ = ℐ21 +𝑄1(𝑛, 𝜆), (4.3)

where 𝑄1(𝑛, 𝜆) = 𝒪(1/𝑛∞) as 𝑛→ ∞, uniformly with respect to 𝜆 in 𝑎(𝑊 ) ∖𝑊0.

Lemma 4.2. For every sufficiently small positive 𝛿,

ℐ21 = −
∞∑
𝑠=0

1

𝜆𝑠+1

∫ 𝛿

−𝛿

𝜙2(𝜃)ℎ
𝑠(𝜃)𝑒−𝑖𝑛𝜃

𝑒𝑖𝜃(𝑠+1)
𝑑𝜃

2𝜋
. (4.4)

Proof. From (4.2) we have

ℐ21 =
∫ 𝛿

−𝛿

𝜙2(𝜃)𝑏(𝜃, 𝜆)𝑒
−𝑖𝑛𝜃 𝑑𝜃

2𝜋
. (4.5)

Note that

𝑏(𝜃, 𝜆) =
1

ℎ(𝜃) − 𝜆𝑒𝑖𝜃 =
−1

𝜆𝑒𝑖𝜃
⋅ 1

1 − 𝜆−1𝑒−𝑖𝜃ℎ(𝜃)
.

As ∣ℎ(𝜃)∣ → 0 when 𝜃 → 0, there exists a small positive constant 𝛿 such that∣∣𝜆−1𝑒−𝑖𝜃ℎ(𝜃)
∣∣ < 1



Eigenvalues of Large Hessenberg Toeplitz Matrices 85

for every ∣𝜃∣ < 𝛿. Thus,

𝑏(𝜃, 𝜆) =
−1

𝜆𝑒𝑖𝜃

∞∑
𝑠=0

(
𝜆−1𝑒−𝑖𝜃ℎ(𝜃)

)𝑠
= −

∞∑
𝑠=0

ℎ𝑠(𝜃)

𝜆𝑠+1𝑒𝑖𝜃(𝑠+1)
(4.6)

for every ∣𝜃∣ < 𝛿. Inserting (4.6) in (4.5) finishes the proof. □

We will use the notation

ℐ21𝑠:= 1

𝜆𝑠+1

∫ 𝛿

−𝛿

𝜙2(𝜃)ℎ
𝑠(𝜃)𝑒−𝑖𝑛𝜃

𝑒𝑖𝜃(𝑠+1)
𝑑𝜃

2𝜋
.

Because 𝜙2(𝜃)𝑒
−𝑖𝜃 ∈ 𝐶∞[−𝛿, 𝛿], we have ℐ21𝑠∣𝑠=0 = 𝒪(1/𝑛∞) as 𝑛→ ∞, uniformly

with respect to 𝜆 in 𝑎(𝑊 ) ∖𝑊0. With the previous notation, we can rewrite (4.4)
as

ℐ21 = −
∞∑
𝑠=1

ℐ21𝑠 +𝑄2(𝑛, 𝜆), (4.7)

where 𝑄2(𝑛, 𝜆) = 𝒪(1/𝑛∞) as 𝑛→ ∞, uniformly with respect to 𝜆 in 𝑎(𝑊 ) ∖𝑊0.
Finally we will work with ℐ21𝑠 and for this purpose we need the following

well-known result, which is, for example, in [14, p. 97].

Theorem 4.3. Let 𝛽 > 0, 𝛿 > 0, 𝑣 ∈ 𝐶∞[0, 𝛿], 𝑣(𝑠)(𝛿) = 0 for all 𝑠 ≥ 0. Then, as
𝑛→ ∞, ∫ 𝛿

0

𝜃𝛽−1𝑣(𝜃)𝑒𝑖𝑛𝜃𝑑𝜃 ≈
∞∑
𝑠=0

𝑎𝑠
𝑛𝑠+𝛽

,

where

𝑎𝑠 =
𝑣(𝑠)(0)

𝑠!
Γ(𝑠+ 𝛽)𝑖𝑠+𝛽 (4.8)

and Γ(𝑧) =
∫∞
0
𝑡𝑧−1𝑒−𝑡𝑑𝑡 is Euler’s Gamma function.

Lemma 4.4. Let ℎ(𝑡) = (1 − 𝑡)𝛼𝑓(𝑡) with 𝛼 ∈ ℝ+ ∖ ℤ and 𝑓 ∈ 𝐶∞(𝕋). Then,

ℐ21 = 𝑓(1)Γ(𝛼+ 1) sin(𝛼𝜋)

𝜋𝜆2𝑛𝛼+1
+𝑅1(𝑛, 𝜆), (4.9)

where 𝑅1(𝑛, 𝜆) = 𝒪(1/𝑛𝛼+𝛼0+1) with 𝛼0 = min{𝛼, 1} as 𝑛 → ∞, uniformly with
respect to 𝜆 in 𝑎(𝑊 ) ∖𝑊0.

Proof. It is easy to verify that ℎ(𝜃) = (−𝑖𝜃)𝛼𝑣(𝜃)𝑓(𝑒𝑖𝜃), where the function 𝑣

equals
(
𝑖𝜃−1(1− 𝑒𝑖𝜃))𝛼, the branch of the 𝛼th power being the one corresponding

to the argument in (−𝜋, 𝜋]; note that for every sufficiently small positive 𝛿 we have
𝑣 ∈ 𝐶∞[−𝛿, 𝛿] and 𝑣(0) = 1. Thus,

ℐ21𝑠 = 1

𝜆𝑠+1

∫ 𝛿

−𝛿

𝜙2(𝜃)ℎ
𝑠(𝜃)𝑒−𝑖𝜃(𝑛+𝑠+1) 𝑑𝜃

2𝜋

=
(−𝑖)𝛼𝑠
𝜆𝑠+1

∫ 𝛿

−𝛿

𝜙2(𝜃)𝜃
𝛼𝑠𝑣𝑠(𝜃)𝑓 𝑠

(
𝑒𝑖𝜃
)
𝑒−𝑖𝜃(𝑛+𝑠+1) 𝑑𝜃

2𝜋
.
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The last integral can be written as

ℐ21𝑠 =
∫ 𝛿

−𝛿

𝜃𝛽−1𝑤(𝜃)𝑒−𝑖𝑛𝜃𝑑𝜃

=

∫ 0

−𝛿

𝜃𝛽−1𝑤(𝜃)𝑒−𝑖𝑛𝜃𝑑𝜃 +

∫ 𝛿

0

𝜃𝛽−1𝑤(𝜃)𝑒−𝑖𝑛𝜃𝑑𝜃

=

∫ 𝛿

0

(−𝜏)𝛽−1𝑤(−𝜏)𝑒𝑖𝑛𝜏𝑑𝜏 +
∫ 𝛿

0

𝜃𝛽−1𝑤(𝜃)𝑒−𝑖𝑛𝜃𝑑𝜃 = ℐ21𝑠1 + ℐ21𝑠2, (4.10)

where 𝛽:= 𝛼𝑠+ 1, 𝑤(𝜃):= (−𝑖)𝛼𝑠𝜙2(𝜃)𝑣𝑠(𝜃)𝑓 𝑠
(
𝑒𝑖𝜃
)
𝑒−𝑖𝜃(𝑠+1)/(2𝜋𝜆𝑠+1), and

ℐ21𝑠1:= (−1)𝛽−1

∫ 𝛿

0

𝜃𝛽−1𝑤(−𝜃)𝑒𝑖𝑛𝜃𝑑𝜃, ℐ21𝑠2:=
∫ 𝛿

0

𝜃𝛽−1𝑤(𝜃)𝑒−𝑖𝑛𝜃𝑑𝜃.

Note that 𝑤(±𝜃) ∈ 𝐶∞[0, 𝛿] and 𝑤(𝑠)(±𝛿) = 0 for all 𝑠 ∈ ℕ because 𝜙2(𝜃) ≡ 0 in
a small neighborhood of ±𝛿. Applying (4.8) to ℐ21𝑠1 and ℐ21𝑠2, we obtain

ℐ21𝑠1 = (−1)𝛼𝑠𝑤(0)Γ(𝛼𝑠 + 1)𝑖𝛼𝑠+1

𝑛𝛼𝑠+1
+𝑄3(𝑠, 𝑛, 𝜆)

and

ℐ21𝑠2 = 𝑤(0)Γ(𝛼𝑠 + 1)𝑖−𝛼𝑠−1

𝑛𝛼𝑠+1
+𝑄4(𝑠, 𝑛, 𝜆), (4.11)

where 𝑄3(𝑠, 𝑛, 𝜆) and 𝑄4(𝑠, 𝑛, 𝜆) are 𝒪(1/𝑛𝛼𝑠+2) as 𝑛 → ∞, uniformly with re-
spect to 𝜆 in 𝑎(𝑊 ) ∖𝑊0. Substitution of (4.11) in (4.10) yields

ℐ21𝑠 =𝑤(0)Γ(𝛼𝑠+ 1)

𝑛𝛼𝑠+1
(
𝑖−𝛼𝑠−1 + (−1)𝛼𝑠𝑖𝛼𝑠+1

)
+𝑄5(𝑠, 𝑛, 𝜆)

=
−𝐶𝑠

𝜆𝑠+1𝑛𝛼𝑠+1
+𝑄5(𝑠, 𝑛, 𝜆) (4.12)

where

𝐶𝑠:=
𝑓 𝑠(1)Γ(𝛼𝑠+ 1) sin(𝛼𝜋𝑠)

𝜋
(4.13)

and 𝑄5(𝑠, 𝑛, 𝜆) = 𝒪(1/𝑛𝛼𝑠+2) as 𝑛→ ∞, uniformly in 𝜆 ∈ 𝑎(𝑊 ) ∖𝑊0. From (4.7)
and (4.12) we obtain

ℐ21 = 𝐶1
𝜆2𝑛𝛼+1

+𝑅1(𝑛, 𝜆),

where 𝑅1(𝑛, 𝜆) = 𝒪(1/𝑛𝛼+𝛼0+1) as 𝑛 → ∞, uniformly in 𝜆 ∈ 𝑎(𝑊 ) ∖𝑊0. Here
𝛼0:= min{𝛼, 1}. □

The previous calculation gives us the main asymptotic term for ℐ21. If more
terms are needed, say 𝑚, we must expand ℐ21 from ℐ21𝑠∣𝑠=1 to ℐ21𝑠∣𝑠=𝑚 and
expand each ℐ21𝑠 to 𝑚 terms, after which, according to the value of 𝛼, we need to
select the first 𝑚 principal terms.

Finally we put all the lemmas together to prove Theorem 1.1.

Proof of Theorem 1.1. The proof of this theorem is a direct application of equa-
tions (3.2), (3.4), (4.3) and (4.9). □
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5. Individual eigenvalues

In order to find the eigenvalues of the matrices 𝑇𝑛(𝑎), we need to solve the equa-
tions 𝐷𝑛(𝑎− 𝜆) = 0. We start this section by locating the zeros of 𝐷𝑛(𝑎− 𝜆).

Let 𝑊0 be a small open neighborhood of zero in ℂ and 𝜔𝑛:= exp(−2𝜋𝑖/𝑛).
For each 𝑛 there exist integers 𝑛1 and 𝑛2 such that 𝜔𝑛1

𝑛 , 𝜔
𝑛−𝑛2
𝑛 ∈ 𝑎−1(𝑊0) but

𝜔𝑛1+1
𝑛 , 𝜔𝑛−𝑛2−1

𝑛 /∈ 𝑎−1(𝑊0). Recall that 𝜆 = 𝑎(𝑡𝜆). Take an integer 𝑗 satisfying
𝑛1 < 𝑗 < 𝑛− 𝑛2. Using the relations

1

𝑡2𝜆𝑎
′(𝑡𝜆)

=
1

𝜔2𝑗𝑎
′(𝜔𝑗𝑛)

+ 𝒪 (∣∣𝑡𝜆 − 𝜔𝑗𝑛
∣∣)

and
1

𝑎2(𝑡𝜆)
=

1

𝑎2(𝜔𝑗𝑛)
+ 𝒪 (∣∣𝑡𝜆 − 𝜔𝑗𝑛

∣∣) ,
where 𝑡𝜆 belongs to a small neighborhood of 𝜔𝑗𝑛, we see that the determinant
𝐷𝑛(𝑎− 𝜆) in (1.3) equals

(−ℎ0)𝑛+1
(

𝒯1 − 𝒯2 + 1

𝑡𝑛𝜆
𝒪 (∣∣𝑡𝜆 − 𝜔𝑗𝑛

∣∣)+ 1

𝑛𝛼+1
𝒪 (∣∣𝑡𝜆 − 𝜔𝑗𝑛

∣∣)+𝑄6(𝑛, 𝑡𝜆)

)

= (−ℎ0)𝑛+1
(

𝒯1 − 𝒯2 + 𝒪
(∣∣∣∣ 𝑡𝜆 − 𝜔𝑗𝑛

𝑡𝑛𝜆

∣∣∣∣)+ 𝒪
(∣∣𝑡𝜆 − 𝜔𝑗𝑛

∣∣
𝑛𝛼+1

)
+𝑄6(𝑛, 𝑡𝜆)

)
, (5.1)

where 𝑄6(𝑛, 𝑡𝜆) = 𝒪(1/𝑛𝛼+𝛼0+1) as 𝑛 → ∞, uniformly with respect to 𝑡𝜆 in
𝑊 ∖ 𝑎−1(𝑊0), and where 𝑡𝜆 belongs to a small neighborhood of 𝜔𝑗𝑛. Here

𝒯1:= 1

𝑡𝑛𝜆𝜔
2𝑗
𝑛 𝑎′(𝜔𝑗𝑛)

, 𝒯2:= 𝐶1

𝑎2(𝜔𝑗𝑛)𝑛𝛼+1
,

and 𝛼0: = min{𝛼, 1}. Recall 𝐶1 from (4.13). Expression (5.1) makes sense only
when 𝑡𝜆 is sufficiently “close” to 𝜔𝑗𝑛 and thus, it is necessary to know whether
there exists a zero of 𝐷𝑛(𝑎− 𝜆) “close” to 𝜔𝑗𝑛. Let

𝑡𝜆 = (1 + 𝜌) exp(𝑖𝜃).

It is easy to verify that 𝒯1 − 𝒯2 = 0 if and only if

𝜌 =

(
∣𝑎(𝜔𝑗𝑛)∣2𝑛𝛼+1
∣𝐶1𝑎′(𝜔𝑗𝑛)∣

)1/𝑛
− 1 (5.2)

and

𝜃 = 𝜃𝑗 =
1

𝑛
arg

(
𝑎2(𝜔𝑗𝑛)

𝐶1𝜔
2𝑗
𝑛 𝑎′(𝜔𝑗𝑛)

)
− 2𝜋𝑗

𝑛

for some 𝑗 ∈ {0, . . . , 𝑛− 1}. When 𝑛 tends to infinity, (5.2) shows that 𝜌 remains
positive and 𝜌 → 0. The function 𝒯1 − 𝒯2 has 𝑛 zeros with respect to 𝜆 ∈ 𝒟(𝑎)
given by

𝑎
(
(1 + 𝜌)𝑒𝑖𝜃0

)
, . . . , 𝑎

(
(1 + 𝜌)𝑒𝑖𝜃𝑛−1

)
.
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As Lemma 3.1 establishes a 1–1 correspondence between 𝜆 and 𝑡𝜆, the function
𝐷𝑛(𝑎−𝜆) is analytic with respect to 𝜆 in 𝑎(𝑊 )∖𝑊0, that is, analytic with respect
to 𝑡𝜆 in 𝑊 ∖ 𝑎−1(𝑊0). We can therefore suppose that 𝒯1 − 𝒯2 has 𝑛 zeros with
respect to 𝑡𝜆 in the exterior of 𝔻 given by

𝑡0:= (1 + 𝜌)𝑒𝑖𝜃0 , . . . , 𝑡𝑛−1:= (1 + 𝜌)𝑒𝑖𝜃𝑛−1 .

We take the function “arg” in the interval (−𝜋, 𝜋]. Thus, 𝑡𝑗 = (1 + 𝜌)𝑒𝑖𝜃𝑗 is the
nearest zero to 𝜔𝑗𝑛. Consider the neighborhood 𝐸𝑗 of 𝑡𝑗 sketched in Figure 3.

Figure 3. The neighborhood 𝐸𝑗 of 𝑡𝑗 in the complex plane.

The boundary of 𝐸𝑗 is Γ:= Γ1∪Γ2∪Γ3∪Γ4. We have chosen radial segments
Γ2 and Γ4 so that their length is 1/𝑛𝜖 with 𝜖 ∈ (0, 𝛼0) and all the points in Γ2 have
the common argument (𝜃𝑗+1 + 𝜃𝑗)/2, while all the points in Γ4 have the common
argument (𝜃𝑗−1+ 𝜃𝑗)/2. As we can see in Figure 3, these points run from the unit
circle 𝕋 to (1 + 1/𝑛𝜖)𝕋. Note also that Γ1 ⊂ (1 + 1/𝑛𝜖)𝕋 and Γ3 ⊂ 𝕋.

Theorem 5.1. Suppose 𝑎(𝑡) = 𝑡−1ℎ(𝑡) is a symbol with properties 1 to 4. Let 𝜖 ∈
(0, 𝛼0) be a constant. Then there exists a family of sets {𝐸𝑗}𝑛−𝑛2−1

𝑗=𝑛1+1
in ℂ such that

1. {𝐸𝑗}𝑛−𝑛2−1
𝑗=𝑛1+1

is a family of pairwise disjoint open sets,

2. diam(𝐸𝑗) ≤ 2/𝑛𝜖,
3. 𝜔𝑗𝑛 ∈ ∂𝐸𝑗,
4. 𝐷𝑛

(
𝑎− 𝑎(𝑡𝜆)

)
= 𝐷𝑛(𝑎− 𝜆) has exactly one zero in each 𝐸𝑗 .

Here 𝛼0:= min{𝛼, 1} and diam(𝐸𝑗):= sup{∣𝑧1 − 𝑧2∣ : 𝑧1, 𝑧2 ∈ 𝐸𝑗}.

Proof. Assertions 1, 2, and 3 can be deduced from the above construction. We
prove assertion 4 by studying the behavior of ∣𝐷𝑛(𝑎−𝜆)∣ in dependence on 𝑡𝜆 ∈ Γ.
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For 𝑡𝜆 ∈ Γ1 we have, as 𝑛→ ∞,

∣𝒯1∣Γ1 =
1

∣𝑎′(𝜔𝑗𝑛)∣
⋅
(
1 +

1

𝑛𝜖

)−𝑛

=
exp(−𝑛1−𝜖)

∣𝑎′(𝜔𝑗𝑛)∣
+ 𝒪
(
exp(−𝑛1−𝜖)

𝑛2𝜖−1

)
,

∣𝒯2∣Γ1 =
1

𝑛𝛼+1
⋅
∣∣∣∣∣ 𝐶1𝑎2(𝜔𝑗𝑛)

∣∣∣∣∣ ,∣∣∣∣𝒪(∣∣∣∣ 𝑡𝜆 − 𝜔𝑗𝑛
𝑡𝑛𝜆

∣∣∣∣)∣∣∣∣
Γ1

= 𝒪
(
exp(−𝑛1−𝜖)

𝑛𝜖

)
,∣∣∣∣𝒪( ∣𝑡𝜆 − 𝜔𝑗𝑛∣

𝑛𝛼+1

)∣∣∣∣
Γ1

= 𝒪
(

1

𝑛𝛼+𝜖+1

)
,

and ∣𝑄6(𝑛, 𝑡𝜆)∣Γ1 = 𝒪(1/𝑛𝛼+𝛼0+1). When 𝑛 goes to infinity, the absolute value
of 𝒯2 decreases at polynomial speed over Γ1, while the absolute values of the
remaining terms in (5.1) are smaller over Γ1. Thus,∣∣∣∣𝐷𝑛(𝑎− 𝜆)

ℎ𝑛+10

∣∣∣∣
Γ1

=
1

𝑛𝛼+1
⋅
∣∣∣∣∣ 𝐶1𝑎2(𝜔𝑗𝑛)

∣∣∣∣∣+ 𝒪
(

1

𝑛𝛼+𝜖+1

)
as 𝑛→ ∞.

For 𝑡𝜆 ∈ Γ3 we get, as 𝑛→ ∞,

∣𝒯1∣Γ3 =
1

∣𝑎′(𝜔𝑗𝑛)∣
, ∣𝒯2∣Γ3 =

1

𝑛𝛼+1
⋅
∣∣∣∣∣ 𝐶1𝑎2(𝜔𝑗𝑛)

∣∣∣∣∣ ,∣∣∣∣𝒪(∣∣∣∣ 𝑡𝜆 − 𝜔𝑗𝑛
𝑡𝑛𝜆

∣∣∣∣)∣∣∣∣
Γ3

= 𝒪
(
1

𝑛

)
,∣∣∣∣𝒪( ∣𝑡𝜆 − 𝜔𝑗𝑛∣

𝑛𝛼+1

)∣∣∣∣
Γ3

= 𝒪
(

1

𝑛𝛼+2

)
,

and ∣𝑄6(𝑛, 𝑡𝜆)∣Γ3 = 𝒪(1/𝑛𝛼+𝛼0+1). When 𝑛 goes to infinity, the modulus of 𝒯1
remains constant over Γ3, while the moduli of the remaining terms in (5.1) are
smaller there. Consequently,∣∣∣∣𝐷𝑛(𝑎− 𝜆)

ℎ𝑛+10

∣∣∣∣
Γ3

=
1

∣𝑎′(𝜔𝑗𝑛)∣
+ 𝒪
(
1

𝑛

)
as 𝑛→ ∞.

As for the radial segments Γ2 and Γ4, we start by showing that 𝒯1 and −𝒯2 have
the same argument there. Since 𝑡𝑗 is a zero of 𝒯1 − 𝒯2, we deduce that

arg

(
1

𝑡𝑛𝑗 𝜔
2𝑗
𝑛 𝑎′(𝜔𝑗𝑛)

)
= arg

(
𝐶1

𝑎2(𝜔𝑗𝑛)𝑛𝛼+1

)
and thus

−𝑛𝜃𝑗 + arg

(
1

𝜔2𝑗𝑛 𝑎′(𝜔𝑗𝑛)

)
= arg

(
𝐶1

𝑎2(𝜔𝑗𝑛)

)
. (5.3)
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For 𝑡𝜆 ∈ Γ2 we have

arg(𝒯1) = arg

(
1

𝑡𝑛𝜆𝜔
2𝑗
𝑛 𝑎′(𝜔𝑗𝑛)

)

= −𝑛
2
(𝜃𝑗−1 + 𝜃𝑗) + arg

(
1

𝜔2𝑗𝑛 𝑎′(𝜔𝑗𝑛)

)
=
𝑛

2
(𝜃𝑗 − 𝜃𝑗−1) + arg

(
𝐶1

𝑎2(𝜔𝑗𝑛)

)

= 𝜋 + arg

(
𝐶1

𝑎2(𝜔𝑗𝑛)

)
= arg(−𝒯2).

Here, the third line is due to (5.3). In addition, as 𝑛→ ∞,∣∣∣∣𝒪(∣∣∣∣ 𝑡𝜆 − 𝜔𝑗𝑛
𝑡𝑛𝜆

∣∣∣∣)∣∣∣∣
Γ2

= 𝒪
(

1

𝑛𝜖∣𝑡𝜆∣𝑛
)
,

∣∣∣∣𝒪( ∣𝑡𝜆 − 𝜔𝑗𝑛∣
𝑛𝛼+1

)∣∣∣∣
Γ2

= 𝒪
(

1

𝑛𝛼+𝜖+1

)
,

and ∣𝑄6(𝑛, 𝑡𝜆)∣Γ2 = 𝒪(1/𝑛𝛼+𝛼0+1). Furthermore,∣∣∣∣𝐷𝑛(𝑎− 𝜆)
ℎ𝑛+10

∣∣∣∣
Γ2

=
1

∣𝑡𝑛𝜆𝑎′(𝜔𝑗𝑛)∣
+ 𝒪
(

1

𝑛𝜖∣𝑡𝜆∣𝑛
)

+
1

𝑛𝛼+1
⋅
∣∣∣∣∣ 𝐶1𝑎2(𝜔𝑗𝑛)

∣∣∣∣∣+ 𝒪
(

1

𝑛𝛼+𝜖+1

)
over Γ2 when 𝑛→ ∞. The situation is similar for the segment Γ4.

From the previous analysis of ∣𝐷𝑛(𝑎 − 𝜆)∣ over Γ we infer that for every
sufficiently large 𝑛 we have

∣𝒯1 − 𝒯2∣Γ ≥ 1

2𝑛𝛼+1

∣∣∣∣∣ 𝐶1𝑎2(𝜔𝑗𝑛)

∣∣∣∣∣
and ∣∣∣∣𝒪(∣∣∣∣ 𝑡𝜆 − 𝜔𝑗𝑛

𝑡𝑛𝜆

∣∣∣∣)+ 𝒪
( ∣𝑡𝜆 − 𝜔𝑗𝑛∣
𝑛𝛼+1

)
+𝑄6(𝑛, 𝑡𝜆)

∣∣∣∣
Γ

≤ 𝒪
(

1

𝑛𝛼+𝜖+1

)
.

Hence by Rouché’s theorem, 𝐷𝑛(𝑎 − 𝜆)/(−ℎ0)𝑛+1 and 𝒯1 − 𝒯2 have the same
number of zeros in 𝐸𝑗 , that is, a unique zero. □

As a consequence of Theorem 5.1, we can iterate the variable 𝑡𝜆 in the equa-
tion 𝐷𝑛(𝑎− 𝜆) = 0, where 𝐷𝑛(𝑎− 𝜆) is given by (1.3). In this fashion we find the
unique eigenvalue of 𝑇𝑛(𝑎) which is located “close” to each 𝜔𝑗𝑛. We thus rewrite
the equation 𝐷𝑛(𝑎− 𝜆) = 0 in a small neighborhood of 𝜔𝑗𝑛 as

𝑡𝜆𝑗,𝑛 = 𝑛(𝛼+1)/𝑛𝜔𝑗𝑛

(
𝑎2(𝑡𝜆𝑗,𝑛)

𝐶1𝑎′(𝑡𝜆𝑗,𝑛)𝑡2𝜆𝑗,𝑛

) 1
𝑛

⋅ (1 +𝑄7(𝑛, 𝑗)
)− 1

𝑛 ; (5.4)

recall 𝐶1 from (4.13). Here the function 𝑧1/𝑛 takes its principal branch, specified
by the argument in (−𝜋, 𝜋]. Also notice that 𝑄7(𝑛, 𝑗) = 𝒪(1/𝑛𝛼0) as 𝑛 → ∞,
uniformly in 𝑗 ∈ (𝑛1, 𝑛− 𝑛2), with 𝑛1, 𝑛2 as in Theorem 5.1.
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Proof of Theorem 1.2. Equation (5.4) is an implicit expression for 𝑡𝜆𝑗,𝑛 . We ma-
nipulate it to obtain two asymptotic terms for 𝑡𝜆𝑗,𝑛 . Remember that 𝜆 belongs to
𝒟(𝑎) ∖𝑊0; see Figure 2. We can choose 𝑊 so thin that 𝜆𝑗,𝑛 = 𝑎(𝑡𝜆𝑗,𝑛), 𝑎

′(𝑡𝜆𝑗,𝑛),
and 𝑡𝜆𝑗,𝑛 are bounded and not too close to zero. After expanding and multiplying
the terms in brackets in (5.4), we obtain

𝑡𝜆𝑗,𝑛 = 𝑛(𝛼+1)/𝑛𝜔𝑗𝑛

(
1 +

1

𝑛
log

(
𝑎2(𝑡𝜆𝑗,𝑛)

𝐶1𝑎′(𝑡𝜆𝑗,𝑛)𝑡2𝜆𝑗,𝑛

)
+𝑄8(𝑛, 𝑗)

)
, (5.5)

where 𝑄8(𝑛, 𝑗) = 𝒪(1/𝑛𝛼0+1) as 𝑛 → ∞, uniformly with respect to 𝑗 in (𝑛1, 𝑛−
𝑛2). Our first approximation for 𝑡𝜆𝑗,𝑛 is

𝑡𝜆𝑗,𝑛 = 𝑛(𝛼+1)/𝑛𝜔𝑗𝑛
(
1 +𝑄9(𝑛, 𝑗)

)
,

where 𝑄9(𝑛, 𝑗) = 𝒪(1/𝑛) as 𝑛 → ∞, uniformly in 𝑗 from (𝑛1, 𝑛 − 𝑛2). Replacing
𝑡𝜆𝑗,𝑛 by this approximation in (5.5) shows that 𝑡𝜆𝑗,𝑛 equals 𝑛(𝛼+1)/𝑛𝜔𝑗𝑛 times

1 +
1

𝑛
log

(
𝑎2
(
𝑛(𝛼+1)/𝑛𝜔𝑗𝑛

[
1 +𝑄9(𝑛, 𝑗)

])
𝐶1𝑎′(𝑛(𝛼+1)/𝑛𝜔𝑗𝑛[1 +𝑄9(𝑛, 𝑗)

])(
𝑛(𝛼+1)/𝑛𝜔𝑗𝑛

[
1 +𝑄9(𝑛, 𝑗)

])2
)
,

plus 𝑄10(𝑛, 𝑗), where 𝑄10(𝑛, 𝑗) = 𝒪(1/𝑛𝛼0+1) as 𝑛 → ∞, uniformly with respect
to 𝑗 in (𝑛1, 𝑛 − 𝑛2). Now we use the analyticity of 𝑎 and 𝑎′ in 𝑊 to obtain that
𝑡𝜆𝑗,𝑛 is 𝑛(𝛼+1)/𝑛𝜔𝑗𝑛 times

1 +
1

𝑛
log

(
𝑎2
(
𝑛(𝛼+1)/𝑛𝜔𝑗𝑛

)
𝐶1𝑎′(𝑛(𝛼+1)/𝑛𝜔𝑗𝑛)(𝑛(𝛼+1)/𝑛𝜔𝑗𝑛)2

)
+𝑄11(𝑛, 𝑗),

where 𝑄11(𝑛, 𝑗) = 𝒪(1/𝑛𝛼0+1) as 𝑛 → ∞, uniformly in 𝑗 ∈ (𝑛1, 𝑛 − 𝑛2). Taking
into account that

𝑎2
(
𝑛(𝛼+1)/𝑛𝜔𝑗𝑛

)
𝐶1𝑎′(𝑛(𝛼+1)/𝑛𝜔𝑗𝑛)(𝑛(𝛼+1)/𝑛𝜔𝑗𝑛)2 =

𝑎2(𝜔𝑗𝑛)

𝐶1𝑎′(𝜔𝑗𝑛)𝜔2𝑗𝑛
+ 𝒪
(
log𝑛

𝑛

)
as 𝑛→ ∞,

we can simplify the expression for 𝑡𝜆𝑗,𝑛 to

𝑡𝜆𝑗,𝑛 = 𝑛(𝛼+1)/𝑛𝜔𝑗𝑛

(
1 +

1

𝑛
log

(
𝑎2(𝜔𝑗𝑛)

𝐶1𝑎′(𝜔𝑗𝑛)𝜔2𝑗𝑛

)
+𝑅2(𝑛, 𝑗)

)
,

where 𝑅2(𝑛, 𝑗) = 𝒪(1/𝑛𝛼0+1) +𝒪(log 𝑛/𝑛2) as 𝑛→ ∞, uniformly with respect to
𝑗 in (𝑛1, 𝑛− 𝑛2). □

Proof of Theorem 1.3. Note that

𝑛(𝛼+1)/𝑛 = exp

(
(𝛼+ 1)

log𝑛

𝑛

)
= 1+(𝛼+1)

log𝑛

𝑛
+𝒪
(
log𝑛

𝑛

)2
as 𝑛→ ∞. (5.6)

Inserting (5.6) in (1.4) we obtain

𝑡𝜆𝑗,𝑛 = 𝜔𝑗𝑛

(
1 + (𝛼+ 1)

log𝑛

𝑛
+

1

𝑛
log

(
𝑎2(𝜔𝑗𝑛)

𝐶1𝑎′(𝜔𝑗𝑛)𝜔2𝑗𝑛

)
+𝑄12(𝑛, 𝑗)

)
, (5.7)
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where 𝑄12(𝑛, 𝑗) = 𝒪(1/𝑛𝛼0+1) + 𝒪(log2 𝑛/𝑛2) as 𝑛→ ∞, uniformly with respect
to 𝑗 ∈ (𝑛1, 𝑛− 𝑛2). Applying the symbol 𝑎 to (5.7), we see that, as 𝑛→ ∞,

𝜆𝑗,𝑛 = 𝑎
(
𝜔𝑗𝑛
)
+ (𝛼+ 1)𝜔𝑗𝑛𝑎

′(𝜔𝑗𝑛)
log𝑛

𝑛
+
𝜔𝑗𝑛𝑎

′(𝜔𝑗𝑛)
𝑛

log

(
𝑎2(𝜔𝑗𝑛)

𝐶1𝑎′(𝜔𝑗𝑛)𝜔2𝑗𝑛

)

+ 𝑎′(𝜔𝑗𝑛)𝑄12(𝑛, 𝑗) + 𝒪
(
log2 𝑛

𝑛2

)
. □

6. An example

The symbol studied by Dai, Geary, and Kadanoff [11] is

𝑎(𝑡) =

(
2 − 𝑡− 1

𝑡

)𝛾

(−𝑡)𝛽 = (−1)3𝛾+𝛽𝑡𝛽−𝛾(1 − 𝑡)2𝛾 ,

where 0 < 𝛾 < −𝛽 < 1. In the case 𝛽 = 𝛾− 1, this function 𝑎 becomes our symbol
with ℎ(𝑡) = (−1)4𝛾−1(1 − 𝑡)2𝛾 . We omit the constant (−1)4𝛾−1, because it is just
a rotation. The conjecture of [11] is that 𝑡𝜆𝑗,𝑛 ≈ 𝑛(2𝛾+1)/𝑛 exp(−2𝜋𝑖𝑗/𝑛). Expan-
sions (1.4) and (1.5) prove this result, giving us an error bound and a mathematical
justification.

Our results are valid outside a small open neighborhood 𝑊0 of the origin.
Let 𝑊0 = 𝐵1/5(0) be the disk of radius 1/5 centered at zero. Table 1 shows the
data of numerical computations. It reveals that the maximum error of (1.4) with
one term is reduced by nearly 10 times when considering the second term; see also
Figure 1.

𝑛 256 512 1024 2048 4096

(1.4) with 1 term 1.6×10−2 8.1×10−3 4.1×10−3 2.1×10−3 1.0×10−3

(1.4) with 2 terms 1.7×10−3 4.5×10−4 1.2×10−4 3.2×10−5 8.7×10−6

(1.5) with 1 term 5.1×10−2 2.8×10−2 1.5×10−2 8.3×10−3 4.4×10−3

(1.5) with 2 terms 1.5×10−2 7.9×10−3 4.1×10−3 2.1×10−3 1.0×10−3

(1.5) with 3 terms 1.4×10−3 4.3×10−4 1.3×10−4 3.7×10−5 1.1×10−5

Table 1. The table shows the maximum error obtained with our differ-
ent formulas for the eigenvalues of 𝑇𝑛

(
𝑡−1(1− 𝑡)3/4) for different values

of 𝑛. The data was obtained by comparison with the solutions given
by Matlab, taking into account only the eigenvalues with absolute value
greater than or equal to 1/5.

We also performed calculations with our expansions inside 𝑊0 = 𝐵1/5(0),
and although the error is nearly 8 times the one of outside, the approximation is
still valid there because the distance between two consecutive eigenvalues is bigger
than the one between an eigenvalue and the respective approximation given by
(1.4) with two terms; compare Tables 1 and 2 and see Figure 4. Clearly, to describe
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Figure 4. The picture shows a piece of ℛ(𝑎) for the symbol 𝑎(𝑡) =
𝑡−1(1−𝑡)3/4 (solid line), located “close” to zero. The dots are sp𝑇4096(𝑎)
calculated by Matlab. The crosses and the stars are the approximations
obtained by using 2 and 3 terms of (1.5), respectively.

the asymptotic behavior of the eigenvalues of 𝑇𝑛(𝑎) completely with mathematical
rigor, we need an expression valid inside 𝑊0. We hope to do this in future work.

𝑛 256 512 1024 2048 4096

(1.4) with 1 term 2.7×10−2 2.1×10−2 1.5×10−2 1.1×10−2 7.2×10−3

(1.4) with 2 terms 6.4×10−3 3.9×10−3 2.3×10−3 1.4×10−3 8.2×10−4

(1.5) with 1 term 3.9×10−2 2.4×10−2 1.4×10−2 8.4×10−3 5.0×10−3

(1.5) with 2 terms 3.3×10−2 2.5×10−2 1.8×10−2 1.2×10−2 8.5×10−3

(1.5) with 3 terms 2.7×10−3 1.7×10−3 1.1×10−3 6.6×10−4 3.9×10−4

Table 2. The same as in Table 1, only now considering eigenvalues
with absolute value less than 1/5.

We remark that if 𝜆 is an eigenvalue of 𝑇𝑛(𝑎) and 𝑏𝑗(𝜆) is defined by (3.1),

then
(
𝑏𝑗(𝜆)
)𝑛−1

𝑗=0
is an eigenvector for 𝜆 provided 𝑏𝑛−1(𝜆) ∕= 0. In a forthcoming

paper we will employ this observation to study the asymptotics of the eigenvectors.
We finally want to emphasize that the results of this paper can be easily

translated to the case where the symbol is 𝑎(𝑡) = 𝑡(1 − 𝑡−1)𝛼𝑓(𝑡).
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Real Berezin Transform and Asymptotic
Expansion for Symmetric Spaces
of Compact and Non-compact Type

Miroslav Englǐs and Harald Upmeier

Abstract. We obtain formulas for the asymptotic expansion of the Berezin
transform on symmetric spaces in terms of invariant differential operators
associated with the Peter-Weyl decomposition under the maximal compact
subgroup. A unified treatment makes it possible to derive the formulas for
the complex (hermitian) as well as for the real case, and for all types of
symmetric spaces (non-compact, compact and flat).
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transform.

1. Introduction

The Berezin transform is of central importance in the theory of deformation quanti-
zation of complex Kähler manifolds, in particular for the special case of symmetric
spaces of hermitian type. In this case the eigenvalues of the Berezin transform are
explicitly known, both in the non-compact case of hermitian bounded symmetric
domains [UU] and for the compact hermitian symmetric spaces [Z2] arising from
duality. Besides the spectral analysis, another important problem is the expan-
sion of the Berezin transform into an asymptotic series of differential operators,
as the deformation parameter (“inverse Planck constant”) tends to infinity. More
precisely, the well-known Toeplitz star- (or Moyal) products have asymptotic ex-
pansions which are closely related to that of the (inverse) Berezin transform [EU1],
[EU2].

Research supported by the Academy of Sciences of the Czech Republic institutional research
plan no. AV0Z10190503; and GA ČR grant no. 201/09/0473.
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For non-compact symmetric domains, the asymptotic expansion of the
Berezin transform was obtained by Arazy and Ørsted [AO]. In a separate paper
[EU1] we generalized this result to the case of real bounded symmetric domains,
where again there is a natural “Berezin” transform which is closely related to
the well-known Segal-Bargmann transformations. The dual situation of compact
symmetric spaces (complex or real) was not considered in [AO] or [EU1], [EU2].

The purpose of this paper is to give the asymptotic expansion of the Berezin
transform for symmetric spaces of compact and non-compact type, both in the
classical complex setting of hermitian symmetric spaces and in the real setting
for the Segal-Bargmann type Berezin transform. We present a uniform proof for
all cases, showing that the compact type behaves quite similar to the dual non-
compact situation. As usual the “flat” case, where the semi-simple covariance
group degenerates into a semi-direct product, is included in the computations.

In a separate paper [EU2] we apply these results to obtain asymptotic ex-
pansions (in the Peter-Weyl context) for star products in the compact and non-
compact situation, as well as for the so-called “star restrictions” which are their
real counterparts.

Precursors of the results included here appeared in one of the talks by the first
author at the IWOTA09 conference in Guanajuato, Mexico, in September 2009.
Both authors thank the organizers for the invitation (which the second author was
not able to accept in the end).

2. Berezin transform for hermitian symmetric spaces

It is well known that most Riemannian symmetric spaces, including all the classical
ones, have a uniform description in terms of Jordan algebras and Jordan triples.
We refer to [EU1], [L] for a detailed discussion of the Jordan theoretic background
and notation. For any hermitian Jordan triple 𝑍 the (spectral) open unit ball 𝑍−

is a hermitian bounded symmetric domain whose compact dual 𝑍+ is a Jordan
theoretic analogue of the Grassmann manifold, containing 𝑍 as a Zariski open
subset, i.e.,

𝑍− ⊂ 𝑍 ⊂ 𝑍+.
All hermitian symmetric spaces (compact or non-compact) arise this way (the
non-hermitian case will be studied in Section 3).

Note that the common “base point” is the origin 0; therefore the “non-
compact” symmetric space 𝑍− is given in the “bounded” realization (unit ball)
instead of the “unbounded” realization as a tube domain or Siegel domain.

We define real Lie groups

𝐺− := Aut (𝑍−) = {biholomorphic automorphisms of 𝑍−},
𝐺+ = {biholomorphic isometries of 𝑍+},
𝐺0 = 𝑍 ×𝐾 (semi-direct product),
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where 𝐾 = Aut (𝑍) = {𝑔 ∈ 𝐺± : 𝑔(0) = 0} is the Jordan triple automorphism
group.

The three types of hermitian manifolds 𝑍∙ = 𝑍+, 𝑍, 𝑍− give rise to repro-
ducing kernel Hilbert spaces 𝐻2

𝜈 (𝑍
∙) of holomorphic functions, which play the role

of quantization state spaces. Here 𝜈 is a deformation parameter (“inverse Planck
constant”). Let 𝒦∙(𝑧, 𝑤) denote the reproducing kernel. The Berezin transform
(related to the so-called Toeplitz-Berezin quantization calculus [BMS]) is a 𝐺∙-
invariant densely defined self-adjoint operator

ℬ∙ : 𝐿2(𝑍∙) → 𝐿2(𝑍∙)

with integral kernel representation

(ℬ∙𝑓)(𝑧) =
∫
𝑍∙

𝑑𝜇∙(𝑤)
𝒦∙(𝑧, 𝑤)𝒦∙(𝑤, 𝑧)
𝒦∙(𝑧, 𝑧)𝒦∙(𝑤,𝑤)

𝑓(𝑤)

with respect to a suitably normalized 𝐺∙-invariant measure 𝑑𝜇∙ specified below.
We will now discuss the three types of hermitian symmetric spaces separately.

For 𝑍∙ = 𝑍, the flat case, 𝜈 > 0 is arbitrary and 𝐻2
𝜈 (𝑍) is the Fock space of all

entire functions 𝜓 ∈ 𝒪(𝑍) satisfying

∥𝜓∥2𝜈 =

∫
𝑍

𝑑𝜇(𝑧) 𝑒−𝜈(𝑧∣𝑧)∣𝜓(𝑧)∣2 < +∞.

Here (𝑧∣𝑤) denotes the 𝐾-invariant scalar product on 𝑍 normalized by (𝑒1∣𝑒1) = 1
for all minimal tripotents 𝑒1 ∈ 𝑍, and the “invariant” measure is

𝑑𝜇(𝑧) = 𝜈𝑑
𝑑𝑧

𝜋𝑑
.

Here 𝑑 is the (complex) dimension of 𝑍 and 𝑑𝑧 is the Lebesgue measure for the
inner product. The reproducing kernel of 𝐻2

𝜈 (𝑍) is

𝒦(𝑧, 𝑤) = 𝑒𝜈(𝑧∣𝑤).

Accordingly, we have

(ℬ𝑓)(𝑧) =
∫
𝑍

𝑑𝜇(𝑤)
𝑒𝜈(𝑧∣𝑤) 𝑒𝜈(𝑤∣𝑧)

𝑒𝜈(𝑧∣𝑧) 𝑒𝜈(𝑤∣𝑤) 𝑓(𝑤) = 𝜈
𝑑

∫
𝑍

𝑑𝑤

𝜋𝑑
𝑒−𝜈(𝑧−𝑤∣𝑧−𝑤)𝑓(𝑤).

In particular,

(ℬ𝑓)(0) = 𝜈𝑑
∫
𝑍

𝑑𝑤

𝜋𝑑
𝑒−𝜈(𝑤∣𝑤)𝑓(𝑤).

The basic numerical invariants of an irreducible hermitian Jordan triple 𝑍 of rank
𝑟 can be described via the Peirce decomposition

𝑍 = 𝑈 × 𝑉 = 𝑋ℂ × 𝑉
with respect to a maximal tripotent 𝑒 ∈ 𝑍 of rank 𝑟. Here the Peirce 1-space 𝑈 is
the complexification of a Euclidean Jordan algebra𝑋 with unit element 𝑒, and the
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Peirce 1
2 -space 𝑉 carries a Jordan algebra representation of 𝑋 . The “characteristic

multiplicities” 𝑎 and 𝑏 are defined by

𝑑𝑋 := dimℝ 𝑋 = dimℂ 𝑈 = 𝑟 +
𝑎

2
𝑟(𝑟 − 1)

dimℂ 𝑉 = 𝑟𝑏.
(1)

Hence

dimℂ 𝑍 = 𝑑 = 𝑟 +
𝑎

2
𝑟(𝑟 − 1) + 𝑟𝑏.

The genus 𝑝 of 𝑍 is defined by

𝑝 =
2 dim 𝑈 + dim 𝑉

𝑟
= 2 + 𝑎(𝑟 − 1) + 𝑏.

The Jordan triple determinant ℎ(𝑧, 𝑤) is a (non-homogeneous) sesqui-polynomial
on 𝑍×𝑍 whose 𝑝th power coincides with the determinant of the so-called Bergman
operator𝐵(𝑧, 𝑤) acting on 𝑍 [L]. For the matrix space 𝑍 = ℂ𝑟×𝑠 of genus 𝑝 = 𝑟+𝑠,
with triple product {𝑢𝑣∗𝑤} = (𝑢𝑣∗𝑤 + 𝑤𝑣∗𝑢)/2, the Bergman operator is given
by 𝐵(𝑧, 𝑤) 𝑣 = (1− 𝑧𝑤∗) 𝑣(1−𝑤∗𝑧) and ℎ(𝑧, 𝑤) = det(1− 𝑧𝑤∗), where 1 denotes
the unit matrix.

For 𝑍∙ = 𝑍−, the non-compact case, 𝜈 is a real parameter > 𝑝 − 1 and
𝐻2

𝜈 (𝑍
−) is the (weighted) Bergman space of holomorphic functions 𝜓 ∈ 𝒪(𝑍−)

satisfying

∥𝜓∥2𝜈 =

∫
𝑍−

𝑑𝜇−(𝑧)ℎ(𝑧, 𝑧)𝜈∣𝜓(𝑧)∣2 < +∞,

for the 𝐺−-invariant measure

𝑑𝜇−(𝑧) =
ΓΩ(𝜈)

ΓΩ(𝜈 − 𝑑
𝑟 )

𝑑𝑧

𝜋𝑑
ℎ(𝑧, 𝑧)−𝑝.

Here

ΓΩ(𝜆) = (2𝜋)
𝑑𝑋−𝑟

2

𝑟∏
𝑗=1

Γ(𝜆𝑗 − 𝑎
2
(𝑗 − 1))

is the Gindikin Γ-function of the symmetric cone Ω of𝑋 [FK], [G]. The reproducing
kernel of 𝐻2

𝜈 (𝑍
−) is given by

𝒦−(𝑧, 𝑤) = ℎ(𝑧, 𝑤)−𝜈 .

Therefore

(ℬ−𝑓)(𝑧) =
∫
𝑍−

𝑑𝜇−(𝑤)
ℎ(𝑧, 𝑧)𝜈ℎ(𝑤,𝑤)𝜈

ℎ(𝑧, 𝑤)𝜈ℎ(𝑤, 𝑧)𝜈
𝑓(𝑤)

=
ΓΩ(𝜈)

ΓΩ(𝜈 − 𝑑
𝑟 )

∫
𝑍−

𝑑𝑤

𝜋𝑑
ℎ(𝑧, 𝑧)𝜈ℎ(𝑤,𝑤)𝜈−𝑝

ℎ(𝑧, 𝑤)𝜈ℎ(𝑤, 𝑧)𝜈
𝑓(𝑤).
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In particular

(ℬ−𝑓)(0) =
ΓΩ(𝜈)

ΓΩ(𝜈 − 𝑑
𝑟 )

∫
𝑍−

𝑑𝑤

𝜋𝑑
ℎ(𝑤,𝑤)𝜈−𝑝𝑓(𝑤).

For 𝑍∙ = 𝑍+, the compact case, 𝜈 ∈ ℕ is a non-negative integer and, as observed in
[Z2],𝐻2

𝜈 (𝑍
+) can be realized as a Bergman type space of entire functions 𝜓 ∈ 𝒪(𝑍)

satisfying

∥𝜓∥2𝜈 =

∫
𝑍

𝑑𝜇+(𝑧)ℎ(𝑧,−𝑧)−𝜈 ∣𝜓(𝑧)∣2 < +∞

for the 𝐺+-invariant measure

𝑑𝜇+(𝑧) =
ΓΩ(𝜈 + 𝑝)

ΓΩ(𝜈 + 𝑝− 𝑑
𝑟 )

𝑑𝑧

𝜋𝑑
ℎ(𝑧,−𝑧)−𝑝.

This space is finite-dimensional, as can be seen from the reproducing kernel

𝒦+(𝑧, 𝑤) = ℎ(𝑧,−𝑤)𝜈 .
Therefore

(ℬ+𝑓)(𝑧) =

∫
𝑍

𝑑𝜇+(𝑤)
ℎ(𝑧,−𝑤)𝜈 ℎ(𝑤,−𝑧)𝜈
ℎ(𝑧,−𝑧)𝜈 ℎ(𝑤,−𝑤)𝜈 𝑓(𝑤)

=
ΓΩ(𝜈 + 𝑝)

ΓΩ(𝜈 + 𝑝− 𝑑
𝑟 )

∫
𝑍

𝑑𝑤

𝜋𝑑
ℎ(𝑧,−𝑤)𝜈 ℎ(𝑤,−𝑧)𝜈
ℎ(𝑧,−𝑧)𝜈 ℎ(𝑤,−𝑤)𝜈+𝑝

𝑓(𝑤).

In particular,

(ℬ+𝑓)(0) =
ΓΩ(𝜈 + 𝑝)

ΓΩ(𝜈 + 𝑝− 𝑑
𝑟 )

∫
𝑍

𝑑𝑤

𝜋𝑑
ℎ(𝑤,−𝑤)−(𝜈+𝑝)𝑓(𝑤).

This concludes our case-by-case discussion.

By [U], [FK], the polynomial algebra 𝒫(𝑍) over 𝑍 has a Peter-Weyl decom-
position

𝒫(𝑍) =
∑

𝒎∈ℕ𝑟+

𝒫𝒎(𝑍)

under the natural 𝐾-action. Here ℕ𝑟
+ denotes the set of all integer partitions

𝒎 = (𝑚1, . . . ,𝑚𝑟)

of length ≤ 𝑟. We have a corresponding expansion

𝑒(𝑧∣𝑤) =
∑
𝒎

𝐸𝒎(𝑧, 𝑤)

of the Fischer-Fock kernel in terms of the reproducing kernels 𝐸𝒎(𝑧, 𝑤) of the
finite-dimensional subspaces 𝒫𝒎(𝑍). These functions are polynomials on 𝑍×𝑍 and
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therefore give rise to constant coefficient bi-differential operators 𝐸𝒎(∂, ∂), where
∂ denotes the complex Wirtinger derivative. Specifically, for any fixed 𝑢, 𝑣 ∈ 𝑍,

𝐸𝒎(∂, ∂) 𝑒(𝑧∣𝑣)+(𝑢∣𝑤) = 𝐸𝒎(𝑢, 𝑣) 𝑒(𝑧∣𝑣)+(𝑢∣𝑤).

Via the diagonal embedding 𝑧 +→ (𝑧, 𝑧) of 𝑍 into 𝑍×𝑍, we also have the operators
∂𝐸𝒎 acting on 𝑍 by

∂𝐸𝒎𝑒(𝑧∣𝑣)+(𝑢∣𝑧) = 𝐸𝒎(𝑢, 𝑣) 𝑒(𝑧∣𝑣)+(𝑢∣𝑧).

Theorem 2.1. In terms of the bi-differential operators ∂𝐸𝒎 on 𝑍, the Berezin
transform has the asymptotic expansion

(ℬ∙𝑓)(0) =
∑
𝒎

𝑐∙𝒎(𝜈)(∂𝐸𝒎𝑓)(0)

at 0, with 𝒎 = (𝑚1, . . . ,𝑚𝑟) running over all partitions of length ≤ 𝑟. Here the
coefficients are given by

𝑐𝒎(𝜈) =
1

𝜈∣𝒎∣ (flat case)

𝑐−𝒎(𝜈) =
1

(𝜈)𝒎
(non-compact case)

𝑐+𝒎(𝜈) =

(
𝜈 + 𝑝− 𝑑

𝑟

)
−𝒎∗

(compact case)

where 𝒎∗ := (𝑚𝑟, . . . ,𝑚1).

The asymptotic expansion above holds in the usual sense that

(ℬ∙𝑓)(0)−
∑

∣𝒎∣<𝑛

𝑐∙𝒎(𝜈)(∂𝐸𝒎𝑓)(0) = 𝑂(𝜈−𝑛) as 𝜈 → +∞,

for all 𝑛 = 0, 1, 2, . . . . However, and more importantly, this expansion repre-
sents also the Peter-Weyl decomposition of the 𝐾-invariant linear functional 𝑓 +→
(ℬ∙𝑓)(0) into its components under the natural action of the isotropy subgroup 𝐾.
The asymptotic expansion in Theorem 2.1 in terms of𝐾-invariant functionals leads
in the standard way to the asymptotic expansion of the Berezin transform in terms
of 𝐺∙-invariant operators. Similar comments apply to Theorem 3.3 below.

The reader is referred to the paper [EU2] for more details, as well as for
applications to quantization (star products) on symmetric spaces.

Proof. For 𝐾-invariant integrable functions 𝑓 on 𝑍 we have the polar integration
formula [AU2, Proposition 3.4]∫

𝑍

𝑑𝑥

𝜋𝑑
𝑓(𝑧) =

∫
Ω

𝑑𝑥

ΓΩ (𝑑𝑟 )
Δ(𝑥)

𝑑
𝑟−𝑑𝑋

𝑟 𝑓(
√
𝑥),

where Δ is the Jordan algebra determinant of 𝑋 [FK]. For 𝑥 ∈ Ω, we have

𝐸𝒎(
√
𝑥,

√
𝑥)

𝐸𝒎(𝑒, 𝑒)
= 𝜙𝒎(𝑥)



Berezin Transform and Asymptotic Expansion 103

where 𝜙𝒎 is the spherical polynomial of type 𝒎. Let Δ𝛼 be the conical function
on Ω, for 𝛼 = (𝛼1, . . . , 𝛼𝑟). By [FK, Theorem VII.1.7] we have∫

Ω∩(𝑒−Ω)

𝑑𝑥Δ𝛼(𝑥) Δ𝛽(𝑒 − 𝑥) = ΓΩ(𝛼+ 𝑑𝑋
𝑟 ) ΓΩ(𝛽 +

𝑑𝑋
𝑟 )

ΓΩ(𝛼+ 𝛽 + 2 𝑑𝑋
𝑟 )

, (2)

and [G, Proposition 2.6] or [AU1, Lemma 5.7] imply∫
Ω

𝑑𝑥Δ𝛼(𝑥)Δ−𝛽(𝑒 + 𝑥) =
ΓΩ(𝛼+ 𝑑𝑋

𝑟 ) ΓΩ(𝛽 − 𝛼∗ − 𝑑𝑋
𝑟 )

ΓΩ(𝛽)

with 𝛼∗ = (𝛼𝑟 , . . . , 𝛼1). In the flat case we have

𝑒−𝜈(
√
𝑥∣√𝑥) = 𝑒−𝜈(𝑥∣𝑒) = 𝑒−(𝑥∣𝜈𝑒)

for 𝑥 ∈ Ω. This yields∫
𝑍

𝑑𝑤

𝜋𝑑
𝑒−𝜈(𝑤∣𝑤) 𝐸

𝒎(𝑤,𝑤)

𝐸𝒎(𝑒, 𝑒)
=

∫
Ω

𝑑𝑥

ΓΩ(
𝑑
𝑟 )

Δ(𝑥)
𝑑
𝑟− 𝑑𝑋

𝑟 𝑒−𝜈(
√
𝑥∣√𝑥) 𝐸

𝒎(
√
𝑥,

√
𝑥)

𝐸𝒎(𝑒, 𝑒)

=

∫
Ω

𝑑𝑥

ΓΩ(
𝑑
𝑟 )

Δ(𝑥)
𝑑
𝑟− 𝑑𝑋

𝑟 𝑒−𝜈(𝑥∣𝑒) 𝜙𝒎(𝑥)

=

∫
Ω

𝑑𝑥

ΓΩ(
𝑑
𝑟 )

Δ(𝑥)
𝑑
𝑟− 𝑑𝑋

𝑟 𝑒−𝜈(𝑥∣𝑒)Δ𝒎(𝑥)

=

∫
Ω

𝑑𝑥

ΓΩ(
𝑑
𝑟 )

Δ𝒎+ 𝑑
𝑟− 𝑑𝑋

𝑟 (𝑥) 𝑒−(𝑥∣𝜈𝑒)

=
ΓΩ(𝒎+ 𝑑

𝑟 )

ΓΩ(
𝑑
𝑟 )

Δ𝒎+ 𝑑
𝑟 (𝜈−1𝑒)

=

(
𝑑

𝑟

)
𝒎
𝜈−∣𝑚∣−𝑑,

since Δ𝒎+ 𝑑
𝑟 is homogeneous of total degree ∣𝒎∣ + 𝑑. (The third equality in the

chain uses the fact that 𝑑𝑥, Δ(𝑥) and 𝑒(𝑥∣𝑒) are all invariant under the subgroup
𝐿 ⊂ Aut(Ω) stabilizing 𝑒, while 𝜙𝒎 is the average of Δ𝒎 over 𝐿.) Therefore

(ℬ𝐸𝒎)(0)

𝐸𝒎(𝑒, 𝑒)
= 𝜈𝑑

∫
𝑍

𝑑𝑤

𝜋𝑑
𝑒−𝜈(𝑤∣𝑤) 𝐸

𝒎(𝑤,𝑤)

𝐸𝒎(𝑒, 𝑒)
= 𝜈−∣𝑚∣

(
𝑑

𝑟

)
𝒎
.

In the non-compact case we have

ℎ(
√
𝑥,

√
𝑥) = Δ(𝑒 − 𝑥)
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for 𝑥 ∈ Ω ∩ (𝑒 − Ω). This yields∫
𝑍−

𝑑𝑤

𝜋𝑑
ℎ(𝑤,𝑤)𝜈−𝑝 𝐸

𝒎(𝑤,𝑤)

𝐸𝒎(𝑒, 𝑒)

=

∫
Ω∩(𝑒−Ω)

𝑑𝑥

ΓΩ(
𝑑
𝑟 )

Δ(𝑥)
𝑑
𝑟− 𝑑𝑋

𝑟 ℎ(
√
𝑥,

√
𝑥)𝜈−𝑝 𝐸

𝒎(
√
𝑥,

√
𝑥)

𝐸𝒎(𝑒, 𝑒)

=

∫
Ω∩(𝑒−Ω)

𝑑𝑥

ΓΩ(
𝑑
𝑟 )

Δ(𝑥)
𝑑
𝑟− 𝑑𝑋

𝑟 Δ(𝑒− 𝑥)𝜈−𝑝 𝜙𝒎(𝑥)

=

∫
Ω∩(𝑒−Ω)

𝑑𝑥

ΓΩ(
𝑑
𝑟 )

Δ(𝑥)
𝑑
𝑟− 𝑑𝑋

𝑟 Δ(𝑒− 𝑥)𝜈−𝑝 Δ𝒎(𝑥)

=

∫
Ω∩(𝑒−Ω)

𝑑𝑥

ΓΩ(
𝑑
𝑟 )

Δ𝒎+ 𝑑
𝑟− 𝑑𝑋

𝑟 (𝑥) Δ(𝑒 − 𝑥)𝜈−𝑝 =
ΓΩ(𝒎+ 𝑑

𝑟 )

ΓΩ(
𝑑
𝑟 )

ΓΩ(𝜈 − 𝑑
𝑟 )

ΓΩ(𝜈 +𝒎)

since 𝜈 − 𝑝+ 𝑑𝑋
𝑟 = 𝜈 − 𝑑

𝑟 . Therefore

(ℬ−𝐸𝒎)(0)

𝐸𝒎(𝑒, 𝑒)
=

ΓΩ(𝜈)

ΓΩ(𝜈 − 𝑑
𝑟 )

∫
𝑍−

𝑑𝑤

𝜋𝑑
ℎ(𝑤,𝑤)𝜈−𝑝 𝐸

𝒎(𝑤,𝑤)

𝐸𝒎(𝑒, 𝑒)

=
ΓΩ(𝜈)

ΓΩ(𝜈 − 𝑑
𝑟 )

ΓΩ(𝒎+ 𝑑
𝑟 )

ΓΩ(
𝑑
𝑟 )

ΓΩ(𝜈 − 𝑑
𝑟 )

ΓΩ(𝜈 +𝒎)
=

(𝑑/𝑟)𝒎
(𝜈)𝒎

.

In the compact case, we have

ℎ(
√
𝑥,−√

𝑥) = Δ(𝑒+ 𝑥)

for 𝑥 ∈ Ω. This yields∫
𝑍

𝑑𝑤

𝜋𝑑
ℎ(𝑤,−𝑤)−(𝜈+𝑝) 𝐸

𝒎(𝑤,𝑤)

𝐸𝒎(𝑒, 𝑒)

=

∫
Ω

𝑑𝑥

ΓΩ(
𝑑
𝑟 )

Δ(𝑥)
𝑑
𝑟− 𝑑𝑋

𝑟 ℎ(
√
𝑥,−√

𝑥)−(𝜈+𝑝) 𝐸
𝒎(

√
𝑥,

√
𝑥)

𝐸𝒎(𝑒, 𝑒)

=

∫
Ω

𝑑𝑥

ΓΩ(
𝑑
𝑟 )

Δ(𝑥)
𝑑
𝑟− 𝑑𝑋

𝑟 Δ(𝑒 + 𝑥)−(𝜈+𝑝) 𝜙𝒎(𝑥)

=

∫
Ω

𝑑𝑥

ΓΩ(
𝑑
𝑟 )

Δ(𝑥)
𝑑
𝑟− 𝑑𝑋

𝑟 Δ(𝑒+ 𝑥)−(𝜈+𝑝)Δ𝒎(𝑥)

=

∫
Ω

𝑑𝑥

ΓΩ(
𝑑
𝑟 )

Δ𝒎+ 𝑑
𝑟− 𝑑𝑋

𝑟 (𝑥) Δ(𝑒+ 𝑥)−(𝜈+𝑝)
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=
ΓΩ(𝒎+ 𝑑

𝑟 ) ΓΩ(𝜈 + 𝑝− 𝒎∗ − 𝑑
𝑟 )

ΓΩ(
𝑑
𝑟 ) ΓΩ(𝜈 + 𝑝)

.

Therefore

(ℬ+𝐸𝒎)(0)

𝐸𝒎(𝑒, 𝑒)
=

ΓΩ(𝜈 + 𝑝)

ΓΩ(𝜈 + 𝑝− 𝑑
𝑟 )

∫
𝑍

𝑑𝑤

𝜋𝑑
ℎ(𝑤,−𝑤)−(𝜈+𝑝) 𝐸

𝒎(𝑤,𝑤)

𝐸𝒎(𝑒, 𝑒)

=
ΓΩ(𝜈 + 𝑝)

ΓΩ(𝜈 + 𝑝− 𝑑
𝑟 )

ΓΩ(𝒎+ 𝑑
𝑟 ) ΓΩ(𝜈 + 𝑝− 𝒎∗ − 𝑑

𝑟 )

ΓΩ(
𝑑
𝑟 ) ΓΩ(𝜈 + 𝑝)

= (𝑑/𝑟)𝒎

(
𝜈 + 𝑝− 𝑑

𝑟

)
−𝒎∗

.

In all three cases, since ℬ∙ is a 𝐺∙-invariant operator on 𝑍∙, the localized operator
at 0 has a unique expansion

(ℬ∙𝑓)(0) =
∑
𝒎
𝑐∙𝒎(𝜈) (∂𝐸𝒎𝑓)(0)

for all functions 𝑓 which are smooth near 0 ∈ 𝑍. This implies for the diagonal
𝐸𝒎(𝑧, 𝑧)

(ℬ∙𝐸𝒎)(0) =
∑
𝒏
𝑐∙𝒏(𝜈) ∂𝐸𝒏𝐸𝒎(0)

= 𝑐∙𝒎(𝜈) ∥𝐸𝒎∥2
𝑍×𝑍

= 𝑐∙𝒎(𝜈) 𝐸𝒎(𝑒, 𝑒)

(
𝑑

𝑟

)
𝒎
.

It follows that

𝑐∙𝒎(𝜈) =
1

(𝑑/𝑟)𝒎

ℬ∙𝐸𝒎(0)

𝐸𝒎(𝑒, 𝑒)

has the value specified above. □

Remark 2.2. The non-compact case of the last theorem recovers the result of [AO].

3. Berezin transform for real symmetric spaces

In order to introduce the “real” counterparts of hermitian symmetric spaces, let
𝑍ℂ be a hermitian Jordan triple endowed with a triple involution 𝑧 +→ 𝑧. Then the
real form

𝑍ℝ = {𝑧 ∈ 𝑍ℂ : 𝑧 = 𝑧}
is a Euclidean Jordan triple which we assume to be irreducible. The associated
unit ball 𝑍−

ℝ
⊂ 𝑍ℝ and compact dual 𝑍+

ℝ
⊃ 𝑍ℝ have the hermitifications 𝑍−

ℂ
and

𝑍+
ℂ
, respectively. In summary,

𝑍−
ℂ

⊂ 𝑍ℂ ⊂ 𝑍+
ℂ

∪ ∪ ∪
𝑍−
ℝ

⊂ 𝑍ℝ ⊂ 𝑍+
ℝ
.

(3)
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Remark 3.1. As a special case of this situation, we obtain the “product” case

𝑍ℝ := 𝑍diag = {(𝑧, 𝑧) : 𝑧 ∈ 𝑍} ⊂ 𝑍ℂ := 𝑍 × 𝑍,
𝑍−
ℝ

:= 𝑍−
diag = {(𝑧, 𝑧) : 𝑧 ∈ 𝑍−} ⊂ 𝑍−

ℂ
:= 𝑍− × 𝑍−

,

𝑍+
ℝ

:= 𝑍+diag = {(𝑧, 𝑧) : 𝑧 ∈ 𝑍+} ⊂ 𝑍+
ℂ

:= 𝑍+ × 𝑍+,
associated with a hermitian Jordan triple 𝑍 and the “flip” involution (𝑧, 𝑤)∼ :=
(𝑤, 𝑧). In this case (3) takes the form

𝑍− × 𝑍− ⊂ 𝑍 × 𝑍 ⊂ 𝑍+ × 𝑍+
∪ ∪ ∪
𝑍−
diag ⊂ 𝑍diag ⊂ 𝑍+diag.

This is the only case where the complexified spaces are not irreducible [L]. Since
this situation is covered by Section 2, we will assume from now on that 𝑍ℂ is
irreducible.

There exists a maximal tripotent 𝑒 ∈ 𝑍ℝ (of rank 𝑟ℝ) which is also maximal
in 𝑍ℂ (i.e., of rank 𝑟ℂ). Let

𝑍ℂ = 𝑈ℂ × 𝑉ℂ = 𝑋ℂ

ℂ × 𝑉ℂ
and

𝑍ℝ = 𝑈ℝ × 𝑉ℝ = 𝑋ℝ × 𝑌ℝ × 𝑉ℝ
denote the corresponding Peirce decompositions. Then we have complexifications

𝑈ℂ = 𝑈ℂ

ℝ , 𝑉ℂ = 𝑉 ℂ

ℝ

and the Euclidean Jordan algebras 𝑋ℂ (of rank 𝑟ℂ) and 𝑋ℝ (of rank 𝑟ℝ) are
related by

𝑋ℝ = {𝑥 ∈ 𝑋ℂ : 𝑥̃ = 𝑥},
𝑖𝑌ℝ = {𝑦 ∈ 𝑋ℂ : 𝑦 = −𝑦}.

Equivalently,

𝑋ℝ = {𝑥 ∈ 𝑈ℝ : 𝑥∗ = 𝑥},
𝑌ℝ = {𝑦 ∈ 𝑈ℝ : 𝑦∗ = −𝑦}

for the Jordan involution ∗ in 𝑈ℂ. Writing 𝑒 as an orthogonal sum of minimal
tripotents in 𝑍ℝ and 𝑍ℂ, respectively, it follows that the normalized inner products
(𝑥∣𝑦)ℝ in 𝑍ℝ and (𝑧∣𝑤)ℂ in 𝑍ℂ satisfy (𝑒∣𝑒)ℝ = 𝑟ℝ and (𝑒∣𝑒)ℂ = 𝑟ℂ. Therefore we
have the reciprocity

𝑟ℝ(𝑥∣𝑦)ℂ = 𝑟ℂ(𝑥∣𝑦)ℝ
for all 𝑥, 𝑦 ∈ 𝑍ℝ ⊂ 𝑍ℂ. Analogous to (1), we have characteristic multiplicities
𝑎ℂ, 𝑏ℂ satisfying

dimℝ 𝑉ℝ = dimℂ 𝑉ℂ = 𝑟ℂ 𝑏ℂ

dimℝ 𝑈ℝ = dimℂ 𝑈ℂ = 𝑟ℂ +
𝑎ℂ
2
𝑟ℂ (𝑟ℂ − 1)
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and hence

dimℝ 𝑍ℝ = dimℂ 𝑍ℂ = 𝑟ℂ +
𝑎ℂ
2
𝑟ℂ (𝑟ℂ − 1) + 𝑟ℂ 𝑏ℂ.

Also, the “complex” genus is

𝑝ℂ =
2dimℂ 𝑈ℂ + dimℂ 𝑉ℂ

𝑟ℂ
= 2 + 𝑎ℂ(𝑟ℂ − 1) + 𝑏ℂ.

In the real case, we define 𝑎ℝ, 𝑏ℝ via

dimℝ 𝑋ℝ = 𝑟ℝ +
𝑎ℝ
2
𝑟ℝ (𝑟ℝ − 1)

dimℝ 𝑉ℝ = 𝑟ℝ 𝑏ℝ

and introduce another numerical invariant 𝑐ℝ via

dimℝ 𝑌ℝ = 𝑟ℝ 𝑐ℝ +
𝑎ℝ
2
𝑟ℝ (𝑟ℝ − 1).

One can show that this covers all cases of the classification [L], [Z1], [EU1] with
one exception (type 𝐷2) which will not be considered here. The “real” genus 𝑝ℝ is
defined by

𝑝ℝ =
𝑝ℂ 𝑟ℂ
2𝑟ℝ

=
dimℝ 𝑈ℝ

𝑟ℝ
+

dimℝ 𝑉ℝ
2𝑟ℝ

= 1 + 𝑐ℝ + 𝑎ℝ(𝑟ℝ − 1) +
𝑏ℝ
2
.

In terms of 𝑑𝑌 = dimℝ 𝑌ℝ and 𝑑𝑋 = dimℝ𝑋ℝ = dimℝ𝑋ℂ − 𝑑𝑌 , we have the
relations

𝑝ℝ − 𝑑

2𝑟ℝ
=
𝑑𝑋 + 𝑑𝑌

2𝑟ℝ
and hence

𝑑

2𝑟ℝ
+
𝑑𝑋
𝑟ℝ

− 𝑝ℝ =
𝑑𝑋 − 𝑑𝑌

2𝑟ℝ
.

Since 𝑍ℂ is irreducible, we may consider the quantization Hilbert spaces 𝐻2
𝜈ℂ(𝑍

∙
ℂ
)

introduced in Section 1, for the appropriate range of parameters 𝜈ℂ, with repro-
ducing kernel denoted by 𝒦∙

ℂ
(𝑧, 𝑤) for 𝑧, 𝑤 ∈ 𝑍∙

ℂ
. Besides the “complex” Berezin

transform ℬ∙
ℂ
on 𝐿2(𝑍∙

ℂ
, 𝑑𝜇∙

ℂ
) defined as above, for the “invariant” measure 𝑑𝜇∙

ℂ

normalized as in Section 2, there also exists a “real” Berezin transform ℬ∙
ℝ
, which is

a densely defined self-adjoint operator on 𝐿2(𝑍∙
ℝ
, 𝑑𝜇∙

ℝ
), with integral representation

(ℬ∙
ℝ𝑓)(𝑧) =

∫
𝑍∙
𝑅

𝑑𝜇∙
ℝ(𝑤)

𝒦∙
ℂ
(𝑧, 𝑤)

𝒦∙
ℂ
(𝑧, 𝑧)1/2 𝒦∙

ℂ
(𝑤,𝑤)1/2

𝑓(𝑤).

Here we use the fact that 𝒦∙
ℂ
(𝑧, 𝑧) > 0 for all 𝑧 ∈ 𝑍∙

ℝ
. For motivation and back-

ground concerning the real Berezin transform, cf. [AU1], [Z1]. We define the pa-
rameter 𝜈ℝ by the condition

𝜈ℂ 𝑟ℂ = 2𝜈ℝ 𝑟ℝ.

As in Section 1, we will now discuss the three types of real symmetric spaces
separately. For 𝑍∙

ℝ
= 𝑍ℝ, the real flat case, the invariant measure is

𝑑𝜇ℝ(𝑧) = 𝜈
𝑑/2
ℝ

𝑑𝑧

𝜋𝑑/2
.
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Therefore

(ℬℝ𝑓)(𝑧) =

∫
𝑍ℝ

𝑑𝜇ℝ(𝑤)
𝑒𝜈ℂ(𝑧∣𝑤)ℂ

𝑒
𝜈ℂ
2 (𝑧∣𝑧)ℂ 𝑒

𝜈ℂ
2 (𝑤∣𝑤)ℂ

𝑓(𝑤)

= 𝜈
𝑑/2
ℝ

∫
𝑍ℝ

𝑑𝑤

𝜋𝑑/2
𝑒𝜈ℂ(𝑧∣𝑤)ℂ

𝑒
𝜈ℂ
2 (𝑧∣𝑧)ℂ 𝑒

𝜈ℂ
2 (𝑤∣𝑤)ℂ

𝑓(𝑤).

In particular,

(ℬℝ𝑓)(0) = 𝜈
𝑑/2
ℝ

∫
𝑍ℝ

𝑑𝑤

𝜋𝑑/2
𝑒−

𝜈ℂ
2 (𝑤∣𝑤)ℂ 𝑓(𝑤).

For 𝑍∙
ℝ
= 𝑍−

ℝ
, the real non-compact case, the invariant measure is

𝑑𝜇−
ℝ
(𝑧) =

ΓΩ(𝜈ℝ + 𝑑𝑋−𝑑𝑌
2𝑟 )

ΓΩ(𝜈ℝ − 𝑝ℝ + 𝑑𝑋
𝑟 )

𝑑𝑧

𝜋𝑑/2
ℎℂ(𝑧, 𝑧)

−𝑝ℂ/2,

where ℎℂ denotes the Jordan triple determinant of 𝑍ℂ. Therefore we obtain

(ℬ−
ℝ
𝑓)(𝑧) =

∫
𝑍−

ℝ

𝑑𝜇−
ℝ
(𝑤)

ℎℂ(𝑧, 𝑧)
𝜈ℂ/2 ℎℂ(𝑤,𝑤)

𝜈ℂ/2

ℎℂ(𝑧, 𝑤)𝜈ℂ
𝑓(𝑤)

=
ΓΩ(𝜈ℝ + 𝑑𝑋−𝑑𝑌

2𝑟 )

ΓΩ(𝜈ℝ − 𝑝ℝ + 𝑑𝑋
𝑟 )

∫
𝑍−

ℝ

𝑑𝑤

𝜋𝑑/2
ℎℂ(𝑧, 𝑧)

𝜈ℂ/2 ℎℂ(𝑤,𝑤)
(𝜈ℂ−𝑝ℂ)/2

ℎℂ(𝑧, 𝑤)𝜈ℂ
𝑓(𝑤).

In particular

(ℬ−
ℝ
𝑓)(0) =

ΓΩ(𝜈ℝ + 𝑑𝑋−𝑑𝑌
2𝑟 )

ΓΩ(𝜈ℝ − 𝑝ℝ + 𝑑𝑋
𝑟 )

∫
𝑍−

ℝ

𝑑𝑤

𝜋𝑑/2
ℎℂ(𝑤,𝑤)

(𝜈ℂ−𝑝ℂ)/2 𝑓(𝑤).

For 𝑍∙
ℝ
= 𝑍+

ℝ
, the real compact case, the invariant measure on 𝑍ℝ is

𝑑𝜇+
ℝ
(𝑧) =

ΓΩ(𝜈ℝ + 𝑝ℝ)

ΓΩ(𝜈ℝ + 𝑝ℝ − 𝑑
2𝑟 )

𝑑𝑧

𝜋𝑑/2
ℎℂ(𝑧,−𝑧)−𝑝ℂ/2.

Therefore

(ℬ+
ℝ
𝑓)(𝑧) =

∫
𝑍ℝ

𝑑𝜇+
ℝ
(𝑤)

ℎℂ(𝑧,−𝑤)𝜈ℂ
ℎℂ(𝑧,−𝑧)𝜈ℂ/2 ℎℂ(𝑤,−𝑤)(𝜈ℂ+𝑝ℂ)/2

𝑓(𝑤)

=
ΓΩ(𝜈ℝ + 𝑝ℝ)

ΓΩ(𝜈ℝ + 𝑝ℝ − 𝑑
2𝑟 )

∫
𝑍ℝ

𝑑𝑤

𝜋𝑑/2
ℎℂ(𝑧,−𝑤)𝜈ℂ

ℎℂ(𝑧,−𝑧)𝜈ℂ/2 ℎℂ(𝑤,−𝑤)(𝜈ℂ+𝑝ℂ)/2
𝑓(𝑤).

In particular

(ℬ+
ℝ
𝑓)(0) =

ΓΩ(𝜈ℝ + 𝑝ℝ)

ΓΩ(𝜈ℝ + 𝑝ℝ − 𝑑
2𝑟 )

∫
𝑍ℝ

𝑑𝑤

𝜋𝑑/2
ℎℂ(𝑤,−𝑤)−(𝜈ℂ+𝑝ℂ)/2 𝑓(𝑤).

This concludes our case-by-case discussion.
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As in Section 2, the (ℂ-valued) polynomial algebra 𝒫(𝑋ℝ) ≡ 𝒫(𝑋ℂ

ℝ
) has a

Peter-Weyl decomposition

𝒫(𝑋ℂ

ℝ ) =
∑

𝒎∈ℕ
𝑟ℝ
+

𝒫𝒎(𝑋ℂ

ℝ )

under the natural action of Aut(𝑋ℂ

ℝ
), and we have a corresponding kernel expan-

sion

𝑒(𝑥∣𝑦)ℝ =
∑

𝒎∈ℕ
𝑟ℝ
+

𝐸𝒎
ℝ (𝑥, 𝑦)

for the (irreducible) Euclidean Jordan algebra 𝑋ℝ of rank 𝑟ℝ, with 𝒎 running over
all partitions of length 𝑟ℝ.

On the other hand, the polynomial algebra 𝒫(𝑍ℂ) of the (irreducible) her-
mitian Jordan triple 𝑍ℂ of rank 𝑟ℂ also admits a Peter-Weyl decomposition

𝒫(𝑍ℂ) =
∑

𝒏∈ℕ
𝑟ℂ
+

𝒫𝒏(𝑍ℂ)

under the 𝐾ℂ-action, with 𝒏 running over all integer partitions of length 𝑟ℂ. Let

𝑒(𝑧∣𝑤)ℂ =
∑

𝒏∈ℕ
𝑟ℂ
+

𝐸𝒏
ℂ (𝑧, 𝑤)

denote the corresponding kernel expansion.

A partition 𝒏 ∈ ℕ
𝑟ℂ
+ is called even if 𝒫𝒏(𝑍ℂ) contains a non-zero𝐾ℝ-invariant

polynomial (which is uniquely determined up to a constant multiple). The results
in [Z3] (for tube type domains) and [Z4] (for non-tube type domains) show that
with one exception (type A), which we will exclude from consideration here, the
even signatures are obtained by “doubling” a signature𝒎 ∈ ℕ

𝑟ℝ
+ of length 𝑟ℝ. Then

the associated 𝐾ℝ-invariant polynomial 𝐸𝒎 ∈ 𝒫𝒎ℂ
(𝑍ℂ) is uniquely characterized

by the condition

𝐸𝒎(𝑥) = 𝐸𝒎
ℝ (𝑥, 𝑥) = 𝐸𝒎

ℝ (𝑒, 𝑒) 𝜙𝒎ℝ (𝑥2)

for all 𝑥 ∈ 𝑋ℝ ⊂ 𝑋ℂ

ℝ
⊂ 𝑍ℂ, where 𝜙

𝒎
ℝ

is the spherical polynomial (normalized
Jack polynomial) of type 𝒎 [FK].

Proposition 3.2. 𝐸𝒎 has the (complex) Fock space norm

∥𝐸𝒎∥2ℂ = 𝐸𝒎
ℝ (𝑒, 𝑒)

(
𝑑

2𝑟ℝ

)
𝒎
.

Proof. Put 𝑑𝒎 := dim 𝒫𝒎(𝑋ℂ

ℝ
). The Shilov boundary 𝑆 ⊂ 𝑋ℂ

ℝ
is the orbit of 𝑒

under the group Aut(𝑋ℂ

ℝ
). Applying Schur orthogonality and putting 𝐸𝒎

𝑣 (𝑢) :=
𝐸𝒎

ℝ
(𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝑆, we obtain for the Fock space inner product (𝑝∣𝑞)ℝ = (∂𝑝 𝑞)(0)
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on 𝑋ℂ

ℝ

𝐸𝒎
ℝ
(𝑒, 𝑒)2

𝑑𝒎
=

(𝐸𝒎
𝑒 ∣𝐸𝒎

𝑒 )2
ℝ

𝑑𝒎
=

∫
𝑆

𝑑𝑢 (𝐸𝒎
𝑒 ∣𝐸𝒎

𝑢 )ℝ (𝐸𝒎
𝑢 ∣𝐸𝒎

𝑒 )ℝ

=

∫
𝑆

𝑑𝑢 ∣𝐸𝒎
𝑒 (𝑢)∣2 = (𝐸𝒎

𝑒 ∣𝐸𝒎
𝑒 )ℝ

(𝑑𝑋/𝑟ℝ)𝒎
=
𝐸𝒎

ℝ
(𝑒, 𝑒)

(𝑑𝑋/𝑟ℝ)𝒎
.

This shows

𝐸𝒎
ℝ (𝑒, 𝑒) =

𝑑𝒎
(𝑑𝑋/𝑟ℝ)𝒎

.

By [Z4, Lemma 3.3 and Proposition 3.6] we have for the Fock space inner product
on 𝑍ℂ ∥∥∥∥ 𝐸𝒎

𝐸𝒎
ℝ
(𝑒, 𝑒)

∥∥∥∥2
ℂ

=
(𝑑𝑋/𝑟ℝ)𝒎 (𝑑/2𝑟ℝ)𝒎

𝑑𝒎
.

Therefore

∥𝐸𝒎∥2ℂ = 𝐸𝒎
ℝ (𝑒, 𝑒)2

(𝑑𝑋/𝑟ℝ)𝒎 (𝑑/2𝑟ℝ)𝒎
𝑑𝒎

= 𝐸𝒎
ℝ (𝑒, 𝑒)

(
𝑑

2𝑟ℝ

)
𝒎
. □

Theorem 3.3. Consider the (holomorphic) differential operators ∂𝐸𝒎 on 𝑍ℝ ⊂ 𝑍ℂ

induced by the 𝐾ℝ-invariant polynomials 𝐸
𝒎 ∈ 𝒫𝒎ℂ

(𝑍ℂ). Then the real Berezin
transform has the asymptotic expansion

(ℬ∙
ℝ 𝑓)(0) =

∑
𝒎

𝑐∙𝒎(𝜈ℝ) (∂𝐸𝒎 𝑓)(0),

near 0, with 𝒎 = (𝑚1, . . . ,𝑚𝑟ℝ) running over all partitions of length ≤ 𝑟ℝ. Here
the coefficients are given by

𝑐𝒎 = 𝜈
−∣𝒎∣
ℝ

(flat case)

𝑐−𝒎 =
1(

𝜈ℝ − 𝑝ℝ + 𝑑
2𝑟ℝ

+ 𝑑𝑋
𝑟ℝ

)
𝒎

(non-compact case)

𝑐+𝒎 =

(
𝜈ℝ + 𝑝ℝ − 𝑑

2𝑟ℝ

)
−𝒎∗

(compact case)

with 𝒎∗ := (𝑚𝑟ℝ , . . . ,𝑚1).

Proof. By [AU2, Proposition 3.4], one has the polar integration formula∫
𝑍ℝ

𝑑𝑧

𝜋𝑑/2
𝑓(𝑧) =

∫
Ω

𝑑𝑥

ΓΩ ( 𝑑
2𝑟ℝ

)
Δ(𝑥)

𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ 𝑓(

√
𝑥)

for 𝐾ℝ-invariant integrable functions 𝑓 on 𝑍ℝ, Ω being the cone of 𝑋ℝ (the proof
given there, valid for functions supported in 𝑍−

ℝ
, extends to the general case by a

homogeneity and density argument). For 𝑥 ∈ Ω, we have

𝐸𝒎(
√
𝑥) = 𝐸𝒎

ℝ (
√
𝑥,

√
𝑥) = 𝐸𝒎

ℝ (𝑒, 𝑒) 𝜙𝒎ℝ (𝑥).
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In the flat case, we have

𝑒−
𝜈ℂ
2 (

√
𝑥∣√𝑥)ℂ = 𝑒−𝜈ℝ (

√
𝑥∣√𝑥)ℝ = 𝑒−(𝑥∣𝜈ℝ 𝑒)ℝ

for 𝑥 ∈ Ω. This yields∫
𝑍ℝ

𝑑𝑤

𝜋𝑑/2
𝑒−

𝜈ℂ
2 (𝑤∣𝑤)ℂ 𝐸𝒎(𝑤)

𝐸𝒎
ℝ
(𝑒, 𝑒)

=

∫
Ω

𝑑𝑥

ΓΩ ( 𝑑
2𝑟ℝ

)
Δ(𝑥)

𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ 𝑒−

𝜈ℂ
2 (

√
𝑥∣√𝑥)ℂ

𝐸𝒎(
√
𝑥)

𝐸𝒎
ℝ

(𝑒, 𝑒)

=

∫
Ω

𝑑𝑥

ΓΩ ( 𝑑
2𝑟ℝ

)
Δ(𝑥)

𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ 𝑒−𝜈ℝ(𝑥∣𝑒)ℝ 𝜙𝒎ℝ (𝑥)

=

∫
Ω

𝑑𝑥

ΓΩ ( 𝑑
2𝑟ℝ

)
Δ(𝑥)

𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ 𝑒−𝜈ℝ(𝑥∣𝑒)ℝ Δ𝒎(𝑥)

=

∫
Ω

𝑑𝑥

ΓΩ ( 𝑑
2𝑟ℝ

)
Δ

𝒎+ 𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ (𝑥) 𝑒−(𝑥∣𝜈ℝ 𝑒)ℝ

=
ΓΩ(𝒎+ 𝑑

2𝑟ℝ
)

ΓΩ(
𝑑
2𝑟ℝ

)
Δ

𝒎+ 𝑑
2𝑟ℝ (𝜈−1

ℝ
𝑒) =

(
𝑑

2𝑟ℝ

)
𝒎
𝜈

−∣𝒎∣−𝑑/2
ℝ

since Δ
𝒎+ 𝑑

2𝑟ℝ is homogeneous of total degree ∣𝒎∣+ 𝑑
2 . Therefore

(ℬℝ𝐸
𝒎)(0)

𝐸𝒎
ℝ
(𝑒, 𝑒)

= 𝜈
𝑑/2
ℝ

∫
𝑍ℝ

𝑑𝑤

𝜋𝑑/2
𝑒−

𝜈ℂ
2 (𝑤∣𝑤)ℂ 𝐸𝒎(𝑤)

𝐸𝒎
ℝ
(𝑒, 𝑒)

=

(
𝑑

2𝑟ℝ

)
𝒎
𝜈

−∣𝒎∣
ℝ

.

In the non-compact case, we have

ℎℂ(
√
𝑥,

√
𝑥) = Δ(𝑒 − 𝑥)𝑟ℂ/𝑟ℝ

for 𝑥 ∈ Ω ∩ (𝑒 − Ω). This yields∫
𝑍−

ℝ

𝑑𝑤

𝜋𝑑/2
ℎℂ (𝑤,𝑤)(𝜈ℂ−𝑝ℂ)/2

𝐸𝒎(𝑤)

𝐸𝒎
ℝ
(𝑒, 𝑒)

=

∫
Ω∩(𝑒−Ω)

𝑑𝑥

ΓΩ(
𝑑
2𝑟ℝ

)
Δ(𝑥)

𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ ℎℂ (

√
𝑥,

√
𝑥)(𝜈ℂ−𝑝ℂ)/2

𝐸𝒎(
√
𝑥)

𝐸𝒎
ℝ
(𝑒, 𝑒)

=

∫
Ω∩(𝑒−Ω)

𝑑𝑥

ΓΩ(
𝑑
2𝑟ℝ

)
Δ(𝑥)

𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ Δ(𝑒 − 𝑥)𝜈ℝ−𝑝ℝ 𝜙𝒎ℝ (𝑥)

=

∫
Ω∩(𝑒−Ω)

𝑑𝑥

ΓΩ(
𝑑
2𝑟ℝ

)
Δ(𝑥)

𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ Δ(𝑒 − 𝑥)𝜈ℝ−𝑝ℝ Δ𝒎(𝑥)
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=

∫
Ω∩(𝑒−Ω)

𝑑𝑥

ΓΩ(
𝑑
2𝑟ℝ

)
Δ

𝒎+ 𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ (𝑥) Δ(𝑒− 𝑥)𝜈ℝ−𝑝ℝ

=
Γ(𝒎 + 𝑑

2𝑟ℝ
) Γ(𝜈ℝ − 𝑝ℝ + 𝑑𝑋

𝑟ℝ
)

ΓΩ ( 𝑑
2𝑟ℝ

) Γ(𝜈ℝ + 𝑑𝑋−𝑑𝑌
2𝑟ℝ

+𝒎)

using the relation (2). Therefore

(ℬ−
ℝ
𝐸𝒎)(0)

𝐸𝒎
ℝ
(𝑒, 𝑒)

=
ΓΩ (𝜈ℝ + 𝑑𝑋−𝑑𝑌

2𝑟ℝ
)

ΓΩ (𝜈ℝ − 𝑝ℝ + 𝑑𝑋
𝑟ℝ

)

∫
𝑍−

ℝ

𝑑𝑤

𝜋𝑑/2
ℎℂ (𝑤,𝑤)(𝜈ℂ−𝑝ℂ)/2

𝐸𝒎(𝑤)

𝐸𝒎
ℝ
(𝑒, 𝑒)

=
ΓΩ (𝜈ℝ + 𝑑𝑋−𝑑𝑌

2𝑟ℝ
)

ΓΩ (𝜈ℝ − 𝑝ℝ + 𝑑𝑋
𝑟ℝ

)

Γ(𝒎+ 𝑑
2𝑟ℝ

) Γ(𝜈ℝ − 𝑝ℝ + 𝑑𝑋
𝑟ℝ

)

ΓΩ ( 𝑑
2𝑟ℝ

) Γ(𝜈ℝ + 𝑑𝑋−𝑑𝑌
2𝑟ℝ

+𝒎)
=

(𝑑/2𝑟ℝ)𝒎

(𝜈ℝ + 𝑑𝑋−𝑑𝑌
2𝑟ℝ

)𝒎
.

In the compact case, we have

ℎℂ (
√
𝑥,−√

𝑥) = Δ(𝑒+ 𝑥)𝑟ℂ/𝑟ℝ

for 𝑥 ∈ Ω and obtain∫
𝑍ℝ

𝑑𝑤

𝜋𝑑/2
ℎℂ (𝑤,−𝑤)−(𝜈ℂ+𝑝ℂ)/2

𝐸𝒎(𝑤)

𝐸𝒎
ℝ
(𝑒, 𝑒)

=

∫
Ω

𝑑𝑥

ΓΩ ( 𝑑
2𝑟ℝ

)
Δ(𝑥)

𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ ℎℂ (

√
𝑥,−√

𝑥)−(𝜈ℂ+𝑝ℂ)/2
𝐸𝒎

ℝ
(
√
𝑥)

𝐸𝒎
ℝ
(𝑒, 𝑒)

=

∫
Ω

𝑑𝑥

ΓΩ ( 𝑑
2𝑟ℝ

)
Δ(𝑥)

𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ Δ(𝑒+ 𝑥)−𝜈ℝ−𝑝ℝ 𝜙𝒎ℝ (𝑥)

=

∫
Ω

𝑑𝑥

ΓΩ ( 𝑑
2𝑟ℝ

)
Δ(𝑥)

𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ Δ(𝑒+ 𝑥)−𝜈ℝ−𝑝ℝ Δ𝒎(𝑥)

=

∫
Ω

𝑑𝑥

ΓΩ ( 𝑑
2𝑟ℝ

)
Δ

𝒎+ 𝑑
2𝑟ℝ

− 𝑑𝑋
𝑟ℝ (𝑥) Δ (𝑒 + 𝑥)−𝜈ℝ−𝑝ℝ

=
ΓΩ(𝒎+ 𝑑

2𝑟ℝ
) ΓΩ(𝜈ℝ + 𝑝ℝ − 𝒎∗ − 𝑑

2𝑟ℝ
)

ΓΩ(
𝑑
2𝑟ℝ

) ΓΩ(𝜈ℝ + 𝑝ℝ)
.

Therefore

(ℬ+
ℝ
𝐸𝒎)(0)

𝐸𝒎
ℝ
(𝑒, 𝑒)

=
ΓΩ (𝜈ℝ + 𝑝ℝ)

ΓΩ (𝜈ℝ + 𝑝ℝ − 𝑑
2𝑟ℝ

)

∫
𝑍ℝ

𝑑𝑤

𝜋𝑑/2
ℎℂ (𝑤,−𝑤)−(𝜈ℂ+𝑝ℂ)/2

𝐸𝒎(𝑤)

𝐸𝒎
ℝ
(𝑒, 𝑒)

=
ΓΩ (𝜈ℝ + 𝑝ℝ)

ΓΩ (𝜈ℝ + 𝑝ℝ − 𝑑
2𝑟ℝ

)

ΓΩ(𝒎 + 𝑑
2𝑟ℝ

) ΓΩ(𝜈ℝ + 𝑝ℝ − 𝒎∗ − 𝑑
2𝑟ℝ

)

ΓΩ(
𝑑
2𝑟ℝ

) ΓΩ(𝜈ℝ + 𝑝ℝ)

=

(
𝑑

2𝑟ℝ

)
𝒎

(
𝜈ℝ + 𝑝ℝ − 𝑑

2𝑟ℝ

)
−𝒎∗

.
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In all three cases, since ℬ∙
ℝ
is a 𝐺∙

ℝ
-invariant operator on 𝑍∙

ℝ
there exist coefficients

𝑐∙𝒎(𝜈) (𝒎 ∈ ℕ𝑟
+) such that

(ℬ∙
ℝ 𝑓)(0) =

∑
𝒎

𝑐∙𝒎(𝜈ℝ)(∂𝐸𝒎 𝑓)(0)

for all functions 𝑓 which are smooth near 0 ∈ 𝑍ℝ. This implies

(ℬ∙
ℝ𝐸

𝒎)(0) =
∑
𝒌

𝑐∙𝒌 (∂
𝐸𝒌 𝐸

𝒎)(0) = 𝑐∙𝒎 ∥𝐸𝒎∥2ℂ = 𝑐∙𝒎𝐸
𝒎
ℝ (𝑒, 𝑒)

(
𝑑

2𝑟ℝ

)
𝒎
.

It follows that

𝑐∙𝒎 =
1

(𝑑/2𝑟ℝ)𝒎

(ℬ∙
ℝ
𝐸𝒎)(0)

𝐸𝒎
ℝ
(𝑒, 𝑒)

has the values specified above. □

Remark 3.4. Since(
𝜈ℝ − 𝑝ℝ +

𝑑

2𝑟ℝ
+
𝑑𝑋
𝑟ℝ

)
𝒎

=

(
𝜈ℝ +

𝑑𝑋 − 𝑑𝑌
2𝑟ℝ

)
𝒎
,

the non-compact case of the last theorem is in complete agreement with Theo-
rem 14 of [EU1] (up to a factor of (2𝑟ℝ/𝑟ℂ)

2∣𝒎∣, which is due to our different
normalization of the inner product (⋅∣⋅)ℂ with respect to (⋅∣⋅)ℝ.)
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On Nonlocal 𝑪∗-algebras of Two-dimensional
Singular Integral Operators

Yu.I. Karlovich and V.A. Mozel

Abstract. Applying a local-trajectory method elaborated for studying nonlo-
cal 𝐶∗-algebras associated with 𝐶∗-dynamical systems and the description of
𝐶∗-algebras generated by isometries, we construct a Fredholm symbol calcu-
lus for the 𝐶∗-algebra 𝔅 generated by the 𝐶∗-algebra 𝔄 of two-dimensional
singular integral operators with continuous coefficients on a bounded closed
simply connected domain 𝑈 ⊂ ℝ2 with Liapunov boundary and by all uni-

tary shift operators 𝑊𝑔 : 𝑓 �→ 𝐽
1/2
𝑔 (𝑓 ∘ 𝑔) where 𝑔 runs a discrete amenable

group 𝐺 of quasiconformal diffeomorphisms of 𝑈 onto itself with Hölder par-
tial derivatives and the Jacobian 𝐽𝑔, and 𝐺 acts on 𝑈 topologically freely. As
a result we establish Fredholm criteria for the operators 𝐴 ∈ 𝔄 and 𝐵 ∈ 𝔅.

Mathematics Subject Classification (2000). Primary 47G10; Secondary 31A10,
47A53, 47A67, 47B33.

Keywords. Two-dimensional singular integral operator, shift operator, 𝐶∗-
algebra, representation, amenable group, quasiconformal diffeomorphism,
local-trajectory method, invertibility, Fredholmness.

1. Introduction

Given an arbitrary domain 𝑈 ⊂ ℝ2, let ℬ(𝐿2(𝑈)) be the 𝐶∗-algebra of all bounded
linear operators on the Hilbert space 𝐿2(𝑈) with Lebesgue area measure, let 𝒦 :=
𝒦(𝐿2(𝑈)) be the closed two-sided ideal of all compact operators in ℬ(𝐿2(𝑈)), and
let ℬ(𝐿2(𝑈))𝜋 := ℬ(𝐿2(𝑈))/𝒦 denote the quotient 𝐶∗-algebra consisting of the
cosets 𝐴𝜋 := 𝐴+ 𝒦 with 𝐴 ∈ ℬ(𝐿2(𝑈)).

The first author was partially supported by the SEP-CONACYT Project No. 25564 and by
PROMEP via “Proyecto de Redes”, México.
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Suppose now that 𝑈 is a bounded simply connected domain in ℂ with Lia-
punov boundary Γ, 𝐺 is a discrete amenable [12] group of quasiconformal diffeo-
morphisms 𝑔 : 𝑈 → 𝑈 whose partial derivatives

∂𝑔

∂𝑧
=

1

2

(
∂𝑔

∂𝑥
− 𝑖 ∂𝑔
∂𝑦

)
and

∂𝑔

∂𝑧
=

1

2

(
∂𝑔

∂𝑥
+ 𝑖
∂𝑔

∂𝑦

)
(1.1)

satisfy a Hölder condition on 𝑈 , and the set Φ𝑔 of all fixed points of 𝑔 on 𝑈 has
empty interior for every shift 𝑔 ∈ 𝐺∖{𝑒}. With every 𝑔 ∈ 𝐺 we associate a unitary
weighted shift operator 𝑊𝑔 on the Lebesgue space 𝐿2(𝑈) given by

𝑊𝑔𝑓 = 𝐽1/2𝑔 (𝑓 ∘ 𝑔) for all 𝑓 ∈ 𝐿2(𝑈) (1.2)

where 𝐽𝑔(𝑧) =
∣∣∂𝑔
∂𝑧

∣∣2 − ∣∣∂𝑔∂𝑧 ∣∣2 > 0 is the Jacobian of the quasiconformal diffeomor-
phism 𝑔 (see [17]).

Given a domain 𝑈 ⊂ ℂ, let 𝑆𝑈 and 𝑆∗
𝑈 be the two-dimensional singular

integral operators given by

(𝑆𝑈𝑓)(𝑧) = − 1

𝜋

∫
𝑈

𝑓(𝑤)

(𝑤 − 𝑧)2 𝑑𝐴(𝑤), (𝑆∗
𝑈𝑓)(𝑧) = − 1

𝜋

∫
𝑈

𝑓(𝑤)

(𝑤 − 𝑧)2 𝑑𝐴(𝑤)

where 𝑑𝐴(𝑧) = 𝑑𝑥𝑑𝑦 is the Lebesgue area measure. These operators are bounded
on the space 𝐿2(𝑈). We denote by

𝔄 := alg
{
𝑐𝐼, 𝑆𝑈 , 𝑆

∗
𝑈 : 𝑐 ∈ 𝐶(𝑈)} (1.3)

the 𝐶∗-subalgebra of ℬ(𝐿2(𝑈)) generated by all multiplication operators 𝑐𝐼 with
𝑐 ∈ 𝐶(𝑈 ) and by the operators 𝑆𝑈 and 𝑆∗

𝑈 .
The main goal of this paper is to study the Fredholmness of operators 𝐵

(equivalently, the invertibility of cosets 𝐵𝜋 = 𝐵+𝒦 [6]) in the nonlocal 𝐶∗-algebra

𝔅 := 𝐶∗(𝔄,𝑊𝐺) ⊂ ℬ(𝐿2(𝑈)) (1.4)

generated by all operators𝐴 ∈ 𝔄 and all shift operators𝑊𝑔 (𝑔 ∈ 𝐺). By Lemma 2.6
in [15], which remains valid for arbitrary domains 𝑈 ⊂ ℂ, the 𝐶∗-algebras 𝔄 and
𝔅 contain the ideal 𝒦(𝐿2(𝑈)) of all compact operators in ℬ(𝐿2(𝑈)).

In the present paper we construct Fredholm symbol calculi for the 𝐶∗-algebras
𝔄 and 𝔅 and establish Fredholm criteria for the operators 𝐴 ∈ 𝔄 and 𝐵 ∈ 𝔅. To
this end we apply the Allan-Douglas local principle [10], [6], the local-trajectory
method elaborated in [13], [14], [3], Coburn’s description of 𝐶∗-algebras generated
by isometries [7]–[8], and the techniques of quasiconformal mappings. In studying
the 𝐶∗-algebra 𝔄 we partially follow [24].

The paper is organized as follows. In Section 2 we describe the local-trajectory
method, which is a non-local version of the Allan-Douglas local principle, for study-
ing invertibility in nonlocal 𝐶∗-algebras associated with 𝐶∗-dynamical systems.

In Section 3, applying Coburn’s results [7]–[8] on 𝐶∗-algebras generated by
isometries, the orthogonal decomposition of the space 𝐿2(Π) over the complex
upper half-plane Π = {𝑧 ∈ ℂ : Im 𝑧 > 0} in terms of true poly-Bergman and true
anti-poly-Bergman spaces [25] and the characterization [3] of the operators 𝑆Π and
𝑆∗
Π as nonunitary isometries on subspaces of 𝐿2(Π), we describe the spectrum of
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the 𝐶∗-algebra𝔖 := alg {𝐼, 𝑆Π, 𝑆∗
Π} of two-dimensional singular integral operators

with constant coefficients on the space 𝐿2(Π) (cf. [24]).
In Section 4 we study the operators𝑊𝛼𝑆𝑈𝑊

−1
𝛼 and𝑊𝛼𝑆

∗
𝑈𝑊

−1
𝛼 , where𝑊𝛼 is

a unitary weighted shift operator for a quasiconformal diffeomorphism 𝛼 : 𝑈 → 𝑈 .
In Section 5, applying the Allan-Douglas local principle and the results of

Sections 3–4, we describe the spectrum of the quotient 𝐶∗-algebra 𝔄𝜋 = 𝔄/𝒦 and
establish a Fredholm criterion for the operators 𝐴 ∈ 𝔄, where 𝔄 is given by (1.3).

Finally, in Section 6, making use of the local-trajectory method of Section 2
and the results of Section 5, we construct a Fredholm symbol calculus for the
𝐶∗-algebra 𝔅 given by (1.4) and obtain a Fredholm criterion for operators 𝐵 ∈ 𝔅.

2. The local-trajectory method

2.1. Starting assumptions

Let 𝒜 be a unital 𝐶∗-algebra, 𝒵 a central 𝐶∗-subalgebra of 𝒜 with the same unit
𝐼, 𝐺 a discrete group with unit 𝑒, 𝑈 : 𝑔 +→ 𝑈𝑔 a homomorphism of the group 𝐺
onto a group 𝑈𝐺 = {𝑈𝑔 : 𝑔 ∈ 𝐺} of unitary elements such that 𝑈𝑔1𝑔2 = 𝑈𝑔1𝑈𝑔2

and 𝑈𝑒 = 𝐼. Suppose 𝒜 and 𝑈𝐺 are contained in a 𝐶∗-algebra 𝒟 and assume that

(A1) for every 𝑔 ∈ 𝐺 the mappings 𝛼𝑔 : 𝑎 +→ 𝑈𝑔 𝑎𝑈
∗
𝑔 are

∗-automorphisms of the
𝐶∗-algebras 𝒜 and 𝒵;

(A2) 𝐺 is an amenable discrete group.

Amenable groups constitute a natural maximal class of groups for which one
can establish an isomorphism of two 𝐶∗-algebras associated with 𝐶∗-dynamical
systems (see, e.g., [2], [13], [14]). According to [12, § 1.2], a discrete group 𝐺 is
called amenable if the 𝐶∗-algebra 𝑙∞(𝐺) of all bounded complex-valued functions
on 𝐺 with sup-norm has an invariant mean, that is, a positive linear functional 𝜌
of norm 1 (called a state [19]) satisfying the condition

𝜌(𝑓) = 𝜌(𝑠𝑓) = 𝜌(𝑓𝑠) for all 𝑠 ∈ 𝐺 and all 𝑓 ∈ 𝑙∞(𝐺),

where (𝑠𝑓)(𝑔) = 𝑓(𝑠
−1𝑔), (𝑓𝑠)(𝑔) = 𝑓(𝑔𝑠), 𝑔 ∈ 𝐺. As is known (see, e.g., [1], [12],

[14]), the class of amenable groups contains all finite groups, commutative groups,
subexponential groups, and solvable groups. On the other hand, if a discrete group
𝐺 contains the free discrete group 𝐹2 with two generators, then 𝐺 is not amenable.

Let ℬ := 𝐶∗(𝒜, 𝑈𝐺) be the minimal 𝐶∗-algebra containing the unital 𝐶∗-
algebra 𝒜 and the group 𝑈𝐺. By virtue of (A1), ℬ is the closure of the set ℬ0

consisting of the elements 𝑏 =
∑
𝑎𝑔𝑈𝑔 where 𝑎𝑔 ∈ 𝒜 and 𝑔 runs through finite

subsets of 𝐺, and the algebraic operations are given as follows:

𝑐
(∑

𝑎𝑔𝑈𝑔

)
=
∑

(𝑐𝑎𝑔)𝑈𝑔 (𝑐 ∈ ℂ),∑
𝑎𝑔𝑈𝑔 +

∑
𝑎′
𝑔𝑈𝑔 =

∑
(𝑎𝑔 + 𝑎

′
𝑔)𝑈𝑔 (𝑎𝑔, 𝑎

′
𝑔 ∈ 𝒜),(∑

𝑔
𝑎𝑔𝑈𝑔

)(∑
ℎ
𝑎′
ℎ𝑈ℎ

)
=
∑

𝑔

∑
ℎ
(𝑎𝑔𝛼𝑔(𝑎

′
ℎ))𝑈𝑔ℎ.
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Let𝑀 :=𝑀(𝒵) be the maximal ideal space of the (commutative) 𝐶∗-algebra
𝒵. By the Gelfand-Naimark theorem [20, § 16], 𝒵 ∼= 𝐶(𝑀) where 𝐶(𝑀) is the 𝐶∗-
algebra of all continuous complex-valued functions on𝑀 . Under assumption (A1),
identifying the non-zero multiplicative linear functionals 𝜑𝑚 of the algebra 𝒵 and
the maximal ideals 𝑚 = Ker𝜑𝑚 ∈𝑀 , we obtain the homomorphism 𝑔 +→ 𝛽𝑔(⋅) of
the group 𝐺 into the homeomorphism group of 𝑀 according to the rule

𝑧(𝛽𝑔(𝑚)) = (𝛼𝑔(𝑧))(𝑚), 𝑧 ∈ 𝒵, 𝑚 ∈𝑀, 𝑔 ∈ 𝐺, (2.1)

where 𝑧(⋅) ∈ 𝐶(𝑀) is the Gelfand transform of the element 𝑧 ∈ 𝒵. The set
𝐺(𝑚) := {𝛽𝑔(𝑚) : 𝑔 ∈ 𝐺} is called the 𝐺-orbit of a point 𝑚 ∈𝑀 .

Let 𝑃𝒜 be the set of all pure states on the 𝐶∗-algebra 𝒜 equipped with
the induced weak∗ topology, and let 𝐽𝑚 denote the closed two-sided ideal of 𝒜
generated by the maximal ideal 𝑚 ∈ 𝑀 of the central 𝐶∗-algebra 𝒵 ⊂ 𝒜. By [5,
Lemma 4.1], if 𝜇 ∈ 𝑃𝒜, then Ker𝜇 ⊃ 𝐽𝑚 where 𝑚 := 𝒵∩Ker𝜇 ∈𝑀 , and therefore

𝑃𝒜 =
∪

𝑚∈𝑀
{𝜈 ∈ 𝑃𝒜 : Ker 𝜈 ⊃ 𝐽𝑚}.

Let the following version of topologically free action of the group 𝐺 hold (see
[14], [3]):

(A3) there is a set 𝑀0 ⊂𝑀 such that for every finite set 𝐺0 ⊂ 𝐺 ∖ {𝑒} and every
nonempty open set 𝑉 ⊂ 𝑃𝒜 there exists a state 𝜈 ∈ 𝑉 such that 𝛽𝑔(𝑚𝜈) ∕= 𝑚𝜈

for all 𝑔 ∈ 𝐺0, where the point 𝑚𝜈 := 𝒵 ∩ Ker 𝜈 ∈ 𝑀 belongs to the 𝐺-orbit
𝐺(𝑀0) := {𝛽𝑔(𝑚) : 𝑔 ∈ 𝐺, 𝑚 ∈𝑀0} of the set 𝑀0.

We say that the group 𝐺 acts freely on 𝑀 if the group {𝛽𝑔 : 𝑔 ∈ 𝐺} of
homeomorphisms of 𝑀 onto itself acts freely on 𝑀 , that is, if 𝛽𝑔(𝑚) ∕= 𝑚 for all
𝑔 ∈ 𝐺 ∖ {𝑒} and all 𝑚 ∈𝑀 . Obviously, if the group 𝐺 acts freely on 𝑀 , then (A3)
is fulfilled automatically.

If the 𝐶∗-algebra 𝒜 is commutative, then the set 𝑃𝒜 of all pure states of
𝒜 coincides with the set of non-zero multiplicative linear functionals of 𝒜 (see,
e.g., [19, Theorem 5.1.6]). Therefore, choosing 𝒵 = 𝒜 and identifying the set of
non-zero multiplicative linear functionals of 𝒜 with the maximal ideal space𝑀(𝒜)
of 𝒜, we can rewrite (A3) in the form

(A0) there is a set 𝑀0 ⊂ 𝑀(𝒜) such that for every finite set 𝐺0 ⊂ 𝐺 ∖ {𝑒} and
every nonempty open set 𝑉 ⊂ 𝑀(𝒜) there exists a point 𝑚0 ∈ 𝑉 ∩ 𝐺(𝑀0)
such that 𝛽𝑔(𝑚0) ∕= 𝑚0 for all 𝑔 ∈ 𝐺0.

2.2. Trajectorial localization

Let the unital 𝐶∗-algebras 𝒵, 𝒜, and ℬ = 𝐶∗(𝒜, 𝑈𝐺) satisfy all the conditions of
Subsection 2.1. In this subsection we recall an invertibility criterion for elements
𝑏 ∈ ℬ in terms of the invertibility of their local representatives associated with the
𝐺-orbits of points 𝑚 ∈ 𝑀 , where 𝑀 is the compact space of maximal ideals of
the central algebra 𝒵. As a result, we get a nonlocal version of the Allan-Douglas
local principle (see [14], [3]).
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For every 𝑚 ∈ 𝑀 , let 𝐽𝑚 be the closed two-sided ideal of the algebra 𝒜
generated by the maximal ideal 𝑚 of the algebra 𝒵, and let ℋ𝑚 be the Hilbert
space of an isometric representation 𝜋𝑚 : 𝒜/𝐽𝑚 → ℬ(ℋ𝑚). We also consider the
canonical ∗-homomorphism 𝜚𝑚 : 𝒜 → 𝒜/𝐽𝑚 and the representation

𝜋′
𝑚 : 𝒜 → ℬ(ℋ𝑚), 𝑎 +→ (𝜋𝑚 ∘ 𝜚𝑚)(𝑎).

Since 𝛼𝑔(𝐽𝛽𝑔(𝑚)) = 𝐽𝑚 for all 𝑔 ∈ 𝐺 and all 𝑚 ∈𝑀 in view of (A1), the quotient
algebras 𝒜/𝐽𝛽𝑔(𝑚) and 𝒜/𝐽𝑚 are ∗-isomorphic. Then the spaces ℋ𝛽𝑔(𝑚) can be
chosen equal for all 𝑔 ∈ 𝐺.

Given 𝑋 ⊂ 𝑀 , let Ω(𝑋) be the set of 𝐺-orbits of all points 𝑚 ∈ 𝑋 , let
𝐻𝜔 = ℋ𝑚 where 𝑚 = 𝑚𝜔 is an arbitrary fixed point of an orbit 𝜔 ∈ Ω and
Ω = Ω(𝑀), and let 𝑙2(𝐺,𝐻𝜔) be the Hilbert space of all functions 𝑓 : 𝐺 +→ 𝐻𝜔

such that 𝑓(𝑔) ∕= 0 for at most countable set of points 𝑔 ∈ 𝐺 and
∑ ∥𝑓(𝑔)∥2𝐻𝜔

<∞.

For every 𝜔 ∈ Ω we consider the representation 𝜋𝜔 : ℬ → ℬ(𝑙2(𝐺,𝐻𝜔)
)
defined by

[𝜋𝜔(𝑎)𝑓 ](𝑔) = 𝜋
′
𝑚(𝛼𝑔(𝑎))𝑓(𝑔), [𝜋𝜔(𝑈ℎ)𝑓 ](𝑔) = 𝑓(𝑔ℎ)

for all 𝑎 ∈ 𝒜, all 𝑔, ℎ ∈ 𝐺, and all 𝑓 ∈ 𝑙2(𝐺,𝐻𝜔).

Theorem 2.1. [14, Theorem 4.1] If assumptions (A1)–(A3) are satisfied, then an
element 𝑏 ∈ ℬ is invertible (left invertible, right invertible) in ℬ if and only if for
every orbit 𝜔 ∈ Ω the operator 𝜋𝜔(𝑏) is invertible (left invertible, right invertible)
on the space 𝑙2(𝐺,𝐻𝜔) and, in the case of infinite Ω,

sup
{∥∥(𝜋𝜔(𝑏))−1

∥∥ : 𝜔 ∈ Ω
}
<∞ (2.2)

(resp., sup
{∥∥(𝜋𝜔(𝑏∗𝑏))−1

∥∥ : 𝜔 ∈ Ω
}
<∞, sup

{∥∥(𝜋𝜔(𝑏𝑏∗))−1
∥∥ : 𝜔 ∈ Ω

}
<∞).

By [14, Theorem 4.12], Theorem 2.1 is valid with Ω replaced by Ω0 := Ω(𝑀0).
The next result gives a sufficient condition that allows us to remove the

uniform boundedness condition (2.2) for norms of inverse operators. Let 𝜔 be the
closure of an orbit 𝜔 ∈ Ω, and let 𝜔′ be the set of all limit points of 𝜔.

Theorem 2.2. If conditions (A1)–(A3) are satisfied, the 𝐶∗-algebra 𝒵 is separable,
and
∩

𝑚∈𝜔 𝐽𝑚 =
∩

𝑚∈𝜔 𝐽𝑚 for every 𝐺-orbit 𝜔 ∈ Ω such that 𝜔 = 𝜔′, then any
element 𝑏 ∈ ℬ is invertible (left invertible, right invertible) in ℬ if and only if for
every orbit 𝜔 ∈ Ω the operator 𝜋𝜔(𝑏) is invertible (left invertible, right invertible)
on the space 𝑙2(𝐺,𝐻𝜔).

Proof. By [14, Theorem 4.8], if (A1)–(A3) hold, the 𝐶∗-algebra 𝒵 is separable,
and
∩

𝑚∈𝜔 𝐽𝑚 =
∩

𝑚∈𝜔 𝐽𝑚 for every 𝐺-orbit 𝜔 ∈ Ω such that 𝜔 = 𝜔′, then for
every irreducible representation 𝜋 of the 𝐶∗-algebra ℬ there exists a 𝐺-orbit 𝜔 ∈ Ω
possessing the property Ker𝜋𝜔 ⊂ Ker𝜋. Then the required assertion follows from
[14, Theorem 4.2]. □
Corollary 2.3. If assumptions (A1)–(A3) are satisfied, 𝒜 ∼= 𝒵 and the 𝐶∗-algebra
𝒵 is separable, then an element 𝑏 ∈ ℬ is invertible (left invertible, right invertible)
in ℬ if and only if for every orbit 𝜔 ∈ Ω the operator 𝜋𝜔(𝑏) is invertible (left
invertible, right invertible) on the space 𝑙2(𝐺,𝐻𝜔).



120 Yu.I. Karlovich and V.A. Mozel

Proof. Since the 𝐶∗-algebras 𝒜 and 𝒵 are *-isomorphic, we can identify the closed
two-sided ideals 𝐽𝑚 of 𝒜 and maximal ideals 𝑚 of 𝒵. Identifying elements 𝑧 ∈ 𝒵
and their Gelfand transforms 𝑧(⋅) ∈ 𝐶(𝑀), we easily infer from the continuity
of 𝑧(⋅) that any 𝑧 ∈ 𝒵 belonging to all maximal ideals 𝑚 ∈ 𝜔 also belongs to∩

𝑚∈𝜔𝑚. Thus,
∩

𝑚∈𝜔 𝐽𝑚 =
∩

𝑚∈𝜔 𝐽𝑚, which in view of Theorem 2.2 completes
the proof. □

3. 𝑪∗-algebra of two-dimensional singular integral operators with
constant coefficients on the space 𝑳2(Π)

Let Π = {𝑧 ∈ ℂ : Im 𝑧 > 0} be the open upper half-plane of the complex plain ℂ.

The poly-Bergman spaces 𝒜2
𝑛(Π) and the anti-poly-Bergman spaces 𝒜2

𝑛(Π)
are the Hilbert subspaces of 𝐿2(Π) that consist of n-differentiable functions such
that, respectively, (∂/∂𝑧)𝑛𝑓 = 0 and (∂/∂𝑧)𝑛𝑓 = 0 (see, e.g., [11]). According to
[25, Theorem 4.5], the space 𝐿2(Π) admits the following orthogonal decomposition:

𝐿2(Π) =

( ∞⊕
𝑘=1

𝒜2
(𝑘)(Π)

) ⊕ ( ∞⊕
𝑘=1

𝒜2
(𝑘)(Π)

)
(3.1)

where the true poly-Bergman spaces of order 𝑛 are defined as

𝒜2
(𝑛)(Π) = 𝒜2

𝑛(Π) ∩ [𝒜2
𝑛−1(Π)

]⊥
for 𝑛 > 1, 𝒜2

(1)(Π) = 𝒜2
1(Π) := 𝒜2(Π),

and the true anti-poly-Bergman spaces of order 𝑛 are defined by

𝒜2
(𝑛)(Π) = 𝒜2

𝑛(Π) ∩ [𝒜2
𝑛−1(Π)

]⊥
for 𝑛 > 1, 𝒜2

(1)(Π) = 𝒜2
1(Π) := 𝒜2(Π).

The spaces 𝒜2
(𝑘), 𝒜2

(𝑘) are related to the spaces 𝒜2
(𝑘+1), 𝒜2

(𝑘+1) as follows.

Theorem 3.1. [16, Theorem 2.4] (also see [26]) For every 𝑘 ∈ ℕ, the operator 𝑆Π is

a unitary isomorphism of the space 𝒜2
(𝑘) onto 𝒜2

(𝑘+1) and of the space 𝒜2
(𝑘+1) onto

𝒜2
(𝑘), the operator 𝑆

∗
Π is a unitary isomorphism of the space 𝒜2

(𝑘+1) onto 𝒜2
(𝑘) and

of the space 𝒜2
(𝑘) onto 𝒜2

(𝑘+1), and 𝑆Π
(𝒜2

(1)

)
= {0}, 𝑆∗

Π

(𝒜2
(1)

)
= {0}.

From (3.1) and Theorem 3.1 it follows that

𝐿2(Π) =

( ∞⊕
𝑘=0

𝑆𝑘
Π

(𝒜2(Π)
)) ⊕ ( ∞⊕

𝑘=0

(
𝑆∗
Π

)𝑘(𝒜2(Π)
))
.

Let 𝔖 = alg {𝐼, 𝑆Π, 𝑆∗
Π} be the unital 𝐶∗-subalgebra of ℬ(𝐿2(Π)) generated

by the identity operator 𝐼 and the operators 𝑆Π and 𝑆∗
Π, and let Prim𝔖 be the

compact space of all primitive ideals (that is, kernels of non-zero irreducible rep-
resentations) of 𝔖, which is equipped with the Jacobson topology. Consider the

set 𝔖̂ of all unitary equivalence classes of non-zero irreducible representations of
𝔖 in Hilbert spaces. If (𝐻,𝜑) is a non-zero irreducible representation 𝜑 of 𝔖 in a

Hilbert space 𝐻 , then [𝐻,𝜑] denotes its equivalence class in 𝔖̂. As is known (see,
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e.g., [19, Section 5.4]), 𝔖̂ becomes a compact topological space if it is endowed
with the weakest topology making the canonical surjective map

𝜃 : 𝔖̂ → Prim𝔖, [H, 𝜑] +→ ker𝜑

continuous. The space 𝔖̂ is called the spectrum of the 𝐶∗-algebra 𝔖.
Let 𝐻2 be the Hardy space of all complex-valued analytic functions defined

on the open unit disc 𝐷 := {𝑧 ∈ ℂ : ∣𝑧∣ < 1} and equipped with the norm

∥𝑓∥𝐻2 =

(
sup

𝑟∈(0,1)

1

2𝜋

∫ 2𝜋

0

∣𝑓(𝑟𝑒𝑖𝜃)∣2𝑑𝜃
)1/2

.

Consider the orthogonal projection 𝑃 = (𝐼 + 𝑆𝕋)/2 on the Lebesgue space 𝐿2(𝕋)
where 𝐼 is the identity operator and 𝑆𝕋 is the Cauchy singular integral operator
on the unit circle 𝕋 = ∂𝐷,

(𝑆𝕋𝜑)(𝑡) = lim
𝜀→0

1

2𝜋

∫
{𝑧∈𝕋:∣𝑧−𝑡∣≥𝜀}

𝑓(𝜏)

𝜏 − 𝑡 𝑑𝜏, 𝑡 ∈ 𝕋.

We identify the Hardy space 𝐻2 with the subspace 𝐻2(𝕋) := 𝑃𝐿2(𝕋) of 𝐿2(𝕋)
consisting of the angular limits of all functions 𝑓 ∈ 𝐻2 on the unit circle 𝕋. As
is well known, the Toeplitz operators 𝑇𝑎 = 𝑃𝑎𝑃 with symbols 𝑎 ∈ 𝐿∞(𝕋) are
bounded on the Hilbert space 𝐻2(𝕋).

The next result was established in [24]. We give a more transparent proof.

Theorem 3.2. The spectrum 𝔖̂ of the 𝐶∗-algebra 𝔖 can be parameterized by the
points 𝑧 ∈ 𝕋∪{±2} where the one-dimensional non-zero irreducible representations
𝜋𝑧 : 𝔖 → ℂ for every 𝑧 ∈ 𝕋 and the two infinite-dimensional non-zero irreducible
representations 𝜋𝑧 : 𝔖 → ℬ(𝐻2(𝕋)) for 𝑧 = ±2 are given on the generators of the
𝐶∗-algebra 𝔖 by

𝜋𝑧(𝐼) = 1, 𝜋𝑧(𝑆Π) = 𝑧, 𝜋𝑧(𝑆
∗
Π) = 𝑧 if 𝑧 ∈ 𝕋, (3.2)

𝜋𝑧(𝐼) = 𝐼, 𝜋𝑧(𝑆Π) = 𝑇𝑧, 𝜋𝑧(𝑆
∗
Π) = 𝑇𝑧 if 𝑧 = 2, (3.3)

𝜋𝑧(𝐼) = 𝐼, 𝜋𝑧(𝑆Π) = 𝑇𝑧, 𝜋𝑧(𝑆
∗
Π) = 𝑇𝑧 if 𝑧 = −2, (3.4)

where 𝑇𝑧 and 𝑇𝑧 are Toeplitz operators with symbols 𝑧 and 𝑧 on the space 𝐻
2(𝕋).

Proof. From Theorem 3.1 and (3.1) it follows that the mutually orthogonal sub-

spaces 𝐿2+(Π) :=
∞⊕
𝑘=1

𝒜2
(𝑘)(Π) and 𝐿2−(Π) :=

∞⊕
𝑘=1

𝒜2
(𝑘)(Π) of the Hilbert space

𝐿2(Π) are invariant under the action of the operators 𝑆Π and 𝑆∗
Π, and the ope-

rator 𝑆Π is a nonunitary isometry on the space 𝐿2+(Π), while the operator 𝑆∗
Π is

a nonunitary isometry on the space 𝐿2−(Π). Hence, we infer from [7]–[8] that the

spaces 𝔖̂± of all unitary equivalence classes of non-zero irreducible representations
of the 𝐶∗-algebras 𝔖± := {𝐴∣𝐿2

±(Π)
: 𝐴 ∈ 𝔖} consist of the classes parameterized,

respectively, by 𝑧 ∈ 𝕋 ∪ {±2} and identified for 𝑧 ∈ 𝕋 with one-dimensional non-
zero irreducible representations 𝜋𝑧 : 𝔖 → ℂ given by (3.2) and, for 𝑧 = ±2, with
infinite-dimensional non-zero irreducible representations 𝜋𝑧 : 𝔖 → ℬ(𝐻2(𝕋)) given
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by (3.3)–(3.4). Combining these results for the 𝐶∗-algebras 𝔖± we complete the
proof. □

4. Quasiconformal shifts and their applications

As is known (see, e.g., [17, Chapter 1]), a homeomorphism 𝛼 = 𝛼(𝑧) of a domain
𝑈 ⊂ ℂ onto a domain 𝑉 ⊂ ℂ is called quasiconformal if 𝛼 has locally integrable
generalized derivatives ∂𝛼

∂𝑧 and ∂𝛼
∂𝑧 of the form (1.1) that satisfy the inequality∣∣∣∂𝛼

∂𝑧

∣∣∣ ≤ 𝑘∣∣∣∂𝛼
∂𝑧

∣∣∣ where 𝑘 = const < 1. (4.1)

In particular, the partial derivatives (1.1) exist almost everywhere on 𝑈 , 𝛼 is

differentiable almost everywhere, and the Jacobian 𝐽𝛼 =
∣∣∂𝛼
∂𝑧

∣∣2 − ∣∣∂𝛼∂𝑧 ∣∣2 of the
map 𝛼 : 𝑈 → 𝑉 is strictly positive for almost all 𝑧 ∈ 𝑈 (see [17, Chapter 1,
Subsection 9.4]).

Let now 𝛼 be a quasiconformal diffeomorphism of a bounded closed domain
𝑈 ⊂ ℂ onto itself. Since 𝛼 is a differential bijection of the closed set 𝑈 , the Jacobian

𝐽𝛼 > 0 is separated from zero on 𝑈 . Hence, the operator 𝑊𝛼 : 𝑓 +→ ∣∣𝐽𝛼∣∣1/2(𝑓 ∘ 𝛼)
is a unitary weighted shift operator on the Lebesgue space 𝐿2(𝑈).

Substituting the shift 𝛼 at points 𝑤 ∈ 𝑈 by its linear part

𝛼̃𝑤(𝑧) := 𝛼(𝑤) + 𝛽𝑤(𝑧 − 𝑤) + 𝛾𝑤(𝑧 − 𝑤)
where

𝛽𝑤 :=
∂𝛼

∂𝑧
(𝑤), 𝛾𝑤 :=

∂𝛼

∂𝑧
(𝑤) (4.2)

and denoting the Jacobian 𝐽𝛼 at points 𝑤 by

𝐽𝑤 := ∣𝛽𝑤∣2 − ∣𝛾𝑤∣2, (4.3)

we established the following result jointly with L. Pessoa (see [15, Lemma 6.1]).

Lemma 4.1. If 𝛼 is a quasiconformal diffeomorphism of the closed unit disk 𝐷
onto itself and its partial derivatives (4.2) satisfy a Hölder condition in 𝐷, then
the operators

𝑊𝛼𝑆𝐷𝑊
−1
𝛼 − 𝐽𝑤

𝛽2𝑤

∞∑
𝑛=1

(
𝛾𝑤
𝛽𝑤

)𝑛−1 (
𝑆𝐷
)𝑛

+
𝛾𝑤
𝛽𝑤
𝐼,

𝑊𝛼𝑆
∗
𝐷𝑊

−1
𝛼 − 𝐽𝑤

𝛽2𝑤

∞∑
𝑛=1

(
𝛾𝑤

𝛽𝑤

)𝑛−1 (
𝑆∗
𝐷

)𝑛
+
𝛾𝑤

𝛽𝑤
𝐼

(4.4)

are compact on the space 𝐿2(𝐷).

Let 𝑈 be a bounded simply connected domain in ℂ with Liapunov boundary
Γ parameterized by a differentiable function 𝑓 : 𝕋 → Γ with a Hölder derivative
𝑓 ′ ∈ 𝐻𝜇(𝕋) (𝜇 ∈ (0, 1)) separated from zero. Then, by the Kellogg-Warschawski
theorem (see, e.g., [21, Theorem 3.6]), a conformal mapping 𝜑 of the open unit
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disc 𝐷 onto 𝑈 has a continuous extension 𝜑 to 𝐷 and there is a positive constant
𝑀 <∞ such that

∣𝜑′(𝑧1)− 𝜑′(𝑧2)∣ ≤𝑀 ∣𝑧1 − 𝑧2∣𝜇 for all 𝑧1, 𝑧2 ∈ 𝐷.
Analyzing the proof of Lemma 4.1 we immediately derive the following corol-

lary from that lemma.

Corollary 4.2. If 𝑈 is a bounded simply connected domain in ℂ with Liapunov
boundary Γ and 𝜑 is a conformal mapping of the open unit disk 𝐷 onto 𝑈 , then
the operators

𝑊𝜑𝑆𝑈𝑊
−1
𝜑 − (𝜑′/𝜑′) 𝑆𝐷, 𝑊𝜑𝑆

∗
𝑈𝑊

−1
𝜑 − (𝜑′/𝜑′) 𝑆∗

𝐷

are compact on the space 𝐿2(𝐷).

Remark 4.3. Corollary 4.2 remains valid with 𝐷 replaced by another bounded sim-
ply connected domain 𝑉 with Liapunov boundary.

Representing a quasiconformal diffeomorphism 𝛼 : 𝑈 → 𝑈 in the form 𝛼 =
𝜑∘ 𝛼̃∘𝜑−1 where 𝛼̃ is a quasiconformal diffeomorphism of 𝐷 onto itself, and apply-
ing Lemma 4.1 and Corollary 4.2, we get the next generalization of Lemma 4.1.

Lemma 4.4. If 𝑈 is a bounded simply connected domain in ℂ with Liapunov boun-
dary Γ and 𝛼 is a quasiconformal diffeomorphism of 𝑈 onto itself with partial
derivatives (4.2) satisfying a Hölder condition on 𝑈 , then the operators (4.4) with
𝐷 replaced by 𝑈 are compact on the space 𝐿2(𝑈).

Applying equality (4.3) and the compactness of the commutators 𝑐𝑆𝑈 −𝑆𝑈𝑐𝐼
for 𝑐 ∈ 𝐶(𝑈 ), we infer that[
𝐽𝑤
𝛽2𝑤

∞∑
𝑛=1

(
𝛾𝑤
𝛽𝑤

)𝑛−1 (
𝑆𝑈
)𝑛 − 𝛾𝑤

𝛽𝑤
𝐼

]𝜋
=

[
𝐽𝑤
𝛽𝑤𝛾𝑤

∞∑
𝑛=0

(
𝛾𝑤
𝛽𝑤

)𝑛 (
𝑆𝑈
)𝑛 − 𝛽𝑤

𝛾𝑤
𝐼

]𝜋
=

[
𝐽𝑤
𝛾𝑤

(
𝛽𝑤𝐼 − 𝛾𝑤𝑆𝑈

)−1 − 𝛽𝑤
𝛾𝑤
𝐼

]𝜋
=
[(
𝛽𝑤𝑆𝑈 − 𝛾𝑤𝐼

)(
𝛽𝑤𝐼 − 𝛾𝑤𝑆𝑈

)−1
]𝜋
. (4.5)

Analogously,[
𝐽𝑤

𝛽2𝑤

∞∑
𝑛=1

(
𝛾𝑤

𝛽𝑤

)𝑛−1 (
𝑆∗
𝑈

)𝑛 − 𝛾𝑤
𝛽𝑤
𝐼

]𝜋
=
[(
𝛽𝑤𝑆

∗
𝑈 − 𝛾𝑤𝐼

)(
𝛽𝑤𝐼 − 𝛾𝑤𝑆∗

𝑈

)−1
]𝜋
. (4.6)

5. 𝑪∗-algebra of two-dimensional singular integral operators with
continuous coefficients on the space 𝑳2(𝑼)

5.1. The Allan-Douglas local principle and the 𝑪∗-algebra 𝕬

To study the Fredholmness of operators 𝐴 ∈ 𝔄 we apply the Allan-Douglas local
principle (see, e.g., [10, Theorem 7.47], [6, Theorem 1.34]).

Let 𝒜 be a unital 𝐶∗-algebra and 𝒵 a central C∗-subalgebra of 𝒜 containing
the identity of 𝒜. Let 𝑀(𝒵) denote the maximal ideal space of 𝒵. With every
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𝑥 ∈𝑀(𝒵) we associate the closed two-sided ideal 𝐽𝑥 of 𝒜 generated by the ideal 𝑥
of 𝒵. Consider the quotient 𝐶∗-algebra 𝒜𝑥 := 𝒜/𝐽𝑥 and the canonical projection
𝜋𝑥 : 𝒜 → 𝒜𝑥. Below we need the next part of the Allan-Douglas local principle.

Theorem 5.1. Let 𝒜 be a unital 𝐶∗-algebra satisfying the conditions mentioned
above. If 𝑎 ∈ 𝒜, then 𝑎 is invertible (left invertible, right invertible) in 𝒜 if and
only if for every 𝑥 ∈𝑀(𝒵) the coset 𝑎𝑥 := 𝜋𝑥(𝑎) is invertible (left invertible, right
invertible) in 𝒜𝑥.

Given a bounded simply connected domain 𝑈 ⊂ ℂ with Liapunov boundary
Γ, consider the 𝐶∗-subalgebra 𝔄 = alg

{
𝑐𝐼, 𝑆𝑈 , 𝑆

∗
𝑈 : 𝑐 ∈ 𝐶(𝑈 )} of ℬ(𝐿2(𝑈)). The

𝐶∗-algebra 𝔄 contains the ideal 𝒦 = 𝒦(𝐿2(𝑈)) of compact operators.
According to [23] (also see [4, Section 8.2]), an operator 𝐴 ∈ ℬ(𝐿2(𝑈)) is

called an operator of local type if the commutators 𝑐𝐴 − 𝐴𝑐𝐼 are compact for all
𝑐 ∈ 𝐶(𝑈). Let Λ be the 𝐶∗-algebra of all operators of local type on the space
𝐿2(𝑈), and let Λ𝜋 := Λ/𝒦 be the corresponding quotient 𝐶∗-algebra. From [18,
Chapter X, Theorem 7.1] it follows that the singular integral operators 𝑆𝑈 and 𝑆∗

𝑈

are of local type, which implies the following.

Lemma 5.2. For every 𝐴 ∈ 𝔄 and every function 𝑐 ∈ 𝐶(𝑈), the commutators
𝑐𝐴−𝐴𝑐𝐼 are compact on the space 𝐿2(𝑈).

By Lemma 5.2, all the operators in the 𝐶∗-algebra 𝔄 are of local type, and
𝒵𝜋 :=

{
𝑐𝐼 +𝒦 : 𝑐 ∈ 𝐶(𝑈)} is a central subalgebra of the 𝐶∗-algebra 𝔄𝜋 := 𝔄/𝒦.

Obviously, 𝒵𝜋 ∼= 𝐶(𝑈), and therefore the maximal ideal space 𝑀(𝒵𝜋) of 𝒵𝜋 can

be identified with 𝑈 . For every point 𝑤 ∈ 𝑈 , let 𝐽𝜋𝑤 and 𝐽𝜋𝑤 denote the closed two-
sided ideals of the 𝐶∗-algebras 𝔄𝜋 and Λ𝜋, respectively, generated by the maximal
ideal

𝐼𝜋𝑤 :=
{
𝑐𝐼 + 𝒦 : 𝑐 ∈ 𝐶(𝑈), 𝑐(𝑤) = 0

} ⊂ 𝒵𝜋. (5.1)

By analogy with [4, Proposition 8.6] one can prove that the ideals 𝐽𝜋𝑤 and 𝐽𝜋𝑤 have
the form

𝐽𝜋𝑤 =
{
(𝑐𝐴)𝜋 : 𝑐 ∈ 𝐶(𝑈), 𝑐(𝑤) = 0, 𝐴 ∈ 𝔄

}
,

𝐽𝜋𝑤 =
{
(𝑐𝐴)𝜋 : 𝑐 ∈ 𝐶(𝑈), 𝑐(𝑤) = 0, 𝐴 ∈ Λ

}
.

(5.2)

With every 𝑤 ∈ 𝑈 we associate the local 𝐶∗-algebras

𝔄𝜋
𝑤 := {𝐴𝜋 + 𝐽𝜋𝑤 : 𝐴 ∈ 𝔄}, 𝔄̃𝜋

𝑤 := {𝐴𝜋 + 𝐽𝜋𝑤 : 𝐴 ∈ 𝔄}. (5.3)

Lemma 5.3. For every 𝑤 ∈ 𝑈 the map

𝜓𝑤 : 𝔄𝜋
𝑤 → 𝔄̃𝜋

𝑤, 𝐴
𝜋 + 𝐽𝜋𝑤 +→ 𝐴𝜋 + 𝐽𝜋𝑤 (5.4)

is an isometric *-isomorphism of the 𝐶∗-algebra 𝔄𝜋
𝑤 onto the 𝐶

∗-algebra 𝔄̃𝜋
𝑤.

Proof. Clearly, the map 𝜓𝑤 given by (5.4) is a *-homomorphism of the 𝐶∗-algebra
𝔄𝜋
𝑤 onto the 𝐶∗-algebra 𝔄̃𝜋

𝑤. Let us show that 𝜓𝑤 is an injective homomorphism.

Indeed, if 𝐴𝜋 ∈ 𝔄𝜋 and 𝐴𝜋 + 𝐽𝜋𝑤 ∈ Ker𝜓𝑤, then (5.4) implies that 𝐴𝜋 ∈ 𝔄𝜋 ∩ 𝐽𝜋𝑤.
Then from (5.2) it follows that 𝐴𝜋 = (𝑐𝐵)𝜋 where 𝑐 ∈ 𝐶(𝑈), 𝑐(𝑤) = 0 and
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𝐵 ∈ Λ. Clearly, there exists a sequence {𝑧𝑛} ⊂ 𝐶(𝑈) such that 𝑧𝑛(𝑤) = 0 and
lim
𝑛→∞ ∥𝑐(1− 𝑧𝑛)𝐼∥ℬ(𝐿2(𝑈)) = 0. Hence 𝐴𝜋 = lim

𝑛→∞(𝑧𝑛𝑐𝐵)
𝜋 in 𝔄𝜋, where (𝑧𝑛𝑐𝐵)

𝜋 ∈
𝐽𝜋𝑤 because (𝑧𝑛𝐼)

𝜋 ∈ 𝐼𝜋𝑤 (see (5.1)) and (𝑐𝐵)𝜋 ∈ 𝔄𝜋. Finally, since the ideal 𝐽𝜋𝑤
is closed, 𝐴𝜋 = lim

𝑛→∞(𝑧𝑛𝑐𝐵)
𝜋 ∈ 𝐽𝜋𝑤, that is, 𝐴𝜋

𝑤 = 0𝜋 + 𝐽𝜋𝑤, which means the

injectivity of 𝜓𝑤. Then, by [9, Corollary 1.8.3], 𝜓𝑤 is an isometric *-isomorphism

of the 𝐶∗-algebra 𝔄𝜋
𝑤 onto the 𝐶∗-algebra 𝔄̃𝜋

𝑤. □
Applying Theorem 5.1 to the 𝐶∗-algebra 𝔄𝜋, we obtain the following.

Theorem 5.4. An operator 𝐴 ∈ 𝔄 is Fredholm on the space 𝐿2(𝑈) if and only if
for every 𝑤 ∈ 𝑈 the coset 𝐴𝜋

𝑤 := 𝐴𝜋 + 𝐽𝜋𝑤 is invertible in the local 𝐶
∗-algebra 𝔄𝜋

𝑤.

5.2. Local algebras

Let us study the local algebras 𝔄𝜋
𝑤 associated to the points 𝑤 ∈ 𝑈 (see (5.3)).

If two 𝐶∗-algebras 𝒜1 and 𝒜2 are (isometrically) *-isomorphic, we will write
𝒜1

∼= 𝒜2. From the lemma below we can see that for 𝑧 ∈ 𝑈 there are two different
types of local 𝐶∗-algebras.

Theorem 5.5. Let 𝑈 be a bounded simply connected domain in ℂ with Liapunov
boundary Γ. Then for the 𝐶∗-algebra 𝔄 = alg

{
𝑐𝐼, 𝑆𝑈 , 𝑆

∗
𝑈 : 𝑐 ∈ 𝐶(𝑈 )} the following

assertions hold:

(i) if 𝑤 ∈ 𝑈 , then 𝔄𝜋
𝑤

∼= alg {𝐼, 𝑆ℝ2 , 𝑆∗
ℝ2} where the *-isomorphism is given by

(𝑐𝐼)𝜋𝑤 +→ 𝑐(𝑤)𝐼, (𝑆𝑈 )
𝜋
𝑤 +→ 𝑆ℝ2 , (𝑆∗

𝑈 )
𝜋
𝑤 +→ 𝑆∗

ℝ2 ; (5.5)

(ii) if 𝑤 ∈ Γ, then 𝔄𝜋
𝑤

∼= 𝔖 where the *-isomorphism is given by

(𝑐𝐼)𝜋𝑤 +→ 𝑐(𝑤)𝐼, (𝑆𝑈 )
𝜋
𝑤 +→ 𝑆Π, (𝑆∗

𝑈 )
𝜋
𝑤 +→ 𝑆∗

Π. (5.6)

Proof. (i) Fix 𝑤 ∈ 𝑈 and for 𝑘 > 0 define the conformal mappings 𝜑𝑘 : ℝ2 → ℝ2,

𝑧 +→ 𝑤 + 𝑘(𝑧 − 𝑤). By Lemma 5.3, 𝔄𝜋
𝑤

∼= 𝔄̃𝜋
𝑤, where the *-isomorphism 𝜓𝑤 :

𝔄𝜋
𝑤 → 𝔄̃𝜋

𝑤 is given by (5.4). Considering the 𝐶∗-algebra 𝔄 as a 𝐶∗-subalgebra of
ℬ(𝐿2(ℝ2)) generated by the operators (𝑐𝜒𝑈 )𝐼, 𝜒𝑈𝑆ℝ2𝜒𝑈𝐼 and 𝜒𝑈𝑆

∗
ℝ2𝜒𝑈𝐼 where

𝜒𝑈 is the characteristic function of 𝑈 , and identifying the closed two-sided ideals

𝐽𝜋𝑤 in the 𝐶∗-algebras Λ𝜋 and Λ𝜋
ℝ2 where

Λℝ2 :=
{
𝐴 ∈ ℬ(𝐿2(ℝ2)) : 𝑐𝐴−𝐴𝑐𝐼 ∈ 𝒦(𝐿2(ℝ2)) for all 𝑐 ∈ 𝐶(ℝ2 ∪ {∞})

}
,

we infer from the property ((𝜒𝑈 − 1)𝐼)𝜋 ∈ 𝐽𝜋𝑤 that

𝜓𝑤[(𝑐𝐼)
𝜋
𝑤] = (𝑐(𝑤)𝐼)𝜋+𝐽𝜋𝑤, 𝜓𝑤[(𝑆𝑈 )

𝜋
𝑤] = (𝑆ℝ2)𝜋+𝐽𝜋𝑤, 𝜓𝑤[(𝑆

∗
𝑈 )

𝜋
𝑤] = (𝑆∗

ℝ2)𝜋+𝐽𝜋𝑤.

Hence, to any coset 𝐴𝜋
𝑤 =
∑

𝑖

∏
𝑗

[
𝑎𝑖,𝑗𝑆𝑈 + 𝑏𝑖,𝑗𝐼+ 𝑐𝑖,𝑗𝑆

∗
𝑈

]𝜋
𝑤

∈ 𝔄𝜋
𝑤 with 𝑎𝑖,𝑗 , 𝑏𝑖,𝑗 , 𝑐𝑖,𝑗

∈ 𝐶(𝑈 ) we assign the coset 𝜓𝑤[𝐴
𝜋
𝑤] ∈ 𝔄̃𝜋

𝑤 of the form 𝐴𝜋
𝑤 := 𝐴𝜋 + 𝐽𝜋𝑤 where

𝐴 :=
∑

𝑖

∏
𝑗

[
(𝑎𝑖,𝑗(𝑤)𝑆ℝ2 + 𝑏𝑖,𝑗(𝑤)𝐼 + 𝑐𝑖,𝑗(𝑤)𝑆

∗
ℝ2

]
. (5.7)

Clearly, for every operator 𝐴 of the form (5.7),

𝑊𝜑𝑘𝐴𝑊
−1
𝜑𝑘 = 𝐴. (5.8)
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On the other hand, by analogy with [15, Proposition 7.5], we infer that

s-lim
𝑘→0

(
𝑊𝜑𝑘𝑇𝑊

−1
𝜑𝑘

)
= 0 (5.9)

for every 𝑇 ∈ Λ such that 𝑇 𝜋 ∈ 𝐽𝜋𝑤 and, in particular, for every 𝐾 ∈ 𝒦(𝐿2(ℝ2)).
Hence, we deduce from (5.8) and (5.9) that, for all such 𝑇 ,

∥𝐴∥ℬ(𝐿2(ℝ2)) ≤ lim inf
𝑘→0

∥𝑊𝜑𝑘

(
𝐴+ 𝑇

)
𝑊−1

𝜑𝑘
∥ℬ(𝐿2(ℝ2))

= ∥𝐴+𝑊𝜑𝑘𝑇𝑊
−1
𝜑𝑘 ∥ℬ(𝐿2(ℝ2)), (5.10)

where the coset
[
𝑊𝜑𝑘𝑇𝑊

−1
𝜑𝑘

]𝜋
belongs to the ideal 𝐽𝜋𝑤 along with the coset 𝑇 𝜋.

Since for operators 𝐴 of the form (5.7),

∥𝐴𝜋
𝑤∥ = inf

𝑇∈Λ: 𝑇𝜋∈𝐽𝜋𝑤

∥𝐴+ 𝑇 ∥ℬ(𝐿2(ℝ2)) ≤ ∥𝐴∥ℬ(𝐿2(ℝ2)), (5.11)

we conclude from (5.10) and (5.11) that ∥𝐴𝜋
𝑤∥ = ∥𝐴∥ℬ(𝐿2(ℝ2)) for every 𝐴 of the

form (5.7), which implies that the 𝐶∗-algebras 𝔄̃𝜋
𝑤 = 𝜓𝑤[𝔄

𝜋
𝑤] and alg {𝐼, 𝑆ℝ2 , 𝑆∗

ℝ2}
are *-isomorphic. Thus, 𝔄𝜋

𝑤
∼= 𝔄̃𝜋

𝑤
∼= alg {𝐼, 𝑆ℝ2 , 𝑆∗

ℝ2} where the *-isomorphism of
the 𝐶∗-algebra 𝔄𝜋

𝑤 onto the 𝐶∗-algebra alg {𝐼, 𝑆ℝ2 , 𝑆∗
ℝ2} is given by (5.5).

(ii) Let now 𝑤 ∈ Γ. Consider a simply connected domain 𝑉 ⊂ Π with Li-
apunov boundary ∂𝑉 that contains a segment [−1, 1] ⊂ ℝ. Then there exists a
conformal map 𝜑 : 𝑉 → 𝑈 which admits a continuous extension to 𝑉 with Hölder
derivative 𝜑′ on 𝑉 and such that 𝜑(0) = 𝑤. Considering the 𝐶∗-algebra 𝔄 as a 𝐶∗-
subalgebra of ℬ(𝐿2(ℝ2)) according to part (i), and identifying the closed two-sided

ideals 𝐽𝜋𝑤 in the 𝐶∗-algebras Λ𝜋 and Λ𝜋
ℝ2 , we infer that

𝜓𝑤[(𝑐𝐼)
𝜋
𝑤] = (𝑐(𝑤)𝜒𝑈 𝐼)

𝜋 + 𝐽𝜋𝑤,

𝜓𝑤[(𝑆𝑈 )
𝜋
𝑤 ] = (𝜒𝑈𝑆ℝ2𝜒𝑈𝐼)

𝜋 + 𝐽𝜋𝑤, 𝜓𝑤[(𝑆
∗
𝑈 )

𝜋
𝑤] = (𝜒𝑈𝑆

∗
ℝ2𝜒𝑈𝐼)

𝜋 + 𝐽𝜋𝑤.
(5.12)

By Corollary 4.2 and Remark 4.3,

𝑊𝜑

[
𝑐(𝑤)𝜒𝑈 𝐼

]𝜋
𝑊−1

𝜑 =
[
𝑐(𝑤)𝜒𝑉 𝐼

]𝜋
,

𝑊𝜑(𝑆𝑈 )
𝜋𝑊−1

𝜑 =
[
(𝜑′/𝜑′) 𝑆𝑉 ]𝜋 =

[
(𝜑′/𝜑′)𝜒𝑉 𝑆Π𝜒𝑉 𝐼]𝜋, (5.13)

𝑊𝜑(𝑆
∗
𝑈 )

𝜋𝑊−1
𝜑 =

[
(𝜑′/𝜑′) 𝑆∗

𝑉

]𝜋
=
[
(𝜑′/𝜑′)𝜒𝑉 𝑆∗

Π𝜒𝑉 𝐼]
𝜋

and (𝑊𝜑)
𝜋𝐽𝜋𝑤(𝑊

−1
𝜑 )𝜋 = 𝐽𝜋0 . Since ((𝜒𝑉 − 𝜒Π)𝐼)𝜋 ∈ 𝐽𝜋0 , we conclude from (5.12)

and (5.13) that

(𝑊𝜑)
𝜋𝜓𝑤[(𝑐𝐼)

𝜋
𝑤](𝑊

−1
𝜑 )𝜋 =

[
𝑐(𝑤)𝜒Π𝐼

]𝜋
0
,

(𝑊𝜑)
𝜋𝜓𝑤[(𝑆𝑈 )

𝜋
𝑤](𝑊

−1
𝜑 )𝜋 =

[
(𝜑′(0)/𝜑′(0))𝑆Π]𝜋0 , (5.14)

(𝑊𝜑)
𝜋𝜓𝑤[(𝑆

∗
𝑈 )

𝜋
𝑤](𝑊

−1
𝜑 )𝜋 =

[
(𝜑′(0)/𝜑′(0))𝑆∗

Π]
𝜋
0 .

Hence, any coset 𝐴𝜋
𝑤 =
∑

𝑖

∏
𝑗

[
𝑎𝑖,𝑗𝑆𝑈 + 𝑏𝑖,𝑗𝐼 + 𝑐𝑖,𝑗𝑆

∗
𝑈

]𝜋
𝑤

in the 𝐶∗-algebra 𝔄𝜋
𝑤,

where 𝑎𝑖,𝑗 , 𝑏𝑖,𝑗 , 𝑐𝑖,𝑗 ∈ 𝐶(𝑈 ), is transformed by (5.14) to the coset 𝐴𝜋
0 := 𝐴𝜋 + 𝐽𝜋0
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of the 𝐶∗-algebra 𝔖𝜋
0 , where 𝔖 = alg {𝐼, 𝑆Π, 𝑆∗

Π}, 𝔖𝜋
0 = {𝐴𝜋 + 𝐽𝜋0 : 𝐴 ∈ 𝔖} and

𝐴 :=
∑

𝑖

∏
𝑗

[
(𝑎𝑖,𝑗(𝑤)(𝜑′(0)/𝜑′(0))𝑆Π + 𝑏𝑖,𝑗(𝑤)𝐼 + 𝑐𝑖,𝑗(𝑤)(𝜑

′(0)/𝜑′(0))𝑆∗
Π

]
.

(5.15)

Taking now an operator 𝑇 ∈ Λ such that 𝑇 𝜋 ∈ 𝐽𝜋0 , applying the transforms

𝐴 + 𝑇 +→ 𝑊𝜑𝑘(𝐴 + 𝑇 )𝑊−1
𝜑𝑘

where 𝜑𝑘(𝑧) = 𝑘𝑧 and passing to the strong limits

s-lim
𝑘→0

𝑊𝜑𝑘(𝐴+ 𝑇 )𝑊−1
𝜑𝑘

, we infer by analogy with part (i) that, for operators 𝐴 of

the form (5.15),

∥𝐴𝜋
0∥ = inf

𝑇∈Λ: 𝑇𝜋∈𝐽𝜋0

∥𝐴+ 𝑇 ∥ℬ(𝐿2(ℝ2)) = ∥𝐴∥ℬ(𝐿2(Π)),

which due to (5.14) implies the *-isomorphism 𝔄𝜋
𝑤

∼= 𝔖𝜋
0

∼= 𝔖 of the 𝐶∗-algebras
𝔄𝜋
𝑤, 𝔖

𝜋
0 and 𝔖, where the *-isomorphism 𝔄𝜋

𝑤
∼= 𝔖 is given on the generators of

the 𝐶∗-algebra 𝔄𝜋
𝑤 by

(𝑐𝐼)𝜋𝑤 +→ 𝑐(𝑤)𝐼, (𝑆𝑈 )
𝜋
𝑤 +→ (𝜑′(0)/𝜑′(0))𝑆Π, (𝑆𝑈 )

𝜋
𝑤 +→ (𝜑′(0)/𝜑′(0))𝑆∗

Π. (5.16)

It remains to observe that (𝜑′(0)/𝜑′(0))𝑆Π is a nonunitary isometry on the space

𝐿2+(Π) along with 𝑆Π, and (𝜑′(0)/𝜑′(0))𝑆∗
Π is a nonunitary isometry on the space

𝐿2−(Π) along with 𝑆∗
Π because ∣𝜑′(0)/𝜑′(0)∣ = 1. Since the 𝐶∗-algebra generated

by any nonunitary isometry is *-isomorphic to the 𝐶∗-algebra generated by the
unilateral shift of multiplicity one (see [7]), we infer from the proof of Theorem 3.2
that the map defined on the generators of the 𝐶∗-algebra 𝔖 by

𝐼 +→ 𝐼, (𝜑′(0)/𝜑′(0))𝑆Π +→ 𝑆Π, (𝜑′(0)/𝜑′(0))𝑆∗
Π +→ 𝑆∗

Π (5.17)

is a *-isomorphism of the 𝐶∗-algebra 𝔖 onto itself. Finally, combining (5.16) and
(5.17), we get the *-isomorphism of 𝔄𝜋

𝑤 onto 𝔖 given by (5.6). □
From the formula for the Fourier transform of the kernels of multi-dimensional

singular integral operators (see, e.g., [18, Chapter X, p. 249]) it follows that

𝑆ℝ2 = 𝐹−1(𝜉/𝜉)𝐹, 𝑆∗
ℝ2 = 𝐹−1(𝜉/𝜉)𝐹,

where 𝐹 is the two-dimensional Fourier transform defined on 𝐿2(ℝ2) by

(𝐹𝑢)(𝑥) =
1

2𝜋

∫
ℝ2

𝑢(𝑡)𝑒−𝑖𝑥⋅𝑡𝑑𝑡, 𝑥 ∈ ℝ2,

where 𝑥 ⋅ 𝑡 is the scalar product of vectors 𝑥, 𝑡 ∈ ℝ2, and 𝐹−1 is the inverse Fourier
transform. Hence, 𝑆ℝ2 and 𝑆∗

ℝ2 are unitary operators.

Remark 5.6. Since the operators 𝑆ℝ2 and 𝑆∗
ℝ2 are unitary on the space 𝐿2(ℝ2),

we conclude that the commutative 𝐶∗-algebra alg {𝐼, 𝑆ℝ2, 𝑆∗
ℝ2} is *-isomorphic to

the 𝐶∗-algebra 𝐶(𝕋) where 𝕋 = {𝑧 ∈ ℂ : ∣𝑧∣ = 1} is the spectrum of 𝑆ℝ2 and the
*-isomorphism is given by the Gelfand transform

𝐼 +→ 1, 𝑆ℝ2 +→ 𝑧, 𝑆∗
ℝ2 +→ 𝑧 (𝑧 ∈ 𝕋).

Combining Theorems 5.4, 5.5, Remark 5.6 and Theorem 3.2, we obtain the
following result for the 𝐶∗-algebra 𝔄 = alg

{
𝑐𝐼, 𝑆𝑈 , 𝑆

∗
𝑈 : 𝑐 ∈ 𝐶(𝑈 )} (cf. [24]).
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Theorem 5.7. Let 𝑈 be a bounded simply connected domain in ℂ with Liapunov

boundary Γ. Then the spectrum 𝔄𝜋 of the quotient 𝐶∗-algebra 𝔄𝜋 can be para-
meterized by the points (𝑤, 𝑧) ∈ (𝑈 × 𝕋) ∪ (Γ × {±2}) where the one-dimensional
non-zero irreducible representations 𝜋𝑤,𝑧 : 𝔄𝜋 → ℂ for every (𝑤, 𝑧) ∈ 𝑈 × 𝕋 and
infinite-dimensional non-zero irreducible representations 𝜋𝑤,𝑧 : 𝔄𝜋 → ℬ(𝐻2(𝕋))
for every (𝑤, 𝑧) ∈ Γ× {±2} are given on the generators of the 𝐶∗-algebra 𝔄𝜋 by

𝜋𝑤,𝑧([𝑐𝐼]
𝜋) = 𝑐(𝑤), 𝜋𝑤,𝑧([𝑆Π]

𝜋) = 𝑧, 𝜋𝑤,𝑧([𝑆
∗
Π]

𝜋) = 𝑧 if (𝑤, 𝑧) ∈ 𝑈 × 𝕋,

𝜋𝑤,𝑧([𝑐𝐼]
𝜋) = 𝑐(𝑤)𝐼, 𝜋𝑤,𝑧([𝑆Π]

𝜋) = 𝑇𝑧, 𝜋𝑤,𝑧([𝑆
∗
Π]

𝜋) = 𝑇𝑧 if (𝑤, 𝑧) ∈ Γ× {2},
𝜋𝑤,𝑧([𝑐𝐼]

𝜋) = 𝑐(𝑤)𝐼, 𝜋𝑤,𝑧([𝑆Π]
𝜋) = 𝑇𝑧, 𝜋𝑤,𝑧([𝑆

∗
Π]

𝜋) = 𝑇𝑧 if (𝑤, 𝑧) ∈ Γ× {−2},
(5.18)

where 𝑇𝑧 and 𝑇𝑧 are Toeplitz operators with symbols 𝑧 and 𝑧 on the space 𝐻
2(𝕋).

Identifying numbers 𝑏 ∈ ℂ and the multiplication operators 𝑏𝐼 acting on the
Hilbert space 𝐻 = ℂ and taking into account the continuity in view of (5.18) of
the functions

𝜂𝐴 : 𝑈 × 𝕋 → ℂ, (𝑤, 𝑧) +→ 𝜋𝑤,𝑧(𝐴
𝜋), (5.19)

𝜂±
𝐴 : Γ → ℬ(𝐻2(𝕋)), 𝑤 +→ 𝜋𝑤,±2(𝐴

𝜋) (5.20)

for every 𝐴 ∈ 𝔄, where 𝜋𝑤,𝑧(𝐴
𝜋) = 𝜂𝐴(𝑤, 𝑧),

𝜋𝑤,2(𝐴
𝜋) = 𝜂𝐴(𝑤, 𝑇𝑧) = 𝑇𝜂𝐴(𝑤,𝑧) +𝐾1,

𝜋𝑤,−2(𝐴
𝜋) = 𝜂𝐴(𝑤, 𝑇𝑧) = 𝑇𝜂𝐴(𝑤,𝑧) +𝐾2,

(5.21)

and 𝐾1, 𝐾2 are compact operators on the space 𝐻2(𝕋), we immediately deduce
the following result from Theorem 5.7.

Corollary 5.8. Under the conditions of Theorem 5.7, an operator 𝐴 ∈ 𝔄 is Fredholm
on the space 𝐿2(𝑈) if and only if for every (𝑤, 𝑧) ∈ (𝑈×𝕋)∪(Γ×{±2}) the operator
𝜋𝑤,𝑧(𝐴

𝜋) is invertible on the Hilbert space 𝐻𝑤,𝑧, where 𝐻𝑤,𝑧 = ℂ for (𝑤, 𝑧) ∈ 𝑈×𝕋

and 𝐻𝑤,𝑧 = 𝐻2(𝕋) for (𝑤, 𝑧) ∈ Γ× {±2}.
Thus, the operator function Ψ(𝐴) : (𝑤, 𝑧) +→ 𝜋𝑤,𝑧(𝐴

𝜋) defined for (𝑤, 𝑧) ∈
(𝑈 × 𝕋) ∪ (Γ × {±2}) by (5.19)–(5.21) and equipped with the norm

∥Ψ(𝐴)∥ = max
{

max
(𝑤,𝑧)∈𝑈×𝕋

∣𝜋𝑤,𝑧(𝐴
𝜋)∣, max

(𝑤,𝑧)∈Γ×{±2}
∥𝜋𝑤,𝑧(𝐴

𝜋)∥ℬ(𝐻2(𝕋))

}
serves as a Fredholm symbol for operators 𝐴 ∈ 𝔄, and the Fredholmness of 𝐴 ∈ 𝔄
on the space 𝐿2(𝑈) is equivalent to the invertibility of its Fredholm symbol Ψ(𝐴).

6. 𝑪∗-algebra of two-dimensional singular integral operators with
shifts and continuous coefficients on the space 𝑳2(𝑼)

Let 𝑈 be a bounded simply connected domain in ℂ with Liapunov boundary
Γ, and let 𝐺 be a discrete amenable group of quasiconformal diffeomorphisms
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𝑔 : 𝑈 → 𝑈 whose partial derivatives ∂𝑔
∂𝑧 and ∂𝑔

∂𝑧 satisfy a Hölder condition on 𝑈 .

Suppose that for every 𝑔 ∈ 𝐺 ∖ {𝑒} the closed set Φ𝑔 ⊂ 𝑈 of all fixed points of 𝑔
has empty interior. To every 𝑔 ∈ 𝐺 we assign the unitary weighted shift operator
𝑊𝑔 ∈ ℬ(𝐿2(𝑈)) given by (1.2). Consider the 𝐶∗-subalgebra 𝔅 := 𝐶∗(𝔄,𝑊𝐺) of
ℬ(𝐿2(𝑈)) generated by all operators 𝐴 ∈ 𝔄 and all operators 𝑊𝑔 with 𝑔 ∈ 𝐺.
Then 𝔅 contains the ideal 𝒦 = 𝒦(𝐿2(𝑈)), 𝒵𝜋 =

{
𝑐𝐼 +𝒦 : 𝑐 ∈ 𝐶(𝑈)} is a central

subalgebra of the 𝐶∗-algebra 𝔄𝜋 = 𝔄/𝒦, and 𝑀(𝒵𝜋) = 𝐶(𝑈).
By Lemma 4.4, for every 𝑔 ∈ 𝐺 the mappings 𝛼𝑔 : 𝐴 +→ 𝑊𝑔 𝐴𝑊

∗
𝑔 are

∗-automorphisms of the 𝐶∗-algebras 𝔄𝜋 and 𝒵𝜋. Thus, assumptions (A1) and
(A2) of Subsection 2.1 are satisfied. The set 𝑃𝔄𝜋 of all pure states of the 𝐶∗-
algebra 𝔄𝜋 consists of all functionals 𝜋𝑤,𝑧(𝐴

𝜋) for (𝑤, 𝑧) ∈ 𝑈×𝕋 (these functionals
simultaneously are one-dimensional representations of 𝔄𝜋) and all vector states
(𝜋𝑤,𝑧(𝐴

𝜋)𝜉, 𝜉) for (𝑤, 𝑧) ∈ Γ× {±2} where 𝜉 ∈ 𝐻2(𝕋) are vectors of norm 1.
Since the interior of each set Φ𝑔 (𝑔 ∈ 𝐺 ∖ {𝑒}) is empty, we easily infer

from the continuity of the functions 𝜂𝐴 : 𝑈 × 𝕋 → ℂ (𝐴 ∈ 𝔄) that for every
finite set 𝐺0 ⊂ 𝐺 ∖ {𝑒} and every open neighborhood 𝑉𝑤0,𝑧0 ⊂ 𝑈 × 𝕋 of any
point (𝑤0, 𝑧0) ∈ (∪𝑔∈𝐺0

Φ𝑔

) × 𝕋 there exists a point (𝑤, 𝑧0) ∈ 𝑉𝑤0,𝑧0 such that

𝑔(𝑤) ∕= 𝑤 for all 𝑔 ∈ 𝐺0. In that case 𝑀0 = 𝑈 , and for every 𝜀 > 0, every
(𝑤0, 𝑧0) ∈ (∪𝑔∈𝐺0

Φ𝑔

)× 𝕋 and every 𝐴 ∈ 𝔄 there is a 𝛿 > 0 such that

∣𝜋𝑤,𝑧0(𝐴
𝜋) − 𝜋𝑤0,𝑧0(𝐴

𝜋)∣ = ∣𝜂𝐴(𝑤, 𝑧0) − 𝜂𝐴(𝑤0, 𝑧0)∣ < 𝜀 if ∣𝑤 − 𝑤0∣ < 𝛿.
On the other hand, from the continuity of functions 𝜂±

𝐴 : Γ → ℬ(𝐻2(𝕋)) (𝐴 ∈
𝔄) it follows that for every finite set 𝐺0 ⊂ 𝐺 ∖ {𝑒} and every open neighborhood
𝑉𝑤0 ⊂ Γ of any point 𝑤0 ∈ ∪𝑔∈𝐺0

Φ𝑔 there exists a point 𝑤 ∈ 𝑉𝑤0 such that

𝑔(𝑤) ∕= 𝑤 for all 𝑔 ∈ 𝐺0. In that case again 𝑀0 = 𝑈 , and for every 𝜀 > 0,
every 𝑤0 ∈ ∪𝑔∈𝐺0

Φ𝑔 and every 𝐴 ∈ 𝔄 there is a 𝛿 > 0 such that for any vector

𝜉 ∈ 𝐻2(𝕋) of norm 1,∣∣(𝜋𝑤,2(𝐴
𝜋)𝜉, 𝜉) − (𝜋𝑤0,2(𝐴

𝜋)𝜉, 𝜉)
∣∣ ≤ ∥∥𝜋𝑤,2(𝐴

𝜋) − 𝜋𝑤0,2(𝐴
𝜋)
∥∥

ℬ(𝐻2(𝕋))

=
∥∥𝜂𝐴(𝑤, 𝑇𝑧)− 𝜂𝐴(𝑤0, 𝑇𝑧)∥∥ℬ(𝐻2(𝕋))

< 𝜀,∣∣(𝜋𝑤,−2(𝐴
𝜋)𝜉, 𝜉) − (𝜋𝑤0,−2(𝐴

𝜋)𝜉, 𝜉)
∣∣ ≤ ∥∥𝜋𝑤,−2(𝐴

𝜋) − 𝜋𝑤0,−2(𝐴
𝜋)
∥∥

ℬ(𝐻2(𝕋))

=
∥∥𝜂𝐴(𝑤, 𝑇𝑧)− 𝜂𝐴(𝑤0, 𝑇𝑧)∥∥ℬ(𝐻2(𝕋))

< 𝜀

if ∣𝑤 − 𝑤0∣ < 𝛿. Thus, condition (A3) is also fulfilled along with (A1)–(A2).
Hence, we can obtain a local-trajectory criterion for the invertibility of cosets

𝐵𝜋 ∈ 𝔅𝜋 or, in other words, criterion for the Fredholmness of operators 𝐵 ∈ 𝔅
on the basis of Theorems 2.1 and 2.2.

Since 𝒵𝜋 ∼= 𝐶(𝑈 ) and 𝐺 is a discrete group of quasiconformal mappings of 𝑈
onto itself, we conclude from (2.1) that 𝛽𝑔 = 𝑔 for every 𝑔 ∈ 𝐺. Then with every

point 𝑤 ∈ 𝑈 we associate its 𝐺-orbit 𝐺(𝑤) = {𝑔(𝑤) : 𝑔 ∈ 𝐺} ⊂ 𝑈 .
For every 𝑤 ∈ 𝑈 , consider the closed two-sided ideal 𝐽𝜋𝑤 of the algebra 𝔄𝜋

generated by the maximal ideal 𝐼𝜋𝑤 of the algebra 𝒵𝜋 ∼= 𝐶(𝑈), and let ℋ𝑤 be
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the Hilbert space of an isometric representation 𝜋𝑤 : 𝔄𝜋/𝐽𝜋𝑤 → ℬ(ℋ𝑤). We also
consider the canonical ∗-homomorphism 𝜚𝑤 : 𝔄𝜋 → 𝔄𝜋/𝐽𝜋𝑤 and the representation

𝜋′
𝑤 : 𝔄𝜋 → ℬ(ℋ𝑤), 𝐴𝜋 +→ (𝜋𝑤 ∘ 𝜚𝑤)(𝐴𝜋).

Since 𝛼𝑔(𝐽
𝜋
𝛽𝑔(𝑤)

) = 𝐽𝜋𝑤 for all 𝑔 ∈ 𝐺 and all 𝑤 ∈ 𝑈 in view of (A1), the quotient

algebras 𝔄𝜋/𝐽𝜋𝑔(𝑤) and 𝔄𝜋/𝐽𝜋𝑤 are ∗-isomorphic. Then the spaces ℋ𝑔(𝑤) can be

chosen equal for all 𝑔 ∈ 𝐺.
According to Corollary 5.8, the descriptions of the Hilbert spaces ℋ𝑤 and

representations 𝜋′
𝑤 for points 𝑤 ∈ 𝑈 and points 𝑤 ∈ Γ are different. If 𝑤 ∈ 𝑈 ,

then ℋ𝑤 =
⊕

𝑧∈𝕋
ℂ, while for 𝑤 ∈ Γ we have ℋ𝑤 =

(⊕
𝑧∈𝕋

ℂ
)⊕𝐻2(𝕋)⊕𝐻2(𝕋).

Consequently, from Subsection 5.2 it follows that for 𝑤 ∈ 𝑈 the representations
𝜋′
𝑤 : 𝔄𝜋 → ℬ(⊕𝑧∈𝕋

ℂ
)
are given by 𝜋′

𝑤 =
⊕

𝑧∈𝕋
𝜋𝑤,𝑧. On the other hand, if

𝑤 ∈ Γ, then the representations 𝜋′
𝑤 : 𝔄𝜋 → ℬ((⊕𝑧∈𝕋

ℂ
) ⊕𝐻2(𝕋) ⊕𝐻2(𝕋)

)
are

given by 𝜋′
𝑤 =
(⊕

𝑧∈𝕋
𝜋𝑤,𝑧

)⊕ 𝜋𝑤,2 ⊕ 𝜋𝑤,−2.

Let Ω := Ω(𝑈) be the set of all 𝐺-orbits of points 𝑤 ∈ 𝑈 . Fix a point
𝑡 = 𝑡𝜔 on every 𝐺-orbit 𝜔 ∈ Ω. Let 𝐻𝜔 = ℋ𝑡 where 𝑡 = 𝑡𝜔, and let 𝑙2(𝐺,𝐻𝜔)
be the Hilbert space of all functions 𝑓 : 𝐺 +→ 𝐻𝜔 such that 𝑓(𝑔) ∕= 0 for at most
countable set of points 𝑔 ∈ 𝐺 and

∑ ∥𝑓(𝑔)∥2𝐻𝜔
<∞. For every 𝜔 ∈ Ω we consider

the representation 𝜋𝜔 : 𝔅 → ℬ(𝑙2(𝐺,𝐻𝜔)
)
defined by

[𝜋𝜔(𝐴
𝜋)𝑓 ](𝑔) = 𝜋′

𝑡([𝛼𝑔(𝐴)]
𝜋)𝑓(𝑔), [𝜋𝜔([𝑊ℎ]

𝜋)𝑓 ](𝑔) = 𝑓(𝑔ℎ) (6.1)

for all 𝐴 ∈ 𝔄, all 𝑔, ℎ ∈ 𝐺, and all 𝑓 ∈ 𝑙2(𝐺,𝐻𝜔).

Taking 𝐴 =
∑

𝑖

∏
𝑗

[
𝑎𝑖,𝑗𝑆𝑈+𝑏𝑖,𝑗𝐼+𝑐𝑖,𝑗𝑆

∗
𝑈

] ∈ 𝔅 and denoting 𝛽𝑔(𝑤) :=
∂𝑔
∂𝑧 (𝑤)

and 𝛾𝑔(𝑤) :=
∂𝑔
∂𝑧 (𝑤), we infer from Lemma 4.4 and the equalities (4.5) and (4.6)

that[
𝛼𝑔(𝐴)

]𝜋
𝑤
=
(
𝑊𝑔

∑
𝑖

∏
𝑗

[
𝑎𝑖,𝑗𝑆𝑈 + 𝑏𝑖,𝑗𝐼 + 𝑐𝑖,𝑗𝑆

∗
𝑈

]
𝑊−1

𝑔

)𝜋
𝑤

=
∑

𝑖

∏
𝑗

[
𝑎𝑖,𝑗 [𝑔(𝑤]

(
𝛽𝑔(𝑤)𝑆𝑈 − 𝛾𝑔(𝑤)𝐼

)(
𝛽𝑔(𝑤)𝐼 − 𝛾𝑔(𝑤)𝑆𝑈

)−1

+ 𝑏𝑖,𝑗 [𝑔(𝑤)]𝐼+𝑐𝑖,𝑗 [𝑔(𝑤)]
(
𝛽𝑔(𝑤)𝑆

∗
𝑈 −𝛾𝑔(𝑤)𝐼

)(
𝛽𝑔(𝑤)𝐼−𝛾𝑔(𝑤)𝑆∗

𝑈

)−1
]𝜋
𝑤
.

Hence, setting

𝜎𝑔(𝑤, 𝑧) :=
(
𝛽𝑔(𝑤) − 𝛾𝑔(𝑤) 𝑧

)(
𝛽𝑔(𝑤) − 𝛾𝑔(𝑤)𝑧

)−1
𝑧, (6.2)

𝜎𝑔(𝑤, 𝑇𝑧) :=
(
𝛽𝑔(𝑤)𝐼 − 𝛾𝑔(𝑤)𝑇𝑧

)(
𝛽𝑔(𝑤)𝐼 − 𝛾𝑔(𝑤)𝑇𝑧

)−1
𝑇𝑧, (6.3)

we conclude from (6.3) that

[𝜎𝑔(𝑤, 𝑇𝑧)]
∗ =
(
𝛽𝑔(𝑤)𝐼 − 𝛾𝑔(𝑤)𝑇𝑧

)(
𝛽𝑔(𝑤)𝐼 − 𝛾𝑔(𝑤)𝑇𝑧

)−1
𝑇𝑧,
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and therefore, taking into account (5.19) and (5.21), we obtain

𝜋𝑤,𝑧([𝛼𝑔(𝐴)]
𝜋) = 𝜂𝐴

(
𝑔(𝑤), 𝜎𝑔(𝑤, 𝑧)

)
if (𝑤, 𝑧) ∈ 𝑈 × 𝕋, (6.4)

𝜋𝑤,2([𝛼𝑔(𝐴)]
𝜋) = 𝜂𝐴

(
𝑔(𝑤), 𝜎𝑔(𝑤, 𝑇𝑧)

)
if 𝑤 ∈ Γ, (6.5)

𝜋𝑤,−2([𝛼𝑔(𝐴)]
𝜋) = 𝜂𝐴

(
𝑔(𝑤), [𝜎𝑔(𝑤, 𝑇𝑧)]

∗) if 𝑤 ∈ Γ. (6.6)

Thus every *-automorphism 𝛼𝑔 of the 𝐶∗-algebra 𝔄𝜋 induces the homeomorphism

𝜆𝑔 of the compact 𝑈 × 𝕋 onto itself by the rule:

𝜆𝑔(𝑤, 𝑧) = (𝑔(𝑤), 𝜎𝑔(𝑤, 𝑧)) for all (𝑤, 𝑧) ∈ 𝑈 × 𝕋.

It is easily seen that if 𝐺 acts topologically freely on 𝑀 = 𝑈 , then the group
{𝜆𝑔 : 𝑔 ∈ 𝐺} acts topologically freely on 𝑈 × 𝕋.

Setting Ω𝑈 := {𝐺(𝑤) : 𝑤 ∈ 𝑈}, ΩΓ := {𝐺(𝑤) : 𝑤 ∈ Γ} and representing the
spaces 𝑙2(𝐺,𝐻𝜔) (to within isometric isomorphisms) as 𝑙2(𝐺,𝐻𝜔) =

⊕
𝑧∈𝕋
𝑙2(𝐺)

if 𝜔 ∈ Ω𝑈 , and

𝑙2(𝐺,𝐻𝜔) =
(⊕

𝑧∈𝕋
𝑙2(𝐺)

)
⊕ 𝑙2(𝐺,𝐻2(𝕋)) ⊕ 𝑙2(𝐺,𝐻2(𝕋)) if 𝜔 ∈ ΩΓ,

we infer from (6.1) that the representation 𝜋𝜔 : 𝔅𝜋 → ℬ(𝑙2(𝐺,𝐻𝜔)
)
can be given

by 𝜋𝜔 =
⊕

𝑧∈𝕋
𝜋𝜔,𝑧 if 𝜔 ⊂ 𝑈 , and

𝜋𝜔 =
(⊕

𝑧∈𝕋
𝜋𝜔,𝑧

)
⊕ 𝜋𝜔,2 ⊕ 𝜋𝜔,−2 if 𝜔 ⊂ Γ,

where the representations 𝜋𝜔,𝑧 : 𝔅𝜋 → 𝑙2(𝐺) for 𝜔 ⊂ 𝑈 and 𝑧 ∈ 𝕋 are defined for
all 𝐴 ∈ 𝔄, all 𝑔, ℎ ∈ 𝐺 and all 𝑓 ∈ 𝑙2(𝐺) in view of (6.4) by[

𝜋𝜔,𝑧(𝐴
𝜋)𝑓
]
(𝑔) = 𝜋𝑤,𝑧([𝛼𝑔(𝐴)]

𝜋)𝑓(𝑔) = 𝜂𝐴
(
𝑔(𝑤), 𝜎𝑔(𝑤, 𝑧)

)
𝑓(𝑔),[

𝜋𝜔,𝑧([𝑊ℎ]
𝜋)𝑓
]
(𝑔) = 𝑓(𝑔ℎ);

(6.7)

and the representations 𝜋𝜔,±2 : 𝔅𝜋 → 𝑙2(𝐺,𝐻2(𝕋)) for 𝜔 ⊂ Γ are defined for all
𝐴 ∈ 𝔄, all 𝑔, ℎ ∈ 𝐺 and all 𝑓 ∈ 𝑙2(𝐺,𝐻2(𝕋)) in view of (6.5)–(6.6) by[

𝜋𝜔,2(𝐴
𝜋)𝑓
]
(𝑔) = 𝜋𝑤,2([𝛼𝑔(𝐴)]

𝜋)𝑓(𝑔) = 𝜂𝐴
(
𝑔(𝑤), 𝜎𝑔(𝑤, 𝑇𝑧)

)
𝑓(𝑔),[

𝜋𝜔,−2(𝐴
𝜋)𝑓
]
(𝑔) = 𝜋𝑤,−2([𝛼𝑔(𝐴)]

𝜋)𝑓(𝑔) = 𝜂𝐴
(
𝑔(𝑤), [𝜎𝑔(𝑤, 𝑇𝑧)]

∗)𝑓(𝑔), (6.8)[
𝜋𝜔,±2([𝑊ℎ]

𝜋)𝑓
]
(𝑔) = 𝑓(𝑔ℎ).

Theorem 6.1. Let 𝑈 be a bounded simply connected domain in ℂ with Liapunov
boundary Γ, let 𝐺 be a discrete amenable group of quasiconformal diffeomorphisms
𝑔 : 𝑈 → 𝑈 whose partial derivatives ∂𝑔

∂𝑧 and
∂𝑔
∂𝑧 satisfy a Hölder condition on 𝑈

and the sets Φ𝑔 of fixed points for all 𝑔 ∈ 𝐺 ∖ {𝑒} have empty interiors, and let
𝜔 ∩ 𝕋 = ∅ for every orbit 𝜔 ∈ Ω𝑈 . Then an operator 𝐵 ∈ 𝔅 is Fredholm (resp.,
𝑛-normal, 𝑑-normal) on the space 𝐿2(𝑈) if and only if for every 𝜔 ∈ Ω𝑈 and every
𝑧 ∈ 𝕋 the operators 𝜋𝜔,𝑧(𝐵

𝜋) are invertible (resp., left invertible, right invertible)
on the space 𝑙2(𝐺) and for every 𝜔 ∈ ΩΓ the operators 𝜋𝜔,±2(𝐵

𝜋) are invertible
(resp., left invertible, right invertible) on the space 𝑙2(𝐺,𝐻2(𝕋)).
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Proof. Let us prove the Fredholm criterion for the operators 𝐵 ∈ 𝔅 on the basis of
Theorem 2.2 (the case of 𝑛- or 𝑑-normality of 𝐵 ∈ 𝔅 is reduced to the Fredholm-
ness of the operators 𝐵∗𝐵 or 𝐵𝐵∗, respectively). Since the 𝐶∗-algebra 𝔅 satisfies
conditions (A1)–(A3), it remains to check all other conditions of Theorem 2.2.

By the Stone-Weierstrass theorem (see, e.g., [22]), the 𝐶∗-algebra 𝐶(𝑈) of all
continuous complex-valued functions on the compact 𝑈 is the uniform closure of
the set of all complex polynomials 𝑃 (𝑧, 𝑧). Hence the 𝐶∗-algebra 𝐶(𝑈) is separable.

We will now prove that
∩

𝑤∈𝜔 𝐽
𝜋
𝑤 =
∩

𝑤∈𝜔 𝐽
𝜋
𝑤 for every 𝐺-orbit 𝜔 ∈ Ω such

that 𝜔 = 𝜔′. Let 𝜔 = 𝜔′ and 𝑤 ∈ 𝜔 ∖ 𝜔. Then 𝑤 = lim𝑛→∞ 𝑡𝑛 where {𝑡𝑛} is a
sequence of points in the 𝐺-orbit 𝜔. By [9, Theorem 2.9.7], every closed two-sided
ideal 𝐽𝜋𝑤 of the 𝐶∗-algebra 𝔄𝜋 is the intersection of the primitive ideals in 𝔄𝜋

(that is, kernels of non-zero irreducible representations of 𝔄𝜋 in Hilbert spaces)
that contain 𝐽𝜋𝑤. Hence, 𝐽

𝜋
𝑤 =
∩

𝑧∈𝕋
Ker𝜋𝑤,𝑧 if 𝑤 ∈ 𝑈 , and

𝐽𝜋𝑤 =
(∩

𝑧∈𝕋
Ker𝜋𝑤,𝑧

)
∩ Ker𝜋𝑤,2 ∩ Ker𝜋𝑤,−2 if 𝑤 ∈ Γ. (6.9)

On the other hand, by [9, Proposition 2.4.9], for every pure state 𝜚 = (𝜋(⋅)𝜉, 𝜉)
on a 𝐶∗-algebra 𝔄𝜋 where 𝜋 is an irreducible representation of 𝔄𝜋 in a Hilbert
space 𝐻 and 𝜉 is any vector in 𝐻 of norm 1, it follows that 𝐽𝜋𝑤 ⊂ Ker 𝜚 if and only
if 𝐽𝜋𝑤 ⊂ Ker𝜋. Let 𝜔 ∈ Ω𝑈 . Then, because for every 𝐺-orbit 𝜔 ⊂ 𝑈 the points
𝑤 ∈ 𝜔 ∖ 𝜔 are in 𝑈 , we conclude from the continuity of the function 𝜂𝐴 on 𝑈 × 𝕋

that, for every state 𝜋𝑤,𝑧 (𝑧 ∈ 𝕋) and every coset 𝐴𝜋 ∈ ∩𝑡∈𝜔 𝐽
𝜋
𝑡 ,

𝜋𝑤,𝑧(𝐴
𝜋) = 𝜂𝐴(𝑤, 𝑧) = lim

𝑛→∞ 𝜂𝐴(𝑡𝑛, 𝑧) = lim
𝑛→∞𝜋𝑡𝑛,𝑧(𝐴

𝜋) = 0.

Hence 𝐴𝜋 ∈ ∩𝑧∈𝕋
Ker𝜋𝑤,𝑧 = 𝐽𝜋𝑤, which implies that

∩
𝑤∈𝜔 𝐽

𝜋
𝑤 =

∩
𝑤∈𝜔 𝐽

𝜋
𝑤 for

every 𝐺-orbit 𝜔 ∈ Ω𝑈 .

Let now 𝜔 ⊂ ΩΓ and 𝐴𝜋 ∈ ∩𝑡∈𝜔 𝐽
𝜋
𝑡 . Then by the part already proved we

get 𝜋𝑤,𝑧(𝐴
𝜋) = 0 for all 𝑧 ∈ 𝕋. Hence, for the pure states 𝜚𝑤,±2 := (𝜋𝑤,±2(⋅)𝜉, 𝜉)

where 𝜉 ∈ 𝐻2(𝕋) are arbitrary vectors of norm 1, we infer by (5.2) and (5.21) that

𝜚𝑤,2(𝐴
𝜋) := (𝜋𝑤,2(𝐴

𝜋)𝜉, 𝜉) = (𝜂𝐴(𝑤, 𝑇𝑧)𝜉, 𝜉)

= lim
𝑛→∞(𝜂𝐴(𝑡𝑛, 𝑇𝑧)𝜉, 𝜉) = lim

𝑛→∞(𝜋𝑡𝑛,2(𝐴
𝜋)𝜉, 𝜉) = 0,

𝜚𝑤,−2(𝐴
𝜋) := (𝜋𝑤,−2(𝐴

𝜋)𝜉, 𝜉) = (𝜂𝐴(𝑤, 𝑇𝑧)𝜉, 𝜉)

= lim
𝑛→∞(𝜂𝐴(𝑡𝑛, 𝑇𝑧)𝜉, 𝜉) = lim

𝑛→∞(𝜋𝑡𝑛,−2(𝐴
𝜋)𝜉, 𝜉) = 0.

Hence, in view of (5.21) and (6.9), we conclude that

𝐴𝜋 ∈
(∩

𝑧∈𝕋
Ker𝜋𝑤,𝑧

)
∩ Ker𝜋𝑤,2 ∩ Ker𝜋𝑤,−2 = 𝐽

𝜋
𝑤 if 𝑤 ∈ Γ,

which implies that
∩

𝑤∈𝜔 𝐽
𝜋
𝑤 =
∩

𝑤∈𝜔 𝐽
𝜋
𝑤 for every 𝐺-orbit 𝜔 ∈ ΩΓ as well.

Since all the conditions of Theorem 2.2 are satisfied, we infer from this the-
orem that an operator 𝐵 ∈ 𝔅 is Fredholm on the space 𝐿2(𝑈) if and only if for
every orbit 𝜔 ∈ Ω the operator 𝜋𝜔(𝐵

𝜋) is invertible on the space 𝑙2(𝐺,𝐻𝜔).
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Let 𝜔 ∈ Ω𝑈 . Then the invertibility of the operator 𝜋𝜔(𝐵
𝜋) on the space

𝑙2(𝐺,𝐻𝜔) is equivalent to the invertibility of the operators 𝜋𝜔,𝑧(𝐵
𝜋) on the space

𝑙2(𝐺) for all 𝑧 ∈ 𝕋 with fulfillment of the condition sup
𝑧∈𝕋

∥∥(𝜋𝜔,𝑧(𝐵𝜋))−1
∥∥

ℬ(𝑙2(𝐺))<∞.

Fix 𝑤 ∈ 𝑈 . By (4.1) with 𝑘 ∈ [0, 1), for every 𝑔 ∈ 𝐺 and every 𝑧 ∈ 𝕋 we get

∣𝛽𝑔(𝑤)−𝛾𝑔(𝑤)𝑧∣ ≥ ∣𝛽𝑔(𝑤)∣−∣𝛾𝑔(𝑤)∣ ≥ ∣𝛽𝑔(𝑤)∣(1−𝑘) ≥ min
𝑤∈𝑈

(𝐽𝑤)
1/2(1−𝑘) =: 𝐶 > 0.

Consequently, for every 𝑔 ∈ 𝐺 and all 𝑧1, 𝑧2 ∈ 𝕋, we obtain the estimate∣∣∣∣𝛽𝑔(𝑤) − 𝛾𝑔(𝑤)𝑧1
𝛽𝑔(𝑤) − 𝛾𝑔(𝑤)𝑧1 − 𝛽𝑔(𝑤) − 𝛾𝑔(𝑤)𝑧2

𝛽𝑔(𝑤) − 𝛾𝑔(𝑤)𝑧2

∣∣∣∣
≤ 𝐶−2

∣∣∣∣𝛾𝑔(𝑤)∣2(𝑧1𝑧2 − 𝑧1𝑧2) + 2𝑖Im
[
𝛽𝑔(𝑤)𝛾𝑔(𝑤)(𝑧1 − 𝑧2)

]∣∣∣. (6.10)

Further, from (6.2) and (6.10) it follows in view of the uniform boundedness of
∣𝛽𝑔(𝑤)∣ and ∣𝛾𝑔(𝑤)∣ on 𝑈 that, for all 𝑔 ∈ 𝐺 and given 𝑤 ∈ 𝑈 , the functions
𝑧 +→ 𝜎𝑔(𝑤, 𝑧) are equicontinuous on 𝕋. This implies that for every 𝐴 ∈ 𝔄 and

every 𝑤 ∈ 𝑈 , the operator function

𝕋 → ℬ(𝑙2(𝐺)), 𝑧 +→ 𝜋𝜔,𝑧(𝐴
𝜋) = diag

{
𝜂𝐴
(
𝑔(𝑤), 𝜎𝑔(𝑤, 𝑧)

)}
𝑔∈𝐺
𝐼

is continuous on 𝕋. Hence, for every 𝐵 ∈ 𝔅 and every 𝜔 ∈ Ω the operator-
valued function 𝑧 +→ 𝜋𝜔,𝑧(𝐵

𝜋) also is continuous on 𝕋, and therefore the condition
sup
{∥∥(𝜋𝜔,𝑧(𝐵𝜋))−1

∥∥
ℬ(𝑙2(𝐺)) : 𝑧 ∈ 𝕋

}
<∞ is fulfilled automatically for all 𝜔 ∈ Ω.

Let now 𝜔 ∈ ΩΓ. Then the invertibility of the operator 𝜋𝜔(𝐵
𝜋) on the space

𝑙2(𝐺,𝐻𝜔) is equivalent to the invertibility of the operators 𝜋𝜔,𝑧(𝐵
𝜋) on the space

𝑙2(𝐺) for all 𝑧 ∈ 𝕋, with the condition sup
{∥∥(𝜋𝜔,𝑧(𝐵𝜋))−1

∥∥ : 𝑧 ∈ 𝕋
}
< ∞, and

the invertibility of both the operators 𝜋𝜔,±2(𝐵
𝜋) on the space 𝑙2(𝐺,𝐻2(𝕋)). But

the uniform boundedness norms of operators (𝜋𝜔,𝑧(𝐵
𝜋))−1 with respect to 𝑧 ∈ 𝕋

for every 𝜔 ∈ ΩΓ was proved above.
Thus, the operators 𝜋𝜔(𝐵

𝜋) are invertible on the spaces 𝑙2(𝐺,𝐻𝜔) for all
𝜔 ∈ Ω if and only if for every (𝜔, 𝑧) ∈ Ω𝑈 ×𝕋 the operators 𝜋𝜔,𝑧(𝐵

𝜋) are invertible
on the space 𝑙2(𝐺) and for every 𝜔 ∈ ΩΓ the operators 𝜋𝜔,±2(𝐵

𝜋) are invertible
on the space 𝑙2(𝐺,𝐻2(𝕋)). □

Thus, the operator function Ψ̃(𝐵) : (𝜔, 𝑧) +→ 𝜋𝜔,𝑧(𝐵
𝜋) defined for (𝜔, 𝑧) ∈

(Ω × 𝕋) ∪ (ΩΓ × {±2}) by (6.7)–(6.8) and equipped with the norm

∥Ψ̃(𝐵)∥ = max
{

max
(𝜔,𝑧)∈Ω×𝕋

∥𝜋𝜔,𝑧(𝐵𝜋)∥ℬ(𝑙2(𝐺)),

max
(𝜔,𝑧)∈ΩΓ×{±2}

∥𝜋𝜔,𝑧(𝐵𝜋)∥ℬ(𝑙2(𝐺,𝐻2(𝕋)))

}
serves as a Fredholm symbol for operators 𝐵 ∈ 𝔅, and therefore Theorem 6.1 can
be rewritten as follows.

Theorem 6.2. Under the conditions of Theorem 6.1, an operator 𝐵 ∈ 𝔅 is Fredholm

on the space 𝐿2(𝑈) if and only if its Fredholm symbol Ψ̃(𝐵) is invertible.
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The Riemann Boundary Value Problem on
Non-rectifiable Curves and Fractal Dimensions

Boris A. Kats

Abstract. The aim of this work is to solve the Riemann boundary value prob-
lem on non-rectifiable curve. Its solvability depends on certain metric charac-
teristics of the curve. We introduce new metric characteristics of dimensional
type and new sharp conditions of solvability of the problem. In addition,
we introduce and study a version of the Cauchy integral over non-rectifiable
paths.

Mathematics Subject Classification (2000). Primary 30E25; secondary 46F10.

Keywords. Riemann boundary value problem, jump problem, non-rectifiable
curve, metric dimension, Cauchy transform.

Introduction

We consider the following boundary value problem for holomorphic functions. Let
Γ be a closed Jordan curve on the complex plane ℂ bounding finite domain 𝐷+,
and 𝐷− = ℂ∖𝐷+. Find a holomorphic in ℂ∖Γ function Φ(𝑧) such that Φ(∞) = 0,
the boundary values lim𝐷+∋𝑧→𝑡 Φ(𝑧) ≡ Φ+(𝑡) and lim𝐷−∋𝑧→𝑡 Φ(𝑧) ≡ Φ−(𝑡) exist
for any 𝑡 ∈ Γ, and

Φ+(𝑡) = 𝐺(𝑡)Φ−(𝑡) + 𝑔(𝑡), 𝑡 ∈ Γ. (0.1)

This boundary value problem is called the Riemann problem. It is well known and
has numerous traditional applications in elasticity theory, hydro and aerodynamics
and so on (see [1, 2]). Recently a number of authors explored its connections with
theory of random matrices, non-classical estimates for orthogonal polynomials and
so on (see, for instance, [3, 4]).

If 𝐺(𝑡) ≡ 1, then the Riemann boundary value problem turns to so-called
jump problem:

Φ+(𝑡) − Φ−(𝑡) = 𝑔(𝑡), 𝑡 ∈ Γ. (0.2)

This work was completed with the support of Russian Foundation for Basic Researches, grants
09-01-12188-ofi-m and 10-01-00076-a.



138 B.A. Kats

The following classical result on this problem was obtained in 𝑋𝐼𝑋 century
by Sokhotskii, Plemelj and others (see, for instance, [1, 2]):

If the curve Γ is piecewise-smooth and the jump 𝑔(𝑡) satisfies the Hölder
condition

sup

{ ∣𝑓(𝑡′) − 𝑓(𝑡′′)∣
∣𝑡′ − 𝑡′′∣𝜈 : 𝑡′, 𝑡′′ ∈ Γ, 𝑡′ ∕= 𝑡′′

}
≡ ℎ𝜈(𝑓,Γ) <∞ (0.3)

with exponent 𝜈 ∈ (0, 1], then unique solution of this problem is the
Cauchy integral

Φ(𝑧) =
1

2𝜋𝑖

∫
Γ

𝑔(𝜁)𝑑𝜁

𝜁 − 𝑧 . (0.4)

Below we denote 𝐻𝜈(Γ) the set of all functions satisfying (0.3).
This result shows that solvability of the jump problem is closely connected

with boundary properties of the Cauchy integral.
Solvation of the Riemann boundary value problem reduces to the jump prob-

lem by means of factorization. It will be discussed below.
During almost a century numerous authors studied continuity of boundary

values of the Cauchy integral over non-smooth rectifiable curves. Finally, in 1979
E.M. Dynkin [5] and T. Salimov [6] published the following important result:

– the Cauchy integral (0.4) over rectifiable curve Γ has boundary values
Φ± if 𝑓 satisfies the Hölder condition with exponent

𝜈 >
1

2
, (0.5)

and this bound cannot be improved in the whole class of rectifiable curves.

This result implies that the jump problem on non-smooth rectifiable curves is
solvable if the Hölder exponent of the jump exceeds 1

2 . This bound for the Hölder
exponent cannot be improved on the whole class of rectifiable curves.

If curve Γ is not rectifiable, then customary definition of the Cauchy integral
falls, but the Riemann boundary value problem and the jump problem keep sense
and applicability.

In 1981 the author proved (see [7, 8]) solvability of the jump problem (0.2)
on non-rectifiable closed curve Γ under assumption 𝑔 ∈ 𝐻𝜈(Γ),

𝜈 >
1

2
DmΓ, (0.6)

where DmΓ is the so-called box dimension (see [9]) or upper metric dimension
(see [10]) of the curve Γ. It is defined by equality

DmΓ = lim sup
𝜀→0

log𝑁(𝜀,Γ)

− log 𝜀
, (0.7)

where 𝑁(𝜀,Γ) is the least number of disks of diameter 𝜀 covering the set Γ. As
known, 1 ≤ Dm𝐴 ≤ 2 for any plane continuum 𝐴, and DmΓ = 1 for any rectifiable
plane curve Γ. Therefore, if the curve Γ is rectifiable, then the condition (0.6) turns
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into the Dynkin–Salimov condition (0.5). But if the curve is not rectifiable, then
the solution of jump problem is not representable by the Cauchy integral.

The condition (0.6) cannot be improved on the whole class of curves of fixed
box dimension 𝑑 ∈ (1, 2), i.e., for any 𝜈 ∈ (0, 𝑑/2] there exist a closed Jordan curve
Γ such that DmΓ = 𝑑 and a function 𝑔 ∈ 𝐻𝜈(Γ) such that the jump problem (0.2)
has not solution (see [8]). But this condition does not sense certain features of the
problem.

Example. Let Γ = ∂𝐷, where 𝐷 = 𝐷0

∪
(
∪∞

𝑗=1 𝑅𝑗), 𝐷0 = {𝑧 = 𝑥 + 𝑖𝑦 : 0 <

𝑥 < 1,−𝜙(𝑥) < 𝑦 < 0}, 𝑅𝑗 = {𝑧 = 𝑥 + 𝑖𝑦 : 𝑥𝑗 − 𝜖𝑝𝑗 < 𝑥 < 𝑥𝑗 , 0 ≤ 𝑦 < 𝑥𝑗}
for 𝑗 = 1, 2, . . . , 𝜙(𝑥) is positive function with bounded variation, the positive
sequences {𝑥𝑗}, {𝜖𝑗} decrease to zero for 𝑗 → ∞, 𝑥𝑗 ≤ 1, and the rectangles
𝑅𝑗 , 𝑗 = 1, 2, . . . are disjoint. We shall see in the next section, that these sequences
can be chosen so that DmΓ equals to a fixed value 𝑑 ∈ (1, 2) for any 𝑝 > 1, i.e.,
the condition (0.6) guarantees solvability of the jump problem for 𝜈 > 𝑑/2. But for
𝑝→ ∞ the rectangles 𝑅𝑗 turn into two-sided vertical cuts, and the jump problem
on this curve turns the jump problem on rectifiable curve ∂𝐷0. The last problem is
solvable for 𝜈 > 1/2, what yields conjecture that for sufficiently large 𝑝 the initial
problem is solvable for certain 𝜈 ∈ (1/2, 𝑑/2). Below we shall prove this conjecture
by means of new metric characteristics of non-rectifiable curves.

We consider these characteristics in Section 1. In Section 2 we represent
solutions of the Riemann boundary value problem on closed non-rectifiable curve
in terms of certain generalization of the Cauchy integral. In Section 3 we study
this problem on open non-rectifiable arcs.

1. Approximation dimensions and integrations

The box dimension characterizes complexity of a non-rectifiable curve through its
coverings. We apply more precious characterization through the rate of polygonal
approximations of the curve in terms of its approximation dimension. It is intro-
duced in the paper [11]. The rates of polygonal approximations of Γ from domains
𝐷+ and𝐷− can differ. Therefore, here we introduce inner and outer approximation
dimensions.

We say that a sequence of polygonal lines 𝐺 = {Γ1,Γ2, . . . ,Γ𝑛, . . . } is inner
(outer) polygonal approximation of the curve Γ if

1. Γ𝑛 = ∂𝑃𝑛, where 𝑃𝑛 is open polygon or union of several open polygons (in
the case of inner approximation all these polygons are finite, and in case of
outer approximation one of them contains ∞), 𝑛 = 1, 2, . . . ;

2. 𝑃𝑛 ⊂ 𝑃𝑛+1 ⊂ 𝐷+ (correspondingly, 𝑃𝑛 ⊂ 𝑃𝑛+1 ⊂ 𝐷−) for any 𝑛;
3. lim𝑛→∞ dist(Γ𝑛,Γ) = 0.

We put Δ𝑛 = 𝑃𝑛+1 ∖ 𝑃𝑛. This set is either closed polygon or union of several
closed polygons, and some of them are multiply connected. Let 𝜆𝑛 stand for sum
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of perimeters of all connected components of Δ𝑛, and 𝜔𝑛 for diameter of the most
disk contained in Δ𝑛. The sum

𝑀𝑑(𝐺) :=

∞∑
𝑛=1

𝜆𝑛𝜔
𝑑−1
𝑛

is called 𝑑-mass of polygonal approximation 𝐺.

Definition 1.1. Let 𝐴+(Γ) (correspondingly, 𝐴−(Γ)) be set of all positive num-
bers 𝑑 such that the curve Γ has inner inner (correspondingly, outer) polygonal
approximation with finite 𝑑-mass. Then the values Dma+ Γ := inf 𝐴+(Γ) and
Dma− Γ := inf 𝐴−(Γ) are inner and outer approximation dimensions of this curve.

Let DmaΓ := min(Dma+ Γ,Dma− Γ), Dma∗ Γ := max(Dma+ Γ,Dma− Γ).
The value DmaΓ is introduced in the paper [11] as approximation dimension.

Theorem 1.2. Any plane curve Γ satisfies inequalities

1 ≤ Dma± Γ ≤ DmΓ ≤ 2. (1.1)

For any value 𝑑 ∈ (1, 2) there exist curves Γ1,2 such that DmΓ = 𝑑, Dma+ Γ1 < 𝑑

and Dma− Γ2 < 𝑑.

The theorem shows that Dma± Γ are characteristics of dimensional type,
and, generally speaking, at least one of them is lesser than DmΓ. If Γ is rectifiable
curve, then Dma± Γ = 1.

Proof. The inequality (1.1) can be proved in just the same way as the bound 1 ≤
DmaΓ ≤ DmΓ ≤ 2 in the paper [11]. Then we construct the curves Γ1,2 proving
the last statement of the theorem. Let {𝑎𝑘} be a decreasing positive sequence
such that

∑∞
𝑘=1 𝑎𝑘 = 1 and the series

∑∞
𝑛=1 𝑥𝑛 diverge for 𝑥𝑛 =

∑∞
𝑘=𝑛 𝑎𝑘. We

consider vertical segments 𝜎𝑛 := {𝑧 = 𝑥𝑛 + 𝑖𝑦 : 0 ≤ 𝑦 ≤ 𝑥𝑛} and evaluate box
dimension of the set 𝜎 := ∪𝑛≥1𝜎𝑛. Let us divide the plane into squares with side
𝜀 > 0 and denote by 𝑁⋄(𝜀, 𝜎) the number of squares intersecting 𝜎. As known,
𝑁(𝜀, 𝐴) ≍ 𝑁⋄(𝜀, 𝐴) for any compact set 𝐴, and we can replace 𝑁 by 𝑁⋄ in the
definition (0.7). We determine a number 𝑛(𝜀) by relation 𝑎𝑛(𝜀)+1 ≤ 𝜀 < 𝑎𝑛(𝜀).
Then all segments with numbers 𝑛 ≥ 𝑛(𝜀) are covered by 𝑁1 squares filling the
lower half of square [0, 𝑥𝑛(𝜀)]× [0, 𝑥𝑛(𝜀)] under its diagonal. Hence, 𝑁1 ≍ 𝜀−2𝑥2𝑛(𝜀).

The rest segments 𝜎𝑘, 𝑘 = 1, 2, . . . , 𝑛(𝜀) − 1, are covered by 𝑁2 squares, and any

square intersects only one segment. Whence, 𝑁2 ≍ 𝜀−1
∑𝑛(𝜀)−1

𝑘=1 𝑥𝑘 and

𝑁⋄(𝜀, 𝜎) ≍ 𝜀−2𝑥2𝑛(𝜀) + 𝜀
−1

𝑛(𝜀)−1∑
𝑘=1

𝑥𝑘.

This relation enables us to evaluate Dm𝜎 for a number of sequences {𝑎𝑘}. Partic-
ularly, there is valid

Lemma 1.3. If 𝑥𝑛 ≍ 1
𝑛𝛼 and 𝑎𝑛 ≍ 1

𝑛𝛼+1 for 0 < 𝛼 < 1, then Dm𝜎 = 2
1+𝛼 .
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In what follows we put 𝑥𝑛 = 1
𝑛𝛼 for 𝛼 = 2𝑑−1− 1, 𝑑 ∈ (1, 2). Then Dm𝜎 = 𝑑.

We fix 𝛽 > 1 and consider rectangles 𝑅𝑛 := {𝑧 = 𝑥 + 𝑖𝑦 : 𝑥𝑛 − 𝑎𝛽𝑛 <
𝑥 < 𝑥𝑛, 0 ≤ 𝑦 < 𝑥𝑛}, 𝑛 = 1, 2, . . . Let 𝑅 :=

∪
𝑛≥1𝑅𝑛. We put 𝐷+

1 := {𝑧 =

𝑥 + 𝑖𝑦 : 0 < 𝑥 < 1,−1 < 𝑦 < 0} ∪ 𝑅 (the square with a number of rectangular
appendices), 𝐷+

2 := {𝑧 = 𝑥 + 𝑖𝑦 : 0 < 𝑥 < 1, 0 < 𝑦 < 1} ∖ 𝑅 (the square
with a number of rectangular cuts), and Γ1,2 = ∂𝐷+

1,2. By virtue of Lemma 1.3
we have DmΓ1 = DmΓ2 = 𝑑. The curves Γ1 and Γ2 have evident inner and

outer polygonal approximations with 𝑝-masses 𝑀𝑝 ≍∑∞
𝑛=1 𝑥𝑛𝑎

𝛽(𝑝−1)
𝑛 . The series

converges for 𝑝 > 1 + 1−𝛼
𝛽(1+𝛼) = 1 + 𝛽−1(𝑑 − 1). Thus, Dma+ Γ1 ≤ 1 + 𝑑−1

𝛽 <

𝑑,Dma− Γ2 ≤ 1 + 𝑑−1
𝛽 < 𝑑. □

Now we consider a distributional approach to integration over closed non-
rectifiable curves. Another approaches to this problem can be found in the works
[12, 13, 14, 15] and similar one in [16]. We identify a function 𝐹 (𝑧) on complex
plane with distribution

⟨𝐹, 𝜑⟩ :=
∫∫

ℂ

𝐹 (𝑧)𝜑(𝑧)𝑑𝑧𝑑𝑧, 𝜑 ∈ 𝐶∞
0 (ℂ),

if the integral takes a sense. Let 𝐹 (𝑧) be a holomorphic in ℂ∖Γ function such that
the boundary values lim𝐷+∋𝑧→𝑡 𝐹 (𝑧) ≡ 𝐹+(𝑡), lim𝐷−∋𝑧→𝑡 𝐹 (𝑧) ≡ 𝐹−(𝑡) exist for
any 𝑡 ∈ Γ, and 𝐹 (∞) = 0. We consider first a distribution ∂𝐹 . It has support on
the curve Γ. If the curve is rectifiable, then (see, for instance, [17])

⟨∂𝐹, 𝜑⟩ =
∫
Γ

(𝐹+(𝜁) − 𝐹−(𝜁))𝜑(𝜁)𝑑𝜁.

Thus, for non-rectifiable curve ∂𝐹 is a generalized integration with weight 𝐹+(𝜁)−
𝐹−(𝜁). The integration without weight corresponds to functions 𝐹 with unit jump
on Γ. For instance, we can use to this end the characteristic function 𝜒+(𝑧) of
domain 𝐷+, which equals to 1 in 𝐷+ and to 0 in 𝐷−. We call the distributions ∂𝐹
primary integrations and denote them

∫
[𝐹 ].We write

∫
[𝐹 ]𝜑𝑑𝜁 instead of ⟨∫ [𝐹 ], 𝜑⟩.

Obviously, ∂𝐹 vanishes on constants, and we can consider it as functional on factor
𝐶∞(ℂ)/ℂ.

Let 𝐵 be a finite domain such that Γ ⊂ 𝐵, 𝐴 = 𝐵. We denote 𝐻∗(𝐴, 𝜈) :=∪
𝜇∈(𝜈,1]𝐻𝜇(𝐴). If we fix a sequence of exponents {𝜈𝑗} such that 1 > 𝜈1 > 𝜈2 >

⋅ ⋅ ⋅ > 𝜈𝑗 > 𝜈𝑗+1 > ⋅ ⋅ ⋅ and lim𝑗→∞ 𝜈𝑗 = 𝜈, then the semi-norms {ℎ𝜈𝑗(⋅, 𝐴)} turn
𝐻∗(𝐴, 𝜈)/C into the Fréchet space. In what follows we write 𝐻∗(𝐴, 𝜈) instead of
𝐻∗(𝐴, 𝜈)/C if this cannot cause ambiguity.

Theorem 1.4. Let a holomorphic in C ∖ Γ function 𝐹 be bounded on compact
set 𝐴 such that its interiority contains Γ. If Dma∗ Γ < 2, then primary inte-
grations

∫
[𝐹𝜒+],

∫
[𝐹𝜒−] and

∫
[𝐹 ] are continuous in spaces 𝐻∗(𝐴,Dma+ Γ− 1),

𝐻∗(𝐴,Dma− Γ−1) and 𝐻∗(𝐴,Dma∗ Γ−1) correspondingly. Here 𝜒+(𝑧) and 𝜒−(𝑧)
are characteristic functions of domains 𝐷+ and 𝐷−.
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Proof. Let us prove continuity of the primary integration
∫
[𝐹𝜒+] in topology of the

Fréchet space𝐻∗(𝐴,Dma+ Γ−1).We fix values 𝑑 and 𝜈 such that Dma+ Γ < 𝑑 < 2,
1 > 𝜈 > 𝑑 − 1. By definition of the inner approximation dimension there exists
a inner polygonal approximation 𝐺 of the curve Γ such that 𝑀𝑑(𝐺) < ∞. Let

𝐺 = {Γ1,Γ2, . . . }. We put Γ∗ =
∪

𝑛≥1 Γ𝑛. Any function 𝜑 ∈ 𝐶∞ satisfies the
Hölder condition with any exponent 𝜇 ≤ 1. We restrict 𝜑 on Γ∗, apply to this
restriction the Whitney extension operator (see, for instance, [17]) and denote
the obtained continuation 𝜑∗. By virtue of well-known properties of the Whitney
extension operator (see [17]) the function 𝜑∗ is defined in the whole complex plane,
satisfies there the Hölder condition with any exponent 𝜇 ≤ 1 and equals to 𝜑 on
the set Γ∗. In addition, it has partial derivatives of any order on ℂ ∖ Γ∗ and

∣∇𝜑∗(𝑧)∣ ≤ 𝐶ℎ𝜇(𝜑,𝐴) dist𝜇−1(𝑧,Γ∗);

here and below 𝐶 stand for constants. Particularly, ∣∇𝜑∗(𝑧)∣ ≤ 𝐶ℎ1(𝜑,𝐴), i.e.,
the first partial derivatives of 𝜑∗ are bounded. Consequently,∫

[𝐹𝜒+]𝜑(𝜁)𝑑𝜁 = ⟨∂𝐹𝜒+, 𝜑⟩ = −⟨𝐹𝜒+, ∂𝜑⟩ = −
∫∫

𝐷+

𝐹 (𝜁)
∂𝜑

∂𝜁
𝑑𝜁𝑑𝜁

= −
∑
𝑛≥1

∫∫
Δ𝑛

𝐹 (𝜁)
∂𝜑

∂𝜁
𝑑𝜁𝑑𝜁 =

∑
𝑛≥1

∫
∂Δ𝑛

𝐹 (𝜁)𝜑(𝜁)𝑑𝜁

=
∑
𝑛≥1

∫
∂Δ𝑛

𝐹 (𝜁)𝜑∗(𝜁)𝑑𝜁 = −
∑
𝑛≥1

∫∫
Δ𝑛

𝐹 (𝜁)
∂𝜑∗

∂𝜁
𝑑𝜁𝑑𝜁.

Obviously, in polygonal domain Δ𝑛 the function 𝜑∗ equals to the Whitney con-
tinuation of restriction of 𝜑 on ∂Δ𝑛. Consequently, we can apply the following
lemma from the paper [11].

Lemma 1.5. Let 𝛿 be finite domain with rectifiable Jordan boundary 𝛾, 𝑓 ∈ 𝐻𝜈(𝛾),
and 𝑓𝑤 is the Whitney continuation of 𝑓 from 𝛾. If 𝑝 < 1

1−𝜈 , then∫∫
𝛿

∣∇𝑓𝑤∣𝑝 𝑑𝑥𝑑𝑦 ≤ 𝐶ℎ𝑝𝜈(𝑓, 𝛾)𝜆(𝛾)𝜔1−𝑝(1−𝜈)(𝛿).

We fix a value 𝑝 such that 𝑑− 1 = 1 − 𝑝(1 − 𝜈), i.e.,

𝑝 =
2 − 𝑑
1 − 𝜈 , (1.2)

and obtain ∣∣∣∣∫ [𝐹𝜒+]𝜑(𝜁)𝑑𝜁

∣∣∣∣ ≤ 𝐶𝐾𝑆1/𝑞𝑀1/𝑝
𝑑 (𝐺)ℎ𝜈(𝜑,𝐴),

where 𝑆 is area of 𝐷+, 𝑝−1 + 𝑞−1 = 1 and 𝐾 is upper bound for ∣𝐹 ∣. Thus,∫
[𝐹𝜒+] is continuous in semi-norm ℎ𝜈(⋅, 𝐴) for 𝜈 > Dma+ Γ− 1. Consequently, it

is continuous in 𝐻∗(𝐴,Dma+ Γ− 1). The proof of continuity of
∫
[𝐹𝜒−] and

∫
[𝐹 ]

in spaces 𝐻∗(𝐴,Dma− Γ− 1) and 𝐻∗(𝐴,Dma∗ Γ− 1) is analogous. □
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As 𝐶∞ is dense in 𝐻∗(𝐴, 𝜈), since the functionals
∫
[𝐹𝜒+],

∫
[𝐹𝜒−] and

∫
[𝐹 ]

are continuable onto the spaces 𝐻∗(𝐴,Dma+ Γ − 1), 𝐻∗(𝐴,Dma− Γ − 1) and
𝐻∗(𝐴,Dma∗ Γ − 1) correspondingly. The preceding proof gives us construction
of these continuations. If a function 𝑓 belongs to space 𝐻∗(𝐴,Dma+ Γ − 1) (or
𝐻∗(𝐴,Dma− Γ − 1)), then we fix an exponent 𝜈 > Dma+ Γ− 1 (correspondingly,
𝜈 > Dma− Γ − 1) and a polygonal approximation 𝐺 (inner or outer) of the curve
Γ with finite 𝑑-mass such that 𝑓 ∈ 𝐻(𝐴, 𝜈), 𝜈 > 𝑑 − 1 and 𝑑 > Dma+ Γ (corre-
spondingly, 𝑑 > Dma− Γ), and put∫

[𝐹𝜒±]𝑓(𝜁)𝑑𝜁 = −
∫∫

𝐷±
𝐹 (𝜁)

∂𝑓∗

∂𝜁
𝑑𝜁𝑑𝜁, (1.3)

where 𝑓∗ is the Whitney extension of restriction of 𝑓 on the set Γ∗. If we integrate
over infinite domain 𝐷−, then 𝑓∗ must have compact support (for instance, we
can multiply the Whitney extension by a smooth function with compact support
equaling unit in a neighborhood of Γ). Obviously,

∫
[𝐹 ] =

∫
[𝐹𝜒+] +

∫
[𝐹𝜒−].

These functionals generate families of distributions〈∫
[𝐹 ]𝑓, 𝜑

〉
:=

∫
[𝐹 ]𝑓(𝜁)𝜑(𝜁)𝑑𝜁. (1.4)

We call them integrations and write
∫
[𝐹 ]𝑓𝜑𝑑𝜁 instead of ⟨∫ [𝐹 ]𝑓, 𝜑⟩.

2. The Cauchy transforms

Obviously, the supports of distributions
∫
[𝐹𝜒±]𝑓 and

∫
[𝐹 ]𝑓 belong to Γ. There-

fore, we can apply them to the Cauchy kernel 1
2𝜋𝑖(𝜁−𝑧) as function of variable 𝜁 for

𝑧 /∈ Γ. Correctly speaking, we apply these distribution to a function 𝜔𝑧(𝜁) ∈ 𝐶∞

equaling to 1
2𝜋𝑖(𝜁−𝑧) for ∣𝜁−𝑧∣ ≥ 𝜀, where 0 < 𝜀 < dist(𝑧,Γ). As a result, we obtain

the Cauchy transforms of integrations
∫
[𝐹𝜒±]𝑓 and

∫
[𝐹 ]𝑓 . Let us denote

𝐶[𝐹 ]𝑓(𝑧) :=

〈∫
[𝐹 ]𝑓,

1

2𝜋𝑖(𝜁 − 𝑧)
〉
.

The representation (1.3) yields the following result.

Lemma 2.1. The Cauchy transforms of integrations
∫
[𝐹𝜒±]𝑓 and

∫
[𝐹 ]𝑓 are rep-

resentable as follows:

1. if 𝑓 ∈ 𝐻∗(𝐴,Dma+ Γ− 1), then

𝐶[𝐹𝜒+]𝑓(𝑧) = 𝐹 (𝑧)𝜒+(𝑧)𝑓∗(𝑧)− 1

2𝜋𝑖

∫∫
𝐷+

∂𝑓∗

∂𝜁

𝐹 (𝜁)𝑑𝜁𝑑𝜁

𝜁 − 𝑧 ,

where 𝑓∗ is the Whitney extension of restriction of 𝑓 on the set Γ∗ =
∪

𝑛≥1 Γ𝑛,

and 𝐺 = {Γ𝑛} is inner polygonal approximation of Γ with finite 𝑑-mass,
𝜈 + 1 > 𝑑 > Dma+ Γ, 𝑓 ∈ 𝐻𝜈(𝐴);
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2. if 𝑓 ∈ 𝐻∗(𝐴,Dma− Γ− 1), then

𝐶[𝐹𝜒−]𝑓(𝑧) = 𝐹 (𝑧)𝜒−(𝑧)𝑓∗(𝑧) − 1

2𝜋𝑖

∫∫
𝐷−

∂𝑓∗

∂𝜁

𝐹 (𝜁)𝑑𝜁𝑑𝜁

𝜁 − 𝑧 ,

where 𝑓∗ is the Whitney extension with compact support of restriction of 𝑓
on the set Γ∗ =

∪
𝑛≥1 Γ𝑛, and 𝐺 = {Γ𝑛} is outer polygonal approximation of

Γ with finite 𝑑-mass, 𝜈 + 1 > 𝑑 > Dma− Γ, 𝑓 ∈ 𝐻𝜈(𝐴);
3. if 𝑓 ∈ 𝐻∗(𝐴,Dma∗ Γ− 1), then

𝐶[𝐹 ]𝑓(𝑧) = 𝐹 (𝑧)𝑓∗(𝑧)− 1

2𝜋𝑖

∫∫
ℂ

∂𝑓∗

∂𝜁

𝐹 (𝜁)𝑑𝜁𝑑𝜁

𝜁 − 𝑧 ,

where 𝑓∗ is the Whitney extension with compact support of restriction of 𝑓
on the union of sets Γ∗ from the previous items.

The last terms of these representations are well known integral operators (see,

for instance, [17]). If ∂𝑓∗

∂𝜁
∈ 𝐿𝑝

𝑙𝑜𝑐 for 𝑝 > 2, then these terms represent functions,

which are continuous in the whole complex plane and satisfy there the Hölder
condition with exponent 1− 2

𝑝 . The exponent 𝑝 is determined by equality (1.2). It

exceeds 2 for 𝜈 > 𝑑/2. As a result, we obtain

Theorem 2.2. Let function 𝐹 (𝑧) be holomorphic in C ∖ Γ, continuous in 𝐷+ and

𝐷−, and 𝐹 (∞) = 0. Then the following propositions are valid:

1. if 𝑓 ∈ 𝐻∗(𝐴,Dma+ Γ/2), then the function Φ(𝑧) := 𝐶[𝐹𝜒+]𝑓(𝑧) is continu-

ous in 𝐷+ and 𝐷−, and

Φ+(𝑡) − Φ−(𝑡) = 𝐹+(𝑡)𝑓(𝑡), 𝑡 ∈ Γ;

in addition, if 𝑓 ∈ 𝐻𝜈(𝐴) and 𝐹 satisfy in 𝐷+ and 𝐷− the Hölder condition
with exponent

𝜇(𝜈, 𝑑) :=
2𝜈 − 𝑑
2 − 𝑑 , (2.1)

where 𝑑 = Dma+ Γ, then the restrictions of Φ on 𝐷+ and 𝐷− satisfy the
Hölder condition with any exponent lesser than 𝜇(𝜈, 𝑑);

2. if 𝑓 ∈ 𝐻∗(𝐴,Dma− Γ/2), then the function Φ(𝑧) := 𝐶[𝐹𝜒−]𝑓(𝑧) is continu-
ous in 𝐷+ and 𝐷−, and

Φ+(𝑡) − Φ−(𝑡) = −𝐹−(𝑡)𝑓(𝑡), 𝑡 ∈ Γ;

in addition, if 𝑓 ∈ 𝐻𝜈(𝐴) and 𝐹 satisfy in 𝐷+ and 𝐷− the Hölder condition

with exponent 𝜇(𝜈, 𝑑), where 𝑑 = Dma− Γ, then the restrictions of Φ on 𝐷+

and 𝐷− satisfy the Hölder condition with any exponent lesser than 𝜇(𝜈, 𝑑);
3. if 𝑓 ∈ 𝐻∗(𝐴,Dma∗ Γ/2), then the function Φ(𝑧) := 𝐶[𝐹 ]𝑓(𝑧) is continuous

in 𝐷+ and 𝐷−, and

Φ+(𝑡) − Φ−(𝑡) = (𝐹+(𝑡) − 𝐹−(𝑡))𝑓(𝑡), 𝑡 ∈ Γ;

in addition, if 𝑓 ∈ 𝐻𝜈(𝐴) and 𝐹 satisfy in 𝐷+ and 𝐷− the Hölder condition
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with exponent 𝜇(𝜈, 𝑑), where 𝑑 = Dma∗ Γ, then the restrictions of Φ on 𝐷+

and 𝐷− satisfy the Hölder condition with any exponent lesser than 𝜇(𝜈, 𝑑).

Thus, we obtain analog of the Sokhotskii–Plemelj formula for non-rectifiable
curves, what suffices for solution of the jump problem.

Corollary 2.3. If 𝑔 ∈ 𝐻∗(Γ,DmaΓ/2), then the jump problem (0.2) is solvable,
and a solution is equal to 𝐶[𝜒+]𝑔𝑤(𝑧) for DmaΓ = Dma+ Γ and to 𝐶[−𝜒−]𝑔𝑤(𝑧)
for DmaΓ = Dma− Γ. Here 𝑔𝑤 is the Whitney extension of function 𝑔.

Proof. If 𝑓 ∈ 𝐻∗(Γ,DmaΓ/2), then 𝑓𝑤 ∈ 𝐻∗(𝐴,DmaΓ/2) for any compact 𝐴
containing Γ in its interiority, and propositions 1, 2 of Theorem 2.2 turn into the
solvability conditions for the problem (0.2). □

The solvability of the jump problem under restriction 𝑓 ∈ 𝐻∗(Γ,DmaΓ/2) is
proved in the paper [11]. Here we add its representability by the Cauchy transform,
which is generalization of the Cauchy integral for non-rectifiable curves.

The assumption 𝑓 ∈ 𝐻∗(Γ,DmaΓ/2) is weaker than condition (0.6) by virtue
of Theorem 1.2.

Proposition 3 of Theorem 2.2 enables us to prove another condition for solv-
ability of the jump problem.

Corollary 2.4. If 𝑔1 ∈ 𝐻∗(Γ,Dma∗ Γ/2) and 𝑔2 is defined on Γ function such
that jump problem (0.2) is solvable for 𝑔 = 𝑔2, then this problem is solvable for
𝑔 = 𝑔1𝑔2.

Proof. Let 𝐹 (𝑧) be a solution of the jump problem (0.2) for 𝑔 = 𝑔2, i.e., 𝐹
+(𝑡) −

𝐹−(𝑡) = 𝑔2(𝑡) for 𝑡 ∈ Γ. According proposition 𝑔 of Theorem 2.2 the Cauchy
transform 𝐶[𝐹 ]𝑔1(𝑧) is a solution of the problem for 𝑔 = 𝑔1𝑔2. □

A solution of the jump problem on non-rectifiable curve is not unique in
general. If the Hausdorff dimension DmhΓ of a curve Γ exceeds 1, then there exist
non-trivial holomorphic in C ∖ Γ functions with null jump on Γ (see, for instance,
[18]). But if 𝜇 > DmhΓ−1, then any function Φ(𝑧) satisfying the Hölder condition
with exponent 𝜇 in a domain 𝐷 ⊃ Γ and holomorphic in 𝐷 ∖ Γ is holomorphic in
𝐷 (the E.P. Dolzhenko theorem; see [18]). We say that a holomorphic in C ∖ Γ
function Φ(𝑧) satisfies the Hausdorff–Dolzhenko condition (HD-condition) if curve
Γ has a neighborhood 𝑁 such that restrictions of Φ(𝑧) on 𝑁 ∩ 𝐷+ and 𝑁 ∩ 𝐷−

satisfy the Hölder condition with exponent 𝜇 > DmhΓ − 1. If a solution of the
jump problem (or the Riemann boundary value problem) satisfies HD-condition,
then we call it HD-solution. If HD-solution of the jump problem exists, then it is
unique. According to Theorem 2.2 the Cauchy transforms give HD-solution of the
jump problem if 𝑓 ∈ 𝐻𝜈(Γ) and

DmhΓ− 1 <
2𝜈 − DmaΓ

2− DmaΓ
. (2.2)

Let us denote

DmuΓ := DmaΓ + (2 − DmaΓ)(DmhΓ− 1).



146 B.A. Kats

The meanings of this value are contained between 1 and 2, and we consider it
as metric characteristic of dimensional type. The inequality (2.2) is equivalent to
𝜈 > DmuΓ/2. Thus, there is valid

Corollary 2.5. If 𝑓 ∈ 𝐻∗(Γ,DmuΓ/2), then the Cauchy transforms 𝐶[𝜒+]𝑓𝑤(𝑧)
(for DmaΓ = Dma+ Γ) and 𝐶[−𝜒+]𝑓𝑤(𝑧) (for DmaΓ = Dma− Γ) represent a
unique HD-solution of the jump problem (0.2).

Now we apply the factorization procedure (see [1, 2]) for solving of the Rie-
mann boundary problem (0.1). Let 𝐺(𝑡) do not vanish on Γ. We represent 𝐺 as
𝐺(𝑡) = (𝑡 − 𝑧0)𝜅 exp 𝑓(𝑡), where 𝑧0 ∈ 𝐷+ and 𝜅 is divided by 2𝜋 decrement of
argument of 𝐺 on Γ, and solve the jump problem

Ψ+(𝑡) − Ψ−(𝑡) = 𝑓(𝑡), 𝑡 ∈ Γ.

If 𝐺 ∈ 𝐻∗(Γ,DmaΓ)/2), then 𝑓 belongs to the same space, and this problem has
a solution Ψ(𝑧) = 𝐶[±𝜒±]𝑓𝑤(𝑧). Then we put

𝑋(𝑧) := expΨ(𝑧), 𝑧 ∈ 𝐷+, 𝑋(𝑧) := (𝑧 − 𝑧0)−𝜅 expΨ(𝑧), 𝑧 ∈ 𝐷−,

and substitute 𝐺(𝑡) = 𝑋+(𝑡)/𝑋−(𝑡) into the relation (0.1). It turns into the jump
problem

Φ+(𝑡)

𝑋+(𝑡)
− Φ−(𝑡)
𝑋−(𝑡)

=
𝑔(𝑡)

𝑋+(𝑡)
, 𝑡 ∈ Γ.

If 𝑔 ∈ 𝐻∗(Γ,DmaΓ)/2), then it has a solution Ξ(𝑧) equaling either 𝐶[𝜒
+

𝑋 ]𝑔𝑤(𝑧)

or 𝐶[−𝜒−

𝑋 ]𝑔𝑤(𝑧). Then function Φ0 := Ξ𝑋 satisfies the equality (0.1). If 𝜅 ≥ 0,
then Φ0(∞) = 0, i.e., Φ0 is a solution of the Riemann boundary value problem. If
𝜅 > 0, then sum Φ0(𝑧) +𝑋(𝑧)𝑃 (𝑧) is solution of the problem for any polynomial
𝑃 (𝑧) of degree lesser than 𝜅. If 𝜅 < 0, then Φ0 is a solution under restrictions∫
[𝜒

±

𝑋 ]𝑔𝑤(𝑧)𝑧−𝑗−1𝑑𝑧 = 0, 𝑗 = 1, 2, . . . ,−𝜅. In addition, if 𝐺 and 𝑔 belong to space
𝐻∗(Γ,DmuΓ)/2), then all these solutions satisfy the HD-condition, and the prob-
lem has not other HD-solutions. As a result, we obtain

Theorem 2.6. If 𝐺 and 𝑔 belong to 𝐻∗(Γ, 12 DmaΓ) and 𝐺(𝑡) does not vanish on
Γ, then the function Φ0(𝑧) = Ξ(𝑧)𝑋(𝑧) is a solution of the Riemann boundary
value problem (0.1) for 𝜅 = 0. If 𝜅 > 0, then the problem has a family of solutions
Φ(𝑧) = Φ0(𝑧) +𝑋(𝑧)𝑃 (𝑧), where 𝑃 (𝑧) is arbitrary algebraic polynomial of degree
less than 𝜅. If 𝜅 < 0, then Φ0(𝑧) is a solution under −𝜅 solvability conditions.

If 𝐺 and 𝑔 belong to 𝐻∗(Γ, 12 DmuΓ), then all these solutions satisfy the
HD-condition, and the problem has not other HD-solutions.

In order words, if 𝐺 and 𝑔 belong to𝐻∗(Γ, 12 DmuΓ) and 𝐺(𝑡) does not vanish
on Γ, then the HD-solvability pattern of the problem (0.1) repeats its solvability
pattern in classical case of piecewise-smooth curve, and all its HD-solutions and
conditions of HD-solvability are representable in terms of the integrations and
their Cauchy transforms.
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3. Non-rectifiable arcs

Let Γ be non-rectifiable Jordan arc with beginning at the point 𝑎1 and end at the
point 𝑎2. We seek a holomorphic in ℂ ∖ Γ function Φ(𝑧) such that

Φ+(𝑡) = 𝐺(𝑡)Φ−(𝑡) + 𝑔(𝑡), 𝑡 ∈ Γ′, (3.1)

where Γ′ := Γ∖{𝑎1, 𝑎2}, Φ(∞) = 0 and Φ(𝑧) = 𝑂(∣𝑧−𝑎1,2∣−𝛾) near 𝑎1,2, 0 ≤ 𝛾 < 1,
𝛾 = 𝛾(Φ) (see [1, 2]).

At least two essential groups of facts differ this situation from the case of
closed curve. The first group concerns definition of integrations. We have not
intrinsic meaning of the integral

∫
Γ
𝜉(𝑡)𝑑𝑡 over arc Γ for 𝜉 ∈ 𝐶∞(ℂ), whereas

for closed arcs that meaning is given by the Stokes formula. In particular, the
integral over arc does not vanish for 𝜉 = const. The second group is connected
with polygonal approximation of the arc. If arc Γ curls in spirals at end points,
then we cannot approximate it by polygonal lines with same end points without
intersections with Γ at its inner points. We restrict our class of arcs in order to
exclude the effect of these circumstances.

We say that a sequence of polygonal lines 𝐺 = {Γ1,Γ2, . . . ,Γ𝑛, . . . } is polyg-
onal approximation of arc Γ from the left (from the right) if

1. Γ𝑛 begins at the point 𝑎1, ends at the point 𝑎2 and has not another common
points with arc Γ, 𝑛 = 1, 2, . . . ;

2. the union Γ ∪ Γ𝑛 bounds finite domain 𝑃𝑛 such that 𝑃𝑛+1 ⊂ 𝑃𝑛 for any 𝑛;
3. the direction of Γ is positive direction on ∂𝑃𝑛 for approximation from the

left and negative one for approximation from the right, 𝑛 = 1, 2, . . . ;
4. if 𝑠𝑛 is area of polygon 𝑃𝑛, then lim𝑛→∞ dist{Γ,Γ𝑛} = 0 and lim𝑛→∞ 𝑠𝑛 = 0.

If arc Γ has polygonal approximations from the left and from the right, then we
call it 𝑃𝐴-arc. Particularly, 𝑃𝐴-arcs have not spiral curls at their ends. As above,
we denote by 𝜆𝑛 perimeter of the polygon Δ𝑛 := 𝑃𝑛+1 ∖ 𝑃𝑛, by 𝜔𝑛 the diameter
of the most disk contained in polygon Δ𝑛, and call the sum

𝑀𝑑(𝐺) =

∞∑
𝑛=1

𝜆𝑛𝜔
𝑑−1
𝑛

𝑑-mass of the approximation 𝐺.

Definition 3.1. Let 𝐴+(Γ) (correspondingly, 𝐴−(Γ)) be set of all positive numbers
𝑑 such that 𝑃𝐴-arc Γ has polygonal approximation from the left (correspondingly,
from the right) with finite 𝑑-mass. Then the values Dma+ Γ := inf 𝐴+(Γ) and
Dma− Γ := inf 𝐴−(Γ) are left and right approximation dimensions of this arc.

The following result can be proved in just the same way as Theorem 1.2.

Theorem 3.2. Any 𝑃𝐴-arc Γ satisfies inequalities

1 ≤ Dma± Γ ≤ DmΓ ≤ 2. (3.2)

For any value 𝑑 ∈ (1, 2) there exist 𝑃𝐴-arcs Γ1,2 such that DmΓ = 𝑑, Dma+ Γ1 < 𝑑

and Dma− Γ2 < 𝑑.
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Let Γ𝑛 belongs to a polygonal approximation 𝐺 of non-rectifiable 𝑃𝐴-arc Γ
from the left. Then Γ ∪ Γ𝑛 is boundary of finite domain 𝑃𝑛. The direction of Γ is
positive direction on ∂𝑃𝑛, and direction of Γ𝑛 from 𝑎1 to 𝑎2 is negative. If Γ would
be rectifiable, then ∫

Γ

𝜑(𝜁)𝑑𝜁 =

∫
Γ∪Γ𝑛

𝜑(𝜁)𝑑𝜁 +

∫
Γ𝑛

𝜑(𝜁)𝑑𝜁.

If Γ is non-rectifiable, then we can replace the first term in the right side by the
primary integration from the Section 1. Thus, we put∫

Γ

[𝐹 ]𝜑𝑑𝜁 := ⟨∂𝐹, 𝜑⟩ +
∫
Γ𝑛

(𝐹+(𝜁) − 𝐹−(𝜁))𝜑(𝜁)𝑑𝜁 ,

where 𝜑 ∈ 𝐶∞
0 , 𝐹 (𝜁) is holomorphic in ℂ∖(Γ∪Γ𝑛) and 𝐹 (∞) = 0. This value does

not depend on 𝑛. The polygonal approximation from the right induces analogous
construction for primary integration over non-rectifiable arc.

Let us cite three representations of primary integration over 𝑃𝐴-arc Γ with
unit weight.

1. Let 𝐹 (𝜁) = 𝜒+(𝜁) be characteristic function of domain 𝑃𝑛. Then∫
Γ

[𝜒+]𝜑(𝜁)𝑑𝜁 := −
∫∫

𝑃𝑛

∂𝜑

∂𝜁
𝑑𝜁𝑑𝜁 +

∫
Γ𝑛

𝜑(𝜁)𝑑𝜁.

We can take 𝜑 from the whole space 𝐶∞(ℂ).
2. Analogously, if 𝐹 (𝜁) = −𝜒−(𝜁), where 𝜒−(𝜁) is characteristic function of

domain 𝑃𝑛 induced by a polygonal approximation from the right, then∫
Γ

[−𝜒−]𝜑(𝜁)𝑑𝜁 := −
∫∫

𝑃𝑛

∂𝜑

∂𝜁
𝑑𝜁𝑑𝜁 +

∫
Γ𝑛

𝜑(𝜁)𝑑𝜁.

3. Let

𝑘(𝜁) =
1

2𝜋𝑖
log
𝜁 − 𝑎2
𝜁 − 𝑎1 ,

where the branch of logarithm is selected by means of cut along the arc Γ
and restriction 𝑘(∞) = 0. The jump of the kernel 𝑘 on Γ equals to 1, and on
Γ𝑛 its jump vanishes. Thus,∫

Γ

[𝑘]𝜑(𝜁)𝑑𝜁 := −
∫∫

𝑃𝑛

𝑘(𝜁)
∂𝜑

∂𝜁
𝑑𝜁𝑑𝜁,

where 𝜑 ∈ 𝐶∞
0 (ℂ). This is also generalization of integral over Γ with unit

weight.

Let us note in connection with the last representation that for 𝑃𝐴-arc Γ the kernel
𝑘(𝜁) has logarithmic singularities at the points 𝑎1,2. For general non-rectifiable arcs
these singularities can have arbitrarily high order.

Now we can repeat considerations of previous two sections for 𝑃𝐴-arcs. Par-
ticularly, we obtain
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Theorem 3.3. Let Γ be 𝑃𝐴-arc, 𝐺(𝑡) ≡ 1, and 𝑔 ∈ 𝐻∗(Γ,DmaΓ/2). Then the
problem (3.1) (i.e., the jump problem) has a solution representable by the Cauchy
transform of corresponding integration.

As above, DmaΓ stands for min{Dma+ Γ,Dma− Γ}. Earlier (see [19]) the
solvability of jump problem was established for 𝑔 ∈ 𝐻∗(Γ,DmΓ/2) in terms of the
present paper.

One can easily reformulate the HD-condition for arcs. As above, if 𝐺 and
𝑔 belong to 𝐻∗(Γ, 12 DmuΓ) and 𝐺(𝑡) does not vanish on 𝑃𝐴-arc Γ, then the
HD-solvability pattern of the problem (0.1) repeats its solvability pattern in clas-
sical case of piecewise-smooth arc, and all its HD-solutions and conditions of HD-
solvability are representable in terms of the integrations and their Cauchy trans-
forms.

We consider also the following question. Let 𝑝(𝑧) =
∑𝑚

𝑗=0 𝑝𝑗𝑧
𝑗 be algebraic

polynomial. If an arc Γ is rectifiable, then ∣𝑝(𝑎2)−𝑝(𝑎1)∣ ≤ 𝐶max{∣𝑝′(𝑧)∣ : 𝑧 ∈ Γ},
where positive constant 𝐶 does not depend on 𝑝, and the best meaning of this
constant is length of Γ. It is of interest to find a functional Banach space 𝑋 such
that ∣𝑝(𝑎2)− 𝑝(𝑎1)∣ ≤ 𝐶∥𝑝′(𝑧)∥𝑋 for non-rectifiable arc Γ. Here we use to this end
the Hölder spaces 𝐻𝜈(Γ).

Theorem 3.4. Let Γ be 𝑃𝐴-arc and 𝜈 > DmaΓ−1. Then any algebraic polynomial
𝑝(𝑧) satisfies inequality

∣𝑝(𝑎2) − 𝑝(𝑎1)∣ ≤ 𝐶∥𝑝′∥𝐻𝜈 , (3.3)

where ∥𝑝′∥𝐻𝜈 = ℎ𝜈(𝑝
′,Γ)+max{∣𝑝′(𝑧)∣ : 𝑧 ∈ Γ}, and the constant 𝐶 depends on Γ

and 𝜈 only.

Proof. Assume that DmaΓ = Dma+ Γ. Then we can fix a value 𝑑 such that 𝜈 >
𝑑 − 1 and Γ has polygonal approximation from the left 𝐺 = {Γ1,Γ2, . . . } with
finite 𝑑-mass. We denote Γ∗ = ∪∞

𝑛=1Γ𝑛. Let 𝑝
𝑤 be the Whitney extension of 𝑝′

from Γ on the whole ℂ, and 𝑝∗ the Whitney extension of restriction 𝑝𝑤∣Γ∗ . By
virtue of definitions of the Whitney extension and the polygonal approximation we
have lim𝑛→∞

∫
Γ𝑛

(𝑝′(𝜁) − 𝑝𝑤(𝜁))𝑑𝜁 = 0. We obtain lim𝑛→∞
∫
Γ𝑛
𝑝𝑤(𝜁)𝑑𝜁 = 𝑝(𝑎2)−

𝑝(𝑎1). Hence,

𝑝(𝑎2)− 𝑝(𝑎1) = −
∫∫

𝑃𝑛

∂𝑝∗

∂𝜁
𝑑𝜁𝑑𝜁 +

∫
Γ𝑛

𝑝∗(𝜁)𝑑𝜁 (3.4)

for any 𝑛. By virtue of well-known properties of the Whitney extension we have
max{∣𝑝∗(𝜁)∣ : 𝜁 ∈ Γ∗} = max{∣𝑝′(𝜁)∣ : 𝜁 ∈ Γ}, and ∣ ∫Γ𝑛 𝑝∗(𝜁)𝑑𝜁∣ ≤ 𝐿𝑛 max{∣𝑝′(𝜁)∣ :
𝜁 ∈ Γ} ≤ 𝐿𝑛∥𝑝′∥𝐻𝜈 , where 𝐿𝑛 is length of Γ𝑛. Then we bound the first term in
right side of (3.4) by means of Lemma 1.5. As in the proof of Theorem 1.4, we
obtain ∣∣∣∣∫∫

𝑃𝑛

∂𝑝∗

∂𝜁
𝑑𝜁𝑑𝜁

∣∣∣∣ ≤ 𝑐(𝜈, 𝑑)𝑠1/𝑞𝑛 𝑀
1/𝑝
𝑑 (𝐺𝑛)ℎ𝜈(𝑝

′,Γ),
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where 𝑐(𝜈, 𝑑) depends on 𝜈 and 𝑑 only,𝐺𝑛 is subsequence {Γ𝑛,Γ𝑛+1, . . . }, 𝑠𝑛 is area
of 𝑃𝑛, the value 𝑝 is defined by equality (1.2), and 𝑝−1 + 𝑞−1 = 1. Consequently,

∣𝑝(𝑎2) − 𝑝(𝑎1)∣ ≤ 𝑐(𝜈, 𝑑)(𝐿𝑛 + 𝑠1/𝑞𝑛 𝑀
1/𝑝
𝑑 (𝐺𝑛))∥𝑝′∥𝐻𝜈

for any 𝑛. □

We say that arc Γ is 𝐻𝜈-rectifiable if the functional 𝑝′ +→ 𝑝(𝑎2) − 𝑝(𝑎1) is
bounded in 𝐻𝜈(Γ). We proved that 𝑃𝐴-arc is 𝐻𝜈-rectifiable for 𝜈 > DmaΓ − 1.
In this connection we call the best value of constant 𝐶 in (3.3) 𝐻𝜈 -length of this
arc. We see that 𝐻𝜈-length of Γ does not exceed the value

𝑐(𝜈, 𝑑) inf
𝐺

inf
𝑛

{𝐿𝑛 + 𝑠1/𝑞𝑛 𝑀
1/𝑝
𝑑 (𝐺𝑛)},

where the most lower bound is taken first over 𝑛 = 1, 2, . . . , and then over all
approximations 𝐺 with finite 𝑑-mass.

Earlier the 𝐻𝜈 -rectifiability of arcs without spiral curls at end-points was
proved for 𝜈 > DmΓ− 1 in the paper [20].

References

[1] F.D. Gakhov, Boundary value problems, Nauka publishers, Moscow, 1977.

[2] N.I. Muskhelishvili, Singular integral equations, Nauka publishers, Moscow, 1962.

[3] P. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach,
NY University lectures, AMS, 2000.

[4] A. Kuijlaars, K.T.-R. McLaughlin, A Riemann-Hilbert problem for biorthogonal poly-
nomials, J. Comput. Appl. Math. 178 (2005), 313–320.

[5] E.M. Dynkin, Smoothness of the Cauchy type integral, Zapiski nauchn. sem. Leningr.
dep. mathem. inst. AN USSR 92 (1979), 115–133.

[6] T. Salimov, A direct bound for the singular Cauchy integral along a closed curve,
Nauchn. Trudy Min. vyssh. i sr. spec. obraz. Azerb. SSR, Baku, 5 (1979), 59–75.

[7] B.A. Kats, The Riemann boundary value problem on non-rectifiable Jordan curve,
Doklady AN USSR, 267 1982, No. 4, 789–792.

[8] B.A. Kats, The Riemann boundary value problem on closed Jordan curve, Izv. vuzov,
Mathem., 4 1983, 68–80.

[9] I. Feder, Fractals, Mir Publishers, Moscow, 1991.

[10] A.N. Kolmogorov, V.M. Tikhomirov, 𝜀-entropy and capacity of set in functional
spaces, Uspekhi Math. Nauk, 14 (1959), 3–86.

[11] B.A. Kats. On solvability of the jump problem, J. Math. Anal. Appl., 356 (2009), No.
2, 577–581.

[12] B.A. Kats, The jump problem and the integral over non-rectifiable curve, Izv. VUZov,
Mathematics, 5 (1987), 49–57.

[13] B.A. Kats, The Cauchy integral over non-rectifiable paths, Contemporary Mathemat-
ics, 455 (2008), 183–196.

[14] J. Harrison and A. Norton, Geometric integration on fractal curves in the plane,
Indiana Univ. Math. J., 40 (1991), No. 2, 567–594.



Boundary Value Problem on Non-rectifiable Curves 151

[15] J. Harrison, Lectures on chainlet geometry – new topological methods in geomet-
ric measure theory, arXiv:math-ph/0505063v1 24 May 2005; Proceedings of Ravello
Summer School for Mathematical Physics, 2005.

[16] B.A. Kats. Integration over fractal curve and the jump problem, Mathem. Zametki,
64 1998, No 4, 549–557.

[17] L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution
theory and Fourier Analysis, Springer Verlag, 1983.

[18] E.P. Dolzhenko, On “erasing” of singularities of analytical functions, Uspekhi
Mathem. Nauk, 18 (1963), No 4, 135–142.

[19] B.A. Kats, The Riemann boundary value problem on open Jordan arc, Izv. vuzov,
Mathem., 12 1983, 30–38.

[20] B.A. Kats, The inequalities for Polynomials and Integration over Fractal Arcs,
Canad. Math. Bull., 44 2001, No. 1, 61–69.

Boris A. Kats
Kazan State University of Architecture and Engineering
Zelenaya Str. 1
Kazan 420043, Russia
e-mail: katsboris877@gmail.com

mailto:katsboris877@gmail.com


Operator Theory:
Advances and Applications, Vol. 220, 153–162
c⃝ 2012 Springer Basel AG

Bloch Solutions of Periodic Dirac Equations
in SPPS Form

K.V. Khmelnytskaya and H.C. Rosu

Abstract. We provide the representation of quasi-periodic solutions of peri-
odic Dirac equations in terms of the spectral parameter power series (SPPS)
recently introduced by V.V. Kravchenko [1, 2, 3]. We also give the SPPS form
of the Dirac Hill discriminant under the Darboux nodeless transformation
using the SPPS form of the discriminant. and apply the results to one of
Razavy’s quasi-exactly solvable periodic potentials.

Mathematics Subject Classification (2000). Primary 34B24; Secondary 34C25.

Keywords. Spectral parameter power series, supersymmetric partner equation,
Hill’s discriminant.

1. Introduction

The connections between the Dirac equation and the Schrödinger equation are
known since a long time ago [4] and have been strengthen in the supersymmetric
context soon after the advent of supersymmetric quantum mechanics in 1981 [5,
6, 7, 8]. There are currently interesting applications of this approach in condensed
matter physics [9, 10, 11]. In this work, we are interested in the same connection
in the case of periodic potentials, see, e.g., [12]. We here write the Dirac Bloch
solutions in Kravchenko form (power series in the spectral parameter) and also the
Dirac Hill discriminant in the same form and apply the results to an interesting
quasi-exactly solvable periodic potential.

2. Schrödinger equations of Hill type

The Schrödinger differential equation

𝐿 [𝑓(𝑥, 𝜆)] = −𝑓 ′′(𝑥, 𝜆) + 𝑞(𝑥)𝑓(𝑥, 𝜆) = 𝜆𝑓(𝑥, 𝜆) (2.1)

with 𝑇 -periodic real-valued potential 𝑞(𝑥) assumed herewith a continuous bounded
function and 𝜆 a real parameter is known as of Hill type. We begin by recalling
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some necessary definitions and basic properties associated with the equation (2.1)
from the Floquet (Bloch) theory. For more details see, e.g., [13, 14].

For each 𝜆 there exists a fundamental system of solutions, i.e., two linearly
independent solutions of (2.1), 𝑓1(𝑥, 𝜆) and 𝑓2(𝑥, 𝜆), which satisfy the initial con-
ditions

𝑓1(0, 𝜆) = 1, 𝑓 ′
1(0, 𝜆) = 0, 𝑓2(0, 𝜆) = 0, 𝑓 ′

2(0, 𝜆) = 1. (2.2)

Then the Hill discriminant associated with equation (2.1) is defined as a function
of 𝜆 as follows

𝐷(𝜆) = 𝑓1(𝑇, 𝜆) + 𝑓
′
2(𝑇, 𝜆).

The importance of 𝐷(𝜆) stems from the easiness of describing the spectrum of the
corresponding equation by its means, namely [13]:

(1) sets {𝜆𝑖} for which ∣𝐷(𝜆)∣ ≤ 2 form the allowed bands or stability intervals,
(2) sets {𝜆𝑗} for which ∣𝐷(𝜆)∣ > 2 form the forbidden bands or instability inter-

vals,
(3) sets {𝜆𝑘} for which ∣𝐷(𝜆)∣ = 2 form the band edges and represent the discrete

part of the spectrum.

Furthermore, when𝐷(𝜆) = 2 equation (2.1) has a periodic solution with the period
𝑇 and when 𝐷(𝜆) = −2 it has an aperiodic solution, i.e., 𝑓(𝑥+ 𝑇 ) = −𝑓(𝑥). The
eigenvalues 𝜆𝑛, 𝑛 = 0, 1, 2, . . . form an infinite sequence 𝜆0 < 𝜆1 ≤ 𝜆2 < 𝜆3 ≤
𝜆4 ⋅ ⋅ ⋅ , and an important property of the minimal eigenvalue 𝜆0 is the existence
of a corresponding periodic nodeless solution 𝑢(𝑥, 𝜆0) [13]. The solutions of (2.1)
are not periodic in general, and one of the important tasks is the construction of
quasiperiodic solutions defined by 𝑓±(𝑥 + 𝑇 ) = 𝛽±(𝜆)𝑓±(𝑥). Here, we use James’
matching procedure [15] that employs the fundamental system of solutions, 𝑓1(𝑥, 𝜆)
and 𝑓2(𝑥, 𝜆), in the construction of the quasiperiodic solutions as follows

𝑓±(𝑥, 𝜆) = 𝛽𝑛±(𝜆) [𝑓1(𝑥− 𝑛𝑇, 𝜆) + 𝛼±𝑓2(𝑥− 𝑛𝑇, 𝜆)] ,
{
𝑛𝑇 ≤ 𝑥 < (𝑛+ 1)𝑇
𝑛 = 0,±1,±2, . . .

,

(2.3)
where 𝛼± are given by [15]

𝛼± =
𝑓 ′
2(𝑇, 𝜆) − 𝑓1(𝑇, 𝜆) ∓ (𝐷2(𝜆) − 4

) 1
2

2𝑓2(𝑇, 𝜆)
. (2.4)

The Bloch factors 𝛽±(𝜆) are a measure of the rate of increase (or decrease) in
magnitude of the linear combination of the fundamental system when one goes
from the left end of the cell to the right end, i.e.,

𝛽±(𝜆) =
𝑓1(𝑇, 𝜆) + 𝛼±𝑓2(𝑇, 𝜆)
𝑓1(0, 𝜆) + 𝛼±𝑓2(0, 𝜆)

.

The values of 𝛽±(𝜆) are directly related to the Hill discriminant, 𝛽±(𝜆) = 1
2 (𝐷(𝜆)∓√

𝐷2(𝜆) − 4), and obviously at the band edges 𝛽+ = 𝛽− = ±1 for 𝐷(𝜆) = ±2,
respectively.
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3. SPPS representation for solutions of the
one-dimensional Dirac equation

We consider the following Dirac equation

𝐿[𝑊 ] = [−𝑖𝜎𝑦𝑑𝑥 + 𝜎𝑥Φ(𝑥)]𝑊 = 𝜔𝑊, (3.1)

where the scalar potential Φ(𝑥) is periodic function with period 𝑇 , 𝑊 is the

spinor 𝑊 =

(
𝑓
𝑔

)
and 𝜎𝑥, 𝜎𝑦 are the Pauli matrices 𝜎𝑥 =

(
0 1
1 0

)
and

𝜎𝑦 =

(
0 −𝑖
𝑖 0

)
.

The uncoupled Schrödinger equations derived from equation (3.1) are

(−𝑑𝑥 +Φ)(𝑑𝑥 +Φ)𝑓 = 𝜆𝑓, (3.2)

(𝑑𝑥 +Φ)(−𝑑𝑥 +Φ)𝑔 = 𝜆𝑔, (3.3)

where 𝜆 = 𝜔2 is the spectral parameter. It is clear that the solutions 𝑓 and 𝑔 are
related by the following relationship

(𝑑𝑥 +Φ)𝑓 = 𝜔𝑔, (3.4)

therefore with the solution 𝑓 at hand, we can construct the solution 𝑔 immediately.

We start with equation (3.2). Notice that the solution 𝑢 of the equation (3.2)

for 𝜆 = 0 can be obtained as follows 𝑢(𝑥) = 𝑒−
∫
Φ(𝑥)𝑑𝑥 and 𝑢(𝑥) is a nodeless

periodic function with the period 𝑇 if Φ(𝑥) ∈ C1 and
∫ 𝑇
0
Φ(𝑥)𝑑𝑥 = 0.

Once having the function 𝑢(𝑥) the solutions 𝑓1(𝑥, 𝜆) and 𝑓2(𝑥, 𝜆) of (3.2),
(2.2) for all values of the parameter 𝜆 can be given using the SPPS method [1].

𝑓1(𝑥, 𝜆) =
𝑢(𝑥)

𝑢(0)
Σ̃0(𝑥, 𝜆) + 𝑢

′(0)𝑢(𝑥)Σ1(𝑥, 𝜆),

𝑓2(𝑥, 𝜆) = −𝑢(0)𝑢(𝑥)Σ1(𝑥, 𝜆).

(3.5)

The functions Σ̃0 and Σ1 are the spectral parameter power series

Σ̃0(𝑥, 𝜆) =

∞∑
𝑛=0

𝑋̃(2𝑛)(𝑥)𝜆𝑛, Σ1(𝑥, 𝜆) =

∞∑
𝑛=1

𝑋(2𝑛−1)(𝑥)𝜆𝑛−1 ,

where the coefficients 𝑋̃(𝑛)(𝑥), 𝑋(𝑛)(𝑥) are given by the following recursive rela-
tions

𝑋̃(0) ≡ 1, 𝑋(0) ≡ 1,

𝑋̃(𝑛)(𝑥) =

⎧⎨⎩
∫ 𝑥

0

𝑋̃(𝑛−1)(𝜉)𝑢2(𝜉)𝑑𝜉 for an odd 𝑛

−
∫ 𝑥

0

𝑋̃(𝑛−1)(𝜉)
𝑑𝜉

𝑢2(𝜉)
for an even 𝑛

(3.6)
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𝑋(𝑛)(𝑥) =

⎧⎨⎩
−
∫ 𝑥

0

𝑋(𝑛−1)(𝜉)
𝑑𝜉

𝑢2(𝜉)
for an odd 𝑛∫ 𝑥

0

𝑋(𝑛−1)(𝜉)𝑢2(𝜉)𝑑𝜉 for an even 𝑛 .

(3.7)

One can check by a straightforward calculation that the solutions 𝑓1 and 𝑓2
fulfill the initial conditions (2.2), for this the following relations are useful(

Σ̃0(𝑥, 𝜆)
)′

𝑥
= − Σ̃1(𝑥, 𝜆)

𝑢2(𝑥)
, where Σ̃1(𝑥, 𝜆) =

∞∑
𝑛=1

𝑋̃(2𝑛−1)(𝑥)𝜆𝑛 (3.8)

and

(Σ1(𝑥, 𝜆))
′
𝑥 = −Σ0(𝑥, 𝜆)

𝑢2(𝑥)
, where Σ0(𝑥, 𝜆) =

∞∑
𝑛=0

𝑋(2𝑛)(𝑥)𝜆𝑛. (3.9)

The pair of linearly independent solutions 𝑔1(𝑥, 𝜆) and 𝑔2(𝑥, 𝜆) of (3.3) can be
obtained directly from the solutions (3.5) by means of (3.4). We additionally take
the linear combinations in order that the solutions 𝑔1(𝑥, 𝜆) and 𝑔2(𝑥, 𝜆) satisfy the
initial conditions 𝑔1(0, 𝜆) = 𝑔

′
2(0, 𝜆) = 1 and 𝑔′

1(0, 𝜆) = 𝑔2(0, 𝜆) = 0

𝑔1(𝑥, 𝜆) =
𝑢(0)

𝑢(𝑥)
Σ0(𝑥, 𝜆) − Φ(0)

𝜆𝑢(0)𝑢(𝑥)
Σ̃1(𝑥, 𝜆),

𝑔2(𝑥, 𝜆) =
1

𝜆𝑢(0)𝑢(𝑥)
Σ̃1(𝑥, 𝜆).

(3.10)

Thus, the two spinor solutions of the Dirac equation (3.1) are given by

𝑊1 =

(
𝑓1
𝑔1

)
, and 𝑊2 =

(
𝑓2
𝑔2

)
and these solutions satisfy the following initial conditions

𝑊1(0) =

(
1
0

)
, and 𝑊2(0) =

(
0
1

)
.

3.1. Bloch solutions and Hill discriminant

The second-order differential equations (3.2) and (3.3) have periodic potentials
𝑉1,2 = Φ2 ∓ Φ′, correspondingly. The important tasks for this case are the con-
struction of the Bloch solutions which are subject to the Bloch condition 𝑓(𝑥+𝑇 ) =
𝑒𝑖𝑇𝑥𝑓(𝑥) (with a wave number 𝑘) and the description of the spectrum.

In [16] the SPPS representations of Hill discriminants 𝐷𝑓(𝜆) and 𝐷𝑔(𝜆) as-
sociated with the equations (3.2) and (3.3) were obtained in the form

𝐷𝑓 (𝜆) =
𝑢(𝑇 )

𝑢(0)
Σ̃0(𝑇, 𝜆) +

𝑢(0)

𝑢(𝑇 )
Σ0(𝑇, 𝜆) + (𝑢′(0)𝑢(𝑇 )− 𝑢(0)𝑢′(𝑇 ))Σ1(𝑇, 𝜆) ,

𝐷𝑔(𝜆) =
𝑢(0)

𝑢(𝑇 )
Σ0(𝑇, 𝜆) +

𝑢(𝑇 )

𝑢(0)
Σ̃0(𝑇, 𝜆) +

1

(Δ𝜆) 𝑢2(0)𝑢2(𝑇 )
(𝑢′(0)𝑢(𝑇 )

−𝑢′(𝑇 )𝑢(0)) Σ̃1(𝑇, 𝜆).
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It is clear that since 𝑢(𝑥) is a 𝑇 -periodic function (𝑢(0) = 𝑢(𝑇 ) ) the expression in
brackets in the above formulae vanishes. Now writing the explicit expressions for

Σ̃0(𝑇, 𝜆, 𝜆0) and Σ0(𝑇, 𝜆, 𝜆0), a representation for Hill’s discriminant associated
with (3.2) and (3.3) is the following

𝐷𝑓 (𝜆) = 𝐷𝑔(𝜆) =

∞∑
𝑛=0

(
𝑋̃(2𝑛)(𝑇 ) +𝑋(2𝑛)(𝑇 )

)
𝜆𝑛. (3.11)

Equations (3.2) and (3.3) are isospectral and we obtain the Hill discriminant as-
sociated with the Dirac equation (3.1). We formulate this result as the following
theorem:

Theorem 3.1. Let Φ(𝑥) ∈ C1 be a 𝑇 -periodic function which satisfies the condition∫ 𝑇
0
Φ(𝑥)𝑑𝑥 = 0. Then the Hill discriminant for (3.1) has the form

𝐷𝑊 (𝜔) =
∞∑
𝑛=0

(
𝑋̃(2𝑛)(𝑇 ) +𝑋(2𝑛)(𝑇 )

)
𝜔2𝑛 ,

where 𝑋̃(2𝑛) and 𝑋(2𝑛) are calculated according to (3.6) and (3.7), 𝑢 = 𝑒−
∫
Φ(𝑥)𝑑𝑥

and the series converges uniformly on any compact set of values of 𝜔.

In order to construct the Bloch solutions for the Dirac equation (3.1) we use
the solutions (3.5) and (3.10) and apply the procedure of James [15]. Notice that
because the Hill discriminants for the equations (3.2) and (3.3) are identical the
Bloch factors for both equations are equal. The so-called self-matching solutions
for the equations (3.2) and (3.3), are correspondingly

𝐹±(𝑥, 𝜆) = 𝑓1(𝑥, 𝜆) + 𝑎±𝑓2(𝑥, 𝜆) and 𝐺±(𝑥, 𝜆) = 𝑔1(𝑥, 𝜆) + 𝑏±𝑔2(𝑥, 𝜆),

where 𝑎± and 𝑏± are calculated by the formula (2.4) with the corresponding fun-
damental system of solutions (3.5) and (3.10). By means of 𝐹± and 𝐺± we write
the self-matching spinor solution of the equation (3.1)

𝑤±(𝑥, 𝜆) =

(
𝐹±(𝑥, 𝜆)
𝐺±(𝑥, 𝜆)

)
.

Finally, the Bloch solutions of the equation (3.1) take the form

𝑊±(𝑥, 𝜆) = 𝛽𝑛±(𝜆) (𝑤±(𝑥− 𝑛𝑇, 𝜆)) ,
{
𝑛𝑇 ≤ 𝑥 < (𝑛+ 1)𝑇
𝑛 = 0,±1,±2, . . . .

4. Numerical calculation of eigenvalues based on the SPPS form of
Hill’s discriminant

As is well known [13], the zeros of the functions 𝐷(𝜆)∓ 2 represent eigenvalues of
the corresponding Hill operator with periodic and aperiodic boundary conditions,
respectively. In this section, we show that besides other possible applications the
representation (3.11) gives us an efficient tool for the calculation of the discrete
spectrum of a periodic Dirac operator.
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The first step of the numerical realization of the method consists in calcu-
lation of the functions 𝑋̃(𝑛) and 𝑋(𝑛) given by (3.6) and (3.7), respectively. This
construction is based on the eigenfunction 𝑢(𝑥). Next, by truncating the infinite
series for 𝐷(𝜆) (3.11) we obtain a polynomial in 𝜆

𝐷𝑁(𝜆) =

𝑁∑
𝑛=0

(
𝑋̃(2𝑛)(𝑇 ) +𝑋(2𝑛)(𝑇 )

)
𝜆𝑛 = 2 +

𝑁∑
𝑛=1

(
𝑋̃(2𝑛)(𝑇 ) +𝑋(2𝑛)(𝑇 )

)
𝜆𝑛.

(4.1)
The roots of the polynomials 𝐷𝑁 (𝜆) ∓ 2 give us the eigenvalues corresponding to
equation (2.1) with periodic and aperiodic boundary conditions, respectively.

As an example we consider the Dirac equation (3.1) with the scalar potential

Φ(𝑥) = sin 2𝑥

[
𝜉

2
− 2𝐴(𝜉)

𝜉 −𝐴(𝜉) cos 2𝑥
]
,

with 𝐴(𝜉) =
(
1 −
√
1 + 𝜉2

)
and 𝜉 a real positive parameter. This scalar potential

satisfies the conditions of theorem 3.1. The corresponding second-order differential
equations are

−𝑑2𝑥𝑓 + 𝑉1𝑓 = 𝜆𝑓,

−𝑑2𝑥𝑔 + 𝑉2𝑔 = 𝜆𝑔,
where the Schrödinger potential

𝑉1(𝑥) =
𝜉2

8
(1 − cos 4𝑥) − 3𝜉 cos 2𝑥 , (4.2)

is the case𝑚 = 2 in the quasi-exactly solvable family of the so-called trigonometric

Razavy potentials [17], 𝑉𝑅 = 𝜉2

8 (1 − cos 4𝑥)− (𝑚+ 1)𝜉 cos 2𝑥. For a given integer
𝑚, if 𝜉 < 2(𝑚 + 1) the potentials 𝑉𝑅(𝑥) are of single-well periodic type and if
𝜉 > 2(𝑚+ 1) they are of double-well periodic type.

𝑉2(𝑥) = 𝑉1(𝑥) + 4 cos 2𝑥

(
𝜉

2
− 2𝐴(𝜉)

𝜉 −𝐴(𝜉) cos 2𝑥
)
+

8𝐴(𝜉) sin2 2𝑥

(𝜉 −𝐴(𝜉) cos 2𝑥)2 (4.3)

is the supersymmetric partner potential and therefore it is also quasi-exactly solv-
able. The Schrödinger equations with these potentials can be used for the descrip-
tion of torsional oscillations of certain molecules [17]. Plots of the potentials 𝑉1(𝑥)
and 𝑉2(𝑥) are displayed in Figure 1 for two values of 𝜉.

The computer algorithm was implemented in Matlab 2006. The recursive

integration required for the construction of 𝑋̃
(𝑛)
0 , 𝑋

(𝑛)
0 , 𝑋̃(𝑛) and 𝑋(𝑛) was done

by representing the integrand through a cubic spline using the spapi routine with a
division of the interval [0, 𝜋] into 5000 subintervals and integrating using the fnint
routine. Next, the zeros of 𝐷𝑁 (𝜆) ± 2 were calculated by means of the fnzeros
routine.

In the following tables, the eigenvalues were calculated employing the SPPS
representation (3.11) for four different values of the parameter 𝜉. The first two
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Figure 1. The Razavy potentials 𝑉1 (solid lines) for 𝜉 = 2 and 𝜉 = 11
given by (4.2) and its partner potentials 𝑉2 (dashed lines) as given by
(4.3) for the same values of 𝜉.

values are below the threshold value 𝜉thr = 6 for 𝑚 = 2 from single-well to double-
well types of Razavy’s potentials while the last two values are above this threshold
value. For comparison, we use the eigenvalues given analytically by Razavy in
terms of the parameter 𝜉 as follows [17]

𝜆0 = 2
(
1 −
√
1 + 𝜉2

)
, 𝜆3 = 4, 𝜆4 = 2

(
1 +
√
1 + 𝜉2

)
.

𝜉 = 1 𝜉 = 1
𝑛 𝜆𝑛 (SPPS ) 𝜆𝑛 (Ref. [17] )
0 −0.828427124746190 −0.828427124746190
1 −0.628906956748252
2 2.315132548422588
3 3.999991462865745 4
4 4.828420096225068 4.828427124746190
5 9.238264469324272
6 9.294265517212145

𝜉 = 2 𝜉 = 2
𝑛 𝜆𝑛 (SPPS ) 𝜆𝑛 (Ref. [17])
0 −2.472135954999580 −2.472135954999580
1 −2.428136886851045
2 3.184130151531468
3 4.000004180961838 4
4 6.472138385406806 6.472135954999580
5 9.864117523158974
6 10.253256926576858
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𝜉 = 11 𝜉 = 11
𝑛 𝜆𝑛 (SPPS ) 𝜆𝑛 (Ref. [17])
0 −20.090722034374522 −20.090722034374522
1 −20.090721031408926
2 3.999728397824670
3 4.000000543012631 4
4 24.092379855485746 24.090722034374522
5 24.125593160436161
6 36.212102534969766

𝜉 = 20 𝜉 = 20
𝑛 𝜆𝑛 (SPPS ) 𝜆𝑛 (Ref. [17])
0 −38.049968789001575 −38.049968789001575
1 −38.049968788934475
2 3.999999942823312
3 3.999999999630503 4
4 42.050313148383374 42.049968789001575
5 42.050347742353317
6 74.691604620863302

In Figure 2, we display the plots of the Hill discriminants for the values of the
Razavy parameter 𝜉 = 1, 𝜉 = 2, and 𝜉 = 3, respectively. In general, these plots
contain damped oscillations with higher amplitudes at higher 𝜉. On the other hand,
getting the spectrum in 𝜆 is equivalent with having the eigenvalues 𝜔𝑛 = ±√

𝜆𝑛
of the Dirac system under consideration.

0 6 8 10

0

10

D
N
(
)

=1

Figure 2. The polynomial 𝐷𝑁 (𝜆) for the Hill equations with Razavy’s
partner potentials for three values of the parameter 𝜉 calculated by
means of formula (4.1) for 𝑁 = 100.
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5. Conclusions

In summary, in this work we presented the SPPS form of the quasi-periodic (Bloch)
solutions of periodic one-dimensional Dirac operators as well as of the Hill discrim-
inant. We applied the obtained results to the Dirac system with the periodic scalar
potential that leads to one of Razavy’s quasi-exactly solvable periodic potentials.
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An Estimate for the Number of Solutions
of a homogeneous Generalized Riemann
Boundary Value Problem with Shift

Viktor G. Kravchenko, Rui C. Marreiros and Juan C. Rodriguez

Abstract. The generalized Riemann boundary value problem with the condi-

tion on the real line 𝜑+ = 𝑎𝜑−+𝑎0𝜑−+𝑎1𝜑−(𝛼)+𝑎2𝜑−(𝛼2)+⋅ ⋅ ⋅+𝑎𝑚𝜑−(𝛼𝑚),
where 𝛼(𝑡) = 𝑡 + 𝜇, 𝜇 ∈ ℝ, is the shift on the real line, 𝛼𝑘(𝑡) = 𝑡 + 𝑘𝜇,
0 ≤ 𝑘 ≤ 𝑚, 𝑘,𝑚 ∈ ℕ, is considered. Under certain conditions on the coeffi-
cients 𝑎, 𝑎𝑘, 0 ≤ 𝑘 ≤ 𝑚, an estimate for the number of linearly independent
solutions of this problem is obtained.

Mathematics Subject Classification (2000). Primary 47G10, Secondary 45P05.

Keywords. Singular integral operators, shift operators.

1. Introduction

On
∘
ℝ = ℝ ∪ {∞}, the one-point compactification of the real line, we consider the

non-Carleman shift,

𝛼(𝑡) = 𝑡+ 𝜇, 𝑡 ∈
∘
ℝ,

where 𝜇 is a fixed real number. The 𝑘-iteration of the shift is 𝛼𝑘(𝑡) = 𝑡 + 𝑘𝜇,
0 ≤ 𝑘 ≤ 𝑚, 𝑘,𝑚 ∈ ℕ, and we assume that 𝛼0(𝑡) ≡ 𝑡. The shift 𝛼 has the only
fixed point at infinity.

Let 𝑎, 𝑎0, 𝑎1, . . . , 𝑎𝑚 ∈ 𝐶(
∘
ℝ), be given continuous functions defined on

∘
ℝ.

As usual, let 𝐿̃2(ℝ) denote the real space of all Lebesgue measurable square
summable complex-valued functions on ℝ. We consider the generalized Riemann
boundary value problem: find the functions 𝜑+(𝑧) and 𝜑−(𝑧), analytic in the upper

This research was supported by Fundação para a Ciência e Tecnologia (Portugal) through Centro
de Análise Funcional e Aplicações of Instituto Superior Técnico.
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and in the lower half-planes, respectively, with boundary values in 𝐿̃2(ℝ) satisfying
the condition

𝜑+(𝑡) = 𝑎(𝑡)𝜑−(𝑡) + 𝑎0(𝑡)𝜑−(𝑡) + 𝑎1(𝑡)𝜑−(𝛼(𝑡))

+ 𝑎2(𝑡)𝜑−(𝛼2(𝑡)) + ⋅ ⋅ ⋅+ 𝑎𝑚(𝑡)𝜑−(𝛼𝑚(𝑡)).
(1)

Now let us consider in 𝐿̃2(ℝ) the following operators: the identity operator
𝐼, the isometric non-Carleman shift operator

(𝑈𝜑)(𝑡) = 𝜑(𝑡+ 𝜇),

the linear operator of complex conjugation

(𝐶𝜑)(𝑡) = 𝜑(𝑡),

the operator of singular integration with Cauchy kernel

(𝑆𝜑)(𝑡) = (𝜋𝑖)−1

∫
ℝ

𝜑(𝜏)(𝜏 − 𝑡)−1𝑑𝜏,

the mutually complementary projection operators

𝑃± =
1

2
(𝐼 ± 𝑆),

the functional operator

𝐴 =
𝑚∑
𝑗=0

𝑎𝑗𝑈
𝑗 ,

and the singular integral operator with shift and conjugation

𝐾1 = −𝑃+ + (𝑎𝐼 +𝐴𝐶)𝑃−. (2)

Let 𝑛 denote the number of linearly independent solutions of the problem (1);
it is clear that 𝑛 = dim ker𝐾1.

The study of the problem (1) leads to the study of the kernel of the operator
(2). Analogously we could study the related singular integral equation, obtained
by applying the Fourier Transform to the equation 𝐾1𝑓 = 0 (with 𝑎 = −1),∫

ℝ−

𝑚∑
𝑗=0

𝑎̂𝑗(𝑡− 𝜏)𝑒𝑖𝜇𝜏 𝑓(𝜏)𝑑𝜏 − 𝑓(𝑡) = 0,

where 𝑎̂𝑗 , 𝑓 , 𝑓 , are the Fourier transforms of the functions 𝑎𝑗 , 𝑓 , 𝑓 , respectively.

The history of boundary value problems with shift, as well as singular in-
tegral equations with shift, and related singular integral operators, is rich. These
problems were studied during the last fifty years, particularly in the sixties and
the seventies of the XXth century, when the theory of this type of boundary
value problems was actively pursued. Ilya Vekua’s book [21] (first edition in 1959)
played a key role in this process; in this and in other similar books (see, e.g., [22]),
it has been shown how some mathematical physics problems lead to the solvability
of boundary value problems with shift. The Fredholm theory of boundary value
problems with Carleman shift, i.e., a diffeomorpfism of a curve onto itself, which
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after a finite number of iterations, coincide with the identity transform, was con-
structed in the decades mentioned [16]. For the case of non-Carleman shift, the
theory was completed in the eighties [7]. However, more interesting questions about
the solvability of boundary value problems with shifts, have been considered only
with very restrictive conditions on the respective coefficients [16]. Recent progress
in the study of the spectral properties of singular integral operators with linear
fractional Carleman shift and conjugation (see [4], [8], [9], [10] and [11]) makes it
possible to study the solvability of the related boundary value problems [17]. For
non-Carleman shift, the question about the solvability of this type of problems
remains open (see [12], [13] and [19]).

In [14] we studied the generalized Riemann boundary value problem (1) with
a non-Carleman shift and conjugation, with 𝑎2 = 𝑎3 = ⋅ ⋅ ⋅ = 𝑎𝑚 = 0. For the
number of linearly independent solutions of this problem, the following estimate

𝑛 ≤ 𝑙(𝐹 ) + max(𝑘𝑎 − 𝑘, 0) + max(𝑘𝑎 + 𝑘, 0)

was obtained (see formula (19) below). We had noted that the influence of the
coefficient 𝑎1 is restricted to the term 𝑙(𝐹 ); the terms 𝑘𝑎 and 𝑘 depend only on
the coefficients 𝑎 and 𝑎0. In the present paper we consider the problem (1), with
iterations of the shift and conjugation. It is interesting to note that the influence
of the coefficients 𝑎1, 𝑎2, . . . , 𝑎𝑚 is again restricted to the term 𝑙(𝐹 ) only. The
estimate (19) for the number of linearly independent solutions of the problem (1)
is obtained. Then we consider a particular case which shows that, in a sense, our
estimate is sharp.

2. Main result

Proposition 2.1. Let 𝐾2 : 𝐿̃
2
2(ℝ) → 𝐿̃22(ℝ) be the paired operator with shift

𝐾2 =𝑀1𝑃+ +𝑀2𝑃−, (3)

where 𝑀1, 𝑀2, are the functional operators

𝑀1 =

( −1 𝐴
0 𝑎

)
, 𝑀2 =

(
𝑎 0

𝐴 −1

)
,

with

𝐴 =

𝑚∑
𝑗=0

𝑎𝑗𝑈
𝑗 ;

then

𝑛 =
1

2
dim ker𝐾2.

Proof. Making use of the properties

𝐶2 = 𝐼, 𝐶𝑈 = 𝑈𝐶, 𝑈𝑃± = 𝑃±𝑈, 𝐶𝑃± = 𝑃∓𝐶,

we obtain the following relation between the operators 𝐾1 and 𝐾2

𝑁1diag (𝐾1, 𝐾̃1)𝑁
−1
1 = 𝐾2, where 𝐾̃1 = −𝑃+ + (𝑎𝐼 −𝐴𝐶)𝑃−,
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and 𝑁1 is the following invertible operator in 𝐿̃22(ℝ)

𝑁1 =
1√
2

(
𝐼 𝐼
𝐶 −𝐶

)
.

We then have

dimker𝐾1 + dimker 𝐾̃1 = dim ker𝐾2.

Since (𝑖𝐼)−1𝐾1(𝑖𝐼) = 𝐾̃1, then dim ker𝐾1 = dimker 𝐾̃1.

Thus

𝑛 = dim ker𝐾1 =
1

2
dimker𝐾2. □

Assume that 𝑎 ∈ 𝐶(
∘
ℝ), 𝑎(𝑡) ∕= 0, everywhere on

∘
ℝ. Then the functional

operators 𝑀1, 𝑀2 are invertible, so the operator 𝐾2 is Fredholm in 𝐿22(ℝ) [7].

Note that

𝑀−1
2 =

(
𝑎−1 0

𝐴𝑎−1 −1

)
,

and consider the operator

𝐾̃2 =𝑀
−1
2 𝐾2. (4)

Simple computations show that

𝐾̃2 = (𝐴0𝐼+𝐴1𝑈+𝐴2𝑈
2+⋅ ⋅ ⋅+𝐴𝑚𝑈

𝑚+𝐴𝑚+1𝑈
𝑚+1+⋅ ⋅ ⋅+𝐴2𝑚𝑈2𝑚)𝑃++𝑃−, (5)

where

𝐴0 =

( −𝑎−1 𝑎−1𝑎0
−𝑎−1𝑎0 𝑎−1 ∣𝑎0∣2 − 𝑎

)
, (6)

𝐴1 =

(
0 𝑎−1𝑎1

−𝑎−1(𝛼)𝑎1 𝑎−1𝑎0𝑎1 + 𝑎
−1(𝛼)𝑎1𝑎0(𝛼)

)
,

𝐴2 =

(
0 𝑎−1𝑎2

−𝑎−1(𝛼2)𝑎2 𝑎−1𝑎0𝑎2 + 𝑎
−1(𝛼)𝑎1𝑎1(𝛼) + 𝑎

−1(𝛼2)𝑎2𝑎0(𝛼2)

)
,

. . . ,

𝐴𝑚=

(
0 𝑎−1𝑎𝑚

−𝑎−1(𝛼𝑚)𝑎𝑚 𝑎−1𝑎0𝑎𝑚+𝑎−1(𝛼)𝑎1𝑎𝑚−1(𝛼)+ ⋅⋅⋅+𝑎−1(𝛼𝑚)𝑎𝑚𝑎0(𝛼𝑚)

)
,

𝐴𝑚+1=

(
0 0
0 𝑎−1(𝛼)𝑎1𝑎𝑚(𝛼)+𝑎−1(𝛼2)𝑎2𝑎𝑚−1(𝛼2)+ ⋅⋅⋅+𝑎−1(𝛼𝑚)𝑎𝑚𝑎1(𝛼𝑚)

)
,

. . . ,

𝐴2𝑚 =

(
0 0
0 𝑎−1(𝛼𝑚)𝑎𝑚𝑎𝑚(𝛼𝑚)

)
.
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Taking into account Proposition 2.1 and (4) we have

Proposition 2.2. Let 𝐾̃2 : 𝐿̃22(ℝ) → 𝐿̃22(ℝ) be the singular integral operator with
shift defined by (5), then

𝑛 =
1

2
dim ker 𝐾̃2.

Let 𝐸𝑛 denote the (𝑛× 𝑛) identity matrix and, for simplicity, 𝐸 ≡ 𝐸2.

Proposition 2.3. Let 𝐾3 : 𝐿̃
4𝑚
2 (ℝ) → 𝐿̃4𝑚2 (ℝ) be the paired operator with shift

𝐾3 = (𝐵0𝐼 +𝐵1𝑈)𝑃+ + 𝑃−, (7)

where 𝐵0 and 𝐵1 are the (4𝑚× 4𝑚) matrix functions

𝐵0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴0 0 0 ⋅ ⋅ ⋅ 0 0
0 𝐸 0 ⋅ ⋅ ⋅ 0

0 0 𝐸
. . .

...
...

...
...

. . . 0 0

0
. . . 𝐸 0

0 0 ⋅ ⋅ ⋅ 0 𝐸

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴1 𝐴2 ⋅ ⋅ ⋅ 𝐴2𝑚−2 𝐴2𝑚−1 𝐴2𝑚
−𝐸 0 ⋅ ⋅ ⋅ 0 0 0

0 −𝐸 . . .
...

...
...

0 0
. . . 0 0 0

...
...

. . . −𝐸 0 0
0 0 ⋅ ⋅ ⋅ 0 −𝐸 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (8)

then

𝑛 =
1

2
dim ker𝐾3.

Proof. Let 𝑁 : 𝐿̃4𝑚2 (ℝ) → 𝐿̃4𝑚2 (ℝ) be the invertible operator

𝑁 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼 0 ⋅ ⋅ ⋅ 0 0 0

𝑈𝑃+ 𝐼
. . .

...
...

...

𝑈2𝑃+ 𝑈𝑃+
. . . 0 0 0

...
...

. . . 𝐼 0 0
𝑈2𝑚−2𝑃+ 𝑈2𝑚−3𝑃+ ⋅ ⋅ ⋅ 𝑈𝑃+ 𝐼 0
𝑈2𝑚−1𝑃+ 𝑈2𝑚−2𝑃+ ⋅ ⋅ ⋅ 𝑈2𝑃+ 𝑈𝑃+ 𝐼

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with 𝐼, 𝑈𝑘𝑃+ : 𝐿̃22(ℝ) → 𝐿̃22(ℝ), 𝑘 = 1, 2𝑚− 1.
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We obtain that

𝐾3𝑁 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐾̃2 𝐹1 𝐹2 ⋅ ⋅ ⋅ 𝐹2𝑚−2 𝐹2𝑚−1

0 𝐼 0 ⋅ ⋅ ⋅ 0 0

0 0 𝐼
. . .

...
...

...
...

. . . 0 0

0 0
. . . 𝐼 0

0 0 ⋅ ⋅ ⋅ 0 𝐼

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where 𝐹1 = (𝐴2𝑈 + ⋅ ⋅ ⋅+𝐴2𝑚𝑈2𝑚−1)𝑃+, 𝐹2 = (𝐴3𝑈 + ⋅ ⋅ ⋅+𝐴2𝑚𝑈2𝑚−2)𝑃+, . . . ,
𝐹2𝑚−2 = (𝐴2𝑚−1𝑈 +𝐴2𝑚𝑈

2)𝑃+, 𝐹2𝑚−1 = 𝐴2𝑚𝑈𝑃+.

Thus

𝑛 =
1

2
dimker 𝐾̃2 =

1

2
dimker𝐾3. □

Now we analyze the matrix 𝐴0,

𝐴0 =

( −𝑎−1 𝑎−1𝑎0
−𝑎−1𝑎0 𝑎−1 ∣𝑎0∣2 − 𝑎

)
,

in more detail. Note that det𝐴0(𝑡) ∕= 0 for all 𝑡 ∈
∘
ℝ. It is known that (see, for

instance, [18]; see also [2], [3] and [5]) the non-singular continuous matrix function
𝐴0 admits the following (right) factorization in 𝐿2×2

2 (ℝ)

𝐴0 = 𝐴−Λ𝐴+, (9)

where

(𝑡− 𝑖)−1𝐴±1
− ∈

[
𝐿̂−
2 (ℝ)
]2×2

, (𝑡+ 𝑖)−1𝐴±1
+ ∈

[
𝐿̂+2 (ℝ)

]2×2

,

Λ = diag (𝜃ϰ1 , 𝜃ϰ2), 𝜃(𝑡) =
𝑡− 𝑖
𝑡+ 𝑖

,

ϰ1,ϰ2 ∈ ℤ, with ϰ1 ≥ ϰ2, 𝐿̂
±
2 are the spaces of the Fourier transforms of the

functions of 𝐿±
2 , respectively, and 𝐿

+
2 = 𝑃+𝐿2, 𝐿

−
2 = 𝑃−𝐿2 ⊕ ℂ. The integers

ϰ1,ϰ2 are uniquely defined by the matrix function 𝐴0 and are called its partial
indices. It is assumed that

(𝑡− 𝑖)−1𝐴±1
− , (𝑡+ 𝑖)

−1𝐴±1
+ ∈ 𝐶2×2(ℝ).

Proposition 2.4. Let 𝑎 ∈ 𝐶(
∘
ℝ), 𝑎(𝑡) ∕= 0, for all 𝑡 ∈

∘
ℝ, and let

𝑎 = 𝑎−𝜃𝑘𝑎𝑎+, 𝑘𝑎 =
1

2𝜋
{arg 𝑎(𝑡)}

𝑡∈
∘
ℝ
,

be a factorization of 𝑎 in 𝐿2(ℝ). Then the partial indices of the matrix 𝐴0 are

ϰ1 = −𝑘𝑎 + 𝑘, ϰ2 = −𝑘𝑎 − 𝑘,
where

𝑘 = dimker(𝐼 − 𝑃−𝑢−𝑃+𝑢−𝑃−), (10)

and 𝑢− := 𝑃−𝑢, 𝑢 := (𝑎0)−(𝑎−𝑎+)−1, (𝑎0)− := 𝑃−(𝑎0).
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Proof. The matrix 𝐴0 can be written as the product

𝐴0 = 𝜃
−𝑘𝑎𝐵−𝑀𝐵+,

where

𝐵− =

(
1 0

(𝑎0)+ 1

)(
𝑎−1

− 0
0 𝑎+

)(
1 0
𝑢+ 1

)
,

𝐵+ =

(
1 𝑢+
0 1

)(
𝑎−1
+ 0
0 𝑎−

)( −1 (𝑎0)+
0 1

)
,

𝑀 =

(
1 𝑢−
𝑢− ∣𝑢−∣2 − 1

)
,

and (𝑎0)+ := 𝑃+(𝑎0), 𝑢+ := 𝑃+𝑢.

The matrix 𝑀 admits the following factorization in 𝐿2×2
2 (ℝ) (see [18])

𝑀 =𝑀−diag (𝜃𝑘, 𝜃−𝑘)𝑀+.

Then a factorization of the matrix 𝐴0 is

𝐴0 = 𝐵−𝑀−diag (𝜃−𝑘𝑎+𝑘, 𝜃−𝑘𝑎−𝑘)𝑀+𝐵+,

where ϰ1 = −𝑘𝑎 + 𝑘, ϰ2 = −𝑘𝑎 − 𝑘 are its partial indices. □

Proposition 2.5. Let 𝑎 ∈ 𝐶(
∘
ℝ), 𝑎(𝑡) ∕= 0, for all 𝑡 ∈

∘
ℝ, 𝐵1 be the matrix func-

tion defined by (8), 𝐴± and ϰ1,2 be the external factors and the partial indices,

respectively, of the factorization of the matrix 𝐴0 in 𝐿
2×2
2 (ℝ). Then

𝑛 ≤ 1

2
(dim ker𝐾 − 2ϰ−

1 − 2ϰ−
2 ),

where 𝐾 : 𝐿̃4𝑚2 (ℝ) → 𝐿̃4𝑚2 (ℝ) is the paired operator

𝐾 = (𝐼 + 𝐹𝑈)𝑃+ + 𝑃−, (11)

𝐹 is the (4𝑚× 4𝑚) matrix function

𝐹 = diag (Λ−1
− 𝐴

−1
− , 𝐸4𝑚−2)𝐵1diag (𝐴

−1
+ (𝛼)Λ−1

+ (𝛼), 𝐸4𝑚−2), (12)

Λ± : Λ = Λ−Λ+, Λ± = diag (𝜃ϰ
±
1 , 𝜃ϰ

±
2 ),

Λ is the central factor of the factorization of the matrix 𝐴0 and

ϰ±
𝑗 =

1

2
(ϰ𝑗 ± ∣ϰ𝑗 ∣), 𝑗 = 1, 2,

with

ϰ𝑗 = ϰ+
𝑗 + ϰ−

𝑗 , 𝑗 = 1, 2,

the partial indices of 𝐴0.
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Proof. The operator 𝐾3 defined by (7) admits the factorization

𝐾3 = diag (𝐴−, 𝐸4𝑚−2)𝐾Λ[diag (𝐴+, 𝐸4𝑚−2)𝑃+ + diag (𝐴−1
− , 𝐸4𝑚−2)𝑃−], (13)

where

𝐾Λ =
[
diag (Λ, 𝐸4𝑚−2)𝐼 + 𝐹𝑈

]
𝑃+ + 𝑃−,

with
𝐹 = diag (𝐴−1

− , 𝐸4𝑚−2)𝐵1diag (𝐴
−1
+ (𝛼), 𝐸4𝑚−2).

The following equalities hold

𝐾Λ𝐾− = diag (Λ−, 𝐸4𝑚−2)𝐾̃, (14)

𝐾̃ = 𝐾𝐾+, (15)

where 𝐾± are the left invertible operators

𝐾− = 𝑃+ + diag (Λ−, 𝐸4𝑚−2)𝑃−,

𝐾+ = diag (Λ+, 𝐸4𝑚−2)𝑃+ + 𝑃−,

𝐾̃ =
[
diag (Λ+, 𝐸4𝑚−2)𝐼 + diag (Λ−1

− , 𝐸4𝑚−2)𝐹𝑈
]
𝑃+ + 𝑃−,

and 𝐾 is the operator defined above.
It follows from (14) and (15) that

dimker𝐾Λ ≤ dim ker 𝐾̃ + dim coker𝐾−,

and
dim ker 𝐾̃ ≤ dimker𝐾.

Finally, taking into account the invertibility in 𝐿̃4𝑚2 (ℝ) of the first and the third
operators in (13), Proposition 2.3 and the relation (see [20])

dim coker𝐾− = −2ϰ−
1 − 2ϰ−

2 ,

we obtain

𝑛 =
1

2
dim ker𝐾Λ ≤ 1

2
(dimker𝐾 − 2ϰ−

1 − 2ϰ−
2 ). □

Thus, it remains to estimate dimker𝐾. To do this we need a few more facts.
As usual, let 𝕋+ denote the interior of the unit disk, 𝜎(𝑔), 𝜌(𝑔) and ∥𝑔∥2, denote
the spectrum, the spectral radius and the spectral norm of a matrix 𝑔 ∈ ℂ𝑛×𝑛,
respectively. Now we will make use of some results from [12]:

Lemma 2.1 ([12]). For every continuous matrix function ℎ ∈ 𝐶𝑛×𝑛(
∘
ℝ) such that

𝜎[ℎ(∞)] ⊂ 𝕋+,

there exist an induced matrix norm ∥.∥0 and a rational matrix 𝑟 such that
max
𝑡∈

0
ℝ

∥∥𝑟(𝑡)ℎ(𝑡)𝑟−1(𝑡+ 𝜇)
∥∥
0
< 1 (16)

and
𝑃+𝑟

±1𝑃+ = 𝑟±1𝑃+. (17)
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Note that the rational matrix 𝑟 can and must be chosen such that the condi-
tion (16), with the spectral norm instead of the induced norm ∥.∥0, holds; unfor-
tunately this fact was not duly emphasized in [12].

The rational matrices 𝑟 satisfying the conditions (16) and (17) have the ele-

ments of the form 𝑟𝑖,𝑗(𝑡) = 𝑝𝑖,𝑗

(
𝑡−𝑖
𝑡+𝑖

)
, where 𝑝𝑖,𝑗 is a polynomial, 𝑖, 𝑗 = 1, 𝑛 (i.e.,

𝑟𝑖,𝑗 is a rational function whose zeros lie in the lower half-plane and has no poles).
Let 𝑅ℎ denote the set of all such rational matrices 𝑟,

𝑙1(𝑟) =

𝑛∑
𝑖=1

max
𝑗=1,𝑛

𝑙𝑖,𝑗,

where 𝑙𝑖,𝑗 is the degree of the element 𝑟𝑖,𝑗(𝑡) = 𝑝𝑖,𝑗

(
𝑡−𝑖
𝑡+𝑖

)
of the rational matrix 𝑟,

and

𝑙(ℎ) = min
𝑟∈𝑅ℎ

{𝑙1(𝑟)}. (18)

Lemma 2.2. [12] Let 𝑇 = (𝐼 − 𝑔𝑈)𝑃+ + 𝑃− : 𝐿𝑛
2 (ℝ) → 𝐿𝑛

2 (ℝ), where the matrix
function 𝑔 satisfies the conditions of the Lemma 2.1. Then the estimate

dimker𝑇 ≤ 𝑙(𝑔),
holds.

Proposition 2.6. Let 𝐾 be the operator defined by (11) and 𝑎 ∈ 𝐶(
∘
ℝ), 𝑎(𝑡) ∕= 0,

for all 𝑡 ∈
∘
ℝ. Then

dimker𝐾 ≤ 2𝑙(𝐹 ),

where 𝑙(𝐹 ) is the number defined by (18) for the matrix 𝐹 .

Proof. Taking into account Lemmas 2.1 and 2.2, it suffices to show that

𝜎[𝐹 (∞)] ⊂ 𝕋+.

From the factorization 𝐴0 = 𝐴−Λ𝐴+ of the matrix function 𝐴0, we have

𝐴0(∞) = 𝐴−(∞)𝐴+(∞),

so

𝐴−1
+ (∞) = 𝐴−1

0 (∞)𝐴−(∞).

Now using (12), we can write

𝐹 (∞) = diag (𝐴−1
− (∞), 𝐸4𝑚−2)𝐵1(∞)diag (𝐴−1

+ (∞), 𝐸4𝑚−2)

and so

𝐹 (∞)=diag(𝐴−1
− (∞),𝐸4𝑚−2)𝐵1(∞)diag(𝐴−1

0 (∞),𝐸4𝑚−2)diag(𝐴−(∞),𝐸4𝑚−2),

which means that the matrices 𝐹 (∞) and 𝐵1(∞)diag (𝐴−1
0 (∞), 𝐸4𝑚−2) are simi-

lar.
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We show that all eigenvalues of the matrix

𝐵1(∞)diag (𝐴−1
0 (∞), 𝐸4𝑚−2)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴1(∞)𝐴−1
0 (∞) 𝐴2(∞) 𝐴3(∞) ⋅ ⋅ ⋅ 𝐴2𝑚−1(∞) 𝐴2𝑚(∞)

−𝐴−1
0 (∞) 0 0 ⋅ ⋅ ⋅ 0 0
0 −𝐸 0 ⋅ ⋅ ⋅ 0 0

0 0 −𝐸 . . .
...

...
...

. . . 0 0
0 0 0 ⋅ ⋅ ⋅ −𝐸 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

are equal to 0.

Let 𝐵 be the matrix

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴1(∞)𝐴−1
0 (∞) − 𝑧𝐸 𝐴2(∞) 𝐴3(∞) ⋅ ⋅ ⋅ 𝐴2𝑚−1(∞) 𝐴2𝑚(∞)

−𝐴−1
0 (∞) −𝑧𝐸 0 ⋅ ⋅ ⋅ 0 0
0 −𝐸 −𝑧𝐸 ⋅ ⋅ ⋅ 0 0

0 0 −𝐸 . . .
...

...
...

. . . −𝑧𝐸 0
0 0 0 ⋅ ⋅ ⋅ −𝐸 −𝑧𝐸

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where 𝑧 ∈ ℂ. We have that

𝐵 = 𝐺+𝐻,

where

𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑧𝐸 0 0 ⋅ ⋅ ⋅ 0 0
−𝐴−1

0 (∞) −𝑧𝐸 0 ⋅ ⋅ ⋅ 0 0
0 −𝐸 −𝑧𝐸 ⋅ ⋅ ⋅ 0 0

0 0 −𝐸 . . .
...

...
...

. . . −𝑧𝐸 0
0 0 0 ⋅ ⋅ ⋅ −𝐸 −𝑧𝐸

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴1(∞)𝐴−1
0 (∞) 𝐴2(∞) 𝐴3(∞) ⋅ ⋅ ⋅ 𝐴2𝑚−1(∞) 𝐴2𝑚(∞)

0 0 0 ⋅ ⋅ ⋅ 0 0
0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0
...

...
... 0 0
0 0 0 ⋅ ⋅ ⋅ 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Moreover

𝐺−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑧−1𝐸 0 ⋅ ⋅ ⋅ 0 0 0

𝑧−2𝐴−1
0 (∞) −𝑧−1𝐸

. . .
...

...
...

−𝑧−3𝐴−1
0 (∞) 𝑧−2𝐸

. . . 0 0 0
...

...
. . . −𝑧−1𝐸 0 0

−𝑧−2𝑚+1𝐴−1
0 (∞) 𝑧−2𝑚+2𝐸

. . . 𝑧−2𝐸 −𝑧−1𝐸 0
𝑧−2𝑚𝐴−1

0 (∞) −𝑧−2𝑚+1𝐸 ⋅ ⋅ ⋅ −𝑧−3𝐸 𝑧−2𝐸 −𝑧−1𝐸

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Furthermore, we have
𝐻 = 𝑋𝐸𝑌,

where
𝑋 =

(
𝐸 0 ⋅ ⋅ ⋅ 0

)𝑇
and

𝑌 =
(
𝐴1(∞)𝐴−1

0 (∞) 𝐴2(∞) 𝐴3(∞) ⋅ ⋅ ⋅ 𝐴2𝑚−1(∞) 𝐴2𝑚(∞)
)

are (4𝑚× 2) and (2 × 4𝑚) matrices, respectively.
Then

𝐵 = 𝐺+𝑋𝐸𝑌.

We compute the (2× 2) matrix,

𝐸 + 𝑌 𝐺−1𝑋 =
(
𝐴0(∞) − 𝑧−1𝐴1(∞) + 𝑧−2𝐴2(∞) − ⋅ ⋅ ⋅

⋅ ⋅ ⋅ − 𝑧−2𝑚+1𝐴2𝑚+1(∞) + 𝑧−2𝑚𝐴2𝑚(∞)
)
𝐴−1
0 (∞)

and show that its determinant is equal to one for all 𝑧 ∕= 0. Thus the matrix
𝐸 + 𝑌 𝐺−1𝑋 is invertible, and so is the matrix 𝐵 (see, for instance, Chapter 0.7.4
in [6]), with

𝐵−1 = 𝐺−1 −𝐺−1𝑋(𝐸 + 𝑌 𝐺−1𝑋)−1𝑌 𝐺−1.

It follows that the resolvent set of the matrix 𝐵1(∞)diag (𝐴−1
0 (∞), 𝐸4𝑚−2) is

ℂ ∖ {0}, so the spectrum is

𝜎[𝐵1(∞)diag (𝐴−1
0 (∞), 𝐸4𝑚−2)] = {0}.

Thus
𝜎[𝐹 (∞)] = {0}. □

Finally, Propositions 2.5 and 2.6 allow us to establish our main result.

Theorem 2.1. Let 𝑎 ∈ 𝐶(
∘
ℝ), 𝑎(𝑡) ∕= 0, for all 𝑡 ∈

∘
ℝ, and let 𝑘𝑎 = ind 𝑎, 𝑘 be

the number defined by (10), 𝐹 be the matrix function defined by (12), 𝑙(𝐹 ) be
the number defined by (18) for the matrix 𝐹 , and 𝑛 be the number of linearly
independent solutions of the problem (1). Then the estimate

𝑛 ≤ 𝑙(𝐹 ) + max(𝑘𝑎 − 𝑘, 0) + max(𝑘𝑎 + 𝑘, 0), (19)

holds.
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Remark. By Proposition 2.4, the partial indices of the matrix 𝐴0 are ϰ1 = −𝑘𝑎+𝑘
and ϰ2 = −𝑘𝑎 − 𝑘. Therefore, estimate (19) can be written as

𝑛 ≤ 𝑙(𝐹 ) + max(−ϰ1, 0) + max(−ϰ2, 0). (20)

3. A special case with analytic coefficients

Let us consider the problem

𝜑+ = 𝑎𝜑− + 𝑎0𝜑− + 𝑎1𝜑−(𝛼) + 𝑎2𝜑−(𝛼2) + ⋅ ⋅ ⋅ + 𝑎𝑚𝜑−(𝛼𝑚), (21)

in the case when 𝑎1, . . . , 𝑎𝑚 ∈ 𝐶(
∘
ℝ) have analytic continuation into the upper

half-plane.

Let 𝑁2 : 𝐿̃
2
2(ℝ) → 𝐿̃22(ℝ) be the invertible operator

𝑁2 =

(
1 𝐴− 𝑎0
0 1

)
𝑃+ +

(
1 0

𝐴− 𝑎0 1

)
𝑃−.

Recall that 𝐴 =
𝑚∑
𝑗=0

𝑎𝑗𝑈
𝑗 and 𝐴 =

𝑚∑
𝑗=0

𝑎𝑗𝑈
𝑗 .

We define the operator 𝑇 : 𝐿̃22(ℝ) → 𝐿̃22(ℝ) by

𝑇 = 𝐾2𝑁2,

where 𝐾2 is the operator defined by (3). It is easily seen that

𝑇 =

( −1 𝑎0
0 𝑎

)
𝑃+ +

(
𝑎 0
𝑎0 −1

)
𝑃−.

The number of linearly independent solutions of the problem (21) is given by

𝑛 =
1

2
dimker𝑇.

Notice that ( −1 𝑎0
0 𝑎

)−1(
𝑎 0
𝑎0 −1

)
= 𝐴−1

0 ,

where 𝐴0 is the matrix function defined by (6). From (9) the matrix 𝐴−1
0 admits

the left factorization in 𝐿2×2
2 (ℝ)

𝐴−1
0 = 𝐴−1

+ Λ−1𝐴−1
− ,

where Λ−1 = diag (𝜃−ϰ1 , 𝜃−ϰ2). It is known (see [18]) that

dimker𝑇 = 2[max(−ϰ1, 0) + max(−ϰ2, 0)].

Thus we have

Proposition 3.1. Let 𝑎 ∈ 𝐶(
∘
ℝ), 𝑎(𝑡) ∕= 0, for all 𝑡 ∈

∘
ℝ, and let ϰ1, ϰ2, be the partial

indices of the matrix 𝐴0. Then the number of linearly independent solutions of the
problem (21) is

𝑛 = max(−ϰ1, 0) + max(−ϰ2, 0). (22)
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On the other hand, the matrix function 𝐴0 admits the right factorization (9),

𝐴0 = 𝐴−Λ𝐴+,

where Λ = diag (𝜃ϰ1 , 𝜃ϰ2). Theorem 2.1 yields the estimate (20) which is obviously
consistent with the equality (22).

Example. Consider the following boundary value problem

𝜑+ = 𝜃𝜑− + 𝜑− + 10−3𝜑−(𝛼). (23)

Note that the two pairs of functions

𝜓+ =
2

𝑡+ 𝑖
+

10−3

𝑡+ 𝜇+ 𝑖
, 𝜓− =

1

𝑡− 𝑖 ,

and

𝜙+ =
−10−3𝑖

𝑡+ 𝜇+ 𝑖
, 𝜙− =

𝑖

𝑡− 𝑖 ,

are linearly independent solutions of the problem (23).
The matrix 𝐴0 associated with the problem (23) has the form

𝐴0 =

( −𝜃−1 𝜃−1

−𝜃−1 0

)
=

( −1 1
−1 0

)(
𝜃−1 0
0 𝜃−1

)(
1 0
0 1

)
;

and the corresponding (4× 4) matrix 𝐹 in (12) is

𝐹 =

⎛⎜⎜⎝
10−3𝜃𝜃−1(𝛼) 10−3(−1 − 𝜃𝜃−1(𝛼)) 0 −10−6𝜃𝜃−1(𝛼)
10−3𝜃𝜃−1(𝛼) −10−3𝜃𝜃−1(𝛼) 0 −10−6𝜃𝜃−1(𝛼)

−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ .
If 𝐷 is the diagonal matrix

𝐷 = diag (3−1, 2−1, 10−3, 10−3),

then one can easily check that∥∥𝐷𝐹 (∞)𝐷−1
∥∥
2
< 1,

and

max
𝑡∈

0

ℝ

∥∥𝐷𝐹 (𝑡)𝐷−1
∥∥
2
< 1.

Therefore, 𝑟(𝑡) = 𝐷, that implies 𝑙(𝐹 ) = 0.
Now, from (22) and (20), we get

2 = 𝑛 ≤ 2.
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On the Hyperderivatives of
Dirac-hyperholomorphic Functions
of Clifford Analysis

M. Elena Luna-Elizarrarás, Marco A. Maćıas-Cedeño
and Michael Shapiro

Abstract. In the context of Clifford analysis, considering the Cauchy-Riemann
and Dirac operators one has that any Dirac-hyperholomorphic function is also
Cauchy-Riemann-hyperholomorphic, but its hyperderivative in the Cauchy-
Riemann sense is always zero, so these functions can be thought of as “con-
stants” for the Cauchy-Riemann operator. It turns out that it is possible to
give another kind of hyperderivatives “consistent” with the Dirac operator,
but there are several of them. We focus in detail on one of these hyperderiva-
tives and develop also the notion of (𝑛 − 1)-dimensional directional hyper-
derivative along a hyperplane. As in the previous works, an application to the
Cliffordian-Cauchy-type integral proves to be instructive.

Mathematics Subject Classification (2000). 30G35; 32A10.

Keywords. Hyperderivative; Clifford analysis; Dirac operator; Cauchy-type
integrals.

1. Introduction

1.1. Algebraic preliminaries

1.1.1. We will use the common notation 𝐶ℓ0,𝑚 to denote the real Clifford alge-
bra with imaginary units e1, e2, . . . , e𝑚 with negative signature; denoting e0 = 1
the real unit, any Clifford number is of the form 𝑎 =

∑
𝐴 𝑎𝐴e𝐴 , where e𝐴 :=

eℎ1eℎ2 ⋅ ⋅ ⋅ eℎ𝑟 , 1 ≤ ℎ1, < ⋅ ⋅ ⋅ < ℎ𝑟 ≤ 𝑚, e∅ = e0 = 1 and 𝑎𝐴 ∈ ℝ. The con-
jugate of 𝑎 is defined by 𝑎 :=

∑
𝐴 𝑎𝐴 e𝐴 , with e𝐴 := eℎ𝑟eℎ𝑟−1 ⋅ ⋅ ⋅ eℎ1 ; e𝑘 :=

−e𝑘 (𝑘 = 1, . . . ,𝑚), e0 = e0 = 1 .

The research of the first and the third named authors was partially supported by CONACYT
projects as well as by Instituto Politécnico Nacional in the framework of COFAA and SIP
programs.
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The real-linear subspaces

𝐶ℓ
(𝑘)
0,𝑚 :=

{
𝑎 ∈ 𝐶ℓ0,𝑚 ∣ 𝑎 =

∑
∣𝐴∣=𝑘

𝑎𝐴𝑒𝐴

}
, 𝑘 ∈ {0, 1, . . . ,𝑚},

induce a decomposition of the Clifford algebra 𝐶ℓ0,𝑚 given by

𝐶ℓ0,𝑚 = 𝐶ℓ+0,𝑚 ⊕ 𝐶ℓ−0,𝑚 , (1.1)

where 𝐶ℓ+0,𝑚 := ⊕𝑘 even𝐶ℓ
(𝑘)
0,𝑚 and 𝐶ℓ−0,𝑚 := ⊕𝑘 odd𝐶ℓ

(𝑘)
0,𝑚. It is seen at once that

𝐶ℓ+0,𝑚 is a subalgebra and it is called the even subalgebra. Thus any 𝑦 ∈ 𝐶ℓ0,𝑚 has

a unique representation 𝑦 = 𝑦+ + 𝑦−, with 𝑦+ ∈ 𝐶ℓ+0,𝑚 and 𝑦− ∈ 𝐶ℓ−0,𝑚.

1.1.2. There is a decomposition of the Clifford algebra 𝐶ℓ0,𝑚 that we shall use
in what follows.

The generator of the real-linear subspace 𝐶ℓ
(𝑚)
0,𝑚 is eℕ𝑚 := e1e2 ⋅ ⋅ ⋅ e𝑚,

with ℕ𝑚 := {1, 2, . . . ,𝑚} and it has the property: e2
ℕ𝑚

= 1 or −1. The elements

of the set eℕ𝑚ℝ are called pseudo-scalars. On the other hand any 𝑦− ∈ 𝐶ℓ−0,𝑚 is
written as

𝑦− =

𝑚∑
ℓ=1

𝑦ℓeℓ +
∑

∣𝐴∣=3
𝑦𝐴e𝐴 + ⋅ ⋅ ⋅+

∑
∣𝐴∣=𝛽−2

𝑦𝐴e𝐴 +
∑

∣𝐴∣=𝛽

𝑦𝐴e𝐴 ,

where

𝛽 =

{
𝑚 if 𝑚 is odd;

𝑚− 1 if 𝑚 is even.

In the case that 𝑚 is an odd number, it is direct to see that

e2ℕ𝑚 =

{
−1 if 𝑚 ≡ 1mod4,

1 if 𝑚 ≡ 3mod4.

Thus, in this case, 𝑦− is written as follows:

𝑦− =

(
±

𝑚∑
ℓ=1

𝑦ℓeℓeℕ𝑚 ±
∑

∣𝐴∣=3
𝑦𝐴e𝐴eℕ𝑚 ± ⋅ ⋅ ⋅ ±

∑
∣𝐴∣=𝛽−2

𝑦𝐴e𝐴eℕ𝑚 + 𝑦ℕ𝑚

)
eℕ𝑚 ,

where the sign depends on the class of congruence of 𝑚mod 4. Observe that, if
∣ 𝐴 ∣ is odd, then e𝐴eℕ𝑚 = e𝐴′ , with ∣ 𝐴′ ∣ an even number, that is, every product
e𝐴eℕ𝑚 ∈ 𝐶ℓ+0,𝑚, hence

±
𝑚∑
ℓ=1

𝑦ℓeℓeℕ𝑚 ±
∑

∣𝐴∣=3
𝑦𝐴e𝐴eℕ𝑚 ± ⋅ ⋅ ⋅ ±

∑
∣𝐴∣=𝛽−2

𝑦𝐴e𝐴eℕ𝑚 + 𝑦ℕ𝑚 ∈ 𝐶ℓ+0,𝑚 .
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Considering now the case of 𝑚 even, and taking 𝑘 ∈ {1, 2, . . . ,𝑚}, one has:

𝑦− =
𝑚∑
ℓ=1

𝑦ℓeℓ +
∑

∣𝐴∣=3
𝑦𝐴e𝐴 + ⋅ ⋅ ⋅ +

∑
∣𝐴∣=𝑚−3

𝑦𝐴e𝐴 +
∑

∣𝐴∣=𝑚−1

𝑦𝐴e𝐴

= −
𝑚∑
ℓ=1

𝑦ℓeℓ (e𝑘)
2 −
∑

∣𝐴∣=3
𝑦𝐴e𝐴 (e𝑘)

2 − ⋅ ⋅ ⋅

⋅ ⋅ ⋅ −
∑

∣𝐴∣=𝑚−3

𝑦𝐴e𝐴 (e𝑘)
2 −

∑
∣𝐴∣=𝑚−1

𝑦𝐴e𝐴 (e𝑘)
2

=

(
−

𝑚∑
ℓ=1

𝑦ℓeℓ e𝑘 −
∑

∣𝐴∣=3
𝑦𝐴e𝐴 e𝑘 − ⋅ ⋅ ⋅

⋅ ⋅ ⋅ −
∑

∣𝐴∣=𝑚−3

𝑦𝐴e𝐴 e𝑘 −
∑

∣𝐴∣=𝑚−1

𝑦𝐴e𝐴 e𝑘

)
e𝑘 .

Again, if ∣ 𝐴 ∣ is odd, then e𝐴e𝑘 = e𝐴′ , with ∣ 𝐴′ ∣ always an even number,
and every product e𝐴e𝑁𝑚 ∈ 𝐶ℓ+0,𝑚, hence

−
𝑚∑
ℓ=1

𝑦ℓeℓ e𝑘 −
∑

∣𝐴∣=3
𝑦𝐴e𝐴 e𝑘 − ⋅ ⋅ ⋅ −

∑
∣𝐴∣=𝑚−3

𝑦𝐴e𝐴 e𝑘 −
∑

∣𝐴∣=𝑚−1

𝑦𝐴e𝐴 e𝑘 ∈ 𝐶ℓ+0,𝑚.

With the above reasoning it is clear that the linear subspace 𝐶ℓ−0,𝑚 can be

written (not in a unique way) as:

𝐶ℓ−0,𝑚 = 𝐶ℓ+0,𝑚𝛼 . (1.2)

with 𝛼 = eℕ𝑚 or 𝛼 = e𝑘 depending on if 𝑚 is odd or even, but in any case 𝛼
satisfies 𝛼2 = 1 or 𝛼2 = −1.

Thus from the decomposition (1.1) one has:

𝐶ℓ0,𝑚 ∼= 𝐶ℓ+0,𝑚 ⊕ 𝐶ℓ+0,𝑚𝛼 . (1.3)

It was proved in Section 1.7.2 in [1] that the subalgebra 𝐶ℓ+0,𝑚 is isomorphic
to the algebra 𝐶ℓ0,𝑚−1 thus we can say more about the decomposition of the
Clifford algebra 𝐶ℓ0,𝑚:

𝐶ℓ0,𝑚 ∼= 𝐶ℓ0,𝑚−1 ⊕ 𝐶ℓ0,𝑚−1𝛼 . (1.4)

1.1.3. One more algebraic fact. Fixing eℓ, with ℓ ∈ {1, . . . ,𝑚}, consider the 𝑚−1
bivectors e𝑗,ℓ := e𝑗eℓ, with 𝑗 ∈ {1, . . . ,𝑚} and 𝑗 ∕= ℓ. Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈
ℝ𝑚. An alternative Cliffordian representation of 𝑥 is given by

𝑥 = 𝑥ℓ +
∑

𝑗∈{1,...,ℓ−1,ℓ+1,...,𝑚}
𝑥𝑗 e𝑗,ℓ ,

hence any domain Ω𝑚 ⊂ ℝ𝑚 can be embedded in this other way into the Clifford
algebra 𝐶ℓ0,𝑚−1 which is seen inside the Clifford algebra 𝐶ℓ0,𝑚.
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1.2. Complex and hypercomplex antecedents

1.2.1. In [9], Shapiro and Vasilevski obtained the correlation:

𝑑(𝜎(2)𝑥 𝑓(𝑥)) =
1

2

(
𝜎(3)𝑥 𝒟𝐹 [𝑓 ](𝑥) − 𝜎 (3)

𝑥 𝒟𝐹 [𝑓 ](𝑥)
)
, (1.5)

where 𝜎
(3)
𝑥 is the 3-form

𝜎(3)𝑥 := 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 − i 𝑑𝑥0 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3
+ j 𝑑𝑥0 ∧ 𝑑𝑥1 ∧ 𝑑𝑥3 − k 𝑑𝑥0 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2

=: 𝑑𝑥0 − i 𝑑𝑥1 + j 𝑑𝑥2 − k 𝑑𝑥3 ,

𝜎
(2)
𝑥 is the 2-form

𝜎(2)𝑥 := i 𝑑𝑥2 ∧ 𝑑𝑥3 − j 𝑑𝑥1 ∧ 𝑑𝑥3 + k 𝑑𝑥1 ∧ 𝑑𝑥2
=: i 𝑑𝑥1,0 − j 𝑑𝑥2,0 + k 𝑑𝑥3,0 ,

and

𝒟𝐹 :=

3∑
ℓ=0

eℓ
∂

∂𝑥ℓ
, 𝒟𝐹 :=

3∑
ℓ=0

eℓ
∂

∂𝑥ℓ

are the Fueter operator and its (quaternionic) conjugate.

1.2.2. The equality (1.5) is a deep structural analog of its complex analysis an-
tecedent

𝑑𝑔(𝑧0) =
∂𝑔

∂𝑧
(𝑧0) 𝑑𝑧 +

∂𝑔

∂𝑧
(𝑧0) 𝑑𝑧 . (1.6)

In the latter, when 𝑔 is a holomorphic function, then its complex derivative

𝑔′(𝑧0) coincides with its “formal” derivative
∂𝑔

∂𝑧
(𝑧0). Hence the analogy between

(1.5) and (1.6) allows us to conclude that if a quaternionic function 𝑓 is hyperholo-

morphic (𝑓 ∈ ker𝒟𝐹 ) then
1

2
𝒟𝐹 [𝑓 ](𝑥

0) is a highly probable candidate for being

an “adequate quaternionic hyperderivative” of the hyperholomorphic function 𝑓 .
The paper [7] justifies the idea; it works with the notion of the hyperderivative
′𝑓(𝑥0) of a Fueter-hyperholomorphic function as the limit of a specific quotient,
concluding that

′𝑓(𝑥0) =
1

2
𝒟𝐹 [𝑓 ](𝑥

0) . (1.7)

In others words recalling that in the complex case the derivative of a holomorphic
function is the proportionality coefficient between the differentials of the function
and of the independent variable: 𝑑𝑔 = 𝑔′(𝑧0) 𝑑𝑧, we conclude that the hyperderiva-
tive ′𝑓(𝑥0) is the proportionality coefficient between the two differential forms:

𝑑(𝜎
(2)
𝑥0 𝑓(𝑥

0)) =
1

2
𝜎
(3)
𝑥0 𝒟𝐹 [𝑓 ](𝑥

0) .
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1.2.3. In [2], see also [5] the authors followed the above ideas in the context of
real Clifford algebras 𝐶ℓ0,𝑚. Let 𝒟𝐶𝑅 :=

∑𝑚
ℓ=0 eℓ

∂
∂𝑥ℓ

be the Cauchy-Riemann

operator acting on 𝒞1(Ω ⊂ ℝ𝑚+1; 𝒞ℓ0,𝑚); the (Cliffordian) Cauchy-Riemann-hy-
perholomorphic functions are null solutions of 𝒟𝐶𝑅. In analogy to (1.5) and (1.6),
for 𝒞ℓ0,𝑚-valued functions of class 𝒞1 there holds:

𝑑(𝜏𝑥 𝑓(𝑥)) =
1

2

(
𝜎𝑥𝒟𝐶𝑅[𝑓 ](𝑥) − 𝜎𝑥𝒟𝐶𝑅[𝑓 ](𝑥)

)
, (1.8)

where

𝜎𝑥 := 𝑑𝑥̂0 − e1𝑑𝑥̂1 + ⋅ ⋅ ⋅+ (−1)𝑚e𝑚𝑑𝑥̂𝑚 , (1.9)

and

𝜏𝑥 = −e1𝑑𝑥̂0,1 + e2𝑑𝑥̂0,2 + ⋅ ⋅ ⋅+ (−1)𝑚e𝑚𝑑𝑥̂0,𝑚 , (1.10)

with

𝑑𝑥ℓ := 𝑑𝑥0 ∧ 𝑑𝑥1 ∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥ℓ−1 ∧ 𝑑𝑥ℓ+1 ∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥𝑚 ,
(i.e., 𝑑𝑥ℓ is obtained from the volume differential form 𝑑𝑉 = 𝑑𝑥0 ∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥𝑚,
omitting the factor 𝑑𝑥ℓ), and 𝑑𝑥𝑠,𝑡 is obtained from 𝑑𝑥𝑠 omitting also 𝑑𝑥𝑡.

Similarly to what is written in Subsection 1.2.1 the Cliffordian hyperderiva-
tive is defined as the proportionality coefficient between the differential forms 𝜎𝑥
and 𝜏𝑥, and it also turns out to be the limit of an appropriate quotient; besides,
the hyperderivative coincides up to a real factor, as in (1.7), with the conjugate
Cauchy-Riemann operator:

′𝑓(𝑥) = −1

2
𝒟𝐶𝑅[𝑓 ](𝑥) .

1.2.4. The Dirac operator

𝒟Dir :=

𝑚∑
ℓ=1

eℓ
∂

∂𝑥ℓ
, (1.11)

which acts on functions 𝑓 : Ω ⊂ ℝ𝑚 → 𝐶ℓ0,𝑚 of class 𝐶1, is related with the

Cauchy-Riemann operator as follows: given 𝑓 as before, define 𝑓 : ℝ×Ω ⊂ ℝ𝑚+1 →
𝐶ℓ0,𝑚 such that

𝑓(𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑚) := 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑚) for any 𝑥0.

Now, assuming that 𝑓 is Dirac-hyperholomorphic (that is, 𝑓 is a null-solution
of the Dirac operator), one has:

𝒟𝐶𝑅[𝑓 ](𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑚)

=
∂𝑓

∂𝑥0
(𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑚) +

𝑚∑
ℓ=1

eℓ
∂

∂𝑥ℓ
[𝑓 ](𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑚)

=
𝑚∑
ℓ=1

eℓ
∂

∂𝑥ℓ
[𝑓 ](𝑥1, 𝑥2, . . . , 𝑥𝑚) = 𝒟Dir[𝑓 ](𝑥1, 𝑥2, . . . , 𝑥𝑚) = 0 ,
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thus 𝑓 is Cauchy-Riemann-hyperholomorphic in this specific domain ℝ × Ω (of
course, the “cylinder” can be of a finite height, and there are other ways of “in-
flating” the domain Ω). It is common to say that 𝑓 is Cauchy-Riemann-hyperholo-
morphic as well, and to write the Cauchy-Riemann operator (for these specific
domains and for these specific functions) as

𝒟𝐶𝑅 =

𝑚∑
ℓ=0

eℓ
∂

∂𝑥ℓ
=
∂

∂𝑥0
+ 𝒟Dir .

What is more, the left-hyperderivative of 𝑓 ∈ ker𝒟Dir at the point 𝑥0 = (𝑥01,

𝑥02, . . ., 𝑥
0
𝑚) ∈ Ω ⊂ ℝ𝑚 is equal to the left-hyperderivative of 𝑓 at any point

(𝑥0, 𝑥
0
1, 𝑥

0
2, . . . , 𝑥

0
𝑚) =: (𝑥0, 𝑥

0) ∈ ℝ𝑚+1, and hence, is identically zero in the whole
domain Ω:

′𝑓(𝑥0, 𝑥0) =
1

2
𝒟𝐶𝑅[ 𝑓 ](𝑥0, 𝑥

0)

=
∂𝑓

∂𝑥0
(𝑥0, 𝑥

0)−
𝑚∑
ℓ=1

eℓ
∂𝑓

∂𝑥ℓ
(𝑥0, 𝑥

0)

= −𝒟Dir[𝑓 ](𝑥1, 𝑥2, . . . , 𝑥𝑚) = 0 .

That is, the set of Dirac-hyperholomorphic functions is a kind of the set of
“Cauchy-Riemann-hyperholomorphic constants”, and thus it is obviously not in-
teresting to study the properties of the Cauchy-Riemann-hyperderivative of the
Dirac-hyperholomorphic functions.

1.2.5. It is the aim of the paper to show that it is possible to develop another
approach to the notion of hyperderivatives of a Dirac-hyperholomorphic function
which is based on the same ideas but in such a way that the new hyperderivative
does not vanish identically. We describe also the peculiarities of the situation
and we explain why the Dirac-hyperholomorphic functions need to have several
equivalent hyperderivatives.

2. The left-e1-Dirac-hyperderivative

2.1.

Since

𝒟Dir =
𝑚∑
ℓ=1

eℓ
∂

∂𝑥ℓ

= e1

(
∂

∂𝑥1
− e1 e2

∂

∂𝑥2
− ⋅ ⋅ ⋅ − e1 e𝑚

∂

∂𝑥𝑚

)
= e1

(
∂

∂𝑥1
+ ê2

∂

∂𝑥2
+ ⋅ ⋅ ⋅+ ê𝑚

∂

∂𝑥𝑚

)
= e1𝒟1

𝐶𝑅 , (2.1)
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where

𝒟1
𝐶𝑅 =

∂

∂𝑥1
+ ê2

∂

∂𝑥2
+ ⋅ ⋅ ⋅+ ê𝑚

∂

∂𝑥𝑚
, (2.2)

and ê2 := e2 e1, . . . , ê𝑚 := e𝑚 e1, then the sets of null-solutions of both operators
coincide. At the moment, we can say that 𝒟1

𝐶𝑅 is a Cauchy-Riemann-type operator,
which acts on 𝐶1(Ω𝑚 ⊂ ℝ𝑚;𝐶ℓ0,𝑚). Observe that the restriction

𝒟1+
𝐶𝑅 := 𝒟1

𝐶𝑅∣𝐶1(Ω𝑚⊂ℝ𝑚;𝐶ℓ+0,𝑚) ,

is a “genuine” Cauchy-Riemann operator for the Clifford algebra𝐶ℓ0,𝑚−1
∼= 𝐶ℓ+0,𝑚,

whose imaginary units are ê2, . . . , ê𝑚, and ê0 := 1.

2.2.

Thus, using the reasonings and the denotation given in Section 1.1 together with
the decomposition of the Clifford algebra 𝐶ℓ0,𝑚, given 𝑓 ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚;𝐶ℓ0,𝑚),
for any 𝑥 ∈ Ω𝑚 one has:

𝑓(𝑥) = 𝑓+(𝑥) + 𝑓−(𝑥) ,

with 𝑓+(𝑥) ∈ 𝐶ℓ+0,𝑚 and 𝑓−(𝑥) ∈ 𝐶ℓ−0,𝑚. We know also that there exists 𝑓−(𝑥) ∈
𝐶ℓ+0,𝑚 such that

𝑓−(𝑥) = 𝑓−(𝑥)𝛼 ,

with 𝛼 as in Section 1.1. Recall the notation 𝑀𝜇 : 𝐶1(Ω𝑚 ⊂ ℝ𝑚; 𝐶ℓ0,𝑚−1)
→ 𝐶1(Ω𝑚 ⊂ ℝ𝑚; 𝐶ℓ0,𝑚−1) for the operator that acts by𝑀

𝜇[ 𝑓 ](𝑥) =𝑀𝜇∘𝑓(𝑥) :=
𝑓(𝑥)𝜇. Hence 𝑓+, 𝑀𝜇 ∘ 𝑓− ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚; 𝐶ℓ0,𝑚−1) and

𝒟1
𝐶𝑅[ 𝑓 ](𝑥) = 𝒟1

𝐶𝑅[ 𝑓
+](𝑥) + 𝒟1

𝐶𝑅[𝑀
𝛼 ∘ 𝑓−](𝑥)

= 𝒟1
𝐶𝑅[ 𝑓

+](𝑥) + 𝒟1
𝐶𝑅[ 𝑓−](𝑥)𝛼

= 𝒟1+
𝐶𝑅[ 𝑓

+](𝑥) + 𝒟1+
𝐶𝑅[ 𝑓−](𝑥)𝛼 .

(2.3)

2.3.

Adding the hypothesis that 𝑓 ∈ ker𝒟Dir = ker𝒟1
𝐶𝑅, i.e., 𝒟Dir[ 𝑓 ](𝑥) = 0, from

(2.3) and using the fact that 𝐶ℓ+0,𝑚 ∩ 𝐶ℓ−0,𝑚 = {0}, one concludes that 𝑓+ and

𝑓− belong to ker𝒟1+
𝐶𝑅. It is clear that if 𝑓+, 𝑓− ∈ ker𝒟1+

𝐶𝑅 hence 𝑓 ∈ ker𝒟Dir.
Summarizing we have

2.4. Proposition.

Let 𝑓 ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚; 𝐶ℓ0,𝑚) and take its decomposition 𝑓 = 𝑓+ + 𝑓− 𝛼, with
𝑓+, 𝑓− and 𝛼 as before. Then 𝑓 ∈ ker𝒟Dir if and only if 𝑓

+, 𝑓− ∈ ker𝒟1+
𝐶𝑅.
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2.5.

The analogs of (1.9) and (1.10) for the Clifford algebra 𝐶ℓ0,𝑚−1
∼= 𝐶ℓ+0,𝑚 with the

imaginary units ê2, . . . , ê𝑚 are:

𝜎𝑥,1 = 𝑑𝑥1 − ê2𝑑𝑥2 + ⋅ ⋅ ⋅ + (−1)𝑚−1ê𝑚𝑑𝑥𝑚 ,

and

𝜏𝑥,1 = −ê2𝑑𝑥1,2 + ⋅ ⋅ ⋅ + (−1)𝑚−1ê𝑚𝑑𝑥1,𝑚 ,

for which there holds for any 𝑔 ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚; 𝐶ℓ0,𝑚−1):

𝑑(𝜏𝑥,1𝑔(𝑥)) =
1

2

(
𝜎𝑥,1𝒟1+

𝐶𝑅[ 𝑔](𝑥) − 𝜎𝑥,1𝒟1+
𝐶𝑅[ 𝑔](𝑥)

)
. (2.4)

In particular for 𝑓 = 𝑓+ +𝑀𝛼 ∘ 𝑓− ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚; 𝐶ℓ0,𝑚) given as before,
one has:

𝑑(𝜏𝑥,1(𝑓
+ +𝑀𝛼 ∘ 𝑓−)(𝑥)) = 𝑑(𝜏𝑥,1𝑓+(𝑥)) + 𝑑(𝜏𝑥,1𝑓−(𝑥))𝛼

=
1

2

(
𝜎𝑥,1𝒟1+

𝐶𝑅[ 𝑓
+](𝑥) − 𝜎𝑥,1𝒟1+

𝐶𝑅[ 𝑓
+](𝑥)

)
+

1

2

(
𝜎𝑥,1𝒟1+

𝐶𝑅[ 𝑓−](𝑥) − 𝜎𝑥,1𝒟1+
𝐶𝑅[ 𝑓−](𝑥)

)
𝛼

=
1

2

(
𝜎𝑥,1

(
𝒟1+

𝐶𝑅[ 𝑓
+](𝑥) + 𝒟1+

𝐶𝑅[ 𝑓−](𝑥)𝛼
)

− 𝜎𝑥,1
(𝒟1+

𝐶𝑅[ 𝑓
+](𝑥) + 𝒟1+

𝐶𝑅[ 𝑓−](𝑥)𝛼
))

=
1

2

(
𝜎𝑥,1𝒟1

𝐶𝑅[ 𝑓 ](𝑥) − 𝜎𝑥,1𝒟1
𝐶𝑅[ 𝑓 ](𝑥)

)
. (2.5)

Summarizing:

𝑑(𝜏𝑥,1𝑓(𝑥)) =
1

2

(
𝜎𝑥,1𝒟1

𝐶𝑅[ 𝑓 ](𝑥) − 𝜎𝑥,1𝒟1
𝐶𝑅[ 𝑓 ](𝑥)

)
. (2.6)

So we are in a position to define a new hyperderivative for Dirac-hyperholo-
morphic functions.

2.6. Definition.

Let 𝑓 ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚; 𝐶ℓ0,𝑚). The function 𝑓 is called left-e1-hyperderivable in
Ω𝑚, if for any 𝑥 ∈ Ω𝑚 there is a Clifford number, denoted by ′𝑓e1(𝑥), such that

𝑑(𝜏𝑥,1𝑓(𝑥)) = 𝜎𝑥,1
′𝑓e1(𝑥) . (2.7)

The Clifford number ′𝑓e1(𝑥) is named the left-e1-Dirac-hyperderivative of 𝑓 at 𝑥.

Next theorem is immediate from (2.6).

2.7. Theorem.

Let 𝑓 ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚; 𝐶ℓ0,𝑚). The function 𝑓 is Dirac-hyperholomorphic in Ω𝑚

if and only if it is left-e1-Dirac-hyperderivable and for such a function

′𝑓e1(𝑥) =
1

2
𝒟 1

𝐶𝑅[𝑓 ](𝑥) , ∀𝑥 ∈ Ω𝑚 . (2.8)
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2.8.

It should be noted that according to equation (2.5), Proposition 2.4 and Theorem
2.3.1 in [5], the left-Dirac-hyperderivative ′𝑓e1 at any 𝑥 ∈ Ω𝑚 is determined by
the hyperderivatives of the functions 𝑓+, 𝑓−, at the same point; and in fact the
next theorem is valid.

2.9. Theorem.

Let 𝑓 ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚, 𝐶ℓ0,𝑚) and 𝑓+, 𝑓− ∈ 𝐶1(Ω𝑚, 𝐶ℓ0,𝑚−1
∼= 𝐶ℓ+0,𝑚), 𝛼 ∈

𝐶ℓ0,𝑚 such that, as before, 𝑓 = 𝑓+ + 𝑀𝛼 ∘ 𝑓−. Then 𝑓 is left-e1-Dirac-
hyperderivable in Ω𝑚 if and only if 𝑓+ and 𝑓− are left-Cauchy-Riemann-
hyperderivables in Ω𝑚, and moreover

′𝑓e1(𝑥) = (𝑓+)′(𝑥) + 𝑓 ′
−(𝑥)𝛼 , ∀𝑥 ∈ Ω𝑚 , (2.9)

where (𝑓+)′, 𝑓 ′
− are the left-Cauchy-Riemann-hyperderivatives of 𝑓+, 𝑓− respec-

tively.

3. The left-e1-Dirac-hyperderivative as the limit
of a quotient of increments

3.1.

Following the antecedents of this paper (see [7] and [5]), the left-e1-Dirac-hyper-
derivative can be seen as the limit of a quotient of the adequate increments of
the function and of the variable. As it follows from [7], the key point here is that
the increments have suitable dimensions. Let 𝑥0 ∈ ℝ𝑚 and let 𝑣1, 𝑣2, . . . , 𝑣𝑚−1

be linearly independent vectors in ℝ𝑚. The (𝑚− 1)-dimensional parallelepiped Π
with vertex 𝑥0 and edges 𝑣1, 𝑣2, . . . , 𝑣𝑚−1 is defined by

Π :=

{
𝑥0 +

𝑚−1∑
ℓ=1

𝑡ℓ 𝑣ℓ ∣ (𝑡1, 𝑡2, . . . , 𝑡𝑚−1) ∈ [0, 1]𝑚−1

}
,

and its boundary by

∂Π :=

{
𝑥0 +

𝑚−1∑
ℓ=1

𝑡ℓ 𝑣ℓ ∣ (𝑡1, 𝑡2, . . . , 𝑡𝑚−1) ∈ ∂[0, 1]𝑚−1

}
.

3.2. Theorem.

Let 𝑓 ∈ ker 𝐷Dir(Ω𝑚) and ′𝑓e1(𝑥) be its left-e1-Dirac-hyperderivative at a point
𝑥 ∈ Ω𝑚 ⊂ ℝ𝑚. Then for any sequence {Π𝑘}∞

𝑘=1 of oriented non-degenerated para-
llelepipeds with vertex 𝑥0 and with lim

𝑘→∞
diam Π𝑘 = 0, there holds:

lim
𝑘→∞

⎛⎝ ∫
Π𝑘

𝜎𝑥,1

⎞⎠−1⎛⎝ ∫
∂Π𝑘

𝜏𝑥,1 𝑓(𝑥)

⎞⎠ = ′𝑓e1(𝑥
0) . (3.1)
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The proof follows from (2.6) and from Stokes’ Theorem: first of all,

lim
𝑘→∞

⎛⎝ ∫
Π𝑘

𝜎𝑥,1

⎞⎠−1⎛⎝ ∫
∂Π𝑘

𝜏𝑥,1 𝑓(𝑥)

⎞⎠ = lim
𝑘→∞

⎛⎝ ∫
Π𝑘

𝜎𝑥,1

⎞⎠−1

⋅
∫
Π𝑘

𝑑(𝜏𝑥,1 𝑓(𝑥))

= lim
𝑘→∞

⎛⎝ ∫
Π𝑘

𝜎𝑥,1

⎞⎠−1

⋅
∫
Π𝑘

𝜎𝑥,1
′𝑓e1(𝑥)) ,

but also it is direct to prove that

′𝑓e1(𝑥) =
′𝑓e1(𝑥

0) + 𝑜(𝑥− 𝑥0) ,
thus

lim
𝑘→∞

⎛⎝ ∫
Π𝑘

𝜎𝑥,1

⎞⎠−1⎛⎝ ∫
∂Π𝑘

𝜏𝑥,1 𝑓(𝑥)

⎞⎠ = ′𝑓e1(𝑥
0) .

4. The directional left-e1-Dirac-hyperderivative

4.1. Definition

Let 𝐿 ⊂ ℝ𝑚 be a hyperplane such that 𝐿∩Ω𝑚 ∕= ∅. The function 𝑓 : Ω𝑚 ⊂ ℝ𝑚 →
𝐶ℓ0,𝑚 is called left-e1-Dirac-hyperderivable at 𝑥

0 ∈ 𝐿∩Ω𝑚 along the hyperplane 𝐿
if for any sequence {Π𝑘}∞

𝑘=1, with Π𝑘 ⊂ 𝐿 and lim
𝑘→∞

diam Π𝑘 = 0, of parallelepipeds

with vertex 𝑥0, the limit

lim
𝑘→∞

⎡⎢⎣
⎛⎝ ∫

Π𝑘

𝜎𝑥,1

⎞⎠−1⎛⎝ ∫
∂Π𝑘

𝜏𝑥,1 ⋅ 𝑓(𝑥)
⎞⎠
⎤⎥⎦ (4.1)

exists and is independent of the sequence {Π𝑘}∞
𝑘=1. In this case the limit is denoted

by ′𝑓e1, 𝐿(𝑥
0) and is called the direcctional left-e1-Dirac-hyperderivative.

4.2.

Note that the limits in (4.1) and (3.1) are quite similar. The crucial difference
between them is the fact that the parallelepipeds considered in (4.1) are “caught”
in the hyperplane 𝐿.

4.3.

Given as before an (𝑚− 1)-dimensional hyperplane 𝐿 ⊂ ℝ𝑚, let

𝛾(𝑥) :=

𝑚∑
ℓ=1

𝑛ℓ𝑥ℓ + 𝑑 = 0
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be its equation, with 𝑛̂ = (𝑛1, 𝑛2, . . . , 𝑛𝑚) the unitary normal vector, and 𝑑 ∈ ℝ.
Applying formula (2.6) to the function 𝛾, there holds:

𝑑(𝜏𝑥,1 𝛾(𝑥)) =
1

2

(
𝜎𝑥,1 𝒟 1

𝐶𝑅[𝛾](𝑥) − 𝜎𝑥,1 𝒟1
𝐶𝑅[𝛾](𝑥)

)
=

1

2

(
𝜎𝑥,1𝑛̆− 𝜎𝑥,1 𝑛̆

)
,

where 𝑛̆ := 𝑛1 + 𝑛2 ê2 + ⋅ ⋅ ⋅ + 𝑛3 ê𝑚. This differential form is identically zero on
𝐿, thus

𝜎𝑥,1 𝑛̆ = 𝜎𝑥,1 𝑛̆ , for 𝑥 ∈ 𝐿 .

4.4.

Let us combine the latter fact with Stokes’ Theorem. Consider a function 𝑓 which
satisfies the conditions in Definition 4.1, then(∫

Π𝑘

𝜎𝑥,1

)−1 (∫
∂Π𝑘

𝜏𝑥,1 𝑓(𝑥)

)
=

1

2

(∫
Π𝑘

𝜎𝑥,1

)−1 ∫
Π𝑘

𝜎𝑥,1

(
𝒟 1

𝐶𝑅[𝑓 ](𝑥) − (𝑛̆)2 𝒟 1
𝐶𝑅[𝑓 ](𝑥)

)
.

This formula implies two facts which one would expect from a suitable no-
tion of directional derivative and which we present below, after this comment.
The first fact is related with functions of class 𝐶1(Ω𝑚 ⊂ ℝ𝑚;𝐶ℓ0,𝑚) and claims
that these functions possess the left-e1-Dirac-hyperderivative along any (𝑚 − 1)-
dimensional hyperplane that intersects the domain, and it is given in terms of
the direction of the corresponding hyperplane. The second fact says that if the
function 𝑓 : Ω𝑚 ⊂ ℝ𝑚 → 𝐶ℓ0,𝑚 is Dirac-hyperholomorphic then the directional
left-e1-Dirac-hyperderivative does not depend on the direction of the hyperplane.

4.5. Theorem.

Let 𝑓 ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚; 𝐶ℓ0,𝑚). Then 𝑓 is left-e1-Dirac-hyperderivable along any
(𝑚 − 1)-dimensional hyperplane 𝐿 at every 𝑥0 ∈ 𝐿 ∩ Ω𝑚, and the left-e1-Dirac-
hyperderivative along the plane 𝐿 is given by

′𝑓e1, 𝐿(𝑥
0) =

1

2

(
𝒟 1

𝐶𝑅[𝑓 ](𝑥
0) +
(
𝑛̆
)2
𝐷1

𝐶𝑅[𝑓 ](𝑥
0)
)
. (4.2)

4.6. Corollary.

Let 𝑓 ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚; 𝐶ℓ0,𝑚). Then 𝑓 is Dirac-hyperholomorphic in Ω𝑚 if and
only if ∀ 𝑥0 ∈ Ω𝑚 the directional hyperderivative ′𝑓e1,𝐿(𝑥

0) is independent of
the hyperplane 𝐿, with 𝑥0 ∈ 𝐿 ∩ Ω𝑚. Moreover, in this case all the directional
hyperderivatives ′𝑓e1,𝐿(𝑥

0) are equal to ′𝑓e1(𝑥
0).
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5. The left-e1-Dirac-hyperderivative and
the Clifford-Cauchy-type integral

5.1.

As in the previous papers, an application of the hyperderivative to the Clifford-
Cauchy-type integral proves to be instructive. In order to compute the left-e1-
Dirac-hyperderivative of the Clifford-Cauchy-type integral, it is neccessary to es-
tablish the corresponding relations between the Clifford-Cauchy kernel and the
right- and left-Cauchy-Riemann operators.

5.2. The right-hand side operators

The right-hand side Cauchy-Riemann operator, which acts on functions 𝐶1(Λ ⊂
ℝ𝑚+1; 𝐶ℓ0,𝑚) is given by

𝒟𝑟 :=
𝑚∑
ℓ=0

𝑀eℓ
∂

∂𝑥ℓ
.

Analogously the right-hand side Dirac operator is given as

𝒟Dir,𝑟 :=

𝑚∑
ℓ=1

𝑀eℓ
∂

∂𝑥ℓ
.

It acts on 𝐶1(Ω𝑚 ⊂ ℝ𝑚; 𝐶ℓ0,𝑚), and it can be written as

𝒟Dir,𝑟 =𝑀e1

(
∂

∂𝑥1
−

𝑚∑
ℓ=2

𝑀 êℓ
∂

∂𝑥ℓ

)
.

Define

𝒟1
𝐶𝑅,𝑟 :=

∂

∂𝑥1
−

𝑚∑
ℓ=2

𝑀 êℓ
∂

∂𝑥ℓ
,

and its conjugate:

𝒟 1

𝐶𝑅,𝑟 :=
∂

∂𝑥1
+

𝑚∑
ℓ=2

𝑀 êℓ
∂

∂𝑥ℓ
,

thus, similarly to what happens with the left-hand side operators, the sets of the
null-solutions of 𝒟Dir,𝑟 and 𝒟 1

𝐶𝑅,𝑟 coincide. Moreover, the right-hand side analog

of (2.6) is valid:

𝑑(𝑓(𝑥) 𝜏𝑥,1) =
1

2

(
𝒟 1

𝐶𝑅,𝑟[𝑓 ](𝑥)𝜎𝑥,1 − 𝒟 1

𝐶𝑅,𝑟[𝑓 ](𝑥)𝜎𝑥,1

)
. (5.1)

The immediate right-hand side analogs of Definition 2.6 and Theorem 2.7 follow:

5.3. Definition.

Let 𝑓 ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚; 𝐶ℓ0,𝑛). The function 𝑓 is called right-e1-Dirac-hyperderiv-
able in Ω𝑚, if for any 𝑥 ∈ Ω𝑚 there is a Clifford number denoted by 𝑓 ′

e1
(𝑥) such

that

𝑑(𝑓(𝑥) 𝜏𝑥, 1) = 𝑓
′
e1
(𝑥)𝜎𝑥, 1 .
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5.4. Theorem.

Let 𝑓 ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚;𝐶ℓ0,𝑚). The function 𝑓 is right-Dirac-hyperholomorphic in
Ω𝑚 if and only if it is right-e1-Dirac-hyperderivable in Ω𝑚 and in this case for
any 𝑥 ∈ Ω𝑚 it follows:

𝑓 ′
e1
(𝑥) = −1

2
𝒟 1

𝐶𝑅,𝑟[𝑓 ](𝑥) .

5.5.

From (2.6) and (5.1) there holds:

𝑑(𝑓(𝑥) 𝜏𝑥,1 𝑔(𝑥)) =
1

2
(𝒟 1

𝐶𝑅,𝑟[𝑓 ](𝑥)𝜎𝑥, 1 𝑔(𝑥) − 𝒟 1

𝐶𝑅,𝑟[𝑓 ](𝑥)𝜎𝑥, 1 𝑔(𝑥)

+(−1)𝑚−2𝑓(𝑥)𝜎𝑥, 1 𝒟 1

𝐶𝑅[𝑔 ](𝑥)

+ (−1)𝑚−1𝑓(𝑥)𝜎𝑥, 1 𝒟 1
𝐶𝑅[𝑔](𝑥)) . (5.2)

5.6.

Let us recall that

𝐸(𝑦 − 𝑥) = 𝑦 − 𝑥
𝐴𝑚 ∣ 𝑦 − 𝑥 ∣𝑚 ,

with 𝐴𝑚 the surface area of the unit sphere 𝕊𝑚−1 ⊂ ℝ𝑚, is the Cauchy kernel,
which is left- and right-Dirac-hyperholomorphic in ℝ𝑚 ∖{𝑥}. Hence from (5.2) one
has:

𝑑𝑦(𝐸(𝑦 − 𝑥) 𝜏𝑦, 1 𝑓(𝑦)) = 1

2

(
− 𝒟 1

𝐶𝑅,𝑟 [𝐸](𝑦 − 𝑥)𝜎𝑦, 1 𝑓(𝑦)
+ (−1)𝑚−2𝐸(𝑦 − 𝑥)𝜎𝑦, 1 𝒟 1

𝐶𝑅[𝑓 ](𝑦)

+ (−1)𝑚−1𝐸(𝑦 − 𝑥)𝜎𝑦, 1 𝒟 1
𝐶𝑅[𝑓 ](𝑦)

)
. (5.3)

There are some relations between the Cauchy kernel and the operators 𝒟 1

𝐶𝑅

and 𝒟 1

𝐶𝑅,𝑟 that we shall use:

𝒟 1

𝐶𝑅,𝑟,𝑦[𝐸(𝑦 − 𝑥)] = −𝒟 1

𝐶𝑅,𝑟,𝑥[𝐸(𝑦 − 𝑥)] = −𝒟 1

𝐶𝑅,𝑥[𝐸(𝑦 − 𝑥)] . (5.4)

5.7.

Let Ω𝑚 ⊂ ℝ𝑚 and let Γ := { 𝑦 ∈ ℝ𝑚 ∣ 𝜚(𝑦) = 0 } be its smooth boundary. Inte-
grating (5.3) over Γ, on the left side we get:∫

Γ

𝑑𝑦 (𝐸(𝑦 − 𝑥) 𝜏𝑦,1 𝑓(𝑦)) = 0 .

Hence∫
Γ

𝒟 1

𝐶𝑅,𝑟,𝑦 [𝐸](𝑦 − 𝑥)𝜎𝑦, 1 𝑓(𝑦) = (−1)𝑚−2

∫
Γ

𝐸(𝑦 − 𝑥)𝜎𝑦, 1 𝒟 1

𝐶𝑅,𝑦[𝑓 ](𝑦)

+ (−1)𝑚−1

∫
Γ

𝐸(𝑦 − 𝑥)𝜎𝑦, 1 𝒟 1
𝐶𝑅,𝑦[𝑓 ](𝑦) ;
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using (5.4) one has:

−𝒟 1

𝐶𝑅,𝑥

∫
Γ

𝐸(𝑦 − 𝑥)𝜎𝑦, 1 𝑓(𝑦) = (−1)𝑚−2

∫
Γ

𝐸(𝑦 − 𝑥)𝜎𝑦, 1 𝒟 1

𝐶𝑅,𝑦[𝑓 ](𝑦) (5.5)

+ (−1)𝑚−1

∫
Γ

𝐸(𝑦 − 𝑥)𝜎𝑦, 1 𝒟 1
𝐶𝑅,𝑦[𝑓 ](𝑦) .

Observe that the function 𝜚 is identically zero on Γ. Combining this fact and
formula (2.6) applied to 𝜚, one concludes that

𝜎𝑦, 1 = 𝜎𝑦, 1 𝒟 1

𝐶𝑅,𝑦[𝜚(𝑦)]
(𝒟 1

𝐶𝑅,𝑦[𝜚(𝑦)]
)−1

=: 𝜎𝑦, 1 𝑉
1
Γ(𝑦) ,

where we have defined 𝑉 1
Γ(𝑦) := 𝒟 1

𝐶𝑅,𝑦[𝜚(𝑦)]
(𝒟 1

𝐶𝑅,𝑦[𝜚(𝑦)]
)−1

. Thus (5.5) becomes:

𝒟 1

𝐶𝑅,𝑥

∫
Γ

𝐸(𝑦 − 𝑥)𝜎𝑦, 1 𝑓(𝑦) (5.6)

=

∫
Γ

𝐸(𝑦 − 𝑥)𝜎𝑦, 1
(
(−1)𝑚−1𝒟 1

𝐶𝑅,𝑦[𝑓(𝑦)] + (−1)𝑚𝑉 1
Γ(𝑦) 𝒟 1

𝐶𝑅,𝑦[𝑓(𝑦)]
)
.

Hence next theorem has been proved.

5.8. Theorem.

Let Ω𝑚 ⊂ ℝ𝑚 be a simply connected domain with boundary Γ := { 𝑦 ∈ ℝ𝑚 ∣
𝜚(𝑦) = 0 }, where 𝜚 ∈ 𝐶1(ℝ𝑚, ℝ), 𝑔𝑟𝑎𝑑(𝜚)∣Γ(𝑦) ∕= 0 for all 𝑦 ∈ Γ and let 𝑓 ∈
𝐶1(Γ, 𝐶ℓ0,𝑚). Then for all 𝑥 /∈ Γ the equallity (5.6) holds, that is, the e1-Dirac–
hyperderivative of the Cauchy-type integral is also a Cauchy-type integral but now
with the “derived density”.

An immediate consequence is

5.9. Corollary.

Let 𝑝 ∈ ℕ, 𝑓 ∈ 𝐶𝑝(Γ, 𝐶ℓ0,𝑚) and 𝜚 ∈ 𝐶𝑝(ℝ𝑚, ℝ). Then for all 𝑥 /∈ Γ there follows:(
𝒟 1

𝐶𝑅,𝑥

)𝑝 ∫
Γ

𝐸(𝑦 − 𝑥)𝜎𝑦, 1 𝑓(𝑦)

=

(∫
Γ

𝐸(𝑦 − 𝑥)𝜎𝑦, 1 𝑓(𝑦)
)(𝑝)

=

∫
Γ

𝐸(𝑦 − 𝑥)𝜎𝑦, 1
(
𝒟 1

𝐶𝑅,𝑦 − 𝑉 1
Γ(𝑦) 𝒟 1

𝐶𝑅,𝑦

)𝑝
[𝑓(𝑦)] .

6. The left eℓ-hyperderivatives

In the previous sections the reasoning was concentrated around the imaginary unit
e1. Let us show briefly that e𝑘 with 𝑘 ∈ {2, 3, . . . ,𝑚} may play a similar role.
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For each 𝑘 ∈ {2, 3, . . . ,𝑚} , the Dirac operator may be written as follows:

𝒟Dir =

𝑚∑
ℓ=1

eℓ
∂

∂𝑥ℓ

= e𝑘

(
−e𝑘 e1

∂

∂𝑥1
− e𝑘 e2

∂

∂𝑥2
− ⋅ ⋅ ⋅ − e𝑘 e𝑘−1

∂

∂𝑥𝑘−1

+
∂

∂𝑥𝑘
− e𝑘 e𝑘+1

∂

∂𝑥𝑘+1
− ⋅ ⋅ ⋅ − e𝑘 e𝑚

∂

∂𝑥𝑚

)
= e𝑘

(
e1,𝑘

∂

∂𝑥1
+ e2,𝑘

∂

∂𝑥2
+ ⋅ ⋅ ⋅+ e𝑘−1,𝑘

∂

∂𝑥𝑘−1

+
∂

∂𝑥𝑘
+ e𝑘+1,𝑘

∂

∂𝑥𝑘+1
+ ⋅ ⋅ ⋅ + e𝑚,𝑘

∂

∂𝑥𝑚

)
= e𝑘 𝒟𝑘

𝐶𝑅 , (6.1)

where each 𝒟𝑘
𝐶𝑅 is the Cauchy-Riemann-type operator:

𝒟𝑘
𝐶𝑅 = e1,𝑘

∂

∂𝑥1
+ e2,𝑘

∂

∂𝑥2
+ ⋅ ⋅ ⋅ + e𝑘−1,𝑘

∂

∂𝑥𝑘−1

+
∂

∂𝑥𝑘
+ e𝑘+1,𝑘

∂

∂𝑥𝑘+1
+ ⋅ ⋅ ⋅+ e𝑚,𝑘

∂

∂𝑥𝑚
.

These operators keep characterizing the Dirac-hyperholomorphic functions:

ker𝒟Dir = ker𝒟 𝑘
𝐶𝑅 ⊂ 𝐶1(Ω𝑚 ⊂ ℝ𝑚 ; 𝐶ℓ0,𝑚 ).

Considering the (𝑚− 1)-diferential form of hypersurface:

( (−1)𝑚𝑑𝑥1, (−1)𝑚−1𝑑𝑥2, . . . , 𝑑𝑥𝑚−1,−𝑑𝑥𝑚) , (6.2)

where 𝑑𝑥ℓ were defined in Subsection 1.2.3, one “Cliffordize” it as usual for every
value of 𝑘, obtaining the (𝑚− 1)-differential form:

𝜎𝑥, 𝑘 := (−1)𝑚e1,𝑘𝑑𝑥1 + (−1)𝑚−1e2,𝑘𝑑𝑥2 + ⋅ ⋅ ⋅+ (−1)𝑚−𝑘+2e𝑘−1,𝑘𝑑𝑥𝑘−1

+ (−1)𝑚−𝑘+1𝑑𝑥𝑘 + (−1)𝑚−𝑘e𝑘+1,𝑘𝑑𝑥𝑘+1 + ⋅ ⋅ ⋅
⋅ ⋅ ⋅+ e𝑚−1𝑑𝑥𝑚−1 − e𝑚,𝑘𝑑𝑥𝑚 .

As usual also, we get from the latter the (𝑚− 2)-differential form:

𝜏𝑥, 𝑘 := (−1)𝑚−1e1,𝑘𝑑𝑥1,𝑘 + (−1)𝑚−2e2,𝑘𝑑𝑥2,𝑘 + ⋅ ⋅ ⋅
⋅ ⋅ ⋅+ (−1)𝑚−𝑘+1e𝑘−1,𝑘𝑑𝑥𝑘−1,𝑘 + (−1)𝑚−𝑘−1e𝑘+1,𝑘𝑑𝑥𝑘+1,𝑘 + ⋅ ⋅ ⋅
⋅ ⋅ ⋅ − e𝑚−1𝑑𝑥𝑚−1,𝑘 + e𝑚,𝑘𝑑𝑥𝑚,𝑘 .

Again, 𝑑𝑥ℓ,𝑘 were defined in Subsection 1.2.3. The following crucial correla-
tions are valid for any 𝑓 ∈ 𝐶1(Ω𝑚 ⊂ ℝ𝑚 ; 𝐶ℓ0,𝑚 ):

𝑑(𝜏𝑥, 𝑘 𝑓(𝑥)) =
1

2

(
𝜎𝑥, 𝑘 𝒟 𝑘

𝐶𝑅[𝑓 ](𝑥) − 𝜎𝑥, 𝑘 𝒟 𝑘
𝐶𝑅[𝑓 ](𝑥)

)
.
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Thus the left e𝑘-Dirac-hyperderivatives are defined in an exact analogy to
the previous sections, concluding that:

′𝑓e𝑘(𝑥) = −1

2
𝒟 𝑘

𝐶𝑅[𝑓 ](𝑥) ,

for any 𝑥 ∈ Ω.

The rest of definitions and theorems related with the e𝑘-hyperderivatives can
be given also.

7. Comparison with one complex variable case

The existence of several hyperderivatives for the same Dirac-hyperholomorphic
function may cause an impression that we have a phenomenon with no analogues
in the classical one complex variable theory. Let us show briefly that this is not
the case, i.e., the phenomenon does have its antecedents.

Consider a function 𝑓 = 𝑢 + i 𝑣 : Ω ⊂ ℝ2 → ℂ, that is, the function 𝑓 takes
complex values but depends on two real variables, not on a complex one, that
is, its domain is not endowed with any complex numbers structure; this mimics
the previously considered Cliffordian situation. For such functions of class 𝐶1 the
Cauchy-Riemann operator is well defined and may be used in order to define the
class 𝐻𝑜𝑙(Ω) of “holomorphic” in Ω functions:

1

2

(
∂

∂𝑥
+ i

∂

∂𝑦

)
[𝑓 ] = 0 . (7.1)

The same class is determined by another operator:

1

2

(
∂

∂𝑦
− i

∂

∂𝑥

)
[𝑓 ] = 0 , (7.2)

compare with 𝒟1
𝐶𝑅. But since we assume no complex numbers structure in Ω the

derivative as the limit of a special quotient cannot be introduced for 𝑓 ∈ 𝐻𝑜𝑙(Ω).
The equation (7.1) corresponds to the complex variable 𝑧 := 𝑥+i 𝑦 which generates
the function 𝑓1 : 𝑧 ∈ Ω1 := {𝑥 + i 𝑦 ∣ (𝑥, 𝑦) ∈ Ω } +→ 𝑓(𝑥, 𝑦) ∈ ℂ, and equation
(7.2) corresponds to the complex variable 𝜁 := 𝑦− i 𝑥 which generates the function
𝑓2 : 𝜁 ∈ Ω2 := {𝜁 = 𝑦 − i 𝑥 ∣ (𝑥, 𝑦) ∈ Ω } +→ 𝑓(𝑥, 𝑦) ∈ ℂ. Thus, to any 𝑓 ∈ 𝐻𝑜𝑙(Ω)
we associate two complex functions (that is, both go from ℂ to ℂ) each of them
having a derivative in the usual sense: for 𝑧 ∈ Ω1 and 𝜁0 = −i 𝑧0 ∈ Ω2 there
exist the complex numbers 𝑓 ′

1(𝑧0) and 𝑓
′
2(𝜁0) but they are different in general; it

can be shown that 𝑓 ′
2(𝜁0) = i 𝑓 ′

1(𝑧0). Both 𝑓
′
1(𝑧0) and 𝑓

′
2(𝜁0) can be equally called

“the derivative of 𝑓 at (𝑥0, 𝑦0)”, hence we are in exactly the same situation as for
Dirac-hyperholomorphic functions.
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On the Discrete Cosine Transform of
Weakly Stationary Signals

Mauricio Martinez-Garcia

Abstract. The Discrete Cosine Transform (DCT) is used in a large variety of
applications, due to its near-optimal properties for representing and decorre-
lating random signals. This paper describes a useful but relatively unknown
property of this transform, when applied to weakly stationary signals. The
transformed autocorrelation matrix has half of its elements equal to zero. This
means that it is possible to improve current DCT signal processing systems
by means of more efficient implementation and algorithms.
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1. Introduction

The Discrete Cosine Transform (DCT) [1] was first described in 1974. It is derived
from approximations to the eigenvectors of autocorrelation matrices for Markov-1
signals [2], and furthermore, its equivalence to Markov random processes has been
well established [3].

The DCT is traditionally regarded as a powerful signal decorrelator, mainly
due to its energy packing efficiency and decorrelation properties, among others. The
DCT approximately diagonalizes the autocorrelation matrix of the input signal [4,
5], and is known to be asymptotically equivalent to the KLT [6]. These properties
and the availability of fast computation algorithms, have turned it into the current
de facto standard mapping for image and video compression.

This paper shows that the DCT of a symmetric Toeplitz matrix, has roughly
half of its elements equal to zero as outlined in [7]. This means that the DCT
achieves perfect decorrelation for some samples of weakly stationary signals. Pos-
sible applications of this property include performance improvement for fast DCT
algorithms [2, 8, 9], especially when involving autocorrelation matrices [7], efficient
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computation using relationships to other transforms [10], as well as speech coding
[11], analysis and recognition systems [12].

This paper is organized as follows. Section II defines basic concepts about the
statistics of stationary random processes. In Section III we define the DCT, and
describe the general nomenclature. Section IV establishes that half of the elements
of a transformed symmetric Toeplitz matrix are zero.

2. Stationary random processes

Let the sequence 𝑥(𝑛) represent a discrete random signal, such that its value for
any choice of the integer parameter 𝑛 is a random variable. The underlying model
that represents the random sequence is known as a random process or stochastic
process.

Now, suppose that a random variable 𝑥(𝑛) has a probability function 𝑓𝑥, and
let 𝑥𝑛 be the sum of all instances belonging to 𝑥(𝑛) at each value of 𝑛. Then, the
result is a deterministic sequence [13] which represents the mean of the associated
random process.

Definition 2.1. Formally, the mean of a random variable is defined as

𝑚(𝑛) = 𝐸{𝑥(𝑛)} =

∫ ∞

−∞
𝑥𝑛𝑓𝑥(𝑥(𝑛))𝑑𝑥𝑛 (2.1)

where, for any fixed value of 𝑛, 𝑓𝑥(𝑥(𝑛)) represents the density function of the
random variable 𝑥(𝑛), and 𝐸{⋅} represents the expected value operator. This
average will be referred to as ensemble average.

Now, assume each sequence 𝑥(𝑛), to exist for all 𝑛 from −∞ to ∞, and let
⟨𝑥(𝑛)⟩𝑛0,𝑛1

denote the average of the sequence 𝑥(𝑛) computed from 𝑛 = 𝑛0 to
𝑛 = 𝑛1.

Definition 2.2. Define the signal average as

⟨𝑥(𝑛)⟩ = lim
𝑀→∞

⟨𝑥(𝑛)⟩−𝑀,𝑀 = lim
𝑀→∞

1

2𝑀 + 1

𝑀∑
𝑛=−𝑀

𝑥(𝑛) . (2.2)

A random process is said to be stationary (in the strict sense) if its statistical
description is not a function of 𝑛. In particular, if the mean and the variance
are independent of 𝑛, the process is said to be wide sense stationary or weakly
stationary.

In addition, a random process is said to be ergodic, if its moments computed
as signal averages are equal, with probability 1, to the corresponding ensemble
averages. A random process that satisfies the condition

⟨𝑥(𝑛)⟩ = 𝐸{𝑥(𝑛)} (2.3)

is said to be ergodic in the mean, whereas one that satisfies

⟨𝑥(𝑛)𝑥(𝑛 + 𝑙)⟩ = 𝐸{𝑥(𝑛)𝑥(𝑛 + 𝑙)} (2.4)
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is said to be ergodic in correlation. The concept or ergodicity is often used in
applications where the experiments cannot be repeated, making it necessary to
infer the statistics of a particular process from a single data sequence.

In a similar manner, we can define the variance as the expected value of
∣𝑥(𝑛) −𝑚(𝑛)∣2.
2.1. First and second moments of stationary signals

The correlation between any two samples of a random process 𝑥(𝑛1) and 𝑥(𝑛0) is
expressed by the correlation function (also called the autocorrelation function)

R𝑥(𝑛1, 𝑛0) = 𝐸{𝑥(𝑛1)𝑥(𝑛0)} . (2.5)

In a similar way, the covariance between any two samples of a random process is
expressed by the covariance function (also called the autocovariance function)

C𝑥(𝑛1, 𝑛0) = 𝐸{[𝑥(𝑛1) −𝑚𝑥(𝑛1)][𝑥(𝑛0) −𝑚𝑥(𝑛0)]} , (2.6)

which is related to the autocorrelation by the expression

R𝑥(𝑛1, 𝑛0) = C𝑥(𝑛1, 𝑛0) +𝑚𝑥(𝑛1)𝑚𝑥(𝑛0) . (2.7)

Since for a stationary random process the probability density is a function of
the spacing between samples only, it must be true that

𝑚𝑥(𝑛) = 𝑚𝑥 (a constant) (2.8)

and
R𝑥(𝑛1, 𝑛0) = 𝑅𝑥(𝑛1 − 𝑛0) = 𝑅𝑥(𝑙) . (2.9)

where 𝑅𝑥 is a new function1 that depends on only the difference 𝑙 = 𝑛1 − 𝑛0,
sometimes called the lag. This implies that for a stationary random process, the
autocovariance is a function of only the lag

C𝑥(𝑛1, 𝑛0) = 𝐶𝑥(𝑛1 − 𝑛0) = 𝐶𝑥(𝑙) . (2.10)

Definition 2.3. A random process 𝑥(𝑛) is said to be wide-sense stationary or weakly
stationary if the mean is a constant 𝑚𝑥 and the correlation function is a function
only of the spacing between the samples, R𝑥(𝑛1, 𝑛0) = 𝑅𝑥(𝑛1 − 𝑛0).
2.2. Correlation and covariance matrices

Let x be a data vector consisting of 𝑁 samples of the random process 𝑥,

x𝑇 =
[
𝑥(0) 𝑥(1) ⋅ ⋅ ⋅ 𝑥(𝑁 − 1)

]
. (2.11)

The mean vector is given by

m𝑥 = 𝐸{𝑥} =

⎡⎢⎢⎢⎣
𝑚𝑥(0)
𝑚𝑥(1)

...
𝑚𝑥(𝑁 − 1)

⎤⎥⎥⎥⎦ . (2.12)

1A math italic font is used for the function that depends on the difference 𝑛1−𝑛0 while a roman
font is used for the original function R𝑥(𝑛1, 𝑛0).
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For a stationary random process the mean vector has all of its components equal
to the same constant 𝑚𝑥.

The correlation matrix of the random process is defined by

R𝑥 = 𝐸{xx𝑇 }

=

⎡⎢⎢⎢⎣
𝐸{𝑥2(0)} 𝐸{𝑥(0)𝑥(1)} ⋅ ⋅ ⋅ 𝐸{𝑥(0)𝑥(𝑁 − 1)}
𝐸{𝑥(1)𝑥(0)} 𝐸{𝑥2(1)} ⋅ ⋅ ⋅ 𝐸{𝑥(1)𝑥(𝑁 − 1)}

...
...

. . .
...

𝐸{𝑥(𝑁 − 1)𝑥(0)} 𝐸{𝑥(𝑁 − 1)𝑥(1)} ⋅ ⋅ ⋅ 𝐸{𝑥2(𝑁 − 1)}

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
R𝑥(0, 0) R𝑥(0, 1) ⋅ ⋅ ⋅ R𝑥(0, 𝑁 − 1)
R𝑥(1, 0) R𝑥(1, 1) ⋅ ⋅ ⋅ R𝑥(1, 𝑁 − 1)

...
...

. . .
...

R𝑥(𝑁 − 1, 0) R𝑥(𝑁 − 1, 1) ⋅ ⋅ ⋅ R𝑥(𝑁 − 1, 𝑁 − 1)

⎤⎥⎥⎥⎦
(2.13)

This matrix is completely specified by the correlation function of the random
process. For a stationary random process the correlation matrix depends only on
a single argument, as stated in eq. (2.9). Hence, it takes the special form [13]

R𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜌0 𝜌1 𝜌2 𝜌3

𝜌1 𝜌0 𝜌1 𝜌2
. . .

𝜌2 𝜌1 𝜌0 𝜌1
. . .

𝜌3 𝜌2 𝜌1 𝜌0
. . .

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.14)

where 𝜌𝑙 = 𝑅𝑥(𝑙) = 𝐸{𝑥(𝑛0)𝑥(𝑛0 + 𝑙)} denotes the autocorrelation for lag 𝑙, for
arbitrary 𝑛0 (since it depends only on 𝑙). Note that all elements on each of the
main diagonals of this matrix are equal. This form is known as a Toeplitz matrix.
All the elements on a given diagonal represent correlations between terms of the
random process with the same lag separation. Thus, the correlation matrix for any
stationary random process is always a symmetric Toeplitz matrix.

Note that the covariance matrix defined by

C = 𝐸{(𝑥− m𝑥)(𝑥− m𝑥)
𝑇 } (2.15)

also takes the symmetric Toeplitz form. Throughout this paper we assume without
loss of generality, that the random process 𝑥 has zero mean and unity variance. This
implies that the autocovariance and the autocorrelation matrices of our signals are
identical, and both have unity diagonal, namely 𝜌0 = 1.

3. The discrete cosine transform

The discrete cosine transform (DCT) maps a finite time domain sequence 𝑥(𝑛)
into another frequency domain finite sequence 𝑧(𝑘). There are four standard types
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of DCT. The most widely used is the DCT-II, defined in [2] as

𝑧(𝑘) = 𝑐𝑙

𝑁−1∑
𝑛=0

𝑥(𝑛) cos
𝜋(2𝑛+ 1)𝑘

2𝑁
, (3.1)

where 𝑐𝑙 =
√

2
𝑁 − 𝛿(𝑙)

√
2−1√
𝑁

, for 𝑙 = 0, 1, . . . , 𝑁 − 1, and 𝛿(𝑙) is the discrete delta

function.
The DCT-II can also be expressed in matrix form. It transforms a real vector

x into another real vector z, using the relation

z = DWx , (3.2)

with

x =
[
𝑥(0) 𝑥(1) ⋅ ⋅ ⋅ 𝑥(𝑁 − 1)

]𝑇
, (3.3a)

z =
[
𝑧(0) 𝑧(1) ⋅ ⋅ ⋅ 𝑧(𝑁 − 1)

]𝑇
, (3.3b)

the symbol 𝑇 denotes transposition,

D = diag(𝑐0, 𝑐1, . . . , 𝑐𝑁−1)

=
1√
𝑁

[
1 0𝑇

0
√
2 I𝑁−1

]
,

(3.4)

the DCT matrix

W =

⎡⎢⎢⎢⎣
w0

w1

...
w𝑁−1

⎤⎥⎥⎥⎦ , (3.5)

where 0 represents a vector of zeros, I𝑁−1 is an identity matrix of size 𝑁 − 1,

w𝑗 =
[
𝑢0 𝑢1 ⋅ ⋅ ⋅ 𝑢𝑁−1

]
, (3.6)

for

𝑢𝑞 = cos
(2𝑞 + 1)

2𝑁
𝑗𝜋 , (3.7)

and 𝑗, 𝑞 = 0, . . . , 𝑁 − 1.
Thus, the autocorrelation matrix of the transformed sequence z = DWx is

given by

R𝑧 = 𝐸{zz𝑇 }
= 𝐸{DWx(DWx)𝑇 } = DWR𝑥W

𝑇D𝑇 .
(3.8)

Note that the constant matrix D represents scaling factors, which can be dropped
without loss of generality.

Now, let 𝑟𝑧(𝑗, 𝑘) denote the elements of R𝑧, for 𝑗, 𝑘 = 0, . . . , 𝑁 − 1. It can be
easily shown that

𝑟𝑧(𝑗, 𝑘) = w𝑗R𝑥w
𝑇
𝑘 . (3.9)



202 M. Martinez-Garcia

In the next section we show that

𝑟𝑧(𝑗, 𝑘) = 0 , (3.10)

for symmetric Toeplitz R𝑥, when 𝑗 + 𝑘 is odd.

4. Zeros on the diagonals

In this section we show that half of the elements of a DCT-II-transformed sym-
metric Toeplitz matrix, are zero.

4.1. Nomenclature and fundamental identities

Let

w𝑘 =
[
𝑣0 𝑣1 ⋅ ⋅ ⋅ 𝑣𝑁−1

]
(4.1)

where

𝑣𝑞 = cos
(2𝑞 + 1)

2𝑁
𝑘𝜋 , (4.2)

for 𝑘, 𝑞 = 0, . . . , 𝑁 − 1.

Substituting (3.7) and (4.1) in (3.9) can find that each element 𝑟𝑧(𝑗, 𝑘) of the
transformed matrix R𝑧 can be expressed as:

𝑟𝑧(𝑗, 𝑘) =

𝑁−1∑
𝑞=0

𝑢𝑞𝑣𝑞 +

𝑁−1∑
𝑝=1

𝜌𝑝

𝑁−𝑝−1∑
𝑞=0

𝑢𝑞𝑣𝑞+𝑝 + 𝑢𝑞+𝑝𝑣𝑞 . (4.3)

Taking advantage of well-known properties of the cosine function, one can
easily show that

cos
2(𝑁 − 𝑞 − 1) + 1

2𝑁
𝑗𝜋 = (−1)𝑗 cos

2𝑞 + 1

2𝑁
𝑗𝜋 , (4.4)

which implies that

𝑢𝑁−𝑞−1 = (−1)𝑗𝑢𝑞 , (4.5)

and in the same fashion,

𝑣𝑁−𝑞−1 = (−1)𝑘𝑣𝑞 . (4.6)

Similar manipulations lead to the following identities

𝑢𝑁−𝑝−𝑞−1 = (−1)𝑗𝑢𝑝+𝑞 ,

𝑣𝑁−𝑝−𝑞−1 = (−1)𝑘𝑣𝑝+𝑞 ,
(4.7)

𝑢𝑁−𝑝−1
2

= (−1)𝑗𝑢𝑁+𝑝−1
2

,

𝑣𝑁−𝑝−1
2

= (−1)𝑘𝑣𝑁+𝑝−1
2

.
(4.8)
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4.2. Diagonals of a DCT-II-transformed symmetric Toeplitz matrix

Let R𝑥 be a symmetric Toeplitz matrix representing the autocorrelation of a
stationary random process, and let 𝑟𝑧(𝑗, 𝑘) be the elements of the transformed
matrix R𝑧 = DWR𝑥W

𝑇D𝑇 , with DW the DCT-II matrix. Then, the following
holds.

Theorem 4.1. Elements 𝑟𝑧(𝑗, 𝑘) are zero for odd 𝑗 + 𝑘

Proof. We can also express the first sum in (4.3) as⎧⎨⎩

𝑁−2
2∑

𝑞=0

𝑢𝑞𝑣𝑞 + 𝑢𝑁−𝑞−1𝑣𝑁−𝑞−1

for even 𝑁

cos
𝜋

2
+

𝑁−3
2∑

𝑞=0

𝑢𝑞𝑣𝑞 + 𝑢𝑁−𝑞−1𝑣𝑁−𝑞−1

for odd 𝑁

. (4.9)

Substituting the identities (4.5) and (4.6) in (4.9), we find that for odd 𝑗+ 𝑘

𝑁−1∑
𝑞=0

𝑢𝑞𝑣𝑞 = 0 . (4.10)

Next, for the terms related to the off-diagonal elements of R𝑥, the rightmost
sum in (4.3) can be expressed as⎧⎨⎩

𝑁−𝑝−2
2∑

𝑞=0

𝑊 (𝑞, 𝑞 + 𝑝) +𝑊 (𝑁 − 𝑝− 𝑞 − 1, 𝑁 − 𝑞 − 1)

for even 𝑁 − 𝑝
𝑊
(
𝑁−𝑝−1

2 , 𝑁+𝑝−1
2

)
+ ⋅ ⋅ ⋅

+

𝑁−𝑝−3
2∑

𝑞=0

𝑊 (𝑞, 𝑞 + 𝑝) +𝑊 (𝑁 − 𝑝− 𝑞 − 1, 𝑁 − 𝑞 − 1)

for odd 𝑁 − 𝑝

, (4.11)

where 𝑊 (𝑚,𝑛) = 𝑢𝑚𝑣𝑛 + 𝑢𝑛𝑣𝑚, for integer 𝑚 and 𝑛.

Using (4.8) we can easily find that for odd 𝑗 + 𝑘

𝑊

(
𝑁 − 𝑝− 1

2
,
𝑁 + 𝑝− 1

2

)
= 0, (4.12)

and from (4.7) that

𝑊 (𝑁 − 𝑝− 𝑞 − 1, 𝑁 − 𝑞 − 1) = −𝑊 (𝑞, 𝑞 + 𝑝) . (4.13)
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Substituting (4.12) and (4.13) in (4.11), shows that

𝑁−𝑝−1∑
𝑞=0

𝑢𝑞𝑣𝑞+𝑝 + 𝑢𝑞+𝑝𝑣𝑞 = 0 . (4.14)

Finally, by substituting (4.10) and (4.14) in (4.3), it follows that

𝑟𝑧(𝑗, 𝑘) = 0 , (4.15)

for odd 𝑗 + 𝑘. □

5. Conclusion

A useful and interesting property of the DCT has been described. The existence
of zeros in a DCT-transformed symmetric Toeplitz matrix, suggests the possibility
of improving current signal processing systems, in which DCT operates as a key
element for stationary signals.

Future research can take advantage of this property, for example in more
efficient implementations of fast algorithms for DCT, DFT and other related
transforms, for weakly stationary processes. Possible applications include image
and video coding, speech analysis and coding, pattern recognition, image and
video coding, adaptive filtering and data compression.
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Scattering of a Plane Wave
by “Hard-Soft” Wedges

J. Eligio de la Paz Méndez and Anatoli E. Merzon

Abstract. We continue to investigate a nonstationary scattering by wedges
[1]–[4]. In this paper we consider a nonstationary scattering of plane waves
by a “hard-soft” wedge. We give a method for the proof of the existence and
uniqueness of solution to the corresponding DN-Cauchy problem in appropri-
ate functional spaces. We show also that the Limiting Amplitude Principle
holds.
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1. Introduction

Is this paper we investigate the scattering of a plane wave on a wedge 𝑊 := {𝑦 =
(𝑦1, 𝑦2) ∈ ℝ2 : 𝑦1 = 𝜌 cos 𝜃, 𝑦2 = 𝜌 sin 𝜃, 𝜌 > 0, 0 < 𝜃 < 𝜙} of a magnitude

0 < 𝜙 < 𝜋, Φ = 2𝜋 − 𝜙. (1.1)

We consider an incident plane wave 𝑢in(𝑦, 𝑡) of the form

𝑢in(𝑦, 𝑡) = 𝑒
𝑖(𝑘0⋅𝑦−𝜔0𝑡)𝑓(𝑡− 𝑛0 ⋅ 𝑦) for 𝑡 ∈ ℝ and 𝑦 ∈ 𝑄 := ℝ2 ∖𝑊. (1.2)

Here 𝜔0 > 0 is a frequency of the wave 𝑢in(𝑦, 𝑡), while the unit vector and
the corresponding wave vector are

𝑛0 = (cos𝛼, sin𝛼) ∈ ℝ2, 𝑘0 = 𝜔0𝑛0 ∈ ℝ2 (1.3)

respectively. The function 𝑓 is the profile of the wave. Suppose that 𝑓 ∈ 𝐶∞(ℝ)
and for some 𝜏0 > 0,

𝑓(𝑠) =

{
0, 𝑠 ≤ 0,

1, 𝑠 ≥ 𝜏0. (1.4)

In this case the front of the wave 𝑢𝑖𝑛(𝑦, 𝑡) in the moment 𝑡 is the line in ℝ2,{
𝑦 : 𝑡− 𝑛0 ⋅ 𝑦 = 0

}
. Let us suppose that for 𝑡 < 0 the front does not intersect the

wedge 𝑊 and at the moment 𝑡 = 0 the front intersect the boundary of 𝑊 at the



208 J.E. de la Paz Méndez and A.E. Merzon

vertex of 𝑊 . It is provided by the following condition: max
{
𝜙 − 𝜋2 , 0

}
< 𝛼 <

min
{𝜋
2 , 𝜙
}
. Split ∂𝑄 = 𝑄1 ∪ 𝑄2 where 𝑄1 := {𝑦 = (𝑦1, 𝑦2) ∈ ∂𝑄 : 𝑦2 = 0} and

𝑄2 := {𝑦 = (𝑦1, 𝑦2) ∈ ∂𝑄 : 𝑦1 = 𝜌 cos𝜙, 𝑦2 = 𝜌 sin𝜙, 𝜌 > 0}. We will consider the
scattering of the wave (1.2) on a wedge of the “hard-soft” type. Mathematically
this means that we will consider the mixed DN-problem for the wave equation with
the Dirichlet condition on a side of the wedge, say 𝑄2 and the Neumann condition
on the other side 𝑄1 of the wedge:⎧⎨⎩

□𝑢(𝑦, 𝑡) = 0, 𝑦 ∈ 𝑄
∂𝑦2𝑢(𝑦, 𝑡) = 0, 𝑦 ∈ 𝑄1

𝑢(𝑦, 𝑡) = 0, 𝑦 ∈ 𝑄2

∣∣∣∣∣∣∣ 𝑡 ∈ ℝ, (1.5)

where □ = ∂2𝑡 −Δ. We include the ingoing wave 𝑢in in the statement of the problem
through the initial condition

𝑢(𝑦, 𝑡) = 𝑢in(𝑦, 𝑡), 𝑦 ∈ 𝑄, 𝑡 < 0. (1.6)

We derive for the first time the Sommerfeld-type representation for the solu-
tion 𝑢(𝑦, 𝑡) of the DN-Problem of nonstationary diffraction. We obtain the unique-
ness and the existence of the solution and we prove the Limiting Amplitude Prin-
ciple, namely, we prove that 𝑢(𝑦, 𝑡) ∼ 𝑒−𝑖𝜔0𝑡𝑢∞(𝑦), 𝑡 → ∞, where 𝑢∞(𝑦) is the
Limiting Amplitude. Also we prove a Sommerfeld-type representation for the lim-
iting amplitude. The Sommerfeld representation plays a key role in the scattering
by wedges, since it gives a representation of the solution as a superposition of plane
waves. Our progress in the justification of the Sommerfeld representation for the
DN-Problem is based on the general method of complex characteristics developed
in [6]–[9].

2. Definitions and main theorems

1. Let 𝑢(𝑡) ∈ 𝐶(ℝ), such that 𝑢(𝑡) = 0 for 𝑡 ≤ 𝑇 and ∣𝑢(𝑡)∣ ≤ 𝐶(1 + ∣𝑡∣)𝑁 for some
𝐶,𝑁 ∈ ℝ. We denote its Fourier-Laplace transform in time as

𝑢̂(𝜔) := 𝐹𝑡→𝜔 [𝑢](𝜔) :=

∫ ∞

−∞
𝑒𝑖𝜔𝑡𝑢(𝑡)𝑑𝑡 =

∫ ∞

𝑇

𝑒𝑖𝜔𝑡𝑢(𝑡)𝑑𝑡, Im𝜔 > 0. (2.1)

Let us denote ℂ+ := {𝜔 ∈ ℂ : Im 𝜔 > 0}. Obviously, 𝑢̂(𝜔) is an analytic function
in 𝜔 ∈ ℂ+.

2. We will also use the real and complex Fourier transforms in the space variables.
Let us consider 𝑢(𝑥) ∈ 𝐶∞

0 (ℝ𝑛), 𝑛 = 1, 2. We denote

𝑢̃(𝜉) := 𝐹𝑥→𝜉[𝑢](𝜉) :=

∫
ℝ𝑛

𝑒𝑖𝜉𝑥𝑢(𝑥)𝑑𝑥, 𝜉 ∈ ℝ𝑛. (2.2)

We will use similar notations for tempered distributions 𝑢 ∈ 𝑆′(ℝ𝑛). By the Paley-
Wiener Theorem [5, Teorema I.5.2], the distribution 𝑢̃(𝜉) has an analytic contin-
uation to the set 𝐾𝑛

+ := {𝑧 ∈ ℂ𝑛 : Im 𝑧 ∈ 𝐾𝑛
+}, if supp 𝑢 ⊂ 𝐾𝑛

+ := {𝑥 ∈ ℝ𝑛 :
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𝑥𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛}. We will denote this analytic continuation by the same sym-
bol 𝑢̃(𝑧) and call the complex Fourier transforms of 𝑢. For the regular tempered
functions 𝑢(𝑥) with support in 𝐾𝑛

+ its complex Fourier transforms are expressed as

𝑢̃(𝑧) =

∫
𝐾𝑛

+

𝑒𝑖⟨𝑥,𝑧⟩𝑢(𝑥)𝑑𝑥, 𝑧 ∈ 𝐾𝑛
+. (2.3)

3. We denote by 𝑄̇ ≡ 𝑄 ∖ {0}, {𝑦} := ∣𝑦∣/(1 + ∣𝑦∣), 𝑦 ∈ ℝ2 or 𝑦 ∈ ℝ.

Definition 2.1.

i) 𝐸𝜀(Ω) is the space of functions 𝑢(𝑦) ∈ 𝐶(𝑄) ∩ 𝐶1(𝑄̇) with the finite norm
∣𝑢∣𝜀 = sup

𝑦∈𝑄

∣𝑢(𝑦)∣ + sup
𝑦∈𝑄̇

{𝑦}𝜀∣∇𝑢(𝑦)∣ <∞, 𝜀 ≥ 0

ii) ℰ𝜀,𝑁 (Ω) is the space of functions 𝑢(𝑦, 𝑡) ∈ 𝐶∞(𝑄̇ × ℝ+) ∩ 𝐶(𝑄 × ℝ+), 𝑡 ≥ 0

and 𝑦 ∈ 𝑄, with the finite norm

∥𝑢∥𝜀,𝑁 := sup
𝑡≥0

[
sup
𝑦∈𝑄

∣𝑢(𝑦, 𝑡)∣ + sup
𝑦∈𝑄̇

(1 + 𝑡)−𝑁{𝑦}𝜀∣∇𝑦𝑢(𝑦, 𝑡)∣
]
<∞, 𝑁 ≥ 0. (2.4)

Remark 2.1. Obviously, if 𝑢(𝑦, 𝑡) ∈ ℰ𝜖,𝑁 , then 𝑢̂(𝑦, 𝜔) ∈ 𝐸𝜖 for 𝜔 ∈ ℂ+.

Definition 2.2. We introduce the following Sommerfeld-type contours, in the form:

𝒞 = 𝒞1 ∪ 𝒞2 (2.5)

where 𝒞1 =
{
𝑎1− 𝑖𝜋

2
: 𝑎1 ≥ 1

}
∪
{
1+𝑖𝑏1 : −5𝜋

2
≤ 𝑏1 ≤ −𝜋

2

}
∪
{
𝑎1− 5𝑖𝜋

2
: 𝑎1 ≥ 1

}
.

The contour 𝒞2 is the reflection of 𝒞1 with respect to point −3𝜋

2
. We choose

the orientation of the contour, in the sense counter clock-wise (see Figure 1).

The main results of this paper are following theorems. Let

𝑔(𝜔) = 𝑓(𝜔 − 𝜔0) =
∫ ∞

0

𝑒𝑖(𝜔−𝜔0)𝑠𝑓(𝑠)𝑑𝑠, 𝜔 ∈ ℂ+ (2.6)

where

𝑔(𝜔) =
𝑔1(𝜔)

𝜔 − 𝜔0 , 𝜔 ∈ ℂ+, 𝑔1(𝜔) = 𝑖ℎ̂(𝜔 − 𝜔0), 𝜔 ∈ ℂ (2.7)

with ℎ = 𝑓 ′. Denote

𝐻1(𝜇, 𝛼,Φ) :=
1

sinh[(𝜇− 𝜇1)𝑞] +
1

sinh[(𝜇− 𝜇∗
1)𝑞]
, 𝑞 =

𝜋

2Φ
(2.8)

where

𝜇1 = − 𝑖𝜋
2

+ 𝑖𝛼, 𝜇∗
1 = −𝜇1 + 𝑖𝜋 (2.9)

Theorem 2.3. Let the incident wave profile be a smooth function of the type (1.4),
𝑢(𝑦, 𝑡) be a solution to the scattering problem (1.5), (1.6) and 𝑢(𝑦, 𝑡) ∈ ℰ𝜀,N with
𝜀 ∈ [0, 1) and 𝑁 ≥ 0. Then the solution 𝑢(𝑦, 𝑡)

i) is unique
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ii) is given by the inverse Fourier transform

𝑢(𝑦, 𝑡) = 𝐹−1
𝜔→𝑡[𝑢̂(𝑦, 𝜔)], 𝑡 ≥ 0, (𝜌, 𝜃) ∈ 𝑄, (2.10)

where 𝑢̂(𝑦, 𝜔) in the polar coordinate 𝑦 = 𝜌𝑒𝑖𝜃 is the Sommerfeld-type integral

𝑢̂(𝑦, 𝜔) =
𝑖𝑔(𝜔)

4Φ

∫
𝒞
𝑒−𝜌𝜔 sinh𝜇𝐻1(𝜇+ 𝑖𝜃, 𝛼,Φ)𝑑𝜇, 𝜌 ≥ 0, 𝜙 ≤ 𝜃 ≤ 2𝜋, 𝜔 ∈ ℂ+.

(2.11)

Let

𝑢∞(𝑦) :=
𝑖

4Φ

∫
𝒞
𝑒−𝜔0𝜌 sinh 𝛽𝐻1(𝛽 + 𝑖𝜃)𝑑𝛽 (2.12)

Theorem 2.4.

i) Let the incident wave profile 𝑓(𝑠) be a smooth function of the type (1.4).
Then the function 𝑢(𝑦, 𝑡), defined by (2.10), belongs to the space ℰ𝜖,N with
𝜖 = 𝑁 = 1 − 𝜋

2Φ , and is a solution to the scattering problem (1.5), (1.6).
ii) The Limiting Amplitude Principle holds: for any 𝜌0 > 0,

𝑢(𝑦, 𝑡)− 𝑒−𝑖𝜔0𝑡𝑢∞(𝜌, 𝜃) → 0, 𝑡→ ∞
uniformly for 𝜌 ∈ [0, 𝜌0] and 𝜃 ∈ [𝜙, 2𝜋].
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3. Difference equation

3.1. Reduction to stationary problem

Let us consider problem (1.5), (1.6). We apply the complex Forier transform (2.1)
with respect to time 𝑡 to equation (1.5) to get the Helmholtz stationary equation
with a parameter. First, define the scattered wave. Let 𝑢(𝑦, 𝑡) ∈ ℰ𝜖,N be a solution
of the problem (1.5), (1.6) for some 𝜖 > 0, 𝑁 > 0. Define the scattered wave as:

𝑢𝑠(𝑦, 𝑡) := 𝑢(𝑦, 𝑡)− 𝑢in(𝑦, 𝑡), 𝑡 ∈ ℝ, 𝑦 ∈ 𝑄. (3.1)

Then (1.6) implies

𝑢𝑠(𝑦, 𝑡) ≡ 0, 𝑡 ≤ 0, 𝑦 ∈ 𝑄. (3.2)

Furthermore, 𝑢𝑠(𝑦, 𝑡) is a solution to the problem⎧⎨⎩
□𝑢𝑠(𝑦, 𝑡) = 0, 𝑦 ∈ 𝑄
∂𝑦2𝑢𝑠(𝑦, 𝑡) = −∂𝑦2𝑢𝑖𝑛(𝑦, 𝑡), 𝑦 ∈ 𝑄1

𝑢𝑠(𝑦, 𝑡) = −𝑢𝑖𝑛(𝑦, 𝑡), 𝑦 ∈ 𝑄2

∣∣∣∣∣∣∣ 𝑡 > 0, (3.3)

{𝑢𝑠(𝑦, 0) = 0, 𝑢̇𝑠(𝑦, 0) = 0∣ , 𝑦 ∈ 𝑄. (3.4)

Remark 3.1. Let us note that 𝑢in(𝑦, 𝑡) ∈ ℰ0,0. Therefore, the condition 𝑢(𝑦, 𝑡) ∈
ℰ𝜀,𝑁 is equivalent to condition 𝑢𝑠(𝑦, 𝑡) ∈ ℰ𝜀,𝑁 . Hence, the problems (1.5), (1.6)
and (3.3), (3.4) are equivalent in ℰ𝜀,𝑁 .

Let us apply the complex Fourier transform in time to problem (3.3). First,
we apply the complex Fourier transform to (1.2) with respect to 𝑡. Making the
change of variable 𝜉 = 𝑡 − 𝑛0 ⋅ 𝑦 and using (1.3), (2.6) and the polar coordinates
of 𝑦 we get

𝑢̂𝑖𝑛(𝑦, 𝜔) = 𝑔(𝜔)𝑒
𝑖𝜔𝜌 cos(𝜃−𝛼), 𝑦 ∈ ℝ2, 𝜔 ∈ ℂ+. (3.5)

Hence

∂𝑦2𝑢𝑖𝑛(𝑦, 𝜔)
∣∣∣
𝑦∈𝑄1

= 𝑖𝜔𝑔(𝜔) sin𝛼𝑒𝑖𝜔𝑦1 cos𝛼, 𝑢𝑖𝑛(𝑦, 𝜔)
∣∣∣
𝑦∈𝑄2

= 𝑔(𝜔)𝑒−𝑖𝜔𝑦2
cos(𝛼+Φ)

sinΦ .

Therefore, the scattering problem (3.3) is reduced to the following stationary
problem.

Lemma 3.2. Let 𝑢𝑠(𝑦, 𝑡) ∈ ℰ𝜀,𝑁 be a solution to problem (3.3); then

i) The function 𝑢̂𝑠(𝑦, 𝜔) is a solution to the following boundary value problem
with a parameter 𝜔 ∈ ℂ+,⎧⎨⎩

(−Δ − 𝜔2)𝑢𝑠(𝑦, 𝜔) = 0, 𝑦 ∈ 𝑄
∂𝑦2𝑢𝑠(𝑦, 𝜔) = −𝑖𝜔𝑔(𝜔) sin𝛼𝑒𝑖𝜔𝑦1 cos𝛼, 𝑦 ∈ 𝑄1

𝑢𝑠(𝑦, 𝜔) = −𝑔(𝜔)𝑒−𝑖𝜔𝑦2
cos(𝛼+Φ)

sinΦ , 𝑦 ∈ 𝑄2

∣∣∣∣∣∣∣∣ 𝜔 ∈ ℂ+. (3.6)

ii) The function 𝑢𝑠(⋅, 𝜔) ∈ 𝐸𝜖 for 𝜔 ∈ ℂ+.
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3.2. Reduction to the problem in a plane

In this section we reduce the problem (3.6) in the angle, to a problem in the
plane. Suppose that 𝑢𝑠(𝑦, 𝜔) ∈ 𝐸𝜀 satisfies system (3.6), 𝜔 ∈ ℂ+. Let us change
the variables (𝑥1, 𝑥2) = ℒ(𝑦), where transformation ℒ maps the angle 𝑄 onto

𝐾 := {(𝑥1, 𝑥2) : 𝑥1 < 0 or 𝑥2 < 0}: 𝑥1 = 𝑦1 + 𝑦2 cotΦ; 𝑥2 = − 𝑦2
sinΦ

. We find

the new form of system (3.6) in the coordinates (𝑥1, 𝑥2). Let 𝑣(𝑥1, 𝑥2, 𝜔) be the
function defined for:

𝑣(𝑥1, 𝑥2, 𝜔) = 𝑢𝑠(ℒ−1(𝑥1, 𝑥2), 𝜔), 𝜔 ∈ ℂ+, (𝑥1, 𝑥2) ∈ 𝐾. (3.7)

The function 𝑣 depends on the parameter 𝜔, nevertheless, in future, we will write
simply 𝑣(𝑥) instead of 𝑣(𝑥1, 𝑥2, 𝜔). It is easy to see that system (3.6) for the
function (3.7) takes the form:⎧⎨⎩

ℋ(𝐷)𝑣(𝑥) :=

=

(
− 1

sin2Φ

[
Δ𝑥 − 2 cosΦ ∂2𝑥1𝑥2

]
− 𝜔2
)
𝑣(𝑥) = 0, 𝑥 ∈ 𝐾

cosΦ∂𝑥1𝑣(𝑥1, 0)− ∂𝑥2𝑣(𝑥1, 0)

= −𝑖𝜔𝑔(𝜔) sin𝛼 sinΦ 𝑒𝑖𝜔𝑥1 cos𝛼, 𝑥1 > 0

𝑣(0, 𝑥2) = −𝑔(𝜔)𝑒𝑖𝜔𝑥2 cos(𝛼+Φ), 𝑥2 > 0

(3.8)

where 𝐷 = (𝑖∂𝑥1 , 𝑖∂𝑥2). Obviously 𝑢 ∈ 𝐸𝜖(Ω). The function 𝑣 ∈ 𝐸𝜀(𝐾) which is

the space of the functions 𝑣(𝑥) ∈ 𝐶(𝐾) ∩ 𝐶1(𝐾̇) (𝐾̇ := 𝐾 ∖ {0}) such that

∣𝑣∣𝜀 = sup
𝑥∈𝐾

∣𝑣(𝑥)∣ + sup
𝑥∈𝐾̇

{𝑥}𝜀∣∇𝑥𝑣∣ <∞. (3.9)

We suppose that
𝜀 < 1. (3.10)

Then if 𝑣 ∈ 𝐸𝜀, the function 𝑣 possesses the following Neumann data on ∂𝐾̇:

𝑣11(𝑥1) := ∂𝑥2𝑣(𝑥1, 0), 𝑥1 > 0; 𝑣12(𝑥2) := ∂𝑥1𝑣(0, 𝑥2), 𝑥2 > 0 (3.11)

and the following Dirichlet data on ∂𝐾:

𝑣01(𝑥1) := 𝑣(𝑥1, 0), 𝑥1 > 0; 𝑣02(𝑥2) := 𝑣(0, 𝑥2), 𝑥2 > 0 (3.12)

Let us extend 𝑣𝛽𝑙 (𝑥𝑙) by zero for 𝑥𝑙 < 0. Then, by (3.9),

∣𝑣1𝑙 (𝑥𝑙)∣ ≤ 𝐶{𝑥𝑙}−𝜀, 𝑥𝑙 ∈ ℝ ∖ {0}, ∣𝑣0𝑙 (𝑥𝑙)∣ ≤ 𝐶0, 𝑥𝑙 ∈ ℝ
∣∣ 𝑙 = 1, 2. (3.13)

Therefore, 𝑣𝛽𝑙 (𝑥𝑙) ∈ 𝑆′(ℝ), 𝑙 = 1, 2, 𝛽 = 0, 1; supp 𝑣𝛽𝑙 (𝑥𝑙) ⊂ ℝ+ and

𝑣𝛽𝑙 (𝑥𝑙) ∈ 𝐿1𝑙𝑜𝑐(ℝ) (3.14)

by (3.10).
We extend 𝑣(𝑥) by zero outside of 𝐾 and denote

𝑣0(𝑥) =

{
𝑣(𝑥), 𝑥 ∈ 𝐾
0, 𝑥 ∕∈ 𝐾.
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Then 𝑣0(𝑥) determines a regular distribution in ℝ2 by the definition of the
space 𝐸𝜀, since 𝜀 < 1. Let 𝑣(𝑥) ∈ 𝐸𝜀 with 𝜀 ∈ (0, 1) be a solution to (3.8). Then,
in the sense of distributions,

ℋ(𝐷)𝑣0(𝑥) = 𝑑0(𝑥), 𝑥 ∈ ℝ2, (3.15)

where 𝑑0(𝑥) is the distribution of the form

𝑑0(𝑥) =
1

sin2Φ

[
𝛿(𝑥2)𝑣

1
1(𝑥1) + 𝛿

′(𝑥2)𝑣01(𝑥1) + 𝛿(𝑥1)𝑣
1
2(𝑥2) + 𝛿

′(𝑥1)𝑣02(𝑥2)

− 2 cosΦ 𝛿(𝑥2)∂𝑥1𝑣
0
1(𝑥1) − 2 cosΦ 𝛿(𝑥1)∂𝑥2𝑣

0
2(𝑥2)− 2 cosΦ𝑣(0)𝛿(𝑥)

]
.

(3.16)
Now we establish relation between the Cauchy data, generated by boundary con-
ditions.

Proposition 3.3. Let 𝑣(𝑥) ∈ 𝐸𝜀(𝐾) be a solution of (3.8). Then the Cauchy data

𝑣𝛽𝑙 for 𝑙 = 1, 2 and 𝛽 = 0, 1 defined in (3.11), (3.12) (and extended by zero in
𝑥𝑙 < 0) satisfy the conditions:⎧⎨⎩

cosΦ
[
∂𝑥1𝑣

0
1(𝑥1) − 𝛿(𝑥1)𝑣(0)

]− 𝑣11(𝑥1)

= −𝑖𝜔𝑔(𝜔) sin𝛼 sinΦ 𝜃(𝑥1)𝑒𝑖𝜔𝑥1 cos𝛼, 𝑥1 ∈ ℝ,

𝑣02(𝑥2) = −𝑔(𝜔)𝜃(𝑥2)𝑒𝑖𝜔𝑥2 cos(𝛼+Φ), 𝑥2 ∈ ℝ.

(3.17)

Thus, we have reduced the system (3.8) defined in 𝐾, to the system (3.15), (3.17),
where now two Cauchy data 𝑣02(𝑥2) and one of 𝑣01(𝑥1), 𝑣

1
1(𝑥1) are known functions,

by (3.17). In the next section, we reduce this system to the system with the Fourier

transform of 𝑣𝛽𝑙 for 𝑙 = 1, 2, 𝛽 = 0, 1. Thereafter we will find the remaining Cauchy
data of 𝑣0.

3.3. Fourier Transform

Let us apply the Fourier transform (2.2) to equation (3.15). We obtain

ℋ(𝜔, 𝜉)𝑣0(𝜉) ≡
[

1

sin2Φ
(𝜉21 + 𝜉

2
2 − 2 cosΦ 𝜉1𝜉2)− 𝜔2

]
𝑣0(𝜉) = 𝑑0(𝜔, 𝜉), 𝜉 ∈ ℝ2,

(3.18)

where 𝑣0(𝜉) and 𝑑0(𝜉) denote the Fourier transform (2.2) of the tempered distribu-
tions 𝑣0 and 𝑑0. The identity (3.18) is also understood in the sense of distributions.
Formula (3.16) implies that

𝑑0(𝜔, 𝜉) =
1

sin2Φ

[
𝑣11(𝜉1) − 𝑣01(𝜉1)(𝑖𝜉2 − 2𝑖𝜉1 cosΦ) + 𝑣

1
2(𝜉2)

− 𝑣02(𝜉2)(𝑖𝜉1 − 2𝑖𝜉2 cosΦ)− 2 cosΦ𝑣(0)
]
.

(3.19)

The identity (3.18) allows us to express the solution as

𝑣0(𝜉) =
𝑑0(𝜔, 𝜉)

ℋ(𝜔, 𝜉)
, 𝜉 ∈ ℝ2 (3.20)
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since ℋ(𝜔, 𝜉) ∕= 0 for 𝜉 ∈ ℝ2 and 𝜔 ∈ ℂ+. It remains to determine the unknown
functions 𝑣12(𝜉) (the Fourier transform of the Neumann data 𝑣12(𝑥1)) and one of the
functions 𝑣01(𝜉1) or 𝑣

1
1(𝜉1) (the Fourier transform of the Dirichlet data 𝑣0𝑙 de (3.12)).

For this, we will use the equations (3.17) and (3.18). We use that functions 𝑣1𝑙 (𝜉)
satisfy a connection equation which is an algebraic relation on the Riemann surface
of the complex characteristics of the Helmholtz operator ℋ (see [3]). We will find a
particular solution to this connection equation, reducing it to a difference equation.
Then we will prove that this particular solution satisfies a certain growth estimate
on the Riemann surface. Any solution from 𝐸𝜀 satisfies these growth estimates.
This allows us to identify the particular solution with the unique solution from
the space 𝐸𝜀. This identification leads to the uniqueness and the Sommerfeld-type

representation. We note that (3.13)–(3.14) imply that 𝑣𝛽𝑙 (𝜉𝑙), 𝜉𝑙 ∈ ℝ, admit the
analytical continuations to ℂ+ and these analytical continuations are the complex

Fourier transform of the functions 𝑣𝛽𝑙 (𝑥𝑙) in the sense (2.3), for 𝑛 = 1. Thus, the
complex Fourier transform of the system (3.17), takes the form:⎧⎨⎩

cosΦ[−𝑖𝑧1𝑣01(𝑧1) − 𝑣(0)]− 𝑣11(𝑧1) =
𝜔𝑔(𝜔) sin𝛼 sinΦ

𝑧1 + 𝜔 cos𝛼
, Im 𝑧1 > 0,

𝑣02(𝑧2) =
−𝑖𝑔(𝜔)

𝑧2 + 𝜔 cos(𝛼+Φ)
, Im 𝑧2 > 0.

(3.21)

3.4. Riemann surface

To formulate the connection equation, we recall some notations from [8], [9]. Let
us denote by 𝑉 = 𝑉 (𝜔) the Riemann surface 𝑉 = {(𝑧1, 𝑧2) ∈ ℂ2 ∣ 𝑧21 + 𝑧22 −
2 cosΦ𝑧1𝑧2−𝜔2 sin2Φ = 0}. The surface 𝑉 has a universal covering surface 𝑉 ∼= ℂ

with the projection 𝑝 : 𝑉 → 𝑉 defined by

𝑝 : 𝜇 +→ (𝑧1, 𝑧2),

{
𝑧1 = 𝑧1(𝜇) := −𝑖𝜔 sinh𝜇
𝑧2 = 𝑧2(𝜇) := −𝑖𝜔 sinh(𝜇+ 𝑖Φ). (3.22)

Let us define 𝑉 +
𝑙 for 𝑙 = 1 resp. 𝑙 = 2 as the connected component of the set

{𝜇 ∈ ℂ : Im 𝑧𝑙(𝜇) > 0} which contains the point 𝜇 = 𝑖𝜋
2 resp. 𝜇 = 𝑖

(
𝜋
2 − Φ

)
(see

hence and in the follows Figure 2 which corresponds to the case Re𝜔 > 0). Then
∂𝑉 +

𝑙 = Γ̌+𝑙 ∪ Γ̌−
𝑙 , where

Γ̌∓
1 := {𝜇 ∈ ℂ : Im 𝑧1(𝜇) = 0, 0, 𝑖𝜋 ∈ Γ̌∓

1 respectively},
Γ̌∓
2 = {𝜇 ∈ ℂ : Im 𝑧2(𝜇) = 0, 𝜋 − 𝑖Φ,−𝑖Φ ∈ Γ̌∓

2 respectively}. (3.23)

We check that Γ̌−
1 =
{
𝜇 = (𝜇1 + 𝑖𝜇2) : 𝜇1,2 ∈ ℝ, 𝜇2 = arctan

(
𝜔1

𝜔2
tanh𝜇1

)}
with

the gauge arctan 0 = 0. The same representation holds for Γ̌+1 with the gauge

arctan 0 = 𝜋. Therefore, the contour Γ̌+1 is the translation of Γ̌−
1 by the vector

𝜋𝑖: Γ̌+1 = Γ̌−
1 + 𝜋𝑖. Similarly, the contour Γ̌−

2 is the translation of Γ̌+2 by 𝜋𝑖, and

Γ̌+2 is the translation of Γ̌−
1 by −𝑖Φ. Thus, all the contours (3.23) are identical

up to translations. For 𝜈 ∈ ℝ, let us define the contour 𝛾(𝜈) ≡ Γ̌−
1 + 𝑖𝜈. Then
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�
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2
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2

𝜋𝜋

𝜋
2

Figure 2

the contours (3.23) can be represented in the following form: Γ̌−
1 = 𝛾(0), Γ̌+1 =

𝛾(𝜋𝑖), Γ̌+2 = 𝛾(−𝑖Φ). Let us define the region 𝑉 −
𝑙 for 𝑙 = 1, 2 as the connected

component of the set {𝑤 ∈ ℂ : Im 𝑧𝑙(𝑤) < 0} which contains the point 𝑤 = − 𝑖𝜋
2 .

Set 𝑉 − := 𝑉 −
1 ∩ 𝑉 −

2 and 𝑉Σ := 𝑉 +
1 ∪ 𝑉 − ∪ 𝑉 +

2 . Using the definitions of 𝑉 ±
𝑙 , 𝑉 −,

𝑉Σ we can represent the regions bounded by the contours 𝛾(𝜈): 𝑉 +
1 = {𝜇 : 𝛾(0) <

𝜇 < 𝛾(𝜋)}, 𝑉Σ = {𝜇 : 𝛾(−Φ) < 𝜇 < 𝛾(𝜋)}. Here the symbol “<” means that the
point 𝑤 lies between corresponding curves. Also, we will consider the following
subregion 𝑉Σ,𝛿 with a 𝛿 > 0: 𝑉Σ,𝛿 = {𝜇 : 𝛾(−Φ+ 𝛿) < 𝜇 < 𝛾(𝜋 − 𝛿)}.



216 J.E. de la Paz Méndez and A.E. Merzon

Now we “lift” the functions 𝑣𝛽𝑙 (𝜇) onto 𝑉
+
𝑙 using the covering (3.22). Namely,

we denote by 𝑣𝛽𝑙 (𝜇) the composition of 𝑣𝛽𝑙 (𝑧𝑙) and 𝑧𝑙(𝜇):

𝑣𝛽𝑙 (𝜇) = 𝑣
𝛽
𝑙 (𝑧𝑙(𝜇)), 𝑧𝑙 ∈ ℂ+, 𝑙 = 1, 2, 𝛽 = 0, 1. (3.24)

The analyticity of the functions 𝑣𝛽𝑙 in ℂ+ implies the analyticity of 𝑣𝛽𝑙 in

𝑉 +
𝑙 , 𝑙 = 1, 2. We calculate these lifting for the known Dirichlet data of solution.

Namely, (3.21), (3.22) and (3.24) give

𝑣02(𝜇) =
𝑔(𝜔)

𝜔[sinh(𝜇+ 𝑖Φ) + 𝑖 cos(𝛼+Φ)]
, 𝜇 ∈ 𝑉 +

2 .

Let 𝑉1,𝜖 :=
{
𝜇 : 𝛾(𝜖) < 𝜇 < 𝛾(𝜋/2 − 𝜖)} for some 𝜖 > 0.

Lemma 3.4. The functions 𝑣𝛽𝑙 (𝜇) are analytic in 𝑉
+
𝑙 for 𝑙 = 1, 2, 𝛽 = 0, 1 and the

following estimate holds for some 𝜖 > 0

∣𝑣01(𝜇)∣ ≤ 𝐶𝑒−∣Re𝜇∣, ∣Re𝜇∣ ≥ 1, 𝜇 ∈ 𝑉 +
1,𝜀. (3.25)

3.5. Connection equation and elimination of two Cauchy data

Now we can formulate our basic connection equation [3]. Let us recall that the

functions 𝑣𝛽𝑙 (𝜇), defined by (3.24), are analytic in the regions 𝑉 +
𝑙 . By 𝐻(𝑉 ) we

denote the set of analytic functions in an open set 𝑉 ⊂ ℂ. By [𝑣(𝜇)]𝑙, 𝑙 = 1, 2
we denote the analytic continuation of a function 𝑣(𝜇) ∈ 𝐻(𝑉 +

𝑙 ) to the complex

region 𝑉Σ (see Figure 2) if the continuation exists. Let us denote

𝑣1(𝜇) := 𝑣
1
1(𝜇) + 𝜔 sinh(𝜇− 𝑖Φ)𝑣01(𝜇) − 𝑣(0) cosΦ, 𝜇 ∈ 𝑉 +

1 (3.26)

and

𝑣2(𝜇) := 𝑣
1
2(𝜇) + 𝜔 sinh(𝜇+ 2𝑖Φ)𝑣02(𝜇) − 𝑣(0) cosΦ, 𝜇 ∈ 𝑉 +

2 . (3.27)

The following connection equation has been proved in [3], [8].

Proposition 3.5. Let 𝑣(𝑥) ∈ 𝐸𝜀(𝐾) be a solution of (3.8). Then,

i) The function 𝑣1(𝜇) admits the analytic continuation from 𝑉
+
1 a 𝑉Σ, and the

function 𝑣2(𝜇) admits the analytic continuation from 𝑉
+
2 a 𝑉Σ.

ii) For the analytic continuations the following connection equation holds:

[𝑣1(𝜇)]1 + [𝑣2(𝜇)]2 = 0, 𝜇 ∈ 𝑉Σ. (3.28)

iii) The following estimates hold for the analytic continuations:

∣[𝑣𝑙(𝜇)]∣ ≤ 𝐶𝛿(1 + 𝑒
∣𝜇∣)𝑞, 𝜇 ∈ 𝑉Σ,𝛿, 𝑙 = 1, 2. (3.29)

for any 𝛿 ∈ (0,Φ/2 + 𝜋/2), with a 𝑞 ∈ ℝ depending on 𝑣11(𝜇) and 𝑣
1
2(𝜇).

We reduce the connection equation (3.28) to a equation that contains only
two unknown functions. “Lifting” by the formulas (3.22) the first equation of (3.21)
to 𝑉 +

1 , expressing 𝑣11(𝜇) and substituting the obtained expressing into (3.26) we
obtain the expressing for 𝑣1(𝜇)

𝑣1(𝜇) = −𝑖𝜔 sinΦ cosh𝜇𝑣01(𝜇) − 𝑖𝑔(𝜔) sinΦ sin𝛼

sinh𝜇+ 𝑖 cos𝛼
− 2𝑣(0) cosΦ, 𝜇 ∈ 𝑉 +

1 . (3.30)
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Similarly, substituting into the right-hand side of (3.27) the function 𝑣02(𝜇),
we obtain

𝑣2(𝜇) = 𝑣
1
2(𝜇) +

𝑔(𝜔) sinh(𝜇+ 2𝑖Φ)

sinh(𝜇+ 𝑖Φ) + 𝑖 cos(𝛼+Φ)
− 𝑣(0) cosΦ, 𝜇 ∈ 𝑉 +

2 .

Hence and from (3.28) we deduce the following.

Lemma 3.6. Let 𝑣(𝑥) ∈ 𝐸𝜀(𝐾) be a solution to the problem (3.8). Then the func-
tions 𝑣01(𝜇) and 𝑣

1
2(𝜇) admit meromorphic continuation to 𝑉Σ and satisfy the con-

nection equation:

𝑖𝜔 sinΦ cosh𝜇𝑣01(𝜇) − 𝑣12(𝜇) = 𝐺(𝜇), 𝜇 ∈ 𝑉Σ (3.31)

with

𝐺(𝜇)=𝑔(𝜔)

(
sinΦsin𝛼

𝑖sinh𝜇−cos𝛼
+

sinh(𝜇+2𝑖Φ)

sinh(𝜇+ 𝑖Φ)+ 𝑖cos(𝛼+Φ)

)
−3𝑣(0)cosΦ, 𝜇∈ℂ.

and 𝑣01(𝜇), 𝑣
1
2(𝜇) determined by (3.24).

3.6. Automorphisms

To reduce the equation (3.31) to the difference equation, we use the automorphism
properties of the functions 𝑣01(𝜇) y 𝑣

1
2(𝜇).

Definition 3.1. For 𝑙 = 1, 2, we define the automorfismos ℎ̌𝑙 : 𝑉 −→ 𝑉 in the

following way: ℎ̌1 is the reflection with respect to the point 𝑖𝜋2 , ℎ̌2 is the reflection

with respect to the point 𝑖𝜋2 −𝑖Φ, namely: ℎ̌1(𝜇) = −𝜇+𝑖𝜋, ℎ̌2(𝜇) = −𝜇+𝑖𝜋−2𝑖Φ,
𝜇 ∈ ℂ.

The projections (3.22) satisfy the automorphism conditions 𝑧𝑙(ℎ̌𝑙(𝜇)) = 𝑧𝑙(𝜇)
for 𝜇 ∈ ℂ, 𝑙 = 1, 2. Thus, the lifting 𝑣01(𝜇), 𝑣

1
2(𝜇) also satisfy the same conditions:

using these properties and meromorphity of these functions in 𝑉Σ we obtain (see [1],
[2]) that 𝑣01 admits the meromorphic continuation to ℂ and satisfies the difference
equation

cosh𝜇𝑣01(𝜇) + cosh(𝜇+ 2𝑖Φ)𝑣01(𝜇+ 2𝑖Φ) = 𝐺2(𝜇), 𝜇 ∈ ℂ. (3.32)

where

𝐺2(𝜇) =
𝑔(𝜔)

𝜔

(
cosh𝜇

sinh𝜇+ 𝑖 cos𝛼
+

cosh(𝜇+ 2𝑖Φ)

sinh(𝜇+ 2𝑖Φ) + 𝑖 cos𝛼

)
, 𝜇 ∈ ℂ.

4. Uniqueness

We start with the following theorem.

Theorem 4.1. There no exist two functions 𝑣01(𝑧), 𝑣
0∗
1 (𝑧) satisfying the following

conditions

i) The functions 𝑣01 , 𝑣
0∗
1 defined by (3.24) are analytic in 𝑉 +

1 admit the mero-
morphic continuation to ℂ and satisfy the difference equation (3.32)
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ii) These functions satisfy the automorphism conditions

𝑣(−𝜇+ 𝑖𝜋) = 𝑣(𝜇), 𝜇 ∈ ℂ. (4.1)

iii) These functions admit the estimate (3.25)
iv) The functions (3.30) corresponding to 𝑣01 and 𝑣

0∗
1 are meromorphic in ℂ and

satisfy (3.29) for 𝑙 = 1.

Corollary 4.1. Suppose that 𝑣(𝑥) and 𝑣∗(𝑥) belong to 𝐸𝜀(𝐾) and both are solutions

to the system (3.8). Let 𝑣𝛽𝑙 and 𝑣
𝛽∗
𝑙 are defined in (3.11) and (3.12) by 𝑣 and 𝑣∗

respectively. Then

𝑣𝛽𝑙 = 𝑣𝛽∗
𝑙 , 𝑙 = 1, 2, 𝛽 = 0, 1 (4.2)

Proof. The statement follows from Theorem 4.1, (3.21) and (3.31). □
Proof of Theorem 2.3 (i). Consider two functions 𝑢𝑠(𝑦, 𝑡) and 𝑢∗

𝑠(𝑦, 𝑡) defined by
(3.1) and corresponding to 𝑢 and 𝑢∗ respectively. Then by Lemma 3.2 𝑢𝑠 and
𝑢∗
𝑠 belongs to 𝐸𝜀 and satisfy (3.6). The functions 𝑣(𝑥, 𝜔) and 𝑣∗(𝑥, 𝜔) defined by

(3.7) and corresponding to 𝑢𝑠 and 𝑢∗
𝑠 satisfy (3.8) and belong to 𝐸𝜀(𝐾). Now we

are in the situation of Theorem 4.1. All this the identities (4.2) hold. Therefore
𝑣(𝑥, 𝜔) = 𝑣∗(𝑥, 𝜔) by (3.20) and (3.19) for any 𝜔 ∈ ℂ. This implies that 𝑢𝑠(𝑦, 𝑡) =
𝑢∗
𝑠(𝑦, 𝑡) since these functions are the inverse Fourier-Laplace transform of 𝑢(𝑦, 𝜔)

and 𝑢∗(𝑦, 𝜔) which obviously also coincide by (3.7). □

5. Solution of the difference equation

5.1. Meromorphic solution

In this section we construct a meromorphic solution and then an analytic solution
for the difference equation (3.32). First, we construct a meromorphic solution of
this equation which decreasing as 𝑒−∣Re𝜔∣ for Re𝜔 → ∞. Denote

𝜇1(𝑘) = 𝜇1 + 2𝑘𝜋𝑖 and 𝜇2(𝑘) = 𝜇2 + 2𝑘𝜋𝑖, 𝑘 ∈ ℤ (5.1)

where 𝜇1 is defined in (2.9) and 𝜇2 = −𝑖𝜋/2− 𝑖𝛼. We define

𝑤̌01(𝜇) :=
𝑔(𝜔)

𝜔

(
1

sinh𝜇+ 𝑖 cos𝛼

)
, 𝜇 ∈ ℂ . (5.2)

Obviously 𝑤̌01(𝜇) is a meromorphic function in ℂ with poles 𝜇1(𝑘) and 𝜇2(𝑘)
and residues

Res(𝑤̌01 , 𝜇1(𝑘)) =
𝑔(𝜔)

𝜔 sin𝛼
, Res(𝑤̌01 , 𝜇2(𝑘)) = − 𝑔(𝜔)

𝜔 sin𝛼
, 𝑘 ∈ ℤ.

Lemma 5.1.

i) The function 𝑤̌01(𝜇) is analytic in 𝑉
+
1 .

ii) It satisfies (3.32), (4.1).
iii) The estimate holds ∣𝑤̌01(𝜇)∣ ≤ 𝐶(𝜔)𝑒−∣Re𝜇∣, ∣Re𝜇∣ ≥ 1.

We define 𝑤̌1(𝜇) similarly to 𝑣1(𝜇) from (3.30), with the replacement 𝑣01(𝜇)
by 𝑤̌01(𝜇) from (5.2).
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Lemma 5.2.
i) The function 𝑤̌1(𝜇), admits the representation

𝑤̌1(𝜇) = −𝑖𝜔 sinΦ( cosh𝜇+ sin𝛼
)
𝑤̌01(𝜇) − 2𝑣(0) cosΦ.

ii) The poles of 𝑤̌1(𝜇) in ℂ can be only the points 𝜇1(𝑘), 𝜇2(𝑘), 𝑘 ∈ ℤ defined
in (5.1).

iii) The unique pole and residue of 𝑤̌1(𝜇) in 𝑉Σ is 𝜇1 and

Res(𝑤̌1, 𝜇1) = −2𝑖𝑔(𝜔) sinΦ.

iv) The function 𝑤̌1(𝜇) admits the estimate ∣𝑤̌1(𝜇)∣ ≤ 𝐶(𝜔), ∣Re𝜇∣ ≥ 1, for
some 𝐶(𝜔) > 0.

5.2. Analytic solution

By Lemma 5.1 ii) the function 𝑤̌01(𝜇) is a particular meromorphic solution to the
inhomogeneous difference equation (3.32). However, the corresponding function
𝑤̌1(𝜇) from (3.30) is not analytic in 𝑉Σ by Lemma 5.2 iii) that does not correspond
to Proposition 3.5. Hence we have to construct a “correct” solution to (3.32), (4.1).
Let

𝐾2(𝜇) :=
𝐾1(𝜇)

cosh𝜇
, 𝐾1(𝜇) := −𝜋𝑔(𝜔)

𝜔Φ
⋅𝐻1(𝜇, 𝛼,Φ), 𝜇 ∈ ℂ (5.3)

where 𝐻1 is defined by (2.8). We “correct” the function 𝑤̌01 and define 𝑣01 as

𝑣01(𝜇) := 𝑤̌
0
1(𝜇) +𝐾2(𝜇). (5.4)

First, 𝐾2 is a solution to the homogeneous equation corresponding to (3.32)
and satisfies (4.1). Therefore 𝑣01 satisfies (3.32), (4.1) by Lemma 5.1 ii). The cor-
responding function (3.30) has the form

𝑣1(𝜇) = 𝑤̌1(𝜇) − 𝑖𝜔 sinΦ ⋅𝐾1(𝜇). (5.5)

In the following lemma we also check that the corresponding function 𝑣1(𝜇)
from (3.30) is analytic in 𝑉Σ. The poles of the function 𝐾1(𝜇) (coinciding with the
poles of 𝐻1) are

𝛽′
𝑘 = 𝜇1 + 2Φ𝑘𝑖, 𝛽′′

𝑘 = ℎ̌1(𝛽
′
𝑘) = 𝜇

∗
1 + 2𝑖Φ𝑘, 𝑘 ∈ ℤ (5.6)

where 𝜇1, 𝜇
∗
1 are defined in (2.9). Since Φ > 𝜋 only 𝛽′

0 = 𝜇1 ∈ 𝑉Σ. Obviously 𝐾1

satisfies the estimate ∣𝐾1(𝜇)∣ ≤ 𝑒− 𝜋
2Φ ∣Re𝜇∣, ∣Re𝜇∣ ≥ 1. From this we obtain the

follows statement.

Lemma 5.3.

i) The function 𝑣01
∙ satisfies (3.32), (4.1).

∙ is meromorphic in ℂ and analytic in 𝑉 +
1 .

∙ satisfies the estimate ∣𝑣01(𝜇)∣ ≤ 𝐶𝑒−∣Re𝜇∣, ∣Re𝜇∣ ≥ 1

ii) The corresponding function 𝑣1(𝜇) from (5.5) is analytic in 𝑉Σ.
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Corollary 5.4. If 𝑢𝑠(𝑦, 𝜔) ∈ 𝐸𝜖 with 𝜖 ∈ (0, 1) is a solution to the problem (3.6) for
𝜔 ∈ ℂ+, then the function 𝑣1(𝜇) defined by (3.26) is the function given by (5.5).

Proof. Since 𝑣01(𝜇) defined in (5.4) satisfies all conditions of the Theorem 4.1, the
statement follows from this theorem. □

6. Inverse Fourier transform in time

6.1. Sommerfeld representation for scattered wave

In this section we write the solution 𝑢𝑠 to problem (3.6) in the Sommerfeld-type
representation form (under the assumption of its existence) by means of the solu-
tion of the difference equation (3.32). Let Γ(𝜃) be the contour:

Γ(𝜃) =

⎧⎨⎩
←−−
𝛾(𝜙) ∪ −−−−→

𝛾(−Φ), si 𝜙 < 𝜃 ≤ 𝜋
←−−
𝛾(𝜋) ∪ −−−−→

𝛾(−𝜋), si 𝜋 < 𝜃 < 2𝜋

where 𝜙 and Φ is defined in (1.1). The orientations of the contour Γ(𝜃) is shown
in the Figure 1. We denote by −𝛾 the contour 𝛾 with the contrary orientation.

Theorem 6.1 (See Theorem 9.1 and Remark 12.2 from [1]). If there exists a solution
𝑢𝑠 ∈ 𝐸𝜀 to the Helmholtz equation in (3.6), then this solution has the form:

𝑢𝑠(𝑦, 𝜔) =
1

4𝜋 sinΦ

∫
Γ(𝜃)

𝑒−𝜌𝜔 sinh(𝜇−𝑖𝜃)𝑣1(𝜇)d𝜇, (6.1)

for 𝜌 > 0 and 𝜙 < 𝜃 < 2𝜋, with 𝑣1(𝜇) defined by (3.26).

We give the representation of a solution to the stationary problem (3.6) (with
a parameter 𝜔 ∈ ℂ+) in the standard form of the Sommerfeld integral. This
form is the direct consequence of the representation (6.1), Corollary 5.4, (5.5) and
periodicity of functions 𝑤̌01(𝜇), 𝑤̌1(𝜇) and contours Γ(𝜃) with the period 2𝜋𝑖.

Theorem 6.2. If a solution to problem (3.6) with 𝜔 ∈ ℂ+ exists in the space 𝐸𝜀

with 𝜀 ∈ (0, 1), then it is expressed by the Sommerfeld-type integral

𝑢𝑠(𝑦, 𝜔) =
𝑖𝑔(𝜔)

4Φ

∫
Γ(𝜃)

𝑒−𝜌𝜔 sinh(𝜇−𝑖𝜃)𝐻1(𝜇, 𝛼,Φ)𝑑𝜇, 𝜙 ≤ 𝜃 ≤ 2𝜋 (6.2)

where 𝐻1(𝜇, 𝛼,Φ) is given by (2.8).

Proof of Theorem 2.3 (ii). Let 𝑢(𝑦, 𝑡) ∈ ℰ𝜖,𝑁 , 𝜀 ∈ (0, 1), 𝑁 ≥ 0 be a solution to
the problem (1.5), (1.6). The corresponding scattered wave 𝑢𝑠(𝑦, 𝑡) is defined by
(3.1). Its Fourier transform in time is expressed by (6.2) according to Lemma 3.2
and Theorem 6.2.
Let us apply the Fourier transform in time to (3.1). First, (1.2) implies (3.5).
Therefore, (3.1) implies that 𝑢(𝑦, 𝜔) = 𝑢̂𝑠(𝑦, 𝜔)+𝑔(𝜔)𝑒

𝑖𝜔𝜌 cos(𝜃−𝛼), 𝑦 ∈ 𝑄, 𝜔 ∈ ℂ+.
Now (2.11) follows from (6.2), (2.5), (5.6) and the Cauchy Residues Theorem.
Theorem 2.3(ii) is proved. □
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7. Existence

Let us define the reflected wave 𝑢𝑟(𝑦, 𝑡) as

𝑢𝑟(𝑦, 𝑡) :=

⎧⎨⎩
𝑢𝑟,1(𝑦, 𝑡), 𝜙 ≤ 𝜃 ≤ 𝜃1
0 𝜃1 < 𝜃 < 𝜃2

𝑢𝑟,2(𝑦, 𝑡), 𝜃2 ≤ 𝜃 ≤ 2𝜋

where (𝜌, 𝜃) are the polar coordinate of 𝑦,

𝜃1 := 2𝜙− 𝛼, 𝜃2 = 2𝜋 − 𝛼 (7.1)

and

𝑢𝑟,1(𝑦, 𝑡) = −𝑒𝑖(𝑘1⋅𝑦−𝜔0𝑡)𝑓(𝑡− 𝑛1 ⋅ 𝑦), 𝑢𝑟,2(𝑦, 𝑡) = 𝑒𝑖(𝑘2⋅𝑦−𝜔0𝑡)𝑓(𝑡− 𝑛2 ⋅ 𝑦), (7.2)

𝑘1 = 𝜔0𝑛1, 𝑛1 = (cos 𝜃1, sin 𝜃1); 𝑘2 = 𝜔0𝑛2, 𝑛2 = (cos 𝜃2, sin 𝜃2).

Introduce the diffracted waves by

𝑢𝑑(𝑦, 𝑡) := 𝑢𝑠(𝑦, 𝑡)− 𝑢𝑟(𝑦, 𝑡). (7.3)

7.1. On Sommerfeld-Malyuzhinets integrals

For 𝜔 ∈ ℂ+ let us denote by 𝒮(𝑦, 𝜔) the “stationary” Sommerfeld-Malyuzhinets
type integral

𝒮(𝑦, 𝜔) := 𝑖

4Φ

∫
𝒞
𝑒−𝜔𝜌 sinh 𝛽𝐻1(𝛽 + 𝑖𝜃)𝑑𝛽, 𝜌 ≥ 0, 𝜙 ≤ 𝜃 ≤ 2𝜋 (7.4)

where 𝐻1 is defined in (2.8) and which absolutely converges (see Lemma 7.2). By
Theorem 2.3 ii) if a solution 𝑢 of the problem (1.5), (1.6) exists, then

𝑢(𝑦, 𝑡) = 𝐹−1
𝜔→𝑡[𝑢̂(𝑦, 𝜔)], 𝜌 > 0, 𝜙 < 𝜃 < 2𝜋 (7.5)

where
𝑢̂(𝑦, 𝜔) = 𝑔(𝜔)𝒮(𝑦, 𝜔), 𝜔 ∈ ℂ+. (7.6)

Let us examine the convergence of the integral (7.4) and its derivatives in 𝜔
and 𝜌, 𝜃. First, let us prove the exponential decay of the function 𝐻1. The poles of
the function 𝐻1 coincide with the poles of 𝐾1 from (5.3) and are given by (5.6).
For 𝛿 > 0 denote ℂ𝛿 := {𝛽 ∈ ℂ : ∣𝛽 − 𝛽𝑘∣ ≥ 𝛿, ∀𝑘 ∈ ℤ}. From (2.8) we obtain

Lemma 7.1. For any 𝛿 > 0 the estimate holds

∣𝐻1(𝛽, 𝛼,Φ)∣ ≤ 𝐶𝛿𝑒
− 𝜋

2Φ ∣Re 𝛽∣, 𝛽 ∈ ℂ𝛿. (7.7)

Further, let us consider 𝜔 := 𝜔1 + 𝑖𝜔2 with 𝜔1 ∈ ℝ and 𝜔2 ≥ 0 and 𝛽 =
𝛽1 + 𝑖𝛽2 ∈ ℂ with 𝛽1,2 ∈ ℝ. Denote Σ := 𝑄× ℂ+.

Lemma 7.2.

i) The integral (7.4) converges absolutely and uniformly for (𝑦, 𝜔) ∈ Σ.
ii) The function 𝒮(𝑦, 𝜔) is continuous in Σ.

iii) The function 𝒮(𝑦, 𝜔) is analytic in 𝜔 ∈ ℂ+ and smooth in (𝜌, 𝜃) ∈ 𝑄̇.
iv) The function 𝒮(𝑦, 𝜔) ∈ 𝐶∞(𝑄̇× (ℝ ∖ {0})).
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Proof. The proof of this Lemma coincides literally with the proof of Lemma 4.2

from [2] with the replacement of the expression
𝜋

Φ
in [2] by

𝜋

2Φ
. □

Let us define

𝑢̂𝑠(𝑦, 𝜔) = 𝑢̂(𝑦, 𝜔) − 𝑢̂𝑖𝑛(𝑦, 𝜔) (7.8)

Theorem 7.1. 𝑢𝑠(𝑦, 𝜔) is a classical solution to the stationary problem (3.6) for
𝜔 ∈ ℂ+.

Proof. It is proved similarly to the Corollary 5.2 from [2]. □

7.2. Incident, reflected and diffracted stationary waves

In this subsections we prove the statement i) of Theorem 2.4 for the function 𝑢(𝑦, 𝑡)
defined by (7.5): namely we prove that the function is a solution to the problem
(1.5), (1.6) and belongs to ℰ𝜖,𝑁 with 𝜖,𝑁 defined in Theorem 2.4. We deduce
(1.6) from (3.2) by the Paley-Wiener theorem, using the estimates of 𝑢̂𝑠(𝑦, 𝜔) for
𝜔 ∈ ℂ+. Note that 𝒮(𝑦, 𝜔) and 𝑢̂(𝑦, 𝜔) = 𝑢𝑠(𝑦, 𝜔) + 𝑢̂𝑖𝑛(𝑦, 𝜔) are not bounded
for 𝜔 ∈ ℂ+ since 𝑢𝑖𝑛(𝑥, 𝑡) ∕≡ 0 for 𝑡 < 0. Therefore, we have to extract first
the incident wave from the integral (7.4). The contour 𝒞 in the integral (7.4)
crosses “bad zones” between 𝛾(−𝜋) and 𝛾(−2𝜋), where Re (𝜔 sinh𝛽) < 0, and the
exponent 𝑒−𝜔𝜌 sinh𝛽 is growing for Im𝜔 → +∞ (see Figure 1). This growing part
of the integral just corresponds to the incident wave. To extract the incident wave,
we split the function 𝒮(𝑦, 𝜔) into three summands

𝒮 := 𝒮𝑖𝑛 + 𝒮𝑠 := 𝒮𝑖𝑛 + 𝒮𝑟 + 𝒮𝑑 (7.9)

where for 𝜃 ∕= 𝜃1,2⎧⎨⎩

𝒮𝑑(𝑦, 𝜔) :=
𝑖

4Φ

∫
𝒞0

𝑒−𝜔𝜌 sinh 𝛽𝐻1(𝛽 + 𝑖𝜃, 𝛼,Φ)𝑑𝛽

𝒮𝑖𝑛(𝑦, 𝜔) := 𝑒
𝑖𝜔𝜌 cos(𝜃−𝛼)

𝒮𝑟(𝑦, 𝜔) :=

⎧⎨⎩
− 𝑒𝑖𝜔𝜌 cos(𝜃−𝜃1) 𝜙 ≤ 𝜃 ≤ 𝜃1
0 𝜃1 < 𝜃 < 𝜃2

𝑒𝑖𝜔𝜌 cos(𝜃−𝜃2), 𝜃2 ≤ 𝜃 ≤ 2𝜋

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
𝜔 ∈ ℂ+, (7.10)

𝜃1 and 𝜃2 are defined in (7.1) and 𝒞0 := 𝛾1 ∪ 𝛾2, 𝛾1 := {𝛽1 − 𝑖𝜋/2, 𝛽1 ∈ ℝ}, 𝛾2 :=
{𝛽1−5𝑖𝜋/2, 𝛽1 ∈ ℝ}. From the estimate (7.7) it follows that the integral in (7.10)

converges absolutely for 𝜔 ∈ ℂ+ and defines a continuous function of 𝜔 ∈ ℂ+.
Let us note that

𝑢̂𝑖𝑛(𝑦, 𝜔) = 𝑔(𝜔)𝒮𝑖𝑛(𝑦, 𝑡) (7.11)

by (3.5).

Remark 7.3. Let (7.9) holds. Then (7.8), (7.6) and (7.11) imply that

𝑢̂𝑠 = 𝑢̂− 𝑢̂𝑖𝑛 = 𝑔(𝒮 − 𝒮𝑖𝑛) = 𝑔𝒮𝑠 (7.12)
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We call 𝒮, 𝒮𝑑, 𝒮𝑖𝑛, 𝒮𝑟, 𝒮𝑠 as densities of the total, diffracted, incident, reflected
and scattered waves respectively. The incident part 𝒮𝑖𝑛(𝜌, 𝜃, ⋅) is unbounded in ℂ+

while the reflected part 𝒮𝑟(𝜌, 𝜃, ⋅) and the diffracted part 𝒮𝑑(𝜌, 𝜃, ⋅) are bounded
in ℂ+. Hence, 𝑢𝑠(𝜌, 𝜃, ⋅) is bounded in ℂ+.

7.3. The scattered wave

In this section we prove Theorem 2.4 i), namely that the function (2.10) is a smooth
solution to the scattering problem (1.5), (1.6). For this we study the function
𝑢𝑠(𝑦, 𝑡) := 𝐹

−1
𝜔→𝑡[𝑢̂𝑠(𝑦, 𝜔)]. We prove that 𝑢𝑠(𝑦, 𝑡) satisfies the system (3.3), (3.2).

Note that by Lemma 7.2 ii), iii), formula (7.9) and the definition of 𝒮𝑖𝑛 in (7.10),

𝒮𝑠 ∈ 𝐶(𝑄 × ℝ) and 𝒮𝑠(⋅, ⋅, 𝜔) ∈ 𝐶∞(𝑄̇), 𝜔 ∈ ℂ+. Let us define the function

𝑤𝑠(𝑦, 𝑡) := 𝐹
−1
𝜔→𝑡[𝑤̃𝑠(𝑦, 𝜔)], 𝑡 ∈ ℝ (7.13)

where the function

𝑤̃𝑠(𝑦, 𝜔) := 𝑔1(𝜔)𝒮𝑠(𝑦, 𝜔), 𝜔 ∈ ℂ+ (7.14)

with 𝑔1(𝜔) given in (2.7).

Lemma 7.4. For all (𝜌, 𝜃) ∈ 𝑄 there exists the inverse Fourier-Laplace transform
𝑤𝑠(𝑦, 𝑡) = 𝐹

−1
𝜔→𝑡[𝑤𝑠] of the function 𝑤̃𝑠(𝑦, 𝜔), and

𝑤𝑠 ∈ 𝐶∞(𝑄̇× ℝ) ∩ 𝐶(𝑄 × ℝ), ∣𝑤𝑠(𝑦, 𝑡)∣ ≤ 𝐶, 𝑡 ≥ 0, (7.15)

𝑤𝑠(𝑦, 𝑡) = 0, 𝑡 < 0. (7.16)

Proposition 7.5.

i) The function 𝑢𝑠(𝑦, 𝑡) admits the following representation

𝑢𝑠(𝑦, 𝑡) = −𝑖
∫ 𝑡

0

𝑒𝑖𝜔0(𝜏−𝑡)𝑤𝑠(𝜌, 𝜃, 𝜏)𝑑𝜏, (𝜌, 𝜃) ∈ 𝑄; 𝑡 ∈ ℝ. (7.17)

Furthermore,

𝑢𝑠 ∈ 𝐶∞(𝑄̇× ℝ) ∩ 𝐶(𝑄 × ℝ) (7.18)

and for (𝜌, 𝜃) ∈ 𝑄,
𝑢𝑠(𝑦, 𝑡) = 0, 𝑡 < 0, ∣𝑢𝑠(𝑦, 𝑡)∣ ≤ 𝐶(1 + 𝑡), 𝑡 ≥ 0. (7.19)

ii) 𝑢𝑠(𝑦, 𝑡) is a solution of system (3.3) and satisfies the initial conditions (3.2).
iii) 𝑢𝑠(𝑦, 𝑡) satisfies the estimate (2.4) with 𝜖 = 𝑁 = 1 − 𝜋/2Φ.
The sketch of the proof. i) The representation (7.17) follows from (7.12), (7.14),
(2.7), (7.13) and (7.16). Now (7.18) follows from (7.15) and (7.17). Finally, (7.19)
follows from (7.15), (7.16) and (7.17).

ii) The system (3.3), (3.4) holds for 𝑢𝑠 in the classical sense since 𝑢𝑠 satisfies (3.6)
in the classical sense by Theorem 7.1. The identity (3.2) follows from (7.19).

iii) By (7.3) it suffices to prove the estimate for 𝑢𝑑 outside the critical directions
𝜃 = 𝜃1, 𝜃2 since the estimate for 𝑢𝑟 is trivial. It is proved similarly to Lemma 12.1,
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Theorem 12.2, Propositions 14.1 and 14.2 from [2] with the replacement of 1−𝜋/Φ
by 1 − 𝜋/2Φ. Moreover the follows key representation is used

𝑢𝑑(𝑦, 𝑡) =
𝑖𝑒−𝑖𝜔0𝑡

4Φ

∫
ℝ

𝑍1(𝛽, 𝜃)ℎ(𝛽, 𝜌, 𝑡)𝑑𝛽 (7.20)

with 𝑍1(𝛽, 𝜃) := −𝐻1(−𝑖𝜋/2 + 𝛽 + 𝑖𝜃) + 𝐻1(−5𝑖𝜋/2 + 𝛽 + 𝑖𝜃) and ℎ(𝛽, 𝜌, 𝑡) :=
𝑓(𝑡− 𝜌 cosh𝛽)𝑒𝑖𝜔0𝜌 cosh 𝛽 , 𝛽 ∈ ℝ. □

Proof of the Theorem 2.4 i). The statement follows from Remark 3.1, Proposition
7.5 and Definition 2.1 (ii) of ℰ𝜖,𝑁 . □

8. Limiting amplitude principle

Proof of Theorem 2.4 ii). By (3.1) and (7.3) it suffices to prove the Limiting
Amplitude Principle only for the diffracted wave 𝑢𝑑 since for the 𝑢𝑖𝑛 and 𝑢𝑟
it holds by (1.2), (7.2) and (1.4) with the corresponding limiting amplitudes
𝐴𝑖𝑛(𝑦) = 𝑒

𝑖𝜔0𝜌 cos(𝜃−𝛼) and

𝐴𝑟(𝑦) =

⎧⎨⎩
− 𝑒𝑖𝜔0𝜌 cos(𝜃−𝜃1), 𝜙 ≤ 𝜃 ≤ 𝜃1
0 𝜃1 < 𝜃 < 𝜃2

𝑒𝑖𝜔0𝜌 cos(𝜃−𝜃2), 𝜃2 ≤ 𝜃 ≤ 2𝜋.

By (7.20) the Amplitude 𝐴𝑑(𝑦, 𝑡) of 𝑢𝑑(𝑦, 𝑡) is expressed as

𝐴𝑑(𝑦, 𝑡) := 𝑒
𝑖𝜔0𝑡𝑢𝑑(𝑦, 𝑡) =

𝑖

4Φ

∫
ℝ

𝑍1(𝛽, 𝜃)ℎ(𝛽, 𝜌, 𝜃)𝑑𝛽.

Similarly to Theorem 15.1 it is proved that 𝐴𝑑(𝑦, 𝑡) → 𝐴𝑑(𝑦), 𝑡 → ∞ uni-
formly with the respect to 𝜌 ≤ 𝜌0 and 𝜃 ∈ [𝜙, 2𝜋] where

𝐴𝑑(𝑦) =
𝑖

4Φ

∫
ℝ

𝑒𝑖𝜔0𝜌 cosh 𝛽𝑍1(𝛽, 𝜃)𝑑𝛽.

It remains only to note that 𝑢∞(𝑦) = 𝐴𝑖𝑛(𝑦) +𝐴𝑟(𝑦) +𝐴𝑑(𝑦). □

Remark 8.1. It is checked directly that 𝑢∞(𝑦) given by (2.12) is a solution of the
following stationary problem⎧⎨⎩

(Δ + 𝜔20)𝑢∞(𝑦) = 0, (𝜌, 𝜃) ∈ 𝑄
∂𝑦2𝑢∞

∣∣
𝑄1

= 0

𝑢∞
∣∣
𝑄2

= 0.

In this way we find the solution the stationary DN-diffraction problem in angle as
the limiting amplitude of the corresponding nonstationary DN-diffraction problem.
The obtained formula (2.12) is similar to the well-known Sommerfeld-Malyuzhinets
from [10]–[13].
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Abstract. Normalization results are obtained for classes of second-order el-
liptic equations in ℝ2 which degenerate along a simple closed curve or with
an isolated singularity. The behavior of the solutions of the corresponding
homogeneous equation in a neighborhood of the degeneracy as well as the
maximum principle is studied.
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1. Introduction

This paper deals with the properties of a class of degenerate elliptic partial differen-
tial equations in the plane. We consider the equations where the set of degeneracy
is either a simple closed curve or an isolated singularity. More precisely, the equa-
tion dealt with here is the second-order homogeneous equation in ℝ2 with smooth
coefficients given by

𝐴
∂2𝑢

∂𝑥2
+ 2𝐵

∂2𝑢

∂𝑥∂𝑦
+ 𝐶

∂2𝑢

∂𝑦2
+𝐷

∂𝑢

∂𝑥
+ 𝐸

∂𝑢

∂𝑦
= 0. (1.1)

For the first class of equations, we assume that 𝐴𝐶 − 𝐵2 > 0 except along a
simple closed curve Σ. Along Σ, the equation is parabolic and we assume that
the coefficients satisfy an additional condition on the order of degeneracy (see
Section 2). The second class consists of equations for which 𝐴𝐶 − 𝐵2 > 0 except
at an isolated point 0. Near the singular point, we assume that

𝐾1(𝑥
2 + 𝑦2)2 ≤ 𝐴𝐶 −𝐵2 ≤ 𝐾2(𝑥

2 + 𝑦2)2

for some positive constants 𝐾1 < 𝐾2.
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We use the results obtained by the author in [5] for the operator

(𝑥2 + 𝑦2)2Δ+ 𝑝(𝑥, 𝑦)
∂

∂𝑥
+ 𝑞(𝑥, 𝑦)

∂

∂𝑦

to study the properties of the solutions of equation (1.1) in a neighborhood of
the set where the equation degenerates. Some of the results obtained include the
existence of Hölder continuous solutions and the validity of the maximum principle.

There is a vast amount of work dealing with elliptic equations with degen-
eracies. This paper is in the spirit of the works contained in [2] and in [7].

The organization of this paper is as follows. In Sections 2 and 3, we prove
normalization results for equation (1.1). In Section 4, we recall needed results from
[5]. The main results of this paper are proved in Section 5.

2. Normalization near a curve of degeneracy

In this section we prove a normalization for a class of second-order elliptic operators
which degenerate along a simple closed curve. To achieve such normalization, we
will make use of the following theorem proved in [3]

Theorem 2.1. Let 𝑋 be a 𝐶∞ complex vector field in ℝ2 satisfying the following
conditions in a neighborhood of a smooth, simple, closed curve Σ:

(i) 𝑋𝑝 ∧𝑋𝑝 ∕= 0 for every 𝑝 /∈ Σ;

(ii) 𝑋𝑝 ∧𝑋𝑝 vanishes to first order for 𝑝 ∈ Σ; and
(iii) 𝑋 is tangent to Σ.

Then there exist an open tubular neighborhood 𝑈 of Σ, a positive number 𝑅, a
unique complex number 𝜆 ∈ ℝ+ + 𝑖ℝ, and a diffeomorphism

Φ : 𝑈 −→ (−𝑅, 𝑅)× 𝕊1

such that

Φ∗𝑋 = 𝑚(𝑟, 𝑡)

[
𝜆
∂

∂𝑡
− 𝑖𝑟 ∂

∂𝑟

]
where 𝑚(𝑟, 𝑡) is a nonvanishing function. Moreover, when 𝜆 ∕∈ ℚ, then for any
given 𝑘 ∈ ℤ+, the diffeomorphism Φ and the function 𝑚 can be taken to be of
class 𝐶𝑘.

This theorem was proved in [3] when Im(𝜆) ∕= 0. When Im(𝜆) = 0, it is
proved in [3] that the diffeomorphism Φ is 𝐶1. Later it was proved in [1] that Φ
can be taken to be of class 𝐶𝑘 provided that 𝜆 /∈ ℚ.

Let ℙ be the second-order operator in ℝ2 given by

ℙ = 𝐴11
∂2

∂𝑥2
+ 2𝐴12

∂2

∂𝑥∂𝑦
+𝐴22

∂2

∂𝑦2
+𝐴1

∂

∂𝑥
+𝐴2

∂

∂𝑦
, (2.1)
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where the coefficients 𝐴11, . . . , 𝐴2 are 𝐶∞ functions. We assume that ℙ is elliptic
everywhere except along a 𝐶∞ simple closed curve Σ. Thus,

𝐴11(𝑥, 𝑦)𝐴22(𝑥, 𝑦) −𝐴212(𝑥, 𝑦) > 0 ∀(𝑥, 𝑦) /∈ Σ;

𝐴11(𝑥, 𝑦)𝐴22(𝑥, 𝑦) −𝐴212(𝑥, 𝑦) = 0 ∀(𝑥, 𝑦) ∈ Σ.
(2.2)

We assume further that the degeneracy of ℙ on Σ satisfies the following condition:
For every 𝑝 ∈ Σ, there are coordinates (𝑢, 𝑣) centered at 𝑝 such that:

(𝐶1) : The curve Σ is given near 𝑝 by 𝑢 = 0;
(𝐶2) : The expression of ℙ in the (𝑢, 𝑣) coordinates is a multiple of an operator

∂2

∂𝑢2
+ 2𝑢𝐵12

∂

∂𝑢∂𝑣
+ 𝑢2𝐵22

∂

∂𝑣2
+ 𝑢𝐵1

∂

∂𝑢
+𝐵2

∂

∂𝑣
,

where 𝐵12, . . . are 𝐶
∞ functions.

We start by choosing a coordinate system in which Σ is a circle.

Proposition 2.2. There exists a 𝐶∞ diffeomorphism Ψ from a tubular neighborhood
𝑈 of Σ ⊂ ℝ2 onto a cylinder (−𝛿, 𝛿)× 𝕊1 such that the pushforward Ψ∗ℙ is

Ψ∗ℙ = 𝑚(𝜌, 𝜃)

[
∂2

∂𝜃2
+ 2𝜌𝑁

∂2

∂𝜌∂𝜃
+ 𝜌2𝑀

∂2

∂𝜌2
+ 𝜌𝑄

∂

∂𝜌
+ 𝑇

∂

∂𝜃

]
(2.3)

with 𝑚(𝜌, 𝜃) ∕= 0 for every (𝜌, 𝜃) and where the functions 𝑀 and 𝑁 satisfy

𝑀(𝜌, 𝜃) −𝑁2(𝜌, 𝜃) ≥ 𝐾, ∀(𝜌, 𝜃) ∈ (−𝛿, 𝛿)× 𝕊1 (2.4)

for some positive constant 𝐾.

Proof. Since Σ is a 𝐶∞ simple closed curve, then we can find a differeomorphism
Ψ1 that sends Σ onto the unit circle in ℝ2. Consider the diffeomorphism Ψ2 from
the cylinder (−𝜖, 𝜖)× 𝕊1 onto the annulus 1 − 𝜖 < ∣(𝑥, 𝑦)∣ < 1 + 𝜖 in ℝ2, given by

Ψ2(𝜌, 𝜃) = ((𝜌+ 1) cos 𝜃, (𝜌+ 1) sin 𝜃) .

If we take Ψ = Ψ2∘Ψ−1
1 , then it follows at once from the ellipticity of ℙ outside of Σ

and from condition 𝐶2, that Ψ∗ℙ has the desired form given in the proposition □
For the operator ℙ, we have the following normalization

Theorem 2.3. Let ℙ be the second-order operator given by (1.1) whose coefficients
satisfy conditions 𝐶1, 𝐶2 along the degeneracy curve Σ. Then there is a unique
number 𝜆 ∈ ℝ+ + 𝑖ℝ and a diffeomorphism Φ

Φ : 𝑈 −→ (−𝛿, 𝛿) × 𝕊1 ,

where 𝑈 is a tubular neighborhood of Σ, such that

Φ∗ℙ = 𝑚(𝑟, 𝑡)
[
𝐿𝐿+Re (𝛽(𝑟, 𝑡)𝐿)

]
(2.5)

where

𝐿 = 𝜆
∂

∂𝑡
− 𝑖𝑟 ∂

∂𝑟
and 𝐿 is complex conjugate vector field of 𝐿, and where 𝑚 and 𝛽 are functions
with 𝑚 nowhere vanishing and 𝛽 is ℂ-valued.
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Proof. Thanks to Proposition 2.2, we can assume that

ℙ =
∂2

∂𝜃2
+ 2𝜌𝑁

∂2

∂𝜌∂𝜃
+ 𝜌2𝑀

∂2

∂𝜌2
+ 𝜌𝑄

∂

∂𝜌
+ 𝑇

∂

∂𝜃
. (2.6)

Let 𝑋 be the vector field given by

𝑋 =
∂

∂𝜃
− 𝜌𝑔(𝜌, 𝜃) ∂

∂𝜌

where the function 𝑔 is given by

𝑔(𝜌, 𝜃) = 𝑁(𝜌, 𝜃) + 𝑖
√
𝑀(𝜌, 𝜃) −𝑁2(𝜌, 𝜃).

We have

𝑋𝑋 =
∂2

∂𝜃2
− 2𝜌𝑁

∂2

∂𝜌∂𝜃
+ 𝜌2𝑀

∂2

∂𝜌2
− 𝜌𝑓 ∂

∂𝜌
(2.7)

with

𝑓 =
𝑋(𝜌𝑔)

𝜌
= 𝑔𝜃 − 𝑔(𝜌𝑔)𝜌 = 𝑔𝜃 − ∣𝑔∣2 − 𝜌𝑔𝑔𝜌.

Note that since

𝜌
∂

∂𝜌
=
𝑋 −𝑋
𝑔 − 𝑔 , and

∂

∂𝜃
=
𝑔𝑋 − 𝑔𝑋
𝑔 − 𝑔 ,

then it follows from (2.6), (2.7) and from the fact that the coefficients of ℙ are
ℝ-valued that

ℙ=𝑋𝑋+(𝑓+𝑄)
𝑋−𝑋
𝑔−𝑔 +𝑇

𝑔𝑋−𝑔𝑋
𝑔−𝑔 =𝑋𝑋+

𝑓+𝑄+𝑔𝑇

𝑔−𝑔 𝑋− 𝑓+𝑄+𝑔𝑇

𝑔−𝑔 𝑋

=𝑋𝑋+
𝑓+𝑄+𝑔𝑇

𝑔−𝑔 𝑋− 𝑓+𝑄+𝑔𝑇

𝑔−𝑔 𝑋

Hence,

2ℙ = 𝑋𝑋 +𝑋𝑋 +𝐴(𝜌, 𝜃)𝑋 +𝐴(𝜌, 𝜃)𝑋 , (2.8)

with

𝐴 =
𝑓 + 𝑓 + 2𝑄+ 2𝑔𝑇

𝑔 − 𝑔 .

The vector field 𝑋 is elliptic outside the circle Σ = {0} × 𝕊1; it is tangent to Σ;
and

𝑋 ∧𝑋 = −𝜌(𝑔 − 𝑔) ∂
∂𝜌

∧ ∂

∂𝜃
= −2𝑖𝜌

√
𝑀 −𝑁2

∂

∂𝜌
∧ ∂

∂𝜃
,

vanishes to first order along Σ. Hence, it follows from Theorem 2.1 that there exist
𝜆 ∈ ℝ++ 𝑖ℝ and a diffeomorphism Φ defined in a tubular neighborhood of Σ onto
a cylinder (−𝛿, 𝛿) × 𝕊1 such that Φ∗𝑋 = 𝑚1𝐿, where 𝐿 is the vector defined in
Theorem 2.2. We have then from (2.8) that

Φ∗ℙ = ∣𝑚1∣2Re
[
𝐿𝐿+

𝑚1𝐴+𝑚1𝐿𝑚1

∣𝑚1∣2 𝐿

]
This completes the proof. □
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Remark 2.4. It follows from [3] that the invariant 𝜆 appearing in 𝐿 is given by

1

𝜆
=

1

2𝜋

∫ 2𝜋

0

(√
𝑀(0, 𝜃)−𝑁(0, 𝜃)2 − 𝑖𝑁(0, 𝜃)

)
𝑑𝜃.

3. Normalization near an isolated singularity

In this section, we show that a normalization can be achieved for a class of second-
order operators with isolated singularities.

Let 𝔻 be the second-order operator given in a neighborhood of 0 ∈ ℝ2 by

𝔻𝑢 = 𝑎11𝑢𝑥𝑥 + 2𝑎12𝑢𝑥𝑦 + 𝑎22𝑢𝑦𝑦 + 𝑎1𝑢𝑥 + 𝑎2𝑢𝑦 (3.1)

where the coefficients 𝑎11, . . . , 𝑎2 are ℝ-valued, of class 𝐶∞, and vanishing at 0.
We assume that 𝑎11 is nonnegative, and

𝐶1 ≤ 𝑎11(𝑥, 𝑦)𝑎22(𝑥, 𝑦) − 𝑎12(𝑥, 𝑦)2
(𝑥2 + 𝑦2)2

≤ 𝐶2 (3.2)

for some positive constants 𝐶1 < 𝐶2. It follows in particular that 𝑎11 and 𝑎22
vanish to second order at 0. To the operator 𝔻, we associate the functions 𝐴 and
𝐵 defined for (𝑥, 𝑦) ∕= 0 by

𝐴(𝑥, 𝑦) =
(𝑥2 + 𝑦2)

√
𝑎11𝑎22 − 𝑎212

𝑎11𝑦2 − 2𝑎12𝑥𝑦 + 𝑎22𝑥2

𝐵(𝑥, 𝑦) =
(𝑎22 − 𝑎11)𝑥𝑦 + 𝑎12(𝑥2 − 𝑦2)
𝑎11𝑦2 − 2𝑎12𝑥𝑦 + 𝑎22𝑥2

(3.3)

Note that it follows from (3.2) that these functions are bounded and 𝐴 is positive.
Let

𝜇 =
1

2𝜋
lim

𝜌→0+

∫
𝐶𝜌

𝐴(𝑥, 𝑦) − 𝑖𝐵(𝑥, 𝑦)
𝑥2 + 𝑦2

(𝑥𝑑𝑦 − 𝑦𝑑𝑥) , (3.4)

where 𝐶𝜌 denotes the circle with radius 𝜌 and center 0. This number is introduced
in [6]. We will prove that 𝜇 ∈ ℝ+ + 𝑖ℝ is well defined and it is an invariant for
the operator 𝔻. In what follows, we will be using polar coordinates 𝑥 = 𝜌 cos 𝜃,
𝑦 = 𝜌 sin 𝜃 and we will denote this change of coordinates by Ψ. Thus,

Ψ : ℝ2∖0 −→ ℝ+ × 𝕊1 , Ψ(𝑥, 𝑦) = (𝜌, 𝜃) .

The normalization of the operator 𝔻 is given by the following theorem.

Theorem 3.1. Let 𝔻 be the second-order operator given by (3.1) whose coefficients
vanish at 0 and satisfy condition (3.2). Then there exist a neighborhood 𝑈 of the
circle {0} × 𝕊1 in [0, ∞) × 𝕊1, a positive number 𝑅, a diffeomorphism

Φ : 𝑈 −→ [0, 𝑅)× 𝕊1

sending {0} × 𝕊1 onto itself, such that

(Φ ∘ Ψ)∗𝔻 = 𝑚(𝑟, 𝑡)
[
𝐿𝐿+Re(𝛼(𝑟, 𝑡)𝐿)

]
(3.5)
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where 𝑚,𝛼 are differentiable functions with 𝑚(𝑟, 𝑡) ∕= 0, 𝛼 is ℂ-valued and where

𝐿 = 𝜆
∂

∂𝑡
− 𝑖𝑟 ∂

∂𝑟
, 𝜆 =

1

𝜇

and 𝜇 is given by (3.4). Moreover, if the invariant 𝜇 /∈ ℚ, then for every 𝑘 ∈ ℤ+,
the diffeomorphism Φ, and the functions 𝑚, and 𝛼 can be chosen to be of class 𝐶𝑘.

Proof. We start by rewriting 𝔻 in polar coordinates:

𝔻𝑢 = 𝑃𝑢𝜃𝜃 + 2𝑁𝑢𝜌𝜃 +𝑀𝑢𝜌𝜌 +𝑄𝑢𝜌 + 𝑇𝑢𝜃 (3.6)

where

𝑃 =
1

𝜌2
[
𝑎11 sin

2 𝜃 − 2𝑎12 sin 𝜃 cos 𝜃 + 𝑎22 cos
2 𝜃
]

𝑁 =
1

𝜌

[−𝑎11 sin 𝜃 cos 𝜃 + 𝑎12(cos2 𝜃 − sin2 𝜃) + 𝑎22 cos 𝜃 sin 𝜃
]

𝑀 = 𝑎11 cos
2 𝜃 + 2𝑎12 sin 𝜃 cos 𝜃 + 𝑎22 sin

2 𝜃

𝑄 =
1

𝜌

[
𝑎11 sin

2 𝜃 − 2𝑎12 sin 𝜃 cos 𝜃 + 𝑎22 cos
2 𝜃
]
+ 𝑎1 cos 𝜃 + 𝑎2 sin 𝜃

𝑇 =
1

𝜌2
[
𝑎11 sin 𝜃 cos 𝜃 + 𝑎12(sin

2 𝜃 − cos2 𝜃) − 𝑎22 sin 𝜃 cos 𝜃
]

− 1

𝜌
(𝑎1 sin 𝜃 + 𝑎2 cos 𝜃)

Condition (3.2) implies that there is a constant 𝐶0 > such that

𝑀(𝜌, 𝜃) ≥ 𝐶0𝜌2 and 𝑃 (𝜌, 𝜃) ≥ 𝐶0 ∀(𝜌, 𝜃).
We define the following 𝐶∞ functions (of (𝜌, 𝜃))

𝑁1 =
𝑁

𝜌𝑃
, 𝑀1 =

𝑀

𝜌2𝑃
, 𝑄1 =

𝑄

𝜌𝑃
, 𝑇1 =

𝑇

𝑃
.

In terms of these functions, (3.2) takes the form

𝑀1(𝜌, 𝜃) −𝑁2
1 (𝜌, 𝜃) ≥ 𝐶2, ∀(𝜌, 𝜃) ∈ [0, 𝑅1] × 𝕊1 , (3.7)

and (3.6) becomes

𝔻𝑢

𝑃
= 𝑢𝜃𝜃 + 2𝜌𝑁1𝑢𝜌𝜃 + 𝜌

2𝑀1𝑢𝜌𝜌 + 𝜌𝑄1𝑢𝜌 + 𝑇1𝑢𝜃 . (3.8)

This expression is similar to that of ℙ given in (2.6) and the proof continues as that
of Theorem 2.3. It should be noted (see Remark 2.4) that the associated invariant
𝜆 is given by 𝜆 = 1/𝜇 where

𝜇 =
1

2𝜋

∫ 2𝜋

0

(√
𝑀1(0, 𝜃) −𝑁2

1 (0, 𝜃) − 𝑖𝑁1(0, 𝜃)

)
𝑑𝜃 .

Note the 𝜇 = 𝜇 with 𝜇 given in (3.4). This can be seen by rewriting the integral
appearing in (3.4) in polar coordinates. □



Second-order Planar Elliptic Equations with Degeneracies 233

4. The Laplace equation with a singular point

The singular second-order equation

Δ𝑓 +
𝑝(𝑥, 𝑦)

𝑟
𝑓𝑥 +

𝑞(𝑥, 𝑦)

𝑟
𝑓𝑦 = 𝐹 (𝑥, 𝑦) , (4.1)

is studied in [5]. Here Δ =
∂2

∂𝑥2
+
∂2

∂𝑦2
is the Laplacian in ℝ2, 𝑟 =

√
𝑥2 + 𝑦2, 𝑝, 𝑞

are Hölder continuous functions. The behavior of the solutions near the singular
point 0 are well understood. Note that equation (4.1) can be rewritten as

∂2𝑓

∂𝑧∂𝑧
− 2Re

(
𝜇(𝑧)

𝑟

∂𝑓

∂𝑧

)
=
𝐹 (𝑧)

4
, (4.2)

where we have set 𝑧 = 𝑥+ 𝑖𝑦 = 𝑟e𝑖𝜃 ,

𝜇(𝑧) =
𝑝(𝑧) + 𝑖𝑞(𝑧)

4
, and

∂

∂𝑧
=

1

2

(
∂

∂𝑥
− 𝑖 ∂
∂𝑦

)
In [5], equation (4.1) or equivalently (4.2) is studied when the coefficients 𝑝 and
𝑞 are Hölder continuous in a neighborhood of 0. In fact the results of [5] can be
generalized to the case when 𝑝 and 𝑞 (or equivalently 𝜇) satisfy weaker conditions.
In particular, they can be generalized to the case when the coefficients are bounded
in a neighborhood of 0 and are given in polar coordinates as

𝑝(𝑟, 𝜃) = 𝑝0(𝜃) + 𝑟
𝜈𝑝1(𝑟, 𝜃) 𝑞(𝑟, 𝜃) = 𝑞0(𝜃) + 𝑟

𝜈𝑞1(𝑟, 𝜃) ,

where 𝜈 > 0, 𝑝1(𝑟, 𝜃) and 𝑞1(𝑟, 𝜃) are continuous functions, 𝑝0(𝜃) and 𝑞0(𝜃) are
continuous, 2𝜋-periodic, and satisfy∫ 2𝜋

0

𝜇(0, 𝜃)e−𝑖𝜃 𝑑𝜃 =

∫ 2𝜋

0

(𝑝0(𝜃) + 𝑖𝑞0(𝜃))e
−𝑖𝜃 𝑑𝜃 = 0 . (4.3)

This generalization can be achieved as follows. In [5] equation (4.1) is studied by
reducing it into a generalized CR equation with a singular point considered in [4].
This reduction relies on the function 𝐴0(𝜃) defined in Lemma 3.1 of [5]. For more
general coefficients satisfying (4.3), we can replace 𝐴0 by the function

𝐴0(𝜃) = exp

(
2

∫ 𝜃

0

(𝑞0(𝑠)− 𝑖𝑝0(𝑠))e−𝑖𝑠 𝑑𝑠

)
.

With this adjustment of the function 𝐴0, the results proved when 𝑝, 𝑞 are contin-
uous at 0 carry over easily (almost verbatim) to the case when 𝑝, 𝑞 satisfy (4.3).
In particular, we have the following results for the homogeneous equation

∂2𝑓

∂𝑧∂𝑧
− 2Re

(
𝜇(𝑧)

𝑟

∂𝑓

∂𝑧

)
= 0 . (4.4)

Theorem 4.1. There exists a sequence of real numbers

⋅ ⋅ ⋅𝜎−
−1 ≤ 𝜎+−1 < 𝜎

−
0 ≤ 𝜎+0 < 𝜎−

1 ≤ 𝜎+1 < ⋅ ⋅ ⋅
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with
lim

𝑗→−∞
𝜎±
𝑗 = −∞ and lim

𝑗→∞
𝜎±
𝑗 = ∞

such that if 𝑓 is of finite order at 0 and solves equation (4.4) in a neighborhood of
0, then there exist 𝑗0 ∈ ℤ and 𝜏 = 𝜎−

𝑗0
or 𝜏 = 𝜎+𝑗0 such that 𝑓 has order 𝜏 at 0.

Thus
𝐾1(𝑥

2 + 𝑦2)𝜏/2 ≤ ∣𝑓(𝑥, 𝑦)∣ ≤ 𝐾2(𝑥
2 + 𝑦2)𝜏/2 ∀(𝑥, 𝑦) ∕= 0.

Furthermore, the index 𝑗0 is the winding number about 0 of the function 𝑓𝑧, where
2𝑓𝑧 = 𝑓𝑥 − 𝑖𝑓𝑦.

In the statement of the Theorem 4.1, by a function 𝑓 of finite order at 0, we
mean that there exists 𝑁 > 0 such (𝑥2 + 𝑦2)𝑁𝑓 is bounded near 0.

Remark 4.2. The sequence {𝜎±
𝑗 } represents the spectral values of an associated

2×2 system of first-order ordinary differential equations with periodic coefficients.
For a given spectral value, the index 𝑗 ∈ ℤ denotes the winding number of the
corresponding periodic solutions of the system. When the system has two indepen-
dent periodic solutions, then 𝜎−

𝑗 = 𝜎+𝑗 , otherwise (when it has only one periodic

solution), 𝜎−
𝑗 < 𝜎

+
𝑗 .

Theorem 4.3. If 𝑓 is a continuous solution of (4.4), then 𝑓 is Hölder continuous.

Theorem 4.4. If −1 /∈ {𝜎±
𝑗 }𝑗∈ℤ, then any bounded solution of (4.4) is Hölder

continuous.

We will say that a function 𝑔 defined in a neighborhood of 0 ∈ ℝ2 is flat at
0 if

lim
(𝑥,𝑦)→0

𝑔(𝑥, 𝑦) − 𝑔(0)
(𝑥2 + 𝑦2)𝑚

= 0, ∀𝑚 ≥ 0.

We have the following uniqueness result.

Theorem 4.5. If 𝑓 is a solution of (4.4) and if 𝑓 is flat at 0, then 𝑓 is constant.

When the coefficients are 𝐶∞, equation (4.4) has nontrivial regular solution.
More precisely,

Theorem 4.6. If the coefficients 𝑝, 𝑞 of equation (4.4) are of class 𝐶∞, then for
any 𝑘 ∈ ℤ+, equation (4.4) has nontrivial solutions that are of class 𝐶𝑘 in a
neighborhood of 0.

The maximum principle also holds for equation (4.4)

Theorem 4.7. Let 𝑓 be a nonconstant Lipschitz solution of (4.4), then 𝑓(0) is not
an extreme value of 𝑓 . Consequently, if 𝑓 is a Lipschitz solution of (4.4) on the
closure 𝑈 of an open set 𝑈 containing 0 in its interior, then the maximum and
minimum values of 𝑓 occur on the boundary ∂𝑈 .

In fact, the Lipschitz condition can be weakened when the spectral value 𝜎+−1

satisfies 𝜎+−1 ≤ −1. More precisely,

Theorem 4.8. Suppose that 𝜎+−1 ≤ −1. Let 𝑓 be a nonconstant continuous solution
of (4.4), then 𝑓(0) is not an extreme value of 𝑓 .
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5. Properties of the equation ℙ𝒖 = 0 and 𝔻𝒖 = 0

Many of the properties of the solutions of equation (4.1) involving Δ as the princi-
pal part extend to the solutions of the more general equations ℙ𝑢 = 0 and 𝔻𝑢 = 0.
Before we proceed further, we can assume, by using Theorem 2.1, that

ℙ = 𝐿𝐿+Re
(
𝛽(𝑟, 𝜃)𝐿

)
(5.1)

where

𝐿 = 𝜆
∂

∂𝑡
− 𝑖𝑟 ∂

∂𝑟
.

We assume throughout that the invariant 𝜆 is real, so 𝜆 ∈ ℝ+, and that 𝛽(𝑟, 𝑡) =
𝛽0(𝑡) + 𝑟

𝑎𝛽1(𝑟, 𝑡) with 𝛽1 of class 𝐶𝑘 ( 𝑘 ≥ 1) and 𝛽0 satisfying the condition∫ 2𝜋

0

𝛽0(𝑡)𝑑𝑡 = 0 (5.2)

We have the following result

Theorem 5.1. There exists a sequence of real numbers

⋅ ⋅ ⋅ < 𝜎−
−1 ≤ 𝜎+−1 < 𝜎

−
0 ≤ 𝜎+0 < 𝜎−

1 ≤ 𝜎+1 < ⋅ ⋅ ⋅
with

lim
𝑗→−∞

𝜎±
𝑗 = −∞ , and lim

𝑗→∞
𝜎±
𝑗 = ∞

such that whenever 𝑢(𝑟, 𝑡) solves the equation ℙ𝑢 = 0 in a cylinder (0, 𝛿)× 𝕊1 (or
in the cylinder (−𝛿, 0) × 𝕊1) and ∣𝑟∣𝑠𝑢(𝑟, 𝑡) is bounded function for some 𝑠 ∈ ℝ,
then there exists a 𝑗0 ∈ ℤ and 𝜏 = 𝜎+𝑗0 or 𝜏 = 𝜎

−
𝑗0
such that

𝐾1∣𝑟∣𝜆𝜏 ≤ ∣𝑢(𝑟, 𝑡)∣ ≤ 𝐾2∣𝑟∣𝜆𝜏 , ∀(𝑟, 𝑡), 0 < ∣𝑟∣ < 𝛿 (5.3)

Proof. For 𝑟 > 0, let 𝑍(𝑟, 𝑡) = 𝑟𝜆e𝑖𝑡. Then 𝑍 is a first integral of the vector field
𝐿 in the cylinder 𝑟 > 0. That is, 𝐿𝑍 = 0 and 𝑑𝑍 ∕= 0. Furthermore,

𝑍 : ℝ+ × 𝕊1 −→ ℂ∗

is a diffeomorphism. The pushforward of 𝐿 via the map 𝑍 is the singular CR
operator:

𝑍∗𝐿 = −2𝑖𝜆𝑍
∂

∂𝑍
.

Hence,

𝑍∗ℙ = 4𝜆∣𝑍∣2
[
∂2

∂𝑍∂𝑍
+Re

(
𝜇(∣𝑍∣, 𝑡)

∣𝑍∣
∂

∂𝑍

)]
(5.4)

where

𝜇(∣𝑍∣, 𝑡) = 𝑖

2𝜆
𝛽(∣𝑍∣1/𝜆, 𝑡)e𝑖𝑡 (5.5)

Note that since 𝛽 satisfies (5.2), then 𝜇 satisfies condition (4.3). Let {𝜎±
𝑗 }𝑗∈ℤ be

the spectrum of the equation

∂2𝑣

∂𝑍∂𝑍
+Re

(
𝜇(∣𝑍∣, 𝑡)

∣𝑍∣
∂𝑣

∂𝑍

)
= 0 (5.6)



236 A. Meziani

Suppose that the function 𝑢(𝑟, 𝑡) solves the equation ℙ𝑢 = 0 in a cylinder
0 < 𝑟 < 𝛿 and that 𝑟𝑠𝑢 is bounded for some 𝑠 ∈ ℝ. The function 𝑣(𝑍) defined in
polar coordinates 𝑍 = 𝜌e𝑖𝑡 by

𝑣(𝜌, 𝑡) = 𝑢(𝜌1/𝜆, 𝑡) (5.7)

is of finite order at 0 ∈ ℂ and satisfies the equation (5.6). It follows from Theorem
4.1 that there exists 𝑗0 ∈ ℤ and 𝜏 = 𝜎±

𝑗0
such that

𝐾1∣𝑍∣𝜏 ≤ ∣𝑣(𝑍)∣ ≤ 𝐾2∣𝑍∣𝜏
for some positive constants 𝐾1 < 𝐾2. This means that the function 𝑢(𝑟, 𝑡) =
𝑣(𝑟𝜆, 𝑡) satisfies (5.3).

The case 𝑟 < 0 can be handled in a similar way by considering the first
integral of 𝐿 given by 𝑍 = (−𝑟)𝜆e−𝑖𝑡. □

The reduction of the equation ℙ𝑢 = 0 into the singular Laplace equation (4.6)
allows to extend the rest of the theorems in Section 4. More precisely, we have

Theorem 5.2. If 𝑢 is a continuous solution of ℙ𝑢 = 0 in a cylinder (−𝛿, 𝛿) × 𝕊1,
then 𝑢 is Hölder continuous and 𝑢 is constant along the circle {0} × 𝕊1.

The constancy of 𝑢 along the characteristic circle follows from the continuity
at 0 of the function 𝑣 defined in the proof of Theorem 5.1.

We will say that a function 𝑔(𝑟, 𝑡) defined in a cylinder (−𝛿, 𝛿) × 𝕊1 is flat
on the circle 𝑟 = 0 if

lim
𝑟→0

𝑔(𝑟, 𝑡) − 𝑔(0, 𝑡)
𝑟𝑚

= 0, ∀𝑚 ≥ 0.

We have the following uniqueness result.

Theorem 5.3. If 𝑢 is a solution of ℙ𝑢 = 0 and if 𝑢 is flat on the circle 𝑟 = 0, then
𝑢 is constant.

When the coefficient 𝛽(𝑟, 𝑡) is 𝐶∞, equation ℙ𝑢 = 0 has nontrivial regular
solution. More precisely,

Theorem 5.4. If the coefficient 𝛽 ∈ 𝐶∞((−𝛿, 𝛿) × 𝕊1), then for any 𝑘 ∈ ℤ+,
equation ℙ𝑢 = 0 has nontrivial solutions that are of class 𝐶𝑘 in a neighborhood of
the circle 𝑟 = 0.

For the maximum principle, we need to assume Höder continuity along 𝑟 = 0
with exponent 𝛼 ≥ 1/𝜆. This guarantees that the function 𝑣 given in (5.7) is
Lipschitz at 0 ∈ ℝ2. We have then the following theorem.

Theorem 5.5. Let 𝑢 be a nonconstant solution of ℙ𝑢 = 0 in a an open set 𝑈
containing the circle 𝑟 = 0. Assume that 𝑢 is Hölder continuous on 𝑟 = 0 with
an exponent ≥ 1/𝜆. Then 𝑢 cannot achieve an extreme values at any point on the
circle 𝑟 = 0. Thus, if in addition 𝑢 is continuous on the bounded domain 𝑈 , then
the maximum and minimum values of 𝑢 occur on the boundary ∂𝑈 .
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For the equation 𝔻𝑢 = 0, where 𝔻 is the operator given in Section 3 whose
coefficients satisfy condition (3.2), Theorem 3.1 allows us to consider the equation
𝔻𝑢 = 0 as an equation ℙ𝑢 = 0, in an appropriate system of coordinates outside
the singular point. The results proved here for ℙ have therefore their counter-
part for the operator 𝔻. In particular, the order of a solution 𝑢 is well defined
through the associated spectral values, and the maximum principle also holds for
the operator 𝔻.
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Finite Sections of Band-dominated Operators
on Discrete Groups

Vladimir S. Rabinovich and Steffen Roch

Abstract. Let Γ be a finitely generated exact discrete group. We consider
operators on 𝑙2(Γ) which are composed by operators of multiplication by a
function in 𝑙∞(Γ) and by the operators of left-shift by elements of Γ. These
operators generate a 𝐶∗-subalgebra of 𝐿(𝑙2(Γ)) the elements of which we call
band-dominated operators on Γ. We study the stability of the finite sections
method for band-dominated operators with respect to a given generating sys-
tem of Γ. Our approach is based on the equivalence of the stability of a
sequence and the Fredholmness of an associated operator, and on Roe’s crite-
rion for the Fredholmness of a band-dominated operator on an exact discrete
group, which we formulate in terms of limit operators. Special emphasis is
paid to the quasicommutator ideal of the algebra generated by the finite sec-
tions sequences and to the stability of sequences in that algebra. For both
problems, the sequence of the discrete boundaries plays an essential role.
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Keywords. Discrete groups, group 𝐶∗-algebras, band-dominated operators,
limit operators, finite sections method, stability.

1. Introduction

Let Γ be a countable (not necessarily commutative) discrete group. We write the
group operation as multiplication and let 𝑒 stand for the identity element of Γ.
For each non-empty subset 𝑋 of Γ, let 𝑙2(𝑋) stand for the Hilbert space of all
functions 𝑓 : 𝑋 → ℂ with

∥𝑓∥2 :=
∑
𝑥∈𝑋

∣𝑓(𝑥)∣2 <∞.

For 𝑋 = ∅, we define 𝑙2(𝑋) as the space {0} consisting of the zero element only.
We consider 𝑙2(𝑋) as a closed subspace of 𝑙2(Γ) in a natural way. The orthogonal

This work was supported by CONACYT Project 81615 and DFG Grant Ro 1100/8-1.
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projection from 𝑙2(Γ) to 𝑙2(𝑋) will be denoted by 𝑃𝑋 . Thus, 𝑃Γ and 𝑃∅ are the
identity and the zero operator, respectively. For 𝑠 ∈ Γ, let 𝛿𝑠 be the function on Γ
which is 1 at 𝑠 and 0 at all other points. The family (𝛿𝑠)𝑠∈Γ forms an orthonormal
basis of 𝑙2(Γ), to which we refer as the standard basis.

The left regular representation 𝐿 : Γ → 𝐿(𝑙2(Γ)) of Γ associates with every
group element 𝑟 a unitary operator 𝐿𝑟 such that 𝐿𝑟𝛿𝑠 = 𝛿𝑟𝑠 for 𝑠 ∈ Γ. Since
𝛿𝑟𝑠(𝑡) = 𝛿𝑠(𝑟

−1𝑡), one has (𝐿𝑟𝑢)(𝑡) = 𝑢(𝑟
−1𝑡) for every 𝑢 ∈ 𝑙2(Γ). Hence, 𝑟 +→ 𝐿𝑟

is a group isomorphism. Further, we associate with each function 𝑎 ∈ 𝑙∞(Γ) the
operator 𝑎𝐼 of multiplication by 𝑎, i.e., (𝑎𝑢)(𝑡) = 𝑎(𝑡)𝑢(𝑡) for 𝑢 ∈ 𝑙2(Γ). The small-
est closed subalgebra of 𝐿(𝑙2(Γ)) which contains all operators 𝐿𝑟 with 𝑟 ∈ Γ and
𝑎𝐼 with 𝑎 ∈ 𝑙∞(Γ) is called the algebra of the band-dominated operators on Γ. We
denote it by BDO(Γ). Besides BDO(Γ) we consider the smallest closed subalgebra
Sh(Γ) of 𝐿(𝑙2(Γ)) which contains all “shift” operators 𝐿𝑟 with 𝑟 ∈ Γ. Clearly, the
algebras BDO(Γ) and Sh(Γ) are symmetric and, hence, 𝐶∗-subalgebras of 𝐿(𝑙2(Γ)).

Let 𝒴 = (𝑌𝑛)
∞
𝑛=1 be an increasing sequence of finite subsets of Γ with

∪𝑛≥1𝑌𝑛 = Γ. A sequence (𝐴𝑛)
∞
𝑛=1 of operators 𝐴𝑛 : im𝑃𝑌𝑛 → im𝑃𝑌𝑛 is called

stable if there is an 𝑛0 ≥ 1 such that the operators 𝐴𝑛 are invertible for 𝑛 ≥ 𝑛0 and
the norms of their inverses 𝐴−1

𝑛 are bounded uniformly with respect to 𝑛 ≥ 𝑛0.
Note that stability is crucial for many questions in asymptotic numerical analysis.
It dominates topics like the approximate solution of operator equations and the
approximate spectral and pseudo-spectral theory. For a detailed overview see [5].

Let 𝐴 ∈ 𝐿(𝑙2(Γ)). The operators 𝑃𝑌𝑛𝐴𝑃𝑌𝑛 : im𝑃𝑌𝑛 → im𝑃𝑌𝑛 are called
the finite sections of 𝐴 with respect to 𝒴. In this paper, we are interested in the
stability of the finite sections sequence (𝑃𝑌𝑛𝐴𝑃𝑌𝑛) when 𝐴 ∈ BDO(Γ). The finite
sections method for band-dominated operators on the group ℤ of the integers is
quite well understood, see [10, 11, 12, 13]. Finite sections for operators in Sh(Γ)
with an arbitrary exact countable discrete group Γ were considered in [15].

Our approach to study the stability of the finite sections method for operators
in BDO(Γ) is close to that in [13, 15]. We make use of the fact that a sequence
(𝐴𝑛) is stable if and only if an associated operator has the Fredholm property. In
case the 𝐴𝑛 are the finite sections of a band-dominated operator, the associated
operator is a band-dominated operator again. So the desired stability result will
finally follow from Roe’s criterion for the Fredholm property of band-dominated
operators in [17]. We thus start with recalling Roe’s result in Section 2.

In Section 3, we provide an algebraic frame to study the stability of opera-
tor sequences. We introduce the 𝐶∗-algebra 𝒮𝒴(BDO(Γ)) generated by all finite
sections sequences (𝑃𝑌𝑛𝐴𝑃𝑌𝑛) with 𝐴 ∈ BDO(Γ) and show that this algebra splits
into the direct sum of BDO(Γ) and of an ideal which can be characterized as the
quasicommutator ideal of the algebra. A main result is that the sequence (𝑃∂𝑌𝑛)
of the discrete boundaries always belongs to the algebra 𝒮𝒴(BDO(Γ)), and that
this sequence already generates the quasicommutator ideal. This surprising fact
has been already observed in other settings, for example for the algebras 𝒮(T(𝐶))
of the finite sections method for the Toeplitz operators (a classical result, closely
related to the present paper) and 𝒮𝒴(Sh(Γ)) (see [6] for the group Γ = ℤ𝑛 and [15]
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for the general case), but also for the finite sections algebra 𝒮(O𝑁 ) related with a
concrete representation O𝑁 of the Cuntz algebra (see [14]).

The final Section 4 is devoted to the prove of the stability theorem. We
employ Roe’s criterion using the limit operators language from [11]. The main
task is to compute all (or at least a sufficient number of) limit operators of the
band-dominated operator associated with a finite sections sequence.

2. The algebra of the band-dominated operators

We start with some alternate characterizations of band-dominated operators and
the algebra generated by them. Consider functions 𝑘 ∈ 𝑙∞(Γ×Γ) with the property
that there is a finite subset Γ0 of Γ such that 𝑘(𝑡, 𝑠) = 0 whenever 𝑡𝑠−1 ∕∈ Γ0. Then

(𝐴𝑢)(𝑡) :=
∑
𝑠∈Γ
𝑘(𝑡, 𝑠)𝑢(𝑠), 𝑡 ∈ Γ, (2.1)

defines a linear operator 𝐴 on the linear space of all functions 𝑢 : Γ → ℂ, since
the occurring series is finite for every 𝑡 ∈ 𝐺. We call operators of this form band
operators and the set Γ0 a band-width of 𝐴.

Proposition 2.1. An operator in 𝐿(𝑙2(Γ)) is a band operator if and only if it can
be written as a finite sum

∑
𝑏𝑖𝐿𝑡𝑖 where 𝑏𝑖 ∈ 𝑙∞(Γ) and 𝑡𝑖 ∈ Γ.

Proof. Let 𝐴 be an operator of the form (2.1) and let Γ0 := {𝑡1, 𝑡2, . . . , 𝑡𝑟} ⊆ Γ
be a finite set such that 𝑘(𝑡, 𝑠) = 0 if 𝑡𝑠−1 ∕∈ Γ0. Then,

(𝐴𝑢)(𝑡) =

𝑟∑
𝑖=1

𝑘(𝑡, 𝑡−1
𝑖 𝑡)𝑢(𝑡

−1
𝑖 𝑡) for 𝑡 ∈ Γ.

Set 𝑏𝑖(𝑡) := 𝑘(𝑡, 𝑡
−1
𝑖 𝑡). The functions 𝑏𝑖 are in 𝑙∞(Γ), and

𝐴 =

𝑟∑
𝑖=1

𝑏𝑖𝐿𝑡𝑖 . (2.2)

Conversely, each operator 𝐿𝑡 with 𝑡 ∈ Γ is a band operator with band width
{𝑡}, and each operator 𝑏𝐼 with 𝑏 ∈ 𝑙∞(Γ) is a band operator with band width
{𝑒}. Since the band operators form an algebra, each finite sum

∑
𝑏𝑖𝐿𝑡𝑖 is a band

operator. □

It is easy to see that the representation of a band operator on Γ in the
form (2.2) with 𝑏𝑖 ∕= 0 is unique. The functions 𝑏𝑖 are called the diagonals of the
operator 𝐴. In particular, operators in Sh(Γ) can be considered as band-dominated
operators with constant coefficients.

It is easy to see that the band operators form a symmetric algebra of bounded
operators on 𝑙2(Γ). The norm closure of that algebra is just the algebra BDO(Γ),
and this is why we call the elements of that algebra band-dominated operators.

The algebras BDO(Γ) and Sh(Γ) occur at many places and under different
names in the literature. The algebra Sh(Γ) is ∗-isomorphic to the reduced group
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𝐶∗-algebra 𝐶∗
𝑟 (Γ) in a natural way (see Section 2.5 in [3]). It can thus be considered

as a concrete faithful representation of 𝐶∗
𝑟 (Γ). Note also that the reduced group

𝐶∗-algebra coincides with the universal group 𝐶∗-algebra 𝐶∗(Γ) if the group Γ is
amenable. For this and further characterizations of amenable groups, see Theorem
2.6.8 in [3]. The algebra BDO(Γ) occurs in coarse geometry and is known there as
the uniform Roe algebra or the reduced translation algebra ([16]). It can be identified
with the reduced crossed product of the 𝐶∗-algebra 𝑙∞(Γ) with the group Γ when
the group action 𝛼 : Γ → Aut 𝑙∞(Γ) is specified as

(𝛼𝑔𝑓)(𝑡) := 𝑓(𝑔
−1𝑡)

for 𝑓 ∈ 𝑙∞(Γ) and 𝑔, 𝑡 ∈ Γ. Note that amenability of Γ is not needed for the
following result. But if Γ is amenable, then the reduced crossed product 𝑙∞(Γ)×𝛼𝑟Γ
coincides with the full crossed product 𝑙∞(Γ)×𝛼 Γ (see [7], Theorem 7.7.7 and [4],
Corollary VII.2.2).

Theorem 2.2. The reduced crossed product 𝑙∞(Γ)×𝛼𝑟Γ of the 𝐶
∗-dynamical system

(𝑙∞(Γ), Γ, 𝛼) is ∗-isomorphic to BDO(Γ).

Proof. Let 𝑙2(Γ, 𝑙2(Γ)) stand for the Hilbert space of all functions 𝑥 : Γ → 𝑙2(Γ)
with

∑
𝑠∈Γ ∥𝑥(𝑠)∥2 <∞. For 𝑎 ∈ 𝑙∞(Γ), let 𝜋(𝑎) denote the operator 𝑎𝐼 of multi-

plication by 𝑎 on 𝑙2(Γ) and define an operator 𝜋̃(𝑎) on 𝑙2(Γ, 𝑙2(Γ)) by

(𝜋̃(𝑎)𝑥)(𝑠) := 𝜋(𝛼−1
𝑠 (𝑎))(𝑥(𝑠)).

For 𝑔 ∈ Γ, let 𝐿̃𝑔 be the operator on 𝑙2(Γ, 𝑙2(Γ)) defined by

(𝐿̃𝑔𝑥)(𝑠) := 𝑥(𝑡
−1𝑠).

The pair (𝜋̃, 𝐿̃) constitutes a covariant representation of the 𝐶∗-dynamical system
(𝑙∞(Γ), Γ, 𝛼) on 𝑙2(Γ, 𝑙2(Γ)). By the definition of the reduced crossed product (see
[2, 4, 7], for instance), 𝑙∞(Γ)×𝛼𝑟 Γ is the smallest 𝐶∗-subalgebra of 𝐿(𝑙2(Γ, 𝑙2(Γ)))

which contains all operators 𝜋̃(𝑎) and 𝐿̃𝑔 with 𝑎 ∈ 𝑙∞(Γ) and 𝑔 ∈ Γ. One can show
([7], Theorem 7.7.5) that each faithful representation (𝜋′, 𝐻) of 𝑙∞(Γ) in place of
the representation (𝜋, 𝑙2(Γ)) leads to the same algebra.

We identify 𝑙2(Γ, 𝑙2(Γ)) with 𝑙2(Γ × Γ) via the mappings

𝐽 : 𝑙2(Γ, 𝑙2(Γ)) → 𝑙2(Γ× Γ), (𝐽𝑥)(𝑠, 𝑛) := (𝑥(𝑠))(𝑛),

𝐽−1 : 𝑙2(Γ× Γ) → 𝑙2(Γ, 𝑙2(Γ)), ((𝐽−1𝑦)(𝑠))(𝑛) := 𝑦(𝑠, 𝑛)

and determine the corresponding operators

𝜋̂(𝑎) := 𝐽𝜋̃(𝑎)𝐽−1 and 𝐿̂𝑔 := 𝐽𝐿̃𝑔𝐽
−1.

A straightforward calculation gives one has

(𝜋̂(𝑎)𝑥)(𝑠, 𝑛) = 𝑎(𝑠𝑛)𝑥(𝑠, 𝑛) and (𝐿̂𝑔𝑥)(𝑠, 𝑛) = 𝑥(𝑔
−1𝑠, 𝑛). (2.3)

Let 𝒞 refer to the smallest 𝐶∗-subalgebra of 𝐿(𝑙2(Γ× Γ)) which contains all oper-

ators 𝜋̂(𝑎) and 𝐿̂𝑔 with 𝑎 ∈ 𝑙∞(Γ) and 𝑔 ∈ Γ, given by (2.3). For 𝑛 ∈ Γ, let

𝐻𝑛 := {𝑥 ∈ 𝑙2(Γ × Γ) : 𝑥(𝑠, 𝑚) = 0 whenever 𝑚 ∕= 𝑛}.
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We identify 𝑙2(Γ × Γ) with the orthogonal sum ⊕𝑛∈Γ𝐻𝑛 such that 𝑥 ∈ 𝑙2(Γ × Γ)
is identified with ⊕ℎ𝑛 ∈ ⊕𝐻𝑛 where ℎ𝑛(𝑠) = 𝑥(𝑠, 𝑛). From (2.3) we conclude that
each space 𝐻𝑛 is invariant with respect to each operator in 𝒞 (i.e., 𝐴𝐻𝑛 ⊆ 𝐻𝑛 for
𝐴 ∈ 𝒞). Hence, each operator 𝐴 ∈ 𝒞 corresponds to a diagonal matrix operator
diag (. . . , 𝐴𝑛, 𝐴𝑛+1, . . .) with respect to the decomposition of 𝑙2(Γ × Γ) into the
orthogonal sum of its subspaces 𝐻𝑛. Thus, 𝐴𝑛 is the restriction of 𝐴 onto 𝐻𝑛.

Let 𝒞𝑛 be the 𝐶∗-algebra of all restrictions of operators in 𝒞 onto 𝐻𝑛. It is
clear that each of the spaces 𝐻𝑛 is isometric to 𝑙2(Γ), with the isometry given by

𝐽𝑛 : 𝐻𝑛 → 𝑙2(Γ), (𝐽𝑛𝑥)(𝑠) := 𝑥(𝑠, 𝑛),

𝐽−1
𝑛 : 𝑙2(Γ) → 𝐻𝑛, (𝐽−1

𝑛 𝑥)(𝑠, 𝑛) := 𝑥(𝑠).

Then

(𝐽𝑛𝜋̂(𝑎)𝐽
−1
𝑛 𝑥)(𝑠) = (𝜋̂(𝑎)𝐽−1

𝑛 𝑥)(𝑠, 𝑛) = (𝑎(𝑠𝑛)(𝐽−1𝑥))(𝑠, 𝑛)

= 𝑎(𝑠𝑛)𝑥(𝑠) = (𝑅𝑛𝜋(𝑎)𝑅
−1
𝑛 𝑥)(𝑠)

where (𝑅𝑛𝑓)(𝑠) = 𝑓(𝑠𝑛) stands for the operator of the right-regular representation
of Γ. Similarly,

(𝐽𝑛𝐿̂𝑔𝐽
−1
𝑛 𝑥)(𝑠) = (𝐿̂𝑔𝐽

−1
𝑛 𝑥)(𝑠, 𝑛) = (𝐽−1𝑥)(𝑔−1𝑠, 𝑛)

= 𝑥(𝑔−1𝑠) = (𝐿𝑔𝑥)(𝑠).

Thus,

𝐽𝑛𝜋̂(𝑎)𝐽
−1
𝑛 = 𝑅𝑛𝜋(𝑎)𝑅

−1
𝑛 and 𝐽𝑛𝐿̂𝑔𝐽

−1
𝑛 = 𝐿𝑔 = 𝑅𝑛𝐿𝑔𝑅

−1
𝑛 .

Consequently, the mapping

BDO(Γ) → 𝒞, 𝐴 +→ diag (. . . , 𝐽−1
𝑛 𝑅𝑛𝐴𝑅

−1
𝑛 𝐽𝑛, . . .)

is a ∗-isomorphism. Since 𝒞 is evidently ∗-isomorphic to the reduced crossed prod-
uct 𝑙∞(Γ) ×𝛼𝑟 Γ, the assertion follows. □

Our next goal is to recall Roe’s criterion [17] for the Fredholm property of
band-dominated operators on 𝑙2(Γ). We are going to formulate this criterion in
the language of limit operators.

Let ℎ : ℕ → Γ be a sequence tending to infinity in the sense that for each
finite subset Γ0 of Γ, there is an 𝑛0 ∈ ℕ such that ℎ(𝑛) ∕∈ Γ0 if 𝑛 ≥ 𝑛0. Clearly,
if ℎ tends to infinity, then the inverse sequence ℎ−1 tends to infinity, too. We say
that an operator 𝐴ℎ ∈ 𝐿(𝑙2(Γ)) is a limit operator of 𝐴 ∈ 𝐿(𝑙2(Γ)) defined by the
sequence ℎ if

𝑅−1
ℎ(𝑚)𝐴𝑅ℎ(𝑚) → 𝐴ℎ and 𝑅−1

ℎ(𝑚)𝐴
∗𝑅ℎ(𝑚) → 𝐴∗

ℎ

strongly as𝑚→ ∞ (as before, the 𝑅𝑟 are given by the right-regular representation
of Γ on 𝑙2(Γ)). Clearly, every operator has at most one limit operator with respect
to a given sequence ℎ. Note that the generating function of the shifted operator
𝑅−1

𝑟 𝐴𝑅𝑟 is related with the generating function of 𝐴 by

𝑘𝑅−1
𝑟 𝐴𝑅𝑟

(𝑡, 𝑠) = 𝑘𝐴(𝑡𝑟
−1, 𝑠𝑟−1) (2.4)
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and that the generating functions of 𝑅−1
ℎ(𝑚)𝐴𝑅ℎ(𝑚) converge pointwise on Γ×Γ to

the generating function of the limit operator 𝐴ℎ (if the latter exists).
It is an important property of band-dominated operators that they always

possess limit operators. More general, the following result can be proved by a
standard Cantor diagonal argument (see [9, 10, 11]).

Proposition 2.3. Let 𝐴 be a band-dominated operator on 𝑙2(Γ). Then every sequence
ℎ : ℕ → Γ which tends to infinity possesses a subsequence 𝑔 such that the limit
operator 𝐴𝑔 of 𝐴 with respect to 𝑔 exists.

Let 𝐴 be a band-dominated operator and ℎ : ℕ → Γ a sequence tending
to infinity for which the limit operator 𝐴ℎ of 𝐴 exists. Let 𝐵 be another band-
dominated operator. By Proposition 2.3 we can choose a subsequence 𝑔 of ℎ such
that the limit operator 𝐵𝑔 exists. Then the limit operators of 𝐴, 𝐴 + 𝐵 and 𝐴𝐵
with respect to 𝑔 exist, and

𝐴𝑔 = 𝐴ℎ, (𝐴+𝐵)𝑔 = 𝐴𝑔 +𝐵𝑔, (𝐴𝐵)𝑔 = 𝐴𝑔𝐵𝑔.

Thus, the mapping 𝐴 +→ 𝐴ℎ acts, at least partially, as an algebra homomorphism.
The following theorem is due to Roe [17], see also [8]. Recall that a group Γ is

called exact, if its reduced translation algebra is exact as a 𝐶∗-algebra. The latter
algebra is defined as the reduced crossed product of 𝑙∞(Γ) by Γ and coincides
with the 𝐶∗-algebra of all band-dominated operators on 𝑙2(Γ) in our setting. The
class of exact groups is extremely rich. It includes all amenable groups (hence,
all solvable groups such as the discrete Heisenberg group and the commutative
groups) and all hyperbolic groups (in particular, all free groups with finitely many
generators) (see [16], Chapter 3).

Theorem 2.4 (Roe). Let Γ be a finitely generated discrete and exact group, and
let 𝐴 be a band-dominated operator on 𝑙2(Γ). Then the operator 𝐴 is Fredholm on
𝑙2(Γ) if and only if all limit operators of 𝐴 are invertible and if the norms of their
inverses are uniformly bounded.

Note that this result holds as well if the left regular representation is replaced
by the right regular one and if, thus, the operators 𝐿𝑠 and 𝑅𝑡 change their roles. In
fact, the results of [8, 17] are presented in this symmetric setting. In [8] we showed
moreover that the uniform boundedness condition in Theorem 2.4 is redundant for
band operators if the group Γ has sub-exponential growth and if not every element
of Γ is cyclic in the sense that 𝑤𝑛 = 𝑒 for some positive integer 𝑛. For details see
[8]. Note that the condition of sub-exponential growth is satisfied by the abelian
groups ℤ𝑁 , the discrete Heisenberg group and, more general, by nilpotent groups
(in fact, these groups have polynomial growth), whereas the growth of the free
group 𝔽𝑁 with 𝑁 > 1 is exponential.

Theorem 2.5. Let Γ be a finitely generated discrete and exact group with sub-
exponential growth which possesses at least one non-cyclic element, and let 𝐴 be
a band operator on 𝑙2(Γ). Then the operator 𝐴 is Fredholm on 𝑙2(Γ) if and only if
all limit operators of 𝐴 are invertible.
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3. The algebra of the finite sections method

Given an increasing sequence 𝒴 := (𝑌𝑛)𝑛≥1 of finite subsets of Γ such that
∪𝑛≥1𝑌𝑛 = Γ, let ℱ𝒴 denote the set of all bounded sequences A = (𝐴𝑛) of op-
erators 𝐴𝑛 : im𝑃𝑌𝑛 → im𝑃𝑌𝑛 . Equipped with the operations

(𝐴𝑛) + (𝐵𝑛) := (𝐴𝑛 +𝐵𝑛), (𝐴𝑛)(𝐵𝑛) := (𝐴𝑛𝐵𝑛), (𝐴𝑛)
∗ := (𝐴∗

𝑛)

and the norm
∥A∥ℱ𝒴 := ∥𝐴𝑛∥,

the set ℱ𝒴 becomes a 𝐶∗-algebra with identity I = (𝑌𝑛), and the set 𝒢𝒴 of all
sequences (𝐴𝑛) ∈ ℱ𝒴 with lim ∥𝐴𝑛∥ = 0 forms a closed ideal of ℱ𝒴 . The relevance
of the algebra ℱ𝒴 and its ideal 𝒢𝒴 in our context stems from the fact (following
by a simple Neumann series argument) that a sequence A ∈ ℱ𝒴 is stable if, and
only if, its coset A+ 𝒢𝒴 is invertible in the quotient algebra ℱ𝒴/𝒢𝒴 . Thus, every
stability problem is equivalent to an invertibility problem in a suitably chosen
𝐶∗-algebra.

Let further stand ℱ𝐶
𝒴 for the set of all sequences A = (𝐴𝑛) of opera-

tors 𝐴𝑛 : im𝑃𝑌𝑛 → im𝑃𝑌𝑛 with the property that the sequences (𝐴𝑛𝑃𝑌𝑛) and
(𝐴∗

𝑛𝑃𝑌𝑛) converge strongly. By the uniform boundedness principle, the quantity
sup ∥𝐴𝑛𝑃𝑌𝑛∥ is finite for every sequence (𝐴𝑛) in ℱ𝐶

𝒴 . Thus, ℱ𝐶
𝒴 is a closed and

symmetric subalgebra of ℱ𝒴 which contains 𝒢𝒴 , and the mapping

𝑊 : ℱ𝐶
𝒴 → 𝐿(𝑙2(𝑋)), (𝐴𝑛) +→ s-lim𝐴𝑛𝑃𝑌𝑛 (3.1)

is a ∗-homomorphism. Note that I ∈ ℱ𝐶
𝒴 and that 𝑊 (I) is the identity operator 𝐼

on 𝐿2(Γ).
For each 𝐶∗-subalgebra A of 𝐿(𝑙2(Γ)), write 𝐷 for the mapping of finite

sections (or spatial) discretization, i.e.,

𝐷 : 𝐿(𝑙2(Γ)) → ℱ𝒴 , 𝐴 +→ (𝑃𝑌𝑛𝐴𝑃𝑌𝑛), (3.2)

and let 𝒮𝒴(A) stand for the smallest closed 𝐶∗-subalgebra of the algebra ℱ𝒴 which
contains all sequences 𝐷(𝐴) with 𝐴 ∈ A. Clearly, 𝒮𝒴(A) is contained in ℱ𝐶

𝒴 , and
the mapping 𝑊 in (3.1) induces a ∗-homomorphism from 𝒮𝒴(A) onto A. On this
level, one cannot say much about the algebra 𝒮𝒴(A). The simple proof of the
following is in [14].

Proposition 3.1. Let A be a 𝐶∗-subalgebra of 𝐿(𝑙2(Γ)). Then the finite sections
discretization 𝐷 : A → ℱ𝒴 is an isometry, and 𝐷(A) is a closed subspace of the
algebra 𝒮𝒴(A). This algebra splits into the direct sum

𝒮𝒴(A) = 𝐷(A) ⊕ (ker𝑊 ∩ 𝒮𝒴(A)),

and for every operator 𝐴 ∈ A one has

∥𝐷(𝐴)∥ = min
𝐾∈ker𝑊

∥𝐷(𝐴) +𝐾∥.
Finally, ker𝑊 ∩𝒮𝒴(A) is equal to the quasicommutator ideal of 𝒮𝒴(A), i.e., to the
smallest closed ideal of 𝒮𝒴(A) which contains all sequences (𝑃𝑌𝑛𝐴1𝑃𝑌𝑛𝐴2𝑃𝑌𝑛 −
𝑃𝑌𝑛𝐴1𝐴2𝑃𝑌𝑛) with operators 𝐴1, 𝐴2 ∈ A.
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We denote the ideal ker𝑊 ∩ 𝒮𝒴(A) by 𝒥𝒴(A). Since the first item in the
decomposition 𝐷(A) ⊕ 𝒥𝒴(A) of 𝒮𝒴(A) is isomorphic (as a linear space) to A, a
main part of the description of the algebra 𝒮𝒴(A) is to identify the ideal 𝒥𝒴(A).

We are going to present two alternate descriptions of the quasicommutator
ideal 𝒥𝒴(BDO(Γ)) of the finite sections algebra 𝒮𝒴(BDO(Γ)). For we have to in-
troduce some notions of topological type. Note that the standard topology on Γ
is the discrete one; so every subset of Γ is open with respect to this topology.

Let Ω be a finite subset of Γ which contains the identity element 𝑒 and which
generates Γ as a semi-group, i.e., if we set Ω0 := {𝑒} and if we let Ω𝑛 denote the
set of all words of length at most 𝑛 with letters in Ω for 𝑛 ≥ 1, then ∪𝑛≥0Ω𝑛 = Γ.
Note also that the sequence (Ω𝑛) is increasing; so the operators 𝑃Ω𝑛 can play the
role of the finite sections projections 𝑃𝑌𝑛 , and in fact we will obtain some of the
subsequent results exactly for this sequence.

With respect to Ω, we define the following “algebro-topological” notions. Let
𝐴 ⊆ Γ. A point 𝑎 ∈ 𝐴 is called an Ω-inner point of 𝐴 if Ω𝑎 := {𝜔𝑎 : 𝜔 ∈ Ω} ⊆ 𝐴.
The set intΩ𝐴 of all Ω-inner points of 𝐴 is called the Ω-interior of 𝐴, and the set
∂Ω𝐴 := 𝐴 ∖ intΩ𝐴 is the Ω-boundary of 𝐴. Note that we consider the Ω-boundary
of a set always as a part of that set. (In this point, the present definition of a
boundary differs from other definitions in the literature; see [1] for instance.)

One easily checks that the Ω-interior and the Ω-boundary of a set are invariant
with respect to multiplication from the right-hand side:

(intΩ𝐴)𝑠 = intΩ(𝐴𝑠) and (∂Ω𝐴)𝑠 = ∂Ω(𝐴𝑠)

for 𝑠 ∈ Γ. One also has

Ω𝑛−1 ⊆ intΩΩ𝑛 ⊆ Ω𝑛 for each 𝑛 ≥ 1, (3.3)

whence

∂ΩΩ𝑛 ⊆ Ω𝑛 ∖ Ω𝑛−1 for each 𝑛 ≥ 1. (3.4)

Here is a first result which describes 𝒥𝒴(BDO(Γ)) in terms of generators of Γ.
Abbreviate 𝐼 − 𝑃𝐴 =: 𝑄𝐴.

Theorem 3.2. 𝒥𝒴(BDO(Γ)) is the smallest closed ideal of 𝒮𝒴(BDO(Γ)) which con-
tains all sequences

(𝑃𝑌𝑛𝐿𝜔−1𝑄𝑌𝑛𝐿𝜔𝑃𝑌𝑛)𝑛≥1 with 𝜔 ∈ Ω. (3.5)

We call (𝑃∂Ω𝑌𝑛)𝑛≥1 the sequence of the discrete boundaries of the finite section
method with respect to (𝑌𝑛). Note that the assumptions in the following theorem
are satisfied if 𝑌𝑛 = Ω𝑛 due to (3.3).

Theorem 3.3. Assume that 𝑌𝑛−1 ⊆ intΩ𝑌𝑛 ⊆ 𝑌𝑛 for all 𝑛 ≥ 2 and that ∪𝑛≥1𝑌𝑛 =
Γ. Then the sequence (𝑃∂Ω𝑌𝑛)𝑛≥1 of the discrete boundaries belongs to the al-
gebra 𝒮𝒴(BDO(Γ)), and the quasicommutator ideal is generated by this sequence,
i.e., 𝒥𝒴(BDO(Γ)) is the smallest closed ideal of 𝒮𝒴(BDO(Γ)) which contains
(𝑃∂Ω𝑌𝑛)𝑛≥1.
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Both results were proved in [15] for the ideal 𝒥𝒴(Sh(Γ)) of 𝒮𝒴(Sh(Γ)) in
place of 𝒥𝒴(BDO(Γ)). The above theorems follow from these results since every
multiplication operator 𝑎𝐼 commutes with every projection 𝑃𝑌 where 𝑌 ⊆ Γ.

4. Stability

We are now going to study the stability of sequences in 𝒮𝒴(BDO(Γ)) via the limit
operators method. The key observations are that the stability of a sequence in that
algebra is equivalent to the Fredholm property of a certain associated operator,
which is band-dominated, such that the Fredholm property of that operator can
be studied by means of its limit operators via Roe’s result.

Let again 𝒴 := (𝑌𝑛) be an increasing sequence of finite subsets of Γ with
∪𝑛≥1𝑌𝑛 = Ω. A sequence (𝑣𝑛) ⊆ Γ is called an inflating sequence for 𝒴 if 𝑌𝑚𝑣

−1
𝑚 ∩

𝑌𝑛𝑣
−1
𝑛 = ∅ for𝑚 ∕= 𝑛. The existence of inflating sequences is easy to see. Moreover,

the following lemma was shown in [15].

Lemma 4.1. Let 𝒴 = (𝑌𝑛) be as above and 𝑉 an infinite subset of Γ. Then there
is an inflating sequence for 𝒴 in 𝑉 .

In what follows we choose and fix an inflating sequence (𝑣𝑛) for 𝒴 and set

Γ′ := Γ ∖ ∪∞
𝑛=1𝑌𝑛𝑣

−1
𝑛 . (4.1)

For 𝑠 ∈ Γ, let again 𝑅𝑠 : 𝑙2(Γ) → 𝑙2(Γ) refer to the operator (𝑅𝑠𝑓)(𝑡) := 𝑓(𝑡𝑠).
Evidently, 𝑅𝑠𝐿𝑡 = 𝐿𝑡𝑅𝑠 for 𝑠, 𝑡 ∈ Γ. The proof of the following theorem is in [15].

Theorem 4.2. Let A = (𝐴𝑛) ∈ ℱ𝒴 . Then

(a) the series
∞∑
𝑛=1

𝑅𝑣𝑛𝐴𝑛𝑅
−1
𝑣𝑛 (4.2)

converges strongly on 𝑙2(Γ). The sum of this series is denoted by Op(A).

(b) the sequence (𝐴𝑛) is stable if and only if the operator Op(A)+𝑃Γ′ is Fredholm
on 𝑙2(Γ).

(c) The mapping Op is a continuous homomorphism from ℱ𝒴 to 𝐿(𝑙2(Γ)).

The applicability of Roe’s result to the study the stability of the finite section
method for band-dominated operators rests of the following fact.

Proposition 4.3. Let A be a sequence in 𝒮𝒴(BDO(Γ)). Then Op (A) is a band-
dominated operator.

Proof. First let 𝐴 ∈ BDO(Γ) be a band operator and let Γ0 be a band width of 𝐴. It
is easy to check that then 𝑅𝑣𝑛𝑃𝑌𝑛𝐴𝑃𝑌𝑛𝑅

−1
𝑣𝑛 is a band operator with the same band

width for every 𝑛. The inflating property ensures that Op ((𝑃𝑌𝑛𝐴𝑃𝑌𝑛)) is a band
operator with band width Γ0, too. Now Theorem 4.2 (𝑐) yields the assertion. □
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In order to verify the stability of a sequence A ∈ 𝒮𝒴(BDO(Γ)) via the above
results, we thus have to compute the limit operators of Op (A) + 𝑃Γ′ , which will
be our next goal. Note that the exactness of Γ is not relevant in this computation.

Let Ω be a finite subset of Γ with 𝑒 ∈ Ω which generates Γ as a semi-group
and define Ω𝑛 as above. By Theorem 4.2, the Fredholm property of an operator
Op (A) is independent of the concrete choice of the inflating sequence. For technical
reasons, we choose an inflating sequence (𝑣𝑛) for the sequence(

(𝑌𝑛 ∪ Ω𝑛)(𝑌𝑛 ∪ Ω𝑛)
−1(𝑌𝑛 ∪Ω𝑛)

)
𝑛≥1

instead of (𝑌𝑛)𝑛≥1. Since

𝑌𝑛 ∪ Ω𝑛 ⊂ (𝑌𝑛 ∪ Ω𝑛)(𝑌𝑛 ∪ Ω𝑛)
−1 ⊂ (𝑌𝑛 ∪ Ω𝑛)(𝑌𝑛 ∪ Ω𝑛)

−1(𝑌𝑛 ∪ Ω𝑛),

(𝑣𝑛) is also an inflating sequence for (𝑌𝑛). Moreover, since s-lim𝑃Ω𝑛 = 𝑃Γ = 𝐼,
one also has

s-lim𝑃(𝑌𝑛∪Ω𝑛)(𝑌𝑛∪Ω𝑛)−1 = 𝑃Γ = 𝐼. (4.3)

Let now A = (𝐴𝑛) ∈ 𝒮𝒴(BDO(Γ)), set as before

Op (A) =

∞∑
𝑛=1

𝑅𝑣𝑛𝐴𝑛𝑅
−1
𝑣𝑛 and Γ′ = Γ ∖ ∪∞

𝑛=1𝑌𝑛𝑣
−1
𝑛 ,

and let ℎ : ℕ → Γ be a sequence tending infinity for which the limit operator

(Op (A) + 𝑃Γ′)ℎ := s-lim𝑛→∞𝑅−1
ℎ(𝑛)(Op (A) + 𝑃Γ′)𝑅ℎ(𝑛)

exists. Then the limit operator (Op (A)+𝑃Γ′)𝑔 exists for every subsequence 𝑔 of ℎ,
and it coincides with (Op (A) + 𝑃Γ′)ℎ. So we can freely pass to subsequences of ℎ
if necessary. By a first passage to a suitable subsequence of ℎ we can arrange that
one of the following two situations happens; so we can restrict the computation of
the limit operator to these cases:

Case 1: All elements ℎ(𝑛) belong to ∪𝑘≥1 𝑣𝑘𝑌
−1
𝑘 .

Case 2: No element ℎ(𝑛) belongs to ∪𝑘≥1 𝑣𝑘𝑌
−1
𝑘 .

We start with Case 1. Passing again to a subsequence of ℎ, if necessary, we can fur-
ther suppose that each ℎ(𝑛) belongs to one of the sets 𝑣𝑘𝑌

−1
𝑘 , say to 𝑣𝑘𝑛𝑌

−1
𝑘𝑛

, and

that 𝑣𝑘𝑛𝑌
−1
𝑘𝑛

contains no other element of the sequence ℎ besides ℎ(𝑛). For each 𝑛,

let 𝑟𝑛 denote the smallest non-negative integer such that ℎ(𝑛) ∈ 𝑣𝑘𝑛(∂Ω𝑌𝑘𝑛)−1Ω𝑟𝑛 .
Thus, 𝑟𝑛 measures the distance of ℎ(𝑛) to the Ω-boundary of 𝑣𝑘𝑛𝑌

−1
𝑘𝑛

. Set 𝑟∗ :=
lim inf𝑛→∞ 𝑟𝑛. Again we have to distinguish two cases, namely when 𝑟∗ is finite
and when 𝑟∗ is infinite. We refer to these cases as Case 1.1 and 1.2, respectively.
Then Theorems 4.4 and 4.6 below can be derived in the similar way as the corre-
sponding Theorems 4.9 and 4.11 in [15], with some evident modifications.

Theorem 4.4. Let A ∈ 𝒮𝒴(BDO(Γ)), and let ℎ be a sequence such that the limit
operator of Op(A)+𝑃Γ′ with respect to ℎ exists. In Case 1.1, there is a subsequence
𝑔 of ℎ such that the limit operator (𝑃Γ′ )𝑔 exists, and there are a monotonically



Finite Sections of Band-dominated Operators on Discrete Groups 249

increasing sequence (𝑘𝑛) in ℕ, a vector 𝜂𝑘𝑛 ∈ (∂Ω𝑌𝑘𝑛)
−1 for each 𝑛 ≥ 1, and a

𝑤∗ ∈ Γ such that

(Op (A) + 𝑃Γ′)ℎ = s-lim𝑅−1
𝑤∗𝑅

−1
𝜂𝑘𝑛
𝐴𝑘𝑛𝑅𝜂𝑘𝑛𝑅𝑤∗ + (𝑃Γ′)𝑔.

Thus, the operator 𝐴𝑘𝑛 living on im𝑃𝑌𝑘𝑛 is shifted by a vector 𝜂𝑘𝑛 ∈ (∂Ω𝑌𝑘𝑛)
−1

and by another vector 𝑤∗ independent of 𝑛. It is only a matter of taste to consider
𝐴𝑘𝑛 as shifted by the vector 𝜂−1

𝑘𝑛
belonging to the Ω-boundary of 𝑌𝑘𝑛 . In particular,

every limit operator of Op (A) is a shift by some vector 𝑤∗ of a strong limit of
operators 𝐴𝑘𝑛 , shifted by vectors in the Ω-boundary of 𝑌𝑘𝑛 . This fact is well known
for the group ℤ and intervals 𝑌𝑘 = [−𝑘, 𝑘] ∩ ℤ (and has been employed in [12] to
get rid of the uniform boundedness condition in this case), and it was observed by
Lindner [6] in case Γ = ℤ𝑁 and 𝑌𝑘 = Ω𝑘 is a convex polygon with integer vertices.

Before turning to the other cases, let us specify Theorem 4.4 to pure finite
sections sequences for operators in BDO(Γ). The existence of the limit operator
(𝑃Γ′)ℎ is guaranteed if the strong limit

s-lim𝑅−1
𝑤∗𝑅

−1
𝜂𝑘𝑛
𝑃𝑌𝑘𝑛𝑅𝜂𝑘𝑛𝑅𝑤∗ = s-lim𝑃𝑌𝑘𝑛𝜂𝑘𝑛𝑤∗ (4.4)

exists. In this case, there is a subset 𝒴(ℎ) of Γ such that

s-lim𝑃𝑌𝑘𝑛𝜂𝑘𝑛𝑤∗ = 𝑃𝒴(ℎ) (4.5)

and, thus, (𝑃Γ′)𝑔 = 𝐼 − 𝑃𝒴(ℎ) . We claim that the sequence (𝜂𝑘𝑛𝑤∗)𝑛≥1 tends
to infinity. For this goal, it is sufficient to show that every sequence (𝜇𝑛) with
𝜇𝑛 ∈ ∂Ω𝑌𝑘𝑛 tends to infinity. Let Γ0 be a finite subset of Γ. Choose 𝑛0 such that
Γ0 ⊆ Ω𝑛0−1 and 𝑛∗ such that Ω𝑛0 ⊆ 𝑌𝑘𝑛 for all 𝑛 ≥ 𝑛∗. Then intΩΩ𝑛0 ⊆ intΩ𝑌𝑘𝑛 ,
and from (3.3) we conclude that

Γ0 ⊆ Ω𝑛0−1 ⊆ intΩΩ𝑛0 ⊆ intΩ𝑌𝑘𝑛 .

Hence, ∂Ω𝑌𝑘𝑛 ∩ Γ0 = ∅ for all 𝑛 ≥ 𝑛∗, whence the claimed convergence.

Given a sequence ℎ such that the limit (4.4) exists and a band-dominated
operator 𝐴, let 𝜎𝑜𝑝, ℎ(𝐴) denote the set of all limit operators of 𝐴 with respect to
subsequences of the sequence (𝜂𝑘𝑛𝑤∗)𝑛≥1. This set is not empty by Proposition 2.3.

Proposition 4.5. Let 𝐴 ∈ BDO(Γ), and let ℎ be a sequence such that the limit
operator Op(A)ℎ for the sequence (𝑃𝑌𝑛𝐴𝑃𝑌𝑛) exists. In Case 1.1, there are 𝑘𝑛,
𝜂𝑘𝑛 and 𝑤∗ as in Theorem 4.4 such that the limit (4.4) exists. Then there is a limit
operator 𝐴𝑔 ∈ 𝜎𝑜𝑝, ℎ(𝐴) of 𝐴 such that

(Op (A) + 𝑃Γ′)ℎ = 𝑃𝒴(ℎ)𝐴𝑔𝑃𝒴(ℎ) + (𝐼 − 𝑃𝒴(ℎ) ). (4.6)

Conversely, if the limit (4.4) exists for a certain choice of 𝑘𝑛, 𝜂𝑘𝑛 and 𝑤∗ as in
Theorem 4.4 and if 𝐴𝑔 is a limit operator of 𝐴 with respect to a certain subsequence
𝑔 = (𝜂𝑘𝑛𝑟𝑤∗)𝑟≥1 of the sequence (𝜂𝑘𝑛𝑤∗)𝑛≥1, then the limit operator Op (A)ℎ
exists for the sequence ℎ = (𝑣𝑘𝑛𝑟 𝑔𝑟)𝑟≥1, and (4.6) holds.
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Proof. The proof of the first assertion follows easily from Theorem 4.4. Indeed,

𝑅𝑤−1
∗ 𝜂−1

𝑘𝑛

𝑃𝑌𝑘𝑛𝐴𝑃𝑌𝑘𝑛𝑅𝜂𝑘𝑛𝑤∗

= (𝑅𝑤−1
∗ 𝜂−1

𝑘𝑛

𝑃𝑌𝑘𝑛𝑅𝜂𝑘𝑛𝑤∗) ⋅ (𝑅𝑤−1
∗ 𝜂−1

𝑘𝑛

𝐴𝑅𝜂𝑘𝑛𝑤∗) ⋅ (𝑅𝑤−1
∗ 𝜂−1

𝑘𝑛

𝑃𝑌𝑘𝑛𝑅𝜂𝑘𝑛𝑤∗).

The sequences in the outer parentheses converge strongly to 𝑃𝒴(ℎ) . If now 𝑔 is a
subsequence of (𝜂𝑘𝑛𝑤∗)𝑛≥1 such that the limit operator𝐴𝑔 exists, then we conclude
that

𝑅𝑤−1
∗ 𝜂−1

𝑘𝑛

𝑃𝑌𝑘𝑛𝐴𝑃𝑌𝑘𝑛𝑅𝜂𝑘𝑛𝑤∗ → 𝑃𝒴(ℎ)𝐴𝑔𝑃𝒴(ℎ)

∗-strongly as 𝑛→ ∞. The second assertion is evident. □

Now we turn over to Case 1.2, when 𝑟∗ is infinite.

Theorem 4.6. Let A ∈ 𝒮𝒴(BDO(Γ)) and 𝐴 := s-lim𝐴𝑛𝑃𝑌𝑛 , and let ℎ be a sequence
such that the limit operator Op (A)ℎ exists. Then, in Case 1.2, either Op (A)ℎ =
𝑅−1

𝑣∗ 𝐴𝑅𝑣∗ with a fixed 𝑣∗ ∈ Γ, or there is a limit operator 𝐴𝑔 of 𝐴 such that

Op (A)ℎ = 𝐴𝑔. Conversely, each operator 𝑅
−1
𝑣∗ 𝐴𝑅𝑣∗ with 𝑣∗ ∈ Γ and each limit

operator 𝐴𝑔 of 𝐴 occur as limit operators of Op (A).

Proof. It is sufficient to verify the assertion for pure finite sections sequences A =
(𝑃𝑌𝑛𝐴𝑃𝑌𝑛) with 𝐴 ∈ BDO(Γ). For these sequences, one has

𝑅−1
ℎ(𝑛)(Op (A) + 𝑃Γ′)𝑅ℎ(𝑛)

=
∑
𝑘 ∕=𝑘𝑛

𝑅−1
ℎ(𝑛)𝑅𝑣𝑘𝑃𝑌𝑘𝐴𝑃𝑌𝑘𝑅

−1
𝑣𝑘 𝑅ℎ(𝑛)(𝐼 − 𝑃𝑌𝑘𝑛𝑣−1

𝑘𝑛
ℎ(𝑛))

+𝑅−1
ℎ(𝑛)𝑃Γ′𝑅ℎ(𝑛)(𝐼 − 𝑃𝑌𝑘𝑛𝑣−1

𝑘𝑛
ℎ(𝑛))

+ 𝑃𝑌𝑘𝑛𝑣
−1
𝑘𝑛

ℎ(𝑛)(𝑅
−1
ℎ(𝑛)𝑅𝑣𝑘𝑛𝐴𝑅

−1
𝑣𝑘𝑛
𝑅ℎ(𝑛))𝑃𝑌𝑘𝑛𝑣

−1
𝑘𝑛

ℎ(𝑛).

Consider the sequence (𝑣−1
𝑘𝑛
ℎ(𝑛)), which is either finite or contains a subsequence

which tends to infinity. In the first case, there is a 𝑣∗ ∈ Γ which is met by this
sequence infinitely often, whence Op (A)ℎ = 𝑅𝑣∗𝐴𝑅−1

𝑣∗ . In the second case, Propo-
sition 2.3 implies the existence of a subsequence 𝑔 of (𝑣−1

𝑘𝑛
ℎ(𝑛)) which tends to

infinity and for which the limit operator 𝐴𝑔 exists. In this case, Op (A)ℎ = 𝐴𝑔.
Conversely, given 𝑣∗ ∈ Γ and a limit operator 𝐴𝑔 of 𝐴, one can choose

ℎ(𝑛) := 𝑣𝑘𝑛𝑣
∗ and ℎ(𝑛) := 𝑣𝑘𝑛𝑔(𝑛) in order to obtain the limit operators𝑅−1

𝑣∗ 𝐴𝑅𝑣∗

and 𝐴𝑔 of Op (A), respectively. □

Note that, in Case 1.2, the invertibility of all limit operators of Op (A) as well
as the uniform boundedness of the norms of their inverses follows already from the
invertibility of 𝐴.

Now consider Case 2, i.e., suppose that none of the ℎ(𝑛) belongs to ∪𝑣𝑘𝑌 −1
𝑘 . For

𝑛 ∈ ℕ, let 𝑟𝑛 stand for the smallest non-negative integer such that there is a 𝑘𝑛 ∈ ℕ

with ℎ(𝑛) ∈ 𝑣𝑘𝑛(∂Ω𝑌𝑘𝑛)−1Ω𝑟𝑛 . Consequently,

ℎ(𝑛) ∕∈ 𝑣𝑘𝑛(∂Ω𝑌𝑘𝑛)−1Ω𝑟𝑛−1 for all 𝑛.
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Again we set 𝑟∗ := lim inf 𝑟𝑛 and distinguish the cases, when 𝑟∗ is finite and when
𝑟∗ is infinite, to which we refer as Case 2.1 and 2.2, respectively. These cases can
be studied in a similar way as the corresponding cases in [15], and we again omit
the details. The following theorem summarizes the results from Cases 1.1–2.2.

Theorem 4.7. Let A ∈ 𝒮𝒴(BDO(Γ)) and 𝐴 := s-lim𝐴𝑛𝑃𝑌𝑛 . Then the limit opera-
tors of Op (A)+𝑃Γ′ are the identity operator 𝐼, all shifts 𝑅−1

𝑣∗ 𝐴𝑅𝑣∗ of the operator
𝐴, all limit operators of 𝐴, and all operators of the form

s-lim𝑅−1
𝑤∗𝑅

−1
𝜂𝑘𝑛
𝐴𝑘𝑛𝑅𝜂𝑘𝑛𝑅𝑤∗ + (𝑃Γ′)𝑔

with a suitable subsequence 𝑔 of ℎ and with elements 𝜂𝑘𝑛 ∈ (∂Ω𝑌𝑘𝑛)
−1 and 𝑤∗ ∈ Γ.

Combining this theorem with Theorems 4.2 (b), 2.4 and 2.5 we arrive at the
following stability results.

Theorem 4.8. Let Γ be a finitely generated exact discrete group, and let (𝐴𝑛) ∈
𝒮𝒴(BDO(Γ)). The sequence (𝐴𝑛) is stable if and only if the operator

𝐴 := s-lim𝐴𝑛𝑃𝑌𝑛

and all operators of the form

s-lim𝑅−1
𝜂𝑘𝑛
𝐴𝑘𝑛𝑅𝜂𝑘𝑛 +𝑅𝑤∗(𝑃Γ′ )𝑔𝑅

−1
𝑤∗

with a suitable subsequence 𝑔 of ℎ and with elements 𝜂𝑘𝑛 ∈ (∂Ω𝑌𝑘𝑛)
−1 and 𝑤∗ ∈ Γ

are invertible and if the norms of their inverses are uniformly bounded.

Theorem 4.9. Let Γ be a finitely generated exact discrete group, and let 𝐴 ∈
BDO(Γ). The sequence A = (𝑃𝑌𝑛𝐴𝑃𝑌𝑛) is stable if and only if the operator 𝐴
and all operators

𝑃𝒴(ℎ)𝐴𝑔𝑃𝒴(ℎ) : im𝑃𝒴(ℎ) → im𝑃𝒴(ℎ)

where ℎ is a sequence such that the limit (4.4) exists and 𝒴(ℎ) is as in (4.5) and
where 𝑔 is in 𝜎𝑜𝑝, ℎ(𝐴) are invertible and if the norms of their inverses are uni-
formly bounded.

Theorem 4.10. Let Γ be a finitely generated discrete and exact group with sub-
exponential growth which possesses at least one non-cyclic element, and let 𝐴 be
a band operator on 𝑙2(Γ). Then the sequence A = (𝑃𝑌𝑛𝐴𝑃𝑌𝑛) is stable if and only
if the operators mentioned in the previous theorem are invertible.

There are special sequences 𝒴 = (𝑌𝑛) and 𝜂 : ℕ → Γ for which the existence
of the limit (4.5) can be guaranteed. Let again Ω𝑛 refer to the set of all products
of at most 𝑛 elements of Ω and set Ω0 := {𝑒}. A sequence (𝜈𝑛) in Γ is called a
geodesic ray (with respect to Ω) if there is a sequence (𝑤𝑛) in Ω ∖ {𝑒} such that
𝜈𝑛 = 𝑤1𝑤2 . . . 𝑤𝑛 and 𝜈𝑛 ∈ Ω𝑛 ∖ Ω𝑛−1 for each 𝑛 ≥ 1. Note that this condition
implies that each 𝜈𝑛 is in the right Ω-boundary of Ω𝑛, which is the set of all 𝑤 ∈ Ω𝑛

for which 𝑤Ω is not a subset of Ω𝑛.
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We will see now that the limΩ𝑛𝜂𝑛 exists if 𝜂 is an inverse geodesic ray, i.e.,
if 𝜂𝑛 = 𝜈−1

𝑛 for a geodesic ray 𝜈.

Lemma 4.11. Let (𝑤𝑛)𝑛≥1 be a sequence in Ω and set 𝜂𝑛 := 𝑤−1
𝑛 𝑤

−1
𝑛−1 . . . 𝑤

−1
1 for

𝑛 ≥ 1. Then the strong limit s-lim𝑃Ω𝑛𝜂𝑛 exists, and

s-lim𝑃Ω𝑛𝜂𝑛 = 𝑃∪𝑛≥1Ω𝑛𝜂𝑛 . (4.7)

Proof. For 𝑛 ≥ 1, one has Ω𝑛𝜂𝑛 = Ω𝑛𝑤𝑛+1𝑤
−1
𝑛+1𝑤

−1
𝑛 . . . 𝑤−1

1 ⊆ Ω𝑛+1𝜂𝑛+1. These
inclusions imply the existence of the strong limit and the equality (4.7). □

The natural question arises whether every sequence 𝜂 : ℕ → Γ for which the
limit (4.5) exists has a subsequence which is a subsequence of an inverse geodesic
ray. If the answer is affirmative, then it would prove sufficient to consider strong
limits with respect to inverse geodesic rays in Theorem 4.8. Under some conditions,
this question was answered in [15] for commutative groups Γ and for the free (non-
commutative) groups 𝔽𝑁 with 𝑁 generators.
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Joint Defect Index of a Cyclic Tuple
of Symmetric Operators

Roger A. Roybal

Abstract. Von Neumann showed that the defect indices of a symmetric oper-
ator are invariant in each the upper half and lower half complex planes, and
if the operator commutes with a conjugation operator, the indices have the
same value in ℂ∖ℝ. This leads to self-adjoint extensions for the operator. We
prove an anlogous invariance result in ℂ𝑑∖ℝ𝑑 for a class of operator tuples.
We also apply this to give a result regarding reproducing kernels.
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Keywords. Defect index, symmetric operator tuple, reproducing kernel.

1. Introduction

John von Neumann’s theory of defect indices gives conditions necessary and suf-
ficient to determine if a single unbounded symmetric operator on Hilbert space
has self-adjoint extensions and a method to parametrize them all. In the case of
a tuple of symmetric operators much less is known. Given a tuple of symmetric
operators (𝐴1, . . . , 𝐴𝑑) on a Hilbert space ℋ, there exists a joint projection-valued
spectral measure if and only if there exists a Hilbert space extension 𝒦 ⊇ ℋ and
self adjoint extensions 𝐵𝑗 ⊃ 𝐴𝑗 on 𝒦 whose spectral projections commute.

The issue of commutativity is a large obstacle to the generalization of spectral
theory of a single operator to a the spectral theory of a tuple of operators. Nelson’s
example [7] shows that two operators may not strongly commute, even if they do
commute on a common core. In the context of the multi-dimensional moment
problem, [3] and [10] concurrently gave examples of tuples of operators which
weakly commute on a domain dense in a Hilbert space, yet the tuple possesses no
strongly commuting self-adjoint extension. Implicit in both approaches is that such
a commuting self-adjoint extension exists if and only if the corresponding moment

The author would like to thank Mihai Putinar and Raul Curto for helpful conversations and
advice during the preparation of this article.
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problem has a solution [5]. Since not every positive polynomial in two or more
variables may be written as a sum of squares, a Riesz extension theorem argument
and the Riesz-Haviland theorem gives a construction for a tuple of operators which
weakly commute on a dense subspace of a Hilbert space but do not have a joint
self-adjoint extension as above.

2. Formulation and Notation

We have a choice of starting points. In the case of the multi-dimensional moment
problem an operator tuple arises naturally in the GNS construction. In the case
of a tuple of symmetric operators, we make assumptions to align these two cases.

2.1. The multi-dimensional moment problem

Let {𝑠𝛼}𝛼∈ℕ𝑑0
be a multisequence indexed by the monomials in 𝑑 variables. We

use the standard multivariable notation and say 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ ℝ𝑑, 𝛼 =
(𝛼1, . . . , 𝛼𝑑) ∈ ℕ𝑑

0, 𝑥
𝛼 = 𝑥𝛼1

1 ⋅ ⋅ ⋅𝑥𝛼𝑑𝑑 , and ∣𝛼∣ = 𝛼1 + ⋅ ⋅ ⋅+ 𝛼𝑑.
Define the Riesz functional 𝐿 : ℂ[𝑥] → ℂ for the multisequence by 𝐿(𝑥𝛼) =

𝑠𝛼, and extend linearly. The sequence {𝑠𝛼} and the functional 𝐿 are called positive
if 𝐿(∣𝑝∣2) ≥ 0 for every 𝑝 ∈ ℂ[𝑥]. In this case, we can define a positive semidefinite
sesquilinear form ⟨⋅, ⋅⟩ on ℂ[𝑥] by ⟨𝑝, 𝑞⟩ = 𝐿(𝑝𝑞). We then use the GNS construction
to pass to an inner product ⟨⋅, ⋅⟩ on a Hilbert space ℋ such that the polynomials are
dense in ℋ. This construction is carried out in more detail in [5]. We will generally
make no distinction between a polynomial 𝑝(𝑥) and its representative in ℋ.

For 1 ≤ 𝑗 ≤ 𝑑, let 𝑋𝑗 be multiplication by the real variable 𝑥𝑗 on ℂ[𝑥]. Since

𝑋𝑗 is symmetric, let 𝑋𝑗 be the closure of 𝑋𝑗 and 𝒟𝑗 ⊂ ℋ be the domain of 𝑋𝑗 .

2.2. A cyclic tuple

Equivalently suppose that (𝑋1, . . . , 𝑋𝑑) is a tuple of symmetric operators on a
Hilbert space ℋ and that there exists a conjugation operator 𝐶 : ℋ → ℋ which
leaves the domain of each 𝑋𝑗 invariant and commutes with it. Furthermore, sup-
pose that there is a cyclic vector 𝜉 ∈ ℋ for the tuple, and that for any 1 ≤ 𝑖, 𝑗 ≤ 𝑑,
𝑋𝑖 and 𝑋𝑗 commute on {𝑝(𝑋)𝜉 : 𝑝(𝑥) ∈ ℂ[𝑥]}. We use the standard notation that
𝑝(𝑋) is the evaluation of 𝑝(𝑥) at (𝑋1, . . . , 𝑋𝑑).

If we consider the minimal domain {𝑝(𝑋)𝜉 : 𝑝 ∈ ℂ[𝑥]} for each 𝑋𝑗 and

𝒟𝑗 ⊂ ℋ be the domain of 𝑋𝑗 as previously, then we are nearly in the situation
above. The remaining difference is that the vector 1 is invariant under complex
conjugation in the moment problem setting, so we also assume that 𝐶𝜉 = 𝜉.

The assumption that there is a conjugation operator which commutes with
the operator tuple is not unreasonable for a formally commuting tuple. In the case
where the tuple consists of strongly commuting self-adjoint operators, let 𝐸 be
the joint projection-valued measure on ℝ𝑑. Then our conjugation 𝐶 is complex
conjugation on 𝐿2(𝐸).
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2.3. Continuation

Consider the operator 𝑋 : ℂ[𝑥]𝑑 → ℋ, defined for 𝑝 = (𝑝1, . . . , 𝑝𝑑) ∈ ℂ[𝑥]𝑑 by

𝑋𝑝(𝑥) = 𝑥1𝑝1(𝑥) + 𝑥2𝑝2(𝑥) + ⋅ ⋅ ⋅ + 𝑥𝑑𝑝𝑑(𝑥).
Denote the operator 𝑋̂ :

⊕𝑑
𝑗=1 𝒟𝑗 → ℋ by

𝑋̂𝑓 = 𝑋1𝑓1 + ⋅ ⋅ ⋅+𝑋𝑑𝑓𝑑,

where 𝑓 = (𝑓1, . . . , 𝑓𝑑) ∈⊕𝑑
𝑗=1 𝒟𝑗 .

On the set ℂ[𝑥] the adjoint is formally defined as 𝑋∗𝑝 = (𝑥1𝑝, . . . , 𝑥𝑑𝑝). This
element induces a bounded linear functional on ℋ𝑑 since

∣⟨(𝑓1, . . . , 𝑓𝑑), (𝑥1𝑝, . . . , 𝑥𝑑𝑝)⟩∣ ≤ ∥(𝑓1, . . . , 𝑓𝑑)∥∥(𝑥1𝑝, . . . , 𝑥𝑑𝑝)∥
for all 𝑓 = (𝑓1, . . . , 𝑓𝑑) ∈ ℋ𝑑. Since ℂ[𝑥] is dense in ℋ, it follows that the adjoint
𝑋∗ is well defined and has dense domain. Thus the closure 𝑋 of 𝑋 exists and
𝑋∗∗ = 𝑋.

By considering the isometry

(𝑝(𝑥), 𝑥𝑘𝑝(𝑥)) +→ (0, . . . , 0, 𝑝(𝑥)
↑

𝑘th place

, 0, . . . , 0, 𝑥𝑘𝑝(𝑥))

from the graph of 𝑋𝑗 into the graph of 𝑋 , this induces an isometry from the graph

of 𝑋𝑗 into the graph of 𝑋. Therefore we conclude that 𝑋̂ ⊂ 𝑋.

3. Main result

For 𝑧 = (𝑧1, . . . , 𝑧𝑑) ∈ ℂ𝑑, define

(𝑋 − 𝑧)(𝑝1, . . . , 𝑝𝑑) = (𝑥1 − 𝑧1)𝑝1 + ⋅ ⋅ ⋅+ (𝑥𝑑 − 𝑧𝑑)𝑝𝑑,
and define 𝑋̂ − 𝑧 and 𝑋 − 𝑧 analogously. Since 𝑋 is a closed operator, for any
𝑧 ∈ ℂ𝑑, ker(𝑋 − 𝑧) is a closed subspace of ℋ𝑑. Thus we can decompose its domain
orthogonally into two subspaces. Define ℰ𝑧 = 𝒟𝑋 ⊖ ker(𝑋 − 𝑧), and call ℰ𝑧 an

effective domain of 𝑋 − 𝑧. In particular, 𝑋 − 𝑧∣ℰ𝑧 is bijective onto the range of
𝑋 − 𝑧. We will show that if 𝑧 ∈ ℂ𝑑∖ℝ𝑑, and if 𝑤 − 𝑧 is sufficiently small, then
𝑋 − 𝑤 is bijective from ℰ𝑧 to the range of 𝑋 − 𝑤.

Let ℰ ′
𝑧 = ℰ𝑧 ∩ℂ[𝑥]𝑑 = {(𝑥1 − 𝑧1)𝑝, (𝑥2 − 𝑧2)𝑝, . . . , (𝑥𝑑 − 𝑧𝑑)𝑝∣𝑝 ∈ ℂ[𝑥]} be an

effective domain of 𝑋 . The second equality follows from that ran((𝑋 − 𝑧)∗) is a
dense subspace of ℋ𝑑 ⊖ ker(𝑋 − 𝑧) and that ℰ ′

𝑧 ⊆ ℂ[𝑥]𝑑. Since 𝑋 is the closure of
𝑋 , we will examine ℰ ′

𝑧 to explore 𝑋.

Lemma 1. If 𝑧 ∈ ℂ𝑑∖ℝ𝑑, then 𝑋 − 𝑧 has closed range.
Proof. Let 𝑧 = (𝑧1 . . . , 𝑧𝑑) ∈ ℂ𝑑∖ℝ𝑑, where 𝑧𝑗 = 𝑎𝑗 + 𝑖𝑏𝑗. To show that 𝑋 − 𝑧
has closed range, we will show that 𝑋 − 𝑧 is bounded from below on ℰ ′

𝑧. Let Let
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𝑓 = ((𝑥1 − 𝑧1)𝑝, . . . , (𝑥𝑑 − 𝑧𝑑)𝑝) ∈ ℰ ′
𝑧 . Then

∥𝑓∥2 =
∥∥∥∥∥∥
⎛⎝ 𝑑∑

𝑗=1

(𝑥𝑗 − 𝑎𝑗)2 +
𝑑∑

𝑘=1

𝑏2𝑘

⎞⎠ ∣𝑝∣2
∥∥∥∥∥∥
2

.

Denoting ∣𝑥∣2 =∑𝑑
𝑗=1 𝑥

2
𝑗 , we compute:

∥(𝑋 − 𝑧)𝑓∥2 = 𝐿 ((∣𝑥− 𝑎∣2 + ∣𝑏∣2)2∣𝑝∣2)
= 𝐿
(∣𝑥− 𝑎∣2(∣𝑥− 𝑎∣2 + ∣𝑏∣2)∣𝑝∣2)+ 𝐿 (∣𝑏∣2(∣𝑥− 𝑎∣2 + ∣𝑏∣2)∣𝑝∣2)

= 𝐿
(∣𝑥− 𝑎∣2(∣𝑥− 𝑎∣2 + ∣𝑏∣2)∣𝑝∣2)+ ∣𝑏∣2∥𝑓∥2.

The term on the left is nonnegative since the argument is a sum of squares, and
𝐿 is a positive functional, thus for 𝑓 ∈ ℰ ′

𝑧, ∥(𝑋 − 𝑧)𝑓∥ ≥ ∣ℑ𝑧∣∥𝑓∥. Since 𝑋 is the
closure of 𝑋 , it follows that for any 𝜙 ∈ ℰ𝑧,

∥(𝑋 − 𝑧)𝜙∥ ≥ ∣ℑ𝑧∣∥𝜙∥.
The above inequality implies that the range of 𝑋−𝑧 restricted to ℰ𝑧 is closed,

thus the range of 𝑋 − 𝑧 is closed. □

For any 𝑦 = (𝑦1, . . . , 𝑦𝑑) ∈ ℂ𝑑, we define the associated operator 𝑦 : ℋ𝑑 → ℋ
by 𝑦𝑓 = 𝑦1𝑓1 + ⋅ ⋅ ⋅+ 𝑦𝑑𝑓𝑑, where 𝑓 = (𝑓1, . . . , 𝑓𝑑). We estimate the norm

∥𝑦𝑓∥ ≤
𝑑∑

𝑘=1

∣𝑦𝑘∣ ∥𝑓𝑘∥ ≤
𝑑∑

𝑘=1

∣𝑦𝑘∣ ∥𝑓∥,

thus in the operator norm, ∥𝑦∥ ≤∑𝑘 ∣𝑦𝑘∣.
In the following, we make use of the inequality on 𝑑-tuples of complex num-

bers ∑
𝑘

∣𝑦𝑘∣ ≤
√
𝑑

(∑
𝑘

∣𝑦𝑘∣2
) 1

2

=
√
𝑑∣𝑦∣

by stating that if ∣𝑤 − 𝑧∣ < ∣ℑ𝑧∣√
𝑑
, then ∥𝑤 − 𝑧∥ < ∣ℑ𝑧∣.

Theorem 1. The value of dimker((𝑋 − 𝑧)∗) is constant in ℂ𝑑∖ℝ𝑑.

Proof. We slightly modify the standard argument which shows that the defect
indices of a closed symmetric operator are constant in the upper half and lower

half-planes. Let 𝑧 ∈ ℂ𝑑∖ℝ𝑑, and let 𝑤 ∈ ℂ𝑑 so that ∣𝑧 − 𝑤∣ < ∣ℑ𝑧∣√
𝑑
. We first prove

that dimker((𝑋 − 𝑧)∗) ≥ dimker((𝑋 − 𝑤)∗).
Suppose then that dimker((𝑋 − 𝑧)∗) < dim ker((𝑋 − 𝑤)∗). Then there is

some 𝑢 ∈ ker((𝑋 − 𝑧)∗)⊥ with ∥𝑢∥ = 1 which is also contained in ker((𝑋 − 𝑤)∗).
Since ker((𝑋 − 𝑧)∗)⊥ = ran(𝑋 − 𝑧), there is some 𝜙 ∈ ℰ𝑧 so that (𝑋 − 𝑧)𝜙 = 𝑢.
Then

0 = ∣⟨(𝑋 − 𝑤)∗, 𝜙⟩∣ = ∣⟨𝑢, (𝑋 − 𝑧)𝜙⟩ + ⟨𝑢, (𝑧 − 𝑤)𝜙⟩∣ ≥ ∥𝑢∥2 − ∥𝑧 − 𝑤∥∥𝑢∥∥𝜙∥.
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By the selection of 𝑤, ∥𝑧 −𝑤∥ < ∣ℑ𝑧∣, and ∥𝜙∥ ≤ ∣ℑ𝑧∣∥𝑢∥ since 𝑋 − 𝑧 is bounded
from below on ℰ𝑧. Putting this into the above relations gives 0 > 0. From this
contradiction, we conclude that dimker((𝑋 − 𝑧)∗) ≤ dimker((𝑋 − 𝑤)∗).

Now by picking 𝑤 so that ∣𝑤− 𝑧∣ < ∣ℑ𝑧∣
2
√
𝑑
, we repeat the above argument with

the roles of 𝑧 and 𝑤 reversed, obtaining dimker((𝑋 − 𝑤)∗) ≤ dimker((𝑋 − 𝑧)∗).
Thus for each 𝑧 ∈ ℂ𝑑∖ℝ𝑑, there is some neighborhood 𝑈 of 𝑧 so that dimker((𝑋−
𝑤)∗) is constant on 𝑈 . Since ℂ𝑑∖ℝ𝑑 is path connected, a compactness argument
shows that dim ker((𝑋 − 𝑧)∗) is constant in this domain. □

We have used ℰ𝑧 as a set of representatives for the whole of the domain of
𝑋 − 𝑧 and ℰ𝑤 for 𝑋 − 𝑤. It is helpful to note that if 𝑧 and 𝑤 are close enough,
then we may use a single effective domain.

Proposition 1. Let 𝑧 ∈ ℂ𝑑∖ℝ𝑑 and 𝑤 ∈ ℂ𝑑 so that ∣𝑤 − 𝑧∣ < ∣ℑ𝑧∣√
𝑑
. Then ℰ𝑧 is an

effective domain of 𝑋 − 𝑤.
Proof. From the discussion after Lemma 1, we first conclude that 𝑋−𝑤 restricted
to the subspace ℰ𝑧 has closed range. For in this case, ∥𝑤 − 𝑧∥ < ∣ℑ𝑧∣. Let 𝑓 ∈ ℰ𝑧;
then

∥(𝑋 − 𝑤)𝑓∥ ≥ ∥(𝑋 − 𝑧)𝑓∥ − ∥(𝑧 − 𝑤)𝑓∥
≥ (∣ℑ𝑧∣ − ∥𝑤 − 𝑧∥)∥𝑓∥.

Since ∥𝑤 − 𝑧∥ < ∣ℑ𝑧∣, this means that 𝑋 − 𝑤 is bounded below on ℰ𝑧 and thus
has closed range.

Now for the sake of argument, suppose that (𝑋−𝑤)ℰ𝑧 is a proper subspace of
ran(𝑋−𝑤). We follow a similar argument as the above theorem. Since dimker((𝑋−
𝑧)∗) = dimker((𝑋 − 𝑤)∗), there is some 𝑣 ∈ ran(𝑋 − 𝑧) with ∥𝑣∥ = 1 so that 𝑣
is orthogonal to (𝑋 − 𝑤)ℰ𝑧 . Then there is 𝜙 ∈ ℰ𝑧 so that (𝑋 − 𝑧)𝜙 = 𝑣, and
∥𝜙∥ ≤ ∣ℑ𝑧∣. Thus for every 𝜓 ∈ ℰ𝑧,

⟨(𝑋 − 𝑧)𝜙, (𝑋 − 𝑤)𝜓⟩ = 0.

Setting 𝜓 = 𝜙, we obtain ∥𝑣∥2+⟨𝑣, (𝑧−𝑤)𝜙⟩ = 0, which contradicts ∥𝑧−𝑤∥ < ∣ℑ𝑧∣.
Since (𝑋−𝑤)ℰ𝑧 is closed, this implies that (𝑋−𝑤)ℰ𝑧 = ran(𝑋−𝑤). Since 𝑋−𝑤
is bounded below, it is injective on ℰ𝑧, so this is an effective domain for 𝑋−𝑤. □

4. Reproducing kernels

For the operator 𝑋 with cyclic vector 1, we assert that the defect index is either 0
or 1, since for any 𝑧 ∈ ℂ𝑑, ℂ ⋅ 1+ (𝑋− 𝑧)ℂ[𝑥] = ℂ[𝑥]. If the defect index is 0, then
1 ∈ ran(𝑋 − 𝑧). If the defect index is 1, then we conclude that 1 /∈ ran(𝑋 − 𝑧),
since if it were, then ran(𝑋− 𝑧) would include the closure of the polynomials, and
thus the range would be all of ℋ. Define 𝜌(𝑧) to be the square of the distance from
1 to the range of 𝑋− 𝑧. Then for any 𝑧 ∈ ℂ𝑑∖ℝ𝑑, 𝜌(𝑧) = 0 if and only if the defect
index is 0.
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Assume that the defect index is 1. Then there is a unique 𝑘𝑧 ∈ ker((𝑋 − 𝑧)∗)
so that ⟨𝑘𝑧 , 1⟩ = 1. This 𝑘𝑧 has the reproducing property: for any 𝑝(𝑥) ∈ ℂ[𝑥],
⟨𝑝(𝑥), 𝑘𝑧⟩ = 𝑝(𝑧). For each 𝑋𝑗,

⟨𝑋𝑗1, 𝑘𝑧⟩ = ⟨𝑥𝑗 − 𝑧𝑗 , 𝑘𝑧⟩ + ⟨𝑧𝑗 , 𝑘𝑧⟩ = 𝑧𝑗 ,
and for each 𝑋𝑗 and 𝑋𝑘,

⟨𝑋𝑗𝑋𝑘1, 𝑘𝑧⟩ = ⟨(𝑥𝑗 − 𝑧𝑗)𝑥𝑘, 𝑘𝑧⟩ + ⟨𝑧𝑗𝑥𝑘, 𝑘𝑧⟩ = 𝑧𝑗𝑧𝑘.
We proceed inductively to achieve ⟨𝑝(𝑥), 𝑘𝑧⟩ = 𝑝(𝑧).

We consider the standard orthonormal polynomials so that 𝑃(0,...,0)(𝑥) = 1,
and deg𝑃𝛼(𝑥) = ∣𝛼∣. These are constructed by applying the Gram-Schmidt process
to the monomials listed in order of nondecreasing degree; see [4] for more details.
For our purposes, any complete orthonormal system of polynomials which contains
the polynomial 𝑝(𝑥) = 1 will suffice. Using ⟨𝑃𝛼(𝑥), 𝑘𝑧⟩ = 𝑃𝛼(𝑧), we obtain the
decomposition

𝑘𝑧(𝑥) =
∑
𝛼∈ℕ𝑑0

𝑃𝛼(𝑧)𝑃𝛼(𝑥), from which follows ∥𝑘𝑧∥2 =
∑
𝛼∈ℕ𝑑0

∣𝑃𝛼(𝑧)∣2.

If we decompose the vector 𝑝(𝑥) = 1 with respect to the complementary
subspaces ran(𝑋−𝑧) and ℂ⋅𝑘𝑧, then the projection onto ℂ⋅𝑘𝑧 will have norm equal
to the distance from 1 to ran(𝑋 − 𝑧). The projection of the polynomial 𝑝(𝑥) = 1

onto ℂ ⋅ 𝑘𝑧 is ⟨1,𝑘𝑧⟩
∥𝑘𝑧∥2 𝑘𝑧 . The norm of this vector is 1

∥𝑘𝑧∥ , hence 𝜌(𝑧) =
1

∥𝑘𝑧∥2 . In the

case 𝑑 = 1, this is consistent with the definition of 𝜌(𝑧) as given in [8] and [1].

The continuity of the polynomials gives the next result.

Theorem 2. The function 𝑧 +→ 𝑘𝑧 on ℂ𝑑∖ℝ𝑑 → ℋ is weakly continuous.

Proof. First assume that ∥𝑘𝑤∥ is uniformly bounded for all 𝑤 in some neighbor-
hood of 𝑧. Since each 𝑝(𝑥) ∈ ℂ[𝑥] is continuous, then as 𝑤 → 𝑧, 𝑝(𝑤) → 𝑝(𝑧), or
in other words ⟨𝑝(𝑥), 𝑘𝑤⟩ → ⟨𝑝(𝑥), 𝑘𝑧⟩. Since 𝑘𝑤 → 𝑘𝑧 weakly with respect to a
dense subset of ℋ and that ∥𝑘𝑤∥ is bounded for all 𝑤 in a neighborhood of 𝑧, this
implies that ⟨𝑓, 𝑘𝑤⟩ → ⟨𝑓, 𝑘𝑧⟩ for every 𝑓 ∈ ℋ.

Now we show that ∥𝑘𝑧∥ is bounded in compact subsets of ℂ𝑑∖ℝ𝑑. For sake of
contradiction, assume not, so there exists 𝑧 ∈ ℂ𝑑∖ℝ𝑑 with 𝑤𝑛 → 𝑧 and ∥𝑘𝑤𝑛∥ > 𝑛.
Without loss of generality, we may assume that ∣𝑧 − 𝑤𝑛∣ < ∣ℑ𝑧∣

2
√
𝑑
for every 𝑛 ∈ ℕ.

Since ∥𝑘𝑤𝑛∥ > 𝑛, the distance between 1 and ran(𝑋 − 𝑤𝑛) is less than 1
𝑛 , and

let 𝑣𝑛 be the projection of the element 1 onto ran(𝑋 − 𝑤𝑛). Note that ∥𝑣𝑛∥ < 1
since ∥1∥ = 1. Since ℰ𝑧 is an effective domain for 𝑋 − 𝑤𝑛, there is some element

𝑓𝑛 ∈ ℰ𝑧 so that (𝑋 − 𝑤𝑛)𝑓𝑛 = 𝑣𝑛. Since 𝑋 − 𝑤𝑛 is bounded below by ∣ℑ𝑧∣
2
√
𝑑
on ℰ𝑧,

this implies that ∥𝑓𝑛∥ < 2
√
𝑑

∣ℑ𝑧∣ . Note that this implies that

∥(𝑤𝑛 − 𝑧)𝑓𝑛∥ ≤
√
𝑑∣𝑤𝑛 − 𝑧∣∥𝑓𝑛∥ < 2𝑑∣𝑤𝑛 − 𝑧∣

∣ℑ𝑧∣ .
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Pick 𝑁 ∈ ℕ so that 𝑛 ≥ 𝑁 implies ∣𝑧 − 𝑤𝑛∣ <
√

𝜌(𝑧)∣ℑ𝑧∣
4𝑑 . Let 𝑛 ∈ ℕ so that

𝑛 > max(𝑁, 2√
𝜌(𝑧)

). Since 𝑛 > 2√
𝜌(𝑧)

, we have

∥1− (𝑋 − 𝑤𝑛)𝑓𝑛∥ <
√
𝜌(𝑧)

2
as well as

∥1 − (𝑋 − 𝑤𝑛)𝑓𝑛∥ ≥ ∥1− (𝑋 − 𝑧)𝑓𝑛∥ − ∥(𝑧 − 𝑤𝑛)𝑓𝑛∥

>
√
𝜌(𝑧)− 2𝑑∣𝑧 − 𝑤𝑛∣

∣ℑ𝑧∣ >
√
𝜌(𝑧)−

√
𝜌(𝑧)

2
.

This contradiction implies that we cannot pick a sequence 𝑤𝑛 → 𝑧 so that ∥𝑘𝑤𝑛∥
is unbounded. Therefore, ∥𝑘𝑤∥ is bounded everywhere for all 𝑤 within some neigh-
borhood of 𝑧. □
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Abstract. We prove that there exist a unitary operator between the super
weighted super Bergman spaces of the super-disk and the super upper plane,
and we find the form of the functions invariant under the action of super reals
over the super upper plane. We prove that, generalizing the parabolic classical
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onal. Finally we prove that the algebra of Toeplitz operators with symbols
invariant under the action of the super reals is commutative.
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1. Introduction

In [6] Grudski, Quiroga and Vasilevski showed that the 𝐶∗-algebra generated by
the Toeplitz operators is commutative on each weighted Bergman space if and only
if there is a pencil of hyperbolic geodesics such that the symbols of the Toeplitz
operators are constant on the cycles of such a pencil. All cycles are, in fact, the
orbits of a one-parameter subgroup of isometries for the hyperbolic geometry on the
unit-disk. This provides us with the following scheme: the 𝐶∗-algebra generated by
Toeplitz operators is commutative on each weighted Bergman space if and only if
there is a maximal commutative subgroup of Möbius transformations such that the
symbols of the Toeplitz operators are invariant under the action of this subgroup.

Others similar results on the sphere, ball, Reihart domains can be found in
[11, 12, 13, 14].

In [2, 3] Borthwick, Klimek, Lesniewski and Rinaldi introduced a general
theory of the non-perturbative quantization of a class of hermitian symmetric
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super-manifolds. The quantization scheme is based on the notion of a Toeplitz
super-operator on a suitable ℤ2-graded Hilbert space of super-holomorphic func-
tions. The quantized super-manifold arises as the ℂ∗-algebra generated by such
operators. The authors made the quantization on the super-plane, super-disk, and
Cartan super-domains.

In [10] we study commutative algebras of Toeplitz operators on the super-
disk and we analyze the generalization corresponding to a classical elliptic case
(symbols are invariant under the action of the circle), this generalization consists
in two cases: symbols invariant under the action of the super circle.

The aim of this article is to continue the study of commutative algebras of
super Toeplitz operators, now we work on the super upper plane and we analyze the
generalization corresponding to a classical parabolic case (symbols are invariant
under the action of the reals), this generalization consists in taking the symbols
invariant under the action of super reals.

This article is organized as follows. In Section 2, we present some results about
Toepliz operators over the super-disk. In Section 3, we give a unitary operator
between the Bergman space of the super-disk and the respective Bergman space of
the super upper plane. Thus, we find the form of the Bergman kernel on the super
upper plane and we give the form of the Toeplitz operators on the super upper
plane, which are unitarily equivalent to the Toeplitz operators on super-disk. In
Section 4, we find the explicit form of the functions invariant under the action of
super reals. Finally, in Section 5, we prove that every Toeplitz operator with super
real invariant symbol is equivalent to multiplication operator. Therefore the 𝐶∗

algebra generated by this operators is commutative.

2. Toeplitz operators on the super-disk

We present here the main results for the unit-disk, for more details we refer to
[9]. Let 𝒪(𝔹) denote the algebra of all holomorphic functions 𝜓(𝑧) on the open
unit-disk

𝔹 := {𝑧 ∈ ℂ : ∣𝑧∣ < 1}.
Let Λ1 denote the complex Grassmann algebra with generator 𝜁, satisfying the
relation 𝜁2 = 0. Thus

Λ1 = ℂ⟨1, 𝜁⟩.
The tensor product algebra

𝒪(𝔹1∣1) := 𝒪(𝔹) ⊗ Λ1 = 𝒪(𝔹)⟨1, 𝜁⟩
consists of all “super-holomorphic” functions

Ψ = 𝜓0 + 𝜁𝜓1

with 𝜓0, 𝜓1 ∈ 𝒪(𝔹). We sometimes write

Ψ(𝑧, 𝜁) = 𝜓0(𝑧) + 𝜁𝜓1(𝑧)

for all 𝑧 ∈ 𝔹.
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Definition 2.1. For 𝜈 > 1, the weighted Bergman space

𝐻2
𝜈 (𝔹) := 𝒪(𝔹) ∩ 𝐿2(𝔹, 𝑑𝜇𝜈)

consists of all holomorphic functions on 𝔹 which are square-integrable for the
probability measure

𝑑𝜇𝜈(𝑧) =
𝜈 − 1

𝜋
(1 − ∣𝑧∣2)𝜈−2𝑑𝑧. (2.1)

Where 𝑑𝑧 denotes the Lebesgue measure on ℂ.

It is well known [8] that 𝐻2
𝜈 (𝔹) has the reproducing kernel

𝐾𝜈(𝑧, 𝑤) = (1 − 𝑧𝑤)−𝜈

for all 𝑧, 𝑤 ∈ 𝔹. Let Λℂ
1 denote the complex Grassmann algebra with 2 generators

𝜁, 𝜁 satisfying

𝜁2 = 𝜁
2
= 0, 𝜁𝜁 = −𝜁𝜁.

Thus,

Λℂ

1 = ℂ⟨1, 𝜁, 𝜁, 𝜁 𝜁⟩ = Λ1⟨1, 𝜁⟩.
Let 𝒞(𝔹) denote the algebra of continuous functions on 𝔹. The tensor product

𝒞(𝔹1∣1) := 𝒞(𝔹) ⊗ Λℂ

1 = 𝒞(𝔹)⟨1, 𝜁, 𝜁, 𝜁𝜁⟩
consists of all “continuous super-functions”

𝐹 = 𝑓00 + 𝜁 𝑓10 + 𝜁 𝑓01 + 𝜁𝜁 𝑓11 , (2.2)

where 𝑓00, 𝑓10, 𝑓01, 𝑓11 ∈ 𝒞(𝔹). The involution on 𝒞(𝔹1∣1) is given by

𝐹 = 𝑓00 + 𝜁 𝑓10 + 𝜁 𝑓01 + 𝜁𝜁 𝑓11

where 𝑓(𝑧) := 𝑓(𝑧) (pointwise conjugation).

The algebra 𝒞(𝔹1∣1) contains 𝒪(𝔹1∣1) as a subalgebra, and for Ψ = 𝜓0+𝜁 𝜓1 ∈
𝒪(𝔹1∣1) we have

ΨΨ = 𝜓0𝜓0 + 𝜁 𝜓0 𝜓1 + 𝜁 𝜓1 𝜓0 + 𝜁𝜁 𝜓1 𝜓1.

Given a super-function 𝐹 ∈ 𝒞(𝔹1∣1), we define its Berezin integral∫
ℂ0∣1

𝑑𝜁 𝐹 := 𝑓11 ∈ 𝒞(𝔹)

and ∫
𝔹1∣1

𝑑𝑧 𝑑𝜁 𝐹 (𝑧, 𝜁) :=

∫
𝔹

𝑑𝑧

∫
ℂ0∣1

𝑑𝜁 𝐹 (𝑧, 𝜁) =

∫
𝔹

𝑑𝑧 𝑓11(𝑧). (2.3)

Thus the “fermionic integration” is determined by the rules∫
ℂ0∣1

𝑑𝜁 ⋅ 𝜁 =
∫

ℂ0∣1

𝑑𝜁 ⋅ 𝜁 =
∫

ℂ0∣1

𝑑𝜁 ⋅ 1 = 0 ,

∫
ℂ0∣1

𝑑𝜁 ⋅ 𝜁𝜁 = 1.
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As an example, we have∫
𝔹1∣1

𝑑𝑧 𝑑𝜁 𝐹 (𝑧, 𝜁)𝐹 (𝑧, 𝜁)

=

∫
𝔹

𝑑𝑧(𝑓00(𝑧) 𝑓11(𝑧) + 𝑓11(𝑧) 𝑓00(𝑧)− 𝑓10(𝑧) 𝑓10(𝑧) + 𝑓01(𝑧) 𝑓01(𝑧)),

which shows that the (unweighted) Berezin integral is not positive. For Ψ = 𝜓0 +
𝜁𝜓1 ∈ 𝒪(𝔹1∣1), we see that∫

𝔹1∣1

𝑑𝑧 𝑑𝜁 Ψ(𝑧, 𝜁)Ψ(𝑧, 𝜁) =

∫
𝔹1

𝑑𝑧 𝜓1(𝑧)𝜓1(𝑧)

is positive, but not positive definite since the 𝜓0 term is not present.

Definition 2.2. For any parameter 𝜈 > 1 the (weighted) super-Bergman space

𝐻2
𝜈 (𝔹

1∣1) ⊂ 𝒪(𝔹1∣1)

consists of all super-holomorphic functions Ψ(𝑧, 𝜁) which satisfy the square-inte-
grability condition

(Ψ∣Ψ)𝜈 :=
1

𝜋

∫
𝔹1∣1

𝑑𝑧 𝑑𝜁 (1 − 𝑧𝑧 − 𝜁𝜁)𝜈−1Ψ(𝑧, 𝜁)Ψ(𝑧, 𝜁) < +∞.

Proposition 2.3. For Ψ = 𝜓0 + 𝜁 𝜓1 ∈ 𝒪(𝔹1∣1) we have
1

𝜋

∫
𝔹1∣1

𝑑𝑧 𝑑𝜁 (1 − 𝑧𝑧 − 𝜁𝜁)𝜈−1Ψ(𝑧, 𝜁)Ψ(𝑧, 𝜁) = (𝜓0∣𝜓0)𝜈 +
1

𝜈
(𝜓1∣𝜓1)𝜈+1 ,

i.e., there exists an orthogonal decomposition

𝐻2
𝜈 (𝔹

1∣1) = 𝐻2
𝜈 (𝔹) ⊕ [𝐻2

𝜈+1(𝔹) ⊗ Λ1(ℂ1)]

into a sum of weighted Bergman spaces, where Λ1(ℂ1) is the one-dimensional
vector space with basis vector 𝜁.

Proposition 2.4. For Ψ = 𝜓0 + 𝜁 𝜓1 ∈ 𝐻2
𝜈 (𝔹

1∣1) we have the reproducing kernel
property

Ψ(𝑧, 𝜁) =
1

𝜋

∫
𝔹1∣1

𝑑𝑤 𝑑𝜔 (1 − 𝑤𝑤 − 𝜔𝜔)𝜈−1(1 − 𝑧𝑤 − 𝜁𝜔)−𝜈Ψ(𝑤, 𝜔),

i.e., 𝐻2
𝜈 (𝔹

1∣1) has the reproducing kernel

𝐾𝜈(𝑧, 𝜁, 𝑤, 𝜔) = (1 − 𝑧𝑤 − 𝜁𝜔)−𝜈 .

For 𝐹 ∈ 𝒞(𝔹1∣1), the super-Toeplitz operator 𝑇 (𝜈)𝐹 on 𝐻2
𝜈 (𝔹

1∣1) is defined as

𝑇
(𝜈)
𝐹 Ψ = 𝑃 (𝜈)(𝐹Ψ),

where 𝑃 (𝜈) denotes the orthogonal projection onto 𝐻2
𝜈 (𝔹

1∣1).
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Theorem 2.5. With respect to the decomposition Ψ = 𝜓0+ 𝜁 𝜓1, the super-Toeplitz

operator 𝑇
(𝜈)
𝐹 on 𝐻2

𝜈 (𝔹
1∣1) is given by the block matrix

𝑇
(𝜈)
𝐹 =

(
𝑇 𝜈
𝜈

(
𝑓00 +

1−𝑤𝑤
𝜈−1 𝑓11

)
𝑇 𝜈+1
𝜈

(
1−𝑤𝑤
𝜈−1 𝑓10

)
𝑇 𝜈
𝜈+1 (𝑓01) 𝑇 𝜈+1

𝜈+1 (𝑓00)

)
. (2.4)

Here 𝑇 𝜈+𝑗
𝜈+𝑖 (𝑓), for 0 ≤ 𝑖, 𝑗 ≤ 1, denotes the Toeplitz type operator from 𝐻2

𝜈+𝑗(𝔹)

to 𝐻2
𝜈+𝑖(𝔹) defined by

𝑇 𝜈+𝑗
𝜈+𝑖 (𝑓)𝜓 := 𝑃𝜈+𝑖(𝑓𝜓)

for 𝜓 ∈ 𝐻2
𝜈+𝑗(𝔹) and 𝑃𝜈+𝑖 is the orthogonal projection from 𝐿

2
𝜈+𝑖(𝔹) onto𝐻

2
𝜈+𝑖(𝔹).

3. Toeplitz operators on the super upper half-plane

In this section we present the relationship between the super-disk and the super-
plane, and its respective Bergman space.

The super upper half-plane ℍ
1∣1

is the supermanifold (𝐻,𝒪), where ℍ =
{𝑧 ∈ ℂ : Im𝑧 > 0}, and where 𝒪 is the sheaf of superalgebras on 𝐻 whose space

of global sections is 𝐶∞(ℍ
1∣1

) = 𝐶∞(𝐻)⊗⋀(ℂ) where ⋀(ℂ) denotes the exterior
algebra over ℂ = ℝ2. We denotes the standard generators of

⋀
(ℂ) by 𝜂 and 𝜂.

Thus, an element 𝑓 ∈ 𝐶∞(ℍ
1∣1

) can be written as

𝑓(𝑧, 𝜁, 𝜁) = 𝑓00(𝑧) + 𝑓00(𝑧)𝜁 + 𝑓00(𝑧)𝜁 + 𝑓00(𝑧)𝜁𝜁

where 𝑓𝑖𝑗 ∈ 𝐶∞(𝐻).
Now we see that there exists a diffeomorphism of supermanifolds between the

super-disk and super upper half-plane.
We define the super matrix

𝜓 =

⎛⎜⎝
1√
2

𝑖√
2

0
𝑖√
2

1√
2

0

0 0 1

⎞⎟⎠
where Ber(𝜓) = 1.

Moreover, the inverse matrix is given by

𝜓−1 =

⎛⎜⎝
1√
2

−𝑖√
2

0
−𝑖√
2

1√
2

0

0 0 1

⎞⎟⎠ .
The matrix 𝜓 induces a morphism from the super-disk 𝔹

1∣1
to the super

upper half-plane ℍ
1∣1

defined by 𝜓(𝑧, 𝜁) = (𝑤, 𝜂) where

𝑤 =
𝑧 + 𝑖

𝑖𝑧 + 1
and 𝜂 =

𝜁
√
2

𝑖𝑧 + 1
. (3.1)
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Similarly, the inverse matrix induces the inverse function given by 𝜓−1(𝑤,𝜂)=
(𝑧,𝜃) where

𝑧 =
𝑤 − 𝑖

−𝑖𝑤 + 1
and 𝜁 =

𝜂
√
2

−𝑖𝑤 + 1
. (3.2)

The Lie super-group 𝑆𝐿(2∣2)(ℝ) is defined as follows, its base manifold is
𝑆𝐿2(ℝ) and its structure sheaf is generated by 𝛾𝑖𝑗 and 𝛾𝑖𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 3, with
the following parity assignments:

∣𝛾𝑖𝑗 ∣ = ∣𝛾𝑖𝑗 ∣ =
{

0, if 1 ≤ 𝑖, 𝑗 ≤ 2 and 𝑖 = 𝑗 = 3,

1, otherwise.
(3.3)

This means that, if ∣𝛾𝑖𝑗 ∣ = 0 then 𝛾𝑖𝑗 is an even super-number, in other case 𝛾𝑖𝑗 is
odd.

Let 𝛾 = {𝛾𝑖𝑗} denote the super-matrix with entries 𝛾𝑖𝑗 and let 𝛾∗ be its
hermitian adjoint, where 𝛾∗

𝑖𝑗 = 𝛾𝑗𝑖.

For 𝛾 ∈ 𝑆𝐿(2∣2)(ℝ) we assume that

𝛾∗𝐼𝛾 = 𝐼, (3.4)

where

𝐼 =

⎛⎝ 0 −𝑖 0
𝑖 0 0
0 0 −1

⎞⎠ , (3.5)

and that

Ber𝛾 = 1, (3.6)

where Ber denotes the Berezinian (see, [1]).
The above conditions are the relations defining the structure sheaf of

𝑆𝐿(2∣2)(ℝ). Multiplication is defined in the obvious way. We defined an action of

𝑆𝐿(2∣2)(ℝ) on ℍ
1∣1

as follows

𝑧 → 𝑧′ :=
𝛾11𝑧 + 𝛾12 + 𝛾13𝜃

𝛾21𝑧 + 𝛾22 + 𝛾23𝜃
,

𝜃 → 𝜃′ :=
𝛾31𝑧 + 𝛾32 + 𝛾33𝜃

𝛾21𝑧 + 𝛾22 + 𝛾23𝜃
. (3.7)

The expression (𝛾21𝑧 + 𝛾22 + 𝛾23𝜃)
−1 is defined in terms of the Taylor series for

super-functions (see, [1]) by

(𝛾21𝑧 + 𝛾22 + 𝛾23𝜃)
−1 =

1

𝛾21𝑧 + 𝛾22
− 𝛾23

(𝛾21𝑧 + 𝛾22)2
𝜃.

By a slight abuse of notation, we write (3.7) as 𝑍 ′ = (𝑧′, 𝜃′) = 𝛾(𝑍).

Remark 3.1. The super group 𝑆𝑈(1, 1∣1) is defined in [2] and we can even prove
that 𝑆𝐿(2∣2)(ℝ) is isomorphic to 𝑆𝑈(1, 1∣1), where the isomorphism is given by

𝛾 −→ 𝜓𝛾𝜓−1. (3.8)
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Let 𝛾 ∈ 𝑆𝑈(1, 1∣1) such that 𝛾∗𝐽𝛾 = 𝐽 , by the above map 𝛽 = 𝜓𝛾𝜓−1 or
𝛾 = 𝜓−1𝛽𝜓, then

(𝜓−1𝛽𝜓)∗𝐽𝜓−1𝛽𝜓 = 𝐽.

Equivalently

𝛽∗𝜓𝐽𝜓−1𝛽 = 𝜓𝐽𝜓−1,

where

𝐼 = 𝜓

⎛⎝ 1 0 0
0 −1 0
0 0 −1

⎞⎠𝜓−1 =

⎛⎝ 0 −𝑖 0
𝑖 0 0
0 0 −1

⎞⎠ .
Therefore, we have that 𝛽 ∈ 𝑆𝐿(2∣2)(ℝ) and the morphism given by (3.8) is

isomorphism.

If there exists a morphism 𝛾 between super domains then we defined

𝛾′(𝑍) = Ber

(
∂𝑧′
∂𝑧

∂𝜃′
∂𝑧

∂𝑧′
∂𝜃

∂𝜃′
∂𝜃

)
= Ber

∂𝑍 ′

∂𝑍
. (3.9)

for more details see [1].

Lemma 3.2. Let 𝑍1 = (𝑧1, 𝜁), 𝑧2 = (𝑧2, 𝜁2), 𝜓(𝑍1) = (𝑤1, 𝜂1) = 𝑊1 and 𝜓(𝑍2) =
(𝑤2, 𝜂2) =𝑊2 where 𝜓 is given by (3.1) then,

𝑤1 − 𝑤2
𝑖

− 𝜂1𝜂2 = (1 + 𝑧1𝑧2 − 𝜁1𝜁2)𝜓′(𝑍1)𝜓′(𝑍2), (3.10)

(1 + 𝑧1𝑧2 − 𝜁1𝜁2) = (
𝑤1 − 𝑤2
𝑖

− 𝜂1𝜂2)(𝜓−1)′(𝑊1)(𝜓−1)′(𝑊2). (3.11)

Proof. We calculate the Berezian of the Jacobian matrix

𝜓′(𝑍𝑗) = Ber

(
2(𝑖𝑧𝑗 + 1)−2 −√

2𝑖𝜁𝑗(𝑖𝑧𝑗 + 1)−2

0
√
2(𝑖𝑧𝑗 + 1)−1

)
=

√
2

𝑖𝑧𝑗 + 1

where 𝑗 = 1, 2.
Using the above and substituting 𝜓(𝑍𝑗) = (𝑤𝑗 , 𝜂𝑗) on the left-hand side of

equation (3.10) as follows

𝑤1 − 𝑤2
𝑖

− 𝜂1𝜂2 = 1

𝑖

(
𝑧1 + 𝑖

𝑖𝑧1 + 1
−
(
𝑧2 + 𝑖

𝑖𝑧2 + 1

))
− 𝜁1

√
2

𝑖𝑧1 + 1

(
𝜁2

√
2

𝑖𝑧2 + 1

)

=
1

(𝑖𝑧1 + 1)(−𝑖𝑧2 + 1)

(
1

𝑖
((𝑧1 + 𝑖)(−𝑖𝑧2 + 1)− (𝑧2 − 𝑖)(𝑖𝑧1 + 1)) − 2𝜁1𝜁2

)
=

1

(𝑖𝑧1 + 1)(−𝑖𝑧2 + 1)

(
1

𝑖
(−𝑖𝑧2𝑧1 + 𝑧1 + 𝑧2 + 𝑖− 𝑖𝑧2𝑧1 − 𝑧1 − 𝑧2 + 𝑖)− 2𝜁1𝜁2

)
=

1

(𝑖𝑧1 + 1)(−𝑖𝑧2 + 1)
(2 − 2𝑧1𝑧2 − 2𝜁1𝜁2) = (1 − 𝑧1𝑧2 − 𝜁1𝜁2)𝜓′(𝑍1)𝜓′(𝑍2).

Analogously by equation 3.11. □
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In [2] it was proved that the measure invariant under the action of 𝑆𝑈(1,1∣1) is
1

𝜋
(1 − 𝑧𝑧 − 𝜃𝜃)−1𝑑𝑧𝑑𝑧𝑑𝜃𝑑𝜃.

By Lemma 3.2 and equation (3.8), we have that the invariant measure of the
super-disk corresponds to the measure of the super upper half-plane as follows

1

𝜋
(1 − 𝑧𝑧 − 𝜃𝜃)−1𝑑𝑧𝑑𝑧𝑑𝜃𝑑𝜃 =

1

𝜋
(2Im𝑤 − 𝜂𝜂)−1𝑑𝑤𝑑𝑤𝑑𝜂𝑑𝜂

where 𝜓(𝑧, 𝜃) = (𝑤, 𝜂). Moreover, the measure of the plane is invariant under the
action of the group 𝑆𝐿(2∣2)(ℝ).

Definition 3.3. For 𝜈 > 1, the weighted Bergman space

𝐻2
𝜈 (ℍ) := 𝒪(ℍ) ∩ 𝐿2(ℍ, 𝑑𝜔𝜈)

consists of all holomorphic functions on ℍ which are square-integrable for the
probability measure.

𝑑𝜔𝜈(𝑧) =
𝜈 − 1

𝜋
(𝑧 − 𝑧)𝜈−2𝑑𝑧. (3.12)

where 𝑑𝑧 denotes Lebesgue measure on ℂ.

It is well known (see for example [16]) that 𝐻2
𝜈 (ℍ) has the reproducing kernel

𝐾𝜈(𝑧, 𝑤) = (𝑧 − 𝑤̄)−𝜈

for all 𝑧, 𝑤 ∈ ℍ.
Let 𝒞(ℍ) denote the algebra of continuous functions on ℍ.
The tensor product

𝒞(ℍ1∣1
) := 𝒞(ℍ) ⊗

⋀
ℂ

consists of all “continuous super-functions”

𝐹 = 𝑓00 + 𝜁 𝑓10 + 𝜁 𝑓01 + 𝜁𝜁 𝑓11 , (3.13)

where 𝑓00, 𝑓10, 𝑓01, 𝑓11 ∈ 𝒞(ℍ).

Definition 3.4. For any parameter 𝜈 > 1 the (weighted) super-Bergman space

𝐻2
𝜈 (ℍ

1∣1) ⊂ 𝒪(ℍ1∣1)

consists of all super-holomorphic functions Ψ(𝑧, 𝜁) that satisfy the square-inte-
grability condition

(Ψ∣Ψ)𝜈 :=
1

𝜋

∫
ℍ1∣1

𝑑𝑧 𝑑𝜁 (2Im(𝑧) − 𝜁𝜁)𝜈−1Ψ(𝑧, 𝜁)Ψ(𝑧, 𝜁) < +∞.

Proposition 3.5. For Ψ = 𝜓0 + 𝜁 𝜓1 ∈ 𝒪(ℍ1∣1) we have

1

𝜋

∫
ℍ1∣1

𝑑𝑧 𝑑𝜁 (2Im(𝑧)− 𝜁𝜁)𝜈−1Ψ(𝑧, 𝜁)Ψ(𝑧, 𝜁) = (𝜓0∣𝜓0)𝜈 +
1

𝜈
(𝜓1∣𝜓1)𝜈+1 ,
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i.e., there is an orthogonal decomposition

𝐻2
𝜈 (ℍ

1∣1) = 𝐻2
𝜈 (ℍ) ⊕ [𝐻2

𝜈+1(ℍ) ⊗ Λ1(ℂ1)]

into a sum of weighted Bergman spaces, where Λ1(ℂ1) is the one-dimensional
vector space with basis vector 𝜁.

Let us now introduce the operator 𝑈𝜈 : 𝐻2
𝜈 (𝔹

1∣1) −→ 𝐻2
𝜈 (ℍ

1∣1) by the rule

(𝑈𝜈Ψ)(𝑤, 𝜔) = Ψ

(
𝑤 − 𝑖
1 − 𝑖𝑤 ,

√
2𝜔

1 − 𝑖𝑤

)( √
2

1 − 𝑖𝑤

)𝜈

and its inverse 𝑈−1
𝜈 : 𝐻2

𝜈 (ℍ
1∣1) −→ 𝐻2

𝜈 (𝔹
1∣1) which is given by

(𝑈−1
𝜈 Ψ)(𝑧, 𝜁) = Ψ

(
𝑧 + 𝑖

1 + 𝑖𝑧
,

√
2𝜁

1 + 𝑖𝑧

)( √
2

1 + 𝑖𝑧

)𝜈

.

We check now that the operator 𝑈𝜈 is unitary,

⟨Ψ1(𝑧, 𝜁), 𝑈
−1
𝜈 (Ψ2)(𝑧, 𝜁)⟩𝐻2

𝜈 (𝔹
1∣1)

=
1

𝜋

∫
𝔹1∣1

𝑑𝑧 𝑑𝜁 (1 − 𝑧𝑧 − 𝜁𝜁)𝜈−1Ψ1(𝑧, 𝜁)Ψ2

(
𝑧 + 𝑖

1 + 𝑖𝑧
,

√
2𝜁

1 + 𝑖𝑧

)( √
2

1 + 𝑖𝑧

)𝜈

=
1

𝜋

∫
ℍ1∣1

𝑑𝑤 𝑑𝜂

( √
2

1 − 𝑖𝑤

)( √
2

1 + 𝑖𝑤̄

)(
𝑤 − 𝑤̄
𝑖

− 𝜂𝜂
)𝜈−1

( √
2

1 − 𝑖𝑤

)𝜈−1( √
2

1 − 𝑖𝑤

)𝜈−1

Ψ1

(
𝑤 − 𝑖
1 − 𝑖𝑤 ,

√
2𝜂

1 − 𝑖𝑤

)
Ψ2 (𝑤, 𝜂)

(
1 − 𝑖𝑤√

2

)𝜈

=
1

𝜋

∫
ℍ1∣1

𝑑𝑤 𝑑𝜂

(
𝑤 − 𝑤̄
𝑖

− 𝜂𝜂
)𝜈−1

( √
2

1 − 𝑖𝑤

)𝜈

Ψ1

(
𝑤 − 𝑖
1 − 𝑖𝑤 ,

√
2𝜂

1 − 𝑖𝑤

)
Ψ2 (𝑤, 𝜂)

= ⟨𝑈𝜈(Ψ1)(𝑤, 𝜂),Ψ2(𝑤, 𝜂)⟩𝐻2
𝜈 (ℍ

1∣1).

Proposition 3.6. For Ψ = 𝜓0 + 𝜂 𝜓1 ∈ 𝐻2
𝜈 (ℍ

1∣1) we have the reproducing kernel
property

Ψ(𝑤, 𝜂) =
1

𝜋

∫
ℍ1∣1

𝑑𝑥 𝑑𝜉 (2Im(𝑥) − 𝜉𝜉)𝜈−1

(
𝑤 − 𝑥
𝑖

− 𝜂𝜉
)−𝜈

Ψ.(𝑥, 𝜉),

i.e., 𝐻2
𝜈 (ℍ

1∣1) has the reproducing kernel

𝐾𝜈(𝑤, 𝜂, 𝑥, 𝜉) =

(
𝑤 − 𝑥̄
𝑖

− 𝜂𝜉
)−𝜈

.

Proof. The Bergman projection 𝐵ℍ1∣1,𝜈 clearly has the form

𝐵ℍ1∣1,𝜈 = 𝑈𝜈𝐵𝔹1∣1,𝜈𝑈
−1
𝜈 .
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Note that 𝜓(𝑧, 𝜁) = (𝑤, 𝜂) ,𝜓(𝑢, 𝜐) = (𝑥, 𝜉) and 𝜓−1(𝑤, 𝜂) = (𝑧, 𝜁), 𝜓−1(𝑣, 𝜉) =
(𝑢, 𝜐) given by equations (3.1) and (3.2).

Calculate

𝑈𝜈𝐵𝔹1∣1,𝜈𝑈
−1
𝜈 (Ψ)(𝑤, 𝜂)

=

( √
2

1 − 𝑖𝑤

)𝜈
1

𝜋

∫
𝔹1∣1

𝑑𝑢 𝑑𝜐 (1 − 𝑢𝑢− 𝜐𝜐)𝜈−1(1 − 𝑧𝑢− 𝜁𝜐)−𝜈

Ψ

(
𝑢+ 𝑖

1 + 𝑖𝑢
,

√
2𝜐

1 + 𝑖𝑢

)( √
2

1 + 𝑖𝑢

)𝜈

=
1

𝜋

∫
𝔹1∣1

𝑑𝑥 𝑑𝜉 (Im(𝑥) − 𝜉𝜉)𝜈−1

(
𝑤 − 𝑥̄
𝑖

− 𝜂𝜉
)−𝜈

Ψ(𝑥, 𝜉) . □

For 𝐹 ∈ 𝒞(ℍ1∣1
), the super-Toeplitz operator 𝑇

(𝜈)
𝐹 on 𝐻2

𝜈 (ℍ
1∣1) is defined as

𝑇
(𝜈)
𝐹 Ψ = 𝑃 (𝜈)(𝐹Ψ),

where 𝑃 (𝜈) denotes the orthogonal projection onto 𝐻2
𝜈 (ℍ

1∣1).

Theorem 3.7. With respect to the decomposition Ψ = 𝜓0+ 𝜁 𝜓1, the super-Toeplitz

operator 𝑇
(𝜈)
𝐹 on 𝐻2

𝜈 (ℍ
1∣1) is given by the block matrix

𝑇
(𝜈)
𝐹 =

(
𝑇 𝜈
𝜈

(
𝑓00 +

2Im(𝑤)
𝜈−1 𝑓11

)
𝑇 𝜈+1
𝜈

(
2Im(𝑤)
𝜈−1 𝑓10

)
𝑇 𝜈
𝜈+1 (𝑓01) 𝑇 𝜈+1

𝜈+1 (𝑓00)

)
. (3.14)

Here for 0 ≤ 𝑖, 𝑗 ≤ 1, 𝑇 𝜈+𝑗
𝜈+𝑖 (𝑓) denotes the Toeplitz type operator from 𝐻

2
𝜈+𝑗(ℍ)

to 𝐻2
𝜈+𝑖(𝔹) defined by

𝑇 𝜈+𝑗
𝜈+𝑖 (𝑓)𝜓 := 𝑃𝜈+𝑖(𝑓𝜓),

for 𝜓∈𝐻2
𝜈+𝑗(ℍ) and 𝑃𝜈+𝑖 is the orthogonal projection from 𝐿

2
𝜈+𝑖(𝔹) onto 𝐻

2
𝜈+𝑖(ℍ).

Proof. First we expand the follows expressions

(2Im(𝑧)− 𝜂𝜂)𝜈−1 = (2Im(𝑧))𝜈−1 − (𝜈 − 1)(2Im(𝑧))𝜈−2𝜁𝜁,(
𝑤 − 𝑧
𝑖

− 𝜂𝜁
)−𝜈

=

(
𝑤 − 𝑧
𝑖

)−𝜈

+ 𝜈

(
𝑤 − 𝑧
𝑖

)−(𝜈+1)

𝜂𝜁.

Now the Toeplitz operator with symbol 𝐹 applied to Ψ is given by

𝑇
(𝜈)
𝐹 (𝜓0(𝑧) + 𝜁 𝜓1(𝑧))(𝑤, 𝜂) =

1

𝜋

∫
ℍ1∣1

(2Im(𝑧)− 𝜁𝜁)𝜈−1

(
𝑤 − 𝑧
𝑖

− 𝜂𝜁
)−𝜈

(𝑓00(𝑧) + 𝜁 𝑓10(𝑧) + 𝜁 𝑓01(𝑧) + 𝜁𝜁 𝑓11(𝑧))(𝜓0(𝑧) + 𝜁 𝜓1(𝑧))𝑑𝑧 𝑑𝜁.
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Equivalently,

𝑇
(𝜈)
𝐹 (Ψ)(𝑤, 𝜂) =

𝜈 − 1

𝜋

∫
ℍ

𝑓00(𝑧)𝜓0(𝑧)(2Im(𝑧))𝜈−2

(
𝑤 − 𝑧
𝑖

)−𝜈

𝑑𝑧 (3.15)

+
1

𝜋

∫
ℍ

𝑓11(𝑧)𝜓0(𝑧)(2Im(𝑧))𝜈−1

(
𝑤 − 𝑧
𝑖

)−𝜈

𝑑𝑧

+
1

𝜋

∫
ℍ

𝑓10(𝑧)𝜓1(𝑧)(2Im(𝑧))𝜈−1

(
𝑤 − 𝑧
𝑖

)−𝜈

𝑑𝑧

+

⎛⎝𝜈
𝜋

∫
ℍ

𝑓01(𝑧)𝜓0(𝑧)(2Im(𝑧))𝜈−1

(
𝑤 − 𝑧
𝑖

)−(𝜈+1)

𝑑𝑧

⎞⎠ 𝜂
+

⎛⎝𝜈
𝜋

∫
ℍ

𝑓00(𝑧)𝜓1(𝑧)(2Im(𝑧))𝜈−1

(
𝑤 − 𝑧
𝑖

)−(𝜈+1)

𝑑𝑧

⎞⎠ 𝜂.
Using the above equation and by how 𝑇 𝜈+𝑗

𝜈+𝑖 (𝑓) is defined, we obtain the
result. □

4. The super group ℝ1∣1

The super group ℝ1∣1 can be seen as the subgroup of the supergroup 𝑆𝐿(2∣2)(ℝ)
is defined by

𝑀(ℎ, 𝜏) =

⎛⎝ 1 ℎ 𝜏
0 1 0
0 −𝑖𝜏 1

⎞⎠
where 𝜏∗ = 𝜏 and ℎ ∈ ℝ.

We show that 𝑀(ℎ, 𝜏) ∈ 𝑆𝐿(2∣2)(ℝ)

𝑀(ℎ, 𝜏)∗𝐼𝑀(ℎ, 𝜏) =

⎛⎝ 1 0 0
ℎ 1 𝑖𝜏
𝜏 0 1

⎞⎠⎛⎝ 0 −𝑖 0
𝑖 0 0
0 0 −1

⎞⎠⎛⎝ 1 ℎ 𝜏
0 1 0
0 −𝑖𝜏 1

⎞⎠
=

⎛⎝ 0 −𝑖 0
𝑖 0 0
0 0 −1

⎞⎠ .
We prove that the product of elements in ℝ1∣1 belong in ℝ1∣1, i.e.,⎛⎝ 1 ℎ1 𝜏1

0 1 0
0 −𝑖𝜏1 1

⎞⎠⎛⎝ 1 ℎ2 𝜏2
0 1 0
0 −𝑖𝜏2 1

⎞⎠ =

⎛⎝ 1 ℎ1 + ℎ2 𝜏1 + 𝜏2
0 1 0
0 𝑖(𝜏1 + 𝜏2) 1

⎞⎠ .
Therefore the action of ℝ1∣1 on the ℍ1∣1 is given by 𝑀(ℎ, 𝜏)(𝑧, 𝜁) = (𝑤, 𝜂) where

𝑤 = 𝑧 + ℎ+ 𝜏𝜁 and 𝜂 = −𝑖𝜏 + 𝜁
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Theorem 4.1. Let 𝑓 be a smooth function on the super upper half-plane. If 𝑓 is
invariant under the action of ℝ1∣1. Then 𝑓 has the form

𝑓(𝑧, 𝜁) = 𝑓0(𝑦) + 𝑓1(𝑦)𝜁 + 𝑓1(𝑦)𝜁 +
𝑓 ′
0(𝑦)

2
𝜁𝜁. (4.1)

Proof. A smooth function 𝑓 on the super upper half-plane has the form

𝑓(𝑧, 𝜁) = 𝑓00(𝑧) + 𝑓10(𝑧)𝜁 + 𝑓01(𝑧)𝜁 + 𝑓11(𝑧)𝜁𝜁,

where 𝑓𝑖𝑗 are smooth functions.

Now, we want to find the ℝ1∣1-invariant function on the super-plane, i.e.,

𝑓(𝑧, 𝜁) = 𝑓(𝑧 + ℎ+ 𝜏𝜁,−𝑖𝜏 + 𝜁).
First we take the elements of the form 𝑀(ℎ, 0), then 𝑓 is invariant under the

action of those elements if 𝑓 satisfies the follows equation

𝑓00(𝑧) + 𝑓10(𝑧)𝜁 + 𝑓01(𝑧)𝜁 + 𝑓11(𝑧)𝜁𝜁

= 𝑓00(𝑧 + ℎ) + 𝑓10(𝑧 + ℎ)𝜁 + 𝑓01(𝑧 + ℎ)𝜁 + 𝑓11(𝑧 + ℎ)𝜁𝜁.

By the above equation, we have that the functions 𝑓𝑖𝑗 depend on the 𝑦 where
𝑦 =Im(𝑧). Therefore, we obtain that 𝑓 has the form

𝑓(𝑧, 𝜁) = 𝑓00(𝑦) + 𝑓10(𝑦)𝜁 + 𝑓01(𝑦)𝜁 + 𝑓11(𝑦)𝜁𝜁 (4.2)

where 𝑦 is the imaginary part of 𝑧.
Now, we consider the action of elements of the form 𝑀(0, 𝜏), then

𝑤 = 𝑧 + 𝜏𝜁 and 𝜂 = −𝑖𝜏 + 𝜁
and we note that

Im(𝑤) = Im(𝑧) +
𝜏(𝜁 + 𝜁)

2𝑖
.

We take a function 𝑓 that depends on Im(𝑧), then we define ℎ(Im(𝑤)) in
term of Taylor series for super function (see [1]), thus

ℎ(Im(𝑤)) = ℎ(𝑦) +
𝜏(𝜁 + 𝜁)

2𝑖
ℎ′(𝑦),

where 𝑦 = Im(𝑤). On the other hand

ℎ(Im(𝑤))𝜂 = (ℎ(𝑦) +
𝜏(𝜁 + 𝜁)

2𝑖
ℎ′(𝑦))(−𝑖𝜏 + 𝜁) = ℎ(𝑦)𝜁 − 𝑖ℎ(𝑦)𝜏.

Similarly,

ℎ(Im(𝑤))𝜂 = (ℎ(𝑦) +
𝜏(𝜁 + 𝜁)

2𝑖
ℎ′(𝑦))(𝑖𝜏 + 𝜁) = ℎ(𝑦)𝜁 + 𝑖ℎ(𝑦)𝜏

and

ℎ(Im(𝑤))𝜂𝜂 = (ℎ(𝑦) +
𝜏(𝜁 + 𝜁)

2𝑖
ℎ′(𝑦))(𝑖𝜏 + 𝜁)(−𝑖𝜏 + 𝜁) = ℎ(𝑦)𝜁𝜁 + 𝑖ℎ(𝑦)𝜏(𝜁 + 𝜁).
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As a consequence of the above equations, we have

𝑓(𝑤, 𝜂) = 𝑓00(𝑦) + 𝑓
′
00(𝑦)

𝜏(𝜁 + 𝜁)

2𝑖
+ 𝑓10(𝑦)𝜁 − 𝑖𝑓10(𝑦)𝜏

+ 𝑓01(𝑦)𝜁 + 𝑖𝑓01(𝑦)𝜏 + 𝑓11(𝑦)𝜁𝜁 + 𝑖𝑓11(𝑦)𝜏(𝜁 + 𝜁).

Therefore, a function is invariant under the action of ℝ1∣1, if this function satisfies
equation (4.2) and both

𝑓10(𝑦) = 𝑓01(𝑦) and 𝑓11(𝑦) =
𝑓 ′
00(𝑦)

2
. □

5. Toeplitz operator with symbols invariants
under the action of ℝ1∣1

We take a bounded super function 𝐹 and we assume that 𝐹 is invariant under the
action of ℝ1∣1, then we have that the Toeplitz operator with symbol 𝐹 has the
follow form

𝑇
(𝜈)
𝐹 (Ψ)(𝑤, 𝜂) =

𝜈 − 1

𝜋

∫
ℍ

𝑓0(Im(𝑧))𝜓0(𝑧)(2Im(𝑧))𝜈−2

(
𝑤 − 𝑧
𝑖

)−𝜈

𝑑𝑧 (5.1)

+
1

𝜋

∫
ℍ

𝑓 ′
0(Im(𝑧))

2
𝜓0(𝑧)(2Im(𝑧))𝜈−1

(
𝑤 − 𝑧
𝑖

)−𝜈

𝑑𝑧

+
1

𝜋

∫
ℍ

𝑓1(Im(𝑧))𝜓1(𝑧)(2Im(𝑧))𝜈−1

(
𝑤 − 𝑧
𝑖

)−𝜈

𝑑𝑧

+

⎛⎝ 𝜈
𝜋

∫
ℍ

𝑓1(Im(𝑧))𝜓0(𝑧)(2Im(𝑧))𝜈−1

(
𝑤 − 𝑧
𝑖

)−(𝜈+1)

𝑑𝑧

⎞⎠ 𝜂
+

⎛⎝ 𝜈
𝜋

∫
ℍ

𝑓0(Im(𝑧))𝜓1(𝑧)(2Im(𝑧))𝜈−1

(
𝑤 − 𝑧
𝑖

)−(𝜈+1)

𝑑𝑧

⎞⎠ 𝜂.
In [4] it was shown that if 𝜓 ∈ 𝐻2

𝜈 (ℍ) then it has a representation in the
form of a Fourier integral

𝜓(𝑥 + 𝑖𝑦) =
1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2 𝜙(𝑡)𝑒𝑖𝑡(𝑥+𝑖𝑦)𝑑𝑡

where 𝜙 ∈ 𝐿2(ℝ+).
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We know that if 𝜓0 ∈ 𝐻2
𝜈 (ℍ) and 𝜓1 ∈ 𝐻2

𝜈+1(ℍ) then by the above equation
we have

𝜓0(𝑥+ 𝑖𝑦) =
1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2 𝜙0(𝑡)𝑒

𝑖𝑡(𝑥+𝑖𝑦)𝑑𝑡 (5.2)

𝜓1(𝑥+ 𝑖𝑦) =
1√

Γ(𝜈 + 1)

∫
ℝ+

𝑡
𝜈
2 𝜙1(𝑡)𝑒

𝑖𝑡(𝑥+𝑖𝑦)𝑑𝑡 (5.3)

where 𝜙0, 𝜙1 ∈ 𝐿2(ℝ+).

Substituting the above equations in (5.1) we obtain

𝑇
(𝜈)
𝐹 (Ψ)(𝑤, 𝜂) =

⎛⎜⎝𝜈 − 1

𝜋

∫
ℝ+

(
𝑓0(𝑦) +

𝑦𝑓 ′
0(𝑦)

𝜈 − 1

)
1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2 𝜙0(𝑡)𝑒

−𝑡𝑦(2𝑦)𝜈−2

×
∫
ℝ

(
𝑤 − (𝑥− 𝑖𝑦)

𝑖

)−𝜈

𝑒𝑖𝑡𝑥𝑑𝑥𝑑𝑡𝑑𝑦

⎞⎠
+

⎛⎜⎝ 1

𝜋

∫
ℝ+

𝑓1(𝑦)
1√

Γ(𝜈 + 1)

∫
ℝ+

𝑡
𝜈
2 𝜙1(𝑡)𝑒

−𝑡𝑦(2𝑦)𝜈−1

×
∫
ℝ

(
𝑤 − (𝑥− 𝑖𝑦)

𝑖

)−𝜈

𝑒𝑖𝑡𝑥𝑑𝑥𝑑𝑡𝑑𝑦

⎞⎠
+

⎛⎜⎝𝜈
𝜋

∫
ℝ+

𝑓1(𝑦)
1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2 𝜙0(𝑡)𝑒

−𝑡𝑦(2𝑦)𝜈−1

×
∫
ℝ

(
𝑤 − (𝑥− 𝑖𝑦)

𝑖

)−(𝜈+1)

𝑒𝑖𝑡𝑥𝑑𝑥𝑑𝑡𝑑𝑦

⎞⎠ 𝜂
+

⎛⎜⎝𝜈
𝜋

∫
ℝ+

𝑓0(𝑦)
1√

Γ(𝜈 + 1)

∫
ℝ+

𝑡
𝜈
2 𝜙1(𝑡)𝑒

−𝑡𝑦(2𝑦)𝜈−1

×
∫
ℝ

(
𝑤 − (𝑥− 𝑖𝑦)

𝑖

)−(𝜈+1)

𝑒𝑖𝑡𝑥𝑑𝑥𝑑𝑡𝑑𝑦

⎞⎠ 𝜂.
Using the formula, see [7] 3.382.6,∫

ℝ

(𝑖𝛽 − 𝑥)−𝜈
𝑒𝑖𝑡𝑥𝑑𝑥 =

2𝜋𝛽𝑡𝜈−1𝑒−𝛽𝑡

𝑖𝜈Γ(𝜈)
where 𝑡 > 0
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we have that 𝑇
(𝜈)
𝐹 (Ψ)(𝑤, 𝜂) is equal to

=
𝜈−1

𝜋

∫
ℝ+

(
𝑓0(𝑦)+

𝑦𝑓 ′
0(𝑦)

𝜈−1

)
1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2 𝜙0(𝑡)𝑒

−𝑡𝑦(2𝑦)𝜈−2 (5.4)

×
(

1

Γ(𝜈)
2𝜋𝑡𝜈−1𝑒𝑖𝑡𝑤𝑒−𝑡𝑦

)
𝑑𝑡𝑑𝑦

+
1

𝜋

∫
ℝ+

𝑓1(𝑦)
1√

Γ(𝜈+1)

∫
ℝ+

𝑡
𝜈
2 𝜙1(𝑡)𝑒

−𝑡𝑦(2𝑦)𝜈−1

(
1

Γ(𝜈)
2𝜋𝑡𝜈−1𝑒𝑖𝑡𝑤𝑒−𝑡𝑦

)
𝑑𝑡𝑑𝑦

+
𝜈

𝜋

∫
ℝ+

𝑓1(𝑦)
1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2 𝜙0(𝑡)𝑒

−𝑡𝑦(2𝑦)𝜈−1

(
1

Γ(𝜈+1)
2𝜋𝑡𝜈𝑒𝑖𝑡𝑤𝑒−𝑡𝑦

)
𝑑𝑡𝑑𝑦𝜂

+
𝜈

𝜋

∫
ℝ+

𝑓0(𝑦)
1√

Γ(𝜈+1)

∫
ℝ+

𝑡
𝜈
2 𝜙1(𝑡)𝑒

−𝑡𝑦(2𝑦)𝜈−1

(
1

Γ(𝜈+1)
2𝜋𝑡𝜈𝑒𝑖𝑡𝑤𝑒−𝑡𝑦

)
𝑑𝑡𝑑𝑦𝜂.

Equivalently,

=
1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2 𝜙0(𝑡)

(
𝑡𝜈−1

Γ(𝜈 − 1)
(5.5)

×
∫
ℝ+

(
𝑓0(𝑦) +

𝑦𝑓 ′
0(𝑦)

𝜈 − 1

)
𝑒−2𝑡𝑦(2𝑦)𝜈−22𝑑𝑦

⎞⎟⎠ 𝑒𝑖𝑡𝑤𝑑𝑡
+

1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2 𝜙1(𝑡)

⎛⎜⎝ 1

𝜈
1
2

𝑡𝜈− 1
2

Γ(𝜈)
×
∫
ℝ+

𝑓1(𝑦)𝑒
−2𝑡𝑦(2𝑦)𝜈−12𝑑𝑦

⎞⎟⎠ 𝑒𝑖𝑡𝑤𝑑𝑡
+

1√
Γ(𝜈 + 1)

∫
ℝ+

𝑡
𝜈
2 𝜙0(𝑡)

⎛⎜⎝𝜈 1
2
𝑡𝜈− 1

2

Γ(𝜈)

∫
ℝ+

𝑓1(𝑦)𝑒
−2𝑡𝑦(2𝑦)𝜈−12𝑑𝑦

⎞⎟⎠ 𝑒𝑖𝑡𝑤𝑑𝑡𝜂
+

1√
Γ(𝜈 + 1)

∫
ℝ+

𝑡
𝜈
2 𝜙1(𝑡)

⎛⎜⎝ 𝑡𝜈

Γ(𝜈)

∫
ℝ+

𝑓0(𝑦)𝑒
−2𝑡𝑦(2𝑦)𝜈−12𝑑𝑦

⎞⎟⎠ 𝑒𝑖𝑡𝑤𝑑𝑡𝜂.
Using the property of Laplace transform with respect to derivative∫

ℝ+

𝑓 ′(𝑦)𝑒−𝑡𝑦𝑑𝑦 = 𝑡

∫
ℝ+

𝑓(𝑦)𝑒−𝑡𝑦𝑑𝑦 − 𝑓(0)

we obtain

𝑡

𝜈 − 1

∫
ℝ+

𝑓0(
𝑦

2
)𝑦𝜈−1𝑒−𝑡𝑦𝑑𝑦 =

∫
ℝ+

(
𝑓0(
𝑦

2
) +

𝑦𝑓 ′
0(

𝑦
2 )

2(𝜈 − 1)

)
𝑦𝜈−2𝑒−𝑡𝑦𝑑𝑦. (5.6)
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Substituting (5.6) in (5.5), we have that if Ψ = 𝜓0(𝑤)+𝜓1(𝑤)𝜂 where 𝜓𝑖 are
given by (5.2) and (5.3), and 𝐹 is ℝ1∣1-invariant, then the Toeplitz operator with
symbol 𝐹 over Ψ is given by

𝑇 𝜈
𝐹 (Ψ)(𝑤, 𝜂) =

1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2

(
𝜙0(𝑡)𝛾[𝑓0,𝜈](𝑡) +

𝜙1(𝑡)𝛾[𝑓1,𝜈](𝑡)

𝑡
1
2 𝜈

1
2

)
𝑒𝑖𝑡𝑤𝑑𝑡 (5.7)

+
𝜂√

Γ(𝜈 + 1)

∫
ℝ+

𝑡
𝜈
2

(
𝜈

1
2𝜙0(𝑡)𝛾[𝑓1,𝜈](𝑡)

𝑡
1
2

+ 𝜙1(𝑡)𝛾[𝑓0,(𝜈)](𝑡)

)
𝑒𝑖𝑡𝑤𝑑𝑡

where

𝛾[𝑓,𝜈](𝑡) =
𝑡𝜈

Γ(𝜈)

∫
ℝ+

𝑓(
𝑦

2
)𝑒−𝑡𝑦𝑦𝜈−1𝑑𝑦. where 𝑡 > 0.

It is clear that if 𝑓 is bounded then 𝛾[𝑓,𝜈](𝑡) is also bounded over ℝ+. There-
fore, 𝛾[𝑓𝑖,𝜈]𝜙𝑗 ∈ 𝐿2(ℝ+) for 𝑖, 𝑗 = 0, 1.

Theorem 5.1. The Toeplitz algebra generated by all super Toeplitz operators whose
symbols are invariant under the action of ℝ1∣1 is commutative.

Proof. Consider the elements in 𝐻2
𝜈 (ℍ

1∣1) of the form

Ψ+(𝑤, 𝜂) =

∫
ℝ+

(
𝑡
𝜈−1
2√
Γ(𝜈)

+ 𝜈
1
2

𝑡
𝜈
2 𝜂√

Γ(𝜈 + 1)

)
𝜙(𝑡)𝑒𝑖𝑡𝑤𝑑𝑡

Ψ−(𝑤, 𝜂) =
∫
ℝ+

(
𝑡
𝜈−1
2√
Γ(𝜈)

− 𝜈 1
2

𝑡
𝜈
2 𝜂√

Γ(𝜈 + 1)

)
𝜙(𝑡)𝑒𝑖𝑡𝑤𝑑𝑡

where 𝜙 ∈ 𝐿2(ℝ). It is clear that {Ψ+,Ψ−} is a base of 𝐻2
𝜈 (ℍ

1∣1).
Let 𝐹 be a ℝ1∣1-invariant super function, then using the form of the Toeplitz

operator with symbol 𝐹 given by (5.7) over Ψ+ and Ψ− we obtain

𝑇 𝜈
𝐹 (Ψ+)(𝑤,𝜂)=

∫
ℝ+

(
𝑡
𝜈−1
2√
Γ(𝜈)

+𝜈
1
2

𝑡
𝜈
2 𝜂√

Γ(𝜈+1)

)
[𝛾[𝑓0,𝜈](𝑡)+ 𝑡

− 1
2 𝛾[𝑓1,𝜈](𝑡)]𝜙0(𝑡)𝑒

𝑖𝑡𝑤𝑑𝑡

𝑇 𝜈
𝐹 (Ψ−)(𝑤,𝜂)=

∫
ℝ+

(
𝑡
𝜈−1
2√
Γ(𝜈)

−𝜈 1
2

𝑡
𝜈
2 𝜂√

Γ(𝜈+1)

)
[𝛾[𝑓0,𝜈](𝑡)− 𝑡−

1
2 𝛾[𝑓1,𝜈](𝑡)]𝜙0(𝑡)𝑒

𝑖𝑡𝑤𝑑𝑡

where 𝑡 > 0.

If 𝐹,𝐺 are ℝ1∣1-invariant super functions, then using the above formulas we
have that the composition of the Toeplitz operators with symbols 𝐹 and 𝐺 is given
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by

𝑇 𝜈
𝐺(𝑇

𝜈
𝐹 (Ψ+))(𝑤,𝜂)=

∫
ℝ+

(
𝑡
𝜈−1
2√
Γ(𝜈)

+𝜈
1
2

𝑡
𝜈
2 𝜂√

Γ(𝜈+1)

)
[𝛾[𝑓0,𝜈](𝑡)+ 𝑡

− 1
2 𝛾[𝑓1,𝜈](𝑡)][𝛾[𝑔0,𝜈](𝑡)+ 𝑡

− 1
2 𝛾[𝑔1,𝜈](𝑡)]𝜙0(𝑡)𝑒

𝑖𝑡𝑤𝑑𝑡

𝑇 𝜈
𝐺(𝑇

𝜈
𝐹 (Ψ−))(𝑤,𝜂)=

∫
ℝ+

(
𝑡
𝜈−1
2√
Γ(𝜈)

−𝜈 1
2

𝑡
𝜈
2 𝜂√

Γ(𝜈+1)

)
[𝛾[𝑓0,𝜈](𝑡)− 𝑡−

1
2 𝛾[𝑓1,𝜈](𝑡)][𝛾[𝑔0,𝜈](𝑡)− 𝑡−

1
2 𝛾[𝑔1,𝜈](𝑡)]𝜙0(𝑡)𝑒

𝑖𝑡𝑤𝑑𝑡,

where 𝑡 > 0. Therefore, by the above equations we obtain the desired result. □
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Measure Characterization involving
the Limiting Eigenvalue Distribution
for Schrödinger Operators on 𝑺2

Maŕıa de los Ángeles Sandoval-Romero

Abstract. Knowing a result called the Limiting Eigenvalue Distribution (LED)
on 𝑆2 it is posible to stablish a natural way to define a Baire measure related
to the Radon Transform of a potential 𝑉 on the sphere 𝑆2.

The aim of this work is to give some results and examples of how we can
characterize some properties of the potential 𝑉 in order to determine what
kind of Baire Measure we can expect.

Mathematics Subject Classification (2000). Primary 44A12; Secondary 28A99.

Keywords. Radon transform, measure characterization.

1. Introduction

Let 𝐻 = −Δ + 𝑉 be a Schrödinger operator in 𝐿2(𝑆𝑛), where 𝑆𝑛 is the 𝑛 unit-
sphere in ℝ𝑛. The potential 𝑉 is a real continuous function and −Δ is the Laplace-
Beltrami Operator.

It is well known that in the case 𝑉 = 0, 𝐻 has eigenvalues:

𝜆ℓ = ℓ(ℓ+ 1),

with each 𝜆ℓ having increasing degeneracy and 𝑑ℓ = 𝑂(ℓ
𝑛−1).

If 𝑉 ∕= 0 the eigenvalue 𝜆ℓ splits into a cluster of eigenvalues contained in an
interval of radius ∥𝑉 ∥∞, with center in 𝜆ℓ.

Another way of expressing this is in terms of the “spectral shifts”, 𝜇ℓ,𝜈 , i.e.,
the distance between the center 𝜆ℓ and the split eigenvalue 𝜆ℓ,𝜈 , so that we can
write

𝜆ℓ,𝜈 = 𝜆ℓ + 𝜇ℓ,𝜈 − ℓ ≤ 𝜈 ≤ ℓ.

This work was partially supported by the PAPIIT project IN-103208.
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Figure 1. A geodesic on the sphere with its normal vector.

An interesting problem is the study of the asymptotic distribution of the
cluster of eigenvalues (or the spectral shifts).

Several authors gave the answer, which is known as the Limiting Eigenvalue
Distribution result (LED). Refering to the point of view on the asymptotic dis-
tribution of the eigenvalues for certain homogeneus spaces the reader can check
[9], [3], [10]. The answer from the point of view on the asymptotics of the spectral
shifts can be found in [1], [4].

We proceed to describe the LED result following the work of Guillemin-
Sternberg [3] but particularizing it on the 𝑆2 sphere.

Theorem 1.1 (Limiting Eigenvalue Distribution Theorem on 𝑆2). Let 𝒮 be the
Schwartz space on the real line. Let Ψ ∈ 𝒮. Then

lim
ℓ→∞

1

𝑑ℓ

∑
𝜈

Ψ(𝜆ℓ,𝜈 − ℓ(ℓ+ 1)) =
1

4𝜋

∫
𝑆2

Ψ(𝑉 (𝛾)) d𝑆 , (1.1)

where 𝑉 (𝛾) is the Radon transform of the potential 𝑉 in the space of geodesics in
the sphere, 𝐺2. That is to say, for 𝛾 ∈ 𝐺2,

𝑉 (𝛾) :=
1

2𝜋

∫
𝑉 (𝛾(𝑠)) d𝑠. (1.2)

We can identify 𝐺2 with 𝑆2 if we identify antipodal points in 𝑆2. In other
words, if 𝜔 ∈ 𝑆2/ℤ2 and considering 𝛾 the geodesic in the plane orthogonal of 𝜔,
(see Figure 1), then

𝑉 (𝜔) :=
1

2𝜋

∫
𝛾⋅𝜔=0

𝑉 (𝛾(𝑠)) d𝑠. (1.3)
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Applying the Riesz-Markov representation theorem we can also write the
result of limiting eigenvalue distribution theorem as follows:

lim
ℓ→∞

1

𝑑ℓ

∑
𝜈

Ψ(𝜆ℓ,𝜈 − ℓ(ℓ+ 1)) =

∫
Ψ(𝜆) d𝜇𝑉 (𝜆) (1.4)

where 𝜇𝑉 is a Baire Measure, defined for the eigenvalue clusters.
We would like to give certain “characterizations” of the potential 𝑉 in order

to have several types of measures 𝜇𝑉 , such as discrete, absolutely or singular
continuous. In the following discusion we give some answers to this respect.

2. Results

Our first characterization concerns the odd part 𝑉odd of the potential 𝑉 .

Proposition 2.1. Consider 𝑉 a continuous funtion on the sphere 𝑆2. Then the
Baire Measure corresponding to 𝑉odd, 𝜇𝑉odd

, is a Dirac Measure.

Proof. Decompose the potential in the form 𝑉 = 𝑉odd + 𝑉even, where 𝑉odd, 𝑉even
are the odd and even part of 𝑉 . We can easily find that 𝜇𝑉odd

is pure point, as a
consecuence of the definition of the Radon Transform on 𝑆2. □

With this result we can center the discussion exclusively on even potentials 𝑉 .

Proposition 2.2. Consider 𝑉 a continuous funtion on the sphere 𝑆2. If we supose
that 𝑉 is constant in a band 𝐵 on 𝑆2 of the form 𝑆2 ∼ {𝑧 ∈ 𝑆2 ∣ 0 < 𝜙 ≤
2𝜋, −𝜃0 < 𝜃 < 𝜃0} (𝜙 is the azimutal angle, 𝜃 the inclination angle, and 𝜃0 is
a given inclination angle in (0, 𝜋2 )), then 𝜇𝑉 has non trivial discrete part (pure
point) and the corresponding cumulative distribution function is not continuous.

Proof. If 𝑉 = 𝑏 ∈ 𝐵 we have by definition 𝑉 = 𝑏 ∈ 𝐵, but then ∣𝑉 −1({𝑏})∣ = ∣𝐵∣,
where ∣ ⋅ ∣ is the Lebesgue measure on 𝑆2 and by hypotesis ∣𝐵∣∕=0.

Now, since 𝜇𝑉 is a Baire Measure we can associate a cumulative distribution
function 𝐹 (𝑥) in the standard way:

𝐹 (𝑥) = 𝜇𝑉 (−∞, 𝑥) (2.1)

But then, since

𝐹 (𝑏) − 𝐹 (𝑏−) = lim
𝑛→∞𝜇𝑉 (𝑏−

1

𝑛
, 𝑏) = 𝜇𝑉 ({𝑏}) ∕= 0 , (2.2)

we conclude that 𝐹 (𝑥) is not continuous.
□

In order to give a complete characterization of smooth potentials we have to
stablish the following important result, concerning to its Radon transform.

Theorem 2.3. If 𝑉 is differentiable on 𝑆2 then 𝑉 is differentiable in 𝑆2/ℤ2.
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Proof. We are going to give a proof without coordinates.

First of all, define the unit tangent space of 𝑆2

(𝑇𝑆2)1 = {𝑣𝑝 ∈ 𝑇𝑝𝑆2∣ ∥𝑣𝑝∥ = 1 , 𝑝 ∈ 𝑆2} . (2.3)

Next, define the differentiable mapping 𝜑 : (𝑇𝑆2)1 → 𝑆2 by 𝜑(𝑣𝑝) = 𝑣.

Also, given the differentiable function 𝑉 : 𝑆2 → ℝ, consider the pullback
𝜑∗𝑉 : (𝑇𝑆2)1 → ℝ defined by 𝜑∗𝑉 = 𝑉 ∘ 𝜑.

On the other hand, consider 𝜋, the canonical projection 𝜋 : (𝑇𝑆2)1 −→ 𝑆2,
which is a fiber bundle with total space (𝑇𝑆2)1, base 𝑆2, and each fiber isomorphic
to 𝑆1.

Since (𝑇𝑆2)1 is locally a cartesian product then, again locally, 𝜑∗𝑉 = 𝑓(𝑝, 𝜃)
with 𝑝 ∈ 𝑆2 and 𝜃 ∈ 𝑆1.

Since each 𝜑 can be considered a geodesic on 𝑆2, we can check that ⟨𝜑∗𝑉 ⟩ =
⟨𝑉 ⟩, where on the l.h.s. ⟨ ⟩ denotes average over the fiber 𝑆1 and on the r.h.s. it
denotes average over geodesics.

Since 𝜑∗𝑉 is differentiable then so is

⟨𝜑∗𝑉 ⟩(𝑝) = 1

2𝜋

∫ 2𝜋

0

𝑓(𝑝, 𝜃) 𝑑𝜃,

and then so is ⟨𝑉 ⟩.
Hence, since ⟨𝑉 ⟩ is ℤ2-invariant, then it drops to 𝑆2/ℤ2 and therefore we can

identify 𝑉 = ⟨𝑉 ⟩. □

Once we have established this theorem it is posible to give a more general
characterization as a consecuence of the Radon-Nikodym Theorem [7] and the
previuous results.

Theorem 2.4. Supose that 𝑉 is differentiable. Then the associated Baire Measure
𝜇𝑉 has an absolutely continuous part plus a pure point part corresponding to re-
gions 𝐸 of positive measure where 𝑉 = 𝐶, 𝐶 a constant.

In the case of a 𝜇𝑉 singular continuous we have the following interesting
example.

2.1. Singular continuous measure

In what follows we are going to consider the case when 𝑉 is zonal (axially sym-
metric, with respect to the 𝑧 axis). Then it is easy to prove the following result.

Proposition 2.5. If 𝑉 is a continuous function on 𝑆2 and zonal, then 𝑉 is also
zonal.

We are going to note that, if we charaterize the associate cumulative dis-
tribution function 𝐹 (𝑥) in order to make 𝜇𝑉 singular continuous nontrivial, then
we can observe certain geometric behavior on the asymptotic distribution of the
spectral shifts of the potential 𝑉 .
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First of all we are going to consider the following generalized Cantor set, for
middle-odd parts: 1

Let 𝐼 := [0, 1] the unit interval. Let 𝑘 = 2𝑛+ 1, 𝑛 = 1, 2, 3 . . . .

Define 𝑘1 :=
[ 𝑘2 ]

𝑘 , 𝑘2 :=
[𝑘2 ]+1

𝑘 , where [𝑘2 ] is the integer part of 𝑘
2 . Then, the

construction of the generalized cantor set will be the standar, i.e.:

∙ In the first step take,

𝐶1 := 𝐼 − (𝑘1, 𝑘2),

∙ in the second step,

𝐶2 := 𝐶1 − (𝑘21 , 𝑘1𝑘2) ∪ (𝑘21 + 𝑘2, 𝑘1𝑘2 + 𝑘2)

∙ in the third,

𝐶3 := 𝐶2 − (𝑘31 , 𝑘
2
1𝑘2) ∪ (𝑘31 + 𝑘1𝑘2, 𝑘

2
1𝑘2 + 𝑘1𝑘2)

∪ (𝑘31 + 𝑘2, 𝑘
2
1𝑘2 + 𝑘2) ∪ (𝑘31 + 𝑘1𝑘2 + 𝑘2, 𝑘

2
1𝑘2 + 𝑘1𝑘2 + 𝑘2),

(2.4)

∙ and so on . . .

The generalized Cantor set is then defined by 𝐶 := ∪𝑛𝐶𝑛. As in the case of
the middle-third Cantor set, it is posible to prove that the generalized Cantor set
is a noncountable, measure cero (with respecto to the Lebesgue measure 𝜆 in ℝ)
set in ℝ.

Now consider the complement of 𝐶, 𝐼 − 𝐶 which can be seen as:

𝐼 − 𝐶 = (𝑘1, 𝑘2) ∪ (𝑘21 , 𝑘1𝑘2) ∪ (𝑘21 + 𝑘2, 𝑘1𝑘2 + 𝑘2) ∪ (𝑘31 , 𝑘
2
1𝑘2) ∪ ⋅ ⋅ ⋅

=

(
[𝑘2 ]

𝑘
,
[𝑘2 ] + 1

𝑘

)
∪
(
[𝑘2 ]

2

𝑘2
,
([𝑘2 ] + 1)[𝑘2 ]

𝑘2

)

∪
(
[𝑘2 ]

2

𝑘2
+

[𝑘2 ] + 1

𝑘
,
([𝑘2 ] + 1)[𝑘2 ]

𝑘2
+

[𝑘2 ] + 1

𝑘

)
∪
(
[𝑘2 ]

3

𝑘3
,
[𝑘2 ] + 1

𝑘

[𝑘2 ]
2

𝑘2

)
∪ ⋅ ⋅ ⋅

Then define the cumulative distribution function, 𝐹 (𝑥), as follows:

𝐹 (𝑥) =
1

2
, 𝑥 ∈

(
[𝑘2 ]

𝑘
,
[𝑘2 ] + 1

𝑘

)
,

𝐹 (𝑥) =
1

22
, 𝑥 ∈

(
[𝑘2 ]

2

𝑘2
,
([𝑘2 ] + 1)[𝑘2 ]

𝑘2

)
,

𝐹 (𝑥) =
3

22
, 𝑥 ∈

(
[𝑘2 ]

2

𝑘2
+

[𝑘2 ] + 1

𝑘
,
([𝑘2 ] + 1)[𝑘2 ]

𝑘2
+

[𝑘2 ] + 1

𝑘

)
,

𝐹 (𝑥) =
1

23
, 𝑥 ∈

(
[𝑘2 ]

3

𝑘3
,
[𝑘2 ] + 1

𝑘

[𝑘2 ]
2

𝑘2

)
,

and so on . . .

1We can also construct the generalized cantor set for middle-even parts but we lose symmetry.
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Figure 2. The Cantor Function for a middle-fifth Cantor set.

And finally consider the continuous extension of 𝐹 (𝑥). (See Figure 2 for the
case 𝑘 = 5.) Then, 𝐹 (𝑥) is a nonconstant, continuous function. By construction the
corresponding measure 𝜇 is concentrated in the Cantor set 𝐶. Then, 𝜇 is singular
continuous with respect to the Lebesgue measure on the real line 𝜆.

Consider, as we are interested in, that 𝜇 = 𝜇𝑉 . The property that 𝜇𝑉 is con-
centrated on 𝐶 is now very relevant, because this shows that the Radon transform
of 𝑉 is supported on the Cantor set 𝐶. But we know that the image of the Radon
transform looks like the spectral shifts 𝜇ℓ,𝜈 (unless it is 𝑂(ℓ−2)), as we can check
in [4] (Theorem 1) for continuous potentials.

We can conclude that in the limit when ℓ → ∞ the spectral shifts (in the
limiting cluster) are distributed in a very similar way as the Cantor set 𝐶. In
this manner we already have a way of checking how the nature of the measure
𝜇𝑉 determines a geometric property on the distribution of the limiting spectral
cluster of 𝑉 .

3. Future work

We think is important to have a more general result for potentials 𝑉 , continuous
but not necessarily smooth (for example, Hölder Continuous of order 𝛼, 0<𝛼≤1).

Also, we are really interested in results similar to the case of singular contin-
uous 𝜇𝑉 but considering non-zonal potentials.

Finally, we are looking for examples of measures 𝜇𝑉 that exhibit mixtures
between continuous parts and what does this mean about the nature of 𝑉 .
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Relations Among Various Versions
of the Segal-Bargmann Transform

Stephen Bruce Sontz

Abstract. We present various relations among Versions 𝐴, 𝐵 and 𝐶 of the
Segal-Bargmann transform. We get results for the Segal-Bargmann transform
associated to a Coxeter group acting on a finite-dimensional Euclidean space.
Then analogous results are shown for the Segal-Bargmann transform of a
connected, compact Lie group for all except one of the identities established
in the Coxeter case. A counterexample is given to show that the remaining
identity from the Coxeter case does not have an analogous identity for the
Lie group case. A major result is that in both contexts the Segal-Bargmann
transform for Version 𝐶 is determined by that for Version 𝐴.

Mathematics Subject Classification (2000). Primary 45H05, 44A15; Secondary
46E15.

Keywords. Segal-Bargmann transfrom, Coxeter group, Dunkl heat kernel.

1. A Brief Introduction

We recall quickly some notations and definitions from [20]. Many definitions and
details are not presented here. We also advise the reader that our normalizations
are not standard.

A root system is a certain finite subset ℛ of nonzero vectors of ℝ𝑁 where
𝑁 ≥ 1 is an integer. It turns out that the finite set of reflections associated to
these vectors (orthogonal reflection in the hyperplane perpendicular to each vector)
generates a finite subgroup, known as the Coxeter group, of the orthogonal group
of ℝ𝑁 . A multiplicity function is a function 𝜇 : ℛ → ℂ invariant under the action
of the Coxeter group. We always will assume that the multiplicity function satisfies
𝜇 ≥ 0. This condition is sufficient for the existence of the Segal-Bargmann spaces
considered and for the various properties that we shall use.

We will take 𝑡 > 0 (Planck’s constant) fixed throughout this paper.

Research partially supported by CONACYT (Mexico) project 49187.
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We will use the holomorphic Dunkl kernel function 𝐸𝜇 : ℂ𝑁×ℂ𝑁 → ℂ, which
for all 𝑧, 𝑤 ∈ ℂ𝑁 satisfies 𝐸𝜇(𝑧, 𝑤) = 𝐸𝜇(𝑤, 𝑧), 𝐸𝜇(𝑧, 0) = 1 and 𝐸𝜇(𝑧

∗, 𝑧) ≥ 0
among many other properties. When 𝜇 ≡ 0, we have 𝐸𝜇(𝑧, 𝑤) = 𝑒

𝑧⋅𝑤.
We will also be using the analytic continuation of the Dunkl heat kernel,

which is given for 𝑧, 𝑤 ∈ ℂ𝑁 by

𝜌𝜇,𝑡(𝑧, 𝑤) = 𝑒
−(𝑧2+𝑤2)/2𝑡𝐸𝜇

( 𝑧
𝑡1/2
,
𝑤

𝑡1/2

)
. (1.1)

This kernel arises in the solution of the initial value problem of the heat equation
associated with the Dunkl Laplacian operator. (See [13].)

We next define the kernel functions of the versions of the Segal-Bargmann
transform associated to a Coxeter group for 𝑧 ∈ ℂ𝑁 and 𝑞 ∈ ℝ𝑁 by

𝐴𝜇,𝑡(𝑧, 𝑞) := 𝑒
−𝑧2/2𝑡−𝑞2/4𝑡𝐸𝜇

( 𝑧
𝑡1/2
,
𝑞

𝑡1/2

)
(1.2)

and

𝐵𝜇,𝑡(𝑧, 𝑞) :=
𝜌𝜇,𝑡(𝑧, 𝑞)

𝜌𝜇,𝑡(0, 𝑞)
(1.3)

and

𝐶𝜇,𝑡(𝑧, 𝑞) := 𝜌𝜇,𝑡(𝑧, 𝑞). (1.4)

See [1], [4] and [15] for the origins of this theory in the case 𝜇 ≡ 0.
The versions of the Segal-Bargmann transform are given as follows. (See [2],

[5], [16], [17] and [20].) Versions 𝐴 and 𝐶 are defined by

𝐴𝜇,𝑡𝑓(𝑧) :=

∫
ℝ𝑁

d𝜔𝜇,𝑡(𝑞)𝐴𝜇,𝑡(𝑧, 𝑞)𝑓(𝑞)

and

𝐶𝜇,𝑡𝑓(𝑧) :=

∫
ℝ𝑁

d𝜔𝜇,𝑡(𝑞)𝐶𝜇,𝑡(𝑧, 𝑞)𝑓(𝑞)

respectively, where 𝑧 ∈ ℂ𝑁 , 𝑓 ∈ 𝐿2(ℝ𝑁 , 𝜔𝜇,𝑡) and 𝜔𝜇,𝑡 is the density of a measure
on ℝ𝑁 . Version 𝐵 is defined by

𝐵𝜇,𝑡𝑓(𝑧) :=

∫
ℝ𝑁

d𝑚𝜇,𝑡(𝑞)𝐵𝜇,𝑡(𝑧, 𝑞)𝑓(𝑞),

where 𝑧 ∈ ℂ𝑁 , 𝑓 ∈ 𝐿2(ℝ𝑁 ,𝑚𝜇,𝑡) and 𝑚𝜇,𝑡 is the density of a measure on ℝ𝑁 .
Associated to these versions there are reproducing kernel Hilbert spaces of

holomorphic functions 𝑓 : ℂ𝑁 → ℂ, denoted 𝒜𝜇,𝑡, ℬ𝜇,𝑡 and 𝒞𝜇,𝑡 respectively, such
that

𝐴𝜇,𝑡 : 𝐿
2(ℝ𝑁 , 𝜔𝜇,𝑡) → 𝒜𝜇,𝑡

𝐵𝜇,𝑡 : 𝐿
2(ℝ𝑁 ,𝑚𝜇,𝑡) → ℬ𝜇,𝑡

𝐶𝜇,𝑡 : 𝐿
2(ℝ𝑁 , 𝜔𝜇,𝑡) → 𝒞𝜇,𝑡

are unitary isomorphisms. It turns out that 𝒜𝜇,𝑡 = ℬ𝜇,𝑡 as Hilbert spaces.
The holomorphic function 𝜌𝜇,𝑡 : ℂ𝑁 × ℂ𝑁 → ℂ in our opinion is not a

fundamental object. Rather we view 𝜎𝜇,𝑡(𝑞) := 𝜌𝜇,𝑡(0, 𝑞) = 𝑒
−𝑞2/2𝑡 for 𝑞 ∈ ℝ𝑁 as



Relations Among Versions of Segal-Bargmann Transform 291

the fundamental Dunkl heat kernel, even though it does not depend on 𝜇. Then
this one-variable kernel 𝜎𝜇,𝑡 : ℝ

𝑁 → (0,∞) gives rise to the two-variable kernel

𝜌𝜇,𝑡 : ℝ
𝑁 × ℝ𝑁 → ℝ (1.5)

using a generalized (or Dunkl) translation operator, denoted 𝒯𝜇,𝑥, via the equation

𝜌𝜇,𝑡(𝑥, 𝑞) = 𝒯𝜇,𝑥𝜎𝜇,𝑡(𝑞)
for all 𝑥, 𝑞 ∈ ℝ𝑁 . (See [20] for more details, including definitions and proofs.) In
our conventions, note that for 𝜇 ≡ 0 we have 𝜌0,𝑡(𝑥, 𝑞) = 𝜎0,𝑡(𝑞 − 𝑥). Finally the
function 𝜌𝜇,𝑡 : ℂ

𝑁 × ℂ𝑁 → ℂ is obtained from (1.5) by analytic continuation.
For more details about this background material see references [2], [3], [13],

[14] and [20], while for other related research in Segal-Bargmann analysis see [7],
[8], [11], [12], [19] and [21].

2. Coxeter group case

We proved the following relation between the kernel functions for the 𝐴 Version
and the 𝐶 Version of the Segal-Bargmann transform associated to a Coxeter group
in [20], namely,

𝐶𝜇,𝑡(𝑧, 𝑞) = 𝐴𝜇,𝑡(0, 𝑞)𝐴𝜇,𝑡(𝑧, 𝑞) (2.1)

for 𝑧 ∈ ℂ𝑁 and 𝑞 ∈ ℝ𝑁 . The reader can readily verify this using the definitions in
the previous section. As an immediate consequence we have this identity:

𝐶𝜇,𝑡𝜓(𝑧) =

∫
ℝ𝑁

d𝜔𝜇,𝑡(𝑞)𝐶𝜇,𝑡(𝑧, 𝑞)𝜓(𝑞)

=

∫
ℝ𝑁

d𝜔𝜇,𝑡(𝑞)𝐴𝜇,𝑡(𝑧, 𝑞)𝐴𝜇,𝑡(0, 𝑞)𝜓(𝑞) (2.2)

for all 𝜓 ∈ 𝐿2(ℝ𝑁 , 𝜔𝜇,𝑡) and all 𝑧 ∈ ℂ𝑁 .
So, we have represented the unitary operator 𝐶𝜇,𝑡 as the composition of

two operators: the first is the operator (denoted by 𝑀𝑡) of multiplication by the

bounded function 𝐴𝜇,𝑡(0, 𝑞) = 𝑒
−𝑞2/4𝑡, and the second is the unitary operator 𝐴𝜇,𝑡.

In other words we can write (2.2) as

𝐶𝜇,𝑡 = 𝐴𝜇,𝑡𝑀𝑡. (2.3)

As far as we are aware this representation is new, even in the case when 𝜇 ≡ 0. The
boundedness of the function 𝐴𝜇,𝑡(0, 𝑞), where 𝑞 ∈ ℝ𝑁 , is essential since this gives us
that 𝑀𝑡 is an operator from 𝐿2(ℝ𝑁 , 𝜔𝜇,𝑡) to itself. Therefore, the second operator
𝐴𝜇,𝑡 in (2.3) is acting on the space where it is a unitary operator. Moreover, the

operator norm of 𝑀𝑡 satisfies ∣∣𝑀𝑡∣∣ = sup𝑞∈ℝ𝑁 (𝑒
−𝑞2/4𝑡) = 1.

Though this representation of 𝐶𝜇,𝑡 is similar to a Toeplitz operator, it is
decidedly different. Here we have multiplication by a bounded function followed
by a specific unitary operator, while a Toeplitz operator is multiplication by a
bounded function followed by a specific projection operator.
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In the case 𝜇 ≡ 0, it is known that 𝒞𝜇,𝑡 ⊂ 𝒜𝜇,𝑡, a bounded inclusion. When
𝜇 ≡ 0 these two reproducing kernel Hilbert spaces can alternatively be defined in
terms of measures on ℂ𝑁 . Then the bounded inclusion follows for example from
the formulas for these measures. (See [6], p. 51, where the formulas given there for
these measures for 𝑁 = 1 also hold for 𝑁 > 1.) The generalization of this to the
present context is the next result.

Theorem 2.1. We have the contractive (in particular, bounded) inclusion

𝒞𝜇,𝑡 ⊂ 𝒜𝜇,𝑡.

Proof. Using (2.3), we have that

𝒞𝜇,𝑡 = Ran(𝐶𝜇,𝑡) = Ran(𝐴𝜇,𝑡𝑀𝑡) ⊂ Ran(𝐴𝜇,𝑡) = 𝒜𝜇,𝑡,

which is the inclusion we wish to prove. Here Ran(𝑇 ) denotes the range of an
operator 𝑇 .

We next note that the inclusion map is equal to 𝐴𝜇,𝑡𝑀𝑡(𝐶𝜇,𝑡)
−1, since this

acts as the identity on its domain 𝒞𝜇,𝑡 and has codomain 𝒜𝜇,𝑡. Therefore the
inclusion map 𝜄 : 𝒞𝜇,𝑡 ↪→ 𝒜𝜇,𝑡, being the composition of two bounded operators, is
bounded. Its operator norm satisfies

∣∣𝜄∣∣ = ∣∣𝐴𝜇,𝑡𝑀𝑡(𝐶𝜇,𝑡)
−1∣∣ ≤ ∣∣𝐴𝜇,𝑡∣∣ ∣∣𝑀𝑡∣∣ ∣∣(𝐶𝜇,𝑡)

−1∣∣ = 1,

exactly what one requires of an inclusion for it to be contractive. □

Remark 2.2. Using the different normalizations in [6] this inclusion is bounded,
but not contractive.

Even though equation (2.1) immediately implies for 𝑧 ∈ ℂ𝑁 and 𝑞 ∈ ℝ𝑁 that

𝐴𝜇,𝑡(𝑧, 𝑞) =
𝐶𝜇,𝑡(𝑧, 𝑞)

𝐴𝜇,𝑡(0, 𝑞)
, (2.4)

this factorization of 𝐴𝜇,𝑡(𝑧, 𝑞) is not very useful, since (𝐴𝜇,𝑡(0, 𝑞))
−1 = 𝑒𝑞

2/4𝑡 is
not a bounded function of 𝑞. So we are not able to prove the opposite inclusion
𝒞𝜇,𝑡 ⊃ 𝒜𝜇,𝑡 using (2.4). Actually, we have the following.

Theorem 2.3. The complementary set 𝒜𝜇,𝑡 ∖𝒞𝜇,𝑡 is non-empty, that is, there exists
𝑓 ∈ 𝒜𝜇,𝑡 such that 𝑓 /∈ 𝒞𝜇,𝑡.
Proof. It is known (see [21]) that 𝒞𝜇,𝑡 is a reproducing kernel Hilbert space with
reproducing kernel function

𝐿𝜇,𝑡(𝑧, 𝑤) = 𝑐𝜌𝜇,2𝑡(𝑧
∗, 𝑤)

for all 𝑧, 𝑤 ∈ ℂ𝑁 , where the value of the constant 𝑐 > 0 is not important for us
now. So any 𝑓 ∈ 𝒞𝜇,𝑡 satisfies the usual pointwise bound for a reproducing kernel
Hilbert space, namely

∣𝑓(𝑧)∣ ≤ (𝐿𝜇,𝑡(𝑧, 𝑧))
1/2 ∣∣𝑓 ∣∣𝒞𝜇,𝑡
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for all 𝑧 ∈ ℂ𝑁 . Next we use the definition of the Dunkl heat kernel to calculate

𝐿𝜇,𝑡(𝑧, 𝑧) = 𝑐𝜌𝜇,2𝑡(𝑧
∗, 𝑧) = 𝑐𝑒−((𝑧∗)2+𝑧2)/4𝑡𝐸𝜇

(
𝑧∗

(2𝑡)1/2
,

𝑧

(2𝑡)1/2

)
.

We write 𝑧 = 𝑥+ 𝑖𝑦 with 𝑥, 𝑦 ∈ ℝ𝑁 and so get (𝑧∗)2+ 𝑧2 = 2Re(𝑧2) = 2(𝑥2 − 𝑦2).
We then use the estimates (see [14])

0 ≤ 𝐸𝜇

(
𝑧∗

(2𝑡)1/2
,

𝑧

(2𝑡)1/2

)
≤ 𝑒∣∣𝑧∣∣2/2𝑡 = 𝑒(𝑥

2+𝑦2)/2𝑡

to conclude that

∣𝑓(𝑧)∣ ≤ 𝑐1/2𝑒−(𝑥2−𝑦2)/4𝑡𝑒(𝑥
2+𝑦2)/4𝑡 ∣∣𝑓 ∣∣𝒞𝜇,𝑡 = 𝑐1/2𝑒𝑦

2/2𝑡 ∣∣𝑓 ∣∣𝒞𝜇,𝑡 .
In particular, it follows that 𝑓 restricted to ℝ𝑁 is a bounded function for every
𝑓 ∈ 𝒞𝜇,𝑡. This implies that the only holomorphic polynomials in 𝒞𝜇,𝑡 are the
constants. But we know that 𝑝 ∈ 𝒜𝜇,𝑡 for all holomorphic polynomials 𝑝. (See [2].)
And this shows that 𝒜𝜇,𝑡 ∖ 𝒞𝜇,𝑡 is non-empty. □

However, we shall see later on in the next section that the relation between
the Version 𝐴 and the Version 𝐶 Segal-Bargmann spaces is different in the case
of compact Lie groups. But first, we present some relations in the Coxeter context
among Versions 𝐴, 𝐵 and 𝐶 of the Segal-Bargmann transform and the Dunkl heat
kernel 𝜌𝜇,𝑡 restricted to {0} × ℝ𝑁 , that is, 𝜎𝜇,𝑡(𝑞) = 𝜌𝜇,𝑡(0, 𝑞) for 𝑞 ∈ ℝ𝑁 .

Theorem 2.4. For 𝑞 ∈ ℝ𝑁 and 𝑧 ∈ ℂ𝑁 we have the identities

𝐵𝜇,𝑡(𝑧, 𝑞) = 𝐴𝜇,𝑡(𝑧, 𝑞) /𝐴𝜇,𝑡(0, 𝑞) (2.5)

𝜌𝜇,𝑡(𝑧, 𝑞) = 𝐶𝜇,𝑡(𝑧, 𝑞) = 𝐴𝜇,𝑡(0, 𝑞)𝐴𝜇,𝑡(𝑧, 𝑞) (2.6)

𝜎𝜇,𝑡(𝑞) = 𝜌𝜇,𝑡(0, 𝑞) = (𝐴𝜇,𝑡(0, 𝑞))
2 (2.7)

𝐶𝜇,𝑡(2𝑧, 𝑞) = 𝐴𝜇,2𝑡(2𝑧, 0)𝐴𝜇,𝑡/2(𝑧, 𝑞) (2.8)

which tell us that we can obtain Versions 𝐵 and 𝐶 as well as the heat kernel 𝜎𝜇,𝑡
on ℝ𝑁 from Version 𝐴. We also have the identities

𝐴𝜇,𝑡(𝑧, 𝑞) = 𝐶𝜇,𝑡(𝑧, 𝑞) / (𝐶𝜇,𝑡(0, 𝑞))
1/2 (2.9)

𝐵𝜇,𝑡(𝑧, 𝑞) = 𝐶𝜇,𝑡(𝑧, 𝑞) /𝐶𝜇,𝑡(0, 𝑞) (2.10)

𝜎𝜇,𝑡(𝑞) = 𝜌𝜇,𝑡(0, 𝑞) = 𝐶𝜇,𝑡(0, 𝑞) (2.11)

which tell us that we also can get Versions 𝐴 and 𝐵 and the heat kernel 𝜎𝜇,𝑡 on ℝ𝑁

from Version 𝐶.

Remark 2.5. It is curious that in the present Coxeter context Version 𝐴 determines
Version 𝐶 via the two distinct identities (2.6) and (2.8). We do not pretend to have
any deeper understanding of this fact. We will see that in the compact Lie group
context only (2.6) has a valid analogue, while the analogue of (2.8) is false at least
for the Lie group 𝑆𝑈(2).

The identity (2.8) tells us that the isometry property of either of the trans-
forms 𝐴𝜇,𝑡 and 𝐶𝜇,𝑡 can be deduced from the isometry property of the other. This
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is because the first factor on the right-hand side of (2.8) does not depend on 𝑞. So,
for example, this factor can be factored out of the integral defining the 𝐶 version
of the Segal-Bargmann transform, leaving under the integral a kernel function for
the 𝐴 version of the Segal-Bargmann transform, although with a different “time”
parameter. I thank the anonymous referee for bringing this to my attention. But
one can easily fall into a trap by thinking that the factor 𝐴𝜇,2𝑡(2𝑧, 0) in front of
the integral sign must necessarily be involved in a “change of measure” argument.
The relevant point here is that neither of the co-domain Hilbert spaces for the
transforms 𝐴𝜇,𝑡 and 𝐶𝜇,𝑡 has an inner product defined by a measure using an
𝐿2 type formula, but rather by a reproducing kernel function. It remains an open
problem in this field of research whether these Hilbert space inner products can be
so represented by measures. In short, if such measures exist, they are not known
at the present time. (Our conjecture is that they do not exist in general. However,
see [18] to see how this may be possible with more than one measure.) Of course,
a “change of measure” argument makes no sense without measures. Nonetheless,
there is a “change of reproducing kernel” theory, though it seems not to be so
well known. This theory can be applied in the current context to show that the
isometry of either one of these versions of the Segal-Bargmann transform implies
the isometry of the other version, although to describe these implications as being
“immediate” would be an exaggeration. The details of this argument would lead
us too far afield and so are left to the interested reader. Since the analogue of
(2.8) does not hold in general in the compact Lie group case, the remarks of this
paragraph have no general analogue in that case.

Proof. For (2.5) we use (1.3) and (1.1) to compute

𝐵𝜇,𝑡(𝑧, 𝑞) =
𝜌𝜇,𝑡(𝑧, 𝑞)

𝜌𝜇,𝑡(0, 𝑞)
= 𝑒−𝑧2/2𝑡𝐸𝜇

( 𝑧
𝑡1/2
,
𝑞

𝑡1/2

)
. (2.12)

We recall that 𝐴𝜇,𝑡(0, 𝑞) = 𝑒
−𝑞2/4𝑡 which together with (1.2) implies that

𝐴𝜇,𝑡(𝑧, 𝑞)

𝐴𝜇,𝑡(0, 𝑞)
= 𝑒−𝑧2/2𝑡𝐸𝜇

( 𝑧
𝑡1/2
,
𝑞

𝑡1/2

)
. (2.13)

Then equations (2.12) and (2.13) imply (2.5).
Next we note that (2.6) is exactly (2.1), first proved in [20]. To obtain (2.7)

we put 𝑧 = 0 into (2.6).
We first proved (2.8) in [20]. This is a generalization of equation (A.18) in

Hall’s paper [5], which corresponds to the case 𝜇 ≡ 0 of (2.8). This identity seems
to be related to the fact that the underlying Riemannian manifolds ℝ𝑁 and ℂ𝑁

are flat Euclidean spaces.
To prove (2.9) we calculate that

𝐶𝜇,𝑡(𝑧, 𝑞)

(𝐶𝜇,𝑡(0, 𝑞))1/2
=

𝜌𝜇,𝑡(𝑧, 𝑞)

(𝜌𝜇,𝑡(0, 𝑞))1/2
=

𝜌𝜇,𝑡(𝑧, 𝑞)

(𝑒−𝑞2/2𝑡)1/2
= 𝑒𝑞

2/4𝑡𝜌𝜇,𝑡(𝑧, 𝑞)

= 𝑒𝑞
2/4𝑡𝑒−(𝑧2+𝑞2)/2𝑡𝐸𝜇

( 𝑧
𝑡1/2
,
𝑞

𝑡1/2

)
= 𝑒−𝑧2/2𝑡−𝑞2/4𝑡𝐸𝜇

( 𝑧
𝑡1/2
,
𝑞

𝑡1/2

)
= 𝐴𝜇,𝑡(𝑧, 𝑞).
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For (2.10) we merely note that by definition we have 𝐶𝜇,𝑡(𝑧, 𝑞) = 𝜌𝜇,𝑡(𝑧, 𝑞),
and then we apply (2.12). And finally we remark that (2.11) is just a special case
of 𝐶𝜇,𝑡(𝑧, 𝑞) = 𝜌𝜇,𝑡(𝑧, 𝑞). □

Remark 2.6. Some of the results of Theorem 2.4, such as (2.11), are well known,
while (2.6) is a relatively recent result. We have presented all these identities
together to emphasize the exact relations among the three versions in the Coxeter
case. We will then use all this as motivation for the results in the next section.

3. Lie group case

We now examine the corresponding case introduced by Hall in [5] for a compact,
connected (real) Lie group 𝐾. We first review some material from [5] and refer the
reader to that paper for more details. Now 𝐾 has a complexification, which is a
complex Lie group 𝐺. Among other things, 𝐾 is a Lie subgroup of 𝐺. For every
𝑡 > 0 there is a heat kernel 𝜌𝑡 : 𝐾 → (0,∞), which has a unique holomorphic
extension (also denoted as 𝜌𝑡) with 𝜌𝑡 : 𝐺 → ℂ. We continue to consider 𝑡 > 0 in
the following as Planck’s constant and as having a fixed value.

The integral kernel function for Version 𝐴 is defined by

𝐴𝑡(𝑔, 𝑥) :=
𝜌𝑡(𝑥

−1𝑔)

(𝜌𝑡(𝑥))1/2

for 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝐾. Here 𝑥−1𝑔 is in 𝐺 (but not necessarily in 𝐾) and so the
𝜌𝑡 in 𝜌𝑡(𝑥

−1𝑔) refers to the holomorphic extension. The corresponding Version 𝐴
Segal-Bargmann transform is then defined by

𝐴𝑡𝜓(𝑔) :=

∫
𝐾

d𝐻𝑥𝐴𝑡(𝑔, 𝑥)𝜓(𝑥)

for all 𝜓 ∈ 𝐿2(𝐾, 𝑑𝐻𝑥) and all 𝑔 ∈ 𝐺, where 𝑑𝐻𝑥 is the normalized Haar measure of
the compact group𝐾. Theorem 1 in [5] states that 𝐴𝑡 : 𝐿

2(𝐾, 𝑑𝐻𝑥) → ℋ𝐿2(𝐺,𝜇𝑡)
is a unitary isomorphism, where 𝜇𝑡 is a heat kernel measure on 𝐺 (and not to be
confused with our notation 𝜇 for the multiplicity function) and ℋ𝐿2(𝐺,𝜇𝑡) denotes
the closed subspace of holomorphic functions in 𝐿2(𝐺,𝜇𝑡).

Theorem 2 in [5] states that 𝐶𝑡 : 𝐿2(𝐾, 𝑑𝐻𝑥) → ℋ𝐿2(𝐺, 𝜈𝑡) is a unitary
isomorphism, where 𝜈𝑡 is the measure on 𝐺 that we get by averaging 𝜇𝑡 over
the left action of 𝐾 on 𝐺, using the fact that 𝐾 is a subgroup of 𝐺. Of course,
ℋ𝐿2(𝐺, 𝜈𝑡) denotes the closed subspace of holomorphic functions in 𝐿2(𝐺, 𝜈𝑡). The
definition of the Version 𝐶 Segal-Bargmann transform is

𝐶𝑡𝜓(𝑔) :=

∫
𝐾

d𝐻𝑥𝐶𝑡(𝑔, 𝑥)𝜓(𝑥)

for all 𝜓 ∈ 𝐿2(𝐾, 𝑑𝐻𝑥) and all 𝑔 ∈ 𝐺, where the kernel function is defined by

𝐶𝑡(𝑔, 𝑥) := 𝜌𝑡(𝑥
−1𝑔)

for 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝐾.
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However, for the 𝐵 Version we are using our convention (see [20]) that

𝐵𝑡(𝑔, 𝑥) := 𝜌𝑡(𝑥
−1𝑔) / 𝜌𝑡(𝑥)

for 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝐾, which differs from the convention in [5]. In our convention
a kernel function of two variables 𝑇 (𝑥, 𝑦) determines an associated integral kernel
transform 𝑇 by

𝑇𝑓(𝑥) :=

∫
𝑌

d𝜈(𝑦)𝑇 (𝑥, 𝑦)𝑓(𝑦),

where (𝑌, 𝜈) is a measure space and 𝑓 is in a space associated with the measure 𝜈,
say in 𝐿𝑝(𝑌, 𝜈) for some 𝑝. Note that we use the same symbol for the kernel function
as well as for its associated operator. This is a common abuse of notation.

So our definition of Version 𝐵 Segal-Bargmann transform reads

𝐵𝑡𝜙(𝑔) :=

∫
𝐾

d𝜌𝑡(𝑥)𝐵𝑡(𝑔, 𝑥)𝜙(𝑥),

where d𝜌𝑡(𝑥) := 𝜌𝑡(𝑥) d𝐻𝑥, for all 𝑔 ∈ 𝐺 and 𝜙 ∈ 𝐿2(𝐾, 𝜌𝑡). This is equivalent to
the definition given in [5].

The reader should note the analogy between this material from [5] and our
corresponding material in [20], which was motivated by [5]. In contrast, in this
paper our results in the Coxeter context given in the previous section will be used
to motivate the study of analogous results in the Lie group case.

Another analogy with the Coxeter case concerns the heat kernel. In the Lie
group context the heat kernel 𝜌𝑡 : 𝐾 → (0,∞) determines two more kernels.
But first for each 𝑥 ∈ 𝐾 and 𝑓 : 𝐾 → ℂ we define the translation of 𝑓 by 𝑥
to be (𝒯𝑥𝑓)(𝑦) := 𝑓(𝑥−1𝑦) for all 𝑦 ∈ 𝐾. This definition has the virtue that
𝒯𝑥1𝒯𝑥2 = 𝒯𝑥1𝑥2 . Then we define the two-variable heat kernel 𝜌𝑡 : 𝐾 ×𝐾 → (0,∞)
(using the same notation 𝜌𝑡 for this function) for 𝑥, 𝑦 ∈ 𝐾 by

𝜌𝑡(𝑥, 𝑦) := (𝒯𝑥𝜌𝑡)(𝑦).
This kernel in turn has an analytic continuation 𝜌𝑡 : 𝐺 × 𝐺 → ℂ (denoted again
with the same notation), which is used in the definitions of the kernel functions
for all three versions of the Segal-Bargmann transform in the Lie group context.

We would also like to note that there seems to be a limit as to how far one can
find analogies between the Coxeter case and the Lie group case. For example, as
noted above, in the Lie group case the heat kernel measure of 𝐺 plays an important
role in defining the spaces of holomorphic functions on 𝐺. However, even when
𝑁 = 1, the definition of the holomorphic function spaces in the Coxeter case uses
in general more than one measure. (See [18].)

We now are about ready to state our result for Lie groups. But first we remark
that 𝑒 denotes the identity element in 𝐾 ⊂ 𝐺.
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Theorem 3.1. Let 𝐾 be a compact, connected Lie group, and let 𝐺 denote its
complexification. Then we have for all 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝐾 the identities

𝐵𝑡(𝑔, 𝑥) = 𝐴𝑡(𝑔, 𝑥) /𝐴𝑡(𝑒, 𝑥) (3.1)

𝐶𝑡(𝑔, 𝑥) = 𝐴𝑡(𝑒, 𝑥)𝐴𝑡(𝑔, 𝑥) (3.2)

𝜌𝑡(𝑥) = (𝐴𝑡(𝑒, 𝑥))
2, (3.3)

which tell us that from Version 𝐴 we can obtain Versions 𝐵 and 𝐶 as well as the
heat kernel 𝜌𝑡 on 𝐾 (and hence implicitly its analytic extension to 𝐺). We also
have the identities

𝐴𝑡(𝑔, 𝑥) = 𝐶𝑡(𝑔, 𝑥) / (𝐶𝑡(𝑒, 𝑥))
1/2 (3.4)

𝐵𝑡(𝑔, 𝑥) = 𝐶𝑡(𝑔, 𝑥) /𝐶𝑡(𝑒, 𝑥) (3.5)

𝜌𝑡(𝑥) = 𝐶𝑡(𝑒, 𝑥), (3.6)

which tell us that we can also get Versions 𝐴 and 𝐵 and the heat kernel 𝜌𝑡 on 𝐾
from Version 𝐶. Finally, we have that

ℋ𝐿2(𝐺,𝜇𝑡) = ℋ𝐿2(𝐺, 𝜈𝑡). (3.7)

Remark 3.2. All of the identities in Theorem 2.4 have an analogue here except
for equation (2.8). The identity (3.2), which we believe to be new even though
it is quite elementary, shows that in this Lie group context the Segal-Bargmann
transform for Version 𝐴 determines that for Version 𝐶. While it remains true
that Version 𝐴 and Version 𝐶 are different (as in the Coxeter context), there is an
essential relation between them and, indeed, a relation that also holds analogously
in the Coxeter context.

Proof. Let 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝐾 be arbitrary in this proof. For (3.2) we simply use
the definitions and 𝜌𝑡(𝑥

−1) = 𝜌𝑡(𝑥) (see [5], p. 108) to evaluate

𝐴𝑡(𝑒, 𝑥)𝐴𝑡(𝑔, 𝑥) =
𝜌𝑡(𝑥

−1𝑒)

(𝜌𝑡(𝑥))1/2
⋅ 𝜌𝑡(𝑥

−1𝑔)

(𝜌𝑡(𝑥))1/2
= 𝜌𝑡(𝑥

−1𝑔) = 𝐶𝑡(𝑔, 𝑥).

As in the Coxeter case, (3.2) immediately implies a bounded inclusion, namely

Ran𝐶𝑡 ⊂ Ran𝐴𝑡

since 𝐴𝑡(𝑒, 𝑥) as a function of 𝑥 ∈ 𝐾 is bounded, 𝐾 being compact. By (3.2)

𝐴𝑡(𝑔, 𝑥) =
𝐶𝑡(𝑔, 𝑥)

𝐴𝑡(𝑒, 𝑥)
, (3.8)

which is useful unlike (2.4). This is so since the denominator satisfies

𝐴𝑡(𝑒, 𝑥) =
𝜌𝑡(𝑥

−1𝑒)

(𝜌𝑡(𝑥))1/2
= (𝜌𝑡(𝑥))

1/2 > 0, (3.9)

and so is bounded from below away from 0, since 𝑥 varies in 𝐾 compact. (For the
inequality 𝜌𝑡(𝑥) > 0, see [5].) Given this fact, equation (3.8) now implies that

Ran𝐴𝑡 ⊂ Ran𝐶𝑡
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is a bounded inclusion. Together with the previous inclusion, this shows that

Ran𝐴𝑡 = Ran𝐶𝑡

which completes the first part of the proof of (3.7).

However to show the identity (3.7) requires identifying the ranges of 𝐴𝑡 and
𝐶𝑡 to be equal to the respective Hilbert spaces ℋ𝐿2(𝐺,𝜇𝑡) and ℋ𝐿2(𝐺, 𝜈𝑡). That
is, one must show that 𝐴𝑡 and 𝐶𝑡 are onto their respective Hilbert spaces and with
proofs that do not depend on the identity (3.7). Unfortunately, the first paper
to show the surjectivity of these transforms (which is [5]) does use this property.
(See Lemma 11 in [5].) However, restriction principles provide another approach
to this theory, and this approach leads to quick, rather elementary proofs of the
surjectivity (as well as the injectivity) of these two transforms. This approach is
sketched in [12] for both Versions 𝐴 and 𝐶, while it is presented in the recent
paper [8] in more detail, but only for the 𝐶-version. And this completes the proof
of (3.7). The author thanks the anonymous referee for pointing out the importance
of the comments in this paragraph.

The identity (3.3) follows immediately from (3.9). Next, using the definitions
of 𝐴𝑡(𝑔, 𝑥) and 𝐵𝑡(𝑔, 𝑥) as well as (3.9), we calculate

𝐴𝑡(𝑔, 𝑥)

𝐴𝑡(𝑒, 𝑥)
=
𝜌𝑡(𝑥

−1𝑔)

(𝜌𝑡(𝑥))1/2
⋅ 1

(𝜌𝑡(𝑥))1/2
=
𝜌𝑡(𝑥

−1𝑔)

𝜌𝑡(𝑥)
= 𝐵𝑡(𝑔, 𝑥),

which is exactly (3.1).

To show (3.4) we simply note that

𝐶𝑡(𝑔, 𝑥)

(𝐶𝑡(𝑒, 𝑥))1/2
=

𝜌𝑡(𝑥
−1𝑔)

(𝜌𝑡(𝑥−1))1/2
=
𝜌𝑡(𝑥

−1𝑔)

(𝜌𝑡(𝑥))1/2
= 𝐴𝑡(𝑔, 𝑥).

For (3.5) we use 𝐶𝑡(𝑒, 𝑥) = 𝜌𝑡(𝑥
−1) = 𝜌𝑡(𝑥) and definitions to get

𝐶𝑡(𝑔, 𝑥)

𝐶𝑡(𝑒, 𝑥)
=
𝜌𝑡(𝑥

−1𝑔)

𝜌𝑡(𝑥)
= 𝐵𝑡(𝑔, 𝑥),

which proves (3.5). We have also just proved (3.6), thereby finishing the proof. □

Remark 3.3. Of course, the heat kernel on 𝐾 determines all three versions of the
Segal-Bargmann transform, this being precisely a major theme of Hall’s paper [5].
The previous theorem shows that each of the Versions 𝐴 and 𝐶 determines the
remaining two versions as well as determining the heat kernel of 𝐾. It seems that
the Version 𝐵 does not determine these other structures.

The identities (3.1)–(3.6) are all easy to prove and so it would be surprising if
they are all new. In fact, some of them clearly are not new, such as (3.6). However,
the identity (3.2) does seem to be new in this context. But its consequence (3.7)
was already known, since that follows from the stronger result

𝐿2(𝐺,𝜇𝑡) = 𝐿
2(𝐺, 𝜈𝑡),
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which in turn follows immediately from Lemma 11 in [5] (p. 124). However, (3.2)
together with the powerful, yet elementary restriction principles gives us a new,
conceptually simple proof of (3.7).

The importance of (3.2) is that it tells us Version 𝐶 of the Segal-Bargmann
transform is determined by Version 𝐴 of the Segal-Bargmann transform, where we
understand that an integral kernel transform is “equivalent” to its integral kernel
function. And though (3.2) could have been proved in [5], it does not appear there.
This result, though extremely simple, was a complete surprise to this author, who
had interpreted the last sentence in [5] as implying the impossibility of any relation
of the sort. In short, the importance of the identity (3.2) is that it now clarifies
this issue. And again, as far as this author is aware, this is the first time that
this explicit relation between Versions 𝐴 and 𝐶 in the context of Lie groups has
appeared in the published literature.

We also wish to note that the inclusions and equalities of spaces given in this
section are as sets and not as Hilbert spaces. This is because the inner products
do not coincide.

4. An interesting counterexample: 𝑺𝑼(2)

As we have already remarked, the identity (2.8) in the Coxeter context does not
have an analogue in the Lie group context. We now construct a counterexample
to show that the analogous equation is false in general. We present this in detail,
since we find it to be a rather nice exercise in finding an elegant and useful formula
for the heat kernels of 𝑆𝑈(2) and 𝑆𝐿(2;ℂ). Much of the material in this section
is classical. We have chosen to start by following the presentation and notation
given in Chapter 7 of [9].

We now consider the case of the compact Lie group 𝑆𝑈(2) of 2 × 2 complex
matrices 𝐴 which are unitary (that is, 𝐴∗𝐴 = 𝐼) and have determinant one.
We use notation for group elements and the identity matrix (namely, 𝐼) that is
standard for matrix groups. By the spectral theorem for normal operators, there
exists a unitary matrix 𝐵 which diagonalizes a given 𝐴 ∈ 𝑆𝑈(2), that is 𝐵−1𝐴𝐵
is diagonal. By taking 𝐶 = 𝐵/(det𝐵)1/2 ∈ 𝑆𝑈(2), where (det𝐵)1/2 is one of the
square roots of det𝐵, we have that 𝐴 is conjugate in 𝑆𝑈(2) to

𝐶−1𝐴𝐶 =

(
𝑒i𝜏/2 0

0 𝑒−i𝜏/2

)
(4.1)

for some real number 𝜏 ∈ [0, 4𝜋), since the eigenvalues 𝛼, 𝛽 of 𝐴 (and also of its
diagonalization) satisfy ∣𝛼∣ = ∣𝛽∣ = 1 and 𝛼𝛽 = 1. The condition on 𝜏 is not too
restrictive since it still allows the (1, 1) entry (and also the (2, 2) entry) in the
matrix (4.1) to achieve any value on the unit circle. But by conjugating formula
(4.1) by the matrix (

0 i
i 0

)
∈ 𝑆𝑈(2),
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which interchanges the eigenvalues on the diagonal of formula (4.1), we see that
the matrices in (4.1) with parameter 𝜏 ∈ [2𝜋, 4𝜋) are conjugate in 𝑆𝑈(2) to the
matrices with parameter 𝜏 ′ ∈ (0, 2𝜋], where 𝜏 ′ = 4𝜋 − 𝜏 .

Moreover, for 𝜏1, 𝜏2 ∈ [0, 2𝜋] with 𝜏1 ∕= 𝜏2, the corresponding matrices are not
conjugate, since they have different sets of eigenvalues. So, by taking 𝜏 ∈ [0, 2𝜋]
in (4.1), we get a family of matrices which contains exactly one representative of
each conjugacy class in 𝑆𝑈(2), that is, the value of 𝜏 in [0, 2𝜋] is now uniquely
determined for each 𝐴 ∈ 𝑆𝑈(2).

Even though we could label the irreducible unitary representations of 𝑆𝑈(2)
by their dimensions, it is conventional to label them by the non-negative half
integers 𝑢 (those non-negative real numbers 𝑢 such that 2𝑢 is an integer) such
that 2𝑢 + 1 is the dimension of the representation. If 𝜙𝑢 denotes the associated
irreducible representation, then we have that 𝜙𝑢(𝐴) is a (2𝑢+1)× (2𝑢+1) unitary
matrix for every 𝐴 ∈ 𝑆𝑈(2). The corresponding character 𝜒𝑢 = Tr ∘𝜙𝑢 (where
Tr is the trace of a matrix) is a complex-valued function that is constant on each
conjugacy class of 𝑆𝑈(2). So, 𝜒𝑢(𝐴) is a function of 𝜏 ∈ [0, 2𝜋] only. Actually, this
function can be calculated explicitly for 𝐴 ∈ 𝑆𝑈(2) as

𝜒𝑢(𝐴) =
𝑢∑

𝑠=−𝑢

𝑒𝑖𝑠𝜏 =
sin(𝑢+ 1/2)𝜏

sin(𝜏/2)
,

where these formulas can be found in [9], p. 232. The last formula results by
summing the finite geometric series and simplifying. (The singularities in the last
expression are removable and are understood as having been removed.) Note that
the summation in the second expression is taken in unit steps, even in the case
when 𝑢 is not an integer. For example, when 𝑢 = 3/2 the sum is over 𝑠 equal to
the four values −3/2, −1/2, 1/2, 3/2. In general, the sum contains 2𝑢+ 1 terms.

We have used [9] as a guide for the discussion so far but now take a different
tack, since we wish to write 𝜏 in terms of the matrix 𝐴. Note that any 𝐴 ∈ 𝑆𝑈(2)
can be written as

𝐴 =

(
𝑎 𝑏

−𝑏∗ 𝑎∗

)
with 𝑎, 𝑏 ∈ ℂ satisfying ∣𝑎∣2 + ∣𝑏∣2 = 1. Therefore we have that

Tr(𝐴) = 𝑎+ 𝑎∗ = 2Re(𝑎) (4.2)

and by (4.1) that

Tr(𝐴) = Tr(𝐶−1𝐴𝐶) = 𝑒i𝜏/2 + 𝑒−i𝜏/2 = 2 cos(𝜏/2).

So we have Re(𝑎) = cos(𝜏/2) or equivalently

𝜏 = 2 cos−1(Re(𝑎)).

Here we are using the standard definition cos−1 : [−1, 1] → [0, 𝜋]. We note that
Re(𝑎) ∈ [−1, 1], since ∣Re(𝑎)∣2 ≤ ∣𝑎∣2 ≤ ∣𝑎∣2 + ∣𝑏∣2 = 1. So this is in agreement
with our earlier restriction that 𝜏 ∈ [0, 2𝜋], that is, our choice for the branch of
the inverse cosine is correct.
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Returning to the character, we see that

𝜒𝑢(𝐴) =
sin(𝑢+ 1/2)𝜏

sin(𝜏/2)
=

sin[(2𝑢+ 1) cos−1(Re(𝑎))]

sin[cos−1(Re(𝑎))]
,

which already expresses the character of 𝐴 ∈ 𝑆𝑈(2) in terms of an entry of the
matrix 𝐴, namely 𝑎, although the formula seems to leave something to be desired.

Now we recall the definition of the Chebyshev polynomial of the second kind
(see [10]) for any 𝑥 ∈ (−1, 1) and integer 𝑛 ≥ 0 as

𝑈𝑛(𝑥) :=
sin((𝑛+ 1)𝜃)

sin 𝜃
=

sin((𝑛+ 1) cos−1 𝑥)

sin(cos−1 𝑥)
,

where 𝑥 = cos 𝜃 or 𝜃 = cos−1 𝑥. One verifies that this is a polynomial function
of 𝑥 in the interval (−1, 1) and then extends the domain of definition of 𝑈𝑛 to the
entire complex plane by analytic continuation.

So, for ∣Re(𝑎)∣ < 1, we finally arrive at the rather simple expressions

𝜒𝑢(𝐴) = 𝑈2𝑢(Re(𝑎)) = 𝑈2𝑢

(
1

2
Tr(𝐴)

)
, (4.3)

where the second equality comes from equation (4.2). (The case ∣Re(𝑎)∣ = 1 occurs
if and only if 𝐴 = ±𝐼. Then the proof of (4.3) follows by continuity.) Now these
are more elegant ways of writing the character of 𝐴 ∈ 𝑆𝑈(2) in terms of 𝐴 itself.
We must note here that the formula (4.3) is known, but apparently not that
well appreciated. For example, Miller notes in [9], p. 233, that he is aware of
this formula, but he does not present it since he considers it to be “not very
enlightening.” This is why we have presented and proved (4.3) here.

Next, according to equation (15) in [5], the heat kernel of the compact Lie
group 𝑆𝑈(2) is given for 𝐴 ∈ 𝑆𝑈(2) and 𝑡 > 0 by

𝜌𝑡(𝐴) =
∑
𝑢

dim(𝜙𝑢)𝑒
−𝜆𝑢𝑡/2 𝜒𝑢(𝐴),

where dim(𝜙𝑢) = 2𝑢 + 1 and 𝜆𝑢 is the unique eigenvalue of minus the Laplacian
acting in the representation space, that is 𝜙𝑢(−Δ) = 𝜆𝑢𝐼. We have 𝜆𝑢 = 𝑢(𝑢+1).
(See [9].) So we have that

𝜌𝑡(𝐴) =
∑
𝑢

(2𝑢+ 1)𝑒−𝑢(𝑢+1)𝑡/2 𝑈2𝑢

(
1

2
Tr(𝐴)

)

=

∞∑
𝑛=0

(𝑛+ 1)𝑒−𝑛(𝑛+2)𝑡/8𝑈𝑛

(
1

2
Tr(𝐴)

)
, (4.4)

where the first sum is over all non-negative half-integers 𝑢 and the second is over
all integers 𝑛 ≥ 0, where 𝑛 = 2𝑢. Hall proves in [5] that this series converges
absolutely for all 𝑡 > 0 and all 𝐴 ∈ 𝑆𝐿(2;ℂ). However, by using properties of the
polynomials 𝑈𝑛, one can directly prove the absolute convergence of this series for
all 𝑡 > 0 and for any 2× 2 complex matrix 𝐴, as we will show momentarily. Also,
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it is known that 𝜌𝑡(𝐴) > 0 for all 𝑡 > 0 and for all 𝐴 ∈ 𝑆𝑈(2), but this is not
obvious from formula (4.4), since 𝑈𝑛 has 𝑛 simple roots in [−1, 1].

We now consider how to find the analytic continuation of the heat kernel 𝜌𝑡
to the complexification of 𝑆𝑈(2), which also can be identified with the cotangent
bundle of 𝑆𝑈(2). It turns out that the complexification of 𝑆𝑈(2) is 𝑆𝐿(2;ℂ), the
group of all 2 × 2 matrices with complex entries and determinant one. We will
next show that the analytic continuation of 𝜌𝑡 is given by the same formula (4.4)
given above, but now for 𝐴 ∈ 𝑆𝐿(2;ℂ). Actually, we will procede by proving the
uniform absolute convergence of the series in (4.4) on compact subsets of𝑀(2;ℂ),
the space of all 2× 2 complex matrices. First, we need a lemma.

Lemma 4.1. For all 𝑧 ∈ ℂ and every integer 𝑘 ≥ 0 we have this estimate for the
Chebyshev polynomials 𝑈𝑘 of the second kind:

∣𝑈𝑘(𝑧)∣ ≤ ( 3max(1, ∣𝑧∣) )𝑘

Remark 4.2. This estimate is not optimal. Nor is it meant to be.

Proof. The proof is by induction on 𝑘. For 𝑘 = 0 and 𝑘 = 1 the estimate is easy
enough, using 𝑈0(𝑧) = 1 and 𝑈1(𝑧) = 2𝑧, and so is left to the reader. We now
assume that 𝑛 ≥ 1 and that the estimate holds for 𝑘 = 𝑛 and 𝑘 = 𝑛−1. It remains
for us to show the estimate for 𝑘 = 𝑛 + 1. We will use the three term recursion
relation for the Chebyshev polynomials of the second kind:

𝑈𝑛+1(𝑧) = 2𝑧𝑈𝑛(𝑧)− 𝑈𝑛−1(𝑧)

for 𝑛 ≥ 1. (See [3].) We first consider the case ∣𝑧∣ ≥ 1. Using the induction
hypothesis we have that

∣𝑈𝑛+1(𝑧)∣ ≤ 2∣𝑧∣ ∣𝑈𝑛(𝑧)∣+ ∣𝑈𝑛−1(𝑧)∣ ≤ 2∣𝑧∣ 3𝑛∣𝑧∣𝑛 + 3𝑛−1∣𝑧∣𝑛−1

≤ 2 ⋅ 3𝑛∣𝑧∣𝑛+1 + 3𝑛−1∣𝑧∣𝑛+1 = (2 ⋅ 3 + 1) 3𝑛−1∣𝑧∣𝑛+1
≤ 32 3𝑛−1∣𝑧∣𝑛+1 = 3𝑛+1∣𝑧∣𝑛+1,

which is the estimate for 𝑛+1 in this case. The case ∣𝑧∣ ≤ 1 is proved similarly. □

Theorem 4.3. The series in (4.4) converges absolutely and uniformly on compact
subsets of𝑀(2;ℂ). Consequently, it defines a holomorphic function on the complex
manifold 𝑀(2;ℂ) ∼= ℂ4.

Proof. Consider a compact subset 𝑆 ⊂𝑀(2;ℂ). Define

𝐶𝑆 := 3max

(
1, sup

𝐴∈𝑆

1

2
∣Tr(𝐴)∣

)
.

Then by the previous lemma we have that ∣𝑈𝑛(
1
2 Tr(𝐴))∣ ≤ (𝐶𝑆)

𝑛 for all 𝐴 ∈ 𝑆.
We use this and the root test to estimate for 𝐴 ∈ 𝑆 as follows:

∞∑
𝑛=0

∣∣∣∣(𝑛+ 1)𝑒−𝑛(𝑛+2)𝑡/8𝑈𝑛

(
1

2
Tr(𝐴)

)∣∣∣∣ ≤ ∞∑
𝑛=0

(𝑛+ 1)𝑒−𝑛(𝑛+2)𝑡/8 (𝐶𝑆)
𝑛 <∞.
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The first statement of the theorem now follows from the Weierstrass𝑀 -test. Since
Tr :𝑀(2;ℂ) → ℂ is clearly holomorphic and each 𝑈𝑛 is a holomorphic polynomial,
the partial sums of (4.4) are clearly holomorphic functions of 𝐴 ∈𝑀(2;ℂ). So the
second statement of the theorem follows immediately from the first statement. □
Remark 4.4. Since the inclusion mapping 𝑆𝐿(2;ℂ) ↪→ 𝑀(2;ℂ) is holomorphic,
it follows that (4.4) for 𝐴 ∈ 𝑆𝐿(2;ℂ) gives the analytic continuation of 𝜌𝑡 from
𝑆𝑈(2) to 𝑆𝐿(2;ℂ). Theorem 4.3 follows from [5] (Prop. 1, p. 111) but only for
𝑆𝐿(2;ℂ) instead of 𝑀(2;ℂ).

We now change notation by letting 𝑋 ∈ 𝑆𝑈(2) and 𝐺 ∈ 𝑆𝐿(2;ℂ) denote
generic elements in these two groups. Then the integral kernel for Version 𝐴 of the
Segal-Bargmann transform for 𝑆𝑈(2) is given by

𝐴𝑡(𝐺,𝑋) =
𝜌𝑡(𝑋

−1𝐺)

(𝜌𝑡(𝑋))1/2
,

while the kernel for Version 𝐶 of the Segal-Bargmann transform for 𝑆𝑈(2) is

𝐶𝑡(𝐺,𝑋) = 𝜌𝑡(𝑋
−1𝐺).

Finally, we now prove the main result of this section, namely that the identity
analogous to (2.8) is not true for 𝑆𝑈(2).

Theorem 4.5. The equation

𝐶𝑡(𝐺
2, 𝑋) = 𝐴2𝑡(𝐺

2, 𝐼)𝐴𝑡/2(𝐺,𝑋) (4.5)

is not identically true for all 𝑋 ∈ 𝑆𝑈(2) and all 𝐺 ∈ 𝑆𝐿(2;ℂ).
Proof. Equation (4.5) is equivalent to

𝜌𝑡(𝑋
−1𝐺2) =

𝜌2𝑡(𝐺
2)

(𝜌2𝑡(𝐼))1/2
⋅ 𝜌𝑡/2(𝑋

−1𝐺)

(𝜌𝑡/2(𝑋))1/2
. (4.6)

Let us suppose that this is an identity and try to get a contradiction. First we
calculate the heat kernel of two elements of 𝑆𝑈(2). For the identity matrix 𝐼 we
have that

𝜌𝑡(𝐼) =

∞∑
𝑛=0

(𝑛+ 1)𝑒−𝑛(𝑛+2)𝑡/8 𝑈𝑛

(
1

2
Tr(𝐼)

)

=
∞∑
𝑛=0

(𝑛+ 1)𝑒−𝑛(𝑛+2)𝑡/8 𝑈𝑛(1) =
∞∑
𝑛=0

(𝑛+ 1)2𝑒−𝑛(𝑛+2)𝑡/8,

where we used that 𝑈𝑛(1) = 𝑛+ 1 and Tr(𝐼) = 2. For the next calculation we use
−𝐼 ∈ 𝑆𝑈(2) and 𝑈𝑛(−1) = (−1)𝑛(𝑛+ 1). We then have

𝜌𝑡(−𝐼) =
∞∑
𝑛=0

(𝑛+ 1)𝑒−𝑛(𝑛+2)𝑡/8𝑈𝑛

(
1

2
Tr(−𝐼)

)

=
∞∑
𝑛=0

(𝑛+ 1)𝑒−𝑛(𝑛+2)𝑡/8𝑈𝑛(−1) =
∞∑
𝑛=0

(−1)𝑛(𝑛+ 1)2𝑒−𝑛(𝑛+2)𝑡/8.
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This clearly implies that 𝜌𝑡(−𝐼) < 𝜌𝑡(𝐼). We also have 0 < 𝜌𝑡(−𝐼) by the strict
positivity of the heat kernel on 𝑆𝑈(2).

Next in (4.6) we take 𝑋 = 𝐼 and 𝐺 = 𝐼 to get

𝜌𝑡(𝐼) =
𝜌2𝑡(𝐼)

(𝜌2𝑡(𝐼))1/2
⋅ 𝜌𝑡/2(𝐼)

(𝜌𝑡/2(𝐼))1/2
.

We also take 𝑋 = −𝐼 and 𝐺 = −𝐼 in (4.6) thereby obtaining

𝜌𝑡(−𝐼) = 𝜌2𝑡(𝐼)

(𝜌2𝑡(𝐼))1/2
⋅ 𝜌𝑡/2(𝐼)

(𝜌𝑡/2(−𝐼))1/2
.

Note that in these last two equations all the values of the heat kernel are strictly
positive real numbers. So, it follows that

0 < 𝜌𝑡(−𝐼)(𝜌𝑡/2(−𝐼))1/2 = 𝜌𝑡(𝐼)(𝜌𝑡/2(𝐼))
1/2.

And this contradicts 0 < 𝜌𝑡(−𝐼) < 𝜌𝑡(𝐼), which holds for all 𝑡 > 0. □

Remark 4.6. There are surely many other ways to show that (4.6) is not an identity.
For example, one could use a computer assisted proof.

5. Concluding remarks

We feel that a major, new result of this note is embodied in (3.2), which tells us
that Version 𝐶 is determined by Version 𝐴 in the Lie group context. Moreover,
(3.4) gives us the reciprocal relation that Version 𝐴 is determined by Version 𝐶 in
the Lie group context. However, it seems to be the case that the isometry properties
of these two Versions are somehow “independent” properties, unlike the Coxeter
case. Exactly how to express this idea in a mathematically rigorous way (and
then prove it, of course!) remains a challenge. It was our study of Segal-Bargmann
analysis in the Coxeter context which motivated us to find these results.

It is reasonable to conjecture that (4.5) is false for every compact, connected,
non-abelian Lie group 𝐾. In the contrary case it would be interesting to know for
which such 𝐾 equation (4.5) is an identity.

The multitude of analogies between the Segal-Bargmann theory associated to
a Coxeter group and the Segal-Bargmann theory for compact Lie groups strongly
suggests that there is more here than mere analogy. An avenue for further research
would be to find out if there is for example a new general theory which has these
two theories as special cases. However, there is a difference, which we would like
to note, between these two theories. The Lie group case is based on a Laplacian
associated to the Lie group. And this is a differential operator. But the Coxeter
case is based on the Dunkl Laplacian, which is a differential-difference operator.
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Nonlinear Scattering in the Lamb System

Marco A. Taneco-Hernández

Abstract. The goal of this paper is to survey recent results on scattering in
nonlinear conservative Lamb’ s systems. A Lamb’ s system is a wave equation
coupled with an equation of motion of a particle of mass 𝑚 ≥ 0. We de-
scribe the long time asymptotics in a global energy norm for all finite energy
solutions with 𝑚 = 0 [6] and 𝑚 > 0 [7]. Under certain conditions on the
potential, each solution in an appropriate functional space decays, in a global
energy norm as 𝑡 → ±∞, towards the sum of a stationary state and an out-
going wave. The outgoing waves correspond to the ’in’ and ’out’ asymptotic
states. For 𝑚 > 0, we define nonlinear wave operators corresponding to the
ones introduced in [6] and obtain a necessary condition for the existence of
the asymptotic states. For 𝑚 = 0 we state a conjecture for the asymptotic
completeness and verify this for some particular potentials.

Mathematics Subject Classification (2000). Primary 37K05, 35A05, 35A30.

Keywords. Lamb system, D’Alembert decomposition, global point attractor,
scattering asymptotics, nonlinear wave operators.

1. Introduction

Energy transfer within interconnected mechanical systems is important in many
real world settings. When a finite- and an infinite-dimensional systems are coupled,
energy is radiated from the former and absorbed by the latter. We call this process
radiation damping.

In a conservative context, radiation damping can describe dissipation (e.g.
friction, viscosity), where energy may dissipate from one form (such as mechanical)
into another (such as heat) of a larger conservative system.

An early physical model of radiation damping was introduced by Horace
Lamb [1]. In the Lamb model an oscillator coupled to a string describes the free
vibrations of a nucleus in an extended medium. The oscillator transfers energy to
the string by generating waves as it moves. In many linear and nonlinear partial
differential equations, it is fruitful to view the dynamics in terms of “particle-like”

Research supported in part by CONACyT, México.
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components. A decomposition into these types of models leads to an equivalent
description in terms of two coupled subsystems: the first is finite-dimensional and
governs the “particle-like” or bound state part of the solution, while the second
is infinite-dimensional and dispersive. Coupling terms are responsible for how the
dynamics of “particles” influence the field and how the dispersive wave-field influ-
ences the particle dynamics.

Let us comment on related works. H. Lamb consider the linear case when
𝐹 (𝑦) = −𝜔2𝑦. The Lamb system with general nonlinear 𝐹 (𝑦) and the oscillator
mass 𝑚 > 0 has been considered in [2] where the questions of irreversibility and
non-recurrence were discussed. The convergence to stationary states for nonlinear
Lamb system in local energy seminorms was proved in [4, 5] for the scalar wave
equation with 𝑚 ≥ 0 and the compactly supported initial data, here the existence
of a global attractor has been established for the first time. In [9] metastable
regimes were studied for the stochastic Lamb system. The methods and results
[4, 5] were applied and extended in [11] to stability and instability analysis in some
linear systems of the Lamb type. A model of a particle coupled to a wave field is
studied in [3]. The paper [12] concerns an application of Lax-Phillips scattering
theory to linear models of the Lamb type and existence of dynamics for a class of
the nonlinear systems. The long time asymptotics with a dispersive wave in global
energy norms were proved first in [13] for 1D Schrödinger equation, and extended
i) in [14]–[16] to 3D wave, Klein-Gordon and Schrödinger coupled to a particle,
ii) in [17] to 1D nonlinear relativistic equation with piecewise constant potential
of thew nonlinearity. However, all the results concern solutions sufficiently close
to a solitary manifold. In [18]–[21] similarly asymptotic were proved for all finite
energy solutions to 3D wave, Klein-Gordon and Maxwell equations coupled to a
particle.

The paper is organized as follows. In Section 2 the problem is formulated
along with an introduction of the phase space and stationary states. In Sections
3–4 we formulate the main results. In Section 5, we define nonlinear scattering
operators, and obtain a necessary condition for the existence of the asymptotic
states. In Section 6 we study the asymptotic completeness. At last, in Section 7 we
present and solve the direct and inverse scattering problem for the Lamb system
en the linear case if 𝑚 > 0.

2. Problem formulation and description

We consider the nonlinear conservative Lamb system with mass 𝑚 ≥ 0 given by⎧⎨⎩
𝑢̈(𝑥, 𝑡) = 𝑢′′(𝑥, 𝑡), 𝑥 ∈ ℝ ∖ {0},
𝑚𝑦(𝑡) = 𝐹 (𝑦(𝑡)) + 𝑢′(0+, 𝑡) − 𝑢′(0−, 𝑡);
𝑦(𝑡) := 𝑢(0, 𝑡),

∣∣∣∣∣∣∣ 𝑡 ∈ ℝ. (2.1)

Here 𝑢̇ := ∂𝑢
∂𝑡 , 𝑢

′ := ∂𝑢
∂𝑥 and so on. The solutions 𝑢(𝑥, 𝑡) take the values in ℝ𝑑 with

𝑑 ≥ 1. Physically, the problem describes small crosswise oscillations of an infinity
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string stretched parallel to the 𝑥-axis; a particle of 𝑚 ≥ 0 is attached to the string
at the point 𝑥 = 0; 𝐹 (𝑦) is an external (nonlinear) force field perpendicular to
𝑥-axis, the field subjects the particle. The Lamb system (2.1) is as an example

Figure 1. Lamb system (𝑑 = 1).

of simplest nontrivial time reversible conservative system allowing an effective
analysis of various questions.

Lamb system (2.1) is formally equivalent to ℝ𝑑-valued one-dimensional non-
linear wave equation with the nonlinear term 𝛿(𝑥)𝐹 (𝑢(𝑥, 𝑡)) concentrated at the
single point 𝑥 = 0:

𝑢̈(𝑥, 𝑡) = 𝑢′′(𝑥, 𝑡) + 𝛿(𝑥)𝐹 (𝑢(𝑥, 𝑡)), (𝑥, 𝑡) ∈ ℝ2, if 𝑚 = 0, (2.2)(
1 +𝑚𝛿(𝑥)

)
𝑢̈(𝑥, 𝑡) = 𝑢′′(𝑥, 𝑡) + 𝛿(𝑥)𝐹 (𝑢(𝑥, 𝑡)), (𝑥, 𝑡) ∈ ℝ2, if 𝑚 > 0. (2.3)

The Cauchy problem consists in finding solutions 𝑢(𝑥, 𝑡), (in some functional space
that we will specify shortly), of system (2.1) satisfying given initial conditions.
These conditions differ in the cases 𝑚 = 0 and 𝑚 > 0:

𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑢0(𝑥); 𝑢̇(𝑥, 𝑡)∣𝑡=0 = 𝑣0(𝑥), if 𝑚 = 0, (2.4)

and

𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑢0(𝑥); 𝑢̇(𝑥, 𝑡)∣𝑡=0 = 𝑣0(𝑥); 𝑦̇(𝑡)∣𝑡=0 = 𝑝0, if 𝑚 > 0. (2.5)

Let us denote 𝑌 (𝑡) := (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) and Y(𝑡) := (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), 𝑦̇(𝑡)), where
𝑣(𝑥, 𝑡) := 𝑢̇(𝑥, 𝑡). Then the Cauchy problems (2.1), (2.4) (if 𝑚 = 0) and (2.1),
(2.5) (if 𝑚 > 0) formally reads:{

𝑌̇ (𝑡) = F
(
𝑌 (𝑡)
)
, 𝑡 ∈ ℝ,

𝑌 (0) = 𝑌0,
(2.6)
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where 𝑌0 := (𝑢0, 𝑣0), F
(
𝑌 (𝑡)
)
=
(
𝑣(𝑥, 𝑡), 𝑢′′(𝑥, 𝑡) + 𝛿(𝑥)𝐹 (𝑢(𝑥, 𝑡))

)
if 𝑚 = 0, and{

Ẏ(𝑡) = F
(
Y(𝑡)
)
, 𝑡 ∈ ℝ,

Y(0) = Y0,
(2.7)

where

Y0 := (𝑢0, 𝑣0, 𝑝0), F
(
Y(𝑡)
)
=
(
𝑣(𝑥, 𝑡), 𝑢′′(𝑥, 𝑡), 𝐹 (𝑢(𝑥, 𝑡)) + 𝑢′(0+, 𝑡)− 𝑢′(0−, 𝑡)

)
if 𝑚 > 0.

2.1. Notations and definitions

Let us introduce a phase space ℰ0 of finite energy states for the system (2.1)
with 𝑚 = 0 and the corresponding space ℰ if 𝑚 > 0. Let ∣∣ ⋅ ∣∣ and ∣∣ ⋅ ∣∣𝑅 be
the norms in the Hilbert spaces 𝐿2(ℝ;ℝ𝑑) and 𝐿2(𝐼𝑅;ℝ

𝑑), respectively, where
𝐼𝑅 := (−𝑅,𝑅) ⊂ ℝ, 𝑅 > 0, generated by the scalar product:〈

𝑓(𝑥), 𝑔(𝑥)
〉
𝐿2(ℝ,ℝ𝑑)

:=

∫
ℝ

𝑓(𝑥) ⋅ 𝑔(𝑥)𝑑𝑥

=

∫
ℝ

(
𝑓1(𝑥)𝑔1(𝑥) + ⋅ ⋅ ⋅+ 𝑓𝑑(𝑥)𝑔𝑑(𝑥)

)
𝑑𝑥.

Similarly we define
〈
𝑓(𝑥), 𝑔(𝑥)

〉
𝐿2(𝐼𝑅,ℝ𝑑)

. And ∣𝑎∣ :=√⟨𝑎, 𝑎⟩, 𝑎 ∈ ℝ𝑑.

Definition 2.1. i) ℰ0 (ℰ) is the Hilbert space of the pairs
(
𝑢(𝑥), 𝑣(𝑥)

) ∈ 𝐶(ℝ;ℝ𝑑)

⊕𝐿2(ℝ;ℝ𝑑) (triples
(
𝑢(𝑥), 𝑣(𝑥), 𝑝

) ∈ 𝐶(ℝ;ℝ𝑑) ⊕ 𝐿2(ℝ;ℝ𝑑) ⊕ ℝ𝑑) with 𝑢′(𝑥) ∈
𝐿2(ℝ;ℝ𝑑) and the global energy norms

∣∣(𝑢, 𝑣)∣∣ℰ0 := ∣∣𝑢′∣∣+ ∣𝑢(0)∣ + ∣∣𝑣∣∣, if 𝑚 = 0, (2.8)

∣∣(𝑢, 𝑣, 𝑝)∣∣ℰ := ∣∣𝑢′∣∣+ ∣𝑢(0)∣ + ∣∣𝑣∣∣+ ∣𝑝∣, if 𝑚 > 0. (2.9)

ii) ℰ0𝐹 (ℰ𝐹 ) is the space ℰ0 (ℰ) endowed with the topology defined by the local
energy seminorms

∣∣(𝑢, 𝑣, 𝑝)∣∣ℰ0,𝑅 := ∣∣𝑢′∣∣𝑅 + ∣𝑢(0)∣ + ∣∣𝑣∣∣𝑅, 𝑅 > 0, if 𝑚 = 0, (2.10)

∣∣(𝑢, 𝑣, 𝑝)∣∣ℰ,𝑅 := ∣∣𝑢′∣∣𝑅 + ∣𝑢(0)∣ + ∣∣𝑣∣∣𝑅 + ∣𝑝∣, 𝑅 > 0, if 𝑚 > 0. (2.11)

3. Existence of dynamics

We assume that the nonlinear force field 𝐹 has a real potential 𝑉 : ℝ𝑑 → ℝ,
𝑉 ∈ 𝐶2:

𝐹 (𝑢) ∈ 𝐶2(ℝ𝑑;ℝ𝑑), 𝐹 (𝑢) := −∇𝑢𝑉 (𝑢) and 𝑉 (𝑢) −−−−→
∣𝑢∣→∞

+∞ (3.1)
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Then (2.1) is a formally Hamiltonian system with the phase space ℰ0 (or ℰ) and
the Hamiltonian functional

ℋ(𝑢, 𝑣) =
1

2

∫
ℝ

[
∣𝑣(𝑥)∣2 + ∣𝑢′(𝑥)∣2

]
𝑑𝑥 +𝑚

∣𝑝∣2
2

+ 𝑉 (𝑢(0)), (3.2)

for (𝑢, 𝑣) ∈ ℰ0, if 𝑚 = 0 or (𝑢, 𝑣, 𝑝) ∈ ℰ if 𝑚 > 0. Dynamics of Lamb system is
established by the propositions:

Proposition 3.1. [6] Let conditions (3.1) hold, 𝑚 = 0 and 𝑑 ≥ 1. Then,

1. For every 𝑌0 ∈ ℰ0 the Cauchy problem (2.6) admits a unique solution 𝑌 (𝑡) ∈
𝐶(ℝ; ℰ0).

2. The map 𝑈(𝑡) : 𝑌0 +→ 𝑌 (𝑡) is continuous in ℰ0 and ℰ0𝐹 .
3. The energy is conserved

ℋ(𝑌 (𝑡)) = const, 𝑡 ∈ ℝ.

4. The a priori bound holds

sup
𝑡∈ℝ

∣∣𝑌 (𝑡)∣∣ℰ0 <∞.

Proposition 3.2. [7] Let conditions (3.1) hold, 𝑚 > 0 and 𝑑 ≥ 1. Then,

1. For every Y0 ∈ ℰ the Cauchy problem (2.7) admits a unique solution Y(𝑡) ∈
𝐶(ℝ; ℰ).

2. The map U(𝑡) : Y0 +→ Y(𝑡) is continuous in ℰ and ℰ𝐹 .
3. The energy is conserved

ℋ(Y(𝑡)) = const, 𝑡 ∈ ℝ.

4. The a priori bound holds

sup
𝑡∈ℝ

∣∣Y(𝑡)∣∣ℰ <∞.

Sketch of the proof. (Propositions 3.2 and 3.1, 1.) We consider 𝑡 > 0, the case
𝑡 < 0 its handled similar. First, the D’Alembert representation

𝑢(𝑥, 𝑡) =
𝑢0(𝑥− 𝑡) + 𝑢0(𝑥+ 𝑡)

2
+

1

2

𝑥+𝑡∫
𝑥−𝑡

𝑣0(𝜒)𝑑𝜒, ∣𝑥∣ ≥ 𝑡 > 0, (3.3)

implies the unique solution 𝑢(𝑥, 𝑡) in the region ∣𝑥∣ ≥ ∣𝑡∣. To prove the existence
and uniqueness in the region ∣𝑥∣ < ∣𝑡∣, we derive a nonlinear ordinary differential
equation for 𝑦(𝑡) = 𝑢(0, 𝑡) from the second equation of (2.1). The contraction
mapping principle implies the existence of a local solution 𝑦(𝑡) from the Cauchy
problem for the “reduced equation”{

𝑚𝑦(𝑡) = 𝐹 (𝑦(𝑡)) − 2𝑦̇(𝑡) + 2𝑤̇𝑖𝑛(𝑡), 𝑡 > 0,

𝑦(0) = 𝑢0(0), 𝑦̇(0) = 𝑝0,
if 𝑚 > 0, (3.4)

where 𝑤𝑖𝑛(𝑡) := 𝑔+(𝑡) + 𝑓−(−𝑡), for 𝑡 > 0 is the “incident wave” and 𝑓±(𝑧), 𝑔±(𝑧)
for ±𝑧 > 0 are defined by the well-known D’Alembert formulas (see [4]). The
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existence of the global solution and its continuity in ℝ+ follows from a priori
bounds:

sup
𝑡>0

∣𝑦(𝑡)∣ +
∞∫
0

∣𝑦̇(𝑡)∣2𝑑𝑡 ≤ 𝐵 <∞, if 𝑚 = 0, (3.5)

and

sup
𝑡>0

∣𝑦(𝑡)∣ + sup
𝑡>0

∣𝑦̇(𝑡)∣ +
∞∫
0

∣𝑦̇(𝑡)∣2𝑑𝑡 ≤ B <∞, if 𝑚 > 0, (3.6)

where 𝐵 and B is bounded for ∣∣(𝑢0, 𝑣0)∣∣ℰ0 and ∣∣(𝑢0, 𝑣0, 𝑝0)∣∣ℰ bounded respec-
tively. Hence

𝑢(𝑥, 𝑡) =

{
𝑦(𝑡− 𝑥) + 𝑔+(𝑥+ 𝑡) − 𝑔+(𝑡− 𝑥), 0 < 𝑥 < 𝑡

𝑦(𝑡+ 𝑥) + 𝑓−(𝑥− 𝑡) − 𝑓−(−𝑥− 𝑡), −𝑡 < 𝑥 < 0

∣∣∣∣∣ 𝑡 > 0, (3.7)

represents to the solution in the region ∣𝑥∣ < 𝑡, with 𝑡 > 0. Note that this formula
contains only the incident waves. These arguments imply that the Cauchy problem
(2.6) (or (2.7)) (see [4, 6, 7]) admits a unique solution 𝑌 (𝑡) = (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) ∈
𝐶(ℝ; ℰ0) (or Y(𝑡) = (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑦), 𝑦̇(𝑡)) ∈ 𝐶(ℝ; ℰ)) for any 𝑌0 ∈ ℰ0 (or Y0 ∈ ℰ),
where 𝑢(𝑥, 𝑡) is defined by (3.3) and (3.7). □

Figure 2. Solution to the Lamb system: region I, 𝑥 ≥ 𝑡 and region II,
𝑥 < 𝑡, with 𝑥 ≥ 0 and 𝑡 > 0.
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Remark 3.3. Similarly to the “direct” reduced equation (3.4), the “inverse” one
holds,

𝑚𝑦(𝑡) = 𝐹 (𝑦(𝑡)) + 2𝑦̇(𝑡) − 2𝑤̇out(𝑡), 𝑡 < 0, (3.8)

where the function 𝑤out(𝑡) := 𝑔−(𝑡) + 𝑓+(−𝑡), for 𝑡 < 0 is the “outgoing wave”. In
this case we have a representation of type (3.7) which contains only the reflected
waves 𝑔−, 𝑓+:

𝑢(𝑥, 𝑡) =

{
𝑦(𝑥+ 𝑡) + 𝑓+(𝑥− 𝑡) − 𝑓+(−𝑥− 𝑡), 0 < 𝑥 < −𝑡,
𝑦(−𝑥+ 𝑡) − 𝑔−(−𝑥+ 𝑡) + 𝑔−(𝑥 + 𝑡), 𝑡 < 𝑥 < 0,

∣∣∣∣∣ 𝑡 < 0. (3.9)

4. Scattering in the Lamb system

The stationary states 𝑆 = (𝑠(𝑥), 0) ∈ ℰ0 if𝑚 = 0 for (2.6), and S = (𝑠(𝑥), 0, 0) ∈ ℰ
if𝑚 > 0 for (2.7) are evidently determined. We define for every 𝑐 ∈ ℝ𝑑 the constant
function

𝑠𝑐(𝑥) = 𝑐, 𝑥 ∈ ℝ. (4.1)

Then the sets 𝒮0 and 𝒮 of all stationary states, 𝑆 ∈ ℰ0 if 𝑚 = 0 (or S ∈ ℰ if
𝑚 > 0) are given by

𝒮0 =
{
𝑆𝑧 = (𝑠𝑧(𝑥), 0) ∣ 𝑧 ∈ 𝑍}, (4.2)

𝒮 =
{
S𝑧 = (s𝑧(𝑥), 0, 0) ∣ 𝑧 ∈ 𝑍}, (4.3)

where 𝑍 :=
{
𝑧 ∈ ℝ𝑑 ∣ 𝐹 (𝑧) = 0

}
. We define 𝒵 =

{
(𝑧, 0) ∈ ℝ2𝑑

∣∣ 𝑧 ∈ 𝑍}.
Definition 4.1. The potential 𝑉 (𝑢) is “non-degenerate”, if the set 𝑍 is a discrete
subset in ℝ𝑑.

For 𝑑 = 1 this means that

𝐹 (𝑢) ∕≡ 0 on every nonempty interval 𝑐1 < 𝑢 < 𝑐2. (4.4)

4.1. Convergence to the global attractor

The first result means that the set 𝒮0 (or 𝒮) is the minimal global point attractor
of the system (2.1) in the space ℰ0𝐹 , (or in the space ℰ𝐹 ). Let us denote ℰ00 =
{(𝑢, 𝑣) ∈ ℰ0} if 𝑚 = 0, ℰ0 = {(𝑢, 𝑣, 0) ∈ ℰ} if 𝑚 > 0, and

𝑊̃ (𝑡)(𝑢, 𝑣) :=

{(
𝑊 (𝑡)(𝑢, 𝑣)

)
, if 𝑚 = 0,(

𝑊 (𝑡)(𝑢, 𝑣), 0
)
, if 𝑚 > 0,

(4.5)

where 𝑊 (𝑡) is the dynamical group of free wave equation corresponding to
𝐹 (𝑢) ≡ 0.

Theorem 4.2. [6, 7] Let all assumptions of Proposition 3.1 (or Proposition 3.2)
hold, 𝑌0 ∈ ℰ0 if 𝑚 = 0 (or Y0 ∈ ℰ if 𝑚 > 0) an initial data. Then,
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i) The corresponding solution 𝑌 (𝑡) ∈ 𝐶(ℝ; ℰ0), if 𝑚 = 0, to the Cauchy problem
(2.6) (or the corresponding solution Y(𝑡) ∈ 𝐶(ℝ; ℰ), if 𝑚 > 0, to the Cauchy
problem (2.7)) converges to the set 𝒮0 (or 𝒮) in the local energy semi-norm:

𝑌 (𝑡)
ℰ0
𝐹−−−−→

𝑡→±∞ 𝒮0, if 𝑚 = 0, (4.6)

or

Y(𝑡)
ℰ𝐹−−−−→

𝑡→±∞ 𝒮, if 𝑚 > 0. (4.7)

ii) There exist the limit stationary states 𝑆± ∈ 𝒮0 (or S± ∈ 𝒮) depending on the
solution 𝑌 (𝑡) (or Y(𝑡)) such that

𝑌 (𝑡)
ℰ0
𝐹−−−−→

𝑡→±∞ 𝑆±, if 𝑚 = 0, (4.8)

or

Y(𝑡)
ℰ𝐹−−−−→

𝑡→±∞ 𝑆±, if 𝑚 > 0. (4.9)

Sketch of the proof. (Theorem 4.2.) We consider 𝑡 > 0, the case 𝑡 < 0 its handled
similar. The stabilization (4.6) (or (4.7)) follows from the representation (3.7) and
from the Lemma:

Lemma 4.3 ([6] if 𝒎 = 0 and [7] if 𝒎 > 0). Let all assumptions of Theorem 4.2
hold. Then,

A. If m=0:

i) For every solution 𝑦(𝑡) to the equation (3.4)

𝑦(𝑡) −−−−→
𝑡→+∞ 𝑍. (4.10)

ii) Let, additionally, 𝑍 be a discrete subset in ℝ𝑑. Then there exists a 𝑧 ∈ 𝑍
such that

𝑦(𝑡) −−−−→
𝑡→+∞ 𝑧. (4.11)

B. If 𝑚 > 0:

i) For every solution 𝑦(𝑡) to the equation (3.4)

(𝑦(𝑡), 𝑦̇(𝑡)) −−−−→
𝑡→+∞ 𝒵. (4.12)

ii) Let, additionally, 𝑍 be a discrete subset in ℝ𝑑. Then there exists a (𝑧, 0) ∈ 𝒵
such that

(𝑦(𝑡), 𝑦̇(𝑡)) −−−−→
𝑡→+∞ (𝑧, 0). (4.13)

Finally, the attraction (4.6) (or (4.7)) implies the convergence (4.8) (or (4.9)). □
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4.2. Scattering asymptotic

The next result establish the long time asymptotics of the Lamb system for 𝑚 ≥ 0.
We write conditions introduced in [6] that restrict to the sets Cauchy data ℰ0 (or ℰ)
that allow to prove the character of convergence to the solutions of Lamb systems.
Suppose that the following integral and limits exist

𝑣0 :=

∫
ℝ

𝑣0(𝜒)𝑑𝜒, 𝑢
−
0 := lim

𝑥→−∞𝑢0(𝑥), 𝑢
+
0 := lim

𝑥→+∞𝑢0(𝑥). (4.14)

Definition 4.4.

i) The symbol ℰ0∞ denotes the space of pairs (𝑢, 𝑣) ∈ ℰ0 such that the limits
(4.14) exist.

ii) The symbol ℰ∞ denotes the space of triples (𝑢, 𝑣, 𝑝) ∈ ℰ such that the limits
(4.14) exist.

Theorem 4.5. [6, 7] Let all assumptions of Proposition 3.1 (or Proposition 3.2)
hold, and 𝑌0 ∈ ℰ0∞ if 𝑚 = 0 (or Y0 ∈ ℰ∞ if 𝑚 > 0) an initial data. We suppose
that 𝑍 is a discrete set in ℝ𝑑. Then

i) Scattering asymptotic holds:

𝑌 (𝑡) = 𝑆+ + 𝑊̃ (𝑡)Ψ+ + 𝑟+(𝑡), 𝑡→ +∞, if 𝑚 = 0, (4.15)

for some stationary states 𝑆+ ∈ 𝒮0, scattering states Ψ+ ∈ ℰ00 and the re-
mainder is small in the global energy norm:

∣∣𝑟+(𝑡)∣∣ℰ0 −−−−→
𝑡→+∞ 0, (4.16)

and

Y(𝑡) = S+ + 𝑊̃ (𝑡)Ψ+ + 𝑟+(𝑡), 𝑡→ +∞, if 𝑚 > 0, (4.17)

for some stationary states S+ ∈ 𝒮, scattering states Ψ+ ∈ ℰ0 and the remain-
der is small in the global energy norm:

∣∣𝑟+(𝑡)∣∣ℰ −−−−→
𝑡→+∞ 0. (4.18)

ii) The outgoing wave 𝑊̃ (𝑡)Ψ+ converges to zero in the local energy semi-norms:

∣∣𝑊̃ (𝑡)Ψ+∣∣ℰ0
𝐹

−−−−→
𝑡→+∞ 0, Ψ+ ∈ ℰ00 , if 𝑚 = 0, (4.19)

and

∣∣𝑊̃ (𝑡)Ψ+∣∣ℰ𝐹 −−−−→
𝑡→+∞ 0, Ψ+ ∈ ℰ0, if 𝑚 > 0. (4.20)

iii) 𝑊̃ (𝑡)Ψ+ admits the representation:

𝑊̃ (𝑡)Ψ+ =

{(
wout(𝑥, 𝑡), ẇout(𝑥, 𝑡)

)
, Ψ+ ∈ ℰ00 , if 𝑚 = 0,(

wout(𝑥, 𝑡), ẇout(𝑥, 𝑡), 0
)
, Ψ+ ∈ ℰ0, if 𝑚 > 0,

(4.21)

where

wout(𝑥, 𝑡) = 𝐶0+𝑓+(𝑥−𝑡)+𝑔−(𝑥+𝑡), 𝐶0 :=
𝑢+0 + 𝑢−

0 + 𝑣0
2

−2𝑧+, 𝑧+ ∈ 𝑍. (4.22)
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Remark 4.6.

i) Similar asymptotic hold for 𝑡→ −∞. Hence it suffices to prove Theorem 4.5
for 𝑡→ +∞ since the Lamb system (2.1) is time reversible.

ii) The “weak” convergence (4.8) and (3.1), (3.2) imply that

ℋ(𝑆±) ≤ ℋ(𝑌 (𝑡)) ≡ ℋ(𝑌0), 𝑡 ∈ ℝ,

by the Fatou theorem.
iii) Proposition 3.1, 3.2 and Theorem 4.2 are proved in [4] for one-dimensional

oscillator with 𝑑 = 1, 𝑚 ≥ 0 and 𝑢′
0(𝑥) = 𝑣0(𝑥) = 0, ∣𝑥∣ > const. In [6] and

[7] its consider the arbitrary initial conditions for 𝑚 = 0, 𝑚 > 0 and 𝑑 ≥ 1
respectively.

5. Expression of the asymptotic states

Corollary 5.1. For (𝑢0, 𝑣0) ∈ ℰ0∞ if 𝑚 = 0 (or for (𝑢0, 𝑣0, 𝑝0) ∈ ℰ∞ if 𝑚 > 0) the
asymptotic state:

Ψ+ =

{
(Ψ0,Π0), if 𝑚 = 0,

(Ψ0,Π0, 0), if 𝑚 > 0,
(5.1)

are expressed by the formulas:

Ψ0(𝑥) = 𝐶0 +

⎧⎨⎩
𝑦(𝑥) +

𝑢0(𝑥) − 𝑢0(−𝑥)
2

− 1

2

𝑥∫
−𝑥

𝑣0(𝜒)𝑑𝜒, 𝑥 ≥ 0,

𝑦(−𝑥) + 𝑢0(𝑥) − 𝑢0(−𝑥)
2

+
1

2

𝑥∫
−𝑥

𝑣0(𝜒)𝑑𝜒, 𝑥 ≤ 0,

(5.2)

Π0(𝑥) =

⎧⎨⎩
𝑦′(𝑥) − 𝑢

′
0(𝑥) − 𝑢′

0(−𝑥)
2

+
𝑣0(𝑥) − 𝑣0(−𝑥)

2
, 𝑥 ≥ 0,

𝑦′(−𝑥) + 𝑢
′
0(𝑥) − 𝑢′

0(−𝑥)
2

+
𝑣0(𝑥) − 𝑣0(−𝑥)

2
, 𝑥 ≤ 0,

(5.3)

where 𝐶0 is given by the second formula of (4.22).

Remark 5.2. Representations (4.22) and (3.8) imply that

wout(0, 𝑡) = 𝐶0 + 𝑤out(𝑡), 𝑡 > 0.

Hence

ẇout(0, 𝑡) = 𝑤̇out(𝑡), 𝑡 > 0. (5.4)

The outgoing wave wout admits the D’Alembert representation

wout(𝑥, 𝑡) = 𝑊̃ (𝑡)(Ψ0,Π0) =
Ψ0(𝑥− 𝑡) + Ψ0(𝑥+ 𝑡)

2
+

1

2

𝑥+𝑡∫
𝑥−𝑡

Π0(𝜒)𝑑𝜒, 𝑥, 𝑡 ∈ ℝ,

because wout is a solution to the D’Alembert equation.
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Definition 5.3. A. If 𝑚 = 0:
Let 𝑌 (𝑡) = (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) ∈ 𝐶(ℝ; ℰ0∞) be a solution to (2.6) with 𝑌 (0) =

𝑌0 ∈ ℰ0∞ be such that the asymptotic (4.15) holds with 𝑆+(𝑥) = (𝑠+(𝑥), 0), where
𝑠+(𝑥) ≡ 𝑧+ ∈ 𝑍 and Ψ+ ∈ ℰ00 . Let us set

𝑊+𝑌0 = (Ψ+, 𝑧+) ∈ ℰ00 × 𝑍. (5.5)

The map𝑊+ : ℰ0∞ → ℰ00 ×𝑍 is called a wave operator, and (Ψ+, 𝑧+) the scattering
data, corresponding to 𝑌0.

B. If 𝑚 > 0:
Let Y(𝑡) = (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), 𝑦̇(𝑡)) ∈ 𝐶(ℝ; ℰ∞) be a solution to (2.7) with Y(0)=

Y0∈ℰ∞ be such that the asymptotic (4.17) holds with S+(𝑥)=(s+(𝑥),0,0), where
s+(𝑥) ≡ 𝑧+ ∈ 𝑍 and Ψ+ ∈ ℰ0. Let us set

𝑊+Y0 = (Ψ+, 𝑧+) ∈ ℰ0 × 𝑍. (5.6)

The map𝑊+ : ℰ∞ → ℰ0×𝑍 is called a wave operator, and (Ψ+, 𝑧+) the scattering
data, corresponding to Y0.

5.1. Necessary conditions for the existence of the asymptotic states

We start with description on Im𝑊+. We describe some properties of the asymp-
totic states Ψ0, Π0 previously constructed (see equations (5.2), (5.3)). Let 𝑌 (𝑡) =(
𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)

) ∈ 𝐶(ℝ; ℰ0∞), be a solution of the Cauchy problem (2.6) with the

initial data 𝑌0 =
(
𝑢0(𝑥), 𝑣0(𝑥)

)
and let Y(𝑡) =

(
𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), 𝑦̇(𝑡)

) ∈ 𝐶(ℝ; ℰ) be
a solution of the Cauchy problem (2.7) with Y0 =

(
𝑢0(𝑥), 𝑣0(𝑥), 𝑝0

)
.

Proposition 5.4 ([6]).

A. If 𝑚 = 0: Let 𝑌0 ∈ ℰ0∞ and 𝑊+(𝑌0) = (Ψ+, 𝑧+), 𝑧+ = lim
𝑡→+∞ 𝑦(𝑡). Then,

i) Ψ+ ∈ ℰ0∞, i.e., there exist the finite limits and integral

Ψ−
0 = lim

𝑥→−∞Ψ0(𝑥), Ψ+
0 = lim

𝑥→+∞Ψ0(𝑥), Π0 =

∞∫
−∞

Π0(𝜒)𝑑𝜒. (5.7)

ii) The following identity holds:

Ψ+
0 +Ψ−

0 +Π0 = 0. (5.8)

B. If 𝑚 > 0: Let Y0 ∈ ℰ∞ and 𝑊+(Y0) = (Ψ+, 𝑧+), 𝑧+ = lim
𝑡→+∞ 𝑦(𝑡). Then,

i) Ψ+ ∈ ℰ∞, i.e., there exist the finite limits and integral (5.7).
ii) The identity (5.8) holds.

Remark 5.5. Relation (5.8), in both cases (𝑚 = 0 or 𝑚 > 0), means that the
values of Ψ+

0 , Ψ
−
0 and Π0 are not independent.

Let us denote

E+
∞ :=

{
Ψ+ ∈ ℰ0∞ if 𝑚 = 0

∣∣ (5.7)–(5.8) hold}.
and

E+∞ :=
{
Ψ+ ∈ ℰ∞ if 𝑚 > 0

∣∣ (5.7)–(5.8) hold}.
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Then Proposition 5.4 implies

Corollary 5.6.

Im 𝑊+(ℰ0∞) ⊂ E+
∞ × 𝑍, if 𝑚 = 0

and

Im 𝑊+(ℰ∞) ⊂ E+∞ × 𝑍, if 𝑚 > 0 .

6. Inverse scattering problem in the Lamb system

In this section we study the inverse problem, namely, we have Ψ+ and we want
to construct the dynamics 𝑌 (𝑡) of (2.6) (or Y(𝑡) of (2.7)) such that the asymp-
totic (4.15) (or (4.17)) holds. We start from with the reconstruct of 𝑌0 (or Y0) via
Ψ+ and 𝑦(𝑡).

6.1. Reconstruction of the initial data (surjection of the operator 𝑾−1
+ )

For Ψ+ = (Ψ0,Π0) ∈ ℰ+∞ let us introduce the function

𝑆(𝑡) := wout(0, 𝑡) =
Ψ0(𝑡) + Ψ0(−𝑡)

2
+

1

2

𝑡∫
−𝑡

Π0(𝜒)𝑑𝜒, 𝑡 ∈ ℝ. (6.1)

Then
𝑆̇(𝑡) = ẇout(𝑡) ∈ 𝐿2(ℝ,ℝ𝑑), 𝑆+ := lim

𝑡→+∞𝑆(𝑡) = 0, (6.2)

by (5.4), (3.8) and (5.8).

Theorem 6.1. [8] Let 𝑌 (𝑡) ∈ 𝐶(ℝ; ℰ0∞) if 𝑚 = 0 (or Y(𝑡) ∈ 𝐶(ℝ; ℰ∞) if 𝑚 > 0)
be a solution of (2.6) (or (2.7)) with 𝑌 (0) = 𝑌0 ∈ ℰ0∞ if 𝑚 = 0 (or Y(𝑡) ∈ ℰ∞ if
𝑚 > 0), and (5.5) (or (5.6)) hold. Then

i) The initial conditions are expressed in Ψ+ and 𝑦(𝑡) = 𝑢(0, 𝑡) by

𝑢0(𝑥) = Ψ0(𝑥) +

{
𝑦(𝑥) − 𝑆(𝑥), 𝑥 ≥ 0,

𝑦(−𝑥)− 𝑆(−𝑥), 𝑥 ≤ 0,

𝑣0(𝑥) = Π0(𝑥) +

{
𝑦′(𝑥) − 𝑆′(𝑥), 𝑥 ≥ 0,

𝑦′(−𝑥) − 𝑆′(−𝑥), 𝑥 ≤ 0.

(6.3)

ii) The function 𝑦(𝑡) satisfies the following conditions⎧⎨⎩0 = 𝐹 (𝑦(𝑡)) + 2𝑦̇(𝑡) − 2𝑆̇(𝑡), 𝑡 ≥ 0,

𝑦̇(𝑡) ∈ 𝐿2(ℝ+,ℝ
𝑑), 𝑦(𝑡) −−−−→

𝑡→+∞ 𝑧+,
if 𝑚 = 0, (6.4)

and ⎧⎨⎩𝑚𝑦(𝑡) = 𝐹 (𝑦(𝑡)) + 2𝑦̇(𝑡) − 2𝑆̇(𝑡), 𝑡 ≥ 0,

𝑦̇(𝑡) ∈ 𝐿2(ℝ+,ℝ
𝑑), 𝑦(𝑡) −−−−→

𝑡→+∞ 𝑧+,
if 𝑚 > 0. (6.5)



Nonlinear Scattering in the Lamb System 319

Remark 6.2. For any given Ψ+ = (Ψ0,Π0) ∈ E+
∞ (or Ψ+ = (Ψ0,Π0, 0) ∈ E+∞) and

𝑦(𝑡) ∈ 𝐶(ℝ+;ℝ
𝑑), the formulas (6.3) imply (5.2) and (5.3) with 𝐶0 = Ψ0(0)−𝑦(0).

The next result establishes that the conditions (5.7) are sufficient for the
existence of dynamics in the Lamb’ s problem with scattering asymptotic (4.15)
(or (4.17)) provided that the “inverse” reduced differential equation (6.4) has an
appropriate solution.

6.2. Characterization on the asymptotic states

Conjecture 6.3. Let (Ψ+, 𝑧+) ∈ E+∞ ×𝑍 (or (Ψ+, 𝑧+) ∈ E+∞ ×𝑍) and the following
condition hold: there exists a trajectory 𝑦(𝑡) satisfying (6.4) (or 6.5), with 𝑆(𝑡)
given by (6.1). Then there exists 𝑌0 ∈ ℰ0∞ (or Y0 ∈ ℰ∞) such that (5.5) (or (5.6))
hold.

Remark 6.4. We choose the inverse reduced equation (6.4) for the characterization

of the asymptotic states since the term 𝑆̇(𝑡) is expressed in the scattering data Ψ+

by (6.1).

The following results establishes the asymptotic completeness for some particular
cases:

6.2.1. The case 𝒎 = 0 and finite scattering data.

Theorem 6.5. [8] Let the function Ψ+(𝑥) =
(
Ψ0(𝑥),Π0(𝑥)

) ∈ E+
∞ has a compact

support, 𝑑 ≥ 1, and the force field 𝐹 satisfy conditions (3.1). Then for arbitrary
𝑧+ ∈ 𝑍 there exist 𝑌0 ∈ ℰ0∞ such that (5.5) hold.

6.2.2. The case 𝒎 = 0 and arbitrary scattering data: one-dimensional oscillator.
We consider case 𝑑 = 1. Suppose that 𝑧+ ∈ 𝑍 is nondegenerate stationary state
with

𝐹 ′(𝑧+) ∕= 0. (6.6)

Theorem 6.6. [8] Let 𝑑 = 1, Ψ+(𝑥) =
(
Ψ0(𝑥),Π0(𝑥)

) ∈ E+
∞ and (6.6). Then there

exists 𝑌0 ∈ ℰ∞ such that (5.5) hold.

7. Example: 𝑭 (𝒖) = −𝒖

In this section we will prove that the “inverse” reduced equation (6.4) in the case
𝑚 > 0 admits a continuous solution 𝑦(𝑡), 𝑡 ≥ 0 with 𝑦̇(𝑡) ∈ 𝐿2(ℝ+;ℝ

𝑑) for the
force field 𝐹 (𝑢) = −𝑢. Note that this function satisfies the conditions (3.1).

Let us consider the following Cauchy problem for the operator ℒ
(

𝑑
𝑑𝑡

)
:=

𝑚 𝑑2

𝑑𝑡2 − 2 𝑑
𝑑𝑡 + 1, 𝑚 > 0:⎧⎨⎩ℒ[𝑦](𝑡) := ℒ

( 𝑑
𝑑𝑡

)
[𝑦(𝑡)] = 𝑓(𝑡), 𝑡 ≥ 0, 𝑓 ∈ 𝐿2(ℝ+,ℝ

𝑑)

𝑦(0) = 𝑎, 𝑦̇(0) = 𝑏, 𝑎, 𝑏 ∈ ℝ.
(7.1)
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We seek solutions of this problem from the class 𝐶(ℝ+;ℝ
𝑑) with 𝑦̇ ∈ 𝐿2(ℝ+;ℝ

𝑑).
For 𝑦(𝑡) ∈ 𝐿1loc(ℝ+;ℝ

𝑑) we define the distribution 𝑦0(𝑡) ∈ 𝒟′(ℝ;ℝ𝑑) by the formula

𝑦0(𝑡) =

{
𝑦(𝑡), 𝑥 ∈ ℝ+,

0, 𝑥 /∈ ℝ+.
(7.2)

Lemma 7.1 (Cf. [10]). Let 𝑢 ∈ 𝐶(ℝ+;ℝ
𝑑) with 𝑢′′ ∈ 𝐿1loc(ℝ+;ℝ

𝑑) we have the
following representations in the sense of 𝒟′(ℝ;ℝ𝑑)

𝑢′(𝑥) = 𝑢(0)𝛿(𝑥) + [𝑢′(𝑥)], 𝑥 ∈ ℝ, (7.3)

𝑢′′(𝑥) = 𝑢(0)𝛿′(𝑥) + 𝑢′(0)𝛿(𝑥) + [𝑢′′(𝑥)], 𝑥 ∈ ℝ, (7.4)

where [𝑢′(𝑥)] and [𝑢′′(𝑥)] are the usual derivatives in ℝ+.

Using (7.3) and (7.4) we get

ℒ[𝑦0](𝑡) = 𝑎𝑚𝛿̇(𝑡) + (𝑏𝑚− 2𝑎)𝛿(𝑡) + 𝑓0(𝑡), 𝑡 ∈ ℝ. (7.5)

Denote by 𝒮(ℝ+;ℝ
𝑑) the subspace of the Schwartz space of rapidly decreasing

functions with supports belonging to ℝ+. We use the complex Fourier-Laplace
transform ℱ : 𝒮 ′(ℝ+;ℝ

𝑑) → 𝒮 ′(ℝ+;ℝ
𝑑), defined by

𝑔(𝑧) ≡ ℱ𝑡→𝑧[𝑔](𝑧) :=

∫
ℝ+

e𝑖𝑡𝑧𝑔(𝑡)𝑑𝑡, 𝑧 ∈ ℂ+, (7.6)

for 𝑔 ∈ 𝒮(ℝ+;ℝ
𝑑) and extended by continuity to 𝒮 ′(ℝ+;ℝ

𝑑). Applying this trans-
form to the identity (7.5), we obtain(−𝑚𝑧2 + 2𝑖𝑧 + 1

)
𝑦0(𝑧) = −𝑖𝑎𝑚𝑧 + (𝑏𝑚− 2𝑎) + 𝑓0(𝑧), 𝑧 ∈ ℂ+. (7.7)

Hence

𝑦0(𝑧) =
−𝑖𝑎𝑚𝑧 + (𝑏𝑚− 2𝑎) + 𝑓0(𝑧)

−𝑚𝑧2 + 2𝑖𝑧 + 1
, 𝑧 ∈ ℂ+, (7.8)

is analytic in ℂ+ if 𝑎 and 𝑏 satisfy the system{
𝑎(−𝑖𝑚𝑧1 − 2) + 𝑏𝑚 = −𝑓0(𝑧1),
𝑎(−𝑖𝑚𝑧2 − 2) + 𝑏𝑚 = −𝑓0(𝑧2),

with 𝑧1 and 𝑧2 are the roots of the equation −𝑚𝑧2 + 2𝑖𝑧 + 1, i.e.,⎧⎨⎩
𝑎 =

𝑓0(𝑧1) − 𝑓0(𝑧2)
𝑖𝑚(𝑧1 − 𝑧2) ,

𝑏 =
(𝑖𝑚𝑧2 + 2)𝑓0(𝑧1) − (𝑖𝑚𝑧2 + 2)𝑓0(𝑧2)

𝑖𝑚2(𝑧1 − 𝑧2) .

Substituting the obtained values of 𝑎 and 𝑏 to (7.8) and using the Paley-Wiener
Theorem [10], we obtain in the case 𝑚 ∕= 1

4

𝑦0(𝑡) = ℱ−1
𝑧→𝑡

{𝑓0(𝑧1)(𝑧 − 𝑧2) − 𝑓0(𝑧2)(𝑧 − 𝑧1) + (𝑧2 − 𝑧1)𝑓0(𝑧)
−𝑚(𝑧 − 𝑧1)(𝑧 − 𝑧2)(𝑧2 − 𝑧1)

}
, 𝑡 ∈ ℝ. (7.9)
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Thus, the solution to the Cauchy problem (7.1) is

𝑦(𝑡) = 𝑦0(𝑡)∣ℝ+ . (7.10)

Using (7.8) we have

(𝑦̇(𝑡))̃ (𝑧) =
𝑖

𝑚(𝑧2 − 𝑧1)
[
𝑧1𝑓0(𝑧1)

𝑧 − 𝑧1 −𝑧2𝑓0(𝑧2)
𝑧 − 𝑧2 +

(𝑧2 − 𝑧1)𝑧𝑓0(𝑧)
(𝑧 − 𝑧1)(𝑧 − 𝑧2)

]
, 𝑧 ∈ ℂ+. (7.11)

Suppose that 𝑓 ∈ 𝐿2(ℝ;ℝ𝑑). Then ℎ̃(𝜏 + 𝑖𝜅) = (𝑦̇(𝑡))̃ (𝜏 + 𝑖𝜅) ∈ 𝐿2(ℝ𝜏 ;ℝ
𝑑) for

each 𝜅 ≥ 0 and
∣∣ℎ̃(𝜏 + 𝑖𝜅)∣∣𝐿2(ℝ𝜏 ,ℝ𝑑) ≤ 𝐶, 𝜅 ≥ 0.

By Paley-Wiener Theorem is implies that ℎ̃(𝑥) ∈ 𝐿2(ℝ+;ℝ
𝑑). Therefore, the

Cauchy problem (7.1) admits a continuous solution with the derivative from

𝐿2(ℝ+;ℝ
𝑑). Taking 𝑓 = 𝑆̇ we obtain that the equation (6.4) admits a solution

with the properties in Theorem 6.3. Hence the solution the inverse scattering
problem of Lamb system in this case is solvable.
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Toeplitz Algebras in Quantum Hopf Fibrations

Elmar Wagner

Abstract. The paper presents applications of Toeplitz algebras in Noncom-
mutative Geometry. As an example, a quantum Hopf fibration is given by
gluing trivial U(1) bundles over quantum discs (or, synonymously, Toeplitz
algebras) along their boundaries. The construction yields associated quantum
line bundles over the generic Podleś spheres which are isomorphic to those
from the well-known Hopf fibration of quantum SU(2). The relation between
these two versions of quantum Hopf fibrations is made precise by giving an
isomorphism in the category of right U(1)-comodules and left modules over
the C*-algebra of the generic Podleś spheres. It is argued that the gluing con-
struction yields a significant simplification of index computations by obtaining
elementary projections as representatives of K-theory classes.

Mathematics Subject Classification (2000). Primary 47L80; Secondary 81R50.

Keywords. Toeplitz algebras, quantum spheres, quantum Hopf fibration.

1. Introduction

In Noncommutative Geometry, the Toeplitz algebra has a fruitful interpretation
as the algebra of continuous function on the quantum disc [10]. In this picture,
the description of the Toeplitz algebra as the C*-algebra extension of continuous
functions on the circle by the compact operators corresponds to an embedding of
the circle into the quantum disc. Analogous to the classical case, one can construct
“topologically” non-trivial quantum spaces by taking trivial fibre bundles over two
quantum discs and gluing them along their boundaries. Here, the gluing procedure
is described by a fibre product in an appropriate category (C*-algebras, finitely
generated projective modules, etc.). This approach has been applied successfully
to the construction of line bundles over quantum 2-spheres [2, 8, 17] and to the
description of quantum Hopf fibrations [1, 3, 7, 9]. One of the advantages of the
fibre product approach is that it provides an effective tool for simplifying index

This work was financially supported by the CIC of the Universidad Michoacana and European
Commission grant PIRSES-GA-2008-230836.
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computations. This has been discussed in [17] on the example of the Hopf fibra-
tion of quantum SU(2) over the generic Podleś spheres [14]. Whilst earlier index
computations for quantum 2-spheres relied heavily on the index theorem [4, 6],
the fibre product approach in [17] allowed to compute the index pairing directly
by producing simpler representatives of K-theory classes.

The description of quantum line bundles in [17] bears a striking analogy
to the classical case: the same transition functions are used to glue the trivial
bundles over the (quantum) disc along their boundaries. However, the link between
the fibre product approach of quantum line bundles and the Hopf fibration of
quantum SU(2) has been established only at a “K-theoretic level”, i.e., it has
been shown that the corresponding projective modules are Murray-von Neumann
equivalent. The present work will give a more geometrical picture of the quantum
Hopf fibration. Analogous to the classical case, we will construct a non-trivial U(1)
quantum principal bundle over the generic Podleś spheres such that the associated
line bundles are the previously obtained quantum line bundles. Here, a quantum
principal bundle is described by a Hopf-Galois extension (see the preliminaries). It
turns out that our U(1) quantum principal bundle is isomorphic to a quantum 3-
sphere from [3]. As an application of the fibre product approach, we will show that
the associated quantum line bundles are isomorphic to projective modules given
by completely elementary one-dimensional projections which leads to a significant
simplification of index computations.

It is known that the Hopf fibration of quantum SU(2) over the generic Podleś
spheres is not given by a Hopf-Galois extension but only by a so-called coalgebra
Galois extension (that is, U(1) is only considered as a coalgebra). In the present pa-
per, we will establish a relation between both versions of a quantum Hopf fibration
by describing an explicit isomorphism in the category of right U(1)-comodules and
left modules over the C*-algebra of the generic Podleś spheres. Clearly, this isomor-
phism cannot be turned into an algebra isomorphism of quantum 3-spheres since
otherwise the Hopf fibration of quantum SU(2) over the generic Podleś spheres
would be a Hopf-Galois extension.

2. Preliminaries

2.1. Coalgebras and Hopf algebras

A coalgebra is a vector space 𝐶 over a field 𝕂 equipped with two linear maps
Δ : 𝐶 → 𝐶 ⊗ 𝐶 and 𝜀 : 𝑆 → 𝕂, called the comultiplication and the counit,
respectively, such that

(Δ ⊗ id) ∘ Δ = (id ⊗ Δ) ∘ Δ, (2.1)

(𝜀⊗ id) ∘ Δ = id = (id ⊗ 𝜀) ∘ Δ. (2.2)

A (right) corepresentation of a coalgebra 𝐶 on a 𝕂-vector space 𝑉 is a linear
mapping Δ𝑉 : 𝑉 → 𝑉 ⊗ 𝐶 satisfying

(Δ𝑉 ⊗ id) ∘ Δ𝑉 = (id⊗ Δ) ∘ Δ𝑉 , (id ⊗ 𝜀) ∘Δ𝑉 = id. (2.3)
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We then refer to 𝑉 as a right 𝐶-comodule. The corepresentation is said to be
irreducible if {0} and 𝑉 are the only invariant subspaces. A linear mapping 𝜙
between right 𝐶-comodules 𝑉 and 𝑊 is called colinear, if Δ𝑊 ∘𝜙 = (𝜙⊗ id) ∘Δ𝑉 .

A Hopf algebra 𝐴 is a unital algebra and coalgebra such that Δ and 𝜀 are
algebra homomorphism, together with a linear mapping 𝜅 : 𝐴 → 𝐴, called the
antipode, such that

𝑚 ∘ (𝜅⊗ id) ∘ Δ(𝑎) = 𝜀(𝑎) = 𝑚 ∘ (id ⊗ 𝜅) ∘ Δ(𝑎), 𝑎 ∈ 𝐴, (2.4)

where 𝑚 : 𝐴⊗𝐴→ 𝐴 denotes the multiplication map.
We say that 𝐶 and 𝐴 are a *-coalgebra and a *-Hopf algebra, respectively, if

𝐶 and 𝐴 carry an involution such that Δ becomes a *-morphism. This immediately
implies that 𝜀(𝑥∗) = 𝜀(𝑥). A finite-dimensional corepresentation Δ𝑉 : 𝑉 → 𝑉 ⊗𝐴
is called unitary, if there exists a linear basis {𝑒1, . . . , 𝑒𝑛} of 𝑉 such that Δ𝑉 (𝑒𝑖) =∑𝑛

𝑗=1 𝑒𝑗 ⊗ 𝑣𝑗𝑖 and
∑𝑛

𝑗=1 𝑣
∗
𝑗𝑘𝑣𝑗𝑖 = 𝛿𝑘𝑖, where 𝛿𝑘𝑗 denotes the Kronecker symbol.

The elements 𝑣𝑖𝑗 are called matrix coefficients. A Hopf *-algebra 𝐴 is called a
compact quantum group algebra if it is the linear span of all matrix coefficients
of irreducible finite-dimensional unitary corepresentations. It can be shown that
then 𝐴 admits a C*-algebra completion 𝐻 in the universal C*-norm (that is, the
supremum of the norms of all bounded irreducible Hilbert space *-representations).
We call 𝐻 also a compact quantum group and refer to the dense subalgebra 𝐴 as
its Peter-Weyl algebra. The counit of 𝐴 has then a unique extension to 𝐻 , and
Δ has a unique extension to a *-homomorphism Δ : 𝐻 → 𝐻 ⊗̄𝐻 , where 𝐻 ⊗̄𝐻
denotes the least C*-completion of the algebraic tensor product.

The main example in this paper will be 𝐻 = 𝒞(S1), the C*-algebra of contin-
uous functions on the unit circle S1. It is a compact quantum group with comulti-
plication Δ(𝑓)(𝑝, 𝑞) = 𝑓(𝑝𝑞), counit 𝜀(𝑓) = 𝑓(1) and antipode 𝜅(𝑓)(𝑝) = 𝑓(𝑝−1).
Note that Δ, 𝜀 and 𝜅 are given by pullbacks of the group operations of S1 = U(1).
Let 𝑈 ∈ 𝒞(S1), 𝑈(ei𝜙) = ei𝜙, denote the unitary generator of 𝒞(S1). Then the
Peter-Weyl algebra of 𝐻 is given by 𝒪(U(1)) = span{𝑈𝑁 : 𝑁 ∈ ℤ } with
Δ(𝑈𝑁 ) = 𝑈𝑁 ⊗𝑈𝑁 , 𝜀(𝑈𝑁) = 1 and 𝜅(𝑈𝑁 ) = 𝑈−1. Note also that the irreducible
unitary corepresentations of 𝒪(U(1)) are all one-dimensional and are given by
Δℂ(1) = 1 ⊗ 𝑈𝑁 .

From the previous paragraph, it becomes clear why noncommutative compact
quantum groups are regarded as generalizations of function algebras on compact
groups. We give now the definition for a quantum analogue of principal bundles.
First we remark that a group action on a topological space corresponds to a coac-
tion of a quantum group or, more generally, to a coaction of a coalgebra. Now let
𝐴 be a Hopf algebra, 𝑃 a unital algebra, and Δ𝑃 : 𝑃 → 𝑃 ⊗𝐴 a corepresentation
which is also an algebra homomorphism (one says that 𝑃 is a right 𝐴-comodule
algebra). Then the space of coinvariants

𝑃 co𝐴 := {𝑏 ∈ 𝑃 : Δ(𝑏) = 𝑏⊗ 1}
is an algebra considered as a function algebra on the base space, and 𝑃 plays the
role of a function algebra on the total space. If 𝐴 is a Hopf *-algebra and 𝑃 is
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a *-algebra, we require Δ to be a *-homomorphism so that 𝐵 becomes a unital
*-subalgebra of 𝑃 .

If Δ : 𝑃 → 𝑃 ⊗ 𝐶 is a corepresentation of a coalgebra 𝐶, then we set

𝑃 co𝐶 := { 𝑏 ∈ 𝑃 : Δ(𝑏𝑝) = 𝑏Δ(𝑝) for all 𝑝 ∈ 𝑃 }
with multiplication 𝑏(𝑝 ⊗ 𝑐) = 𝑏𝑝 ⊗ 𝑐 on the left tensor factor. Again, 𝑃 co𝐶 is a
subalgebra of 𝑃 . In our examples, there will be a group like element 𝑒 ∈ 𝐶 (that
is, Δ(𝑒) = 𝑒⊗ 𝑒) such that Δ(1) = 1⊗ 𝑒 and

𝑃 co𝐶 = 𝐵 := { 𝑏 ∈ 𝑃 : Δ(𝑏) = 𝑏⊗ 𝑒 }.
If 𝑃 and 𝐶 carry an involution, Δ𝑃 is a *-morphism and 𝑒∗ = 𝑒, then 𝐵 is a
*-subalgebra of 𝑃 .

Analogous to right corepresentations, one defines left corepresentations 𝑉Δ :
𝑉 → 𝐶 ⊗ 𝑉 . The associated (quantum) vector bundles are given by the cotensor
product 𝑃 □𝐶 𝑉 , where

𝑃 □𝐶 𝑉 := { 𝑥 ∈ 𝑃 ⊗ 𝑉 : (Δ𝑃 ⊗ id)(𝑥) = (id ⊗ 𝑉 Δ)(𝑥) }.
Obviously, 𝑃 □𝐶 𝑉 is a left 𝑃 co𝐶 -module. For the one-dimensional representation

ℂΔ(1) = 𝑈𝑁 ⊗ 1, this module is equivalent to

𝑃𝑁 := { 𝑝 ∈ 𝑃 : Δ𝑃 (𝑝) = 𝑝⊗ 𝑈𝑁 }
and is considered as a (quantum) line bundle.

2.2. Pullback diagrams and fibre products

The purpose of this section is to collect some elementary facts about fibre products.
For simplicity, we start by considering the category of vector spaces. Let 𝜋0 :
𝐴0 → 𝐴01 and 𝜋1 : 𝐴1 → 𝐴01 be vector spaces morphisms. Then the fibre product
𝐴 := 𝐴0×(𝜋0,𝜋1)𝐴1 is defined by the pullback diagram

𝐴
pr1−−−−→ 𝐴1

pr0

⏐⏐P 𝜋1

⏐⏐P
𝐴0

𝜋0−−−−→ 𝐴01 .

(2.5)

Up to a unique isomorphism, 𝐴 is given by

𝐴 = {(𝑎0, 𝑎1) ∈ 𝐴0 ×𝐴1 : 𝜋0(𝑎0) = 𝜋1(𝑎1)} , (2.6)

where the morphisms pr0 : 𝐴 → 𝐴0 and pr1 : 𝐴 → 𝐴1 are the left and right pro-
jections, respectively. In this paper, we will consider fibre products in the following
categories:

∙ If 𝜋0 : 𝐴0 → 𝐴01 and 𝜋1 : 𝐴1 → 𝐴01 are morphisms of *-algebras, then the
fibre product 𝐴0×(𝜋0,𝜋1)𝐴1 is a *-algebra with componentwise multiplication
and involution.

∙ If we consider the pullback diagram (2.5) in the category of unital 𝐶∗-
algebras, then 𝐴0×(𝜋0,𝜋1)𝐴1 will be a unital 𝐶∗-algebra.
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∙ If 𝐵 is an algebra and 𝜋0 : 𝐴0 → 𝐴01 and 𝜋1 : 𝐴1 → 𝐴01 are morphisms of
left 𝐵-modules, then the fibre product 𝐴 := 𝐴0×(𝜋0,𝜋1)𝐴1 is a left 𝐵-module
with left action 𝑏.(𝑎0, 𝑎1) = (𝑏.𝑎0, 𝑏.𝑎1), where 𝑏 ∈ 𝐵 and the dot denotes the
left action.

∙ If we consider the pullback diagram (2.5) in the category of right𝐶-comodules
(or right 𝐻-comodule algebras), then 𝐴 := 𝐴0×(𝜋0,𝜋1)𝐴1 will be a right
𝐶-comodule (or a right 𝐻-comodule algebra) with the coaction given by
Δ𝐴(𝑎1, 𝑎2) = (Δ𝐴1(𝑎1), 0) + (0,Δ𝐴2(𝑎2)).

Finally we remark that if𝐵0, 𝐵1 and 𝐵01 are dense subalgebras of 𝐶
∗-algebras

𝐴0, 𝐴1 and 𝐴01, respectively, and 𝜋0 and 𝜋1 restrict to morphisms 𝜋0 : 𝐵0 → 𝐵01
and 𝜋1 : 𝐵1 → 𝐵01, then 𝐵0×(𝜋0,𝜋1)𝐵1 is not necessarily dense in 𝐴0×(𝜋0,𝜋1)𝐴1.
A useful criterion for this to happen can be found in [9, Theorem 1.1]. It suffices
that 𝜋1↾𝐵1 : 𝐵1 → 𝐵01 is surjective and ker(𝜋1) ∩𝐵1 is dense in ker(𝜋1).

2.3. Disc-type quantum 2-spheres

From now on we will work over the complex numbers and 𝑞 will denote a real
number from the interval (0, 1).

The *-algebra 𝒪(D2
𝑞) of polynomial functions on the quantum disc is gener-

ated by two generators 𝑧 and 𝑧∗ with relation

𝑧∗𝑧 − 𝑞𝑧𝑧∗ = 1 − 𝑞. (2.7)

A complete list of bounded irreducible *-representations of 𝒪(D2
𝑞) can be found

in [10]. First, there is a faithful representation on the Hilbert space ℓ2(ℕ0). On an
orthonormal basis {𝑒𝑛 : 𝑛 ∈ ℕ0}, the action of the generators reads as

𝑧𝑒𝑛 =
√
1 − 𝑞𝑛+1𝑆𝑒𝑛, 𝑧∗𝑒𝑛 =

√
1 − 𝑞𝑛𝑆∗𝑒𝑛, (2.8)

where

𝑆𝑒𝑛 = 𝑒𝑛+1,

denotes the shift operator on ℓ2(ℕ0).

Next, there is a 1-parameter family of irreducible *-representations 𝜌𝑢 on ℂ,
where 𝑢 ∈ S1 = {𝑥 ∈ ℂ : ∣𝑥∣ = 1}. They are given by assigning

𝜌𝑢(𝑧) = 𝑢, 𝜌𝑢(𝑧
∗) = 𝑢.

The set of these representations is considered as the boundary S1 of the quantum
disc consisting of “classical points”.

The universal C*-algebra of 𝒪(D2
𝑞) is well known. It has been discussed by

several authors (see, e.g., [10, 12, 16]) that it is isomorphic to the Toeplitz algebra
𝒯 . Here, it is convenient to view the Toeplitz algebra 𝒯 as the universal C*-
algebra generated by 𝑆 and 𝑆∗ in B(ℓ2(ℕ0)). Then above *-representation on
ℓ2(ℕ0) becomes simply an embedding.

Another characterization is given by the C*-extension

0 −→ 𝒦(ℓ2(ℕ0)) −→ 𝒯 𝜎−→ 𝒞(S1) −→ 0,
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where 𝜎 : 𝒯 → 𝒞(S1) is the so-called symbol map and corresponds, in the classical
case, to an embedding of S1 into the complex unit disc. Let again 𝑈(ei𝜙) = ei𝜙

denote the unitary generator of 𝒞(S1). Then the symbol map is completely deter-
mined by setting 𝜎(𝑧) = 𝑈 .

We can now construct a quantum 2-sphere 𝒞(S2𝑞) by gluing two quantum discs
along their boundaries. The gluing procedure is described by the fibre product
𝒯 ×(𝜎,𝜎) 𝒯 , where 𝒯 ×(𝜎,𝜎) 𝒯 is defined by the following pullback diagram in the
category of C*-algebras:

𝒯 ×
(𝜎,𝜎)

𝒯 pr1−−−−→ 𝒯

pr0

⏐⏐P 𝜎

⏐⏐P
𝒯 𝜎−−−−→ 𝒞(S1).

(2.9)

Up to isomorphism, the C*-algebra 𝒞(S2𝑞) := 𝒯 ×(𝜎,𝜎) 𝒯 is given by

𝒞(S2𝑞) = { (𝑎1, 𝑎2) ∈ 𝒯 × 𝒯 : 𝜎(𝑎1) = 𝜎(𝑎2) }. (2.10)

In the classical case, complex line bundles with winding number 𝑁 ∈ ℤ over
the 2-sphere can be constructed by taking trivial bundles over the northern and
southern hemispheres and gluing them together along the boundary via the map
𝑈𝑁 : S1 → S1, 𝑈𝑁(ei𝜙) = ei𝜙𝑁 . In [17], the same construction has been applied to
to the quantum 2-sphere 𝒞(S2𝑞). The roles of the northern and southern hemispheres
are played by two copies of the quantum disc, and the transition function along the
boundaries remains the same. This construction can be expressed by the following
pullback diagram:

𝒯 ×
(𝑈𝑁𝜎,𝜎)

𝒯
pr0

������������ pr1

������������

𝒯
𝜎

��

𝒯
𝜎

��
𝒞(S1)

𝑓 -→𝑈𝑁𝑓

�� 𝒞(S1).

(2.11)

So, up to isomorphism, we have

𝒯 ×(𝑈𝑁𝜎,𝜎) 𝒯 ∼= { (𝑎0, 𝑎1) ∈ 𝒯 × 𝒯 : 𝑈𝑁𝜎(𝑎0) = 𝜎(𝑎1) }. (2.12)

It follows directly from Equation (2.10) that 𝒯 ×(𝑈𝑁𝜎,𝜎) 𝒯 is a 𝒞(S2𝑞)-(bi)module.
This can also be seen from the general pullback construction by equipping 𝒯 and
𝒞(S1) with the structure of a left 𝒞(S2𝑞)-module. Explicitly, for (𝑎0, 𝑎1) ∈ 𝒞(S2𝑞),
one defines (𝑎0, 𝑎1).𝑎 = 𝑎0𝑎 for 𝑎 ∈ 𝒯 on the left side, (𝑎0, 𝑎1).𝑎 = 𝑎1𝑎 for 𝑎 ∈ 𝒯
on the right side, and (𝑎0, 𝑎1).𝑏 = 𝜎(𝑎0)𝑏 = 𝜎(𝑎1)𝑏 for 𝑏 ∈ 𝒞(S1).

To determine the K-theory and K-homology of 𝒞(S2𝑞), we may use the results

of [12]. There it is shown that K0(𝒞(S2𝑞)) ∼= ℤ⊕ℤ and K0(𝒞(S2𝑞)) ∼= ℤ⊕ℤ. The two
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generators of the K0-group can be chosen to be the class [1] of the unit element of
𝒞(S2𝑞), and the class [(0, 1 − 𝑆𝑆∗)].

Describing an even Fredholm module by a pair of representations on the
same Hilbert space such that the difference is a compact operator, one generator
of K0(𝒞(S2𝑞)) is obviously given by the class [(pr1, pr0)] on the Hilbert space ℓ2(ℕ0).
A second generator is [(𝜋+ ∘ 𝜎 , 𝜋− ∘ 𝜎)], where 𝜎 denotes the symbol map and
𝜋± : 𝒞(S1) → B(ℓ2(ℤ)) is given by

𝜋+(𝑈)𝑒𝑛 = 𝑒𝑛+1, 𝑛 ∈ ℤ,

𝜋−(𝑈)𝑒𝑛 = 𝑒𝑛+1, 𝑛 ∈ ℤ ∖ {−1, 0}, 𝜋−(𝑈)𝑒−1 = 𝑒1, 𝜋−(𝑈)𝑒0 = 0
(2.13)

on an orthonormal basis {𝑒𝑛 : 𝑛 ∈ ℤ} of ℓ2(ℤ). Note that the representation 𝜋−
is non-unital: 𝜋−(1) is the projection onto span{𝑒𝑛 : 𝑛 ∈ ℤ ∖ {0} }.
2.4. Quantum 3-spheres and quantum Hopf fibrations

First we follow [7] and introduce the coordinate ring of a Heegaard-type quantum
3-sphere 𝒪(S3𝑝𝑞), 𝑝, 𝑞 ∈ (0, 1) as the *-algebra generated by 𝑎, 𝑎∗, 𝑏, 𝑏∗ subjected
to the relations

𝑎∗𝑎− 𝑞𝑎𝑎∗ = 1 − 𝑞, 𝑏∗𝑏− 𝑝𝑏𝑏∗ = 1− 𝑝,
(1 − 𝑎𝑎∗)(1 − 𝑏𝑏∗) = 0, 𝑎𝑏 = 𝑏𝑎, 𝑎∗𝑏 = 𝑏𝑎∗.

(2.14)

Its universal C*-algebra (i.e., the closure of 𝒪(S3𝑝𝑞) in the universal C*-norm given
by the supremum over all bounded Hilbert space representations) will be denoted
by 𝒞(S3𝑝𝑞).

One can easily verify that the coaction Δ𝒪(S3
𝑝𝑞)

: 𝒪(S3𝑝𝑞) → 𝒪(S3𝑝𝑞)⊗𝒪(U(1))

given by

Δ𝒪(S3
𝑝𝑞)

(𝑎) = 𝑎⊗ 𝑈∗, Δ𝒪(S3
𝑝𝑞)

(𝑏) = 𝑏⊗ 𝑈
turns 𝒪(S3𝑝𝑞) into a 𝒪(U(1))-comodule *-algebra. Its *-subalgebra of 𝒪(U(1))-

coinvariants 𝒪(S2𝑝𝑞) := 𝒪(S3𝑝𝑞)
co𝒪(U(1)) is generated by

𝐴 := 1 − 𝑎𝑎∗, 𝐵 := 1 − 𝑏𝑏∗, 𝑅 := 𝑎𝑏

with involution 𝐴∗ = 𝐴, 𝐵∗ = 𝐵 and commutation relations

𝑅∗𝑅 = 1 − 𝑞𝐴− 𝑝𝐵, 𝑅𝑅∗ = 1 −𝐴−𝐵, 𝐴𝑅 = 𝑞𝑅𝐴, 𝐵𝑅 = 𝑝𝑅𝐵, 𝐴𝐵 = 0.

Note that 𝒪(S2𝑝𝑞) can also be considered as a *-subalgebra of 𝒞(S2𝑞) from
(2.10) by setting

𝐴 = (1 − 𝑧𝑧∗, 0), 𝐵 = (0, 1 − 𝑦𝑦∗), 𝑅 = (𝑧, 𝑦),

where 𝑦 and 𝑧 denote the generators of the quantum discs 𝒪(D2
𝑝) and 𝒪(D2

𝑞),

respectively, satisfying the defining relation (2.7). Using the fact that 𝒪(D2
𝑞) is

dense in the Toeplitz algebra 𝒯 for all 𝑞 ∈ (0, 1), and the final remark of Section
2.2, one easily proves that 𝒞(S2𝑞) = 𝒯 ×(𝜎,𝜎)𝒯 is the universal C*-algebra of 𝒪(S2𝑝𝑞).

For 𝑁 ∈ ℤ, let

𝐿𝑁 := { 𝑝 ∈ 𝒪(S3𝑝𝑞) : Δ𝒪(S3
𝑝𝑞)

(𝑝) = 𝑝⊗ 𝑈𝑁 } (2.15)
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denote the associated quantum line bundles. It has been shown in [7] that 𝐿𝑁 is
isomorphic to 𝒪(S2𝑝𝑞)

∣𝑁 ∣+1𝐸𝑁 , where

𝐸𝑁 = 𝑋𝑁 𝑌
t
𝑁 ∈ Mat∣𝑁 ∣+1,∣𝑁 ∣+1(𝒪(S2𝑝𝑞)) (2.16)

and, for 𝑛 ∈ ℕ,

𝑋−𝑛 = (𝑏∗𝑛, 𝑎𝑏∗𝑛−1, . . . , 𝑎𝑛)t, 𝑋𝑛 = (𝑎∗𝑛, 𝑏𝑎∗𝑛−1, . . . , 𝑏𝑛)t,

𝑌−𝑛 =
((

𝑛
0

)
𝑝
𝑝𝑛𝐴𝑛𝑏𝑛 ,

(
𝑛
1

)
𝑝
𝑝𝑛−1𝐴𝑛−1𝑏𝑛−1𝑎∗ , . . . ,

(
𝑛
𝑛

)
𝑝
𝑎∗𝑛
)t
,

𝑌𝑛 =
((

𝑛
0

)
𝑞
𝑞𝑛𝐵𝑛𝑎𝑛 ,

(
𝑛
1

)
𝑞
𝑞𝑛−1𝐵𝑛−1𝑎𝑛−1𝑏∗ , . . . ,

(
𝑛
𝑛

)
𝑞
𝑏∗𝑛
)t
,

with(
𝑛
0

)
𝑥
=
(
𝑛
𝑛

)
𝑥
:= 1,

(
𝑛
𝑘

)
𝑥
:= (1−𝑥)...(1−𝑥𝑛)

(1−𝑥)...(1−𝑥𝑘)(1−𝑥)...(1−𝑥𝑛−𝑘) , 0 < 𝑘 < 𝑛, 𝑥 ∈ (0, 1).

That 𝐸𝑁 is indeed an idempotent follows from 𝑌 t
𝑁 𝑋𝑁 = 1 which can be verified

by direct computations.
Now we consider a much more prominent example of a quantum Hopf fi-

bration. The *-algebra 𝒪(SU𝑞(2)) of polynomial functions on the quantum group
SU𝑞(2) is generated by 𝛼, 𝛽, 𝛾, 𝛿 with relations

𝛼𝛽 = 𝑞𝛽𝛼, 𝛼𝛾 = 𝑞𝛾𝛼, 𝛽𝛿 = 𝑞𝛿𝛽, 𝛾𝛿 = 𝑞𝛿𝛾, 𝛽𝛾 = 𝛾𝛽,

𝛼𝛿 − 𝑞𝛽𝛾 = 1, 𝛿𝛼− 𝑞−1𝛽𝛾 = 1,

and involution 𝛼∗ = 𝛿, 𝛽∗ = −𝑞𝛾. This is actually a Hopf *-algebra with the Hopf
structure Δ, 𝜀, 𝜅. Here, we will only need explicit formulas for the homomorphism
𝜀 : 𝒪(SU𝑞(2)) → ℂ given by

𝜀(𝛼) = 𝜀(𝛿) = 1, 𝜀(𝛽) = 𝜀(𝛾) = 0.

For 𝑠 ∈ (0, 1], the *-subalgebra generated by

𝜂𝑠 := (𝛿 + 𝑞−1𝑠𝛽)(𝛽 − 𝑠𝛿), 𝜁𝑠 := 1 − (𝛼− 𝑞𝑠𝛾)(𝛿 + 𝑠𝛽).
is known as the generic Podleś sphere𝒪(S2𝑞𝑠) [14]. Its generators satisfy the defining
relations

𝜁𝑠𝜂𝑠 = 𝑞
2𝜂𝑠𝜁𝑠, 𝜂

∗
𝑠𝜂𝑠 = (1 − 𝜁𝑠)(𝑠2 + 𝜁𝑠), 𝜂𝑠𝜂∗

𝑠 = (1 − 𝑞−2𝜁𝑠)(𝑠
2 + 𝑞−2𝜁𝑠),

and 𝜁∗𝑠 = 𝜁𝑠. For all 𝑠 ∈ (0, 1] and 𝑞 ∈ (0, 1), the universal C*-algebra of 𝒪(S2𝑞𝑠) is

isomorphic to 𝒞(S2𝑞) [12, 16]. With 𝑥 the generator of 𝒪(D2
𝑞2 ), set 𝑡 := 1−𝑥𝑥∗ ∈ 𝒯 .

An embedding of 𝒪(S2𝑞𝑠) into 𝒞(S2𝑞) as a dense *-subalgebra is given by

𝜁𝑠 = (−𝑠2𝑞2𝑡, 𝑞2𝑡), 𝜂𝑠 =
(
𝑠
√
(1 − 𝑞2𝑡)(1 + 𝑠2𝑞2𝑡)𝑆 ,

√
(1 − 𝑞2𝑡)(𝑠2 + 𝑞2𝑡)𝑆

)
.

(2.17)
Let 𝒪(S2𝑞𝑠)

+ := {𝑥 ∈ 𝒪(S2𝑞𝑠) : 𝜀(𝑥) = 0}. It has been shown in [13] that

the quotient space 𝒪(SU𝑞(2))/𝒪(S2𝑞𝑠)
+𝒪(SU𝑞(2)) with coaction (pr𝑠 ⊗ pr𝑠) ∘ Δ

is a coalgebra isomorphic to 𝒪(U(1)). Here pr𝑠 denotes the canonical projection
and Δ the coaction of 𝒪(SU𝑞(2)). We emphasize that this isomorphism holds only
in the category of coalgebras, that is, 𝒪(SU𝑞(2))/𝒪(S2𝑞𝑠)

+𝒪(SU𝑞(2)) is a linear
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space (not an algebra!) spanned by basis elements 𝑈𝑁 , 𝑁 ∈ ℤ, with coaction
Δ(𝑈𝑁 ) = 𝑈𝑁 ⊗ 𝑈𝑁 . The composition (id ⊗ pr𝑠) ∘ Δ turns 𝒪(SU𝑞(2)) into an
𝒪(U(1))-comodule and the associated line bundles are given by

𝑀𝑁 := { 𝑝 ∈ 𝒪(SU𝑞(2)) : (id ⊗ pr𝑠) ∘ Δ(𝑝) = 𝑝⊗ 𝑈𝑁 }, 𝑁 ∈ ℤ.

Moreover, 𝒪(S2𝑞𝑠) = 𝑀0 = 𝒪(SU𝑞(2))
co𝒪(U(1)) and 𝒪(SU𝑞(2)) = ⊕𝑁∈ℤ𝑀𝑁 . In

contrast to quantum line bundles 𝐿𝑁 defined above, 𝑀𝑁 is only a left 𝒪(S2𝑞𝑠)-
module but not a bimodule. This is also due to the fact that 𝒪(SU𝑞(2)) with above
coaction is only an 𝒪(U(1))-comodule but not an 𝒪(U(1))-comodule algebra.

Explicit descriptions of idempotents representing 𝑀𝑁 have been given in
[6, 15]. Analogous to 𝐿𝑁 , there are elements 𝑣𝑁0 , 𝑣

𝑁
1 , . . . , 𝑣

𝑁
∣𝑁 ∣ ∈ 𝒪(SU𝑞(2)) such

that 𝑀𝑁
∼= 𝒪(S2𝑞𝑠)

∣𝑁 ∣+1𝑃𝑁 , where

𝑃𝑁 := (𝑣𝑁0 , 𝑣
𝑁
1 , . . . , 𝑣

𝑁
∣𝑁 ∣)

t (𝑣𝑁∗
0 , 𝑣𝑁∗

1 , . . . , 𝑣
𝑁∗
∣𝑁 ∣) ∈ Mat∣𝑁 ∣+1,∣𝑁 ∣+1(𝒪(S2𝑞𝑠)) (2.18)

with

(𝑣𝑁∗
0 , 𝑣

𝑁∗
1 , . . . , 𝑣

𝑁∗
∣𝑁 ∣) (𝑣

𝑁
0 , 𝑣

𝑁
1 , . . . , 𝑣

𝑁
∣𝑁 ∣)

t = 1. (2.19)

For a definition of 𝑣𝑁𝑘 , see [15].

A description of the universal C*-algebra 𝒞(SU𝑞(2)) of 𝒪(SU𝑞(2)) as a fibre
product can be found in [9]. There it is shown that 𝒞(SU𝑞(2)) is isomorphic to the
fibre product C*-algebra of the following pullback diagram:

𝒯 ⊗̄ 𝒞(S1) ×
(𝑊∘𝜎⊗̄id,𝜋2)

𝒞(S1)
pr1

������������� pr2

�������������

𝒯 ⊗̄ 𝒞(S1)
𝜎⊗̄id

��

𝒞(S1)
𝜋2

��
𝒞(S1) ⊗̄ 𝒞(S1)

𝑊
�� 𝒞(S1) ⊗̄ 𝒞(S1) .

(2.20)

Here, 𝜋2 : 𝒞(S1) → 𝒞(S1) ⊗̄ 𝒞(S1) is defined by 𝜋2(𝑓)(𝑥, 𝑦) = 𝑓(𝑦), and

𝑊 : 𝒞(S1) ⊗̄ 𝒞(S1) → 𝒞(S1) ⊗̄ 𝒞(S1), 𝑊 (𝑓)(𝑥, 𝑦) = 𝑓(𝑥, 𝑥𝑦), (2.21)

is the so-called multiplicative unitary. In the next section, we will frequently use
that 𝑊 (𝑔 ⊗ 𝑈𝑁 )(𝑥, 𝑦) = 𝑔(𝑥)𝑥𝑁𝑦𝑁 = (𝑔𝑈𝑁 ⊗ 𝑈𝑁 )(𝑥, 𝑦), that is,

𝑊 (𝑔 ⊗ 𝑈𝑁 ) = 𝑔𝑈𝑁 ⊗ 𝑈𝑁 (2.22)

for all 𝑔 ∈ 𝒞(S1) and 𝑁 ∈ ℤ. As above, 𝑈 denotes the unitary generator of 𝒞(S1)
given by 𝑈(ei𝜙) = ei𝜙 for ei𝜙 ∈ S1.
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3. Fibre product approach to quantum Hopf fibrations

3.1. C*-algebraic construction of a quantum Hopf fibration

The aim of this section is to construct a U(1) quantum principal bundle over a
quantum 2-sphere such that the associated quantum line bundles are given by
(2.11). Our strategy will be to start with trivial U(1)-bundles over two quantum
discs and to glue them together along their boundaries by a non-trivial transition
function. Working in the category of C*-algebras, an obvious quantum analogue
of a trivial bundle 𝐷 × S1 is given by the completed tensor product 𝒯 ⊗̄ 𝒞(S1),
where we regard 𝒯 as the algebra of continuous functions on the quantum disc.
Since 𝒞(S1) is nuclear, there is no ambiguity about the tensor product completion.

Recall from Section 2.1 that a group action on a principal bundle gets trans-
lated to a Hopf algebra coaction (or, slightly weaker, coalgebra coaction). As our
group is U(1) = S1, we take the Hopf *-algebra 𝒞(S1) introduced in Section 2.1.
On the trivial bundle 𝒯 ⊗̄ 𝒞(S1), we consider the “trivial” coaction given by ap-
plying the coproduct of 𝒞(S1) to the second tensor factor. The gluing of the trivial
bundles 𝒯 ⊗̄ 𝒞(S1) will be accomplished by a fibre product over the “boundary”
𝒞(S1) ⊗̄ 𝒞(S1). To obtain a non-trivial fibre bundle, we impose a non-trivial tran-
sition function. From the requirement that the associated quantum line bundles
should be given by (2.11), the transition function is easily guessed: We use the
multiplicative unitary 𝑊 from (2.21). The result is described by the following
pullback diagram.

𝒯 ⊗̄ 𝒞(S1) ×
(𝑊∘𝜋1,𝜋2)

𝒯 ⊗̄ 𝒞(S1)
pr1

������������� pr2

�������������

𝒯 ⊗̄ 𝒞(S1)
𝜋1:=𝜎⊗̄id

��

𝒯 ⊗̄ 𝒞(S1)
𝜋2:=𝜎⊗̄id

��
𝒞(S1) ⊗̄ 𝒞(S1)

𝑊
�� 𝒞(S1) ⊗̄ 𝒞(S1) .

(3.1)

For brevity, we set 𝒞(S3𝑞) := 𝒯 ⊗̄ 𝒞(S1)×(𝑊∘𝜋1,𝜋2)𝒯 ⊗̄ 𝒞(S1). Note that 𝜎⊗̄id and

𝑊 are morphisms of right 𝒞(S1)-comodule algebras. Thus 𝒞(S3𝑞) is a right 𝒞(S1)-
comodule algebra (cf. Section 2.1) or, in the terminology of Section 2.1, a 𝒞(S1)
quantum principal bundle. Its relation to the (algebraic) Hopf fibration of 𝒪(S3𝑝𝑞)
and to the quantum line bundles from Equation 2.12 will be established in the
next proposition.

Proposition 3.1. 𝒞(S3𝑞) is the universal C*-algebra of 𝒪(S3𝑝𝑞), the associated quan-
tum line bundles

𝒞(S3𝑞)𝑁 := { 𝑝 ∈ 𝒞(S3𝑞) : Δ𝒞(S3
𝑞)
(𝑝) = 𝑝⊗ 𝑈𝑁 }, 𝑁 ∈ ℤ, (3.2)

are isomorphic to 𝒯 ×(𝑈𝑁𝜎,𝜎) 𝒯 from (2.12), and 𝐿𝑁 ⊂ 𝒞(S3𝑞)𝑁 . Here, 𝐿𝑁 denotes

the quantum line bundle defined in (2.15), and 𝑈 is the unitary generator of 𝒞(S1).
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Proof. Let 𝑧 and 𝑦 be the generators of the quantum discs 𝒪(D2
𝑞) and 𝒪(D2

𝑝),

respectively. Consider the *-algebra homomorphism 𝜄 : 𝒪(S3𝑝𝑞) → 𝒞(S3𝑞) given by

𝜄(𝑎) = (𝑧 ⊗ 𝑈∗, 1 ⊗ 𝑈∗), 𝜄(𝑏) = (1 ⊗ 𝑈, 𝑦 ⊗ 𝑈). (3.3)

Choosing a Poincaré-Birkhoff-Witt basis of 𝒪(S3𝑝𝑞), for instance all ordered poly-

nomials in 𝑎, 𝑎∗, 𝑏, 𝑏∗, and using the embedding 𝒪(D2
𝑞) ⊂ 𝒯 , one easily verifies that

𝜄 is injective. Moreover, since the operators 𝜋(𝑎) and 𝜋(𝑏) satisfy the quantum disc
relation (2.7) for any bounded representation 𝜋, the *-representation 𝜄 is actually
an isometry if we equip 𝒪(S3𝑝𝑞) with the universal C*-norm. Therefore it suffices

to prove that 𝜄(𝒪(S3𝑝𝑞)) is dense in 𝒞(S3𝑞). For this, consider the image of 𝜄(𝒪(S3𝑝𝑞))

under the projections pr1 and pr2. Since 1 ⊗ 𝑈 = pr1(𝜄(𝑏)) ∈ pr1(𝜄(𝒪(S3𝑝𝑞))) and

𝑧 ⊗ 1 = pr1(𝜄(𝑎𝑏)) ∈ pr1(𝜄(𝒪(S3𝑝𝑞))), we get pr1(𝜄(𝒪(S3𝑝𝑞))) = 𝒪(D2
𝑞) ⊗ 𝒪(U(1)),

and similarly pr2(𝜄(𝒪(S3𝑝𝑞))) = 𝒪(D2
𝑞)⊗𝒪(U(1)). Note that the latter is a dense *-

subalgebra of 𝒯 ⊗𝒞(S1). Moreover, (𝜎⊗̄id)(𝒪(D2
𝑞)⊗𝒪(U(1))) = 𝒪(U(1))⊗𝒪(U(1))

is dense in 𝒞(S1) ⊗̄ 𝒞(S1), and 𝑊 : 𝒪(U(1)) ⊗ 𝒪(U(1)) → 𝒪(U(1)) ⊗ 𝒪(U(1)) is
an isometry. Since 𝑊 (𝑈𝑛 ⊗ 𝑈𝑚) = 𝑈𝑛+𝑚 ⊗ 𝑈𝑚 for all 𝑛,𝑚 ∈ ℤ by (2.22), it is
a bijection of 𝒪(U(1)) ⊗ 𝒪(U(1)) onto itself. From the foregoing, it follows that
𝜄(𝒪(S3𝑝𝑞)) = 𝒪(D2

𝑞) ⊗ 𝒪(U(1))×(𝑊∘𝜎⊗id,𝜋2)𝒪(D2
𝑞) ⊗ 𝒪(U(1)). By considering the

ideal generated by the compact operator 1 − 𝑧𝑧∗ ∈ 𝒪(D2
𝑞) (or 1 − 𝑦𝑦∗ ∈ 𝒪(D2

𝑝)),

one easily shows that ker(𝜎⊗̄id)∩ (𝒪(D2
𝑞)⊗𝒪(U(1))) is dense in ker(𝜎⊗̄id). From

the final remark in Section 2.2, we conclude that 𝜄(𝒪(S3𝑝𝑞)) is dense in 𝒞(S3𝑞).
To determine 𝒞(S3𝑞)𝑁 , recall that the coaction is given by the coproduct on

the second tensor factor 𝒞(S1). Assume that 𝑓 ∈ 𝒞(S1) satisfies Δ(𝑓) = 𝑓 ⊗ 𝑈𝑁 .
Then it follows from 𝑓 = (𝜀 ⊗ id) ∘ Δ(𝑓) = 𝑓(1)𝑈𝑁 that (id ⊗ Δ)(𝑥) = 𝑥 ⊗ 𝑈𝑁

for 𝑥 ∈ 𝒯 ⊗̄ 𝒞(S1) if and only if 𝑥 = 𝑡 ⊗ 𝑈𝑁 with 𝑡 ∈ 𝒯 . Since the morphisms
in the pullback diagram (3.1) are right colinear, we get 𝑝 ∈ 𝒞(S3𝑞)𝑁 if and only if

𝑝 = (𝑡1 ⊗ 𝑈𝑁 , 𝑡2 ⊗ 𝑈𝑁) and (𝑊 ∘ 𝜎⊗̄id)(𝑡1 ⊗ 𝑈𝑁) = (𝜎⊗̄id)(𝑡2 ⊗ 𝑈𝑁). By (2.22),
𝑊 (𝜎(𝑡1) ⊗ 𝑈𝑁 ) = 𝜎(𝑡1)𝑈

𝑁 ⊗ 𝑈𝑁 . Therefore (𝑡1 ⊗ 𝑈𝑁 , 𝑡2 ⊗ 𝑈𝑁 ) ∈ 𝒞(S3𝑞)𝑁 if and

only if 𝜎(𝑡1)𝑈
𝑁 = 𝜎(𝑡2). This shows that an isomorphism between 𝒞(S3𝑞)𝑁 and

𝒯 ×(𝑈𝑁𝜎,𝜎) 𝒯 is given by

𝒞(S3𝑞)𝑁 ∋ (𝑡1 ⊗ 𝑈𝑁 , 𝑡2 ⊗ 𝑈𝑁 ) +→ (𝑡1, 𝑡2) ∈ 𝒯 ×(𝑈𝑁𝜎,𝜎) 𝒯 . (3.4)

From (3.3) and Δ(𝑈𝑁 ) = 𝑈𝑁 ⊗𝑈𝑁 , it follows that Δ𝒞(S3
𝑞)
(𝜄(𝑎)) = 𝜄(𝑎)⊗𝑈∗

and Δ𝒞(S3
𝑞)
(𝜄(𝑏)) = 𝜄(𝑏)⊗𝑈 . Hence 𝜄 is right colinear. Since 𝜄 is also an isometry, we

can view 𝒪(S3𝑝𝑞) as a subalgebra of 𝒞(S3𝑞). Then 𝐿𝑁 ⊂ 𝒞(S3𝑞)𝑁 by the definitions

of 𝐿𝑁 and 𝒞(S3𝑞)𝑁 in (2.15) and (3.2), respectively. □

We remark that the universal C*-algebra of 𝒪(S3𝑝𝑞) has been studied in [7],

the K-theory of 𝒞(S3𝑞) has been determined in [1]; and from the last example in

[5], it follows that 𝒞(S3𝑞) behaves well under the 𝒞(S1)-coaction (it is a principal
Hopf-Galois extension).
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3.2. Index computation for quantum line bundles

The aim of this section is to illustrate that the fibre product approach may lead
to a significant simplification of index computations. First we remark that, in
(algebraic) quantum group theory, algebras are frequently defined by generators
and relations similar those in (2.14) for 𝒪(S3𝑝𝑞) (more examples can be found,
e.g., in [11]). A pair of *-representations on the same Hilbert space such that the
difference yields compact operators gives rise to an even Fredholm module and
can be used for index computations by pairing it with 𝐾0-classes. If we want
to compute for instance the index pairing with the 𝐾0-class of the projective
modules 𝐿𝑁 from (2.15) by using the idempotents given in (2.16), then we face
difficulties because of the growing size of the matrices. It is therefore desirable
to find simpler representatives of K-theory classes of the projective modules 𝐿𝑁 .
This section shows that the fibre product approach provides us with an effective
tool for obtaining more suitable projections. In our example, the index pairing will
reduce to its simplest possible form: it remains to calculate a trace of a projection
onto a finite-dimensional subspace.

We start by proving that the projective modules 𝒞(S3𝑝𝑞)𝑁 can be represented
by elementary one-dimensional projections. Because of the isomorphism between
𝒞(S3𝑝𝑞)𝑁 and 𝒯 ×(𝑈𝑁𝜎,𝜎) 𝒯 in Proposition 3.1, this result has already been ob-
tained in [17]. For the convenience of the reader, we include here the proof. It
uses essentially the same “bra-ket” argument that was used in [6, 15] to prove
𝑀𝑁

∼= 𝒪(S2𝑞𝑠)
∣𝑁 ∣+1𝑃𝑁 for the Hopf fibration of 𝒪(SU𝑞(2)).

Proposition 3.2. For 𝑁 ∈ ℤ, define

𝜒𝑁 := (1 , 𝑆∣𝑁 ∣𝑆∗∣𝑁 ∣) ∈ 𝒞(S2𝑞), for 𝑁 < 0, (3.5)

𝜒𝑁 := (𝑆𝑁𝑆∗𝑁 , 1) ∈ 𝒞(S2𝑞), for 𝑁 ≥ 0. (3.6)

Then the left 𝒞(S2𝑞)-modules 𝒞(S3𝑝𝑞)𝑁 and 𝒞(S2𝑞)𝜒𝑁 are isomorphic.

Proof. Since 𝜎(𝑆𝑛𝑆∗𝑛) = 𝑈𝑛𝑈∗𝑛 = 1 for all 𝑛 ∈ ℕ, the projections 𝜒𝑁 belong
to 𝒞(S2𝑞) = 𝒯 ×(𝜎,𝜎) 𝒯 . We will use the isomorphism of Proposition 3.1 and prove

that 𝒞(S2𝑞)𝜒𝑁 is isomorphic to ℰ𝑁 := 𝒯 ×(𝑈𝑁𝜎,𝜎) 𝒯 .

Let 𝑁 ≥ 0. From (2.10) and (2.12), it follows that (𝑓𝑆∗𝑁 , 𝑔) ∈ 𝒞(S2𝑞) for all
(𝑓, 𝑔) ∈ ℰ𝑁 . Therefore we can define a 𝒞(S2𝑞)-linear map Ψ𝑁 : ℰ𝑁 → 𝒞(S2𝑞)𝜒𝑁 by

Ψ𝑁(𝑓, 𝑔) := (𝑓𝑆∗𝑁 , 𝑔)𝜒𝑁 = (𝑓𝑆∗𝑁 , 𝑔), (3.7)

where we used 𝑆∗𝑆 = id in the second equality. Since 𝑆∗ is right invertible, we
have (𝑓𝑆∗𝑁 , 𝑔) = 0 if and only if (𝑓 , 𝑔) = 0, hence Ψ𝑁 is injective.

Now let (𝑓, 𝑔)𝜒𝑁 ∈ 𝒞(S2𝑞)𝜒𝑁 . Then (𝑓𝑆𝑁 , 𝑔) ∈ ℰ𝑁 and Ψ𝑁 (𝑓𝑆𝑁 , 𝑔) =

(𝑓𝑆𝑁𝑆∗𝑁 , 𝑔) = (𝑓, 𝑔)𝜒𝑁 , thus Ψ𝑁 is also surjective. This proves the claim of
Proposition 3.2 for 𝑁 ≥ 0. The proof for 𝑁 < 0 runs analogously with Ψ𝑁 defined
by Ψ𝑁 (𝑓, 𝑔) := (𝑓 , 𝑔𝑆∗𝑁)𝜒𝑁 . □
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Clearly, the (left) multiplication by elements of the C*-algebra 𝒞(S2𝑞) turns

𝐿𝑁
∼= 𝒪(S2𝑝𝑞)

∣𝑁 ∣+1𝐸𝑁 into a (left) 𝒞(S2𝑞)-module. With a slight abuse of notation,

we set 𝒞(S2𝑞)𝐿𝑁 := span{𝑥𝑣 : 𝑥 ∈ 𝒞(S2𝑞), 𝑣 ∈ 𝐿𝑁}. (Later it turns out that this
module is generated by one element in 𝐿𝑁 so that the notation is actually correct.)
If we show that 𝒞(S2𝑞)𝐿𝑁 is isomorphic to 𝒞(S3𝑝𝑞)𝑁 , then the elementary projections
𝜒𝑁 and the (∣𝑁 ∣+1)×(∣𝑁 ∣+1)-matrices 𝐸𝑁 define the same𝐾0-class. The desired
isomorphism will be established in the next proposition by using the embedding
𝐿𝑁 ⊂ 𝒞(S3𝑝𝑞)𝑁 from Proposition 3.1.

Proposition 3.3. The left 𝒞(S2𝑞)-modules 𝒞(S2𝑞)𝐿𝑁
∼= 𝒞(S2𝑞)∣𝑁 ∣+1𝐸𝑁 and 𝒞(S3𝑝𝑞)𝑁

are isomorphic.

Proof. Using embedding (3.3) and the inclusion from Proposition 3.1, we can view
𝒞(S2𝑞)𝐿𝑁 = span{𝑥𝑣 : 𝑥 ∈ 𝒞(S2𝑞), 𝑣 ∈ 𝐿𝑁} ⊂ 𝒞(S3𝑝𝑞)𝑁 as a submodule of 𝒞(S3𝑝𝑞)𝑁 .
Let 𝑁 ∈ ℕ0. It follows from the isomorphism Ψ𝑁 defined in (3.7) that the left
𝒞(S2𝑞)-module 𝒞(S3𝑝𝑞)𝑁 = {(𝑓𝑆∗𝑁 , 𝑔) : (𝑓, 𝑔) ∈ 𝒞(S2𝑞)} is generated by the ele-

ment (𝑆∗𝑁 , 1). Therefore, to prove 𝒞(S2𝑞)𝐿𝑁 = 𝒞(S3𝑝𝑞)𝑁 , it suffices to show that

(𝑆∗𝑁 , 1) ∈ 𝒞(S2𝑞)𝐿𝑁 . Since 𝜎(𝑧∗𝑛) = 𝑈−𝑁 , we have (𝑧∗𝑁 , 1) ∈ 𝒯 ×(𝑈𝑁𝜎,𝜎) 𝒯 . Since

(𝑧∗𝑁 , 1) is the image of 𝜄(𝑎∗𝑁 ) = (𝑧∗𝑁 ⊗ 𝑈𝑁 , 1 ⊗ 𝑈𝑁 ) under the isomorphism
(3.4), we can view (𝑧∗𝑁 , 1) as an element of 𝐿𝑁 . Let 𝑡 := 1 − 𝑧𝑧∗ ∈ 𝒯 . Note
that 𝑡 is a self-adjoint operator with spectrum spec(𝑡) = {𝑞𝑛 : 𝑛 ∈ ℕ0} ∪ {0}
(see Equation (2.8)). Applying the commutation relations (2.7), one easily verifies
that 𝑧∗𝑁𝑧𝑁 = Π𝑁

𝑘=1(1− 𝑞𝑘𝑡). Since spec(𝑡) ⊂ [0, 1], the operator 𝑧∗𝑁𝑧𝑁 is strictly

positive. Hence ∣𝑧𝑁 ∣−1 = (𝑧∗𝑁𝑧𝑁)−1/2 belongs to the C*-algebra 𝒯 . Moreover,
𝜎(∣𝑧𝑁 ∣−1) = 1 since 𝜎(𝑧∗𝑁𝑧𝑁) = 1. Therefore (∣𝑧𝑁 ∣−1, 1) ∈ 𝒯 ×(𝜎,𝜎) 𝒯 = 𝒞(S2𝑞)
and thus (𝑆∗𝑁 , 1) = (∣𝑧𝑁 ∣−1, 1)(𝑧∗𝑁 , 1) ∈ 𝒞(S2𝑞)𝐿𝑁 . This completes the proof for
𝑁 ≥ 0. The case 𝑁 < 0 is treated analogously. □

Recall that an (even) Fredholm module of an *-algebra 𝒜 can be given by
a pair of *-representations (𝜌+, 𝜌−) of 𝒜 on a Hilbert space ℋ such that the
difference 𝜌+(𝑎)−𝜌−(𝑎) yields a compact operator. In this case, for any projection
𝑃 ∈ Mat𝑛,𝑛(𝒜), the operator 𝜚+(𝑃 )𝜚−(𝑃 ) : 𝜚−(𝑃 )ℋ𝑛 → 𝜚+(𝑃 )ℋ𝑛 is a Fredholm
operator and its Fredholm index does neither depend on the 𝐾0-class of 𝑃 nor
on the class of (𝜌+, 𝜌−) in K-homology. This pairing between K-theory and K-
homology is referred to as index pairing. If it happens that 𝜌+(𝑎) − 𝜌−(𝑎) yields
trace class operators, then the index pairing can be computed by a trace formula,
namely

⟨[(𝜌+, 𝜌−)], [𝑃 ]⟩ = trℋ(trMat𝑛,𝑛(𝜌+ − 𝜌−)(𝑃 )) (3.8)

In general, the computation of the traces gets more involved with increasing size of
the matrix 𝑃 . This will especially be the case if one works only with the polynomial
algebras 𝒪(S3𝑝𝑞) and 𝒪(S2𝑝𝑞), and uses the (∣𝑁 ∣+1)×(∣𝑁 ∣+1)-projections 𝐸𝑁 from

(2.16) with entries in belonging to 𝒪(S2𝑝𝑞). In our example, the C*-algebraic fibre
product approach improves the situation considerably since Propositions 3.2 and
3.3 provide us with the equivalent one-dimensional projections 𝜒𝑁 . As the index
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computation is one of our main objectives, we state the result in the following
theorem.

Theorem 3.4. Let 𝑁 ∈ ℤ. The isomorphic projective left 𝒞(S2𝑞)-modules 𝒞(S3𝑝𝑞)𝑁 ,
𝒞(S2𝑞)𝐿𝑁 , 𝒞(S2𝑞)∣𝑁 ∣+1𝐸𝑁 and 𝒞(S2𝑞)𝜒𝑁 define the same class in 𝐾0(𝒞(S2𝑞)), say
[𝜒𝑁 ], and the pairing with the generators of the K-homology 𝐾0(𝒞(S2𝑞)) from the
end of Section 2.3 is given by

⟨ [(pr1, pr0)] , [𝜒𝑁 ] ⟩ = 𝑁, ⟨ [(𝜋+ ∘ 𝜎 , 𝜋− ∘ 𝜎)] , [𝜒𝑁 ] ⟩ = 1. (3.9)

Proof. The equivalences of the left 𝒞(S2𝑞)-modules has been shown in Propositions
3.2 and 3.3. In particular, we are allowed to choose 𝜒𝑁 as a representative.

For all 𝑁 ∈ ℤ, the operator 𝜋+ ∘ 𝜎(𝜒𝑁 ) − 𝜋− ∘ 𝜎(𝜒𝑁 ) = 𝜋+(1) − 𝜋−(1)
is the projector onto the one-dimensional subspace ℂ𝑒0, see Equation (2.13). In
particular, it is of trace class so that Equation (3.8) applies. Since the trace of a
one-dimensional projection is 1, we get

⟨ [(𝜋+ ∘ 𝜎 , 𝜋− ∘ 𝜎)] , [𝜒𝑁 ] ⟩ = trℓ2(ℕ0)(𝜋+(1)− 𝜋−(1)) = 1.

Now let 𝑁 ≥ 0. Then (pr1, pr0)(𝜒𝑁 ) = (pr1 − pr0)(𝑆
𝑁𝑆∗𝑁 , 1) = 1 − 𝑆𝑁𝑆∗𝑁 is

the projection onto the subspace span{𝑒0, . . . , 𝑒𝑛−1}. Since it is of trace class with
trace equal to the dimension of its image, we can apply Equation (3.8) and get

⟨ [(pr1, pr0)] , [𝜒𝑁 ] ⟩ = trℓ2(ℕ0)(1 − 𝑆𝑁𝑆∗𝑁 ) = 𝑁.

Analogously, for 𝑁 < 0,

⟨ [(pr1, pr0)] , [𝜒𝑁 ] ⟩ = trℓ2(ℕ0)(𝑆
∣𝑁 ∣𝑆∗∣𝑁 ∣ − 1) = −∣𝑁 ∣ = 𝑁,

which completes the proof. □

Since the C*-algebra 𝒞(S2𝑞) is isomorphic to the universal C*-algebra of the

Podleś spheres 𝒪(S2𝑞𝑠), the indices in Equation (3.9) have also been obtained in [6]
and [17]. In the first paper, the computations relied heavily on the index theorem,
whereas in [17] and Theorem 3.4, by using the fibre product approach, the traces
were computed directly by finding equivalent elementary projections.

Note that Equation (3.9) has a geometrical interpretation: The pairing with
the K-homology class [(𝜋+ ∘𝜎 , 𝜋− ∘𝜎)] detects the rank of the projective module,
and the pairing ⟨ [(pr1, pr0)] , [𝜒𝑁 ] ⟩ = 𝑁 coincides with the power of 𝑈 in (2.11)
and thus computes the “winding number”, that is, the number of rotations of the
transition function along the equator.

3.3. Equivalence to the generic Hopf fibration of quantum SU(2)

Recall from Section 2.4 that 𝒪(SU𝑞(2)) = ⊕𝑁∈ℤ𝑀𝑁 , where

𝑀𝑁 := { 𝑝 ∈ 𝒪(SU𝑞(2)) : Δ𝒪(SU𝑞(2))(𝑝) = 𝑝⊗ 𝑈𝑁 } ∼= 𝒪(S2𝑞𝑠)
∣𝑁 ∣+1𝑃𝑁

with 𝑃𝑁 ∈ Mat∣𝑁 ∣+1,∣𝑁 ∣+1(𝒪(S2𝑞𝑠)) given in Equation (2.18). For the definition of

the 𝒪(U(1))-coaction Δ𝒪(SU𝑞(2)) = (id ⊗ pr𝑠) ∘ Δ, see Section 2.4. Since 𝒪(S2𝑞𝑠)

can be embedded into its universal C*-algebra, which is isomorphic to 𝒞(S2𝑞), we
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can turn 𝑀𝑁 into a left 𝒞(S2𝑞)-module by considering 𝑀𝑁 := 𝒞(S2𝑞)∣𝑁 ∣+1𝑃𝑁 . It

has been shown in [17], that this left 𝒞(S2𝑞)-module is isomorphic to 𝒞(S2𝑞)𝜒𝑁 , and

therefore to 𝒞(S3𝑝𝑞)𝑁 .

The aim of this section is to define a left 𝒞(S2𝑞)-module and right 𝒪(U(1))-
comodule 𝑃 such that, for all 𝑁 ∈ ℤ, the line bundle associated to the 1-dimen-
sional left corepresentation ℂΔ(1) = 𝑈𝑁 ⊗ 1 is isomorphic to 𝑀𝑁 . A natural idea
would be to consider the embedding of 𝒪(SU𝑞(2)) into 𝒞(SU𝑞(2)) and to extend the
right coaction Δ𝒪(SU𝑞(2)) to the C*-algebra closure. But then we face the problem
that Δ𝒪(SU𝑞(2)) is merely a coaction and not an algebra homomorphism. If we

impose at 𝒪(U(1)) the obvious multiplicative structure given by 𝑈𝑁𝑈𝐾 = 𝑈𝑁+𝐾 ,
and turn ⊕𝑁∈ℤ𝑀𝑁 into a *-algebra such that the right 𝒪(U(1))-coaction becomes
an algebra homomorphism, then the C*-closure of ⊕𝑁∈ℤ𝑀𝑁

∼= ⊕𝑁∈ℤ𝒞(S3𝑝𝑞)𝑁
would be isomorphic to 𝒞(S3𝑝𝑞) and not to 𝒞(SU𝑞(2)). Note that there cannot be

an isomorphism between 𝒞(S3𝑝𝑞) and 𝒞(SU𝑞(2)) since otherwise, by the pullback

diagrams (2.20) and (3.1), 𝒞(S1) ∼= ker(pr1) ∼= 𝒯 ⊗̄ 𝒞(S1), a contradiction.

Instead of extending the coaction Δ𝒪(SU𝑞(2)) to some closure of 𝒪(SU𝑞(2)), we

turn 𝒪(SU𝑞(2)) into a left 𝒞(S2𝑞)-module by setting 𝑃 = 𝒞(S2𝑞) ⊗𝒪(S2
𝑞𝑠)

𝒪(SU𝑞(2))

and keeping the 𝒪(U(1))-coaction, now acting on the second tensor factor. Then
it follows immediately that

𝑃 = ⊕
𝑁∈ℤ

𝒞(S2𝑞) ⊗
𝒪(S2

𝑞𝑠)
𝑀𝑁 and 𝒞(S2𝑞) ⊗

𝒪(S2
𝑞𝑠)
𝑀𝑁 = {𝑝 ∈ 𝑃 : Δ𝑃 (𝑝) = 𝑝⊗ 𝑈𝑁}.

Thus our aim will be achieved if we show that 𝑀𝑁
∼= 𝒞(S2𝑞)⊗𝒪(S2

𝑞𝑠)
𝑀𝑁 . For this,

we prove that 𝑃 , as a left 𝒞(S2𝑞)-module and right 𝒪(U(1))-comodule, is isomorphic
to the following fibre product

𝒯 ⊗ 𝒪(U(1)) ×
(Φ∘𝜋1,𝜋2)

𝒯 ⊗ 𝒪(U(1))

pr1

�������������� pr2

		������������

𝒯 ⊗ 𝒪(U(1))

𝜋1:=𝜎⊗id

��

𝒯 ⊗ 𝒪(U(1))

𝜋2:=𝜎⊗id

��
𝒞(S1) ⊗ 𝒪(U(1))

Φ
�� 𝒞(S1) ⊗ 𝒪(U(1)) .

(3.10)

Here Φ is defined by Φ(𝑓 ⊗ 𝑈𝑁 ) = 𝑓𝑈𝑁 ⊗ 𝑈𝑁 . Then, by comparing the pullback
diagrams (3.1) and (3.10) in the category of left 𝒞(S2𝑞)-modules and right 𝒞(S1)-
comodules, it follows that

𝑀𝑁
∼= 𝒞(S3𝑝𝑞)𝑁 ∼= 𝑃 □𝒞(S2

𝑞)
ℂ ∼= 𝒞(S2𝑞)⊗𝒪(S2

𝑞𝑠)
𝑀𝑁 (3.11)

with 𝒪(U(1))Δ(1) = 𝑈𝑁 ⊗ 1 on ℂ in the cotensor product.



338 E. Wagner

For simplicity of notation, we set

𝒜 := 𝒪(SU𝑞(2)), ℬ := 𝒪(S2𝑞𝑠), ℬ := 𝒯 ×
(𝜎,𝜎)

𝒯 ∼= 𝒞(S2𝑞), 𝐶 := 𝒪(U(1)).

Recall that ℬ can be embedded in 𝒜 as well as in ℬ, so both are ℬ-bimodules
with respect to the multiplication. Moreover, the pullback diagram (2.9) provides
us with *-algebra homomorphism pr0 : ℬ → 𝒯 and pr1 : ℬ → 𝒯 by projecting
onto the left and right component, respectively. Perhaps it should here also be
mentioned that 𝐶 is only considered as a coalgebra, not as an algebra.

Let 𝑣𝑁0 , 𝑣
𝑁
1 , . . . , 𝑣

𝑁
∣𝑁 ∣ ∈ 𝒜 denote the matrix elements from the definition of

𝑃𝑁 in (2.18). Since the entries of 𝑃𝑁 belong to ℬ, we have 𝑣𝑁𝑗 𝑣
∗𝑁
𝑘 ∈ ℬ for all

𝑗, 𝑘 = 0, . . . , ∣𝑁 ∣. The following facts are proven in [15, Lemma 7.5].

Lemma 3.5. Let 𝑙 ∈ ℤ and 𝑘,𝑚 ∈ {0, . . . ∣𝑙∣}.
(i) For 𝑙 ≥ 0, the elements pr1(𝑣

𝑙
𝑙𝑣

𝑙∗
𝑙 ) and pr0(𝑣

𝑙
0𝑣

𝑙∗
0 ) are invertible in 𝒯 .

(ii) For 𝑙 < 0, the elements pr1(𝑣
𝑙
0𝑣

𝑙∗
0 ) and pr0(𝑣

𝑙
∣𝑙∣𝑣

𝑙∗
∣𝑙∣) are invertible in 𝒯 .

(iii) pr1(𝑣
𝑙
𝑘𝑣

𝑙∗
𝑙 ) pr1(𝑣

𝑙
𝑙𝑣

𝑙∗
𝑙 )−1 pr1(𝑣

𝑙
𝑙𝑣

𝑙∗
𝑚) = pr1(𝑣

𝑙
𝑘𝑣

𝑙∗
𝑚) and

pr0(𝑣
𝑙
𝑘𝑣

𝑙∗
0 )pr0(𝑣

𝑙
0𝑣

𝑙∗
0 )−1pr0(𝑣

𝑙
0𝑣

𝑙∗
𝑚) = pr0(𝑣

𝑙
𝑘𝑣

𝑙∗
𝑚) for 𝑙 ≥ 0.

(iv) pr1(𝑣
𝑙
𝑘𝑣

𝑙∗
0 ) pr1(𝑣

𝑙
0𝑣

𝑙∗
0 )−1 pr1(𝑣

𝑙
0𝑣

𝑙∗
𝑚) = pr1(𝑣

𝑙
𝑘𝑣

𝑙∗
𝑚) and

pr0(𝑣
𝑙
𝑘𝑣

𝑙∗
∣𝑙∣)pr0(𝑣

𝑙
∣𝑙∣𝑣

𝑙∗
∣𝑙∣)

−1pr0(𝑣
𝑙
∣𝑙∣𝑣

𝑙∗
𝑚) = pr0(𝑣

𝑙
𝑘𝑣

𝑙∗
𝑚) for 𝑙 < 0,

We can turn 𝒯 into a ℬ-bimodule by setting 𝑎.𝑡.𝑏 := pr0(𝑎) 𝑡 pr0(𝑏) and
𝑎.𝑡.𝑏 = pr1(𝑎) 𝑡 pr1(𝑏), where 𝑎, 𝑏 ∈ ℬ and 𝑡 ∈ 𝒯 . To distinguish between both
bimodules, we denote 𝒯 equipped with the first action by 𝒯−, and write 𝒯+ if we
use the second action. Clearly, as left or right ℬ-module, both are generated by
1 ∈ 𝒯 . The next proposition is the key in proving (3.11).

Proposition 3.6. The left ℬ-modules 𝒯± and 𝒯± ⊗ℬ 𝑀𝑙 are isomorphic. The cor-
responding isomorphisms are given by

𝜓𝑙,+ : 𝒯+ → 𝒯+ ⊗ℬ 𝑀𝑙, 𝜓𝑙,+(𝑡) = 𝑡 pr0(𝑣
𝑙
0𝑣

𝑙∗
0 )−1/2 ⊗ℬ 𝑣𝑙0, 𝑙 ≥ 0,

𝜓𝑙,− : 𝒯− → 𝒯− ⊗ℬ 𝑀𝑙, 𝜓𝑙,−(𝑡) = 𝑡 pr1(𝑣
𝑙
𝑙𝑣

𝑙∗
𝑙 )−1/2 ⊗ℬ 𝑣𝑙𝑙 , 𝑙 ≥ 0,

𝜓𝑙,+ : 𝒯+ → 𝒯+ ⊗ℬ 𝑀𝑙, 𝜓𝑙,+(𝑡) = 𝑡 pr0(𝑣
𝑙
∣𝑙∣𝑣

𝑙∗
∣𝑙∣)

−1/2 ⊗ℬ 𝑣𝑙∣𝑙∣, 𝑙 < 0,

𝜓𝑙,− : 𝒯− → 𝒯− ⊗ℬ 𝑀𝑙, 𝜓𝑙,−(𝑡) = 𝑡 pr1(𝑣
𝑙
0𝑣

𝑙∗
0 )−1/2 ⊗ℬ 𝑣𝑙0, 𝑙 < 0.

The inverse isomorphisms satisfy, for all 𝑘 = 0, 1, . . . , ∣𝑙∣,
𝜓−1
𝑙,+(1 ⊗ℬ 𝑣𝑙𝑘) = pr0(𝑣

𝑙
𝑘𝑣

𝑙∗
0 )pr0(𝑣

𝑙
0𝑣

𝑙∗
0 )−1/2, 𝑙 ≥ 0, (3.12)

𝜓−1
𝑙,−(1 ⊗ℬ 𝑣𝑙𝑘) = pr1(𝑣

𝑙
𝑘𝑣

𝑙∗
𝑙 )pr1(𝑣

𝑙
𝑙𝑣

𝑙∗
𝑙 )−1/2, 𝑙 ≥ 0, (3.13)

𝜓−1
𝑙,+(1 ⊗ℬ 𝑣𝑙𝑘) = pr1(𝑣

𝑙
𝑘𝑣

𝑙∗
∣𝑙∣) pr1(𝑣

𝑙
∣𝑙∣𝑣

𝑙∗
∣𝑙∣)

−1/2, 𝑙 < 0, (3.14)

𝜓−1
𝑙,−(1 ⊗ℬ 𝑣𝑙𝑘) = pr1(𝑣

𝑙
𝑘𝑣

𝑙∗
0 ) pr1(𝑣

𝑙
0𝑣

𝑙∗
0 )−1/2, 𝑙 < 0. (3.15)
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Proof. We prove the proposition for 𝜓𝑙,+ with 𝑙 ≥ 0, the other cases are treated

analogously. Since pr0(𝑣
𝑙
0𝑣

𝑙∗
0 ) is positive and invertible, pr0(𝑣

𝑙
0𝑣

𝑙∗
0 )−1/2 ∈ 𝒯 is in-

vertible, and thus 𝜓𝑙,+ is injective. The left ℬ-module 𝒯+ ⊗ℬ 𝑀𝑙 is generated by

1 ⊗ℬ 𝑣𝑙𝑘, 𝑘 = 0, 1, . . . , 𝑙 (cf. [15, Theorem 4.1]). As 𝜓𝑙,+ is left ℬ-linear, it suffices
to prove that the elements 1 ⊗ℬ 𝑣𝑙𝑘 belong to the image of 𝜓𝑙,+. Applying (2.19)
and Lemma 3.5(iii), we get

1 ⊗ℬ 𝑣𝑙𝑘 =
∑

𝑗1 ⊗ℬ 𝑣𝑙𝑘𝑣
𝑙∗
𝑗 𝑣

𝑙
𝑗

=
∑

𝑗pr0(𝑣
𝑙
𝑘𝑣

𝑙∗
𝑗 ) ⊗ℬ 𝑣𝑙𝑗

=
∑

𝑗pr0(𝑣
𝑙
𝑘𝑣

𝑙∗
0 )pr0(𝑣

𝑙
0𝑣

𝑙∗
0 )−1pr0(𝑣

𝑙
0𝑣

𝑙∗
𝑗 ) ⊗ℬ 𝑣𝑙𝑗

=
∑

𝑗pr0(𝑣
𝑙
𝑘𝑣

𝑙∗
0 )pr0(𝑣

𝑙
0𝑣

𝑙∗
0 )−1 ⊗ℬ 𝑣𝑙0𝑣

𝑙∗
𝑗 𝑣

𝑙
𝑗

= pr0(𝑣
𝑙
𝑘𝑣

𝑙∗
0 )pr0(𝑣

𝑙
0𝑣

𝑙∗
0 )−1 ⊗ℬ 𝑣𝑙0

= 𝜓𝑙,+
(
pr0(𝑣

𝑙
𝑘𝑣

𝑙∗
0 )pr0(𝑣

𝑙
0𝑣

𝑙∗
0 )−1/2

)
.

This proves the surjectivity of 𝜓𝑙,+ and Equation (3.12). □

Using the last proposition and the decomposition 𝒜 = ⊕𝑁∈ℤ𝑀𝑁 , we can
define left ℬ-linear, right 𝐶-colinear isomorphisms

Ψ− : 𝒯− ⊗ℬ 𝒜 → ⊕
𝑁∈ℤ

𝒯− ⊗ 𝑈𝑁 , Ψ+ : 𝒯+ ⊗ℬ 𝒜 → ⊕
𝑁∈ℤ

𝒯+ ⊗ 𝑈𝑁

by setting

Ψ±(𝑡⊗ℬ 𝑚𝑁 ) = 𝜓−1
𝑁,±(𝑡⊗ℬ 𝑚𝑁 ) ⊗ 𝑈𝑁 , 𝑡 ∈ 𝒯 , 𝑚𝑁 ∈𝑀𝑁 . (3.16)

Next we define left ℬ-linear, right 𝐶-colinear surjections
pr± : ℬ ⊗ℬ 𝒜 → 𝒯± ⊗ℬ 𝒜,

by

pr−((𝑡1, 𝑡2) ⊗ℬ 𝑎) := 𝑡1 ⊗ℬ 𝑎, pr+((𝑡1, 𝑡2) ⊗ℬ 𝑎) := 𝑡2 ⊗ℬ 𝑎. (3.17)

Furthermore, we turn 𝒞(S1) into a left ℬ-module by defining 𝑏.𝑓 := 𝜎(𝑏)𝑓 for all
𝑏 ∈ ℬ and 𝑓 ∈ 𝒞(S1). Now consider the following diagram in the category of left
ℬ-modules, right 𝐶-comodules:

ℬ ⊗ℬ 𝒜
Ψ−∘pr−

��

Ψ+∘pr+ �� 𝒯+ ⊗ 𝐶
𝜎⊗id

��
𝒯− ⊗ 𝐶

Φ∘(𝜎⊗id)
�� 𝒞(S1)⊗ 𝐶,

(3.18)

where Φ is the same as in (3.10).

Lemma 3.7. The diagram (3.18) is commutative, Ψ− ∘ pr− and Ψ+ ∘ pr+ are sur-
jective and ker(Ψ− ∘ pr−) ∩ ker(Ψ+ ∘ pr+) = {0}.
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Proof. Since all maps are left ℬ-linear, it suffices to prove the lemma for generators
of the left ℬ-module ℬ ⊗ℬ 𝒜. Moreover, since 𝒜 = ⊕𝑁∈ℤ𝑀𝑁 , we can restrict
ourselves to the generators of the left ℬ-modules 𝑀𝑁 .

Let 𝑙 ≥ 0. Since 𝜎(pr0(𝑓)) = 𝜎(𝑓) = 𝜎(pr1(𝑓)) for all 𝑓 ∈ ℬ by (2.10), we get
from Equation (3.16) and Lemma 3.5

(𝜎 ⊗ id) ∘ Ψ+ ∘ pr−
(
1 ⊗ℬ 𝑣𝑙𝑘

)
= 𝜎(𝑣𝑙𝑘𝑣

𝑙∗
0 )𝜎(𝑣𝑙0𝑣

𝑙∗
0 )−1/2 ⊗ 𝑈 𝑙, (3.19)

𝜙 ∘ (𝜎 ⊗ id) ∘ Ψ− ∘ pr+
(
1 ⊗ℬ 𝑣𝑙𝑘

)
= 𝜎(𝑣𝑙𝑘𝑣

𝑙∗
𝑙 )𝜎(𝑣𝑙𝑙𝑣

𝑙∗
𝑙 )−1/2𝑈 𝑙 ⊗ 𝑈 𝑙. (3.20)

By Lemma 3.5 (iii) (with 𝑚 = 0), we have

𝜎(𝑣𝑙𝑘𝑣
𝑙∗
0 ) = 𝜎(𝑣𝑙𝑘𝑣

𝑙∗
𝑙 )𝜎(𝑣𝑙𝑙𝑣

𝑙∗
𝑙 )−1 𝜎(𝑣𝑙𝑙𝑣

𝑙∗
0 ). (3.21)

Inserting the latter equation into (3.19) and comparing with (3.20) shows that it
suffices to prove

𝜎(𝑣𝑙𝑙𝑣
𝑙∗
𝑙 )−1/2 𝜎(𝑣𝑙𝑙𝑣

𝑙∗
0 )𝜎(𝑣𝑙0𝑣

𝑙∗
0 )−1/2 = 𝑈 𝑙. (3.22)

It follows from [17, Lemma 2.2] (with 𝑣𝑙𝑙 ∼ 𝑢𝑙 and 𝑣𝑙0 ∼ 𝑤𝑙), or can be computed
directly by using explicit expressions for 𝑣𝑙0 and 𝑣𝑙𝑙 , that 𝑣

𝑙
𝑙𝑣

𝑙∗
0 ∼ 𝜂𝑙𝑠. From the

embedding (2.17), we deduce that 𝜂𝑙𝑠 has polar decomposition 𝜂𝑙𝑠 = (𝑆𝑙, 𝑆𝑙)∣𝜂𝑙𝑠∣.
Therefore we can write 𝑣𝑙𝑙𝑣

𝑙∗
0 = (𝑆𝑙, 𝑆𝑙)∣𝑣𝑙𝑙𝑣𝑙∗0 ∣ which implies

𝜎(𝑣𝑙𝑙𝑣
𝑙∗
0 ) = 𝜎(∣𝑣𝑙𝑙𝑣𝑙∗0 ∣)𝑈 𝑙.

By comparing with (3.22), we see that it now suffices to verify

𝜎(𝑣𝑙𝑙𝑣
𝑙∗
𝑙 )−1/2 𝜎(∣𝑣𝑙𝑙𝑣𝑙∗0 ∣)𝜎(𝑣𝑙0𝑣𝑙∗0 )−1/2 = 1. (3.23)

Multiplying both sides of Equation (3.21) with 𝜎(𝑣𝑙𝑙𝑣
𝑙∗
𝑙 ) gives

𝜎(𝑣𝑙0𝑣
𝑙∗
0 )𝜎(𝑣𝑙𝑙𝑣

𝑙∗
𝑙 ) = 𝜎(𝑣𝑙0𝑣

𝑙∗
𝑙 )𝜎(𝑣𝑙𝑙𝑣

𝑙∗
0 ).

Thus

𝜎(∣𝑣𝑙𝑙𝑣𝑙∗0 ∣) = 𝜎((𝑣𝑙0𝑣𝑙∗𝑙 𝑣𝑙𝑙𝑣𝑙∗0 )1/2
)
=
(
𝜎(𝑣𝑙0𝑣

𝑙∗
𝑙 )𝜎(𝑣𝑙𝑙𝑣

𝑙∗
0 )
)1/2

=
(
𝜎(𝑣𝑙0𝑣

𝑙∗
0 )𝜎(𝑣𝑙𝑙𝑣

𝑙∗
𝑙 )
)1/2
,

which proves (3.23). This concludes the proof of the commutativity of (3.18) for
𝑙 ≥ 0. The case 𝑙 < 0 is treated analogously.

The surjectivity of Ψ− ∘ pr− and Ψ+ ∘ pr+ follows from the bijectivity of Ψ±
and the surjectivity of pr±.

Suppose that
∑𝑛

𝑘=1(𝑟𝑘, 𝑠𝑘)⊗𝐵 𝑎𝑘 ∈ ker(Ψ− ∘pr−)∩ker(Ψ+ ∘pr+). Since Ψ±
is an isomorphism, we get

∑𝑛
𝑘=1 𝑟𝑘 ⊗𝐵 𝑎𝑘 = 0 and

∑𝑛
𝑘=1 𝑠𝑘 ⊗𝐵 𝑎𝑘 = 0 by (3.17).

Hence
∑𝑛

𝑘=1(𝑟𝑘, 𝑠𝑘) ⊗𝐵 𝑎𝑘 =
∑𝑛

𝑘=1(𝑟𝑘, 0) ⊗𝐵 𝑎𝑘 +
∑𝑛

𝑘=1(0, 𝑠𝑘) ⊗𝐵 𝑎𝑘 = 0 which
proves last claim of the lemma. □

We are now in a position to prove the main theorem of this section.

Theorem 3.8. There is an isomorphism of left 𝒞(S2𝑞)-modules and right 𝒪(U(1))-
comodules between the fibre product 𝒯 ⊗ 𝒪(U(1))×(Φ∘𝜋1,𝜋2)𝒯 ⊗ 𝒪(U(1)) from

(3.10) and 𝒞(S2𝑞)⊗𝒪(S2
𝑞𝑠)

𝒪(SU𝑞(2)). Moreover, the chain of isomorphisms in (3.11)

holds.



Toeplitz Algebras in Quantum Hopf Fibrations 341

Proof. Lemma 3.7 states that 𝒞(S2𝑞)⊗𝒪(S2
𝑞𝑠)

𝒪(SU𝑞(2)) is a universal object of the

pull back diagram (3.18). Comparing (3.18) and (3.10) shows that both pullback
diagrams define up to isomorphism the same universal object which proves the
first part of the theorem.

The first isomorphism in (3.11) follows from the Murray-von Neumann equiv-
alence of the corresponding projections, see [17]. The second isomorphism follows
from the above equivalence of pullback diagrams, and the last one from fact that
all mappings in (3.18) are right 𝒪(U(1))-colinear. □
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algebras. arXiv:0707.1344v2.
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