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Preface to the Third Edition

The main focus of extreme value theory has been undergoing a dramatic change.
Instead of concentrating on maxima of observations, large observations are now
in the focus, defined as exceedances over high thresholds. Since the pioneering
papers by Balkema and de Haan (1974) and Pickands (1975) it is well known that
exceedances over high thresholds can reasonably be modeled only by a generalized
Pareto distribution. But only in recent years has this fact been widely spread
outside the academic world as well.

Just as multivariate extreme value theory was developed roughly thirty years
after its univariate basis was established, we presently see the theory of multivariate
exceedances and, thus, the theory of multivariate generalized Pareto distributions
under extensive investigation.

For that reason, one emphasis of the third edition of the present book is given
to multivariate generalized Pareto distributions, their representations, properties
such as their peaks-over-threshold stability, simulation, testing and estimation.
Concerning this matter, the third edition in particular benefits from the recent
PhD-theses of René Michel and Daniel Hofmann, who both made substantial con-
tributions to the theory of multivariate generalized Pareto distributions, mainly
concentrated in Section 4.4, Chapter 5 and 6. We are in particular grateful to René
Michel, who coauthored these parts of the present edition with high diligence.

Exceedances of stochastic processes and random fields have been further con-
sidered in recent years, since the publication of the second edition. These new
developments are discussed in additional sections or paragraphs. For instance, we
deal with crossings of random processes in a random environment or with ran-
dom variances, and crossings or level sets of smooth processes. Also maxima of a
multi-fractional process, a recently introduced new class of random processes, are
investigated.

The following contributions of co-authors are also gratefully acknowledged:

• Isabel Fraga Alves, Claudia Neves and Ulf Cormann: the modeling and test-
ing of super-heavy tails in conjunction with log-Pareto distributions and a
class of slowly-varying tails in Section 2.7

• Melanie Frick: testing against residual dependence in Section 6.5.
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We are thankful to Holger Drees for pointing out a misarrangement of the
text in the first chapter and to Laurens de Haan for correcting the erroneously
assigned von Mises condition in the second chapter of the second edition.

Würzburg Michael Falk
Bern Jürg Hüsler
Siegen Rolf-Dieter Reiss



Preface to the Second Edition

Since the publication of the first edition of this seminar book in 1994, the theory
and applications of extremes and rare events have received an enormous, increasing
interest. This is primarily due to its practical relevance which is well recognized in
different fields such as insurance, finance, engineering, environmental sciences and
hydrology. The application of extreme value theory in hydrology has a particularly
long and fruitful tradition. Meanwhile there are various specialized books available
which focus on selected applications.

Different to that, the intention of the present book is to give a mathematically
oriented development of the theory of rare events, underlying all applications. In
the second edition we strengthen this characteristic of the book. One of the conse-
quences is that the section on the statistical software Xtremes and the pertaining
CD are omitted, this software is updated and well documented in [389]. Various
new results, which are scattered in the statistical literature, are incorporated in
the new edition on about 130 new pages.

The new sections of this edition are written in such a way that the book
is again accessible to graduate students and researchers with basic knowledge in
probability theory and, partly, in point processes and Gaussian processes. The
required statistical prerequisites are minimal.

The book is now divided into three parts, namely,

Part I: The IID Case: Functional Laws of Small Numbers;

Part II: The IID Case: Multivariate Extremes;

Part III: Non-IID Observations.

Part II, which is added to the second edition, discusses recent developments
in multivariate extreme value theory based on the Pickands representation of ex-
treme value distributions. A detailed comparison to other representations of such
distributions is included. Notable is particularly a new spectral decomposition of
multivariate distributions in univariate ones which makes multivariate questions
more accessible in theory and practice.



viii Preface

One of the most innovative and fruitful topics during the last decades was
the introduction of generalized Pareto distributions in the univariate extreme value
theory (by J. Pickands and, concerning theoretical aspects, by A.A. Balkema and
L. de Haan). Such a statistical modelling of extremes is now systematically devel-
oped in the multivariate framework. It is verified that generalized Pareto distribu-
tions play again an exceptional role. This, in conjunction with the aforementioned
spectral decomposition, is a relatively novel but rapidly increasing field. Other
new sections concern the power normalization of extremes and a LAN theory for
thinned empirical processes related to rare events.

The development of rare events of non-iid observations, as outlined in Part
III, has seen many new approaches, e.g. in the context of risk analysis, of telecom-
munication modelling or of finance investigations during the last ten years. Very
often these problems can be seen as boundary crossing probabilities. Some of these
new aspects of boundary crossing probabilities are dealt with in this edition. Also
a subsection on the recent simulation investigations of Pickands constants, which
were unknown up to a few values, is added. Another new section deals in detail
with the relations between the maxima of a continuous process and the maxima of
the process observed at some discrete time points only. This relates the theoretical
results to results which are applied and needed in practice.

The present book has benefitted a lot from stimulating discussions and sug-
gestions. We are in particular grateful to Sreenivasan Ravi for contributing the
section on power normalization of extremes, to René Michel, who helped with
extensive simulations of multivariate extremes, and to Michael Thomas for the
administration of our version control system (cvs) providing us with the technical
facilities to write this book online. We thank Johan Segers for pointing out an error
in one of the earlier definitions of multivariate generalized Pareto distributions in
dimensions higher than two, which, on the other hand, actually links them to the
field of quasi-copulas.

We would also like to thank the German Mathematical Society (DMV) for
the opportunity to organize the symposium Laws of small numbers: Extremes
and rare events during its annual meeting 2003 at the University of Rostock,
Germany. This turned out to be quite a stimulating meeting during the writing
of the final drafts of this book. Last, but not least we are grateful to Thomas
Hempfling, Editor, Mathematics Birkhauser Publishing, for his continuous support
and patience during the preparation of the second edition.

Würzburg Michael Falk
Bern Jürg Hüsler
Siegen Rolf-Dieter Reiss



Preface to the First Edition

In the first part of this book we will develop a theory of rare events for which a
handy name is functional laws of small numbers. Whenever one is concerned with
rare events, events with a small probability of occurrence, the Poisson distribution
shows up in a natural way.

So the basic idea is simple, but its applications are nevertheless far-reaching
and require a certain mathematical machinery. The related book by David Al-
dous entitled “Probability Approximations via the Poisson Clumping Heuristic”
demonstrates this need in an impressive way. Yet this book focuses on examples,
ranging over many fields of probability theory, and does not try to constitute a
complete account of any field.

We will try to take another approach by developing a general theory first and
then applying this theory to specific subfields. In prose: If we are interested only
in those random elements among independent replicates of a random element Z,
which fall into a given subset A of the sample space, a reasonable way to describe
this random sample (with binomial sample size) is via the concept of truncated
empirical point processes. If the probability for Z falling into A is small, then the
Poisson approximation entails that we can approximate the truncated empirical
point process by a Poisson point process, with the sample size now being a Poisson
random variable. This is what we will call first step Poisson process approximation.

Often, those random elements falling into A follow closely an ideal or limit-
ing distribution; replacing their actual distribution by this ideal one, we generate
a second step Poisson process approximation to the initial truncated empirical
process.

Within certain error bounds, we can therefore handle those observations
among the original sample, which fall into the set A, like ideal observations, whose
stochastic behavior depends solely upon a few (unknown) parameters. This ap-
proach permits the application of standard methods to statistical questions con-
cerning the original and typically non-parametric sample.

If the subset A is located in the center of the distribution of Z, then regression
analysis turns out to be within the scope of laws of small numbers. If the subset
A is however located at the border, then extreme value theory is typically covered
by our theory.
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These specifications will lead to characteristic results in each case, and we
will try in the following to convey the beauty of the laws of small numbers and
several of their specific applications to the reader. In order to keep a more informal
character, the proofs of several results are omitted, but references to detailed ones
are given.

As the Hellinger distance provides a more accurate bound for the approxi-
mation of product measures in terms of their margins, as does the Kolmogorov-
Smirnov or the variational distance, we will focus in the first part of this book on
the formulation of laws of small numbers within the Hellinger distance.

The second part of the book concentrates on the theory of extremes and
other rare events of non-iid random sequences. The rare events related to stationary
sequences and independent sequences are considered as special cases of this general
setup. The theory is presented in terms of extremes of random sequences as well
as general triangular arrays of rare events.

Basic to the general theory is the restriction of the long range dependence.
This enables the approximation of the point process of rare events by a Poisson
process. The exact nature of this process depends also on the local behavior of the
sequence of rare events. The local dependence among rare events can lead in the
non-iid case to clustering, which is described by the compounding distribution of
the Poisson process. Since non-stationarity causes the point process to be inhomo-
geneous, the occurrence of rare events is in general approximated by an extended
compound Poisson process.

Part I of this book is organized as follows: In Chapter 1 the general idea
of functional laws of small numbers is made rigorous. Chapter 2 provides basic
elements from univariate extreme value theory, which enable particularly the in-
vestigation of the peaks over threshold method as an example of a functional law of
small numbers. In Chapter 3 we demonstrate how our approach can be applied to
regression analysis or, generally, to conditional problems. Chapter 4 contains ba-
sic results from multivariate extreme value theory including their extension to the
continuous time setting. The multivariate peaks over threshold approach is studied
in Chapter 5. Chapter 6 provides some elements of exploratory data analysis for
univariate extremes.

Part II considers non-iid random sequences and rare events. Chapter 7 intro-
duces the basic ideas to deal with the extremes and rare events in this case. These
ideas are made rigorous in Chapter 8 presenting the general theory of extremes
which is applied to the special cases of stationary and independent sequences.
The extremes of non-stationary Gaussian processes are investigated in Chapter 9.
Results for locally stationary Gaussian processes are applied to empirical charac-
teristic functions. The theory of general triangular arrays of rare events is presented
in Chapter 10, where we also treat general rare events of random sequences and
the characterization of the point process of exceedances. This general approach
provides a neat unification of the theory of extremes. Its application to multivari-
ate non-stationary sequences is thus rather straightforward. Finally, Chapter 11
contains the statistical analysis of non-stationary ecological time series.



Preface xi

This book comes with the statistical software system XTREMES, version 1.2,
produced by Sylvia Haßmann, Rolf-Dieter Reiss and Michael Thomas. The disk
runs on IBM-compatible personal computers under MS-DOS or compatible op-
erating systems. We refer to the appendix (co-authored by Sylvia Haßmann and
Michael Thomas) for a user’s guide to XTREMES. This software project was par-
tially supported by the Deutsche Forschungsgemeinschaft by a grant.

This edition is based on lectures given at the DMV Seminar on “Laws of
small numbers: Extremes and rare events”, held at the Katholische Universität
Eichstätt from October 20-27, 1991.

We are grateful to the Mathematisches Forschungsinstitut Oberwolfach and
its director, Professor Dr. Martin Barner, and the Deutsche Mathematiker Ver-
einigung for their financial and organizational support. We are indebted to the
participants for their engaged discussions and contributions, and to Birkhäuser
Verlag for giving us the opportunity to publish these seminar notes.

It is a pleasure to thank Nese Catkan, Hans-Ueli Bräker, Frank Marohn and
Sylvia Haßmann for their continuing support and Helma Höfter for her excellent
typesetting of the manuscript using LATEX, so that we could concentrate on the
project.

Eichstätt Michael Falk
Bern Jürg Hüsler
Siegen Rolf-Dieter Reiss
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Part I

The IID Case:
Functional Laws
of Small Numbers



Chapter 1

Functional Laws
of Small Numbers

We will develop in the following a particular extension of the well-known Poisson
approximation of binomial distributions with a small hitting probability, which is
known as the law of small numbers. This extension, which one might call functional
laws of small numbers, links such seemingly different topics like non-parametric
regression analysis and extreme value theory.

1.1 Introduction

The economist Ladislaus von Bortkiewicz, born 1868 in St. Petersburg (that Rus-
sian town, whose name was changed several times during this century: 1703-1914
St. Petersburg, 1914-1924 Petrograd, 1924-1991 Leningrad, since 1991 St. Peters-
burg again), Professor in Berlin from 1901 until his death in 1931, was presumably
one of the first to recognize the practical importance of the Poisson approximation
of binomial distributions. His book The law of small numbers [51] popularized the
Poisson distribution although - or perhaps because - his examples on the number of
children suicides per year in certain parts of the population or of accidental deaths
per year in certain professions are a bit macabre. His most popular example is
on the number of Prussian cavalrymen killed by friendly horse-kick: The following
table summarizes the frequencies nk of the number k of cavalrymen killed in a
regiment by horse-kicks within one year in ten particular regiments of the Royal
Prussian army over a twenty years period

number of victims k 0 1 2 3 4 ≥ 5
frequency nk 109 65 22 3 1 0 .

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,  
DOI 10.1007/978-3-0348-0009-9_1, © Springer Basel AG 2011 



4 1. Functional Laws of Small Numbers

As observed by von Bortkiewicz [51], a Poisson distribution Pλ with para-
meter λ = .61 fits these data quite well:

number k 0 1 2 3 4 ≥ 5
relative frequency nk/200 .545 .325 .11 .015 .005 0
theoretical probability P.61({k}) .543 .331 .101 .021 .003 .001.

The Law of Small Numbers

If we model the event that an individual trooper is killed by a horse-kick within one
year by a binary random variable (rv) R that is, R ∈ {0, 1} with R = 1 representing
accidental death, then the total number K(n) of victims in a regiment of size n is
binomial distributed (supposing independence of individual lifetimes):

P (K(n) = k) =
( n

k

)
pk(1 − p)n−k

=: B(n, p)({k}), k = 0, 1, . . . , n,

where
p = P (R = 1)

is the mortality rate. Usually, p was small and n reasonably large, in which case R =
1 became a rare event and the binomial distribution B(n, p) can be approximated
within a reasonable remainder term by the Poisson distribution

Pλ({k}) := e−λ λk

k!
, k = 0, 1 . . .

with λ = np. This becomes obvious by writing, for k ∈ {1, . . . , n}, n ∈ N,

B(n, p)({k}) =
(

n
k

)
pk(1 − p)n−k

= n!
k!(n − k)!

(np)k

nk

(
1 − np

n

)n 1
(1 − p)k

=

⎛⎝∏
i≤k

(
1 − i − 1

n

)⎞⎠ 1
(1 − λ

n )k

λk

k!

(
1 − λ

n

)n

= Pλ({k})

(
(1 − λ

n )n

e−λ

1
(1 − λ

n )k

∏
i≤k

(
1 − i − 1

n

))
.

For this reason, the Poisson distribution is sometimes called the distribution of
rare events, and the approximation

B(n, p) ∼ Pnp (1.1)
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is a law of small numbers (following von Bortkiewicz [51]). The quantification and
application of the preceding approximation is still a hot topic, as the increasing
number of publications shows. References are the books by Aldous [4] and Barbour
et al. [29], and the survey article by Arratia et al. [17]. For remarks about the
early history of Poisson distributions we refer to Haight [195].

Point Process Approximations

Consider a binomial B(n, p)-distributed rv K(n) and a Poisson Pnp-distributed rv
τ(n). Then (1.1) can be rewritten as

K(n) ∼D τ(n), (1.2)

where ∼D denotes approximate equality of the distributions L(K(n)) = B(n, p)
and L(τ(n)) = Pnp of K(n) and τ(n), respectively.

Let now V1, V2, . . . be a sequence of independent copies of a random element
V with values in a sample space S equipped with a σ-field B. We assume that the
rv V1, V2, . . . are also independent of K(n) and τ(n).

The approximation (1.2) suggests its following extension

(V1, . . . , VK(n)) ∼D (V1, . . . , Vτ(n)). (1.3)

If we choose V ≡ 1, the left- and right-hand sides of (1.3) are sequences 1, 1, . . . , 1
of ones, the left one being of length K(n), the right one of length τ(n), and (1.3)
is obviously an extension of (1.2). As the approximation of K(n) by τ(n) is known
as a law of small numbers, one might call the approximation (1.3) a functional law
of small numbers.

But now we face the mathematical problem to make the approximation of
L(V1, . . . , VK(n)) by L(V1, . . . , Vτ(n)) meaningful, as (V1, . . . , VK(n)) and (V1, . . . ,
Vτ(n)) are random vectors (rv) of usually different (random) length. An appealing
way to overcome this dimensionality problem by dropping the (random) length is
offered by the concept of point processes.

We identify any point x ∈ S with the pertaining Dirac-measure

εx(B) =

⎧⎨⎩ 1 x ∈ B
if , B ∈ B.

0 x /∈ B

Thus we identify the random element V with the random measure εV , and the rv
(V1, . . . , VK(n)) and (V1, . . . , Vτ(n)) turn into the random finite measures

Nn(B) :=
∑

i≤K(n)

εVi (B) and N∗
n(B) :=

∑
i≤τ(n)

εVi (B), B ∈ B.

We can equip the set M of finite point measures on (S,B) with the smallest σ-field
M such that for any B ∈ B the projections M � μ → μ(B) are measurable. Then
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Nn(·), N∗
n(·) are (measurable) random elements in (M,M) and as such they are

called point processes. Since the counting variable K(n) is a binomial rv and τ(n)
is a Poisson one, Nn is called abinomial process and N∗

n a Poisson process.
A more precise formulation of (1.3) is then the

first-order Poisson process approximation

Nn(·) =
∑

i≤K(n)

εVi(·) ∼D

∑
i≤τ(n)

εVi (·) = N∗
n(·). (1.4)

Recall that with V ≡ 1, the preceding approximation yields in turn the Poisson
approximation of a binomial distribution (1.1), (1.2)

Nn = K(n)ε1 ∼D N∗
n = τ(n)ε1.

Suppose now that the distribution of the random element V is close to that
of some random element W , which suggests the approximation

(V1, . . . , Vτ(n)) ∼D (W1, . . . , Wτ(n)), (1.5)

where W1, W2 . . . are independent copies of W and also independent of τ(n) and
K(n). Speaking in terms of point processes, we obtain the approximation

N∗
n =

∑
i≤τ(n)

εVi ∼D N∗∗
n :=

∑
i≤τ(n)

εWi . (1.6)

Our particular extension of the Poisson approximation of a binomial distribu-
tion (1.1), (1.2) then becomes the

second-order Poisson process approximation

Nn =
∑

i≤K(n)

εVi ∼D N∗∗
n =

∑
i≤τ(n)

εWi . (1.7)

There is obviously one further approximation left, namely

(V1, . . . , VK(n)) ∼D (W1, . . . , WK(n)),

where we do not replace K(n) by τ(n), but replace Vi by Wi. There is no Poisson
approximation of binomial distributions involved in this approximation, but it is
nevertheless typically a law of small numbers (see Section 1.3), valid only if p is
small. Due to a particular application in extreme value theory, one might call this
approximation the
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peaks-over-threshold method (POT)

Nn =
∑

i≤K(n)

εVi ∼D Mn :=
∑

i≤K(n)

εWi . (1.8)

By choosing particular sequences V1, V2 . . . and W1, W2 . . . of random ele-
ments within these extensions of (1.1), (1.2) it turns out, for example, that ap-
parently completely different topics such as regression analysis and extreme value
theory are within the scope of these functional laws of small numbers (see Section
1.3).

1.2 Bounds for the
Functional Laws of Small Numbers

The error of the preceding approximations (1.4), (1.7) and (1.8) will be measured
with respect to the Hellinger distance. The Hellinger distance (between the dis-
tributions) of random elements X and Y with values in some measurable space
(S,B) is defined by

H(X, Y ) :=
(∫

(f1/2 − g1/2)2 dμ
)1/2

,

where f, g are densities of X and Y with respect to some dominating measure μ.
The use of the Hellinger distance in our particular framework is motivated by

the well-known fact that for vectors of independent replicates X = (X1, . . . , Xk)
and Y = (Y1, . . . , Yk) of X and Y we have the bound

H(X, Y ) ≤ k1/2H(X, Y ),

whereas for the variational distance d(X, Y ) := supB∈B |P (X ∈ B) − P (Y ∈ B)|,
we only have the bound

d(X, Y ) ≤ k d(X, Y ).

Together with the fact that the variational distance is in general bounded by
the Hellinger distance, we obtain therefore the bound

d(X , Y ) ≤ k1/2H(X, Y ).

If d(X, Y ) and H(X, Y ) are of the same order, which is typically the case, the
Hellinger distance approach provides a more accurate bound for the comparison
of sequences of iid observations than the variational distance that is, k1/2 com-
pared with k, roughly. Observe that our particular extension (1.4)-(1.7) of the
Poisson approximation of binomial distributions actually involves the comparison
of sequences of random elements. (For the technical background see, for example,
Section 3.3 of Reiss [385] and Section 1.3 of Reiss [387].)
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Markov Kernels

Note that the distributions L(Nn),L(N∗
n) of the processes Nn =

∑
i≤K(n) εVi and

N∗
n =

∑
i≤τ(n) εVi on (M,M) can be represented by means of the Markov kernel

Q(· | ·) : M× {0, 1, 2, . . . , } → [0, 1], defined by

Q(M | m) := L
( ∑

i≤m

εVi

)
(B) = P

( ∑
i≤m

εVi ∈ B
)

, m = 0, 1, 2, . . . , M ∈M,

by conditioning on K(n) and τ(n):

L(Nn)(·) = P (Nn ∈ ·) =
∫

P
( ∑

i≤m

εVi ∈ ·
)
L(K(n)) (dm)

=
∫

Q(· | m)L(K(n)) = E(Q(· | K(n))) =: QL(K(n))(·)

and

L(N∗
n)(·) = P (N∗

n ∈ ·) =
∫

P
( ∑

i≤m

εVi ∈ ·
)
L(τ(n)) (dm)

=
∫

Q(· | m)L(τ(n)) (dm) = E(Q(· | τ(n))) =: QL(τ(n))(·).

In case of m = 0, interpret
∑

i≤0 εVi as the null-measure on B that is,∑
i≤0 εVi (B) = 0, B ∈ B.

The Monotonicity Theorem

It is intuitively clear from the preceding representation that the error in the first-
order Poisson process approximation (1.4) is determined by the error of the ap-
proximation of K(n) by τ(n).

Lemma 1.2.1 (Monotonicity theorem). We have

(i) d(Nn, N∗
n) = d(QL(K(n)), QL(τ(n))) ≤ d(K(n), τ(n)),

(ii) H(Nn, N∗
n) = H(QL(K(n)), QL(τ(n))) ≤ H(K(n), τ(n)).

While part (i) of the preceding result is obvious, the second bound is a sim-
ple consequence of the monotonicity theorem for f-divergences (see, for example
Theorem 1.24 in Liese and Vajda [313] or, for a direct proof, Lemma 1.4.2 in Reiss
[387]).

By choosing Vi ≡ 1 that is, Nn = K(n)ε1 and N∗
n = τ(n)ε1 it is only an

exercise to show that we can achieve equality in Lemma 1.2.1.
Lemma 1.2.1 entails that in order to establish bounds for the first-order

Poisson process approximation (1.4), we can benefit from the vast literature on
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bounds for the distance between K(n) and τ(n) (an up-to-date reference is the
book by Barbour et al. [29]). The following bound is a consequence of Theorem
1 in Barbour and Hall [27] and of Lemma 3 in Falk and Reiss [148]. See also the
section on the Stein-Chen method below that is, formulae (1.14)-(1.17).

Lemma 1.2.2. We have, for 0 ≤ p ≤ 1 and n ∈ N,

(i) d(K(n), τ(n)) ≤ p,

(ii) H(K(n), τ(n)) ≤ 31/2p.

Bounds for the first-order Poisson process approximation (1.4) are now im-
mediate from Lemma 1.2.1 and 1.2.2:

d(Nn, N∗
n) ≤ p, H(Nn, N∗

n) ≤ 31/2p. (1.9)

Notice that these bounds are valid under no further restrictions on V1, V2, . . . ,
K(n) and τ(n); moreover, they do not depend on n but only on p.

The Convexity Theorem

To establish bounds for the second-order Poisson process approximation (1.7) and
the POT approach (1.8), observe that the distributions L(N∗

n), L(N∗∗
n ), L(Mn) of

the processes N∗
n =

∑
i≤τ(n) εVi , N∗∗

n =
∑

i≤τ(n) εWi , and Mn =
∑

i≤K(n) εWi can
be represented by means of τ(n) and the two Markov kernels

QV (· | m) := L
( ∑

i≤m

εVi

)
(·), m = 0, 1, 2, . . . ,

QW (· | m) := L
( ∑

i≤m

εWi

)
(·), m = 0, 1, 2, . . . ,

as

L(N∗
n)(·) =

∫
QV (· | m)L(τ(n)) (dm) = QV L(τ(n))(·),

L(N∗∗
n )(·) =

∫
QW (· | m)L(τ(n)) (dm) = QWL(τ(n))(·)

and
L(Mn)(·) =

∫
QW (· | m)L(K(n)) (dm) = QWL(K(n))(·).

Lemma 1.2.3 (Convexity theorem). We have

(i) d(N∗
n , N∗∗

n ) ≤
∫

d(QV (· | m), QW (· | m)) L(τ(n)) (dm),



10 1. Functional Laws of Small Numbers

(ii) H(N∗
n, N∗∗

n ) ≤
(∫

H2(QV (· | m), QW (· | m)) L(τ(n)) (dm)
)1/2

,

(iii) d(Nn, Mn) ≤
∫

d(QV (· | m), QW (· | m)) L(K(n)) (dm),

(iv) H(Nn, Mn) ≤
( ∫

H2(QV (· | m), QW (· | m)) L(K(n)) (dm)
)1/2

.

While the bound for the variational distance is obvious, the bound for the
Hellinger distance is an application of the convexity theorem for f -divergences (see
formula (1.53) in Liese and Vajda [313]; a direct proof is given in Lemma 3.1.3 in
Reiss [387]).

Why the Hellinger Distance?

Observe now that QV (· | m) = L(
∑

i≤m εVi )(·) and QW (· | m) = L(
∑

i≤m εWi)(·)
can be viewed as the distribution of the same functional T : Sm → M, evaluated
at the rv (V1, . . . , Vm) and (W1, . . . , Wm),

QV (· | m) = L(T (V1, . . . , Vm))(·), QW (· | m) = L(T (W1, . . . , Wm))(·),

with
T (x1, . . . , xm) :=

∑
i≤m

εxi

for x1, . . . , xm ∈ S.
The following consequence of Lemma 1.2.3 is therefore immediate from the

monotonicity theorem for the Hellinger distance (cf. Lemma 1.4.2 in Reiss [387]).

Corollary 1.2.4. We have

(i) d(N∗
n, N∗∗

n ) ≤
∫

d((V1, . . . , Vm), (W1, . . . , Wm)) L(τ(n)) (dm)

≤ d(V, W )
∫

mL(τ(n)) (dm) = d(V, W ) E(τ(n)),

(ii) H(N∗
n, N∗∗

n ) ≤
( ∫

H2((V1, . . . , Vm), (W1, . . . , Wm)) L(τ(n)) (dm)
)1/2

≤ H(V, W )
( ∫

mL(τ(n))
)1/2

= H(V, W ) E(τ(n))1/2.

We obtain by the same arguments

(iii) d(Nn, Mn) ≤ d(V, W ) E(K(n)),

(iv) H(Nn, Mn) ≤ H(V, W ) E(K(n))1/2.
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If d(V, W ) and H(V, W ) are approximately equal, the use of the Hellinger dis-
tance reduces the bound between the distributions of N∗

n and N∗∗
n from O(E(τ(n)))

to O(E(τ(n))1/2), which is actually an improvement only if E(τ(n)) > 1 that is,
if our set of data consists on the average of more than one observation of V and
W . But this is obviously a minimum condition. The same arguments apply to the
approximation of Nn by Mn.

Combining 1.2.1-1.2.4 and the fact that in general the variational distance is
bounded by the Hellinger distance, we obtain the following bound for the second-
order Poisson process approximation.

Theorem 1.2.5. With L(K(n)) = B(n, p) and L(τ(n)) = Pnp we have

H(Nn, N∗∗
n ) ≤ H(K(n), τ(n)) + H(N∗

n, N∗∗
n )

≤ H(K(n), τ(n)) + H(V, W ) (E(τ(n)))1/2

≤ 31/2p + H(V, W )(np)1/2.

Note that the first two inequalities in the preceding result are true for arbi-
trary binomial rv K(n) and Poisson rv τ(n), being independent of the sequences
V1, V2, . . . and W1, W2, . . . Only the final inequality arises from the particular
choice L(K(n)) = B(n, p), L(τ(n)) = Pnp.

Theorem 1.2.5 describes in which way the accuracy of the functional law of
small numbers (1.7) is determined by the distance between K(n) and τ(n) that is,
by the values of p and np.

Specifying H(V, W )
Suppose now that the random elements V and W have densities g, f with respect
to some dominating measure μ, such that the representation

g1/2 = f1/2(1 + h)

holds with some error function h. Then we obtain

H(V, W ) =
( ∫

(g1/2 − f1/2)2 dμ
)1/2

=
( ∫

h2 dL(W )
)1/2

= E(h2(W ))1/2. (1.10)

The preceding considerations can then be summarized by the bounds

H(Nn, N∗
n) ≤ 31/2p (1.11)

for the first-order Poisson process approximation,

H(Nn, N∗∗
n ) ≤ 31/2p + E(h2(W ))1/2(np)1/2 (1.12)
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for the second-order Poisson process approximation and

H(Nn, Mn) ≤ E(h2(W ))1/2(np)1/2 (1.13)

for the POT approach if L(K(n)) = B(n, p), L(τ(n)) = Pnp.
These general error bounds lead to specific error bounds in regression analysis

and extreme value theory by computing E(h2(W )) for particular W and h (see
Theorem 2.3.2, Theorem 3.1.3, and Corollary 3.1.6).

The Stein-Chen Method

While we focus on the Hellinger distance in the first part of this book for the
reasons given above, the Stein-Chen method offers a powerful tool to measure
laws of small numbers in variational distance; in particular it is very useful for
dependent observations. In 1970, Stein developed his very special idea for the
normal approximation in case of dependent rv, Chen [64] worked it out for the
Poisson approximation. For the sake of completeness, we provide its basic idea,
essentially taken from the book by Barbour et al. [29], to which we refer as an
ocean of refinements, extensions to dependent observations and applications.

Let A be an arbitrary subset of {0, 1, 2, . . .} and choose λ > 0; then we can
find a bounded function g = gA,λ : {0, 1, 2, . . .} → R which satisfies the basic
recursion

λg(j + 1) − jg(j) = εj(A) − Pλ(A), j ≥ 0; (1.14)

see below for the definition of this function g. As a consequence we obtain for an
arbitrary rv Z with values in {0, 1, 2, . . .},

P (Z ∈ A) − Pλ(A) = E(εZ(A) − Pλ(A))
= E(λg(Z + 1) − Zg(Z)). (1.15)

The preceding equality is the crucial tool for the derivation of bounds for
the Poisson approximation in variational distance. Let ξ1, . . . , ξn be independent
Bernoulli rv that is, L(ξi) = B(1, pi), 1 ≤ i ≤ n; put Z :=

∑
i≤n ξi and Zi :=

Z − ξi, 1 ≤ i ≤ n. Observe that Zi and ξi are independent. Then we obtain with
λ :=

∑
i≤n pi for A ⊂ {0, 1, . . .},

P (Z ∈ A) − Pλ(A) = E(λg(Z + 1) − Zg(Z))

=
∑
i≤n

piE(g(Z + 1)) −
∑
i≤n

E(ξig(Zi + ξi))

=
∑
i≤n

piE(g(Z + 1) − g(Zi + 1)) (1.16)

by the independence of ξi and Zi. Since Z + 1 = Zi + 1 + ξi and Zi + 1 coincide
unless ξi equals 1, we have
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|E(g(Z + 1) − g(Zi + 1))| = |E(g(Zi + 1 + ξi) − g(Zi + 1))|
≤ sup

j≥1
|g(j + 1) − g(j)| pi.

Equation (1.16) then implies∣∣∣∣∣∣P
⎛⎝∑

i≤n

ξi ∈ A

⎞⎠− Pλ(A)

∣∣∣∣∣∣ ≤ sup
j≥1

|g(j + 1) − g(j)|
∑
i≤n

p2
i ,

and all that remains to be done is to compute bounds for supj≥1 |g(j + 1)− g(j)|.
It is readily seen that the function g, defined by

g(j + 1) := λ−j−1j! eλ(Pλ(A ∩ {0, 1, . . . , j}) − Pλ(A)Pλ({0, 1, . . . , j}), j ≥ 0
g(0) := 0,

satisfies the recursion equation (1.14) for arbitrary A ⊂ {0, 1, . . .} and λ > 0.
As shown in Lemma 1.1.1 in Barbour et al. [29], the function g is bounded and
satisfies

sup
j≥1

|g(j + 1) − g(j)| ≤ λ−1(1 − e−λ).

As a consequence we obtain the bound

sup
A⊂{0,1,...}

∣∣∣∣∣∣P
⎛⎝∑

i≤n

ξi ∈ A

⎞⎠− Pλ(A)

∣∣∣∣∣∣ ≤ λ−1(1 − e−λ)
∑
i≤n

p2
i , (1.17)

where λ =
∑

i≤n pi, which is Theorem 1 in Barbour and Hall [27]. With pi = p we
derive for K(n) and τ(n) with L(K(n)) = B(n, p), L(τ(n)) = Pnp,

d(K(n), τ(n)) ≤ (1 − e−np)p ≤ p,

which provides Lemma 1.2.2 (i).
As pointed out by Barbour et al. [29], page 8, a main advantage of the

preceding approach is that only little needs to be changed if the independence
assumption on ξ1, . . . , ξn is dropped. Observe that we have used independence
only once, in equation (1.16), and all that has to be done in the dependent case is
to modify this step of the argument appropriately. We refer to page 9ff in Barbour
et al. [29] for a detailed discussion.

As an example we show how the preceding Markov kernel technique together
with the bound (1.17) can be applied to risk theory, to entail a bound for the
compound Poisson approximation of a portfolio having identical claim size distri-
butions.

Let V1, V2, . . . be iid claims on (0,∞). Then the total amount of claim sizes
in a portfolio of size n with individual risk pi, i = 1, . . . , n, can be described by
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the rv
∑

i≤L Vi, where L is the sum of n independent rv, each following a B(1, pi)-
distribution, i = 1, . . . , n, and being independent of V1, V2, . . .. Observe that in
the case of equal probabilities p1 = p2 = · · · = pn = p, the counting variable L
coincides with K(n) following a B(n, p)-distribution.

Replacing L by a rv τ , which is Poisson distributed with parameter λ =∑
i≤n pi and being independent of V1, V2, . . . as well, we obtain the compound

Poisson process approximation
∑

i≤τ Vi of
∑

i≤L Vi. The distribution of these two
sums of random length can obviously be generated by the rv τ and L and the
Markov kernel

Qc(B | m) := P

⎛⎝∑
i≤m

Vi ∈ B

⎞⎠ , m = 0, 1, 2, . . . , B ∈ B,

where B denotes the Borel-σ-field in R. As a consequence we obtain from (1.17)
the bounds

d
(∑

i≤L

Vi,
∑
i≤τ

Vi

)
= d(QcL(L), QcL(τ)) ≤ d(L, τ)

≤ λ−1(1 − e−λ)
∑
i≤n

p2
i ≤

∑
i≤n

p2
i /

∑
i≤n

pi,

which improve the bounds established by Michel [329] and by Gerber [174] for the
compound Poisson approximation in the case of a portfolio with identical claim
size distributions.

1.3 Applications
In this section we describe in which situation our functional laws of small numbers
typically apply.

Let Z be a random element in some sample space S bearing a σ-field B and
suppose that we are only interested in those realizations of Z which fall into a
fixed subset A ∈ B of the sample space. Let Z1, . . . , Zn be independent replicates
of Z and consider therefore only those observations among Z1, . . . , Zn which fall
into that subset A. Arranged in the order of their outcome, we can denote these
Zi ∈ A by V1, . . . , VKA(n), where the random number

KA(n) :=
∑
i≤n

εZi (A)

is binomial distributed B(n, p) with probability p = P (Z ∈ A).
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Figure 1.3.1. The setup for applications.

Truncated Empirical Processes

We can describe the set of data V1, . . . , VKA(n) of those observations among Z1, . . . ,
Zn, which fall into A, by the truncated empirical process

Nn,A(·) :=
∑
i≤n

εZi(· ∩ A)

=
∑

i≤KA(n)

εVi(·),

which is precisely that mathematical object which we have studied in the preceding
sections. Note that the process Nn,A does not only carry the information about
the number KA(n) = Nn,A(S) of data in A, but it stores also their values.

It is intuitively clear that V1, V2, . . . are independent replicates of a random
element V , whose range is the set A and whose distribution is the conditional
distribution of Z given Z ∈ A:

P (V ∈ B) = P (Z ∈ B | Z ∈ A) =
P (Z ∈ B ∩ A)

P (Z ∈ A)
, B ∈ B.

It is probably less intuitively clear but nevertheless true that K(n) and V1, V2, . . .
are independent. The following crucial representation of Nn,A is Theorem 1.4.1
in Reiss [387].
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Theorem 1.3.1. Let X1, X2, . . . be independent copies of the random element V ,
independent also from KA(n). Then,

Nn,A =
∑

i≤KA(n)

εVi =D

∑
i≤KA(n)

εXi .

We can therefore handle those data V1, . . . , VKA(n) among Z1, . . . , Zn, which
fall into the set A, like independent copies of the random element V , whose dis-
tribution is the conditional distribution of Z given Z ∈ A, with their random
number KA(n) being a B(n, P (Z ∈ A)) distributed rv and stochastically indepen-
dent of V1, V2, . . .

If the hitting probability p = P (Z ∈ A) is small, then A is a rare event and
the first-order Poisson process approximation applies to Nn,A ,

Nn,A =
∑

i≤KA(n)

εVi ∼D N∗
n,A :=

∑
i≤τA(n)

εVi , (1.18)

where τA(n) is a Poisson rv with parameter np and also independent of the se-
quence V1, V2, . . .

Note that in contrast to the global Poissonization technique, where the fixed
sample size n is replaced by a Poisson rv τ(n) with parameter n that is,∑

i≤n

εZi ∼D

∑
i≤τ(n)

εZi ,

with τ(n) being independent of Z1, Z2, . . . , the Poissonization described here is
a local one in the set A. For further details on global Poissonization we refer to
Section 8.3 of Reiss [387].

In the case, where the hitting probability p = P (Z ∈ A) of A is small, the
conditional distribution of Z, given Z ∈ A, can often be approximated by some
ideal distribution

P (Z ∈ · | Z ∈ A) = P (V ∈ ·) ∼ P (W ∈ ·),
where W is a random element having this ideal distribution. We are therefore now
precisely in a situation where we can apply the second-order Poisson approximation
and the POT approach of Nn,A from the preceding section. We expect therefore
that the truncated empirical process Nn,A behaves approximately like the Poisson
process

N∗∗
n,A =

∑
i≤τA(n)

εWi

being its second-order Poisson process approximations or like

Mn,A =
∑

i≤KA(n)

εWi ,

which is the POT approach, with W1, W2, . . . being independent copies of W , and
also independent of τA(n).
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A Geometric Classification

The preceding model approximations entail that we can handle our actual data Vj

that is, those Zi among Z1, . . . , Zn, which fall into the set A, within certain error
bounds like some ideal Wj , with their counting random number being independent
from their values. We will see in the following that non-parametric regression
analysis as well as extreme value theory are within the scope of this approach: In
the first case, the subset A is located in the center of the support of the distribution
of Z, in the latter case it is located at the border.

�

�
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Figure 1.3.2. A geometric classification of typical applications.

Examples

The following examples highlight the wideranging applicability of our functional
laws of small numbers.

Example 1.3.2 (Density estimation). Let Z be a rv with values in R and fix
x ∈ R. Suppose that Z has a density g, say, near x; our problem is to estimate
g(x) from a sample Z1, . . . , Zn of independent replicates of Z.

Choose to this end a window width an > 0 and consider only those observa-
tions Zi which fall into the data window

An = [x − an/2, x + an/2].
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In our previous notation these are V1, . . . , VK(n) with

K(n) :=
∑
i≤n

εZi (An),

where K(n) has distribution B(n, pn),

pn = P (Z ∈ An) =
∫ an/2

−an/2
g(x + ε) dε ∼ g(x)an

for an → 0 if g is continuous at x. If in addition g(x) > 0, we obtain for t ∈ [0, 1]
the approximation

P (V ≤ x − an/2 + tan)
= P (Z ≤ x − an/2 + tan, Z ∈ An)/P (Z ∈ An)
= P (x − an/2 ≤ Z ≤ x − an/2 + tan)/pn

= 1
pn

∫ −an/2+tan

−an/2
g(x + ε) dε ∼ g(x)tan

pn

−→
an→0 t.

Consequently, we obtain the approximation

Nn =
∑

i≤K(n)

εVi ∼D N∗∗
n =

∑
i≤τ(n)

εWi

where W1, W2 . . . are independent, on [x − an/2, x + an/2] uniformly distributed,
and independent from τ(n) which is Poisson distributed with parameter npn ∼
nang(x).

Our approach entails therefore that the information we are interested in is
essentially contained in the sample size K(n) or τ(n), respectively.

Example 1.3.3 (Regression analysis). Let Z = (X, Y ) be a rv in R
2 and fix

x ∈ R. Now we are interested in the conditional distribution function (df) of Y
given X = x, denoted by F (· | x) := P (Y ≤ · | X = x).

In this case we choose the data window

An := [x − an/2, x + an/2] × R

with window width an > 0 for the data Zi = (Xi, Yi), i = 1, . . . , n:
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Figure 1.3.3. The setup for conditional problems.

Then,

K(n) :=
∑
i≤n

εZi (An)

=
∑
i≤n

εXi ([x − an/2, x + an/2])

is B(n, p)-distributed with

pn = P (Z ∈ An) = P (X ∈ [x − an/2, x + an/2]) ∼ g(x)an,

where we assume that X has a density g, say, near x being continuous and positive
at x.

If Z = (X, Y ) has a joint density f , say, on An, then we obtain for t ∈ [0, 1]
and s ∈ R

P (V ≤ (x − an/2 + tan, s))
= P (Z ≤ (x − an/2 + tan, s), Z ∈ An)/P (Z ∈ An)
= P (x − an/2 ≤ X ≤ x − an/2 + tan, Y ≤ s)/pn

=
∫ x−an/2+tan

x−an/2

∫ s

−∞
f(u, w) dw du/pn
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=
∫ s

−∞
an

∫ t

0
f(x + anu − an/2, w) du dw/pn

−→
an→0

∫ s

−∞

∫ t

0
f(x, w) du dw/g(x)

= t

∫ s

−∞ f(x, w) dw

g(x)
= t F (s|x)

under suitable regularity conditions on f (near x).
Consequently, we obtain the approximation

Nn =
∑

i≤K(n)

εVi ∼D N∗∗
n =

∑
i≤τ(n)

ε(Ui,Wi),

where U is on [x−an/2, x+an/2] uniformly distributed, Wi follows the conditional
df F (·|x), τ(n) is Poisson Pnpn ∼ Pnang(x) and τ(n), W1, W2, . . . , U1, U2, . . . are all
independent!

In this example our approach entails that the information we are interested
in is essentially contained in the second component of Vi.

Example 1.3.4 (Extreme value theory). Let Z be R-valued and suppose that
we are only interested in large values of Z, where we call a realization of Z large,
if it exceeds a given high threshold t. In this case we choose the data window
A = (t,∞) or, better adapted to our purposes, we put t ∈ R on a linear scale and
define

An = (ant + bn,∞)

for some norming constants an > 0, bn ∈ R.
Then K(n) =

∑
i≤n εZi(An) is B(n, pn)-distributed with pn = 1−F (ant+bn),

where F denotes the df pertaining to Z. Then we obtain for s ≥ 0,

P (V ≤ an(t + s) + bn) = P (Z ≤ an(t + s) + bn | Z > ant + bn)

= P (ant + bn < Z ≤ an(t + s) + bn)/(1 − F (ant + bn))

= 1 − 1 − F (an(t + s) + bn)
1 − F (ant + bn)

,

thus facing the problem:
What is the limiting behavior of

(1 − F (an(t + s) + bn))/(1 − F (ant + bn)) −→n→∞ (1.19)

as n tends to infinity?
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Extreme Value Distributions

Suppose that there exist an > 0, bn ∈ R such that

F n(anx + bn) −→n→∞ G(x), x ∈ R, (1.20)

for some (continuous) limiting distribution G. Then we say that G belongs to the
domain of attraction of G, denoted by F ∈ D(G). In this case we deduce from the
expansion log(1 + ε) = ε + O(ε2) for ε → 0 the equivalence

F n(anx + bn) −→n→∞ G(x)
⇐⇒ n log(1 − (1 − F (anx + bn))) −→n→∞ log(G(x))
⇐⇒ n(1 − F (anx + bn)) −→n→∞ − log(G(x))

if 0 < G(x) ≤ 1, and hence,

1 − F (an(t + s) + bn)
1 − F (ant + bn)

−→n→∞
log(G(t + s))

log(G(t))

if 0 < G(t) < 1.
From the now classical article by Gnedenko [176] (see also de Haan [184] and

Galambos [167]) we know that F ∈ D(G) only if G ∈ {Gβ : β ∈ R}, where

Gβ(t) := exp(−(1 + βt)−1/β), 1 + βt > 0,

is an extreme value df, abbreviated by EVD. Since (1 + βt)−1/β −→β→0 exp(−t),
interpret G0(t) as exp(−e−t), t ∈ R. We do not distinguish in our notation between
distributions and their df.

Generalized Pareto Distributions

If we assume that F ∈ D(Gβ), we obtain therefore

P (V ≤ an(t + s) + bn) = 1 − n(1 − F (an(t + s) + bn))
n(1 − F (ant + bn))

−→n→∞ 1 − log(Gβ(t + s))
log(Gβ(t))

= 1 −
(1 + β(t + s)

1 + βt

)−1/β

= 1 −
(

1 + β
s

1 + βt

)−1/β

= Hβ

( s

1 + βt

)
, s ≥ 0, (1.21)

provided 1 + βt > 0 and 1 + β(t + s) > 0. The family

Hβ(s) := 1 + log(Gβ(s)), s ≥ 0

= 1 − (1 + βs)−1/β for
{

s ≥ 0 if β ≥ 0
0 ≤ s ≤ −1/β if β < 0
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of df parameterized by β ∈ R is the class of generalized Pareto df (GPD) accompa-
nying the family of EVD. Notice that Hβ with β > 0 gives a Pareto distribution,
H−1 is the uniform distribution on (0, 1) and H0 has to be interpreted as the
standard exponential distribution H0(s) = limβ→0 Hβ(s) = 1 − e−s, s ≥ 0.

The Peaks-Over-Threshold Method

Formula (1.21) entails that under the condition F ∈ D(Gβ), those observations in
an iid sample generated independently according to F , which exceed the threshold
ant + bn, follow approximately a GPD. In this case our functional laws of small
numbers specify to

Nn =
∑

i≤K(n)

εVi
∼
D Mn =

∑
i≤K(n)

εWi ∼D N∗∗
n =

∑
i≤τ(n)

εWi , (1.22)

where W1, W2, . . . follow a GPD and τ(n) is a Poisson rv with parameter n(1 −
F (ant + bn)) ∼ − log(Gβ(t)) = (1 + βt)−1/β .

The information on the probability of large values of Z that is, on P (Z ≤
an(t + s) + bn) is now contained in the sample size K(n) and the data Vi.

The approximation of Nn by Mn in (1.22) explains the idea behind the peaks-
over-threshold method (POT), widely used for instance by hydrologists to model
large floods having a GPD (cf. Todorovic and Zelenhasic [446], Hosking and Wallis
[224]). Formula (1.21) suggests in particular that in case F ∈ D(Gβ), the upper tail
of F can be approximated by that of a GPD which was first observed and verified
by Balkema and de Haan [22], see Theorem 2.7.1 below, and independently by
Pickands [371].

It is worth mentioning that the class of GPD is still the only possible set of
limiting distributions in (1.21), if we drop the assumption F ∈ D(G) and merely
consider a sequence ant + bn, n ∈ N, of thresholds satisfying a certain regularity
condition. The following theorem follows from results in Balkema and de Haan
[22] or from Theorem 2.1 in Rychlik [403] .

Theorem 1.3.5. Suppose that there exist an > 0, bn ∈ R with 1−F (bn) −→n→∞
0 and (1 − F (bn+1))/(1 − F (bn)) −→n→∞ 1 such that for any s ≥ 0,

1 − 1 − F (ans + bn)
1 − F (bn)

−→n→∞ L(s)

for some continuous df L. Then L is a GPD that is, there exist β ∈ R and some
a > 0 such that

L(s) = 1 + log(Gβ(as)), s ≥ 0.

If we drop the condition (1 − F (bn+1))/(1 − F (bn)) −→n→∞ 1 in Theorem
1.3.5, then discrete limiting distributions promptly occur; consider for example
the geometric df F (k) = 1 − (1 − p)k, k = 0, 1, 2, . . . for some p ∈ (0, 1). With
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an = 1 and bn = n, n ∈ N the ratio (1 − F (ans + bn))/(1 − F (bn)) then equals
1 − F (s), s ≥ 0, which is well known. A complete characterization of possible
limiting distributions is given in the paper by Balkema and de Haan [22].



Chapter 2

Extreme Value Theory

In this chapter we summarize results in extreme value theory, which are primar-
ily based on the condition that the upper tail of the underlying df is in the δ-
neighborhood of a generalized Pareto distribution (GPD). This condition, which
looks a bit restrictive at first sight (see Section 2.2), is however essentially equiva-
lent to the condition that rates of convergence in extreme value theory are at least
of algebraic order (see Theorem 2.2.5). The δ-neighborhood is therefore a natural
candidate to be considered, if one is interested in reasonable rates of convergence
of the functional laws of small numbers in extreme value theory (Theorem 2.3.2)
as well as of parameter estimators (Theorems 2.4.4, 2.4.5 and 2.5.4).

2.1 Domains of Attraction, von Mises Conditions
Recall from Example 1.3.4 that a df F belongs to the domain of attraction of an
extreme value df (EVD) Gβ(x) = exp(−(1 + βx)−1/β), 1 + βx > 0, denoted by
F ∈ D(Gβ), iff there exist constants an > 0, bn ∈ R such that

F n(anx + bn) −→n→∞ Gβ(x), x ∈ R

⇐⇒ P ((Zn:n − bn)/an ≤ x) −→n→∞ Gβ(x), x ∈ R,

where Zn:n is the sample maximum of an iid sample Z1, . . . , Zn with common df
F . Moreover, Z1:n ≤ · · · ≤ Zn:n denote the pertaining order statistics.

The Gnedenko-De Haan Theorem

The following famous result due to Gnedenko [176] (and partially due to de Haan
[184]) provides necessary as well as sufficient conditions for F ∈ D(Gβ).

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,  
DOI 10.1007/978-3-0348-0009-9_2, © Springer Basel AG 2011 
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Theorem 2.1.1 (Gnedenko-de Haan). Let G be a non-degenerate df. Suppose
that F is a df with the property that for some constants an > 0, bn ∈ R ,

F n(anx + bn) −→n→∞ G(x),

for any point of continuity x of G. Then G is up to a location and scale shift an
EVD Gβ, i.e., F ∈ D(G) = D(Gβ).

Put ω(F ) := sup{x ∈ R : F (x) < 1}. Then we have

(i) F ∈ D(Gβ) with β > 0 ⇐⇒ ω(F ) = ∞ and

lim
t→∞

1 − F (tx)
1 − F (t)

= x−1/β , x > 0.

The normalizing constants can be chosen as bn = 0 and an = F −1(1−n−1),
n ∈ N, where F −1(q) := inf{t ∈ R : F (t) ≥ q}, q ∈ (0, 1), denotes the
quantile function or generalized inverse of F .

(ii) F ∈ D(Gβ) with β < 0 ⇐⇒ ω(F ) < ∞ and

lim
t→∞

1 − F (ω(F ) − 1
tx )

1 − F (ω(F ) − 1
t )

= x1/β , x > 0.

The normalizing constants can be chosen as bn = ω(F ) and an = ω(F ) −
F −1(1 − n−1).

(iii) F ∈ D(G0) ⇐⇒ there exists t0 < ω(F ) such that
∫ ω(F )

t0
1 − F (x) dx < ∞

and
lim

t→ω(F )

1 − F (t + xR(t))
1 − F (t)

= exp(−x), x ∈ R,

where R(t) :=
∫ ω(F )

t
1−F (y) dy/(1−F (t)), t < ω(F ). The norming constants

can be chosen as bn = F −1(1 − n−1) and an = R(bn).

It is actually sufficient to consider in part (iii) of the preceding Theorem
2.1.1 only x ≥ 0, as shown by Worms [464]. In this case, the stated condition has
a probability meaning in terms of conditional distributions, known as the additive
excess property. We refer to Section 1.3 of Kotz and Nadarajah [293] for a further
discussion.

Note that we have for any β ∈ R,

F ∈ D(Gβ) ⇐⇒ F (· + α) ∈ D(Gβ)

for any α ∈ R. Without loss of generality we will therefore assume in the following
that ω(F ) > 0.
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Von Mises Conditions

The following sufficient condition for F ∈ D(Gβ) goes essentially back to von Mises
[336].

Theorem 2.1.2 (Von Mises conditions). Let F have a positive derivative f
on [x0, ω(F )) for some 0 < x0 < ω(F ).

(i) If there exist β ∈ R and c > 0 such that ω(F ) = ω(Hβ) and

lim
x↑ω(F )

(1 + βx)f(x)
1 − F (x)

= c, (VM)

then F ∈ D(Gβ/c).

(ii) Suppose in addition that f is differentiable. If

lim
x↑ω(F )

d

dx

(
1 − F (x)

f(x)

)
= 0, (VM0)

then F ∈ D(G0).

Condition (VM0) is the original criterion due to von Mises [336, page 285] in
case β = 0. Note that it is equivalent to the condition

lim
x↑ω(F )

1 − F (x)
f(x)

f ′(x)
f(x)

= −1

and, thus, (VM) in case β = 0 and (VM0) can be linked by l’Hôpital’s rule. Con-
dition (VM) will play a crucial role in what follows in connection with generalized
Pareto distributions.

If F has ultimately a positive derivative, which is monotone in a left neigh-
borhood of ω(F ) = ω(Hβ) for some β �= 0, and if F ∈ D(Gβ/c) for some c > 0, then
F satisfies (VM) with β and c (see Theorems 2.7.1 (ii), 2.7.2 (ii) in de Haan [184]).
Consequently, if F has ultimately a positive derivative f such that exp(−x)f(x)
is non-increasing in a left neighborhood of ω(F ) = ∞, and if F (log(x)), x > 0, is
in D(G1/c) for some c > 0, then F satisfies (VM) with c and β = 0.

A df F is in D(G0) iff there exists a df F ∗ with ω(F ∗) = ω(F ), which satisfies
(VM0) and which is tail equivalent to F ∗, i.e.,

lim
x↑ω(F )

1 − F (x)
1 − F ∗(x)

= 1,

see Balkema and de Haan [21].

Proof. We prove only the case β = 0 in condition (VM), the cases β > 0 and
β < 0 can be shown in complete analogy (see Theorem 2.7.1 in Galambos [167]
and Theorems 2.7.1 and 2.7.2 in de Haan [184]). Observe first that∫ ω(F )

t0

1 − F (x) dx =
∫ ω(F )

t0

1 − F (x)
f(x)

f(x) dx ≤ 2/c
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if t0 is large. We have further by l’Hôpital’s rule

lim
t→ω(F )

R(t) = lim
t→ω(F )

∫ ω(F )
t 1 − F (x) dx

1 − F (t)
= lim

t→ω(F )

1 − F (t)
f(t)

= 1/c.

Put now g(t) := −f(t)/(1 − F (t)) = (log(1 − F (t)))′, t ≥ t0. Then we have the
representation

1 − F (t) = C exp
(∫ t

t0

g(y) dy
)

, t ≥ t0,

with some constant C > 0 and thus,

1 − F (t + xR(t))
1 − F (t)

= exp
(∫ t+xR(t)

t

g(y) dy
)
→t→ω(F ) exp(−x), x ∈ R,

since limy→ω(F ) g(y) = −c and limt→ω(F ) R(t) = 1/c. The assertion now follows
from Theorem 2.1.1 (iii).

Distributions F with differentiable upper tail of Gamma type that is, limx→∞
F ′(x)/((bp/Γ(p)) e−bxxp−1) = 1 with b, p > 0 satisfy (VM) with β = 0. Condition
(VM) with β > 0 is, for example, satisfied for F with differentiable upper tail of
Cauchy-type, whereas triangular type distributions satisfy (VM) with β < 0. We
have equality in (VM) with F being a GPD Hβ(x) = 1 − (1 + βx)−1/β , for all
x ≥ 0 such that 1 + βx > 0.

The standard normal df Φ satisfies limx→∞ x(1 − Φ(x))/Φ′(x) = 1 and does
not satisfy, therefore, condition (VM) but (VM0).

The following result states that we have equality in (VM) only for a GPD. It
indicates therefore a particular relationship between df with GPD-like upper tail
and the von Mises condition (VM), which we will reveal later. Its proof can easily
be established (see also Corollary 1.2 in Falk and Marohn [143]).

Proposition 2.1.3. We have ultimately equality in (VM) for a df F iff F is
ultimately a GPD. Precisely, we have equality in (VM) for x ∈ [x0, ω(F )) iff there
exist a > 0, b ∈ R such that

1 − F (x) = 1 − Hβ/c(ax + b), x ∈ [x0, ω(F )),

where b = (a − c)/β in case β �= 0 and a = c in case β = 0.

Differentiable Tail Equivalence

Denote by hβ the density of the GPD Hβ that is,

hβ(x) =
G′

β(x)
Gβ(x)

= (1 + βx)−1/β−1 for
{

x ≥ 0 if β ≥ 0
0 ≤ x < −1/β if β < 0.
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Note that with b = (a − c)/β if β �= 0 and a = c if β = 0 we have

1 + βx

c
=

1 − Hβ/c(ax + b)
ahβ/c(ax + b)

for all x in a left neighborhood of ω(Hβ) = ω(Hβ/c(ax + b)). If F satisfies (VM),
we can write therefore for any a > 0 and b ∈ R such that b = (a − c)/β if β �= 0
and a = c if β = 0,

1 = lim
x→ω(F )

f(x)
1 − F (x)

1 + βx

c

= lim
x→ω(F )

f(x)
ahβ/c(ax + b)

1 − Hβ/c(ax + b)
1 − F (x)

. (2.1)

As a consequence, we obtain that under (VM) a df F is tail equivalent to the
GPD Hβ/c(ax + b), for some a > 0, b ∈ R with b = (a − c)/β if β �= 0 and a = 1
if β = 0, iff F and Hβ/c(ax + b) are differentiable tail equivalent. Precisely

lim
x→ω(F )

1 − F (x)
1 − Hβ/c(ax + b)

exists in [0,∞]

⇐⇒ lim
x→ω(F )

f(x)
ahβ/c(ax + b) exists in [0,∞]

and in this case these limits coincide. Note that the “if” part of this conclusion
follows from l’Hôpital’s rule anyway.

Von Mises Condition With Remainder

The preceding considerations indicate that the condition (VM) is closely related
to the assumption that the upper tail of F is close to that of a GPD. This idea can
be made rigorous if we consider the rate at which the limit in (VM) is attained.

Suppose that F satisfies (VM) with β ∈ R and c > 0 and define by

η(x) := (1 + βx)f(x)
1 − F (x)

− c, x ∈ [x0, ω(F )),

the remainder function in condition (VM). Then we can write for any a > 0, b ∈ R

with b = (a − c)/β if β �= 0 and a = c if β = 0,

f(x)
ahβ/c(ax + b)

= 1 − F (x1)
1 − Hβ/c(ax1 + b)

exp
(
−

∫ x

x1

η(t)
1 + βt

dt
)(

1 + η(x)
c

)
, (2.2)

x ∈ [x1, ω(F )), where x1 ∈ [x0, ω(F )) is chosen such that ax1 + b > 0. Recall
that for β < 0 we have ax + b = ax + (a − c)/β ≤ ω(Hβ/c) = −c/β ⇐⇒ x ≤
−1/β = ω(Hβ) = ω(F ). The following result is now immediate from the preceding
representation (2.2) and equation (2.1).
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Proposition 2.1.4. Suppose that F satisfies (VM) with β ∈ R and c > 0. Then
we have for any a > 0, b ∈ R, with b = (a − c)/β if β �= 0 and a = c if β = 0,

lim
x↑ω(F )

1 − F (x)
1 − Hβ/c(ax + b)

= lim
x↑ω(F )

f(x)
ahβ/c(ax + b)

=

⎧⎨⎩ 0
α ∈ (0,∞)
∞

⇐⇒
∫ ω(F )

x0

η(t)
1 + βt

dt =

⎧⎨⎩ ∞
d ∈ R

−∞ .

Observe that, for any a, c, α > 0,

α
(

1 − Hβ/c

(
ax + a − c

β

))
= 1 − Hβ/c

(
aα−β/cx + aα−β/c − c

β

)
(2.3)

if β �= 0 and
α(1 − H0(ax + b)) = 1 − H0(ax + b − log(a)). (2.4)

Consequently, we can find by Proposition 2.1.4 constants a > 0, b ∈ R, with
b = (a − c)/β if β �= 0 and a = c if β = 0, such that

lim
x↑ω(F )

1 − F (x)
1 − Hβ/c(ax + b)

= lim
x↑ω(F )

f(x)
ahβ/c(ax + b)

= 1

iff

−∞ <

∫ ω(F )

x0

η(t)
1 + βt

dt < ∞.

The preceding result reveals that a df F satisfying (VM) is tail equivalent (or,
equivalently, differentiable tail equivalent) to a GPD iff the remainder function η

converges to zero fast enough; precisely iff
∫ ω(F )

x0
η(t)/(1 + βt) dt ∈ R.

Observe now that the condition

η(x) = O((1 − Hβ(x))δ) as x → ω(F ) = ω(Hβ)

for some δ > 0 implies that
∫ ω(F )

x0
η(t)/(1 + βt) dt ∈ R and∫ ω(F )

x

η(t)
1 + βt

dt = O((1 − Hβ(x))δ) as x → ω(F ).

The following result is therefore immediate from equation (2.2) and Taylor expan-
sion of exp at zero.
Proposition 2.1.5. Suppose that F satisfies (VM) with β ∈ R and c > 0 such
that η(x) = O((1 − Hβ(x))δ) as x → ω(F ) for some δ > 0. Then there exist
a > 0, b ∈ R, with b = (a − c)/β if β �= 0 and a = c if β = 0, such that

f(x) = ahβ/c(ax + b)
(

1 + O((1 − Hβ(x))δ)
)

for any x in a left neighborhood of ω(F ).
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It is worth mentioning that under suitable conditions also the reverse impli-
cation in Proposition 2.1.5 holds. For the proof of this result, which is Proposition
2.1.7 below, we need the following auxiliary result.

Lemma 2.1.6. Suppose that F and G are df having positive derivatives f and g
near ω(F ) = ω(G). If ψ ≥ 0 is a decreasing function defined on a left neighborhood
of ω(F ) with limx→ω(F ) ψ(x) = 0 such that

|f(x)/g(x) − 1| = O(ψ(x)),

then
|(1 − G(x))/(1 − F (x)) − 1| = O(ψ(x))

as x → ω(F ) = ω(G).

Proof. The assertion is immediate from the inequalities∣∣∣1 − G(x)
1 − F (x)

− 1
∣∣∣ ≤ ∫ ω(F )

x

∣∣∣f(t)
g(t)

− 1
∣∣∣ dG(t)/(1 − F (x))

≤ Cψ(x)(1 − G(x))/(1 − F (x)),

where C is some positive constant.

Proposition 2.1.7. Suppose that F satisfies condition (VM) with β ∈ R and
c > 0. We require further that, in a left neighborhood of ω(F ),

f(x) = ahβ/c(ax + b)
(

1 + O((1 − Hβ(x))δ)
)

for some δ > 0, a > 0, b ∈ R, where b = (a − c)/β if β �= 0 and a = c if β = 0.
Then the remainder function

η(x) = f(x)(1 + βx)
1 − F (x)

− c

is also of order (1 − Hβ(x))δ that is,

η(x) = O((1 − Hβ(x))δ) as x → ω(F ).

Proof. Write for x, in a left neighborhood of ω(F ) = ω(Hβ),

η(x) = c
1 − Hβ/c(ax + b)

1 − F (x)
f(x)

ahβ/c(ax + b)
− c

= c
(1 − Hβ/c(ax + b)

1 − F (x)
− 1

) f(x)
ahβ/c(ax + b)

+ c
( f(x)

ahβ/c(ax + b)
− 1

)
= O((1 − Hβ(x))δ)

by Lemma 2.1.6.
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Rates of Convergence of Extremes

The growth condition η(x) = O((1 − Hβ(x))δ) is actually a fairly general one
as revealed by the following result, which is taken from Falk and Marohn [143],
Theorem 3.2. It roughly states that this growth condition is already satisfied, if
F n(anx + bn) approaches its limit Gβ at a rate which is proportional to a power
of n. For a multivariate version of this result we refer to Theorem 5.5.5.

Define the norming constants cn = cn(β) > 0 and dn = dn(β) ∈ R by

cn :=

⎧⎨⎩ nβ β �= 0
if ,

1 β = 0
dn :=

⎧⎨⎩
nβ−1

β β �= 0
if

log(n) β = 0.

With these norming constants we have, for any β ∈ R,

Hβ(cnx + dn) −→n→∞ Gβ(x), x ∈ R,

as is seen immediately.

Theorem 2.1.8. Suppose that F satisfies (VM) with β ∈ R and c > 0 such that∫ ω(F )
x0

η(t)/(1 + βt) dt ∈ R. Then we know from Proposition 2.1.4 and equations
(2.3), (2.4) that

lim
x↑ω(F )

1 − F (x)
1 − Hβ/c(ax + b)

= 1

for some a > 0, b ∈ R, with b = (a − c)/β if β �= 0 and a = c if β = 0.
Consequently, we obtain with an := cn(β/c)/a, bn := (dn(β/c) − b)/a that

sup
x∈R

|F n(anx + bn) − Gβ/c(x)| −→n→∞ 0.

If we require in addition that

lim
x↑ω(F )

η(x)
r(x)

= 1

for some monotone function r : (x0, ω(F )) → R and

sup
x∈R

|F n(anx + bn) − Gβ/c(x)| = O(n−δ)

for some δ > 0, then
η(x) = O((1 − Hβ(x))cδ)

as x → ω(F ) = ω(Hβ).

The following result is now immediate from Theorem 2.1.8 and Proposition
2.1.5.
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Corollary 2.1.9. Suppose that F satisfies (VM) with β ∈ R, c > 0 such that∫ ω(F )
x0

η(t)/(1 + βt) dt ∈ R and

lim
x↑ω(F )

η(x)
r(x)

= 1

for some monotone function r : (x0, ω(F )) → R. If for some δ > 0,

sup
x∈R

|F n(anx + bn) − Gβ/c(x)| = O(n−δ),

with an > 0, bn as in Theorem 2.1.8, then there exist a > 0, b ∈ R with b =
(a − c)/β if β �= 0 and a = c if β = 0, such that

f(x) = ahβ/c(ax + b)
(

1 + O((1 − Hβ(x))cδ)
)

for any x in a left neighborhood of ω(F ) = ω(Hβ).

Our next result is a consequence of Corollary 5.5.5 in Reiss [385] and Propo-
sition 2.1.5 (see also Theorems 2.2.4 and 2.2.5). By B

k we denote the Borel-σ-field
in R

k.

Theorem 2.1.10. Suppose that F satisfies (VM) with β ∈ R, c > 0 such that
η(x) = O((1 − Hβ(x))δ) as x → ω(F ) for some δ > 0. Then there exist an >
0, bn ∈ R such that for k ∈ {1, . . . , n} and n ∈ N,

sup
B∈Bk

|P (((Zn−i+1:n − bn)/an)i≤k ∈ B)

−
⎧⎨⎩

P ((β(
∑

j≤i ξj)−β)i≤k ∈ B)| β �= 0
if

P ((− log(
∑

j≤i ξj))i≤k ∈ B)| β = 0

= O((k/n)δ/ck1/2 + k/n),

where ξ1, ξ2, . . . are independent and standard exponential rv.

Best Attainable Rates of Convergence

One of the significant properties of GPD is the fact that these distributions yield
the best rate of joint convergence of the upper extremes, equally standardized, if
the underlying df F is ultimately continuous and strictly increasing in its upper
tail. This is captured in the following result. By G

(k)
β we denote the distribution of

(β(
∑

j≤i ξj)−β)i≤k if β �= 0 and of (− log(
∑

j≤i ξj))i≤k if β = 0, where ξ1, ξ2, . . .
is again a sequence of independent and standard exponential rv and k ∈ N. These
distributions G

(k)
β are the only possible classes of weak limits of the joint distribu-

tion of the k largest and equally standardized order statistics in an iid sample (see
Theorem 2.2.2 and Remark 2.2.3).



34 2. Extreme Value Theory

Theorem 2.1.11. Suppose that F is continuous and strictly increasing in a left
neighborhood of ω(F ). There exist norming constants an > 0, bn ∈ R and a positive
constant C such that, for any k ∈ {1, . . . , n}, n ∈ N,

sup
B∈Bk

∣∣∣P(
((Zn−i+1:n − bn)/an))i≤k ∈ B

)
− G

(k)
β (B)

∣∣∣ ≤ Ck/n

iff there exist c > 0, d ∈ R such that F (x) = Hβ(cx + d) for x near ω(F ).

The if-part of this result is due to Reiss [383], Theorems 2.6 and 3.2, while
the only if-part follows from Corollary 2.1.13 below.

The bound in Theorem 2.1.11 tends to zero as n tends to infinity for any
sequence k = k(n) such that k/n −→n→∞ 0. The following result which is taken
from Falk [129], reveals that this is a characteristic property of GPD that is, only
df F , whose upper tails coincide with that of a GPD, entail approximation by G

(k)
β

for any such sequence k.
By Gβ,(k) we denote the k-th onedimensional marginal distribution of G

(k)
β

that is, Gβ,(k) is the distribution of (β
∑

j≤k ξj)−β if β �= 0, and of − log(
∑

j≤k ξj)
if β = 0. We suppose that F is ultimately continuous and strictly increasing in its
upper tail.

Theorem 2.1.12. If there exist an > 0, bn ∈ R such that

sup
t∈R

∣∣∣P ((Zn−k+1:n − bn)/an ≤ t) − Gβ,(k)(t)
∣∣∣ −→n→∞ 0

for any sequence k = k(n) ∈ {1, . . . , n}, n ∈ N, with k/n −→n→∞ 0, then there
exist c > 0, d ∈ R such that F (x) = Hβ(cx + d) for x near ω(F ).

The following consequence is obvious.

Corollary 2.1.13. If there exist constants an > 0, bn ∈ R such that for any
k ∈ {1, . . . , n}, n ∈ N,

sup
t∈R

∣∣∣P ((Zn−k+1:n − bn)/an ≤ t) − Gβ,(k)(t)
∣∣∣ ≤ g(k/n),

where g : [0, 1] → R satisfies limx→0 g(x) = 0, then the conclusion of Theorem
2.1.12 holds.

With the particular choice g(x) = Cx, x ∈ [0, 1], the preceding result ob-
viously yields the only if-part of Theorem 2.1.11. A multivariate extension of Theo-
rem 2.1.12 and Corollary 2.1.13 will be established in Theorem 5.4.7 and Corollary
5.4.8.
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2.2 The δ-Neighborhood of a GPD
Distribution functions F , which satisfy the von Mises condition (VM) from The-
orem 2.1.2 with rapidly vanishing remainder term η, are members of certain δ-
neighborhoods Qi(δ), i = 1, 2, 3, of GPD defined below. These classes Qi(δ) will
be our semiparametric models, underlying the upper tail of F , for statistical in-
ference about extreme quantities such as extreme quantiles of F outside the range
of given iid data from F (see Section 2.4).

The Standard Form of GPD

Define for α > 0 the following df,

W1,α(x) := 1 − x−α, x ≥ 1,

which is the usual class of Pareto distributions,

W2,α(x) := 1 − (−x)α, −1 ≤ x ≤ 0,

which consist of certain beta distributions as, e.g., the uniform distribution on
(−1, 0) for α = 1, and

W3(x) := 1 − exp(−x), x ≥ 0,

the standard exponential distribution.
Notice that Wi, i = 1, 2, 3, corresponds to Hβ , β > 0, β < 0, β = 0, and

we call a df W ∈ {W1,α, W2,α, W3 : α > 0} a GPD as well. While Hβ(x) = 1 +
log(Gβ(x)), x ≥ 0, was derived in Example 1.3.4 from the von Mises representation

Gβ(x) = exp(−(1 + βx)−1/β), 1 + βx > 0, β ∈ R,

of an EVD Gβ , the df Wi can equally be derived from an EVD Gi given in its
standard form. Put for i = 1, 2, 3 and α > 0,

G1,α(x) :=
{

0, x ≤ 0
exp(−x−α), x > 0,

G2,α(x) :=
{

exp(−(−x)α), x ≤ 0
1, x > 0,

G3(x) := exp(−e−x), x ∈ R,

being the Fréchet, (reversed) Weibull and Gumbel distribution. Notice that the
Fréchet and Weibull df can be regained from Gβ by the equations

G1,1/β(x) = Gβ((x − 1)/β) β > 0
if

G2,−1/β(x) = Gβ(−(x + 1)/β) β < 0.
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Further we have for G = G1,α, G2,α, G3 with α > 0,

W (x) = 1 + log(G(x)), log(G(x)) > −1.

While we do explicitly distinguish in our notation between the classes of GPD Hβ

and Wi, we handle EVD G a bit laxly. But this should cause no confusion in the
sequel.

δ-Neighborhoods

Suppose that the df F satisfies condition (VM) with β ∈ R, c > 0 such that for
some δ > 0 the remainder term η satisfies η(x) = O((1 − Hβ(x))δ) as x → ω(F ).
Then we know from Proposition 2.1.5 that for some a > 0, b ∈ R, with b = (a−c)/β
if β �= 0 and a = c if β = 0,

f(x) = ahβ/c(ax + b)
(

1 + O((1−Hβ(x))δ)
)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ãw1,c/β(ãx)

(
1+O((1−W1,c/β(x))δ̃

)
, β > 0

ãw2,−c/β(ã(x−ω(F )))
(

1+O((1−W2,−c/β(x−ω(F )))δ̃)
)

, β < 0

ãw3(ax+b)
(

1+O((1−W3(ax))δ/c)
)

, β = 0,

for some ã, δ̃ > 0, where we denote by w the density of W . As a consequence, F
is a member of one of the following semiparametric classes Qi(δ), i = 1, 2, 3 of df.
In view of Corollary 2.1.9, theses classes Qi(δ), which we call δ-neighborhoods of
GPD, are therefore quite natural models for the upper tail of a df F . Such classes
were first studied by Weiss [457]. Put for δ > 0,

Q1(δ) :=
{

F : ω(F ) = ∞ and F has a density f on [x0,∞) for some x0 > 0
such that for some shape parameter α > 0 and some scale para-
meter a > 0 on [x0,∞),

f(x) = 1
a

w1,α

(x

a

)(
1 + O((1 − W1,α(x))δ)

)}
,

Q2(δ) :=
{

F : ω(F ) < ∞ and F has a density f on [x0, ω(F )) for some
x0 < ω(F ) such that for some shape parameter α > 0 and some
scale parameter a > 0 on [x0, ω(F )),

f(x) = 1
a

w2,α

(x − ω(F )
a

)(
1 + O

(
(1− W2,α(x − ω(F )))δ

))}
,

Q3(δ) :=
{

F : ω(F ) = ∞ and F has a density f on [x0,∞) for some x0 > 0
such that for some scale and location parameters a > 0, b ∈ R on
[x0,∞),

f(x) = 1
a

w3

(x − b

a

)(
1 + O

((
1 − W3

(x

a

))δ))}
.
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We will see that in case F ∈ Qi(δ), i = 1 or 2, a suitable data transformation,
which does not depend on the shape parameter α > 0 and the scale parameter
a > 0, transposes the underlying df F to Q3(δ); this reduces for example the
estimation of extreme quantiles of F to the estimation of the scale and location
parameters a, b in the family Q3(δ) see Section 2.4).

The EVD Gi lies in Qi(1), i = 1, 2, 3. The Cauchy distribution is in Q1(1),
Student’s tn distribution with n degrees of freedom is in Q1(2/n), a triangular
distribution lies in Q2(δ) for any δ > 0. Distributions F with upper Gamma tail
that is, f(x) = (cp/Γ(p))e−cxxp−1, x ≥ x0 > 0, with c, p > 0 and p �= 1 do not
belong to any class Qi(δ).

A df F which belongs to one of the classes Qi(δ) is obviously tail equivalent
to the corresponding GPD Wi,α that is,

lim
x→ω(F )

1 − F (x)
1 − Wi,α((x − b)/a)

= 1 (2.5)

for some a > 0, b ∈ R, with b = 0 in case i = 1 and b = ω(F ) in case i = 2.
Interpret W3,α simply as W3, as in the case i = 3 there is no shape parameter α.
Consequently, we obtain from (2.5)

lim
q→0

F −1(1 − q)
Wi,α((· − b)/a)−1(1 − q)

= lim
q→0

F −1(1 − q)
aW −1

i,α (1 − q) + b
= 1, (2.6)

and the estimation of large quantiles F −1(1 − q) of F that is, for q near 0, then
reduces within a certain error bound to the estimation of aW −1

i,α (1 − q) + b.
The following result quantifies the error in (2.5) and (2.6) for a df F in a

δ-neighborhood of a GPD.

Proposition 2.2.1. Suppose that F lies in Qi(δ) for some δ > 0 that is, F is tail
equivalent to some Wi,α((· − b)/a), i = 1, 2 or 3, with b = 0 if i = 1 and b = ω(F )
if i = 2. Then,

(i) 1 − F (x) =
(

1 − Wi,α

(x − b

a

))(
1 + ψi(x)

)
as x → ω(F ),

where ψi(x) decreases to zero at the order O((1 − Wi,α((x − b)/a))δ). We have in
addition

(ii) F −1(1 − q) =
(

aW −1
i,α (1 − q) + b

)
(1 + Ri(q)),

where

Ri(q) =

⎧⎨⎩ O(qδ) i = 1 or 2
if

O(qδ/ log(q)) i = 3

as q → 0. Recall our convention W3,α = W3.
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Proof. Part (i) follows from elementary computations. The proof of part (ii) re-
quires a bit more effort. From (i) we deduce the existence of a positive constant
K such that, for q near zero with Wa,b(t) := Wi,α((t − b)/a),

F −1(1 − q) = inf{t ≥ xq : q ≥ 1 − F (t)}

= inf
{

t ≥ xq : q ≥ 1 − F (t)
1 − Wa,b(t)

(1 − Wa,b(t))
}

{≤ inf{t ≥ xq : q ≥ (1 + K · r(t))(1 − Wa,b(t))}
≥ inf{t ≥ xq : q ≥ (1 − K · r(t))(1 − Wa,b(t))},

where r(x) = x−αδ, |x − ω(F )|αδ, exp(−(δ/a)x) in case i = 1, 2, 3, and xq → ω(F )
as q → 0. Choose now

t−
q :=

⎧⎨⎩
aq−1/α(1 − K1qδ)−1/α i = 1
ω(F ) − aq1/α(1 − K1qδ)1/α in case i = 2
−a log{q(1 − K1qδ)} + b i = 3

and

t+
q :=

⎧⎨⎩
aq−1/α(1 + K1qδ)−1/α i = 1
ω(F ) − aq1/α(1 + K1qδ)1/α in case i = 2
−a log{q(1 + K1qδ)} + b i = 3,

for some large positive constant K1. Then

(1 + Kr(t−
q ))(1 − Wa,b(t−

q )) ≤ q and (1 − Kr(t+
q ))(1 − Wa,b(t+

q )) > q

for q near zero if K1 is chosen large enough; recall that b = 0 in case i = 1.
Consequently, we obtain for q near zero

t+
q ≤ inf{t ≥ xq : q ≥ (1 − Kr(t))(1 − Wa,b(t))}
≤ F −1(1 − q)
≤ inf{t ≥ xq : q ≥ (1 + Kr(t))(1 − Wa,b(t))} ≤ t−

q .

The assertion now follows from the identity

W −1
a,b (1 − q) = aW −1

i,α (1 − q) + b =

⎧⎨⎩
aq−1/α i = 1
ω(F ) − aq1/α in case i = 2
−a log(q) + b i = 3

and elementary computations, which show that

t+
q = W −1

a,b (1 − q)(1 + O(R(q))), t−
q = W −1

a,b (1 − q)(1 + O(R(q))).

The approximation of the upper tail 1−F (x) for large x by Pareto tails under
von Mises conditions on F was discussed by Davis and Resnick [93]. New in the
preceding result is the assumption that F lies in a δ-neighborhood of a GPD, which
entails the handy error terms in the expansions of the tail and of large quantiles of
F in terms of GPD ones. As we have explained above, this assumption F ∈ Qi(δ)
is actually a fairly general one.
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Data Transformations

Suppose that F is in Q1(δ). Then F has ultimately a density f such that, for some
α, a > 0,

f(x) = 1
a

w1,α

(x

a

)(
1 + O((1 − W1,α(x))δ)

)
as x →∞. In this case, the df with upper tail

F1(x) := F (exp(x)), x ≥ x0, (2.7)

is in Q3(δ). To be precise, F1 has ultimately a density f1 such that

f1(x) = αw3

(x − log(a)
1/α

)(
1 + O((1 − W3(αx))δ)

)
= 1

a0
w3

(x − b0
a0

)(
1 + O

((
1 − W3

( x

a0

))δ))
, x ≥ x0,

with a0 = 1/α and b0 = log(a).
If we suppose that F is in Q2(δ) that is,

f(x) = 1
a

w2,α

(x − ω(F )
a

)(
1 + O((1 − W2,α(x − ω(F )))δ)

)
as x → ω(F ) < ∞ for some α, a > 0, then

F2(x) := F (ω(F ) − exp(−x)), x ∈ R, (2.8)

is in Q3(δ). The df F2 has ultimately a density f2 such that

f2(x) = αw3

(x + log(a)
1/α

)(
1 + O((1 − W3(αx))δ)

)
=

1
a0

w3

(x − b0
a0

)(
1 + O

((
1 − W3

( x

a0

))δ))
, x ≥ x0,

with a0 = 1/α and b0 = − log(a).
The message of the preceding considerations can be summarized as follows.

Suppose it is known that F is in Q1(δ), Q2(δ) or in Q3(δ), but neither the particular
shape parameter α nor the scale parameter a is known in case F ∈ Qi(δ), i = 1, 2.
Then a suitable data transformation which does not depend on α and a results in an
underlying df Fi which is in Q3(δ). And in Q3(δ) the estimation of large quantiles
reduces to the estimation of a scale and location parameter for the exponential
distribution; this in turn allows the application of standard techniques. Details will
be given in the next section. A brief discussion of that case, where F is in Q2(δ)
but ω(F ) is unknown, is given after Lemma 2.4.3.

If it is assumed that F lies in a δ-neighborhood Qi(δ) of a GPD for some
i ∈ {1, 2, 3}, but the index i is unknown, then an initial estimation of the class
index i is necessary. A suggestion based on Pickands [371] estimator of the extreme
value index α is discussed in Section 2.5.
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Joint Asymptotic Distribution of Extremes

The following result describes the set of possible limiting distributions of the joint
distribution of the k largest order statistics Zn:n ≥ · · · ≥ Zn−k+1:n, equally stan-
dardized, in an iid sample Z1, . . . , Zn. By −→D we denote the usual weak conver-
gence.

Theorem 2.2.2 (Dwass [117]). Let Z1, Z2, . . . be iid rv. Then we have for an
EVD G and norming constants an > 0, bn ∈ R,

Zn:n − bn

an
−→D G

⇐⇒
(Zn−i+1:n − bn

an

)
i≤k

−→D G(k) for any k ∈ N,

where the distribution G(k)/Bk has Lebesgue density g(k)(x1, . . . , xk) = G(xk)∏
i≤k G′(xi)/G(xi) for x1 > · · · > xk and zero elsewhere.

Remark 2.2.3. Let ξ1, ξ2, . . . be a sequence of independent and standard ex-
ponential rv. Then G

(k)
1,α is the distribution of ((

∑
j≤i ξj)−1/α)i≤k, G

(k)
2,α that of

(−(
∑

j≤i ξj)1/α)i≤k and G
(k)
3 that of (− log(

∑
j≤i ξj))i≤k. This representation was

already utilized in Theorems 2.1.10-2.1.12.

Proof of Theorem 2.2.2. We have to show the only-if part of the assertion. Con-
sider without loss of generality Zi = F −1(Ui), where U1, U2, . . . are independent
and uniformly on (0,1) distributed rv, and where F denotes the df of Zi. Then we
have the representation (Zi:n)i≤n = (F −1(Ui:n))i≤n, and by the equivalence

F −1(q) ≤ t ⇐⇒ q ≤ F (t), q ∈ (0, 1), t ∈ R,

we can write

P
(

(Zn−i+1:n − bn)/an ≤ xi, 1 ≤ i ≤ k
)

= P
(

F −1(Un−i+1:n) ≤ anxi + bn, 1 ≤ i ≤ k
)

= P
(

Un−i+1:n ≤ F (anxi + bn), 1 ≤ i ≤ k
)

= P
(

n(Un−i+1:n − 1) ≤ n(F (anxi + bn) − 1), 1 ≤ i ≤ k
)

.

As the convergence F n(anx + bn) −→n→∞ G(x), x ∈ R, is equivalent to
n(F (anx + bn) − 1) −→n→∞ log(G(x)), 0 < G(x) ≤ 1, and, as is easy to see,
(n(Un−i+1:n − 1))i≤k −→D G

(k)
2,1 with density g

(k)
2,1(x1, . . . , xk) = exp(xk) if 0 >

x1 > · · · > xk and 0 elsewhere, we obtain

P
(

(Zn−i+1:n − bn)/an ≤ xi, 1 ≤ i ≤ k
)

−→n→∞ G
(k)
2,1

(
(log(G(xi)))i≤k

)
.

This implies the assertion.
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For a proof of the following result, which provides a rate of convergence in
the preceding theorem if the upper tail of the underlying distribution is in a δ-
neighborhood of a GPD, we refer to Corollary 5.5.5 of Reiss [385] (cf. also Theorem
2.1.10).

Theorem 2.2.4. Suppose that the df F is in a δ-neighborhood Qi(δ) of a GPD
Wi = W1,α, i = 1, 2 or 3. Then there obviously exist constants a > 0, b ∈ R, with
b = 0 if i = 1, b = ω(F ) if i = 2, such that

af(ax + b) = wi(x)
(

1 + O((1 − Wi(x))δ)
)

(2.9)

for all x in a left neighborhood of ω(Wi,α). Consequently, we obtain from Corollary
5.5.5 in Reiss [385]

sup
B∈Bk

∣∣∣P(((Zn−j+1:n − b

a
− dn

)
/cn

)
j≤k

∈ B
)
− G(k)(B)

∣∣∣
= O((k/n)δk1/2 + k/n),

where dn = 0 for i = 1, 2; dn = log(n) for i = 3; cn = n1/α, n−1/α, 1 for i = 1, 2, 3.

Notice that df F whose upper tails coincide with that of a GPD, are actually
the only ones where the term (k/n)δk1/2 in the preceding bound can be dropped
(cf. Theorem 2.1.11). This is indicated by Theorem 2.2.4, as δ can then and only
then be chosen arbitrarily large.

Summarizing the Results

The following list of equivalences now follows from Proposition 2.1.4, 2.1.5 and
Theorem 2.1.8, 2.2.4. They summarize our considerations of this section and the
preceding one.

Theorem 2.2.5. Suppose that F satisfies condition (VM) from the preceding sec-
tion with β ∈ R and c > 0, such that the remainder function η(x) is proportional
to some monotone function as x → ω(F ) = ω(Hβ) and

∫ ω(F )
x0

η(t)/(1 + βt) dt ∈ R.
Then there exist a > 0, b ∈ R with b = −1/β if β �= 0, such that

lim
x↑ω(Wi)

1 − F (ax + b)
1 − Wi(x) = lim

x↑ω(Wi)

af(ax + b)
wi(x) = 1,

where i = 1, 2, 3 if β > 0, < 0, = 0 and Wi = W1,c/β, W2,c/β , W3. Consequently,
with cn, dn as in the preceding result

sup
x∈R

∣∣∣P((Zn:n − b

a
− dn

)
/cn ≤ x

)
− Gi(x)

∣∣∣ −→n→∞ 0,
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where Z1, . . . , Zn are iid with common df F . Moreover, we have the following list
of equivalences:

sup
x∈R

∣∣∣P((Zn:n − b

a
− dn

)
/cn ≤ x

)
− Gi(x)

∣∣∣ = O(n−δ) for some δ > 0

⇐⇒ there exists δ > 0 such that for x → ω(F )
η(x) = O((1 − Hβ(x))δ)

⇐⇒ F is in a δ-neighborhood Qi(δ) of the GPD Wi

⇐⇒ there exists δ > 0 such that, for k ∈ {1, . . . , n}, n ∈ N,

sup
B∈Bk

∣∣∣P(((Zn−j+1:n − b

a
− dn

)
/cn

)
j≤k

∈ B
)
− G(k)(B)

∣∣∣
= O

(
(k/n)δk1/2 + k/n

)
.

2.3 The Peaks-Over-Threshold Method
The following example seems to represent one of the first applications of the POT
approach (de Haan [189]).

Example 2.3.1. After the disastrous flood of February 1st, 1953, in which the
sea-dikes broke in several parts of the Netherlands and nearly two thousand peo-
ple were killed, the Dutch government appointed a committee (so-called Delta-
committee) to recommend an appropriate level for the dikes (called Delta-level
since) since no specific statistical study had been done to fix a safer level for the
sea-dikes before 1953. The Dutch government set as the standard for the sea-
dikes that at any time in a given year the sea level exceeds the level of the dikes
with probability 1/10,000. A statistical group from the Mathematical Centre in
Amsterdam headed by D. van Dantzig showed that high tides occurring during
certain dangerous windstorms (to ensure independence) within the dangerous win-
ter months December, January and February (for homogeneity) follow closely an
exponential distribution if the smaller high tides are neglected.

If we model the annual maximum flood by a rv Z, the Dutch government
wanted to determine therefore the (1 − q)-quantile

F −1(1 − q) = inf{t ∈ R : F (t) ≥ 1 − q}
of Z, where F denotes the df of Z and q has the value 10−4.

The Point Process of Exceedances

From the past we have observations Z1, . . . , Zn (annual maximum floods), which
we assume to be independent replicates of Z. With these rv we define the truncated
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empirical point process

N (t)
n (·) :=

∑
j≤n

εZj (· ∩ (t,∞))

that is, we consider only those observations which exceed the threshold t. The
process N

(t)
n is therefore called the point process of the exceedances.

From Theorem 1.3.1 we know that we can write

N (t)
n (·) =

∑
j≤Kt(n)

ε
V

(t)
j +t

(·),

where the excesses V
(t)

1 , V
(t)

2 , . . . are independent replicates of a rv V (t) with df
F (t)(·) := P (Z ≤ t + ·|Z ≥ t), and these are independent of the sample size
Kt(n) :=

∑
i≤n εZi((t,∞)).

Without specific assumptions, the problem to determine F −1(1 − q) is a
non-parametric one. If we require however that the underlying df F is in a δ-
neighborhood of a GPD, then this non-parametric problem can be approximated
within a reasonable error bound by a parametric one.

Approximation of Excess Distributions

Suppose therefore that the df F of Z is in a δ-neighborhood Qi(δ) of a GPD Wi

that is, there exist δ, a > 0, b ∈ R, with b = 0 if i = 1 and b = ω(F ) if i = 2, such
that, for x → ω(F ),

f(x) =
1
a

wi

(x − b

a

)(
1 + O

((
1 − Wi

(x − b

a

))δ))
,

where F has density f in a left neighborhood of ω(F ).
In this case, the df F (t)(s), s ≥ 0, of the excess V (t) has density f (t) for all t

in a left neighborhood of ω(F ), with the representation

f (t)(s) = f(t + s)
1 − F (t)

=
1
a wi( t+s−b

a )
1 − Wi( t−b

a )
1 + O((1 − Wi( t+s−b)

a ))δ)
1 + O((1 − Wi( t−b)

a ))δ)

=
1
a wi( t+s−b

a )
1 − Wi( t−b

a )

(
1 + O

((
1 − Wi

( t − b

a

))δ))
, s ≥ 0.

Note that a−1wi((t + s − b)/a)/(1 − Wi((t − b)/a), s ≥ 0, with 0 <
Wi((t − b)/a) < 1 and b = 0 if i = 1, b = ω(F ) if i = 2, is again the density
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of a GPD W
(t)
i , precisely of

W
(t)
i (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W1

(
1 + s

t

)
i = 1

W2

(
− 1 + s

ω(F )−t

)
if i = 2, s ≥ 0,

W3

(
s
a

)
i = 3.

We can consequently approximate the truncated empirical point process

N (t)
n (·) =

∑
j≤n

εZj (· ∩ (t,∞))

=
∑

j≤Kt(n)

ε
V

(t)
j

+t
(·),

pertaining to the Kt(n) exceedances V
(t)

1 + t, . . . , V
(t)

Kt(n) + t over the threshold t,
by the binomial point process

M (t)
n =

∑
j≤Kt(n)

εcξj+d+t,

where c = t, d = −t in case i = 1, c = d = ω(F )− t in case i = 2 and c = a, d = 0
in case i = 3, and ξ1, ξ2 . . . are independent copies of a rv ξ having df Wi, and
independent also from their random counting number Kt(n).

Bounds for the Process Approximations

Choose the particular threshold

t = aW −1
i

(
1 − r

n

)
+ b,

with r/n less than a suitable positive constant c0 such that t is in a proper left
neighborhood of ω(F ) = a ω(Wi) + b. By Corollary 1.2.4 (iv) we obtain for the
Hellinger distance H(N (t)

n , M
(t)
n ) between N

(t)
n and M

(t)
n uniformly for 0 < r/n <

c0 the bound

H(N (t)
n , M (t)

n ) ≤ H(V (t), cξ + d) (E(Kt(n))1/2

= O((1 − Wi((t − b)/a))δ) (E(Kt(n))1/2

= O((r/n)δ (n(1 − F (t)))1/2) = O((r/n)δ r1/2).

As the Hellinger distance is in general bounded by 21/2, we can drop the
assumption r/n ≤ c0 and the preceding bound is therefore true uniformly for
0 < r < n.
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The preceding inequality explains the exponential fit of the high tides by
van Dantzig in Example 2.3.1, if the smaller high tides are neglected. This peaks-
over-threshold method is not only widely used by hydrologists to model large
floods (Smith [420], Davison and Smith [94]), but also in insurance mathematics
for modeling large claims (Teugels [441], [442], Kremer [297], Reiss [384]). For
thorough discussions of the peaks-over-threshold approach in the investigation of
extreme values and further references we refer to Section 6.5 of Embrechts et al.
[122], Section 4 of Coles [71] and to Reiss and Thomas [389].

Replacing M
(t)
n by the Poisson process

N (t)∗∗
n (·) :=

∑
j≤τt(n)

εcξj+d+t(·),

with τt(n) being a Poisson rv with parameter n(1 − F (t)), we obtain therefore by
Theorem 1.2.5 the following bound for the second-order Poisson process approxi-
mation of N

(t)
n by N

(t)∗∗
n ,

H(N (t)
n , N (t)∗∗

n ) = O
(

r1/2(r/n)δ + (1 − F (t))
)

= O
(

r1/2(r/n)δ + r/n
)

,

uniformly for 0 < r < n and n ∈ N.
The preceding considerations are summarized in the following result provid-

ing bounds for functional laws of small numbers in an EVD model.

Theorem 2.3.2. Suppose that F is in the δ-neighborhood Qi(δ) of some GPD
Wi, i = 1, 2 or 3. Then there exist a > 0, b ∈ R, with b = 0 in case i = 1 and
b = ω(F ) in case i = 2 such that

lim
x↑ω(Wi)

1 − F (ax + b)
1 − Wi(x)

= 1.

Define for r ∈ (0, n) the threshold

t := t(n) := aW −1
i

(
1 − r

n

)
+ b

and denote by

N (t)
n =

∑
j≤n

εZj (· ∩ (t,∞)) =
∑

j≤Kt(n)

ε
V

(t)
j

+t
(·)

the point process of the exceedances among Z1, . . . , Zn over t.
Define the binomial process

M (t)
n :=

∑
j≤Kt(n)

εcξj+d+t
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and the Poisson processes

N (t)∗
n :=

∑
j≤τt(n)

ε
V

(t)
j

+t
, N (t)∗∗

n :=
∑

j≤τt(n)

εcξj+d+t,

where c = t, d = −t, if i = 1, c = d = ω(t) − t if i = 1, c = a, d = 0 if
i = 3; ξ1, ξ2, . . . are iid rv with common df Wi and τt(n) is a Poisson rv with
parameter n(1−F (t)), independent of the sequences ξ1, ξ2, . . . and of V

(t)
1 , V

(t)
2 , . . .

Then we have the following bounds, uniformly for 0 < r < n and n ∈ N,

H(N (t)
n , M (t)

n ) = O(r1/2(r/n)δ)

for the POT method,
H(N (t)

n , N (t)∗
n ) = O(r/n)

for the first-order Poisson process approximation and

H(N (t)
n , N (t)∗∗

n ) = O(r/n + r1/2(r/n)δ)

for the second-order Poisson process approximation.

A binomial process approximation with an error bound based on the remain-
der function of the von Mises condition (VM0) in Theorem 2.1.2 was established
by Kaufmann and Reiss [287] (cf. also [389], 2nd ed., Section 6.4).

2.4 Parameter Estimation
in δ-Neighborhoods of GPD

Suppose that we are given an iid sample of size n from a df F , which lies in a
δ-neighborhood Qi(δ) of a GPD Wi. Then there exist α, a > 0, b ∈ R, with b = 0
if i = 1 and b = ω(F ) if i = 2 such that F (x) and 1 − Wi,α((x − b)/a) are tail
equivalent. Interpret again W3,α as W3. We assume that the class index i = 1, 2, 3
and ω(F ) are known. As shown in (2.7) and (2.8) in Section 2.2, a suitable data
transformation, which does not depend on α or a, transposes F ∈ Qi(δ), i = 1 or
2, to a df Fi which is in Q3(δ). And in Q3(δ) the estimation of upper tails reduces to
the estimation of a scale and location parameter a0 > 0, b0 ∈ R for the exponential
distribution, which in turn allows the application of standard techniques. A brief
discussion of that case, where F is in Q2(δ) but ω(F ) is unknown, is given after
Lemma 2.4.3.

If it is assumed that F lies in a δ-neighborhood Qi(δ) of a GPD, but the class
index i is unknown, then an initial estimation of the class index i is necessary. A
suggestion based on Pickands [371] estimator of the extremal index α is discussed
in the next section.

Our considerations are close in spirit to Weissman [458], who considers n iid
observations with common df F being the EVD G3((x − b0)/a0) with unknown
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scale and location parameter a0 > 0, b0 ∈ R. Based on the upper k order statistics
in the sample, he defines maximum-likelihood and UMVU estimators of a0 and b0
and resulting estimators of extreme quantiles F −1(1 − c/n). Equally, he proposes
the data transformations (2.7) and (2.8) in case F = G1,α or G2,α but considers
no asymptotics.

Viewing F as an element of Qi(δ), we can establish asymptotics for UMVU
estimators of a, b and of resulting estimators of extreme quantiles F −1(1 − qn)
with qn → 0 and k = k(n) → ∞ as n → ∞. It follows in particular from Corol-
lary 2.4.6 that the error of the resulting estimator of F −1(1 − qn) is of the order
Op(q−γ(i)

n k−1/2(log2(nqn/k) + 1)1/2), where γ(i) = 1/α,−1/α, 0 if F ∈ Qi(δ), i =
1, 2, 3.

This demonstrates the superiority of the estimators to the ones proposed by
Dekkers and de Haan [108] and Dekkers et al. [107], if nqn is of smaller order than
k. Note however that our estimators are based on the assumption that the class
index i of the condition F ∈ Qi(δ) is known, whereas those estimators proposed
by Dekkers et al. are uniformly consistent.

The Basic Approximation Lemma

The following consequence of Theorem 2.2.4 is crucial.

Lemma 2.4.1. Suppose that F is in Q3(δ) for some δ > 0. Then there exist
a0 > 0, b0 ∈ R such that

sup
B∈Bk+1

∣∣∣P(
((Zn−j+1:n − Zn−k:n)1

j=k, Zn−k:n) ∈ B
)

−P
((

(a0Xj:k)j≤k, (a0/k1/2)Y + a0 log(n/k) + b0

)
∈ B

)∣∣∣
= O(k/n + (k/n)δk1/2 + k−1/2),

where Y, X1, . . . , Xk are independent rv, Y is standard normal and X1, . . . , Xk are
standard exponential distributed.

Proof. By Theorem 2.2.4 there exist a0 > 0 and b0 ∈ R such that

sup
B∈Bk

∣∣∣P(
((Zn−j+1:n − b0)/a0 − log(n))j≤k ∈ B

)
− G

(k+1)
3 (B)

∣∣∣
= O((k/n)δk1/2 + k/n).

Recall that G
(k+1)
3 is the distribution of the vector (− log(

∑
j≤r ξj))r≤k+1, where

ξ1, ξ2, . . . are independent and standard exponential distributed rv (Remark 2.2.3).
Within the preceding bound, the rv ((Zn−j+1:n − Zn−k:n)/a0)1

j=k, (Zn−k:n −
b0)/a0 − log(n)) behaves therefore like
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− log

(∑
j≤r

ξj

)
+ log

( ∑
j≤k+1

ξj

))1

r=k
, − log

( ∑
j≤k+1

ξj

))

=

((
− log

(∑
j≤r

ξj

/ ∑
j≤k+1

ξj

))1

r=k
, − log

( ∑
j≤k+1

ξj

))

=D

(
(Xr:k)r≤k, − log

( ∑
j≤k+1

ξj

))
,

where X1, X2, . . . , ξ1, ξ2, . . . are independent sets of independent standard expo-
nential rv. By =D we denote equality of distributions. This follows from the facts
that (

∑
j≤r ξj/

∑
j≤k+1 ξj)r≤k and

∑
j≤k+1 ξj are independent (Lemma 1.6.6 in

Reiss [385]), that (
∑

j≤r ξj/
∑

j≤k+1 ξj)r≤k =D (Ur:k)r≤k, where U1, . . . , Uk are in-
dependent and uniformly on (0,1) distributed rv (Corollary 1.6.9 in Reiss [385]),
and that − log(1 − U) is a standard exponential rv if U is uniformly on (0,1)
distributed. Finally it is straightforward to show that − log(

∑
j≤k+1 ξj) is in vari-

ational distance within the bound O(k−1/2) distributed like Y/k1/2 − log(k).

The preceding result shows that within a certain error bound depending on
δ, the k excesses (Zn−j+1:n − Zn−k:n)1

j=k over the random threshold Zn−k:n can
be handled in case F ∈ Q3(δ) like a complete set (a0Xj:k)j≤k of order statistics
from an exponential distribution with unknown scale parameter a0 > 0, whereas
the random threshold Zn−k:n behaves like a0k−1/2Y + a0 log(n/k) + b0, where Y
is a standard normal rv being independent of (Xj:k)j≤k. Notice that no informa-
tion from (Zn−j+1:n)j≤k+1 is lost if we consider ((Zn−j+1:n −Zn−k:n)1

j=k, Zn−k:n)
instead.

Efficient Estimators of a0 and b0

After the transition to the model ((a0Xj:k)j≤k, (a0/k1/2)Y + a0 log(n/k) + b0), we
search for efficient estimators of a0 and b0 within this model.

Ad hoc estimators of the parameters a0 > 0, b0 ∈ R in the model

{(Vj:k)j≤k, ξ}
=

{
(a0Xj:k)j≤k, (a0/k1/2)Y + a0 log(n/k) + b0 : a0 > 0, b0 ∈ R

}
are

âk := k−1
∑
j≤k

Vj:k

and
b̂k,n := ξ − âk log(n/k).
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The joint density fa0,b0 of ((Vj:k)j≤k, ξ) is

fa0,b0(x, y) = k! k1/2

ak+1
0 (2π)1/2

exp
(
− a−1

0
∑
j≤k

xj

)
× exp

(
− (y − a0 log(n/k) − b0)2

2a2
0/k

)
,

for x = (x1, . . . , xk) ∈ R
k, if 0 < x1 < · · · < xk, y ∈ R, and zero elsewhere

(Example 1.4.2 (i) in Reiss [385]). This representation implies with respect to the
family P := {fa0,b0 : a0 > 0, b0 ∈ R}. It is straightforward to show that P
is an exponential family, and by using standard arguments from the theory of
such families (see e.g. Chapter 3 of the book by Witting [463]), it is elementary to
prove that (âk, b̂k,n) is a complete statistic as well. Altogether we have the following
result.

Proposition 2.4.2. The estimators âk, b̂k,n are UMVU (uniformly minimum
variance unbiased) estimators of a0, b0 for the family P={fa0,b0 : a0 >0, b0∈R}.

It is straightforward to show that k−1/2 ∑
i≤k(Xi − 1) approaches the stan-

dard normal distribution N(0, 1) within the error bound O(k−1/2) in variational
distance. The following auxiliary result is therefore obvious.

Lemma 2.4.3. We have uniformly in P the bound

sup
B∈B2

∣∣∣P(
((k1/2(âk − a0), (k1/2/ log(n/k))(b̂k,n − b0)) ∈ B

)
−P

(
(a0ξ1, (a0/ log(n/k))ξ2 − a0ξ1) ∈ B

)∣∣∣
= O(k−1/2),

where ξ1, ξ2 are independent standard normal rv.

Hill’s Estimator and Friends

If we plug our initial data (Zn−j+1:n − Zn−k:n)1
j=k, Zn−k:n into âk and b̂k,n, we

obtain the estimators

ân,3 := âk((Zn−j+1:n − Zn−k:n)1
j=k)

= k−1
∑
j≤k

Zn−j+1:n − Zn−k:n,

and
b̂n,3 := Zn−k:n − log(n/k)ân,3

of a0 and b0 in case F ∈ Q3(δ).
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If we suppose that F is in Q1(δ), then we know already that F1(x) =
F (exp(x)) is in Q3(δ), where the initial shape α parameter of F becomes the
scale parameter a0 = 1/α (cf. (2.7)).

We replace therefore Zj:n in this case by the log-transformed data log(Zj:n ∧
1) = log(max{Zj:n, 1}) and define the estimators

ân,1 := ân,3

(
(log(Zn−j+1:n ∧ 1) − log(Zn−k:n ∧ 1))1

j=k

)
= k−1

∑
j≤k

log(Zn−j+1:n ∧ 1) − log(Zn−k:n ∧ 1),

and

b̂n,1 := b̂n,3

(
(log(Zn−j+1:n ∧ 1) − log(Zn−k:n ∧ 1))1

j=k, log(Zn−k:n ∧ 1)
)

= log(Zn−k:n ∧ 1) − log(n/k)ân,1

of a0 and b0. The estimator ân,1 is known as the Hill estimator (Hill [217]). It
actually estimates 1/α, the reciprocal of the initial shape parameter α of F . Note
that the upper tail of the df of Z ∧ 1 and of Z coincide as ω(F ) = ∞. Asymptotic
normality of k1/2(ân,1 − 1/α) with mean 0 and variance 1/α2 under suitable con-
ditions on F and the sequence k = k(n) is well known (see, for example, Hall [202],
Csörgő and Mason [84], Hall and Welsh [204], Häusler and Teugels [212]). For a
thorough discussion of the Hill estimator we refer to Section 6.4 of Embrechts et
al. [122].

If the underlying F is in Q2(δ), the transformation − log(ω(F ) −Zj) of our
initial data Zj leads us back to Q3(δ) with particular scale and location parameters
a0 > 0, b0 ∈ R (cf. (2.8)). The pertaining estimators are now

ân,2 := ân,3

(
(− log(ω(F ) − Zn−j+1:n) + log(ω(F ) − Zn−k:n))1

j=k

)
= log(ω(F ) − Zn−k:n) − k−1

∑
j≤k

log(ω(F ) − Zn−j+1:n)

and
b̂n,2 := − log(ω(F ) − Zn−k:n) − log(n/k)ân,2.

If the endpoint ω(F ) of F is finite but unknown, then we can replace the
transformation − log(ω(F )−Zj:n) of our initial data Zj by the data-driven trans-
formation − log(Zn:n−Zj:n) and j running from 1 to n−1. This yields the modified
versions

â′
n,2 := log

(
Zn:n − Zn−k:n

)
− (k − 1)−1

∑
2≤j≤k

log(Zn:n − Zn−j+1:n)

and
b̂′

n,2 := − log
(

Zn:n − Zn−k:n

)
− log(n/k)â′

n,2
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of the estimators ân,2 and b̂n,2.
One can show (cf. Falk [134]) that in case 0 < α < 2, the data-driven estima-

tors â′
n,2, b̂′

n,2 perform asymptotically as good as their counterparts ân,2, b̂n,2 with
known ω(F ). Precisely, if k = k(n) satisfies k/n → 0, log(n)/k1/2 → 0 as n tends
to infinity, we have

k1/2|ân,2 − â′
n,2| = oP (1)

and
(k1/2/ log(n/k))|b̂n,2 − b̂′

n,2| = oP (1).

As a consequence, the asymptotic normality of (ân,2, b̂n,2), which follows from the
next result if in addition (k/n)δk1/2 → 0 as n increases, carries over to (â′

n,2, b̂′
n,2).

If α ≥ 2, then maximum likelihood estimators of ω(F ), a and 1/α can be obtained,
based on an increasing number of upper-order statistics. We refer to Hall [201]
and, in case α known, to Csörgő and Mason [85]. For a discussion of maximum
likelihood estimation of general EVD we refer to Section 6.3.1 of Embrechts et al.
[122], Section 1.7.5 of Kotz and Nadarajah [293] and to Section 4.1 of Reiss and
Thomas [389]. The following result summarizes the preceding considerations and
Proposition 2.2.1.

Theorem 2.4.4. Suppose that F is in Qi(δ), i = 1, 2 or 3 for some δ > 0 that is,
F is in particular tail equivalent to a GPD Wi,α((x − b)/a), where b = 0 if i = 1
and b = ω(F ) if i = 2. Then we have in case

i = 1 : 1 − F1(x) = 1 − F (exp(x))
i = 2 : 1 − F2(x) = 1 − F (ω(F ) − exp(−x))
i = 3 : 1 − F3(x) := 1 − F (x)

⎫⎬⎭
= (1 − W3((x − b0)/a0))

(
1 + O(exp(−(δ/a0)x))

)
with a0 = 1/α, b0 = log(a) if i = 1; a0 = 1/α, b0 = − log(a) if i = 2 and
a0 = a, b0 = b if i = 3. Furthermore,

f3(x) = a−1
0 w3((x − b0)/a0)

(
1 + O(exp(−(δ/a0)x))

)
for x →∞ and

F −1
i (1 − q) =

(
(a0W −1

3 (1 − q) + b0

)(
1 + O(qδ/ log(q))

)
, i = 1, 2, 3

as q → 0. Finally, we have for i = 1, 2, 3 the representations

sup
B∈B2

∣∣∣P((
k1/2(ân,i − a0), (k1/2/ log(n/k))(b̂n,i − b0)

)
∈ B

)
−P

((
a0ξ1, (a0/ log(n/k))ξ2 − a0ξ1

)
∈ B

)∣∣∣
= O(k/n + (k/n)δk1/2 + k−1/2),

where ξ1, ξ2 are independent standard normal rv.
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Note that in cases i = 1 and 2, estimators of the initial scale parameter a
in the model F ∈ Qi(δ) are given by exp(b̂n,1) ∼ exp(b0) = a and exp(−b̂n,2) ∼
exp(−b0) = a, respectively. Their asymptotic behavior can easily be deduced from
the preceding theorem and Taylor expansion of the exponential function.

The Pareto Model with Known Scale Factor

Suppose that the df F underlying the iid sample Z1, . . . , Zn is in Q1(δ). Then F
has a density f on (x0,∞) such that

f(x) = 1
a

w1,1/α

(x

a

)(
1 + O((1 − W1,1/α(x))δ

)
, x > x0, (2.10)

for some α, δ, a > 0. Note that we have replaced α by 1/α. The preceding result
states that for the Hill estimator

ân,1 = k−1
∑
j≤k

log(Zn−j+1:n ∧ 1) − log(Zn−k:n ∧ 1)

of a0 = α we have

sup
B∈B

∣∣∣P(k1/2

α
(ân,1 − α) ∈ B

)
− N(0, 1)(B)

∣∣∣
= O(k/n + (k/n)δk1/2 + k−1/2),

where N(0, 1) denotes the standard normal distribution on R. If the scale para-
meter a in (2.10) is however known, then the Hill estimator is outperformed by

α̂n := log(Zn−k:n ∧ 1) − log(a)
log(n/k)

,

as by Lemma 2.4.1 and the transformation (2.7)

sup
B∈B

∣∣∣P(k1/2 log(n/k)
α

(α̂n − α) ∈ B
)
− N(0, 1)(B)

∣∣∣
= O(k/n + (k/n)δk1/2 + k−1/2),

showing that α̂n is more concentrated around α than ân,1.
This result, which looks strange at first sight, is closely related to the fact

that Zn−k:n is the central sequence generating local asymptotic normality (LAN) of
the loglikelihood processes of (Zn−j+1:n)j≤k+1, indexed by α. In this sense, Zn−k:n
carries asymptotically the complete information about the underlying shape para-
meter α that is contained in (Zn−j+1:n)j≤k (see Theorems 1.3, 2.2 and 2.3 in Falk
[133]).
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The Extreme Quantile Estimation

Since W −1
3 (1− q) = − log(q), we obtain from the preceding theorem the following

result on the estimation of extreme quantiles outside the range of our actual data.
We adopt the notation of the preceding result.

Theorem 2.4.5. Suppose that F is in Qi(δ), i = 1, 2 or 3. Then we have, for
i = 1, 2, 3,

sup
B∈B

∣∣∣P(
F −1

i (1 − q) − (ân,iW
−1
3 (1 − q) + b̂n,i) ∈ B

)
−P

(
a0ξ1 log(qn/k)/k1/2 + a0ξ2/k1/2 + O(qδ) ∈ B

)∣∣∣
= O(k/n + (k/n)δk1/2 + k−1/2)

uniformly for q → 0, where ξ1, ξ2 are independent and standard normal rv.

The preceding result entails in particular that ân,iW
−1
3 (1 − q) + b̂n,i = b̂n,i

−ân,i log(q) is a consistent estimator of F −1
i (1−q) for any sequence q = qn −→n→∞

0 such that log(qn)/k1/2 → 0 with k = k(n) → ∞ satisfying (k/n)δk1/2 → 0.
The bound O(k/n+(k/n)δk1/2+k−1/2) for the normal approximation in The-

orem 2.4.5 suggests that an optimal choice of k = k(n) →∞ is of order n2δ/(2δ+1),
in which case the error bound (k/n)δk1/2 does not vanish asymptotically.

Note that F −1
1 (1 − q) = log(F −1(1 − q)) and F −1

2 (1 − q) = − log(ω(F ) −
F −1(1 − q)). We can apply therefore the transformation T1(x) = exp(x) and
T2(x) = ω(F ) − exp(−x) in case i = 1, 2 to the estimators of F −1

i (1 − q) in
Theorem 2.4.5, and we can deduce from this theorem the asymptotic behavior of
the resulting estimators of the initial extreme quantile F −1(1 − q).

Theorem 2.4.5 implies the following result.

Corollary 2.4.6. Suppose that F is in Qi(δ), i = 1, 2 or 3. Then we have

(i) qγ(i)
n (F −1(1 − qn) − Ti(b̂n,i − ân,i log(qn))) −→n→∞ 0

in probability, with γ(i) = 1/α,−1/α, 0 if i = 1, 2, 3, and T1(x) = exp(x),
T2(x) = ω(F ) − exp(−x), T3(x) = x, x ∈ R, for any sequence qn −→n→∞ 0
such that log(qnn)/k1/2 −→n→∞ 0, where k = k(n) satisfies (k/n)δk1/2

−→n→∞ 0.

(ii) sup
t∈R

∣∣∣P( q
γ(i)
n k1/2

a(i)(log2(qnn/k) + 1)1/2
(F −1(1− qn)−Ti(b̂n,i− ân,i log(qn))) ≤ t

)
−Φ(t)

∣∣∣ −→n→∞ 0,

for any sequence qn −→n→∞ 0 such that k1/2qδ
n is bounded and log(qnn)/k1/2

−→n→∞ 0, where k →∞ satisfies (k/n)δk1/2 −→n→∞ 0, a(i) = a/α, a/α, a
if i = 1, 2, 3 and Φ denotes the standard normal df.
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Proof. Theorem 2.4.5 implies

(i) F −1
i (1 − qn) − (b̂n,i − ân,iW

−1
3 (1 − qn)) −→n→∞ 0 in probability for any

sequence qn −→n→∞ 0 such that log(qnn)/k1/2 −→n→∞ 0, where k = k(n)
−→n→∞ ∞ satisfies (k/n)δk1/2 −→n→∞ 0.

(ii) sup
t∈R

∣∣∣P( k1/2

a(log2(qnn/k) + 1)1/2

(
F −1

i (1 − qn) − (b̂n,i − ân,iW
−1
3 (1 − qn))

)
≤ t

)
− Φ(t)

∣∣∣ −→n→∞ 0

for any sequence qn −→n→∞ 0 such that k1/2qδ
n is bounded, where k → ∞

satisfies (k/n)δ k1/2 −→n→∞ 0.

The assertion of Corollary 2.4.6 now follows from the equation F −1(1 − qn) =
Ti(F −1

i (1−qn)), i = 1, 2, 3, Taylor expansion of Ti and the equation F −1(1−qn) =
aq

−1/α
n (1 + o(1)) if i = 1; ω(F ) − F −1(1 − qn) = aq

1/α
n (1 + o(1)) if i = 2 (see

Proposition 2.2.1).

Confidence Intervals

Theorem 2.4.5 can immediately be utilized to define confidence intervals for the
extreme quantile F −1(1 − qn). Put for qn ∈ (0, 1),

F̂ −1
n (1 − qn) := ân,iW

−1
3 (1 − qn) + b̂n,i

= b̂n,i − ân,i log(qn),

and define the interval

In :=
[
F̂ −1

n (1 − qn) − ân,i(log2(qnn/k) + 1)1/2k−1/2Φ−1(1 − β1),

F̂ −1
n (1 − qn) + ân,i(log2(qnn/k) + 1)1/2k−1/2Φ−1(1 − β2)

]
,

where 0 < β1, β2 < 1/2. For F ∈ Qi(δ) we obtain that In is a confidence interval
for F −1

i (1− qn) of asymptotic level 1− (β1 +β2) that is, limn→∞ P (F −1
i (1− qn) ∈

In) = 1− (β1 + β2). Consequently, we obtain from the equation Ti(F −1
i (1− qn)) =

F −1(1 − qn),
lim

n→∞ P (F −1(1 − qn) ∈ Ti(In)) = 1 − (β1 + β2)

with T1(x) = exp(x), T2(x) = ω(F ) − exp(−x) and T3(x) = x, x ∈ R, for any
sequence qn −→n→∞ 0 such that k1/2qδ

n is bounded, where k →∞ satisfies (k/n)δ

k1/2 −→n→∞ 0. Note that Ti are strictly monotone and continuous functions. The
confidence interval Ti(In) can therefore be deduced from In immediately by just
transforming its endpoints. Note further that the length of In is in probability
proportional to (log2(qnn/k) + 1)1/2k−1/2, which is a convex function in qn with
the minimum value k−1/2 at qn = k/n.
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2.5 Initial Estimation of the Class Index
If it is assumed that F is in Qi(δ) but the index i is unknown, an initial estimation
of the index i ∈ {1, 2, 3} is necessary. Such a decision can be based on graphical
methods as described in Castillo et al. [61] or on numerical estimates like the
following Pickands [371] estimator (for a discussion we refer to Dekkers and de
Haan [108]).

The Pickands Estimator

Choose m ∈ {1, . . . , n/4} and define

β̂n(m) := (log(2))−1 log
( Zn−m+1:n − Zn−2m+1:n

Zn−2m+1:n − Zn−4m+1:n

)
.

This estimator is an asymptotically consistent estimator of β := 1/α,−1/α, 0 in
case F ∈ Qi(δ) with pertaining shape parameter α. A stable positive or negative
value of β̂n(m) indicates therefore that F is in Q1(δ) or Q2(δ), while β̂n(m) near
zero indicates that F ∈ Q3(δ). By N(μ, σ2) we denote the normal distribution on
R with mean μ and variance σ2.

Proposition 2.5.1. Suppose that F is in Qi(δ), i = 1, 2, 3. Then we have

sup
t∈R

∣∣∣P(
m1/2(β̂n(m) − β) ≤ t

)
− N(0, σ2

β)((−∞, t])
∣∣∣

= O((m/n)δ m1/2 + m/n + m−1/2),

where
σ2

β :=
1 + 2−2β−1

2 log2(2)

( β

1 − 2−β

)2
, β ∈ R.

Interpret σ2
0 = limβ→0 σ2

β = 3/(4 log(2)4).

The estimator β̂n(m) of β can easily be motivated as follows. One expects by
Proposition 2.2.1,

Zn−m+1:n − Zn−2m+1:n
Zn−2m+1:n − Zn−4m+1:n

∼ F −1(1 − m
n+1 ) − F −1(1 − 2m

n+1 )
F −1(1 − 2m

n+1 ) − F −1(1 − 4m
n+1 )

∼ W −1
i (1 − m

n+1 ) − W −1
i (1 − 2m

n+1 )
W −1

i (1 − 2m
n+1 ) − W −1

i (1 − 4m
n+1 )

,

with Wi ∈ {W1, W2, W3} being the GPD pertaining to F . Since location and scale
shifts are canceled by the definition of the estimator β̂n(m), we can assume without
loss of generality that Wi has standard form. Now

W −1
i (1 − q) =

⎧⎨⎩ q−1/α i = 1,
−q1/α in case i = 2,
− log(q) i = 3,
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q ∈ (0, 1) and, thus,

W −1
i (1 − m

n+1 ) − W −1
i (1 − 2m

n+1 )
W −1

i (1 − 2m
n+1 ) − W −1

i (1 − 4m
n+1 )

=

⎧⎨⎩
21/α, i = 1,

2−1/α, i = 2,
1, i = 3,

which implies the approximation

β̂n(m) ∼ (log(2))−1 log

(
W −1

i (1 − m
n+1 ) − W −1

i (1 − 2m
n+1 )

W −1
i (1 − 2m

n+1 ) − W −1
i (1 − 4m

n+1 )

)

=

⎧⎨⎩ 1/α, i = 1,
−1/α, i = 2, = β.
0, i = 3,

Weak consistency of β̂n(m) actually holds under the sole condition that F is
in the domain of attraction of an EVD and m = m(n) satisfies m →∞, m/n → 0
as n →∞ (see Theorem 2.1 of Dekkers and de Haan [108]). Asymptotic normality
of β̂n(m) however, requires additional conditions on F (see also Theorem 2.3 of
Dekkers and de Haan [108]).

Convex Combinations of Pickands Estimators

The limiting variance of Pickands estimator β̂n(m) can considerably be reduced
by a simple convex combination. Choose p ∈ [0, 1] and define for m ∈ {1, . . . , n/4},

β̂n(m, p) := p · β̂n([m/2]) + (1 − p) · β̂n(m)

= (log(2))−1 log

{(
Zn−[m/2]+1:n − Zn−2[m/2]+1:n

Zn−2[m/2]+1:n − Zn−4[m/2]+1:n

)p

×
(

Zn−m+1:n − Zn−2m+1:n
Zn−2m+1:n − Zn−4m+1:n

)1−p}
,

where [x] denotes the integral part of x ∈ R. If m is even, [m/2] equals m/2, and
the preceding notation simplifies.

We consider the particular convex combination β̂n(m, p) to be a natural ex-
tension of Pickands estimator β̂n(m): As β̂n(m) is built upon powers of 2 that
is, of 20m, 21m, 22m, it is only natural (and makes the computations a bit easier)
to involve the next smaller integer powers 2−1m, 20m, 21m of 2 and to combine
β̂n(m) with β̂n([m/2]). As a next step one could consider linear combinations∑

i≤k piβ̂n([m/2i−1]),
∑

i≤k pi = 1, of length k. But as one uses the 4m largest
observations in a sample of size n in the definition of β̂n(m), with 4m having to be
relatively small to n anyway, it is clear that m/2 is already a rather small number
for making asymptotics (m →∞). For moderate sample sizes n, the length m will
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therefore be limited to 2 in a natural way. Higher linear combinations nevertheless
perform still better in an asymptotic model (cf. Drees [114]).

In the following result we establish asymptotic normality of β̂n(m, p). With
p = 0 it complements results on the asymptotic normality of β̂n(m) = β̂n(m, 0)
(cf. also Dekkers and de Haan ([108], Theorems 2.3, 2.5)). Its proof is outlined at
the end of this section. A careful inspection of this proof also implies Proposition
2.5.1.

Lemma 2.5.2. Suppose that F is in Qi(δ), i = 1, 2, 3 for some δ > 0. Then we
have, for m ∈ {1, . . . , n/4} and p ∈ [0, 1],

sup
B∈B

∣∣∣P (m1/2(β̂n(m, p) − β) ∈ B) − P (σβνβ(p)X + Op(m−1/2) ∈ B)
∣∣∣

= O
(

(m/n)δm1/2 + m/n + m−1/2
)

,

where X is a standard normal rv and

νβ(p) := 1 + p2
(

3 + 4 · 2−β

2−2β + 2

)
− p

(
2 + 4 · 2−β

2−2β + 2

)
.

The Asymptotic Relative Efficiency

The following result is an immediate consequence of Lemma 2.5.2.

Corollary 2.5.3. Under the conditions of the preceding lemma we have, for m =
m(n) −→n→∞ ∞ such that (m/n)δm1/2 → 0 as n → ∞,

m1/2(β̂n(m, p) − β) →D N(0, σ2
βν2

β(p)).

By →D we denote again convergence in distribution. Recall that σ2
β is the

variance of the limiting central normal distribution of the standardized Pickands
estimator

√
m (β̂n(m) − β). The factor ν2

β(p) is now the asymptotic relative effi-
ciency (ARE) of β̂n(m) with respect to β̂n(m, p), which we define by the ratio of
the variances of the limiting central normal distributions of m1/2(β̂n(m, p) − β)
and m1/2(β̂n(m) − β):

ARE (β̂n(m)|β̂n(m, p)) := ν2
β(p).

The Optimal Choice of p

The optimal choice of p minimizing ν2
β(p) is

popt(β) := (2−2β + 2) + 2 · 2−β

3(2−2β + 2) + 4 · 2−β
,
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in which case ν2
β(p) becomes

ν2
β(popt(β)) = 1 − popt(β) ·

(
1 + 2 2−β

2−2β + 2

)
.

As popt(β) is strictly between 0 and 1, we have ν2
β(popt(β)) < 1 and the convex

combination β̂n(m, popt(β)) is clearly superior to the Pickands estimator β̂n(m).
The following figure displays the ARE function β �→ ν2

β(popt(β)). As ν2
β(popt

(β)) =: g(2−β) depends upon β through the transformation 2−β, we have plotted
the function g(x), x ∈ R, with x = 2−β . Notice that both for x → 0 (that is,
β → ∞) and x → ∞ (that is, β → −∞) the pertaining ARE function converges
to 2/3 being the least upper bound, while .34 is an approximate infimum.

Figure 2.5.1. g(x) = 1 − (x2+2)+2x
3(x2+2)+4x

(
1 + 2x

x2+2

)
.

Data-Driven Optimal Estimators

The optimal p depends however on the unknown β and it is therefore reasonable
to utilize the data-driven estimator

popt(β̃n) := (2−2β̃n + 2) + 2 · 2−β̃n

3(2−2β̃n + 2) + 4 · 2−β̃n
,

where β̃n is an initial estimator of β. If β̃n is asymptotically consistent, then,
using Lemma 2.5.2, it is easy to see that the corresponding data-driven convex
combination β̂n(m, popt(β̃n)) is asymptotically equivalent to the optimal convex
combination β̂n(m, popt(β)) with underlying β that is,

m1/2
(

β̂n(m, popt(β̃n)) − β̂n(m, popt(β))
)

= oP (1),
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so that their ARE is one.
A reasonable initial estimator of β is suggested by the fact that the particular

parameter β = 0 is crucial as it is some kind of change point: If β < 0, then the
right endpoint ω(F ) of F is finite, while in case β > 0 the right endpoint of F is
infinity. The question ω(F ) = ∞ or ω(F ) < ∞ is in case β = 0 numerically hard
to decide, as an estimated value of β near 0 can always be misleading. In this case,
graphical methods such as the one described in Castillo et al. [61] can be helpful.
To safeguard oneself against this kind of a least favorable value β, it is therefore
reasonable to utilize as an initial estimator β̃n that convex combination β̂n(m, p),
where p is chosen optimal for β = 0 that is, popt(0) = 5/13. We propose as an
initial estimator therefore β̃n = β̂n(m, 5/13).

Figure 2.5.2. h(x) = ((x2 + 2) + 2x)/(3(x2 + 2) + 4x).

Figure 2.5.2 displays the function of optimal weights popt(β), again after the
transformation x = 2−β that is, popt(β) =: h(2−β). These weights do not widely
spread out, they range between .33 and .39, roughly.

Note that the ARE of the Pickands estimator β̂n(m) with respect to the
optimal convex combination β̂n(m, 5/13) in case β = 0 is 14/39. We summarize
the preceding considerations in the following result.

Theorem 2.5.4. Suppose that F is in Qi(δ), i = 1, 2 or 3 for some δ > 0. Then
we have, for m →∞ such that (m/n)δm1/2 → 0 as n →∞,

m1/2
(

β̂n(m, popt(β̃n)) − β
)

→D N
(

0, σ2
β

(
1 − popt(β)

(
1 + 2 2−β

2−2β + 2

)))
for any initial estimator sequence β̃n of β which is asymptotically consistent.
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Dropping the δ-Neighborhood

The crucial step in the proof of Lemma 2.5.2 is the approximation

Δn,m := sup
B∈Bm

|P (((Zn−j+1:n − bn)/an)j≤m ∈ B)

−

⎧⎪⎨⎪⎩
P
((

β(
∑

r≤j ξr)−β
)

j≤m
∈ B

)∣∣∣ if β �= 0,

P
((

− log(
∑

r≤j ξr)
)

j≤m
∈ B

)∣∣∣ if β = 0,

= O((m/n)δm1/2 + m/n)

of Theorem 2.2.4, where ξ1, ξ2, . . . are independent and standard exponential rv
and an > 0, bn ∈ R are suitable constants (see also Remark 2.2.3).

Lemma 2.5.2, Corollary 2.5.3 and Theorem 2.5.4 remain however true with
(m/n)δm1/2 +m/n replaced by Δn,m, if we drop the condition that F is in Qi(δ)
and require instead Δn,m → 0 for some sequence m = m(n) ≤ n/4, m → ∞ as
n →∞.

Then we can consider for example the case, where F is the standard normal
df, which is not in any Qi(δ); but in this case we have Δn,m = O(m1/2 log2(m+1)/
log(n)) (cf. Example 2.33 in Falk [126]), allowing however only rather small sizes
of m = m(n) to ensure asymptotic normality.

Simulation Results

In this section we briefly report the results of extensive simulations which we have
done for the comparison between β̂n(m, p̂opt) = β̂n(m, popt(β̃n)), based on the
initial estimate β̃n = β̂n(m, 5/13) and the Pickands estimator β̂n(m).

These simulations with various choices of n, m and underlying df F sup-
port the theoretical advantage of using β̂n(m, p̂opt) in those cases, where F is
in a δ-neighborhood of a GPD. Figures 2.5.3-2.5.6 exemplify the gain of relative
performance which is typically obtained by using β̂n(m, p̂opt). In these cases we
generated n = 50/100/200/400 replicates Z1, . . . , Zn of a (pseudo-) rv Z with dif-
ferent distribution F in each case. The estimators β̂n(m, p̂opt) and β̂n(m) of the
pertaining values of β with m = 6/8/12/40 were computed, and we stored by
B := |β̂n(m)−β|, C := |β̂n(m, p̂opt)− β| their corresponding absolute deviations.
We generated k = 1000 independent replicates B1, . . . , Bk and C1, . . . , Ck of B
and C, with their sample quantile functions now visualizing the concentration of
β̂n(m) and β̂n(m, p̂opt) around β.
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Figure 2.5.3. β = −.5, n = 50, m = 6.

Figure 2.5.4. β = 0, n = 100, m = 8.

Figures 2.5.3-2.5.6 display the pertaining sample quantile functions (t/(k +
1), Bt:k) and (t/(k + 1), Ct:k), t = 1, . . . , k = 1000 for Z. By B1:k ≤ · · · ≤
Bk:k and C1:k ≤ · · · ≤ Ck:k we denote the ordered values of B1, . . . , Bk and
C1, . . . , Ck. In Figure 2.5.3, Z equals the sum of two independent and uniformly
on (0,1) distributed rv (β = −.5); in Figure 2.5.4 the df F is a Gamma distribution
(Z = X1 + X2 + X3, X1, X2, X3 independent and standard exponential, β = 0)
and in Figure 2.5.5, F is a Cauchy distribution (β = 1). Elementary computations
show that these distributions satisfy (VM) with rapidly decreasing remainder. The
triangular distribution is in particular a GPD. In Figure 2.5.6, F is the normal
distribution.
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Figure 2.5.5. β = 1, n = 200, m = 12.

Figure 2.5.6. β = 0, n = 400, m = 40.

Except the normal distribution underlying Figure 2.5.6, these simulations are
clearly in favor of the convex combination β̂n(m, p̂opt) as an estimator of β, even for
moderate sample sizes n. In particular Figure 2.5.3 shows in this case with β = −.5,
that β̂n(m) would actually give a negative value between −1 and 0 with approxi-
mate probability .67, whereas the corresponding probability is approximately .87
for β̂n(m, p̂opt). Recall that a negative value of β implies that the underlying df
has finite right endpoint. In Figure 2.5.4 with β = 0 the sample medians Bk/2:k
and Ck/2:k are in particular interesting: While with approximate probability 1/2
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the Pickands estimate β̂n(m) has an absolute value less than .3, the combination
β̂n(m, p̂opt) is less than .18 apart from β = 0 with approximate probability 1/2.
Figure 2.5.6 is not in favor of β̂n(m, p̂opt). But this can be explained by the fact
that the normal distribution does not belong to a δ-neighborhood of a GPD and
the choice m = 40 is too large. This observation underlines the significance of
δ-neighborhoods of GPD.

Our simulations showed that the relative performance of β̂n(m, p̂opt) is quite
sensitive to the choice of m which corresponds to under- and oversmoothing in
bandwidth selection problems in non-parametric curve estimation (see Marron
[322] for a survey). Our simulations suggest as a rule of thumb the choice m =
(2/25)n for not too large sample size n that is, n ≤ 200, roughly.

Notes on Competing Estimators

If one knows the sign of β, then one can use the estimators ân,i of the shape
parameter 1/α = |β|, which we have discussed in Section 2.4. Based on the 4m
largest order statistics, m1/2(ân,i−|β|) is asymptotically normal distributed under
appropriate conditions with mean 0 and variance β2/4 in case i = 1, 2 and β �= 0
(Theorem 2.4.4), and therefore outperforms β̂n(m, p̂opt) (see Theorem 2.5.4).

A competitor of β̂n(m, p) is the moment estimator investigated by Dekkers et
al. [107], which is outperformed by β̂n(m, p̂opt) if β < 0 is small enough. Alterna-
tives such as the maximum-likelihood estimator or the method of probability-
weighted moment (PWM) considered by Hosking and Wallis [224] require re-
strictions on β such as β > −1 (for the PWM method) and are therefore not
universally applicable. A higher linear combination of Pickands estimators with
estimated optimal scores was studied by Drees [114]. For thorough discussions
of different approaches we refer to Section 9.6 of the monograph by Reiss [385],
Sections 6.3 and 6.4 of Embrechts et al. [122], Section 5.1 of Reiss and Thomas
[389], Section 1.7 of Kotz and Nadarajah [293] as well as to Beirlant et al. [32] and
de Haan and Ferreira [190].

Outline of the Proof of Lemma 2.5.2: Put

An :=
Zn−[m/2]+1:n − Zn−2[m/2]+1:n

Zn−2[m/2]+1:n − Zn−4[m/2]+1:n
− 2β

and

Bn := Zn−m+1:n − Zn−2m+1:n
Zn−2m+1:n − Zn−4m+1:n

− 2β .

We will see below that An and Bn are both of order OP (m−1/2), so that we obtain,
by the expansion log(1 + ε) = ε + O(ε2) as ε → 0,
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β̂n(m, p) − β = 1
log(2)

{
p
(

log(2β +An) −log(2β)
)

+ (1−p)
(

log(2β +Bn) −log(2β)
)}

= 1
log(2)

{
p log

(
1 + An

2β

)
+ (1−p) log

(
1 + Bn

2β

)}

= 1
2β log(2)

(pAn + (1−p)Bn) + OP (m−1).

From Theorem 2.2.4 we obtain within the error bound O((m/n)δm1/2 +m/n)
in variational distance the representation

pAn + (1 − p)Bn

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

⎛⎜⎝
(

1 + [m/2]−1 ∑
j≤[m/2] ηj

)−β

−
(

2 + [m/2]−1 ∑
j≤2[m/2] ηj

)−β

(
2 + [m/2]−1

∑
j≤2[m/2] ηj

)−β

−
(

4 + [m/2]−1
∑

j≤4[m/2] ηj

)−β
− 2β

⎞⎟⎠
+(1 − p)

⎛⎜⎝
(

1 + m−1 ∑
j≤m

ηj

)−β

−
(

2 + m−1 ∑
j≤2m

ηj

)−β

(
2 + m−1

∑
j≤2m

ηj

)−β

−
(

4 + m−1
∑

j≤4m
ηj

)−β
− 2β

⎞⎟⎠ ,

if β �= 0

p

⎛⎜⎜⎝ log
(

2+[m/2]−1
∑

j≤2[m/2]
ηj

1+[m/2]−1
∑

j≤[m/2]
ηj

)
log

(
4+[m/2]−1

∑
j≤4[m/2]

ηj

2+[m/2]−1
∑

j≤2[m/2]
ηj

) − 1

⎞⎟⎟⎠

+(1 − p)

⎛⎜⎜⎝ log
(

2+m−1
∑

j≤2m
ηj

1+m−1
∑

j≤m
ηj

)
log

(
4+m−1

∑
j≤4m

ηj

2+m−1
∑

j≤2m
ηj

) − 1

⎞⎟⎟⎠ , if β = 0,

where η1 + 1, η2 + 1, . . . are independent and standard exponential rv. Now ele-
mentary computations show that the distribution of k−1/2 ∑

j≤k ηj approaches the
standard normal distribution uniformly over all Borel sets at the rate O(k−1/2) and
thus, within the bound O(m−1/2), we can replace the distribution of the right-hand
side of the preceding equation by that of

p

⎛⎜⎜⎝
(

1 + X√
m/2

)−β

−
(

2 + X+Y√
m/2

)−β

(
2 + X+Y√

m/2

)−β

−
(

4 + X+Y +
√

2Z√
m/2

)−β
− 2β

⎞⎟⎟⎠
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+(1−p)

⎛⎜⎝
(

1 + X+Y√
2m

)−β

−
(

2 + X+Y +
√

2Z√
2m

)−β

(
2 + X+Y +

√
2Z√

2m

)−β

−
(

4 + X+Y +
√

2Z+2W√
2m

)−β
− 2β

⎞⎟⎠ , if β �= 0,

and by

p

⎛⎜⎜⎜⎜⎝
log

(
2+ X+Y√

m/2

1+ X√
m/2

)

log

(
4+ X+Y +

√
2Z√

m/2

2+ X+Y√
m/2

) − 1

⎞⎟⎟⎟⎟⎠ + (1−p)

⎛⎜⎜⎜⎝
log

(
2+ X+Y +

√
2Z√

2m

1+ X+Y√
2m

)
log

(
4+ X+Y +

√
2Z+2W√

2m

2+ X+Y +
√

2Z√
2m

) − 1

⎞⎟⎟⎟⎠ , if β = 0,

where X, Y, W, Z are independent standard normal rv. We have replaced [m/2] in
the preceding formula by m/2, which results in an error of order OP (1/m).

By Taylor’s formula we have (1 + ε)−β = 1 − βε + O(ε2) for β �= 0 and
log(1 + ε) = ε + O(ε2) as ε → 0. The assertion of Lemma 2.5.2 now follows from
Taylor’s formula and elementary computations.

2.6 Power Normalization
and p-Max Stable Laws

Let Z1, . . . Zn be iid rv with common df F . In order to derive a more accurate
approximation of the df of Zn:n by means of limiting df, Weinstein [456] and
Pancheva [360] used a nonlinear normalization for Zn:n. In particular, F is said to
belong to the domain of attraction of a df H under power normalization, denoted
by F ∈ Dp(H) if, for some αn > 0, βn > 0,

F n
(
αn|x|βnsign(x)

) −→ω H(x), n →∞, (2.11)

or in terms of rv,

(|Zn:n|/αn)1/βnsign(Zn:n) −→D Z, n →∞,

where Z is a rv with df H and sign(x) = −1, 0 or 1 according as x <, = or > 0,
respectively.

The Power-Max Stable Distributions

Pancheva [360] (see also Mohan and Ravi [339]) showed that a non-degenerate
limit df H in (2.11) can up to a possible power transformation H(α|x|βsign(x)),
α, β > 0, only be one of the following six different df Hi, i = 1, . . . , 6, where with
γ > 0,
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H1(x) = H1, γ(x) =

{
0 if x ≤ 1,

exp
(− (log(x))−γ

)
if x > 1,

H2(x) = H2, γ(x) =

⎧⎪⎨⎪⎩
0 if x ≤ 0,

exp
(− (− log(x))γ

)
if 0 < x < 1,

1 if x ≥ 1,

H3(x) =

{
0 if x ≤ 0,

exp(−1/x) if x > 0,

H4(x) = H4, γ(x) =

⎧⎪⎨⎪⎩
0 if x ≤ −1,

exp
(− (− log(−x))−γ

)
if − 1 < x < 0,

1 if x ≥ 0,

H5(x) = H5, γ(x) =

{
exp

(− (log(−x))γ
)

if x < −1,

1 if x ≥ −1,

H6(x) =

{
exp(x) if x < 0,

1 if x ≥ 0.

A df H is called power-max stable or p-max stable for short by Mohan and
Ravi [339] if it satisfies the stability relation

Hn
(
αn|x|βnsign(x)

)
= H(x), x ∈ R, n ∈ N,

for some αn > 0, βn > 0. The df Hi, i = 1, . . . , 6, are p-max stable and, from a
result of Pancheva [360], these are the only non-degenerate ones. Necessary and
sufficient conditions for F to satisfy (2.11) were given by Mohan and Ravi [339],
Mohan and Subramanya [340], and Subramanya [433]. In view of these consider-
ations one might label the max stable EVD more precisely l-max stable, because
they are max stable with respect to a linear normalization.

Max and Min Stable Distributions

We denote by F ∈ Dmax(G) the property that F is in the max-domain of attraction
of an EVD G if

Zn:n − bn

an
−→D G

for some norming constants an > 0, bn ∈ R. We denote by F ∈ Dmin(L) the
property that F is in the min-domain of attraction of an EVD L if

Z1:n − bn

an
−→D L.
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From Theorem 2.1.1 we know that there are only three different types of possible
non-degenerate limiting df G and L: G equals up to a possible linear transformation
(i.e., location and scale shift) G1, G2 or G3, where

G1(x) = G1, γ(x) =

{
0 if x ≤ 0,

exp(−x−γ) if x > 0,

G2(x) = G2, γ(x) =

{
exp(−(−x)γ) if x < 0,

1 if x ≥ 0,

for some γ > 0, and G3(x) = exp(−e−x), x ∈ R. Note that G1,1 = H3, G2,1 =
H6 and that G3 is not a p-max stable law. The df L is up to a possible linear
transformation equal to L1, L2 or L3, where

L1(x) = L1, γ(x) =

{
1 − exp(−(−x)−γ) if x < 0,

1 if x ≥ 0,

L2(x) = L2, γ(x) =

{
0 if x < 0,

1 − exp(−xγ) if x ≥ 0,

for some γ > 0, and L3(x) = 1 − exp(−ex), x ∈ R.

The Characterization Theorem

The right endpoint ω(F ) := sup{x : F (x) < 1} ∈ (−∞,∞] of the df F plays a
crucial role in the sequel.

The following result by Christoph and Falk [69] reveals that the upper as well
as the lower tail behavior of F determine whether F ∈ Dp(H): The right endpoint
ω(F ) > 0 yields the max stable distributions G, and ω(F ) ≤ 0 results in the min
stable distributions L; this explains the number of six power types of p-max stable
df.

Moreover, if ω(F ) < ∞ is not a point of continuity of F , i.e., if P (Z1 =
ω(F )) =: ρ > 0, then F /∈ Dp(H) for any non-degenerate df H . In this case we
have

P (Zn:n = ω(F )) = 1 − P (Zn:n < ω(F )) = 1 − (1 − ρ)n −→ 1 as n →∞,

and

F n
(
αn|x|βnsign(x)

){ ≤ (1 − ρ)n if αn|x|βnsign(x) < ω(F ),
= 1 if αn|x|βnsign(x) ≥ ω(F ).

Hence, a limiting df H is necessarily degenerate in this case.

Theorem 2.6.1. We have the following characterizations of the domains of at-
traction.
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(i) Suppose that ω(F ) > 0. Put F ∗(x) = 0 if x ≤ min{log(ω(F )/2), 0} and
F ∗(x) = F (exp(x)) elsewhere. Then F ∗ is a df and

F ∈ Dp(H) for some non-degenerate H ⇐⇒ F ∗ ∈ Dmax(G). (2.12)

In this case we have H(x) = G((log(x)−a)/b), x > 0, for some b > 0, a ∈ R.

(ii) Suppose that ω(F ) ≤ 0 and put F∗(x) := 1 − F (− exp(x)), x ∈ R. Then,

F ∈ Dp(H) for some non-degenerate H ⇐⇒ F∗ ∈ Dmin(L). (2.13)

In this case we have H(x) = 1 − L((log(−x) − a)/b), x < 0, for some b >
0, a ∈ R.

As the domains of attraction of G and L as well as sequences of possible
norming constants are precisely known (see Theorem 2.1.1), the preceding re-
sult together with its following proof characterizes the p-max stable distributions,
their domains of attraction and the class of possible norming constants αn, βn

in (2.11). In particular, we have Hi(x) = Gi

(
log(x)

)
, x > 0, and Hi+3(x) =

1 − Li

(
log(−x)

)
, x < 0, i = 1, 2, 3. Subramanya [433], Remark 2.1, proved the

special case F ∈ Dp(H3) iff F ∗ ∈ Dmax(G3).

Proof. (i) Suppose that ω(F ) > 0. In this case we have, for x ≤ 0 and any sequence
αn > 0, βn > 0,

F n
(
αn|x|βn sign(x)

)
= P

(
Zn:n ≤ sign(x) αn|x|βn

)
≤ P (Zn:n ≤ 0) −→ 0 as n →∞.

Let now x > 0 be a point of continuity of the limiting df H in (2.11) and put
c := min{ω(F )/2, 1}. Then, as n →∞,

P
(
Zn:n ≤ sign(x) αn|x|βn

) −→ H(x)
⇐⇒ P

(
log(Zn:n) ≤ βn log(x) + log(αn), Zn:n ≥ c

) −→ H(x)
⇐⇒ P

(
(Yn:n − an)/bn ≤ log(x)

) −→ H(x),

where bn := βn, an := log(αn) and Yi := log(Zi)1[c,∞)(Zi)+log(c)1(−∞,c)(Zi), i =
1, . . . , n and 1A(·) is the indicator function of the set A. The rv Y1, . . . , Yn are iid
with common df satisfying

1 − P (Yi ≤ t) = P (Yi > t)
= P (Zi > exp(t)) = 1 − F (exp(t)), exp(t) ≥ c.

Therefore, by the Gnedenko-de Haan Theorem 2.1.1 we obtain the equivalence
(2.12) for some G ∈ {G1, G2, G3} with H(x) = Gi(log(x)− a)/b), x > 0, for some
b > 0, a ∈ R and some i ∈ {1, 2, 3}. This completes the proof of part (i).
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(ii) Suppose that ω(F ) ≤ 0. Then we have for x ≥ 0 and any αn > 0, βn > 0

F n
(
αn|x|βnsign(x)

)
= P (Zn:n ≤ αn xβn) = 1.

Let now x < 0 be a point of continuity of a non-degenerate df H . Then, as n →∞,

P
(
Zn:n ≤ sign(x)αn|x|βn

) −→ H(x)
⇐⇒ P (−Zn:n ≥ αn|x|βn) −→ H(x)
⇐⇒ P

(
log(−Zn:n) ≥ βn log(|x|) + log(αn)) −→ H(x)

⇐⇒ P
(
(X1:n − An)/Bn ≥ log(−x)

) −→ H(x),

where Bn := βn, An := log(αn) and Xi := log(−Zi), i = 1, . . . , n with df F∗(x) =
1−F (− exp(x)). Notice that the rv Xi is well defined, since P (Zi ≥ 0) = 0. In case
ω(F ) = 0 and ρ = P (Zi = 0) > 0, the limit H would necessarily be degenerate
from (2.12). Hence, with H∗(x) = 1 − H(− exp(x)) we find

F ∈ Dp(H) ⇐⇒ F∗(x) = 1 − F
(

exp(x)
) ∈ Dmin(H∗),

and Theorem 2.1.1 leads to the representation

H(x) = 1 − Li

(
(log(−x) − a)/b

)
, x < 0,

for some b > 0, a ∈ R and some i ∈ {1, 2, 3}. This completes the proof.

The characterization of p-max domains of attraction by the tail behavior of
F and the sign of ω(F ) as given in Theorems 3.1 - 3.3 by Mohan and Subramanya
[340] (they are reproduced in Subramanya [433] as Theorems A, B, and C) now fol-
lows immediately from Theorem 2.6.1 and Theorem 2.1.1 for max domains under
linear transformation. On the other hand, Theorems 2.2, 3.1, and 3.2 of Subra-
manya [433] are now a consequence of the above Theorem 2.6.1 and Theorems 10,
11 and 12 of de Haan [185] using only some substitutions.

Comparison of Max Domains of Attraction under

Linear and Power Normalizations

Mohan and Ravi [339] compared the max domains of attraction under linear and
power normalizations and proved the following result which shows that the class
of max domains of attraction under linear normalization is a proper subset of the
class of max domains of attraction under power normalization. This means that
any df belonging to the max domain of attraction of some EVD limit law under
linear normalization definitely belongs to the max domain of attraction of some
p-max stable law under power normalization. Also, one can show that there are
infinitely many df which belong to the max domain of attraction of a p-max stable
law but do not belong to the max domain of attraction of any EVD limit law.

Theorem 2.6.2. Let F be any df. Then
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(a) (i) F ∈ Dmax(G1,γ)

(ii) F ∈ Dmax(G3), ω(F ) = ∞

}
=⇒ F ∈ Dp(H3),

(b) F ∈ Dmax(G3), 0 < ω(F ) < ∞⇐⇒ F ∈ Dp(H3), ω(F ) < ∞,

(c) F ∈ Dmax(G3), ω(F ) < 0 ⇐⇒ F ∈ Dp(H6), ω(F ) < 0,

(d) (i) F ∈ Dmax(G3), ω(F ) = 0

(ii) F ∈ Dmax(G2,γ), ω(F ) = 0

}
=⇒ F ∈ Dp(H6),

(e) F ∈ Dmax(G2,γ), ω(F ) > 0 ⇐⇒ F ∈ Dp(H2,γ),

(f) F ∈ Dmax(G2,γ), ω(F ) < 0 ⇐⇒ F ∈ Dp(H4,γ).

Proof. Let F ∈ Dmax(G) for some G ∈ {G1, G2, G3} . Then for some an > 0, bn ∈
R,

lim
n→∞ F n (anx + bn) = G(x), x ∈ R.

(a) (i) If F ∈ Dmax(G1,γ), then one can take bn = 0 and hence setting αn =
an, βn = 1/γ,

λ(1)(x) = λ(1)
n (x) =

{
0 if x < 0,

x1/α if 0 ≤ x,

we get

lim
n→∞ F n

(
αn|x|βnsign(x)

)
= lim

n→∞ F n
(

anλ(1)
n (x) + bn

)
= G1,γ(λ(1)(x)) = H3(x).

(ii) If F ∈ Dmax(G3), ω(F ) = ∞, then bn > 0 for n large and limn→∞ an/bn = 0.
Setting αn = bn, βn = an/bn,

λ(2)
n (x) =

{ −1/βn if x ≤ 0,(
xβn − 1

)
/βn if 0 < x,

and
λ(2)(x) =

{ −∞ if x ≤ 0,
log(x) if 0 < x;

and proceeding as in the proof of (a) (i), we get F ∈ Dp(H3) since G3(λ(2)(x)) =
H3(x).
(b) If F ∈ Dmax(G3), 0 < ω(F ) < ∞, then the proof that F ∈ Dp(H3) is the same
as that in the case ω(F ) = ∞ above. So let F ∈ Dp(H3) with ω(F ) < ∞. Then
limn→∞ αn = ω(F ), limn→∞ βn = 0. Setting an = αnβn, bn = αn,

u(1)
n (x) =

{
0 if x ≤ −1/βn,

(1 + βnx)1/βn if −1/βn < x,

u(1)(x) = exp(x),
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we get

lim
n→∞ F n(anx + bn) = lim

n→∞ F n
(

αn|u(1)
n (x)|βn sign(x)

)
= H3(u(1)(x)) = G3(x).

(c) If F ∈ Dmax(G3), ω(F ) < 0, then since bn < 0 and limn→∞ an = 0, setting
αn = −bn, βn = −an/bn,

λ(3)
n (x) =

{
(1 − |x|βn )/βn if x < 0,

1/βn if 0 ≤ x;

and
λ(3)(x) =

{ − log(−x) if x < 0,
∞ if 0 ≤ x;

we get G3(λ(3)x) = H6(x) and the claim follows as in the proof of (a) (i).
Now if F ∈ Dp(H6), ω(F ) < 0, then limn→∞ αn = −ω(F ), limn→∞ βn = 0.
Setting an = αnβn, bn = −αn,

u(2)
n (x) =

{ −(1 − βnx)1/βn if x < 1/βn,
0 if 1/βn ≤ x,

u(2)(x) = − exp(−x),
and proceeding as in the proof of (b), we get the result since H3(u(2)(x)) = G3(x).
(d) (i) Suppose F ∈ Dmax(G3), ω(F ) = 0. Then limn→∞ bn = 0 and limn→∞ an/bn

= 0. Proceeding as in the proof of (c) we show that F ∈ Dp(H6).
(ii) Now if F ∈ Dmax(G2,γ), ω(F ) = 0, then bn = 0, and setting αn = an, βn = 1/γ,

λ(4)(x) = λ(4)
n (x) =

{ −|x|1/α if x < 0,
0 if 0 ≤ x,

we prove the claim as in (a)(i) using the fact that G2,γ(λ(4))(x) = H6(x).
(e) If F ∈ Dmax(G2,γ), ω(F ) > 0, then since bn = ω(F ) and limn→∞ an = 0,
setting αn = bn, βn = an/bn,

λ(5)
n (x) =

⎧⎨⎩ −1/βn if x ≤ 0,
(xβn − 1)/(βn) if 0 < x ≤ 1,

0 if 1 < x,

and

λ(5)(x) =

⎧⎨⎩ −∞ if x ≤ 0,
log(x) if 0 < x ≤ 1,

0 if 1 < x;
,

we get G2,γ(λ(5)(x)) = H2,γ(x) and the claim follows as in the proof of (a) (i).
Now if F ∈ Dp(H2,γ), then limn→∞ αn = ω(F ), limn→∞ βn = 0. Setting an =
αnβn, bn = αn,

u(3)
n (x) =

⎧⎨⎩
0 if x ≤ −1/βn,

(1 + βnx)1/βn if 0 < x ≤ 1,
1 if 0 < x,
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u(3)(x) =
{

exp(x) if x < 0,
1 if 0 ≤ x,

and proceeding as in the proof of (b), we get the result since H2,γ(u(3)(x)) =
G2,γ(x).
(f) If F ∈ Dmax(G2,γ), ω(F ) < 0, then since bn = ω(F ) and limn→∞ an = 0,
setting αn = −bn, βn = −an/bn,

λ(6)
n (x) =

{
(1 − |x|βn )/βn if x < −1,

0 if −1 ≤ x,

and
λ(6)(x) =

{ − log(−x) if x < −1,
0 if −1 ≤ x; ,

we get G2,γ(λ(6)(x)) = H4,γ(x) and the claim follows as in the proof of (a) (i).
Now if F ∈ Dp(H4,γ), then ω(F ) < 0, αn = −ω(F ), limn→∞ βn = 0. Setting
an = αnβn, bn = −αn,

u(4)
n (x) =

{ − (1 − βnx)βn if x < 0,
−1 if 0 ≤ x,

u(4)(x) =
{ − exp(−x) if x < 0,

−1 if 0 ≤ x,

and proceeding as in the proof of (b), we get the result since H4,γ(u(4)(x)) =
G2,γ(x). The proof of the theorem is complete.

Comparison of Max Domains of Attraction under Linear

and Power Normalizations - The Multivariate Case

In this section we generalize Theorem 2.6.2 to the multivariate case. If F ∈
Dmax(G) for some max stable law G on R

d then we denote the normalizing con-
stants by an(i) > 0 and bn(i), i ≤ d, so that

lim
n→∞ F n (an(i)xi + bn(i), 1 ≤ i ≤ d) = G(x), x = (x1, . . . , xd) ∈ R

d.

Similarly, if F ∈ Dp(H) for some p-max stable law H on R
d then we denote the

normalizing constants by αn(i) > 0 and βn(i), 1 ≤ i ≤ d, so that

lim
n→∞ F n

(
αn(i)|xi|βn(i), 1 ≤ i ≤ d

)
= H(x), x ∈ R

d.

For a df F on R
d, let Fi(1)...i(k) denote the (i(1) . . . i(k))-th k−variate marginal

df, 1 ≤ i(1) < · · · < i(k) ≤ d, 2 ≤ k ≤ d.

Theorem 2.6.3. Let F ∈ Dmax(G) for some max stable law G under linear
normalization. Then there exists a p-max stable law H on R

d such that F ∈ Dp(H).
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Proof. Let F ∈ Dmax(G). Then for all i ≤ d, Fi ∈ Dmax(Gi). Hence by Theorem
2.6.2, Fi ∈ Dp(Hi), for some p-max stable law Hi which must be necessarily a
p-type of one of the four p-max stable laws H2,γ , H4,γ , H3, H6. The normalization
constants αn(i), βn(i) are determined by an(i), bn(i) as in the proof of Theorem
2.6.2. Further, it follows from the proof of Theorem 2.6.2 that there exists θ

(i)
n (xi)

such that

lim
n→∞ F n

i

(
αn(i)|xi|βn(i)sign(xi)

)
= lim

n→∞ F n
i

(
an(i)θ(i)

n (xi) + bn(i)
)

= Gi

(
θ(i)(xi)

)
,

where θ
(i)
n is one of the λ

(j)
n , j ≤ 6, defined in the proof of Theorem 2.6.2 depending

upon which one of the conditions is satisfied by Fi and θ(i) = limn→∞ θ
(i)
n . So,

Hi(xi) = Gi

(
θ(i)(xi)

)
, i ≤ d. Now fix x = (x1, . . . , xd) ∈ R

d. If, for some j ≤
d, Hj(xj) = 0, then by Theorem 2.6.2, we have

F n
i

(
αn(i)|xi|βn(i)sign(xi), i ≤ d

)
≤ F n

j

(
αn(j)|xj |βn(j)sign(xj)

)
→ 0,

as n → ∞. Suppose now that for some integers k, i(1), . . . , i(k), we have 0 <
Hi(j)

(
xi(j)

)
< 1, j ≤ k, and Hi(xi) = 1, i �= i(1), . . . , i(k). Using uniform conver-

gence, we have

lim inf
n→∞ F n

(
αn(i)|xi|βn(i)sign(xi), i ≤ d

)
≥ lim

n→∞ F n
(

an(i)θ(i)
n (xi) + bn(i), i ≤ d

)
= G

(
θ(i)xi, i ≤ d

)
= Gi(1)...i(k)

(
θ(i(j))(xi(j)), j ≤ k

)
,

since Hi(xi) = Gi

(
θ(i)(xi)

)
= 1, i �= i(1), . . . , i(k). Again

lim sup
n→∞

F n
(

αn(i)|xi|βn(i)sign(xi), i ≤ d
)

≤ lim
n→∞ F n

(
an(i(j))θ(i(j))

n (xi(j)) + bn(i(j)), j ≤ k
)

= Gi(1)...i(k)

(
θ(i(j))(xi(j)), j ≤ k

)
.

The claim now follows with

H(x) = G
(

θ(1)(x1), . . . , θ(d)(xd)
)

.

In view of Theorems 2.6.2 and 2.6.3, it is clear that p-max stable laws collec-
tively attract more distributions than do max stable laws under linear normaliza-
tion collectively.
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Examples

If F is the uniform distribution on (−1, 0), then ω(F ) = 0 and (2.11) holds with
H = H6, αn = 1/n and βn = 1. Since H2,1 is the uniform distribution on (0, 1),
it is p-max stable and (2.11) holds with F = H = H2,1, αn = 1 and βn = 1. For
the uniform distribution F on (−2,−1) we find ω(F ) = −1 and (2.11) holds with
H = H5,1, αn = 1 and βn = 1/n.

If F = Fε is the uniform distribution on (−1 + ε, ε) with 0 ≤ ε < 1, then
ω(Fε) = ε. Here Fε ∈ Dp(H2,1), and (2.11) holds with αn = ε and βn = 1/(εn) if
ε > 0, whereas for ε = 0 we find (as mentioned above) F0 ∈ Dp(H6) with power-
norming constants αn = 1/n and βn = 1. On the other hand for any fixed n ≥ 1
we find F n

ε (sign(x)ε|x|1/(εn)) → 1(−∞,−1](x) as ε → 0. Here the limit distribution
is degenerate.

The min stable df L2,1 is an exponential law. On the other hand, L2,1 ∈
Dmax(G3). If F = L2,1, then F (exp(x)) = L3(x) ∈ Dmax(G3). It follows from
Theorem 2.6.1 that (2.11) holds with H = H3, βn = 1/ log(n) and αn = log(n).

Let F (x) = 1 − x−k for x ≥ 1, where k > 0. Then F n(n1/k x) → G1, k(x)
as n → ∞, whereas by power normalization F n(n1/k x1/k) → H3(x). Note that
G1, 1 = H3.

The df G1,γ for γ > 0 are under power transformation of type H3, whereas
the df L1,γ for γ > 0 are under power transformation of type H6.

The max stable and min stable df are connected by the equation

Li(x) = 1 − Gi(−x), x ∈ R, i = 1, 2, 3.

Under the six p-max stable df H1, . . . , H6 there are again three pairs. If the rv U
has the df Hi, then the rv V = −1/U has df Hi+3, i = 1, 2 or 3. The set of possible
limit distributions of Z1:n under power normalization

(|Z1:n|/α∗
n)1/β∗

n sign (Z1:n) −→D Z, n →∞,

for some suitable constants α∗
n > 0 and β∗

n > 0 can be obtained from Theorem
2.6.1: The limit df equal up to a possible power transformation 1 − Hi(−x), i =
1, . . . , 6.

Put F1(x) = 1 − (log(x))−1 for x ≥ e. Then F1 does not belong to any of
Dmax, but F1 ∈ Dp(H1, 1) with αn = 1 and βn = n, see Galambos [167], Example
2.6.1, and Subramanya [433], Example 1. Taking now F2(x) = 1 − (log log(x))−1

for x ≥ exp(e), then without any calculations it follows that F2 does not belong
to any of Dp since F2(exp(x)) = F1(x) does not belong to any of Dmax.

If
F (x) =

{
0 if x < 1,

1 − exp(−(log(x))2) if 1 ≤ x,

then F ∈ Dp(H3) with αn = exp(
√

log(n)), βn = 1/(2
√

log(n)). However, F does
not belong to Dmax(G1,γ) or to Dmax(G3).



2.7. Heavy and Super-Heavy Tail Analysis 75

If

F (x) =

⎧⎪⎨⎪⎩
0 if x < −1,

1 − exp
(
−(

√− log(−x))
)

if 1 ≤ x < 0,

1 if 0 ≤ x,

then F ∈ Dp(H6) with αn = exp(−(log(n))2), βn = 2 log(n). Note that F does
not belong to any Dmax(Gi) for any i = 1, 2, 3.

Note that df belonging to Dp(H1,γ) or Dp(H3,γ) do not belong by Theorem
2.6.2 to the max domain of attraction of any EVD limit law under linear normal-
ization.

Applications of power-normalizations to the analysis of super-heavy tails are
included in the subsequent section.

2.7 Heavy and Super-Heavy Tail Analysis
Distributions with light tails like the normal or the exponential distributions have
been of central interest in classical statistics. Yet, to cover in particular risks in
fields like flood frequency analysis, insurance and finance in an appropriate manner,
it became necessary to include distributions which possess heavier tails. An early
reference is the modeling of incomes by means of Pareto distributions.

One standard method to get distributions with heavier tails is the construc-
tion of log-distributions. Prominent examples are provided by log-normal and log-
exponential distributions whereby the latter belongs to the above mentioned class
of Pareto distributions. Normal and log-normal distributions possess an exponen-
tial decreasing upper tail and, as a consequence all moments of these distributions
are finite. However, a log-normal distribution exhibits a higher kurtosis than the
normal and, in this sense, its upper tail can be also considered heavier than that
of the normal one. It is also a general rule that the mixture of distributions, as
a model for heterogeneous populations, leads to heavier tails. For instance, log-
Pareto df can be deduced as mixtures of Pareto df with respect to gamma df.

In contrast to normal, log-normal and exponential distributions, one can say
that Pareto distributions are prototypes of distributions with heavy, upper tails.
An important characteristic of this property is that not all moments are finite.
Other prominent distributions of this type are, e.g., Student and sum-stable dis-
tributions with the exception of the normal one. All these distributions have power
decreasing upper tails, a property shared by Pareto distributions.

Distributions with heavy tails have been systematically explored within the
framework of extreme value theory with special emphasis laid on max-stable
Fréchet and Pareto distributions where the latter ones possess a peaks-over-thresh-
old (POT) stability. More precisely, one may speak of linearly max-stable or lin-
early POT-stable (l-max or l-POT) distributions in view of our explanations on
page 66 and the remainder of this section. Related to this is the property that a
distribution belongs to the l-max or l-POT domain of attraction of a Fréchet or
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Pareto distribution if, and only if, the upper tail is regularly varying with negative
index. In contrast to this, slowly varying upper tails will be of central importance
in the subsequent context.

This means that we are out of the “power-law-world”, as Taleb’s book, “The
Black Swan: the Impact of the Highly Improbable” [439] entitles the class of dis-
tributions possessing a regularly varying upper tail or, equivalently, with polyno-
mially decreasing upper tails. The designation of super-heavy concerns right tails
decreasing to zero at a slower rate, as logarithmic, for instance. This also means
that the classical bible for inferring about rare events, the Extreme Value Theory,
is no longer applicable, since we are in presence of distributions with slowly varying
tails.

We give a short overview of the peaks-over-threshold approach which is the
recent common tool for statistical inference of heavy tailed distributions. Later on,
we present extensions to the super-heavy tailed case.

Heavy Tail Analysis

We shortly address the peaks-over-threshold approach as already described at the
end of Chapter 1 but take a slightly different point of view. We do not start with the
assumption that a df F is in the max domain of attraction of some EVD G but we
consider limiting distributions of exceedances in their own right. Recently, this has
been the most commonly used statistical approach for heavy tailed distributions.

Recall that (1.22) indicates that, if F ∈ D(G) then GPD are the only pos-
sible limiting distributions of the linear normalized df F [un] of exceedances over
thresholds un tending to ω(F ). Hereby, ω(F ) = sup {x : F (x) < 1} is the right
endpoint of the support of the df F and

F [u](x) = F (x) − F (u)
1 − F (u)

, x ≥ u,

is the common df of exceedances above the threshold u. If X is a rv with df F
then the exceedance df may be written as F [u](x) = P (X ≤ x | X > u) for x ≥ u.

In what follows we assume that there exist real-valued functions a(·) and
b(·) > 0 such that

F [u](a(u) + b(u)x) −→u→ω(F ) L(x) (2.14)

for some non-degenerate df L. If (2.14) holds for df F and L we say that F is in
the POT domain of attraction of L denoted by F ∈ DPOT(L).

Notice that (2.14) can be formulated in terms of the survivor function 1−F
as

1 − F (a(u) + b(u)x)
1 − F (u)

−→u→ω(F ) 1 − L(x),

which corresponds to formula (1.21).
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Due to results in Balkema and de Haan [22], stated as Theorem 2.7.1 below,
we know that the limiting df L is POT-stable. Hereby, a df F is POT-stable if
there exists constants a(u) and b(u) > 0 such that

F [u](a(u) + b(u)x) = F (x) (2.15)

for all points of continuity u in the interior of the support of F and F (x) > 0. The
class of continuous POT-stable df, and, therefore, that of continuous limiting df
of exceedances in (2.14) is provided by the family of generalized Pareto df (GPD).
This result is stated in the following theorem which can be regarded as an extension
of Theorem 1.3.5.

Theorem 2.7.1. Let F be an df and L be a non-degenerate df. Suppose there
exists real-valued functions a(·) and b(·) > 0 such that

F [u](a(u) + b(u)x) −→u→ω(F ) L(x)

for all points of continuity x of F in the interior of its support. Then,

(i) the limiting df L is POT-stable,

(ii) if L is continuous, then L is up to a location and scale shift a GPD Wγ ,

(iii) the POT domain of attraction of a GPD Wγ coincides with the max domain
of attraction of the corresponding EVD Gγ, thus DPOT(Wγ) = D(Gγ).

It is evident that all POT-stable df L appear as limiting df in Theorem 2.7.1
by choosing F = L. Therefore, GPD are the only continuous, POT-stable df.

For statistical applications, e.g., high quantile estimation, these results are of
particular importance. Note that high q-quantiles F −1(q) of a df F with q > F (u)
for some threshold u only depend on the tail of F , thus F (x) for x > u. Notice
that for a df F and x > u,

F (x) = F (u) + (1 − F (u))F [u](x)
≈ F (u) + (1 − F (u))Wγ,u,σ(x) (2.16)

where the approximation is valid if F ∈ DPOT(Wγ) and u is sufficiently large. Now
(2.16) provides a certain parametric model for the tail of F where a non-parametric
part F (u) can be replaced by an empirical counterpart. A similar “piecing-together
approach” can also be utilized in the multivariate framework, cf. Chapter 5.

In what follows we concentrate on the heavy tail analysis, that is, on df F
belonging to DPOT(Wγ) for some γ > 0, for which case ω(F ) = ∞. The model
(2.16) offers the possibility to carry out statistical inference for such df. These df
have the special property that their pertaining survivor function 1−F is of regular
variation at infinity. We include some remarks concerning the theory of regular
varying functions and point out relations to the concept of POT-stability.
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Regular and Slow Variation

Consider the Pareto distribution W1,α,0,σ(x) = 1 − (x/σ)−α, x > σ > 0, in the
α-parametrization, with α > 0. Recall that for any df F the survivor function of
the pertaining exceedance df F [u] satisfies

F [u](x) = F̄ (x)/F̄ (u), x > u.

For F = W1,α,0,σ and replacing x by ux one gets

F̄ (ux)/F̄ (u) = F [u](ux) = x−α

which is the POT-stability of W1,α,0,σ. If F is an arbitrary Pareto df W1,γ,μ,σ with
additional location parameter μ this relation holds in the limit. We have

F̄ (ux)/F̄ (u) = F [u](ux) =
(

x − μ/u

1 − μ/u

)−α

−→u→∞ x−α, x ≥ 1.

This implies that F̄ is regularly varying at infinity according to the following
definition: A measurable function R : (0,∞) → (0,∞) is called regularly varying
at infinity with index (exponent of variation) ρ, denoted by R ∈ RVρ, if

R(tx)/R(t) −→t→∞ xρ, x > 0. (2.17)

A comprehensive treatment of the theory of regular variation may, e.g., be found
in Bingham et al. [46]. If ρ = 0 we have

R(tx)/R(t) −→t→∞ 1;

in this case, R is said to be of slow variation at infinity (R ∈ RV0). Recall from
Theorem 2.1.1 together with Theorem 2.7.1, part (iii), that a df F is in the POT
domain of attraction of some GPD Wγ , γ > 0, if F̄ ∈ RV−1/γ . For any R ∈ RVρ

we have the representation

R(x) = xρU(x), x > a,

for some a > 0 sufficiently large and U ∈ RV0. If a df F is in the POT domain of
attraction of some GPD Wγ for γ > 0 (thus, F̄ ∈ RV−1/γ) we call F heavy tailed.

The existence of finite β-power moments is restricted to the range β < 1/γ.
Although there is no unified agreement on terminology, in literature the term
very heavy tailed case has been attached to a degree of tail heaviness given by
0 < 1/γ < 1.

Super-Heavy Tails and Slow Variation

The use of heavy tailed distributions constitutes a fundamental tool in the study
of rare events and have been extensively used to model phenomena for which
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extreme values occur with a relatively high probability. Here, emphasis lies on the
modelling of extreme events, i.e., events with a low frequency, but mostly with a
high and often disastrous impact. For such situations it has became reasonable to
consider an underlying distribution function F with polynomially decaying right
tail, i.e., with tail distribution function

F̄ := 1 − F ∈ RV−α, α > 0. (2.18)

Generalizing this heavy tail framework, it is also possible to consider the
so-called super-heavy tailed case, for which α = 0, i.e., 1 − F is a slowly varying
function, decaying to zero at a logarithmic rate, for instance. We will consider two
special classes of such super-heavy tailed df.

Class A. Notice that if X has a df F such that F̄ ∈ RV−α, for some positive α,
then Z := eX has the df H with

H̄(x) ∼ (log(x))−αU(log(x)) (2.19)

as x → ∞, with U ∈ RV0, meaning that the tail decays to zero at a logarithmic
rate raised to some power. Although this transformation leads to a super-heavy
tailed df it does not exhaust all possible slowly varying tail types. On the other
hand, for the super-heavy tailed case there is no possible linear normalization of
the maxima such that F belongs to any max-domain of attraction. Consider the
case U ≡ 1 in (2.19). This gives the super-heavy tailed df F (x) = 1 − log(x)−α,
x ≥ e. The pertaining survivor function satisfies

F̄
(

xlog(u)
)

/F̄ (u) = F̄ (x).

Subsequently, this property will be called the power-POT (p-POT) stability of F ,
it characterizes the class of limiting df of exceedances under power-normalization,
cf. Theorem 2.7.2. Corresponding to the case of heavy tailed df an asymptotic
version of this relation will be identified as an necessary and sufficient condition
of a df to belong to certain p-POT domains of attraction, cf. Theorem 2.7.5.

Class B. The df F satisfies (2.18) if, and only if, there exists a positive function
a such that

lim
t→∞

F (tx) − F (t)
a(t)

=
1 − x−α

α
, x > 0. (2.20)

For the latter it is enough to consider the auxiliary function a = α F̄ and thus
a ∈ RV−α, α > 0. A sub-class of slowly varying df is deduced from (2.20) by
extension to the case of α = 0, through the limit of the right-hand side of (2.20),
as α → 0 :

lim
t→∞

F (tx) − F (t)
a(t)

= log(x). (2.21)
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The above relation identifies the well-known class Π (cf., e.g., de Haan and Ferreira
[190]). The class of super-heavy tailed distributions is characterized by (2.21).

More details about all distributions satisfying (2.20) with α ≥ 0 will be
provided at the end of this section, together with testing procedures for super-
heavy tails (see Theorems 2.7.12 and 2.7.13).

For the time being notice that the df given by 1 − 1/ log(x), x > e belongs
to both Classes A and B. Moreover, according to Proposition 2.7.10, any df H in
Class A and resulting from composition with a df F such that the density F ′ =: f
exists, also belongs to the Class B. However, the reverse is not always true: for
instance, the df H(x) = 1− 1/ log (log(x)), for x > ee, belongs to B but not to A.
Note that H is obtained by iterated log-transforms upon a Pareto df. Distributions
of this type are investigated in Cormann [77] and Cormann and Reiss [76].

In the remainder of this section we study two special aspects of the statistical
analysis of super-heavy tailed df. First we deal with asymptotic models for certain
super-heavy tailed df related to df given by Class A. The second part concerns
testing the presence of a certain form of super-heavy tails, namely Π-varying tailed
distributions given by Class B.

Super-Heavy Tails in the Literature

We first give a short outline of the statistical literature dealing with super-heavy
tails. Although there is no uniform agreement on terminology, the term super-
heavy tailed has been attached, in the literature, to a degree of tail heaviness
associated with slow variation. Examples of models with slowly varying tail are
the log-Pareto, log-Fréchet and log-Cauchy distributions. We say that the rv X is
a log-Pareto rv if log(X) is a Pareto rv.

In Galambos [166], Examples 1.3.3 and 2.6.1, the log-Pareto df

F (x) = 1 − 1/ log(x), x > e, (2.22)

serves as a df under which maxima possess “shocking” large values, not attained
under the usual linear normalization pertaining to the domain of attraction of an
EVD. Some theoretical results for super-heavy tailed distributions can be found in
Resnick [392], Section 5, which is devoted to fill some ”interesting gaps in classical
limit theorems, which require the assumption that tails are even fatter than regu-
larly varying tails”. Two cases are considered in some probabilistic descriptions of
”fat” tails, under the context of point process convergence results: slowly varying
tails and its subclass of Π-varying distribution functions.

Another early reference to df with slowly varying tails, in conjunction with
extreme value analysis, can be found in the book by Reiss and Thomas [388],
Section 5.4, where log-Pareto distributions are regarded as mixtures of Pareto df
with respect to gamma df. The authors have coined all log-Pareto df with the
term “super-heavy” because the log-transformation leads to a df with a heavier
tail than the tail heaviness of Pareto type.
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Log-Pareto df within a generalized exponential power model are studied by
Desgagné and Angers [100]. In a technical report, see Diebolt et al. [110], associated
to Diebolt et al. [111], the authors mention another mixture distribution, different
from the log-Pareto one, with super-heavy tails.

Moreover, Zeevi and Glynn [470] have studied properties of autoregressive
processes with super-heavy tailed innovations, specifically, the case where the in-
novations are log-Pareto distributed. Their main objective was to illustrate the
range of behavior that AR processes can exhibit in this super-heavy tailed setting.
That paper studies recurrence properties of autoregressive (AR) processes with
“super-heavy tailed” innovations. Specifically, they study the case where the inno-
vations are distributed, roughly speaking, as log-Pareto rvs (i.e., the tail decay is
essentially a logarithm raised to some power).

In Neves and Fraga Alves [352] and in Fraga Alves et al. [159] the tail index
α is allowed to be 0, so as to embrace the class of super-heavy tailed distributions.
Statistical tests then are developed in order to distinguish between heavy and
super-heavy tailed probability distributions. This is done in a semi-parametric way,
i.e., without specifying the exact df underlying the data in the sense of composite
hypothesis testing. Therein, the authors present some simulation results concerning
estimated power and type I error of the test. Application to data sets in teletraffic
and seismology fields is also given.

Cormann and Reiss [76] introduced a full-fledged statistical model of log-
Pareto distributions parametrized with two shape parameters and a scale para-
meter and show that these distributions constitute an appropriate model for super-
heavy tailed phenomena. Log-Pareto distributions appear as limiting distributions
of exceedances under power-normalization. Therein it is shown, that the well-
known Pareto model is included in the proposed log-Pareto model for varying
shape-parameters whence the log-Pareto model can be regarded as an extension
of the Pareto model. This article also explores an hybrid maximum likelihood es-
timator for the log-Pareto model. The testing of the Pareto model against the
log-Pareto model is considered in Villaseñor-Alva et al. [450].

The need of distributions with heavier tails than the Pareto type has also been
claimed in Earth Sciences research. A usual statistical data analysis in seismology
is done through the scalar seismic moment M , which is related to the earthquake
moment magnitude m according to: M = 103(m+6)/2 (notice the power transfor-
mation with consequences on the distribution tail weight). Zaliapin et al. [469]
presents an illustration of the distribution of seismic moment for Californian seis-
micity (m ≥ 5.5), during the last two centuries, using an earthquake catalog and
converting its magnitudes into seismic moments. They observed that

. . . with such a data set one does not observe fewer earthquakes of large
seismic moment than expected according to the Pareto law. Indeed,
. . . may even suggest that the Pareto distribution underestimates the
frequency of earthquakes in this seismic moment range.

In fact, these authors called the attention to the practitioners that:
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Statistical data analysis, a significant part of modern Earth Sciences
research, is led by the intuition of researchers traditionally trained
to think in terms of “averages”, “means”, and “standard deviations”.
Curiously, an essential part of relevant natural processes does not allow
such an interpretation, and appropriate statistical models do not have
finite values of these characteristics.

The same data set has been analyzed by Neves and Fraga Alves [352] in the context
of detecting super-heavy tails.

The P -Pot Stable Distributions

Recall the log-Pareto df F (x) = 1 − 1/ log(x), x ≥ e mentioned above as an im-
portant example of a super-heavy tailed df. Such distributions cannot be studied
within the POT-framework outlined in Sections 2.1 to 2.4 because they possess
slowly varying tails. Nevertheless, p-max domains of attraction in Section 2.6 con-
tain certain super-heavy tailed distributions.

We have noted in the previous section that the distribution of the largest
order statistic Zn:n out of an iid sample Z1, . . . , Zn can be approximated by cer-
tain p-max stables laws even if the common df belongs to a certain subclass of
distributions with slowly varying distribution tails. In the present section we de-
rive an asymptotic model for the upper tail of such a df F . Similarly to the linear
normalization we consider the asymptotic relation

F [u]
(

sign(x)α(u)|x|β(u)
)
−→u→ω(F ) L(x) (2.23)

for all points of continuity x of L, where L is a non-degenerate df and α(·), β(·) > 0.
Notice that (2.23) is equivalent to

1 − F
(
sign(x)α(u)|x|β(u))

1 − F (u)
−→u→ω(F ) 1 − L(x). (2.24)

Recall that limiting distributions of exceedances under linear normalization are
POT-stable. A similar results holds for limiting distributions under power-normal-
ization. These distributions satisfy the p-POT stability property. A df F is p-POT
stable if there are positive constants β(u) and α(u) such that

F [u](sign(x)α(u)|x|β(u)) = F (x) (2.25)

for all x with F (x) > 0 and all continuity points u of F with 0 < F (u) < 1 .
Due to Theorem 2.7.1 we know that GPD are the only continuous POT-

stable distributions. According to Theorem 1 in Cormann and Reiss [76], stated
below as Theorem 2.7.2, we know that for every p-POT stable df L there is a POT-
stable df W such that L(x) = W (log(x)) if ω(L) > 0, or L(x) = W (− log(−x))
if ω(L) ≤ 0. As in Mohan and Ravi [339] we call a df F1 a p-type of F2, if
F1(x) = F2

(
sign(x)α|x|β) for positive constants α and β.
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Given a df F we define auxiliary df F ∗∗ and F∗∗ by

F ∗∗(x) = F (exp(x)) − F (0)
1 − F (0)

, x ∈ R, (2.26)

if ω(F ) > 0, and
F∗∗(x) = F (− exp(−x)), x ∈ R, (2.27)

if ω(F ) ≤ 0. These auxiliary df play a similar role for limiting df of exceedances
as do the df F ∗ and F∗ in Theorem 2.6.1 in the context of limiting df of maxima.

Theorem 2.7.2. Let F be a df which is p-POT stable, cf. (2.25). Then,

F (x) = W (log(x)) ,

or
F (x) = W (− log(−x)) ,

where W denotes a POT-stable df.

Proof. Let 0 < F (u) < 1. First note that (2.25) is equivalent to

1 − F (sign(x)α(u)|x|β(u))
1 − F (u)

= 1 − F (x).

Let F (0) > 0. Then
1 − F (0)
1 − F (u)

= 1 − F (0)

and F (0) = 1 because 0 < F (u) < 1. Thus, we have F (0) = 0 or F (0) = 1 and,
consequently, F has all the mass either on the positive or negative half-line.

(a) Let F (0) = 0 and, therefore, F (x) = 0 for all x < 0. It suffices to consider
x, u > 0. Let x > 0, F (x) > 0 and 0 < F (u) < 1. Then, (2.25) yields

1 − F
(
α(u)xβ(u))

1 − F (u)
= 1 − F (x).

It follows that

1 − F
(
α(exp(u)) exp(x)β(exp(u)))

1 − F (exp(u))
= 1 − F (exp(x))

for all x and continuity points u of F (exp(·)) with F (exp(x)) > 0 and 0 <
F (exp(u)) < 1. Furthermore,

1 − F
(
α(exp(u)) exp(x)β(exp(u)))

1 − F (exp(u))
= 1 − F (exp(x))

⇐⇒ 1 − F (exp (log(α(exp(u))) + β(exp(u))x))
1 − F (exp(u))

= 1 − F (exp(x)) .



84 2. Extreme Value Theory

Observe that F ∗∗ := F (exp(·)) since F (0) = 0. The above computations yield

1 − F ∗∗ (α̃(u) + β̃(u)x
)

1 − F ∗∗(u)
= 1 − F ∗∗(x)

with α̃(u) = log (α(exp(u))) and β̃(u) = β(exp(u)). Consequently, F ∗∗ = W for
some POT-stable df W and F (·) = W (log(·)).

(b) Next assume that F (0) = 1. Let (2.25) hold for x < 0, F (x) > 0 and all
continuity points u of F with 0 < F (u) < 1 . Then, similar arguments as in part
(a) yield that (2.25) is equivalent to

1 − F∗∗(α̃(u) + β̃(u)x)
1 − F∗∗(u)

= 1 − F∗∗(x)

with F∗∗(x) := F (− exp(−x)) where α̃(u) can be chosen as α(− exp(−u)) and
β̃(u) = β(− exp(−u)). Thus, F∗∗ is a POT-stable df W and F (x) = W (− log(−x)),
x ≤ 0.

Due to the foregoing theorem all continuous p-POT stable df are p-types of
the df

Lγ(x) = 1 − (1 + γ log(x))−1/γ , x > 0, γ ∈ R (2.28)

which is a generalized log-Pareto distribution (GLPD), or

Vγ(x) := 1 − (1 − γ log(−x))−1/γ , x < 0, γ ∈ R (2.29)

which may be addressed as negative generalized log-Pareto df. The case γ = 0 is
again taken as the limit γ → 0. Notice that only the p-POT stable law Lγ , γ > 0
is super-heavy tailed, while Lγ , γ < 0 and Vγ possess finite right endpoints. The
df L0 is a Pareto df and, therefore, heavy tailed.

Relations to p-max Stable Laws

We start with a representation of log-Pareto df by means of p-max stable df. Recall
that a df F is p-max stable if there exist sequences αn, βn > 0 such that

F n(sign(x)αn|x|βn ) = F (x), x ∈ R

and all positive integers n, cf. Section 2.6.
For the special p-max stable df

H1,γ(x) = exp(−(log(x))−γ), x ≥ 1,

with γ > 0, define

Fγ(x) = 1 + log (H1,γ(x))
= 1 − (log(x))−γ , x ≥ exp(1), (2.30)
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which is a log-Pareto df with shape parameter 1/γ.
In analogy to (2.30), the whole family of GLPDs in (2.28) can be deduced

from p-max stable laws Hi,γ,β,σ(x) = Hi,γ((x/σ)β), i = 1, 2, 3. This relationship
makes the theory of p-max df applicable to log-Pareto df to some extent.

Limiting Distributions of Exceedances

In the subsequent lines we present some unpublished material. We identify the
limiting distributions of exceedances under power normalization in (2.23) as the
class of p-POT stable df. We start with a technical lemma concerning F ∗∗ and
F∗∗, cf. (2.26) and (2.27).

Lemma 2.7.3. Let L be a non-degenerate limiting df in (2.23) for some df F .
Then, for each point of continuity x in the interior of the support of L∗∗ or L∗∗,
respectively,

(i) there are functions a(·) and b(·) > 0 such that

F̄ ∗∗(a(u) + b(u)x)
/

F̄ ∗∗(u) −→u→ω(F ∗∗) L̄∗∗(x)

if ω(F ) > 0, and

F̄∗∗(a(u) + b(u)x)
/

F̄∗∗(u) −→u→ω(F∗∗) L̄∗∗(x)

if ω(F ) ≤ 0.

(ii) L∗∗ and, respectively, L∗∗ are POT-stable df.

Proof. We outline the proof for both assertions merely for ω(F ) > 0. The case of
ω(F ) ≤ 0 follows by similar arguments. Under (2.23) we first prove that the total
mass of L is concentrated on the positive half-line and, therefore,

L(exp(x)) = L∗∗(x), x ∈ R, (2.31)

if ω(L) > 0.
If x < 0, we have

F [u]
(

sign(x)α(u) |x|β(u)
)
≤ F [u](0) −→u→ω(F ) 0 (2.32)

because ω(F ) > 0. This implies L(x) = 0 for all x ≤ 0.
Next consider x > 0. From (2.24) one gets

F̄
(

α(u)xβ(u)
)/

F̄ (u) −→u→ω(F ) L̄(x).

By straightforward computations,

F̄ (exp (a(u) + b(u)x))
F̄ (exp(u))

−→exp(u)→ω(F ) L̄(exp(x)) (2.33)
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for all x ∈ R with a(u) = log(α (exp(u))) ∈ R and b(u) = β (exp(u)) > 0. There-
fore,

F̄ ∗∗(a(u) + b(u)x)
F̄ ∗∗(u)

−→u→ω(F ∗∗) L̄(exp(x)) = L̄∗∗(x), (2.34)

and assertion (i) is verified. This also implies (ii) because limiting df under the
linear normalization are necessarily POT-stable, cf. Theorem 2.7.1.

Lemma 2.7.3 now offers the prerequisites to prove the the announced result
concerning limiting df of exceedances under power-normalizations.

Theorem 2.7.4. Every non-degenerate limiting df L in (2.23) is p-POT stable.

Proof. Again, we merely prove the case ω(F ) > 0. From Lemma 2.7.3 (ii) we know
that L∗∗ is POT-stable. Thus, there are a(u) ∈ R and b(u) > 0 such that

L̄∗∗(a(u) + b(u)x)
/

L̄∗∗(u) = L̄∗∗(x),

for each point of continuity u of L∗∗ with 0 < L∗∗(u) < 1 and L∗∗(x) > 0. This
yields for x, u > 0,

L̄∗∗(a(u) + b(u) log(x))
/

L̄∗∗(log(u)) = L̄∗∗(log(x)).

Choosing α(u) and β(u) as in the proof of Lemma 2.7.3 one gets from the equation
L̄∗∗(a(u) + b(u) log(x)) = L̄∗∗ (log

(
α(u)xβ(u))) that

L̄
(

α(u)xβ(u)
)/

L̄(u) = L̄(x)

for all x, u > 0 with 0 < L∗∗(log(u)) < 1 and L∗∗(log(x)) > 0. Notice that
L(x) = L∗∗(log(x)) if x > 0, and L(x) = 0 if x ≤ 0. This yields the p-POT
stability of L according to the preceding equation.

It is evident that the converse implication is also true, that is, every p-POT
stable df L is a limiting df in (2.23) by choosing F = L. Summarizing the previous
results we get that L is a limiting df of exceedances pertaining to a df F under
power-normalization, if and only if, L∗∗ (if ω(F ) > 0) or L∗∗ (if ω(F ) ≤ 0) are
POT-stable.

Domains of Attraction

Recall that within the linear framework, a df F belongs to the POT domain of
attraction of a df W , denoted by F ∈ DPOT(W ), if there are functions a(·) and
b(·) > 0 such that

F [u](a(u) + b(u)x) −→u→ω(F ) W (x). (2.35)

Correspondingly, if relation (2.23) holds for df F and L, then F belongs to
the p-POT domain of attraction of L, denoted by F ∈ Dp-POT(L).
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We characterize p-POT domains of attraction of a p-POT stable df L by
means of POT domains of attraction of L∗∗ or L∗∗ which are POT-stable according
to Theorem 2.7.4. As a direct consequence of Lemma 2.7.3(i) one gets Theorem
2.7.5.

Theorem 2.7.5. For the p-POT domain of attraction Dp-POT(L) of a p-POT stable
law L we have

Dp-POT(L) = {F : F ∗∗ ∈ DPOT(L∗∗)} ,

if ω(L) > 0, and
Dp-POT(L) = {F : F∗∗ ∈ DPOT(L∗∗)}

if ω(L) ≤ 0.

P -POT domains of attraction of continuous p-POT stable laws can be de-
duced from p-max domains of attractions due to the identity of POT- and max-
domains of attraction in the linear setup. The domains of attraction of the discrete
p-POT stable laws have no counterpart in the framework of max-stable df. Their
domains of attraction can be derived from the above theorem and Section 3 of
Balkema and de Haan [22].

In the framework of super-heavy tail analysis we are merely interested in the
super-heavy tailed p-POT stable laws, thus log-Pareto df. We also make use of a
parametrization of log-Pareto df which is different from that in (2.28). Let

L̃γ(x) = 1 − (log(x))−1/γ , γ > 0, x ≥ e. (2.36)

It is apparent that L̃γ is a p-type of Lγ . Such df can be regarded as prototypes of
p-POT stable df with slowly varying tails.

Corollary 2.7.6. We have F ∈ Dp-POT(L̃γ) if, and only if, there is a slowly varying
function U and some c > 0 such that

F (x) = 1 − (log(x))−1/γ U (log(x)) , x > c. (2.37)

Proof. This is a direct consequence of Theorem 2.7.5. We have for x > 0 that
F̄ (x) = F̄ (0)F ∗∗(log(x)) for the df F ∗∗ which is in the POT domain of attraction
of a Pareto df and, therefore, F̄ ∗∗ is regularly varying at infinity.

The p-POT domain of attraction of a log-Pareto df L̃γ can as well be charac-
terized by a property with is deduced from regular variation, which characterizes
the POT domain of attraction of Pareto df under linear transformation. Observe
that

¯̃Lγ

(
xlog(u)

)/ ¯̃Lγ(u) = (log(x))−1/γ
,

which is the p-POT stability of L̃γ . For the domain of attraction this relations
holds in the limit and, furthermore, this yields a characterization of the domain
attraction.
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Corollary 2.7.7. We have F ∈ Dp-POT(L̃γ) if, and only if,

F̄
(

xlog(u)
)/

F̄ (u) −→u→∞ (log(x))−1/γ
, x > 1. (2.38)

Proof. If F ∈ Dp-POT(L̃γ) we have

F̄ (x) = (log(x))−1/γ U (log(x)) , x > c

for some slowly varying function U and some c > 0. Therefore,

F̄
(
xlog(u))
F̄ (u)

=
(
log

(
xlog(u)))−1/γ

U
(
log

(
xlog(u)))

(log(u))−1/γ
U (log(u))

= (log(x))−1/γ U (log(u) log(x))
U (log(u))

→ (log(x))−1/γ for u →∞.

Conversely, let
lim

u→∞ F̄ (xlog(u))
/

F̄ (u) = (log(x))−1/γ

for x > 1. It follows that

lim
u→∞ F̄ (exp(uy))

/
F̄ (exp(u)) = y−1/γ .

for all y > 0. Thus, F ∗∗ ∈ DPOT (Wγ) and, consequently, F ∈ Dp-POT

(
L̃γ

)
.

We include a result about the invariance of Dp-POT

(
L̃γ

)
under shift and power

transformations.

Corollary 2.7.8. The following equivalences hold true for μ ∈ R and γ, β, σ > 0:

F (·) ∈ Dp-POT

(
L̃γ

) ⇔ F ((· − μ)) ∈ Dp-POT

(
L̃γ

)
,

and
F (·) ∈ Dp-POT

(
L̃γ

) ⇔ F
(
σ(·)β

) ∈ Dp-POT

(
L̃γ

)
.

Proof. We only prove the first assertion because the second one is straightforward.
Putting Fμ(x) = F (x − μ) for F ∈ Dp-POT

(
L̃γ

)
, we get

1 − (Fμ)∗ (tx)
1 − (Fμ)∗ (t)

= F̄ (exp(tx) − μ)
F̄ (exp(t) − μ)

=
F̄

(
exp(tx)−μ

exp(tx) exp(tx)
)

F̄
(

exp(t)−μ
exp(t) exp(t)

)
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=
F̄
(

exp
(

tx + log
(

exp(tx)−μ
exp(tx)

)))
F̄

(
exp

(
t + log

(
exp(t)−μ

exp(t)

)))
= F ∗∗ (tx + at)

F ∗∗(t + bt)

with
at = log

(
exp(tx) − μ

exp(tx)

)
and bt = log

(
exp(t) − μ

exp(t)

)
.

Obviously at → 0 and bt → 0, hence using uniform convergence

F̄ ∗∗ (tx + at)
F̄ ∗∗(t + bt)

−→t→∞ x−1/γ

and, thus, F (· − μ) ∈ Dp-POT.

The previous result yields that

Dp-POT(L) = Dp-POT(L̃γ) (2.39)

for all p-types L of L̃γ . It is easily seen that this result is valid for a p-POT domain
of attraction of an arbitrary p-POT stable law. The result concerning location shifts
cannot be extended to p-POT stable laws with finite right endpoints.

Mixtures of Regularly Varying DFs

We also deal with super-heavy tailed df given as mixtures of regularly varying
df. We start with a result in Reiss and Thomas [389] concerning a relation of
log-Pareto df,

L̃γ(x) = 1 − (log(x))−1/γ , x > e, γ > 0

and Pareto df,

W̃γ,σ(x) = 1 − (x/σ)−1/γ , x > σ, γ > 0.

Log-Pareto df can be represented as mixtures of certain Pareto df with respect
to gamma densities. We have

L̃γ(x) =
∫ ∞

0
W̃1/z,e(x)h1/γ(z)dz (2.40)

where hα is the gamma density

hα(x) = 1
Γ(α)

exp(−x)xα−1. (2.41)
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We prove that this result can be extended to df in the domains of attraction
of log-Pareto and Pareto df under power and, respectively, linear normalization.
Assertion (ii) of the subsequent theorem is a modification and extension of Lemma
1 in Meerschaert and Scheffler [326], cf. also Cormann [77].

Theorem 2.7.9. The following properties hold for the p-POT domain of attrac-
tion of a log-Pareto df L̃γ:

(i) Let F ∈ Dp-POT(L̃γ) for some γ > 0. Then there is a family of df Gz, with
Gz ∈ DPOT(W̃1/z), such that

F (x) =
∫ ∞

0
Gz(x)p(z)dz,

where p is a density which is ultimately monotone (monotone on [x0,∞) for
some x0 > 0) and regularly varying at zero with index 1/γ − 1.

(ii) Let Gz be a family of df with Gz ∈ D(W1/z) with representation

Gz(x) = 1 − x−zU (log(x)) , x > a1,

for some slowly varying function U and some a1 > 0. Then the mixture

F (x) :=
∫ ∞

0
Gz(x)p(z)dz,

where p is a density as in (i), has the representation

F (x) = 1 − (log(x))−1/γ
V (log(x)) , x > a2,

for some slowly varying function V and some a2 > 0 and, thus, F ∈
Dp-POT(L̃γ).

Proof. To prove (i) observe that the gamma density h1/γ in (2.41) satisfies the con-
ditions imposed on p. Therefore, (i) is a direct consequence of (2.40) and Corollary
2.7.6. Therefore the statement is still true with p replaced by h1/γ .

To prove (ii) notice that

1 − F (x) =
∫ ∞

0
e−z log(x)p(z)dzU (log(x)) .

The integral is now a function p̂(log(·)) where p̂ denotes the Laplace transform
of p. Since p is assumed to be ultimately monotone and regularly varying at zero
with index 1/γ − 1 one can apply Theorem 4 on page 446 of Feller [156] getting∫ ∞

0
e−z log(x)p(z)dz = log(x)−1/γ Ṽ (log(x)), x > a3,

for some slowly varying function Ṽ and a3 > 0. Now V (x) := U(x)Ṽ (x) is again
slowly varying which completes the proof.
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Testing for Super-Heavy Tails

In the subsequent lines the focus will be on statistical inference for distributions
in Class B, namely on testing procedures for detecting the presence of a df F
with Π-varying tail (2.21) underlying the sampled data. The main concern is to
discriminate between a super-heavy tailed distribution and a distribution with a
regularly varying tail. Since the non-negative parameter α is regarded as a gauge
of tail heaviness, it can well serve the purpose of providing a straightforward
distinction between super-heavy (α = 0) and heavy tails (α > 0). Moreover,
note that if X is a rv with absolutely continuous df F in the Fréchet domain of
attraction, i.e., satisfying (2.20), then eX has a df H such that (2.21) holds. This
is verified by the following proposition.

Proposition 2.7.10. Let X be a rv with df F such that (2.20) holds and denote
by f := F ′ the corresponding density function. Define Z := eX with the df H.
Then (2.21) holds with auxiliary function a(t) := f(log t), i.e., H ∈ Π(a).

Proof. The df of rv Z is related to the df of rv X through

H(x) = F (log(x)) = (F ◦ log)(x).

Now notice that f is regularly varying with index −α−1 > −1. Following the steps
in the proof of Proposition B.2.15 (1) of de Haan and Ferreira [190], the following
statements hold for the composition F ◦ log, since log ∈ Π and F ∈ RV−α:
for some θ = θ(x, t) ∈ (0, 1),

H(tx) − H(t)
f(log(t))

= F (log(tx)) − F (log(t))
f(log(t))

= (log(tx) − log(t)) f (log(t) + θ{log(tx) − log(t)})
f(log(t))

= (log(x)) f (log(t) + θ log(x))
f(log(t))

= (log(x))
f
(

log(t){1 + θ log(x)
log(t) }

)
f(log(t))

→t→∞ log(x)

by uniform convergence.

Although the transformation via exponentiation projects a Pareto tailed dis-
tribution (2.20) into (2.21) as stated in Proposition 2.7.10, it is also possible to
obtain a super-heavy tailed distribution in the sense of (2.21) via a similar trans-
formation upon exponentially tailed distributions, i.e., departing from a df in the
Gumbel max-domain of attraction. This is illustrated in Example 2.7.11 where a
log-Weibull(β), β ∈ (0, 1), distribution is considered.
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For the purpose of statistical inference, let X1, X2, . . . , Xn, . . . be a sequence
of rvs with common df F and let X1,n ≤ X2,n ≤ · · · ≤ Xn,n be their ascending
order statistics. Furthermore, assume that F is a continuous and strictly increasing
function.

In this context, in Fraga Alves et al. [159] and Neves and Fraga Alves [352]
two test statistics have been developed to distinguish between heavy and super-
heavy tailed probability distributions, i.e., for testing

H0 : α = 0 [super-heavy] vs. H1 : α > 0 [heavy] (2.42)

in the framework carried out by the Class B of distribution functions (see equations
(2.21) and (2.20)).

TEST 1. In Fraga Alves et al. [159], the asymptotic normality of the proposed
statistic for testing (2.42) is proven under suitable and reasonable conditions. In
particular, we need to require second-order refinements of (2.20) and (2.21) in
order to specify the inherent rate of convergence. Hence, suppose there exists a
positive or negative function A with A(t) →t→∞ 0 and a second-order parameter
ρ ≤ 0 such that

lim
t→∞

F (tx)−F (t)
a(t) − 1−x−α

α

A(t)
= 1

ρ

(x−α+ρ − 1
−α + ρ

− 1 − x−α

α

)
=: Hα,ρ(x), (2.43)

for all x > 0 and some α ≥ 0. Appendix B of de Haan and Ferreira [190] offers a
thorough catalog of second-order conditions, where it is also shown that necessarily
|A(t)| ∈ RVρ.

Example 2.7.11 (log-Weibull distribution). Let W be a random variable with
min-stable Weibull(β) df, for 0 < β < 1,

FW (x) = 1 − exp(−xβ), x ≥ 0.

Then the rv X := eW is log-Weibull distributed with df

F (x) = 1 − exp(−(log(x))β), x ≥ 1, 0 < β < 1.

From Taylor expansion of F (tx) − F (t) one concludes that condition (2.43) holds
with α = ρ = 0, auxiliary functions

a(t) = β(log(t))β−1 exp(−(log(t))β)

and A(t) = (β − 1)/ log t, 0 < β < 1. Hence F belongs to the subclass defined by
condition (2.43) is, consequently, in Class B. However, F is not in Class A since
log X has df FW with an exponentially decaying tail.
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The test statistic introduced in Fraga Alves et al. [159] for discerning between
super-heavy and heavy tailed distributions, as postulated in (2.42), is closely re-
lated to a new estimator for α ≥ 0. Both estimator and testing procedure evolve
from the limiting relation below (with j > 0) which follows in turn from condition
(2.20):

lim
t→∞

∫ ∞

1

F (tx) − F (t)
a(t)

dx

xj+1 =
∫ ∞

1

1 − x−α

α

dx

xj+1 = 1
j (j + α)

.

The above equation entails that

lim
t→∞

∫ ∞
1

(
F (tx) − F (t)

)
dx/x3∫ ∞

1
(
F (tx) − F (t)

)
dx/x2 = 1 + α

2 (2 + α)
(2.44)

for 0 ≤ α < ∞. Equation (2.44) can, furthermore, be rephrased as∫ ∞
t

(
t/u

)2
dF (u)∫ ∞

t (t/u) dF (u)
→t→∞

1 + α

2 + α
=: ψ(α). (2.45)

Replacing F by the empirical df Fn and t by the intermediate order statistic
Xn−k,n, with k = kn a sequence of intermediate integers such that

k = kn →∞, k/n → 0 as n →∞, (2.46)

the left-hand side of (2.45) becomes ψ̂n(k), defined as

ψ̂n(k) :=

k−1∑
i=0

(
Xn−k,n/Xn−i,n

)2

k−1∑
i=0

Xn−k,n/Xn−i,n

. (2.47)

On the other hand, the limiting function ψ(α) in (2.45) is a monotone continuous
function. Hence, by simple inversion, we obtain the following estimator of α ≥ 0:

α̂n(k) :=
2

k−1∑
i=0

(
Xn−k,n/Xn−i,n

)2 −
k−1∑
i=0

(Xn−k,n/Xn−i,n)

k−1∑
i=0

(Xn−k,n/Xn−i,n) −
k−1∑
i=0

(
Xn−k,n/Xn−i,n

)2
. (2.48)

In the next theorem we establish without proof the asymptotic normality of
the statistic ψ̂n(k) introduced in (2.45), albeit under a mild second-order condition
involving the intermediate sequence k = kn. The result is akin to Theorem 2.4 in
Fraga Alves et al. [159].
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Theorem 2.7.12. Let k = kn be a sequence of intermediate integers as in (2.46)
and such that (

n/
√

k
)

a(U(n/k)) →∞ (2.49)

as n → ∞, where the function a is given in (2.43) and U denotes the generalized
inverse U(t) :=

(
1

1−F

)←
(t) = inf

{
x : F (x) ≥ 1 − 1

t

}
, for t > 1. If the second-

order condition (2.43) holds with α ≥ 0 and

(na(U(n/k)))1/2
A (U(n/k)) →n→∞ λ ∈ R, (2.50)

then (
k−1∑
i=0

Xn−k:n
Xn−i:n

)1/2 (
ψ̂n(k) − 1 + α

2 + α

)
→D N(b, σ2) (2.51)

as n →∞, where

b := −λ
√

1 + α

(2 + α)(1 + α − ρ)(2 + α − ρ)
,

σ2 :=
(1 + α)(4 + 3α + α2)

(2 + α)3(3 + α)(4 + α)
.

An alternative formulation of (2.51) is

(
n a

(
U(n/k)

))1/2
(

ψ̂n(k) − 1 + α

2 + α

)
→D N(b, σ2),

as n →∞, where

b := −λ (1 + α)
(2 + α)(1 + α − ρ)(2 + α − ρ)

,

σ2 := (1 + α)2(4 + 3α + α2)
(2 + α)3(3 + α)(4 + α)

.

Theorem 2.7.12 has just provided a way to assess the presence of an underly-
ing super-heavy tailed distribution. Taking k upper-order statistics from a sample
of size n such that k accounts only for a small top sample fraction, in order to
attain (2.46), we now define the test statistic

Sn(k) :=
√

24

(
k−1∑
i=0

Xn−k,n

Xn−i,n

)1/2 (
ψ̂n(k) − 1

2

)
. (2.52)

The critical region for the one-sided test (2.42) at the nominal size ᾱ is given by

R := {Sn(k) > z1−ᾱ} ,
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where zε denotes the ε-quantile of the standard normal distribution.

It is worthwhile to mention that our null hypothesis is not only that the
distribution F is in Class B defined in (2.21), but also F satisfies the second-order
condition (2.43). Moreover, we should perform the test with a sequence kn such
that (2.50) holds with λ = 0. Condition (2.50) imposes an upper bound on the
sequence kn. For α = ρ = 0, it seems difficult to prove that conditions (2.49)
and (2.50) are never contradictory. However, if we replace (2.50) by the somewhat
stricter condition

√
kn A(U(n/kn)) →n→∞ λ1 ∈ R, we never hinder (2.49) from

being valid. So, for any α ≥ 0, if
√

kn A(U(n/kn)) →n→∞ λ1 holds, then (2.50)
holds with λ =

√
α λ1. The estimator of α ≥ 0 introduced in (2.48) is regarded as

a way of testing for super-heavy tails. As an estimator for α > 0 only, the present
one is not really competitive.

TEST 2. The second proposal for testing (2.42) comes from Neves and Fraga
Alves [352]; therein the test statistic Tn(k), consisting of the ratio of maximum to
the sum of log-excesses:

Tn(k) := log(Xn,n) − log(Xn−k,n)
1

log(k)
∑k−1

i=0
(
log(Xn−i,n) − log(Xn−k,n)

) (2.53)

proves to attain a standard Fréchet limit, as long as k = kn remains an intermediate
sequence, under the simple null-hypothesis of condition (2.21) being fulfilled.

Theorem 2.7.13 below encloses a general result for heavy and super-heavy
distributions belonging to the Class B (see (2.20) and (2.21)) thus suggesting a
possible normalization for the test statistic Tn(k) to attain a non-degenerate limit
as n goes to infinity. Furthermore, results (i) and (ii) of Corollary 2.7.14 expound
eventual differences in the stochastic behavior between super-heavy and heavy
tailed distributions, accounting for power and consistency of the test, respectively.

First note that an equivalent characterization of the Class B can be formu-
lated in terms of the tail quantile-type function U :

lim
t→∞

U
(
t + x q(t)

)
U(t)

= (1 + α x)1/α (2.54)

for all 1 + αx > 0, α ≥ 0, with a positive measurable function q such that

lim
t→∞

q
(
t + x q(t)

)
q(t)

= 1 + αx (2.55)

(cf. Lemma 2.7.15 below). This function q is called an auxiliary function for U .
If α = 0, the right-hand side of (2.54) should be understood in the limiting

sense as ex while q becomes a self-neglecting function. This corresponds to an
equivalent characterization of Class B as defined by (2.21). According to de Haan
[184], Definition 1.5.1, we then say that the tail quantile function U belongs to the
class Γ of functions of rapid variation (notation: U ∈ Γ).
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Theorem 2.7.13. Suppose the function U is such that condition (2.54) holds for
some α ≥ 0. Let k = kn be a sequence of intermediate integers as in (2.46). Then

Tn(k) = Op

(
1

log(k)

)
,

with Tn(k) as defined in (2.53).

Corollary 2.7.14. Under the conditions of Theorem 2.7.13,

(i) if α = 0,

log(k)Tn(k) →D T ∗, (2.56)

where the limiting random variable T ∗ has a Fréchet df Φ(x) = exp(−x−1),
x ≥ 0;

(ii) if α > 0,

log(k)Tn(k) →P 0. (2.57)

Corollary 2.7.14 suffices to determine the critical region for assessing an un-
derlying super-heavy tailed distribution. Considering the k upper-order statistics
from a sample of size n such that k satisfies (2.46), we obtain the critical region
for the one-sided test (2.42) at a nominal size ᾱ:

R :=
{

log(k)Tn(k) < Φ−1(ᾱ)
}

,

where Φ−1 denotes the inverse of the standard Fréchet df Φ.
For the proof of Theorem 2.7.13 two auxiliary results are needed.

Lemma 2.7.15. Suppose the function U is such that relation (2.54) holds with
some α ≥ 0. Then, the auxiliary function q satisfies

lim
t→∞

q(t)
t

= α (2.58)

and

• if α > 0, then U(∞) := limt→∞ U(t) = ∞ and U is of regular variation near
infinity with index 1/α, i.e., U ∈ RV1/α;

• if α = 0, then U(∞) = ∞ and U is ∞-varying at infinity.

Furthermore, for α = 0,

lim
t→∞

(
log(U(t + xq(t))) − log(U(t))

)
= x for every x ∈ R. (2.59)
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Lemma 2.7.15 coupled with condition (2.54) imposes the limit (2.55) on the
auxiliary function q(t).

Proof. In case α > 0, the first part of the lemma follows directly from (2.54),
whereas in case α = 0 it is ensured by Lemma 1.5.1 and Theorem 1.5.1 of de Haan
[184]. Relation (2.59) follows immediately from (2.54) with respect to α = 0.

Proposition 2.7.16. Suppose condition (2.54) holds for some α ≥ 0.

(i) If α > 0, then for any ε > 0 there exists t0 = t0(ε) such that for t ≥ t0,
x ≥ 0,

(1 − ε) (1 + α x) 1
α −ε ≤ U

(
t + x q(t)

)
U(t)

≤ (1 + ε) (1 + α x) 1
α +ε. (2.60)

(ii) If (2.54) holds with α = 0 then, for any ε > 0, there exists t0 = t0(ε) such
that for t ≥ t0, for all x ∈ R,

U(t + x q(t))
U(t)

≤ (1 + ε) exp
(
x(1 + ε)

)
. (2.61)

Proof. Inequalities in (2.60) follow immediately from Proposition 1.7 in Geluk and
de Haan [170] when we settle q(t) = αt (see also (2.58) in Lemma 2.7.15) while
(2.61) was extracted from Beirlant and Teugels [34], p.153.

Lemma 2.7.17.

(i) If U ∈ RV1/α, α > 0, then, for any ε > 0, there exists t0 = t0(ε) such that
for t ≥ t0 and x ≥ 1,

(1 − ε) 1
α

log(x) ≤ log(U(tx)) − log(U(t)) ≤ (1 + ε) 1
α

log(x). (2.62)

(ii) If U ∈ Γ then, for any ε > 0, there exists t0 = t0(ε) such that for t ≥ t0 and
for all x ∈ R,

log(U(t + xq(t))) − log(U(t)) ≤ ε + x(1 + ε). (2.63)

Proof. Notice that once we apply the logarithmic transformation to relation (2.60)
for large enough t, it becomes

(1 − ε) log
(

(1 + αx)1/α
)
≤ log(U(t + xq(t))) − log(U(t))

≤ (1 + ε) log
(

(1 + αx)1/α
)

.

As before, the precise result is obtained by taking q(t) = αt with the concomitant
translation of (2.54) for α > 0 into the regularly varying property of U (cf. Lemma
2.7.15 again). The proof for (2.63) is similar and therefore omitted.
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Proof of Theorem 2.7.13. Let (Yi,n)n
i=1 be the order statistics corresponding to the

iid rv (Yi)n
i=1 with standard Pareto df 1 − y−1, for all y ≥ 1. Taking into account

the equality in distribution

(Xi,n)n
i=1 =D (U(Yi,n))n

i=1 , (2.64)

and defining

Q(i)
n :=

Yn−i,n − Yn−k,n

q(Yn−k,n) , i = 0, 1, . . . , k − 1, (2.65)

as well as

M (1)
n := 1

k

k−1∑
i=0

log(U(Yn−i,n)) − log(U(Yn−k,n)), (2.66)

we get in turn

Tn(k) =D
log(U(Yn,n)) − log(U(Yn−k,n))

k M
(1)
n

(2.67)

= log(U(Yn,n)) − log(U(Yn−k,n))
k−1∑
i=0

(
log(U(Yn−i,n)) − log(U(Yn−k,n))

)
=

log
(
U
(
Yn−k,n + Q

(0)
k,n q(Yn−k,n)

))− log(U(Yn−k,n))
k−1∑
i=0

(
log

(
U
(
Yn−k,n + Q

(i)
k,n q(Yn−k,n)

))− log(U(Yn−k,n))
) . (2.68)

Bearing on the fact that the almost sure convergence Yn−k,n → ∞ holds with
an intermediate sequence k = kn (cf. Embrechts et al. [122], Proposition 4.1.14),
we can henceforth make use of condition (2.54). For ease of exposition, we shall
consider the cases α > 0 and α = 0 separately.
Case α > 0: As announced, the core of this part of the proof lies at relation (2.54).
Added (2.62) from Lemma 2.7.17, we obtain the following inequality for any ε > 0
and sufficiently large n:

M (1)
n = 1

k

k−1∑
i=0

log
(

U
( Yn−i,n

Yn−k,n
Yn−k,n

))
− log(U(Yn−k,n))

≤ (1 + ε) 1
k

k−1∑
i=0

1
α

(
log(Yn−i,n) − log(Yn−k,n)

)
.

Owing to Rényi’s important representation for exponential spacings,

Ek−i,k =D En−i,n − En−k,n = log(Yn−i,n) − log(Yn−k,n), (2.69)
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where En−i,n, i = 0, 1, . . . , k−1, are the order statistics pertaining to independent
standard exponential rv Ei = log(Yi), we thus obtain

M (1)
n = 1

k

k−1∑
i=0

log(U(Yn−i,n)) − log(U(Yn−k,n))

≤ 1
α

(1 + ε) 1
k

k−1∑
i=0

log(Yk−i,k). (2.70)

We can also establish a similar lower bound. The law of large numbers ensures the
convergence in probability of the term on the right-hand side of (2.70) since, for
an intermediate sequence k = kn, as n →∞,

1
k

k−1∑
i=0

log(Yi) →P

∫ ∞

1

log(y)
y2 dy = 1.

In conjunction with (2.58), the latter entails

Ln(k) := q(Yn−k,n)
Yn−k,n

M (1)
n = 1 + op(1) (2.71)

as n → ∞. Hence, using (2.62) followed by (2.69) upon (2.67), we obtain, as
n → ∞,

Tn(k) =D
1
k

q(Yn−k,n)
Yn−k,n

log(U(Yn,n)) − log(U(Yn−k,n))
Ln(k)

= 1
k

(Ek,k − log(k))
(
1 + op(1)

)
+ log(k)

k

(
1 + op(1)

)
. (2.72)

Finally, by noting that Ek,k − log(k) →D Λ, as k → ∞, where Λ is denoting a
Gumbel rv, we obtain a slightly stronger result than the one stated in the present
theorem. More specifically, we get from (2.72) that Tn(k) = op(k−1/2), for any
intermediate sequence k = kn.
Case α = 0: The proof concerning this case of super-heavy tailed distributions,
virtually mimics the steps followed in the heavy tailed case (α > 0). We get from
(2.68) that M

(1)
n as defined in (2.66) can be written as

M (1)
n = 1

k

k−1∑
i=0

log
(

U
(
Yn−k,n + Q

(i)
k,n q(Yn−k,n)

))− log(U(Yn−k,n)).

Giving heed to the fact that, for each i = 0, 1, . . . , k − 1,

Q
(i)
k,n = Yn−k,n

q(Yn−k,n)

( Yn−i,n

Yn−k,n
− 1

)
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is stochastically bounded away from zero (see Lemma 2.7.15), we can thus apply
relation (2.63) from Lemma 2.7.17 in order to obtain, for any intermediate sequence
k = kn,

1
k

k−1∑
i=0

log
(

U
(
Yn−k,n + Q

(i)
k,nq(Yn−k,n)

))− log(U(Yn−k,n)) ≤ (1 + ε) 1
k

k−1∑
i=0

Q
(i)
k,n,

as n →∞. Using Rényi’s representation (2.69), we get

q(Yn−k,n)
Yn−k,n

M (1)
n ≤ (1 + ε) 1

k

k−1∑
i=0

(
Yk−i,k − 1

)
. (2.73)

It is worth noticing at this point that with constants a∗
k > 0, b∗

k ∈ R such that
a∗

k ∼ kπ/2 and b∗
ka∗

k/k ∼ log(k) as k → ∞, this new random variable S∗
k defined

by

S∗
k :=

1
a∗

k

k−1∑
i=0

(
Yi − 1

)− b∗
k, (2.74)

converges in distribution to a sum-stable law (cf. Geluk and de Haan [171]). Em-
bedding S∗

k defined above in the right-hand side of (2.73), we ensure that Ln(k)
as introduced in (2.71) satisfies Ln(k) = Op(log(k)). Therefore, in view of (2.68),
the proof is concluded by showing that it is possible to normalize the maximum of
the log-spacings in such a way as to exhibit a non-degenerate behavior eventually.
Since U ∈ Γ we get in a similar way as before, for large enough n,

q(Yn−k,n)
k Yn−k,n

(
log

(
U
(
Yn−k,n + Q

(0)
k,nq(Yn−k,n)

))− log(U(Yn−k,n))
)

= k−1
( Yn,n

Yn−k,n
− 1

)(
1 + op(1)

)
= k−1(Yk,k − 1

)(
1 + op(1)

)
= Op(1).

Proof of Corollary 2.7.14. (i) For α = 0, the last part of the proof of Theorem
2.7.13 emphasizes that, as n →∞,

log(k)Tn(k) =D

k−1(log(U(Yn,n)) − log(U(Yn−k,n))
)

Ln(k)/ log(k)
q(Yn−k,n)

Yn−k,n

=
(
T ∗ + op(1)

)
/
(
1 + op(1)

)
= T ∗(1 + op(1)

)
because, after suitable normalization by ak = k−1, the maximum of a sample of
size k with standard Pareto parent distribution is attracted to a Fréchet law.
(ii) The precise result follows from (2.72) by straightforward calculations.
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Neves and Fraga Alves [352] present a finite (large) sample simulation study
which seems to indicate that the conservative extent of Test 2 opens a window of
opportunity for its applicability as a complement to Test 1. This is particularly
true for the less heavy distributions lying in the class of super-heavy tails since in
this case the number of wrong rejections is likely to rise high above the nominal
level of the test based on (2.52). Moreover, the asymptotics pertaining to the test
statistic Sn(k) in (2.52) (cf. Theorem 2.7.12) require a second-order refinement of
(2.21) (as in (2.43)), while the asymptotic behavior of the test statistic Tn(k) only
relies on the first-order conditions on the tail of F , meaning that we are actually
testing F ∈ Class B.



Chapter 3

Estimation of Conditional
Curves

In this chapter we will pick up Example 1.3.3 again, and we will show how the
Poisson approximation of truncated empirical point processes enables us to reduce
conditional statistical problems to unconditional ones.

A nearest neighbor alternative to this applications of our functional laws of
small numbers is given in Sections 3.5 and 3.6.

3.1 Poisson Process Approach
Let Z = (X, Y ) be a rv, where X is Rd-valued any Y is Rm-valued, and denote by

F (· | x) := P (Y ≤ · | X = x)

the conditional df of Y given X = x, x ∈ R
d. Applying the approach developed

in Chapter 1, one may study the fairly general problem of evaluating a functional
parameter T (F (· | x)) based on independent replicates Zi = (Xi, Yi), i = 1, . . . , n,
of Z. This will be exemplified in the particular cases of non-parametric estimation
of regression means and quantiles that is, for the functionals T1(F ) =

∫
t F (dt)

and T2(F ) = F −1(q), q ∈ (0, 1).

Example 3.1.1. When a child is born in Germany, the parents are handed out
a booklet showing on its back cover a somatogram, where the average height (in
cm) of a child is plotted against its weight (in kg) together with a .95 per cent
confidence bound. If, for example, a child has a height of about 80cm but a weight
of less than 9 kg (more than 13.25 kg) it is rated significantly light (heavy).

If we model the (height, weight) of a randomly chosen child by a rv Z =
(X, Y ) ∈ R

2, then the confidence curves in this somatogram represent the curves
of the 2.5 per cent and 97.5 per cent quantiles of the conditional df F (· | x) of

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,  
DOI 10.1007/978-3-0348-0009-9_3, © Springer Basel AG 2011 



104 3. Estimation of Conditional Curves

Y given X = x with 50 ≤ x ≤ 120 that is, of T2(F (· | x)) = F (· | x)−1(q) with
q1 = 25/1000 and q2 = 975/1000.

While classical non-parametric regression analysis focuses on the problem
of estimating the conditional mean T1(F (· | x)) =

∫
t F (dt|x) (see, for example,

Eubank [124]), the estimation of general regression functionals T (F (· | x)) has
been receiving increasing interest only some years ago (see, for example, Stute
[424], Härdle et al. [206], Samanta [404], Truong [447], Manteiga [317], Hendricks
and Koenker [216], Goldstein and Messer [177]).

Truncated Empirical Process

Statistical inference based on (X1, Y1), . . . , (Xn, Yn) of a functional T (F (· | x))
has obviously to be based on those Yi among Y1, . . . , Yn, whose corresponding
Xi-values are close to x. Choose therefore as in Example 1.3.3 a window width
an = (an1, . . . , and) ∈ (0,∞)d and define as the data-window for Xi

Sn := Xj≤d[xj − a
1/d
nj /2, xj + a

1/d
nj /2]

=: [x − a1/d
n /2, x + a1/d

n /2],

where the operations a
1/d
n /2 are meant componentwise. The data set Yi with Xi ∈

Sn is described in a mathematically precise way by the truncated empirical point
process

Nn(B) =
∑
i≤n

εYi(B)εXi (Sn)

=
∑

i≤K(n)

εVi (B), B ∈ B
m,

where
K(n) :=

∑
i≤n

εXi(Sn)

is the number of those Yi with Xi ∈ Sn which we denote by V1, V2, . . .. From
Theorem 1.3.1 we know that K(n) and V1, V2, . . . are independent, where Vi are
independent copies of a rv V with distribution

P (V ∈ ·) = P (Y ∈ · | X ∈ Sn),

and K(n) is B(n, pn)-distributed with pn = P (X ∈ Sn) ∼ vol(Sn) = volume of
Sn if |an| is small (under suitable regularity conditions). By | · | we denote the
common Euclidean distance in R

d.
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The First-Order Poisson Approximation

If we replace in Nn the sample size K(n) by a Poisson rv τ(n) with parameter
E(K(n)) = npn, which is stochastically independent of V1, V2, . . . , then we obtain
the first-order Poisson process approximation N∗

n of Nn from Section 1.1, given
by

N∗
n(B) =

∑
i≤τ(n)

εVi (B), B ∈ B
m.

The error of this approximation is determined only by the error of the approxi-
mation of K(n) by τ(n) (see Lemma 1.2.1).

Theorem 3.1.2. We have for the Hellinger distance

H(Nn, N∗
n) ≤ 31/2P (X ∈ Sn).

The Second-Order Poisson Approximation

It is intuitively clear and was already shown in Example 1.3.3 that for |an| → 0
under suitable regularity conditions

P (V ∈ ·) = P (Y ∈ · | X ∈ Sn) →|an|→0 P (Y ∈ · | X = x).

This implies the approximation of N∗
n by the Poisson process

N∗∗
n (B) =

∑
i≤τ(n)

εWi(B), B ∈ B
m,

where W1, W2, . . . are independent replicates of a rv W with target df F (·|x), and
τ(n) is a Poisson rv with parameter npn = P (X ∈ Sn). The rv W1, W2, . . . are
again chosen independent of τ(n) and K(n).

From Theorem 1.2.5 we obtain the following bound for the second-order Pois-
son approximation

H(Nn, N∗∗
n ) ≤ H(Nn, N∗

n) + H(N∗
n, N∗∗

n )

≤ 31/2P (X ∈ Sn) + H(V, W )(nP (X ∈ Sn))1/2

= 31/2pn + H(V, W )(npn)1/2.

The POT-Approach

If we denote again by
Mn =

∑
i≤K(n)

εWi
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the binomial process pertaining to the POT approach, then we obtain from Corol-
lary 1.2.4 (iv) the bound

H(Nn, Mn) ≤ H(V, W ) E(K(n))1/2 = H(V, W )(npn)1/2.

It is therefore obvious that we have to seek conditions on the joint distribution
of (X, Y ) for X near x, such that we obtain reasonable bounds for H(V, W ).

Basic Smoothness Conditions

An obvious condition is to require that the conditional distribution P (Y ∈ · | X ∈
[x − ε, x + ε]) of Y given X ∈ [x − ε, x + ε] has a density f(y | [x − ε, x + ε]) for
ε ∈ (0, ε0)d such that

f(y | [x − ε, x + ε])1/2 = f(y | x)1/2(1 + R(y | [x − ε, x + ε])) (3.1)

for y ∈ R
m, where f(y | x) denotes the density of F (· | x), which we assume to

exist as well. If we require that∫
R2(y | [x − ε, x + ε])f(y | x) dy = O(|ε|4) (3.2)

as |ε| → 0, then we obtain from equation (1.10) in Chapter 1 the bound

H(V, W ) =
( ∫

R2(y | Sn)f(y | x) dy
)1/2

= O(|a1/d
n |2)

as |an| → 0.
If we require further that X has a density g near x which is continuous at x

and g(x) > 0, then we obtain

pn = P (X ∈ Sn) =
∫

Sn

g(y) dy =
∫

[−a
1/d
n /2,a

1/d
n /2]

g(x + ε) dε

= g(x)
∫

[−a
1/d
n /2,a

1/d
n /2]

1 +
g(x + ε) − g(x)

g(x) dε

= g(x) vol(Sn)(1 + o(1)) = g(x)
(∏

j≤d

a
1/d
nj

)
(1 + o(1)) (3.3)

as |an| → 0.

Bounds for the Approximations

The following result is now obvious.
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Theorem 3.1.3. Suppose that the rv (X, Y ) satisfies conditions (3.1), (3.2) and
that X has a density g near x which is continuous at x with g(x) > 0. Then we
have for |an| → 0,

H(Nn, N∗
n) = O(vol(Sn)) = O

(∏
j≤d

a
1/d
nj

)
for the first-order Poisson approximation,

H(Nn, N∗∗
n ) = O

(
vol(Sn) + (n vol(Sn))1/2|a1/d

n |2
)

= O
(∏

j≤d

a
1/d
nj +

(
n
∏
j≤d

a
1/d
nj

)1/2
|a1/d

n |2
)

for the second-order Poisson approximation and

H(Nn, Mn) = O((n vol(Sn))1/2|a1/d
n |2)

= O
((

n
∏
j≤d

a
1/d
nj

)1/2
|a1/d

n |2
)

for the POT approach.

With equal bin widths a
1/d
nj = c1/d, j = 1, . . . , d, we have vol(Sn) = c and

the preceding bounds simplify to

H(Nn, N∗
n) = O(c),

H(Nn, N∗∗
n ) = O(c + (nc(d+4)/d)1/2),

H(Nn, Mn) = O((nc(d+4)/d)1/2), (3.4)

uniformly for c > 0 and n ∈ N. These results give a precise description of how c =
c(n) can be chosen depending on the sample size n, in order to ensure convergence
of the Hellinger distances to zero.

The Third-Order Poisson Approximation

Once we know that

pn = P (X ∈ Sn) = g(x) vol(Sn)(1 + o(1)),

a further approximation of Nn suggests itself namely, its approximation by

M∗
n :=

∑
i≤τ ∗(n)

εWi ,
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where W1, W2, . . . are as before, but now τ∗(n) is an independent Poisson rv with
parameter ng(x) vol(Sn). This is the third-order Poisson process approximation of
Nn. From the arguments in Lemma 1.2.1 (ii) we obtain the bound

H(N∗∗
n , M∗

n) ≤ H(τ(n), τ∗(n)).

If we require now in addition that g has bounded partial derivatives of second order
near x, then the arguments in (3.3) together with Taylor expansion of g(x + ε)
imply the expansion

pn = g(x) vol(Sn)(1 + O(|a1/d
n |2))

for |an| → 0. The following lemma entails that

H(τ(n), τ∗(n)) = O
(npn − ng(x) vol(Sn)

(n vol(Sn))1/2

)
= O

(
(n vol(Sn))1/2|a1/d

n |2
)

= O
((

n
∏
j≤d

a
1/d
nj

)1/2
|a1/d

n |2
)

.

We, therefore, obtain under this additional smoothness condition on g the
bound

H(Nn, M∗
n) ≤ H(Nn, N∗∗

n ) + H(N∗∗
n , M∗

n)

= O

( ∏
j≤d

a
1/d
nj +

(
n
∏
j≤d

a
1/d
nj

)1/2
|a1/d

n |2
)

, (3.5)

which coincides with the bound for H(Nn, N∗∗
n ) established in Theorem 3.1.3.

Lemma 3.1.4. Let τ1, τ2 be Poisson rv with corresponding parameters 0 < λ1 ≤
λ2. Then we have for the Hellinger distance

H(τ1, τ2) ≤ λ2 − λ1√
2λ1

.

Proof. As the squared Hellinger distance is bounded by the Kullback-Leibler dis-
tance (see, for example, Lemma A.3.5 in Reiss [385]), we obtain

H2(τ1, τ2) ≤ −
∫

log(P (τ2 = k)/P (τ1 = k)) L(τ1)(dk)

= −
∫

log
(

eλ1−λ2 (λ2/λ1)k
)
L(τ1)(dk)

= λ2 − λ1 − log(λ2/λ1) E(τ1)
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= λ2 − λ1 − log
(

1 + λ2 − λ1
λ1

)
λ1

≤ λ2 − λ1 −
(λ2 − λ1

λ1
− (λ2 − λ1)2

2λ2
1

)
λ1 = (λ2 − λ1)2

2λ1
,

where the second to last line follows from the inequality log(1 + ε) ≥ ε − ε2/2,
which is true for any ε > 0.

A Unified Smoothness Condition

Conditions (3.1) and (3.2) together with the assumption that the marginal density
g of X has bounded partial derivatives of second order near x, can be replaced by
the following handy condition on the joint density of (X, Y ), which is suggested
by Taylor’s formula.

Suppose that the rv (X, Y ) has a joint density f on the strip [x−ε0, x+ε0]×
R

m for some ε0 ∈ (0,∞)d, which satisfies uniformly for ε ∈ [−ε0, ε0](⊂ R
d) and

y ∈ R
m the expansion

f(x + ε, y) = f(x, y)
{

1 + 〈ε, h(y)〉 + O(|ε|2r(y))
}

, (3.6)

where h : Rm → R
d, r : Rm → R satisfy

∫
(|h(y)|2 + |r(y)|2)f(x, y) dy < ∞ and

〈·, ·〉 denotes the usual inner product on R
d. Then

f(· | [x − ε, x + ε]) =

∫
[x−ε,x+ε] f(u, ·) du∫

R

∫
[x−ε,x+ε] f(u, y) du dy

is the conditional density of Y given X ∈ [x − ε, x + ε] and

f(· | x) := f(x, ·)
g(x)

the conditional density of Y given X = x, where

g(·) :=
∫
R

f(·, y) dy

is the marginal density of X which we assume again to be positive at x. Elementary
computations then show that conditions (3.1) and (3.2) are satisfied that is,

f(y | [x − ε, x + ε])1/2 = f(y | x)1/2
{

1 + R(y | [x − ε, x + ε])
}

for y ∈ R
m and ε ∈ (−ε0, ε0), where∫

R2(y | [x − ε, x + ε])f(y | x) dy = O(|ε|4)
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as |ε| → 0. We, furthermore, have in this case again

pn = P (X ∈ Sn) = g(x) vol(Sn)(1 + O(|a1/d
n |2))

as |an| → 0. Then the bounds on the approximation of the process Nn by the
processes N∗

n, N∗∗
n , Mn and M∗

n as given in Theorem 3.1.3 and in (3.4) and (3.5)
remain valid.

Example 3.1.5. Suppose that (X, Y ) is bivariate normally distributed that is,
(X, Y ) has joint density

f(z, y) = 1
2πσ1σ2(1 − ρ2)

exp

{
− 1

2(1 − ρ2)

((z − μ1
σ1

)2

− 2ρ
(z − μ1

σ1

)(y − μ2
σ2

)
+

(y − μ2
σ2

)2
)}

, z, y ∈ R,

where μ1, μ2 ∈ R, σ1, σ2 > 0 and ρ ∈ (−1, 1). Taylor expansion of exp at 0 entails
the expansion

f(x + ε, y)
f(x, y)

= exp

{
− 1

2(1 − ρ2)

(2(x − μ1)ε + ε2

σ2
1

− 2ρε

σ1σ2
(y − μ2)

)}

= 1 + ε
1

1 − ρ2

( ρ

σ1σ2
(y − μ2) − x − μ1

σ2
1

)
+ O(ε2 exp(c|y|)(1 + y2)

)
=: 1 + εh(y) + O(ε2r(y))

with some appropriate positive constants c. We, obviously, have
∫

(h2(y) + r2(y))
f(x, y) dy < ∞.

Bounds for Equal Bin Widths

The preceding considerations are summarized in the following result.

Corollary 3.1.6. Suppose that the rv (X, Y ) satisfies condition (3.6) at the point
x ∈ R

d and that the marginal density of X is positive at x. With equal bin widths
a

1/d
nj = c1/d, j = 1, . . . , m, we obtain uniformly for c > 0 and n ∈ N the bound

H(Nn, N∗
n) = O(c)

for the first-order Poisson approximation,

H(Nn, N∗∗
n ) = O

(
c + (nc(d+4)/d)1/2

)
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for the second-order Poisson approximation,

H(Nn, Mn) = O
(

(nc(d+4)/d)1/2
)

for the POT approach and

H(Nn, M∗
n) = O

(
c + (nc(d+4)/d)1/2

)
for the third-order Poisson approximation.

The preceding approach will be extended to several points x1, . . . , xr in Sec-
tion 3.3 with the corresponding bounds summing up.

3.2 Applications: The Non-parametric Case
In this section we assume for the sake of a clear presentation that the covariate Y
of X is a one-dimensional rv.

Local Empirical Distribution Function

The usual non-parametric estimate of a functional T (F ), based on an iid sample
Y1, . . . , Yn with common df F , is T (Fn), where Fn(t) := n−1 ∑

i≤n εYi ((−∞, t])
denotes the pertaining empirical df. Within our framework, the local empirical df

F̂n(t | Sn) := K(n)−1
∑
i≤n

εYi ((−∞, t])εXi (Sn)

= Nn(Rm)−1Nn((−∞, t]), t ∈ R,

pertaining to those Yi among (X1, Y1), . . . , (Xn, Yn) with Xi ∈ Sn = [x − a
1/d
n /2,

x + a
1/d
n /2], suggests itself as a non-parametric estimate of F (· | x). The resulting

estimate of T (F (· | x)) is T (F̂n(· | Sn)). Observe that F̂n is the df pertaining to
the standardized random measure Nn.

Kernel Estimator of a Regression Functional

For the mean value functional T1 we obtain for example

T1(F̂n(· | Sn)) =
∫

t F̂n(dt | Sn)

=
∑

i≤n Yi εXi(Sn)∑
i≤n εXi (Sn)

which is the Nadaraya-Watson estimator of T1(F (· | x)) =
∫

t F (dt | x). Following
Stone [428], [429] and Truong [447], we call T (F̂n(· | Sn)) the kernel estimator of
a general regression functional T (F (· | x)).
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The Basic Reduction Theorem

The following result is crucial. It shows how conditional estimation problems re-
duce to unconditional ones by the approach developed in the preceding section.

Theorem 3.2.1. Suppose that for some σ > 0, δ ∈ (0, 1/2] and C > 0,

sup
t∈R

∣∣∣P(k1/2

σ
(T (Fk(· | x)) − T (F (· | x))) ≤ t

)
− Φ(t)

∣∣∣ ≤ C k−δ, k ∈ N, (3.7)

where Fk(· | x) denotes the empirical df pertaining to k independent rv with com-
mon df F (· | x), and Φ is the standard normal df. If the vector (X, Y ) satisfies
condition (3.6) and the marginal density of X is positive at x, then we obtain for
the kernel estimator T (F̂n(· | Sn)) with equal bin widths a

1/d
n1 = · · · = a

1/d
nd = c1/d

sup
t∈R

∣∣∣P((nc g(x))1/2

σ
(T (F̂n(· | Sn)) − T (F (· | x))) ≤ t

)
− Φ(t)

∣∣∣
= O

(
(nc)−δ + c + (nc(d+4)/d)1/2

)
uniformly for c > 0 and n ∈ N.

With the particular choice c = cn = O(n−d/(d+4)), we, roughly, obtain the
rate OP (n−2/(d+4)) for T (F̂n(· | Sn)) − T (F (· | x)), which is known to be the
optimal attainable accuracy under suitable regularity conditions in case of the
mean value functional (Stone [428], [429]), and quantile functional (Chaudhuri
[63]) (for a related result for the quantile functional we refer to Truong [447], and
for a discussion of a general functional T to Falk [130]; a version of this result
based on the nearest neighbor approach is established in Section 3.6).

The proof of Theorem 3.2.1 is based on the following elementary result (see
Lemma 3 in Falk and Reiss [149]).

Lemma 3.2.2. Let V1, V2, . . . be a sequence of rv such that for some σ > 0, μ ∈ R

and δ ∈ (0, 1/2],

sup
t∈R

∣∣∣P(k1/2

σ
(Vk − μ) ≤ t

)
− Φ(t)

∣∣∣ ≤ Ck−δ, k ∈ N.

Then we have with τ being a Poisson rv with parameter λ > 0 and independent of
each Vi, i = 1, 2, . . .,

sup
t∈R

∣∣∣P(λ1/2

σ
(Vτ − μ) ≤ t

)
− Φ(t)

∣∣∣ ≤ Dλ−δ,

where D depends only on C (with the convention Vτ = 0 if τ = 0).
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Proof of Theorem 3.2.1. Put Vk := T (Fk(· | x)), k = 1, 2, . . . , and μ := T (F (· |
x)). Observe that T (F̂n(· | Sn)) is a functional of the empirical point process Nn.
If we replace therefore Nn by the Poisson process M∗

n =
∑

i≤τ ∗(n) εWi , where
Wi, W2, . . . are independent rv with common df F (· | x) and independent of τ∗(n),
we obtain

sup
t∈R

∣∣∣P((nc g(x))1/2

σ
(T (F̂n(· | Sn)) − T (F (· | x))) ≤ t

)
− Φ(t)

∣∣∣
= sup

t∈R

∣∣∣P( (nc g(x))1/2

σ
(Vτ ∗(n) − μ) ≤ t

)
− Φ(t)

∣∣∣
+O(H(Nn, M∗

n)),

where τ∗(n) = M∗
n(Rd) is Poisson with parameter λ = nc g(x) and independent of

each V1, V2, . . .. The assertion is now immediate from Lemma 3.2.2 and Corollary
3.1.6.

Examples

The following examples on regression quantiles and the regression mean highlight
the wide-ranging applicability of the reduction theorem that is, of the approxi-
mation of Nn by M∗

n.

Example 3.2.3 (Regression quantiles). Put T (F ) = F −1(q), q ∈ (0, 1) fixed
and assume that F (· | x) is continuously differentiable in a neighborhood of the
conditional quantile F (· | x)−1(q) with fx(F (· | x)−1(q)) > 0, where fx = F (· | x)′

is the conditional density of F (· | x). Then, condition (3.7) is satisfied with σ2 =
q(1 − q)/f2

x(F (· | x)−1(q)) and δ = 1/2 (see Section 4.2 of Reiss [385]).
Consequently, we obtain with equal bin widths a

1/d
n1 = · · · = a

1/d
nd = c1/d

uniformly for c > 0,

sup
t∈R

∣∣∣P((ncg(x))1/2

σ
(F̂n(· | Sn)−1(q) − F (· | x)−1(q)) ≤ t

)
− Φ(t)

∣∣∣
= O((ncn)−1/2) + H(Nn, M∗

n).

Example 3.2.4 (Regression mean). Assume that condition (3.7) holds for the
mean value functional T (F ) =

∫
t F (dt) with σ2 :=

∫
(t − μ)2 F (dt | x), μ =∫

t F (dt | x), (think of the usual Berry-Esseen theorem for sums of iid rv). Then,
with a

1/d
n1 = · · · = a

1/d
nd = c1/d,

sup
t∈R

∣∣∣P((nc g(x))1/2

σ

( ∫
tF̂n(dt | x) −

∫
t F (dt | x)

)
≤ t

)
− Φ(t)

∣∣∣
= O((nc)−1/2) + H(Nn, M∗

n)

uniformly for c > 0.
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Condition (3.7) is satisfied for a large class of functionals T , for which a Berry-
Esseen result is available that is, U- and V-statistics, M, L and R estimators. See,
for example, the monograph by Serfling [408].

3.3 Applications: The Semiparametric Case
Assume that the conditional distribution P (Y ∈ · | X = x) = Pϑ(Y ∈ · | X =
x) = Qϑ(·) of Y (∈ R

m), given X = x ∈ R
d, is a member of a parametric family,

where the parameter space Θ is an open subset of Rk. Under suitable regularity
conditions we establish asymptotically optimal estimates based on Nn of the true
underlying parameter ϑ0. Since the estimation problem involves the joint density
of (X, Y ) as an infinite dimensional nuisance parameter, we actually have to deal
with a special semiparametric problem: Since we observe data Yi whose Xi-values
are only close to x, our set of data V1, . . . , VK(n), on which we will base statistical
inference, is usually not generated according to our target conditional distribution
Qϑ0 (·) but to some distribution being close to Qϑ0(·). This error is determined by
the joint density f of (X, Y ), which is therefore an infinite dimensional nuisance
parameter. As a main tool we utilize local asymptotic normality (LAN) of the
Poisson process M∗

n (cf. the books by Strasser [430], LeCam [308], LeCam and
Yang [309] and Pfanzagl [367]. For a general approach to semiparametric problems
we refer to the books by Pfanzagl [366] and Bickel et al. [44]).

A Semiparametric Model

Suppose that for ϑ ∈ Θ the probability measure Qϑ(·) has Lebesgue-density qϑ. We
suppose that the density f of the rv (X, Y ) exists on a strip [x−ε0, x+ε0]×R

m(⊂
R

d × R
m) and that it is a member of the following class of functions:

F(C1, C2)

:=
{

f : [x − ε0, x + ε0] × R
m → [0,∞) such that 0 < gf (x)

:=
∫

f(x, y) dy ≤ C1, and for any ε ∈ (0, ε0]∣∣∣f(x + ε, y) − f(x, y)(1 + 〈ε, hf (y)〉)
∣∣∣ ≤ |ε|2rf (y)f(x, y)

for some functions hf : Rm → R
d, rf : Rm → [0,∞) satisfying∫

(|hf (y)|2 + r2
f (y))f(x, y) dy ≤ C2

}
,

where C1, C2 are fixed positive constants. Observe that the densities f ∈ F(C1,
C2) uniformly satisfy condition (3.6) with the sum of the second moments bounded
by C2.
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The class of possible distributions Q of (X, Y ), which we consider, is then
defined by

P := P(F(C1, C2), Θ)

:=
{

P |Rd+m : P has density f ∈ F(C1, C2) on [x − ε0, x + ε0]

such that the conditional density f(· | x) := f(x, ·)
/∫

f(x, y) dy

is an element of {qϑ : ϑ ∈ Θ}
}

.

Note that P(F(C1, C2), Θ) is a semiparametric family of distributions, where
the densities f ∈ F(C1, C2) form the non-parametric part, and where the k-
dimensional parametric part (we are primarily interested in) is given by Θ. As
a consequence, we index expectations, distributions etc. by Ef,ϑ,Lf,ϑ etc.

The Basic Approximation Lemma

A main tool for the solution of our estimation problem is the following extension
of Corollary 3.1.6 which follows by repeating the arguments of its derivation. By
this result, we can handle our data V1, . . . , VK(n) within a certain error bound as
being independently generated according to Qϑ, where the independent sample
size is a Poisson rv τ∗(n) with parameter n vol(Sn)gf (x); in other words, we can
handle the empirical point process Nn (which we observe) within this error bound
as the ideal Poisson process M∗

n =
∑

i≤τ ∗(n) εWi , where W1, W2, . . . are iid with
common distribution Qϑ and independent of τ∗(n), uniformly in f and ϑ.

Lemma 3.3.1. We have, for |an| → 0,

sup
P(F(C1,C2),Θ)

H(Nn, M∗
n) = O

(
vol(Sn) + (n vol(Sn))1/2|a1/d

n |2
)

.

Notice that in the preceding result the distribution of the Poisson process
M∗

n(·) =
∑

i≤τ ∗(n) εWi (·) depends only on ϑ and the real parameter gf (x) =∫
f(x, y) dy, with n vol(Sn) gf (x) being the expectation of the Poisson rv τ∗(n).

We index the distribution Lgf (x),ϑ(M∗
n) of M∗

n therefore only by gf(x) and ϑ.
By the preceding model approximation we can reduce the semiparametric

problem Lf,ϑ(Nn) with unknown f ∈ F(C1, C2) and ϑ ∈ Θ to the (k + 1)-
dimensional parametric problem

Lb,ϑ(M∗
n) = Lb,ϑ

( ∑
i≤τ ∗(n)

εWi

)
,

where τ∗(n) is a Poisson rv with expectation n vol(Sn)b, b ∈ (0, C1], W1, W2, . . .
are iid rv with distribution Qϑ and τ∗(n) and W1, W2, . . . are independent.
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The Hellinger Differentiability

We require Hellinger differentiability (cf. Section 1.3 of Groeneboom and Wellner
[181]) of the family {qϑ : ϑ ∈ Θ} of densities at any point ϑ0 ∈ Θ that is, we
require the expansion

q
1/2
ϑ (·) = q

1/2
ϑ0

(·)
(

1 + 〈ϑ − ϑ0, vϑ0 (·)〉/2 + |ϑ − ϑ0|rϑ,ϑ0 (·)
)

, (3.8)

for some measurable function vϑ0 = (v01, . . . , v0k)t, v0i being square integrable
with respect to the measure Qϑ0 , denoted by v0i ∈ L2(Qϑ0 ), i = 1, . . . , k, and
some remainder term rϑ,ϑ0 satisfying

|rϑ,ϑ0 |L2(Qϑ0 ) :=
(∫

r2
ϑ,ϑ0 (y) Qϑ0(dy)

)1/2
−→|ϑ−ϑ0|→0 0.

Hellinger differentiability is also named L2-differentiability (Witting ([463],
Section 1.8.3)) or differentiability in quadratic mean (LeCam and Yang ([309],
Section 5.2)).

Local Asymptotic Normality

Denote by M(Rm) the space of all finite point measures on R
m, endowed with

the smallest σ-field M(Rm) such that all projections M(Rm) � μ �→ μ(B), B ∈
B

m, are measurable. Define the statistical experiment En = (M(Rm), M(Rm),
{Lϑ0+tδn(M∗

n) : t ∈ Θn}), where δn = (n vol(Sn))−1/2 and Θn = {t ∈ R
k :

ϑ0 + tδn ∈ Θ}. Throughout the rest we suppose that n vol(Sn) →∞ as n →∞.
It is well known that condition (3.8) implies local asymptotic normality

(LAN) of the statistical experiments (Rm,Bm, {Qϑ0+tn−1/2 : t ∈ Θn}) (cf. Chap-
ter 5 and Section 6.2 of LeCam and Yang [309]). The following result is adopted
from Falk and Marohn [142].

Theorem 3.3.2 (LAN of En). Fix b > 0. Under condition (3.8) we have with
bn = b + o(δn) and ϑn = ϑ0 + tδn,

dLbn,ϑn(M∗
n)

dLb,ϑ0 (M∗
n)

(·) = exp
(
〈t, Zn,ϑ0(·)〉b,ϑ0 −

1
2
|t|2b,ϑ0 + Rn,ϑ0,t(·)

)
with central sequence Zn,ϑ0 : M(R) → R

k given by

Zn,ϑ0(μ) = (δnμ(Rm))−1Γ−1(ϑ0)
∫

vϑ0 dμ

and Rn,ϑ0,t → 0 in Lb,ϑ0 (M∗
n)-probability, where 〈s, t〉b,ϑ0 := s′b Γ(ϑ0)t, s, t ∈ R

k,
and the k × k-matrix Γ(ϑ0) := (

∫
v0iv0j dQϑ0)i,j∈{1,...,k} is assumed to be positive

definite.
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The preceding result shows in particular that under alternatives of the form
bn = b + o(δn), ϑn = ϑ0 + t δn, the central sequence Zn,ϑ0 does not depend on the
nuisance parameter b, which was the value of the marginal density of X at x. If
we allow the rate bn = b + O(δn) instead, then LAN of (En)n still holds, but the
central sequence depends on the nuisance parameter b, which cannot be estimated
without affecting the asymptotics (see Falk and Marohn [142] for details).

The Hájek-LeCam Convolution Theorem

We recall the famous convolution theorem of Hájek-LeCam (see, for example,
Section 8.4 in Pfanzagl [367]). Suppose that condition (3.8) holds for ϑ0 ∈ Θ and
that Tn(M∗

n) is an asymptotically δn-regular sequence of estimators in ϑ0 based
on M∗

n that is,

δ−1
n (Tn(M∗

n) − ϑ0 − tδn) →D P for all t ∈ R
k

under ϑ0 + tδn for some probability measure P on R
k, where →D denotes con-

vergence in distribution. Then there exists a probability measure H on R
k such

that
P = H ∗ N

(
0, b−1Γ−1(ϑ0)

)
,

where N(0, b−1Γ−1(ϑ0)) with mean vector 0 and covariance matrix b−1Γ−1(ϑ0) is
the standard normal distribution on (Rk, 〈·, ·〉b,ϑ0 ), and ∗ denotes convolution.

Asymptotically Efficient Estimation

In view of this convolution theorem, a δn-regular sequence of estimators Tn(M∗
n)

is called asymptotically efficient in ϑ0 if

δ−1
n (Tn(M∗

n) − ϑ0) →D N
(

0, b−1Γ−1(ϑ0)
)

under ϑ0.
By Theorem 3.3.2 we know that Zn,ϑ0 is central and hence,

δnZn,ϑ0(M∗
n) + ϑ0 = τ∗(n)−1Γ−1(ϑ0)

∑
i≤τ ∗(n)

vϑ0 (Wi) + ϑ0

is asymptotically efficient in ϑ0 for each b > 0. Note that this is true however only
under the condition bn = b+o(δn) in which case Zn,ϑ0 is central. If we replace now
the unknown underlying parameter ϑ0 by any δ−1

n -consistent estimator ϑ̂n(M∗
n) of

ϑ0 that is, δ−1
n (ϑ̂n(M∗

n) − ϑ0) is stochastically bounded under ϑ0, we obtain that

κ̂n(M∗
n) := δnZn,ϑ̂n(M∗

n)(M
∗
n) + ϑ̂n(M∗

n)
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is asymptotically efficient in ϑ0, whenever

sup
|ϑ0−ϑ|≤Kδn

∣∣∣δnZn,ϑ0(M∗
n) + ϑ0 − δnZn,ϑ(M∗

n) − ϑ
∣∣∣ = oP (δn) (3.9)

under ϑ0 (and b) for any K > 0.
Denote by F = Fϑ0 the df of Qϑ0 and by Fl(t) := l−1 ∑

i≤l εWi ((−∞, t]),
t ∈ R

m, the empirical df pertaining to an iid sample W1 , . . . , Wl with common
distribution Qϑ0 . Using conditioning techniques, elementary calculations show that
condition (3.9) is satisfied, if the function ϑ → Γ(ϑ) is continuous at ϑ0 and the
following two conditions hold:

sup
|ϑ0−ϑ|≤Kl−1/2

∣∣∣l1/2
∫

(vϑ0 (s) − vϑ(s))(Fl − F ) (ds)
∣∣∣ = oP (1) (3.10)

as l →∞ for any K > 0 and(∫
vϑ(s) F (ds) + Γ(ϑ0)(ϑ − ϑ0)

)/
|ϑ − ϑ0| −→|ϑ−ϑ0|→0 0. (3.11)

Note that
√

n-consistency of an estimator sequence ϑn(W1, . . . , Wn) of ϑ0 im-
plies δ−1

n -consistency of ϑ̂n(M∗
n) = ϑ̂τ ∗(n)(W1, . . . , Wτ ∗(n)). We remark that under

the present assumptions
√

n-consistent estimators actually exist (cf. LeCam [308],
Proposition 1, p. 608).

Exponential Families

In the following we discuss one standard family {Qϑ : ϑ ∈ Θ} (of possible condi-
tional distributions) which satisfies conditions (3.8) and (3.9). Further examples
can easily be constructed as well.

Example 3.3.3. Let {Qϑ : ϑ ∈ Θ}, Θ ⊂ Θ∗ open, be a k-parametric exponential
family of probability measures on R with natural parameter space Θ∗ ⊂ R

k, i.e.,

qϑ(x) = dQϑ

dν
(x) = exp(〈ϑ, T (x)〉 − K(ϑ)), x ∈ R,

for some σ-finite measure ν on R and some measurable map T = (T1, . . . , Tk) :
R → R

k. The functions {1, T1, . . . , Tk} are supposed to be linear independent on
the complement of each ν-null set and K(ϑ) := log{∫ exp(〈ϑ, T (x)〉) ν(dx)}. It
is well known that the function ϑ → EϑT is analytic in the interior of Θ∗. From
Theorem 1.194 in Witting [463] we conclude that for ϑ0 ∈ Θ∗ the family {Qϑ} is
Hellinger-differentiable at ϑ0 with derivative

vϑ0 (x) = ∇ log qϑ0 (x) = T (x) − Eϑ0 T
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where ∇ = ( ∂
∂ϑi

)i=1,...,k denotes the nabla-operator. In this case we get Γ(ϑ0) =
Covϑ0 T and condition (3.11) is implied by

EϑT − Eϑ0 T − ∇Eϑ0 T (ϑ− ϑ0)
|ϑ − ϑ0| → 0

for ϑ → ϑ0 and ∇Eϑ0 T = Covϑ0 T . Note that Covϑ0 T is positive definite by the
linear independence of {1, T1, . . . , Tk} (Witting [463, Theorem 1.153]). Condition
(3.10) trivially holds since the integrand is independent of s.

Efficient Estimation Based on M∗
n

We can rewrite κ̂n(M∗
n) in the form

κ̂(M∗
n) = (M∗

n(R))−1Γ−1(T̂ (M∗
n))

∫
vT̂ (M∗

n)dM∗
n + T̂ (M∗

n),

with T̂ : M(Rm) → R
k given by

T̂ (μ) = ϑ̂μ(Rm)(w1, . . . , wμ(Rm))

if μ =
∑

i≤μ(Rm) εwi is an atomization of μ.
The preceding considerations are summarized in the following result with

Poisson process M∗
n =

∑
i≤τ ∗(n) εWi .

Theorem 3.3.4. Fix b > 0 and suppose that the family {Qϑ : ϑ ∈ Θ} satisfies
conditions (3.8) and (3.9) for any ϑ0 ∈ Θ(⊂ R

k). Let ϑ̂n = ϑ̂n(W1, . . . , Wn) be a√
n-consistent estimator of each ϑ0 and put T̂ (M∗

n) := ϑ̂τ ∗(n)(W1, . . . , Wτ ∗(n)). If
bn = b + o(δn), then

κ̂(M∗
n) = (M∗

n(Rm))−1Γ−1(T̂ (M∗
n))

∫
vT̂ (M∗

n)dM∗
n + T̂ (M∗

n)

= τ∗(n)−1Γ−1(T̂ (M∗
n))

∑
i≤τ ∗(n)

vT̂ (M∗
n)(Wi) + T̂ (M∗

n)

is an asymptotically efficient estimator that is, asymptotically efficient in ϑ0 for
all ϑ0 ∈ Θ.

Regular Paths

By means of Lemma 3.3.1 and the preceding result we can now establish asymptotic
efficiency of an estimator κ̂(Nn) of ϑ0 along regular paths in P(F(C1, C2), Θ).

Definition 3.3.5. A path λ → Pϑ0+λt ∈ P(F(C1, C2), Θ), t ∈ R
k, λ ∈ (−ε, ε) for

some ε > 0, is regular in ϑ0, if the corresponding marginal densities of X satisfy
|gϑ0+λt(x) − gϑ0(x)| = o(λ) for λ → 0.
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Efficient Estimation Based on Nn

Now we can state our main result.

Theorem 3.3.6. Suppose that the family {Qϑ : ϑ ∈ Θ} satisfies conditions (3.8)
and (3.9) for any ϑ0 ∈ Θ. Let vol(Sn) → 0, |an| → 0, n vol(Sn)|an|4/d → 0 and
n vol(Sn) →∞ as n →∞. Then

κ̂(Nn) := (Nn(Rm))−1Γ−1(T̂ (Nn))
∫

vT̂ (Nn) dNn + T̂ (Nn)

is asymptotically efficient in the sense that

δ−1
n (κ̂(Nn) − ϑ0 − tδn) →D N

(
0, Γ−1(ϑ0)/gϑ0(x)

)
under regular paths Pϑ0+tδn in P, whereas for any other estimator sequence Tn(Nn)
of ϑ0 based on Nn, which is asymptotically δn-regular along regular paths Pϑ0+tδn ,
we have

δ−1
n (Tn(Nn) − ϑ0 − tδn) →D H ∗ N

(
0, Γ−1(ϑ0)/gϑ0(x)

)
for some probability measure H on R

k.

Proof. By Lemma 3.3.1 we can replace Nn by M∗
n and hence, the assertion follows

from the asymptotic efficiency of κ̂(M∗
n) established in Theorem 3.3.4 together

with elementary computations.

Remark. If we choose equal bin widths an1 = · · · = and = c > 0 for the data win-
dow Sn = [x− a

1/d
n /2, x + a

1/d
n /2], then we obtain vol(Sn) = c, n vol(Sn)|an|4/d =

O(nc(d+4)/d) and δn = (nc)−1/2. The choice c = cn = l2(n)n−d/(d+4) with l(n) →
0, as n → ∞, results in δn of minimum order O(l(n)−1 n−2/(d+4)). The factor
l(n)−1, which may converge to infinity at an arbitrarily slow rate, actually ensures
that the approximation of Nn by M∗

n is close enough, so that asymptotically the
non-parametric part of the problem of the estimation of ϑ0 that is, the joint density
of (X, Y ), is suppressed. In particular, it ensures the asymptotically unbiasedness
of the optimal estimator sequence κ̂(Nn).

3.4 Extension to Several Points
In this section we will generalize the Poisson process approach, which we developed
in Section 3.1 for a single point x ∈ R

d, to a set {x1, . . . , xr} of several points,
where r = r(n) may increase as n increases.

Consider now only those observations Yi ∈ R
m among (X1, Y1), . . . , (Xn, Yn),

with Xi falling into one of the cubes Sν ⊂ R
d with center xν , ν = 1, . . . , r that is,

Xi ∈
⋃
ν≤r

Sν ,
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where
Sν := Sνn = [xν − a1/d

νn /2, xν + a1/d
νn /2],

xν = (xν1, . . . , xνd) ∈ R
d, aνn = (aνn1, . . . , aνnd) ∈ (0,∞)d, ν = 1, . . . , r.

We suppose in the sequel that the cubes Sν , 1 ≤ ν ≤ r, are pairwise disjoint
and that the marginal density of X , say g, is continuous at each xν with g(xν) > 0.

Vectors of Processes

Our data Yi with Xi ∈
⋃

ν≤r Sν can be described by the vector (Nn1, . . . , Nnr) of
truncated empirical point processes on R

m, where

Nnν(B) :=
∑
i≤n

εYi (B)εXi (Sν), B ∈ B
m, ν = 1, . . . , r.

The rv (Nn1, . . . , Nnr) will be approximated with respect to Hellinger dis-
tance by the vector (M∗

n1, . . . , M∗
nr) of independent Poisson processes, where

M∗
nν :=

∑
i≤τ ∗

ν (n)

εWνi ;

Wν1, Wν2, . . . are independent rv on R
m with common df F (· | xν), τ∗

ν (n) is a
Poisson rv with parameter n vol(Sν)g(xν) and τ∗

ν (n), Wν1, Wν2, . . . are mutually
independent.

The Third-Order Poisson Approximation

The following result extends Corollary 3.1.6 for the third-order Poisson process
approximation at a single point, to the simultaneous approximation at several
points.

Theorem 3.4.1. We suppose that the rv (X, Y ) has a joint density f on the
strips [xν − ε0, xν + ε0] ×R

m, ν = 1, . . . , r, for some ε0 ∈ (0,∞)d, which satisfies
uniformly for ε ∈ (−ε0, ε0)(⊂ R

d), y ∈ R
m and ν = 1, . . . , r the expansion

f(xν + ε, y) = f(xν , y)
(

1 + 〈ε, hν(y)〉 + O(|ε|2rν(y))
)

, (3.12)

where max1≤ν≤r

∫
(|hν(y)|2 + |rν(y)|2)f(xν , y) dy < ∞. If max1≤ν≤r |aνn| → 0 as

n → ∞, we have

H
(

(Nnν)ν≤r, (M∗
nν)ν≤r

)
= O

(∑
ν≤r

vol(Sν) +
(∑

ν≤r

n vol(Sν)|a1/d
νn |4

)1/2)
.

If we chose equal bin widths a
1/d
νn1 = · · · = a

1/d
νnd = c1/d for ν = 1, . . . , r,

then the preceding bound is O
(
rc + (rnc(d+4)/d)1/2), uniformly for c > 0 and any

n ∈ N as the Hellinger distance is in general bounded by
√

2.
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Proof. Put for B ∈ B
d+m,

Ñn(B) :=
∑
i≤n

εXi×Yi

(
B ∩

( ⋃
ν≤r

Sν × R
m
))

=
∑
ν≤r

∑
i≤n

εXi×Yi (B ∩ (Sν × R
m))

=
∑
ν≤r

Ñn(B ∩ (Sν × R
m)) =:

∑
ν≤r

Ñnν(B).

Observe that the processes Nnν can be derived from Ñnν by the projection

Nnν(·) = Ñnν(Rd × ·), ν = 1, . . . , r.

By Theorem 1.3.1 we can write Ñn =
∑

i≤K(n) εVi , where V1, V2, . . . are iid rv
with common distribution P (X × Y ∈ ·|X ∈ ⋃

ν≤r Sν), and K(n) is a B(n, pn)
distributed rv, which is independent of V1, V2, . . . , with

pn = P
(

X ∈
⋃
ν≤r

Sν

)
=

∑
ν≤r

P (X ∈ Sν) = O
(∑

ν≤r

vol(Sν)
)

.

Define now by

Ñ∗
n :=

∑
i≤τ(n)

εVi =
∑
ν≤r

∑
i≤τ(n)

εVi(· ∩ (Sν × R
m))

=
∑
ν≤r

Ñ∗
n(· ∩ (Sν × R

m)) =:
∑
ν≤r

Ñ∗
nν

the first-order Poisson approximation of Ñn, where τ(n) is a Poisson rv with
parameter npn and also independent of V1, V2, . . .

Observe that by Lemma 1.2.1 and 1.2.2,

H
(

(Ñnν)ν≤r, (Ñ∗
nν)ν≤r

)
= H(Ñn, Ñ∗

n) ≤ 31/2pn.

Put further for A ∈ B
m,

N∗
n(A) := Ñ∗

n(Rd × A) =
∑
ν≤r

Ñ∗
nν(Rd × A) =:

∑
ν≤r

N∗
nν(A).

Then N∗
nν is the first-order Poisson approximation of Nnν , ν = 1, . . . , r. Note

that N∗
n1, . . . , N∗

nr as well as Ñn1, . . . , Ñ∗
nr are sequences of independent Poisson

processes, since S1, . . . , Sr are disjoint (see Section 1.1.2 in Reiss [387]).
We, consequently, have

H((Nnν)ν≤r, (M∗
nν)ν≤r)

≤ H((Nnν)ν≤r, (N∗
nν)ν≤r) + H((N∗

nν)ν≤r, (M∗
nν)ν≤r)
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≤ H((Ñnν)ν≤r, (Ñ∗
nν)ν≤r) + H((N∗

nν)ν≤r, (M∗
nν)ν≤r)

= O
(∑

ν≤r

vol(Sν)
)

+
(∑

ν≤r

H2(N∗
nν , M∗

nν)
)1/2

= O
(∑

ν≤r

vol(Sν) +
(∑

ν≤r

n vol(Sν)|a1/d
n |4

)1/2)
by the arguments in the proof of Theorem 3.1.3 and (3.5).

The First-Order Poisson Approximation

The preceding proof entails the following extension of the first-order Poisson ap-
proximation in Theorem 3.1.2 to several points; we do not need the regularity
condition (3.12).

Theorem 3.4.2. We have, for disjoint Sν , ν = 1, . . . , r,

H((Nnν)ν≤r, (N∗
nν)ν≤r) ≤ 31/2

∑
ν≤r

P (X ∈ Sν),

where N∗
nν , ν = 1, . . . , r are the (independent) first-order Poisson approximations

of Nnν , ν = 1, . . . , r.

Estimation Over Compact Intervals

Suppose now for the sake of simplicity that the rv (X, Y ) is R2-valued. The preced-
ing result can be utilized to derive the limiting distribution of the maximum error
of an interpolated version of the kernel estimator ϑ̂n(xν) := T (F̂n(· | Sνn)), ν =
1, . . . , r, of ϑ(x) := T (F (· | x)) for x ranging over a compact interval [a, b] in R. For
the definition of the local conditional empirical df F̂n(· | Sνn) we refer to Section
3.2.

Choose a grid of r + 1 equidistant points x0 = a < x1 < · · · < xr = b with
r = rn →∞ as n →∞ and define by interpolation the polygons

ϑ̂i
n(x) := ϑ̂n(xj) + x − xj

xj+1 − xj
(ϑ̂n(xj+1) − ϑ̂n(xj)), xj ≤ x ≤ xj+1,

and

ϑi(x) := ϑ(xj) + x − xj

xj+1 − xj
(ϑ(xj+1) − ϑ(xj)), xj ≤ x ≤ xj+1,

where we suppose that ϑ̂n(xν) = T (F̂n(· | xν)), ν = 0, . . . , r, is defined with equal
bin width aνn = cn of order εn/r, εn → 0 as n →∞.
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If we suppose that ϑ(x) = T (F (· | x)) is twice differentiable on [a, b] with
bounded second derivative, then a Taylor expansion implies

sup
x∈[a,b]

|ϑ(x) − ϑi
n(x)| = O(1/r2).

As a consequence, we obtain

sup
x∈[a,b]

|ϑ̂i
n(x) − ϑ(x)| = sup

x∈[a,b]
|ϑ̂i

n(x) − ϑi
n(x)| + O(1/r2

n)

= max
0≤ν≤r

|ϑ̂n(xν) − ϑ(xν)| + O(1/r2
n),

since ϑ̂i
n − ϑi

n is again a polygon, which therefore attains its maximum and mini-
mum on [a, b] at the set {x0, . . . , xr} of grid points.

If we suppose that X has a continuous density on [a, b], then Theorem 3.4.2
implies that within the error bound

∑
0≤ν≤r P (X ∈ Sν) = O(rcn) = O(εn) =

o(1), the rv ϑ̂n(xν) − ϑ(xν), ν = 0, . . . , r, may be replaced by independent rv
ξνn, ν = 0, . . . , r, say.

The problem of computing the limiting distribution of the maximum error
supx∈[a,b] |ϑ̂i

n(x) − ϑ(x)| therefore reduces to the problem of computing the lim-
iting distribution of the maximum in a set of independent rv, which links the
present problem to extreme value theory. With the particular choices of rn =
O((n/ log(n))1/5) and cn = εn(log(n)/n)1/5, εn log(n) → ∞ and εn log(n)2/5 → 0
as n → ∞, it turns out that supx∈[a,b] |ϑ̂i

n(x) − ϑ(x)| = OP ((log(n)/n)2/5ε
−1/2
n ),

(see Theorem 4.2 in Falk [130]), which is up to the factor ε
−1/2
n the optimal global

achievable rate of convergence in case of the mean value functional (Stone [428],
[429] being twice differentiable with bounded second derivative (for related results
we refer to Nussbaum [356] and, for the quantile functional, to Truong [447] and
Chaudhuri [63]. Notice however that in Theorem 4.2 in Falk [130] actually the
limiting distribution of supx∈[a,b] |ϑ̂i

n − ϑ(x)| is computed.

3.5 A Nearest Neighbor Alternative
Let again (X1, Y1), . . . , (Xn, Yn) be independent replicates of the rv (X, Y ) with
values in R

d+m. As pointed out at the beginning of this chapter, non-parametric
estimators of regression functionals T (F (· | x)) have to be based on those values
among Y1, . . . , Yn, whose first coordinate is within a small distance (in other words,
bin width) of x. There are essentially two different ways of selecting the Y -values.

(a) The bin width is non-random and, hence, the number of selected Y -values
is random. This has been our approach in the preceding sections.

(b) Take those Y , whose X-values are the k closest to x. This is the nearest neigh-
bor method. Now the number of selected Y -values is non-random whereas the
bin width is random.
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Nearest neighbor estimators in regression analysis were first studied by Royall
[402] and Cover [78]. Their consistency properties under very weak conditions were
established by Stone [426], [427], Devroye [109] and Cheng [66]; weak convergence
results were proved by Mack [316], Stute [431], Bhattacharya and Mack [42] and
Bhattacharya and Gangopadhyay [41]. For a discussion of nearest neighbor esti-
mators we refer also to Section 7.4 of the book by Eubank [124] and to Section 3.2
of the one by Härdle [205].

In the present section we will focus on the second point (b) by considering a
fixed sample size k = k(n) of observations among Y1, . . . , Yn with X-values close
to x. In analogy to the POT process approximation in Theorem 3.1.3, we will
establish in Theorem 3.5.2 a bound for the Hellinger distance between these k(n)
observations among Y1, . . . , Yn coming from the nearest neighbor approach and
k(n) independent rv from the ideal df F (· | x). The expansion (3.6) of the joint
density f of (X, Y ) will again be a crucial condition.

Denote by
Ri := |Xi − x|, 1 ≤ i ≤ n,

the (Euclidean) distances of Xi from x. Obviously, R1, . . . , Rn are iid replicates of
the rv R := |X − x| with values in [0,∞). The corresponding order statistics are
R1:n, . . . , Rn:n. By B(x, r) := {z ∈ R

d : |z − x| < r} we denote the open ball in R
d

with center x.
We assume that R has a continuous df; this condition is indispensable in

the following lemma. Then, there will be exactly k nearest neighbors among
X1, . . . , Xn with probability 1 that fall into B(x, Rk+1:n), with corresponding Y -
values V1, . . . , Vk, say, in the original order of their outcome. Denote, for r > 0,
by

Pr = P (Y ∈ · | X ∈ B(x, r))
the conditional distribution of Y given X ∈ B(x, r).

The Basic Representation Lemma

The following lemma is statistical folklore (see, for example, Lemma 1 in Bhat-
tacharya [40]). For a rigorous and appealing proof of that result we refer to Kauf-
mann and Reiss [284], where the general case of conditioning on g-order statistics
is dealt with.
Lemma 3.5.1. Assume that R has a continuous df. Then the rv V1, . . . , Vk are
iid, conditional on Rk+1:n. Precisely, we have for r > 0 and k ∈ {1, . . . , n}, n ∈ N:

P
(
(V1, . . . , Vk) ∈ · | Rk+1:n = r

)
= P k

r ,

where P k
r denotes the k-fold product of Pr.

According to Lemma 3.5.1, the unconditional joint distribution of V1, . . . , Vk

may be represented by P k
r and the distribution L(Rk+1:n) of Rk+1:n as

P ((V1, . . . , Vk) ∈ ·) =
∫

P k
r (·)L(Rk+1:n)(dr).
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An Approximation Result

The probability measure Pr = P
(
Y ∈ · | X ∈ B(x, r)

)
approximates for small

r > 0 the conditional distribution of Y given X = x that is,

P (· | x) := P (Y ∈ · | X = x),

with df F (· | x). We, therefore, expect the approximation

P ((V1, . . . , Vk) ∈ ·) =
∫

P k
r (·)L(Rk+1:n)(dr)

∼
∫

P (· | x)k(·)L(Rk+1:n)(dr) = P (· | x)k = P ((W1, . . . , Wk) ∈ ·),

where W1, . . . , Wk are iid rv with common df F (· | x).
In other words, we expect that the Yi-values V1, . . . , Vk pertaining to the k

nearest neighbors of x among X1, . . . , Xn, can approximately be handled like in-
dependent rv W1, . . . , Wk, equally distributed according to the target df F (· | x).
This observation corresponds to the POT process approximation of the empirical
truncated point process established in Theorem 3.1.3. We want to quantify the er-
ror of this approximation in the following by establishing a bound for the Hellinger
distance H between the distributions of (V1, . . . , Vk) and (W1, . . . , Wk).

Within this error bound, the estimation of conditional parameters ϑ(x) =
T (F (· | x)), based on V1, . . . , Vk, can therefore again be carried out within the
classical statistical framework of sequences of iid observations, but this time with
a non-random sample size k. We will exemplify this consequence in the next sec-
tion, where we establish asymptotic optimal accuracy in a certain sense of an
estimator sequence ϑ̂n(x) of ϑ(x) = T (F (· | x)), with T evaluated at the empirical
df pertaining to V1, . . . , Vk.

The smoothness condition (3.6) from Section 3.1 on the joint density of (X, Y )
turns out to be a handy condition also for the derivation of the bound established
in the following result.

Theorem 3.5.2. Under condition (3.6) and the assumption that the marginal
density of X is positive at x, we have, uniformly for n ∈ N and k ∈ {1, . . . , n},

H((V1, . . . , Vk), (W1, . . . , Wk)) = O(k1/2(k/n)2/d).

This result entails that any statistical procedure based on V1, . . . , Vk approx-
imately behaves like the corresponding one based on the iid vectors W1, . . . , Wk

with common df F (· | x). Within the error bound O(k1/2(k/n)2/d) (which does not
depend on the dimension m of the covariate Y but on the dimension d of X), com-
putations in regression analysis at one point may therefore be carried out within
a classical statistical framework. For an example we refer to the next section.

The preceding result parallels the bound for the Hellinger distance between
conditional empirical point processes and Poisson point processes established in
Theorem 3.1.3.
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Proof. Fix r0 > 0 small enough. Since the Hellinger distance is bounded by
√

2,
we obtain from the convexity theorem for the Hellinger distance (cf. Lemma 1.2.3)

H((V1, . . . , Vk), (W1, . . . , Wk))2

≤
∫ r0

0
H(P k

r , P k
0 )2 L(Rk+1:n)(dr) + 2P (Rk+1:n ≥ r0)

≤ k

∫ r0

0
H(Pr, P0)2 L(Rk+1:n)(dr) + 2P (Rk+1:n ≥ r0).

Hence, we only have to investigate the Hellinger distance between Pr and P0 for
r ∈ (0, r0).

The Lebesgue densities of P0 and Pr are given by

h0(y) =
f(x, y)
g(x)

, y ∈ R
m,

and

hr(y) =

∫
B(x,r) f(z, y) dz∫

B(x,r) g(z) dz
, y ∈ R

m,

respectively, where g(z) :=
∫

f(z, w) dw denotes the marginal density of X for z
near x. By elementary computations we deduce from condition (3.6) the expansion

h1/2
r (y) = h

1/2
0 (y)

(
1 + O

(
r2R(y)

))
(3.13)

uniformly for y ∈ R
m and 0 < r ≤ r0, where∫

R2(y)f(x, y) dy < ∞.

We, consequently, obtain
H(Pr, P0) = O(r2),

uniformly for 0 < r < r0, and thus,

H((V1, . . . , Vk), (W1, . . . , Wk))2

= O
(

k

∫ r0

0
r4L(Rk+1:n)(dr) + P (Rk+1:n ≥ r0)

)
.

By repeating those arguments which lead to expansion (3.13), it is easy to see that

F (r) := P (R ≤ r) = P (X ∈ B(x, r)) = volume (B(x, r))(1 + O(r2))
= c(d)rd(1 + O(r2)), 0 < r < r0,
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where c(d) denotes the volume of the unit ball in R
d. Thus, by Fubinis’s theorem

and the quantile transformation technique (see the proof of Theorem 2.2.2)∫ r0

0
r4 L(Rk+1:n)(dr) = E(R4

k+1:n · 1[0,r0](Rk+1:n))

=
∫ r0

0
P (R4

k+1:n > r) dr

=
∫ r0

0
P (Rk+1:n > r1/4) dr

=
∫ r0

0
P (F −1(Uk+1:n) > r1/4) dr

=
∫ r0

0
P (Uk+1:n > F (r1/4)) dr

=
∫ r0

0
P (Uk+1:n > c(d)rd/4(1 + O(r1/2))) dr

=
∫ r0

0
P (U4/d

k+1:n > c(d)4/dr(1 + O(r1/2))4/d) dr

= O(E(U4/d
k+1:n)) = O(E(U4

k+1:n)1/d) = O((k/n)4/d)

uniformly for k ∈ {1, . . . , n}, n ∈ N, where U1:n ≤ . . . ≤ Un:n denote the order sta-
tistics pertaining to a sample of n independent and uniformly on (0,1) distributed
rv. The inequality E(U4/d

k+1:n) ≤ E(U4
k+1:n)1/d follows from Jensen’s inequality,

and the bound E(U4
k+1:n) = O((k/n)4) is immediate from formula (1.7.4) in Reiss

[385]. From the exponential bound for P (Uk+1:n ≥ ε) given in Lemma 3.1.1 in Reiss
[385], we conclude that P (Rk+1:n ≥ r0) = P (F −1(Uk+1:n) ≥ r0) = P (Uk+1:n ≥
F (r0)) = O((k/n)4) uniformly for k ∈ {1, . . . , n}, n ∈ N. This concludes the proof
of Theorem 3.5.2.

3.6 Application: Optimal Accuracy of Estimators
In this section we will apply Theorem 3.5.2 to establish asymptotic optimal ac-
curacy of the estimator sequence ϑ̂n(x) of a general regression functional ϑ(x) =
T (F (· | x)), where ϑ̂n(x) is again simply the empirical counterpart of ϑ(x) with
F (· | x) replaced by a sample df.

Such optimal rates of convergence have been established for the mean value
functional T1(F ) =

∫
t F (dt) by Stone ([428], [429]), for smooth functionals of

the regression mean by Goldstein and Messer [177], and for the median func-
tional T2(F ) = F −1(1/2) and, more generally, quantile functional by Truong [447]
and Chaudhuri [63]. These results were established for the kernel estimator (with
uniform kernel) and non-random bin width, leading to a random number of obser-
vations V1, V2, . . . Nearest neighbor competitors, based on a non-random number
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V1, . . . , Vk, also achieve these optimal rates as shown by Bhattacharya and Mack
[42] for T1 and Bhattacharya and Gangopadhyay [41] for T2, among others.

The Model Bias

Notice that the bound k1/2(k/n)2/d in Theorem 3.5.2 does not depend on the
dimension m of Y and that it converges to zero iff k = k(n) satisfies k/n4/(d+4)

→n→∞ 0. If we choose k(n) therefore of order cn4/(d+4) (independent of dimension
m), the model error O(k1/2(k/n)2/d) becomes O(c(d+4)/(2d)), uniformly for c > 0.
This term O(c(d+4)/(2d)) represents the non-vanishing bias for our model approxi-
mation L(W1, . . . , Wk) of L(V1, . . . , Vk). It can be regarded as an upper bound for
the usually non-vanishing bias of any optimally tuned estimator of T (F (· | x)),
based on V1, . . . , Vk, for an arbitrary functional T .

Local Empirical Distribution Function

Denote by
Fnk(t|x) := k−1

∑
i≤k

1(−∞,t](Vi), t ∈ R
m,

the (local) empirical df pertaining to the data V1, . . . , Vk from Y1, . . . , Yn, which
are induced by the k nearest neighbors of x among X1, . . . , Xn. The natural non-
parametric estimate of ϑ(x) = T (F (· | x)) is then the nearest neighbor (NN)
estimate

ϑ̂nk(x) := T (Fnk(· | x)),

which is completely analogous to the kernel estimate defined in Section 3.2 but with
a random sample size. Again we assume implicitly that T : F → R

l is a functional
on a subspace F of the class of all df on R

m containing F (· | x), Fnk(· | x), k ∈ N.
In case of T1(F ) =

∫
t F (dt) with l = 1, the estimator ϑ̂nk(x) = T1(Fnk(· | x))

= k−1 ∑
i≤k Vi is the local sample average; in case T2(F ) = F −1(q), the estimator

ϑ̂nk(x) is the local sample quantile Fnk(· | x)−1(q), q ∈ (0, 1).

Asymptotic Normality of NN-Estimates

Theorem 3.5.2 entails that we can approximate the distribution of ϑ̂nk(x) by that
of

ϑ̂k(x) := T (Fk(· | x)),

where
Fk(t | x) := k−1

∑
i≤k

1(−∞,t](Wi), t ∈ R
m,

is the empirical df pertaining to W1, . . . , Wk, being independent rv with common
df F (· | x). We suppose implicitly that Fk(· | x), k ∈ N, is also in the domain
of the functional T . The following result, which is the nearest neighbor version of
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Theorem 3.2.1, is immediate from Theorem 3.5.2. Note that this result is true for
arbitrary dimension m of Y .

Proposition 3.6.1. Suppose that ϑ̂k(x) − ϑ(x) = T (Fk(· | x)) − T (F (· | x)) is
asymptotically normal that is,

sup
t∈Rl

∣∣∣P(
ak

(
T (Fk(· | x)) − T (F (· | x))

)
≤ t

)
− N(μ, Σ)

(
(−∞, t]

)∣∣∣
=: R(k) −→k→∞ 0 (3.14)

for some norming sequence 0 < ak → ∞ as k → ∞, where N(μ, Σ) denotes the
normal distribution on B

l with mean vector μ and covariance matrix Σ.
If condition (3.6) is satisfied and the marginal density of X is positive at

x, then asymptotic normality of ϑ̂k(x) − ϑ(x) carries over to ϑ̂nk(x) − ϑ(x) =
T (Fnk(· | x)) − T (F (· | x)) that is,

sup
t∈Rl

∣∣∣P(
ak(ϑ̂nk(x) − ϑ(x)) ≤ t

)
− N(μ, Σ)

(
(−∞, t]

)∣∣∣
= O

(
k1/2(k/n)2/d + R(k)

)
.

Under suitable regularity conditions on the conditional df F (· | x), condition
(3.14) is satisfied for a large class of statistical functionals including M, L and
R estimators, with ak = k1/2 by the corresponding multivariate central limit
theorems. In these cases we have typically the bound R(k) = O(k−1/2) (cf. the
monograph by Serfling [408]).

Optimal Accuracy

If ak can be chosen as k1/2, the choice for k = k(n) of order n4/(d+4) roughly
entails that the NN-estimator ϑ̂nk(x) = T (Fnk(· | x)) of ϑ(x) = T (F (· | x))
has accuracy of order n−2/(d+4) for a general functional T , independent of the
dimension m of Y . As mentioned above, this is the well-known optimal (local)
rate of convergence for the conditional mean as well as for the conditional median,
both in dimensions m = 1 (and l = 1) for a twice continuously differentiable target
function ϑ(x), roughly. These considerations indicate in particular that the bound
O(k1/2(k/n)2/d) in Theorem 3.5.2 is sharp. The following result is immediate from
Proposition 3.6.1.

Proposition 3.6.2. Suppose that conditions (3.6) and (3.14) are satisfied with
ak = k1/2, and that the marginal density of X is positive at x. Choose k = k(n)
∼ c1n4/(d+4). Then we have, uniformly for c1, c2 > 0,

lim sup
n→∞

P
(

c
1/2
1 n2/(d+4)|ϑ̂nk(x) − ϑ(x)| > c2

)
= O(c(d+4)/(2d)

1 + cr
2)

for any r > 0.
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Note that if ak has to be chosen of order smaller than k1/2 in condition
(3.14), then Proposition 3.6.1 entails that ϑ̂nk(x) = T (Fnk(· | x)) with k of order
n4/(d+4) has asymptotic accuracy of order greater than n−2/(d+4); if ak has to be
chosen of order greater than k1/2 it is vice versa. This indicates that the rate of
order k1/2 for ak in condition (3.14) is necessary and sufficient for the estimator
ϑ̂nk(x) to achieve the (optimal) local accuracy of order n−2/(d+4).



Part II

The IID Case:
Multivariate Extremes



Chapter 4

Basic Theory of
Multivariate Maxima

In this chapter, we study the limiting distributions of componentwise defined max-
ima of iid d-variate rv. Such distributions are again max-stable as in the univariate
case. Some technical results and first examples of max-stable df are collected in
Section 4.1. In Section 4.2 and 4.3, we describe representations of max-stable df
such as the de Haan-Resnick and the Pickands representation. Of special interest
for the subsequent chapters will be the Pickands dependence function in Section
4.3 and the D-norm, which will be introduced in Section 4.4.

4.1 Limiting Distributions of
Multivariate Maxima

Subsequently, arithmetic operations and order relations are meant componentwise;
that is, e.g., a + b = (a1 + b1, . . . , ad + bd) for vectors a = (a1, . . . , ad) and b =
(b1, . . . , bd). An interval (a, b] is defined by Xj≤d(aj , bj].

Recall that the df F (x) = Q(−∞, x] of a probability measure Q has the
following properties:

(a) F is right-continuous: F (xn) ↓ F (x0) if xn ↓ x0;

(b) F is normed: F (xn) ↑ 1 if xnj ↑ ∞, j = 1, . . . , d, and F (xn) ↓ 0 if xn ≥ xn+1
and xnj ↓ −∞ for some j ∈ {1, . . . , d};

(c) F is Δ-monotone: For a ≤ b,

Δb
aF = Q(a, b]

=
∑

m∈{0,1}d

(−1)
(

d−
∑

j≤d
mj

)
F

(
bm1

1 a1−m1
1 , . . . , bmd

d a1−md

d

) ≥ 0.

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,  
DOI 10.1007/978-3-0348-0009-9_4, © Springer Basel AG 2011 
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Conversely, every function F , satisfying conditions (a)-(c), is the df of a probability
measure Q. Usually, conditions (a) and (b) can be verified in a straightforward way.
The Δ-monotonicity holds if, e.g., F is the pointwise limit of a sequence of df.

Let Xi = (Xi1, . . . , Xid), i ≤ n, be iid d-variate rv with common df F . The
d-variate maximum is defined by

max
i≤n

Xi :=
(

max
i≤n

Xi1, . . . , max
i≤n

Xid

)
.

Limiting Distributions, Max-Stability

It is an easy exercise to prove that

P
(

max
i≤n

Xi ≤ x
)

= F n(x).

Hence, the well-known formula for the df of a univariate maximum still holds in
the multivariate framework. Limiting df are again called extreme value df (EVD).
Such df can be characterized by the max-stability.

Again, a df G is max-stable if for each n ∈ N,

Gn(dn + cnx) = G(x)

for certain vectors cn > 0 and dn. If G is max-stable, then the marginal df also
possess this property. This yields that a multivariate max-stable df is continu-
ous (cf. Reiss [385], Lemma 2.2.6). Moreover, the components of the normalizing
vectors are the normalizing constants in the univariate case.

If the Gj are univariate max-stable df, then

min(G1(x1), . . . , Gd(xd))

is a max-stable df (representing the case of totally dependent rv). Moreover, for
independent rv one obtains the max-stable df∏

j≤d

Gj(xj).

One can prove that∏
j≤d

Gj(xj) ≤ G(x) ≤ min(G1(x1), . . . , Gd(xd)) (4.1)

for every max-stable df G with margins Gj , see (4.37). Note that the right-hand
side is the upper Fréchet bound which holds for every df; the proof is obvious. It
follows that G(x) > 0 if, and only if, x > α(G) := (α(G1), . . . , α(Gd)).

In the following we primarily deal with max-stable df having reverse expo-
nential margins G2,1(x) = ex, x < 0, which is the standard Weibull df with shape
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parameter α = −1. This standardization in the univariate margins can always be
achieved by means of a simple transformation: If G is max-stable with margins
Gj , j ≤ d, then

G
(
G−1

1 (G2,1(x1)), . . . , G−1
d (G2,1(xd))

)
, x < 0, (4.2)

defines a max-stable df with margins G2,1.
Example 4.1.1 (Marshall-Olkin). Let Z0, Z1, Z2 be independent standard re-
verse exponential rv; thus, P (Zi ≤ x) = ex = G2,1(x) for x < 0. For each λ ∈ (0, 1)
one obtains a bivariate max-stable df with margins G2,1 by

P

(
max

(
Zj

1 − λ
,
Z0
λ

)
≤ xj , j = 1, 2

)
= exp

(
(1 − λ)(x1 + x2) + λ min(x1, x2)

)
,

where xj ≤ 0, j = 1, 2. If λ = 0 and λ = 1, then the bivariate df represent the
cases of independent and totally dependent rv, respectively.

Because of its importance we are going to prove an extension of the foregoing
example, see also Example 4.3.4.
Lemma 4.1.2. For every m ∈ N, let Z1, Z2, . . . , Zm be iid rv with common stan-
dard reverse exponential df G2,1. Let aij > 0 for i ≤ m and j ≤ d. Then

P

(
max
i≤m

Zi

aij
≤ xj , j = 1, . . . , d

)
= exp

⎛⎝∑
i≤m

min
j≤d

aijxj

⎞⎠ , x < 0, (4.3)

thus obtaining a d-variate max-stable df with exponential margins. If, in addition,∑
i≤m

aij = 1, j ≤ d,

then the univariate margins are equal to G2,1.
Proof. Note that maxi≤m Zi/aij ≤ xj , j ≤ d, if, and only if, Zi ≤ minj≤d aijxj ,
i ≤ m; thus, (4.3) follows from the independence of Z1, . . . , Zm. The max-stability
is obvious. We see that the j-th marginal Gj is given by

Gj(x) = exp

⎛⎝⎛⎝∑
i≤m

aij

⎞⎠x

⎞⎠ , x < 0,

and, hence, the assertion concerning the univariate margins holds.

In order to obtain a max-stable df on the right-hand side of (4.3) it suffices
to assume that

∑
i≤m aij > 0 for j ≤ d. A continuation of this topic may be found

in Section 4.3.
Because

min
i≤n

Xi = max
i≤n

(−Xi),

results for minima can be easily deduced from those for maxima.



138 4. Basic Theory of Multivariate Maxima

Weak Convergence: The IID Case

Max-stable df are the limiting df of linearly normalized maxima. Recall that for a
univariate df F the convergence

n(1 − F (bn + anx)) =: nSn(x) → L(x) := − log(G(x)), x > α(G), (4.4)

as n → ∞ implies that F n(bn + anx) → G(x) as n → ∞. An extension to the
d-variate case will be formulated as an inequality.

Let X = (X1, . . . , Xd) have the df F . For each non-void K ⊂ {1, . . . , d}
define the marginal survivor function

SK(x) = P {Xk > xk, k ∈ K} . (4.5)

Applying the well-known inclusion-exclusion formula

P

⎛⎝⋃
j≤d

Aj

⎞⎠ =
∑
j≤d

(−1)j+1
∑

|K|=j

P

( ⋂
k∈K

Ak

)
(4.6)

to Aj = {Xj > xj}, one obtains the decomposition

1 − F =
∑
j≤d

(−1)j+1
∑

|K|=j

SK (4.7)

which will be crucial for the subsequent considerations. Thus, to establish the
limiting distribution of maxima we may deal with survivor functions.

Lemma 4.1.3. Let Fn be a d-variate df with univariate margins Fnj .

(a) Assume that F n
nj converges weakly to a max-stable df G0j for j ≤ d.

(b) Let Sn,K be the survivor function of Fn corresponding to (4.5). Assume that,
for each non-void K ⊂ {1, . . . , d},

n Sn,K(x) → LK(x), x > α, n →∞,

where the LK are right-continuous functions and α = (α(F0j))j≤d.

Let

G0(x) = exp

⎛⎝∑
j≤d

(−1)j
∑

|K|=j

LK(x)

⎞⎠ , x > α,

and G0(x) = 0 otherwise. Then

(i) G0 is a df with univariate margins G0j;
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(ii) for some universal constant C > 0,

|F n
n (x) − G0(x)| ≤

∑
K

|nSn,K(x) − LK(x)| + C/n, x > α,

where the summation runs over all non-void K ⊂ {1, . . . , d}.

Proof. To prove (i) apply a slight extension of (4.1). Moreover,

sup
x

|F n
n (x) − exp (−n(1 − Fn(x))| ≤ C/n

for some universal constant C > 0, and −n(1 − Fn(x)) can be replaced by∑
j≤d

(−1)j
∑

|K|=j

nSn,K

according to (4.7). Substituting nSn,K by LK , the proof of (ii) can easily be com-
pleted. For a detailed proof we refer to Section 7.2 in [385].

From Lemma 4.1.3 we know that the convergence of the functions nSn,K im-
plies the convergence of F n

n . For a converse conclusion in the multivariate frame-
work see Galambos [167], Theorem 5.3.1.

Lemma 4.1.3 was formulated in such a manner that a triangular scheme of
rv can also be dealt with. In the following example, the initial normal df depends
on n via a correlation matrix Σ(n); the limiting df HΛ of the sample maxima of a
triangular array of normal rv is max-stable, a property which does not necessarily
hold under the conditions of Lemma 4.1.3 (we refer to the discussion about max-
infinitely divisible df in the subsequent section).

Example 4.1.4 (Hüsler-Reiss). The rich structure of the family of multi-
variate normal distributions can be carried over to max-stable distributions. Let
(X1n, . . . , Xdn) be a vector of standard normal rv with df FΣ(n), where Σ(n) =
(ρij(n))i,j≤d is a non-singular correlation matrix. Let bn be the unique positive
solution of the equation x = nϕ(x), x ≥ 0, where ϕ denotes the standard normal
density. Note that b2

n ∼ 2 log(n).
Assume that((

(1 − ρij(n)) log(n)
)1/2

)
i,j≤d

→ Λ := (λij)i,j≤d , n →∞,

where λij ∈ (0,∞) for 1 ≤ i, j ≤ d with i �= j. Then

F n
Σ(n) ((bn + xj/bn)j≤d) → HΛ(x), x ∈ R

d, n →∞,

where

HΛ(x) = exp

(∑
k≤d

(−1)k
∑

1≤j1<···<jk≤d

Lj1,...,jk
(x)

)
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with
Lj1,...,jk

(x) =
∫ ∞

xjk

S

((
xji − z + 2λ2

jijk

)
i≤k−1

| Γj1,...,jk

)
e−z dz

and S (· | Γj1,...,jk
) is the survivor function of a (k − 1)-variate normal vector with

mean vector zero and covariance matrix

Γj1,...,jk
= 2

(
λ2

jljk
+ λ2

jmjk
− λ2

jljm

)
l,m≤k−1

.

As the univariate margins of F n
Σ(n) ((bn + xj/bn)j≤d) are appropriately standard-

ized standard normal df, it is clear that the univariate margins of their limit Hλ

are Gumbel df G3. We give some details in the bivariate case and include the cases
of total dependence and independence. If(

(1 − ρ(n)) log(n)
)
→ λ2, n →∞,

for some λ ∈ [0,∞], then

F n
ρ(n)(bn + x/bn, bn + y/bn) → Hλ(x, y), n →∞,

where

Hλ(x, y) = exp
(
−Φ

(
λ +

x − y

2λ

)
e−y − Φ

(
λ +

y − x

2λ

)
e−x

)
. (4.8)

For λ = ∞ and λ = 0 the asymptotic independence and total dependence holds
in the limit. If ρ ∈ (−1, 1) is fixed, then the asymptotic independence holds.

An alternative representation of the foregoing max-stable df may be found
in Joe’s [274] paper which provides a broad discussion of parametric families of
extreme value df (EVD) and their statistical inference. Another notable article is
Tiago de Oliveira [445].

4.2 Representations and Dependence Functions
In contrast to the univariate case, multivariate max-stable df form a non-para-
metric family. In this section, we introduce different representations of max-stable
df such as the representation by means of the exponent measure, the de Haan-
Resnick representation and a certain spectral representation. The Pickands repre-
sentation will be studied separately in Section 4.3.

The Max-Infinite Divisibility

Contemporary multivariate EVT is mainly based on a characterization of max-
infinitely divisible (max-id) df, established by Balkema and Resnick [24] for bi-
variate df.
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A bivariate F is said to be max-id iff for any n ∈ N there is a bivariate df Fn

such that F = F n
n .

The following characterization is quite convenient. It follows from the fact
that if the df F is the weak limit of F n

n , n ∈ N, where Fn, n ∈ N, is a sequence
of df on R

2, then F is max-id, see Theorem 1 in Balkema and Resnick [24] or
Proposition 5.1 in Resnick [393].

Lemma 4.2.1. F is max-id iff F t is a df for all t > 0.

The following example provides a construction of max-id df. Actually, it will
turn out that it provides a characterization of max-id df, see Theorem 4.2.3 below.

Example 4.2.2. Let μ be a σ-finite measure on [−∞,∞)2 and define H on R
2

by

H(x, y) := μ
(

([−∞, x] × [−∞, y])�
)

= μ
(
[−∞,∞)2\([−∞, x] × [−∞, y])

)
. (4.9)

Consider now a Poisson process N on (0,∞)× [−∞,∞)2 with intensity mea-
sure λ × μ, where λ denotes Lebesgue measure on (0,∞) and × the product
measure. Denote by (Tk, (Xk, Yk)), k ∈ N, the points of the Poisson process N ,
i.e., N(·) =

∑
k∈N

ε(Tk,(Xk,Yk))(·), where εu denotes the point measure with mass
1 at u.

Put, for t > 0,

Z(t) :=
(

sup
k∈N

{Xk : Tk ≤ t} , sup
k∈N

{Yk : Tk ≤ t}
)
∈ [−∞,∞)2,

with the convention sup ∅ := −∞. Then we have, for (x, y) ∈ R
2,

P (Z(t) ≤ (x, y)) = P
(

N
(

(0, t] × ([−∞, x] × [−∞, y])�
)

= 0
)

= exp
(
−(λ × μ)

(
(0, t] × ([−∞, x] × [−∞, y])�

))
= exp(−tH(x, y)).

Provided that Z(t) is R
2-valued a.s., we obtain from Lemma 4.2.1 that F (x, y) :=

exp(−H(x, y)) is a max-id df on R
2. To ensure that Z(t) is in R

2 a.s., it is necessary
that

H(x0, y0) < ∞ for some (x0, y0) ∈ R
2 (4.10)

and

μ(R× [−∞,∞)) = μ([−∞,∞) × R) = ∞. (4.11)
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A σ-finite measure μ on [−∞,∞)2 is called an exponent measure of the df
F = exp(−H), if the conditions (4.9), (4.10) and (4.11) hold.

Example 4.2.2 shows that a df F is max-id if it has an exponent measure.
The following characterization, which is due to Balkema and Resnick [24], shows
that the converse implication is also true. For a proof we refer to Balkema and
Resnick [24], Theorem 3, or to Resnick [393], Proposition 5.8.

Theorem 4.2.3 (Balkema and Resnick). A df F on R
2 is max-id iff it has an

exponent measure.

An exponent measure is not necessarily unique; just set μ({−∞}×{−∞}) >
0. One may wonder why an exponent measure is defined on [−∞,∞)2, whereas
(−∞,∞)2 would seemingly be a more natural choice. Take, for instance,

F (x, y) = exp(x + y), x, y ≤ 0, (4.12)

i.e., F is the df of the iid rv X , Y with P (X ≤ x) = P (Y ≤ x) = exp(x), x ≤ 0.
Then F is max-id since F t is the df of (X/t, Y/t) for any t > 0. But there is no
measure μ, defined on R

2, such that

F (x, y) = exp
(
−μ

(
(−∞, x] × (−∞, y])�

))
, x, y ∈ R. (4.13)

Such a measure μ would have to satisfy

μ
(

(−∞, x] × (−∞, y])�
)

= −x − y, x, y ≤ 0,

and, thus,

μ((x1, y1] × (x2, y2])

= μ
(

(−∞, x1] × (−∞, y2])�
)

+ μ
(

(−∞, y1] × (−∞, x2])�
)

− μ
(

(−∞, x1] × (−∞, x2])�
)
− μ

(
(−∞, y1] × (−∞, y2])�

)
= 0

for x1 < y1 ≤ 0, x2 < y2 ≤ 0, i.e., μ is the null-measure on (−∞, 0]2. Since
1 = F (0, 0) = exp

(
−μ

(
((−∞, 0]2)�

))
, we have μ

(
((−∞, 0]2)�

)
= 0 as well and,

thus, μ is the null-measure on R
2. But this contradicts equation (4.13).

Consider, on the other hand, the measure μ on [−∞, 0]2, defined by

μ({−∞} × (x, 0]) = μ((x, 0] × {−∞}) = −x, x ≤ 0,

and μ
(
(−∞, 0]2

)
= 0 = μ({(−∞,∞)}. Then μ has its complete mass on the set

({−∞} × (−∞, 0]) ∪ ((−∞, 0] × {−∞}), μ is σ-finite and satisfies

μ
(

([−∞, x] × [−∞, y])�
)

= μ({−∞}× (y, 0]) + μ((x, 0] × {−∞}) = −x − y.
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The investigations in this section can be extended from the bivariate case
to an arbitrary dimension, where a d-variate exponent measure is σ-finite on
[−∞,∞)d and satisfies d-variate versions of conditions (4.9), (4.10) and (4.11),
see Vatan [452].

The following result is, thus, an immediate consequence of Theorem 4.2.3 by
repeating the arguments in Example 4.2.2.

Corollary 4.2.4. Each d-variate max-id df F can be represented as the component-
wise supremum of the points of a Poisson process N with intensity measure λ×μ,
where μ is equal to the exponent measure.

The de Haan-Resnick Representation

In this section we describe the particular approach to multivariate extreme value
theory as developed by de Haan and Resnick [193].

Recall that a df G on R
d is called max-stable iff for every n ∈ N there exist

constants anj > 0, bnj ∈ R, j ≤ d, such that

Gn(anjxj + bnj , j ≤ d) = G(x), x = (x1, . . . , xd) ∈ R
d.

The df G is max-id and, thus, by Theorem 4.2.3 (d-variate version) it has an
exponent measure μ on [−∞,∞)d = [−∞,∞), i.e., μ is σ-finite and satisfies

μ
(
R

i−1 × [−∞,∞) × R
d−i

)
= ∞, i ≤ d,

μ
(

[−∞, x0]�
)

< ∞ for some x0 ∈ R
d,

G(x) = exp
(
−μ

(
[−∞, x]�

))
, x ∈ R

d. (4.14)

A max-stable df G on R
d is called simple, if each marginal df is exp

(−x−1),
x > 0. Its exponent measure ν can be chosen such that ν

(
[0,∞)�

)
= 0. This can

be seen as follows. Let μ be an exponent measure of G, define M : [−∞,∞) →
[0,∞) by M(x1, . . . , xd) := (max(xi, 0), i ≤ d), and let ν := μ∗M be the measure
induced by ν and M , i.e., ν(B) = μ(M−1(B)) for any Borel subset of [0,∞). Then
we have in particular

G(x) = exp
(
−ν

(
[0, x]�

))
, x ∈ R

d. (4.15)

This equation is not affected if we remove the point 0 from [0,∞), and restrict the
measure ν to the punctuated set E := [0,∞)\ {0}. Then ν is uniquely determined.

Consider a d-variate simple max-stable df G. We, thus, have, for any n ∈ N

and x ∈ R
d,

Gn(nx) = G(x).

This yields
Gn/m((n/m)x) = G(x), n, m ∈ N, x ∈ R

d.
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Choose now n, m such that n/m → t > 0. Then the continuity of G implies

Gt(tx) = G(x), t > 0, x ∈ R
d. (4.16)

From (4.15) and (4.16) we obtain that the exponent measure ν pertaining to
G satisfies, for any x ∈ E and any t > 0,

ν
(

[0, x]�
)

= tν
(

[0, tx]�
)

= tν
(

t[0, x]�
)

.

This equation can readily be extended to hold for all rectangles contained in E.
For a set B ⊂ E we write tB := {tx : x ∈ B}. The equality

ν(tB) = 1
t
ν(B), (4.17)

thus, holds on a generating class closed under intersections and is, therefore, true
for any Borel subset B of E (c.f. Exercise 3.1.3 in Resnick [393]).

Denote by ‖x‖ an arbitrary norm of x ∈ R
d. From (4.17) we obtain, for any

t > 0 and any Borel subset A of the unit sphere SE := {z ∈ E : ‖z‖ = 1} in E,

ν
({

x ∈ E : ‖x‖ ≥ t,
x
‖x‖ ∈ A

})
= ν

({
ty ∈ E : ‖y‖ ≥ 1,

y
‖y‖ ∈ A

})
= 1

t
ν
({

y ∈ E : ‖y‖ ≥ 1,
y
‖y‖ ∈ A

})
=: 1

t
φ(A) (4.18)

where φ is an angular measure.
Define the one-to-one function T : E → (0,∞)×SE by T (x) := (‖x‖ , x/ ‖x‖),

which is the transformation of a vector onto its polar coordinates with respect to
the norm ‖·‖. From (4.18) we obtain that the measure (ν ∗ T )(B) := ν(T −1(B)),
induced by ν and T , satisfies

(ν ∗ T )([t,∞) × A) = ν
({

x ∈ E : ‖x‖ ≥ t,
x
‖x‖ ∈ A

})
= 1

t
φ(A)

=
∫

A

∫
[t,∞)

r−2 dr dφ(a)

=
∫

[t,∞)×A

r−2 dr dφ(a)

and, hence,
(ν ∗ T )(dr, da) = r−2dr dφ(a), r > 0, a ∈ SE , (4.19)
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in short notation. The exponent measure factorizes, therefore, across radial and
angular components.

We have ν([0, x]c) = ν([0, x]c ∩ E) = (ν ∗ T )(T ([0, x]c ∩ E)) and, with the
notation z = (z1, . . . , zd) for an arbitrary vector z ∈ R

d,

T ([0, x]c ∩ E) = T ({y ∈ E : yi > xi for some i ≤ d})
= {(r, a) ∈ (0,∞) × SE : rai > xi for some i ≤ d}
=

{
(r, a) ∈ (0,∞) × SE : r > min

i≤d
xi/ai

}
with the temporary convention 0/0 = ∞.

Hence, we obtain from equation (4.19)

ν([0, x]c) = (ν ∗ T )(T ([0, x]c ∩ E))

= (ν ∗ T )
({

(r, a) ∈ (0,∞) × SE : r > min
i≤d

xi/ai

})
=

∫
SE

∫
(mini≤d xi/ai,∞)

r−2 dr dφ(a)

=
∫

SE

1
mini≤d(xi/ai)

dφ(a)

=
∫

SE

max
i≤d

(ai

xi

)
dφ(a),

now with the convention 0/0 = 0 in the last line.
We have, thus, established the following crucial result, due to de Haan and

Resnick [193].
Theorem 4.2.5 (De Haan-Resnick Representation). Any simple max-stable
df G can be represented as

G(x) = exp
(
−

∫
SE

max
i≤d

(
ai

xi

)
dφ(a)

)
, x ∈ [0,∞), (4.20)

where the angular measure φ on SE is finite and satisfies∫
SE

ai dφ(a) = 1, i ≤ d. (4.21)

Note that (4.21) is an immediate consequence of the fact that the marginals
of G are exp(x−1), x > 0. The finiteness of φ follows from (4.21) and the fact that
all norms on R

d are equivalent:

d =
∫

SE

∑
i≤d

ai dφ(a)

≥
∫

SE

⎛⎝∑
i≤d

a2
i

⎞⎠1/2

dφ(a)
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≥ const
∫

SE

‖a‖ dφ(a)

= const φ(SE).

The reverse implication of Theorem 4.2.5 is also true, starting with a finite
measure φ which satisfies (4.21). This can be deduced by following the preceding
arguments in reverse order. The above derivation of Theorem 4.2.3 is taken from
Section 5.4.1 of Resnick [393].

A Spectral Representation

Recall the well-known fact that a univariate rv X with arbitrary distribution Q
can be obtained by putting

X := F −1(U),

where U is uniformly on [0, 1] distributed and F is the df of Q. This probability
integral transform can be extended to any probability measure Q on an arbitrary
complete and separable metric space S, equipped with the Borel σ-field: There
exists a random element f from the interval [0, 1], equipped with the Lebesgue-
measure λ, into S, such that

Q = λ ∗ f ; (4.22)

see Theorem 3.2 in Billingsley [45].
This extension can readily be applied to the de Haan-Resnick representation

(4.20) of a simple max-stable df G as follows. Put

Q := φ

φ(SE)
.

Then we obtain from (4.22) that there exists a rv f = (f1, . . . , fd) on [0, 1] such
that Q = λ ∗ (f1, . . . , fd). This implies the spectral representation

G(x) = exp
(
−

∫
SE

max
i≤d

(
ai

xi

)
dφ(a)

)
= exp

(
−φ(SE)

∫
SE

max
i≤d

(
ui

xi

)
dQ(u)

)
= exp

(
−φ(SE)

∫
[0,1]

max
i≤d

(
fi(u)

xi

)
du

)

= exp

(
−

∫
[0,1]

max
i≤d

(
f̃i(u)

xi

)
du

)
, (4.23)

where the non-negative functions f̃i(u) := φ(SE)fi(u) satisfy
∫

[0,1] f̃i(u) du = 1,
i ≤ d; see Corollary 5.2.9 for an extension. By transforming the margins of G,



4.3. Pickands Representation and Dependence Function 147

one immediately obtains corresponding representations of EVD with negative ex-
ponential or Gumbel margins; just use the transformations 0 > y �→ x = −1/y
or R � z �→ x = exp(z). The spectral representation was extended to max-stable
stochastic processes by de Haan [187] and de Haan and Pickands [192].

The Bivariate Case

Next we consider the bivariate case d = 2. It is shown that the exponent measure
ν of a bivariate simple max-stable df G can be represented by a univariate measure
generating function on [0, π/2]. Choose a norm ‖·‖ on R

2 and denote by

A(ϑ) := {(u, v) ∈ SE : 0 ≤ arctan(v/u) ≤ ϑ}

the set of those vectors (u, v) in SE whose dihedral angle is less than ϑ, i.e.,
v/u ≤ tan(ϑ), ϑ ∈ [0, π/2]. Then we have for the corresponding exponent measure
ν by equation (4.18)

ν
({

(x, y) ∈ [0,∞)2 : ‖(x, y)‖ ≥ t, arctan
( y

x

)
∈ [0, ϑ]

})
= ν

({
(x, y) ∈ [0,∞)2 : ‖(x, y)‖ ≥ t,

(x, y)
‖(x, y)‖ ∈ A(ϑ)

})
= t−1φ(A(ϑ))
=: t−1Φ(ϑ), 0 ≤ ϑ ≤ π/2. (4.24)

Φ is the measure generating function of a finite measure on [0, π/2], which is called
angular measure as well. ν is obviously determined by the univariate function Φ,
which may again be regarded as a dependence function. The estimation of Φ
was dealt with by Einmahl et al. [120] and Drees and Huang [115]. Let Ri =(
X2

i + Y 2
i

)1/2 and Θi = arctg(Xi/Yi) be the polar coordinates of (Xi, Yi). Denote
by R1:n ≤ · · · ≤ Rn:n the order statistics of the rv Ri. Estimation of Φ can be
based on those (Xi, Yi) in a sample such that Θi ≥ r with r being sufficiently
large. With k(n) →∞ and k(n)/n → 0 as n →∞, the estimator is of the form

Φn(ϑ) = 1
k(n)

∑
i≤n

1{Rn−k(n)+1:n≤Ri}1[0,ϑ](Θi).

4.3 Pickands Representation and
Dependence Function

In what follows we will mainly work with the Pickands representation of max-stable
df and the pertaining Pickands dependence function D, introduced now.
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The Pickands Representation

Extending Lemma 4.1.2 one may characterize the family of max-stable df with
univariate margins G2,1. Consider next a d-variate max-stable df G∗ with reverse
standard exponential marginals exp(x), x ≤ 0. Then,

G(x) := G∗
(
− 1

x1
, . . . ,− 1

xd

)
, (4.25)

is a simple max-stable df and, consequently, the de Haan-Resnick representation
(4.20) implies the representation

G∗(x) = G
(
− 1

x1
, . . . ,− 1

xd

)
= exp

(
−

∫
SE

max
i≤d

(−aixi) dφ(a)
)

= exp
( ∫

SE

min
i≤d

(aixi) dφ(a)
)

, x ≤ 0. (4.26)

By choosing the L1-norm ‖a‖1 =
∑

i≤d |ai| for ‖a‖, SE is the unit simplex S and,
by equation (4.21), ∫

S

aj dφ(a) = 1, j ≤ d.

Hence (4.26) is the Pickands representation of G∗ as established in Pickands [372].

Theorem 4.3.1 (Pickands). A function G is a max-stable, d-variate df and has
univariate margins G2,1 if, and only if,

G(x) = exp
(∫

S

min
j≤d

(ujxj) dμ(u)
)

, x < 0, (4.27)

where μ is a finite measure on the d-variate unit simplex

S =

⎧⎨⎩u :
∑
j≤d

uj = 1, uj ≥ 0

⎫⎬⎭
having the property ∫

S

uj dμ(u) = 1, j ≤ d. (4.28)

Proof. We only have to prove the if-part. We prove that G is Δ-monotone by
showing that G is the pointwise limit of df. According to Lemma 4.1.2, it suffices
to find aijn such that∑

i≤m(n)

min
j≤d

(aijnxj) →
∫

S

min
j≤d

(ujxj) dμ(u), x < 0, n →∞. (4.29)
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Let
μn =

∑
i≤m(n)

μn {uin} εuin

with uin = (uijn)j≤d, n ∈ N, be a sequence of discrete measures on S, vaguely
converging to μ. Then we have∫

S

min
j≤d

(ujxj) dμn(u) =
∑

i≤m(n)

min
j≤d

(uijnxj) μn{uin}

and the desired relation (4.29) holds with aijn = uijnμn{uin}.

Note that (4.28) implies that μ(S) = d:

1 =
∫

S

ud μ(du) =
∫

S

1 −
∑

i≤d−1
ui μ(du) = μ(S) − (d − 1).

Finally, it can easily be seen that G is normed and has univariate margins
G2,1. Moreover, verify G ((xi/n)i≤d)n = G(x) to show the max-stability.

The Pickands Dependence Function

From Theorem 4.3.1 we deduce that a d-variate max-stable df G with reverse
exponential margins G2,1 can be rewritten in terms of the Pickands dependence
function D : R → [0,∞) where the domain of D is given by

R :=
{

(t1, . . . , td−1) ∈ [0, 1]d−1 :
∑

i≤d−1
ti ≤ 1

}
. (4.30)

For x = (x1, . . . , xd) ∈ (−∞, 0 ]d, x �= 0, we have

G(x) = exp
(∫

S

min(u1 x1, . . . , ud xd) dμ(u)
)

= exp
(

(x1 +· · ·+xd)
∫

S

max
(

u1
x1

x1 +· · ·+xd
, . . . , ud

xd

x1 +· · ·+xd

)
dμ(u)

)
= exp

(
(x1 +· · ·+xd) D

(
x1

x1+· · ·+xd
, . . . ,

xd−1
x1+· · ·+xd

))
, (4.31)

where μ is the measure in Theorem 4.3.1 and

D(t1, . . . , td−1)

:=
∫

S

max

⎛⎝u1 t1, . . . , ud−1 td−1, ud

⎛⎝1 −
∑

i≤d−1
ti

⎞⎠⎞⎠ dμ(u) (4.32)

is the Pickands dependence function.
If the rv (X1, . . . , Xd) follows the max-stable df G, then the cases D(t) = 1

and D(t) = max(t1, . . . , td−1, 1 − ∑
i≤d−1 ti), t ∈ R, characterize the cases of

independence and complete dependence of the rv X1, . . . , Xd.
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Important Properties of Pickands Dependence Functions

(i) The dependence function D is obviously continuous with

D(ei) = 1, 1 ≤ i ≤ d − 1,

where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
d−1 is the i-th unit vector in R

d−1. The
latter property is immediate from (4.28). Moreover, D(0) = 1 as well. The
vectors ei, 1 ≤ i ≤ d−1, and 0 ∈ R

d−1 are the extreme points of the convex
set R in (4.30).

(ii) In addition, D(t) ≤ 1 for any t = (t1, . . . , td−1) ∈ R because, according to
(4.28),

D(t) =
∫

S

max

⎛⎝u1 t1, . . . , ud−1 td−1, ud

⎛⎝1 −
∑

i≤d−1
ti

⎞⎠⎞⎠ dμ(u)

≤
∫

S

u1 t1 + · · · + ud−1 td−1 + ud

⎛⎝1 −
∑

i≤d−1
ti

⎞⎠ dμ(u) = 1.

(iii) The function D is convex, that is, for v1, v2 ∈ R and λ ∈ [0, 1]:

D(λv1 + (1 − λ)v2) ≤ λD(v1) + (1 − λ)D(v2).

Writing vi = (vi,1, . . . , vi,d−1), i = 1, 2, the convexity of D is immediate from
the inequality

max

(
u1(λv1,1 + (1 − λ)v2,1), . . . , ud−1(λv1,d−1 + (1 − λ)v2,d−1),

ud

(
1 −

∑
i≤d−1

(λv1,i + (1 − λ)v2,i)

))

≤ λ max

(
u1 v1,1, . . . , ud−1 v1,d−1, ud

(
1 −

∑
i≤d−1

v1,i

))

+ (1 − λ) max

(
u1 v2,1, . . . , ud−1v2,d−1, ud

(
1 −

∑
i≤d−1

v2,i

))

for arbitrary u = (u1, . . . , ud) ∈ S.

(iv) If D(t) = 1 for an inner point t ∈ R, then D is the constant function 1. This
is an immediate consequence of the fact that a convex function on a convex
subset U of a normed linear space, which attains a global maximum at an
inner point of U , is a constant, see, e.g. Roberts and Varberg [396, Theorem
C, Section 51].
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(v) We have, for arbitrary t ∈ R,

D(t) ≥ max

⎛⎝t1, . . . , td−1, 1 −
∑

i≤d−1
ti

⎞⎠ ≥ 1
d

. (4.33)

The first inequality is immediate from (4.28), the second one follows by
putting t1 = · · · = td−1 = 1/d. The minimum of the function D is attained
at (1/d, . . . , 1/d) ∈ R

d−1:

D(t) ≥ D
(1

d
, . . . ,

1
d

)
= 1

d

∫
S

max(u1, . . . , ud) dμ(u),

if D satisfies the symmetry condition

D(t1, . . . , td−1) = D(s1, . . . , sd−1) (4.34)

for any subset {s1, . . . , sd−1} of {t1, . . . , td}, where td := 1−∑
i≤d−1 ti. This

follows from the inequality

max(u1, . . . , ud) = max

⎛⎝u1
∑
i≤d

ti, . . . , ud

∑
i≤d

ti

⎞⎠
≤ max(u1t1, . . . , udtd) + max(u1td, u2t1, u3t2, . . . , udtd−1)

+ max(u1td−1, u2td, u3t1, . . . , udtd−2) + · · ·
+ max(u1t2, u2t3, . . . , ud−1td, udt1)

and, hence,

D

(
1
d

, . . . ,
1
d

)
≤ 1

d
D(t1, . . . , td−1) + 1

d
D(td, t1, . . . , td−2)

+ 1
d

D(td−1, td, t1, . . . , td−3) + · · · + 1
d

D(t2, t3, . . . , td)

= D(t1, . . . , td−1).

Without the symmetry condition (4.34) on D, its minimum is not necessarily
attained at (1/d, . . . , 1/d) ∈ R

d−1; a counterexample is given in (6.16).

(vi) If D(1/d, . . . , 1/d) = 1/d for an arbitrary dependence function D, then
D(t) = max(t1, . . . , td), t ∈ R, where td = 1 − ∑

i≤d−1 ti. This can eas-
ily be seen as follows. The equation

D

(
1
d

, . . . ,
1
d

)
= 1

d

∫
S

max(u1, . . . , ud) dμ(u) = 1
d
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implies
∫

S
max(u1, . . . , ud) dμ(u) = 1 and, thus, for i, j ≤ d,

0 =
∫

S

max(u1, . . . , ud) − ui dμ(u)

≥
∫

S

(uj − ui)1{uj >ui} dμ(u)

≥ 0.

This yields

μ({u ∈ S : uj > ui}) = 0, i, j ≤ d,

=⇒ μ({u ∈ S : ui �= uj for some i, j ≤ d}) = 0
=⇒ μ({u ∈ S : u1 = · · · = ud}) = μ(S) = d

and, hence,

D(t) =
∫

S

max(u1t1, . . . , udtd) dμ(u)

=
∫

{u∈S: u1=···=ud}
max(u1t1, . . . , udtd) dμ(u)

= max(t1, . . . , td)
∫

S

u1 dμ(u)

= max(t1, . . . , td).

(vii) Note that the symmetry condition (4.34) on D is equivalent to the condition
that X1, . . . , Xd are exchangeable, i.e., the distribution of (Xi1 , . . . , Xid

) is
again G for any permutation (i1, . . . , id) of (1, . . . , d).

(viii) The convex combination D(t) = (1 − λ)D1(t) + λD2(t) of two dependence
functions D1, D2 is again a dependence function, λ ∈ [0, 1]. This is immedi-
ate by putting μ := (1 − λ)μ1 + λμ2, where μ1, μ2 are the measures on the
simplex S corresponding to D1 and D2 in the definition (4.32) of a depen-
dence function. The dependence function D is, thus, generated by μ. The
functions D(t) = 1 and D(t) = max(t1, . . . , td−1, 1 − ∑

i≤d−1 ti) are now
extreme points of the convex set of all dependence functions.

(ix) The copula C of the EVD G with dependence function D is

C(u) = G(log(u1), . . . , log(ud))

= exp

⎛⎝⎛⎝∑
i≤d

log(ui)

⎞⎠D

(
log(u1)∑
i≤d log(ui)

, . . . ,
log(ud−1)∑
i≤d log(ui)

)⎞⎠
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=

⎛⎝∏
i≤d

ui

⎞⎠D

(
log(u1)

log
(∏

i≤d
ui

) ,...,
log(ud−1)

log
(∏

i≤d
ui

))
, u ∈ (0, 1)d.

This copula, obviously, satisfies, for any λ > 0,

C
(
uλ

)
= C(u)λ.

The case D = 1 yields the independence copula

C(u) =
∏
i≤d

ui,

whereas D(t) = max
(

t1, . . . , td−1, 1 −∑
i≤d ti

)
yields the total dependence

copula

C(u) =

⎛⎝∏
i≤d

ui

⎞⎠
min(log(u1),...,log(ud))

log
(∏

i≤d
ui

)
.

Recall that C is for each dependence function D a df on (0, 1)d with uniform
margins.

Properties (iv) and (vi) in the preceding list immediately imply the following
characterization of independence and total dependence of the univariate margins of
a multivariate EVD, which is due to Takahashi [438]. Note that an arbitrary mul-
tivariate EVD can be transformed to an EVD with standard negative exponential
margins by just transforming the margins, see equation (5.47).

Theorem 4.3.2 (Takahashi). Let G be an arbitrary d-dimensional EVD with
margins Gj, j ≤ d. We have

(i) G(x) =
∏

j≤d Gj(xj) for each x = (x1, . . . , xd) ∈ R
d iff there exists one

y = (y1, . . . , yd) ∈ R
d with 0 < Gj(yj) < 1, j ≤ d, such that G(y) =∏

j≤d Gj(yj).

(ii) G(x) = minj≤d Gj(xj) for each x = (x1, . . . , xd) ∈ R
d iff there exists one

y = (y1, . . . , yd) ∈ R
d with 0 < Gj(yj) < 1, j ≤ d, such that G(y) =

G1(y1) = · · · = Gd(yd).

The following result supplements the preceding one. It entails in particular
that bivariate independence of the margins of a multivariate EVD is equivalent to
complete independence of the margins.

Theorem 4.3.3. Let G be an arbitrary d-dimensional EVD with one-dimensional
margins Gj , j ≤ d. Suppose that for each bivariate margin G(i,j) of G there exists
y(i,j) = (y(i,j),1, y(i,j),2) ∈ R

2 with 0 < Gi(y(i,j),1), Gj(y(i,j),2) < 1 such that
G(i,j)(y(i,j)) = Gi(y(i,j),1)Gj(y(i,j),2). Then the margins of G are independent,
i.e., G(y) =

∏
j≤d Gj(yj), y ∈ R

d.
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Proof. Without loss of generality we can assume that G has standard negative
exponential margins Gj(x) = exp(x), x ≤ 0, and, thus, there exists a measure μ

on S =
{

u ∈ [0, 1]d :
∑

i≤d ui = 1
}

with μ(S) = d,
∫

S
ui dμ(u) = 1, i ≤ d, such

that

G(x) = exp

⎛⎝⎛⎝∑
i≤d

xi

⎞⎠∫
S

max
j≤d

(
uj

xj∑
i≤d xi

)
dμ(u)

⎞⎠ , x ≤ 0 ∈ R
d.

Since G(i,j) is a bivariate EVD with margins Gi, Gj , Takahashi’s Theorem
4.3.2 implies that Gi and Gj are independent for each 1 ≤ i, j ≤ d, i �= j, i.e.,
G(i,j)(x) = exp(x1 + x2), x = (x1, x2) ≤ 0 ∈ R

2, and, therefore,∫
S

max(uit, uj(1 − t)) dμ(u) = 1, t ∈ [0, 1], 1 ≤ i, j ≤ d, i �= j. (4.35)

This implies

1 =
∫

S

max(uit, uj(1 − t)) dμ(u) ≤
∫

S

uit + uj(1 − t) dμ(u) = 1.

Putting t = 1/2, we obtain, for 1 ≤ i, j ≤ d, i �= j,∫
S

ui + uj − max(ui, uj) dμ(u) = 0,

where the integrand is non-negative. This implies

μ ({u ∈ S : ui + uj > max(ui, uj)}) = 0, 1 ≤ i, j ≤ d, i �= j,

and, thus,

0 = μ ({u ∈ S : ui + uj > max(ui, uj) for some 1 ≤ i, j ≤ d})

= μ
(

(∪i≤d {ei})�
)

,

where ei denotes the i-th unit vector in R
d, yielding μ (∪i≤d {ei}) = d. Putting

t = 1/2 in equation (4.35), we obtain

2 =
∫

S

max(ui, uj) dμ(u)

=
∫

{ei,ej}
max(ui, uj) dμ(u)

= μ ({ei}) + μ ({ej}) , 1 ≤ i, j ≤ d, i �= j.

But this implies μ ({ei}) = 1, i ≤ d, and, thus,

G(x) = exp

⎛⎝∑
i≤d

xi

⎞⎠ , x ≤ 0 ∈ R
d.
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Examples of Pickands Dependence Functions

We discuss in detail two max-stable df in R
d, namely, the Marshall-Olkin and the

logistic (also known as negative logistic or Gumbel) df.

Example 4.3.4 (Marshall-Olkin df in R
d). This is an extension of Example

4.1.1 and a special case of Example 4.1.2.
Let Z0, . . . , Zd be iid rv with common standard reverse exponential df. Put,

for λ ∈ (0, 1),

Xj := max
(

Zj

1 − λ
,

Z0
λ

)
, 1 ≤ j ≤ d.

Then (X1, . . . , Xd) has a max-stable df with reverse exponential margins. Precisely,
we have for xj ≤ 0, 1 ≤ j ≤ d,

P (Xj ≤ xj , 1 ≤ j ≤ d)
= exp

(
(1 − λ)(x1 + · · · + xd) + λ min(x1, . . . , xd)

)
=: Gλ(x1, . . . , xd).

The df Gλ is a Marshall-Olkin [323] df in R
d with parameter λ ∈ [0, 1], where

λ = 0 is the case of independence of the margins, and λ = 1 is the case of complete
dependence. The corresponding dependence function is

Dλ(t1, . . . , td−1)

= 1 − λ + λ max

⎛⎝t1, . . . , td−1, 1 −
∑

i≤d−1
ti

⎞⎠
= 1 − λ min

⎛⎝1 − t1, . . . , 1 − td−1,
∑

i≤d−1
ti

⎞⎠ , t = (t1, . . . , td−1) ∈ R.

If we take D1(t) = 1 and D2(t) = max(t1, . . . , td−1, 1 − ∑
i≤d−1 ti), then

the convex combination (1 − λ)D1(t) + λD2(t) of the two extremal cases of in-
dependence and complete dependence in the EVD model is just a Marshall-Olkin
dependence function with parameter λ ∈ [0, 1]:

1 − λ + λ max

⎛⎝t1, . . . , td−1, 1 −
∑

i≤d−1
ti

⎞⎠ = Dλ(t).

Example 4.3.5 (Logistic df in R
d). The logistic df ([183]), alternatively called

negative logistic df or Gumbel df of type B, is defined by

Gλ(x) = exp

⎛⎜⎝−
⎛⎝∑

i≤d

(−xi)λ

⎞⎠1/λ
⎞⎟⎠ , λ ≥ 1.
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It is max-stable with reverse exponential margins and has the dependence function

Dλ(t1, . . . , td−1) =

⎛⎜⎝tλ
1 + · · · + tλ

d−1 +

⎛⎝1 −
∑

i≤d−1
ti

⎞⎠λ
⎞⎟⎠

1/λ

.
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Figure 4.3.1. Dependence function D(t1, t2) = 1 − λ min(1 − t1, 1 − t2, t1 + t2)
of the Marshall-Olkin df with λ = .2 in dimension d = 3, cf. Example 4.3.4.

0
0.2

0.4
0.6

0.8
1

t_1 0

0.2

0.4

0.6

0.8

1

t_2

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0
0.2

0.4
0.6

0.8
1

t_1 0

0.2

0.4

0.6

0.8

1

t_2

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Figure 4.3.2. Dependence function D(t1, t2) = (tλ
1 + tλ

2 + (1 − t1 − t2)λ)1/λ of
the logistic df with λ = 2 in dimension d = 3, cf. Example 4.3.5.
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We mention another df with independent margins in the limiting EVD.

Example 4.3.6 (Mardia’s df in R
d). Mardia’s [318] df

H(x) := 1∑
i≤d exp(−xi) − (d − 1)

, xi ≤ 0, 1 ≤ i ≤ d,

has reverse exponential margins, but it is not max-stable. Precisely, it satisfies

Hn
(x

n

)
=

1(
1 +

∑
i≤d

(
exp

(−xi

n

)− 1
))n −→n→∞ exp

(∑
i≤d

xi

)

which is the EVD with independent reverse exponential margins.

4.4 The D-Norm
In this section we introduce quite a convenient representation of a d-dimensional
EVD (and later a GPD) in terms of a norm on R

d, called the D-norm.
The logistic distribution in Example 4.3.5 can obviously be written as

Gλ(x) = exp(−||x||λ),

where

||x||λ =

⎛⎝∑
i≤d

|xi|λ
⎞⎠1/λ

denotes the usual Lλ-norm on R
d, 1 ≤ λ ≤ ∞. Actually, it turns out that any

EVD in (4.31) can be written as

G(x) = exp

⎛⎝⎛⎝∑
i≤d

xi

⎞⎠D

(
x1∑
i≤d xi

, . . . ,
xd−1∑
i≤d xi

)⎞⎠ = exp (−||x||D) ,

where

||x||D :=

⎛⎝∑
i≤d

|xi|
⎞⎠D

(
|x1|∑
i≤d |xi| , . . . ,

|xd−1|∑
i≤d |xi|

)
, (4.36)

with the convention ||0||D = 0. In fact, || · ||D defines a norm on R
d, that is, for

any x, y ∈ R
d:

(i) ||x||D = 0 ⇐⇒ x = 0,

(ii) ||cx||D = |c| ||x||D for any c ∈ R,

(iii) ||x + y||D ≤ ||x||D + ||y||D.
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The triangle inequality follows from the definition of D in (4.32):

||x + y||D

=

⎛⎝∑
i≤d

|xi + yi|
⎞⎠D

(
|x1 + y1|∑
i≤d |xi + yi| , . . . ,

|xd−1 + yd−1|∑
i≤d |xi + yi|

)

=

⎛⎝∑
i≤d

|xi + yi|
⎞⎠∫

S

max

(
u1

|x1 + y1|∑
i≤d |xi + yi| , . . . , ud

|xd + yd|∑
i≤d |xi + yi|

)
dμ(u)

=
∫

S

max (u1|x1 + y1|, . . . , ud|xd + yd|) dμ(u)

≤
∫

S

max (u1|x1|, . . . , ud|xd|) dμ(u)

+
∫

S

max (u1|y1|, . . . , ud|yd|) dμ(u)

=

⎛⎝∑
i≤d

|xi|
⎞⎠∫

S

max

(
u1

|x1|∑
i≤d |xi| , . . . , ud

|xd|∑
i≤d |xi|

)
dμ(u)

+

⎛⎝∑
i≤d

|yi|
⎞⎠∫

S

max

(
u1

|y1|∑
i≤d |yi| , . . . , ud

|yd|∑
i≤d |yi|

)
dμ(u)

= ||x||D + ||y||D.

We call ||x||D the D-norm on R
d. From the inequalities

max

⎛⎝t1, . . . , td−1, 1 −
∑

i≤d−1
ti

⎞⎠ ≤ D(t) ≤ 1

for t = (t1, . . . , td−1) ∈ R we obtain for any x ∈ R
d that its D-norm is always

between the ∞-norm and the L1-norm:

||x||∞ := max(|x1|, . . . , |xd|) ≤ ||x||D ≤
∑
i≤d

|xi| =: ||x||1. (4.37)

This, in turn, implies in particular that any EVD G with dependence function D
satisfies the inequalities∏

i≤d

exp(xi) ≤ G(x) = exp (−||x||D) ≤ exp (min (x1, . . . , xd)) ,

for x = (x1, . . . , xd) ∈ (−∞, 0]d, which is (4.1).
The inequalities (4.37) imply that a D-norm is standardized, i.e.,

‖ei‖D = 1, i ≤ d,
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where ei = (0, . . . , 0, 1, 0, . . . , 0) denotes the i-th unit vector in R
d, i ≤ d.

The monotonicity of G implies further, for arbitrary x ≤ y ≤ 0,

‖x‖D ≥ ‖y‖D . (4.38)

A norm ‖·‖ with this property will be called monotone. Note that this is equivalent
with

‖x‖ ≤ ‖y‖ , 0 ≤ x ≤ y.

Takahashi’s Theorem 4.3.2, for instance, can now be formulated as follows.
Recall that the L1-norm characterizes independence of the margins, whereas the
∞-norm characterizes complete dependence of the margins.

Theorem 4.4.1 (Takahashi). We have the following equivalences:

(i) ‖·‖D = ‖·‖1 ⇐⇒ ‖y‖D = ‖y‖1 for at least one y ∈ R
d, whose components

are all different from 0;

(ii) ‖·‖D = ‖·‖∞ ⇐⇒ ‖(1, . . . , 1)‖D =
∥∥∥∑i≤d ei

∥∥∥ = 1.

In view of Takahashi’s Theorem, the number

ε := ‖(1, . . . , 1)‖D ∈ [1, d]

clearly measures the dependence structure of the margins of G, and we have in
particular

ε = 1 ⇐⇒ ‖·‖D = ‖·‖∞ ⇐⇒ complete dependence of the margins

and
ε = d ⇐⇒ ‖·‖D = ‖·‖1 ⇐⇒ independence of the margins.

The number ε was introduced by Smith [421] as the extremal coefficient, defined
as that constant which satisfies

G∗(x, . . . , x) = F ε(x), x ∈ R,

where G∗ is an arbitrary d-dimensional EVD with identical margins G∗
j = F ,

j ≤ d. Without loss of generality we can transform the margins to the negative
exponential distribution and obtain an EVD G with standard negative exponential
margins and, thus,

G(x, . . . , x) = exp

⎛⎝x

∥∥∥∥∥∥
∑
i≤d

ei

∥∥∥∥∥∥
D

⎞⎠ = exp(εx), x ≤ 0,

yielding

ε = ‖(1, . . . , 1)‖D =

∥∥∥∥∥∥
∑
i≤d

ei

∥∥∥∥∥∥
D

.
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The obvious question “When is an arbitrary norm ‖·‖ a D-norm?” is an-
swered by the following result due to Hofmann [222]. It is established by showing
that

ν([−∞, x]�) := ‖x‖ , x ≤ 0,

defines an exponent measure on [−∞, 0]\ {−∞} if and only if the norm ‖·‖ satisfies
condition (4.39), which is essentially the Δ-monotonicity of a df.

Theorem 4.4.2 (Hofmann, 2009). Let ‖·‖ be an arbitrary norm on R
d. Then

the function G (x) := exp (−‖x‖), x ≤ 0, defines a multivariate EVD if and only
if the norm satisfies∑

m∈{0,1}d: mi=1, i∈K

(−1)d+1−
∑

j≤d
mj

∥∥(bm1
1 a1−m1

1 , . . . , bmd

d a1−md

d

)∥∥ ≥ 0 (4.39)

for every non-empty K ⊂ {1, . . . , d}, K �= {1, . . . , d}, and −∞ < aj ≤ bj ≤ 0, 1 ≤
j ≤ d.

Note that the EVD G(x) = exp(−‖x‖), x ≤ 0, has standard reverse ex-
ponential margins if and only if ‖ei‖ = 1, i ≤ d, i.e., if and only if the norm is
standardized. In this case, the norm ‖·‖ is a D-norm.

The Bivariate Case

Putting K = {1} and K = {2}, condition (4.39) reduces in the case d = 2 to

‖(b1, b2)‖ ≤ min (‖(b1, a2)‖ , ‖(a1, b2)‖) , a ≤ b ≤ 0,

which, in turn, is obviously equivalent with

‖b‖ ≤ ‖a‖ , a ≤ b ≤ 0,

i.e., the monotonicity of ‖·‖.
We, thus, obtain from Theorem 4.4.2 the following characterization in the

bivariate case.

Lemma 4.4.3. Take an arbitrary norm ‖·‖ on R
2. Then

G(x) = exp(−‖x‖), x ≤ 0,

defines an EVD in R
2 if and only if the norm ‖·‖ is monotone.

The following lemma will be crucial for the characterization of a Pickands
dependence function in the bivariate case. Together with the preceding lemma it
entails, moreover, that in the bivariate case G(x) = exp(−‖x‖), x ≤ 0 ∈ R

2,
defines an EVD with standard negative exponential margins, if and only if the
norm ‖·‖ satisfies ‖x‖∞ ≤ ‖x‖ ≤ ‖x‖1, x ≥ 0.
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Lemma 4.4.4. Let ‖·‖ be a norm on R
d. If ‖·‖ is monotone and standardized,

then we have, for 0 ≤ x ∈ R
d,

‖x‖∞ ≤ ‖x‖ ≤ ‖x‖1 .

For d = 2 the converse statement is also true.

Example 2.19 in Hofmann [221] shows that the preceding equivalence in R
2

is not true for a general dimension d.

Proof. Let 0 ≤ x = (x1, . . . , xd) ∈ R
d. Since the norm is standardized, we have by

the triangle inequality

‖(x1, . . . , xd)‖ ≤ ‖(x1, 0, . . . , 0)‖ + · · · + ‖(0, . . . , 0, xd)‖
= x1 + · · · + xd

= ‖(x1, . . . , xd)‖1 .

Furthermore we obtain from the monotonicity of ‖·‖

‖(x1, . . . , xd)‖ ≥ ‖(0, . . . , 0, xi, 0 . . . , 0)‖
= xi ‖ei‖
= xi, i ≤ d,

and, thus, ‖x‖ ≥ max(x1, . . . , xd) = ‖x‖∞. Altogether we have ‖x‖∞ ≤ ‖x‖ ≤
‖x‖1.

Now let d = 2 and suppose that the norm satisfies ‖x‖∞ ≤ ‖x‖ ≤ ‖x‖1 for
0 ≤ x. Then we have

1 = ‖ei‖∞ ≤ ‖ei‖ ≤ ‖ei‖1 = 1

and, thus, the norm is standardized.
Take a = (a1, a2) , b = (b1, b2) ∈ R

2 with 0 ≤ a ≤ b and 0 < b. The
condition ‖x‖∞ ≤ ‖x‖ implies bi ≤ max(b1, b2) = ‖b‖∞ ≤ ‖b‖ for i = 1, 2.
From the triangle inequality we obtain

‖(a1, b2)‖ =
∥∥∥∥b1 − a1

b1
(0, b2) + a1

b1
(b1, b2)

∥∥∥∥
≤ b1 − a1

b1
‖(0, b2)‖︸ ︷︷ ︸
=b2≤‖b‖

+a1
b1

‖(b1, b2)‖

≤
(

b1 − a1
b1

+ a1
b1

)
‖(b1, b2)‖

= ‖b‖
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and

‖a‖ = ‖(a1, a2)‖

=
∥∥∥∥b2 − a2

b2
(a1, 0) + a2

b2
(a1, b2)

∥∥∥∥
≤ b2 − a2

b2
‖(a1, 0)‖︸ ︷︷ ︸

=a1≤b1≤‖b‖

+
a2
b2

‖(a1, b2)‖︸ ︷︷ ︸
≤‖b‖, see above

≤
(

b2 − a2
b2

+ a2
b2

)
‖b‖

= ‖b‖ .

Therefore the norm is monotone.

The preceding considerations can be utilized to characterize a Pickands de-
pendence function in the bivariate case.

Proposition 4.4.5. Consider an arbitrary function D : [0, 1] → [0,∞) and put
‖(x, y)‖D := (|x|+|y|)D (|x| /(|x| + |y|) for x, y ∈ R with the convention ‖0‖D = 0.
Then the following statements are equivalent.

(i) ‖·‖D is a monotone and standardized norm.

(ii) ‖·‖D is a norm that satisfies ‖x‖∞ ≤ ‖x‖D ≤ ‖x‖1, 0 ≤ x.

(iii) G(x, y) := exp((x + y)D(x/(x + y))), x, y ≤ 0, defines a bivariate EVD with
standard reverse exponential margins.

(iv) The function D is convex and satisfies max(t, 1 − t) ≤ D(t) ≤ 1, t ∈ [0, 1].

(v) The function D is convex and satisfies ‖x‖D ≤ ‖y‖D for 0 ≤ x ≤ y as well
as D(0) = D(1) = 1.

Proof. The equivalence of (i), (ii) and (iii) is a consequence of Lemmas 4.4.4 and
4.4.3. Next we show that (ii) and (iv) are equivalent. Suppose condition (ii) and
choose λ, t1, t2 ∈ [0, 1]. The triangle inequality implies

D(λt1 + (1 − λ)t2) = ‖λ(t1, 1 − t1) + (1 − λ)(t2, 1 − t2)‖D

≤ λ ‖(t1, 1 − t1)‖D + (1 − λ) ‖(t2, 1 − t2)‖D

= λD(t1) + (1 − λ)D(t2),

i.e., D is a convex function. We have, moreover, for t ∈ [0, 1],

max(t, 1 − t) = ‖(t, 1 − t)‖∞ ≤ ‖(t, 1 − t)‖D = D(t) ≤ ‖(t, 1 − t)‖1 = 1,

which is (iv).
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In what follows we show that (iv) implies (ii). The inequalities ‖x‖∞ ≤
‖x‖D ≤ ‖x‖1, 0 ≤ x = (x, y), are obvious by putting t = x/(x + y) in (iv). We
also obtain D(t) ≥ 1/2, t ∈ [0, 1], and, thus, ‖x‖D = 0 if and only if x = 0 as well
as ‖λx‖D = |λ| ‖x‖D, λ ∈ R, x ∈ R

d. The triangular inequality will follow from
the subsequent considerations. The inequality max(t, 1 − t) ≤ D(t) ≤ 1, t ∈ [0, 1],
implies, for a, b ≥ 0, a + b > 0,

D

(
a

a + b

)
≥ b

a + b
= b

a + b
D(0) = b

a + b
D(1)

as well as
D

(
a

a + b

)
≥ a

a + b
= a

a + b
D(0) = a

a + b
D(1).

Hence we obtain for 0 ≤ (x1, x2) ≤ (y1, y2) with x1 + x2 > 0, yi > 0, i = 1, 2,

D

(
x1

x1 + y2

)
= D

((
(y1 − x1)y2
y1(x1 + y2)

)
· 0 +

(
(y1 + y2)x1
y1(x1 + y2)

)
y1

y1 + y2

)
≤ (y1 − x1)y2

y1(x1 + y2)
D(0) + (y1 + y2)x1

y1(x1 + y2)
D

(
y1

y1 + y2

)
≤ (y1 − x1)(y1 + y2)

y1(x1 + y2)
D

(
y1

y1 + y2

)
+ (y1 + y2)x1

y1(x1 + y2)
D

(
y1

y1 + y2

)
= y1 + y2

x1 + y2
D

(
y1

y1 + y2

)
.

Summarizing the preceding inequalities we obtain

D

(
x1

x1 + x2

)
= D

((
(y2 − x2)x1
y2(x1 + x2)

)
· 1 +

(
(x1 + y2)x2
y2(x1 + x2)

)
x1

x1 + y2

)
≤ y2 − x2

y2(x1 + x2)
x1D(1) +

x2
y2

x1 + y2
x1 + x2

D

(
x1

x1 + y2

)
≤ y2 − x2

y2(x1 + x2)
y1D(1) + x2

y2

y1 + y2
x1 + x2

D

(
y1

y1 + y2

)
≤ y2 − x2

y2

y1 + y2
x1 + x2

D

(
y1

y1 + y2

)
+ x2

y2

y1 + y2
x1 + x2

D

(
y1

y1 + y2

)
= y1 + y2

x1 + x2
D

(
y1

y1 + y2

)
.

Multiplying by (x1 + x2) shows the monotonicity ‖x‖D ≤ ‖y‖D, 0 ≤ x ≤ y.
Together with the convexity of D we will now see that ‖·‖D satisfies the triangular
inequality for arbitrary x, y ∈ R

2:

‖x + y‖D

= (|x1 + y1| + |x2 + y2|) D

( |x1 + y1|
|x1 + y1| + |x2 + y2|

)
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= ‖(|x1 + y1| , |x2 + y2|)‖D

≤ ‖(|x1| + |y1| , |x2| + |y2|)‖D

= (|x1| + |x2| + |y1| + |y2|)

× D

( |x1| + |x2|
|x1| + |x2| + |y1| + |y2|

|x1|
|x1| + |x2| +

|y1| + |y2|
|x1| + |x2| + |y1| + |y2|

|y1|
|y1| + |y2|

)
≤ (|x1| + |x2|) D

( |x1|
|x1| + |x2|

)
+ (|y1| + |y2|) D

( |y1|
|y1| + |y2|

)
= ‖x‖D + ‖y‖D .

Next we show that (iv) and (v) are equivalent. Suppose condition (iv). Then,
obviously, D(0) = D(1) = 1. The monotonicity of ‖·‖D was established in the
proof of the implication (iv) =⇒ (ii). It, therefore, remains to show that (v)
implies (iv). The convexity of D implies

D(t) = D((1 − t) · 0 + t · 1) ≤ (1 − t)D(0) + tD(1) = t, t ∈ [0, 1].

The monotonicity of ‖·‖D implies

(x1 + x2)D
(

x1
x1 + x2

)
≤ (y1 + y2)D

(
y1

y1 + y2

)
, 0 ≤ x ≤ y.

Choosing x1 ∈ [0, 1] and putting x2 = 0, y1 = x1, y2 = 1− x1, we obtain from the
above inequality

x1D(1) = x1 ≤ D(x1).
Choosing x2 ∈ [0, 1] and putting x1 = 0, y1 = 1 − x2, y2 = x2, we obtain

x2D(0) = x2 ≤ D

(
1 − y2

y1 + y2

)
= D(1 − x2),

i.e., we have established (iv).

The equivalence of (iii) and (iv) in Proposition 4.4.5 is stated without proof
in Deheuvels and Tiago de Oliveira [106]. An explicit proof is outlined in Beirlant
et al. [32, Section 8.2.5]. The implication (iv) to (iii) under the additional condition
that D is twice differentiable was established in Joe [275, Theorem 6.4].

Corollary 4.4.6. Let ‖·‖ be an arbitrary norm on R
2 and put D(t) := ‖(t, 1 − t)‖,

t ∈ [0, 1]. Then

G(x, y) := exp (−‖(x, y)‖)

= exp
(

(x + y)D
(

x

x + y

))
, x, y ≤ 0,

defines an EVD with standard reverse exponential margins if and only if

max(t, 1 − t) ≤ D(t) ≤ 1, t ∈ [0, 1]. (4.40)
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Proof. By Proposition 4.4.5 we only have to show the if-part. Precisely, we have
to show that D is convex. But this is immediate from the triangular inequality:

D(λt1 + (1 − λ)t2)
= ‖(λt1 + (1 − λ)t2, 1 − (λt1 + (1 − λ)t2))‖
= ‖λ(t1, 1 − t1) + (1 − λ)(t2, 1 − t2)‖
≤ λ ‖(t1, 1 − t1)‖ + (1 − λ) ‖(t2, 1 − t2)‖
= λD(t1) + (1 − λ)D(t2), λ, t1, t2 ∈ [0, 1].

Remark 4.4.7. Condition (4.40) is not necessarily satisfied by an arbitrary norm
‖·‖, even if it satisfies ‖(1, 0)‖ = ‖(0, 1)‖ = 1. Choose, for example, ρ ∈ (−1, 1) and
put ‖(x, y)‖2

ρ = x2 + 2ρxy + y2, i.e., ‖·‖ρ is a generalized squared distance. Then
we obtain for ρ < −1/2 that ‖(1/2, 1/2)‖ρ = (1/2 + ρ/2)1/2 < 1/2 and, thus, ‖·‖ρ

does not satisfy condition (4.40).

Proposition 4.4.5 can be utilized to characterize bivariate EVD in terms of
compact and convex subsets of R2, thus, linking multivariate extreme value theory
with convex geometry; we refer to Molchanov [341] for details. Take a compact and
convex set K ⊂ R

2, which is symmetric in the following sense: with (x, y) ∈ K we
require that (−x, y) ∈ K and (x,−y) ∈ K as well. We suppose in addition that
(1, 0) and (0, 1) are boundary points of K.

Put ‖(0, 0)‖K := 0 and, for (x, y) �= (0, 0),

‖(x, y)‖K := 1
sup {t ∈ R : t(x, y) ∈ K} .

Then ‖·‖K defines a norm on R
2, which satisfies condition (4.40) and, thus,

GK(x, y) = exp (−‖(x, y)‖K), x, y ≤ 0, is by Corollary 4.4.6 an EVD with stan-
dard reverse exponential margins. Note that K equals the unit ball with respect
to this norm: K =

{
(x, y) ∈ R

2 : ‖(x, y)‖K ≤ 1
}

.
Take, on the other hand, K = K‖·‖D

=
{

(x, y) ∈ R
2 : ‖(x, y)‖D ≤ 1

}
as the

unit ball with respect to an arbitrary D-norm ‖·‖D. Then K is a compact, convex
and symmetric set with ‖(0, 1)‖D = ‖(1, 0)‖D = 1 and ‖(x, y)‖K = ‖(x, y)‖D. We
have, thus, established the following characterization of bivariate EVD in terms of
convex subsets of R2.

Corollary 4.4.8. Let G(x, y) = exp(−‖(x, y)‖D), x, y ≤ 0, be any EVD with
standard reverse exponential margins. Putting K :=

{
(x, y) ∈ R

2 : ‖(x, y)‖D ≤ 1
}

defines a one-to-one mapping from the set of bivariate EVD with standard re-
verse exponential margins into the set of compact, convex and symmetric subsets
K ⊂ R

2 such that (−1, 0) and (0, 1) are boundary points of K. We have, further,
‖(x, y)‖D = ‖(x, y)‖K , (x, y) ∈ R

2.

The preceding result can be utilized to generate bivariate EVD via com-
pact subsets of R

2. Take an arbitrary function g : [0, 1] → [0, 1], which is con-
tinuous and concave, and which satisfies g(0) = 1, g(1) = 0. The set K :=
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{
(x, y) ∈ R

2 : |y| ≤ g(|x|)} then defines a convex, compact and symmetric sub-
set of R

2, and (0, 1), (1, 0) are boundary points of K. Put for any z ∈ [0, 1]
D(z) := ‖(z, 1 − z)‖K = 1/tz, where tz is the unique solution of the equation
g(tz) = t(1−z), t ≥ 0. Then G(x, y) := exp((x+y)D(x/(x+y))), x, y ≤ 0, defines
by Corollary 4.4.8 an EVD with reverse exponential margins.

With g(z) := (1 − zλ)1/λ, λ ≥ 1, we obtain, for example, tz = (zλ + (1 −
z)λ)−1/λ and, thus, the set of logistic distributions

G(x, y) = exp
(
−(|x|λ + |y|λ)1/λ

)
,

x, y ≤ 0.
Molchanov [341] showed that max-stable rv in [0,∞)d with unit Fréchet mar-

gins are in one-to-one correspondence with convex sets K in [0,∞)d called max-
zonoids.

The D-norm in arbitrary dimension

In what follows we investigate the D-norm in R
d. We start with a convex function

and give a necessary and sufficient condition for the property that ‖·‖D actually
defines a norm. Then we can use Theorem 4.4.2 to establish a necessary and suffi-
cient condition for a convex function to be a Pickands dependence function. These
considerations are taken from Hofmann [222]. Recall that a Pickands dependence
function is defined on

R =

⎧⎨⎩(t1, . . . , td−1) ∈ [0, 1]d−1 :
∑

j≤d−1
tj ≤ 1

⎫⎬⎭ .

Lemma 4.4.9. Let D : R → (0,∞) be a convex function. Then

‖x‖D = ‖x‖1 D

(
|x1|∑

j≤d |xj | , . . . ,
|xd−1|∑
j≤d |xj |

)

defines a norm on R
d iff, for 0 ≤ x ≤ y, x �= 0,

D

(
x1∑

j≤d xj
, . . . ,

xd−1∑
j≤d xj

)
≤

∑
j≤d yj∑
j≤d xj

D

(
y1∑

j≤d yj
, . . . ,

yd−1∑
j≤d yj

)
, (4.41)

Proof. We, obviously, have ‖λx‖D = |λ| ‖x‖D, λ ∈ R, as well as ‖x‖D ≥ 0 and
‖x‖D = 0 ⇐⇒ x = 0. The triangle inequality follows from the convexity of D,
the triangle inequality of the absolute value and equation (4.41):

‖x + y‖D

= ‖x + y‖1 D

(
|x1 + y1|∑

j≤d(|xj + yj|) , . . . ,
|xd−1 + yd−1|∑

j≤d(|xj + yj |)

)
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≤ ‖x + y‖1
‖x‖1 + ‖y‖1
‖x + y‖1

D

(
|x1| + |y1|∑

j≤d(|xj | + |yj |) , . . . ,
|xd−1| + |yd−1|∑

j≤d(|xj | + |yj |)

)

= (‖x‖1 + ‖y‖1) D

( ∑
j≤d |xj |∑

j≤d(|xj | + |yj|)

(
|x1|∑

j≤d |xj | , . . . ,
|xd−1|∑
j≤d |xj |

)

+
∑

j≤d |yj |∑
j≤d(|xj | + |yj |)

(
|y1|∑

j≤d |yj | , . . . ,
|yd−1|∑
j≤d |yj|

))

≤ (‖x‖1 + ‖y‖1)

( ∑
j≤d |xj |∑

j≤d(|xj | + |yj |)D

(
|x1|∑

j≤d |xj | , . . . ,
|xd−1|∑
j≤d |xj |

)

+
∑

j≤d |yj |∑
j≤d(|xj | + |yj |) D

(
|y1|∑

j≤d |yj | , . . . ,
|yd−1|∑
j≤d |yj |

))
= ‖x‖D + ‖y‖D .

So we have established the if-part. Assume now that ‖·‖D defines a norm on R
d.

It is sufficient to prove equation (4.41) for 0 ≤ x ≤ y, where x and y differ only
in the k-th component. By iterating this step for every component one gets the
general equation.

Set ỹ := y− 2ykek, where ek denotes the k-th unit vector in R
d. The vector

ỹ differs from y only in the k-th component, and the absolute values of these com-
ponents are identical. We, therefore, have ‖y‖D = ‖ỹ‖D, and from the convexity
of the D-norm we obtain

D

(
x1∑

j≤d xj
, . . . ,

xd−1∑
j≤d xj

)
= 1

‖x‖1
‖x‖D

=
1

‖x‖1

∥∥∥∥xk + yk

2yk
y +

yk − xk

2yk
ỹ
∥∥∥∥

D

≤ 1
‖x‖1

(
xk + yk

2yk
‖y‖D + yk − xk

2yk
‖ỹ‖D

)
= 1

‖x‖1
‖y‖D

=
∑

j≤d yj∑
j≤d xj

D

(
y1∑

j≤d yj
, . . . ,

yd−1∑
j≤d yj

)
.

Theorem 4.4.10. Let D be a positive and convex function on R. Then D is a
Pickands dependence function, i.e.,

G(x) := exp

⎛⎝⎛⎝∑
j≤d

xj

⎞⎠D

(
x1∑

j≤d xj
, . . . ,

xd−1∑
j≤d xj

)⎞⎠ , x ≤ 0,
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defines a d-dimensional EVD with standard converse exponential margins, if and
only if

∑
m∈{0,1}d: mj=1,j∈E

⎡⎣(−1)d+1−
∑

j≤d
mj

⎛⎝∑
j≤d

(
−y

mj

j x
1−mj

j

)⎞⎠
×D

⎛⎝ ym1
1 x1−m1

1∑
j≤d

(
y

mj

j x
1−mj

j

) , . . . ,
y

md−1
d−1 x

1−md−1
d−1∑

j≤d

(
y

mj

j x
1−mj

j

)
⎞⎠⎤⎦ ≥ 0 (4.42)

for any x ≤ y ≤ 0 and any subset E ⊂ {1, . . . , d}, E �= {1, . . . , d}, and D satisfies
D(ẽi) = D(0) = 1, i ≤ d, where ẽi denotes the i-th unit vector in R

d−1.

Proof. In what follows we show that condition (4.42) implies condition (4.41). For
any m ∈ {1, . . . , d} we apply condition (4.42) with E = {1, . . . , d} \ {m} to the
vectors

∑m
i=1 xiei +

∑d
i=m+1 yiei and

∑m−1
i=1 xiei +

∑d
i=m yiei and obtain∥∥∥∥∥

m∑
i=1

xiei +
d∑

i=m+1
yiei

∥∥∥∥∥−
∥∥∥∥∥

m−1∑
i=1

xiei +
d∑

i=m

yiei

∥∥∥∥∥ ≥ 0.

Summation over m from 1 to d yields

0 ≤
d∑

m=1

(∥∥∥∥∥
m∑

i=1
xiei +

d∑
i=m+1

yiei

∥∥∥∥∥−
∥∥∥∥∥

m−1∑
i=1

xiei +
d∑

i=m

yiei

∥∥∥∥∥
)

=
d∑

m=1

(∥∥∥∥∥
m∑

i=1
xiei +

d∑
i=m+1

yiei

∥∥∥∥∥
)
−

d∑
i=1

(∥∥∥∥∥
m−1∑
i=1

xiei +
d∑

i=m

yiei

∥∥∥∥∥
)

=

∥∥∥∥∥
d∑

i=1
xiei

∥∥∥∥∥ +
d−1∑
m=1

(∥∥∥∥∥
m∑

i=1
xiei +

d∑
i=m+1

yiei

∥∥∥∥∥
)

−
d∑

m=2

(∥∥∥∥∥
m−1∑
i=1

xiei +
d∑

i=m

yiei

∥∥∥∥∥
)
−

∥∥∥∥∥
d∑

i=1
yiei

∥∥∥∥∥
=

∥∥∥∥∥
d∑

i=1
xiei

∥∥∥∥∥ +
d−1∑
m=1

(∥∥∥∥∥
m∑

i=1
xiei +

d∑
i=m+1

yiei

∥∥∥∥∥
)

−
d−1∑
m=1

(∥∥∥∥∥
m∑

i=1
xiei +

d∑
i=m+1

yiei

∥∥∥∥∥
)
−

∥∥∥∥∥
d∑

i=1
yiei

∥∥∥∥∥
= ‖x‖ − ‖y‖ .

So ‖·‖D defines a norm with the properties from Lemma 4.4.9. Using the definition
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of the D-norm we see that

0 ≤
∑

m∈{0,1}d: mj=1,j∈E

⎡⎣(−1)d+1−
∑

j≤d
mj

⎛⎝∑
j≤d

(
−y

mj

j x
1−mj

j

)⎞⎠
D

⎛⎝ ym1
1 x1−m1

1∑
j≤d

(
y

mj

j x
1−mj

j

) , . . . ,
y

md−1
d−1 x

1−md−1
d−1∑

j≤d

(
y

mj

j x
1−mj

j

)
⎞⎠⎤⎦

=
∑

m∈{0,1}d: mj=1,j∈E

[
(−1)d+1−

∑
j≤d

mj

∥∥∥(ym1
1 x1−m1

1 , . . . , y
md−1
d−1 x

1−md−1
d−1

)∥∥∥
D

]
.

Application of Theorem 4.4.2 now completes the proof.



Chapter 5

Multivariate Generalized
Pareto Distributions

In analogy to the univariate case, we introduce certain multivariate generalized
Pareto df (GPD) of the form W = 1 + log(G) for the statistical modelling of
multivariate exceedances, see Section 5.1. Various results around the multivari-
ate peaks-over-threshold approach are compiled in Section 5.2. The peaks-over-
threshold stability of a multivariate GPD is investigated in Section 5.3.

The special dependence of a multivariate EVD on its argument suggests the
use of certain Pickands coordinates consisting of a distance and a (pseudo)-angle.
Of decisive importance for our investigations will be a spectral decomposition
of multivariate df into univariate ones based on the Pickands coordinates, see
Sections 5.4. Using this approach, conditions and results can be carried over from
the univariate setting to the multivariate one, see Section 5.5. Particularly, we
study the domain of attraction of a multivariate EVD and compile results for df
which belong to the δ-neighborhood of a multivariate GPD.

In addition, a given rv can be represented by the Pickands transform which
consists of the random distance and the random angle. In Section 5.6 it will be
shown that these rv are conditionally independent under a GPD. This result ap-
proximately holds under an EVD.

An important aspect for practical applications of multivariate GPD are sim-
ulations. In Section 5.7 we will present methods to simulate GPD. Sections 5.8
to 5.10 are dedicated to statistical inference in GP models, using the simulation
as a first check of the practical applicability of the methods.

5.1 The Basics
Different from the univariate case, where W (x) = 1 + log(G(x)), log(G(x)) ≥ −1
defines a df for any given max-stable df G and its multivariate version is not

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,  
DOI 10.1007/978-3-0348-0009-9_5, © Springer Basel AG 2011 
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necessarily a df for dimensions d > 2, see Proposition 5.1.3. Yet, one finds df
having such a form in the upper tail region, which is sufficient for our asymptotic
considerations.

Therefore, we first introduce a generalized Pareto (GP) function pertaining
to a max-stable G in R

d by

W (x) := 1 + log(G(x)) (5.1)

= 1 +

⎛⎝∑
i≤d

xi

⎞⎠ D

(
x1∑

i≤d xi
, . . . ,

xd−1∑
i≤d xi

)
, log(G(x)) ≥ −1.

Note that
W (x) = 1 − ||x||D, x ≤ 0, ||x||D ≤ 1,

where ||x||D is the D-norm of x, see (4.36).
The GP function corresponding to the Marshall-Olkin EVD is for instance

Wλ(x) = 1 + (1 − λ)(x1 + · · · + xd) + λ min(x1, . . . , xd);

for the logistic df it is

Wλ(x) = 1 −
⎛⎝∑

i≤d

(−xi)λ

⎞⎠1/λ

.

In what follows we introduce GPD which have the form W = 1 + log(G) in
the upper tail region.

The Bivariate Case

For the dimension d = 2 the GP function itself is a GPD (mentioned by Kaufmann
and Reiss [286]). Due to our special choice of EVD G with negative exponential
margins, the margins of the bivariate GPD W = 1 + log(G) are equal to the
uniform distribution on the interval [−1, 0] which is a univariate GPD.

Lemma 5.1.1. The bivariate GP function is a df.

Proof. W (x) = max(1+log(G(x)), 0), x ≤ 0, is obviously continuous and normed.
Its Δ-monotonicity follows from the Δ-monotonicity of G (see the beginning of
Section 4.1): Let rn ↓ 0 be an arbitrary sequence of positive numbers converging
to 0. Taylor expansion of exp at 0 implies, for x ≤ y < 0,

0 ≤ Δrny
rnxG

= G(rny) − G(rn(x1, y2)) − G(rn(y1, x2)) + G(rnx)
= (exp (−rn||y||D) − 1) + (1 − exp (−rn||(x1, y2)||D))

+ (1 − exp (−rn||(y1, x2)||D)) + (exp (−rn||x||D) − 1)



5.1. The Basics 173

= −rn||y||D + rn||(x1, y2)||D + rn||(y1, x2)||D − rn||x||D + O(r2
n).

We, thus, obtain

0 ≤ lim
n→∞

Δrny
rnxG

rn

= 1 − ||y||D − (1 − ||(x1, y2)||D) − (1 − ||(y1, x2)||D) + (1 − ||x||D) .

From the monotonicity of || · ||D (see (4.38)) one now concludes that

Δy
xW = max (1 − ||y||D, 0) − max (1 − ||(x1, y2)||D, 0)

− max (1 − ||(y1, x2)||D, 0) + max (1 − ||x||D , 0) ≥ 0.

The support of such a bivariate GPD W (x, y) = max(1 − ||(x, y)||D, 0) =
max(1 + (x + y)D(x/(x + y)), 0) is the set of those points (x, y) ∈ (−∞, 0]2, such
that (x + y)D(x/(x + y)) ≥ −1. Using the spectral decomposition introduced in
Section 5.4, the support of W can conveniently be identified as the set of those
points (x, y) = c(z, 1 − z) with z ∈ [0, 1] and −1/D(z) ≤ c ≤ 0. That is, we have
W (c(z, 1 − z)) = 1 + cD(z), z ∈ [0, 1], −1/D(z) ≤ c ≤ 1, see Lemma 5.4.3.

Example 5.1.2 (Independent EVD rv). Let

G(x, y) = exp(x + y), x, y ≤ 0.

Then, W = 1 + x + y = 1 − ||(x, y)||1 is the distribution of the rv (U,−(1 + U)),
where U is uniformly distributed on [−1, 0]. Note that (U,−(1 + U)) is uniformly
distributed on the line {(x, y) : x, y ≤ 0, x + y = −1}.

This example indicates that the case of independent EVD rv has to be con-
sidered with particular caution. We will return to this case in Section 5.2 and give
an interpretation.

GPD in Higher Dimensions

In dimension d ≥ 3, the GP function is not necessarily a df. Take, for instance,
d = 3 and D = 1. The GP function W (x) = max(1 + x1 + x2 + x3, 0), x ≤ 0, is
not Δ-monotone, since the cube [−1/2, 0]3 would get a negative probability:

Δ0
(− 1

2 ,− 1
2 ,− 1

2 )W = −1
2

.

This example can be extended to an arbitrary dimension d. The following result

is established by Hofmann [222], where ‖x‖λ =
(∑

i≤d |xi|λ
)1/λ

denotes the usual
λ-norm of x ∈ R

d, λ ≥ 1. This GP function coincides, however, in arbitrary
dimension with the upper tail of a df in a neighborhood of 0, see below.
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Proposition 5.1.3. For any λ ≥ 1, the GP function

Wλ(x) = max (1 − ‖x‖λ , 0) , x ≤ 0 ∈ R
d,

does not define a df for d ≥ 3.

We call a d-dimensional df W a (multivariate) GPD, if there is some EVD G
with reverse exponential margins and dependence function D such that

W (x) = 1 + log(G(x)) = 1 − ||x||D

for x in a neighborhood of 0. To shorten the notation, we will often write W =
1 + log(G) in this case.

To specify the notion “neighborhood of 0” we will establish that the cube
[−1/d, 0]d is a suitable area for this neighborhood: We have for x ∈ [−1/d, 0]d
by the monotonicity and the standardization of the norm (see Lemma 4.4.9 and
Theorem 4.4.10) with ei, i ≤ d, denoting the standard unit vectors in R

d:

‖x‖D ≤
∥∥∥∥(1

d
, . . . ,

1
d

)∥∥∥∥
D

= 1
d
‖(1, . . . , 1)‖D ≤ 1

d

d∑
i=1

‖ei‖D = 1
d
· d = 1, (5.2)

and, thus, 1 − ‖x‖D ≥ 0 on [−1/d, 0]d.
Furthermore, the Δ-monotonicity is satisfied by 1−‖·‖D on [−1/d, 0]d, since

for −1/d ≤ ai ≤ bi ≤ 0, i ≤ d, we have

Δb
a(1 − ‖·‖D)

=
∑

m∈{0,1}d

(−1)
(

d−
∑

j≤d
mj

) (
1 −

∣∣∣∣∣∣ (bm1
1 a1−m1

1 , . . . , bmd

d a1−md

d

) ∣∣∣∣∣∣
D

)
=

∑
m∈{0,1}d

(−1)
(

d+1−
∑

j≤d
mj

)∣∣∣∣∣∣ (bm1
1 a1−m1

1 , . . . , bmd

d a1−md

d

) ∣∣∣∣∣∣
D

≥ 0

by Theorem 4.4.2. The characterization of a multivariate df at the beginning of
Section 4.1, together with the preceding considerations, indicate that for every
D-norm ‖·‖D there exists a df W on (−∞, 0]d, such that W (x) = 1 − ‖x‖D

on [−1/d, 0]d. This is the content of the next theorem, which is established in
Theorem 6.2.1 in Hofmann [222].

Theorem 5.1.4. Let ‖·‖D be a d-dimensional D-Norm. Then there exists a d-
variate df W with

W (x) = 1 − ‖x‖D for x ∈ [−1/d, 0]d.
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The following construction of a GPD is motivated by the representation
G(x) = exp

(
−ν[−∞, x]�

)
of an EVD G by means of its exponent measure ν,

see (4.14), and by a point process approximation w.r.t. the variational distance,
see Section 7.1. Because ν

(
[−∞, t]�

)
= − log(G(t)), t < 0, one gets by

Qt := ν
(
· ∩ [−∞, t]�

)/
ν
(

[−∞, t]�
)

(5.3)

a distribution which turns out to be a GPD. Another version of a GPD will be
deduced from Qt in Section 7.1. In the subsequent lemma, Qt will also be character-
ized as the limit of certain conditional distributions of an EVD. A characterization
of a GPD with underlying df being in the domain of attraction of an EVD is given
in Theorem 5.2.4.

Lemma 5.1.5. Let G be a d-dimensional EVD with reverse exponential margins
and exponent measure ν.

(i) The df of Qt is given by

Ft(x) = Qt([−∞, x])
=

(
log(G(x)) − log(G(min(t, x)))

)/
a(t), x ≤ 0,

where a(t) = − log(G(t)).

(ii) For t/a(t) ≤ x ≤ 0 we have

Wt(x) = Ft(a(t)x) = 1 + log(G(x)).

(iii) Let X be distributed according to G. Then, for x ≤ 0,

lim
r↓0

P
(

X ≤ rx | X ∈ (−∞, rt]�
)

= Ft(x).

Proof. Assertion (i) follows from the equation

[−∞, t]� ∩ [−∞, x] = [−∞, min(t, x)]� \ [−∞, x]�

and the above representation of − log(G) by means of ν.
To prove (ii) check that

Ft(x) = 1 + (log(G(x))/a(t)

for every x ≥ t and utilize the equation Gs(x/s) = G(x) for s > 0.
(iii) Because ν

(
[−∞, rx]�

)
= rν

(
[−∞, x]�

)
for every r > 0, and

[−∞, rx] ∩ [−∞, rt]� = [−∞, rx] \ [−∞, r min(t, x)],
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one obtains from (4.14) and a Taylor expansion of exp that

P
(

X ≤ rx | X ∈ (−∞, rt]�
)

=
exp

(
−ν

(
[−∞, rx]�

))
− exp

(
−ν

(
[−∞, r min(t, x)]�

))
1 − exp

(−ν
(
[−∞, rt]�

))
→r↓0

ν
(

[−∞, min(t, x)]�
)
− ν

(
[−∞, x]�

)
ν
(
[−∞, t]�

)
= Ft(x).

Characteristic properties of a multivariate GPD W = 1 + log(G) are, for
example, that it is POT-stable, see (5.23) as well as Section 5.3, or that it yields the
best attainable rate of convergence of extremes, equally standardized, see Theorem
5.4.7. Hence, these properties, which are well known for a univariate GPD (see
Theorem 1.3.5 and Theorem 2.1.12), carry over to the multivariate case.

This discussion will be continued in Section 7.1 in conjunction with the point
process approach to exceedances.

GP Functions and Quasi-Copulas

Shifting a GP function W (x) = 1+log(G(x)), x ∈ (−∞, 0]d with log(G(x)) ≥ −1,
to the unit cube [0, 1]d by considering W̃ (y) := W (y − 1), y ∈ [0, 1]d, yields a
copula in the case d = 2 by Lemma 5.1.1, but not necessarily in the case d ≥ 3,
see the discussion leading to Lemma 5.1.5.

It turns out, however, that W̃ is in general a quasi-copula (Alsina et al.
[11]). The notion of quasi-copulas was introduced to characterize operations on
functions that cannot be derived from operations on rv. Due to a characterization
of quasi-copulas by Genest et al. [173] in the bivariate case and Cuculescu and
Theodorescu [86] in arbitrary dimensions, W̃ is a quasi-copula since it satisfies the
following three conditions for arbitrary x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ [0, 1]d:

(i) W̃ (x) = 0 if xi = 0 for some i, and W̃ (x) = xj if all xk = 1 except xj ,

(ii) W̃ (x1, . . . , xd) is non-decreasing in each of its arguments,

(iii) W̃ satisfies Lipschitz’s condition, i.e.,

|W̃ (x) − W̃ (y)| ≤ ||x − y||1.

The latter inequality follows from the representation (5.1) of W in the D-
norm and (4.37). We have
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∣∣∣ ≤ |‖x − 1‖D − ‖y − 1‖D|
≤ ‖x − y‖D

≤ ‖x − y‖1 .

As a consequence we obtain, for example, that for any track

B = {(Fi(t))i≤d : 0 ≤ t ≤ 1}
in the d-dimensional unit cube there exists a copula CB, which coincides with W̃
on B:

CB(x) = W̃ (x), x ∈ B.

By F1, . . . , Fd we denote arbitrary univariate continuous df such that Fi(0) = 0,
Fi(1) = 1, i ≤ d, see Cuculescu and Theodorescu [86].

We obtain, therefore, that for any track B = {(Fi(t))i≤d : 0 ≤ t ≤ 1}
the function F (t) := W̃ ((Fi(t))i≤d) defines a univariate df on [0, 1]. The spectral
decomposition of a GPD in the subsequent Lemma 5.4.3 is a specific example. In
this case the tracks are lines and F (t) = W̃ ((Fi(t))i≤d) = W ((Fi(t) − 1)i≤d) is a
uniform distribution for t large enough.

5.2 Multivariate Peaks-Over-Threshold Approach
Suppose that the d-dimensional df F is in the domain of attraction of an EVD G,
i.e., there exist constants an > 0, bn ∈ R

d, n ∈ N, such that

F n(anx + bn) →n→∞ G(x), x ∈ R
d.

This is equivalent with convergence of the marginals together with convergence of
the copulas:

Cn
F

(
u1/n

)
→n→∞ CG(u) = G

((
G−1

i (ui)
)

i≤d

)
, u ∈ (0, 1)d,

(Deheuvels [101, 102], Galambos [167], see Theorem 5.5.2) or, taking logarithms,

n
(

1 − CF

(
u1/n

))
→n→∞ − log(CG(u)), u ∈ (0, 1]d.

Choosing ui := exp(xi), xi ≤ 0, i ≤ d, we obtain

n(1 − CF (exp(x/n))) →n→∞ − log (CG(exp(x))) = lG(x), x ≤ 0,

where

lG(x) = − log (CG(exp(x)))

=

⎛⎝−
∑
i≤d

xi

⎞⎠D

(
x1∑
i≤d xi

, . . . ,
xd−1∑
i≤d xi

)
, x ≤ 0,
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is the stable tail dependence function (Huang [234]) of G with corresponding
Pickands dependence function D. Note that we have defined the function lG(·)
on (−∞, 0]d instead of [0,∞)d, which is more common. The reason is equation
(5.5).

Taylor expansion exp(ε) = 1 + ε + O(ε2), ε → 0, together with the fact that
CF has uniform margins implies

n(1 − CF (1 + x/n))) →n→∞ lG(x), x ≤ 0,

or, in a continuous version,

t−1(1 − CF (1 + tx))) →t↓0 lG(x), x ≤ 0, (5.4)

see Section 4.2 in de Haan and de Ronde [194]. The stable tail dependence function
is obviously homogeneous tlG(x) = lG(tx), t ≥ 0, and, thus, (5.4) becomes

1 − CF (1 + tx) − lG(tx)
t

→t↓0 0.

Observe that
lG(x) = 1 − W (x), x ≤ 0, (5.5)

where W is a multivariate GP function with uniform margins Wi(x) = 1 + x,
x ≤ 0, i ≤ d, i.e.,

W (x) = 1 + log
(

G̃(x)
)

, x ≤ 0,

and G̃ is a multivariate EVD with negative exponential margins G̃i(x) = exp(x),
x ≤ 0, i ≤ d.

The preceding considerations together with elementary computations entail
the following result, which is true for an EVD G with arbitrary margins, not
necessarily negative exponential ones. By ‖·‖ we denote an arbitrary norm on R

d.

Theorem 5.2.1. An arbitrary df F is in the domain of attraction of a multivariate
EVD G iff this is true for the univariate margins and if there exists a GPD W
with uniform margins such that

CF (y) = W (y − 1) + o (‖y − 1‖)

uniformly for y ∈ [0, 1]d.

The preceding result shows that the upper tail of the copula CF of a df F
can reasonably be approximated only by that of a GPD W with uniform margins.

Recall that an arbitrary copula C is itself a multivariate df, and each margin
is the uniform distribution on [0, 1]. Putting in the preceding Theorem F = C, we
obtain the following equivalences for an arbitrary copula.

Corollary 5.2.2. A copula C is in the domain of attraction of an EVD G with
standard negative exponential margins

5. Multivariate Generalized Pareto Distributions
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⇐⇒ there exists a GP function W with standard uniform margins such that

C(y) = W (y − 1) + o (‖y − 1‖) ,

uniformly for y ∈ [0, 1]d. In this case W = 1 + log(G).

⇐⇒ there exists a norm ‖·‖ on R
d such that

C(y) = 1 − ‖y − 1‖ + o (‖y − 1‖) ,

uniformly for y ∈ [0, 1]d. In this case G(x) = exp (−‖x‖), x ≤ 0.

Proof. Recall from Section 4.4 that a GPD W with uniform margins can be written
as

W (x) = 1 − ‖x‖D , x0 ≤ x ≤ 0,

where ‖·‖D is a D-norm on R
d, i.e., G(x) = exp (−‖x‖D), x ≤ 0, defines an EVD

on R
d. If C(y) = W (y − 1) + o (‖y − 1‖), y ∈ [0, 1]d, for some norm ‖·‖ on R

d,
then

Cn
(
1 +

y

n

)
=

(
1 − 1

n
‖y‖D + o

(
1
n
‖y‖

))n

→n→∞ exp (−‖y‖D) = G(y), y ≤ 0.

Together with Theorem 5.2.1 this implies Corollary 5.2.2.

In the final equivalence of Corollary 5.2.2, the norm can obviously be com-
puted as

‖x‖ = lim
t↓0

1 − C(1 + tx)
t

= l(x), x ≤ 0,

i.e., any stable tail dependence function l(·) is, actually, a norm. The triangle
inequality, satisfied by any norm, and the homogeneity of an arbitrary norm explain
why l(·) is in general a convex and homogeneous function of order 1.

Take, for example, an arbitrary Archimedean copula

Cϕ(u) = ϕ−1(ϕ(u1) + · · · + ϕ(ud)), (5.6)

where the generator ϕ : (0,∞) → [0,∞) is a continuous function that is strictly de-
creasing on (0, 1], ϕ(1) = 0, limx↓0 ϕ(x) = ∞ and ϕ−1(t) = inf {x > 0 : ϕ(x) ≤ t},
t ≥ 0.

If ϕ is differentiable from the left in x = 1 with left derivative ϕ′(1−) �= 0,
then

1 − Cϕ(1 + tx)
t

→t↓0
∑
i≤d

|xi| = ‖x‖1 , x ≤ 0, (5.7)

i.e., each Archimedean copula with a generator ϕ as above is in the domain of
attraction of the EVD G(x) = exp (−‖x‖1), x ≤ 0, with independent margins.
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This concerns, for example, the Clayton and the Frank copula, which have gen-
erators ϕC(t) = ϑ−1(t−ϑ − 1), ϕF (t) = − log

(
(exp(−ϑt) − 1)/(exp(−ϑ) − 1)

)
,

ϑ > 0, but not the Gumbel copula with parameter λ > 1, which has generator
ϕG(t) = −(log(t))λ, λ ≥ 1, 0 < t ≤ 1.

In terms of rv, Theorem 5.2.1 becomes

Theorem 5.2.3. Suppose that the d-dimensional rv X with df F is in the domain
of attraction of an arbitrary EVD G with corresponding dependence function D.
If F is continuous in its upper tail, then we have uniformly, for −1 < y < 0,

P
(
Xi ≤ F −1

i (1 + yi), i ≤ d
)

= WG(y) + o(‖y‖)),

where WG is a GPD whose upper tail is WG(y) = 1 +
(∑

i≤d yi

)
D
(

y1/
∑

i≤d yi,

. . . , yd−1/
∑

i≤d yi

)
.

We obtain, as a consequence, for the exceedance probabilities the approxi-
mation

P
(
X ≤ F −1(1 + y) | X �≤ F −1(1 + y0)

)
=

P
(
X ≤ F −1(1 + y), X �≤ F −1(1 + y0)

)
1 − P (X ≤ F −1(1 + y0))

= P (X ≤ F −1(1 + y)) − P (X ≤ F −1(1 + y0)
1 − P (X ≤ F −1(1 + y0))

= WG(y) − WG(y0) + o(‖y0‖)
1 − WG(y0) + o(‖y0‖)

= WG(y) − WG(y0)
1 − W (y0)

+ o(‖y0‖)

= P (Z ≤ y | Z �≤ y0) + o(‖y0‖)

uniformly in y0 ≤ y ≤ 0 as y0 → 0, where the rv Z follows a GPD with upper
tail WG(y), y0 ≤ y ≤ 0.

Note that we have equality

P
(
X ≤ F −1(1 + y) | X �≤ F −1(1 + y0)

)
= P (Z ≤ y | Z �≤ y0), y0 ≤ y ≤ 0,

if X follows a GPD and y0 is close to 0. This shows a first Peaks-over-Threshold
stability of the class of multivariate GPD, which will be investigated in more detail
in the separate Section 5.3.

The preceding result indicates that just as in the univariate case, also in the
multivariate case exceedances above a high threshold can reasonably be approxi-
mated only by a GPD. This is made precise by the following result due to Rootzén
and Tajvidi [401]. To state the theorem, let X be a d-dimensional rv with df F .

5. Multivariate Generalized Pareto Distributions
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Further, let {u(t) : t ∈ [1,∞)} be a d-dimensional curve starting at u(1) = 0 and
let σ(u) = σ(u(t)) > 0 be a function with values in R

d.
While Lemma 5.1.5 shows that a multivariate GPD is the limit of certain

conditional df of F being an EVD, Theorem 5.2.4 only requires F to be in the
domain of attraction of an EVD.

Theorem 5.2.4 (Rootzén and Tajvidi, 2006).

(i) Suppose that G is a d-dimensional EVD with 0 < G(0) < 1. If F is in the
domain of attraction of G, then there exists an increasing continuous curve
u with F (u(t)) → 1 as t → ∞, and a function σ(u) > 0 such that

P (X ≤ σ(u)x + u | X �≤ u) → 1
− log(G(0))

log
(

G(x)
G(min(x, 0))

)
as t →∞ for all x.

(ii) Suppose that there exists an increasing continuous curve u with F (u(t)) → 1
as t →∞, and a function σ(u) > 0 such that, for x > 0,

P (X ≤ σ(u)x + u | X �≤ u) → H(x)

for some df H as t → ∞, where the marginals of H on R are non-degenerate.
Then the above convergence holds for all x and there is a uniquely determined
EVD G with G(0) = e−1 such that

H(x) = log
(

G(x)
G(min(x, 0))

)
.

This G satisfies G(x) = exp(H(x) − 1) for x > 0 and F is in the domain of
attraction of G.

Note that

H(x) := log
(

G(x)
G(min(x, 0)

)
, x ∈ R

d, (5.8)

defines a df, if G is an EVD with G(0) = e−1. This follows from the arguments in
Lemma 5.1.5. In particular we obtain in this case

H(x) = 1 + log(G(x)), x ≥ 0,

i.e., H is a GPD. The definition (5.8) of a GPD is due to Rootzén and Tajvidi
[401]. Different from our definition of a GPD, it prescribes its values everywhere
in R

d. As a consequence, lower dimensional marginals of H as in (5.8) are not
necessarily GPD again, see Rootzén and Tajvidi [401, Section 4].
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The Cases of Independence and Complete Dependence

We will take a quick look at two special cases. The first can be interpreted with
the help of Theorem 5.2.4. Take a GPD W with upper tail W (x) = 1 +

∑
i≤d xi =

1 − ‖x‖1, x0 ≤ x ≤ 0. The corresponding EVD G(x) = exp (−‖x‖1), x ≤ 0,
has independent margins Gi(x) = exp(x), x ≤ 0, i ≤ d. The case ‖·‖D = ‖·‖1 is,
therefore, referred to as the independence case. In the GPD setup, however, the
behavior is different. Actually in this case no observations fall into an area close
to 0, which can easily be seen by differentiating the df, resulting in the density 0
close to the origin (see Michel [332, Theorem 2] for details).

However, it is still justified to speak of this case as a case of independence
with the following rational. Let Y = (Y1, . . . , Yd) be a rv with df F and tail
independent components Yi. Suppose that the df of each Yi is in the univariate
domain of attraction of exp(x), x ≤ 0. Then F is in the domain of attraction of
exp (−‖x‖1), x ≤ 0, see Proposition 5.27 in Resnick [393].

Thus, by Theorem 5.2.4, we know that observations exceeding a high thresh-
old have, after a suitable transformation of the margins, asymptotically the dis-
tribution 1+log (exp (−‖x‖1)) = 1−‖x‖1 in the extreme area. So W (x) = 1−‖x‖1
is the asymptotic exceedance distribution of rv with tail independent components.
This implies that rv with tail independent components have in the limit no obser-
vations close to the origin. Because of this we can, still, speak of W (x) = 1−‖x‖1
as the independence case.

In applications, one should check observations for tail independence before
applying a GPD model to exceedances, to make sure that one is not in the case of
independence.

We will give another interpretation of this GPD for the bivariate case in
Section 6.1.

Next we will look at the other extreme case, the case of complete dependence
W (x) = 1 − ‖x‖∞. Here the margins are completely dependent. This can be seen
as follows.

Lemma 5.2.5. Let X1 < 0 be uniformly distributed on (−1, 0), and put Xd :=
Xd−1 := · · · := X1. Then the joint df of (X1, . . . , Xd) on the negative quadrant is
W (x) = 1 − ‖x‖∞ for x ≤ 0 with ‖x‖∞ ≤ 1 and equal to 0 elsewhere.

Proof. Choose x = (x1, . . . , xd) ∈ (−1, 0)d. Then

W (x) = P (X1 ≤ x1, . . . , Xd ≤ xd)
= P (X1 ≤ min(x1, . . . , xd))
= 1 + min(x1, . . . , xd)
= 1 − max(|x1| , . . . , |xd|)
= 1 − ‖x‖∞ .

If one component of x is smaller than −1, we, obviously, have W (x) = 0.

5. Multivariate Generalized Pareto Distributions
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In case the rv (X1, . . . , Xd) follows the EVD exp(−‖x‖∞), we also have
X1 = · · · = Xd with probability 1. Therefore, this case is referred to as the case of
complete dependence.

We have shown in Lemma 5.2.5 that in the case of complete dependence
the GP function is a df on its entire support on which it is non-negative. This
shows that Proposition 5.1.3 would not be valid for λ = ∞ and that there exists
a multivariate case where the GP function is a df on its entire support.

The GPD of Asymmetric Logistic Type

In Section 5.1 we have shown the logistic GPD, which contains the above men-
tioned cases of independence and complete dependence. We will now present an
extension of this model and use it to show that GPD are, in a certain sense, not
uniquely determined when modelling threshold exceedances. The family of asym-
metric logistic distributions was introduced in Tawn [440] for the extreme value
case. It is derived there as a limiting distribution of componentwise maxima of
storms recorded at different locations along a coastline.

Let B := P({1, . . . , d})\{∅} be the power set of {1, . . . , d} containing all non-
empty subsets, and let λΓ ≥ 1 be arbitrary numbers for every Γ ∈ B with |Γ| > 1
and λΓ = 1 for |Γ| = 1. Furthermore, let 0 ≤ ψj,Γ ≤ 1, where ψj,Γ = 0 if j /∈ Γ and
with the side condition

∑
Γ∈B ψj,Γ = 1 for j = 1, . . . , d. Then a df with upper tail

Was(x1, . . . , xd) := 1 −
∑
Γ∈B

⎧⎨⎩∑
j∈Γ

(−ψj,Γxj)λΓ

⎫⎬⎭
1/λΓ

, (5.9)

xi < 0, i = 1, . . . , d, close to 0, is called a GPD of asymmetric logistic type.
Due to the side conditions for the ψj,Γ we have in this model 2d−1(d + 2) −

(2d + 1) free parameters, 2d − d − 1 for the various λΓ and the rest for the ψj,Γ,
see Section 2 in Stephenson [425]. In the case ψj,{1,...,d} = 1 for j = 1, . . . , d and
λ = λΓ ≥ 1, we have again the (symmetric) logistic distribution.

With d = 2 and the short notations ψ1 := ψ1,{1,2}, ψ2 := ψ2,{1,2}, λ := λ{1,2},
formula (5.9) reduces to

Was(x1, x2) = 1 + (1 − ψ1)x1 + (1 − ψ2)x2 −
(
(−ψ1x1)λ + (−ψ2x2)λ

)1/λ
.

In the case d = 3 we have

Was(x1, x2, x3) = 1 + (1 − ψ1 − ψ3 − ψ7)x1 + (1 − ψ2 − ψ5 − ψ8)x2

+(1 − ψ4 − ψ6 − ψ9)x3

− (
(−ψ1x1)λ1 + (−ψ2x2)λ1

)1/λ1

− (
(−ψ3x1)λ2 + (−ψ4x3)λ2

)1/λ2
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− (
(−ψ5x2)λ3 + (−ψ6x3)λ3

)1/λ3

− (
(−ψ7x1)λ4 + (−ψ8x2)λ4 + (−ψ9x3)λ4

)1/λ4 (5.10)

with the corresponding short notations for the ψj,Γ and λΓ.
The following result can be shown by tedious but elementary calculations,

see the proof of Lemma 2.3.18 in Michel [330].

Lemma 5.2.6. The function

was(x)

=

(
d−1∏
i=1

(iλΔ − 1)

)(
d∏

i=1
ψi,Δ

)λΔ (
d∏

i=1
(−xi)

)λΔ−1 ⎛⎝ d∑
j=1

(−ψj,Δxj)λΔ

⎞⎠ 1
λΔ

−d

is the density of Was for x0 ≤ x < 0.

Note that in the density in Lemma 5.2.6 only those parameters with index
set Δ = {1, . . . , d}. In contrast to the extreme value case, the lower hierarchical
parameters do not play a role close to the origin.

The next corollary follows from Lemma 5.2.6. It shows that different GPD
can lead to the same conditional probability measure in the area of interest close
to 0.

Corollary 5.2.7. Let W1 and W2 be GPD such that there exists a neighborhood
U of 0 (in the relative topology of the negative quadrant), such that

PW1 (B) = PW2 (B)

for all Borel sets B ⊂ U . Then W1 and W2 and correspondingly their angular
measures ν1 and ν2 may be different.

Proof. We will establish a counterexample in dimension d = 3. Let W1 and W2 be
two trivariate GPD of asymmetric logistic type with identical parameters ψ7, ψ8,
ψ9 and λ4 in the notation of (5.10) but with different parameter λ1. Then we know
from Lemma 5.2.6 that W1 and W2 have the same density close to the origin, i.e.,
PW1 (B) = PW2 (B) for all Borel sets B close to the origin. Let Gi = exp(Wi − 1),
i = 1, 2, be the corresponding extreme value distributions. The angular measures
ν1 and ν2 belonging to G1 and G2 and, thus, W1 and W2 are given in Section 3.5.1
of Kotz and Nadarajah [293] in terms of their densities. These densities depend
(on the lower boundaries of R2) on the parameter λ1 and are, thus, different for
different λ1, leading to ν1 �= ν2.

The difference between the two angular measures in the proof of Corol-
lary 5.2.7 is in the lower dimensional boundaries of the unit simplex. Both measures
agree in the interior.
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The proof of Corollary 5.2.7 can be carried over to arbitrary dimension d > 3,
since its conclusion only uses free lower hierarchical parameters. As these exist
in the asymmetric logistic case only for d > 2, we, thus, encounter here again
an example of the fact that multivariate extreme value theory actually starts in
dimension d ≥ 3.

As a consequence of Corollary 5.2.7, it is possible to model exceedances by
different GPD, which, however, lead to identical conditional probability measures
close to the origin. For distributions Fi ∈ D(Gi), i = 1, 2 from the domains of
attraction of different EVD G1 �= G2 it may be possible to model exceedances
over high thresholds of F1 not only by W1 but also by W2 and vice versa.

A generalization of the asymmetric model to the generalized asymmetric
model is given with the help of suitable norms in Hofmann [222], Section 5.5.

Another Representation of GPD and EVD

The following result characterizes a GPD with standard uniform margins in terms
of rv. For a proof we refer to Aulbach et al. [18]. It provides in particular an
easy way to generate a multivariate GPD, thus extending the bivariate approach
proposed by Buishand et al. [58] to an arbitrary dimension. Recall that an arbitrary
multivariate GPD can be obtained from a GPD with ultimately uniform margins
by just transforming the margins.

Proposition 5.2.8.

(i) Let W be a multivariate GPD with standard uniform margins in a left
neighborhood of 0 ∈ R

d. Then there exists a rv Z = (Z1, . . . , Zd) with
Zi ∈ [0, d] a.s., E(Zi) = 1, i ≤ d, and

∑
i≤d Zi = d a.s. as well as a

vector (−1/d, . . . ,−1/d) ≤ x0 < 0 such that

W (x) = P

(
−U

(
1

Z1
, . . . ,

1
Zd

)
≤ x

)
, x0 ≤ x ≤ 0,

where the rv U is uniformly on (0, 1) distributed and independent of Z.

(ii) The rv −U(1/Z1, . . . , 1/Zd) follows a GPD with standard uniform margins
in a left neighborhood of 0 ∈ R

d if U is independent of Z = (Z1, . . . , Zd) and
0 ≤ Zi ≤ ci a.s. with E(Zi) = 1, i ≤ d, for some c1, . . . , cd ≥ 1.

Note that the case of a GPD W with arbitrary uniform margins Wi(x) =
1− aix in a left neighborhood of 0 with scaling factors ai > 0, i ≤ d, immediately
follows from the preceding result by substituting Zi by aiZi.

We remark that the distribution of the rv Z in part (i) of Proposition 5.2.8
is uniquely determined in the following sense. Let T = (T1, . . . , Td) be another rv
with values in [0, d]d, E(Ti) = 1, i ≤ d,

∑
i≤d Ti = d a.s., being independent of U

and satisfying

−U

(
1

Z1
, . . . ,

1
Zd

)
=D −U

(
1
T1

, . . . ,
1
Td

)
. (5.11)



186

Then we have
Z =D T.

This can easily be seen as follows. Equation (5.11) implies

1
U

Z =D
1
U

T =⇒ 1
U

Z∑
i≤d

Zi

U

=D
1
U

T∑
i≤d

Ti

U

=⇒ Z =D T.

If we drop the condition
∑

i≤d Ti = d a.s. and substitute for it the assumption∑
i≤d Ti > 0 a.s., then the above considerations entail

Z =D
T

1
d

∑
i≤d Ti

.

We, thus, obtain that (T1, . . . , Td) in (5.11) can be substituted for by

T̃i := Ti
1
d

∑
i≤d Ti

, i ≤ d,

satisfying T̃i ∈ [0, d], E(T̃i) = 1, i ≤ d,
∑

i≤d T̃i = d as well as (5.11).
Proposition 5.2.8 entails the following representation of an arbitrary EVD

with standard negative exponential margins. This result extends the spectral rep-
resentation of an EVD in (4.23). It links, in particular, the set of copulas with the
set of EVD.

Corollary 5.2.9.

(i) Let G be an arbitrary EVD in R
d with standard negative exponential margins.

Then there exists a rv Z = (Z1, . . . , Zd) with Zi ∈ [0, d] a.s., E(Zi) = 1,
i ≤ d, and

∑
i≤d Zi = d, such that

G(x) = exp
(∫

min
i≤d

(xiZi) dP

)
, x ≤ 0.

(ii) Let, on the other hand, the rv Z = (Z1, . . . , Zd) satisfy Zi ∈ [0, ci] a.s. with
E(Zi) = 1, i ≤ d, for some c1, . . . , cd ≥ 1. Then

G(x) := exp
(∫

min
i≤d

(xiZi) dP

)
, x ≤ 0,

defines an EVD on R
d with standard negative exponential margins.

Proof. Let U be a uniformly on (0,1) distributed rv, which is independent of Z.
Both parts of the assertion follow from the fact that

W (x) = P

(
−U

(
1

Z1
, . . . ,

1
Zd

)
≤ x

)
, x ≤ 0,
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defines a GPD on R
d, i.e., W = 1 + log(G), which is in the domain of attraction

of the EVD G with standard negative exponential margins: We have

W
(x

n

)n

= (1 + log
(

G
(x

n

))n

→n→∞ G(x)

as well as, for n large,

W
(x

n

)n

= P

(
−U

(
1

Z1
, . . . ,

1
Zd

)
≤ x

n

)n

= P

(
U ≥ 1

n
max
i≤d

(−xiZi)
)n

=
(∫

P

(
U ≥ 1

n
max
i≤d

(−xizi) | Zi = zi, i ≤ d

)
(P ∗ Z)(dz)

)n

=
(∫

P

(
U ≥ 1

n
max
i≤d

(−xizi)
)

(P ∗ Z)(dz)
)n

=
(

1 −
∫

P

(
U ≤ 1

n
max
i≤d

(−xizi)
)

(P ∗ Z)(dz)
)n

=
(

1 − 1
n

∫
max
i≤d

(−xizi) (P ∗ Z)(dz)
)n

→n→∞ exp
(∫

min
i≤d

(xiZi) dP

)
, x ≤ 0.

Let, for instance, C be an arbitrary d-dimensional copula, i.e., C is the df of
a rv S with uniform margins P (Si ≤ s) = s, s ∈ (0, 1), i ≤ d, (Nelsen [350]). Then
Z := 2S is a proper choice in part (ii) of Proposition 5.2.8 as well of Corollary
5.2.9. Precisely,

G(x) := exp

(
2
∫

[0,1]d

min(xiui) C(du)

)
, x ≤ 0,

defines for an arbitrary copula C an EVD with standard negative exponential mar-
gins. This result maps the set of copulas in a natural way to the set of multivariate
GPD and EVD, thus opening a wide range of possible scenarios.

Multivariate Piecing-Together

If X is a univariate rv with df F , then the df F [x0] of X , conditional on the event
X > x0, is given by

F [x0](x) = P (X ≤ x | X > x0) = F (x) − F (x0)
1 − F (x0)

, x ≥ x0,
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where we require F (x0) < 1. The POT approach shows that F [x0] can reason-
ably be approximated only by a GPD with appropriate shape, location and scale
parameter Wγ,μ,σ, say,

F (x) = (1 − F (x0))F [x0](x) + F (x0)
≈ (1 − F (x0))Wγ,μ,σ(x) + F (x0), x ≥ x0.

The piecing-together approach (PT) now consists in replacing the df F by

F ∗
x0(x) =

{
F (x), x ≤ x0,

(1 − F (x0))Wγ,μ,σ(x) + F (x0), x > x0,
(5.12)

where the shape, location and scale parameters γ, μ, σ of the GPD are typically
estimated from given data. This modification aims at a more precise investigation
of the upper end of the data.

Replacing F in (5.12) by the empirical df of n independent copies of X
offers in particular a semiparametric approach to the estimation of high quantiles
F −1(q) = inf {t ∈ R : F (t) ≥ q} outside the range of given data, see, e.g., Section
2.3 of Reiss and Thomas [390].

For mathematical convenience we temporarily shift a copula to the interval
[−1, 0]d by shifting each univariate margin by -1. We call a df CW on [−1, 0]d a
GPD-copula if each marginal df is the uniform distribution on [−1, 0] and CW

coincides close to zero with a GP function W as in equation (5.1), i.e., there exists
x0 < 0 such that

CW (x) = W (x) = 1 − ‖x‖D , x0 ≤ x ≤ 0,

where the D-norm is standardized, i.e., ‖ei‖D = 1 for each unit vector in R
d.

For later purposes we remark that a rv V ∈ [−1, 0]d following a GPD-copula
can easily be generated using Proposition 5.2.8 as follows. Let U be uniformly on
(0, 1) distributed and independent of the vector S = (S1, . . . , Sd), which follows
an arbitrary copula on [0, 1]d. Then we have for i ≤ d,

P

(
−U

1
2Si

≤ x

)
=

{
1 + x, if − 1

2 ≤ x ≤ 0,
1

4|x| , if x < − 1
2 ,

=: H(x), x ≤ 0,

and, consequently,

V :=
(

H

(
− U

2S1

)
− 1, . . . , H

(
− U

2Sd

)
− 1

)
= (V1, . . . , Vd)

with

Vi =

{
− U

2Si
, if U ≤ Si,

Si

2U − 1, if U > Si,
(5.13)
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follows by Proposition 5.2.8 a GPD-copula on [−1, 0]d.
The multivariate PT approach consists of two steps. In a first step, the upper

tail of a given d-dimensional copula C, say, is cut off and substituted for by the
upper tail of multivariate GPD-copula in a continuous manner. The result is again
a copula, i.e., a d-dimensional distribution with uniform margins. The other step
consists of the transformation of each margin of this copula by a given univariate
df F ∗

i , 1 ≤ i ≤ d. This provides, altogether, a multivariate df with prescribed
margins F ∗

i , whose copula coincides in its central part with C and in its upper tail
with a GPD-copula.

Fitting a GPD-Copula to a Given Copula

Let the rv V = (V1, . . . , Vd) follow a GPD-copula on [−1, 0]d. That is, P (Vi ≤
x) = 1 + x, −1 ≤ x ≤ 0, is for each i ≤ d the uniform distribution on [−1, 0], and
there exists w = (w1, . . . , wd) < 0 such that, for each x ∈ [w, 0],

P (V ≤ x) = 1 − ‖x‖D ,

where ‖·‖D is a standardized D-norm, i.e., it is a D-norm with the property
‖ei‖D = 1 for each unit vector ei in R

d, 1 ≤ i ≤ d.
Let Y = (Y1, . . . , Yd) follow an arbitrary copula C on [−1, 0]d and suppose

that Y is independent of V. Choose a threshold y = (y1, . . . , yd) ∈ [−1, 0]d and
put

Qi := Yi1(Yi≤yi) − yiVi1(Yi>yi), i ≤ d. (5.14)

The rv Q then follows a GPD-copula on [−1, 0]d, which coincides with C on
×i≤d[−1, yi]. This is the content of the following result. For a proof we refer to
Aulbach et al. [18].

Proposition 5.2.10. Suppose that P (Y > y) > 0. Each Qi defined in (5.14)
follows the uniform df on [−1, 0]. The rv Q = (Q1, . . . , Qd) follows a GPD-copula
on [−1, 0]d, which coincides on ×i≤d[−1, yi] with C, i.e.,

P (Q ≤ x) = C(x), x ≤ y.

We have, moreover, with xi ∈ [max(yi, wi), 0], i ≤ d, for any non-empty subset K
of {1, . . . , d},

P (Qi ≥ xi, i ∈ K) = P (Vi ≥ bi,Kxi, i ∈ K) ,

where

bi,K := P (Yj > yj , j ∈ K)
−yi

= P (Yj > yj , j ∈ K)
P (Yi > yi)

∈ (0, 1], i ∈ K.
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The above approach provides an easy way to generate a rv X ∈ R
d with

prescribed margins F ∗
i , i ≤ d, such that X has a given copula in the central part

of the data, whereas in the upper tail it has a GPD-copula.
Take Q = (Q1, . . . , Qd) as in (5.14) and put Q̃ := (Q1 + 1, . . . , Qd + 1). Then

each component Q̃i of Q̃ is uniformly distributed on (0, 1) and, thus,

X := (X1, . . . , Xd) :=
(

F ∗−1
1 (Q̃1), . . . , F ∗−1

d (Q̃d)
)

has the desired properties.
Combining the univariate and the multivariate PT approach now consists in

defining F ∗
i by choosing a threshold ui ∈ R for each dimension i ≤ m as well as a

univariate df Fi together with an arbitrary univariate GPD Wγi,μiσi , and putting,
for i ≤ d,

F ∗
i (x) :=

{
Fi(x), if x ≤ ui

(1 − Fi(ui))Wγi,μiσi (x) + Fi(ui), if x > ui

. (5.15)

This is typically done in a way such that F ∗
i is a continuous function. This mul-

tivariate PT approach is utilized in [18] to operational loss data to evaluate the
range of operational risk.

5.3 Peaks-Over-Threshold Stability of a GPD
Recall that a univariate GPD is in its standard form any member of

W (x) = 1 + log(G(x)) =

⎧⎪⎨⎪⎩
1 − (−x)α, −1 ≤ x ≤ 0, (polynomial GPD),
1 − x−α, x ≥ 1, (Pareto GPD),
1 − exp(−x), x ≥ 0, (exponential GPD),

where G is a univariate EVD.
According to Theorem 2.7.1, cf. also (2.15), a univariate GPD is character-

ized by its peaks-over-threshold (POT) stability: Let V be a rv which follows a
univariate GPD W as in (5.3). Then we obtain for any x0 with W (x0) ∈ (0, 1)

P (V > tx0 | V > x0) = tα, t ∈ [0, 1], (5.16)

for a polynomial GPD,

P (V > tx0 | V > x0) = t−α, t ≥ 1, (5.17)

for a Pareto GPD and

P (V > x0 + t | V > x0) = exp(−t), t ≥ 0, (5.18)
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for the exponential GPD. By POT stability we mean that the above excess distri-
butions are invariant to the choice of x0.

The main contribution of this section is the multivariate extension of this
result. It is, however, not obvious how to define a multivariate exceedance. Put,
therefore, for any of the above three univariate cases, A := (x0,∞). Then A
satisfies the condition

x ∈ A =⇒

⎧⎪⎨⎪⎩
t1/αx ∈ A, t ∈ (0, 1], in the polynomial case,
t1/αx ∈ A, t ≥ 1, in the Pareto case,
x + t ∈ A, t ≥ 0, in the exponential case.

The preceding equations (5.16)-(5.18) can now be written as

P
(

t−1/αV ∈ A | V ∈ A
)

= t, t ∈ (0, 1], in the polynomial case,

P
(

t−1/αV ∈ A | V ∈ A
)

= t−1, t ≥ 1, in the Pareto case,

P (V − t ∈ A | V ∈ A) = exp(−t), t ≥ 0, in the exponential case.

These different equations can be summarized as follows. Put, for an arbitrary
univariate EVD G,

ψ(x) := log(G(x)) = W (x) − 1, 0 < G(x) < 1,

which defines a continuous and strictly monotone function with range (−1, 0).
Then we have, for A = (x0, 0) with −1 ≤ x0 < 0 and P (V ∈ ψ−1(A)) > 0,

P (V ∈ ψ−1(tA) | V ∈ ψ−1(A)) = t, t ∈ (0, 1], (5.19)

where the rv V follows the GPD W . This result is immediate from the fact that
ψ(V ) follows the GPD 1 + x, −1 ≤ x ≤ 0.

This POT stability of a univariate GPD will be extended to an arbitrary
dimension. The following result is the multivariate analogue of equation (5.19).

Theorem 5.3.1. Let A ⊂ (x0, 0], x0 ≥ (−1/d, . . . ,−1/d), be a Borel set with the
cone type property

x ∈ A =⇒ tx ∈ A, t ∈ (0, 1]. (5.20)

Suppose that the rv V follows an arbitrary GPD W with margins Wi, i ≤ d, and put
ψi(x) = Wi(x) − 1, i ≤ d, Ψ(x) := (ψ1(x1), . . . , ψd(xd)). If P

(
V ∈ Ψ−1(A)

)
> 0,

then we have

P
(
V ∈ Ψ−1(tA) | V ∈ Ψ−1(A)

)
= t, t ∈ [0, 1].
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Proof. We have

P
(
V ∈ Ψ−1(tA) | V ∈ Ψ−1(A)

)
= P (Ψ(V) ∈ tA | Ψ(V) ∈ A) ,

where Ṽ := Ψ(V) follows a GPD with ultimate standard uniform margins Wi(x) =
1+x, x0 ≤ x ≤ 0. From Proposition 5.2.8 we know that there exists a uniformly on
(0, 1) distributed rv U and an independent rv Z = (Z1, . . . , Zd) with 0 ≤ Zi ≤ d,
E(Zi) = 1, i ≤ d, such that

P (Ṽ ≤ x) = P

(
−U

1
Z ≤ x

)
, x0 ≤ x ≤ 0,

where 1/Z is meant componentwise.
We obtain, consequently, for t ∈ (0, 1],

P

(
1
t
Ṽ ∈ A

)
= P

(
−U

t

1
Z
∈ A

)
= P

(
−U

t

1
Z
∈ A, U ≤ t

)
+ P

(
−U

t

1
Z
∈ A, U > t

)
.

Note that the second probability vanishes as −U/(tZ) �∈ A if U > t; recall that
1/Z ≥ (1/d, . . . , 1/d), x0 ≥ (1/d, . . . , 1/d) and that A ⊂ (x0, 0]. Conditioning on
U = u and substituting u by tu entails

P

(
−U

t

1
Z
∈ A, U ≤ t

)
=

∫ t

0
P

( u

tZ
∈ A

)
du

= t

∫ 1

0
P

( u

Z
∈ A

)
du

= tP

(
U

Z
∈ A

)
= tP (Ṽ ∈ A).

We, thus, have established the equality

P

(
1
t
Ṽ ∈ A

)
= tP (Ṽ ∈ A), 0 < t ≤ 1.

As the set A has the property x ∈ A =⇒ tx ∈ A for t ∈ (0, 1], we obtain the
assertion:

P

(
1
t
Ṽ ∈ A

∣∣∣Ṽ ∈ A

)
=

P
(

1
t Ṽ ∈ A, Ṽ ∈ A

)
P (V ∈ A)

=
P

( 1
t V ∈ A

)
P (V ∈ A)

= t, t ∈ (0, 1].
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The following consequence of Theorem 5.3.1 generalizes results by Falk and
Guillou [139] on the POT-stability of multivariate GPD by dropping the differ-
entiability condition on the Pickands dependence function corresponding to the
GPD W .
Corollary 5.3.2. Let the rv V follow an arbitrary GPD W on R

d with ultimate
univariate GPD margins W1, . . . , Wd and let the the set A ⊂ {x ∈ R

d : −1/d <
Wi(xi) − 1 ≤ 0, i ≤ d} satisfy

x ∈ A

=⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
t1/α1 x1, . . . , t1/αd xd

) ∈ A, t ∈ (0, 1],
if Wi(x) = 1 − |x|αi ,−1 ≤ x ≤ 0, i ≤ d,(

t1/α1 x1, . . . , t1/αd xd

) ∈ A, t ≥ 1, if Wi(x) = 1 − x−αi , x ≥ 1, i ≤ d,

(x1 + t, . . . , xd + t) ∈ A, t ≥ 0, if Wi(x) = 1 − exp(−x), x ≥ 0, i ≤ d,

where αi > 0. Then, if P (V ∈ A) > 0,

P
((

t−1/α1V1, . . . , t−1/αdVd

)
∈ A | V ∈ A

)
=

{
t, t ∈ (0, 1], if Wi(x) = 1 − |x|αi ,−1 ≤ x ≤ 0, i ≤ d,

t−1, t ≥ 1, if Wi(x) = 1 − x−αi , x ≥ 1, i ≤ d,

and
P ((V1 − t, . . . , Vd − t) ∈ A | V ∈ A) = exp(−t), t ≥ 0,

if Wi(x) = 1 − exp(−x), x ≥ 0, i ≤ d.

Proof. Put Ã := {(ψ1(a1), . . . , ψd(ad)) : a ∈ A}, where ψi = Wi − 1, i ≤ d. Then
Ã ⊂ ((−1/d, . . . ,−1/d), 0] satisfies

x ∈ Ã =⇒ tx ∈ Ã, 0 < t ≤ 1,

and, thus, with Ψ(x) = (ψ1(x1), . . . , ψd(xd)) we obtain from Theorem 5.3.1

P
(

V ∈ Ψ−1
(

tÃ
)
| V ∈ Ψ−1

(
Ã
))

= t, t ∈ [0, 1],

which implies the assertion for any of the three different cases. Note that
{

V ∈
Ψ−1

(
Ã
)}

= {V ∈ A}.

Example 5.3.3. Let V follow a GPD with ultimately standard uniform margins
Wi(x) = 1 + x, −1 ≤ x ≤ 0, i ≤ d. Then we obtain for any c < 0 close to 0 and
arbitrary weights λi > 0, i ≤ d,

P

⎛⎝∑
i≤d

λiVi > tc |
∑
i≤d

λiVi > c

⎞⎠ = t, t ∈ [0, 1],

provided P
(∑

i≤d λiVi > t
)

> 0.
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Proof. Set Ac :=
{

(−1/d, . . . ,−1/d) < a ≤ 0 :
∑

i≤d λiai > c
}

. Then the set Ac

satisfies
x ∈ Ac =⇒ tx ∈ Ac, 0 < t ≤ 1,

and, thus, the assertion is immediate from Corollary 5.3.2, applying the first case
with α1 = · · · = αd = 1.

We can interpret
∑

i≤d λiVi as a linear portfolio with weights λi and risks
Vi. A risk measure such as the expected shortfall E

(∑
i≤d λiVi |

∑
i≤d λiVi > c

)
,

thus, fails in case of a multivariate GPD with ultimately uniform margins, as it is
by the preceding example independent of the weights λi. For a further discussion
we refer to [139].

The following characterization of a multivariate GPD with uniform margins,
which requires no additional smoothness conditions on the underlying dependence
function D, extends characterizations of a GPD as established in Theorem 2 and
Proposition 6 in Falk and Guillou [139]. This result will suggest the definition of
a statistic in Section 5.8, which tests for an underlying multivariate GPD. The
conclusion ” =⇒ ” is immediate from Corollary 5.3.2, first case. The reverse impli-
cation of Proposition 5.3.4 is established in Falk and Guillou [139], Proposition 6.

Proposition 5.3.4. An arbitrary rv V = (V1, . . . , Vd) follows a GPD with uniform
margins Wi(x) = 1 + aix, x0 ≤ x ≤ 0, with some scaling factors ai > 0, i ≤ d, if,
and only if, there exists x0 = (x0,1, . . . , x0,d) < 0 with P (Ui > x0,i) > 0, i ≤ d,
such that for any non-empty subset K ⊂ {1, . . . , d} of indices

P (Vk > txk, k ∈ K) = tP (Vk > xk, k ∈ K), t ∈ [0, 1], (5.21)

for any x = (x1, . . . , xd) ∈ [x0, 0].

5.4 A Spectral Decomposition Based on
Pickands Coordinates

Motivated by the special dependence of G and W on x and D we introduce the
Pickands coordinates pertaining to x. A consequence of this definition will be a
decomposition of a multivariate df H into a family of univariate df. This decom-
position also suggests estimators of the Pickands dependence function D under
EVD and GPD.

Recall that the Pickands dependence function D is defined on the set

R =
{

(t1, . . . , td−1) ∈ [0, 1]d−1 :
∑

i≤d−1
ti ≤ 1

}
,

see (4.30).
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Pickands Coordinates in R
d

Any vector x = (x1, . . . , xd) ∈ (−∞, 0 ]d with x �= 0 can be uniquely represented
as

x = (x1 + · · · + xd)
(

x1
x1 + · · · + xd

, . . . ,
xd−1

x1 + · · · + xd
, 1 − x1 + · · · + xd−1

x1 + · · · + xd

)

=: c

⎛⎝z1, . . . , zd−1, 1 −
∑

i≤d−1
zi

⎞⎠ ,

where c < 0 and z = (z1, . . . , zd−1) ∈ R are the Pickands coordinates of x. They
are similar to polar coordinates in R

d, but using the ‖·‖1-norm in place of the
usual ‖·‖2-norm. The vector z represents the angle and the number c the distance
of x from the origin. Therefore, z and c are termed angular and (pseudo-)radial
component (Nadarajah [343]).

Spectral Decompositions of Distribution Functions

Let H be an arbitrary df on (−∞, 0]d and put, for z ∈ R and c ≤ 0,

Hz(c) := H

(
c

(
z1, . . . , zd−1, 1 −

∑
i≤d−1

zi

))
.

With z being fixed, Hz is a univariate df on (−∞, 0]. This can easily be seen as
follows. Let U = (U1, . . . , Ud) be a rv with df H . Then we have

Hz(c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P

(
max

(
maxi:zi>0

Ui

zi
, Ud

1−
∑

i≤d−1
zi

)
≤ c

)
, 0 <

∑
i≤d−1 zi < 1,

P
(

maxi:zi>0
Ui

zi
≤ c

)
, if

∑
i≤d−1 zi = 1,

P (Ud ≤ c),
∑

i≤d−1 zi = 0.

Note that
Hz(c) = P

(
max
i≤d

Ui

zi
≤ c

)
,

where zd := 1 −∑
i≤d−1 zi, if H is continuous at 0.

The df H is obviously uniquely determined by the family

P(H) := {Hz : z ∈ R}
of the univariate spectral df Hz. This family P(H) of df is the spectral decomposition
of H .

First we study two examples of spectral representations, namely those for
EVD and GPD. In these cases the spectral df are univariate EVD and, respectively,
GPD (merely in the upper tail if d ≥ 3).
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Lemma 5.4.1. For a max-stable df G with reverse exponential margins we have

Gz(c) = exp
(
c D(z)

)
, c ≤ 0, z ∈ R,

and, thus, P(G) is the family of reverse exponential distributions with parameter
D(z), z ∈ R.

Proof. The assertion is obvious from the equation

Gz(c) = G

(
c

(
z1, . . . , zd−1, 1 −

∑
i≤d−1

zi

))
= exp

(
c D(z1, . . . , zd−1)

)
.

In the subsequent lemma it is pointed out that the converse implication also
holds true.

Lemma 5.4.2. Let H be an arbitrary df on (−∞, 0]d with spectral decomposition

Hz(c) = exp
(
cg(z)

)
, c ≤ 0, z ∈ R,

where g : R → (0,∞) is an arbitrary function with g(0) = g(ei) = 1 and ei is the
i-th unit vector in R

d−1. Then H is an EVD with reverse exponential margins and
dependence function g.

Proof. H is max-stable because

Hn

(
c

n

(
z1, . . . , zd−1, 1 −

∑
i≤d−1

zi

))
= Hn

z

(
c

n

)
= exp

(
cg(z)

)
= H

(
c

(
z1, . . . , zd−1, 1 −

∑
i≤d−1

zi

))

and it has reverse exponential margins. The assertion is now a consequence of the
Pickands representation of H and the preceding lemma.

Corresponding to Lemma 5.4.1 we deduce that the spectral df of a GPD is
equal to a uniform df (in a neighborhood of 0).

Lemma 5.4.3. Let W = 1 + log(G) be a GPD. For c in a neighborhood of 0

Wz(c) = 1 + c D(z),

and, thus, each member Wz of P(W ) coincides in its upper tail with the uniform
df on the interval (−1/D(z), 0), z ∈ R.

The following result is just a reformulation of Lemma 5.4.1 and Lemma 5.4.3.
Put for z = (z1, . . . , zd−1) ∈ R, c ≤ 0 and U = (U1, . . . , Ud) with df H ,
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Mz,U :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

(
maxi:zi>0

Ui

zi
, Ud

1−
∑

i≤d−1
zi

)
, if 0 <

∑
i≤d−1 zi < 1,

maxi:zi>0
Ui

zi
, if

∑
i≤d−1 zi = 1,

Ud, if
∑

i≤d−1 zi = 0,

= max
i≤d

Ui

zd
(5.22)

almost surely, if H is continuous at 0, where zd = 1 −∑
i≤d−1 zi. Recall that this

condition is satisfied for EVD and GPD.

Corollary 5.4.4. We have for z ∈ R and c < 0 that

P (Mz,U ≤ c) =

{
exp(cD(z)), if H = G,

1 + cD(z), if H=W and c close to 0.

Estimation of the Pickands Dependence Function

The rv |Mz,U| is, thus, exponential distributed with parameter D(z) if H = G, and
its df coincides near 0 with the uniform df on (0, 1/D(z)) if H = W . This suggests
in the case H = G the following estimator of D(z), based on n independent copies
U1, . . . , Un of U.

Put, for z ∈ R,
D̂n,EV (z) := 1

1
n

∑
i≤n |Mz,Ui |

The estimator is motivated by the usual estimation of the parameter of an
exponential distribution by the reciprocal of the mean of the observations.

The following result is now immediate from the central limit theorem applied
to D̂n,EV (z). In the case d = 2, the estimator D̂n,EV (z) is known as Pickands
([372]) estimator. A functional central limit theorem and a law of the iterated
logarithm for D̂n,EV (z) was established in the bivariate case by Deheuvels [103].
For further literature on non-parametric estimation of the dependence function for
a multivariate extreme value distribution, we refer to Zhang et al. [471].

Lemma 5.4.5. We have, for z ∈ R as n →∞,

n1/2(D̂n,EV (z) − D(z)) −→D N(0, D2(z)).

Suppose that U has a GPD. Conditional on the assumption that Mz,U ≥
c0 > −1, Mz,U/c0 is uniformly distributed on (0, 1),

P (Mz,U ≥ uc0 | Mz,U ≥ c0) = u, u ∈ (0, 1),

if c0 is close to 0. Consider only those observations among Mz,U1 /c0, . . . , Mz,Un/c0
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with Mz,Ui/c0 ≤ 1. Denote these exceedances by M1, . . . , MK(n), where K(n) =∑
i≤n 1(Mz,Ui /c0 ≤ 1). By Theorem 1.3.1, M1, M2, . . . are independent and uni-

formly on (0,1) distributed rv. The points (i/(K(n) + 1), Mi:K(n)), 1 ≤ i ≤ K(n),
then should be close to the line {(u, u) : u ∈ [0, 1]}. This plot offers a way to
check graphically, whether U has actually a GPD. We will exploit this relation-
ship in Section 5.8 to derive tests for checking the GPD assumption of real data
and thereby finding appropriate thresholds for the POT approach.

If U has an EVD, then we obtain from a Taylor expansion of exp at 0,

P (Mz,U ≥ uc0 | Mz,U ≥ c0) = 1 − exp(uc0D(z))
1 − exp(c0D(z))

= u(1 + O(c0))

uniformly for z ∈ R and u ∈ (0, 1) as c0 ↑ 0. A uniform-uniform plot of the ex-
ceedances M1, . . . , MK(n) would then be close to the identity only for c0 converging
to 0.

Further POT-Stability of W

Pickands coordinates offer an easy way to show further POT-stability of a GPD
W = 1 + log(G); see also Section 5.3. Choose z = (z1, . . . , zd−1) ∈ R, put zd :=
1 − ∑

i≤d−1 zi ∈ (0, 1), and let 0 > rn → 0 be a sequence of arbitrary negative
numbers converging to 0 as n → ∞. Let X = (X1, . . . , Xd) have GPD W . Then
we obtain with 0 > c > −1/D(z) for the conditional distribution if n is large,

P (Xi ≥ rnzi|c|D(z) for some 1 ≤ i ≤ d | Xi ≥ rnzi for some 1 ≤ i ≤ d)

= 1 − W (rn|c|D(z)(z1, . . . , zd))
1 − W (rn(z1, . . . , zd))

= rn|c|(z1 + · · · + zd)D2(z)
rn(z1 + · · · + zd)D(z)

= −cD(z)
= 1 − W (cz)
= P (Xi ≥ czi for some 1 ≤ i ≤ d). (5.23)

The following variant of POT-stability is also satisfied by a GPD W = 1 +
log(G) with dependence function D.

Lemma 5.4.6. Put k = dD(1/d, . . . , 1/d) and choose ti ∈ [−1/k, 0)d, i ≤ d, such
that κ := P (Xi ≥ ti, i ≤ d) > 0, where (X1, . . . , Xd) has df W , and W (x) =
1 + log(G(x)) for x ∈ ×i≤d[ti, 0].

Then we have for 0 ≥ κsi ≥ ti, i ≤ d,

P (Xi ≥ κsi, i ≤ d | Xi ≥ ti, i ≤ d) = P (Xi ≥ si, i ≤ d).
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Proof. The assumption is easy to check:

P (Xi ≥ κsi, i ≤ d | Xi ≥ ti, i ≤ d)

= P (Xi ≥ κsi, i ≤ d)
P (Xi ≥ ti, i ≤ d)

= 1
κ

Δ0
(κs1,...,κsd)W

= 1
κ

∑
m∈{0,1}d

(−1)d−
∑

j≤d
mj W

(
0m1(κs1)1−m1 , . . . , 0md(κsd)1−md

)
=

∑
m∈{0,1}d

(−1)d−
∑

j≤d
mj W

(
0m1s1−m1

1 , . . . , 0mds1−md

d

)
= P (Xi ≥ si, i ≤ d).

Note that
∑

m∈{0,1}d(−1)d−
∑

j≤d
mj = 0 and that the constant function D = 1

is, therefore, excluded from the above considerations, since we have in this case
Δ0

(t1,...,td)W = 0.

For further results on the asymptotic distribution of bivariate excesses using
copulas we refer to Wüthrich [467] and Juri and Wüthrich [279].

The Best Attainable Rate of Convergence

In Theorem 2.1.11 and 2.1.12 we showed that the univariate GPD are characterized
by the fact that they yield the best rate of convergence of the upper extremes in
a sample, equally standardized. In the sequel we extend this result to arbitrary
dimensions.

Let U(1), U(2), . . . be a sequence of independent copies of a rv U with df H ,
which realizes in (−∞, 0]d. Then, Mz,U(1) , Mz,U(2) , . . . defines for any z ∈ R a se-
quence of univariate rv with common df Hz(c) = H(c(z1, . . . , zd−1, 1−∑

i≤d−1 zi)),
c ≤ 0.

Denote for any n ∈ N by Mz,1:n ≤ Mz,2:n ≤ Mz,n:n the ordered values of
Mz,U(1) , . . . , Mz,U(n) , so that Mz,n−k+1:n is the k-th largest order statistic, k =
1, . . . , n.

Suppose that the df H is a GPD H = 1+log(G). Then we obtain by elemen-
tary arguments

sup
z∈R

sup
c≤0

∣∣∣∣∣∣P
(

nMz,n−k+1:n ≤ c

D(z)

)
− P

⎛⎝∑
j≤k

ξj ≤ c

⎞⎠∣∣∣∣∣∣ = O
(k

n

)
, (5.24)

where ξ1, ξ2, . . . are iid rv on (−∞, 0) with common standard reverse exponential
distribution, cf Theorem 2.1.11.
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But also the reverse conclusion holds, as the subsequent Corollary 5.4.8 shows
by putting g(x) = Cx. The following results extend Theorem 2.1.12 and Corollary
2.1.13 to arbitrary dimensions. Suppose that the df H is continuous near 0 and
that Hz(c) is a strictly increasing function in c ∈ [c0, 0] for all z ∈ R and some
c0 < 0.

Theorem 5.4.7. Suppose that there exist norming constants az,n > 0, bz,n ∈ R

such that

Δ(n, k) := sup
z∈R

sup
c∈R

∣∣∣∣∣∣P ((Mz,n−k+1:n − bz,n)/az,n≤c) − P

⎛⎝∑
j≤k

ξj ≤ c

⎞⎠∣∣∣∣∣∣ →n→∞ 0

for any sequence k = k(n) ∈ {1, . . . , n}, n ∈ N, with k/n →n→∞ 0. Then there
exist positive integers a1, a2, . . . , ad such that

H(x) = W
(x1

a1
, . . . ,

xd

ad

)
for all x = (x1, . . . , xd) in a neighborhood of 0, where W = 1 + log(G) is a GPD.

The following consequence is obvious.

Corollary 5.4.8. If there exist norming constants az,n > 0, bz,n ∈ R such that

sup
z∈R

sup
c∈R

∣∣∣∣∣∣P ((Mz,n−k+1:n − bz,n)/az,n ≤ c) − P

⎛⎝∑
j≤k

ξj ≤ c

⎞⎠∣∣∣∣∣∣ ≤ g(k/n),

where g : [0, 1] → R satisfies limx→0 g(x) = 0, then the conclusion of Theorem
5.4.7 holds.

Proof. By repeating the arguments in the proof of the main result in Falk [129],
one shows that there exists c0 < 0 such that, for any z ∈ R and any 0 ≥ c, c′ ≥ c0,

1 − Hz(c)
c

=
1 − Hz(c′)

c′ .

This implies the representation

Hz(c) = 1 + cA(z), z ∈ R, 0 ≥ c ≥ c0,

where
A(z) := 1 − Hz(c′)

|c′|
is independent of c′. The function A(z) will not be a Pickands dependence function
as it does, for example, not necessarily satisfy A(ei) = 1 = A(0) where ei is the
i-th unit vector in R

d−1 and 0 ∈ R
d−1 as well.
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Put, for 1 ≤ i ≤ d − 1,

ai := 1
A(ei)

and ad := 1
A(0)

.

Then we obtain, for x = (x1, . . . , xd) �= 0 in a neighborhood of 0,

H(a1x1, . . . , adxd)

= 1 + (a1x1 + · · · + adxd)A
( a1x1∑

i≤d aixi
, . . . ,

ad−1xd−1∑
i≤d aixi

)
= 1 + (x1 + · · · + xd)D

( x1∑
i≤d xi

, . . . ,
xd−1∑
i≤d xi

)
=: H∗(x1, . . . , xd),

where, with zd := 1 −∑
i≤d−1 zi,

D(z) := (a1z1 + · · · + ad−1zd−1 + adzd)A
( a1z1∑

i≤d aizi
, . . . ,

ad−1zd−1∑
i≤d aizi

)
for any z ∈ R.

Note that we have D(ei) = 1 = D(0) and that for x = (x1, . . . , xd) ∈
(−∞, 0]d, x �= 0,

H∗
(x

n

)n

→n→∞ exp
(

(x1 + · · · + xd)D
( x1∑

i≤d xi
, . . . ,

xd−1∑
i≤d xi

))
=: G(x).

G is, therefore, an EVD with standard reverse exponential margins and, thus, D
is by the Pickands representation of an EVD necessarily a dependence function.
This completes the proof of Theorem 5.4.7.

5.5 Multivariate Domains of Attraction,
Spectral Neighborhoods

The question now suggests itself, whether one can establish a necessary and suffi-
cient condition for H ∈ D(G) in terms of the spectral decomposition of H . This
question leads to the subsequent Theorem 5.5.3. Likewise, we extend the concept
of a δ-neighborhood of a GPD from the univariate case to higher dimensions by
using the spectral decomposition.

The Domain of Attraction

The Gnedenko-de Haan Theorem 2.1.1 provides necessary and sufficient conditions
for a univariate df to belong to the domain of attraction of a univariate EVD. The
concept is less straightforward for the multivariate case; for various characteriza-
tions of the domain of attraction of a multivariate EVD we refer to Section 3.2 of



202 5. Multivariate Generalized Pareto Distributions

Kotz and Nadarajah [293] and to Section 5.4.2 of Resnick [393]. At first we want to
provide an extension of the univariate domain of attraction definition (see (1.20)
in Section 1.3) to the multivariate case.

Definition 5.5.1. Let F be a d-dimensional df. Then we say F belongs to the
domain of attraction of an EVD G, abbr. F ∈ D(G), if there exists constants
an > 0, bn ∈ R

d, n ∈ N, such that

F n(anx+ bn) →n→∞ G(x), x ∈ R
d .

A useful theorem regarding the characterization of a multivariate domain of
attraction goes back to Deheuvels [102] and reads as follows.

Theorem 5.5.2 (Deheuvels). Let X, X1, . . . , Xn be i.i.d d-dimensional rv with
common df F . Then

F n(anx+ bn) →n→∞ G(x) , x ∈ R
,

for some constants an > 0, bn ∈ R
d, n ∈ N, if, and only if, each margin Fi of F

converges to the univariate margin Gi(x) of G, and the convergence of the copulas
holds

Cn
F (u1/n) →n→∞ CG(u), u ∈ (0, 1)d. (5.25)

Proof. See Deheuvels [102] or Galambos [167].

For the following approach regarding the spectral decomposition, it is useful
to recall the Gnedenko-de Haan Theorem 2.1.1 in the case d = 1 and G(x) =
exp(x), x ≤ 0: We have H ∈ D(G) iff ω(H) = sup{x ∈ R : H(x) < 1} < ∞ and

lim
c↑0

1 − H(ω(H) + ct)
1 − H(ω(H) + c)

= t, t > 0.

Now we are ready to state our result for a general dimension d. By H1, . . . , Hd

we denote the marginal df of H and by Hω(x) := H(ω(H) + x), x ∈ (−∞, 0]d,
the shifted df if ω(H) = (ω(H1), . . . , ω(Hd)) are finite numbers. A proof is given
in Falk [137].

Theorem 5.5.3.

(i) Suppose that H ∈ D(G) and that H1 = · · · = Hd. Then we have ω(H1) < ∞
and

∀z ∈ R : lim
c↑0

1 − Hω
z (ct)

1 − Hω
z (c)

= t, t > 0, (5.26)

and
∀z1, z2 ∈ R : lim

c↑0

1 − Hω
z1 (c)

1 − Hω
z2

(c)
= A(z1)

A(z2)
(5.27)

for some positive function A : R → (0,∞).
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(ii) Suppose that ω(Hi) < ∞, 1 ≤ i ≤ d, and that (5.26) and (5.27) hold. Then
we have H ∈ D(G).

If we assume identical margins H1 = · · · = Hd of H , then we obtain from
the preceding result the characterization of the domain of attraction H ∈ D(G) in
terms of the spectral decomposition of H :

H ∈ D(G) ⇐⇒ ω(H1) < ∞ and (5.26) and (5.27) hold.

Theorem 5.5.3 can easily be extended to an EVD with (reverse) Weibull or
Fréchet margins as follows. Suppose that Gα1,...,αd

is an EVD with i-th marginal

Gi(x) = exp(ψαi (x)), 1 ≤ i ≤ d,

where
ψα(x) :=

{ −(−x)α, x < 0, if α > 0,
−xα, x > 0, if α < 0,

defining, thus, the family of (reverse) Weibull and Fréchet df exp(ψα(x)). Note
that

Gα1,...,αd

(
ψ−1

α1
(x1), . . . , ψ−1

αd
(xd)

)
= G1,...,1(x1, . . . , xd), xi < 0, 1 ≤ i ≤ d,

where G1,...,1 = G has reverse exponential margins. Let H be an arbitrary d-
dimensional df and put with ψ = (ψα1 , . . . , ψαd

) for xi < 0, 1 ≤ i ≤ d,

Hψ(x1, . . . , xd) := H
(
ω1 + ψ−1

α1
(x1), . . . , ωd + ψ−1

αd
(xd)

)
where ωi = 0 if αi < 0 and ωi = ω(Hi) if αi > 0. Then we have

Hψ ∈ D (G1,...,1) ⇐⇒ H ∈ D (Gα1,...,αd
)

and Theorem 5.5.3 can be applied.

The Spectral Neighborhood of a GPD

The spectral decomposition provides a comparatively simple sufficient condition
for an arbitrary multivariate df H to belong to the domain of attraction of an
EVD G with reverse exponential margins.

Theorem 5.5.4. Suppose that for any z ∈ R,

1 − Hz(c) = |c|g(z)(1 + o(1)), c ↑ 0, (5.28)

for some function g with g(ei) = 1 = g(0), 1 ≤ i ≤ d− 1. Then, g(z) =: D(z) is a
Pickands dependence function and the df H is in the domain of attraction of the
EVD G with standard reverse exponential margins and dependence function D.
Precisely, we have

Hn
z

( c

n

)
= Hn

( c

n

(
z1, . . . , zd−1, 1 −

∑
i≤d−1

zi

))
−→n→∞ exp(cD(z)), c ≤ 0.
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Before we prove Theorem 5.5.4 we have to add some remarks and definitions.
Note that condition (5.28) is by Hôpital’s rule satisfied if Hz has a positive deriva-
tive hz(c) = (∂/∂c)Hz(c) for c < 0 close to 0 and any z = (z1, . . . , zd−1) ∈ R such
that for some function g with g(ei) = 1 = g(0), 1 ≤ i ≤ d − 1,

hz(c) = g(z)(1 + o(1)). (5.29)

Recall that the spectral decomposition of a GPD W with Pickands depen-
dence function D can be written as 1 − Wz(c) = |c|D(z) for c < 0 close to 0.
Therefore, condition (5.28) is equivalent to the condition that H belongs to the
spectral neighborhood of the GPD W , that is,

1 − Hz(c) = (1 − Wz(c))(1 + o(1)), c ↑ 0, z ∈ R. (5.30)

This condition is related to condition (4.4) in the univariate case.
Likewise, condition (5.29) is equivalent to

hz(c) = D(z)(1 + o(1)) c ↑ 0, z ∈ R. (5.31)

In this case we say that H belongs to the differentiable spectral neighborhood of the
GPD W .

If we weaken the condition g(ei) = 1 = g(0) in Theorem 5.5.4 to g(ei) > 0,
1 ≤ i ≤ d − 1, g(0) > 0, then we obtain

Hn
(x

n

)
−→n→∞ exp

((∑
i≤d

xi

)
g

(
x1∑
i≤d xi

, . . . ,
xd−1∑
i≤d xi

))
=: G(x),

where G is a max-stable df; i.e., Gn(x/n) = G(x). But it does not necessarily have
standard reverse exponential margins, since

G(0, . . . , 0, xi, 0, . . . , 0) =
{

exp(xig(ei)), if i ≤ d − 1,
exp(xdg(0)), if i = d.

In this case we obtain, however, for x ∈ (−∞, 0]d with ai := 1/g(ei), 1 ≤ i ≤
d − 1, ad := 1/g(0),

Hn
( 1

n
(a1x1, . . . , adxd)

)
→n→∞ exp

((∑
i≤d

aixi

)
g
( a1x1∑

i≤d aixi
, . . . ,

ad−1xd−1∑
i≤d aixi

))

= exp
((∑

j≤d

xj

)(∑
i≤d

ai
xi∑

j≤d xj

)
× g

( a1x1/
∑

j≤d xj∑
i≤d aixi/

∑
j≤d xj

, . . . ,
ad−1xd−1/

∑
j≤d xj∑

i≤d aixi/
∑

j≤d xj

))
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= exp
((∑

i≤d

xi

)
D
(

x1/
∑
i≤d

xi, . . . , xd−1/
∑
i≤d

xi

))
=: G∗(x1, . . . , xd),

where with zd := 1 −∑
i≤d−1 zi,

D(z1, . . . , zd−1) :=
(∑

i≤d

aizi

)
g
( a1z1∑

i≤d aizi
, . . . ,

ad−1zd−1∑
i≤d aizi

)
, z ∈ R,

is a Pickands dependence function and G∗ is max stable with standard reverse
exponential margins.

Proof. We have by condition (5.28) for any c < 0

lim
n→∞

Hz(c/n) − 1
c/n

= g(z),

which yields
lim

n→∞ n(Hz(c/n) − 1) = cg(z).

From the expansion log(1 + ε) = ε + O(ε2), as ε → 0, we obtain

Hn
z

( c

n

)
= exp

(
n log

(
1 +

(
Hz

( c

n

)
− 1

)))
= exp

(
n
(

Hz

( c

n

)
− 1

)
+ O

( 1
n

))
−→n→∞ exp(cg(z)).

We, therefore, have, for any x = (x1, . . . , xd) ∈ (−∞, 0]d,

Hn
(x

n

)
→n→∞ exp

((∑
i≤d

xi

)
g
( x1∑

i≤d xi
, . . . ,

xd−1∑
i≤d xi

))
=: G(x) (5.32)

with the convention that the right-hand side equals 1 if x = 0.
From the fact that Hn(0, . . . , 0, xi/n, 0, . . . , 0) converges to exp(xi), xi ≤

0, 1 ≤ i ≤ d, one concludes that g is continuous: We have for arbitrary x =
(x1, . . . , xd), y = (y1, . . . , yd) ∈ (−∞, 0]d,∣∣∣Hn

(x
n

)
− Hn

(y
n

)∣∣∣
≤

∑
i≤d

∣∣∣Hn
(

0, . . . , 0,
xi

n
, 0, . . . , 0

)
− Hn

(
0, . . . , 0,

yi

n
, 0, . . . , 0

)∣∣∣,
see Lemma 2.2.6 in Reiss [385]. By putting yi = xi +εi, 1 ≤ i ≤ d, where ε1, . . . , εd

are small and εi ≤ 0 if xi = 0, we obtain, thus, by (5.32)
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((∑

i≤d

(xi + εi)
)

g
( x1 + ε1∑

i≤d(xi + εi)
, . . . ,

xd−1 + εd−1∑
i≤d(xi + εi)

))
− exp

((∑
i≤d

xi

)
g
( x1∑

i≤d xi
, . . . ,

xd−1∑
i≤d xi

))∣∣∣∣
≤

∑
i≤d

| exp(xi) − exp(xi + εi)|.

Letting εi → 0, 1 ≤ i ≤ d, this inequality implies that g(z), z ∈ R, is a continuous
function. Hence, G(x) is by Lemma 7.2.1 in Reiss [385] a df on (−∞, 0]d. It is
obviously max-stable with standard reverse exponential margins and, hence, it
coincides with its Pickands representation in (5.32), which completes the proof.

In the subsequent lines we modify the concept of a spectral neighborhood of
a GPD.

A Spectral δ-Neighborhood of a GPD

Using the spectral decomposition, we can easily extend the definition of δ-neighbor-
hoods of a univariate GPD to arbitrary dimensions. We say that the df H belongs
to the spectral δ-neighborhood of the GPD W if it is continuous in a neighborhood
of 0 ∈ R

d and satisfies uniformly for z ∈ R the expansion

1 − Hz(c) =
(
1 − Wz(c)

)(
1 + O(| c |δ)

)
(5.33)

for some δ > 0 as c ↑ 0. The EVD G with reverse exponential margins is, for
example, in the spectral δ-neighborhood of the corresponding GPD W with δ = 1.
Because D(z) ≥ 1/d for any z ∈ R we have

1 − Gz(c) = 1 − exp
(
c D(z)

)
= c D(z) + O(c2)

= c D(z)
(
1 + O(c)

)
=

(
1 − Wz(c)

)(
1 + O(c)

)
.

Mardia’s df is, for example, in the δ-neighborhood with δ = 1 of the GPD W with
dependence function D(z) = 1, z ∈ R.

Note that by putting z = ei, 1 ≤ i ≤ d−1, and z = 0, equation (5.33) implies
that the univariate margins of the df H are in the spectral δ-neighborhood of the
uniform distribution on (−1, 0):

P (Ui > c) = | c |(1 + O(| c |δ)
)
, 1 ≤ i ≤ d.

The following result extends the characterization of δ-neighborhoods of a
univariate GPD in Theorem 2.2.5 in terms of the rate of convergence of extremes
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to arbitrary dimensions. A proof for the case d = 2 is given in Falk and Reiss [152];
this proof can easily be extended to general d ≥ 2. For related results on the rate
of convergence of multivariate extremes in terms of probability metrics we refer to
Omey and Rachev [359], de Haan and Peng [191] and the literature cited therein.

Theorem 5.5.5. Let H be a d-dimensional df.
(i) If H is for some δ ∈ (0, 1] in the spectral δ-neighborhood of the GPD W =

1 + log(G), then we have

sup
x∈(−∞,0]d

∣∣∣Hn
(x

n

)
− G(x)

∣∣∣ = O(n−δ).

(ii) Suppose that Hz(c) as defined in (5.33) is differentiable with respect to c in
a neighborhood of 0 for any z ∈ R, i.e., hz(c) := (∂/∂c)Hz(c) exists for
c ∈ (−ε, 0) and any z ∈ R. Suppose, moreover, that Hz satisfies the von
Mises condition

−c hz(c)
1 − Hz(c)

=: 1 + ηz(c) →c↑0 1, z ∈ R,

with remainder term ηz satisfying

sup
z∈R

∣∣∣∣∫ 0

c

ηz(t)
t

dt

∣∣∣∣ →c↑0 0.

If
sup

x∈(−∞,0]d

∣∣∣Hn
(x

n

)
− G(x)

∣∣∣ = O(n−δ)

for some δ ∈ (0, 1], then H is in the spectral δ-neighborhood of the GPD
W = 1 + log(G).

For Mardia’s distribution

Hz(c) =
1∑

i≤d−1 exp(−czi) + exp
(

c
(∑

i≤d−1 zi − 1
))

− (d − 1)

we have, for example,
1 − Hz(c) = −c

(
1 + O(c)

)
and

hz(c) = 1 + O(c)
uniformly for z ∈ R as c ↑ 0 and, thus,

ηz(c) =
−chz(c)

1 − Hz(c)
− 1 = O(c),

uniformly for z ∈ R. The conditions of Theorem 5.5.5 are, therefore, satisfied by
Mardia’s distribution with G(x) = exp(

∑
i≤d xi), x = (x1, . . . , xd) ∈ (−∞, 0]d,

and δ = 1.
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An Estimator of D

An equivalent formulation of condition (5.33) in terms of Mz,U is

P (Mz,U > c) = cD(z)(1 + O(|c|δ))

uniformly for z ∈ R as c ↑ 0. This suggests as an estimator of D(z), based on n
independent copies U1, . . . , Un of U, the relative frequency

D̂n,c(z) := 1
cn

∑
i≤n

1(Mz,Ui > c).

We have
E(D̂n,c(z)) = D(z)(1 + O(|c|δ))

and
Var(D̂n,c(z)) = D(z)

nc
(1 + O(|c|δ)).

The asymptotic normality of D̂n,c(z) is now a consequence of the Moivre-Laplace
theorem.

Lemma 5.5.6. If c = cn < 0 satisfies n|c| → ∞, n|c|1+2δ → 0 as n → ∞, then
we have

(n|c|)1/2(D̂n,c(z) − D(z)) −→D N(0, D(z)),

provided the df of U is in the spectral δ-neighborhood of the GPD with dependence
function D.

The function D̂n,c(z) is neither continuous nor convex in z. Convex estimators
of the dependence function for bivariate EVD are studied, for example, by Tiago
de Oliveira [444], Deheuvels and Tiago de Oliveira [106], Hall and Tajvidi [203] and
Jiménez et al. [272]. Kernel and parametric estimators of the dependence function
were studied by Smith et al. [423] and Abdous et al. [1]. We refer to Section 3.6
of Kotz and Nadarajah [293] for a thorough review of statistical estimation in
multivariate EVD models. For GPD models we present some statistical estimation
procedures in Sections 5.8 to 5.10 and 6.6.

The following corollary provides a sufficient condition for H to belong to the
spectral δ-neighborhood of a GPD W.

Corollary 5.5.7. Suppose in addition to the assumptions of the preceding result
that, for some δ ∈ (0, 1 ],

hz(c) = g(z)
(
1 + O(|c|δ)

)
(5.34)

as c ↑ 0 uniformly for z ∈ R. Then H is in the spectral δ-neighborhood of the
GPD W with Pickands dependence function g and the conclusion of Theorem
5.5.4 applies.
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Proof. The assertion is immediate from the expansion

1 − Hz(c) =
∫

(c,0)
hz(u) du = |c|g(z)

(
1 + O(|c|δ)

)
.

If condition (5.34) holds then H belongs to the differentiable spectral δ-
neighborhood of the GPD W . Notice that, necessarily, g(z) = D(z).

For Mardia’s distribution we have, for example, hz(c) = 1 + O(c) uniformly
for z ∈ R as c ↑ 0. Consequently, by Corollary 5.5.7, Mardia’s distribution is in
the spectral δ-neighborhood with δ = 1 of the GPD W with dependence function
D(z) = 1, z ∈ R, and Theorem 5.5.5 on the speed of convergence applies.

5.6 The Pickands Transform
Let U := (U1, . . . , Ud) be an arbitrary rv, which takes values in (−∞, 0]d, and
denote its df by H . Suppose that H has continuous partial derivatives of order d
near 0 ∈ R

d. Then

h(x1, . . . , xd) := ∂d

∂ x1 · · ·∂ xd
H(x1, . . . , xd)

is a density of H in a neighborhood of 0 (see e.g. Bhattacharya and Rao [43],
Theorem A.2.2). Define the transformation T : (−∞, 0]d \ {0} → R × (−∞, 0) by

T (x) :=
(

x1
x1 + · · · + xd

, . . . ,
xd−1

x1 + · · · + xd
, x1 + · · · + xd

)
=: (z, c), (5.35)

which is the transformation of x = (x1, . . . , xd) onto its Pickands coordinates
z = (z1, . . . , zd−1) and c, see equation (4.31) for the definition of the unit simplex R.
This mapping is one-to-one with the inverse function

T −1(z, c) = c

⎛⎝z1, . . . , zd−1, 1 −
∑

i≤d−1
zi

⎞⎠ . (5.36)

It turns out that the Pickands transform of U onto its Pickands coordinates

(Z, C) := T (U)

has some characteristic features which make it a very useful tool for the investi-
gation of d-variate POT models.

Nadarajah [343] uses this representation of U to provide analytical results
on the tail behavior of a bivariate df in the domain of attraction of a bivariate
max-stable distribution G. Moreover, Coles [71], Section 8.3.2., applies Pickands
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coordinates to show that the intensity of the limiting Poisson point process of the
sequence of point processes Nn =

∑
i≤n εnU(i) , n ∈ N, factorizes across radial and

angular components. By U(1), U(2), . . . we denote independent copies of U, which
has df G with reverse exponential margins. This result goes back to de Haan [188];
see Corollary 5.6.7 below for an extension. Capéraà et al. [59] investigate a non-
parametric estimation procedure for G, which is based on the angular components
Z(i) of U(i), 1 ≤ i ≤ n. For further applications such as the generation of pseudo
rv with distribution G we refer to Section 3 of Kotz and Nadarajah [293].

The Pickands Transform of a GPD Random Vector

The subsequent lemma provides the density of the Pickands transform in case of
a GPD with a smooth dependence function D. For a proof of the following result
see Falk and Reiss [155].

Lemma 5.6.1. Consider a GPD W = 1 + log(G) with a Pickands dependence
function D having continuous partial derivatives of order d. Let U = (U1, . . . , Ud)
be a rv with df W . The Pickands transform T (U) = (Z, C) then has on R×(c0, 0),
with c0 < 0 close to 0, a density f(z, c), which is independent of c. We have

f(z, c) = |c|d−1
(

∂d

∂ x1 · · · ∂ xd
W

)(
T −1(z, c)

)
= ϕ(z) for z ∈ R, c ∈ (c0, 0).

As with many assertions before, the restriction that c0 has to be close enough
to 0 is due to the fact that we have

W (x) = 1 + log(G(x)) = 1 +

⎛⎝∑
i≤d

xi

⎞⎠ D

(
x1∑
i≤d xi

, . . . ,
xd−1∑
i≤d xi

)

only for x close to 0 if d ≥ 3, see Lemma 5.1.5.
It turns out that the angular component Z and the radial component C

are independent, conditional on C > c0. Moreover, C is on (−1, 0) uniformly
distributed and, conditional on C > c0, Z has the density f(z) := ϕ(z)/

∫
R

ϕ(y) dy
on R.

Theorem 5.6.2. Suppose that U = (U1, . . . , Ud) follows a GPD W , where the
dependence function D has continuous partial derivatives of order d and the density

ϕ(z) = |c|d−1(∂d/(∂x1 · · · ∂xd)W )(T −1(z, c)) (5.37)

of the Pickands transform gives positive mass on R:

ζ :=
∫

R

ϕ(z) dz > 0. (5.38)

Then for c0 < 0 close to 0 we have



5.6. The Pickands Transform 211

(i) Conditional on C = U1 + · · · + Ud > c0, the angular component Z =
(U1/C, . . . , Ud−1/C) and the radial component C of the Pickands transform
are independent.

(ii) C follows on (c0, 0) a uniform distribution, precisely

P (C > c) = ζ|c|, c0 ≤ c ≤ 0.

and, thus,

P (C ≥ c | C > c0) = |c|
|c0| , c0 ≤ c ≤ 0.

(iii) Conditional on C > c0, Z has the density

f(z) = ϕ(z)
ζ

, z ∈ R.

Proof. We have for c ∈ (c0, 0),

P (C > c) = P (C > c, Z ∈ R)

=
∫

(c,0)

∫
R

f(z, u) dz du

=
∫

(c,0)

∫
R

ϕ(z) dz du = |c|ζ,

which proves (ii). Further we have for any Borel measurable set B ⊂ R by (i)

P (Z ∈ B|C > c0) = P (Z ∈ B, C > c0)
P (C > c0)

= 1
|c0|ζ

∫
B

∫
(c0,0)

ϕ(z) dc dz = 1
ζ

∫
B

ϕ(z) dz,

which proves (iii). Finally, we have for c0 < c < 0,

P
(
Z ∈ B, C ≥ c

∣∣C > c0
)

= P (Z ∈ B, C ≥ c)
P (C > c0)

= 1
ζ|c0|

∫
B

∫
(c,0)

ϕ(z) dc dz

=
1
ζ

∫
B

ϕ(z) dz
|c|
|c0|

= P (Z ∈ B|C ≥ c0)P (C ≥ c|C ≥ c0)

by (ii) and (iii). This completes the proof of the theorem.
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The function ϕ defined in (5.37) is called Pickands density. Remark that the
Pickands density is the density of a probability measure only after the division by
ζ (in case ζ > 0), else it is the density of a measure, which assigns the mass ζ to
the simplex R.

Note that the constant dependence function D = 1 is not included in the pre-
ceding Theorem 5.6.2 since in this case ∂d/(∂x1 · · ·∂xd)W = ∂d/(∂x1 · · · ∂xd)(1 +∑

i≤d xi) = 0 and, thus,
∫

R ϕ(z) dz = 0. The converse implication∫
R

ϕ(z) dz = 0 ⇒ D = 1

does not hold in general. Consider, e.g., the Pickands dependence function

D(z1, z2) =
(
zλ

1 + zλ
2
)1/λ + (1 − z1 − z2).

It pertains to the df Hλ(x1, x2, x3) = Gλ(x1, x2)G(x3) where Gλ is the logistic df
with λ > 1, cf. Example 4.3.5, and G(x) = exp(x), x < 0, i.e., we have

Hλ(x1, x2, x3) = exp
(
− (

(−x1)λ + (−x2)λ
)1/λ + x3

)
.

Obviously, D �= 1, but for the GPD Wλ belonging to Hλ, i.e.,

Wλ(x1, x2, x3) = 1 − (
(−x1)λ + (−x2)λ

)1/λ + x3,

we have ∂3/(∂x1∂x2∂x3)Wλ = 0 and, thus,
∫

R ϕ(z) dz = 0. However, we can
establish relationships to the pairwise bivariate Pickands dependence functions

Drs(z) := D(zer + (1 − z)es), z ∈ [0, 1], (5.39)

where er and es are the r-th and s-th unit vectors in R
d−1 and ed := 0 ∈ R

d−1,
r, s ∈ {1, . . . , d}. To justify the definition in (5.39) let X = (X1, . . . , Xd) be a d–
variate random vector whose df is a d–variate EVD G with Pickands dependence
function D. Then the bivariate marginal df of the random vector (Xr, Xs), r, s ∈
{1, . . . , d}, r �= s, is a bivariate EVD with the above Pickands dependence function
Drs.

Lemma 5.6.3. Let ϕ be the Pickands density of a d-variate GPD W with Pickands
dependence function D as given in Lemma 5.4.1. Then we have

(i) D = 1 ⇐⇒ Drs = 1 for every pair r, s ∈ {1, . . . , d},

(ii)
∫

R ϕ(z) dz = 0 ⇐⇒ Drs = 1 for at least one pair r, s ∈ {1, . . . , d}.
Proof. The necessity of D = 1 in part (i) follows directly from the definition
(5.39) of the pairwise bivariate Pickands dependence functions. The sufficiency
can be deduced from Theorem 4.3.3, which entails the equivalence of complete
and pairwise bivariate independence of the margins of a multivariate EVD, by
using the representation (4.31) of an EVD in terms of the Pickands dependence
function. For a proof of part (ii) we refer to Lemma 1.2 in Frick and Reiss [162].
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From Lemma 5.6.3 it follows again that D = 1 implies
∫

R
ϕ(z) dz = 0. And

obviously we have ∫
R

ϕ(z) dz = 0 ⇐⇒ D = 1 (5.40)

in the bivariate case and if D satisfies the symmetry condition (4.34) since all the
pairwise bivariate Pickands dependence functions are equal in this case.

Moreover, we deduce from Lemma 5.6.3 that
∫

R ϕ(z) dz > 0 stands for tail
dependence since it implies D �= 1. The case

∫
R

ϕ(z) dz = 0 represents tail inde-
pendence in at least one bivariate marginal distribution.

Differentiable δ-Neighborhoods of Pickands Transforms

We can easily extend Theorem 5.6.2 to certain differentiable δ-neighborhoods of
GPD. Let U = (U1, . . . , Ud) be a rv such that the corresponding Pickands trans-
form (Z, C) has for some c0 < 0 a density f(z, c) on R × (c0, 0). Suppose that the
density satisfies for some δ > 0 the expansion

f(z, c) = ϕ(z) + O(|c|δ) (5.41)

uniformly for z ∈ R. Then we say that the df H of U is in the differentiable
δ-neighborhood of the GPD W with dependence function D.

The max-stable df G is, for example, in the differentiable δ-neighborhood of
W = 1+log(G) with δ = 1 (Falk and Reiss [155]). The df of Z in the bivariate case
with underlying max-stable df G has been derived by Ghoudi et al. [179]; under
the additional assumption that the second derivative of the dependence function
D exists, the density of (Z, C) was computed by Deheuvels [103].

Theorem 5.6.4. Suppose that the df H of U is for some δ > 0 in the differentiable
δ-neighborhood of the GPD W with dependence function D. Suppose that ζ =∫

R
ϕ(z) dz > 0. Conditional on C > c0, the corresponding transform (Z, C/c0)

then has a density fc0(z, c) which satisfies

fc0(z, c) = ϕ(z)
ζ

+ O(|c0|δ)

uniformly on R × (0, 1) as c0 ↑ 0.

Under the conditions of the previous theorem, Z and C/c0 are asymptotically
for c0 ↑ 0 independent, conditional on C > c0, where Z has in the limit the density
f(z) = ϕ(z)/ζ and C/c0 is uniformly on (0, 1) distributed. This will be formulated
in the subsequent corollary. Note that the variational distance between probability
measures equals 1/2 times the L1-distance between their densities with respect to
a dominating measure, see, for example, Lemma 3.3.1 in Reiss [385].



214 5. Multivariate Generalized Pareto Distributions

Corollary 5.6.5. Let Z∗, C∗ be independent rv, Z∗ having density f on R and
C∗ being uniformly distributed on (0, 1). Denote by B the σ-field of Borel sets in
R × [0, 1]. Then we obtain from Theorem 5.6.4 that

sup
B∈B

∣∣P (
(Z, C/c0) ∈ B | C > c0

)− P
(
(Z∗, C∗) ∈ B

)∣∣
= 1

2

∫
R

∫
[0,1]

|fc0(z, c) − f(z)| dc dz = O(|c0|δ).

The asymptotic independence of Z and C, conditional on C > c0 explains,
why the intensity measure of the limiting Poisson process of the sequence of point
processes of exceedances in Corollary 5.6.7 below factorizes across radial and an-
gular components, which was first observed by de Haan [188], see also Section 8.3.2
of Coles [71].

Expansions of Pickands densities of Finite Length with

Regularly Varying Functions

The first-order condition (5.41) characterizing the differentiable δ-neighborhood
of a GPD was refined to a higher-order condition by Frick and Reiss [162] who use
an expansion of f(z, c) again with ϕ(z) as a leading term.

Let U = (U1, . . . , Ud) be an arbitrary rv on (−∞, 0]d, whose Pickands trans-
form has a density f(z, c) on R × (c0, 0) for c0 < 0 close to 0. Assume that

f(z, c) = ϕ(z) +
k∑

j=1
Bj(c)Ãj(z) + o(Bk(c)), c ↑ 0, (5.42)

uniformly for z ∈ R for some k ∈ N, where the Ãj : R → R, j = 1, . . . , k, are
integrable functions. In addition, we require that the functions Bj : (−∞, 0) →
(0,∞), j = 1, . . . , k, satisfy

lim
c↑0

Bj(c) = 0 (5.43)

and
lim
c↑0

Bj(ct)
Bj(c)

= tβj , t > 0, βj > 0. (5.44)

Without loss of generality, let β1 < β2 < · · · < βk. We say that the density f(z, c)
satisfies an expansion of length k + 1 if the conditions (5.42)-(5.44) hold. Recall
that in analogy to (2.17) a function fulfilling condition (5.44) is regularly varying
in 0 with βj being the exponent of variation. According to Resnick [393] one can
always represent a β-varying function as |c|βL(c), where L is slowly varying in
0 meaning that the exponent of variation is zero. The functions Bj(c) = |c|βj ,
j = 1, . . . , k, e.g., satisfy the preceding conditions.
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Due to the properties of slowly varying functions the density in (5.42) also
satisfies

f(z, c) = ϕ(z) +
κ∑

j=1
Bj(c)Ãj(z) + o(Bκ(c)), c ↑ 0, (5.45)

for any 1 ≤ κ ≤ k. With regard to the testing problem in Section 6.5 the existence
of an index j such that

∫
R Ãj(z) dz �= 0 is essential. Then it is appropriate to

choose κ as
κ = min

{
j ∈ {1, . . . , k} :

∫
R

Ãj(z) dz �= 0
}

. (5.46)

If k = 1, we write B and Ã instead of B1 and Ã1, respectively, and denote
the exponent of variation of B by β.

The Pickands density of an EVD G satisfies the expansion

f(z, c) = ϕ(z) +
∞∑

j=1
|c|jÃj(z)

uniformly for z ∈ R, where c ∈ (c0, 0) with c0 < 0 close to 0. Because the Ãj

are uniformly bounded on the simplex R the expansions can be reduced to an
expansion of arbitrary finite length.

The d-variate standard normal distribution N (0, Σ) with positive definite cor-
relation matrix Σ, transformed to reverse exponential margins possesses a Pickands
density that satisfies the expansion

fΣ(z, c) = B(c)Ã(z) + o(B(c)), c ↑ 0,

with

B(c) = |c|
∑d

i,j=1
σij −1

L(c),

L(c) = (− log |c|)
∑

d

i,j=1
σij /2−d/2

,

and

Ã(z) = (det Σ)−1/2(4π)
∑

d

i,j=1
σij /2−d/2

d∏
i,j=1

(zizj)(σij −δij)/2,

where Id = (δij)i,j=1,...,d and Σ−1 = (σij)i,j=1,...,d. The function B is regularly
varying in 0 with the exponent of variation β =

∑d
i,j=1 σij − 1 > 0, cf. Example 3

in Frick and Reiss [162].
Expansions of Pickands densities can be used to characterize the dependence

structure of the underlying rv. Particularly, the first term ϕ(z) distinguishes be-
tween tail dependence and (marginal) tail independence according to Lemma 5.6.3.
In Section 6.1 we establish a relationship to spectral expansions, and in Section 6.5
expansions of Pickands densities are used to test the tail dependence in arbitrary
dimensions.
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The POT Approach Based on the Pickands Transform

Let now U(i) = (U (i)
1 , . . . , U

(i)
d ), 1 ≤ i ≤ n, be iid rv with common df H , which is

in a differentiable δ-neighborhood of a GPD with ζ =
∫

R
ϕ(z) dz > 0. Denote by

(Z(i), C(i)), 1 ≤ i ≤ n, the corresponding Pickands transforms.
Fix a threshold c0 < 0 and consider only those observations among the sample

(Z(i), C(i)/c0), 1 ≤ i ≤ n, with C(i) > c0. We denote these by (Z̃(j), C̃(j)/c0), 1 ≤
j ≤ K(n), where K(n) =

∑
j≤n 1(C(j) > c0) is binomial B(n, p(c0)) distributed

with parameters n and p(c0) = P (C(j) > c0) = |c0|(ζ + O(|c0|δ)).
We obtain from Theorem 1.3.1 that the exceedances (Z̃(j), C̃(j)/c0), j =

1, 2, . . ., are independent copies of (Z̃, C̃/c0), which realizes in R × [0, 1] and has
the distribution P ((Z, C/c0) ∈ ·|C > c0). From Corollary 5.6.5 we deduce in the
sequel that the empirical point process of the exceedances can be approximated in
variational distance within the bound O(n|c0|1+δ) by the empirical point process
of (Z∗

j , C∗
j ), 1 ≤ j ≤ K(n), which are independent copies of (Z∗, C∗) defined in

Corollary 5.6.5.
We represent the sample (Z̃(j), C̃(j)/c0), 1 ≤ j ≤ K(n), by means of the

empirical point process

Nn,c0 :=
∑

j≤K(n)

ε(Z̃(j),C̃(j)/c0).

The empirical process Nn,c0 is a random element in the set M(R × [0, 1])
of all finite point measures on (R × [0, 1],B), equipped with the smallest σ-field
M(R× [0, 1]) such that for any B ∈ B the projection M(R× [0, 1]) � μ �→ μ(B) is
measurable; see the discussion around (1.3) in Section 1.1.

Let (Z∗
1, C∗

1 ), (Z∗
2, C∗

2 ), . . . be independent copies of (Z∗, C∗), which are also
independent of K(n). Denote by

N∗
n,c0 :=

∑
j≤K(n)

ε(Z∗
j

,C∗
j

)

the point process pertaining to (Z∗
1, C∗

1 ), . . . , (Z∗
K(n), C∗

K(n)). By d(ξ, η) we denote
the variational distance between two random elements ξ, η in an arbitrary mea-
surable space (M,M):

d(ξ, η) = sup
M∈M

|P (ξ ∈ M) − P (η ∈ M)|.

Theorem 5.6.6. Suppose that the df of U is for some δ > 0 in the differen-
tiable δ-neighborhood of a GPD with dependence function D. We assume that
ζ =

∫
R ϕ(z) dz > 0. Then we have

d(Nn,c0 , N∗
n,c0

) = O(n|c0|1+δ).
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Proof. From Corollary 1.2.4 together with Corollary 5.6.5 we obtain

d(Nn,c0 , N∗
n,c0) ≤ E(K(n))d((Z̃, C̃/c0), (Z∗, C∗)) = O(n|c0|1+δ).

We replace now the binomial distributed rv K(n) by a Poisson distributed
one τ(n) with parameter E(τ(n)) = n|c0|ζ, which is stochastically independent of
(Z∗

1, C∗
1 ), (Z∗

2, C∗
2 ), . . . From the triangular inequality, Lemmata 1.2.1, 1.2.2, 3.1.4

and Theorem 5.6.6 we derive the bound

d
(

Nn,c0 ,
∑

j≤τ(n)

ε(Z∗
j

,C∗
j

)

)
= O

(
n|c0|1+δ + |c0| + (n|c0|)1/2|c0|δ

)
.

Choose L < 0 and put c0 = L/n. Then we obtain

d(Nn,L/n, N∗
L) = O(n−δ),

where
N∗

L :=
∑

j≤τ(n)

ε(Z∗
j

,C∗
j

)

is a Poisson process with intensity measure

ν(B) = E(N∗
L(B)) = E(τ(n))P ((Z∗ , C∗) ∈ B)

= |L|ζ
∫

B

f(z) dc dz = |L|
∫

B

ϕ(z) dc dz, B ∈ B,

which is independent of n.
Since the function T (x) = (z, c) is one-to-one, we obtain now the following

result, which goes back to de Haan [188]; see also Section 8.3.2 of Coles [71]. It
provides in addition a bound for the rate of convergence of

NL
n :=

∑
j≤K(n)

ε(n/L)Ũ(j) =
∑

j≤K(n)

ε
T −1(Z̃(j),C̃(j)/(L/n))

to the Poisson process
N∗L

T :=
∑

j≤τ(n)

εT −1(Z∗
j

,C∗
j

),

whose intensity measure factorizes across radial and angular components. By
Ũ(1), Ũ(2), . . . we denote those observations in the sample U(1), U(2), . . . , U(n)

whose radial Pickands coordinates satisfy C(i) ≥ L/n.

Corollary 5.6.7. With the preceding notation we have under the conditions of
Theorem 5.6.6, for any L < 0,

d(NL
n , N∗L

T ) = d(Nn,L/n, N∗
L) = O(n−δ).
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The Pickands Transform for a General EVD

In the sequel we will introduce the Pickands transform for a d-dimensional EVD G
with arbitrary univariate EVD margins. The family of non-degenerate univariate
EVD can be parametrized by α ∈ R with

Gα(x) =

{
exp

(− (−x)α
)
, x ≤ 0

1, x > 0
for α > 0,

Gα(x) =

{
0, x ≤ 0
exp(−xα), x > 0

for α < 0

and
G0(x) := exp(−e−x), x ∈ R,

being the family of (reverse) Weibull, Fréchet and the Gumbel distribution; see
Section 2.2. Note that G1 is the standard reverse exponential df.

We denote in what follows by Gα with α = (α1, . . . , αd) ∈ R
d a d-dimension-

al max-stable df, whose i-th univariate margin is equal to Gαi , i ≤ d. The corre-
sponding GPD is any df Wα such that for x with Gα(x) in a neighborhood of 1

Wα(x) = 1 + log
(
Gα(x)

)
.

The univariate margins of Wα coincide in their upper tails with those of the usual
one-dimensional GPD, see Section 1.3. The df G with reverse exponential margins
and the corresponding GPD, which we considered above, would now be denoted
by G(1,...,1) and W(1,...,1).

The following auxiliary function will be crucial for our further investigation.
Put, for x ∈ R with 0 < Gαi (x) < 1,

ψαi(x) := log
(
Gαi (x)

)
=

⎧⎪⎨⎪⎩
−(−x)αi , x < 0, if αi > 0
−xαi , x > 0, if αi < 0
−e−x, x ∈ R, if αi = 0.

Note that ψαi is a strictly monotone and continuous function, whose range is
(−∞, 0).

The next result will be crucial for the definition of the Pickands transform
for arbitrary Gα and Wα.

Lemma 5.6.8. Suppose that the rv X = (X1, . . . , Xd) has df Gα. Put

Ui := ψαi (Xi), 1 ≤ i ≤ d.

Then U = (U1, . . . , Ud) has df G(1,...,1).
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Proof. Since Gαi (Xi) is uniformly distributed on (0, 1), it is obvious that Ui =
log(Gαi (Xi)) has df exp(x) = G1(x), x < 0. It remains to show that the df of
(U1, . . . , Ud), H say, is max-stable. But this follows from the fact that Gα is max-
stable with Gn

αi
(ψ−1

αi
(x/n)) = Gαi (ψ−1

αi
(x)): We have for xi < 0, 1 ≤ i ≤ d,

H(x1/n, . . . , xd/n)n = P
(
Ui ≤ xi/n, 1 ≤ i ≤ d

)n

= P
(
Xi ≤ ψ−1

αi
(xi/n), 1 ≤ i ≤ d

)n

= P
(
Xi ≤ ψ−1

αi
(xi), 1 ≤ i ≤ d

)
= H(x1, . . . , xd).

Lemma 5.6.8 can also be formulated as

Gα

(
ψ−1

α1 (x1), . . . , ψ−1
αd

(xd)
)

= G(1,...,1)(x1, . . . , xd), xi < 0, i ≤ d. (5.47)

The max-stability of Gα is, thus, preserved by the transformation of each univari-
ate marginal onto the reverse exponential distribution.

Corollary 5.6.9. Suppose that X = (X1, . . . , Xd) has common df Wα. Put

Ui := ψαi (Xi), 1 ≤ i ≤ d.

Then U = (U1, . . . , Ud) has common df W(1,...,1).

Proof. We have for c0 < xi < 0, i ≤ d, c0 close to 0:

P (Ui ≤ xi, i ≤ d) = P
(
Xi ≤ ψ−1

αi
(xi), 1 ≤ i ≤ d

)
= 1 + log

(
Gα

(
ψ−1

α1
(x1), . . . , ψ−1

αd
(xd)

))
= 1 + log

(
G(1,...,1)(x1, . . . , xd)

)
= W(1,...,1)(x1, . . . , xd).

The preceding result can also be formulated as

Wα

(
ψ−1

α1 (x1), . . . , ψ−1
αd

(xd)
)

= W(1,...,1)(x1, . . . , xd), c0 < xi < 0, i ≤ d,

c0 close to 0.
As a consequence of the above results we can represent an arbitrary Gα as

Gα(x1, . . . , xd)
= G(1,...,1)

(
ψα1 (x1), . . . , ψαd

(xd)
)

= exp
((∑

i≤d

ψαi (xi)
)

D
( ψα1(x1)∑

i≤d ψαi (xi)
, . . . ,

ψαd−1(xd−1)∑
i≤d ψαi(xi)

))
=: exp

(
cαD(zα)

)
,

where D is a dependence function as defined in (4.32). Equally, we have

Wα(x1, . . . , xd) = W(1,...,1)
(
ψα1 (x1), . . . , ψαd

(xd)
)

= 1 + cαD(zα),
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whenever cα =
∑

i≤d ψαi (xi) is close enough to 0.
The functions cα and zα now provide the Pickands transform of a rv X =

(X1, . . . , Xd) with df Gα or Wα: Put

Cα :=
∑
i≤d

ψαi (Xi),

Zα :=
(ψα1 (X1)

Cα
, . . . ,

ψαd−1 (Xd−1)
Cα

)
.

By the fact that Ui = ψαi (Xi), 1 ≤ i ≤ d, have joint df G(1,...,1) or W(1,...,1), it
is obvious that Theorems 5.6.2, 5.6.4 and Corollary 5.6.5 on the (asymptotic) dis-
tribution and independence of the angular and radial component of the Pickands
transform in the case α = (1, . . . , 1) immediately apply to Cα and Zα with arbi-
trary α. Put for Gα,

Gψ
α(x) := Gα

(
ψ−1

α1
(x1), . . . , ψ−1

αd
(xd)

)
,

where xi < 0, 1 ≤ i ≤ d. From Lemma 5.6.8 we know that Gψ
α = G(1,...,1) and,

hence, we obtain from Lemma 5.4.1, for the spectral decomposition of Gψ
α ,(

Gψ
α

)
z(c) = Gα

(
ψ−1

α1 (cz1), . . . , ψ−1
αd−1

(czd−1), ψ−1
αd

(
c
(

1 −
∑

i≤d−1
zi

)))
= exp

(
cD(z)

)
, c < 0, z ∈ R. (5.48)

P(Gψ
α) is, thus, the family of reverse exponential distributions with parameter

D(z), z ∈ R. Equally, we obtain for

W ψ
α (x1, . . . , xd) := Wα

(
ψ−1

α1 (x1), . . . , ψ−1
αd

(xd)
)

from Corollary 5.6.9 and Lemma 5.4.3,(
W ψ

α

)
z(c) = Wα

(
ψ−1

α1
(cz1), . . . , ψ−1

αd

(
c
(

1 −
∑

i≤d−1
zi

)))
= 1 + cD(z1, . . . , zd−1), c ≥ c0.

The members of the family P(W ψ
α ) coincide, thus, in their upper tails with the

family of uniform distributions on the interval (−1/D(z), 0), z ∈ R. The preceding
results in this section now carry over to P(Gψ

α) and P(W ψ
α ).

Example 5.6.10 (Hüsler-Reiss). Consider the bivariate Hüsler-Reiss EVD with
parameter λ ∈ [0,∞) ,

Hλ(x1, x2) = exp
(
−Φ

(
λ + x1 − x2

2λ

)
e−x2 − Φ

(
λ + x2 − x1

2λ

)
e−x1

)
,
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for x1, x2 ∈ R, where Φ denotes the standard normal df. Hλ is max-stable with
Gumbel margins, i.e., we have Hλ = G(0,0). From (5.48) we obtain, for c < 0 and
z ∈ [0, 1],

Hλ

(
ψ−1

0 (cz), ψ−1
0 (c(1 − z))

)
= Hλ (− log(z) − log(|c|),− log(1 − z) − log(|c|))

= exp
(

c

(
Φ
(

λ + log((1 − z)/z)
2λ

)
(1 − z) + Φ

(
λ + log(z/(1 − z))

2λ

)
z

))
=: exp

(
c Dλ(z)

)
,

where Dλ(z), z ∈ [0, 1], is a dependence function as given in (4.32) with d = 2.
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Figure 5.6.1. Dependence functions of the bivariate Hüsler-Reiss df with
parameters λ = 1, 1.5, 2, 2.5; from bottom to top.

5.7 Simulation Techniques
A crucial point for further investigation of multivariate GPD and their practical
application to real data sets is the need for simulations. Possible applications of the
simulation methods, which will be presented in this section, are of course Monte-
Carlo and bootstrapping methods. Another usage is a first check of new statistical
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testing or estimation procedures in multivariate GPD models, as it will be done
in Sections 5.8 to 5.10 and 6.6.

Not much attention has been paid to the simulation of multivariate GPD so
far. Michel [330] and [331] are among the very few contributions to this topic and
are the basis of the simulation techniques which we are going to present. Hofmann
[222] adds an algorithm for the generation of a rv from a nested logistic GPD in
dimension d = 3. Clearly, the representation X = U/Z in Proposition 5.2.8 of a
GPD rv X entails its simulation via the uniformly distributed on (0, 1) rv U and
the independent rv Z. But it is by no means obvious, how to simulate this way a
target GPD such as a logistic one.

A summary of the work done on the simulation of multivariate EVD can be
found in Stephenson [425].

Simulation of GPD with Bounded Pickands Density

The algorithm introduced here is based on the so-called rejection method and the
transformation to Pickands coordinates (5.35). The method presented here will be
applicable for low dimensions only due to computational reasons, but it has the
advantage of being able to simulate a broad variety of GPD, namely those with a
bounded Pickands density.

We shortly describe the rejection method in general. Suppose we want to
simulate a distribution F on a compact set A ⊂ R

d. Let g(x) = mf(x) be a
constant multiple of the density f of F . We require that g is bounded by some
number M . Then Algorithm 5.7.1 describes the rejection method for the generation
of one rv with df F .

Algorithm 5.7.1.

1. Generate a rv X = (X1, . . . , Xd), uniformly distributed on A.

2. Generate a random number Y independent of X, which is uniformly dis-
tributed on [0, M ].

3. Return X if Y ≤ g(X), else go to 1.

It is obvious that Algorithm 5.7.1 can be very inefficient, since a lot of points
might have to be generated to get a “useable” one.

A natural scheme for the simulation of a GPD W is the application of the
rejection method to W . However, even in the most common cases like the logistic
case, the density of a GPD is not bounded, see Section 4.2 of Michel [331]. There-
fore, the rejection method is not directly applicable. In many cases, however, a
detour via Pickands coordinates can be helpful.

The idea is to generate the Pickands coordinates Z and C of a rv, which
follows W , separately. These are by Theorem 5.6.2 independent under C > c0
and, in addition, C is uniformly distributed on (c0, 0) and, thus, easy to simulate.
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For the generation of Z we can apply the rejection method if its density f
and, thus, the Pickands density ϕ = ζ · f are bounded. This is for example the
case with the logistic GPD, see Theorem 2.4 in Michel [331], but also for many
other cases like the asymmetric logistic model and large parts of the nested logistic
model, see Section 2.3 of Michel [330]. Since Z lies in the d − 1-dimensional unit
simplex R, one needs to simulate the uniform distribution on R. This can be done
by the following algorithm, which is investigated in Corollary 4.4 of Michel [331].

Algorithm 5.7.2. Set k:=0 and, for i = d − 1, . . . , 1, do

1. Generate a uniformly distributed number xi on (0, 1), independent of xj ,
i + 1 ≤ j ≤ d − 1.

2. Compute ui := (1 − k)
(
1 − (1 − xi)1/i

)
.

3. Put k := k + ui.

Return the vector (u1, . . . , ud − 1).

To generate now the rv Z, one uses the Pickands density ϕ for the applica-
tion of the rejection method, since for the use of f the number ζ would have to
be calculated, which is possible only approximately and only with great numerical
effort. In the end one has to invert the Pickands transformation to get the de-
sired rv. The algorithm below implements these considerations and is the desired
simulation algorithm.

Algorithm 5.7.3.

1. Generate a vector (z1, . . . , zd−1), which has density f , with Algorithm 5.7.1
applied to the Pickands density ϕ, where the uniform distribution on the unit
simplex R is done by Algorithm 5.7.2.

2. Generate, independent of (z1, . . . , zd−1), a number c, uniformly distributed
on (c0, 0).

3. Return the vector
(

cz1, . . . , czd−1, c − c
∑d−1

i=1 zi

)
.

Remark that Algorithm 5.7.3 only simulates a GPD under the condition C >
c0. We will show later, how this condition can dropped to simulate unconditional
GPD.

Experimental and theoretical investigations of Algorithm 5.7.3 in Section 3.2
of Michel [330] show that runtimes explode for large d. Thus, the algorithm is in
general only suited for low dimensions.
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A Special Case: Simulation of GPD of Logistic Type

In the special case of the logistic GPD a simulation algorithm can be used which
does not have the runtime disadvantages of Algorithm 5.7.3. It is based on the Shi
transformation (Shi [413]), which is a variant of the Pickands transformation for
the logistic case. It will be introduced next.

The mapping P : (0,∞) × (0, π/2)d−1 → (0,∞)d with

P (r, ψ1, . . . , ψd−1)

= r

⎛⎝cos(ψ1), cos(ψ2) sin(ψ1), . . . , cos(ψd−1)
d−2∏
j=1

sin(ψj),
d−1∏
j=1

sin(ψj)

⎞⎠ (5.49)

is the polar transformation, and its inverse defines the polar coordinates r, ψ =
(ψ1, . . . , ψd−1) in (0,∞)d. The following facts are well known (see, for example,
Mardia et al. [319], Section 2.4): the mapping P is one-to-one, infinitely often
differentiable and satisfies the equation

1 = ||P (1, ψ1, . . . , ψd−1)||22 =
d−1∑
i=1

cos2(ψi)
i−1∏
j=1

sin2(ψj) +
d−1∏
j=1

sin2(ψj), (5.50)

i.e., the function P (1, ψ1, . . . , ψd−1) is a one-to-one mapping from (0, π/2)d−1 ⊂
R

d−1 onto the intersection of (0,∞)d with the unit sphere of Rd with respect to
the Euclidian || · ||2-norm.

Lemma 5.7.4. The mapping T : (0, π/2)d−1 → (0,∞)d, defined by

T (ψ1, . . . , ψd−1)

:=

⎛⎝cos2(ψ1), cos2(ψ2) sin2(ψ1), . . . , cos2(ψd−1)
d−2∏
j=1

sin2(ψj),
d−1∏
j=1

sin2(ψj)

⎞⎠ ,

maps the cube (0, π/2)d−1 one-to-one and infinitely often differentiable onto the
simplex S =

{
x ∈ (0, 1)d :

∑
i≤d xi = 1

}
, i.e., to the unit circle in (0,∞)d, minus

the unit vectors, with regard to the || · ||1-norm.

Proof. The function x �→ x2 maps the interval (0, 1) one-to-one onto itself, thus
the bijectivity and differentiability of T follow from the corresponding properties
of the polar transformation. Let (x1, . . . , xd) = T (ψ1, . . . , ψd−1). By (5.50) the
relation

∑d
i=1 xi = 1 directly follows.

We have ∥∥∥∥∥
(

(−x1)λ

‖x‖λ
λ

, . . . ,
(−xd)λ

‖x‖λ
λ

)∥∥∥∥∥
1

= 1
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for x ∈ (−∞, 0)d and λ ≥ 1 and, thus,
(

(−x1)λ/ ‖x‖λ
λ , . . . , (−xd)λ/ ‖x‖λ

λ

)
∈

S. This point has a representation with regard to the transformation T . More
precisely, there exist a uniquely determined (ψ1, . . . , ψd−1) ∈ (0, π/2)d−1 with(

(−x1)λ

‖x‖λ
λ

, . . . ,
(−xd)λ

‖x‖λ
λ

)

=

⎛⎝cos2(ψ1), cos2(ψ2) sin2(ψ1), . . . , cos2(ψd−1)
d−2∏
j=1

sin2(ψj),
d−1∏
j=1

sin2(ψj)

⎞⎠ .

By taking the λ-th root, multiplying with −‖x‖λ and putting c := ‖x‖λ one
arrives at

x = (x1, . . . , xd)
= STλ (c, ψ1, . . . , ψd−1)

:= −c

(
cos2/λ(ψ1), cos2/λ(ψ2) sin2/λ(ψ1), . . . , cos2/λ(ψd−1)

d−2∏
j=1

sin2/λ(ψj),

d−1∏
j=1

sin2/λ(ψj)

)
.

This transformation is called the Shi transformation STλ. The transformation
STλ : (0,∞) × (0, π/2)d−1 → (−∞, 0)d is one-to-one and infinitely often differen-
tiable. The components of the vector (c, ψ1, . . . , ψd−1) := ST −1

λ (x1, . . . , xd) are
the Shi coordinates of (x1, . . . , xd), where c is called the radial component and
ψ := (ψ1, . . . , ψd−1) is the angular component. Note that c = ‖x‖λ. The corre-
sponding random Shi coordinates of a rv will be denoted as usual with upper case
letters.

Note that in the case λ = 2 the Shi transformation is up to sign the polar
transformation from (5.49). For λ = 1 we have a variant of the inverse Pickands
transformation, where the angular component has an additional parametrization
with regard to the cube (0, π/2)d−1.

The Shi transformation was originally introduced in Shi [413] and was used
by Stephenson [425] to simulate the rv following an extreme value distribution of
logistic type.

With the following theorem we establish a basis for a simulation algorithm for
the logistic GPD Wλ. As a helpful notation let Bλ

r := {x ∈ (−∞, 0)d : ‖x‖λ < r},
r > 0, be the ball in (−∞, 0)d of radius r with respect to the ‖·‖λ-norm, centered
at the origin.

Theorem 5.7.5. Let X = (X1, . . . , Xd) follow a logistic GPD Wλ with parameter
λ > 1. Choose a number c0 > 0, such that Wλ(x) = 1 − ‖x‖λ on Bλ

c0
. Then the
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rv (C, Ψ1, . . . , Ψd−1) = ST −1
λ (X) has, under the condition X ∈ Bλ

c0
, on (0, c0) ×

(0, π/2)d−1 the density

f(c, ψ1, . . . , ψd−1) = f(ψ1, . . . , ψd−1) =
d−1∏
i=1

(
2i − 2

λ

)
cos(ψi) sin2(d−i)−1(ψi).

Additionally, f has positive mass on (0, π/2)d−1:

η :=
∫
(0, π

2 )d−1
f(ψ1, . . . , ψd−1) d(ψ1, . . . , ψd−1) =

d−1∏
i=1

(
i − 1

λ

d − i

)
> 0.

Furthermore, we have, conditional on C = ‖X‖λ < c0:

(i) The random Shi coordinates C, Ψ1, . . . , Ψd−1 are independent.

(ii) The rv C is on (0, c0) uniformly distributed.

(iii) The angular component Ψi has the df

Fi(ψ) := sin2(d−i)(ψ), 0 ≤ ψ ≤ π/2,

with the corresponding quantile function F −1
i (u) = arcsin

(
u1/(2(d−i))), 0 <

u < 1, i = 1, . . . , d − 1.

Proof. The proof follows the lines of the proof of Theorem 5.6.2. The somewhat
lengthy details are worked out in Section 3.1 of Michel [330].

Theorem 5.7.5 is analogous to Theorem 5.6.2, but with the restriction to the
logistic case and using the Shi transformation. While in Theorem 5.6.2 the inde-
pendence of the angular and the radial component of Pickands coordinates for
general GPD could be shown, Theorem 5.7.5 states in addition the mutual inde-
pendence of the angular components. We are also able to specify their distributions
precisely. But recall that we are restricting ourselves to the logistic case.

In what follows, we will apply Theorem 5.7.5 to derive an algorithm for the
simulation of GPD of logistic type in general dimension.

Algorithm 5.7.6.

1. Generate U1 uniformly on (0, c0) and U2, . . . , Ud uniformly on (0, 1), all mu-
tually independent.

2. Compute Ψi := F −1
i (Ui+1) for i = 1, . . . , d − 1.

3. Return the vector (X1, . . . , Xd) = STλ(U1, Ψ1, . . . , Ψd−1).
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Example 5.7.7. Figure 5.7.1 illustrates results of Algorithm 5.7.6 for d = 2 and 3
and miscellaneous λ. In each plot 1000 points were generated. The generated points
arrange themselves in a sort of d-dimensional cone, whose peak lies in the origin
and whose center is the line xi = xj , i, j = 1, . . . , d , the bisector of the negative
quadrant. The lower end is naturally bounded by ‖x‖λ = c0. The parameter λ
describes the width of the cone. For λ close to 1 it is opened very wide, for larger
λ it becomes more narrow.

These plots will inspire us in Section 5.10 to develop testing methods for
logistic GP models.

Chapter 7 of Hofmann [222] shows a generalization of the Shi transformation
to the nested logistic model and uses it to develop an analogous simulation algo-
rithm in dimension d = 3. Other generalizations of the Shi transformation are to
date unknown to the authors.

Simulation of Unconditional GPD

Previously in this section we have introduced simulations of GPD, which are only
able to simulate conditional GPD in a neighborhood of the origin. One encounters a
problem, if unconditionally GP distributed rv are to be simulated. In this situation,
the POT-stability of a GPD as formulated in Lemma 5.4.6, will enable us to
overcome this problem.

Since a Pickands dependence function D satisfies D(z) ≤ 1 for all z ∈ R, we
conclude k := dD(1/d, . . . , 1/d) ≤ d and, with the choice of ti ∈ [−1/d, 0), the
corresponding assumptions in Lemma 5.4.6 are fulfilled by Theorem 5.1.4 for all
GPD W .

Corollary 5.7.8. Let the rv Y follow an arbitrary GPD W . Put κ := P (Y ≥ t),
where t = (t, . . . , t) ∈ (−1/d, 0)d and suppose that κ > 0. Furthermore, let the rv
X be conditionally GP distributed, i.e., P (X ≥ x) = W̄ (x)/κ for x ≥ t, where
we denote by W̄ the survivor function of W . Then Y and X/κ are close to 0
identically distributed and, thus, X/κ is GP distributed.

Proof. By Theorem 5.1.4 we can assume that W (x) = 1 + log(G(x)) for x ≥ t.
Thus, we have by Lemma 5.4.6

P (X ≥ x) = W̄ (x)
κ

= P (Y ≥ x)
P (Y ≥ t)

= P (Y ≥ x | Y ≥ t)

= P
(

Y ≥ x
κ

κ | Y ≥ t
)

= P
(

Y ≥ x
κ

)
= P (κY ≥ x)

Thus X and κY are identically distributed close to 0 and, therefore, also Y and
X/κ.
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Figure 5.7.1. Simulated logistic GPD rv for d = 2 (top) and d = 3 (bottom),
for λ = 1.2, 2, 3, 6 each time.
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Corollary 5.7.8 provides a straightforward manner of getting GPD rv from
conditionally GPD rv. It suffices to simulate conditional GPD, as done in Algo-
rithms 5.7.6 or 5.7.3. A division by κ turns them into unconditionally GPD rv,
since only the distribution close to the origin is crucial for the definition of a GPD.

Algorithm 5.7.9.

1. Generate n rv x1, . . . , xn in the cube Kt := (−t, 0)d, which are conditionally
distributed by a GPD (for example with the help of Algorithm 5.7.6 for the
logistic type or Algorithm 5.7.3 for other cases, rejecting those rv, which are
outside Kt). Choose t, for example, as −1/(2d).

2. Compute κ = W̄ (t, . . . , t) and yi := xi/κ, i = 1, . . . , n.

3. Return y1, . . . , yn.

5.8 Testing the GPD Assumption,
Threshold Selection

When applying GPD models to actual data sets, the first task is to check whether
a GPD model really fits the data, at least in the upper tail. Hand in hand with
this problem comes the question, well known from the univariate case: what is the
appropriate choice of a threshold, over which one can model the observations as
coming from a GPD?

By making suggestions how to handle these problems, the contribution of this
section is twofold: First we develop a non-asymptotic and exact level-α test based
on the single-sample t-test, which checks whether multivariate data are actually
generated by a multivariate GPD. The idea for this test was already described
in the remarks after Lemma 5.4.5. Its performance is evaluated by theoretical
considerations and by simulations using the simulation algorithms of Section 5.7.
This procedure is also utilized for deriving a Gauss-test based threshold selection
in multivariate POT models.

Testing for a Multivariate GPD

Let U = (U1, . . . , Ud) be an arbitrary rv in (−∞, 0)d with P (U > x) > 0 for
all x = (x1, . . . , xd) < 0 close to 0. Note that max(Uk/xk, k ∈ K) < t ⇐⇒
Uk/xk < t, k ∈ K ⇐⇒ Uk > txk, k ∈ K, for any non-empty set K ⊂ {1, . . . , d}
and t ∈ [0, 1]. The following characterization of a multivariate GPD with uniform
margins is just a reformulation of Proposition 5.3.4,

Corollary 5.8.1. The rv U follows a GPD with uniform margins iff for any
x = (x1, . . . , xd) < 0 close to 0,

P

(
max

(
Uk

xk
, k ∈ K

)
< t | max

(
Uk

xk
, k ∈ K

)
< 1

)
= t, t ∈ [0, 1],
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for any non-empty subset K ⊂ {1, . . . , d}.

By putting xk = x < 0 for k = 1, . . . , d, we obtain from Corollary 5.8.1 that
for a GPD rv U and x close to 0 we have

P (‖U‖∞ < t |x| | ‖U‖∞ < |x|) = t, t ∈ [0, 1], (5.51)

i.e., the ‖·‖∞-norm of U is uniformly distributed, conditional on exceeding some
small threshold near zero. Similar results to (5.51) have been shown for the ‖·‖1-
norm in Theorem 5.6.2 and, in addition, for the usual λ-norm in case of a logistic
dependence function in Theorem 5.7.5.

The theoretical results derived above can now be utilized to develop a testing
procedure for multivariate GPD.

Suppose that we observe n independent copies U1, . . . , Un of a rv U, not
necessarily following a GPD. Corollary 5.8.1 suggests the following procedure to
test for an underlying GPD with uniform margins: choose x < 0 close to 0, deter-
mine the exceedance vectors Uj > x and test the maxima of the vectors Uj/x for
the uniform distribution on (0, 1), where division is meant componentwise.

Denote the exceedances in the order of their outcome by V1, . . . , VK(n) and
by

Mm := max
(

Vm,1
x1

, . . . ,
Vm,d

xd

)
, m ≤ K(n),

the largest value of the scaled components of the m-th exceedance Vm. Then,
by Theorem 1.3.1, M1, M2, . . . are, for x close to 0, independent and uniformly
on (0, 1) distributed rv if U follows a GPD with uniform margins and they are
independent of their total number K(n). To test for this uniform distribution we
could use any goodness-of-fit test such as the single-sample Kolmogorov-Smirnov
test statistic

KS := K(n)1/2 sup
0≤t≤1

∣∣∣∣∣∣ 1
K(n)

∑
m≤K(n)

1[0,t](Mm) − t

∣∣∣∣∣∣
= max

m≤K(n)

(
max

(
Mm:K(n) − m − 1

K(n)
,

m

K(n)
− Mm:K(n)

))
, (5.52)

where M1:K(n) ≤ M2:K(n) ≤ · · · ≤ MK(n):K(n) denote the ordered values of
M1, . . . , MK(n).The asymptotic distribution of KS is known, so that a p-value
can also be computed, see e.g. Sheskin [412], pages 241 ff.

A goodness-of-fit test, however, commonly uses a limit distribution of the
test statistic and, therefore, requires a sample size which is not too small. This
condition contradicts the fact that we will typically observe only a few exceedances
above a high threshold. A non-asymptotic test is, therefore, preferred such as the
following suggestion.
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We transform M1, . . . , MK(n) by the inverse Φ−1 of the standard normal df
Φ(x) = (2π)−1/2 ∫ x

−∞ exp(−y2/2) dy and, thus, obtain iid standard normal rv

Zm := Φ−1(Mm), m ≤ K(n),

under the null hypothesis of an underlying GPD with uniform margins. The next
result is an immediate consequence.

Theorem 5.8.2. Let U1, . . . , Un be independent copies of a rv U that follows a
GPD with uniform margins. Suppose that P (U > x) > 0 for all x < 0 close to 0.
The test statistic of the single-sample t test

tK(n) =
1

K(n)1/2

∑
m≤K(n) Zm(

1
K(n)−1

(∑
m≤K(n) Z2

m − 1
K(n)

(∑
m≤K(n) Zm

)2
))1/2 (5.53)

then follows a t distribution with k − 1 degrees of freedom, conditional on k =
K(n) ≥ 2.

We reject the null hypothesis that the rv U follows a GPD with uniform
margins if

∣∣tK(n)
∣∣ gets too large or, equivalently, if the corresponding p-value

p = 2
(
1 − TK(n)−1(

∣∣tK(n)
∣∣)) (5.54)

gets too small, typically if p ≤ 0.05. By Tk we denote the df of the t distribution
with k degrees of freedom. Note that the preceding test is a conditional one, given
the number K(n) of exceedances.

Note, on the other hand, that the above test for a multivariate GPD with
uniform margins is not fail-safe. Consider X = (X1, . . . , Xd), where the Xi are iid
rv with df F (y) = 1 − (−y)1/d, −1 ≤ y ≤ 0. Then we have for any x ∈ [−1, 0)d

P (X > tx | X > x) = t, t ∈ [0, 1],

but the df of X is not a GPD with uniform margins. To safeguard oneself against
such a counterexample one could test the univariate excesses for a one-dimensional
uniform distribution on (0, 1) as well.

Performance of the Test

To study the performance of the above test we consider in what follows n inde-
pendent copies X1, . . . , Xn of a rv X = (X1, . . . , Xd), which realizes in (−∞, 0)d

and where the df F satisfies for t ∈ (0, 1) and x ≤ 0, x �= 0, in a left neighborhood
U of 0 the expansion

d
dt(1 − F (tx))
d
dt (1 − W (tx))

= 1 + J

(
x

‖x‖1

)
(1 − W (tx))δ + r(t, x), (5.55)
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with some δ > 0, where W is the df of a GPD with uniform margins, J(·) is
a function on the set S := {z ≤ 0 : ‖z‖1 = 1} of directions in (−∞, 0)d and the
function r(·, ·) satisfies uniformly for t ∈ (0, 1) and x ∈ U the expansion r(t, x) =
o
(
(1 − W (tx))δ

)
.

Notice that condition (5.55) implies by l’Hôpital’s rule that F and W are tail
equivalent if the function K is bounded, i.e.,

lim
x↑0

1 − F (x)
1 − W (x)

= 1.

Condition (5.55) is a condition on the spectral decomposition of F , see Sec-
tions 5.4 and 5.5. It essentially requires that the df F is in the differentiable
δ-spectral neighborhood of W , i.e., the tracks F (|t|x), t ≤ 0, belong to the wide
class of Hall [202]. It is, for example, satisfied with δ = 1 and J = 1 if F is an
EVD G with negative exponential margins and W = 1 + log(G).

Choose a non-empty subset L ⊂ {1, . . . , d}, x ∈ U , x < 0, and put xL =
(x̃1,L, . . . , x̃d,L) with x̃i,L = xi if i ∈ L and x̃i,L = 0 elsewhere, and set x̃L :=(
x̃1,L/

∑
i∈L xi, . . . , x̃d−1,L/

∑
i∈L xi

)
. The following lemma is established in Falk

and Michel [147], Lemma 4.1.

Lemma 5.8.3. Suppose that the rv X satisfies condition (5.55). Choose x < 0
in U , a sequence of numbers cn ↓ 0 as n → ∞, and put xn := cnx, n ∈ N. If
A(x) :=

∑
j≤d(−1)j+1 ∑

|L|=j ‖xL‖1 D(x̃L) > 0, then we obtain, uniformly for
t ∈ [0, 1],

P (X > txn | X > xn)

= t +
cδ

n

δ + 1

(
t(tδ − 1)

B(x)
A(x)

+
(
t1+δ(1 − t) + t(1 − t1+δ)

)
o(1)

)
,

where B(x) :=
∑

j≤d(−1)j+1 ∑
|L|=j ‖xL‖1+δ

1 D1+δ(x̃L)K(xL/ ‖xL‖1).

Note that the condition A(x) > 0 in Lemma 5.8.3 is a rather weak one, as
we have A(x) ≥ 0 anyway.

Consider now the exceedances Xi > xn = cnx among X1, . . . , Xn. De-
note these by V(n)

1 , . . . , V(n)
K(n), where the number K(n) is binomial distributed

B(n, p(n)) with p(n) = P (X > xn) = cn(A(x) + O(cδ
n)), and K(n) is independent

of the exceedances V(n)
1 , V(n)

2 , . . . Then, by Lemma 5.8.3,

M (n)
m = max

(
V

(n)
m,1

cnx1
, . . . ,

V
(n)

m,d

cnxd

)
, m ≤ K(n),
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are iid with df

F (n)(t) := P (X > txn)
P (X > xn)

= t

(
1 + cδ

n

1 + δ

(
(tδ − 1)B(x)

A(x)
+

(
tδ(1 − t) + (1 − t1+δ)

)
o(1)

))
for 0 ≤ t ≤ 1. Denote by F (t) = t, 0 ≤ t ≤ 1, the df of the uniform dis-
tribution on (0, 1). Note that E

(
Φ−1

(
M

(n)
1

))
=

∫ 1
0 Φ−1(t) F (n)(dt) and that∫ 1

0 Φ−1(t) F (dt) =
∫ 1

0 Φ−1(t) dt = 0. Integration by parts together with the substi-
tution t �→ Φ(y) implies

E
(

Φ−1
(

M
(n)
1

))
=

∫ 1

0
Φ−1(t) (F (n) − F )(dt)

=
∫ 1

0
Φ−1(t) d

dt
(F (n)(t) − t) dt

= −
∫ 1

0

d

dt
(Φ−1(t))(F (n)(t) − t) dt

= −
∫ 1

0

1
ϕ(Φ−1(t))

(F (n)(t) − t) dt

= −
∫ ∞

−∞

1
ϕ(y)

(F (n)(Φ(y)) − Φ(y))ϕ(y) dy

=
∫ ∞

−∞

cδ
n

1 + δ
Φ(y)(1 − Φδ(y))B(x)

A(x)
dy + o(cδ

n)

= cδ
n

1 + δ

B(x)
A(x)

∫ ∞

−∞
Φ(y)(1 − Φδ(y)) dy + o(cδ

n)

= const cδ
n + o(cδ

n).

The single-sample t test computed from the transformed exceedances Z
(n)
m =

Φ−1(M (n)
m ), 1 ≤ m ≤ K(n),

tK(n) =
1

K(n)1/2

∑
m≤K(n) Z

(n)
m(

1
K(n)−1

(∑
m≤K(n) Z

(n)2
m − 1

K(n)

(∑
m≤K(n) Z

(n)
m

)2
))1/2

=
1

K(n)1/2

∑
m≤K(n)(Z

(n)
m − E(Z(n)

1 ))(
1

K(n)−1

(∑
m≤K(n) Z

(n)2
m − 1

K(n)

(∑
m≤K(n) Z

(n)
m

)2
))1/2

+ K(n)1/2E(Z(n)
1 )(

1
K(n)−1

(∑
m≤K(n) Z

(n)2
m − 1

K(n)

(∑
m≤K(n) Z

(n)
m

)2
))1/2
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will, thus, converge to infinity in probability and detect that the underlying df
is not a GPD, if K(n)1/2E(Z(n)

1 ) tends to infinity. Since K(n)/(np(n)) → 1 in
probability if np(n) ∼ ncn →∞ as n →∞, the deviation from a GPD is detected
if (ncn)1/2cδ

n → ∞, i.e., if nc1+2δ
n →∞ as n →∞.

Simulation of the Test

We want to illustrate the performance of the above test for an underlying GPD
by showing some simulations. The test actually tests for a (shifted) GPD copula,
and its performance seems to be reasonably good if a threshold x = (x, x, . . . , x)
with identical entries is used.

Each of the following plots displays the points (j/100, pj/100), −100 ≤ j ≤ −1
with linear interpolation, where pj/100 is the p-value defined in (5.54) based on the
threshold xT = (j/100, . . . , j/100). Note that within a graphic the same sample
is used for the 100 tests, only the threshold is chosen differently each time. Since
only very few observations are dropped when raising the threshold from j/100 to
(j + 1)/100, these 100 interpolation points suffice to get stable results.

By the choice of the threshold with identical components, the results of var-
ious tests and different thresholds can elegantly be plotted into one graphic with
the thresholds on the horizontal and the p-values on the vertical axis. The thick
line in the graphics represents the p-values using the t-test (5.54), the thin line
is the corresponding p-value using the KS-test statistic (5.52). For reference an
additional horizontal line is drawn at the 5%-level. Recall that a p-value below 5%
typically leads to a rejection of the null hypothesis.

To provide the number K(n) of observations the test with threshold j/100
uses, a dashed line connects the points (j/100, n−1 ∑n

i=1 1(xT ,0)(xi)) in each plot,
i.e., the relative number of points exceeding the corresponding threshold. The
number of observations exceeding the thresholds −0.8, −0.6, −0.4 and −0.2 is
also given in the second line of the labelling of the horizontal axis.



5.8. Testing the GPD Assumption, Threshold Selection 235

�0.8

222

�0.6

162

�0.4

106

�0.2

55

0

0

0.2

0.4

0.6

0.8

1
n � 300, d � 2, Λ � 6

�0.8

310

�0.6

229

�0.4

156

�0.2

70

0

0

0.2

0.4

0.6

0.8

1
n � 600, d � 3, Λ � 3

�0.8

41

�0.6

30

�0.4

18

�0.2

10

0

0

0.2

0.4

0.6

0.8

1
n � 300, d � 2, Λ � 1.2

�0.8

142

�0.6

108

�0.4

76

�0.2

42

0

0

0.2

0.4

0.6

0.8

1
n � 300, d � 2, Λ � 2

Figure 5.8.1. Plots for logistic GP distributed rv.

Figure 5.8.1 shows plots with simulated data from a logistic GPD W (x) =
1−‖x‖λ with different values of λ, sample sizes n and dimensions d. The data were
generated by Algorithms 5.7.6 and 5.7.9. We see that only in a very few cases the
true hypothesis of GPD rv is rejected. The few rejections are not surprising, since
each plot displays the outcome of 100 tests (on the same data set but with different
thresholds). Both, the t-test and the KS-test, therefore, keep their prescribed levels.
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Figure 5.8.2. Plots for rv following a logistic extreme value copula.

Figure 5.8.2 shows the results of the tests with underlying EVD G(x) =
exp(−||x||λ), x ≤ 0, transformed to uniform margins, thus simulating an ex-
treme value copula. The data were generated with the help of Algorithm 1.1 from
Stephenson [425]. Since GPD and EVD are tail equivalent, the tests do not detect
a deviation from the null hypothesis close to 0, but only away from the origin.
Note also the dependence of the power of the test on the parameter λ.
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Figure 5.8.3. Plots for rv following a normal copula.

In Figure 5.8.3 normal vectors with constant correlation coefficient ρ for all
bivariate components, which are transformed to uniform margins on (−1, 0) are
used, i.e., the data are generated by a shifted normal copula. Since a shifted mul-
tivariate normal copula is in the domain of attraction of exp(−||x||1), x ≤ 0, the
appropriate GPD model fitting the exceedances would be W (x) = 1−||x||1, which
is, however, a peculiar case. With this GPD underlying the data no observation
should be close to the origin, see Section 5.2, and thus a GPD should not be de-
tected in our simulations. This can be observed in Figure 5.8.3 for low correlations,
as the null hypothesis is not rejected only in those cases with a very small number
of exceedances. A high coefficient of correlation, however, decreases the power of
our test. Such a phenomenon is also discussed in Coles [71], Section 8.4. The KS
test seems to have here less power than the t-test as well.
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A t-Test Based Threshold Selection in Multivariate POT

Models

The choice of an appropriate threshold is very much an open matter, even in the
univariate case. The selection is typically supported visually by a diagram such as
the mean excess plot, see for example Davison and Smith [94]. In what follows we
will utilize the test for a multivariate GPD developed previously to derive a t-test
based multivariate threshold selection rule.

We consider in this section a rv X = (X1, . . . , Xd) that is in the domain of
attraction of an EVD G with negative exponential margins, i.e., there exist vectors
an > 0, n ∈ N, with an ↓n→∞ 0, and a vector b ∈ R

d such that the df F of X
satisfies

F n(anx + b) →n→∞ G(x), x ∈ R
d. (5.56)

By xy = (xiyi)i≤d we denote as usual the componentwise product of two vectors
x, y ∈ R

d. The vector b is the upper and finite endpoint of the support of F . For
convenience we assume that b is known and we set it to 0.

Note that a rv X with continuous marginal df Fi, i ≤ d, is in the domain of
attraction of an EVD with arbitrary margins implies that the transformed vector
(Fi(Xi)−1)i≤d is in the domain of attraction of an EVD G with negative standard
exponential margins, see Resnick [393], Proposition 5.10. The df of the transformed
rv then satisfies (5.56) with b = 0 and an = (1/n, . . . , 1/n).

Taking logarithms we obtain from (5.56),

n(1 − F (anx)) →n→∞ − log(G(x)), x ≤ 0. (5.57)

Define the decreasing and continuous function a : [1,∞) → (0,∞)d by a(n) := an,
n ∈ N, and by linear interpolation for n < s < n + 1. It then follows from (5.57)
that

s(1 − F (a(s)x)) →s→∞ − log(G(x)), x ≤ 0.

Observe that − log(G(x)) = 1−W (x) for x near 0, where W denotes a GPD
corresponding to G. From equation (4.7) we obtain, for t ∈ [0, 1],

P (X > ta(s)x) =
∑
j≤d

(−1)j+1
∑

|L|=j

(1 − P (Xk ≤ tak(s)xk, k ∈ L))

and, thus, for x < 0 near 0 with Proposition 5.3.4,

P (X > ta(s)x | X > a(s)x)

=
∑

j≤d(−1)j+1 ∑
|L|=j s (1 − F (tan,LxL))∑

j≤d(−1)j+1 ∑|L|=j s (1 − F (an,LxL))

→s→∞

∑
j≤d(−1)j+1 ∑

|L|=j(1 − W (txL))∑
j≤d(−1)j+1 ∑|L|=j(1 − W (xL))

= t. (5.58)
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This means that the df of an exceedance X > xT above a threshold xT close to 0
approaches the uniform distribution on (0, 1).

Suppose that we have n independent copies X1, . . . , Xn of X and that we
are interested in some upper tail analysis of X. To this end we choose a threshold
xT < 0 close to 0 and consider only those observations among the sample which
exceed this threshold. We denote these exceedances by Y1 . . . , YK(n), which can
be handled as independent copies of a rv Y. From (5.58) we obtain that the df

P (Y > txT ) = P (X > txT | X > xT ) ≈ t

is close to the uniform df on (0, 1). The selection of the threshold xT such that the
above approximation is close enough for practical purposes is an obvious problem.
Choosing the threshold very close to 0 improves the above approximation but
reduces the number K(n) of exceedances, which is a trade-off situation. In the
univariate case d = 1 the selection of a threshold xT can, for example, be supported
visually by a diagram such as the empirical mean excess function

ê(xT ) = 1
K(n)

∑
j≤K(n)

Yj

xT
≈ E

(
Y

xT

)
≈ 1

2

as proposed by Davison and Smith [94], which should be close to the constant
1/2 if xT is close enough to 0 and K(n) is large enough, see, e.g. Section 2.2 of
Reiss and Thomas [390]. The considerations in this section can also be utilized
for a t-test based threshold selection xT as described in the sequel.

Denote again by

Mm = max
(

Ym,1
xT,1

, . . . ,
Ym,d

xT,d

)
, m ≤ K(n),

the largest component of the excess vector (Ym,1/xT,1, . . . , Ym,d/xT,d). Then the
rv M1, M2, . . . are independent copies of a univariate rv M with df

P (M ≤ t) = P (X > txT | X > xT ) ≈ t, t ∈ [0, 1],

if xT is close enough to 0.
The single-sample t-test statistic tK(n) as given in (5.53) of the transformed

rv Zm = Φ−1(Mm), m ≤ K(n), can then be utilized for a threshold selection: Fix
x0 < 0 and put x(c) := cx0, c > 0. One could use the smallest c =: cT > 0 such
that the p-value of

∣∣tK(n)
∣∣ for the corresponding threshold xT = cT x0 is bigger

than some prescribed value such as 0.05. This threshold selection can be used to
decide above which threshold an approximation of the underlying df by a GPD is
justified. We refer to Section 7 of Falk and Michel [147] for an application of this
rule to a real data set.
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5.9 Parametric Estimation Procedures
Since searching for appropriate models in a non-parametric family like the GPD
family can be too ambitious, one way out is to look for models in certain parametric
subfamilies. Once one has decided for one such subfamily, one has to identify the
corresponding model parameters. This is usually done by estimation methods.

In this section we present a short overview of several methods for parametric
estimation in GPD models, which use decompositions of the corresponding rv
with the help of different versions of the Pickands coordinates. The estimators are
compared to each other with simulated data sets.

We will present two ML methods based on the angular density and one
which uses the Pickands the angular density. Relative frequencies will be needed
for another estimation procedure. Since the overview will be a short summary, the
interested reader is referred to Michel [330] and [333] for details.

The Pickands Transformation Reloaded

Recall that with R =
{

x ∈ (0, 1)d−1 :
∑

i≤d−1 xi < 1
}

being the open and R̄ the
closed unit simplex in R

d−1, the Pickands dependence function D : R̄ → [0, 1] of
an arbitrary GPD W with standard uniform margins can be written as

D(t1, . . . , td−1) (5.59)

=
∫

R̄

max

(
u1t1, . . . , ud−1td−1,

(
1 −

d−1∑
i=1

ui

)(
1 −

d−1∑
i=1

ti

))
ν(du),

where ν is the angular measure on R̄, with characteristic properties

ν
(
R̄
)

= d and
∫

R̄

uiν(du) = 1, 1 ≤ i ≤ d − 1, (5.60)

see Section 4.3.
By d∗ := ν (R) we denote the mass of ν in the interior of R̄; recall that

by (5.60) we have ν
(
R̄
)

= d and, thus, 0 ≤ d∗ ≤ d. If the measure ν, restricted
to Rd−1, possesses a density, we denote it by l and call it the angular density. In
the literature it is also common to call the angular measure/density the spectral
measure/density, see for example Einmahl et al. [121].

We have already introduced the Pickands coordinates as an important tool
for analyzing a GPD in Section 5.6, since they decompose a GPD rv into two con-
ditionally independent components, under the condition that the radial component
exceeds some high value. The conditional distribution of the radial component is
a uniform distribution, the angular component has the density f(z) := ϕ(z)/ζ,
where ϕ is the Pickands density.

We define now a variant of the Pickands coordinates, which will also prove
very useful.
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The transformation TF : (−∞, 0)d → R × (−∞, 0), defined by

TF (x) :=

( 1
x1

1
x1

+ · · · + 1
xd

, . . . ,

1
xd−1

1
x1

+ · · · + 1
xd

,
1
x1

+ · · · +
1
xd

)
(5.61)

=: (z1, . . . , zd−1, c),

is the transformation to Pickands coordinates z := (z1, . . . , zd−1) and c with respect
to Fréchet margins, where z is again called the angular component and c the radial
component.

The transformation (5.61) is closely related to the Pickands transforma-
tion (5.35). We have, in addition, applied the transformation 0 < y �→ 1/y which
conveys exponentially distributed rv to Fréchet rv, which is a common marginal
transformation in extreme value theory. We, therefore, use the symbol TF .

The distributions of the radial and angular components of the Pickands co-
ordinates with respect to Fréchet margins are asymptotically known. To explain
these, we need some additional notation.

By

Ks :=
{

x ∈ (−∞, 0)d : ‖x‖∞ < s
}

, s > 0, (5.62)

we denote the (open) cube with edge length s in the negative quadrant. For r, s >
0, let

Qr,s :=
{

z ∈ R : T −1
F (z,−r) ∈ Ks

}
(5.63)

be the set of angular components of the Pickands transformation with respect to
Fréchet margins of the points in the cube Ks, whose radial component has the
value −r. This set can also be written as

Qr,s =

⎧⎨⎩z ∈ R : zi >
1
rs

, i ≤ d − 1,
∑

i≤d−1
zi < 1 − 1

rs

⎫⎬⎭ .

Put for r , s > 0,

χ(r, s) :=
∫

Qr,s

l(z) dz. (5.64)

Then we have χ(r, s) ↑r→∞ d∗, since Qr,s ↑r→∞ R.
One can show that

P (Z ∈ B | C = −r, Z ∈ Qr,s) = 1
χ(r, s)

∫
B∩Qr,s

l(z) dz (5.65)

with Z and C being the random Pickands coordinates with respect to Fréchet
margins corresponding to the GPD W, and B is some Borel set in R. One can,
further, show that

sup
B∈Bd−1∩R

∣∣∣∣P (Z ∈ B | X ∈ Ar,s) −
∫

B

l(z)
d∗ dz

∣∣∣∣ = O (d∗ − χ(r, s)) , (5.66)
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where Bd−1 is the Borel-σ-field in R
d−1 and

Ar,s :=

⎧⎨⎩x ∈ Ks : c =
∑
i≤d

1
xi

< −r

⎫⎬⎭ . (5.67)

Altogether, the angular Pickands coordinate Z with respect to Fréchet margins
has asymptotically, for r → ∞, the conditional density l(z)/d∗, which is a scaled
version of the angular density. For the highly technical proofs of the preceding re-
sults we refer to Theorems 5.1.6 and 5.1.7 of Michel [330]. The rate of convergence
of the approximation depends on the rate of convergence of χ to d∗. In cases close
to independence of the margins, this convergence is typically very slow, whereas in
cases close to complete dependence of the margins this convergence will be quite
fast, see Example 5.1.5 of Michel [330].

ML Estimation with the Angular Density

We introduce two ML based estimation procedures for a parametric family of GPD.
For general information on the ML method we refer to Section 2.6 of Coles [71]
and Section 4.2 of Serfling [408].

In what follows, we assume that we have n independent copies X̃(1), . . . , X̃(n)

of a rv X̃, which follows a GPD Wλ1,...,λk
from a k-parametric family, which

satisfies Wλ1,...,λk
(x) = 1+log(G(x)) for x ∈ Ks, where G is an EVD with standard

negative exponential margins. Let Wλ1,...,λk
have the angular density lλ1,...,λk

, and
suppose that d∗

λ1,...,λk
> 0. To keep the notation as simple as possible we set

λ := (λ1, . . . , λk), where λ ∈ Λ ⊂ R
k.

We further consider only the copies with
∥∥∥X̃(i)

∥∥∥
∞

< s and denote by Z̃(i)

and C̃(i) the corresponding random Pickands coordinates with respect to Fréchet
margins, i = 1, . . . , n. We choose a threshold r > 0 and consider only those obser-
vations X̃(i) with C̃(i) < −r, i.e., X̃(i) ∈ Ar,s. We denote these by X(1), . . . , X(m).
They are independent from each other and from the random number m = K(n),
see Theorem 1.3.1.

The corresponding Pickands coordinates Z(i) with respect to Fréchet margins
have a density that is not exactly known, but which is close to lλ(z)/d∗

λ, see (5.66).
This is a suitable approach for an ML estimation of λ: Determine λ̂m,r such that
the expression

Υ(λ) := log

(
m∏

i=1

lλ
(
Z(i))
d∗
λ

)
=

m∑
i=1

log

(
lλ

(
Z(i))
d∗
λ

)

is maximized in λ.
Asymptotic consistency, normality and efficiency of ML estimators have been

extensively studied; see, for example Pfanzagl [367]. We, however, do not use the
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exact ML procedure, since we do not insert the observations into their density,
but into a function, which is only close to it. We, therefore, refer to this approach
as the asymptotic ML method. The asymptotic distribution of the above defined
asymptotic MLE λ̂m,r is, under suitable regularity conditions for m → ∞ and
r →∞, again the normal distribution with mean λ and covariance matrix V−1

λ :=
(vλ,j1,j2 )−1

j1,j2=1,...,k , where

vλ,j1,j2 :=
∫

R

d∗
λ

lλ(z)

(
∂

∂λj1

lλ(z)
d∗
λ

)(
∂

∂λj2

lλ(z)
d∗
λ

)
dz.

The matrix Vλ is the Fisher information matrix. The estimator is, thus,
asymptotically efficient in the sense that the covariance matrix of its limiting
normal distribution for m → ∞, r → ∞ is the inverse of the Fisher information
matrix, see Section 4.1.3 in Serfling [408]. The exact regularity conditions and
the proof of the asymptotic normality are somewhat technical and lengthy. They
follow the approach presented in Section 4.2 of Serfling [408]. For the details we
refer to Theorem 6.1.2 of Michel [330].

As stated above, the approximation of the density of the Z(i) by lλ/d∗
λ is

quite crude for fixed r, if one is close to the independence case, due to the slow
convergence of χ in this case. Under the additional condition C(i) = −ri and
Z(i) ∈ Qri,s, we know from (5.65) that the Z(i) have the density

l̃λ,ri(z) =

{
lλ(z)

χλ(ri,s) for z ∈ Qri,s,

0 else.

This can be used for a conditional approach of a MLE of λ = (λ1, . . . , λk) by
choosing λ̂m,r such that the expression

Υ̃(λ) := log

(
m∏

i=1
l̃λ,ri

(
Z(i)

))
=

m∑
i=1

log
(

l̃λ,ri

(
Z(i)

))
is maximized in λ. Since we are using conditional densities, we refer to this method
as the conditional ML method.

The conditional ML method with Υ̃(λ) also leads to an estimator, which is
asymptotically normal under suitable regularity conditions for m → ∞, r → ∞,
with the same covariance matrix V−1

λ as above; we refer to Theorem 6.1.4 of
Michel [330] for the somewhat lengthy details.

MLE with the Pickands Density

We present a different ML approach. As before, we assume that we have n in-
dependent copies X̃(1), . . . , X̃(n) of a rv X̃, which follows a GPD Wλ from a k-
parametric family and the usual representation Wλ(x) = 1 + log(Gλ(x)) with
some EVD Gλ on Ks. By ϕλ we denote the corresponding Pickands density in the
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parametric model and by ζλ its integral as given in (5.38). This time we denote by
Z̃(i) and C̃(i) the corresponding standard Pickands coordinates, i = 1, . . . , n. We
choose a threshold r < 0 close enough to 0, and consider only those observations
with C̃(i) > r, representing again the extreme observations. We denote these by
X(1), . . . , X(m). They are by Theorem 1.3.1 independent of the random number
m = K(n), and have the density ϕλ(z)/ζλ, independent of r, see Theorem 5.6.2.
Again, we can do a ML estimation of λ by choosing λ̂m such that the expression

Ω(λ) := log

(
m∏

i=1

ϕλ
(
Z(i))

ζλ

)
=

m∑
i=1

log
(

ϕλ

(
Z(i)

))
− m log(ζλ)

is maximized in λ.
Since here, in contrast to the previous section, we insert the observations

into their exact densities, the proof of the asymptotic normality (this time for
m → ∞ only) of the MLE under suitable regularity conditions follows from the
corresponding standard literature. The asymptotic normal distribution has mean
λ and covariance matrix U−1

λ := (uλ,j1,j2)−1
j1,j2=1,...,k with

uλ,j1,j2 := Eλ

⎛⎝⎛⎝∂ log
(

ϕλ(z)
ζλ

)
∂λj1

⎞⎠⎛⎝∂ log
(

ϕλ(z)
ζλ

)
∂λj2

⎞⎠⎞⎠ .

The estimation is again asymptotically efficient. Since it is based on the Pickands
density we refer to it as the Pickands ML method.

Estimation via Relative Frequencies

In the following, we present another estimation approach in parametric multivari-
ate GPD models. The idea for this method results from the fact that only the
the number of observations, which fall into a certain area, can be asymptotically
sufficient for the parameters of the model, see Falk [136].

We assume again that we have independent and identically distributed rv
X1, . . . , Xn, which follow a GPD Wλ1,...,λk

whose angular density lλ1,...,λk
(z) is

continuously differentiable in λ1, . . . , λk and d∗
λ1,...,λk

> 0. For simplicity of nota-
tion, we put again λ := (λ1, . . . , λk), where λ ∈ Λ ⊆ R

k. We, furthermore, assume
that the parameter space Λ is an open non-empty subset of Rk.

For v > d put

Qv :=

⎧⎨⎩z ∈ R : zi >
1
v

, i ≤ d − 1,
∑

i≤d−1
zi < 1 − 1

v

⎫⎬⎭ .

The restriction v > d ensures that the set Qv is not empty. We have Qr,s = Qrs

for the set Qr,s introduced in (5.63). We put, furthermore,

Br,v :=
{

x ∈ (−∞, 0)d : c < −r, z ∈ Qv

}
,
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where c and z are the Pickands coordinates of x with respect to Fréchet margins.
It is crucial in the following that Br,v ⊂ Ks holds for 0 < s < 1. Therefore,

s has to be chosen such that Wλ possesses the representation (5.1) on the set
Ks. To ensure that Br,v ⊂ Ks, the numbers v and r have to be chosen such that
the inequality v < sr holds. The set Br,v is illustrated in the bivariate case in
Figure 5.9.1. The parameter v reflects the angle of Br,v. It is small for v close to
d, and it converges to a right angle for v →∞.

c � �r

�s

�s

Br,v

0

Figure 5.9.1. The set Br,v in the bivariate case.

By applying the transformation theorem to the Pickands coordinates with
respect to Fréchet margins, we obtain

P (X1 ∈ Br,v) =
∫ −r

−∞

∫
Qv

c−2lλ(z) dz dc = χλ(v)
r

where χλ(v) :=
∫

Qv
lλ(z) dz. The proof is given in Lemma 5.1.1 of Michel [330].

By

h(Br,v) = 1
n

n∑
i=1

1Br,v (Xi)

we denote the relative frequency of the occurrence of the event Br,v where 1A is
the usual indicator function of a set A. By the law of large numbers, this relative
frequency converges for n →∞ to the probability of occurrence χλ(v)/r.

Choose now vj , j = 1, . . . , k, such that d < v1 < . . . < vk < sr and define the
function ψ : Λ → [0, 1]k by

ψ(λ) =
(

χλ(v1)
r

, . . . ,
χλ(vk)

r

)
.

In what follows we assume that ψ is one-to-one. We estimate the parameter λ by
a solution λ̂ of the equation

ψ(λ) = (h(Br,v1 ), . . . , h(Br,vk
)) . (5.68)



246 5. Multivariate Generalized Pareto Distributions

For this we have to assume that

(h(Br,v1 ), . . . , h(Br,vk
)) ∈ Im(ψ), (5.69)

with Im(ψ) being the range of the function ψ, else λ̂ is arbitrarily defined. Con-
dition (5.69) holds by the law of large numbers with a probability converging to 1
as n increases, i.e.,

P ((h(Br,v1 ), . . . , h(Br,vk
)) /∈ Im(ψ)) →n→∞ 0,

if ψ(λ) is not an boundary element of the range, which we assume. For real data
sets, it can happen that (5.69) is not satisfied. One could then modify the param-
eters vi if possible, see Algorithm 5.9.1 at the end of this section, where we try to
find appropriate vi in this case.

By the law of large numbers we get

ψ(λ̂) = (h(Br,v1 ), . . . , h(Br,vk
)) →n→∞

(
χλ(v1)

r
, . . . ,

χλ(vk)
r

)
= ψ(λ).

The function ψ is, by the assumptions on lλ, continuously differentiable and,
thus, we conclude from ψ(λ̂) →n→∞ ψ(λ) and that ψ is assumed one-to-one, the
convergence λ̂→ λ for n →∞.

The asymptotic normality of the estimator can also be shown under suitable
regularity conditions for n →∞. The asymptotic covariance matrix is(

Jψ(λ)
)−1

Σ
(

JT
ψ(λ)

)−1
, (5.70)

where Jψ(λ) is the Jacobian of ψ at λ and Σ = (ςij)1≤i,j≤k with

ςij :=
χλ

(
vmin(i,j)

)
r

− χλ(vi)χλ(vj)
r2 , 1 ≤ i, j ≤ k.

For the complete result with the exact conditions and the quite technical proof we
refer to Section 6.3 of Michel [330].

It is often the case that the variance (for k = 1) or the determinant of the
covariance matrix (for k > 1) can be minimized with respect to v := (v1, . . . , vk)
while λ is fixed. This would be the optimal v, on which the estimation procedure
should be based. Since this optimum, however, depends directly on the parameter,
which is to be estimated, it cannot be computed in practice. To get approximations
of the optimal v the following iterative algorithm comes naturally.

Algorithm 5.9.1. Let i = 1, η > 0 small, and I ∈ N.

1. Determine λ(0) by the asymptotic ML method, maximizing Υ.

2. Determine v(i) =
(

v
(i)
1 , . . . , v

(i)
k

)
∈ (d, rs]k such that the determinant of

the asymptotic covariance matrix (5.70) with underlying parameter λ(i−1)

becomes minimal.
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3. Determine the estimator λ(i) through (5.68) with parameter v(i).

4. If ∣∣∣∣λ(i−1) − λ(i)

λ(i−1)

∣∣∣∣ ≤ η

or i = I, return λ(i), else increase i by 1 and go to 2.

The first estimation of λ(0) can also be done by some other estimation pro-
cedure, but maximizing Υ by the asymptotic ML method is typically the compu-
tationally fastest way.

The choice of the break off parameters η and I depends on the underlying
problem and cannot be specified in general.

Comparison of the Estimation Procedures

We compare the preceding procedures by applying them to identical simulated
data sets. We examine the following procedures:

• Asymptotic ML: estimation of λ by maximizing Υ.

• Conditional ML: estimation of λ by maximizing Υ̃.

• Pickands ML: estimation of λ by maximizing Ω.

• Simple Iteration: estimation of λ by Algorithm 5.9.1, where I = 1.

• Multiple Iteration: estimation of λ by Algorithm 5.9.1, where η = 0.01 and
I = 10.

Since asymptotic ML, conditional ML, simple and multiple iteration are based
on Pickands coordinates with respect to Fréchet margins, whereas Pickands ML is
based on standard Pickands coordinates, the estimation procedures use different
(random) sample sizes. Thus a comparison with identical sample sizes becomes
difficult. The corresponding thresholds have to be adjusted, so that approximately
the same number of observations exceeds the corresponding threshold for each of
the above estimators. We did this by setting

rP = −1.5 · d2

rF
, (5.71)

where rF is the threshold for Pickands coordinates with respect to Fréchet margins,
and rP is the threshold for standard Pickands coordinates.

Before we present the simulation results, we want to add some short consid-
erations on the computational efficiency of the methods in the logistic case, which
will be the basis of our simulations.

For the asymptotic ML method we only have to maximize a quickly evaluable
function, which is usually done with an iteration procedure and is very efficient
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with the corresponding software packages. From an efficiency point of view, this is
the only method that is usable in dimensions ≥ 5, since no numerical evaluation
of an integral is required, if an analytical expression of d∗

λ is known.
For the conditional ML method we also have to maximize a function, which

includes, however, various integrals, which are typically accessible only by numeri-
cal methods. This makes the conditional ML method numerically quite inefficient.

For the Pickands ML method, we have to maximize a function with just one
numerical integral (ϕλ) in general. In most practical cases, asymptotic ML is faster
due to the known analytical representation of d∗

λ.
For the simple iteration we have to do an asymptotic ML estimation first,

then, to determine v, we have to maximize a function, which contains two nu-
merical integrals and one numerical derivative. Subsequently, we have to solve an
equation numerically which contains one integral. Thus, this method is more costly
than the asymptotic ML and the Pickands ML method, but a lot less numerical
integrals have to be determined than with the conditional ML method. Although,
for the multiple iteration, the simple Iteration has to be executed repeatedly, it is
less costly than conditional ML.

The five procedures introduced above are now compared by their results on
identical simulated data sets. For fixed dimension d and parameter λ, a sample
of size n of observations following a multivariate logistic GPD is simulated by
Algorithm 5.7.9 and 5.7.6. This sample corresponds to the observations in a real
data set after the transformation to uniform margins. The estimation λ̂ for λ
can now be done by the five methods. This procedure of creating one sample by
simulation and estimating the parameter λ by the five methods introduced above is
now repeated 100 times. This leaves us with 100 estimations of the same parameter
λ for each method. To be able to present the results graphically, boxplots have
been drawn to display the 100 estimations for each method. These boxplots can
then be used to visually compare the estimations, for example with respect to
biasedness and variability.

Asymptotic ML Conditional ML Pickands ML Simple Iteration Multiple Iteration

1

1.2

1.4

1.6

1.8

2

2.2

d � 2, n � 10000, r � 300, s � 0.1, Λ � 1.2

Figure 5.9.2. Comparison of estimators for logistic data with λ = 1.2.
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The parameters are first set to d = 2, n = 10000, r = 300, s = 0.1 and
λ = 1.2, the threshold for the Pickands ML method is computed as in (5.71). The
resulting graphic is shown in Figure 5.9.2.

Asymptotic ML Conditional ML Pickands ML Simple Iteration Multiple Iteration

1.2

1.4

1.6

1.8

2

2.2

d � 2, n � 10000, r � 300, s � 0.1, Λ � 1.6

Figure 5.9.3. Comparison of estimators for logistic data with λ = 1.6.

Asymptotic ML Conditional ML Pickands ML Simple Iteration Multiple Iteration

1.5

1.75

2

2.25

2.5

2.75

3

3.25

d � 2, n � 10000, r � 300, s � 0.1, Λ � 2.

Figure 5.9.4. Comparison of estimators for logistic data with λ = 2.

Asymptotic ML Conditional ML Pickands ML Simple Iteration Multiple Iteration

3

4

5

6

7

d � 2, n � 10000, r � 300, s � 0.1, Λ � 4.

Figure 5.9.5. Comparison of estimators for logistic data with λ = 4.
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To be able to compare the behavior of the estimators for different underlying
logistic GPD, we have generated analogous graphics for λ = 1.6, 2 and 4. They
are displayed in Figures 5.9.3 to 5.9.5.

The conditional ML and the Pickands ML do not show big differences, with
conditional ML having slightly lower variation. They seem to work quite well in all
cases. Very noticeable is the large bias of the asymptotic ML method for λ close to
one. The asymptotic ML is, thus, an estimation procedure, which is asymptotically
efficient and works fine for cases of high dependence, but it is biased for fixed
sample sizes when approaching the independence case and, thus, it is not reliable
there.

The two iteration methods hardly differ in their behavior. The iteration pro-
cedures work quite well close to the independence case λ = 1, where they have the
smallest variabilities. Close to the dependence case the procedures however have
large variabilities and the ML methods should be preferred. Further simulations
in the trivariate logistic case show an identical behavior to the bivariate case.

To summarize: The conditional ML method seems to yield the best results.
But since it requires quite a long time for computation, it might not be the best
one suited for practical purposes, especially in dimensions larger than 2. In these
cases one should use one of the other estimation procedures.

An application of these methods to a real data set is provided in Section 7
of Michel [333].

5.10 Testing in Logistic GPD Models
Together with the estimation of parameters in multivariate GPD models comes
the question of testing for parameters in these models. This seems to be a rela-
tively uncharted area in the investigations of the multivariate GPD. To start the
investigations we restrict ourselves in this section to the logistic GPD models and
introduce some basic testing procedures. We develop two testing scenarios which
are closely related to the usual one sample Gauss-test and two sample t-test.

The Basic Setup

The characteristic feature of logistic GPD rv can be best formulated in terms of
the angular Pickands coordinate. Look for example at the simulation results in
Figure 5.7.1. The generated points arrange themselves in a sort of d-dimensional
cone, whose peak lies in the origin and whose center is the line xi = xj , i, j =
1, . . . , d , the bisector of the negative quadrant. The parameter λ describes the
width of the cone. For λ close to 1 it is opened very wide, for larger λ it becomes
more narrow.

The width of the cone can also be described by the variance of the angular
Pickands coordinates of the observations. This variance is the characteristic fea-
ture of the logistic GPD with parameter λ. The center of the cone corresponds
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to the maximum of the Pickands density (see Figure 6.6.2 for some graphs of bi-
variate logistic Pickands densities), which is also the expectation of the angular
component, as we will see below.

The above facts will be used to test for special values of the underlying
parameter λ. Before we will define the test statistics, we have to establish some
auxiliary results.

Theorem 5.10.1. Let X follow an exchangeable GPD model, i.e., (X1, . . . , Xd)
and (Xσ(1), . . . , Xσ(d)) have for any permutation σ of (1, . . . , d) the same GPD.
Consider the angular Pickands coordinates Zi = Xi/(X1 + · · · + Xd) under the
condition that X1 + · · · + Xd > c0 for some c0 < 0 close enough to 0. Then we
have E(Zi) = 1/d, i ≤ d.

Proof. Due to the exchangeability of the componentes of the rv X we have, close
to 0,

1 = E

(
X1 + · · · + Xd

X1 + · · · + Xd

)
= E

(
d∑

i=1

Xi∑d
j=1 Xj

)
=

d∑
i=1

E

(
Xi∑d

j=1 Xj

)

= dE

(
Xi∑d

j=1 Xj

)
= dE(Zi)

and, thus, the assertion.

Note that the logistic model is an exchangeable model and, thus, Theo-
rem 5.10.1 is applicable in this case.

We will start constructing our tests for the bivariate case. We have E(Z) =
1/2 for the bivariate logistic GPD, with the Pickands density

ϕλ(z) = (λ − 1)zλ−1 (1 − z)λ−1
(

zλ + (1 − z)λ
)1/λ−2

, z ∈ [0, 1].

according to Theorem 2.4 of Michel [331]. Denoting its integral by ζλ, we put

σ2
λ := Var(Z) = E((Z − 1/2)2) = E

(
Z2)− 1

4
=

∫ 1

0
z2 ϕλ(z)

ζλ
dz − 1

4

and

θ2
λ := Var

((
Z − 1

2

)2
)

= E

((
Z − 1

2

)4
)
− E2

((
Z − 1

2

)2
)

=
∫ 1

0

(
z − 1

2

)4
ϕλ(z)

ζλ
dz − σ4

λ.

Both numbers are finite due to z2ϕλ(z) ≤ ϕλ(z) and (z − 1/2)4
ϕλ(z) ≤

ϕλ(z) for z ∈ [0, 1],
∫ 1

0 ϕλ(z)/ζλ dz = 1. The two numbers are shown in Fig-
ure 5.10.1, depending on λ.
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Figure 5.10.1. Graphs of σ2
λ and θ2

λ.

Both of them are monotonically decreasing and converging to 0 for λ → ∞.
In addition, one can easily see by the dominated convergence theorem that

lim
λ→1

σ2
λ = 1

12
and lim

λ→1
θ2

λ = 1
180

.

A One-Sample Test

We start with the case, where we have one bivariate sample following a logistic
GPD and we have some null-hypothesis λ = λ0 about the underlying parameter of
the bivariate logistic GPD, which we want to test. The idea for the test presented
in the following is to compare the empirical variance of the angular Pickands
coordinate with its theoretical counterpart σ2

λ, under the hypothesis λ = λ0. This
corresponds to the well-known situation of the one-sample Gauss-test, where we
have one sample following a normal distribution with known variance and we have
some null-hypothesis μ = μ0 about the mean of the normal distribution in the
sample.

Let
(

X
(i)
1 , X

(i)
2

)
, i ≤ n, be n independent copies of the rv (X1, X2), which

follows a logistic GPD with parameter λ > 1. Consider the angular Pickands
components of those m = K(n) rv with X

(i)
1 + X

(i)
2 > c0. Denote these by Zi,

i ≤ m. The rv

ηm,λ := 1
m1/2

m∑
i=1

(
Zi − 1

2
)2 − σ2

λ

θλ

is by the central limit theorem for m →∞ standard normal distributed.
To test the hypothesis that the parameter λ = λ0 actually underlies our

initial observations, we compute ηm,λ0 and reject the hypothesis, if |ηm,λ0 | is too
large, i.e., if the asymptotic p-value 1 − (2Φ (|ηm,λ0 |) − 1) is too small, typically
smaller than 0.05.

To investigate the behavior of the test and especially to examine the normal
approximation of the distribution of ηm,λ0 , we did a lot of simulations. For one
setting of the parameters m, λ and λ0, the corresponding logistic GPD rv were
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simulated with Algorithm 5.7.6 and the corresponding p-values were computed.
The null-hypothesis was rejected if the p-value was below 0.05. This was repeated
1000 times and the corresponding relative frequency of rejections computed. The
procedure was repeated for different combinations of the parameters m, λ and λ0.
The results are displayed in Figure 5.10.2.
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Figure 5.10.2. Simulations of the test for different parameters and sample sizes
(m = 10 solid lines, m = 20 small dashes, m = 50 long dashes, m = 100 long and

small dashes, m = 200 long and two small dashes). The vertical axis gives the
relative frequency of rejection, the horizontal axis the tested parameter λ0.

The test alway keeps the level, as the true null-hypothesis λ = λ0 is never
rejected in more than 5% of the cases. The test is, however, not quite powerful
enough for a sample size of 10, as its p-values fall below the 5% rejection frequency
for lots of λ0 deviating from the true parameter. This can also be seen for m = 20
and large λ. Thus, in these cases, the normal approximation is not close enough
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to the actual distribution of the test statistic ηm,λ, so that a sample size of more
than 20 should be used to make the test sufficiently powerful. A sample size of 50
already gives quite reasonable results.

The test statistic ηm,λ is the usual Gauss-test statistic based on (Zi − 1/2)2

and, therefore, also one-sided tests can easily be derived testing the hypotheses
λ ≤ λ0 or λ ≥ λ0.

A Two-Sample Test

Next we investigate a two-sample problem by comparing two independent logistic
GPD samples with the hypothesis that the same (but unknown) parameter λ0
is underlying both samples. The idea here is to compare the empirical variance
of the angular Pickands coordinates in the two samples. This corresponds to the
well-known two-sample t-test comparing the means of two samples with unknown
but identical variation.

Let (X(i)
1 , X

(i)
2 ), i ≤ n, be independent and identically distributed logistic

GPD rv with underlying parameter λ, and let (X̃(i)
1 , X̃

(i)
2 ), i ≤ ñ, be indepen-

dent and identically distributed logistic GPD rv with underlying parameter λ̃. We
require, in addition, that the two sets of rv are independent.

Consider the angular Pickands components of those m rv with X
(i)
1 + X

(i)
2 >

c0 and, correspondingly, the angular Pickands components of those m̃ rv with
X̃

(i)
1 + X̃

(i)
2 > c̃0. Denote these by Zi, i ≤ m, and Z̃i, i ≤ m̃, respectively. Put

Qi := (Zi − 1/2)2, i ≤ m, and Q̃i := (Z̃i − 1/2)2, i ≤ m̃. We consider the usual
two-sample t-test statistic

η
m,m̃

:=
1
m

∑m
i=1 Qi − 1

m̃

∑m̃
i=1 Q̃i

S
√

1
m + 1

m̃

,

where S is the usual pooled variance of the Qi and Q̃i, see Section 2.3 of Falk et
al. [145]. Assume that m/(m + m̃) → γ for m, m̃ →∞. Then the statistic η

m,m̃
is

asymptotically normally distributed under the hypothesis λ = λ̃. By elementary
calculations and the central limit theorem it can be shown that θλ/S → 1 for
m, m̃ →∞ and if λ = λ̃. We can rewrite the test statistic as

η
m,m̃

=
θλ

S︸︷︷︸
→1

(√
m̃

m + m̃︸ ︷︷ ︸
→√

1−γ

1√
m

m∑
i=1

Qi − σ2
λ

θλ︸ ︷︷ ︸
→DN(0,1)︸ ︷︷ ︸

→DN(0,1−γ)

−
√

m

m + m̃︸ ︷︷ ︸
→√

γ

1√
m̃

m̃∑
i=1

Q̃i − σ2
λ

θλ

⎞⎠
︸ ︷︷ ︸

→DN(0,1)︸ ︷︷ ︸
→DN(0,γ)

→D N(0, 1).
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The asymptotic p-value for testing the two-sided hypothesis λ = λ̃ is, thus,
1 −

(
2Φ

(∣∣∣ηm,m̃

∣∣∣)− 1
)

. As stated before, testing the one-sided hypotheses λ ≤ λ̃

or λ ≥ λ̃ is also possible.
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Figure 5.10.3. Simulations of the two-sample test with various parameters and
various sample sizes. The vertical axes show the relative frequencies of rejections,

the two planar axes show the underlying parameters λ and λ̃.
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Along the same lines as above, simulations were computed to investigate the
behavior of the test and the normal approximation of the distribution of η

m,m̃
.

The results are displayed in Figure 5.10.3.
The test keeps its prescribed level as the true hypothesis is never rejected

in more than 5% of the cases. The test performs, however, poorly if one of the
two samples has a size of only 10 in each sample. A sample size of 50 yields good
results.

Multivariate Generalizations

In the general d-dimensional case, the logistic Pickands density is given by

ϕλ(z1, . . . , zd−1) =

(
d−1∏
i=1

(iλ − 1)

) (∏d−1
i=1 zi

)λ−1 (
1 −∑d−1

i=1 zi

)λ−1

Dλ(z1, . . . , zd−1)dλ−1 (5.72)

see Theorem 2.7 of Michel [331], with Dλ being the logistic dependence function,
see Example 4.3.5.

We know by Theorem 5.10.1 that the expectation of the angular Pickands co-
ordinate is (1/d, . . . , 1/d). In analogy to the bivariate case, we define the deviation
of the angular component from its expectation by

σ2
λ := E

(∥∥∥∥Z −
(

1
d

, . . . ,
1
d

)∥∥∥∥2
)

=
∫

R

∥∥∥∥z −
(

1
d

, . . . ,
1
d

)∥∥∥∥2
ϕλ(z)

ζλ
dz

and we denote its variance by

θ2
λ := Var

(∥∥∥∥Z −
(

1
d

, . . . ,
1
d

)∥∥∥∥2
)

= E

(∥∥∥∥Z −
(

1
d

, . . . ,
1
d

)∥∥∥∥4
)
− E2

(∥∥∥∥Z −
(

1
d

, . . . ,
1
d

)∥∥∥∥2
)

=
∫

R

∥∥∥∥z −
(

1
d

, . . . ,
1
d

)∥∥∥∥4
ϕλ(z)

ζλ
dz − σ4

λ,

where R =
{

x ∈ (0, 1)d−1 :
∑

i≤d−1 xi < 1
}

is the unit simplex. Both numbers
are finite, since the norm is always bounded by 1.

For the one-sample test, the scenario is now as follows: Let (X(i)
1 , . . . , X

(i)
d ),

i ≤ n, be independent copies of (X1, . . . , Xd) following a logistic GPD. Consider
the angular Pickands components of those m = K(n) rv with X

(i)
1 +· · ·+X

(i)
d > c0.

Denote these by Zi = (Z(i)
1 , . . . , Z

(i)
d ), i ≤ m. The rv

ηm,λ := 1
m1/2

∑
i≤m

∥∥Zi −
( 1

d , . . . , 1
d

)∥∥2 − σ2
λ

θλ
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is for m → ∞ asymptotically standard normal distributed. This entails the com-
putation of an approximate p-value.

In the same way, the two-sample test statistic can be generalized to

η
m,m̃

:=
1
m

∑m
i=1 Qi − 1

m̃

∑m̃
i=1 Q̃i

S
√

1
m + 1

m̃

,

where S is the usual pooled variance of Qi = ‖Zi − (1/d, . . . , 1/d)‖2 and Q̃i =∥∥∥Z̃i − (1/d, . . . , 1/d)
∥∥∥2

.



Chapter 6

The Pickands Approach in
the Bivariate Case

The restriction to bivariate rv enables the study of their distributions in much
greater detail. We introduce, for example, a certain measure generating function
M , see Section 6.1, and prove that the pertaining Pickands dependence function
D is absolutely continuous, see Lemma 6.2.1 and the subsequent discussion. This
property is unknown in higher dimensions. We also introduce an expansion of order
k + 1, k ∈ N, of the spectral df in the bivariate case, see Section 6.1, which turns
out to be quite useful in a testing problem.

The tail dependence parameter, which measures the tail dependence between
two rv, will be introduced in Section 6.1 and computed for rv in a certain neighbor-
hood of an EVD. The more general tail dependence function will be investigated
in Section 6.4.

Results about the Pickands transform of bivariate GPD and EVD rv will
be reformulated and strengthened in Section 6.3. This will include the case of
Marshall-Olkin rv.

Tests for tail independence of two rv are investigated in Section 6.5. It turns
out that the radial component of the Pickands transform is a powerful tool to
discriminate between tail independence and tail dependence; an extension to higher
dimensions is indicated.

Another speciality of the bivariate case is the ability to estimate the angular
density in GP models via the angular component of the Pickands coordinates,
shown in Section 6.6.

6.1 Preliminaries
Recall from Section 4.3 that a bivariate EVD G with reverse standard exponential
margins has the representation

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,  
DOI 10.1007/978-3-0348-0009-9_6, © Springer Basel AG 2011 
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G(x, y) = exp
(

(x + y)D
(

x

x + y

))
, x, y ≤ 0,

where D : [0, 1] → [0, 1] is the Pickands dependence function

D(z) =
∫

S

max
(

uz, v(1 − z)
)

dμ(u, v). (6.1)

From equations (4.31) and (4.32) with d = 2 recall that

S = {(u, v) : u + v = 1, u, v ≥ 0}
is the unit simplex in R

2, and μ is an arbitrary measure on S with the properties

μ(S) = 2,

∫
S

u dμ(u, v) =
∫

S

v dμ(u, v) = 1.

The Dependence Function D in the Bivariate Case

We show that the measure μ on the simplex S in R
2 can be replaced by a measure

ν on the interval [0, 1], which we call the angular measure. In Section 6.2 we will
outline the relationship between the Pickands dependence function D and the
measure generating function M of ν.

Denote by π2(x, y) := y the projection onto the second component of an
arbitrary vector (x, y) ∈ R

2 and put

ν(B) := π2μ(B) = μ(π−1
2 (B))

for any Borel set B in [0, 1]. Then ν is a measure on [0, 1] with ν([0, 1]) = 2 and∫
[0,1]

v dν(v) =
∫

S

v dμ(u, v) = 1 =
∫

[0,1]
1 − v dν(v)

and D becomes

D(z) =
∫

S

max(uz, v(1 − z)) dμ(u, v)

=
∫

[0,1]
max((1 − v)z, v(1 − z)) dν(v).

Let ν be, on the other hand, an arbitrary measure on [0, 1] with ν([0, 1]) = 2
and

∫
[0,1] v dν(v) = 1. Define π : [0, 1] → S by π(v) := (1 − v, v) and put, for an

arbitrary Borel set B in S,

μ(B) := ν(π−1(B)).

Then μ is a measure on S with μ(S) = 2 and
∫

S v dμ(u, v) =
∫

[0,1] v dν(v) = 1.
The Pickands dependence function corresponding to μ is
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D(z) =
∫

S

max(uz, v(1 − z)) dμ(u, v)

=
∫

[0,1]
max((1 − v)z, v(1 − z)) dν(v).

We summarize the preceding considerations in the following result.

Lemma 6.1.1. A bivariate function G is a max-stable df with univariate standard
reverse exponential margins if, and only if, it has the representation

G(x, y) = exp
(

(x + y)D
( x

x + y

))
, x, y ≤ 0, (x, y) �= (0, 0),

where D : [0, 1] → [0, 1] is the Pickands dependence function

D(z) =
∫

[0,1]
max((1 − u)z, u(1− z)) dν(u)

and ν is an arbitrary measure on [0, 1] with ν([0, 1]) = 2 and
∫

[0,1] u dν(u) = 1.

The measure generating function M of the preceding angular measure ν will
be investigated in Section 6.2. The following properties of D were already estab-
lished for a general dimension d in Section 4.3.

Lemma 6.1.2. We have for an arbitrary dependence function D : [0, 1] → R:

(i) D is continuous and convex.

(ii) 1/2 ≤ max(z, 1 − z) ≤ D(z) ≤ 1.

(iii) D(1/2) = minz∈[0,1] D(z), if D(z) = D(1 − z), z ∈ [0, 1].

(iv) D(z) = 1, z ∈ [0, 1], and D(z) = max(z, 1 − z), z ∈ [0, 1], are the cases of
independence and complete dependence of the margins of the EVD G(x, y) =
exp((x + y)D(x/(x + y)).

The Tail Dependence Parameter

Starting with the work by Geffroy [168], [169] and Sibuya [415], X and Y with
joint EVD G are said to be tail independent or asymptotically independent if the
tail dependence parameter

χ := lim
c↑0

P (Y > c | X > c) (6.2)

equals 0. Note that χ = 2(1 − D(1/2)) and, thus, the convexity of D(z) implies
that χ = 0 is equivalent to the condition D(z) = 1, z ∈ [0, 1]. We refer to Section
6.4 for a discussion of a certain tail dependence function δ with δ(1/2) = χ.
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The attention given to statistical properties of asymptotically independent
distributions is largely a result of a series of articles by Ledford and Tawn [310],
[311] and [312]. Coles et al. [74] give a synthesis of the theory. For a directory of
coefficients of tail dependence such as χ we refer to Heffernan [215].

Let the rvs U , V have dfs FU and FV and let

χ(q) := P
(
V > F −1

V (q) | U > F −1
U (q)

)
(6.3)

be the tail dependence parameter at level q ∈ (0, 1); see Reiss and Thomas [389],
(2.57). We have

χ(q) = χ + O(1 − q)
if (U, V ) follows a bivariate EVD. Also

χ(q) = χ = 2(1 − D(1/2)), q ≥ 1/2,

for bivariate GPD, see (9.24) and (10.8) of Reiss and Thomas [389]. Recall that
in the bivariate case, a GPD can be defined as W (x, y) = 1 + log(G(x, y)) for
log(G(x, y)) ≥ −1, see Lemma 5.1.1.

Tail independence χ = 0 is, therefore, characterized for a GPD W (x, y) =
1 + (x + y)D(x/(x + y)) by χ(q) = 0 for large values of q or, equivalently, by
D(z) = 1, z ∈ [0, 1], and, hence, by W (x, y) = 1 + x + y. Note, however, that
W (x, y) = 1 + x + y is the df of (U,−1−U), i.e., we have tail independence χ = 0
for a GPD iff we have complete dependence V = −1−U , which seems to be a bit
weird.

This exact tail independence of W (x, y) = 1 + x + y can, however, easily
be explained as follows: Consider independent copies (Ui, Vi) = (Ui,−1 − Ui),
i ≤ n, n ≥ 2, of (U, V ) = (U,−1 − U) with df W . Then we have for the vector of
componentwise maxima

(max
i≤n

Ui, max
i≤n

Vi) = (max
i≤n

Ui, max
i≤n

(−1 − Ui)) = (ξ1, ξ2),

where ξ1, ξ2 are independent rv. This is due to the equivalence

Ui > Uj ⇐⇒ −1 − Ui < −1 − Uj .

This is another interpretation of the case of independence for GPDs, addi-
tional to our remarks in Section 5.2.

By taking the limit of χ(q), as q ↑ 1, in (6.3) one can easily extend the
definition of the tail dependence parameter to random variables with arbitrary
joint distribution functions.

Towards Residual Tail Dependence

Looking at the notion of tail independence and tail dependence, one may intu-
itively say that there is tail dependence in (x, y) if both components x and y are
simultaneously large. Otherwise one may speak of tail independence.
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Translating this idea to relative frequencies of data (xi, yi), i ≥ 1, one may say
that there is tail dependence if the frequency of both values xi and yi being large,
relative to the frequency of xi being large, is bounded away from zero. Within the
stochastic model this leads again to the conditional probability P (Y > c | X > c)
in (6.2), which is bounded away from zero if X and Y are tail dependent. Let us
discuss this idea by regarding bivariate data from standard normal distributions
with various correlation coefficients ρ, cf. Figure 6.1.1. If ρ = 0, the data are
obviously tail independent. For ρ = 0.7 and ρ = 0.9 there seems to be a stronger
tail dependence. Finally, if ρ = −0.7, the tail independence is stronger than for
ρ = 0.
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Figure 6.1.1. Plots of bivariate normal samples with ρ = 0 (top left), ρ = 0.7,
(top right), ρ = 0.9 (bottom left) and ρ = −0.7 (bottom right).

If, however, one considers a standard normally distributed random vector
(X, Y ) with ρ < 1 and marginal df Φ, one can show that P (Y > Φ−1(q)|X >
Φ−1(q)) → 0, as q ↑ 1. Thus, we have tail independence in this case in contrast
to the above intuition. The reason is that there may be a residual tail dependence
in the data even if they are tail independent. This type of tail dependence can
be captured by using the dependence measure χ̄ introduced by Coles et al. [74],
namely

χ̄ = lim
q↑1

(
2 log P{U > F −1

U (q)}
log P{V > F −1

V (q), U > F −1
U (q)} − 1

)
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where U and V are random variables with dfs FU and FV . It may be of interest
in its own right that for rvs X and Y with reverse exponential dfs the preceding
parameter χ̄ is given by

χ̄ = lim
c↑0

(
2 log P{X > c}

log P{Y > c, X > c} − 1
)

,

cf. Frick et al. [161]. In the standard normal case we have χ̄ = ρ.

Differentiable Spectral Expansions of Finite Length

with Regularly Varying Functions

We strengthen the condition that a df H(x, y), x, y ≤ 0, belongs to the dif-
ferentiable spectral neighborhood, respectively, to the differentiable spectral δ-
neighborhood of a GPD W with Pickands dependence function D, cf. conditions
(5.31) and (5.34).

Let again Hz(c) = H(c(z, 1 − z)), z ∈ [0, 1], c ≤ 0, be the spectral decom-
position of an arbitrary df H(x, y), x, y ≤ 0, see Section 5.4. We assume in the
following that the partial derivatives

hz(c) := ∂

∂c
Hz(c) and h̃z(c) := ∂

∂z
Hz(c) (6.4)

of Hz(c) exist for c close to 0 and any z ∈ [0, 1], and that they are continuous. In
addition, we require that hz(c) satisfies the expansion

hz(c) = D(z) +
k∑

j=1
Bj(c)Aj(z) + o(Bk(c)), c ↑ 0, (6.5)

uniformly for z ∈ [0, 1] for some k ∈ N, where D is a Pickands dependence function
and the Aj : [0, 1] → R, j = 1, . . . , k, are integrable functions. In addition, we
require that the functions Bj : (−∞, 0) → (0,∞), j = 1, . . . , k, satisfy

lim
c↑0

Bj(c) = 0 (6.6)

and
lim
c↑0

Bj(ct)
Bj(c)

= tβj , t > 0, βj > 0. (6.7)

Without loss of generality, let β1 < β2 < · · · < βk. We say that the df H satisfies
a differentiable spectral expansion of length k + 1 if the conditions (6.5)-(6.7) hold.
The functions Bj are again regularly varying in 0 with exponent of variation βj ,
j = 1, . . . , k, cf. condition (5.44). As in the case of Pickands densities, cf. (5.45),
one can reduce the spectral expansion in (6.5) to an expansion of length κ + 1 for
any 1 ≤ κ ≤ k, i.e.,

hz(c) = D(z) +
κ∑

j=1
Bj(c)Aj(z) + o(Bκ(c)), c ↑ 0.
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With regard to the testing problem in Section 6.5, the existence of an index j such
that

(2 + βj)
∫ 1

0
Aj(z) dz − Aj(0) − Aj(1) �= 0, (6.8)

is essential. Then it is appropriate to choose κ as

κ = min
{

j ∈ {1, . . . , k} : (2 + βj)
∫ 1

0
Aj(z) dz − Aj(0) − Aj(1) �= 0 �= 0

}
. (6.9)

We also refer to the discussion of the existence of κ in the lines following Corollary
6.5.1.

If k = 1, we write B and A instead of B1 and A1, respectively, and denote the
exponent of variation of B by β. We remark that the special case of a differentiable
spectral expansion of length 2 with B(c) = c was investigated in the second edition
of this book.

According to Theorem 5.5.4 one could equivalently replace the dependence
function D(z) in (6.5) by some function a : [0, 1] → [0,∞) with a(0) = a(1) = 1.
Then a(z) is actually a Pickands dependence function D(z). From Theorem 5.5.4
one obtains that H(x, y) is in the bivariate domain of attraction of the EVD G
with this dependence function D and

lim
c↑0

P (Y > c | X > c) = 2(1 − D(1/2)).

Thus, we have tail independence of X and Y iff D(z) = 1, z ∈ [0, 1]. In this case,
the residual tail dependence can be captured by

χ̄ = 1 − β1
1 + β1

. (6.10)

Therefore, we also call β1 the residual tail dependence parameter.
We discuss some examples. Assume that D′(z) is continuous. Because a GPD

W has the spectral decomposition Wz(c) = 1 + cD(z) for c close to 0 we know
that W satisfies the conditions (6.4) and (6.5) with wz(c) = D(z), w̃z(c) = cD′(z)
and Aj(z) = 0, j ≥ 1.

In addition, an EVD G has the spectral decomposition Gz(c) = exp(cD(z))
and, hence, it satisfies condition (6.4) and (6.5) with

gz(c) = exp(cD(z))D(z) = D(z) + cD(z)2 + o(c), (6.11)

and
g̃z(c) = exp(cD(z))cD′(z).

Mardia’s df H(x, y) = (exp(−x) + exp(−y)− 1)−1, x, y ≤ 0, satisfies, for instance,
a differentiable spectral expansion of length 2 with D(z) = 1 and A(z) = 2− z2 −
(1 − z)2.
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The standard normal distribution with correlation coefficient ρ ∈ (0, 1) trans-
formed to [−1, 0]-uniform margins satisfies the expansion

hz(c) = 1 + B(c)A(z) + o(B(c)), c ↑ 0,

with
B(c) = |c| 2

1+ρ −1L(c),

where
L(c) = (1 + ρ)

3
2 (1 − ρ)− 1

2 (4π)− ρ
1+ρ (− log |c|)− ρ

1+ρ ,

and
A(z) = − 2

1 + ρ
(z(1 − z))

1
1+ρ .

The function B is regularly varying in 0 with the exponent of variation

β = 2
1 + ρ

− 1 ∈ (0, 1) (6.12)

for ρ ∈ (0, 1). Plugging β into (6.10) one receives again χ̄ = ρ. For further details
we refer to Frick et al. [161].

The following lemma states that an expansion of finite length of a Pickands
density can be deduced from a spectral expansion of finite length under certain
conditions.

Lemma 6.1.3. Let H be the distribution function of a bivariate random vec-
tor X = (X1, X2) with values in (−∞, 0]2 satisfying the spectral expansion (6.5)
uniformly for z ∈ [0, 1], where the Pickands dependence function D and the Aj ,
j = 1, . . . , k, are twice continuously differentiable.

(i) Putting

Ãj(z) = −βjAj(z) − βj

1 + βj
A′

j(z)(1 − 2z) + 1
1 + βj

A′′
j (z)z(1 − z), (6.13)

where βj is the exponent of variation of the function Bj, one gets∫ 1

0
Ãj(z) dz = −(2 + βj)

∫ 1

0
Aj(z) dz + Aj(0) + Aj(1) (6.14)

for j = 1, . . . , k.

(ii) If the remainder term

R(z, c) := hz(c) − D(z) −
k∑

j=1
Bj(c)Aj(z)
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is positive and differentiable in c, then the density of the Pickands transform
(Z, C) = T (X) satisfies the expansion

f(z, c) = ϕ(z) +
k∑

j=1
Bj(c)Ãj(z) + o(Bk(c)), c ↑ 0, (6.15)

uniformly for z ∈ [0, 1] with ϕ(z) = D′′(z)z(1− z) and Ãj as in (6.13). The
regularly varying functions Bj are the same as in expansion (6.5).

(iii) If the parameter κ of the spectral expansion in (6.9) exists, the parameter κ
of the Pickands density in (5.46) exists, too, and both are the same.

Proof. Part (i) can easily be deduced by partial integration. For the proof of part
(ii) we refer to Lemma 2.1 in Frick and Reiss [162]. The assertion of part (iii)
follows directly from part (i).

The concepts of differentiable spectral expansions and expansions of Pickands
densities are of interest in their own right, applications may be found in Section
6.5 in conjunction with a testing problem.

6.2 The Measure Generating Function M
The restriction to the bivariate case enables the representation of an arbitrary
dependence function D in terms of the measure generating function corresponding
to the measure ν, see Lemma 6.1.1. The derivation of several characteristics of D
such as its absolute continuity will be a consequence.

Another Representation of the Pickands

Dependence Function

The following representation of a dependence function in the bivariate case will be
crucial for our subsequent considerations.
Lemma 6.2.1. Let ν be an arbitrary measure on [0, 1] with ν([0, 1]) = 2 and∫

[0,1] u ν(du) = 1. Denote by M(z) := ν([0, z]), z ∈ [0, 1], the corresponding mea-
sure generating function. Then we have for the dependence function D correspond-
ing to ν (cf. Lemma 6.1.1) the representation

D(z) = 1 − z +
∫

[0,z]
M(x) dx, 0 ≤ z ≤ 1.

Proof. According to Lemma 6.1.1 and straightforward calculations we have

D(z) =
∫

[0,1]
max((1 − u)z, u(1− z)) dν(u)

= z

∫
[0,z]

(1 − u) dν(u) + (1 − z)
∫

(z,1]
u dν(u)
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= zM(z)− z + 1 −
∫

[0,z]
u ν(du).

Now Fubini’s theorem implies∫
[0,z]

u ν(du) =
∫

[0,z]

∫
[0,z]

1[0,u)(x) dx dν(u)

=
∫

[0,z]

∫
[0,z]

1(x,z](u) dν(u) dx

=
∫

[0,z]
M(z) − M(x) dx

= zM(z)−
∫

[0,z]
M(x) dx.

This representation yields the assertion

D(z) = 1 − z +
∫

[0,z]
M(x) dx.

Note that M coincides with the angular distribution in Section 5.9 in the
bivariate case. The preceding result yields the following consequences.

(i) The function F (z) := D(z) − 1 + z defines for an arbitrary dependence
function D a probability df on [0, 1], whose Lebesgue density is M :

F (z) =
∫

[0,z]
M(x) dx, z ∈ [0, 1].

(ii) Recall that a Lebesgue density is uniquely determined almost everywhere.
Since M is continuous from the right, the representation of D(z) in (i) implies
that M and, thus, the measure ν is uniquely determined by D.
The Marshall-Olkin dependence function

Dλ(z) = 1 − λ min(z, 1 − z)

is, for example, generated by the measure ν, which has mass 2λ at z = 1/2
and mass 1 − λ at 0 and 1.

(iii) The representation

D(z) = 1 − z +
∫

[0,z]
M(x) dx

implies, moreover, that D is absolutely continuous with derivative D′(z) :=
M(z) − 1:

D(z2) − D(z1) =
∫

[z1,z2]
M(x) − 1 dx, 0 ≤ z1 ≤ z2 ≤ 1.
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We obtain, therefore, that D′′(z) exists if, and only if M ′(z) exists, and in
this case these derivatives coincide. This was observed by Smith [417].
The measure generating function corresponding to the logistic dependence
function with parameter λ ≥ 1,

D(z) =
(

zλ + (1 − z)λ
)1/λ

is, for example,

M(z) = 1 + D′(z)

= 1 + zλ−1 − (1 − z)λ−1(
zλ + (1 − z)λ

)1−1/λ
, z ∈ [0, 1].

This function is continuous with M(0) = 0.
The measure generating function pertaining to the independence case D(z) =
1, z ∈ [0, 1], is M(z) = 1, z ∈ [0, 1), M(1) = 2. The corresponding measure
ν has mass 1 at each of the points 0 and 1. The measure generating function
pertaining to the complete dependence case D(z) = max(z, 1− z) is M(z) =
0, z ∈ [0, 1/2), and M(z) = 2, z ∈ [1/2, 1], i.e., the corresponding measure ν
has mass 2 at 1/2.

Estimation of the Measure Generating Function M

The representation
M(z) = D′(z) + 1

offers an easy way to estimate the measure generating function M by means of an
estimator of D, which we introduced in Section 5.4 in general dimension.

Let (U1, V1), . . . , (Un, Vn) be independent copies of (U, V ), whose df H is
in the δ-neighborhood of the GPD W with dependence function D. Choose an
auxiliary parameter c < 0 and consider, for z ∈ [0, 1),

D̂n,c(z) = 1
c

(
1 − 1

n

n∑
i=1

1
(

Ui ≤ cz, Vi ≤ c(1 − z)
))

= 1
cn

n∑
i=1

1
(

Ui > cz or Vi > c(1 − z)
)

.

If we let c = cn tend to 0 with n such that n|c| → ∞, n|c|1+2δ → 0 as n increases,
then we obtain from Lemma 5.5.6

(n|c|)1/2
(

D̂n,c(z) − D(z)
)
−→D N

(
0, D(z)

)
.
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The idea now suggests itself to use

Tn,c,h(z) := D̂n,c(z + h) − D̂n,c(z)
h

with h > 0 for the estimation of the derivative from the right D′(z) of D(z). We
have

P
(

U > cz or V > c(1 − z)
)

= 1 − H(c(z, 1 − z)))

=
(

1 − W (c(z, 1 − z))
)(

1 + O(|c|δ)
)

= |c|D(z)
(

1 + O(|c|δ)
)

and, consequently,

E
(

Tn,c,h(z)
)

=
1
hc

(
H
(

c(z, 1 − z)
)
− H

(
c(z + h, 1 − z − h)

))
= 1

h

(
D(z + h) − D(z)

)
+ O

( |c|1+δ

h

)
,

provided that c is small enough.
The variance of Tn,c,h(z) satisfies

nhcVar
(

Tn,c,h(z)
)

=
1
hc

(
E
((

1(U ≤ cz, V ≤ c(1 − z))

− 1(U ≤ c(z + h), V ≤ c(1 − z − h))
)2)

−
(

H(c(z, 1 − z)) − H(c(z + h, 1 − z − h))
)2

)

= 1
hc

(
H
(

c(z, 1 − z)
)

+ H
(

c(z + h, 1 − (z + h))
)

− 2H
(

c(z, 1 − (z + h))
)

−
(

H
(

c(z, 1 − z)
)
− H

(
c(z + h, 1 − (z + h))

))2
)

= 1
hc

(
cD(z) + cD(z + h) − 2c(1 − h)D

(
z

1 − h

)
+ O(|c|1+δ)
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−
(
− cD(z + h) + cD(z) + O(|c|1+δ)

)2
)

= 2(1 − h)
D(z) − D

(
z

1−h

)
h

+ 2D(z) + D(z + h) − D(z)
h

+ O

( |c|δ
h

+ ch

)
−→h,c→0 D′(z)(1 − 2z) + 2D(z)

= 1 + (1 − 2z)M(z) + 2
∫

[0,z]
M(x) dx =: σ2(z),

provided that |c|δ/h → 0.
The following result is now an immediate consequence of the central limit

theorem.

Lemma 6.2.2. Suppose that the df H of (U, V ) belongs to the spectral δ-neighbor-
hood of the GPD W . If we choose c = cn → 0, h = hn → 0 with n|c|h →
∞, |c|δ/h → 0 as n increases, then we obtain, for z ∈ [0, 1),

(n|c|h)1/2
(

Tn,c,h(z) − E(Tn,c,h(z))
)
−→D N(0, σ2(z)).

Lemma 6.2.1 implies that for small c,

E
(

Tn,c,h(z)
)
− D′(z) =

D(z + h) − D(z)
h

− D′(z) + O

( |c|1+δ

h

)
= 1

h

∫
(z,z+h]

M(x) − M(z) dx + O

( |c|1+δ

h

)
.

The following result is now immediate from Lemma 6.2.2.

Theorem 6.2.3. Suppose that the df H of (U, V ) belongs to the spectral δ-neigh-
borhood of the GPD W with dependence function D(z) = 1 − z +

∫
[0,z] M(x) dx,

z ∈ [0, 1]. Choose z ∈ [0, 1) and suppose that M(z + ε)−M(z) = O(εα), ε > 0, for
some α > 1/2. Then the estimator

M̂n(z) := Tn,c,h(z) + 1

of M(z) is asymptotically normal:

(n|c|h)1/2
(

M̂n(z) − M(z)
)
−→D N

(
0, σ2(z)

)
,

provided that c = cn → 0, h = hn → 0 satisfy |c|δ/h → 0, n|c|h →∞, n|c|h2α → 0
as n →∞.
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6.3 The Pickands Transform in the
Bivariate Case

In this section we want to reformulate and strengthen results about the Pickands
transform of bivariate GPD and EVD rv and include the case of Marshall-Olkin
rv.

The Distribution of the Distance C = U + V

We start with a result about the distance C = U + V pertaining to an EVD rv.

Lemma 6.3.1. Let (U, V ) be an EVD rv with Pickands dependence function D.
We have, for c < 0 close to 0,

P (U + V ≤ c) = exp(c) − c

∫
[0,1]

exp(cD(z)) (D(z) + D′(z)(1 − z)) dz.

Proof. The following arguments are taken from Ghoudi et al. [179]. The conditional
df of U + V , given U = u < 0, is, for c close to 0 ,

P (U + V ≤ c | U = u)
= P (V ≤ c − u | U = u)

= lim
ε↓0

P (V ≤ c − u, U ∈ [u, u + ε])
P (U ∈ [u, u + ε])

= lim
ε↓0

G(u + ε, c − u) − G(u, c − u)
ε

ε

exp(u + ε) − exp(u)

= G(u, c − u)
exp(u)

(
D

(u

c

)
+ D′

(u

c

) c − u

c

)
= exp

(
cD

(u

c

)
− u

)(
D

(u

c

)
+ D′

(u

c

) c − u

c

)
if u > c and,

P (U + V ≤ c | U = u) = 1 if u ≤ c.

Hence we obtain

P (U + V ≤ c)

=
∫

(−∞,0]
P (V ≤ c − u|U = u) exp(u) du

=
∫

[c,0]
exp

(
cD

(u

c

))(
D

(u

c

)
+ D′

(u

c

) c − u

c

)
du + exp(c)

= exp(c) − c

∫
[0,1]

exp(cD(u)) (D(u) + D′(u)(1 − u)) du.
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The following result extends Lemma 6.3.1 to a df H , which satisfies condition
(6.4). Recall that H1(c) = H(c(1, 0)), c ≤ 0, is the first marginal distribution of
H .

Lemma 6.3.2. Suppose that the df H(u, v), u, v ≤ 0, of (U, V ) satisfies condition
(6.4). Let again h̃z(c) = ∂

∂z Hz(c). Then we have, for c close to 0,

P (U + V ≤ c) = H1(c) −
∫ 1

0
chz(c) + h̃z(c)(1 − z) dz.

Proof. Repeating the arguments in the proof of Lemma 6.3.1, we obtain, for 0 >
u > c,

P (U + V ≤ c | U = u)

= 1
h1(u)

lim
ε↓0

H(u + ε, c − u) − H(u, c − u)
ε

= 1
h1(u)

lim
ε↓0

H u+ε
c+ε

(c + ε) − H u
c
(c)

ε

= 1
h1(u)

(
h u

c
(c) + h̃ u

c
(c)c − u

c2

)
by making use of Taylor’s formula and the continuity of the partial derivatives of
Hz(c).

Since P (U + V ≤ c | U = u) = 1 if u ≤ c, we obtain by integration and
substitution, for c close to 0,

P (U + V ≤ c)

= H1(c) +
∫ 0

c

h u
c
(c) + h̃ u

c
(c)c − u

c2 du

= H1(c) −
∫ 1

0
chz(c) + h̃z(c)(1 − z) dz.

Assume now that the df H(u, v) of (U, V ) coincides for u, v close to 0 with
the general GPD W (u, v) = 1 + (u + v)D(u/(u + v)). Repeating the arguments in
the proof of Lemma 6.3.1 one obtains the following result.

Lemma 6.3.3. We have, for c < 0 close to 0

P (U + V ≤ c) = 1 + 2c

(
1 −

∫
[0,1]

D(u) du

)
.

The Pickands Transform

The conditioning technique in the proof of Lemma 6.3.1 also enables us to obtain
the following sharper version of Theorem 5.6.2 on the distribution of the Pickands
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coordinates C = U + V and Z = U/(U + V ) in the case, where (U, V ) follows
a bivariate GPD. This result is true for an arbitrary dependence function D dif-
ferent from the constant function 1 and requires no higher order differentiability
conditions on D. Recall that in the bivariate case, a GPD W can be defined by
W (u, v) = 1 + log(G(u, v)) for log(G(u, v)) ≥ −1, see Lemma 5.1.1.

Theorem 6.3.4. Suppose that (U, V ) follows a GPD with dependence function D,
which is not the constant function 1. Then we have for c0 ∈ [−1, 0) the following
facts:

(i) Conditional on C = U + V > c0, the Pickands coordinates Z = U/(U + V )
and C = U + V are independent.

(ii) C is on (−1, 0) uniformly distributed, precisely,

P (C > c0) = |c0|2
(

1 −
∫

[0,1]
D(z) dz

)
and, thus,

P (C ≥ uc0 | C > c0) = u, 0 ≤ u ≤ 1.

(iii) Conditional on C > c0, Z has the df

F (z) :=
D′(z)z(1 − z) + D(z)(2z − 1) + 1 − 2

∫ z

0 D(u) du

2
(

1 − ∫
[0,1] D(u) du

) , z ∈ [0, 1].

If (U, V ) follows a bivariate EVD, then the statements in the preceding result
are asymptotically true for c0 ↑ 0.

Theorem 6.3.5. Suppose that (U, V ) follows a bivariate EVD G with dependence
function D, which is not the constant function 1. Then we have for c0 ↑ 0:

(i) Conditional on C = U + V > c0, the Pickands coordinates Z = U/(U + V )
and C = U + V are asymptotically for c0 ↑ 0 independent:

P (C ≥ uc0, Z ≤ z | C > c0)
= P (C ≥ uc0 | C > c0)P (Z ≤ z | C > c0) + O(c0), 0 ≤ u ≤ 1.

(ii) We have P (C > c0) = |c0|2
(

1 − ∫
[0,1] D(z) dz

)
(1 + O(c0)) and, thus,

P (C ≥ uc0 | C > c0) = u(1 + O(c0)), 0 ≤ u ≤ 1.

(iii) Conditional on C > c0, Z has for c0 ↑ 0 the df

P (Z ≤ z | C > c0) = F (z) + O(c0), 0 ≤ z ≤ 1,

where the df F is defined in Theorem 6.3.4.
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Marshall-Olkin GPD Random Vectors

The predominant example of an EVD with a non-smooth dependence function D
is the Marshall-Olkin df ([323])

Gλ(x, y) = exp
(
x + y − λ max(x, y)

)
, x, y ≤ 0, λ ∈ [0, 1]

with the dependence function

Dλ(z) = 1 − λ min(z, 1 − z),

see Example 4.3.4. The pertaining GPD is

Wλ(x, y) = 1 + x + y − λ max(x, y).

Gλ is the df of

(U, V ) :=
(

max
(

Z1
1 − λ

,
Z0
λ

)
, max

(
Z2

1 − λ
,

Z0
λ

))
,

where Z0, Z1, Z2 are independent standard reverse exponential rv, with the con-
vention

(U, V ) = (Z1, Z2) if λ = 0

and
(U, V ) = (Z0, Z0) if λ = 1.

It is well known that W0(x, y) = 1 + x + y is the distribution of (−η,−1 + η),
where η is uniformly distributed on (0, 1). The following result is an extension to
arbitrary λ ∈ [0, 1]. It can be verified by elementary computations.

Proposition 6.3.6. The Marshall-Olkin GPD Wλ is the df of the rv

(U, V ) := 1
λ − 2

(η, η) · 1{0}(ε)

+ 1
λ − 2

(
(λ − 1)η − (λ − 2), η

) · 1{1}(ε)

+ 1
λ − 2

(
η, (λ − 1)η − (λ − 2)

) · 1{2}(ε),

where η, ε are independent rv, η is uniformly distributed on (0, 1) and ε takes the
value 0, 1, 2 with probabilities

P (ε = 0) = λ

2 − λ
, P (ε = 1) = P (ε = 2) = 1 − λ

2 − λ
.
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The rv (U, V ) with df Wλ(x, y) = 1+x+y−λ max(x, y) is, thus, generated in
a two-step procedure. First, the rv ε takes one of the values 0, 1, 2 with probability
λ/(2 − λ), (1 − λ)/(2 − λ) and (1 − λ)/(2 − λ), respectively. If ε = 0, then (U, V )
is set to

(U, V ) = (U, U),

where U is uniformly distributed on (1/(λ − 2), 0). If ε = 1, then

(U, V ) =
(

U,
−1 − U

1 − λ

)
,

where U is uniformly distributed on (−1, 1/(λ − 2)). And if ε = 2, then (U, V ) is
set to

(U, V ) =
(
U, (λ − 1) U − 1

)
,

where U is uniformly distributed on (1/(λ − 2), 0). The distribution of (U, V ) is,
thus, concentrated on the three lines

y = x, 1/(λ − 2) ≤ x ≤ 0,

y = (−1 − x)/(1 − λ), −1 ≤ x ≤ 1/(λ − 2),
y = (λ − 1)x − 1, 1/(λ − 2) ≤ x ≤ 0.

The distribution of the Pickands transform in case of an underlying GPD Wλ

is now an immediate consequence.

Corollary 6.3.7. If (U, V ) has the df Wλ(x, y) = 1 + x + y − λ max(x, y), then
the Pickands transform (Z, C) = (U/(U + V ), U + V ) satisfies

(Z, C) =D

(
1
2

,
2

λ − 2
η

)
1{0}(ε)

+
(

(λ − 1)η − (λ − 2)
λη − (λ − 2)

,
λ η − (λ − 2)

λ − 2

)
1{1}(ε)

+
(

η

λη − (λ − 2)
,

λη − (λ − 2)
λ − 2

)
1{2}(ε),

where η, ε are defined in Proposition 6.3.6 and =D denotes equality in distribution.

The df of Z is, thus, not continuous in case of the Marshall-Olkin GPD Wλ

with λ > 0. It has positive mass P (Z = 1/2) = P (ε = 0) = λ/(2−λ) at 1/2, which
is the probability that (U, V ) takes values on the diagonal y = x. The condition
C > c0 > 1/(λ − 2) can only be satisfied if ε = 0 and, thus, we have Z = 1

2 ,
conditioned on C > c0 > 1/(λ − 2). Note that 1/(λ − 2) ≤ −1/2 for λ ∈ [0, 1].
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y = (λ − 1)x − 1

1
λ−2

1
λ−2

Figure 6.3.1. Support lines of Marshall-Olkin GPD
Wλ(x, y) = 1 + x + y − λ max(x, y).

Marshall-Olkin EVD Random Vectors

Suppose next that (U, V ) follows the Marshall-Olkin df Gλ(x, y) = exp(x + y −
λ max(x, y)), x, y ≤ 0, λ ∈ [0, 1]. Then

gλ(x, y) := ∂2

∂x∂y
Gλ(x, y) = (1 − λ) Gλ(x, y)

exists for all (x, y) with x �= y and, hence, gλ is a density of G on the set {(x, y) ∈
(−∞, 0 ]2 : x �= y}. We obtain that the Pickands transform (Z, C) = (U/(U +
V ), U + V ) corresponding to (U, V ) has the density

fλ(z, c) = (1 − λ)|c| exp
(
c Dλ(z)

)
= (1 − λ)|c| exp

(
c
(
1 − λ min(z, 1 − z)

))
on ([0, 1]\{1/2})× (−∞, 0).

Lemma 6.3.8. If (U, V ) has the df Gλ(x, y) = exp(x+y−λ max(x, y)), 0 < λ ≤ 1,
then the Pickands transform (Z, C) satisfies

P (C > c) = −λ c/2 + O(c2),
P (Z = 1/2 |C > c) = 1 + O(c),
P (C > u c |C > c) = u

(
1 + O(c)

)
,

as c ↑ 0 uniformly for u ∈ [0, 1].

Proof. First we consider the case λ < 1. We have for c < 0,

P (U + V > c)
= P (U + V > c, U �= V ) + P (2U > c, U = V ).
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The first probability on the right-hand side equals∫
(c,0)

∫
[0,1/2)

fλ(z, b) dz db +
∫

(c,0)

∫
(1/2,1]

fλ(z, b) dz db

=
∫

(c,0)

∫
[0,1/2)

(1 − λ)|b| exp
(
b(1 − λz)

)
dz db

+
∫

(c,0)

∫
(1/2,1]

(1 − λ)|b| exp
(
b
(
1 − λ(1 − z)

))
dz db

= O(c2).

From the representation

(U, V ) =
(

max
(

Z0
λ

,
Z1

1 − λ

)
, max

(
Z0
λ

,
Z2

1 − λ

))
we obtain that

P (2U > c, U = V )

= P

(
Z0 >

λ c

2 , Z0 ≥ λ

1 − λ
max(Z1, Z2)

)
=

∫
(−∞,0)

∫
(max( λc

2 , λ
1−λ t),0)

2 exp(x) exp(2t) dx dt,

since max(Z1, Z2) has the density 2 exp(2t), t ≤ 0. The above integral equals∫
(−∞, 1−λ

2 c]

∫
( λc

2 ,0)
2 exp(x) exp(2t) dx dt

+
∫
( 1−λ

2 c,0)

∫
( λ

1−λ t,0)
2 exp(x) exp(2t) dx dt

=
∫

(−∞, 1−λ
2 c]

2 exp(2t)
(

1 − exp
(

λc

2

))
dt

+
∫
( 1−λ

2 c,0)
2 exp(2t)

(
1 − exp

(
λ

1 − λ
t

))
dt

=
(

1 − exp
(

λc

2

))
exp

(
(1 − λ)c

)
+ 1 − exp

(
(1 − λ)c) − 21 − λ

2 − λ

(
1 − exp

(
2 − λ

2
c

))
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= −λc

2
+ O(c2).

As a consequence, we obtain that

P (Z �= 1/2 |C > c)

= P (U < V, U + V > c) + P (U > V, U + V > c)
P (U + V > c)

= O(c)

and, moreover, that

P (C > uc | C > c) = P (U + V > uc | U + V > c)
= u

(
1 + O(c)

)
, 0 ≤ u ≤ 1.

This proves the assertion in case λ < 1. If λ = 1, i.e., G1(x, y) = exp(min(x, y)),
we have U = V and, hence, Z = 1/2, C = 2U . Then we obtain

P (C > c) = P
(

U >
c

2

)
= 1 − exp

( c

2

)
= − c

2
+ O(c2),

P
(

Z = 1
2
| C > c

)
= 1,

P (C > u, c | C > c) = u
(
1 + O(c)

)
,

which completes the proof.

In the case λ = 0, i.e., G0(x, y) = exp(x+y), the components of the Pickands
transform Z = U/(U +V ) and C = U +V are independent, with Z being uniformly
distributed on (0, 1) and C having the density |x| exp(x), x ≤ 0; see, e.g. Lemma
1.6.6 in Reiss [385]. In this case we obtain

P (C > c) = O(c2),
P (Z = 1/2) = 0,

P (C ≥ uc | C > c) = u2(1 + O(c)
)
.

A notable difference in this case λ = 0 of independence of U and V from the case
λ > 0 is the fact that C/c, conditioned on C > c, does not approach for c ↑ 0 the
uniform distribution. Instead it has by the last expansion above the limiting df
F (u) = u2, 0 ≤ u ≤ 1. We will see in Lemma 6.5.2 that this distinct behavior is
true for an EVD G with arbitrary dependence function D. This result is extended
to a more general framework in Corollary 6.5.1, which is then used to test for the
case of dependence.
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For any underlying λ ∈ [0, 1] we have P (C > c) = λ |c|/2 + O(c2). Suppose
we have a sample (U1, V1), . . . , (Un, Vn) of independent copies of (U, V ). Then the
estimator

λ̂n := 2
n|c|

n∑
i=1

1(Ci > c) =: 2
n|c|K(n)

of λ suggests itself, where Ci = Ui +Vi. The Moivre-Laplace theorem implies that,
with underlying λ > 0,

(n|c|)1/2(λ̂n − λ) = 2(n|c|)−1/2(K(n) − λ|c|/2
) −→D N(0, 2λ),

provided that the threshold c = c(n) satisfies n|c| → ∞, nc3 → 0 as n → ∞.
The estimator λ̂n is, however, outperformed by those estimators defined below,
see Theorem 6.4.5 and the subsequent discussion.

6.4 The Tail Dependence Function
The tail dependence parameter of X and Y with joint bivariate EVD with depen-
dence function D is χ = 2(1 − D(1/2)), see Section 6.1 for details. In the sequel
we will investigate a generalization to arbitrary D(z), z ∈ [0, 1].

The Tail Dependence Function

Denote by

ϑ := ϑ(z) := 1 − D(z)
min(z, 1 − z)

∈ [0, 1], z ∈ [0, 1],

the canonical dependence function or tail dependence function with the convention
ϑ(0) := limz↓0 ϑ(z), ϑ(1) := limz↑1 ϑ(z). Reiss and Thomas [389], (10.12), intro-
duce the canonical dependence function, but they use a different standardization
of D. The particular value

ϑ(1/2) = 2(1 − D(1/2))

is the canonical parameter or tail dependence parameter. We refer to Falk and
Reiss [151] for its significance in bivariate EVD models. The cases ϑ(z) = 0 and
ϑ(z) = 1, z ∈ [0, 1], now characterize independence and complete dependence in
the EVD model with underlying df G.

The canonical dependence function corresponding to the Marshall-Olkin de-
pendence function D(z) = 1 − λ min(z, 1 − z) with parameter λ ∈ [0, 1] is,
for example, the constant function ϑ(z) = λ. The logistic dependence function
D(z) = (zλ + (1 − z)λ)1/λ with parameter λ ≥ 1 has the canonical dependence
function

ϑ(z) =

⎧⎪⎪⎨⎪⎪⎩
1
z −

(
1 +

(
1−z

z

)λ)1/λ

if z ≤ 1
2 ,

1
1−z −

(
1 +

(
z

1−z

)λ)1/λ

if z ≥ 1
2 .
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Figure 6.4.1. Canonical logistic dependence function with λ = 1.2, 1.5, 2 and 3,
from bottom to top.

If the df H of the rv (U, V ) is a GPD, then we have, for u ∈ (−1, 0) and
z ∈ (0, 1),

ϑ(z) =

{
P (U > (1 − z)u | V > zu), if z ∈ (0, 1/2],

P (V > zu | U > (1 − z)u), if z ∈ [1/2, 1).

If the df H of (U, V ) is in the δ-neighborhood of a GPD, then we have, for u ∈
(−1, 0) and z ∈ (0, 1),

P (U > (1 − z)u | V > zu), if z ∈ (0, 1/2 ],

P (V > zu | U > (1 − z)u), if z ∈ [1/2, 1),

}
= ϑ(z)

(
1 + O(|u|δ)

)
.

As a consequence, ϑ(1/2) coincides with the tail dependence parameter discussed,
for example, in Reiss and Thomas [389], (2.57), Coles et al. [74] and Coles [71],
Section 8.4, thus, continuing work that was started by Geffroy [168], [169] and
Sibuya [415]. A directory of coefficients of tail dependence is given in Heffernan
[215].

Note that the canonical dependence function can be extended to arbitrary
dimensions by putting

ϑ(z) := 1 − D(z)
1 − max(z1, . . . , zd−1, 1 −∑

i≤d−1 zi)
,
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where D(z) is a dependence function defined in (4.32), z = (z1, . . . , zd−1). Then we
have 0 ≤ ϑ(z) ≤ 1. The constant dependence function D(z) = 1, which character-
izes independence of the margins of the corresponding EVD G, is then mapped onto
ϑ1(z) = 0, while the case of complete dependence D(z) = max(z1, . . . , zd−1, 1 −∑

i≤d−1 zi) is mapped onto ϑ2(z) = 1. The Marshall-Olkin dependence function
with parameter λ, defined in Example 4.3.4, has, for example, the constant canon-
ical dependence function ϑ(z) = λ and is just the convex combination of the
extremal points ϑ1(z) = 0 and ϑ2(z) = 1 of the convex set of all canonical depen-
dence functions ϑ(z). In the sequel we discuss, however, only the bivariate case
with the univariate ϑ(z) with z ∈ [0, 1].

From Lemma 6.2.1 we obtain for a tail dependence function the representa-
tion

ϑ(z) = 1 − D(z)
min(z, 1 − z)

= 1
min(z, 1 − z)

∫
[0,z]

1 − M(x) dx

=

⎧⎨⎩ 1 − 1
z

∫
[0,z] M(x) dx, if z ≤ 1

2 ,

1
1−z

∫
[z,1] M(x) dx − 1, if z > 1

2 .

Recall that
∫

[0,1] M(x) dx = D(1) = 1. This implies that

ϑ(0) = lim
z↓0

ϑ(z) = 1 − M(0)

and
ϑ(1) = lim

z↑1
ϑ(z) = lim

z↑1
M(z) − 1.

Lemma 6.4.1. The tail dependence function ϑ(z) is continuous, monotone de-
creasing for z ∈ (0, 1/2] and monotone increasing for z ∈ [1/2, 1). Its mini-
mum value is the tail dependence parameter ϑ(1/2) ≥ 0, and its maximum is
max(ϑ(0), ϑ(1)) ≤ 1.

Proof. The convexity of D implies, for λ, x, y ∈ [0, 1],

D
(

(1 − λ)x + λy
)
≤ (1 − λ)D(x) + λD(y)

=⇒ 1 − D
(

(1 − λ)x + λ y
)
≥ (1 − λ)

(
1 − D(x)

)
+ λ

(
1 − D(y)

)
=⇒ 1 − D(z1) ≥ z1

z2

(
1 − D(z2)

)
, 0 < z1 < z2 < 1,

by putting x := 0, y := z2, λ := z1/z2, and recalling that D(0) = 1. This yields

1 − D(z1)
z1

≥ 1 − D(z2)
z2

, 0 < z1 < z2 < 1.
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From the general inequality D(z) ≥ max(z, 1 − z), z ∈ [0, 1], we obtain further

1 − D(z) ≤ 1 − max(z, 1 − z) = min(z, 1 − z)
=⇒ 1 − D(z) ≤ z, z ∈ [0, 1/2].

The function ϑ(z) = (1 − D(z))/z, z ∈ (0, 1/2], is, therefore, bounded by 1 from
above and it is monotone decreasing. The same arguments with λ := (z2−z1)/(1−
z1) imply that ϑ(z) = (1−D(z))/(1− z), z ∈ [1/2, 1), is bounded by 1 as well and
monotone increasing.

An Estimator of the Tail Dependence Function

Let (U1, V1), . . . , (Un, Vn) be independent copies of a rv (U, V ), whose df H is in
the δ-neighborhood of the GPD with dependence function D,

An obvious estimator of the pertaining tail dependence function is

ϑ̂n,c(z) := 1 − D̂n,c(z)
min(z, 1 − z)

,

where

D̂n,c(z) = 1
nc

n∑
i=1

1(Ui > cz or Vi > c(1 − z))

= 1
c

(
1 − 1

n

n∑
i=1

1(Ui ≤ cz, Vi ≤ c(1 − z))
)

was defined in Section 4.2. The asymptotic normality of ϑ̂n,c(z) is now an imme-
diate consequence of Lemma 5.5.6.

Lemma 6.4.2. If c = cn < 0 satisfies n|c| → ∞, n|c|1+2δ → 0 as n → ∞, then
we have, for z ∈ (0, 1),

(n|c|)1/2(ϑ̂n,c(z) − ϑ(z)) −→D N
(

0,
D(z)

(min(z, 1 − z))2

)
.

The estimator ϑ̂n,c(z) is, consequently, not efficient, see Theorem 6.4.5 below
and the subsequent discussion. It can, however, immediately be used for defining
a goodness-of-fit test for the Marshall-Olkin distribution. In this case ϑ(z) is a
constant function and, thus,

ϑ̂n,c(z2) − ϑ̂n,c(z1) = (ϑ̂n,c(z2) − ϑ(z2)) − (ϑ̂n,c(z1) − ϑ(z1))

is automatically centered, where 0 < z1 < z2 < 1. The following result is a
consequence of the central limit theorem for triangular arrays.
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Lemma 6.4.3. Suppose that the df H of (U, V ) is in the δ-neighborhood of the
Marshall-Olkin GPD. If c = cn < 0 satisfies n|c| → ∞, n|c|1+2δ → 0 as n →∞,
then we have, for 0 < z1 < z2 < 1,

(n|c|)1/2(ϑ̂n,c(z2) − ϑ̂n,c(z1)) −→D N(0, σ2
z1,z2,λ),

where

σ2
z1,z2,λ = 2z2 − z1

z∗
1z∗

2
−

(z∗
2 − z∗

1
z∗

1z∗
2

)2
+ λ

z∗
1z∗

2

(
2 min(z1, 1 − z2) − z∗

1 − z∗
2

)
with z∗

i = min(zi, 1 − zi), i = 1, 2.

A Characterization of the

Marshall-Olkin Dependence Function

The following result characterizes the canonical Marshall-Olkin dependence func-
tion. It states, precisely, that the canonical Marshall-Olkin dependence function
is under some weak symmetry conditions characterized by the fact that its right
derivative at 1/2 is 0. This fact can be used, for example, to define a goodness-of-fit
test for the Marshall-Olkin dependence function; we refer to Falk and Reiss [154]
for details.

Theorem 6.4.4. Suppose that the dependence function D is symmetric about
1/2, i.e., D(z) = D(1 − z), 0 ≤ z ≤ 1. Then the derivative from above ϑ′(1/2) :=
limh↓0(ϑ(1/2 + h) − ϑ(1/2))/h exists in R, and we have

ϑ′(1/2) = 0

iff ϑ is the canonical Marshall-Olkin dependence function ϑ(z) = λ ∈ [0, 1], z ∈
[0, 1].

Proof. Lemma 6.2.1 implies that D(z) is differentiable from above for z ∈ [0, 1)
with derivative D′(z) = M(z) − 1 and, thus,

ϑ′(z) = −D′(z)(1 − z) + 1 − D(z)
(1 − z)2 .

This yields
ϑ′(1/2) = 0 ⇐⇒ D′(1/2) = 2(1 − D(1/2)).

The assertion is now immediate from Theorem 3.3 in Falk and Reiss [154].

For the canonical logistic dependence function we obtain, for example, that
ϑ′(1/2) = 4(1 − 21/λ−1), which is different from 0 unless λ = 1. But the logistic
dependence function with parameter λ = 1 coincides with the Marshall-Olkin
dependence function with parameter λ = 0.
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The following example shows that the symmetry condition on D in Theorem
6.4.4 cannot be dropped. Choose a number p ∈ (1, 2) and put

x :=
p − 1

p
∈ (0, 1/2).

Let ν be that measure on [0, 1] which puts mass p on x and mass 2− p on 1. Then
we have

ν([0, 1]) = 2,

∫
[0,1]

u dν(u) = px + 2 − p = 1

and

D(z) = z

∫
[0,z]

(1 − u) dν(u) + (1 − z)
∫

(z,1]
u dν(u)

=
{

1 − z, if 0 ≤ z < x,
2 − p + z(p− 1), if x ≤ z ≤ 1.

(6.16)

The tail dependence function

ϑ(z) = 1 − D(z)
min(z, 1 − z)

satisfies in this case

ϑ(z) =
{

1, if 0 ≤ z < x,
p − 1, if 1/2 ≤ z ≤ 1.

.

Hence we have ϑ′(1/2) = 0, but ϑ is not the canonical Marshall-Olkin dependence
function. This is an example of a dependence function, which is neither symmetric
about 1/2, i.e., it does not satisfy D(z) = D(1 − z), z ∈ [0, 1], nor does D(z),
z ∈ [0, 1], attain its minimum at z = 1/2, see Lemma 6.1.2.

LAN and Efficient Estimation of ϑ(z)
Let again (U1, V1), . . . , (Un, Vn) be independent copies of the rv (U, V ), whose df
H is in the δ-neighborhood of a GPD W .

We will establish in the sequel LAN of the loglikelihood function in a multi-
nomial model.

Fix z ∈ (0, 1), suppose that ϑ = ϑ(z) ∈ (0, 1), and divide the quadrant
{(x, y) : x, y < 0} into the four subsets

S11 = S11(t)=
{

(x, y) : t z
min(z,1−z) < x < 0, t 1−z

min(z,1−z) < y < 0
}

,

S12 = S12(t)=
{

(x, y) : x ≤ t z
min(z,1−z) , t 1−z

min(z,1−z) < y < 0
}

,

S21 = S21(t)=
{

(x, y) : t z
min(z,1−z) < x < 0, y ≤ t 1−z

min(z,1−z)

}
,

S22 = S22(t)=
{

(x, y) : x ≤ t z
min(z,1−z) , y ≤ t 1−z

min(z,1−z)

}
,
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where t = t(n) ↑ 0 as n →∞. Denote by

nij =
n∑

m=1
1
(

(Um, Vm) ∈ Sij

)
the number of observations in Sij . This gives a 2 × 2 Table of the observations.

The vector (nij) is multinomial B(n, (pij)) distributed with parameters n
and

p11 = P
(

U > t z
min(z,1−z) , V > t 1−z

min(z,1−z)

)
= |t|ϑ

(
1 + O(|t|δ)

)
,

p12 = P
(

U ≤ t z
min(z,1−z) , V > t 1−z

min(z,1−z)

)
= |t|

(
1−z

min(z,1−z) − ϑ
)(

1 + O(|t|δ)
)

,

p21 = P
(

U > t z
min(z,1−z) , V ≤ t 1−z

min(z,1−z)

)
= |t|

(
z

min(z,1−z) − ϑ
)(

1 + O(|t|δ)
)

,

p22 = P
(

U ≤ t z
min(z,1−z) , V ≤ t 1−z

min(z,1−z)

)
= 1 + |t|

(
ϑ − 1

min(z,1−z)

)
+ O(|t|1+δ).

t z
min(z,1−z)

t 1−z
min(z,1−z)

(0, 0)

n12

n22

n11

n21

Figure 6.4.2. 2 × 2 table of the observations.

Define the alternative
ϑ(n) := ϑ + cδn,

where c ∈ R is arbitrary and

δn := 1
(n|t|)1/2 .

Denote the corresponding cell probabilities under ϑ(n) by pijn. We require in the
following that

ϑ <
max(z, 1 − z)
min(z, 1 − z)

.

This is a mild condition, since we have

ϑ ≤ max(z, 1 − z)
min(z, 1 − z)
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by the general inequality D(z) ≥ max(z, 1− z) anyway. In the following result we
establish LAN of the multinomial distributed vector (nij). For a proof we refer to
Falk and Reiss [153].

Theorem 6.4.5. Suppose that t = tn ↑ 0 and that ntn → ∞, nt1+δ
n → 0. Then

we have, for 0 < z < 1 and 0 < ϑ = ϑ(z) < 1 for the loglikelihood ratio under ϑ,
the expansion

Ln = log
(

B(n, (pijn))
B(n, (pij))

(nij)
)

= cZn − c2

2

max(z,1−z)
min(z,1−z) − ϑ2

ϑ(1 − ϑ)
(

max(z,1−z)
min(z,1−z) − ϑ

) + op(1)

with the central sequence

Zn = δn

(
n11
ϑ − n12

1−z
min(z,1−z) −ϑ

− n21
z

min(z,1−z) −ϑ + nt

)
−→D N

(
0,

max(z,1−z)
min(z,1−z) −ϑ2

ϑ(1−ϑ)
(

max(z,1−z)
min(z,1−z) −ϑ

)) .

The above result together with the Hájek-LeCam convolution theorem pro-
vides us with the asymptotically minimum variance within the class of regular
estimators of ϑ. This class of estimators ϑ̃n is defined by the property that they
are asymptotically unbiased under ϑn = ϑ + cδn for any c ∈ R, precisely

δ−1
n (ϑ̃n − ϑn) −→Dϑn

Qϑ,

where the limit distribution Qϑ does not depend on c; see Section 8.4 and 8.5 in
Pfanzagl [367] for details.

An efficient estimator of ϑ within the class of regular estimators of ϑ has
necessarily the minimum limiting variance

σ2
minimum := ϑ(1 − ϑ)

max(z,1−z)
min(z,1−z) − ϑ

max(z,1−z)
min(z,1−z) − ϑ2

,

which is the inverse of the limiting variance of the central sequence.
Put

ϑ̂n(z) := ϑ̂n :=

⎧⎪⎨⎪⎩
n11

n11+n21
, if z ≤ 1

2 ,

n11
n11+n12

, if z > 1
2 .

For z = 1/2, the estimator ϑ̂n(1/2) coincides with the estimator of the tail
dependence parameter ϑ(1/2) = 2(1−D(1/2)) investigated in Falk and Reiss [151].
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Lemma 6.4.6. We have, under the conditions of Theorem 6.4.5,

(n|tn|)1/2(ϑ̂n − ϑ) −→D N
(

0, ϑ(1 − ϑ)
)

.

Proof. We have, for z ≤ 1/2,

(n|tn|)1/2 (ϑ̂n − ϑ)

= (n|tn|)1/2 n11−ϑ(n11+n21)
n11+n21

= (n|tn|)1/2 (n11−ϑn|tn|)(1−ϑ)−(n21−(1−ϑ)n|tn|)ϑ
n11+n21

= (n|tn|)−1/2
(

(n11 − ϑn|tn|)(1 − ϑ) − (n21 − (1 − ϑ)n|tn|)ϑ
)

+ op(1)

→D N
(

0, ϑ(1 − ϑ)
)

by the central limit theorem. The case z > 1/2 is shown in complete analogy.

The estimator ϑ̂n does not have, therefore, asymptotically minimum variance.
The modification

ϑ̂n,eff(z) := ϑ̂n,eff

:= ϑ̂n + ϑ̂n(1 − ϑ̂n)
max(z,1−z)
min(z,1−z) − ϑ̂2

n

×
{

1−z
z − ϑ̂n − n12

n|t| , if z ≤ 1
2 ,

z
1−z − ϑ̂n − n21

n|t| , if z > 1
2 ,

however, satisfies

δ−1
n

(
ϑ̂n,eff − ϑ

)
= σ2

minimumZn + op(1) −→D N
(
0, σ2

minimum
)
,

which follows from elementary computations. Note that ϑ̂n,eff(1/2) is the efficient
estimator of the tail dependence parameter defined in Falk and Reiss [151]. The
modified estimator is by the Hájek-LeCam convolution theorem an efficient esti-
mator in the class of regular estimators with the rate δn, see Sections 8.4 and 8.5
in the book by Pfanzagl [367].

6.5 Testing Tail Dependence against
Residual Tail Dependence

Effects of mis-specification such as modelling dependent data by independent ran-
dom variables are described by Dupuis and Tawn [116]. Following Ledford and
Tawn [311], they come up with the conclusion

It would seem appropriate to test for significant evidence against asymp-
totic dependence before proceeding with an asymptotic independent model.

Testing whether tail independence holds is, therefore, mandatory in a data analysis
of extreme values. More precisely, we will test tail dependence against residual
tail dependence where the latter concept may be regarded as a refinement of tail
independence, cf. p. 262.
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Testing the Tail Dependence under Differentiable

Spectral Expansions

Let (X, Y ) be a rv with values in (−∞, 0]2 whose df H(x, y) satisfies a differentiable
spectral expansion of length k + 1, i.e.,

hz(c) = D(z) +
k∑

j=1
Bj(c)Aj(z) + o(Bk(c)), c ↑ 0, (6.17)

uniformly for z ∈ [0, 1], cf. (6.5). Then according to Section 6.1, H(x, y) is in the
bivariate domain of attraction of the EVD G with Pickands dependence function
D. Furthermore, X and Y are tail independent iff D = 1.

Let now (X1, Y1), . . . , (Xn, Yn) be independent copies of (X, Y ). If diagnostic
checks of (X1, Y1), . . . , (Xn, Yn) suggest X, Y to be independent in their upper tail
region, modelling with dependencies leads to the overestimation of probabilities of
extreme joint events. Some inference problems caused by model mis-specification
are, for example, exploited by Dupuis and Tawn [116].

Because we want to prove that tail independence holds, we put tail depen-
dence into the null hypothesis—thereby following the advice by J. Pfanzagl (trans-
lated from German), see [365], p. 95.

As null hypothesis select the opposite of what you want to prove and
try to reject the null hypothesis.

Thus, our first aim is to test

H0 : D(z) �= 1 against H1 : D(z) = 1 .

It is an obvious idea to test the tail dependence by estimating the dependence
function D and to test for D �= 1 or D = 1. The latter approach was carried out
by Deheuvels and Martynov [105]. A similar approach was suggested by Capéraà
et al. [59]; see also the discussion in Section 3.2.1 of Kotz and Nadarajah [293].

In the sequel the testing will be based on the random distance C = X + Y .
We will establish the fact that the conditional distribution of (X + Y )/c, given
X + Y > c, has limiting df F (t) = t1+β , t ∈ [0, 1], as c ↑ 0 for a certain parameter
β > 0 iff D(z) = 1, i.e., iff X and Y are tail independent. If D is not the constant
function 1, then the limiting df is that of the uniform distribution on [0, 1], namely,
F (t) = t, t ∈ [0, 1]. Therefore the testing is reduced to

H0 : F0(t) = t against H1 : Fβ(t) = t1+β, β > 0

which means that we are testing a simple null hypothesis against a composite
alternative, cf. Frick et al. [161]. The null hypothesis where D �= 1 or β = 0
represents tail dependence while the alternative with D = 1 and β > 0 stands
for tail independence. The parameter β > 0 is a particular exponent of variation
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of the underlying spectral expansion (6.17). If condition (6.8) is satisfied by the
function A1, then β can be chosen as β1 belonging to the first regularly varying
function B1 in the expansion, cf. (6.18) in Corollary 6.5.1.

Since β1 > 0 measures the residual tail dependence, cf. (6.10), one can also
speak of testing tail dependence against residual tail dependence. The case β = 1,
which was presented in the second edition of this book, still holds for EVDs and
can be regarded as a special case.

The above result will be utilized to define a test on tail dependence of X and
Y which is suggested by the Neyman-Pearson lemma. As the Neyman-Pearson test
at the level α does not depend on the parameter β, we will get a uniformly most
powerful test. The test will be applied to the exceedances Xi + Yi > c among the
sample (X1, Y1), . . . , (Xn, Yn). To make the test procedure applicable, the data
have to be transformed to the left lower quadrant first. This transformation is
achieved by means of the marginal empirical dfs, cf. Ledford and Tawn [311], see
also Coles et al. [74] and Reiss and Thomas [390], p. 331. The type I and II error
rates will be investigated by various simulations.

Concerning goodness-of-fit tests for the case β = 1 that are based on Fisher’s
κ, on the Kolmogorov-Smirnov test as well as on the chi-square goodness-of-fit test
we again refer to the second edition of this book.

A Conditional Distribution of the Distance C = X + Y

The following auxiliary result is actually one of the main results of the present
considerations.
Corollary 6.5.1. Assume that (X, Y ) is a random vector with df H which satisfies
the conditions (6.4)-(6.7), hence satisfying a differentiable spectral expansion

hz(c) = D(z) +
k∑

j=1
Bj(c)Aj(z) + o(Bk(c)), c ↑ 0,

uniformly for z ∈ [0, 1] and some k ∈ N with Pickands dependence function D.
(i) (Tail Dependence) If D(z) �= 1, we have

P (X + Y > ct | X + Y > c) −→ t, c ↑ 0,

uniformly for t ∈ [0, 1].

(ii) (Residual Tail Dependence) If D(z) = 1, we have

P (X + Y > ct | X + Y > c) → t1+βκ , c ↑ 0,

uniformly for t ∈ [0, 1] provided that

κ = min
{

j ∈ {1, . . . , k} : (2 + βj)
∫ 1

0
Aj(z) dz − Aj(0) − Aj(1) �= 0

}
(6.18)

exists.
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Proof. From Lemma 6.3.2 we obtain, for c close to 0,

P (X + Y > ct | X + Y > c)

=
∫ 0

ct
h1(x) dx +

∫ 1
0 cthz(ct) + h̃z(ct)(1 − z) dz∫ 0

c h1(x) dx +
∫ 1

0 chz(c) + h̃z(c)(1 − z) dz
:= I

II
, (6.19)

where

I :=
∫ 0

ct

1 +
k∑

j=1
Bj(x)Aj(1) + o(Bk(x)) dx

+
∫ 1

0
ct

⎛⎝D(z) +
k∑

j=1
Bj(ct)Aj(z) + o(Bk(ct))

⎞⎠ dz +
∫ 1

0
h̃z(ct)(1 − z) dz,

II :=
∫ 0

c

1 +
k∑

j=1
Bj(x)Aj(1) + o(Bk(x)) dx

+
∫ 1

0
c

⎛⎝D(z) +
k∑

j=1
Bj(c)Aj(z) + o(Bk(c))

⎞⎠ dz +
∫ 1

0
h̃z(c)(1 − z) dz.

Using partial integration we obtain∫ 1

0
h̃z(c)(1 − z) dz

=
∫ 0

c

h0(x) dx −
∫ 1

0

∫ 0

c

hz(x) dx dz

=
∫ 0

c

1 +
k∑

j=1
Bj(x)Aj(0) + o(Bk(x)) dx

−
∫ 1

0

∫ 0

c

D(z) +
k∑

j=1
Bj(x)Aj(z) + o(Bk(x)) dx dz

= −c +
k∑

j=1
Aj(0)

∫ 0

c

Bj(x) dx + o
(∫ 0

c

Bk(x) dx

)

−
∫ 1

0
−cD(z) +

k∑
j=1

∫ 0

c

Bj(x) dx Aj(z) + o
(∫ 0

c

Bk(x) dx

)
dz

= c

(∫ 1

0
D(z) dz − 1

)
−

k∑
j=1

∫ 0

c

Bj(x) dx

(∫ 1

0
Aj(z) dz − Aj(0)

)

+ o
(∫ 0

c

Bk(x) dx

)
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as well as∫ 0

c

1 +
k∑

j=1
Bj(x)Aj(1) + o(Bk(x)) dx

= −c +
k∑

j=1

∫ 0

c

Bj(x) dx Aj(1) + o
(∫ 0

c

Bk(x) dx

)
and ∫ 1

0
c(D(z) +

k∑
j=1

Bj(c)Aj(z) + o(Bk(c)) dz

= c

∫ 1

0
D(z) dz +

k∑
j=1

cBj(c)
∫ 1

0
Aj(z) dz + o(cBk(c)).

The same goes for ct instead of c. Substituting the above expansions in equation
(6.19), we obtain with L :=

∫ 1
0 D(z) dz − 1, Nj :=

∫ 1
0 Aj(z) dz − Aj(0) − Aj(1),

Mj :=
∫ 1

0 Aj(z) dz,

P (X + Y > ct | X + Y > c)

=
2ctL −∑k

j=1

(∫ 0
ct

Bj(x) dx Nj − ctBj(ct) Mj

)
+ o

(
ctBk(ct) +

∫ 0
ct

Bk(x) dx
)

2cL −∑k
j=1

(∫ 0
c Bj(x) dx Nj − cBj(c) Mj

)
+ o

(
cBk(c) +

∫ 0
c Bk(x) dx

)
=

2ctL + ctBκ(ct)
1+ρ

(
(2 + ρ)

∫ 1
0 Aκ(z) dz − Aκ(0) − Aκ(1)

)
+ o(ctBκ(ct))

2cL + cBκ(c)
1+ρ

(
(2 + ρ)

∫ 1
0 Aκ(z) dz − Aκ(0) − Aκ(1)

)
+ o(cBκ(c))

, (6.20)

with κ as defined in (6.18). Representation (6.20) is due to Karamata’s theorem
about regularly varying functions, which implies

∫ 0
c

Bj(t) dt ∼ − 1
1+βj

Bj(c)c as
c ↑ 0 for j = 1, . . . , k. Finally, applying the conditions (6.6) and (6.7) to the
regulary varying function Bκ yields the desired assertions.

We remark that the existence of κ in (6.18) is actually not a strong condition.
Provided that B1 in the spectral expansion is absolutely continuous and has a
monotone derivative we have in general

A1(z) ≥ A1(1)z1+β1 + A1(0)(1 − z)1+β1 , z ∈ [0, 1],

and, hence, (2+β1)
∫ 1

0 A1(z) dz−A1(0)−A1(1) ≥ 0 anyway: If D(z) = 1, z ∈ [0, 1],
we have

0 ≤ lim
c↑0

P (Y > c | X > tc)
B1(c)

(6.21)

= lim
c↑0

1 − H1(tc) − H0(c) + Ht/(t+1)(c(t + 1))
B(c)(1 − H1(tc))
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=
A1

(
t

t+1

)
(t + 1)1+β1 − A1(0) − A1(1)t1+β1

t(1 + β1)

for arbitrary t ∈ (0,∞), and, hence,

A

(
t

t + 1

)
≥ A(0) 1

(t + 1)1+β1
+ A(1)

(
t

t + 1

)1+β1

.

Putting z = t/(t+1), we obtain (2+β1)
∫ 1

0 A1(z) dz−A1(0)−A1(1) ≥ 0, z ∈ [0, 1],
cf. Theorem 2 in Frick at al. [161].

From (6.21) we conclude that κ > 1 if P (Y > c | X > tc) converges faster to
0 than B1(c). With regard to the definition (6.2) of the tail dependence parameter,
which equals 0 if D = 1, one can say that the tail independence is rather strong
in this case.

The parameter κ does not exist for a GPD with Aj(z) = 0, j ≥ 1. In that
case we have P (U + V ≥ c) = 0 for c close to 0 iff D(z) = 1, i.e., iff U and V are
tail independent. If they are not tail independent, then Corollary 6.5.1 (i) becomes
applicable. Testing for tail dependence of U, V in case of an upper GPD tail is,
therefore, equivalent to testing for P (U + V ≥ c) > 0 for some c < 0.

If the df H in Corollary 6.5.1 is an EVD with Pickands dependence function
D, the pertaining spectral density satisfies the expansion

hz(c) = D(z) + cD(z)2 + o(c), c ↑ 0,

cf. (6.11). Obviously, A(z) = A1(z) = D(z)2 and β = β1 = 1. If D(z) = 1, we have
(2 + β1)

∫ 1
0 A1(z) dz−A1(0)−A1(1) = 1. Therefore the parameter βκ in Corollary

6.5.1(ii) is given by βκ = 1 and the conditional limiting df of the radial component
is F (t) = t2.

This result for EVDs can also be proved directly as shown by the following
lemma. See also the special result at the end of Section 6.3.

Lemma 6.5.2. We have, uniformly for t ∈ [0, 1] as c ↑ 0,

P (X + Y > ct | X + Y > c) =
{

t2(1 + O(c)), if D(z) = 1, z ∈ [0, 1],
t(1 + O(c)), otherwise.

Proof. From Lemma 6.3.1 and the Taylor expansion of exp we obtain, uniformly
for t ∈ [0, 1] and c close to 0,

P (X + Y > ct | X + Y > c)

=
1 − exp(ct) + ct

∫
[0,1] exp(ctD(u))(D(u) + D′(u)(1 − u)) du

1 − exp(c) + c
∫

[0,1] exp(cD(u))(D(u) + D′(u)(1 − u)) du

=
−ct + ct

∫
[0,1] D(u) + D′(u)(1 − u) du + O((ct)2)

−c + c
∫

[0,1] D(u) + D′(u)(1 − u) du + O(c2)



294 6. The Pickands Approach in the Bivariate Case

= t(1 + O(c))

if D is not the constant function 1. This follows from partial integration:∫
[0,1]

D(u) + D′(u)(1 − u) du = 2
∫

[0,1]
D(u) du − 1 ∈ (0, 1]

and the facts that D(z) ∈ [1/2, 1], D(0) = 1.
If D(z) is the constant function 1, then we obtain, uniformly for t ∈ [0, 1]

and c close to 0,

P (X + Y > ct | X + Y > c) =
1 − exp(ct) + ct exp(ct)
1 − exp(c) + c exp(c)

= −ct − (ct)2/2 + ct(1 + ct) + O((ct)3)
−c − c2/2 + c(1 + c) + O(c3)

= t2(1 + O(c)).

Test Statistic based on the Distance C

Suppose that we have n independent copies (X1, Y1), . . . , (Xn, Yn) of (X, Y ). Fix
c < 0 and consider only those observations Xi+Yi among the sample with Xi+Yi >
c. Denote these by C1, C2, . . . , CK(n) in the order of their outcome. Then Ci/c,
i = 1, 2, . . . are iid with common df Fc(t) := P (X + Y > ct | X + Y > c), t ∈ [0, 1],
and they are independent of K(n), which is binomial B(n, q)-distributed with
q = 1− (1− c) exp(c) if c is close to zero and D is the constant function 1. This is
a consequence of Theorem 1.3.1. We will now consider the Neyman-Pearson test.

We have to decide, roughly, whether the df of Vi := Ci/c, i = 1, 2, . . . is either
equal to the null hypothesis F0(t) = t or the alternative Fβ(t) = t1+β , 0 ≤ t ≤ 1.
Assuming that these approximations of the df of Vi := Ci/c were exact and that
K(n) = m > 0, we choose the test statistic

∑m
i=1 log Vi. Under F0 it is distributed

according to the gamma df

Hm(t) = exp(t)
m−1∑
i=0

(−t)i

i!
, t ≤ 0,

on the negative half-line with parameter m. The Neyman-Pearson test at the level
α is then given by

Cm,α =

{
m∑

i=1
log Vi > H−1

m (1 − α)

}
, (6.22)

i.e., the null hypothesis H0 is rejected if the test statistic exceeds the (1 − α)-
quantile of the gamma df. The power function for the level-α test is

ψm,α(β) = 1 − Hm

(
(1 + β)H−1

m (1 − β)
)

, β ≥ 0,
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and can be approximated by

ψm,α(β) ≈ 1 − Φ((1 + β)Φ−1(1 − α) − βm1/2), β ≥ 0,

for large m by the central limit theorem, where Φ is the standard normal df.
Similarly, the p-value of the optimal test is given by

p = 1 − exp

(
m∑

i=1
log Vi

)
m−1∑
j=0

(−∑m
i=1 log Vi)

j

j! ≈ Φ
(
−
∑m

i=1 log Vi + m

m1/2

)
.

For a discussion of the previous testing problem see also Frick et al. [161].

Simulations of p-Values

The following figures exemplify numerous simulations that we did to evaluate the
performance of the Neyman-Pearson test for tail dependence against tail indepen-
dence defined above. Figure 6.5.1 shows quantile plots of 100 independent real-
izations of the p-value, based on K(n) = m = 25 exceedances over the particular
threshold under the hypothesis H0 of tail dependence of X and Y .

The 100 p-values were ordered, i.e., p1:100 ≤ · · · ≤ p100:100, and the points
(i/101, pi:100), 1 ≤ i ≤ 100, were plotted.

The underlying df is the logistic df with parameter λ = 1.5 and λ = 2.5 (see
Example 4.3.5).
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Figure 6.5.1. Quantile plots of 100 values with underlying logistic df with
λ = 1.5 (above) and λ = 2.5 (below) and 25 exceedances over the thresholds

c = −0.45 (left), c = −0.35 (middle), and c = −0.1 (right).
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The three almost straight lines formed by the quantile plots in the lower
part of Figure 6.5.1 (where λ = 2.5) visualize that the correct type I error rate
is achieved for each of the chosen thresholds. Therefore, the distribution of the
Neyman-Pearson test is not affected by the threshold if the tail dependence is
sufficiently strong. In case of a weaker tail dependence (λ = 1.5) the upper part of
Figure 6.5.1 shows that the distribution is slightly affected by too small thresholds,
cf. also Frick et al. [161].

Next we simulate deviations from the tail dependence and consider (X, Y )
having a standard normal df with correlation ρ ∈ (0, 1). The plots in Figure 6.5.2
and 6.5.3 were generated in the same way as in Figure 6.5.1. Figure 6.5.2 visualizes
tests of tail dependence against residual tail dependence with underlying standard
normal df with correlation ρ = 0.5.
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Figure 6.5.2. Quantile plots of 100 p-values with underlying standard normal df
with � = 0.5 and 25 exceedances over the thresholds c = −0.45 (left), c = −0.35

(middle), c = −0.1 (right).

It turns out that the distribution of the p-value is now shifted to the left
under tail independence, i.e., the type II error rate is quite small.

Figure 6.5.3 shows how the type II error rate is influenced by the size of
the correlation coefficient ρ. If ρ is close to 1, the parameter β of the underlying
differentiable spectral expansion is small, cf. (6.12), meaning that we are close to
the null hypothesis. In this case the quantile plot of the p-values almost reaches a
straight line, i.e., the type II error rate is rather high and the test is likely to fail,
see also Frick et al. [161].

Testing Tail Dependence in Arbitrary Dimension

Next we extend the previous results for bivariate dfs to those in arbitrary dimension
d. In the bivariate case we have seen that the conditional distribution of (X +Y )/c,
given X + Y > c, has limiting df F (t) = t or F (t) = t1+β, if D �= 1 or D = 1,
respectively, provided that the df H of the rv (X, Y ) satisfies a spectral expansions
with leading term D(z). In the multivariate case spectral expansions are no longer
suitable, therefore we use expansions of Pickands densities where the leading term
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Figure 6.5.3. Quantile plots of 100 p-values with underlying standard normal df
with ρ = 0.2 (above left), ρ = 0.35 (above middle), ρ = 0.5 (above right),

ρ = 0.65 (below left), ρ = 0.8 (below middle), ρ = 0.95 (below right) and 25
exceedances over the threshold c = −0.4.

is the Pickands density ϕ of d-variate GPD W with Pickands dependence function
D. According to (5.40) the above conditions are equivalent to

∫ 1
0 ϕ(z) dz > 0

and
∫ 1

0 ϕ(z) dz = 0, respectively, in the bivariate case. This result will now be
generalized to arbitrary dimensions. For a proof of the following lemma see Frick
and Reiss [162].

Lemma 6.5.3. Assume that the random vector X = (X1, . . . , Xd) has a Pickands
density which satisfies the conditions (5.42)-(5.44), where ϕ is the Pickands density
of a d-variate GPD with Pickands dependence function D.

(i) If
∫

R ϕ(z) dz > 0, then

P

⎛⎝∑
i≤d

Xi > ct |
∑
i≤d

Xi > c

⎞⎠ → t, c ↑ 0,

uniformly for t ∈ [0, 1].

(ii) If
∫

R ϕ(z) dz = 0 and (5.44) holds with 0 < β1 < β2 < · · · < βk, then

P

⎛⎝∑
i≤d

Xi > ct |
∑
i≤d

Xi > c

⎞⎠ → t1+βκ , c ↑ 0,
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uniformly for t ∈ [0, 1] provided that

κ = min
{

j ∈ {1, . . . , k} :
∫

R

Ãj(z) dz �= 0
}

exists.

Note that in the bivariate case the parameter κ is the same as in (6.18) if the
functions Aj of the spectral expansion are twice continuously differentiable and

Ãj(z) = −βjAj(z) − βj

1 + βj
A′

j(z)(1 − 2z) + 1
1 + βj

A′′
j (z)z(1 − z),

j = 1, . . . , k. For in this case we have∫ 1

0
Ãj(z) dz = −(2 + βj)

∫ 1

0
Aj(z) dz + Aj(0) + Aj(1),

j = 1, . . . , k, cf. Lemma 6.1.3(i).
From Lemma 5.6.3 we know that

∫
R

ϕ(z) dz > 0 implies D �= 1. Therefore,
part (i) of Lemma 6.5.3 stands for multivariate tail dependence. On the other hand,∫

R ϕ(z) dz = 0 is equivalent to Drs = 1 for at least one pair r, s ∈ {1, . . . , d}, where
Drs is the bivariate pairwise Pickands dependence function, defined in (5.39).
Hence, Lemma 6.5.3 (ii) represents tail independence in at least one bivariate
marginal distribution. For a Pickands dependence function D satisfying the sym-
metry condition (4.34) we have that

∫
R

ϕ(z) dz = 0 is equivalent to D = 1, i.e., to
multivariate tail independence. In this case we can directly compute the Pickands
density of an EVD G with reverse exponential margins:

f(z, c) = |c|d−1
(

∂d

∂x1 . . . ∂xd
exp(x1 + · · · + xd)

)
(T −1(z, c))

= |c|d−1 exp(c)
= |c|d−1 + o(|c|d−1), c ↑ 0.

Therefore, we have ρκ = d − 1 and the conditional limiting distribution of the
radial component

∑
i≤d Xi is given by F (t) = td, t ∈ [0, 1], in conformity with

Lemma 6.5.3 of the second edition of this book, cf. also Example 2 in Frick and
Reiss [162].

The result of Lemma 6.5.3 leads to the same testing problem as before. By
analogy with the bivariate case we consider the observations Ci =

∑
k≤d X

(i)
k ,

1 ≤ i ≤ K(n), from a sample (X(j)
1 , . . . , X

(j)
d ), 1 ≤ j ≤ n, where

∑
k≤d X

(i)
k > c.

Conditional on K(n) = m, the optimal test suggested by the Neyman-Pearson
lemma for testing

H0 : F0(t) = t against H1 : Fβ(t) = t1+β , β > 0
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based on Vi = Ci/c, 1 ≤ i ≤ m, is again given by (6.22) and the power function
as well as the p-value remain the same.

Notice, though, that the alternative of the testing problem in the multivariate
framework has to be interpreted differently unless D satisfies the symmetry condi-
tion (4.34). As we have seen above, the null hypothesis stands for multivariate tail
dependence and a rejection means that there is significance for tail independence
in at least one bivariate marginal distribution. In this case one can proceed with
an intersection-union test by testing each bivariate marginal distribution on tail
dependence to find out whether there is significance for multivariate tail indepen-
dence, see Frick and Reiss [162].

Finally, we consider the situation where we have univariate margins that are
not necessarily reverse exponential. Let Gα1,...,αd

be an EVD whose i-th marginal
Gi is an arbitrary standard EVD,

Gi(x) = exp(ψαi (x)), 1 ≤ i ≤ d,

where

ψα(x) :=

⎧⎨⎩ −(−x)α, x < 0, if α > 0,
−xα, x > 0, if α < 0,
− exp(−x), x ∈ R, if α = 0,

defining, thus, the family of (reverse) Weibull, Fréchet and the Gumbel distribution
exp(ψα(x)). Up to a location or scale shift, Gα1,...,αd

is the family of possible d-
dimensional EVD.

Note that

Gα1,...,αd

(
ψ−1

α1
(x1), . . . , ψ−1

αd
(xd)

)
= G1,...,1(x1, . . . , xd), xi < 0, 1 ≤ i ≤ d,

where G1,...,1 = G has reverse exponential margins.
If the df of the rv (X1, . . . , Xd) coincides in its upper tail with Gα1,...,αd

,
then the df of (ψα1 (X1), . . . , ψαd

(Xd)) coincides ultimately with G. We can test,
therefore, for tail dependence of (X1, . . . , Xd) by applying the preceding results to∑

i≤d ψαi (Xi) in place of
∑

i≤d Xi.

6.6 Estimation of the Angular Density in
Bivariate Generalized Pareto Models

We will now investigate a non-parametric estimation method in bivariate GP mod-
els. In many applications it is of great importance to have a good insight into the
tail dependence structure of a given data set. Estimating the angular density for
that purpose is also popular in extreme value models, see for example Coles and
Tawn [72], [73] or Coles et al. [74].

We mainly focus on the bivariate case in this section, since it has special
properties which make the estimation easier. However we will also give a brief
discussion of the general multivariate case at the end of this section.



300 6. The Pickands Approach in the Bivariate Case

The Bivariate Angular Density

Recall that the bivariate Pickands dependence function is defined by

D(t) =
∫

[0,1]
max (ut, (1 − u)(1 − t)) ν(du), (6.23)

where ν is a measure on [0, 1] with

ν ([0, 1]) = d and
∫

[0,1]
uν(du) = 1, (6.24)

see Section 4.3. ν is called the angular measure. As we have seen in Theorem 4.3.1,
the characterization of this measure by (6.24) is necessary and sufficient to define
a Pickands dependence function,

Also recall from the beginning of Section 5.9 that the df L(z) = ν ([0, z]) of
the measure ν is called angular distribution. If the measure ν, restricted to (0, 1),
possesses a density we denote it by l and call it the angular density. The restriction
to the interior of [0, 1] helps us here to avoid certain special cases. We will see in
this section that under certain regularity conditions, the angular component of the
Pickands coordinates of GPD distributed rv follow a suitably scaled angular dis-
tribution, thus our choice of the name. In the literature it is also common to call the
angular measure/distribution/density the spectral measure/distribution/density.

We have seen in Theorem 5.6.2 that Pickands coordinates are important in
GPD models, since they decompose GP distributed rv into two conditionally in-
dependent components, given that the radial component exceeds some high value.
The distribution of the radial component is then the uniform distribution, the an-
gular component has the density f(z) := ϕ(z)/ζ, where ϕ is the Pickands density
and its integral is again denoted by ζ :=

∫
(0,1) ϕ(z) dz.

In the next theorem we compute the angular density for smooth GPD. This
result will be crucial in what follows. A proof is given in Section 2 of Michel [334].
For a general multivariate version of this result we refer to Michel [330], Theorem
2.2.4.
Theorem 6.6.1. Let the GPD W have continuous partial derivatives of order 2.
Then the corresponding angular density l is given by

l

( 1
x1

1
x1

+ 1
x2

)
= x2

1x2
2(

− 1
x1

− 1
x2

)−3
∂d

∂x1 · · · ∂xd
W (x1, x2).

We briefly illustrate with the logistic family why we estimate the angular
density for the investigation of the tail dependence structure. The logistic family
has, according to Section 3.5.1 in Kotz and Nadarajah [293], for 1 ≤ λ < ∞ the
angular density

lλ(z) = (λ − 1)z−λ−1 (1 − z)−λ−1
(

z−λ + (1 − z)−λ
)1/λ−2
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and according to Theorem 2.4 of Michel [331] the Pickands density

ϕλ(z) = (λ − 1)zλ−1 (1 − z)λ−1
(

zλ + (1 − z)λ
)1/λ−2

.

Both reduce to 0 for λ = 1. The angular density has for miscellaneous λ the graphs
from Figure 6.6.1.
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Figure 6.6.1. Logistic angular densities for different λ.

Graphs with the same parameters are plotted for the Pickands density in
Figure 6.6.2.
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Figure 6.6.2. Logistic Pickands densities for different λ.
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For the investigation of the tail dependence structure, the behavior of l(z)
especially at the boundary of (0, 1), is of interest. A convergence of the angular
density to ∞ at the boundary indicates a high degree of independence, convergence
to 0 indicates a high degree of dependence. This follows from the fact that in the
case of independence the angular measure ν has all its mass at the points 0 and 1,
and in the case of complete dependence it has its complete mass at the point 1/2,
see Section 3 of Michel [332].

The tail dependence structure is not distinctly visualized in such a way by the
Pickands density, since all functions have a maximum in the interior and converge
to 0 at the boundary in the logistic case. However, we will see that the Pickands
density will play a crucial role in these considerations.

An Alternative Representation of the Angular Density

The angular and the Pickands density of a bivariate GPD have a close connection.
This is the content of the following theorem.

Theorem 6.6.2. Let (X1, X2) follow a bivariate GPD W , which has partial
derivatives of order 2. Suppose that ζ =

∫
(0,1) ϕ(z) dz > 0. Then we have for

the angular density

l(z) = ϕ(1 − z)
z(1 − z)

= ζf(1 − z)
z(1 − z)

,

where ϕ is the Pickands density and f is defined as in Theorem 5.6.2.

Proof. Using Theorem 6.6.1 and inserting the inverse Pickands transformation
(5.36) we get

l

(
1
cz

1
cz + 1

c(1−z)

)
= − (cz)2(c(1 − z))2(

1
cz + 1

c(1−z)

)−3
∂2

∂x1∂x2
W

(
T −1

P (z, c)
)

⇐⇒ l (1 − z) = (−c) z2(1 − z)2

(z(1 − z))3
∂2

∂x1∂x2
W

(
T −1

P (z, c)
)

⇐⇒ l (1 − z) = |c|
z(1 − z)

∂2

∂x1∂x2
W

(
T −1

P (z, c)
)

.

With the definition of the Pickands density ϕ from Theorem 5.6.2 and replacing
z by 1 − z we finally obtain the equation

l (z) = ϕ(1 − z)
z(1 − z)

= ζf(1 − z)
z(1 − z)

, 0 < z < 1.

If the rv X1, X2 are exchangeable, i.e., if the distributions of (X1, X2) and
(X2, X1) coincide, then the assertion of Theorem 6.6.2 reduces to

l(z) = ϕ(z)
z(1 − z)

= ζf(z)
z(1 − z)

.
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Estimation of the Pickands Density

We have above a connection between the angular and the Pickands density. We
will now first estimate the Pickands density and then use this estimator to get to
our goal of estimating the angular density.

Let (X̃1, X̃2) < 0 be a bivariate rv following a GPD W . Suppose that we have
n independent copies (X̃(i)

1 , X̃
(i)
2 ) of (X̃1, X̃2), and denote by Z̃i := X̃

(i)
1 /(X̃(i)

1 +
X̃

(i)
2 ) and C̃i := X̃

(i)
1 + X̃

(i)
2 the corresponding Pickands coordinates, i = 1, . . . , n.

Fix a threshold c close to 0, and consider only those observations (X̃(i)
1 , X̃

(i)
2 ) with

C̃i > c. Denote these by (X(1)
1 , X

(1)
2 ), . . . , (X(m)

1 , X
(m)
2 ), where m = K(n) is the

random number of observations with C̃i > c. From Theorem 1.3.1 we know that
K(n) and the (X(j)

1 , X
(j)
2 ) are all independent rv, that K(n) is binomial B(n, p)

distributed with p = P (C̃ > c), and that the Zj have the density f(z) from
Theorem 5.6.2.

A natural estimator of f is the kernel density estimator with kernel function
k and bandwidth h > 0,

f̂m(z) := 1
mh

m∑
i=1

k

(
z − Zi

h

)
, (6.25)

where Zi := X
(i)
1 /(X(i)

1 + X
(i)
2 ), i = 1, . . . , m.

As is known from the standard literature on kernel density estimators, the
choice of a suitable bandwidth h is a crucial problem. This bandwidth is highly de-
pendent on the density to be estimated itself. So there is the need for an automatic
bandwidth selection.

Michel [334] recommends using the bandwidth

h = Sm

(
4

3m

)1/5
, (6.26)

with

Sm :=

(
1

m − 1

m∑
i=1

(Zi − Z̄m)2

)1/2

, Z̄m :=
1
m

m∑
i=1

Zi,

the empirical standard deviation and the arithmetic mean of the Zj . Using the
empirical standard deviation for the definition of the bandwidth as done here is
also known as data sphering.

To further improve the estimation, another recommendation is to use reflec-
tion techniques, which is done for all following estimators. Details are described in
Section 4 of Michel [334].

Example 6.6.3. Taking k to be the normal kernel, we did simulations of esti-
mator (6.25) using Algorithm 5.7.6 for the generation of rv following a logistic
GPD. In Figure 6.6.3 we present some results. In each case 50 observations were
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simulated, which exceed the threshold c = −0.1. We did this for different λ; the
corresponding bandwidth h, chosen according to (6.26), is also given.
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Figure 6.6.3. Simulations of the Pickands density estimator with different
logistic parameters λ and m = 50, c = −0.1.

Estimation of the Angular Density

By estimating f we are now able to estimate (a constant multiple of) the angular
density and derive a graphical tool for the investigation of the tail dependence
structure.

We obtain from Theorem 6.6.2 that

g(z) := f(1 − z)
z(1 − z)

= l(z)
ζ

, 0 < z < 1.

The function g, which is a constant multiple of the angular density l, determines if
the underlying distribution of (X1, X2) is closer to the case of independence or the
case of dependence. A peak of g(z) near 0 and 1 indicates that our observations
come from a distribution which is closer to the independence case, whereas a peak
in the interior of the unit interval determines that we are closer to the dependence
case.
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With the ability to estimate f(z) by f̂m(z), we have also gained the ability
to estimate g(z) by

ĝm(z) := f̂m(1 − z)
z(1 − z)

. (6.27)

Example 6.6.4. The estimator (6.27) was simulated in Figure 6.6.4 for the logis-
tic case with m = 50, c = −0.1 and different λ. Once again automatic bandwidth
selection, data sphering and reflection techniques were included for practical pur-
poses.
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Figure 6.6.4. Simulations of the angular density estimator with different logistic
parameters λ and m = 50, c = −0.1.

For λ noticeably smaller or larger than 2, the functions g and ĝm have the
same behavior at the boundary. For λ close to 2, g and its estimator ĝm seem to
behave differently when approaching the boundary. This is due to numerical effects
coming from the division by z(1 − z). Convergence of ĝm to 0 when approaching
the boundary is a clear sign of dependence. In contrast to this, one has to be
careful when ĝm tends to ∞ at the boundary.

Under suitable regularity conditions the asymptotic normality of estima-
tor (6.27) can be shown. More precisely, if h = o

(
m−1/5), then

(mh)1/2
(

ĝm(z) − l(z)
ζ

)
→D N

(
0,

f(1 − z)
z2(1 − z)2

∫
k2(u) du

)
.
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We refer to Theorem 5.2 of Michel [334] for details on the assumptions and a proof.
Note that the distribution of the angular components of the Pickands coordi-

nates is independent of the threshold c. This could also be a tool for the graphical
verification of the GPD model assumption: One could use different thresholds and
compare the resulting estimators of the angular density. If the data actually follow
a GPD, then all estimators should basically give the same graphic. If the graphics
differ heavily, then one can have doubts about the GPD model assumption. Such
considerations are also used to check the EVD approximation in threshold models
by Joe et al. [276] and Coles and Tawn [73].

The Problem of Generalization to the Trivariate Case

We have seen previously that we could find a multiplicative decomposition of the
angular density l into

l(z) = κ
ϕ(z)

z(1 − z)
,

in the case of exchangeability, where κ is a constant depending only on l but not
on z. One can wonder if such a decomposition is also possible for the trivariate
case. The natural generalization would be that

l(z1, z2) = κ
ϕ(z1, z2)

z1z2(1 − z1 − z2)

for exchangeable models where again κ is a constant only depending on l. We will,
however, see that this equation does not hold. In fact, we will see that there is no
multiplicative decomposition of a differentiable l such that

l(z1, z2) = κb(z1, z2)ϕ(z1, z2),

with κ depending only on l, and b differentiable of order 1, depending only on z1
and z2 but not on l.

To show this, we will use the trivariate logistic case, where the angular and
the Pickands density have the representations

lλ(z1, z2) = (λ − 1)(2λ − 1) (z1z2)−λ−1 (1 − z1 − z2)−λ−1

×
(

z−λ
1 + z−λ

2 + (1 − z1 − z2)−λ
)1/λ−3

and

ϕλ(z1, z2) = (λ − 1)(2λ − 1) (z1z2)λ−1 (1 − z1 − z2)λ−1

×
(

zλ
1 + zλ

2 + (1 − z1 − z2)λ
)1/λ−3

on S :=
{

(z1, z2) ∈ (0, 1)2 : z1 + z2 < 1
}

being the open unit simplex in R
2, see

Section 3.5.1 in Kotz and Nadarajah [293] and Theorem 2.4 of Michel [331].
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Our goal is to disprove the equation

lλ(z1, z2) = κ(λ)b(z1, z2)ϕλ(z1, z2).

Theorem 6.6.5. There does not exist a function κ : (1,∞) → R and a differen-
tiable function b(z1, z2) : S → R such that for λ > 1 the decomposition

lλ(z1, z2) = κ(λ)b(z1, z2)ϕλ(z1, z2)

holds, where lλ is the angular density and ϕλ is the Pickands density of a trivariate
logistic GPD W (x) = 1− ||x||λ = 1− (|x1|λ + |x2|λ + |x3|λ

)1/λ with parameter λ.

Proof. Suppose that there exist functions κ and b such that

lλ(z1, z2) = κ(λ)b(z1, z2)ϕλ(z1, z2), (z1, z2) ∈ S.

We know that ϕλ > 0 for λ > 1. Dividing by ϕλ we get

lλ(z1, z2)
ϕλ(z1, z2)

= κ(λ)b(z1, z2).

Since also lλ(z1, z2) > 0 for any (z1, z2) ∈ S, we can assume without loss of
generality that κ(λ) > 0 and b(z1, z2) > 0. Therefore, we get

log
(

lλ(z1, z2)
ϕλ(z1, z2)

)
= log(κ(λ)) + log(b(z1, z2))

by taking the logarithm on both sides. Computing the partial derivative with
respect to z1 (or with respect to z2 leading to the same results due to the ex-
changeability of z1 and z2 in the logistic case), we have

a(λ, z1, z2) := ∂

∂z1
log

(
lλ(z1, z2)
ϕλ(z1, z2)

)
=

∂
∂z1

b(z1, z2)
b(z1, z2)

,

which is constant with respect to λ. This will be our contradiction since we will
show that there exist λ1, λ2 > 1 and (z1, z2) ∈ S such that

a(λ1, z1, z2) �= a(λ2, z1, z2).

With the above representations of lλ and ϕλ we compute (details are left to the
reader)

a(λ, z1, z2)

= 2λ

(
1

1 − z1 − z2
− 1

z1

)
+ (3λ − 1)

z−λ−1
1 − (1 − z1 − z2)−λ−1

z−λ
1 + z−λ

2 + (1 − z1 − z2)−λ

+ (3λ − 1) zλ−1
1 − (1 − z1 − z2)λ−1

zλ
1 + zλ

2 + (1 − z1 − z2)λ
.
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By choosing z1 = z2 = 1/4 we get (details again left to the reader)

a

(
λ,

1
4 ,

1
4

)
= −4λ + 2(3λ − 1)

(
2λ+1 − 1
2λ+1 + 1 +

1 − 2λ−1

2λ−1 + 1

)
.

But since

a

(
2,

1
4

,
1
4

)
= −32

9
�= −636

85
= a

(
3,

1
4

,
1
4

)
,

we have completed the proof.

Therefore, the estimator of the angular density presented in this section can-
not be analogously transferred to the multivariate case. The bivariate case seems
to be a special case.

An Alternative Estimation for the Multivariate Case

An alternative method of estimating the angular density in multivariate GP models
is shown in Michel [330], Chapter 5. It uses the Pickands coordinates with respect
to Fréchet margins, which we have introduced in (5.61).

As already mentioned in Section 5.9, it can be shown that

P (Z ∈ B | C = −r, Z ∈ Qr,s) =
1

χ(r, s)

∫
B∩Qr,s

l(z) dz

holds with Z and C being the random Pickands coordinates with regard to Fréchet
margins, B is some Borel set in R =

{
x ∈ (0, 1)d−1 :

∑
i≤d−1 xi < 1

}
, Qr,s is

defined in (5.63) and χ(r, s) is defined in (5.64), which is close to a constant if r
is large.

Based on this result, the intuitive approach is to use the angular component
of the Pickands coordinates with regard to Fréchet margins to estimate the angular
density.

Assume that we have n independent copies X̃(1), . . . , X̃(n) of a rv X, which
follows a GPD on Ks from (5.62) with some s > 0. Denote by Z̃(i) and C̃(i) the
corresponding Pickands coordinates with regard to Fréchet margins, i = 1, . . . , n.
Choose a large threshold r > 0, and consider only those observations X̃(i) with
X̃(i) ∈ Ar,s as defined in (5.67), i.e., X̃(i) ∈ Ks and C̃(i) < −r. We denote these by
X(1), . . . , X(m). They are independent of the binomially distributed rv m = K(n),
independent from each other and identically distributed, see Theorem 1.3.1. A
natural estimator for the angular density l is, thus, a kernel density estimator
with kernel k, bandwidth h > 0 and data sphering

l̂m,r(z) = d
1

(det Sm)1/2
mhd−1

m∑
i=1

k

(
S−1/2

m

(
z − Z(i))
h

)
. (6.28)
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Here Sm denotes the covariance matrix of the Z(i) and S−1/2
m its inverse symmetric

root. Data sphering is a concept from multivariate analysis, where the data are
first multiplied by the inverse symmetric root of their covariance matrix, then the
density is estimated, and afterwards transformed back. In the univariate case, this
reduces to dividing the data by their empirical standard deviation as we have done
for the bivariate estimator in the previous section. For more information on data
sphering, see for example, Falk et al. [145], Chapter 6.

Corollary 5.6.5 of Michel [330] shows that under certain regularity conditions
the estimator (6.28) is asymptotically normal with mean (d/d∗)l(z) and variance
(d2/d∗)l(z)

∫
k2(u) du for r and m →∞, where d∗ is as in Section 5.9 the mass of

the angular measure ν in the interior of the unit simplex. Thus, the factor d in the
estimator (6.28) is included to get an asymptotically unbiased estimator of l(z) in
the case d∗ = d.

For practical applications, Michel [330], Section 5.2 recommends using the
normal kernel, as bandwidth

h =
(

4
m(d + 1)

)1/(d+3)
(6.29)

and reflection techniques, e.g. presented in Sections 2.1 and 8.2 of Reiss and
Thomas [389].

Detailed results of numerous simulations are described in Section 5.2 of
Michel [330]. A major finding is that l̂m,r(z) has the same problems as the para-
metric estimators based on the angular density presented in Section 5.9, when we
are close to the case of independence, producing a non-negligible bias. This does
not come as a surprise, since both use the same approximation of l, see (5.65).

As a consequence, the estimation presented in the first half of this section
should be used in the bivariate case, since it does not suffer from this bias and is
more reliable. In higher dimensions, however, the estimator (6.28) is presently, to
the best of our knowledge, the only existing option.



Chapter 7

Multivariate Extremes:
Supplementary Concepts
and Results

In this chapter we will deal with exceedances and upper order statistics (besides
maxima), with the point process approach being central for these investigations.
Extremes will be asymptotically represented by means of Poisson processes with
intensity measures given by max-Lévy measures as introduced in Section 4.3.

In Sections 7.1 and 7.2, the approximations are formulated in terms of the
variational distance defined by

d(ν0, ν1) := sup
B

|ν0(B) − ν1(B)|

for finite measures ν0 and ν1, where the sup ranges over the measurable sets B. We
also write d(X, Y ) to express the variational distance between the distributions of
rv X and Y , see page 7.

Thinned empirical processes, which generalize truncated processes by allow-
ing random truncating sets, are introduced in Section 7.3. Local asymptotic nor-
mality of these processes is established under the condition that we deal with rare
events, that is, the probability of thinning converges to zero.

7.1 Strong Approximation of Exceedances
We introduce different concepts of multivariate exceedances and provide Poisson
approximations which hold with respect to the variational distance. We particu-
larly continue our discussion in Section 5.1 about generalized Pareto distributions
(GPD). This section is based on two articles by Kaufmann and Reiss [285], [286].

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,  
DOI 10.1007/978-3-0348-0009-9_7, © Springer Basel AG 2011 
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Approximation Technique

Approximations of functionals T (Nn) of the empirical process Nn (cf. (7.3)) may
be carried out by means of the Poisson approximation in conjunction with the
coupling inequality d(X, Y ) ≤ P{X �= Y } for rv X and Y .

We indicate in which way the limiting distribution of T (Nn) can be estab-
lished by using this approach. The limiting distribution L(T (N∗)), where N∗ is a
Poisson process, may be computed in the following manner:

(a) Coupling: replace T (Nn) by T (Nnt), where Nnt is the empirical process Nn

truncated outside of a “rare event”;

(b) first-order Poisson approximation: replace T (Nnt) by T (N∗
nt), where

N∗
nt is a Poisson process which has the same intensity measure as Nnt;

(c) second-order Poisson approximation: replace T (N∗
nt) by T (N∗

t ), where
N∗

t is the truncation of a Poisson process N∗;

(d) coupling: replace T (N∗
t ) by T (N∗).

As a special case let us consider the maximum functional T = max. Notice
that T (Nn) is the usual maximum of a sample of iid rv. The limiting df G of
T (Nn) is the df of max(N∗), where N∗ is a Poisson process with mean value
function log(G). Likewise one may prove that the k-th largest value of the points
of N∗ has the df

G
∑

0≤j≤k−1
(− log(G))j/j!, (7.1)

which is the limiting df of the k-th largest order statistic of n iid rv. For T = max
we may as well utilize the following identity instead of the coupling, namely,

P (max(N∗
t ) ≤ y) = P (max(N∗) ≤ y) = G(y) (7.2)

for y > t. This result can easily be generalized to the k-th largest point of N∗
t and

to the multivariate framework.

First-Order Poisson Approximation

Let Xni = (Xni1, . . . , Xnid), i ≤ n, be a sample of iid d-variate rv. Let

Nn =
∑
i≤n

εXni
(7.3)

be the empirical process. The pertaining intensity measure is

νn = nP (Xn1 ∈ ·).
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Let N∗
n be a Poisson process with the same intensity measure νn as Nn and

denote by Nnt and N∗
nt the truncations of Nn and N∗

n outside of [−∞, t]�. Then

d(Nnt, N∗
nt) ≤ νn[−∞, t]�/n.

A replacement of Nnt by N∗
t (second-order Poisson approximation) is generally

not possible because the variational distance d
(
νn(· ∩ [−∞, t]�), ν(· ∩ [−∞, t]�)

)
can be very large; e.g. these measures have disjoint supports in the case of rv with
independent components (cf. (4.12)).

A first-order Poisson approximation of the empirical process truncated out-
side of a set {(x, y) ∈ [0,∞)2 : (x2 + y2)1/2 ≥ r} might be of interest in view of
the results by Einmahl et al. [120].

Pathwise Exceedances

We are going to consider the following situation: A random mechanism generates
the vector x = (x1, . . . , xd), yet we are merely able to observe those xj above the
level tj . We note xj if xj > tj and, otherwise tj , if at least one of the components
xj of x exceeds tj . Consequently, given x ∈ [−∞, t]� put

mt(x) := (max(xj , tj))j≤d,

and Mtν =: mtν(· ∩ [−∞, t]�) for every measure ν. As a special case of the latter
definition one obtains

Mt(μ) =
∑

i

1[−∞,t]�(xi)εmt(xi) (7.4)

for point measures μ =
∑

i εxi
. Thus, the missing components of xi are replaced

by the corresponding thresholds.
For non-void K ⊂ {1, . . . , d} define the projections πK(x) := (xk)k∈K and

the sets
C(K, t) := {x ∈ [−∞, ∞) : xk > tk, k ∈ K}. (7.5)

Define the map ΠK,t on the space of measures ν by

ΠK,tν := πKνC(K,t), (7.6)

where the right-hand side is the measure induced by πK and the measure νC(K,t)
which is ν truncated outside of C(K, t).

In the following theorem, the pathwise exceedance process MtNn will be
approximated by a Poisson process MtN∗.

Theorem 7.1.1. Let Nn be the empirical process in (7.3) and N∗ a Poisson
process with intensity measure ν which is the max-Lévy measure of a max-id df G.
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Then

d
(
MtNn, MtN∗) ≤ − log(G(t))

n
+ 5

2
d
(
Mtνn, Mtν

)
≤ − log(G(t))

n
+ c(d) Ant,

where c(d) is a constant depending only on the dimension d, and

Ant =
∑
K

d
(
ΠK,tνn, ΠK,tν

)
(7.7)

with K ranging over all non-void subsets of {1, . . . , d}.

Proof. By means of the first-order Poisson approximation and the monotonicity
theorem we obtain

d
(
MtNn, MtN∗

n

) ≤ νn[−∞, t]�/n,

where N∗
n is a Poisson process having the intensity measure νn of Nn. Moreover,

applying formula (3.8) in Reiss [387] (which holds also for the constant 3/2 in
place of 3) and the triangle inequality, we obtain

d
(
MtNn, MtN∗) ≤ νn[−∞, t]�/n + 3

2
d
(
Mtνn, Mtν

)
≤ − log(G(t))

n
+ 5

2
d
(
Mtνn, Mtν

)
,

because ν[−∞, t]� = − log(G(t)). The proof of the first inequality is complete.
The proof of the second inequality is based on a counterpart of the represen-

tation of 1 − F in (4.7). For details see Kaufmann and Reiss [286].

We see that there is a direct relationship between the preceding term Ant
and the upper bound in Lemma 4.1.3(ii). The functions nSn,K and LK generate
the measures ΠK,tνn and ΠK,tν, respectively.

Generalized Pareto Distributions

The Poisson process N∗ truncated outside of [−∞, t]� possesses a finite intensity
measure and can, therefore, be written as

∑τ
i=1 εXi with rv Xi distributed ac-

cording to the GPD Qt as introduced in (5.3). In addition, MtN
∗ is a Poisson

process based on rv with GPD mtQt. Apparently, this may serve as another ver-
sion of a GPD. This version was also studied by Tajvidi [436]; its relationship to
the bivariate GPD W = 1 + log(G) was discussed in [389], 2nd ed., Section 10.1.
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Vectors of Exceedances

In the following, the map ΠK,t defined in (7.6) will also be applied to point pro-
cesses. Applying the monotonicity theorem one obtains

d
( (

ΠK,tNn

)
K

,
(
ΠK,tN∗)

K

)
= d

(
MtNn, MtN∗). (7.8)

Define the projection-truncation map Πt by

Πtμ =
(
Π{j},t μ

)
j≤d

. (7.9)

Note that
ΠtNn = (Nn1t1 , . . . , Nndtd

), (7.10)
where

Nnjtj =
∑
i≤n

1(tj ,∞)(Xnij)εXnij , j ≤ d, (7.11)

are the univariate marginals of the empirical process Nn truncated left of tj .
If N∗ is a Poisson process on [−∞, ∞) := [−∞,∞)d with intensity measure

ν, then
(N∗

1t1
, . . . , N∗

dtd
) := ΠtN∗

is a vector of Poisson processes. As an immediate consequence of Theorem 7.1.1,
(5.9) and (5.10) we obtain the following result.

Corollary 7.1.2. Let Nn be the empirical process in (7.3) and N∗ a Poisson
process with intensity measure ν, which is the max-Lévy measure of a max-id df
G. Then

d
(
ΠtNn, ΠtN∗) ≤ − log(G(t))

n
+ c(d) Ant, (7.12)

where c(d) is a constant depending only on d.

Under the mild condition that the marginals Gj of G are continuous at α(Gj),
it is proven in Theorem 2.2 of Kaufmann and Reiss [285] that An,t → 0 for every
t > α(G) if the left-hand side of (5.13) goes to zero for every t > α(G) as n →∞.

Define the Hellinger distance H(ν1, ν2) between measures ν1 and ν2 by

H(ν1, ν2) =
(∫

(f1/2
1 − f

1/2
2 )2 dν0

)1/2
,

where fi is a ν0-density of νi. As on page 7 let H(X, Y ) define the Hellinger
distance between the distributions of X and Y .

It is an open question whether an inequality of the form

H
(
ΠtNn, ΠtN∗)

= O

(
− log(G(t))

n
+

∑
K

H
(
ΠK,tνn, ΠK,tν

))
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holds within the framework of (5.13). This inequality holds in the special case of
asymptotic independence (see Reiss [386]). Our present method of proof fails in
the general framework.

Random Thresholds

Another ingredient of our theory is the notion of an admissible threshold. In the
univariate case, a [−∞,∞)-valued, measurable map T on the space of point mea-
sures is an admissible threshold for the df G if

max(x, T (μ)) = max(x, T (μx)) (7.13)

for every point measure μ and real x with μx denoting the truncation of μ left of
x, and

P{T (N∗) ≤ x} → 0, x ↓ α(G), (7.14)

where N∗ is a Poisson process with mean value function log(G).
In the d-variate case, a threshold T = (T1, . . . , Td) is admissible (for G) if Tj

is admissible for the j-th marginals Gj of G for j ≤ d.

Example 7.1.3. (i) The constant threshold T (μ) = t is admissible if t > α(G).
(ii) If G is continuous at α(G), then

T (μ) =

⎧⎨⎩
k-th largest point of μ μ(R) ≥ k,

if
−∞ μ(R) < k,

is admissible. To see this notice that

P (T (N∗) ≤ x) = P (N∗(x,∞) ≤ k − 1)

= G(x)
∑

0≤i≤k−1

(− log(G(x)))i

i!
,

where the last expression converges to zero as x ↓ α(G) due to the continuity of
G at α(G). If k = 1 we will write T (μ) = max(μ).

Our main result unifies and extends several results known in the literature. In
view of Example 7.1.3, the following Theorem 7.1.4 deals with the joint distribution
of the k largest order statistics as well as with point processes of exceedances of
non-random thresholds.

Theorem 7.1.4. Let G be a max-id df with max-Lévy measure ν. If Ant → 0,
n →∞, for every t >α(G), then for every admissible threshold T ,

d
((

Nn1T1(Nn1), . . . , NndTd(Nnd)
)
,
(
N∗

1T1(N∗
1 ), . . . , N∗

dTd(N∗
d

)
)) → 0 (7.15)

as n →∞.
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To prove this result recall that, according to Corollary 7.1.2,

d
(
ΠtNn, ΠtN∗) → 0, n →∞, (7.16)

for every t >α(G) if Ant → 0 as n →∞ for every t >α(G).

Multivariate Maxima

As already indicated in the univariate case, we may deduce a limit theorem for
maxima from the corresponding result for processes of exceedances. In the following
we do not distinguish between a df and the pertaining probability measure in our
notation.

Corollary 7.1.5. If the marginal df Gj of G are continuous at α(Gj), then under
the conditions of Theorem 7.1.4,

d
(
L(max

i≤n
Xi

)
, G

)
→ 0, n →∞. (7.17)

Proof. Apply Theorem 7.1.4 to thresholds Tj(μ) = max(μ) as defined in Example
7.1.3(ii). Identify Nnj max(Nnj) with maxi≤n Xi,j and N∗

j max(N∗
j

) with max(N∗
j ).

Moreover, using again avoidance probabilities we have

P ((max(N∗
1 ), . . . , max(N∗

d )) ≤ x) = P (N∗([−∞, x]�) = 0)
= G(x).

The proof is complete.

Note that the preceding continuity condition holds for max-stable df G. A
corresponding result holds for the largest order statistics taken in each of the
components.

7.2 Further Concepts of Extremes
Many attempts have been made to extend the concept of order statistics from the
univariate to the multivariate framework. We refer to Barnett [31] and, in addition,
to Reiss [385] for supplementary remarks.

Subsequently, we define certain subsets P{x1, . . . , xn} ⊂ {x1, . . . , xn} such
as the vertices of the convex hull, the greatest convex minorant or the set of
Pareto points. A common characteristic of these subsets is that, within a stochastic
framework, P{X1, . . . , Xn} ⊂ Bn with high probability, where Bn is a rare event.
One is interested in quantities such as the number of points in P{X1, . . . , Xn}.
Our aim is to show in which way such a question can be shifted from the empirical
framework to that of Poisson processes. This is achieved by the coupling argument
in conjunction with a first-order Poisson approximation.
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Vertices of the Convex Hull

One of the celebrated objects in stochastic geometry is the convex hull of rv
X1, . . . , Xn, which is defined by the smallest convex set containing {X1, . . . , Xn}
(initiated by Rényi and Sulanke [391] and further elaborated by Eddy and Gale
[119], Brozius and de Haan [56] and Groeneboom [180] among others).

Denote by Pv{X1, . . . , Xn} the set of vertices of the boundary of the convex
hull. For iid rv Xi, which are uniformly distributed on the unit square, it was
proven by Groeneboom [180], Corollary 2.4, that(

|Pv{X1, . . . , Xn}| − 8
3

log(n)
)/(

40
27

log(n)
)1/2

(7.18)

is asymptotically standard normal. This result can be verified by a Poisson approx-
imation in conjunction with tedious calculations of the number of vertices of the
boundary of the convex hull of the Poisson points. Note that the expected number
of vertices is of order log(n), a result already proven by Rényi and Sulanke [391].
Because the expected number is not fixed as n →∞, a weak convergence result for
the point process pertaining to Pv{X1, . . . , Xn} is not sufficient to verify (5.19)
(see Groeneboom [180], page 328, Lemma 2.2, Corollary 2.2 and, in addition, Reiss
[387], pages 215 and 216, for a general discussion of this question).

The computations by Groeneboom [180] first concern the vertices of the left-
lower boundary of the convex hull (greatest convex minorant). Then the proof can
be completed by introducing the corresponding processes for the other corners of
the unit square; these four processes are asymptotically independent. The decisive
first step will be discussed within the framework of Pareto points in the following
subsection.

Pareto Points

Another example concerns the set of Pareto points Pa(A) of a given set A =
{x1, . . . , xn} ⊂ [0, 1]2, where

Pa(A) :=
{

x ∈ A : min
i≤d

(xi − yi) ≤ 0, y ∈ A

}
. (7.19)

Thus, x ∈ A is a Pareto point if for each y ∈ A at least one of the components of
x is smaller than or equal to the corresponding component of y. Given a simple
point measure μ =

∑
x∈A εx, let Pa(μ) :=

∑
x∈Pa(A) εx be the point measure built

by the Pareto points of A.
We give some details, whereby our excursion to Pareto points follows the line

of research by Witte [462]. In the following lines we merely deal with the special
case of the empirical process

Nn =
∑
i≤n

εXi
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of iid rv Xi with common uniform distribution Q on the unit square [0, 1]2. For
early results concerning Pareto points we refer to Barndorff-Nielsen and Sobel
[30]. Applications in conjunction with multicriteria optimization are mentioned in
Berezovskiy and Gnedin [33] and Bruss and Rogers [57].

Let
Bn = {(x, y) ∈ [0, 1]2 : xy ≤ α(n)}.

Fubini’s theorem yields

Q(Bn) = α(n)(1 − log(α(n))), (7.20)

showing that Bn is a rare event when α(n) is small. The crucial step in our com-
putations is Lemma 5.1.1 in Witte [462], where it is proved that

P {Pa{X1, . . . , Xn} ⊂ Bn} ≥ 1 − n(1 − α(n))n−1. (7.21)

Therefore, Q(Bn) → 0 and the left-hand side of (5.22) tends to 1 as n → ∞
for suitably chosen α(n). Thus, the Pareto points form a subset of Bn with high
probability.

Applying (5.21) and (5.22), one obtains a bound on the variational distance
between the distributions of PaNn and PaN∗

n, where N∗
n is a Poisson process with

the same intensity measure νn = nQ as Nn.

Lemma 7.2.1. Let τ(n) be a Poisson rv with parameter n. We have

d
(PaNn,PaN∗

n

) ≤ n (1 − α(n))n−1 + n

∫
(1 − α(k + 1))k dL(τ(n))(k)

+ α(n) (1 − log(α(n))) .

Proof. Because of the special structure of the set Bn and the fact that x is a
Pareto point of A if, and only if,

(−∞, x] ∩ A = {x}, (7.22)

one obtains Pa(A) ∩ Bn = Pa(A ∩ Bn). This implies

(PaN)Bn
= Pa (NBn)

for point processes N , where NBn is the truncation of N outside of Bn.
Therefore, using the coupling argument and a first-order Poisson approxi-

mation one obtains from (5.21), (5.22) and the monotonicity theorem that

d
(PaNn, (PaN∗

n)Bn

)
≤ d

(PaNn,Pa(Nn,Bn)
)

+ d
(
Nn,Bn , N∗

n,Bn

)
≤ n(1 − α(n))n−1 + α(n)(1 − log(α(n))).
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Applying the convexity theorem and (7.21) again one obtains

d
(
(PaN∗

n)Bn ,PaN∗
n

) ≤ ∫
d
(
(PaNk)Bn ,PaNk

)
dL(τ(n))(k)

≤
∫

k(1 − α(k))k−1 dL(τ(n))(k)

= n

∫
(1 − α(k + 1))k dL(τ(n))(k).

Combining the preceding inequalities we obtain the assertion.

Taking α(n) = (2 log(n + 1))/(n− 1) and using the inequality 1 + x ≤ exp(x)
one obtains

d
(PaNn,PaN∗

n

) ≤ (4 log(n))/n. (7.23)

To prove the asymptotic normality of the number |Pa{X1, . . . , Xn}| of Pareto
points one may utilize another characterization of Pareto points. These are the
points of discontinuity of the greatest piecewise constant, decreasing and right-
continuous minorant of the points of the empirical process (and likewise of the
Poisson process N∗

n). Replacing the point measures
∑

i ε(yi,zi) by
∑

i ε(nyi,zi) we
obtain processes with the Lebesgue measure truncated outside of [0, n] × [0, 1] as
intensity measures. This indicates that the question of evaluating the number of
Pareto points can be handled via the point process of jump points of the min-
extremal-F process, where F (x) = 1 − e−x (cf. (7.36)).

We may also speak of a Pareto point x of order k within A = {x1, . . . , xn} if
for each y ∈ A at least k of the components of x are smaller than or equal to the
corresponding components of y. The previous Pareto points are of order k = 1.
Moreover, the multivariate minimum is a Pareto point of order n if the minimum
is an element of the original sample.

7.3 Thinned Empirical Processes
In this section we introduce thinned empirical processes, which generalize trun-
cated processes by allowing random truncating sets. Local asymptotic normality
is established under the condition that the probability of thinning converges to
zero. An application to density estimation leads to a fuzzy set density estimator,
which is efficient in a parametric model. This section is based on a paper by Falk
and Liese [140].

Introduction

Let X1, . . . , Xn be independent copies of a random element (re) X , which is realized
in some arbitrary sample space S, equipped with a σ-field D. Suppose that an
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observation, if falling on an point x ∈ S, is merely counted with probability ϕ(x) ∈
[0, 1]. We assume throughout that the thinning function ϕ : (S,D) −→ [0, 1] is
measurable.

With the particular choice ϕ(x) = 1D(x) for some D ∈ D, this setup underlies
for example the peaks-over-threshold approach (POT) in extreme value analysis
or nonlinear regression analysis (see e.g. Section 1.3); in right-censoring models
for observations in S = R, the function ϕ(x) = P (Y > x) = 1 − P (Y ≤ x)
is the conditional probability that the outcome X = x is not censored by an
independent censoring variable Y (see e.g. Section II.1 of Andersen et al. [13]).
In general this setup can be utilized for modelling missing observations with ϕ(x)
being the conditional probability that the outcome X = x enters the data set.

A unified approach for the above models is offered by the concept of thinned
empirical point processes . First, we identify each point x ∈ S with the pertaining
Dirac measure εx(B) = 1B(x), B ∈ D. Thus, we can identify the re X with the
random Dirac measure εX . The re UεX(·) then models the outcome of X , which
is counted merely with probability ϕ(x), given X = x. Here U is a rv (rv) with
values in {0, 1}, such that

P (U = 1|X = x) = ϕ(x), x ∈ S.

Assume now that (Xi, Ui), i = 1, . . . , n, are independent copies of (X, U). Then,

Nϕ
n (·) :=

n∑
i=1

UiεXi (·),

is a thinned empirical point process with underlying empirical process

Nn(·) :=
n∑

i=1
εXi(·)

(Reiss [387], Section 2.4, Daley and Vere-Jones [90], Example 8.2). The thinned
process Nϕ

n now models the sampling scheme that an observation Xi, if falling on
x ∈ S, enters the data set only with probability ϕ(x).

The process Nϕ
n is a re in the set M := {μ =

∑n
j=1 εxj : x1, . . . , xn ∈ S, n =

0, 1, 2, . . .} of finite point measures on (S,D), equipped with the smallest σ-field
M such that for any B ∈ D the projection

πB : M −→ {0, 1, 2, . . .}, πB(μ) := μ(B)

is measurable (cf. Section 1.1 of [387]).

Truncated Empirical Processes

In the particular case ϕ(x) = 1D(x), x ∈ S, where D is a given measurable subset
of S, the thinned process Nϕ

n equals the truncated empirical process

ND
n (·) :=

n∑
i=1

1D(Xi)εXi (·) =
n∑

i=1
εXi (· ∩ D).
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If the subset D is a rare event, i.e., D = D(n) depends on the sample size
n and satisfies P (X ∈ D) −→n→∞ 0, the process ND

n has been investigated in
a series of papers: Various Poisson approximations are derived in the preceding
chapters, efficient statistical procedures based on ND

n in certain parametric models
are established by Höpfner [219], Höpfner and Jacod [220] and Marohn [320],
bounds for the loss of information due to truncation are computed in Falk and
Marohn [144], local asymptotic normality (LAN) of the loglikelihood ratio of ND

n

in quite general parametric models was established in Falk [136] and Marohn [321].

In particular in Falk [136] a characterization of the central sequence in the
LAN-expansion of ND

n was established, which provides an if and only if condi-
tion on an underlying parametric family of distributions Pϑ such that just the
(random) number K(n) := ND

n (S) = Nn(D) of actually observed data contains
asymptotically the complete statistically relevant information about the true para-
meter ϑ0 that is contained in ND

n . This paper explained the observation that this
phenomenon typically occurs in the POT approach in extreme value theory (Falk
[135], [136]) by giving a precise description of the mathematical structures yielding
this effect; see also the discussion after Theorem 2.4.4.

We will extend these characterizations for truncated empirical processes to
thinned processes by considering sequences ϕ = ϕn with αn := E(ϕn(X)) →n→∞
0.

A Very Brief Sketch of Some LAN Theory

For easier access we give in the following a very brief and informal introduction to
the concept of the powerful LAN theory , which is mainly due to LeCam [308] (cf.
also Strasser [430] and LeCam and Yang [309] for the general theory; for applica-
tions in estimation problems we refer to the books by Ibragimov and Has’minskii
[268] and Pfanzagl [367]. A very readable introduction to both, estimation and
testing is in Chapter 8 of Andersen et al. [13]) as well as in Chapter 7 of van der
Vaart [449].

Suppose that the distribution L(Nϕ
n ) of Nϕ

n is governed by some parameter
ϑ ∈ Θ ⊂ R, i.e., L(Nϕ

n ) = Lϑ(Nϕ
n ), where we assume just for the sake of simplicity

that the parameter space Θ is one-dimensional. Fix ϑ0 ∈ Θ and choose δn −→n→∞
0. Introduce a local parametrization by setting ϑn = ϑ0 + δnξ. The loglikelihood
ratio

Ln(ϑn|ϑ0) := log

{
dLϑn (Nϕ

n )
dLϑ0 (Nϕ

n )

}
(Nϕ

n )

can be expanded as

Ln(ϑn|ϑ0) = ξZ(n) − ξ2

2
+ oPϑ0

(1).
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The rv Z(n) is supposed to be asymptotically standard normal

Z(n) −→Dϑ0
N(0, 1),

where −→Dϑ
denotes convergence in distribution under the parameter ϑ and thus,

Ln(ϑn|ϑ0) −→Dϑ0
N(−ξ2

2
, ξ2). (LAN)

LeCam’s First Lemma then implies that the distributions Lϑn(Nϕ
n ) and Lϑ0 (Nϕ

n )
are mutually contiguous with Z(n) →Dϑn

N(ξ, 1), yielding

Ln(ϑn|ϑ0) −→Dϑn
N

(
ξ2

2
, ξ2

)
.

Results by LeCam [308] and Hájek [196] imply further that asymptotically optimal
tests and estimates can be based on Z(n), n ∈ N, which is therefore called the
central sequence.

The Basic Representation Lemma

A characterization of the central sequence in the special case ϕ = 1D with D =
D(n) satisfying P (X ∈ D) −→n→∞ 0, nP (X ∈ D) −→n→∞ ∞ was established in
Falk [136] and Marohn [321]. In particular an iff condition was established in Falk
[136] on the family of underlying distributions such that, with K(n) = Nn(D) and
αn = P (X ∈ D),

Z(n) = K(n) − nαn(
nαn(1 − αn)

)1/2 , n ∈ N,

is the central sequence. Note that Z(n) −→Dϑn
N(0, 1) by the Moivre-Laplace

theorem.
The derivation of the preceding result was eased by the fact that the truncated

process ND
n is a binomial process. Denote by Y1, Y2, . . . those observations among

X1, . . . , Xn, which actually fall into the subset D. Then we can write

ND
n =

n∑
i=1

εXi (· ∩ D) =
K(n)∑
j=1

εYj ,

where Y1, Y2, . . . behave like independent copies of a re Y , whose distribution
P (Y ∈ ·) = P (X ∈ · | X ∈ D) is the conditional distribution of X , given X ∈ D,
and Y1, Y2, . . . are independent of their total number K(n), which is binomial
B(n, P (X ∈ D))-distributed (see Theorem 1.3.1).

The fact that a thinned empirical process Nϕ
n is in general a binomial process,

enables us to establish in the following LAN of Nϕn
n for an arbitrary sequence ϕn,

n ∈ N, of thinning functions satisfying αn = E(ϕn(X)) −→n→∞ 0, nαn −→n→∞
∞.
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Denote by Y1, Y2, . . . , YK(n) those observations among X1, . . . , Xn that are
actually observed, i.e., for which Ui = 1, and let again K(n) = Nϕ

n (S) =
∑n

i=1 Ui

be their total number. By =D we denote equality in distribution.
The following result is an immediate consequence of the fact that a thinned

process can be represented as a projection of a truncated process; see Section 2.4
of Reiss [387].

Lemma 7.3.1. Let ϕ : S → [0, 1] be an arbitrary measurable thinning function
and put α := E(U) = P (U = 1) = E(ϕ(X)). If 0 < α < 1, we have

Nϕ
n =

K(n)∑
j=1

εYj =D

K(n)∑
j=1

εWj ,

where K(n) is B(n, α)-distributed, W1, W2, . . . , Wn are iid res with common dis-
tribution

PW (·) = P (X ∈ · | U = 1)

and K(n) and the vector (W1, W2, . . . , Wn) are independent.

This result shows that for a general thinned process the actually observed res
Yj can be handled like iid res, whose common distribution is PW (·), and they are
independent of their total number K(n), which is B(n, α)-distributed. The choice
ϕ = 1D yields again the well-known fact for truncated processes mentioned above.

The Model Assumptions

Our statistical model, underlying the thinned process Nϕ
n =

∑n
i=1 UiεXi for the

sample size n, is the assumption that the measure P (X ∈ ·, U = 1) = L(X, U)(· ×
{1}) is a member of a parametric family

P (X ∈ · , U = 1) = Pϑ(X ∈ · , U = 1) =: Qϑ(·), ϑ ∈ Θ ⊂ R
d,

where Qϑ(S) = Pϑ(U = 1) =: αϑ ∈ [0, 1]. Note that in our model the parameter
space Θ ⊂ R

d is fixed and does not depend on the sample size n, the measures Qϑ

however may depend on n, possibly due to a variation of the thinning function
ϕ = ϕn,ϑ. In particular the probability αϑ that an observation Xi enters the data
set, then depends on n, i.e., αϑ = αn,ϑ. Set

Qn,ϑ(B) =
∫

B

ϕn,ϑ(x) Pϑ(dx).

Suppose that ϑ0 is an inner point of Θ. We assume that Pϑ, ϑ ∈ Θ, is
dominated by the σ-finite measure μ and denote by fn,ϑ = dQn,ϑ/dμ the density.
To calculate the likelihood ratio for the thinned point process we use Example
3.1.2 in Reiss [387] and Lemma 7.3.1 to get
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Ln(ϑ|ϑ0) =Dϑ0

K(n)∑
j=1

log
{

fn,ϑ (Yj)
fn,ϑ0 (Yj)

αn,ϑ0

αn,ϑ

}
+ K(n) log

{
1 + αn,ϑ − αn,ϑ0

αn,ϑ0

}

+ (n − K(n) log
{

1 + αn,ϑ0 − αn,ϑ

1 − αn,ϑ0

}
.

Note that absolute continuity Qn,ϑ << Qn,ϑ0 for ϑ close to ϑ0 is a consequence of
condition (7.24) below. Now we localize our model by setting ϑn,i = ϑ0,i + ξn,i =
ϑ0,i + ξi δn,i, where δn,i −→n→∞ 0, 1 ≤ i ≤ d. Taking formally the derivative with
respect to ϑ in Ln (ϑ, ϑ0), we get the formal expansion

L (ϑn|ϑ0) =Dϑ0

d∑
i=1

K(n)∑
j=n

{(
∂

∂ϑi
log (fn,ϑ0)

)
(Yj) − ∂

∂ϑi
log (αn,ϑ0 )

}
δn,i ξi

+

(
d∑

i=1

∂

∂ϑi
log (αn,ϑ0 ) δn,i ξi

)
K(n)

+

(
d∑

i=1

∂

∂ϑi
log (1 − αn,ϑ0 ) δn,i ξi

)
(n − K(n)).

We assume that the sequence fn,ϑ admits the expansion

fn,ϑ = fn,ϑ0

(
1 + 〈ϑ − ϑ0, gn〉 + 〈ϑ − ϑ0, hn,ϑ〉

)
, (7.24)

where gn = (gn,1, . . . , gn,d), hn,ϑ = (hn,ϑ,1, . . . , hn,ϑ,d) are Borel measurable func-
tions and the remainder term satisfies∫

h2
n,ϑn,i dQn,ϑ0∫
g2

n,i dQn,ϑ0

−→n→∞ 0, (7.25)

where
ϑn,i = ϑ0,i + ξiδn,i, δn,i =

(
n

∫
g2

n,i dQn,ϑ0

)−1/2

and the ξi are arbitrary.

A Crucial Condition

Denote by Wn a rv with L(Wn) = α−1
n,ϑ0

Qn,ϑ0 . We index expectations Eϑ etc.
with the underlying parameter. We suppose that ||δn|| −→n→∞ 0 and that

αn,ϑ0 −→n→∞ 0, nαn,ϑ0 −→n→∞ ∞. (7.26)

Besides further regularity conditions listed below, we suppose the following crucial
condition on the tangent functions gn,i, 1 ≤ i ≤ d:
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cni :=
Eϑ0

(
gn,i(Wn)

)
(

Eϑ0

(
g2

n,i(Wn)
))1/2

=
∫

gn,i dQn,ϑ0

α
1/2
n,ϑ0

( ∫
g2

n,i dQn,ϑ0

)1/2 −→n→∞ ci ∈ [−1, 1], (7.27)

note that cni ∈ [−1, 1] anyway. Theorem 7.3.2 below shows that the central se-
quence in the LAN expansion of Ln consists of the total number K(n) of actually
observed variables Y1, . . . , YK(n) and of gn,i(Yj), 1 ≤ i ≤ d, 1 ≤ j ≤ n. It turns out
that the number 1− c2

i ∈ [0, 1] reflects the part that gn,i(Y1), . . . , gn,i(YK(n)) con-
tribute to the central sequence. In the particular case, where |ci| = 1, 1 ≤ i ≤ d,
which typically occurs in EVD models (Falk [135], [136]), Marohn [321]), the vari-
ables gn,i(Yj) do not contribute to the central sequence, which consequently con-
sists only of the number K(n) of actually observed data.

This crucial condition (7.27) was introduced in [136] in the form 1/c2
ni −

1 −→n→∞ c̃i ∈ [0,∞). But this formulation excludes the case c̃i = ∞, i.e., ci = 0,
which typically occurs in regression analysis (Falk [136], Example 2.4, Marohn
[321], Example 3 (c), Falk and Marohn [142]).

Further Regularity Conditions

If |ci| < 1 we need a Lindeberg type condition . To be more precise, we set

An,i,ε :=
{
|gn,i| > ε

(
n

∫
g2

n,i dQn,ϑ0

)1/2}
and require that

Ln(ε) =

∫
An,i,ε

g2
n,i dQn,ϑ0∫

g2
n,i dQn,ϑ0

−→n→∞ 0 (7.28)

for every ε > 0. Note that this simple form of the Lindeberg condition is due to
the fact that we have iid rv for a fixed sample size n. If for some ε > 0,∫ |gn,i|2+ε dQn,ϑ0(∫

g2
n,i dQn,ϑ0

)1+ε/2 −→n→∞ 0, (7.29)

then we obtain from Hölder’s inequality

∫
An,i,ε

g2
n,i dQn,ϑ0∫

g2
n,i dQn,ϑ0

≤
⎛⎝ ∫ |gn,i|2+ε dQn,ϑ0(∫

g2
n,i dQn,ϑ0

)1+ε/2

⎞⎠2/(2+ε)

−→n→∞ 0,

so that (7.28) is satisfied. The assumption (7.29) is a Ljapunov type condition.
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We suppose that gn,i1(Wn) and gn,i2(Wn) are asymptotically uncorrelated
for i1 �= i2, i.e.,

Eϑ0

((
gn,i1 (Wn) − Eϑ0 (gn,i1 (Wn))

)(
gn,i2(Wn) − Eϑ0 (gn,i2(Wn))

))
Eϑ0 (g2

n,i1
(Wn))1/2Eϑ0 (g2

n,i2
(Wn))1/2

=
∫

gn,i1 gn,i2 dQn,ϑ0( ∫
g2

n,i1
dQn,ϑ0

)1/2( ∫
g2

n,i2
dQn,ϑ0

)1/2 − cni1 cni2

−→n→∞ 0 if i1 �= i2. (7.30)

The Main Result

For every fixed n denote by Yj , j = 1, . . . , n, iid rv with common distribution
(αn,ϑ0)−1Qn,ϑ0 . Now we are ready to state our main result, which provides LAN
of thinned processes.

Theorem 7.3.2. If the conditions (7.24)-(7.27) and (7.28), (7.30) are satisfied,
then we have

Ln

(
ϑn|ϑ0

)
=Dϑ0

( d∑
i=1

ξici

) K(n) − nαn,ϑ0

(nαn,ϑ0 (1 − αn,ϑ0))1/2 − 1
2

( d∑
i=1

ξici

)2

+ 1
(nαn,ϑ0)1/2

K(n)∑
j=1

∑
i:|ci|<1

ξi

gn,i(Yj) − Eϑ0

(
gn,i(Yj)

)
Eϑ0

(
g2

n,i(Yj)
)1/2

−1
2

d∑
i=1

ξ2
i (1 − c2

i ) + oPϑ0
(1)

−→Dϑ0
N

(
− 1

2

(( d∑
i=1

ξici

)2
+

d∑
i=1

ξ2
i (1 − c2

i )
)

,
( d∑

i=1
ξici

)2
+

d∑
i=1

ξ2
i (1 − c2

i )

)
,

where K(n) and Y1, Y2, . . . , are independent and K(n) has a binomial distribution
with parameters n and αn,ϑ0 .

With the particular thinning function ϕ(x) = 1D(x), the preceding result
implies Theorem 1.1 in Falk [136] and the main result in Marohn [321].

The Moivre-Laplace theorem implies that

Zn1 := K(n) − nαn,ϑ0(
nαn,ϑ0(1 − αn,ϑ0)

)1/2 −→Dϑ0
N(0, 1);



328 7. Multivariate Extremes: Supplementary Concepts and Results

recall that K(n) is binomial B(n, αn)-distributed under parameter ϑ0, with nαn,ϑ0

−→n→∞ ∞. The proof of Theorem 7.3.2 shows that

Zn2 := 1
(nαn,ϑ0 )1/2

K(n)∑
j=1

∑
i:|ci|<1

ξi
gn,i(Yj) − Eϑ0 (gn,i(Y ))

Eϑ0 (g2
n,i(Y ))1/2

−→Dϑ0
N
(

0,

d∑
i=1

σ2
i (1 − c2

i )
)

;

the independence of K(n) and Y1, Y2, . . . implies that Zn1 and Zn2 are asymptoti-
cally independent. The limiting normal distribution in Theorem 7.3.2 is therefore
a consequence of the convolution theorem for normal distributions.

Example: Right-Censored Data

Suppose that we observe right-censored data
∑n

i=1 UiεXi , where Ui = 1(Zi > Xi)
and Zi is independent of Xi. Assume that the censoring distribution L(Z) is an
exponential one with parameter λn and that X follows an exponential distribution
with parameter ϑ > 0, i.e., we have, for the sample size n and 1 ≤ i ≤ n,

P (Zi > x) = P (Z > x) = exp(−λnx), x ≥ 0,

P (Xi > x) = Pϑ(X > x) = exp(−ϑx), x ≥ 0.

In this case we have, for a Borel set B ⊂ [0,∞),

Qϑ(B) = Pϑ(X ∈ B, U = 1) = Pϑ(X ∈ B, Z > X)

=
∫

B

P (Z > x)ϑ exp(−ϑx) dx

=
∫

B

ϑ exp(−(λn + ϑ)x) dx

and thus,
fϑ(x) := ϑ exp(−(λn + ϑ)x), x ≥ 0,

is a Lebesgue density of Qϑ. We, consequently, obtain

αn,ϑ = Qn,ϑ

(
[0,∞)

)
=

∫ ∞

0
fϑ(x) dx = ϑ

λn + ϑ
.

Fix ϑ0 > 0. Iterated Taylor expansion implies, for x ≥ 0 and ϑ close to ϑ0,

fϑ(x)
fϑ0(x) =

ϑ

ϑ0
exp

((
ϑ0 − ϑ

)
x
)

= exp
(

log
(

1 + ϑ − ϑ0
ϑ0

)
+ (ϑ0 − ϑ)x

)
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= 1 + (ϑ0 − ϑ)
(

x − 1
ϑ0

)
+ O

(
(ϑ0 − ϑ)2(ϑ0 − ϑ)2(x2 + 1) exp(|ϑ0 − ϑ|x)

)
=: 1 +

(
ϑ0 − ϑ

)
g(x) +

(
ϑ0 − ϑ

)
hn,ϑ(x).

Hence, condition (7.24) is satisfied with d = 1 and∫
g2 dQn,ϑ0 =

∫ ∞

0
(x − 1

ϑ0
)2ϑ0 exp

(
− (λn + ϑ0)x

)
dx

= 1
λn

1
ϑ0

+ ϑ0
λ2

n(
1 + ϑ0

λn

)3 = 1
λnϑ0

(
1 + o(1)

)

if λn −→n→∞ ∞. We require in addition that λn/n −→n→∞ 0, which implies
αn,ϑ −→n→∞ 0, nαn,ϑ −→n→∞ ∞. Since, moreover,∫

g Qϑ0 = − λn

(λn + ϑ0)2 = − 1
λn

(
1 + o(1)

)
,

condition (7.27) is also satisfied with c = −1 :

cn =
∫

g dQn,ϑ0

α
1/2
n,ϑ0

(
∫

g2 dQn,ϑ0)1/2
= −

1
λn

(1 + o(1))(
ϑ0
λn

)1/2
(1 + o(1))

(
1

λnϑ0

)1/2
(1 + o(1))

−→n→∞ −1.

The central sequence in the LAN expansion of Theorem 7.3.2 will consist in this
example therefore only of the number K(n) =

∑n
i=1 UiεXi

(
[0,∞)

)
of uncensored

observations. It remains to verify condition (7.25) with ϑn = ϑ0 + ξδn(1 + o(1)) =
ϑ0 + ξϑ

1/2
0 (λn/n)1/2(1 + o(1)):∫

h2
n,ϑ dQn,ϑ0∫
g2 dQn,ϑ0

= O

(
λn

(
ϑ0 − ϑn

)2 ∫ ∞

0
(x2 + 1)2 exp

(
2|ϑ0 − ϑn|x

)
fϑ0 (x) dx

)

= O

(
λn

n

)
= o(1).

Hence we obtain from Theorem 7.3.2 the LAN expansion

Ln

(
ϑn

∣∣ϑ0

)
= ξ

nαn − K(n)
(nαn(1 − αn))1/2 − ξ2

n
+ oPϑ0

(1)

−→Dϑ0
N
(
− ξ2/2, ξ2

)
.
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The complete statistical information about the underlying parameter, which is
contained in the thinned process

∑n
i=1 UiεXi , is in this example already contained

in K(n) =
∑n

i=1 UiεXi([0,∞)) = U1 + · · · + Un, but not in the actually observed
non-censored data Y1, . . . , YK(n). This phenomenon typically occurs in the peaks-
over-threshold approach (POT) in extreme value theory (Falk [135], [136]), whereas
the converse case c = 0 typically occurs in regression analysis (Falk [136], Example
2.4, Marohn [321], Example 3 (c)).

An Efficient Estimator

Proposition 7.3.3. We consider the particular case d = 1 and c ∈ {1,−1}.
Suppose that the following regularity conditions are satisfied:

(a) δε := infn,ϑ:|ϑ−ϑ0|>ε |αn,ϑ − αn,ϑ0 | > 0 for any ε > 0.

(b) αn,ϑ is differentiable near ϑ = ϑ0 for any n ∈ N with infn,ϑ:|ϑ−ϑ0|≤ε0 |α′
n,ϑ| ≥

C > 0 for some ε0 > 0 and some C > 0.

(c) supϑ:|ϑ−ϑ0|≤Kn−1/2 | ∫ hn,ϑ dQn,ϑ0 | −→n→∞ 0 for any K > 0.

Then an asymptotically efficient estimator of the underlying parameter ϑ0 based
on the thinned process is given by the solution ϑ̂n of the equation

αn,ϑ̂n
=

K(n)
n

.

Proof. Put δn := 1/(n
∫

g2 dQn,ϑ0 )1/2, cn :=
∫

g dQn,ϑ0/(αn,ϑ0

∫
g2 dQn,ϑ0)1/2.

The expansion

K(n)
n

= αn,ϑ̂n
= Qn,ϑ̂n

(S) =
∫

fϑ̂n
dμ

=
∫

1 +
(

ϑ̂n − ϑ0

)
g +

(
ϑ̂n − ϑ0

)
hn,ϑ̂ dQn,ϑ0

= αn,ϑ0 +
(

ϑ̂n − ϑ0

) ∫
g dQn,ϑ0 + rn

implies that

K(n) − nαn,ϑ0

(nαn,ϑ0(1 − αn,ϑ0 ))1/2 = cn

(1 − αn,ϑ0)1/2 δ−1
n

(
ϑ̂n − ϑ0

)
+ n1/2rn

α
1/2
n,ϑ0

(1 − αn,ϑ0)1/2
.

Note that

{|ϑ̂n − ϑ0| > ε} ⊂ {|αn,ϑ̂n
− αn,ϑ0 | ≥ δε} ⊂ {|K(n)/n− αn,ϑ0 | ≥ δε}

for arbitrary ε > 0. Since δε > 0 by condition (a) we have consistency of ϑ̂n.
Condition (b) now implies

αn,ϑ̂n
= αn,ϑ0 + α′

n,ϑ̃n
(ϑ̂n − ϑ0),
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where ϑ̃n is between ϑ0 and ϑ̂n. We, consequently, obtain

|n1/2(ϑ̂n −ϑ0)| ≤ C−1n1/2|αn,ϑ̂n
−αn,ϑ0 | = C−1n1/2

∣∣∣K(n)
n

−αn,ϑ0

∣∣∣ = OP (α1/2
n,ϑ0

).

Condition (c) now implies that n1/2rn/α
1/2
n,ϑ0

= oPϑ0
(1) and, hence, we obtain

δ−1
n

(
ϑ̂n − ϑ0

)
= c

K(n) − nαn,ϑ0

(nαn,ϑ0 (1 − αn,ϑ0 ))1/2 + oPϑ0
(1).

The expansion of Theorem 7.3.2 is by LeCam’s First Lemma also valid under the
alternative ϑn = ϑ0 + ξδn,

Ln(ϑn|ϑ0) = cξ
K(n) − nαn,ϑ0

(nαn,ϑ0(1 − αn,ϑ0 ))1/2 − ξ2

2
+ oPϑ0

(1),

where now
K(n) − nαn,ϑ0

(nαn,ϑ0 (1 − αn,ϑ0))1/2 −→Dϑn
N(cξ, 1).

Consequently,

δ−1
n

(
ϑ̂n − ϑ0

)
−→Dϑ0

N(0, 1), δ−1
n

(
ϑ̂n − ϑn

)
−→Dϑn

N(0, 1),

i.e., ϑ̂n is a regular estimator, asymptotically unbiased under ϑ0 as well as under
ϑn. Its limiting variance 1 coincides with that of the central sequence (K(n) −
nαn,ϑ0)/(nαn,ϑ0(1 − αn,ϑ0))1/2 and thus Hájeks [196] Convolution Theorem now
implies that ϑ̂n actually has minimum limiting variance among all regular esti-
mates that are based on the thinned empirical process.

Application to Fuzzy Set Density Estimation

Consider independent copies X1, . . . , Xn of a rv X in R
d, whose distribution L(X)

has a Lebesgue density p near some fixed point x0 ∈ R
d. The problem is the

estimation of p(x0). We will establish in the following a parametric model for this
non-parametric problem and we will show, how the preceding results can be utilized
to prove efficiency of a fuzzy set density estimator within this model. Though
seemingly quite similar to a usual kernel density estimator, the fuzzy set estimator
has surprising advantages over the latter. Just for notational simplicity we assume
in the following that d = 1; all subsequent considerations can be generalized to
the case d > 1 in a straightforward manner.

A common estimator of p(x0) is the kernel density estimator

p̂n(x0) := 1
n bn

n∑
i=1

k

(
x0 − Xi

bn

)
,
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where the kernel function k satisfies
∫

k(x) dx = 1,
∫

x k(x) dx = 0 and bn > 0 is
a bandwidth.

In contrast to the kernel estimator, which assigns weight to all points of the
sample, we now select points from the sample with different probabilities. As we
have to evaluate the local behavior of the distribution of X , it is obvious that
only observations Xi in a neighborhood of x0 can reasonably contribute to the
estimation of p(x0). Our set of observations in a neighborhood of x0 can now be
described by the thinned process

Nϕn
n =

n∑
i=1

Ui εXi ,

where Ui decides, whether Xi belongs to the neighborhood of x0 or not.
Precisely,

ϕn(x) := P (Ui = 1 | Xi = x)
is the probability that the observation Xi = x belongs to the neighborhood of x0.
Note that this neighborhood is not explicitly defined, but it is actually a fuzzy set
in the sense of Zadeh [468], given by its membership function ϕn. The thinned
process Nϕn

n is, therefore, a fuzzy set representation of the data, where we assume
that (X1, U1), . . . , (Xn, Un) are iid copies of (X, U). For a review of fuzzy set theory
and its applications we refer to the monograph by Zimmermann [474].

It is plausible to let ϕn(x) depend on the distance |x − x0| and to put

ϕn(x) := ϕ

(
x − x0

bn

)
, x ∈ R,

where the function ϕ has values in [0, 1] and bn > 0 is a scaling factor or bandwidth.
We assume that ϕ is continuous at 0 with ϕ(0) > 0. To keep the conditions on p
as general as possible, we require that ϕ(x) = 0 = k(x) if |x| > K, where K > 0
is some fixed constant.

Put now
bn := an∫

ϕ(x) dx
,

where an > 0 satisfies nan −→n→∞ ∞, na5
n −→n→∞ 0. Elementary computations

imply that under the above conditions

(n an)1/2 (p̂n(x0) − p(x0)) −→Dϑ0
N

(
0, p(x0)

∫
k2(x) dx

∫
ϕ(x) dx

)
.

A simple analysis shows, moreover, that the fuzzy set density estimator

ϑ̂n := K(n)
nan

= Nϕn
n (R)
nan

=
∑n

i=1 Ui

nan

satisfies
(nan)1/2

(
ϑ̂n − p(x0)

)
−→D N (0, p(x0)) ,
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provided
∫

ϕ(x)x dx = 0 and that the density p is twice differentiable near x0 with
bounded second derivative. Note that ϑ̂n depends only on the number K(n) of
non-thinned observations and that its limiting normal distribution is independent
of ϕ.

For the particular choice ϕ∗ := 1[−K,K] we obtain from the Cauchy-Schwarz
inequality

1 =
∫ K

−K

k(x) dx ≤
(∫ K

−K

k2(x) dx

)1/2

(2K)1/2

=

(∫ K

−K

k2(x) dx

)1/2 (∫
ϕ∗(x) dx

)1/2

and, thus, the limiting normal distribution N
(
0, p(x0)

∫
k2(x) dx

∫
ϕ∗(x) dx

)
of

the kernel density estimator p̂n(x0) is more spread out than that of ϑ̂n with the
thinning function ϕ∗. Note that p̂n(x0) and ϑ̂n use the same bandwidth sequence
bn and have the same rate of convergence (nan)−1/2.

The Estimator ϑ̂n is Actually Efficient

Now we study the efficiency of ϑ̂n within the class of all estimators based on
randomly selected points from the sample. To this end we use the LAN-approach
and apply Theorem 7.3.2 to special parametric submodels.

Precisely we require
pϑ(x) = ϑ + r(ϑ, x),

where ϑ ∈ Θ ⊂ (0,∞) and r satisfies

r(ϑ, x0) = 0, ϑ ∈ Θ. (7.31)

The parameter ϑ resembles, therefore, the possible value of the unknown
density p at x0, with p(x0) = ϑ0 being the actual one. We assume in addition that

r(ϑ, x) is continuous near (ϑ0, x0),

∂

∂ϑ
r(ϑ, x) exists in a neighborhood of (ϑ0, x0) and is continuous at (ϑ0, x0),

∂2

∂x2 r(ϑ0, x) exists for x near x0 and is bounded. (7.32)

Note that (7.31) implies

∂

∂ϑ
r(ϑ, x0) = 0, ϑ ∈ Θ. (7.33)
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We apply Theorem 7.3.2 and obtain that our model leads to an LAN expan-
sion of Ln(ϑn|ϑ0), where condition (7.27) is satisfied with c = 1 and, hence, the
central sequence is given by

Zn1 := K(n) − nαn,ϑ0

(nαn,ϑ0(1 − αn,ϑ0))1/2 .

Proposition 7.3.4. If in addition to the above assumptions on ϕ and bn, condi-
tions 7.31-7.33 are satisfied, then

ϑ̂n =
K(n)
n an

is an efficient estimator of ϑ0 in the set of all regular estimates that are based on
the sequence of thinned processes Nϕn

n , n ∈ N.

Asymptotically Biased Density Estimators

It is further interesting to compare ϑ̂n as a non-parametric density estimator with
a kernel density estimator also in the case where both are asymptotically biased,
i.e., where n b5

n �→n→∞ 0. Suppose to this end that the density p(x) is twice
differentiable near x0 and that p′′ is continuous at x0. A simple analysis shows
that the mean squared error of the non-parametric fuzzy set density estimator

ϑ̂n = 1
n an

n∑
i=1

Ui

with
P (Ui = 1 | Xi = x) = ϕ

(
x − x0

bn

)
and bn = an/

∫
ϕ(x)dx can be expanded as

E
(

(ϑ̂n − p(x0))2
)

= p(x0)
n an

+ b4
n

(
p′′(x0)

2

∫
ϕ(x)x2 dx/

∫
ϕ(x) dx

)2

+ o

(
1

n an
+ a4

n

)
.

The usual kernel density estimator p̂n(x0) = (nbn)−1 ∑n
i=1 k ((x0 − Xi)/bn) has,

on the other hand, the mean squared error

E
(
(p̂n(x0) − p(x0))2)

= p(x0)
n an

∫
k2(x) dx

∫
ϕ(x) dx + b4

n

(
p′′(x0)

2

∫
k(x)x2 dx

)2
+ o

(
1

n an
+ a4

n

)
.
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If nb5
n �→ 0, then the second terms in both asymptotic expansions cannot

be neglected compared with the first one. While with the particular choice ϕ∗ =
1[−K,K] the first term in the above expansion of the mean squared error of p̂n(x0)
is greater than that of ϑ̂n, this is in general not true for the second term. Take,
for example, the popular Epanechnikov kernel

kE(x) = (3/4)(1 − x2)1[−1,1](x),

i.e., K = 1. Then we have ∫
kE(x)x2 dx = 1/5

but ∫ 1

−1
ϕ∗(x)x2 dx

/ ∫ 1

−1
ϕ∗(x) dx = 1/3.

We have, on the other hand,∫ 1

−1
ϕ∗(x) dx

∫
k2

E(x) dx = 6/5

and, thus, the mean squared error of the Epanechnikov kernel with bandwidth bn

of order n−1/5 can be larger as well as smaller than that of ϑ̂n, depending on p(x0)
and p′′(x0).

7.4 Max-Stable Stochastic Processes
In the following we study stochastic processes X = (X(t))t∈T . Corresponding to
the multivariate case, arithmetic operations and relations are meant component-
wise. Thus, e.g.,

a−1(X − b) :=
(
a(t)−1(X(t) − b(t))

)
t∈T

,

where a = (a(t))t∈T > 0 and b = (b(t))t∈T .

Max-Stability

The notion of max-stability can be generalized to the infinite-dimensional setting.
Let X = (X(t))t∈T be a stochastic process and let X(1), . . . , X(n) be independent
copies of X. The maximum is again taken componentwise, that is,

max
i≤n

X(i) :=
(

max
i≤n

X(i)(t)
)

t∈T

.

Now, X is called max-stable, if for every n ∈ N there are normalizing functions
an > 0 and bn such that

max
i≤n

(
a−1

n

(
X(i)

n − bn

))
=D X
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in the sense of having the same finite-dimensional marginal distributions. To prove
the max-stability, one has to verify that

P
(
an(t)−1 (X(t) − bn(t)) ≤ yt, t ∈ T0

)n = P (X(t) ≤ yt, t ∈ T0) (7.34)

for every finite T0 ⊂ T and n ∈ N.
Likewise, one may introduce the notion of a max-infinitely divisible process

(cf. Vatan [452] and Balkema et al. [23]).
We proceed by discussing an important example of max-stable processes

which will later be reconsidered in the light of theoretical results.

Max-Stable Extremal Processes

First let T = N. Let Yi, i ∈ N, be a sequence of iid rv with common df F . Put
X(i) = Yi:i. Verify that for every m ∈ N and 1 ≤ n1 < n2 < · · · < nm,

P (X(n1) ≤ x1, X(n2) ≤ x2, . . . , X(nm) ≤ xm)

= F

(
min

1≤i≤m
xi

)n1

F

(
min

2≤i≤m
xi

)n2−n1

· · ·F (xm)nm−nm−1 .

If F is max-stable with F n(bn + anx) = F (x), then it is a simple exercise to show
that X = (X(i)i∈N is max-stable with an and bn being equal to the constants an

and bn, respectively. This concept can be extended to the continuous time domain
T = (0,∞).

An extremal-F process X = (X(t))t>0 pertaining to a df F has the following
property: For every m ∈ N and 0 < t1 < t2 < · · · < tm,

P (X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tm) ≤ xm)

= F

(
min

1≤i≤m
xi

)t1

F

(
min

2≤i≤m
xi

)t2−t1

· · ·F (xm)tm−tm−1 .

The preceding remark about max-stability is also valid for the continuous
time version of the extremal process.

Let
∑

i ε(Yi,Zi) be a Poisson process with intensity measure λ0 × ν, where λ0
is the Lebesgue measure restricted to (0,∞) and ν has the measure generating
function log(F ). Then

X(t) := sup{Zi : Yi ≤ t, i ∈ N}, t > 0, (7.35)

defines an extremal-F process (cf. Pickands [370], Resnick [393]). It is the smallest
piecewise constant, increasing and right-continuous majorant of the Poisson points.
This extremal process takes values in the space D(0,∞) equipped with the Borel-
σ-field of the Skorohod topology if F is continuous.

Likewise one may define a min-extremal-F process which is related to minima
instead of maxima. Then take

X(t) = inf{Zi : Yi ≤ t, i ∈ N}, t > 0, (7.36)

and the measure ν with generating function − log(1 − F ).
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Generation of Max-Stable Processes by Convolutions

In the following we merely deal with Poisson processes related to the Gumbel df
G3 in view of our main example which concerns Brownian motions. Let N∗

3 be a
Poisson process with mean value function

Ψ3(x) = log(G3)(x) = −e−x.

Denote by ν3 the pertaining intensity measure. Recall that max(N∗
3 ) has the df

G3, where the maximum of a point process is again the maximum of its points.
Let X = (X(t))t∈T be a stochastic process, where the finite-dimensional case is
included if T is finite. Let h(u, (x(t))t∈T ) = (u + x(t))t∈T . Let N∗ be the Poisson
process with intensity measure h(ν3 × L(X)), which is the measure induced by
h and the product ν3 × L(X). Hence, a copy of X is added independently to
every point of N∗

3 . Let max(N∗) be defined by the componentwise maximum of
the points of N∗ and put

(M(t))t∈T := max(N∗). (7.37)

In the following we assume that

b(t) :=
∫

er dL(X(t))(r) ∈ (0,∞), t ∈ T. (7.38)

Theorem 7.4.1. If condition (7.38) holds, then

(i) P (M(t) ≤ x) = exp(− exp(−z + log(b(t))));

(ii) (M(t))t∈T is max-stable.

Proof. Put Q = L(X(t)t∈T ). Using again avoidance probabilities, we obtain

P (M(t) ≤ z) = P
(
N∗{x : x(t) > z} = 0

)
= exp

(− h(ν × Q){x : x(t) > z}).
Moreover,

g(ν × Q){x : x(t) > z} = (ν × Q)
{

(u, y) : u + y(t) > z
}

=
∫

ν ((z − r,∞)) dL(X(t))(r)

= e−z

∫
erdL(X(t))(r).

Hence, (i) holds. We verify (7.34) to prove the max-stability:

P (M(t) − log(n) ≤ zt, t ∈ T0)n

= P (N∗{x : x(t) > zt + log(n) for some t ∈ T0} = 0)n
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= exp
(
−

∫
nν

(
min
t∈T0

(zt − x(t)),∞
)

dL ((X(t))t∈T0 )
)

= exp
(
−

∫
ν

(
min
t∈T0

(zt − x(t)),∞
)

dL ((X(t))t∈T0 )
)

= P (M(t) ≤ zt, t ∈ T0).

Thus, (7.34) holds.

A Max-Stable Process

Corresponding to Brownian Motion

Let C be the space of continuous functions on [0,∞) equipped with the topology
of uniform convergence on bounded intervals. Let C be the Borel-σ-field on C. Put

C0 = {x ∈ C : x(0) = 0}

and denote by C0 the trace of C in C0.
Recall that a stochastic process B = (B(t))t≥0 with values in C0, equipped

with the σ-field C0, is a standard Brownian motion if

(i) the increments B(t1)−B(t0), B(t2)−B(t1), . . . , B(tm+1)−B(tm) are inde-
pendent for m ∈ N and t0 < t1 < · · · < tm+1;

(ii) L(B(t) − B(s)) = N(0,t−s), 0 ≤ s < t.

Moreover, B is characterized by the following properties: B is a Gaussian
process (that is, the finite-dimensional margins are normal rv) with mean function
E(B(t)) = 0 and covariance function K(s, t) = E(B(s)B(t)) = min(s, t). Let

(X(t))t≥0 = (B(t) − t/2)t≥0

and set
(M(t))t≥0 := max(N∗) (7.39)

as in (7.37). Condition (7.38) holds, because∫
erdL(B(t) − t/2)(r) =

∫
erdN(−t/2,t)(r) =

∫
dN(t/2,t) = 1, (7.40)

and, hence, we know from Theorem 7.4.1 that (M(t))t≥0 is max-stable. This special
max-stable process was dealt with by Brown and Resnick [55]. In the following
lemma we compute the univariate and bivariate margins. Let Hλ be again the
bivariate df in Example 4.1.4.

Lemma 7.4.2. For every t > 0:

(i) P{M(t) ≤ z} = exp(−e−z);
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(ii) P (M(0) ≤ z1, M(t) ≤ z2) = Ht1/2/2(z1, z2).

Proof. (i) follows from Theorem 7.4.1(i) and (7.40). Moreover,

P (M(0) ≤ z1, M(t) ≤ z2)
= exp

(− g(ν × Q){x ∈ C : x(0) > z1 or x(t) > z2}
)

and

g(ν × Q)
{

x ∈ C : x(0) > z1 or x(t) > z2
}

=
∫

ν{u : u > z1 or u > z2 − r} dL(B(t) − t/2)(r)

=
∫ z2−z1

−∞
e−z1 dN(−t/2,t)(r) +

∫ ∞

z2−z1

e−z2+r dN(−t/2,t)(r)

= Φ
(

λ + z2 − z1
2λ

)
e−z1 + Φ

(
λ + z1 − z2

2λ

)
e−z2

for λ = t1/2/2. The proof is complete.

Generally, the finite-dimensional margins of (M(t))t>0 are special cases of
the rv in Example 4.1.4.

Maxima of Independent Brownian Motions

Let B, Bi, i ∈ N, be independent Brownian motions. Consider

Xni(t) = bn{Bi(1 + tb−2
n ) − bn(1 + t/(2b2

n))},

where bn is again defined by bn = nϕ(bn) with ϕ denoting the standard normal
density.

The following result is due to Brown and Resnick [55], who used a slightly
different normalization.

Theorem 7.4.3. We have(
max
i≤n

Xni(t)
)

t≥0
→D max(N∗), n →∞,

where N∗ is the Poisson process defined in (7.39).

The basic idea in the proof of Theorem 7.4.3 is the decomposition

Bi(1 + tb−2
n ) = Bi(1) + b−1

n B∗
i (t),

where B∗
i are iid standard Brownian motions which are independent of Bi(1), i ≤

n. We have
Xni(t) = bn(Bi(1) − bn) + (B∗

i (t) − t/2).
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From this representation we see that one is dealing with a question related to that
in Theorem 7.4.1.

It was proven by H. Drees (personal communication) that the convergence
also holds in the variational distance, if the domain of t is restricted to a finite
interval (cf. also Reiss [387], E.6.8).

Since Theorem 7.4.3 implies the weak convergence of the finite-dimensional
margins we know that maxi≤n Xni(t) is asymptotically distributed as M(t), where
again (M(t))t≥0 = max(N∗). From this identity we may deduce again that M(t)
is a standard Gumbel rv.

Theoretical Results

Because a process X = (X(t))t∈T is max-stable if all finite-dimensional margins
are max-stable, these margins have representations as given in (4.23). If the uni-
variate margins are of Fréchet-form and N∗ =

∑
i ε(Yi,Zi), one finds ft, t ∈ T , such

that the process (
max

i
(Zift(Yi))

)
t∈T

has the same finite-dimensional distributions as X. Notice that this is also the
construction of extremal processes in (7.35) with ft = 1[0,t].

The constructions around Theorem 7.4.1 and Lemma 7.4.2 can easily be
described within the general framework of max-stable processes with univariate
margins of Gumbel-form. We have ρ = L(X) and ft(x) = exp(xt). Notice that
condition (7.38) corresponds to 0 <

∫
ft dρ < ∞. We refer to de Haan [187],

[188] and Vatan [452] for theoretical, and to Coles [70] and further literature cited
therein for applications.
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Non-IID Observations



Chapter 8

Introduction
to the Non-IID Case

We present in the following some examples to motivate the extension of the clas-
sical extreme value theory for iid sequences to a theory for non-iid sequences. We
introduce different classes of non-iid sequences together with the main ideas. The
examples show that suitable restrictions for each class are needed to find limit
results which are useful for applications.

8.1 Definitions
By {Xi, i ≥ 1} we denote in the following a sequence of real-valued rv Xi with
marginal distributions FXi . In contrast to the iid case we do not assume that these
marginal distributions are identical. Furthermore, the independency assumption
may also be dropped.

Such generalizations are required in many applications, where the rv are
dependent, as for instance in time series of ecological data, sulfate and ozone
concentration values and their exceedances of the threshold set by the government,
the daily rainfall amount, the daily maximum or minimum temperature.

Often, these time series exhibit in addition a trend or a seasonal compo-
nent, sometimes of a periodic nature. Furthermore, the variances of the Xi’s are
often observed to be non-constant. In general, we have to specify the kind of non-
stationarity for such time series. Their extremes can only be treated with a more
general theory for the extreme values.

In addition, a more general theory reveals also the limitations of the classical
theory of the iid case. We gain a deeper insight into the properties of the classical
theory and its relation to the general one.

The iid case can be generalized in various ways by not assuming the inde-
pendence or the identical distributions FXi (·) = FX1 (·) of the Xi’s.

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,  
DOI 10.1007/978-3-0348-0009-9_8, © Springer Basel AG 2011 
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(i) The best known special case concerning dependent sequences is the station-
ary case. A random sequence is called (strongly) stationary, if the finite-
dimensional df of the random sequence are such that

FXi1 ,Xi2 ,...,Xik
(·) = FXi1+m,Xi2+m,...,Xik+m(·), (8.1)

holds for any {ij ∈ IN, j = 1, . . . , k} and k, m ∈ IN . Obviously, this implies
FXi (·) = FX1 (·) for all i ≥ 1 (by setting (k = 1) in (8.1)). If (8.1) does not
hold, then the random sequence is usually called non-stationary.

(ii) On the other hand, we may sometimes assume independence of the rv, but
dealing with non-identical marginal distributions FXi . Such sequences are
called independent random sequences. They are used to model for instance
the extremes of some ecological data mentioned above, because one can as-
sume approximate independence of the data sets sufficiently separated in
time (or space).

The class of non-stationary random sequences is rather large; an extreme value
theory for such a general class of non-stationary random sequences does not exist.
Since in applications certain special models are considered, it is worthwhile to deal
with such particular non-stationary random sequences also. Appropriate subclasses
have been introduced and treated, for instance the random sequences {Xi, i ≥ 1}
of the form Xi = μi + siYi, with some trend values μi, scaling values si and
a stationary random sequence {Yi, i ≥ 1}. Another subclass consists of non-
stationary random sequences which have identical marginal distributions: FXi (·) =
FX1 (·), for all i ≥ 1; for instance a sequence of standardized Gaussian rv is such a
random sequence.

We find that in the stationary or the independent case the behavior of ex-
tremes and exceedances of a level u may deviate substantially from that in the iid
case. In the following this will be illustrated by some simple examples which will
also imply the kind of restrictions needed to develop an extreme value theory for
a rather large class of non-stationary random sequences. The exact mathematical
formulation of such necessary conditions are stated in the following chapters which
present the general results.

8.2 Stationary Random Sequences
In this section we assume that the random sequence {Xi, i ≥ 1} satisfies (8.1).
Let FXi (·) = F (·) for all i ≥ 1. In the iid case the exceedances of a high level u can
be considered as rare events. If the level u tends to the upper endpoint ω(F ) of the
distribution F (·), the number of exceedances (up to time n) can asymptotically
be approximated by a Poisson rv.

• The Poisson-approximation holds in the iid case, iff the level u = un is such
that un → ω(F ) and n(1 − F (un)) → τ < ∞ as n → ∞ (which means that
if ω(F ) < ∞, ω(F ) is a continuity point of the distribution F (·)).
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Under certain conditions the Poisson approximation still holds for stationary
random sequences. It is obvious that in many of these cases the level u = un has
necessarily to tend to ω(F ), being a continuity point of F (·) if ω(F ) < ∞.

Example 8.2.1. Let Xi = W + Yi, i ≥ 1, where W, Yi, i ≥ 1, are independent
rv with W ∼ FW , Yi ∼ FY . The sequence Xi is stationary and each Xi depends
on the rv W in the same way. If there exists a sequence {bn, n ≥ 1} such that

P
(
|max

i≤n
Yi − bn| > ε

)
→ 0 for any ε > 0,

then as n →∞

P
(

max
i≤n

Xi ≤ w + bn

)
= P

(
W + max

i≤n
Yi ≤ w + bn

)
→D P (W ≤ w) = FW (w).

This shows that any df FW could occur as limit distribution of extreme values of
a stationary random sequence. Note that in this case un �→ ω(F ). In this example,
Xi and Xj have the same dependence structure, for every pair i, j, j �= i, even
if i and j are rather far apart, (i.e., if |i − j| is large or |i − j| → ∞). The
Poisson approximation does not make sense in this case, since events of the Poisson
process, which are separated in time, are independent. If second moments of the
rv Xi exist, the random sequence {Xi, i ≥ 1} is called equally correlated, since
Corr(Xi, Xj) = ρ, i �= j.

Example 8.2.2. If we take the maximum instead of the sum of the rv W and Yi,
we gain further insight into the theory on stationary sequences. Again, let Yi and
W be as in Example 8.2.1 and define

Xi = max(W, Yi).

Assume now that {an, n ≥ 1} and {bn, n ≥ 1} are such that as n →∞

F n
Y (anx + bn) →D G(x),

thus anx + bn → ω(FY ), for all x with G(x) > 0. This means that FY belongs to
the domain of attraction of the extreme value distribution (EVD) G, denoted by
FY ∈ D(G) (cf. Section 2.1 and Leadbetter et al. [303], Galambos [167], Resnick
[393]). Then

P
(

max
i≤n

Xi ≤ anx + bn

)
= P

(
W ≤ anx + bn, max

i≤n
Yi ≤ anx + bn

)
= FW (anx + bn)F n

Y (anx + bn) →D G(x)

if and only if 1−FW (anx+ bn) → 0, or equivalently ω(FY ) ≥ ω(FW ). (If ω(FY ) =
ω(FW ) < ∞, then ω(FW ) has to be a continuity point of FW .)
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If ω(FY ) < ω(FW ), we get

P
(

max
i≤n

Xi ≤ w
)

→D

{
FW (w) if w ≥ ω(FY ),
0 if w < ω(FY ).

Concerning the dependence between Xi and Xj , i �= j, the following is observed.

P (Xi ≤ u, Xj ≤ u) = P (W ≤ u, Yi ≤ u, Yj ≤ u)
= FW (u)F 2

Y (u)
= P (Xi ≤ u)P (Xj ≤ u)

+ FW (u)(1 − FW (u))F 2
Y (u). (8.2)

If now u → ω(FY ), then the second term of (8.2) is asymptotically negligible, if
and only if 1 − FW (u) → 0 which means ω(FY ) ≥ ω(FW ). This implies that the
events {Xi ≤ u} and {Xj ≤ u} are asymptotically independent. This is equivalent
to the asymptotic independence of {Xi > u} and {Xj > u}. We shall show that a
Poisson approximation is possible in this case.

For the case ω(FY ) < ω(FW ), neither the asymptotic independence nor the
Poisson approximation hold. Furthermore, if FW (anx + bn) → 1, then

P (Xi > anx + bn) = 1 − FW (anx + bn)FYi (anx + bn) → 0.

This convergence holds even uniformly in i. This property of the random sequence
{Xi, i ≥ 1} is called uniform asymptotic negligibility (uan) which means that none
of the rv Xi has a significant influence on the extremes; each Xi could be deleted
without losing important information on the extremes. The uan definition is given
in (8.3) for the general case.

The idea of the asymptotic independence of the exceedances occurring in
separated time intervals has to be formulated mathematically in an appropriate
way, such that the Poisson approximation can be proved for a general class of
stationary random sequences.

8.3 Independent Random Sequences
We consider now independent rv Xi with df FXi (·), which are in general non-
identical. Thus the distribution of the maximum Mn = maxi≤n Xi is simply given
by

P (Mn ≤ u) = P
(

max
i≤n

Xi ≤ u
)

=
∏
i≤n

FXi (u).

From the point of view of applications, this representation is often useless, since
the FXi (·) are not known in general. Therefore one might try to approximate the
distribution for the maximum asymptotically.
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Necessary for the Poisson approximation is the uan condition

sup
i≤n

pi,n = sup
i≤n

P (Xi > un) = sup
i≤n

[
1 − FXi (un)

] → 0 (8.3)

as n → ∞. This means that the level un → u∞ ≥ ω(FXi ), for all i ≥ 1, in other
words, it is assumed that a single exceedance at a time point i is negligible. Under
the uan condition the number of exceedances

Nn =
∑
i≤n

1(Xi > un)

is asymptotically a Poisson rv with parameter λ ∈ [0,∞), iff∑
i≤n

[
1 − FXi (un)

] → λ (8.4)

as n → ∞. Condition (8.4) generalizes the condition n(1 − FX(un)) → λ =
− log(G(x)) with un = anx + bn in the case of iid sequences. The error of ap-
proximation can be computed; using a result of Barbour and Holst [28], we get
that the variational distance

d(N, Nn) = sup
A⊂IN

|P (N ∈ A) − P (Nn ∈ A)|,

where N ∼ Poisson(λ), is bounded from above by

(1 ∧ λ−1)
∑
i≤n

[
1 − FXi (un)

]2
.

By (8.3) and (8.4), this is O(supi≤n pi,n), converging to 0 as n → ∞, thus
the variational distance converges to 0. This proves the Poisson approximation.

To find possible asymptotic distributions of Mn = maxi≤n Xi, further condi-
tions are necessary. The following well-known example shows that if further con-
ditions are not posed, every df can occur as limit distribution (compare Example
8.2.1).

Example 8.3.1. Let G(·) be any df. Then also Gγ(·) is a df for any γ ∈ (0, 1] and
we can define a sequence of independent rv {Xi, i ≥ 1} such that

Xi ∼ Gγi , where γi ∈ (0, 1) with
∑
i≤n

γi → 1 as n →∞.

Then
P
(

max
i≤n

Xi ≤ u
)

=
(
G(u)

)∑
i≤n γi →D G(u).

Note that the uan condition (8.3) with un ≡ u does not hold in this example.
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However, in the case of independent random sequences property (8.3) is not
sufficiently restrictive in order to obtain only the EVD of the iid case as possible
limit distributions. The class of limit distributions for the extremes in the non-
iid case is much larger. To find a reasonable subclass of limit distributions for
applications, further conditions have to be posed or special models of random
sequences have to be considered.

On the other hand, in many cases the distribution of the maxima of non-
identically distributed rv can be approximated by the distribution of the maxima
of a suitable iid sequence which implies that the limit distribution of this maxima
is one of the EVD.

Example 8.3.2. Let Ui ∼ Exp(1), i ≥ 1, be iid rv and set Xi = Ui + log(ci) with
ci > 0 for all i ≥ 1. Then with

un(x) = log
(∑

i≤n

ci

)
+ x

and
min
i≤n

(
un(x) − log(ci)

) →∞, n →∞,

the probability of no exceedance of un(x) at i is

P (Xi ≤ un(x)) = P (Ui ≤ un(x) − log(ci))
= 1 − exp

(−un(x) + log(ci)
)
.

Thus the distribution of the normalized maxima converges

P
(

max
i≤n

Xi ≤ un(x)
)

=
∏
i≤n

FXi (un(x))

= exp
{
−

∑
i≤n

[
1 − FXi (un(x))

]
(1 + o(1))

}
= exp

{
−

(∑
i≤n

ci

)−1
e−x

∑
i≤n

ci

(
1 + o(1)

)}
→D exp

(−e−x
)

= G3(x).

Note that the iid case (Xi = Ui, i.e., ci ≡ 1) belongs to this class and it is
well known that

P
(

max
i≤n

Ui ≤ anx + bn

)
→D G3(x)

with an ≡ 1, bn = log(n) as suggested by the definition of un(x) given above. Even
if ci �≡ 1, but such that

log
(∑

i≤n

ci

)
= log(n) + o(1)
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or equivalently
1
n

∑
i≤n

ci → 1,

we get the same limit distribution G3 with the same normalizing constants an = 1
and bn = log(n) as in the iid case. It is easy to see that the uan condition (8.3)
holds.

In this example the ‘non-stationarity’ has no influence on the asymptotic
distribution of the maxima. It is questionable whether the non-stationarity has an
influence on the extreme order statistics. We shall note in Section 8.3 that in some
cases the limit point process of exceedances is still the same as in the iid case. The
following example shows that this statement is not always true.

Example 8.3.3. Daley and Hall [89] discussed special models of independent
sequences with monotone trends and variance inhomogeneities. Let {Xi, i ≥ 1}
be an iid random sequence and

1 = w1(γ) ≥ wi(γ) ≥ wi+1(γ) → 0 as i →∞ and wi(γ) ↑ 1 as γ → 1,

0 = v1(β) ≤ vi(β) ≤ vi+1(β) → ∞ as i →∞ and vi(β) ↓ 0 as β → 0.

Now define M(γ, β) = supi≥1{wi(γ)Xi−vi(β)}, the supremum of the weighted and
shifted sequence, with shifts vi(β) and weights wi(γ). Daley and Hall analyzed the
class of limit distributions of M(γ, β) as γ → 1 and β → 0. Obviously, the EVD
G1,α, G2,α and G3 belong to this class. Two special cases are the geometrically
weighted iid sequences and linearly shifted iid sequences with suprema

W (γ) = sup
i≥1

{γi−1Xi} and S(β) = sup
i≥1

{Xi − (i − 1)β},

respectively.
1) Suppose that F = FX ∈ D(G1,α). Then also W (γ), suitably normalized,

converges in distribution to G1,α. The following more general result holds for
M(γ, 0), the supremum of a weighted iid sequence. If the weights wi(γ) are such
that

∞ >
∑
i≥1

[
1 − F (1/wi(γ))

] →∞ as γ → 1,

then
P (a(γ)M(γ, 0) ≤ x) →D G1,α(x) as γ → 1,

where
a(γ) = sup

{
a :

∑
i≥1

[
1 − F ( 1

awi(γ)
)
]
≤ 1

}
.
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Note that since a(γ) is monotone decreasing in γ and tends to 0 as γ → 1 by the
assumptions, we have

P (a(γ)M(γ, 0) ≤ x) =
∏
i≥1

F
( x

a(γ)wi(γ)

)
∼ exp

(
− x−α

∑
i≥1

{
1 − F

(
1/a(γ)wi(γ)

)})
→ exp

(−x−α
)

= G1,α(x), x > 0.

For instance if wi(γ) = γi−1 with 1 − F (x) ∼ cx−α, as x → ∞, c > 0, then
the result holds with a(γ) = [(1 − γα)/c]1/α.

The linearly shifted iid random sequence {Xi−(i−1)β, i ≥ 1} is now analyzed.
It is necessary to assume α > 1 to guarantee that S(β) is well defined (i.e., S(β) <
∞ a.s.). Then define, for sufficiently small β,

a(β) = sup{a ∈ (0, 1) :
(
1 − F (1/a)

)
/a ≤ (α − 1)β}.

Note that a(β) → 0 as β → 0. Then

P (a(β)S(β) ≤ x) =
∏
i≥1

P (Xi ≤ (i − 1)β + x/a(β))

∼ exp
{−∑

i≥0

[
1 − F

(
iβ + x/a(β)

)]}
∼ exp

{−β−1
∫ ∞

x/a(β)

(
1 − F (z)

)
dz

}
∼ exp

{−β−1(α − 1)−1(x/a(β))
[
1 − F (x/a(β))

]}
→ exp

{−x−α+1} = G1,α−1(x), x > 0,

since 1 − F (·) is regularly varying and[
1 − F (1/a(β))

][
a(β)β(α − 1)

]−1 → 1

as β → 0. Therefore G1,α−1 is the limit distribution of S(β).
2) Daley and Hall showed also that if F ∈ D(G3) then both W (γ) and S(β)

converge in distribution to G3(·) (compare with Example 8.3.2). If F ∈ D(G2,α),
a similar statement holds.

By replacing un in (8.3) by x/a(γ) and x/a(β), respectively, it can be shown
that the uan condition is satisfied by the sequences analyzed in this example, for
any x > 0.

The rv S(β) of the shifted iid model is related to a rv in a somewhat different
problem. Define τ(β) = sup{i ≥ 1 : Xi > iβ} which is the last exit time of the
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random sequence {Xi, i ≥ 1} from the region {(t, x) : x ≤ tβ}. Hüsler [235]
analysed the limit distributions of τ(β) as β → 0, assuming that the Xi ’s are iid
rv. (For extensions to stationary sequences see Hüsler [236]).
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Figure 8.3.1. Last exit time τ(β) of the random sequence Xi.

The following equations reveal the equivalence of the asymptotic results for
S(β) and τ(β). We have, for every l ∈ IN ,

1{τ(β) < l} = 1{Xi ≤ iβ, i ≥ l}
=D 1{Xk − (k − 1)β ≤ lβ, k ≥ 1}
= 1{S(β) ≤ lβ}
= 1{S(β)/β ≤ l}.

Hence, a(β)βτ(β) has the same limit distribution as a(β)S(β).

8.4 Non-stationary Random Sequences
From the above discussion of special extensions of the iid case we deduce ideas on
how to develop a reasonably general, applicable theory for non-stationary random
sequences.

We observed in Example 8.3.2 that maxima of special non-stationary se-
quences behave asymptotically as those of iid (or stationary) sequences. As it will
be shown, this is true for a fairly large class of non-stationary sequences. This
implies that in such cases only the three types of EVD occur as limit distribution
for the maxima and therefore in some applications the problem reduces to one
which can be handled using standard statistical procedures.

However, deviations from the iid or stationary case are possible and will be
observed if the Poisson approximation for exceedances is considered instead of the
weak limit for the maxima. A question of interest is which conditions have to be
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posed on the non-stationary sequences so that the classical theory of extremes is
still applicable.

Example 8.4.1. Let {Xi, i ≥ 1} be a Gaussian sequence with non-constant mean
values E(Xi) = μi and variances Var(Xi) = σ2

i . The sequences {μi, i ≥ 1} and
{σi, i ≥ 1} are sometimes periodic, for example in time series with a seasonal
component.

A particular subclass of non-stationary Gaussian sequences is defined by Xi =
μi +σiYi, i ≥ 1, where {Yi, i ≥ 1} is a stationary standardized Gaussian sequence.
We have for the maximum Mn = sup{Xi, i ≤ n} the simple relationship

{Mn ≤ u} = {Yi ≤ (u − μi)/σi, i ≤ n}.

This means that instead of dealing with the maxima of the non-stationary sequence
{Xi, i ≥ 1} one has to deal now with the exceedances of a non-constant boundary
by a stationary Gaussian sequence.

Example 8.4.2. Example 8.4.1 can easily be extended by replacing the standard-
ized Gaussian sequence with any stationary random sequence {Yi, i ≥ 1}. Note
that the sequences in Example 8.3.2 and 8.3.3 are of this type with {Yi} being iid
rv. Ballerini and McCormick [25] used such a model to analyze rainfall data. They
supposed that mean values μi and variances σ2

i are periodic.

Remark 8.4.3. Finally, we note that the theory is developed mainly for random
sequences. Stochastic processes in continuous time (parameter) and with contin-
uous paths give rise to further complications. The following simple idea can be
applied in many cases. By partitioning the interval [0, T ] we can rewrite the max-
imum

MT = sup{X(t), 0 ≤ t ≤ T }
in terms of the maximum of a finite number of rv Zj defined by

Zj = sup
{

X(t), t ∈ [(j − 1)h, jh)
}

, j ≤ [T/h]

and
Z∗ = sup

{
X(t), t ∈ [h[T/h], T ]

}
,

where h > 0. In this way the suprema of stochastic processes in continuous time
can be treated in the context of the theory for the maxima of random sequences.
The suprema of Gaussian processes are analyzed in Chapter 10.

8.5 Triangular Arrays of
Discrete Random Variables

We introduced the uniform asymptotic negligibility condition as a necessary as-
sumption to show the Poisson approximation in Section 8.2. We assumed that
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sup
i≤n

P (Xi > un) =: sup
i≤n

pi,n = o(1)

as n →∞, where un can be the linear normalization un = anx + bn or some other
sequence tending to the right endpoint of the distributions of the Xi’s.

In the derivation of the limit distributions of the maxima of independent, but
not necessarily identically distributed rv, we investigate the product∏

i≤n

P (Xi ≤ un) ∼ exp
(
−

∑
i≤n

pi,n

)
.

More generally, we can consider a triangular array of independent rv Xi,n which
means that for each fixed n the rvXi,n, i ≤ n, are independent. Then defining
the factors pi,n = P (Xi,n > un) with un any suitable (large) boundary value or
normalization, the distribution of the maximum of the Xi,n, i ≤ n, is given by the
same product as above being approximated also by exp(−∑

i≤n pi,n).
The connection to the iid case is obvious by setting Xi,n = (Xi − bn)/an

and un = x. Hence, this scheme of triangular arrays of rv includes also the models
introduced in Section 8.3. This scheme is analytically not much different and allows
derivation with the same effort and method laws for maxima as well as for rare
events.

Let us consider Poisson rv. It is known that the distribution of the linearly
normalized maximum of n iid Poisson rv does not converge weakly to a limit
distribution because the jumps of the discrete df not satisfy the condition

P (X = k)
P (X ≥ k)

→ 0 as k →∞.

See e.g. Leadbetter et al. [303]. Here X is Poisson distributed, with P (X =
k)/P (X ≥ k) → 1 as k →∞.

Anderson [14], [15] showed for Poisson variables Xi with parameter λ that
there is a sequence of integers In for which

lim
n→∞ P

(
max

1≤i≤n
Xi = In or In + 1

)
= 1.

Obviously no normalizing function un(x) can be found which leads to a non-
degenerate limit distribution. Thus the distribution of max1≤i≤n Xi concentrates
increasingly on a pair of consecutive integers as n →∞. The asymptotic properties
of the sequence of integers In have been characterized by Kimber [288]. This holds
for any fixed λ.

However, if λ is large, the concentration on the two values In and In + 1
happens slowly with n. If we would let λ tend to ∞ with n, can we expect another
behavior of the distribution of Mn? Because the Poisson distribution converges
to a normal distribution as λ → ∞, could the limit distribution of Mn be as the
maximum of (approximately) normal rv, hence the Gumbel distribution? However,
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this is expected to depend on the rate of λ = λn → ∞. Therefore, let {Xi,n, i≤n},
n ≥ 1, denote a triangular array of Poisson rv, which are iid with parameter λn

for fixed n. Then the following Gumbel limit was derived in Anderson et al. [16].

Theorem 8.5.1. Suppose that λn grows with n in such a way that for some integer
r ≥ 0,

log(n) = o(λ(r+1)/(r+3)
n ).

Then there is a linear normalization

un(x) = λn + λ1/2
n (β(r)

n + αnx)

such that
lim

n→∞ P
(

max
1≤i≤n

Xi,n ≤ un(x)
)

= exp(−e−x).

It was shown that β
(r)
n is the solution of the equation

hn(x) = x2

2
+ log(x) + 1

2
log(2π) − x2

r∑
j=1

cj

(
x

λ
1/2
n

)j

= log(n)

and
αn = (2 log(n))−1/2.

The constants cj depend on the moments of the Poisson r.v. In general β
(r)
n ∼

(2 log(n))1/2. More explicitly, for r = 0, 1, 2, we use

β(0)
n = (2 log(n))1/2 − log log(n) + log(4π)

2(2 log(n))1/2 ,

β(1)
n = (2 log(n))1/2 − log log(n) + log(4π)

2(2 log(n))1/2 +
1
6

2 log(n)
λ

1/2
n

,

and
β(2)

n = β(0)
n + (2 log(n))1/2

(
1
6

(2 log(n))1/2

λ
1/2
n

− 1
24

(2 log(n))
λn

)
.

The case r = 0, i.e., log(n) = o(λ1/3
n ), or equivalently (log(n))3/λn = o(1),

covers the rather fast-growing λn, hence a rather good approximation of the Pois-
son to the normal rv. So the discreteness of the Poisson distribution has no effect
on the limiting distribution since we use the same normalization as in the case
of iid normal rv. If r ≥ 1, then this discreteness has a limited influence on the
convergence of Mn, since the normalization has only to be adapted to the speed
of growth of λn by chosen β

(r)
n appropriately. As λn grows less fast, the adaption

gets more involved.
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The arguments of Anderson et al. [16] for a Gumbel limit do not depend
critically on the rv being Poisson. They extended the above result to row-wise
maxima of certain triangular arrays of independent variables, each converging in
distribution to a normal rv at a certain speed. Then similar results can be derived
which depend again on the growth of the parameters or the speed of convergence
to the normal distribution.

Example 8.5.2. Let us consider another simple example. For fixed n let Xi,n be
a discrete uniform rv on the values 1, . . . , Nn where Nn →∞ as n →∞. Then for
k = kn such that kn/Nn → 0 we get

P (Mn ≤ Nn − kn) = (1 − kn/Nn)n ∼ exp(−knn/Nn).

Hence the convergence depends on the behavior of n/Nn and suitably chosen
kn. If n/Nn → c ∈ (0,∞), then kn = k are the normalization values and the
limit is e−kc, the discrete geometric type distribution. If n/Nn → c = 0, then
kn = [xNn/n] = xNn/n + O(1) with x > 0, and the limit is e−x, hence the limit
distribution of the normalized maximum Mn is G−1. If n/Nn → c = ∞, then it is
easily seen that P (Mn = Nn) → 1.

Such a result was found earlier by Kolchin [291] where he considered multi-
nomially distributed rv with N equally probable events. These limits depend in
a similar way on the behavior of n/N as n → ∞ with N = Nn → ∞. Since he
approximated the multinomial distribution by the Poisson distribution, his inves-
tigations were rather similar for the particular case of Poisson rv. Related results
for order statistics, including expansions, may be found in [385], Section 4.6 (with
a discussion on page 150).

Nadarajah and Mitov [344] showed that this behavior holds also for maxima
of discrete rv from the uniform, binomial, geometric and negative binomial dis-
tribution, with varying parameters. They derived the suitable normalizations for
the convergence of the normalized maximum to a limit distribution. This limit
is the Gumbel distribution in case of binomial, geometric and negative binomial
distribution.

Finally we mention that such a triangular scheme can be based also on rv.
Coles and Pauli [75] extended the univariate problem of Anderson et al. [16]
to the bivariate problem with Poisson distributed rv. They considered the case
that (Xi,n, Yi,n), i ≤ n, is a triangular array of independent Poisson rv, defined
by Xi,n = Ui,n + Wi,n and Yi,n = Ui,n + Wi,n with independent Poisson rv
Ui,n, Vi,n, Wi,n with parameters λn − dn, λn − dn, and dn, respectively. Hence Xi,n

and Yi,n are dependent Poisson rv, each with parameter λn and covariance dn.
If dn is the dominating term, meaning that dn/λn tends to 1, we can expect an
asymptotic dependence of the extremes of the two components. More precisely,
they showed that if

(1 − dn/λn) log(n) → λ2 ∈ (0,∞)
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and
log(n) = o(λ(r+1)/(r+3)

n ) for some integer r ≥ 0,

then there exists a sequence un(x) (defined above as the normalization in the
univariate result of Anderson et al. [16]) such that

lim
n→∞ P

(
max
i≤n

Xi,n ≤ un(x), max
i≤n

Yi,n ≤ un(y)
)

= Hλ(x, y)

where Hλ denotes the bivariate EVD defined in Example 4.1.4 having a copula
function which was derived from the bivariate Gaussian distribution.

This result holds also for the particular cases where (i) λ = 0 assuming in
addition that λn − dn → ∞, and where (ii) λ = ∞ assuming that dn/λn → 1.
If λ = 0, the row-wise maxima maxi≤n Xi,n and maxi≤n Yi,n are asymptotically
completely dependent, and if λ = ∞, then they are asymptotically independent.



Chapter 9

Extremes of Random
Sequences

We develop the general theory of extremes and exceedances of high boundaries by
non-stationary random sequences. Of main interest is the asymptotic convergence
of the point processes of exceedances or of clusters of exceedances. These results
are then applied for special cases, as stationary, independent and particular non-
stationary random sequences.

9.1 Introduction and General Theory

In this section we consider general non-stationary random sequences {Xi, i ≥ 1}.
The rv Xi are real-valued with marginal distributions FXi (·) = Fi(·); extensions
to rv are possible with some additional effort. (See Section 11.5 and Chapter 4).
The aim of this section is to present a rather general and unified theory to derive
the most important results. In doing this we will pose conditions which are slightly
more restrictive than essentially needed. The more general results can be found in
the literature.

We deal with rare events, in this context with the exceedances of a boundary
by a random sequence. Of interest in this section are the occurrence times of such
rare events and not the excesses above the boundary. The boundary {uni, i ≤
n, n ≥ 1} for a given n is non-constant in general (see Figure 9.1.1). In Chapter
8 we showed that such an extension is natural and needed. As already mentioned,
the Poisson approximation of the sequence of exceedances is one of the topics we
are interested in. We begin by discussing non-stationary random sequences. In the
following sections we deal with certain cases of non-stationary random sequences
and apply the results to stationary and to independent ones.

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,  
DOI 10.1007/978-3-0348-0009-9_9, © Springer Basel AG 2011 
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Figure 9.1.1. Exceedances of boundary values uni (as step function) by a

random sequence Xi (symbol: x) and the related point process Nn of
exceedances.

We mentioned in Section 8.2 that for the general case the uan condition is
necessary in order to prove the Poisson approximation. Thus from now on we
assume that

sup
i≤n

P (Xi > uni) = sup
i≤n

(1 − Fi(uni)) → 0, n →∞.

Of main interest is the point process Nn of the exceedances, counting the
number of points i/n at which the rv Xi exceeds the boundary uni:

Nn(·) =
∑
i≤n

δi/n(·) 1(Xi > uni)

where δx(·) denotes the point measure at x: δx(B) = 1 if x ∈ B, and 0, else. The
point process Nn is defined on the unit interval (0, 1] (see Figure 9.1.1). For any
Borel set B ⊂ (0, 1], Nn(B) is the rv counting the number of exceedances Xi > uni

for i ∈ nB. Letting B = (0, 1] and uni = un, i ≤ n, we get the following relation
between Nn and the maximum Mn:

{Nn((0, 1]) = 0} = {Xi ≤ un, i ≤ n} = {Mn ≤ un}
for any n. However, the point process Nn contains more information about the
behavior of the exceedances and the extreme order statistics. We shall show for in-
stance that exceedances in pairwise disjoint time intervals Bi ∈ (0, 1], i = 1, . . . , k,
are, under certain restrictions, asymptotically independent.
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Nn is said to converge in distribution to N (Nn →D N) if the rv (Nn(Bj))j≤k

converges in distribution to (N(Bj))j≤k for arbitrary Borel sets Bj ⊂ (0, 1], j ≤
k, k ∈ N, on the boundaries of which N has no point, with probability 1.

In the following the discussion will be confined to the case where the limiting
point process N is a Poisson process. This simplifies the proof of the convergence
Nn →D N , since we can make use of the property that the Poisson point process is
simple, (multiple points do not occur with probability 1), iff the intensity measure
is atomless. Furthermore, we only consider point processes where the corresponding
intensity measure λ is a Radon measure, which means that λ(B) = E(N(B)) < ∞,
for any Borel set B ⊂ (0, 1]. This is equivalent to λ((0, 1]) < ∞. The following
theorem is an application of a result of Kallenberg [282], (see Leadbetter et al.
[303], Resnick [393]).

Theorem 9.1.1. Let N, Nn, n ≥ 1, be point processes on (0, 1]. Assume that N
is simple, with λ((0, 1]) < ∞. If

a) E(Nn((c, d ]) → E(N((c, d ]) for every (c, d ] ⊂ (0, 1], and

b) P (Nn(B) = 0) → P (N(B) = 0) for every B, which is a finite union of
intervals Bj = (cj , dj ] ⊂ (0, 1],

then Nn →D N .

Remark 9.1.2. This result is also valid for processes on IRd
+ or (0, 1 ]d, (d ≥ 1),

if the semiclosed intervals are replaced by the semiclosed rectangles in IRd
+ or

(0, 1 ]d, (d ≥ 1), respectively.

We now check whether the conditions of Theorem 9.1.1 are satisfied by the
exceedance point process Nn. We easily derive that

E
(

Nn

(
(c, d ]

))
= E

(∑
i≤n

δi/n

(
(c, d ]

)
1(Xi > uni)

)

=
∑
i≤n

E

(
δi/n

(
(c, d ]

)
1(Xi > uni)

)
=

∑
i∈(nc,nd ]

E(1(Xi > uni)) =
∑

i∈(nc,nd ]

P (Xi > uni).

Therefore condition a) holds if the sum
∑

i∈nB(1 − Fi(uni)) converges to
λ(B) = E(N(B)) for any interval B or equivalently∑

i≤nt

P (Xi > uni) =
∑
i≤nt

(1 − Fi(uni)) → λ(t) = λ((0, t]), (9.1)

as n →∞ for every t ∈ (0, 1] with λ(1) < ∞.
Note that we use the same notation for the function λ(·) and the intensity

measure λ(·). Each defines the other in a unique way. Thus the measure λ(·) is
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atomless iff the function λ(·) is continuous. The question whether condition a)
of Theorem 9.1.1 is satisfied, is thus reduced to the question whether one can
find a suitable normalization {uni, i ≤ n} which only depends on the marginal
distributions Fi. If the random sequence is stationary and the boundaries are
constant for each n, i.e., uni = un, then (9.1) is equivalent to

n(1 − F (un)) → λ < ∞, (9.2)

Thus λ(t) = λt = λm((0, t]), m denoting the Lebesgue measure.

Long Range Dependence

In condition a) the dependence among the rv Xi does not play a role but it becomes
important in condition b) of Theorem 9.1.1. Since the limit point process N is a
Poisson process, we have

P (N(B) = 0) =
∏

j

P (N(Bj) = 0)

for finitely many disjoint intervals Bj ⊂ (0, 1]. This also holds asymptotically
for point processes Nn if the numbers Nn(Bj) of exceedances of the boundary
uni by Xi, occurring in disjoint (separated) intervals nBj , become approximately
independent for large n. The importance of this property was already shown in
Example 8.2.1. This property is called mixing. There are several mixing conditions
in the literature. For maxima and exceedances the mixing property has to be
formulated with respect to the events {Xi ≤ uni} only, given in Hüsler [237],
applying ideas of Leadbetter (c.f. Leadbetter [303]). Let αn,m be such that

|P (Xi1 ≤ uni1 , . . . , Xik
≤ unik

, Xj1 ≤ unj1 , . . . , Xjl
≤ unjl

)
− P (Xi1 ≤ uni1 , . . . , Xik

≤ unik
)P (Xj1 ≤ unj1 , . . . , Xjl

≤ unjl
)|
≤ αn,m

for any integers 0 < i1 < i2 < · · · < ik < j1 < · · · < jl ≤ n for which j1 − ik ≥ m.

Definition 9.1.3. D(uni) holds for the random sequence {Xi} with respect to the
boundary {uni, i ≤ n, n ≥ 1}, if there exists a sequence {mn} such that αn,mn → 0
and mnF̄n,max → 0 as n →∞, where F̄n,max = supi≤n(1 − Fi(uni)).

In the following cases we have λ((0, 1]) > 0 implying lim infn nF̄n,max > 0.
Hence the assumption mnF̄n,max → 0 implies mn = o(n).

We can always choose a sequence {kn} of integers such that

lim
n→∞ knmnF̄n,max = 0 and lim

n→∞ knαn,mn = 0. (9.3)

For instance, kn = [min(mnF̄n,max, αn,mn)]−1/2 is such a sequence. Note that {kn}
can be bounded or can tend to ∞, but by the same reasons knmn = o(n). In the
following {kn} denotes always a sequence satisfying (9.3).
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Lemma 9.1.4. Suppose that D(uni) holds for the random sequence {Xi, i ≥ 1}
with respect to the boundary {uni}. Let Bj (= Bj,n), j ≤ kn, be disjoint intervals
of (0, 1], where (9.3) holds for kn. Then, as n →∞,

P

(
Nn

( ⋃
j≤kn

Bj

)
= 0

)
−

∏
j≤kn

P (Nn(Bj) = 0) → 0.

This lemma is proved in the usual way, using the mixing property kn − 1
times to approximate for each l, 2 ≤ l ≤ kn, P (Nn(

⋃
j≤l−1 Bj ∪ Bl) = 0) by

P (Nn(
⋃

j≤l−1 Bj) = 0)P (Nn(Bl) = 0). If the nBj ’s are separated by mn, the
statement follows, since {kn} is chosen such that knαn,mn → 0 as n →∞. If they
are not separated by mn, then the Bj ’s are approximated by B∗

j ’s constructed
from Bj by deleting a small interval of length mn/n at the right end of each Bj .
These nB∗

j ’s are separated by mn and the approximation error tends to 0 since
knmnF̄n,max → 0 (cf. Leadbetter et al. [303], Hüsler [237], [240] and Leadbet-
ter and Nandagopalan [304]). By this lemma, the verification of condition b) in
Theorem 9.1.1 is reduced to the verification of the convergence

P (Nn(B) = 0) → P (N(B) = 0)

for any B = (c, d ] ⊂ (0, 1]. B may be split up into kn suitably chosen disjoint
intervals Bj,n, j ≤ kn, such that m(Bj,n) → 0. Applying Lemma 9.1.4 once more

P (Nn(B) = 0) −
∏

j≤kn

P (Nn(Bj,n) = 0) → 0.

Local Dependence

The problem is now reduced to the consideration of P (Nn(Bj,n) = 0) =
P (Xi ≤ uni, i ∈ nBj,n). We note that only the local dependence behavior of the
random sequence {Xi} is involved in this probability. However, the local depen-
dence behavior of this sequence is not restricted by the mixing condition D(uni)
and we need a further condition D∗(uni), which restricts the local dependence.
Let {kn} satisfy (9.3) and let α∗

n be such that∑
i<j<j+1∈I

P (Xi > uni, Xj ≤ unj, Xj+1 > un,j+1) ≤ α∗
n

for any intervals I = {i1 ≤ i ≤ i2 ≤ n} ⊂ N with∑
i∈I

P (Xi > uni) ≤
∑
i≤n

P (Xi > uni)/kn.

Definition 9.1.5. D∗(uni) holds for the random sequence {Xi} with respect to
the boundary {uni}, if knα∗

n → 0 as n →∞.
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Note that Condition D∗(uni) excludes the possibility of clustering of upcross-
ings in a small interval I, because it excludes cases where the random sequence
{Xi} oscillates rapidly around the boundary {uni}.

Lemma 9.1.6. Suppose that condition D(uni) and D∗(uni) hold for {Xi} with
respect to the boundary {uni}. Then, as n →∞,

P (Xi ≤ uni, i ≤ nt) → exp(−μ(t))

for t ≤ 1, for some function μ(t), if and only if∑
i≤nt−1

P (Xi ≤ uni, Xi+1 > un,i+1) → μ(t), (9.4)

for t ≤ 1, where μ(·) is a bounded function.

Obviously, μ(·) is a non-decreasing positive function with μ(1) < ∞. Note
that the sum in (9.4) can be taken also over all terms i ≤ nt for t < 1 which will
give asymptotically the same result. This holds also for t = 1, by letting un,n+1
be some value such that P (Xn+1 > un,n+1) tends to 0.

Lemma 9.1.6 is not formulated in terms of exceedances as in statement (9.1),
but in terms of upcrossings (condition (9.4)). In general,

μ(t) ≤ λ(t), t ≤ 1.

It is easy to verify that if μ(1) = λ(1) then μ(·) ≡ λ(·), since for any t ≤ 1,

0 ≤
∑

i≤nt−1
[P (Xi+1 > un,i+1) − P (Xi ≤ uni, Xi+1 > un,i+1)]

≤
∑

i≤n−1
[P (Xi+1 > un,i+1) − P (Xi ≤ uni, Xi+1 > un,i+1)]

→ λ(1) − μ(1) = 0,

as n →∞.

Instead of D∗(uni) one might use weaker conditions as shown by Chernick et
al. [67] for stationary sequences. They used the condition D(k)(un), where k ≥ 2
is fixed and the boundary un is constant. This condition D(k)(un) is said to hold
if

lim
n→∞ nP

(
X1 > un > max

2≤i≤k
Xi, max

k+1≤j≤rn

Xj > un

)
= 0,

where rn = [n/kn], kn = o(n) with kn satisfying (9.3) (i.e., knαn,mn → 0 and
knmn/n → 0 for the stationary case). Obviously, D(k)(un) implies D(k+1)(un)
and D(2)(un) corresponds to D∗(un) in the stationary case, which was proposed
by Leadbetter and Nandagopalan [304]. Weaker conditions like D(k)(un) are useful
in dealing with special random sequences (see Chernick et al. [67] and Section 11.5).
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Point Process of Exceedances

We assume in the following always that μ(·) and λ(·) are continuous functions such
that the corresponding Poisson point processes are simple. However, the results
hold also if these functions are discontinuous at some points t ≤ 1 (see Section
11.5).

If now λ(·) ≡ μ(·), then upcrossings and exceedances occur with the same
intensity and the corresponding limit point processes are the same.

Theorem 9.1.7. Suppose that conditions D(uni) and D∗(uni) hold for the random
sequence {Xi, i ≥ 1} with respect to the boundary {uni, i ≤ n, n ≥ 1}. If (9.1)
and (9.4)hold with μ(·) ≡ λ(·) being continuous, then

Nn →D N as n →∞,

N being a Poisson process on (0, 1] with intensity measure λ(·).
Proof. To prove the statement we apply the mentioned lemmas showing the two
conditions of Theorem 9.1.1. The first statement follows by the convergence of the
mean numbers of exceedances and upcrossings to μ(t) = λ(t) for any t. The second
statement of Theorem 9.1.1 needs long range dependence. Let Bj be finitely many
disjoint intervals of (0, 1], j ≤ J , with B =

⋃
j Bj . Then condition D(uni) implies

by Lemma 9.1.4 that

P (Nn(B) = 0) =
∏
j≤J

P (Nn(Bj) = 0) + o(1).

We can partition (0, 1] into B∗
l , l ≤ kn, with kn as in (9.3) and such that the mean

number of exceedances in any of the B∗
l is bounded by

∑
i≤n P (Xi > uni)/kn.

These subintervals partition each Bj into disjoint Bj,l = Bj ∩ B∗
l , l ≤ kn. Note

that some of these intervals Bj,l are empty and thus can be deleted. Again Lemma
9.1.4 implies by long range dependence that

P (Nn(B) = 0) =
∏

j≤J,l≤kn

P (Nn(Bj,l) = 0) + o(1).

Because of the uniform bound for P (Nn(Bj,l) > 0) which tends to 0 as n → ∞,
we can approximate the product by

exp

⎛⎝−(1 + o(1))
∑
j,l

P (Nn(Bj,l) > 0)

⎞⎠ .

Using the local dependence condition D∗(uni) and Bonferroni’s inequality, each
term of the last sum can be bounded by

P (Nn(Bj,l) > 0) ≤
∑

i∈nBj,l

P (Xi ≤ uni, Xi+1 > un,i+1) + F̄n,max
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and

P (Nn(Bj,l) > 0)

≥
∑

i∈nBj,l

P (Xi ≤ uni, Xi+1 > un,i+1)

−
∑

i<i′,i,i′∈nBj,l

P (Xi ≤ uni, Xi+1 > uni, Xi′ ≤ uni′ , Xi′+1 > un,i′+1).

The double sum is bounded by α∗
n for each j, l. Since knα∗

n → 0, the sum (on j, l)
of all the double sums tends also to 0 as n → ∞. Summing the first sums in the
Bonferroni inequality we get

∑
j μ(Bj) in the limit by (9.4) and (9.3). Hence com-

bining terms it shows that P (Nn(B) = 0) → exp(−∑
j μ(Bj)) = exp(−μ(B)) =

exp(−λ(B)) = P (N(B) = 0) which is the second statement of Theorem 9.1.1 and
implies the stated convergence result.

For a converse statement see Section 11.1. In general, the Poisson process is
non-homogeneous, since λ(t) �= λt. Theorem 9.1.7 states that if λ(·) = μ(·) then
asymptotically each exceedance is an upcrossing, i.e., if there is an upcrossing at
i, then i + 1, i + 2, . . . are asymptotically not exceedance points. The fact that N
is a Poisson process suggests that upcrossings occur separated in time, i.e., they
do not cluster.

The result of Theorem 9.1.7 follows also by assuming the so-called condition
D′(uni) (see Leadbetter et al. [303] for the stationary case with constant boundary
and Hüsler [237] for the non-stationary case):

lim
n→∞ kn

∑
i<j∈I

P (Xi > uni, Xj > unj) = 0,

for the same sets I as in the condition D∗(uni). D′(uni) implies that the proba-
bility of exceedances occurring at neighboring points is asymptotically 0. Hence,
if D′(uni) and (9.1) hold, then D∗(uni) and (9.4) hold with μ(1) = λ(1) and
Nn → N , the Poisson process with intensity measure λ.

Point Process of Upcrossings

In some applications one observes a different behavior of the upcrossings and ex-
ceedances. If there is an upcrossing at a given point then the sequence remains
above the boundary for the next few time points. It is then obvious that μ(t) < λ(t)
for some t ≤ 1. Since some exceedances occur in clusters, the limit point process
cannot be a simple Poisson process. It is in general possible to show that Nn con-
verges to an (extended) compound Poisson process

∑
βiδτi where the βi’s are in-

dependent rv in IN (cf. Hsing et al. [231] for the stationary case and Nandagopalan
et al. [347] for the non-stationary case). The βi’s (the cluster sizes) are independent
of the τi’s (the occurrence times of the clusters), but not identically distributed in
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general. In the stationary case, βi =D β1 , and N is a compound Poisson process
(see Section 11.2).

However, the point process Ñn, consisting of the upcrossings only, can be
approximated by a Poisson process. An upcrossing at the point i/n is given by
the event {Xi−1 ≤ un,i−1, Xi > uni}, i ≤ n, and the corresponding point process
Ñn of upcrossings by

Ñn(·) =
∑

1<i≤n

δi/n(·) 1(Xi−1 ≤ un,i−1, Xi > uni).

Theorem 9.1.8. Suppose that the conditions D(uni) and D∗(uni) hold for the
random sequence {Xi, i ≥ 1} with respect to the boundary {uni, i ≤ n, n ≥ 1}.
Then (9.4) implies

Ñn →D Ñ as n →∞,

where Ñ is a Poisson process on (0, 1] with intensity measure μ(·).
A similar result can be shown for the point process of downcrossings given

by the events {Xi−1 > un,i−1, Xi ≤ uni}, i ≤ n. The points τi’s of the com-
pound Poisson process

∑
βiδτi , mentioned above, are the points of the (underly-

ing) Poisson process Ñ of occurrences of clusters of exceedances. The whole cluster
is thinned here or replaced by the first (or last) exceedance. But we might also
consider the whole cluster as an event.

Point Process of Clusters

We can define the point process N∗
n of cluster positions. Let Bj ,

j ≤ kn, be small intervals which form a partition of (0, 1]. Then the events
{Nn(Bj) �= 0} define the point process

N∗
n(·) =

∑
j≤kn

δtj (·) 1(Nn(Bj) �= 0),

with some tj = tj(n) ∈ Bj , representing the position of the cluster. Thus, for any
Borel set B ⊂ (0, 1],

N∗
n(B) =

∑
j≤kn,tj∈B

1(Nn(Bj) �= 0)

counts the number of clusters of exceedances with cluster position in B. We might
choose for instance the first point, the center or the last point of Bj as tj . Note
that by this approach or definition there might be runs of exceedances which are
separated by Bj into two clusters or there might be runs within Bj which are joint
to form one cluster. However, Theorem 9.1.10 states that both, the run and the
block definition of clusters, lead asymptotically to the same Poisson process, if nBj

are suitably growing sets. Another way to define the process of cluster positions
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of exceedances is given by
∑

j≤kn
1(Nn(Bj ∩ B) �= 0), which may differ from N∗

n

for finite n, but they are asymptotically equivalent. N∗
n can be approximated by

a simple Poisson process, since the multiplicities representing the cluster sizes are
not accounted for.

In choosing Bj one has to take into consideration the non-stationarity of the
sequence Xi and the non-constant boundaries {uni}. Thus, for a given n we choose
successively 0 = i0 < i1 < i2 < · · · < ikn ≤ n such that∑

ij−1<i≤ij

(1 − Fi(uni)) ≤
∑
i≤n

(1 − Fi(uni))/kn

and ∑
ij−1<i≤ij +1

(1 − Fi(uni)) ≥
∑
i≤n

(1 − Fi(uni))/kn,

are satisfied. Define Bj = (ij−1/n, ij/n] for j ≤ kn. Note that the time domain
{i : i ≤ n} is split up with respect to the probabilities of the exceedances and
the ij ’s are chosen maximally. By this choice the possible exceedances at the
points ikn + 1, . . . , n are not considered. Because of the maximally chosen ij ’s it
follows easily that

∑
ikn <i≤n(1−Fi(uni)) ≤ knF̄n,max. Thus this marginal effect of

exceedances in these last points is asymptotically negligible. We need also that the
P (Nn(Bj) �= 0) are uniformly converging to 0 which is simply implied if the term∑

i≤n(1−Fi(uni))/kn tends to 0 which is assumed in the following. This condition
is obviously true if the sum is bounded, which holds if λ(1) < ∞. Further, we
should fix the cluster position. A reasonable choice for the tj ’s is given for instance
by the right endpoints of Bj : tj = ij/n.

Theorem 9.1.9. Suppose that the conditions D(uni) and D∗(uni) hold for the
random sequence {Xi, i ≥ 1} with respect to the boundary {uni, i ≤ n, n ≥ 1}. If∑

j:tj≤t

P (Nn(Bj) �= 0) → μ∗(t), t ≤ 1,

with μ∗(·) continuous and μ∗(1) < ∞, with the Bj’s constructed as above, then

N∗
n →D N∗ as n →∞,

where N∗ is a Poisson process on (0, 1] with intensity measure μ∗(·).

The two point processes, the point process of upcrossings Ñn and the point
process of clusters N∗

n are asymptotically related. Assuming that the limits μ(t)
and μ∗(t) hold, we show that (9.3) implies μ∗(t) ≤ μ(t) (≤ λ(t)) for all t ∈ (0, 1].
Furthermore, (9.3) together with D∗(uni) implies μ∗ = μ and therefore N∗

n and
Ñn converge to the same Poisson process Ñ with intensity measure μ.
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μ∗(t) = lim
n→∞

∑
j:ij ≤nt

P (Nn(Bj) �= 0)

≤ lim
n→∞

( ∑
j:ij ≤nt

( ∑
i∈nBj

P (Xi ≤ uni, Xi+1 > un,i+1)

+ P (Xij−1+1 > un,ij−1+1)
))

≤ lim
n→∞

( ∑
i≤ij(t)

P (Xi ≤ uni, Xi+1 > un,i+1) + O(knF̄n,max)
)

≤ lim
n→∞

∑
i≤nt

P (Xi ≤ uni, Xi+1 > un,i+1) = μ(t),

where j(t) is the largest j such that ij ≤ nt for fixed n. Conversely,

μ∗(t) = lim
n→∞

∑
j:ij ≤nt

P (Nn(Bj) �= 0) = lim
n→∞

∑
j≤j(t)

P (Nn(Bj) �= 0)

≥ lim
n→∞

( ∑
j≤j(t)

( ∑
i∈nBj

P (Xi−1 ≤ un,i−1, Xi > uni)

−
∑

i<l∈nBj

P (Xi−1 ≤ un,i−1, Xi > uni, Xl−1 ≤ un,l−1, Xl > unl)
))

≥ lim
n→∞

( ∑
i≤ij(t)

P (Xi−1 ≤ un,i−1, Xi > uni) + O(knα∗
n)
)

= lim
n→∞

∑
i≤nt

P (Xi−1 ≤ un,i−1, Xi > uni) = μ(t),

by condition D∗(uni) and the uniformity assumption. This result holds for all
choices of tj ∈ Bj . Therefore Theorem 9.1.9 implies

Theorem 9.1.10. Suppose that the conditions D(uni) and D∗(uni) hold for the
random sequence {Xi, i ≥ 1} with respect to the boundary {uni, i ≤ n, n ≥ 1}.
Define N∗

n as above, where tj ∈ Bj , j ≤ kn, are chosen arbitrarily. Then (9.4)
implies

N∗
n →D Ñ as n →∞

where Ñ is a Poisson process on (0, 1] with intensity measure μ(·).

The theory for exceedances can easily be generalized to other rare events
{Xi ∈ Ani}, where the Ani’s form a triangular array of Borel sets of IR. This is
dealt with in Section 11.1.
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9.2 Applications: Stationary Sequences
Let us now assume that the random sequence {Xi, i ≥ 1} is stationary and that
the boundaries are constant uni = un, i ≤ n, for each n ≥ 1. With these restrictions
the presented conditions in the previous section are simplified. Instead of (9.1) we
assume now (9.2), i.e., n(1 − F (un)) → λ. In D∗(un) define r∗

n = [n/kn], kn as in
(9.3) (i.e., knmn = o(n) and knαnmn → 0 since F̄n,max = O(1/n)), and

α∗
n = r∗

n

∑
2≤j≤r∗

n−1
P (X1 > un, Xj ≤ un, Xj+1 > un).

Moreover instead of (9.4) we assume

lim
n→∞ nP (X1 ≤ un, X2 > un) = μ < ∞. (9.5)

Obviously, μ(t) = tμ and λ(t) = tλ are continuous. The general results derived
in Section 9.1 can be reformulated for stationary sequences. For this purpose we
define the intervals Bj (of fixed length r∗

n/n) as follows:

Bj =
(

(j − 1)r∗
n

n
,

jr∗
n

n

]
.

Note that r∗
n denotes the number of rv in a block Bj . We can choose any of

the points of Bj as tj , (or even j/kn, since the right endpoint of Bj is jr∗
n/n =

(1 + O(kn/n))j/kn). From now on let tj = jr∗
n/n. We have again μ∗(·) ≡ μ(·).

Corollary 9.2.1. Suppose that the conditions D(un) and D∗(un) hold for the
stationary random sequence {Xi, i ≥ 1} with respect to the constant boundary
{un, n ≥ 1}. Let Ñ be a homogeneous Poisson process with intensity measure μ(·)
defined by μ(t) = μt.

(i) (9.2) and (9.5) with λ = μ imply

Nn →D Ñ as n →∞.

(ii) (9.5) implies
Ñn →D Ñ as n →∞

and
N∗

n →D Ñ as n →∞.

(iii) (9.2) and (9.5) imply

P (Mn ≤ un) → exp(−μ) = exp(−θλ),

where θ = μ/λ ≤ 1.
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These results were given by Leadbetter and Nandagopalan [304]. θ is called
the extremal index (Leadbetter [300]) and has the following property: Let F ∈
D(G), G an extreme value distribution (EVD), and un(x) = anx + bn be a suit-
able normalization. If the condition D(un(x)) holds for all x and P (Mn ≤ un(x))
converges to some H(x), then H(x) = (G(x))θ , with 0 ≤ θ ≤ 1. Under some regu-
larity assumptions the expected value of the cluster size of exceedances is equal to
1/θ (if θ > 0), giving a nice interpretation of the extremal index. Corollary 9.2.1
states that the limit distribution of Mn depends on θ only. However, Hsing [225]
shows that the limit distribution of the k-th maximum (k > 1) depends also on
the cluster size distribution, if clustering occurs, i.e., if θ < 1. If θ = 1, then there
is no clustering of the exceedances and from the limiting Poisson process, we eas-
ily deduce the limiting distribution of the k-th largest order statistics Xn−k+1;n:
limn→∞ P (Xn−k+1;n ≤ bn + anx) = P (N((0, 1]) < k) = exp(−λ)

∑
l<k λl/l! for

any k ≥ 1 fixed. Even some joint events of extreme order statistics are implied in
the same way from the limiting Poisson process result. For example, consider
limn→∞ P (Xn−k+1;n ≤ bn + anx < Xn−m+1;n) = P (m ≤ N((0, 1]) < k) =
exp(−λ)

∑
m≤l<k λl/l! with 1 ≤ m < k. For the joint distributions of extreme

order statistics one has to introduce multiple boundaries and point processes in
R

2, cf. Leadbetter et al. [303].

Example 9.2.2. Let {Xi, i ≥ 1} be a Gaussian sequence, with mean values
0, variances 1 and autocorrelations rn = E(X1Xn+1). Berman [36] showed that
Mn converges in distribution to the EVD G3 if rn log(n) → 0 as n → ∞. It
is known that this condition, called Berman’s condition, implies the conditions
D(un) and D′(un) (cf. Leadbetter, Lindgren and Rootzen [303]), where un =√

2 log(n) + (1
2 log(4π log(n)) − log(λ))/

√
2 log(n).

As mentioned above condition D′(un) is more restrictive than D∗(un). D′(un)
can be formulated much easier in the stationary case, redefining α′

n:

α′
n = r∗

n

∑
2≤k≤r∗

n

P (X1 > un, Xj > un).

D′(un) holds if knα′
n → 0 as n → ∞. Therefore the point processes Nn, Ñn

and N∗
n converge in distribution to the same Poisson process N and θ = 1, i.e.,

asymptotically there is no clustering of exceedances. Note that if λ = μ and D∗(un)
holds, then D′(un) holds also. For, λ = μ implies P (X1 > un)−P (X1 ≤ un, X2 >
un) = P (X1 > un, X2 > un) = o(1/n), hence together with D∗(un) the condition
D′(un) holds.

Condition D′(un) is verified in the Gaussian case by using that

P (Xi > un, Xj > un) ≤ (1−Φ(un))2+O
(|r(i−j)| exp{−u2

n/(1+|r(i−j)|)}) (9.6)

for i �= j (see Leadbetter et al. [303]). Then a straightforward calculation shows
that

α∗
n ≤ α′

n = O(1/k2
n) as kn →∞.
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We get also by (9.6),

μ = lim
n→∞ nP (X1 ≤ un, X2 > un)

= lim
n→∞

(
nP (X2 > un) − nP (X1 > un, X2 > un)

)
= λ.

Example 9.2.3. Let {Xi, i ≥ 1} be a max-autoregressive random sequence, i.e.,

Xi = c max(Xi−1, Yi) for i ≥ 2,

where c ∈ (0, 1), X1 is a rv with an arbitrary distribution F1(·), and {Yi, i ≥ 2}
is an iid random sequence, independent of X1. Let Fi(·) and H(·) denote the
distribution of Xi and Yi, respectively. Then

Fi(x) = Fi−1(x/c)H(x/c)

for i ≥ 2. The sequence {Xi} is stationary iff Fi(·) ≡ F (·) for i ≥ 1 and

F (x) = F (x/c)H(x/c) (9.7)

holds (cf. Alpuim [7]). Such a simulated sequence is shown in Fig. 9.2.1 with
c = 0.85.
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Figure 9.2.1. Max-autoregressive sequence {Xi} (symbol: x) and the related
point process Nn of exceedances.

We assume that F ∈ D(G1,α), i.e., there exists a sequence {an, n ≥ 1}
of positive constants such that F n(anx) → exp(−x−α), x > 0, α > 0. This is
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equivalent to H ∈ D(G1,α) by (9.7). Using (9.7) we get

P (Mn ≤ anx) = P (X1 ≤ anx, Yi ≤ anx/c, 2 ≤ i ≤ n)
= F (anx)Hn−1(anx/c)

=
(

F (anx)
)n/(

F (anx/c)
)n−1

→ G1,α(x)/G1,α(x/c)

= exp
(
−x−α(1 − cα)

)
.

Furthermore, λ = limn→∞ n
(

1 − F (anx)
)

= x−α and

μ = lim
n→∞ nP (X1 ≤ anx, X2 > anx)

= lim
n→∞ nP (X1 ≤ anx, Y2 > anx/c)

= lim
n→∞ n

[
1 − H(anx/c)

]
= lim

n→∞ n
[
1 − F (anx) − (

1 − F (anx/c)
)]

= x−α(1 − cα).

Therefore θ = μ/λ = 1 − cα. It is also possible to verify D(anx) and D∗(anx) for
x > 0. For instance for any sequence {kn} with kn →∞ (satisfying (9.3)),

knα∗
n = knr∗

n

∑
j≤r∗

n

P (X1 > anx, Xj ≤ anx, Xj+1 > anx)

= knr∗
n

∑
j≤r∗

n

P (X1 > anx, Xj ≤ anx, Yj+1 > anx/c)

≤ n
[
1 − H(anx/c)

] ∑
j≤r∗

n

P (X1 > anx)

≤ n
1 − F (anx) − (1 − F (anx/c))

F (anx/c)
r∗

n

(
1 − F (anx)

)
= O(r∗

n/n) = O(1/kn) → 0 as kn → ∞.

In the same way one can show that αn,m → 0 for any m ≥ 1. It was proved
that the cluster sizes K have asymptotically a geometric distribution: P (K = i) =
(1 − cα)cα(i−1), and E(K) = (1 − cα)−1 = 1/θ (Alpuim [7]). Extensions to non-
stationary max-AR(1)-sequences are discussed by Alpuim et al. [10], Catkan [62].
See also Chapter 10 for applications of max-AR(1) with respect to general rare
events.

Other stationary sequences such as moving average processes, queues and
Markov chains, are discussed for instance in Chernick et al. [67], O’Brien [357],
Perfekt [362], [363], Rootzén ([399], [400]), Serfozo ([410], [409]) and Smith [422].
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9.3 Applications: Independent Sequences
The independent random sequences, which have a trend or a non-constant variance
function, represent a typical case which deviates from the iid case (compare with
Examples 8.3.2 and 8.3.3). Often such sequences are periodic as in the following
example. Clustering is not possible in the sense as discussed. Condition D holds,
and also D∗, D′ assuming that the boundary satisfies λ((0, 1]) < ∞.

Example 9.3.1. Let {Yi, i ≥ 1} be an iid sequence with marginal distribution
H ∈ D(G3), i.e., there exist {an} and {bn} such that Hn(anx + bn) → G3(x). Let

Xi = ciYi,

where the real sequence {ci, i ≥ 1} is periodic with period p. Suppose that ci > 0
for i ≥ 1. We define c∗ = maxi≤p ci, q = �{i ≤ p : ci = c∗}, un(x) = anx + bn, and
u∗

n(x) = c∗un(x). Then

λ(t) = lim
n→∞

∑
i≤nt

P (Xi > u∗
n(x))

= lim
n→∞

∑
i≤p

(
1 − H(u∗

n(x)/ci)
)

nt/p

= lim
n→∞ q

(
1 − H(un(x))

)
nt/p

= log
(

1/G3(x)
)

tq/p

for, if i is such that ci < c∗, then 1 − H(un(x)c∗/ci) = o(1/n) (see de Haan [184],
Corollary 2.4.2)). Because of the independence of the Xi’s, we get μ(·) = λ(·),
knα∗

n = O(1/kn) → 0 for any sequence {kn} with kn → ∞ and D(u∗
n(x)) and

D∗(u∗
n(x)) hold. The results of Section 9.2 imply that the three point processes

Nn, Ñn and N∗
n converge in distribution to the same homogeneous Poisson pro-

cess N with intensity λ = log(1/G3(x))q/p. Since the period p is fixed and since
asymptotically only the points i with ci = c∗ contribute to the extreme values and
to exceedances of the level u∗

n(x) by {Xi}, the influence of the non-stationarity
consists of a thinning of the point process of exceedances of un(x) by {Yi}. As
special case let Yi be standard normal rv, with ci being the standard deviations
of Xi. Hence the important points for the possible exceedances are the points of
maximal variances. The Poisson convergence of the point process of exceedances
imply also the limiting distribution of the k-th extremes Xn−k+1;n, the k-th largest
of {Xi, i ≤ n}.

Example 9.3.2. We consider again the shifted iid sequence analyzed by Daley
and Hall [89] (see Example 8.3.3). Let Sβ = sup{Xi − (i − 1)β, i ≥ 1} where
the Xi’s are iid rv with distribution F ∈ D(G1,α), α > 1. We deal here with
the convergence of Sβ with respect to the continuous parameter β, which extends
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in an obvious way the convergence results obtained with respect to the discrete
parameter n. For x > 0 we define the point process Nβ on [0,∞) such that, for
any Borel set B,

Nβ(B) =
∑

i∈(βa(β))−1B

1(Xi − (i − 1)β > x/a(β)),

where a(β) → 0 as β → 0 such that F̄ (1/a(β)) = 1 − F (1/a(β)) ∼ a(β)β(α − 1),
(see Example 8.3.3). We prove that Nβ →D N as β → 0, where N is a non-
homogeneous Poisson process with intensity measure ν(·):

ν([s,∞)) = (x + s)−(α−1).

Because of Remark 9.1.2 we can apply Theorem 9.1.1. Thus in proving
Nβ →D N we have to verify conditions a) and b) of Theorem 9.1.1:

a) Let B = [s, t). Then

E(Nβ(B)) =
∑

i∈(βa(β))−1
B

P (Xi > (i − 1)β + x/a(β))

=
∑

i∈
[

s/(βa(β)),t/(βa(β))
) F̄

(
iβ + x/a(β)

)
+ o(1)

∼ β−1
∫ (x+t)/a(β)

(x+s)/a(β)
F̄ (u)du

→ (x + s)−(α−1) − (x + t)−(α−1)

= ν(B)

since F ∈ D(G1,α) means that F̄ is regularly varying.

b) By the independence of the rv Xi,

P

(
Nβ

( ⋃
j≤k

Bj

)
= 0

)
=

∏
j≤k

P (Nβ(Bj) = 0)

→
∏
j≤k

exp
(−ν(Bj)

)
= exp

(
− ν

( ⋃
j≤k

Bj

))

if Bj = [sj , tj) are disjoint intervals.

This statement implies the convergence result obtained in Example 8.3.3.
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P
(

a(β) sup
i≥1

{Xi − (i − 1)β } ≤ x
)

= P
(
Nβ([0,∞)) = 0

)
→ exp

(
− ν

(
[0,∞)

))
= exp

(−x−(α−1))
= G1,α−1(x).

For any time interval [s, t) further information about the exceedances of the
boundary x/a(β) can be obtained:

P
(

sup
i∈[s/(βa(β)),t/(βa(β)))

{Xi − (i − 1)β } ≤ x/a(β)
)

= P
(
Nβ

(
[s, t)

)
= 0

)
→ exp

{−ν
(
[s, t)

)}
= exp

{−(x + s)−(α−1) + (x + t)−(α−1)}
= G1,α−1(x + s)/G1,α−1(x + t).

This suggests that we redefine Nβ by a finite number of rv Xi, i ≤ I(β):

Nβ =
∑

i≤I(β)

δiβa(β)1(Xi − (i − 1)β > x/a(β)),

where I(β) is suitably increasing with β → 0. Both definitions of Nβ lead to the
same limit point process, since∑

i≥I(β)

1(Xi − (i − 1)β > x/a(β))

converges in probability to 0, if I(β)βa(β) →∞.
Note that also the results of Section 9.2 can be used by defining uβi = (i −

1)β + x/a(β) with (βa(β))−1 replacing n for the time rescaling. Then obviously
D(uβi) and D∗(uβi) hold. The derivation above shows that λ(t) = x−(α−1) − (x +
t)−(α−1) = μ(t).

In Resnick [393] the last exit time problem, which is related to the shifted iid
sequence (cf. Example 8.3.3), is treated in a different way using point processes
methods and the continuous mapping theorem.

9.4 Applications: Non-stationary Sequences
Example 9.4.1. Let {Xi, i ≥ 1} be now a non-stationary Gaussian sequence.
Without loss of generality we suppose that E(Xi) = 0 and E(X2

i ) = 1. We consider
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a generalization of Example 9.2.2. Suppose that

sup
i�=j

|r(i, j)| < 1

and
sup

|i−j|≥n

|r(i, j)| log(n) → 0, n →∞

and that the boundaries {uni, i ≤ n, n ≥ 1} are such that

λ(t) = lim
n→∞

∑
i≤nt

(1 − Φ(uni)),

is continuous. The point processes Nn, Ñn and N∗
n converge to the same Poisson

process N with intensity measure λ(·) if the mixing conditions D(uni) and D∗(uni)
hold and λ(·) ≡ μ(·). The verification of all these conditions is still possible but
rather tedious because of the non-stationarity and the non-constant boundaries
(Hüsler [237], [240] and [241]). To overcome the problem of non-stationarity, a
special comparison method was developed, which relies on grouping the rv in an
appropriate way (Hüsler [237]). The grouping is defined by grouping first simi-
lar values of the boundary together and then splitting each of these groups into
appropriate ‘neighboring’ and ‘far distant’ time points applying the long range
dependence condition. The first grouping is not needed in the stationary case with
a constant boundary.

Convergence Rate of the Poisson Approximation

The point process of exceedances of a stationary process converges under the
mentioned conditions to a homogenous Poisson process, see Section 9.2. In the case
of a non-stationary sequence the point process of exceedance converges to a non-
homogeneous Poisson process discussed in Section 9.1. Of interest is also the rate
of these convergences. Under additional conditions this rate can be characterized.
We are discussing in this section the convergence rate in the case of a Gaussian
sequence. We assume again that the non-stationary Gaussian sequence is such
that the correlation values rij satisfy |rij | ≤ ρ|i−j| for all i �= j where ρn < 1 for
n ≥ 1 and ρn log(n) → 0 (Berman’s condition). The boundary values uni for the
exceedances are such that

lim sup
n→∞

λn = lim sup
n→∞

∑
i≤n

P (Xi < uni) < ∞

with un,min = mini≤n uni → ∞ as n → ∞. Then the number of exceedances
Nn =

∑
i≤n 1(Xi < uni) can be approximated by a Poisson rv P0(λn) with mean

λn.
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We investigate the approximation error of Nn and P0(λn). The deviation is
measured again by the variational distance d(Nn, P0(λn)). Applying a result of
Barbour et al [29] we get the following bound for the variational distance:

d(Nn, P0(λn)) ≤ 1 − e−λn

λn

⎛⎝∑
i≤n

π2
ni +

∑
i�=j≤n

|Cov(1(Xi > uni), 1(Xj > unj))|
⎞⎠

where πni = P (Xi > uni) = Φ̄(uni) assuming that the random sequences Xi is
standardized. The first sum is asymptotically negligible. The second sum depends
on the correlations of the rv Xi and on the boundary values uni. Obviously the
minimum boundary value un,min plays an important role. We do not restrict in any
way the index of the point where this minimum of the boundary occurs. Also the
largest correlation less than 1 is important. Thus let ρ = sup{0, rij , i �= j} which is
smaller than 1. For this general situation it is shown (see Hüsler and Kratz [256])
that the second sum, hence the variational distance, can be bounded:

if ρ > 0 by

d(Nn, P0(λn)) = O

(
1

un,min
exp

(
− 1 − ρ

2(1 + ρ)
u2

n,min

)
+ Δ

(
exp(u2

n,min/α)
))

where Δ(s) = supk≥s{ρk log(k)},

if ρ = 0 by

d(Nn, P0(λn)) = O

⎛⎝un,min exp
(
−1

2
u2

n,min

)∑
j≤n

ρj

⎞⎠ .

The first term of the bound in case ρ > 0 dominates the second one if Δ(s)
tends sufficiently fast to 0. In this case the given rate of convergence depends only
on the maximal correlation and the minimum boundary value. If the maximal
correlation is not occurring with indices i, where the minimum boundary value is
observed, then the bound for the variational distance could be improved. However,
assuming the boundary is constant and the sequence is stationary, then the bound
simplifies to the known result of the stationary Gaussian case, given in Rootzén
[398], Smith [419] and Holst and Janson [218]. Note that the rate in the given
bound is for this particular stationary case the best possible one, given by Rootzén
[398]. Some other cases and examples are discussed in Hüsler and Kratz [256], too.
Similar results are derived for Gaussian processes which are stationary and mean
square differentiable, see Kratz and Rootzén [296]. The convergence rate of the
distribution of Mn of a stationary infinite moving average Gaussian sequence was
also analyzed by Barbe and McCormick [26] generalizing the result of Rootzén
[398]. Their results fit well to the above result on the variational distance showing
that the largest correlation ρ (smaller than 1) plays the most crucial role for the
convergence rate.
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Example 9.4.2. In a similar way we can drop the stationarity condition (9.7) in
Example 9.2.3. We suppose that H ∈ D(G1,α) and X1 ∼ F1 is such that

∑
0≤i≤n−1

F̄1(anx/ci) → 0, n →∞

for all x > 0. This insures that X1 is not dominating the sequence {Xi}. Here {an}
is the normalizing sequence, i.e., Hn(anx) → G1,α(x). These assumptions imply

P (Mn ≤ anx) = P (X1 ≤ anx, Yi ≤ anx/c, 2 ≤ i ≤ n)

= F1(anx)Hn−1(anx/c)
→ G1,α(x/c).

We show that λ(t) exists. We use the fact that, for i ≥ 2,

1 − Fi(anx) = 1 − F1(anx/ci−1)
∏

1≤j≤i−1
H(anx/cj).

Since H(·) is regularly varying, we have, for n large,

1 − Fi(anx) = 1 − F1(anx/ci−1) exp

(
−(1 + o(1))H̄(anx)cα(1 − cα(i−1))

1 − cα

)

= (1 + o(1))x−αn−1 cα(1 − cα(i−1))
1 − cα + F̄1(anx/ci−1),

uniformly in i ≤ n, where H̄(x) = 1 − H(x). Hence∑
i≤nt

(1 − Fi(anx)) = (1 + o(1))x−αt

(
cα

1 − cα + o(1)
)

+ o(1)

→ tx−α cα

(1 − cα)
= λ(t).

Using similar arguments we verify that μ(t) = tx−αcα. Therefore

θ(t) = μ(t)/λ(t) = 1 − cα = θ

for all t ≤ 1. Note that θ < 1 since c > 0. It is also possible to verify the mixing
conditions D(un) and D∗(un) with un = anx, for all x > 0.

We observe that the non-stationarity is asymptotically negligible. We obtain
the same limits as in the stationary case. It is even possible to replace the constant
c by positive rv Ci, which are independent, but not identically distributed rv on
(0, 1]. Under certain conditions such as FCi →w FC∞ , similar results can be derived
for the more general case (Catkan [62]).
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In the same way, Example 9.3.1 can be generalized by taking any stationary
random sequence Yi which satisfies the mixing conditions.

Remark 9.4.3. In the stationary case θ = μ/λ = μ(t)/λ(t), t ≤ 1. In the non-
stationary case we define analogously θ(t) = μ(t)/λ(t) ≤ 1, t ≤ 1, as in Example
9.4.2. However, in general θ(t) is not constant in t. Moreover, θ may depend on
the boundary uni(x) (cf. Hüsler [240]), shown with the following example. This
is the reason why the extremal index does not play the same role in the general
non-stationary case as in the stationary case.

Example 9.4.4. Consider an iid sequence Yi with continuous marginal distribu-
tion F . Define the normalization un(τ) = F̄ −1(τ/n), for any τ > 0, and the
dependent non-stationary sequence

Xi = Y[(i+1)/2], i ≥ 1.

It implies simply that P (Xi ≤ un(τ)) → exp(−τ/2) and further that θ = 1/2 for
the constant boundary. For, if there is an exceedance by the iid Yi, then there is a
cluster of two exceedances by Xi’s. The cluster distribution is 2 with probability
1. Now define for some constant d ≤ 1 a non-constant boundary

uni(τ) =
{

un(dτ) for i odd,
un((2 − d)τ) for i even.

If d = 0, then let un(0) = ω(F ). Then the mean number of exceedances by Xi’s
is asymptotically τ , and the cluster sizes are either 2 with probability d/(2 − d)
(occurring if some Yi > un(dτ)), or 1 with probability 2(1− d)/(2 − d) (occurring
if some Yi ∈ (un((2 − d)τ), un(dτ)). The extremal index turns out to be θ =
(2− d)/2 ∈ [1/2, 1]. Because of the regularity of the boundary values we have also
θ(t) = θ for any t ≤ 1, since λ(t) = λτ and μ(t) = tτ(2 − d)/2 for any t ≤ 1.

Let us change now further the boundary. Define for some s ∈ (0, 1)

uni(τ) =

⎧⎨⎩
un(dτ) for i ≤ ns, i odd,
un((2 − d)τ) for i ≤ ns, i even,
un(τ) for i > ns.

The mean number of exceedances up to t is still λ(t) = tτ . The mean number of
upcrossings up to time t is μ(t) = (2−d)tτ/2 for t ≤ s, and = (t−s+(2−d)s)τ/2 for
t ≥ s. It implies that θ(t) = μ(t)/λ(t) = (2−d)/2 for t ≤ s, and = (1+(1−d)s/t)/2.
Setting t = 1, we note that the extremal index θ(1) = (1 + (1 − d)s)/2 ∈ [0.5, 1],
and depends now on s. It is not only dependent on the dependence type of the
sequence Xi, but also on the boundary type.

In general, the limiting behavior of the point process of exceedances, stated
in Section 11.2, reveals a distinct insight into the behavior of the exceedances and
provides more information than the extremal index alone.
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Remark 9.4.5. Often data in applications show an almost periodic behavior.
Such applications are modeled as Xi = h(i)Yi + g(i) where g(i), h(i) (> 0) are
periodic functions and {Yi} is a stationary random sequence satisfying the mixing
conditions (cf. Ballerini and McCormick [25], Oliveira and Turkman and Oliveira
[448], Nandagopalan et al. [347]).

A particular case was discussed in Example 9.3.1 with g(i) ≡ 0. Depending
on the underlying distribution FY , the extreme values mostly occur at time points
j where h(j) takes its maximum value, since these values of the random sequence
dominate the other values Xi. This induces a thinning of the point process of
exceedances of {Yi}, as mentioned.

If g(i) �≡ 0, then by usual standardization of X(i) the events {X(i) ≤ u} are
transformed to {Y (i) ≤ (u − g(i))/h(i)}. Often the maxima is expected to occur
at points where the boundary (u− g(i))/h(i) is smallest. If these values dominate
the behavior of the maximum, then the point process of exceedances by X(i) is
also a thinning of the point process of exceedances by Y (i).

9.5 Extensions: Random Fields
The approach of this chapter for non-stationary random sequences which satisfy
the mixing type conditions, can be generalized to random fields. The main question
is the extension of the long range mixing condition D(un) or Δ(un). This was done
by Leadbetter and Rootzén [306] via a coordinate-wise extension for stationary
random fields and by Perreira and Ferreira [364] for non-stationary random fields.

Let us consider, for notational reasons, only the case of a two-dimensional
time parameter t = (t1, t2)′ ∈ R

2
+. Leadbetter and Rootzén [306] introduced weak

mixing conditions for stationary random fields by following the idea of the distri-
butional condition D(un), instead of assuming a strong mixing condition. In the
condition, basically, one wants to consider as few as possible events of the type
{M(A) ≤ un}, where A ⊂ R

2
+. Since there is no natural past and future in higher

dimensions, they formulate the condition in a sequential manner, restricting first
the mixing with respect to the first coordinate t1 and then for the the second
coordinate t2. Obviously, one might interchange the coordinates and would de-
fine a somewhat different mixing condition. By this way, the number of events to
consider for verification of the mixing type condition, is substantially reduced.

Let us mention this condition in detail. For the maximum

M(T) = max{X(t1, t2), 0 < tj ≤ Tj, j = 1, 2},

with T = (T1, T2)′, we define blocks of rv of two-dimensional size r1r2 for some
rj = o(Tj), j = 1, 2, where T1T2 is the number of rv considered in M(T). The
rectangle (0, T1]×(0, T2] is now split into blocks Bij = ((i−1)r1, ir1]×(j−1)r2, jr2]
with i ≤ k1 = [T1/r1] and j ≤ k2 = [T2/r2]. There are k1k2 such blocks, and at
most (k1 + k2 − 1) additional incomplete blocks which have asymptotically no
impact, similar to the one-dimensional time case.
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Then we assume mixing with respect to the first coordinate, if for any rectan-
gles B1 = (0, t1]× (0, h], with 0 ≤ h ≤ T2 and 0 < t1 < T1, and B2 = (t, s]× (0, h]
with s − t ≤ r1, s < T1, which are at least separated by a distance �1 w.r.t. the
first coordinate, i.e., t ≥ t1 + �1, we have, for some α1(·, ·),

|P (M(B1) ≤ u, M(B2) ≤ u) − P (M(B1) ≤ u)P (M(B2) ≤ u)| ≤ α1(r1, �1)

where α1(·, ·) denotes the mixing function for the first coordinate. We assume as
usual that k1α1(r1, �1) → 0, with u = uT → xF as T = (T1, T2)′ → ∞, with
Ti → ∞, i = 1, 2, where xF denotes the endpoint of the marginal distribution F
of the stationary random field X . The behavior of T = (T1, T2)′ → ∞ is fixed by
a continuous, strictly increasing positive function ψ with ψ(T ) → ∞ as T → ∞,
which defines T = (T1, ψ(T1))′ = (T1, T2)′.

Now for the second coordinate we assume that for any rectangles B1 =
(0, r1] × (0, h] with 0 < h ≤ T2, and B2 = (0, r1] × (t, s] with s − t ≤ r2, s ≤ T2,
which are separated by at least �2, i.e., t ≥ h + �2, we have, for some α2(·, ·, ·),

|P (M(B1) ≤ u, M(B2) ≤ u) − P (M(B1) ≤ u)P (M(B2) ≤ u)| ≤ α2(r1, r2, �2)

where α2(·, ·, ·) denotes the mixing function for the second coordinate. Note that
α2 also depends on r1 from the mixing condition of the first coordinate. We assume
here similarly that k1k2α2(r1, r2, �2) → 0, with u = uT → xF as T →∞.

If these two coordinate-wise weak mixing conditions hold, then one can show
that, for BT = (0, k1r1] × (0, k2r2],

P (M(BT) ≤ uT) = P k1k2(M(J) ≤ uT) + o(1)

as T →∞ with J = (0, r1] × (0, r2].
With this weak long-range dependence restriction, one has to investigate

only the local behavior of the maximum on a small rectangle J to derive as in the
one-dimensional ’time’ parameter case, the limiting distribution of M(BT) and to
discuss a possible cluster index, see Leadbetter and Rootzén [306].

This concept was used and extended by Perreira and Ferreira [364] for non-
stationary random fields and non-constant boundaries uT,t. They discuss also
conditions which restrict the local behavior of the random field and which permit
us to derive the cluster index for random fields, and mention some examples of
random fields, in particular 1-dependent ones.



Chapter 10

Extremes of Gaussian
Processes

In this chapter continuous Gaussian processes and their extremes, exceedances
and sojourns above a boundary are treated. Results are derived for stationary and
locally stationary Gaussian processes. The asymptotic results are then applied to a
statistical problem related to empirical characteristic functions. In addition, some
results on other non-stationary Gaussian processes are discussed. The relation
between the continuous process and its discrete approximation on a certain fine
grid is a rather interesting issue, in particular for simulations or approximations.

10.1 Introduction
In this chapter we consider Gaussian processes {X(t), t ≥ 0} in continuous time
with (a.s.) continuous paths. Denote by

m(t) = E(X(t)) and σ(t, s) = Cov(X(t), X(s)),

the mean value and the covariance function, respectively. Let Φ(·) and ϕ(·) be the
df and the density function of the unit normal law, respectively.

In the following we mainly deal with the extremes of a Gaussian process, in
particular with

MT = sup{X(t), 0 ≤ t ≤ T }.

The main topics of interest are

1) the distribution of MT for fixed T , especially the behavior of P (MT > u) as
u →∞, and

2) the convergence of the distribution of MT , as T →∞.

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,  
DOI 10.1007/978-3-0348-0009-9_10, © Springer Basel AG 2011 
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Related to these topics is the time spent above the boundary uT (·) by the
process X(·), which means the sojourn time of {X(t), t ≤ T }, in {(t, x) : 0 ≤ t ≤
T, x ∈ (uT (t),∞)}: ∫ T

0
1(X(t) > uT (t)) dt.

The boundary uT (t) is usually not constant for fixed T . This integral can be
rewritten as a sum of subintegrals∫

Ij

1(X(t) > uT (t)) dt

where Ij denotes the j-th sojourn of the process X(·) above the boundary uT (t),
t ≤ T . The exceedances are usually clustering, thus it is reasonable to approximate
the point process of exceedances by a compound Poisson process. The cluster size,
i.e., the sojourn time above the boundary in our case, could be defined as the mark
of a marked point process.

It is also of interest to analyze the point process of upcrossings and the point
process of cluster positions as in Chapter 9. If the path behavior of X(·) is re-
stricted in a suitable way, we may approximate both point processes by a simple
Poisson process as for the processes Ñn and N∗

n defined in Chapter 9.
The problems 1) and 2) are closely related to each other. If the upper tail

behavior of the distribution of MT for fixed T is known, then the asymptotic
behavior of the distribution of MT (T →∞) can be analyzed using the long range
mixing condition. As in the discrete time case we choose an ’extreme’ boundary
uT (t), which converges to ∞, the upper endpoint of Φ(·), as T →∞:

inf{uT (t), t ≤ T } → ∞.

In analyzing stationary processes we often use a constant boundary, uT (t) ≡ uT =
aT x+ bT . In a non-stationary Gaussian process a non-constant boundary is rather
typical, as mentioned earlier. Often the point of minimal boundary value plays
an important role. This case will be analyzed. A major part of the investigation
of maximum of a continuous process X(t) is also based on the relation of the
maximum of the process X(t) to the maximum of the rv X(ti), by sampling X(t)
at some discrete time points ti which is investigated extensively in the following.

10.2 Stationary Gaussian Processes
We deal first with stationary Gaussian processes and assume without loss of gen-
erality that m(t) = 0, σ(t, t) = 1 and σ(t, s) = ρ(t − s), t, s ≥ 0. MT can be
rewritten as the maximum of finitely many rv:

MT = max{M([(j − 1)h, jh)), j = 1, . . . , n = [T/h], M([nh, T ])}
≈ max{M([(j − 1)h, jh)), j = 1, . . . , n}, for h > 0,
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where M(I) = sup{X(t), t ∈ I} for any interval I ⊂ [0,∞). If we define Zj =
M([(j − 1)h, jh)), then MT is approximated by the maxima of these identically
distributed rv Zj, j ≤ n. This leads us to the case of random sequences.

Local Behavior of Extremes

But we have to restrict ρ(·) in a suitable way in order to make use of the results
of Section 9.2. We have to investigate the behavior of

P (Z1 > u) = P (Mh > u) as u →∞,

which also provides a solution to problem 1). Although the inequality

P (Mh > u) ≥ P (X(0) > u) = 1 − Φ(u) ∼ ϕ(u)/u = exp(−u2/2)/(u
√

2π)

gives a sharp bound for some special processes, e.g., ρ(s) = 1, s ≤ h, i.e., X(t) =
X(0) a.s., for t ≤ h, it is of less use in general.

We can bound P (Mh > u) from above:

P (Mh > u) ≤ P (X(0) > u) + P (X(0) ≤ u, ∃ t ≤ h : X(t) > u).

The second term usually dominates the first term. It is clear that the second term
depends on the local path behavior of the Gaussian process, which suggests that
P (Mh > u) does also. The local path behavior of X(·) is determined by the local
behavior of the correlation function ρ(t) as t → 0. Therefore we restrict ρ(·) in the
following way, for t in a neighborhood of 0:

1 − ρ(t) ∼ C|t|α as t → 0, 0 < α ≤ 2, C > 0. (10.1)

This condition also implies that the paths of the Gaussian process are con-
tinuous with probability 1 (Fernique [157]). Furthermore, the paths are a.s. differ-
entiable if α = 2 with additional conditions, but a.s. not differentiable for α < 2.
A well-known example of a stationary Gaussian process satisfying this condition
is the Ornstein-Uhlenbeck process with ρ(t) = exp(−C|t|), hence α = 1.

Theorem 10.2.1. Let {X(t), t ≥ 0} be a standardized, stationary Gaussian
process such that (10.1) holds with 0 < α ≤ 2. Then for any h > 0 and u →∞:

P (Mh > u) ∼ hu2/α−1ϕ(u)C1/αHα, (10.2)

where Hα is a constant depending on α only.

A detailed proof of this result, due to Pickands [369], and the definition of
Hα can be found for instance in Leadbetter et al. [303]. It is known that H1 = 1
and H2 = 1/

√
π.

The so-called Pickands constant Hα is defined with respect to a fractional
Brownian motion Y (t) with parameter α. In the literature the so-called Hurst
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parameter H is often used to define the fractional Brownian motion instead of the
parameter α. The Hurst parameter H is simply H = α/2. The fractional Brownian
motion is a centered Gaussian process with covariance given by

Cov(Y (t), Y (s)) = |t|α + |s|α − |t − s|α, t, s ∈ R.

Note the difference of definition of the covariance, because sometimes the fractional
Brownian motion is defined to be standardized such that the variance of Y (t) is
equal to |t|α whereas the variance is in our definition 2|t|α. The Brownian motion is
the particular case with α = 1 where Cov(Y (t), Y (s)) = 2 min(t, s). The case with
α = 2 is very particular and not of much interest, since this fractional Brownian
motion has the representation Y (t)) = tY (1). Note also that the correlation of
increments

Corr(Y (t) − Y (s), Y (t′) − Y (s′)) = |t − s′|α + |t′ − s|α − |t − t′|α − |s − s′|α
2(|t − s′|α|t − s′|α)1/2 .

It shows the different dependence structure of the fractional Brownian motions
since for non-overlapping time intervals [s, t] and [s′, t′] these correlations are pos-
itive if α > 1, negative for α < 1, and 0 if α = 1. Now Hα is given by

Hα = lim
T →∞

1
T

∫ 0

−∞
e−xP

(
sup

0≤t≤T
Y (t) > −x

)
dx.

The evaluation of this expression is rather difficult. Some analytical bounds are
given by Shao [411]. Simply simulating the fractional Brownian motion and deriv-
ing the distribution of sup0≤t≤T Y (t) does not give reasonable accurate estimates
Hα even with very fast computers.

Another definition of Hα was found by Hüsler [251] analyzing the relation
between the discrete and continuous Gaussian processes. It was shown (for more
details see also Section 11.5) that Hα is a limit of a cluster index and is equal to

Hα = lim
γ→0

∫ ∞

0
e−xP (max

k≥1
Vk ≤ −x) dx/γ

where Vk are normal variables with means and covariances

E(Vk) = −(γk)α/2, Cov(Vk, Vj) = γα(kα + jα − |k − j|α).

This definition is slightly simpler for numerical derivation.
The constants Hα were derived by sophisticated simulation techniques for

the subinterval α ∈ (0.8, 1.8) (Piterbarg and Romanova, [378]). The whole domain
0 < α ≤ 2 was not possible because of the applied technique for simulation. In
addition, the simulation has to stabilize sufficiently well for each α to believe in
the derived simulated constants. Earlier calculations of Michna [335] were not
correct. His simulations for some α > 1 indicated a discontinuity at α = 1 which
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corresponds to the Brownian motion. Such a discontinuity does not exist. Earlier,
Breitung conjectured that Hα = 1/Γ(1/α). The simulation results of Piterbarg
and Romanova show that this conjecture is not correct.

Now let us return to the discussion of the main problem. An important step
of the proof of Theorem 10.2.1 consists in approximating the maxima and the
process X(t) with continuous points t ∈ [0, h] by that with discrete time points
iq ≤ h, q > 0, i ∈ N. Choosing q = q(u) sufficiently small, the exceedances of u
by the process {X(t), t ≤ h} can be well approximated by the exceedances of u
by the sequence {X(iq), iq ≤ h}. It turns out that q should be chosen such that
qu2/α → 0 as u →∞. Finally,

P (∃ i : iq ≤ h, X(iq) > u)

can be analyzed using the methods worked out for stationary random sequences.

Limit Behavior of Extremes

Using Theorem 10.2.1 we can now solve the second problem. (10.2) shows that
P (Mh > u) converges exponentially fast to 0 as u → ∞. Therefore we expect the
limit distribution of MT to be Gumbel G3(·). The Berman condition introduced
for Gaussian sequences in Section 9.2 can be reformulated for Gaussian processes:
ρ(t) log(t) → 0 as t →∞. This condition implies that

P (MT ≤ uT ) ∼
∏
j≤n

P (M(Ij) ≤ uT ) = [P (Mh ≤ uT )]n ,

where again Ij = [(j−1)h, jh), j ≤ n, n = [T/h] for some fixed h > 0. With (10.2),
the problem is reduced to finding a suitable normalization uT = uT (x) = aT x+bT

such that
T

h

(
hu

2/α−1
T ϕ(uT )C1/αHα

)
→ e−x

as T →∞. This leads to

Theorem 10.2.2. Let {X(t), t ≥ 0} be a standardized stationary Gaussian pro-
cess such that (10.1) and the Berman condition

ρ(t) log(t) → 0 as t →∞ (10.3)

hold. Then
P ((MT − bT )/aT ≤ x) →D G3(x) = exp(−e−x), (10.4)

where aT = 1/
√

2 log(T ),

bT =
√

2 log(T ) + aT

(
2 − α

2α
log log(T ) + log

{
C1/αHα2(2−α)/(2α)/

√
2π

})
.

This result was first proved by Pickands [369] and then extended and com-
pleted by Berman [37], Qualls and Watanabe [380] and Lindgren, de Maré and
Rootzén [314].



386 10. Extremes of Gaussian Processes

Maxima of Discrete and Continuous Processes

In the proof of the above Theorem 10.2.2 we need to approximate the continuous
maxima MT by the maxima Mn in discrete time related to the sequence X(iq), i ≤
n = [T/q(u)] with sufficiently small q = q(u). The approximation is based on a
sufficiently dense grid with points iq. As mentioned it is necessary that q = q(u)
is chosen such that qu2/α → 0 as u → ∞. If this relation does not hold, what is
the relation between MT and Mn? Does it still mean that MT = Mn + o(1)? Since
Mn depends on q, it is better to denote this dependence by setting M q

T = Mn.
Piterbarg [377] analyzes this relation and shows that three different cases can
occur, namely that MT and M q

T can be asymptotically completely dependent,
dependent or independent. Obviously, if the grid points are rather dense, then the
two maxima differ very little and they are completely dependent. Conversely, if
the grid points are rather sparse, with a q < q0, small, we may expect that the
two maxima differ substantially, such that they are independent in the limit. This
is shown in the next theorem.

Theorem 10.2.3. Assume that the Gaussian process X(t), t ≥ 0 is stationary
and standardized, satisfying condition (10.1) (with C = 1) and Berman’s condition
(10.3). Let

qu
2/α
T → Q, with 0 ≤ Q ≤ ∞.

i) If Q = 0 , then

P (MT ≤ uT (x), M q
T ≤ uT (y)) → min(G3(x), G3(y))

= exp(− exp(−min(x, y))

with the usual normalization uT = aT x + bT given in Theorem 10.2.2.

ii) If Q ∈ (0,∞), then

P (MT ≤ uT (x), M q
T ≤ uq

T (y)) → exp(−e−x − e−y + D(x, y)))

where D(x, y) depends on α and Q, and uq
T (y) = aT y + bq

T with bq
T =√

2 log(T ) − log(H−2
a,α2π(log(T ))1−2/α)/(2aT ).

iii) If Q = ∞, then

P (MT ≤ uT (x), M q
T ≤ uq

T (y)) → G3(x)G3(y)
= exp(−e−x − e−y)).

Besides the dependence of MT and M q
T , the difference between the two rv

was investigated. More relevant for simulations and numerical approximations is
the difference between MT and the maxima MY

T where Y is the approximating
Gaussian process which is based on the points X(i/n) and (e.g.) linear interpola-
tions:

Y (t) = (i + 1 − nt)X(i/n) + (nt − i)X((i + 1)/n)
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for t ∈ [i/n, (i + 1)/n]. The difference process X(t) − Y (t) is again a Gaussian
process, but not a stationary one. Therefore we will discuss this approach in Section
10.3.

Crossings or Level Sets of Smooth Gaussian Processes

If the Gaussian process X(t) is rather regular, with differentiable paths, one may
define level crossing sets and the number of such crossings Nu(X, I), as well as the
number of upcrossings Uu(X, I) and downcrossings Du(X, I) of u in the interval
I where

Nu(X, I) = |{t ∈ I : X(t) = u}|,
Uu(X, I) = |{t ∈ I : X(t) = u, X ′(t) > 0}|

and
Du(X, I) = |{t ∈ I : X(t) = u, X ′(t) < 0}|.

The well-known Rice formula gives the expectation of the number of crossings
for a standard Gaussian process X(t) in case the second spectral moment λ2 exists.
We have

E(Nu(X, I)) =
√

λ2 exp(−u2/2)|I|/π

(see Rice [394], [395], or e.g. Cramér and Leadbetter [79], Azäıs and Wschebor
[20]). Under additional conditions, higher moments of the number of crossings can
be derived, as well as bounds for the maximum term MI = maxt∈I X(t). For some
recent results see Mercadier [328].

For instance, under additional conditions and if the sixth spectral moment
λ6 exists, the tail of the distribution of MT of a standard, stationary Gaussian
process X(t) is derived by Azäıs et al. [19]. They showed that for I = [0, T ] and
u →∞,

P (MT > u) = 1 − Φ(u) +
√

λ2
2π

T φ(u)

− (1 + o(1)) 3
√

3(λ4 − λ2
2)9/2

2πλ
9/2
2 (λ2λ6 − λ2

4)
T

u5 φ(

√
λ4

λ4 − λ2
2

u).

This result was shown first by Piterbarg [374] for sufficiently small T . The concepts
of crossings, upcrossings and downcrossings can be extended for regular random
fields, in particular for Gaussian ones. Of interest are then the level sets {t ∈ I :
X(t) = u} where t ∈ R

d and I ⊂ R
d is compact. Such results on crossings and

level sets are discussed in Azäıs and Wschebor [20] with several applications in
different topics.

Instead of a fixed level u, one may also consider a smooth level function u(t)
and investigate the number of crossings {t ∈ I : X(t) = u(t)} of such a level
function, see Kratz and León [294], [295].
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The curve crossings can be considered also for a discrete time process Xi, i ∈
Z, and a general curve ui. The number Cn of curve crossings is defined as

Cn =
∑

1≤i≤n

1((Xi−1 − ui−1)(Xi − ui) < 0)

which adds the up- and down-crossings together. Zhao and Wu [473] derived a cen-
tral limit result for Cn as n → ∞ for short-range dependent stationary sequences
Xi and for certain curves ui. Such limit results were derived first for particular
sequences, e.g. for linear sequences by Wu [465] and [466]. For long-range depen-
dent sequences, the behavior of Cn is more complicated. A particular case of a
long range linear sequence is studied in Zhao and Wu [473].

10.3 Non-stationary Gaussian Processes
The theorems of Section 10.2 can be extended to non-stationary Gaussian pro-
cesses with continuous paths. Let X̃(t) be any non-stationary Gaussian process
with mean m(·) and covariance σ(·, ·) such that Corr(X̃(t), X̃(s)) = 1 if and only
if t = s. By standardizing X̃(·), we get a Gaussian process X(·) with zero mean
and unit variance. Hence, when dealing with exceedances, we introduce now non-
constant boundaries {uT (t), t ≤ T }, which are usually continuous functions. This
is obvious since even the usual constant boundary aT x+bT for X̃(·) is transformed
into a non-constant boundary function for X(·) by the standardization:

uT (t) = aT x + bT − m(t)
σ(t, t)1/2 , t ≤ T.

One may try to approximate the boundary function uT by piecewise constant
functions with span h → 0 as T → ∞; let u be the approximation of uT (·), 0 ≤
t ≤ h. This gives rise to the question of whether the solution to the first problem
(Theorem 10.2.1) remains valid for h → 0. If we let h = h(u) tend slowly to 0 so
that

hu2/α →∞ as u →∞, (10.5)

then (10.2) still holds (see Hüsler [246]). Note that such a condition is necessary
since in the inequality

P (Mh > u) ≤ P (X(0) > u) + P (X(0) ≤ u, ∃ t ≤ h : X(t) > u)

the second term of the upper bound dominates the first term only if h is sufficiently
large and tends slowly to 0.

• (10.5) implies that the interval (0, h) is sufficiently large such that an up-
crossing in (0, h) can occur even if X(0) < u, with a positive probability.
The probability of this upcrossing or exceedance depends on the local path
behavior of the Gaussian process.
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• If h → 0 faster (and such that (10.5) does not hold), then we may have

P (Mh > u) ∼ P (X(0) > u) = 1 − Φ(u).

• Compare the choice of h with the choice of q in the previous section: qu2/α

converges slowly to 0 as u → ∞. We observed that P (Mh > u) is approxi-
mated by P (∃i : iq ≤ h, X(iq) > u), hence the number of rv X(iq) in this
event {Mh > u} is equal to h/q, still tending to ∞.

Under condition (10.5) we can generalize Theorem 10.2.1 for stationary Gaus-
sian processes, allowing now h(u) → 0.

Theorem 10.3.1. Let {X(t), t ≥ 0} be a standardized stationary Gaussian pro-
cess such that (10.1) holds with 0 < α ≤ 2. If h = h(u) > 0, h(u) → 0 such that
(10.5) holds, then

P (Mh > u)/(hu2/α−1ϕ(u)) → C1/αHα as u → ∞. (10.6)

The proof is given in Hüsler [246]. We want to extend this result to non-
stationary Gaussian processes. This can be done by approximating non-stationary
Gaussian processes by stationary ones. A useful tool for this approximation is the
Slepian inequality (Slepian [416], cf. Leadbetter et al. [303]).

Theorem 10.3.2 (Slepian). Let {X(t), t ≥ 0} and {Y (t), t ≥ 0} be two stan-
dardized Gaussian processes with continuous paths. If for some t0 > 0,

Cov(X(t), X(s)) ≤ Cov(Y (t), Y (s)), t, s ≤ t0,

then for all h ≤ t0 and all u,

P
(

sup
t≤h

X(t) ≤ u
)
≤ P

(
sup
t≤h

Y (t) ≤ u
)

.

This inequality is obvious in the special case, where Y (t) = Y (0) a.s., for all
t, since then

P
(

sup
t≤h

X(t) ≤ u
)
≤ P (X(0) ≤ u) = P

(
sup
t≤h

Y (t) ≤ u
)

.

Note that in this case the condition on the covariances is satisfied for any stan-
dardized Gaussian process X(·), since Cov(Y (t), Y (s)) = Var(Y (0)) = 1. In the
case where r(t) ≥ 0 for all t ≤ t0, the Slepian inequality implies also

P
(

sup
t∈A

X(t) ≤ u
)
≥

∏
t∈A

P (X(t) ≤ u),

where A is a discrete subset of [0, t0]. The inequality above holds even if the
constant boundary u is replaced by a non-constant one, u(t), and the events by
{X(t) ≤ u(t), t ∈ A}.
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Locally Stationary Gaussian Processes

Let X(·) be now a non-stationary Gaussian process. If there exist stationary Gaus-
sian processes which have a similar local path behavior as X(·), then we can gener-
alize Theorem 10.3.1, using the Slepian inequality. This is possible if an assumption
on the correlation function, similar to (10.1), is satisfied by X(·).

Therefore we introduce the following class of non-stationary Gaussian pro-
cesses with covariance function σ(t, s), given by Berman [38].

Definition 10.3.3. A standardized Gaussian process X(·) is called locally sta-
tionary, if there exists a continuous function C(t), t ≥ 0, with

0 < inf{C(t), t ≥ 0} ≤ sup{C(t), t ≥ 0} < ∞
such that, for some α, 0 < α ≤ 2,

lim
s→0

1 − σ(t, t + s)
|s|α = C(t) uniformly in t ≥ 0. (10.7)

Note that (10.7) reduces to (10.1) in the stationary case, where C(t) ≡ C.
This implies that the local path behavior of X(·) is similar to that of a standardized
stationary Gaussian process. C(t) determines the variance of the increments of the
process near t. Instead of the power function |s|α, one might use a non-negative,
monotone increasing function K(| · |) such that K(0) = 0 and K(|s|) > 0 for
s �= 0. For example we can choose a regularly varying function, which fulfills these
requirements.

Simple examples of locally stationary Gaussian processes X(t) are time trans-
formations of stationary Gaussian processes Y (·) : X(t) = Y (g(t)) for some non-
negative differentiable function g(·) with g′(x) > 0. Then CX(t) = CY · (g′(t))α

(cf. Hüsler [249]).

If X(·) is a locally stationary Gaussian process, then the asymptotic behavior
of an exceedance of u in a small interval h is given by:

Theorem 10.3.4. Let {X(t), t ≥ 0} be a locally stationary Gaussian process with
0 < α ≤ 2 and C(t). If (10.5) holds for h = h(u) with h(u) → 0, then

lim
u→∞ P (M(t, t + h) > u)/(hu2/α−1ϕ(u)) = C1/α(t)Hα

uniformly in t ≥ 0.

Proof. It can be shown that ρC(s) = 1/(1 + C|s|α) with 0 < α ≤ 2 and C >
0 is a correlation function of a standardized stationary Gaussian process Y (·).
Furthermore, 1 − ρC(s) ∼ C|s|α as s → 0. For every ε > 0 and t ≥ 0 there exists
C1 = C1(t) ≤ C(t) such that σ(t, t + s) ≤ ρC1(s) for all s < ε. Using the Slepian
inequality (Theorem 10.3.2) and Theorem 10.3.1 we get

C
1/α
1 Hα ≤ lim inf

u→∞ P (M(t, t + h) > u)/(hu2/α−1ϕ(u)).
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On the other hand there exists C2 = C2(t) ≥ C(t) such that σ(t, t + s) ≥ ρC2(s)
for all s < ε, which leads to an upper bound for the probability of an exceedance

C
1/α
2 Hα ≥ lim sup

u→∞
P (M(t, t + h) > u)/(hu2/α−1ϕ(u)).

Since this holds for any ε and Ci can be chosen such that Ci → C(t) as ε → 0,
i = 1, 2, the statement follows, using the uniformity of (10.7).

As in the stationary case the limit distribution of MT as T → ∞ can be
found, by splitting up the interval [0, T ] into subintervals of length h = hT → 0.
Let n = [T/h] and

uT,min = min
t≤T

uT (t) →∞. (10.8)

We approximate the boundary uT (t), t ≤ T by a step function,

∑
j≤n

uT,j1((j − 1)h ≤ t < jh) for t ≤ nh.

Then under suitable conditions we get, for T sufficiently large,

P (X(t) ≤ uT (t), t ≤ T ) ≈ P (X(t) ≤ uT,j , t ∈ [(j − 1)h, jh), j ≤ n)

≈
∏
j≤n

P (X(t) ≤ uT,j, t ∈ [(j − 1)h, jh))

≈ exp
[
−

∑
j≤n

P (M([(j − 1)h, jh)) > uT,j)
]

≈ exp
[
−

∑
j≤n

hHαC1/α(jh)u2/α−1
T,j ϕ(uT,j)

]
≈ exp

[
− Hα

∫ T

0
C1/α(t)u2/α−1

T (t)ϕ(uT (t)) dt
]

=: exp[−J(T )].

The first approximation follows since uT,min → ∞. The second approximation
holds by Berman’s condition

sup
|t−s|>τ

|σ(t, s)| log(τ) → 0 as τ →∞. (10.9)

The third and fourth approximations follow by Theorem 10.3.4, if h = hT satisfies
(10.5) with u = uT,min. For the last approximation we need that the integral J(T )
can be approximated accurately by Riemann sums with span hT . This can be done
if for some hT satisfying

hT (u2
T,min/ log(uT,min))1/α →∞ as T →∞, (10.10)



392 10. Extremes of Gaussian Processes

the following holds:

Δ(T, hT ) = J+(T ) − J−(T ) → 0 as T →∞, (10.11)

where J+(T ) and J−(T ) denote the upper and lower Riemann sum of J(T ), re-
spectively. Note that (10.10) implies (10.5).

Summarizing, the following general result can be proved (Hüsler [246]).

Theorem 10.3.5. Let {X(t), t ≥ 0} be a locally stationary Gaussian process with
0 < α ≤ 2 and C(t), such that Berman’s condition (10.9) holds. Let uT (t), t ≤
T, T > 0, be a continuous boundary function, for each T , such that (10.8) holds.
If (10.10) and (10.11) hold and if lim supT →∞ J(T ) < ∞, then

P (X(t) ≤ uT (t), t ≤ T )− exp(−J(T )) → 0

as T →∞.

The extremal behavior of Gaussian processes with trend or non-constant
variance function can be treated using this result. By analyzing the convergence
of J(T ) the limiting distribution G(·) and the normalization can be worked out
(cf. Hüsler [246]).

Constant Boundaries

In particular, if the boundary function is constant, i.e., uT (t) = uT , t ≤ T , then
(10.11) is satisfied if

CT =
∫ T

0
C1/α(t) dt

can be approximated by Riemann sums C+
T and C−

T with span hT satisfying (10.10)
such that

(C+
T − C−

T )u2/α−1
T ϕ(uT ) → 0 (10.12)

as T →∞. For this special case we state

Corollary 10.3.6. Let {X(t), t ≥ 0} be a locally stationary Gaussian process
with 0 < α ≤ 2 and C(t), satisfying (10.9). Let uT = aT x + bT be a constant
boundary where

aT = (2 log(CT ))−1/2

and

bT =
√

2 log(CT ) + aT

(
2 − α

2α
log log(CT ) + log

{
Hα2(2−α)/(2α)/

√
2π

})
.

If C(t) is such that (10.12) holds, then

P (MT ≤ aT x + bT ) →D G3(x) = exp(−e−x) (10.13)

as T →∞.
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The non-stationarity of the Gaussian process influences the normalization
only through CT . Since in Corollary 10.3.6, uT = uT,min ∼ √

2 log(T ), (10.10) is
satisfied if

hT (log(T ))1/α(log log(T ))−1/α →∞, as T →∞ (10.14)

for some hT → 0.
If C(t) ≡ C is a constant function, then (10.11) holds for any hT satisfying

(10.14) with CT = C1/αT . Hence we get

Corollary 10.3.7. Let {X(t), t ≥ 0} be a locally stationary Gaussian process
with 0 < α ≤ 2 and C(t), satisfying (10.9) and suppose C(t) ≡ C > 0. Let
uT = aT x + bT be a constant boundary where

aT = (2 log(T ))−1/2

and

bT =
√

2 log(T ) + aT

(
2 − α

2α
log log(T ) + log

{
C1/αHα2(2−α)/(2α)/

√
2π

})
.

Then
P (MT ≤ aT x + bT ) →D G3(x) = exp(−e−x) (10.15)

as T →∞.

Note that we use a normalization which is asymptotically equivalent to the
one in Corollary 10.3.6. If the Gaussian process is stationary, this result coincides
with that of Theorem 10.2.2. This shows that the expressions for aT and bT and
the limit distribution G3(·) do not depend on the stationarity assumption.

Multifractional processes

Another generalization of stationary Gaussian processes has been introduced in the
discussion of extremes or exceedances. Dȩbicki and Kisowski [98] defined multi-
fractional Gaussian processes, motivated from multifractional Brownian motions.

The condition on the correlation function, given in (10.1), was weakened by
letting the coefficient C depend on t which implied the condition (10.7). We can
apply this idea also to the coefficient α, assuming that it may vary with t. From
Theorem 10.3.4, it becomes obvious that only the smallest α values contribute
to the probability of the maximum value M([t, t + h]) above u, asymptotically.
Hence, if, for example, α(t) is a step function, we have to consider only the inter-
val {s ∈ [t, t + h] : α(s) = αmin} = Imin where the function α(·) has its minimum
values αmin = mins∈[t,t+h] α(s). Then Theorem 10.3.4 holds with this αmin in-
stead of the fixed α value, and the length of the interval Imin instead of h. More
interesting is the extension to a continuously varying α(t). Again, the minimum
value αmin is most relevant. We assume for simplicity that tmin = arg min α(s) is
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unique. It could be a boundary point or an inner point of [t, t + h]. If tmin is an
inner point, the probability P (M([t, t + h]) > u) is asymptotically twice the term
we present for the case where tmin is a boundary point, tmin = t or tmin = t + h.

In addition, we have to investigate how the local behavior of α(s) in tmin
influences the probability of interest, since tmin is unique. We simplify the notation
by considering the case tmin = t = 0. The other cases tmin = h or tmin ∈ (0, h)
follow in the same way. Let us formulate the extended version of Definition 10.3.3.

Definition 10.3.8. A standardized Gaussian process X(·) is called α(t)-locally
stationary on [0, T ] with T ≤ ∞, if there exist continuous functions C(t) and
α(t), 0 ≤ t ≤ T , with

0 < inf{C(t), t ∈ [0, T ]} ≤ sup{C(t), t ∈ [0, T ]} < ∞
and 0 < α(t) ≤ 2, such that

lim
s→0

1 − r(t, t + s)
|s|α(t) = C(t) uniformly for t ∈ [0, T ]. (10.16)

As mentioned, the behavior of α(t) in the vicinity of tmin = 0 plays a crucial
role. It influences the chance of an exceedance in the neighborhood of tmin = 0.
The crucial neigborhood is rather small, with a length tending to 0 as u →∞. We
assume that

αmin = min
t∈[0,h]

α(t) = α(0) > 0

and

α(t) = αmin + Btβ + o(|t|β+δ) as t → 0, for some positive B, β, δ. (10.17)

Theorem 10.3.9. Let {X(t), 0 ≤ t ≤ h} be a α(t)-locally stationary Gaussian
process with 0 < α(t) < 2 and C(t). If (10.16) and (10.17) hold, then for h > 0,

lim
u→∞

P (M([0, h]) > u)
u2/αmin−1(log u)−1/β φ(u)

= (C(0))1/αmin

(
α2

min
2B

)1/β

Hαmin

Γ(1/β)
β

.

This is a result of Dȩbicki and Kisowski [98]. The proof is based on the
usual double sum approximation method. We note that the term (log u)−1/β is
the impact from the varying α(t) in the neighborhood of tmin = 0. Obviously, we
can let h depend on u as in Theorem 10.3.4. The result holds also if h = h(u)
tends to 0, as long as h(u) ≥ ((αmin log log u)/(β log u))1/β . Note that this term is
much larger than the one used for the Pickands window with h(u)u2/α → ∞ (cf.
(10.5)). So the usual approximation with a Pickands window is not sufficient. The
result shows also that the behavior of the function C(t) in the vicinity of tmin has
no impact on the asymptotic behavior of the considered probability. The function
C(t) might be constant: C(t) = C(0) for t ∈ [0, h]. Also the length h of the interval
has no impact on the result.
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The authors applied Theorem 10.3.9 to multifractional Brownian motions
BH(t), t > 0. These are centered Gaussian processes with

E(BH(t)BH(s))

=
1
2

D(H(s) + H(t))
[
|s|H(s)+H(t) + |t|H(s)+H(t) − |t − s|H(s)+H(t)

]
,

where D(x) = 2π/(Γ(x+1) sin(πx/2)) and H(t) is a Hölder function with exponent
γ, with 0 < H(t) < min(1, γ) for 0 ≤ t < ∞. Then the standardized multifractional
Brownian motion is α(t)-locally stationary for t ∈ [t0, t1] with 0 < t0 < t1 < ∞,
where α(t) = 2H(t) and C(t) = t−2H(t)/2.

Excursions above Very High Boundaries

Up to now the boundary functions were related to T in such a way that we could de-
rive a non-degenerate limit for the probability of an upcrossing. If this probability
tends to zero we are interested in other quantities such as the rate of convergence.
Cuzick [87] derived the convergence rate of

P (X(t) > un(t) for some t ∈ (0, T )) → 0 as n →∞

where X(·) is a stationary Gaussian process not necessarily satisfying Berman’s
condition, and T can be finite or infinite. The extensions to locally stationary
Gaussian processes can be found in Bräker [53]. Many further results on sojourns
and extreme values of Gaussian and non-Gaussian processes are given in Berman
[39]. Some additional results and applications are shown in the following sections.

Boundaries with a Unique Point of Minimal Value

Often particular boundaries are such that only a few points play an important
role in the approximation of the probability of an exceedance. Such points are
often defined to be points with minimal boundary value after eventually standard-
izing the Gaussian process. This situation occurs for example if the variance of
a centered Gaussian process is not constant, having a unique point of maximal
variance. Such a case was mentioned in Section 10.2 when a stationary Gaussian
process is approximated by a piecewise linear Gaussian process. The asymptotic
approximation of the exceedance probability can be derived accurately in such a
case, but it is based on a somewhat different approach from the one presented
above. Also J(T ) would tend to 0.

The well-known standardization of a general non-stationary Gaussian process
X(t) with general non-constant variance σ2(t) and non-constant trend μ(t) links
the boundary with the trend and variance. Considering then the supremum of the
process X(t) in an interval I corresponds to the event of crossing the boundary
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after the standardization:

{X(t) ≥ x, for all t ∈ I}

=
{

X(t) − μ(t)
σ(t)

≥ x − μ(t)
σ(t)

for all t ∈ I

}
=

{
Y (t) ≥ x − μ(t)

σ(t)
=: ux(t) for all t ∈ I

}
where Y (t) denotes the standardized Gaussian process with the same correlation
function as X(t). Most probable points to cross the boundary are points in the
neighborhood of minimal boundary values. Can we state in general that the lowest
boundary value determines in such cases the probability that the supremum M(I)
is larger than x, for large x? This question will be investigated in the following, for a
bounded interval I. We can set I = [0, 1] by time transformation, and supt∈I σ(t) =
1.

Example 10.3.10. (Brownian bridge and motion) Let us consider the well-
known case of the Brownian bridge B0, a centered Gaussian process, with covari-
ance σ(t, s) =Cov(B0(t), B0(s)) = σ2(min(t, s) − st). Assume σ2 = 1. Note that
the largest value of variance σ(t, t) = t(1− t) is equal to 1/4, occurring at t0 = 0.5.
It is known that

P ( sup
t∈[0,1]

B0(t) > u) = exp(−2u2).

We cannot expect that such an exact formula for the df of the supremum can be
derived for many Gaussian processes. Hopefully we might approximate accurately
the distribution for large values u, not giving only the leading term as with large
deviation principles.

The result we are going to derive, holds for rather general Gaussian processes
with a unique point of maximal variance. It implies in the case of the Brownian
bridge that

P

(
sup

t∈[0,1]
X(t) > u

)
∼ exp(−2u2)

as u →∞.
Consider now the Brownian motion B(t). It is well known that by the reflec-

tion principle P (supt∈[0,1] B(t) > u) = 2(1 − Φ(u)). The maximal variance occurs
at the endpoint t0 = 1, another situation. The exceedance of u by X(1) has the
probability 1 − Φ(u) which is not the expression above. The given expression is
larger, hence some other values X(t) of the process for t near 1 contribute to the
event {supt∈[0,1] X(t) > u}. This problem is also investigated in the following for
general Gaussian processes and an accurate expression for u →∞ is derived.

The general approach considers first the probability that the Gaussian pro-
cess exceeds the boundary somewhere in the interval It0 ⊂ I, being a suitable
neighborhood of the point t0 with smallest boundary value. It is assumed that the
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boundary is minimal in one unique point t0. Then in a second step it is shown
that the probability of an exceedance above the boundary outside of the interval
It0 is asymptotically negligible with respect to the first derived probability.

The probability of an exceedance of a high boundary depends again on the
correlation function and the behavior of boundary in the vicinity of the minimal
values. We focus in the following on centered processes with mean 0 and a variance
function with one unique maximal value at t0. Typically the following conditions
are supposed for general cases.

The behavior of the variance σ2(t) is restricted by

1 − σ(t) ∼ b|t − t0|β for |t − t0| → 0, (10.18)

for some b > 0, β > 0 and some t0 ∈ I. t0 denotes the unique point of maximum
variance, hence σ(t) < 1 for all t �= t0.

The correlation function r(t, s) = Corr(X(t), X(s)) is restricted by

1 − r(t, s) ∼ |t − s|α, for t → t0, s → t0 and α ∈ (0, 2]. (10.19)

It is related to the behavior of the sample paths of X(t); the larger the parameter
α, the smoother the sample paths.

A regularity condition is needed for the remaining points t not in the neigh-
borhood of t0:

E(X(t) − X(s))2 ≤ G|t − s|γ for t, s ∈ [0, 1] and some G > 0, γ > 0. (10.20)

Piterbarg [375] proved the following result for a fixed boundary u.

Theorem 10.3.11. Let X(t) be a Gaussian process with mean 0 satisfying the
conditions (10.18), (10.19) and (10.20) with t0 the unique point of maximum vari-
ance in the interior of I = [0, 1] with σ(t0) = 1.

(i) If β ≥ α, then

P

(
sup

t∈[0,1]
X(t) > u

)
∼ C(α, β, b) u2/α−2/β (1 − Φ(u)), for u →∞

where C(α, β, b) = 2HαΓ(1/β)/(βb1/β) for β > α, and = 2Hb
α for β = α;

(ii) If β < α, then

P

(
sup

t∈[0,1]
X(t) > u

)
∼ (1 − Φ(u)), for u →∞.

The Pickands constants Hα and Hb
α are discussed below. Intuitively, we can

say that if β ≥ α, then the variance or the boundary function u(t) = u/σ(t) is
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smoother than the paths of the process, hence points t in the neighborhood of t0
also substantially contribute to the probability of the extreme event sup X(t) ≥ u.
This is similar to the case of a constant variance and constant boundary (hence
with β = ∞). If β < α, then the paths are now smoother than the variance or
boundary function and only X(t0) asymptotically determines the extreme event,
maybe also some values X(t) with t − t0 very small, but because of the strong
correlation of X(t) and X(t0), these values do not influence the probability of the
extreme event.

More Pickands Constants

The Pickands constants Hα and Hb
α in Theorem 10.3.11 are related to the Gaus-

sian process χ(t) with continuous paths, with mean function −|t|α and covariance
function |t|α + |s|α − |t − s|α, a fractional Brownian motion with trend. They are
defined with T, T1 ≤ T2 by

Hb
α(T1, T2) := E(exp( sup

T1≤t≤T2

(χ(t) − b|t|α)) < ∞,

Hα(T ) := H0
α(0, T ),

Hb
α := lim

S→∞
Hb

α(−S, S) ∈ (0,∞)

and

Hα := lim
T →∞

Hα(T )/T ∈ (0,∞).

If the point t0 is a boundary point of I, say t0 = 0, then Theorem 10.3.11
remains true replacing the constants C(α, β, b) by the new constant C∗(α, β, b)
= C(α, β, b)/2 if β ≥ α (Konstant and Piterbarg, [292]). This is obvious because in
the case β ≥ α the interval around t0 = 0 included in I = [0, 1] where exceedances
are most probable, is now only half the length as if t0 is an interior point. If β < α
still X(t0) = X(0) exceeds most probably the boundary u.

The length of the interval around t0 where exceedances are most probable is
typically related to the correlation function, which means to the parameter α. This
was discussed in Piterbarg and Weber [379]) setting t0 = 0, shifting the interval
I. Let Y (t) be a standardized stationary Gaussian process on [−a, a], a small
interval around t0 = 0, with correlation function r(t) = exp(−tα) with 0 < α ≤ 2
and a = a(u).

Theorem 10.3.12. Let Y (t) be a standardized stationary Gaussian process with
correlation r(t) = exp(−tα) with 0 < α ≤ 2. For any T1 ≤ 0, T2 > 0, b > 0 and
β > 0,

P

(
sup

t∈[T1u−2/α, T2u−2/α]
Y (t)(1 − b|t|β) > u

)
∼ H(α, β, b, T1, T2)(1 − Φ(u))
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as u →∞, where the constant is related to the above Pickands constants:

H(α, β, b, T1, T2) =

⎧⎨⎩
1, if β < α,
Hα(T2 − T1), if β > α,
Hb

α(T1, T2), if β = α.

The process Y (t)(1 − b|t|β) corresponds to a Gaussian process with non-
constant variance (1 − b|t|β)2 = 1 − 2b(1 + o(1))|t|β for t → 0, with unique point
t0 = 0 of maximal variance. The more general case of a correlation function r(t)
with r(t) = 1− (d+o(1)|t|α (t → 0) where d > 0, can be treated by approximating
r(t) with r∗(t) = exp(−dtα). By transforming the time t → td1/α, we get a process
Y (t) with rY (t) = exp(−tα) which allows us to apply Theorem 10.3.12.

If t0 = t0(u) ∈ [0, 1] depends on u such that t0(u) → 0, then the speed of
convergence of t0(u) to 0 is relevant for the probability of exceedances of u. If the
speed is rather slow, then the probability of an exceedance is as in Theorem 10.3.11.
If the speed is very fast, the case is just as if t0(u) = 0. For the intermediate cases
we have to apply Theorem 10.3.12 which occurs if the variance function σu(t) and
also the correlation function ρu(t) depend on u. This was considered in Hashorva
and Hüsler [209] for a family of processes Xu(t). Define for some β > 0 the interval

Iu := [−δ∗(u, β), δ(u, β)],

where
δ∗(u, β) = min(δ(u, β), t0(u))

and
δ(u, β) := u−2/β log2/β(u).

The shifted interval t0(u) + Iu = [t0(u) − δ∗(u, β), t0(u) + δ(u, β)] ⊂ [0, t0(u) +
δ(u, β)] plays a crucial role for the probabilities. The conditions (10.18), (10.19)
and (10.20) are reformulated for dependence on u. We assume

sup
t∈Iu+t0(u)

∣∣∣∣ 1 − σu(t)
b|t − t0(u)|β − 1

∣∣∣∣ → 0 as u →∞ (10.21)

for some b > 0 and β > 0,

sup
t,s∈Iu+t0(u)

∣∣∣∣1 − ρu(t, s)
|t − s|α − 1

∣∣∣∣ → 0 as u →∞, (10.22)

and for large u,

E
(
(Xu(t) − Xu(s))2) ≤ G|t − s|γ , t, s ∈ [0, 1], (10.23)

with some G > 0, γ > 0.
For the case of the unique point of maximal variance we get now under

these conditions the general approximation of the tail of the distribution of the
supremum. Let us denote the incomplete Γ-integral by Γ(a, w) =

∫ w

0 e−xxa−1dx.
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Theorem 10.3.13. Let Xu(t), t ∈ [0, 1], u > 0, be a family of Gaussian processes
with means 0, variances σ2

u(t) ≤ σ2
u(t0(u)) = 1, and correlations ρu(s, t) with

t0(u) being the unique point of maximal variance. Suppose the conditions (10.21),
(10.22) and (10.23) hold.

i) If α < β and t0(u)u2/β → C ∈ [0,∞], then

P

(
sup
[0,1]

Xu(t) > u

)
∼ Hα(1 − Φ(u)) u2/α−2/β Γ(1/β) + Γ(1/β, bCβ)

β b1/β

as u →∞.

ii) If α = β and t0(u)u2/α → C ∈ [0,∞], then

P

(
sup
[0,1]

Xu(t) > u

)
∼ Hb

α(C) (1 − Φ(u))

as u →∞ where the values Hb
α(C) = limS→∞ Hb

α(−C, S) are given above.

iii) If α > β, then as u →∞,

P

(
sup
[0,1]

Xu(t) > u

)
∼ 1 − Φ(u).

These theorems can be transformed for the case where we consider the min-
imal boundary instead of the maximal variance. Instead of the local behavior of
σ(t) in the neighborhood of t0 we have to analyze the behavior of the boundary
function in the neighborhood of the minimal boundary value. The condition on
the correlation functions remains the same.

Random Variance or Random Boundary

Instead of considering a fixed variance or a non-constant boundary, one may deal
with a variance or a boundary which is random, such as in random environment
situations. It means that one is interested in the impact of a random variance
on the maxima of a Gaussian process. Hence, let us consider a process which is
the product X(t) = Y (t)η(t) of a standard Gaussian process Y (t) and a random
process η(t), playing the role of the random standard deviation of X(t). The two
processes Y (t) and η(t) are assumed to be independent. Note, that the product
process X(t) is no longer a Gaussian process. This model is equivalent to the case
of the Gaussian process Y (t) with the random non-constant boundary u/η(t) in
random boundary problems.

If η(t) = η is a positive rv, not depending on t, we derive the asymptotic
result by conditioning on η. We want to investigate the event of an exceedance:

{Y (t)η(t) > u for some t ∈ [0, a] | η} = {Y (t) > u/η, for some t ∈ [0, a] | η}.
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By our previous results, the probability of this event is influenced mostly by the
largest values of η, which makes u/η as small as possible. Hence, it is sensible to
restrict the support of η to be bounded. Let sη denote the finite upper bound of
the support of η. It denotes also the largest standard deviation of the process X(t).

Assuming that the Gaussian process is stationary, we get for u → ∞ the
asymptotic exact probability by using Theorem 10.3.1, assuming (10.1) and re-
placing u by the value u/η and integrating on the distribution of η:

Pu := P (Y (t)η > u, for some t ∈ [0, a])

=
∫

P (Y (t) > u/η, for some t ∈ [0, a] | η = y) dFη(y)

∼ aHαC1/α

∫ sη

0
(u/y)2/α−1φ(u/y) dFη(y).

Now it remains to find the asymptotic behavior of the integral, which depends
on the behavior of Fη at sη. If η has a density fη which is continuous at sη with
fη(sη) > 0, then the probability Pu is asymptotically equal to

aHαC1/αsηfη(sη)(u/sη)2/α−3φ(u/sη).

This follows by changing the variable y to x = u2(y−sη) in the integral, and using
simple Taylor expansions.

If the density fη(sη) = 0, then its derivatives play an important role in
the asymptotic formula. The general result follows again by the same variable
transformation and Taylor expansions or alternatively, by the Laplace method.
We make use of the following more general approximation which follows by the
Laplace method.

Proposition 10.3.14. Let g(x), x ∈ [0, s], be a bounded function, which is k-
times continuously differentiable in a neighborhood of s, where g(r)(s) = 0 for
r = 0, 1, ..., k − 1 and g(k)(s) �= 0. Then for any ε ∈ (0, s),∫ s

ε

g(x)(x/u)φ(u/x)dx = (−1)ks3k+4g(k)(s)u−3−2kφ(u/s)(1 + o(1)) (10.24)

as u →∞. If g(x) = g1(x)g2(x), g1(x) is continuous at s with g1(s) > 0, and g2(x)
satisfies the above conditions on g, one replaces g(k)(s) in (10.24) by g1(s)g(k)

2 (s).

For the general case, assume that fη(x) is k-times continuously differentiable
in a neighborhood of sη, with f

(r)
η (sη) = 0 for r < k and f

(k)
η (sη) �= 0. Then the

general result follows by the proposition with g(x) = x−2/αfη(x) and s = sη.

Theorem 10.3.15. Assume that Y (t) is a stationary standard Gaussian process,
and that (10.1) holds with 0 < α ≤ 2. Let η be a r.v. with k-times continuously
differentiable density fη(x) in the neighborhood of sη, for some k ≥ 0. Assume that
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η is independent of Y (t) and that f
(r)
η (sη) = 0 for r < k and f

(k)
η (sη) �= 0. Then,

for u →∞,

P (X(t) = Y (t)η > u, for some t ∈ [0, a])
∼ (−1)kaHαC1/αs3k+4−2/α

η u2/α−3−2kφ(u/sη)f (k)
η (sη).

Since the variance is constant, it means that an exceedance of u/η by Y (t)
or an exceedance of u by X(t) could happen anywhere in [0, a]. This is not the
case if we consider the random variance η(t) as non-constant. It is convenient to
assume first that the random variance has a unique random maximal value. By
conditioning on η(t), we may possibly apply the methods of the case with a fixed
variance.

Let us consider a simple case first. We investigate the case η(t) = 1−ζ|t−t0|β
(β > 0) in a suitable vicinity of t0 with ζ a rv. For simplicity, let t0 = 0, with
the interval [0, a], for some a > 0. The other cases are dealt with by the same
argumentation; for example, if t0 is an inner point of the interval [0, a], we have
to multiply the resulting probability approximation by 2. Note that a cannot be
large, since 1 − ζaβ has to be positive to be the standard deviation of the process
X(t). Therefore, we assume that the rv ζ has a finite upper support point sζ and
a < (1/sζ)1/β .

Let us first discuss the particular case of a straight line (β = 1) in detail. By
conditioning on ζ, we can use the method of Theorem 10.3.13 to derive, for ζ > 0
and α < 1,

P

(
max

t∈[0,a]
Y (t)(1 − ζt) > u | ζ

)
∼ Hαu2/α−2(1 − Φ(u))

/
ζ. (10.25)

We note that the behavior of the distribution of ζ near 0 is now of interest. Either
E(1/ζ) exists, or a more accurate approximation is needed for very small ζ. This
approximation is given in Theorem 10.3.16 which is proved in Hüsler et al. [262].
We note that the smoothness parameter α of the paths of Y (t) is quite relevant,
implying three different results for α > 1, = 1 or < 1.

We assume that in the following theorems the density of ζ is bounded and
has a bounded support with upper support point sζ < ∞, as mentioned.

Theorem 10.3.16. Let α < 1 and a ∈ (0, 1/sζ) with sζ < ∞. Then

P

(
max

t∈[0,a]
Y (t)(1 − ζt) > u

)
∼ Hαu2/α−2(1 − Φ(u))E

(
1 − exp(−au2ζ)

ζ

)
(10.26)

as u →∞.

(i) If in addition E(1/ζ) < ∞, then

P

(
max

t∈[0,a]
Y (t)(1 − ζt) > u

)
∼ Hαu2/α−2(1 − Φ(u))E(1/ζ)
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as u →∞.

(ii) If in addition the density fζ(x), x ≥ 0, of ζ is continuous at 0, with fζ(0) > 0,
then

P

(
max

t∈[0,a]
Y (t)(1 − ζt) > u

)
∼ 2Hαfζ(0)u2/α−2(1 − Φ(u)) log(u)

as u →∞.

Statement (i) follows from the result (10.25) and (ii) from the general re-
sult (10.26). Quite different is the case α = 1, where the paths have the same
smoothness as the random function η(t).

Theorem 10.3.17. Let α = 1 and a ∈ (0, 1/sζ) with sζ < ∞.

(i) Assume E(1/ζ) < ∞,

P

(
max

t∈[0,a]
Y (t)(1 − ζt) > u

)
∼ H(1 − Φ(u)) as u →∞,

with
0 < H = E

(
exp

(
max
[0,∞]

(
√

2B(t) − (1 + ζ)t)
))

< ∞,

where B(t) is the standard Brownian motion.

(ii) If the density fζ(x) of ζ is continuous at 0 with fζ(0) > 0,

P

(
max

t∈[0,a]
Y (t)(1 − ζt) > u

)
∼ 2fζ(0) (1 − Φ(u)) log(u)

as u →∞.

The case α > 1 shows also a different dependence of the probability on the
random variance. Since the paths are ‘smoother’ than the random boundary or
the random variance function, it shows that exceedances occur asymptotically
only around one point, namely at t0 = 0; other exceedances have no impact on
the crossing probability.

Theorem 10.3.18. Let α > 1 and a ∈ (0, 1/sζ) with sζ < ∞. Then

P

(
max

t∈[0,a]
Y (t)(1 − ζt) > u

)
∼ (1 − Φ(u)) as u →∞.

Similar results hold for the more general power functions 1− ζ|t|β where the
three cases need to be distinguished, again depending on β > α, = α or < α.

Theorem 10.3.19. Let α < β ∈ (0,∞) and a ∈ (0, s
−1/β
ζ ) with sζ < ∞.
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(i) If E(ζ−1/β) < ∞, then

P

(
max

t∈[0,a]
Y (t)(1 − ζtβ) > u

)
∼ HαΓ(1/β)

β
u2/α−2/β(1 − Φ(u))E(ζ−1/β)

as u →∞.

(ii) If the density fζ(x), x ≥ 0, is continuous at 0, with fζ(0) > 0, then for
0 < α < β ∈ (0, 1),

P

(
max

t∈[0,a]
Y (t)(1 − ζtβ) > u

)
∼ Hαa1−β

1 − β
fζ(0)u2/α−2(1 − Φ(u))

as u →∞.

Note that the second result with β < 1 is different from the second result
of Theorem 10.3.16 with β = 1. The situation is again different if α = β. Let
χα(t) denote the fractional Brownian motion with mean −|t|α and covariance
Cov(χα(t), χα(s)) = |t|α + |s|α − |t − s|α.

Theorem 10.3.20. Let α = β ∈ (0, 2] with sζ < ∞.

(i) Assume that Eζ−1/β < ∞ and let a ∈ (0, s
−1/β
ζ ). Then

P

(
max

t∈[0,a]
Y (t)(1 − ζtβ) > u

)
∼ Hζ

α(1 − Φ(u)) as u →∞,

where 0 < Hζ
α := E

(
exp

[
max[0,∞)(χα(t) − ζtα)

])
< ∞.

(ii) Assume that the density fζ(x), x ≥ 0, of ζ is positive and continuous at 0,
and let a ∈ (0, s

−1/β
ζ ).

(a) If α = β ∈ (0, 1), then

P

(
max

t∈[0,a]
Y (t)(1 − ζtβ) > u

)
∼ Hαa1−α

1 − α
fζ(0)u2/α−2(1 − Φ(u))

as u →∞;
(b) if α = β ∈ (1, 2], then

P

(
max

t∈[0,a]
Y (t)(1 − ζtβ) > u

)
∼ Hζ

α(1 − Φ(u))

as u →∞, where 0 < Hζ
α = E

(
exp

(
max[0,∞)(χ(t) − ζtα)

))
< ∞.

The result for α = β = 1 is given in Theorem 10.3.17. Finally, for the case
α > β we get the approximation as in Theorem 10.3.18, since the paths of the
process X(t) are smoother than the random variance. It means that the process
crosses the random boundary mostly around t = 0, asymptotically.
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Theorem 10.3.21. Let 2 ≥ α > β > 0. Assume that ζ is independent of Y (·)
with a strictly positive lower bound. Then for any a ∈ (0, s

−1/β
ζ ) with sζ < ∞,

P

(
max

t∈[0,a]
Y (t)(1 − ζtβ) > u

)
∼ 1 − Φ(u)

as u →∞.

The case with the general function η(t) = η− ζ|t|β is treated by conditioning
on η and then using the above results which now depend on the behavior of
the density of ζ/η. In cases α > β the rv ζ has no impact. These results are
given in two papers. Hüsler et al. [262] dealt first with the cases of η(t) being a
parabola or a straight line and Zhang [472] (see also Hüsler et al. [263]) with more
general functions η(t) = η − ζ|t − t0|β (for any β > 0) with positive bounded rv
η and ζ where t0 denotes the unique argument with maximal value of η(t). By
conditioning on η, we can derive an asymptotic expression for the probability of
an exceedance. The upper support point of η determines again the asymptotic
probability term. We may assume that the two r.v. η and ζ are independent,
however, this is not necessary. In the proofs, one conditions first on η and deals
then with the conditional distribution of ζ, given η.

Approximation of a Stationary Gaussian Process

Let X(t), 0 ≤ t ≤ 1, be a stationary Gaussian process which is observed on a
grid t = i/n, 0 ≤ i ≤ n. The process X(t) is approximated by a piecewise linear
function

L(t) = ((i + 1) − nt)X(i/n) + (nt − i)X((i + 1)/n) for i/n ≤ t ≤ (i + 1)/n.

Of interest is the deviation process Y (t) = X(t)−L(t). It is still a Gaussian process
but not stationary as mentioned, because Y (i/n) = 0 for all i. Hence, the variance
is 0 at the grid points and attains in each subinterval (i/n, (i + 1)/n) a maximal
value. The variance is cyclo-stationary, being equal for each subinterval (i/n, (i +
1)/n). We expect again that the maximal values occur in the neighborhood of
the values t with maximal variance. Asymptotically the maxima of the variance
function in each subinterval is separated sufficiently, so the maxima of X(t) on
the subintervals (i/n, (i + 1)/n) are asymptotically independent. Hence a Poisson
nature of the cluster of exceedances is observed and the limit distribution of the
maximum of Δ(t), t ∈ [0, 1] can be derived. This is dealt with e.g. in Seleznjev
[406], Hüsler [252], Hüsler et al. [260].

Let us discuss this approximation in detail. The derivation of the variance of
Yn(t) is straightforward. For i/n ≤ t ≤ (i + 1)/n and s = nt − i with 0 ≤ s ≤ 1,
we have

σ2
n(s) = 2

(
(1 − r( s

n
))(1 − s) + (1 − r(1 − s

n
))s − (1 − r( 1

n
))(1 − s)s

)
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which is 0 for s = 0 and s = 1. The variance is periodic, since it does not depend
on i, and tends to 0 as n →∞. In case that 1 − r(t) ∼ ctα, we note that

σ2
n(s) =

2C

nα
[sα(1 − s) + (1 − s)αs − (1 − s)s] + o(n−α).

The expression in the square brackets does not depend on n and has one or two
maxima in (0, 1) which are separated by some positive term. Denote the maximal
variance of Yn(·) by σ2

n = max[0,1] EY 2
n (s). The maximal approximation error is of

interest, hence

P

(
max

t∈[0,T/n]
|Yn(t)| > u

)
= P

(
max

s∈[0,T ]
|Ỹn(s)| > u/σn

)
as n → ∞, where we transform the process Yn(t) to Ỹn(s) = Yn(s/n)/σn with
s ∈ [0, T ], having the maximal variance 1. Typically, T = T (n) = n → ∞. The
probability is dominated by the possible crossings in the neighborhood of the time
points where Ỹn(·) has variance 1. It implies that only the local behavior of the
process in the corresponding intervals has to be restricted by some conditions.
It means also that we may consider more general processes and more general
approximation schemes than the particular examples above.

Hence, let us state our result for more general approximation processes Yn(·)
or Ỹn(·). The behavior of σn(t) can be approximated, as shown in the example
of linear approximation, by σnσ(t) as n → ∞, assuming that σ(t) satisfies the
following conditions.

Let σ(t), t ≥ 0, be a continuous function with 0 ≤ σ(t) ≤ 1 and assume that

(i) {t : σ(t) = 1} = {tk, with tk+1 − tk > h0, k ≥ 1} for some h0 > 0;

(ii) T ≤ KmT , for some K > 0, where mT denotes the number of points tk of
maximal variance in [0, T ];

(iii) σ(t) can be expanded in a neighborhood of tk:

σ(t) = 1 − (a + γk(t))|t − tk|β

for some a, β > 0 where the functions γk(t), k ≥ 1, are such that for any
ε > 0 there exists δ0 > 0 with

max{|γk(t)|, t ∈ Jδ0
k } < ε,

where Jδ
k = {t : |t − tk| < δ} for δ > 0.

If these three conditions hold, we say that σ(t) satisfies assumption (A).
Now the convergence of the variance σ2

n(s) and the correlation rn(t, s) of
Yn(s) is restricted by the following four conditions:



10.3. Non-stationary Gaussian Processes 407

(i) There exists δ0 > 0 such that σn(t) = σnσ(t)(1 + εn(t)) for some σn > 0
with supt∈[0,T ] |εn(t)| → 0 and εnu2/σ2

n → 0, (n →∞), where u = u(n) and
εn = sup{|εn(t)|, t ∈ Jδ0} with

Jδ =
⋃

k≤mT

Jδ
k .

(ii) For any ε > 0 there exists δ0 > 0 such that

rn(t, s) = 1 − (bn + γn(t, s))|t − s|α,

where bn → b > 0 as n → ∞, 0 < α ≤ min(2, β) and the function γn(t, s)
is continuous at all points (tk, tk), k ≥ 1, and sup{|γn(t, s)|, t, s ∈ Jδ0 , n ≥
1} < ε.

(iii) There exist α1, C > 0 such that for any t, s ≤ T , and large n,

E
(
(Yn(t) − Yn(s))2) ≤ C|t − s|α1 .

(iv) For any v > 0 there exists δ > 0 such that

δ(v) = sup{|rn(t, s)|, v ≤ |t − s|, t, s ≤ T, n ≥ 1} < δ < 1.

If these four conditions hold, we say that the processes Yn satisfy condition (B).
Under these assumptions the maximum of |Y (t)|, t ≤ T , can be characterized

as both T and u tend to ∞.

Theorem 10.3.22. Let T = T (n), u = u(n) be such that min(T, u/σn) → ∞ as
n → ∞. Assume that conditions (A) and (B) hold for a sequence of Gaussian
processes Yn, with mean 0. If in addition (10.3) holds and

mT Ha/b
α φ(u/σn)σn/u → τ ≥ 0

as n →∞ with some H
a/b
α > 0, then

P (Mn(T ) > u) → 1 − e−τ as n →∞.

In case T is fixed, the derivation of the result shows also how the maximum
Mn(T ) tends to 0. One may also consider moments of Mn(T ) or define the process
of exceedances, showing that this point process converges to a Poisson process, see
[252].

A generalization of this approximation result is considered for t ∈ R in Hüsler
et al. [260], and for t ∈ R

d in Seleznev [407]. We mention the moment result of the
extension to random fields. Consider a sequence of mean zero Gaussian random



408 10. Extremes of Gaussian Processes

fields Yn(t), t ∈ R
d, with (a.s.) continuous sample paths. Assume that the Gaussian

random fields satisfy the Hölder condition

E(Yn(t) − Yn(s))2 ≤ C|t − s|α

for some positive constants C, α and all large n, where |t| = (
∑d

i=1 t2
i )1/2. Let

Mn(Tn) = maxt∈Tn |Yn(t)| be the uniform norm of the Gaussian random field
on a set Tn ⊂ R

d. Seleznjev [407] considered the moments of Mn(Tn), where
Tn = [0, tn]d is the d-cube with tn →∞.

Theorem 10.3.23. Let Yn(t), t ∈ R, n ≥ 1, be a sequence of Gaussian random
fields with zero mean and variance functions σ2

n(t) with σ2
n(t) ≤ 1. Assume that

the uniform norm Mn(Tn) is such that, with suitable normalizations an, bn,

P (Mn(Tn) ≤ bn + xan) → G(x) as n →∞

holds, where G is a non-degenerate distribution function, Tn = [0, tn]d, tn → ∞
and an ∼ bn ∼ √

2 log(n). If the Hölder condition and |Tn| = td
n ≤ cn hold, for

some c > 0, then for any positive p,

(EMp
n(Tn))1/p ∼

√
2 log(n) as n →∞.

The results hold also for Mn(t) defined as maximum Mn(Tn)=maxt∈Tn Yn(t).
Typically, G(x) is the Gumbel distribution. Applications of the first-order asymp-
totic result are given in Seleznjev [407]. For example, he discussed the approxi-
mation of a continuous Gaussian random field by an approximating sequence of
Gaussian random fields which is based on a discrete time sampling scheme.

Ruin Probability and Gaussian Processes with Drift

In risk theory of finance one considers the ruin probability which is often modelled
with respect to a fractional Brownian motion X(t) with parameter α = 2H < 2
and mean 0. Then the ruin probability is defined as

P

(
sup
t≥0

(X(t) − ctβ) > u

)
as u → ∞, which is the distribution of the supremum of the Gaussian process
X(t) − ctβ , having the trend −ctβ , where β > H and c > 0. In this case we can
interpret ctβ as sum of the premiums payed up to t, and X(t) as sum of the claims
up to t. Here, it is common to consider the fractional Brownian motion X(t) with
variance |t|α. Instead of this trend function we might consider some other function
as long as the probability is well defined. Often we can put β = 1 by transformation.
The problem occurs also in queuing theory and in telecommunications modelling
see e.g. Norros [354], [355], Narayan [348], Hüsler and Piterbarg [257], [259], [258],
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Choe and Shroff [68] and Dȩbicki [95], [96], [97] and Dȩbicki et al [99]. Note that
again by standardizing the process, the event to be considered is

{∃t : X(t) > ctβ + u} = {∃t : X(t)/σ(t) > u(t) = (ctβ + u)/tH}
since the variance of X(t) is equal to t2H . Again u(t) has a minimum value at a
unique point t0(u) = (uH/(c(β−H))1/β tending to ∞ with u. Thus it is convenient
to transform the time (t = su1/β) also such that the minimum of the boundary is
taken uniquely in s0 = (H/c(β − H))1/β and remains fixed, not depending on u.
Hence the above mentioned approach where only the neighborhood of the unique
point of minimal boundary plays the important role, can be applied in this case
also.

We consider more generally a Gaussian process with mean 0 and variance
V 2(t), which is a regularly varying function at infinity with index 2H , 0 < H < 1.
Assume that the paths are a.s. continuous and X(0) = 0 a.s.. Then we can derive
not only the asymptotic behavior of the probability P (supt≥0(X(t)− ctβ) > u) as
u → ∞, but also the limiting distribution of the first ruin time τ1, if it happens
that τ1 < ∞. We define

τ1 = τ1(u) = inf{t : u + ctβ − X(t) ≤ 0} ≤ ∞
with β > H and c > 0. Applying the transformation in time and space, the
processes

X(u)(s) = X(su1/β)
V (u1/β)(1 + csβ)

, s > 0,

are investigated. With the time change t = su1/β , we have

P

(
sup
t≥0

(X(t) − ctβ) > u

)
= P

(
∃s ≥ 0 : X(su1/β) > u(1 + csβ)

)
= P

(
sup
s≥0

X(su1/β)
1 + csβ

> u

)
= P

(
sup
s≥0

X(u)(s) >
u

V (u1/β)

)
,

and τ1 = u1/β τ̃1, where

τ̃1 := inf
{

s ≥ 0 : u

V (u1/β)
− X(u)(s) ≤ 0

}
(10.27)

denotes the first ruin time in the changed time scale. The process X(u)(s) with
mean zero is not standardized, its variance equals v−2

u (s), where

vu(s) = sHV (u1/β)
V (su1/β)

v(s) → v(s) as u →∞, with v(s) = s−H + csβ−H .
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The function v(s) has a unique minimum point

s0 =
(

H

c(β − H)

)1/β

and the function v(s) is locally a quadratic function in s0:

v(s) = A + 1
2

B(s − s0)2 + o((s − s0)2), for s → s0,

where

A := v(s0) =
(

H

c(β − H)

)−H/β
β

β − H

and

B := v′′(s0) =
(

H

c(β − H)

)−(H+2)/β

Hβ.

The assumptions imply vu(s) → v(s) and also that the (smallest) minimum point
s0(u) of vu(s) (for fixed u) tends to s0, as u →∞. If vu(s) can be well approximated
by the function v(s), assuming

vu(s) − A(u)
(s − s0(u))2 → 1

2
B,

as u →∞ uniformly for s in a neighborhood of s0, and if the standardized Gaussian
process X(u)(s)vu(s) is locally stationary in the vicinity of s0 and satisfies a Hölder
condition, then Hüsler and Piterbarg [261] showed that

P ((τ1(u) − s0(u)u1/β)/σ(u) < x | τ1(u) < ∞) → Φ(x) (10.28)

as u →∞, for all x, where σ(u) := (AB)−1/2u−1+1/βV (u1/β).
The result follows by the main investigation of the ruin event in the neigh-

borhood of s0:
sup

s∈Su(x)
X(u)(s) > u/V (u1/β),

where
Su(x) =

[
s0(u) − δ(u), s0(u) + xũ−1/

√
A(u)B

]
.

It is shown that, for all x,

P

(
sup

s∈Su(x)
X(u)(s) > ũ

)
∼ D1/αA2/α−3/2 Hα 2−1/αe− 1

2 A2(u)ũ2
Φ(x)√

BK−1(ũ−1)ũ2

as u →∞, with ũ = u/V (u1/β). By conditioning on τ1(u) < ∞, the limit distribu-
tion (10.28) of τu follows.



10.3. Non-stationary Gaussian Processes 411

Also the last ruin time τ2(u) = sup{t > 0 : X(t) − ctβ > u} can be inves-
tigated. With the same methods, Hüsler and Zhang [267] showed that under the
same conditions as in [261],

P
(

(τ2(u) − s0(u)u1/β)/σ(u) < x | τ
(u)
1 < ∞

)
→ Φ(x)

as u → ∞, for all x with the same σ(u) := (AB)−1/2u−1+1/βV (u1/β). Furthermore,
they derived the joint distribution of the first and last ruin times which is related
to the normal distribution:

P
(

(τ1(u) − s0(u)u1/β)/σ(u) ≥ x1, (τ2(u) − s0(u)u1/β)/σ(u) < x2 | τ1(u) < ∞
)

→ Φ(x2) − Φ(x1)

for any x1 < x2.
Transformations in time and space are rather convenient for dealing with

such a problem to reduce it to a related problem with a known solution or a prob-
lem where a known method can be applied. In such investigations other processes
are considered, in particular, e.g. scaled Brownian motions, filtered Brownian mo-
tions, self-similar Gaussian processes, integrated Gaussian processes, see the above
given references or Dieker [112] where many of the above results are extended and
combined, assuming a more general drift function a(t) instead of the particular
drift function ctβ.

Also the mean loss in case of ruin is of interest and is investigated by Boulogne
et al. [52] for a particular ruin process X(t). They considered the process X(t) =
u + ct−BH(t) with drift ct, where BH(t) denotes the fractional Brownian motion.
The conditioned average loss is defined as E

(− inf [0,T ] X(t) | inf [0,T ] X(t) < 0
)

as
u →∞. Here T can be finite for the finite horizon investigations, or tending to ∞
as u →∞.

Extremes of Storage Models

Related to the ruin probability analysis is the investigation of extremes of storage
processes. The storage process is defined by

Y (t) = sup
s≥t

(X(s) − X(t) − c(s − t)β)

where c > 0 and β > 0. Transforming the time, we may also set β = 1, but one has
to consider Y (t) = supv≥0(X(v1/β + t)−X(t)− cv). The underlying input process
X(·) is modelled in different ways, but often X(t) is assumed to be a fractional
Brownian motion with Hurst parameter H and variance t2H . For proper definition
of Y (t), such that Y (t) has finite values, we have to assume H < β. This model
is considered in queueing applications to model teletraffic. Here β = 1 for linear
service, see Norros [353], [354]. The process Y (·) is also applied in financial models,
see Dacorogna et al. [88].
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The particular probability P (Y (0) > u) = P (supt≥0(X(t) − ct) > u) with
β = 1 is discussed above in relation to ruin probabilities, as u →∞. The extremes
of the storage model Y (t) on a finite interval [0, T ] have been investigated by
Piterbarg [376], also as u →∞. He applied the relation

P

(
sup

t∈[0,T ]
Y (t) ≤ u

)
= P

(
sup

s∈[0,T/u], τ≥0
Z(s, τ) ≤ u1−H

)
where Z(s, τ) is the Gaussian random field

Z(s, τ) = [X(u(s + τ)) − X(us)]/[uH(1 + cτ)].

Z(s, τ) is stationary in s for fixed τ and has a maximal variance

σ =
(

H

c(1 − H)

)H

(1 − H)

at τ = τ0 = H/(c(1−H)). The supremum of Z(s, τ) occurs in a small neighborhood
of τ0, more precisely in a strip {0 ≤ s ≤ [T/u], |τ −τ0| < ε}, for a suitable ε = ε(u).
Hence it can be shown that

P

(
sup

t∈[0,T ]
Y (t) > u

)
∼ √

2πC1H2
2HT u

2
H (1−H)+H−2Φ̄(u1−H/σ)

where C1 = τ−3
0 (H(1 − H))−1/22−2/H . This property holds even for T depending

on u as long as T is not tending too fast to ∞ or to 0 (see Hüsler and Piterbarg
[259]). Albin and Samorodnitsky [3] generalize the result of Piterbarg [376] for
self-similar and infinitely divisible input processes.

The maximum of the storage process on a growing interval [0, T ] increases as
T → ∞, and has to be normalized if it grows fast at a certain rate in relation to the
boundary u. If this maximum M(T ) = max[0,T ] Y (t) is normalized suitably, then
its distribution converges to a Gumbel distribution; for β = 1 (hence assuming
H < 1)

P (MT ≤ b(T ) + x a(T )) → exp(−e−x)
as T →∞ where

b(T ) = (2σ2 log(T ))1/(2(1−H)) +
[

h(2σ2)1/(2(1−H)) log(2σ2 log(T ))
4(1 − H)2

+ (2σ2)1/(2(1−H)) log(c̃)
2(1 − H)

]
(log(T ))−(1−2H)/(2(1−H)

and
a(T ) = (2σ2)1/(2(1−H))

2(1 − H)
(log(T ))−(1−2H)/(2(1−H))

with h = 2(1 − H)2/H − 1, c̃ = 2−2/H H2
2H τ2H−5

0 H−1/2(1 − H)3/2−2/H and σ, τ0
as above. This is shown in Hüsler and Piterbarg [259].
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Change-Point Regression and Boundary Crossing

In statistical analysis of quality control we often have to investigate whether the
production process is under control or whether it is getting worse, i.e., that there
occurred a change point during the production where the production deviated
from the standards. In the latter case the production process has to be fixed. Thus
observing the process we have to decide by some suitable procedure whether a
change point has occurred. Such a process is usually modelled as a regression model
X(t) = f(t) + Y (t) where f is the trend (regression) function, Y (t) a process with
mean μ and variance σ2, and X(t) the measurements of the production process.
The process is under control when f(t) ≡ μ = 0, say. The process is usually
observed in a fixed interval, set to be [0, 1]. Hence the statistical hypotheses to be
tested are H0: f ≡ 0 against the alternative H1 : f(0) = 0, f(−1) = limt↑1 f(t) > 0
and f is non-decreasing and right-continuous.

The partial sum process is the statistical process to be used for testing the
hypotheses. A finite number of measurements are taken, often at equidistant points
tni = i/n, i = 1, . . . , n, say. In the limit (n → ∞) the normalized partial sum
process is under the null hypothesis a Brownian motion. The trend function is
also replaced by the partial sums of f(i/n). The class of alternative hypotheses
can be written in the limit with a non-decreasing function g with g(1) = 1, say,
as general trend and a parameter γ, setting h = hf = γg. A suitable test statistic
for the given test situation is the Kolmogorov type statistic, i.e., the test function
is supt∈[0,1] B(t). To control the α-level of the test we apply the critical value uα

such that P (sup[0,1] B(t) > uα) = α. Now for comparisons with other tests or for
a given application with a fixed trend we are interested in the power of the test.
Thus we should determine

P (sup
[0,1]

(γg(t) + B(t)) > uα)

for γ > 0. But this is equal to

1 − P (B(t)) ≤ uα − γg(t), for all t ∈ [0, 1]}

a boundary crossing problem. Such problems are investigated for certain classes
of trend functions g. E.g. if g(t) = 0 for t ≤ τ and linear after some point τ ,
which corresponds to a change point τ ∈ (0, 1) and level change of f , i.e., for some
a > 0: f(t) = a1(τ ≤ t), then the power can be derived accurately (Wang and
Pötzelberger [453], Janssen and Kunz [271] and Bischoff et al. [49]). Note that for
γ →∞, the probability of not crossing the boundary uα − γg(t) by the Brownian
motion tends to 0. Several authors dealt with such problems with certain classes of
trend functions g, but accurate approximations are not always possible. In general
by large deviations principles, a rough approximation is possible. For instance one
can show for a certain class of g with g(t) =

∫
[0,t] f(s)ds, t ∈ [0, 1], f ∈ L2([0, 1], λ),
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λ Lebesgue measure, that

P

(
sup

t∈[0,1]
(γg(t) + B(t)) > uα

)
= 1 − exp

(
−1

2
γ2||g̃||2 + O(γ)

)
for γ → ∞, where g̃ is the smallest concave non-decreasing majorant of g and
||g||2 =

∫
[0,1] f2(s) ds. Other related results with respect to the Brownian bridge

are discussed e.g. in Bischoff et al [47], [48] and [50]. Some of these results can be
applied for power calculation even for moderate γ with a good accuracy (Bischoff
et al [47]).

10.4 Application:
Empirical Characteristic Functions

Statistical procedures have been introduced which are based on the behavior of
the real part of the empirical characteristic function

Un(t) =
1
n

∑
j≤n

cos(tYj),

where Yj , j ≥ 1, are iid rv with distribution FY . Let us denote the real part of
the theoretical characteristic function by

u(t) = E(cos(tY1)).

The First Zero

The statistical procedures based on the empirical characteristic functions and
their efficiencies depend on a so-called ‘working’ interval In = (−tn, tn) such that
Un(t) �= 0 for all t ∈ In (cf. Heathcote and Welsh [214], Welsh [460], Welsh and
Nicholls [461], Csörgő and Heathcote [83]). This gives rise to the question of the
maximal size of In determined by the empirical first zero Rn of Un(·):

Rn = inf{t > 0 : Un(t) = 0}.

Rn depends on the first zero of u(·) denoted by

r0 = inf{t > 0 : u(t) = 0} ≤ ∞.

As expected Rn → r0 (a.s.) as n →∞ under certain conditions (see Welsh [460]).
We are interested in the limiting distribution of Rn in the particular case r0 = ∞.
(For r0 < ∞, see Heathcote and Hüsler [213]).

If r0 = ∞ we can make use of the results derived in Section 10.3. The behavior
of Rn as n → ∞ depends on the behavior of u(t) as t → ∞ and as t → 0. We
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discuss here only the special case where u(t) decreases at the rate of a power
function. We suppose that

E(|Y |2) < ∞ (10.29)

and that, for some p > 0,

u(t) = at−p(1 + ε(t)/ log(t)), where lim
t→∞ ε(t) = 0, (10.30)

such that r0 = ∞, u′′(·) exists, u′(t) → 0 and u′′(t) → 0 as t → ∞. These
conditions hold if for instance Y has an exponential or more general a gamma
distribution.

(10.29) and (10.30) imply that the process {n1/2(Un(t) − u(t)), t > 0} con-
verges in distribution to a continuous Gaussian process {X(t), t > 0}, with mean
0 and variance σ2(t) and that the standardized process {X(·)/σ(·), t > δ} for some
δ > 0 is a locally stationary Gaussian process with α = 2 and

C(t) =
(
− u′′(0) + u′′(2t) − 2u′2(t) − (u′(2t) − 2u(t)u′(t))2/(2σ2(t))

)/(
4σ2(t)

)
.

Here σ2(t) = (1 + u(2t) − 2u2(t))/2 with σ2(0) = 0 and σ2(t) → σ2(∞) = 1/2 as
t →∞. If the assumptions (10.29) and (10.30) are satisfied, then C(t) → C(∞) =
−u′′(0)/2 as t →∞.

Convergence Result

For some normalization tn,

P (Rn > tn) = P (
√

n(Un(t) − u(t)) > −√nu(t), t ≤ tn)

∼ P (X(t) > −√nu(t), t ≤ tn)

= P (X(t) <
√

nu(t), t ≤ tn)

∼ P (X(t) ≤ √
nu(t), δ ≤ t ≤ tn),

for any δ > 0, since the probability of an exceedance of
√

nu(·) by X(·) in [0, δ) is
asymptotically 0.

For tn → ∞ the approximation of {n1/2(Un(t) − u(t)), 0 < t ≤ tn} by
{X(t), 0 < t ≤ tn} follows from a strong approximation theorem (given in Csörgő
[82]). The probability

P (X(t) ≤ √
nu(t), δ ≤ t ≤ tn)

is approximated by using Theorem 10.3.5, if all the conditions can be verified. We
prove the following result using the normalization

tn = (2pa2n/ log(n))1/(2p)
(

1 +
(

1 + 1
2p

)
log log(n)

log(n)
+ x − A

log(n)

)
(10.31)
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where
A = 1

2
log

(
C(∞)/(2π2)

)
+ 1

2p
log(2a2p).

Theorem 10.4.1. Assume that (10.29) and (10.30) hold for the iid rv Yj. Then
for tn given in (10.31) and any δ > 0,

P (X(t) ≤ √
nu(t), δ ≤ t ≤ tn) → exp(−ex)

for all x ∈ R, as n → ∞ and, thus,

P (Rn ≤ tn) → 1 − exp(−ex).

Proof. We sketch only the verification of some conditions of Theorem 10.3.5. Note
that C(t) = C(∞)(1 + o(1)) and σ2(t) = 1/2 + O(t−p) for t →∞. Thus

nu2(t)/σ2(t) = 2na2t−2p(1 + ε∗(t)/ log(t))

for ε∗(t) → 0. Hence mint≤tn un(t) :=
√

n mint≤tn(u(t)/σ(t)) → ∞. By Theorem
10.3.5 we have to calculate now the integral J(tn) for some δ > 0:

J(tn) = 1√
π

C1/2(∞)
∫ tn

δ

ϕ(un(t)) dt + o(1).

This can be approximated by splitting up the interval [δ, tn] into two parts with
intermediate point yn = (2pa2n/ log(n))(1−θ)/2p where 0 < θ < 1. The first part
of the integral is asymptotically negligible since the boundary is tending fast to
∞, whereas the second part leads to J(tn) → exp(x) as tn →∞. The verification
of the smoothness condition (10.11) is somewhat tedious. Berman’s condition can
also be verified. For details see Heathcote and Hüsler [213].

The limit distribution of Rn is similarly derived for cases where u(·) has a
different rate of decrease or a different local behavior at t = 0 than assumed in
Theorem 10.4.1, e.g., if Yj has a normal or a stable law (cf. Heathcote and Hüsler
[213], Hüsler [244] or Bräker and Hüsler [54]).

10.5 Extensions: Maxima of Gaussian Fields
Denote by Xi(w), i ≥ 1, independent copies of a Gaussian process X(w) with
w ∈ W ⊂ R

d, mean 0, variance 1 and continuous sample paths. Let W be an
open set which contains 0. Assume that the covariance function r(w, w′) of X(w)
satisfies for some 0 < α ≤ 2 and cα > 0,

r(sw, sw′) = 1 − γ(|w − w′|)L(s)sα + o(sα) for s → 0 (10.32)

where the o-term is uniform in w and w′, L a slowly varying function at 0, and
γ(w) a non-negative continuous function satisfying γ(cw) = cαγ(w) for any w ∈ D
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and c ≥ 0. Here, | · | denotes the Euclidean norm in R
d. In Theorem 7.4.3 we

mentioned the limiting process if the Gaussian process is a Brownian motion or,
by transformation, an Ornstein-Uhlenbeck process with d = 1 and α = 1, a result
of Brown and Resnick [55]. Kabluchko et al. [280] considered the more general case
of the maximum process Mn(w) of Xi(w), i ≤ n, with the usual normalization an

and bn of Gaussian rv, by introducing the suitable normalization cn for the space
parameter w:

cn = inf{s > 0 : L(s)sα = 1/b2
n}.

They showed in [280] that the linearly normalized maximum process (Mn(cnw)−
bn)/an converges to a process ηα, called a Brown-Resnick process where an =
(2 log n)−1/2 and bn =

√
2 log n − ( 1

2 log log n + 1
2 log(2π)

)
/
√

2 log n. The space of
continuous real functions with a compact support K are denoted by C(K).

Theorem 10.5.1. Under the assumptions (10.32),

(Mn(cnw) − bn)/an → ηα(w)

weakly on C(K) for every compact K ⊂ D.

The limiting process ηα can be characterized for general α. Kabluchko et al.
[280] showed that the process ηα(w) is defined as

ηα(w) = max
i≥1

(Ui + Wi(w))

where Ui are the points of a standard Poisson process, and Wi(w) are iid fractional
Brownian processes with Hurst parameter α/2 and with drift

E(Wi(w)) = −|w|α

and covariance function

Cov(Wi(w), Wi(w′))) = |w|α + |w′|α − |w − w′|α.

The process ηα is stationary with Gumbel marginal distributions and has
continuous paths (see [280]). If the slowly varying function L(s) tends to c > 0,
then cn = (2c log n)−1/α.

This approach is extended by Kabluchko [281] for time-spatial Gaussian pro-
cesses X(t, w) with a time parameter t > 0 and a space parameter w ∈ R

d. One
assumes again that X(t, w) has mean 0 and variance 1, and defines the maximum

Mn(w) = max
0≤t≤n

X(t, w)

for the site w. We need to scale the space parameter to derive a non-trivial limit-
ing process, otherwise the maxima of Mn(w) and Mn(w′) for w �= w′ are asymp-
totically independent, assuming that the autocorrelations between the processes
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X(t, w) and X(s, w′) are not equal to 1 for some t �= s. Here we have a continuous
time parameter t instead of the index i, and we have not independent processes
or copies Xi(w) with respect to the discrete ‘time’ parameter i, as before. It is
supposed that X(s, w) is stationary with respect to s: it means that the covariance

E(X(s, w)X(s + t, w′)) =: rt(w, w′)

does not depend on s. Under adapted conditions, Kabluchko [281] showed that
the same limiting process ηα holds for the normalized maximum process, showing
that

Mn(cnw) − bn

an
→ ηα, as n →∞,

in the sense that the finite-dimensional distributions converge. He assumed the
following conditions on the covariance function:

rt(w, w′) < 1

for t �= 0, w, w′ ∈ D and the local behavior

rh1/βt(h1/αw, h1/αw′) = 1 − (cα|w − w′|α + cβ|t|β)h + o(h) for h → 0

for some α, β ∈ (0, 2] and positive constants cα, cβ, where the o-term is uniform
for w, w′ ∈ D and t ∈ I with bounded I. Since the time-spatial process X(t, w)
does not consist of independent spatial processes Xi(w) as in [280], one has to
restrict the correlation for large gaps t →∞. As usual for the Gaussian processes,
Berman’s condition is assumed: rt(w, w′) log t → 0 as t →∞, for w, w′ ∈ D.

Also the norming sequences have to be adapted, using the norming sequences
of continuous time Gaussian processes. We set an = (2 log n)−1/2,

bn =
√

2 log n + 1√
2 log n

(
2 − β

2β
log log n + log

(
c

1/β
β Hβ2(2−β)/(2β)

√
2π

))

with Pickands constant Hβ , and cn = (2cα log n)−1/α.



Chapter 11

Extensions for Rare Events

In the following sections we discuss some extensions which were mentioned in the
previous chapters. Of main interest is the extension to general rare events in re-
lation to a random sequence applying the same method as used for dealing with
exceedances. In addition we treat now also the point process of all exceedances if
clustering occurs. These results are applied to the processes of peaks over a thresh-
old and of rare events. Finally, in the same way general rare events are considered
without relation to a random sequence. Here triangular arrays of rare events will
be analyzed by the same approach. This extension unifies easily the different local
dependence conditions. Its application to multivariate extremes is then straight-
forward. As a particular case, triangular arrays of rare events in relation with
exceedances of Gaussian sequences are considered since they are basic for maxima
of a continuous Gaussian process. This analysis reveals also a new definition of
Pickands constants.

11.1 Rare Events of Random Sequences
We mentioned at the end of Section 9.1 that the generalization of the theory
for exceedances to a theory for rare events is rather straightforward. This gene-
ralization is the subject of this short section. Instead of the event {Xi > uni} at
time i or i/n, consider the event {Xi ∈ Ani} with Ani a Borel set. Generalizing
the uan condition, we assume

pn,max = sup
i≤n

P (Xi ∈ Ani) → 0 as n →∞ (11.1)

and replace condition (9.1) by

lim sup
n→∞

∑
i≤n

P (Xi ∈ Ani) < ∞, (11.2)

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,  
DOI 10.1007/978-3-0348-0009-9_11, © Springer Basel AG 2011 
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which means that {Xi ∈ Ani} are rare events. Using the notation introduced in
Section 9.1, we will analyze the point processes of the rare events. Thus in analogy
to the point process of exceedances, the point process of upcrossings and the point
process of cluster positions, we define the point process of rare events, the point
process of entering a rare set and the point process of cluster positions of rare
events

Nn(B) =
∑

i∈nB

1{Xi ∈ Ani},

Ñn(B) =
∑

i∈nB

1{Xi−1 �∈ An,i−1, Xi ∈ Ani}

and

N∗
n(B) =

∑
j≤kn

1{Nn(Bj ∩ B) �= 0},

for some kn. The intervals Bj are chosen in the following way: B1 = (0, i1/n] with∑
i≤i1

P (Xi ∈ Ani) ≤
∑
i≤n

P (Xi ∈ Ani)/kn,

where i1 is maximally chosen (compare Section 9.1), and in the same way

B2 = (i1/n, i2/n], . . . , Bkn = (ikn−1/n, ikn/n]

are constructed.
Obviously, the conditions D and D∗ have to be redefined. Let αn,m be such

that for fixed n and for any integers 1 ≤ j1 < · · · < jp < j′
1 < · · · < j′

q ≤ n for
which j′

1 − jp ≥ m,∣∣∣P (Xjl
�∈ Anjl

, l ≤ p, Xj′
h
�∈ Anj′

h
, h ≤ q)

− P (Xjl
�∈ Anjl

, l ≤ p) × P (Xj′
h
�∈ Anj′

h
, h ≤ q)

∣∣∣ ≤ αn,m.

Definition 11.1.1. We say that condition D(Ani) or just D holds if

αn,mn → 0 as n →∞ (11.3)

for a sequence {mn} satisfying mnpn,max → 0 as n →∞.

Again, we choose {kn} such that, as n →∞,

kn(αn,mn + mnpn,max) → 0. (11.4)
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Let the sequence α∗
n be such that∑

i<j,j+1∈I

P (Xi ∈ Ani, Xj �∈ Anj , Xj+1 ∈ An,j+1) ≤ α∗
n,

for any I = {l1 ≤ i ≤ l2 ≤ n} with∑
i∈I

P (Xi ∈ Ani) ≤
∑
i≤n

P (Xi ∈ Ani)/kn.

Definition 11.1.2. Condition D∗(Ani) or just D∗ holds if knα∗
n → 0 as n →∞,

where {kn} satisfies (11.4).

Convergence of the Point Processes

Modifying the proofs of Section 9.1, we obtain the following results. We again
assume that λ(·) and μ(·) are continuous functions such that the limiting point
processes are simple.

Theorem 11.1.3. Suppose that conditions D(Ani) and D∗(Ani) hold for a random
sequence {Xi, i ≥ 1} and Borel sets {Ani, i ≤ n, n ≥ 1}, satisfying (11.1) and
(11.2). Then

(i) Ñn →D Ñ , a Poisson process with intensity measure μ(·), with μ((0, 1]) < ∞
is equivalent to∑

i≤nt

P (Xi �∈ Ani, Xi+1 ∈ An,i+1) → μ(t), t ≤ 1, (11.5)

where μ(·) is a continuous function with μ((0, t]) = μ(t) and μ(1) < ∞.

(ii) If in addition to (11.5)∑
i≤nt

P (Xi ∈ Ani) → λ(t), t ≤ 1 (11.6)

with λ(1) < ∞, then λ(1) = μ(1) is equivalent to E(||Nn − Ñn||) → 0 and it
follows that Nn →D Ñ .

(iii) N∗
n →D Ñ , is equivalent to (11.5), and it follows that

E(||N∗
n − Ñn||) → 0

as n →∞.

The condition D∗(Ani) restricts the pattern of the occurrence of rare events
in the same way as that of the exceedances. Instead of considering the events
Eni = {Xi ∈ Ani}, we may treat any triangular array of general events Eni not
necessarily being represented in terms of a random sequence and Borel sets. The
same approach can be used for general rare events {Eni}. This is discussed briefly
in Section 11.5.
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Example 11.1.4. Consider again the stationary max-autoregressive sequence of
Example 9.2.3:

Xi = c max(Xi−1, Yi) for i ≥ 2,

where 0 < c < 1, {Yi} is an iid sequence with distribution H(·), X1 is a rv which is
independent of {Yi}. {Xi} is stationary if F (x) = F (x/c)H(x/c) is satisfied with
F (·) denoting the distribution of Xi. We only deal with the case F ∈ D(G1,α), the
case where clustering occurs. As rare sets we consider the intervals

An = (βan, an]

where 0 < β < 1, and an = an(x) denotes the norming sequence such that
nF̄ (an) → x−α = τ∗, with some x > 0, α > 0. Note that also H ∈ D(G1,α) and
nH̄(an) → τ∗(c−α − 1).

It is easily seen that (11.1) and (11.2) hold, since

nP (Xi ∈ An) = n(F̄ (βan) − F̄ (an)) → (β−α − 1)τ∗.

Because of the stationarity we get immediately that λ(t) = λt and μ(t) = μt with

λ = (β−α − 1)τ∗

and if β ≥ c,

μ = lim
n→∞ nP (X1 �∈ An, X2 ∈ An)

= lim
n→∞ n

(
P (X1 ≤ βan, X2 ∈ An) + P (X1 > an, X2 ∈ An)

)
= lim

n→∞ n
(
P (X1 ≤ βan, cY2 ∈ An) + P (βan/c < X1 ≤ an/c)

)
= lim

n→∞ n
[
H̄(βan/c) − H̄(an/c) + F̄ (βan/c) − F̄ (an/c)

]
= τ∗[(β−α − 1)(1 − cα) + cα(β−α − 1)

]
= τ∗(β−α − 1).

If β < c a similar derivation gives

μ = τ∗[(β−α − 1)(1 − cα) + (1 − cα)
]

= τ∗β−α(1 − cα).

This implies that the clustering index of the rare events (cf. extremal index) can
be defined as θ = μ/λ, hence

θ =
{

1 if β ≥ c,
(1 − cα)/(1 − βα) if β < c .

The verification of the mixing conditions D and D∗ is tedious but possible
(cf. Alpuim et al. [10]). By Theorem 11.1.3 we get that the point process Ñn of the
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entrances into the sets An is asymptotically a Poisson process Ñ with intensity μ.
Ñ is also the limiting point process of N∗

n, the point process of cluster positions.
Moreover, if β ≥ c there is no clustering, hence Nn →D Ñ . If β < c clustering
occurs. This is plausible, since if at some time point i we have Xi ∈ An, then
usually Xi+1 = cXi. The probability of the event {Xi ∈ An, cXi < Xi+1 ∈ An} is
asymptotically negligible. But cXi ∈ An together with Xi ∈ An is possible only if
β < c (otherwise cXi ≤ βan). In this case we are also interested in the cluster size
distribution which is analyzed in Example 11.4.3.

If we compare the clustering index of the rare events with the extremal index,
we see that the clustering index of the rare events depends on the rare sets Ani

through β, whereas the extremal index only depends on c, where the rare events
An,i = [an,∞) consider exceedances of the boundary an = an(x).

The relation of the two indexes are as follows. Instead of An we might use
A∗

n = (an, βan], β > 1. By a simple transformation of an we get for β > 1/c from
the above derivations that θ = θ(β) = (1−cα)/(1−β−α) and that θ(β) → 1−cα =
θ(∞), as β →∞. Note, θ(∞) is the extremal index.

11.2 The Point Process of Exceedances
If exceedances do cluster, then the point process of exceedances Nn does not con-
verge to a simple Poisson process in general, as was mentioned earlier. In this
section we discuss this particular case by considering exceedances of constant
boundaries.

We deal with (Radon) random measures η on [0, 1] and denote their Laplace
transforms by

Lη(f) = E

(
exp

(
−

∫
[0,1]

f dη
))

,

where f is any non-negative measurable function on [0, 1].
For a random sequence {Xi, i ≥ 1}, we denote by Nn the point process of

the exceedances
Nn =

∑
i≤n

δi/n1(Xi > un).

If {X(t), t ≥ 0} is a stochastic process in continuous time with continuous
paths, then the exceedances of uT by X(t) define a random measure ζ̃T :

ζ̃T (B) =
∫

T B

1(X(t) > uT ) dt,

where B is any Borel set in [0, 1]. In order to get non-trivial limits one has to
normalize ζ̃T usually by some constants aT . Thus let

ζT (B) = aT ζ̃T (B) .



424 11. Extensions for Rare Events

In the following we present an approach which is applicable in both the dis-
crete and the continuous time case. This approach extends the ideas and methods
from the preceding sections on the point processes of exceedances. The stationary
random measures were treated by Hsing et al. [231] and Leadbetter and Hsing
[302] and extensions to non-stationary ones by Nandagopalan et al. [347]. For a
detailed account of random measures see the monographs by Kallenberg [282],
Resnick [393] and Reiss [387].

Long Range Dependence

Instead of the long range mixing condition D we need a more restrictive mixing
condition. For any T > 0 and [a, b] ⊂ [0, 1], let

BT [a, b] = σ{ζT (B) : B is a Borel set in [a, b]}
be the σ-field generated by ζT (·) and

αT,l := sup
{
|P (A ∩ B) − P (A)P (B)| : A ∈ BT [0, s], B ∈ BT [s + l, 1],

0 ≤ s < s + l ≤ 1
}

with 0 < l < 1.

Definition 11.2.1. The family of random measures {ζT } is called strongly mixing,
if αT,lT → 0 as T →∞ for some lT → 0.

We assumed in Chapter 8 that a single exceedance of un by some rv Xi is
negligible (uan condition). Here we assume that exceedances in small intervals of
length less than lT are negligible. Thus suppose that

γT := sup{1 − E(exp(−ζT (I)) : I ⊂ [0, 1] any interval with m(I) ≤ lT }
→ 0, (11.7)

as T →∞ where m(·) denotes the Lebesgue measure.
In the following let {kT } be such that

kT (αT,lT + γT ) → 0 as T →∞ . (11.8)

Note that (11.8) holds for any bounded {kT }, but we are interested in kT → ∞.
This is possible by choosing for instance kT = min(αT,lT , γT )−1/2.

We assume that for each T > 0 there exists an interval partition {Bj, j ≤ kT }
of [0, 1] such that, for each ε > 0,

max
1≤j≤kT

P (ζT (Bj) > ε) → 0 as T →∞ . (11.9)

These Bj ’s play the same role as the Bj’s in Section 9.1.
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Extended Compound Poisson Process

The properties (11.7) and (11.9) imply for strongly mixing families of random
measures ζT that if ζT →D ζ, then the limit random measure ζ is infinitely divisible
and has independent increments. It is possible to derive the Laplace transform of
ζ. Under the additional assumption

lim sup
T →∞

P (ζT ([0, 1]) = 0) > 0,

we get

Lζ(f) = exp
(
−

∫
x∈[0,1]

∫
y>0

[
1 − exp(−yf(x))

]
dπx(y)dν(x)

)
, (11.10)

where ν(·) is a finite measure on [0, 1] and πx(·) is a probability measure on R+\{0}
(ν-a.e. x). The limit random measure can be interpreted as an extended compound
Poisson process in the sense that ν(·) indicates the intensity of the Poisson events
and πx(·) the distribution of the atom size at x, given that there is an event at time
point x. In the context of the point process of exceedances, ν(·) is the intensity of
occurrences of clusters and πx(·) is the distribution of the cluster size at x, given
that there is a cluster at time point x. In the context of sojourns, πx(·) is the
distribution of the length of a sojourn if it occurs at x. If πx(·) does not depend
on x, then ζ is a (usual) compound Poisson process.

For any finite T we have to define the analogous measures πT,x(·) and νT (·).
Let, for any y > 0 and 1 ≤ j ≤ kT ,

πT,j(y) = P (ζT (Bj) ≤ y | ζT (Bj) �= 0)

and write
πT,x = πT,j if x ∈ Bj .

Define νT (·) by νT (B) =
∑

j≤kT
P (ζT (Bj) �= 0)m(B ∩ Bj)/m(Bj).

In order for ζ to be an extended compound Poisson process, we suppose
further conditions on ζT .

We replace (11.9) by a more restrictive condition. We assume that there exists
an interval partition {Bj , 1 ≤ j ≤ kT } of [0, 1] such that (11.8) holds for kT and

max
1≤j≤kT

P (ζT (Bj) �= 0) → 0 as T →∞. (11.11)

Moreover, we need a smoothness condition: there exists an open non-empty
subset G of R+ \{0}, such that for every a ∈ G the families {gT (·, a), T > 0} with

gT (x, a) =
∫

y>0

(
1 − exp(−ay)

)
dπT,x(y)

are equicontinuous with respect to x, i.e., for every x ∈ [0, 1] and ε > 0 there exist
T (x) > 0 and δ(x) > 0 such that

|gT (x, a) − gT (x′, a)| < ε for all T > T (x) and |x − x′| < δ(x). (11.12)
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In order for ν(·) to be a finite measure, suppose that

lim sup
T →∞

νT ([0, 1]) < ∞. (11.13)

Under these conditions, convergence of the normalized random measure ζT

can be analyzed by means of the convergence of the measures νT (·) and πT,x(·)
(Theorem 4.3 of Nandagopalan et al. [347]).

Theorem 11.2.2. Let {ζT } be a family of strongly mixing random measures such
that (11.7), (11.11), (11.12) and (11.13) hold. If νT ′ →w ν′ and πT ′,x →w π′

x (ν′-
a.e. x) along a subsequence T ′ → ∞, then ζT ′ →D ζ (as T ′ → ∞), where ζ has
the Laplace transform given by (11.10), with πx and ν satisfying

dν(x) = (1 − α(x))dν′(x)

and
π′

x = α(x)δ0 + (1 − α(x))πx, ν′-a.e. x.

α(x) is completely determined by π′
x(·) since α(x) = π′

x({0}) and πx(·) is a
probability measure on R+ \ {0}. α(x) accounts for the intervals of exceedances
of asymptotical length 0. For a fixed x, α(x) can be positive, since {πT ′,x} are in
general not tight at zero. The converse of Theorem 11.2.2 is also true (cf. Nandago-
palan et al. [347]).

The generalization to d-dimensional random measures and point processes
of multivariate extreme values is rather straightforward (cf. Nandagopalan et al.
[347]).

In the following we discuss two special cases: stationary random measures
and non-stationary point processes.

Stationary Random Measures

Definition 11.2.3. A random measure ζ is called stationary, if

ζ(B) =D ζ(B + s) for any B ⊂ [0, 1], s < 1, with B + s ⊂ [0, 1].

In this case the interval partition is chosen to be Bj = ((j − 1)/kT , j/kT ],
j ≤ kT with kT →∞ such that kT (αT,lT + lT ) → 0 as T →∞. Then some of the
assumptions and definitions are simplified. We have

νT (B) = kT P (ζT (B1) �= 0)m(B) =: τT m(B)

and
πT (y) = P (ζT (B1) ≤ y | ζT (B1) �= 0), y > 0.

Since πT,x = πT , (11.12) holds. (11.13) turns out to be the condition

sup
T

τT < ∞. (11.14)
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Because of the stationarity the asymptotic negligibility assumptions (11.7)
and (11.11) hold using (11.14).

Corollary 11.2.4. Let {ζT } be a family of strongly mixing stationary random
measures on [0, 1] such that (11.14) holds with kT satisfying kT (αT,lT + lT ) → 0. If
τT ′→τ ′ and πT ′ →w π′ along a subsequence T ′ →∞, then ζT ′ →D ζ, as T ′ →∞,
where ζ is a compound Poisson process with Laplace transform

Lζ(f) = exp
(
−τ

∫
x∈[0,1]

∫
y>0

(
1 − exp(−yf(x))

)
dπ(y) dx

)
(11.15)

with
τ = (1 − α)τ ′

and
π′ = αδ0 + (1 − α)π .

This result is due to Leadbetter and Hsing [302]. They applied it to obtain
the limiting random measure for the sojourn times (above a given boundary) of a
particular stationary Gaussian process (with α = 2, cf. Chapter 10):

ζT (B) = aT

∫
T B

1(X(t) > uT ) dt,

where aT =
√

2 log(T ). Further results on sojourns for Gaussian processes are
given in Berman [39]. The extension of Corollary 11.2.4 to multidimensional sta-
tionary random measures is given in Nandagopalan et al. [347], (see also Zhang
([472]).

Point Processes

Another special case arises when the ζT ’s are point processes, denoted by Nn,
which are not necessarily stationary. In this case the probability measures πn,x are
tight at 0:

πn,x(y) = P (Nn(Bj) ≤ y |Nn(Bj) �= 0) = 0

for y ∈ [0, 1). Thus α(x) = 0 holds for all x implying ν′ = ν and π′
x = πx.

Corollary 11.2.5. Let {Nn} be a family of strongly mixing point processes on [0, 1]
such that (11.7), (11.11), (11.12) and (11.13) hold. If νn →w ν and πn,x →w πx, ν-
a.e. x as n → ∞, then Nn →D N, where N has again the Laplace transform given
by (11.10).

If {Nn} are stationary point processes, then the limiting point process N is
again a compound Poisson process. With obvious notational changes we have the
following result.
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Corollary 11.2.6. Let {Nn} be a family of strongly mixing stationary point pro-
cesses on [0, 1] such that (11.14) holds with kn →∞ satisfying kn(αn,mn +mn) → 0
as n → ∞. If τn→τ and πn →w π as n → ∞, then Nn →D N , as n → ∞, where
N is a compound Poisson process with Laplace transform

LN(f) = exp
(
−τ

∫
x∈[0,1]

∫
y>0

(
1 − exp(−yf(x))

)
dπ(y) dx

)
.

11.3 Application to Peaks-over-Threshold
We now analyze the point process of the excesses of Xi above the boundary uni.
The excess (Xi−uni)+ is in general not integer-valued and the point process will be
a marked one. From the discussion in Chapter 1, we know that the excesses follow
asymptotically a generalized Pareto distribution (cf. Section 1.3). Hence, in the
stationary case the limiting random measure can be a compound Poisson process
and in the non-stationary case an extended compound Poisson process. In the
following we will only deal with the stationary case assuming that the boundaries
are constant. The following results are due to Leadbetter [301].

Let {Xi, i ≥ 1}, be a stationary random sequence and un the boundary such
that

n(1 − F (un)) → τ ∈ (0,∞) . (11.16)
The interval partition of [0, 1] will again be given by Bj = ((j − 1)r∗

n/n, jr∗
n/n]

with r∗
n = [n/kn], j ≤ kn, and Bkn+1 = (knr∗

n/n, 1].
Exceedances may cluster because of the local dependence among the Xi. If

there is an exceedance in Bj , we consider j/kn as the cluster position. We may
associate with j/kn the corresponding maximum excess Mn(Bj)−un and analyze
then the resulting marked point process. In some applications (insurance, heavy
rainfall) it would be more informative to consider the sum of all excesses within a
block instead of only the largest one. However, considering only the largest excess
simplifies the problem. Thus, define

ζ∗
n(·) =

∑
j≤kn+1

δj/kn
(·) (Mn(Bj) − un)+ .

Note that the cluster positions are chosen as j/kn being the right endpoint of the
block Bj . Other choices for cluster positions are also possible and do not affect the
asymptotic result. By stationarity, (Mn(Bj) − un)+ are identically distributed. It
can be shown that if a certain mixing condition is satisfied, then the maximum
excesses of blocks are asymptotically independent. Moreover, it can be shown that
they follow asymptotically a generalized Pareto distribution (GPD). In general, we
have to normalize the largest excesses by a factor a∗

n (a∗
n > 0) in order to obtain

a compound Poisson process as limiting random measure. Therefore, define

ζn(·) = ζ∗
n(·)/a∗

n =
∑

j≤kn+1
δj/kn

(·) ((Mn(Bj) − un)/a∗
n)+.
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To guarantee that {ζn} is strongly mixing (Definition 11.2.1), we redefine the
mixing coefficient αT,l in this context, denoted by α̃n,m. (We use a different no-
tation for this mixing coefficient since we define rather different σ-fields in this
application). Let

Bn[k, l] = σ{(Xi − un)+ : k ≤ i ≤ l}
for 1 ≤ k ≤ l ≤ n and the mixing coefficients

α̃n,m = sup
{
|P (A ∩ B) − P (A)P (B)| :

A ∈ Bn[1, k], B ∈ Bn[k + m, n], 1 ≤ k ≤ n − m
}

.

Then the strongly mixing condition holds if

α̃n,mn → 0 for some sequence mn = o(n) . (11.17)

This condition (11.17) is slightly stronger than Δ(un) used in Section 11.4 where
the σ-fields Bn[1, k] are defined with respect to the events {Xi > un}.

To prove the convergence to a compound Poisson process, we use Corollary
11.2.4. Note again that one can always construct a sequence {kn} with kn → ∞
such that kn(α̃n,mn + mn) → 0 as n →∞.

The first two conditions (11.7) and (11.11) follow immediately since, for any
interval I = I(n) with m(I) → 0 as n →∞,

1 − E
(
exp(−ζn(I))

) ≤ P (ζn(I) �= 0)

≤
∑
i∈nI

(1 − F (un))

= (τ + o(1))m(I) → 0.

(11.14) holds since by assumption τn := n(1 − F (un)) → τ as n → ∞, hence
lim supn νn((0, 1]) ≤ lim supn τn = τ < ∞.

It remains to show that νn →w ν and πn,x ≡ πn →w π, where

νn(B) =
∑

j≤kn+1
P (ζn(Bj) �= 0)m(B ∩ Bj)/m(Bj)

= knP (ζn(B1) �= 0)(m(B) + o(1))

and by stationarity

πn,x(y) = πn(y) = P (ζn(B1) ≤ y | ζn(B1) �= 0)

for all x ∈ [0, 1]. We write again F̄ (x) = 1 − F (x) and Ḡ(x) = 1 − G(x).

Lemma 11.3.1. Let {Xi, i ≥ 1} be a stationary random sequence with marginal
distribution F satisfying

lim
u→ω(F )

F̄ (u + yg(u))/F̄ (u) = Ḡ(y) , (11.18)
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for all 0 ≤ y < ω(G) with some strictly positive function g. Assume that {un} is
such that (11.16) and (11.17) hold and that the extremal index θ of the random
sequence exists. Let r∗

n = [n/kn] with kn satisfying kn (α̃n,mn + mn) → 0. Then
with a∗

n = g(un), we have

(i) for 0 < y < ω(G),

P (Mr∗
n
− un ≥ a∗

ny) = [θτḠ(y) + o(1)]/kn,

(ii) P (Mr∗
n
− un ≤ a∗

ny | Mr∗
n
− un > 0) → G(y) as n →∞.

Remark 11.3.2. Note that G in (11.18) is a GPD and (11.18) holds for any
F ∈ D(Gi), Gi an extreme value distribution (EVD) (i = 1, 2, 3).

Proof. We use (11.16), hence F̄ (un)/τ ∼ 1/n, to derive

nF̄ (un + a∗
ny) = (1 + o(1)) F̄ (un + yg(un))

F̄ (un)/τ
→ τḠ(y)

by (11.18). This implies that

P (Mn ≤ un + yg(un)) → exp(−θτḠ(y))

since θ is the extremal index of the random sequence. It can be shown that (11.17)
with respect to {un} implies (11.17) with respect to {vn} if vn ≥ un for all n.
Since vn = un + yg(un) ≥ un, we conclude that (11.17) holds with respect to this
particular sequence {vn}. By Lemma 9.1.4,

P (Mn ≤ vn) − P kn(Mr∗
n
≤ vn) → 0

and thus
P kn(Mr∗

n
≤ vn) → exp(−θτḠ(y)).

This implies the first statement and also the second one, since as n →∞,

P (Mr∗
n
≤ un + yg(un) | Mr∗

n
> un)

= 1 − P (Mr∗
n

> un + yg(un))/P (Mr∗
n

> un)

= 1 − (1 + o(1))
θτḠ(y)/kn

θτ/kn

→ 1 − Ḡ(y) = G(y).

This lemma implies now the convergence of νn and πn:

νn(B) = (m(B) + o(1))knP (ζn(B1) �= 0)
= (m(B) + o(1))knP (Mr∗

n
> un)
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= (m(B) + o(1))θτ

→ m(B)θτ

and

πn(y) = P (Mr∗
n
≤ un + yg(un)|Mr∗

n
> un)

→ G(y) = π(y)

for all 0 < y < ω(G).

Combining these statements, we obtain the following result of Leadbetter
[301].

Theorem 11.3.3. Let {Xi, i ≥ 1} be a stationary random sequence with extremal
index θ and marginal distribution F satisfying (11.18). Assume that {un} is such
that (11.16) and (11.17) hold. Then

ζn →D ζ,

a compound Poisson process with intensity θτ and compounding distribution G.

11.4 Application to Rare Events
In Section 11.1 we dealt with rare events {Xi ∈ Ani} instead of the exceedances.
The results of Section 11.2 are now applied to the point process defined by these
rare events.

Again, let {Xi, i ≥ 1} be a random sequence and {Ani, i ≤ n, n ≥ 1} be
a triangular array of Borel sets in R such that (11.1) and (11.2) hold. We assume
that the point process Nn of the rare events defined by

Nn(·) =
∑
i≤n

δi/n(·)1(Xi ∈ Ani)

is strongly mixing. This assumption is implied by the condition Δ(Ani) which is
defined in the same way as Δ(un) in Section 11.3, where we use now obviously the
σ-field

Bn[k, l] = σ{{Xi ∈ Ani}, k ≤ i ≤ l}
and as always αn,m with respect to these σ-fields.

Definition 11.4.1. Condition Δ(Ani) is said to hold if αn,mn → 0 for some
sequence {mn} satisfying mnpn,max → 0 as n →∞.

This condition is more restrictive than D(Ani) used in Section 11.1. Then
Corollary 11.2.5 is used to derive the following general result. To define πn,x and
νn, use the partition Bj , j ≤ kn, of [0, 1] introduced in Section 11.1 with kn →∞ as
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in (11.4). Note that in this case νn →w ν = μ where μ is given in (11.5), assuming
D∗(Ani). By the construction of these Bj ’s, condition (11.11) holds using (11.2).

Condition (11.7) is restated in terms of Nn(I), i.e.,

γn = sup{1 − E(exp(−Nn(I))) : I ⊂ [0, 1] any interval with m(I) ≤ mn}
→ 0 as n →∞. (11.19)

Corollary 11.4.2. Let {Xi, i ≥ 1} be a random sequence and {Ani, i ≤ n, n ≥ 1}
a triangular array of Borel sets such that Δ(Ani), D∗(Ani), (11.1) and (11.2) hold.
Suppose that also (11.5), (11.12) and (11.19) hold. If πn,x →w πx (μ-a.e. x) as
n → ∞, then Nn →D N, where N has again the Laplace transform given by
(11.10).

This result is simplified further if we assume a stationary random sequence
{Xi} and a ‘constant’ array Ani = An for all i ≤ n, as in the following example.

Example 11.4.3. We apply this result to the stationary max-AR(1)-random se-
quence {Xi} discussed in Section 11.1. We consider An = (βan, an] with 0 < β <
c < 1. Obviously, (11.1), (11.2), (11.12) and (11.19) are satisfied. We mentioned
in Section 11.1 that D∗(An) and (11.5) hold. Note that (11.5) implies the weak
convergence of νn. Also Δ(An) can be verified with some tedious calculations. This
follows in a similar way as in Alpuim et al. [10].

Thus it remains to verify that πn →w π. Let J = max{j : cj ≥ β}. Since
An = (βan, an], the cluster size is bounded from above by J + 1. Note that a
cluster starts at i + 1 if, for some j ≥ 1,

Xi �∈ An, Xi+l ∈ An, for all 1 ≤ l ≤ j .

The cluster size is then at least j. We get for j ≤ J + 1,

P (Xi �∈ An, Xi+l ∈ An, l ≤ j)
= P (Xi �∈ An, clYi+1 ∈ An, l ≤ j)

+ P (Xi �∈ An, clXi ∈ An, l ≤ j) + o(1/n)
= P (Yi ∈ (βan/cj, an/c]) + P (Xi ∈ (an, an/c])1(j ≤ J)

+ P (Xi ∈ (βan/cJ+1, an/c])1(j = J + 1) + o(1/n)

= x−α
(

(1 − cα)[(β−αcα(j−1) − 1) + 1(j ≤ J)]

+ (β−αcαJ − 1)cα1(j = J + 1)
)

/n + o(1/n) .

Then with B1 = (0, 1/kn] and D∗(An) we get

P (Nn(B1) ≥ j) =
∑

i≤n/kn

P (Xi �∈ An, Xi+l ∈ An, l ≤ j) + o(1/kn)

=

{
x−α(1 − cα)β−αcα(j−1)/kn + o(1/kn) for j ≤ J,

x−α(β−αcαJ − 1)/kn + o(1/kn) for j = J + 1 .
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This implies

P (Nn(B1) �= 0) = x−α(1 − cα)β−α/kn + o(1/kn)

and, thus,

1 − πn(j) = P (Nn(B1) > j)
P (Nn(B1) �= 0)

→ 1 − π(j)

=

⎧⎪⎨⎪⎩
cαj for 1 ≤ j < J,

(cαJ − βα)/(1 − cα) for j = J,

0 for j = J + 1 .

Corollary 11.4.2 implies thus the convergence of the point process Nn of rare
events {Xi ∈ An} to a compound Poisson process which has Laplace transform
given in (11.15), where π(·) is given above and τ = x−αβ−α(1 − cα).

We can verify easily that the mean cluster size, which is the reciprocal of the
clustering index of the rare events, is equal to (1−βα)/(1− cα). Hence θ indicates
the reciprocal value of the mean sojourn number of the random sequence in the
rare set An.

Example 11.4.4. If the stationary sequence Xi, i ≥ 1, is sampled only at certain
time points, e.g. periodically, one may deal with the cluster behavior of the (sub)-
sampled sequence. If the original sequence shows a clustering of exceedances, we
may expect a clustering of such events also for the sampled version. But the clus-
tering depends also on the sampling pattern. This is investigated e.g. by Robinson
and Tawn [397], Scotto et al. [405], Hall and Scotto [200] and Martins and Ferreira
[324] with further references. Define the sampling scheme by the function g(i):

g(i) = 1 + (i − 1) (mod I) + T [ i − 1
I

]

for integers n, I and T , where 1 ≤ I ≤ T , and [x] denotes as usual the largest integer
smaller than or equal to x. The sampled sequence consists of Yi = Xg(i), i ≥ 1. If
I = T , then all integers are selected, i.e., Yi = Xi for each i ≥ 1 . If I = 1, then the
sampling is periodical, i.e., Yi = X1+(i−1)T . For the other values I, the sampling
uses the first I consecutive observations of a block of T observations.

Since the sampling scheme is non-random, the events of exceedances can
be imbedded in the general scheme of rare events {Xi ∈ Ani}. This follows by
setting A�

ni = R for each index i which is not sampled, i.e., i �= g(k) for some k,
and otherwise at sampled points Ani = [un,∞) where un is the usual threshold
of the original sequence Xi. Obviously, the cluster sizes of exceedances of the
sequence {Yi} are smaller than the cluster sizes of the original sequence {Xi},
hence θY ≥ θX . An upper bound of the extremal index is derived by Robinson
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and Tawn [397] in the case of regular sampling with I = 1. Under a certain
condition the extremal index can be derived precisely for the general sampling
scheme defined above with respect to a function g(·), see e.g. Martins and Ferreira
[324].

Random Thinning of a Stationary Sequence or Process

Instead of a deterministic sampling one might discuss a random sampling. This
corresponds to the random thinning of the occurring exceedances. The situation
occurs in random processes which model failures of measuring devices where either
observations are lost or replaced by observations of independent sequences, see Hall
and Hüsler [198]. It can be adequately investigated by the point process approach.

The problem is motivated from environmental applications and communi-
cation systems where the occurrence of large values (e.g. pollution levels, service
or downloading times) may significantly affect health or quality of life and where
not all data are available. Missing values may occur according to some random
pattern.

The missing scheme for general processes has been considered by Weissman
and Cohen [459] for the case of constant failure probability and independent
failures by dealing with the related point processes of exceedances. A general sam-
pling of non-stationary Gaussian sequences is investigated in Kudrov and Piter-
barg [298]. They derived the joint distribution of the maxima Mn of all data up
to time n and of the partial maxima Mn,Gn of the data with time points in a set
Gn ⊂ {1, . . . , n}, growing with n, by assuming certain restrictions on the corre-
lation function of the stationary Gaussian sequence, the trend and the sampling
scheme. The joint limiting distribution of the maxima Mn of all data up to time n
and the randomly sampled maxima Mn,Gn is investigated for stationary sequences
by Mladenović and Piterbarg [338] under similar dependence conditions as men-
tioned in Chapter 9. Peng et al. [361] considered this question in the particular
case of stationary Gaussian sequences, where the correlation r(k) does not always
satisfy Berman’s condition. In such a case, obviously the sample mean has to be
subtracted from the maximum, following the results of McCormick [325].

For applications, it is necessary to introduce other random failure patterns
and investigate the extremal properties of such incomplete sequences. One should
consider not only failure patterns which are based on independent failures, but
also where the random failure patterns satisfy a weak dependence structure. For
instance, if a measurement device is failing because of technical problems at some
random time, then it takes a while until it is working again. Hence, the indepen-
dence of missing values is not realistic in such applications.

If a missing data value occurs, then several strategies are usually applied.
Either the missing value is (i) replaced by a predefined value x0 which can be
sometimes 999 (if one is interested in small values and no such large values occur)
or -1 (if one is interested in large values and no negative values occur), (ii) the
data is completely lost and the time series is sub-sampled with a smaller sample
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size, or (iii) in some cases another automatic measurement device can be used for
replacing the missing data by a proxy value.

In the following we consider only the simple case where the missing data is
replaced by 0. The other cases are dealt with in Hall and Hüsler [198]. Instead of
the time series or the sequence Xk, k ≥ 1, we observe the time series Yk = UkXk,
where the Uk’s are Bernoulli rv. If Uk = 1, then the value of Xk is not missing;
otherwise Yk = 0, for Uk = 0. Hence, the missing value is replaced by 0. Since we
are interested in the maxima of the sequence Yk, which is assumed to be positive
with probability 1 (for simplicity), it does not matter that the missing value is
set to 0. We may also consider the point process of exceedances of the sequence
Yk which is the point process of exceedances of the sequence Xk, thinned by the
process Uk.

We assume that the random sequence Uk is independent of the random se-
quence Xk. However, we do not assume that the random sequence Uk consists of
iid rv as in Weissman and Cohen [459]. We want to restrict the process Uk only by
a weak dependence condition. As usual we assume that the sequence Xk satisfies
weak dependence conditions, that either condition Δ(un) or both the conditions
D(un) and D′′(un) hold. See Chapters 9 and 11 for these conditions. We note that
condition D′′(un) is condition (11.27) with k = 2.

Typically, one assumes that the boundary un satisfies the condition (9.2),
i.e., n(1−F (un)) → λ < ∞ with the marginal distribution F of the sequence Xk.
Condition (9.2) is usually convenient, but not adapted for a discrete distribution
where its support consists of all sufficiently large integers. Hall and Hüsler [198]
considered also distributions F , which satisfy the restriction used in Anderson [14]:
limn→∞

1−F (n)
1−F (n+1) = eα for some α > 0 which implies that

e−τ(x−1) ≤ lim inf
n

F n(x + bn) ≤ lim sup
n

F n(x + bn) ≤ e−τ(x)

where τ(x) = e−αx. This condition holds, for example, for the negative binomial
distribution, which is not in the max-domain of attraction of any extreme value
distribution.

Hall [197] showed that

e−θτ(x−1) ≤ lim inf
n

P (Mn ≤ un) ≤ lim sup
n

P (Mn ≤ un) ≤ e−θτ(x) (11.20)

iff P (X2 ≤ un | X1 > un) → θ, assuming that the stationary sequence Xk satisfies
the conditions D(un) and D′′(un) with un = x + bn, for any x, together with the
Anderson condition. In this case τ(x) is of Gumbel type, i.e., τ(x) = e−x, for all
x ∈ R, and we say that the sequence Xk has the extremal index θ.

We mention here the result on the maxima of the randomly sub-sampled
sequence Yk, denoted by Mn,Y , assuming the weak distributional mixing conditions
D(un) and D′′(un). By assuming the stronger condition Δ(un), we can derive the
result of the thinned point process of exceedances (see [198]).



436 11. Extensions for Rare Events

Theorem 11.4.5. Let Uk, k ≥ 1, be a Bernoulli strongly mixing stationary se-
quence with P (Uk = 1) = β, being independent of the stationary sequence Xk, k ≥
1, for which conditions D(un) and D′′(un) hold, having extremal index θ > 0 and
cluster size distribution π. Define ∇(i) = P (U1 = 0, . . . , Ui = 0) and

θ∗ = θ

⎛⎝1 −
∞∑

j=1
π(j)∇(j)

⎞⎠ /β.

(i) If P (Mn ≤ un(τ)) → e−θτ , τ > 0, as n → ∞, then as n →∞

P (Mn,Y ≤ un(τ)) → e−θ∗βτ .

(ii) If {Xn} is such that (11.20) holds, then

lim supn→∞ P (Mn,Y ≤ un) ≤ e−θ∗βτ(x),

lim infn→∞ P (Mn,Y ≤ un) ≥ e−θ∗βτ(x−1).

The thinned sequence Yk has now the extremal index θ∗. The non-thinning
probability β has a simple and obvious impact on the limiting distribution. We can
show that the condition D(un) holds for the sequence Yk if this condition holds
for the sequence Xk, since we assume the sequence Uk to be strongly mixing, see
[198].

If the sequence Uk consists of iid Bernoulli(β), then simply we have ∇(j) =
(1 − β)j and θ∗ = θ[1 − ∑

π(j)(1 − β)j ]/β. Let us consider more generally the
example that Un is a Markov chain. We assume that

P (Un = 1 | Un−1 = 1) = P (Un = 1 | Un−1 = 1, Un−i = un−i, 2 ≤ i ≤ k) = η,

P (Un = 1 | Un−1 = 0) = P (Un = 1 | Un−1 = 0, Un−i = un−i, 2 ≤ i ≤ k) = μ

for all k ≥ 2, un−2, . . . , un−k ∈ {0, 1}, n > k. Given any values of η, μ ∈ [0, 1], it is
easy to obtain

β = μ

1 − η + μ
. (11.21)

Given a value for β ∈ [0, 1], the parameters η and μ are not entirely arbitrary due
to (11.21). If for example β > 0.5, then η is restricted to be in [2 − 1

β , 1].
One can show that {Un} is regenerative with finite mean duration of renewal

epochs and hence, that it is strongly mixing. Furthermore, we obtain

∇(j) = (1 − μ)j−1(1 − η)
1 − η + μ

,

∇̄(j) = P (U1 = 1, . . . , Uj = 1) = μηj−1

1 − η + μ
.
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If the sequence Xk satisfies the conditions of Theorem 11.4.5, it implies that
the asymptotic results holds for the maximum Mn,Y of the sequence Yk with

θ∗ = (1 − eαc) μ (1 − eαc(η − μ))
(1 − η + μ) (1 − eαc(1 − μ)) β

.

The failure of devices implying that data are missing can be extended to
the multivariate situation, where Xn and Un are multivariate sequences in R

d.
Again, one considers the componentwise maxima Mnj,Y of the new process Yn =
(Yn1, . . . , Ynd) with Ynj = XnjUnj and Mnj,Y = maxi≤n Yij , for 1 ≤ j ≤ d. Each
component defines on [0, 1] also a point process Nnj of exceedances Yij > unj

(with i ≤ n) above a boundary unj. The components Nnj can be combined to a
multivariate point process Nn = (Nn1, . . . , Nnd) or to a marked point process on
[0, 1] with marks in R

d.
The multivariate or marked point processes can be dealt with in the same

way as in Hall and Hüsler [198]. The convergence of multivariate point processes
is considered in Nandagopalan [346]). The details of this generalization, the con-
vergence of the point process Nn or the multivariate maximum Mn, are worked
out in Zhang [472] considering several models of failure of multivariate devices or
the partial or complete missing of the multivariate data. The results follow from
conditions which are multivariate versions of the univariate conditions used in
Hall and Hüsler [198], as the multivariate versions Δ(un), D(un), D′(un), D′′(un),
which are special cases of the mixing conditions in Chapter 11.6.

Random Search for an Optimal Value

Rare events occur also in the optimization problem. Here the optimum, say the
minimum of an objective function g : Rd → R (d ≥ 1), is investigated by a search
procedure. Typically, the function g is too complicated to find analytically the min-
imum. By a suitable algorithm, one tries to find, or to approximate the minimum
value. Quite often stochastic optimizers are applied, usually repeatedly because
the computation is rather fast. The number of internal steps of the optimizers is
denoted by n and the number of repetitions by k. The outcome of one repetition
gives a random approximation of the optimum value, denoted by mn, being the
minimum of n steps.

A very simple optimizer is using the random search algorithm. Let Xj , j =
1, . . . , n, be iid rv in R

d with Xj ∼ F and density f . These vectors will denote
the points generated within an optimization run, the ‘steps’ of the run. Then
mn = mini≤n g(Xi).

Assume that the objective function g has a global minimum gmin. If the set
of global minimum points is countable, we denote the global minimum points by
xl, 1 ≤ l ≤ L, where L is finite or infinite.

If an optimizer produces accurate solutions, the repeated independent out-
comes mnj , j ≤ k, should cluster near the optimum gmin. Thus the limiting dis-
tribution of mn (if n is large) is expected to be of Weibull type (γ < 0), under
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certain conditions. Moreover, the greater the clustering effect, the smaller the ab-
solute value of the shape parameter α = 1/γ and the better the solutions.

Define the domain Au = {x ∈ IRd : 0 ≤ g(x) − gmin ≤ u} for u small. The
domain Au can be bounded or unbounded depending on the function g. If the do-
main is bounded, we consider its d-dimensional volume |Au|. If Au is concentrated
in a lower dimensional subspace R

r, then |Au| = 0 and one has to restrict the
following derivations on this subspace R

r. Hence, let us assume that |Au| > 0. We
consider the limiting behavior of the distribution of the outcomes mn, as n →∞.

We get for the distribution of mn, by the independence of the Xj ,

P (mn > gmin + u) = P

(
min
j≤n

g(Xj) > gmin + u

)
= P (g(Xj) > gmin + u, j ≤ n)
= (1 − P (g(X1) ≤ gmin + u))n

= (1 − P (X1 ∈ Au))n = (1 − p(u))n

where p(u) = P (X1 ∈ Au). We note that the asymptotic behavior of the minimum
minj g(Xj) depends on the domain Au or more precisely, on the probability p(u)
that Xj hits Au. This probability p(u) tends usually to 0 as u → 0. If we can find
a normalization sequence un such that n p(un) → τ , then we get immediately that
(1 − p(un))n → exp(−τ) as n → ∞.

Theorem 11.4.6. Assume that g has a global minimum value gmin. Assume that
Au and the iid rv Xj (j ≥ 1) are such that p(u) = P (Xj ∈ Au) → 0 as u → 0. If
there exists a normalization u = un(x) → 0 (as n →∞) such that

np(un(x)) → h(x), for some x ∈ R,

then as n →∞,

P

(
min
j≤n

g(Xj) ≤ gmin + un(x)
)
→ 1 − exp(−h(x)).

If the function g has some isolated global minimum points xl, l ≤ L, we
can derive a more explicit statement. Assume that the set Au can be split into
disjoint sets Au(xl) = {x : g(x) − gmin ≤ u and |x − xl| < ε} for some ε > 0
and all sufficiently small u. The choice of ε has no impact on the result. It is only
necessary that the sets Au(xl) are disjoint for all u sufficiently small. Such cases
are discussed in the examples and simulations of Hüsler et al. [255] and Hüsler
[254].

Theorem 11.4.7. Assume that g has a countable number of isolated global min-
imum points xl, 1 ≤ l ≤ L ≤ ∞. Assume that each of the disjoint sets Au(xl) is
bounded and concentrated in IRr with r ≤ d, for all small u and every l ≤ L, and
that the iid rv Xj have a positive, uniformly continuous (marginal) density fr at
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the global minimum points xl, l ≤ L, where the marginal density fr corresponds to
the space of Au. If un is such that for l ≤ L uniformly,

n|Aun (xl)|r → τl < ∞ with
∑

1≤l≤L

fr(xl)τl < ∞,

then as n →∞,

P

(
min
j≤n

g(Xj

)
≤ gmin + un) → 1 − exp

⎛⎝−
∑

1≤l≤L

fr(xl)τl

⎞⎠ .

If the density fr(xl) = 0, for some l, then one has to replace such a term in
the sum by limn n

∫
x∈Aun (xl) fr(x) dx.

The examples in [255] consider the objective functions

(i) g(x, y) = ax2 + by2 for some a, b > 0 with minimum at the origin 0 = (0, 0)
and bounded domains Au = {(x, y) : ax2 + by2 ≤ u};

(ii) the two-dimensional sinc-function g(x, y) = sin(x2 + y2)/(x2 + y2) with min-
imum gmin = cos(r2

0) at points (x, y) with x2 + y2 = r2
0 , where r0 is the

smallest positive solution of r2
0 cos(r2

0) = sin(r2
0), i.e., r0 = 2.1198, and the

domain Au is a ring with center 0 and radii r0 ±
√

2u/c for some constant
c = g̃′′(r0) + o(1), where g̃(r) = sin(r2)/r2.

If the function g is rather regular, i.e., twice continuously differentiable at a
unique global minimum point, another general result can be derived (see [255]).

11.5 Triangular Arrays of Rare Events
In the first section of this chapter we discussed the extension of the theory for
extreme values to a theory for rare events. We restricted ourselves to the case
where λ(t) or μ(t) are continuous functions in t. This is a convenient assumption
simplifying the proofs, since the asymptotic point process is still a simple Poisson
process. If the limiting Poisson process is not simple, which is the case if for
instance λ(t) has some discontinuity points, the method for proving the analogous
limiting result is more complicated. Basically we have to investigate the behavior
of the Laplace transform of the point processes.

We can easily extend the theory further to more general rare events Eni which
are not necessarily of the form Eni = {Xi ∈ Ani} as in Section 11.1.

Arrays of Rare Events

Let {Eni, i ≤ n, n ≥ 1} be any triangular array of events Eni such that

pn,max = sup
i≤n

P (Eni) → 0 as n →∞ (11.22)
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and
lim

n→∞

∑
i≤n

P (Eni) < ∞ . (11.23)

The point process Nn of the rare events is defined by

Nn(·) =
∑
i≤n

δi/n(·)1(Eni).

We will apply the results of Section 11.2 in order to prove the convergence of
Nn and related point processes. We also extend the method and some results of
Section 11.1 and begin by reformulating the assumptions given there.

As mixing condition we are assuming either the condition Δ(Eni) or the
weaker condition D(Eni) which are generalizations of Δ(Ani) and D(Ani), respec-
tively. In both cases we denote the mixing coefficients by αn,m.

Definition 11.5.1. For every n and m < n, let αn,m be such that∣∣∣P (E�
njl

, l ≤ p, E�
nj′

h
, h ≤ q) − P (E�

njl
, l ≤ p) × P (E�

nj′
h
, h ≤ q)

∣∣∣ ≤ αn,m

for any choice of subsets {jl, l ≤ q} and {j′
h, h ≤ p} of {1, . . . , n} which are

separated by at least m. We say that condition D(Eni) holds if

αn,mn → 0 as n →∞
for some sequence {mn} satisfying mnpn,max → 0 as n →∞.

Definition 11.5.2. For every n and m < n let αn,m be such that

αn,m ≥ sup
{
|P (A ∩ B) − P (A)P (B)| :

A ∈ Bn[0, k], B ∈ Bn[k + m, n], 0 < k ≤ n − m
}

,

where Bn[k, l] = σ{Eni, k ≤ i ≤ l}. We say that condition Δ(Eni) holds if

αn,mn → 0 as n →∞
for some sequence {mn} satisfying mnpn,max → 0 as n →∞.

In both cases, let kn again be a sequence such that as n →∞
kn(αn,mn + mnpn,max) → 0. (11.24)

Later we also will redefine D∗(Eni) with respect to the rare events Eni. We first
reformulate D′(Eni), the most restrictive local dependence condition. Let C <
∞ be some positive constant. For every n assume that there exists an interval
partition {Bl(n), l ≤ kn} of (0, 1] such that, for all l ≤ kn,
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∑
i∈nBl(n)

P (Eni) ≤ C/kn (11.25)

and let
α′

n = sup
l≤kn

∑
i<j∈nBl(n)

P (Eni ∩ Enj) .

Definition 11.5.3. We say that condition D′(Eni) holds if a sequence of interval
partitions {Bl(n), l ≤ kn} of (0, 1] exists such that (11.25) holds and

knα′
n → 0 as n → ∞.

Denote now by λn(·) the mean number of occurrences of rare events:

λn(t) =
∑
i≤nt

P (Eni)

for t ≤ 1. Let λ(t) = lim supn→∞ λn(t) for t ≤ 1. Note that λn(·) and λ(·) are
non-negative monotonically increasing functions. λn(·) and λ(·) define measures
on B((0, 1]). We use again the same notation for functions and measures. Similar
to Lemma 9.1.6 we have

Proposition 11.5.4. Assume that the conditions D(Eni) and D′(Eni) hold for a
triangular array of rare events. For any t ≤ 1,

P
( ⋂

i≤nt

E�
ni

)
→ exp(−λ(t)) > 0

iff
λn(t) → λ(t) < ∞ . (11.26)

Point Processes of Rare Events

As in previous sections the following can be stated on the point process Nn.

Theorem 11.5.5. Assume that (11.22) and (11.23) hold for the triangular array
of rare events {Eni, i ≤ n, n ≥ 1}. If the conditions Δ(Eni) and D′(Eni) hold,
then λn →w λ on (0, 1] is equivalent to

Nn →D N

where N is a Poisson process with intensity measure λ(·).
The proof consists of verifying the assumptions of Corollary 11.2.5. Condition

D′(Eni) implies that πx(·) = δ1(·) for all x ∈ (0, 1]. For details see Hüsler and
Schmidt [265].
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Weaker Restrictions on Local Dependence

As already mentioned in Section 9.1, Chernick et al. [67] introduced for the sta-
tionary case with a constant boundary un the weaker local conditions D(k)(un),
k ≥ 1, assuming

nP
(

X1 > un, X2 ≤ un, . . . , Xk ≤ un, max
k+1≤j≤r∗

n

Xj > un

)
→ 0

as n → ∞ with r∗
n = [n/kn], where kn satisfies (11.24). For applications the

following simpler, but slightly more restrictive condition is reasonable:

n
∑

k<j≤r∗
n

P (X1 > un, X2 ≤ un, . . . , Xk ≤ un, Xj > un) → 0

as n →∞, or similarly

n
∑

k<j≤r∗
n

P (X1 > un, Xj−k+1 ≤ un, . . . , Xj−1 ≤ un, Xj > un) → 0. (11.27)

In the case k = 1, (11.27) is equivalent to the condition D′(un) (see Section 9.1)
since the events simplify to {X1 > un, Xj > un}. If k = 2, (11.27) is equivalent to
the condition D∗(un). As mentioned in Section 9.1, D(k)(un) implies D(k+1)(un)
for k ≥ 1, and similarly if (11.27) holds for some k ≥ 1, then it also holds for k +1.

Such weaker conditions can be formulated for triangular arrays of the rare
events. For every n, assume that there exists a sequence of interval partitions
{Bl(n), l ≤ kn}, n ≥ 1, of (0, 1] such that (11.25) holds with Eni replaced by
(∩1≤l<kE�

n,i−l) ∩ Eni. Condition D(k)(Eni) is said to hold if

kn sup
l≤kn

∑
i∈nBl(n)

P

(
Eni ∩

⋃
i<j,j∈nBl(n)

( ⋂
1≤h<k

E�
n,j−h ∩ Enj

))
→ 0

as n →∞. The following slightly stronger condition (11.28) generalizes (11.27) for
the case of rare events and is easier to verify than D(k)(Eni). D(k)(Eni) is implied
by the condition

knα(k)
n → 0, (11.28)

where

α(k)
n = sup

l≤kn

∑
i<j∈nBl(n)

P

(
Eni ∩

( ⋂
1≤h<k

E�
n,j−h

)
∩ Enj

)
(11.29)

with Bl(n) as above. For k = 1, (11.28) is equivalent to D′(Eni) since α′
n = α

(1)
n .

Note also that for k = 2, the condition (11.28) redefines condition D∗ = D∗(Eni)
for general rare events.
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Another possibility is to use the following simple relationships. For a given
triangular array Eni and for any fixed k ≥ 1 define the rare events

U
(k)
ni =

⋂
1≤h<k

E�
n,i−h ∩ Eni

with 1 ≤ i ≤ n, letting Eni = ∅ for i < 1 and n ≥ 1, indicating the occurrence of
a new rare event after at least k − 1 non-occurrences. Let us call such an event a
k-step rare event. Note that U

(1)
ni ≡ Eni.

If the triangular array Eni satisfies (11.22), then (11.22) holds for the trian-
gular array U

(k)
ni , with k ≥ 1. Note that (11.28) is slightly more restrictive than

D′(U (k)
ni ). The situation is similar for the long range mixing condition: Δ(Eni)

implies Δ(U (k)
ni ) for any fixed k ≥ 1. Although it is not so easy to compare the

conditions D(Eni) and D(U (k)
ni ), the statement of Lemma 9.1.4 in terms of rare

events U
(k)
ni follows by assuming either D(Eni) or D(U (k)

ni ), i.e.,

P

( ⋂
j≤kn

⋂
i∈Bj

[U (k)
ni ]�

)
−

∏
j≤kn

P

( ⋂
i∈Bj

[U (k)
ni ]�

)
→ 0.

In general, it is easier to verify D(Eni) than D(U (k)
ni ).

λn and λ in terms of U
(k)
ni are denoted by μ

(k)
n and μ(k), respectively. For

t ∈ (0, 1], let μ
(k)
n (t) =

∑
i≤nt P (U (k)

ni ) and μ(k)(t) = lim supn→∞ μ
(k)
n (t). We have

μ(1)(·) = λ(·).
Reformulating Nn in terms of U

(k)
ni and denoting this point process by N

(k)
n ,

we have the following implications of Theorem 11.5.5.

Corollary 11.5.6. Assume that (11.22) and (11.23) hold for the triangular array
of rare events {U

(k)
ni , i ≤ n, n ≥ 1}. If the conditions Δ(U (k)

ni ) and D′(U (k)
ni ) are

satisfied, for some k ≥ 1, then μ
(k)
n →w μ(k) (as n →∞) on (0, 1] is equivalent to

N (k)
n →D N (k),

where N (k) is a Poisson process with intensity measure μ(k)(·).

Proposition 11.5.4 can also be reformulated in terms of k-step rare events.
We note that with the above definitions⋂

i≤nt

E�
ni =

⋂
i≤nt

(U (k)
ni )�

for any k ≥ 1 and t ∈ (0, 1]. Thus we get immediately
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Corollary 11.5.7. Assume that condition D(Eni) and D′(U (k)
ni ) hold for a trian-

gular array of rare events, for some k ≥ 1. For any t ≤ 1,

P
( ⋂

i≤nt

E�
ni

)
→ exp(−μ(k)(t)) > 0

iff
μ(k)

n (t) → μ(k)(t) < ∞ as n →∞ . (11.30)

Condition D′(U (k)
ni ) implies D′(U (k+1)

ni ) for any k ≥ 1. Hence from Corollary
11.5.7, if μ

(k)
n (t) → μ(k)(t), then μ

(k+1)
n (t) → μ(k+1)(t) and μ(k)(t) = μk+1(t). The

point process N
(k)
n of the k-step rare events is obtained by deleting the points

of Nn of rare events Eni which are not k-step rare events. This special thinning
is such that the limit of N

(k)
n is a non-homogeneous Poisson process instead of

the non-homogeneous compound Poisson process N . If the conditions of Corollary
11.5.7 and (11.30) hold for some k0 ≥ 1, then such further thinning with k ≥ k0
has asymptotically no effect. We find that N (k) is the Poisson process underlying
the compound Poisson process N or N (j) for 1 ≤ j < k. Note that the point
process N

(2)
n of 2-step rare events corresponds to the process Ñn of Section 11.1

for the special rare events {Xi ∈ Ani}, as well as μ(2) to μ.

Corollary 11.5.8. Assume that (11.22) and (11.23) hold for the triangular array
of rare events {Eni, i ≤ n, n ≥ 1} and that the conditions Δ(Eni) and D′(U (2)

ni )
are satisfied. If μ

(2)
n →w μ(2) (n → ∞), then the following statements are equiva-

lent:

(i) λ(1) = μ(2)(1), implying λ(·) ≡ μ(2)(·),

(ii) E
(
||Nn − N

(2)
n ||

)
→ 0,

(iii) Nn →D N (2),

where N (2) is a Poisson process with intensity measure μ(2)(·).

This corollary compares the point processes N
(1)
n = Nn and N

(2)
n . A similar

result holds for the comparison of N
(k)
n and N

(l)
n for any 1 ≤ k < l together with

μ(k) and μ(l) instead of λ(·) and μ(2)(·).
Finally, we now consider the point process N∗

n of clusters of rare events which
is defined by

N∗
n(·) =

∑
l≤kn

δtl
(·)1(∪i∈nBl(n)Eni)

with tl the upper endpoint of Bl(n).
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Corollary 11.5.9. Assume that (11.22) and (11.23) hold for the triangular array
of rare events {Eni, i ≤ n, n ≥ 1}. If the condition D′(U (2)

ni ) is satisfied, then

lim
n→∞ E

(
||N∗

n − N (2)
n ||

)
= 0.

Moreover, if μ(2) →w μ(2) and Δ(Eni) holds, then

N∗
n →D N (2),

where N (2) is a Poisson process with intensity measure μ(2)(·).

Instead of U
(k)
ni we might as well define the rare events

V
(k)

ni = Eni ∩
⋂

1≤l<k

E�
n,i+l

for 1 ≤ i ≤ n using Eni = ∅ for i > n and n ≥ 1. These rare events correspond to
the downcrossings in the case of exceedances.

Applications

(i) The exceedances of a multivariate random sequence are defined by

Eni = {Xi �≤ un(x)},

where {Xi, i ≥ 1} denotes the multivariate random sequence, and un(x) the
vector of boundaries. By applying the above results to this special triangular
array of rare events we get the limit results for multivariate extremes. Details
are discussed in the next section.

(ii) Davis [91], [92] derived limit results for the joint distribution of minima and
maxima of a stationary random sequence. The above statements extend his
result under the condition D′(U (k)

ni ) with respect to the rare events

Eni = {Xi > anx + bn} ∪ {Xi < cnx + dn}.

and setting k ≥ 1. Moreover, a similar analysis can be performed under
these weaker dependence conditions on non-stationary random sequences by
letting

Eni = {Xi > uni} ∪ {Xi < vni},

where {uni, i ≤ n, n ≥ 1} and {vni, i ≤ n, n ≥ 1} are two general
boundaries.

(iii) For applications in the stationary case to moving average sequences see Cher-
nick et al. [67].
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Triangular Array of Rare Events Based

on Gaussian Sequences

Let us consider a triangular array of standardized Gaussian sequences Xn,i, i ≤
n, n ≥ 1, being stationary for fixed n. Assume that the correlation function rn,j =
E(Xn,iXn,i+j) depends on n also, not only on the lag j. If Berman’s condition
holds and if rn,j do not tend to 1 for fixed j, then the row-wise maxima Mn =
max{Xn,i, i ≤ n} behaves as the maxima of iid normal rv. Hence the normalized
Mn has a Gumbel limit distribution G3, discussed in Example 9.2.2. But if now
rn,j tends to 1 for a fixed j, the speed of this convergence is important. Crucial is
the condition

(1 − rn,j) log(n) → δj ∈ (0,∞]

for all j ≥ 1. Obviously, δ0 = 0. If δj < ∞ for some j, then the dependence is
so strong that exceedances may cluster. Hence the maxima Mn shows a different
behavior as if all δj = ∞, (j ≥ 1).

Hsing et al [232] showed that the limit distribution of the normalized Mn

is still the Gumbel distribution G3, but the clustering is occurring with a cluster
index θ. They showed under the long range mixing condition (a condition related
to D(Eni) with Eni = {Xn,i > uni}) which is slightly more general than Berman’s
condition, that

P (Mn ≤ anx + bn) → exp(−θe−x) = G3(x − log(θ))

as n →∞, where

θ = P (η/2 +
√

δkWk ≤ δk for all k ≥ 1 such that δk < ∞),

(θ = 1 if δ = ∞ for all k ≥ 1) with η denoting a standard exponential rv,
independent of the Wk, and {Wk : δk < ∞, k ≥ 1} being jointly normal with
means 0 and

E(WiWj) =
δi + δj − δ|i−j|

2(δiδj)1/2 .

The cluster index θ is related to Pickands constants Hα observed in the
investigations of maxima of continuous Gaussian processes, dealt with in Chapter
10. Note that the approximation of X(t), 0 ≤ t ≤ T, is based on the X(iq)’s
with grid mesh q such that qu2/α = γ → 0. Fix for a moment γ > 0. Assuming
condition (10.1) for the local behavior of the correlation function r(t) of X(t), i.e.,
1 − r(t) ∼ C|t|α, for t → 0 with 0 < α ≤ 2 and C > 0, we get (1 − rn,j) log(n) =
(1 − r(jq)) log(n) ∼ C|jq|α log(n) = C(γj)α/2 = δj using n = [T/q] and log(n) ∼
log(T ). This shows that the cluster index θ = θ(γ) < 1. If now γ → 0 we expect
that θ is related to Pickands constants Hα. This relation is discovered by Hüsler
[251]. He shows that Hα = C−1/α limγ→0 θ(γ)/γ. This gives a new definition of
Hα, mentioned in Chapter 10.2.
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However, Hα is independent of C which can be shown by transforming the
rv. Considering the limit w.r.t. C−1/αγ instead of γ, we get

Hα = lim
γ→0

C−1/αθ(γ)/γ = lim
γ→0

C−1/αθ(C−1/αγ)/(C−1/αγ)

= lim
γ→0

P (η + max
k≥1

Vk ≤ 0)/γ

= lim
γ→0

∫ ∞

0
e−xP (max

k≥1
Vk ≤ −x) dx/γ .

where Vk are normal variables with

E(Vk) = −(γk)α, Cov(Vk, Vj) = γα(kα + jα − |k − j|α)

(correcting a misprint in the paper). This shows that Hα can be interpreted indeed
as a cluster index in the continuous case of Gaussian processes.

11.6 Multivariate Extremes of Non-IID Sequences
The theory of multivariate extremes of iid rv Xi ∈ R

d, i ≥ 1, can be extended
to cover extremes of non-iid rv applying similar techniques as in the univariate
case. Again, these extensions lead to the study of the extremes of stationary and
non-stationary sequences. To study the dependent sequences we will introduce the
multivariate versions of the conditions on the local and long range dependence. An
important additional aspect in the multivariate analysis is the dependence struc-
ture among the components of the rv. It is known that the multivariate EVD are
positively dependent. The dependence structure may thus range from indepen-
dence of the components to their complete dependence.

In the following we discuss briefly the limit results for the three classes of non-
iid random sequences and the dependence structure of the limiting distributions.

We consider the partial maxima M n = (Mn1, . . . , Mnd) up to ’time’ n, de-
fined componentwise as in Chapter 4 by

Mnj = max
i≤n

Xij ,

j ≤ d, and its convergence in distribution. Let an = (an1, . . . , and) and bn =
(bn1, . . . , bnd) be normalizing sequences such that

P (Mn ≤ anx + bn) →w G(x) as n →∞.

We denote the j-th marginal distribution of G(·) by Gj(·), j ≤ d. (In general, for
j = 3, the marginal distribution G3(·) does not denote here the Gumbel distribu-
tion.

For fixed x let us define the rare events

Eni = {Xi �≤ anx + bn}
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for i ≤ n, n ≥ 1, and U
(k)
ni as in the previous section to apply the results derived for

rare events. In Section 11.5 we stated the convergence results for the normalized
maxima and the point processes Nn, Ñn, N∗

n or N
(k)
n related to the exceedances,

assuming certain conditions. These conditions can be restated in terms of mul-
tivariate extremes. For instance, (11.22) and (11.23) can be restated in terms of
U

(k)
ni :

pn,max = sup
i≤n

P (Xi−l ≤ anx+bn, 1 ≤ l < min(i, k), Xi �≤ anx+bn) → 0 (11.31)

as n →∞, and

lim
n→∞

∑
i≤n

P (Xi−l ≤ anx + bn, 1 ≤ l < min(i, k), Xi �≤ anx + bn) < ∞ . (11.32)

If k = 1 the events in (11.32) simplify to {Xi �≤ anx + bn} = Eni.
The mixing conditions Δ(Eni), D(Eni) and D′(U (k)

ni ), k ≥ 1 fixed, can be
reformulated similarly.

Theorem 11.5.5 and Corollary 11.5.6 imply the convergence of the point pro-
cesses Nn and N

(k)
n , now defined in terms of k-step upcrossings U

(k)
ni , respectively.

Again, N
(k)
n is a specially thinned version of Nn = N

(1)
n , the point process counting

all exceedances. μ
(k)
n and μ(k) depend also on x:

μ(k)
n (t, x) =

∑
1≤i≤nt

P (Xi−l ≤ anx + bn, 1 ≤ l < min(i, k), Xi �≤ anx + bn).

Again, μ(1)(·, x) is the limit of the mean number of exceedances {Xi �≤ anx+bn}.

Theorem 11.6.1. Let {Xi, i ≥ 1} be a sequence of rv. Let x ∈ R
d and an, bn

be normalizing sequences such that (11.31), (11.32), Δ(Eni) and D′(U (k)
ni ) hold for

some k ≥ 1. Then

μ(k)
n (·, x) →w μ(k)(·, x) on (0, 1] (11.33)

is equivalent to
N (k)

n →D N (k),

where N (k) is a Poisson process on (0, 1] with intensity measure μ(k)(·).
The Poisson process N (k) is in general non-homogeneous having fixed atoms

at the possible discontinuity points of μ(k)(t, x) with x fixed.
Assuming that the stated conditions hold for all x, Theorem 11.6.1 immedi-

ately implies the convergence in distribution of Mn, since by definition of U
(k)
ni ,

P (M n ≤ anx + bn) = P (N (k)
n ((0, 1]) = 0). Moreover, if we only consider events

{N
(k)
n ((0, 1]) = 0}, we can replace Δ(Eni) by D(Eni) or D(U (k)

ni ) by Corollary
11.5.7.
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However, the stronger conditions in the theorem are needed for the conver-
gence of the point process N

(k)
n which is a more informative result than just the

convergence of the normalized maxima. A couple of results can be easily derived
from this general convergence statement as mentioned also in earlier chapters on
univariate maxima, as e.g. Chapter 9.2. For the convergence of M n it is sufficient
to assume (11.33) for t = 1 only:

μ(k)
n (1, x) → μ(k)(1, x). (11.34)

Theorem 11.6.2. Let {Xi, i ≥ 1} be a sequence of rv. If for some normalizing
sequences an and bn, (11.31), D(Eni) and D′(U (k)

ni ), for some k ≥ 1, hold for all
x where μ(k)(1, x) < ∞, then P (Mn ≤ anx + bn) →w G(x) = exp(−μ(k)(1, x))
iff

μ(k)
n (1, x) →v μ(k)(1, x) on R

d. (11.35)

Stationary Multivariate Sequences

Assume that the sequence of rv {Xi, i ≥ 1} is stationary. The assumptions (11.31)
and (11.32) are both implied by

nP (X l ≤ anx + bn, 1 ≤ l < k, Xk �≤ anx + bn) → μ(k)(1, x) < ∞ (11.36)

for some k ≥ 1, with P (X1 �≤ anx + bn) → 0. This replaces condition (11.34) in
the stationary case. We have μ(k)(t, x) = tμ(k)(1, x), being continuous in t. The
term α′

n can be modified:

α′
n =

∑
k+1≤j≤r∗

n

P (X1 �≤ anx + bn, Xj−l ≤ anx + bn, 1 ≤ l < k, Xj �≤ anx + bn),

where r∗
n = [n/kn] with kn such that (11.24) holds (i.e., kn(αn,mn +mnpn,max) → 0

as n →∞). Under these conditions, the convergence in distribution for M n follows
by Theorem 11.6.2.

If k = 1, the limit distribution G(·) is a multivariate EVD and hence max-
stable (cf. Hsing [226] and Hüsler [245]). This implies that the components of the
rv Y with distribution G are associated (cf. Resnick [393]).

The same holds also for k > 1. The proof follows by Theorem 11.6.2 and
similar arguments as in Hüsler [245].

Corollary 11.6.3. Let {Xi, i ≥ 1} be a stationary sequence of rv. If for some
normalizing sequences an and bn, (11.31), D(Eni) and D′(U (k)

ni ), for some k ≥ 1,
hold for all x where μ(k)(1, x) < ∞, then

P (Mn ≤ anx + bn) →w G(x) = exp
(
− μ(k)(1, x)

)
iff the convergence in (11.36) holds vaguely on R

d. Moreover, G(·) is max-stable.
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Let k = 1. If, in addition to the conditions of Corollary 11.6.3, for all 1 ≤
j < j′ ≤ d,

nP (X1j > anjxj + bnj , X1j′ > anj′xj′ + bnj′ ) → 0 as n →∞ (11.37)

for some x with G(x) ∈ (0, 1), then the components of Y are independent: i.e.,
G(x) =

∏
j≤d Gj(xj) (cf. Galambos [167], Takahashi [438], see Theorem 4.3.2).

If the components of Y are completely dependent then G(x) = minj≤d Gj(xj).
Necessary and sufficient conditions can be formulated in a similar way. The depen-
dence structure is reflected by the so-called dependence or copula function DG(·)
defined by G(x) = DG(G1(x1), . . . , Gd(xd)). If G(·) is a multivariate EVD, then
the max-stability of G(·) can be translated into an equivalent property of the de-
pendence function DG(·). For further discussion see for instance Galambos [167],
Resnick [393], Hsing [226] and Section 4.2.

If k > 1, criteria for the complete dependence and the independence among
the components of Y can also be derived. The independence among the compo-
nents of Y does not follow from (11.37). We need in addition

nP (X1j > anjxj + bnj , Xij′ > anj′xj′ + bnj′) → 0 as n →∞ (11.38)

to hold for all 1 ≤ j �= j′ ≤ d and 1 ≤ i ≤ k. This excludes the possibility of
an exceedance both in component j at time 1 and j′ at time i(≤ k). Based on a
result of Takahashi [438] it is sufficient to show that (11.38) holds for some x with
μ(k)(1, xj) ∈ (0,∞), j ≤ d, where xj = (∞, . . . , xj ,∞, . . . ,∞).

Corollary 11.6.4. Under the assumptions of Corollary 11.6.3 we have

(i) G(x) =
∏

j≤d Gj(xj) for some x with Gj(xj) ∈ (0, 1), j ≤ d, iff

G(x) = exp(−μ(k)(1, x)) =
∏
j≤d

Gj(xj) =
∏
j≤d

exp(−μ(k)(1, xj)) (11.39)

for all x.

(ii) If (11.38) holds for some x where μ(k)(1, xj) ∈ (0,∞), j ≤ d, then G(·) has
the representation (11.39) for all x.

Statement (i) is the result of Takahashi [438], see Theorem 4.3.2, which is
used to prove (ii) (cf. Hüsler [245]).

Example 11.6.5. Consider a stationary sequence of Gaussian random vectors
{Xi, i ≥ 1}. If the autocorrelations rj,j′ (i, i′) = Corr(Xij , Xi′j′), j, j′ ≤ d, i, i′ ≥
1, satisfy Berman’s condition

sup
|i−i′|≥n

|rj,j′ (i, i′)| log(n) → 0 as n →∞ (11.40)

and sup|i−i′|≥1 |rj,j′ (i, i′)| < 1 for all 1 ≤ j ≤ j′ ≤ d, then the conditions
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D(Eni) and D′(Eni) hold; (11.38) holds if sup|i−i′|≥0 |rj,j′ (i, i′)| < 1 for j �= j′.
Thus P (Mn ≤ anx + bn) →w G(x) =

∏
j≤d Gj(xj) = exp

(−∑
j≤d e−xj

)
(cf.

Amram [12], Hsing [225], Hüsler and Schüpbach [266]).

We now consider the complete dependence. For k = 1 it can be shown that
if for some x with maxj≤d μ(1)(1, xj) = μ(1)(1, xj′ ) ∈ (0,∞),

n

(
P (X1j > anjxj + bnj , X1j′ > anj′xj′ + bnj′) − P (X1j > anjxj + bnj)

)
→ 0

as n → ∞, for all j �= j′ ≤ d, then the components of Y ∼ G are completely
dependent: G(x) = minj≤d Gj(xj). This condition is equivalent to

nP (X1j > anjxj + bnj , X1j′ ≤ anj′xj′ + bnj′) → 0. (11.41)

For the case k > 1 this condition (11.41) has to be extended. For some x with
maxj≤d μ(k)(1, xj) = μ(k)(1, xj′) ∈ (0,∞), let

nP (Xlj ≤ anjxj + bnj, 1 ≤ l < k, Xkj > anjxj + bnj ,

Xij′ ≤ anj′xj′ + bnj′ , 1 ≤ i ≤ k) → 0 (11.42)

as n →∞, for all j �= j′ ≤ d.

Corollary 11.6.6. Under the assumptions of Corollary 11.6.3 we have

(i) G(x) = minj≤d Gj(xj), for all x iff G(x) = minj≤d Gj(xj), for some x with
G(x) ∈ (0, 1).

(ii) If (11.42) holds for some x where maxj≤d μ(k)(1, xj) = μ(k)(1, xj′) ∈ (0,∞),
then

G(x) = min
j≤d

Gj(xj)

for all x, i.e., the components of Y ∼ G(·) are completely dependent.

Statement (i) is the result of Takahashi [438], see Theorem 4.3.2. Statement
(ii) follows by using similar arguments as in Hüsler [245]. Note that if the compo-
nents of Y with distribution G are pairwise completely dependent, then they are
jointly completely dependent.

If, for instance, in Example 11.6.5 rj,j′ (1, 1) = 1 for all j �= j′ and Berman’s
condition (11.40) holds, the conditions of Corollary 11.6.6 can be verified for k = 1
and therefore G(x) = minj≤d Gj(xj) = exp(− exp(−minj≤d xj)).

Independent Multivariate Sequences

If (11.31) and (11.33) hold, then the class of non-degenerate limit distributions
G(·) consists of distributions with the following property:

G∗
t (x) = G(x)/G(A(t)x + B(t)) (11.43)
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is a distribution in IR
d for all t ≤ 1 where A(·) : (0, 1] → R

d
+ and B(·) : (0, 1] → R

d

are suitable functions with A(s)A(t) = A(st) and B(st) = A(s)B(t) + B(s) for
any s, t ∈ (0, 1] (see Hüsler [242]). G∗

t (x) and G(A(t)x + B(t)) are the limit
distributions of P (Xi ≤ anx+bn, nt ≤ i ≤ n) and P (Xi ≤ anx+bn, 1 ≤ i ≤ nt),
respectively. The distributions G(·) satisfying (11.43) are continuous in the interior
of their support and form a proper subclass of the max-id distributions. They are
all positively dependent and we have, for every x,

min
j≤d

Gj(xj) ≥ G(x) ≥
∏
j≤d

Gj(xj).

Obviously, the max-stable distributions belong to this class.
The dependence structure of the limit distribution is again determined by the

asymptotic dependence structure among the components of Xi, i ≤ n. Assuming
(11.31) for all x with μ(1)(·, x) ∈ (0,∞) and (11.35) for k = 1, a necessary and
sufficient condition that Y ∼ G(·) has independent components, is given by∑

i≤n

P (Xij > anjxj + bnj , Xij′ > anj′ xj′ + bnj′) → 0 (11.44)

as n → ∞ for any 1 ≤ j < j′ ≤ d, and all x such that G(x) > 0 (i.e.,
μ(1)(1, x) < ∞). This is shown in Hüsler [242] Theorem 3. Obviously, (11.44)
reduces to (11.37) in the stationary case. Noting that the limit distributions are
not max-stable in general, we cannot make use of Takahashi’s result to derive
criteria for independence or complete dependence.

Complete dependence is treated in a similar way as in the stationary case.
We introduce a version of condition (11.41): Let for x with maxj≤d μ(1)(1, xj) =
μ(1)(1, xj′) ∈ (0,∞),∑

i≤n

P (Xij > anjxj + bnj , Xij′ ≤ anj′ xj′ + bnj′) → 0 (11.45)

as n →∞, for all j �= j′. Condition (11.45 is assumed to hold for all x with G(x) ∈
(0, 1). If (11.31) for all x with μ(1)(·, x) ∈ (0,∞) and (11.35) hold (with k = 1),
then (11.45) is necessary and sufficient for the asymptotic complete dependence
among the components Mnj.

General Multivariate Sequences

Assume that the conditions D(Eni) and D(k)(Eni), for some k ≥ 1, hold for all
x where G(x) ∈ (0, 1). Combining the results for the independent sequences with
Theorem 11.6.2, we derive statements about the class of limit distributions and
criteria for independence and complete dependence. For k = 1 the class of limit
distributions is identical to the one given by (11.43) (see Hüsler [243]). For k > 1
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the same result can be derived. In general, the independence and complete depen-
dence do not follow by (11.44) and (11.45), respectively. Therefore we introduce
the following versions of (11.38) and (11.42):∑

1≤i≤n−l+1
P (Xij > anjxj + bnj , Xi+l−1,j′ > anj′ xj′ + bnj′) → 0 (11.46)

as n → ∞ for all 1 ≤ j �= j′ ≤ d and 1 ≤ l ≤ k for all x with G(x) ∈ (0, 1);
and for all x with maxj≤d μ(k)(1, xj) = μ(k)(1, xj′ ) ∈ (0,∞), let for all j �= j′∑

0≤i≤n−k

P (Xi+l,j ≤ anjxj + bnj , Xi+k,j > anjxj + bnj, 1 ≤ l < k,

Xi+h,j′ ≤ anj′xj′ + bnj′ , 1 ≤ h ≤ k) → 0 (11.47)

as n →∞.

Corollary 11.6.7. Assume that the conditions of Theorem 11.6.2 and (11.35)
hold. Then G(·) exists and

min
j≤d

Gj(xj) ≥ G(x) ≥
∏
j≤d

Gj(xj).

(i) If (11.33) holds, the class of limit distributions is characterized by (11.43).

(ii) Independence: If (11.46) holds, then G(x) =
∏

j≤d Gj(xj) for all x.

(iii) Complete Dependence: If (11.47) holds, then G(x) = minj≤d Gj(xj) for all
x.

This presents an application of the general results of Section 11.5 for extremes
and rare events of random sequences. However, arrays of random sequences are
also of particular interest. We close this section by discussing such an example to
indicate that the results of this section can easily be extended further for arrays
of rv.

Example 11.6.8. Let {Xi(n), i ≤ n, n ≥ 1} be an array of standard Gaussian
rv, where {Xi(n), i ≤ n} are iid for every fixed n. For simplicity let d = 2. Denote
by ρ(n) = r1,2(1, 1) = E(Xi1(n)Xi2(n)). Let ((1 − ρ(n)) log(n))1/2 → λ ∈ [0,∞].
Then Mn = maxi≤n X i(n), suitably normalized, converges in distribution to Y ∼
G with Gumbel marginal distributions. As mentioned in Example 4.1.4, if λ = 0,
then the components of Y are completely dependent and if λ = ∞, then they
are independent, as in Example 11.6.5. To prove these dependence structures, we
might use the condition (11.38) and (11.41), respectively, adapted for the array of
rv; for instance, instead of (11.38) we assume

nP (X1j(n) > anjxj + bnj , X1j′(n) > anj′ xj′ + bnj′) → 0
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which holds in this example if λ = ∞. Thus we simply replace the rv Xi by Xi(n)
in these conditions. As mentioned, if λ ∈ (0,∞), then the limit distribution G is
max-stable, with a certain dependence among the components of Y (cf. Example
4.1.2). It is straightforward to extend these results for arrays of non-iid Gaussian
sequences by assuming the conditions of Proposition 11.5.4, Theorem 11.6.2 or
Berman’s condition as in Example 11.6.5.



Chapter 12

Statistics of Extremes

We use in the following the theory developed in the preceding chapters to discuss
a few nonstandard applications. Of interest are here the statistical estimation of
the cluster distribution and of the extremal index in a stationary situation. In the
last section we treat a frost data problem which is related to an extreme value
problem of a nonstationary sequence.

12.1 Introduction
Let {Xi, i ≥ 1} be a stationary random sequence such that D(un) holds. Under
additional conditions it was shown in Chapter 9 that

P (Mn ≤ anx + bn) →w Gθ(x) (12.1)

as n →∞ with 0 < θ ≤ 1. θ is called the extremal index (Leadbetter [300]). If θ <
1, then the exceedances do cluster. Since G is an EVD and therefore max-stable,
the limiting distribution Gθ of the maxima is still of the same type as G. Hence
the statistical procedures developed for the iid case can also be applied to the case
where exceedances do cluster. We approximate P (Mn ≤ y) ≈ Gθ((y − bn)/an) =
G((y−β)/α) for some constants α > 0 and β. Hence from m independent sequences
of n observations each, we get m iid maxima Mn,i, i ≤ m and we can for instance fit
an EVD G to the empirical distribution of {Mn,i, i ≤ m} and estimate α, β using
a well-known statistical procedure, e.g. using the best linear unbiased estimators
(see Gumbel [182], Lawless [299], Castillo [60]. Recent books on extreme values
discussing statistical procedures and applications are by Embrechts et al. [122],
Coles [71], Nadarajah and Kotz [293], Finkenstädt and Rootzén [158], Beirlant et
al. [32] and de Haan and Ferreira [190].

Smith [420] presented another approach to apply the extreme value theory.
He used a semiparametric approach to discuss the large values of ozone data; see
also Davison and Smith [94] and for multivariate extensions Coles and Tawn [73].

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,  
DOI 10.1007/978-3-0348-0009-9_12, © Springer Basel AG 2011 
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Another approach is used for extremes of nonstationary sequences in Hüsler [239]
to discuss low temperatures in spring. This application is presented in Section
12.4.

Because of the clustering of the exceedances the asymptotic distributions of
the extreme order statistics depend on the cluster size distribution. For stationary
sequences it can be proved that the r-th largest order statistic has asymptotically
the following distribution M

(r)
n , r ≥ 1 fixed,

P (M (r)
n ≤ anx + bn) →w Gθ(x)

∑
0≤s≤r−1

∑
s≤j≤r−1

(− log(Gθ(x)))sπs,j/s! (12.2)

where πs,j = (π ∗ π ∗ · · · ∗ π)({j}) denotes the value at j of the s-th convolution of
the cluster size distribution π. In order to apply this result to concrete statistical
problems, we have to estimate θ and π.

12.2 Estimation of θ and π(·)
Under rather general conditions θ−1 is equal to the limit of the mean cluster size,

θ−1 =
∑
j≥1

jπ({j}) < ∞,

if θ > 0. Therefore it is reasonable to propose

θ̂n = Z/
∑
i≤Z

Yi

as an estimator for θ, where Z denotes the number of clusters of exceedances of
a given boundary un by {Xi, i ≤ n} and Yi denotes the size of the i-th cluster.
Denoting by N the total number of exceedances:∑

i≤Z

Yi = N,

we can rewrite
θ̂n = Z/N.

The estimator θ̂n depends on the definition of the cluster of exceedances.
Since there are more than one definition of a cluster, we have to select the suitable
one for applications. If the condition D∗(un) holds, we observe asymptotically
only ‘runs’ of exceedances. This means that the random sequence {Xi} crosses
the boundary un at some time point, remains above the boundary for a few time
points and crosses un downwards to remain below un for a long time interval before
eventually crossing un upwards again (Figure 9.2.1). It seems therefore reasonable
to use the run definition in applications.
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In the previous chapter we used another definition of a cluster in deriving the
results. There all exceedances in a subinterval were considered to form one cluster.
Such a cluster is called a ‘block’ of exceedances. This definition does not consider
the fact that a block may contain more than one upcrossing. This definition is
more convenient for theoretical purposes.

Leadbetter and Nandagopalan [304] showed that, if D∗(un) holds and the
length of the subintervals tends to ∞, both definitions are asymptotically equiva-
lent, resulting in the same cluster size distribution.

Since in applications the sample size is always finite, a run of exceedances
is split up into two clusters if it overlaps two successive subintervals and runs
of exceedances within a subinterval are joined to give a block of exceedances.
Therefore it is obvious that the definition of cluster will influence the estimation
of θ.

Choice of Threshold

The estimation of θ is also influenced by the choice of un. We know from the
theory that the boundary un is chosen such that n(1 − F (un)) → τ ∈ R+. Since
the number of exceedances has asymptotically a Poisson distribution, there is a
positive probability that no exceedance above the boundary un occurs in which
case θ cannot be estimated.

For some boundaries un we have N = 1 and therefore Z = 1 which gives
θ̂n = 1. If un is such that N = 2, then θ̂n = 1 or = 1/2 depending on Z; similarly
for N > 2. This implies that the estimator θ̂n cannot be consistent for every
θ ∈ (0, 1], if un is chosen in such a way that N is fixed.

Therefore it was proposed to use vn < un such that N tends to ∞, i.e.,
n(1 − F (vn)) → ∞ (slowly). Hsing [227] and Nandagopalan [346] proved, that
with this choice the estimator θ̂n of θ is consistent, whether one uses the run or
the block definition for clusters.

Leadbetter et al. [307] proposed to use vn in applications such that �{i ≤ n :
Xi > vn}/n = N/n is approximately 5%, 7.5% or 10%. Obviously N gets large
with increasing n.

Hsing [227] showed using the block definition for clusters and the above choice
of vn that under certain additional conditions the estimator θ̂n has asymptotically
a normal distribution. Moreover, the asymptotic variance of the estimator depends
on θ.

In applications the following version of Hsing’s result ([227], Corollary 4.5) is
used: (

γn

θ̂n(θ̂2
nσ̂2

n − 1)

)1/2
(θ̂n − θ) →D N(0, 1),

with
σ̂2

n =
∑
i≤Z

Y 2
i /Z
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and
γn = nP (X1 > vn),

where γn is substituted by N . In the following Sn denotes the estimate of the
standard deviation of θ̂n:

S2
n = θ̂n(θ̂2

nσ̂2
n − 1)/N.

The value π({j}) of the cluster size distribution for j ≥ 1 is estimated by the
relative frequency of clusters with size Yi = j, i ≤ Z, with respect to the selected
boundary vn: π̂({j}) =

∑
i≤Z 1(Yi = j)/Z.

12.3 Application to Ecological Data
We present an example by Gentleman et al. discussed in Leadbetter et al. [307]
on acid rain. The sulfate concentration was measured during n = 504 rainfalls in
Pennsylvania (USA). Only the values larger than 93μmol/l were recorded.

Table 12.3.1. Sulfate values of rainfall i, i ≤ 504 = n.

rain i sulf. rain i sulf. rain i sulf. rain i sulf. rain i sulf.

55 140 102 130 228 280 353 100 415 150
60 95 129 98 229 160 374 110 439 100
64 150 150 110 237 96 375 110 452 100
65 110 160 95 242 95 376 95 453 100
73 99 168 110 247 98 377 99 455 190
74 130 176 130 253 150 397 340 469 130
75 120 177 130 315 94 398 99 470 130
77 110 184 150 317 110 402 140 476 105
83 110 187 110 324 200 404 95 480 110
85 120 188 110 334 330 405 100 485 150

In order to obtain approximately 10%, 7.5% and 5% for N/n, vn should be
93, 99 and 110 μmol/l, respectively. Thus N = 50, 38 and 21, respectively. To
analyze the behavior of the estimator with respect to vn, we continuously change
the value of vn from 93 up to the maximal possible value 340.

Clusters of Runs

In our analysis we first use the run definition for the clusters and later the block
definition. Obviously, θ̂n is a piecewise constant function of vn. One might think
that the estimator is monotonically increasing. Although this is not true, one can
observe that θ̂n has the tendency to increase in vn (Figure 12.3.1).
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Figure 12.3.1. Estimation of θ by θ̂n using the run definition for clusters.

Table 12.3.2. Estimation of θ and the standard error of the estimator based on
vn and the run definition for clusters.

vn N Cluster Size Z θ̂n Sn

1 2 3 4

93 50 27 8 1 1 37 .74 .060
94 49 26 8 1 1 36 .73 .061
95 44 25 8 1 34 .77 .053
96 43 24 8 1 33 .77 .053
98 41 22 8 1 31 .76 .055
99 38 22 8 30 .79 .050

100 33 19 7 26 .79 .054
105 32 18 7 25 .78 .055
110 21 13 4 17 .81 .067
120 19 13 3 16 .84 .069
130 13 11 1 12 .92 .068
140 11 9 1 10 .91 .078
150 6 4 1 5 .83 .124
160 5 5 5 1.00

Note that the entries for vn = 110 in the tables slightly differ from the values
given in Leadbetter et al. [307], probably because of a misprint in their paper.

From Table 12.3.2 it is not clear which value of vn gives an appropriate
estimate of θ. This fact can also be deduced from Figure 12.3.1: There is no large
enough interval of vn where θ̂n is stable, which could be used as criterion.
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Clusters given by Blocks

This problem also arises if the block definition for the clusters is used. To indicate
the dependence of θ̂n on the length of the subintervals we carry out the analysis
of the same data using subintervals of length 5 and 10 (as in Leadbetter et al.
([307]), again for all levels vn larger than 93.

We deduce from this example, that the estimates of θ are equal for the three
cluster definitions if vn ≥ 110. The same is true for the cluster size distributions.
This gives a good reason for selecting vn=110 as an appropriate level for the
estimation. θ̂n = .81 is selected as the estimate for θ.

Leadbetter et al. [307] proposed to use Sn as an additional criterion for the
choice of vn. We observe from Figure 12.3.3 that Sn remains stable for 110 ≤ vn ≤
140. Hence a value vn of this interval should be selected. Whether the proposed
criterion leads to a satisfactory and efficient estimation of θ and the cluster size
distribution is still an open question.

�

�

90 100 110 120 130 140 150 160 170
vn

.50

.60

.70

.80

.90

1.0 θ̂n

Interval Length 5

Interval Length 10

Figure 12.3.2. Estimation of θ by θ̂n by using the block definition for clusters
and intervals of length 5 and 10.
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Table 12.3.3. Estimation of θ and the standard error Sn of the estimator based
on vn and the block definition for clusters.

Interval Length 5 Interval Length 10

vn N Cluster Size Z θ̂n Sn Cluster Size Z θ̂n Sn

1 2 3 1 2 3 4

93 50 21 10 3 34 .68 .052 11 11 3 2 27 .54 .050
94 49 20 10 3 33 .67 .052 12 10 3 2 27 .55 .053
95 44 18 10 2 30 .68 .052 15 8 3 1 27 .61 .060
96 43 17 10 2 29 .67 .053 14 8 3 1 26 .60 .059
98 41 15 10 2 27 .66 .053 12 8 3 1 24 .59 .059
99 38 15 10 1 26 .68 .052 13 8 3 24 .63 .057

100 33 15 9 24 .73 .052 13 7 2 22 .66 .062
105 32 16 8 24 .75 .054 14 6 2 22 .69 .066
110 21 13 4 17 .81 .067 13 4 17 .81 .067
120 19 13 3 16 .84 .069 13 3 16 .84 .069
130 13 11 1 12 .92 .068 11 1 12 .92 .068
140 11 9 1 10 .91 .078 9 1 10 .91 .078
150 6 4 1 5 .83 .124 4 1 5 .83 .124
160 5 5 5 1.00 5 5 1.00

�

�

90 100 110 120 130 140 150 160 170
vn

.05

.07

.09

.11

.13
Sn

run

block 5

block 10

Figure 12.3.3: Estimated standard error Sn for interval length 5 and
10 and the run definition for clusters.
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Other Estimates

Hsing [229] proposed another estimator for the cluster size distribution and showed
that it has better properties than the one used so far by analyzing an AR(1)
random sequence with Cauchy noise. An adaptive procedure for the estimation of
the extremal index is given by Hsing [228]. He shows that this procedure is weakly
consistent and discusses the optimal choice of the level vn.

Finally we mention a procedure to estimate θ proposed by Gomes [178]. She
used the following result of Leadbetter and Nandagopalan [304]:

lim
n→∞

P (X1 > un, X2 ≤ un)
P (X1 > un)

= θ (12.3)

if D∗(un) holds. Gomes proposed to estimate θ by replacing the probabilities in
(12.3) with the empirical relative frequencies. This estimator is up to a factor
n/(n − 1) equal to the estimator θ̂n based on the run definition. If n is large, the
two estimators are almost identical.

For the choice of vn, Gomes proposed the following iterative adaptive pro-
cedure: In a first step θ̂0 is estimated based on a rather low level vn = X[4n/5];n,
where Xi;n denotes the i-th smallest order statistic of the rv Xi, i ≤ n. This implies
that N ≈ n/5. In a further step θ̂n is reestimated by selecting the adapted level
vn = Xn1;n where

n1 =

⎧⎪⎨⎪⎩
n − min

(
n
2 ,

n(0.075− 0.00005n)
θ̂0

)
, if n ≤ 1000,

n − min
(

n
2 , 25

θ̂0

)
, if n > 1000.

(n1 is selected as small as n/2 only if θ̂0 is rather small, i.e., θ̂0 < 50/n ≤ 0.05
for n > 1000). Gomes found out by simulating some special random sequences
that this adaptive procedure gives an estimation of θ with a small variability. In
our example the adapted level vn ≈ 100 or 110, as in the preceding discussion. In
statistical applications one often argues that if different methods lead to the same
estimate then the resulting value is considered to be a good estimate. Thus let
us accept θ̂=0.81. By using the asymptotic normality of θ̂n and the value for Sn,
we get the 95% confidence interval (.81 ± .067 · 1.960) = (.68, .94). Since 1 is not
included in this confidence interval, we conclude that sulfate values larger than
110μmol/l do cluster and the mean cluster size is 1.23 = 1/θ̂.

Similar applications are e.g. given by Hsing [230] and Dietrich and Hüsler
[113] and in the book edited by Finkenstädt and Rootzén [158].

12.4 Frost Data: An Application
The following problem arises in agronomy: during the springtime temperatures
below a certain threshold temperature τ damage the plants. The lowest temper-
ature Xi of the day i occurs in the early morning. This temperature is recorded



12.4. Frost Data: An Application 463

each day throughout the year. Of interest is the last day T in the spring with the
lowest temperature below τ (last frost). Usually τ is chosen to be between 0◦ and
−4◦C. We want to derive the distribution of T and to estimate high quantiles of
tp (e.g. for p = 0.90 or 0.95) of this distribution. The last frost day is defined by

T =
{

max{i : Xi < τ}, if ∃ i : Xi < τ
0, else.

Figure 12.4.1 shows a realization of the random sequence {Xi, i ≤ 365} during
the critical period. Here T = 127.

It is obvious that

P (T ≤ t) = P (Xi ≥ τ, for all i > t)

(a similar relation was discussed already in Example 8.3.3). To derive this distribu-
tion we need some information on the random sequence of the lowest temperatures
{Xi} or a random sample of T . We first analyzed data collected at a certain site in
Switzerland during 18 years. As 18 realizations of T are not sufficient for estimat-
ing high quantiles of the distribution of T by a nonparametric confidence interval,
we used a stochastic model for {Xi}.

�

�

100 110 120 130 140 150 160 i

0

5

10

15
Daily minimal temperature (◦C)

�
T

Figure 12.4.1. Daily minimal temperatures during the critical period and T
(τ = 0◦C).

It is rather obvious that {Xi} is not a stationary sequence, because springtime
temperatures have an increasing trend. The analysis of the data showed that the
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variability of Xi is not constant in the time period of interest, March to May,
i = 60 to 160. The analysis is based on about 1800 data points. By detrending
and standardizing the sequence {Xi} we get

Yi = (Xi − μi)/σi,

where the mean μi and the standard deviation σi for day i are estimated from the
data by x̄i and si. The analysis of the random sequence {Yi} showed that it can
be modelled as a Gaussian AR(1) random sequence. (For a detailed account on
the analysis see Hüsler [238]).

Thus, let us assume in the following that

Yi = ρYi−1 + Zi

for all i, where Zi are iid Gaussian rv with mean 0 and variance 1 − ρ2, each Zi

being independent of Yi−1. From the data ρ is estimated to be 0.73. Note that
Berman’s condition (cf. Example 9.2.2) holds for this simple random sequence,
since E(Yi+1Yi) = ρi for i ≥ 1 and ρn log(n) → 0 as n →∞.
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12o Mean value x̄i of lowest temperatures

Figure 12.4.2. Mean values x̄i of the lowest temperatures of each day during
the critical period.
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Figure 12.4.3. Standard deviations si of the lowest temperatures of each day
during the critical period.
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Figure 12.4.4. Standardized boundary values (x̄i − τ)/si of the lowest
temperatures of day i, τ = 0◦C.
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Asymptotic Approximation

Using this model we have to calculate the following probabilities:

P (T ≤ t) = P (Yi ≥ (τ − μi)/σi, i > t)
= P (Yi ≤ (μi − τ)/σi, i > t), (12.4)

by the symmetry of the Gaussian distribution. For large i the boundary values
(μi − τ)/σi are large compared with the upper tail of the Gaussian distribution
(Figure 12.4.4). Since we are only interested in the tail behavior of the distribution
of T , we apply the asymptotic theory for nonstationary sequences and nonconstant
boundaries presented in Chapter 9. Using Theorem 9.1.7 or Lemma 9.1.6 (cf.
Example 9.4.1) we approximate (12.4)

P{Yi ≤ (μi − τ)/σi, i > t} ≈
∏

t<i≤t0

P (Yi ≤ (μi − τ)/σi)

=
∏

t<i≤t0

Φ((μi − τ)/σi)

=: P̃ (t), (12.5)

where Φ(·) denotes the standard normal df and t0 (= 163) a day at the beginning
of summer, after which there is no frost with probability 1.
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Figure 12.4.5. P̃ (t) for the threshold temperatures τ = −4◦,−2◦ and 0◦C.
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Approximation (12.5) is rather accurate for high boundary values. One can
easily calculate P̃ (t) and t̃p = min{t : P̃ (t) ≥ p} to estimate the quantiles tp.
Figure 12.4.5 shows the values of P̃ (t) for the three threshold temperatures τ =
0◦,−2◦,−4◦C. For example for τ = 0◦C we get t̃0.9 = 134.

This is an asymptotic approximation and its accuracy is not known. How-
ever, for applications an estimation of the approximation error is certainly needed.
Therefore, we analyze in the following the goodness of this approximation. To find
upper and lower bounds of the probability in (12.4), we use the Bonferroni in-
equalities, the Slepian inequality and the simulation technique.

Bonferroni Inequalities

Using the Bonferroni inequalities we get

P (Yi ≤ (μi − τ)/σi, t < i ≤ t0)

= 1 − P (Yi > (μi − τ)/σi for some i ∈ (t, t0])

≥ 1 −
∑

t<i≤t0

P (Yi > (μi − τ)/σi)

= 1 −
∑

t<i≤t0

(1 − Φ((μi − τ)/σi))

=: P̂ (t)

and

P (Yi ≤ (μi − τ)/σi, t < i ≤ t0)

= 1 − P (Yi > (μi − τ)/σi for some i ∈ (t, t0])

≤ 1 −
∑

t<i≤t0

(1 − Φ((μi − τ)/σi))

+
∑

t<i<j≤t0

P (Yi > (μi − τ)/σi, Yj > (μj − τ)/σj)

=: P̌ (t).

The terms of the double sum can be evaluated using the bivariate normal distribu-
tion with correlation ρj−i. Figure 12.4.6 shows the goodness of these approxima-
tions. It is obvious that the upper bound can be larger than 1 and the lower bound
can be negative. Nevertheless, the approximation turns out to be quite accurate
for p ≥ 0.90 in our analysis. Using P̂ (t) and P̌ (t) upper and lower bounds for tp

are derived: t̂p and ťp, respectively. For example for τ = 0◦C we get t̂0.90 = 134
and ť0.90 = 128.
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Figure 12.4.6. Bonferroni bounds P̂ (t) and P̌ (t), τ = 0◦C.

Slepian Inequality

Other bounds for the distribution of T are obtained by using Slepian inequality
for Gaussian sequences (Theorem 10.3.2). We use the fact that all autocorrelations
of {Yi} are nonnegative and smaller than ρ = .73.

Denote by Wi an equally correlated stationary Gaussian random sequence
with mean 0, variance 1 and autocorrelation E(W1Wi) = ρ, for all i > 1. Wi can
be written as

Wi = √
ρ U +

√
1 − ρ Zi,

where U, Z1, Z2, . . . are iid standard normal rv. Since ρ ≥ E(YiYj) for all i �= j,
we get by Slepian inequality (Theorem 10.3.2)

P (Yi ≤ (μi − τ)/σi, t < i ≤ t0)

≤ P (Wi ≤ (μi − τ)/σi, t < i ≤ t0)

=
∫ ∞

−∞

∏
t<i≤t0

P
(

Zi ≤
[
(μi − τ)/σi −√

ρ u
]/[√

1 − ρ
])

dΦ(u)

=
∫ ∞

−∞

∏
t<i≤t0

Φ
([

(μi − τ)/σi −√
ρ u

]/[√
1 − ρ

])
dΦ(u)

=: PW (t), (12.6)
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and since E(YiYj) ≥ 0 for all i �= j

P (Yi ≤ (μi − τ)/σi, t < i ≤ t0)
≥ P (Zi ≤ (μi − τ)/σi, t < i ≤ t0)

=
∏

t<i≤t0

P (Zi ≤ (μi − τ)/σi)

=
∏

t<i≤t0

Φ((μi − τ)/σi)

= P̃ (t).

This shows that the above asymptotic approximation P̃ (t) in (12.5) is a lower
bound for P (t), therefore the quantiles t̃p of P̃ (t) are upper bounds for the exact
quantiles tp, i.e., t̃p is a conservative estimator for tp. t̃p is a simple estimator for
tp but it is not very accurate for all p. However, a conservative estimator like t̃p is
preferred in most applications. The integral in (12.6) can be calculated numerically.
It gives a lower bound tp(W ) for tp, i.e., a nonconservative estimator. For example,
for τ = 0◦C we get t0.90(W ) = 126, which is close to ť = 128. Figure 12.4.7 shows
the behavior of PW (t) for the three threshold temperatures.
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Figure 12.4.7. PW (t) for τ = −4◦,−2◦ and 0◦C.

Simulation

If no theoretical tools are available for discussing the goodness of the approxi-
mation, we can simulate the proposed model. If the size of the simulated sample is
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sufficiently large, the simulation results are accurate. We simulated the Gaussian
AR(1) random sequence {Yi} with ρ = 0.73 and obtained 5000 data points for T .
An additional analysis of 100’000 simulated data points resulted in a difference of
±1 day for the estimate of t0.90. Figure 12.4.8 shows the behavior of the simulated
distribution PS(t) of T for three threshold temperatures.

From PS(t) we can derive the simulated quantiles tp(S) for each threshold
temperature. For example, for τ = 0◦C we get t0.90(S) = 129.
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Figure 12.4.8. PS(t) for τ = −4◦,−2◦ and 0◦C.

Comparison

The results obtained using different approaches for discussing the accuracy of
(12.5) are summarized in Table 12.4.1.

Note the rather small differences between the estimates. This is certainly a
consequence of the choice of the boundaries which are high, compared to the upper
tail of the Gaussian distribution and of the fact that the autocorrelation ρ = 0.73,
is not too large. The average of corresponding upper and lower bounds would give
a very accurate estimate for the true quantile. Changes in the assumptions of the
model, like smoothing the boundaries uni or choosing another value for ρ do not
affect the estimates very much.

Further details about the analysis are given in Hüsler [238] and [239]. Similar
applications of this method on data collected at other sites are given in Volz and
Filliger [451]. They also compared this procedure with a nonparametric confidence
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interval estimation using data collected at a specific site for over 80 years and
confirmed the rather good behavior of our estimators.

Table 12.4.1. Comparison of different estimators for t0.90.

τ t̃0.90 ť0.90 t̂0.90 t0.90(W ) t0.90(S)

−0◦C 134 128 134 126 129
−1◦C 126 122 128 120 125
−2◦C 121 114 122 114 119
−3◦C 116 113 117 111 113
−4◦C 113 102 113 104 111

t̃0.90: asymptotic approximation, independent Xi

t̂0.90: Bonferroni inequality, upper bound for tp

ť0.90: Bonferroni inequality, lower bound for tp

t0.90(W ): Slepian inequality, Wi a special Gaussian sequence
t0.90(S): simulation of a Gaussian AR(1) sequence.
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González-Estrada, E., 81
Groeneboom, P., 116, 318
Guillou, A., 193, 194
Gumbel, E.J., 155, 455

H
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[249] Hüsler, J. (1995). A note on extreme values of locally stationary Gaussian
Processes. J. Statist. Plann. Inference 45, 203-213.
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[260] Hüsler, J., Piterbarg, V., and O. Seleznjev (2003). On convergence of the
uniform norms for Gaussian processes and linear approximation problems.
Ann. Appl. Probab. 13, 1615-1653.
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Birkhäuser, Boston.

[353] Norros, I. (1994). A storage model with self-similar input. Queueing Systems
16, 387-396.



Bibliography 503

[354] Norros, I. (1997). Four approaches to the fractional Brownian storage. In
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Lecture Notes in Statistics, Springer, New York, 10-20.

[436] Tajvidi, N. (1996). Characterization and some statistical aspects of univari-
ate and multivariate generalised Pareto distributions. PhD Thesis, Dept.
Math., University of Göteborg.
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