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Preface

The Fourth International Conference on Automatic Differentiation was held
July 20-23 in Chicago, Illinois. The conference included a one day short course,
42 presentations, and a workshop for tool developers. This gathering of auto-
matic differentiation researchers extended a sequence that began in Brecken-
ridge, Colorado, in 1991 and continued in Santa Fe, New Mexico, in 1996 and
Nice, France, in 2000. We invited conference participants and the general au-
tomatic differentiation community to submit papers to this special collection.
The 28 accepted papers reflect the state of the art in automatic differentiation.

The number of automatic differentiation tools based on compiler technol-
ogy continues to expand. The papers in this volume discuss the implemen-
tation and application of several compiler-based tools for Fortran, including
the venerable ADIFOR, an extended NAGWare compiler, TAF, and TAPE-
NADE. While great progress has been made toward robust, compiler-based
tools for C/C++, most notably in the form of the ADIC and TAC++ tools,
for now operator-overloading tools such as ADOL-C remain the undisputed
champions for reverse-mode automatic differentiation of C++. Tools for au-
tomatic differentiation of high level languages, including COSY and ADiMat,
continue to grow in importance as the productivity gains offered by high-level
programming are recognized.

The breadth of automatic differentiation applications also continues to
expand. This volume includes papers on accelerator design, chemical engi-
neering, weather and climate modeling, dynamical systems, circuit device
modeling, structural dynamics, and radiation treatment planning. The last
application is representative of a general trend toward more applications in
the biological sciences. This is an important trend for the continued growth
of automatic differentiation, as new applications identify novel uses for au-
tomatic differentiation and present new challenges to tool developers. The
papers in this collection demonstrate both the power of automatic differenti-
ation to facilitate new scientific discoveries and the ways in which application
requirements can drive new developments in automatic differentiation.



VI Preface

Advances in automatic differentiation theory take many forms. Progress
in mathematical theory expands the scope of automatic differentiation and
its variants or identifies new uses for automatic differentiation capabilities.
Advances in combinatorial theory reduce the cost of computing or storing
derivatives. New compiler theory identifies analyses that reduce the time or
storage requirements for automatic differentiation, especially for the reverse
mode. This collection includes several papers on mathemetical and combina-
torial theory. Furthermore, several of the tools papers document the compiler
analyses that are required to construct an effective automatic differentiation
tool.

This collection is organized as follows. The first two papers, by Rall and
Werbos, provide an overview of automatic differentiation and place it in a his-
torical context. The first section, comprising seven papers, covers advances in
automatic differentiation theory. The second section, containing eight papers,
describes the implementation of automatic differentiation tools. The final sec-
tion, devoted to applications, includes eleven papers discussing new uses for
automatic differentiation. Many papers include elements of two or more of the
general themes of theory, tools, and applications. For example, in many cases
successful application of an automatic differentiation tool in a new domain
requires advances in theory or tools. A collected bibliography includes all of
the references cited by one of the papers in this volume, as well as all of the
papers from the proceeedings of the first three conferences. The bibliography
was assembled from the BibTeX database at autodiff.org, an emerging portal
for the automatic differentiation community. We thank Heiner Bach for his
hard work on the autodiff.org bibliographic database.

While the last four years have seen many advances in automatic differenti-
ation theory and implementation, many challenges remain. We hope that the
next International Conference on Automatic Differentiation includes reports of
reverse mode source transformation tools for templated C++, proofs that min-
imizing the number of operations in a Jacobian computation is NP-complete,
advances in the efficient computation of Hessians, and many examples of new
applications that identify research challenges and drive tool development for-
ward. Together, researchers in automatic differentiation applications, theory,
and implementation can advance the field in new and unexpected ways.

Martin Biicker
George Corliss

Paul Hovland
Uwe Naumann
Boyana Norris
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Perspectives on Automatic Differentiation:
Past, Present, and Future?

Louis B. Rall

University of Wisconsin — Madison, Madison, WI, USA
rall@math.wisc.edu

Summary. Automatic (or algorithmic) differentiation (AD) is discussed from the
standpoint of transformation of algorithms for evaluation of functions into algo-
rithms for evaluation of their derivatives. Such finite numerical algorithms are com-
monly formulated as computer programs or subroutines, hence the use of the term
“automatic.” Transformations to evaluate derivatives are thus based on the well-
known formulas for derivatives of arithmetic operations and various differentiable
intrinsic functions which constitute the basic steps of the algorithm. The chain rule
of elementary calculus then guarantees the validity of the process. The chain rule
can be applied in various ways to obtain what are called the “forward” and “reverse”
modes of automatic differentiation. These modes are described in the context of the
early stages of the development of AD, and a brief comparison is given. Following
this brief survey, a view of present tasks and future prospects focuses on the need for
further education, communication of results, and expansion of areas of application
of AD. In addition, some final remarks are made concerning extension of the method
of algorithm transformation to problems other than derivative evaluation.

Key words: Numerical algorithms, algorithm transformation, history

The perspectives on automatic differentiation (AD) presented here are
from a personal point of view, based on four decades of familiarity with the
subject. No claim is made of comprehensive or complete coverage of this now
large subject, such a treatment would require a much more extensive work;
hence, the question mark in the title. In the time frame considered, AD has
gone through the stages listed by Bell [30] in the acceptance of a useful tech-
nique: “It is utter nonsense; it is right and can be readily justified; every-
one has always known it and it is in fact a trivial commonplace of classical
analysis.”

It is convenient to adopt as viewpoints on work in AD the classification
given by Corliss in the preface to [42]: Methods, Applications, and Tools.
Methods relate to the underlying theories and techniques, applications are
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what motivate the work, and the final results in terms of computer software
are the tools which actually produce solutions to problems.

1 The Algorithmic Approach

Before the middle of the 17th century, algebraic mathematics was based on
algorithms, that is, step-by-step recipes for the solution of problems. A famous
example is Euclid’s algorithm for the g.c.d. of two integers, which goes back
to the middle of the 3rd century B.C. The term “algorithm” comes from the
name of the Islamic mathematician Mohammed ibn Misé al-Khowarizmi, who
around 825 A.D. published his book Hisab al-jabr w’al-muqa-balah, the title
of which also gave us the word “algebra.”

For centuries, geometers had the advantage of using intuitively evident vi-
sual symbols for lines, circles, triangles, etc., and could thus exploit the power
of the human brain to process visual information. By contrast, human beings
perform sequential processing, such as adding up long columns of numbers,
rather slowly and poorly. This made what today are considered rather trivial
algebraic operations opaque and difficult to understand when only algorithms
were available. This changed in the 17th century with the development and
general use of formulas to make algebra visible, and led to the rapid devel-
opment of mathematics. In particular, I. Newton and G. Leibniz introduced
calculus early in this age of formalism. Although their concept of derivative
has been put on a sounder logical basis and generalized to broader situations,
their basic formulas still underlie AD as practiced today.

The power of the choice of suitable notation and the manipulation of the
resulting formulas to obtain answers in terms of formulas was certainly central
to modern mathematics over the last 350 years, and will continue to be one of
the driving forces of future progress. However, the introduction of the digital
computer in the middle of the 20th century has brought the return of the
importance of algorithms, now in the form of computer programs. This points
to the problem of finding methods for manipulation of algorithms which are
as effective as those for formulas.

In modern notation, a finite algorithm generates a sequence

$=10(81,82,83.,8n) , (1)

where s; is its input, the result s; of the ith step of the algorithm is given by
si:qbi(sl,...,si,l), ’i:2,...,TL, (2)

where ¢; is a function with computable result, and the output s, of the al-
gorithm defines the function f such that s, = f(s1). The number n of steps
of the algorithm may depend on the input s;, but this dependence will be
ignored. For a finite numerical algorithm (FNA), the functions ¢; belong to a
given set {2 of arithmetic operations and certain other computable (intrinsic)
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functions. Arithmetic operations are addition, subtraction, multiplication, and
division, including the cases of constant (literal) operands. With this in mind,
it is sufficient to consider linear combinations, multiplication, and division.
For brevity, elements of {2 will be called simply “operations.”

This definition of an FNA is easily generalized slightly to the case that the
input is a p-vector and the output is a g-vector, or, alternatively, the algorithm
s has p inputs s, ..., s, and g outputs s,_g41, ..., S,. Such algorithms model
computer programs for numerical computations.

In general, it is much easier to grasp the significance of a formula such as

f(z,y) = (xy +sinz +4)(3y> +6) , (3)

for a function than a corresponding FNA for its evaluation:

51 =, s¢ = 85 +4,
52 =, s7 = sqr(s2),
S3 = 81 X 89, S8 = 3 X 87, (4)

s4 =sin(s1), s9 = sg + 6,
S5 = S3 + S4, S10 = S X Sg ,

sometimes called a code list for f(z,y).In (4), sqr(y) = y2 has been included as
an intrinsic function. However, it is important to note that some functions are
defined by computer programs which implement algorithms with thousands
or millions of steps and do not correspond to formulas such as (3) in any
meaningful way. It follows that algorithms provide a more general definition
of functions than formulas.

2 Transformation of Algorithms

In general terms, the transformation of an FNA s into an FNA
S =(51,52,...,5n)

defines a corresponding function F' such that Sy = F(S1). Such a transforma-
tion is direct if the functions ¢; in (1) are replaced by appropriate functions
@, on a one-to-one basis. For example, when an algorithm is executed on a
computer, it is automatically transformed into the corresponding algorithm
for finite precision (f.p.) numbers, which can lead to unexpected results. Other
direct transformations from the early days of computing are from single to
double or multiple precision f.p. numbers, real to complex, and so on. Another
direct transformation is from real to interval, called the united extension of
the function f by Moore (see [378, Sect. 11.2, pp. 108-113] and [379]): Here,
S1 = [a,b] and Sy = F(S1) = [¢,d], where a,b, ¢, d are computed f.p. num-
bers and f(s;) € Sy for each s; € Sy. The point here is that f.p. numbers
can actually be computed which bound the results of exact real algorithms.
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The bounds provided by the united extension are guaranteed, but not al-
ways useful. Considerable effort has gone into finding interval algorithms S
which provide tighter bounds for the results of real algorithms s, but details
are far beyond the scope of this paper. These and other more elaborate algo-
rithm transformations make use of replacement of operations by corresponding
FNAs if necessary.

From this perspective, AD consists of transformation of algorithms for
functions into algorithms for their derivatives. An immediate consequence of
the definition of FNAs and the chain rule (which goes back to Newton and
Leibniz) is the following

Theorem 1. If the derivatives s} of the steps s; of the FNA s can be evaluated
by FNAs with operations in (2, then the derivative

s, = f'(s1)8)
can be evaluated by an FNA with operations in 2'.

Note: Substitute “formula” for FNA to get symbolic differentiation as taught
in school.

As far as terminology is concerned, obtaining an FNA for the derivative
is essentially algorithmic differentiation [225]. The intent to have a computer
do the work of evaluation led to calling this automatic differentiation [136,
227,450], and computational differentiation [42] is also perfectly acceptable.
In the following, AD refers to whichever designation one prefers.

3 Development of AD

The basic mathematical ideas behind AD have been around for a long time.
The methodologies of AD have been discovered independently a number of
times by different people at various times and places, so no claim is made here
for completeness. Other information can be found in the paper by M. Iri [281]
on the history of AD. Although the methodology of AD could well have been
used for evaluation of derivatives by hand or with tables and desk calculators,
the circuitous method of first deriving formulas for derivatives and then eval-
uating those seems to have been almost universally employed. Consequently,
the discussion here will be confined to the age of the digital computer.
Starting about 1962, the development of AD to the present day can be di-
vided approximately into four decades. In the first, the simple-minded direct
approach known as the forward mode was applied to a number of problems,
principally at the Mathematics Research Center (MRC) of the University of
Wisconsin-Madison as described later in [450]. There followed a slack period
marked by lack of acceptance of AD for reasons still not entirely clear. How-
ever, interest in AD had definitely revived by 1982 due to improvements in
programming techniques and the introduction of the efficient reverse mode.
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Much of the progress in this era is due to the work of Andreas Griewank
and his colleagues at Argonne National Laboratory (ANL). This was followed
by explosive growth of work in techniques, tools, and applications of AD,
as recorded in the conference proceedings [42, 136, 227], the book [225] by
Griewank, and the present volume. A useful tool in the development of AD
following 1980 is the computational graph, which is a way of visualizing an
algorithm or computer program different from formulas. For example, Fig. 1
shows a computational graph for the algorithm (4). This type of graph is tech-
nically known as a directed acyclic graph (DAG), see [225]. Transformations
of the algorithm such as differentiation in forward or reverse mode can be
expressed as modifications of the computational graph, see for example, [280].
As indicated above, the forward and reverse modes reflect early and later
stages in the development of AD, and will be considered below in more detail.

f(z,y)

7N
7 &

3
T Y

Fig. 1. A Computational Graph for f(z,y).

3.1 The Forward Mode

This mode of AD consists essentially of step-by-step replacement of the op-
erations in the FNA s for the function f by operations or FNAs for their
corresponding derivatives. The result will thus be an FNA for derivatives of
the result s,, = f(s1). This follows the order in which the computer program
for evaluation of the function f is executed. In fact, before the introduction of
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compilers with formula translation, programmers using machine or assembly
language had to program evaluation of functions such as (3) in the form of a
code list (4). The forward mode of AD reflects this early method of computer
programming.

Early workers in AD were R. E. Moore at Lockheed Missiles and Space
Company and, later and independently, R. E. Wengert and R. D. Wilkins of
the Radio Guidance Operation of the General Electric Company. The work
at these two locations had different motivations, but both were carried out
in forward mode based on direct conversion of a code list into a sequence of
subroutine calls. In reverse historical order, the method of Wengert [530] and
the results of Wilkins [555] will be discussed first.

The group at General Electric was interested in perturbations of satel-
lite motion due to nonuniformities in the gravitational field of the earth and
checking computer programs which used derivatives obtained by hand. For a

function f(x1,...,24), it is often useful to approximate the difference
Af = f(x1 + Az, .. xqg + Axg) — f(z1, ... 24) (5)
by the differential
of af
df = —A et =——A
f = g Attt 5 Ava (6)

a linearization of (5) which is accurate for sufficiently small values of the
increments Az, ..., Azq. (It is customary to write dx; instead of Az; in (6)
to make the formula look pretty.) Leaving aside the situation that one or more
of the increments may not be sufficiently small enough to make (6) as accurate
as desired, the values of the partial derivatives 0f/0x; give an idea of how
much a change in the jth variable will perturb the value of the function f,
and in which direction. Consequently, the values of these partial derivatives
are known as “sensitivities.”

Wengert’s method used ordered pairs and does not calculate partial deriv-
atives directly. Rather, after initialization of the values (7, ’) of the inde-
pendent variables and their derivatives, the result obtained is the pair (f, f'),
where f is the function value and f’ the total (or directional) derivative

_9f of
= Oy ! o Brg @

fl

Values of individual partial derivatives 9f/0xy, are thus obtained by the ini-

tialization (z;,d,%), d,5 being the Kronecker delta. Wengert notes that higher

partial derivatives can be obtained by applying the product rule to (7) and

repeated evaluations with suitable initializations of (x;, %), (z},27), and so

on to obtain systems of linear equations which can be solved for the required
derivatives.

As an example of the line-by-line programming required (called the “key

to the method” by Wengert), starting with S1(1) = =z, 81(2) = 1, S2(1) =
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y, 82(2) = 0, the computation of (f,0f/0x) of the function (3) would be
programmed as

CALL PROD(S1, S2, $3)
CALL SINE(S1,S4)
(8)
CALL ADD(S8, 6, S9)

CALL PROD(S6,S9,S10)
following the code list (4), and then repeated switching the initializations to
2’ =0 and y’ =1 to obtain (f,0f/dy). The example given by Wilkins [555]
is a function for which 21 partial derivatives are desired. The computation,
after modification to avoid overflow, is repeated 21 times, and Wilkins notes
the function value is evaluated 20 more times than necessary. The overflow
was due to the use of the textbook formula for the derivative of the quotient
by Wengert [530]. Wilkins notes an improvement suggested by his coworker
K. O. Johnson to differentiate u/v = uv~! as a product was helpful with
the overflow problem, and finally Wengert suggested the efficient expression
(u/v) = (v — (u/v)v") /v which uses the previously evaluated quotient. Also,
since the function considered also depends on the time ¢ and contains deriva-
tives w.r.t. t, it is not clear which derivative was calculated, the ordinary total
derivative (7) or the ordered derivative

otf of | 0f duy f dra

ot Ot om0t " Oxg Ot

denoted by Df/0t in [483].

Although inefficient, the program using Wengert’s method, once corrected,
showed there were errors in the program using derivatives obtained by hand.
When the latter was corrected, both took about the same computer time to ob-
tains answers which agreed. That Wilkins had to battle f.p. arithmetic shows
that “automatic” in the sense of “plug-and-play” does not always hold for
AD, as is also well-known in the case of interval arithmetic. Wilkins predicted
a bright future for AD as a debugging tool and a stand-alone computational
technique. However, AD seems to have hit a dead end at General Electric;
nothing more appeared from this group as far as is known. As a matter of
fact, the efforts of Wengert and Wilkins had no influence on the subsequent
work using AD done at MRC off and on over the next ten years.

Prior to Wengert and Wilkins, R. E. Moore worked on the initial-value
problem

jj:f(xvt)’ .’L‘(to) = o, (9)
the goal being to compute f.p. vectors a(t) and b(t) such that the bounds
a(t) < z(t) < b(t) are guaranteed. Moore used recurrence relations for the
Taylor series expansion of f(z,t) to obtain the Taylor expansion

2(to+7) =Y ok + R, (10)
k=0
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of the solution, where
1 dkl'(t()) k

is the kth normalized Taylor coefficient of the function x(¢), and the remainder
term R, is given by

R _ 1 dm+1x(19)Tm+1
" (m+ 1) dtmtt ’

to <9< to+7. (12)

Moore used interval arithmetic to bound the round-off error in the compu-
tation of the Taylor coefficients (11) and the truncation error (12) on the
interval [tg,to + 7]. In this way, valid assertions could be made about the re-
sults of an algorithm carried out in f.p. interval arithmetic. As in the later
work of Wengert, the expansion (10) was based on representation of the func-
tion f(z,t) by a code list and was programmed as a sequence of subroutine
calls such as (8).

Moore presented his results to conferences on error in digital computation
held at MRC in 1964 and 1965, see [376,377]. It was recognized immediately
that Moore’s method also applied to the direct evaluation of partial deriv-
atives of functions of several variables, rather than via total derivatives as
done by Wengert. The motivation was automation of Newton’s method in d
dimensions for approximate solution of F'(z) = 0 by solving the sequence of
linear equations

F'(z)(@me1 —2m) = —F(zp), m=0,1,..., (13)

where the coefficient matrix is the Jacobian F'(x) = (0F;/0x;) of the system
of functions F;(z), ¢ = 1,...,d. The rows of the matrix F'(x) are the gradi-
ents VF;(z) of the corresponding functions F;(x). Furthermore, in order to
apply the theorem of Kantorovich (see [449]) on the convergence of Newton’s
method, a Lipschitz constant for F’(z) is required. This can be obtained from
an upper bound for the co-norm of the Hessian operator

0%F;
8xj 8$k

K 2 |[F"(2)]| = \

The necessary bounds were computed using interval arithmetic, so that valid
assertions regarding the existence of a solution and a region containing it
were obtained as well as the convergence of the Newton sequence (13) when
successful.

This program and others written at MRC by an outstanding programming
staff supervised by L. Rall incorporated a number of advances over previous
efforts in several respects. First of all, the programs accepted expressions
(functions) as input and produced the corresponding sequences of subroutine
calls internally, thus relieving the user of this unnecessary task. Secondly,
gradients and Hessians were vectorized, so only one pass was required to obtain
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the value of a function, its gradient vector, and Hessian matrix. First and
second derivatives of operations and intrinsic functions were coded explicitly,
rather than using Taylor coefficients or the product rule and linear equations
as indicated by Wengert. Moore’s program for initial-value problems was also
modified to accept expressions as inputs. Finally, a program for numerical
integration with guaranteed error bounds was written to accept subroutines
(which could be single expressions) as input. For more details on the programs
written at MRC, see [450].

Also at the University of Wisconsin, G. Kedem wrote his 1974 Ph.D. thesis
on automatic differentiation of programs in forward mode, supervised by C. de
Boor. It was published in 1980 [302]. For various reasons, work on AD at
MRC came to a pause in 1974, and was not taken up again until 1981. This
followed lectures given at the University of Copenhagen [450] and a visit to
the University of Karlsruhe to learn about the computer language Pascal-SC,
developed by U. Kulisch and his group (see [66] for a complete description).
This extension of the computer language Pascal permits operator overloading
and functions with arbitrary result types, and thus presents a natural way to
program AD in forward mode, see [451] for example. Much of this work was
done in collaboration with G. Corliss of Marquette University [133]. Another
result was an adaptive version of the self-validating numerical integration
program written earlier at MRC in nonadaptive form [137]. Funding of MRC
was discontinued in 1985, which brought an end to this era of AD.

Another result of the technique of operator overloading was the concept
of differentiation arithmetic, introduced in an elementary paper by Rall [452].
This formulation was based on operations on ordered pairs (a, a’) (as in [530]).
In algebraic terms, this showed that AD could be considered to be a derivation
of a commutative ring, the rule for multiplication being the product rule
for derivatives. Furthermore, M. Berz noticed that in the definition (a,a’) =
a(1,0)+a’(0,1), the quantity (1,0) is a basis for the real numbers and, in the
lexicographical ordering, (0,1) is a nonzero quantity less than any positive
number and hence satisfies the classical definition of an infinitesimal. Starting
from this observation, Berz was able to frame AD in terms of operations in a
Levi-Civita field [37].

3.2 The Reverse Mode

Along with the revival of the forward mode of AD after 1980, the reverse
mode came into prominence. As in the case of the forward mode, the history
of the reverse mode is somewhat murky, featured by anticipations, publica-
tion in obscure sources [420], Ph.D. theses which were unpublished [487] or
not published until much later. For example, the thesis of P. Werbos [532]
was not published until twenty years later [543]. Fortunately, the thesis of
B. Speelpenning [487] attracted the attention of A. Griewank at ANL, and
further notice was brought to the reverse mode by the paper of M. Iri [280].
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The basic idea of the reverse mode for the case the algorithm (1) has d
inputs and one output is to apply the chain rule to calculate the “adjoints,”
0sn  Osp Osn Osn
0sp Osp_1’ T 0sq T Osy’

which provide in reverse order the components of the gradient vector
0sy, 0sy, )
Osy’ " 0sq )
The reverse mode resembles symbolic differentiation in the sense that one
starts with the final result in the form of a formula for the function and then

applies the rules for differentiation until the independent variables are reached.
For example, (3) is a product, so the factors

szVsn:(

0s10 Os10
= s = xy +sinz + 4,
889 6 y 886

are taken as new differentiation problems, with the final results of each com-
posed by the product rule to obtain

8f - 6810

=59 =3y2+6,

Erialy (y + cosz)(3y2 + 6),
8f 8810 .

— — 2 3 4
9y ~ 03, = 2(3y2 + 6) + 6y(xy +sinx + 4) ,

which can be “simplified” further if desired. Applied to the example code
list (4), the reverse form yields

Os10 _ 4 Os10 _

8810 o 886 o

6510 8810 8810 886

B3y D5 Bsg 0 0D
6810 8810 689 8810 8810 885

Dss  Oso Dss 0V Bey  Bss 05y 0D
8810 8810 888 8810 8810 885

D7 Oss Dsr 0P Bey  Bss 05y O

with the final results
6510 - 8810 657 8810 653
882 n 837 682 883 882
6510 o 8810 854 6810 853 -
851 - 854 8781 853 5781 = Sos1+ Sos2,
the same values as given by (14). Even in this simple case, fewer operations
are required by this computation than forward evaluation of the algorithm (4)
using the pairs S; = (s;, Vs;). Programming of the reverse mode is more
elaborate than the forward mode, however, operator overloading can be done
in reverse mode as in ADOL-C [288].

= (386)(282) + 8981,
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3.3 A Comparison

Both forward and reverse modes have their places in the repertoire of compu-
tational differentiation, and are sometimes used in combination. The efficiency
of the reverse mode is sometimes offset by the necessity to store results of a
long algorithm, see [429,550], for example. A theoretical comparison has been
given by Rall [174, pp. 233-240] based on the matrix equivalent of the compu-
tational graph. If the algorithm (1) is differentiable, then its Jacobian matrix
J = (0s;/0sj) is of the form J = I — K, where K is lower-triangular and
sparse. The eigenvalues of J are all equal to 1, and K¥*! = 0 for some index
v. The row vector

R=[0---0 Vs,]

is a left eigenvector of J, and the columns of the n x d matrix C' with
rows Vs, Vsa,..., Vs, are right eigenvectors of J. The reverse and forward
modes consist of calculating these eigenvectors by the power method. The
reverse mode starts with By = [0 --- 0 1] and proceeds by Ry = Rp_1J
and terminates with R, = R. Similarly, the forward mode starts with
Co = [VsT -+ Vsl 0 - 0]7, proceeds by C = JCj_1, and terminates
with €, = C. The difference in computational effort is immediately evident.

4 Present Tasks and Future Prospects

The future of AD depends on what is done now as well as what transpired
in the past. Current tasks can be divided into four general categories: Tech-
niques, education, communication, and applications. Some brief remarks will
be devoted to each of these topics.

4.1 Techniques

The basic techniques of AD are well understood, but little attention has been
devoted to accuracy, the assumption being that derivatives are obtained about
as accurately as function values. The emphasis has been on speed and con-
servation of storage. Increasing speed by reducing the number of operations
required is of course helpful, since the number of roundings is also decreased.
Advantage can also be taken of the fact that ab + ¢ is often computed with
a single rounding. Even more significant would be the provision of a long
accumulator to evaluate the dot product

d
u-v = E U;V;
=1

of d-vectors u and v with a single rounding as implemented originally in
Pascal-SC [66]. This enables many algebraic operations including solution of
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linear systems to be carried out with high accuracy. For example, the com-
ponents of the gradient V(u - v) of a dot product can be expressed as dot
products and thus computed with a single rounding. Also, if z = L™y is the
solution of a nonsingular system of equations Lx = y, then its gradient Vz is
given by the generalization of the division formula

Voe=L'Vy—- LY VL)L 'y=L"Y(Vy— (VL)z),

(see [449]), where VL is a d X d matrix of gradients and Vy is a d-vector of
gradients. Of course, it is unnecessary to invert L, the system of equations
LVz =Vy — (VL)z can be solved by the same method as for Lz = y.

4.2 Education

It was discouraging throughout the 1970’s that the work done on AD by
Moore, Wengert, and the then state of the art programs written by the MRC
programming staff were ignored and even disparaged. Presentations at confer-
ences were met with disinterest or disbelief. One reason advanced for this was
the wide-spread conviction that if a function was represented by a formula,
then a formula for its derivative was necessary before its derivative could be
evaluated. Furthermore, the differentiation of a function defined only by an al-
gorithm and not by a formula seemed beyond comprehension. A few simple ex-
amples could be incorporated into elementary calculus courses to combat these
fallacies. As mentioned above, the standard method taught for differentiation
of functions defined by formulas essentially proceeds in reverse mode. The for-
ward mode uses the way the final result f(x) is computed from the given value
of z and shows that f/(z) can be evaluated in the same step-by-step fashion.
Furthermore, given the definitions (2), the values © = s1, s9,...,s, = f(z) of
the steps in the evaluation of f(z) can be used in the reverse mode to obtain
the same value of f’(z). Then, for example, Newton’s method can be intro-
duced as an application of use of derivative values without the necessity to
obtain formulas for derivatives. All of this can be done once the basic formu-
las for differentiation of arithmetic operations and some elementary functions
have been taught.

It is easy to prepare a teaching “module” for AD on an elementary level.
The problem is to have it adopted as part of an increasingly crowded curricu-
lum in beginning calculus. This means that teachers and writers of textbooks
on calculus have to first grasp the idea and then realize it is significant. Thus,
practitioners of AD will have to reach out to educators in a meaningful way.
Otherwise, there will continue to be a refractory “formulas only” community
in the computational sciences who could well benefit from AD.

Opportunities to introduce AD occur in other courses, such as differential
equations, optimization, and numerical analysis. Reverse mode differentiation
is a suitable topic for programming courses, perhaps on the intermediate level.
An informal survey of numerical analysis and other textbooks reveals that
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most recommend against the use of derivatives, in particular regarding New-
ton’s method and Taylor series solution of differential equations. The reason
advanced is the complexity of obtaining the “required” formulas for deriv-
atives and Taylor coefficients by hand. An exception is the recent textbook
on numerical analysis by A. Neumaier [411], which begins with a discussion
of function evaluation and automatic differentiation. A definite opportunity
exists to introduce AD at various levels in the curricula of various fields,
including business, social and biological sciences as well as the traditional
physical sciences and engineering fields. This is particularly true now that
most instruction is backed up by software pertinent to the subject.

4.3 Communication and Applications

An additional reason for the slow acceptance of AD in its early years was the
lack of publication of results after the papers of Wengert and Wilkins [530,555].
For example, the more advanced programs written at MRC were described
only in technical reports and presented at a few conferences sponsored by
the U. S. Army, but not widely disseminated. The attitude of journal edi-
tors at the time seemed to be that AD was either “a trivial commonplace of
classical analysis,” or the subject was completely subsumed in the paper by
Wengert [530]. In addition, the emphasis on interval arithmetic and assertions
of validity in the MRC approach had little impact on the general computing
community, which was more interested in speed than guarantees of accuracy.
Furthermore, the MRC programs were tied rather closely to the computer
available at the time, standards for computer and interval arithmetic had
not yet been developed. The uses of AD for Taylor series in Moore’s 1966
book [378] and Newton’s method in Rall’s 1969 book [449] were widely ig-
nored.

A striking example of lack of communication was shown in the survey
paper by Barton, Willers, and Zahar, published in 1971 [461, pp. 369-390].
This valuable and interesting work on Taylor series methods traced the use of
recurrence relations as employed by Moore back to at least 1932 and included
the statement, “... adequate software in the form of automatic programs for
the method has been nonexistent.” The authors and the editor of [461] were
obviously unaware that Moore had such software running about ten years
earlier [375], and his program was modified by Judy Braun at MRC in 1968
to accept expressions as input, which made it even more automatic.

Another impediment to the ready acceptance of Moore’s interval method
for differential equations was the “wrapping effect” [377]. This refers to un-
reasonably rapid increase in the width of the interval [a(t), b(t)] to make these
bounds for the solution useless. Later work by Lohner [343] and in particular
the Taylor model concept of Berz and Makino [266,346,347] have ameliorated
this situation to a great extent.

Fortunately, publication of the books [225,450], and the conference pro-
ceedings [42,136,227], and the present volume have brought AD to a much
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wider audience and increased its use worldwide. The field received an impor-
tant boost when the precompiler ADIFOR 2.0 by C. Bischof and A. Carle
was awarded the J. H. Wilkinson prize for mathematical software in 1995 (see
SIAM News, Vol. 28, No. 7, August/September 1995). The increasing num-
ber of publications in the literature of various fields of applications is likewise
very important, since these bring AD to the attention of potential users in-
stead of only practitioners. These books and articles as cited in their extensive
bibliographies show a large and increasing sphere of applications of AD.

5 Beyond AD

Perhaps the bright future for AD predicted 40 years ago by Wilkins has arrived
or is on the near horizon. There is general acceptance of AD by the optimiza-
tion and interval computation communities. With more effort directed toward
education, the use of AD will probably become routine. Perhaps future gener-
ations of compilers will offer differentiation as an option, see [400]. Directions
for further study are to use the lessons learned from AD to develop other al-
gorithm transformations. A step in this direction by T. Reps and L. Rall [459]
is the algorithmic evaluation of divided differences

fa+h) - fa)

(15)
Direct evaluation of (15) in f.p. arithmetic is problematical, whereas algo-
rithmic evaluation is stable over a wide range of values, and approaches the
value of the AD derivative f/'(z) as h — 0. In fact, for h = 0, the divided
difference formulas reduce to the corresponding formulas for derivatives. In
the use of divided differences to approximate derivatives, (15) is inaccurate
due to truncation error for h large, and due to roundoff error for i small. On
the other hand, the use of differentials (6) obtained by AD to approximate
differences (5) has the same problems. Thus, it is useful to have a method to
compute differences which does not suffer loss of significant digits by cance-
lation to the extent encountered in direct evaluation.

Other goals for algorithm transformation are suggested by the “ultra-
arithmetic” proposed by W. Miranker and others [295]. Algorithms for func-
tions represented by Fourier-type series can be used to obtain the coefficients
of the series expansions, much like what has already been done for Taylor
series. In other words, the transformation of an FNA can be accomplished
once the appropriate transformations of arithmetic operations and intrinsic
functions involved are known. As initially realized by Wengert [530], this is
indeed the key to the method.
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Summary. Backwards calculation of derivatives — sometimes called the reverse
mode, the full adjoint method, or backpropagation — has been developed and applied
in many fields. This paper reviews several strands of history, advanced capabilities
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1 Introduction and Summary

Backwards differentiation or “the reverse accumulation of derivatives” has
been used in many different fields, under different names, for different pur-
poses. This paper will review that part of the history and concepts which I
experienced directly. More importantly, it will describe how reverse differen-
tiation could have more impact across a much wider range of applications.
Backwards differentiation has been used in four main ways known to me:

1. In automatic differentiation (AD), a field well covered by the rest of this
book. In AD, reverse differentiation is usually called the “reverse method”
or the “adjoint method.” However, the term “adjoint method” has actu-
ally been used to describe two different generations of methods. Only the
newer generation, which Griewank has called “the true adjoint method,”
captures the full power of the method.

2. In neural networks, where it is normally called “backpropagation” [532,
541,544]. Surveys have shown that backpropagation is used in a majority

* The views herein are those of the author, not the official views of NSF. However
— as work done by a government employee on government time, it is in the open
government domain.
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of the real-world applications of artificial neural networks (ANNs). This
is the stream of work that I know best, and may even claim to have
originated.

3. In hand-coded “adjoint” or “dual” subroutines developed for specific mod-
els and applications, e.g., [534,535,539,540].

4. In circuit design. Because the calculations of the reverse method are all
local, it is possible to insert circuits onto a chip which calculate deriva-
tives backwards physically on the same chip which calculates the quan-
tit(ies) being differentiated. Professor Robert Newcomb at the University
of Maryland, College Park, is one of the people who has implemented
such “adjoint circuits.” Some of us believe that local calculations of this
kind must exist in the brain, because the computational capabilities of
the brain require some use of derivatives and because mechanisms have
been found in the brain which fit this idea.

These four strands of research could benefit greatly from greater collab-
oration. For example — the AD community may well have the deepest un-
derstanding of how to actually calculate derivatives and to build robust dual
subroutines, but the neural network community has worked hard to find many
ways of using backpropagation in a wide variety of applications.

The gap between the AD community and the neural network community
reminds me of a split I once saw between some people making aircraft engines
and people making aircraft bodies. When the engine people work on their
own, without integrating their work with the airframes, they will find only
limited markets for their product. The same goes for airframe people working
alone. Only when the engine and the airframe are combined together, into an
integrated product, can we obtain a real airplane — a product of great power
and general interest.

In the same way, research from the AD stream and from the neural network
stream could be combined together to yield a new kind of modular, integrated
software package which would integrate commands to develop dual subroutines
together with new more general-purpose systems or structures making use of
these dual subroutines.

At the AD2004 conference, some people asked why AD is not used more
in areas like economics or control engineering, where fast closed-form deriva-
tives are widely needed. One reason is that the proven and powerful tools in
AD today mainly focus on differentiating C or Fortran programs, but good
economists only rarely write their models in C or in Fortran. They generally
use packages such as Troll or TSP or SPSS or SAS, which make it easy to
perform statistical analysis on their models. Engineering students tend to use
MatLab. Many engineers are willing to try out very complex designs requiring
fast derivatives, when using neural networks but not when using other kinds
of nonlinear models, simply because backpropagation for neural networks is
available “off the shelf” with no work required on their part. A more general
kind of integrated software system, allowing a wide variety of user-specified
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modeling modules, and compiling dual subroutines for each module type and
collections of modules, could overcome these barriers. It would not be neces-
sary to work hard to wring out the last 20 percent reduction in run time, or
even to cope with strange kinds of spaghetti code written by users; rather, it
would be enough to provide this service for users who are willing to live with
natural and easy requirements to use structured code in specifying economet-
ric or engineering models, etc. Various types of neural networks and elastic
fuzzy logic [542] should be available as choices, along with user-specified mod-
els. Methods for combining lower-level modules into larger systems should be
part of the general-purpose software package.

The remainder of this paper will expand these points and — more im-
portantly — provide references to technical details. Section 2 will discuss the
motivation and early stages of my own strand of the history. Section 3 will
summarize backwards differentiation capabilities we have developed and used.

For the AD community, the most important benefit of this paper may be
the new ways of using the derivatives in various applications. However, for
reasons of space, I will weave the discussion of those applications into Sects. 2
and 3 and provide citations and URLs to more information.

This paper does not represent the official views of NSF. However, many
parts of NSF would be happy to receive more proposals to strengthen this
important emerging area of research. For example, consider the programs
listed at www.eng.nsf.gov/ecs. Success rates all across the relevant parts of
NSF were cut to about 10% in fiscal year 2004, but more proposals in this
area would still make it possible to fund more work in it.

2 Motivations and Early History

My personal interest in backwards differentiation started in the 1960s, as
an outcome of my desire to better understand how intelligence works in the
human brain.

This goal still remains with me today. NSF has encouraged me to explain
more clearly the same goals which motivated me in the 1960s! Even though I
am in the Engineering Directorate of NSF, I ask my panelists to evaluate each
proposal I receive in the program for Controls, Networks, and Computational
Intelligence (CNCI) by considering (among other things) how much it would
contribute to our ability to someday understand and replicate the kind of
intelligence we see in the higher levels of the brains of all mammals.

More precisely, I ask my panelists to treat the ranking of proposals as
a kind of strategic investment decision. I urge them to be as tough and as
complete about focusing on the bottom line as any industry investor would
be, except that the bottom line, the objective function, is not dollars. The
bottom line is the sum of the potential benefits to fundamental scientific
understanding, plus the potential broader benefits to humanity. The emphasis
is on potential — the risk of losing something really big if we do not fund a
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particular proposal. The questions “What is mind? What is intelligence? How
can we replicate and understand it as a whole system?” are at the top of my
list of what to look for in CNCI. But we are also looking for a wide spectrum
of technology applications of strategic importance to the future of humanity.
See my chapter in [479] for more details and examples.

Before we can reverse-engineer brain-like intelligence as a kind of com-
puting system, we need to have some idea of what it is trying to compute.
Figure 1 illustrates what that is:

Reinforcement

<>

é 3 Actions
Sensory Input - >

Fig. 1. The brain as a whole system is an intelligent controller.

Figure 1 reminds us of simple, trivial things that we all knew years ago, but
sometimes it pays to think about simple things in order to make sure that
we understand all of their implications. To begin with, Fig. 1 reminds us
that the entire output of the brain is a set of nerve impulses that control
actions, sometimes called “squeezing and squirting” by neuroscientists. The
entire brain is an information processing or computing device. The purpose
of any computing device is to compute its outputs. Thus the function of the
brain as a whole system is to learn to compute the actions which best serve
the interests of the organism over time. The standard neuroanatomy textbook
by Nauta [404] stresses that we cannot really say which parts of the brain are
involved in computing actions, since all parts of the brain feed into that
computation. The brain has many interesting capabilities for memory and
pattern recognition, but these are all subsystems or even emergent dynamics
within the larger system. They are all subservient to the goal of the overall
system — the goal of computing effective actions, ever more effective as the
organism learns. Thus the design of the brain as a whole, as a computational
system, is within the scope of what we call “intelligent control” in engineering.
When we ask how the brain works, as a functioning engineering system, we are
asking how a system made up of neurons is capable of performing learning-
based intelligent control. This is the species of mathematics that we have been
working to develop — along with the subsystems and tools that we need to
make it work as an integrated, general-purpose system.

Many people read these words, look at Fig. 1, and immediately worry
that this approach may be a challenge to their religion. Am I claiming that
all human consciousness is nothing but a collection of neurons working like
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a conventional computer? Am I assuming that there is nothing more to the
human mind — no “soul?” In fact, this approach does not require that one
agree or disagree with such statements. We need only agree that mammal
brains actually do exist, and do have interesting and important computational
capabilities. People working in this area have a great diversity of views on the
issue of “consciousness.” Because we do not need to agree on that complex
issue, in order to advance this mathematics, I will not say more about my own
opinions here. Those who are interested in those opinions may look at [532,
548,549], and at the more detailed technical papers which they cite.

Self—Configuring Hardware Modules
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A A 4 h. 4
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Fig. 2. Cyberinfrastructure: the entire web from sensors to decisions/action/control
designed to self-heal, adapt and learn to maximize overall system performance.

Figure 2 depicts another important goal which has emerged in research at
NSF and at other agencies such as the Defense Advanced Projects Agency
(DARPA) and the Department of Homeland Security (DHS) Critical In-
frastructure Protection. More and more, people are interested in the question
of how to design a new kind of “cyberinfrastructure” which has the ability
to integrate the entire web of information flows from sensors to actuators,
in a vast distributed web of computations, which is capable over time to
learn to optimize the performance of the actual physical infrastructure which
the cyberinfrastructure controls. DARPA has used the expression “end-to-end
learning” to describe this. Yet this is precisely the same design task we have
been addressing all along, motivated by Fig. 1! Perhaps we need to replace
the word “reinforcement” by the phrase “current performance evaluation” or
the like, but the actual mathematical task is the same.
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Many of the specific computing applications that we might be interested
in working on can best be seen as part of a larger computational task, such as
the tasks depicted in Figs. 1 or 2. These tasks can provide a kind of integrating
framework for a general purpose software package — or even for a hybrid system
composed of hardware and software together. See www.eng.nsf.gov/ecs/ for
a link to recent NSF discussions of cyberinfrastructure.

Figure 3 summarizes the origins of backpropagation and of Artificial
Neural Networks (ANNs). The figure is simplified, but even so, one could
write an entire book to explain fully what is here.

Specifi 1 I ) McCulloch
pecific ~ General Problem Solvers Pitts Neuron
Problem
Solvers i . .
Logical Reinforcement Widrow LMS
Reasoning Learning & Perceptrons

Systems
¢ Minsky

Expert Systems

b
| > Backprop’74
Computational
Neuro, Hebb ———— Psychologists, PDP Books
Learning Folks

IEEE ICNN 1987: Birth of a "Unified" Discipline

Fig. 3. Where did ANNs and backpropagation come from?

Within the ANN field proper, it is generally well-known that backpropa-
gation was first spelled out explicitly (and implemented) in my 1974 Harvard
Ph.D. thesis [532]. (For example, the IEEE Neural Network Society cited this
in granting me their Pioneer Award in 1994.)

Many people assume that I developed backpropagation as an answer to
Marvin Minsky’s classic book Perceptrons [370]. In that book, Minsky ad-
dressed the challenge of how to train a specific type of ANN — the Multilayer
Perceptron (MLP) — to perform a task which we now call Supervised Learning,
illustrated in Fig. 4.

In supervised learning, we try to learn the nonlinear mapping from an
input vector X to an output vector Y, when given examples X (t), Y (t),t =1
to T of the relationship. There are many varieties of supervised learning, and
it remains a large and complex area of ANN research to this day, with links
to statistics, machine learning, data mining, and so on.
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Fig. 4. What a Supervised Learning System (SLS) does.

Minsky’s book was best known for arguing that 1) we need to use an
MLP with a hidden layer even to represent simple nonlinear functions such
as the XOR mapping; and 2) no one on earth had found a viable way to train
MLPs with hidden layers good enough even to learn such simple functions.
Minsky’s book convinced most of the world that neural networks were a dis-
credited dead-end — the worst kind of heresy. Widrow has stressed that this
pessimism, which squashed the early “perceptron” school of AI, should not
really be blamed on Minsky. Minsky was merely summarizing the experience
of hundreds of sincere researchers who had tried to find good ways to train
MLPs, to no avail. There had been islands of hope, such as the algorithm
which Rosenblatt called “backpropagation” (not at all the same as what we
now call backpropagation!), and Amari’s brief suggestion that we might con-
sider least squares as a way to train neural networks (without a discussion of
how to get the derivatives, and with a warning that he did not expect much
from the approach). But the pessimism at that time became terminal.

In the early 1970s, I visited Minsky at MIT and proposed a joint paper
showing that MLPs can overcome the earlier problems if 1) the neuron model is
slightly modified [534] to be differentiable; and 2) the training is done in a way
that uses the reverse method, which we now call backpropagation [532,544]
in the ANN field. But Minsky was not interested [8]. In fact, no one at MIT
or Harvard or any place else I could find was interested at the time.

There were people at Harvard and MIT then who had used, in control
theory, a method very similar to the first-generation adjoint method, where
calculations are carried out backwards from time T to T'— 1 to T — 2 and
so on, but where derivative calculations at any time are based on classical
forwards methods. (In [532], T discussed first-generation work by Jacobsen
and Mayne [282], by Bryson and Ho [75], and by Kashyap, which was par-
ticularly relevant to my larger goals.) Some later debunkers have argued that
backpropagation was essentially a trivial and obvious extension of that ear-
lier work. But in fact, some of the people doing that work actually controlled
computer resources at Harvard and MIT at that time, and would not allow
those resources to be used to test the ability of true backpropagation to train
ANNSs for supervised learning; they did believe there was enough evidence in
1971 that true backpropagation could possibly work.
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In actuality, the challenge of supervised learning was not what really
brought me to develop backpropagation. That was a later development. My
initial goal was to develop a kind of universal neural network learning device
to perform a kind of “Reinforcement Learning” (RL) illustrated in Fig. 5.

External
<4—— Environment D E—
or "Plant"

"utility" or "reward"
or "reinforcement”

1803

\J X(t) RL S E(t)

sensor inputs actions

Fig. 5. A Concept of Reinforcement Learning. The environment and the RLS are
both assumed to have memory at time ¢ of the previous time ¢t — 1. The goal of the
RLS is to learn how to maximize the sum of expected U ((U)) over all future time.

Ironically, my efforts here were inspired in part by an earlier paper of
Minsky [172], where he proposed reinforcement learning as a pathway to true
general-purpose Al. Early efforts to build general-purpose RL systems were no
more successful than early efforts to train MLPs for supervised learning, but in
1968 [531] I proposed what was then a new approach to reinforcement learning.
Because the goal of RL is to maximize the sum of (U) over future time, I
proposed that we build systems explicitly designed to learn an approximation
to dynamic programming, the only exact and efficient method to solve such
an optimization problem in the general case. The key concepts of classical
dynamic programming are shown in Fig. 6.

In classical dynamic programming, the user supplies the utility function
to be maximized (this time as a function of the state z(¢)!), and a stochastic
model of the environment used to compute the expectation values indicated by
angle brackets in the equation. The mathematician then finds the function J
which solves the equation shown in Fig. 6, a form of the Bellman equation. The
key theorem is that (under the right conditions) any system which chooses
u(t) to solve the simple, static maximization problem within that equation
will automatically provide the optimal strategy over time to solve the difficult
problem in optimization over infinite time. See [479,546,553] for more complete
discussions, including discussion of key concepts and notation in Figs. 6 and 7.

My key idea was to use a universal function approximator — like a neural
network — to approzimate the function J or something very similar to it, in



Backwards Differentiation in AD and Neural Nets 23

Model of reality ﬂ

Dynamic Programming

7 (1)) = M UG () + T (x4 1)
o) 1+r

Second , or strategic ufility function J

Fig. 6. The key concepts in classical dynamic programming.

order to overcome the curse of dimensionality which keeps classical dynamic
programming from being useful on large problems.

In 1968, I proposed that we somehow imitate Freud’s concept of a back-
wards flow of credit assignment, flowing back from neuron to neuron, to im-
plement this idea. I did not provide a practical way to do this, but in my
thesis proposal to Harvard in 1972, I proposed the following design, including
the flow chart (with less modern labels) and the specific equations for how to
use the reverse method to calculate the required derivatives indicated by the
dashed lines.

J(t+1)
T
R 7}
R(t+1)
X(t) Model
E(t) A

Action

Fig. 7. RLS design proposed to Harvard in my 1972 thesis proposal.

I explained the reverse calculations using a combination of intuition and
examples and the ordinary chain rule, though it was almost exactly a trans-
lation into mathematics of things that Freud had previously proposed in his
theory of psychodynamics! Because of my difficulties in finding support for this
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kind of work, I printed up many copies of this thesis proposal and distributed
them very widely.

In Fig. 7, all three boxes were assumed to be filled in with ANNs — with
ordered computational systems containing parameters or weights that would
be adapted to approximate the behavior called for by the Bellman equation.
For example, to make the actions u(t) actually perform the maximization
which appears in the Bellman equation, we needed to know the derivatives
of J with respect to every action variable (actually, every parameter in the
action network). The derivatives would provide a kind of specific feedback
to each parameter, to signal whether the parameter should be increased or
decreased. For this reason, I called the reverse method “dynamic feedback”
in [532]. The reverse method was needed to compute all the derivatives of J
with respect to all of the parameters of the action network in just one sweep
through the system. At that time, I focused on the case where the utility
function U depends only on the state z, and not on the current actions w. I
discussed how the reverse calculations could be implemented in a local way,
in a distributed system of computing hardware like the brain.

Harvard responded as follows to this proposal and to later discussions.
First, they would not allow ANNs as such to be a major part of the thesis,
since I had not found anyone willing to act as a mentor for that part. (I put
a few words into Chapter 5 to specify essential ideas, but no more.) Second,
they said that backwards differentiation was important enough by itself for a
Ph.D. thesis, and that I should postpone the reinforcement learning concepts
for research after the Ph.D. Third, they had some skepticism about reverse
differentiation itself, and they wanted a really solid, clear, rigorous proof of
its validity in the general case. Fourth, they agreed that this would be enough
to qualify for a Ph.D. if, in addition, I could show that the use of the re-
verse method would allow me to use more sophisticated time-series prediction
methods which, in turn, would lead to the first successful implementation of
Karl Deutsch’s model of nationalism and social communications [146]. All of
this happened [532], and is a natural lead-in to the next section.

The computer work in [532] was funded by the Harvard-MIT Cambridge
Project, funded by DARPA. The specific multivariate statistical tool described
in [532], made possible by backpropagation, was included as a general com-
mand in the MIT version of the TSP package in 1973-74 and, of course,
described in the MIT documentation. The TSP system also included a kind
of small compiler to convert user-specified formulas into Polish form for use
in nonlinear regression. By mid-1974 we had almost finished coding a new
set of commands (almost exactly paralleling [532]) which: (1) would allow a
TSP user to specify a “model” as a set of user-specified formulas; (2) would
consolidate all the Polish forms into a single compact structure; (3) would
provide the obvious kinds of capabilities for testing a whole model, similar to
capabilities in Troll; and (4) would automatically create a reverse code for use
in prediction and optimization over time. The complete system in Fortran was
almost ready for testing in mid-1974, but there was a complete reorganization



Backwards Differentiation in AD and Neural Nets 25

of the Cambridge Project that summer, reflecting new inputs from DOD and
important improvements in coding standards based on PL/1. As I result, I
graduated and moved on before the code could be moved into the new system.

3 Types of Differentiation Capability We Have
Developed

3.1 Initial (1974) Version of the Reverse Method

My thesis showed how to calculate all the derivatives of a single computed
quantity Y with respect to all of the inputs and parameters which fed into
that computation in just one sweep backwards (see Fig. 8).

Y, a scalar result

T1
. SYSTEM
. oty

8mK
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Fig. 8. Concept of the reverse method.

The first version of the reverse method required that the computational
system be what I called an “ordered system.” My definition of an “ordered
system” in Chapter 2 of [532] was almost identical to the definition of an
explicit computational algorithm given by Louis Rall in his chapter in this
book [454]. At each time when we compute the scalar result Y, we need
to be able to specify a sequence of intermediate computations f; through
fn which lead up to Y = fny1, where each computation is specified as a
differentiable (and hopefully simple) function of what preceded it. In practice,
these computations may form a kind of lattice of computations performed in
parallel. However, that is just a useful and important special case of the general
mathematics.

In order to specify and prove the validity of the reverse method, in the
general case, I needed to define the concept of an ordered derivative. As shown
in Fig. 8, the reverse method calculates the entire set of ordered derivatives
of Y with respect to the set of inputs x; through z,,.
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Many people at AD2004 asked how the reverse method could be better
taught in schools. I would propose that the very first course in calculus that
teaches partial derivatives should teach that there are at least three different
types of partial derivative. The three different types make different assump-
tions, and need to be treated as distinct cases with distinct rules, to avoid
confusion in the practical use of partial derivatives. I have seen enough con-
fusion about partial derivatives in the study of complex systems, all across
social sciences and basic science and engineering, that I believe it would save
a lot of time in the end to be clear about these distinctions from the first.

The three basic concepts are: 1) the algebraic partial derivative, whose
value (as an algebraic expression) depends on the explicit algebraic expres-
sion for the quantity being differentiated; 2) the field or functional partial
derivative, whose value is well-defined only for a specific set of coordinate
variables or input vector; and 3) the ordered derivative, which represents the
total change in a later quantity which results when the value of an earlier
quantity is changed, in an ordered system. Ordered derivatives occur in prac-
tice across all fields of science, but a confusing multitude of ad hoc terms
and partial methods have been developed to deal with them. Again, it would
save time to deal with the concept in a more unified and general way in basic

calculus courses.
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Fig. 9. The chain rule for ordered derivatives.

Figure 9 illustrates the relation between direct or algebraic partial deriv-
atives and ordered derivatives, and gives the chain rule for ordered deriva-
tives. In my view, the chain rule for ordered derivatives should be taught in
second-year calculus classes. The proof of the chain rule in Chapter 2 of [532]
(reprinted in [540]) is the proof of the validity of the reverse method. The
reverse method is the use of this chain rule for the case of ordered systems.
Notice that the direct or algebraic derivative of z3 with respect to z; is only
4, because that is the direct impact along the outer arrow. However, the total
or ordered derivative is 7.
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For a system with n inputs as in Fig. 8, the reverse method allows one
to compute all the required derivatives exactly in one pass, instead of the
n passes needed with older methods. Thus it reduces costs by a factor of
n. The person funding my work in the late 1970s argued that reductions in
computational cost were growing less and less important, as computer costs
fell. I replied that greater computing capacity is properly leading us to build
ever larger models and modeling systems and control systems; thus as n grows
larger and larger, the cost reduction becomes more and more important. For
systems as large as the brain, the cost reduction is indispensable.

3.2 Extensions of the Reverse Method (1974-86)

During 1974-1986, I developed three kinds of extension to the reverse method:
1) extensions to calculate derivatives through “recurrent” or “implicit” sys-
tems; 2) extensions to calculate selected higher-order derivatives or even deriv-
atives of eigenvalues or eigenvectors; and 3) extensions to manage block struc-
tured or modular computer systems. I used and published the method in sev-
eral specialized areas — but interest became much broader after a detailed 1980
DOE/EIA Validation Report summarizing their capabilities and a condensed
summary [534], which we distributed very widely.

Recurrent or Implicit Systems

The neural network community talks a lot about “feedforward networks,”
which sound identical at first to “ordered systems.” A feedforward network
would contain N elementary processing elements or “neurons,” like the func-
tions fi above. At each time, the network would take n inputs (as in Fig. 8)
and work forward step by step to compute its outputs. There may be more
than one output, but still it is an ordered system. Neural network people often
picture such a network as a kind of computational graph made up of circles
and arrows (for example, see [534] or www.nd.com). Each circle represents the
calculation of an intermediate variable, and the arrows flowing into any circle
show us which earlier results are directly used in that calculation.

A “recurrent network,” in neural network language, is a network which
cannot be ordered, because the graph contains arrows “pointing backwards”
(or looping back to the same level they start in.) The idea of recurrent or
recursive neural networks was known back in Minsky’s time [370]. The com-
monest form of recurrence is a loop from neuron number k back to itself.

The literature on recurrent networks has become very confused and of-
ten inaccurate, in part because there are different interpretations of what it
means when people insert a backwards arrow into the computational graph.
There are three common versions of what a backwards loop might mean: (1)
a time-lagged flow of information — for example, when the calculation of neu-
ron k at time ¢t depends on the previous output at time ¢ — 1 of the same
neuron; (2) an instantaneous flow of information, such that the network must
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be interpreted as an implicit system, as a system of nonlinear simultaneous
equations such that the output of the system is defined as the result of solving
those equations; or (3) a flow of information in continuous time, governed by
ordinary differential equations (ODE).

I have defined a Time-Lagged Recurrent Network (TLRN) as a feedfor-
ward system augmented by the first kind of recurrence. I have defined a Si-
multaneous Recurrent Network (SRN) as a feedforward system augmented by
the second kind of recurrence. The most general case, for systems based on
discrete time, is a hybrid TLRN/SRN, where both kinds of recurrence are
present. I have worked at times with the ODE versions [539], but this usu-
ally causes more trouble than it is worth (except in certain stability proofs in
control [546]). The current lack of reliable software to handle TLRN/SRN hy-
brids effectively is a major barrier to progress in making better use of ANNS, in
my view. Time-lagged recurrence and simultaneous recurrence each provide
fundamentally different kinds of modeling or computational capability. For
maximum (brain-like) overall capability, it is essential to be able to combine
these two capabilities without blurring the distinction between them.

TLRNs are still ordered systems, if one considers the entire web of cal-
culations across time. Later, I defined the term “backpropagation through
time” (BPTT) [541] to refer to the use of backpropagation across an ordered
space-time system. Of course, the cost of a complete and exact backwards
sweep to get all the derivatives is still of the same order as the cost of a for-
wards sweep. BPTT was implemented in [532], and numerous examples were
given of ways to use it. TLRNs trained using BPTT, along with sophisticated
ways of using the derivatives, are the core of some of the most powerful ap-
plications of ANNs today. For example, the work by Feldkamp, Prokhorov,
and others at Ford Research contains many examples of the effective use of
TLRNs.

True implicit systems are a more difficult case. Perhaps the easiest way
to think about implicit systems is to use the definition of SRN given in Sect.
3.2.4 of [553], with minor revision. An SRN may be defined as a vector-valued
mapping F:

Y=F(X,W) (1)
defined as the result of applying a “read-out function” g:

Y =gy, X, W) (2)

to the converged value y(f’o) of a vector y, which we update by an iteration
rule
y " = fly™ X W), (3)

where f is a feedforward system, and W is a set of weights or parameters,

together with some procedure for determining the initial iterate y(o). I some-
times call f the “feedforward core” of the SRN.
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In 1980, soon after starting work for the Office of Energy Information
Validation at the Energy Information Administration (EIA) of the Depart-
ment of Energy, I encountered two examples of such implicit systems: (1) an
econometric model of the natural gas industry [539], which included time-
lagged effects but was defined as a simultaneous-equation system, like most
standard econometric models; and (2) the Long-Term Energy Analysis Pack-
age (LEAP) [535], which was a large simultaneous-equation system operat-
ing forwards and backwards through time. I had responsibility for managing
two large contracts which included sensitivity analysis of such models, one at
MIT [31] (for econometric models) and one at Oak Ridge National Laborato-
ries (ORNL) evaluating LEAP.

The ORNL group had studied the best current literature on the first-
generation adjoint sensitivity methods, some of which they forwarded to me.
Extending that approach, they calculated “sensitivity coefficients” (ordered
derivatives) for LEAP, by calculating the Jacobian of f, in effect, and iterating
over the gradient of (3). B

Looking at this work, I realized immediately that I could combine their ap-
proach to addressing the simultaneous equations aspect, together with the use
of the reverse method applied to the feedforward core in order to avoid Jaco-
bian calculations, and together with BPTT to handle the time-lagged effects
in a normal econometric model. I implemented this new unified method as
follows. First, I translated the current EIA model of natural gas markets and
natural gas regulation from FORTRAN into a model in the Troll system. (This
took some time, but was much appreciated by EIA management, because it
made it much easier for them to know precisely what was assumed inside this
model.) Then I hand-coded the dual or adjoint code to go with the model, as
another “model” in Troll, so that I could quickly compute the sensitivity of
any model result to all of the many inputs and parameters of the system. The
results were written up in an EIA report “published” as an energy validation
report, distributed within DOE and ORNL and a few other places, and theo-
retically distributed to the general public. The resulting journal article [539)
was delayed due to the (verified) finding that the predicted residential gas
price could vary by $1 or more, in response to changes of only 0.001 in one
of the elasticity parameters. The group which I managed at ORNL soon after
became a primary source for the second-generation adjoint sensitivity meth-
ods. The person I exchanged papers with the most in this group retired after
making a large amount of money on the stock market using neural network
methods to guide his investments.

The method described in the final section of [539] is very close to the “white
box method for implicit systems” as now used in the AD community. The
presentation of the method in Chapters 3 and 10 of [553] may be somewhat
easier to work with than [539].

SRNs are not widely used yet in ANN technology, even though many
important applications will require them for real success. Part of the problem
is a lack of suitable software and a need for research into how to speed up the
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learning. (Kozma, Ilin, and I have recently had preliminary results cutting
learning time by a factor of ten, compared with [426,551], using the simplest
partial version of some new approaches.)

Another part of the problem is a widespread lack of understanding of what
SRNs can offer, if properly trained.

Most ANN users know that simple MLPs are “universal approximators.”
Andrew Barron of Yale [20] has proven theorems about how many parame-
ters are needed to achieve a given level of approximation accuracy, when
approximating smooth functions. In essence, he has proven that the required
complexity grows exponentially with the number of inputs for linear basis
function approximators (such as lookup tables, Taylor series, or radial basis
function approximators). However, it grows much more slowly for the simple
MLP. Many neural network people conclude: if MLPs are so effective in ap-
proximating any input-output mapping, why bother with the extra complexity
of an SRN?

However, many tasks critical to intelligent systems require that we approx-
imate nonsmooth functions or functions with high computational complexity.
Minsky’s “connectedness” function [370] is one example. Evaluating a position
in a game like Go is another example. The SRN provides a kind of Turing-like
capability [553] that ensures it has the most general kind of representation
ability we need in practice, and we often do need it.

To try to demonstrate this, Pang and I [426, 551] showed how a simple
SRN could learn to solve a kind of “generalized maze navigation” task, where
MLPs and the Simple Recurrent Networks later proposed by psychologists
both failed very badly. In [551] I showed how an SRN trained on six easy mazes
could steadily improve its performance on six hard mazes on which it was
never trained. In [426], we exhaustively discussed the five major approaches
to computing the derivatives needed to train an SRN structure (four applicable
to TLRNs as well). We actually used the “black box” approach in this early
demonstration. The black box approach — treating the iterations of (3) as if
they were time points, and using BPTT — takes more memory than the “white
box” approach, but it was simple and exact, and did not lead into the tricky
pitfalls of the white box method discussed at AD 2004.

In the work of [426,551], we used a special kind of SRN, a “cellular SRN,”
suitable for situations where the inputs come from a kind of two-dimensional
grid with translational symmetry. More recently I have developed and pat-
ented a more general special case of SRN, called an ObjectNet, for situations
where the inputs may come from a more general class of relational networks
(such as the state of electric power grids). ObjectNets can be used to train a
single network to learn from a training set consisting of data from different
power grids with different topologies and different numbers of state variables
—and yet they are still an inherently distributed computational structure, like
the cellular SRN.

One may also ask: how could the brain calculate the derivatives it needs to
train time-lagged recurrences, since it cannot memorize its entire life history as
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one time series, and it does not seem to sweep back through time in the same
way that BPTT does? In [426,553], we describe an approach to approximating
the required derivatives in forwards time, called the “Error Critic.” Also,
when systems need to learn over very long time intervals T, there may be a
close relation between the kinds of multi-scale time representation we need
for intelligent control [545] and the kind we need for memory management or
“checkpointing.” As a simple example, if T' = 2™, we could live with only n
“memory records” in an exact BPTT, by allocating one record to hold T'/2,
one to hold 37'/4 initially but later 7'/4, and so on, in a scheme similar to
binary search. The brain may not be so limited in its memory capacity, but
the organization of its information may lead to some interesting parallels.

Modular Structure, Higher-Order Derivatives and Eigenvalues

Up to now, I discussed how to calculate the ordered first derivatives of a scalar
quantity of interest Y as depicted in Fig. 8, for systems which are ordered
(Sect. 3.1) or recurrent (Sect. 3.2). But what if the system of interest has
more than one output of interest? What if we need higher-order derivatives?
For reasons of space, I cannot present all the extensions I have worked with,
but I can give some examples and citations.

First, consider the example of Fig. 4. A supervised learning system usually
has several outputs Y7 through Y,,, forming a vector Y. How can we apply the
capability shown in Fig. 8 where there is only a single output of interest?

The SLS shown in Fig. 8 may be a neural network or any other system
which may be represented by a vector-valued function F':

Y(t) = F(X(t),W), (4)

where W represents the set {W,} of weights or parameters to be adapted.
There are many ways to adapt such systems. In “vanilla backpropagation” or
in “basic backpropagation” [541,544] in real-time, we adapt the weights W,
to reduce the square error of the prediction of Y () at the current time

B =3 5 (V0 - vit)) )

i=1

For truly brain-like capability, it is very important to modify this ap-
proach by adding penalty terms (e.g., those of Phatak) and by accounting for
the related issues addressed by various authors involving loss functions [448],
robustness [31], empirical risk [518] or dynamic robustness [532,552,553] and
by allowing for a kind of interplay between learning from current experience
and learning from memory as in what I have called syncretism [553], which is
related to Atkeson’s memory-based learning.

In basic backpropagation, the scalar quantity of interest is E(t). The sys-
tem to be differentiated is not the SLS itself but the combination of the SLS
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and (5). Thus we can apply the reverse method directly. As a practical matter,
it is important to write clean modular code here. Modular code becomes ever
more important as we work our way up to more complex applications.

In writing modular code, we would like to use a name for each variable
as close as possible to the label we use in the mathematical papers that de-
scribe the system, but computer languages will not let us use “0TE(t)/0W,,”,
for example, as a variable name. Thus I have used the shorthand notation
“F_W,”, for example, to represent the feedback to the quantity W,, the or-
dered derivative of the current quantity of interest with respect to W,. (In
the AD community, people might use “ad_W,” instead.)

For developing a modular version of basic backpropagation [541], I have
shown how the reverse calculations can be split up into two parts. The first
part, in the main program, calculates:

OYE(t) O0E(t)

— ==Y, -Y;, (6)
avi(t)  avi(t)

FY,;

for i =1 to n. Then a dual subroutine, a dual or adjoint to the SLS, works back
the implied ordered derivatives with respect to all of the inputs or weights.
(To minimize run costs, we may sometimes code two versions or entries to
the dual subroutine, one of which only calculates feedback to the weights, for
cases where that is all we need.) The dual subroutine inputs the entire set of
F_Y variables, but it implements a single reverse calculation aimed at a single
scalar quantity of interest further downstream.

Only about 12 people have fully implemented structures like Fig. 7 so far,
because it requires us to keep track of three main scalar quantities of interest,
the specific error measure used in training the Critic, the error measure used
in training the Model, and the estimate of J itself as used to train the Action
network. People who use off-the-shelf neural network software without really
understanding the reverse method find it difficult to keep track of the com-
plexity. Often I explain the system by discussing how to adapt the three parts
in three separate sections, so that I discuss only one error measure in each
section. Many other explanations, examples, and applications appear in [479].
In my parts of [553], I give the more general case more explicitly, by using
dual subroutines in the specification of algorithms, so that a user can select
any mixture of neural networks, elastic fuzzy logic, or user-specified systems
of equations for any of the components. I have sometimes wondered whether
I should use notation like F'J_W,,, FEJ_W,, and FEX_W,, to explicitly de-
scribe how systems like Fig. 7 require us to consider three quantities of inter-
est at the same time. In 1986 [536], I described some early ideas for how one
might implement capabilities like this as a user-friendly systems of commands
in the SAS system. There are tutorial slides with text which progress from
simple pattern recognition and data mining methods, through to diagnostics
and time-series issues, through to many generations and types of methods for
decision and control [547].
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Chapter 10 of [553] discusses the issues which arise when we try to train
“Models” (as in Fig. 7) which can predict partially observed systems over
time, and chapter 13 discusses a stochastic extension (the “Stochastic En-
coder /Decoder/Predictor”) which may be thought of as a kind of nonlinear
maximum likelihood factor analysis system in the special case where the Pre-
dictor is set to zero. Backwards differentiation is essential to making these
kinds of complex capabilities workable in realistic computing systems or in
realistic chip-level or distributed hardware implementations. Jose Principe at
the University of Florida (www.ece.ufl.edu/facultystaff/principe.html)
also has interesting ideas. Feldkamp and Prokhorov of Ford recently did bench-
mark studies where even simple TLRNs performed state estimation as well as
more expensive “particle filter” methods and better than Extended Kalman
Filters. Still, more work is needed to unify the pieces needed when unobserved
variables are partly continuous and partly discrete.

As a further example, people sometimes use supervised learning to learn
nonlinear relationships in a statistical way from real observed data, but super-
vised learning can also be useful as a way to develop a kind of reduced order
model of a more complex model. For example, one may use it to approzimate
a large model running on a supercomputer by a neural network model which
could fit on the $1-10 neural chip designed and tested by Raoul Tawel of the
Jet Propulsion Laboratory and Mosaix LLC (funded by an NSF SBIR grant
with encouragement from Ford). In such cases, however, you can get better
results by developing an adjoint for the large model as well, so that the train-
ing set includes X (¢), Y (¢), and the Jacobian of Y (¢) with respect to X (t) for
each example t. One can minimize the augmented error function:

B0 =3 (50 -vo) + ZcZ(W o)

i=1

where the input vector X has m components, and the nonnegative weights C;
can be chosen in various ways.

I have called this method “Gradient Assisted Learning” (GAL). To min-
imize this error function, one must in effect calculate its derivatives, which
involve ordered second derivatives. Chapter 10 of [553] discusses how to do
so in some detail. (See also [538].) The easiest general approach is simply to
note that the calculation of E(t) is itself an ordered system, even though some
of its intermediate calculations are motivated by derivative calculation. One
can apply the reverse method directly to that ordered system. Similar issues
arise in implementing a control method which I call Globalized Dual Heuristic
Programming (GDHP), where I discussed (less clearly) how to get the second
derivatives [533,534,537]. GDHP now seems most important as a way to han-
dle decision or control problems where the actions u(t) include both discrete
and continuous choices [479]. See [546] for some discussion of stability theory
and links to control theory.
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Sensitivity analysis and convergence of large models was a major appli-
cation when I was at EIA, calling for many kinds of derivatives for many
uses. See [534] and [535] for examples. For example, combining the reverse
method with the Fadeev formulas for derivatives of eigenvalues and eigenvec-
tors yielded interesting information. All of the methods here can provide im-
portant practical information in global modeling packages, such as one would
use for long-range strategic planning where it is important to know the impact
of current decisions or policies on long-term global outcomes, and to generate
value measures or “shadow prices” to guide optimal decisions by tactical or
distributed agents.
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Summary. We discuss explicit ODEs of the form & = R(t,z), where R is a poly-
nomial or rational function, and the solution z(¢) has a removable singularity. We
are particularly interested in functions built from elementary functions, such as
z(t) = t/sin t. We also consider implicit ODEs of the forms P(¢,z,%#) = 0 and
P(t,z,z,%) = 0.
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1 Introduction

Automatic differentiation (AD) can be used to compute a Taylor polynomial
approximation to a function z(t) of a single variable at a base point ¢y to any
desired degree. AD can handle functions with removable singularities, such
as z(t) = t2/(1 — cos t) at to = 0. The standard convolution algorithm for
computing the expansion of a quotient H = F/G from F = G x H, given
the expansions of ' and GG, must first be preprocessed by determining the
lowest terms ¢ and t" appearing in F' and G, respectively. Then if m > n,
the algorithm, slightly modified, works.

AD also can be used to compute Taylor polynomial approximations to
solutions of the IVP (Initial Value Problem) for a single ODE (Ordinary
Differential Equation) or a system of ODEs of the form

dx
dt
It is known from work of Charney [104], Kerner [304], and Moore [378] that,

by adding more dependent variables if necessary, the vector functions f may
be restricted to polynomials (even polynomials of degrees at most 2).

=f(t, x), =x(to) =xo -

* We are grateful to Alexander Gofen for suggesting this inquiry and for many
helpful discussions and suggestions.
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In this article we explore the question of whether a function with a re-
movable singularity at ty may actually be the solution function of an ODE
with polynomial or rational right side, so its Taylor approximations can be
computed by AD. We also consider the same question for implicit ODEs of
the form

P(t,z,&)=0,

where P is a polynomial. Finally we discuss some explicit higher order ODEs.

2 Notation and Some Polynomial Algebra

All polynomials here have coefficients in the complex field C. The letters T,
X.,Y, ... denote independent indeterminants over the field C. They generate
the polynomial ring

CT,X,Y,..].

This commutative ring has no zero divisors and is a unique factorization do-
main. That is, each non-constant polynomial factors into irreducible factors,
unique up to nonzero constant multiples. (When we refer to the “only” irre-
ducible polynomial with some property, “up to a nonzero constant factor” is
understood.)

The letters z, ¥, ... denote functions of the complex variable t.

Lemma 1. Let z(t) be a non-constant periodic function, and let P(T, X) be
a polynomial such that P(t, z(t)) = 0. Then P(T, X) = 0. That is, P is the
zero polynomial.

Proof. Fix tg. Then P(T, x(tp)) = 0 is a polynomial with infinitely many
zeros: T = to + np, where p is a period of z(t). Hence P(T, x(tp)) = 0 iden-
tically, independent of 5. As x(t) is non-constant, it takes infinitely many
values; hence P(T, X) = 0.

Lemma 2. The same result holds for rational functions R(T, X).

3 Elementary Functions

3.1 Exponential Functions

Theorem 1. The only irreducible polynomial P(T, X,Y’), such that the im-
plicit differential equation
P(t,z,£)=0

has solution
et —1

2(t) = (2(0) = 1)

t
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18
PT, X, Y)=TY -TX+X-1.
The only explicit rational ODE satisfied by x(t) is

te —x+1
; .

In particular, there does not exist a polynomial P(T, X) in T and X alone
such that
&= P(t, x) .

Proof. Set y = 4 and differentiate tox = ef — 1:
r+ty=e =tz+1.

Hence P(T, X,Y) =TY —TX + X — 1 satisfies P(t, x, ©) = 0. Clearly P is
irreducible, being of degree one in Y.

Suppose Q(T, X, Y) is another polynomial such that Q(¢, x, ) = 0. Mul-
tiply @ by a sufficiently high power T* of T, so the result has Y appearing
only in products TY . Divide T*Q by P, thought of as a polynomial in Y with
coefficients in C[T, X|:

T"Q(T, X, Y)=P(T, X, Y) - U(T, X, Y)+ V(T, X) .

Replace T, X, and Y by ¢, z, and &, with result V (¢, ) = 0. This makes x
into an algebraic, rather than transcendental, function, which is impossible.
Consequently, V(T, X) = 0, so P divides T*Q. By unique factorization, P
divides @), proving that P is the only irreducible polynomial with P(t, z, &) =
0.

Another explicit rational ODE for X would imply another irreducible poly-
nomial relation, which we know cannot be the case.

Remark 1. Suppose we wish to solve the implicit IVP
tt—te+2x—1=0, z(0)=1,

but we do not know its solution in advance. Of course it can be solved by
separating variables, but more to the point here is that it can be solved by AD.
Actually, to get started, first differentiate the equation once and substitute
t =0,z =1 to find ©(0). Then repeatedly traverse the parse tree of the
equation for successive terms of the solution’s expansion. This works as usual
for implicit ODEs without singularity.

This is related to Taylor series solutions of DAE (Differential Algebraic
Equations); see Nedialkov and Pryce [406].

Theorem 2. The only irreducible polynomial P(T, X,Y) such that the im-
plicit differential equation
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has solution

18

PT,X,Y)=TY +TX + X* - X .
The only explicit rational ODE satisfied by x(t) is
—tr + 2 — 2
—

In particular, there does not exist a polynomial P(T, X) such that
&= P(t, x).

Proof. With notation y = & as in the previous proof,
(e =Dz =t.
Differentiate, multiply by x, and substitute:
(el =Dy +ez=1, ("—Day+ (-2’ +az*=2 tyt+ter+a®=2x.

An argument similar to that in the previous proof finishes this proof. (Alter-
native proof: apply Theorem 1 to 1/x.)

Remark 2. What was said in Remark 1 applies here too.

3.2 Trigonometric Functions

Lemma 3. If a polynomial P(T, X,Y) satisfies P(t, cos t, sin t) = 0, then
P(T, X,Y) is a multiple of Q = X2 +Y? — 1.

Proof. Divide P by the quadratic Q = Y2 + (X2 — 1) in Y; the remainder is
linear in Y with coefficients polynomials in 7" and X:

PT, X, Y)=QG+ P(T, X)+ (T, X)Y,
where G = G(T, X,Y). Therefore
0 = P(t, cos t, sin t) = Py(t, cos t) + Py (t, cos t)sin ¢ .
Transpose and square:
P2(t, cos t) = PE(t, cos t)sin®t = PZ(t, cos t)(1 — cos?t) .
It follows from Lemma 1 that
P(T, X) = PX(T, X)(1 - X?).

If Py were not 0, then 1— X would divide the left side an even number of times
and the right side an odd number, clearly impossible by unique factorization.
Hence Pp =P, =0, P=0 (mod Q). That is, P is a multiple of Q.
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Theorem 3. There does not exist a rational function R(T, X) such that the
ODE
&= R(t, x)
is satisfied by x(t) = sin t or by x(t) = cos t.
Proof. We use the notation s = sin ¢, ¢ = cos t, and as above, y = &. If

x = sin t, then
c=R(t s),
which is impossible by Lemma 3. A similar argument works for z(t) = cos t.
Theorem 4. The only irreducible polynomial P(T, X, Y) such that
sin ¢

P(t, z(t), ©(t)) =0 for x(t) = , (z(0) =1)

’ P(T,X,Y)=(X+TY)*+T?X* 1.
There does not exist a rational function R(T, X) such that the ODE
& = R(t, x)
is satisfied by
sin ¢

x(t) = ;

Proof. Differentiate s = tx:
c=x+ty, (x+ty)=c=1-5>=1-t%?.

Therefore

P(T, X, Y)=(X+TY)? +T*X? - 1=0
is satisfied by (¢, x, &). To prove P irreducible, write P as a quadratic in Y:

P=T%Y?+ (2T X)Y + (T?X?* + X? - 1).
Were P reducible, a product of two factors linear in T, its discriminant

A= (TX)? -THT*X?+ X% -1)=T%(1 -T?X?)

would be the perfect square of a polynomial, which obviously it is not.

If there were an explicit rational ODE = = R(¢,x), then a polynomial of
the form A(T, X)Y + B(T X) would be divisible by the irreducible P, which
is impossible because P is quadratic in Y.

It remains to prove that if Q(T, X,Y") is any nonzero polynomial such that
Q(t,z(t),z(t)) = 0, then P divides Q. To do so, write @ as a polynomial in
Y with coefficients polynomials in 7" and X, and divide @ by P:

TF"Q = PU 4+ A(T, X)Y + B(T, X),

where k is sufficiently high to eliminate denominators. Then A(t,z)% +
B(t,x) = 0, which we just ruled out. Hence A = B = 0, so T*Q = PU.
By unique factorization, @ divides P.



40 Harley Flanders
We can prove the following theorem in a similar way.

Theorem 5. The only irreducible polynomial P(T, X,Y) such that

t
sin ¢

P(t, z(t), ©(t)) =0 for xz(t) = (z(0) =1)

’ P(T,X,Y)=(X-TY)? - X*(X* -T?).

There does not ezist a rational function R(T, X) such that the ODE
&= R(t, x)

is satisfied by x(t).

The three functions (1 — cos t)/t, (1 — cos t)/(3t?), and 3t?/(1 — cos t)
have removable singularities at 0. We obtain the following theorem by similar
methods as above. The normalizing factor % is inserted because 1 — cos t =
142
L
2

Theorem 6. We have
x(t) ‘ Irreducible P(T, X, Y) such that P(t, x, ) =0

5 (1 —cost)/t (TY + X)? -TX(1-TX)
(1—cos t)/(3t?) | (TY +2X)? + X(T?X —4)
(3t%)/(1—cos t) | (TY —2X)? + X*(T? — 4X).

In each of these cases, there does not exist a rational function R(T, X) such
that x(t) satisfies the explicit differential equation & = R(t, x).

Proof. The final statement follows in each case because the implicit polyno-
mial ODE is irreducible and quadratic in Y.

The functions (tan t)/t and ¢/(tan t) have removable singularities at ¢t = 0,
but unlike the functions in Theorem 6, they satisfy explicit rational ODEs.

Theorem 7. The only irreducible polynomial P(T, X,Y) such that

P(t, z(t), 2(t)) =0 for =x(t) = ta? t

18

P(T,X,Y)=TY -T?°X*+ X -1,
and x(t) satisfies the explicit rational ODE
202 —x+1
—

(t:
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Proof. We have

tan ¢ S S
T = =—, ltz=-,
t ct c

ctr=s.

Differentiate the third of these:

—str + cx + cty = c, —ﬁtx—kz—&—ty:l, 22 +ty=1.
c

Theorem 8. The only irreducible polynomial P(T, X, Y) such that

P(t, x(t), &(t)) =0 for x(t) = tartl t

18
P(T,X,Y)=TY + X? - X +T?,
and x(t) satisfies the explicit rational ODE

. x—t1%— a2
ri=—
t
Proof. We have
t tc
= =—, xs=tc
tan t S

Differentiate:
c c 9 9
ys+axc=c—1ts, y+ax-=-—t, yt+axz=x—-1t".
s s

The rest follows.

3.3 Inverse Trigonometric Functions

We simply list four results:

Theorem 9. We have:
x(t) P(T, X,Y) FEzplicit Rational ODE

41

(arcsin t)/t
t/(arcsin t)

1-TH(X+TY)?> -1 | None
X —-TY)?*(1-T? — X* | None

t/(arctan t)
Proof. One will suffice, say x = (arctan t)/t. We set

s =sin(tx), c¢=cos(tx).

(
(

(arctan t)/t | (X +TY)(1+T?%) —1 i =[1—z(14+3)]/[t(1+ %)
(X —TY)1+T?) — X2 | i =[x(l+12) — 22]/[t(1 + 2)].
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Then
tx = arctan ¢, t=tan(tz), s=tc

and
s$=(z+ty)e, ¢=—(r+ty)s.

Differentiate s = tc:
(x+ty)c=c—tlx+ty)s, x+ty=1—t*(x+ty), (x+ty)1+t3)=1.

This gives us P, and solving for Y gives the explicit rational ODE.

3.4 Hyperbolic Functions

Again, we summarize results in a table.

Theorem 10. We have:
x(t) P(T, X,Y) Ezxplicit Rational ODE

(sinh t)/t (X+TY)?-T°X? -1 None

t/(sinh t) (X —TY)? — X* - X2T? | None

(tanh ¢)/t | X +TY +T2X? — 1 i=(1—x—t2a2)/t
t/(tanh t) TY + X? - X - T? b= (-2 +a+t)/t
(arcsinh )/t | (X +TY)?(1+T%) —1 | None

t/(arcsinh t) | ( (1+7?)— X* | None

(arctanh ¢)/t | (X + TY)(1 —T?) -1 i=[1—z(1 —tD]/[t(1 - t?)]
t/(arctanh t) | ( (1-T%) - X% |i=[z(1—-1t*—2%/[t(1 —t3)].

Proof. As before, one will suffice: © = (arctanh t)/t. We set s = sinh(tz),
¢ = cosh(tz). Then t = tanh(tz) = s/c. We have

tc=s, cH+tlx+ty)s=(r+ty)e, 1+t3(x+ty)=x+ty.

4 Other Functions

4.1 Review of Bessel Functions

We briefly review Bessel functions J,(t) for n > 0. See Abramowitz and
Stegun [2] for details. The functions J, (t) satisfy an ODE with suitable initial
data. We have

Jo: ti+z+te=0, z(0)=1, z(0)=0,
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1
Jio it + (2 -1z =0, 20)=0, (0)= 3
and for n > 1:
Jo: i 4ti+ (2 —n?)x =0, z(0)=0, #(0)=0.

Each of these is a singular ODE because of the ¢ or 2 multiplier of . The
solutions are regular at t = 0, indeed,

tn e (71)kt2k
on k| I
m =4 El(n + k)!

Jn(t) =
4.2 The Function Jj

The Taylor expansion of Jy can be found by AD. Substitute z(t) = 1+ ast? +
ast3 + ... into the ODE:

(2aat + 6ast? +...) + (2aat + 3azt® +...) + (t + aot® +azt* +...) =0.
This determines successively asg, ag, .. ..
Conjecture 1. The only irreducible polynomial P(T, X,Y, Z) such that
P(t, x(t), ©(t), &(t)) =0 for z(t) = Jo(t)
is
PT,X,Y,Z)=TZ+Y +TX .
The function Jy(t) does not satisfy any first order implicit polynomial ODE.

The two statements are closely related. For suppose Q(T, X, Y, Z) is a
polynomial such that Q(¢, z(t), ©(t), £(t)) = 0. Eliminate Z:

T*Q(T, X, Y, Z) = P(T, X, Y, Z)A(X,Y, Z) + B(T, X, Y) ,

so B(t, z(t), (t)) = 0. If we could conclude that B(T, X,Y) = 0, then P
divides ). To prove this appears a challenge, as do similar conjectures for
other Bessel functions. Perhaps Ostrowski’s [421] proof of a theorem of O.
Holder on Gamma functions offers an idea for attacking such questions.

4.3 Gamma Function

The Gamma function is defined by
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for t > 0. It extends as a meromorphic function to the whole complex ¢-plane
with simple poles at all integers t = n < 0, and no other poles.

Holder’s theorem states: The Gamma function does not satisfy an algebraic
differential equation of any order. There is a whole chapter on this theorem
in an even older reference Nielsen [414]. The theorem has the interesting con-
sequence that there is currently no way of using AD to compute a Taylor
expansion of the Gamma function. But we do not know if there is an alge-
braic system of ODEs in which one component of a solution is the Gamma
function.

5 Higher Order Equations

We explore other questions here. We ask if the function z(t) = (sin ¢)/¢ can
satisfy an explicit polynomial ODE of higher order. We introduce a notation
for successive derivatives:

xo=2x(t), x1==Z0y ..., Ty =Tp_1 .
Theorem 11. For each n > 0, there does not exist a polynomial
P(T7 X07 Xl PARERS) Xn—l)

such that
xn = P(t, xo, 1, .., Tp_1) .

Proof. For n =1, this was proved in Theorem 4. We review part of that proof:
S
xoz? txg =358, tx1+x9=cC.
Differentiate and eliminate s:
tro + a1+ 21 = —58, tro+2r) +txg=0.

The polynomial P, = T X5 +2X7 + T X is clearly irreducible. If there were a
polynomial ODE of the form x5 + F(t, zg, 1) = 0, then

Q2(T, Xo, X1) = Po = T(X2 + F(T, Xo, X1))
would be a polynomial satisfying Q2 (t, x, ©) = 0, which we know is impossible
unless @ = 0, so T divides P», which is impossible.
Differentiate again:

trs 4+ 3xo +tr1 + 29 =0.

Again, P; = T X3+ 3X2 + T X7 + Xy is irreducible which, in the same way,
precludes an explicit polynomial ODE of the form x5 = F(t, xo, x1, Z2).
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It is clear that repeated differentiation will result in
tx, + Q(t, o, ..., Tn_1) =0,
where @ is a quadratic polynomial not divisible by ¢. Hence
P,=TX,+ QT Xo, ..., Xxp_1)
is irreducible, so an explicit polynomial ODE is impossible.

We look the corresponding result for one other of the functions we have
studied above. We start with

and let x1, x2, etc. denote its successive derivatives.
Theorem 12. For each n > 0, there does not exist a polynomial
F(Ta XOv le ceey anl)

such that
T, = F(t, 20, T1, vy Tn—1) -

Proof. For n = 1, we know that P(T, X, Y) =TY +TX + X? — X is the only
irreducible polynomial such that P(¢, 2o, z1) = 0. This and the statement of
Theorem 2 prove this theorem for n = 1. The same reasoning as in the proof
of Theorem 11 establishes the result in general.

6 Open Questions

1) Do there exist polynomials P(T, X,Y) and Q(T, X, Y) and a regular
function y(t) in a neighborhood of 0 such that the system

{ =Pt z,y)
y=0Q ., y),

is satisfied by z(¢t) = (sin t)/t and y(¢)? The same question may be asked for
the functions ¢/ sin ¢, (et —1)/t, t/(e! — 1) etc. We suspect the answer is “no”
in all cases.

2) If the answer is indeed no, does there exist a system

.’bl = Pl(t, L1y eeey iL'n)
.’i‘g = Pg(t, L1y weny fn)
l‘n:Pn(t, I, ...,J}n),

with the P; polynomials and a solution of functions x;(¢) regular near ¢ = 0,
with z1(t) = (sin t)/t? The same question may be asked for the functions
t/sin t, (et —1)/t, t/(e! — 1), etc.
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Summary. Motivated by problems in metrology, we consider a numerical evalua-
tion program y = f(x) as a model for a measurement process. We use a probability
density function to represent the uncertainties in the inputs x and examine some of
the consequences of using Automatic Differentiation to propagate these uncertainties
to the outputs y. We show how to use a combination of Taylor series propagation and
interval partitioning to obtain coverage (confidence) intervals and ellipsoids based
on unbiased estimators for means and covariances of the outputs, even where f is
sharply non-linear, and even when the level of probability required makes the use
of Monte Carlo techniques computationally problematic.
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1 Introduction

Often we have a program which calculates the numerical values y = f(z) of
some outputs y from the values of the inputs x. For many applications the
values of the inputs are not known with certainty. This may be because of
a deficit in our knowledge, corresponding perhaps to indeterminacies in the
measurement process, or it may be because the input values are themselves
representatives of a population with a non-zero variance. These possibilities
correspond naturally to the Bayesian and frequentist viewpoints respectively?.

The evaluations of such uncertainties in variable values are referred to
respectively as Type B and Type A evaluations of uncertainty in Clauses 2.3.3,
3.3.5 of the enormously influential methodology for uncertainty evaluation set
out in the “Guide to the Expression of Uncertainty in Measurement” [245],
published by ISO and popularly known as the GUM.

3 As tool-writers we hope to design our product in such a way as to satisfy both
camps that we have performed the correct calculation, and thus to escape in-
volvement in the inevitable bickering about the interpretation and significance of
the result.
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We often wish to model the uncertainty in the values of the independent
variables (inputs z) and to obtain corresponding estimates of the uncertainties
in the values of the dependent variables (outputs y).

Interval analysis is one technique which may be used to do this. However
in many applications, certainty is either not to be had, or comes at too high a
price. For example, the value of a variable drawn from a normal distribution
N (u,0) is theoretically unbounded, but in practice the coverage interval

[ — 5o, 1+ 50]

will almost certainly suffice*. In other cases, certainty is not desired: for many
applications in metrology, mean-centred 95% coverage intervals for the out-
puts are the information of primary interest.

Direct application of interval analysis to coverage intervals is not straight-
forward. Input value uncertainties are often correlated as a result of the
processes used to obtain them, and we frequently desire to exploit correlation
information about output uncertainties. In this paper we use a probability
density function (pdf), as in the GUM, to model the input uncertainties, and
we examine some of the consequences of using Automatic Differentiation (AD)
to propagate these uncertainties to the outputs. Here we use AD terminology
and notation, rather than that more usually followed by the uncertainty com-
munity. We hope this paper is a step toward drawing the two communities
together.

The rest of this paper is organized as follows: in the next section we look
at the case where f is linear, corresponding to Clause 8 of the GUM, and in-
troduce the use of multivariate truncated Taylor series. In Sect. 3 we compare
and contrast this approach with conventional interval analysis. In Sect. 4 we
extend our Taylor series approach to cope with moderate non-linearities in
f and show how to obtain unbiased estimators for uncertainty parameters in
this case. Implementation issues are considered in Sect. 5. This section also
considers how to truncate and partition distributions in order to cope with
poles and other artifacts of severe non-linearity. In Sect. 6 we show how AD
can be used to validate hypotheses about output distributions, and to con-
struct coverage intervals at various levels of probability under a hierarchy of
such assumptions. The final section includes some prospects for the future.

2 Linear Models

Many approaches to uncertainty modelling assume that the evaluated func-
tion f (known in the GUM as the model of a measurement) is linear, or very

4 There always comes a point where events within the model become sufficiently
unlikely, relative to significant events deliberately ignored by the model, that they
can also prudently be disregarded. For example, most metrological analyses, do
not consider the effect of the measuring apparatus being struck by a very small
meteor at the crucial moment.
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nearly linear, at least over sufficiently long intervals surrounding the antici-
pated values for the inputs®.

Under this assumption, the straightforward approach is to represent all
the program variables v; as multivariate first order Taylor series, so that the
variable

v = (v(o), oM ,v(")) represents  v(®) + oM 4+ oM,

where the (; are independent random variables with zero mean and unit vari-
ance, so that

E(G)=0;  B()=1,
where E denotes expectation.

Usually we will take ¢; from either the normal distribution N (0, 1) or from
the student-t distribution with the appropriate number of degrees of freedom
for the number of measurements involved. Other distributions including the
uniform and the logarithmic distribution are also possible and are considered
in what follows.

2.1 Uncorrelated Inputs

In the simplest case, where the uncertainties in the input values to the calcu-
lation are uncorrelated, we initialize the input variables x; by setting

T, = xgo) + JSE”Q )
where
N\ 2
o =B and (o) =V 5] = E (@ - Bls)?]

are the mean and variance respectively of x;.

2.2 Correlated Inputs

In the more general case where the input uncertainties are correlated, we set
o .
J

Ej ) = r;; are chosen so that R = [r;;] is the lower triangular decompo-

sition of the input covariance matrix

where z

V =RRT = Cov[xy, ..., x,] .

® The GUM makes this assumption explicitly [245, Clause G.6.1] as a basis for the
uncertainty budgeting (evaluation and expression) procedure set out in Clause 8
of the GUM.



50 Bruce Christianson and Maurice Cox

In this case we have E[z;] = zgo)’ and

Covariance (z;,%;) = E[(x; — Elx;])(x; — Elx;])]
—F Zx§k>x§€>gk@ - zzgwg% @9

— 2 : (k Z
Z; : TikTjk = Vij -

since by independence E[(x(] = Oge-

2.3 Single Output

Automatic Differentiation [21, 110, 229, 302] can be used to propagate the
numerical coefficients of the Taylor terms through the calculation y = f(x).
If the mainstream GUM assumptions [342] of a linear function model are
satisfied, then to the required degree of approximation we will have

y =y + Zy(j)Cj 7
J
with the mean and variance of y being given by

Ely) =y and Vg =) (yV)

J

respectively. In the case where the (; are normal, the pdf for y is also normal,
and the calculated value for V[y] can be used directly to construct the required
coverage interval centred upon y(o).

2.4 Multiple Outputs

For a linear model with several outputs, AD gives

SO
Ely] = 4", and  Cov(ys,y;) Zy(k) ")

These values can be used to construct the required coverage ellipsoid; the
values y( ) effectively give the covariance of the outputs in a factored form,
which in the normal case can be used to construct the ellipsoid directly.
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3 Contrast with Interval Analysis

This section describes a simple linear example, intended to illuminate some
differences between the approach taken in this paper and that of conventional
interval analysis. Consider the case where the uncertainties in the inputs x;
and x5 are modelled by independent (uncorrelated) normal distributions with
zero mean and variances 1.0,0.01 respectively, and suppose y; = x1 + 2.
Clearly taking 97.5% coverage intervals for z1 and x> and applying interval
analysis will give a 95% coverage interval [—2.47,+2.47] for y;, but not an
optimal one. For example taking a 96% coverage interval for z; and a 99%
coverage interval for zo will give the tighter 95% interval I = [—2.31,+2.31]
for y;. However the variances of the independent inputs add to 1.01, which is
therefore the variance of y1, so our approach directly gives y; € [—1.97,+1.97]
with 95% probability.

(2.47,2.02)

area 4.03

Fig. 1. The rectangle J.

Now suppose ya = x7 — o2. The square I x I is a 95% coverage box for
y = (y1,y2) with area 21.3, although the corresponding square with half-side
1.97 is not. But the thin rectangle J (Fig. 1) aligned at 45 degrees to the axes,

J={(y1,y2) : ly1 + y2| <4.49,|y1 — y2| <045},

is a 95% coverage box and has the much smaller area 4.03. The optimal 95%
ellipsoid F, given by the method of the previous section,

E={(y1,y2) : (y1 +y2)*> +100(y1 — y2)* < 23.96} ,

has an area of just under 3.77.

Even in the exactly linear case, if rigorous bounds are sought for the output
coverage intervals, then there are benefits to using the approach described here
in conjunction with conventional interval analysis, rather than relying upon
a naive use of the latter.
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The method of this paper can be used to construct a sensible hypothesis for
the rigorous approach to verify. The benefit of using the approach described
here to “precondition” the hypothesis for rigorous validation is even more
pronounced in the case of correlated inputs or, as we now discuss, non-linear
evaluation functions f.

4 Nonlinear Models

The assumption of linearity of f over the relevant coverage interval is fre-
quently not justified. In other cases, (approximate) linearity is an hypothesis
which we wish to use our model to confirm, rather than a matter of blind faith.
In these cases, a non-linear model of the effects of evaluating the function f
is required.

(0)

In the case where the function model is significantly non-linear, the y;

are generally biased estimators for the y;. In other words, we can no longer
assume Ely;] = yl(o). Indeed, in the non-linear case the outputs may not even

be monotone functions of the inputs over the intervals in question, nor need
the yi(o) be maximum likelihood estimators for the y; even in the smooth
monotone case®.

Although maximum likelihood estimators are appropriate for Bayesian in-
ferences such as data assimilation, for many purposes we also require unbiased
estimates of quantities associated with the outputs. In particular if we wish
to construct coverage intervals (or ellipsoids) from a pdf model for y then we
would like to have unbiased estimates for the relevant moment coeflicients in
order to construct percentile points of the cumulative output pdf.

Such unbiased estimators can be approximated accurately by using AD to
propagate higher order Taylor terms.

4.1 Higher Order Program Variables

We can redefine the program variables to represent a pyramid of coefficients
corresponding to a higher order truncated multivariate Taylor series, so that
the variable

vi = (0, (W )o<i<n, (07 )o<j<rzn, (07 )o<j<rzizn)

represents the truncated Taylor series
0 j ik 1
v + ZU?)Q + ZU%‘(] ¢+ > v ¢
J J<k J<k<t

Initializing the input variables to be first order Taylor series as before, and
using forward AD for general truncated multivariate Taylor series, we obtain

5 Although in the smooth monotone case, if p and ¢ = p/f’ are the pdf for x and
y respectively, then at the maximum likelihood value for y, we have p’ = q - f”.
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y=y D +> yIG+D yIGGR+ D yIIGGG+
J

J<k J<k<(L

4.2 Taking Expectations
In general by independence of the ¢; we have
E[G7¢GiG] =BG BIG]- E[G] forj <k <,

and we can usually evaluate terms such as E[Cf | from our knowledge of the
distribution from which the ¢ are drawn. For example for ¢ in N(0,1), we
have

E[¢*] = (2p— DE[C*" V], B¢ =0 forp>0.

Corresponding moments can be pre-calculated for other initial distributions.

4.3 Unbiased Output Mean

Using these reductions, we see for example that an unbiased estimator of y is

Ely) = y© + 3y 4 8,400 4 K;y0339)
i

+ Z y(jjkk) + 5th order terms ,
j<k

where S; is the skew E [C?], and Kj is the kurtosis £ [(;1]. In the usual case
where the (; are symmetric, all S; and all fifth order terms are zero, and the
estimator is therefore accurate to order five. If (; is normal then K; = 3.

4.4 Unbiased Output Variance

Unbiased estimators for other quantities can be obtained by taking expecta-
tions of other variables. For example, an unbiased estimator for the variance
of y is

Viyl = E[(y - Ely)’*]

5| [ S0 +59E -0+ TaG6+ 3 sG0G .
J J<k J<k<t
= Z(y(j))2 + 28,y Dy 4 (K — 1) (yU)2 + 2Ky yU99)
J
+ Z(y(jk))2 + 2y Dy TRR) 4 0y, (Gik) (k) 4
j<k
where (; has skew S; and kurtosis K;. When (; is normal, S; = 0 and K; = 3.
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4.5 Unbiased Output Covariances

Similarly in the case of more than one output, the covariances correspond to
inner products:

Cov[yp, Yql = E[(Yp — Elyp]) (g — Elyq)]

_ Zy(J () + S JJ) (J)yéjj))

+(K, — y§ (47) (JJ) + K; (y(J)y((IJJJ) +y1()jjj)y((1j))

+ 37y TRYGR Dy GRRY gy GRRY ) G 4y Gk
i<k

4.6 Adjoint Expectations

Expectations of the adjoints Z; = dy/dz; can also be interpreted directly as
sensitivities of parameters of the output uncertainties with respect to parame-
ters of the input uncertainties. In the case of a single output y and uncorrelated
inputs z;, and writing p(z) and o(z) respectively for the mean and standard
deviation of the distribution modelling the uncertainty corresponding to the
program variable z, we have for example that

. Ouly) 2y = ny)
E(I‘Z) - 3/1(%)7 (C’L l) aO’(fEi),
E(yz;) — E(y)E(z;) _ do(y)  E(yGa;) — E(y)E(GT;) _ do(y)
o(y) (i)’ o(y) do(xz;)"

5 Implementation with Automatic Differentiation

All the expressions which we have considered, including those for unbiased
estimators, can be evaluated automatically by an appropriately enhanced AD
tool. It is straightforward to add intrinsics to an AD tool to specify the mo-
ments of the ;. Independent variables can be defined to be of type Normal,
Student (n), Uniform etc. A new operator E is defined which evaluates the
expectation of a program variable. Further intrinsic functions can be defined
in terms of E, such as

Cov (x,y) = E((x-E(x))*(y-E(y))
K(x) = E((x-E(x))**4)

Bias (x) = termO(x) - E(x)

etc.
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Reverse AD can be used instead of forward to calculate the multivariate Taylor
series coefficients. This makes the accumulation process more efficient, but
requires slightly more care in the definitions of the intrinsics: the terms of each
series must be assembled into a variant data type, prior to being combined
into the expression to which the intrinsic is applied.

Similar remarks apply to the use of interpolation schemes such as those of
Bischof et al.” [58] or Neidinger [410]. In the case of symmetric distributions
the majority of cross-terms do not contribute to expectations, and so need
not be computed: in particular, as remarked earlier, a fourth order estimate
is automatically accurate to fifth order in this case.

5.1 Convergence and Singularities

The order of Taylor series actually required for a given level of accuracy de-
pends on the non-linearity of f. As an extreme example, if

y=expr? with x=¢eN(0,1),

then the expectation of y is unbounded. Of course, using a truncated distrib-
ution for z will give a correct coverage interval for y even in this case: for this
example we could restrict ¢ to the range [—5, 5], with appropriate changes to
the distribution moments. However it is useful that the AD-based model can
signal automatically any potentially catastrophic non-linearity of f.

Singularities in f corresponding to plausible values of the input variables
can also be dealt with by truncation, but similar difficulties can arise from
imaginary poles of f. For example, the smooth function

y with = ¢ € N(0,1)

1422
has finite expectation, but the poles at i« and —i mean that the Taylor series
in ¢ for y has only unit radius of convergence. In such cases the simplistic
approach of taking expectations term by term and summing produces a di-
vergent series, even though the expectation of the infinite sum may be finite.

This underlines the remark made by Louis Rall during his 2004 talk in
Chicago, that AD is not really a local operation. We describe the function
f as almost-linear, relative to a given input uncertainty pdf and a desired
probability of coverage for the outputs, when all poles of f are sufficiently
distant from the mean, and the radius of convergence about the mean is
sufficiently large, as to allow the use of a single truncated distribution upon
each of the ¢;.

" Andreas Griewank (anonymous communication) points out that this would allow
a fifth order estimator of n output variable values y to be obtained at a cost of
order n? /2 univariate fourth-order Taylor expansions, which is about one third
of the cost of computing the full order four tensor.
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However in the example of 1/(1 + x?), truncation sufficient to ensure con-
vergence would rule out altogether the possibility of obtaining a 95% cover-
age interval. Harley Flanders (personal communication) proposes the use of a
partitioning approach to provide a general solution for cases like this, and we
describe one such approach below.

5.2 The Partition Approach to Expectations

The partition approach to evaluating expectations works as follows. Partition
the distribution for the ¢; into boxes B; = [], I; ; in such a way that only
finite boxes have non-negligible probability. By refining if necessary, ensure
that distance from the centre (c; j); of each finite box to any pole of f is large
compared to the length of the correponding radius of the box. For each non-
negligible box Bj, recalculate the Taylor coefficients for y in terms of powers
of & = G — ¢ 4.

Now, using the independence of the &;, and our prior knowledge of the
values of the integrals of the ¥ with respect to the pdf for each element of
the partition, apply the expectation operator to each box separately and then
sum the results. This gives the correct result even for functions which are not
almost-linear. Provided standard partitions are used, integrals for the £¥ over
I; ; can be pre-calculated and stored in tabular form.

The use of interval methods for optimization requires a similar form of
partitioning to that advocated here. More accuracy can be obtained by using
more Taylor terms or by allowing the partition to be refined.

6 Validation of Uncertainty Models

Numerical values of bias terms can be used to determine the validity of the
GUM assumptions or to validate the non-linear model being used to construct
the coverage intervals for the outputs. This can be done either as an alternative
or as a supplement to Monte Carlo simulation [138,246]. In the case where
a non-linear multistage model is being used, higher order terms of the first
stage outputs can be used directly to initialize the second stage inputs.

The generalized output values from an AD-based tool of this type can be
used to construct many different coverage intervals, depending not only on
the level of probability required but also on the strength of the assumptions
made by the uncertainty model.

6.1 Single Output

For a single output variable y, let I;(y) be the interval defined by

Ii(y) = [Ely] —s-0(y),Ely] +s-0(y)], where o(y) =/ E[(y — E[y])?] .
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Then I445(y) is a 95% coverage interval for y without any assumptions what-
soever on the distribution of y, by Chebyshev’s inequality.

However if the kurtosis of y is known to be less than 4.0, an assumption
which can be verified by using AD to compute the relevant expectation®, then
taking s = 3.0 gives a 95% coverage interval for y. This is because, setting
z=(y— E(y))/o(y) and letting p denote the pdf of z, we have that

st P(|z] > 5) < /z4p(z) dz .

Under the single assumption that the kurtosis is less than 4.0, which we can
verify numerically by checking that E(z*) < 4.0, setting s = 3.0 gives P(y ¢
I5.0(y)) <0.05, and s = 4.48 gives a 99% coverage interval for y.

6.2 The Hyperbolic Cosine Transform

More ambitiously, we have
coshst- P(|z] > s) < /coshtz -p(z)dz .

For z normal the value of the integral is exp %t2. Setting ¢t = s and validat-
ing, for a particular value of s and a ‘nearly normal’ z, the single verifiable?
assumption that

1
E(coshsz) < 1.5exp 552

gives

1
P(lz] > s) < 3exp—§s2 , etc.

Estimates of this form are particularly useful for relatively high values of s,
corresponding to a requirement for high levels of probability for which the use
of Monte Carlo Methods is problematic. For example setting s = 4.0 with the
hyperbolic cosine hypothesis gives a 99.9% coverage interval with no further
assumptions about the distibution of z.

If more assumptions are made about the moments of y, then tighter cover-
age intervals can be constructed. If the uncertainly in y is known (or assumed)
to be normal then s can be reduced to 1.96 for 95%, 2.58 for 99%, and 3.29
for 99.9%, and similarly for other distributions.

8 Naive use of GUM simply assumes inter alia that the kurtosis of y is exactly 3.0
if the ¢; are normal.

9 From an implementation point of view, it is important to ensure that the Taylor
series developed for cosh contains no odd terms, rather than being defined in
terms of exp.
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6.3 Multiple Outputs

Similar observations to the single output case hold for the case of n > 1
outputs. If
Cov(y) = E((y — E(y))(y — B(y))") = RR"

is the AD-calculated covariance for the outputs, then we can define

z=R'(y— E(y))

for the calculated values of R. Certainly (for example)
s'n? - P(|z| > sv/n) < /z4p(z) dz = E((z%)%),

and we can calculate the value of E((22)?)/n?%. Under the GUM assumptions,
we have E((2%)?)/n? ~ 1+ 2/n, so we can attempt to verify the hypothesis
that this value is less than 3.0 (say). In this case, we have

P(|z] > sv/n) < 3.0/s*, etc.

7 Way Ahead

We have shown how to use AD to propagate Taylor series corresponding to
uncertainty distributions through functions modelling measurements. A novel
point is that the use of AD allows assumptions about the output moments to
be validated!? before a coverage interval at a given level of probability is built.
This could be extended to Laurent series. Future work may also include the
incorporation of rounding errors and errors arising from the inexact solution
of intrinsic equations, using the methods of Iri [112,281,291]. A very desirable
feature would be the incorporation of interval methods to provide rigorous
bounds on the errors in the calculated expectation values. The systematic use
of partitioning could also allow automatic validation of control flow changes
(such as if statements) via partitions of coverage intervals on intermediate
values of program variables.

10 We recommend using AD to validate the assumption that the kurtosis is less than
some given value, preferably an hypothesized value significantly larger than the
calculated one. This is different from using the calculated value to construct the
coverage interval. It is the former procedure which we are recommending here.
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1 Introduction

Poincaré maps are a standard tool in general dynamical systems theory to
study qualitative properties of a dynamical system, e.g. the flow generated by
an ordinary differential equation, most prominently the asymptotic stability
of periodic or almost periodic orbits. A Poincaré map essentially describes
how points on a plane S (the Poincaré section) which is transversed by such
an orbit O (the reference orbit) and which are sufficiently close to O get
mapped back onto S by the flow. The two key benefits in this approach are
that long-term behavior of the the flow close to O can be analyzed through
the derivative of the Poincaré map at the intersection point of S and O, which
is available after just one revolution of O, and that the dimensionality of the
problem has been reduced by one, since the Poincaré map is defined on S and
neglects the “trivial” direction of the flow perpendicular to the surface.

In the numerical treatment of these problems one is faced with the question
of which numerical representations of a flow are particularly favorable in the
sense that they easily allow the computation of corresponding Poincaré maps
for a given reference orbit and Poincaré section. In this paper we will show that
high-order polynomial approximations of the flow, which have been obtained
either by automatic differentiation of an ODE solver with respect to initial
conditions or using differential algebraic (DA) tools as in [38,44], allow a direct
deduction of polynomial approximations of Poincaré maps of a certain type.
We focus on the case where the flow under consideration has been generated
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by an ODE. The proposed algorithm is a part of an extended method for the
computation of rigorous interval enclosures of the polynomial approximation
of the Poincaré map discussed here.

2 Overview of DA Tools

The DA tools necessary to appreciate the method are described in detail
in [38]. However, we wish to review briefly the two most important applica-
tions of DA-methods used for the problem discussed here: the DA-integration
method employed to obtain high-order polynomial approximations ¢(xg,t)
of the flow and the functional inversion tools necessary in later steps of the
algorithm.

2.1 DA-Integration of ODEs

First we tackle the problem of obtaining a polynomial approximation of the
dependence on initial conditions of the solution of the initial value problem

o(t) = f(z(t),t), x(0) = Xo+z0, (1)

where f: RY D U°P" — RY is given as a composition of intrinsic functions
which have been defined in DA-arithmetic. This also entails that f exhibits
sufficient smoothness to guarantee existence and uniqueness of solutions for
all initial conditions. The vector Xy € R” is constant, and the midpoint of
the domain box D = [—d;,d;i] X ... x [—d,,d,] for the small relative initial
conditions xo € D. Typical box widths d; are of the order 1072 to 10~8. The
polynomial approximation ¢(xg,t) of the flow of (1) we desire is an expansion
in terms of the independent time coordinate ¢ and the initial conditions xg
relative to Xg. The representation of this approximation is a DA-vector storing
the expansion coeflicients up to a prespecified order n in a structured fashion.

The standard procedure of a Picard iteration yields a polynomial approx-
imation of the solution of (1) after repeated application of a Picard operator
on the initial conditions. This iteration in general increases the order of the
expansion by at least one in every step. Since a DA-vector can store coeffi-
cients up to order n, we expect that the iteration converges after finitely many
steps in the DA case.

Accordingly, the Picard operator in the DA-computation is defined by

C(-) == (Xo+z0) + 0,1, (),

where f is computed in DA-arithmetic, and 0, Jilis the antiderivation operator,
essentially the integration with respect to the v+1st variable t. With a suitable
definition of a contraction in the DA case, C is a contracting operator, and
fixed-point theorems exist which guarantee that repeated applications of C on
the initial condition DA-vector representation x(0) = Xy + x¢ converge to the
DA-vector solution ¢(zg,t) of (1) in finitely many steps. After this iteration
has converged, the time step is substituted for the time variable which yields
the final solutions only in terms of the initial conditions xg.
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2.2 Functional Inversion Using DA-Arithmetic

Next we review the functional inversion method used to obtain the inverse
M1 of a function M, or rather a DA-vector which stores the coefficients
of M~! up to the desired order. Assume we are given a smooth map M :
R” — R s.t. M(0) = 0, and its linearization M is invertible at the origin.
This assures the existence of a smooth inverse M~! in a neighborhood of the
origin. If we write M = M + N, where N is the nonlinear part, and insert
this into the fundamental condition M o M~ = T, we obtain the relation

MEP=M"1o(Z-NoM™

and see that the desired inverse M ™! is a fixed point of the operator C(-) :=
M~' o (Z - No-). Since C is a contraction, the existence of the fixed point
M1 of C is verified, and M~ can be obtained through repeated iteration of
C, beginning with the identity Z. Also in this case the iteration converges to
M~ in finitely many steps, which is intuitively clear: If at one iteration step
M1 is determined up to order m, then C(M™!) is determined at least up to
order m + 1, since AV is purely nonlinear.

3 Description of the Method

3.1 Preliminary Remarks

We begin our discussion with the assumption that (1) exhibits a periodic
solution ¢(Xp,t) which starts on a suitable Poincaré section and returns after
a period T, which has been determined, e.g. by a high-order Runge-Kutta
integration. As described in the previous section, there exist DA-arithmetic
integration methods which allow us to transport the domain box Xy + D,
where D = [—dy,d;] X ... X [=d,,d,], through one cycle of the period. In the
last time step we keep the full expansion of the final solution ¢(xg,t) in terms
of the variables zy and the time ¢t. The problem of constructing the Poincaré
map has thus been reduced to the construction of a map which projects the
set {p(x0,T) : ¢ € D} to the surface S.

We want to consider as large a class of surfaces as possible as Poincaré
sections. A suitable assumption is that the Poincaré section S C R” is given
in terms of a function ¢ : RY — R as S := {& € R” : o(x) = 0}. Since
the function o also needs to be expressed in terms of elementary functions
available in the computer environment for DA arithmetic, it is necessarily
smooth, and hence so is the surface S. This contains most surfaces of practical
interest, in particular the most common case where S is an affine plane S :=
{z € R” : z1 = ¢} for some ¢ € R; then o(z) =21 —c.

3.2 Construction of the Crossing Time

The goal of the next step is to derive an expression for the crossing time ¢.(x¢)
at which the trajectory starting at the initial condition xg € D crosses the
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surface S. From an analytic standpoint the existence of such a time t.(xg)
is only guaranteed locally at X, but since usually D is small and ¢ and the
vector field f are regular, the crossing time can often be defined for all zg € D.
Once we have obtained a DA-vector representing t.(x¢), then P(z() can be
found easily by inserting the crossing time into the flow

P(xo) = ¢(x0,tc(20)) , (2)

where the right hand side is evaluated in DA-arithmetic. We proceed by con-
structing an artificial function ¥ (xg,t) by

Ui(wo,t) == xp VEk € {1,...,v}
Yu+1(20,t) == o (p(w0,1)) -

The value t.(z¢), depending on the variables z, is determined by the condition

a(¢(zo,te(w0))) =0, (3)

and 9 contains both the constraint (3) and the independent variables x.
Because of (3), t.(zq) satisfies

(20, te(w0)) = (20,0) .

If 4 is invertible at (xg,t.(xo)) we can evaluate

P (0,0) = ¥ (¥ (o, te(w0))) = (w0, te(w0))”

and immediately extract the DA-vector representation of t.(zg) in terms of
o in the last component. However, here the invertibility of ¢ at the point
(z0,t.(x0)) is guaranteed by the transversality of the flow at S. This leads to
the definition of

tc(xO) = ¢;i1(=’”0, O) 3

which allows us to obtain the final Poincaré map by construction (2).

3.3 Summary of the Algorithm

To conclude the presentation of the method, we summarize the algorithm:

1. Determine the period T approximately for the periodic orbit.

2. Choose a suitable Poincaré section S.

3. Obtain a DA-vector representation of the solution ¢(xg,t) for one period
T. Preserve the full expansion in zg and ¢ in the last step.

4. Set up and invert the auxiliary function ¢ using DA functional inversion
to obtain a DA-vector representation of ¢~ 1.

5. Resolve t.(zg) := ¥~ (x0,0).

6. Obtain P(xo) := (0o, tc(0))-
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4 Examples

The method described above has been implemented in the COSY Infinity [43]
programming language, which supports the DA-vector data type and its oper-
ations. The code lists for the example calculations are available upon request
from the authors. The COSY output lists the Taylor expansion coefficients
of t.(zp) and P(zg) sorted by order, with the last five columns showing the
respective powers of the expansion variables z¢ ; through zg 4 and ¢.

4.1 The Planar Kepler Problem

As a first example we study the planar Kepler problem,

T1 = T2
. T
Tg = — s
ERTAEE
T3 = T4
. T3
Ty = ———5—or |
G
where we choose the initial conditions z(0) = Xy + 9 . Here Xy =
(0,—1,1,0)7 is the midpoint of the domain D for xy and the starting point
for the reference orbit, and D = [~107%,107%]*. The reference orbit is pe-

riodic with a period T = 27w. The Poincaré section on which we project is
S:={zeR':z; =0}

The Kepler problem serves as a good test case, since not only the reference
orbit, but all orbits originating in Xy + D are periodic. This means every
trajectory crosses S at the same point where it originated after one revolution.
Thus the ith component P;(zg) of the Poincaré map is the identity with
respect to the expansion variable z¢ ;. In the following, we show the results of
the expansion coefficients of the crossing time t.(x) and the final components
of P(xg) after an 18th order computation. The result for the crossing time
tc(xO) is

I COEFFICIENT ORDER EXPONENTS

1 0.2731858587386304E-13 0 00 00 O

2 0.3905776925772165E-03 1 10 00 O

3 -.7362216057939549E-02 1 01 00 O

4 0.73622160579396565E-02 1 00 10 O

5 -.1651789475691988E-16 1 00 01 O
197 0.1730482119203762E-18 7 11 32 0
198 0.1875627603432954E-18 7 02 32 0
199 -.1075817722340857E-18 7 12 13 0
200 0.1018021833717433E-18 7 11 23 0
201 0.1149402904334884E-18 7 02 23 0
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where this is the expansion around the period T' = 2. We see that t.(xp) has
no constant part up to roughly machine precision and scales almost linearly
with the variables x( 1 to 2 4, the second order terms are already significantly
smaller.

Next we display the final result for the first component Pj(zg). If the
computed Poincaré map projects to the surface S, then its constant part
must vanish. Indeed this is what we see up to leftover terms of negligible
magnitude:

I COEFFICIENT ORDER EXPONENTS
1 -.2488159282559507E-19 2 02 00 O
2 -.2482865326639168E-19 2 00 2 0 O.

Finally we give the result for Pz(zo). In this case we restricted the Poincaré map
P to S by setting xo,1 = 0. We see that Pa(xo) preserves the first order identity in
the z0,2 variable up to a scaling factor of 107, the domain half width. This rescaling
supports validated computation.

I COEFFICIENT ORDER EXPONENTS

1 -.9999999999999988 0 00 00 O
2 0.1000000000000023E-03 1 01 00 O
3 -.1695071177393755E-17 1 00 10 O
4 -.1850766989750646E-18 1 00 01 O
5 0.3388131789017201E-19 2 02 00 O
34 0.2649298927416580E-19 7 02 50 O
35 -.2439099199128762E-19 7 05 11 O
36 0.5124187266775200E-19 7 04 21 O
37 0.57110617656338940E-19 7 03 31 O
38 0.2743591506567708E-19 7 02 41 0.

The results for P3(zo) and P4(zo) are similar to Pa(xo).

4.2 A Muon Cooling Ring

In accelerator physics, a muon cooling ring is a simple representation of a device
made up of solenoids, RF cavities, and hydrogen absorbers that is designed to ‘cool’
a muon particle beam, i.e. reduce the volume of phase space the beam occupies; for
details see [5,349,422]. Its equations of motion are

j:1 = I3

2’32 = X4

. [e% + (%

T3 = Tyq — I3 T2
Vi + a3 Vai+a3

. (% «

T4 = —T3 —

2 7 T4~ 2 7 Tl
V3 +xy V] + a3

where o € [0,1] is the cooling parameter (v = 1 being the fastest cooling), and
we consider the initial values z(0) = Xo + xo with Xo = (0,1,1,0)7 and D =
[-107*,107*]*. The centerpoint X; lies on a periodic orbit of the form ¢(0,t) =



High-Order Representation of Poincaré Maps 65

(cos(t), — sin(t), — sin(t), — cos(¢)) with a period of T' = 2m. However, no other orbit
originating in the box Xo + (D\{0}) is periodic, but instead is slowly pulled towards
the invariant solution ¢(0,t) with an asymptotic phase. This should be visible from
the eigenvalues of the Poincaré map for the section S := {z € R* : z; = 0}. Again,
we show the results for the crossing time t.(zo) and the components of P(z¢) after
an 18th order computation with a choice of a = 0.1. For the crossing time t.(zo) we
obtain:

I COEFFICIENT ORDER EXPONENTS

1 0.2041481078081162E-13 0 00 00 O
2 -.4881805626857354E-02 1 10 00 O
3 0.1420453958184906E-03 1 01 00 O
4 -.1420453958184956E-03 1 00 10 O
5 0.1804749589528265E-02 1 00 01 O
66 -.1728272108226884E-14 4 00 22 O
67 -.1380573416990237E-15 4 10 03 O
68 0.5285647002734696E-17 4 01 03 O
69 0.4817909040734367E-14 4 00 13 O
70 0.6371702406569035E-16 4 0 0 0 4 O.

This is the expansion around the period T' = 2. Inserting this into the flow
¢(zo, t) and restricting ¢(xo,t) to S yields that for P;(zo) all expansion coefficients
are zero. For the component Pa(zo) we get:

I COEFFICIENT ORDER EXPONENTS

1 1.000000000000000 0O 00 00 O
2 0.7300927710720673E-04 1 01 00 O
3 0.2699072289279350E-04 1 00 10 O
4 -.5747288684637408E-06 1 00 01 O
5 -.1174080052084289E-08 2 02 00 O
31 -.3092279715866550E-16 4 01 12 O
32 0.5188804928611400E-16 4 00 22 O
33 0.7267117814015809E-18 4 01 03 O
34 -.3574718550317267E-17 4 00 13 0
35 -.4144960345719535E-17 4 00 04 0;

for Pz(xo):

1 1.000000000000000 0 00 00 O
2 -.3619742360532049E-19 1 01 00 O
3 0.1000000000000003E-03 1 00 10 O
4 -.1167493942379190E-08 2 02 00 O
5 0.2334987884782753E-08 2 01 10 O
30 -.9698631674909994E-17 4 01 12 O
31 0.3092775905473012E-16 4 00 22 O
32 0.7881782248585311E-18 4 01 03 O
33 -.3750583012239952E-17 4 00 13 O
34 -.4166566008579194E-17 4 00 04 O;
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and for Pu(zo):

I COEFFICIENT ORDER EXPONENTS

1 0.2775557561562886E-16 0 00 00 O
2 0.5747288684637220E-06 1 01 00 O
3 -.5747288684637250E-06 1 00 10 O
4 0.7306674999405320E-04 1 00 01 O
5 0.4038817974889429E-12 2 02 00 O
31 0.3038943603851730E-18 4 01 12 O
32 -.5017859446188993E-17 4 00 22 O
33 0.2175112902784127E-18 4 01 03 O
34 -.2064794267030274E-16 4 00 13 O
35 0.1176604677592068E-17 4 00 04 O

If we compute the eigenvalues of the linear part P(xo,2, 0,3, 20,4) of P(zo), when
viewed as a function of xo,2, xo,3, and zo,4, we get A1 = 1 and A2 3 ~ 0.73038 £
1(0.00574). A1 is connected to the identity in the linear part of P3(xo) with respect
to zo,3, and the magnitude of less than 1 for A2 and A3 is a consequence of the
cooling action in z2- and z4-directions, the desired effect of the muon cooler.

Fig. 1. Tracking of six particles for the first 50 turns in the muon cooling ring.

We use the Poincaré map for a detailed study of the dynamics by using it to
iterate an ensemble of initial conditions through repeated orbits around the ring.
This is an approach frequently followed in beam physics [38,157], since it replaces
time consuming integration of ODEs for one revolution by mere application of a
polynomial. The results are shown in Fig. 1, showing the behavior in the transverse
Zo,2-%0,4-plane of an ensemble of six particles launched on the xo 2-axis at the points
n-4 cm for n = 1,...,6. The tracking picture is obtained after repeated application
of the transverse components of the Poincaré map for 50 turns, and clearly exhibits
the desired cooling effect near the attracting center.
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Summary. With a well-known formulation of matrix permanent by a multivariate
polynomial, algorithms for the computation of the matrix permanent are consid-
ered in terms of automatic differentiation, where a succinct program with a C++
template for the higher order derivatives is described. A special set of commutative
quadratic nilpotent elements is introduced, and it is shown that the permanent can
be computed efficiently as a variation of implementation of higher order automatic
differentiation. Given several ways for transforming the multivariate polynomial into
univariate polynomials, six algorithms that compute the value of the permanent are
described with their computational complexities. One of the complexities is O(n2"),
the same as that of the most popular Ryser’s algorithm.
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1 Introduction

The permanent of an n-dimensional square matrix A = (a,;) is defined as

per(4) = Z H ko (k) = Z A16(1)020(2) ** * Ono(n) > (1)

o k=1

where o runs over all the permutations of {1,---,n} [314,369]. The definition of
the permanent is quite similar to that of the determinant, but there are no sign
changes. The value of the permanent is related to combinatorial features of a system
represented by a matrix. Since the computation of the permanent was shown to be
#P-complete [515], the direction of research on the permanent was moved to the
computation of approximate values [4,171,189,286, 340].

The most popular and efficient algorithm for computing the exact value of the
permanent is Ryser’s algorithm, whose computational complexity is O(n2") [314,

* This work is supported by Grant-in-Aid for Scientific Research of JSPS
[16560054], Chuo University Overseas Research Program, Chuo University Per-
sonal Research Grant, and Chuo University Grant for Special Research.
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369]. Another algorithm with multivariate polynomials is also popular. It is a sim-
ple way to compute the exact value of the permanent with symbolic manipulation
systems.

Starting from the well-known definition of the permanent as a coefficient of a
multivariate polynomial, we derive several univariate polynomials and give meth-
ods for computing of the coefficients of the polynomials. First, giving a succinct
program with a C4++ template, we introduce a straightforward algorithm for the
permanent with automatic differentiation (AD) that can be used for differentiating
multivariate polynomials. Second, providing several ways to transform the multivari-
ate polynomial into univariate polynomials, we consider numerical computations of
the polynomials where the computation of the permanent can be represented as
that of a Taylor series. A uniqueness condition is required for the transformation.
Third, to represent naturally the sparsity of the higher order derivatives needed by
the computation of the permanent, we introduce “commutative quadratic nilpotent
elements” for the evaluation of the coefficient of the multivariate polynomials. The
elements can be implemented by operator overloading in a manner similar to the
implementation of automatic differentiation. Finally, we describe the computational
complexities of several algorithms for computing the permanent. One of them is
O(n2"), the same as that of the Ryser’s algorithm.

2 Formulation

After brief overview of the formulation of the computation of the permanent, we
propose transformations of the multivariate polynomial into univariate polynomials.

2.1 Multivariate Polynomial

According to the definition of the permanent (1), it is well known that the perma-
nent can be represented as the coefficient of the term z1x2 - - - z,, in the (expanded)
multivariate polynomial f defined by

flri, @2, - 2n) = H Zaijl’j = H(ailﬂm + @22+ -+ AinTy) - (2)
i=1j=1 i=1
Thus, o
per(A) = mf(l’hx%"' , Tn) (3)

gives a method for computing the value of the permanent, and it can be computed
naturally and easily with AD.
A well known algorithm due to Ryser’s computes the same coefficient of

f(xla o ,.’En)Z
per(4) = (=1)" > (DD ay, (4)
se2{1,2,...,n} i=1 jEs
where s runs over all the subsets of the integer set {1, - - - ,n}. This form (4) evaluates

f at 2" points represented by {0,1}", and its computational complexity is O(n2")
with a Gray-code technique. That is the best known algorithm for computing the
exact value of the permanent.
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2.2 Transformation to Univariate Polynomial

Here, considering n non-negative integers a1, az, - -+, an, we substitute z%¢ for x;
and transform f(z1, -+ ,z,) in (2) into f(x) defined by
fl@) = f@r, 2%, 2% = [[(ana™ + ana®™ + -+ ama®) . (5)
i=1
The following condition is very important for choosing the integers o; (1 =1, ,n)

to compute the permanent as the coefficient of f(x).

Condition 2.1 Uniqueness condition on {a1, - ,an}: Choose one of the val-
ues n times from {1, -+ ,an} and denote the k-th chosen value by Bi. Note that
Br may be equal to B¢ (£ # k). Denote the sum of ai by cu (=Y 1 ).
If and only if >°7_, Bx = ., the sequence Bi, ---, Bn is a permutation of o,
-+, an. In other words, when Y }_, B = ., there are no indices k and £(# k)
such that Br, = PBe. Obuviously, ax’s should be distinct from each other. Thus, without
loss of generality, we can assume a1 < az < +++ < Q.

When the above uniqueness condition is satisfied on {au, - - - , an }, the coefficient
of 2% of f(z) in (5) gives the value of per(A). For example, when {a1, a2, a3} =
{1,2,4}, ax is 7, and 7 is different from 1 +141 (=3),1+14+2 (=4),1+1+4
(=6),14+24+2(=5),1+4+4(=9),2+2+2(=6),2+2+4(=8),2+4+4
(=10) and 4+ 4+ 4 (= 12). Thus, {a1, a2, a3} = {1,2,4} satisfies the uniqueness
condition. For another set {a1, a2, az} = {1,2,3}, @ = 6, and it is equal to 2+2+42
so the set {1,2,3} does not satisfy the uniqueness condition.

We show some sets that satisfy this uniqueness condition.

Lemma 1. The set {a; : o = 2i71}?:1 satisfies the uniqueness condition, so the
value of the permanent is given by the coefficient of x* ~ 1 of the polynomial

n

0 1 n—1
flz) = H(a“l'Q + apx® + -4 amz® ). (6)
i=1
Proof. For a; = 2!, a, = Y7 | i = 2" — 1. Denote the sequence [31, -, 3,] in

Condition 2.1 by B and assume that > ;_, S = 2" — 1. Since a. is odd, at least
one a1 (= 1) is contained in B, i.e., there is an index ¢; such that B, = ai1(=1).
Consider oy —a1 =2" —2 =2x% (2"71 —1). We must represent o, — a1 by the sum
of n — 1 values repeatedly chosen from a1, - - -, a,. When we can choose a set whose
sum equals a. — a1, there must be a subset whose sum is equal to 2, i.e., there is
one index ¢2 such that B¢, = az2(= 2), or there are two indices ¢2 and ¢3 such that
Be, = ar(= 1) and B¢, = ai1(= 1). Because, if there is no subset whose sum not
equal to 2, the value 2" — 2 cannot be represented with a multiple of 4. Note that
B¢, should not be used in these subsets. Therefore, the set B should contain “three
a1’s” or “one a1 and one an.”
By a similar observation, there must be the n subsets whose sums are 1, 2, 4,
-+, 2771 respectively. We can use only n numbers, so that we should assign one
number to construct each subset, i.e., {1} for 1, {2} for 2, ---, {2"7'} for 2"~ 1.
That is, there are no Bxr’s whose sum is equal to a.. except such that the 31, --,0,
is a permutation of o, -« ,au,.
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Corollary 1. The set {o;}/—; defined by a; =2"* —1 (i = 1,--- ,n) satisfies the
uniqueness condition 2.1 and Y7 o =, =2" —n — 1.

Corollary 2. For integer p (> 1), the set {a;}1—; defined by o = p'~ ' satisfies the
uniqueness condition 2.1.

3 Methods

In this section, after a brief explanation of automatic differentiation (AD), we in-
troduce commutative quadratic nilpotent elements, and we outline an example im-
plementation of commutative quadratic nilpotent elements.

3.1 Automatic Differentiation

AD [42,136,227] is a well known method to compute derivatives of functions whose
values are computed by programs. Here, we discuss some topics of AD related to
this work. Given a program that computes a value of a function, AD is a method for
generating a program that computes the values of the derivatives of the function.
There are mainly two styles for its implementation, one is a precompiler, and the
other is a library program that works through (a kind of) operator overloading.

There are also several methods to compute higher order derivatives with many
variables. One of the simplest ways is repeated applications of a precompiler to the
derived programs. Another simple way is the use of nested definitions of classes with
the C++ template mechanism. An example of a succinct program for the permanent
is given in Fig. 1. In this program we define a class “ad<double>” for differentiation,
then declare another class “ad<ad<double> >”2 for the second order differentiation,
and so on. This small program computes the permanent of an n X n (n = 5) matrix.
When the size n, is large it may consume much memory. However, it is a simple way
to compute the permanent as well as the higher order derivatives of a multivariate
function. For the computation of the permanent, only definitions of the addition and
the multiplication are described. However, definitions of other operators, elementary
functions and utility interfaces are easily given in this manner. We could generate
computational graphs for the higher order derivatives for the reverse mode AD. For
a univariate polynomial, the computation of the Taylor series is the method for
computing the higher order derivatives.

3.2 Commutative Quadratic Nilpotent Element

The target value as the permanent is only the coefficient of the monomial with
the term z1x2 - - -, in the multivariate polynomial f(z1,--- ,x,) defined by (2). In
the intermediate computation of the expansion of f, there is no need to compute
any monomials containing quadratic powers of z;’s, i.e., terms 1% 5" - - - z,*» with
i, > 2 at least one k can be deleted. Thus, we can consider an algebra where every
monomial with a quadratic power of x; in its term is replaced with zero.

2 The space is important, i.e., “ad<ad<double>>” does not work.
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/* Permanent with higher order AD; by kubota@ise.chuo-u.ac.jp */
#include <iostream>

template <class T>
struct ad {
T v, dv;
ad(const T vO=T(),const T dv0=T()):v(v0),dv(dv0){}
template <class T>
ad<T> operator+(const ad<T> x, const ad<T> y) {
return ad<T>(x.v+y.v, x.dv+y.dv);}

template <class T>
ad<T> operator*(const ad<T> x, const ad<T> y) {
return ad<T>(x.v*y.v,x.dv*y.v+x.v¥y.dv);}

template <class T>
ad<T> operator*(double x, const ad<T> y){
return ad<T>(x*y.v,x*y.dv);}

typedef ad<double> adil;

typedef ad<adl> ad2; /* typedef ad<ad<double> > ad2;x*/
typedef ad<ad2> ad3;

typedef ad<ad3> ad4;

typedef ad<ad4> ad5;

double m[5] [6]={
{1,2,3,4,5},{2,3,4,5,6},{3,4,5,6,7},{4,5,6,7,8},{5,6,7,8,9}};
int main() {
int n=5;
ad5 x[n],f;
x[0].dv.v.v.v.v=
x[1].v.dv.v.v.v
x[2].v.v.dv.v.v
x[3].v.v.v.dv.v
x[4] .v.v.v.v.dv
f.v.v.v.v.v=1;
for(int i=0;i<n;i++) {
adb s;
for(int j=0;j<n;j++) s=s+m[i] [jI*x[j];
f=fx*s;

N e

std::cout<<"permanent="<<f.dv.dv.dv.dv.dv<<std::endl;

Fig. 1. Simple AD program for computing the permanent.

That is, introducing a set of n elements &1, &, -+, &, such that they are (i)
commutative &&; = €& (i =1,--- ,n,7 = 1,---,n) and (ii) quadratic nilpotent
& =0(i=1,---,n), we consider a computation of polynomials with these &;’s.

With this algebra (or elements), we can eliminate the useless monomials in the
expansion of the polynomial f in (2), saving computational time and space. For
example, with an implementation of this algebra, we can represent the expanded
term of (a1&1 + a2z + -+ -+ anfn)k by the (:) non-zero monomials. The number of
non-zero monomials is (¥~ with the conventional symbolic manipulators. When
n = 3, with three elements {&1,&2,&3}, we have

(a1 + béa + c3)?
=ad’6” + 767 + P&% + 2(ab&i&a + acki€s + befals) (7)
= 2(ab&1& + ac&1€3 + bekaks) (8)
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where the numbers of monomials in (7) and (8) are (**27') = 6 and (J) = 3,
respectively.

To implement this algebra, we can use a method similar to that of AD with
operator overloading. A monomial is represented as a pair of the coefficient and a
term, and an expression (or a sum) of monomials is represented as a set of the pairs
(details and example codes are described in [319]). An example implementation is
outlined below.

(1) Define a class monomial for monomials of the commutative quadratic nilpo-
tent element. A monomial c - &€ - &, 11, (b € {0,1}) is represented
by a pair of a coefficient and a bit-vector that indicates the exponents of the term,
ie. (¢, [bpbn—1---b2b1]). For example, (1.5 - £1&3) and (2.0 - £2€3) of 3 commutative
nilpotent elements are represented by (1.5,[101]) and (2.0, [110]), respectively.

(2) Define a class cqne for expressions of the commutative quadratic nilpotent
elements. For example, a set of one monomial 1.5 - £1&3 can be regarded as an
expression F1 = {(1.5,[101])}. Another set of one monomial 2.0 - £2€3 is also an
expression E; = {(2.0,[110])}. Thus an expression 1.5-£1€3+2.0-£2€3 is represented
by a set union of them, i.e. {(1.5,[101]), (2.0,[110])}.

(3) Define addition and multiplication for monomial. Addition is defined only
for two monomials with the same term. The result of the addition is the pair of the
sum of the coefficients and the same bit-vector of the summands (augends). The
multiplication of two monomials is equal to a monomial represented by the pair of
the product of the coefficients and the logical OR’ed bit-vector of the multiplicands.
The result is 0 if there is a &; that appears in both terms of the multiplicands.

(4) Define addition and multiplication for cqne. Since instances of cqne represent
expressions (polynomials), their addition and multiplication are defined naturally.
The addition F; + Es is a set union of the sets as the representations of F1 and Es.
If there are two monomials with the same terms, they are reduced to one monomial
by the addition of instances of monomial. The multiplication E; * E3 is a set of
monomials constructed by a sum of component-wise multiplications of E; and Es.

With this implementation, for two instances E; and FE> of class cqne, the com-
putational complexities of F1 * F2 and F1 4 F» are as follows. Denoting the number
of elements of the set of E1 by n1, that of E2 by na, a multiplication F; % F2 requires
n1-n2 multiplications of instances (monomials) of class monomial and m1-n2 insertion
operations of an item (a monomial) into a set (an expression). An addition E; + E»
requires at most min(ni,n2) additions of monomials and n; (n2) search/insertion
operations of an item into a set of size na (n1).

4 Algorithms

In this section, five algorithms for the permanent of an n-dimensional square matrix
A = (ai;) C R™™ and one algorithm for integer matrices are introduced.

Algorithm 1 (Differentiation of multivariate polynomial) This is a trivial
algorithm with a simple application of automatic differentiation.

(1) Construct a program Py which computes the value of f in (2).
Py has n variables x1, -+, Tn as inputs.

(2) Specifying x1 as the independent variable, derive a program Py from Py that
computes Of /0x1(z1,- - ,xn) with AD.
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(8) Specifying x2 as the independent variable, derive another program Pa from Py
that computes 82f/8x18m2 (1, ,xn) with AD.

(4) Similarly, specifying x3, T4, -+, Tn, derive programs Ps, Pa, -+, P, respec-
tively, with AD. The last derived program P, computes the value of the perma-
nent as the derivatives in (3).

Remark 1. The derivations of the programs Pi, P, ---, P, can be performed by
repeated applications of a precompiler (e.g., Padre2 [316-318]). Of course, a similar
program can be derived with a C++ class library (e.g., a program described in
Fig. 1) defined for the multivariate higher order derivatives.

If the source program P, computes f(z1, -+ ,%») in (2) directly, the execution
of Py requires n? + n — 1 multiplications and n? — n additions. With AD, “one
multiplication” and “one addition” in Py correspond to “two multiplications and one
addition” and “one addition” in P;, respectively. Thus, the number of multiplications
in the execution of P, is O(n?2™).

Algorithm 2 (Differentiation of univariate polynomial) With the Taylor se-
ries, the coefficients of the expansion of f in (6) can be computed directly. Here we
assume that the values of ai;’s are given as Lemma 1. Algorithms corresponding to
other values (given by Corollary 1, Corollary 2, etc.) may be described similarly.

(1) Construct a program Py that computes the value of f in (6).

(2) Replacing each variable v in Py with an appropriate data structure for Taylor
series with degree 2" — 1 (v = Zi:gl ckz®), derive a program Py.

(8) Ezecuting the derived program Py, the value of the permanent is directly computed
as the coefficient of 22"

Remark 2. Since the degree of the Taylor series can be truncated at 22" ~1 the size of
the additional memory space is 2" times of that for the original variables in the source
program FPy. We should implement the multiplication of Taylor series by means of
FFT so that the computational complexity of the execution of one multiplication
is O(n2™). The total computational complexity is O(n*2™) since there are (n — 1)
multiplications of 2"th order Taylor series.

Algorithm 3 (Commutative quadratic nilpotent elements) The n commu-
tative quadratic nilpotent elements &1, -+, £, can be used as real arguments in the
evaluation of f(x1, - ,xn) (Sect. 3.2). The elements &1, -+, &, are implemented
as instances of a class (named cqne in Sect. 8.2) in which overloaded multiplication
and addition operators are defined.

(1) Construct a program Py that computes the value of f in (2).

(2) Using the commutative quadratic nilpotent elements &1, - -, &n, derive another
program P1 that evaluates the value of f(&1,---,&n). That is, the data type
double that appears in Py should be replaced with the class cqne for commu-
tative quadratic nilpotent elements in P1 (in Sect. 3.2).

(8) Ezecuting P, the coefficient of the computed monomial as the result is equal to
the value of the permanent.

Remark 3. The computational complexity for computing s; = a;1&1 + ai22 + -+ - +
ainén (i = 1,---,n) is O(n?), and that for computing [to = 1 and tg = tp_1 * sp,
(k=1,---,n)] is O(n(2™ —2) - nlog 2), where nlog 2 represents the coefficient cor-
responding to the insertion/search operations for a set of which size is at most
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2™, Therefore, the total computational complexity is O(n?2"). Since the maximal

number of the monomials in the intermediate expressions is LT:;? | ), the complex-
ity of set operations for one multiplication is O(n( Ln72j> log (n( Ln72j ))) with a

balanced tree structure. (This algorithm can be regarded as an implementation of
the similar algorithm that computes only the monomials without quadratic factor
in their terms [314].) The number of multiplications and additions are n? +n — 1
and n? — n, respectively. When we should take account of the bit operation, the
complexity becomes O(n?2™).

Algorithm 4 (Computation of residues) For Lemma 1, f(x) in (6) is a poly-
nomial with degree n2" "1 and the value of the permanent is given by the coefficient
of 2 7. Thus

LI 2’Tf <ei0) 2P0 g9 — L/jﬁg(g) dé (9)

omi | 22" T 2w ), 2

gives the permanent, where g(0) = f(ew)e*i@n*l)e.

(1) Construct a program Py that, given a value of 6 as input, computes the value of
the function g(0) defined by (9).

(2) Perform numerical integration of g(8) on [0,2n] with the N-point trapezoidal
rule, where N is given in the following Lemma 2.

(3) We have

prt) = S () o LS () )

Lemma 2 (Appropriate N). Although the degree of the original polynomial is
n2"~ ! the right-most equation in (10) with N = 2" gives the exact value of the
permanent. That is, N = 2" does not cause the alias on the coefficient of 22"t for
DFT (Discrete Fourier Transformation).

Proof. There are no monomials represented by 2" 712" for non-zero k in f(x)
in (6) because of the similar argument in the Lemma 1 and its proof of the degree
of #?"~1F*2" Thus N = 2" is large enough for the summation (10) to give the
coefficient of 22" .

Remark 4. Algorithm 4 requires O(n?2™) arithmetic operations, since O(n?) is re-
quired for computing g(6;) for given 8;, and there are N = 2" points 01, - -, an at
which g(0) is evaluated.

Algorithm 5 (Mixed algorithm) This is a mized algorithm using commutative
quadratic nilpotent elements and FFT.

After computation of three products each of which computes a product of n/3
factors with the commutative quadratic nilpotent elements, the convolutions of three
products are computed with FE'T of degree 2" for avoiding aliases (Lemma 2). For
simplicity, we assume that n is a multiple of 3.

(1) Divide (2) into three parts for k = 1,2,3: s = H?}?—/?)n/sH >y @i Ty
(f(z1, -+ ,xn) is computed by f(x1, - ,Tn) = S1- 82 - S3).
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(2) Compute all the coefficients of monomials in s1, s2, S3 with commutative
quadratic nilpotent elements. The mazximal number of the monomials is (n73)

(8) To construct a polynomial s1(x) by replacing & of the term of each monomial
in s1 with 2 (i=1,---,n), prepare an array consisting of 2" components in
which s1(x) is represented. Similarly, construct s(x) and s3(x) in arrays from
s2 and s3, respectively.

(4) With FET of degree 2", derive the 2™ -dimensional vector §1 from s1(x) as well
as 82 and 83 from s2(x) and s3(x), respectively.

(5) Construct f by the computing component-wise product of §1, $2 and 3. Then,
derive all the coefficients of f(x) from f by the inverse FFT.

(6) The coefficient of "~ of f(z) is the value of the permanent.

n

Remark 5. This algorithm requires ZZQ n-(})log(n- (})) arithmetic operations
for computing each of s1, s2 and s3, where log(n - (Z)) represents the computational
complexity of each insertion/search operation for a set with the size n - (7). Con-

struction of s;(z) from s; is O(2"), and its FFT is O(n2") (i = 1,2, 3). Since the

inequality Z:fl n-(3)log(n-(})) < gn(n%) log <n(nr/”3>) < n2" holds for large
n, the total complexity is O(n2").

The following Algorithm 6 computes the value of the permanent of a non-
negative integer square matrix A C Z,"*".

Algorithm 6 (Higher precision computation) When A is a non-negative in-
teger matriz, e.g., (0,1)-matriz, the value of the permanent is also a mon-negative
integer. Thus, all the coefficients of f(xz) of (5) are also non-negative integers. Let
M be an upper bound of the coefficients of f(x). We have

per(A) = \‘f(%)Ma*J mod M, or per(A)=|f(M)/M* |mod M ,

where a. = > i, ;. Each equation requires only one evaluation of f, i.e., f(1/M)
or f(M). The length of the precision of the arithmetic operations should be 2™ log M .

Remark 6. Algorithm 6 gives the value of the permanent with one evaluation of the
polynomial f(x). The number of arithmetic operations in the evaluation is O(n?),
but the required precision (bits) of each operation is O(2" log M) so that the total
complexity is O(n?2" log M log(2" log M) log log (2™ log M)).

5 Discussions and Comments

5.1 Higher Order Differentiation of Multiple Variables

AD for multiple variables to compute the higher derivatives of f(z1, -+ ,xy) in (2)
can be implemented with precompilers and/or with operator overloading features
in C++. With symbolic manipulators, it is quite easy to derive the permanent. For
taking account of the sparsity of the derivatives, use of the commutative quadratic
nilpotent elements (Sect. 3.2) is better than the original differentiation of multivari-
ate polynomial.
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5.2 Use of Taylor Series

The transformation (Sect. 2.2) into univariate polynomials from the multivariate
polynomial is simple, so that the use of Taylor series is also an easy way to compute
the value of the permanent. Changing the data structure of the coefficient of Taylor
series, for example, using a Boolean data type, can be used for the decision problem
whether the value of the permanent is zero for (0,1)-matrices.

5.3 Transformation into Univariate Polynomial

We show several sets of a;’s for replacing x; with %, to transform the multivari-
ate polynomial (2) into univariate polynomials. There are other sets satisfying the
uniqueness condition (Condition 2.1). For some small n, sets of a;’s that satisfy
the condition are shown in Table 1.

Table 1. Examples of the set of a;’s satisfying the uniqueness condition

n n
31013 6(0 210 21 22 26
023 045 1624 26
410146 7|015 21434553
0256 0810 32 48 52 53
50151113
0281213

Lemma 3. For any n, if there exists a function w(n) such that there is a set of a;’s
(o < ag < -+ < an < w(n)) satisfying the uniqueness condition 2.1, the value of
the permanent can be computed with O(n*w(n)) arithmetic operations.

Proof. The exact value of the permanent can be computed with numerical integra-
tion with the N-point trapezoidal rule. The N should be larger than the degree
of the polynomial f(z) in (5). O(n?) operations for each evaluation of f(x) and
N = n-w(n) is big enough to integrate, thus the total computational complexity is

5.4 Computation of Residue

Since the degree of the polynomial is very large, the integrand should be integrated
along with z = €% in (9). The integration of a cyclic function on a whole cycle should
be computed with the trapezoidal rule at equidistant points. Although g(0) consists
of components of very high frequencies, other numerical integration schemes may
be considered for integration of g(6) to reduce the number of the points at which g
is evaluated. In this case, the resulting value is an approximation of the permanent
with some truncation errors. More investigations may be needed in this direction.

6 Conclusion

We show algorithms for computing the exact value of the permanent with the tech-
nique of automatic differentiation and with commutative quadratic nilpotent ele-
ments. Mixing commutative quadratic nilpotent elements and FFT, we show another
algorithm for the exact permanent whose computational complexity is O(n2"), equal
to that of Ryser’s algorithm.
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Summary. A restoration procedure based on a priori knowledge of sparsity pat-
terns of the compressed Jacobian matrix rows is proposed. We show that if the rows
of the compressed Jacobian matrix contain certain sparsity patterns the unknown
entries can essentially be restored with cost at most proportional to substitution
while the number of matrix-vector products to be calculated still remains optimal.
We also show that the conditioning of the reduced linear system can be improved by
employing a combination of direct and indirect methods of computation. Numerical
test results are presented to demonstrate the effectiveness of our proposal.
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1 Introduction

To determine sparse Jacobian matrices efficiently it is necessary to exploit informa-
tion such as sparsity and other special structure such as certain regularity patterns
of the sparsity structure. Given “seed” matrix S € R"*? and the Jacobian matrix
J € R™*™ the “compressed” Jacobian can be obtained as the product JS using,
for example, the forward mode of automatic aifferentiation (AD). When the sparsity
information is available a priori the nonzero entries of matrix J can be restored (i.e.
recovered) by solving for them in the linear system of equations

JS=8,

where B is the compressed Jacobian matrix obtained via AD forward mode. Un-
less stated otherwise the product JS is assumed to be computed as p matrix-vector
products using AD forward mode from which the unknown elements of J are solved.
The Curtis, Powell, and Reid (CPR) [141] compressions allow the nonzero entries

* This research is supported in part by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and the Norwegian Research Council (NFR).
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to be “read off” the compressed Jacobian directly. However, it has been shown that
finding minimal CPR determination [128] and optimal direct determination [272]
of Jacobian matrices are NP-hard. On the other hand, with certain classes of seed
matrices the nonzero entries of J can be obtained indirectly via substitution or
elimination [225]. While indirect methods, in general, are more efficient than direct
methods in that they typically require fewer matrix-vector products, numerical pre-
cision of the computed quantities may suffer due to the accumulation of round-off
errors. In the elimination proposal of Newsam and Ramsdell [412] two classes of seed
matrices have been considered: the Vandermonde and the Chebyshev-Vandermonde.
Although the Vandermonde seeding allows for efficient solution of the reduced linear
system for the nonzero entries, the numerical conditioning is a major concern except
for when the number of nonzero entries in each row is very small. Geitner, Utke,
and Griewank’s proposal [201] uses graph coloring to improve the numerical condi-
tioning of the computed entries using the Newsam and Ramsdell approach. Hossain
and Steihaug [271] suggest elimination schemes that employ new classes of seed ma-
trices which have been further analyzed and tested by Griewank and Verma [233].
We follow the terminology in [233] and use the term Pascal seeding for the one
suggested in [271]. With the new classes of seed matrices the numerical accuracy
of the computed quantities has been found to be very favorable compared with the
Vandermonde systems. Moreover, the resulting linear systems can be solved for the
unknowns quite efficiently by using the special structure of the Pascal seed matrix.
In the present work, we propose extensions to the indirect methods that improve
the numerical conditioning further while economizing computational effort in the
restoration phase.

The notational conventions used in this paper are as follows. If an uppercase
letter is used to denote a matrix (e.g., A), the (i,7) entry is denoted by A(%,j) or
by the corresponding lowercase letter a;;. We use colon notation [222] to specify a
submatrix of a matrix. For A € R™*"™, A(i,:) and A(:,j) denote the ith row and
the jth column, respectively. For a vector of column indices v, A(:,v) denotes the
submatrix comprised of columns whose indices are contained in v. For a vector of
row indices u, A(u,:) denotes the submatrix comprised of rows whose indices are
contained in u. A vector is specified using only one dimension. For example, the ith
element of v € R" is written v(7). The transpose operator is denoted by (). A
blank or “0” represents a zero entry, and any other symbol in a matrix denotes a
nonzero entry.

The remainder of this paper is organized as follows. In Sect. 2 we describe the
sparse Jacobian matrix computation problem via matrix compression. We provide a
brief overview of matrix compression techniques that have appeared in the literature.
Section 3 presents the Schur complement approach for the restoration of nonzero
entries from the compressed Jacobian matrix. For each Jacobian row an extended
linear system is obtained, and the nonzero entries are computed from the Schur
complement. The special structure of the extended system economizes the compu-
tational cost in recovering the nonzero entries. In Sect. 4 we describe how to combine
different compression and restoration techniques adaptively to recover the nonzero
entries efficiently and accurately. Section 5 contains the discussion of exploiting “lo-
cal” sparsity patterns of Jacobian rows. For certain zero-nonzero patterns we show
that the linear system to be solved yields substitution while using minimal number
of matrix-vector products. Section 6 presents results from numerical experiments.
The paper concludes in Sect. 7 with some final remarks.
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2 Optimal Matrix Compression and Restoration

Both AD and Finite Differencing (FD) allow estimates of the nonzero entries of a
Jacobian matrix to be obtained as matrix-vector products. For a sparse matrix with
known sparsity pattern or if the sparsity can be determined easily [230] substantial
savings in computational cost (i.e. the number of matrix-vector products) can be
achieved.

A group of columns in which no two columns have nonzero elements in the same
row position is known as structurally orthogonal. If columns j and k are structurally
orthogonal, then for each row index i at most one of A(4,5) and A(i, k) can be
nonzero. In general >, A(i,j) = A(i, k) for some k (k will depend on ), where the
sum is taken over the column indices of a group of structurally orthogonal columns.
An estimate of the nonzero elements in the group can be obtained in

Of (xz +ts)
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with a forward difference (one extra function evaluation), where b is the finite dif-
ference approximation, and s = > ;€ where e; denotes the jth coordinate vector.
With forward AD, the unknown elements in the group are obtained as the product
b = f'(z)s, accurate up to the round-off error resulting from the finite machine pre-
cision. The sparse Jacobian matrix determination problem can be stated as follows.

Obtain vectors si,--- ,sp such that the matrix-vector products
b, =As;, i=1,--- ,por B= AS

determine the m x n matrix A uniquely. Matrix S is popularly called the
seed matrix.

Denote by p; the number of nonzero elements in row 7 of A and let v € R”* contain
the column indices of (unknown) nonzero elements in row i of A. Let S € R™*? be
any (seed) matrix. Compute

B=AS.

Let
A(i,v) = (a(1) - a(p)) =a’,a € R”,

B(i,:) = (B(1) - B(p)) = 7,8 € R”, and
S =5,
Then the unknown elements satisfy the overdetermined (p; < p) linear system
Sia = 8. (2)
Without loss of generality, assume that p; = p. Then if S

e is a permutation matrix, we have direct determination,

e can be permuted to a triangular matrix, we have determination by substitution,
and

e is a general nonsingular matrix, we have determination by elimination.
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For sparse Jacobian matrix determination we are interested in the seed matrices
for which the reduced linear system is numerically well-conditioned and “easy” to
solve. The CPR method uses a greedy technique to partition columns into struc-
turally orthogonal groups. The resulting seed matrix yields direct determination of
nonzero entries implying that the nonzero entries are simply identified in the com-
pressed matrix B. In the following we will assume that the matrix A is a m X p
CPR-compressed matrix and the number of columns in the seed matrix is ¢q. It is
important to notice that in a CPR-compression the number of nonzero elements in
any row is preserved. Let pmqe denote the maximum number of nonzero elements in
any row of A. Then to determine the nonzero entries uniquely at least pmqs prod-
ucts are needed in any method based on matrix-vector product calculation. The
column merging technique proposed in [270] defines seed matrices for which the
reduced linear systems are triangular while requiring fewer matrix-vector products
than CPR-based direct methods.

An important feature of elimination methods such as [271,412] is that the number
of matrix-vector products needed to completely determine a sparse Jacobian matrix
using AD forward mode iS pmaqz. Recall that if

q
PA) =D a;N !
j=1

is a polynomial of degree ¢ — 1, where the coeflicients a; are to be determined by
interpolation, then P()\;) = P; for j = 1,...,q defines a system of ¢ linear equations
from which the coefficient vector a € R? is uniquely determined if the A; are distinct.
Thus the set

{)\Fl :AERforj = 1,...,q}

forms a basis for the function space spanned by polynomials. In matrix notation,
the linear system is written
Via="P,

where V is a Vandermonde matrix, which can be solved in O(¢?) floating point op-
erations [222]. The difficulty here is that the numerical conditioning of the system
deteriorates exponentially with the size of V. This difficulty with conditioning is ame-
liorated by choosing Chebyshev polynomials 7; to form an orthogonal basis for the
polynomial function space. Such systems, also known as Chebyshev-Vandermonde
systems, provide an alternative to Vandermonde systems with a computational cost
of O(¢?) floating point operations [458]. Vandermonde and Chebyshev-Vandermonde
seed matrices have been considered in [201,412]. To define the successive column
merging seed matrix [271] also known as the Pascal seed matrix, let 0; denote the
zero vector in R?. Then row i in S” is (column ¢ in the seed matrix S € RP*9)

[Oifl u Opfdfi} )
where component j in v € R withd < p — pmae is the binomial coefficient
d . . .
(j 1 ) Compared with the Vandermonde-type seed matrices, the Pascal matrix

is sparse, structured, and contains only integer entries [271]. Furthermore, the con-
dition number of the reduced system grows only modestly with p, e.g., as p?. In
Sect. 3 we provide a closed form expression of || - |1 condition number estimate for
Pascal seeding. If we accept a condition number, for example, of 10® and want to
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use the fact that every row of A has 4 zeros, we can allow p to be as big as p = 100.
Very few of the standard test problems have that many columns in the compressed
Jacobian matrix. Also, since d can be considered as a (user controlled) parameter,
the nonzero entries can be determined with higher precision with an increase in the
computational cost due to the calculation of additional matrix-vector products.

Preprocessing the Jacobian matrix with the CPR seeding reduces the problem
dimension from m X n to m X p. The rate of growth of the condition number for
the Pascal seeding of O(p?) indicates that numerical conditioning can be improved
by an appropriate preprocessing step. This observation can be generalized as com-
bining methods in which parts of the Jacobian matrix are compressed and restored
adaptively. In an implementation, the procedure entails restoration of unknown en-
tries from the product of the Jacobian matrix with a sequence of seed matrices. We
elaborate this idea in Sect. 4.

The use of sparsity in the preprocessed (or pre-compressed) Jacobian matrix rows
can be highly effective in improving the numerical conditioning of the reduced linear
system while maintaining the optimality of the number of matrix-vector products.
The substitution scheme that exploits the consecutive zeros property in the Jacobian
rows [270] is generalized as a “recurring” sparsity pattern in Sect. 5.

3 Schur Complement Approach

Let v and z be vectors of column indices of nonzero and zero elements, respectively,
of some row of A and let p denote the number of nonzero elements in that row.
Suppose S € RP*? is a seed matrix and assume that the compressed Jacobian
B = AS has been computed. Define Z € R¥*? d = p—q), q>p

Z(i,:)=ely, i=1,...,d.

ST
w=(%)-
A(iv) = (a() - a(p)) = " a € R,
B(i,:) = (B(1) -~ Bla)) = BT, B € RY .

Consider the matrix

and let

Then,
Wz =5 (3)

with = (z1 #2),a = z(v) and b = (8 0). Let the matrix W be partitioned into
blocks so that (3) can be written as

(Z2)(3) =) @)

where S; = S(1 : q,1 : ¢)7, and the vectors = and b are partitioned accordingly.
Equation (4) can be solved for x as below.

1. Compute: —Z,57 'Sz + Z»
2. Solve for @2: (—Z157S2 + Z2)xe = —Z:1S7' S
3. Solve for x1: Siz1 = 8 — Sax2
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4. Obtain: a = z(v)

The seed matrix S can be chosen to be column merging [270], Pascal, Vandermonde,
or other suitable matrix, every square submatrix of which has full rank. We call the
coefficient —Z; 51 1S5 + Z5 in Step 2 in the above algorithm the Schur complement
matriz or simply the Schur matriz. Computing S; *S2 entails solving d linear systems
with the same coefficient matrix S; and the same right hand side given by S2 for
each row of A. Therefore, S1 needs to be factored only once, and the factors are used
repeatedly. Further, Z; and Z> are 0 — 1 matrices so that computing their product
with other matrices is simple.

In the following, we assume that the matrix S is the Pascal seed matrix. It can
be verified that the block S; is upper triangular, and the nonzero entries are the
binomial coefficients:

d s L
> 9 >
S1(i,5) = (j—l) Hitdzj2iycij<q. (5)
0 otherwise

Then S; ! is upper triangular and is given by
d+j—i—1

_1yi—i P
sy =4 Y ( d—1 ) 52t 1<ij<q. (6
0 otherwise

Si So
13310000

01331[000

00133/100
| —21 =35 —15

00013[310 ;

W= 7 Schur Matrix 6 8 3

00001]331 (=287 So + Z2)

10000[000
00010/000

00001[000
Z Zs

-3 -3 -1

Fig. 1. Schur matrix with the Pascal seeding when p =8,¢ =5, and z = (1 4 5).

Figure 1 shows the Schur matrix W with p = 8 and ¢ = 5. Vector z indicates that
columns 1, 4, and 5 contain zero in some row of the Jacobian matrix. The remaining
q = 5 elements are nonzero and are to be determined. We note that p < ¢ < p
is an important user-supplied parameter. With ¢ = p the number of matrix-vector
products needed is minimal but with a corresponding increase in the computational
cost for restoring the nonzero elements, while ¢ = p results in direct determination
of the nonzero entries.
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Using (6), the inverse of S is computed as

1-3 6 —10 15

01 -3 6 —10
Sit=100 1 -3 6
00 0 1 -3
00 0 0 1

We have no rounding errors in computing —lel_ISQ + Z5 since the matrix W
contains only integer entries. An estimate of the numerical conditioning of S in L;
norm can be given as

1

d a— .
- d d+i—-1 +d—1
a=tsiisn =3 (9 5 (05 ) -2 () e
=0

=0 i=

Conditioning of the step 3 is the worst possible and is O(p*?). However, this modest
increase in conditioning does not seem to cause significant numerical difficulties in
our computational experiments.

4 Combined Determination

Pre-compressing the Jacobian matrix J € R™*™ with the CPR seeding improves the
numerical conditioning of the reduced linear systems. The pre-compressed matrix
A = JSP") is further compressed by, e.g., the Pascal seeding to give B = ASFasead)
from which the nonzero entries are solved. In general we can describe the compression
process as a sequence of sub-compressions S, 8@ . SO guch that

§=5Ms®...s0  js=pB
S@ is constructed using sparsity information in A®

AGHD 4 g) 4 _ g
and A® is restored from

AD gl — gG+D) - 4G+ _ B

In this way appropriate seeding can be chosen based on the sparsity and other
structural information such as regularity of sparsity pattern at different stages of
the compression process.

Often the available sparsity can be better used in a piecemeal fashion, e.g., by
blocks of columns based on row sparsity pattern. The CPR, being a greedy algo-
rithm, tries to put as many columns as possible into the current group of structurally
orthogonal columns. Therefore, it is anticipated that the earlier column groups will
contain most of the nonzero entries. The distribution of zero entries in the Jacobian
row affects the conditioning of the system in step 2 of the Schur complement ap-
proach. If the zero entries in a row occur in the last d locations then the block Z; are
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zero, and the block Z3 becomes a permuted identity matrix. Then z2 is zero and
is determined in step 3 without having to perform steps 1 and 2. If most of the zeros
are in the second half, say of length p’, the first half (i.e., the columns in the first
half) can be determined directly, and the conditioning now grows as O((p’)?) rather
than O(p?) using Pascal seeding, for example. To illustrate, let A = [A; As] € R™*P
be a Jacoblan matrlx such that A; is best restored by method 1 with the seed ma-
trix S1 € R” 4" and that A, 1s best restored by method 2 with the seed matrix
S, € RPxd" where p = p' +p” and q = ¢’ + ¢”. Define

S1 = (S(;l (I)) , where I denotes the identity matrix of order p”, and

So = (é 59 ) , where I denotes the identity matrix of order ¢’ .
2

Then S = 5155 constitutes the seed matrix for the methods 1 and 2 combined.

5 Using Recurring Sparsity Structure in Rows

It has been shown in [270] that if each row of A € R™*? has a “pattern” of at least
d consecutive zero entries with d < p — pmaae, then a seed matrix S € RP*®~9 can
be defined for which column i has the form

[0:-1e0p_a-i] , (7)

where e € R*™! is a vector of all 1’s. Then Si,i =1,2,...,m corresponding to row
i of A is nonsingular and substitutable. More specifically, S; consists of rows of S
with indices corresponding to column indices of the nonzero entries of row ¢ of A.
Since row 7 of A contains a sequence of d consecutive zeros, the rows of S picked up
for S; must be d rows apart leading to a split in S; into a lower triangular and an
upper triangular part.

If each row of A contains a pattern of p — pmax consecutive zeros, the resulting
substitution scheme is optimal in the number of matrix-vector products needed to
determine A. In general, the zeros in each row may not be consecutive. Finding
a column permutation so that zeros in each row appear consecutively is also NP-
hard [271]. Extending the idea of consecutive zeros pattern we can allow few nonzero
entries to be interspersed with zeros. To illustrate, consider matrix A with p = §,
Pmaz = 6, and d = 2. Suppose for some row of A the two zeros are not consecutive,
but in each row there exists a pattern of three elements in which two of them are
identically zero (not necessarily consecutive). One such row is shown below.

[x X 0 x 0 X x x].
N——

1

pattern

Then A can be determined by substitution with ¢ = 6 matrix-vector products using
the seed matrix shown in (7) with d = 2. Thus, if for each row of A there exists
a sequence of d + 1 elements of which d elements are identically zero, the column-
merging seed matrix of (7) can be used to recover the nonzero entries with p — d
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matrix-vector products. In other words, d zero elements in a row can have one
nonzero element interspersed.

Let d’ be the number of nonzero entries in the pattern. The corresponding seed
matrices will be chosen so that the splitting of the reduced seed matrices could
involve solving a d’ x d’ linear system and the remaining unknown entries in the row
can be restored via substitution.

Possible recurring sparsity patterns of length five with two nonzero (d' = 2)
elements that can be restored with e = [1101] result in the eight patterns

Xxx000, x0x00,x000x, 0x x00,
O0x0x0,0x00x,00xx0,000x x.

A pattern of length d + 2 with two nonzero elements separated by one zero element
can be restored with e = [1...101...101...1] (for d > 4 and d + 2 divisible by
3). Figure 2 depicts the reduced seed matrix for a pattern of length five with two
nonzero entries interspersed with three zeros. The 2 x 2 triangular system in the
middle must be solved to start substituting for the remaining unknown entries in
the Jacobian row.

Use of a priori known “regular patterns” in sparse Jacobian and Hessian matrices
has been considered in [218]. Computational molecules (or stencil) for Laplacian
approximated by finite differences in the solution of certain type of partial differential
equation problems give rise to sparse Jacobian and Hessian matrices. The techniques
presented in [218] can optimally determine matrices with certain regular sparsity
patterns such as banded structure. In our proposal the zero-nonzero patterns of
interest in the rows of the pre-compressed Jacobian matrix need not have any specific
structure.

Returning to the recurring sparsity pattern of length five with two nonzero ele-
ments, the patterns

x00x0and 00 x 0 x

p =10
p=T
Pattern of 5 elements
3 zeros and 2 nonzeros
d=3d =2

Row S Restoration

[ [TTTTT 1 | 1

1
_—

Pattern 0 1 1
1 0
0d1 1

1

Fig. 2. Restoration of pattern 0 x 0 x 0
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cannot be restored for this particular seed matrix. On the other hand, with the
Pascal seeding, all patterns are restorable.

6 Numerical Experiments

In this section we provide numerical test results of applying the restoration tech-
niques proposed in the paper. The test programs are implemented in MATLAB and
run on a SunBlade and an Intel PC running Solaris and Windows XP, respectively.
We report experiments on conditioning of the linear system for the restoration of
nonzero elements where the test problems are drawn from the Harwell-Boeing test
matrix collection [154]. The six test problems are pattern matrices where any opti-
mal structurally orthogonal column partition contains more than p,,q. groups. Table
1 reports the important matrix statistics as well as the cardinality of the optimal
structurally orthogonal column partition obtained via exact graph coloring [272].
The number of column groups in the optimal partition is more than ppq. for all
problems. Figure 3 depicts the Ly condition number (in sorted order) of the Pascal
(reduced) seed matrices and the Pascal Schur matrices for the Harwell-Boeing test
problems. In both the approaches the growth of the condition number is modest;
only a small percentage of the rows experience poor conditioning. In general, the
conditioning of the Schur matrices are poorer than that of the Pascal reduced seed
matrices.

Table 1. Structurally orthogonal column partition of Harwell-Boeing test problems.

Name |Number of columns (n)|Number of rows (m)|pma= |Optimal partition
ash219 85 219 2 4
abb313 176 313 6 10
ash331 104 331 2 6
will199 199 199 6 7
ash608 188 608 2 6
ash958 292 958 2 6

7 Concluding Remarks

We have presented effective ways to exploit sparsity to determine sparse Jacobian
matrices. The Schur complement approach is highly efficient in restoring the nonzero
entries. On practical problems the numerical conditioning does not cause a signifi-
cant problem. The combined determination technique proposed here can be applied
with the pattern restoration to reduce the numerical conditioning further. More
importantly, the linear system we have to solve for the nonzero entries in pattern
restoration is at most pPmaez X Pmaz, Which is much smaller than p — the number of
columns in the compressed Jacobian. Most of the computations in the Schur com-
plement approach can be performed in integer arithmetic, minimizing the potential
round-off error on a finite precision computer.
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Fig. 3. Condition number of the Harwell Boeing matrices. (a) Pascal (reduced) seed
matrix. (b) Schur matrix.

The pattern restoration substitution technique reduces the condition number
based on the identification of particular sparsity pattern of a row to be determined.
A related question is concerned with the identification of a pattern automatically
and prescribing a seed matrix for the restoration of the pattern. We note that the
columns of the CPR~compressed Jacobian matrix can be permuted to shift the zero
entries toward the right end of the matrix.
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Summary. Systems of stiff ordinary differential equations (ODEs) can be inte-
grated properly only by implicit methods. For that purpose, one usually has to solve
a system of nonlinear equations at each time step. This system of equations may be
solved by variants of Newton’s method. The main computing effort lies in forming
and factoring the Jacobian or a suitable approximation to it. We examine a new ap-
proach of constructing an appropriate quasi-Newton approximation for solving stiff
ODEs. The method makes explicit use of tangent and adjoint information that can
be obtained using the forward and the reverse modes of algorithmic differentiation
(AD). We elaborate the conditions for invariance with respect to linear transfor-
mations of the state space and thus similarity transformations of the Jacobian. We
present one new updating variant that yields such an invariant method. Numerical
results for Runge-Kutta methods and linear multi-step methods are discussed.

Key words: Quasi-Newton, stiff ODE, adjoint-based update, scaling invariance,
ADOL-C

1 Introduction

For many time-dependent simulations, the underlying system can be modelled as
the solution of an initial value problem (IVP)

i(t) = f(z(®), te(0,T), =z(0)=neR", (1)

on a time interval [0, 7], where z(¢) denotes the state variable. To compute a nu-
merical approximation of the solution z, we perform a discretization {to,...,tn} of
the time interval [0, 7] using the step size hy = tx — tx—1. Applying a numerical
integration method yields the discrete solution vectors

ZL'k:ZL‘k_l+hké(l’k,xk_h...,wk_l,hk) ]f:].,.,.,N, To ="
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at the times ti. Here, & = ®(xy,...) represents the step function of the integration
method. If @ does not depend on the so far unknown zy, the integration method is
called explicit and is well suited for a wide range of ordinary differential equations
(ODEs). However, as soon as the underlying problem is described by stiff ODEs,
for example due to very different time scales (see [249]), implicit methods must be
used to allow a reasonable time step. Then, the step function @ also depends on
the unknown value . Therefore, the new state xx must be obtained by solving the
n-dimensional system

Fk(l'k) =Tk — Tk—1 — hk@(azk,xk_l, ey X1, hk) =0eR". (2)

Since f is usually nonlinear, (2) is often also nonlinear, although there are classes
of linearly implicit ODE solvers. To compute the next state zp, one may apply
an iterative Krylov method. As an alternative, one may solve a system of mostly
nonlinear equations in each integration step using an iteration of the form

20D = 20— AT R (D) (3)

where the sequence {z(V};cn should converge to the solution z* = zj of (2) for
given values of z;_1,...,xr—;. For that purpose, Newton’s method can be applied by
setting A; = F'(mk) if the complete Jacobian is available at a reasonable cost. Since
factoring the Jacobian at each time step is usually quite expensive, we present here
a new adjoint-based quasi-Newton method that provides a factorized approximation
of the Jacobian. First studies in this direction were made by Brown et al. [74] for
Broyden’s method. However, the use of quasi-Newton methods is not widespread, for
two reasons. First, the quasi-Newton methods proposed up to now were not scaling
invariant. Hence, a simple scaling of the variables may strongly effect the convergence
behaviour. Second, so far it is not possible to perform adaptive time stepping with
a cost that is quadratic in the dimension of the problem, because the factorization
that is updated cannot be adapted to the new time step cheaply. Hence, one has
to perform a new QR-factorization as soon as the time step changes. Therefore,
the most well-known packages for the integration of stiff ODEs, DASPK [73] and
CVODE [127], only provide several variants of Newton’s method as direct methods
or Krylov methods as indirect variants but no low-rank updating approach.

The quasi-Newton updates that we propose use tangent and adjoint information
obtained using algorithmic differentiation (AD). One of them has the property of
scaling invariance to overcome the first problem of quasi-Newton updates in the
context of stiff ODEs. Future work will be dedicated to a new factorization procedure
that allows also a comparatively cheap change of the time step size. These two
ingredients would form a powerful combination that should allow a more extensive
use of quasi-Newton methods for the integration of stiff ODEs.

The paper has the following structure. The new quasi-Newton updates are pre-
sented in Sect. 2, and we elaborate the conditions for invariance with respect to
similarity transformations of the Jacobian. The resulting update formulas are imple-
mented using C/C++ as the programming language and the AD-tool ADOL-C for
providing the required derivatives. Implementation details are described in Sect. 3.
The numerical results obtained for two Runge-Kutta methods and two BDF meth-
ods are discussed in Sect. 4. Finally, a summary and an outlook of future work are
given in Sect. 5.
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2 Quasi-Newton Approximations

Applying Newton’s method to the system (2), the complete Jacobian of F is required
for each time step. Additionally, one has to factorize the Jacobian to solve the linear
system. For large dimensions n, the derivative information F’(z;) can be computed
within machine accuracy using AD, but the computational complexity may grow
linearly in n, for example if the Jacobian is dense. Together with the cubic effort
required for the factorization, this cost is often not acceptable. Alternatively we can
use information on F' from previous iterations and update an approximation of the
Jacobian. For this purpose, one may apply rank-1 updates. Then the approximation
Aqt1 of the Jacobian at zU*Y is given by

Aig1 = Ai + uw’

with two vectors u and v € R" to be determined. For almost all previously proposed
quasi-Newton methods, the two vectors are chosen such that the direct tangent
condition

Aiprsi = F (2" )s; (4)
or the secant condition
Aiprsi = Fe(@") = B (") =y (5)

is fulfilled with s; = z®*tY — z(®. Since the forward mode of AD provides the
information F,é(x(i"'l) )s; at a very moderate cost, we will use the exact direct tangent
condition (4) throughout this paper. The secant condition (5) is used for example
in Broyden’s method given by

(yi — Aisi)s!

T
Si Sq

Aiq1 = Ai +

Applying the reverse mode of AD, one can evaluate the product zI F} (:U(”l)) for
a vector z; also at a moderate cost. In the context of solving nonlinear equations
using quasi-Newton methods, this property yields the adjoint tangent condition

2 A1 = 2] B0y (6)

Provided 2] A;si # zF F{(z'"*V)s; the two tangent conditions (4) and (5) are con-

sistent, and there is exactly one rank-1 update of A; satisfying them, namely

(Fi(@")si — Avsi) (2 Fr(a"HD) — 2 Ay (7)
(TF(aCtD) — 2T Ay)s, '

Aipr1 = A +

This formula is referred to as Two-sided Rank-1 (TR1) update and has been ex-
ploited in the context of nonlinear optimization [235]. Whereas we choose naturally
S; = 20D _ 2 () the question remains how we select the adjoint directions z;. How-
ever, for integrating stiff ODEs, there is no obvious choice for the weight vector z;
appearing in the adjoint tangent condition. This situation differs significantly from
the nonlinear optimization context, where the adjoint weight vectors can be defined
as corrections of the Lagrange multipliers in a natural way. Since this is not possible
for the pure integration of stiff ODEs, we will discuss two alternatives for choosing
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the adjoint weight vector z;. Nevertheless, this setting will be completely changed if
the ODEs form equality constraints in an optimal control setting. Then, once more,
the adjoint weight vector can be defined on the base of Lagrange multipliers.

Least-squares approach

To motivate the definition of z;, we employ the linear model
M(z) = Fi(@") + A (@ — 2i41)

of F'in '™, Then, the first approach refers to a minimization problem corresponding
to (2). With J(z) := ||[Fx(x)||3 it is given by

J(x*):rrgnJ(x) — Fi(z")=0.

We suppose that the gradient of J(x(itl)) provides a decent direction. Then the
gradient of the minimization problem J(z) := IM(2)||3 — min of the model M
should be the same in £+, This yields the condition

VJ (") = vzt tY) = oz = F(a"),
and we call the resulting formula for A;+1 Least-squares update.
Scaling invariance

A favored property of the iterative method (3) is independence with respect to linear
transformations in the state space of the ODE. Suppose additionally to (1) one has
a transformed IVP

HH) = f@E®), te(0.T), #0)=qfeR". (8)

This is related to the original problem by a linear transformation of the state space
with a regular 7' € R™*" such that

f@@) =THT'2(t), te(0,T), and 7=T1. )

Then for the solutions of the original problem (1), and the transformed problem (8)
Z(t) = Tx(t) is valid for t € (0, 7).
For the implicit Euler’s method, transformation (9) yields with & = Tz

Fr(Z) =% — &1 — hf(2) = Tx — Tap_y — KT f(z)
=TF(T '%) .

This holds in a similar way for Runge-Kutta and BDF methods. According to such a
transformation of F}, to F‘k the iteration (3) should yield 7 = T2 for all iterations
i when a linear transformation #© = Tz(® is applied to the state. Analysing the
TR1 update, one obtains the following result with respect to scaling invariance:

Theorem 1 (Conditions for Scaling Invariance).

Suppose T € R™ ™ is a regular matriz and F : R™ — R™ a given vector function.
For x € R", define & = Tz and F : R" — R"™ with F(Z) = TF(T~'Z). Then for the
rank-1 updates given by
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(F/(x(iﬂ)) - Ai)Sz‘ZiT(F/(x(iH)) - A)

A1 = A .
+1 + 2T (F/(zG+D) — Ay)s;

and (10)

At = At (F' (@) —~Ai)§i2?(ﬁl@(i+l)) - A)
ST (F(EG) — Ay

one has that A; = TA; T~ holds for all i if

O =129 Ay=TAT', 5=Tsi;, =T Tz (12)
1s valid for all i.
Proof. We prove the assertion by induction. For ¢ = 0, we have

3 =30 - A FE?) =7 (s - 45" F @) = T2

It follows immediately that F' () = TF ()T, and we obtain

A =TAT 1+

(TF' ()T~ — TAT sz T-HTF (c™M)T™ — TAT™Y)
2ZIT-Y(TF (zMW)T-1 —TAT-)Tso

et (F@D) = Ag)sosl (! (20) — Ay),

=TAT " +T 28 (F'(2(W) — Ag)so .

_7 <Ao J (FGD) — Ayoosf () - AO)) 7!
2T (F'(x(M)) — Ag)so

=TAT,

and the assertion is shown for ¢ = 0. The induction step ¢ + 7 4+ 1 can be proven in
the same way by replacing the subscripts 0 and 1 with the subscripts ¢ and ¢ + 1,
respectively, in the last two equations.

For the direction s; = 2D —xm, condition §; = T's; is naturally fulfilled. Unfortu-
nately, this is not true for the weight vector z; = Fy (1) used in the Least-squares
update. Hence, it yields only the same invariance properties with respect to scaling
in the range as the Bad Broyden update.

We must also consider that the denominator in (7) might vanish before the iter-
ation converges. In this situation, several strategies are conceivable. One approach
perturbs the vectors s; and z;. In the implementation, we choose to perform no
update and reuse the current approximation. Alternatively, we could choose the ad-
joint direction as z; = (F’(2"+1)— A;)s;, making the denominator greater than zero
as long as the iteration did not yet converge and the approximation is not exact.
However, this update is not invariant with respect to linear transformations in the
state space. Therefore, we also present an alternative definition of z; to maintain
full transformation invariance in the domain and range.

Adjoint approach

Quite often one has a problem-dependent functional ¢(x) in addition to the initial
value problem to be solved, e.g. the output of one product, the concentration of
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all ingredients for a chemical reaction or the total loss of energy. Then one can
use an adjoint vector to quantify the influence of discretization errors or errors in
the solution of (2) on the problem-dependent functional ¢(x). For that purpose, we
define the adjoint vector A € R™ as solution of the adjoint system

G (N) i= F(xx)" X\ = Ve(zy) = 0. (13)

Consequently A can be interpreted as the sensitivity of ¢(zx) with respect to changes
in the equation Fj(zx) = 0. Solving (13) by the quasi-Newton iteration

AGFD = \(0) 4T (F/(x(iﬂ))T)\(i) _ ¢(x(i+1))) (14)

yields the direct tangent condition A7, 0; = F'(z"*Y)7 o, with g; = A+ — \®
for the system Gg, (A) = 0. This is equivalent to an adjoint tangent condition with
z; = o; for the system Fj(x) = 0. Hence, two quasi-Newton iterations are performed
simultaneously: The first one solves (2), and the second one solves (13). However,
due to the definition of both nonlinear systems of equations, the system matrix is
exactly the same and therefore can be reused. The second approach is called Adjoint
update. Because the functional ¢ relates to the problem, it depends on the state,
too. Therefore, a transformation of x forces a consistent transformation of ¢ which
ensures the transformation invariance. To prove this assertion, we first show the
following theorem:

Theorem 2 (Scaling Invariance of the Adjoint Information).

Suppose T € R™*™ is a reqular matriz, and F : R" — R" is a vector function. For
z € R", define & = T and F : R® — R" with F(Z) = TF(T™'%). Furthermore,
assume that ¢,$ : R — R are given with qz(i) = ¢(x). Let A, AR — L(R™R) be
the solutions of

Mz)TF'(z) = Vo(z)"  and N@)TF'(2) =Ve(@)T" .
Then
X&) = Ma) T (15)

Proof. Onehas F'(Z)~' = TF'(x)~'T~ . Furthermore, the equality ¢(&) = ¢(T %)
holds. It follows that

~T_d~~_i 71~_i —-1 _ Tp—1
V@) = 0@ = oI E) = o) T = Vo) T

Therefore, we obtain

2@ =Ve@) F'(&) ' =Vo(@) T 'TF (z) ' T = Aa)' T,
and the assertion is proven.
The property (15) can be transfered directly to the quasi-Newton iteration to solve
(13) if \© =7-TX\©_ Hence, we obtain

z = A0TD X0 = T_T()\(H'l) — )\(i)) =TTz

Therefore, the adjoint update is scaling invariant. Although it did not occour in
the numerical tests, with this update, it is also possible that the denominator in
(7) vanishes. Perturbing the directions s; and z; would destroy the transformational

invariance. Therefore, performing no update is appropriate to maintain invariance
of the iteration.
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3 Implementation Details

The software to test and compare the proposed rank-1 updates is written in C/C++.
It provides three different integration methods, the implicit Euler method, the 3-
stage Radau IIA method, and BDF formulas [249]. Applying the implicit Euler
method, the system to be solved is Fy(z) = £ —xx—1 —hf(z) = 0 and has dimension
n. The convergence order of this method is one. Using the 3-stage Runge-Kutta
method Radau ITA, one must solve a nonlinear system of dimension 3n. Hence, the
complexity increases, but the method has order five. The BDF formulas correspond
to linear multi-step methods, where the system of equations is given by

!
Fi(z) = apox — Zaj:ck,j —hif(z)=0€R"
=1

with certain scalars a;;. These methods are of order 1.

For the solution of the nonlinear systems, we implemented Newton’s method
in the following way. To compute the complete Jacobian of the right hand side
function f(z(t)), we employ the AD-tool ADOL-C [229] that provides exact first and
higher order derivatives for C/C++ function evaluations using operator overloading.
Subsequently, the Jacobian of the nonlinear system is easily computed from the
Jacobian of the right-hand side using vector forward mode of AD. Finally, a QR-
factorization is performed to compute the next Newton step.

Furthermore, we coded Broyden’s method as well as the two new quasi-Newton
approaches to approximate the Jacobian information during the solution of the
nonlinear system. Once more, we maintain a QR-factorization of the corresponding
updates in order to compute the next iteration step efficiently. As a starting point
we compute the exact Jacobian for the initial value xo. The derivative information
required by the TR1 update, namely F,;(J:(Hl))si and Z?F,Q(x(”l)), are calculated
using the scalar forward and reverse mode provided by ADOL-C.

For stabilizing the Newton as well as the quasi-Newton approach we perform a
line search with quadratic and cubic interpolation, respectively, as described in [143].
Furthermore, we incorporated a simple adaptive time stepping according to the
approach analyzed in [474].

4 Numerical Results

For the numerical tests, we take two initial value problems from the Testset for Initial
Value Problem Solvers, University of Bary, Italy [361]. The first one is the Pollution
Problem, a stiff system of 20 non-linear ODEs. It describes a chemical reaction
as part of the air pollution model developed at The Dutch National Institute of
Public Health and Environmental Protection (RIVM), and consists of 25 reaction
and 20 reacting compounds. The second test is the Medical Akzo Nobel Problem
consisting originally of two partial differential equations. Semi-discretization of this
system yields 400 stiff ODEs. The Akzo Nobel research laboratories formulated this
problem in their study of the penetration of radio-labeled antibodies into a tissue
that has been infected by a tumor. In both problems, the right-hand side of the
ODE is nonlinear.
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Pollution Problem

To suit our software, we reformulate the Pollution Problem as an autonomous ODE
system with 21 component functions. For comparison, the tests were performed us-
ing Newton’s method with AD-based Jacobians as described in Sect. 3, the Broyden
update, which is a secant method using only information of F', and the two presented
variants of the TR1 update. Since the Pollution Problem describes a chemical re-
action, we chose the problem-dependent functional ¢(z) to be the concentration of
COa. For this problem we use adaptive time stepping, where the step size criteria
are the same for all numerical tests.

Table 1. Euler method with adaptive time stepping

ho = 1077 ho =107°
Newt| LS | Adj |Broy|Newt| LS | Adj | Broy
time steps 412 | 412 | 412 | — | 4077 | 4077 | 4077 | 4077
iterations 713 | 716 | 918 | — | 4512 | 4504 | 4521 | 11319
CPU-time (s) | 0.330.15| 0.20 | — | 2.07| 0.98 | 1.05 1.69

The numerical results achieved with the Euler method are given in Table 1. The
integration was performed for the time interval [0,60], i.e. T = 60. The integration
fails using a larger time step ho as initialization if Broyden’s method is applied. All
other approaches yield the results reported as solutions at the test suite website [361].
The number of time steps is the same for all methods where the integration over
the whole time interval was possible. However, the numbers of iterations for solving
the nonlinear systems differ remarkably. These numbers are again almost the same
for Newton’s approach and the Least-squares update, i.e. the TR1 update with z; =
Fk(x(”l)), but due to the computation of the complete Jacobian and its factorization
required for Newton’s method, the corresponding run time is naturally significantly
larger. The iteration count for the adjoint update, i.e. the TR1 update with z; based
on the problem dependent function, is higher which is reflected in the run times.
Since one has to perform two reverse mode differentiations the factor between the run
times is larger than the factor between the iteration counts. The iteration count for
Broyden’s method is even higher, but since no derivative calculations are performed,
the run time is less than the run time for the Newton’s method.

Table 2. Radau ITA with adaptive time stepping

ho = 1077 ho =107°
Newt| LS | Adj | Broy |[Newt| LS | Adj |Broy
time steps 412 | 412 | 412 | 412 | 565 | 565 | 565 —
iterations 708 | 723 | 1081| 2661 [1037 | 1041 | 1462 —
CPU-time (s) | 5.66 | 0.85 | 1.30 | 2.42 [8.34| 1.24 | 1.80 —

The numerical results achieved with Radau ITA and with two BDF formulas, i.e.
Il =3 and | = 6, are given in Tables 2 and 3, respectively. Once more, the integration
was performed for the time interval [0,60] to verify the results. The integration
fails using a smaller time step ho as initialization (Radau ITA) or a higher order
method (BDF) if Broyden’s method is applied. The numbers for the methods where
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Table 3. BDF-formula with adaptive time stepping

=3 =6
Newt| LS | Adj | Broy |Newt| LS | Adj |Broy
time steps 412 | 412 412 | 412 | 412 | 412 412 | —
iterations 693 | 702 | 929 | 2144 | 690 | 695 | 933 | —
CPU-time (s) | 0.37 | 0.21 | 0.27 | 0.40| 0.37|0.19 | 0.28 —

the integration converges confirm the behaviour of the solution methods for the
nonlinear system of equations already observed for the Euler method.

Medical Akzo Nobel Problem

We reformulate this problem as an autonomous ODE system yielding a system of 401
ODEs. For this example, it was not possible to get results using Broyden’s method
despite intensive testing with respect to step sizes. As the functional ¢ in the adjoint
update, we choose the product of the concentrations of the reacting components.
Furthermore, we do not apply varying step sizes since our step size heuristic is not
appropriate for this problem, and the sparsity of the Jacobian is not taken into
account.

Table 4. Euler method with constant time steps.

h=10"" h=10"7
Newt LS Adj Newt LS Adj
time steps 200 200 200 2000 2000 2000
iterations 570 | 1290 | 2012 3912 | 4891 7121
CPU-time (s) | 1209.62 | 70.54 | 124.01 | 8370.17 | 254.39 | 425.75

The numerical results achieved with the Euler method are given in Table 4. All
approaches yield the results reported as solutions at the test suite website [361].
However, it was necessary to provide the exact Jacobian at t = 5 if h = 107!
applying the TR1 updates since the right hand side jumps exactly at that place and
therefore is not continuous. The iteration increases when using the inexact derivative
information provided by the Least-squares and Adjoint update. However, due to the
lower cost to perform one iteration, the factor of the run times is 17 for the Least-
squares and 10 for the Adjoint update with h = 107", and 33 for the Least-squares
and 20 for the Adjoint update with h = 1072,

This observation is also confirmed by examining the run times needed for the
calculation of one Jacobian and its factorization compared to one rank-1 update of
an approximation. The computation of the Jacobian needed 0.051 seconds, while
its factorization lasts 2.1 seconds. In contrast to this, computing the new factorized
approximation in the Least-squares update only needs 0.054 seconds. This shows
that the main computing effort lies in the factorization of the Jacobian to solve the
linear system.

The numerical results achieved with Radau ITA and with two BDF formulas, i.e.
l =3 and [ = 6, are given in Tables 5 and 6, respectively. The behaviour already
observed for the Euler method is confirmed: The iteration count increases due to
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the approximation of the Jacobian, but the overall run time is drastically reduced

due to the much lower computation effort required by one quasi-Newton iteration
in comparison to the calculation and factorization of the complete Jacobian.

Table 5. Radau ITA with constant time steps

h=10""T
Newt LS Adj
time steps 200 200 200
iterations 591 1705 2842
CPU-time (s) | 32175.02 | 988.96 | 1756.97

Table 6. BDF-formula with constant time steps h = 1072

=3 =6
Newt | LS | Adj | Newt | LS | Adj
time steps 2000 | 2000 | 2000 | 2000 | 2000| 2000
iterations 3880 | 4771 6684 | 3798 | 4667 | 6730
CPU-time (s) | 8228.23 | 266.97 | 418.12 | 7932.48 | 266.80 | 425.66

5 Conclusions and Outlook

The use of quasi-Newton methods for the solution of nonlinear systems arising during
the integration of stiff ODEs is not widespread. We present two new variants of the
Two-sided Rank-1 update (TR1). These AD-based quasi-Newton methods fulfill
the exact direct tangent condition as well as the exact adjoint tangent condition.
Here, the selective choice of tangents and adjoints facilitates invariance and therefore
norm independence of the state space. The proposed update formulas were tested
using a well-known IVP test suite. For the examples considered during this project,
the achieved numerical results are very promising. Usually the Least-squares and the
Adjoint updates perform significantly better than Broyden’s method. However, there
are several open questions. First, detailed convergence analysis of the TR1-update for
the solution of nonlinear equations is needed. This theoretical examination may also
motivate alternative choices of s; and z;. Additionally, the maintaining or adjustment
of a suitable factorization in the case of varying time step sizes has to be studied
for a successful integration of the quasi-Newton methods for the integration of stiff
ODEs. Here the task is to find a factorization that allows a change in the step size
without performing a complete factorization again.
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Summary. We consider a time-dependent optimal control problem, where the state
evolution is described by an ODE. There is a variety of methods for the treatment
of such problems. We prefer to view them as boundary value problems and apply to
them the Riccati approach for non-linear BVPs with separated boundary conditions.

There are many relationships between multiple shooting techniques, the Ric-
cati approach and the Pantoja method, which describes a computationally efficient
stage-wise construction of the Newton direction for the discrete-time optimal con-
trol problem. We present an efficient implementation of this approach. Furthermore,
the well-known checkpointing approach is extended to a “nested checkpointing” for
multiple transversals. Some heuristics are introduced for an efficient construction of
nested reversal schedules. We discuss their benefits and compare their results to the
optimal schedules computed by exhaustive search techniques.

Key words: Optimal control, Newton’s method, Riccati approach, nested check-
pointing, surface hardening of steel

1 Introduction

Consider the following unconstrained primal control problem
min 6(x(T)) ()
where the system is described by
x = f(x(t),u(t), 1), x(0)=xo. )

Here, x: [0, 7] = R",u:[0,7] = R™, f: R"xR™ x[0,7] — R, and ¢ : R" — R.
The task is to find the function u(¢) that minimizes (1). To characterize an optimal



100 Julia Sternberg and Andreas Griewank

control function u(t) for the minimization problem (1) and (2) we consider the
following adjoint state equation

x=—He =—fe %, X(T)=ox(x(T)), ()
where the Hamiltonian function H is given by
H(x(t),u(t),x(t),t) = X" () f(x(t), u(t), ) .

Here % represents the total time derivative of X rather than a directional derivative
as is customary in parts of the AD literature. At each point along the solution
path the Hamiltonian function must be minimal with respect to the control value
u(t). Therefore, for the optimal control problem (1)—(2), we have the First Order
Necessary Optimality Condition

T
(g—f) =0, 0<t<T. (4)

Many numerical methods for solving optimal control problems have been pro-
posed and used in various applications. Relationships among them are often not
clear due to the lack of a generally accepted terminology. One popular concept is
to juxtapose approaches that first discretize and then optimize with those that first
optimize and then discretize. Methods of the first type are sometimes called di-
rect (see e.g. [85]) as they treat the discretized control problem immediately as
a finite dimensional nonlinear program, which can be handed over to increasingly
sophisticated and robust NLP codes. In the alternative approach one first derives
optimality conditions in a suitable function space setting and then discretizes the
resulting boundary value problem with algebraic side constraints. Often such in-
direct methods (see e.g. [358]) yield highly accurate results, but they have some
disadvantages as well. Sometimes it is not possible to construct the boundary value
problem explicitly, as it requires that we can express the control function u in terms
of x and X from the relation (4). The second disadvantage is that often we have to
find a very good initial guess including good estimates for the adjoint variables to
achieve convergence to the solution. Alternatively one can solve the problem as a
DAE with (4) representing a possibly discontinuous algebraic constraint.

There is a range of intermediate strategies. For example, one may discretize first
the controls and later the states. Christianson [114] makes a different distinction
between direct and indirect methods, depending on whether the adjoint variables
are integrated only backward or also forward. For stability reasons we consider here
only the first option and show how the memory requirement can be kept within
reasonable bounds.

In general, the BVP (2)—(3) is non-linear with separated boundary condition
(BC). We use a quasilinearization scheme to solve it iteratively. First, we linearize
(2), (3), and (4). Then we solve the resulting linear BVP using the Riccati approach.

Section 2 of this paper introduces the quasilinearization scheme. Nested check-
pointing techniques and their properties are discussed in Sect. 3. Section 4 gives a
numerical example, and in Sect. 5 we present some conclusions.
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2 Quasilinearization Techniques

In this section we introduce quasilinearization techniques, which can be applied for
a stable solution of the optimal control problem (1)—(2).
2.1 Quasilinearization Scheme

We linearize (2), (3), and (4) about a reference solution x(t), u(t), X(¢) and obtain
the following equations for variations dx(t), 6x(t), and du(t) :

0% — fx0x — fudu =20, (5)
ox + HL 0x + HIdu+ HL6x =0, (6)
HI + HL 6x+ HL, 6u+ Hi 6 =0, (7)

with the linearized initial and terminal conditions

I0 0x(0) + 0 0 x(T)\ _ x(0) — xo (8)
00/ \ 6%(0) —bxx(T) T ) \ 0%(T) ] — %(T) — ¢X(T) )~
After expressing du in terms of dx and §x from the relation (7) we obtain
Su=—Hg! (HZ +HT ox+ HT, 52) .

Substituting of this expression into (5)—(6) yields the following linear BVP:

) Z s () + a0, (9)
(5)=s0(5)

Sll 512 fx_qul:ul qu I _fllHl:I_} fz
S(t) = 821 522 = *Hxx +Hux H_1 qu | Hux H—l fT _ fT

where

is the system matrix, and

1 —1 T

- Huu Hu

q(t) = q2 = fu —1 77T

q Hux Hyu Hy
is the non-homogeneous part. The BC for this problem are given by the relation
(8). Rather than solving this linear BVP using collocation or another ‘global’ dis-
cretization scheme we prefer the Riccati approach which computes the solution in a

sequence of forward and backward sweeps through the time interval [0, T]. To achieve
a suitable decoupling of the solution components we consider a linear transformation

of the form
ox(t)\ I 0 ox(t)
o0x(t) )~ \K(@) I a(t) ) -
To determine a suitable K (t) and the corresponding a(t), we substitute (g;) in

terms of ((S;) in (9), which yields
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da (10 sx\ (St st I0 ox n q*
dt \ K I a )] \ 8% §*%2 KI a ¢ )
Now if we choose K (t) as the solution of the Riccati equation
K(t) = 8*' — K(t)S" + S®K(t) — K(t)S" K (t) ,

then the new variables (dx, a) satisfy the block system

5%\ [ SM 4+ 8K | S12 5x) ¢
a - 0 | 522 7K512 a q2 qul )

with the separated BC

(5 (5) Canrm ) (59) - (a2 580)
This approach leads to Algorithm 1.

Algorithm 1 Quasilinearization scheme for solving optimal control prob-
lems using the Riccati method
Choose initial control trajectory u®(t), t € [0,T], k = 0.
Do:
Original initialization:
x*(0) = xo.
Original sweep: ¢t : 0 — T
Integrate forward X* = f(x*(t),u*(¢),1).
Adjoint initialization:
Set %*(T) = X (T).
Set K(T) = ¢xx(T') and a(T) = 0.
Adjoint sweep: t: T — 0
Integrate backward X" = — fI (x*(t),u”(t),t) x*.
Integrate backward K (t) = S*' — K(t)S™ + S?2K (t) — K(t)S™ K (t).
Integrate backward a(t) = (—K(t)S"* + 5**) a(t) — K(t)q" + ¢°.
Final initialization:
Set 6x*(0) = 0.
Final sweep: t : 0 — T
Integrate forward 6%* = (S*' + S K)ox* + 5'%a + ¢*.
Evaluate Su* = —H3} (HE+HEX 6xk+H$—((K6xk+a)).
ut () = u* (1) + ouF(2).
k=k+1.
While: ||6u®(t)||2 > TOL and k < MAX_ITER.

Discretizing the scheme in time, one obtains Pantoja’s method [113,427], which
represents a computationally efficient stage-wise construction of the Newton direc-
tion for the discrete-time optimal control problem. Moreover, this scheme can also
be viewed as Newton’s method applied to the solution of the non-linear BVP (2),
(3), and (4) using a particular LU-matrix factorization. The relation between Algo-
rithm 1 and Pantoja’s method is discussed in detail in [488].
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2.2 Information Flow by the Quasilinearization Scheme

From Algorithm 1 we can see that each iteration of the quasilinearization scheme
consists of three sweeps through the time window [0, 7], which are referred to as
original, adjoint, and final sweep. Figure 1 shows the dimensions of the data
objects flowing between these three sweeps. The horizontal arrows represent infor-
mational flow between the three sweeps that are represented by slanted lines. Two
cameras pointing at the original and adjoint sweeps represent the information which
has to be stored if the current composite state is saved as a checkpoint. Here B(t)
is a n X m matrix path that must be communicated from the adjoint to the final
sweep.

In any case the adjoint sweep requires much more computational effort than the
original and the final sweeps because it involves matrix computations and factoriza-
tions. The final sweep proceeds forward in time and propagates vectors of dimension
(n + m). Computations on the final sweep proceed as soon as required information
from the previous sweeps is available. The final sweep can be combined with the
original sweep of a subsequent Newton step.

computational process

original sweep final sweep

adjoint sweep

temporal evolution

Fig. 1. Information flow for Riccati/Pantoja computation of Newton step.

The simplest strategy is to implement Algorithm 1 with straightforwardly storing
all intermediate states of each sweep on a sequential data file and to restore them
when they are needed. The memory requirement for the basic algorithm, where all
intermediate values are stored, is of order O(I n2), where [ gives the number of time
steps between 0 and 7. However, this approach can be realized only when there is
a sufficiently large amount of memory available. If this is not the case then we can
apply checkpointing techniques.

As developed in [224, 225, 489] checkpointing means that not all intermediate
states are saved but only a small subset of them is stored as checkpoints. In previous
work we have treated cases where checkpoints are stored only for a reversal consisting
of a single forward and an adjoint, or reverse sweep. But because of the triple sweep
within each Newton iteration (see Algorithm 1 and Fig. 1) we are faced here with
a new kind of checkpointing task. Since now checkpoints from various sweeps must
be kept simultaneously, we refer to this situation as nested checkpointing.



104 Julia Sternberg and Andreas Griewank

Since the information to be stored on the original sweep differs from that needed
on the adjoint sweep, we have two classes of checkpoints. Hence, we call the check-
points thin on the original sweep and fat on the adjoint sweep. Thin checkpoints
save a state space of dimension n, and fat checkpoints save a state space whose size
has order n?. While the length of steps may vary arbitrarily with respect to the
physical time increment they represent, we assume throughout that the total num-
ber [ of time steps is a priori known. When this is not the case, an upper bound on [
may be used, which results in some loss of efficiency. Fully adaptive nested reversal
schedules are under development.

3 Nested Reversal Schedules

In the present section we introduce a formal concept for nested checkpointing. Some
heuristics are introduced for an efficient construction of nested reversal schedules. We
discuss their benefits and compare their results to the optimal schedules computed
by exhaustive search techniques.

3.1 Formalism

Let us consider a multiple sweep evolution £3(;y containing three sweeps. Each sweep
consists of [ consecutive time steps. An example of such an evolution is shown in
Fig. 2. Time steps are shown as horizontal arrows. Their directions denote the infor-
mation flow. Nodes denote different intermediate states. Each sweep is characterized

R /ml\ Iy @ F3 Fi
\/ \Z/

original sweep

@
L i n

adjoint sweep? B @ ? @ 3 -t Tia !
Ln e Lh b L

(@) ) G

Fig. 2. Multiple sweep evolution £3(;).

final sweep

0
B

by a specified direction, i.e. direction of horizontal arrows within a single sweep. A
direction shows the corresponding information flow between neighboring interme-
diate states of a single sweep. The information flow within a single sweep has a
constant direction. An additional information flow exists between nodes, which are
intermediate states of different successive sweeps, shown in Fig. 2 by vertical lines.

We denote intermediate states of the original, adjoint, and final sweeps as x;, Zi,
and T;, 0 <14 <, respectively. In the same manner we identify intermediate steps
or time steps of various sweeps as Fy, F;, and F;, 1 <14 <. Then we have

xi = Fi(zic1), Tio1=Fi(xio1,3), o= F:’i(iim%ifl) , 1<i<I.
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We assume that dimensions of intermediate states within a single sweep are constant.
Therefore, we denote them as

d = dim{z;}, d=dm{%}, d=dm{z}, 0<i<I.

Moreover, we introduce evaluation costs, i.e., the computational effort for interme-
diate steps of different sweeps. We assume that within each single sweep we have
uniform step costs, i.e., there exist three constants ¢, ¢, and ¢ such that

t = TIME(F,), = TIME(E), t=TIME®F), 1<i<l.

Further, we assume that ~
d>>d and t>>¢. (10)

Thus, the dimension d of an intermediate state of an adjoint sweep is much higher
than the dimension d of an intermediate state on the original sweep. Correspondingly
the evaluation of time steps during an adjoint sweep is much more expensive than
the evaluation of time steps during an original sweep. The assumptions (10) agree
with the scenario presented in the Algorithm 1.

3.2 Definition of Nested Reversal Schedules and Its Characteristics

The goal is to implement an evolution £3(;) using nested checkpointing. The question
is how to place different checkpoints to implement the evolution £3(;) most efficiently.
We call each possible strategy a nested reversal schedule because checkpoints are
set and released at two different levels. Thus, it is not required to store intermediate
states of the final sweep as checkpoints since information computed during this sweep
is required just for subsequent time steps within this sweep, but not for previous
sweeps. If only a restricted amount of memory is available, it is convenient to measure
its size in terms of the number of fat checkpoints that it can accommodate. Since
fat checkpoints, i.e. checkpoints of dimension d, have to be stored during the adjoint
sweep, we can use available memory on the original sweep to store thin checkpoints,
i.e. checkpoints of dimension d, to reduce the total number of evaluated original
steps F;. On the adjoint sweep we remove thin checkpoints sequentially and store
fat checkpoints instead of them as soon as required memory is available, i.e. as soon
as a sufficient number of thin checkpoints is removed. We denote by S(ds(y,C)
any admissible nested reversal schedule that can be applied to a multiple sweep
evolution &£5(;y with a dimension distribution dgqy = (d, d, cZ) and a given number C'
of fat checkpoints. More formally we use the following definition.

Definition 1 (Nested Reversal Schedule S(dsny,C)). Consider an evolution
Esy traversing l time steps in three alternative sweeps. Let C' € N fat checkpoints
be available each of which can accommodate one intermediate state vector of the
dimension d, i.e. one intermediate state T;, 0 < i < 1. Moreover, assume that check-
points can be stored during original and adjoint sweeps, provided sufficient memory
is available. Assume that c thin checkpoints can be stored in place a single fat one,
i.e. d = c¢d. Then a nested reversal schedule S(dsqy, C) initializes j = 0 and
7 =1, and subsequently performs a sequence of following basic actions
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A = Increment j by 1

A = Decrement j byl ifj—j=1

W; = Copy state j to a thin checkpoint i € {0,1,...,(C —1)c}
W; = Copy state j to a fat checkpoint i € {1,2,...,C}

R; = Reset state j to a thin checkpoint i € {0,1,...,(C — 1)c}
R, = Reset state j to a fat checkpoint i € {1,2,...,C}

D = Decrementl bylifj=1andj—j=1

until I has been reduced to 0.

It has to be arranged that each nested reversal schedule begins with the action
Ry, such that the original state xo is read from the thin checkpoint 0.

One example of a nested reversal schedule S(d3(g),2) for an evolution £y with
the corresponding dimension distributions dg(e) = (1,3,1) is shown in Fig. 3. Two
fat checkpoints are available, i.e. 2 intermediate states on the adjoint sweep can
be kept in memory simultaneously. Each of these states is of dimension d = 3.
Moreover, 3 thin checkpoints of dimension d = 1 can be stored instead of a single
fat one. Further, the original state 2° is stored as an additional Oth thin checkpoint.

computational process
t

temporal evolution

Fig. 3. Example of nested reversal schedule S(dgzg),2).

In Fig. 3 physical steps are plotted along the vertical axis, and time required
for the implementation of the evolution £3(9y measured in number of executed steps
is represented by the horizontal axis. Hence, the horizontal axis can be thought of
as a computational axis. Each solid thin horizontal line including the horizontal
axis itself represents a thin checkpoint, i.e. a checkpoint of dimension d = 1. Each
solid thick horizontal line represents a fat checkpoint, i.e. a checkpoint of dimension
d = 3. Solid slanted thin lines represent original steps F;, and adjoint steps F; are
visualized by dotted slanted lines. Final steps F; are drawn by slanted dashed-dotted
thick lines.

One starts with the action Ry restoring the original state z¢ from the Oth thin
checkpoint. Three actions A are executed by performing three original steps Fy, F»,
and F3 consecutively. The state x3 is stored into the first thin checkpoint by the
action W7. Now again the action A is applied to perform one original step F4, and
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the state x4 is stored into the second thin checkpoint by the action Ws. Further
another three original steps are executed by the three actions A, and the state x7
is stored in the third thin checkpoint. Then two further original steps are evaluated
by the two actions A. Finally the state Tg is initialized and is stored in the first fat
checkpoint by the action W;. The adjoint sweep is started by this action. Further,
the state x7 is restored from the third thin checkpoint by the action Rgs, the state
xs is reevaluated by the action A, and the states Ts and Z7 are evaluated by the
application of the action A twice. In this manner we come to the state Z3, which
is stored in the second fat checkpoint. On the way backward all thin checkpoints
are removed, all fat checkpoints are occupied consecutively, and we have no more
memory available to store fat or even thin checkpoints. Then one goes back to the
adjoint state Z1 by reevaluating required intermediate states. Consequently the first
final step F is performed. Further, one stores the current original state z; in the Oth
thin checkpoint and continues in the same manner to execute all other final steps
F, ..., Fy.

Using the nested reversal schedule S(dz(g),2) from Fig. 3 one needs to perform
28 original steps F;, 17 adjoint steps F, and 9 final steps Fj.

Definition 2 (Repetition Numbers). Consider a nested reversal schedule
S(dsqy, C). The repetition numbers r; = r(i), 7 = 7(i), and 7, = 7(i), defined
as functions

r, 77 [, >N,
count how often the ith original, the ith adjoint, and the ith final step are evaluated
during the execution of the nested reversal schedule S(dsqy,C).

Provided a schedule is admissible in the sense that given ds(y, C, and the initial /,
it successfully reduces [ to 0, its total runtime complexity can be computed from the
additional problem parameters tguy = (¢,1, a The temporal complexity of a nested
reversal schedule S(ds(y, C), i.e. the run-time effort required to execute this nested
reversal schedule can be computed as

Sl
il

T(S(d3(1),0),t3(1)) :t 7 . (11)

i7-

l l
PR TY
@ =1 i=1
The optimal nested reversal schedule from the set of all admissible nested reversal
schedules is required to minimize the evaluation cost, i.e., to achieve

Tmin(tsq),dsq),C) =
min {T(S(d;;(l), C),t3)), S(dsqy,C) is admissible} .
The set of optimal nested reversal schedules is denoted by Spmin(tsay,dsq),C), so
T (Smin(tzay, dsq), C)) = Tmin(tsq), dsq), C) -

Now we face the task of constructing an appropriate optimal nested reversal sched-
ule Smin(tsq),dsay, C). By brute force an optimal nested reversal schedule can be
constructed using an exhaustive search algorithm (for more details see [488]). Using
this approach one examines all possible distributions for thin and fat checkpoints
and chooses the most efficient one. Clearly, such an exhaustive search is very ex-
pensive. In contrast to the situations for simple reversals involving only an original
and an adjoint sweep, we have not been able to find a closed form characteriza-
tion of optimal reversal schedules. Therefore, we have developed a heuristic for the
construction of appropriate nested reversal schedules.
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3.3 Heuristic

The intent of this heuristic is to restrict slightly the placements of thin checkpoints.
Due the assumption (10), it is more convenient to reduce the freedom of movement
of thin checkpoints, since even a considerable increment of the number of evaluated
original steps does not cause a significant increase in the resulting evaluation cost
wrt. the minimal evaluation cost Trin(ts(), dsqy, C) (accordingly (10) and (11)).
Since one fat checkpoint can be stored as soon as the required memory is available,
we store thin checkpoints such that after the removal of a sufficient number of thin
checkpoints (¢ thin checkpoints), a corresponding fat checkpoint has to be stored
at the same moment. Therefore, a nested reversal schedule can be decomposed into
two nested subschedules and one simple reversal schedule as shown in Fig. 4.

computational process
‘ ‘ ‘ P

1 Shin(l —m, ) \ \\Sh (ts(m),dam), C — 1)
Y
\Aa(m,m ds(m,)), C\

Sn(taqy, daqy, C)
Fig. 4. Decomposition of a nested reversal schedule Sy (ts), dsqy, C).

o

:

o~
I
T

temporal evolution

Here, S (tsq), dsay, C) denotes a corresponding nested reversal schedule, con-
structed using the heuristic described above. This schedule is decomposed into two
parts Sp(t3(m), ds(m), C — 1) and Si(ts(m,1), ds(m,1), C) as shown in Fig. 4 by stor-
ing the second fat checkpoint. An adjoint state stored in the second fat checkpoint
corresponds to m. Spin (I —m, ¢) denotes the binomial reversal schedule with up to ¢
checkpoints, applied for the reversal of (I —m) original steps using minimal run-time
and memory requirement (for details see e.g., [488]). Then, an appropriate nested
reversal schedule Sy (tsay, ds(), C) can be constructed recursively by minimizing the
evaluation cost

Th(tsq), dsq), C) =min{T}(t30), dsq), C;m) } = min{Th(ts(m), ds(m), C — 1)
+ Th (t3(m,1), d3(m 1), C) + tada(ta(m,1> dam,n: ) } (12)

where taad(ts(m,1), d3(m,1), ¢) denotes an additional run-time effort required for plac-
ing X, in the second fat checkpoint. From (12) it is clear that the evaluation
cost Ty (ts(),dsqy,C) and consequently a corresponding nested reversal schedule
Sh(ts),dsqy, C) can be evaluated using dynamic programming.

Instead of using dynamic programming we have developed a Local-Descent
Method, which allows us to construct Si(ts),dsq),C) using a linear run-time
and memory requirement with respect to a number [ of time steps and a number C
of fat checkpoints (for details, see [488]).
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4 Numerical Example

We consider a control problem that describes the laser surface hardening of steel
(see [267]). The mode of operation of this process is depicted in Fig. 5. A laser

Fig. 5. Sketch of a laser hardening process.

beam moves along the surface of a workpiece, creating a heated zone around its
trace. The heating process is accompanied by a phase transition, in which the high
temperature phase in steel, called austenite, is produced. Since one usually tries to
keep the moving velocity of the laser beam constant, the most important control
parameter is the laser energy. Whenever the temperature in the heated zone exceeds
the melting temperature of steel, the work-piece quality is destroyed. Therefore, the
goal of surface hardening is to achieve a desired hardening zone, in our case described
by a desired phase distribution a4 of austenite inside the workpiece {2, but to avoid
a melting of the surface. Hence we consider an optimal control problem with the
cost functional J(u) defined as

J(u):%/Q(a(a:,T)—ad(m))de—l—%/()T/Q[G—Hm]idxdt—&-%/OTUth, (13)

where u is the laser energy and 3; ¢ = 1, 2, 3 are positive constants. The second term
in (13) penalizes temperatures above the melting temperature 6,,.

Let {2 := [0, 5] x[—1, 0] with Lipschitz boundary @ = 2x(0,T), X' = 2% (0,T),
T = 5.25. The system of state equations (14) consists of a semi-linear heat equation
coupled with the initial-value problem for the phase transitions. a is the volume
fraction of austenite, # the temperature, 7 a time constant and [z]; = max{z,0}
the positive part function. The equilibrium volume fraction aeq is such that the
austenite volume fraction increases during heating until it reaches some value a < 1.
During cooling we have a; = 0, and the value a is kept. The homogeneous Neumann
conditions were assumed on the boundary. The term —pLa: describes the consump-
tion of latent heat due to the phase transition. The term u(¢)a(z,t) is the volumetric
heat source due to laser radiation, where the laser energy u(t) will serve as a control
parameter. The density p, the heat capacity c,, the heat conductivity k, and the
latent heat L are assumed to be positive constants.
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1 .
a = @[aeq(e)fah-a an7
a(0) = 0, in §2,
pcols — kA = —pLay + ua, in@, (14)
00
= X
v 0, o
6(0) = B, in 2.

We study the following state and control constrained optimal control problem for
the cost functional J(u) as defined in (13):

min J(u), s.t. (6,a,u) solves (14) and u € Uq, (15)

where Usg = {u € L*(0,T) : |[ul|p2(0,ry < 2800} is the closed, bounded, and
convex set of admissible controls. The numerical implementation is obtained by a
semi-implicit FE Galerkin scheme. The FE triangulation of (2 is done by a nonuni-
form mesh. The optimal control problem (15) is solved using the Quasilinearization
scheme from Sect. 2 (see Algorithm 1). Nested reversal schedules are used for the
reduction of memory requirements during the implementation of the Algorithm 1
applied to the optimal control problem (15).

5 Conclusion and Outlook

The iterative solution of optimal control problems in ODEs by various methods
leads to a succession of triple sweeps through the discretized time interval. The
second (adjoint) sweep relies on information from the first (original) sweep, and the
third (final) sweep depends on both of them. This flow of information is depicted in
Fig. 1. Typically the steps on the adjoint sweep involve more operations and require
more storage than the other two. To avoid storing full traces of the original and
adjoint sweeps we consider nested reversal schedules that require only the storage
of selected original and adjoint intermediate states called thin and fat checkpoints.
The schedules are designed to minimize the overall execution time given a certain
total amount of storage for the checkpoints. While we have not found a closed
form solution for this discrete optimization problem we have developed a cheap
heuristic for constructing nested reversals that are quite close to optimality. Here
we demonstrated that the dependence on [ can be arranged polylogarithmically [224]
by nested checkpoint strategies. Consequently, the operations count also grows as a
second power of log. [, which needs not result in an increase of the actual run time
due to memory effects.

We are currently applying the proposed scheduling schemes to laser hardening
of steel [267] and other practical optimal control problems. As has been done in
case of simple reversal schedules that involve only an original and an adjoint sweep
our results should be extended to scenarios with nonuniform step costs and parallel
computing systems.
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Summary. In previous work [TOMS, 2004, 30(3), 266—299], we used Markowitz-like
heuristics to find elimination sequences that minimise the number of floating-point
operations (flops) for vertex elimination Jacobian code. We also used the depth-
first traversal algorithm to reorder the statements of the Jacobian code with the
aim of reducing the number of memory accesses. In this work, we study the effects
of reducing flops or memory accesses within the vertex elimination algorithm for
Jacobian calculation. On RISC processors, we observed that for data residing in
registers, the number of flops gives a good estimate of the execution time, while for
out-of-register data, the execution time is dominated by the time for memory access
operations. We also present a statement reordering scheme based on a greedy list
scheduling algorithm using ranking functions. This statement reordering will enable
us to trade off the exploitation of the instruction level parallelism of such processors
with the reduction in memory accesses.

Key words: Vertex elimination, Jacobian accumulation, performance analysis,
statement reordering, greedy list-scheduling algorithms, ELLIAD

1 Introduction

Many scientific applications require the first derivatives (at least) of a function f :
x € R" — y € R™ represented by computer code. This can be obtained using
automatic differentiation (AD) [225,450]. We assume the function code has no loops
or branches; alternatively, our work applies to basic blocks of more complicated code.
From the program, we build the data dependence graph (DDG), or computational
graph, of the function f as a Directed Acyclic Graph (dag) G=(V, E), with vertex

* This work was partly supported by EPSRC under grant GR/R21882.
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set V and edge set E. A vertex v; represents a floating-point assignment of the
original code; an edge (vj,v;) € E represents the data dependence relationship
v; < v; meaning v; appears on the right hand side of the assignment that computes
v;. Logically, E and the relation < are the same. Code may contain overwrites of
variables; we assume these are removed by converting to Static Single Assignment
form [142], so that a variable may be identified with the statement that computes
it. We have |V| = n+ p+ m = N, where n,p,m are respectively the number of
independent, intermediate and dependent vertices. We ‘linearise’ G by labelling its
edges with local partial derivatives. Finally, we eliminate, in some order termed the
elimination sequence, all intermediate vertices so that G is rendered bipartite. This
process, the vertex elimination approach, can be found in [182,225,232,394].

As shown in [182,225], the linearised graph G can be viewed as an N X N sparse
lower triangular matrix C = (¢;;), and C — Iy is called the extended Jacobian. The
Jacobian J can be obtained by solving a sparse, triangular linear system with coeffi-
cient matrix C — Iy using some form of Gaussian elimination. Since p, the number of
intermediate vertices, tends to be large even in medium-sized applications, the per-
formance of the vertex elimination algorithm can be degraded by fill-in. The floating
point operations (flops) performed and the fill-in are determined by the elimination
sequence. The question one would ideally like to answer is “Which elimination se-
quence gives the fastest code on a particular platform?” As a platform-independent
approximation to this problem one may ask “Which elimination sequence minimises
fill-in [respectively, flop-count]?” For a sparse symmetric positive definite system of
linear equations, the fill-in problem is NP-complete [567], and we suspect that the
same holds for our problem. Therefore, in practice a near-optimal sequence must be
found by some heuristic algorithm. Our premiss is that such sequences allow us to
generate faster Jacobian code.

Goedecker and Hoisie [216] report that performance of numerically intensive
codes on many processors is a low percentage of nominal peak performance. There
is a gap between CPU performance growth (around 55% per year) and memory
performance growth (about 7% per year) [239]. To enhance performance, it would
appear crucial to keep the memory traffic low. We study two aspects of the vertex
elimination algorithm. First, we study how the number of floating point operations in
the Jacobian code relates to its performance on various platforms. Second, we study
how reordering the statements of the Jacobian code affects memory accesses and
register usage. For these purposes, we generated Jacobian codes using Markowitz-
like strategies and statement reordering and inspected the assembler from different
processors and compilers. We studied how the execution time is affected by the
number of flops and amount of memory traffic (loads and stores). We observed:

e A reordering of the Jacobian code’s statements can improve its performance by
a significant percentage when this reduces the memory traffic.

e For in-register data, the execution time is dominated by the number of floating
point operations. A reduction of floating point operations gave further perfor-
mance improvement.

e For out-of-register data, the execution time is dominated by the number of load
and store operations. A reordering that reduced these memory access operations
enhances Jacobian code performance.

Similar behaviour is found in performance analysis of other numerical codes,

e.g., [216]. This paper presents the argument in the context of semantic augmen-
tation of numerical codes as is carried out in AD of computer programs. We also
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describe planned work to improve performance of Jacobian code, produced by ver-
tex elimination, by reordering the statements using standard instruction scheduling
algorithms.

2 Heuristics

Solving large linear systems by Gaussian elimination can be prohibitive due to the
amount of fill-in. As said above, we use heuristic approximate solutions to the NP-
complete problem of finding an elimination ordering to minimise fill-in. Over the
past four decades several heuristics aimed at producing low-fill orderings have been
investigated. These algorithms have the desired effects of reducing work as well. The
most widely used are nested dissection [67,203] and minimum degree. The latter,
originating with the Markowitz method [353], is studied in [6].

Nested dissection, first proposed in [203], is a recursive algorithm which starts by
finding a balanced separator, a set of vertices that when removed partition the graph
into two or more components, each composed of vertices whose elimination does not
create fill-in in any of the other components. Then the vertices of each component
are ordered, followed by the vertices in the separator. Unlike nested dissection that
examines the entire graph before reordering it, the minimum degree or Markowitz-
like algorithms tend to perform local optimisations. At each elimination step, such
a method selects a vertex with minimum cost or degree, eliminates it, and looks for
the next vertex with the smallest cost in the new graph.

As described in [182,501], we built the linearised computational graph in the
following two ways:

1. Statement Level (SL) in which local derivatives are computed for each state-
ment, no matter how complex its right-hand side.

2. Code List (CL) in which local derivatives are computed for each statement after
the code has first been rewritten so that each statement performs a single unary
or binary operation.

Then, we applied the following heuristics [182,394] to the resulting graphs:

Forward (F): where intermediate vertices are eliminated in forward order.

Reverse (R): where intermediate vertices are eliminated in reverse order.

Markowitz (M): at each elimination stage a vertex v; of smallest Markowitz cost

is eliminated. This cost is defined as the product of the number of predecessors

of v; times the number of its successors in the current, partly eliminated, graph.
e VLR (V): as Markowitz but using the VLR cost function defined by

VLR(v;) = mark(v;) — bias(v;),

with bias(v;) a fixed value for vj, the product of the number of independent
vertices and the number of dependent vertices to which v; is connected.

e Any of the above with Pre-elimination (P): vertices with single successor are
eliminated first. Then one of Forward, Reverse, Markowitz or VLR order is
applied to those remaining.

We also used a Depth-First Traversal (DFT) algorithm [501] to reorder statements
of the obtained Jacobian code, without altering dependencies between statements,
in the hope of further performance improvement.
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3 Performance Analysis

We consider two of the test problems reported in [182]: the Human Heart Dipole
(HHD) from the Minpack 2 test suite [17] and the Roe flux calculation (ROE) [465].
These routines were differentiated using the AD tool ELIAD [182,501] using the
heuristics listed in Sect. 2. All the Jacobian codes were compiled on different plat-
forms with maximum optimisation level and run for a number of times carefully
calculated for each platform [182].

To assess the performance of the ELIAD-generated Jacobians, we studied the
assembler from different platforms, counting the number of loads, stores and flops
(‘I’, ‘S’ and ‘Flops’ in the tables) after compiler’s optimisations.

Table 1 shows the results of our study from the SUN Ultra 10 processor with 440
MHz, 32 KB L1 cache, 2 MB L2 cache, and using the Workshop f90 6.0 Compiler.
The observed time Obs-Time is the CPU time obtained by averaging a certain
number of evaluations and runs, see [182] for details. Table 2 shows some run time
predictions using a very simple model approximating the run time via the memory
access count and the flops count. This approximate model estimates the following
quantities: Tr, the time taken by the floating point operations

Flops

Tr X cycle time X latency

- flops rate

Table 1. Performance data for the HHD and the Roe flux test cases on the UltralO
platform, Obs-Time in us.

HHD ROE
Technique Obs-Time Flops L+S| Obs-Time Flops L+S
SL-F 0.77 150 179 11.38 1732 2489
SL-R 0.79 148 188 7.26 1432 1600
CL-F 0.73 150 184 16.57 1843 3406
CL-R 0.80 148 201 6.98 1496 1655
SL-P-F 0.83 172 205 6.64 1580 1718
SL-P-R 0.73 172 182 6.11 1382 1626
CL-P-F 0.72 150 174 6.24 1580 1662
CL-P-R 0.71 148 182 5.81 1382 1609
SL-P-F-DFT 0.78 168 214 7.49 1584 1855
SL-P-R-DFT 0.66 164 180 5.73 1382 1466
CL-P-F-DFT 0.80 168 200 7.42 1587 1923
CL-P-R-DFT 0.66 164 167 5.84 1387 1305
SL-P-M 0.69 150 181 6.91 1524 1803
SL-P-M 0.83 168 214 5.71 1365 1507
CL-P-V 0.69 150 181 7.40 1524 1824
CL-P-V 0.83 168 214 6.17 1364 1503
SL-P-M-DFT 0.73 150 184 8.03 1529 1958
SL-P-V-DFT 0.80 168 200 6.19 1366 1375
CL-P-M-DFT 0.73 150 184 7.58 1532 1945
CL-P-V-DFT 0.80 168 200 5.59 1369 1362
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and Tz, the time taken by memory access operations

(L+9)

Ty =
memory access rate

x cycle time x latency.

The Ultra 10 processor can perform up to 2 flops per cycle (its flops rate is 2) with a
latency of 3 cycles and 1 load or 1 store (its memory access rate is 1) with a latency
of 2 cycles, and uses in-order execution [216] of instructions.

In Table 2, we represent the performance measures for a sample of methods
shown in Table 1. The column ‘Nom. flops’ is the nominal flops count obtained from
the source text. This table illustrates the following observations:

e A small reduction of flops count does not necessarily imply a reduction of the
actual runtime Obs-time.
Ty tends to be a better estimate of Obs-time than is Tr.
The statement reordering improved performance when it reduced the number of
memory accesses.

Table 2. A sample of methods applied to Roe flux on the Ultra 10 (timings in us).

Technique Nom. flops Flops L+S Tr Tan  Obs-time
SL-P-V-DFT 1462 1366 1375 4.65 6.26 6.19
CL-P-V-DFT 1578 1369 1362 4.68 6.20 5.59
CL-P-F 1742 1580 1662 5.40 7.56 6.24
CL-P-F-DFT 1742 1587 1923 5.40 8.74 7.42
SL-P-R 1505 1382 1626 4.71 7.40 6.11
SL-P-R-DFT 1505 1382 1466 4.71 6.66 5.73

These results have led us to believe that the runtime is more correlated with the
memory accesses (loads and stores) than with the flops count. To further investigate
this, we performed a linear regression analysis using the regress function of MATLAB’s
statistics toolbox [356]. For both test cases in Table 1, we form the linear model:

T=aX+b+e,

in which X represents the vector of flops or memory accesses (loads + stores), b a
constant vector, € a residual vector, and a a vector of parameters. Table 3 shows
the ‘explained variability’ that is one of the statistics returned by regress, and the
norm of the residual € from the regression.

Table 3. MATLAB’s regress results of the regression analysis of data of Table 1.

Model | variability |l¢]|2
T = a1Flops+ b1 + €1 0.87 8.7
T = as (L+S) + by + €2 0.99 3.2

The flops explain about 87% of the variability in the observed time T', whereas
the loads and stores explain about 99%. Furthermore, the (loads and stores) model
has a smaller residual than the flops model. It is important to reduce the flops count
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in numerical calculations, but it is even more crucial to minimise memory traffic.
These experiments suggest consideration of code reordering techniques, data struc-
tures, and other optimisation techniques that reduce the amount of memory accesses
if we aim to generate efficient derivative code even for medium-sized applications.

4 A Statement Reordering Scheme

In [182,501], we used a Statement Reordering Algorithm (SRA) based on G’, the
DDG of the statements of the derivative code. By depth-first traversal, for each state-
ment s, it tries to place the statements on which s depends close to s. It was hoped
this would speed up the code by letting the compiler perform better register alloca-
tion since cache misses were shown not to be a problem in our test cases [501]. The
benefits were inconsistent, probably because this does not account for the instruc-
tion level parallelism of modern cache-based machines and the latencies of certain
instructions. In this work, we plan to encourage the compiler to exploit instruction
level parallelism and use registers better by a SRA that gives priority to certain
statements via a ranking function. The compiler’s instruction scheduling and reg-
ister allocation work on a dependency graph G’ whose vertices are machine code
instructions. We have no knowledge of G”, so we work on the DDG G’ on the pre-
miss that our ‘preliminary’ optimisation will help the compiler generate optimised
machine code. In the next sections, we shall use the instruction scheduling approach
used for instance in [385] and the ranking function ideas of [251,263,334,425] on a
simple virtual processor.

4.1 The Processor Model

We consider the following simple model of a superscalar machine, similar to that
of [35]. It has an unlimited number of floating-point (and other) ‘registers’. It has one
pipelined functional unit (FU) that can perform any scalar assignment-statement
in our code, however complicated, in 2 clock cycles, including loading any num-
ber of operands from registers, computing, and storing the result in a register. An
assignment-statement that does no processing (a simple copy) is assumed to take 1
cycle. A statement can be issued to the FU at each cycle; however data dependencies
may ‘stall’ it: e.g. if the code c=a*b; d=a+c is begun at time ¢t = 0 , we cannot issue
the second statement at ¢ = 1 because c is not yet available.

We develop an algorithm that, within this model, tries to remove stalling by
re-ordering code statements. Coarse-grained though the model is, we hope it im-
itates enough relevant behaviour of current superscalar architectures to produce
re-orderings that give speedup in practice.

4.2 The Derivative Code and Its Evaluation

Since the original code was assumed branch- and loop-free, the same is true of the
derivative code. It includes original statements v; of f’s code as well as statements to
compute the local derivatives c;; that are the nonzeros of the extended Jacobian C
before elimination, but the bulk of it is elimination statements. As originally defined
in [232], these take the basic forms c;; = cikcrj or ¢ij = ¢ij + cincrj. Typically a ¢
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position is ‘hit’ (updated) more than once, needing non-trivial renaming of variables
to put it into the needed single-assignment form.

Although not strictly necessary, we assume the vertex elimination process has
been rewritten in ‘one hit’ form, e.g. by the inner product approach of [443]. That
is, that each ¢;; occurring in it is given its final value in a single statement of the

form either ¢;; 1= c?j + > rek Cikckj if updating an original elementary derivative,
O Cij = Y .o CikCrj if creating fill-in. Here K is a set of indices that depends

on ¢,j and on the elimination order used, and c?j stands for an expression that
computes the elementary derivative, dv;/0v;. The result is that the derivative code
is automatically in single-assignment form.

Its graph G’ = (V',<’) — where V' is the set of statements and <’ the data
dependence relationship — is a dag. A schedule 7 for G’ assigns to each statement
(denoted s in this section) a start-time in clock-cycle units, respecting data depen-
dencies subject to the constraints of our processor model. It is a one-to-one (as the
FU only does one statement at a time) mapping of V' to the integers {0,1,2,--- }.
Write ¢(s) for the execution time of s (1 or 2 in our model). Then to respect depen-
dencies it is necessary and sufficient that

s1 < s2 = 7(s1) +t(s1) < m(s2) . (D)
for s; and s in V’. The completion time of 7 is
T(w) = max{m(s) + t(s)} .
seV’
Our aim is to find 7 to minimise the quantity 7'(m) subject to (1). This optimisation
problem is NP-hard [385,387].

4.3 The DDG of the Derivative Code

The classical way of constructing the

derivative code’s DDG is to parse the Vo1 =11

code, build an abstract representation, vy = T2

and deduce the dependences between all vy = sin(vg)
statements, see for instance [102, 387]. v = U1 —U_1
Since derivative code is generated from V3 = VU_102
function code, its DDG can be con- —— \/ﬁ

structed more easily by using data that is

available during code generation. We omit Fig. 1. A code fragment.

details here.

Consider the code fragment of Fig. 1. Its computational graph is represented
by the dag G on the left of Fig. 2, with, on the right, the extra edges produced on
eliminating the intermediates v1 and vz in that order.

The left of Fig. 3 shows derivative code from Fig. 1, with a somewhat arbitrary
order of the statements respecting dependencies. Note one statement, #13, that
combines computation of an elementary derivative with elimination. On the right
is its DDG@G, which can be constructed directly from the elimination order and the
original graph on the left of Fig. 2. (It could be made smaller by propagating the
constant values c2,—1 and c21.) Edges from statement s are labelled by the value
(t(s) — 1), i.e., 0 or 1 representing the time delay imposed by s, in our processor
model.
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(a) Original computational graph  (b) Augmented computational graph

Fig. 2. Graph augmentation process: eliminated vertices are kept, and fill-in is
represented by dashed arrows.

1: V-1 =21
2: Vo = X2 3
3: C21 = 1
4: C2, -1 = —1
5: v = sin(vo)
6: c10 = cos(vg) 9
70 vy =11 —v_1
8 ¢y =1/(2/1)
9: V3 = V-1V2 - 0
10: C32 = V-1
11: Vg4 = \/a 1
12: c20 = c21c10
13: c3,—1 = V2 + C32C2, —
14: ¢30 = c32¢20
15: c40 = ca1c10
o/ 0

Fig. 3. The data dependence graph G’ of the derivative code from the original dag
G on the left of Fig. 2.

The depth-first traversal approach of [182,501] gave the following schedule:

m : [2[5] [8]6] [15[3[12[1][10]14]7[4]13]11]9] |

m1 contains 2 idle cycles and takes 18 cycles to complete including a cycle at the end:
T(m1) = 18. In Sect. 5, we produce a schedule that takes 16 cycles, the minimum
possible. This new schedule combines the depth-first traversal property and the
instruction level parallelism of pipelined processors via a ranking function.

5 A Greedy List Scheduling Algorithm

We use a greedy list scheduling algorithm as investigated in [35,425]. We first pre-
process the DDG G’ to compute a ranking function that defines the relative priority
of each vertex. Then a modification of the labelling algorithm of [35,125] is used to
iteratively schedule the vertices of G'.
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Our ranking function uses the assumption that operations with more successors
and which are located in a longer path should be given priority, being likely to
execute with a minimum delay and to affect more operations in the rest of the
schedule. We use the functions height(v) and depth(v) defined to be the length of
the longest path from v to an input (minimal) vertex and to an output (maximal)
vertex respectively. height(v) is defined by

1. for each input (minimal) vertex v, height(v) = 0;
2. for each other v € V', height(v) = 1 4+ max{height(w), for all w < v}.

depth(v) is defined in the obvious dual way. For a vertex v € V' we define the
ranking function by

rank(v) = a % depth(v) + b * succ(v) , (2)

where succ(v) is the number of successors of v and a and b are weights chosen on
the basis of experiment. For b = 0, we recover the SRA using depth-first traversal
as in [182,501]. By combining the values depth(v) and succ(v), we aim to trade off
between exploiting instruction level parallelism of modern processors and minimising
register pressure. The preprocessing phase of our algorithm is as follows.

1. Compute the heights and depths of the vertices of G'.
2. Compute the ranks of the vertices as in (2).

The iterative phase of the algorithm schedules the vertices of G’ in decreasing
order of rank. It constructs the mapping 7 defined in Sect. 4.2 by combining the
rank of a vertex and its readiness using the following rule:

Rule 1
A vertex v is ready to be scheduled if it has no predecessor or if all its predecessors
have already completed.

This ensures predecessor data of the vertex v is available when v is scheduled. Ties
between vertices are broken using the following rule:

Rule 2
Among vertices of the same rank choose those with the minimum height.
Among those of the same height, pick the first.

The core of the scheduling procedure is as follows:

1. Schedule first an input vertex v with the highest rank (break ties using Rule 2).
That is, set time 7 = 0 and 7 (v) = 7.

2. For 7 > 0, let v be the last vertex that was scheduled at times < 7.
a) Extract from the set of so far unscheduled vertices, the set A as follows:

Sw) = {w:w = v}

If S(v) is nonempty, set

B(v) = {u : height(u) < max{height(w) for w € S(v)}},
A = S(v)U B(v);

Otherwise
A = the set of remaining vertices.

b) Extract from A the set of vertices R that are ready to be scheduled.



120 M. Tadjouddine et al.

c) If R is empty, do nothing (a no-op at this cycle). Otherwise, choose from R
a vertex v with maximum rank (break ties by Rule 2), and set m(v) = 7.
d) Set T =7+1.
3. Repeat step 2 until all vertices are scheduled.

We can easily check that this algorithm determines a schedule 7 that satisfies (1),
thus preserving the data dependences between vertices of the graph.

Let us apply this algorithm to the DDG of Fig. 3 to get a schedule mp. We first
compute the height, depth and rank of each vertex using the coefficients a = b = 1:

vertex] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
heightf 0 0 0 0 1 1 2 2 3 1 2 2 3 3 3
depth| 2 3 2 1 2 2 1 10 1 0 1 0 0 0
succ 3 21132210 2 0 1 0 0 O
rank [ 5 5 3 2 54320 3 0 2 0 0 0

To label the dag of Fig. 3, the algorithm starts with the input vertices and assigns
m2(1) = 1. Next it forms the set A = {2,3,4,5,6,7,8,9,10,11,12} of available
statements and the set R = {2,3,4,10} of ready statements. Using the ranking list,
it assigns m2(2) = 2; etc. The result of this algorithm for the dag of Fig. 3 is the
following optimal schedule without idle cycles:

m ¢ [1[2][5]6]10[3]4]7[12[8]11]13]9[14]15] |

We observe that the completion time T'(72) = 16, better than T'(71). The complexity
of this labelling algorithm, which is similar to that of [35,125] for a dag with n vertices
and e edges, was initially proved to be O(n2) [35,125] and can be implemented in
O(n + e) as shown in [190].

6 Conclusions and Further Work

We have presented a detailed performance analysis of Jacobian calculations using
the vertex elimination algorithm. We have shown that for even medium-sized numer-
ical applications, the execution time is very much more correlated with the memory
accesses than with the number of floating point operations. We pointed out that
although the vertex elimination algorithm reduced the number of floating point
operations, it should be coupled with instruction scheduling heuristics to enable
exploitation of the superscalar nature of modern processors to maximise the perfor-
mance of the derivative code. For that purpose, we described a statement reordering
scheme based on a ranking function. We plan to implement it and test it using
medium-sized problems on a range of superscalar processors. We may also look at
ways of combining the two objectives of reducing flops and memory accesses in a
single objective function.
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Summary. Preaccumulation of Jacobians of low-level code sections is beneficial in
certain automatic differentiation application scenarios. Cross-country vertex, edge,
or face elimination can produce highly efficient Jacobian preaccumulation code but
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be derived for straight-line codes with scalar variables. Practical codes in languages
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1 The Problem

The forward and reverse modes of automatic differentiation (AD) are the basic
approaches that most AD tools implement. However, these modes are only two
extremes of all elimination orderings possible on the computational graph that un-
derlies a numerical code [42,136,225,227]. Unlike forward and reverse modes, an
elimination sequence with arbitrary order (cross-country elimination) requires the
construction of the computational graph or an equivalent representation. A hybrid
approach such as ADIFOR’s [56] statement-level reverse mode combines forward and
reverse modes, but true cross-country elimination has previously been implemented
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and extensively used only in EliAD. This tool has been applied to practical prob-
lems [182,500] showing benefits of Jacobian accumulation code by using elimination
sequences not tied to only forward or reverse mode.

Considering elimination orderings only at the statement level allows us to exploit
the single expression use property of right-hand-side expressions; that is, at this level
we know the optimal solution for minimizing the operations count [396]. Extending
the scope to basic blocks yields larger computational graphs. These graphs no longer
have the single expression use property but contain more structural information
than do the individual right-hand-side expressions. The obvious motivation is that
elimination sequences on larger graphs have the potential for better solutions than
do statement-level eliminations, which just become a special case.

EliAD has a number of restrictions on the input code it can handle. In particular,
a general purpose AD tool targeting languages such as Fortran, C, or C++ has to
contend with ambiguities in the computational graph introduced by accesses to array
elements, pointers, formal subroutine arguments, and reference variables that cannot
be statically resolved to single (virtual) addresses. This phenomenon is often referred
to as aliasing and is ubiquitous. For dynamically created computational graphs, the
aliasing problem turns into the question of how these graphs structurally depend
on the code’s inputs. Since repeatedly optimizing preaccumulations is commonly
considered too expensive for dynamically created computational graphs, we aim at
source transformation tools. A more recent approach requiring the construction of
the computational graph involves scarcity-preserving eliminations [226,234].

This paper does not focus on the circumstances under which cross-country or
scarcity-preserving eliminations yield advantages or which particular code genera-
tion is the most efficient. Rather, we start by recognizing the need for practical
construction of computational graphs in the presence of aliasing, and we introduce
an approach to solving the ambiguity problem with the help of established compiler
analyses. We view this as a prerequisite to the application of the aforementioned
elimination techniques in general purpose AD tools targeting codes that exhibit the
aliasing problem.

The construction and use of computational graphs particularly for basic blocks
also play a role in optimizing compiler technology. There are similarities in the ap-
proach [3] for constructing the graphs, but ambiguities may be treated differently.
Their typical use for tasks such as register allocation and object code generation
indicates a relatively advanced level in the compilation process that is far removed
from the high-level programming language used for the source-to-source transfor-
mation in our context. Consequently, we do not rely on a compiler environment to
provide the computational graphs that allows us to suit the approach specifically
for the purposes of AD.

The remainder of this section gives some context, notational framework and an
introduction to the problem. In Sect. 2 we describe the compiler-based analyses used
in the graph construction algorithm given in Sect. 4. Sections 5 and 7 investigate
the problem in a more general context.

Consider a code that implements some numerical function

y=f(z): R"— R"™

in the context of AD. We assume f can be represented by a computational graph
G = (V, E) that is a directed, acyclic graph (DAG). The set of vertices V = XUZUY
consists of vertices for the n independents X, vertices for the m dependents Y, and
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vertices for p intermediate values Z occurring in the computation of f. The edges
E represent the direct dependencies of the w € Z UY computed with elemental
functions w = ¢(...,vs,...) on the arguments v; € X U Z. The computations imply
a dependency relation v; < w and its transitive closure <*. The ¢ are the elemental
functions (sin, cos, etc.) and operators (4, —, *, etc.) built into the given program-
ming language. All edges (v,w) € E are labeled with the local partial derivatives
%; see [225] for details. The graph G is the basis for numerous investigations into
strategies for the efficient computation of derivative information, such as the Jaco-
bian
J(z) = {gjﬂ ER™™i=1,...,mj=1,...,n

and Jacobian-vector products J&, JT g [232]. Most practical applications do not
require the complete J for f. Instead, Jacobians Jj of subsections k of the code
for f may be preaccumulated, for instance for use in a subsequent reverse sweep.
Such Jj contain the partials of subsection outputs y, with respect to their inputs
x. In code-specific terms a preaccumulation of such sub-Jacobians is beneficial if
the preaccumulated Jacobian has fewer nonzero entries than intermediate values or
partials that would need to be stored for a subsequent reverse sweep over the sections
and if computing Ji and (sparse) Zr = nyk is cheaper than back propagation
through the elemental ¢.

For the construction of G let us start with a simple example. When we look at a
sequence of expressions of scalar variables, it appears intuitive how to concatenate
expression graphs representing right-hand sides of assignments; we call this process
flattening into a graph G. Consider the example in Fig. 1. We are using C-style

Fig. 1. Flattening of assignments a; : z[i]=-(z[1]*x), and a3 : y=z[i]/x into an
unambiguous graph (left) and an ambiguous graph (right).

pseudo-code for all examples in this paper. Assume for the moment that there is
no code between a; and az and i is some fixed integer. We start by copying the
right-hand-side expression graph of assignment a; into the graph G on the left side
and note the fact that z[i] is the left-hand side by associating the maximal vertex
© with z[i]. These associations are shown as the thin dotted arrows. We also
remember which vertex represents the argument x, for instance by labeling it as in
Fig. 1 or maintaining a list of vertex pairs. Even though z[i] was also an argument,
it was overwritten and therefore is associated only with the maximal vertex ©.
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Next we look at assignment as and notice the use of z[i] in the right-hand
side. This use can be identified with the preceding left-hand side; that is, the z[i]
vertex in as is identified with © already present in G. Furthermore, x appears as
an argument again, which we identify with the vertex in GG already associated with
x. Now that all arguments of a3 have been identified in G, we can simply copy the
remaining vertex () (for the division intrinsic) and the attached two edges to G. The
vertex () becomes the new maximal vertex and is associated with y, the left-hand
side of as.

The process just described relies on the identification of references to the values
of x, y, and z[i]. Naively done, the identification amounts to a match of symbol
and scope; but in a general setting we have to ensure that two references to values
are identified if and only if they use the same address in memory. Now assume that
between a; and a3 is some integer assignment i=i+p, where p is some parameter
known only at run time. In a source transformation context a graph building algo-
rithm cannot determine what address z[i] in as is pointing to. As shown in the
right side (graph G’) of Fig. 1, the right-hand-side to left-hand-side identification is
no longer unique, indicated by the dashed edge. That is, if p is 0, then we would have
the graph on the left side, otherwise the graph on the right side (without the dashed
edge). Obviously, only one of the two graphs can be the basis for an elimination
sequence that produces the correct Jacobian preaccumulation code.

2 Variable Identification

In a compiler context alias analysis [387] is essential for determining which variables
share addresses. The example discussed in Sect. 1 shows that syntactic equivalence
is not sufficient for identification. Instead, one must determine whether z[i] points
to the same address in both a1 and as. The question of whether variables share an
address, that is, whether they alias each other, arises from the use of pointers and
the other language elements mentioned in Sect. 1. While the individual elements
have distinct, language-specific characteristics, these differences are not relevant for
this paper. For brevity we refer to all scalar variables, reference variables, pointers,
formal arguments, and array dereferences from now on as variables.

Following [387], we distinguish flow-sensitive and flow-insensitive as well as must
and may alias analysis; their respective results are given in a variety of formats. For
this paper we simplify by assuming a vector of virtual address sets A to illustrate
the use of may and must alias information. Practical implementations have more
complicated result representations but answer the same aliasing tests. The use u, of
a variable v at a specific point in the code refers to a particular set A,,, through an
index, which allows us to represent flow-sensitive analysis results. Flow-insensitive
alias analysis yields only a single address set in the alias vector for every use of v in
the entire program, regardless of the point of use in the code. If A,,, contains exactly
one address, it expresses must-alias information; that is, v must use that one given
address. If A,, contains more than one address, it represents may-alias information;
that is, v may use one of the given addresses®. For instance, whenever there is a
dependence of address calculations on run-time parameters, the alias analysis will
be unable to narrow A,, to a single address.

2 but it has to use one of them



Flattening Basic Blocks 125

i i . . 0|<all>
z[il=-(z[i]*x) z[il=-(z[il1*x) —(———
o A 0|<all> 0|<all> i A 1{&z[1]}
Sa, U 1{&=z[11} 1[{&=z[1],8z[2]1} " @, ™~ ™~ 2|{&x}

y=z[il/x 2[{&x} 2|{&x} y=z[i1/% 3|{&y}

3 1 2 3|{&y} 3[{&y} 3 4 2 EM

(a) (b) () (d) ()

Fig. 2. Flow-insensitive alias vector: vector indices in the code (a), here with i=1
and az empty (b), or az : i=i+1 (c); flow-sensitive alias vector: vectors indices in the
code (d), here for i=1 and as : i=i+1 (e).

For our example from Fig. 1 we show some of variations of the results of alias
analyses in Fig. 2. The indices into the alias vector are depicted in the dashed ovals.
The conservative default lets all variables be aliased to everything, here by referring
to a special entry <all> in the alias vector representing the entire address space. If
in our example ap : i=i+p we have to assume at least A4 = {&z[0], ..., &z[n — 1]}.
Permitting out-of-bounds access, we would even have to default to the <all> entry.

To positively identify a use of variable w with a use of variable v, we therefore
check

Au = [Auy | = LA Auy = Auy 5

that is, the must alias test that u,, and u, occupy the same single address.

3 Removing Ambiguity by Splitting

In the ambiguous version of the example in Sect. 1 we could not identify z[i] from
the left-hand side of a1 and its subsequent use in a3, and we created a new vertex in
G’. The creation of possibly extraneous vertices already applies to variables within a
right-hand-side expression; see Fig. 3 (a,b) for an example expression *q+*r+*s. The

G' = (V,EUA)

(a)

Fig. 3. Variable identification: intra right-hand side with (a): [Au., 1,
Ay = Auey = A, , (b): |Au*[q’r’s]| > 1,Au, N Ay, # 0,t,t" € {xq,*r,*s}, and
(c): ambiguous G’ as in Fig. 1 with |Ay,,| > 1.
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dashed edges indicate may-aliasing, which in the context of G can be expressed with
additional edges A = {(v,w) € G : Ay N Ay # 0}. Consider a code consisting of an
ordered list of assignments L = (a1, ..., ap). Unless all these assignments are mutu-
ally independent, the order is essential for the semantic. Flattening the assignments
into a graph G replaces this order in the assignment list by the evaluation order
imposed by the directed edges in G. If A = ), then G has minimal vertex count and
represents the dependency information exactly, thereby preserving the semantics of
the code. A # @ in Fig. 3 (b) is benign; there are merely more vertices in the graph
than in (a). A # 0 in Fig. 3 (c) has ambiguous dependency information. To preserve
semantics through correct dependency information, we therefore need to ensure that
the subset A = {(v,w) € A : w € rhs(a;) Av = lhs(ax),k < i} = 0. The graph
G’ = (V, EUA) as shown in Fig. 3(c) can be viewed as an ambiguous graph in which
we leave open the question whether the additional edges A exist. Alternatively, we
can view G' = (V, E U.[l) as representing a set of unambiguous graphs in which each
unambiguous graph has either one or none of the edges (v,w) € A for each vertex
w that has such incoming edges in A.

A simple and practical approach is to iterate through L such that whenever
there is an ambiguous reference of a right-hand-side variable in assignment a; to a
preceding left-hand side, we remove all parts of a; that have been added to G and
start flattening into a new graph. In other words we split G into an ordered sequence
of graphs GG; that preserve the semantics as described in detail in Sect. 4. In Sect. 5
we look at the problem from a more general point of view.

4 Practical Solution

To simplify the formal description of the flattening algorithm, we assume the fol-
lowing canonicalizations of the input code.

C1: All computations w = ¢(...,v;,...) are elements of an assignment statement a
of the form v := e with a single variable v = [hs(a) on the left-hand-side and a
right-hand-side expression e = rhs(a) that is side-effect free®.

C2: All assignment statements are elements of an ordered list L of statements con-
tained in a basic block; see also Sect. 6.

C3: Subroutine calls may have side effects. Any subroutine call implies a split of L
into a preceding and succeeding list of assignments; see also Sect. 6.

C4: All functions and operators that are not intrinsic or have side effects are canon-
icalized into subroutine calls. Intrinsics have closed-form expressions for their
partial derivatives, as is the case for all elementals ¢.

C5: Intrinsics without arguments, for instance a function returning a constant value,
are inlined.

Restricting our algorithm to flatten only consecutive sections of L at the gran-
ularity of whole assignments allows for simplifications over the general approach
described in Sect. 5. In particular, we can use du/ud-chains [387], which are built
by using alias information and present the dependency information in a suitably
enhanced format. In short, a ud-chain (read use-define-chain) D,, contains for a

3 This requires, for instance, the canonicalization of C++ increment operators.
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particular use u, of a variable v the locations of possible definitions, that is, assign-
ments to v. Similarly, a du-chain (read define-use-chain) U, contains for a particular
definition, that is, v is a left-hand side, the locations of all possible references to the
assigned value (uses). Because of canonicalizations C1, C2, and C4 we can simply
equate these locations with the statements contained in basic blocks. Traditionally,
ud-chains are introduced for the use of a variable following alternative definitions
in separate branches in the control flow. If a ud-chain for v refers to exactly one
statement, then this is the most recent assignment to v with respect to the control
flow and |Ay,| = 1. If |Ay,| > 1, then the chain may refer to more than one state-
ment even in the same basic block. In principle there is no limit to the locations
du/ud-chains may refer to. Dereferencing a global pointer variable can entail chains
referring to locations in the entire code. Limiting the flattening algorithm to ba-
sic blocks, we can reduce the needed information from ud/du-chains to statements
within basic blocks and a placeholder “0” for defining locations outside its scope. For
instance in the example in Fig. 1, the ud-chain for the use of z[i] in the right-hand
side of a3z is (a1) in the unambiguous case and (a1,0) in the ambiguous case.

4.1 Graph-Splitting Algorithm

The following algorithm is a simplified version of the practical implementation men-
tioned in Sect. 7.

Algorithm [Semantic-Preserving Flattening] Consider a sequence of assign-
ments L = (a1,...,a1) to be flattened into an ordered sequence of directed acyclic
graphs G; = (Vi, E;). We maintain two tracking lists Pyar (variables) and Pintr (in-
trinsics) of pairs (ve,ve,;) of vertices ve from the expression e = rhs(a) associated
with vertices va, € V;. Perform the following steps.

inat: 1 :=0
k:=k =1
split: i:=i+1; Kk :=
Gi:=(Vi:=0,E; :=0) // start with an new graph
Pyar := Pintr := Sins :=0 // and empty lists
loop: e :=rhs(ak)
Yv e Ve
if (v is a variable)
if [(Du, = (aj) NJ < K') N\ //defined outside of G; and
(B (w,.) € Pyar : Dy, = Du,,)] //not already there
V (D., = (0))) //or defined outside of the scope

add new vertex v' to Vi; Pyar := Pyar + (v,0)
if |Du,| >1A3a; € Dy, :j > K) //ambiguous
remove all additions to G; done for ay,

goto split:
elseif (|[{(w,v) : (w,v) € Ec}| > 0) //must be an intrinsic
add new vertex v' to Vi; Pintr := Pintr + (v,0")
V(v,w) € E.

add new edge (v',w') to E; where
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((v,v") € Pyar U Pintr) V ((£,0") € Pyar A Dy, = Du,) N(w,w') € Pintr
if A(w,w’) € Pyar : Auy, N Ay, # 0 with v = lhs(ag))

Pyar = Pyar — (w,w") // keep the graph acyclic by
Pyar = Poar + (Ihs(ak), Vinaz) // only tracking the top node
Sins 1= Sins Ulhs(ax)
if (b < |LI)

k=k+1

goto loop:
else

done

In the algorithm the first statement in each G; has index k’. This allows us
to distinguish definitions of variables inside or outside the currently considered Gi;.
Reducing the ud-chain information to basic block scope has the drawback that
variables with the same outside-of-scope definition cannot be identified. Hence, while
preserving semantical correctness, we do not achieve the minimal vertex count.

The algorithm will copy only leaf nodes from expression graphs that are vari-
ables. Intrinsics cannot be represented by minimal variables because of canonical-
ization C5, and constants always imply a zero edge label and therefore are ignored
for our purposes. To limit the formalism, we exclude special cases such as purely
constant assignments.

The algorithm keeps the G; acyclic, a requirement that becomes an issue if a
variable in any of the assignments in L is used and then overwritten. Acyclicity is
maintained by tracking only the “most recent” vertex in G representing an assign-
ment to a given variable. This tracking is sufficient because of canonicalizations C1
and C4. In the unambiguous case of Fig. 1, we show the situation of z[i] being
overwritten. While processing a;, we first add the pair (z[i],w) to P,er, where
w is the left minimal vertex in G. After looping through all vertices and edges of
rhs(a1), we find the left-hand side z[i] exists in Pyqr. We remove (z[i],w) and
add (z,©) instead.

In the ambiguous case of Fig. 1, we start with £k = 1, process a1, and x and
z[i] are tracked in P,qr. The integer statement a» :i=i+p is passive with respect to
the derivative computation and therefore can be skipped. Assume we continue with
processing x in the right-hand side of as. If x is defined outside the current basic
block and ud-chains are basic block scoped, then D,, = (0), and we add a new
vertex. Next is z[1], for which Do,y = (a1,0); the algorithm determines ambiguity,
removes the just-added vertex for x, and flattens as into a new graph Ga.

In practice the AD tool then determines the cross-country eliminations in G1
and G2 separately, and produces the respective preaccumulation code in terms of
the original variables x, y and z[i] first for G, followed by statement a2 and then
followed by the code for eliminating in G2. By keeping the generated elimination
code in the same order as the graphs G;, one can easily see that the semantics is
indeed preserved.

The collected Sjps for each G; can be used in conjunction with du-chains to
narrow the proper set of dependent variables; see Sect. 5.1.
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5 Splitting into Edge Subgraphs

Abandoning the convenient restriction of splitting exactly along assignment limits,
we revisit (V, EUA) introduced as a set of unambiguous graphs in Sect. 3. We define
an edge subgraph Gs = (Vs, Es) of a graph G = (V,E) with V;, C V and Es C E
such that if (v, w) € Es, then v,w € Vi, and if (t,u), (v,w) € Es A (u,v) € E, then
(u,v) € Es. A split of G into edge subgraphs G; = (V;, E;) is defined such that
(E=UE;)N(E;NE; =0). A split duplicates vertices v for all pairs (u,v), (v,w) €
E A (u,v) € E; A (v,w) € Ej such that they occur in both graphs G; and G;. The
identity between vertices v = v; in G; and v = v; in G; can be expressed with the
set of (virtual) identity edges Z = {(vi,v;)}. In the graph (U Vi, E; UZ) we find
all G; and the pairs of duplicated vertices connected by the edges in Z. With these
identities one may interpret the splitting into edge subgraphs as the inverse of the
flattening.

Consider all edges (v, w) € A as possible identities like those in Z. In (V, EUA) for
each such w only one (or no) element of A is the actual identity; that is, (v, w) € Z.
Like (Vi, U Ei UZ) we view (V, E U A) as consisting of edge subgraphs G; that
satisfy the following criterion.

FEdge subgraph criterion: The G; have A; = 0, that is, locally unambiguous depen-
dency information, and can be (partially) ordered with “<” such that V(v,w) €
A v e Gy, then w € Gi,G; < Gy, and vice versa, ¥(t,u) € A : u € Gj, then
te Gi, G; < Gj.

In other words, all virtual in-edges are out-edges of preceding graphs, and all
virtual out-edges are in-edges of succeeding graphs. Figure 4 shows G' = (V, EU /\)
from Fig. 1 with two edge subsets as dash-dot-encircled areas on the left. The split
results in the two shaded, unambiguous subgraphs on the right; the connecting vir-
tual edge imposes the order between the subgraphs. The ordering between the graphs

Fig. 4. G’ = (V, EUA) for the example in Fig. 1 before (left) and after (right) split.

preserves the semantics. The edge subgraph criterion implies a minimal number of
subgraphs, but it does not determine the subgraphs G; uniquely. For example, con-
sider A = {(v,w), (v, w)} resulting in G; and G2. Any edge (¢,u) for which there
are no paths Py v, Py v, Pw,: can be made part of either G1 or G2. More generally
we can define the set of edges that are movable between edge subgraphs G; and G,
as {(t,u) € E:Y(v,w) € A:v € V; Aw €V, : B Py, Py,}. Consequently, one can
formulate objectives to determine an optimal split that we will briefly investigate in
Sect. 6. Reconsidering the algorithm in Sect. 4 in this more general context, we can
prove the following
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Proposition: The semantic-preserving flattening algorithm attains the minimal
number of subgraphs satisfying the edge subgraph criterion.

Proof. A split into two subgraphs G1 = (v1, F1),G2 = (v2, E2) with v € Vi, w €
Va can cover all virtual edges (v/,w’) in a set S with S = {(v,w).(v/,w’) € A :
BPyw, Py €(V, EU/\)} If 3P, ., then v and w’, and by edge subgraph definition
all vertices and edges on the path would have to be in one subgraph. Each virtual
edge belongs to such an S, and (V, EU /i) defines s sets. Then the minimal number
of subgraphs is s+ 1. The algorithm keeps flattening into the same subgraph as long
as all encountered virtual edges (v, w) originate outside G; in another G; (this does
not actually consider outside-of-scope references as edges). All targets w lie inside
G;. The algorithm creates a new subgraph whenever it encounters the target vertex
of an edge (v',w') € A with a source with G;. That means a P, exists and a
(v',w") belongs to a new equivalence set.

5.1 Determining Jacobian Entries

We now have a split into [ unambiguous subgraphs G1, ..., G,;. Before performing
any elimination in G;, we have to determine which vertices in G; are independent
and which are dependent, in order to obey the restrictions on the vertices and
edges that can be targets of eliminations. Obviously, the set of independents is
exactly the set of n; minimal vertices {v : B (u,v) € E;}. The similar assumption
that all maximal vertices {u : B (u,v) € E;} constitute the dependent set is not
necessarily true. One might simply have a variable v assigned that is then referred
to in a right-hand-side expression flattened into G; as well as one flattened into a
successor G;. If we knew 7 C A exactly, we could determine the m; dependents as
{v:(w,w)eZ,veVi,weV;,j>itU{v:H(v,u) € E;}. Then the elimination in
G yields Jg, € IR™i*™ If L in the algorithm in Sect. 4.1 contains the entire code
subsection k of interest (see Sect. 1), then we can write

l
_ | Jai 0| 5o
n=T1(P0 [ 7 70)

with the identity I, € R**** s; = |{(v,w) € T,v € V;,w € Vyj < i < j'}|.
PET), PZ(.C> are permutation matrices that line up the rows and columns correctly. 7 is
not known, a conservatively correct approach is to consider all maximal vertices and
all vertices with virtual out-edges in A dependent. This is obviously suboptimal, and
we can use a better and practical solution with respect to the Sjns from Sect. 4.1 that
relies on du-chain information. At the point of flattening a split inducing assignment
ak, we determine the set of dependent variables for G; according to

{vESth:Hajequ:ajEL,j>/~c\/0€qu}.

Because of ambiguity this is in general a superset of the exact set of dependent
variables but is in any case a subset of Sjjs. Similarly, all dependent variables y, of
code subsection k having the same scope as the du-chain information, that is, the
basic block, are determined by all variables v with 0 € Uy, .

To perform a complete vertex elimination yielding a bipartite graph, a graph
with a nonmaximal dependent vertex v needs to be augmented with vertex v’ and
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an edge (v,v’) that has a unit edge label. Then v’ takes the place of v in the
dependent set, and a complete vertex elimination is possible. In the case of edge
eliminations we have to make sure that no edge-front eliminations are performed
on in-edges of such a v. On the other hand, there are no consequences for face
elimination as the construction of the dual graph properly represents v. Figure 5(a)
shows the unambiguous G from Fig. 1 where independent and dependent vertices
are shown with A and sy, respectively. We assume for the left-hand side of a1 that
Uu,y = (as,0) and therefore the left-hand side of a1 is a nonmaximal dependent
vertex. Following [399] G is augmented (dashed elements) to construct the dual
graph shown in Fig. 5(b). A dashed edge is emanating from each dependent vertex.

l 2[4] FEEIES /AN
1

Fig. 5. Nonmaximal dependents v: (a) augmented G, (b) dual graph, (c) collapsed
(left) and separated (right) independent/dependent variable.

Because the flattening algorithm identifies the left-hand-side variables with the
respective maximal right-hand-side expression vertices, an assignment ao : x=t, for
instance, with 0 € U, can collapse an independent and a dependent variable into the
same vertex. Generally this may lead to a single unconnected vertex or a situation
depicted in the left graph in Fig. 5 (c). In both cases a split of the collapsed vertex
into two vertices with a connecting edge solves the issue. The unit edge label is the
corresponding Jacobian entry.

6 Outlook

In this section, we present some aspects and extensions to the graph construction
that are the subject of ongoing and future work.

6.1 Scope of Flattening

We focused here on the basic block as the scope of interest for the flattening. For
programs implementing a general f, the control flow may depend on the values of
the arguments in X. For instance, argument-dependent loop bounds do not permit
the construction of a single G representing the code for f for all possible input
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values. On the other hand, the construction of an argument-specific G, for example
based on an execution trace, easily leads to huge computational graphs devoid of
information indicating repeated structures. The actual goal of minimizing operations
for the derivative computation sets practical limits for the size of G to which a
minimization algorithm may be applied. Generally, the minimization is too costly
to be reapplied to each argument-specific G. Therefore, we should require that G
be structurally argument independent. Putting G within the scope of a basic block
provides a simple criterion for structural independence.

There are at least two obvious ways to consider a computational graph in scopes
larger than that of single basic blocks: 1) exploiting interface contraction and 2)
inlining subroutine calls and sequentializing branches. The first approach is of clear
practical value; the method and the benefits are described in [275]. Building a com-
putational graph through the body of a subroutine that is being called from the
code subsection in question amounts to inlining. In a source transformation context,
inlining should be done explicitly by a compiler front-end prior to any AD code
transformation. On the other hand, we can flatten “black box” subroutine calls if
we can obtain all partial derivative values directly, for instance, if they are returned
as a specific set of parameters. The flattening algorithm can treat such subroutine
calls like intrinsics. In a ud-chain, simply referring to the subroutine call as the de-
finition location for a variable is no longer sufficient because the subroutine may
define multiple variables, and we then need additional information to find out which
one.

The last extension, the sequentializing of branches, has limited practical value
if the computational cost of executing all branches rather than one is too high. The
source transformation algorithm will have to make the branches mutually indepen-
dent, execute them sequentially, and select the proper result. With alias information
and du/ud-chains we already have the prerequisites for such a transformation. How-
ever, it is beyond the scope of this paper.

6.2 Optimizing the Split

In theory, because of the edges that are movable between subgraphs G; (see Sect. 5),
we can have a variation of the number of independent and dependent vertices in the
G, a variation in the sparsity of the Jg,, and, as the G; change, a variation of the
minimal cost for preaccumulating the corresponding Jg,. The first two obviously
affect the storage requirements for a subsequent reverse sweep and the cost of the
implied (sparse) Jacobian vector products. So far we have considered minimizing
only the preaccumulation cost, which now would become the inner problem of a
nested optimization. Currently, we are not able to tackle such a nested optimization
and therefore stay with the simple split choice made for the semantic-preserving
flattening algorithm.

Moreover, introducing splits in addition to the minimally necessary ones can
yield improvements with respect to the above minimization criteria. A simple ex-
ample is a sequence of © = abTx;x = abTx;. .. implemented by z = bTx;x = az
and assuming splits necessitated by an inability to identify & between the left- and
right-hand sides. If we also split through z, then instead of storing n? Jacobian
entries from ab”, we can store a and b with 2n entries. Rather than introduc-
ing additional splits, this issue should be seen in the context of scarcity-preserving
eliminations [226,234].
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7 Conclusions

The paper illustrates the problems arising with the construction of large computa-
tional graphs spanning multiple assignments in the presence of aliasing for source
transformation based AD. We characterize the variety of semantic-preserving com-
putational graphs that can be generated for a code with aliasing and some conse-
quences of the choices. The algorithm in the paper presents a practical solution for
the graph construction that handles the aliasing problem. It enables cross-country
elimination and other AD methods that rely on the availability of such graphs in
AD tools for general purpose programming languages such as C, C++ and Fortran.

The algorithm of Sect. 4.1 is implemented in the OpenAD* framework of the
Adjoint Compiler Technology & Standards (ACTS) project. For the ACTS project
the alias analysis, the generation of du/ud-chain information, and other analyses
are being implemented in OpenAnalysis®. The canonicalizations listed in Sect. 4 are
done by specific compiler front ends; see, for instance, the OpenADFortTk compo-
nent in OpenAD for the Open64 Fortran compiler. The algorithm incorporates the
handling of the special cases mentioned in Sect. 5.1. While they complicate the case
distinction in the algorithm, they do not change its basic functionality and there-
fore are not added to the formal description given here. Another major addition to
the implemented algorithm not covered in this paper integrates an intrinsic-specific
activity analysis with the flattening. While the algorithm described here ignores
only constant minimal vertices, some intrinsics such as floor are constant in open
subdomains. Compiler-style activity analysis implemented as a dataflow analysis is
typically not concerned with this level of detail. OpenAD considers such intrinsics
and can recognize ensuing passive subgraphs across assignment boundaries. Since
passive subgraphs do not need to be flattened into G, we do not need unique variable
identification for the constant propagation. Instead, we can establish a variable v is
constant if we find all assignments occurring in D,,, to be constant as well.

The successful use of OpenAD for oceanographic state estimation problems
shows the viability of our approach.

4 yww.mcs.anl. gov/0penAD
5 www. hipersoft.rice.edu/openanalysis
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Summary. Automatic Differentiation (AD) is a program transformation that yields
derivatives. Building efficient derivative programs requires complex and specific sta-
tic analysis algorithms to reduce run time and memory usage. Focusing on the
reverse mode of AD, which computes adjoint programs, we specify jointly the cen-
tral static analyses that are required to generate an efficient adjoint code. We use a
set-based formalization from classical data-flow analysis to specify Adjoint Liveness,
Adjoint Write, and To Be Recorded analyses, and their mutual influences, taking
into account the specific structure of adjoint programs. We give illustrations on ex-
amples taken from real numerical programs, that we differentiate with our AD tool
TAPENADE, which implements these analyses.

Key words: Adjoint code, adjoint algorithm, data-flow analysis, reverse mode,
TAPENADE

1 Introduction

Classically, tools that perform code optimization require information on which vari-
ables are used or overwritten by a given piece of code. This is particularly true when
trying to optimize adjoint code produced by the reverse mode of automatic differen-
tiation (AD), which poses serious problems of run time and memory consumption.
To this end, in addition to the classical program analyses, e.g., Read-Write, several
research groups have experimented with specific analyses such as Adjoint Liveness
analysis, To Be Recorded analysis, and Adjoint Write analysis. These three analyses,
defined in Sect. 4, appear tightly related.

Adjoint code has a particular structure, defined by the model of reverse AD. For
example, an adjoint code consists of two sweeps with symmetric control flow [254,
257]. It also features matching pairs of instructions that store and restore values. In
our particular model this is done by pushing and popping these values to and from
a stack. We are going to use these features of adjoint programs to define the rules of
the AD-specific data-flow analyses, by formal specialization of the rules of classical
data-flow analyses.
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Generic data-flow analyzers, like the ones found in optimizing compilers, are
unable to detect nor take advantage of this structure. They can’t find the pairs of
matching push and pop’s far apart, nor can they understand the mechanism used to
reproduce the symmetric flow of control. Running them a posteriori on the adjoint
program will return weak results. Therefore, we shall define AD-specific data-flow
analyses that will run on the original code before generation of the adjoint code,
incorporating knowledge of how the adjoint code will be built.

This paper gives a formal uniform specification of the three adjoint data-flow
analyses above, defined on the structure of the original code. This specification relies
on a preliminary description of the model of reverse AD that goes from the original
code to its adjoint. This specification will be used to demonstrate data-flow proper-
ties of adjoint codes, to highlight the relationship between these three analyses, and
to derive the data-flow equations implemented in our AD tool TAPENADE [257].

Section 2 summarizes knowledge about reverse AD that is necessary for this
paper, and Sect. 3 gives basic notation and formulae for classical data-flow analyses.
We refer to [225] for a full discussion of AD, and to [3] about data-flow analyses.
Section 4 presents the reverse AD model and uses it to define and specify Adjoint
Liveness, To Be Recorded, and Adjoint Write analyses. Section 5 gives an illustra-
tive example adapted from an industrial numerical code and shows experimental
measurements.

2 Adjoints by Automatic Differentiation

Automatic Differentiation differentiates programs. An AD tool takes as input a
source computer program P that, given a vector argument X € IR"™, computes some
vector function Y = F(X) € IR™. We call F’ the Jacobian of F. A star * denotes
transposition, and the dot - denotes product. In reverse mode, the AD tool generates
an adjoint source program P that, given the argument X and a weight vector Y,
computes the gradient F'*(X)-Y of the scalar output Y*-Y. To keep things simple,
consider that P is a sequence of instructions Ix: AD identifies it with a composition
of vector functions so that

P:[li;12;...Ip;] represents F = f,ofp_10---0f1,

where each fi is the elementary function implemented by Ii. Call for short X the
values of all variables after each instruction I, i.e. Xo = X and Xi = fi(Xi—1).
AD applies the chain rule to obtain the required gradient

FU(X) Y = fI"(Xo) - o' (X1) - - fpla(Xp2) - f (K1) Y, (1)

which can be mechanically translated back into the adjoint program P.

We observe that (1) is most efficiently computed from right to left, because
matrix-vector products are cheaper than matrix-matrix products. This yields the
gradient in a time which is only a small multiple of the time of P. However, there is
a difficulty because the f’ instructions require the intermediate values X}, in reverse
of their computation order. If the original program overwrites a part of Xy, the
differentiated program must restore X before it is used by fi;(Xx). There are two
main strategies for that:
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e Recompute-All (RA): the X}, are recomputed when needed, restarting P on
input Xy until instruction I. The brute-force RA strategy has a quadratic time
cost with respect to the number of run-time instructions p. The TAF [208] tool
uses this strategy. A so-called “Efficient Recomputation Algorithm” limits re-
computations to those actually needed to obtain Xy.

e Store-All (SA): the X}, are stored on a stack, which is filled during the forward
sweep ?, a preliminary run of P that stores variables on the stack just before
they are overwriﬁen. The differentiated instructions strictly speaking form the
backward sweep P, which pops values from the stack when needed. The brute-
force SA strategy has a linear memory cost with respect to p. The ADIFOR [96]
and TAPENADE [257] tools use this strategy.

Practically, both RA and SA strategies need a special storage/recomputation trade-
off in order to be really efficient. This trade-off is called checkpointing. Since TAPE-
NADE uses checkpointing on subroutine calls, we describe checkpointing in this con-
text. Let us define some vocabulary and graphical notations. Execution of a sub-

E] : original form of x
@ : forward sweep for x

8] [p] @e[@o] (BXDB| ([BXE <X - backward sweep forx

' : take snapshot
BG G : use snapshot

Fig. 1. Checkpointing on calls in TAPENADE reverse AD.

routine A in its original form (_is shown as A. The forward sweep is sh(gwn as &. The
backward sweep is shown as A . The adjoint program is just A= A; A. Checkpoin_)t—
ing consists of choosing a part B of A, which will E}e run without storage during A .
When the backward sweep A reach{e_s B, it runs B, i.eﬁ again but this time with
storage and then immediately runs B and the rest of A. Duplicate execution of B
requires that some variables used by B (a snapshot) be stored. TAPENADE applies
checkpointing at each procedure call, leading to the pattern shown on Fig. 1. If the
run-time call tree is well balanced, the memory size as well as the computation time
required for the reverse differentiated program grow only like the depth of the call
tree, i.e. like the logarithm of the run time of P.

3 Classical Data-Flow Analyses

We introduce some classical notation and formulae of data-flow analysis. They will
be used in the next sections to derive formally specialized rules for adjoint data-flow
analyses. Consider any fragment Z of a program P.

e The set of variables whose value at the beginning of Z is overwritten inside Z
(at least partly overwritten during some possible execution of Z) is denoted by
out(Z). For two successive pieces of program A and B:
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out(A; B) = out(A4) Uout(B) . (2)

However we will use a refined rule when a stack is used: if a variable is PUSH’ed
and later POP’ed from a stack, it is unmodified globally, so that

out(PUSH(v); A; POP(v)) = out(A) \ {v} . (3)

e The set of variables whose value at the beginning of Z is always completely
overwritten inside Z is denoted by kill(Z). This subset of out(Z) is often a
strict subset, e.g. a single assignment to an array cell does not kill this array,
so that kill(T(1)=0.0) = (. Array region analysis [140] copes with this in some
cases. In general for two successive pieces of program A and B we take the
conservative under-approximation

Kill(A; B) = kill(A) Ukill(B) .

e The set of variables whose value at the beginning of Z is read inside Z is denoted
by use(Z). For two successive pieces of program A and B, the variables killed
by A hide the variables read by B, so that

use(A; B) = use(A) U (use(B) \ kill(A4)) . (4)

e When Z is a tail of P (i.e. the end of Z is the end of P), we define the set
live(Z) of live variables at the beginning of Z, i.e. whose value is involved in
computations that eventually influence the final result of P. All final outputs of
P are live by definition, so we initialize live([]) to this set. Recursively, for any
two successive pieces of program A and B, B being a tail of P, the variables
live just before B lead to the variables live just before A through Dep(A), the
“dependence across A” information, defined as

Dep(A) = {(vo,v;) € Outputs(A) x Inputs(A) | v, depends on v;}
and through the combinator ®, defined as
Ve@Dep={z|3ye V| (y,z) € Dep},

so that
live(A; B) = live(B) ® Dep(A4) . (5)

4 Adjoint Data-Flow Analyses

We consider a piece of program P to be differentiated by the reverse mode of AD into
its adjoint program P. P can be the complete function that will be differentiated,
or it _can be a checkpointed sub-part. In both cases, using notation from Se(it. 2,
P = P; P. Adjoint Liveness analysis observes that the only required results of P are
the differentiated variables, and not the origin<ai results of P, which in most imple-
mentations will be overwritten and lost during P . Therefore, several instructions at
the end of P may be dead. This is true in particular for the last instruction of P.
Adjoint Liveness analysis computes, for any location in P and thus in ?, the set of
original variables live for P. Adjoint Liveness is computed on original variables only,
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but it originates from differentiated variables, which are all considered live, whereas
all the original variables are assumed dead at the end of P. Adjoint Liveness analysis
is strongly related to the To Be Recorded analysis and the Adjoint Write analysis,
so that we will define and study the three of them jointly.

Here is an outline of the general structure of this technical section. In Sect. 4.1, we
first give a precise specification (or model) of adjoint programs that defines and uses
the Adjoint Liveness, To Be Recorded, and Adjoint Write analyses, to produce an
efficient code. Then we formalize these analyses using this model of adjoint programs,
starting with To Be Recorded analysis in Sect. 4.2. Notice that this might introduce
a circularity into the definition. After proving in Sect. 4.3 an important lemma about
the variables left unmodified by an adjoint program, we will be able in Sect. 4.4 to
formally derive specific rules that define the Adjoint Liveness analysis. We can then
show that the definitions circularity mentioned above disappears, and consequently
the Adjoint Liveness analysis must be run first, followed by the To Be Recorded
analysis and finally by the Adjoint Write analysis. Section 4.5 formally derives the
specific rules that define the Adjoint Write analysis, and highlights its usage for
the checkpointing strategy. All three analyses are defined directly on the original
program, with a low computational cost.

4.1 Structure of Adjoint Programs

Strictly speaking, the fact that a variable is necessary for (a part of) P depends
on the architecture of P, i.e. on the reverse AD model and on the strategy used to
make intermediate values available to the backward sweep. Here, we shall rely on the
SA strategy used in TAPENADE, but the following specifications and demonstrations
can be adapted to the RA strategy. Let us make our reverse AD model explicit.
We define P recursively on the structure of P. To keep things simple, suppose P is
a straight-line program of simple statements. For an empty program P = [], P is
simply [] = []. Recursively, for a assignment I followed by any “downstream” sequel
D, the basic model is:

T,D=T1,;D; T = PUSH(out(I)); I; D; POP(out(I)); I’ . (6)

It states that values overwritten by I are PUSH’ed onto a stack just before I, and
restored by a POP before they may be used by I’, the derivative instructions for I.
However, at least three refinements can be applied to the model to obtain a more
efficient, yet equivalent, adjoint code.

An immediate refinement is to use activity, specified for example in [256]: at
analysis time, some variables can be proved to have always a zero derivative with
respect to the independent inputs or dependent outputs. When the variable written
by assignment I is inactive, then I’ can be removed. When some variable used by
assignment I is inactive, I’ is simplified, therefore using fewer intermediate variables.
Adjoint data-flow analyses yields even better results when run after activity analysis.

Another refinement is to use Adjoint Liveness analysis, defined as computing

live(D) with the initial condition on the tail of D that live([]) = . In model (6),
I; D contains instruction I. We observe that if the results of I are used later in P,

this can be only in D because the backward sweep m of I and instructions before
I in P (“upstream”) only uses intermediate values that existed before execution of
I, and certainly not the results of I. Therefore, I and its associated PUSH and POP
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can be removed if its results are out of live(D), i.e. if the predicate adj-live(I, D),
defined as (out(I) N live(D) # ), is false. One can check this is the case for the
last I of P, i.e. when D = [].

The third refinement is to PUSH and POP a variable in out(I) only if it is
really required by the following differentiated instructions. This is the goal of To
Be Recorded analysis, abbreviated as TBR [168,397]. For example, the derivative
of the “linear” instruction x = y+2*z does not require the values of y nor z. Since
this refinement depends on the following differentiated instructions, which include
the backward sweep of U, the part of P upstream I, we must introduce this U as
a context into definition (6). We use the notation F to separate U from the part
of the program currently differentiated. We introduce the set of variables used by
instructions I’ and after, which is use(I’; F) The only variables actually PUSH’ed
and POP’ed for instruction I are now out (/) N use(I’; F)

Consequently, model (6) turns into the following refined model:

—

Uk I; D = [PUSH(out(I) Nuse(I’; U)); I;] if adj-live(I,D)
[U; 1]+ D; - ™
[POP(out(I) Nuse(I’; U));] if adj-live(I,D)
I/

4.2 Derived Rules for To Be Recorded (TBR) Analysis

From the classical equation (4) of the use analysis, we can write the rules that
—

compute use(l’; F) and use(U ), yielding a formal specification of the TBR analy-
sis. Since I’ only overwrites differentiated variables, and we study here data-flow
properties of the original variables only, kill(I") = (. Therefore

157 ’ e
use(I'; U) = use(I')Uuse(U), (8)
where use((ﬁ) is defined recursively by
—
use([]) = use([]) =0

use(POP (out(I) Nuse(I’; <ﬁ)), r; (17)

use(T71) = = (use(I') Uuse(U)) \ kill(I) if adj-live(I, D)

9)

use(I’; }7) = use(I')U use(ﬁ) otherwise
These equations translate easily into forward data-flow equations. They can be im-

plemented efficiently as described in [256].

4.3 Adequacy Lemma for the PUSH/POP Mechanism

Equations (8) and (9) allow us to verify an important property of model (7): the

PUSH/POP mechanism inside D leaves unchanged all variables used in ﬁTI, the
backward sweep of the upstream instructions:
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Lemma 1. For any tail Z of program P, preceded by upstream instructions U :
_ —
out(UF Z)Nuse(U)=10.

Proof. By induction on the length of Z. Terminal case: if Z =[], U - Z = [] too,
so its out set is empty, and the property is true. Induction case: if Z = I; D, then
U\ Z is defined by (7):

o If adj-live(I; D) is false, then out(U + I; D) = out([U;I] - D;I') = out([U; I] I
D)Uout(I"), from definition (2). We know that out(I’) = () because I’ overwrites
only differentiated variables. By the induction hypothesis, out([U;I] - D) N
use(bTI) = (. From (9), we find that use(ﬁ) contains use((i) and therefore
out([U; I+ D)nN use(ﬁ) = (), and the property is true.

e On the other hand, if adj-live(I; D) is true, consider any variable v € use(ﬁ).
This implies through (8) that v € use(I’; U)

— Either v € out(l). Since adj-live(I; D) is true, and since v is also in
use(I'; ﬁ), v will be PUSH’ed and then POP’ed. Thus from (3), v is un-
changed just after the POP. Since I’ overwrites only differentiated variables,
v is unchanged through execution of U + I; D.

—~  Orw ¢ out(I). In that case, the only part of U I I; D that might overwrite v
is [U; I] = D. Equation (9) says that use(ﬁ) = (use(]’)Uuse((ﬁ))\kill(l).
Since v ¢ out(I), v ¢ kill(1) because the kill set is always included in the
out set. So from v € use(ﬁ) we get v € use(ﬁ;.j). The induction hypothesis
ensures that out([U;I] - D) N use(m) = (), and therefore v ¢ out([U;I] -
D), so v is unchanged through execution of the whole U F TI; D.

Therefore v ¢ out(U + Z), and the property is true. 0

4.4 Derived Rules for Adjoint Liveness Analysis

We can now specify the rules of Adjoint Liveness analysis. We want to find equations
which, for any tail Z of P, build the set live(U + Z). By definition live([]) = 0.
Recursively for Z = I; D, recall that Adjoint Liveness originates from differenti-
ated variables. In model (7), only D and I’ write differentiated variables. Therefore
live(U F I; D) is the union of the necessary variables of the two slices of U & I; D

required for D and I'.

e One slice for variables that are necessary due to D:

[PUSH(out(I) Nuse(I’; U)); I;] if adj-live(I, D)
[U; 1]+ D;

From (5), the necessary variables are live([U;I] - D) ® Dep(I). This formula

applies even when adj-live(I, D) is false because in this case out(I)Nlive([U; I]

D) = 0, i.e. I doesn’t write any variable in live([U; I] - D), and thus live([U; I]
D) ® Dep(I) = live([U;I] - D).

e Another slice for variables that are necessary due to I’. These variables can be
found by a simple analysis of I, not requiring I’. From Lemma 1, the variables
necessary for I’, which belong to use(?), are left unmodified by [U; I] = D. The
slice is thus
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[PUSH (out(I) Nuse(I’; U)); I;] if adj-live(I,D)
[POP(out(I) Nnuse(l’; F)),} if adj-live(I, D)
Il

which is equivalent to I’, whatever U, D, and adj-live(I, D). Its necessary vari-
ables are live(I').

We end up with the following formula, which does not use the context U:
live(I; D) = live(I') U (live(D) ® Dep([)) . (10)

A priori, there was a risk of circularity in this specification, since it used the adj-live
property in many places. However, (10) turns out to be independent from U and
adj-live(I, D), so there is no circularity. In practice, it suffices to run Adjoint Liveness
analysis that computes live(Z) before TBR analysis that computes use(ﬁ). Equa-
tion (10) extends to basic blocks instead of instructions: for any block B followed

by a downstream code D

live(B; D) = live(B) U (live(D) ® Dep(B)) .
This backward data-flow equation is particularly efficient since live(B) and Dep(B)
can be precomputed.

4.5 Derived Rules for Adjoint Write Analysis

Suppose P contains a checkpointed piece C, and thus is made of three parts [U, C, D].
Checkpointing modifies model (7), because the forward sweep runs C, and the back-
ward sweep runs C = 8; 6 This requires storing a snapshot, i.e. enough variables
to restore the calling context of C'. Storing use(C) is sufficient, but we can do better.
We need to run C again, and not C, and we saw that live(C) C use(C). Moreover
we need to restore a variable only if it was modified “in between,” i.e. is in the
out set of code sequence C; D, and we shall use the fact that out(D) C out(D).
Therefore, in the non-trivial case where predicate adj-live(C, D) is true, we define
the snapshot snp (U, C, D) as live(C) N (out(C) Uout([U; C] - D)), and the reverse
AD model becomes

U C; D = PUSH(out(C) Nuse(T));
PUSH(snp(U, C, D));
OH
[U; C] + D; (11)
POP(snp(U, C, D));
[1+C;
POP(out(C) N use(<(7));

Model (11) is not necessarily optimal. Other choices could perform better for some
programs. For example, putting U instead of [] as the context for the generation of
C' costs more PUSH/POP inside C, and on the other hand makes it unnecessary to

«—

store out(C) Nuse(U) in (11). Exploration of these tradeoffs is an open problem.
In any case, we must specify the Adjoint Write analysis, to compute out(U  Z). If
Z =[], obviously out(U + []) = 0. If Z = I; D, we use model (7) and distinguish
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two cases according to adj-live(I, D). Using also definition (3) on PUSH/POP pairs,
we get

(out(I) Uout([U; I] - D))\ (kill(I) N use(I’; U))

if adj-live(1,D)

out(UFI;D) = (12)

out([U;I] F D) otherwise.

As anticipated, we see that out(U F I; D) is always included in out(/; D), and often
strictly thanks to the PUSH/POP pairs. Again, (12) runs backward on a flow graph.

5 Application

Consider the example procedure FLW2D1COL (Fig. 2) from a Navier-Stokes flow solver,
shortened for readability preserving its structure. On a large mesh, this typical

subroutine FLW2D1COL (nsgl,nsg2,nubo,t3,pres,vnocl,
+ g3,g4,rh3,rh4,ns,nseg,sq)

< omitted declarations >

do 30 iseg=nsgl,nsg2
isl = nubo(1,iseg)
is2 = nubo(2,iseg)
gsor = t3(isl)*vnocl(2,iseg)
gs = t3(is2)*vnocl(2,iseg)
dplim = gsor*gd(isl)+qgs*gd(is2)
rh4(isl) = rh4(isl) + dplim
rh4(is2) = rh4(is2) - dplim
pm = pres(isl)+pres(is2)
dplim = gsor*g3(isl)+qgs*g3(is2)+pm*vnocl(2,iseg)
rh3(is1l) = rh3(isl) + dplim
rh3(is2) = rh3(is2) - dplim
call CK(pm,sq)

30 continue
end

Fig. 2. An example gather-scatter loop from a real code.

gather-scatter loop accounts for many computations, and thus many derivatives. We
differentiate FLW2D1COL in the reverse mode with TAPENADE, using the SA strategy.
The call to CK is checkpointed. Figure 3 shows the resulting subroutine FLW2D1COL.
Differentiated variables are shown with a bar above. Since the loop’s iterations are
independent, the adjoining operation and the do loop operator commute (cf [254]),
and therefore the resulting subroutine is a single loop, containing a forward sweep
followed by a backward sweep. The benefits from the adjoint data-flow analyses are:

e From Adjoint Liveness analysis, variables dplim, rh3, and rh4 are not necessary
in the adjoint. Furthermore, the call to CK is the last instruction in its own
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subroutine FLW2D1COL (nsgl,nsg2 nubo,t3,t3,pres, pres,vnocl,
+ vnocl,g3, g3,g4,g4,rh3, rh3,rh4, rhd,ns,nseg,sq,sq)

< omitted declarations >
do iseg=nsgl,nsg2

isl = nubo(1,iseg)

is2 = nubo(2,iseg)

gsor = t3(isl)*vnocl(2,iseg)

gs = t3(is2)*vnocl(2,iseg)

C dplim = gsor*gd(isl) + gs*gd(is2)
C rh4(is1) = rh4(isl) + dplim
C rh4(is2) = rh4(is2) - dplim
pm = pres(isl) + pres(is2)

C dplim = gsor*g3(isl)+qgs*g3(is2)+pm*vnocl(2,iseg)
C rh3(isl) = rh3(isl) + dplim
C rh3(is2) = rh3(is2) - dplim
C call PUSH(sq)
C call PUSH(pm)
C call CK(pm, sq)

< forward sweep ends, backward sweep begins >
C call POP (pm)
C call POP(sq)

call CK(pm, pm, sq, sq)

dplim = rh3(isl) - rh3(is2)

gsor = g3(is1)*dplim

g3(is1) = g3(isl) + gsor*dplim

gs = g3(is2)*dplim

g3(is2) = g3(is2) + gs*dplim

pm = pm + vnocl(2,iseg)*dplim
vnocl(2,iseg) = vnocl(2,iseg) + pm*dplim
pres(isl) = pres(isl) + pm

pres(is2) = pres(is2) + pm
dplim = rh4(is1) - rh4(is2)
gsor = gsor + g4(isl)*dplim
gd(isl) = g4(isl) + gsor*dplim
gs = gs + g4(is2)*dplim
gd(is2) = g4(is2) + gs*dplim
t3(is2) = t3(is2) + vnocl(2,iseg)*qs
vnocl(2,iseg) = vnocl(2,iseg)+t3(is2)*qs+t3(isl)*gsor
t3(is1) = t3(isl) + vnocl(2,iseg)*gsor
enddo
end

Fig. 3. The adjoint of subroutine FLW2D1COL from Fig. 2.
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checkpointed sub-part (i.e. its downstream sequel is []). Therefore this call can
be removed as well as its associated PUSH/POP. Removed statements are here
left as comments in boxes.

e From TBR Analysis, variable dplim is not used in the backward sweep, and
therefore is <got saved before it is overwritten. Variable gsor is used in the back-
ward sweep P , but is not overwritten before this use occurs. This explains there
are no PUSH/POP for these variables.

e From Adjoint Liveness and Adjoint Write analyses, live(FLW2D1COL) is smaller
than use(FLW2D1COL), and that out(FLW2D1COL) is smaller than out(FLW2D1COL).
Specifically, arrays rh3 and rh4 are excluded from the snapshot in the procedure
that calls FLW2D1COL.

We measured the benefits of Adjoint Liveness and Adjoint Write analyses on
five large applications that we use as validation tests. Activity and TBR analyses
are already applied systematically in TAPENADE, so this experiment strictly shows
the additional benefit coming from Adjoint Liveness and Adjoint Write. The results
strongly depend on the actual application, but can be quite interesting as shown in
Table 1. The speedup ranges between 7% and 18%, and the improvement in memory
is between 0% and 49%. The STICS code is so large that its adjoint makes a heavy
use of the swap. This explains the huge slowdown of the reverse mode, and makes it
even more important to save 49% in memory thanks to the Adjoint Write analysis.

Table 1. Time and memory improvements on five large validation codes. We com-
pare run times and maximum stack size for original program, AD adjoint (using
activity and TBR), and AD adjoint using adjoint liveness and adjoint write analy-
ses.

Code name: ALYA |UNS2D| THYC |LIDAR| STICS
Application domain: CFD | CFD | Thermo| Optics| Agronomy
Original program runtime (sec.): 0.85 | 2.39 | 2.67 |11.22 1.80
Adjoint program runtime (sec.): 5.65 |29.70| 11.91 |23.17| 42.60
... after adjoint data-flow analysis: 4.62 |24.78| 10.99 |22.99| 35.70
Improvement: 18% | 16% 8% 7% 16%
Adjoint program memory use (Mb):|| 10.9 | 260 | 3614 | 16.5 456

... after adjoint data-flow analysis: 9.4 259 | 3334 | 16.5 230
Improvement: 14% | 0% 8% 0% 49%

6 Conclusion

We have described the adjoint data-flow analyses that help Automatic Differenti-
ation tools improve the performances of adjoints produced by the reverse mode.
These analyses rely on the special structure of adjoint programs. However, these are
data-flow analyses, and they can be described with the classical set-based notations
used in compiler theory. To take full advantage of the knowledge of the reverse AD
model, we view these analyses as specific data-flow analyses on the original source,
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rather than as generic data-flow analyses on the adjoint source. We obtain the data-
flow equations of adjoint analyses on the original source by formal specialization of
the standard data-flow equations with respect to the reverse AD model. In addition,
we obtain a global view that clarifies the relationship between adjoint data-flow
analyses, and formal proofs of fundamental properties of our reverse AD model. We
advocate this sort of transposition of techniques that originate from compilation
into AD technology.

The goal of producing optimal adjoint programs is still not completely reached,
and several other program optimizations will be necessary. A formal description of
analyses for adjoint programs is useful to define and compare these analyses yet to
come. In particular, we pointed out the link between TBR analysis and snapshots:
finding the optimal tradeoff that minimizes the total memory use would be a useful
contribution.

Our AD tool TAPENADE progressively implements the analyses we described here,
and our first experiments show that this is definitely worthwhile.
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Summary. Many large-scale computations involve a mesh and first (or sometimes
higher) partial derivatives of functions of mesh elements. In principle, automatic
differentiation (AD) can provide the requisite partials more efficiently and accu-
rately than conventional finite-difference approximations. AD requires source-code
modifications, which may be little more than changes to declarations. Such simple
changes can easily give improved results, e.g., when Jacobian-vector products are
used iteratively to solve nonlinear equations. When gradients are required (say, for
optimization) and the problem involves many variables, “backward AD” in theory
is very efficient, but when carried out automatically and straightforwardly, may
use a prohibitive amount of memory. In this case, applying AD separately to each
element function and manually assembling the gradient pieces — semiautomatic dif-
ferentiation — can deliver gradients efficiently and accurately. This paper concerns
on-going work; it compares several implementations of backward AD, describes a
simple operator-overloading implementation specialized for gradient computations,
and compares the implementations on some mesh-optimization examples. Ideas from
the specialized implementation could be used in fully general source-to-source trans-
lators for C and C++.

Key words: Semiautomatic differentiation, mesh elements, manual assembly,
Jacobian-vector products, C/C++ source-to-source, TFad

1 Introduction

Many large-scale computations concern partial differential equations (PDEs) based
on physical systems and thus involve discretizations that approximate physical ob-
jects on meshes. Such discretizations generally yield systems of nonlinear equations
whose residuals involve the elements of a mesh. As a PDE model matures, interest
often grows in optimizing some aspects of the model, i.e., of solving optimization

** Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy under contract
DE-AC04-94A185000. This document is released as SAND Number 2004-4688P.
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problems with PDE constraints. Like the constraint residuals, the objectives are
generally sums of contributions from functions of the mesh elements.

For solving both discretized PDEs themselves and optimization problems in-
volving them, partial derivatives (or approximations to them) are required. Con-
ventionally, these partials are often approximated by finite differences, but finite
differences have several drawbacks. Finding suitable step sizes that balance trun-
cation and round-off error can be tricky, and the overall error in a finite-difference
approximation can contribute to computational difficulties. Moreover, when partials
with respect to many variables are required, finite differences can be slow. Automatic
differentiation (AD) provides a more accurate and often faster alternative to finite
differences.

As Griewank [223] showed in a survey that appeared in 1989, AD has been
reinvented many times. His more recent book [225] tells much more about AD than
we will discuss here. Of primary interest here are first derivatives, which may be
computed either by forward AD, in which one recurs the desired partials while
carrying out each operation in the expression of interest, or by backward AD, in
which one first evaluates an expression, then visits its operations again in reverse
order to recur partials (so-called adjoints) of the final expression result with respect
to the result of each operation.

Forward AD works well when only a few independent variables are involved, but
its complexity can grow with the number of independent variables. In particular,
when there is only one independent variable, forward AD can efficiently and con-
veniently compute derivatives of high order. Nonlinear equations can be solved by
matrix-free Newton-Krylov methods, which simply use Jacobian-vector products.
Such computations effectively involve just one independent variable, and are well
handled by forward AD. (For example, TFad [14] works well in some applications
at Sandia National Labs [22].)

When there are many independent variables, as is often the case in optimization
problems, backward AD is attractive for computing gradients. It delivers function
and gradient in time proportional to that required for a function evaluation alone.
Unfortunately, when used straightforwardly, backward AD may require memory
proportional to the number of operations in the function evaluation, which may
appear prohibitive in large-scale computations.

The rest of this paper is organized as follows. The next section gives more dis-
cussion of computations on a mesh. Section 3 reviews some currently available ways
to implement AD. Section 4 describes a new, simple, specialized implementation
of backward AD by operator overloading in C++. Some timing results on mesh-
optimization objectives appear in Sect. 5. Section 6 discusses implications for source-
to-source transformation of C and C++, and Sect. 7 offers concluding remarks.

2 Action on a Mesh

As mentioned in Sect. 1, many large-scale computations involve meshes. For op-
timization problems whose objectives and constraints involve sums of functions of
mesh elements, one can use backward AD to compute (separately) the contributions
of each mesh element to the objective and constraint gradients and manually assem-
ble these pieces into the overall gradients, an approach sketched in [1]. Preliminary



Semiautomatic Differentiation for Efficient Gradient Computations 149

investigations suggest that this approach should work well in some problems of in-
terest at Sandia, such as mesh optimization (moving interior mesh points to improve
the quality of a given mesh) and PDE-constrained optimization. Only a few kinds
of mesh elements appear in such problems, making it feasible to treat each sepa-
rately, either by operator overloading or by source transformation and optimization
of routines that compute the element functions. This results in what might be called
semiautomatic differentiation: combining use of an AD tool with manual assembly.
An advantage of this approach is that it greatly reduces the memory requirements
of backward AD.

3 Some AD Alternatives

Straightforward use of AD is facilitated by various tools, such as those listed on
the autodiff.org web site [16]. These tools work with computations expressed in
a suitable programming language, such as C++ or Fortran 95, or a special-purpose
language, such as MATLAB [357] or AMPL [184,185], and use several implementa-
tion techniques, as sketched below.

3.1 Operator Overloading

Perhaps the most straightforward implementation technique is operator overloading
in languages that support it, such as C++ and Fortran 90. An excellent, general, and
often used example for C++ is ADOL-C [228,229]. Use of ADOL-C requires some
simple source modifications, which are typical of the sort of modifications needed
by AD tools that work with conventional programming languages. Variables with
respect to which derivatives are required, and all variables computed from them,
must be given a special type. When such “active” variables appear in an “active
section,” delimited in ADOL-C by trace_on and trace_off statements, ADOL-C
records arithmetic operations on the variables in a “tape,” a data structure that
summarizes the computation. Subsequently the tape can be “played” to carry out
various AD computations. (Forward AD using the operator-overloading approach
does not require use of a tape, but ADOL-C gains flexibility and generality from its
use of tapes.) With ADOL-C, a special syntax involving <<= indicates assignment
of input values to the input variables, and another syntax involving >>= indicates
assignment of output values, partial derivatives of which can be computed subse-
quently by AD. The process of recording a tape is somewhat slow (as indicated by
the timings in Sect. 5), but once a tape has been recorded, it can be reused with dif-
ferent values of the input variables, so long as all logical expressions involving active
variables come out the same as during the taping. Reusing a previously recorded
tape is faster than recording a new one, as illustrated in Sect. 5.

3.2 Source Transformation

Source transformation is an implementation technique that can give faster execu-
tion than straightforward operator overloading. The idea is for a tool to rewrite a
computation expressed in given imperative language, such as C or Fortran, giving
a more elaborate computation in the same language that carries out the original
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computation along with automatic differentiation thereof. An early general-purpose
instance of this approach is Kedem’s use [302] of the AUGMENT preprocessor [139]
to carry out forward AD or computation of Taylor coefficients for computations
expressed in Fortran 66. AUGMENT effectively implemented operator overloading
via source transformation and did not attempt to optimize the computations. AD-
IFOR [55,57] is a more recent effort that addresses Fortran 77 and does backward
AD within statements while carrying out forward AD overall, thus often achieving
greater efficiency than a simple forward AD computation would give. ADIFOR does
not use a tape, which also helps make its forward-mode computations faster than
those of ADOL-C. A still more recent effort is TAF [164], a commercial successor
to TAMC [207] that addresses Fortran 95 and with which several speakers reported
impressive numerical results at the Fourth International Conference on Automatic
Differentiation [15].

3.3 Special Compiler

A variant of source transformation is to have the compiler itself recognize special
types and statements that cause AD computations. The NAGWare Fortran 95 com-
piler [388,400] provides an example of this approach.

3.4 Implicit Domain Knowledge

Special-purpose languages can exploit automatic differentiation without the small
syntactic burden imposed on users of general-purpose programming languages. For
example, users of the AMPL language for mathematical programming [184, 185]
merely express objectives and constraints in a mathematical notation without indi-
cating anything about the partial derivatives that a solver might need. The system
deduces “active” variables behind the scenes and arranges AD computations where
needed.

3.5 Interpreted Evaluations

Interpreted evaluations are an implementation technique that offers considerable
flexibility at some cost of speed. Rather than compiling problem-specific machine
code, one uses expression representations that are constructed and evaluated easily
“on the fly.” There are many ways to handle the details (and the distinction between
compiled and interpreted evaluations can become murky). One can define a virtual
machine in the style of Pascal or Java. Logically equivalent to a virtual machine
is the list of 4-tuples of integers that GlobSol [299] uses, the first indicating an
operation, the latter three operands.

Another logically equivalent form of interpreted evaluation is to use function
pointers in an expression graph. Because of its convenience, this is the approach
taken by AMPL and its solver-interface library [196]. Timings involving this ap-
proach appear below, so sketching some more of its details seems appropriate. Each
operation is represented by a structure with pointers to operands and to a function
that carries out the operation and stores partial derivatives for use in reverse AD.
For example, a binary operation in a setting where function and gradient are desired
may have the form (in C notation)
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struct expr {
real (*op) (exprx*);
expr *L, *R; /* left and right operands */
real dL, dR; /* left and right partials */

+;

and the op in an expr for a multiplication operation might be

real OPMULT(expr *e) {
e->dR = (*e->L->op) (e->L);
e->dL = (*e->R->op) (e->R);
return e->dR * e->dL;

}

In reality, there may be other fields and auxiliary variables and a different layout
that considers alignment, but this illustrates the gist of the approach.

With this latter approach, when setting up the data structures, one can arrange
for the backwards computation of adjoint values to be carried out by a very simple
loop, as illustrated by Fig. 1, in which a derp describes a derivative propagation
operation. The initial assignment of 1. reflects that the partial of the final result f
with respect to itself is 1, i.e., % = 1. Each iteration of the loop in Fig. 1 updates
the adjoint corresponding to an operand of one of the operations in the computation.
Both d->a and d->c point to adjoints, and d->b points to a partial derivative; unary
* dereferences pointers, so *d->a is the adjoint to which d->a points. Thus “*d->a
+= *d->b * *d->c” adds the product of *d->b and *d->c to the adjoint *d->a.

void derprop(derp *d) {
*d->b = 1.;
do *d->a += *d->b * *xd->c;
while(d = d->next);
}

Fig. 1. Backward propagation of adjoints in the AMPL/solver interface library.

3.6 Optimized Compiled Evaluations with nlc

For solving nonlinear programming problems, the above style of interpreted evalu-
ations often suffices when the times taken by other parts of the computation domi-
nate the times taken to carry out function and gradient evaluations. In some settings
such interpreted evaluations may be too slow, so it is interesting to ask about the
extent to which the evaluations can be made faster by generating and compiling
problem-specific source code. For example, doing a multiplication directly rather
than invoking OPMULT will save call-overhead time, and the computations carried
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out by derprop often involve adding zero to a number or multiplying a number
by one and thus present opportunities for optimization when we generate problem-
specific source code. The nlc program [197] carries out such code optimizations in
the process of writing C or Fortran to compute function and gradient values for the
objectives and constraints expressed in a “.nl” file, which AMPL writes to convey
problem information to solvers. The test results in Sect. 5 below include times from
C produced by nlc.

One drawback of nlc is that AMPL only expresses primitive-recursive functions,
i.e., those that can be turned into in straight-line code (with no loops — only forward
branches). Imported functions provide an escape hatch that permits anything to be
computed, but AMPL’s imported functions must provide partial derivatives with
respect to their arguments for use in AD computations.

4 The RAD Package for Reverse AD

It seems interesting to ask how efficiently we can carry out function and gradient
evaluations with an implementation of operator overloading in C++ that is spe-
cialized for such computations. To this end, I have written a simple backwards AD
package, RAD (for Reverse AD), that consists of a header file, rad.h, and a source
file of auxiliary functions; see [200]. When a function is evaluated, RAD sets up data
structures that permit the backwards AD sweep to take a form similar to that in
Fig. 1. This form is shown in Fig. 2, in which each aval is an adjoint value, and
xd->a is a partial derivative.

for(; d; d = d->next)
d->c->aval += *d->a *x d->b->aval;

Fig. 2. Inner loop of RAD’s ADcontext: :Gradcomp() ;

One target use for RAD is computing a sum of functions defined on mesh el-
ements, with a separate evaluation of function and gradient on one mesh element
before moving on to the next one, and with manual summing of the element gra-
dients into the overall gradient. Because of this goal, memory is allocated in large
chunks that are not freed, but are retained for reuse on subsequent mesh elements,
thus reducing the overhead of allocating small objects and eliminating the overhead
of freeing them.

With RAD, “active” variables that appear in function evaluations have type
ADvar. Independent ADvar variables — inputs with respect to which partial deriva-
tives are desired — are simply assigned numeric values. Dependent ADvar variables
are computed from expressions involving independent ones, previously computed
dependent ones, and any other numeric values with respect to which partial deriva-
tives are not needed. Dependent ADvar variables may be updated as desired, and all
ADvar variables may participate in loops and function calls without restriction. Once
the dependent ADvar variable representing the function result has been assigned its
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(final) value, one invokes
ADcontext: :Gradcomp() ;

to cause the backwards AD sweep and reclamation of memory used for the compu-
tation just completed. Because the memory is not freed, the last value assigned to an
ADvar v and the corresponding adjoint value (computed by ADcontext: :Gradcomp())
remain available as v.val() and v.adj (), respectively, until the next assignment to
an ADvar, which will start reusing the allocated memory.

What enables ADvar values to be updated is that an ADvar is implemented as
a pointer to a structure that contains fields for the val() and adj() values of the
ADvar’s current value and for partial derivatives associated with the operation that
gave the val field its value. In Fig. 2, d->c->aval and d->b->aval are adj() fields,
and d->a points to a partial derivative. When an ADvar is updated, it is adjusted to
point to a new structure.

As an example on which we report timings in Sect. 5, Fig. 3 shows source for
a function, phil(x,g), that returns a quality measure, ¢1(A), for an element of a
three-dimensional mesh [186,187] and stores its gradient in the second argument.
The function ¢1(A) is given by

3det(AW1)*/?
on(a) = 2 1)

in which the 3 x 3 matrix A has the form
A= [’1)1 — Vo, V2 — Vo, V3 — UO] >

where vo, v1, v2, and v3 are four vertices of a mesh element. The 3 x 3 matrix W
is constant for each kind of mesh element and represents an ideal shape; the source
in Fig. 3 deals with one kind of mesh element, and the multiplication AW ! is
computed in the assignments to the aw array. The coordinates of the v; appear in
successive components of the incoming xx array. Note how the gradient components
are read out after the invocation of ADcontext: :Gradcomp() and how f.val() is
returned as the function value.

5 Test Results

We report comparative timings of some alternative ways of carrying out function
and gradient evaluations by backwards AD. The timings were done on two Linux
machines, Desktop with a 3 GHz Intel Xeon processor having 512 MB of cache, and
Laptop with a 1.6 GHz Intel Pentium M processor having no cache. Compilation was
with g++ -O or gcc -O, and the same binaries ran on both machines. The reason
for showing results from these two machines is to illustrate that architectural details
(such as cache) can affect relative timings.

Table 1 shows timings for the function f = ¢1 given by (1). The timings
are relative to the time for computing f alone by C++ code similar to that
in Fig. 3, with “ADvar” replaced by “double” and without references to g or
ADcontext: :Gradcomp(). The time per function or function and gradient evalua-
tion behind each table entry was computed in a separate timing loop that ran for
several seconds. (On Desktop, the computations should all have been running in
the cache. This seems fair, as we would try to organize the evaluation of a mesh



154

David M. Gay

double phil(double *xx, double *g) {

ADvar aw([3][3], det, f, x[4], y[4], =z[4];

int i, j;

static double one_over_root3 = sqrt(1./3.),
two_over_root3 = sqrt(4./3.),
one_over_root6 = sqrt(1./6.),
root_3_halves sqrt(3./2.);

for(i = j = 0; i < 12; 1 += 3, j++) {
x[j1 = xx[il;
y[3j1 = xx[i+1];
z[j] = xx[i+2]; }

for(i = 1; i <= 3; i++) {

x[i]l -= x[0];

y[il -= y[0];

z[i]l -= z[0]; }
aw[0][0] = x[1]; aw[1]1[0] = y[1]; aw[2][0] = z[1];
aw[0] [1] = two_over_root3*x[2] - one_over_root6*x[1];

aw[1] [1] = two_over_root3*y[2] - one_over_root6*y[1];
aw[2] [1] = two_over_root3*z[2] - one_over_root6*z[1];
aw[0] [2] = root_3_halves*x[3] - one_over_root6*(x[1] + x[2]);
aw[1] [2] = root_3_halves*y[3] - one_over_root6x(y[1] + y[2]);
aw[2] [2] = root_3_halves*z[3] - one_over_root6*(z[1] + z[2]);

for(f = 0., i = 0; i < 3; i++)
for(j = 0; j < 3; j++)
f += awli] [j1*aw[il [j];
det = aw[0] [0]*aw[1] [1]*aw[2] [2]

+ aw[1] [0]*aw[2] [1]*aw[0] [2]
+ aw[2] [0]*aw[0] [1]*aw[1] [2]
- aw[2] [0]*aw[1] [1]*aw[0] [2]
- aw[1] [0]*aw[0] [1]*aw[2] [2]
- aw[0] [0]*aw[2] [1]*aw[1] [2];

f = 3*pow(det, 2./3.) / f;
ADcontext: :Gradcomp() ;

for(i = j = 0; i < 12; i += 3, j++) {
glil = x[jl.adjO;
gli+1] = y[jl1.adjO);
gli+2] = z[j]1.adjO;

return f.val();

}

Fig. 3. Source for phil(x,g) corresponding to (1).
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Table 1. Relative times for f = ¢1.

Desktop Laptop

Compiled f 1. 1.
f+Vf by RAD (§4) 11.0  10.1
f+ Vf by nlc (§3.6) 1.35 1.53
ADOL-C taped f (§3.1)  4.83 5.54
" taped f+ Vf 14.5 14.9

objective so much of the inner loop would involve data and instructions from the
cache.)

The last two lines of Table 1 are for ADOL-C evaluating a previously recorded
tape. The computation of f from the tape looks quite efficient. That RAD out-
performs ADOL-C when computing f and Vf confirms that specialized operator
overloading for AD can be worthwhile. The nlc evaluations look remarkably efficient,
delivering on the promise of AD to compute f and Vf in a small multiple of the
time for computing f alone.

Some of the overhead in evaluating ¢; and V¢; is masked by the time taken by
the pow invocation in Fig. 3, i.e., by raising det(AW ') to the power 2/3. We can
eliminate this overhead by dealing with ¢2 = (¢1/3)3, i.e.,

det(AW™1)?

== aw .
Using ¢2 for mesh optimization (the problem giving rise to ¢1) is not necessarily
desirable because ¢2 penalizes “large” elements much more than ¢; does, but it is
interesting to see how the values in Table 1 change when the overhead of exponen-
tiation goes away. Table 2 gives relative timings for (2); the overheads for all the
variants of computing V f go up but are qualitatively similar to those in Table 1,
and the nlc evaluations still give f and V f in less than thrice the time of computing
f alone.

Table 2. Relative times for f = ¢ = (¢1/3)%.

Desktop Laptop

Compiled f 1. 1.
f+Vfby RAD 37.8 27.2
f+ V[ by nlc 254 213

ADOL-C taped f 16.6 13.7
" taped f+ Vf 55.6 40.0

We conclude this section by showing timings on a more elaborate mesh-quality
function [313], p1(A), defined by (3)—(5):

7 = det(AW ™), (3)
h= S+ /7 AR), (4)

pa(A) = h 2P AW T % (5)
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The 3 x 3 matrices A and W in (3) and (5) are as in (1), and § in (4) is a constant.
Note that evaluating f = w1 involves extra overhead from both exponentiation and
a square-root computation.

Relative timings for f = p1 appear in Table 3. All times are for evaluations
of f and Vf. The “Compiled f” times are for hand-coded function and gradient
evaluations. They factor A, compute det(A) from the factorization, and use the

identity
Olog det A _10A
o race (A E)

in computing V£, in part because this machinery is useful in computing V2f, a
matter discussed briefly in Sect. 7 below. Even with the factorization, etc., done
with inline, loop-free code, the calculation is slightly slower than the corresponding
one derived by applying nlc to the AMPL model shown in Fig. 4, so the times in
Table 3 are relative to these nlc times.

var xyz{i in 0..2, j in 0..2};
var winv{0..2, 0..2}; # really a constant param
var delta := .1; # really a constant param

var aw{i in 0..2, j in 0..2} = sum{k in 0..2} xyz[i,k]*winv([k,j];

var det = aw[0,0]*aw[1,1]*aw[2,2]
aw[1,0]*aw[2,1]*aw[0,2]
aw[2,0]*aw[0,1]*aw[1,2]
aw[2,0]*aw[1,1]*aw[0,2]
- aw[1,0]*aw[0,1]*aw[2,2]

- aw[0,0]*aw[2,1]*aw([1,2];

+ o+

var h = 0.5 * (det + sqrt(det”2 + 4xdelta”2));

var mula = 0.5 * sum{i in 0..2, j in 0..2}
(aw[i,j] - if i == j then 1)72;
minimize mul: mula / h~(2/3);

Fig. 4. AMPL model for p.

The ASL times are for interpreted evaluations of Fig. 4 with the AMPL /solver
interface library, as in Sect. 3.5. When set up to do Hessian computations, these
evaluations incur the extra overhead during function evaluations of storing some
second partial derivatives. This overhead is reflected in the “ASL for V2 f” line of
Table 3.

The “ADOL-C new tape” times in Table 3 show the cost with ADOL-C of
recording a tape. These times are to be contrasted with those in the “ADOL-C old
tape” line for reusing a previously recorded tape, and with those in the RAD line
for overloading specialized to f and V f.
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Table 3. Relative times for f = u; and Vf.

Desktop Laptop

Hand-coded 1.07 1.12
ASL 11.3 11.6
ASL for V2f 13.0 134
RAD 9.14 7.06
nlc 1. 1.

ADOL-C new tape 55.0 37.7
ADOL-C old tape 15.4 14.1

6 Implications for Source Transformation

The optimizations done by the nlc program could also be done (at least on straight-
line code) by a source-to-source translator or special compiler that focused on au-
tomating gradient computations. The gap between the times for RAD and nlc in
Table 3 reflects the opportunities mentioned in Sect. 3.6 for optimization in such
transformations. Of course, like RAD, such transformations should handle com-
pletely general source, with only the usual limitations on AD computations. (For
example, AD applied to“(x == 3 ? 5 : x + 2)” would compute 0 rather than 1
for the derivative at x = 3.) The approach taken in RAD could work well in such
transformations, at least as long as sufficient memory is available. This approach
would present various opportunities to further reduce overheads by computing some
things at compile (or transformation) time and thus to speed up the computations.

7 Concluding Remarks

One motivation for this work was to research AD approaches that might work well on
an objective function defined on elements of a mesh, particularly when the objective
is the sum of functions computed on individual mesh elements. Although the memory
required for straightforward backward AD could be prohibitive on large meshes, little
memory may be needed to compute a function and its gradient on an individual
mesh element, and assembling the individual mesh-element gradients into an overall
objective gradient “by hand” may be straightforward. Thus we obtain a reliable and
efficient way to carry out function and gradient evaluations for some problems (albeit
not necessarily for problems with objectives or constraints that involve integration
over time — unless time is treated analogously to the spacial dimensions).

An AD approach introduced in this paper is the RAD package for function and
gradient computations via operator overloading in C++. Since it is fully general and
easy to use, RAD may find uses in various applications. The implementation tech-
niques described in Sect. 4 could prove useful in special source-to-source translators
or compilers meant to facilitate AD computations.

A growing number of nonlinear programming solvers use Hessians (matrices of
second partials), so it is of interest to see how easily we can arrange for their efficient
computation. The interpreted Hessian evaluations offered by the AMPL /solver inter-
face library [197,198] are convenient but not very fast. For example, for the function
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f = p given by (5), hand-coded evaluations of f, Vf, and V2f run about 100
times faster than computations with the AMPL/solver interface library. It would be
interesting to see how much these computations could be sped up by an extension
of nlc that addressed Hessian computations along with functions and gradients.
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Summary. We present a new experimental version of the differentiation-enabled
NAGWare Fortran 95 compiler (from now on referred to as “the AD compiler”)
that provides support for the computation of adjoints in the reverse mode of au-
tomatic differentiation (AD) [42,136,227]. Our implementation uses split program
reversal [225, Chapter 10] in conjunction with a stack of gradients of all assign-
ments executed inside the active section. Two papers describe the modifications of
the compiler infrastructure that were required to provide forward-mode AD capa-
bilities [126,401]. The reverse mode presented in this paper makes extensive use of
these features.

Special emphasis is put on the presentation of the new user interface that pro-
vides a very easy and intuitive way for initiating derivative computations as well
as for addressing the results. Various language extensions are introduced for this
purpose. The compiler front-end is modified to accept these new constructs syntac-
tically and semantically. The use of the language extensions triggers the automatic
generation of derivative codes of various kinds by the compiler.
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with MoD: GR/R55252/01 (“Differentiation-enabled Fortran 95 Compiler Technol-
ogy”) until 2002. The results described in this paper are based on work done during
this first part of the project. The aims of the CompAD project can be summarized
as follows.

e Investigation of AD algorithms in the context of an industrial-strength For-
tran 95 compiler with the objective to provide AD technology to a wide range
of applications in science and engineering;

e Explicit use of Fortran 95 language features, such as user-defined types, modules,
dynamic memory allocation;

Proof-of-concept implementation covering a relevant subset of Fortran 95;
Collection of feedback from potential users who are working in the field of nu-
merical simulation and optimization;

e Search for external support to secure continued funding with the aim of im-
proving robustness and efficiency of the implementation through algorithmic
advances.

We have emphasized the provision of a suitable infrastructure allowing us to perform
AD on the abstract internal representation of the NAGWare Fortran 95 compiler.
Several algorithms for generating tangent-linear and adjoint code based on preac-
cumulated gradients of scalar assignments were developed and implemented. The
integration of AD-specific language extensions into the syntax and semantics ac-
cepted by the compiler results in a very convenient and intuitive user interface. The
scientific computing community will draw substantial benefits from the availability
of the new features. Further work (and funding) is required to promote the com-
piler as a standard tool even for large-scale numerical simulation and optimization.
We are convinced that the provision of limited (in terms of the complexity of the
computation) adjoint mode capabilities is a step in the right direction.

2 Compiler AD — A Motivating Example

As a motivating example we consider the computation of the gradient for the elastic
plastic torsion problem from the MINPACK-2 [17] test problem collection. The
source code of the subroutine ept that implements a function f : R" — IR is
rather small, consisting of only 40 lines of Fortran code. However, the number of
independent variables can be increased arbitrarily, making this problem suitable for
comparing forward and reverse modes of the AD compiler.

The gradient f' = % can be computed in forward mode as f = f'x at a
computational cost proportional to n. For this purpose, x is set equal to the identity
matrix in IR™. It is well known that for large n this dependence leads to unacceptable
execution times. The method of choice is the reverse mode, which computes X =
()T f, where f = 1, at a small multiple of the cost of running the original function.
An example of how the reverse mode is used with the AD compiler is shown below.

SUBROUTINE EPT_REVERSE(nx,ny,x,f,grad)
USE ACTIVE_MODULE
INTEGER :: nx, ny
REAL :: x(nx*ny), f
REAL :: c=1.4
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REAL, DIMENSION(:), ALLOCATABLE, INTENT(OUT) :: grad

DIFFERENTIATE (AD_REVERSE)
INDEPENDENT (x , ADJOINT=grad)
CALL EPT(nx,ny,x,f,c)
DEPENDENT (f)

END DIFFERENTIATE

END SUBROUTINE EPT_REVERSE

The computation to be differentiated is included in the active section framed by
DIFFERENTIATE ... END DIFFERENTIATE. It can be arbitrarily complex including
subroutine calls as well as non-trivial flow of control. The mode of differentiation
is passed as an argument to DIFFERENTIATE. We declare x to be INDEPENDENT and
want its adjoint (the gradient of the DEPENDENT variable £ with respect to x) to be
stored in grad. The USE of ACTIVE_MODULE and the compilation with the AD compiler
results in an executable that computes grad alongside with f at a computational
complexity that does not depend on nx or ny. Further description of the individual
features of the AD interface is given in Sect. 4.

To quantify the differences in scaling between the compiler’s forward and reverse
modes, we run both algorithms with increasing numbers of independent variables.
The results are summarized in the following table.

n=nx*ny|Forward (sec.)|Reverse (sec.)|Divided Differences (sec.)
2,500 3.1 0.1 2.3

5,000 12.3 0.2 9.4

10,000 50.0 0.5 36.5

20,000 782 2.5 158

30,000 - 5.5 *

250,000 - 220 *

500,000 - 1200 *

We see the expected behavior. Vector forward mode aborts when reaching the limits
of the available virtual memory (1.5GB) for 30,000 independent variables. The reason
for this behavior is the allocation of derivative components with 30,000 elements for
each intermediate variable. On the same problem divided differences runs for about
50 minutes. Scalar forward mode performance is similar to that of divided differences.
Reverse mode scales well, succeeding on much larger problems. It uses 514MB for a
problem with 500,000 independent variables. The numerical values computed by the
code that is generated by the AD compiler match with those obtained by running
the available hand-written gradient code.

The paper is structured as follows. In Sect. 3 we recall the theoretical background
on which the proposed approach to reverse mode is built. The integration of adjoint
capabilities into the compiler is described in Sect. 4. In Sect. 5 we discuss seeding in
the context of the new user interface and its use in the computation of the compressed
Jacobian and its transpose for a practically relevant test problem. Conclusions are
drawn in Sect. 6.
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3 Linearization of the Computational Graph

Our version of the reverse mode is based on the interpretation of the vector function
F:R"— R", y=F(x)

as a linearized computational graph. Moreover, local gradients are preaccumulated
at the level of scalar assignments as described in [396], leading to a reduction of the
graph’s size. The reduced graph is generated and stored during the evaluation of F,
and it is subsequently used for the reverse propagation of adjoints by exploiting the
chain rule. We describe this technique with the help of a simple example.

g=1
9fa
ox
9f1
oz

Fig. 1. Linearization and Preaccumulation.

For a given argument x the computation of F' can be regarded as a sequence of
assignments (fi, f2,...), for example,

fir y=zxyxz/u (1)
f2: y=sin(x) * z *xy*cos(u) . (2)

As in the classical case [530], we decompose each of these assignments into a list
of assignments of the results of the elemental functions (arithmetic operators and
intrinsic functions) to unique intermediate variables. For example, we set

V—3 =2; V—2 =Y, V-1 =2 Vg =U
to decompose f1 into
U1 = V_3 % U_2; Uz = U1 ¥ V_1; V3 = V2/Vo
and fo2 into
va = sin(v_3); Vs = va x V_3; Vg = Vs * V3; U7 = cos(vp); Vg = Vg * U7 .

This representation induces a computational graph G = (V, E) (see Fig. 1(a)) with
vertices V' for each of the variables v;, 5 = 1 —n,...,q, and edges E indicating
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direct dependences between an argument and the result of an elemental function.
Linearization is performed by introducing new statements for computing the non-
zero partial derivatives c¢;; for i, =1—n,...,q, i < j, and inserting them in front
of each elemental assignment. These values can be associated with the edges in G.
For example, c2,—1 = v1 and cg,7 = vs.

Based on the linearized version of G directional derivatives F’(x)-x and adjoints
(F'(x))” - § can be computed by the well-known recurrences that are given by (3)
and (4), respectively. We present the nonincremental version of these equations in
terms of the computational graph.

0 = Z ¢ji Vi, j=1,...,q (forward mode) (3)
i(4,5)€E

U = Z ¢ji U, Jj=4¢q,...,1—n (reverse mode.) (4)
J:(i,5)€EE

To avoid computational overhead the vector modes of forward and reverse propagate
vectors of length [ instead of the scalar quantities ©; and v; if several products with
the Jacobian or its transposed are required. The number of scalar multiplications
can be assumed as an approximate measure of complexity, and it is equal to [ - |E|
in both cases.

The number of edges |F| can be decreased by preaccumulating the local gra-
dients f;, for each assignment f; in the original program. The AD software tool
ADIFOR [57] uses statement-level reverse mode for this purpose. An accumulation
algorithm that minimizes the number of scalar floating-point operations by comput-
ing an optimal vertex elimination sequence [232,399] in the corresponding linearized
computational graph has been proposed in [396]. This algorithm is implemented in
the AD compiler as described in [401]. The reduced graph G= (\77 E‘) is such that
|E‘| < |E|, which results in a decreased complexity of the derivative propagation
both in forward and reverse mode. For example, the local gradients for (1) and (2)
are accumulated as

C3,1 " C1,-3
/ €3,1 - C1,—2
€31 =c32-C21; f1= (5)
C3,2 - C2,—1
€3,0
8,5 - C5,—3
!
C5,-3+ = C54-C4,-3; C85=2C86C6,5; fa= | Ccs6-C63 | - (6)
8,7 C7,0

The number of edges is reduced from 14 to 7 at the one-time cost of 9 multiplications
(4 for f{ and 5 for f3). A reduction in the overall operation count can be observed for
I > 1. The reduced linearized computational graph is used by the forward and reverse
modes of the AD compiler as visualized in Fig. 1 (b) and Fig. 1 (c), respectively. It
is built and stored explicitly for use in reverse mode as the values associated with
the edges are accessed in reverse order, indicated by the reversed orientation of the
edges in Fig. 1 (c). The integration of these ideas into the NAGWare Fortran 95
compiler is discussed in the following section.
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4 Putting AD into the Compiler

The Fortran module ACTIVE_MODULE provides a number of support routines and the
type definition for the active data type that is used internally, as well as for the
tape to store local derivative information during the forward sweep. All semantic
transformations of the original code are restricted to the active section marked by
DIFFERENTIATE and END DIFFERENTIATE. The mode of differentiation is passed as
an argument to DIFFERENTIATE. Currently, the user can choose between the forward
(AD_FORWARD) and reverse (AD_REVERSE) modes of AD. Independent and dependent
variables are specified by the corresponding keywords. One use of INDEPENDENT or
DEPENDENT is required per independent or dependent program variable, respectively.
Seeding of the adjoint component of £ is performed automatically. To exploit sparsity
within the Jacobian for arbitrary vector functions, the seed matrix can be provided
as an argument to either the INDEPENDENT (in forward mode) or the DEPENDENT
statements. An example is discussed in Sect. 5. The computation inside the active
section can be arbitrarily complex.> At compile time the program is transformed
into derivative code that generates a specific representation of the linearized com-
putational graph G. The keyword DEPENDENT triggers the interpretation of G to
compute the gradient of £ with respect to x. The result is stored in the variable
grad.

Our reverse mode uses preaccumulation to generate efficient code for the com-
putation of local gradients for all active assignments (see [256] for a discussion of
activity) as described in the previous section. The linearized computational graphs
of these assignments are implemented as specially structured extended Jacobians
that are preaccumulated as described in [401].

For given inputs the program to be differentiated in reverse mode can be regarded
as a sequence of n, scalar assignments

st Uiy = filViy@s- -5 Vi, @) 5 (7)

for I =1,...,ns. The indexes of the local arguments on the right-hand side and of
the result on the left-hand side according to the enumeration schema introduced in
the previous section depend on the statement index, as does the number of local
arguments r = r(l) on the right-hand side. For example, in

do i=1,ub
y(i)=sin(x(i))
end do

we have for ub = 2

s1: v1 =sin(v_1); thatis j(1) =1 and i1(1) = —1;
s2 1 w2 = sin(vo); that is j(2) = 2 and 91(2) = 0;

Moreover, 7(1) = r(2) = 1. As before, we set v_1 = x(1), vo = x(2), and y(1) = vy,
y(2) = va.

3 Due to the academic nature of the project the main focus is on the presentation of
proof-of-concept implementations. Various restrictions are imposed with regard to
language coverage that can be overcome by some additional programming effort.
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We assume that code for computing the local gradients f; can be generated by
preaccumulation. The set of scalar active variables? is given as a subset of {vk, k=
1—mn,...,q} consisting of those vy that appear either as arguments or as results of
one of the statements. These variables define the address space of the program that
evaluates F' at the given argument. The dependent variables yi, k = 1,...,m, are a
subset of those variables that appear on the left-hand side of some statement. The
independent variables xx, k = 1,...,n, are a subset of all variables that appear on
the right-hand side of some statement, such that no preceding statement has this
variable on its left-hand side. Every scalar active variable vy, is uniquely identified
by k = Id(vg).

Algorithm 1 is used to generate a representation of the linearized computational
graph as a tape T'. A single entry 7'(¢) consist of four elements. For a given gradient
of a scalar assignment s; as in (7) we create r = r(l) tape entries. The unique
identifier of the variable on the left-hand side is stored in 7'(z).y. For a variable on
the right-hand side the identifier is stored in T'(¢).z. The corresponding entry of the
gradient is stored in T'(3).g.> Moreover, a Boolean flag T'(4).f indicates whether the
current entry is the first one® for a given statement. Its default value is false.

Algorithm 1 (Generation of the Tape)

c:=0
Forl:=1,...,ns Do
. R i \T . [ v 9vi(1)
compute the local gradient f| = (f1',..., fry)” = (9%1(0 B @

using the code that resulted from preaccumulation;
T(c+1).f :=true
For k:=1,...,7(1) Do
T(c+k).x = Id(vi, )
T(c+k).y == Id(vju)
T(c+k).g:= fi
Enddo
c:=c+r(l)
Enddo

A new tape is generated if the values of the inputs change. The possible reuse of an
existing tape will be considered in the future.

The reverse sweep operates on a virtual adjoint address space in the form of an
array whose size is equal to the number of active variables in the reduced linearized
computational graph. The adjoints of all dependent variables are initialized. The
adjoints of the remaining active variables are assumed to be equal to zero. For each
tape entry the adjoint of the variable on the right-hand side is incremented by the
product of the adjoint of the variable on the left-hand side with the corresponding
gradient entry. A temporary adjoint variable @ (initially equal to zero) is used if
the same variable occurs on both the left-hand and right-hand sides. When the first

4 Arrays are handled on a per element basis.

5 There is no aliasing problem here because the identifiers are assigned to active
variables at runtime.

5 in the order of the arguments on the right-hand side. That is, T(i).f = true =
T(1).x =41(1).
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entry of a statement is reached, we set the adjoint of the variable on the left-hand
side to zero or to the value of the temporary adjoint, if applicable. This procedure
is formalized in Algorithm 2. The counter ¢ points to the last entry in the tape.

Algorithm 2 (Interpretation of the Tape)
initialize adjoints; alias = false
For i:=¢,...,1 Do
If T(i).x = T(i).y Then
alias := true
a:=a+ pgy.y - T(i).g
Else
Ur@y.e = 07@).0 + 7).y - T (0)-9
Endif
If T(i).f Then
If alias Then
alias := false
UT(i).y ‘= @
a:=0
Else
Up(s).y =0
Endif
Endif
Enddo

5 Case Study: Seeding in Forward and Reverse Mode

The intention of this case study is to present the convenience and flexibility of the
new interface provided by the compiler to support the computation of both direc-
tional derivatives and adjoints. We compute the n X n Jacobian (n = nx - ny) of the
solid fuel ignition problem from the MINPACK-2 test problem collection [17] in both
forward and reverse modes. Compression techniques are used to exploit the regular
sparsity pattern resulting from the use of a five-point stencil for discretization. A
driver program calls the MINPACK routine dsfifj inside the active section. Since
we have equal numbers of independent and dependent variables we expect reverse
mode to be slower than forward mode due to the interpretive overhead during the
reverse sweep through the tape. This expectation is met by the actual run times.

5.1 Seeding in Forward Mode

A suitable {0,1}-seed matrix seed can be computed by coloring the vertices in the
column incidence graph as described in [141]. This matrix is passed as a parame-
ter to the INDEPENDENT statement. Internally, the computation is performed with
directional derivative vectors of length [, where [ is the number of columns in seed.
The compressed Jacobian is stored in y_der. The named parameter DERIVATIVE is
provided by the DEPENDENT statement for this purpose.
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PROGRAM DRIVER_SFI
USE ACTIVE_MODULE

DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: x,y
INTEGER :: nx, ny

INTEGER, DIMENSION(:,:), ALLOCATABLE :: seed

DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: y_der

! get values for nx, ny; allocate x,y

! get values for x

! determine structure of seed by coloring
! allocate and initialize seed

DIFFERENTIATE (AD_FORWARD)
INDEPENDENT (x, SEED=seed)
CALL dsfifj(nx,ny,x,y,...)
DEPENDENT (y ,DERIVATIVE=y_der)
END DIFFERENTIATE

CONTAINS
include "dsfifj.f"

END PROGRAM DRIVER_SFI

The various steps that need to be performed ahead of the active section are described
by comments. Following the active section the compressed Jacobian y_der is available
for further use in the context of the numerical algorithm.

5.2 Seeding in Reverse Mode

Analogous to forward mode the {0,1}-seed matrix seed can be computed by coloring
the vertices in the row incidence graph for a given sparsity pattern of the Jacobian.
seed is passed as a parameter to the DEPENDENT statement. The adjoint computation
is performed with vectors of length [, where [ is the number of rows in seed. The
compressed transposed Jacobian is stored in x_adj.

INTEGER, DIMENSION(:,:), ALLOCATABLE :: seed
DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: x_adj

DIFFERENTIATE (AD_REVERSE)
INDEPENDENT(X,ADJOINT=X_adj)
CALL dsfdfi(nx,ny,x,y,...)
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DEPENDENT (y , SEED=seed)
END DIFFERENTIATE

Due to symmetry the same seed matrix as in forward mode can be used to compute
the compressed transposed Jacobian. Notice that the user interface is symmetric in
the sense of forward and reverse modes being symmetric. The design of the interface
contributes to the intuition of potential users of this new compiler feature.

5.3 Numerical Results

We ran extensive tests for varying problem sizes on a Athlon-XP2600 computer with
2GB of virtual memory (1GB physical) recording the following characteristic values:

Number of independent variables: nx = ny = /n;
Number of columns/rows in seed matrix: I;

User time: user;

System time: system,;

Cpu usage in percent: cpu;

Number of main memory misses (paging): F+;
Number of cache misses: F- .

In dense forward (F) and reverse (R) modes we are able to compute the 8100 x 8100
Jacobian resulting from nx = ny = 90 before running out of virtual memory. This
is due to the cumulative memory requirement of the derivative components of all
active variables. As expected the use of reverse mode does not lead to run time
savings. Paging increases the overall run time considerably.

vn l| user sys real cpu| F+ F-
60 3600| 1.76 0.37 2.16 98.00%| 156 55340
60 3600| 4.91 0.56 6.75 81.00%| 153 76789
80 6400| 9.07 1.25 11.93 86.33%| 156 174807
80 6400(25.55 1.98 35.24 79.67%| 767 244607
90 8100(14.62 2.53 23.37 73.00%| 367 279224
90 8100(41.83 6.69 328.57 14.67%|41660 522964

= ||

Seeding allows us to compute much larger problems going up to a problem size of
1,690,000 independent variables. The reverse mode run took 1.75GB of memory.
Again, paging leads to a large increase of the run time in this case. The number
of active variables grows to 3,380,014. A total of 37,174,808 partial derivatives are
stored on the tape whose final size is 37,180,000 allocated in chunks of 10,000. The
tape management overhead can potentially be decreased by increasing the chunk
size.

v/n lluser sys real cpu| F+ F-
900 5[2.26 0.41 2.68 99.00%| 155 57782
900 5(4.48 1.05 5.53 99.00%| 153 145846
1100 5(3.38 0.59 3.97 99.00%| 155 86303
1100 5|6.82 1.45 8.29 98.67%| 153 218187
1300 5(4.67 0.84 5.51 99.00%| 155 120527
1300 5[9.56 4.09 35.52 38.00% | 7644 399387

el e e
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So far, we have not been competing with established source transformation tools for
AD of Fortran programs such as ADIFOR [96], TAPENADE [257], or TAF [209]. At
the current state we do not expect to generate more efficient adjoint code due to the
lack of data-flow analysis and explicit reversal of the flow of control. Still we consider
the obvious ease-of-use of the AD compiler as a major advantage. Improvements in
efficiency will be addressed in the future as outlined below.

6 Summary, Conclusion, and Outlook

The source transformation AD algorithm that is part of a research prototype of
the NAGWare Fortran 95 compiler uses statement-level preaccumulation of local
gradients in connection with an overall forward mode strategy. A new version of the
compiler has been described in this paper that makes reverse mode AD available for
the efficient computation of adjoints. The local gradients of all scalar assignments
are written to a tape that is interpreted as part of the adjoint computation. A
highly convenient and intuitive user interface has been designed allowing for the
computation of matrix products involving both the Jacobian and its transpose. The
runtime behavior of the adjoint code compared with the tangent-linear code is as
expected.

Our work was motivated by optimization problems that require gradients with
respect to a large number of independent variables. Forward mode turned out to
be infeasible for practically relevant problem sizes. The applicability of the current
solution is limited by the size of the tape with respect to the memory resources. Some
problems may result in tapes that are simply too large. Our plans involve pushing
the limits by generating adjoint code that uses real instead of virtual memory (no
tape) as the result of reversing the flow of control as in [402]. Further significant
improvements can be expected from the planned implementation of checkpointing
techniques.
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Summary. We present extensions to the automatic differentiation tool TAPENADE
to increase coverage of the Fortran 95 language. We show how the existing archi-
tecture of the tool, with a language independent kernel and separate front-ends and
back-ends, made it easier to deal with new syntactic forms and new control struc-
tures. However, several new features of Fortran 95 required us to make important
choices and improvements in TAPENADE. We present these features, sorted into four
categories: about the top-level structure of nested modules, subprograms, and inter-
faces; about structured data types; about overloading capabilities; and about array
features. For each category, we discuss the choices made, and we illustrate their
impact on small Fortran 95 examples. Dealing with pointers and dynamic mem-
ory allocation is delayed until extension to C begins. We consider this extension to
Fortran 95 as a first step towards object-oriented languages.

Key words: TAPENADE, Fortran 95, program transformation

1 Introduction

We present extensions to the automatic differentiation [136,225] tool TAPENADE [256,
257] to increase coverage of the Fortran 95 language [365]. Other AD tools already
took this direction, such as TAF [210,211,293] and the NAGWare AD-enabled Fortran
95 compiler [400]. ADIFOR [96] has already considered the differentiation of code with
structured data types.

Given the source of an original program, plus a description of which output vari-
ables must be differentiated, and with respect to which input variables, TAPENADE
produces a new source program that computes the requested derivatives.

We recall the internal architecture of TAPENADE [257] in Fig. 1, with a central
module for program analysis and transformation, surrounded by language-specific
front-ends and back-ends. This allows the central module to forget about mostly
syntactic details of the analyzed language and to concentrate on the language’s
semantic constructs. To this end, TAPENADE defines an internal abstract language,
called 1L, which can represent all constructs of classical imperative languages. In
particular, extension to Fortran 95 drove us to add several new constructs into IL.
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Some of these constructs will thus be directly available when we start extension to
C. Furthermore, programs are internally represented as Call Graphs, Control Flow
Graphs [3], and, only at the deepest level of individual statements, Syntax Trees.
This yields a general representation for all control structures.

| User Interface  (Java/ XHTML) |

Ll

| Differentiation Engine (Java)

API

Imperative Language Analyzer (Java)

| other tool
'

[}
[
[

\refs (IL)
Fortran77 printer (Java)l

Fortran95 printer (Java )|
7

| Signatures of externals |

. C printer !

Fig. 1. Architecture of TAPENADE.

Concerning Fortran 95 syntax, everything is taken care of by a specific new parser
(front-end) and pretty-printer (back-end). A major difference compared to Fortran
77 is the free format source form, where statements may start in any column. Our
new Fortran 95 parser accepts programs that combine the old fixed format and the
free format, and the back-end can regenerate programs using both formats. Thanks
to the internal representation as Control Flow Graphs, new constructs such as the
SELECT CASE were easily added and treated by the differentiation engine as any other
flow of control. The same remark applies to the new CYCLE and EXIT constructs.

In this paper, we focus on the features of Fortran 95 that required us to make
important choices and improvements in TAPENADE. We put these features into four
categories: Sect. 2 deals with the nesting of modules, subprograms, and interfaces,
Sect. 3 deals with the treatment of structured types, called “derived” types in For-
tran 95, Sect. 4 deals with the overloading capabilities, and Sect. 5 deals with array
features. Sect. 6 concludes with the soon to come pointer analysis, and the more
distant extension to object-oriented programming.

2 Nesting of Modules and Subprograms

The internal representation has to be extended to capture the new top-level nest-
ing of procedures, with modules, internal/external subprograms, and interfaces. In
comparison, the structure of Fortran 77 was flat, apart from statement functions
and internal subprograms in some dialects.

We choose to introduce an internal tree representation of module nesting, in ad-
dition to the existing Call Graph. Each node stands for one “unit,” i.e. subprogram
or module, and holds the list of its enclosed units. In particular, the regenerated dif-
ferentiated program must comply with this unit tree structure, so that this program
is stand-alone and can be compiled directly. Each unit defines two symbol tables,
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for the public and private symbols (i.e. arguments, variables, subprograms, types,
etc). The private symbol table naturally inherits from the public one. Symbol table
nesting already existed in TAPENADE for scoping. The USE statement just states that
a unit has access to the public symbol table of a module.

Classically, program analyses and transformations need to run in an appropriate
order on the subprograms, depending on the Call Graph. The novelty is that this
order now must take into account the USE of modules. Moreover, recursion may
introduce cycles in this dependence, so the best order can only be an approximation.

Where differentiation is concerned, the question is what must belong to a dif-
ferentiated unit? When Fortran 77 was considered, differentiated symbols could be
defined independently from their original symbols. Now that modules can define
their own private symbols, some differentiated unit must often be declared in the
same context as its original unit, i.e. must live inside the same enclosing module.
In general the question is whether the differentiated object can exist independently
of the original object, or must they be attached inside the same enclosing level. For
example, a differentiated statement must be in the same subprogram as the original
statement because they share a common control. Similarly a differentiated subpro-
gram must be in the same module as the original if both access a private entity of
this module. On the contrary, a differentiated component x of a derived type T need
not be added into T, but can rather go into a stand-alone “differentiated” derived
type T, therefore saving memory space.

To illustrate, consider the source program of Fig. 2, containing a type definition,
variables, and a function. The corresponding differentiated program contains the
same declarations as the source program, plus the differentiated function.

3 Derived Types

Fortran 95 allows the user to define “derived” types (this name has no relation
with differentiation) in order to manipulate composite objects containing several
components. As we said in Sect. 2, our choice during differentiation is to define a
differentiated derived type, whose components hold the derivatives of the original
components. However, it happens that some variables of some derived type have
only some components that are active. Then the differentiated type need not allocate
space for the other components. Therefore, differentiated derived types depend on
the activity pattern. On the other hand, we don’t want to specialize too far, creating
several differentiated types for a given derived type. Therefore, our choice is very
similar to differentiation of subprograms with several activity patterns: there is
only one differentiated type T’ for each derived type T. During activity analysis, if
a component x of some variable of type T can be active, the differentiated type T’
must hold a component x too. The price for this non-specialization is that sometimes
a differentiated variable of type T’ will not use all of its components.

In the previous example, the differentiated type of the “vector” type is equal to
the initial type as all components are active, so no differentiated type appears in
the differentiated module.

In the example of Fig. 3, the “name” and “y” components of type “vector” are
not active. Therefore they do not appear in the differentiated type “vector_d.”
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! Generated by TAPENADE
! Version 2.0.12

module examplel MODULE EXAMPLE1_D
implicit nome
type vector TYPE VECTOR
real :: x,y,2 REAL :: x,y,z
end type vector END TYPE VECTOR
type(vector) :: u,v,w TYPE(VECTOR) :: u, v, w
contains CONTAINS
function dot_prod(a,b) FUNCTION DOT_PROD_D(a, ad, &
& b, bd, dot_prod)
IMPLICIT NONE
type(vector) :: a,b TYPE(VECTOR) :: a, b
TYPE(VECTOR) :: ad, bd
real :: dot_prod REAL :: dot_prod
REAL :: dot_prod_d
dot_prod = ajx*blx + & dot_prod_d = adx*bix + &
& aky*bhy + alkz*blz & a’%xxbdlx + adly*bhy + &
& a%y*bdly + adlz*blz + &
& ahzxbd%z
dot_prod = alx*bjx + &
& aky*bhy + alkzxblz
end function dot_prod END FUNCTION DOT_PROD_D

FUNCTION DOT_PROD(a, b)
IMPLICIT NONE
TYPE(VECTOR) :: a, b
REAL :: dot_prod
dot_prod = ajx*blx + &

& aly*bhy + a%hz¥blz

END FUNCTION DOT_PROD

end module END MODULE EXAMPLE1_D

Fig. 2. Differentiation of nested modules and subprograms.

4 Overloading

The term overloading refers to calling different subprograms or operators by the
same generic name. Whereas overloading in object-oriented languages is resolved
only at run time, the limited form of overloading in Fortran 95 can be resolved
statically at compile time, and therefore at differentiation time. This is done during
the type-checking phase. Furthermore, Fortran 95 also allows the user to overload
predefined operators such as +, -, *, /, or assignment =.

We must thus modify the type-checking algorithm carefully. Each use of a pre-
defined operator or call to a subprogram is compared to available overloaded sub-
programs according to the arguments’ types. If necessary, it is replaced by the
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module example?2
implicit nome
type vector
character(256) :: name
real :: x,y,z
end type vector

type(vector) :: u,v,w

contains

function test(a,b)
type(vector) :: a,b
real :: test
print *, ajname, b)name

test = alix + bix + ulz

end function test

end module

! Generated by TAPENADE
! Version 2.0.12
MODULE EXAMPLE2_D

TYPE VECTOR_D
REAL :: x,z

END TYPE VECTOR_D

TYPE VECTOR
CHARACTER*(256) :: name
REAL :: x,y,z

END TYPE VECTOR

TYPE(VECTOR) :: u, v, w
TYPE(VECTOR_D) :: ud

CONTAINS
FUNCTION TEST_D(a, ad, b, &
& bd, test)
IMPLICIT NONE
TYPE(VECTOR) :: a, b
TYPE(VECTOR_D) :: ad, bd
REAL :: test, test_d
PRINT*, a’name, bJ%name
test_d = ad¥x + bdlx + udlz
test = alx + bix + ulkz
END FUNCTION TEST_D

FUNCTION TEST(a, b)
IMPLICIT NONE
TYPE(VECTOR) :: a, b
REAL :: test
PRINT*, a%name, b%name
test = alix + bix + ulkz

END FUNCTION TEST

END MODULE EXAMPLE2_D

Fig. 3. Differentiation of derived types.
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appropriate subprogram call, and treated as such in the following differentiation
phase. Therefore, at the end of the type-checking phase, overloading is completely
resolved.

When differentiation is concerned, the predefined operators are treated in a very
particular, built-in manner, so we must be careful not to replace these operators by
ordinary subprograms calls when not necessary.

In our third example of Fig. 4, the addition of vectors is overloaded.

5 Array Features

The array programming features of Fortran 95 are represented through syntactic
notations and intrinsic functions. In Fortran 95 programs, it is possible to use whole
array operations. In the differentiated program, we keep this property whenever
possible, and we also use array operations on differentiated arrays.

For example, for arrays A, B and scalar x, the loop

do i=1,N
A(i) = 3*B(i-1) + x
end do

can be written equivalently as:
A(1:n) = 3*B(0:n-1) + x

Array features can be advantageous for static data flow analysis. A reset of a whole
array to a constant, for example, can be easily detected, whereas the equivalent loop
requires array region analysis [140] to reach the same conclusion.

When differentiation is concerned, two intrinsic array functions play a very spe-
cial role: the SUM intrinsic and the spread operation (which is often implicit or
otherwise is done by the SPREAD intrinsic). In particular the adjoint of a SUM is a
spread, and vice-versa. For example the adjoint statement of

x = x + SUM(B(:))

is the following, with an implicit spread on X

Actually these two intrinsics blend into the internal representation for partial deriv-
atives and reappear when generating the differentiated code.

To illustrate how this is effectively performed by TAPENADE, we need a more
complete example. Consider the following array assignment of a scalar value to
array A, at indices 0 to 100 by stride of 3, where x is a scalar:

A(0:100:3) = x * SUM(B(:))

The elements of A that are not in the section A(0:100:3) play no role in this state-
ment, and can therefore be neglected. In the rest of this example, we shall thus
simplify the notation by writing A instead of A(0:100:3) when there is no ambigu-
ity. This array assignment is differentiated in the reverse mode using the transposed
local Jacobian:
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module example3
implicit nome
type vect

real :: x,y

end type vect
type (vect)
interface operator (+)
module procedure addvect

Dou,v,w
end interface

contains

function test(a,b)
type(vect) :: a,b,test

test =a+b+u

end function test

function addvect(a,b)

type(vect) ,intent(in)::&

& a,b
type(vect) :: addvect

addvect’x = alx + bix

addvectlky = aky + bly
end function addvect

end module

! Generated by TAPENADE
! Version 2.0.12
MODULE EXAMPLE3_D

TYPE VECT
REAL :: x,y
END TYPE VECT
TYPE(VECT) :: u, ud, v, w

INTERFACE OPERATOR(+)
MODULE PROCEDURE addvect
END INTERFACE

CONTAINS
FUNCTION TEST_D(a, ad, b, &

& bd, test)
IMPLICIT NONE
TYPE(VECT) :: a, ad, b, bd
TYPE(VECT) :: test, test_d
TYPE(VECT) :: argl, argld
argld = ADDVECT_D(a, ad,&

& b, bd, argl)
test_d = ADDVECT_D(argl,&

& argld, u, ud, test)

END FUNCTION TEST_D

FUNCTION ADDVECT_D(a, ad,&

& b, bd, addvect)
IMPLICIT NONE
TYPE(VECT) , INTENT(IN):: a,b
TYPE(VECT) :: ad, bd, &

& addvect, addvect_d
addvect_d%x = ad%x + bdix
addvect’x = alx + bix
addvect_d%y = adly + bdiy
addvectly = aky + bly

END FUNCTION ADDVECT_D

FUNCTION TEST(a, b)

END FUNCTION TEST
FUNCTION ADDVECT(a, b)

END FUNCTION ADDVECT
END MODULE EXAMPLE3_D

Fig. 4. Differentiation of overloaded procedures and operators.




178 Valérie Pascual and Laurent Hascoét
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which is a block matrix, whose structure is emphasized in Fig. 5, using rectangles to
represent blocks. Notice that the four larger blocks are actually rectangular blocks,
whereas the other blocks are two row matrices, two column matrices, and a 1x1
block. The Id blocks correspond to the identity matrix. The SUM(B(:)) block is a

A 0 0 0 A
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X M(B(: Id 0 X
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Fig. 5. Transposed Jacobian block matrix for an array assignment.

row matrix where each entry is equal to SUM(B(:)). A is a column matrix whose
values are A(0:100:3). Figure 5 shows the vector assignment that the differentiated
assignments must implement.

The shape of the blocks determines where SUM’s and spreads must appear in
the differentiated array assignments. For example, the assignment that updates X
implements the product of the SUM(B(:)) row vector by the A column vector, yielding
the following reduction:

X =X+ SUM(B(:))*SUM(A(0:100:3))
The complete set of differentiated assignments is:

+ SUM(B(:))*SUM(A(0:100:3))

=%
B(:)= B(:)+ x*SUM(A(0:100:3))
£(0:100:3) = 0.0

Only SUM and spread blend with the local Jacobian notation as described above.
All the other array intrinsics are treated like black-box routines, whose differentiation
is given to TAPENADE in special library files.

6 Conclusion

We have described extensions of the AD tool TAPENADE towards full coverage of
Fortran 95. This extension is made easier by the fact that Fortran 95 derives from
Fortran 77, and also by TAPENADE’s internal representation of programs independent
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from the language. For example, the notion of structured data types was already
in TAPENADE even before extension to Fortran 95 was considered. Obviously, all
constructs that exist both in Fortran 77 and Fortran 95 required no new develop-
ment at all. The features of Fortran 95 that called for new developments are those
which had been overlooked or not fully tested because Fortran 77 did not use them.
Similarly, TAPENADE already handles nested scoping blocks inside a procedure, and
this feature will be available immediately for the extension to ¢, just like structured
types.

One major feature of Fortran 95 is still omitted from the present work: pointers
and dynamic allocation. The internal representation already captures pointers, but
the program analyses do not take them into account. This is the next development
on our list. We plan to share this with the soon-to-come extension of TAPENADE to
C. In addition to the development of a classical pointer analysis, this will require
a conceptual study of a differentiation model for pointers, especially in the reverse
mode of AD. Differentiation of dynamic allocation and pointers is only problematic
for reverse mode AD. Tangent AD, as well as reverse AD implemented through a
tape as in ADOL-C [229] handle these features in a straightforward fashion.

In the long run, we shall consider extending TAPENADE to the object program-
ming concepts from C+-+ or JAVA. This will introduce dynamic overloading, which
is still a challenge for automatic differentiation. For example, the activity pattern
of the actual parameters of a given call may contribute to the activity pattern of
several subprograms. However, the module nesting management developed here is a
major step towards handling the global structure of object-oriented programs.

There are two ways you can use TAPENADE. It can be used as a server at the url

http://tapenade.inria.fr:8080/tapenade/index. jsp
Alternatively, it can be downloaded from
ftp://ftp-sop.inria.fr/tropics/tapenade

and locally installed. In that case it is run by a simple command line, which can be
included into a Makefile. TAPENADE also provides a user-interface to visualize the
results in a HTML browser. An on-line documentation is available at the url

http://www.inria.fr/tropics
We encourage you to use TAPENADE and to report any problems, therefore helping
us making it an industrial quality AD tool for Fortran 95.
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Summary. Any automatic differentiation tool for MATLAB needs to cope with
the large number of functions provided by the toolboxes. For many of these func-
tions, derivatives have to be defined. A powerful macro language for the derivative
definition, embedded in the source transformation tool ADiMat, is introduced. The
macro language consists of a part where the signature of a function is matched and
another part specifying the derivative of that function. Several examples illustrate
the expressiveness and use of the macro language. A subset of the macro language
is available to the user of ADiMat to improve the performance of the generated
derivative code by exploiting high-level structure.

Key words: MATLAB, ADiMat, automatic differentiation, macro language, deriv-
ative definition

1 Introduction

MATLAB! is a well-known high-level programming language geared towards scien-
tific computations. Its attractiveness stems to a considerable degree also from the
large set of powerful functions provided by the MATLAB toolboxes. Such func-
tions are called toolbox functions hereafter. As a first step to handle the numerous
toolboxes, we concentrate on the standard MATLAB toolbox in the present study.
Examples of toolbox functions from the standard MATLAB toolbox include deal ()
and mesh(). For the sake of simplicity, the term “toolbox function” is also used
to refer to functions built into the MATLAB core. That is, operators such as +,
x or \ and also functions like sin(), norm(), ££ft() are called toolbox functions
in this article. In the context of automatic differentiation (AD) [42,136,225,227],
derivatives of many toolbox functions are needed to transform MATLAB code in
the same way as derivatives of all elemental functions are needed to transform For-
tran code. Since derivatives of a few hundreds toolbox functions are required, the
specification of derivatives for these toolbox functions is of crucial importance when
implementing an AD tool for MATLAB [51,130,178,180,467,521]. To this end, we

! MATLAB is a registered trademark of The Mathworks, Inc.
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introduce a macro language and its embedding in the source transformation tool
ADiMat [51]. The macro language is not only used in the development of ADiMat,
the user of ADiMat can also access a restricted set of the same macro language to
specify derivatives of user-defined functions, offering a powerful mechanism to po-
tentially improve the performance of AD-generated code by exploiting the structure
of the given code.

The outline of this paper is as follows. In Sect. 2, we describe elements of MAT-
LAB relevant for the design of an AD tool based on the source transformation
approach. In Sect. 3, the macro language for concisely defining the signatures of
functions is presented. This section also describes how to define the derivative of a
function. An example is given in Sect. 4 where the derivative of a user-defined func-
tion is assumed to be known. Then, using the macro language, ADiMat allows the
user to explicitly specify this derivative, thus exploiting the structure of the given
code.

2 MATLAB in the Context of an AD Tool

MATLAB is a high-level language containing arithmetic statements, control flow
structures, modularization, and object oriented paradigms. The AD tool ADiMat
applies the source transformation approach to MATLAB codes. It keeps high-level
operations such as matrix-vector products intact and augments the code with addi-
tional high-level operations. For example, the code fragment x = A * b, where A is
a matrix of size m X n and b is a vector of size n, is transformed to

gx=gA*xb+ Ax*xgh;
x = A * b;
where g_A and g_b are the derivative objects associated with A and b.

In addition to these high-level operations, MATLAB consists of a rich set of
toolbox functions, many of which are not written in MATLAB but in different lan-
guages such as C or Fortran. There are approximately 1200 identifiers for functions
and variables in the standard MATLAB toolbox. Around 300 toolbox functions need
at least one derivative definition.

Because of polymorphism, a toolbox function may need more than one deriv-
ative definition. In MATLAB the following polymorphic features are among the
most frequently used. In this article, the term parameter is used to denote formal
parameters, whereas the term argument is used for actual parameters.

e Number of arguments and results: a MATLAB function may be called with a
varying number of results and arguments. Parameters that are not initialized by
the call may be set to default values, or are optional in the body of the function.
For example, the function norm(x,p), which computes the p-norm of vector or
matrix x, may be called with one or two arguments. The second parameter p, if
omitted, is set to the default value of 2 to compute the Euclidean norm.

e Type of arguments: depending on the type of an argument a MATLAB function
may behave differently. For example, if x is a vector the function norm(x) evalu-
ates the standard formula of the Euclidean norm. However, if x is a matrix, the
function norm(x) computes the Euclidean norm by applying the singular value
decomposition.
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e Value of arguments: functions may be parameterized by flags or values. For
example, if x is a matrix, norm(x, inf) computes the infinity norm, whereas
norm(x, 1) computes the largest column sum.

From an AD point of view, differentiation in MATLAB is complicated by the
fact that many toolbox functions are written in languages other than MATLAB.
Several ways to provide the derivatives of those toolbox functions are feasible:

e Divided-difference approximations may be computed. This approach is always
feasible, but suffers from well-known accuracy shortcomings.

e An alternative is to apply an AD tool for a different language such as Fortran
or C if the source code is available. Here, identifying the active variables, setting
up the AD process, the compilation of the derivative code, and the generation
of the mex-interface (see help mex in MATLAB) currently is not automated.

e Another approach is to rewrite the function in MATLAB and differentiate it
with ADiMat. However, this approach is laborious and error-prone. Also, writ-
ing MATLAB code for functions specifically tuned for high-performance is a
potential source of inefficiency.

ADiMat offers an alternative way for the specification of derivatives by providing a
macro language that allows the definition of differentiation rules at a high level.

3 The Macro Language

The definition of a derivative of a toolbox function is divided into two parts. The first
part specifies the “signature” of the function to be differentiated, and the second is
the “action part.”

3.1 Signature Definition

The signature classifies the use of an identifier contained in a toolbox as a function
or variable. To this end, three keywords are used: (a) the definition of a variable or
constant is started with the keyword BVAR; (b) a command or script is preceded by
BCOMMAND; (c) for a function, the keyword BMFUNC is used.

In Table 1 the grammar of the “signature part” is described in enhanced Backus-
Naur-Form as used in [242]. The terminals used in the grammar are double-quoted
strings such as "BMFUNC", and tokens are denoted by all capitals, such as ID or
STRING. Non-terminals are written in lowercase like variable_spec or num_param. A
question mark denotes an optional part. An asterisk matches a rule zero or multiple
times. The non-terminal action appearing in the fourth rule of Table 1 will be
described in the next subsection.

For example, the signature BVAR pi defines the constant 7. The rule BVAR does
not allow a specification of any action. The action of BVAR is hardwired to be differ-
entiated to a zero derivative object whose creation is omitted most of the time for
performance reasons.

Consider a second example. The signature

BMFUNC $$ = sin($1)



184 Christian H. Bischof et al.

Table 1. EBNF Grammar of signatures

kindspec := variable_spec | command_spec | function_spec;
variable_spec := "BVAR" identifier;
command_spec := "BCOMMAND" ID ( parameters )7;
function_spec := "BMFUNC" signature action;
signature := ( results )7 ID ( parameters )7;
parameters := "(" ( num_param ( "," num_param )* )?
C e )? "g# (type )7 )7 "M
results := ( ( single_result | multiple_results ) "=" )7;
single_result := "$$" ( type )7;
multiple_results := "[" ( num_res ( "," num_res )* )7
oMy "gs# (type )7 )7 "1V,
num_res := "$$" INT ( type )7;
num_param := "$" INT ( "=" default )7 ( type )7 | default ;
identifier := ID ( type )7;
type := ":" ID ;

default := ID | FLOAT | STRING;

gives a derivative definition for the sine function, where the part related to action
is not shown here for simplicity. This definition of the signature tells ADiMat that
a toolbox function of MATLAB with identifier sin exists, which needs exactly one
argument $1 and returns exactly one result $$.

An example of a more complex signature is given by

BMFUNC $$ = norm($1, $2)

representing the function norm. The definition of this signature declares the function
norm taking two arguments and returning one result. The second argument of the
function norm is optional. If omitted the default value of 2.0 is taken. This can be
expressed by the signature

BMFUNC $$ = norm($1, $2 = 2.0) ... ,

eliminating the need to specify a second rule. More precisely, a rule containing just
one parameter and using the default value in the action is not necessary.

Many functions in MATLAB use a variable number of parameters and results.
For example, the function deal assigns its inputs to its outputs. If the number of
its arguments matches the number of its results, the first argument is assigned to
the first result, the second argument to second result and so on. If deal is called
with one argument only, then each result is assigned a copy of the argument. The
function deal uses the feature varargin and varargout, handling a variable number
of input and output arguments, respectively. This feature is translated to the macro
language of ADiMat using $# for a variable number of input arguments and $$#
for a variable number of results. Both symbols are only accepted as the last or only
entry in a list of input or output parameters. The signature of deal may be given
by

BMFUNC [$$#] = deal($#)

defining the syntax as described above.
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Alternatively, a signature definition may be partially specialized That is, some
placeholders of parameters (e.g. $1, $2) may be replaced by constant values, e.g.,

BMFUNC $$ = norm($1, inf)

A shortcut exists for functions that do not return a result. Such a function is
called a command, and the BMFUNC is replaced by BCOMMAND. The command will never
be differentiated, i.e., it is ignored as described in the next subsection. An example
of a command requiring at least one argument is

BCOMMAND plot($1, $#)

3.2 The Actions

The action of a derivative definition is an essential part in creating derivatives for
toolbox functions. Here, three different actions are described as shown in Table 2.
The terminal MATLAB_EXPRESSION_WITH_$-SYMBOLS matches a MATLAB code frag-
ment containing a so-called placeholder at any position. In the sequel, a placeholder
is any string starting with a dollar $. These placeholders are replaced by ADiMat
with arguments and their derivatives.

Table 2. EBNF Grammar of actions

"IGNORE" | "NODIFF" | diffto;
"DIFFTO" MATLAB_EXPRESSION_WITH_$-SYMBOLS;

action :
diffto :

Action: IGNORE

The action IGNORE defines a toolbox function to be ignored during differentiation.
Whenever ADiMat encounters an identifier that is declared to be ignored, then it
does not generate any derivative code for the subexpression of the call of the toolbox
function. Also, this toolbox function is ignored in the activity analysis that deter-
mines which variables need to have derivatives associated with them. For example,
the complete specification for defining the toolbox function size is given by

BMFUNC [$$#] = size($1, $#) IGNORE .

Action: NODIFF

For a large set of toolbox functions, in particular for those that are most frequently
used, derivatives are specified in ADiMat. However, there are certain toolbox func-
tions whose differentiation is currently postponed for reasons of simplicity. The ac-
tion NODIFF is designed to indicate that the current version of ADiMat does not
differentiate a specific toolbox function yet. The activity analysis for a toolbox func-
tion specified as NODIFF is performed as usual. If during the step of augmentation a
toolbox function declared as NODIFF is encountered, then a default error message is
issued on the standard output and a comment is inserted into the output code. The
derivative code generated by ADiMat is probably incorrect. As an example, consider
the statement z = eval(str), where str is a string assigned the value ’sin(x)’ at
runtime. It is hard for an AD-tool to recognize that z = sin(x) within the current
context. Therefore, the specification of NODIFF is appropriate:

BMFUNC [$$#] = eval($1, $#) NODIFF .
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Action: DIFFTO

The expression to compute the derivative of a toolbox function is appended to the
keyword DIFFTO. It consists of valid MATLAB expressions and some placeholders
$*, where the asterisk is a wildcard for one or more characters. For instance, valid
placeholders are $1, $2, ..., $N where N is the number of parameters specified in the
signature definition. For example, the derivative definition of the sine function is

BMFUNC $$ = sin($1) DIFFTO (cos($1) .x ($@1))

The placeholder $@1 denotes the derivative of the expression $1. In general, for
each active placeholder $K, a derivative is accessible through the symbol $@K. The
parentheses, encapsulating the whole expression as well as every placeholder such
as $1 and $@1, are necessary, as the placeholders may be replaced by expressions
and not only by variables. For example, the augmented code of the assignment
z = sin(x + y); is given by

gz = (cos(x +y) .* (g_x + g_y));
z = sin(x + y);

where g_x and g_y are the derivative objects associated with x and y, respectively.

In Table 3, all placeholders and their associated derivative placeholders used by
the DIFFTO action are listed. The symbol @ may also be used to specify the handle
of a function (see help function_handle in MATLAB). This table introduces the
derivative placeholder $@# associated with a variable number of input parameters,
$#. To illustrate the use of this derivative placeholder representing a variable num-
ber of derivative parameters, the example of the function deal is continued. The
derivative definition of this toolbox function is given by

BMFUNC [$$#] = deal($#) DIFFTO calln(@deal, $0#)

The function calln supplied with ADiMat applies its first argument, which must be
a function handle or function name, to all directional derivatives of all supplied deriv-
ative objects in turn. Differentiating the statement [a, b, cl=deal(d, e, f);, car-
rying out three assignments, leads to

[g_a, g_b, g_c] = calln(@deal, g_d, g_e, g_f);
[a, b, c] = deal(d, e, £f);

Here, the function calln executes a for-loop over the number of directional deriva-
tives stored in the derivative objects (g_*) applying the function deal. All derivative
objects must have the same number of directional derivatives.

Another feature of ADiMat is its capability to reuse the result of the original
function computation. To this end, the placeholders $$, $$1, ..., $$N, and $$# may
be used in a DIFFTO action. This is illustrated by the following example where the
derivative of the p-norm with respect to a vector v is considered. Taking into account
the derivative rule,

aHUHp_ 1-p _P—lg )
Wl jojjz= 32 (ot ol )

i

the derivative definition is given by
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Table 3. Placeholders and derivatives used by the action DIFFTO.

place-| derivative || description
holder| placeholder

51 so1 Derivative placeholder associated with the first to N*®
: parameter of the toolbox function signature

$N $eN

$# $o# The comma-separated list of derivative arguments

associated with all arguments represented by $#

BMFUNC $$ = norm($1, $2 = 2) DIFFTO (($$) .~ (1 - $2) .*
calln(@sum, abs($1) .~ ($2 - 1) .* g_abs($01, $1))) ,

where the default value p = 2 is used. The first symbol ($$) after the DIFFTO keyword

is the reference to the original result of the function norm. Given the code

n2
n3

norm(v) ;
norm(v,3);

where v is a vector, ADiMat generates

n2=norm(v) ;

g_n2=((n2) .7 (1-2) .*xcalln(@sum, abs(v)."(2-1).*g_abs(g_v,v)))
n3=norm(v,3);

g_n3=((n3) .7 (1-3) .*calln(@sum, abs(v)." (3-1).*g_abs(g_v,v)))

The first two statements of the derivative code show the statements generated if the
second argument is omitted and replaced by the default value of 2. The constant
expressions in these lines are intentionally unfolded to clarify the process of replacing
the placeholders $*. The function g_abs() computes the derivative of the function
abs(). It stops the evaluation of the expression and raises an error if v is zero.
The order of the statements is exchanged; usually ADiMat computes the derivative
before the original function. Because the derivative needs the original result, the
statements are exchanged. The constant folding techniques applied to the derivative
of n2 optimizes the expression to

g_n2=((n2)."(-1) .*xcalln(@sum, abs(x).*g_abs(g_v, v)))

Constant folding techniques are applied twice: first after the code canonical-
ization and a second time after the augmentation process. The constant folding
techniques are based on the ones given in [387]. The techniques are implemented
by analyzing the abstract syntax tree of the MATLAB program. The constants are
propagated up the tree as long as they are combined with other constant expres-
sions only. During this process, checks to prevent under- and overflows in the IEEE
floating point arithmetic are performed. A constant expression is not folded if a loss
of precision is possible.

Consider a MATLAB fragment containing norm(x, inf), where the infinity
norm of a matrix x is computed. In MATLARB, this largest row sum is computed by
max (sum(abs(x’))). A sophisticated derivative code would not only compute the
infinity norm but also the index k of the maximum value of sum(abs(x’)) which
is not available in the original expression. That is, ADiMat should be capable of
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rewriting the original expression in the generated derivative code. Given the value
of k and taking into account the derivative rule

Ol 5~ 0,
Tor ~ 2 gl

a sophisticated derivative code would avoid any derivative computations associated
with rows different from k. This feature is still under development. Therefore the
action NODIFF is currently specified for the infinity norm of a vector or a matrix.

4 Exploiting Structure of a Given Code

Sometimes the performance of AD-code can be significantly improved by exploit-
ing the structure of the given code. Examples include the use of interface contrac-
tion [82,83,275] and the integration of analytic derivatives for a small part of the
given program [50]. Another example is the reuse of parts of the given code in the
derivative code [81,210]. Using the macro language, it is not too difficult for the user
of ADiMat to reuse parts of given code when generating the AD-code. Consider the
case where a large MATLAB program uses a function implementing the Fast Hartley
Transformation (FHT). Such a function may be given by

function y=fht(x)
t = fft(x); # Fast Fourier transform (t may be complex)
y = real(t) - imag(t); # real part minus imaginary part

Since the FHT is a linear transformation of a given vector x, the derivative of FHT
is nothing but the application of the FHT to the derivative object associated with
x. This can be described by the specification

BMFUNC $$ = fht($1) DIFFTO calln(@fht, $@1)

5 Conclusion and Future Work

The mathematically oriented programming language MATLAB extends its powerful
core by providing collections of functions, called toolboxes. Such toolboxes may
contain several hundreds of identifiers that need derivatives. Besides other techniques
involving divided differences, use of third party AD tools, or re-implementation of
functions in MATLAB, a powerful macro language is designed to help in defining
efficient derivatives.

The macro language allows the declaration of identifiers, specification of their
use as functions, constants, commands, or variables, definition of their interface, and
design of a derivative expression. Function interface definition allows the narrowing
of the interface to a specific class of functions by specifying the types of arguments or
their values. This enables the design of highly optimized derivatives. The definition
of a derivative is supported by powerful macro expansion capabilities.

Future versions of ADiMat will not only provide the ability to add derivative
statements to a given code without significantly changing the original function com-
putation, but will also rewrite the original code substantially to improve the perfor-
mance. Future directions will also consider differentiating MATLAB code that calls
functions written in other languages, requiring interaction of ADiMat with other
AD tools.
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Summary. For the solution of realistic dynamic optimization problems, the com-
putation of derivative information is typically among the crucial ingredients in terms
of both numerical accuracy and execution time. This work aims to incorporate au-
tomatic differentiation into the DyOS framework for dynamic optimization. In this
framework, the optimization algorithms and the mathematical models of the process
systems under consideration are implemented in separate modules. In real-life set-
tings, a process system is formed by integrating different submodels which are pos-
sibly formulated by means of different equation-oriented modeling languages such
as gPROMS or Modelica. DyOS is currently redesigned to be capable of handling
such component-based models by relying on a common intermediate format called
CapeML, which defines a layer of abstraction so that various models can be expressed
in a manner independent from a specific modeling language. Hence, CapeML is the
adequate format to which automatic differentiation is applied in this dynamic opti-
mization framework. A novel system called ADiCape is proposed, implementing the
forward mode for models written in the XML-based language CapeML. This AD
transformation is expressed in the form of an XSLT stylesheet.

Key words: ADiCape, CapeML, XML, process engineering

1 Introduction

Over the past decades, modeling, simulation and optimization have gained ever-
increasing attention in various scientific and engineering areas including process
engineering. A general-purpose dynamic optimization software DyOS [71] has been
developed at RWTH Aachen University. DyOS is used for parameter estimation,
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optimal control, and optimal experimental design. The goal of an interdisciplinary
research project is to provide DyOS with truncation error-free sensitivities of first
and second order obtained from automatic differentiation (AD) [225,450].

In the framework of DyOS, an engineering model is represented by a vari-
ety of equation-oriented modeling languages such as gPROMS [25,440] or Model-
ica [188,371]. Interoperability of models described by a set of mathematical equations
formulated in different modeling languages is provided by a common intermediate
format called CapeML [525]. This XML-based representation is specifically designed
as a model exchange language for process engineering. It enables the reuse and com-
bination of submodels in a new larger model. In the context of AD, the layer of
abstraction provided by CapeML is well-suited for code transformations. CapeML
is similar to the XML Abstract Interface Form (XAIF) [61,276] already in use in
the implementation of AD tools. However, the two formats differ in that XAIF
provides a language-independent representation of constructs common in impera-
tive languages, whereas CapeML is designed for mathematical equations used to
represent process engineering models. In this paper, we propose a prototype imple-
mentation of a new AD tool called ADiCape developed to support the evaluation of
first-order directional derivatives using the forward mode for models represented in
CapeML.

In Sect. 2 of this paper, a typical optimization problem arising from process
engineering is described briefly, and the DyOS system is summarized. In Sect. 3, the
intermediate format CapeML is introduced. The approach taken by transforming
CapeML code into derivative code is sketched in Sect. 4. The purpose of Sect. 5 is
to show the overall structure of the DyOS system when AD is tightly integrated.

2 Dynamic Optimization

Consider a system of differential-algebraic equations
Mi = F(z,p,t),  te€(to,tf), z€R", peR! 1)

with initial conditions

z(to) = o .
Here, z and p denote the vectors of state variables and system parameters, respec-
tively. The aim is to minimize some objective function ®(x(¢s)), where ¢y is the final
time step. An important ingredient in the optimization algorithms is the evaluation
of the derivatives of the states with respect to the parameters,

0.
s=2"
dp
The sensitivity equation results from differentiating the system (1) with respect to
the system parameters:
: oF oF
MS=A-S+Ky, whereA=— and K1 = — .
ox dp
The sensitivities are required to compute gradient information for the solution of
the dynamic optimization problem. Hence, this sensitivity system must be solved in
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every iteration of the algorithm for the solution of a discretized form of the original
problem (1). The algorithm uses recursions of the form

fork=0,...,5—1
Tk+1 = Tk — (LjUj)_l . F(.’Ek)
Ski1 =Sk — (L;U;) ™" (Ak - Sk + K1) ,

where, in an outer loop, the decomposition L;U; = Ag — M/h; with step size h;
is computed. In this algorithm, the notation Ay is used for the Jacobian matrix
evaluated at x = xr. To set up the right-hand sides of the linear systems in the
sensitivity statement, the whole Jacobian matrix Ay is not needed explicitly; only
products of A by a multivector Sy are necessary.

The optimization scheme is separated from the description of the engineering
problem. The situation is schematically depicted in Fig. 1, where the DyOS system
interacts with a process model. The definition of large sets of equations of any
kind generally requires a large amount of relatively complex data. In Computer-
Aided Process Engineering (CAPE), this has led to introducing the concept of an
Equation Set Object (ESO) [303] in a CAPE-OPEN standard definition [93]. ESO
is an information representation layer, so that it can be used by other systems, e.g.,
nonlinear algebraic or differential-algebraic equation systems. It is an abstraction
representing a square or rectangular set of equations.

Optimization Process Model
Interface
DyOS % % M, F(xp.1)

Fig. 1. Scheme of the DyOS system.

The communication between DyOS and the process model is performed through
the CAPE-OPEN compliant ESO interface. This interface to the ESO object allows
a solver object of DyOS to obtain information about the equations implemented in
the process model. It is capable of returning, for instance, the size and structure of
the equation system, of adjusting the values of the variables occurring in it, and of
computing the resulting residuals.

3 The Intermediate Format CapeML

A model of a process system is a set of mathematical equations that are used to
study and predict its behavior. The advantage of the equation-oriented approach
for describing the model is that it does not make any assumptions about how to
solve the model, or what quantities are considered known or unknown during the
solution. This is an important property when considering the reuse of a model in a
larger model or in a different application.
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Representation of such equation-oriented models in a common and accessible
way has gained a lot of interest among software developers. In particular, reducing
the human effort to exchange models is crucial in building large-scale technical sys-
tems. The language XML (eXtensible Markup Language) is designed to support the
exchange of a wide variety of different data. The World Wide Web Consortium re-
leased an XML representation called MathML [557] as a standard markup language,
providing a low level specification format for describing and exchanging mathemat-
ics between mathematical packages and other specialized application tools. MathML
seems to be a reasonable choice for a model exchange format. However, MathML
does not meet some of the modeler’s needs. The definition of the variables and
matrices using MathML requires predetermining its dimensions, which limits the
flexibility of the exchange language. Additionally, MathML does not allow one to
decompose the equation system into a number of independent parts that can be
recombined later using an aggregated equation system specifying the relations be-
tween the decomposed parts (submodels). Such decomposition in MathML would
cause ambiguity because the variable references in MathML only use the variable
names, that may occur in more than one independent part of the equation subset.
See [525] for a more detailed discussion of the connections between MathML and
CapeML.

A group of process modelers consisting of academic and industrial partners have
taken the initiative of standardizing a representation of equation-oriented models.
The goal is to develop a modeling language-neutral intermediate format which is
dedicated to the exchange of models among different modeling and simulation tools.
For the definition of this intermediate format, XML is used, providing standardized
rules for defining other languages. The XML-based intermediate format is called
CapeML [525] and is suitable for exchanging mathematical models used in process
engineering. The purpose of CapeML is to abstract from a specific modeling language
commonly used in this area such as gPROMS or Modelica. CapeML is designed to
provide interoperability among the variety of existing modeling tools. In Fig. 2, the
DyOS system is sketched where CapeML is used as an additional layer of abstraction.
The language elements of CapeML include expressions, variables, constants, vectors,
and equations. There are some compilers provided for Modelica and gPROMS that
are capable of transforming equation systems to CapeML format.

Optimization Process Model gPROMS
Interface

other languages
Fig. 2. DyOS system with intermediate format.
As an example, suppose that, in a given modeling language, a process model

called mod contains the expression

4xsin(x)+y (2)
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<VariableDefinition myID=’V-mod-x’ name=’x’ xlink:href=’Real’
specification="STATE’></VariableDefinition>
<VariableDefinition myID=’V-mod-y’ name=’y’ xlink:href=’Real’
specification="STATE’></VariableDefinition>
<Expression>
<Term>
<Factor>
<Number value=’4’/>
</Factor>
<Factor mul.op=’MUL’>
<FunctionCall fcn.name=’sin’>
<Expression>
<Term>
<Factor>
<VariableOccurrence definition=’V-mod-x’>
</VariableOccurrence>
</Factor>
</Term>
</Expression>
</FunctionCall>
</Factor>
</Term>
<Term add.op=’ADD’>
<Factor>
<VariableOccurrence definition=’V-mod-y’>
</VariableOccurrence>
</Factor>
</Term>
</Expression>

Fig. 3. Sample code of CapeML.

where x and y are variables. This expression given in Modelica syntax can be
transformed to the corresponding CapeML representation shown in Fig. 3. A
CapeML code starts with the definition of variables using a separate element
VariableDefinition for each variable. The expression consists of two elements Term
combined by the addition operation specified in the attribute value ADD of the sec-
ond Term. The first Term consists of two elements Factor combined by multiplication
given in the attribute value MUL of the second Factor. The resulting tree structure,
taking into account operation priorities, is given in Fig. 4. Each node of this com-
putational graph contains a variable, a constant value, an operation, or a function
call. The next section describes how to apply AD on these computational graphs.

4 ADiCape: Automatic Differentiation of CapeML

When applying the forward mode of AD to equations written in CapeML, we do not
perform an activity analysis but treat all variables as active. The proposed prototype
of an AD tool called ADiCape is based on a source transformation approach. For
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Factor Factor Factor

4 sin(V-mod—x) V-mod-y

Fig. 4. Computational graph.

the transformation of CapeML code, the XSLT language [505,556] is used. XSLT is
a template-based transformation language, which can be applied on any XML-like
code. To transform a given CapeML code, an XSLT stylesheet defining the rules
of the transformation is needed. The CapeML code and the XSLT stylesheet are
taken by an XSLT processor that generates the new CapeML code according to the
specified transformations. The overall process is shown in Fig. 5.

CapeML
original code

CapeML

XSLT Processor code with derivatives

ADiCape
XSLT-Stylesheet

Fig. 5. Processing ADiCape.

An XSLT stylesheet consists of a set of templates specifying the transformation
rules for a specific XML element. The attribute match of a template is used to
indicate an ELEMENT to which a transformation is applied:

<xsl:template match="ELEMENT"> .

Within the template, directives specify how to transform the selected element. A
sample template for augmenting a CapeML code with declarations for additional
derivative objects is shown in Fig. 6.

This template searches for the element VariableDefinition. In the first step,
it copies the element name, denoted by *, together with all its attributes, rep-
resented by @+, to the new CapeML code. This is specified by "select="@x*|x*".
When copying, it takes into account all other templates that satisfy the match field
<xsl:apply-templates/>.

Vectors are used to propagate directional derivatives through the AD code. In
CapeML, a vector consists of a tuple called domain, denoting the first and last



Transforming Equation-Based Models 195

<xsl:template match="VariableDefinition">
<!-- copy the original variable with its atributes -->
<xsl:copy>
<xsl:apply-templates select="@*|* "/>
</xsl:copy>
<l-- call the template "DomainV0" which will create the domain
for the gradient vector -->
<xsl:call-template name="DomainV0"></xsl:call-template>
<l-- create the gradient vector with new ID, name, specification
atribute and assign distribution from the created domain-->
<xsl:element name="VariableDefinition">
<xsl:attribute name="myID">
<xsl:value-of select="concat(’V-’,$model,’g_’,Cname)"/>
</xsl:attribute>
<xsl:attribute name="name">g_<xsl:value-of select="Oname"/>
</xsl:attribute>
<xsl:attribute name="xlink:href">
<xsl:value-of select="@xlink:href"/></xsl:attribute>
<xsl:attribute name="specification">
<xsl:value-of select="@specification"/>
</xsl:attribute>
<xsl:element name="Distribution">
<xsl:attribute name="domain">
<xsl:value-of select="concat(’D-’,$model,’g_’,Oname)"/>
</xsl:attribute>
</xsl:element>
</xsl:element>
</xsl:template>

Fig. 6. Sample template of ADiCape XSLT stylesheet.

index that can be used in referencing a vector. Therefore, the next step is to create
a domain for the new gradient vector object associated with the selected variable.
This is done by calling another template named DomainV0.

Finally, the new element VariableDefinition with four attributes is created. A
unique key is composed using the name of the model and the name of the selected
variable. The name of the generated derivative object is constructed by adding
the prefix g_ to the name of the selected variable. The remaining two attributes
are copied from the corresponding attributes of the selected variable. The element
Distribution points out the adequate domain for the created gradient object. The
result of applying this template to the declaration of the variable x given in the first
two lines of Fig. 3 is shown in Fig. 7. Here, the domain is expressed in the form
of two numbers each of which needs a complete expression tree in CapeML. The
number of directional derivatives is assumed to be two in this transformation so
that accesses to any position between one and two are valid for vectors in CapeML.

Applying the forward mode to the expression (2) whose CapeML representation
is given in Fig. 3 leads to

4xcos(x)*g_x+g_y .
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<VariableDefinition myID="V-mod-x" name="x" xlink:href="Real"
specification="STATE"></VariableDefinition>
<Domain myID="D-mod-g_x" symbol="d-1" type="DISCRETE" name="V-0">
<Expression>
<Term>
<Factor>
<Number value="1"/>
</Factor>
</Term>
</Expression>
<Expression>
<Term>
<Factor>
<Number value="2"/>
</Factor>
</Term>
</Expression>
</Domain>
<VariableDefinition myID="V-mod-g_x" name="g_x"
xlink:href="Real" specification="STATE">
<Distribution domain="D-mod-g_x"/>
</VariableDefinition>

Fig. 7. Variable definition of x and g_x after transformation with the template.

This expression is recognized again in the CapeML code shown in Fig. 8 obtained by
processing the CapeML expression from Fig. 3 and the ADiCape XSLT stylesheet
with an XSLT processor. In summary, the current version of the XSLT stylesheet
implementing ADiCape is about 1000 lines long. We considered a simple expres-
sion in Modelica (2) whose CapeML representation consists of 25 lines, from which
ADiCape generated approximately 45 lines of forward mode AD code in CapeML.

5 The Overall Structure of the System

The current implementation of ADiCape creates two separate files with CapeML
code. The first file is a copy of the original CapeML file containing the equations
describing the process model; the second file contains the equations representing the
derivative information exclusively. The overall structure of the DyOS system using
derivative information provided by ADiCape is presented in the Fig. 9. As without
the ADiCape system, the communication with the process model is realized via an
ESO object. With the ADiCape system, however, there is an additional ESO object
for the derivative equations. Furthermore, a new XML ESO class is introduced.
This new class identifies what kind of information is needed by the DyOS system.
It acts as a relay by sending the requests to the appropriate ESO. More precisely,
the computation of the residuals of a specified equation can only be calculated by
the ESO from the original code, whereas the Jacobian of the equation system and
also the directional derivatives can be returned from the second ESO object.
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<Expression>
<Term>
<Factor>
<Number value="4"/>
</Factor>
<Factor mul.op="MUL">
<FunctionCall fcn.name="cos">
<Expression>
<Term>
<Factor>
<VariableOccurrence definition="V-mod-x">
</VariableOccurrence>
</Factor>
</Term>
</Expression>
</FunctionCall>
</Factor>
<Factor mul.op="MUL">
<VariableOccurrence definition="V-mod-g_x">
<ArrayIndex>
<Expression>
<Term>
<Factor>
<DomainOccurrence domain="V-mod-i"/>
</Factor>
</Term>
</Expression>
</ArrayIndex>
</VariableOccurrence>
</Factor>
</Term>
<Term add.op="ADD">
<Factor>
<VariableOccurrence definition="V-mod-g_y">
<ArrayIndex>
<Expression>
<Term>
<Factor>
<DomainOccurrence domain="V-mod-i"/>
</Factor>
</Term>
</Expression>
</ArrayIndex>
</VariableOccurrence>
</Factor>
</Term>
</Expression>

Fig. 8. Differentiated CapeML code.
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Fig. 9. DyOS system after the integration of ADiCape.

6 Concluding Remarks and Directions for Future Work

DyOS is a specific framework for dynamic optimization geared toward process en-
gineering. The system currently is redesigned to be capable of using an XML-based
intermediate format, CapeML, to represent a process model. The advantage of this
additional level of abstraction is that DyOS easily can work with different models
regardless of their generic description. The CapeML format not only enables inter-
operability between different modeling languages; it is also an appropriate level of
abstraction on which automatic differentiation is implemented. Truncation error-
free first-order derivative information is brought to DyOS by the forward mode
applied to process models. The prototype system transforming equations expressed
in CapeML is called ADiCape. The functionality of ADiCape was demonstrated on
a small example. The extensions of the DyOS system needed for interaction with
ADiCape are minimal. Essentially, a new XML ESO class is needed, redirecting a
DyOS request to the appropriate ESO object.

Recall from Sect. 2 that not only the full Jacobian is needed but also Jacobian-
multivector products are to be computed. The current ESO specification does not
support these operations. Hence, a new definition of the ESO interface is needed to
fully benefit from the advantages of AD. Another extension of the ESO is reasonable
when second-order derivatives enter the picture. Recent work [19,423] demonstrates
the importance of accurate Hessian information in the context of dynamic opti-
mization. The aim of future work is to additionally use second-order derivatives by
observing that the sensitivity equations for second-order derivatives are linear [519].
These sensitivity calculations will be added to the integration algorithm in DyOS.
The ADiCape stylesheet will then construct a third CapeML file with the directions
to calculate Hessians or Hessian-vector products. The XML ESO class, redirecting
the requests from DyOS to the adequate ESO object, will then also be extended to
communicate with a third ESO instance responsible for second-order derivatives. It
is also interesting to find out to what extent ADiCape can interact with the ACTS
project [403], also relying on an XML-based intermediate format.
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Summary. The Tevatron accelerator, currently the particle accelerator with the
highest energy in the world, consists of a ring with circumference of four miles
in which protons are brought into collision with antiprotons at speeds very close
to the speed of light. The accelerator currently under development at Fermilab
represents a significant upgrade, but experienced significant limitations during initial
operation. The correction of some of the problems that appeared using techniques of
automatic differentiation are described. The skew quadrupole correction problems
are addressed in more detail, and different schemes of correction are proposed.
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1 Introduction

The dynamics in a large particle accelerator are governed by relativistic equations of
motion that are usually solved relative to those of a reference orbit. The simulation
of an accelerator in this manner is a very demanding undertaking since particles
orbit for in the order of 10° revolutions, and it is necessary to study many different
orbits. Thus from the early days of particle accelerators, it has been customary to
determine Taylor expansions of the flow, usually to orders two and three. Automatic
differentiation methods, in particular in combination with ODE solving tools based
on differential algebraic methods, have allowed us to increase this computation order
very significantly, and now orders around 10 are routinely used in the code COSY
INFINITY [39]. For the tracking pictures presented here, the order of calculation
is usually taken to be seven for speed, but for some final results orders 11 or 13
are used. Furthermore, it is now possible to represent the devices by much more
accurate models. A wide range of standard elements with the ability to simulate all
nonlinearities and associated error fields is available in COSY INFINITY.
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2 The Tevatron Accelerator — Machine Description

The Tevatron is currently the most powerful particle accelerator in the world with
a circumference of the ring of four miles. The beams of protons and antiprotons
moving in opposite directions are brought to collision at energies close to 1 TeV
each. Hence, their relativistic kinetic energy is more than 1000 times that of their
rest mass. Besides colliding two beams, it is necessary to make as many particles
interact as possible. The effectiveness of the collision is characterized by a single
value called luminosity. Calculating and optimizing the dynamics of the particle
motion in the accelerator to reach higher and higher luminosity is one of the main
goals of this work.

Particles in the Tevatron have velocities close to the speed of light, a fact which
has several advantages and disadvantages for the modeling. COSY INFINITY takes
all the resulting relativistic effects into account automatically.

The Tevatron consists of six arcs connected with six straight sections. Two of
the straights are the well-known collision detectors CDF and DO0. Each arc is a
periodic structure having 15 FODO cells with 8 dipoles each to provide the necessary
bending. However, each of these magnets has some error terms that are commonly
called multipole moments. One of these errors is due to the fact that the coils of the
dipoles are not parallel as they should be, which introduces a skew quadrupole term.
This has a very detrimental effect on the motion of the particles, because it provides
a coupling of the otherwise independent horizontal and vertical motion and thus
affects the stability of the particles. A circuit of skew quadrupole correctors serves
to compensate for these errors. The main problem addressed in this article is the
scheme of such a correction and the view that only a part of the errors in the dipoles
can be removed during the next Tevatron planned shutdown.

3 The Model, Criteria and Parameters to Control

We began with the basic model of the machine by V. Lebedev currently available
at Fermi National Accelerator Laboratory [328-330] and converted the source code
to run under COSY INFINITY. The tool converting the lattice description works
automatically, so all the updates to the lattice easily can be taken into account.
The current model implements elements: dipoles, quadrupoles, skew quadrupoles,
sextupoles, skew sextupoles, solenoids with fringe field, and separators.

The recent upgrade of the Tevatron accelerator led to an undesirable coupling
between the horizontal and vertical motion [202,355,493-496], while usually great
care is taken to keep these two motions decoupled. Mere integration of orbits makes
the task of decoupling very difficult, since it is very hard to assess from ray co-
ordinates whether a coupling happens. On the other hand, in the framework of
the Taylor expansion of final coordinates in terms of initial coordinates, decoupling
merely amounts to

p) (f) 9 )
=0 and =0, kj=12 (1)
dy;' oz’

for the respective linear effects, and to
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for nonlinear effects, where 1 is the horizontal position, z2 = py/po is the reduced
horizontal momentum, y; is the vertical position, y2 = py/po is the reduced vertical
momentum, po is some previously chosen scaling momentum; i1, 92 : i1 > 0; i >
0; 41 +i2 < m, n is the order of calculations, and the superscripts (i) and (f) denote
the initial and final conditions, respectively.

At the same time, the main operating parameters of the machine, the two tunes
(phases of the eigenvalues of the linear map), have to be kept constant. This is vital
for the stability of the motion of the particles to help avoid resonances. In terms of
partial derivatives, this condition amounts to the preservation of

ol ol o o
oy’ Oay’ ay”  9ys”

Thus with the availability of Taylor expansions, it is merely necessary to adjust
suitable system parameters such that the ten conditions (in the linear case) described
by (1) and (3) are met. While by no means an easy feat, this task is significantly more
manageable than the attempt to optimize performance based on particle coordinates.

We are to control the strengths of several skew quadrupole correctors around
the ring both in arcs and straight sections. Each arc has six to eight correctors, but
it is preferable to have them all at the same strength as they have one power supply.
Moreover, it would be advantageous to optimize them all to the same strength in all
the arcs. The study shows that this can be done effectively and efficiently with AD
methods implemented in COSY INFINITY. Without use of AD techniques all the
calculations and especially optimization of the structure requiring intensive multiple
recalculating of the transfer maps would take a prohibitively long time and could
never be done for such a high order.

To keep the tune of the system constant, the strength of the main bus quadrupoles
can be slightly changed. As all the quadrupoles have the same strength this task
is a one-parameter optimization; besides it does not require high-order calculation.
Even in this problem the high-order calculations are unavoidable, as checks should
be made that changing the tune back to the original value after skew quadrupole
correction optimization does not lead to degradation in the behavior of the particles
described by the multi-revolution tracking picture.

4 Map Methods

The particles in most accelerators (the Tevatron is not an exception) usually stay
close together, forming a beam. Therefore, it is convenient to choose a reference
particle — the one that moves undisturbed through the centers of all the magnets of
the machine and make use of perturbative techniques to obtain good approximation
of the dynamics of motion of all the particles in the beam relative to this reference
particle.

The motion of the particles is considered in 2-dimensional phase space: each
particle has four coordinates z1, 2 = ps/po, Y1, and y2 = py/po, where pg is the
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momentum of the reference particle, and the arc length s along the center of the ring
is used as an independent variable. Thus, the dynamics is described by the vector

which depends on s. The action of the accelerator lattice elements can be expressed
by how they change the components of the vector z(s). Denoting by zo the initial
coordinates at sp, the final coordinates of each particle at s can be obtained from
the system of equations

Z(S) = M(SQ,S) (z075) )

relating zo and a set of control parameters d at so to z at s > so, where M(so, )
is a function which formally summarizes the action of the system. M is called the
transfer function or transfer map of the system. The transfer map satisfies

M(81782) o M(So, 81) = M(80752) .

Therefore, the transfer map of the system can be built up from the transfer maps
of individual elements. As the accelerator structure is regular, the set of different
elements is not that big, a fact that allows us to seriously reduce the amount of
calculations.

M is usually weakly nonlinear and can be considered as a sum of two maps: a
purely linear part M, and a purely nonlinear part N, i.e. M = M + N . For a simple
analysis of the relative motion, often a linear approximation is enough, but for full
understanding of the motion, the understanding of the nonlinear effects is essential.

Map methods are particularly useful for the study of the motion in circular
accelerators, as one has to run the particles through the same system many times.
The number of revolutions necessary to estimate the behavior of the particles in the
Tevatron lies in the orders of 10° —107. Having a transfer map of one full revolution,
one easily can perform repetitive tracking of the particles through the system.

In case of the first order of calculations, the transfer map can be represented as
a matrix of coefficients:

i) 2.0756 0.0023 0.1123 0.0047Y (@’
0 | | 63.3276 0.5497 1.1253 0.1065 | | 2%
y | 7| 0.0003 0.0021 1.4570 0.0223 | [ 4V
o) —3.2571 0.0834 87.8001 2.0272 ) \ (0

For higher orders the numbering and processing of the coefficient is much more
sophisticated. As an example, we here show a piece of a high-order transfer map:

COEFFICIENT ORDER EXPONENTS
-.7246219112151764 1 10 00
-.9122414947039915
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7  783.4790397865372 2 02 00
8 -23.83485869335665 2 10 10
9  50.34274836239869 2 01 10
10 -222.4936370747880 2 10 01
11 98.21519926034055 2 01 01
12 -73.88432808806901 2 00 20
13 149.0913750043664 2 00 11
14 -223.3498687001470 2 00 02
15 -71088.03707913239 3 30 00
16  164852.2891153482 3 21 00
325 -16401453090653.15 7 00 43
326  29169856173501.98 7 00 34
327 -42361303120466.99 7 00 25
328  54860608468975.03 7 00 16
329 -43643493779626.68 7 00 07

Each row describes one term of the Taylor expansion of final coordinates in terms
of initial coordinates. The columns labeled “EXPONENTS” describe the exponents
of each of the independent variables appearing in the respective term. The “OR-
DER” column contains the total order of the term, i.e. the sum of the exponents,
and the first column lists the double precision coefficient belonging to the respective
term. As an example, the sixth row describes the Taylor series term depending on
the power one of variable 1 and the power one of variable 2.

The map coefficients are the results of integrating the equations of motion of the
particles through different lattice elements: quadrupoles, sextupoles, solenoids. The
built-in ODE solver in COSY INFINITY works with differential algebra vectors —
coefficients of Taylor expansion for the coordinates of the particles, which achieves
very high orders of computations even on somewhat slow machines.

For the optimization of the linear coupling, the linear map is sufficient, as (1)
and (3) affect only the linear part of the map. For subsequent correction of the
nonlinear effects as in (2), it is necessary to determine higher order Taylor expansions
of the map. More on the work with map methods and differential algebra approaches
can be found in [38,41].

The optimization works the following way.

1. Choose a correction scheme with different skew quadrupole circuits settings;

2. Perform the two-stage optimization. The first stage removes the linear coupling
in each of the six arcs (the objective function is the sum of the derivatives in the
left hand sides of the expressions (1)). The second stage removes the coupling
for the whole machine (the objective function is the sum of the derivatives in
the left hand sides of the expressions (1)) and brings the tune back to its initial
value (the objective function is the sum of the expressions

)
—C, and 3y1<i)
vy,

dyy”

ayy”
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where C; and Cy are some fixed values);
3. Perform high-order tracking to check the stability of the motion after optimiza-
tion.
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The qualitative results of the optimization for two different skew quadrupole circuits
are presented in Sect. 5, the quantitative results are discussed in Sect. 6.

5 Different Optimization Schemes and Proposals

Currently, 85% of the dipoles in the Tevatron still have the above-mentioned coil
displacement. As a result, skew quadrupole components act on the particles. A first
study consisted of leaving all the errors in place, but moving some of the correctors.
The results for such optimization scheme are not shown, because this scheme was
only interesting as a starting point, since subsequently it proved impossible to move
any of the skew quadrupole correctors. At the same time, the scheme shows that
good correction can be performed even if all the errors stay the same.

More realistic are the schemes with some of the errors in dipoles fixed and all
or only the part of the correctors in their places. The forecast says up to 50% of
the dipoles can be fixed during the upcoming Tevatron shutdown. The high-order
analysis helps to determine exactly what should be done, which dipoles to correct
and what the strength of the correctors should be to achieve the most predictable
particle behavior, avoid resonances, and decouple the motion.

Sector E scheme I

FODO 1 D*2 FQ sSQC D*2 Dx2 FIX DQ  D*2FIX
FODO 2 D*2 FQ D*2 Dx2 FIX DQ  D*2FIX
FODO 3 Dx2 FQ SQC D*2 Dx2 FIX DQ  D*2FIX
FODO 4 D*2 FQ D*2 Dx2 FIX DQ  D*2FIX
FODO 5 Dx2 FQ SQC D*2 Dx2 FIX DQ  D*2FIX
FODO 6 Dx2 FQ D*2 Dx2 FIX DQ  D*2FIX
FODO 7 D*2 FQ sSQC D*2 Dx2 FIX DQ  D*2FIX
FODO 8 D*2 FQ D*2 Dx2 FIX DQ  D*2FIX
FODO 9 Dx2 FQ SQC D*2 Dx2 FIX DQ  D*2FIX
FODO 10 D*2 FQ D*2 Dx2 FIX DQ  D*2FIX
FODO 11 D*2 FQ SQC D*2 Dx2 FIX DQ  D*2FIX
FODO 12 Dx2 FQ D*2 Dx2 FIX DQ  D*2FIX
FODO 13 D*2 FQ sSQC D*2 Dx2 FIX DQ  D*2FIX
FODO 14 D*2 FQ D*2 Dx*2 FIX DQ  D*2FIX
FODO 15 Dx2 FQ SQC D*2 Dx2 FIX DQ  D*2FIX

Fig. 1. Correction scheme I, errors in dipoles fixed in each cell around defocusing
quadrupole.

The first scheme layout is shown in Fig. 1 in the form of the description of one
sector. All the other sectors look similar except for some dipoles that have been
fixed before this study was initiated. This scheme proposes to fix skew quadrupole
errors in the dipoles (D*2 FIX) on both sides of the defocusing quad (DQ). All the
skew quadrupole correctors stay in their places (SQC). The errors in dipoles around
focusing quadrupole (FQ) remain unfixed (D*2).

The results of the optimization are given in Figs. 2—-5. The first two pictures
show the phase portraits in 1, z2 = p,/po and y1, y2 = p,/po planes for particle
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Fig. 2. z-plane phase portrait before the optimization with 85% skew quadrupole
errors in dipoles.

Fig. 3. y-plane phase portrait before the optimization with 85% skew quadrupole
errors in dipoles.
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Fig. 4. z-plane phase portrait after the optimization with 50% skew quadrupole
errors in dipoles, errors are fixed around each defocusing quadrupole.

Fig. 5. y-plane phase portrait after the optimization with 50% skew quadrupole
errors in dipoles, errors are fixed around each defocusing quadrupole.
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trajectories before the optimization. The next two show the results after the opti-
mization. The scale of each picture is 2.4 x 10~% m horizontal and 4.0 x 10~ vertical.
For stable particles the trajectories look like closed curves. For the y plane picture
they are very close to ellipses, for the = plane the trajectories have a somewhat
triangular shape because of the proximity of a resonance. For unstable particles,
the trajectories are fuzzy. For some extremely bad cases (like the one in the Figs. 2
and 3), the particles do not show stable behavior at all. After several turns most of
the particles can be considered lost (their traces go beyond the scale of the picture).

The figures show great improvement in the behavior of the particles: fewer parti-
cles are lost, and the motion remains stable further from the reference particle that
goes through the centers of all the magnets undisturbed. The picture of the x plane
is still not perfect; there appears to be a possibility that the stable region can be
increased further.

FODO 1 D*2 FQ SQC RMV D*2 D*2 DQ D*2
FODO 2 D*2 FIX FQ D*2 FIX D*2 FIX DQ D*2 FIX
FODO 3 D*2 FQ SQC RMV D*2 D*2 DQ D*2
FODO 4 Dx2 FIX FQ Dx2 FIX Dx2 FIX DQ D*2 FIX
FODO 5 D*2 FQ sSQC D*2 D*2 DQ D*2
FODO 6 Dx2 FIX FQ Dx2 FIX D%2 FIX DQ D*2 FIX
FODO 7 D*2 FQ SQC D*2 D*2 DQ D*2
FODO 8 D*2 FIX FQ D*2 FIX D*2 FIX DQ D*2 FIX
FODO 9 D*2 FQ sSQC D*2 D*2 DQ D*2
FODO 10 D*2 FIX FQ Dx2 FIX Dx2 FIX DQ Dx2 FIX
FODO 11 D*2 FQ sSQC D*2 D*2 DQ D*2
FODO 12 D*2 FIX FQ D*2 FIX D%2 FIX DQ Dx2 FIX
FODO 13 D*2 FQ SQC D*2 D*2 DQ D*2
FODO 14 D*2 FIX FQ D*2 FIX D*2 FIX DQ D*2 FIX
FODO 15 D*2 FQ SQC RMV D*2 D*2 DQ D*2

Fig. 6. Correction scheme II, skew quadrupole errors in dipoles are fixed in each
even FODO cell.

Scheme IT (Fig. 6) answers this question. There are two differences in the second
scheme: the dipoles are to be fixed in all the even FODO cells, while skew quadru-
pole correctors are located in odd cells. In addition, some of the correctors can be
removed, and that makes the results even better (marked SQC RMYV in Fig. 6).

Figures 7 and 8 present the results of particle tracking for correction scheme II.
Clearly the improvement can be seen with the naked eye. All the particles remain
stable for 10,000 turns. This result is achieved with only one corrector strength
per arc, which will work fine with one power supply for all the skew quadrupole
correctors in each arc. Moreover, optimization gives only slightly worse results for
the case where all the skew quadrupole correctors have the same strength around
the entire ring, which means the correction scheme under consideration appears to
be the best choice to implement.
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Fig. 7. z-plane phase portrait after the optimization with 50% skew quadrupole
errors in dipoles, errors are fixed in each even FODO cell.

Fig. 8. y-plane phase portrait after the optimization with 50% skew quadrupole
errors in dipoles, errors are fixed in each even FODO cell.
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6 Transfer Map Comparison

Since one of the aims of the optimization was the removal of coupling between the x
and y planes, it is worth showing the first order transfer map of the machine before
and after optimization. The map before optimization looks like this:

—0.7553149 0.3637584 0.0663166 —0.0971958

—0.8640196 —0.9507699 —0.4305946 0.1421480 (4)
—0.0251393 —0.0621722 —0.8060247 0.3353297 ’

—0.4966847 0.0614653 —0.7083212 —0.9862029

and after optimization:

—0.8023857 0.3107970 0.0059011 —-0.00254055
—0.7143330 —0.9696470 —0.0058075 —0.00487758 5
0.0043365 —0.0022290 —0.8445417  0.28890307 ’ (%)
—0.0077313 —0.0060658 —0.5409385 —0.99907987

The coupling terms shown in bold (four terms in the upper-right and lower-left
corners) in (5) became up to 74 times smaller than in (4).

7 Conclusions

Without the use of AD techniques implemented in COSY INFINITY, achieving the
results would be a hard, if not impossible task. The speed COSY tracks particles is
remarkable. One procedure tracking in both z and y planes takes about 3 minutes
for 7th order calculation or up to 8 hours (depending on the one-turn map) for order
11 on a 1.5 GHz Pentium processor.

The results of the study are very promising, and the correction scheme II pre-
sented above is the one being implemented during the Tevatron shutdown planned
for Fall 2004.
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Summary. Periodic processes are ubiquitous in biological systems, yet modeling
these processes with high fidelity as periodic orbits of dynamical systems is challeng-
ing. Moreover, mathematical models of biological processes frequently contain many
poorly-known parameters. This paper describes techniques for computing periodic
orbits in systems of hybrid differential-algebraic equations and parameter estima-
tion methods for fitting these orbits to data. These techniques make extensive use
of automatic differentiation to evaluate derivatives accurately and efficiently for
time integration, parameter sensitivities, root finding and optimization. The result-
ing algorithms allow periodic orbits to be computed to high accuracy using coarse
discretizations. Derivative computations are carried out using a new automatic dif-
ferentiation package called ADMC++4 that provides derivatives and Taylor series
coefficients of matrix-valued functions written in the MATLAB programming lan-
guage. The algorithms are applied to a periodic orbit problem in rigid-body dynamics
and a parameter estimation problem in neural oscillations.

Key words: Periodic orbits, hybrid systems, parameter estimation, Taylor se-
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Rhythmic, periodic processes are ubiquitous in biological systems; for example,
the heart beat, walking, circadian rhythms, and the menstrual cycle. Modeling these
processes with high fidelity as periodic orbits of dynamical systems is challenging
because

e (most) nonlinear differential equations can only be solved numerically
e accurate computation requires solving boundary value problems

* This research was partially supported by the Department of Energy and the
National Science Foundation. While at Sandia, the first author was supported by
Sandia’s ASC and CSRF programs.
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e many problems and solutions are only piecewise smooth
many problems require solving differential-algebraic equations
computing sensitivities of solutions with respect to model parameters requires
solving variational equations

e truncation errors in numerical integration degrade performance of optimization
methods for parameter estimation.

In addition, mathematical models of biological processes frequently contain many
poorly-known parameters, and the problems associated with this impede the con-
struction of detailed, high-fidelity models. Modelers are often faced with the diffi-
cult problem of using simulations of a nonlinear model, with complex dynamics and
many parameters, to match experimental data. Improved computational tools for
exploring parameter space and fitting models to data are clearly needed.

This paper describes techniques for computing periodic orbits in systems of hy-
brid differential-algebraic equations and parameter estimation methods for fitting
these orbits to data. These techniques make extensive use of automatic differen-
tiation to evaluate derivatives accurately and efficiently for time integration, pa-
rameter sensitivities, root finding and optimization. The boundary value problem
representing a periodic orbit in a hybrid system of differential-algebraic equations
is discretized via multiple-shooting using a high-degree Taylor series integration
method [244,433]. Numerical solutions to the shooting equations are then estimated
by a Newton process, yielding an approximate periodic orbit. A metric is defined for
computing the distance between two given periodic orbits, which is then minimized
using a trust-region minimization algorithm [143] to find optimal fits of the model
to a reference orbit [99].

The use of Taylor series integration in the context of computing periodic or-
bits in systems of ordinary differential equations has been studied previously [244],
and provides several key advantages that motivate the extensions to hybrid DAE
systems and parameter estimation methods presented here. The high accuracy and
large step sizes associated with Taylor series integration allow periodic orbits to be
computed accurately using coarse discretizations. Moreover, Taylor series integra-
tion provides dense output allowing event location without interpolation and no loss
of order of accuracy. Also, sensitivities of the computed trajectories can be easily
computed using automatic differentiation. As will be demonstrated below, Taylor
series integration has a simple extension to problems with algebraic constraints,
and the computed trajectories satisfy these constraints with high accuracy. Finally,
multiple-shooting frameworks are fairly simple to design, implement, and allow us
to treat many classes of problems uniformly with a single software implementation.
Thus Taylor series integration and multiple-shooting provide a natural setting for
developing the algorithms presented here.

In addition to these properties, there are two goals that further motivate the
work presented here. The first is to provide a simple and powerful framework for
studying periodic motions in mechanical systems. Formulating mechanically correct
equations of motion for systems of interconnected rigid bodies, while straightforward,
is a time-consuming and error prone process. Much of this difficulty stems from
computing the acceleration of each rigid body in an inertial reference frame. The
acceleration is computed most easily in a redundant set of coordinates giving the
spatial positions of each body, since the acceleration is just the second derivative
of these positions. Rather than providing explicit formulas for these derivatives,
automatic differentiation can be employed to compute these quantities efficiently
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during the course of a simulation. The feasibility of these ideas was investigated by
applying these techniques to the problem of locating stable walking motions for a
disc-foot passive walking machine [131,194, 363].

The second goal for this project was to investigate the application of smooth
optimization methods to periodic orbit parameter estimation problems in neural
oscillations. Others [48,183,517] have favored non-continuous optimization meth-
ods such as genetic algorithms, stochastic search methods, simulated annealing and
brute-force random searches because of their perceived suitability to the landscape of
typical objective functions in parameter space, particularly for multi-compartmental
neural models. Here we argue that a carefully formulated optimization problem is
amenable to Newton-like methods and has a sufficiently smooth landscape in para-
meter space that these methods can be an efficient and effective alternative.

The plan of this paper is as follows. In Sect. 1 we provide a definition of hybrid
systems that is the basis for modeling systems with discontinuities or discrete tran-
sitions. Sections 2, 3, and 4 briefly describe the Taylor series integration, periodic
orbit tracking, and parameter estimation algorithms. For full treatments of these
algorithms, we refer the reader to [99,433]. The software implementation of these
algorithms is briefly described in Sect. 5 with particular emphasis on the ADMC++
automatic differentiation software package. Finally, these algorithms are applied to
the bipedal walking and Hodgkin-Huxley based neural oscillation problems discussed
above in Sect. 6.

1 Hybrid Systems

An important feature of many practical nonlinear problems is the existence of dis-
continuities or discrete transitions in the problem’s dynamics. For example, in the
bipedal walking problem presented below, an impact occurs each time a foot strikes
the ground. Modeled as a plastic collision, these impacts create discontinuities in the
external force on the system. When solving these systems numerically, it is impor-
tant to avoid stepping over these discontinuities since this can create convergence
problems for the numerical method. To this end, we model systems such as these as
hybrid systems [18] and treat the discontinuities and/or transitions explicitly.

Informally, a hybrid system consists of a set of regions (called “charts”) upon
each of which a dynamical system is defined, typically by an ODE or DAE. Charts are
allowed to overlap, and may even belong to different spaces. Each chart V' contains
an open set U (called a “patch”) whose boundary is contained within the union of
the zero sets of a set of smooth scalar-valued functions (called “event functions”).
It is assumed the closure of U is contained within V' and that each event function
is positive in U. A trajectory of the hybrid system starts with an initial point in
some patch U in a chart V and evolves according to the dynamical system on
V. This continues until the boundary of U is reached, at which point some event
function g must be zero. Then a transition function is applied mapping that point
to a new point in a new patch U in a new chart V. It is assumed these transitions
are instantaneous. The evolution then continues according to the dynamical system
on V. A periodic orbit in such a system is merely a trajectory that returns to its
starting point after some nonzero time 7'.

For practical purposes, hybrid systems are implemented by including a discrete
state s which determines which chart the hybrid system currently belongs to. All
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functions defining the hybrid system in that chart (vector field, event functions, etc.)
take this state as an additional argument. Derivatives with respect to this state are
never computed, enabling our automatic differentiation algorithms to operate only
on smooth functions. For the algorithms discussed below, we assume the ODE or
DAE on each chart is analytic and the event functions and transition functions are
C' on their domain of definition. In most cases of interest, these functions are at
least piecewise analytic/smooth, and the assumptions can usually be satisfied by
adding new charts to the hybrid system.

2 Taylor Series Integration

Moore [375,380] and Barton, Willers, and Zahar [23,24] implemented general Taylor
series methods for computing solutions to ODE initial-value problems in the 1960s
and 1970s, followed by work of Corliss and Chang [135] and Griewank et al. [229].
Guckenheimer and Meloon [244] extended these methods to solve boundary value
problems for locating periodic orbits of ODEs. At each step of a numerical integra-
tion, a degree d truncated Taylor polynomial solution z(t) = Zi:o xxt" is generated
using the Taylor polynomial mode of automatic differentiation [225,450]. In [244],
Taylor series coefficients were generated using the ADOL-C package [229]. Here, we
generate Taylor coefficients using a new package ADMC++ described in Sect. 5.
Typically, we set d = 40. Step sizes are estimated by examining the growth rates of
Taylor coefficients.

Several authors have extended the Taylor series technique to computing numer-
ical solutions to initial-value problems in DAEs. Chang and Corliss [101] describe
computing Taylor series solutions to DAEs representing simple mechanical systems.
Pryce [441] and Nedialkov and Pryce [407] show how to compute Taylor series coef-
ficients for arbitrary DAEs using Pryce’s structural analysis [442]. Here we assume
the DAE has been converted to an ODE on a constraint manifold:

F(z)=0. )

This can be done either explicitly by providing formulas for f and F, semi-
automatically using Pryce’s structural analysis [442], or implicitly using automatic
differentiation and knowledge of the structure of the DAE as is done for the me-
chanical system example in Sect. 6. Given a consistent initial condition x¢ such that
F(xo) = 0, an approximate Taylor polynomial solution p(t) to the ODE initial-value
problem & = f(x), ©(0) = zo can be generated in the standard way, and a step size
h computed as described above. While F(p(h)) will be quite small because of the
high order of Taylor series methods, it will not be zero, in general. Moreover, this
constraint error typically grows quadratically in time [249]. This can be remedied
by simply projecting each time step back onto the constraints F' = 0.

What distinguishes our work is the connection of this method to computing
Taylor series solutions to reduced ODEs written in terms of local parameterizations
of the constraint manifold M = {z : F(z) = 0}. In particular, let f: R" — R" and
F :R"™ — R™ be analytic, F(z9) = 0, and assume ker D, F'(xo) has dimension m.
Define p = n — m, then by the Implicit Function Theorem there are neighborhoods
A CRP of 0 € R?” and B C M of zp such that the mapping ¥ : A — B defined
implicitly by
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=) {U° R )

is well-defined and analytic on A. Here the columns of Uy € R"™*? form an orthonor-
mal basis for ker D, F'(zo). Clearly ¢(0) = zo and F(¢(y)) = 0 for each y € A. Such
a mapping is referred to as tangent space projection in the literature [435,436,568]
and derives from locally projecting the manifold onto its tangent space. It can be
shown that the DAE (1) yields the ODE

y=Us f((y)), y(0)=0, yeA. 3)

Clearly the Taylor series coefficients {z;} and {y;} to the solutions to ¢ = f(z),
x(0) = 20 and (3) are related by y; = U§ «; for i > 0, and therefore it can be shown
that one step of a Taylor series method applied to (3) is equivalent to computing
the truncated Taylor polynomial solution to & = f(z), 2(0) = zo followed by the
projection given by solving

Ug (z —a(h)) =0 )
F(z)=0.
for z, where z(h) is the truncated Taylor polynomial solution evaluated at t = h.
These techniques are easily extended to hybrid systems by looking for sign
changes in all of the event functions defined for a given chart. If an event func-
tion g changes sign over one step of the integration, the time of the event can easily
be found by applying Newton’s method to the scalar equation g(z(t)) = 0. There are
simple formulas for computing derivatives of the Taylor polynomial solution with
respect to the initial conditions and model parameters [225,433] that are important
for the periodic orbit and parameter estimation techniques discussed in the following
sections.

3 Periodic Orbits

Periodic orbits of a hybrid system of DAEs are trajectories that return to their
starting point after some time 7. Computationally, periodic orbits are described by
boundary value problems, and robust methods for solving these problems fall into
two general categories [12]: multiple shooting methods that use numerical integration
to approximate the flow map of the system [145,148,383] and global methods that
project the system onto parameterized sets of discrete curves [12,151,152]. Root
finding techniques such as Newton’s method are employed to solve the resulting set
of algebraic equations in both cases. Here we couple the Taylor series integration
technique discussed in Sect. 2 to a multiple-shooting framework to compute periodic
orbits in hybrid systems of DAEs where each patch has the same dimension n.
This requires formulation of regular systems of equations whose roots represent the
periodic orbit. The periodic orbit is discretized by selecting a set of points, times
and discrete states
D = {(mi,ti,si),o S 7 S N}

on the periodic orbit that satisfy two properties:
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1. All of the points of the orbit on an event surface are included in D, and
2. o =IN.

In addition, we usually fix to = 0. We denote by E the set of indices of the z; which
lie on event surfaces and by e the number of elements in E. The equations that
characterize D as a discrete closed orbit are then

D(xim1,t; — tic1) = x4, i1—1,i¢FE, (5a)
S(h(ziz1),ti —tic1) = 4, i—1eki¢gFE, (5b)
D(xic1,ti —tic1) =x, g(x;) =0, i—1¢Ei€FE, (5¢)
@ (h(wiz1),ti —ti—1) = x4, g(xi) =0, i—li€eFE, (5d)

where h is the transition function applied to z;—1 and g is the event function that
vanishes at z;. In writing these equations, we have suppressed the changes of discrete
state that take place at transitions and use the same symbol @ to denote the flows
on the patches containing the trajectory segments. If the system is a DAE written
as an ODE on a manifold, we also constrain the mesh points to lie on the constraint
manifold and only enforce the shooting equations above in the tangent space to the
manifold. For example, if ¢ — 1,7 ¢ E, then (5a) is replaced by

U,L'T(Qs(wi_l,ti — ti_1) - l’l) = 07 F(JJZ) =0 y

where the columns of U; form an orthonormal basis for ker D, F'(x;).

These equations are underdetermined if there are indices that do not lie in E. The
location of the corresponding points on their trajectories has one degree of freedom
that is not fixed by the equation ®(x;—1,t; — t;—1) = z; since, given (x;—1,ti—1),
this consists of n equations for the n+ 1 variables (x;,t;). Altogether, with o = zn
and to fixed, there are nN + e equations in the (n+ 1)N variables. For a hyperbolic
periodic orbit, these equations are a regular system defining a smooth manifold P
of dimension N — e [433]. We accept this fact and use a version of Newton’s method
that is suitable for computing points on P, exploiting the fact that we “know” the
tangent space to P. Moving the point (z;,¢;) infinitesimally along its orbit yields a
tangent vector to P that has components f(z;) and 1 in the appropriate locations
of D. Insisting that the Newton updates be orthogonal to these vectors yields a
regular system of equations to be solved for the updates. This strategy subsumes
the definition of an explicit “phase condition” in the case of a system of ODEs
that is not hybrid. The regular system of equations can be viewed as defining a
residual function R whose roots, obtained via Newton’s method, represent periodic
orbits. Jacobian derivatives of R required by Newton’s method are computed with
the methods mentioned in the previous section.

This constitutes a “bare-bones” multiple shooting solver for periodic orbits of
a hybrid system. The sequences of events along the periodic orbit to be calculated
are specified in advance, and no attempt is made to modify these in the search for a
periodic orbit. Similarly the number of mesh points is fixed, and there is no attempt
to adapt the mesh to improve the condition number of the Jacobians for Newton’s
method.
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4 Parameter Estimation

We now present an optimization method for estimating parameters for periodic or-
bit data. For simplicity, we restrict our attention to systems of autonomous ODEs
% = f(x,A). The extension to hybrid systems is straightforward. Here A € RP? is
a set of free parameters we wish to vary in order to find a “best fit” of a periodic
orbit to empirical data. The method is based upon an objective function that mea-
sures the distance between closed curves. We apply trust-region based optimization
methods to compute a local minimum of the objective function over the space of
free parameters A\. We assume the parameters are restricted to a region in which
there is a family of periodic orbits that depend smoothly upon the parameters and
the minimum occurs in the interior of this region (making this an unconstrained
minimization problem).

Assume a time-series D, = [(zo, to),- .., (z~,t~)] representing a reference peri-
odic orbit is provided (e.g., from empirical data), with period ¢ty = T}, and a discrete
orbit D. = [(yo, S0), - - - ; (Yn, sn)], with period sy = T¢, representing an orbit in the
model is computed via the periodic orbit algorithms discussed above. We assume
the relative phase offset of the orbits is zero (i.e., f(y0)” (2o —yo) = 0) and that the
orbit mesh points have been computed at the same scaled times, t; = t; /T, = s; /T,
1=0,...,N. We define the distance between the two discrete orbits as

d(A)—tjz:||xi<a>—yi<tz,x>|§ -t (s (25)) @

where the dependence on the free parameters A has been made explicit. The first
term in this formula is a Riemann approximation to the Lo distance between the
orbits, and the second term takes into account the discrepancy between the periods.
Even though the scaled times #; are fixed by the data, the times of the mesh points for
the computed orbit are allowed to vary during the periodic orbit computation. The
value of the orbit at the fixed times is then re-computed by Taylor series integration,
allowing the derivative of d(\) to be computed directly from the defining periodic
orbit equations presented in Sect. 3 using AD (see [99] for further details). While it
would also be possible to compute the second derivative VQd()\) analytically using
AD, we found a finite-difference approximation by differencing Vd(X) to be sufficient
to investigate the feasibility of these algorithms.

With the objective function d(A) in hand, we applied trust-region minimization
algorithms to find a best fit for the free parameters A. Trust-region methods are
a powerful class of Newton-like methods for solving unconstrained minimization
problems, and use a quadratic model for the objective function, but constrain each
iterate to stay in some local neighborhood of the previous iterate. We implemented a
method called the hook step (or “optimal” step) method [260,381,484]. We followed
the algorithms presented in [143] with minor adjustments to make the algorithm
less likely to decrease the trust-region radius [99]. Convergence criteria were based
on the relative gradient [143] of d at A defined by

Vd(N)idi

relgrad(\); = iy (7)

where the subscript ¢ indicates the i component.
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5 Software

Implementations of Taylor series integration, periodic orbit location, and parameter
estimation algorithms rely heavily on automatic differentiation to compute deriva-
tives of the underlying equations quickly and accurately. We required an AD package
that provides forward, reverse, and Taylor polynomial mode derivative calculations
of matrix-valued functions and chose MATLAB® as the framework for implement-
ing these algorithms. We sought run times roughly equivalent to hand-coding the
corresponding derivative calculations in MATLAB itself. For mechanics problems,
we also required at least third-degree tensor derivatives of Taylor polynomial coef-
ficients using both the forward and reverse mode. At the time of this work, none of
the existing AD packages satisfied all of these requirements. In particular, none of
the publicly available MATLAB-based AD tools including ADiMat [51,53,62] and
MAD [181] implement Taylor series computations. We therefore created a custom
AD package named ADMC++ to implement the required derivative computations.

ADMC+H++ is an operator overloading-based AD package for differentiating
matrix-valued functions written in MATLAB. For efficiency reasons, all derivative
computations are carried out externally to MATLAB in compiled object code orig-
inally written in C++ using the MATLAB MEX® interface. A MATLAB class
amatrix is provided which overloads many of the matrix-level MATLAB intrin-
sic functions, and by evaluating a function on amatrix objects, a computational
trace [225] is generated representing the expression graph of the function. The trace
data structure is not stored in the MATLAB workspace, but rather is created in ex-
ternal memory through the MEX interface. Once a trace has been generated, deriv-
atives are computed by looping through the trace in either the forward or reverse
directions, and C++ classes are provided for tangent, adjoint, and Taylor polynomial
derivatives. Tangent and adjoint computations may themselves be traced, allowing
the computation of arbitrarily high-degree tensor derivatives in a manner similar to
FADBAD/TADIFF [34].

By taking the MATLAB interpreter out of the forward and reverse sweeps of
the trace, we are able to improve performance for these derivative computations,
especially for the Taylor polynomial calculations that cannot be completely vector-
ized to eliminate MATLAB loops. This requires us to evaluate and differentiate each
supported MATLAB intrinsic. Given the very large number of possibly differentiable
MATLAB intrinsics, this is an arduous task indeed, and only a limited number of
operations are currently supported.

A Taylor series integration package TSINT and multiple-shooting periodic orbit
package TSPO have also been written that implement the algorithms discussed
above for a wide variety of ODEs, DAEs and hybrid systems. These packages
are written entirely in MATLAB and are dependent upon ADMC++ for all re-
quired derivative computations. Further details on these packages can be found
elsewhere [433].

6 Applications

Our first application of these techniques is a periodic orbit location problem in a
rigid-body mechanical system. The disc-foot passive walker [131,194, 363] sketched
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B

Fig. 1. Schematic diagram of the disc-foot passive walker. Drawing based on a
diagram of the McGeer walker given in [194].

in Fig. 1 serves as a simple model of bipedal walking. It consists of two rigid body
legs with unit mass and length connected at the hip by frictionless pin joints and
separated by a distance w. The foot of each leg consists of a thin disc of radius R.
The walker is placed on a flat plane inclined by an angle « from horizontal. It is
assumed one leg is in contact with the ground at all times (the stance leg), while the
other swings freely (the swing leg). The foot of the stance leg is in rolling contact
with the ground at all times. The only external force on the system other than the
contact forces at the stance foot contact point is gravity. Stable walking motions
in these passive machines shed light on the ability of humans to walk in a stable
manner.

Instantaneously, the system has four degrees of freedom: three rotation angles
of the stance leg around the contact point and one rotation angle of the swing leg
around the hip axis. Deriving ODE equations of motion of the system in terms of
these four angles is straightforward, yet algebraically is quite complicated. Our goal
was to see how much automatic differentiation could simplify the process of generat-
ing mechanically correct equations of motion, but still be able to compute periodic
motions of the system to an equivalent level of accuracy as could be obtained from
the original ODE system. As discussed in the introduction, the equations of motion
of the system are most easily written as a set of differential-algebraic equations.
While there are a wide variety of DAE formulations for constrained mechanical
systems, we chose the Euler-Lagrange formulation [221]

d oL oL T T
95 " os = G @A = Deh(x)"p (8a)
G(x) + §(z) = 0 (8b)
h(z) =0 (8¢)

for its simplicity and wide-spread familiarity. Here L is the Lagrangian (kinetic mi-
nus potential energy) and x represents the set of generalized coordinates for the
system consisting of three coordinates for the center of mass position of each leg
and three Euler angles of rotation around the center of mass for each leg (a total of
12 coordinates). The rolling contact of the stance leg on the ramp gives two velocity
constraints (8b) by requiring the instantaneous velocity of the stance leg contact
point be zero. The pin joint at the hip and the requirement that the bottom of
the stance foot lie on the ramp gives a total of six position constraints (8c). The
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quantities A and g in (8a) are undetermined multipliers that must be computed
along with the solution. Given algebraic formulas for the Lagrangian L, position
constraint function h, and velocity constraint function g(z, %) = G(z)z + §(x), auto-
matic differentiation is used to compute the necessary derivatives appearing in the
DAE, drastically simplifying the amount of programming effort required to com-
pute them. AD is also used to differentiate the constraints to convert the system to
an ODE on a manifold. The system is clearly hybrid with two states. Each chart
has one event function given by the height of the swing foot above the ramp, and
one transition function. The transition function is derived by considering angular
momentum conservation around the new contact point [131,194,433].

We compared the DAE system with a MATLAB ODE model written by Gar-
cia [193]. The DAE system consisted of approximately 60 lines of MATLAB code
whereas the ODE model had approximately 240 lines and was much harder to derive
and verify. To compare the accuracy of these methods, the periodic orbit algorithms
using Taylor series integration discussed in Sect. 3 were applied using parameters
and initial conditions found in [131]. At these parameter values, the system has a
stable periodic orbit (Fig. 2). For both systems, three mesh points were used in the
periodic orbit solver (one for each transition plus one mesh point not lying on an
event surface). An error tolerance of 1.0e-16 was used in the Taylor series integration,
along with an event solver tolerance of 1.0e-15. For the DAE calculation, the projec-
tion solver tolerance was set to 5.0e-16. For the DAE system, the initial residual of
the periodic orbit equations was 6.9e-5 and two Newton iterations were required to
reduce the residual to 1.3e-15. For the ODE system, the initial residual was 3.5e-5
and also took two Newton iterations to reduce the residual to 1.8e-15. The DAE
calculation took approximately 12 times longer than the ODE calculations. The Lo
distance between these orbits was calculated as discussed in Sect. 4 and was found to
be approximately 3.9e-14. The eigenvalues of the return map for both the ODE and
DAE periodic orbits were also calculated. The largest difference between eigenvalues
was found to be approximately 7.6e-14 with the magnitude of the largest eigenvalue
equal to 0.70418256213669 (ODE). This agrees with the eigenvalue of (0.8391560)2
given in [131] to 2.4e-7, very near the expected error provided in [131].

These results show the DAE Taylor series periodic orbit method has nearly the
same accuracy as the ODE method. We reiterate that the goal of this project was to
simplify the generation of the equations of motion yet still obtain numerical results
with the same level of accuracy as could be obtained from an ODE model. One
would expect the DAE method to be slower given the large amount of automatic
differentiation that is used at each time step to evaluate the DAE equations of
motion. Given that the DAE model took drastically less time to derive and verify,
this increased computational cost when amortized across the process of deriving a
model leads to a significantly more efficient framework for studying many mechanical
systems. Also, Fig. 2(d) demonstrates the ability of the Taylor series integration
technique presented in Sect. 2 to accurately satisfy the algebraic constraints on the
system. Finally, these results provide strong independent verification of the results
in [131] regarding the existence of a stable walking motion.

We next apply the techniques described in Sect. 4 to the Hodgkin-Huxley
model [265]. The Hodgkin-Huxley (H-H) equations model electrical excitability of
squid axon and are the archetype of conductance-based models of neural oscil-
lations. They constitute a four-dimensional vector field with several parameters
that produces periodic oscillations in some parameter regimes. We used the H-H



Periodic Orbits of Hybrid Systems and Parameter Estimation via AD 221

(@

25

0.04

0.03
0.02

“l v
0.01 — Ihll
- - gl
-18

0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25
t t

Fig. 2. Periodic trajectory of the disc foot walker for one complete step of the
system (two strides of the walker). (a) Steer angle 6; and lean angle #2. (b) Stance
leg angle 63 and swing leg angle 64 measured from the ramp normal. (c¢) Swing foot
height. (d) Constraint error for DAE solution.

equations as a test-case for the parameter estimation algorithm described ear-
lier, using the maximal sodium conductance gna, maximal potassium conductance
gi, and injected current I.xt as active parameters. Their “standard values” are
(gNa, Jrc, Lext) = (120,36, —20). We began by fitting the Hodgkin-Huxley model to
an ideal reference orbit generated using the H-H equations at perturbed parameters
values (140, 36, —20). This gave a reference orbit with period T, = 11.2082849 ms.
We took an approximation D, to this reference orbit with N = 30 mesh points, and
used the trust-region algorithm to look for an optimal fit of the Hodgkin-Huxley
model to D,, starting from the standard H-H parameter values. These parame-
ter values give a starting D. with T, = 14.574003. The iteration converged in 8
steps, computing an optimal value of d(\.) = 1.2483041e-12 and ||relgrad(As)||ec =
7.9200748e-10, with parameters A. = (139.99986, 35.999964, -19.999989). and pe-
riod T, = 11.2082847966. These values are very close to the reference values,
(140, 36, —20).

To examine the effects of noise in the reference orbit on the convergence of
the parameter estimation algorithm, we fixed the starting data at the standard
Hodgkin-Huxley parameter values and added Gaussian noise to the reference data.
For each run, we replaced the voltage time-series {Vf}lNzl for the reference orbit with
{N(V{, o)}, where N(p1, ) is the normal distribution with mean y and standard
deviation o.
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Table 1. Results for noisy reference data with increasing variance. The computed

minimum distance d(A.), the norm of the relative gradient and optimal values found

for the active parameters are shown at each variance o2.

o2 d()  |relgrad(Me)|[oc GNax Trcw Toxts

0 1.2483e-12  7.9201e-10  1.4000e+2 3.6000e+-1 -2.0000e+1
0.1 7.6301e-3 3.3220e-9 1.3767e+2 3.5362e+1 -1.9793e+1
0.5 3.8202e-2  6.8566e-10  1.3505e+2 3.4650e+1 -1.9563e+1
2.0 1.5318e-1 1.4228e-5 1.3098e+-2 3.3551e+1 -1.9213e+1
4.0 3.0699e-1 1.5196e-6 1.2814e+2 3.2792e+1 -1.8977e+1
16.0 1.2361 6.6402e-8 1.2110e4-2 3.0973e+1 -1.8448e+-1
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Fig. 3. Effects of noisy D, on convergence to zeros of Vd. The trust-region algorithm
is seen to converge to local minima even for large variance noise in D,.. See the output
in Table 1 for more details.

As the variance of the noise increased, the algorithm still converged to a mini-
mum, but the minimum is increasingly farther away from the noise-free minimum,
both in terms of optimal parameter values and the minimum value of d(\) achieved.
The results of these computations are summarized in Table 1 and Fig. 3.

Even for large variance, the convergence of the trust-region algorithm is indi-
cated by the small values of relgrad(A.). For example, with o = 4 we found a local
minimum with d(\.) = 1.2361, ||relgrad(A.)||cc = 6.6402e-8 and optimal parameter
values A\. = (121.10, 30.973, —18.448). These results indicate that the optimization
algorithm is robust with respect to noise in the reference data: a local minimum
of the objective function is still found with a small value for ||relgrad||s, indicat-
ing good convergence. Moreover, the parameters for the minima with noisy data
approach those for the noise-free reference data as o — 0.
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7 Conclusions

Taylor series integration and automatic differentiation provide a powerful set of
tools for computing periodic orbits in hybrid systems of ODEs and DAEs, and for
parameter estimation to fit these orbits to data. Taylor series integration allows
numerical trajectories to be computed to high accuracy with large step sizes and
provides dense output for accurate event location. Through the use of tangent space
parameterization, the standard Taylor series algorithm for ODEs has a simple exten-
sion to DAEs formulated as an ODE on a constraint manifold. Furthermore, AD can
be employed to simplify the conversion of the DAE to an ODE on a manifold, and
as shown in the bipedal walking example, simplify the derivation of the governing
DAE itself. Taylor series integration coupled with AD provides a simple mechanism
for computing the derivative of the numerical flow of the ODE or DAE with respect
to initial conditions and model parameters. These properties, coupled with a simple
multiple-shooting framework allow the accurate computation of periodic orbits using
very coarse discretizations in an efficient manner. Computing these orbits accurately
is critical for further analysis such as parameter estimation, since loss in accuracy
degrades the performance of Gauss-Newton optimization algorithms. Maintaining
accuracy in the periodic orbit computation is necessary to ensure smoothness of the
objective function and the amenability of Newton-based optimization methods to
these parameter estimation problems.

A new AD library ADMC++ was presented, facilitating the derivative and Tay-
lor polynomial calculations required to implement these algorithms. The library pro-
vides the forward, reverse, and Taylor polynomial automatic differentiation modes
for functions written in MATLAB, but performs all derivative calculations in com-
piled object code for efficiency. All three modes can be combined to produce arbi-
trarily high-degree tensor derivatives of Taylor polynomial coefficients.
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Summary. Automatic differentiation tools (ADOL-C) have been implemented for
large-scale NLP optimization problems encountered in an advanced radiotherapy
technique called Intensity Modulated Radiation Therapy (IMRT). Since IMRT treat-
ments involve many tissue structures and their associated clinical objectives, the
corresponding optimization problems are typically multi-objective. In this study,
they are solved by a multi-criteria approach called Lexicographic Ordering. This
approach allows clinical objectives to be categorized into several priorities or levels,
and optimization is performed sequentially in order of priority while keeping the
previously optimized results constrained. As a result, the feasible solution region
is gradually reduced as the method progresses. For each level of optimization, the
objective function and constraints are constructed interactively by a treatment plan-
ner and the corresponding Jacobian is provided by AD tools at a machine-precision
level. Results indicate that a high degree of accuracy for Jacobian is essential to
produce both feasible and optimal results for clinical IMRT optimization problems.

Key words: IMRT optimization, multicriteria lexicographic optimization, treat-
ment planning

1 Introduction

Intensity Modulated Radiation Therapy (IMRT) is one of the most technically ad-
vanced treatment methods in external beam radiation therapy. Unlike conventional
methods, IMRT delivers a sequence of radiation beams that are effectively broken
into hundreds of pieces (i.e., beamlets) with each beamlet having different inten-
sities. The ability to manipulate the intensities of individual beamlets permits a
greatly increased degree of control over radiation fluence that enters the patient’s
body. As a result, IMRT can deliver more conformal and optimal radiation doses
to the target volumes, leading to higher tumor control and decreased toxicity to
healthy tissues [70,373,529].

The planning process for IMRT treatments, which is also referred to as the
inverse planning, involves predetermination of a wide range of control parameters.
Some parameters such as the number of beams and their corresponding energies and
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Beam 2

Beam 3 Beam |

Seam 5
Beam 4 Beam

Fig. 1. Illustration of IMRT beam arrangement for a brain tumor case. The figure
shows a total of 5 beams directed to the tumor volume and each beam is conceptually
divided into many pieces called beamlets.

angles are manually chosen by a human planner based on prior experiences. Other
parameters such as beamlet patterns are determined by an automated optimization
system. Whether chosen manually or automatically, all of the control parameters
are selected to satisfy clinical treatment goals associated with an individual patient.
(This study is limited to the automatic determination of beamlet patterns.)

Factors that affect the optimal treatment result are quantified based on a radia-
tion dose distribution and its radiobiological effects to tumor or surrounding healthy
tissue structures. Deviations of such factors (i.e., planning criteria) from their desir-
able values typically constitute optimization problems and therefore are minimized
during the inverse planning. The mathematical relations between the control para-
meters (optimization variables) and the objective function characterize the search
space. The functional relations determine an appropriate choice for search algorithm.
(In the case of beamlet optimization, beamlet intensities comprise the optimization
variables.)

IMRT optimization problems are inherently multicriteria since they involve mul-
tiple planning objectives for many different tissue structures. For example, a good
treatment planning solution can be characterized by minimal extents of both under-
dosing and over-dosing for tumor and radiation-sensitive structures, respectively.
Our standard practice of solving these multicriteria problems has been a weighted-
sum approach, in which a single function is formulated by a positively weighted
sum of original objective functions and minimized by a conventional search algo-
rithm [305,529]. Although this approach provides a straightforward means of sim-
plifying complex multicriteria problems, the task of choosing a set of weights that
properly represents clinicians’ preferences on individual objectives is not always
trivial, therefore requiring multiple trial-and-errors before finding an acceptable so-
lution. To improve this iterative process of preference articulation, a multicriteria
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Table 1. Examples of planning criteria [305]. Dosimetric parameters are widely
used in IMRT planning. Biological model-based parameters are gradually accepted
as more clinical data supporting the models become available.

Direct Dose-Based Criteria

Min Minimum dose to structure

Max Maximum dose to structure

Mean Mean dose to structure

StDev Standard deviation of dose distribution in structure

DVHpoint % Vol. of the structure above the specified dose D;

Threshold Z (max(0,d; — D;))?, where d; is point dose in the

iestructure
structure, and p is a user-specified parameter

DoseLSQ > (di— Dy

iestructure

Biological Model-Based Criteria

NTCP Normal tissue complication probability
TCP Tumor control probability

EUD Equivalent uniform dose

Vet Effective volume

strategy called lexicographic ordering [9, 367, 491] (also known as preemptive ap-
proach in goal programming) has been implemented.

A successful implementation of the lexicographic strategy for IMRT problems
requires two important components: an efficient search algorithm that can handle
nonlinear constraints and a flexible method of calculating a high-quality Jacobian
for the search algorithm. This requirement becomes more stringent with an addi-
tional prerequisite of scalability since IMRT problems are generally large scale hav-
ing thousands of input variables (beamlets). This study attempts to achieve both
the numerical reliability and computational efficiency for the lexicographic method
by implementing an industry-leading, large-scale NLP algorithm called Sequential
Quadratic Programming (SQP) [214] and a highly versatile automatic differentiation
tool called ADOL-C [229].

2 Methods and Materials

2.1 Lexicographic Approach

The term lexicographic refers to the process by which words are listed in alphabetical
order as in a dictionary. In a similar fashion, lexicographic ordering in multicriteria
optimization problems refers to a strategy that prioritizes objectives and solves them
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in order of importance. The lexicographic method involves solving a sequence of
optimization problems rather than solving a single, scalarized function at once [367].
The first step in this method is to categorize the multiple objectives into different
levels of importance — i.e., the highest level being the most important objectives to
be achieved. Then, a gradient-based search algorithm is used to solve one level of
optimization problem after another, beginning from the top level. While the method
progresses down, the preceding objective functions are converted into hard inequality
constraints for subsequent levels:

Find x € R™ that minimizes Fj(x)
subject to Fj(x) < Fj (xj),
where j =1,2,...,i—1;i>1land i =1,2,... k,

where the symbol xj denotes the optimum of the jth objective function, found in
the jth iteration. As the method proceeds, the number of constraints grows, causing
the feasible solution space to reduce until the optimal solution is found.

2.2 Implementation

The lexicographic method generally reflects the mental process often used to make
a decision in decision-making problems. Hence, this method tends to be more intu-
itive and interactive to a planner, particularly when choosing priorities for planning
objectives. In this implementation (illustrated in Fig. 2), a graphical user interface
(designed with Advanced Visual Systems libraries) is used to facilitate the interac-
tive construction and prioritization of objective functions.

If planning metrics that are based on nonlinear functions are used, a non-linearly
(NL) constrained optimization problem is presented for each level. This problem is
solved efficiently by the SQP method. The general idea of SQP is to model (or ap-
proximate) NL-constrained problems by quadratic programming (QP) sub-problems

Dose to Points

in Tissues
AVS
Interactive Formationof | | ~(  ______ * ______ ,
1 . .
19 and ) | Jaoian Taping |
Inactive 4 Active 1
Function Calculations, Jacobian Calculations,
69 and g Vi) and Ve)

No I T

Yes ima
Optimal & SQP Optimization
Feasible

Fig. 2. Illustrating of the Lexicographic implementation for IMRT optimization.
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and to define search directions based on the solutions of the sub-problems. The
nonlinear constraints are also approximated by linearization. At each iteration, an
augmented Lagrangian merit function is reduced along each search direction to en-
sure first-order convergence from any starting point. In the present implementation
(SNOPT) [214], the QP sub-problems are solved using a reduced-Hessian algorithm.
The Hessian of the Lagrangian is approximated by a limited-memory quasi-Newton
method, and therefore calculations for only the corresponding Jacobians are explic-
itly required. The SQP method is expected to show a particularly good performance
for problems having significant non-linearities and a large number of optimization
variables - characteristics shown by IMRT optimization problems.

For each level of optimization, the Jacobian for the Lagrangian is calculated
by an automatic differentiation tool, ADOL-C [229]. This tool keeps (or tapes)
a record of the elementary computations made available during the evaluation of
the objective and constraint functions at a given point and reviews the recorded
information to produce the corresponding derivatives based on the chain rule. For the
IMRT optimization problems, the reverse mode of gradient calculation is used due
to the large number of the independent variables in comparison with the number of
dependent variables. Since the reverse mode requires storing of the entire execution
trace of the original functions, the amount of memory requirement for taping is large,
which consequently deteriorates the overall performance of the gradient calculations.
In this implementation, this storage burden is reduced by excluding the matrix
multiplication process (used for the dose calculation) from gradient taping. The tape
recording begins from the dose distribution (active independent variables) up to the
objective and constraint values (active dependent variables). Therefore, ADOL-C
computes the Jacobian with respect to the dose, and a separate chain rule is applied
to the computed Jacobian to account for the matrix multiplication as in Fig. 3 This
technique is generally described as interface contraction in [275].

Doses to m calculation points by n beamlet intensities:
Dixi = Anmxn - Xaxi
ADOL-C tape computes: V f(d), Vgr(d)
Chain rule is applied to obtain the Jacobian for SQP:
Vi(x) = AL - V()
Vy(@) = Apxn - Vg(d)

Fig. 3. Jacobian calculation using ADOL-C

Typically in IMRT problems, function evaluations are very expensive because
time-consuming processes are required for the dose computation to multiple tissue
structures. This excluded an option of using the Finite Difference method for the
Jacobian calculations.
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2.3 Clinical IMRT Case (Brain Tumor)

The performance of the lexicographic method for IMRT problems is demonstrated
by using a brain case based on an in-house dose escalation protocol [504].

Optic Chiasm

Eyes

lf

Fig. 4. Illustration of the tissue structures for a brain tumor patient.

A brain tumor is a group of abnormal cells that grows in or around the brain.
Brain tumors are classified based on where the tumor is located, the type of tissue
involved, whether the tumor is benign or malignant, other factors. When radiation
therapy is recommended to treat a brain tumor patient, the planning procedure
typically begins with anatomical segmentation of the actual tumor volume [referred
to the gross tumor volume (GTV)] and other healthy tissue structures that are in-
volved in the treatment. The segmentation is based on the three-dimensional patient
dataset provided by the modern medical imaging modalities such as CT and MRI. In
the brain dose escalation protocol, three concentric volumes are defined as the plan-
ning target volumes® (PTV1, PTV2 and PTV3 as illustrated in Fig. 4). The PTV1
represents the GTV with a uniform, isotropic expansion of 0.5 cm. This expansion
accounts for a) the potential spread of cancer cells adjacent to the gross tumor and
b) the random setup error associated with patient positioning to a treatment table.
The PTV2 and PTV3 represent the GTV expanded by 1.5 cm and 2.5 cm, respec-
tively. The dosimetric goals for the PTV1 are the highest in terms of the amount
of the prescribed dose and its uniformity. These goals are gradually lowered for the
larger expanded target volumes. As a result, a radiation dose distribution that con-
forms tightly and focuses increasingly to the core tumor body can be designed. In
addition, the brain protocol prescribes that radiation sensitive critical organs (such
as the optic chiasm) should be protected by minimizing the delivered dose under
the maximum tolerable limits.

For this demonstration, an IMRT plan is prepared using a 5-axial beam arrange-
ment having 500 beamlets and 6 MV photon beams. Approximately 53,000 dose-
calculation points were randomly distributed throughout the structures. The specific

! The planning target volume (PTV) is a three-dimensional representation of the
irradiation target volume on which the treatment goals are defined.
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planning objectives and their relative priorities used for the lexicographic method
are summarized in Table 2.

The planning goals for the three target volumes and for the chiasm are com-
pletely or best achieved by using the dose-volume histogram (DVH)-based objective
functions. In addition, the objective of lowering the dose to the normal tissue is
achieved by minimizing the mean dose objective function.

Table 2. IMRT planning objectives for brain case [504].

e Dose to the entire target volumes (PTV1, 2, and 3) should
be greater than 85.5, 70, and 60 Gy.
Dose to the entire chiasm should be less than 10 Gy.

1°* Level
(Highest Priority)

e Make dose to the three target volumes as uniform as pos-
ond 1 avel sible. Specifically, dose to the entire target volume (PTV1,
2, and 3) should be less than 94.5, 80, and 70 Gy.

3" Level

Minimize dose given to the normal tissue.
(Lowest Priority) &

3 Results

3.1 Lexicographic Planning

The planning criteria used in this brain case involve evaluation metrics that are
based on direct interpolations of the dose distributions delivered to the tissue struc-
tures. Hence, the results obtained from each level of optimization can be effectively
summarized by cumulative histograms of the dose distributions (called dose-volume
histogram). In addition, all of the objective functions used in this study were de-
signed to be positive functions. Thus, the best possible numeric value after mini-
mization is always zero - i.e., an objective function value of zero indicates a complete
achievement of the associated planning goal.

Prior to each level of optimization, the input variables (i.e., the beamlet intensi-
ties) are initialized by random values chosen between the minimum and maximum
boundaries. A typical result after the initialization is shown in Fig. 5. Five curves
correspond to histograms for five tissue structures. Even with the random inputs,
the figure show that the target volumes receive higher dose than the non-target
structures since all the beams are shaped and arranged in such a way that they
tightly conform to the geometries of the targets.

For the 1st level of optimization, a total of four objectives were identified to
have the highest priority (as summarized in Table 2). Those are the ones that specify
prevention of under-dosing and over-dosing to the three targets (PTVs) and the optic
chiasm, respectively. The corresponding four objective functions were constructed
and summed together each with unity weight, resulting in a single scalar function for
the minimization process. For this level, a quasi-Newton method (instead of SQP)
was used to minimize the function due to the absence of constraints. The final values
for the four objective functions were found to be all zero, indicating that all goals
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Level 0
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60 4

Volume (%)

40 1

20 | Normal Tissue

0 20 40 60 80 100
Dose (Gy)

Fig. 5. DVHs prior to optimization where the initial intensity pattern of beamlets
was chosen randomly between 0 to 25 in this example.

100 Level 1

/

PTV3

80 | Min > 60Gy
PTV2
Min > 70Gy
60 PTV1

Volume (%)

Min > 85.5Gy
40 4
20 .
Chiasm Normal Tissue
Max < 10Gy
0 T T T T j
o 2 40 60 80 100

Dose (Gy)
Fig. 6. DVH after the 1st level optimization.

were achieved as shown in Fig. 6. Then, these four functions were turned into four
individual inequality constraints and the next set of objectives was identified for the
following level.

The 2nd level objectives concern the uniformity of the target dose distributions.
Desirable goal levels were set to be 94.5, 80, and 70 Gy of maximum dose for PTV1,
PTV2, and PTV3, respectively. Optimization began with random initialization for
input beamlets, and this nonlinearly constrained problem was solved by SQP. Fig-
ure 6 clearly shows that the previously optimized results are kept tightly constrained
while minimizing the object function in the 2nd level. The final optimal values were
found to be small but non-zero, indicating that the original goal levels were set too
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Fig. 7. DVH after the 2nd level optimization.
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Fig. 8. DVH after the 3rd level optimization. (Final level)

high. However, it was observed that these best achieved values for the maximum
doses (for PTV 1, 2, and 3) were all acceptable to the treatment planner.

The final level of optimization generally attempts to decrease radiation dose to
the healthy normal tissue surrounding the target volumes. This was achieved by
minimizing its mean dose. After the optimization, the mean dose was found to de-
crease from 20.9 Gy to 14.9 Gy. The resulting beamlet intensity patterns represented
the final optimal IMRT solution for this brain case.

3.2 Algorithmic Performance

Algorithmic performance of the lexicographic method for the demonstrated brain
case is summarized in Table 3. As described in Sect. 2.2, this method is known to
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Table 3. All timing results are based on an Alpha workstation having a 666 MHz
CPU speed and ~500 Mbytes of physical memory.

15* Level 284 Tevel 3™ Level
# of objective functions 1 1 1
# of constraints 0 4 7
# of independent variables 53,000 53,000 53,000
# of dependent variables 1 5 8
# of major iterations 21 43 171
# of function calls 23 83 468
Function calc. time (ms) ~60 ~60 ~360
Jacobian calc. time (ms) ~200 ~450 ~820
Total optimization time (s) 6 52 363

be a reduced feasible region method since the feasible space is gradually reduced
with the increased number of constraints as the method progresses. Accordingly,
the SQP algorithm exhibits a general trend of using more iterations and function-
calls before finding a feasible and optimal solution. The function calculation time
generally increases with the decreasing level since the low levels involve more tissue
structures and therefore more calculations for the increased dose points. Potentially,
one could expect a further improvement of algorithmic performance if the planning
criteria used at each level of optimization exhibit a convex shape so that a warm
start can be used based on the solution obtained from the prior level, instead of a
randomly initialized start.

The ADOL-C gradient taping required only 90msec. For the brain case, the
tape stores up to 350,000 arithmetic operations. If the matrix-multiplication were
included in the gradient tape (i.e., without the interface contraction), the taping
would have taken 28,000 msec. Moreover, CPU times for the single function and
gradient evaluations would be significantly longer, taking 9,000 and 33,000 msec,
respectively.

4 Conclusions

The use of AD tools significantly reduced the development time and efforts for deriv-
ative calculations involving a comprehensive set of planning criteria used in IMRT
optimization problems. Particularly, for the lexicographic method, ADOL-C has
shown multiple benefits over other tools attributed to its use of operator overload-
ing and function pointer features since this method requires interactive constructions
of objective and constraint functions for difference levels of optimization. Early re-
sults indicate that highly accurate derivatives are essential to produced both feasible
and optimal solutions at a good convergence rate. It was also found that the lex-
icographic method provides an intuitive and effective way of prioritizing planning
objectives and articulating their priorities into a final IMRT solution.
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Summary. A targeted AD approach is presented to calculate directional second or-
der derivatives of ODE/DAE embedded functionals accurately and efficiently. This
advance enables us to tackle the solution of large scale dynamic optimization prob-
lems using a truncated-Newton method where the Newton equation is solved ap-
proximately to update the direction for the next optimization step. The proposed
directional second order adjoint method (dSOA) provides accurate Hessian-vector
products for this algorithm. The implementation of the “dSOA powered” truncated-
Newton method for the solution of large scale dynamic optimization problems is
showcased with an example.

Key words: Directional second order adjoint, truncated-Newton method, Hessian-
vector product, ODE, temperature profile matching, TAMC

1 Introduction

Automatic Differentiation (AD) has an increasingly important and enabling role
to play in the large-scale computations of interest to the chemical and biological
processing industries. The solution of large-scale dynamic optimization problems
modeled by ODEs or DAEs and involving many optimization parameters is one of
these computations. The efficient numerical solution of these problems is important
in many applications where optimization of time-dependent performance is required.
In this paper, we will describe an efficient method employing a targeted AD approach
to solve the dynamic optimization problem:

ty
min J(p)Zh(fv(tﬂp),p)Jr/ g(t, z(t,p),p) dt

P to

* This material is based upon work supported by the National Science Foundation
under Grant No. OCE-0205590.
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where the states z(t,p) € R"*, the optimization parameters p € R"?, ¢ € [to,tf],
and fo is a function prescribing the initial conditions for a general (implicit) DAE.

Inherently, dynamic optimization problems consist of an optimization problem
along with integration of the dynamic system for the purpose of obtaining the ob-
jective function value and its derivatives. An approach which decouples solution
of the optimization problem from solution of the embedded dynamic system can
enable exploitation of the full advantages of state-of-the-art integration (e.g., a mul-
tistep BDF method with efficient sensitivity/adjoint calculation capabilities) and
large-scale nonlinear programming (NLP) tools. The decoupling results in a more
tractable optimization problem with less variables and constraints than its alterna-
tive collocation method, i.e., full discretization, generates. However, the increase in
the cost of function and derivative evaluations and the possibilities of generating
non-physical and/or non computable intermediate iterates have to be considered.
There are two well-established methods that have proven to be effective for the
solution of optimal control problems via this decoupling, namely the single- and
multiple-shooting methods. Both approaches will be reinforced by improvements in
the efficient and accurate computation of specific derivative information. This is
because both require estimation of the first and second order derivatives of the ob-
jective function. These derivatives can be obtained by solving for the first and second
order sensitivities of the state variables. However, this procedure is computationally
expensive unless the number of optimization parameters is relatively small. By solv-
ing the adjoint system for a given direction in the parameter space the dependence
on the number of the parameters can be reduced significantly.

Until now, first order derivatives have been calculated efficiently with either
the adjoint approach [92] or the forward sensitivities approach [170]. Optimization
procedures for dynamic systems embedded can be improved by utilizing accurate
second order derivatives, therefore some attempts have been made to include second
order information by computing directional second order sensitivities of the state
variables [90]. However, this approach obviously cannot eliminate the dependence
of the derivative evaluation cost on the number of optimization parameters. The
standard way of estimating directional second order derivatives is to use directional
finite differences based on a first order adjoint code:

2 * _ *
0°J " VJ(p* +eu) — VJ(p*) ’ @)

2
Op p=p* €

which requires two state and adjoint integrations, one at p* and one at p* + cu.
The cheap gradient result of AD [225] states that vector-matrix products can be
evaluated for less than the cost of four function evaluations (in our case a state inte-
gration). Similarly, according to the cheap Hessian result [225], a directional second
order derivative can be calculated for less than the cost of 10 function evaluations.
Thus, one would not expect a directional second order adjoint method to be com-
petitive computationally with finite differences, as confirmed by the computational
results in [326,528]. However, we will show that the method presented in this pa-
per is capable of computing accurate directional second order derivatives noticeably
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cheaper than finite differences. Furthermore, the choice of ¢ in (2) is constrained by
the need for accurate derivative approximations on the one hand, and the integra-
tion tolerance of the first order adjoint code on the other hand. Often it is difficult
or impossible to find a suitable choice of ¢ for a particular problem, especially in
the dynamic optimization context. In contrast, the directional second order adjoint
method described in this paper computes derivatives to the accuracy of the integra-
tion tolerance, a numerical parameter that is easy to set and adjust. This imparts
robustness to the NLP solution procedure among other advantages.

To achieve this cheap second order derivative result requires an approach which
we call “targeted AD,” since the approach uses AD to construct the relevant sys-
tems of equations required by the integration subroutines rather than discretizing
the state system before applying AD directly to obtain the adjoint codes. In this
way, we avoid the differentiation of a large and complex integration code with cor-
rector iterations and error control, and we exploit efficient integration procedures
for the sensitivity system. Our targeted AD approach constructs from the state
equations in (1), the directional Second Order Adjoint (dSOA) system consisting of
the directional first order sensitivity equations, first order adjoint of the sensitivi-
ties and directional second order adjoint system [424]. Solution of the constructed
dSOA system yields the directional second order derivative information efficiently
and accurately. The usage of AD provides a subtle way to obtain the directional
first order sensitivity system and the first and second order adjoint systems, in
addition to some other matrix-vector, vector-matrix and vector-matrix-vector prod-
ucts required, efficiently and without round-off errors. Moreover, for stiff ODEs and
DAEsS this targeted AD approach enables a better use of state-of-the-art integration
algorithms [170].

In this paper, we only consider stiff ODE systems. However, the theory and
application can be extended to DAE embedded systems by subtle consideration of
initial conditions and stability of the adjoint systems.

In the following section, we introduce the adjoint method to calculate direc-
tional second order derivatives. This is followed by the description of a general dy-
namic optimization method and its implementation using Nash’s truncated-Newton
method [391] with dSOA as a directional second order derivative evaluator. A case
study demonstrates the promise of the approach presented. Then, we conclude with
some final remarks.

2 Directional Second Order Adjoint Method and AD

We are interested in computing accurate second order derivatives in a given direction,
. 2 S
ie., ngu. Considering

ty
J(p) = h(z(ts, p),p) + / ot,2(t,p),p) dt |

to

the integral form functional can be computed by appending an extra state variable
to the embedded dynamic system, converting the first term on the right hand side
above to another point-form functional, i.e.,

J(p) = h(x(ts, p),p) + Tnyt1(tr, p) = h(@n,11(tr,p), 2(tr,p), D) -
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Therefore, deriving the dSOA method for only point-form functionals suffices. With
f(t,fl},i‘,p) =+ F(t’x7p) and fO(thm(t0)7d"(t0)7p) = x(to) - l'()(p), the state
equations can be written as

4+ F(t,z,p) =0, x(to) = zo(p) . (3)

The formula for the first order derivative g—;, is obtained by introducing a Lagrange

multiplier A and constructing the following augmented objective function [92]

ty
K(\p) = J(p) — / N (i + F(t,z,p)) dt .

to
Then

oJ 0K - -
By = o = hp(ty) + ha(ts)my

o o
_/ A ($p+Fzmp+Fp)dt_/ Ap (& + F(t,x,p))dt
to to

which after some arrangement and noting that the second integral term is identically
zero becomes
aJ - . tr :
%:mﬁﬁwmm%—/(ﬂ&+ﬂﬂ%—ﬂ%mpu%gg.
to
Here subscripts p and = denote partial derivatives with respect to the parameters
and state variables, respectively, e.g., ), = %—’:. By defining the first order adjoint
equations as

N ATE, =0
N (tg) = halty) | )
we obtain 87 t ~
%ZA)”%WHWNHHV%M~

Now we obtain the second order derivative in the direction u as
Fu 0 (01,
op2 "~ Op \ Op
0 b T 7 T
= 8717 A Epdt + hy(ty) + (A mp)]eo | u - (5)

to
Therefore, the directional second order derivative of a point-form functional is
obtained from®

0*J by T T
S u= [ B OV 91, ) (Bt By )} i
D to
o () wot (i) s(t7) + |(A © Ty utapn] o (6)

! Here I, is a ng by n, identity matrix. ® denotes a Kronecker product. Double

. . . . 2
subscripts denote second order partial derivatives, e.g., Fip = %.
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The variables s = zpu, A, and p = A\pu, i.e., directional first order sensitivities, the
first order adjoints and directional second order adjoints, respectively, need to be
calculated. Directional first order sensitivity equations for the state system (3) are

S+ Fes+ Fpu =0, s(to) =zopu, (7)
and the directional second order adjoint equations are

f— FzTU = ()‘T ® In, ) (Fapu + Foas)
fu(ts) = haa(ts)s(ts) + hap(te)u . (8)

The main issue with these equation systems is their efficient evaluation in a
numerical integration scheme. They contain several vector-matrix, matrix-vector
products (Table 1). Unlike the application of direct AD to a code which discretizes
the state system, we leave the state system intact without any discretization and
construct the necessary code by applying targeted AD to assemble pieces required
to evaluate the above equation systems. Fortran codes that become subject to AD
to obtain the first order derivatives involve a set of subroutines describing the ODE
system and the point-form functional. The former can have many subroutines to
describe the physical system, whereas the latter is usually simpler in shape and
complexity. The first order derivative codes generated by AD are used to obtain the
second order codes.

Table 1. A list of derivatives required by dSOA.

First Order: By by, T Fy AT Fy), Fus, Fyu, \TF, (uT F)

Second Order: haws + haptt, hpes + hppu,
()‘T ® I’”p)(FPP U+ Fps 8),
(AT & Inz)(Fxp U+ Fiy 5)

The adjoint equations are obtained by applying the reverse mode of AD to the
code evaluating the residuals of the state equations, i.e., £+ F(t,z,p) = A with the
independent variables (i, z) in the seed direction (A, A). The directional first order
sensitivity equations are obtained by the forward mode of AD applied to the same
residual code with the independent variables (&, z,p) in the seed direction (3, s, u).
Provided that the residual evaluator is a composition of twice differentiable elemen-
tary functions, second order derivatives can be obtained by applying four different
combinations of the forward and reverse modes (forward over reverse, reverse over
reverse, forward over forward, reverse over forward). However, the cost of forward
propagation of the tangents increases linearly with the number of domain directions,
proving the forward over forward method inefficient. On the other hand, reverse over
forward mode requires applying the reverse mode to a more complicated code gen-
erated by the forward mode. Moreover, it has been shown [225] that the adjoints
of adjoints can be represented as tangents of adjoints, leaving the forward over re-
verse mode the most reasonable alternative for our problem. Therefore, the forcing
term in the directional second order adjoint equations is constructed by applying
the forward mode of AD to the code generated by the reverse mode with the inde-
pendent variables (z,p) in the seed direction (s,u). The homogeneous part of the
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ODE can be evaluated by the same code as the first order adjoint equations with
a different seed direction, namely (4, ). Finally, the integrand in the quadrature
equations (Eqn. (6)) is constructed by applying the forward over reverse mode of
AD to &+ F(t,z,p) = A. Similar to the construction of the directional second order
adjoint equations, the reverse mode of AD with independent variable (p) in the seed
direction (\) yields the vector-matrix product (AT F,) in Eqn. (5) which is reused
with the seed direction (i) to compute the first term of the integrand. The second
term of the integrand is computed by applying the forward mode of AD to the
(AT F,)- code with independent variables (z,p) in the seed direction (s,u).

After construction of the dSOA system, evaluation of the directional second order
derivatives requires a numerical procedure involving a forward and then a backward
integration pass. Intuitively, backward over forward integration is as efficient as for-
ward over reverse differentiation. The forward integration is implemented efficiently
using the staggered corrector method [170] to obtain the states and directional first
order sensitivities in one or a small number of directions. Numerical integration
methods for stiff ODEs typically employ a corrector iteration at each time step. The
use of the staggered corrector method of [170] exploits the similarity between the
corrector iteration for the state equations and those for the directional first order
sensitivities. At each integration step first the discretization equations determining
the state variables are solved. The factored Jacobian matrix used in the Newton
iteration for the state variables is reused in the following Newton iterations to solve
the linear systems of equations corresponding to the discretization of the sensitivity
systems. The incremental computational cost of calculating the sensitivity equations
for a single direction by employing the staggered corrector method can be less than
30% of that for calculating the state equations.

During the forward integration the state and first order sensitivity trajectories
are stored. Subsequently, a backward integration is performed of the first order
adjoint and second order directional adjoint equations in one or a small number
of directions, once again, with the staggered corrector method. This is because the
second order adjoints can be interpreted as sensitivities of the first order adjoints,
therefore they can also be calculated efficiently employing a staggered corrector
method similar to the sensitivities of the state variables. Finally, %u is evaluated
at time to from the quadrature calculation.

This procedure summarized in Table 2 is implemented within a modified ver-
sion of DASPKADJOINT [92,335], an adjoint sensitivity solver. Specifically, DASP-
KADJOINT is modified to accommodate sensitivity calculations during backward

Table 2. dSOA procedure.

1. Input u, to, ty
Forward Integration:
state equations (3), first order sensitivities in direction u (7).
at ty: Calculation of initial values for adjoints
4. Backward Integration:
first order (4) and directional second order (8) adjoints,
quadrature in equation (6)

w

5. at to: Calculation of g%u
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integration, to save and retrieve forward sensitivities, to calculate the second order
derivatives at the final step, and to perform these calculations for several directions.
These modifications are carried out only for the integration methods using direct
linear solvers.

The input information necessary to set up a given problem is similar to that of
DASPKADJOINT. However, in addition to the state and first order adjoint equa-
tions, directional first order sensitivity and directional second order adjoint equations
along with the integrands of the quadrature are needed.

Before applying the dSOA method results in the dynamic optimization context,
let us examine how well dSOA performs compared to the finite difference approxi-
mation with the help of an example.

2.1 Example

Our aim is to see whether dSOA is advantageous compared to the finite difference
method (FDM) using two gradient evaluations via the first order adjoint method (2).
Also, we want to see whether there is an advantage of calculating two directional
second order derivatives simultaneously with dSOA. To this end, we consider an
integral-form functional as our objective function, namely

Ng

ty
to =1

where to = 0 and ¢; = 0.16. The dynamic system is described by a system of PDEs
Zt = P1Zzzx +p22yy 5

posed on a two dimensional unit square with zero Dirichlet boundary conditions [91].
Spatial derivatives (those with respect to x and y) are approximated by centered
finite difference approximations on a uniform grid of size M, where M x M = n,.
The boundary conditions are included in the discretized PDE, reducing the system
to an ODE. The initial conditions are posed as

2(0,z,y) = 16z(1 —z)y(1 —vy) .

The nominal values of p; and p2 are equal to 1.0. The optimization parameters are
the boundary conditions, initial conditions, and two parameters from the original
PDE. The direction is chosen to be

u = (1,0, -+, 0) .

The relative tolerance (RTOL) for the integration is 10™%, whereas the absolute
tolerance (ATOL) is 10710,
Three important observations are apparent (See Fig. 1) for the dSOA method:

1. the cost ratio of dSOA to a simulation, (%

2. the cost of calculating a directional second order derivative with dSOA is more
efficient than FDM, especially for larger problems,
3. additional directional derivatives can be obtained even “cheaper.”

) is in the range 2-4,
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Fig. 1. Cost ratios for 2-D heat equation example. (*: cost(sTar) * ® Cost(FDA)
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The final observation will prove very promising in some applications, such as
biconjugate methods, where two directional derivatives can be desired at the same
time. The incremental cost of computing the second and subsequent directions in
the staggered corrector method is typically much less than that for computing the
first direction. Therefore, when we compare the computational cost of the second
order derivatives in two directions, i.e.,

ul:(la()? 70)

(e )
U2 = —y "y T )
np p

at the same time with the cost of calculating the first column of the Hessian matrix,

i.e., in the direction u; only, we see a 15-30% increase in the computational cost, as
cost(dSOA3)

presented by the ratio COSt(dSOA) "

3 Dynamic Optimization and dSOA

A solution procedure for the dynamic optimization problem (1) based on decoupling
requires an NLP solver and a method to provide the objective function, first and
second order derivative information for a given set of parameter values. Second order
optimization methods require the second order derivatives of the objective function
with respect to the optimization parameters. Although this second order information
can be approximated using a finite difference scheme based on gradient evaluations,
exact second order information can impart robustness and reduce the number of
iterations for convergence to a local minimum.
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The directional second order derivatives provided by dSOA fit perfectly into
an NLP solution procedure in which a descent direction is obtained by solving the
Newton equation:

V2= -vIp"). (9)

By solving the Newton equation approximately, a “Newton-like” search direction can
be obtained which approaches the Newton direction in the limit as the minimum is
approached, resulting in a superlinear convergence [393]. Therefore, by calculating an
approximate Newton direction, a compromise between fast convergence and compu-
tational cost per iteration can be attained [391,392]. This truncated-Newton method
allows incorporation of “exact” directional second order information. Therefore they
may be promising NLP solvers for large-scale dynamic optimization problems, pro-
vided that a technique to calculate the requisite second order information efficiently
and accurately is available.

k=0
p(k)
J(p™), vJ(pM)
(FOA)
Yes
No
Inner Iteration
Solve (modified Lanczos) V2] (p*))u
V2I(pP)yu = =V (p™) (dSOA)
Outer Iteration " X X
: o), V)
Line search p(k+1) — p“") T au (FOA)
k=k+1

Fig. 2. Truncated-Newton Algorithm.

The truncated-Newton (TN) algorithm adapted to solve the dynamic optimiza-
tion problem (1), depicted in Fig. 2, consists of an outer iteration for the nonlinear
optimization problem and an inner iteration for approximate solution of the New-
ton equation. The directional second order adjoint method introduced above along
with its first order counterpart computes the directional second order derivatives
and gradients of the objective function efficiently and accurately, improving both
the outer and inner iterations of the truncated Newton methods.
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This algorithm is implemented using Nash’s truncated-Newton code for opti-
mization problems with bounds on variables [391]. The original code is modified to
employ the dSOA method within the inner iteration.

3.1 Example

Our main aim now is to show that, for large-scale dynamic optimization problems,
obtaining the second order information via dSOA is advantageous to the overall
optimization procedure when compared to approximating it by directional finite
differences.

Numerical experiments are performed on a Pentium IV /3.20 GHz Shuttle X ma-
chine with 1 GB memory and running Linux kernel 2.4. All automatic differentiation
tasks are performed by the AD tool TAMC [205].

Temperature Profile Matching

We consider a two dimensional boundary control heating problem adopted from [431].
A rectangular domain (See Fig. 3) is heated by controlling the temperature on its
boundaries 21 and §2,. Within a specified interior subdomain (2. = {(z,y)|z. <
ZTmaz, Ye < Ymaz}) the temperature profile obeying a nonlinear parabolic PDE has
to follow approximately a prespecified temperature-time trajectory. The objective
function is

ty Ymaw Tmaz
min J(v) = / / / w(a,y, O[T (@, y,t) — 7(t)] do dy di |
v to Ye Te

where w(z,y,t) = 0 for ¢ € [0,0.2], and w(z,y,t) =1 for ¢t € [0.2,2] is chosen. The
nonlinear parabolic PDE described as

oT) [Tow + Tyyl + S(T) = Ta, (z,y,t) € 2 X [to, ty]
T(xz,0,t) — ATy = vi(zx,t), = € O
T(0,y,t) — MNTw = va2(y,t), y € 0§22
T (Tmaz,y,t) =0
Ty(%, Ymaz,t) = 0

O S 'UI,'U2 S Umaz

is reduced into an ODE using the numerical method of lines [431] with «(T") = 1.0.
The internal heat generation is represented as

-1 )
S(T) = Smax €X ,
(T) P (ﬂ2 +T
where 61 = 0.2, B2 = 0.05, and Syma: = 0.0 unless specified otherwise. For the
instance considered to = 0, ty = 2.0, Tmae = 0.8, Ymaz = 1.6, xz. = 0.6, Yy = 1.2,
and vmaz = 1.1. The control functions on the boundaries 921 = (z,y)|y = 0 and
082, = (z,y)|z = 0 are defined as

v(t) 0<x<0.2

vi(z,t) = { (1—2522)u(t) 0.2 < 2 < Taw
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Fig. 3. Two dimensional domain for the temperature profile matching example.

v(t)0<y <04

) 1) = —0.

The spatial integrations in the objective function are approximated using the rec-
tangular integration rule.

For an integration tolerance of 107° and the optimization accuracy value of
1078, we tested several cases with a gradually increasing number of parameters.
The number of parameters is increased both by finer control parameterization and
addition of initial conditions as degrees of freedom to the optimization. These latter
additions are noted by a (+) sign in Column 2 of Table 3, i.e., 10 + 450 denotes
10 control parameters and 450 initial conditions are considered as optimization pa-
rameters. Nonlinearity is introduced by setting Smaz = 0.5 and noted by (nl) in
Column 2. We can conclude that

1. The computational cost per iteration of a “dSOA powered TN” method stays
(nearly) constant when more parameters are added to the optimization problem
(Table 4). The only increase is caused by integration restarts at each control
vector parameterization time point. Obviously, the total cost of optimization
increases because the number of iterations increases.

2. The finite difference approximation to the directional second order derivatives
does not result in a robust performance (Table 3). Especially, for cases with
larger number of parameters or nonlinearity, the dSOA based method outper-
forms this approach in terms of attained objective function value at a compa-
rable overall computational cost.

3. For large numbers of parameters average time per iteration values for dSOA
tend to stay within 10% range of the T'PI values for FDM (Fig. 4). In contrast
to the example in Sect. 2, the cost per iteration of FDM is less, because the
TN algorithm only requires a single gradient evaluation at each inner iteration
to approximate the directional second order derivative. A gradient evaluation
at the nominal parameter values is already available from the previous outer
iteration.
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Table 3. Computational results for the temperature matching example using dSOA
and finite difference approximation of the Hessian-vector product ((ng: number of
equations, np: number of parameters, NIT: number of iterations, NF: number of
outer iterations, C'G: number of inner iterations, J: objective function value, CPU:
overall CPU time; * marks the runs where the optimization procedure terminated
because no significant improvement in the objective function value is achieved).

dSOA FDM
e n, | NIT[NF|[CG[J(x10°)[CPU(s)|NIT|NF[CG[J(x10°)[CPU (s)
15 40| 33] 34[105| 4.295 69.3] 33| 33[121] 4.330 61.1
40+5| 30| 30[100| 4.325 65.4] 30| 31| 94| 4.358 49.0
40+20| 34| 35[101| 4.582 67.4| 24| 25| 54| 11.95" 31.5

160 78| 79|206| 4.812 464.1| 83| 84|222| 4.600 412.8
320 128|129(269| 7.779 1108.8| 112|113|224| 10.80" 883.4
320(nl)| 115|120(229| 75.99 983.4| 110| 114|219 155.55" 899.7
861| 10+5| 12| 13| 36| 6.922 1049.6| 13| 14| 39| 6.922 988.1
104450 32| 33|183| 6.258 5079.1 7| 8| 16| 16.86" 444.9
201 22| 23| 80| 4.736 4019.5| 24| 25| 80| 4.735 3506.1

50 48| 49|171| 4.193 17660 27| 28| 83| 4.606" | 8116.8

Table 4. Average CPU time per iteration (T'PI) for FDM and dSOA.

TPI(s)
Ny np | FDM|dSOA
45 401 04 0.5

40+5| 04| 0.5
404-20| 0.4 0.5
160 1.4 1.6
320| 2.6] 2.8
320(nl)| 2.7 28
861| 10+5| 18.6| 21.4
104450 18.5| 23.5
20| 33.4| 39.0

50| 73.1| 80.3

4 Conclusions

We have incorporated an efficient method to calculate accurate directional second
order derivatives for stiff ODE embedded functionals into the truncated-Newton
method to solve large-scale dynamic optimization problems. Our methodology relies
heavily on automatic differentiation, since AD is the only reliable and efficient tech-
nology for evaluation of the equation systems required by dSOA. Both the forward
and reverse modes of AD are intensively used to evaluate several matrix-vector,
vector-matrix and vector-matrix-vector products. The resulting dSOA method has
only “weak” mn, dependence [424], therefore as the number of parameters is in-
creased, the average cost of derivative evaluations for large dynamic systems with
many parameters does not grow.
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Fig. 4. Comparison of T'PI for FDM and dSOA.

Although the computational costs of evaluating a directional second order deriv-
ative via finite difference approximation and with dSOA are comparable for a large
number of parameters, obtaining the latter accurately improves the computation
time by reducing the total number of iterations and increases the robustness of the
TN method.

Improvements to the existing implementation are foreseen in more efficient code
construction with AD, in using two directional methods for the inner iterations
of truncated-Newton method, in incorporating (in)equality constraints within the
truncated-Newton method and in the usage of iterative linear solvers to reduce the
cost of integration in general.
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Summary. This paper illustrates the potential of automatic differentiation (AD)
for very challenging problems related to the modeling of complex environmental
systems prone to floods. Numerical models are driven by inputs (initial conditions,
boundary conditions and parameters) which cannot be directly inferred from mea-
surements. For that reason, robust and efficient methods are required to assess the
effects of inputs variations on computed results and estimate the key inputs to fit
available observations. We thus consider variational data assimilation to solve the
parameter estimation problem for a river hydraulics model, and adjoint sensitiv-
ity analysis for a rainfall-runoff model, two essential components involved in the
generation and propagation of floods. Both applications require the computation of
the gradient of a functional, which can be simply derived from the solution of an
adjoint model. The adjoint method, which was successfully applied in meteorology
and oceanography, is described from its mathematical formulation to its practical
implementation using the automatic differentiation tool TAPENADE.
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1 Introduction

Flooding is the result of complex interactions between the components of water
cycle, and the forecast of such catastrophic events requires an integrated approach
(models and data) for the hydro-meteorological prediction chain. The modeling of
flood generation and propagation involves catchment scale hydrology and river hy-
draulics. Actually, every model component only leads to an approximation of the
geophysical reality, since the underlying physics formulation and the model inputs
are all sources of uncertainty. Understanding, analysis and reduction of this uncer-
tainty induce the following issues:

e Empirical parameters associated with model formulation, as well as initial and
boundary conditions, which are essential to mathematical closure and drive the
considered system, remain very difficult to estimate.

e (Quantitative measures of the effect of input variations on model prognostic vari-
ables provide physical insight into the model dynamics, and are useful guidelines
for the choice of calibration parameters and formulation of calibration criteria.

A deterministic approach dealing with the aforementioned estimation and sen-
sitivity analysis problems requires computing the derivatives of a function of model
output variables with respect to input variables. Modern automatic differentiation
(AD) tools such as TAPENADE [255, 258, 279] provide a very helpful and efficient
assistance for the related practical implementation issues.

Two applications are presented in this paper: variational data assimilation [68,
327] and adjoint sensitivity analysis [86].

2 The Adjoint Method

The evolution of the state of many time-dependent physical systems can be described
by a system of differential equations. For a given model, the value of the state variable
y is driven by the control variables which are potentially all model inputs. For the
general presentation of the adjoint method, we will consider the initial condition u
and a model parameter v as control variables:

{ % (1) + A(y(t),v) = 0 Vi €0,T]

y(0) = u 7 W

where A is a (possibly nonlinear) partial differential operator. Let ¢ be a general
objective function which depends on the control variables through the state variable:

b(u,v) = / o (y(u, v 1)) dt | )

where ¢ is a sufficiently smooth functional. With the adjoint method, it is possible
to compute efficiently the partial derivatives of a function of the model state variable
with respect to control variables [341]. If p is defined as the solution of the adjoint
model:

*

21 - [%w.0)] pt) = 320 vieoTI
p(T) = 0,

®3)



A Tool for Variational Data Assimilation and Adjoint Sensitivity Analysis 251

where []* denotes the adjoint operator, then we obtain a simple expression of the
partial derivatives of the functional:

%(u,v):—p(()) and %(u,v):/o [%(y(t),v)} p(t)dt

All partial derivatives are calculated with a single forward integration of the direct
model (1) followed by a single backward integration of the adjoint model (3). Another
advantage of this method is that the homogeneous part of the adjoint equations is
independent of the functional ¢. In other words, the same model can be used to
calculate the derivatives of several functionals without major modifications.

The calculation of partial derivatives of a functional is useful in several domains
of flood simulation. Here, we are especially interested in two essential applications:
variational data assimilation and adjoint sensitivity analysis. Variational data as-
similation finds the control variables that minimize a cost function measuring the
discrepancy between the state variable of the model and data obtained from the
observation of the physical system. An efficient minimization of the cost function is
carried out by using a descent algorithm requiring the computation of its gradient.

The adjoint sensitivity analysis determines the contribution of all model inputs
to the variation of a response function. Instead of performing finite difference ap-
proximation of the gradient, requiring extensive direct model computations (brute
force method), a single run of the adjoint method provides all sensitivities. Various
applications of the adjoint method were investigated for environmental problems in
the framework of the INRIA/IDOPT project [359,413, 522,554, 564].

In practice, the numerical computation of the gradient of the functional ¢ is per-
formed by an implementation of the adjoint method which requires the construction
of an adjoint code. From a numerical point of view, the best representation of the
functional is the associated computer code. Instead of manually coding the adjoint,
which would require significant training and time investment, we chose to use the
AD tool TAPENADE [279] to create the adjoint of the implementation of the direct
model. This code-based approach makes it possible to compute the numerical value
of the gradient exact up to roundoff [156]. This is crucial for variational data as-
similation problems, where the minimization algorithm may fail to converge if the
gradient is not accurately computed.

3 River Hydraulics

Flood forecasting requires an accurate modeling of river flows. The most commonly
used mathematical models for operational purposes in river hydraulics rely on the
Shallow Water Equations (SWE). The two-dimensional SWE are derived from the
three-dimensional Navier-Stokes equations by a vertical integration under the hydro-
static assumption. In the conservative formulation, the state variables are the water
depth h and the discharge q = hu, where u is the depth-averaged velocity vector.
If we consider a computational domain {2 with a boundary I', the two-dimensional
SWE can be written as follows:
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Oth + div(q) = 0 in £2x]0,T)
oq + div(rq®q) + 1gVh?

+ ghVz + gmalale — i 2x]0, 7] )
h(0) = ho, q(0)=qo in £2,

where g is the magnitude of the gravity vector, z; is the bed elevation, n is the
Manning roughness coefficient, ho and qo are the initial conditions. Moreover, we
must add boundary conditions. For an inlet Iin, a discharge qin is imposed:

a,, () = am(t)  Vielo.T]. (5)

At an outlet Iy, we can either prescribe a water depth hoy or impose Neumann
conditions:

0 Vte]o,T) (6)

hir, () = hou(t), 58| (1)

u out,

or %|Fou(tt) =0, %“(t)

out

0 Vte]o,T]. (7)

The state of the flow is determined by the initial condition (a Cauchy problem) but
also by the model parameters (z;, and n) and the boundary conditions. Actually,
in order to carry out a simulation of a real flow, it is necessary to have a good
knowledge of these model inputs. However, they are incompletely known in practice,
and when an approximation is available, it is often subject to large uncertainties. For
example, the flood plain elevation is measured using remote sensing techniques [27],
and bed elevation data is made up of ground surveyed cross sections. The collected
data consist in a set of scattered points used to assign an elevation value to each
computational grid point using interpolation techniques. Unfortunately, the raw
data is usually approximate, incomplete or sometimes simply missing. Moreover,
the interpolation induces additional numerical approximation. Other model inputs
cannot even be measured directly and should be defined by the modelers’ expertise.
For example, the estimation of roughness is generally based on land use classifications
and empirical tables where a roughness coefficient is assigned to each land cover
type [11]. A model is never perfect since it cannot take into account all the physics
of the system, and its implementation induces numerical approximations. Therefore,
a simulation can never reflect exactly the physical reality. However, it is possible to
represent some parts of the model errors by formulating an additional term in the
equations [522], introducing new control variables.

Furthermore, some observations of the flow state may be available, such as water
depth, water level or velocity measurements. These should be in accordance with the
simulation results. Therefore, the problem to be addressed consists of identifying a
set of control variables consistent with both the simulation results and the hydraulic
reality represented by observation data. Hence, we use variational data assimilation
for the identification of initial and boundary conditions, model parameters, bed
elevation and for the evaluation of a systematic model error. This method consists
in minimizing a cost function measuring the discrepancy between the state of the
simulated flow and the available observations of the real flow. The minimization
is performed by a limited memory quasi-Newton algorithm [212] which requires
the computation of the partial derivatives of the cost function with respect to the
control variables of the model. The derivatives are computed by the adjoint method
requiring the use of an adjoint code.
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Fig. 1. One-dimensional vertical cross section of the computational domain.

The SWE (4) are solved using the finite volume method and the HLLC approxi-
mate Riemann solver [344,510]. The direct program is written in Fortran 90 and is
made up of about 1600 lines of code. The adjoint code was obtained thanks to the
AD tool TAPENADE [255].

Some parts of the raw code produced by TAPENADE had to be manually modified
to make it work properly. One can distinguish three main modifications. The first
one consists in the correction of the adjoint code for statements that are locally
non-differentiable, such as a square root. Since the appropriate treatment of the
case where the argument is zero might depend on the context, this task was not
automated, and manual intervention is needed to remove the singularity. The second
modification is related to the computation of the cost function. In the direct code, the
observations are read from a file every time step before the call to the subroutine that
computes the cost increment. Since they are also needed in the reverse sweep, the
observations should either be stored during the forward sweep or be reread before the
call to the adjoint subroutine. However, TAPENADE did not perform either of these
two options, and the latter had to be manually implemented in the adjoint code.
Finally, the raw adjoint code produced by TAPENADE stored too many variables
unnecessarily. For example, the state variable, which consists in a large array of
dimension n, was stored 2n times per time step, whereas only once per time step
was sufficient. Without modification, the adjoint could not run on a simple test
case because the required memory was too large (more than 2 gigabytes). After
the removal of the unneeded storage statements, the memory footprint is only 16
megabytes, and the ratio between the execution time of the adjoint code and that
of the direct code is about 3.5.

Two numerical experiments of data assimilation are presented. They actually
consist of twin experiments, where observation data are computed by the direct
model with a set of known parameters. Then, a perturbation is applied to the lat-
ter, modifying the simulation results. Afterward, the variational data assimilation
method is used to retrieve the original value of the parameters. The same adjoint
code is used in both experiments.

The reduction of the uncertainty in the topographic data is crucial since the
latter can have an important effect on the flow behavior during a flooding event.
Thus, the first experiment concerns the identification of the bed elevation z, in a
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rectangular channel. The channel is 20.5 x 2 meters, the reference bed elevation is
defined by z(z,y) = 0.2 — 5 (z — 10)* if 2 € [8,10] and z(z,y) = 0 otherwise for
all y € [0,2]. A constant discharge qin of 2 m3s~! is imposed at the inlet, and a
constant water depth hoy of 0.6 meters is prescribed at the outlet. This configuration
leads to a steady flow featuring an hydraulic jump after the bump. A vertical cross
section of the computational domain is plotted in Fig. 2. For the simulation, we use
a rectangular mesh made up of 82 x 8 finite volumes. Hence, the discrete control
vector zp consists of 656 degrees of freedom. The observations of the water depth hos
and the velocity u®® are created from this reference configuration: they are defined
as equal to the state variables of the steady flow for each computational point. In
this case, the observation data is time-independent. However, nothing prevents us
from using observations varying in time.

A simulation is carried out with a modified configuration over a period of T'= 3
seconds: a flat bed defined by 2z, = 0 is used with the reference steady state as an
initial condition. As a result, the water flow is disrupted and becomes unsteady. In
order to use the variational data assimilation method to retrieve the reference bed
elevation, we introduce the following cost function to be minimized:

. 1 T obs 2 obs 2
e = 5 [ (Jro-w=o[) + Juo w0l )@@
2 Jo Q fo}
where ||-|| > denotes the L? norm on 2. The gradient of this cost function is computed
with the adjoint code and is used as an input for the minimization algorithm. In
Fig. 3 (a), the cost function and the norm of its gradient, both normalized by their
initial value, are plotted against the number of iterations of the minimization process.
Figure 3 (b) shows the bed elevation for several steps of the minimization process.
We can see that convergence has been achieved, and the original bump on the bed
is retrieved. However, even if the shape of the bump is correctly identified, one
can notice a constant offset between the retrieved bed elevation and the original
one because only the gradient of z, is present in the equations. Therefore, the bed
elevation can be identified only up to a constant bias.

The second experiment concerns the identification of the upstream boundary
condition qin during a flooding event. In practice, an accurate identification would
be very valuable, since a flood hydrograph is usually extrapolated from water level
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Fig. 2. Rectangular channel with a bump: vertical cross section of the computational
domain.
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Fig. 3. Rectangular channel with a bump: convergence of the minimization.

measurements, leading to a high degree of uncertainty. We consider a 200 meters long
rectangular channel with a constant slope of 0.5 %. The initial conditions consist in
a steady flow initiated by the prescription of a constant discharge of 10 m®s™" at the
inlet. Flooding is created by the modification of the upstream boundary condition:
for a period of T' = 80 seconds, it is defined by qin(t) = 10 + 5t exp <f “;050)2 ) The
corresponding hydrograph is plotted in Fig. 4 (a). One can see the propagation of the
wave in Fig. 4 (b), where the water surface profile is displayed at several time steps.
The water depth is recorded continuously in time at a measurement point located at
a given distance x,, from the upstream boundary of the domain. This measurement
is used as an observation h®(t) of the water depth during the flooding event. It
makes it possible to define a cost function measuring the discrepancy between the
water depth h and the observations A at the point z,,:

1 2

J2(din) = 5/0 ‘h(mm,t)—h‘)bs(t) dt . (9)
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Fig. 4. Rectangular channel with a constant slope: configuration.

From the initial hypothesis of a steady flow where the discharge is 10 m®s™*, the
experiment identifies the hydrograph that is at the origin of the wave. For that
purpose, we use the variational data assimilation method. If the point of measure-
ment is situated near the inlet (z,, < 40 meters), the identification of the boundary
condition is very good. In Table 1, ¢, the relative L? error between the identified
discharge and the reference discharge is given for several values of the distance x,,.
We conclude that the efficiency of the identification decreases when the distance of
the point of measurement to the inlet increases.

The potential of variational data assimilation applied to river hydraulics was
illustrated through two experiments. However, the tests were limited to the case of
twin experiments where uncertainty on the data and assumptions on the model in-
puts are perfectly controlled. Assimilation of real observation data should be further

Table 1. Relative L? error on the identified boundary condition for several positions
of the water depth measurement.

Tm 1m 20 m 40 m 80 m 120 m 180 m 195 m
€ 0.45% 0.50 % 0.53% 2.16 % 5.21 % 8.95% 10.1%




A Tool for Variational Data Assimilation and Adjoint Sensitivity Analysis 257

investigated. The identification of a systematic model error would be valuable for an
operational use of an hydraulic model. Moreover, the assimilation of observations of
a different nature, such as trajectories or flood marks could bring additional infor-
mation for the identification of control variables. A big asset of the adjoint method
is that the same adjoint code can be used for all problems. Only the few lines of
the adjoint code that correspond to the computation of the cost function are to be
modified, which is very easy with an AD tool.

4 Catchment Hydrology

Recently, distributed hydrological models became an attractive approach for the
modeling of watershed hydrology. Nevertheless, limited knowledge of model inputs
(initial and boundary conditions, parameters) and observations of the hydrological
response make the underlying problems of parametrization, calibration, sensitivity
analysis and uncertainty analysis very challenging. However, sensitivity analysis is
very often carried out using restricted, inaccurate and subjective techniques such as
the brute force method. More sophisticated methods based on Monte Carlo simu-
lations [26,46,47,268] are now at the forefront in catchment scale hydrology. Nev-
ertheless, they are based on sampling strategies of the parameter space and require
many model runs. Therefore, even if analysis is easier to set up and the statistical
framework is better suited for global sensitivity analysis, the computational cost is
prohibitive if one wants to take into account the spatial variability of model para-
meters and its influence on the hydrological response. However, the rainfall-runoff
relation is a typical case where the dimension of the system response to be analyzed
is small compared to the number of input parameters to be prescribed. In this case,
the adjoint model is very efficient in computing the gradient of a response function
w.r.t. all parameters (see Cacuci [87] for a recent theoretical basis).

The underlying physics of MARINE, a model developed by Estupina et al. [160]
is adapted to events for which infiltration excess dominates the generation of the
flood. Rainfall abstraction by infiltration is evaluated using the Green Ampt model,
and the resulting surface runoff (hillslope flow) is transferred using the Kinematic
Wave Approximation (KWA). Lastly, river flow is routed with the full Saint-Venant
equations, 1D or 2D depending on the valley configuration. The coupling with the
river hydraulics component will not be discussed below. The simplification of mass
and momentum conservation equations representing overland flow (KwA) is given
by: / /

1/2 57,5/3

%Jr%agx =r—1i, (10)
where h is the flow depth, n is the Manning roughness coefficient, s is the slope
in the steepest direction, r is the rainfall rate, and ¢ is the infiltration rate. A
preliminary analysis of the digital elevation model computes a single steepest descent
flow direction from four available directions for each cell. Then, (10) is solved using
a simple explicit Euler scheme on the hillslope represented by a cascade of planes.
Since the time step is not adjusted during the simulation, an a priori value um,
of the maximum velocity occurring during the simulation is used as a cutoff value
in order to ensure convergence of the numerical scheme. In the right hand side of
(10) representing the excess rainfall, the infiltration rate i(t) is evaluated using the
following procedure:
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r <1 t=7r
. I Yo (11)
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r>1 7 L (I + s

where [ is the cumulative infiltration, K the hydraulic conductivity, ¥ the suction
force, n the porosity and 6 the relative initial moisture deficit. Equation (11) is
solved using an implicit Euler scheme, and the resulting fixed point equation using
the Newton method.

MARINE, like most hydrological models, is far from being fully comprehensive
and really simplifies the complex hydrological reality. In fact, improving physical
understanding would increase the number of parameters to be calibrated. Since
observation data is usually only an integrated flood hydrograph at the catchment
outlet, appropriate parametrization, consistent choice of the degrees of freedom to
be estimated and formulation of calibration criteria is mandatory. However, this
requires an extensive knowledge of the effect of parameters variations on functions
of the model state variables. Therefore, the potential of the adjoint method described
in Sect. 2 and demonstrated by Margulis [352] and Li [336] for sensitivity analysis
in hydrometeorology should be investigated for this specific application.

However, mathematical representations of catchment hydrology are very often
strongly non-linear and involve multiple thresholds or switches due to the intrin-
sic nature of related conceptualization of the physical processes (rainfall, infiltration
regimes, maximum infiltration capacity, etc.). Since introducing smoothing functions
may lead to important inconsistencies between direct and adjoint models, AD seems
to be an efficient alternative to obtain the required derivatives (i.e. sub-gradients).
Hence, the adjoint of the MARINE model was developed using TAPENADE. The over-
all objective of the study was to conduct adjoint sensitivity and variational data
assimilation experiments. Therefore, the flexible and efficient computer code struc-
ture proposed by Chavent [108] was adopted. Initial efforts were also dedicated to
direct model analysis and source code modifications in order to identify the poten-
tial problems related to non-differentiable statements or conditional iterations in
the computational approach. The necessary modifications to the code produced by
TAPENADE are very similar to those described in the previous section and related
to the very cautious storing and re-calculations which are not always necessary for
the calculation of the adjoint variables. Before optimization, the adjoint code was
respectively 10 and 100 times more expensive than the direct code in terms of com-
putational cost and required memory. After a limited optimization, the memory
footprint is divided by a factor of 2, and the code is 3 times faster.

Since the objective targeted by MARINE is an accurate representation of the rising
limb of the flood, only the global response of the watershed (outlet hydrograph) will
be analyzed. For flash flood events, the runoff coefficient and the maximum discharge
are probably the most relevant quantities to be estimated. Thus, let us define

/T q(t)dt max_g(t)

te[0,T]
G=—g5— go= — (12)
T

/OT/O (t) dS2 dt o

where ¢(t) is the outlet discharge, and grer is the maximum discharge obtained when
all rainfall is transformed into runoff (no infiltration). Sensitivities to g2 are only
defined during the rising limb and vanish during recession. The maximum discharge
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Gmaz 18 calculated during the temporal integration. When ¢(¢) is greater than the
current gmar, temporal increments in sensitivities correspond to sensitivities of ¢(t)
to model parameters. In addition, from the previously mentioned quantities, we can
define g3, a non-dimensionalized and normalized synthesis of the hydrograph,

9 g2
g3 = + . (13)
\/912+922 \/912+922

The examination of the sensitivities will allow us to investigate their hydrological
meaning and analyze model behavior.

The chosen watershed is a very small catchment area (25 km?) from the upper
part of the Thoré basin in southern France. Given the basin features, no river flow
routing was considered, and uniform land use and soil type is assumed to facilitate
the analysis. The Manning roughness coefficient n and Green Ampt model para-
meters (K, ¢ and n) are derived a priori from published tables using information
on land use and soil type. Given the available information for the re-analysis of
such catastrophic events, in order to assign a time step for the simulation, it was
assumed that u,, = 1ms~! would be a reasonable value for the maximum veloc-
ity occurring during the simulation. Concerning the rainfall forcing, real radar data
(HYDRAM from METEO FRANCE) was lumped over the area. Since the flow directions
are computed before the model integration, accounting for the slope s in the sensi-
tivity analysis would lead to systematic underestimation of its influence. Therefore,
an adjoint sensitivity analysis was carried out w.r.t. model parameters K, v, n, 0,
and n. Moreover, the response function can also be differentiated w.r.t. numerical or
algorithmic artifacts such as u., which appear neither in continuous nor discretized
model equations. This is definitely an advantage of AD over the “equation-based”
approach. However, ranking the sources of uncertainty (i.e. the sensitivity of model
response to parameters) requires a normalization of the adjoint variables. The scaled
sensitivities are

0
o= 09 o

- aOlk g ’ (14)

with g the response function, ay the model parameter and si the normalized sensi-
tivity. Since parameters are fully distributed, the Lo norms were computed in order
to rank parameters’ influence on model response. A summary of the results obtained
is given in Table 2. One can see that u,, has a greater impact on g and g3 than
the real calibration parameters. In other words, the maximum discharge during the
event is mainly driven by the assigned cutoff value. However, it was confirmed using
the adjoint sensitivity analysis that its effect gradually alleviates and vanishes for
larger values, the maximum discharge being driven mainly by the Manning rough-
ness coefficient. This is a key issue in distributed rainfall-runoff modeling where
given the simple conceptualization of the complex hydrological reality adopted for
the formulation of mathematical models, internal variables and therefore estimated
parameter values cannot be directly related to physical quantities. However, for this
model, dedicated parametrization and modeling approach for the drainage network
should lead to consistent internal variables. On the other hand, the results obtained
with response function g; show that the effect of this threshold on the runoff coeffi-
cient can be neglected and that the partition of rainfall into runoff and infiltration
is mainly driven by hydraulic conductivity K. The influence of the other infiltration
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parameters (7, 8, 1) cannot be distinguished given (11), and the importance of fric-
tion in favoring or limiting infiltration is greater than expected. The same analysis
was carried out along a segment of the parameter space (6 € [0,1]) and showed
that the wetter the soil is, the shorter is the decay of ¢ to K and the larger is the
influence of parameter K over other infiltration parameters. In addition, a detailed
analysis of the spatial and temporal patterns of the obtained sensitivities really pro-
vide physical insight into the model dynamics. In fact, all the cells of the watershed
are solicited for infiltration from both direct rainfall and excess rainfall coming from
upstream in the basin (run-on). The latter seems to be critical since the spatial
pattern of sensitivity to all Green Ampt infiltration parameters is driven by the
drainage network. For example, one can see in Fig. 5 the correspondence between
slopes and sensitivity to K. Moreover, by varying rainfall duration and intensity,
it was found that the influence of the parameters variability (variance of sensitiv-
ity matrix) is lower for short and intense storms. Furthermore, Fig. 6 exhibits the

(a) DTM slopes (b) Sensitivity to K

Fig. 5. Sensitivity to infiltration parameters and catchment slopes.

temporal patterns of the sensitivities to model parameters. The thresholds related
to rainfall dynamics and different infiltration regimes lead to similar thresholds on
temporal increments of adjoint variables. One can see in Fig. 6 that the event was
divided into four periods, and again the results are in agreement with the infiltration
excess overland flow mechanism. In fact, during period 1, rainfall totally infiltrates
to the unsaturated zone without intervention of model parameters. Then, once rain-
fall intensity becomes important (beginning of period 2) the infiltration from direct
rainfall is immediate and run-on develops. This can be noticed by the rising of the
sensitivity to n. During period 2, rainfall duration and intensity remain limited and
do not produce rising of the hydrograph. On the contrary during period 3, rainfall is
so intense and its duration so important that a large amount of runoff is produced.

Table 2. Contributions (in %) of model parameters to the hydrological response.

n, 6, Y K n Um
g1 17.55 34.09 13.23 3.75E-06
g2 1.42 2.65 21.39 71.68
g3 8.48 16.42 14.25 43.87
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The runoff coefficient and associated statistical moments were computed (mean and
variance) and showed that during this period the runoff coefficient is very close to
unity on the whole watershed. Therefore, the global influence of K remains constant
and the sensitivity of other infiltration parameters decreases as the cumulative in-
filtration increases. At last, once intense rainfall stops, run-on produces infiltration
mainly in the drainage network and progressively decreases.

For the test case we considered, the potential of the adjoint sensitivity proce-
dure was demonstrated for model diagnostic and sensitivity analysis. However, the
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behavior of the hydrosystem is analyzed only locally in the parameter space around
effective values of model parameters and lead to sensitivities for a single point of the
surface response. The influence of the point chosen for this local sensitivity analysis
should be further investigated to draw more general conclusions. Indeed, results may
depend on the type of soil, on the ratio between rainfall intensity (also duration) and
hydraulic conductivity. The contribution of some form of global sensitivity analysis
should be examined. The development of automatic calibration methods received
much attention from the hydrological community, but problems of differentiabil-
ity, parameter insensitivity, parameters interactions and multiple local optima make
the use of gradient-based methods very difficult. However, compared to global con-
ceptual models, the mathematical formulation of distributed and physically based
models contains fewer thresholds and switches. Moreover, the spatial integration
over the watershed as well as the temporal integration over the event prevent many
non-differentiable regions in the hypersurface when a scalar response at the catch-
ment outlet is analyzed. Systematic preliminary sensitivity analysis should always
be carried out to identify the key parameters which affect the chosen hydrological
response. This should avoid formation of flat portions of surface response (i.e. low
sensitivities for one direction of the parameter space). From the observed trends, a
multi-criteria calibration strategy could be developed to adjust some of the para-
meters for a given aspect of the response. Such investigations are in progress and
require appropriate regularization approaches and strategies for the reduction of the
control space to be developed. Then, the well-posed inverse problem can be solved
using standard unconstrained optimization methods.

5 Conclusion

The adjoint method is a very efficient and flexible mathematical tool to calculate
derivatives of a function of model state variable w.r.t. control variables. Two ap-
plications for flood modeling were presented in this prospective study. Variational
data assimilation allows the identification of model parameters, initial and bound-
ary conditions. Adjoint sensitivity analysis provides knowledge of the contribution
of model inputs to the variations of some features of the solution, as well as physical
insight into the model dynamics.

The practical implementation of the adjoint method is significantly facilitated
by the use of efficient AD tools such as TAPENADE. The development time is con-
siderably reduced, and many human errors are avoided. However, with the current
version of the tool, it is still necessary to manually modify the adjoint code. Unnec-
essary storage of variables can make the code require too much memory, and the
adjoint of some non-differentiable statements need to be fixed manually.

Nevertheless, AD remains a very powerful technique used for the achievement
of the adjoint method. It opens new trends for the construction of an hydro-
meteorological prediction chain and for future contributions concerning flood hazard
forecast and mitigation.
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Summary. Large-scale scientific computer models, such as operational weather
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1 Introduction

Adjoint models have been used in meteorology for applications such as four-
dimensional variational data assimilation (4DVAR) and sensitivity studies for over
two decades. However, operational implementations of 4DVAR, did not start until
recent years. Compared with the models used in other fields, operational weather
prediction models are much more complex, and the problem sizes tend to be much
larger. Thus the application of the associated adjoint models is often hindered by
overwhelming programming tasks and high computational cost. The European Cen-
ter for Medium-Range Weather Forecast (ECMWTF) is the first center to implement
an operational 4DVAR system [447], and the development of the adjoint code took
many staff-years. The adjoint codes for a few mesoscale research models have also
been developed in recent years, mostly by hand, and used for data assimilation and
sensitivity studies [159, 192,466, 527, 571]. Most existing adjoint models in meteo-
rology contain only limited and often simplified physics processes. However, for the

* This work was supported by NSF ATM-0129892.
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Advanced Regional Prediction System (ARPS) [560-562], a comprehensive regional
atmospheric prediction model, an adjoint model with limited physics was developed
by hand in the mid to late 1990’s [192,527]. Since then, the ARPS model has under-
gone significant changes. In this paper, we report our recent work on developing an
adjoint code of the ARPS with full physics with the help of automatic differentiation
tools, initially TAMC and more recently TAF.

In the rest of the paper, we denote the ARPS Nonlinear Model as ARPS NLM,
the Tangent Linear Model as ARPS TLM, and the Adjoint Model as ARPS ADM.
We assume that the reader knows the basic concepts of Fortran 90 grammar and
Automatic Differentiation (AD). For more coverage of AD, please refer to the book
by Griewank [225]. A good knowledge of meteorology is not necessary for the reader.

2 The Advanced Regional Prediction System

ARPS is a comprehensive nonhydrostatic regional to storm-scale atmospheric mod-
eling and prediction system initially developed at the Center for Analysis and Pre-
diction of Storms (CAPS) at the University of Oklahoma, under the support of
the National Science Foundation Science and Technology Center (STC) program.
The goal of ARPS is to serve as a system for mesoscale and storm-scale numerical
weather prediction as well as a wide range of idealized studies in numerical weather
prediction. It includes a real time data analysis and assimilation system, a forward
prediction model, and a post-analysis package. The dynamic core of ARPS is based
on the compressible Navier-Stokes equations that describes the atmospheric flow
and uses a generalized terrain-following coordinate system. A variety of physical
processes are taken into account in the model system.

The ARPS model equations are solved using second-order and fourth-order fi-
nite difference methods. The staggered Arakawa C-grid is used [10]. The split-explicit
time integration method [310] is used, in which different time step sizes are used
for integrating the fast acoustic modes and other slow modes. In the vertical direc-
tion, the acoustic mode is treated implicitly, as is the vertical turbulence mixing.
The ARPS NLM includes a set of physical parameterizations, i.e., subgrid-scale
and planetary boundary layer turbulence parameterizations, cloud microphysics,
convective parameterizations, surface layer flux parameterizations, soil model, and
longwave and shortwave radiation. Most of these physics parameterizations contain
nonlinearities and on-off switches that are known to be sources of problems for ad-
joint codes [386,559,570]. Nonlinearities also exist with the model dynamics, such
as in the advection process. For additional details on the ARPS model, the reader
is referred to [560-562].

The forward prediction model, i.e., the ARPS NLM, on which the TLM, and
ADM are based, contains about 40,000 lines of Fortran 90 source code excluding
comments, blank lines, and I/O subroutines. Except for the convective parameter-
izations and radiation packages, and some rarely used subcomponents, the ARPS
ADM includes all of the major components of the ARPS NLM. The adjoint code of
ARPS is believed to be one of the most complicated in meteorology.
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3 Transformation of Algorithms in Fortran (TAF)

TAF is a source-to-source AD tool for Fortran 90/95 codes developed by FastOpt
(fastopt.com). It is the commercial successor to the Tangent Linear and Adjoint
Model Compiler (TAMC) by Giering and Kaminski [207], which was used to develop
the MMS5-based 4dDVAR system [466]. Compared with TAMC, TAF is much more
robust, much faster and better maintained. At the earliest stage of our development,
we used TAMC, but it was not able to generate the tangent linear or adjoint model
from the top level driver of ARPS. The model had to be decomposed into sublayers,
and the data dependencies across the layers had to be analyzed manually. This
limitation greatly degraded the benefit of using AD tools. Similar problems also
existed when we first applied TAF in mid-2002. By working closely with the TAF
developers, we are now able to generate the TLM and ADM of the entire ARPS
model with TAF, although all directly generated codes are not necessarily correct.

The AD tools are not completely reliable resulting from incorrect handling of
some Fortran constructs due to limitations of or bugs in the tools. The exchanges
with FastOpt often result in bug fixes to TAF or work-arounds. The nonlinear model
code often had to be modified in many places to avoid mis-handling by TAF. In
order to ease the maintenance of the adjoint codes, necessary changes are made
to the NLM code instead of the generated TLM or ADM code whenever possible.
Direct modification to the ARPS TLM and ADM codes is discouraged and is used
as the last resort to address mainly performance issues. Most of the changes to the
source code will be incorporated into the official version of ARPS NLM so that TAF
can be applied to future versions of the NLM with much reduced effort.

4 Code Generation and Testing

We modified the NLM source code such that the AD tool (TAF) can perform the
code transformation efficiently and correctly. We need to investigate the pitfalls in
the NLM codes that may result in TAF failure.

4.1 Code Generation Issues

The ARPS NLM was first written in Fortran 77 and was converted to Fortran 90
by an automatic conversion tool. Some older features such as SAVE and GO TO
statements remained. Even though TAF can handle some of these structures, codes
generated with these structures often have problems. For example, we replace the
SAVE statements with common block variables since the SAVE statement causes
incorrect recomputation of intermediate NLM quantities and complicates the testing
of the generated codes.

The overall performance of TAF is very impressive, and its use greatly sped
up the development of the ARPS TLM and ADM. The robustness of TAF also
improved with versions during the period we used it. However, there remain some
problems with the generated codes. As with its predecessor TAMC, most of the
TAF problems are related to the recomputation of the intermediate NLM values
and flow dependency analysis of arrays. For example, TAF cannot distinguish the
data dependency of individual elements and those of entire arrays. Consider the case
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shown in Fig. 1 (line numbers are included for convenient reference). If line 1 in the
code is removed, TAF assumes no dependency between the values f and x because
of the assignment in line 2. TAF treats it as if the entire array x is set to a constant,
i.e., to 1.0. Adding the statement in line 1 avoids this error.

SUBROUTINE test (f, x)
REAL :: £(100), x(100)

1 x(1) = x(1)

2 x(1) = 1.0 ! This assignment fools TAF
3 DO i =1, 100

4 £(1) = x(d)**2

5 ENDDO

END SUBROUTINE test

Fig. 1. Example code for which incorrect data flow analysis occurs with TAF.

Some large NLM subroutines had to be divided into smaller subroutines. Usu-
ally, when the subroutine contains nonlinear calculations, the size of the correspond-
ing adjoint subroutine is increased, sometimes significantly. Large subroutines often
cause compilation to fail at high optimization levels.

The main time integration loop of the NLM is divided into two levels to incor-
porate the two-level checkpointing scheme [224] supported by TAF. The scheme is
designed to reduce the number of time levels that have to be stored in the main
memory while at the same time avoiding excessive disk input and output. The NLM
state is saved in checkpoint files every certain number of time steps, and the model
states between the checkpoints are reconstructed by additional NLM integrations
starting from the checkpointing times. Compared to saving every time step of the
NLM base state in memory, the cost of implementing the checkpointing scheme is
about one extra NLM integration time.

Floating point exception problems have been encountered with the TLM and
ADM even though the NLM model works properly. This is because the valid domains
of some functions are different from their derivatives. For example, the derivative
of function z'/? (sqrt) is 1/29571/2, and there is a floating pointer exception if the
derivative is executed with & = 0. Since the sqrt function is widely used in the ARPS
NLM, we replace it by the following pseudo-code safesqrt:

safesqrt(x)
if (x < a — small — value) then return sqrt(a — small — value)
else return sqrt(x)

In summary, the procedure below generates the TLM and ADM models.

Apply TAF to generate TLM and ADM models

Test generated code

Identify the sources causing TAF errors in the ARPS NLM code
Modify the problematic codes in ARPS NLM

Go to step 1

Al
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4.2 Code Testing

Since the model integration can be seen logically as matrix multiplication, we denote
the NLM model as matrix A, the TLM as matrix A’, and thus the ADM as A'7T.
The followings tests can be performed on ARPS TLM and ARPS ADM codes.

a. Linearity test of the TLM

A'x)/(AA'z) =1, €ER. (1)
b. Comparison with finite difference of NLM

(A(z + 6x) — A(x))/(6xA’(6x)) — 1, when dz — 0 . (2)
c. Consistency between TLM and ADM

(g, A'w) = (A2)"y = " ATy = (,4y) (3)

where (-, ) defines an inter product. Thus,

(y, A'z)/(z,A"y) — 1. (4)

Since AD tools apply the chain rule to transform the NLM source code [61,207],
for each active subroutine in the NLM, its tangent linear subroutine and adjoint
subroutine are generated in the TLM and ADM, respectively. Therefore, the above
test methods are also applicable to lower level subroutines in the NLM. Following
the TAF convention, the adjoint (tangent linear) subroutines are named by adding
the prefix ad (g-) to the corresponding subroutines of the NLM model. Furthermore,
we may also test a block of codes if the TLM or ADM counterparts are available.

If the top level subroutine of the generated code fails the test, testing is per-
formed on subroutines at successively lower levels until the source of the error is
identified. The testing may also be applied to blocks of codes within a subroutine if
this subroutine is identified as the source of problem.

After the initial TAF bug fixes and nonlinear model code changes, most of the
remaining problems encountered are related to the recomputations of the NLM vari-
ables which are necessary for the calculations of the derivative code (these variables
are called “required variables”). We add to the above three standard tests a recom-
putation test that verifies the correctness of recomputation in ADM. A variable is
required if it is used in one of the following situations [168]:

a. Evaluation of the local Jacobian: E.g., for the function f(z) = 2®, the local
Jacobian is f'(z) = 322, and the value of z is required to evaluate f'(x).
b. Evaluation of control flow information: The most common examples are the
variables which determine loop steps, e.g., the variable n in do ¢ = 1, n, and
the variables in conditional statements, e.g., the variable z in if (x > 1.0).
c. Evaluation of index expressions: An example is ¢ in array a(7).

Not all NLM variables are computed in the ADM, which may only compute
variables indispensable for the ADM computation. The recomputation test is very
important because it directly examines the consistency between the NLM and ADM.

To perform the test, we need to add code right before the invocation of the
target subroutines to record and compare the values of arguments passed to these
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subroutines. The testing driver first invokes TLM and records all NLM quantities
passed to the subroutine being tested. After the execution of TLM, the driver pro-
gram runs the ADM and compares the NLM values passed to the corresponding
adjoint subroutine with those recorded in the first phase of the test. In the example
illustrated by Fig. 2, subroutine checkTF_f is inserted into the NLM to record the
value of x which is required in the computation of the adjoint subroutine adf in
ADM. Subroutine checkTF_f stores z in a global stack data structure in memory.
In the corresponding ADM, checkTA_adf is called to compare the current value of x
computed in the ADM with the value stored in the stack. These two values should
be identical.

subroutine NLM subroutine ADM

! x is the required value .o
call checkTA_adf(x, adx, ady)
call checkTF_f(x, y)
call f(x, y) call adf(x, adx, ady)
end subroutine NLM end subroutine ADM

Fig. 2. Illustration of code modifications for the recomputation test.

To carry out the test, we need a test driver to do the following:

1) Provide the test data. For a scientific computation model, randomly gen-
erated input values may end up with a floating point exception because of
physically unrealistic values. In our test framework, the driver invokes the
NLM to generate the test data.

2) In most cases, the NLM, TLM, and ADM need to be invoked in a single
test. The initial base state (including all arguments and global variables, i.e.,
variables declared in common block and variables with SAVE attribute) for
all the models should be identical. For example, in the recomputation test,
the driver first invokes the NLM and then invokes the ADM. The state of
the model may be changed after the execution of the NLM because the
value of some arguments and global variables may be overwritten by the
NLM. Therefore, the driver must recover all base state variables prior to
the invocation of the ADM.

4.3 Tangent and Adjoint Test Code Generator

Because a weather forecast model involves a large number of variables (the number
of arguments of the main subroutine of ARPS NLM is more than 150), it is very
tedious and error prone to write test codes and drivers by hand. We developed
an automatic test code generator, called TATCG (Tangent and Adjoint Test Code
Generator), to facilitate the testing. TATCG can generate test code and a driver for
all four tests described above. TATCG is able to analyze the NLM, TLM, and ADM
codes to detect all global variables whose values may be altered in the execution
of the corresponding models so that it can generate code to restore their values.
It can also perform code transformation if the test is to be applied to a block of
codes instead of a subroutine. New subroutines that wrap the target code blocks are
generated in addition to the test codes.
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5 Testing Results

The correctness and efficiency of the ARPS ADM are tested with the data from a
supercell thunderstorm simulation similar to the one documented in [561], except
that it used externally supplied boundary conditions and included full physics (ex-
cept for convective parameterizations and full radiation). We also carried out some
simple adjoint sensitivity experiments for which we have a good idea of the correct
solution. The tests were performed on an IBM Regatta P690 computer using a single
Power4 1.1 GHz CPU. The experiments in Sect. 5.1 are performed at double preci-
sion, although single precision generally works as well. The experiments in Sect. 5.2
were performed in single precision, which is the default setting for APRS NLM.

5.1 Correctness Test

In this set of tests, we implemented the three standard testing schemes given in
Sect. 4.2. We perturbed all independent variables of ARPS NLM by 1% of the base
state values. If the test output is close to 1.0, the ARPS ADM is considered correct.

The physics components tested include the Kessler warm rain microphysics,
surface layer flux parameterizations, subgrid-scale turbulence, planetary boundary
parameterizations, and the soil-vegetation model. The forward model was first run to
generate the nonlinear base state, and the tests were run from 6600 seconds through
7620 seconds of model time. The convective storm evolves on a time scale of about
one hour. The number of integration time steps was 20 for the period. Given below
are the computational times used by the TLM and ADM in terms of the NLM model
time, and the results of the three standard tests, which are very close to 1.

TLM Model Computation time: 2 times NLM model
ADM Model Computation time: 11 times NLM model
Output for test a): 1.00000000000000000

Output for test b): 1.00000196449945489

Output for test c): 0.99999999999999412

5.2 Validation Test Using a Supercell Simulation

The validation test described next is used to check for the consistency of both the
TLM and ADM with a single, small perturbation of the NLM. The TLM can always
be compared with the difference of two slightly perturbed forward runs of the NLM.
Because the ADM is linear, physical processes are temporally symmetric, so that,
in some circumstances, results from the ADM can be directly compared with those
from the TLM, and, therefore, also with the NLM with small perturbations.

To provide data for this test, we use a low-resolution supercell simulation. This
simulation uses 35 x 35 x 19 grid cells in the X-, Y-, and Z-directions, respectively,
at a horizontal resolution of 2 km and a vertical resolution of 1 km. The time step
size was 12 seconds. Full model physics were used, including ice microphysics. The
model was initialized with a thermal bubble, and, after 1800 seconds of integration,
a complex storm structure developed. Figure 3 shows the low-level wind field at this
time. The NLM is run 100 time steps beyond the 1800 second point, and the model
state is saved for each of these 100 steps for use in the TLM and ADM. Additionally,
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Fig. 3. Wind field 500 meters above the surface after 1800 seconds of integration of a
supercell storm simulation. Contours are drawn every 0.2 m/s for updraft/downdraft
amplitude. Wind vectors represent the horizontal wind component, with the length
of the 5 m/s wind vector shown in the lower left corner.

the NLM is integrated twice from the 1800 second point with microphysics turned-
off: Once with no perturbation and once with a perturbation in water vapor of 0.1
g/kg at a single grid cell. Microphysics were turned-off for these two runs because
the microphysical modules for the TLM and ADM have not been fully debugged for
long integration time, and we wish to compare as closely as possible a perturbation
of the NLM with the TLM and ADM. The size and location of the perturbation is
shown by a box drawn in Fig. 4-6. The perturbation was of a single 2 km by 2 km
by 1 km grid cell centered at the first scalar variable level above ground.

Figure 4 shows the resulting forward sensitivity, or response, of the water vapor
field at the end of 100 time steps of the NLM integration to a perturbation at
the beginning of the period. The forward sensitivity is calculated by taking the
difference between the perturbed and unperturbed forecasts and dividing by the
magnitude of the initial perturbation. The result is nearly identical to that of the
TLM integrated over the same 100 time steps. A similar pattern is obtained by a
backward integration of the ADM for 100 time steps from the end of the total NLM
run (1800 seconds plus 100 time steps). For this test, we specify the value of water
vapor in the same box used for the forward sensitivity test, as the variable for which
the backward sensitivity is sought. The backward sensitivity is then the value of
differential changes in the forecast water vapor in the box divided by differential
perturbations at the initial time. Figure 6 shows the resulting backward sensitivity
pattern, a pattern which is nearly identical to those of NLM and TLM runs, except
for a rotation of 180 degrees. This implies that the forward sensitivity of water vapor
at a point is symmetric in this location with the backward sensitivity of water vapor
from the same point. This is as expected since in the region in which the box for
perturbation was chosen, horizontal wind gradients are small, and advection and
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Fig. 4. Forward sensitivity of water vapor at 500 m above the ground to a water
vapor perturbation 1200 seconds earlier, calculated from two NLM runs. Contours
are drawn every 1%. Box drawn near (x = 30 km, y = 13 km) shows the location and
size of the initial 1 km deep 0.1 g/kg perturbation. The maximum value is 3.79%.
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Fig. 5. Same as Fig. 4, except that the sensitivity values are from the TLM model.
The maximum value is 3.80%.
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Fig. 6. Backward sensitivity of water vapor in the box drawn to the water vapor
field 100 time steps earlier, calculated by the ADM. Contours are drawn every 1 %.
The maximum value is 3.83 %.

diffusion are the primary physical processes at work, and these processes are quasi-
linear for small perturbations. This test tends to confirm that the ADM and TLM
are working correctly for the processes of advection and diffusion.

Sensitivities calculated from the ADM are exact for the model. For a data as-
similation system, it is necessary to use the second order derivative as described
by LeDimet et al. [326] if sensitivities with respect to the data are desired. This
is facilitated by the ability of TAF to produce code for the second derivatives of a
model.

6 Conclusion

In this paper, we reported the development of the tangent linear and adjoint codes
for a complex, full physics mesoscale atmospheric model, the ARPS, with the help
of an automatic differentiation tool, TAF. The issues and problems encountered
during the development process are discussed, together with simple examples that
illustrate the problems and solutions. A test procedure is presented, and a description
of an automatic test code generation tool that assists the testing is given. We also
presented experimental results from a supercell thunderstorm simulation that to a
certain degree shows the validity of our tangent linear and adjoint model.

We will continue to debug the adjoint codes for the warm rain and ice micro-
physics packages which are causing instability for long time integrations even though
they passed standard tests for a limited number of time steps.

The current ARPS ADM model is far from being efficient. This issue can be
addressed by optimizing the ADM codes and through parallelization. The former can
be accomplished by making compromises between recomputation and storage of the
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intermediate NLM quantities, by removing redundant storage and recomputation,
and by directly modifying the generated codes. We plan to apply the adjoint code
to sensitivity studies of more realistic cases and develop a 4DVAR system based on
the adjoint model.
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Summary. The NASA finite-volume General Circulation Model (fvGCM) is a
three-dimensional Navier-Stokes solver being used for quasi-operational weather
forecasting at NASA/GMAQO. We use the automatic differentiation tool TAF to gen-
erate efficient tangent linear and adjoint versions from the Fortran 90 source code
of fvGCM’s dynamical core. fvGCM’s parallelisation capabilities based on OpenMP
and MPI have been transferred to the tangent linear and adjoint codes. For OpenMP,
TAF automatically inserts corresponding OpenMP directives in the derivative code.
For MPI, TAF generates interfaces to hand-written tangent linear and adjoint wrap-
per routines. TAF also generates a scheme that allows the tangent linear and adjoint
models to linearise around an external trajectory of the model state. The generation
procedure is set up in an automated way, allowing quick updates of the derivative
codes after modifications of fvGCM.

Key words: Tangent linear model, adjoint model, source-to-source translation,
Fortran-90, TAF, global weather model, parallelism

1 Introduction

Many applications in dynamic meteorology rely on derivative information. Tala-
grand [502] and Errico [158] describe the use of tangent linear (TLM) and adjoint
(ADM) models for sensitivity analysis, stability (singular vector) analysis, varia-
tional data assimilation, and observation targeting. The use of second order deriva-
tive information for sensitivity analysis in the presence of observations, uncertainty
analysis, and (Hessian) singular vector analysis is reviewed by Le Dimet et. al. [326].

Despite recent progress in automatic differentiation (AD) and early successful
applications of AD tools in the support of TLM and ADM coding [64, 105, 106,
408, 563, 569, 572], hand-coding of TLMs and ADMs is still common in dynamic
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meteorology. This is in contrast to oceanography, where fully automated generation
of TLMs and ADMs of GCMs is becoming standard [191, 262, 290, 354, 516]. The
purpose of the present study is to demonstrate the (after initial code preparations)
automated generation of the TLM and ADM of a state of the art GCM using an
AD tool.

The next section of this paper introduces the GCM, followed by a section de-
scribing the TLM and ADM generation. Sections 4 and 5 each address a particular
challenge in the AD process: preserving the GCM'’s parallelisation capabilities and
linearising around an externally provided trajectory. Section 6 discusses the TLM
and ADM performance, and Sect. 7 shows an application example. Conclusions are
drawn in the final section.

2 Finite-volume General Circulation Model

The NASA finite-volume General Circulation Model (fvGCM) [337-339] is a three-
dimensional Navier-Stokes solver. The GCM was developed at NASA’s Data As-
similation Office (DAO, now Global Modeling and Assimilation Office, GMAO) for
quasi-operational weather forecasting. The model has various configurations. For
the current study, we use two resolutions: the b55 production configuration, which
runs on a regular horizontal grid of about 2 by 2.5 degree resolution (144 x 91 grid
cells) and 55 vertical layers as well as the coarse al8 development configuration,
with roughly 4 by 5 degree horizontal resolution (72 x 46 grid cells) and 18 vertical
layers. The time step is 30 minutes, and typical integration periods vary between 6
and 48 hours depending on applications. The state of the model comprises three-
dimensional fields of 5 prognostic variables, namely two horizontal wind components,
pressure difference, potential temperature, and moisture.

3 Applying TAF to fvGCM

For GMAQ's retrospective Data Assimilation System (GEOS-DAS, [569]), TLM and
ADM versions of fvGCM’s dynamical core are needed. Both the TLM and the ADM
refer to the Jacobian of the mapping of the initial state onto the final state. While
the TLM evaluates the product of the Jacobian times a vector of initial state per-
turbations in forward mode, the ADM evaluates the product of a (transposed) final
state perturbation vector with the Jacobian in reverse mode. Further applications at
GMAO such as sensitivity analysis, stability (singular vector) analysis, or chemical
data assimilation also require TLMs and ADMs.

Transformation of Algorithms in Fortran (TAF) [207,210] is a source-to-source
transformation AD tool for programs written in Fortran 77-95, i.e., TAF generates a
TLM or ADM from the source code of a given model. As the above applications differ
in their sets of dependent and independent variables, TAF generates a TLM/ADM
pair for each of the applications and two pairs for finite difference tests (rough and
detailed). fvGCM is implemented in Fortran 90 and contains about 87000 lines of
source code excluding comments. It makes use of Fortran-90 features such as free
source form, modules, derived types and allocatable arrays.

Our standard approach to render a given code TAF-compliant consists of com-
bining modifications to the model code with TAF enhancements. For instance, at two
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places fvGCM’s control flow structure has been simplified. Generation of an efficient
store/read scheme for providing required values [207] (often denoted by trajectory)
has been triggered by 41 TAF init directives and 75 TAF store directives. The
ADM can be generated with and without a checkpointing scheme [210]. To support
TAF’s data dependence analysis, 11 TAF loop directives have been used to mark
parallel loops. In total 204 TAF flow directives have been inserted to trigger gen-
eration of specified calling sequences [210]. For instance, TAF flow directives allow
one to use the Fast Fourier Transformation (FFT) and its inverse in the TLM and
ADM, respectively, which is more efficient than using a generated FFT derivative
code [81,210,502]. In some subroutines, variables were allocated and/or initialised
during the first call. This introduces a data flow dependence between the first and
later calls which forces TAF to generate proper but inefficient recomputations. In or-
der to avoid these recomputations we have moved the allocations and initialisations
into extra module procedures which are not differentiated.

As a result of these initial modifications, the generation procedure for the deriv-
ative code is now fully automated. This is important to allow quick updates of the
derivative code to future changes in the underlying model code. After each code
change, the updated TLM and ADM have to be verified. Depending on the nature
and the extent of the change, additional modifications may be necessary to keep
the generated derivative code correct and efficient. Unfortunately, there is an error
in the SGI-compiler (version 7.4.0) on the production machine (Origin 2000) which
requires switching off the compiler optimisation for two files and reducing the opti-
misation level (-O2 instead of -O3) for six more files in the ADM. It turns out that
the wrong compiler optimisation causes an inaccuracy of only a few percent, which
is acceptable for many applications.

4 Parallelisation

For parallelisation, fvGCM can run on both shared and distributed memory architec-
tures. On shared memory machines the model parallelises over vertical levels using
OpenMP [418,419] directives, and on distributed memory machines it parallelises
over latitude bands using calls to the MPI library (MPI-1 [240] or MPI-2). There are
even architectures that allow one to combine OpenMP and MPI, e.g., non-uniform
memory access (NUMA) systems, to which our production machine, an SGI Origin
2000, belongs.

The challenge for AD is to transfer these parallelisation capabilities to the TLM
and ADM. This task is not to be confused with AD applications based on sequential
function codes, where parallelisation is restricted to the derivative code (see, e.g., [49,
79]).

For OpenMP, the model arranges all its parallelisation by repeated use of the
parallel do directive. Analysis of such parallel loops is discussed in [207,254]. The
loop analyses in TAF have been extended to evaluate the parallel do directive.
For each parallelised loop of the model, i.e. each loop furnished with an OpenMP
directive, TAF can automatically generate the proper parallelisable TLM and ADM
versions, including their OpenMP directives. By specifying either -omp or -omp2 as
command line options, the user selects the OpenMP standard to which the generated
code conforms. Without either command line option, the code generation ignores
OpenMP directives in the model code altogether, i.e. TAF produces sequential code.
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subroutine mp_send3d_ns(im, jm, jfirst, jlast, kfirst, klast, &
ng_s, ng_n, q, iq)
implicit none
integer im, jm
integer jfirst, jlast
integer kfirst, klast
integer ng_s ! southern zones to ghost
integer ng_n ! northern zones to ghost
real q(im,jfirst-ng_s:jlast+ng_n,kfirst:klast)
integer iq
! Local:
integer i,j,k
integer src, dest
integer gsize
integer recv_tag, send_tag
ncall_s = ncall_s + 1
! Send to south
if ( jfirst > 1 ) then
src = gid - 1
recv_tag = src
gsize = im*ng_s*(klast-kfirst+1)
nrecv = nrecv + 1
tdisp = igonorth*idimsize + (ncall_s-1)*idimsize*nbuf
call mpi_irecv(buff_r(tdisp+1), gsize, MPI_DOUBLE_PRECISION, &
src, recv_tag, commglobal, rqgest(nrecv), ierror)
dest = gid - 1
gsize = im*ng_n*(klast-kfirst+1)
tdisp = igosouth*idimsize + (ncall_s-1)*idimsize*nbuf
call BufferPack3d(q, 1, im, jfirst-ng_s, jlast+ng_n, kfirst, klast, &
1, im, jfirst, jfirst+ng_n-1, kfirst, klast, &
buff_s(tdisp+1))
send_tag = gid
nsend = nsend + 1
call mpi_isend(buff_s(tdisp+1), gqsize, MPI_DOUBLE_PRECISION, &
dest, send_tag, commglobal, sqest(nsend), ierror)
endif
! Send to north
if ( jlast < jm ) then

endif
end subroutine mp_send3d_ns

Fig. 1. Example of a wrapper routine for MPI-communication. To save space the
kernel of the lower if-then-endif construct (indicated by the dots) is not displayed.
It works analogously to the kernel of the upper if-then-endif construct.

For MPI-communication, rather than including calls to the library routines di-
rectly into the main code of the GCM, there is an additional layer of routines
in between. These wrapper routines are called from the main code of the model
and arrange all MPI-communication internally. All wrappers plus a few utility rou-
tines form a Fortran-90 module (named mod_comm). As an example, Figure 1 shows
the MPI-1 version of a wrapper routine that exchanges a three-dimensional field
across boundaries of latitude bands. It does all the necessary bookkeeping for in-
dices, and the packing of the relevant section of the field q using the utility routine
BufferPack3d, which is also part of mod_comm.

For a subset of MPI-1, Faure and Dutto [166,167] address handling in forward
and reverse mode AD, respectively. Carle and Fagan [97] as well as Bischof and
Hovland [60] address handling of MPI-1 in forward mode AD. In forward mode, TAF
handles most relevant MPI calls. Among the MPI library routines used by fvGCM,
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subroutine mp_send3d_ns_ad(im, jm, jfirst, jlast, kfirst, klast, &
ng_s, ng_n, q, iq)
implicit none
integer im, jm
integer jfirst, jlast
integer kfirst, klast

integer ng_s ! southern zones to ghost

integer ng_n ! northern zones to ghost

integer iq ! Counter

real q(im, jfirst-ng_s:jlast+ng_n,kfirst:klast)
! Local:

integer i,j,k
integer src
integer recv_tag
ncall_r = ncall_r + 1
Receive from south
if ( jfirst > 1 ) then
nread = nread + 1
call mpi_wait(rqest(nread), Status, ierror)
tdisp = igonorth*idimsize + (ncall_r-1)*idimsize*nbuf
call BufferUnPack3dx(q, 1, im, jfirst-ng_s, jlast +ng_n , kfirst, klast, &
1, im, jfirst , jfirst+ng_n-1, kfirst, klast, &
buff_r(tdisp+1))

endif
Receive from north
if ( jlast < jm ) then

endif
if (ncall_r == ncall_s) then
call mpi_waitall(nsend, sqest, Stats, ierror)
nrecv =
nread =
nsend =
ncall_s
ncall_r
endif
end subroutine mp_send3d_ns_ad

0
0

hhnmnooo

Fig. 2. ADM version of the wrapper in Fig. 1. Again the kernel of the second
if-then-endif block is not displayed (indicated by the dots) to save space.

the only one missing is MPI_Allreduce with MPI_MAX as a reduction operation. As
MPI versions of both the TLM and ADM are needed, we chose to handle MPI via a
different approach (see also [262]): Adjoints of all wrappers have been hand-coded.
In the TLM, most of the model wrappers can be reused; only a single TLM wrapper
had to be hand-coded. As the actual MPI library calls are carried out within the
wrappers, this approach works independently of the MPI standard (MPI-1 or MPI-
2). The ADM version of the wrapper in Fig. 1 is shown in Fig. 2.

Inclusion of the proper calling sequences for TLM and ADM versions of the
wrappers into the generated TLM and ADM is triggered by TAF flow directives.
Specifying TAF flow directives for a routine makes TAF analyses ignore the code
of the routine and instead use the information provided by the directives. The flow
directives for the wrapper in Fig. 1 are shown in Fig. 3. The first word, !$taf, is a
keyword indicating a directive to TAF. The leading “!” makes the Fortran compiler
ignore the directive. The next words, module mod_comm subroutine mp_send3d.ns,
indicate the module and the routine to which the flow directives refer. The first two
directives indicate the input and output arguments of the subroutine. The numbers
refer to the position of an argument in the argument list, i.e., arguments 1 to 10
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1skokokok *k *k *k *k *k *okokok

! mp_send3d_ns
1 %k kK k

1,2,3,4,5,6,7,8,9,10

!$taf module mod_comm subroutine mp_send3d_ns input
!$taf module mod_comm subroutine mp_send3d_ns output
!$taf module mod_comm subroutine mp_send3d_ns active
!'$taf module mod_comm subroutine mp_send3d_ns depend
!$taf module mod_comm subroutine mp_send3d_ns adname mod_comm: :mp_send3d_ns_ad
!$taf module mod_comm subroutine mp_send3d_ns ftlname mod_comm: :mp_send3d_ns
!$taf module mod_comm subroutine mp_send3d_ns common mp_3d_ns output 1

!$taf module mod_comm subroutine mp_send3d_ns common mp_3d_ns active 1

9
1,2,3,4,5,6,7,8 ,10

Fig. 3. TAF flow directives triggering generation of calls to TLM and ADM versions
of Fig. 1.

(in fact all arguments) are input, and none is output. For the current routine the
output directive may also be omitted, as the empty set is the default for this type
of directive. The next two directives indicate active and required arguments [207].
The next two directives indicate the names of the TLM and the ADM versions of
the routine. Since the name of the TLM version corresponds to the name of the
original routine, TAF recognises that the routine is linear. The last two directives
refer to elements of the common block mp_3d_ns; their syntax is similar to that of
the directives for the argument list.

With the flow directives, the generated TLM and ADM can be linked to the
hand-written wrappers. Hence, the generation procedure can be fully automated
and produces four TLM/ADM versions, one for each of the combinations OpenMP
on/off and MPI on/off.

5 Linearising around an External Trajectory

In dynamic meteorology it is typical to run the TLM/ADM on a coarser resolution
than the forecast model. Also a set of processes called physics (e.g. parametrisa-
tions of clouds and rain, surface drag, or vertical diffusion) is usually not included
in the derivative code. This reduces the computational demand and avoids poten-
tial problems arising from numerical instability. To compensate for this approxi-
mation, one linearises along an external trajectory of the state computed by the
complete high resolution model. Technically this is achieved by making the (coarse
grid) TLM/ADM integration periodically read in a regridded version of the external
state and overwrite the internal state. However, to an AD tool, overwriting makes the
final model state appear independent from the initial model state, as the data flow is
interrupted. Straightforward use of AD would result in an erroneous TLM/ADM. To
solve this problem, we exploit TAF’s flexibility in setting up a store/read scheme for
providing required variables. A combination of TAF init, store, and flow directives
essentially hides the overwriting from TAF analyses and includes proper calls to
the routines that provide the external trajectory. The resulting trajectory versions
of the TLM and ADM are no longer proper linearisations of the coarse resolution
model, unless they are run with an external trajectory provided by the model itself.
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Table 1. TLM and ADM run time in multiples of model run time.

Platform/Setup resolution TLM ADM ADM-noopt
Linux Intel 4 al8 1.5 7.0 -
SGI-OpenMP-1/8 threads b55 1.5 10.8 20.6
SGI-MPI-1/8 threads b55 1.5 3.9 12.6

6 Performance of Generated Code

The performance of the sequential TLM and ADM versions has been tested on a
Linux PC (P4 3GHz Processor, 2 GByte memory, Intel Fortran Compiler 8.0) and on
a SGI Origin 2000 (Compiler version 7.4.0). On the Linux PC we could only run the
coarser al8 configuration (see Sect. 2), because of memory limitations. On the SGI
we have done separate tests for OpenMP-1 (8 threads) and for MPI-1 (8 processors).
We ran the ADM in both the inaccurate version with full compiler optimisation and
the accurate version with reduced compiler optimisation. The integration period
was six hours. We ran the configuration without check-pointing and without reading
an external trajectory, i.e., both the TLM and ADM integration include a model
integration. All required variables were stored in memory.

The performance numbers are listed in Table 1. It is common to quantify the
CPU time of the derivative code in multiples of the CPU time of a function evalua-
tion (model integration). For the ADM performance, it is striking that the OpenMP
version performs so much worse than the MPI version. We think that this is due
to many critical sections, which have to be generated, because the OpenMP 1.1
standard does not support array reductions. As the OpenMP 2.0 standard [419]
allows array reduction, TAF generated code conforming to OpenMP 2.0 avoids crit-
ical sections. Unfortunately, we were not able to run that version of the generated
code on SGI, due to a problem in the compiler’s handling of OpenMP 2.0. It is also
remarkable that the ADM value for MPI on SGI is much better than on Linux. We
attribute this to the difference in grid resolution between the two configurations,
which affects the ratio of memory accesses to computations. While both resolutions
need to access the same number of arrays in memory (albeit of different sizes), the
coarse al8 resolution on Linux does fewer operations. This conjecture is supported
by initial ADM tests of the MPI-1 version in al8 resolution on SGI, which show a
performance ratio close to the one for Linux. Finally, SGI values for the ADM with
reduced optimisation are considerably slower than those with full optimisation for
both OpenMP and MPI.

Figure 4 shows the speedup for OpenMP-1, for the model itself, the TLM and the
ADM for 2, 4, 6, and 8 threads. The speedup for n threads is defined by the quotient
of the run times for 1 and n threads. The ideal speedup ignoring communication
overhead is also indicated. While the TLM speedup is almost as good as that of the
GCM, the ADM speedup lags behind. As mentioned above, this is presumably due
to the critical sections, and OpenMP-2 is expected to yield a better speedup.

In the MPI case (Fig. 5), the TLM and ADM speedup is similar to that of the
GCM code, with the ADM speedup being slightly better.
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Fig. 5. Speedup for MPI-1 configuration.
7 Application Example
As an example for an application of both the TLM and ADM, we compute the

leading singular vectors of a 24 hour integration. A singular vector is an eigenvalue
of A*A, where A is the Jacobian of the function mapping the initial state onto the
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Fig. 6. Leading singular vector for 24 hour integration. See text for details.

final state, and A* is its adjoint. Via the definition of the adjoint, the singular vector
depends on the norms in state space at initial and final times. The leading singular
vector is the initial time perturbation that amplifies the most (in the sense defined by
the pair of norms). For the singular vector computation the automatically generated
TLM and ADM have been extended by hand-coded TLM and ADM versions of
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formulations for simple drag and vertical mixing (important damping processes).
The coarse al8 resolution in the OpenMP version with reduced optimisation for the
ADM has been used. ARPACK [332] is used to solve the eigenvalue problem.

Figure 6 shows the dominant singular vector for total energy norms at initial and
final times. Grid points outside the target area indicated by the light black rectangle
on the upper panel and in the top five vertical layers do not contribute to the norm
at final time. The upper panel shows a horizontal view on the 500 hPa pressure
level and the lower panel a vertical cross section averaged over the latitude band
from 45 to 55 North. The shaded areas show the initial temperature component of
the singular vector (temperature perturbation in K), and the thin black contours
the background temperature (with 0.2 degree contour interval in the top panel and
0.1 in the bottom panel). The bold black contours show the evolved perturbation
in the northward wind speed in m/s. As expected for a midlatitude perturbation, it
evolves from a small scale, tilted structure at initial time to a larger scale structure
at final time.

8 Conclusions

We have presented the generation of TLM and ADM versions of the dynamical core
of fvGCM by means of TAF. After initial preparations, the generation process is fully
automated. This automation is important, as it simplifies adaptation of the TLM
and ADM to future changes of and extensions to the GCM code. A TLM integration
takes the run time of about 1.5 model integrations. For the ADM that number varies
with the configuration of the GCM in terms of resolution and parallelisation strategy.
In the most favourable case (fine resolution, MPI-1, no check-pointing, problems with
the Fortran compiler ignored) a factor of 3.9 is achieved.

Challenges such as transferring the model’s parallelisation capabilities to the
TLM and ADM, or linearising around an external trajectory have been overcome.
We cannot think of any fundamental obstacle that could seriously hamper auto-
matic generation of TLMs, ADMs, and even Hessian codes of models in dynamic
meteorology.
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Summary. In geosciences, it is common to spin up models by integrating with an-
nually repeated boundary conditions. AD-generated code for evaluating sensitivities
of the final cyclo-stationary state with respect to model parameters or boundary
conditions usually includes a similar iteration for the derivative statements, possi-
bly with a reduced number of iterations. We evaluate an alternative strategy that
first carries out the spin-up, then evaluates the full Jacobian for the final iteration
and then applies the implicit function theorem to solve for the sensitivities of the
cyclo-stationary state. We demonstrate the benefit of the strategy for the spin-up of
a simple box-model of the atmospheric transport. We derive a heuristic inequality
for this benefit, which increases with the number of iterations and decreases with
the size of the state space.

Key words: Spin-up, sensitivities, source-to-source transformation, TAF, implicit
function, atmospheric transport

1 Introduction

In geosciences, it is common to spin up models to a cyclo-stationary state with
periodic boundary conditions (forcing) as is illustrated by Fig. 1. For instance, to
simulate the global carbon dioxide distribution in the atmosphere, one runs an at-
mospheric transport model with a repeated seasonal cycle of carbon dioxide fluxes
at the Earth’s surface [323]. The spin-up is completed once the simulated seasonal
cycle of atmospheric carbon dioxide no longer changes from one year to the next.
Other examples are simulations of the global thermo-haline ocean circulation [390]
or of the terrestrial biosphere [481]. Especially for coupled model integrations, re-
quired spin-up times are often prohibitively long. Sophisticated techniques have been
devised to reduce them (see, e.g, [287,350,470]).

* Part of this work has been carried out in the project CAMELS, supported by
the EU under contract no. EVK2-CT-2002-00151 within the 5th Framework Pro-
gramme for Research and Technological Development.
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Fig. 1. Schematic representation of spin-up phase.

Often, the sensitivity of the equilibrium state (spin-up sensitivity) with respect
to the forcing or internal parameters of the model is required. This sensitivity might
be interesting per se, or it might be a part of an extended sensitivity computation of
other quantities that depend on the equilibrium state through a transient integration
(see Fig. 1).

Spin-ups are also carried out in fields other than geosciences. For example, the
simulation of a steady aerodynamic flow around an airfoil constitutes a special case
of a spin-up integration with constant forcing (reflecting the airfoil’s shape and the
far field) and a period of one time step. Spin-up sensitivities provide important
information for design optimisation.

Accurate spin-up sensitivities can be provided by automatic differentiation
(AD [225]). However, applying AD in a straightforward way results in deriva-
tive propagation through the entire spin-up process, which is even more costly
than the spin-up itself. Often, the computation is only rendered feasible at the
cost of approximations in the model formulation. The terrestrial biosphere model
BETHY (311, 312], which forms the core of the Carbon Cycle Data Assimilation
System (CCDAS, see http://CCDAS.org), provides an example of such an approxi-
mation. Spinning up a pool for slowly decomposing organic carbon in soil is avoided
by introducing a so-called 3 factor to parameterise the combined effect of both equi-
librium pool size and turn-over time on the release of carbon dioxide [457,471].
Using this approximation, only a fast decomposing soil carbon pool has to be spun
up, which reduces the spin-up time from thousands of years [481] to five years.

The present paper evaluates an alternative approach to sensitivity calculation
for the spin-up phase, the full Jacobian approach, which requires the Jacobian for
only a single year integration in equilibrium. The layout for the remainder of the
paper is as follows: Sect. 2 formalises the spin-up process, discusses various ways of
computing spin-up sensitivities, and presents the full Jacobian approach. Section 3
describes its implementation, and Sect. 4 demonstrates its application to the spin-
up of a simple atmospheric transport model. Section 5 analyses the computational
efficiency of the full Jacobian approach. A summary and an outlook are given in
Sect. 6.
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2 Spin-up Sensitivities

Formally, integration of a model over a forcing-period of, say, one year can be rep-
resented by a function f: R? x R" — R"™ mapping the state x at January 1, 0 am,
to next year’s state at the same time, y:

y:f(bam)v (1)

where b denotes input quantities other than the initial state such as boundary con-
ditions or internal parameters of the model. The spin-up is the iteration of (1), with
y taking the role of = for the subsequent iteration. A necessary condition for termi-
nating the spin-up is convergence of y to a fixed point z. (equilibrium state), i.e.
the equation

Te = f(b’ :Ije) (2)

must hold within a specified accuracy.

The spin-up sensitivity is the derivative of the equilibrium state xz. with respect
to b. AD of the source code for (1) can provide derivative code to compute this
sensitivity. The most obvious approach (standard/black-box AD) is to differentiate
the code of the entire spin-up phase, say in forward mode [225] of AD. Using, for
instance, our AD-tool Transformation of Algorithms in Fortran (TAF [207,210]),
one would specify b as an independent/input variable and z. as a dependent/output
variable. TAF then generates code that iterates

db ob  Ox db

along with (1). In this derivative code each relevant function code statement is
preceded by the corresponding derivative statement. For a given combination of b
and initial value of x, the spin-up sensitivity is evaluated by running the derivative
code with % initialised to zero. In case there is only one stable equilibrium, the
results of both the spin-up iteration and the derivative iteration are independent
of the initial value of the state, x. Griewank [225] provides a formal analysis of the
convergence criteria for (3).

However, there are more efficient strategies of providing spin-up sensitivities,
based on the Implicit Function Theorem for (2): Presuming that f is sufficiently
regular and %(b, Ze(b)) — Id is non-zero for a given b, then there exists a regular

function b — z.(b) around b, and its derivative satisfies

af af dz.
0= 2 (006 + (B 0000 - 10) L), (@

where Id denotes the identity in R", and df; is determined by local properties
of f around b and the equilibrium state x.. [179,225] suggest a delayed derivative
propagation strategy (two-phase-AD), which does not turn on derivative propagation
until the iteration of (1) converges well. Biicker et al. [84] apply this strategy to a
CFD code.

Christianson [111,112] analyses reverse mode (adjoint) AD of the iteration of (1)
and suggests an efficient alternative adjoint, which only uses the required values (tra-
jectory) [207] from the last iteration of (1) and thus considerably reduces the neces-
sary resources for storing/recomputing required values. TAF implements automatic
generation of the Christianson scheme, triggered by a TAF-loop directive [210].
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subroutine £( p, b, n, x, y)
integer p, n
real b(p), x(n), y(n)

Fig. 2. Header of subroutine (file f.f) implementing (1).

All above strategies (standard, delayed derivative propagation, and Christian-
son) are matrix-free, i.e. they employ products of the Jacobian g—£ with a vector to
dze
. c
of first running the spin-up, then computing the full Jacobian, i.e. 35 (b, ze(b)) and

%(b7 z(b)), and finally solving (4) for 2.

solve (3) for The present study explores the alternative full Jacobian strategy

3 Implementation

We sketch a Fortran implementation of the full Jacobian approach based on our AD
tool TAF [207,210]. It is instructive to consider first the simpler case of a sensitivity
calculation that is restricted to the spin-up phase.

We start from the code of a single year integration, more precisely an implemen-
tation of (1), a subroutine form of f. The header of the subroutine is shown in Fig. 2.
A single code for evaluating the two Jacobians required by (4), i.e. %(b, ze(b)) and
%(b, ze (b)), is generated by applying TAF with command line options -forward
-pure -toplevel f -input b,x -output y -jacobian m -ftlmark _dbx f.f, where
m = p+n (the sum of the dimensions of b and z) and £.f contains the source code
of the subroutine £. The option -pure invokes TAF’s pure mode, i.e. the derivative
code does not include a function evaluation, and function code statements are only
included where necessary to provide required values. TAF generates a subroutine
f_dbx that evaluates the Jacobian.

A simple driver program that runs the code for the spin-up and its derivative
is shown in Fig. 3. Subroutine spinup performs the spin-up, including the iterative
call of the subroutine £ and a termination condition. The field x0 contains the initial
value of the state, and the field xe is its equilibrium value. The matrices % and %
are initialised to zero, and 2% and 9% to the identities in R"™ and R”, respectively.
The Jacobian is evaluated for © = z., i.e. at the equilibrium, then the result is split
into the two Jacobians and passed to a solver routine which finally returns ddzbf .

For cases in which the Jacobian evaluation in reverse mode is preferable, the TAF
command line and the driver need to be modified. The command line arguments
-forward -ftlmark have to be replaced by -reverse -admark. In the driver, it
is now the field y_dbx that must be initialised, and the Jacobian is returned in the
fields b_dbx and x_dbx.

We now address the case in which the spin-up is part of a larger computation,
and some sensitivity involving the entire computation is needed. We apply TAF
to the source code of the entire computation. To handle the spin-up, we use the
TAF flow directives for the subroutine spinup (see Fig. 4) which trigger inclusion
of a calling sequence for an externally provided derivative routine of spinup. The
forward mode then calls a routine spinup_t1, while the reverse mode calls a routine

spinup_ad. For details on TAF flow directives see [211].
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real b(p), x0(n), xe(n), x(n), y()
real x_dbx(p+n,n), b_dbx(p+n,p)
real y_dbx(p+n,n), y_dx(n,n), y_db(p,n), x_db(p,n)
b= ...
! spin-up
x0 = 1.
call spinup( p, b, n, x0, xe)
! initialisation of derivative objects
do j =1,n
do i=1,p+n
x_dbx(i,j)=0.
enddo
x_dbx (p+j,j)=1.
enddo
do j =1,p
do i=1,p+n
b_dbx (i, j)=0.
enddo
x_dbx(j,j)=1.
enddo
! Jacobian evaluation
X=xe
call f_dbx( p, b, b_dbx, n, x, x_dbx, y, y_dbx)
! separating the Jacobians
do i=1,p
y_db(i,:) = y_dbx(i,:)
enddo
do i=1,n
y_dx(i,:) = y_dbx(p+i,:)
enddo
! solve for spin-up sensitivity
call solve (n, p, y_dx, y_db, x_db)

Fig. 3. A driver for solving first (2) and then (4) using the full Jacobian approach.

'$taf subroutine spinup input = 1,2,3,4
'$taf subroutine spinup output = 5

!$taf subroutine spinup active = 2,5

'$taf subroutine spinup depend = 1,2,3,4
'$taf subroutine spinup adname = spinup_ad
!$taf subroutine spinup ftlname = spinup_tl

Fig. 4. TAF flow directives for the subroutine spinup.

The two routines spinup_tl and spinup_ad are hand-written wrappers. They
first compute d;be as shown in Fig. 3 and then carry out a matrix multiplication to
propagate the derivative through the spin-up. The form of this matrix multiplication
depends on the mode in which the entire code is differentiated. In forward mode,
spinup-t1l multiplies d;be from the right with the derivative of b with respect to the
independents, and in reverse mode from the left with the derivative of the dependents

with respect to x..
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4 Numerical Example

As a test code, we employ “boxmod,” a simple model of the atmospheric transport,
which uses an Euler scheme to integrate the continuity equation for a passive trace
gas. In this context, passive means that the concentration does not influence the
atmospheric transport. The model is described in [456,503], and its forward and
reverse mode derivatives are described in [456]. There is one box for each hemi-
sphere; their tracer concentrations take the role of x in (1). The inter-hemispheric
mixing rate [456] of 1/year is its single parameter and corresponds to b in (1). We
use boxmod in its methyl chloroform setup described in [456], with a uniform sink
term corresponding to an inverse lifetime of 1/4.7 years [274]. We repeat the 1978
surface source estimates of Prinn et al. [439], modulated by a cosine with a period
of one year and an amplitude of 10% the source strength. To mimic a large-scale
application, the model is integrated with 107 time steps per year. We use the same
initial concentration of 100 ppt (parts per trillion) for both boxes, which is about
10% off the equilibrium.

Table 1. Convergence of the spin-up.

Iteration x(1) x(2) dx(1)/db
1 108.51645929 91.94163466 —7.3450784858

2 109.60820945 91.22018250 —8.1485930691

3 109.85705135 91.27066920 —8.2364935166

4 109.98888128 91.38080007 —8.2461093827

5 110.08786208 91.47740710 —8.2471613100

6 110.16704315 91.55632850 —8.2472763855

8 110.28261339 91.67186723 —8.2472903514
10 110.35811940 91.74737286 —8.2472905185
12 110.40745656 91.79671001 —8.2472905205
20 110.48351777 91.87277122 —8.2472905205
30 110.49845465 91.88770810 —8.2472905205
40 110.50023387 91.88948732 —8.2472905205
49 110.50043900 91.88969246 —8.2472905205
50 110.50044580 91.88969925 —8.2472905205
60 110.50047104 91.88972449 —8.2472905205
70 110.50047405 91.88972750 —8.2472905205
80 110.50047441 91.88972786 —8.2472905205
90 110.50047445 91.88972790 —8.2472905205
100 110.50047446 91.88972791 —8.2472905205

Table 1 shows the convergence of the spin-up in double precision. The first
column lists the iteration number, and the next two columns both components of
the state vector. The last column will be discussed later. For our base case we choose
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Table 2. Performance for derivatives of boxmod equilibrium state with respect to
mixing rate.

Case Spin-up [s] Std AD [s]  Jacobian [s]  Std/Jac
base 4.4 5.9 0.17 35.2
ifort 4.4 5.3 0.21 25.0
low accuracy 0.53 0.72 0.17 4.3

to iterate until the relative difference between y and = (as defined in (1)) is less than
1077 for both components, which is reached after 49 iterations. We also look at a low
accuracy case with a relative difference of 1072, which is reached after six iterations.

To compare the standard approach and the full Jacobian approach, two derivative
codes are generated in TAF’s pure forward mode (see Sect. 3). As our state vector
has only two components, solving (4) for d;b“ is trivial. For our base case with 49
iterations, the relative difference in the spin-up sensitivities from both approaches
is below 1074,

We also test solving (4) by iterating (3) (with the full Jacobian). The convergence
of % is shown in the last column of Table 1. After only 8 iterations, the relative
difference of the % value from standard is below 10~7. Note that this procedure is
different from delayed derivative propagation, as we are using the precomputed Jaco-
bian for the equilibrium state. Also, delayed derivative propagation faces the decision
when to start the derivative propagation without knowing how many iterations are
still needed by the function code iteration to converge.

For the low accuracy case, the derivatives of both approaches (standard and full
Jacobian) each have a relative difference below 10™* to the ’true’ sensitivity (from
100 iterations in the standard approach, see Table 1).

We run performance tests on a 3GHz Pentium 4 processor. Each test is repeated
10 times, and the average run time is recorded. Table 2 lists run times for three test
cases. The cases base and low accuracy use the Lahey-Fujitsu Fortran 95 compiler
1f95 with high optimisation level and double precision (flags -O3 --dbl). Case ifort
equals the base case, with 1f95 replaced by the Intel Fortran compiler, again with
high optimisation level and double precision (flags -O3 - -autodouble). The second
column shows the run time for the spin-up integration; columns three and four refer
to the standard and full Jacobian approaches, respectively. The last column shows
the quotient of columns three and four. The relative run times depend strongly
on the compiler and on compiler options and platform (not shown here). The full
Jacobian approach is considerably faster than standard, even in the low accuracy
case.

5 Performance analysis

In the box-model example, the full Jacobian strategy outscores the standard strategy
considerably. Why is that? Let r(m) denote the computational cost of a Jacobian
product with m vectors for a single year run of boxmod. Our standard measure for
computational cost of derivative code is CPU time in multiples of the CPU time
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spent for the evaluation of the underlying function, but let’s use the number of
operations for a moment. Then r(-) is an affine function of m, i.e.

rim)=7r(1)+s-(m—-1), (5)

where r(1) is the number of flops for the product of the Jacobian times the first
vector and s being the number of flops per additional vector. The first vector is
more expensive, because the computation of required values has to be included.

When returning to CPU time as performance measure, the form of r(-) depends
on additional factors, most of which are platform and compiler dependent. Exam-
ples of such factors are data locality, vector length, level of compiler optimisation,
and other compiler options. Also, from a certain m, the computation exceeds the
available memory and hence needs to be split up. A previous study [293] has tested
the performance for TAF-generated code for forward and reverse mode Jacobian
evaluations within CCDAS: In reverse mode, testing r(m) for fourteen values of m
between 1 and 96 (see Figure 4 of [293]) indicates that (5) is indeed a good approx-
imation, with s ~ 0.25 and r(1) between 3 and 4. In forward mode, r(1) = 1.5 and
r(58) = 12 yield s =~ 0.2.

Our present example is a bit more complex. In addition to increasing the number
of Jacobian-vector products, we are also increasing the set of quantities with respect
to which we are differentiating. On the other hand, the state, z, is active [57,207] even
when differentiating only with respect to b (standard), i.e. derivatives of the state
are propagated for both approaches standard and full Jacobian. We can estimate the
extra cost for extending the Jacobian from derivatives with respect to b to derivatives
with respect to b and z from the numbers in Table 2. With 107 time steps per year,
we can safely neglect the CPU time spent outside boxmod and its derivatives. For the
base case with its k = 49 iterations, we have r(1) = (5.909/49)/(4.3651/49) ~ 1.35,
and r(3) = 0.17/(4.3651/49) =~ 1.86, which yields a slope s of about 0.25.

If we can neglect the cost of solving (4) and if (5) is a good approximation for
capturing the cost of adding derivatives with respect to x, the full Jacobian strategy
(left hand side) is preferable to standard (right hand side), if

k+r()+s-(p+n—-1) < k-(r(1)+s-(p—-1)), (6)

where p denotes the dimension of b. The left hand side k£ quantifies the cost of the
spin-up itself. Since we have always r(1) > 1, the full Jacobian gets more favourable
with increasing k, as seen in the example. Increasing n favours the standard approach,
whereas increasing p favours the full Jacobian approach.

When increasing p, from a certain point the reverse mode is more efficient than
the forward mode. This point depends on the number of dependent variables, q. If
the dependent variables are the equilibrium state then ¢ = n. The dependent vari-
ables may also be some function of the equilibrium state, including, e.g., a transient
integration as illustrated in Fig. 1. In reverse mode, the Christianson approach is
more efficient than the standard approach, as the former needs to provide fewer
required values. If we denote the cost of evaluating the Jacobian times ¢ vectors in
reverse mode by 7(g) and its slope by §, the corresponding cost estimates for the
full Jacobian and Christianson approaches are respectively

k+7(1)+8-(n—1), and (7)
k-(F(1) +5-(¢—1)). (8)
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We can illustrate (6) with numbers from [210], where the authors apply TAF to
a Navier-Stokes solver, in a simple configuration with &k = 500, n = 5 x 801, p = 2
(Mach number and angle of attack), and ¢ = 1 (scalar objective function of lift and
drag). With their (1) = 2.4 and an assumed s = 0.25, (6) yields a cost of about
1500 for the full Jacobian approach versus about 1300 for the standard approach.
As the Christianson approach yields 7(1) = 3.4, the standard approach (in forward
mode) may be preferable up to p = 5 (using the assumed s = 0.25). For any larger
p, (8) yields a cost of 1700. Hence, at first glance, the full Jacobian appears slightly
favourable for 5 < p < 800. However, for n = 5 x 801, we cannot ignore the cost
of solving (4). The cost of standard methods for solving systems of linear equations
(e.g. LU decomposition) grows with n® [438]. Solving (4) iteratively (as done in
Sect. 4), requires one matrix-vector product in R™ per iteration. The only relevant
component of the spin-up sensitivity d;be is given by the derivative of the objective
function with respect to the equilibrium state. Thus, one can focus on convergence
of that component.

The comparison looks much different for the spin-up of terrestrial biosphere mod-
els. There is no exchange of information across borders of grid cells, so the Jacobian
% has a block diagonal structure, with the block size equal to the dimension of the
state space per grid cell, n.g, which is the effective size of state space to be used
in (6), as the sparse Jacobian can be retrieved from n g Jacobian-vector products.
Also, (4) can be solved block by block. As n . is usually below 10, the computation

of % and solving (4) are inexpensive. Regarding s, one can, for instance, assume
the above mentioned value for CCDAS of s = 0.2. With n = 5 and k£ = 3000, the
cost of the full Jacobian approach is dominated by the cost of the spin-up itself,
which is 3000. The sensitivities come at an extra cost of only about 2.5.

6 Summary and Outlook

We have explored the full Jacobian approach to the computation of sensitivities
for the spin-up phase. For a simple box-model of the atmospheric transport, the
full Jacobian approach is 4 to 35 times more efficient than the standard approach
of propagating derivatives through the entire spin-up phase. This benefit increases
with the number of iterations and decreases with the size of the state space.

We have shown that for terrestrial biosphere models, which are characterised by
a low dimensional effective state-space, the full Jacobian approach looks promising.
As a first large-scale application, we plan to compute spin-up sensitivities for a
biosphere model within CCDAS.
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Summary. Time-marching simulation of electronic circuits using the U.C. Berkeley
program Spice and variants has been a standard practice for electronics engineers
since the mid-1970s. Unfortunately, the development cycle of Spice models may be
lengthy because device model equations and their derivatives must be coded man-
ually. Also, many files in the source tree must be modified to define a new model.
fREEDA®, www.freeda.org, an object-oriented circuit simulator under develop-
ment at several universities, overcomes many limitations of the conventional elec-
tronic model development paradigm. A key to this implementation is the ADOL-C
package, which is used to automatically evaluate the derivatives of the device model
equations. Resulting models are more compact, and the development time is shorter.
The development history of selected Spice models and their fREEDA® counterparts
are presented to illustrate the advantages of this approach.

Key words: Circuit simulation, semiconductor device modelling, electronic device
modelling, FREEDA®, ADOL-C

1 Introduction

Computer-aided simulation of electronic circuits has been common since the mid-
1970s when the U.C. Berkeley program Spice [389] was made available to an electron-
ics industry that was increasingly engaged in the development and manufacture of

* This material is based upon work supported in part by the Space and Naval War-
fare Systems Center San Diego under grant number N66001-01-1-8921 as part
of the DARPA NeoCAD Program and in part by the U.S. Army Research Lab-
oratory and the U.S. Army Research Office on Multifunctional Adaptive Radio
Radar and Sensors (MARRS) under grant number DAAD19-01-1-0496.
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integrated circuits based on semiconductor devices. In prior decades, most electronics
systems were based on collections of discrete semiconductor devices or vacuum tubes
connected by discrete wires or by printed circuit board wiring. These systems were
amenable to relatively low-cost prototype production and laboratory observation of
every interconnection point using measuring equipment familiar to electrical engi-
neers. However, by the mid 1970s, integrated circuits with hundreds or thousands of
interconnection points — most not observable in a laboratory setting — had rendered
the existing prototyping paradigm obsolete. Since then, pre-production validation
of integrated circuit designs has relied heavily upon Spice simulation. Spice was not
the first simulator produced at U.C. Berkeley, but it benefited from research done
on earlier generations of simulator engines during the 1960s. Over the years, Spice
has been ported successfully to generations of less expensive computers. Today it
is both economical and common to simulate even discrete circuits implemented on
printed circuit boards prior to building prototype models.

Time-marching simulation using state variable-based models was also initially
developed in the 1960s [437]. Such simulators formed and solved systems of differen-
tial equations. However, these programs fell out of favor because Spice’s modelling
philosophy led to purely algebraic systems of equations that were inherently more
sparse than the state variable approaches. Interest in this approach was renewed
when researchers in the discipline of microwave engineering became interested in
combining a device’s interactions with electromagnetic fields [415]. Spice analyses
are limited to voltage and currents only, and so a new simulator environment based
on state variable analysis was created to permit this form of analysis. This initial ef-
fort has evolved into fREEDA® [120]. Presently, fREEDA® is the only netlist-driven
circuit simulator available to the public which uses Automatic Differentiation (AD).
One prior effort including AD is disclosed in [364], but this simulator was not netlist-
driven. One other effort [308] reported significant results in modelling Metal Oxide
Semiconductor transistors with several (AD) tools, but the simulator environment
was not made publicly available.

2 Background

2.1 Constitutive Equations and Network Equations

Computer-aided circuit analysis in its most basic form is comprised of constitutive
and network equations [123,416]. Constitutive equations usually express voltage as a
function of current (in units of Amperes) or vice versa for a particular element. Fig-
ure 1(a) shows a generic two-terminal element where the voltage across the element
is defined with respect to positive and negative terminals, and current is defined
positively as flowing from the positive to the negative terminals. The current has
a vector quality in the sense that the arrow in Fig. 1(a) may be reversed and the
magnitude negated. Figure 1(b) shows a linear resistor, a simple impedance element
described by Ohm’s law, v(t) = Ri(t) [250] or the admittance form, i(t) = Guv(¢),
where G = 1/R. Network equations govern the interconnection of elements, and
there are two forms based on Kirchoff’s Current (KCL) and Voltage (KVL) Laws.
Owing to the simplicity of matrix formulation [144, 523] for circuit simulation, the
KCL equation form is preferred. The KCL equation form of the matrix is called
a Modified Nodal Admittance Matrix (MNAM) [264] because most entries in the
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matrix have the physical dimension of an admittance (a ratio of current to voltage),
but provisions are made through a form of domain decomposition to permit the
entry of circuit elements with different physical units. Figure 1(c) shows a network
of three generic two-terminal devices. One node (or terminal) in the circuit is always
designated as the reference node, so that the MNAM formulation is non-singular.

Positive Terminal i(t) = Gv(t) Node 1 - Node 2
o o N\ i,(1) Pz
[
I
+ + + Vz(t) -
v(1) D i(t) (1) ift) * ¥
- - v (1) i(t) v(t) i(1)
@) @) e I
Negative Terminal Node 0 = (Reference Node)
() (b) ()

Fig. 1. (a) Element constitutive equations; (b) Resistor; (c) Network equations.

2.2 Forms of Circuit Simulation

The two best-known and longest established forms of circuit simulation are known
as transient analysis and AC (i.e., “alternating current”) analysis. Both forms were
available in the first release of Spice. Transient analysis is time-domain simulation
of the circuit using quadrature integration. Linear and nonlinear differential circuit
equations are discretized using either the backward Euler or trapezoidal interpolat-
ing functions, and the integration from one time step to the next is governed by an
iterative procedure using either Newton’s method or the minimization of some error
function. AC analysis is frequency-domain simulation of the circuit and is supported
only for linear circuit elements in fREEDA®, so it will not be discussed further; the
emphasis here is on transient analysis. Underlying both analysis forms is a form
known as DC' (i.e., “direct current”) analysis used to establish the initial operating
conditions for both transient and AC analysis.

One other popular form of circuit simulation that is not present in Berkeley’s
Spice but has been implemented in fREEDA® [121] and other simulators [322,464]
is called Harmonic Balance (HB) analysis. HB is an implementation of Galerkin’s
methods [446] for finding the steady-state response of a nonlinear network. HB will
not be discussed in depth, but its method for formulating the MNAM — which
differs drastically from that of Spice — has been applied to FREEDA® transient
analysis [119], and this will be discussed in some detail in Sect. 3.2.

2.3 Constitutive Equations for Elements of Interest

Most transient simulation models are composed of combinations of simpler element
models. Those models most useful to the present discussion will be briefly reviewed.
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Resistors were mentioned in Sect. 2.1. Inductors and capacitors are linear dynamic
elements and are described by differential equations [144]. Resistors, capacitors, and
inductors often appear within semiconductors in nonlinear forms and are described
by Taylor series expansions in these cases.

Nonlinear elements such as semiconductor diodes and transistors are also de-
scribed by a set of constitutive equations [492]. The diode may be the sim-
plest nonlinear element. Figure 2(a) shows the diode, a device whose current is
an exponential function of voltage. A simplified equation for a discrete diode is
i(t) = Is(exp(v(t)/Vr) — 1), where I is known as the reverse saturation current
and Vr, the thermal voltage (Vr = 26 mV at 300K), is a threshold voltage beyond
which the exponential behavior becomes apparent. Figure 2(b) shows the behavior
of a typical 1N4153 diode [368]. Figure 3(a) shows an abstract element form called

Fig. 2. (a) Diode element; (b) Current as a function of voltage for a 1N4153 diode.

a 2-port [144], which allows for the arbitrary definition of transfer function relation-
ships between two pairs of conductors. For example, i1(t) = f(v1(t),v2(t),i2(t)) or
i2(t) = f(v2(t),v1(t),41(¢t)). A generalization to an N-port allows for the arbitrary
definition of transfer functions from each of N ports to N —1 other ports. Port
transfer functions are usually provided in matrix form. The constitutive equations
for multi-terminal semiconductor devices may be viewed as specific instances of a
multi-port.

Finally, circuit simulation often uses two other abstract forms known as ideal
voltage and current sources. These are shown in Fig. 3(b—c). They are “ideal” in the
sense that their voltages and currents are not related by intrinsic device behavior,
but instead are functions of the circuit connections. Specifically, an ideal voltage
source has zero internal impedance, so its current is a function of the rest of the
circuit. Also, an ideal current source has an infinite internal impedance, so its voltage
is a function of the rest of the circuit. These ideal sources are important in equivalent
circuit modelling of real devices.
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Fig. 3. (a) Abstract 2-port element; (b) Ideal voltage source; (c) Ideal current
source.

3 Transient Circuit Simulation Device Modelling

3.1 Spice and Companion Modelling

A 1984 publication reviewing the history of circuit simulation [430] credits Rohrer
and a group of graduate students with finding that nonlinear circuit elements could
be modelled in the time domain by permitting an equivalent linear circuit of resistors
and ideal current sources to have their model values updated not just at time steps
within the simulation, but also at different iterates of a Newton iterative loop at
a given time step. (Partial disclosure of this technique was given in [362].) This
equivalent circuit model was first described as the “Associated Discrete Model” in
the literature [123], but more recently it has been termed simply a “companion
model.” Companion modelling became the standard method for implementing a
nonlinear device model in Spice, and it remains unchanged to this day.

Companion modelling usually features time discretization of the element’s equa-
tions and incremental linearization of the nonlinear models to permit Newton it-
eration. The effect of only time discretization only can be seen in the companion
models for linear capacitors and inductors [123,434]. Here the companion model for
a nonlinear device — a semiconductor diode — will be developed. In the equations
that follow, time will be discretized assuming the backward Euler rule and j will
indicate the iterate. The companion model begins with the constitutive equation:

Fw) = i) = 1. [exp (V(%)) - 1} . ()

Next, to facilitate Newton iteration, the partial derivative of (1) with respect to v
must be obtained:

o _ L (v
ov - Vr exp< Vr ' (2)
Substitute (1) and (2) into (3) defining the Newton iteration, yielding (4):
) . . J
F@TY = (7 + M) = f(o7) + 8];5]1; )Av = (3)

G417 i _1 £ i J+1 _ 4
i b{e}(p(VT) }—&—VTexp v (v ). (4)
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From the form of (4), it can be seen that the result is an equivalent circuit consisting
of an ideal current source (with value set during the previous iteration) and a resistor.
These terms are identified in (5) and (6). Time is not explicitly discretized in this
model, but time discretization is implied in the iterated voltage values, which are

functions of time.
vl I’ v’
L {e"p(vﬁ) ‘1} T e"p(vﬁ) )

J

Glq = %eXp (1%) : (6)
Consider now a simple circuit consisting of an ideal current source, a resistor,
and a diode as shown in Fig. 4(a). In this circuit, there is only one node other than
the reference node, and thus the Newton iteration is on only one equation. It is
still illustrative, but circuits with more than one node require Newton iteration on
vectors, requiring Jacobian matrices. For this simple circuit, the analysis task is to
determine the currents through the resistor and diode at all times. Note that the
resistor current is dependent on the diode voltage, so the solution depends wholly
upon the diode. The Spice transient analysis method substitutes the companion
model for the diode, transforming the circuit into the collection of resistors and cur-
rent sources shown in Fig. 4(b). Equations (7)—(8) show the results of the companion

model substitution. Applying KCL at the top node (or terminal) of Fig. 4,

J
I,

Lue = G 471 = T = Lo — G0 = T 4 gl (7)
it = Lo = leg ®
G+ giq

The Spice transient analysis routine performs Newton iteration at every time step,
updating the MNAM with new ggq values and the vector of sources with new ng
values at every iteration until convergence. At each iterate, the time step is reduced
so that the values of v/*! approach v’.

l i(t)
+

av(t) — I, CD ¢G> 1)

)
N
Q

£

11—
1

(a) (b)

Fig. 4. (a) Simple circuit containing a diode; (b) Equivalent circuit containing
companion model.

The advantage of companion modelling is now apparent. Through companion
model substitution, nonlinear behavior is reduced to a simple linear form. In addi-
tion, Spice transient analysis is reduced to a simple extension of Spice DC analysis
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with Newton iteration. However, the algebraic model form must be obtained by
mathematical analysis and inserted into the model code, and this form is not always
easily obtained. Moreover, an unfortunate consequence of updating model values as
a simulation progresses is that the MNAM contents change at every time step and at
every Newton iterate within a time step, and so the computationally expensive LU
factorization performed on the MNAM gets no reuse. Philosophically, the compan-
ion model is a mathematical abstraction that risks departing from the underlying
physics of the device to facilitate a simulation method consisting of equivalent circuit
models with very few elements.

3.2 fREEDA® and State Variable Based Modelling Using ADOL-C

In fREEDA®, device element models are faithful replicas of the physical equations
describing the device. Consider the currents and voltages at the ports of a nonlinear
device to be expressed as functions of independent parameters called state variables

(x()), i.e.,

volt) = v [x0). e Gk oo 0) ©
dx d™x

T ,dt—m,XD(t)] , (10)

where xp(t) is a time-delayed version of x(t). To avoid charge conservation problems
in transient analysis [122], (9)—(10) must be reformulated in stages as follows:

. Fu(x(t), xp(1))

stage 1 : {gl(x(t),xD(t)) (11)
J f2(f1(t), dgi /di)

stage 2 : {gg(f1(t),dgg1/dt) (12)

[ fnt (Fnes(t), dgn_s/dt)
stage n — 1 : {gnfl(fn72(t), dggn,g/dt) (13)

v(fp-1(t),dgn-1/dt)

stage n : {i(fnfl(t ,dggn,l/dt) (14)

An example and advantages of this formulation will be given in Sect. 4.3. All argu-
ments in (11)—(14) become ADOL-C active variables [228] so that the derivatives
of functions fi, g1, f2, etc. can be obtained automatically and used in the model
code. Derivatives are calculated in the forward mode in FREEDA®. Comparison
of forward and reverse modes is a matter for future research. Through the use of
object-oriented programming techniques, all device models are derived C++ classes
that inherit the characteristics of a C++ base class [120]. For nonlinear devices
in fREEDA®, “AdolcElement” is the base class, and other nonlinear devices are
derived classes as illustrated in the Unified Modelling Language (UML) diagram,
Fig. 5(a). Model developers describe the number of terminals and state variables
required for the element in the init() function of the derived class and implement
the nonlinear equations unique to the derived class in the eval() function for the
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Fig. 5. (a) UML diagram; (b) Transient simulation circuit partitioning.

derived class. If more than one stage is necessary, they are implemented in func-
tions called eval2() and eval3(). The AdolcElement class contains the interface to
ADOL-C for initializing and manipulating the ADOL-C ‘tapes’ of active variables.
AdolcElement also encapsulates and hides details of working with ADOL-C. Calls
to the eval() routine for the derived class are bracketed between ADOL-C trace
statements in the AdolcElement code. The calculation of total derivatives and time
delayed variables is performed by the TimeDomainSV or the FreqDomainSV classes,
depending on the type of analysis being performed. Thus, the same code can be used
in any circuit analysis. This is possible because time is discretized in the fREEDA®
transient analysis code and not in the device model code. ADOL-C is used to cal-
culate the derivatives of the functions at each stage and thus obtain the Jacobian
of the currents and voltages with respect to the state variables (as shown in [120]).
The procedure to obtain the Jacobian is embedded in AdolcElement so that model
developers need not code that in their derived classes. Absent ADOL-C, a state-
variable approach would require manual coding of the Jacobian matrices. Thus the
importance of the ADOL-C package to facilitating this state variable approach in
fREEDA® cannot be understated.

The results of evaluating (9)—(10) for each port are collected by the fREEDA®
state variable transient analysis routine into a vector of equations describing the
nonlinear portion of the circuit:

vNL(t) =V {x(t)7 %, e ,%7XD(1§):| (15)
i (1) :i{x(t),%,--~ ,%,XD@)} . (16)

The formulation of the system of equations for fREEDA®’s transient analysis
may now be described. Figure 5(b) shows the partitioning of the complete circuit
into linear and nonlinear portions, with the port abstractions for each nonlinear
device indicated. At the boundary between the linear and nonlinear portions, the
voltages must be equal. Thus two voltage vectors, one a function of the linear circuit
behavior and the other a function of the nonlinear circuit behavior, must be equal
and can be used to form an error function. Let the linear portion of the circuit in
Fig. 5(b) be described by two MNAMs, G and C, where G describes the linear static
elements (such as resistors), and C describes the linear dynamic elements (such as
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linear capacitors and inductors). Also, let u be the vector of unknown voltages and
currents and s be a vector of sources. Then,

Gu(t) + c%‘ —s(t) (17)
s(t) = se(t) +sv(t) . (18)

In (18), the source vector s is comprised of s¢, a vector of independent forcing
sources, and sy, a vector of currents injected by the nonlinear circuit into the linear
circuit. Now, through the use of an incidence matrix®, T, which specifies connec-
tivity information relating the circuit’s node assignments to its state variables, the
following relationships hold:

vi(t) = Tu(t) (19)
so(t) = T inw(t) . (20)
In (19), vi(t) is the vector of port voltages from the linear elements at the lin-

ear/nonlinear interface boundary. Substituting (20) into (17)—(18) and simplifying
yields the equation for the state of the system:

Gu(t) + C— = s;(t) + T inL(2) . (21)

Equation (21) is subject to the equation for the error function:
f(t) = vio(t) —vaL(t) =0 (22)
f(t) = Tu(t) + var(t) = 0. (23)

It was noted earlier in this section that time discretization does not occur within the
element class definition in fREEDA®:; instead it occurs within the analysis routine.
This has the dual advantages of simplifying the coding of the element classes and
also allowing for different time interpolating functions. fREEDA® allows a choice of
either Backward Euler or Trapezoidal interpolating functions. After discretizing the
vector of unknowns u(t), its derivative du(t)/d¢t is defined as

dl:liit) =u, =au, +bn_1, (24)

where the scalar a and vector b depend upon the choice of interpolating function.
Substituting the discretized u into (21),

Gu, + Clau, +bn_1] = st + T inw(xn) | (25)
and solving for u,,
w, = [G + aC] [st,n — Cbp_1 + T ine(x0)] - (26)
Discretizing the error function defined in (22-23),

3 The number of rows of T is equal to the total number of nonlinear ports and the
number of columns is equal to the number of nodes. For each row, a +1 entry
denotes the + terminal of a port, and a —1 denotes the — terminal. All other
entries are 0.
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f(xn) = Tu, — vNL(xn) = 0. (27)
Now, define the following quantities comprised of Tu,:

Ssv.n = T[G + aC] ™ '[st,, — Cby_1] (28)
M., = T[G +aC] 'T" . (29)

Substituting (28)—(29) into (27) leads to
f(xn) = Ssv,n + MsviNL - VNL(Xn) =0. (30)

For a fixed step size — usually the case — M, is a constant, and the matrix [G+aC] -1
appearing in (28)—(s29) is LU-factored only once per simulation.

4 Selected Modelling Examples

4.1 Ilustrative Comparison of Diode Models

The development of models for the semiconductor diode provides an illustrative
comparison. A full description of aspects of the Spice diode model development is
given in [434]. Details of the FREEDA® diode model are described in [118]. The
Spice companion model for a simplified diode model was described in Sect. 3.1, and
it was noted there that the process for developing companion models requires model
developers to perform derivatives on the constitutive equations and manually code
the derivative equations to facilitate Newton iteration. The fREEDA® code for the
init() and eval() functions for the simplified two parameter diode derived class is
shown in Listing 1. In this case, the eval() function is literally coding the constitutive
equations. These two functions take up only 17 lines of code. The complete C++
code and header files for the simplified diode are both only 56 lines long.

void DiodeJcn::init() throw(string&) {
// Set the number of terminals
setNumTerms (2) ;
// Set number of states
setNumber0fStates (1) ;
// create tape
IntVector var(1,0); // create vector of 1 element set to O
createTape(var) ; // creates state var x[0]

}

void DiodeJcn::eval(adoublev& x, adoublev& vp, adoublev& ip) {
vp[0] = x[0]; // x[0] == input voltage
ip[0] = is * ( exp(x[0]/vT) - 1 );

}

Listing 1. Critical model code for simplified diode.
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4.2 The Berkeley Short-channel IGFET Model Version 4 (BSIM4)

The Device Group at the University of California at Berkeley has been at the fore-
front of specifying semiconductor physics models for field effect transistors in the
most advanced semiconductor process technologies. Figure 6(a) shows the model
for a contemporary Metal Oxide Semiconductor Field Effect Transistor (MOSFET)
device. The first Field Effect Transistor (FET) models were published in 1968 and
had only 41 parameters to fully describe any transistor. In the 1980s, as semicon-
ductor process technologies continued to shrink the minimum size of their features,
other physical phenomena were observed which necessitated the addition of more
parameters to the models, and the BSIM models were created.

In 2000, a fourth major version of the BSIM models called BSIM4 was released.
Figure 6(a) shows the model for a contemporary short-channel MOSFET device
consisting of four terminals (gate, drain, source, and bulk). The BSIM4 device semi-
conductor physics model has over 200 parameters, and the current high level of
interest in this model makes it a good choice for a case study comparison of a Spice
model with a fREEDA® model. Such a study was completed by one of the authors,
who implemented the BSIM4 model in fREEDA® as a Master’s Thesis [315] in 2002.
Starting with the BSIM4 semiconductor physical model documentation, the model
consisted of about 1500 lines of C++ code in two files and on 25 printed pages,
and required 7 months to develop. Much of this time was spent implementing code
structures to support particular features of the BSIM models for the first time.

Due to industry involvement with UC-Berkeley in the development of the BSIM4
model, it is not possible to make precise development cycle comparisons with
fREEDA®, but from archival materials at UC-Berkeley, it can be observed [147]
that 21 months passed from the final BSIM3 release until the first BSIM4 release.
It is also known that the contemporary BSIM4 models consist of about 20,000 lines
of C code spanning 21 source code files [333]. It should be noted that Berkeley’s
MOSFET models are not the only ones available, and implementing other models
has proven to be less labor-intensive. For example, ETH-Switzerland’s EPFL-EKV
model [76], which has only 44 parameters, was implemented by one student [283]
as a semester project for a circuit simulation class at NC State University. At the
time, the student had limited knowledge of fREEDA®’s internals.
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Fig. 6. Equivalent circuit model schematic diagrams for the (a) MOSFET; (b)
Bipolar Junction Transistor (BJT).
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4.3 fREEDA® Universal Modelling Approach

A universal state variable-based modelling approach was proposed in [122]. The
central notion of this approach is to choose as state variables the quantities most
appropriate to accurately model the physical device as illustrated in Sect. (3.2), and
then derive any additional required variables through a set of hierarchically evalu-
ated functions. To illustrate the approach, consider the simplified NPN-type Bipolar
Junction (BJT) model of Fig. 6(b). By applying the universal modelling approach, it
is possible to create a device model for the BJT that conserves charge [122]. Charge
conservation has been a problem with some Spice MOSFET models [124,565], thus
rendering the models suspect to semiconductor physicists. Referring to Fig. 6(b),
the voltages across the base collector capacitor vn. and base emitter capacitor vpe
are chosen as state variables (or independent variables). A charge-conserving model
of the bipolar transistor is then described using three ADOL-C tapes. Each tape has
two input and two output variables. In tape 1 the quiescent current components I
and Iy are computed as

I .

Ibe = ot + Ile (31)
Br
Ibr

Ibc = — +Ilc ) (32)
Br

where (r is a current gain parameter, Ivt/Br and [ are the components of the
currents through the base-emitter diode, and I, /Br and [ic are components of the
the currents through the base-collector diode. The first output vector from tape 1
stores the charge across the base collector and base emitter capacitors which can be
evaluated as

gbe(v) = / Che (Vbe)dUbe (33)
0
e (V) =/ cbe (Vbe)dupe , (34)
0
where the integrals are evaluated analytically. The second output vector stores the

diode current components and junction voltages. The derivatives of the charge across
the capacitors,

dqbc

Icbe =

e = A (3)
dee

Icpe = )

e = 3 (36)

are input parameters in tape 2. These derivatives are obtained with a formula that
depends of the type of quadrature being used. The approximation of the time deriv-
atives is used to calculate the charge across the distributed base collector capacitor
Chx in a manner similar to that done in (33-34). Inputs to tape 3 contain the corre-
sponding charge in Chx and the junction voltages. In tape 3 the current across Chx
is computed in a manner analogous to (35-36), and the final external voltages and
currents are calculated using the intermediate variables generated at the previous
tapes.

The ADOL-C tapes are generated once and then used in the main program
every time the bipolar transistor model equations or its derivatives with respect



Circuit Simulation with fREEDA® and ADOL-C 307

to its input parameters are needed. The procedure to calculate the derivatives of
the model equations from the set of tapes is the same for all models [122] and
is handled by a base class common to all elements. Therefore, the addition of the
bipolar transistor model in fREEDA® is accomplished by adding a new derived class
(one “.cc” file and a header file) with the definition of the three ADOL-C tapes plus
other information such as the number of terminals and model parameter names. A
hierarchical state-variable approach similar to that shown here can be applied to
assure charge conservation in other nonlinear devices, and it is advocated for all
nonlinear devices.

5 Conclusion

Through a deft combination of the use of ADOL-C’s automatic differentiation capa-
bilities, object-oriented programming techniques to encapsulate and hide much of the
ADOL-C interfacing details from the model code, and choosing to discretize time
outside of device model code, fREEDA® has dramatically eased nonlinear circuit
device model development. The guiding philosophy behind fREEDA® is to facili-
tate the implementation of models as close to the physics of devices as possible. In
most cases, it is possible literally to code the constitutive equations for the device.
fREEDA® is freely available under GNU Public License at www.freeda.org.
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Summary. The design of a satellite boom using passive vibration control by Keane
[J. of Sound and Vibration, 1995, 185(3), 441-453] has previously been carried out
using an energy function of the design geometry aimed at minimising mechanical
noise and vibrations. To minimise this cost function, a Genetic Algorithm (GA) was
used, enabling modification of the initial geometry for a better design. To improve
efficiency, it is proposed to couple the GA with a local search method involving the
gradient of the cost function. In this paper, we detail the generation of an adjoint
solver by automatic differentiation via ADIFOR 3.0. This has resulted in a gradient
code that runs in 7.4 times the time of the function evaluation. This should reduce
the rather time-consuming process (over 10 CPU days by using parallel processing)
of the GA optimiser for this problem.

Key words: Reverse mode AD, hybrid GA-local search, structural dynamics, per-
formance, ADIFOR

1 Introduction

In space missions, lightweight cantilever structures are often used to suspend scien-
tific instruments, such as antenna, a few metres away from the satellite. An example
of this kind of structure is the satellite boom shown in Fig. 1. Vibrations can be
transmitted through the structure from satellite to the instrument. Such vibrations
can damage the boom structure or prevent it from being used for its intended pur-
pose. To ensure correct functioning of the instrument, the vibrations or mechanical
noise through the structure must be kept at tolerable levels. Typically, the structure
is excited by a point transverse force near an end beam, and the energy level is mea-
sured at the opposite end beam. To minimise vibrations and noise, the geometry of
the structure is modified to reduce the frequency average response of the satellite
boom. This is known as passive vibration control [296].

* This work is supported by UK’s EPSRC under grant GR/R85358/01
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Fig. 1. Initial geometry of the satellite boom.

In this paper, we consider the satellite boom of Fig. 1 described in Sect. 2.1 and
previously studied in [298,384]. The structural dynamics of the three-dimensional
satellite boom are modelled by a Fortran computer code named BEAM3D [476,477]
using receptance theory, whereby the behaviour of the global structure is predicted
from the Green functions of the individual components, evaluated as summations
over their mode shapes.

In previous work [298,384], the minimisation of the frequency average response
(in the range 150-250 Hz) at the end beam was carried out to find a superior
design or geometry. For that purpose, a Genetic Algorithm (GA) was used. GAs
are known to work for fairly large cost with a good chance of finding the global
minimum. Generally, GAs do not require the gradient of the cost function. However,
the application of GAs in large scale industrial applications is limited due to the
large number of expensive evaluations of the cost function. For our application, the
first 10 generations for a population size of 100 took over 10 days to complete using
parallel processing [298].

Attention has now shifted to a hybrid genetic algorithm-local search approach
combining Darwinian and Lamarckian evolution models. Darwinian evolution, based
on “natural selection” considers that the most fit individuals are likely to survive.
Lamarckian evolution takes the view that individuals may improve within their envi-
ronment as they become adapted to it and that the resulting changes are inheritable.
Consequently, the genotype of an improved individual is forced to reflect the result
of such an improvement by replacing the individual into the population for reproduc-
tion [417]. In our application, the local search is carried out using a gradient method,
which requires the calculation of the gradient of a cost function F : R%® — R. Here,
the 90 inputs are the coordinates of the joint positions in the design geometry and
represent the independent variables. The computation of transmitted power F(x)
involves complex variable calculations, which are handled by ADIFOR 3.0 [96] since
the dependents and independents are real values [445].

In theory, the gradient VF' of such a function is cheaply calculated using the
reverse mode since the cost of the gradient is independent of the number of the
independents and is bounded above by a small factor of the cost of evaluating
the function [225]. In practice, large memory requirement may prohibit use of the
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adjoint code (reverse AD generated code). This paper details the differentiation of
the BEAM3D code by the ADIFOR, the successor of the AD tool ADIFOR 2.0 [57].
ADIFOR employed in reverse mode produces an adjoint code which, after being tuned
manually for performance enhancement, calculated the function and its gradient in
7.4 times the CPU time required for its function evaluation. Moreover, the adjoint
code runs 12.6 times faster than one-sided finite-differencing (FD) on a Sun Blade
1000 machine with 1200 MHz CPU, 8 MB external cache and 2 GB RAM.

2 Optimisation of the Boom Structure

We aim at minimising vibrations through the structure represented in Fig. 1. There
are at least three ways to achieve this: increasing the mass of elements or coating
elements with damping material, using active anti-vibration to cancel unwanted
vibrations; and as considered here, modifying the geometry of the structure to filter
and reflect the vibrations.

2.1 The Initial Geometry

The initial boom structure to be optimised is three-dimensional and composed of
90 Euler-Bernouilli beams each having the same properties per unit length. Because
the structure is used to mount a scientific instrument away from a space satellite,
the length of the boom structure must be chosen within reasonable limits. Typical
values of the aluminium were used for the physical properties of the beams. The bay
length is 45 cm, and the overall length of the boom structure is 4.5 m.

The beams were arranged in a regular manner along the XYZ axes so that the
YZ cross-section of the boom structure formed an equilateral triangle. The three
joints at the left hand end of the structure were fixed, i.e., they were clamped to
prevent motion. The beams were connected together with 30 free joints. Geometric
constraints were used to avoid beams overlapping or becoming extremely long. The
free joints were kept within fixed distances of their original positions. The connec-
tivity of the diagonal beams was chosen so that a maximum of six beams met at
any one joint.

Typically, the structure is excited by a point transverse force applied to a left
hand end beam of the structure. The vibrational energy level is calculated at a right
hand end beam using receptance methods [296]. The optimisation aims at minimising
the vibrations by minimising the frequency averaged response in the range 150 — 250
Hz. For that purpose, the optimiser is allowed to modify the geometry of the satellite
boom by changing the coordinates of the 30 free joints in the structure.

2.2 An Optimised Geometry

A GA from the optimisation software package [297] was used to generate an opti-
mised boom geometry by improving the frequency response curve. The principles of
a GA can be found in [217]. In short, GAs work on the premise that a population
of competing individuals can be combined to produce improved individuals. They
mimic “natural” selection, or Darwinian evolution. The number of generations and
their population size are usually chosen in advance. Common operations are:
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e selection: whereby the fittest individuals are chosen to “inter-breed” and pass
their attributes to their offspring.

e crossover: where random portions of two of the most fit individuals are combined
to form a new individual.

e mutation: where small changes are introduced to one individual at a time.

As reported in [384], an optimised design geometry was obtained using an ob-
jective function F' set to be the square root of the sum of velocity squared in the
X, Y, Z directions for the end three joints labelled 31,32 and 33,

33
F= Do VEHVE VS
freq ;=5

A run of the GA for 10 generations and a population size of 300, gave the novel design
geometry of the boom structure shown in Fig. 2. However, GAs applied to large-
scale optimisation problems can take CPU days even using parallel processing [298].
To enhance their performance, they may be combined with local search methods.

Fig. 2. An optimised geometry of the satellite boom.

2.3 Coupling GAs and Local Search Methods

For optimizing the design of the satellite boom of Fig. 1, a GA coupled with a local
search method based on gradient descent should outperform a stand-alone GA. We
aim to make them efficient by taking advantage of the accuracy and efficiency of
gradient calculation by reverse mode AD.

In essence, the hybridised GA-Local Search method performs similar steps to
that of the GA except that each individual of the population is locally improved
using a local search method, here steepest descents, following the meta-Lamarkian
learning approach as shown in Fig. 3 and detailed in [417]. In Fig. 3, the while loop
is executed until either ¢ exceeds some maximum number of generations tmgz or
convergence is detected. We now detail the differentiation of the BEAM3D code to
enable the gradient descent method of the hybrid algorithm.
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t=0
Initialise a GA population P(t¢) = {x1,x2,...,x™}
While ( EndCondition is not satisfied )
Evaluate Fitness(P(t)) giving F(x1), F(x2),...,F(x™)
For each individual x' € P(t)
Improve X' using the Gradient Descent method GD(x')
Replace x' by the improved x%., = GD(x') in P(t)
EndFor
Generate P(t+1) from the x%., by using standard
GA operations (Selection, Mutation, or Crossover).
t=t+1
EndDo

Fig. 3. Hybrid GA-Gradient Descent Method.

3 Differentiation of the BEAMS3D Code

The BEAMS3D code, as sketched in Fig. 4, starts by reading in data from files
representing the boom geometry and certain properties of each beam. Given extra
information such as the range of frequencies over which to solve, the number of data
points within the specified frequency range, the joint numbers at which to calculate
the energies, and the number of axial[torsional] and transverse modes in the modal
summations for the Green functions; the program builds up a linear complex system
Af = b for nodal forces f and solves it for each frequency. An averaged energy
function is calculated at the specified end beam.

Read in:
No. of beams, beam properties, and list of connections
Frequency range [Wmin,Wmaz, N] (N = No. of frequencies)
Coordinates of beam ends X, ;
Calculate some geometric information
Initialise F' =0 (integral of power)
Aw = (Wmaz — Wmin)/(N — 1)
For k=1,N
W= wmin + (k—1) x Aw
Assemble:
Green Function Matrix A(x,iw)
r.h.s. forcing b(x,iw)
Solve A(x,iw)f = b(x,iw) (LAPACK) - 507 of CPU time
Obtain displacement D, ; at ends of beam n
Obtain power P = SRe(f; D, ;)
Update integral F = F + P2x Aw
End For

Fig. 4. Schematic of the BEAM3D code.
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We aim to calculate the sensitivities of the energy function with respect to the
coordinates of the free joints. This represents a gradient calculation with 90 indepen-
dent variables. Prior to differentiation, the code was restructured so all reading of
data is done outside the subroutines to be differentiated. Furthermore, to allow the
code to be processed by ADIFOR, the code was rewritten according to the Fortran 77
standard. Actually, the original code contained (non-standard) language extensions
in the form of structures defined as follows:

STRUCTURE /PROPERTY/
INTEGER ID
CHARACTER*6 ENDCON
DOUBLE PRECISION ANGLE(3,3)
DOUBLE PRECISION LENG

COMPLEX *16 FM2
END STRUCTURE
RECORD /PROPERTY/ BEAM(150)

This structure is replaced using arrays corresponding to the components of the
structure. The restructured code contains the following array declarations:

INTEGER BEAM_ID(150)

CHARACTER*6 BEAM_ENDCON(150)

DOUBLE PRECISION BEAM_ANGLE(3,3,150)
DOUBLE PRECISION BEAM_LENG(150)

COMPLEX*16 BEAM_FM2(150)

A sed [153] script was written to replace any instance BEAM(I) .X(K,J), where
X represents any component of the structure, by the array element BEAM X(X,J,I).
If X is a scalar variable, obviously no indices are used. The resulting computer code
is differentiated using FD, and AD via ADIFOR.

3.1 Initial Differentiation

We first computed a single directional derivative y = VF(x)x for a random direction
%, by using one sided FD, AD in forward mode, and a single adjoint x = VF(x)"y
for y = 1 via reverse mode AD. By definition of the adjoint operator, we have
Yy = XX, which allows us to validate the results of the differentiation. The initial
ADIFOR generated codes gave incorrect results inconsistent with those from FD,
caused partly by non-differentiable statements in the code for the function F'.

3.2 Dealing With Non-Differentiability

A major assumption in AD is that the function F' to be differentiated is com-
posed of elemental functions ¢ that are continuously differentiable on their open
domains [225]. At a point on the boundary of an open domain, F' is continuous,
but VF may jump to a finite value or even infinity. This is important when the
computer code that represents the function contains branches, some kink functions
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(e.g., abs), or inverse functions (e.g., sqrt, arctan, or arccos). To compute reliable
derivatives, such pathological cases must be handled correctly. It is known that these
cases can be tackled by calculating derivatives in a given direction [225]. Insights or
knowledge of the computer code can also be exploited. The BEAM3D code contains
at least two types of non-differentiability.

12 = datan2(xdiff,zdiff)

m2 = dsqrt(xdiff*xdiff+zdiff*zdiff)/beam_leng(i)
sgnl = -1.0d0

sgn2 = -1.040

sgn3 = -1.0d0

if (xdiff.1t.0.0d0) sgnl = -sgni

if (ydiff.gt.0.0d0) sgn2 = -sgn2

if (zdiff.1t.0.0d0) sgn3 = -sgn3

yor(1,i) = sgnl*dabs(dsin(dacos(m2))*dsin(12))
yor(2,i) = sgn2*dabs(m2)

yor(3,i) = sgn3*dabs(dsin(dacos(m2))*dcos(12))

Fig. 5. A code fragment that is non-differentiable.

The first type of non-differentiability is due to the presence of the functions
arccos and abs. ADIFOR allows us to locate possible non-differentiable points by
generating the derivative code with the Exception Handling enabled [96]. On running
this code, warnings were raised concerning the functions arccos and abs. The part
of the code, containing such anomalies is shown in Fig. 5. We then used algebra
and trigonometric formula to rewrite some of the algebraic expressions containing
(arccos, abs, sin and tan) as in Fig. 6.

This transformation resulted in equivalent expressions calculating the same val-
ues but differentiable in the vicinity of their arguments.

mytl = ydiff/beam_leng(i)

myt2 = dsqrt(xdiff*xdiff+zdiff*zdiff)
sgnl = -1.0d0

sgn2 = -1.0d0

sgn3 = -1.0d0

if (xdiff.1t.0.0d0) sgnl = -sgnl
if (ydiff.gt.0.0d0) sgn2 = -sgn2
if (zdiff.1t.0.0d0) sgn3 = -sgn3
yor(1,i) = sgnl*mytl*xdiff/myt2
yor(2,i) = sgn2*myt2/beam_leng(i)
yor(3,i) = sgn3*mytl*zdiff/myt2

Fig. 6. An equivalent but differentiable version of the code fragment of Fig. 5.
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The second type of non-

differentiability encountered in if (xdiff.eq.0.0 .and. ydiff.eq.0.0)
BEAMB3D was due to a branching then

construct illustrated by the code yor(1,i) = zdiff/beam_leng(i)
fragment of Fig. 7. As xdiff and yor(2,i) = 0.0

ydiff are active variables, the dif- yor(3,i) = 0.0

ferentiation of this code fragment else ....

gave point-valued derivatives that

prevented the function F from be- Fig. 7. A code fragment testing whether an
ing differentiable. Such branches active variable is zero.

represent constraints on the de-

sign geometry and, in our case, may be safely removed.

Finally, the complex linear solver Af=b employs the LAPACK routine zgesv [7].
Differentiating the LAPACK source code routines for zgesv using an AD tool without
taking account insights into the nature of the linear solver would give inefficient code.
Mechanical generation of the zgesv derivative by ADIFOR gave not only inefficient
code but also results inconsistent with FD. Therefore, we hand-coded its derivative
as described in Sect. 3.3.

3.3 Complex Linear Solver

Instead of using ADIFOR to differentiate the complex linear solve,
Af=b, (1)

of the LAPACK routine zgesv, we instead use hand-coding for both forward and
reverse mode. Differentiating Af = b, using the matrix-equivalent of the product
rule for a single directional derivative, we obtain Af + Af = b, and giving the
derivatives f by the solution of

Af =b — Af . 2)

In the forward mode, we may re-use the LU-decomposition of A to solve efficiently
for the derivatives f. The following procedure is used:

1. Perform an LU decomposition of the matrix A
2. Solve Af=Db

3. Form bpew = b— Af

4. Re-use LU-decomposition to solve Af = brew

A and b are calculated by applying ADIFOR to the Assemble procedure in Fig. 4.
For the reverse mode, deriving the adjoint update corresponding to (1) is more
problematic. Defining C = A™!, we may write

f = Cb — CAf .
Then f}, the i** element of f', is given by

fi=Y cubi =Y cij ) amfu. ()
i J P
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where c¢ij, ajk, i)j, and fr are the elements of C, A, B, and f, respectively. Now
we use the identity yy = xx for the system y = F(x) [225, Equation (3.7)]. In the
context of the vector and matrix arguments of the system (1), this identity gives

IR SIS 3 ot o
From (3), we obtain l l o

S Rh = YR ey - YA e Y
by reordering sunzmations, - - k

DFife=2b 3 eufi= Y amfid ek,
and by swapping ilndices (i, JJ k) u: (k,i,7), o l

Z fifi = Z bs Z cjifi — Z Z aij fj 2}; ckifi -

5 i i

Comparing with (4), we see that
b= cify,
J

giving b = CTf = A~TF, or that b is the solution of
ATb=T. (5)
Similarly,

dij = —fi Yy cife = —fibi, or
k

A =—bf". (6)
The adjoint b is updated by solving the linear system (5), while A is updated by
adding the right hand side of the equation (6). Adjoint formulae (5) and (6) are
equivalent to those given in [520].
Using (5) and (6), we obtain the following procedure for the adjoint of the linear
solve:
1. In the forward sweep,
a) Perform an LU decomposition of the matrix A,
b) Store L and U and the pivot sequence IPIV,
c) Solve Af =b.
2. In the reverse sweep,
a) Load L and U and the pivot sequence IPIV,
b) Solve ATb = f for b,
c) Update A = A —bf”.
Since both A and b depend on the beam endpoint location x (see Fig. 4), the
adjoined linear solver must modify their adjoints A and b. The adjoint for A is the
usual increment, while for b it is an assignment because the LAPACK routine zgesv
overwrites b with f. Here, the memory storage is dramatically reduced compared
with black-box application of ADIFOR. If A is an N X N matrix, we store only N2
complex coefficients instead of O(IN3) when ADIFOR tapes all variables on the left
of assignment statements in the LU decomposition.
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3.4 Initial Results and Validation

After implementing the procedures described in Sect. 3.2 and 3.3 on the ADIFOR
generated code, we obtained tangent and adjoint derivative codes that calculate
directional derivatives consistent with one-sided FD. The obtained codes were com-
piled with maximum compile optimisations and run on a Sun Blade 1000 machine.
Table 1 shows the results and timings of forward mode AD, reverse mode AD, and
one-sided FD for that calculation. These results showed that forward and reverse
AD gave the same directional derivative value within roundoff, while the maximum
difference with the FD result is around 1076. This difference is of the order of the
square root of the machine relative precision. This validates the AD results as being
in agreement with the one-sided FD result.

Table 1. Results for a single directional derivative, timings are in CPU seconds.

Method XX vy CPU(F, VF)
FD (1-sided) 0.124578003587  48.7
ADIFOR (fwd) 0.124571139127  54.0
ADIFOR(rev) [0.124571139130 3115

From Table 1, we see that while the AD reverse mode calculates the gradient in
around 5 minutes, one-sided FD and forward AD requires 91 function evaluations
and 90 directional derivatives respectively and consequently run times of over 35
minutes. We see that using reverse mode AD can speed up the gradient calculation
by a factor of around 7 over FD while giving accurate derivatives. However, the core
of the calculation (building the linear system, solving it, and calculating the local
energy contribution for each frequency) of the BEAMS3D code is an independent
loop and therefore can be differentiated in parallel as we now describe.

4 Performance Issues

Usually, after checking that the AD forward and reverse modes agreed with the finite
differences, we seek to improve efficiency of the automatically generated code. As
shown by the results of Table 1, the reverse mode is superior to the finite differences
and forward mode, but it requires a very large amount of memory to run because
the tape required 12 GB. By hand coding the adjoint of the linear solver, we reduced
the size of the tape to around 6 GB.

Furthermore, the core of the calculation of the BEAM3D code is carried out in a
parallel loop, which is the loop over k in Fig. 4. Because the iterations of such a loop
are independent, we can run the loop body taping all the required information in just
one iteration, then immediately adjoin the body of the loop [254]. This reduced the
tape size of the adjoint code to around 0.3 GB. This represents a memory reduction
by a factor of 20, the number of extra iterations performed by the parallel loop.

The second row of Table 2 shows that after this optimisation, the ratio between
the gradient calculation and the function is 7.4. It also shows a speed up factor of
12.6 over the popular one-sided FD method.
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Table 2. CPU Timings (in Seconds) on a SUN Blade 1000, UltraSparclIIL.

Method CPU(F,VF) CPU(F,VF)/CPU(F)
ADIFOR(rev.) 311.5 13.3
ADIFOR(rev.,par.) 174.7 74
FD (1-sided) 2215.9 93.1

5 Conclusions

ADIFOR allowed us to build an adjoint for a code that makes extensive use of com-
plex variable arithmetic to accurately calculate the gradient of a cost function. The
adjoint code requires only 7.4 times the CPU time of the original function code,
and the memory requirement for taping is a modest 0.3 GB. It also runs 12.6 times
faster than calculating the gradient using one-sided finite differencing.

Future work is planned to compare the performance of gradient calculation using
both ADIFOR [96] and TAF [163] capabilities. The design optimisation of the light-
weight cantilever structure will be carried out using the meta-Lamarckian learning
strategy [417], which efficiently combines GAs with local search methods. The re-
duction in computational time of the gradient calculation will be of great benefit in
allowing the meta-Lamarckian algorithm to be used to optimise the design of boom
structures.
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Summary. This is a bibliography of scientific literature cited by all chapters in
the volume, Automatic Differentiation: Applications, Theory, and Implementations,
Martin Biicker, George Corliss, Paul Hovland, Uwe Naumann, and Boyana Nor-
ris (eds.), Springer, New York, 2005 [78]. The collection contains more than 570
references, mostly related to automatic differentiation.

Key words: Automatic differentiation, autodiff.org

Comments

Following the tradition of the collections devoted to the three previous international
conferences on automatic differentiation at Breckenridge [227], Santa Fe [42] and
Nice [136], this bibliography represents the common list of references for all chapters
in this volume [78]. For each chapter, the authors compiled a separate bibliography;
the resulting bibliographies were merged into a single BIBTEX database. Since all
papers from the three previous volumes [42,136,227] are also contained, the present
database includes most widely cited work in automatic differentiation (AD) as well
as many references from other scientific disciplines that are not directly related to
AD, but in which AD applications have been described in [78].

The Web site http://wuw.autodiff.org is currently set up to serve as the cen-
tral Web-based information resource for the AD community. The BIBTEX database
of this volume [78] will be available there. While still in its infancy, the community
portal tries to be useful for research in AD by providing an extensive AD publication
database. To this end, the collected BIBTEX bibliographies by Corliss [132,134,566]
were taken as the starting point, from which all references not directly related to
AD were removed. The goal is to provide a collection of AD references that are
structured by a coarse classification scheme consisting of the three categories

e application area,
e tools,
e theory and techniques.
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Syntactically, the three categories are specified by three additional fields in the
database, namely ad_area, ad-tools and ad_theotec, which are ignored by BIBTEX.
An entry in this database is classified by specifying one or more of these categories.
For instance, a paper using the AD tool TAF in a chemical application could be
classified by adding the following two fields:

Qarticlefkey,
ad_tools = "TAF",
ad_area = "Chemistry",
}

As a second example, consider a more theoretical paper investigating a check-
pointing strategy. Adding the following field would be an appropriate classification:

Qarticlefkey,

ad_theotec = "Checkpointing, Reverse Mode",

}

The benefit of this classification is that, by searching the publication database
of autodiff.org, the AD research community can find adequate references on a
certain topic. Though the number of references that are currently classified is limited,
the database is already useful today for finding AD references on, say, parallelism.

More information on autodiff.org’s classification system is available at http:
//www.autodiff.org/Publications/info.php. The editors hope that researchers
publishing in the field of AD will actively classify and submit BIBTEX entries of
their work to autodiff.org, helping other researchers to find their way through the
extensive literature of automatic differentiation.
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