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Preface to the Third Edition

The main focus of extreme value theory has been undergoing a dramatic change.
Instead of concentrating on maxima of observations, large observations are now
in the focus, defined as exceedances over high thresholds. Since the pioneering
papers by Balkema and de Haan (1974) and Pickands (1975) it is well known that
exceedances over high thresholds can reasonably be modeled only by a generalized
Pareto distribution. But only in recent years has this fact been widely spread
outside the academic world as well.

Just as multivariate extreme value theory was developed roughly thirty years
after its univariate basis was established, we presently see the theory of multivariate
exceedances and, thus, the theory of multivariate generalized Pareto distributions
under extensive investigation.

For that reason, one emphasis of the third edition of the present book is given
to multivariate generalized Pareto distributions, their representations, properties
such as their peaks-over-threshold stability, simulation, testing and estimation.
Concerning this matter, the third edition in particular benefits from the recent
PhD-theses of René Michel and Daniel Hofmann, who both made substantial con-
tributions to the theory of multivariate generalized Pareto distributions, mainly
concentrated in Section 4.4, Chapter 5 and 6. We are in particular grateful to René
Michel, who coauthored these parts of the present edition with high diligence.

Exceedances of stochastic processes and random fields have been further con-
sidered in recent years, since the publication of the second edition. These new
developments are discussed in additional sections or paragraphs. For instance, we
deal with crossings of random processes in a random environment or with ran-
dom variances, and crossings or level sets of smooth processes. Also maxima of a
multi-fractional process, a recently introduced new class of random processes, are
investigated.

The following contributions of co-authors are also gratefully acknowledged:

o Isabel Fraga Alves, Claudia Neves and Ulf Cormann: the modeling and test-
ing of super-heavy tails in conjunction with log-Pareto distributions and a
class of slowly-varying tails in Section 2.7

e Melanie Frick: testing against residual dependence in Section 6.5.
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We are thankful to Holger Drees for pointing out a misarrangement of the
text in the first chapter and to Laurens de Haan for correcting the erroneously
assigned von Mises condition in the second chapter of the second edition.

Wiirzburg Michael Falk
Bern Jiirg Hiisler
Siegen Rolf-Dieter Reiss



Preface to the Second Edition

Since the publication of the first edition of this seminar book in 1994, the theory
and applications of extremes and rare events have received an enormous, increasing
interest. This is primarily due to its practical relevance which is well recognized in
different fields such as insurance, finance, engineering, environmental sciences and
hydrology. The application of extreme value theory in hydrology has a particularly
long and fruitful tradition. Meanwhile there are various specialized books available
which focus on selected applications.

Different to that, the intention of the present book is to give a mathematically
oriented development of the theory of rare events, underlying all applications. In
the second edition we strengthen this characteristic of the book. One of the conse-
quences is that the section on the statistical software Xtremes and the pertaining
CD are omitted, this software is updated and well documented in [389]. Various
new results, which are scattered in the statistical literature, are incorporated in
the new edition on about 130 new pages.

The new sections of this edition are written in such a way that the book
is again accessible to graduate students and researchers with basic knowledge in
probability theory and, partly, in point processes and Gaussian processes. The
required statistical prerequisites are minimal.

The book is now divided into three parts, namely,

Part I The IID Case: Functional Laws of Small Numbers;
Part II: The IID Case: Multivariate Extremes;

Part III:  Non-IID Observations.

Part II, which is added to the second edition, discusses recent developments
in multivariate extreme value theory based on the Pickands representation of ex-
treme value distributions. A detailed comparison to other representations of such
distributions is included. Notable is particularly a new spectral decomposition of
multivariate distributions in univariate ones which makes multivariate questions
more accessible in theory and practice.
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One of the most innovative and fruitful topics during the last decades was
the introduction of generalized Pareto distributions in the univariate extreme value
theory (by J. Pickands and, concerning theoretical aspects, by A.A. Balkema and
L. de Haan). Such a statistical modelling of extremes is now systematically devel-
oped in the multivariate framework. It is verified that generalized Pareto distribu-
tions play again an exceptional role. This, in conjunction with the aforementioned
spectral decomposition, is a relatively novel but rapidly increasing field. Other
new sections concern the power normalization of extremes and a LAN theory for
thinned empirical processes related to rare events.

The development of rare events of non-iid observations, as outlined in Part
II1, has seen many new approaches, e.g. in the context of risk analysis, of telecom-
munication modelling or of finance investigations during the last ten years. Very
often these problems can be seen as boundary crossing probabilities. Some of these
new aspects of boundary crossing probabilities are dealt with in this edition. Also
a subsection on the recent simulation investigations of Pickands constants, which
were unknown up to a few values, is added. Another new section deals in detail
with the relations between the maxima of a continuous process and the maxima, of
the process observed at some discrete time points only. This relates the theoretical
results to results which are applied and needed in practice.

The present book has benefitted a lot from stimulating discussions and sug-
gestions. We are in particular grateful to Sreenivasan Ravi for contributing the
section on power normalization of extremes, to René Michel, who helped with
extensive simulations of multivariate extremes, and to Michael Thomas for the
administration of our version control system (cvs) providing us with the technical
facilities to write this book online. We thank Johan Segers for pointing out an error
in one of the earlier definitions of multivariate generalized Pareto distributions in
dimensions higher than two, which, on the other hand, actually links them to the
field of quasi-copulas.

We would also like to thank the German Mathematical Society (DMV) for
the opportunity to organize the symposium Laws of small numbers: Extremes
and rare events during its annual meeting 2003 at the University of Rostock,
Germany. This turned out to be quite a stimulating meeting during the writing
of the final drafts of this book. Last, but not least we are grateful to Thomas
Hempfling, Editor, Mathematics Birkhauser Publishing, for his continuous support
and patience during the preparation of the second edition.

Wiirzburg Michael Falk
Bern Jiirg Hiisler
Siegen Rolf-Dieter Reiss



Preface to the First Edition

In the first part of this book we will develop a theory of rare events for which a
handy name is functional laws of small numbers. Whenever one is concerned with
rare events, events with a small probability of occurrence, the Poisson distribution
shows up in a natural way.

So the basic idea is simple, but its applications are nevertheless far-reaching
and require a certain mathematical machinery. The related book by David Al-
dous entitled “Probability Approximations via the Poisson Clumping Heuristic”
demonstrates this need in an impressive way. Yet this book focuses on examples,
ranging over many fields of probability theory, and does not try to constitute a
complete account of any field.

We will try to take another approach by developing a general theory first and
then applying this theory to specific subfields. In prose: If we are interested only
in those random elements among independent replicates of a random element Z,
which fall into a given subset A of the sample space, a reasonable way to describe
this random sample (with binomial sample size) is via the concept of truncated
empirical point processes. If the probability for Z falling into A is small, then the
Poisson approximation entails that we can approximate the truncated empirical
point process by a Poisson point process, with the sample size now being a Poisson
random variable. This is what we will call first step Poisson process approximation.

Often, those random elements falling into A follow closely an ideal or limit-
ing distribution; replacing their actual distribution by this ideal one, we generate
a second step Poisson process approrimation to the initial truncated empirical
process.

Within certain error bounds, we can therefore handle those observations
among the original sample, which fall into the set A, like ideal observations, whose
stochastic behavior depends solely upon a few (unknown) parameters. This ap-
proach permits the application of standard methods to statistical questions con-
cerning the original and typically non-parametric sample.

If the subset A is located in the center of the distribution of Z, then regression
analysis turns out to be within the scope of laws of small numbers. If the subset
A is however located at the border, then extreme value theory is typically covered
by our theory.
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These specifications will lead to characteristic results in each case, and we
will try in the following to convey the beauty of the laws of small numbers and
several of their specific applications to the reader. In order to keep a more informal
character, the proofs of several results are omitted, but references to detailed ones
are given.

As the Hellinger distance provides a more accurate bound for the approxi-
mation of product measures in terms of their margins, as does the Kolmogorov-
Smirnov or the variational distance, we will focus in the first part of this book on
the formulation of laws of small numbers within the Hellinger distance.

The second part of the book concentrates on the theory of extremes and
other rare events of non-iid random sequences. The rare events related to stationary
sequences and independent sequences are considered as special cases of this general
setup. The theory is presented in terms of extremes of random sequences as well
as general triangular arrays of rare events.

Basic to the general theory is the restriction of the long range dependence.
This enables the approximation of the point process of rare events by a Poisson
process. The exact nature of this process depends also on the local behavior of the
sequence of rare events. The local dependence among rare events can lead in the
non-iid case to clustering, which is described by the compounding distribution of
the Poisson process. Since non-stationarity causes the point process to be inhomo-
geneous, the occurrence of rare events is in general approximated by an extended
compound Poisson process.

Part I of this book is organized as follows: In Chapter 1 the general idea
of functional laws of small numbers is made rigorous. Chapter 2 provides basic
elements from univariate extreme value theory, which enable particularly the in-
vestigation of the peaks over threshold method as an example of a functional law of
small numbers. In Chapter 3 we demonstrate how our approach can be applied to
regression analysis or, generally, to conditional problems. Chapter 4 contains ba-
sic results from multivariate extreme value theory including their extension to the
continuous time setting. The multivariate peaks over threshold approach is studied
in Chapter 5. Chapter 6 provides some elements of exploratory data analysis for
univariate extremes.

Part II considers non-iid random sequences and rare events. Chapter 7 intro-
duces the basic ideas to deal with the extremes and rare events in this case. These
ideas are made rigorous in Chapter 8 presenting the general theory of extremes
which is applied to the special cases of stationary and independent sequences.
The extremes of non-stationary Gaussian processes are investigated in Chapter 9.
Results for locally stationary Gaussian processes are applied to empirical charac-
teristic functions. The theory of general triangular arrays of rare events is presented
in Chapter 10, where we also treat general rare events of random sequences and
the characterization of the point process of exceedances. This general approach
provides a neat unification of the theory of extremes. Its application to multivari-
ate non-stationary sequences is thus rather straightforward. Finally, Chapter 11
contains the statistical analysis of non-stationary ecological time series.



Preface xi

This book comes with the statistical software system XTREMES, version 1.2,
produced by Sylvia Hafimann, Rolf-Dieter Reiss and Michael Thomas. The disk
runs on IBM-compatible personal computers under MS-DOS or compatible op-
erating systems. We refer to the appendix (co-authored by Sylvia Hafimann and
Michael Thomas) for a user’s guide to XTREMES. This software project was par-
tially supported by the Deutsche Forschungsgemeinschaft by a grant.

This edition is based on lectures given at the DMV Seminar on “Laws of
small numbers: Extremes and rare events”, held at the Katholische Universitit
Eichstatt from October 20-27, 1991.

We are grateful to the Mathematisches Forschungsinstitut Oberwolfach and
its director, Professor Dr. Martin Barner, and the Deutsche Mathematiker Ver-
einigung for their financial and organizational support. We are indebted to the
participants for their engaged discussions and contributions, and to Birkhduser
Verlag for giving us the opportunity to publish these seminar notes.

It is a pleasure to thank Nese Catkan, Hans-Ueli Bréiker, Frank Marohn and
Sylvia Hamann for their continuing support and Helma Hofter for her excellent
typesetting of the manuscript using KTEX, so that we could concentrate on the
project.

Eichstatt Michael Falk
Bern Jirg Hiisler
Siegen Rolf-Dieter Reiss
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Chapter 1

Functional Laws
of Small Numbers

We will develop in the following a particular extension of the well-known Poisson
approximation of binomial distributions with a small hitting probability, which is
known as the law of small numbers. This extension, which one might call functional
laws of small numbers, links such seemingly different topics like non-parametric
regression analysis and extreme value theory.

1.1 Introduction

The economist Ladislaus von Bortkiewicz, born 1868 in St. Petersburg (that Rus-
sian town, whose name was changed several times during this century: 1703-1914
St. Petersburg, 1914-1924 Petrograd, 1924-1991 Leningrad, since 1991 St. Peters-
burg again), Professor in Berlin from 1901 until his death in 1931, was presumably
one of the first to recognize the practical importance of the Poisson approximation
of binomial distributions. His book The law of small numbers [51] popularized the
Poisson distribution although - or perhaps because - his examples on the number of
children suicides per year in certain parts of the population or of accidental deaths
per year in certain professions are a bit macabre. His most popular example is
on the number of Prussian cavalrymen killed by friendly horse-kick: The following
table summarizes the frequencies nj of the number k of cavalrymen killed in a
regiment by horse-kicks within one year in ten particular regiments of the Royal
Prussian army over a twenty years period

number of victims k 0 1 2

3 4 >5
frequency n 109 65 22 3 1 0

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,
DOI 10.1007/978-3-0348-0009-9_1, © Springer Basel AG 2011



4 1. Functional Laws of Small Numbers

As observed by von Bortkiewicz [51], a Poisson distribution P with para-
meter A\ = .61 fits these data quite well:

number k 0 1 2 3 4 >5
relative frequency n,/200 .545 .325 11 .015  .005 0
theoretical probability Pei({k}) .543 .331 .101 .021 .003 .001.

THE LAW OF SMALL NUMBERS

If we model the event that an individual trooper is killed by a horse-kick within one
year by a binary random variable (rv) R that is, R € {0, 1} with R = 1 representing
accidental death, then the total number K (n) of victims in a regiment of size n is
binomial distributed (supposing independence of individual lifetimes):

,“E

fa

2
I

=
|

= (Z) pFA—p)*
: B(n,p)({k}), k=0,1,...,n,

where
p=PR=1)

is the mortality rate. Usually, p was small and n reasonably large, in which case R =
1 became a rare event and the binomial distribution B(n,p) can be approximated
within a reasonable remainder term by the Poisson distribution

k
_aA

Pk} = e

E=0,1...
with A = np. This becomes obvious by writing, for k € {1,...,n}, n € N,

Bln,p)({k}) = () P —p)"*

_ o (np)’“<1_np>”( 1

T Rn— k) b n/ (1-p*

i— k n
= g(l_ n1> (1—12)’“ 2!<1_2>
=PA%D<O;§W(1JQWL£@‘i;w>'

For this reason, the Poisson distribution is sometimes called the distribution of
rare events, and the approximation

B(n,p) ~ Py, (1.1)
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is a law of small numbers (following von Bortkiewicz [51]). The quantification and
application of the preceding approximation is still a hot topic, as the increasing
number of publications shows. References are the books by Aldous [4] and Barbour
et al. [29], and the survey article by Arratia et al. [17]. For remarks about the
early history of Poisson distributions we refer to Haight [195].

PoINT PROCESS APPROXIMATIONS

Consider a binomial B(n, p)-distributed rv K (n) and a Poisson P,,,-distributed rv
7(n). Then (1.1) can be rewritten as

K(n) ~p 7(n), (1.2)

where ~p denotes approximate equality of the distributions £(K(n)) = B(n,p)
and £(7(n)) = Py,p of K(n) and 7(n), respectively.

Let now Vp, Vo, ... be a sequence of independent copies of a random element
V' with values in a sample space S equipped with a o-field B. We assume that the
rv Vi, Va, ... are also independent of K (n) and 7(n).

The approximation (1.2) suggests its following extension

Vi s Vkmy) ~p (Vi Vi) (1.3)

If we choose V' = 1, the left- and right-hand sides of (1.3) are sequences 1,1,...,1
of ones, the left one being of length K (n), the right one of length 7(n), and (1.3)
is obviously an extension of (1.2). As the approximation of K(n) by 7(n) is known
as a law of small numbers, one might call the approximation (1.3) a functional law
of small numbers.

But now we face the mathematical problem to make the approximation of
LVi,..., Vkmy) by L(V1,..., Vi(n)) meaningful, as (V1,..., Vi) and (Vi,...,
Vr(n)) are random vectors (rv) of usually different (random) length. An appealing
way to overcome this dimensionality problem by dropping the (random) length is
offered by the concept of point processes.

We identify any point « € S with the pertaining Dirac-measure

1 reB
ex(B) = if , BebkB.
0 x ¢ B

Thus we identify the random element V' with the random measure €y, and the rv
(Vi,..., V() and (Vi,..., V() turn into the random finite measures

No(B):= Y ey(B) and Nj(B):= Y ey(B), BeB
i<K(n)

i<7(n)

We can equip the set M of finite point measures on (S, B) with the smallest o-field
M such that for any B € B the projections M 5 p — pu(B) are measurable. Then
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Nyp(+), NJ(:) are (measurable) random elements in (M, M) and as such they are
called point processes. Since the counting variable K (n) is a binomial rv and 7(n)
is a Poisson one, N, is called abinomial process and N,: a Poisson process.

A more precise formulation of (1.3) is then the

first-order Poisson process approximation

Na()= Y ewl() ~p D en()=Ni(). (1.4)

i<K(n) i<7(n)

Recall that with V' = 1, the preceding approximation yields in turn the Poisson
approximation of a binomial distribution (1.1), (1.2)

N, =K(n)ey ~p N, =71(n)er.

Suppose now that the distribution of the random element V is close to that
of some random element W, which suggests the approximation

(Vla'”avr(n)) ~D (er"aW‘r(n))a (15)

where Wi, W5 ... are independent copies of W and also independent of 7(n) and
K (n). Speaking in terms of point processes, we obtain the approximation

Ny= > ev. ~p N;:= > cew. (1.6)
i<7(n) i<7(n)

Our particular extension of the Poisson approximation of a binomial distribu-
tion (1.1), (1.2) then becomes the

second-order Poisson process approximation

Nn: Z Ev; ~D N;:*: Z EW; - (17)

There is obviously one further approximation left, namely
(Vla SRR VK(n)) ~D (Wl7 B WK(n))a

where we do not replace K(n) by 7(n), but replace V; by W;. There is no Poisson
approximation of binomial distributions involved in this approximation, but it is
nevertheless typically a law of small numbers (see Section 1.3), valid only if p is
small. Due to a particular application in extreme value theory, one might call this
approximation the
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peaks-over-threshold method (POT)

Z €V, ~D M, Z EW; - (1'8)

i<K(n) i<K(n)

By choosing particular sequences Vi, V5 ... and Wy, W, ... of random ele-
ments within these extensions of (1.1), (1.2) it turns out, for example, that ap-
parently completely different topics such as regression analysis and extreme value
theory are within the scope of these functional laws of small numbers (see Section
1.3).

1.2 Bounds for the
Functional Laws of Small Numbers

The error of the preceding approximations (1.4), (1.7) and (1.8) will be measured
with respect to the Hellinger distance. The Hellinger distance (between the dis-
tributions) of random elements X and Y with values in some measurable space
(S, B) is defined by

H(X,Y) := (/(f1/2 _91/2)2 dlu)l/Q’

where f, g are densities of X and Y with respect to some dominating measure pu.

The use of the Hellinger distance in our particular framework is motivated by
the well-known fact that for vectors of independent replicates X = (Xy,..., Xk)
and Y = (Y1,...,Y%) of X and Y we have the bound

H(X,Y) < kK?H(X,Y),

whereas for the variational distance d(X,Y") := supgcp |P(X € B) — P(Y € B)|,
we only have the bound
d(X,Y) <kd(X,Y).

Together with the fact that the variational distance is in general bounded by
the Hellinger distance, we obtain therefore the bound

dX,Y) <EYV2H(X,Y).

If d(X,Y) and H(X,Y) are of the same order, which is typically the case, the
Hellinger distance approach provides a more accurate bound for the comparison
of sequences of iid observations than the variational distance that is, k'/? com-
pared with k, roughly. Observe that our particular extension (1.4)-(1.7) of the
Poisson approximation of binomial distributions actually involves the comparison
of sequences of random elements. (For the technical background see, for example,
Section 3.3 of Reiss [385] and Section 1.3 of Reiss [387].)
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MARKOV KERNELS

Note that the distributions £(N,,), L(V;;) of the processes Ny, = 37,y (,,) €v; and
Ny =3 i<r(n) €vi on (M, M) can be represented by means of the Markov kernel
Q) : Mx{0,1,2,...,} = [0,1], defined by

Q(M | m) ::‘C(ngi>(B):P(ZE‘/i EB), m=0,1,2,..., MeM,

i<m i<m

by conditioning on K (n) and 7(n):

L(N)() = P(Ny € ) = /P( > v € ) LK m)) (dm)

= /Q(- | m)L(K (n)) = E(Q(- | K(n))) =: QLK (n))(-)
and

LN = POV €)= [ P( 3 ew €) £lr(w) (dm)

= /Q(- | m)L(7(n)) (dm) = E(Q(- | 7(n))) =: QL(T(n))(-)-

In case of m = 0, interpret ), ,ev, as the null-measure on B that is,
Zigo ev,(B) =0, BeB.

THE MONOTONICITY THEOREM

It is intuitively clear from the preceding representation that the error in the first-
order Poisson process approximation (1.4) is determined by the error of the ap-
proximation of K (n) by 7(n).

Lemma 1.2.1 (Monotonicity theorem). We have
(i) d(Nn, Nj) = d(QL(K (n)), QL(r(n))) < d(K(n),7(n)),
(if) H(Nn, N;y) = H(QL(K (n)), QL(7(n))) < H(K(n),7(n)).

While part (i) of the preceding result is obvious, the second bound is a sim-
ple consequence of the monotonicity theorem for f-divergences (see, for example
Theorem 1.24 in Liese and Vajda [313] or, for a direct proof, Lemma 1.4.2 in Reiss
[387]).

By choosing V; = 1 that is, N, = K(n)e; and N = 7(n)e; it is only an
exercise to show that we can achieve equality in Lemma 1.2.1.

Lemma 1.2.1 entails that in order to establish bounds for the first-order
Poisson process approximation (1.4), we can benefit from the vast literature on
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bounds for the distance between K(n) and 7(n) (an up-to-date reference is the
book by Barbour et al. [29]). The following bound is a consequence of Theorem
1 in Barbour and Hall [27] and of Lemma 3 in Falk and Reiss [148]. See also the
section on the Stein-Chen method below that is, formulae (1.14)-(1.17).

Lemma 1.2.2. We have, for0 <p <1 andn € N,
(i) d(K(n),7(n)) <p,
(i) H(K(n),7(n)) < 3/2p.

Bounds for the first-order Poisson process approximation (1.4) are now im-
mediate from Lemma 1.2.1 and 1.2.2:

d(Nn, N};) < p, H(N,, N;;) < 3'/2p. (1.9)

Notice that these bounds are valid under no further restrictions on Vi, V5, ...,
K (n) and 7(n); moreover, they do not depend on n but only on p.

THE CONVEXITY THEOREM

To establish bounds for the second-order Poisson process approximation (1.7) and
the POT approach (1.8), observe that the distributions £(N}'), L(N;*), L(M,,) of
the processes N =3, evi, Ny* =32, ) ew,y and My, =37, e, Ew, can
be represented by means of 7(n) and the two Markov kernels

QV(~|m)::E(ZaVi)(-), m=0,1,2,...,
QW('m) :C(ZEWL)()7 m=0,1,2,...,
E(N?Z)()=/Qv( | m)L(7(n)) (dm) = Qv L(T(n))(),
E(Nii*)()=/Qw( | m)L(7(n)) (dm) = QwL(T(n))(")
and

LOL)C) = [ Qu | m)L(E () (dm) = Qu (K (1)),

Lemma 1.2.3 (Convexity theorem). We have

(i) d(N;, Ny") < /d(Qv(- [ m), Qw (- | m)) L((n)) (dm),
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) 1Nz < ([ Qe [m), Qul | m) £r(m) (@)
() (N, M) < [ d(Qu (- | m), Qur(- | m)) (K ) (dm),

() B0 M) < ([ HHQuC ), Qurl | m) £ () )

While the bound for the variational distance is obvious, the bound for the
Hellinger distance is an application of the convezity theorem for f-divergences (see
formula (1.53) in Liese and Vajda [313]; a direct proof is given in Lemma 3.1.3 in
Reiss [387]).

WHY THE HELLINGER DISTANCE?

Observe now that Qv (- [ m) = L(3_,,, ev;) (1) and Qw (- [ m) = L3, ew:)()
can be viewed as the distribution of the same functional T : S™ — M, evaluated

at the rv (Vq,..., Vi) and (W1, ..., W,,),

Quv(-[m)=LTV1,....Vu))(), Qw(- | m) = LT (W1,...,Wn))(),
with

T(x1,...,T,) = Z Ex;

i<m

for z1,...,2,m € S.
The following consequence of Lemma 1.2.3 is therefore immediate from the
monotonicity theorem for the Hellinger distance (cf. Lemma 1.4.2 in Reiss [387]).

Corollary 1.2.4. We have
) AV N < [ dVhee Vo (Wi W) £ () ()

<AV, W) / m L(r(n)) (dm) = d(V, W) E(r(n)),

1/2
(i) H(N*, N*) /H2 ((Vis- s Vin), (Wi, W) £ () (dim) )
1/2
< H(V, W /mﬁ ))) = H(V,W) E(r(n))"2.
We obtain by the same arguments
(iil) d(Ny, M) < d(V,W) E(K(n)),

(iv) H(Np, M) < H(V,W) E(K(n))"/?.
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If d(V, W) and H(V, W) are approximately equal, the use of the Hellinger dis-
tance reduces the bound between the distributions of N;* and N;** from O(E(7(n)))
to O(E(7(n))'/?), which is actually an improvement only if E(7(n)) > 1 that is,
if our set of data consists on the average of more than one observation of V' and
W. But this is obviously a minimum condition. The same arguments apply to the
approximation of N,, by M,,.

Combining 1.2.1-1.2.4 and the fact that in general the variational distance is
bounded by the Hellinger distance, we obtain the following bound for the second-
order Poisson process approximation.

Theorem 1.2.5. With L(K(n)) = B(n,p) and L(7(n)) = P, we have

H(N,,N*) < H(K(n),7(n)) + H(N, N¥)
< H(K(n),7(n)) + H(V,W) (E(r(n)))"/?
< 3Y2p+ H(V,W)(np)"/?.

Note that the first two inequalities in the preceding result are true for arbi-
trary binomial rv K (n) and Poisson rv 7(n), being independent of the sequences
Vi, Vo,... and Wy, W5, ... Only the final inequality arises from the particular
choice L(K(n)) = B(n,p), L(T(n)) = Pyp.

Theorem 1.2.5 describes in which way the accuracy of the functional law of
small numbers (1.7) is determined by the distance between K (n) and 7(n) that is,
by the values of p and np.

SPECIFYING H(V, W)

Suppose now that the random elements V' and W have densities g, f with respect
to some dominating measure u, such that the representation

g2 = [0+ 1)
holds with some error function h. Then we obtain
1/2
H(V,W) = (/(91/2 _ f1/2)2 du)
1/2
_ (/h2 ac(w))" = Bww)"”. (1.10)
The preceding considerations can then be summarized by the bounds
H(N,,,N*) <3'2p (1.11)
for the first-order Poisson process approximation,

H(N,, N2*) < 3Y2p + BE(h*(W))"/?(np)'/? (1.12)
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for the second-order Poisson process approximation and
H(N,, M,) < E(h*(W))*/2(np)/? (1.13)

for the POT approach if L(K(n)) = B(n,p), L(T(n)) = Pp.

These general error bounds lead to specific error bounds in regression analysis
and extreme value theory by computing E(h?(W)) for particular W and h (see
Theorem 2.3.2, Theorem 3.1.3, and Corollary 3.1.6).

THE STEIN-CHEN METHOD

While we focus on the Hellinger distance in the first part of this book for the
reasons given above, the Stein-Chen method offers a powerful tool to measure
laws of small numbers in variational distance; in particular it is very useful for
dependent observations. In 1970, Stein developed his very special idea for the
normal approximation in case of dependent rv, Chen [64] worked it out for the
Poisson approximation. For the sake of completeness, we provide its basic idea,
essentially taken from the book by Barbour et al. [29], to which we refer as an
ocean of refinements, extensions to dependent observations and applications.

Let A be an arbitrary subset of {0,1,2,...} and choose A > 0; then we can
find a bounded function g = gax : {0,1,2,...} — R which satisfies the basic
recursion

Mg+ 1) = Gg(j) = e5(A) = PA(A),  j>0; (1.14)

see below for the definition of this function g. As a consequence we obtain for an
arbitrary rv Z with values in {0,1,2,...},

P(Z € A) — P\(A) = E(ez(A) — PA(4))
=FEN(Z+1)— Zg(Z)). (1.15)
The preceding equality is the crucial tool for the derivation of bounds for
the Poisson approximation in variational distance. Let &1, ..., &, be independent
Bernoulli rv that is, £(&) = B(L,pi), 1 < i < m;put Z:= ) . & and Z; :=
Z — &, 1 <i<n.Observe that Z; and &; are independent. Then we obtain with
A=), . pifor AcC{0,1,...},

P(ZeA) —P\(A)=EXN(Z+1)-Zg(Z))
—sz (Z+1)) —ZE(&Q(ZH-&))

i<n i<n
=> pEG(Z+1)—g(Zi+1)) (1.16)
i<n

by the independence of &; and Z;. Since Z +1 = Z; + 1+ &; and Z; + 1 coincide
unless &; equals 1, we have



1.2. Bounds for the Functional Laws of Small Numbers 13

|E(g(Z +1) —g(Zi + 1)) = |E(g(Zi + 1+ &) — 9(Z; + 1))]
< S_glfIg(j +1) = g9(j)| pi-

Equation (1.16) then implies

Y GeA|l -R(4) <sup|g(1+1 9(i) > vl

i<n i<n

and all that remains to be done is to compute bounds for sup;~; [9(j + 1) — g(j)|-
It is readily seen that the function g, defined by

g(G+1) =AM P (AN{0,1,...,5}) — PA\(A)Pr({0,1,...,5}), >0
g(0) :==0,

satisfies the recursion equation (1.14) for arbitrary A C {0,1,...} and A > 0.
As shown in Lemma 1.1.1 in Barbour et al. [29], the function g is bounded and
satisfies

sup lg(G +1) —g(G)] <AL —e).
-

As a consequence we obtain the bound

sup |P Z&EA —P(A)| <A1 —em sz, (1.17)

AC{0,1,...} i<n i<n

where A = 3", p;, which is Theorem 1 in Barbour and Hall [27]. With p; = p we
derive for K (n) and 7(n) with £(K (n)) = B(n,p), L(T(n)) = Py,

d(K(n),7(n)) < (1 —e"")p <p,

which provides Lemma 1.2.2 (i).

As pointed out by Barbour et al. [29], page 8, a main advantage of the
preceding approach is that only little needs to be changed if the independence
assumption on &i,...,&, is dropped. Observe that we have used independence
only once, in equation (1.16), and all that has to be done in the dependent case is
to modify this step of the argument appropriately. We refer to page 9ff in Barbour
et al. [29] for a detailed discussion.

As an example we show how the preceding Markov kernel technique together
with the bound (1.17) can be applied to risk theory, to entail a bound for the
compound Poisson approximation of a portfolio having identical claim size distri-
butions.

Let V1, Va, ... be iid claims on (0,00). Then the total amount of claim sizes
in a portfolio of size n with individual risk p;, ¢ = 1,...,n, can be described by
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therv )., Vi, where L is the sum of n independent rv, each following a B(1, p;)-
distribution, i = 1,...,n, and being independent of Vi, V5,.... Observe that in
the case of equal probabilities p; = ps = -+ = p, = p, the counting variable L
coincides with K (n) following a B(n, p)-distribution.

Replacing L by a rv 7, which is Poisson distributed with parameter A =
Zz<np1 and being independent of Vi, V5, ... as well, we obtain the compound
Poisson process approximation  , <, Viof > <1, Vi- The distribution of these two
sums of random length can obviously be generated by the rv 7 and L and the
Markov kernel

Qc(B|m):=P Y VieB|, m=012... BEB,

i<m

where B denotes the Borel-o-field in R. As a consequence we obtain from (1.17)
the bounds

d(z‘/w Z%) = d(Qc‘C(L)?Qc‘C(T)) < d(L7T)
i<L i<r
1_6 sz <Zp7./zp“

i<n i<n i<n

which improve the bounds established by Michel [329] and by Gerber [174] for the
compound Poisson approximation in the case of a portfolio with identical claim
size distributions.

1.3 Applications

In this section we describe in which situation our functional laws of small numbers
typically apply.

Let Z be a random element in some sample space S bearing a o-field B and
suppose that we are only interested in those realizations of Z which fall into a
fixed subset A € B of the sample space. Let Z1,..., Z, be independent replicates
of Z and consider therefore only those observations among Z1, ..., Z, which fall
into that subset A. Arranged in the order of their outcome, we can denote these
Zi € Aby Vi,...,Vk ,(n), Wwhere the random number

= Zgzi (A)

i<n

is binomial distributed B(n,p) with probability p = P(Z € A).
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N
.

FIGURE 1.3.1. The setup for applications.

TRUNCATED EMPIRICAL PROCESSES

We can describe the set of data Vi, ..., Vi, (n) of those observations among 771, .. .,
Z,,, which fall into A, by the truncated empirical process

Npa() =Y ez (-NA)

i<n

= > enl),

i<Ka(n)

which is precisely that mathematical object which we have studied in the preceding
sections. Note that the process N,, 4 does not only carry the information about
the number K4(n) = N, 4(S) of data in A, but it stores also their values.

It is intuitively clear that Vi, V5, ... are independent replicates of a random
element V', whose range is the set A and whose distribution is the conditional
distribution of Z given Z € A:

P(Z € BN A)

P(VeB)=P(ZeB|ZcA)= P(ZeA)

BeB.
It is probably less intuitively clear but nevertheless true that K(n) and V4, V4, ...

are independent. The following crucial representation of NNV, 4 is Theorem 1.4.1
in Reiss [387].
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Theorem 1.3.1. Let X1, Xs, ... be independent copies of the random element V,
independent also from Ka(n). Then,

Np.a = g €V, =D E EX;-

i<Ka(n) i<Ka(n)

We can therefore handle those data Vi, ..., Vg, () among Z1, ..., Z,, which
fall into the set A, like independent copies of the random element V', whose dis-
tribution is the conditional distribution of Z given Z € A, with their random
number K4(n) being a B(n, P(Z € A)) distributed rv and stochastically indepen-
dent of V1, V5, ...

If the hitting probability p = P(Z € A) is small, then A is a rare event and
the first-order Poisson process approximation applies to N, 4 ,

Npa= > evi ~p Niai= Y e, (1.18)

i<Ka(n) i<TA(n)

where 74(n) is a Poisson rv with parameter np and also independent of the se-
quence Vi, Vs, ...

Note that in contrast to the global Poissonization technique, where the fixed
sample size n is replaced by a Poisson rv 7(n) with parameter n that is,

E €z, ~D E €2Z;»

i<n i<t(n)

with 7(n) being independent of Zj, Zs, ..., the Poissonization described here is
a local one in the set A. For further details on global Poissonization we refer to
Section 8.3 of Reiss [387].

In the case, where the hitting probability p = P(Z € A) of A is small, the
conditional distribution of Z, given Z € A, can often be approximated by some
ideal distribution

P(Ze-|ZeA) =PV e)~PWe.),

where W is a random element having this ideal distribution. We are therefore now
precisely in a situation where we can apply the second-order Poisson approximation
and the POT approach of N, 4 from the preceding section. We expect therefore
that the truncated empirical process N, 4 behaves approximately like the Poisson

process
*k
n,A — § EW;

i<Ta(n)
being its second-order Poisson process approximations or like
Mn,A = E EW; 5
i<Ka(n)

which is the POT approach, with Wi, W5, ... being independent copies of W, and
also independent of 74(n).
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A GEOMETRIC CLASSIFICATION

The preceding model approximations entail that we can handle our actual data V;
that is, those Z; among 71, ..., Z,, which fall into the set A, within certain error
bounds like some ideal W;, with their counting random number being independent
from their values. We will see in the following that non-parametric regression
analysis as well as extreme value theory are within the scope of this approach: In
the first case, the subset A is located in the center of the support of the distribution
of Z, in the latter case it is located at the border.

Support of the distribution of Z

Regression analysis,
density estimation

Extreme value

theor
/ Y

(4
-

FI1GURE 1.3.2. A geometric classification of typical applications.

EXAMPLES

The following examples highlight the wideranging applicability of our functional
laws of small numbers.

Example 1.3.2 (Density estimation). Let Z be a rv with values in R and fix
x € R. Suppose that Z has a density g, say, near z; our problem is to estimate
g(z) from a sample Z1, ..., Z, of independent replicates of Z.

Choose to this end a window width a,, > 0 and consider only those observa-
tions Z; which fall into the data window

Ap =[x —an/2,2 + a,/2].
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In our previous notation these are Vi,. .., Vi (,) with

K(n) =Y ez,(An),

i<n
where K (n) has distribution B(n,p,),
an/2
pn=P(Z € A,) = / gz +e)de ~ g(z)ay,
—an/2

for a,, — 0 if g is continuous at z. If in addition g(z) > 0, we obtain for ¢ € [0, 1]
the approximation

PV <z —a,/2+tay)
=P(Z<z—an/2+ta,, Z<cA,)/P(Z <€ A,)

=Plx—a,/2<Z<xz—a,/2+tay)/pn
—an/2+tan,
1/ g(@)tan ;

T +e)de ~ .
Dn —an/2 g( ) Dn an—0

—~

Consequently, we obtain the approximation

K%
an E v, ~D Nn = E EW;

i<K(n) i<7(n)

where Wy, W ... are independent, on [z — a,, /2, z + a,,/2] uniformly distributed,
and independent from 7(n) which is Poisson distributed with parameter np, ~
nan,g(x).

Our approach entails therefore that the information we are interested in is
essentially contained in the sample size K (n) or 7(n), respectively.

Example 1.3.3 (Regression analysis). Let Z = (X,Y) be a rv in R? and fix
x € R. Now we are interested in the conditional distribution function (df) of YV’
given X = z, denoted by F(- | z) .= P(Y <-| X = z).

In this case we choose the data window
Ap =l —an/2,2+ a,/2] xR

with window width a,, > 0 for the data Z; = (X;,Y;),i=1,...,n:
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FI1GURE 1.3.3. The setup for conditional problems.

Then,

K(n):=Y cz(Ay)

i<n
=> ex,([x—an/2,2+ a,/2))
i<n
is B(n,p)-distributed with
pn=P(Z €A, =PX €[z —an/2,2+ an/2]) ~ g(x)an,

where we assume that X has a density g, say, near x being continuous and positive
at x.

If Z = (X,Y) has a joint density f, say, on A,, then we obtain for ¢ € [0, 1]
and s e R

PV < (z—an/2+tay,s))
P(Z < (x—an/2+tan,s), Z € A,)/P(Z € A,)
P

(x—an/2< X <x—an/2+tay, Y <35)/pn
T—an/24+tay, s
/ | fwwdwdusp,

—an/2
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s t
:/ an/ flz+apu —an/2,w)dudw/p,
—00 0

N / ; / ' f @ w) dudw/g(a)

a,—0
I )

o) =t F(s|z)

under suitable regularity conditions on f (near x).
Consequently, we obtain the approximation

Nn = Z ev, ~p Ny* = Z E(U; W)
i<K(n) i<7(n)

where U is on [z —a, /2, v+ a, /2] uniformly distributed, W; follows the conditional
df F(-|z), 7(n) is Poisson Py, ~ P, g(z) and 7(n), Wi, Wy, ... Uy, Us, ... are all
independent!

In this example our approach entails that the information we are interested
in is essentially contained in the second component of V;.

Example 1.3.4 (Extreme value theory). Let Z be R-valued and suppose that
we are only interested in large values of Z, where we call a realization of Z large,
if it exceeds a given high threshold t. In this case we choose the data window
A = (t,00) or, better adapted to our purposes, we put ¢ € R on a linear scale and
define

Ay = (ant + by, 00)

for some norming constants a,, > 0, b, € R.
Then K (n) = 3, €2,(An) is B(n, pn)-distributed with p,, = 1—F(ant+b,),
where F' denotes the df pertaining to Z. Then we obtain for s > 0,

P(V < an(t+8)+bn) =P(Z < an(t+5)+bp | Z> ant + by)
= Plapt+b, < Z < an(t+8)+b,)/(1 — F(ant+ by))

1= Flan(t+s)+bn)

=1
1—Flapt+by,)

thus facing the problem:
What is the limiting behavior of
(1= Flan(t+8)+bn))/(1 = F(ant +bn)) —n—oo (1.19)

as n tends to infinity?
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EXTREME VALUE DISTRIBUTIONS
Suppose that there exist a,, > 0, b, € R such that

F'"(anx+b,) —nse G(x), z € R, (1.20)

for some (continuous) limiting distribution G. Then we say that G belongs to the
domain of attraction of G, denoted by F' € D(G). In this case we deduce from the
expansion log(1 + €) = ¢ + O(g?) for € — 0 the equivalence

F*anz +by) —nsee G()
<~ nlog(l—(1— F(anz+bn))) —nooo log(G(x))
<~ n(l - Flapz +by)) —noe —log(G(x))
it 0 < G(x) <1, and hence,

1— F(an(t+s)+by) log(G(t + s))
1— F(ant+by) T log(G(t))
if0< G(t) < 1.

From the now classical article by Gnedenko [176] (see also de Haan [184] and
Galambos [167]) we know that F' € D(G) ounly if G € {Gp : B € R}, where

Gs(t) :==exp(—(1+Bt)"Y%), 1+ Bt>0,

is an extreme value df, abbreviated by EVD. Since (14 8t)71/% — 5, exp(—t),
interpret Go(t) as exp(—e~*), t € R. We do not distinguish in our notation between
distributions and their df.

GENERALIZED PARETO DISTRIBUTIONS
If we assume that F' € D(G3), we obtain therefore

n(l — F(an(t+s)+bn))

PV sanlt+s)+ba) =1="0 0 gt + b))

log(Gp(t+s)) B 1+ 8(t+s)\ /8
noe 1= log(Gs(t)) =1 ( 1+ Bt )
-1/8
:1—(1+51f5t) :Hﬁ(lfﬂt), s>0, (1.21)

provided 14 8t > 0 and 1+ 8(t + s) > 0. The family

Hp(s) :=141og(Gps(s)), s>0

$>0 it 8>0

=1—(1+p8s)""? for {0<s<—1/5 i <0
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of df parameterized by 8 € R is the class of generalized Pareto df (GPD) accompa-
nying the family of EVD. Notice that Hg with 8 > 0 gives a Pareto distribution,
H_; is the uniform distribution on (0,1) and Hy has to be interpreted as the
standard exponential distribution Hy(s) = limg_,o Hg(s) =1—€7%, s > 0.

THE PEAKS-OVER-THRESHOLD METHOD

Formula (1.21) entails that under the condition F' € D(Gg), those observations in
an iid sample generated independently according to F', which exceed the threshold
ant + by, follow approximately a GPD. In this case our functional laws of small
numbers specify to

Nn = Z Ev; g Mn = Z EW,; ~D N;* = Z EW; s (122)
where Wi, Wa, ... follow a GPD and 7(n) is a Poisson rv with parameter n(1 —

Flant +by,)) ~ —log(Gs(t)) = (1+ pt)~1/5.

The information on the probability of large values of Z that is, on P(Z <
an(t+ 8) + by) is now contained in the sample size K (n) and the data V;.

The approximation of N,, by M, in (1.22) explains the idea behind the peaks-
over-threshold method (POT), widely used for instance by hydrologists to model
large floods having a GPD (cf. Todorovic and Zelenhasic [446], Hosking and Wallis
[224]). Formula (1.21) suggests in particular that in case F' € D(Gg), the upper tail
of F' can be approximated by that of a GPD which was first observed and verified
by Balkema and de Haan [22], see Theorem 2.7.1 below, and independently by
Pickands [371].

It is worth mentioning that the class of GPD is still the only possible set of
limiting distributions in (1.21), if we drop the assumption F' € D(G) and merely
consider a sequence a,t + b,, n € N, of thresholds satisfying a certain regularity
condition. The following theorem follows from results in Balkema and de Haan
[22] or from Theorem 2.1 in Rychlik [403] .

Theorem 1.3.5. Suppose that there exist a, > 0, b, € R with 1 — F(b,) —n—00
0 and (1 — F(bp+1))/(1 — F(bn)) —n—soo 1 such that for any s > 0,

1= F(aps +by)

R,

——7n—oo L(S)
for some continuous df L. Then L is a GPD that is, there exist § € R and some
a > 0 such that

L(s) = 1+log(Gs(as)),  s=>0.

If we drop the condition (1 — F(by+1))/(1 — F(bn)) —n—oo 1 in Theorem
1.3.5, then discrete limiting distributions promptly occur; consider for example
the geometric df F(k) =1 — (1 —p)¥, k =0,1,2,... for some p € (0,1). With
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an, = 1 and b, = n, n € N the ratio (1 — F(ans + b,))/(1 — F(b,)) then equals
1— F(s), s > 0, which is well known. A complete characterization of possible
limiting distributions is given in the paper by Balkema and de Haan [22].



Chapter 2

Extreme Value Theory

In this chapter we summarize results in extreme value theory, which are primar-
ily based on the condition that the upper tail of the underlying df is in the 4-
neighborhood of a generalized Pareto distribution (GPD). This condition, which
looks a bit restrictive at first sight (see Section 2.2), is however essentially equiva-
lent to the condition that rates of convergence in extreme value theory are at least
of algebraic order (see Theorem 2.2.5). The d-neighborhood is therefore a natural
candidate to be considered, if one is interested in reasonable rates of convergence
of the functional laws of small numbers in extreme value theory (Theorem 2.3.2)
as well as of parameter estimators (Theorems 2.4.4, 2.4.5 and 2.5.4).

2.1 Domains of Attraction, von Mises Conditions

Recall from Example 1.3.4 that a df F' belongs to the domain of attraction of an
extreme value df (EVD) Gg(z) = exp(—(1 + Bz)~Y/#), 1 4+ Bz > 0, denoted by
F € D(Gp), iff there exist constants a,, > 0, b, € R such that

F'(anz +bn) —noe Ggl(z), reR
— P((Znm —bn)/an <) —pse Gplx), r € R,
where Z,,.,, is the sample maximum of an iid sample Z1, ..., Z, with common df

F. Moreover, Z1.,, < --+ < Z,., denote the pertaining order statistics.

THE GNEDENKO-DE HAAN THEOREM

The following famous result due to Gnedenko [176] (and partially due to de Haan
[184]) provides necessary as well as sufficient conditions for F' € D(Gpg).

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,
DOI 10.1007/978-3-0348-0009-9_2, © Springer Basel AG 2011
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Theorem 2.1.1 (Gnedenko-de Haan). Let G be a non-degenerate df. Suppose
that F is a df with the property that for some constants a,, > 0, b, € R |

F"(anz + b)) —nooo G(),

for any point of continuity x of G. Then G is up to a location and scale shift an
EVD Gy, ice., F € D(G) = D(Gp).
Put w(F) :=sup{z € R: F(z) < 1}. Then we have

(i) F € D(Gg) with 8 >0 <— w(F) =00 and
lim =x , z > 0.

The normalizing constants can be chosen as b, =0 and a,, = F_l(l — n‘l),
n € N, where F~1(q) := inf{t € R : F(t) > q}, ¢ € (0,1), denotes the
quantile function or generalized inverse of F'.

(ii) F € D(Gp) with <0 <— w(F) < oo and

1— Fw(F) - 1
lim (w(F) m)le/ﬁ, z> 0.

% 1 Fw(F) - 1)

The normalizing constants can be chosen as b, = w(F) and a, = w(F) —
F71(1—-n71).

(iii) F € D(Gy) <= there exists to < w(F) such that f;:(F) 1—F(z)dx <
and
. 1=F(t+zR(t)
N O S exp(—z),  TER,
where R(t) := ftw(F) 1-F(y)dy/(1-F(t)), t <w(F). The norming constants
can be chosen as b, = F~Y(1 —n~1) and a,, = R(b,).

It is actually sufficient to consider in part (iii) of the preceding Theorem
2.1.1 only x > 0, as shown by Worms [464]. In this case, the stated condition has
a probability meaning in terms of conditional distributions, known as the additive
excess property. We refer to Section 1.3 of Kotz and Nadarajah [293] for a further
discussion.

Note that we have for any 8 € R,

F eD(Gg) < F(-+a)ecD(Gp)

for any a € R. Without loss of generality we will therefore assume in the following
that w(F) > 0.
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VoN Mises CONDITIONS

The following sufficient condition for F' € D(Gg) goes essentially back to von Mises
[336].

Theorem 2.1.2 (Von Mises conditions). Let F' have a positive derivative f
on [xg,w(F)) for some 0 < zop < w(F).

(i) If there exist B € R and ¢ > 0 such that w(F) = w(Hg) and
(1+ Bx)f(x)

= C’ VM
ztw(F) 11— F(ZZ?) ( )
then F € D(Gg/e).
(ii) Suppose in addition that f is differentiable. If
) d (1-— F(x))
im =0, VM
ztw(F) dx < f(ZII) ( 0)

then F € D(Gy).

Condition (VMy) is the original criterion due to von Mises [336, page 285] in
case = 0. Note that it is equivalent to the condition

L1 F() )

wto(F) - fz)  f(2)

and, thus, (VM) in case 8 = 0 and (VM) can be linked by I’'Hopital’s rule. Con-

dition (VM) will play a crucial role in what follows in connection with generalized
Pareto distributions.

If F' has ultimately a positive derivative, which is monotone in a left neigh-
borhood of w(F') = w(Hpg) for some 8 # 0, and if ' € D(Gg/.) for some ¢ > 0, then
F satisfies (VM) with 8 and ¢ (see Theorems 2.7.1 (ii), 2.7.2 (ii) in de Haan [184]).
Consequently, if F' has ultimately a positive derivative f such that exp(—z)f(z)
is non-increasing in a left neighborhood of w(F) = oo, and if F(log(z)), « > 0, is
in D(G /) for some ¢ > 0, then F' satisfies (VM) with ¢ and 3 = 0.

A df F is in D(Gy) iff there exists a df F* with w(F*) = w(F), which satisfies
(VMp) and which is tail equivalent to F*, i.e.,

1—F(x)
im
ztw(F) 1 — F*(il')
see Balkema and de Haan [21].

=1

=1

3

Proof. We prove only the case 8§ = 0 in condition (VM), the cases § > 0 and
B < 0 can be shown in complete analogy (see Theorem 2.7.1 in Galambos [167]
and Theorems 2.7.1 and 2.7.2 in de Haan [184]). Observe first that

w(F) W(F) | _ p(y
/t 1—F(x)dx:/t ! f(lig )f(x)d;USQ/c
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if o is large. We have further by I’'Hopital’s rule

, PN F@yde  1-F()
t—lg?F) k() = t—1>gI(IF) 1-F(t) B t—lg?F) f&) le.
Put now g(t) := —f(t)/(1 — F(t)) = (log(1 — F(t)))’, t > to. Then we have the

representation

l—F(t)=CeXp</tg(y)dy>, t > to,

to

with some constant C' > 0 and thus,

1— F(t+zR(t tHah(t)

1(_F(t) ) _ exp (/t 9(y) dy) —sw(F) exp(—z), T ER,
since limy_,,(r) 9(y) = —c and lim;_, () R(t) = 1/c. The assertion now follows
from Theorem 2.1.1 (iii).

Distributions F' with differentiable upper tail of Gamma type that is, lim,_, o
F'(x)/((b?/T(p)) e~b*xP~1) = 1 with b, p > 0 satisfy (VM) with 8 = 0. Condition
(VM) with 8 > 0 is, for example, satisfied for F' with differentiable upper tail of
Cauchy-type, whereas triangular type distributions satisfy (VM) with 8 < 0. We
have equality in (VM) with F being a GPD Hg(z) = 1 — (1 + Bz)~ /5, for all
x > 0 such that 1+ Bz > 0.

The standard normal df ® satisfies lim, o 2(1 — ®(x))/P'(x) = 1 and does
not satisfy, therefore, condition (VM) but (VMjy).

The following result states that we have equality in (VM) only for a GPD. It
indicates therefore a particular relationship between df with GPD-like upper tail
and the von Mises condition (VM), which we will reveal later. Its proof can easily
be established (see also Corollary 1.2 in Falk and Marohn [143]).

Proposition 2.1.3. We have ultimately equality in (VM) for a df F iff F is
ultimately a GPD. Precisely, we have equality in (VM) for x € [xo,w(F)) iff there
exist a >0, b € R such that

1—F(x) =1— Hgjc(ax +D), z € [xg,w(F)),

where b= (a —¢)/B in case B #0 and a = ¢ in case 8 = 0.

DIFFERENTIABLE TAIL EQUIVALENCE
Denote by hg the density of the GPD Hg that is,

>0 it 8>0

hs(z) = ;=(1+6x>‘”ﬁ‘1 for {0<x<—1/ﬁ it <o
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Note that with b = (a — ¢)/F if f # 0 and a = ¢ if 5 = 0 we have
14+ Bz 1—Hg(ax +b)

c ahg.(ax + b)

for all x in a left neighborhood of w(Hg) = w(Hg/.(ax +b)). If F' satisfies (VM),
we can write therefore for any a > 0 and b € R such that b = (a —¢)/B if 5 #0
and a=cif 3 =0,

flx) 1+
z—w(F) 1 — F(il') c
fx) 1 — Hgc(ax +b)

= i . 2.1
z—>1uI;I(1F) ahg/c(ax + b) 1—F(x) (2.1)

1:

As a consequence, we obtain that under (VM) a df F' is tail equivalent to the
GPD Hg/.(ax +b), for some a >0, be R with b= (a —¢)/Bif B #0anda =1
if =0, iff F and Hg,.(ax + b) are differentiable tail equivalent. Precisely

1—F(x) L
im exists in [0, o0]
z—w(F) 1 — HIQ/C(CLZII + b)
<~ lim /(@) exists in [0, 0o]

z—w(F) ah,@/c(ax +b)

and in this case these limits coincide. Note that the “if” part of this conclusion
follows from I’'Hopital’s rule anyway.

VoN MisEs CONDITION WITH REMAINDER

The preceding considerations indicate that the condition (VM) is closely related
to the assumption that the upper tail of F is close to that of a GPD. This idea can
be made rigorous if we consider the rate at which the limit in (VM) is attained.
Suppose that F' satisfies (VM) with S € R and ¢ > 0 and define by
(1+ Bz)f(x)

n(x) = 1~ F) c, x € [xo,w(F)),

the remainder function in condition (VM). Then we can write for any a > 0, b € R
withb=(a—c¢)/8if f#0and a=cif 8 =0,

f(x) — F(zy) T () (@)
ahp/e(az +b) ~ 1~ }fﬁ/iawl +) P (- /rl 177+tﬁt a)(1+77). @2

z € [z1,w(F)), where x1 € [xg,w(F)) is chosen such that azq +b > 0. Recall
that for f < 0 we have ax +b = ar + (a — ¢)/B < w(Hg,.) = —¢/B <= x <
—1/8 = w(Hp) = w(F). The following result is now immediate from the preceding
representation (2.2) and equation (2.1).
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Proposition 2.1.4. Suppose that F satisfies (VM) with 8 € R and ¢ > 0. Then
we have for any a >0, be R, withb= (a—c¢)/Bif B#0anda=c if § =0,

0
lim L=F@) oy f@y ) e (0, 00)
ztw(F) 1 — Hﬁ/c(ax + b) ztw(F) ahﬁ/c(ax + b) 00
w(F) e8]
= / n(t) dt=¢ deR
z 1t Pt —00.
Observe that, for any a,c,a > 0,
_ =B/ _
B a—c\\ _,_ —8Jc ax ¢
a(l Hﬁ/c(ax—i— 3 )) 1 Hﬁ/c(aa x + 5 ) (2.3)
if B # 0 and

a(l — Ho(ax + b)) = 1 — Ho(ax + b — log(a)). (2.4)

Consequently, we can find by Proposition 2.1.4 constants a > 0, b € R, with
b=(a—c)/Bif B#0and a=cif 8 =0, such that

1=F(z)  _ fx)
im = lim =1
ztw(F) 1 — Hﬁ/c(ax + b) ztw(F) ahﬁ/c(ax + b)

w(F) t
—oo</ n(®) dt < oo.
v L1t 0t

The preceding result reveals that a df F satisfying (VM) is tail equivalent (or,
equivalently, differentiable tail equivalent) to a GPD iff the remainder function n
converges to zero fast enough; precisely iff f:;(F) n(t)/(1+ pt)dt € R.

Observe now that the condition

n(e) = O((1 — Hy(@))’) as & — w(F) = w(Hy)

iff

for some § > 0 implies that f:;(F) n(t)/(1 + Bt) dt € R and

1+ 5t

The following result is therefore immediate from equation (2.2) and Taylor expan-
sion of exp at zero.

Proposition 2.1.5. Suppose that F satisfies (VM) with 8 € R and ¢ > 0 such
that n(z) = O((1 — Hg(2))°) as x — w(F) for some & > 0. Then there exist
a>0,beR, withb=(a—c)/B if B#0 and a=c if § =0, such that

f(@) = ahgelaz +b) (14 O(1 = Hy(@))"))

for any x in a left neighborhood of w(F).

/Mﬂ?ﬂ)ﬁ:Om—me%%méwW)
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It is worth mentioning that under suitable conditions also the reverse impli-
cation in Proposition 2.1.5 holds. For the proof of this result, which is Proposition
2.1.7 below, we need the following auxiliary result.

Lemma 2.1.6. Suppose that F' and G are df having positive derivatives f and g
near w(F) = w(G). If ¢ > 0 is a decreasing function defined on a left neighborhood
of w(F') with lim, () ¥ (x) = 0 such that

[f(x)/g(x) = 1] = O(¥(x)),
then
|(1=G(x))/(1 = F(z)) = 1] = O(¥(x))
as ¢ — w(F) = w(G).

Proof. The assertion is immediate from the inequalities

Gl w(F)
1_?25 -1 S/m Jg[g)) —1]dG()/(1 - F(x)

< C(a)(1 - G(x)/(1 = F(x)),
where C' is some positive constant.

Proposition 2.1.7. Suppose that F satisfies condition (VM) with 8 € R and
¢ > 0. We require further that, in a left neighborhood of w(F),

f(2) = ahgyelaz +b) (14 O((1 = Hy(2))"))

for some § >0, a >0, b€ R, whereb=(a—c)/Bif f#£0 anda=cif 5 =0.
Then the remainder function

_ f(@)(1 + pz)
77(95) - 1— F(ZZ?) —-c

is also of order (1 — Hg(x))° that is,
n(z) = O((1 — Hy(2))’) as z — w(F).
Proof. Write for z, in a left neighborhood of w(F) = w(Hp),

_ 1—Hg(ax +) f(z)
@ =c 4 pw ahgolaz +b)  ©

1— Hg(az +b) f(x) f()
- C( 1 i/F(x)_F a 1) ahg/c(ax + b) + C(ahﬁ/c(ax +b) 1)

— O((1 - Hy(x))")
by Lemma 2.1.6.
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RATES OF CONVERGENCE OF EXTREMES

The growth condition n(z) = O((1 — Hg(z))?) is actually a fairly general one
as revealed by the following result, which is taken from Falk and Marohn [143],
Theorem 3.2. It roughly states that this growth condition is already satisfied, if
F"(anx + by,) approaches its limit Gg at a rate which is proportional to a power
of n. For a multivariate version of this result we refer to Theorem 5.5.5.

Define the norming constants ¢, = ¢,(8) > 0 and d,, = d,,(8) € R by

n? B#0 WL B0
Cp = if ,  dy = if
1 B=0 log(n) 8 =0.

With these norming constants we have, for any g € R,
Hg(cnx + dpn) —n—oo Gp(x), z €R,

as is seen immediately.

Theorem 2.1.8. Suppose that F satisfies (VM) with 8 € R and ¢ > 0 such that
f:;(F) n(t)/(1 + pt)dt € R. Then we know from Proposition 2.1.4 and equations

(2.3), (2.4) that
lim L= Flx)
ztw(F) 1 — Hﬁ/c(ax + b)
for some a > 0, b € R, withb = (a—¢)/Bif 8 # 0 and a = c if 8 = 0.
Consequently, we obtain with a,, := cp(8/c)/a, by := (dn(8/c) —b)/a that

sup [F" (anz + bp) — Gg/e(r)] —rnso00 0.
z€ER

If we require in addition that

lim ()

=1
ztw(F) ’I“(.’L')

for some monotone function r : (xo,w(F)) = R and

sup [F™(an@ + by) — Gg/e(x)| = O(n~")
zeR

for some § > 0, then
n(x) = O((1 — Hy(x))*)
as z — w(F) = w(Hpg).

The following result is now immediate from Theorem 2.1.8 and Proposition
2.1.5.
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Corollary 2.1.9. Suppose that F satisfies (VM) with 8 € R, ¢ > 0 such that
[ n)/(1 + Bt) dt € R and

xo
lim 1) 4
ztw(F) T(ZZ?)

for some monotone function r : (xo,w(F)) = R. If for some § > 0,

sup |Fn(an$ + bn) - G,B/c(a:” = O(n_é)v
z€R

with a, > 0, b, as in Theorem 2.1.8, then there exist a > 0, b € R with b =
(a—c)/Bif 8#0 and a=cif =0, such that

f(w) = ahgolaz + ) (14 O((1 = Ha(2))"))
for any x in a left neighborhood of w(F) = w(Hpg).

Our next result is a consequence of Corollary 5.5.5 in Reiss [385] and Propo-
sition 2.1.5 (see also Theorems 2.2.4 and 2.2.5). By B* we denote the Borel-o-field
in R*.

Theorem 2.1.10. Suppose that F satisfies (VM) with 8 € R, ¢ > 0 such that
n(xr) = O((1 — Hg(2))%) as © — w(F) for some § > 0. Then there exist a, >
0, b, € R such that for k € {1,...,n} andn € N,

Bsggk |P(((Zn—i+l:n - bn)/an)iﬁk € B)
P((B(XC <i &) ")i<k € B)| B#0

P((=1log(3_;<; &))i<k € B)| B=0
= O((k/n)* k"2 + k/n),

where &1, &a, ... are independent and standard exponential Tv.

BEST ATTAINABLE RATES OF CONVERGENCE

One of the significant properties of GPD is the fact that these distributions yield
the best rate of joint convergence of the upper extremes, equally standardized, if
the underlying df F' is ultimately continuous and strictly increasing in its upper
tail. This is captured in the following result. By G(Bk) we denote the distribution of
(B(Z;<i &) P)ick if B # 0 and of (—log(3",<; &))ick if 5 = 0, where &1, ...
is again a sequence of independent and standard exponential rv and k € N. These
distributions G(Bk) are the only possible classes of weak limits of the joint distribu-

tion of the k largest and equally standardized order statistics in an iid sample (see
Theorem 2.2.2 and Remark 2.2.3).
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Theorem 2.1.11. Suppose that F is continuous and strictly increasing in a left
neighborhood of w(F'). There exist norming constants a, > 0,b, € R and a positive
constant C' such that, for any k € {1,...,n}, n €N,

sup | P(((Zn-i1n = bn)/an))ick € B) — G(ﬁk)(B)‘ < Ck/n

BeB*
iff there exist ¢ > 0, d € R such that F(x) = Hg(cx + d) for x near w(F).

The if-part of this result is due to Reiss [383], Theorems 2.6 and 3.2, while
the only ifpart follows from Corollary 2.1.13 below.

The bound in Theorem 2.1.11 tends to zero as m tends to infinity for any
sequence k = k(n) such that k/n —,_, 0. The following result which is taken
from Falk [129], reveals that this is a characteristic property of GPD that is, only
df F', whose upper tails coincide with that of a GPD, entail approximation by ch)
for any such sequence k.

By G (k) we denote the k-th onedimensional marginal distribution of G/(jk)
that is, G () is the distribution of (8., &)~7 if § # 0, and of —log(}", ;. &)
if 5 = 0. We suppose that F' is ultimately continuous and strictly increasing in its
upper tail.

Theorem 2.1.12. If there exist a, > 0, b, € R such that

su}g P(Zn—k+1:n — bn)/an <t) — G@’(k)(t) —n—o0o 0
te

for any sequence k = k(n) € {1,...,n}, n € N, with k/n — 00 0, then there
exist ¢ >0, d € R such that F(x) = Hg(cx + d) for x near w(F).

The following consequence is obvious.

Corollary 2.1.13. If there exist constants a, > 0, b, € R such that for any
ke{l,...,n}, neN,

iu]llg P((Zn—k:+l:n - bn)/an S t) - G[i(k) (t) S g(k‘/n),
(S

where g : [0,1] = R satisfies lim,_,0g(x) = 0, then the conclusion of Theorem
2.1.12 holds.

With the particular choice g(z) = Cxz, = € [0,1], the preceding result ob-
viously yields the only if-part of Theorem 2.1.11. A multivariate extension of Theo-
rem 2.1.12 and Corollary 2.1.13 will be established in Theorem 5.4.7 and Corollary
5.4.8.
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2.2 The 6-Neighborhood of a GPD

Distribution functions F', which satisfy the von Mises condition (VM) from The-
orem 2.1.2 with rapidly vanishing remainder term 7, are members of certain J-
neighborhoods Q;(9), i = 1,2,3, of GPD defined below. These classes Q;(4) will
be our semiparametric models, underlying the upper tail of F, for statistical in-
ference about extreme quantities such as extreme quantiles of F' outside the range
of given iid data from F' (see Section 2.4).

THE STANDARD ForM oF GPD
Define for o > 0 the following df,

Wia(x) =1—2"°, x>1,
which is the usual class of Pareto distributions,
Waa(x):=1—(—2)7, -1<z<0,

which consist of certain beta distributions as, e.g., the uniform distribution on
(=1,0) for & = 1, and

Ws(z) :==1—exp(—z), 20,

the standard exponential distribution.

Notice that W;, i = 1,2, 3, corresponds to Hg, 8 >0, 3 <0, 8 =0, and
we call a df W € {W1 o, Wa o, W3 : & > 0} a GPD as well. While Hg(z) = 1+
log(Gg(z)), x > 0, was derived in Example 1.3.4 from the von Mises representation

Gs(z) = exp(—(1+ Bz)"Y#),  1+pz>0, BER,

of an EVD Gjg, the df W; can equally be derived from an EVD G; given in its
standard form. Put for i = 1,2,3 and a > 0,

0, <0

Gra(@) = { exp(—x~%), x>0,
exp(—(—xz)” 3 r < 0
Guntay = { )

Gs(x) :=exp(—e™ "), r €R,

being the Fréchet, (reversed) Weibull and Gumbel distribution. Notice that the
Fréchet and Weibull df can be regained from Gg by the equations

Gi/p(x)=Gg((x —1)/B) . >0
Ga,—1/8(x) = Gg(—(z +1)/B) B<0.
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Further we have for G = G o, G2,q, G3 with a > 0,
W(z) =1+ log(G(x)), log(G(x)) > —1.

While we do explicitly distinguish in our notation between the classes of GPD Hpg
and W;, we handle EVD G a bit laxly. But this should cause no confusion in the
sequel.

0-NEIGHBORHOODS

Suppose that the df F satisfies condition (VM) with 8 € R, ¢ > 0 such that for
some § > 0 the remainder term 7 satisfies n(z) = O((1 — Hp(x))°) as 2 — w(F).
Then we know from Proposition 2.1.5 that for some a > 0, b € R, with b = (a—c)/
iff#A0anda=cif =0,

f(@) = ahgolaz +b) (14 O((1- Hy(@))"))
atwn,e/6(a2) (14+0((1=Wae/s(@))*), B> 0
= aws _sslala—w(F)) (1+0((1= Wy, _oslz—w(F))Y), B <0
aws(az-+b) (14+0((1-Wa(az))*)),  B=0,
for some @, > 0, where we denote by w the density of W. As a consequence, F
is a member of one of the following semiparametric classes Q;(9), ¢ = 1,2, 3 of df.
In view of Corollary 2.1.9, theses classes @Q;(9), which we call d-neighborhoods of

GPD, are therefore quite natural models for the upper tail of a df F'. Such classes
were first studied by Weiss [457]. Put for 6 > 0,

Q1(0) := { F :w(F) = o0 and F has a density f on [zg,c0) for some z¢ > 0
such that for some shape parameter o > 0 and some scale para-
meter a > 0 on [zg, 00),

£ = twna (D) (14 010 - Waa@)h) )

Q2(0) :== {F : w(F) < oo and F has a density f on [xo,w(F)) for some
2o < w(F) such that for some shape parameter o > 0 and some
scale parameter a > 0 on [zg,w(F)),

1) = Lo (U TN (1 00 Wt —wtmn)) ),

Q3(9) = { F : w(F) = oo and F has a density f on [xg,00) for some xg > 0
such that for some scale and location parameters a > 0, b € R on
[:I:CH 00)7

s = (") (1o (- (7)) )
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We will see that in case F' € Q;(d), i = 1 or 2, a suitable data transformation,
which does not depend on the shape parameter a > 0 and the scale parameter
a > 0, transposes the underlying df F to Q3(d); this reduces for example the
estimation of extreme quantiles of F' to the estimation of the scale and location
parameters a, b in the family Q3(d) see Section 2.4).

The EVD G; lies in Q;(1), i = 1,2,3. The Cauchy distribution is in @1(1),
Student’s t,, distribution with n degrees of freedom is in @1(2/n), a triangular
distribution lies in Q2(d) for any § > 0. Distributions F' with upper Gamma tail
that is, f(z) = (¢?/T(p))e~®2P~1, 2 > xo > 0, with ¢,p > 0 and p # 1 do not
belong to any class Q;(9).

A df F which belongs to one of the classes Q;(9) is obviously tail equivalent
to the corresponding GPD W, , that is,

1—F(x)

li =1 2.5
eolk) 1= Wi o((2 = b)/a) (25)
for some a > 0, b € R, with b = 0 in case i = 1 and b = w(F') in case i = 2.
Interpret W3 o simply as W3, as in the case ¢ = 3 there is no shape parameter a.
Consequently, we obtain from (2.5)

, F1(1-¢q) T e R
B Wealt -0/ -0 "B awta—grs 0 ®Y

and the estimation of large quantiles F'~1(1 — q) of F that is, for ¢ near 0, then
reduces within a certain error bound to the estimation of aWi)_oé1 (1—q)+0.

The following result quantifies the error in (2.5) and (2.6) for a df F in a
d-neighborhood of a GPD.

Proposition 2.2.1. Suppose that F lies in Q;(8) for some 6 > 0 that is, F is tail
equivalent to some W, o((- —b)/a), i=1,2 or 3, withb=04ifi=1 and b = w(F)
if i = 2. Then,

(i) 1—F(x) = (I—Wi,a(x;b))(l—l—wi(x)) asx — w(F),

where ;(z) decreases to zero at the order O((1 — Wi o((x — b)/a))?). We have in
addition

(i) F (1 —q) = (aW; (1= ) +b) (1 + Rila)),
where
O(qé) 1=1o0r 2
Ri(q) = if
O(q°/log(q)) i=3

as ¢ — 0. Recall our convention W3 o = Ws.
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Proof. Part (i) follows from elementary computations. The proof of part (ii) re-
quires a bit more effort. From (i) we deduce the existence of a positive constant
K such that, for ¢ near zero with Wy, ,(t) := W, o((t — b)/a),

F'1-¢q) = inf{t >z, : q>1—F( )}

Fl)
oy (=W b<t>>}

{< inf{t>z,:q > (1 + K -r(t)(1 - W, b(t))}
>inf{t >2,:q > (1—K-r(t)(1— Wau(t)},

where r(z) = 27, |z — w(F)|*, exp(—(J/a)z) in case i = 1,2,3, and x, — w(F)
as ¢ = 0. Choose now

:inf{t>xq q>

ag V(1 — K¢%) Ve 1=1
ty =19 w(F)—ag/*(1— Ki¢°)/* in case i =2
—alog{q(1 — K1¢°)} +b i=3
and
aqg~ V(1 + K1¢°) Ve i=1
th =1 w(F)—ag"/*(1+ K1¢°)"/* in case i =2
—alog{q(1 + K1¢°)} +b i=3,

for some large positive constant K;. Then
(1+ Kr(tq_))(l —Wau(t,)) < g and (1- Kr(t;))(l — Wa,b(t;)) >q
for ¢ near zero if K; is chosen large enough; recall that b = 0 in case i = 1.
Consequently, we obtain for ¢ near zero
th <inf{t >zq:q> (1 - Kr(t)(1 — Wap(t))}
<F 1 (1-q)
<inf{t >x,:¢> 1+ Kr(t)(1—Wuu(t))} < t, -

The assertion now follows from the identity

ag— 1/« =1
Wa_bl(l —q) zaWiTal(l —q)+b=1¢ w(F)—aq"/* in case i =2
—alog(q) +b 1=3

and elementary computations, which show that
te =Woy (1= a)(1+O(R(q))), t; =Wy (1—q)(1+O(R(q))).

The approximation of the upper tail 1 — F'(x) for large « by Pareto tails under
von Mises conditions on F was discussed by Davis and Resnick [93]. New in the
preceding result is the assumption that F lies in a d-neighborhood of a GPD, which
entails the handy error terms in the expansions of the tail and of large quantiles of
F in terms of GPD ones. As we have explained above, this assumption F € @Q;()
is actually a fairly general one.
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DATA TRANSFORMATIONS

Suppose that F is in Q1(d). Then F has ultimately a density f such that, for some
a,a >0,

£ = Lo (T) (14 00 - Wia@)?)
as © — 00. In this case, the df with upper tail
Fi(z) := F(exp(x)), x > X, (2.7)
is in @Q3(9). To be precise, F; has ultimately a density f; such that

x — log(a)

filz) = awg( 1/ ) (1 +0((1 - W3(owc))5))

- (2) ) ez

with ap = 1/« and by = log(a).
If we suppose that F' is in Q2(9) that is,

7@ = L (T (14 0001 - Waale —w(F)))
as ¢ — w(F') < oo for some «, a > 0, then
Fy(z) := F(w(F) — exp(—=x)), x € R, (2.8)

is in @Q3(9). The df F» has ultimately a density f2 such that

folo) = e (" JE) (1 001 - Wafaa))

(T () ) e

with ap = 1/ and by = —log(a).

The message of the preceding considerations can be summarized as follows.
Suppose it is known that F is in Q1(9), Q2(0) or in Q3(d), but neither the particular
shape parameter a nor the scale parameter a is known in case F' € Q;(d), i = 1, 2.
Then a suitable data transformation which does not depend on « and a results in an
underlying df F; which is in Q3(d). And in Q3(9) the estimation of large quantiles
reduces to the estimation of a scale and location parameter for the exponential
distribution; this in turn allows the application of standard techniques. Details will
be given in the next section. A brief discussion of that case, where F' is in Q2(0)
but w(F') is unknown, is given after Lemma 2.4.3.

If it is assumed that F lies in a d-neighborhood Q;(6) of a GPD for some
1 € {1,2,3}, but the index 4 is unknown, then an initial estimation of the class
index 7 is necessary. A suggestion based on Pickands [371] estimator of the extreme
value index « is discussed in Section 2.5.
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JOINT ASYMPTOTIC DISTRIBUTION OF EXTREMES

The following result describes the set of possible limiting distributions of the joint
distribution of the k largest order statistics Z,., > -+ > Z,_k+1.n, equally stan-
dardized, in an iid sample Z1, ..., Z,. By —p we denote the usual weak conver-
gence.

Theorem 2.2.2 (Dwass [117]). Let Z1,Zs,... be iid rv. Then we have for an
EVD G and norming constants a, > 0, b, € R,

Zn:n - bn

—D G
Gnp
Zn—i m bn
— ( Hh ) —p G® forany keN,
G i<k

where the distribution G®) /B¥ has Lebesque density g™ (x1,...,21) = G(x1)
[Lick G'(2:)/G(x5) for 21 > - >y and zero elsewhere.

Remark 2.2.3. Let &£1,&2,... be a sequence of independent and standard ex-
ponential rv. Then ng{)} is the distribution of ((ngiéj)_l/a)igk, Gék; that of

(=< €)Y %)<k and ng) that of (—log(3_;, &;))i<k- This representation was
already utilized in Theorems 2.1.10-2.1.12.

Proof of Theorem 2.2.2. We have to show the only-if part of the assertion. Con-
sider without loss of generality Z; = F_I(Ui)7 where Uy, Us, ... are independent
and uniformly on (0,1) distributed rv, and where F' denotes the df of Z;. Then we
have the representation (Zi.,,)i<n = (F7*(Ui.n))i<n, and by the equivalence

F Y q)<t < ¢<F(), qe(0,1), teR,
we can write
P((Za-isiin = ba) fan < 0, 1< < k)
- P(F‘l(Un_iH;n) < i+ bn, 1<i < k)
- P(Un_i+1;n < Flanzi +bn), 1< < k)
- P(n(Un_Hlm 1) < n(Flapa; +by) — 1), 1<i < k;)
As the convergence F"(anx + bn) —nsoo G(x), = € R, is equivalent to

n(F(ant + bp) — 1) —nsoo log(G(x)), 0 < G(z) < 1, and, as is easy to see,

(n(Un—it1:n — 1))i<k —D ngl) with density gglfl)(xl, oo, x) = exp(zg) if 0 >

r1 > -+ > x3 and 0 elsewhere, we obtain
P((Zn-isim = ba)fan < i, 10 k) e G5 ((log(Gl21))isk ).

This implies the assertion.
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For a proof of the following result, which provides a rate of convergence in
the preceding theorem if the upper tail of the underlying distribution is in a -
neighborhood of a GPD, we refer to Corollary 5.5.5 of Reiss [385] (cf. also Theorem
2.1.10).

Theorem 2.2.4. Suppose that the df F is in a d-neighborhood Q;(8) of a GPD
Wi =Wia, t=1,2 or 3. Then there obviously exist constants a > 0, b € R, with
b=01ifi=1, b=w(F) ifi =2, such that

af(az+b) = wi(x)(l +o(1 - Wi(x))‘s)) (2.9)

for all x in a left neighborhood of w(W; o). Consequently, we obtain from Corollary
5.5.5 in Reiss [385]

(P ) ), e B) -6 )

sup
BeB*

= O((k/n)°k"? + k/n),
where d,, = 0 fori =1,2;d,, = log(n) fori =3; ¢, =n'/*, n=Y*, 1 fori=1,2,3.

Notice that df F' whose upper tails coincide with that of a GPD, are actually
the only ones where the term (k/n)5k1/2 in the preceding bound can be dropped
(cf. Theorem 2.1.11). This is indicated by Theorem 2.2.4, as § can then and only
then be chosen arbitrarily large.

SUMMARIZING THE RESULTS

The following list of equivalences now follows from Proposition 2.1.4, 2.1.5 and
Theorem 2.1.8, 2.2.4. They summarize our considerations of this section and the
preceding one.

Theorem 2.2.5. Suppose that F satisfies condition (VM) from the preceding sec-
tion with § € R and ¢ > 0, such that the remainder function n(x) is proportional
to some monotone function as © — w(F) = w(Hg) and f:;(F) n(t)/(1+4 Bt)dt € R.

Then there exist a > 0, b € R with b= -1/ if B # 0, such that

) 1—F(ax+D) ) af(ax +b)
im = lim =1
zpwo(W;) 1 — Wl(ZIJ) ztw(W;) wl(x)

3

where it = 1,2,3 if > 0,< 0,= 0 and W; = Wy ./3, Wa ./3, W3. Consequently,
with c,,dy, as in the preceding result

ilelg P((Zm;_ b — dn)/cn < x) — Gl(x)‘ — oo 0,
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where Z1, ..., Zy, are iid with common df F. Moreover, we have the following list
of equivalences:

ilelg P((Z":T;_ b_ dn>/cn < x) - Gl(x)‘ =0(n~?%) for some § >0

<= there exists 6 > 0 such that for x — w(F)

n(z) = O((1 — Hp(x))®)
<= F is in a d-neighborhood Q;(0) of the GPD W;
<= there exists § > 0 such that, for k € {1,...,n}, n €N,
sup

sup, P(((Z"_j+;:" —b dn>/cn>jgk € B) - G(k)(B)’

- 0((k/n)5k1/2 + k/n).

2.3 The Peaks-Over-Threshold Method

The following example seems to represent one of the first applications of the POT
approach (de Haan [189]).

Example 2.3.1. After the disastrous flood of February 1st, 1953, in which the
sea-dikes broke in several parts of the Netherlands and nearly two thousand peo-
ple were killed, the Dutch government appointed a committee (so-called Delta-
committee) to recommend an appropriate level for the dikes (called Delta-level
since) since no specific statistical study had been done to fix a safer level for the
sea-dikes before 1953. The Dutch government set as the standard for the sea-
dikes that at any time in a given year the sea level exceeds the level of the dikes
with probability 1/10,000. A statistical group from the Mathematical Centre in
Amsterdam headed by D. van Dantzig showed that high tides occurring during
certain dangerous windstorms (to ensure independence) within the dangerous win-
ter months December, January and February (for homogeneity) follow closely an
exponential distribution if the smaller high tides are neglected.

If we model the annual maximum flood by a rv Z, the Dutch government
wanted to determine therefore the (1 — ¢)-quantile

Fl1—q) =inf{teR:F(t)>1-q}

of Z, where F denotes the df of Z and ¢ has the value 1074

THE POINT PROCESS OF EXCEEDANCES

From the past we have observations Z1, ..., Z, (annual maximum floods), which
we assume to be independent replicates of Z. With these rv we define the truncated
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empirical point process

NO() = ez,(-N (t,00))

that is, we consider only those observations which exceed the threshold t. The
process N,(f) is therefore called the point process of the exceedances.

From Theorem 1.3.1 we know that we can write

(1)
Ny Z Ev“>+t

J<Ki(n)
where the excesses Vl(t), VQ(t), ... are independent replicates of a rv V() with df
F®() := P(Z < t+-|Z > t), and these are independent of the sample size
Ki(n) := )<y €2.((t,00))-

Without specific assumptions, the problem to determine F~1(1 — q) is a
non-parametric one. If we require however that the underlying df F is in a J-
neighborhood of a GPD, then this non-parametric problem can be approximated
within a reasonable error bound by a parametric one.

APPROXIMATION OF EXCESS DISTRIBUTIONS

Suppose therefore that the df F of Z is in a d-neighborhood Q;(d) of a GPD W;
that is, there exist §, a >0, b € R, with b=0if i =1 and b = w(F) if i = 2, such
that, for  — w(F),

s = w7 ) (ro((-m (")),

where F' has density f in a left neighborhood of w(F).
In this case, the df F(!)(s), s > 0, of the excess V®) has density f(*) for all ¢
in a left neighborhood of w(F'), with the representation

-
w140 = W(T)))
CL-W(Y) 1+ 0((1 - Wi(T))9)

lllwi(H_Z_b t—b §
= wen (ro((=w,7))) sz

Note that a=tw;((t + s — b)/a)/(1 — W;((t — b)/a), s > 0, with 0 <

Wi((t—=b)/a) <land b=0ifi=1b0=w(F)ifi=2,is again the density
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of a GPD Wi(t), precisely of

wi(1+3) i=1
W) = W =14 5 ,) i i=2, 520,
ws(3) i=3.

We can consequently approximate the truncated empirical point process

NOG) =Y ez (-0 (t00))
- X ol

J<Ki(n)

pertaining to the K;(n) exceedances Vl(t) +t,..., VI((’?(”)
by the binomial point process

My(f)z Z €ctj+d+t,
J<Kqi(n)

+ t over the threshold %,

wherec=t, d=—tincasei =1, c=d=w(F)—tincasei=2and c=a, d =0
in case i = 3, and &1,&2 ... are independent copies of a rv £ having df W;, and
independent also from their random counting number Ky(n).

BoOuUNDS FOR THE PROCESS APPROXIMATIONS

Choose the particular threshold
t=aW; (1-7) +5,
n

with 7/n less than a suitable positive constant ¢o such that ¢ is in a proper left
neighborhood of w(F) = aw(W;) + b. By Corollary 1.2.4 (iv) we obtain for the
Hellinger distance H (N,gt), My(lt)) between N, and ML) uniformly for 0 < r/n <
co the bound
H(NY, M) < H(V®, & + d) (E(Ky(n)"/?
= O((1 = Wi((t = b)/a))’) (E(K4(n))"/?
=O((r/n)’ (n(1 = F(t)))/*) = O((r/n) r/?).
As the Hellinger distance is in general bounded by 2'/2, we can drop the

assumption r/n < ¢o and the preceding bound is therefore true uniformly for
0<r<n.
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The preceding inequality explains the exponential fit of the high tides by
van Dantzig in Example 2.3.1, if the smaller high tides are neglected. This peaks-
over-threshold method is not only widely used by hydrologists to model large
floods (Smith [420], Davison and Smith [94]), but also in insurance mathematics
for modeling large claims (Teugels [441], [442], Kremer [297], Reiss [384]). For
thorough discussions of the peaks-over-threshold approach in the investigation of
extreme values and further references we refer to Section 6.5 of Embrechts et al.
[122], Section 4 of Coles [71] and to Reiss and Thomas [389).

Replacing M,(Zt) by the Poisson process
Nr(zt)**(') = Z Ecg;+d+t (),
J<Te(n)

with 7¢(n) being a Poisson rv with parameter n(1 — F(t)), we obtain therefore by
Theorem 1.2.5 the following bound for the second-order Poisson process approxi-
mation of N,(Zt) by N,(Zt)**,

H(ND, N = 0 (2 (r/n)’ + (1 F (1))
= O(rl/z(r/n)‘s + r/n),

uniformly for 0 <r <n and n € N.
The preceding considerations are summarized in the following result provid-
ing bounds for functional laws of small numbers in an EVD model.

Theorem 2.3.2. Suppose that F' is in the d-neighborhood Q;(d) of some GPD
Wi, i = 1,2 or 3. Then there exist a > 0, b € R, with b =0 in case i = 1 and
b=w(F) in case i = 2 such that

1—F(ax+0)

im =1.
pwo(W;) 1 — Wz(l')

Define for r € (0,n) the threshold

and denote by

NY =3 ez (n(toc) = > Evj(”+t(')

J<Ki(n)

the point process of the exceedances among Z1, ..., Zy, overt.
Define the binomial process

MS) = Z Ectj+d+t
J<K¢(n)
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and the Poisson processes

N’I'(Lt)* = Z E‘/j(t)+t’ N7(lt)** = Z Eegj+d+t;

Jj<Ti(n) Jj<Ti(n)

where c = t, d = —t, ifi =1, c=d=wlt)—tifi=1 c=a, d=0if
i = 3; &1,8&,... are iid rv with common df W; and 1¢(n) is a Poisson rv with
parameter n(1— F(t)), independent of the sequences &1,&a, ... and of Vl(t), Vz(t), .
Then we have the following bounds, uniformly for 0 <r <n andn € N,

H(N, M) = O(r'/2(r/n)’)

for the POT method,
H(N{,NP*) = O(r/n)

for the first-order Poisson process approzimation and
H(NY, N*) = O(r/n+ 12 (r/n)?)
for the second-order Poisson process approximation.

A binomial process approximation with an error bound based on the remain-
der function of the von Mises condition (VMj) in Theorem 2.1.2 was established
by Kaufmann and Reiss [287] (cf. also [389], 2nd ed., Section 6.4).

2.4 Parameter Estimation
in 6-Neighborhoods of GPD

Suppose that we are given an iid sample of size n from a df F', which lies in a
d-neighborhood @;(6) of a GPD W;. Then there exist o, a >0, b € R, with b=0
ifi=1andb=w(F)if i = 2 such that F(z) and 1 — W, o((x — b)/a) are tail
equivalent. Interpret again W3, as W3. We assume that the class index i =1,2,3
and w(F') are known. As shown in (2.7) and (2.8) in Section 2.2, a suitable data
transformation, which does not depend on « or a, transposes F' € Q;(0), i =1 or
2, to a df F; which is in Q3(9). And in Q3(9) the estimation of upper tails reduces to
the estimation of a scale and location parameter ag > 0, by € R for the exponential
distribution, which in turn allows the application of standard techniques. A brief
discussion of that case, where F' is in Q2(4) but w(F') is unknown, is given after
Lemma 2.4.3.

If it is assumed that F lies in a d-neighborhood Q;(d) of a GPD, but the class
index 7 is unknown, then an initial estimation of the class index ¢ is necessary. A
suggestion based on Pickands [371] estimator of the extremal index « is discussed
in the next section.

Our considerations are close in spirit to Weissman [458], who considers n iid
observations with common df F being the EVD G3((z — bo)/ag) with unknown
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scale and location parameter ag > 0, bg € R. Based on the upper k order statistics
in the sample, he defines maximum-likelihood and UMVU estimators of ag and by
and resulting estimators of extreme quantiles F~1(1 — ¢/n). Equally, he proposes
the data transformations (2.7) and (2.8) in case F' = G1,, or Gz but considers
no asymptotics.

Viewing F' as an element of Q;(0), we can establish asymptotics for UMVU
estimators of a,b and of resulting estimators of extreme quantiles F~1(1 — ¢,)
with ¢, — 0 and k& = k(n) — oo as n — oo. It follows in particular from Corol-
lary 2.4.6 that the error of the resulting estimator of F~1(1 — g,) is of the order
Op(q;'ymk_1/2(10g2(nqn/k) + 1)Y/?), where (i) = 1/a, =1/, 0 if F € Q;(0), i =
1,2,3.

This demonstrates the superiority of the estimators to the ones proposed by
Dekkers and de Haan [108] and Dekkers et al. [107], if ng,, is of smaller order than
k. Note however that our estimators are based on the assumption that the class
index i of the condition F' € @;(9) is known, whereas those estimators proposed
by Dekkers et al. are uniformly consistent.

THE BASIC APPROXIMATION LEMMA

The following consequence of Theorem 2.2.4 is crucial.

Lemma 2.4.1. Suppose that F is in Q3(0) for some & > 0. Then there exist
ag > 0, by € R such that

sup
BeBk+1

P(((Za-istin = Zn-ton)its Zosin) € B)
—P(((aoXj:k)jgk, (ao/k*?)Y + aglog(n/k) —l—bo) € B)‘
= O(k/n+ (k/n)°kY? + k=1/2),

where Y, X1, ..., Xx are independent rv, Y is standard normal and X1, ..., Xy are
standard exponential distributed.

Proof. By Theorem 2.2.4 there exist ag > 0 and by € R such that

sup P(((Zn_j+1;n —bo)/ap — log(n)),<k € B) -~ Gé’““)(B)

BeB*
= O((k/n)°kY? + k/n).

Recall that ngﬂ) is the distribution of the vector (—log(}_;<, &))r<k+1, Where
&1, &9, ... are independent and standard exponential distributed rv (Remark 2.2.3).
Within the preceding bound, the rv ((Zn—jt1:m — Zn_km)/ao)}:k, (Zn—ken —
bo)/ao — log(n)) behaves therefore like
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((re(e) w3 6))L e 3 )

j<r j<k+1 j<k+1
1
((os(Tes T a)) e T 9)
j<r  j<k+1 "= j<k+1
=D ((er r<k, — log( Z fg))
I1<k+1
where X1, X5,...,&1,&, ... are independent sets of independent standard expo-

nential rv. By =p we denote equality of distributions. This follows from the facts
that (32, &/ 2 j<py1 &)r<k and 32 oy & are independent (Lemma 1.6.6 in
Reiss [385]), that (3, &/ 2" <kt1 &)r<k =D (Urik)r<k, where Un, ..., Uy are in-
dependent and uniformly on (0,1) distributed rv (Corollary 1.6.9 in Reiss [385]),
and that —log(l — U) is a standard exponential rv if U is uniformly on (0,1)
distributed. Finally it is straightforward to show that —log(_ i<kt1 &;) is in vari-

ational distance within the bound O(k~'/2) distributed like Y/k'/? — log(k).

The preceding result shows that within a certain error bound depending on
J, the k excesses (Zn—j41:n — Zn_;m)Jl-:,C over the random threshold Z, _;., can
be handled in case F € Q3(9) like a complete set (agX;.i) <k of order statistics
from an exponential distribution with unknown scale parameter ay > 0, whereas
the random threshold Z,,_j., behaves like agk™*2Y + aq log(n/k) + by, where Y
is a standard normal rv being independent of (X.x);j<x. Notice that no informa-
tion from (Z,,—j11:n)j<k+1 is lost if we consider ((Z,,—j11.n — Zn_k;n)}:k, Zn—kem)
instead.

EFFICIENT ESTIMATORS OF ag AND by

After the transition to the model ((aoX;.x);j<k, (a0/kY?)Y +aglog(n/k) + by), we
search for efficient estimators of ag and by within this model.
Ad hoc estimators of the parameters ag > 0, by € R in the model

{(Viir)i<, €}
= {(GOXj:k)jgk, (ao/kl/Q)Y + ao log(n/k) + by :ag > 0, bo € R}

are

ar =k Vs

J<k

and
bi,n = & — ax log(n/k).
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The joint density faq.5, of (Vik)j<k,&) is

klE1/2 .
fllo,bo(w7y) = alg+l 1/2 exp ( ) Zx.]>

(2m) i<k
(y — aolog(n/k) — 50)2>
% exp( 2a2/k ’
for x = (z1,...,2x) € R¥ if 0 < 7 < --- < x1, y € R, and zero elsewhere

(Example 1.4.2 (i) in Reiss [385]). This representation implies with respect to the
family P := {fagbo : a0 > 0, by € R}. It is straightforward to show that P
is an exponential family, and by using standard arguments from the theory of
such families (see e.g. Chapter 3 of the book by Witting [463]), it is elementary to
prove that (ag, IA);C”) is a complete statistic as well. Altogether we have the following
result.

Proposition 2.4.2. The estimators &k,l;km are UMVU (uniformly minimum
variance unbiased) estimators of ag, by for the family P={fay b, : @0>0, bo €R}.

It is straightforward to show that k=1/2 > i<r(X; — 1) approaches the stan-

dard normal distribution N (0, 1) within the error bound O(k~'/2) in variational
distance. The following auxiliary result is therefore obvious.

Lemma 2.4.3. We have uniformly in P the bound

sup
BeB?

P(((R"2(ax = a0), (K/2/10g(n/k))(be.n — bo)) € B)

—P((aoﬁla (ao/log(n/k))&2 — aoé1) € B)‘
= O(k™'?),

where &1, &9 are independent standard normal rv.

HiLL’'s ESTIMATOR AND FRIENDS
If we plug our initial data (Z,—jt1:n — Zn_k;n)jl-:k, Zn—k:n into ap and IA);.C,”, we
obtain the estimators

CALn,3 = ak((Zn—j+1:n - Zn—k:n)Jl‘:k)

= k_l Z Zn—j-i—l:n - Zn—k:na
i<k
and )
bus i= Zuson — log(n/)an.s
of ap and by in case F € Q3(9).
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If we suppose that F is in @Q1(d), then we know already that Fy(z) =
F(exp(z)) is in Q3(0), where the initial shape a parameter of F' becomes the
scale parameter ag = 1/a (cf. (2.7)).

We replace therefore Z;.,, in this case by the log-transformed data log(Z;., A
1) = log(max{Z;.,,1}) and define the estimators

1 = s ((1og(zn_j+1m A1) = 10g(Znkem A 1))}:k)

=k 1og(Zn—j1m A1) =108(Zn ke A1),
J<k

and

Bn,l = [A)n,S ((log(Zn—j+l:n A 1) - log(Zn—k:n A 1));:167 log(Zn—k::n A 1))
=log(Zp—km A1) —log(n/k)an 1

of ag and by. The estimator a, 1 is known as the Hill estimator (Hill [217]). It
actually estimates 1/a, the reciprocal of the initial shape parameter « of F. Note
that the upper tail of the df of Z A1 and of Z coincide as w(F') = co. Asymptotic
normality of k'/2(a, ; — 1/a) with mean 0 and variance 1/a? under suitable con-
ditions on F and the sequence k = k(n) is well known (see, for example, Hall [202],
Csorgé and Mason [84], Hall and Welsh [204], H&usler and Teugels [212]). For a
thorough discussion of the Hill estimator we refer to Section 6.4 of Embrechts et
al. [122)].

If the underlying F' is in Q2(0), the transformation —log(w(F) —Z;) of our
initial data Z; leads us back to Q3(d) with particular scale and location parameters
ap >0, by € R (cf. (2.8)). The pertaining estimators are now

2 1= (= 108((F) = Zumyin) +108((F) = Zuion)}r)

= log(w(F) - n kn - Zlog - n j+1:n)
i<k
and .
bp2 = —log(w(F) — Zp—_k:m) — log(n/k)én, 2.

If the endpoint w(F') of F is finite but unknown, then we can replace the
transformation — log(w( ) — Zj.n) of our initial data Z; by the data-driven trans-

formation — log(Z,., — Zj.n) and j running from 1 to n—1. This yields the modified
versions
dfmz = 10g (Znn - Zn—k:n) - (k - 1)_1 Z log(Znn - Zn—j+1:n)
2<j<k
and

~

2 1= =108 (Zoin = Znsn ) — 10g(n/R)a,
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of the estimators a, > and l;n,g.

One can show (cf. Falk [134]) that in case 0 < a < 2, the data-driven estima-
tors ay, o, B;,Q perform asymptotically as good as their counterparts dy 2, b2 with
known w(F). Precisely, if k = k(n) satisfies k/n — 0, log(n)/k'/? — 0 as n tends
to infinity, we have

kY22 — ), 5| = op(1)

and . .
(k"2 /1og(n/k))|bn2 — b, 5| = op(1).

As a consequence, the asymptotic normality of (G2, by 2), which follows from the
next result if in addition (k/n)?k'/? — 0 as n increases, carries over to (a2, IA);LQ)
If @ > 2, then maximum likelihood estimators of w(F'), a and 1/« can be obtained,
based on an increasing number of upper-order statistics. We refer to Hall [201]
and, in case o known, to Csorgé and Mason [85]. For a discussion of maximum
likelihood estimation of general EVD we refer to Section 6.3.1 of Embrechts et al.
[122], Section 1.7.5 of Kotz and Nadarajah [293] and to Section 4.1 of Reiss and
Thomas [389]. The following result summarizes the preceding considerations and
Proposition 2.2.1.

Theorem 2.4.4. Suppose that F is in Q;(5), i = 1,2 or 3 for some § > 0 that is,
F is in particular tail equivalent to a GPD W; o((x — b)/a), where b=10 if i =1
and b= w(F) if i = 2. Then we have in case

i=1: 1—-F(x) =1— F(exp(x))
i=2: 1—F(z) =1— F(w(F)—exp(—2x))
i=3: 1—F3(x):=1-F(x)
= (1= Wa((z = bo) /a0)) (1 + Olexp(~(§/av)a))

with ag = 1/a, by = log(a) if i = 1; ap = 1/a, by = —log(a) if i = 2 and
ag = a, by =b if i = 3. Furthermore,

fal@) = a5 "ws((@ = bo) /a0) (1 + Ofexp(—(8/a0)))

for x — oo and
F7H(1=q) = ((aoW5 ' (1= q) +bo ) (1+O(¢"/ 1og(@) ) i = 1,2,3
as ¢ — 0. Finally, we have for i = 1,2, 3 the representations

sup P((kl/Z(am — ag), (k2] log(n/k))(bn.i — bo)) e B)

BeB?

~P( (a0, (ao/ log(n/k))& — oty ) € B)|
= O(k/n+ (k/n)°k'/? + k~1/2),

where &1, &9 are independent standard normal rv.
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Note that in cases ¢ = 1 and 2, estimators of the initial scale parameter a

in the model F' € Q;(9) are given by exp(b,,1) ~ exp(by) = a and exp(—bp2) ~
exp(—bg) = a, respectively. Their asymptotic behavior can easily be deduced from
the preceding theorem and Taylor expansion of the exponential function.

THE PARETO MODEL WITH KNOWN SCALE FACTOR

Suppose that the df F' underlying the iid sample Z1,...,Z, is in Q1(5). Then F
has a density f on (o, 00) such that

7@ = twnaga (D) (1H 0O - Wra@)), > w0, (210)

for some «,d,a > 0. Note that we have replaced o by 1/«a. The preceding result
states that for the Hill estimator

&n,l =K1 Zlog(Zn_me N 1) — log(Zn_km A 1)

J<k
of apg = a we have
k1/2
sup | P("  (@n1 —a) € B) = N(0,1)(B)
BeB «

= O(k/n+ (k/n)°kY? + k~1/2),

where N(0,1) denotes the standard normal distribution on R. If the scale para-
meter a in (2.10) is however known, then the Hill estimator is outperformed by

log(Zp—k:n A1) —log(a)
Ay = )
log(n/k)

as by Lemma 2.4.1 and the transformation (2.7)

<k1/2 log(n/k)

sup |P (G — ) € B> — N(0,1)(B)

BeB
= O(k/n+ (k/n)°kY? + k=1/?),

showing that &, is more concentrated around « than a, ;.

This result, which looks strange at first sight, is closely related to the fact
that Z,_g.» is the central sequence generating local asymptotic normality (LAN) of
the loglikelihood processes of (Z,—j11:n)j<k+1, indexed by c. In this sense, Z,,_:n
carries asymptotically the complete information about the underlying shape para-
meter « that is contained in (Z,,—j+1:n)j<k (see Theorems 1.3, 2.2 and 2.3 in Falk
[133]).



2.4. Parameter Estimation in §-Neighborhoods of GPD 53

THE EXTREME QUANTILE ESTIMATION

Since W5 (1 — q) = —log(q), we obtain from the preceding theorem the following
result on the estimation of extreme quantiles outside the range of our actual data.
We adopt the notation of the preceding result.

Theorem 2.4.5. Suppose that F is in Q;(5), i = 1,2 or 3. Then we have, for
1=1,2,3,

sup [P(F7(1 = 0) = (W5 (1~ q) + bos) € B)
BeB

—P(aots log(an/k)/K'/? + asta /K" + O(¢") € B))
= O(k/n+ (k/n)°k'? + k71/?)

uniformly for ¢ — 0, where &1, & are independent and standard normal Tv.

~

The preceding result entails in particular that dn)in;l(l —q)+ l;nl =bn,
—an, i log(q) is a consistent estimator of F[l (1—q) for any sequence ¢ = ¢, —n—oo
0 such that log(qn)/k'/? — 0 with k = k(n) — oo satisfying (k/n)°k'/? — 0.

The bound O(k/n+(k/n)°k*/?++k~1/2) for the normal approximation in The-
orem 2.4.5 suggests that an optimal choice of k = k(n) — oo is of order n2%/(20+1)
in which case the error bound (k/n)%k'/? does not vanish asymptotically.

Note that F;'(1 — ¢) = log(F~*(1 — ¢)) and F, *(1 — q) = —log(w(F) —
F71(1 — ¢q)). We can apply therefore the transformation Tj(x) = exp(x) and
Ty(r) = w(F) — exp(—x) in case i = 1,2 to the estimators of F, (1 — ¢) in
Theorem 2.4.5, and we can deduce from this theorem the asymptotic behavior of
the resulting estimators of the initial extreme quantile F~1(1 — q).

Theorem 2.4.5 implies the following result.

Corollary 2.4.6. Suppose that F is in Q;(d), i = 1,2 or 3. Then we have

(i) qg(i)(F_l(l —qn) — Tl(l;nl — Qni log(qn))) —*n—00 0

in probability, with v(i) = 1/a,—1/a,0 if i = 1,2,3, and Ti(z) = exp(x),
To(z) = w(F) —exp(—x), T3(x) =z, x € R, for any sequence ¢, —n—o00 0
such that log(gnn)/kY? —, 400 0, where k = k(n) satisfies (k/n)’k'/?

(1) 1.1/2
. an "k 1 - .
ii) sup|P F7(1—q,)—T;(by.; — an.ilog(g,))) <t
@) 590 [P( o og iy o 1y E (1700 = Tilbs —nilog(an))) < 1)

—P(t)| —noo0o 0,

for any sequence ¢, —n—s00 0 such that k*/2¢C is bounded and log(q,n)/k*/?
— oo 0, where k — oo satisfies (k/n)°kY? —, 00 0, a(i) = a/a,a/a,a
ifi=1,2,3 and ® denotes the standard normal df.
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Proof. Theorem 2.4.5 implies

(i) F,'(1 - gn) — (Em — n W5 (1 = gn)) —n—oo 0 in probability for any
sequence ¢, —n 500 0 such that log(g,n)/k"? —, 00 0, where k = k(n)
o0 00 satisfies (k/n)0k'/? —, o 0.

. /{31/2 _ R R _
@) 500 [P( a4y (B0 = 00) = Gus = an W51 = 00)))

< t) - @(t)‘ e 0

for any sequence g, —n_00 0 such that k'/2¢% is bounded, where k — oo
satisfies (k/n)? k'/2 —, 5 0.

The assertion of Corollary 2.4.6 now follows from the equation F~(1 — ¢,) =
Ti(Fi_l(l—qn)), i = 1,2, 3, Taylor expansion of T; and the equation F~1(1—¢q,) =
ag: (14 o(1) if i = 1; w(F) = F7Y(1 = ga) = ag/*(1+ o(1)) if i = 2 (see
Proposition 2.2.1).

CONFIDENCE INTERVALS

Theorem 2.4.5 can immediately be utilized to define confidence intervals for the
extreme quantile F~1(1 — g,). Put for ¢, € (0,1),

and define the interval
I, = [Fn—l(l — qn) — an,i(log*(gun/k) + 1)2k712071 (1 = By),
Fn_l(l —qn) + &n,i(logz(qnn/k) + 1)1/2k_1/2¢>_1(1 — B2)],

where 0 < 81,082 < 1/2. For F € Q;(§) we obtain that I,, is a confidence interval
for F; ' (1 — gy,) of asymptotic level 1 — (81 +02) that is, lim,, oo P(F; '(1—gn) €
I,) = 1 —(B1+ Ba). Consequently, we obtain from the equation T;(F; '(1—¢,)) =
F_l(l - Qn)a

lim P(F~'(1—gq,) € T;(I,)) =1 — (B1 + fB2)

n—oo

with Ty (x) = exp(x), Ta(x) = w(F) — exp(—z) and T3(z) = =, = € R, for any
sequence g, —n_s00 0 such that k'/2¢% is bounded, where k — oo satisfies (k/n)°
/2 —, o 0. Note that T} are strictly monotone and continuous functions. The
confidence interval T;(I,,) can therefore be deduced from I,, immediately by just
transforming its endpoints. Note further that the length of I, is in probability
proportional to (log?(g,n/k) + 1)*/2k=1/2, which is a convex function in ¢, with
the minimum value k~/2 at ¢, = k/n.
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2.5 Initial Estimation of the Class Index

If it is assumed that F is in Q;(d) but the index ¢ is unknown, an initial estimation
of the index ¢ € {1,2,3} is necessary. Such a decision can be based on graphical
methods as described in Castillo et al. [61] or on numerical estimates like the
following Pickands [371] estimator (for a discussion we refer to Dekkers and de
Haan [108]).

THE PICKANDS ESTIMATOR
Choose m € {1,...,n/4} and define

Bn(m) — (1Og(2))_1 10g (ZZn—m+l:n ZZn—2m+1:n )
n—2m+1:n — En—4m+1:n
This estimator is an asymptotically consistent estimator of 8 := 1/a,—1/,0 in
case F' € ;(0) with pertaining shape parameter a. A stable positive or negative
value of (3, (m) indicates therefore that F is in Q;(d) or Qo(d), while 5, (m) near
zero indicates that F' € Q3(6). By N(u, %) we denote the normal distribution on
R with mean p and variance o2.

Proposition 2.5.1. Suppose that F is in Q;(0), i = 1,2,3. Then we have

sup [P (m!/2(B(m) — B) < t) = N(0,03)((—o0, 1]
teR
= O((m/n)° mY? + m/n+m~?),
where a1
CT[% = b2 2 ( o )27
2log®(2) \1—27F
Interpret of = limg_,0 05 = 3/(410g(2)").

B eR.

The estimator 3, (m) of 8 can easily be motivated as follows. One expects by
Proposition 2.2.1,

Zp—mt1in — Ln—2m+1:n N F7H(1 - 1) — F71(1 - 712_211)

Zu-amin  Zomirn~ FN1 = 21) ~ P (1= )
Wi_l(l nn.:1) - Wi_l(l - 73—?1)
W= 2 ) =W = )

with W; € {W;, Wa, W5} being the GPD pertaining to F. Since location and scale
shifts are canceled by the definition of the estimator 5, (m), we can assume without
loss of generality that W, has standard form. Now

g i=1,
W 1—q)=<{ —¢"/* incase i=2,
—log(q) i1=3,
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€ (0,1) and, thus,

—1 m -1 2m o1/e i=1,
W’L 1( n+1)_Wl 1(l_n—i-l) — 2—1/(1 i=92
— 2m — 4m )
Wi (1 - n+1) - Wl (1 - n+1) 1 1 3,

7,_1 - 7?:-711)_W1_1(1_ ;;nl)
1/a, 1=1,
=< —1/a, i=2, =f
0, 1=3,

Weak consistency of 3,(m) actually holds under the sole condition that F is
in the domain of attraction of an EVD and m = m(n) satisfies m — oo, m/n — 0
as n — oo (see Theorem 2.1 of Dekkers and de Haan [108]). Asymptotic normality
of B, (m) however, requires additional conditions on F (see also Theorem 2.3 of
Dekkers and de Haan [108]).

CoONVEX COMBINATIONS OF PICKANDS ESTIMATORS

The limiting variance of Pickands estimator 3,(m) can considerably be reduced
by a simple convex combination. Choose p € [0, 1] and define for m € {1,...,n/4},

Bu(m,p) i=p- Bu((m/2)) + (1 = p) - Bu(m)
= (log(2)) ™" log {( Zn—(m/2+1m = Zn—2(m/2+1m )

Zn—2[m,/2]+1:n_ n—4[m/2]+1:n
1-p
« Zn—m,—i—l:n - Zn—2m+l:n
Zn—2m+1:n — 4n—4m+1in ’
where [z] denotes the integral part of x € R. If m is even, [m/2] equals m/2, and
the preceding notation simplifies.

We consider the particular convex combination 3, (m, p) to be a natural ex-
tension of Pickands estimator f3,(m): As 3,(m) is built upon powers of 2 that
is, of 29m, 2 m, 22m, it is only natural (and makes the computations a bit easier)
to involve the next smaller integer powers 2~ 'm,2%m,2'm of 2 and to combine
Bn(m) with B,(Jm/2]). As a next step one could consider linear combinations
S icr Pibn([m/271), Sscppi = 1, of length k. But as one uses the 4m largest
observations in a sample of size n in the definition of Bn(m), with 4m having to be

relatively small to n anyway, it is clear that m/2 is already a rather small number
for making asymptotics (m — o0). For moderate sample sizes n, the length m will
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therefore be limited to 2 in a natural way. Higher linear combinations nevertheless
perform still better in an asymptotic model (cf. Drees [114]).

In the following result we establish asymptotic normality of ﬁn(m, p). With
p = 0 it complements results on the asymptotic normality of Bn(m) = ﬁn(m, 0)
(cf. also Dekkers and de Haan ([108], Theorems 2.3, 2.5)). Its proof is outlined at
the end of this section. A careful inspection of this proof also implies Proposition
2.5.1.

Lemma 2.5.2. Suppose that F is in Q;(d), i = 1,2,3 for some § > 0. Then we
have, for m € {1,...,n/4} and p € [0,1],

sup | P(m*?(B,(m, p) — B) € B) — P(osvs(p)X + O,(m~Y/?) € B)
BeB

= O((m/n)‘;ml/2 +m/n+ m_l/Q),

where X is a standard normal rv and

4.278 4.278
va(p) == 1+p2(3+ 9-28 +2) —p(2+ 2_2ﬁ+2).

THE ASYMPTOTIC RELATIVE EFFICIENCY

The following result is an immediate consequence of Lemma 2.5.2.

Corollary 2.5.3. Under the conditions of the preceding lemma we have, for m =
m(n) —n_o0 00 such that (m/n)’m'? — 0 as n — oo,

m'2(Bu(m,p) — B) —=p N(0,0303(p)).

By —p we denote again convergence in distribution. Recall that og is the
variance of the limiting central normal distribution of the standardized Pickands
estimator \/m (3, (m) — B). The factor v5(p) is now the asymptotic relative effi-
ciency (ARE) of B, (m) with respect to (3, (m,p), which we define by the ratio of
the variances of the limiting central normal distributions of m/2(8,(m,p) — )
and m/2(B, (m) — B):

ARE (84 (m)|B,.(m, p)) := v3(p).

THE OPTIMAL CHOICE OF p
The optimal choice of p minimizing v3(p) is

(272 +2)4+2.277

Popt (B) = 32726 +2)+4.2-8’
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in which case v3(p) becomes

28
2 _
Vﬁ(popt(ﬂ)) =1 _popt(ﬂ) : (1 + 22_2ﬁ 4 2)-
As popt(B) is strictly between 0 and 1, we have ug (Popt (B)) < 1 and the convex
combination 3, (m, Popt(3)) is clearly superior to the Pickands estimator Br(m).
The following figure displays the ARE function 8 — ug (Popt (B)). As ug (Popt

(B)) =: g(27%) depends upon S through the transformation 27, we have plotted
the function g(x), z € R, with = 277. Notice that both for + — 0 (that is,
B — o0) and z — oo (that is, § — —o0) the pertaining ARE function converges
to 2/3 being the least upper bound, while .34 is an approximate infimum.

Asymptotic relative efficiency

9(27))=v3(pop(8))

0.70

0.62

a(x)
0.54

0.46
T

0.38
T

0.30

2
FIGURE 2.5.1.g(z) = 1 — 3(@2:22)):242 (1 + Ii@)

DATA-DRIVEN OPTIMAL ESTIMATORS

The optimal p depends however on the unknown (8 and it is therefore reasonable
to utilize the data-driven estimator

. 2726n £ 9) 4 2.27n
Popt (Bn) == ( 95 : _A
3(2726n +2) +4-2-Fn

where 3, is an initial estimator of 8. If 3, is asymptotically consistent, then,
using Lemma 2.5.2; it is easy to see that the corresponding data-driven convex
combination ﬁn(m,popt (Bn)) is asymptotically equivalent to the optimal convex
combination Bn(m, Popt (8)) with underlying 8 that is,

A

m'/? (Bn(m7P0pt(Bn)) - ﬁn(m,popt(ﬁ))> = op(1),
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so that their ARE is one.

A reasonable initial estimator of 8 is suggested by the fact that the particular
parameter § = 0 is crucial as it is some kind of change point: If 3 < 0, then the
right endpoint w(F) of F is finite, while in case 8 > 0 the right endpoint of F is
infinity. The question w(F) = oo or w(F) < oo is in case § = 0 numerically hard
to decide, as an estimated value of 8 near 0 can always be misleading. In this case,
graphical methods such as the one described in Castillo et al. [61] can be helpful.
To safeguard oneself against this kind of a least favorable value 3, it is therefore
reasonable to utilize as an initial estimator 3, that convex combination Bn(m, D),
where p is chosen optimal for § = 0 that is, popt(0) = 5/13. We propose as an
initial estimator therefore 3, = f3,(m,5/13).

Optimal weights pop‘(ﬁ):h(z’ﬁf}

FIGURE 2.5.2. h(z) = ((2* + 2) + 22)/(3(z* + 2) + 4z).

Figure 2.5.2 displays the function of optimal weights popt (3), again after the
transformation z = 277 that is, popt(3) =: h(277). These weights do not widely
spread out, they range between .33 and .39, roughly.

Note that the ARE of the Pickands estimator f,(m) with respect to the
optimal convex combination f3,(m,5/13) in case 8 = 0 is 14/39. We summarize
the preceding considerations in the following result.

Theorem 2.5.4. Suppose that F is in Q;(8), i = 1,2 or 3 for some 6 > 0. Then
we have, for m — oo such that (m/n)°m? — 0 as n — oo,

/2 (Butm,popu(3:))  8) 0 N(0.03(1-pepi8) (142, 2, )

for any initial estimator sequence Bn of B which is asymptotically consistent.
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DROPPING THE §-NEIGHBORHOOD

The crucial step in the proof of Lemma 2.5.2 is the approximation

Apm = sup |P(((Zn—jt1m — bn)/an)jﬁm € B)

BeB™
P((ﬂ(ngj §r)_’8>j§m € B)‘ if B+#0,

P(( —10g(Y, <, gr))jém c B)’ it g=0,
= O((m/n)°m*? + m/n)

of Theorem 2.2.4, where £1,&5, ... are independent and standard exponential rv
and a, > 0, b, € R are suitable constants (see also Remark 2.2.3).

Lemma 2.5.2, Corollary 2.5.3 and Theorem 2.5.4 remain however true with
(m/n)°m'? 4m/n replaced by A, if we drop the condition that F is in Q;()
and require instead A, ,, — 0 for some sequence m = m(n) < n/4, m — oo as
n — oo.

Then we can consider for example the case, where F' is the standard normal
df, which is not in any Q;(4); but in this case we have A, ,, = O(m'/?log®(m+1)/
log(n)) (cf. Example 2.33 in Falk [126]), allowing however only rather small sizes
of m = m(n) to ensure asymptotic normality.

SIMULATION RESULTS

In this section we briefly report the results of extensive simulations which we have
done for the comparison between [, (m, Popt) = Bn(m,popt(Lrn)), based on the
initial estimate 5, = (,(m,5/13) and the Pickands estimator S, (m).

These simulations with various choices of n,m and underlying df F' sup-
port the theoretical advantage of using Bn(m,;ﬁopt) in those cases, where F' is
in a é-neighborhood of a GPD. Figures 2.5.3-2.5.6 exemplify the gain of relative
performance which is typically obtained by using Bn(m,;ﬁopt). In these cases we
generated n = 50/100/200/400 replicates Z1, ..., Z, of a (pseudo-) rv Z with dif-
ferent distribution F' in each case. The estimators Bn(m,ﬁopt) and B, (m) of the
pertaining values of § with m = 6/8/12/40 were computed, and we stored by
B:=|Bp(m)—p]|, C:= |Bn(m,ﬁopt) — B] their corresponding absolute deviations.
We generated k£ = 1000 independent replicates By, ..., By and Cq,...,Cy of B
and C, with their sample quantile functions now visualizing the concentration of
Bn(m) and Bn (m7ﬁ0pt) around B
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Estimated quantile functions with underlying triangular distribution
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FIGURE 2.5.4.8 =0, n =100, m = 8.

Figures 2.5.3-2.5.6 display the pertaining sample quantile functions (¢/(k +
1), Bug) and (t/(k + 1), Cep), t = 1,...,k = 1000 for Z. By By < --- <
Bp.r and Ci.p < -++ < Ck.x we denote the ordered values of By,...,B; and
C1,...,Ck. In Figure 2.5.3, Z equals the sum of two independent and uniformly
on (0,1) distributed rv (8 = —.5); in Figure 2.5.4 the df F' is a Gamma distribution
(Z = X1+ X2 + X3, X1, X5, X3 independent and standard exponential, 5 = 0)
and in Figure 2.5.5, F' is a Cauchy distribution (8 = 1). Elementary computations
show that these distributions satisfy (VM) with rapidly decreasing remainder. The
triangular distribution is in particular a GPD. In Figure 2.5.6, F' is the normal
distribution.
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Estimated quantile functions with underlying normal distribution
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FIGURE 2.5.6. 8 = 0, n = 400, m = 40.

Except the normal distribution underlying Figure 2.5.6, these simulations are

clearly in favor of the convex combination /3, (m, Popt) as an estimator of /3, even for
moderate sample sizes n. In particular Figure 2.5.3 shows in this case with 8 = —.5,
that Bn (m) would actually give a negative value between —1 and 0 with approxi-
mate probability .67, whereas the corresponding probability is approximately .87
for B, (m, popt). Recall that a negative value of 3 implies that the underlying df
has finite right endpoint. In Figure 2.5.4 with 8 = 0 the sample medians By, .
and Cy/a., are in particular interesting: While with approximate probability 1/2
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the Pickands estimate Bn(m) has an absolute value less than .3, the combination
Bn(m,ﬁopt) is less than .18 apart from 8 = 0 with approximate probability 1/2.
Figure 2.5.6 is not in favor of Bn(m,ﬁopt). But this can be explained by the fact
that the normal distribution does not belong to a d-neighborhood of a GPD and
the choice m = 40 is too large. This observation underlines the significance of
d-neighborhoods of GPD.

Our simulations showed that the relative performance of By, (m, Popt) is quite
sensitive to the choice of m which corresponds to under- and oversmoothing in
bandwidth selection problems in non-parametric curve estimation (see Marron
[322] for a survey). Our simulations suggest as a rule of thumb the choice m =
(2/25)n for not too large sample size n that is, n < 200, roughly.

NOTES ON COMPETING ESTIMATORS

If one knows the sign of 3, then one can use the estimators a,; of the shape
parameter 1/a = |8, which we have discussed in Section 2.4. Based on the 4m
largest order statistics, m*/2(a,; —|/3|) is asymptotically normal distributed under
appropriate conditions with mean 0 and variance 32/4 in case i = 1,2 and 8 # 0
(Theorem 2.4.4), and therefore outperforms Bn(m,ﬁopt) (see Theorem 2.5.4).

A competitor of 3, (m,p) is the moment estimator investigated by Dekkers et
al. [107], which is outperformed by S, (m, Popt) if B < 0 is small enough. Alterna-
tives such as the maximum-likelihood estimator or the method of probability-
weighted moment (PWM) considered by Hosking and Wallis [224] require re-
strictions on 8 such as 8 > —1 (for the PWM method) and are therefore not
universally applicable. A higher linear combination of Pickands estimators with
estimated optimal scores was studied by Drees [114]. For thorough discussions
of different approaches we refer to Section 9.6 of the monograph by Reiss [385],
Sections 6.3 and 6.4 of Embrechts et al. [122], Section 5.1 of Reiss and Thomas
[389], Section 1.7 of Kotz and Nadarajah [293] as well as to Beirlant et al. [32] and
de Haan and Ferreira [190].

OUTLINE OF THE PROOF OF LEMMA 2.5.2: Put

Z —m m - “n—-2m mn
An — n—[m/2]+1: 2[m/2]+1: _2ﬁ

Zn—2[m/2]+l:n — “n—4m/2]4+1:n

and

Bn — Zn—m+l:n - Zn—2m+1:n _ 2ﬁ

Zn—2m+1:n — Ln—4m+1:n

We will see below that A,, and B,, are both of order Op(m~1/2), so that we obtain,
by the expansion log(1 + ¢) = ¢ + O(e?) as € — 0,
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Bn(m,p) — B = {p(log(2ﬁ+An) —10g(2ﬁ)>

1
log(2)

+ (1—p)<log(2ﬁ+Bn) —log(2ﬁ)> }

- log1(2) {plog <1 + §ﬁ> + (1-p)log (1 + §ﬁ>}

Y lolg(2) (pAn + (1=p)By,) + Op(m™).

From Theorem 2.2.4 we obtain within the error bound O((m/n)°m'/?4+m/n)
in variational distance the representation

pAn + (1 —p)Bn

B -8B
(1 /27 n;) ( + /27 3 oy ”j> 3
p 8 -8 2
(2 + [m/z] ]<2 [m/2] 77]) (4 + m/z] Zj<4[m/2] nJ)
B -8
(o Tynn) (o )
+(1 - p) -8B -8B 2 ’
(2+m_1 Z]<27rL ]> (4+m_1 Zg<4m 7]])
it 8B40
— -1
log <2+[TVL/2 IZ]<2[m/2] nj )
» 1+[m/2]— Z]<[m/2] nj
4+[m/2]~ g<4 my2
2+4[m /2]~ ]<2[m/2]
10g 24m Z]<2m 15
1+m—1 Z <m i
s 1], if B=0,
44+m— IZ]<4m 15
log .
om0,
where 11 + 1,72 + 1,... are independent and standard exponential rv. Now ele-

mentary computations show that the distribution of k~'/2 3~ ., n; approaches the

standard normal distribution uniformly over all Borel sets at the rate O(k~1/2) and
thus, within the bound O(m~1/2), we can replace the distribution of the right-hand
side of the preceding equation by that of

x \7? x+v )7
(1+\/ /2) ( \/+/2> 0B

(2+ XY = (a4 xoyeren)
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-B -B
X+Y X+Y+V2Z
(1 n ) . (2 X )

+(1-p) s ’ L2, it g0,

X+Y+V2Z X+Y+V2Z+2W

(2 + V2m ) - (4 + V2m )

and by
2+ \)/(;;/2 g X+Y+V2z

log |, Y log X

\/771/2 1+ \/;
—1]+(1-p) m 1 if =0,

X+Y+V2Z42W - ’
].Og <4+ V2m >

24 X+Y+v2Z

p 4+ X+Y+v2Z
10 \/771/2
g 2+ e V2m

\/771/2

where X, Y, W, Z are independent standard normal rv. We have replaced [m/2] in
the preceding formula by m/2, which results in an error of order Op(1/m).

By Taylor’s formula we have (1 +¢&)™% = 1 — B¢ + O(e?) for 3 # 0 and
log(1 +¢) = ¢ + O(¢?) as € — 0. The assertion of Lemma 2.5.2 now follows from
Taylor’s formula and elementary computations.

2.6 Power Normalization
and p-Max Stable Laws

Let Zy,...7Z, be iid rv with common df F. In order to derive a more accurate
approximation of the df of Z,.,, by means of limiting df, Weinstein [456] and
Pancheva [360] used a nonlinear normalization for Z,,.,. In particular, F is said to
belong to the domain of attraction of a df H under power normalization, denoted
by F € D,(H) if, for some a,, > 0, 5, > 0,

F"(ap|z|’rsign(z)) —, H(z), n — 0o, (2.11)
or in terms of rv,
(| Zpen| [ an) Y Prsign(Zpm) —p Z, n — oo,
where Z is a rv with df H and sign(z) = —1, Oor 1 according as x <,= or > 0,

respectively.

THE POWER-MAX STABLE DISTRIBUTIONS

Pancheva [360] (see also Mohan and Ravi [339]) showed that a non-degenerate
limit df H in (2.11) can up to a possible power transformation H (a|z|’sign(x)),
«, B > 0, only be one of the following six different df H;, : = 1,...,6, where with
v >0,
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) — ) 0 iz <1,
T) = T) =
' b exp (= (log(x)™)  ifa>1,
0 if z <0,
Hy(x) = Hz () = ¢ exp (— (—log(z))?) ifo<z<1,
1 if > 1,
0 if z <0,
Hs(x) = :
exp(—1/x) if x >0,
0 if v < —1,
Hy(x) = Hy o(z) = ¢ exp(— (—log(—x))77) if —1<x<0,
1 if 2 >0,
exp (— (log(—x))7) ifz < -1,
Hy(w) = Hs,»() = { 1 o> -1
exp(z) ifx <0,
He(z) = { .
1 if x > 0.

A df H is called power-max stable or p-mazx stable for short by Mohan and
Ravi [339] if it satisfies the stability relation

H" (0w |z|Prsign(z)) = H(x), r€eR, neN,

for some «a,, > 0, B, > 0. The df H;, i = 1,...,6, are p-max stable and, from a
result of Pancheva [360], these are the only non-degenerate ones. Necessary and
sufficient conditions for F' to satisfy (2.11) were given by Mohan and Ravi [339],
Mohan and Subramanya [340], and Subramanya [433]. In view of these consider-
ations one might label the max stable EVD more precisely l-max stable, because
they are max stable with respect to a linear normalization.

MAX AND MIN STABLE DISTRIBUTIONS

We denote by F' € Dyax(G) the property that F is in the max-domain of attraction

of an EVD G if
Zn'n - bn
’ —p G
an

for some norming constants a, > 0, b, € R. We denote by F' € Dpyn(L) the
property that F' is in the min-domain of attraction of an EVD L if

Z1p — bn
L —p L.
29
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From Theorem 2.1.1 we know that there are only three different types of possible
non-degenerate limiting df G and L: G equals up to a possible linear transformation
(i.e., location and scale shift) G1, G3 or G, where

G () = Gy A (2) 0 if x <0,
1B = S,y = exp(—z~7) ifx >0,
exp(—(—x)7) if z < 0,

Ga(x) = Gg 4(z) =
2(a) = G (a) {1 o
for some v > 0, and Gs(z) = exp(—e™*), = € R. Note that G1,1 = Hs, Ga1 =
Hg and that G is not a p-max stable law. The df L is up to a possible linear
transformation equal to Ly, Lo or L3, where

mezLwa:{l_“m_“@ﬂ”ﬁx<a

2({13) = 2,’)’('1:) - 1— exp(_xﬁ’) if © > 07

for some v > 0, and L3(x) =1 —exp(—e®), x € R.

THE CHARACTERIZATION THEOREM

The right endpoint w(F) := sup{z : F(z) < 1} € (—o0,0] of the df F plays a
crucial role in the sequel.

The following result by Christoph and Falk [69] reveals that the upper as well
as the lower tail behavior of F' determine whether F' € D,(H): The right endpoint
w(F) > 0 yields the max stable distributions G, and w(F') < 0 results in the min
stable distributions L; this explains the number of six power types of p-max stable
df.

Moreover, if w(F) < oo is not a point of continuity of F, ie., if P(Z; =
w(F)) =: p > 0, then F' ¢ D,(H) for any non-degenerate df H. In this case we
have

P(Zpim = w(F)) =1 — P(Zym <w(F)) =1—(1—p)" — 1 as n— oo,

and
<(1—p)™ if ay|z/frsign(z) < w(F),
=1 if  ap,|z|Prsign(z) > w(F).

F"(ap|z|sign(z)) {

Hence, a limiting df H is necessarily degenerate in this case.

Theorem 2.6.1. We have the following characterizations of the domains of at-
traction.
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(i) Suppose that w(F) > 0. Put F*(z) = 0 if 2 < min{log(w(F)/2),0} and
F*(z) = F(exp(x)) elsewhere. Then F* is a df and

F € Dy(H) for some non-degenerate H <= F* € Dpax(G). (2.12)
In this case we have H(xz) = G((log(x)—a)/b), x > 0, for some b > 0, a € R.

(ii) Suppose that w(F) <0 and put Fi(x) :=1— F(—exp(z)), x € R. Then,
F € D,(H) for some non-degenerate H <= F, € Duin(L). (2.13)

In this case we have H(x) = 1 — L((log(—z) — a)/b), < 0, for some b >
0, a € R.

As the domains of attraction of G and L as well as sequences of possible
norming constants are precisely known (see Theorem 2.1.1), the preceding re-
sult together with its following proof characterizes the p-max stable distributions,
their domains of attraction and the class of possible norming constants a.,, 5,
in (2.11). In particular, we have H;(z) = G;(log(z)), = > 0, and Hi3(x) =
1- Li(log(—x)), x < 0, ¢ = 1,2,3. Subramanya [433], Remark 2.1, proved the
special case F' € D,(Hs) iff F* € Dyax(Gs).

Proof. (i) Suppose that w(F') > 0. In this case we have, for x < 0 and any sequence
an >0, fn >0,

F"(an|z|’rsign(z)) = P(Zp.m < sign(z) ay,|z]"")
< P(Zpm <0)—0 as n— oo.

Let now 2 > 0 be a point of continuity of the limiting df H in (2.11) and put
¢ := min{w(F)/2,1}. Then, as n — oo,
P(Zpim < sign(x) ay|z|’") — H(z)
< P(log(Znm) < By log(x) + log(am), Zn:n = ¢) — H(x)
= P((Yon — an)/by < log(z)) — H(z),
where by, := B, ay, 1= log(ay,) and Y; 1= log(Z;)1c,00)(Zi) +1og ()l (—o0,e)(Zi), @ =

1,...,n and 14(+) is the indicator function of the set A. The rv Y7,...,Y,, are iid
with common df satisfying

1-PY;<t)=P(Y;>1)
= P(Z; > exp(t)) =1 — F(exp(t)), exp(t) > c.
Therefore, by the Gnedenko-de Haan Theorem 2.1.1 we obtain the equivalence

(2.12) for some G € {G1,G2,G3} with H(x) = G;(log(z) — a)/b), x > 0, for some
b >0, a € R and some i € {1,2,3}. This completes the proof of part (i).
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(ii) Suppose that w(F') < 0. Then we have for z > 0 and any a,, > 0, 5, > 0
F™ (ap|z|™sign(z)) = P(Zny < o 2) = 1.
Let now = < 0 be a point of continuity of a non-degenerate df H. Then, as n — oo,

P(Znn < sign(z)oy|z|’) — H(z)
= P(~Zpm > aylz)’) — H(z)
= P(log(~Znm) > Bnlog(|z]) + log(an)) — H(z)
— P((X1:m — Ay)/By > log(—z)) — H(z),

where B, := ,, A, :=log(ay,) and X; :=log(—Z;), i =1,...,n with df F.(x) =
1— F(—exp(x)). Notice that the rv X; is well defined, since P(Z; > 0) = 0. In case
w(F)=0and p = P(Z; = 0) > 0, the limit H would necessarily be degenerate
from (2.12). Hence, with H.(z) =1 — H(— exp(z)) we find

F € Dy(H) <= F.(z) =1— F(exp(x)) € Dmin(H.),
and Theorem 2.1.1 leads to the representation
H(z)=1- L;((log(—z) — a)/b), x <0,
for some b > 0, a € R and some i € {1,2,3}. This completes the proof.

The characterization of p-max domains of attraction by the tail behavior of
F and the sign of w(F') as given in Theorems 3.1 - 3.3 by Mohan and Subramanya
[340] (they are reproduced in Subramanya [433] as Theorems A, B, and C) now fol-
lows immediately from Theorem 2.6.1 and Theorem 2.1.1 for max domains under
linear transformation. On the other hand, Theorems 2.2, 3.1, and 3.2 of Subra-
manya [433] are now a consequence of the above Theorem 2.6.1 and Theorems 10,
11 and 12 of de Haan [185] using only some substitutions.

COMPARISON OF MAX DOMAINS OF ATTRACTION UNDER
LINEAR AND POWER NORMALIZATIONS

Mohan and Ravi [339] compared the max domains of attraction under linear and
power normalizations and proved the following result which shows that the class
of max domains of attraction under linear normalization is a proper subset of the
class of max domains of attraction under power normalization. This means that
any df belonging to the max domain of attraction of some EVD limit law under
linear normalization definitely belongs to the max domain of attraction of some
p-max stable law under power normalization. Also, one can show that there are
infinitely many df which belong to the max domain of attraction of a p-max stable
law but do not belong to the max domain of attraction of any EVD limit law.

Theorem 2.6.2. Let F' be any df. Then
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(a) (i) F € Dmax(G1,y)
(ii) F € Duax(Gs),w(F) =0
(b) F € Dnax(G3),0 < w(F) < 00 <= F € Dy(H3),w(F) < o0,

} = F € Dy(Hj3),

(¢) F € Dnax(Gs),w(F) < 0<= F € D,(Hg),w(F) <0,
(d) (i) F € Duax(G3),w(F)=0
(i) F € Dmax(Ga2x),w(F) =0
(€) F € Dmax(Ga5),w(F) >0<«= F € Dy(Ha,),
), w(F

} = F € Dy(Hy),

(f) F € Dimax(Ga5),w(F) <0<= F € Dp(Ha~).

Proof. Let F € Dpax(G) for some G € {G1,G2,Gs}. Then for some a,, > 0,b,, €
R

)

lim F" (apz +b,) = G(z), x € R.

n—oo
(a) (i) If F € Dmax(G1,+), then one can take b, = 0 and hence setting a,, =

An,y B = 1/’7a

0 if z<0,
A0@) =200 ={ o 5 S

we get

n—oo n—oo

lim F" (an|x|ﬁnsign(x)> = lim F" (an)\g)(x) + bn> =G, (AV(2) = Hs(x).

(ii) If F € Dpax(Gs),w(F) = oo, then b, > 0 for n large and lim,,_, o a5, /b, = 0.
Setting o, = by, Bn = an/bp,

N -1/8,  if <0,
N @) = { (z% =1) /Bn if 0<u,

and

(2) _ —0o0 if x < 0,

AT(z) = { log(z) if 0< u;

and proceeding as in the proof of (a) (i), we get F € D,(Hj) since G3(\?) (z)) =
H3 ({L‘)

(b) If F' € Dinax(G3),0 < w(F) < oo, then the proof that F' € D,(Hs3) is the same
as that in the case w(F) = oo above. So let F' € D,(Hs) with w(F) < co. Then
lim, 00 ap, = w(F), limy, 00 B = 0. Setting a, = apnfn, bn =

) () = 0 if z<—1/Bn,
T+ Bo) P i —1/8, <,

WM (@) = exp(a),
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we get
li_>m F*(apz+by,) = li_>m F" (an|u7(11)(x)|ﬁ"sign(x)) = Hs(uV(2)) = G3(x).

(¢) If F € Dpax(G3),w(F) < 0, then since b, < 0 and lim,_, a, = 0, setting
Qp = _bnaﬂn = _an/bna

Q= zP) /B if <0,
A (@) = { 1/Bn if 0<a;

and (o) it
(3) | —log(—=z) it z <0,
AP (@) = { 00 if 0<a;
we get G3(A\®)x) = Hg(x) and the claim follows as in the proof of (a) (i).
Now if F' € D,(Hg), w(F) < 0, then lim, oo oy = —w(F),lim, 00 8, = 0.
Settlng Ay = Oénﬁn, b'n, = —0Qp,

(1= Bu)/Bn i 2 < 1/B,,
u (@) = { 0 if 1/8, <z,

u®(z) = — exp(~2),
and proceeding as in the proof of (b), we get the result since Hz(u(® (z)) = G3(z).
(d) (i) Suppose F' € Dpax(Gs),w(F) = 0. Then lim,,—, o0 by, = 0 and lim,,—, o0 @y, /by,
= 0. Proceeding as in the proof of (c) we show that F' € D, (Hg).
(if) Now if F' € Dmax(Ga,5),w(F) = 0, then b, = 0, and setting o, = an, fn = 1/7,

(4) @4 _ —|$|1/°‘ if =<0,

A =@ ={ e

we prove the claim as in (a)(i) using the fact that Go -, (AY)(z) = He(x).

(e) f F € Dmax(G2,y),w(F) > 0, then since b, = w(F) and lim, o a, = 0,
Setting Qp = bna ﬂn = an/bna

—1/B, if <0,
MO (z) =< (2P —1)/(Bn) if 0<a <1,
0 it 1<a,
and
—o0 if r <0,
AO(z) =< log(z) if 0<z<1,,
0 if 1<z
we get Gz (A®)(2)) = Ha,(z) and the claim follows as in the proof of (a) (i).
Now if F' € Dp(Hs ), then lim, o0 vy = w(F),lim, 00 B = 0. Setting a, =
anﬂna by, = Qp,
0 if ©<—1/8,,
@) =S @+ B)P i 0<az<1,
1 it 0<a,
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exp(x) if x <0,
u(3)(x):{ pl() i 0<a

and proceeding as in the proof of (b), we get the result since Ha . (u(®(z)) =

Ggﬁ(l‘).
(f) I F € Dmax(G2,),w(F) < 0, then since b, = w(F) and lim,_, a, = 0,
setting ay, = —by, B, = —an/bn,

1—|z|%)/B, if =< —1,
Ag@@):{( al?)/fa i 2 <1

and log(_a) if
(6) o —log(—x) 11 =< -1,
A (x)—{ 0 if —1<x;’
we get G (A9 (2)) = Hy ., (z) and the claim follows as in the proof of (a) (i).
Now if F' € Dy(Hy4,y), then w(F) < 0,5, = —w(F),limp 500 B = 0. Setting
Ap = anﬂnabn = —0p,

— (1= Buz)’ if z<0,
u%)(x):{ ( —ﬂl g ;f g<x

—exp(—x) if x <0,
“(4)(x):{ ﬁ ) if 0<uz,

and proceeding as in the proof of (b), we get the result since Hy - (u®(z)) =
Ga,~(z). The proof of the theorem is complete.

COMPARISON OF MAX DOMAINS OF ATTRACTION UNDER LINEAR
AND POWER NORMALIZATIONS - THE MULTIVARIATE CASE

In this section we generalize Theorem 2.6.2 to the multivariate case. If F' €
Dinax(G) for some max stable law G on R? then we denote the normalizing con-
stants by an(¢) > 0 and b, (i), ¢ < d, so that

lim F" (an(i)z; +b,(7),1 <i <d) = G(x), x = (21,...,24) € RL

n—oo

Similarly, if F' € D,(H) for some p-max stable law H on R? then we denote the
normalizing constants by a,,(¢) > 0 and §,,(7),1 < i < d, so that

lim F™ (an(i)mwn(i), 1<i< d) —H(x), xecR%

n—roo

For a df F on R4, let F;1)...i(k) denote the (i(1)...i(k))-th k—variate marginal
df, 1 <i(1) <---<i(k) <d,2<k <d.

Theorem 2.6.3. Let F € Dyax(G) for some maz stable law G under linear
normalization. Then there exists a p-maz stable law H on R such that F € D,(H).
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Proof. Let F € Dpax(G). Then for all i < d, F; € Duax(Gi). Hence by Theorem
2.6.2, F; € D,(H;), for some p-max stable law H,; which must be necessarily a
p-type of one of the four p-max stable laws Hy -, Hy4 4, H3, Hs. The normalization
constants ay,(4), 8, (i) are determined by an(7),b,(7) as in the proof of Theorem

2.6.2. Further, it follows from the proof of Theorem 2.6.2 that there exists o (z;)
such that
tim 7" (e (i) i) Osign(ei) ) = lim F7 (a0 () + ba (i)

=G, (9(i)(9€i)) ;

where 9,@ is one of the /\%j), j < 6, defined in the proof of Theorem 2.6.2 depending

upon which one of the conditions is satisfied by F; and 0D = lim,_, oo 97(f ). So,
Hi(z;) = G; (09 (2;)) , i < d. Now fix x = (21,...,24) € RL If, for some j <
d, H;j(xzj) =0, then by Theorem 2.6.2, we have

E! (an(i)|xi|ﬁ"(i)sign(xi), i < d) < F} (an(j)|xj|ﬁ"(j)sign(xj)) — 0,

as n — o0o. Suppose now that for some integers k, i(1),...,i(k), we have 0 <
H;j) (xi(j)) <1,j<k,and Hiy(z;) =1, i #i(1),...,i(k). Using uniform conver-
gence, we have

lim inf F" (an(i)|xi|3"(i)sign(xi), i< d)

n— 00

> lim F" (an(i)G,(f)(xi)+bn(i), i< d)

n—oo

= Gi(1)...i(k) (a(i(j))(xi(j))a J< k) :
since H;(z;) = G; (09 (z;)) = 1, #4(1),...,i(k). Again

lim sup F" (an(i)|xi|ﬁ"(i)sign(xi), i< d)

n— 00

< lim P (an(i(7)059 (@i5)) + bali(), j < k)

n— oo
= Gi)...i(k) (9(i(j))(33i(j)), Jj< k) -
The claim now follows with

Hx) =G (9(1)(131), 0@ (:z:d)) .

In view of Theorems 2.6.2 and 2.6.3, it is clear that p-max stable laws collec-
tively attract more distributions than do max stable laws under linear normaliza-
tion collectively.
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EXAMPLES

If F is the uniform distribution on (—1,0), then w(F) = 0 and (2.11) holds with
H = Hg, a, = 1/n and B,, = 1. Since Ha; is the uniform distribution on (0, 1),
it is p-max stable and (2.11) holds with F = H = Hy 1, o, = 1 and 3, = 1. For
the uniform distribution F' on (-2, —1) we find w(F) = —1 and (2.11) holds with
H=Hs;,a,=1and 3, =1/n.

If FF = F. is the uniform distribution on (—1+ ¢,¢e) with 0 < ¢ < 1, then
w(F;) = e. Here F. € Dp(Haz,1), and (2.11) holds with a,, = ¢ and 5, = 1/(en) if
¢ > 0, whereas for ¢ = 0 we find (as mentioned above) Fy € Dy,(Hg) with power-
norming constants a, = 1/n and 8, = 1. On the other hand for any fixed n > 1
we find F"(sign(z)e|z|!/ ™) — 1_, _yj(z) as € — 0. Here the limit distribution
is degenerate.

The min stable df L, is an exponential law. On the other hand, Ly; €
Dimax(Gs). If F' = Lo, then F(exp(z)) = L3(x) € Dmax(Gs). It follows from
Theorem 2.6.1 that (2.11) holds with H = Hgs, 3, = 1/log(n) and a,, = log(n).

Let F(z) = 1 — 2% for 2 > 1, where k > 0. Then F"(n'/*2) — Gy (z)
as n — 0o, whereas by power normalization F"(n!/* 2'/*) — Hs(x). Note that
GL 1 = Hj.

The df G, for v > 0 are under power transformation of type Hs, whereas
the df L; , for v > 0 are under power transformation of type Hs.

The max stable and min stable df are connected by the equation

Li(z) =1—-Gi(—x), zeR,i=1,23.

Under the six p-max stable df Hy, ..., Hg there are again three pairs. If the rv U
has the df H;, then the rv V = —1/U has df H;;3, i = 1,2 or 3. The set of possible
limit distributions of Z;.,, under power normalization

(|Z1;n|/a;)1/ﬁz sign (Z1.n) —p Z, n — 00,

for some suitable constants o > 0 and ) > 0 can be obtained from Theorem
2.6.1: The limit df equal up to a possible power transformation 1 — H;(—z), i =
1,...,6.

Put Fi(z) = 1 — (log(x))~! for z > e. Then F; does not belong to any of
Dinax, but Fi € D,(Hq,1) with o, = 1 and 5, = n, see Galambos [167], Example
2.6.1, and Subramanya [433], Example 1. Taking now Fy(z) = 1 — (loglog(z))~!
for x > exp(e), then without any calculations it follows that F» does not belong
to any of D, since Fa(exp(x)) = Fi(z) does not belong to any of Dyax.

If
0 if z<1,
Fle) = { 1 —exp(—(log(x))?) if 1<,

then F € D,(H3) with o, = exp(y/log(n)), B, = 1/(24/log(n)). However, F does
not belong to Dmax(G1,y) Or t0 Dmax(G3).
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If
0 it x<-1,
F(z)={ 1-exp (—(y/~log(-2))) if 1<z<0,
1 it 0<u,

then F € D,(Hg) with a,, = exp(—(log(n))?), B, = 2log(n). Note that F does
not belong to any Duax(G;) for any i = 1,2, 3.

Note that df belonging to Dy(H; ) or Dy(Hs,) do not belong by Theorem
2.6.2 to the max domain of attraction of any EVD limit law under linear normal-
ization.

Applications of power-normalizations to the analysis of super-heavy tails are
included in the subsequent section.

2.7 Heavy and Super-Heavy Tail Analysis

Distributions with light tails like the normal or the exponential distributions have
been of central interest in classical statistics. Yet, to cover in particular risks in
fields like flood frequency analysis, insurance and finance in an appropriate manner,
it became necessary to include distributions which possess heavier tails. An early
reference is the modeling of incomes by means of Pareto distributions.

One standard method to get distributions with heavier tails is the construc-
tion of log-distributions. Prominent examples are provided by log-normal and log-
exponential distributions whereby the latter belongs to the above mentioned class
of Pareto distributions. Normal and log-normal distributions possess an exponen-
tial decreasing upper tail and, as a consequence all moments of these distributions
are finite. However, a log-normal distribution exhibits a higher kurtosis than the
normal and, in this sense, its upper tail can be also considered heavier than that
of the normal one. It is also a general rule that the mixture of distributions, as
a model for heterogeneous populations, leads to heavier tails. For instance, log-
Pareto df can be deduced as mixtures of Pareto df with respect to gamma df.

In contrast to normal, log-normal and exponential distributions, one can say
that Pareto distributions are prototypes of distributions with heavy, upper tails.
An important characteristic of this property is that not all moments are finite.
Other prominent distributions of this type are, e.g., Student and sum-stable dis-
tributions with the exception of the normal one. All these distributions have power
decreasing upper tails, a property shared by Pareto distributions.

Distributions with heavy tails have been systematically explored within the
framework of extreme value theory with special emphasis laid on max-stable
Fréchet and Pareto distributions where the latter ones possess a peaks-over-thresh-
old (POT) stability. More precisely, one may speak of linearly max-stable or lin-
early POT-stable (I-max or [-POT) distributions in view of our explanations on
page 66 and the remainder of this section. Related to this is the property that a
distribution belongs to the [-max or [-POT domain of attraction of a Fréchet or
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Pareto distribution if, and only if, the upper tail is regularly varying with negative
index. In contrast to this, slowly varying upper tails will be of central importance
in the subsequent context.

This means that we are out of the “power-law-world”, as Taleb’s book, “The
Black Swan: the Impact of the Highly Improbable” [439] entitles the class of dis-
tributions possessing a regularly varying upper tail or, equivalently, with polyno-
mially decreasing upper tails. The designation of super-heavy concerns right tails
decreasing to zero at a slower rate, as logarithmic, for instance. This also means
that the classical bible for inferring about rare events, the Extreme Value Theory,
is no longer applicable, since we are in presence of distributions with slowly varying
tails.

We give a short overview of the peaks-over-threshold approach which is the
recent common tool for statistical inference of heavy tailed distributions. Later on,
we present extensions to the super-heavy tailed case.

HeEAvy TAIL ANALYSIS

We shortly address the peaks-over-threshold approach as already described at the
end of Chapter 1 but take a slightly different point of view. We do not start with the
assumption that a df F' is in the max domain of attraction of some EVD G but we
consider limiting distributions of exceedances in their own right. Recently, this has
been the most commonly used statistical approach for heavy tailed distributions.

Recall that (1.22) indicates that, if F' € D(G) then GPD are the only pos-
sible limiting distributions of the linear normalized df Fl“»] of exceedances over
thresholds u,, tending to w(F). Hereby, w(F) = sup{z: F(z) < 1} is the right
endpoint of the support of the df F’ and

F(z) — F(u) S

F(e) = 1—Fw) =~ =7

is the common df of exceedances above the threshold w. If X is a rv with df F
then the exceedance df may be written as Fl“/(z) = P(X < 2| X > u) for z > u.

In what follows we assume that there exist real-valued functions a(-) and
b(-) > 0 such that

Fl (a(u) + b(u)w) — 4wy L) (2.14)

for some non-degenerate df L. If (2.14) holds for df F and L we say that F is in
the POT domain of attraction of L denoted by F' € Dpor(L).

Notice that (2.14) can be formulated in terms of the survivor function 1 — F
as

1— F(a(u) 4 b(u)x)

1-L

which corresponds to formula (1.21).
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Due to results in Balkema and de Haan [22], stated as Theorem 2.7.1 below,
we know that the limiting df L is POT-stable. Hereby, a df F' is POT-stable if
there exists constants a(u) and b(u) > 0 such that

Fl(a(u) + b(u)z) = F(x) (2.15)

for all points of continuity « in the interior of the support of F' and F(x) > 0. The
class of continuous POT-stable df, and, therefore, that of continuous limiting df
of exceedances in (2.14) is provided by the family of generalized Pareto df (GPD).
This result is stated in the following theorem which can be regarded as an extension
of Theorem 1.3.5.

Theorem 2.7.1. Let F' be an df and L be a non-degenerate df. Suppose there
exists real-valued functions a(-) and b(-) > 0 such that

Flul (a(u) +b(u)r) —>y—swr) L)
for all points of continuity x of F' in the interior of its support. Then,
(i) the limiting df L is POT-stable,
(ii) if L is continuous, then L is up to a location and scale shift a GPD W,

(iii) the POT domain of attraction of a GPD W., coincides with the maz domain
of attraction of the corresponding EVD G, thus Dpor(Wy) = D(G5).

It is evident that all POT-stable df L appear as limiting df in Theorem 2.7.1
by choosing F' = L. Therefore, GPD are the only continuous, POT-stable df.

For statistical applications, e.g., high quantile estimation, these results are of
particular importance. Note that high g-quantiles F~1(q) of a df F with ¢ > F(u)
for some threshold u only depend on the tail of F', thus F(z) for x > u. Notice
that for a df F' and = > u,

~ F(u)+ (1 — F(u)Wy uo(x) (2.16)

where the approximation is valid if F' € Dpor(W5) and w is sufficiently large. Now
(2.16) provides a certain parametric model for the tail of F' where a non-parametric
part F'(u) can be replaced by an empirical counterpart. A similar “piecing-together
approach” can also be utilized in the multivariate framework, cf. Chapter 5.

In what follows we concentrate on the heavy tail analysis, that is, on df F’
belonging to Dpor(W5) for some v > 0, for which case w(F) = oo. The model
(2.16) offers the possibility to carry out statistical inference for such df. These df
have the special property that their pertaining survivor function 1— F' is of regular
variation at infinity. We include some remarks concerning the theory of regular
varying functions and point out relations to the concept of POT-stability.
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REGULAR AND SLOW VARIATION

Consider the Pareto distribution Wi g 00(xz) = 1 — (x/0)™%, £ > o > 0, in the
a-parametrization, with « > 0. Recall that for any df F' the survivor function of
the pertaining exceedance df FI* satisfies

Fll(z) = F(z)/F(u), z>u.
For F = Wi, 0,0 and replacing x by ux one gets
F(uz)/F(u) = Flul(uz) = 2=

which is the POT-stability of Wi o,0,0. If F' is an arbitrary Pareto df W1 ., o with
additional location parameter p this relation holds in the limit. We have

x— plu

F(uz)/F(u) = Flul(uz) = (1 o

—Q
) — oo T %, x> 1.

This implies that F is regularly varying at infinity according to the following
definition: A measurable function R : (0,00) — (0, 00) is called regularly varying
at infinity with index (exponent of variation) p, denoted by R € RV, if

R(tx)/R(t) —t—o0 z”, x> 0. (2.17)

A comprehensive treatment of the theory of regular variation may, e.g., be found
in Bingham et al. [46]. If p = 0 we have

R(tz)/R(t) — -0 1;

in this case, R is said to be of slow variation at infinity (R € RVp). Recall from
Theorem 2.1.1 together with Theorem 2.7.1, part (iii), that a df F' is in the POT

domain of attraction of some GPD W,, v > 0, if ' € RV_,/,,. For any R € RV,
we have the representation

R(x) =2U(x), x> a,

for some a > 0 sufficiently large and U € RV;. If a df F' is in the POT domain of
attraction of some GPD W, for v > 0 (thus, F' € RV_y,,) we call F heavy tailed.

The existence of finite S-power moments is restricted to the range 8 < 1/7.
Although there is no unified agreement on terminology, in literature the term
very heavy tailed case has been attached to a degree of tail heaviness given by
0<1/y<1

SUPER-HEAVY TAILS AND SLOW VARIATION

The use of heavy tailed distributions constitutes a fundamental tool in the study
of rare events and have been extensively used to model phenomena for which
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extreme values occur with a relatively high probability. Here, emphasis lies on the
modelling of extreme events, i.e., events with a low frequency, but mostly with a
high and often disastrous impact. For such situations it has became reasonable to
consider an underlying distribution function F' with polynomially decaying right
tail, i.e., with tail distribution function

F:=1-F€cRV.,, a>0. (2.18)

Generalizing this heavy tail framework, it is also possible to consider the
so-called super-heavy tailed case, for which a« = 0, i.e., 1 — F is a slowly varying
function, decaying to zero at a logarithmic rate, for instance. We will consider two
special classes of such super-heavy tailed df.

Class A. Notice that if X has a df F such that F € RV_,, for some positive c,
then Z := eX has the df H with

H(z) ~ (log(x))~*U(log()) (2.19)

as x — oo, with U € RVj, meaning that the tail decays to zero at a logarithmic
rate raised to some power. Although this transformation leads to a super-heavy
tailed df it does not exhaust all possible slowly varying tail types. On the other
hand, for the super-heavy tailed case there is no possible linear normalization of
the maxima such that F' belongs to any max-domain of attraction. Consider the
case U = 1 in (2.19). This gives the super-heavy tailed df F(z) = 1 — log(z)™¢,
x > e. The pertaining survivor function satisfies

F (xlog(“)) /F(u) = F(x).

Subsequently, this property will be called the power-POT (p-POT) stability of F,
it characterizes the class of limiting df of exceedances under power-normalization,
cf. Theorem 2.7.2. Corresponding to the case of heavy tailed df an asymptotic
version of this relation will be identified as an necessary and sufficient condition
of a df to belong to certain p-POT domains of attraction, cf. Theorem 2.7.5.

Class B. The df F satisfies (2.18) if, and only if, there exists a positive function
a such that

lim F(tr) = F(t) 1—-27¢

= 0. 2.20
t—00 a(t) a v ( )

For the latter it is enough to consider the auxiliary function @ = a F and thus
a € RV_,, a > 0. A sub-class of slowly varying df is deduced from (2.20) by
extension to the case of a = 0, through the limit of the right-hand side of (2.20),
asa— 0:

= log(x). (2.21)
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The above relation identifies the well-known class IT (cf., e.g., de Haan and Ferreira
[190]). The class of super-heavy tailed distributions is characterized by (2.21).

More details about all distributions satisfying (2.20) with o« > 0 will be
provided at the end of this section, together with testing procedures for super-
heavy tails (see Theorems 2.7.12 and 2.7.13).

For the time being notice that the df given by 1 — 1/log(x), = > e belongs
to both Classes A and B. Moreover, according to Proposition 2.7.10, any df H in
Class A and resulting from composition with a df F such that the density F’ =: f
exists, also belongs to the Class B. However, the reverse is not always true: for
instance, the df H(z) =1 —1/log (log(x)), for > e, belongs to B but not to A.
Note that H is obtained by iterated log-transforms upon a Pareto df. Distributions
of this type are investigated in Cormann [77] and Cormann and Reiss [76].

In the remainder of this section we study two special aspects of the statistical
analysis of super-heavy tailed df. First we deal with asymptotic models for certain
super-heavy tailed df related to df given by Class A. The second part concerns
testing the presence of a certain form of super-heavy tails, namely II-varying tailed
distributions given by Class B.

SUPER-HEAVY TAILS IN THE LITERATURE

We first give a short outline of the statistical literature dealing with super-heavy
tails. Although there is no uniform agreement on terminology, the term super-
heavy tailed has been attached, in the literature, to a degree of tail heaviness
associated with slow variation. Examples of models with slowly varying tail are
the log-Pareto, log-Fréchet and log-Cauchy distributions. We say that the rv X is
a log-Pareto rv if log(X) is a Pareto rv.

In Galambos [166], Examples 1.3.3 and 2.6.1, the log-Pareto df

F(z)=1-1/log(x), x>e, (2.22)

serves as a df under which maxima possess “shocking” large values, not attained
under the usual linear normalization pertaining to the domain of attraction of an
EVD. Some theoretical results for super-heavy tailed distributions can be found in
Resnick [392], Section 5, which is devoted to fill some "interesting gaps in classical
limit theorems, which require the assumption that tails are even fatter than regu-
larly varying tails”. Two cases are considered in some probabilistic descriptions of
“fat” tails, under the context of point process convergence results: slowly varying
tails and its subclass of II-varying distribution functions.

Another early reference to df with slowly varying tails, in conjunction with
extreme value analysis, can be found in the book by Reiss and Thomas [388],
Section 5.4, where log-Pareto distributions are regarded as mixtures of Pareto df
with respect to gamma df. The authors have coined all log-Pareto df with the
term “super-heavy” because the log-transformation leads to a df with a heavier
tail than the tail heaviness of Pareto type.
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Log-Pareto df within a generalized exponential power model are studied by
Desgagné and Angers [100]. In a technical report, see Diebolt et al. [110], associated
to Diebolt et al. [111], the authors mention another mixture distribution, different
from the log-Pareto one, with super-heavy tails.

Moreover, Zeevi and Glynn [470] have studied properties of autoregressive
processes with super-heavy tailed innovations, specifically, the case where the in-
novations are log-Pareto distributed. Their main objective was to illustrate the
range of behavior that AR processes can exhibit in this super-heavy tailed setting.
That paper studies recurrence properties of autoregressive (AR) processes with
“super-heavy tailed” innovations. Specifically, they study the case where the inno-
vations are distributed, roughly speaking, as log-Pareto rvs (i.e., the tail decay is
essentially a logarithm raised to some power).

In Neves and Fraga Alves [352] and in Fraga Alves et al. [159] the tail index
« is allowed to be 0, so as to embrace the class of super-heavy tailed distributions.
Statistical tests then are developed in order to distinguish between heavy and
super-heavy tailed probability distributions. This is done in a semi-parametric way,
i.e., without specifying the exact df underlying the data in the sense of composite
hypothesis testing. Therein, the authors present some simulation results concerning
estimated power and type I error of the test. Application to data sets in teletraffic
and seismology fields is also given.

Cormann and Reiss [76] introduced a full-fledged statistical model of log-
Pareto distributions parametrized with two shape parameters and a scale para-
meter and show that these distributions constitute an appropriate model for super-
heavy tailed phenomena. Log-Pareto distributions appear as limiting distributions
of exceedances under power-normalization. Therein it is shown, that the well-
known Pareto model is included in the proposed log-Pareto model for varying
shape-parameters whence the log-Pareto model can be regarded as an extension
of the Pareto model. This article also explores an hybrid maximum likelihood es-
timator for the log-Pareto model. The testing of the Pareto model against the
log-Pareto model is considered in Villasefior-Alva et al. [450].

The need of distributions with heavier tails than the Pareto type has also been
claimed in Earth Sciences research. A usual statistical data analysis in seismology
is done through the scalar seismic moment M, which is related to the earthquake
moment magnitude m according to: M = 103(™+6)/2 (notice the power transfor-
mation with consequences on the distribution tail weight). Zaliapin et al. [469]
presents an illustration of the distribution of seismic moment for Californian seis-
micity (m > 5.5), during the last two centuries, using an earthquake catalog and
converting its magnitudes into seismic moments. They observed that

... with such a data set one does not observe fewer earthquakes of large
seismic moment than expected according to the Pareto law. Indeed,
...may even suggest that the Pareto distribution underestimates the
frequency of earthquakes in this seismic moment range.

In fact, these authors called the attention to the practitioners that:
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Statistical data analysis, a significant part of modern Earth Sciences
research, is led by the intuition of researchers traditionally trained
to think in terms of “averages”, “means”, and “standard deviations”.
Curiously, an essential part of relevant natural processes does not allow
such an interpretation, and appropriate statistical models do not have

finite values of these characteristics.

The same data set has been analyzed by Neves and Fraga Alves [352] in the context
of detecting super-heavy tails.

THE P-POT STABLE DISTRIBUTIONS

Recall the log-Pareto df F(x) = 1 — 1/log(x), ¢ > e mentioned above as an im-
portant example of a super-heavy tailed df. Such distributions cannot be studied
within the POT-framework outlined in Sections 2.1 to 2.4 because they possess
slowly varying tails. Nevertheless, p-max domains of attraction in Section 2.6 con-
tain certain super-heavy tailed distributions.

We have noted in the previous section that the distribution of the largest
order statistic Z,., out of an iid sample Z1,..., Z, can be approximated by cer-
tain p-max stables laws even if the common df belongs to a certain subclass of
distributions with slowly varying distribution tails. In the present section we de-
rive an asymptotic model for the upper tail of such a df F. Similarly to the linear
normalization we consider the asymptotic relation

Flu (Sign(x)a(u)|x|5(“)> —u—sw(r) L(z) (2.23)

for all points of continuity  of L, where L is a non-degenerate df and «(+), 5(-) > 0.
Notice that (2.23) is equivalent to

1 — F (sign(x)a(u)[z)*®)

|- Fla) sy 1 — L(). (2.24)

Recall that limiting distributions of exceedances under linear normalization are
POT-stable. A similar results holds for limiting distributions under power-normal-
ization. These distributions satisfy the p-POT stability property. A df F'is p-POT
stable if there are positive constants 5(u) and «(u) such that

Fl(sign(z)a(u)|z|?™) = F(z) (2.25)

for all z with F(x) > 0 and all continuity points v of F with 0 < F(u) <1 .

Due to Theorem 2.7.1 we know that GPD are the only continuous POT-
stable distributions. According to Theorem 1 in Cormann and Reiss [76], stated
below as Theorem 2.7.2, we know that for every p-POT stable df L there is a POT-
stable df W such that L(z) = W (log(z)) if w(L) > 0, or L(x) = W(—log(—x))
if w(L) < 0. As in Mohan and Ravi [339] we call a df F} a p-type of Fby, if
Fi(z) = F, (sign(z)alz|?) for positive constants a and f.
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Given a df F' we define auxiliary df F** and Fi. by

F(exp(x)) — F(0)

@) =" """ FO)

z €R, (2.26)
if w(F) > 0, and
Fii(z) = F(—exp(—z)), z€R, (2.27)

if w(F) < 0. These auxiliary df play a similar role for limiting df of exceedances
as do the df F* and F in Theorem 2.6.1 in the context of limiting df of maxima.

Theorem 2.7.2. Let F be a df which is p-POT stable, cf. (2.25). Then,
F(z) = W (log(x))

F(z) = W (= log(-x)),

where W denotes a POT-stable df.
Proof. Let 0 < F'(u) < 1. First note that (2.25) is equivalent to

1 — F(sign(z)a(u)|z|*™)

1 — F(u) =1- F(x).
Let F(0) > 0. Then

1-F(0)

1— F(u) =1-F(0)

and F(0) = 1 because 0 < F(u) < 1. Thus, we have F(0) = 0 or F(0) = 1 and,
consequently, F' has all the mass either on the positive or negative half-line.

(a) Let F(0) = 0 and, therefore, F(z) = 0 for all z < 0. It suffices to consider
xz,u>0.Let z >0, F(z) >0 and 0 < F(u) < 1. Then, (2.25) yields

1-F (a(u)xﬁ(“))

1~ F(u) =1- F(x).

It follows that

1 F (afexp(u) exp(x) ()

1 — F(exp(u)) = 1 - Flew(x))

for all  and continuity points u of F(exp(:)) with F (exp(z)) > 0 and 0 <
F (exp(u)) < 1. Furthermore,

1 — F (a(exp(u)) exp(x)ﬁ(c"p(“)))
1 = Flexp(u))
1 — F (exp (log(a(exp(u))) + B(exp(u))z))
1 — F (exp(u))

— 1 — F(exp(a))

=1— F(exp(z)).
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Observe that F** := F(exp(-)) since F(0) = 0. The above computations yield

1—F* (a(u) + B(u)x)

1 — Fo(u) =1-F)

with @(u) = log (a(exp(u))) and B(u) = B(exp(u)). Consequently, F** = W for
some POT-stable df W and F(-) = W(log(-)).

(b) Next assume that F(0) = 1. Let (2.25) hold for z < 0, F(z) > 0 and all
continuity points u of F with 0 < F(u) < 1 . Then, similar arguments as in part
(a) yield that (2.25) is equivalent to

1 — F(é(u) + B(u)z)

|~ Fo () =1— Fu(x)

with Fi.(z) := F(—exp(—x)) where &(u) can be chosen as a(—exp(—u)) and
B(u) = B(— exp(—u)). Thus, Fi, is a POT-stable df W and F(z) = W (— log(—x)),
x <0.

Due to the foregoing theorem all continuous p-POT stable df are p-types of
the df

Ly(x)=1-(1+~log(x)™", z>0,vcR (2.28)
which is a generalized log-Pareto distribution (GLPD), or
Vy(z) :=1—(1—ylog(—z))"Y7, z<0, yeR (2.29)

which may be addressed as negative generalized log-Pareto df. The case v = 0 is
again taken as the limit v — 0. Notice that only the p-POT stable law L., v > 0
is super-heavy tailed, while L., v < 0 and V,, possess finite right endpoints. The
df Lg is a Pareto df and, therefore, heavy tailed.

RELATIONS TO P-MAX STABLE LAWS

We start with a representation of log-Pareto df by means of p-max stable df. Recall
that a df F' is p-max stable if there exist sequences a.,, 3, > 0 such that

Fn(sign(z)ay,|z/’") = F(z), z€R

and all positive integers n, cf. Section 2.6.
For the special p-max stable df

Hyy(2) = exp(—(log(x))™7), = =1,
with v > 0, define

Fy(z) =1+ log (H1(x))
=1—(log(x))™7, x> exp(l), (2.30)
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which is a log-Pareto df with shape parameter 1/7.

In analogy to (2.30), the whole family of GLPDs in (2.28) can be deduced
from p-max stable laws H;  g..(v) = H; ,((x/c)?), i = 1, 2, 3. This relationship
makes the theory of p-max df applicable to log-Pareto df to some extent.

LIMITING DISTRIBUTIONS OF EXCEEDANCES

In the subsequent lines we present some unpublished material. We identify the
limiting distributions of exceedances under power normalization in (2.23) as the
class of p-POT stable df. We start with a technical lemma concerning F** and
Fiy, cf. (2.26) and (2.27).

Lemma 2.7.3. Let L be a non-degenerate limiting df in (2.23) for some df F.
Then, for each point of continuity x in the interior of the support of L** or L.,
respectively,

(i) there are functions a(-) and b(-) > 0 such that
F**(a(u) 4 b(u)z) [ F** (u) —yyu(meey L™ (2)
if w(F) >0, and
Fus(aw) + b))/ Fua () —usarey Lo ()
if w(F) <0.
(ii) L** and, respectively, L. are POT-stable df.

Proof. We outline the proof for both assertions merely for w(F') > 0. The case of
w(F) <0 follows by similar arguments. Under (2.23) we first prove that the total
mass of L is concentrated on the positive half-line and, therefore,

L(exp(z)) = L™ (z), z€R, (2.31)

it w(L) > 0.
If x < 0, we have

Flu) (sign(x)oz(u) |x|ﬁ<">) < FI(0) — ) 0 (2.32)

because w(F') > 0. This implies L(z) = 0 for all z < 0.
Next consider x > 0. From (2.24) one gets

F (a(u)xﬁ(")) JE (W) —usu(r) L(z).

By straightforward computations,

F (exp (a(u) + b(u)x _
¢ pzﬁ(e(xg(:))( ) —exp(u)—w(r) L{exp(z)) (2.33)
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for all z € R with a(u) = log(a (exp(u))) € R and b(u) = B (exp(u)) > 0. There-
fore, ~

F**(a(u) + b(u)z)
and assertion (i) is verified. This also implies (ii) because limiting df under the
linear normalization are necessarily POT-stable, cf. Theorem 2.7.1.

ey Llexp(a) = L (a), (2.34)

Lemma 2.7.3 now offers the prerequisites to prove the the announced result
concerning limiting df of exceedances under power-normalizations.

Theorem 2.7.4. Every non-degenerate limiting df L in (2.23) is p-POT stable.

Proof. Again, we merely prove the case w(F) > 0. From Lemma 2.7.3 (ii) we know
that L** is POT-stable. Thus, there are a(u) € R and b(u) > 0 such that

L*(a(u) + b(u)z) /L**(u) = L**(z),

for each point of continuity v of L** with 0 < L**(u) < 1 and L**(z) > 0. This
yields for z,u > 0,

L**(a(u) + b(u) log(x)) /L** (log(u)) = L™ (log(x)).

Choosing a(u) and (u) as in the proof of Lemma 2.7.3 one gets from the equation
L**(a(u) + b(u)log(z)) = L** (log (e(u)2z?™)) that

L (a(u)xﬁ<u>) JL(u) = L(x)

for all z,u > 0 with 0 < L**(log(u)) < 1 and L**(log(x)) > 0. Notice that
L(z) = L**(log(x)) if x > 0, and L(x) = 0 if x < 0. This yields the p-POT
stability of L according to the preceding equation.

It is evident that the converse implication is also true, that is, every p-POT
stable df L is a limiting df in (2.23) by choosing F' = L. Summarizing the previous
results we get that L is a limiting df of exceedances pertaining to a df F' under
power-normalization, if and only if, L** (if w(F) > 0) or L.. (if w(F) < 0) are
POT-stable.

DOMAINS OF ATTRACTION

Recall that within the linear framework, a df F' belongs to the POT domain of
attraction of a df W, denoted by F € Dpor(W), if there are functions a(-) and
b(-) > 0 such that

FI) a(u) 4+ b(u)) — sy W (). (2.35)

Correspondingly, if relation (2.23) holds for df F' and L, then F belongs to
the p-POT domain of attraction of L, denoted by F € D, por(L).
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We characterize p-POT domains of attraction of a p-POT stable df L by
means of POT domains of attraction of L** or L., which are POT-stable according

to Theorem 2.7.4. As a direct consequence of Lemma 2.7.3(i) one gets Theorem
2.7.5.

Theorem 2.7.5. For the p-POT domain of attraction D, por(L) of a p-POT stable
law L we have
D,.ror(L) ={F : F** € Dpor(L*)},

ifw(L) >0, and
Dy ror(L) = {F : Fix € Dpor(Lsi)}

if w(L) <0

P-POT domains of attraction of continuous p-POT stable laws can be de-
duced from p-max domains of attractions due to the identity of POT- and max-
domains of attraction in the linear setup. The domains of attraction of the discrete
p-POT stable laws have no counterpart in the framework of max-stable df. Their
domains of attraction can be derived from the above theorem and Section 3 of
Balkema and de Haan [22].

In the framework of super-heavy tail analysis we are merely interested in the
super-heavy tailed p-POT stable laws, thus log-Pareto df. We also make use of a
parametrization of log-Pareto df which is different from that in (2.28). Let

Ly(z)=1-(log(z))""", 4>0,z>e. (2.36)

It is apparent that I~/7 is a p-type of L. Such df can be regarded as prototypes of
p-POT stable df with slowly varying tails.

Corollary 2.7.6. We have F € D, POT( ~) if, and only if, there is a slowly varying
function U and some ¢ > 0 such that

F(z)=1—- (log(z)) U (log(z)), z>c. (2.37)

Proof. This is a direct consequence of Theorem 2.7.5. We have for x > 0 that
F(z) = F(0)F**(log(x)) for the df F** which is in the POT domain of attraction
of a Pareto df and, therefore, F** is regularly varying at infinity.

The p-POT domain of attraction of a log-Pareto df I’v can as well be charac-
terized by a property with is deduced from regular variation, which characterizes
the POT domain of attraction of Pareto df under linear transformation. Observe

that
( log(u)/L — (log( ))—1/w’

which is the p-POT stability of L.. For the domain of attraction this relations
holds in the limit and, furthermore, this yields a characterization of the domain
attraction.
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Corollary 2.7.7. We have F € D, por(L.) if, and only if,
( log(u) ) JE() —y o (log(@) ™7, 2> 1. (2.38)

Proof. If F € D, por(L,) we have

F(z) = (log(z)) "YU (log(z)), z>c

for some slowly varying function U and some ¢ > 0. Therefore,

F (a5) _ (log (°5))~ YT (log (alox))
F(u) (log(u)) ™7 U (log(u))
B ) U (log(u) log(z))
0B (og(u))
N (10g(1‘))_1/7 for u — oo.

Conversely, let
lim F(2'¢™) / F(u) = (log(z)) /"

U—r 00

for x > 1. It follows that

lim F (exp(uy) /F exp(u)) = y_l/ﬁ/~

U—r 00
for all y > 0. Thus, F** € Dpor (W) and, consequently, F' € D, por (L).

We include a result about the invariance of D, por (f@) under shift and power
transformations.

Corollary 2.7.8. The following equivalences hold true for p € R and ~y, 5, o > 0:
F(-) € Dyror (Ly) & F ((- = 1)) € Dyror (L)

and
F(-) € Dyror (Ly) & F (0()°) €D, por (Ly) -

Proof. We only prove the first assertion because the second one is straightforward.

Putting F},(z) = F(z — p) for F € D, por (L), we get

1= (F)" (tz) _ F (exp(tz) — p)
1= (Fu)"(#)  F(exp(t) — p)
F (C’;igé);)” exp(t:n))

F (C’;igzt_)“ exp(t))
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F (exp (tw + log (Czlzc(rfé)w_)#)))
F (exp (t+ 108 (720))

T (tr 4 ay)
Pt by)

with

2¢ = log (exp(tx) - u) and by = log <exp(t) - u) '

exp(tx) exp(t)
Obviously a; — 0 and by — 0, hence using uniform convergence

F* (tx + ay)

Pt 4b) ot
and, thus, F'(- — p) € D,por.
The previous result yields that
D, ror(L) = D, ror(Ly) (2.39)

for all p-types L of 137. It is easily seen that this result is valid for a p-POT domain
of attraction of an arbitrary p-POT stable law. The result concerning location shifts
cannot be extended to p-POT stable laws with finite right endpoints.

MIXTURES OF REGULARLY VARYING DF's

We also deal with super-heavy tailed df given as mixtures of regularly varying
df. We start with a result in Reiss and Thomas [389] concerning a relation of
log-Pareto df,

L,(z) =1—(log(z))™7, z>e,v>0
and Pareto df,
W, o(z)=1—(z/o) /7, z>0 v>0.

Log-Pareto df can be represented as mixtures of certain Pareto df with respect
to gamma densities. We have

L@ = [ Wjelalhy, (2)d: (2.40)
0
where h,, is the gamma density
ha(x) = F(la) exp(—z)z®~ L. (2.41)
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We prove that this result can be extended to df in the domains of attraction
of log-Pareto and Pareto df under power and, respectively, linear normalization.
Assertion (ii) of the subsequent theorem is a modification and extension of Lemma
1 in Meerschaert and Scheffler [326], cf. also Cormann [77].

Theorem 2.7.9. The following properties hold for the p-POT domain of attrac-
tion of a log-Pareto df L., :

(i) Let F € D, ror(Ly) for some v > 0. Then there is a family of df G., with
G € Dpor(W1,2), such that

Plz) = /0 G ()pl(2)des

where p is a density which is ultimately monotone (monotone on [xg, ) for
some xo > 0) and regularly varying at zero with index 1/v — 1.

(ii) Let G, be a family of df with G. € D(W,.) with representation
G.(z)=1-—27%U (log(x)), x> as,

for some slowly varying function U and some ay > 0. Then the mizture

F(x) ::/ G, (x)p(z)dz,
0
where p is a density as in (i), has the representation
F(z) =1 - (log(z)) "7V (log(z)), x> as,
for some slowly varying function V and some az > 0 and, thus, F' €
Dp—P()T(L’y)-

Proof. To prove (i) observe that the gamma density k4, in (2.41) satisfies the con-
ditions imposed on p. Therefore, (i) is a direct consequence of (2.40) and Corollary
2.7.6. Therefore the statement is still true with p replaced by hy /.

To prove (ii) notice that
1= Fz) = / e=2108() () 42U (log(x)) -
0

The integral is now a function p(log(-)) where p denotes the Laplace transform
of p. Since p is assumed to be ultimately monotone and regularly varying at zero
with index 1/ — 1 one can apply Theorem 4 on page 446 of Feller [156] getting

/ e 218 p(2)dz = log(z) "Y'V (log(z)), x> as,
0

for some slowly varying function V and as > 0. Now V(z) := U(z)V () is again
slowly varying which completes the proof.
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TESTING FOR SUPER-HEAVY TAILS

In the subsequent lines the focus will be on statistical inference for distributions
in Class B, namely on testing procedures for detecting the presence of a df F
with Il-varying tail (2.21) underlying the sampled data. The main concern is to
discriminate between a super-heavy tailed distribution and a distribution with a
regularly varying tail. Since the non-negative parameter « is regarded as a gauge
of tail heaviness, it can well serve the purpose of providing a straightforward
distinction between super-heavy (o = 0) and heavy tails (a > 0). Moreover,
note that if X is a rv with absolutely continuous df F' in the Fréchet domain of
attraction, i.e., satisfying (2.20), then e® has a df H such that (2.21) holds. This
is verified by the following proposition.

Proposition 2.7.10. Let X be a rv with df F' such that (2.20) holds and denote
by f := F' the corresponding density function. Define Z = eX with the df H.
Then (2.21) holds with auxiliary function a(t) := f(logt), i.e., H € I(a).

Proof. The df of rv Z is related to the df of rv X through
H(z) = F(log(z)) = (F o log)(x)-

Now notice that f is regularly varying with index —a—1 > —1. Following the steps
in the proof of Proposition B.2.15 (1) of de Haan and Ferreira [190], the following
statements hold for the composition F o log, since log € Il and F' € RV_,:

for some 0 = 6(z,t) € (0,1),

H(tx) — H(t) _ F(log(tx)) — F(log(t))
f(log(t)) f(log(t))
— (log(tz) — log(1))
[ (log(t) + 0log(x))
F(log(t))
f (rog(){1+0150)1)
f(log(t))

[ (og(t) + 0{log(tx) —log(t)})
f(log(t))

= (log(z))

= (log(x))
—t 00 log(z)
by uniform convergence.

Although the transformation via exponentiation projects a Pareto tailed dis-
tribution (2.20) into (2.21) as stated in Proposition 2.7.10, it is also possible to
obtain a super-heavy tailed distribution in the sense of (2.21) via a similar trans-
formation upon exponentially tailed distributions, i.e., departing from a df in the
Gumbel max-domain of attraction. This is illustrated in Example 2.7.11 where a
log-Weibull(3), 8 € (0,1), distribution is considered.
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For the purpose of statistical inference, let X1, Xo,..., X,,,... be a sequence
of rvs with common df F' and let X;, < X2, < --- < X, ,, be their ascending
order statistics. Furthermore, assume that F' is a continuous and strictly increasing
function.

In this context, in Fraga Alves et al. [159] and Neves and Fraga Alves [352]
two test statistics have been developed to distinguish between heavy and super-
heavy tailed probability distributions, i.e., for testing

Hy : a =0 [super-heavy] vS. Hi :a >0 [heavy] (2.42)

in the framework carried out by the Class B of distribution functions (see equations
(2.21) and (2.20)).

TEST 1. In Fraga Alves et al. [159], the asymptotic normality of the proposed
statistic for testing (2.42) is proven under suitable and reasonable conditions. In
particular, we need to require second-order refinements of (2.20) and (2.21) in
order to specify the inherent rate of convergence. Hence, suppose there exists a
positive or negative function A with A(t) —=;_ . 0 and a second-order parameter
p < 0 such that

- F(ta;)(;)F(t) _ 1—2_‘1 _ 1 (x—a+p —-1 1— x—a>
t=o0 A(t) p

=: H, , 2.4
R S0 2

for all # > 0 and some « > 0. Appendix B of de Haan and Ferreira [190] offers a
thorough catalog of second-order conditions, where it is also shown that necessarily
|A(t)| € RV,,.

Example 2.7.11 (log-Weibull distribution). Let W be a random variable with
min-stable Weibull(B) df, for 0 < 8 < 1,

Fy(z)=1- exp(—xﬁ), x> 0.
Then the rv X := " is log- Weibull distributed with df
F(z) =1 —exp(—(log(x))?), x>1,0<p<1.

From Taylor expansion of F(tx) — F(t) one concludes that condition (2.43) holds
with a = p = 0, auxiliary functions

a(t) = B(log(t))”~ ! exp(—(log(t))")

and A(t) = (8 —1)/logt, 0 < 8 < 1. Hence F belongs to the subclass defined by
condition (2.43) is, consequently, in Class B. However, F is not in Class A since
log X has df Fyw with an exponentially decaying tail.
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The test statistic introduced in Fraga Alves et al. [159] for discerning between
super-heavy and heavy tailed distributions, as postulated in (2.42), is closely re-
lated to a new estimator for a > 0. Both estimator and testing procedure evolve
from the limiting relation below (with j > 0) which follows in turn from condition

(2.20):
i /OOF(tx)—F(t) dx /Ool—x_o‘ dx 1
lim L, = = .
t—oo J; a(t) i+l 1 « il G+ a)

The above equation entails that

[ (F(te) — F(t)) de/a® 14+«
tlﬁwfl (F(tz) — F(t)) dz/a?  2(2+a) (244)

for 0 < a < co. Equation (2.44) can, furthermore, be rephrased as

ft (t/u) F(u) 1+a

1) dF () oo o = V() (2.45)

Replacing F' by the empirical df Fj, and ¢ by the intermediate order statistic
Xn—kn, with k = k,, a sequence of intermediate integers such that

k=k,—o0, k/n—0 as n— oo, (2.46)

the left-hand side of (2.45) becomes 1, (k), defined as

k—1

. Z (Xn—k,n/Xn—i,n)2
Pn(k) = 0 . (2.47)
Z:O Xn—km/Xn—i,n

On the other hand, the limiting function ¢ («) in (2.45) is a monotone continuous
function. Hence, by simple inversion, we obtain the following estimator of o > 0:

k—1 9 k—1
2 ;) (Xn—k,n/Xn—i,n) - Z:O(Xn—km/Xn—i,n)
an(k) = = L E (2.48)
Z:O(Xn—k,n/Xn—im) - ;)(Xn—km/Xn—im)

In the next theorem we establish without proof the asymptotic normality of
the statistic ¢, (k) introduced in (2.45), albeit under a mild second-order condition
involving the intermediate sequence k = k,,. The result is akin to Theorem 2.4 in
Fraga Alves et al. [159].
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Theorem 2.7.12. Let k = k,, be a sequence of intermediate integers as in (2.46)
and such that
<n/\/k;> a(U(n/k)) — oo (2.49)
as n — oo, where the function a is given in (2.43) and U denotes the generalized
—
inverse U(t) = (1_1F> (t) = inf{a: F(z) >1— 1}, for t > 1. If the second-
order condition (2.43) holds with « > 0 and

(na(U(n/k)* A(Un/k)) —noeo A € R, (2.50)
then
= 1/2 A I +a
( Xn—kn> <¢n(k) — 2+ a ) —D N(b, 0'2) (251)
74:0 n—in
as n — 0o, where
“A1+a

T C2+a)(l+a—p)2+a-—p)
2 (1+a)(4+3a+a?)

24+ a)3B+a)d+a)

An alternative formulation of (2.51) is

14+«
2+«

(na(wins)” (z/?n<k> ) S NOa%),

as n — 0o, where

A1+ a)
C+a)l+a—p)2+a—p)’
2 (1+ a)?(4 4 3a + a?)

2+a)PB+a)d+a)

b* =

Theorem 2.7.12 has just provided a way to assess the presence of an underly-
ing super-heavy tailed distribution. Taking k& upper-order statistics from a sample
of size n such that k& accounts only for a small top sample fraction, in order to
attain (2.46), we now define the test statistic

k—1 1/2
S, (k) == /24 (Z ‘?"ﬂ”) (zzn(k) - ; ) . (2.52)
i=0 n—i,n

The critical region for the one-sided test (2.42) at the nominal size & is given by

R = {Sn(k) > z1-a},
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where z. denotes the e-quantile of the standard normal distribution.

It is worthwhile to mention that our null hypothesis is not only that the
distribution F' is in Class B defined in (2.21), but also F' satisfies the second-order
condition (2.43). Moreover, we should perform the test with a sequence k, such
that (2.50) holds with A = 0. Condition (2.50) imposes an upper bound on the
sequence k,. For o = p = 0, it seems difficult to prove that conditions (2.49)
and (2.50) are never contradictory. However, if we replace (2.50) by the somewhat
stricter condition vk, A(U(n/kn)) —n—oo A1 € R, we never hinder (2.49) from
being valid. So, for any a > 0, if V/k, A(U(n/kn)) —n—occ A1 holds, then (2.50)
holds with A = y/a A;. The estimator of a > 0 introduced in (2.48) is regarded as
a way of testing for super-heavy tails. As an estimator for a > 0 only, the present
one is not really competitive.

TEST 2. The second proposal for testing (2.42) comes from Neves and Fraga
Alves [352]; therein the test statistic T, (k), consisting of the ratio of maximum to
the sum of log-excesses:

T (k) = log( X, n) — log(Xn—kn)
n = e
logl(k) Ez:()l (log(XTL—i,n) - IOg(Xn—k,n))

proves to attain a standard Fréchet limit, as long as k = k,, remains an intermediate
sequence, under the simple null-hypothesis of condition (2.21) being fulfilled.

Theorem 2.7.13 below encloses a general result for heavy and super-heavy
distributions belonging to the Class B (see (2.20) and (2.21)) thus suggesting a
possible normalization for the test statistic T}, (k) to attain a non-degenerate limit
as n goes to infinity. Furthermore, results (i) and (ii) of Corollary 2.7.14 expound
eventual differences in the stochastic behavior between super-heavy and heavy
tailed distributions, accounting for power and consistency of the test, respectively.

First note that an equivalent characterization of the Class B can be formu-
lated in terms of the tail quantile-type function U:

U(t+zq(t))

(2.53)

. _ 1/a
tliglo U =1+axz) (2.54)
for all 1 + ax > 0, @ > 0, with a positive measurable function ¢ such that
t+ t
i 1EA0) (2.55)
t—o00 q(t)

(cf. Lemma 2.7.15 below). This function ¢ is called an auxiliary function for U.

If a = 0, the right-hand side of (2.54) should be understood in the limiting
sense as e” while ¢ becomes a self-neglecting function. This corresponds to an
equivalent characterization of Class B as defined by (2.21). According to de Haan
[184], Definition 1.5.1, we then say that the tail quantile function U belongs to the
class ' of functions of rapid variation (notation: U € T').
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Theorem 2.7.13. Suppose the function U is such that condition (2.54) holds for
some « > 0. Let k = k,, be a sequence of intermediate integers as in (2.46). Then

1 =00 (g )

with T, (k) as defined in (2.53).

Corollary 2.7.14. Under the conditions of Theorem 2.7.13,

() ifa=0,
log(k)T (k) —=p T, (2.56)
where the limiting random variable T* has a Fréchet df ®(x) = exp(—x~1),
x> 0;
(ii) if a >0,

log(k)T, (k) —=p 0. (2.57)

Corollary 2.7.14 suffices to determine the critical region for assessing an un-
derlying super-heavy tailed distribution. Considering the k upper-order statistics
from a sample of size n such that k satisfies (2.46), we obtain the critical region
for the one-sided test (2.42) at a nominal size a:

R = {log(k)T,.(k) < @~ Y(@)},

where ®~! denotes the inverse of the standard Fréchet df ®.
For the proof of Theorem 2.7.13 two auxiliary results are needed.

Lemma 2.7.15. Suppose the function U is such that relation (2.54) holds with
some o« > 0. Then, the auziliary function q satisfies

im 10— (2.58)

t—oo

and

e if >0, then U(oo) := limy_,o0 U(t) = 00 and U is of regular variation near
infinity with index 1/, i.e., U € RV q;

e if a =0, then U(co) = 00 and U is co-varying at infinity.

Furthermore, for a =0,

tl;r(r)lo (log(U(t +zq(t))) — log(U(t))> =z for every xz € R. (2.59)
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Lemma 2.7.15 coupled with condition (2.54) imposes the limit (2.55) on the
auxiliary function ¢(t).

Proof. In case o > 0, the first part of the lemma follows directly from (2.54),
whereas in case a = 0 it is ensured by Lemma 1.5.1 and Theorem 1.5.1 of de Haan
[184]. Relation (2.59) follows immediately from (2.54) with respect to oo = 0.

Proposition 2.7.16. Suppose condition (2.54) holds for some a > 0.

(i) If a > 0, then for any € > 0 there exists tg = to(e) such that for t > to,
x>0,

(1—5)(14—&13)31_6 < U(t—l—xq(t))

< <(1+e)(l+ax)a™e.  (2.60)

(i) If (2.54) holds with oo = 0 then, for any e > 0, there exists to = to(e) such

that for t > tg, for all x € R,

U(t+zq(t))

U < (1+e) exp(a(l+e)). (2.61)

Proof. Inequalities in (2.60) follow immediately from Proposition 1.7 in Geluk and
de Haan [170] when we settle g(t) = ot (see also (2.58) in Lemma 2.7.15) while
(2.61) was extracted from Beirlant and Teugels [34], p.153.

Lemma 2.7.17.

(i) IfU € RVyq, a > 0, then, for any € > 0, there exists to = to(e) such that
fort >ty and x> 1,

(1- 5); log(x) <log(U(tx)) —log(U(t)) < (1 + a); log(z). (2.62)

(ii) If U €T then, for any € > 0, there exists to = to(e) such that for t >ty and
for all x € R,

log(U(t + zq(t))) —log(U(t)) < e+ x(1 +¢). (2.63)

Proof. Notice that once we apply the logarithmic transformation to relation (2.60)
for large enough ¢, it becomes

(1 &)log ((1+a2)/*) < log(U(t + wq(t))) — log(U (1))
<(1+¢)log ((1 + ax)l/o‘) .

As before, the precise result is obtained by taking ¢(t) = «t with the concomitant
translation of (2.54) for a > 0 into the regularly varying property of U (cf. Lemma
2.7.15 again). The proof for (2.63) is similar and therefore omitted.
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Proof of Theorem 2.7.13. Let (Y;.,)"_, be the order statistics corresponding to the
iid v (Y;)™, with standard Pareto df 1 —y~!, for all y > 1. Taking into account
the equality in distribution

(Xim)iey =p (U(Yin))iy (2.64)
and defining
—Y,_
() = Yomin =Ynokn oy g 2.65
Q q(Yn—k,n) ( )
as well as
MT(Ll) = ZIOg Yi-in)) —10g(U(Yn-kn)), (2.66)

we get in turn

log(U(Yn,n)) — log(U(Yr—k,n))
ke MY
IOg(U(Yn,n)) - IOg(U(Yn—k,n))

k—1

;0 (log(U (Yn—in)) — log<U<Yn_k,n)))

kil(log(U(Yn b + Q4 a(Yoo ,m))) log(U (Y kn))>

=0

T, (k) =p (2.67)

Bearing on the fact that the almost sure convergence Y,,_;,, — oo holds with
an intermediate sequence k = k,, (cf. Embrechts et al. [122], Proposition 4.1.14),
we can henceforth make use of condition (2.54). For ease of exposition, we shall
consider the cases @ > 0 and a = 0 separately.

Case oo > 0: As announced, the core of this part of the proof lies at relation (2.54).
Added (2.62) from Lemma 2.7.17, we obtain the following inequality for any € > 0
and sufficiently large n:

k 1
M) = Zlog (U( i Yn_k,n)) — 108(U (Vi)

n—k,n
i=

k‘

-1

<(1+4¢) (log(Ye—in) — log(Y—r,n))-

QS

1
k

7

I§
=)

Owing to Rényi’s important representation for exponential spacings,

Ek—i,k =D En—i,n - En—k,n = log(Yn—i,n) - log(Yn—k,n)7 (269)



2.7. Heavy and Super-Heavy Tail Analysis 99

where E,_;n,1 =0, 1,...,k—1, are the order statistics pertaining to independent
standard exponential rv E; = log(Y;), we thus obtain

Z IOg Y. i,mn ) 1Og(U(Yn_k7n))

(1+4¢) Z log(Yi—ix) (2.70)

We can also establish a similar lower bound. The law of large numbers ensures the
convergence in probability of the term on the right-hand side of (2.70) since, for
an intermediate sequence k = k,,, as n — oo,

! kz_:llog(Y-) —p /OO log(y) dy =1
ks 1 ! v .
In conjunction with (2.58), the latter entails

Q(Yn—k,n)

L,(k) = Y, .

MY =1+0,(1) (2.71)
as n — oo. Hence, using (2.62) followed by (2.69) upon (2.67), we obtain, as
n — oo,

B 1 Q(Yn—km) IOg(U(Ynm)) - IOg(U(Yn—km))
Tulk) =p Yo km L (k)

= Bt (14 0,0) + P (14 0,). 272
Finally, by noting that Ej , — log(k) —p A, as k — oo, where A is denoting a
Gumbel rv, we obtain a slightly stronger result than the one stated in the present
theorem. More specifically, we get from (2.72) that T, (k) = o,(k~'/?), for any
intermediate sequence k = k,,.

Case a = 0: The proof concerning this case of super-heavy tailed distributions,
virtually mimics the steps followed in the heavy tailed case (a > 0). We get from

(2.68) that MY as defined in (2.66) can be written as

M = zlog( Yook + Qi a(Ya-rn) ) = 108U (Va-t.n)):

Giving heed to the fact that, for each i =0, 1,...,k — 1,

(2) _ Yn—k,n (Yn—i,n _1)
ki q(Yn—k,n) Yn—k,n
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is stochastically bounded away from zero (see Lemma 2.7.15), we can thus apply
relation (2.63) from Lemma 2.7.17 in order to obtain, for any intermediate sequence
k= kn7

1 i
Zlog( Yaotn + Qna(Yamin)) ) = 10g(U(Yaorn)) < (1+€) | Q).
=0
as n — oo. Using Rényi’s representation (2.69), we get
k—1
Q(Yn—k n) (1) 1
MY < (1 Yioir —1). 2.7
Yo pn n) < te) > (Yiein—1) (2.73)

I§
=

7

It is worth noticing at this point that with constants aj > 0, bj € R such that
aj ~ km/2 and biai/k ~ log(k) as k — oo, this new random variable S} defined
by

k—1

1
Sii= e 2 (=1 = b, (2.74)

k i=0

converges in distribution to a sum-stable law (cf. Geluk and de Haan [171]). Em-
bedding S} defined above in the right-hand side of (2.73), we ensure that L, (k)
as introduced in (2.71) satisfies L, (k) = Op(log(k)). Therefore, in view of (2.68),
the proof is concluded by showing that it is possible to normalize the maximum of
the log-spacings in such a way as to exhibit a non-degenerate behavior eventually.
Since U € I" we get in a similar way as before, for large enough n,

04 g 03, s+ QY1) (0 1)
=iy, -~ 1) o)

= 17 (Yiw = 1) (14 0,(1)) = Op(1).

Proof of Corollary 2.7.14. (i) For a = 0, the last part of the proof of Theorem
2.7.13 emphasizes that, as n — oo,

k=1 (log(U(Yn.n)) — log(U(Yn_k.n Yo—kn
log (k)T (k) =1 ( g(U(Ynn)) g(U( k, ))) q( kn)
L (k)/ log(k) Yokn
= (T* + op(l))/(l + Op(l))
=T (1 + op(l))
because, after suitable normalization by ar = k~!, the maximum of a sample of

size k with standard Pareto parent distribution is attracted to a Fréchet law.
(i) The precise result follows from (2.72) by straightforward calculations.
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Neves and Fraga Alves [352] present a finite (large) sample simulation study
which seems to indicate that the conservative extent of Test 2 opens a window of
opportunity for its applicability as a complement to Test 1. This is particularly
true for the less heavy distributions lying in the class of super-heavy tails since in
this case the number of wrong rejections is likely to rise high above the nominal
level of the test based on (2.52). Moreover, the asymptotics pertaining to the test
statistic Sy, (k) in (2.52) (cf. Theorem 2.7.12) require a second-order refinement of
(2.21) (as in (2.43)), while the asymptotic behavior of the test statistic T}, (k) only
relies on the first-order conditions on the tail of F', meaning that we are actually
testing F' € Class B.



Chapter 3

Estimation of Conditional
Curves

In this chapter we will pick up Example 1.3.3 again, and we will show how the
Poisson approximation of truncated empirical point processes enables us to reduce
conditional statistical problems to unconditional ones.

A nearest neighbor alternative to this applications of our functional laws of
small numbers is given in Sections 3.5 and 3.6.

3.1 Poisson Process Approach
Let Z = (X,Y) be a rv, where X is R%valued any Y is R™-valued, and denote by
F(lz)=PY <-| X =2)

the conditional df of Y given X = 2, x € R% Applying the approach developed
in Chapter 1, one may study the fairly general problem of evaluating a functional
parameter T(F (- | x)) based on independent replicates Z; = (X;,Y;),i=1,...,n,
of Z. This will be exemplified in the particular cases of non-parametric estimation
of regression means and quantiles that is, for the functionals T3 (F) = [t F(dt)
and To(F) = F~1(q), ¢ € (0,1).

Example 3.1.1. When a child is born in Germany, the parents are handed out
a booklet showing on its back cover a somatogram, where the average height (in
cm) of a child is plotted against its weight (in kg) together with a .95 per cent
confidence bound. If, for example, a child has a height of about 80cm but a weight
of less than 9kg (more than 13.25kg) it is rated significantly light (heavy).

If we model the (height, weight) of a randomly chosen child by a rv Z =
(X,Y) € R?, then the confidence curves in this somatogram represent the curves
of the 2.5 per cent and 97.5 per cent quantiles of the conditional df F(- | x) of

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,
DOI 10.1007/978-3-0348-0009-9_3, © Springer Basel AG 2011
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Y given X = z with 50 < x < 120 that is, of To(F (- | z)) = F(- | )7 (q) with
q1 = 25/1000 and g2 = 975/1000.

While classical non-parametric regression analysis focuses on the problem
of estimating the conditional mean T1(F(- | z)) = [t F(dt|z) (see, for example,
Eubank [124]), the estimation of general regression functionals T(F(- | «)) has
been receiving increasing interest only some years ago (see, for example, Stute
[424], Hardle et al. [206], Samanta [404], Truong [447], Manteiga [317], Hendricks
and Koenker [216], Goldstein and Messer [177]).

TRUNCATED EMPIRICAL PROCESS

Statistical inference based on (X1,Y1),...,(Xn,Y,) of a functional T'(F(- | x))
has obviously to be based on those Y; among Yi,...,Y,, whose corresponding
X;-values are close to x. Choose therefore as in Example 1.3.3 a window width
an = (An1, ..., anq) € (0,00)% and define as the data-window for X

Sp = Xj<alzj — a%d/2,xj + al/-d/2]

nj

=: [z —a/?/2,2 4 a}/?/2],

where the operations a}/ d /2 are meant componentwise. The data set Y; with X; €
Sy is described in a mathematically precise way by the truncated empirical point
process

Nu(B) = evi(B)ex, (Sn)

i<n

= 3 ew(B). BeB"

where

K(n):= Zexi(sn)

i<n

is the number of those Y; with X; € S,, which we denote by Vi, Vs, .... From
Theorem 1.3.1 we know that K(n) and Vi, Va, ... are independent, where V; are
independent copies of a rv V' with distribution

PVe)=PYe-|XeS,),
and K (n) is B(n, py)-distributed with p, = P(X € S,,) ~ vol(S,) = volume of

Sp if |ayn| is small (under suitable regularity conditions). By | - | we denote the
common Euclidean distance in R?.
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THE FIRST-ORDER POISSON APPROXIMATION

If we replace in N,, the sample size K(n) by a Poisson rv 7(n) with parameter
E(K(n)) = npn, which is stochastically independent of Vi, V5, ..., then we obtain
the first-order Poisson process approximation NNV of N, from Section 1.1, given
by

N;i(B)= > ev(B), BeB™

i<7(n)

The error of this approximation is determined only by the error of the approxi-
mation of K(n) by 7(n) (see Lemma 1.2.1).

Theorem 3.1.2. We have for the Hellinger distance

H(N,,N*) <3Y2P(X € S,).

THE SECOND-ORDER POISSON APPROXIMATION

It is intuitively clear and was already shown in Example 1.3.3 that for |a,| — 0
under suitable regularity conditions

PVe)=PYec-|XeS,) <a, =0 PY €| X =2x).
This implies the approximation of V' by the Poisson process

N(B)= Y ewi(B), BeB™

i<7(n)

where W7, Wa, ... are independent replicates of a rv W with target df F(-|z), and
7(n) is a Poisson rv with parameter np, = P(X € S,,). The rv Wy, W, ... are
again chosen independent of 7(n) and K(n).

From Theorem 1.2.5 we obtain the following bound for the second-order Pois-
son approximation

H(Np,N;*) < H(Ny, Nyy) + H(Ny,, N;©)
<3Y2P(X € S,) + H(V,W)(nP(X € 5,))"/?

= 312p, + H(V,W)(np,)*/2.

THE POT-APPROACH

If we denote again by

an Z EW;
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the binomial process pertaining to the POT approach, then we obtain from Corol-
lary 1.2.4 (iv) the bound

H(Ny, M) < H(V,W) E(K(n))"/? = H(V,W)(np,)"/*.

It is therefore obvious that we have to seek conditions on the joint distribution
of (X,Y) for X near z, such that we obtain reasonable bounds for H(V,W).

BAsic SMOOTHNESS CONDITIONS

An obvious condition is to require that the conditional distribution P(Y € - | X €
[t —e,x4+¢€]) of Y given X € [z — e,x + €] has a density f(y | [x — e,z + €]) for
e € (0,£0)? such that

flylle—ea+e)?=fly|a) 21+ Ry | v —e a+e]) (3.1)

for y € R™, where f(y | ) denotes the density of F'(- | z), which we assume to
exist as well. If we require that

/Rz(yl [v —e.x+e)fly|2)dy = O(el!) (3-2)

as |e| — 0, then we obtain from equation (1.10) in Chapter 1 the bound

Hw) = ([ B 8051 2ds) " = 0/ P)

as |a,| — 0.
If we require further that X has a density g near x which is continuous at z
and g(x) > 0, then we obtain

pn:P(XeSn):/ g(y)dy:/ g(xz+e)de
Sn [_ai/d/27ai/d/2]

—sto) | | 9ete) —gl)
[—ar/?/2, al/d/Q] g9(z)

= g(x) vol (Sp)(1 + o(1) <Hal/d> (1+o(1)) (3.3)

ji<d

as |an| — 0.

BOUNDS FOR THE APPROXIMATIONS

The following result is now obvious.
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Theorem 3.1.3. Suppose that the v (X,Y) satisfies conditions (3.1), (3.2) and
that X has a density g near x which is continuous at x with g(x) > 0. Then we
have for |a,| — 0,

H(N,,N}) = O(vol(S, (Hal/d)

7<d

for the first-order Poisson approximation,

H(N,, N**) = O(UOZ(Sn) + (nvol(Sp))/2|al/4? )
= O( H al/d (n H a%d) |a}/d|2>
j<d
for the second-order Poisson approzimation and

H(Ny, My) = O((nvol(Sy ))l/zlal/dIQ)

=o((n L") o)

ij<d
for the POT approach.

With equal bin widths a%d =cY4 j=1,...,d, we have vol(Sy,) = ¢ and
the preceding bounds simplify to
H(N,,N})=0(c),
H(N,,, N**) = O(c + (ncld9/d)1/2y
H(N,, M,) = O((ncd+9/d)1/2y (3.4)

uniformly for ¢ > 0 and n € N. These results give a precise description of how ¢ =
¢(n) can be chosen depending on the sample size n, in order to ensure convergence
of the Hellinger distances to zero.

THE THIRD-ORDER P0OISSON APPROXIMATION
Once we know that
pn = P(X € 5,) = g(x)vol(Sy)(1 + o(1)),

a further approximation of IV, suggests itself namely, its approximation by

E EWM

i<7*(n)
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where Wy, Wa, ... are as before, but now 7%(n) is an independent Poisson rv with
parameter ng(x) vol(Sy,). This is the third-order Poisson process approximation of
N,,. From the arguments in Lemma 1.2.1 (ii) we obtain the bound

H(Ny™, My) < H(7(n),7"(n)).

If we require now in addition that g has bounded partial derivatives of second order
near x, then the arguments in (3.3) together with Taylor expansion of g(z + )
imply the expansion

P = g(x) vol(S,)(1 + O(|ay/ "))

for |an| — 0. The following lemma entails that

et =0 TS

((nvol(S))"/2lai/ 1)
(L) o).

Jj<d

0
=0

We, therefore, obtain under this additional smoothness condition on g the
bound

H(Np, M) < H(Np, N¥) + H(N,, M)
1/2
*{Hﬂd@ﬂﬁﬂvwﬂ, (35)
J<d J<d
which coincides with the bound for H(N,,, N;*) established in Theorem 3.1.3.

Lemma 3.1.4. Let 71,72 be Poisson rv with corresponding parameters 0 < A\; <
Xo. Then we have for the Hellinger distance

A2 — A1
VA

Proof. As the squared Hellinger distance is bounded by the Kullback-Leibler dis-
tance (see, for example, Lemma A.3.5 in Reiss [385]), we obtain

H(Tl,TQ)

H?(r1,m) < /10g( (12 = k)/ P (11 = k)) L(11)(dF)

—/log <6A1_A2()\2/)\1)k> L(71)(dk)

=X — A1 —log(A2/M) E(11)
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Ao — A
= o=\ —log (1+ . oLt
1

A2 — A1 ()\2—/\1)2>)\1 _ (A2 — Ap)?

< _ _ _
A= M ( A N2 oA

where the second to last line follows from the inequality log(1 + &) > & — €2/2,
which is true for any € > 0.
A UNIFIED SMOOTHNESS CONDITION

Conditions (3.1) and (3.2) together with the assumption that the marginal density
g of X has bounded partial derivatives of second order near x, can be replaced by
the following handy condition on the joint density of (X,Y’), which is suggested
by Taylor’s formula.

Suppose that the rv (X,Y") has a joint density f on the strip [x —eq, x + 0] X
R™ for some ¢ € (0,00)%, which satisfies uniformly for € € [—eg,£0](C R?) and
y € R™ the expansion

f(@+ey) = ) {1+ (e, () + OlePr(y) }, (3.6)

where h: R™ — R 7 : R™ — R satisfy [(|h(y)]? + |r(y)|*)f(z,y)dy < oo and
(-,-) denotes the usual inner product on R?. Then

f[z—s,m—i—s] f(u’ ) du
Sl mee )= o fuy) dudy

is the conditional density of Y given X € [z — e, 2 4 €] and

f(d?,)

felay ="t

the conditional density of Y given X = z, where
9() = /Rf(ny) dy

is the marginal density of X which we assume again to be positive at z. Elementary
computations then show that conditions (3.1) and (3.2) are satisfied that is,

fylle—ca+e) = fly |22 {1+ Ry | [o -0 +2))}

for y € R™ and ¢ € (—&g,&0), where

[ R o= ea s sty ) dy = (el
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as |e| = 0. We, furthermore, have in this case again
pn = P(X € S,) = g(x) vol(S,)(1 + O(lay/*[*))

as |an| — 0. Then the bounds on the approximation of the process N,, by the
processes N5, N* M, and M} as given in Theorem 3.1.3 and in (3.4) and (3.5)
remain valid.

Example 3.1.5. Suppose that (X,Y) is bivariate normally distributed that is,
(X,Y) has joint density

1 1 z— p1\?
flzy) = 2no102(1 — p?) eXP{ - 2(1-p?) <( a1 1>

_ _ _ 2
—2,0<Z Ml)(y Mz) n <y M2> )}7 2y €R,
g1 g9 g9

where p1, ps € R,01,02 > 0 and p € (—1,1). Taylor expansion of exp at 0 entails
the expansion

flx+e,y) _ exp{ — 1 <2(x—,u12)6+;32 _ 2pe (y_m)>}

f(z,y) 1—p?) oy 0102
—14e | (2 w=m)-" ")
1—p? \o109 2 o?

+ O(e exp(elyl) (1 + 7))
=:1+¢eh(y) + O(*r(y))
with some appropriate positive constants c. We, obviously, have [(h?(y) + r%(y))

flz,y) dy < 0.

Bounbps FOrR EQUAL BIN WIDTHS

The preceding considerations are summarized in the following result.

Corollary 3.1.6. Suppose that the rv (X,Y) satisfies condition (3.6) at the point
x € R? and that the marginal density of X is positive at x. With equal bin widths
aiéd =ce j=1,...,m, we obtain uniformly for ¢ >0 and n € N the bound

H(N,,N})=0(c)
for the first-order Poisson approximation,

H(Ny,, N,*) = O(c + (nc(d+4)/d)1/2>
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for the second-order Poisson approximation,
H(N,, M,) = O((nc(d+4)/d)l/2)
for the POT approach and
H(N,, M*) = o(c + (nc<d+4>/d)1/2)
for the third-order Poisson approximation.

The preceding approach will be extended to several points z1, ..., z, in Sec-
tion 3.3 with the corresponding bounds summing up.

3.2 Applications: The Non-parametric Case

In this section we assume for the sake of a clear presentation that the covariate Y
of X is a one-dimensional rv.

LocAaL EMPIRICAL DISTRIBUTION FUNCTION

The usual non-parametric estimate of a functional T'(F'), based on an iid sample
Yi,...,Y, with common df F, is T(F,), where F,(t) := n"!> . ey, ((—00,1])
denotes the pertaining empirical df. Within our framework, the local empirical df

Fu(t | Sn) )Y evi (=00, t])ex, (Sn)

i<n

= N, (R™)7IN,((—00,1]), t e R,

pertaining to those Y; among (X1,Y1),...,(X,,Y,) with X; € S, = [z — a,ll/d/Q,
T+ an / 2], suggests itself as a non—parametrlc estimate of F'(- | ). The resulting
estimate of T(F(- | z)) is T(E,(- | Sn)). Observe that ), is the df pertaining to
the standardized random measure N,.

KERNEL ESTIMATOR OF A REGRESSION FUNCTIONAL

For the mean value functional 77 we obtain for example

Ty (Fa(- | Sn)) = /tFn(dt | Sh)
Zign Yi ex,(Sn)
Zign €X; (Sn)
which is the Nadaraya-Watson estimator of T (F(- | z)) = [ ¢ F(dt | «). Following

Stone [428], [429] and Truong [447], we call T(F,(- | S,)) the kernel estimator of
a general regression functional T(F (- | x)).
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THE BASIC REDUCTION THEOREM

The following result is crucial. It shows how conditional estimation problems re-
duce to unconditional ones by the approach developed in the preceding section.

Theorem 3.2.1. Suppose that for some o >0, 6 € (0,1/2] and C > 0,

/{31/2

sup P(
g

sup (T(Fi(- |2)) = T(F(-|2))) £t) = @()| < Ck™, kEN, (37)

where Fi(- | ) denotes the empirical df pertaining to k independent rv with com-
mon df F(- | ), and ® is the standard normal df. If the vector (X,Y) satisfies
condition (3.6) and the marginal density of X is positive at x, then we obtain for

the kernel estimator T(E,(- | Sn)) with equal bin widths ai/ld == a%d = cl/d
(neg(a)'? . -
sup |P( (T(Fu(- | 80)) = T(F(- | 2)) < t) = @(1)
teR o

= O((nc)_5 +c+ (nc(d+4)/d)1/2>

uniformly for ¢ >0 and n € N.

With the particular choice ¢ = ¢, = O(n~%(4+49)  we, roughly, obtain the
rate Op(n=2/(*9) for T(E,(- | Sn)) — T(F(- | x)), which is known to be the
optimal attainable accuracy under suitable regularity conditions in case of the
mean value functional (Stone [428], [429]), and quantile functional (Chaudhuri
[63]) (for a related result for the quantile functional we refer to Truong [447], and
for a discussion of a general functional T to Falk [130]; a version of this result
based on the nearest neighbor approach is established in Section 3.6).

The proof of Theorem 3.2.1 is based on the following elementary result (see
Lemma 3 in Falk and Reiss [149]).

Lemma 3.2.2. Let V1, Vs, ... be a sequence of rv such that for some o >0, u € R
and ¢ € (0,1/2],

k1/2

sup P(
g

(Vk—p)§t>—¢(t)‘§0k‘5, k €N.
teR

Then we have with T being a Poisson rv with parameter A > 0 and independent of
each Vi, i =1,2,...,

)\1/2

sup P(
g

(Ve =) < t) = 0()| < DA,
teR

where D depends only on C (with the convention V. =0 if 7 =0).
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Proof of Theorem 3.2.1. Put Vi, == T(Fk(- | 2)), k = 1,2,..., and p = T(F(- |

x)). Observe that T'(E,(- | Sp)) is a functional of the empirical point process N,,.
If we replace therefore N, by the Poisson process M, = ZKT*(n) ew,, where
W;, Wa, ... are independent rv with common df F(- | z) and independent of 7*(n),
we obtain

sup ("I (a1 8.0) - TG0 <) - 000)
Cmmf»“ﬁuﬂm—u>sg_@@m

+O(H(Nn, My)),

= sup |P
teR

where 7*(n) = M*(R?) is Poisson with parameter A = ncg(z) and independent of
each Vi, V5, .... The assertion is now immediate from Lemma 3.2.2 and Corollary
3.1.6.

EXAMPLES

The following examples on regression quantiles and the regression mean highlight
the wide-ranging applicability of the reduction theorem that is, of the approxi-
mation of N,, by M}.

Example 3.2.3 (Regression quantiles). Put T(F) = F~1(q), ¢ € (0,1) fixed
and assume that F(- | z) is continuously differentiable in a neighborhood of the
conditional quantile F'(- | z)~%(q) with f.(F(- | )7(q)) > 0, where f, = F(- | z)’
is the conditional density of F(- | ). Then, condition (3.7) is satisfied with 0% =

q(1 —q)/f2(F(- | )" t(q)) and § = 1/2 (see Section 4.2 of Reiss [385]).

1/d 1/d Cl/d

Consequently, we obtain with equal bin widths a,; = --- = a,/; =

uniformly for ¢ > 0,

ncg\x 1/2 ~
sup | ("I (8,07 ) - FC 107 ) <) - 20)

teR
= O((ncn)_1/2) + H(Np, M}).

Example 3.2.4 (Regression mean). Assume that condition (3 7) holds for the

mean value functional T(F) = [tF(dt) with o* := [(t F(dt | x), p =
JtF(dt| x), (think of the usual Berry- Esseen theorem for sums of zzd rv). Then,
with al/d =...=gl=cl/d
nd )
1/2 .
sup P(("Cg(x)) (/tFn(dt | z) —/tF(dt | x)) < t) —@(t)‘
teR o

= O((nc)™Y?) + H(N,, M)

uniformly for ¢ > 0.
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Condition (3.7) is satisfied for a large class of functionals T, for which a Berry-
Esseen result is available that is, U- and V-statistics, M, L. and R estimators. See,
for example, the monograph by Serfling [408].

3.3 Applications: The Semiparametric Case

Assume that the conditional distribution P(Y € - | X =2) = Py(Y € - | X =
z) = Qy(-) of Y(€ R™), given X = x € R?, is a member of a parametric family,
where the parameter space © is an open subset of R*. Under suitable regularity
conditions we establish asymptotically optimal estimates based on N,, of the true
underlying parameter 1Jy. Since the estimation problem involves the joint density
of (X,Y) as an infinite dimensional nuisance parameter, we actually have to deal
with a special semiparametric problem: Since we observe data Y; whose X;-values
are only close to z, our set of data Vi, ..., Vi (), on which we will base statistical
inference, is usually not generated according to our target conditional distribution
Qv,(-) but to some distribution being close to Qu,(-). This error is determined by
the joint density f of (X,Y), which is therefore an infinite dimensional nuisance
parameter. As a main tool we utilize local asymptotic normality (LAN) of the
Poisson process M (cf. the books by Strasser [430], LeCam [308], LeCam and
Yang [309] and Pfanzagl [367]. For a general approach to semiparametric problems
we refer to the books by Pfanzagl [366] and Bickel et al. [44]).

A SEMIPARAMETRIC MODEL

Suppose that for ¢ € © the probability measure Qy(-) has Lebesgue-density gy. We
suppose that the density f of the rv (X,Y") exists on a strip [z —eo, x+eo] x R™(C
R? x R™) and that it is a member of the following class of functions:

F(Cq,C)
= {f [z —eo, 2+ 0] X R™ — [0, 00) such that 0 < gr(z)
= /f(x,y) dy < Cy, and for any € € (0, &¢]
£+ ) = F@p) O+ (& hy )] < JePrs () (2,9)
for some functions hy : R™ — R 7¢ : R™ — [0, 00) satisfying
[P + s dy < .
where C1,Cy are fixed positive constants. Observe that the densities f € F(Ch,

() uniformly satisfy condition (3.6) with the sum of the second moments bounded
by Cg.
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The class of possible distributions @ of (X,Y’), which we consider, is then
defined by

P = P(F(C1, (), ©)
= {P|Rd+m : P has density f € F(C1,C2) on [x — e, + €0
such that the conditional density f(- | z) := f(=, )//f(x,y) dy
is an element of {gy : ¥ € 9}}

Note that P(F(Cq,Cs), ©) is a semiparametric family of distributions, where
the densities f € F(Cy,C3) form the non-parametric part, and where the k-
dimensional parametric part (we are primarily interested in) is given by ©. As
a consequence, we index expectations, distributions etc. by Ef g, Ly etc.

THE BASIC APPROXIMATION LEMMA

A main tool for the solution of our estimation problem is the following extension
of Corollary 3.1.6 which follows by repeating the arguments of its derivation. By
this result, we can handle our data Vi, ..., Vg (,) within a certain error bound as
being independently generated according to @y, where the independent sample
size is a Poisson rv 7*(n) with parameter nvol(Sy)g¢(z); in other words, we can
handle the empirical point process N,, (which we observe) within this error bound
as the ideal Poisson process M} = Zigr*(n) ew,, where Wy, Wy, ... are iid with
common distribution @y and independent of 7*(n), uniformly in f and 9.

Lemma 3.3.1. We have, for |a,| — 0,

sup H(N,, M) = O(Uol(Sn) + (nvol(S’n))l/2|a}Z/d|2).
P(F(C1,C2),0)

Notice that in the preceding result the distribution of the Poisson process
M3(-) = X icre(n) €w.(-) depends only on ¥ and the real parameter gr(z) =
J f(z,y)dy, with nvol(S,) g¢(x) being the expectation of the Poisson rv 7*(n).
We index the distribution Ly, (,),9(M,;) of M;: therefore only by gf(z) and 9.

By the preceding model approximation we can reduce the semiparametric
problem L y(N,) with unknown f € F(Ci,C3) and ¥ € O to the (k + 1)-
dimensional parametric problem

Eb,ﬂ(M;)zﬁb,ﬂ( Z 5Wi),

i<7*(n)

where 7*(n) is a Poisson rv with expectation nwvol(Sy,)b, b € (0,C1], Wy, Wa, ...
are iid rv with distribution Qg and 7*(n) and Wy, Wa, ... are independent.
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THE HELLINGER DIFFERENTIABILITY

We require Hellinger differentiability (cf. Section 1.3 of Groeneboom and Wellner
[181]) of the family {qy : ¥ € O} of densities at any point ¥y € O that is, we
require the expansion

0% () = a5 2 () (1 0 = Do, v0g (/219 = Dolrosn (), (3:8)

for some measurable function vy, = (vo1,-. .,ka)t, vo; being square integrable
with respect to the measure Qy,, denoted by vo; € La(Qy,),i = 1,...,k, and
some remainder term ry y, satisfying

1/2
79,00 L2(Qay) = (/Tg,ﬂo(y) Qﬂo(dy)> —|9—00|—0 0.

Hellinger differentiability is also named Lo-differentiability (Witting ([463],
Section 1.8.3)) or differentiability in quadratic mean (LeCam and Yang ([309],
Section 5.2)).

LocAL ASYMPTOTIC NORMALITY

Denote by M(R™) the space of all finite point measures on R™, endowed with
the smallest o-field M(R™) such that all projections M(R™) > u — u(B), B €
B™, are measurable. Define the statistical experiment F,, = (M(R™), M(R™),
{Loy11s, (M) : t € ©,}), where &, = (nvol(S,))"'/? and O, = {t € RF :
Yo + td,, € ©}. Throughout the rest we suppose that nvol(S,) — oo as n — oo.

It is well known that condition (3.8) implies local asymptotic normality
(LAN) of the statistical experiments (R™,B™, {Qy 4 sn-1/2 : t € On}) (cf. Chap-
ter 5 and Section 6.2 of LeCam and Yang [309]). The following result is adopted
from Falk and Marohn [142].

Theorem 3.3.2 (LAN of E,). Fiz b > 0. Under condition (3.8) we have with
by, = b+ 0(6,) and ¥, = Yo + ton,

Ly, 9, (M)

1
dﬁb,ﬁo (M;) () = exp <<t, Zn,ﬁ0(~)>b7190 — 9 |t|g7190 + Rn,i%,t(‘))

with central sequence Z, g, : M(R) — R¥ given by
Zoou () = Gup®)) T (00) [ v,

and Ry, 9,6 — 0 in Ly, (M)-probability, where (s,t)p.9, = s'bT(9o)t, s,t € R¥,
and the k x k-matriz T'(9g) := ([ voivo; dQv,)i jef1,...k} 5 assumed to be positive
definite.
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The preceding result shows in particular that under alternatives of the form
bp =b+0(0y), Un = Vo +1t y, the central sequence Z,, g, does not depend on the
nuisance parameter b, which was the value of the marginal density of X at x. If
we allow the rate b, = b+ O(4,,) instead, then LAN of (E,, ), still holds, but the
central sequence depends on the nuisance parameter b, which cannot be estimated
without affecting the asymptotics (see Falk and Marohn [142] for details).

THE HAJEK-LECAM CONVOLUTION THEOREM

We recall the famous convolution theorem of Héjek-LeCam (see, for example,
Section 8.4 in Pfanzagl [367]). Suppose that condition (3.8) holds for ¥y € © and
that T,,(M;) is an asymptotically §,-regular sequence of estimators in ¥y based
on M} that is,

S U T, (M) — 09 —5,) —p P for all t € RF

n

under ¥ + td,, for some probability measure P on R*, where —p denotes con-
vergence in distribution. Then there exists a probability measure H on R* such
that

P= H*N(o,b—lr—l(ﬁo)),

where N(0,b71T71(1y)) with mean vector 0 and covariance matrix b=*I'~1(dy) is
the standard normal distribution on (R¥, (-, )5 9,), and * denotes convolution.

ASYMPTOTICALLY EFFICIENT ESTIMATION

In view of this convolution theorem, a J,-regular sequence of estimators T, (M)
is called asymptotically efficient in ¥ if

n

5 H(T (M) — 90) —p N(o, b-lr-lwo))

under Y.
By Theorem 3.3.2 we know that Z,, 4, is central and hence,

O Zn 9o (My;) + 0o = 7(n) "' T~ (o) Z Vg, (W) + o

i<t (n)

is asymptotically efficient in ¥ for each b > 0. Note that this is true however only
under the condition b, = b+o0(d,,) in which case Z,, g, is central. If we replace now

the unknown underlying parameter 9y by any 8, 1-consistent estimator J,, (M*) of
Yo that is, 0, (9, (M) — Jp) is stochastically bounded under ¥y, we obtain that

fin(My) = 5nZn,1§n(M;)(Mrt) + ﬁn(M;:)
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is asymptotically efficient in ¥y, whenever

sup 6nZn,190 (M,Z) + g — 6nZn,19(M:;) — | = OP((Sn) (39)
[90—0|<K by

under Yy (and b) for any K > 0.

Denote by F = Fy, the df of Qy, and by Fi(t) := 7' Y., ew,((—o0,1]),
t € R, the empirical df pertaining to an iid sample W, ,..., W; with common
distribution @y, . Using conditioning techniques, elementary calculations show that
condition (3.9) is satisfied, if the function ¥ — I'(¢) is continuous at ¥y and the
following two conditions hold:

172 [ (0o, (5) = vo(s) (B~ ) ds)] = on(1)  (310)

sup
[90—9|<K1-1/2

as | — oo for any K > 0 and
(/w(s) F(ds) + T(00)(0 ~90)) /19— Dol —19-s,1-20 0. (3.11)

Note that y/n-consistency of an estimator sequence 9, (W1i,...,W,) of ¥y im-
plies & L-consistency of 9, (M) = @T*(n)(Wl, ooy Wee()). We remark that under
the present assumptions \/n-consistent estimators actually exist (cf. LeCam [308],
Proposition 1, p. 608).

EXPONENTIAL FAMILIES

In the following we discuss one standard family {Qy : ¥ € ©} (of possible condi-
tional distributions) which satisfies conditions (3.8) and (3.9). Further examples
can easily be constructed as well.

Example 3.3.3. Let {Qy : ¥ € ©}, © C O* open, be a k-parametric exponential
family of probability measures on R with natural parameter space ©* C R¥, i.e.,

dQ
qo(z) = dyﬂ () = exp((¢, T'(x)) — K(9)), z €R,
for some o-finite measure v on R and some measurable map 7' = (71,...,T%) :

R — R¥. The functions {1,71,...,T}} are supposed to be linear independent on
the complement of each v-null set and K (9) := log{ [ exp((¥,T(z))) v(dz)}. It
is well known that the function ¥ — E»T is analytic in the interior of ©*. From
Theorem 1.194 in Witting [463] we conclude that for 99 € ©* the family {Qy} is
Hellinger-differentiable at ¢y with derivative

UV, ({L‘) = Vlog 9, ({L‘) = T({L‘) - E190T
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where V = ( 99, )i=1,...k denotes the nabla-operator. In this case we get I'(Jg) =
Covyg, T and COIldlthIl (3.11) is implied by

EyT — Eg, T — VEy, TV — Vo)
%
| — o
for ¥ = Y9 and VEy,T = Covy,T. Note that Covy,T is positive definite by the

linear independence of {1,77,...,Tx} (Witting [463, Theorem 1.153]). Condition
(3.10) trivially holds since the integrand is independent of s.

EFFICIENT ESTIMATION BASED ON M}

We can rewrite &, (M) in the form

(M) = O (R) T EOL) [y dd; + FOL)
with 7" : M (R™) — R¥ given by
T() = Dy (w1, - Wycm))
if p= ZKH(RM) €w; is an atomization of p.
The preceding considerations are summarized in the following result with
Poisson process M, = Eigr*(n) EW; -

Theorem 3.3.4. Fiz b > 0 and suppose that the family {Qy : 9 € O} satisfies
conditions (3.8) and (3.9) for any 9y € O(C R¥). Let 0,, = 0, (Wi,...,W,) be a
/n-consistent estimator of each 9y and put T(M?*) := @T*(n)(Wl, vy Woany). If
b, = b+ 0(d,,), then

(M) = <M;<Rm>>-1r-1<T<M;>> [ vrouad; +T08)
=7 (n)”'T ) Y Vi (W) +T(M)
z<7'*(n

is an asymptotically efficient estimator that is, asymptotically efficient in ¥ for
all Y9 € O.

REGULAR PATHS

By means of Lemma 3.3.1 and the preceding result we can now establish asymptotic
efficiency of an estimator &(N,,) of ¥y along regular paths in P(F(C1,Cs),O).

Definition 3.3.5. A path A — Py, a € P(F(C1,Cs),0), t € RF, X € (—¢,¢) for
some € > 0, is reqular in Vg, if the corresponding marginal densities of X satisfy
|990+2¢(x) — 9o, ()| = 0o(A) for A — 0.
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EFFICIENT ESTIMATION BASED ON N,

Now we can state our main result.

Theorem 3.3.6. Suppose that the family {Qy : ¥ € ©} satisfies conditions (3.8)
and (3.9) for any 9y € ©. Let vol(S,) — 0, |an| — 0, nvol(Sy,)|an|** — 0 and
nvol(Sy) = 0o as n — co. Then

R(Ny) == (No (R™) "I HT(N,,)) /vT(Nn) AN, +T(N,)
s asymptotically efficient in the sense that
62 (R(Nn) = Vo = t6,) =0 N (0,071 (80) /g0, ()

under reqular paths Py, 15, in P, whereas for any other estimator sequence Ty, (N,,)
of Yo based on Ny, which is asymptotically 6, -regular along regular paths Py, 145, ,
we have

5T (Nn) — P — t6,) —p H * N(o, (90)/ g0, (x))

n
for some probability measure H on RF.

Proof. By Lemma 3.3.1 we can replace N,, by M* and hence, the assertion follows
from the asymptotic efficiency of #(M;") established in Theorem 3.3.4 together
with elementary computations.

Remark. If we choose equal bin widths a,,; = - - - = a,q = ¢ > 0 for the data win-
1

dow S, = [z — an/d/2, x+ ai/d/ﬂ, then we obtain vol(S,,) = ¢, nvol(Sy)|an|** =
O(ncl4+9/4) and 6,, = (ne)~*/2. The choice ¢ = ¢, = 12(n)n~ (@Y with I(n) —
0, as n — oo, results in d, of minimum order O(I(n)~* n=2/(4+4)), The factor
I(n)~!, which may converge to infinity at an arbitrarily slow rate, actually ensures
that the approximation of N,, by M is close enough, so that asymptotically the
non-parametric part of the problem of the estimation of ¥y that is, the joint density
of (X,Y), is suppressed. In particular, it ensures the asymptotically unbiasedness
of the optimal estimator sequence & (N,,).

3.4 Extension to Several Points

In this section we will generalize the Poisson process approach, which we developed
in Section 3.1 for a single point z € R?, to a set {x1,...,x,} of several points,
where r = r(n) may increase as n increases.

Consider now only those observations Y; € R™ among (X1, Y1),...,(Xn, Ya),
with X; falling into one of the cubes S, C R¢ with center x,, v = 1,...,r that is,

Xie USV’

v<r
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where
S, = Syn =[xy — aX/?/2, &, + al/d/2],

Ty = (171/17-- '7xl/d) S Rda Ayn = (al/n17" 'aal/nd) S (0,00) , V= 1,- T
We suppose in the sequel that the cubes S,,1 < v < r, are pairwise disjoint
and that the marginal density of X, say g, is continuous at each x, with g(x,) > 0.

VECTORS OF PROCESSES

Our data Y; with X; € U, -, Sy can be described by the vector (Np1, ..., Ny,) of
truncated empirical point processes on R™, where

ZEYL 5X7 ) BEBm, v=1,...,7r

i<n

The v (Np1, ..., Ny,) will be approximated with respect to Hellinger dis-

tance by the vector (M},..., M},.) of independent Poisson processes, where
M. v = Z EW,is
i<75(n)
Wy1, Wy, ... are independent rv on R™ with common df F(- | z,), 75(n) is a
Poisson rv with parameter nvol(S,)g(x,) and 7.5 (n), W,1, Wy, ... are mutually
independent.

THE THIRD-ORDER P0OISSON APPROXIMATION

The following result extends Corollary 3.1.6 for the third-order Poisson process
approximation at a single point, to the simultaneous approximation at several
points.

Theorem 3.4.1. We suppose that the v (X,Y) has a joint density f on the

strips [z, — €0, T, + 0] X R™, v =1,...,7, for some o € (0,00)?, which satisfies
uniformly for € € (—eo,20)(C RY), y € R™ and v = 1,...,7 the expansion
Flaw+em) = F@o ) (14 Eh) + O(Pr).  (312)

where maxi<p<r f(|hl/(y)|2 + |TV(y)|2)f(xV7 y) dy < oco. If maxi<p<r |al/n| — 0 as
n — oo, we have

H((Nny)ygr, (M, V<T) _ (Zwl (vaol(s 1/d|> )

v<r v<r
S 1/d 1/d
If we chose equal bin widths al,{ﬂ = ... = ayfld =c/forv=1,...,r

then the preceding bound is O (rc + (rnc(d+4)/d)1/2), uniformly for ¢ > 0 and any
n € N as the Hellinger distance is in general bounded by /2.
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Proof. Put for B € B,

Nn(B) = Zexiin<Bm ( U Sy % Rm))

i<n v<r

= ZZéSXiXYi(B n (Sv X Rm))
v<riln

=Y Na(BO(Sy x R™) = > Ny (B).
v<r v<r

Observe that the processes Ny, can be derived from N,,, by the projection
N (5) = Ny (R x 1), v=1,...,r

By Theorem 1.3.1 we can write N, = ZigK(n) ev,, where V1, Vs, ... are iid rv
with common distribution P(X xY € |X € |,.,. S,), and K(n) is a B(n,p,)
distributed rv, which is independent of Vi, Va, ..., with

Do = P(X el sy) -y P(xes,) = 0(2 vol(SU)>.

Define now by

Ni= > evi=Y_ Y enl(-N(S xR™)

i<7(n) v<ri<7(n)
— RN (S xRM) = SR,
v<r v<r

the first-order Poisson approximation of N, where 7(n) is a Poisson rv with
parameter np, and also independent of V7, V5, ...
Observe that by Lemma 1.2.1 and 1.2.2,

H((Nm/)ugra (NZV)VST‘> == H(NnaN;) S 31/2pn~
Put further for A € B™,

N;i(A) := Ny(R? x A) =Y Ny (R x A) = > Ny, (A).

v<r v<r
Then Ny, is the first-order Poisson approximation of Ny, v = 1,...,r. Note
that NV,,..., N, as well as Np1,..., N} are sequences of independent Poisson

processes, since Si,. .., S, are disjoint (see Section 1.1.2 in Reiss [387]).
We, consequently, have

H((Nm/)uﬁr, (M;u)VST)
< H((NnV)VSN (N;u)VST) + H((N;V)V§T7 (M;u)uﬁr)
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IN

H((Nuw)vzr, (N vzr) +H(Nyvzr, (My,)v<r)
0]

(Z vol (S ) (ZH2 M, ))1/2

v<r v<r
_ 1/a 1/2
O(; vol (S (;nvol al |4> )

by the arguments in the proof of Theorem 3.1.3 and (3.5).

THE FIRST-ORDER POISSON APPROXIMATION

The preceding proof entails the following extension of the first-order Poisson ap-
proximation in Theorem 3.1.2 to several points; we do not need the regularity
condition (3.12).

Theorem 3.4.2. We have, for disjoint S,, v=1,...,r,

H((Nm/)uérv (N;:V)VST) < 31/2 Z P(X € Sl,),
v<r
where N, v=1,...,1 are the (independent) first-order Poisson approximations

of Npp, v=1,...,r

EsTiMATION OVER COMPACT INTERVALS

Suppose now for the sake of simplicity that the rv (X, Y’) is R%-valued. The preced-
ing result can be utilized to derive the limiting distribution of the maximum error
of an interpolated version of the kernel estimator 9, (z,) := T(E,(- | Sun)), v =
1,...,r,of 9(x) := T(F(- | z)) for x ranging over a compact interval [a, b] in R. For
the definition of the local conditional empirical df Fn( | Sun) we refer to Section
3.2.

Choose a grid of r + 1 equidistant points xg = a < 21 < --+ < z, = b with
r=r, = 0o as n — oo and define by interpolation the polygons

N N €T — €T N N
V(@) =)+ 77 (Onlwjpn) —Onl(zy), 75 <@ <@g,
Tj+1 — Xy
and
i T —Zj
V' (x) == d(xy) + (@) —I(zy), x5 <z <),
Tj+1 — T

where we suppose that J,,(z,) = T(F,(- | 2,,)), v =0,...,r, is defined with equal
bin width a,, = ¢, of order &, /r, £, — 0 as n — occ.
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If we suppose that ¢(z) = T(F(- | x)) is twice differentiable on [a,b] with
bounded second derivative, then a Taylor expansion implies
sup [9(z) — U, (x)| = O(1/r?).

z€[a,b]
As a consequence, we obtain

sup |05, (x) —d(z)| = sup I} (x) — 9} (2)] + O(1/r2)
z€[a,b) z€Ja,b]

3 2
= Jnax [Un(wy) = V()| +O1/ry),
since 0% — 9% is again a polygon, which therefore attains its maximum and mini-
mum on [a, b] at the set {zg,...,z,} of grid points.

If we suppose that X has a continuous density on [a, b], then Theorem 3.4.2
implies that within the error bound » ., ., P(X € S,) = O(rc,) = O(en) =
o(1), the rv @n(xy) —¥(z,), v = 0,...,7, may be replaced by independent rv
Eom, v=20,...,r, say.

The problem of computing the limiting distribution of the maximum error
SUP,e[q,0] |97 (2) — ¥(x)| therefore reduces to the problem of computing the lim-
iting distribution of the maximum in a set of independent rv, which links the
present problem to extreme value theory. With the particular choices of r, =
O((n/log(n))*/?) and ¢, = e,(log(n)/n)'/?, e, log(n) — oo and &, log(n)?/®> — 0
as n — 00, it turns out that sup,e, ) |05 (¢) — 9(x)| = Op((log(n)/n)*/5e; /%)

(see Theorem 4.2 in Falk [130]), which is up to the factor e, /2 the optimal global
achievable rate of convergence in case of the mean value functional (Stone [428],
[429] being twice differentiable with bounded second derivative (for related results
we refer to Nussbaum [356] and, for the quantile functional, to Truong [447] and
Chaudhuri [63]. Notice however that in Theorem 4.2 in Falk [130] actually the

limiting distribution of sup,c(, 4 |01 — ()| is computed.

)

3.5 A Nearest Neighbor Alternative

Let again (X1,Y1),...,(X,,Y,) be independent replicates of the rv (X,Y) with
values in R, As pointed out at the beginning of this chapter, non-parametric
estimators of regression functionals T'(F(- | #)) have to be based on those values
among Y7, . ..,Y,, whose first coordinate is within a small distance (in other words,
bin width) of z. There are essentially two different ways of selecting the Y-values.

(a) The bin width is non-random and, hence, the number of selected Y-values
is random. This has been our approach in the preceding sections.

(b) Take those Y, whose X-values are the k closest to z. This is the nearest neigh-
bor method. Now the number of selected Y -values is non-random whereas the
bin width is random.
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Nearest neighbor estimators in regression analysis were first studied by Royall
[402] and Cover [78]. Their consistency properties under very weak conditions were
established by Stone [426], [427], Devroye [109] and Cheng [66]; weak convergence
results were proved by Mack [316], Stute [431], Bhattacharya and Mack [42] and
Bhattacharya and Gangopadhyay [41]. For a discussion of nearest neighbor esti-
mators we refer also to Section 7.4 of the book by Eubank [124] and to Section 3.2
of the one by Héardle [205].

In the present section we will focus on the second point (b) by considering a
fixed sample size k = k(n) of observations among Y1, ...,Y, with X-values close
to z. In analogy to the POT process approximation in Theorem 3.1.3, we will
establish in Theorem 3.5.2 a bound for the Hellinger distance between these k(n)
observations among Y7,...,Y, coming from the nearest neighbor approach and
k(n) independent rv from the ideal df F(- | z). The expansion (3.6) of the joint
density f of (X,Y") will again be a crucial condition.

Denote by

R, :=|X;—z|, 1<i<n,
the (Euclidean) distances of X; from x. Obviously, Ry, ..., R, are iid replicates of
the rv R := | X — z| with values in [0, 00). The corresponding order statistics are
Rimn, .oy Ry By B(z,7) := {z € R? : |z — 2| < r} we denote the open ball in R?
with center x.

We assume that R has a continuous df; this condition is indispensable in
the following lemma. Then, there will be exactly k nearest neighbors among
X1,..., X, with probability 1 that fall into B(x, Rx+1.n), with corresponding Y-
values V1,..., Vi, say, in the original order of their outcome. Denote, for r» > 0,
by

P.=PY €-|X e B(z,r))
the conditional distribution of Y given X € B(z,r).

THE BASIC REPRESENTATION LEMMA

The following lemma is statistical folklore (see, for example, Lemma 1 in Bhat-
tacharya [40]). For a rigorous and appealing proof of that result we refer to Kauf-
mann and Reiss [284], where the general case of conditioning on g-order statistics
is dealt with.

Lemma 3.5.1. Assume that R has a continuous df. Then the rv Vi,..., Vi are
iid, conditional on Ry11.,. Precisely, we have forr >0 and k € {1,...,n}, n € N:

P((Vi,.., Vi) € - | Rpy1m =7) = Pf,
where P¥ denotes the k-fold product of P;.

According to Lemma 3.5.1, the unconditional joint distribution of Vi,..., Vi
may be represented by P* and the distribution £(Rgi1.n) of Ris1.n as

P(Vi,...,Vj) €)= /Pf(-)C(RkH;n)(dr).
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AN APPROXIMATION RESULT

The probability measure P, = P(Y €-|XeB (x,r)) approximates for small
r > 0 the conditional distribution of Y given X = z that is,

P(|z)=PY €| X =ux),
with df F(- | ). We, therefore, expect the approximation

P(Viy... Vi) € ) = / PE() L(Risrn)(dr)

~ /P(' | 2)*() L(Rps1:n)(dr) = P(- | 2)F = P(Wh,..., W) € -),

where W1, ..., Wy, are iid rv with common df F(- | z).
In other words, we expect that the Y;-values Vi,..., V) pertaining to the k
nearest neighbors of x among X, ..., X,,, can approximately be handled like in-

dependent rv W7, ..., Wy, equally distributed according to the target df F(- | x).
This observation corresponds to the POT process approximation of the empirical
truncated point process established in Theorem 3.1.3. We want to quantify the er-
ror of this approximation in the following by establishing a bound for the Hellinger
distance H between the distributions of (V1,..., V) and (W1,..., Wy).

Within this error bound, the estimation of conditional parameters ¢¥(z) =
T(F(- | z)), based on Vi,...,Vj, can therefore again be carried out within the
classical statistical framework of sequences of iid observations, but this time with
a non-random sample size k. We will exemplify this consequence in the next sec-
tion, where we establish asymptotic optimal accuracy in a certain sense of an
estimator sequence 9, (z) of ¥(x) = T(F(- | z)), with T evaluated at the empirical
df pertaining to V1,..., Vj.

The smoothness condition (3.6) from Section 3.1 on the joint density of (X, Y)
turns out to be a handy condition also for the derivation of the bound established
in the following result.

Theorem 3.5.2. Under condition (3.6) and the assumption that the marginal
density of X is positive at x, we have, uniformly for n € N and k € {1,...,n},

H((Vi,...,Vi),(Wh,..., W) = O(kY?(k/n)*/).

This result entails that any statistical procedure based on Vi, ...,V approx-
imately behaves like the corresponding one based on the iid vectors Wy, ... Wy
with common df F(- | 2). Within the error bound O(k'/?(k/n)?/¢) (which does not
depend on the dimension m of the covariate ¥ but on the dimension d of X), com-
putations in regression analysis at one point may therefore be carried out within
a classical statistical framework. For an example we refer to the next section.

The preceding result parallels the bound for the Hellinger distance between
conditional empirical point processes and Poisson point processes established in
Theorem 3.1.3.
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Proof. Fix rg > 0 small enough. Since the Hellinger distance is bounded by /2,
we obtain from the convexity theorem for the Hellinger distance (cf. Lemma 1.2.3)

..,V)(Wl,.--,Wk))2

H((V,.
/ C(Rk+1 n)(dT’) + 2P(R]€+1 ‘n > T‘Q)
< k/ H(Pﬁ P0)2 ‘C(Rk-l-l:n)(dr) + 2P(Rk;+1;n > ’r‘o).

0

Hence, we only have to investigate the Hellinger distance between P, and Py for
r € (0,70).
The Lebesgue densities of Py and P, are given by

: y € R™,

and

y € R™,

respectively, where g(z) := [ f(z,w)dw denotes the marginal density of X for z
near x. By elementary computatlons we deduce from condition (3.6) the expansion

hY2(y) = hy*(y) (1 + O (r2R(y))) (3.13)

uniformly for y € R™ and 0 < r < 1, where

/R2 f(z,y)dy < oo.

We, consequently, obtain
H(P,, Py) = O(r?),
uniformly for 0 < r < 7, and thus,
H((Vi,..., Vi), (Wi, ., Wi))?
70
= O(k/ ™ L(Rys1:0)(dr) + P(Rpy1m > 7"0))-
0

By repeating those arguments which lead to expansion (3.13), it is easy to see that

F(r):=P(R<7)=P(X € B(z,r)) = volume (B(z,7))(1 + O(r?))
= c(d)rd(1 + O(r?)), 0<r<ro,
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where c¢(d) denotes the volume of the unit ball in R?. Thus, by Fubinis’s theorem
and the quantile transformation technique (see the proof of Theorem 2.2.2)

/0 rt ‘C(Rk-i-l:n)(dr) = E(Ri-o-l:n : 1[0,ro](Rk+1:n))
P(Rﬁﬂm > r)dr

P(Ri41:m > r1/4) dr

P(Ups1m > F(r'/%)) dr

PUgs1:n > c(d)rd/4(1 + O(Tl/Q))) dr

/
/
- /0 P(F~ (Usren) > r'/*) dr
/
/

PO, > cld)4r(1+ OGH2)) ) dr

|
S

(BEU)) = O(B(Uity1.,)"?) = O((k/n)*/?)

uniformly for k € {1,...,n}, n € N, where Uy.,, < ... < Uy, denote the order sta-
tistics pertaining to a sample of n independent and uniformly on (0,1) distributed
rv. The inequality E(U:j_dlm) < E(Ut,,.,)"¢ follows from Jensen’s inequality,
and the bound E(U},,.,) = O((k/n)*) is immediate from formula (1.7.4) in Reiss
[385]. From the exponential bound for P(Ug41., > €) given in Lemma 3.1.1 in Reiss
[385], we conclude that P(Rgi1.n > 10) = P(F Y (Uks1.n) > 10) = P(Ugs1n >
F(ro)) = O((k/n)*) uniformly for k € {1,...,n}, n € N. This concludes the proof
of Theorem 3.5.2.

3.6 Application: Optimal Accuracy of Estimators

In this section we will apply Theorem 3.5.2 to establish asymptotic optimal ac-
curacy of the estimator sequence U, (z) of a general regression functional ¥(z) =
T(F(- | x)), where 9, (x) is again simply the empirical counterpart of ¥(x) with
F(- | ) replaced by a sample df.

Such optimal rates of convergence have been established for the mean value
functional T4 (F) = [t F(dt) by Stone ([428], [429]), for smooth functionals of
the regression mean by Goldstein and Messer [177], and for the median func-
tional T»(F) = F~1(1/2) and, more generally, quantile functional by Truong [447]
and Chaudhuri [63]. These results were established for the kernel estimator (with
uniform kernel) and non-random bin width, leading to a random number of obser-
vations Vi, Vs, ... Nearest neighbor competitors, based on a non-random number
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Vi,..., Vi, also achieve these optimal rates as shown by Bhattacharya and Mack
[42] for T7 and Bhattacharya and Gangopadhyay [41] for T, among others.

THE MODEL BiaAs

Notice that the bound k'/2(k/n)?/¢ in Theorem 3.5.2 does not depend on the
dimension m of Y and that it converges to zero iff k = k(n) satisfies k/n*/(+4)
—nseo 0. If we choose k(n) therefore of order en*/(4+4) (independent of dimension
m), the model error O(k*/2(k/n)%/?) becomes O(c(@4/ D)) uniformly for ¢ > 0.
This term O(c(d+4)/ (2d)) represents the non-vanishing bias for our model approxi-
mation L(W1,...,Wy) of L(V4,..., V). It can be regarded as an upper bound for
the usually non-vanishing bias of any optimally tuned estimator of T(F(- | z)),
based on Vi, ..., Vg, for an arbitrary functional T'.

LocAaL EMPIRICAL DISTRIBUTION FUNCTION

Denote by

Fu(tlr) =k Loy(Vi),  teR™,
i<k

the (local) empirical df pertaining to the data Vi,..., Vi from Yi,...,Y,, which
are induced by the &k nearest neighbors of x among X1, ..., X,. The natural non-
parametric estimate of ¥(x) = T(F(- | x)) is then the nearest neighbor (NN)
estimate

énk(x) i=T(Fuk(- | 2)),
which is completely analogous to the kernel estimate defined in Section 3.2 but with
a random sample size. Again we assume implicitly that T : F — R’ is a functional
on a subspace F of the class of all df on R™ containing F(- | ), Fnk(- | ), k € N.
In case of Ty (F) = [t F(dt) with [ = 1, the estimator ¥px () = T4 (Fnk (- | )
=kt > i<k Vi is the local sample average; in case T5(F) = F~1(q), the estimator
Ui () is the local sample quantile F,i(- | )~ (q), q € (0,1).

ASYMPTOTIC NORMALITY OF NN-ESTIMATES

Theorem 3.5.2 entails that we can approximate the distribution of ¥, (z) by that
of
Ur(x) == T(Fi(- | 2)),

where
Fp(t]a) =k 1 oy(Wi), teR™,
i<k
is the empirical df pertaining to W1, ..., W, being independent rv with common

df F(- | ). We suppose implicitly that Fy(- | ), & € N, is also in the domain
of the functional T'. The following result, which is the nearest neighbor version of
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Theorem 3.2.1, is immediate from Theorem 3.5.2. Note that this result is true for
arbitrary dimension m of Y.

Proposition 3.6.1. Suppose that Uy (z) — 9(x) = T(Fy(- | 2)) — T(F(- | x)) is
asymptotically normal that is,

P(ax(T(Fi(- | 2)) = T(F(- | 2))) <t) = N, %) ((=00,1])|
= R(k) — 5500 0 (3.14)

sup
teR!

for some norming sequence 0 < ap — 0o as k — 0o, where N(u,X) denotes the
normal distribution on B! with mean vector p and covariance matriz 3.

If condition (3.6) is satisfied and the marginal density of X is positive at
x, then asymptotic normality of O(x) — O(x) carries over to Uni(xz) — 9(z) =
T(Fu(- | ) — T(F(- | ) that is,
P(ax@ar(z) = 9(@)) < t) = N, %) ((=00,1)|

sup
teR!

- o(k1/2(k/n)2/d + R(k)).

Under suitable regularity conditions on the conditional df F(- | z), condition
(3.14) is satisfied for a large class of statistical functionals including M, L and
R estimators, with ar = k2 by the corresponding multivariate central limit
theorems. In these cases we have typically the bound R(k) = O(k~'/2) (cf. the
monograph by Serfling [408]).

OPTIMAL ACCURACY

If ap can be chosen as k'/2, the choice for k& = k(n) of order n*/(?+%) roughly
entails that the NN-estimator Jnx(z) = T(Fuk(- | @) of 9(z) = T(F(- | z))
has accuracy of order n=2/(4+4) for a general functional T, independent of the
dimension m of Y. As mentioned above, this is the well-known optimal (local)
rate of convergence for the conditional mean as well as for the conditional median,
both in dimensions m = 1 (and [ = 1) for a twice continuously differentiable target
function ¥(z), roughly. These considerations indicate in particular that the bound
O(k*/?(k/n)?/?) in Theorem 3.5.2 is sharp. The following result is immediate from
Proposition 3.6.1.

Proposition 3.6.2. Suppose that conditions (3.6) and (3.14) are satisfied with
ap = k'/2, and that the marginal density of X is positive at x. Choose k = k(n)
~ c1n* Y Then we have, uniformly for ci,c > 0,

lim SupP(ci/QnQ/(d+4)|1§nk (x) — V()| > 02> = O(c§d+4)/(2d) +c5)

n—oo

for any r > 0.
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Note that if ar has to be chosen of order smaller than k1/2 in condition
(3.14), then Proposition 3.6.1 entails that 9, (z) = T(F,k(- | 2)) with k of order
n?/(d+4) has asymptotic accuracy of order greater than n=2/(4+4); if g; has to be
chosen of order greater than k!/2 it is vice versa. This indicates that the rate of
order k'/2 for aj, in condition (3.14) is necessary and sufficient for the estimator
Oni(2) to achieve the (optimal) local accuracy of order n=2/(d+4),
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Chapter 4

Basic Theory of
Multivariate Maxima

In this chapter, we study the limiting distributions of componentwise defined max-
ima of iid d-variate rv. Such distributions are again max-stable as in the univariate
case. Some technical results and first examples of max-stable df are collected in
Section 4.1. In Section 4.2 and 4.3, we describe representations of max-stable df
such as the de Haan-Resnick and the Pickands representation. Of special interest
for the subsequent chapters will be the Pickands dependence function in Section
4.3 and the D-norm, which will be introduced in Section 4.4.

4.1 Limiting Distributions of
Multivariate Maxima
Subsequently, arithmetic operations and order relations are meant componentwise;
that is, e.g., a + b = (a1 + b1,...,aq + bg) for vectors a = (ay,...,aq) and b =
(b1,...,bq). An interval (a, b] is defined by X;<a(a;,b;].
Recall that the df F(x) = Q(—o0, ] of a probability measure @ has the
following properties:

(a) F is right-continuous: F(x,,) | F(xo) if @, | xo;

(b) Fisnormed: F(xy,) T lifz,; T oo, j=1,...,d, and F(xz,) | 0if &, > @y
and x,; | —oo for some j € {1,...,d};

(¢) F is A-monotone: For a < b,
APF = Q(a, b]

_ Z (_1)(d_2j3d7nj)F (b7 ay™™, . b ag ™) > 0.
me{0,1}4

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,
DOI 10.1007/978-3-0348-0009-9 4, © Springer Basel AG 2011
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Conversely, every function F, satisfying conditions (a)-(c), is the df of a probability
measure (). Usually, conditions (a) and (b) can be verified in a straightforward way.
The A-monotonicity holds if, e.g., F is the pointwise limit of a sequence of df.

Let X; = (Xi1,...,X5d), ¢ < n, beiid d-variate rv with common df F. The
d-variate maximum is defined by

ax X,; = | max X;1,...,max X;q | .
i<n i<n

i<n

LIMITING DISTRIBUTIONS, MAX-STABILITY

It is an easy exercise to prove that

P<m<axXi < a:) = F"(x).
Hence, the well-known formula for the df of a univariate maximum still holds in
the multivariate framework. Limiting df are again called extreme value df (EVD).
Such df can be characterized by the max-stability.

Again, a df G is max-stable if for each n € N,

G"(d, + chx) = G(x)

for certain vectors ¢, > 0 and d,,. If G is max-stable, then the marginal df also
possess this property. This yields that a multivariate max-stable df is continu-
ous (cf. Reiss [385], Lemma 2.2.6). Moreover, the components of the normalizing
vectors are the normalizing constants in the univariate case.

If the G; are univariate max-stable df, then

min(Gi(x1),...,Ga(zq))

is a max-stable df (representing the case of totally dependent rv). Moreover, for
independent rv one obtains the max-stable df

116G
j<d

One can prove that

[[Gi=) < G=@) < min(Gi(21),...,Galxa)) (4.1)

Jj<d

for every max-stable df G with margins G, see (4.37). Note that the right-hand
side is the upper Fréchet bound which holds for every df; the proof is obvious. It
follows that G(x) > 0 if, and only if, x > a(G) := (a(G1), ..., a(Gy)).

In the following we primarily deal with max-stable df having reverse expo-
nential margins G 1(x) = €®, x < 0, which is the standard Weibull df with shape
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parameter &« = —1. This standardization in the univariate margins can always be
achieved by means of a simple transformation: If G is max-stable with margins
Gj, j <d, then

G(GII(G271($1)),.. . ,G;l(GQJ(I‘d))) s T < 0, (42)
defines a max-stable df with margins Gy ;.
Example 4.1.1 (Marshall-Olkin). Let Zy, Z1, Z3 be independent standard re-
verse exponential rv; thus, P(Z; < z) = e¢” = G,1(x) for x < 0. For each A € (0,1)
one obtains a bivariate max-stable df with margins G2,1 by

P (max <1Zj/\, Z/\O> <uwzj, j= 1,2) = exp ((1 — M) (21 +22) —l—)\min(xl,xg)),

where z; < 0, j = 1,2. If A = 0 and A = 1, then the bivariate df represent the
cases of independent and totally dependent rv, respectively.

Because of its importance we are going to prove an extension of the foregoing
example, see also Example 4.3.4.

Lemma 4.1.2. For everym € N, let Z1,Zs, ..., Zm be iid rv with common stan-
dard reverse exponential df Ga1. Let a;; >0 for i <m and j < d. Then

Z; . .
P(I%%?f ai; <z, j :1,...,d> = exp Kz;nrjnégaijxj , x<0, (43)

thus obtaining a d-variate maz-stable df with exponential margins. If, in addition,
Z Qi5 = 1, ] < d,
i<m

then the univariate margins are equal to Ga 1.

Proof. Note that max;<m, Z;/a;; < xj, j < d, if, and only if, Z; < minj<q a;;z;,
i < m; thus, (4.3) follows from the independence of Z1, ..., Z,,. The max-stability
is obvious. We see that the j-th marginal G; is given by

Gj(x) = exp Zaij x|, x <0,

i<m
and, hence, the assertion concerning the univariate margins holds.

In order to obtain a max-stable df on the right-hand side of (4.3) it suffices
to assume that > a;; > 0 for j < d. A continuation of this topic may be found
in Section 4.3.

Because

i<m

min X; = max(—X;),

i<n i<n

results for minima can be easily deduced from those for maxima.
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WEAK CONVERGENCE: THE IID CASE

Max-stable df are the limiting df of linearly normalized maxima. Recall that for a
univariate df F' the convergence

n(l — F(b, + anx)) =: nSy(z) — L(z) := —log(G(x)), x> a(G@), (44)

as n — oo implies that F™(b, + anxz) — G(x) as n — co. An extension to the
d-variate case will be formulated as an inequality.

Let X = (Xy,...,X4) have the df F. For each non-void K C {1,...,d}
define the marginal survivor function

SK(w)ZP{Xk>$k,kEK}. (4.5)
Applying the well-known inclusion-exclusion formula
PlUJA | =D (-1 > P ( N Ak> (4.6)
i<d i<d |Kl=j  \keK

to A; = {X; > z;}, one obtains the decomposition

1—F=> (=1 >~ Sk (4.7)

J<d |K|=3

which will be crucial for the subsequent considerations. Thus, to establish the
limiting distribution of maxima we may deal with survivor functions.

Lemma 4.1.3. Let F,, be a d-variate df with univariate margins Fy;.
(a) Assume that Fy; converges weakly to a maz-stable df Go; for j <d.

(b) Let Sy k be the survivor function of F,, corresponding to (4.5). Assume that,
for each non-void K C {1,...,d},

nSnk(x) = Li(), T >a, n— oo,
where the L are right-continuous functions and o = (a(Foj))j<d-

Let

Go(x) = exp Z(—l)j Z Lig(x) |, T >

Jj<d |K|=j
and Go(xz) = 0 otherwise. Then

(i) Go is a df with univariate margins Goj;
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(ii) for some universal constant C > 0,

|Fl (@) — Go(x)| <> [nSn k(x) — Li(x)| + C/n, x> a,
K

where the summation runs over all non-void K C {1,...,d}.

Proof. To prove (i) apply a slight extension of (4.1). Moreover,

sup | (@) — exp (=n(1 = Fu(@)] < C/n

for some universal constant C' > 0, and —n(1 — F},(x)) can be replaced by

1> nSnk

Jj<d |K[=3

according to (4.7). Substituting nS, x by Lk, the proof of (ii) can easily be com-
pleted. For a detailed proof we refer to Section 7.2 in [385].

From Lemma 4.1.3 we know that the convergence of the functions n.S, x im-
plies the convergence of F. For a converse conclusion in the multivariate frame-
work see Galambos [167], Theorem 5.3.1.

Lemma 4.1.3 was formulated in such a manner that a triangular scheme of
rv can also be dealt with. In the following example, the initial normal df depends
on n via a correlation matrix 3(n); the limiting df Hy of the sample maxima of a
triangular array of normal rv is max-stable, a property which does not necessarily
hold under the conditions of Lemma 4.1.3 (we refer to the discussion about max-
infinitely divisible df in the subsequent section).

Example 4.1.4 (Hiisler-Reiss). The rich structure of the family of multi-
variate normal distributions can be carried over to max-stable distributions. Let
(X1n, ..., Xan) be a vector of standard normal rv with df Fy,), where ¥(n) =
(pij(n))i j<a is a non-singular correlation matrix. Let b, be the unique positive
solution of the equation = ny(x), x > 0, where ¢ denotes the standard normal
density. Note that b2 ~ 2log(n).

Assume that

((a=psnogn) ™) S0 noes

ij<d
where \;; € (0,00) for 1 <14,j < d with i # j. Then
Beny (bn + 25 /bn)j<a) = Ha(z), @ €R’ n— oo,

where

Hp(z) = exp (Z(—l)k > Lji.....in ($)>

k<d 1<j1<-<ju<d
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with
o0
2 _
Lj,,...j.(x) = / 5((% —z+ 2)‘jijk> ey | Fjl,...,jk>€ “dz
Tjp 1Sk—
and S (- |T';,, . j.) is the survivor function of a (k — 1)-variate normal vector with
mean vector zero and covariance matrix

+A2 . )2

T, :2(% , . ) .
J1see Jk ImJIk JiIm Im<k—1

Jik
As the univariate margins of 3, ((bp, + x;/by)j<a) are appropriately standard-
ized standard normal df, it is clear that the univariate margins of their limit Hj
are Gumbel df G3. We give some details in the bivariate case and include the cases
of total dependence and independence. If

(1= pm)log(m)) = X2, n— o0,
for some A € [0, 00|, then

where

Hy(z,y) = exp (_cb ()\ + x;ﬂ) eV @ ()\ + y;;”) e-w> . (4.8)

For A = co and A = 0 the asymptotic independence and total dependence holds
in the limit. If p € (—1,1) is fixed, then the asymptotic independence holds.

An alternative representation of the foregoing max-stable df may be found
in Joe’s [274] paper which provides a broad discussion of parametric families of
extreme value df (EVD) and their statistical inference. Another notable article is
Tiago de Oliveira [445].

4.2 Representations and Dependence Functions

In contrast to the univariate case, multivariate max-stable df form a non-para-
metric family. In this section, we introduce different representations of max-stable
df such as the representation by means of the exponent measure, the de Haan-
Resnick representation and a certain spectral representation. The Pickands repre-
sentation will be studied separately in Section 4.3.

THE MAX-INFINITE DIVISIBILITY

Contemporary multivariate EVT is mainly based on a characterization of max-
infinitely divisible (max-id) df, established by Balkema and Resnick [24] for bi-
variate df.
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A bivariate F' is said to be maz-id iff for any n € N there is a bivariate df F,
such that F' = F].

The following characterization is quite convenient. It follows from the fact
that if the df F' is the weak limit of F", n € N, where F,,, n € N, is a sequence

n?

of df on R? then F is max-id, see Theorem 1 in Balkema and Resnick [24] or
Proposition 5.1 in Resnick [393].
Lemma 4.2.1. F is maz-id iff F* is a df for all t > 0.

The following example provides a construction of max-id df. Actually, it will
turn out that it provides a characterization of max-id df, see Theorem 4.2.3 below.

Example 4.2.2. Let i be a o-finite measure on [—o00,00)? and define H on R?
by

(100, 2] x [~o0,9))F)
(=0, 00)%\([-00, 2] X [~00,1])) . (4.9)

Consider now a Poisson process N on (0, 00) x [—00, 00)? with intensity mea-
sure A X p, where A denotes Lebesgue measure on (0,00) and x the product
measure. Denote by (Tk, (Xk, Y%)), k € N, the points of the Poisson process N,
e, N(-) = > pen (Tw. (X0 vi)) (), where e, denotes the point measure with mass
1 at u.

Put, for ¢t > 0,

Z(t) = (sup { X T <t} ,sup{¥y: T} < t}) € [~00,00)?,
keN keN

with the convention sup () := —co. Then we have, for (z,y) € R?,

P(Z(t) < (w,9)) = P (N ((0,4] x ([=00,2] x [-00,9))%) = 0)

= exp (=(Ax ) ((0,4] x ([o0,2] x [~00,])°))

— exp(—tH(z,1).
Provided that Z(t) is R?-valued a.s., we obtain from Lemma 4.2.1 that F(z,y) :=
exp(—H (z,y)) is a max-id df on R?. To ensure that Z(t) is in R? a.s., it is necessary

that

H (z0,90) < oo for some (g, o) € R (4.10)
and

(R x [—00,00)) = p([—00,00) x R) = oo. (4.11)
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A o-finite measure p on [—o00,00)? is called an exponent measure of the df
F = exp(—H), if the conditions (4.9), (4.10) and (4.11) hold.

Example 4.2.2 shows that a df F' is max-id if it has an exponent measure.
The following characterization, which is due to Balkema and Resnick [24], shows
that the converse implication is also true. For a proof we refer to Balkema and
Resnick [24], Theorem 3, or to Resnick [393], Proposition 5.8.

Theorem 4.2.3 (Balkema and Resnick). A df F' on R? is max-id iff it has an
exponent measure.

An exponent measure is not necessarily unique; just set p({—oco} x {—oco}) >
0. One may wonder why an exponent measure is defined on [—o0,c0)?, whereas
(—00,00)? would seemingly be a more natural choice. Take, for instance,

F(z,y) = exp(z +y), z,y <0, (4.12)

ie., F is the df of the iid rv X, Y with P(X < z) = P(Y < x) = exp(z), z < 0.
Then F is max-id since F* is the df of (X/t,Y/t) for any t > 0. But there is no
measure p, defined on R?, such that

F(z,y) = exp (—,u ((—oo,x] X (—oo,y])c>> , z,y € R. (4.13)

Such a measure p would have to satisfy

u((=ooia) x (ooy)) =—a—y, @y <o,
and, thus,
1((@1, 1] ¥ (w2, 2])
— 1 (=00, 1] x (=00,18)%) + i (00, y] x (00, z2))F)
— 1 (=0, 1] x (o0, 2)%) = (=00, 1] x (=00,32])F)
=0

for 1 < y1 <0, 13 < y2 < 0, i.e., p is the null-measure on (—oo,0]2. Since
1=F(0,0) =exp (—,u (((—oo, 0]2)G>), we have (((—oo, 0]2)G> = 0 as well and,

thus, u is the null-measure on R2. But this contradicts equation (4.13).
Consider, on the other hand, the measure u on [—o0,0]?, defined by

p({—oo} x (z,0)) = p((x,0] x {=00}) = =z, =<0,

and p ((—00,0]%) = 0 = p({(—00,00)}. Then y has its complete mass on the set
({=00} x (—00,0]) U ((—00,0] x {—o0}), p is o-finite and satisfies

p (([=00,2] x [~00,y])) = u({ =00} x (4,0]) + pl(, 0] x {~o0}) =~z — .
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The investigations in this section can be extended from the bivariate case
to an arbitrary dimension, where a d-variate exponent measure is o-finite on
[—00,00)% and satisfies d-variate versions of conditions (4.9), (4.10) and (4.11),
see Vatan [452].

The following result is, thus, an immediate consequence of Theorem 4.2.3 by
repeating the arguments in Example 4.2.2.

Corollary 4.2.4. Fach d-variate maz-id df F' can be represented as the component-
wise supremum of the points of a Poisson process N with intensity measure \ X (i,
where @ is equal to the exponent measure.

THE DE HAAN-RESNICK REPRESENTATION

In this section we describe the particular approach to multivariate extreme value
theory as developed by de Haan and Resnick [193].

Recall that a df G on R? is called max-stable iff for every n € N there exist
constants a,; > 0, by; € R, j < d, such that

G"(anjz; +byj, j < d) = G(x), x = (x1,...,24) € RL

The df G is max-id and, thus, by Theorem 4.2.3 (d-variate version) it has an
exponent measure g on [—o0,00)% = [~00, 00), i.e., u is o-finite and satisfies

I (Ri_l X [—00,00) X Rd_i) = 00, 1 <d,

1 ([—oo,xo]c) < oo for some x¢ € R?,
G(x) = exp (—u ([—oo,x]c>) , x € R%. (4.14)

A max-stable df G on R? is called simple, if each marginal df is exp (—27!),
x > 0. Its exponent measure v can be chosen such that v ([O7 oo)c) = 0. This can

be seen as follows. Let u be an exponent measure of G, define M : [—o0,00) —
[0,00) by M (21, ...,24) := (max(x;,0), i <d), and let v := p* M be the measure
induced by v and M, i.e., v(B) = u(M~'(B)) for any Borel subset of [0, c0). Then
we have in particular

G(x) = exp (—1/ ([0,x]c>) , x € RY. (4.15)

This equation is not affected if we remove the point 0 from [0, o), and restrict the
measure v to the punctuated set F := [0, 00)\ {0}. Then v is uniquely determined.
Consider a d-variate simple max-stable df G. We, thus, have, for any n € N
and x € R?,
G"(nx) = G(x).

This yields
GY™((n/m)x) = G(x), n,meN, xeR%
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Choose now n,m such that n/m — ¢ > 0. Then the continuity of G implies
Gt (tx) = G(x), t>0, x € R (4.16)

From (4.15) and (4.16) we obtain that the exponent measure v pertaining to
G satisfies, for any x € E and any ¢t > 0,

v ([O,X]U> =ty ([O,tx]c> =ty (t[O,X]C> .

This equation can readily be extended to hold for all rectangles contained in F.
For a set B C E we write tB := {tx : x € B}. The equality

1
v(tB) = tV(B)’ (4.17)
thus, holds on a generating class closed under intersections and is, therefore, true
for any Borel subset B of E (c.f. Exercise 3.1.3 in Resnick [393]).

Denote by ||x|| an arbitrary norm of x € R%. From (4.17) we obtain, for any
t > 0 and any Borel subset A of the unit sphere Sp:={z€ E : ||z|| = 1} in E,

u({x cE:|x| >t Hill € A})

u({ty EE:|y|>1, HiH € A})

u({y cE:|y|>1, Hill c A})

1

t

1
: th(A) (4.18)
where ¢ is an angular measure.

Define the one-to-one function 7' : E — (0, 00)xSg by T'(x) := (||x||, x/ |Ix|]),
which is the transformation of a vector onto its polar coordinates with respect to
the norm ||-||. From (4.18) we obtain that the measure (v * T')(B) := v(T~(B)),
induced by v and T, satisfies

(v % T)([t,00) x A) = V({x cE:|x| >t Hzll € A})

1

= L o4)

(A
/A/[tm) r~2dr dp(a)

= / r~2dr dp(a)
[t,00)x A

(v T)(dr,da) = r~2dr do(a), r>0,a€Sg, (4.19)

and, hence,
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in short notation. The exponent measure factorizes, therefore, across radial and
angular components.

We have v([0,x]¢) = v([0,x]° N E) = (v * T)(T([0,x]° N E)) and, with the
notation z = (z1, ..., z4) for an arbitrary vector z € R,
T(0,x]°NE)=T{y € E : y; > z; for some i < d})
={(r,a) € (0,00) x Sg : ra; > x; for some i < d}
- {(r,a) € (0,00) x Sg : 1 > rlngicrllxi/ai}

with the temporary convention 0/0 = co.
Hence, we obtain from equation (4.19)

v([0,x]°) = (v = T)(T([0,x]° N E))
= (V*T)({(r,a) € (0,00) x Sg:1 > IlnSl(Iil$z/az})

:/ / r2 dr dg(a)
Sg J(min;<q ;/a;,00)

1
do(a)

Sk minigd(xi/ai)

= /2 (G) ao

now with the convention 0/0 = 0 in the last line.
We have, thus, established the following crucial result, due to de Haan and
Resnick [193].

Theorem 4.2.5 (De Haan-Resnick Representation). Any simple maz-stable
df G can be represented as

m@:m@<—ﬁ mm<“>w@0, xc[0,00),  (420)

5 1<d \ T

where the angular measure ¢ on Sg is finite and satisfies
t/“w®:L i<d (4.21)
SE

Note that (4.21) is an immediate consequence of the fact that the marginals
of G are exp(x™!), z > 0. The finiteness of ¢ follows from (4.21) and the fact that
all norms on R are equivalent:

d= /S > aidg(a)

B i<d
1/2

z/SE Sa?|  doa)

i<d
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> d
> const /S lal do
= const ¢(Sg).

The reverse implication of Theorem 4.2.5 is also true, starting with a finite
measure ¢ which satisfies (4.21). This can be deduced by following the preceding
arguments in reverse order. The above derivation of Theorem 4.2.3 is taken from
Section 5.4.1 of Resnick [393].

A SPECTRAL REPRESENTATION

Recall the well-known fact that a univariate rv X with arbitrary distribution @
can be obtained by putting
X = FYU),

where U is uniformly on [0, 1] distributed and F' is the df of Q. This probability
integral transform can be extended to any probability measure () on an arbitrary
complete and separable metric space S, equipped with the Borel o-field: There
exists a random element f from the interval [0,1], equipped with the Lebesgue-
measure A, into S, such that

Q=Axf; (4.22)

see Theorem 3.2 in Billingsley [45].
This extension can readily be applied to the de Haan-Resnick representation
(4.20) of a simple max-stable df G as follows. Put

¢
#(Se)’

Then we obtain from (4.22) that there exists a rv £ = (fy,..., fq) on [0, 1] such
that @ = A (f1,..., fa). This implies the spectral representation

6) = exp (= [ e (1) dota))
= exp <—¢(SE) /SE max <Zz> dQ(u))
— exp <—¢(SE) - max (ﬂgﬁjﬁ) du)

_ filu)
= exp (— o max ( N ) du) , (4.23)

where the non-negative functions f;(u) := ¢(Sg)fi(u) satisfy f[o 1 filw)du = 1,
i < d; see Corollary 5.2.9 for an extension. By transforming the margins of G,

Q:=
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one immediately obtains corresponding representations of EVD with negative ex-
ponential or Gumbel margins; just use the transformations 0 > y — z = —1/y
or R 3 z — z = exp(z). The spectral representation was extended to max-stable
stochastic processes by de Haan [187] and de Haan and Pickands [192].

THE BIVARIATE CASE

Next we consider the bivariate case d = 2. It is shown that the exponent measure
v of a bivariate simple max-stable df G can be represented by a univariate measure
generating function on [0, 7/2]. Choose a norm ||-|| on R? and denote by

A() :=={(u,v) € Sg : 0 < arctan(v/u) < 9}

the set of those vectors (u,v) in Sg whose dihedral angle is less than 9, i.e.,
v/u < tan(¥), ¥ € [0,7/2]. Then we have for the corresponding exponent measure
v by equation (4.18)

V({(x,y) €[0,00)2 : [|(z, 1) > t,arctan(gyc) e [0,19]})

= ({wv e w2t 7 e aw})

"I, )
= t7'o(A(¥))
=t (Y), 0<d9<7/2 (4.24)

® is the measure generating function of a finite measure on [0, /2], which is called
angular measure as well. v is obviously determined by the univariate function @,
which may again be regarded as a dependence function. The estimation of ®
was dealt with by Einmahl et al. [120] and Drees and Huang [115]. Let R; =
(X7 + Yf)l/2 and ©; = arctg(X;/Y;) be the polar coordinates of (X;,Y;). Denote
by Ri., < -++ < Ry., the order statistics of the rv R;. Estimation of ® can be
based on those (X;,Y;) in a sample such that ©; > r with r being sufficiently
large. With k(n) — oo and k(n)/n — 0 as n — oo, the estimator is of the form

1
P (V) = k(n) Z 1{Rn—k(n)+1:n§Ri}1[0>ﬁ] (©:).

i<n
4.3 Pickands Representation and

Dependence Function

In what follows we will mainly work with the Pickands representation of max-stable
df and the pertaining Pickands dependence function D, introduced now.
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THE PICKANDS REPRESENTATION

Extending Lemma 4.1.2 one may characterize the family of max-stable df with
univariate margins G2 1. Consider next a d-variate max-stable df G* with reverse
standard exponential marginals exp(z), z < 0. Then,

G(x) ::G*(— L 1), (4.25)

) )
T Tq

is a simple max-stable df and, consequently, the de Haan-Resnick representation
(4.20) implies the representation

¢'(x)= (- Lo 1)

X1 Xrd

= exp ( - /SE T?ggi(—aiwi) d¢(a))

= exp ( min(a;x;) d(b(a)), x <0. (4.26)

SE i<d

By choosing the Li-norm |ja||; = >, ., |a;| for ||a||, Sg is the unit simplex S and,
by equation (4.21), B

/ a; dop(a) =1, Jj<d.
s
Hence (4.26) is the Pickands representation of G* as established in Pickands [372].

Theorem 4.3.1 (Pickands). A function G is a max-stable, d-variate df and has
univariate margins Ga 1 if, and only if,

6(a) =exp ([ mintuse) dutw)) . @ <o (127)

where 1 1s a finite measure on the d-variate unit simplex

S = U:Zujzl, u; >0
j<d
having the property
/ ujdp(u) =1, Jj<d. (4.28)
s
Proof. We only have to prove the if-part. We prove that G is A-monotone by

showing that G is the pointwise limit of df. According to Lemma 4.1.2, it suffices
to find a;j, such that

Z min (a;jnx;) — / min(u;z;) dp(w), x <0, n—oo. (4.29)
i<d g i<d

i<m(n) 1=
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Let
fn = Z 229 {Um}fum

i<m(n)
with u;, = (Uijn)j<da n € N, be a sequence of discrete measures on .S, vaguely
converging to . Then we have

g ?gg(ujxj) dpn (u) = K;(n) ?lglg(uijnxj) fin{tin}
and the desired relation (4.29) holds with a;jn = Wijnptn{win}
Note that (4.28) implies that p(S) = d:
1= / ug p(du) = / 1- Z u; p(du) = p(S) — (d—1).
s s i<d—1

Finally, it can easily be seen that G is normed and has univariate margins
G>.1. Moreover, verify G ((z;/n)i<q)" = G(x) to show the max-stability.

THE PICKANDS DEPENDENCE FUNCTION

From Theorem 4.3.1 we deduce that a d-variate max-stable df G with reverse
exponential margins G5 ; can be rewritten in terms of the Pickands dependence
function D : R — [0, c0) where the domain of D is given by

R:= {(tl,...,td_l)e[o,l]d_lz > ti<1}. (4.30)

i<d—1

For x = (x1,...,14) € (—00,0]%, x # 0, we have

G(x) = exp (/S min(uy 71, . . ., uqg 2q) du(u))

T Ld
ex T+ Fx max|u gy U dyu(u
p(( 1 d)/s <1x1+---+xd dxl—i—---—i—xd) a )>

1 Td—1
=exp|(x1+---+zq) D ey , 4.31
p(( ! 2 (x1+---—|—xd x1+---+xd>) (431)

where p is the measure in Theorem 4.3.1 and

D(tl, . 7td_1)

= / max | uyti,...,ug_1tg_1,uq | 1 — Z t; dp(u) (4.32)
S i<d—1

is the Pickands dependence function.

If the rv (X1, ..., Xy) follows the max-stable df G, then the cases D(t) = 1
and D(t) = max(t1,...,t4-1,1 — > ;.4 ti), t € R, characterize the cases of
independence and complete dependence of the rv X1, ..., Xg.
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IMPORTANT PROPERTIES OF PICKANDS DEPENDENCE FUNCTIONS
(i) The dependence function D is obviously continuous with
D(e)=1, 1<i<d-1,

where e; = (0,...,0,1,0,...,0) € R¥! is the i-th unit vector in R?~!. The
latter property is immediate from (4.28). Moreover, D(0) = 1 as well. The
vectorse;, 1 <i<d—1,and 0 € R4-1 are the extreme points of the convex
set R in (4.30).

(ii) In addition, D(t) < 1 for any t = (t1,...,tq—1) € R because, according to
(4.28),

D(t):/smax Uptyy ... Ug—1tg—1,uq | 1 — Z t; dp(u)
i<d—1

S/u1t1+~~~+ud_1td_1+ud 1-— Z t; du(u):l.
S i<d—1

(iii) The function D is convex, that is, for vi, vo € R and X € [0, 1]:
DOW1 + (1= A)va) < AD(v1) + (1 — \)D(v).

Writing v; = (vi1,...,v.d—1), ¢ = 1,2, the convexity of D is immediate from
the inequality

max (ul()\vm + (1 — )\)1)2,1), e ,ud_l()\de_l + (1 — )\)Ug,d_l),

Ug (1 — Z (A + (1 — A)W,i)))

i<d—1
< Amax (ul V1,15 -+ Ud—1V1,d—1, Ud (1 — E U1 )
i<d—1
+ (1 — )\) max <u1 V21,5 Ud—1V2,d—1, Ud (1 — Ug@))
i<d—1
for arbitrary u = (uq,...,uq) € S.

(iv) If D(t) = 1 for an inner point t € R, then D is the constant function 1. This
is an immediate consequence of the fact that a convex function on a convex
subset U of a normed linear space, which attains a global maximum at an
inner point of U, is a constant, see, e.g. Roberts and Varberg [396, Theorem
C, Section 51].
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(v) We have, for arbitrary t € R,

1
D(t) > t1,...,tg—1,1 — t, | > .. 4.33
(t) > max | ti, yld—1, 1-2;1 = ( )

The first inequality is immediate from (4.28), the second one follows by
putting t; = -+ = tq—1 = 1/d. The minimum of the function D is attained
at (1/d,...,1/d) € R¢~%

1 1 1
D(t) > D(d, o d) =4 /Smax(ul, o ug) dp(a),
if D satisfies the symmetry condition
D(ty,...,ta—1) = D(s1,...,84-1) (4.34)

for any subset {s1,...,sq4-1} of {t1,...,tq}, where tg:=1—->",_, ;. This
follows from the inequality -

max(ug, ..., uq) = max ulg ti,...7udg t;

i<d i<d
< max(uity,. .., uqtq) + max(uity, usty, ugte, ..., ugtq—1)
+ max(ultd_l, Ugtq, usty, . .. 7’udtd_2) —+ .-

+ max(ultg, Uats, ..., Ug—11q, udtl)

and, hence,

1 1 1
D( ><dD(t1,...,td_1)+ D(tg,t1,...,ta—2)

1

d
1

+ D(td—17td7t17"'7td—3) +- 4+ d-D(t27t37'~'7td)

= D(tl, . 7td_1).

Without the symmetry condition (4.34) on D, its minimum is not necessarily
attained at (1/d,...,1/d) € R¥!; a counterexample is given in (6.16).

(vi) If D(1/d,...,1/d) = 1/d for an arbitrary dependence function D, then

D(t) = max(ty,...,tq), t € R, where tq = 1 —),_, ;t;. This can eas-
ily be seen as follows. The equation -

1 1 1 1
D . = .. =
(d7 ) d) d Amax(ula aud) d:u(u) d



152

(vii)

(viii)

(ix)
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implies [y max(u1,...,uq) du(u) =1 and, thus, for i, j < d,

O—/maxul,..., a) — u; du(u)
> [y = )1y )
> 0.

This yields

pu{ueS: u; >u})=0, 1,7 <d,
= pu{ueS: u; #uj forsome i, j <d})=0

= p{ueS:u=--=uq}) =pS)=d
and, hence,
= / max(uity, ..., uqtq) dp(u)
s
= / max(uity, ..., uqtq) du(ua)
{uesS:u; wq }
= max(t1,...,tq) / uy dp(u)
5
= max(t1,...,tq).
Note that the symmetry condition (4.34) on D is equivalent to the condition
that X1,..., X4 are exchangeable, i.e., the distribution of (X;,,...,X;,) is
again G for any permutation (i1,...,iq) of (1,...,d).
The convex combination D(t) = (1 — A)D1(t) + AD(t) of two dependence

functions D1, Ds is again a dependence function, A € [0, 1]. This is immedi-
ate by putting p := (1 — A1 + Ape, where uq, po are the measures on the
simplex S corresponding to Dy and Ds in the definition (4.32) of a depen-
dence function. The dependence function D is, thus, generated by p. The
functions D(t) = 1 and D(t) = max(t1,...,tq—1,1 — > ,.,_ t;) are now
extreme points of the convex set of all dependence functions.

The copula C of the EVD G with dependence function D is
C(u) = G(log(u1), - . . ,log(uq))

= ex u log(u1) log(ua—1)
= exp igzdlog( i) | D (Zigdlog(ui)’m’ Zigdlog(ui)>
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D< log(u1) log(ug_1) >
103(1'[@1%) 103(1'[@1%) .
= H Us ) u € (0,1)%
i<d
This copula, obviously, satisfies, for any A > 0,
C (u') =C(u)’.
The case D =1 yields the independence copula

C(u) = Hui,

i<d

whereas D(t) = max (tl, contam, 1=y ti) yields the total dependence

copula
min(log(uy),...,log(ug))

(11w
Cla) = | [ uw =
i<d
Recall that C is for each dependence function D a df on (0,1)? with uniform
margins.
Properties (iv) and (vi) in the preceding list immediately imply the following
characterization of independence and total dependence of the univariate margins of
a multivariate EVD, which is due to Takahashi [438]. Note that an arbitrary mul-

tivariate EVD can be transformed to an EVD with standard negative exponential
margins by just transforming the margins, see equation (5.47).

Theorem 4.3.2 (Takahashi). Let G be an arbitrary d-dimensional EVD with

margins G, j < d. We have
(i) G(x) = [[;<q4Gi(z;) for each x = (z1,...,24) € R? iff there ewists one
Yy = W1,--,ya) € RT with 0 < Gj(y;) < 1, j < d, such that G(y) =

I1j<a Gily;)-

(ii) G(x) = minj<q Gj(x;) for each x = (z1,...,7q4) € R? iff there exists one
y = (y1,..,ya) € R with 0 < G4(y;) < 1, j < d, such that G(y) =
Gi(yr) = -+ = Ga(ya)-

The following result supplements the preceding one. It entails in particular
that bivariate independence of the margins of a multivariate EVD is equivalent to
complete independence of the margins.

Theorem 4.3.3. Let G be an arbitrary d-dimensional EVD with one-dimensional
margins G, j < d. Suppose that for each bivariate margin G; ;) of G there exists
Yig = (y(iﬁj)ﬂl,y(i,j)g) S R2 with 0 < Gi(y(i,j),l)aGj(y(i,j),2) < 1 such that
Gupn i) = GiWa),1)Gi(Wa, ),2)- Then the margins of G are independent,
ie, Gy) =1l<4Gi(yj), y € R?.
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Proof. Without loss of generality we can assume that G has standard negative
exponential margins G;(z) = exp(x), < 0, and, thus, there exists a measure p

on S = {u €[0,1]: Dicd Wi = 1} with p(S) = d, [quidp(u) =1, < d, such
that

x; d
_ ) . <
G(x) = exp E z; / r§1<a;< (uj S ) du(ua) |, x <0eR%

i<d s i<d i

Since G ; ;) is a bivariate EVD with margins G, G, Takahashi’s Theorem
4.3.2 implies that G; and G; are independent for each 1 < 4,5 < d, i # j, ie,
Gij)(x) = exp(x1 4+ 22), x = (21,22) < 0 € R?, and, therefore,

/max(uit,uj(l C)dp(w) =1,  tel0a]1<ij<ditj  (4.35)
s
This implies

1= / max(u;t, u;j(1 —t)) du(ua) < / uit +u;(1 —t) dp(u) = 1.

s s
Putting ¢t = 1/2, we obtain, for 1 <4,j <d, i # j,
/ u; + uj — max(u;, uj) du(u) =0,
s

where the integrand is non-negative. This implies

p({uesS: u; +u; > max(u;,uj)}) =0, 1<4,5<d,i#j,
and, thus,

O0=p({uesS: u;+u; >max(u,;,u;) for some 1 <4, j <d})
C
= ((Uiza{e))f).

where e; denotes the i-th unit vector in RY, yielding p (Ui<d {e;}) = d. Putting
t =1/2 in equation (4.35), we obtain

2:/Smax(ui,uj)d,u(u)
:/ max(u;, u;) dp(u)
{ei.e;}
=p(fed) +ulle}). 1<ij<di#j

But this implies p ({e;}) = 1, i < d, and, thus,

G(x) = exp le ) x <0e R
i<d
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EXAMPLES OF PICKANDS DEPENDENCE FUNCTIONS

We discuss in detail two max-stable df in R%, namely, the Marshall-Olkin and the
logistic (also known as negative logistic or Gumbel) df.

Example 4.3.4 (Marshall-Olkin df in R?). This is an extension of Example
4.1.1 and a special case of Example 4.1.2.

Let Zy, ..., Zg be iid rv with common standard reverse exponential df. Put,
for A € (0,1),
Zi Zy .
Xj::max<1_J/\, /\>, 1<j<d.
Then (X7, ..., X4) has a max-stable df with reverse exponential margins. Precisely,

we have for z; <0, 1 <j <d,
P(X; <z;,1<j<d)
= exp (1 = N)(@1 + -+ + xq) + Amin(zy,...,2q))
=: Gx(21,...,Tq).
The df G is a Marshall-Olkin [323] df in R? with parameter A € [0,1], where

A = 0 is the case of independence of the margins, and A = 1 is the case of complete
dependence. The corresponding dependence function is

Dy(t1,...,ta—1)

=1—A+max | t1,...,tq-1,1 — Z t;
i<d—1

=1— Amin | 1 —¢t1,...,1 —t4_1, Z t; ], t=(t1,...,ts—1) € R.
i<d—1

If we take Di(t) = 1 and Ds(t) = max(t1,...,tq—1,1 — > ;.4 1ti), then
the convex combination (1 — A)Dy(t) + ADz(t) of the two extremal cases of in-
dependence and complete dependence in the EVD model is just a Marshall-Olkin
dependence function with parameter A € [0,1]:

1—A+Amax | t1,...,tq-1,1— Z t; ZD)\(t).
i<d—1

Example 4.3.5 (Logistic df in R?). The logistic df ([183]), alternatively called
negative logistic df or Gumbel df of type B, is defined by
1/x

Ga(x) =exp | — Z(—%)A , A>1

i<d
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It is max-stable with reverse exponential margins and has the dependence function
AN 1/

D}\(tla"'atd—l): ti“""""tﬁ_l"’ 1-— Z tl
i<d—1
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FIGURE 4.3.1. Dependence function D(t1,t2) =1 — Amin(1 — t1,1 — to,t1 + t2)
of the Marshall-Olkin df with A = .2 in dimension d = 3, cf. Example 4.3.4.
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FIGURE 4.3.2. Dependence function D(t1,t5) = (£} +t5 + (1 —t; — t2)*)/* of
the logistic df with A = 2 in dimension d = 3, cf. Example 4.3.5.
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We mention another df with independent margins in the limiting EVD.
Example 4.3.6 (Mardia’s df in R?). Mardia’s [318] df

1
Zigd exp(—;) — (d — 1)’

has reverse exponential margins, but it is not max-stable. Precisely, it satisfies

" (z) ) (1 +ica (ex; (=%) - 1))n T (;Q

which is the EVD with independent reverse exponential margins.

H(x) := 2; <0,1<43<d,

4.4 The D-Norm

In this section we introduce quite a convenient representation of a d-dimensional
EVD (and later a GPD) in terms of a norm on R, called the D-norm.
The logistic distribution in Example 4.3.5 can obviously be written as

Ga(x) = exp(=[[x][x);

where
1/x

x5 = { Dl

i<d

denotes the usual Ly-norm on Rd, 1 < X < oo. Actually, it turns out that any
EVD in (4.31) can be written as

KA LTd—1
G(x) = exp | D — exp (~xllp).
Z Eigd Ti Zigd Li

i<d
where
|1] |zd-1]
Ixl[p = |zi| | D : (4.36)
igzd ' Zigd |4 Zigd |
with the convention ||0||p = 0. In fact, || - ||p defines a norm on RY, that is, for

any x, y € R%:
(i) ||x|lp =0<=x=0,
(i) llex|lp = le|[|x|[p ~ for any c € R,

(i) ||x +yllo < lIx|lp + llylp-
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The triangle inequality follows from the definition of D in (4.32):

Ix+yllp
=Y |wi+wl| D 1+ 1] [@a-1 +ya-1]
- 1 K3 9o ey
Py >i<a lTi + il Yi<a lTi T il
|21 + y1 |z + ydl
|z + vl /max U yee s Ug du(u)
; s >i<a [Ti + yil >i<alTi T il

/max (urlzy + 1), ... walza + yal) dp(u)
/max (uilza], ..., ualzql) dp(a)

+ / max (gl ., ualyal) dia(w)
S

|71 |24
= || / max | us yeney U dp(u)
Z ' s Zigd |i Zigd ||

i<d
d
Z s /max up a yeeeyUg vl du(u)
i<d s Yi<a lyil 2i<a l¥il
=[xl + llyllp-

We call ||x||p the D-norm on R%. From the inequalities

max [ t1,...,tq—1,1— Z t; | <D@t)<1

i<d—1
for t = (t1,...,tq_1) € R we obtain for any x € R that its D-norm is always
between the co-norm and the Li-norm:

1% ||oo := max(|z1],..., |zal) < [[x[[p < Y lal = [|x][]s. (4.37)

i<d

This, in turn, implies in particular that any EVD G with dependence function D
satisfies the inequalities

H exp(z;) < G(x) = exp (—||x||p) < exp (min (z1,...,24)),
i<d

for x = (x1,...,24) € (—00,0]%, which is (4.1).
The inequalities (4.37) imply that a D-norm is standardized, i.e.,

leillp =1, i<d,
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where e; = (0,...,0,1,0,...,0) denotes the i-th unit vector in R%, i < d.
The monotonicity of G implies further, for arbitrary x <y <0,

Ixlp = lyllp - (4.38)

A norm ||-|| with this property will be called monotone. Note that this is equivalent
with
x| <llyll, 0<x<y.

Takahashi’s Theorem 4.3.2, for instance, can now be formulated as follows.
Recall that the Li-norm characterizes independence of the margins, whereas the
oo-norm characterizes complete dependence of the margins.

Theorem 4.4.1 (Takahashi). We have the following equivalences:

@A Il =1, = lyllp =llyl, for at least one y € R, whose components
are all different from 0;

() 1o = oo == 10 Dllp = [Sicae:

In view of Takahashi’s Theorem, the number

=1.

e:=|(1,....,1)|p € 1,d

clearly measures the dependence structure of the margins of GG, and we have in
particular

e=1 << |I/lp = I/l & complete dependence of the margins
and
e=d < ||p =1, &= independence of the margins.

The number ¢ was introduced by Smith [421] as the extremal coefficient, defined
as that constant which satisfies

G*(z,...,x) = F*(x), z € R,

where G* is an arbitrary d-dimensional EVD with identical margins G} = F,
7 < d. Without loss of generality we can transform the margins to the negative
exponential distribution and obtain an EVD G with standard negative exponential
margins and, thus,

G(z,...,z)=exp |z Zei = exp(ex), x <0,

i<d ||,

yielding

e=I(L....Dlp =D e
i<d || p
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The obvious question “When is an arbitrary norm ||-|| a D-norm?” is an-
swered by the following result due to Hofmann [222]. Tt is established by showing
that ;

V([—OO,X] ) = HXH ) x<0,

defines an exponent measure on [—oo, 0]\ {—oo} if and only if the norm ||-|| satisfies
condition (4.39), which is essentially the A-monotonicity of a df.

Theorem 4.4.2 (Hofmann, 2009). Let ||-|| be an arbitrary norm on R%. Then
the function G (x) := exp (— ||x]|), x <0, defines a multivariate EVD if and only
if the norm satisfies

3 (— D)™ Da™ || (g gl gl | >0 (4.39)
me{0,1}%:m;=1,i€K

for every non-empty K C {1,...,d}, K #{1,...,d}, and —o0 < a; <b; <0, 1 <
Jj<d.

Note that the EVD G(x) = exp(— ||x]|), x < 0, has standard reverse ex-
ponential margins if and only if |le;]| = 1, ¢ < d, i.e., if and only if the norm is
standardized. In this case, the norm ||-|| is a D-norm.

THE BIVARIATE CASE
Putting K = {1} and K = {2}, condition (4.39) reduces in the case d = 2 to

[[(b1, b2)[| < min ([[(b1, a2)|, I(a1,b2)[),  a<b<o,
which, in turn, is obviously equivalent with
bl < llal, a<b<o,

i.e., the monotonicity of ||-||.
We, thus, obtain from Theorem 4.4.2 the following characterization in the
bivariate case.

Lemma 4.4.3. Take an arbitrary norm ||-|| on R%. Then
G(x) = exp(=[x[)),  x<0,
defines an EVD in R? if and only if the norm ||-|| is monotone.

The following lemma will be crucial for the characterization of a Pickands
dependence function in the bivariate case. Together with the preceding lemma it
entails, moreover, that in the bivariate case G(x) = exp(— [|x|]), x < 0 € R?,
defines an EVD with standard negative exponential margins, if and only if the
norm || satisfies x|, < [lx]| < x|, x > .
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Lemma 4.4.4. Let ||| be a norm on Re. If ||-|| is monotone and standardized,
then we have, for 0 < x € R?,

%[l oo < lIxIl < ]l -
For d = 2 the converse statement is also true.

Example 2.19 in Hofmann [221] shows that the preceding equivalence in R?
is not true for a general dimension d.

Proof. Let 0 < x = (21,...,74) € RZ Since the norm is standardized, we have by
the triangle inequality

(@1, ..., za)ll < |(21,0,...,0)[ + -+ [[(0,...,0,za) |

= [|(z1,. .. 7xd)||1 :
Furthermore we obtain from the monotonicity of |||

(21, ....za)l| = [1(0,...,0,2:,0...,0)]

= z; [|ed]
= T4, 1< d7
and, thus, [|x| > max(zy,...,24) = ||x]|,. Altogether we have ||x| < [x[ <

[
Now let d = 2 and suppose that the norm satisfies ||x|| < ||x|| < [|x]|; for
0 < x. Then we have

1= [leill o < llell <fledll, =1

and, thus, the norm is standardized.

Take a = (a1,az2), b = (b1,b2) € R? with 0 < a < b and 0 < b. The
condition x|/, < ||x|| implies b; < max(by,b2) = ||b||, < ||b]| fori=1,2.
From the triangle inequality we obtain

l(ar,bo) | = \ (b1, b2)

by

bl—al aq
0,0
LRSS

IN

— a1 ai
€0, b2) ][+, [1(b1, bo)
b1 N~ 7 b1
=b2<|b||

bl—al aq
b1,b
("5 5 ) Hewoa)

= [Ib]

IN
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and
lall = [I(a1, a2)||
bo —
:‘ 2b a2 (a1,0)+ 22 (al,bg)
2 2
bg—ag a9
<7, (e, O+~ [I{a1, b2)]
2 S~ o~ 7 2 N~ 7
=a1<b1<||b|| <||b]|, see above
bg—az ag
< b
< (L)l
= [b].

Therefore the norm is monotone.

The preceding considerations can be utilized to characterize a Pickands de-
pendence function in the bivariate case.

Proposition 4.4.5. Consider an arbitrary function D : [0,1] — [0,00) and put

Iz, )l p :== (z|+|y))D (|| /(Jz| + |y|) for x,y € R with the convention ||0]|, = 0.
Then the following statements are equivalent.

(i) I/, s @ monotone and standardized norm.
(ii) |-l p is a norm that satisfies ||x|| ., < ||x||, < ||x];, 0 < x.

(ili) G(z,y) :=exp((z +y)D(z/(z +y))), z,y <0, defines a bivariate EVD with
standard reverse exponential margins.

(iv) The function D is convex and satisfies max(t,1 —t) < D(t) <1, t € [0,1].

(v) The function D is convex and satisfies |x||, < |lyllp for 0 < x <y as well
as D(0)=D(1) =1.

Proof. The equivalence of (i), (ii) and (iii) is a consequence of Lemmas 4.4.4 and
4.4.3. Next we show that (ii) and (iv) are equivalent. Suppose condition (ii) and
choose A, t1,t2 € [0,1]. The triangle inequality implies

DAty + (1 = Nt2) = [[A(t1, 1 —t1) + (1 = A)(t2, 1 — t2)|l p
<At 1 =t)llp + @ =) I(t2, L =t2)lp
= AD(t1) + (1 = A)D(t2),

i.e., D is a convex function. We have, moreover, for ¢t € [0, 1],
max(t,1—1t) =|[(t, 1 =1)|, <[t 1=0)p=D() <[t 1 -0, =1,
which is (iv).
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In what follows we show that (iv) implies (ii). The inequalities |x|| <
Ixl|p < |Ix[l;, 0 < x = (x,y), are obvious by putting t = z/(x + y) in (iv). We
also obtain D(t) > 1/2, t € [0, 1], and, thus, ||x||, = 0 if and only if x = 0 as well
as | Ax|p = [\l [l p, A € R, x € RY. The triangular inequality will follow from
the subsequent considerations. The inequality max(¢,1 —t) < D(t) < 1, ¢t € [0,1],
implies, for a,b >0, a+b > 0,

a b b b
> = =
D(a+b>a+b a+bD(O) a+bD(1)

a a a a
D > = D(0) = D(1).
<a+b)_a+b a+b © a+b S

Hence we obtain for 0 < (x1,x2) < (y1,y2) with 1 + 2 >0, y; > 0, ¢ = 1,2,

p(, 0 =2 (e ) o () L)
< W= ifl)yzD 0 (11 +y2)331D ( Y1 )

as well as

~ yi(z1 4+ y2) yi(xr +y2) \y1+ w2
< =)y + yz)D < Y1 ) n (y1 + yz)il?lD < Y1 )
y1(z1 + y2) Y1+ Y2 yi(xr +y2) \y1+u2

:w+mD( 1 )
r1 + Y2 y1+y2/)’

Summarizing the preceding inequalities we obtain

p(,, 7 = () (e ) )

Y2 — T2 xlD(1)+$2$1+y2D< 1 )

= (w1 + 22) Yo T1 + 22 \T1+ Y2
-z T +
< Y2 2 le(1)+ 2 Y yzD( 23 )
Yo (21 + 72) Y2 T1 + T2 Y1+ Y2

IN

yz—x2y1+y2D( Y1 >+$2y1+y2D< Y1 )
Y2 T1+ X2 Y1+ Y2 Y2 T1 + T2 Y1+ Y2

_ Nty ( (1 )
1+ x2 yi+y2/)
Multiplying by (21 + z2) shows the monotonicity ||x|, < [|y[lp, 0 < x < y.

Together with the convexity of D we will now see that ||-|| , satisfies the triangular
inequality for arbitrary x,y € R?:

Ix+vlp

lz1 + v )

= (lz1 +n| + |z2 + D
(zy + g2l + oz + v2l) <|x1+y1|+|x2+y2|



164 4. Basic Theory of Multivariate Maxima

(1 + w1l |22 + w2])llp
< (o] + [yl szl + w2l p
(1] + [z2] + [y1| + |y2])

><D( |z1] + |22 |1 N ly1| + [y2| |y )
|z1] + 22| + [yo] + |y2| |z1] + 22| 21| + 22| + [y1] + |y2] [y2] + |2l

<(x1|+|x2|)D( 4] |)+(|y1|+|y2|)D< | )

|z1] + |22 lya| + [y2]
= [xllp +¥llp-

Next we show that (iv) and (v) are equivalent. Suppose condition (iv). Then,
obviously, D(0) = D(1) = 1. The monotonicity of ||-||, was established in the
proof of the implication (iv) = (ii). It, therefore, remains to show that (v)
implies (iv). The convexity of D implies

Dt)=D((1—t)-0+t-1) < (1—¢t)D(0) +tD(1) =, te[0,1].
The monotonicity of ||-|| , implies
T U
+x9)D < (y1 +y2)D ) 0<x<y.
(z1 + 22) <x1 +x2) < (y1 +v2) (yl +y2> x<y

Choosing 27 € [0,1] and putting 2o =0, y1 = 21, y2 = 1 — 21, we obtain from the
above inequality
{I,‘lD(l) = S D(Z’l)

Choosing z5 € [0,1] and putting z; = 0, y1 = 1 — 22, y2 = 22, we obtain
ZL‘QD(O):{L‘2<D(1— w2 ) :D(l_x2)7
Y1+ 2

i.e., we have established (iv).

The equivalence of (iii) and (iv) in Proposition 4.4.5 is stated without proof
in Deheuvels and Tiago de Oliveira [106]. An explicit proof is outlined in Beirlant
et al. [32, Section 8.2.5]. The implication (iv) to (iii) under the additional condition
that D is twice differentiable was established in Joe [275, Theorem 6.4].

Corollary 4.4.6. Let ||-|| be an arbitrary norm on R? and put D(t) := ||(t,1 —t)|,
t €1[0,1]. Then

G(a,y) = exp (= [|(z, 9))

X
- D <
eXp((x+y) (Hy)) z,y <0,

defines an EVD with standard reverse exponential margins if and only if

max(t,1 —¢) < D(t) <1, te0,1]. (4.40)
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Proof. By Proposition 4.4.5 we only have to show the if-part. Precisely, we have
to show that D is convex. But this is immediate from the triangular inequality:

D(Mt1 4+ (1 = Nta)

= [[(Aty + (1 = N)t2, 1 — (Mt + (1 = A)t2))|]

= || A(t1, 1 —t1) + (1 = N)(t2, 1 — t2)]|
<At T =)+ @ =A) [[(t2, 1 = t2)
=AD(t1) + (1 = N\)D(t2), A t1,t2 €10,1].

Remark 4.4.7. Condition (4.40) is not necessarily satisfied by an arbitrary norm
[IIl, even if it satisfies ||(1,0)]] =]|(0,1)|| = 1. Choose, for example, p € (—1,1) and
put ||(z, y)||i =22 + 2pxy + 92, ie., [[Il, is a generalized squared distance. Then
we obtain for p < —1/2 that |[(1/2,1/2)]|, = (1/2+ p/2)*/? < 1/2 and, thus, 11,
does not satisfy condition (4.40).

Proposition 4.4.5 can be utilized to characterize bivariate EVD in terms of
compact and convex subsets of R?, thus, linking multivariate extreme value theory
with convex geometry; we refer to Molchanov [341] for details. Take a compact and
convex set K C R?, which is symmetric in the following sense: with (z,y) € K we
require that (—z,y) € K and (x,—y) € K as well. We suppose in addition that
(1,0) and (0, 1) are boundary points of K.

Put [[(0,0)||x := 0 and, for (z,y) # (0,0),

1

1z, y)ll = sup{t e R: t(z,y) € K}

Then |-||; defines a norm on R?, which satisfies condition (4.40) and, thus,
Gk (z,y) = exp(— ||(z,y)| k), x,y < 0, is by Corollary 4.4.6 an EVD with stan-
dard reverse exponential margins. Note that K equals the unit ball with respect
to this norm: K = {(z,y) € R?: ||(z,y)||x < 1}

Take, on the other hand, K = K, = {(z,y) eR?: |(z,y)||p < 1} as the
unit ball with respect to an arbitrary D-norm ||-|| 5. Then K is a compact, convex
and symmetric set with (0, 1), = |(1,0)ll, = 1 and [z, y) = [[(z, )l - We
have, thus, established the following characterization of bivariate EVD in terms of
convex subsets of R2.

Corollary 4.4.8. Let G(z,y) = exp(— ||(z,y)|p), =,y < 0, be any EVD with
standard reverse exponential margins. Putting K := {(z,y) € R*: ||[(z,y)||p, <1}
defines a one-to-one mapping from the set of bivariate EVD with standard re-

verse exponential margins into the set of compact, convex and symmetric subsets
K C R? such that (—1,0) and (0,1) are boundary points of K. We have, further,

@ lp =@yl (=y) € R
The preceding result can be utilized to generate bivariate EVD via com-

pact subsets of R?. Take an arbitrary function g : [0,1] — [0,1], which is con-
tinuous and concave, and which satisfies g(0) = 1, g(1) = 0. The set K :=
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{(z,y) e R?: |y| < g(|z])} then defines a convex, compact and symmetric sub-
set of R?, and (0,1),(1,0) are boundary points of K. Put for any z € [0,1]
D(z) = ||(2,1—=2)||x = 1/t., where t. is the unique solution of the equation
g(tz) =t(1—2),t > 0. Then G(z,y) := exp((x+y)D(z/(x+y))), z,y < 0, defines
by Corollary 4.4.8 an EVD with reverse exponential margins.

With g(z) := (1 — z2")Y*, X > 1, we obtain, for example, t, = (z* 4+ (1 —
2)M)~Y/X and, thus, the set of logistic distributions

Gla,y) = exp (— (2 + [y)'7),

z,y < 0.

Molchanov [341] showed that max-stable rv in [0, c0)? with unit Fréchet mar-
gins are in one-to-one correspondence with convex sets K in [0,00)? called maz-
zonoids.

THE D-NORM IN ARBITRARY DIMENSION

In what follows we investigate the D-norm in R%. We start with a convex function
and give a necessary and sufficient condition for the property that |-|| , actually
defines a norm. Then we can use Theorem 4.4.2 to establish a necessary and suffi-
cient condition for a convex function to be a Pickands dependence function. These
considerations are taken from Hofmann [222]. Recall that a Pickands dependence
function is defined on

R= (tl,...,td_l)e[o,l}d_li Z tj§1
j<d-1

Lemma 4.4.9. Let D : R — (0,00) be a convex function. Then

|21 |za—1]
1%l p = IIx[l; D
b ! ngd e ngd |5

defines a norm on R iff, for 0 < x <y, x#0,

T Td—1 Ej<d Yj Y1 Yd—1
D < Zi<ddp . (4.41)
(ngd Lj 2 j<d xa‘) 2 j<a i (st«t Yi 2 j<d yﬂ')
Proof. We, obviously, have ||Ax||, = |A|[|x|p, A € R, as well as |x|, > 0 and
|x|][, =0 <= x = 0. The triangle inequality follows from the convexity of D,
the triangle inequality of the absolute value and equation (4.41):
Ix+¥lp

lz1 + v |Zd—1 + Ya—1]
=|x+yl,D
' ngd('xj +y;l) ngd('xj + y5l)
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<lx+yl,

el + Iyl |z1] + |y1 |Za—1] + |ya—1]
Ix+ vyl ngd(lxj| +ly) ngd(lxj| + ly;l)

> i<a sl |1 |za—1]
= ([lx[l; + llylly) D - e
! ! j<allzsil +1y1) \ 2o <a 75l > <a il
n ngd |y 1] |Ya—1]
Sicallzsl 1yl \ Xjcalysl” 7 2 <a lysl
> j<a il |21] |Za—1]
< (Il + [lyll;) = D e
! ! > j<allzil + lyi)) > i<a il > i<a il

n ngd |y D |y1] |Ya—1]
> j<allzil + lys0) > j<a ¥l Y > j<alysl
=lxlp+lylp-

So we have established the if-part. Assume now that |-, defines a norm on R
It is sufficient to prove equation (4.41) for 0 < x <y, where x and y differ only
in the k-th component. By iterating this step for every component one gets the
general equation.

Set ¥ := y — 2yiey, where e, denotes the k-th unit vector in R?. The vector
y differs from y only in the k-th component, and the absolute values of these com-
ponents are identical. We, therefore, have ||y||, = [|¥||, and from the convexity
of the D-norm we obtain

p(" S N
ngdxj’ 7ngdxj l1xll; P

1 Tk + Yk Yk — Tk
= y+ y
HX”l 2yy, 2y, D
1 Tr + Yk Yk — Tk | -~
< lyllp + Iyl
lIxI[, < 2y p 2y b
Lyl
= y
][, P

_ > j<a Yi p Y1 Yd—1
ngd L ngd yi ngd Yj
Theorem 4.4.10. Let D be a positive and convex function on R. Then D is a
Pickands dependence function, i.e.,

Z1 Tg—1
G(x) := exp E z; | D ce , x<0,
! > ngd Ly

)
j<d j<d ¥i
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defines a d-dimensional EVD with standard converse exponential margins, if and
only if

Z (_1)d+1_2j3dmj Z <—y;njx;_mf>

mc{0,1}%:m;=1,j€E Jj<d

mi . 1 m1 mqg—1 1—-mg_1

X
<D Y Ya—1 Ta—1

- et -
ngd (y;nj mJ) Zj<d (y;nj m3>

for anyx <y <0 and any subset E C {1,...,d}, E #{1,...,d}, and D satisfies
D(&;) = D(0) =1, i < d, where &; denotes the i-th unit vector in R1,

>0 (4.42)

Proof. In what follows we show that condition (4.42) implies condition (4.41). For
any m € {1,...,d} we apply condition (4.42) with F = {1,...,d}\ {m} to the
vectors Y7 e + Yo yie and Y0 aie; + S0 yie; and obtain

Zx e; + Z yi€i

1=m-+1

> 0.

m—1 d
E i€ + E Yi€;
i=1 i=m

Summation over m from 1 to d yields

d m m—1 d
0<Z<Z$ez+ Z Yie; inei'i‘zyiei)
m=1 i=m+1 i=1 =
d " d m—1
Z < Z T;€; + Z y7.91 ) - Z < Z T;€; + Z y7.91 )
m=1 1=m-+1 =1 =1

d
= E Ti€4

=1

Zw e; + Z Yi€i

1=m-+1

)
eﬁzyiel’)_
; + Z yiei )

>_

1=m-+1
2 et > e
So |||l p defines a norm with the properties from Lemma 4.4.9. Using the definition

d—1
+ <
m=1

(3

€

+

d
§ Ti€4
i=1

(s

1

d
E Yi€;
i=1

1=m-+1

= [l =iyl
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of the D-norm we see that

s Y [ R [ (et

me{0,1}4:m;=1,j€E j<d
P e v
2 j<a (yfj%l‘_mj) 2 j<a (y}njxal'_mj)
D S [ e [ o= e | W

mc{0,1}4:m;=1,j€E

Application of Theorem 4.4.2 now completes the proof.



Chapter 5

Multivariate Generalized
Pareto Distributions

In analogy to the univariate case, we introduce certain multivariate generalized
Pareto df (GPD) of the form W = 1+ log(G) for the statistical modelling of
multivariate exceedances, see Section 5.1. Various results around the multivari-
ate peaks-over-threshold approach are compiled in Section 5.2. The peaks-over-
threshold stability of a multivariate GPD is investigated in Section 5.3.

The special dependence of a multivariate EVD on its argument suggests the
use of certain Pickands coordinates consisting of a distance and a (pseudo)-angle.
Of decisive importance for our investigations will be a spectral decomposition
of multivariate df into univariate ones based on the Pickands coordinates, see
Sections 5.4. Using this approach, conditions and results can be carried over from
the univariate setting to the multivariate one, see Section 5.5. Particularly, we
study the domain of attraction of a multivariate EVD and compile results for df
which belong to the d-neighborhood of a multivariate GPD.

In addition, a given rv can be represented by the Pickands transform which
consists of the random distance and the random angle. In Section 5.6 it will be
shown that these rv are conditionally independent under a GPD. This result ap-
proximately holds under an EVD.

An important aspect for practical applications of multivariate GPD are sim-
ulations. In Section 5.7 we will present methods to simulate GPD. Sections 5.8
to 5.10 are dedicated to statistical inference in GP models, using the simulation
as a first check of the practical applicability of the methods.

5.1 The Basics

Different from the univariate case, where W(x) = 1 + log(G(x)), log(G(x)) > —1
defines a df for any given max-stable df G and its multivariate version is not

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,
DOI 10.1007/978-3-0348-0009-9 5, © Springer Basel AG 2011
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necessarily a df for dimensions d > 2, see Proposition 5.1.3. Yet, one finds df
having such a form in the upper tail region, which is sufficient for our asymptotic
considerations.

Therefore, we first introduce a generalized Pareto (GP) function pertaining
to a max-stable G in R¢ by

W(x) :=1+log(G(x)) (5.1)

=1+ Zwl D( o ce vd-t ), log(G(x)) > —1.

i<d Yica®i Xica®i
Note that
W(x)=1-|xlp, x<0, [x|][p<1,
where ||x||p is the D-norm of x, see (4.36).
The GP function corresponding to the Marshall-Olkin EVD is for instance
Wi(x)=1+1—-XN(z1+ - +z4) + Amin(xq,...,24);

for the logistic df it is
/A

Wi(x)=1-— Z(—xi)/\

i<d

In what follows we introduce GPD which have the form W = 1 4 log(G) in
the upper tail region.

THE BIVARIATE CASE

For the dimension d = 2 the GP function itself is a GPD (mentioned by Kaufmann
and Reiss [286]). Due to our special choice of EVD G with negative exponential
margins, the margins of the bivariate GPD W = 1 + log(G) are equal to the
uniform distribution on the interval [—1,0] which is a univariate GPD.

Lemma 5.1.1. The bivariate GP function is a df.

Proof. W(x) = max(1+log(G(x)),0), x < 0, is obviously continuous and normed.
Its A-monotonicity follows from the A-monotonicity of G' (see the beginning of
Section 4.1): Let 7, | 0 be an arbitrary sequence of positive numbers converging
to 0. Taylor expansion of exp at 0 implies, for x <y < 0,

0 <AMXG
= G(rny) = G(ra(z1,92)) — G(ra(y1, v2)) + G(rnx)

= (exp (=rallyllp) = 1) + (1 — exp (=rn[|(z1, 42) || D))
+ (1 —exp (=rall(y1,22)[[p)) + (exp (=ralx|[p) — 1)
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= —rallyllp + rall(@1,y2)lp +7all(y1, 22) |l — ral|x[|p + O(r3).
We, thus, obtain

AYG
0< lim ~™*
n—oo Tn

=1—|lyllo = (0 = [[(z1,y2)llp) = (1 = [[(y1, z2)[|p) + (1 = [Ix][D) -
From the monotonicity of || - ||p (see (4.38)) one now concludes that

AXW = max (1 — ||y|[p, 0) — max (1 — [[(z1,32)||p,0)
— max (1 — [|(y1, 22)[[p, 0) + max (1 — [[x[[p,0) = 0.

The support of such a bivariate GPD W (z,y) = max(1l — ||(z,y)||p,0) =
max(1 + (z + y)D(z/(z +y)),0) is the set of those points (x,y) € (—o0,0]?, such
that (z + y)D(z/(z +y)) > —1. Using the spectral decomposition introduced in
Section 5.4, the support of W can conveniently be identified as the set of those
points (z,y) = ¢(z,1 — 2z) with z € [0,1] and —1/D(z) < ¢ < 0. That is, we have
Wi(e(z,1—2))=14+¢D(2), 2 €[0,1], —=1/D(2) < ¢ <1, see Lemma 5.4.3.

Example 5.1.2 (Independent EVD rv). Let
Gla,y) =exp(z+y),  =y<0.

Then, W =14z +y =1—||(x,y)||1 is the distribution of the rv (U,—(1 + U)),
where U is uniformly distributed on [—1,0]. Note that (U, —(1 + U)) is uniformly
distributed on the line {(z,y) : 2,y <0, z+y = —1}.

This example indicates that the case of independent EVD rv has to be con-
sidered with particular caution. We will return to this case in Section 5.2 and give
an interpretation.

GPD 1Ny HIGHER DIMENSIONS

In dimension d > 3, the GP function is not necessarily a df. Take, for instance,
d =3 and D = 1. The GP function W(x) = max(1l + z1 + z2 + 23,0), x <0, is
not A-monotone, since the cube [—1/2, 0] would get a negative probability:

1
A? =—_.
(-3-1-0" =7
This example can be extended to an arbitrary dimension d. The following result
1/
is established by Hofmann [222], where ||x||, = (Zigd |xl|’\) denotes the usual

Anorm of x € R4 X\ > 1. This GP function coincides, however, in arbitrary
dimension with the upper tail of a df in a neighborhood of 0, see below.
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Proposition 5.1.3. For any A > 1, the GP function
Wi (x) = max (1 — [|x]|,,0), x<0€cR%
does not define a df for d > 3.

We call a d-dimensional df W a (multivariate) GPD, if there is some EVD G
with reverse exponential margins and dependence function D such that

W(x) = 1+1log(G(x)) =1 —|[xllp

for x in a neighborhood of 0. To shorten the notation, we will often write W =
1+ log(G) in this case.

To specify the notion “neighborhood of 0”7 we will establish that the cube
[~1/d,0]% is a suitable area for this neighborhood: We have for x € [-1/d,0]%
by the monotonicity and the standardization of the norm (see Lemma 4.4.9 and
Theorem 4.4.10) with e;, i < d, denoting the standard unit vectors in R4:

1 1
<
o < |(hreeerg)

and, thus, 1 — |x||, >0 on [-1/d,0]%.
Furthermore, the A-monotonicity is satisfied by 1 — ||-|| , on [~1/d, 0]¢, since
for —1/d < a; <b; <0, i < d, we have

- i) <1i||e-u a1 62
D_d PR Dfdi:]. lD_d — .

AR = 1lp)

= Y ) (el | )
me{0,1}4

- 3R e
me{0,1}¢

>0

by Theorem 4.4.2. The characterization of a multivariate df at the beginning of
Section 4.1, together with the preceding considerations, indicate that for every
D-norm ||-||, there exists a df W on (—o0,0]¢, such that W(x) = 1 — ||x|
on [—1/d,0]%. This is the content of the next theorem, which is established in
Theorem 6.2.1 in Hofmann [222].

Theorem 5.1.4. Let |||, be a d-dimensional D-Norm. Then there exists a d-
variate df W with

W(x)=1-|x|, forxe[-1/d,0]"
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The following construction of a GPD is motivated by the representation
G(x) = exp (—u[—oo,x]c) of an EVD G by means of its exponent measure v,
see (4.14), and by a point process approximation w.r.t. the variational distance,
see Section 7.1. Because v ([—oo,t]c) = —log(G(t)), t < 0, one gets by

Os —1/( )/u( ) (5.3)

a distribution which turns out to be a GPD. Another version of a GPD will be
deduced from Q¢ in Section 7.1. In the subsequent lemma, Q¢ will also be character-
ized as the limit of certain conditional distributions of an EVD. A characterization
of a GPD with underlying df being in the domain of attraction of an EVD is given
in Theorem 5.2.4.

Lemma 5.1.5. Let G be a d-dimensional EVD with reverse exponential margins
and exponent measure v.

(i) The df of Q¢ is given by

Fy(x) = Q¢([~00,x])
= (log(G(x)) — log(G(min(t, x) )/a x <0,

where a(t) = —log(G(t)).
(ii) For t/a(t) < x < 0 we have
Wi (x) = Fi(a(t)x) = 1 + log(G(x)).
(iii) Let X be distributed according to G. Then, for x <0,

. B c) _
lrlJl%lP(Xgrx|X€( 00, rt] )—Ft(x).

Proof. Assertion (i) follows from the equation

[—oo,t]C N[—o0,x] = [—oo,min(t,x)]C \ [—oo,x]C

and the above representation of —log(G) by means of v.
To prove (ii) check that

Fi(x) = 1+ (log(G(x))/a(t)

for every x > t and utilize the equation G*(x/s) = G(x) for s > 0.
(iii) Because v ([—oo,rx]c) =71y ([—oo,x]c) for every r > 0, and

[—o0,7x] N [—o00, 7]’ = [~00,rx] \ [~00, r min(t,x)],
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one obtains from (4.14) and a Taylor expansion of exp that
P (X <rx|Xe (—oo,rt}c>

B exp (—V ([—OO,TX]U>> — exp (—1/ ([—OO,Tmin(t,x)}C>>
= 1—exp (—y ([—oo,rt]c))
v ([—Oo,min(t,x)}c) — v <[—oo,x}c>

—rl0 y([—oo,t}c)

Characteristic properties of a multivariate GPD W = 1 + log(G) are, for
example, that it is POT-stable, see (5.23) as well as Section 5.3, or that it yields the
best attainable rate of convergence of extremes, equally standardized, see Theorem
5.4.7. Hence, these properties, which are well known for a univariate GPD (see
Theorem 1.3.5 and Theorem 2.1.12), carry over to the multivariate case.

This discussion will be continued in Section 7.1 in conjunction with the point
process approach to exceedances.

GP FuncTIiONS AND QUASI-COPULAS
Shifting a GP function W (x) = 1+log(G(x)), x € (—00,0]? with log(G(x)) > —1,

to the unit cube [0,1]? by considering W(y) := W(y — 1), y € [0,1]¢, yields a
copula in the case d = 2 by Lemma 5.1.1, but not necessarily in the case d > 3,
see the discussion leading to Lemma 5.1.5.

It turns out, however, that W is in general a quasi-copula (Alsina et al.
[11]). The notion of quasi-copulas was introduced to characterize operations on
functions that cannot be derived from operations on rv. Due to a characterization
of quasi-copulas by Genest et al. [173] in the bivariate case and Cuculescu and
Theodorescu [86] in arbitrary dimensions, Wisa quasi-copula since it satisfies the
following three conditions for arbitrary x = (21,...,74), ¥y = (y1,---,va) € [0,1]%

(i) W(x) =0 if 2; = 0 for some 4, and W(x) = z; if all z;, =1 except z;,
(ii) W(xl, ...,xq) is non-decreasing in each of its arguments,
(iii) W satisfies Lipschitz’s condition, i.e.,

W(x) - W(y)| <llx—ylh.

The latter inequality follows from the representation (5.1) of W in the D-
norm and (4.37). We have
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W(x) = W(y)| <lllx=1lp = [ly = 1l
<lx-vylp
< x—=wyll-
As a consequence we obtain, for example, that for any track

B={(Fi(t))ica: 0<t <1}

in the d-dimensional unit cube there exists a copula Cg, which coincides with 1%
on B: .
Cp(x) = W(x), x € B.

By Fi,...,Fy we denote arbitrary univariate continuous df such that F;(0) = 0,
F;(1) =1, i < d, see Cuculescu and Theodorescu [86].

We obtain, therefore, that for any track B = {(Fi(t))i<a : 0 < ¢t < 1}
the function F(t) := W((Fi(t))igd) defines a univariate df on [0, 1]. The spectral
decomposition of a GPD in the subsequent Lemma 5.4.3 is a specific example. In
this case the tracks are lines and F'(t) = W((F;(t))i<a) = W((Fi(t) — 1)i<q) is a
uniform distribution for ¢ large enough.

5.2 Multivariate Peaks-Over-Threshold Approach

Suppose that the d-dimensional df F' is in the domain of attraction of an EVD G,
i.e., there exist constants a,, > 0, b,, € R%, n € N, such that

F"(a,x 4+ by) 2noeo G(x), x € R%.

This is equivalent with convergence of the marginals together with convergence of
the copulas:

cn (ul/") e Ca(u) = G ((G{l(ui))igd) . ue(0,1)
(Deheuvels [101, 102], Galambos [167], see Theorem 5.5.2) or, taking logarithms,
n (1 —Cp (ul/")) —noo — log(Ca(u)), ue (0,1]%
Choosing u; := exp(z;), z; < 0, i < d, we obtain

n(l — Cr(exp(x/n))) = nooo —log (Ca(exp(x))) = la(x), x <0,

where

lg(x) = —log (Cq(exp(x)))

T Ta—1
=| - g z; | D ey , x <0,
e Dica Ti DicaTi
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is the stable tail dependence function (Huang [234]) of G with corresponding
Pickands dependence function D. Note that we have defined the function lg(-)
on (—o0,0]? instead of [0,00)%, which is more common. The reason is equation
(5.5).

Taylor expansion exp(e) = 1 + € + O(g?), € — 0, together with the fact that
CF has uniform margins implies

n(l—Cp(l+x/n))) 9 nosos la(x),  x<0,
or, in a continuous version,
t7H1 — Cp(1 +tx))) =40 lo(x), x<0, (5.4)

see Section 4.2 in de Haan and de Ronde [194]. The stable tail dependence function
is obviously homogeneous tlg(x) = lg(tx), t > 0, and, thus, (5.4) becomes

1—Cr(1+tx) — lg(tx)

—+10 0.
" t10

Observe that
lg(x)=1-W(x), x <0, (5.5)
where W is a multivariate GP function with uniform margins W;(z) = 1 + =,
r<0,¢<d,ie.,
W(x) =1+log (é(x)) , x <0,

and G is a multivariate EVD with negative exponential margins G, () = exp(z),
r<0,7<d.

The preceding considerations together with elementary computations entail
the following result, which is true for an EVD G with arbitrary margins, not
necessarily negative exponential ones. By ||-|| we denote an arbitrary norm on RY.

Theorem 5.2.1. An arbitrary df F' is in the domain of attraction of a multivariate
EVD G iff this is true for the univariate margins and if there exists a GPD W
with uniform margins such that

Cr(y) =Wy -1 +o(ly -1l
uniformly for y € [0,1]¢.

The preceding result shows that the upper tail of the copula Cfp of a df F
can reasonably be approximated only by that of a GPD W with uniform margins.

Recall that an arbitrary copula C' is itself a multivariate df, and each margin
is the uniform distribution on [0, 1]. Putting in the preceding Theorem F = C, we
obtain the following equivalences for an arbitrary copula.

Corollary 5.2.2. A copula C is in the domain of attraction of an EVD G with
standard negative exponential margins
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<= there exists a GP function W with standard uniform margins such that
Cly) =Wy -1 +o(lly —1/),
uniformly for y € [0,1]%. In this case W = 1 + log(G).

<= there exists a norm |-|| on R? such that

Cly)=1-lly =1l +o(ly—1lp,
uniformly for'y € [0,1)%. In this case G(x) = exp (— |x]|), x < 0.

Proof. Recall from Section 4.4 that a GPD W with uniform margins can be written
as
Wx)=1—|x,, x0 <x <0,

where ||||; is a D-norm on R%, i.e., G(x) = exp (— ||x|p), x < 0, defines an EVD
on RLIfF Cly) = W(y — 1) +o(|ly — 1)), y € [0,1]¢, for some norm |-|| on R9,

then
n yy _ o, 1 1 "
e (14 2) = (1= L vl +o (1 v1))

—n—oo xp (— [|¥llp) = G(y), y<0.
Together with Theorem 5.2.1 this implies Corollary 5.2.2.

In the final equivalence of Corollary 5.2.2, the norm can obviously be com-

puted as

o 1-C1+tx

el =tim 0T g k<o,

t10 t
i.e., any stable tail dependence function I(-) is, actually, a norm. The triangle
inequality, satisfied by any norm, and the homogeneity of an arbitrary norm explain
why [(-) is in general a convex and homogeneous function of order 1.

Take, for example, an arbitrary Archimedean copula

Cp(u) = ¢ (p(ur) + -+ (ua)), (5.6)

where the generator ¢ : (0,00) — [0, 00) is a continuous function that is strictly de-
creasing on (0,1], p(1) = 0, lim, 0 ¢(z) = 0o and p~1(t) = inf {z > 0: ¢(z) < t},
t>0.
If ¢ is differentiable from the left in = 1 with left derivative ¢’(1—) # 0,
then L ca )
- +tx
sat 10 Z || = HX”l ) x <0, (5.7)
i<d
i.e., each Archimedean copula with a generator ¢ as above is in the domain of
attraction of the EVD G(x) = exp (— ||x]|;), x < 0, with independent margins.
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This concerns, for example, the Clayton and the Frank copula, which have gen-
erators pc(t) = 971t = 1), @r(t) = —log ((exp(—=0t) — 1)/(exp(—0) — 1)),
¥ > 0, but not the Gumbel copula with parameter A > 1, which has generator
wat) = —(log(t), A>1,0<t < 1.

In terms of rv, Theorem 5.2.1 becomes

Theorem 5.2.3. Suppose that the d-dimensional rv X with df F' is in the domain
of attraction of an arbitrary EVD G with corresponding dependence function D.
If F is continuous in its upper tail, then we have uniformly, for —1 <y <0,

P(X; <F7'(14w:), i <d) =Waly) +olllyll),

where Wg is a GPD whose upper tail is Wg(y) =1+ (Zigd yl> D(yl/ > i<a Yis
o Ya-1/ Di<d y)

We obtain, as a consequence, for the exceedance probabilities the approxi-
mation

P(X<F'(1+y)|X£F ' (1+y0))
P(X<F'(1+y), X £ F ' (1+yo))
1-P(X<F(1+yj))

PX<F'(1+y)) - PX<F(1+yo)
1-P(X < F ' (1+yo))
Wea(y) — Welyo) + o([lyoll)
1 = Wa(yo) + o(llyoll)
= e oflyal)
=P(Z<y|Z Z£yo)+o(lyol)

uniformly in yg <y < 0 as yg — 0, where the rv Z follows a GPD with upper
tail Wa(y), yo <y <0.
Note that we have equality

P(X<F ' (1+y) | X £ F ' (1+yo))
=P(Z<y|ZZ£yo), yo <y <0,

if X follows a GPD and yq is close to 0. This shows a first Peaks-over-Threshold
stability of the class of multivariate GPD, which will be investigated in more detail
in the separate Section 5.3.

The preceding result indicates that just as in the univariate case, also in the
multivariate case exceedances above a high threshold can reasonably be approxi-
mated only by a GPD. This is made precise by the following result due to Rootzén
and Tajvidi [401]. To state the theorem, let X be a d-dimensional rv with df F'.
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Further, let {u(t) : t € [1,00)} be a d-dimensional curve starting at u(1) = 0 and
let o(u) = o(u(t)) > 0 be a function with values in R<.

While Lemma 5.1.5 shows that a multivariate GPD is the limit of certain
conditional df of F' being an EVD, Theorem 5.2.4 only requires F' to be in the
domain of attraction of an EVD.

Theorem 5.2.4 (Rootzén and Tajvidi, 2006).

(i) Suppose that G is a d-dimensional EVD with 0 < G(0) < 1. If F' is in the
domain of attraction of G, then there exists an increasing continuous curve
u with F(u(t)) = 1 as t — o0, and a function o(u) > 0 such that

G(x) )

1
PXsouxtulXLw) = 0 Go) % (G(min(xa 0))

as t — oo for all x.

(ii) Suppose that there exists an increasing continuous curve u with F(u(t)) — 1
as t — oo, and a function o(u) > 0 such that, for x > 0,

PX<o(ux+u|XLu)— H(x)

for some df H ast — oo, where the marginals of H on R are non-degenerate.
Then the above convergence holds for all x and there is a uniquely determined
EVD G with G(0) = e~ such that

H(x):log< . Gx) )

(min(x,0))

This G satisfies G(x) = exp(H (x) — 1) for x > 0 and F is in the domain of
attraction of G.

Note that

H(x) :=log (G(Hif:((l O)) , x € RY, (5.8)

defines a df, if G is an EVD with G(0) = e~!. This follows from the arguments in
Lemma 5.1.5. In particular we obtain in this case

H(x) =1+ log(G(x)), x>0,

i.e.,, H is a GPD. The definition (5.8) of a GPD is due to Rootzén and Tajvidi
[401]. Different from our definition of a GPD, it prescribes its values everywhere
in R%. As a consequence, lower dimensional marginals of H as in (5.8) are not
necessarily GPD again, see Rootzén and Tajvidi [401, Section 4].
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THE CASES OF INDEPENDENCE AND COMPLETE DEPENDENCE

We will take a quick look at two special cases. The first can be interpreted with
the help of Theorem 5.2.4. Take a GPD W with upper tail W(x) =14+, ,x; =
1 — |Ix|l;, xo < x < 0. The corresponding EVD G(x) = exp (- [x],), x < 0,
has independent margins G;(x) = exp(z), < 0, i < d. The case ||-||, = |||, is,
therefore, referred to as the independence case. In the GPD setup, however, the
behavior is different. Actually in this case no observations fall into an area close
to 0, which can easily be seen by differentiating the df, resulting in the density 0
close to the origin (see Michel [332, Theorem 2| for details).

However, it is still justified to speak of this case as a case of independence
with the following rational. Let Y = (Y1,...,Yy) be a rv with df F and tail
independent components Y;. Suppose that the df of each Y; is in the univariate
domain of attraction of exp(z), < 0. Then F' is in the domain of attraction of
exp (— |Ix]|;), x < 0, see Proposition 5.27 in Resnick [393].

Thus, by Theorem 5.2.4, we know that observations exceeding a high thresh-
old have, after a suitable transformation of the margins, asymptotically the dis-
tribution 1+log (exp (— ||x||;)) = 1—||x||; in the extreme area. So W (x) = 1—||x||,
is the asymptotic exceedance distribution of rv with tail independent components.
This implies that rv with tail independent components have in the limit no obser-
vations close to the origin. Because of this we can, still, speak of W (x) = 1— ||x||,
as the independence case.

In applications, one should check observations for tail independence before
applying a GPD model to exceedances, to make sure that one is not in the case of
independence.

We will give another interpretation of this GPD for the bivariate case in
Section 6.1.

Next we will look at the other extreme case, the case of complete dependence
W(x) =1 —||x||. Here the margins are completely dependent. This can be seen
as follows.

Lemma 5.2.5. Let X; < 0 be uniformly distributed on (—1,0), and put Xy :=
Xg—1:= - := X1. Then the joint df of (X1,...,Xq) on the negative quadrant is
W(x) =1—|x]||,, forx <0 with ||x||., <1 and equal to 0 elsewhere.

Proof. Choose x = (x1,...,74) € (—1,0)%. Then

W(x)=P(X1 <z1,...,Xq < 2q)
= P(X; < min(zq,...,24))

=1+ min(xy,...,zq)
=1—max(|z1],...,|zq|)
=1- Hx”oo '

If one component of x is smaller than —1, we, obviously, have W (x) = 0.
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In case the rv (Xy,...,Xq) follows the EVD exp(— |x]| ), we also have
X, =--+- = X4 with probability 1. Therefore, this case is referred to as the case of
complete dependence.

We have shown in Lemma 5.2.5 that in the case of complete dependence
the GP function is a df on its entire support on which it is non-negative. This
shows that Proposition 5.1.3 would not be valid for A\ = co and that there exists
a multivariate case where the GP function is a df on its entire support.

THE GPD oF AsYyMMETRIC LoGisTic TYPE

In Section 5.1 we have shown the logistic GPD, which contains the above men-
tioned cases of independence and complete dependence. We will now present an
extension of this model and use it to show that GPD are, in a certain sense, not
uniquely determined when modelling threshold exceedances. The family of asym-
metric logistic distributions was introduced in Tawn [440] for the extreme value
case. It is derived there as a limiting distribution of componentwise maxima of
storms recorded at different locations along a coastline.

Let B :=P({1,...,d})\{0} be the power set of {1,...,d} containing all non-
empty subsets, and let A\r > 1 be arbitrary numbers for every I' € B with |T'| > 1
and Ap = 1 for |I'| = 1. Furthermore, let 0 < % r < 1, where ¢;r = 01if j ¢ T" and
with the side condition ) .59 =1for j =1,...,d. Then a df with upper tail

l/AF

Was(z1, ..., 2q) =1 — Z Z (_’l/fjij))\r ) (5.9)

reB | jer

x; <0,i=1,...,d, close to 0, is called a GPD of asymmetric logistic type.

Due to the side conditions for the v; 1 we have in this model 2¢71(d + 2) —
(2d + 1) free parameters, 2¢ — d — 1 for the various Ar and the rest for the ¢, r,
see Section 2 in Stephenson [425]. In the case 91 . 4y = 1 for j =1,...,d and
A= Ar > 1, we have again the (symmetric) logistic distribution.

With d = 2 and the short notations ¥1 := 9y 11,2y, ¥2 := Y2 {121, A = A{1,21,
formula (5.9) reduces to

Was(21,22) = 14+ (1 — )21 + (1 — ¥2)z2 — ((—¢121)* + (—¢2$2)’\)1/)\-

In the case d = 3 we have
Was(w1,22,23) = 14 (1 =1 — 3 — 7)1 + (1 — Yo — b5 — 9g)x2
+(1 — Y4 — Y6 — Yg)x3
— ((=re)™ + (~vaa2)™)
— ((—vsz1)™ + (—¢45€3)/\2)1//\2

1/A1
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- ((—¢5$2)A3 + (—waS)Ag)l/AB

— ((=gra)™M + (—ghsm)™ + (—1/J9$3)A4)1//\4

(5.10)

with the corresponding short notations for the #;r and Ap.
The following result can be shown by tedious but elementary calculations,
see the proof of Lemma 2.3.18 in Michel [330].

Lemma 5.2.6. The function

Was (X)
d—1 d Aa /4 Aa—1 d Ay —d
= (H(MA - 1)) (H wm> (H(—xi)> Z(_%M)M

is the density of Wys for xg < x < 0.

Note that in the density in Lemma 5.2.6 only those parameters with index
set A = {1,...,d}. In contrast to the extreme value case, the lower hierarchical
parameters do not play a role close to the origin.

The next corollary follows from Lemma 5.2.6. It shows that different GPD
can lead to the same conditional probability measure in the area of interest close
to 0.

Corollary 5.2.7. Let W7 and Wy be GPD such that there exists a neighborhood
U of 0 (in the relative topology of the negative quadrant), such that

PWI(B) = PWz(B)

for all Borel sets B C U. Then W1 and Wa and correspondingly their angular
measures vy and v may be different.

Proof. We will establish a counterexample in dimension d = 3. Let W; and W3 be
two trivariate GPD of asymmetric logistic type with identical parameters ¥z, g,
19 and A4 in the notation of (5.10) but with different parameter A;. Then we know
from Lemma 5.2.6 that W; and W5 have the same density close to the origin, i.e.,
Py, (B) = Pw,(B) for all Borel sets B close to the origin. Let G; = exp(W; — 1),
i = 1,2, be the corresponding extreme value distributions. The angular measures
v1 and v, belonging to G; and G2 and, thus, W; and W5 are given in Section 3.5.1
of Kotz and Nadarajah [293] in terms of their densities. These densities depend
(on the lower boundaries of Ry) on the parameter A; and are, thus, different for
different A1, leading to v # vs.

The difference between the two angular measures in the proof of Corol-
lary 5.2.7 is in the lower dimensional boundaries of the unit simplex. Both measures
agree in the interior.
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The proof of Corollary 5.2.7 can be carried over to arbitrary dimension d > 3,
since its conclusion only uses free lower hierarchical parameters. As these exist
in the asymmetric logistic case only for d > 2, we, thus, encounter here again
an example of the fact that multivariate extreme value theory actually starts in
dimension d > 3.

As a consequence of Corollary 5.2.7, it is possible to model exceedances by
different GPD, which, however, lead to identical conditional probability measures
close to the origin. For distributions F; € D(G;), i = 1,2 from the domains of
attraction of different EVD G # (G2 it may be possible to model exceedances
over high thresholds of F; not only by W; but also by W5 and vice versa.

A generalization of the asymmetric model to the generalized asymmetric
model is given with the help of suitable norms in Hofmann [222], Section 5.5.

ANOTHER REPRESENTATION OF GPD AND EVD

The following result characterizes a GPD with standard uniform margins in terms
of rv. For a proof we refer to Aulbach et al. [18]. It provides in particular an
easy way to generate a multivariate GPD, thus extending the bivariate approach
proposed by Buishand et al. [58] to an arbitrary dimension. Recall that an arbitrary
multivariate GPD can be obtained from a GPD with ultimately uniform margins
by just transforming the margins.

Proposition 5.2.8.

(i) Let W be a multivariate GPD with standard uniform margins in a left
neighborhood of 0 € RY. Then there exists a v Z = (Zy,...,7Z) with
Zi € [0,d] as., BE(Z;) = 1,1 < d, and 3} ,.;Z; = d a.s. as well as a

vector (—1/d,...,—1/d) <xg < 0 such that
1 1
W(x):P(—U(Zl,...,Zd>§x), x0 <x <0,

where the rv U is uniformly on (0,1) distributed and independent of Z.

(ii) The rv —U(1/Zy,...,1/Zq) follows a GPD with standard uniform margins
in a left neighborhood of 0 € R if U is independent of Z = (Z1, ..., Zq) and
0<7Z; <c¢ as. with BE(Z;) =1, i <d, for someci,...,cq > 1.

Note that the case of a GPD W with arbitrary uniform margins W;(x) =
1 —a;x in a left neighborhood of 0 with scaling factors a; > 0, i < d, immediately
follows from the preceding result by substituting Z; by a;Z;.

We remark that the distribution of the rv Z in part (i) of Proposition 5.2.8
is uniquely determined in the following sense. Let T = (T1,...,Ty) be another rv
with values in [0,d]¢, E(T;) =1,i <d, Y.,.,T; = d a.s., being independent of U

and satisfying
1 1 1 1
-U e =p U . . 5.11
(Zlv ’Zd) D <T1’ ,Td> ( )
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Then we have
Z=pT.

This can easily be seen as follows. Equation (5.11) implies

1 1 1 Z 1 T
UZ:D T —

=D ﬁ Z =D T.
U U Zigdzi U Zigd T
U U

If we drop the condition ), , T; = d a.s. and substitute for it the assumption
> icaTi > 0 a.s., then the above considerations entail

T
Z=p .
d2ui<aLi

We, thus, obtain that (T4,...,T4) in (5.11) can be substituted for by

~ T:

Tii i<d,

1
=1 3 >
d Zigd T;

satisfying T; € [0,d], E(T;) =1, i < d, i< T; = d as well as (5.11).

Proposition 5.2.8 entails the following representation of an arbitrary EVD
with standard negative exponential margins. This result extends the spectral rep-
resentation of an EVD in (4.23). It links, in particular, the set of copulas with the
set of EVD.

Corollary 5.2.9.

(i) Let G be an arbitrary EVD in R? with standard negative exponential margins.
Then there exists a rv Z = (Z1,...,Zq) with Z; € [0,d] a.s., E(Z;) = 1,
1 <d, and Zigd Z; =d, such that

G(x) = exp (/ m<1(111(x1Z1) dP) , x < 0.

(ii) Let, on the other hand, the rvZ = (Z1,...,2Zq) satisfy Z; € [0,¢;] a.s. with
E(Z;)=1,1i<d, for some c1,...,cq > 1. Then

G(x) := exp (/ m<1(111(x1Z1) dP) , x <0,

defines an EVD on R with standard negative exponential margins.

Proof. Let U be a uniformly on (0,1) distributed rv, which is independent of Z.
Both parts of the assertion follow from the fact that

1 1
W(x):P(—U(Zl,...,Zd>§x), x <0,
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defines a GPD on R?, i.e., W = 1+ log(G), which is in the domain of attraction
of the EVD G with standard negative exponential margins: We have

W (X)n = (1+10g (G (’;))n oo G(X)

n

as well as, for n large,

w () =r (0 ()< n)

(

/P (U . mgj‘(_xizi) | Zs = 2,0 < d) (P x Z)(dz))n
/ )

=(1- /P (U <! maX(—ariZi)> (P * Z)(dz)>n

n i<d

_ (1 _Tll ma(—zi2) (P*Z)(dZ)>n

i<d

Let, for instance, C be an arbitrary d-dimensional copula, i.e., C' is the df of
arv S with uniform margins P(S; < s) =s, s € (0,1), ¢ < d, (Nelsen [350]). Then
Z := 28 is a proper choice in part (ii) of Proposition 5.2.8 as well of Corollary
5.2.9. Precisely,

G(x) :=exp <2/ min (z;u;) C(du)) , x <0,
[0,1]¢

defines for an arbitrary copula C' an EVD with standard negative exponential mar-
gins. This result maps the set of copulas in a natural way to the set of multivariate
GPD and EVD, thus opening a wide range of possible scenarios.

MULTIVARIATE PIECING-TOGETHER

If X is a univariate rv with df F, then the df F[#o] of X conditional on the event
X > xp, is given by

F(z) = F(zo)

Flrol(z) = P(X <z | X > x0) = L (e
- 0

{EZCEO,
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where we require F(zy) < 1. The POT approach shows that F[*] can reason-
ably be approximated only by a GPD with appropriate shape, location and scale
parameter W, , -, say,

F(z) = (1 = F(x0)) F™)(2) + F ()
~ (1 — F(20))Way uo(x) + F(z0), T > x0.

The piecing-together approach (PT) now consists in replacing the df F' by

. ) F(x), x < xp,
Fry(@) = {(1 — F(z0))Wy p0(x) + F(z0), x> 0, (5.12)

where the shape, location and scale parameters ~y, u, o of the GPD are typically
estimated from given data. This modification aims at a more precise investigation
of the upper end of the data.

Replacing F in (5.12) by the empirical df of n independent copies of X
offers in particular a semiparametric approach to the estimation of high quantiles
F~1(q) =inf {t € R: F(t) > ¢} outside the range of given data, see, e.g., Section
2.3 of Reiss and Thomas [390].

For mathematical convenience we temporarily shift a copula to the interval
[~1,0]? by shifting each univariate margin by -1. We call a df Cy on [~1,0]? a
GPD-copula if each marginal df is the uniform distribution on [—1,0] and Cw
coincides close to zero with a GP function W as in equation (5.1), i.e., there exists
X < 0 such that

Ow(x) =W =1-|xlp. x<x<0,

where the D-norm is standardized, i.e., ||e;||, = 1 for each unit vector in R%.

For later purposes we remark that a rv V € [—1,0]? following a GPD-copula
can easily be generated using Proposition 5.2.8 as follows. Let U be uniformly on
(0,1) distributed and independent of the vector S = (Si,...,S¢), which follows
an arbitrary copula on [0, 1]¢. Then we have for i < d,

1 142, if —1l<z<0
P(-U <z|= ’ 2=~ " = H <0
( 2Six> {4|1I|, ifo <1, @), =<0

and, consequently,

Ve (-2 e (C2) 1) i

-v if U <S;
Vf{ o HU> 5, (5.13)

with

ifU > S,
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follows by Proposition 5.2.8 a GPD-copula on [—1,0]%.

The multivariate PT approach consists of two steps. In a first step, the upper
tail of a given d-dimensional copula C, say, is cut off and substituted for by the
upper tail of multivariate GPD-copula in a continuous manner. The result is again
a copula, i.e., a d-dimensional distribution with uniform margins. The other step
consists of the transformation of each margin of this copula by a given univariate
df F}, 1 < ¢ < d. This provides, altogether, a multivariate df with prescribed
margins F;*, whose copula coincides in its central part with C' and in its upper tail
with a GPD-copula.

FrrTING A GPD-CoruLA TO A GIVEN COPULA

Let the rv V = (Vq,...,Vy) follow a GPD-copula on [—1,0]¢. That is, P(V; <
x)=14uz, —1 <z <0, is for each i < d the uniform distribution on [—1, 0], and
there exists w = (w1, ..., wq) < 0 such that, for each x € [w, 0],

P(V<x)=1-|xlp,

where ||-||, is a standardized D-norm, i.e., it is a D-norm with the property
lleill , = 1 for each unit vector e; in R, 1 <4 < d.

Let Y = (Y1,...,Yy) follow an arbitrary copula C' on [—1,0]% and suppose
that Y is independent of V. Choose a threshold y = (y1,...,y4) € [~1,0]¢ and
put

Q; = Ygl(YiSyi) — yiV}l(ypyi), 1 <d. (5.14)
The rv Q then follows a GPD-copula on [—1,0]%, which coincides with C' on

Xi<d[—1,y;]. This is the content of the following result. For a proof we refer to
Aulbach et al. [18].

Proposition 5.2.10. Suppose that P(Y > y) > 0. Fach Q; defined in (5.14)
follows the uniform df on [—1,0]. The rv Q = (Q1, ..., Qq) follows a GPD-copula
on [—1,0]¢, which coincides on x;<q[—1,y;] with C, i.e.,

PQ<x)=C(x), x<y.

We have, moreover, with x; € [max(y;, w;),0], i < d, for any non-empty subset K

of {1,...,d},
PQi>wz,i€ K)=P(V; > b gz, i € K),
where

P(Y; >y, j€K)  P(Y; >y, j€K)

= € (0,14, 1€ K.
—Yi P(Y; > yi) 0.1

by K =
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The above approach provides an easy way to generate a rv X € R? with
prescribed margins F}*, 1 < d, such that X has a given copula in the central part
of the data, whereas in the upper tail it has a GPD-copula.

Take Q = (Q1,...,Qq) asin (5.14) and put Q := (Q1+1,...,Qq+1). Then
each component Q; of Q is uniformly distributed on (0, 1) and, thus,

X = (X1, .., Xq) i= (Fl*‘l(@l), . ,F;—l(@d))

has the desired properties.

Combining the univariate and the multivariate PT approach now consists in
defining F* by choosing a threshold u; € R for each dimension 7 < m as well as a
univariate df F; together with an arbitrary univariate GPD W,, ,..+,, and putting,
for 7 < d,

cy . ) Fil@), if & <y
Fi (x) o {(1 - Fi(ui))W’yi,pigi (13) + Fl(ul), if z > Uq ’ (515)

This is typically done in a way such that £} is a continuous function. This mul-
tivariate PT approach is utilized in [18] to operational loss data to evaluate the
range of operational risk.

5.3 Peaks-Over-Threshold Stability of a GPD

Recall that a univariate GPD is in its standard form any member of

1—(-2)*, —-1<z<0, (polynomial GPD),
W(x)=141log(G(z))=<1—-27% z>1, (Pareto GPD),
1—exp(—z), x>0, (exponential GPD),

where G is a univariate EVD.

According to Theorem 2.7.1, cf. also (2.15), a univariate GPD is character-
ized by its peaks-over-threshold (POT) stability: Let V' be a rv which follows a
univariate GPD W as in (5.3). Then we obtain for any xzy with W (zo) € (0,1)

PV >txg |V >x0) =t t €[0,1], (5.16)
for a polynomial GPD,

P(V>txg |V >ax0)=t"¢, t>1, (5.17)
for a Pareto GPD and

P(V>zo+1t|V >ux) =exp(—t), t>0, (5.18)
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for the exponential GPD. By POT stability we mean that the above excess distri-
butions are invariant to the choice of xg.

The main contribution of this section is the multivariate extension of this
result. It is, however, not obvious how to define a multivariate exceedance. Put,
therefore, for any of the above three univariate cases, A := (x0,00). Then A
satisfies the condition

tVox e A, t € (0,1], in the polynomial case,
reA = {tV/op e A, t > 1, in the Pareto case,
r+tEA, t >0, in the exponential case.

The preceding equations (5.16)-(5.18) can now be written as

P (t—l/av cA|Ve A) =t, te€(0,1], in the polynomial case,
P (t—l/av cA|Ve A) =¢! t>1, in the Pareto case,
P(V—-teA|VeA) =exp(—t), t=>0, in the exponential case.

These different equations can be summarized as follows. Put, for an arbitrary
univariate EVD G,

P(z) :==log(G(z)) = W(z) — 1, 0<G(z) <1,

which defines a continuous and strictly monotone function with range (—1,0).
Then we have, for A = (x¢,0) with —1 < x¢ < 0 and P(V € y~1(A)) > 0,

P(V ey ttA) | Vey H(A) =t  te(0,1], (5.19)

where the rv V follows the GPD W. This result is immediate from the fact that
(V) follows the GPD 1+ 2z, —1 <z <0.

This POT stability of a univariate GPD will be extended to an arbitrary
dimension. The following result is the multivariate analogue of equation (5.19).

Theorem 5.3.1. Let A C (x0,0], xo > (=1/d,...,—1/d), be a Borel set with the
cone type property

x€A = txeA, t € (0,1]. (5.20)
Suppose that the rv'V follows an arbitrary GPD W with margins W;, ¢ < d, and put

1/2-(:1:) = Zvi(a:) —1,i<d, U(x) = (¢1(z1), ..., %a(za)). If P(V € T7HA)) >0,
then we have

P(VeU ' (td) |Vev(4) =t t €10,1].
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Proof. We have
P(VeU '(tA) | Ve ¥ (A) =P (¥(V)etA|¥(V) e A),

where V := ¥(V) follows a GPD with ultimate standard uniform margins W; (z) =
14z, 29 <z < 0. From Proposition 5.2.8 we know that there exists a uniformly on
(0,1) distributed rv U and an independent rv Z = (Z1,...,Zy) with 0 < Z; < d,
E(Z;) =1, i <d, such that

f— —_ )

~ 1
P(Vgx):P(—UZSX), X0 <x<0

where 1/Z is meant componentwise.
We obtain, consequently, for ¢ € (0, 1],

P l\NfeA =P —UleA
t t 7

(- cavse)r(-Y,

‘7 tZEA’U>t)'

Note that the second probability vanishes as —U/(tZ) ¢ A if U > t; recall that
1/Z > (1/d,...,1/d), xo > (1/d,...,1/d) and that A C (xo,0]. Conditioning on
U = wu and substituting u by tu entails

U1l t u
— < =
P( tZeA,Ut) /0P<tZeA)du

We, thus, have established the equality
1~ ~
P(tVeA):tP(VeA), 0<t<1.

As the set A has the property x € A = tx € A for t € (0,1], we obtain the
assertion:
P (1\7 €A Ve A)
P(V € A)
_P(}VeA)
~ P(VeA)
=1, t € (0,1].

1~ ~
P(tVeA‘VeA):



5.3. Peaks-Over-Threshold Stability of a GPD 193

The following consequence of Theorem 5.3.1 generalizes results by Falk and
Guillou [139] on the POT-stability of multivariate GPD by dropping the differ-
entiability condition on the Pickands dependence function corresponding to the
GPD W.

Corollary 5.3.2. Let the rv 'V follow an arbitrary GPD W on R% with ultimate
univariate GPD margins Wy,..., W, and let the the set A C {x € R*: —1/d <
Wi(z;) —1<0, i <d} satisfy

x €A
(tVorgy, ... tt/vagy) € A, te(0,1],

if Wi(z) =1—|z|", -1 <2 <0,i<d,
(tl/alzla s 7t1/06d:1;d) S A7 t 2 17 ZfWZ(:E) =1- :Z:_aiaaj 2 1,Z S da
(r1+t,...,2q+1t) € A, t>0,if Wi(z) =1—exp(—x),xz >0,i <d,
where o; > 0. Then, if P(V € A) >0,

=

P ((t—l/alm,...fl/advd) €A|Ve A)
]t te (0,1, fWiz)=1—|z|",-1<x<0,i<d,
R s t>1, ifWilx)=1—z"% 2 >1,i<d,

and
P(Vi—t,....,Vy—t) € A|V € A) = exp(—t), t>0,

ifWi(z) =1—exp(—z), 2 >0, i <d.

Proof. Put A= {(W1(ar),...,v4(aq)) : a € A}, where 1p; = W; — 1, i < d. Then
Ac((-1/d,...,—1/d),0] satisfies

x€A = txeA, 0<t<l,
and, thus, with U(x) = (¢1(x1),...,%a(rq)) we obtain from Theorem 5.3.1
P (V cy! (tﬁ) |V eu! (Z)) =t telo1],
which implies the assertion for any of the three different cases. Note that {V €
gl (Z) }={Vea}

Example 5.3.3. Let V follow a GPD with ultimately standard uniform margins
Wi(z) =1+, —1 <2 <0, < d. Then we obtain for any ¢ < 0 close to 0 and
arbitrary weights A\; > 0, i < d,

P> Vit Y NVisc| =t te[o1],
i<d i<d

provided P (3,24 AiVi > t) > 0.
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Proof. Set A, := {(—1/d,...,—1/d) <a<0:),4Na; > c}. Then the set A,
satisfies
Xxe€A — txe A, 0<t<1,

and, thus, the assertion is immediate from Corollary 5.3.2, applying the first case
with a; =+ =ag = 1.

We can interpret Zig 4A\iVi as a linear portfolio with weights )\; and risks
V;. A risk measure such as the expected shortfall £ (Zigd AV | Zigd Vo> c),

thus, fails in case of a multivariate GPD with ultimately uniform margins, as it is
by the preceding example independent of the weights \;. For a further discussion
we refer to [139].

The following characterization of a multivariate GPD with uniform margins,
which requires no additional smoothness conditions on the underlying dependence
function D, extends characterizations of a GPD as established in Theorem 2 and
Proposition 6 in Falk and Guillou [139]. This result will suggest the definition of
a statistic in Section 5.8, which tests for an underlying multivariate GPD. The
conclusion ” = ” is immediate from Corollary 5.3.2, first case. The reverse impli-
cation of Proposition 5.3.4 is established in Falk and Guillou [139], Proposition 6.

Proposition 5.3.4. An arbitrary ro'V = (V1, ..., Vy) follows a GPD with uniform
margins Wi(x) = 1+ a;x, xo < x <0, with some scaling factors a; > 0, i < d, if,
and only if, there exists xo = (zo1,...,%0,4) < 0 with P(U; > x0;) > 0, i < d,
such that for any non-empty subset K C {1,...,d} of indices

PV, > tag, k€ K) =tP(Vi, > ay, k € K), t €10,1], (5.21)

for any x = (x1,...,24) € [X0,0].

5.4 A Spectral Decomposition Based on
Pickands Coordinates

Motivated by the special dependence of G and W on x and D we introduce the
Pickands coordinates pertaining to x. A consequence of this definition will be a
decomposition of a multivariate df H into a family of univariate df. This decom-
position also suggests estimators of the Pickands dependence function D under
EVD and GPD.

Recall that the Pickands dependence function D is defined on the set

R = {(tl,...,td_l) S [0,1}d_1 : Z t; < 1},

i<d—1

see (4.30).
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P1ckANDS COORDINATES IN R

Any vector X = (z1,...,24) € (—00,0]? with x # 0 can be uniquely represented
as
T Tq— r1+ -+ Tq—
x= (1 + -+ x4) ! =t -t
=:c|21,..-,2d-1,1 — Z zi |,
i<d—1
where ¢ < 0 and z = (z1,...,24—1) € R are the Pickands coordinates of x. They

are similar to polar coordinates in R, but using the [|-||;-norm in place of the
usual ||-||;-norm. The vector z represents the angle and the number ¢ the distance
of x from the origin. Therefore, z and ¢ are termed angular and (pseudo-)radial
component (Nadarajah [343]).

SPECTRAL DECOMPOSITIONS OF DISTRIBUTION FUNCTIONS
Let H be an arbitrary df on (—o0,0]? and put, for z € R and ¢ < 0,
H,(c) := H(c(zl, e Zd—1, 1 — Z zl>>
i<d—1

With z being fixed, H, is a univariate df on (—oo,0]. This can easily be seen as
follows. Let U = (Uy,...,Ug) be a rv with df H. Then we have

P <max (maxi:zpo ?7 1_2Ud ) < c) , 0< Zigd—l z < 1,

i<d—17
H,(c) = P (maxi;zi>0 [zjf < c) , if Eigd—l z =1,
PUq <), Zi§d-1 z; = 0.
Note that

U;
H,(c)=P (max < c) ,
i<d Z;
where z4 := 1 — Zigd—l zi, if H is continuous at 0.
The df H is obviously uniquely determined by the family

P(H):={H,:z€ R}

of the univariate spectral df H,. This family P(H) of df is the spectral decomposition
of H.

First we study two examples of spectral representations, namely those for
EVD and GPD. In these cases the spectral df are univariate EVD and, respectively,
GPD (merely in the upper tail if d > 3).
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Lemma 5.4.1. For a max-stable df G with reverse exponential margins we have
Gz(c) =exp (cD(z)), ¢<0,z€R,

and, thus, P(G) is the family of reverse exponential distributions with parameter
D(z), z € R.

Proof. The assertion is obvious from the equation

Gz(c):G<c<zl,...,zd_1,1— > z)) =exp (cD(21,. .., 2a-1)).

i<d—1

In the subsequent lemma it is pointed out that the converse implication also
holds true.

Lemma 5.4.2. Let H be an arbitrary df on (—oo,0]% with spectral decomposition
H,(c) = exp (cy(z)), c<0,z€R,

where g : R — (0,00) is an arbitrary function with g(0) = g(e;) = 1 and e; is the

i-th unit vector in R*~1. Then H is an EVD with reverse exponential margins and

dependence function g.

Proof. H is max-stable because

H"(Z <z1, e Zaen, 1 g;lz)) - H;‘(Z) = exp (cg(2))
_ H(c(zl, v - g;lz))

and it has reverse exponential margins. The assertion is now a consequence of the
Pickands representation of H and the preceding lemma.

Corresponding to Lemma 5.4.1 we deduce that the spectral df of a GPD is
equal to a uniform df (in a neighborhood of 0).

Lemma 5.4.3. Let W =1+ 1og(G) be a GPD. For c in a neighborhood of 0
Wyle) = 1+ ¢ D(a),

and, thus, each member W, of P(W) coincides in its upper tail with the uniform
df on the interval (—1/D(z),0), z € R.

The following result is just a reformulation of Lemma 5.4.1 and Lemma 5.4.3.
Put for z = (z1,...,24-1) € R, c<0and U = (Uy,...,Uy) with df H,
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Ui 5] :
max (maxi:zpo . Iy d > , if0o< Zigd—l z <1,

i<d—17
— U; : _
MZ,U . maxs.z, >0 Z;, if Zigd—l Zi = 1,
Ud, if Zigd—l Z; = 0,
U.
=max (5.22)
i<d Zq

almost surely, if H is continuous at 0, where zg =1 — ZK 41 %i- Recall that this
condition is satisfied for EVD and GPD. B

Corollary 5.4.4. We have for z € R and ¢ < 0 that

exp(cD(z)), if H=G,

PM,uv<c) =
(M < c) { 1+¢D(z), if H=W and c close to 0.

ESTIMATION OF THE PICKANDS DEPENDENCE FUNCTION

The rv | M, u| is, thus, exponential distributed with parameter D(z) if H = G, and
its df coincides near 0 with the uniform df on (0,1/D(z)) if H = W. This suggests
in the case H = G the following estimator of D(z), based on n independent copies
Uy,...,U, of U.

Put, for z € R, )

Drev@) = s My
n i<n z,U;

The estimator is motivated by the usual estimation of the parameter of an
exponential distribution by the reciprocal of the mean of the observations.

The following result is now immediate from the central limit theorem applied
to ﬁn,Ev(z). In the case d = 2, the estimator ﬁn)Ev(z) is known as Pickands
([372]) estimator. A functional central limit theorem and a law of the iterated
logarithm for D,, pv (z) was established in the bivariate case by Deheuvels [103].
For further literature on non-parametric estimation of the dependence function for
a multivariate extreme value distribution, we refer to Zhang et al. [471].

Lemma 5.4.5. We have, for z € R as n — oo,
n*%(D,, gy (z) — D(z)) —p N(0, D*(z)).

Suppose that U has a GPD. Conditional on the assumption that M,y >
co > —1, M,y /co is uniformly distributed on (0, 1),

P(MZ)U > ucy | Mz,U > CO) =u, u e (0, 1),

if ¢ is close to 0. Consider only those observations among M, u, /co, - .., Mzu, /co
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with Mz u,/co < 1. Denote these exceedances by My, ..., Mg, where K(n) =
Y ien 1(Mzu,/co < 1). By Theorem 1.3.1, My, My, ... are independent and uni-
formly on (0,1) distributed rv. The points (i/(K(n) 4+ 1), M;.x(n)), 1 <i < K(n),
then should be close to the line {(u,u) : w € [0,1]}. This plot offers a way to
check graphically, whether U has actually a GPD. We will exploit this relation-
ship in Section 5.8 to derive tests for checking the GPD assumption of real data
and thereby finding appropriate thresholds for the POT approach.
If U has an EVD, then we obtain from a Taylor expansion of exp at 0,

1 — exp(ucoD(z))

P(Mpu > ucy | Mgy > co) = 1 —exp(coD(z))

=u(1l+ O(cp))

uniformly for z € R and u € (0,1) as ¢p 1 0. A uniform-uniform plot of the ex-
ceedances My, . .., M,y would then be close to the identity only for ¢y converging
to 0.

FURTHER POT-STABILITY OF W

Pickands coordinates offer an easy way to show further POT-stability of a GPD
W =1+ log(G); see also Section 5.3. Choose z = (z1,...,24-1) € R, put zq4 :=
1—>cq_1% €(0,1), and let 0 > r,, — 0 be a sequence of arbitrary negative
numbers converging to 0 as n — oo. Let X = (X1,...,Xy) have GPD W. Then
we obtain with 0 > ¢ > —1/D(z) for the conditional distribution if n is large,

P (X, > ryzi|c|D(z) for some 1 < i <d|X; > rpz; for some 1 < i <d)

1 —=W(rnle|D(z)(21,. .., 24))

1—=W(rn(z1,...,24))
rolcl(z1 + - + z4) D*(2)
ra(z1 4+ -+ 24)D(2)

= —cD(2)
=1-—W(cz)
= P(X; > ¢z; for some 1 <i <d). (5.23)

The following variant of POT-stability is also satisfied by a GPD W =1 +
log(G) with dependence function D.

Lemma 5.4.6. Put k =dD(1/d,...,1/d) and choose t; € [-1/k,0)%, i < d, such
that k := P(X; > t;,1 < d) > 0, where (X1,...,Xq) has df W, and W(x) =
1+ log(G(x)) for x € Xi<qlti,0].

Then we have for 0 > ks; > t;, 1 < d,
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Proof. The assumption is easy to check:

P(X; > ks, i <d| X; >1t;,1<d)
_ P(Xi > ks, i < d)
- P(X; >t,i<d)

Lo
= I{A(){Sl,...,ﬁsd)w
1 - m;
= Z (—1)d 2 s TW (0™ (ksy) ™, L, 0™ (Ksg) M)
me{0,1}4¢
=Y () R (ol gk
me{0,1}4

:P(XlZSZ,ng)

Note that ZmG{O,l}d(_l)d_Ede "™ = 0 and that the constant function D = 1
is, therefore, excluded from the above considerations, since we have in this case
0 —
A(t17~~;td)W =0.
For further results on the asymptotic distribution of bivariate excesses using
copulas we refer to Wiithrich [467] and Juri and Wiithrich [279].

THE BEST ATTAINABLE RATE OF CONVERGENCE

In Theorem 2.1.11 and 2.1.12 we showed that the univariate GPD are characterized
by the fact that they yield the best rate of convergence of the upper extremes in
a sample, equally standardized. In the sequel we extend this result to arbitrary
dimensions.

Let UM U® .. be a sequence of independent copies of a rv U with df H,
which realizes in (—oo,0]%. Then, M, v, M, y),... defines for any z € R a se-
quence of univariate rv with common df H,(c) = H(c(z1, ..., za—1,1 =Y ;41 %)),
c<0.

Denote for any n € N by M, 1., < My 2., < My p:n the ordered values of
M, v, s M, ym, 80 that My p—r+1:n is the k-th largest order statistic, k =
1,...,n.

Suppose that the df H is a GPD H = 1+1log(G). Then we obtain by elemen-
tary arguments

c k
supsup | P [ nMy p—pt1:n < - P <cl|=0 , 5.24
supo | P (ndtenronn < i) 2.6 () @20

where £1,&s, ... are iid rv on (—o00,0) with common standard reverse exponential
distribution, cf Theorem 2.1.11.
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But also the reverse conclusion holds, as the subsequent Corollary 5.4.8 shows
by putting g(x) = Cxz. The following results extend Theorem 2.1.12 and Corollary
2.1.13 to arbitrary dimensions. Suppose that the df H is continuous near 0 and
that H,(c) is a strictly increasing function in ¢ € [¢g,0] for all z € R and some
co < 0.

Theorem 5.4.7. Suppose that there exist norming constants az ., > 0, by, € R
such that

A(n, k) = supsup |P(Mzn—k+1:n — bzn)/azn<c) — P ij <cl|| —=nse0 0
z€ER ceR i<k

for any sequence k = k(n) € {1,...,n}, n € N, with k/n —,_oc 0. Then there

erist positive integers ai, as,...,aq such that
x x
H(x) :W( L, d)
ai aq

for all x = (x1,...,24) in a neighborhood of 0, where W =1+ log(G) is a GPD.
The following consequence is obvious.

Corollary 5.4.8. If there exist norming constants a, , > 0, by, € R such that

sup sup P((Mz,n—k+1:n - bz,n)/az,n S C) - P Z§J S c S g(k/n)7
z€R ceR i<k

where g : [0,1] = R satisfies lim,_,0g(x) = 0, then the conclusion of Theorem
5.4.7 holds.

Proof. By repeating the arguments in the proof of the main result in Falk [129],
one shows that there exists ¢y < 0 such that, for any z € R and any 0 > ¢, ¢’ > ¢,

1— Hy(c) _ 1—H,(c)

c c

This implies the representation
H,(c) =1+ cA(z), z€ R, 0>c>c,

where | H ()
— H,(c
A(z) = ’
(Z) |C/|
is independent of ¢’. The function A(z) will not be a Pickands dependence function
as it does, for example, not necessarily satisfy A(e;) = 1 = A(0) where e; is the
i-th unit vector in R?~! and 0 € R4™! as well.
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Put, for 1 <i<d—1,

a; = and ag:=

1
Ale:) A(0)

Then we obtain, for x = (1,...,24) # 0 in a neighborhood of 0,

H(a1$17 sy &dﬂﬁd)
aixr aAd—1Td—
:1+(a1x1+...+ad$d)z4( 1 gee ey dldl)
Zigd a;T; Zigd a;T;
x Xd—
=1+($1—|—~-~—|—1}d)D( ! e =1 )
Zigd‘ri Zigdxi

= H"(x1,...,24),

where, with zg:=1-3",., 1 2,

a1z aqd—124—
D(z) := (alzl+"'+ad_1zd_1—|—adzd)A( 1<1 d—1%d 1)

Zigd aizg Zigd iz

for any z € R.
Note that we have D(e;) = 1 = D(0) and that for x = (z1,...,24) €
(—OO, O]da X 7& 07

X\ 1 Td—1

H*( ) —n Ooexp((xl—l—---—i—xd)D( yees )) =: G(x).
n 7 Dica i Dicd i

G is, therefore, an EVD with standard reverse exponential margins and, thus, D

is by the Pickands representation of an EVD necessarily a dependence function.

This completes the proof of Theorem 5.4.7.

5.5 Multivariate Domains of Attraction,
Spectral Neighborhoods

The question now suggests itself, whether one can establish a necessary and suffi-
cient condition for H € D(G) in terms of the spectral decomposition of H. This
question leads to the subsequent Theorem 5.5.3. Likewise, we extend the concept
of a d-neighborhood of a GPD from the univariate case to higher dimensions by
using the spectral decomposition.

THE DOMAIN OF ATTRACTION

The Gnedenko-de Haan Theorem 2.1.1 provides necessary and sufficient conditions
for a univariate df to belong to the domain of attraction of a univariate EVD. The
concept is less straightforward for the multivariate case; for various characteriza-
tions of the domain of attraction of a multivariate EVD we refer to Section 3.2 of
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Kotz and Nadarajah [293] and to Section 5.4.2 of Resnick [393]. At first we want to
provide an extension of the univariate domain of attraction definition (see (1.20)
in Section 1.3) to the multivariate case.

Definition 5.5.1. Let F' be a d-dimensional df. Then we say F belongs to the
domain of attraction of an EVD G, abbr. F € D(QG), if there exists constants
a, >0, b, €R% neN, such that

F"(anx + b,) =nseo G(x), x e R?.

A useful theorem regarding the characterization of a multivariate domain of
attraction goes back to Deheuvels [102] and reads as follows.

Theorem 5.5.2 (Deheuvels). Let X, X1,..., X, be i.i.d d-dimensional rv with
common df F. Then

F"(anx + b,) —neo G(x) rzelR

for some constants a,, > 0, b, € R? n € N, if, and only if, each margin F; of F
converges to the univariate margin G;(x) of G, and the convergence of the copulas
holds

Cr(ut’™) =, 0 Co(uw),  we (0,1)% (5.25)
Proof. See Deheuvels [102] or Galambos [167].

For the following approach regarding the spectral decomposition, it is useful
to recall the Gnedenko-de Haan Theorem 2.1.1 in the case d = 1 and G(z) =
exp(z), © < 0: We have H € D(G) iff w(H) =sup{z € R: H(z) < 1} < oo and

1 — H(w(H) + ct)

li =1, t > 0.
eto 1— H(w(H) + c)
Now we are ready to state our result for a general dimension d. By Hy, ..., Hyq

we denote the marginal df of H and by H*(x) := H(w(H) + x), x € (—o0,0]¢,
the shifted df if w(H) = (w(Hy),...,w(Hy)) are finite numbers. A proof is given
in Falk [137].

Theorem 5.5.3.

(i) Suppose that H € D(G) and that Hy = --- = Hy. Then we have w(H;) < 00

and 1 — Hg(ct)
- c

ol ’ =t 2

Vz € R clTnoll—H;’(c) , t>0, (5.26)

and 1-Hy(c) A(z)
) —HY (c Z

: 1 1 = .2

Vo, zp € Ro lime Hg(c)  Alza) 20

for some positive function A : R — (0,00).
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(ii) Suppose that w(H;) < 0o, 1 < i < d, and that (5.26) and (5.27) hold. Then
we have H € D(G).

If we assume identical margins H; = --- = Hy of H, then we obtain from
the preceding result the characterization of the domain of attraction H € D(G) in
terms of the spectral decomposition of H:

H e D(G) < w(Hy) < oo and (5.26) and (5.27) hold.

Theorem 5.5.3 can easily be extended to an EVD with (reverse) Weibull or
Fréchet margins as follows. Suppose that G, ... o, is an EVD with i-th marginal

Gi(z) = exp(¥q, (7)), 1<i<d,

where (o)
—(—x)*, <0, if >0,
Val(w) = { -z, x>0, if a <0,

defining, thus, the family of (reverse) Weibull and Fréchet df exp(i.(z)). Note
that

Gar,oag (V3 (1), 0 () = G g (@1, ma), 2 <0, 1<i<d,

where G117 = G has reverse exponential margins. Let H be an arbitrary d-
dimensional df and put with ¥ = (¥q,,...,%a,) for ; < 0,1 <i<d,

H'I’(xl, cooxg)i=H (wl + 1/1;11(;101), e, Wa + w;dl(xd))
where w; = 0 if @; < 0 and w; = w(H;) if @; > 0. Then we have
HY €D (G, 1) <= HED(Ca,.. o)

and Theorem 5.5.3 can be applied.

THE SPECTRAL NEIGHBORHOOD OF A GPD

The spectral decomposition provides a comparatively simple sufficient condition
for an arbitrary multivariate df H to belong to the domain of attraction of an
EVD G with reverse exponential margins.

Theorem 5.5.4. Suppose that for any z € R,
1—Hy(c) = |clg(z)(1 +o(1)),  ¢10, (5.28)

for some function g with g(e;) =1=¢(0), 1 <i<d—1. Then, g(z) =: D(z) is a
Pickands dependence function and the df H is in the domain of attraction of the
EVD G with standard reverse exponential margins and dependence function D.
Precisely, we have

H;(C

) = Hn(;(zla "azd—lvl_ Z Zz)) —n—00 eXp(CD(Z))a c< 0.
i<d—1

n
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Before we prove Theorem 5.5.4 we have to add some remarks and definitions.
Note that condition (5.28) is by Hopital’s rule satisfied if H, has a positive deriva-
tive hy(c) = (0/0c)Hy(c) for ¢ < 0 close to 0 and any z = (z1,...,24-1) € R such
that for some function g with g(e;) =1=¢(0),1<i<d -1,

ha(e) = g(z)(1 + o(1)). (5.29)

Recall that the spectral decomposition of a GPD W with Pickands depen-
dence function D can be written as 1 — W,(c) = |¢|D(z) for ¢ < 0 close to 0.
Therefore, condition (5.28) is equivalent to the condition that H belongs to the
spectral neighborhood of the GPD W that is,

1—H,(c)=(1-W.(c))(1+ o(1)), c¢10, z€R. (5.30)

This condition is related to condition (4.4) in the univariate case.
Likewise, condition (5.29) is equivalent to

hz(c) = D(z)(1 4+ o(1)) c¢10, z€R. (5.31)

In this case we say that H belongs to the differentiable spectral neighborhood of the
GPD W.

If we weaken the condition g(e;) = 1 = ¢g(0) in Theorem 5.5.4 to g(e;) > 0,
1<i<d-1,g(0) > 0, then we obtain

) e <<Z>g<z z)) = G(x),

where G is a max-stable df; i.e., G"(x/n) = G(x). But it does not necessarily have
standard reverse exponential margins, since

4 | exp(zig(e;)), ifi<d—1,
G(0,...,0,2;,0,...,0) = { exp(zag(0)), if i — d.

In this case we obtain, however, for x € (—o0,0]? with a; := 1/g(e;), 1 <i <
d— 1a aqd = l/g(O)a

1
H"( (alxl,...,adxd)>
n
a1y ad—1Td—1
I )
e ( Z o Zigdaixi Zigdaiini

_ exp<(zxj_)(zaizxi )

j<d i<d j<d ¥i
y < a1/ Y T Ad-1Td—1/ Y j<q T ))
g = =
Zigd a;;/ ngd z;’ Zigd aiz;/ ngd Lj
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T I(OLICT) SERERY) 8y

i<d i<d i<d
*
= G"(z1,...,24),

where with Zd = 1-— Z'L<d—1 Ziy

a121 ad—12d—1
D(z1,...,2d-1) ::(E aizi>g( e ), z € R,
=d i< Wiz Dicd @i

is a Pickands dependence function and G* is max stable with standard reverse
exponential margins.

Proof. We have by condition (5.28) for any ¢ < 0

o H,(c/n)—1 — oz
A 9(2),

which yields
lim n(Hz(c/n) — 1) = cy(z).

n—r oo

From the expansion log(1 +¢) = € + O(£?), as € — 0, we obtain

() = exp (miog (14 (81 ) - 1))

= exp (n(Hz(;) - 1) + O(;)) —nsoo €xp(cg(z)).

We, therefore, have, for any x = (z1,...,24) € (—o0,0]%,
H”(z) — oo €XP ((Z;xz)g(zild JRTEEY Z:x;;lxi)) =: G(x) (5.32)

with the convention that the right-hand side equals 1 if x = 0.

From the fact that H™(0,...,0,2;/n,0,...,0) converges to exp(x;), x;
0, 1 < ¢ < d, one concludes that g is continuous: We have for arbitrary x
(1,...,%4), Yy = (Y1,--,ya) € (—o0,0]4,

n n
— yr 7n7 yr AR ) ) AR )

i<d

I IA

see Lemma 2.2.6 in Reiss [385]. By putting y; = x; +¢;, 1 <i < d, whereeq,...,eq
are small and ¢; < 0 if z; = 0, we obtain, thus, by (5.32)
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exp ((Zm + Ei>)g(zi:(;ﬁ e L)

i<d

— exp ((Za)g(le Z:x;;lxz))‘

i<d i<a®i’
<> lexp(a;) — explai + &)
i<d

Letting e; — 0, 1 < i < d, this inequality implies that ¢g(z), z € R, is a continuous
function. Hence, G(x) is by Lemma 7.2.1 in Reiss [385] a df on (—oc,0]4. It is
obviously max-stable with standard reverse exponential margins and, hence, it
coincides with its Pickands representation in (5.32), which completes the proof.

In the subsequent lines we modify the concept of a spectral neighborhood of
a GPD.

A SPECTRAL 6-NEIGHBORHOOD OF A GPD

Using the spectral decomposition, we can easily extend the definition of d-neighbor-
hoods of a univariate GPD to arbitrary dimensions. We say that the df H belongs
to the spectral §-neighborhood of the GPD W if it is continuous in a neighborhood
of 0 € R? and satisfies uniformly for z € R the expansion

1—Hy(c)= (1= Wa(e))(1+0(c|”) (5.33)

for some § > 0 as ¢ T 0. The EVD G with reverse exponential margins is, for
example, in the spectral é-neighborhood of the corresponding GPD W with § = 1.
Because D(z) > 1/d for any z € R we have

1—Gy(c) =1—exp (cD(z))
= cD(z) + O(c?)
=¢D(z)(1+ O(c))
= (1= Wa(0)) (1 + O(c)).

Mardia’s df is, for example, in the d-neighborhood with § = 1 of the GPD W with
dependence function D(z) =1, z € R.

Note that by putting z = e;, 1 <i < d—1, and z = 0, equation (5.33) implies
that the univariate margins of the df H are in the spectral §-neighborhood of the
uniform distribution on (—1,0):

PU;>c)=|c|(1+0(c]’), 1<i<d

The following result extends the characterization of d-neighborhoods of a
univariate GPD in Theorem 2.2.5 in terms of the rate of convergence of extremes
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to arbitrary dimensions. A proof for the case d = 2 is given in Falk and Reiss [152];
this proof can easily be extended to general d > 2. For related results on the rate
of convergence of multivariate extremes in terms of probability metrics we refer to
Omey and Rachev [359], de Haan and Peng [191] and the literature cited therein.

Theorem 5.5.5. Let H be a d-dimensional df.

(i) If H is for some § € (0,1] in the spectral §-neighborhood of the GPD W =
1+ log(G), then we have

X
sup
x€(—00,0]4

H" ( ) - G(x)‘ = 0(n™9%).

n

(i) Suppose that H,(c) as defined in (5.33) is differentiable with respect to c in
a neighborhood of 0 for any z € R, i.e., hy(c) := (90/0c)H,(c) exists for
¢ € (—¢,0) and any z € R. Suppose, moreover, that H, satisfies the von
Mises condition

—chy(c)
1— H,(c)

with remainder term n, satisfying

0
2 (T
/ nt()dt} _>CTQO.

=1+ ’I]z(C) —*c10 1, z€eR,

sup
zER
If N
n -5
xe(s_uolz)o]d H (n) G(X)‘ =0(n™?)
for some 6 € (0,1], then H is in the spectral §-neighborhood of the GPD
W =1+1log(G).

For Mardia’s distribution
1

S icar exp(—ecz) +exp (e (Cicgoy = 1) ) = (d=1)

we have, for example,

H,(c) =

1= Hy(c) = —c(1+0(c))
and
ha(c) =1+ O(c)
uniformly for z € R as ¢ 1 0 and, thus,
—chyg(c)
() =1 )
uniformly for z € R. The conditions of Theorem 5.5.5 are, therefore, satisfied by
Mardia’s distribution with G(x) = exp(>.,.47i), x = (v1,...,74) € (—00,0]¢,
and § = 1. -

—1=0(c),
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AN ESTIMATOR OF D

An equivalent formulation of condition (5.33) in terms of M, v is
P(M, v > ¢) = eD(z)(1 + O(|c|°))

uniformly for z € R as ¢ 1 0. This suggests as an estimator of D(z), based on n
independent copies Uy, ..., U, of U, the relative frequency

1
Dne(z) = > 1(Myu, > o).

i<n

We have .
E(Dy, (2)) = D(z)(1+ O(|¢*))

and
Var(ﬁmc(z)) = DrEcZ) (1+0(|¢[)).

The asymptotic normality of ﬁmc(z) is now a consequence of the Moivre-Laplace
theorem.

‘1—0—25

Lemma 5.5.6. If ¢ = ¢, < 0 satisfies n|c| — oo, nlc — 0 as n — oo, then

we have
(nlc|)/?(Dn.c(z) — D(z)) —p N(0, D(z)),

provided the df of U is in the spectral d-neighborhood of the GPD with dependence
function D.

The function D,, .(z) is neither continuous nor convex in z. Convex estimators
of the dependence function for bivariate EVD are studied, for example, by Tiago
de Oliveira [444], Deheuvels and Tiago de Oliveira [106], Hall and Tajvidi [203] and
Jiménez et al. [272]. Kernel and parametric estimators of the dependence function
were studied by Smith et al. [423] and Abdous et al. [1]. We refer to Section 3.6
of Kotz and Nadarajah [293] for a thorough review of statistical estimation in
multivariate EVD models. For GPD models we present some statistical estimation
procedures in Sections 5.8 to 5.10 and 6.6.

The following corollary provides a sufficient condition for H to belong to the
spectral d-neighborhood of a GPD W.

Corollary 5.5.7. Suppose in addition to the assumptions of the preceding result
that, for some 6 € (0,1],

ha(c) = g(2) (14 O(l[*)) (5.34)

as ¢ 1 0 uniformly for z € R. Then H is in the spectral 6-neighborhood of the
GPD W with Pickands dependence function g and the conclusion of Theorem
5.5.4 applies.
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Proof. The assertion is immediate from the expansion

|~ Hy(e) = /( | P du = elg(a) (1 O(1l).

If condition (5.34) holds then H belongs to the differentiable spectral o-
neighborhood of the GPD W. Notice that, necessarily, g(z) = D(z).

For Mardia’s distribution we have, for example, h,(c) = 1 + O(c) uniformly
for z € R as ¢ T 0. Consequently, by Corollary 5.5.7, Mardia’s distribution is in
the spectral §-neighborhood with § = 1 of the GPD W with dependence function
D(z) =1, z € R, and Theorem 5.5.5 on the speed of convergence applies.

5.6 The Pickands Transform

Let U := (Uy,...,Uy) be an arbitrary rv, which takes values in (—oo,0]¢, and
denote its df by H. Suppose that H has continuous partial derivatives of order d
near 0 € R%. Then

8d

ZEl"'aZEd (1’1, 7(Ed)

h e =

(z1,...,2q) 5
is a density of H in a neighborhood of O (see e.g. Bhattacharya and Rao [43],
Theorem A.2.2). Define the transformation T : (—00,0]?\ {0} — R x (—oc,0) by

1 Td—1
T(x):= sy , X1+ -+ xq | = (2,0), 5.35

() ($1+"'+$d 1+ -+ T4 ! d) (=) ( )
which is the transformation of x = (x1,...,24) onto its Pickands coordinates
z = (21,-..,24-1) and ¢, see equation (4.31) for the definition of the unit simplex R.
This mapping is one-to-one with the inverse function

T_l(z,c)zc 214y 21,1 — Z zi | . (5.36)
i<d—1

It turns out that the Pickands transform of U onto its Pickands coordinates
(Z,C) :=T(U)

has some characteristic features which make it a very useful tool for the investi-
gation of d-variate POT models.

Nadarajah [343] uses this representation of U to provide analytical results
on the tail behavior of a bivariate df in the domain of attraction of a bivariate
max-stable distribution G. Moreover, Coles [71], Section 8.3.2., applies Pickands
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coordinates to show that the intensity of the limiting Poisson point process of the
sequence of point processes N,, = Z@ <n Enu®, 1 € N, factorizes across radial and
angular components. By UM, U®) . we denote independent copies of U, which
has df G with reverse exponential margins. This result goes back to de Haan [188];
see Corollary 5.6.7 below for an extension. Capéraa et al. [59] investigate a non-
parametric estimation procedure for GG, which is based on the angular components
7 of UW 1 < i < n. For further applications such as the generation of pseudo
rv with distribution G we refer to Section 3 of Kotz and Nadarajah [293].

THE PICKANDS TRANSFORM OF A GPD RANDOM VECTOR

The subsequent lemma provides the density of the Pickands transform in case of
a GPD with a smooth dependence function D. For a proof of the following result
see Falk and Reiss [155].

Lemma 5.6.1. Consider a GPD W = 1+ log(G) with a Pickands dependence
function D having continuous partial derivatives of order d. Let U = (Uy,...,Uy)
be a rv with df W. The Pickands transform T(U) = (Z,C) then has on R x (¢, 0),
with co < 0 close to 0, a density f(z,c), which is independent of c. We have

ad
s =1 (7 g W) @)
=¢(z) forzeR, c€< (c,0).

As with many assertions before, the restriction that ¢y has to be close enough
to 0 is due to the fact that we have

W(x) =1+1log(G(x)) =1+ > D(lex»-..yzxd_lm)
i<d i<d ™t i<d i

only for x close to 0 if d > 3, see Lemma 5.1.5.

It turns out that the angular component Z and the radial component C
are independent, conditional on C' > ¢g. Moreover, C' is on (—1,0) uniformly
distributed and, conditional on C' > ¢y, Z has the density f(z) := ©(2z)/ [ ©(y) dy
on R.

Theorem 5.6.2. Suppose that U = (Uy,...,Uy) follows a GPD W, where the
dependence function D has continuous partial derivatives of order d and the density

p(z) = || 107/ (0x1 - - Dza)W ) (T (2, ) (5.37)
of the Pickands transform gives positive mass on R:

¢:= /Rw(z) dz > 0. (5.38)

Then for ¢y < 0 close to 0 we have
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(i) Conditional on C = Uy + --- 4+ Ug > co, the angular component Z =
(U1/C,...,Uq—1/C) and the radial component C of the Pickands transform
are independent.

(ii) C follows on (cg,0) a uniform distribution, precisely
P(C > c) =], co <ec<0.
and, thus,
P(Czc|C>co):|c| co <c<0.

|col’

(iii) Conditional on C > co, Z has the density

Proof. We have for ¢ € (cp, 0),
P(C>c¢)=P(C >c,ZeR)

:/(C)O)/Rf(z,u)dzdu
/(CO)/ 2) dzdu = |c|C,

which proves (ii). Further we have for any Borel measurable set B C R by (i)

P(Z € B,C > ¢)
P(C > Co)

|co|C/ /(007 z)dcdz = 2/3@(2) dz,

which proves (iii). Finally, we have for ¢y < ¢ < 0,

P(Z € B,C >c)
P(O > C())

= o /B/<) #lz) dods
T ¢ / |Co|

= P(Z € B|C > ¢p)P(C > ¢|C > ¢)

P(Z € B|C > ¢y) =

P(Z € B,C > c|C > ) =

by (ii) and (iii). This completes the proof of the theorem.
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The function ¢ defined in (5.37) is called Pickands density. Remark that the
Pickands density is the density of a probability measure only after the division by
¢ (in case ¢ > 0), else it is the density of a measure, which assigns the mass ¢ to
the simplex R.

Note that the constant dependence function D = 1 is not included in the pre-
ceding Theorem 5.6.2 since in this case 9¢/(0zy - - - 0zq)W = 0%/ (0xy - - - Ozq)(1 +
> i<ai) = 0 and, thus, [, ¢(z)dz = 0. The converse implication

/gp(z)dz:O:>D:1
R
does not hold in general. Consider, e.g., the Pickands dependence function
A
D(z1,22) = (zlA + z2’\)1/ +(1 =2 — 29).

It pertains to the df Hy(z1,x2,x3) = Ga(z1, 22)G(x3) where G, is the logistic df
with A > 1, cf. Example 4.3.5, and G(x) = exp(z), = < 0, i.e., we have

Hy(z1,x2,73) = exp (— (—z)* + (—xz)k)l/k + x3> )

Obviously, D # 1, but for the GPD W) belonging to Hj, i.e.,

1/

Wi(@r, 22, 25) = 1= ((—20)* + (—22)) " + 25,

we have 8°/(8x10x20x3)Wx = 0 and, thus, [, ¢(z)dz = 0. However, we can
establish relationships to the pairwise bivariate Pickands dependence functions

D,s(z) :=D(ze, + (1 — 2)es), z€]0,1], (5.39)

where e, and e are the r-th and s-th unit vectors in R¢~! and eq := 0 € R%1,
rys € {1,...,d}. To justify the definition in (5.39) let X = (X4,...,X4) be a d-
variate random vector whose df is a d—variate EVD G with Pickands dependence
function D. Then the bivariate marginal df of the random vector (X,, Xy), r,s €
{1,...,d}, r # s, is a bivariate EVD with the above Pickands dependence function
D,,.

Lemma 5.6.3. Let ¢ be the Pickands density of a d-variate GPD W with Pickands
dependence function D as given in Lemma 5.4.1. Then we have

(i) D=1<= D,s =1 for every pair r,s € {1,...,d},
(ii) [pe(z)dz =0 <= D,s =1 for at least one pairr,s € {1,...,d}.

Proof. The necessity of D = 1 in part (i) follows directly from the definition
(5.39) of the pairwise bivariate Pickands dependence functions. The sufficiency
can be deduced from Theorem 4.3.3, which entails the equivalence of complete
and pairwise bivariate independence of the margins of a multivariate EVD, by
using the representation (4.31) of an EVD in terms of the Pickands dependence
function. For a proof of part (ii) we refer to Lemma 1.2 in Frick and Reiss [162].
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From Lemma 5.6.3 it follows again that D = 1 implies [, ¢(z)dz = 0. And
obviously we have

/ p(z)dz=0+= D=1 (5.40)
R

in the bivariate case and if D satisfies the symmetry condition (4.34) since all the
pairwise bivariate Pickands dependence functions are equal in this case.

Moreover, we deduce from Lemma 5.6.3 that fR ©(z)dz > 0 stands for tail
dependence since it implies D # 1. The case |, r #(z) dz = 0 represents tail inde-
pendence in at least one bivariate marginal distribution.

DIFFERENTIABLE 4-NEIGHBORHOODS OF PICKANDS TRANSFORMS

We can easily extend Theorem 5.6.2 to certain differentiable §-neighborhoods of
GPD. Let U = (Uy,...,Uy) be a rv such that the corresponding Pickands trans-
form (Z, C) has for some ¢y < 0 a density f(z,c) on R X (cp,0). Suppose that the
density satisfies for some § > 0 the expansion

f(z,¢) = p(z) + O(|c) (5.41)

uniformly for z € R. Then we say that the df H of U is in the differentiable
d-neighborhood of the GPD W with dependence function D.

The max-stable df G is, for example, in the differentiable é-neighborhood of
W = 1+41log(G) with § = 1 (Falk and Reiss [155]). The df of Z in the bivariate case
with underlying max-stable df G has been derived by Ghoudi et al. [179]; under
the additional assumption that the second derivative of the dependence function
D exists, the density of (Z,C) was computed by Deheuvels [103].

Theorem 5.6.4. Suppose that the df H of U is for some 6 > 0 in the differentiable
d-neighborhood of the GPD W with dependence function D. Suppose that ( =
Jp@(z)dz > 0. Conditional on C > co, the corresponding transform (Z,C/co)
then has a density fc,(z,c) which satisfies

fuo () = @f) +0(leol?)

uniformly on R x (0,1) as ¢ 1 0.

Under the conditions of the previous theorem, Z and C'/¢y are asymptotically
for ¢g T 0 independent, conditional on C' > ¢, where Z has in the limit the density
f(z) = p(z)/¢ and C/cy is uniformly on (0, 1) distributed. This will be formulated
in the subsequent corollary. Note that the variational distance between probability
measures equals 1/2 times the L;-distance between their densities with respect to
a dominating measure, see, for example, Lemma 3.3.1 in Reiss [385].
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Corollary 5.6.5. Let Z*,C* be independent rv, Z* having density f on R and
C* being uniformly distributed on (0,1). Denote by B the o-field of Borel sets in
R x [0,1]. Then we obtain from Theorem 5.6.4 that

;lé%|P((Z’C/CO) €B|C>c)—P((Z",C*) € B)|

_ 1 _ _ 5
=5 [ ], Vet = slelldeds = Oflol.

The asymptotic independence of Z and C, conditional on C > ¢y explains,
why the intensity measure of the limiting Poisson process of the sequence of point
processes of exceedances in Corollary 5.6.7 below factorizes across radial and an-
gular components, which was first observed by de Haan [188], see also Section 8.3.2
of Coles [71].

EXPANSIONS OF PICKANDS DENSITIES OF FINITE LENGTH WITH
REGULARLY VARYING FUNCTIONS

The first-order condition (5.41) characterizing the differentiable d-neighborhood
of a GPD was refined to a higher-order condition by Frick and Reiss [162] who use
an expansion of f(z,c) again with ¢(z) as a leading term.

Let U = (Uy,...,Uy) be an arbitrary rv on (—oo, 0]¢, whose Pickands trans-
form has a density f(z,c) on R X (¢g,0) for ¢o < 0 close to 0. Assume that

k
f(z.0) = p(z) + ) Bi(0)A;(2) +o(Bu(c), 10, (5.42)

Jj=1

uniformly for z € R for some k € N, where the flj R —>R, 75 =1,...,k, are
integrable functions. In addition, we require that the functions B; : (—o0,0) —
(0,00), j =1,...,k, satisfy

li%l Bj(c)=0 (5.43)

and
Bj(ct) ,

lim 7V =t%, t>0,8 >0. 5.44

cl%rol Bj (C) ﬂ] ( )
Without loss of generality, let 81 < B2 < --- < f. We say that the density f(z,c)
satisfies an expansion of length k + 1 if the conditions (5.42)-(5.44) hold. Recall
that in analogy to (2.17) a function fulfilling condition (5.44) is regularly varying
in 0 with f; being the exponent of variation. According to Resnick [393] one can
always represent a (-varying function as |c|’L(c), where L is slowly varying in
0 meaning that the exponent of variation is zero. The functions Bj(c) = ||,
j=1,...,k, e.g., satisfy the preceding conditions.
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Due to the properties of slowly varying functions the density in (5.42) also
satisfies

f(z,0) = ¢(z)+ > Bj(c)A;(z) + o(Bx(c)), ¢10, (5.45)
j=1

for any 1 < x < k. With regard to the testing problem in Section 6.5 the existence
of an index j such that [ rAj(z)dz # 0 is essential. Then it is appropriate to
choose k as

n:min{je{l,...,k}:/RAj(z)dz;éo}. (5.46)

If k = 1, we write B and A instead of By and A;, respectively, and denote
the exponent of variation of B by S.
The Pickands density of an EVD G satisfies the expansion

f(z,0) = p(z) + Z |7 A;(z)

uniformly for z € R, where ¢ € (¢,0) with ¢y < 0 close to 0. Because the Aj
are uniformly bounded on the simplex R the expansions can be reduced to an
expansion of arbitrary finite length.

The d-variate standard normal distribution A/(0, 32) with positive definite cor-
relation matrix 3, transformed to reverse exponential margins possesses a Pickands
density that satisfies the expansion

fo(z,¢) = B(c)A(z) + o(B(c)), ¢10,
with

d
S oij—1
B(c) = |e[200= T L (e),
d

L(e) = (= log ) =5m1

Tij /2—d/2
)
and

d
~ d .. —
Az) = (det )1/ (drr) 2 713/27/2 [T (zizj) o222,

ij=1

where Ig = (8;5)i,j=1,....a and vl = (045)i,j=1,....d- The function B is regularly
varying in 0 with the exponent of variation 5 = sz j=10i5 —1>0, cf. Example 3
in Frick and Reiss [162].

Expansions of Pickands densities can be used to characterize the dependence
structure of the underlying rv. Particularly, the first term ¢(z) distinguishes be-
tween tail dependence and (marginal) tail independence according to Lemma 5.6.3.
In Section 6.1 we establish a relationship to spectral expansions, and in Section 6.5
expansions of Pickands densities are used to test the tail dependence in arbitrary
dimensions.

.....
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THE POT APPROACH BASED ON THE PICKANDS TRANSFORM

Let now U = (U" .. UM), 1 <i <n, be iid rv with common df H, which is
in a differentiable §-neighborhood of a GPD with ¢ = fR ©(z) dz > 0. Denote by
(Z®),C@), 1 <i < n, the corresponding Pickands transforms.

Fix a threshold ¢y < 0 and consider only those observations among the sample
(ZD,C% /eg), 1 < i <n, with C) > ¢5. We denote these by (Z),CW /¢g), 1 <
j < K(n), where K(n) = > ., 1(CY) > ¢) is binomial B(n,p(cg)) distributed
with parameters n and p(cy) = P(CY) > ¢) = |co| (¢ + O(|co]?)).

We obtain from Theorem 1.3.1 that the exceedances (Z@),C@) /¢cy), j =
1,2,..., are independent copies of (2, 6/00), which realizes in R x [0,1] and has
the distribution P((Z,C/co) € -|C > ¢p). From Corollary 5.6.5 we deduce in the
sequel that the empirical point process of the exceedances can be approximated in
variational distance within the bound O(n|co|'™®) by the empirical point process
of (Z7,C7), 1 < j < K(n), which are independent copies of (Z*,C*) defined in
Corollary 5.6.5. L

We represent the sample (Z0),CU)/cy), 1 < j < K(n), by means of the
empirical point process

Nieo i = E : @D .CD Jeo)”
j<K(n)

The empirical process N, ., is a random element in the set M(R x [0,1])
of all finite point measures on (R x [0, 1], B), equipped with the smallest o-field
M(R x [0,1]) such that for any B € B the projection M(R x [0,1]) > pu +— u(B) is
measurable; see the discussion around (1.3) in Section 1.1.

Let (Z3,C5),(Z5,C5),. .. be independent copies of (Z*, C*), which are also
independent of K(n). Denote by

nco = § g(Z* Ccr)

J<K(n)

the point process pertaining to (Z7,CY), ..., (Zj (> C(n))- By d(&, 1) we denote
the variational distance between two random elements &,n in an arbitrary mea-
surable space (M, M):

d(§,m) = sup |[P(§€ M)~ P(ne M)|.
MeM

Theorem 5.6.6. Suppose that the df of U is for some 6 > 0 in the differen-
tiable §-neighborhood of a GPD with dependence function D. We assume that
¢ = [pe(z)dz > 0. Then we have

d(Np.co, NJ ) = O(n|co| ).

n,co
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Proof. From Corollary 1.2.4 together with Corollary 5.6.5 we obtain

d(Nucos Ny, o) < E(K (n))d((Z,C /co), (Z",C7)) = O(nleo|'**).

n,co

We replace now the binomial distributed rv K(n) by a Poisson distributed
one 7(n) with parameter E(7(n)) = n|co|¢, which is stochastically independent of
(Z3,C7),(Z5,C%), ... From the triangular inequality, Lemmata 1.2.1, 1.2.2, 3.1.4
and Theorem 5.6.6 we derive the bound

A(Nucor Y @s,cp)) = O(nleo* + leol + (nleol)/2eol).

ji<7(n)

Choose L < 0 and put ¢g = L/n. Then we obtain

d(Nn,L/m Nz) = O(n_é)a

E EZ*C*

ji<7(n)

where

is a Poisson process with intensity measure
v(B) = E(N7(B)) = E(r(n))P((Z",C") € B)
|L|C/ f(z)dedz = |L|/ z) dc dz, B e B,

which is independent of n.

Since the function T'(x) = (z,c¢) is one-to-one, we obtain now the following
result, which goes back to de Haan [188]; see also Section 8.3.2 of Coles [71]. It
provides in addition a bound for the rate of convergence of

= > S(n/L)TG = > YZWD,CW) /(L/n))

J<K(n) J<K(n)

to the Poisson process

L._
= E ET-1(2*,C*)>
J J

j<7(n)

whose_intensity measure factorizes across radial and angular components. By
UD, U® ... we denote those observations in the sample UM U@ . . U®
whose radial Pickands coordinates satisfy C(Y) > L/n.

Corollary 5.6.7. With the preceding notation we have under the conditions of
Theorem 5.6.6, for any L < 0,

d(NE N = d(N,, 1y N7) = O(n70).
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THE PICKANDS TRANSFORM FOR A GENERAL EVD

In the sequel we will introduce the Pickands transform for a d-dimensional EVD G
with arbitrary univariate EVD margins. The family of non-degenerate univariate
EVD can be parametrized by a € R with

exp(—(—2)*), x<0

Ga(x)z{ p(=(=2)7) for a > 0,
1, z >0
0, <0

Guo(z) = for « <0
exp(—z%), x>0

and
Go(z) = exp(—e™), xr € R,

being the family of (reverse) Weibull, Fréchet and the Gumbel distribution; see
Section 2.2. Note that Gy is the standard reverse exponential df.

We denote in what follows by G with a = (g, ..., aq) € R? a d-dimension-
al max-stable df, whose ¢-th univariate margin is equal to G4,, ¢ < d. The corre-
sponding GPD is any df W, such that for x with G (x) in a neighborhood of 1

Wa(x) =1+ log (Ga(x)).

The univariate margins of Wy, coincide in their upper tails with those of the usual
one-dimensional GPD, see Section 1.3. The df G with reverse exponential margins
and the corresponding GPD, which we considered above, would now be denoted
by G(l,...,l) and W(l,...,l)'

The following auxiliary function will be crucial for our further investigation.
Put, for z € R with 0 < Gy, (z) < 1,

Vo () = log (G, (2))

—(—x)*, x<0, if ; >0
=< —x%, x> 0, if a; <0
—e 7, r €R, if a; = 0.

Note that 1, is a strictly monotone and continuous function, whose range is
(—00,0).

The next result will be crucial for the definition of the Pickands transform
for arbitrary G and W.

Lemma 5.6.8. Suppose that the rv X = (X1,..., X4) has df Go. Put
Ui = d)ai(Xi), 1S2Sd

Then U = (Uy,...,Uq) has df G, 1)-
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Proof. Since G,,(X;) is uniformly distributed on (0, 1), it is obvious that U; =
log(G,,(X;)) has df exp(x) = Gi(x), x < 0. It remains to show that the df of
(Ur,...,Uq), H say, is max-stable. But this follows from the fact that G4 is max-
stable with G2 (¢3! (2/n)) = Ga, (¥} (z)): We have for z; <0, 1 <14 <d,

H(zi/n,...,xa/n)" = P(U; < zi/n, 1<z§d)
=P(X; < it (wi/n), 1 <i<d)”
:P(XlSQ/J;L( ) 1§ d) H(xl,...,xd).

Lemma 5.6.8 can also be formulated as
Ga(‘/);ll(%)v---ﬂ/);dl@d)) = G(l,...71)($17"'7xd)7 T < 0; t <d. (547)

The max-stability of G, is, thus, preserved by the transformation of each univari-
ate marginal onto the reverse exponential distribution.

Corollary 5.6.9. Suppose that X = (X1,...,Xq) has common df Wy,. Put
Ui == 1a, (Xs), 1<i<d.
Then U = (Ui, ...,Uq) has common df Wy .. 1.
Proof. We have for ¢y < x; <0, ¢ <d, ¢y close to O:
PU; <, i < d) =P(X; <o) (2), 1 <i < d)
= 1+10g (Ga (i) (@1), .- 05} (20)))
=1+log (G(17...,1)($1, .- ,xd)) = W(17...,1)($1, o, Tg).
The preceding result can also be formulated as
Wa (@[Jojll(xl), .. 7’(/J(;dl(xd)) =Wa,. n(@1,...,zaq), co<x; <0, 1<d,

co close to 0.
As a consequence of the above results we can represent an arbitrary G4 as

Gal(r1,. .., 7a)
= G(l,...,l) (¢a1 (1‘1), oo Yoy (xd))

_ _ Vas (T1) Va1 (Ta—
= exp ((gﬂiai (xl))D(EiSd Por@)' " s 1#:(;;)))
=: exp (CaD(Za)),

where D is a dependence function as defined in (4.32). Equally, we have

Weal(z1,...,1q) = W(l,,,,,l)(wal (z1),... 7¢ad(xd)) =1+ caD(2a),
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whenever co = Zigd Ve, (z;) is close enough to 0.
The functions ¢ and z, now provide the Pickands transform of a rv X =
(X1,...,Xq) with df G4 or W4: Put

Co =Y ta: (Xy),

i<d

= (Vo) e ey,

By the fact that U; = 1, (X;), 1 < i < d, have joint df Gy, 1) or Wy 1y, it
is obvious that Theorems 5.6.2, 5.6.4 and Corollary 5.6.5 on the (asymptotic) dis-
tribution and independence of the angular and radial component of the Pickands
transform in the case @ = (1,...,1) immediately apply to Cy and Z, with arbi-
trary a.. Put for G,

Gi(x) = Ga (Vg (1), ..., 5 (x4)),

where 7; < 0,1 < i < d. From Lemma 5.6.8 we know that G¥ = G,..1) and,
hence, we obtain from Lemma 5.4.1, for the spectral decomposition of G¥ |

(Gi)z(c) =Gy, (1/1;11 (cz1),...,¥a,  (cza—1),vy) (c(l — Z z1>)>

i<d—1
= exp (cD(z)), c<0,z€R. (5.48)

P(GY) is, thus, the family of reverse exponential distributions with parameter
D(z), z € R. Equally, we obtain for

W;{)(l'l, s ,l'd) = Wa (1/};11('1:1)’ s aq/};dl('l:d))

from Corollary 5.6.9 and Lemma 5.4.3,

(W), () = Wa (¢;}(cz1), g (c(l _ Z z)))
=1+c¢D(z1,...,24-1), cho_.

The members of the family P(WY) coincide, thus, in their upper tails with the
family of uniform distributions on the interval (—1/D(z),0), z € R. The preceding
results in this section now carry over to P(G¥%) and P(WY).

Example 5.6.10 (Hiisler-Reiss). Consider the bivariate Hiisler-Reiss EVD with
parameter A € [0,00) ,

T — T To — T
H,\(xl,xg):exp<—<1) (x\—!— 12)\ 2)6‘“—@()\4— 22)\ 1)6‘“),
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for x1, T2 € R, where ® denotes the standard normal df. Hy is mazx-stable with
Gumbel margins, i.e., we have Hx = G g y. From (5.48) we obtain, for ¢ <0 and
z €10,1],

H (45 (e2), v (e(1 = 2)))

= H) (—log(z) —log(|c|), —log(1l — z) — log(lc]))

= exp (c <<I> (A + log((z; ZW)) (1—2)+® </\ + log(z/z(i a Z))) z))
=: exp (CDA(Z)),

where Dy(z), z € [0,1], is a dependence function as given in (4.32) with d = 2.

A\ ’

\ h
094 .

“ e - e /I
09 F _
N\ /
N i
088 | -
N yd

0.86 - _

0.84 I I I F““*»»»r»»»/"‘”] I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1GURE 5.6.1. Dependence functions of the bivariate Hiisler-Reiss df with
parameters A = 1,1.5,2,2.5; from bottom to top.

5.7 Simulation Techniques

A crucial point for further investigation of multivariate GPD and their practical
application to real data sets is the need for simulations. Possible applications of the
simulation methods, which will be presented in this section, are of course Monte-
Carlo and bootstrapping methods. Another usage is a first check of new statistical
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testing or estimation procedures in multivariate GPD models, as it will be done
in Sections 5.8 to 5.10 and 6.6.

Not much attention has been paid to the simulation of multivariate GPD so
far. Michel [330] and [331] are among the very few contributions to this topic and
are the basis of the simulation techniques which we are going to present. Hofmann
[222] adds an algorithm for the generation of a rv from a nested logistic GPD in
dimension d = 3. Clearly, the representation X = U/Z in Proposition 5.2.8 of a
GPD rv X entails its simulation via the uniformly distributed on (0,1) rv U and
the independent rv Z. But it is by no means obvious, how to simulate this way a
target GPD such as a logistic one.

A summary of the work done on the simulation of multivariate EVD can be
found in Stephenson [425].

SIMULATION OF GPD wITH BOUNDED PICKANDS DENSITY

The algorithm introduced here is based on the so-called rejection method and the
transformation to Pickands coordinates (5.35). The method presented here will be
applicable for low dimensions only due to computational reasons, but it has the
advantage of being able to simulate a broad variety of GPD, namely those with a
bounded Pickands density.

We shortly describe the rejection method in general. Suppose we want to
simulate a distribution F on a compact set A C RY Let g(x) = mf(x) be a
constant multiple of the density f of F. We require that g is bounded by some
number M. Then Algorithm 5.7.1 describes the rejection method for the generation
of one rv with df F.

Algorithm 5.7.1.
1. Generate a rv X = (X1, ..., Xq), uniformly distributed on A.

2. Generate a random number Y independent of X, which is uniformly dis-
tributed on [0, M].

3. Return X if Y < g(X), else go to 1.

It is obvious that Algorithm 5.7.1 can be very ineflicient, since a lot of points
might have to be generated to get a “useable” one.

A natural scheme for the simulation of a GPD W is the application of the
rejection method to W. However, even in the most common cases like the logistic
case, the density of a GPD is not bounded, see Section 4.2 of Michel [331]. There-
fore, the rejection method is not directly applicable. In many cases, however, a
detour via Pickands coordinates can be helpful.

The idea is to generate the Pickands coordinates Z and C' of a rv, which
follows W, separately. These are by Theorem 5.6.2 independent under C' > ¢y
and, in addition, C' is uniformly distributed on (cg, 0) and, thus, easy to simulate.
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For the generation of Z we can apply the rejection method if its density f
and, thus, the Pickands density ¢ = ( - f are bounded. This is for example the
case with the logistic GPD, see Theorem 2.4 in Michel [331], but also for many
other cases like the asymmetric logistic model and large parts of the nested logistic
model, see Section 2.3 of Michel [330]. Since Z lies in the d — 1-dimensional unit
simplex R, one needs to simulate the uniform distribution on R. This can be done
by the following algorithm, which is investigated in Corollary 4.4 of Michel [331].

Algorithm 5.7.2. Set k:=0 and, fori=d—1,...,1, do

1. Generate a uniformly distributed number x; on (0,1), independent of x;,
i+1<j<d-1.

2. Compute u; == (1 — k) (1 — (1 —z;)/?).
3. Putk :=k+u;.
Return the vector (u1,...,uq — 1).

To generate now the rv Z, one uses the Pickands density ¢ for the applica-
tion of the rejection method, since for the use of f the number ¢ would have to
be calculated, which is possible only approximately and only with great numerical
effort. In the end one has to invert the Pickands transformation to get the de-
sired rv. The algorithm below implements these considerations and is the desired
simulation algorithm.

Algorithm 5.7.3.

1. Generate a vector (z1,...,2z4—1), which has density f, with Algorithm 5.7.1
applied to the Pickands density o, where the uniform distribution on the unit
simplex R is done by Algorithm 5.7.2.

2. Generate, independent of (z1,...,2z4-1), a number c, uniformly distributed
on (¢, 0).

d—1
3. Return the vector (czl, e, CZ4_1,C — sz':l zi),

Remark that Algorithm 5.7.3 only simulates a GPD under the condition C' >
co. We will show later, how this condition can dropped to simulate unconditional
GPD.

Experimental and theoretical investigations of Algorithm 5.7.3 in Section 3.2
of Michel [330] show that runtimes explode for large d. Thus, the algorithm is in
general only suited for low dimensions.
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A SpPEcCIAL CASE: SIMULATION OF GPD or Locistic TYPE

In the special case of the logistic GPD a simulation algorithm can be used which
does not have the runtime disadvantages of Algorithm 5.7.3. It is based on the Shi
transformation (Shi [413]), which is a variant of the Pickands transformation for
the logistic case. It will be introduced next.

The mapping P : (0,00) x (0,7/2)?~1 — (0, 00)¢ with

P(Tﬂ/’h v 7?/%1—1)
d—2

=71 | cos(¢)1), cos(v2) sin(1), ..., cos(hg—1) H sin(%;), H sin(v;) (5.49)
j=1 j=1

is the polar transformation, and its inverse defines the polar coordinates r, ¥ =
(¥1,...,%a—1) in (0,00)%. The following facts are well known (see, for example,
Mardia et al. [319], Section 2.4): the mapping P is one-to-one, infinitely often
differentiable and satisfies the equation

d—1 i—1 d—1
L=[[P(1,¢n,. .., va1)llF = cos® (i) [ [ sin®(wy) + [ ] sin®(vy),  (5.50)
i=1 j=1 j=1

i.e., the function P(1,%1,...,%4_1) is a one-to-one mapping from (0,7/2)¢"! C
R?~! onto the intersection of (0,00)? with the unit sphere of R? with respect to
the Euclidian || - ||2-norm.

Lemma 5.7.4. The mapping T : (0,7/2)471 — (0,00)¢, defined by

T(wla v aq/}d—l)

d—2 d—1
= | cos®(v1), cos?(1h2) sin® (1), . . ., cos? (g_1) H Sin2(1/Jj), H Sin2(1/Jj) )

j=1 j=1

maps the cube (0,7/2)%1 one-to-one and infinitely often differentiable onto the
simplex S = {x €0, Y gz = 1}, i.e., to the unit circle in (0,00)%, minus
the unit vectors, with regard to the || - ||1-norm.

Proof. The function x — 22 maps the interval (0,1) one-to-one onto itself, thus
the bijectivity and differentiability of T" follow from the corresponding properties

of the polar transformation. Let (x1,...,24) = T(¢1,...,%4-1). By (5.50) the
relation Z _, ¢; = 1 directly follows.

(G 5at)
[ F PN

‘We have

1
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for x € (—00,0)% and A > 1 and, thus, ((—fl)k/||XH§,...,(—CEd)A/||XH§) €
S. This point has a representation with regard to the transformation 7. More
precisely, there exist a uniquely determined (11, ...,%4_1) € (0,7/2)%"1 with

((—xn* <—xd>*>
= xR

d—2 d—1
= | cos®(¢1), cos®(po) sin® (Y1), ..., cos®(Pa—1) [ [ sin® (), [ ] sin®(¢y)

j=1 j=1
By taking the A-th root, multiplying with —||x||, and putting ¢ := ||x||, one
arrives at
X = (:Ela"'vxd)
= ST)\ (Cv 1/)17 Tt ¢d—l)
d—2
= —c(coswk(wl), cos?/ A (thy) sin? M), ..., cos?/ M g_1) H sin®/A (1),
j=1

d—1
11 Sinw(%)) :

Jj=1

This transformation is called the Shi transformation ST). The transformation
STy : (0,00) x (0,7/2)41 — (—00,0)? is one-to-one and infinitely often differen-
tiable. The components of the vector (¢, v1,...,%q-1) := ST/\_l(xl, ..., Xq) are
the Shi coordinates of (x1,...,24), where ¢ is called the radial component and
Y = (Y1,...,%4-1) is the angular component. Note that ¢ = |x||,. The corre-
sponding random Shi coordinates of a rv will be denoted as usual with upper case
letters.

Note that in the case A = 2 the Shi transformation is up to sign the polar
transformation from (5.49). For A = 1 we have a variant of the inverse Pickands
transformation, where the angular component has an additional parametrization
with regard to the cube (0,7/2)%" L.

The Shi transformation was originally introduced in Shi [413] and was used
by Stephenson [425] to simulate the rv following an extreme value distribution of
logistic type.

With the following theorem we establish a basis for a simulation algorithm for
the logistic GPD W). As a helpful notation let B, := {x € (—00,0)¢ : ||x||, <7},
r > 0, be the ball in (—o0,0)? of radius r with respect to the ||-||,-norm, centered
at the origin.

Theorem 5.7.5. Let X = (X1,...,X4) follow a logistic GPD W with parameter
A > 1. Choose a number co > 0, such that Wx(x) = 1 — ||x||, on B . Then the
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v (C, Wy, ...,Wq_1) = STy ' (X) has, under the condition X € B}, on (0,co) X
(0,7/2)2=1 the density

d

flesr, o va-1) = f(P1,. 0 Ya-1) = H

-1
=1

(22' - i) cos(1h;) sin?(4=D 71 (4h,).

Additionally, f has positive mass on (0,7/2)471:

= [ W) )—ﬁ(i_i)w
mn:i= (Ow)d—l 1y---5sWd—1 1y---5Wd—1 —4 d—i .

3 i=1
Furthermore, we have, conditional on C = ||X||, < co:
(i) The random Shi coordinates C, V1, ..., V41 are independent.
(ii) The rv C is on (0,cq) uniformly distributed.
(iii) The angular component ¥, has the df
Fi() :=sin® " (y),  0<y <m/2

with the corresponding quantile function Fi_l(u) = arcsin (ul/(Q(d_i))), 0<
u<l,i=1,...,d—1.

Proof. The proof follows the lines of the proof of Theorem 5.6.2. The somewhat
lengthy details are worked out in Section 3.1 of Michel [330].

Theorem 5.7.5 is analogous to Theorem 5.6.2, but with the restriction to the
logistic case and using the Shi transformation. While in Theorem 5.6.2 the inde-
pendence of the angular and the radial component of Pickands coordinates for
general GPD could be shown, Theorem 5.7.5 states in addition the mutual inde-
pendence of the angular components. We are also able to specify their distributions
precisely. But recall that we are restricting ourselves to the logistic case.

In what follows, we will apply Theorem 5.7.5 to derive an algorithm for the
simulation of GPD of logistic type in general dimension.

Algorithm 5.7.6.

1. Generate Uy uniformly on (0,cq) and Us, ..., Uq uniformly on (0,1), all mu-
tually independent.

2. Compute V; := . (Usyy) fori=1,...,d—1.

3

3. Return the vector (X1,...,Xq) = STo(U1,¥1,...,¥4_1).
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Example 5.7.7. Figure 5.7.1 illustrates results of Algorithm 5.7.6 for d = 2 and 3
and miscellaneous \. In each plot 1000 points were generated. The generated points
arrange themselves in a sort of d-dimensional cone, whose peak lies in the origin
and whose center is the line x; = x;,1,7 = 1,...,d, the bisector of the negative
quadrant. The lower end is naturally bounded by ||x||, = co. The parameter X
describes the width of the cone. For X close to 1 it is opened very wide, for larger
A it becomes more narrow.

These plots will inspire us in Section 5.10 to develop testing methods for
logistic GP models.

Chapter 7 of Hofmann [222] shows a generalization of the Shi transformation
to the nested logistic model and uses it to develop an analogous simulation algo-
rithm in dimension d = 3. Other generalizations of the Shi transformation are to
date unknown to the authors.

SIMULATION OF UNCONDITIONAL GPD

Previously in this section we have introduced simulations of GPD, which are only
able to simulate conditional GPD in a neighborhood of the origin. One encounters a
problem, if unconditionally GP distributed rv are to be simulated. In this situation,
the POT-stability of a GPD as formulated in Lemma 5.4.6, will enable us to
overcome this problem.

Since a Pickands dependence function D satisfies D(z) < 1 for all z € R, we
conclude k := dD(1/d,...,1/d) < d and, with the choice of t; € [-1/d,0), the
corresponding assumptions in Lemma 5.4.6 are fulfilled by Theorem 5.1.4 for all
GPD W.

Corollary 5.7.8. Let the rv'Y follow an arbitrary GPD W. Put k := P(Y > t),
where t = (t,...,t) € (—1/d,0)% and suppose that k > 0. Furthermore, let the rv
X be conditionally GP distributed, i.c., P(X > x) = W(x)/k for x > t, where
we denote by W the survivor function of W. Then Y and X/k are close to 0
identically distributed and, thus, X/k is GP distributed.

Proof. By Theorem 5.1.4 we can assume that W(x) = 1 + log(G(x)) for x > t.
Thus, we have by Lemma 5.4.6

Pxzx) = S ey x| Y2y

- P(Yz:mth):P(Yzz)zp(wzx)

Thus X and kY are identically distributed close to 0 and, therefore, also Y and
X/k.
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0.1 =

FIGURE 5.7.1. Simulated logistic GPD rv for d = 2 (top) and d = 3 (bottom),
for A =1.2, 2, 3, 6 each time.



5.8. Testing the GPD Assumption, Threshold Selection 229

Corollary 5.7.8 provides a straightforward manner of getting GPD rv from
conditionally GPD rv. It suffices to simulate conditional GPD, as done in Algo-
rithms 5.7.6 or 5.7.3. A division by x turns them into unconditionally GPD rv,
since only the distribution close to the origin is crucial for the definition of a GPD.

Algorithm 5.7.9.

1. Generate n rv x1,...,x, in the cube Ky := (—t, O)d, which are conditionally
distributed by a GPD (for example with the help of Algorithm 5.7.6 for the
logistic type or Algorithm 5.7.3 for other cases, rejecting those rv, which are
outside K;). Choose t, for example, as —1/(2d).

2. Compute k =W(t,...,t) and y; = x;/k, i =1,...,n.
3. Return yi,...,Yn.

5.8 Testing the GPD Assumption,
Threshold Selection

When applying GPD models to actual data sets, the first task is to check whether
a GPD model really fits the data, at least in the upper tail. Hand in hand with
this problem comes the question, well known from the univariate case: what is the
appropriate choice of a threshold, over which one can model the observations as
coming from a GPD?

By making suggestions how to handle these problems, the contribution of this
section is twofold: First we develop a non-asymptotic and exact level-a test based
on the single-sample t-test, which checks whether multivariate data are actually
generated by a multivariate GPD. The idea for this test was already described
in the remarks after Lemma 5.4.5. Its performance is evaluated by theoretical
considerations and by simulations using the simulation algorithms of Section 5.7.
This procedure is also utilized for deriving a Gauss-test based threshold selection
in multivariate POT models.

TESTING FOR A MULTIVARIATE GPD

Let U = (Ui,...,Us) be an arbitrary rv in (—o0,0)¢ with P(U > x) > 0 for
all x = (z1,...,24) < 0 close to 0. Note that max(Ug/zx, k € K) < ¢
Up/xp < t, k€ K < Uy > tay, k € K, for any non-empty set K C {1,...,d}
and t € [0, 1]. The following characterization of a multivariate GPD with uniform
margins is just a reformulation of Proposition 5.3.4,

Corollary 5.8.1. The r U follows a GPD with uniform margins iff for any
x = (z1,...,24) < 0 close to 0,

P(maX(Uk,kEK><t|max(Uk,kEK)<1)=t, t € [0,1],
Tk Tk
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for any non-empty subset K C {1,...,d}.

By putting xx = x < 0 for £k =1,...,d, we obtain from Corollary 5.8.1 that
for a GPD rv U and z close to 0 we have

P (Ul <tlel [ Ul <l2l) =t tel0,1], (5.51)

i.e., the ||-|| ,-norm of U is uniformly distributed, conditional on exceeding some
small threshold near zero. Similar results to (5.51) have been shown for the |-[|;-
norm in Theorem 5.6.2 and, in addition, for the usual A-norm in case of a logistic
dependence function in Theorem 5.7.5.

The theoretical results derived above can now be utilized to develop a testing
procedure for multivariate GPD.

Suppose that we observe n independent copies Uq,...,U, of a rv U, not
necessarily following a GPD. Corollary 5.8.1 suggests the following procedure to
test for an underlying GPD with uniform margins: choose x < 0 close to 0, deter-
mine the exceedance vectors U; > x and test the maxima of the vectors U; /x for
the uniform distribution on (0, 1), where division is meant componentwise.

Denote the exceedances in the order of their outcome by Vi,..., Vg, and
by
v V
Mm::max< o m’d>, m < K(n),
Z1 Zq

the largest value of the scaled components of the m-th exceedance V,,. Then,
by Theorem 1.3.1, M7, M, ... are, for x close to 0, independent and uniformly
on (0,1) distributed rv if U follows a GPD with uniform margins and they are
independent of their total number K (n). To test for this uniform distribution we
could use any goodness-of-fit test such as the single-sample Kolmogorov-Smirnov
test statistic

1
KS := K(n)'? su 1 M) —t
() ociot | K (n) 2 Toa(Mn)

m—1 m
where M.y < Magm)y < -+ < Mgn).kn) denote the ordered values of

My, ..., Mg (). The asymptotic distribution of KS is known, so that a p-value
can also be computed, see e.g. Sheskin [412], pages 241 ff.

A goodness-of-fit test, however, commonly uses a limit distribution of the
test statistic and, therefore, requires a sample size which is not too small. This
condition contradicts the fact that we will typically observe only a few exceedances
above a high threshold. A non-asymptotic test is, therefore, preferred such as the
following suggestion.



5.8. Testing the GPD Assumption, Threshold Selection 231

We transform M, ..., My (,) by the inverse @' of the standard normal df

®(z) = (2m)~1/2 [*__exp(—y?/2) dy and, thus, obtain iid standard normal rv
= @Y M,,), m < K(n),

under the null hypothesis of an underlying GPD with uniform margins. The next
result is an immediate consequence.

Theorem 5.8.2. Let Uy,..., U, be independent copies of a rv U that follows a
GPD with uniform margins. Suppose that P(U > x) > 0 for all x < 0 close to 0.
The test statistic of the single-sample t test

K(nl)l/z ngK(n) Zm

) ) o\ 1/2

then follows a t distribution with k — 1 degrees of freedom, conditional on k =
K(n) > 2.

ti(n) = (5.53)

We reject the null hypothesis that the rv U follows a GPD with uniform
margins if |t K(n)‘ gets too large or, equivalently, if the corresponding p-value

p=2(1=Tgm)—1(|txm])) (5.54)

gets too small, typically if p < 0.05. By T we denote the df of the ¢ distribution
with k degrees of freedom. Note that the preceding test is a conditional one, given
the number K (n) of exceedances.

Note, on the other hand, that the above test for a multivariate GPD with
uniform margins is not fail-safe. Consider X = (X1, ..., X4), where the X; are iid
rv with df F(y) =1 — (—y)'/¢, =1 <y < 0. Then we have for any x € [~1,0)%

PX>tx|X>x)=t, t €10,1],

but the df of X is not a GPD with uniform margins. To safeguard oneself against
such a counterexample one could test the univariate excesses for a one-dimensional
uniform distribution on (0,1) as well.

PERFORMANCE OF THE TEST

To study the performance of the above test we consider in what follows n inde-
pendent copies Xy,...,X, of arv X = (Xy,..., Xy), which realizes in (—oo,0)?
and where the df F satisfies for ¢t € (0,1) and x < 0, x # 0, in a left neighborhood
U of 0 the expansion

i(l—F(tX)) . X B N &t x
Fa iy =17 () W@ e, 659
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with some § > 0, where W is the df of a GPD with uniform margins, J(-) is
a function on the set S := {z < 0: ||z|, = 1} of directions in (—occ,0)? and the
function r(-, ) satisfies uniformly for ¢ € (0,1) and x € U the expansion r(t,x) =
o((1—W(tx))°).

Notice that condition (5.55) implies by I’'Hopital’s rule that F' and W are tail
equivalent if the function K is bounded, i.e.,

. 1-F(x)
e W)

Condition (5.55) is a condition on the spectral decomposition of F, see Sec-
tions 5.4 and 5.5. It essentially requires that the df F' is in the differentiable
d-spectral neighborhood of W, i.e., the tracks F(|t| x), ¢ < 0, belong to the wide
class of Hall [202]. It is, for example, satisfied with § = 1 and J = 1 if F is an
EVD G with negative exponential margins and W = 1 + log(G).

Choose a non-empty subset L C {1,...,d}, x € U, x < 0, and put x;, =
(Zi,L,...,Tq,r) With T, 1, = x; if ¢ € L and Z; 1, = 0 elsewhere, and set X :=
(%LL/ Y ier Tis- o Td-1,L] Y icr xl) The following lemma is established in Falk
and Michel [147], Lemma 4.1.

Lemma 5.8.3. Suppose that the rv X satisfies condition (5.55). Choose x < 0
in U, a sequence of_numbers cn 4 0 as n — oo, and put X, := cpx, n € N. If
A(x) 1= 30 g(=1) 2= Ixclly D@L) > 0, then we obtain, uniformly for
te[o,1],

P(X > tx, | X > x,)

=i 5051 (t(t5 - 1)58 + (11— ) + 81— £9)) 0(1)> ,

. S .
where B(x) := 3,y (~ 1)/ 3y Ixelly ™ D @EL)K (xi/ lIxclly)-

Note that the condition A(x) > 0 in Lemma 5.8.3 is a rather weak one, as
we have A(x) > 0 anyway.

Consider now the exceedances X; > x, = c¢,x among Xi,...,X,. De-
note these by V:(Ln), ... ,V(I?()n), where the number K(n) is binomial distributed

B(n,p(n)) with p(n) = P(X > x,,) = c,(A(x) + O(c2)), and K (n) is independent
of the exceedances Vgn), Vg"), ... Then, by Lemma 5.8.3,

v
M{™ = max ( o m < K(n),

1’ Cpg
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are iid with df

P(X > tx,)
() (4) . n
F0 = pix = x)
e B(x)

1 5 5(1_ 1 — £148)) o1

< +1+5<(t D g T A=+ 1= £79)o1)
for 0 < ¢t < 1. Denote by F(t) = t, 0 < t < 1, the df of the uniform dis-
tribution on ( 1). Note that E(@ 1( M )) = f d~1(t) F"(dt) and that

fol oIt F fo t) dt = 0. Integration by parts together with the substi-
tution ¢ — fI’( ) unphes

E (@—1 (Ml"))) - /1 =L(t) (F™ — F)(dt)
0
=/1<1>—(>j<F<"><> {)dt

/ it NE™ (&) —t)dt

= [ oy 0 -0

-/ Z oty (@) = ) (w) dy

_ /Oo 1625@( )1 — <I>5(y))ig3 dy + o(c},)
- o [ e - ) dy+olch)

= const ¢ + o(c?).

The single-sample ¢ test computed from the transformed exceedances Zi =

d-1(MM), 1 <m < K(n),
K(nl)1/2 ZmSK(n) ZST?)
1 (m2 1 (n))
B K12 Lome e (2 = E<Z§">>>
B 1/2
Ly (2 _ 1 (E Z<n>)2
K(n)—1 m<K(n) <M K(n) m<K(n) &M

K(n)/2E(Z{")
1 M2 1 o2\
K(m)—1 | 2om<km) Zm” = K(n) (stmm Zm )

tr(n) = 1/2

+
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will, thus, converge to infinity in probability and detect that the underlying df
is not a GPD, if K(n)l/QE(ZYL)) tends to infinity. Since K(n)/(np(n)) — 1 in
probability if np(n) ~ ne, — 0o as n — oo, the deviation from a GPD is detected

if (ne,)/2cd — oo, ie., if ncht?? — 0o as n — oo.

SIMULATION OF THE TEST

We want to illustrate the performance of the above test for an underlying GPD
by showing some simulations. The test actually tests for a (shifted) GPD copula,
and its performance seems to be reasonably good if a threshold x = (z,z,...,x)
with identical entries is used.

Each of the following plots displays the points (j/100, p;/100), —100 < j < —1
with linear interpolation, where p; /19 is the p-value defined in (5.54) based on the
threshold xp = (j/100,...,5/100). Note that within a graphic the same sample
is used for the 100 tests, only the threshold is chosen differently each time. Since
only very few observations are dropped when raising the threshold from 5/100 to
(7 4+ 1)/100, these 100 interpolation points suffice to get stable results.

By the choice of the threshold with identical components, the results of var-
ious tests and different thresholds can elegantly be plotted into one graphic with
the thresholds on the horizontal and the p-values on the vertical axis. The thick
line in the graphics represents the p-values using the t-test (5.54), the thin line
is the corresponding p-value using the KS-test statistic (5.52). For reference an
additional horizontal line is drawn at the 5%-level. Recall that a p-value below 5%
typically leads to a rejection of the null hypothesis.

To provide the number K (n) of observations the test with threshold ;j/100
uses, a dashed line connects the points (5/100,n71 > | 1(x,. 0)(x;)) in each plot,
i.e., the relative number of points exceeding the corresponding threshold. The
number of observations exceeding the thresholds —0.8, —0.6, —0.4 and —0.2 is
also given in the second line of the labelling of the horizontal axis.
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n =300, d=2, A=1.2 n =300, d=2 =2

N
<
-0.8 -0.6 -0.4 -0.2 0
142 108 76 42 0
n =300, d=2, X =6 n =600, d =3, x=3
1
0. 0.8
0. 0.6
0. 0.4
~
0. 0.2
~
AN
~ -~
-0.8 -0.6 -0.4 -0.2 0 -0.8 -0.6 -0.4 -0.2 0
222 162 106 55 0 310 229 156 70 0

FI1GURE 5.8.1. Plots for logistic GP distributed rv.

Figure 5.8.1 shows plots with simulated data from a logistic GPD W (x) =
1—||x||, with different values of A, sample sizes n and dimensions d. The data were
generated by Algorithms 5.7.6 and 5.7.9. We see that only in a very few cases the
true hypothesis of GPD rv is rejected. The few rejections are not surprising, since
each plot displays the outcome of 100 tests (on the same data set but with different
thresholds). Both, the t-test and the KS-test, therefore, keep their prescribed levels.
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n =300, d =2, A =1.2
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FIGURE 5.8.2. Plots for rv following a logistic extreme value copula.

Figure 5.8.2 shows the results of the tests with underlying EVD G(x) =
exp(—||x|[x), x < 0, transformed to uniform margins, thus simulating an ex-
treme value copula. The data were generated with the help of Algorithm 1.1 from
Stephenson [425]. Since GPD and EVD are tail equivalent, the tests do not detect
a deviation from the null hypothesis close to 0, but only away from the origin.
Note also the dependence of the power of the test on the parameter A.
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FI1GURE 5.8.3. Plots for rv following a normal copula.

In Figure 5.8.3 normal vectors with constant correlation coefficient p for all
bivariate components, which are transformed to uniform margins on (—1,0) are
used, i.e., the data are generated by a shifted normal copula. Since a shifted mul-
tivariate normal copula is in the domain of attraction of exp(—||x||1), x < 0, the
appropriate GPD model fitting the exceedances would be W (x) = 1 — ||x||1, which
is, however, a peculiar case. With this GPD underlying the data no observation
should be close to the origin, see Section 5.2, and thus a GPD should not be de-
tected in our simulations. This can be observed in Figure 5.8.3 for low correlations,
as the null hypothesis is not rejected only in those cases with a very small number
of exceedances. A high coefficient of correlation, however, decreases the power of
our test. Such a phenomenon is also discussed in Coles [71], Section 8.4. The KS
test seems to have here less power than the t-test as well.
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A t-TEST BASED THRESHOLD SELECTION IN MULTIVARIATE POT
MODELS

The choice of an appropriate threshold is very much an open matter, even in the
univariate case. The selection is typically supported visually by a diagram such as
the mean excess plot, see for example Davison and Smith [94]. In what follows we
will utilize the test for a multivariate GPD developed previously to derive a t-test
based multivariate threshold selection rule.

We consider in this section a rv X = (Xi,...,Xy) that is in the domain of
attraction of an EVD G with negative exponential margins, i.e., there exist vectors
a, > 0, n €N, with a, }noeo 0, and a vector b € R? such that the df F of X
satisfies

F'(a,x +b) =, 400 G(x), x€R% (5.56)

By xy = (2;y:)i<a we denote as usual the componentwise product of two vectors
x,y € R% The vector b is the upper and finite endpoint of the support of F. For
convenience we assume that b is known and we set it to 0.

Note that a rv X with continuous marginal df F;, ¢ < d, is in the domain of
attraction of an EVD with arbitrary margins implies that the transformed vector
(F;(X;)—1)i<q is in the domain of attraction of an EVD G with negative standard
exponential margins, see Resnick [393], Proposition 5.10. The df of the transformed
rv then satisfies (5.56) with b =0 and a,, = (1/n,...,1/n).

Taking logarithms we obtain from (5.56),

n(l — F(apx)) = nooo — log(G(x)), x < 0. (5.57)

Define the decreasing and continuous function a : [1,00) — (0,00)? by a(n) := a,,
n € N, and by linear interpolation for n < s < n + 1. It then follows from (5.57)
that

s(1 = F(a(s)x)) —s—o0 — log(G(x)), x < 0.

Observe that —log(G(x)) = 1 — W (x) for x near 0, where W denotes a GPD
corresponding to G. From equation (4.7) we obtain, for ¢ € [0, 1],

P(X > ta(s)x) =Y (17T Y (1 - P(Xy < tap(s)ax, k € L))
Jj<d |L|=j
and, thus, for x < 0 near 0 with Proposition 5.3.4,

P(X >ta(s)x | X > a(s)x)
_ Ejgd(_l)j+l Z\L\:j (1 - F(tanLxL))
B ngd(_l)jH Z|L|:j s(1— Fl(an,xr))
- Ejgd(_l)jH Z|L|:j(1 — W(txr))

T eI (L= W(xe)
=t (5.58)
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This means that the df of an exceedance X > xr above a threshold x7 close to 0
approaches the uniform distribution on (0, 1).

Suppose that we have n independent copies Xq,...,X,, of X and that we
are interested in some upper tail analysis of X. To this end we choose a threshold
x7 < 0 close to 0 and consider only those observations among the sample which
exceed this threshold. We denote these exceedances by Y1 ..., Y g(,), which can
be handled as independent copies of a rv Y. From (5.58) we obtain that the df

P(Y>tXT):P(X>tXT|X>XT)’R¢t

is close to the uniform df on (0, 1). The selection of the threshold xr such that the
above approximation is close enough for practical purposes is an obvious problem.
Choosing the threshold very close to 0 improves the above approximation but
reduces the number K (n) of exceedances, which is a trade-off situation. In the
univariate case d = 1 the selection of a threshold x1 can, for example, be supported
visually by a diagram such as the empirical mean excess function

1 Y; Y\ 1
e = ~F =
e(xT) K(n) j<;(n) T (ZET) )

as proposed by Davison and Smith [94], which should be close to the constant
1/2 if a7 is close enough to 0 and K(n) is large enough, see, e.g. Section 2.2 of
Reiss and Thomas [390]. The considerations in this section can also be utilized

for a t-test based threshold selection xr as described in the sequel.
Denote again by

Y, Y,
Mm:max< m’l,..., m’d>, m < K(n),
7,1 TT,d
the largest component of the excess vector (Y, 1/271,. .., Ym.a/x1,4). Then the
rv My, Ms, ... are independent copies of a univariate rv M with df

PM<t)=PX >txy | X>xp)~t, t € 10,1],

if xp is close enough to 0.

The single-sample t-test statistic ¢x () as given in (5.53) of the transformed
1V Zyp = ®"Y(M,,), m < K(n), can then be utilized for a threshold selection: Fix
xp < 0 and put x(c) := ¢xg, ¢ > 0. One could use the smallest ¢ =: ¢y > 0 such
that the p-value of |tK(n)‘ for the corresponding threshold xr = crxq is bigger
than some prescribed value such as 0.05. This threshold selection can be used to
decide above which threshold an approximation of the underlying df by a GPD is
justified. We refer to Section 7 of Falk and Michel [147] for an application of this
rule to a real data set.
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5.9 Parametric Estimation Procedures

Since searching for appropriate models in a non-parametric family like the GPD
family can be too ambitious, one way out is to look for models in certain parametric
subfamilies. Once one has decided for one such subfamily, one has to identify the
corresponding model parameters. This is usually done by estimation methods.

In this section we present a short overview of several methods for parametric
estimation in GPD models, which use decompositions of the corresponding rv
with the help of different versions of the Pickands coordinates. The estimators are
compared to each other with simulated data sets.

We will present two ML methods based on the angular density and one
which uses the Pickands the angular density. Relative frequencies will be needed
for another estimation procedure. Since the overview will be a short summary, the
interested reader is referred to Michel [330] and [333] for details.

THE PICKANDS TRANSFORMATION RELOADED
Recall that with R = {X € (0, 1)1 Y g mi < 1} being the open and R the

closed unit simplex in R?~!, the Pickands dependence function D : R — [0,1] of
an arbitrary GPD W with standard uniform margins can be written as

D(ty, ... ta_1) (5.59)

d—1 d—1
= [ max (Ultl, NN ,ud_ltd_l, (1 — Z’Lh) <1 — ZQ)) y(du),
R i=1 i=1

where v is the angular measure on R, with characteristic properties

v(R)=d and /uw(dU)=1, 1<i<d—1, (5.60)

R

see Section 4.3.

By d* := v(R) we denote the mass of v in the interior of R; recall that
by (5.60) we have v (R) = d and, thus, 0 < d* < d. If the measure v, restricted
to R4—1, possesses a density, we denote it by [ and call it the angular density. In
the literature it is also common to call the angular measure/density the spectral
measure/density, see for example Einmahl et al. [121].

We have already introduced the Pickands coordinates as an important tool
for analyzing a GPD in Section 5.6, since they decompose a GPD rv into two con-
ditionally independent components, under the condition that the radial component
exceeds some high value. The conditional distribution of the radial component is
a uniform distribution, the angular component has the density f(z) := ¢(2z)/(,
where ¢ is the Pickands density.

We define now a variant of the Pickands coordinates, which will also prove
very useful.
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The transformation T : (—00,0)? — R x (—00,0), defined by

! ! 1 1
Tp(x):=| , " ., 0T 4t (5.61)
R R ot m Td
= (Zla ceey Rd—1; C)7
is the transformation to Pickands coordinates z := (z1, ..., z4—1) and ¢ with respect

to Fréchet margins, where z is again called the angular component and c the radial
component.

The transformation (5.61) is closely related to the Pickands transforma-
tion (5.35). We have, in addition, applied the transformation 0 < y +— 1/y which
conveys exponentially distributed rv to Fréchet rv, which is a common marginal
transformation in extreme value theory. We, therefore, use the symbol 1.

The distributions of the radial and angular components of the Pickands co-
ordinates with respect to Fréchet margins are asymptotically known. To explain
these, we need some additional notation.

By

Ky = {x € (-00,0)%: x| <s}, s>0, (5.62)

we denote the (open) cube with edge length s in the negative quadrant. For r, s >
0, let

Qrs ={z€R: Ty (z,—7) € K, } (5.63)

be the set of angular components of the Pickands transformation with respect to
Fréchet margins of the points in the cube K, whose radial component has the
value —r. This set can also be written as

1

rs

1
s = ER:z;>  ,i<d-1, i <1-—
Qra=qa€R:z> i > @

i<d—1

Put for r,s >0,

x(r,s) = / l(z) dz. (5.64)
Then we have x(7, ) Tro00 d, since Qs Tro00 R-
One can show that

P(ZeB|C=-rZecQ,,) = X(: 5 /BmQ l(z) dz (5.65)

with Z and C being the random Pickands coordinates with respect to Fréchet
margins corresponding to the GPD W, and B is some Borel set in R. One can,
further, show that

dz

sup |P(ZeB|XeA, ;) — / iz) =0 (d" —x(r,s)), (5.66)

BeByg_1NR B d*
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where B4_; is the Borel-o-field in R%~! and

1
A, = XEKSZCZZ < -ry. (5.67)

)
s
i<d "

Altogether, the angular Pickands coordinate Z with respect to Fréchet margins
has asymptotically, for r — oo, the conditional density I(z)/d*, which is a scaled
version of the angular density. For the highly technical proofs of the preceding re-
sults we refer to Theorems 5.1.6 and 5.1.7 of Michel [330]. The rate of convergence
of the approximation depends on the rate of convergence of x to d*. In cases close
to independence of the margins, this convergence is typically very slow, whereas in
cases close to complete dependence of the margins this convergence will be quite
fast, see Example 5.1.5 of Michel [330].

ML ESTIMATION WITH THE ANGULAR DENSITY

We introduce two ML based estimation procedures for a parametric family of GPD.
For general information on the ML method we refer to Section 2.6 of Coles [71]
and Section 4.2 of Serfling [408].

In what follows, we assume that we have n independent copies )N((l), e ,)N((")
of a rv X, which follows a GPD W), .\, from a k-parametric family, which
satisfies Wy, . a,(x) = 1+log(G(x)) for x € K, where G is an EVD with standard
negative exponential margins. Let W), ., have the angular density I, ... »,, and
suppose that d} > 0. To keep the notation as simple as possible we set
A= (A1,..., ), where A € A C R¥,

We further consider only the copies with Hi(i) < s and denote by yAQ)

and C the corresponding random Pickands coordinates with respect to Fréchet
margins, i = 1,...,n. We choose a threshold 7 > 0 and consider only those obser-
vations X9 with C() < —r, ie., X e Ar s. We denote these by XM o xm),
They are independent from each other and from the random number m = K(n),
see Theorem 1.3.1.

The corresponding Pickands coordinates Z() with respect to Fréchet margins
have a density that is not exactly known, but which is close to I (z)/d}, see (5.66).
This is a suitable approach for an ML estimation of A: Determine j\m,r such that
the expression

— W

is maximized in A.
Asymptotic consistency, normality and efficiency of ML estimators have been
extensively studied; see, for example Pfanzagl [367]. We, however, do not use the
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exact ML procedure, since we do not insert the observations into their density,
but into a function, which is only close to it. We, therefore, refer to this approach
as the asymptotic ML method. The asymptotic distribution of the above defined
asymptotic MLE Xm,r is, under suitable regularity conditions for m — oo and

r — 00, again the normal distribution with mean A and covariance matrix V;l =
-1
(UAjr,ja) gy jo=1,. i » Where

Ux i .:/ d;\ 0 ZA(Z) 0 l)\(Z) dz
T SR Ia(z) NN, dy ) \OA;, dy '

The matrix V is the Fisher information matrix. The estimator is, thus,
asymptotically efficient in the sense that the covariance matrix of its limiting
normal distribution for m — oo, r — oo is the inverse of the Fisher information
matrix, see Section 4.1.3 in Serfling [408]. The exact regularity conditions and
the proof of the asymptotic normality are somewhat technical and lengthy. They
follow the approach presented in Section 4.2 of Serfling [408]. For the details we
refer to Theorem 6.1.2 of Michel [330].

As stated above, the approximation of the density of the Z(*) by I /d3 is
quite crude for fixed r, if one is close to the independence case, due to the slow
convergence of x in this case. Under the additional condition C) = —r; and
Z" € Q,, ., we know from (5.65) that the Z(") have the density

~ Ix(z)
l)\ T (Z) = X)\(T'i73) for YAS Qf’i,Sa
7 0 else.

This can be used for a conditional approach of a MLE of A = (A1,..., ) by
choosing Ay, » such that the expression

= 7 7@\ ] = S Ino (2
log (E Inr (Z )) ;bg (ZA, ’ (Z ))

is maximized in . Since we are using conditional densities, we refer to this method
as the conditional ML method. _

The conditional ML method with YT () also leads to an estimator, which is
asymptotically normal under suitable regularity conditions for m — oo, r — oo,
with the same covariance matrix V;l as above; we refer to Theorem 6.1.4 of
Michel [330] for the somewhat lengthy details.

MLE wITH THE PICKANDS DENSITY

We present a different ML approach. As before, we assume that we have n in-
dependent copies X(l) . X(") of a rv X which follows a GPD Wy from a k-
parametric family and the usual representation Wy (x) = 1 + log(Ga(x)) with
some EVD Gy on K. By px we denote the corresponding Pickands density in the
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parametric model and by ¢y its integral as given in (5.38). This time we denote by
Z® and C9 the corresponding standard Pickands coordinates, i = 1,...,n. We
choose a threshold r < 0 close enough to 0, and consider only those observations
with C®) > r, representing again the extreme observations. We denote these by
XM, . X)) They are by Theorem 1.3.1 independent of the random number
m = K(n), and have the density ¢ (z)/(x, independent of r, see Theorem 5.6.2.
Again, we can do a ML estimation of A by choosing A such that the expression

Q(A) := log (ﬁ A g(i))> - ilog (m (zu))) — mlog(Cx)

i=1
is maximized in A.

Since here, in contrast to the previous section, we insert the observations
into their exact densities, the proof of the asymptotic normality (this time for
m — oo only) of the MLE under suitable regularity conditions follows from the
corresponding standard hterature The asymptotic normal distribution has mean
A and covariance matrix U (u)"Jl’Jz)jl],-jg—l . with

dlog (WA(Z)> dlog (<PA(Z)>
UN,j1,j2 = E>\

J1,72 a>\]1 6)\J2
The estimation is again asymptotically efficient. Since it is based on the Pickands
density we refer to it as the Pickands ML method.

ESTIMATION VIA RELATIVE FREQUENCIES

In the following, we present another estimation approach in parametric multivari-
ate GPD models. The idea for this method results from the fact that only the
the number of observations, which fall into a certain area, can be asymptotically
sufficient for the parameters of the model, see Falk [136].

We assume again that we have independent and identically distributed rv
Xi,...,X,, which follow a GPD W,, ., whose angular density Iy, . x,(z) is
continuously differentiable in A,..., A\; and d},. ., > 0. For simplicity of nota-
tion, we put again XA := (Ay,..., A\x), where A € A C RE. We, furthermore, assume
that the parameter space A is an open non-empty subset of R¥.

For v > d put

1 1
Qv:=Kz€R: z > ,igd—l,Zzi<1—
v i<d—1 v

The restriction v > d ensures that the set @), is not empty. We have Q, s = Qs
for the set @, s introduced in (5.63). We put, furthermore,

By, = {x € (—oo,O)d te< -1,z € Qv},
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where ¢ and z are the Pickands coordinates of x with respect to Fréchet margins.

It is crucial in the following that B, , C K, holds for 0 < s < 1. Therefore,
s has to be chosen such that Wy possesses the representation (5.1) on the set
K. To ensure that B, , C K, the numbers v and r have to be chosen such that
the inequality v < sr holds. The set B,., is illustrated in the bivariate case in
Figure 5.9.1. The parameter v reflects the angle of B, ,. It is small for v close to
d, and it converges to a right angle for v — oc.

—-s 0

—-S

FIGURE 5.9.1. The set B, , in the bivariate case.

By applying the transformation theorem to the Pickands coordinates with
respect to Fréchet margins, we obtain

A(v)

r

P(X; € B,y) = / / c?Ix(z) dz dc = X

where ya(v) = fQu Ix(z) dz. The proof is given in Lemma 5.1.1 of Michel [330].
By

n
MBr) = L3 1, (X)
i=1
we denote the relative frequency of the occurrence of the event B, , where 14 is
the usual indicator function of a set A. By the law of large numbers, this relative
frequency converges for n — oo to the probability of occurrence x(v)/r.
Choose now v;, j = 1,...,k, such that d < v; < ... < v, < sr and define the
function 9 : A — [0, 1]* by

YA = (XA(Ul)’m, XA(W@)) .

r r

In what follows we assume that 1 is one-to-one. We estimate the parameter A by
a solution A of the equation

P(A) = (M(Bro, ), - - - M Brw,)) - (5.68)
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For this we have to assume that
(h(Brwy), -« h(Bry,)) € Im(ep), (5.69)

with Im(e)) being the range of the function ¥, else A is arbitrarily defined. Con-
dition (5.69) holds by the law of large numbers with a probability converging to 1
as n increases, i.e.,

P((h(Brv,),- s M(Brw,)) ¢ Im(¥)) —n—o00 0,

if 1(A) is not an boundary element of the range, which we assume. For real data
sets, it can happen that (5.69) is not satisfied. One could then modify the param-
eters v; if possible, see Algorithm 5.9.1 at the end of this section, where we try to
find appropriate v; in this case.

By the law of large numbers we get

r r

B3 = (h(Br)r - h(Br)) — oo (X*(””,..., X*(”“) — BN,

The function 1 is, by the assumptions on [y, continuously differentiable and,
thus, we conclude from ¥ (X) —pn_00 ¥(A) and that ¢ is assumed one-to-one, the
convergence A = X for n — oo.
The asymptotic normality of the estimator can also be shown under suitable
regularity conditions for n — co. The asymptotic covariance matrix is
-1

(Jpn) = (JlTp(n) , (5.70)

— XA (Umin(i,j)) _ XA(%)XA(UJ')

Cij~ r 7“2 5 ISZ,jSk

For the complete result with the exact conditions and the quite technical proof we
refer to Section 6.3 of Michel [330].

It is often the case that the variance (for k = 1) or the determinant of the
covariance matrix (for & > 1) can be minimized with respect to v := (v1,...,vg)
while A is fixed. This would be the optimal v, on which the estimation procedure
should be based. Since this optimum, however, depends directly on the parameter,
which is to be estimated, it cannot be computed in practice. To get approximations
of the optimal v the following iterative algorithm comes naturally.

Algorithm 5.9.1. Leti=1,n> 0 small, and I € N.
1. Determine X9 by the asymptotic ML method, mazimizing Y.
2. Determine v = (v@,...,v,@) € (d,rs]¥ such that the determinant of

the asymptotic covariance matriz (5.70) with underlying parameter X0—1)
becomes minimal.
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3. Determine the estimator A through (5.68) with parameter v(¥).
4. If
AGE=1) _ 2\(©)
‘ )\(i—l)

<n
ori=1I, return X, else increase i by 1 and go to 2.

The first estimation of A(®) can also be done by some other estimation pro-
cedure, but maximizing T by the asymptotic ML method is typically the compu-
tationally fastest way.

The choice of the break off parameters  and I depends on the underlying
problem and cannot be specified in general.

COMPARISON OF THE ESTIMATION PROCEDURES

We compare the preceding procedures by applying them to identical simulated
data sets. We examine the following procedures:

o Asymptotic ML: estimation of A by maximizing Y.

o Conditional ML: estimation of A by maximizing T.

o Pickands ML: estimation of A by maximizing €.

o Simple Iteration: estimation of A by Algorithm 5.9.1, where I = 1.

o Multiple Iteration: estimation of A by Algorithm 5.9.1, where n = 0.01 and
1 =10.

Since asymptotic ML, conditional ML, simple and multiple iteration are based
on Pickands coordinates with respect to Fréchet margins, whereas Pickands ML is
based on standard Pickands coordinates, the estimation procedures use different
(random) sample sizes. Thus a comparison with identical sample sizes becomes
difficult. The corresponding thresholds have to be adjusted, so that approximately
the same number of observations exceeds the corresponding threshold for each of
the above estimators. We did this by setting

d2
rp=-—1.5- , (5.71)
TF
where rp is the threshold for Pickands coordinates with respect to Fréchet margins,
and rp is the threshold for standard Pickands coordinates.

Before we present the simulation results, we want to add some short consid-
erations on the computational efficiency of the methods in the logistic case, which
will be the basis of our simulations.

For the asymptotic ML method we only have to maximize a quickly evaluable
function, which is usually done with an iteration procedure and is very efficient



248 5. Multivariate Generalized Pareto Distributions

with the corresponding software packages. From an efficiency point of view, this is
the only method that is usable in dimensions > 5, since no numerical evaluation
of an integral is required, if an analytical expression of d3 is known.

For the conditional ML method we also have to maximize a function, which
includes, however, various integrals, which are typically accessible only by numeri-
cal methods. This makes the conditional ML method numerically quite inefficient.

For the Pickands ML method, we have to maximize a function with just one
numerical integral (¢, ) in general. In most practical cases, asymptotic ML is faster
due to the known analytical representation of dy.

For the simple iteration we have to do an asymptotic ML estimation first,
then, to determine v, we have to maximize a function, which contains two nu-
merical integrals and one numerical derivative. Subsequently, we have to solve an
equation numerically which contains one integral. Thus, this method is more costly
than the asymptotic ML and the Pickands ML method, but a lot less numerical
integrals have to be determined than with the conditional ML method. Although,
for the multiple iteration, the simple Iteration has to be executed repeatedly, it is
less costly than conditional ML.

The five procedures introduced above are now compared by their results on
identical simulated data sets. For fixed dimension d and parameter A, a sample
of size n of observations following a multivariate logistic GPD is simulated by
Algorithm 5.7.9 and 5.7.6. This sample corresponds to the observations in a real
data set after the transformation to uniform margins. The estimation A for A
can now be done by the five methods. This procedure of creating one sample by
simulation and estimating the parameter A by the five methods introduced above is
now repeated 100 times. This leaves us with 100 estimations of the same parameter
A for each method. To be able to present the results graphically, boxplots have
been drawn to display the 100 estimations for each method. These boxplots can
then be used to visually compare the estimations, for example with respect to
biasedness and variability.

' $
1.8
1.4 %’ T *
1 i
T [ | ! ' o ——
N T T —-

Asymptotic ML Conditional ML Pickands ML Simple Iteration Multiple Iteration

FIGURE 5.9.2. Comparison of estimators for logistic data with A = 1.2.
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The parameters are first set to d = 2, n = 10000, r
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300, s = 0.1 and

A = 1.2, the threshold for the Pickands ML method is computed as in (5.71). The
resulting graphic is shown in Figure 5.9.2.

d =2, n=10000, r =300, s =0.1, A =1.6

Asymptotic ML

Conditional ML Pickands ML

Simple Iteration

Multiple Iteration

FI1GURE 5.9.3. Comparison of estimators for logistic data with A = 1.6.

d =2, n=10000, r = 300, s = 0.1, X = 2.

3.25 |
3 b .
¢ .
2.75 |
2.5
¢ 3
2.25 |
il }—‘
1.75 |
1.5 —_—
. . . . .
Asymptotic ML Conditional ML Pickands ML Simple Iteration Multiple Iteration

FIGURE 5.9.4.

Comparison of estimators for logistic data with A = 2.

A.I_ _|.

_2(

1

Asymptotic ML

FIGURE 5.9.5.

Conditional ML Pickands ML

Simple Tteration

Multiple Tteratio

Comparison of estimators for logistic data with A = 4.
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To be able to compare the behavior of the estimators for different underlying
logistic GPD, we have generated analogous graphics for A = 1.6, 2 and 4. They
are displayed in Figures 5.9.3 to 5.9.5.

The conditional ML and the Pickands ML do not show big differences, with
conditional ML having slightly lower variation. They seem to work quite well in all
cases. Very noticeable is the large bias of the asymptotic ML method for A close to
one. The asymptotic ML is, thus, an estimation procedure, which is asymptotically
efficient and works fine for cases of high dependence, but it is biased for fixed
sample sizes when approaching the independence case and, thus, it is not reliable
there.

The two iteration methods hardly differ in their behavior. The iteration pro-
cedures work quite well close to the independence case A = 1, where they have the
smallest variabilities. Close to the dependence case the procedures however have
large variabilities and the ML methods should be preferred. Further simulations
in the trivariate logistic case show an identical behavior to the bivariate case.

To summarize: The conditional ML method seems to yield the best results.
But since it requires quite a long time for computation, it might not be the best
one suited for practical purposes, especially in dimensions larger than 2. In these
cases one should use one of the other estimation procedures.

An application of these methods to a real data set is provided in Section 7
of Michel [333].

5.10 Testing in Logistic GPD Models

Together with the estimation of parameters in multivariate GPD models comes
the question of testing for parameters in these models. This seems to be a rela-
tively uncharted area in the investigations of the multivariate GPD. To start the
investigations we restrict ourselves in this section to the logistic GPD models and
introduce some basic testing procedures. We develop two testing scenarios which
are closely related to the usual one sample Gauss-test and two sample t-test.

THE BASIC SETUP

The characteristic feature of logistic GPD rv can be best formulated in terms of
the angular Pickands coordinate. Look for example at the simulation results in
Figure 5.7.1. The generated points arrange themselves in a sort of d-dimensional
cone, whose peak lies in the origin and whose center is the line z; = z;,4,j =
1,...,d, the bisector of the negative quadrant. The parameter A describes the
width of the cone. For X close to 1 it is opened very wide, for larger A\ it becomes
more narrow.

The width of the cone can also be described by the variance of the angular
Pickands coordinates of the observations. This variance is the characteristic fea-
ture of the logistic GPD with parameter A. The center of the cone corresponds
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to the maximum of the Pickands density (see Figure 6.6.2 for some graphs of bi-
variate logistic Pickands densities), which is also the expectation of the angular
component, as we will see below.

The above facts will be used to test for special values of the underlying
parameter A. Before we will define the test statistics, we have to establish some
auxiliary results.

Theorem 5.10.1. Let X follow an exchangeable GPD model, i.e., (X1,...,Xq)
and (Xo(1y,- -, Xg(ay) have for any permutation o of (1,...,d) the same GPD.
Consider the angular Pickands coordinates Z; = X;/(X1 + -+ + X4) under the

condition that X1 + --- + Xgq > cg for some ¢y < 0 close enough to 0. Then we
have E(Z;) =1/d, i <d.

Proof. Due to the exchangeability of the componentes of the rv X we have, close

to 0,
Xi+-+Xq d X d X
(Xt o i o i
1= (S{ _|_..._|_S(): (Z d )ZZ ( d )
! d 21X 21X

=1 =1
= dE < dXi ) = dE(Z;)
Zj:l X

and, thus, the assertion.

Note that the logistic model is an exchangeable model and, thus, Theo-
rem 5.10.1 is applicable in this case.
We will start constructing our tests for the bivariate case. We have E(Z) =
1/2 for the bivariate logistic GPD, with the Pickands density
1/A—2
oa(z) = (A—1)2M1 (1= )M (z)‘ +(1- z))‘> ) z €10,1].

according to Theorem 2.4 of Michel [331]. Denoting its integral by (\, we put

Cx

(e 1) ) (1)) 2 ()
L) e

Both numbers are finite due to 22px(2) < ¢a(z) and (z —1/2)" pa(z) <
oa(z) for z € [0,1], fol ©x(2)/¢ndz = 1. The two numbers are shown in Fig-
ure 5.10.1, depending on .

1
0% :=Var(Z) = E((Z —1/2)%) = E(ZQ) _ 411 :/O Zz‘PA(Z) ds —

and
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FIGURE 5.10.1. Graphs of 3 and 63.

Both of them are monotonically decreasing and converging to 0 for A\ — oco.
In addition, one can easily see by the dominated convergence theorem that

1 1
. 2 : 2 _
R - T}

A ONE-SAMPLE TEST

We start with the case, where we have one bivariate sample following a logistic
GPD and we have some null-hypothesis A = )y about the underlying parameter of
the bivariate logistic GPD, which we want to test. The idea for the test presented
in the following is to compare the empirical variance of the angular Pickands
coordinate with its theoretical counterpart 0/2\, under the hypothesis A = A\g. This
corresponds to the well-known situation of the one-sample Gauss-test, where we
have one sample following a normal distribution with known variance and we have
some null-hypothesis 4 = po about the mean of the normal distribution in the
sample.

Let (Xp,Xé”), i < n, be n independent copies of the rv (X1, X2), which
follows a logistic GPD with parameter A > 1. Consider the angular Pickands
components of those m = K(n) rv with Xl(l) + XQ(i) > cg. Denote these by Z;,
i <m. The rv

1 R (Z-y) -
N\ = m1/2 ; 0}\

is by the central limit theorem for m — oo standard normal distributed.

To test the hypothesis that the parameter A\ = )y actually underlies our
initial observations, we compute 7, », and reject the hypothesis, if |7, | is too
large, i.e., if the asymptotic p-value 1 — (2@ (|9m,,]) — 1) is too small, typically
smaller than 0.05.

To investigate the behavior of the test and especially to examine the normal
approximation of the distribution of 7, »,, we did a lot of simulations. For one
setting of the parameters m, A and \g, the corresponding logistic GPD rv were
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simulated with Algorithm 5.7.6 and the corresponding p-values were computed.
The null-hypothesis was rejected if the p-value was below 0.05. This was repeated
1000 times and the corresponding relative frequency of rejections computed. The
procedure was repeated for different combinations of the parameters m, A and ).
The results are displayed in Figure 5.10.2.

FIGURE 5.10.2. Simulations of the test for different parameters and sample sizes
(m = 10 solid lines, m = 20 small dashes, m = 50 long dashes, m = 100 long and
small dashes, m = 200 long and two small dashes). The vertical axis gives the
relative frequency of rejection, the horizontal axis the tested parameter \g.

The test alway keeps the level, as the true null-hypothesis A = Ay is never
rejected in more than 5% of the cases. The test is, however, not quite powerful
enough for a sample size of 10, as its p-values fall below the 5% rejection frequency
for lots of A\g deviating from the true parameter. This can also be seen for m = 20
and large A. Thus, in these cases, the normal approximation is not close enough
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to the actual distribution of the test statistic 7., x, so that a sample size of more
than 20 should be used to make the test sufficiently powerful. A sample size of 50
already gives quite reasonable results.

The test statistic 7, x is the usual Gauss-test statistic based on (Z; — 1/2)
and, therefore, also one-sided tests can easily be derived testing the hypotheses
A S )\0 or A Z )\0.

A TwoO-SAMPLE TEST

Next we investigate a two-sample problem by comparing two independent logistic
GPD samples with the hypothesis that the same (but unknown) parameter Ay
is underlying both samples. The idea here is to compare the empirical variance
of the angular Pickands coordinates in the two samples. This corresponds to the
well-known two-sample ¢-test comparing the means of two samples with unknown
but identical variation.

Let (Xl(l),Xg(l)), i < n, be independent and identically distributed logistic
GPD rv with underlying parameter A, and let ()Z'ﬁ”,)?g”), i < n, be indepen-
dent and identically distributed logistic GPD rv with underlying parameter . We
require, in addition, that the two sets of rv are independent.

Consider the angular Pickands components of those m rv with X, @) + X2i)
co and, correspondingly, the angular Pickands components of those m rv with
X() X() > ¢p. Denote these by Z;, 1 < m, and Zl, 1 < m, respectively. Put
Qi = (Z; —1/2)%, i <m, and Q; := (Z; — 1/2)2, i < . We consider the usual
two-sample t-test statistic

1 L em A
L ATLQ-ATL
m,m ’
’ S\/r}mLi
m

where S is the usual pooled variance of the @; and @n see Section 2.3 of Falk et
al. [145]. Assume that m/(m +m) — v for m,m — co. Then the statistic n, ~ is

asymptotically normally distributed under the hypothesis A = A By elementary
calculations and the central limit theorem it can be shown that 6,/S — 1 for
m,m — oo and if A = A\. We can rewrite the test statistic as

0~ = (\/m+m \/mZQz— \/m+m \/szz—Ux

N

Iy S pN(0,1) 0 —)DN(O 1)

~ ~ -« -
—+pN(0,1—7) *)DN(O,“/)

—D N(O, 1)
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The asymptotic p-value for testing the two-sided hypothesis A = hy is, thus,
1— (29 ‘nm ~|) —1). As stated before, testing the one-sided hypotheses A < A

or A > ) is also possible.
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FIGURE 5.10.3. Simulations of the two-sample test with various parameters and
various sample sizes. The vertical axes show the relative frequencies of rejections,
the two planar axes show the underlying parameters A\ and A.



256 5. Multivariate Generalized Pareto Distributions

Along the same lines as above, simulations were computed to investigate the
behavior of the test and the normal approximation of the distribution of U
The results are displayed in Figure 5.10.3.

The test keeps its prescribed level as the true hypothesis is never rejected
in more than 5% of the cases. The test performs, however, poorly if one of the
two samples has a size of only 10 in each sample. A sample size of 50 yields good
results.

MULTIVARIATE (GENERALIZATIONS
In the general d-dimensional case, the logistic Pickands density is given by

_ A—1 _ A-1
o (cﬁm_ 1>> (=) sty

i) DA(Zl,...,Zd_l)dA_l

see Theorem 2.7 of Michel [331], with D, being the logistic dependence function,
see Example 4.3.5.

We know by Theorem 5.10.1 that the expectation of the angular Pickands co-
ordinate is (1/d,...,1/d). In analogy to the bivariate case, we define the deviation
of the angular component from its expectation by

el (o) b ()

and we denote its variance by
2)

03 ::Var<”Z— (clzclz)
el () (e ()
(e ]

2
©x(z)
o o

Z

2)
-,
where R = {x €0, Y 1 < 1} is the unit simplex. Both numbers
are finite, since the norm is always bounded by 1.

For the one-sample test, the scenario is now as follows: Let (Xl(i), X C(li)),
i < n, be independent copies of (Xi,...,Xy) following a logistic GPD. Consider

the angular Pickands components of those m = K (n) rv with Xl(i) +-- -—l—X(gi) > cp.
Denote these by Z; = (Zf), R Z((il)), 1 < m. The rv

Lo 2= G DI 8
Im,\ ‘= m1/2 Z d 9/\ d A

i<m
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is for m — oo asymptotically standard normal distributed. This entails the com-
putation of an approximate p-value.
In the same way, the two-sample test statistic can be generalized to

;Zf; i—iZZLQi

where S is the usual pooled variance of Q; = ||Z; — (1/d,...,1/d)||> and Q; =
- 2
HZi—(l/d,...,l/d)H .

)



Chapter 6

The Pickands Approach in
the Bivariate Case

The restriction to bivariate rv enables the study of their distributions in much
greater detail. We introduce, for example, a certain measure generating function
M, see Section 6.1, and prove that the pertaining Pickands dependence function
D is absolutely continuous, see Lemma 6.2.1 and the subsequent discussion. This
property is unknown in higher dimensions. We also introduce an expansion of order
k+ 1, k € N, of the spectral df in the bivariate case, see Section 6.1, which turns
out to be quite useful in a testing problem.

The tail dependence parameter, which measures the tail dependence between
two rv, will be introduced in Section 6.1 and computed for rv in a certain neighbor-
hood of an EVD. The more general tail dependence function will be investigated
in Section 6.4.

Results about the Pickands transform of bivariate GPD and EVD rv will
be reformulated and strengthened in Section 6.3. This will include the case of
Marshall-Olkin rv.

Tests for tail independence of two rv are investigated in Section 6.5. It turns
out that the radial component of the Pickands transform is a powerful tool to
discriminate between tail independence and tail dependence; an extension to higher
dimensions is indicated.

Another speciality of the bivariate case is the ability to estimate the angular
density in GP models via the angular component of the Pickands coordinates,
shown in Section 6.6.

6.1 Preliminaries

Recall from Section 4.3 that a bivariate EVD G with reverse standard exponential
margins has the representation

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,
DOI 10.1007/978-3-0348-0009-9 6, © Springer Basel AG 2011
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G(z,y) = exp ((w+y)D (xiy)) . 1,y <0,

where D : [0,1] — [0, 1] is the Pickands dependence function

D(z) = / max <uz,v(1 - z)) du(u,v). (6.1)
s
From equations (4.31) and (4.32) with d = 2 recall that
S={(u,v):u+v=1,uv>0}

is the unit simplex in R?, and 4 is an arbitrary measure on S with the properties
u(s) =2, [ wdntuo) = [ vantuo) = 1.
S S

THE DEPENDENCE FUNCTION D IN THE BIVARIATE CASE

We show that the measure p on the simplex S in R? can be replaced by a measure
v on the interval [0, 1], which we call the angular measure. In Section 6.2 we will
outline the relationship between the Pickands dependence function D and the
measure generating function M of v.

Denote by ma(z,y) := y the projection onto the second component of an
arbitrary vector (x,y) € R? and put

v(B) = mou(B) = p(r; " (B))

for any Borel set B in [0, 1]. Then v is a measure on [0, 1] with ©(]0,1]) = 2 and

/ vdr(v) = / vdu(u,v) =1 :/ 1—vdv(v)
[0,1] S [0,1]

and D becomes

D(z) = /Smax(uz,v(l —2)) du(u,v)

= max((1 —v)z,v(1l — 2)) dv(v).
[0,1]

Let v be, on the other hand, an arbitrary measure on [0,1] with »([0,1]) = 2
and f[o,l} vdv(v) = 1. Define 7 : [0,1] — S by 7(v) := (1 — v,v) and put, for an
arbitrary Borel set B in S,

u(B) = v(x~(B)).

Then 4 is a measure on S with p(S) = 2 and [qvdu(u,v) = f[o grdv(v) = 1.
The Pickands dependence function corresponding to u is
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D(z) = /Smax(uz,v(l — 2)) du(u,v)

= max((1 —v)z,v(1l — 2)) dv(v).
[0,1]

We summarize the preceding considerations in the following result.

Lemma 6.1.1. A bivariate function G is a max-stable df with univariate standard
reverse exponential margins if, and only if, it has the representation

x
= <
Gay)=ew (@+yD(, 5 ) #y<0 @y #0,0)
where D : [0,1] — [0, 1] is the Pickands dependence function
D(z) = max((1 —u)z,u(l — 2)) dv(u)
(0,1]

and v is an arbitrary measure on [0,1] with v([0,1]) =2 and f[ udv(u) = 1.

0,1]

The measure generating function M of the preceding angular measure v will
be investigated in Section 6.2. The following properties of D were already estab-
lished for a general dimension d in Section 4.3.

Lemma 6.1.2. We have for an arbitrary dependence function D : [0,1] — R:
(i) D is continuous and convex.

(i)

(iii)
)

(iv

1/2 <max(z,1 —2) < D(z) < 1.
(1/2) = min,¢jo,1) D(2), if D(z) = D(1 - z), z € [0,1].

D

D(z) =1, z € [0,1], and D(z) = max(z,1 — z), z € [0,1], are the cases of
independence and complete dependence of the margins of the EVD G(z,y) =
exp((z +y)D(z/(z +vy)).

THE TAIL DEPENDENCE PARAMETER

Starting with the work by Geffroy [168], [169] and Sibuya [415], X and Y with
joint EVD G are said to be tail independent or asymptotically independent if the
tail dependence parameter

X = li% PY >c|X>¢) (6.2)
equals 0. Note that x = 2(1 — D(1/2)) and, thus, the convexity of D(z) implies

that x = 0 is equivalent to the condition D(z) = 1, z € [0, 1]. We refer to Section
6.4 for a discussion of a certain tail dependence function ¢ with §(1/2) = x.
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The attention given to statistical properties of asymptotically independent
distributions is largely a result of a series of articles by Ledford and Tawn [310],
[311] and [312]. Coles et al. [74] give a synthesis of the theory. For a directory of
coefficients of tail dependence such as x we refer to Heffernan [215].

Let the rvs U, V have dfs Fyy and Fy and let

x(q) :=P(V>F;'(q) |U > F;'(q)) (6.3)

be the tail dependence parameter at level ¢ € (0, 1); see Reiss and Thomas [389],
(2.57). We have

x(q) =x+O0(1 —q)
if (U, V) follows a bivariate EVD. Also

x(q) =x=2(1-D(1/2)), q¢=>1/2,

for bivariate GPD, see (9.24) and (10.8) of Reiss and Thomas [389]. Recall that
in the bivariate case, a GPD can be defined as W(xz,y) = 1 + log(G(z,y)) for
log(G(x,y)) > —1, see Lemma 5.1.1.

Tail independence x = 0 is, therefore, characterized for a GPD W(x,y) =
1+ (x+y)D(z/(x +y)) by x(g) = 0 for large values of ¢ or, equivalently, by
D(z) = 1, z € [0,1], and, hence, by W(z,y) = 1 4+ x + y. Note, however, that
W(z,y) =14+ x+y is the df of (U,—1—U), i.e., we have tail independence x =0
for a GPD iff we have complete dependence V' = —1 — U, which seems to be a bit
weird.

This ezact tail independence of W (x,y) = 1 4+ x + y can, however, easily
be explained as follows: Consider independent copies (U;,V;) = (U, —1 — Uy),
i<n,n>2 of (UV)=(U,—1—-U) with df W. Then we have for the vector of
componentwise maxima

(max Ui,r?éié( Vi) = (max U;, max(—1 —U;)) = (&1, &2),

i<n i<n i<n
where &1, & are independent rv. This is due to the equivalence
U>Uj<=-1-U; < -1-Uj.

This is another interpretation of the case of independence for GPDs, addi-
tional to our remarks in Section 5.2.

By taking the limit of x(gq), as ¢ T 1, in (6.3) one can easily extend the
definition of the tail dependence parameter to random variables with arbitrary
joint distribution functions.

TOWARDS RESIDUAL TAIL DEPENDENCE

Looking at the notion of tail independence and tail dependence, one may intu-
itively say that there is tail dependence in (z,y) if both components x and y are
simultaneously large. Otherwise one may speak of tail independence.
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Translating this idea to relative frequencies of data (x;, y;), ¢ > 1, one may say
that there is tail dependence if the frequency of both values z; and y; being large,
relative to the frequency of z; being large, is bounded away from zero. Within the
stochastic model this leads again to the conditional probability P(Y > ¢ | X > ¢)
in (6.2), which is bounded away from zero if X and Y are tail dependent. Let us
discuss this idea by regarding bivariate data from standard normal distributions
with various correlation coefficients p, cf. Figure 6.1.1. If p = 0, the data are
obviously tail independent. For p = 0.7 and p = 0.9 there seems to be a stronger
tail dependence. Finally, if p = —0.7, the tail independence is stronger than for
p=0.

X X

FIGURE 6.1.1. Plots of bivariate normal samples with p = 0 (top left), p = 0.7,
(top right), p = 0.9 (bottom left) and p = —0.7 (bottom right).

If, however, one considers a standard normally distributed random vector
(X,Y) with p < 1 and marginal df ®, one can show that P(Y > &~ !(¢)|X >
®~1(q)) — 0, as ¢ T 1. Thus, we have tail independence in this case in contrast
to the above intuition. The reason is that there may be a residual tail dependence
in the data even if they are tail independent. This type of tail dependence can
be captured by using the dependence measure x introduced by Coles et al. [74],
namely

L < 2log P{U > F7'(¢)} 1)
at1 \log P{V > F;;'(q),U > F;'(q)}
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where U and V are random variables with dfs Fyy and Fy . It may be of interest
in its own right that for rvs X and Y with reverse exponential dfs the preceding
parameter Y is given by

C _ lim 2log P{X > c} 1
=0 log P{Y > ¢, X > c} ’

cf. Frick et al. [161]. In the standard normal case we have y = p.

DIFFERENTIABLE SPECTRAL EXPANSIONS OF FINITE LENGTH
WITH REGULARLY VARYING FUNCTIONS

We strengthen the condition that a df H(x,y), =,y < 0, belongs to the dif-
ferentiable spectral neighborhood, respectively, to the differentiable spectral §-
neighborhood of a GPD W with Pickands dependence function D, cf. conditions
(5.31) and (5.34).

Let again H,(c) = H(c(z,1 — z)), z € [0,1], ¢ < 0, be the spectral decom-
position of an arbitrary df H(z,y), x, y < 0, see Section 5.4. We assume in the
following that the partial derivatives

0
Oc 0z

of H,(c) exist for ¢ close to 0 and any z € [0, 1], and that they are continuous. In
addition, we require that h,(c) satisfies the expansion

h.(c):= _ H.(¢c) and h.(c):= . H.(c) (6.4)

k
h.(c) = D(2) + Z Bj(c)A;(2) + o(Bi(c)), ¢10, (6.5)

uniformly for z € [0, 1] for some k € N, where D is a Pickands dependence function
and the 4; : [0,1] - R, j = 1,...,k, are integrable functions. In addition, we
require that the functions B; : (—o00,0) — (0,00), j = 1,..., k, satisfy

lgg Bj(c)=0 (6.6)

and B, (ct)
i(c

lim 7V =19 t>0,8 >0. 6.7

c10 Bj(c) bi (6.7)
Without loss of generality, let 51 < 2 < -+ < [r. We say that the df H satisfies
a differentiable spectral expansion of length k+ 1 if the conditions (6.5)-(6.7) hold.
The functions B; are again regularly varying in 0 with exponent of variation fj,
j=1,...,k, cf. condition (5.44). As in the case of Pickands densities, cf. (5.45),
one can reduce the spectral expansion in (6.5) to an expansion of length x + 1 for
any 1 <k <k, ie.,

h-(c) = D(2) + Y _ Bj(c)A;(2) + o(Bx(c)), c10.
j=1
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With regard to the testing problem in Section 6.5, the existence of an index j such
that

1
(2+6) / A5(2)dz — A;(0) — 45(1) £0, (6.8)

is essential. Then it is appropriate to choose x as

K::Inin{je{l,...,k}:(2+ﬁj)/0 Aj(z)dz—Aj(O)—Aj(l)sé();é()}. (6.9)

We also refer to the discussion of the existence of « in the lines following Corollary
6.5.1.

If k = 1, we write B and A instead of By and Ay, respectively, and denote the
exponent of variation of B by 8. We remark that the special case of a differentiable
spectral expansion of length 2 with B(c) = ¢ was investigated in the second edition
of this book.

According to Theorem 5.5.4 one could equivalently replace the dependence
function D(z) in (6.5) by some function a : [0,1] — [0, 00) with a(0) = a(1) = 1.
Then a(z) is actually a Pickands dependence function D(z). From Theorem 5.5.4
one obtains that H(z,y) is in the bivariate domain of attraction of the EVD G
with this dependence function D and

lci%lP(Y >c| X >c)=2(1-D(1/2)).

Thus, we have tail independence of X and Y iff D(z) = 1, z € [0, 1]. In this case,
the residual tail dependence can be captured by

1—p

s (6.10)

X =

Therefore, we also call 81 the residual tail dependence parameter.

We discuss some examples. Assume that D’(z) is continuous. Because a GPD
W has the spectral decomposition W,(c) = 1 4+ ¢D(z) for ¢ close to 0 we know
that W satisfies the conditions (6.4) and (6.5) with w,(c) = D(z), W.(c) = ¢D'(z)
and A;j(z) =0, j > 1.

In addition, an EVD G has the spectral decomposition G, (c) = exp(cD(z))
and, hence, it satisfies condition (6.4) and (6.5) with

g-(c) = exp(eD(2))D(z) = D(2) + eD(2)? + o(c), (6.11)
and
g-(c) = exp(eD(2))eD’(2).
< 0, satisfies, for instance,

Mardia’s df H(x,y) = (exp(—x) +exp(—y) —1)71, 2,y <
a differentiable spectral expansion of length 2 with D(z) = 1 and A(z) =2 — 22 —
(1—2)2.
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The standard normal distribution with correlation coefficient p € (0, 1) trans-
formed to [—1, 0]-uniform margins satisfies the expansion

h.(c) =1+ B(c)A(z) + o(B(¢)), c10,

with ,
B(c) = |e| 1+ L(e),
where
L(c)= (14 p)2(1 —p)”2(4m)" 1+ (—logle]) ™+,
and 5
A(z) = — 1—2))ite.
(== -

The function B is regularly varying in 0 with the exponent of variation

2
8= L, LE (0,1) (6.12)
for p € (0,1). Plugging § into (6.10) one receives again y = p. For further details
we refer to Frick et al. [161].
The following lemma states that an expansion of finite length of a Pickands
density can be deduced from a spectral expansion of finite length under certain
conditions.

Lemma 6.1.3. Let H be the distribution function of a bivariate random vec-
tor X = (X1, Xo) with values in (—o0,0]? satisfying the spectral expansion (6.5)
uniformly for z € [0, 1], where the Pickands dependence function D and the A;,
j=1,... k, are twice continuously differentiable.

(i) Putting

A Bj / 1

Ai(z) = —pA;(z) — 1+ 8, G(2)(1—22) + jA;.’(z)z(l —z), (6.13)

1+
where B; is the exponent of variation of the function B;, one gets
1 1
/0 Aj(z)dz = —(2+5j)/0 Aj(=) dz + A;(0) + A;(1) (6.14)

forg=1,... k.

(ii) If the remainder term
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is positive and differentiable in c, then the density of the Pickands transform
(Z,C) = T(X) satisfies the expansion

k
[0 = 9(2)+ 3 BiOA, () +o(Bile), et0,  (6.15)

uniformly for z € [0,1] with ¢(z) = D" (2)2(1 — 2) and A; as in (6.13). The
regularly varying functions B; are the same as in expansion (6.5).

(iii) If the parameter K of the spectral expansion in (6.9) exists, the parameter k
of the Pickands density in (5.46) exists, too, and both are the same.

Proof. Part (i) can easily be deduced by partial integration. For the proof of part
(ii) we refer to Lemma 2.1 in Frick and Reiss [162]. The assertion of part (iii)
follows directly from part (i).

The concepts of differentiable spectral expansions and expansions of Pickands
densities are of interest in their own right, applications may be found in Section
6.5 in conjunction with a testing problem.

6.2 The Measure Generating Function M

The restriction to the bivariate case enables the representation of an arbitrary
dependence function D in terms of the measure generating function corresponding
to the measure v, see Lemma 6.1.1. The derivation of several characteristics of D
such as its absolute continuity will be a consequence.

ANOTHER REPRESENTATION OF THE PICKANDS
DEPENDENCE FUNCTION

The following representation of a dependence function in the bivariate case will be
crucial for our subsequent considerations.

Lemma 6.2.1. Let v be an arbitrary measure on [0,1] with v([0,1]) = 2 and
f[O.,l] uv(du) = 1. Denote by M(z) := v([0,z]), z € [0,1], the corresponding mea-
sure generating function. Then we have for the dependence function D correspond-
ing to v (c¢f. Lemma 6.1.1) the representation

D(iz)=1-z+ M(z) dx, 0<z<1.
[0,2]
Proof. According to Lemma 6.1.1 and straightforward calculations we have

D(z) = max((1 —u)z,u(l — 2)) dv(u)
[0,1]

- z/[o’z](l ) du(u) + (1 — z)/ wdv(u)

(2,1]
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zzM(z)—z+1—/ uv(du).
[0,2]

Now Fubini’s theorem implies

/ uv(du) = / / Lio,u)(x) dz dv(u)
[0,2] [0,2] J[0,z]

- /{M / 1.2 (0) di(u) da

[0,2]
= M(z) — M(z)dx
[0,2]

=zM(z) — / M(z) dz.
[0,z]
This representation yields the assertion

D(z)=1-—z+ M (z) dx.
[0,2]

Note that M coincides with the angular distribution in Section 5.9 in the
bivariate case. The preceding result yields the following consequences.
(i) The function F(z) := D(z) — 1 + z defines for an arbitrary dependence
function D a probability df on [0, 1], whose Lebesgue density is M:

F(z)= M (z) dx, z €[0,1].
0,z]

(ii) Recall that a Lebesgue density is uniquely determined almost everywhere.
Since M is continuous from the right, the representation of D(z) in (i) implies
that M and, thus, the measure v is uniquely determined by D.

The Marshall-Olkin dependence function
Dy(z) =1—Amin(z,1 - 2)

is, for example, generated by the measure v, which has mass 2 at z = 1/2
and mass 1 — A at 0 and 1.

(iif) The representation
D(iz)=1-—z+ M (z) dx
[0,2]
implies, moreover, that D is absolutely continuous with derivative D’'(z) :=

M(z)—1:

D(z2) — D(z) :/ M) —1ldr, 0<z<zm<l

[21,22]
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We obtain, therefore, that D”(z) exists if, and only if M’'(z) exists, and in
this case these derivatives coincide. This was observed by Smith [417].

The measure generating function corresponding to the logistic dependence
function with parameter A\ > 1,

/X
D(z) = (z* (- z))‘>
is, for example,

M(z) =1+ D'(z)

Z)\—l _ (1 _ Z))\—l

- (z)‘ . z)A)HW

z €[0,1].

This function is continuous with M (0) = 0.

The measure generating function pertaining to the independence case D(z) =
1, z€[0,1],is M(2) =1, 2 € [0,1), M(1) = 2. The corresponding measure
v has mass 1 at each of the points 0 and 1. The measure generating function
pertaining to the complete dependence case D(z) = max(z,1—2z2) is M(z) =
0,z €[0,1/2), and M(z) =2, z € [1/2,1], i.e., the corresponding measure v
has mass 2 at 1/2.

ESTIMATION OF THE MEASURE GENERATING FUNCTION M

The representation
M(z)=D'(z)+1

offers an easy way to estimate the measure generating function M by means of an
estimator of D, which we introduced in Section 5.4 in general dimension.

Let (U1,V1),...,(Un,Vy) be independent copies of (U,V), whose df H is
in the d-neighborhood of the GPD W with dependence function D. Choose an
auxiliary parameter ¢ < 0 and consider, for z € [0, 1),

ONCEN (BN wICERRERTES)

i=1

cn “

n
1=

11(Ui >czor 'V >c(1—z)).

If we let ¢ = ¢, tend to 0 with n such that n|c| — oo, nc|!T2

then we obtain from Lemma 5.5.6

(nfe])}/? (ﬁmc(z) - D(z)) —p N(o, D(z)).

— 0 as n increases,
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The idea now suggests itself to use

Dyo(z+h) = Dy o(2)

Then(z) = h

with h > 0 for the estimation of the derivative from the right D’(z) of D(z). We
have

P(U> czor V >c(1—z)>

=1— H(e(21—2)))

- (1 —W(e(z,1 - z))) (1 + 0(|c|5))
— |e[D(z)(1+O(lel"))

and, consequently,
E<Tn,c,h(Z)> = fjc (H(c(z, 1-— z)) — H(c(z +h1l—2— h)))

_ 2(1)(2 +h) = D(z)) +0 ('ﬁ”) :

provided that ¢ is small enough.
The variance of T}, . »(z) satisfies

nhcVar <Tn7c7h(z)>

1

- (E((l(U ez V<e(l-2))

—1U <c(z+h),V<cl-z- h))>2>

— (H(e(z1— 2)) ~ H(e(z +h 1~z h)))2>

1

= b (H(c(z,l —z)) —|—H<C(Z+h,1 - (Z+h))>

_oH (c(z, 1—(z+ h)))

_ (H(c(z,l —z)) — H(c(z—i—h,l - (z+h))>>2>

= hlc (cD(z) +cD(z+h) —2c¢(1 —h)D (1 f h) + O(|¢|**?)
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2
— (= eD(z 4+ h) + eD(2) + O(|ef'**)) >

h h h
—heso D'(2)(1 —22) + 2D(z)

_ _h)D(Z) -D (1jh) +aD() + D(z+h) — D(2) o <|C|6 +ch>

=1+ (1-22)M(2)+2 M(zx)dr =: 0?(2),
[0,2]

provided that |c|®/h — 0.

The following result is now an immediate consequence of the central limit
theorem.

Lemma 6.2.2. Suppose that the df H of (U, V') belongs to the spectral 6-neighbor-
hood of the GPD W. If we choose ¢ = ¢, — 0, h = h, — 0 with n|c|h —
o0, |c|®/h — 0 as n increases, then we obtain, for z € [0,1),

(nlcl)/2(Toen(2) = E(Tuen(2))) —p N(0,0%(2).

Lemma 6.2.1 implies that for small ¢,

E(Tn,c,h(Z)) D)= D(z+ h}z -D(z) _ D'(2)+0 (|C|}1l+5>

1

|c[1+0
= M(x)—M(z)dx—i—O( )
h (z,2+h]

h
The following result is now immediate from Lemma 6.2.2.

Theorem 6.2.3. Suppose that the df H of (U, V) belongs to the spectral §-neigh-
borhood of the GPD W with dependence function D(z) = 1 — z + f[o . M(x)dz,

z € [0,1]. Choose z € [0,1) and suppose that M (z+¢)— M(z) = O(e%), e > 0, for
some « > 1/2. Then the estimator

~

My (2) :=Then(z) +1
of M(z) is asymptotically normal:
(nlel) /2 (81() = M(2)) — N(0,0%(2)),

provided that ¢ = ¢, — 0, h = h,, — 0 satisfy |c|°/h — 0, n|c|h — oo, n|c|h®* = 0
asm — oo.
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6.3 The Pickands Transform in the
Bivariate Case

In this section we want to reformulate and strengthen results about the Pickands
transform of bivariate GPD and EVD rv and include the case of Marshall-Olkin
Iv.

THE DISTRIBUTION OF THE DISTANCE C =U +V
We start with a result about the distance C'= U + V pertaining to an EVD rv.

Lemma 6.3.1. Let (U, V) be an EVD rv with Pickands dependence function D.
We have, for ¢ <0 close to 0,

PU+V <c¢)=exp(c) — c/[o : exp(cD(2)) (D(2) + D'(2)(1 — 2)) d=.

Proof. The following arguments are taken from Ghoudi et al. [179]. The conditional
df of U + V, given U = u < 0, is, for ¢ close to 0 ,

PU+V <c|U=u)
=PV <c—u|U=u)

< eo—
zlimP(V*c u,U € [u,u+eg])

10 P(U € [u,u+¢])
. Glu+e,c—u)—Gu,c—u) €
= lim
<0 € exp(u + ¢) — exp(u)

= () () )
—exp (eD (") ~ u) (D (") + 0 (") C;u)

if u > ¢ and,
PU+V<c|U=u)=1 ifu<e.

Hence we obtain
PU+V <e¢)

:/ PV <c¢—u|U =u)exp(u) du
(_0070]

:/[C,O] exp (0 (1)) (D(Z) w0 (Y) C;“) du + exp(c)

= exp(c) — c/ exp(cD(u)) (D(u) + D' (u)(1 — u)) du.
0,1]
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The following result extends Lemma 6.3.1 to a df H, which satisfies condition
(6.4). Recall that Hy(c) = H(c(1,0)), ¢ < 0, is the first marginal distribution of
H.

Lemma 6.3.2. Suppose that the df H(u,v), u,v <0, of (U,V) satisfies condition
(6.4). Let again h,(c) = ;ZHZ(C). Then we have, for ¢ close to 0,

1
PU+V <¢) = H(c) — / cha(e) + hae)(1 — 2) dz.
0
Proof. Repeating the arguments in the proof of Lemma 6.3.1, we obtain, for 0 >
u > c,

PU+V <c|U=u)
H(u+e,c—u)— H(u,c—u)

i
hi(u) <10 e
1 Hu+e(c+¢€) — Hu(c)
= lim ™
hl (’U,) el0 5
1

 ha(u) <h2(0) +h (C)cc_2u>

by making use of Taylor’s formula and the continuity of the partial derivatives of
H.(c).

Since P(U+V < ¢ | U =u) =1if u < ¢, we obtain by integration and
substitution, for ¢ close to 0,

PU+V <c¢)
= Hy(c /h ()" du

C2
— Hi(c) - / eha(e) + ha(e) (1 - 2) d.

Assume now that the df H(u,v) of (U, V) coincides for u,v close to 0 with
the general GPD W(u,v) = 1+ (u+v)D(u/(u 4+ v)). Repeating the arguments in
the proof of Lemma 6.3.1 one obtains the following result.

Lemma 6.3.3. We have, for ¢ <0 close to 0
P(U+V<c):1+2c<1— D(u)du).
[0,1]

THE PICKANDS TRANSFORM

The conditioning technique in the proof of Lemma 6.3.1 also enables us to obtain
the following sharper version of Theorem 5.6.2 on the distribution of the Pickands
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coordinates C' = U +V and Z = U/(U + V) in the case, where (U, V) follows
a bivariate GPD. This result is true for an arbitrary dependence function D dif-
ferent from the constant function 1 and requires no higher order differentiability
conditions on D. Recall that in the bivariate case, a GPD W can be defined by
W(u,v) =1+ log(G(u,v)) for log(G(u,v)) > —1, see Lemma 5.1.1.

Theorem 6.3.4. Suppose that (U, V) follows a GPD with dependence function D,
which is not the constant function 1. Then we have for c¢g € [—1,0) the following
facts:

(i) Conditional on C =U +V > ¢, the Pickands coordinates Z = U/(U + V)
and C =U +V are independent.

(ii) C is on (—1,0) uniformly distributed, precisely,

P(C > Co) = |C()|2 (1 —
[0,1]

D(z2) dz)
and, thus,
P(C > ucy | C > o) =u, 0<u<l.
(iif) Conditional on C > co, Z has the df
D'(2)z(1—z)+ D(2)(2z — 1) +1—2 [ D(u) du

F(z):= , z €[0,1].
2 (1 — f[O,l] D(u) du)

If (U, V) follows a bivariate EVD, then the statements in the preceding result
are asymptotically true for ¢y 1 0.

Theorem 6.3.5. Suppose that (U, V') follows a bivariate EVD G with dependence
function D, which is not the constant function 1. Then we have for co 1 0:

(i) Conditional on C =U +V > cg, the Pickands coordinates Z = U/(U + V)
and C =U +V are asymptotically for co T 0 independent:

P(C>ucy, Z<z|C > cp)
=P(C>ucy | C>co)P(Z<2|C>co)+O(co), 0<u<l.

(ii) We have P(C > co) = |co|2 (1 - f[O,l] D(z) dz) (14 O(co)) and, thus,
P(C > wucy | C > c) = u(l + O(cyp)), 0<u<l.

(iii) Conditional on C > ¢y, Z has for co T 0 the df
P(Z <z |C>cy) =F(2)+ Ocp), 0<2<1,
where the df F is defined in Theorem 6.3.4.
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MARSHALL-OLKIN GPD RANDOM VECTORS

The predominant example of an EVD with a non-smooth dependence function D
is the Marshall-Olkin df ([323])

Gi(z,y) = exp (z +y — Amax(z,y)), ,y<0, Ael0,1]
with the dependence function
Dy(z) =1— Amin(z,1 — z),
see Example 4.3.4. The pertaining GPD is

Wi(z,y) =1+ z+y — Amax(z,y).
Gy, is the df of

Z1  Zy Zy  Zy
UV):=
where Zy, Z1, Zo are independent standard reverse exponential rv, with the con-
vention

U V)=(Z1,2,) if A=0

and
(U, V)= (Zp,Zp) if A=1.

It is well known that Wy(z,y) = 1 + = + y is the distribution of (-7, -1 + n),
where 7 is uniformly distributed on (0, 1). The following result is an extension to
arbitrary A € [0, 1]. It can be verified by elementary computations.

Proposition 6.3.6. The Marshall-Olkin GPD W is the df of the rv

Ov)=, L ) 1)

== (- 2m) - 1)

+ )\iQ(n’ A=Dn—(A- 2)) : 1{2}(6),

where 1, € are independent rv, n is uniformly distributed on (0,1) and € takes the
value 0, 1,2 with probabilities

P(EZO):Z—)\’
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The rv (U, V) with df Wy (z,y) = 1+z+y— Amax(x,y) is, thus, generated in
a two-step procedure. First, the rv € takes one of the values 0, 1,2 with probability
A(2=X),(1=X)/(2=X)and (1 —X)/(2 — X), respectively. If e = 0, then (U, V)
is set to
(U’ V) = (U7 U)a

where U is uniformly distributed on (1/(A — 2),0). If ¢ = 1, then

-1-U
wv = (o720
where U is uniformly distributed on (—1,1/(A — 2)). And if € = 2, then (U,V) is

set to
(U, V)= (U,(A = 1)U -1),

where U is uniformly distributed on (1/(A — 2),0). The distribution of (U, V) is,
thus, concentrated on the three lines

y =z 1/(A=2) <2 <0,
y = (-1-2)/(1-X), -1<z<1/(A-2),
y=AN-1z-1, 1/A=2)<x<0

The distribution of the Pickands transform in case of an underlying GPD W)
is now an immediate consequence.

Corollary 6.3.7. If (U,V) has the df Wx(x,y) = 1+ z + y — Amax(x,y), then
the Pickands transform (Z,C) = (U/(U 4+ V),U + V) satisfies

(Z,C)=p (;, )\3277) Lioy(g)

A=Dn—-A-2) An—(A-2)
+< M—(A—2)  A-2 )1{1}(6)

n A —(A=2)
" (M—(A—2)’ A—2 )1{2}(5),

where n, € are defined in Proposition 6.3.6 and =p denotes equality in distribution.

The df of Z is, thus, not continuous in case of the Marshall-Olkin GPD W)
with A > 0. It has positive mass P(Z = 1/2) = P(e =0) = A\/(2—)) at 1/2, which
is the probability that (U, V') takes values on the diagonal y = x. The condition
C > co > 1/(A—2) can only be satisfied if ¢ = 0 and, thus, we have Z = },
conditioned on C > ¢g > 1/(A — 2). Note that 1/(A —2) < —1/2 for A € [0, 1].



6.3. The Pickands Transform in the Bivariate Case 277

(0,0)

FIGURE 6.3.1. Support lines of Marshall-Olkin GPD
Wi(z,y) =1+ 2z +y— Amax(z,y).

MARSHALL-OLKIN EVD RANDOM VECTORS

Suppose next that (U, V) follows the Marshall-Olkin df G (z,y) = exp(z +y —
Amax(z,y)),x,y <0, € [0,1]. Then

N B (EPVLNERY

exists for all (x,y) with = # y and, hence, gy is a density of G on the set {(z,y) €
(—0,0]? : @ # y}. We obtain that the Pickands transform (Z,C) = (U/(U +
V),U + V) corresponding to (U, V) has the density

fa(z,0) = (1 = N)|c|exp (¢ Da(z))

= (1 - N)lc|exp (¢ (1~ Amin(z, 1 - 2)))

on ([0,1]\{1/2}) x (—0,0).
Lemma 6.3.8. If (U, V) has the df Gx(z,y) = exp(x+y—Amax(z,y)),0 < A <1,
then the Pickands transform (Z,C) satisfies
P(C >¢) = —Ac¢/2+ 0(c?),
P(Z=1/2|C>c¢) = 14+ O(c),
P(C >uc|C >c¢) u(14 0(c)),

as ¢ 1 0 uniformly for v € [0,1].
Proof. First we consider the case A < 1. We have for ¢ < 0,

PU+V >c¢)
=PU+V >c¢U#V)+P2U >c,U=YV).
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The first probability on the right-hand side equals

/ / (2,b) dz db + / Ia(z,0)dzdb
(c,0) 01/2 (¢,0) J(1/2,1]

B / / (1= N)blexp (b(1 — Az)) dz db
(¢,0) J[0,1/2)
+ /(0,0) /1/271}(1 — A)|blexp (b(1 = A1 — 2))) dzdb
(c%).

From the representation

(U, V)= (max (Z>\O, 1Z_1)\> ,max

= 0(c?

Zy Zy
AT1—)
we obtain that

PQRU > ¢, U=V)

Ac A
= >
P <Z0 > 9 , Ly > 121 max(Zl,Z2)>

/ / 2exp(x) exp(2t) dz dt,
0,0) max 2 vl )\

since max(Z1, Z2) has the density 2 exp(2t), t < 0. The above integral equals

/(_Oo’ = /(A2 o) 2exp(z) exp(2t) dx dt
/ >e0) / 2eXP ) exp(2t) dx dt
e )
+/(12ACO) 2exp(2t) (1 — exp (1 } )\t)> it
= (1 — exp (/\20)> exp (1= A)e)

—|—1—exp((1—)\)c)—2;:i (1—exp<2;/\c>)
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= _/\26 +0(c?).

As a consequence, we obtain that

P(Z#1/2|C > ¢)
_ PU<VU+V>e)+PU>V,U+V >¢)
N PU+V >c¢)

=0(c)
and, moreover, that

PlC>uc|C>c)=PU+V >uc|U+V >¢)
=u(1+40(c)), 0<u<l.

This proves the assertion in case A < 1. If A = 1, i.e., Gi(x,y) = exp(min(z,y)),
we have U =V and, hence, Z = 1/2,C = 2U. Then we obtain

c

P(C>c):P(U>;):1—exp(2

__¢ 2
) - 2 +O(C )7
P(Z: ! |C>c)=1
2 )
P(C >u,c|C>c)=u(l+0(c)),
which completes the proof.

In the case A = 0, i.e., Go(z,y) = exp(x+y), the components of the Pickands
transform Z = U/(U+V) and C = U+V are independent, with Z being uniformly
distributed on (0,1) and C having the density |z|exp(z), = < 0; see, e.g. Lemma
1.6.6 in Reiss [385]. In this case we obtain

P(C >¢) = 0O(c?),
P(Z=1/2) = 0,
P(C>uc|C>c) = u?*(1+0(c).

A notable difference in this case A = 0 of independence of U and V from the case
A > 0 is the fact that C/e, conditioned on C > ¢, does not approach for ¢ 1 0 the
uniform distribution. Instead it has by the last expansion above the limiting df
F(u) =42, 0 <u < 1. We will see in Lemma 6.5.2 that this distinct behavior is
true for an EVD G with arbitrary dependence function D. This result is extended
to a more general framework in Corollary 6.5.1, which is then used to test for the
case of dependence.
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For any underlying A € [0,1] we have P(C > ¢) = X|c|/2 + O(c?). Suppose
we have a sample (U1, V1), ..., (U, V,,) of independent copies of (U, V). Then the

estimator

. 2 < 2
Ap 1= 1(C; > ¢) = K(n)
P e
of \ suggests itself, where C; = U; + V;. The Moivre-Laplace theorem implies that,
with underlying A > 0,

(nleD)'2 (A = X) = 2(ne]) 72 (K (n) — Ael/2) —p N(0,2)),

provided that the threshold ¢ = c¢(n) satisfies n|c| — oo, nc® — 0 as n — oo.

The estimator 5\n is, however, outperformed by those estimators defined below,
see Theorem 6.4.5 and the subsequent discussion.

6.4 The Tail Dependence Function

The tail dependence parameter of X and Y with joint bivariate EVD with depen-
dence function D is x = 2(1 — D(1/2)), see Section 6.1 for details. In the sequel
we will investigate a generalization to arbitrary D(z), z € [0, 1].

THE TAIL DEPENDENCE FUNCTION

Denote by
1—D(z)

min(z,1 — z)

¥ i=9(z) = €10, 1], z €10,1],

the canonical dependence function or tail dependence function with the convention
9(0) = lim, o ¥(z), ¥(1) := lim,4q (). Reiss and Thomas [389], (10.12), intro-
duce the canonical dependence function, but they use a different standardization
of D. The particular value

9(1/2) = 2(1 — D(1/2))

is the canonical parameter or tail dependence parameter. We refer to Falk and
Reiss [151] for its significance in bivariate EVD models. The cases 9¥(z) = 0 and
¥z) =1, z € [0,1], now characterize independence and complete dependence in
the EVD model with underlying df G.

The canonical dependence function corresponding to the Marshall-Olkin de-
pendence function D(z) = 1 — Amin(z,1 — 2) with parameter A € [0,1] is,
for example, the constant function ¥(z) = A. The logistic dependence function
D(z) = (z* + (1 — 2))V/* with parameter A > 1 has the canonical dependence

function
A\ 1/A
i—(l+<1;z>> if 2 <3,

) AN )
l—z_<1+(l—z> ) ifz>,.
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0 1 1 1 1 1 1 1 1 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIGURE 6.4.1. Canonical logistic dependence function with A = 1.2, 1.5, 2 and 3,
from bottom to top.

If the df H of the rv (U,V) is a GPD, then we have, for u € (—1,0) and
z € (0,1),

) PU>1—-2ul|V>zu), ifze(0,1/2],
: _{P(V>zu|U>(1—z)u), if z€[1/2,1).

If the df H of (U,V) is in the d-neighborhood of a GPD, then we have, for u €
(—1,0) and z € (0,1),

PU>1—-2ul|V >zu), ifze(0,1/2],

. }: 9() (14 O(ul?)).
PV >zulU>(1-2u), ifzell/2,1),

As a consequence, 1¥(1/2) coincides with the tail dependence parameter discussed,
for example, in Reiss and Thomas [389], (2.57), Coles et al. [74] and Coles [71],
Section 8.4, thus, continuing work that was started by Geffroy [168], [169] and
Sibuya [415]. A directory of coefficients of tail dependence is given in Heffernan
[215].

Note that the canonical dependence function can be extended to arbitrary
dimensions by putting

1—D(z)

-~ 1-max(z1,...,2¢-1,1 — > i<d—1 zi)’

I(z) :
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where D(z) is a dependence function defined in (4.32),z = (21, ..., 24—1). Then we
have 0 < ¥(z) < 1. The constant dependence function D(z) = 1, which character-
izes independence of the margins of the corresponding EVD G, is then mapped onto
%1(z) = 0, while the case of complete dependence D(z) = max(z1,...,24-1,1 —
Y icq_q %i) is mapped onto ¥2(z) = 1. The Marshall-Olkin dependence function
with parameter )\, defined in Example 4.3.4, has, for example, the constant canon-
ical dependence function ¥(z) = A and is just the convex combination of the
extremal points ¥1(z) = 0 and J5(z) = 1 of the convex set of all canonical depen-
dence functions ¥(z). In the sequel we discuss, however, only the bivariate case
with the univariate 9¥(z) with z € [0, 1].

From Lemma 6.2.1 we obtain for a tail dependence function the representa-
tion

_1-D()
(z) = min(z,1 — z)
1
= 1—-M(x)d
min(z,1 — z) /[074 (z) d
1-— if[o,z} M () dz, if 2 <1,
- L JoyM(@)de -1, if 2> 3.

Recall that f[o jy M(z)dx = D(1) = 1. This implies that

9(0) = 121110119(,2) =1-M(0)

and
9(1) = 121%11119(2) = lzl%rllM(Z) —1.

Lemma 6.4.1. The tail dependence function 9(z) is continuous, monotone de-
creasing for z € (0,1/2] and monotone increasing for z € [1/2,1). Its mini-
mum value is the tail dependence parameter 3(1/2) > 0, and its maximum is
max(9(0),9(1)) < 1.

Proof. The convexity of D implies, for A, z,y € [0, 1],
D((1 =N +y) < (1= X)D() + AD(y)
= 1-D((1 =Nz +Ay) = (1= )(1- D) + (1 - D))
= 1—D(zl)zzl(1—D(zg)>, 0< 2z <z <1,
2

by putting z := 0,y := 29, A := 21/22, and recalling that D(0) = 1. This yields

1-— D(Zl) > 1— D(ZQ)
21 - 29

s 0<2z1 <2< 1.
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From the general inequality D(z) > max(z,1 — z), z € [0, 1], we obtain further

1—D(2) <1 —max(z,1—2) =min(z,1 — 2)
= 1—D(z) <z, z €10,1/2].

The function ¥(z) = (1 — D(z))/z, z € (0,1/2], is, therefore, bounded by 1 from
above and it is monotone decreasing. The same arguments with A := (20 —21)/(1—
z1) imply that ¥(2) = (1—D(z))/(1—2), z € [1/2,1), is bounded by 1 as well and
monotone increasing.

AN ESTIMATOR OF THE TAIL DEPENDENCE FUNCTION

Let (U1, V1),...,(Un, Vy) be independent copies of a rv (U, V), whose df H is in
the d-neighborhood of the GPD with dependence function D,
An obvious estimator of the pertaining tail dependence function is

&n)c(z) — 1 - Dn,c(z)

min(z,1 — z)’

where

n

A 1
Dy o(2) = e Z 1(U; > czorV; > c(l —2))
i=1
= 1(1— ! Xn:l(Ui<cz %<c(1—z)))
n — ) —

(& :
=1

was defined in Section 4.2. The asymptotic normality of @nc(z) is now an imme-
diate consequence of Lemma 5.5.6.

Lemma 6.4.2. If ¢ = ¢, < 0 satisfies n|c| — 0o, n|c[1*?® — 0 as n — oo, then
we have, for z € (0,1),

R D(z)
(nle))/?(Dne(2) = 9(2)) —p N(O’ (min(z,1— Z))2>

The estimator 9, .(z) is, consequently, not efficient, see Theorem 6.4.5 below
and the subsequent discussion. It can, however, immediately be used for defining
a goodness-of-fit test for the Marshall-Olkin distribution. In this case 9¥(z) is a
constant function and, thus,

A A

1971,0(22) - 1971,0(21) = (énm('z?) —(z2)) — (ﬁn,C(zl) —¥(z1))

is automatically centered, where 0 < 23 < z3 < 1. The following result is a
consequence of the central limit theorem for triangular arrays.
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Lemma 6.4.3. Suppose that the df H of (U,V) is in the d-neighborhood of the
Marshall-Olkin GPD. If ¢ = ¢, < 0 satisfies n|c| — oo, nlc|'7? — 0 as n — oo,
then we have, for 0 < z1 < 290 < 1,

(n|c|)1/2(1§n7c(22) - 19n,tz(zl)) —D N(07031,z2,)\)7

where

22 — 21

* * 2
z8 —z A
2 — 2 1 mi * *
Tarzah = 2 z}z3 B ( 2525 ) + 2523 (2 in(z1,1—2) — 27 — Z2>

with zf = min(z;,1 — z;), 1 = 1,2.

A CHARACTERIZATION OF THE
MARSHALL-OLKIN DEPENDENCE FUNCTION

The following result characterizes the canonical Marshall-Olkin dependence func-
tion. It states, precisely, that the canonical Marshall-Olkin dependence function
is under some weak symmetry conditions characterized by the fact that its right
derivative at 1/2 is 0. This fact can be used, for example, to define a goodness-of-fit
test for the Marshall-Olkin dependence function; we refer to Falk and Reiss [154]
for details.

Theorem 6.4.4. Suppose that the dependence function D is symmetric about
1/2, i.e., D(2) = D(1 — z), 0 < 2z < 1. Then the derivative from above ¥'(1/2) :=
limp,o(3(1/2 + h) —9¥(1/2))/h exists in R, and we have

¥'(1/2) =0

iff 9 is the canonical Marshall-Olkin dependence function 9(z) = X € [0,1], z €
[0,1].

Proof. Lemma 6.2.1 implies that D(z) is differentiable from above for z € [0,1)
with derivative D’(z) = M(z) — 1 and, thus,

#y= DI 4100

This yields
¥(1/2) =0 < D'(1/2) =2(1 — D(1/2)).
The assertion is now immediate from Theorem 3.3 in Falk and Reiss [154].
For the canonical logistic dependence function we obtain, for example, that
9'(1/2) = 4(1 — 2Y/2=1) which is different from 0 unless A = 1. But the logistic

dependence function with parameter A = 1 coincides with the Marshall-Olkin
dependence function with parameter A = 0.
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The following example shows that the symmetry condition on D in Theorem
6.4.4 cannot be dropped. Choose a number p € (1,2) and put

1
x::pp € (0,1/2).

Let v be that measure on [0, 1] which puts mass p on 2 and mass 2—p on 1. Then
we have

v([0,1]) =2, /[0 1]udu(u) =pr+2-p=1

and

D(z) = Z/[o z](l —u)dv(u) + (1 —2) /(z71] udv(u)

_{l—z, if0<z<ua,

2—-p+z(p—-1), fz<z<L (6.16)

The tail dependence function

1—-D(z)
min(z,1 — z)

I(2) =
satisfies in this case

9(z) = 1, if0<z<x,
T lp—1, if1/2<z2<1.°

Hence we have 9'(1/2) = 0, but ¢ is not the canonical Marshall-Olkin dependence
function. This is an example of a dependence function, which is neither symmetric
about 1/2, i.e., it does not satisfy D(z) = D(1 — z), z € [0,1], nor does D(z),
z € [0, 1], attain its minimum at z = 1/2, see Lemma 6.1.2.

LAN AND EFFICIENT ESTIMATION OF ¥(z)

Let again (U1, V4),...,(Un, Vs) be independent copies of the rv (U, V), whose df
H is in the d-neighborhood of a GPD W.

We will establish in the sequel LAN of the loglikelihood function in a multi-
nomial model.

Fix z € (0,1), suppose that ¢ = ¥(z) € (0,1), and divide the quadrant
{(z,y) : x,y < 0} into the four subsets

Siy = S1l(t)={(a:,y) HCan <2 <0t 15 <y <o),

S12 = S12(t x <t . Z t 1=z <y<0},

min(z,1—2)’ ” min(z,1—2)

So1 = 521 { mm zzl z) <z <0, y<t min%z_.f—z) } ’
Sao = Sao(t {

rw <t E <t .1‘f_z)},

min(z,1—2)" y= min(z,
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where ¢t = t(n) 1 0 as n — co. Denote by

n

= 3 (i < 5)

m=1

the number of observations in S;;. This gives a 2 x 2 Table of the observations.
The vector (n;;) is multinomial B(n, (p;;)) distributed with parameters n

and
pu=P(U >t 20 0V > tls )= 1o (1+03t),
_ z z _ z 5
P12 = P<U < tmin(z,l—z) V> tmm%z 1— z)) - <m1n(z 1-2) 19) <1 + O(|t| ))7
Pa = P<U = tmin(;l—z) — mln(z 1 z)) = (mln(z 1-2) 19) (1 + O(|t|5)>7
P22 = P<U < tmin(zz,l—z) — mm(z 1 z)) = |t|( - min(zl,l—z)>+ O(|t|1+5)
tmin(zz,l—z) (0,0)
ni2 nii
t 11—z

min(z,1—2)

22 n21

FIGURE 6.4.2. 2 x 2 table of the observations.

Define the alternative
Hn) := 9+ oy,
where ¢ € R is arbitrary and

1
Op 1= .
(n]t])!/2
Denote the corresponding cell probabilities under ¥(n) by p;j,. We require in the
following that
max(z,1 — z)
min(z,1—2)"

This is a mild condition, since we have

max(z,1 — z)
~ min(z,1 - z)
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by the general inequality D(z) > max(z,1 — z) anyway. In the following result we
establish LAN of the multinomial distributed vector (n;;). For a proof we refer to
Falk and Reiss [153].

Theorem 6.4.5. Suppose that t = t,, T 0 and that nt,, — oo, nt:to — 0. Then
we have, for 0 < z <1 and 0 < 9 = ¥(2) < 1 for the loglikelihood ratio under ¥,

the expansion

B(n, (pij))
max(z,1—2) 2
2 X -
= cZu -, L\t
19(1 - 19) (min(zjl—z) - 19)
with the central sequence
_ nii __ niz _ na1
Zn = On ( 9 min(ei-n—Y  min(=1-2) "0 +nt)

max((z,l—z))_ﬂZ
min(z,1—2
*D N 07 ﬂ(l_ﬂ)(max(z,l—z)_ﬁ) .

min(z,1—z)

The above result together with the Hajek-LeCam convolution theorem pro-
vides us with the asymptotically minimum variance within the class of regular
estimators of ¥. This class of estimators 9, is defined by the property that they
are asymptotically unbiased under 9,, = ¥ + ¢6,, for any ¢ € R, precisely

67:1(1911 - 1911) —>D19n Qﬁa

where the limit distribution @y does not depend on ¢; see Section 8.4 and 8.5 in
Pfanzagl [367] for details.

An efficient estimator of ¥ within the class of regular estimators of ¥ has
necessarily the minimum limiting variance

mz.ix((z711—z)) -9
Ufninimum =0(1 =) maX(Z.)l—Z) ’
x(s1-2) _
min(z,1—2)

which is the inverse of the limiting variance of the central sequence.

Put .
n11 ;
ni1+nar’ if z< 27
Gn(z) =0y =
ni1 : 1
niit+niz’ if 2> 2"

For z = 1/2, the estimator J,(1/2) coincides with the estimator of the tail
dependence parameter ¥(1/2) = 2(1—D(1/2)) investigated in Falk and Reiss [151].
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Lemma 6.4.6. We have, under the conditions of Theorem 6.4.5,
(nfta) 2 (D, — 0) —p N(O,ﬁ(l - 19)).
Proof. We have, for z < 1/2,

(nltal) /2 (00 — )

_ 1/2n11—9%(ni1+n21)
- (TL‘ ) /2 n11+171LQ1 “
()12 (11—l (1= )= (s ==l )9

ni1+mnai

tnl
nl

(nltal) = (13 = Ol (1 = 9) = (121 — (1= D)nlta])9) + 0,(1)
b N(O,ﬁ(l —19))
by the central limit theorem. The case z > 1/2 is shown in complete analogy.

The estimator J,, does not have, therefore, asymptotically minimum variance.
The modification

ﬁn,eff(z) = ﬁn,eff

g, 4 On(1=1u) X{lzz—@n—z;ﬁ, i o<,
=Un max(z,1—2z) 3 z 4 _ nor . I
miu(z,l_z) _79% 1—z 19n n\t|’ lf z > 2
however, satisfies
5;1 (19”7cﬁ‘ - 19) = afmnimumZn +0p(1) —p N(O, U?ﬂinimum)a

which follows from elementary computations. Note that ﬁn,eﬁ(l/ 2) is the efficient
estimator of the tail dependence parameter defined in Falk and Reiss [151]. The
modified estimator is by the Hajek-LeCam convolution theorem an efficient esti-
mator in the class of regular estimators with the rate d,, see Sections 8.4 and 8.5
in the book by Pfanzagl [367].

6.5 Testing Tail Dependence against
Residual Tail Dependence

Effects of mis-specification such as modelling dependent data by independent ran-
dom variables are described by Dupuis and Tawn [116]. Following Ledford and
Tawn [311], they come up with the conclusion

It would seem appropriate to test for significant evidence against asymp-
totic dependence before proceeding with an asymptotic independent model.

Testing whether tail independence holds is, therefore, mandatory in a data analysis
of extreme values. More precisely, we will test tail dependence against residual
tail dependence where the latter concept may be regarded as a refinement of tail
independence, cf. p. 262.
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TESTING THE TAIL DEPENDENCE UNDER DIFFERENTIABLE
SPECTRAL EXPANSIONS

Let (X,Y) be arv with values in (—oo, 0]? whose df H (x, %) satisfies a differentiable
spectral expansion of length k£ + 1, i.e.,

k
ha(c) = D(2) + > Bj(c)Aj(2) + o(Bi(c)), ¢10, (6.17)

J=1

uniformly for z € [0,1], cf. (6.5). Then according to Section 6.1, H(x,y) is in the
bivariate domain of attraction of the EVD G with Pickands dependence function
D. Furthermore, X and Y are tail independent iff D = 1.

Let now (X1,Y7),...,(X,,Y,) be independent copies of (X,Y"). If diagnostic
checks of (X1,Y7),...,(Xn,Y,) suggest X,Y to be independent in their upper tail
region, modelling with dependencies leads to the overestimation of probabilities of
extreme joint events. Some inference problems caused by model mis-specification
are, for example, exploited by Dupuis and Tawn [116].

Because we want to prove that tail independence holds, we put tail depen-
dence into the null hypothesis—thereby following the advice by J. Pfanzagl (trans-
lated from German), see [365], p. 95.

As null hypothesis select the opposite of what you want to prove and
try to reject the null hypothesis.

Thus, our first aim is to test
Ho: D(z)#1 against H;: D(z)=1.

It is an obvious idea to test the tail dependence by estimating the dependence
function D and to test for D # 1 or D = 1. The latter approach was carried out
by Deheuvels and Martynov [105]. A similar approach was suggested by Capéraa
et al. [59]; see also the discussion in Section 3.2.1 of Kotz and Nadarajah [293].

In the sequel the testing will be based on the random distance C = X 4+ Y.
We will establish the fact that the conditional distribution of (X 4+ Y')/¢, given
X +Y > ¢, has limiting df F(¢t) = t'7#,t € [0,1], as ¢ 1 0 for a certain parameter
8> 0iff D(z) =1, i.e., iff X and Y are tail independent. If D is not the constant
function 1, then the limiting df is that of the uniform distribution on [0, 1], namely,
F(t) =t, t € [0,1]. Therefore the testing is reduced to

Hy:Fy(t) =t against Hy:Fs(t)=t"" 5>0

which means that we are testing a simple null hypothesis against a composite
alternative, cf. Frick et al. [161]. The null hypothesis where D # 1 or 8 = 0
represents tail dependence while the alternative with D = 1 and 8 > 0 stands
for tail independence. The parameter S > 0 is a particular exponent of variation
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of the underlying spectral expansion (6.17). If condition (6.8) is satisfied by the
function A, then § can be chosen as 51 belonging to the first regularly varying
function B; in the expansion, cf. (6.18) in Corollary 6.5.1.

Since B > 0 measures the residual tail dependence, cf. (6.10), one can also
speak of testing tail dependence against residual tail dependence. The case 8 =1,
which was presented in the second edition of this book, still holds for EVDs and
can be regarded as a special case.

The above result will be utilized to define a test on tail dependence of X and
Y which is suggested by the Neyman-Pearson lemma. As the Neyman-Pearson test
at the level a does not depend on the parameter 8, we will get a uniformly most
powerful test. The test will be applied to the exceedances X; 4+ Y; > ¢ among the
sample (X1,Y7),...,(X,,Ys). To make the test procedure applicable, the data
have to be transformed to the left lower quadrant first. This transformation is
achieved by means of the marginal empirical dfs, cf. Ledford and Tawn [311], see
also Coles et al. [74] and Reiss and Thomas [390], p. 331. The type I and II error
rates will be investigated by various simulations.

Concerning goodness-of-fit tests for the case § = 1 that are based on Fisher’s
K, on the Kolmogorov-Smirnov test as well as on the chi-square goodness-of-fit test
we again refer to the second edition of this book.

A CONDITIONAL DISTRIBUTION OF THE DISTANCE C = X +Y

The following auxiliary result is actually one of the main results of the present
considerations.

Corollary 6.5.1. Assume that (X,Y) is a random vector with df H which satisfies
the conditions (6.4)-(6.7), hence satisfying a differentiable spectral expansion

k
he(e) = D()+ 3 By(0)A, () + o(Bele)), 10,

uniformly for z € [0,1] and some k € N with Pickands dependence function D.
(i) (Tail Dependence) If D(z) # 1, we have
PX+Y>ct|X4+Y>c)—t, ¢?10,
uniformly for t € [0,1].
(ii) (Residual Tail Dependence) If D(z) = 1, we have
PX+Y >ct| X +Y >c) =t cro,
uniformly for t € [0, 1] provided that

szmin{je{l,...,k}I(2+ﬁj)/01Aj(Z)dZ—Aj(O)—Aj(l)#O}

(6.18)
exists.
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Proof. From Lemma 6.3.2 we obtain, for ¢ close to 0,

PX+Y>ct|X+Y >0

_ fc(i hi(z)dx + fol cth,(ct) + h.(ct)(1 — 2) dz _ 1 (6.19)
[P hi(z)de + [y chalc) + ha(e)(1 —2)dz 1D '
where
I::/ 1+ZB 1) + o(By(z)) dx

k

1 L
—i—/o ct | D(z) + ZBj(Ct)Aj(Z) + o(Bg(ct)) | dz —l—/o hx(ct)(1 — z) dz,

Jj=1

H::/ 1+ZB 1) + o(Bu(z)) do
k

+/O c (D(z)—i—ZBj(c)Aj(z)—i-O(Bk(c))) dz—i—/o h.(c)(1 — z)dz.

Jj=1

Using partial integration we obtain

/ ha(e)(1 — 2)dz

/ dx—/ / h.(z)dxdz

_ / 1+ZBj(x)A (0) + o( Bu(x)) da

:c</01D(z)dz—1) —jil/cij(x)d;v (/OlAj(z)dz—Aj(O)>
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as well as

/ 1+ZB 1) 4 o(Bi(z)) dz

- —c—}—;/c Bj(z)dr A;(1) + o (/COBk(x)dx)

and

= 1D d - B 1A d B
—c/O (2) +g j<c>/0 J(2)dz + o(cBy(c)).

The same goes for ct instead of c. Substitutlng the above expansions in equation

(6 19), we obtain with L := fo z)dz — 1, N; := fo z)dz — A;(0) — Aj;(1),
M= [y A
P(X+Y>ct|X+Y>c)
2etL = S5y (U5 Bi(@) da Nj — ct By )—l—o(ctBk (ct) + [ Bu(w) dz)
2cL — Zjl(fB )dxz N; — cB;( >—|—0 cB —|—f By (x dx)
2etL+ 56 (24 p) fy An(2) dz — A5(0) - AH(1>) + o(ctBy(ct))
B . (6.20)
20L+Cffi(pc)<2+p Jy Ax(2)dz = A5(0) = Ac(1)) + olcBy(c))

with x as defined in (6.18). Representation (6.20) is due to Karamata’s theorem
about regularly varying functions, which implies fco Bj(t)dt ~ —, +ﬁ Bj(c)c as
¢t 0 for j = 1,...,k Finally, applying the conditions (6.6) and (6.7) to the
regulary varying function B, yields the desired assertions.

We remark that the existence of k in (6.18) is actually not a strong condition.
Provided that B; in the spectral expansion is absolutely continuous and has a
monotone derivative we have in general

Ar(z) = A (1) + 41 (0)(1 — 2)' TP 2 € [0, 1],
and, hence, (2+ 1) fol Aq(z)dz—A1(0)—A1(1) > 0 anyway: If D(z) =1, z € [0, 1],
we have
. PY >c|X >tc)
<1
0<lim Bi(c)
_ hm 1-— Hl(tC) — H()(C) + Ht/(t+1)(c(t + 1))
10 B(c)(1 — Hy(te))

(6.21)
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B Ay (t-it-l) (t+ 1)18 — A;(0) — A (D)ti+A
; t(1+ B1)

for arbitrary ¢ € (0, 00), and, hence,

A (tf—l) = 40) 4 4 11)1+ﬁ1 +AW) <ti 1>1+B1'

Putting z = t/(t+1), we obtain (2+ 1) fol Aq(z)dz—A1(0)—A1(1) >0, z € [0,1],
cf. Theorem 2 in Frick at al. [161].

From (6.21) we conclude that x > 1 if P(Y > ¢ | X > tc¢) converges faster to
0 than Bj(c). With regard to the definition (6.2) of the tail dependence parameter,
which equals 0 if D = 1, one can say that the tail independence is rather strong
in this case.

The parameter x does not exist for a GPD with A;(z) =0, j > 1. In that
case we have P(U +V > ¢) =0 for ¢ close to 0 iff D(z) =1, i.e., iff U and V are
tail independent. If they are not tail independent, then Corollary 6.5.1 (i) becomes
applicable. Testing for tail dependence of U, V in case of an upper GPD tail is,
therefore, equivalent to testing for P(U +V > ¢) > 0 for some ¢ < 0.

If the df H in Corollary 6.5.1 is an EVD with Pickands dependence function
D, the pertaining spectral density satisfies the expansion

h.(c) = D(z) 4+ cD(2)* + o(c), ¢?10,

cf. (6.11). Obviously, A(2) = A1(2) = D(2)? and 8 = 31 = 1. If D(z) = 1, we have
(2+5) fo Aq(2)dz— A1(0) — A1 (1) = 1. Therefore the parameter S, in Corollary
6 5.1(ii) is given by B = 1 and the conditional limiting df of the radial component
is F(t) = t2.

This result for EVDs can also be proved directly as shown by the following
lemma. See also the special result at the end of Section 6.3.

Lemma 6.5.2. We have, uniformly fort € [0,1] as ¢ 10,

t2(14+ O(c)), if D(z) =1, z € [0,1],

Proof. From Lemma 6.3.1 and the Taylor expansion of exp we obtain, uniformly
for ¢ € [0, 1] and ¢ close to 0,
PX4+Y>ct| X+Y >¢)
1 —exp(ct) + ctf[o 1y exp(etD(u))(D(u )+ D'(u)(1 —u))du
1 —exp(c —|—ch 1 exp(cD(u))(D(u) + D' (u)(1 — u)) du
—ct—l—ctf[o_rl] w) + D' (u)(1 — u) du + O((ct)?)
—c+c [ip D) + D' (u)(1 —u) du+ O(c?)



294 6. The Pickands Approach in the Bivariate Case

= t(1+ 0(c))

if D is not the constant function 1. This follows from partial integration:

D(u) + D'(u)(1 — u) du = 2 D(u)du—1 € (0,1]
[0,1] [0,1]

and the facts that D(z) € [1/2,1], D(0) = 1.
If D(z) is the constant function 1, then we obtain, uniformly for ¢ € [0, 1]
and c close to 0,

1 — exp(ct) + ctexp(ct)
1 —exp(c) + cexp(c)
—ct — (ct)?/2 + ct(1 + ct) + O((ct)?)
—c—c2/24c¢(l+¢)+0(c3)
=t*(1+ O(c)).

PX+Y>ct|X+Y >0

TEST STATISTIC BASED ON THE DISTANCE C

Suppose that we have n independent copies (X1,Y1),...,(X,,Ys) of (X,Y). Fix
¢ < 0 and consider only those observations X;+Y; among the sample with X;+Y; >
c. Denote these by C1,Ca,...,Ck(y) in the order of their outcome. Then C;/c,
1 =1,2,...are iid with common df F,.(t) ;= P(X+Y >ct | X +Y > ¢), t € [0,1],
and they are independent of K(n), which is binomial B(n,q)-distributed with
g=1—(1—-c)exp(c) if ¢ is close to zero and D is the constant function 1. This is
a consequence of Theorem 1.3.1. We will now consider the Neyman-Pearson test.

We have to decide, roughly, whether the df of V; := C; /¢, i = 1,2, ... is either
equal to the null hypothesis F(t) = t or the alternative Fj(t) = t1t5, 0 <t < 1.
Assuming that these approximations of the df of V; := C;/c were exact and that
K(n) =m > 0, we choose the test statistic > .-, log V;. Under Fy it is distributed
according to the gamma df

—

m—

a0 =)y ) <0,
=0 ’

on the negative half-line with parameter m. The Neyman-Pearson test at the level
« is then given by

Crno = {Zlogv;- > Hy'(1- a)} : (6.22)
=1

i.e., the null hypothesis Hy is rejected if the test statistic exceeds the (1 — a)-
quantile of the gamma df. The power function for the level-a test is

UmalB) = 1= Hn((1+ DHL (1= 8)), B0,
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and can be approximated by

Uma(B) #1—0((1+ ) (1 —a)—pm'/?), B>0,

for large m by the central limit theorem, where ® is the standard normal df.
Similarly, the p-value of the optimal test is given by

m m—1 m 7 m
—> iy logV; i—1 logVi+m
p:l_exp@logvi)Z( ST log Vi) w(_zlmm )

i
i=1 =0 J:

For a discussion of the previous testing problem see also Frick et al. [161].

SIMULATIONS OF p-VALUES

The following figures exemplify numerous simulations that we did to evaluate the
performance of the Neyman-Pearson test for tail dependence against tail indepen-
dence defined above. Figure 6.5.1 shows quantile plots of 100 independent real-
izations of the p-value, based on K(n) = m = 25 exceedances over the particular
threshold under the hypothesis Hy of tail dependence of X and Y.

The 100 p-values were ordered, i.e., p1.100 < -+ < P100:100, and the points
(i/101, pi:100), 1 < i < 100, were plotted.

The underlying df is the logistic df with parameter A = 1.5 and A = 2.5 (see
Example 4.3.5).
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FIGURE 6.5.1. Quantile plots of 100 values with underlying logistic df with
A =15 (above) and A = 2.5 (below) and 25 exceedances over the thresholds
¢ = —0.45 (left), ¢ = —0.35 (middle), and ¢ = —0.1 (right).
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The three almost straight lines formed by the quantile plots in the lower
part of Figure 6.5.1 (where A = 2.5) visualize that the correct type I error rate
is achieved for each of the chosen thresholds. Therefore, the distribution of the
Neyman-Pearson test is not affected by the threshold if the tail dependence is
sufficiently strong. In case of a weaker tail dependence (A = 1.5) the upper part of
Figure 6.5.1 shows that the distribution is slightly affected by too small thresholds,
cf. also Frick et al. [161].

Next we simulate deviations from the tail dependence and consider (X,Y)
having a standard normal df with correlation p € (0,1). The plots in Figure 6.5.2
and 6.5.3 were generated in the same way as in Figure 6.5.1. Figure 6.5.2 visualizes
tests of tail dependence against residual tail dependence with underlying standard
normal df with correlation p = 0.5.
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FIGURE 6.5.2. Quantile plots of 100 p-values with underlying standard normal df
with ¢ = 0.5 and 25 exceedances over the thresholds ¢ = —0.45 (left), ¢ = —0.35
(middle), ¢ = —0.1 (right).

It turns out that the distribution of the p-value is now shifted to the left
under tail independence, i.e., the type II error rate is quite small.

Figure 6.5.3 shows how the type II error rate is influenced by the size of
the correlation coefficient p. If p is close to 1, the parameter 8 of the underlying
differentiable spectral expansion is small, cf. (6.12), meaning that we are close to
the null hypothesis. In this case the quantile plot of the p-values almost reaches a
straight line, i.e., the type II error rate is rather high and the test is likely to fail,
see also Frick et al. [161].

TESTING TAIL DEPENDENCE IN ARBITRARY DIMENSION

Next we extend the previous results for bivariate dfs to those in arbitrary dimension
d. In the bivariate case we have seen that the conditional distribution of (X +Y)/c,
given X +Y > ¢, has limiting df F(t) =t or F(t) = t'*# if D # 1 or D = 1,
respectively, provided that the df H of the rv (X,Y) satisfies a spectral expansions
with leading term D(z). In the multivariate case spectral expansions are no longer
suitable, therefore we use expansions of Pickands densities where the leading term
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FIGURE 6.5.3. Quantile plots of 100 p-values with underlying standard normal df
with p = 0.2 (above left), p = 0.35 (above middle), p = 0.5 (above right),
p = 0.65 (below left), p = 0.8 (below middle), p = 0.95 (below right) and 25
exceedances over the threshold ¢ = —0.4.

is the Pickands density ¢ of d-variate GPD W with Pickands dependence function
D. According to (5.40) the above conditions are equivalent to fol p(z)dz > 0

and fol ©(z)dz = 0, respectively, in the bivariate case. This result will now be
generalized to arbitrary dimensions. For a proof of the following lemma see Frick
and Reiss [162].

Lemma 6.5.3. Assume that the random vector X = (X1,...,X4) has a Pickands
density which satisfies the conditions (5.42)-(5.44), where ¢ is the Pickands density
of a d-variate GPD with Pickands dependence function D.

(i) If [ e(z)dz >0, then

P ZXi>ct|ZXi>c —t, c?10,

i<d i<d
uniformly for t € [0, 1].
(i) If [, ¢(z)dz =0 and (5.44) holds with 0 < 81 < f2 < --- < By, then

P ZXi>ct|ZXi>c —t1the 1o,
i<d i<d
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uniformly for t € [0, 1] provided that

m:min{j6{1,...,k}:/}%/~lj(z)dz;«é0}

exists.

Note that in the bivariate case the parameter  is the same as in (6.18) if the
functions A; of the spectral expansion are twice continuously differentiable and

B 1

Aj(2) = —BjAj(z) — 148, Al(2)(1—22) + - Al(2)2(1 - z),

j=1,... k. For in this case we have

1 1
/ Aj(z)dZZ—(Q—Fﬂj)/ Ay(2) dz + A;(0) + Ay (1),
0 0

j=1,...,k, cf. Lemma 6.1.3(i).

From Lemma 5.6.3 we know that [ ¢(z)dz > 0 implies D # 1. Therefore,
part (i) of Lemma 6.5.3 stands for multivariate tail dependence. On the other hand,
fR ¢(z) dz = 0 is equivalent to D,.; = 1 for at least one pair r, s € {1,...,d}, where
D, is the bivariate pairwise Pickands dependence function, defined in (5.39).
Hence, Lemma 6.5.3 (ii) represents tail independence in at least one bivariate
marginal distribution. For a Pickands dependence function D satisfying the sym-
metry condition (4.34) we have that [, ¢(z) dz = 0 is equivalent to D = 1, i.e., to
multivariate tail independence. In this case we can directly compute the Pickands
density of an EVD G with reverse exponential margins:

d
0xy...0xq
= |c|*"" exp(c)
= ||t +o(|c|™h), cto.

fla.e) =1t

Id—l

exp(zy + -+ l'd)) (T~ (z,¢))

Therefore, we have p, = d — 1 and the conditional limiting distribution of the
radial component Y., X; is given by F(t) = t?, ¢ € [0,1], in conformity with
Lemma, 6.5.3 of the second edition of this book, cf. also Example 2 in Frick and
Reiss [162].

The result of Lemma 6.5.3 leads to the same testing problem as before. By
analogy with the bivariate case we consider the observations C; = >, ., X ,gl),
1 <i < K(n), from a sample (ij),...,X((ij)), 1 < j <n, where Zk<dX,§l) > c.
Conditional on K(n) = m, the optimal test suggested by the Neyman-Pearson
lemma for testing

Hy: Fy(t) =t against H;: Fst)=t'"7 >0
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based on V; = C;/c, 1 < i < m, is again given by (6.22) and the power function
as well as the p-value remain the same.

Notice, though, that the alternative of the testing problem in the multivariate
framework has to be interpreted differently unless D satisfies the symmetry condi-
tion (4.34). As we have seen above, the null hypothesis stands for multivariate tail
dependence and a rejection means that there is significance for tail independence
in at least one bivariate marginal distribution. In this case one can proceed with
an intersection-union test by testing each bivariate marginal distribution on tail
dependence to find out whether there is significance for multivariate tail indepen-
dence, see Frick and Reiss [162].

Finally, we consider the situation where we have univariate margins that are
o, be an EVD whose i-th marginal

.....

G; is an arbitrary standard EVD,
Gi(z) = exp(tha, (7)),  1<i<d,

where
—(—2)*, x<0, ifa>0,
Yo(x) = —a®, x>0, ifa<0,
—exp(—z), z €R, if a =0,

defining, thus, the family of (reverse) Weibull, Fréchet and the Gumbel distribution
exp(¥q(2)). Up to a location or scale shift, Ga,, ., is the family of possible d-
dimensional EVD.

Note that

Garoaa (V3N @1), - 03 (@) = G i (@, ma), <0, 1< <d,

where G'1,...,1 = G has reverse exponential margins.

If the df of the rv (Xi,...,X4) coincides in its upper tail with Ga,, . ay4s
then the df of (¢, (X1),...,%a,(X4)) coincides ultimately with G. We can test,
therefore, for tail dependence of (X7, ..., X4) by applying the preceding results to

Zigd Ve, (X;) in place of Eigd X;.

6.6 Estimation of the Angular Density in
Bivariate Generalized Pareto Models

We will now investigate a non-parametric estimation method in bivariate GP mod-
els. In many applications it is of great importance to have a good insight into the
tail dependence structure of a given data set. Estimating the angular density for
that purpose is also popular in extreme value models, see for example Coles and
Tawn [72], [73] or Coles et al. [74].

We mainly focus on the bivariate case in this section, since it has special
properties which make the estimation easier. However we will also give a brief
discussion of the general multivariate case at the end of this section.
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THE BIVARIATE ANGULAR DENSITY

Recall that the bivariate Pickands dependence function is defined by

D(t) = o max (ut, (1 —u)(1 —t)) v(du), (6.23)

where v is a measure on [0, 1] with

v([0,1) =d and / wn(du) = 1, (6.24)
[0,1]

see Section 4.3. v is called the angular measure. As we have seen in Theorem 4.3.1,
the characterization of this measure by (6.24) is necessary and sufficient to define
a Pickands dependence function,

Also recall from the beginning of Section 5.9 that the df L(z) = v ([0, 2]) of
the measure v is called angular distribution. If the measure v, restricted to (0,1),
possesses a density we denote it by [ and call it the angular density. The restriction
to the interior of [0, 1] helps us here to avoid certain special cases. We will see in
this section that under certain regularity conditions, the angular component of the
Pickands coordinates of GPD distributed rv follow a suitably scaled angular dis-
tribution, thus our choice of the name. In the literature it is also common to call the
angular measure/distribution/density the spectral measure/distribution/density.

We have seen in Theorem 5.6.2 that Pickands coordinates are important in
GPD models, since they decompose GP distributed rv into two conditionally in-
dependent components, given that the radial component exceeds some high value.
The distribution of the radial component is then the uniform distribution, the an-
gular component has the density f(z) := ¢(z)/(, where ¢ is the Pickands density
and its integral is again denoted by ( := f(o,l) ©(z) dz.

In the next theorem we compute the angular density for smooth GPD. This
result will be crucial in what follows. A proof is given in Section 2 of Michel [334].
For a general multivariate version of this result we refer to Michel [330], Theorem
2.2.4.

Theorem 6.6.1. Let the GPD W have continuous partial derivatives of order 2.
Then the corresponding angular density | is given by

1 ) )
l< 2t ) - (_ 1 1)‘38x1...3xdW($1,$2).

1 x2
z1 x2

We briefly illustrate with the logistic family why we estimate the angular
density for the investigation of the tail dependence structure. The logistic family
has, according to Section 3.5.1 in Kotz and Nadarajah [293], for 1 < A < oo the
angular density

T I
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and according to Theorem 2.4 of Michel [331] the Pickands density
1/A—2
oa(z) = (A= 1)1 (1 — 2! (ZMr (1 —z)*) .

Both reduce to 0 for A = 1. The angular density has for miscellaneous A the graphs
from Figure 6.6.1.

A= 1.2 A =2
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2 3
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1 1.5
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0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
A=3 A=6
B 14
12
5
10
4
8
3 6
2 4
1 2
0.2 0.4 0.6 0.8 il 0.2 0.4 0.6 0.8 1

FIGURE 6.6.1. Logistic angular densities for different A.

Graphs with the same parameters are plotted for the Pickands density in
Figure 6.6.2.
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FIGURE 6.6.2. Logistic Pickands densities for different .
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For the investigation of the tail dependence structure, the behavior of I(z)
especially at the boundary of (0,1), is of interest. A convergence of the angular
density to co at the boundary indicates a high degree of independence, convergence
to 0 indicates a high degree of dependence. This follows from the fact that in the
case of independence the angular measure v has all its mass at the points 0 and 1,
and in the case of complete dependence it has its complete mass at the point 1/2,
see Section 3 of Michel [332].

The tail dependence structure is not distinctly visualized in such a way by the
Pickands density, since all functions have a maximum in the interior and converge
to 0 at the boundary in the logistic case. However, we will see that the Pickands
density will play a crucial role in these considerations.

AN ALTERNATIVE REPRESENTATION OF THE ANGULAR DENSITY

The angular and the Pickands density of a bivariate GPD have a close connection.
This is the content of the following theorem.

Theorem 6.6.2. Let (X1, Xs) follow a bivariate GPD W, which has partial
derivatives of order 2. Suppose that ( = f(o 1 p(z)dz > 0. Then we have for

the angular density
_p(l—2) _(fQ-2)
iz) = 2(1-2)  z2(1—2)"
where @ is the Pickands density and f is defined as in Theorem 5.6.2.

Proof. Using Theorem 6.6.1 and inserting the inverse Pickands transformation
(5.36) we get

l( - )_ (c2)P(e(1—2))2 &P
1 1 - -3
+ s 1 1 010w
(1-2) (cz + c(l—z))

22(1—-2)2 09?2
(2(1 — 2))° Ox1022
|c| 0 -1
W (T .
2(1 = 2) Oz1015 ( P (Z’C))
With the definition of the Pickands density ¢ from Theorem 5.6.2 and replacing
z by 1 — z we finally obtain the equation
1-— 1-—
Loy PL=2) _Cf-2)
2(1—2) 2(1—2)
If the rv Xy, X5 are exchangeable, i.e., if the distributions of (X, Xs) and
(X2, X1) coincide, then the assertion of Theorem 6.6.2 reduces to

p(z)  _ Cf(2)

W (Tp'(z,¢))

—I(1-2)=(-0¢) W (T (2,0))

= l(l-2)=

0<z<1.

=) = 2(1—2)  2z(1-2)
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ESTIMATION OF THE PICKANDS DENSITY

We have above a connection between the angular and the Pickands density. We
will now first estimate the Pickands density and then use this estimator to get to
our goal of estimating the angular density.

Let (X1, X2) < 0 be a bivariate rv following a GPD W. Suppose that we have
n independent copies (f(l(i),f(éi)) of (X1, X5), and denote by Z; := Xl(i)/(f(l(i) +
X';)) and C; := X'l(l) + XQ(Z) the corresponding Pickands coordinates, ¢ = 1,...,n.
Fix a threshold ¢ close to 0, and consider only those observations (X fi), XQ(i)) with
C; > c. Denote these by (Xl(l),Xz(l)), c (X{m),XQ(m)), where m = K(n) is the
random number of observations with C; > ¢. From Theorem 1.3.1 we know that
K (n) and the (Xl(J),Xéj)) are all independent rv, that K (n) is binomial B(n,p)
distributed with p = P(C' > ¢), and that the Z; have the density f(z) from
Theorem 5.6.2.

A natural estimator of f is the kernel density estimator with kernel function
k and bandwidth h > 0,

fn(2) = nih i k <Z _hZ> : (6.25)

where Z; .= X /(X 4+ x{) i=1,... m.

As is known from the standard literature on kernel density estimators, the
choice of a suitable bandwidth A is a crucial problem. This bandwidth is highly de-
pendent on the density to be estimated itself. So there is the need for an automatic
bandwidth selection.

Michel [334] recommends using the bandwidth

4\ 15
h=Sp <3m> , (6.26)
with
o ( DY >"’>W Zi= 1302
mocT m—ll:]- K2 m b m'_ml:]- 19

the empirical standard deviation and the arithmetic mean of the Z;. Using the
empirical standard deviation for the definition of the bandwidth as done here is
also known as data sphering.

To further improve the estimation, another recommendation is to use reflec-
tion techniques, which is done for all following estimators. Details are described in
Section 4 of Michel [334].

Example 6.6.3. Taking k£ to be the normal kernel, we did simulations of esti-
mator (6.25) using Algorithm 5.7.6 for the generation of rv following a logistic
GPD. In Figure 6.6.3 we present some results. In each case 50 observations were
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simulated, which exceed the threshold ¢ = —0.1. We did this for different \; the
corresponding bandwidth h, chosen according to (6.26), is also given.

dashed line: underlying density, solid line: estimated density

A=1.2, h=0.133838 A=2, h=0.0874235

o o o o

A=4, h=0.0492567 A=8, h=0.0266394

FIGURE 6.6.3. Simulations of the Pickands density estimator with different
logistic parameters A and m = 50, ¢ = —0.1.

ESTIMATION OF THE ANGULAR DENSITY

By estimating f we are now able to estimate (a constant multiple of) the angular
density and derive a graphical tool for the investigation of the tail dependence
structure.

We obtain from Theorem 6.6.2 that

g(z) := J(1=2) = ') 0<z<l.

z2(1—2) ¢’

The function g, which is a constant multiple of the angular density [, determines if
the underlying distribution of (X7, X5) is closer to the case of independence or the
case of dependence. A peak of g(z) near 0 and 1 indicates that our observations
come from a distribution which is closer to the independence case, whereas a peak
in the interior of the unit interval determines that we are closer to the dependence
case.
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With the ability to estimate f(z) by fm(z), we have also gained the ability
to estimate g(z) by

A o fm(l_z)
Gmz) 1= 2(1—2) "

(6.27)
Example 6.6.4. The estimator (6.27) was simulated in Figure 6.6.4 for the logis-
tic case with m = 50, ¢ = —0.1 and different A\. Once again automatic bandwidth
selection, data sphering and reflection techniques were included for practical pur-
poses.

dashed line: underlying g, solid line: estimated g

0.2 0.4 0.6 0.8 i 0.2 0.4 0.6 0.8 i
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7 \
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v N
0.2 0.4 0.6 0.8 i 0.2 0.4 ©0.6 0.8 1

FIGURE 6.6.4. Simulations of the angular density estimator with different logistic
parameters A and m = 50, ¢ = —0.1.

For X noticeably smaller or larger than 2, the functions ¢ and §,, have the
same behavior at the boundary. For A close to 2, g and its estimator g,, seem to
behave differently when approaching the boundary. This is due to numerical effects
coming from the division by z(1 — z). Convergence of §,, to 0 when approaching
the boundary is a clear sign of dependence. In contrast to this, one has to be
careful when §,, tends to co at the boundary.

Under suitable regularity conditions the asymptotic normality of estima-
tor (6.27) can be shown. More precisely, if h = o (m~!/%), then

' (3= ") o v (0. S50, [ i)
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We refer to Theorem 5.2 of Michel [334] for details on the assumptions and a proof.

Note that the distribution of the angular components of the Pickands coordi-
nates is independent of the threshold c. This could also be a tool for the graphical
verification of the GPD model assumption: One could use different thresholds and
compare the resulting estimators of the angular density. If the data actually follow
a GPD, then all estimators should basically give the same graphic. If the graphics
differ heavily, then one can have doubts about the GPD model assumption. Such
considerations are also used to check the EVD approximation in threshold models
by Joe et al. [276] and Coles and Tawn [73].

THE PROBLEM OF GENERALIZATION TO THE TRIVARIATE CASE

We have seen previously that we could find a multiplicative decomposition of the
angular density [ into
o(2)

l(z) =k ,

(2) 2(1—2)
in the case of exchangeability, where « is a constant depending only on [ but not
on z. One can wonder if such a decomposition is also possible for the trivariate
case. The natural generalization would be that

o(21,22)

l =
(21,22) Kzlzg(l — 21 — 2’2)

for exchangeable models where again « is a constant only depending on [. We will,
however, see that this equation does not hold. In fact, we will see that there is no
multiplicative decomposition of a differentiable [ such that

(21, 22) = Kb(21, 22) (21, 22),

with x depending only on [, and b differentiable of order 1, depending only on z;
and z9 but not on [.

To show this, we will use the trivariate logistic case, where the angular and
the Pickands density have the representations

Inz1,22) = (A= 1)(2A = 1) (z122) (1 — 21 — 29) 1

N 1/A-3
X (zl_’\+z2_’\+(1—zl—22) ’\>

and

oa(z1,22) = (A= 12N = 1) (z122) (1 — 21 — 20) !
1/2-3
X (zi\ + 25‘ +(1—2 — zz)’\>

on S := {(21,22) € (0,1)?: 21 4+ 22 < 1} being the open unit simplex in R?, see
Section 3.5.1 in Kotz and Nadarajah [293] and Theorem 2.4 of Michel [331].
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Our goal is to disprove the equation
Ian(z1, 22) = K(A)b(21, 22)or (21, 22).

Theorem 6.6.5. There does not exist a function k : (1,00) = R and a differen-
tiable function b(z1,z22) 1 S — R such that for A > 1 the decomposition

Ix(z1, 22) = K(A)b(21, 22)xr (21, 22)
holds, where Iy is the angular density and ) is the Pickands density of a trivariate
logistic GPD W (z) =1 —||z||x = 1 — (|z1|* + |z2|* + |z3]*) YA with parameter \.
Proof. Suppose that there exist functions x and b such that
In(z1, 22) = K(A)b(21, 22)pA(21,22), (21,22) € S.
We know that ¢y > 0 for A > 1. Dividing by ¢, we get

Ix(z1,22)

ox(z1,22) £(A)b(z1, 22).

Since also Ix(z1,22) > 0 for any (z1,22) € S, we can assume without loss of
generality that x(A) > 0 and b(z1, z2) > 0. Therefore, we get

log < Ix(z1, 22)

oalz1, zz)) = log(r(A)) + log(b(z1, 22))

by taking the logarithm on both sides. Computing the partial derivative with
respect to z; (or with respect to zo leading to the same results due to the ex-
changeability of z; and 22 in the logistic case), we have

lk(21722)> . azlb(zlaz2)
(21, 22) b(z1, 22)

which is constant with respect to A. This will be our contradiction since we will
show that there exist A1, Ao > 1 and (21, 22) € S such that

a(A1, 21, 22) # a(Xe, 21, 22).

0
a(X, z1,29) := 01 log (

With the above representations of [y and ¢, we compute (details are left to the
reader)

a()\uzlazZ)
1 1 -1 _ 1— _ —A—1
—2) < - ) T e N G
l—z1—2 = 20+ 250+ (1= 21— 29)™2
zf‘_l — (1 =2 — 2zt

3IN—-1 .
+( )zf—l-zﬁ‘—i-(l—zl—zQ)’\
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By choosing z1 = z2 = 1/4 we get (details again left to the reader)
11 2 -1 122!
=—4 2 -1 .
a’<>\a474> A+2(3A )(2>\+1+1+2>\—1+1)

But since

11 32, 636 11
a<2’4’4>__9 785 _a<3’4’4>’

we have completed the proof.

Therefore, the estimator of the angular density presented in this section can-
not be analogously transferred to the multivariate case. The bivariate case seems
to be a special case.

AN ALTERNATIVE ESTIMATION FOR THE MULTIVARIATE CASE

An alternative method of estimating the angular density in multivariate GP models
is shown in Michel [330], Chapter 5. It uses the Pickands coordinates with respect
to Fréchet margins, which we have introduced in (5.61).

As already mentioned in Section 5.9, it can be shown that

1
= ) Ly,

holds with Z and C being the random Pickands coordinates with regard to Fréchet

P(ZeB|C=-rZ€eQ,s)

margins, B is some Borel set in R = {x €0, Y, 1< 1}, Qs is
defined in (5.63) and x(r, s) is defined in (5.64), which is close to a constant if r
is large.

Based on this result, the intuitive approach is to use the angular component
of the Pickands coordinates with regard to Fréchet margins to estimate the angular
density.

Assume that we have n independent copies XD X ™ of 4 rv X, which
follows a GPD on K, from (5.62) with some s > 0. Denote by Z() and C¥) the
corresponding Pickands coordinates with regard to Fréchet margins, i = 1,...,n.
Choose a large threshold r > 0, and consider only those observations X with
X € A, as defined in (5.67), i.e., X9 € K, and CY) < —r. We denote these by
XM ..., X They are independent of the binomially distributed rv m = K (n),
independent from each other and identically distributed, see Theorem 1.3.1. A
natural estimator for the angular density [ is, thus, a kernel density estimator
with kernel k, bandwidth h > 0 and data sphering

m —1/2 i
lpnr(z) =d ! >k (S’” (2_ 2! ))> . (6.28)

(det Sp) Y/ mhd—1 =
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Here S,, denotes the covariance matrix of the Z(*) and Sm!/? its inverse symmetric
root. Data sphering is a concept from multivariate analysis, where the data are
first multiplied by the inverse symmetric root of their covariance matrix, then the
density is estimated, and afterwards transformed back. In the univariate case, this
reduces to dividing the data by their empirical standard deviation as we have done
for the bivariate estimator in the previous section. For more information on data
sphering, see for example, Falk et al. [145], Chapter 6.

Corollary 5.6.5 of Michel [330] shows that under certain regularity conditions
the estimator (6.28) is asymptotically normal with mean (d/d*)l(z) and variance

(d?/d*)l(z) [ k*(u) du for r and m — oo, where d* is as in Section 5.9 the mass of

the angular measure v in the interior of the unit simplex. Thus, the factor d in the
estimator (6.28) is included to get an asymptotically unbiased estimator of [(z) in
the case d* = d.

For practical applications, Michel [330], Section 5.2 recommends using the
normal kernel, as bandwidth

4 1/(d+3)
h= (m(d+1)) (6.29)

and reflection techniques, e.g. presented in Sections 2.1 and 8.2 of Reiss and
Thomas [389].

Detailed results of numerous simulations are described in Section 5.2 of
Michel [330]. A major finding is that [,, .(z) has the same problems as the para-
metric estimators based on the angular density presented in Section 5.9, when we
are close to the case of independence, producing a non-negligible bias. This does
not come as a surprise, since both use the same approximation of [, see (5.65).

As a consequence, the estimation presented in the first half of this section
should be used in the bivariate case, since it does not suffer from this bias and is
more reliable. In higher dimensions, however, the estimator (6.28) is presently, to
the best of our knowledge, the only existing option.



Chapter 7

Multivariate Extremes:
Supplementary Concepts
and Results

In this chapter we will deal with exceedances and upper order statistics (besides
maxima), with the point process approach being central for these investigations.
Extremes will be asymptotically represented by means of Poisson processes with
intensity measures given by max-Lévy measures as introduced in Section 4.3.

In Sections 7.1 and 7.2, the approximations are formulated in terms of the
variational distance defined by

d(vp,11) == Sl;p |vo(B) — v1(B)]

for finite measures vy and v, where the sup ranges over the measurable sets B. We
also write d(X,Y") to express the variational distance between the distributions of
rv X and Y, see page 7.

Thinned empirical processes, which generalize truncated processes by allow-
ing random truncating sets, are introduced in Section 7.3. Local asymptotic nor-
mality of these processes is established under the condition that we deal with rare
events, that is, the probability of thinning converges to zero.

7.1 Strong Approximation of Exceedances

We introduce different concepts of multivariate exceedances and provide Poisson
approximations which hold with respect to the variational distance. We particu-
larly continue our discussion in Section 5.1 about generalized Pareto distributions
(GPD). This section is based on two articles by Kaufmann and Reiss [285], [286].

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,
DOI 10.1007/978-3-0348-0009-9 7, © Springer Basel AG 2011
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APPROXIMATION TECHNIQUE

Approximations of functionals T'(N,,) of the empirical process N,, (cf. (7.3)) may
be carried out by means of the Poisson approximation in conjunction with the
coupling inequality d(X,Y) < P{X #Y} forrv X and Y.

We indicate in which way the limiting distribution of T'(N,,) can be estab-
lished by using this approach. The limiting distribution £(7'(N*)), where N* is a
Poisson process, may be computed in the following manner:

(a) Coupling: replace T'(N,,) by T'(N,,.), where N, is the empirical process N,
truncated outside of a “rare event”;

(b) first-order Poisson approximation: replace T (Ny,:) by T(N;,), where

N, is a Poisson process which has the same intensity measure as Nnt;

(c) second-order Poisson approximation: replace T(N;;,) by T(N;), where
N is the truncation of a Poisson process N*;

(d) coupling: replace T'(N;") by T(N*).

As a special case let us consider the maximum functional 7" = max. Notice
that T'(N,,) is the usual maximum of a sample of iid rv. The limiting df G of
T(Ny,) is the df of max(N*), where N* is a Poisson process with mean value
function log(G). Likewise one may prove that the k-th largest value of the points

of N* has the df
G Z —log(@)) /4, (7.1)
0<j<k—1

which is the limiting df of the k-th largest order statistic of n iid rv. For T" = max
we may as well utilize the following identity instead of the coupling, namely,

P (max(Ny) <y) = P(max(N") < y) = G(y) (7.2)

for y > t. This result can easily be generalized to the k-th largest point of V;* and
to the multivariate framework.

FIRST-ORDER P0OISSON APPROXIMATION

Let X, = (Xnit, -+ Xnid), ¢ < n, be a sample of iid d-variate rv. Let

Nop=> ex,, (7.3)

i<n
be the empirical process. The pertaining intensity measure is

Un=nP(Xp € ).
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Let N be a Poisson process with the same intensity measure v, as N,, and
denote by N,¢ and N the truncations of N,, and N} outside of [—oc0, #]¢. Then

d(Npt, Nt) < vn|—00, )% /n.

A replacement of N, by N{ (second-order Poisson approximation) is generally
not possible because the variational distance d(vy, (- N [—oo, t)%), v(- N [—o0, t]c))
can be very large; e.g. these measures have disjoint supports in the case of rv with
independent components (cf. (4.12)).

A first-order Poisson approximation of the empirical process truncated out-
side of a set {(z,y) € [0,00)? : (2? + 4?)*/? > r} might be of interest in view of
the results by Einmahl et al. [120].

PATHWISE EXCEEDANCES

We are going to consider the following situation: A random mechanism generates
the vector © = (z1,...,zq), yet we are merely able to observe those x; above the
level t;. We note x; if z; > t; and, otherwise ¢;, if at least one of the components
][]

x;j of @ exceeds t;. Consequently, given x € [—o0,t]” put

me(x) = (max (v, t5))j<d,

and Myv =: myv(- N [—o0, t]°) for every measure v. As a special case of the latter
definition one obtains

My(p) = Z 1i_oo.tj8 (Ti)emy (x:) (74)

for point measures 1 = ), ex,. Thus, the missing components of x; are replaced
by the corresponding thresholds.
For non-void K C {1,...,d} define the projections 7 (x) := (vx)rex and
the sets
C(K,t) :={x € [-00,00) : z, > t, k € K}. (7.5)

Define the map Il  on the space of measures v by

g v = TrVO(K 1) (7.6)

where the right-hand side is the measure induced by mx and the measure vo(k t)
which is v truncated outside of C(K,t).

In the following theorem, the pathwise exceedance process M¢N, will be
approximated by a Poisson process MyN*.

Theorem 7.1.1. Let N, be the empirical process in (7.3) and N* a Poisson
process with intensity measure v which is the maz-Lévy measure of a max-id df G.
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Then
—log(G(?))
—log(G(?))

d(MgN,,, MgN*)

IN

5
+ 2d(MtVn, Mtu)
+ C(d) A,

where c(d) is a constant depending only on the dimension d, and

A = Z d(M g tvn, g tv) (7.7)
K
with K ranging over all non-void subsets of {1,...,d}.

Proof. By means of the first-order Poisson approximation and the monotonicity
theorem we obtain

d(Mg Ny, MgN;) < v, [—o00, 8% /n,

where NN is a Poisson process having the intensity measure v,, of N,,. Moreover,
applying formula (3.8) in Reiss [387] (which holds also for the constant 3/2 in
place of 3) and the triangle inequality, we obtain

d(MgN,, MyN*) < v,[—00,8)%/n + 2d(Mtun,Mtu)

—1 t
< 0g(G(1)) + 5d(MtVn7MtV)a
n 2
because v[—o0, t]° = —log(G(t)). The proof of the first inequality is complete.
The proof of the second inequality is based on a counterpart of the represen-
tation of 1 — F' in (4.7). For details see Kaufmann and Reiss [286].

We see that there is a direct relationship between the preceding term A,
and the upper bound in Lemma 4.1.3(ii). The functions nS, x and Lx generate
the measures Ilx tv,, and Il ¢V, respectively.

GENERALIZED PARETO DISTRIBUTIONS

The Poisson process N* truncated outside of [—oo, t}c possesses a finite intensity
measure and can, therefore, be written as Y.|_, ex, with rv X; distributed ac-
cording to the GPD Q¢ as introduced in (5.3). In addition, My N* is a Poisson
process based on rv with GPD mQy. Apparently, this may serve as another ver-
sion of a GPD. This version was also studied by Tajvidi [436]; its relationship to
the bivariate GPD W = 1 + log(G) was discussed in [389], 2nd ed., Section 10.1.
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VECTORS OF EXCEEDANCES

In the following, the map Ik ¢ defined in (7.6) will also be applied to point pro-
cesses. Applying the monotonicity theorem one obtains

d( (HK>th)K’ (HK,tN*)K) = d(Mth,MtN*). (7.8)
Define the projection-truncation map Il by
Htﬂ = (H{j},t y’)jgd . (7.9)
Note that
II¢Ny, = (Nuitys - -+, Nnat,), (7.10)
where
Npjt, = Z Lit;,00) (Xnij )EX ;5 J<d, (7.11)
i<n

are the univariate marginals of the empirical process IV,, truncated left of ¢;.
If N* is a Poisson process on [—o0, 00) := [—00, 00)¢ with intensity measure
v, then
(NY¢y-- s Ngg,) =TI N™
is a vector of Poisson processes. As an immediate consequence of Theorem 7.1.1,
(5.9) and (5.10) we obtain the following result.

Corollary 7.1.2. Let N, be the empirical process in (7.3) and N* a Poisson
process with intensity measure v, which is the max-Lévy measure of a maz-id df
G. Then

—log(G(¢))

d(IIgN,, IIgN*) < "

+ ¢(d) Ant, (7.12)

where ¢(d) is a constant depending only on d.

Under the mild condition that the marginals G; of G are continuous at a(G}),
it is proven in Theorem 2.2 of Kaufmann and Reiss [285] that A, ¢ — 0 for every
t > a(G) if the left-hand side of (5.13) goes to zero for every t > a(G) as n — oo.

Define the Hellinger distance H (v, v2) between measures 11 and vo by

1/2
Hv,v) = ( [tz = gy dVo) ,

where f; is a vp-density of v;. As on page 7 let H(X,Y) define the Hellinger
distance between the distributions of X and Y.
It is an open question whether an inequality of the form

H (N, I N*)
_ 0( B 1og(§(t)) + 37 H(Mk v, HK,tu))
K
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holds within the framework of (5.13). This inequality holds in the special case of
asymptotic independence (see Reiss [386]). Our present method of proof fails in
the general framework.

RANDOM THRESHOLDS

Another ingredient of our theory is the notion of an admissible threshold. In the
univariate case, a [—00, 00)-valued, measurable map T on the space of point mea-
sures is an admissible threshold for the df G if

max(z, T (p)) = max(z, T (uz)) (7.13)

for every point measure p and real x with p, denoting the truncation of p left of
z, and
P{T(N*) <z} —0, z ) a(G), (7.14)

where N* is a Poisson process with mean value function log(G).
In the d-variate case, a threshold T' = (T1,. .., Tqy) is admissible (for G) if T}
is admissible for the j-th marginals G; of G for j < d.

Example 7.1.3. (i) The constant threshold T'(u) = t is admissible if ¢ > o(G).
(ii) If G is continuous at «(G), then

k-th largest point of u w(R) >k,

is admissible. To see this notice that
P(T(N*)<z)=P(N*(z,0) <k-—1)
—log(G(x)))?

7!
0<i<k—1

where the last expression converges to zero as z | a(G) due to the continuity of
G at o(G). If k =1 we will write T'(11) = max(u).

Our main result unifies and extends several results known in the literature. In
view of Example 7.1.3, the following Theorem 7.1.4 deals with the joint distribution
of the k largest order statistics as well as with point processes of exceedances of
non-random thresholds.

Theorem 7.1.4. Let G be a maz-id df with maz-Lévy measure v. If A,y — 0,
n — oo, for every t >a(G), then for every admissible threshold T,

d((anTl(an), R Nnde(Nnd))’ (Nle(Nl*)v R N:ide(N;))> -0 (7.15)

as n — Q.



7.2. Further Concepts of Extremes 317

To prove this result recall that, according to Corollary 7.1.2,
d(TIgN,,, Il N*) — 0, n — 0o, (7.16)

for every t >a(G) if Ayt — 0 as n — oo for every t >a(G).

MULTIVARIATE MAXIMA

As already indicated in the univariate case, we may deduce a limit theorem for
maxima from the corresponding result for processes of exceedances. In the following
we do not distinguish between a df and the pertaining probability measure in our
notation.

Corollary 7.1.5. If the marginal df G; of G are continuous at o(G;), then under
the conditions of Theorem 7.1.4,

d(ﬁ(maXXl-),G) — 0, n — oo. (7.17)

i<n

Proof. Apply Theorem 7.1.4 to thresholds Tj(x) = max(p) as defined in Example

7.1.3(ii). Identify N, ;max(n,,) With max;<, X;; and N;maX(Nf) with max(N;‘).
J

Moreover, using again avoidance probabilities we have

The proof is complete.

Note that the preceding continuity condition holds for max-stable df G. A
corresponding result holds for the largest order statistics taken in each of the
components.

7.2 Further Concepts of Extremes

Many attempts have been made to extend the concept of order statistics from the
univariate to the multivariate framework. We refer to Barnett [31] and, in addition,
to Reiss [385] for supplementary remarks.

Subsequently, we define certain subsets P{x1,...,x,} C {x1,...,x,} such
as the vertices of the convex hull, the greatest convex minorant or the set of
Pareto points. A common characteristic of these subsets is that, within a stochastic
framework, P{X1,...,X,} C B, with high probability, where B,, is a rare event.
One is interested in quantities such as the number of points in P{X1,..., X,}.
Our aim is to show in which way such a question can be shifted from the empirical
framework to that of Poisson processes. This is achieved by the coupling argument
in conjunction with a first-order Poisson approximation.
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VERTICES OF THE CONVEX HULL

One of the celebrated objects in stochastic geometry is the convex hull of rv
X4,...,X,, which is defined by the smallest convex set containing {X1,..., X, }
(initiated by Rényi and Sulanke [391] and further elaborated by Eddy and Gale
[119], Brozius and de Haan [56] and Groeneboom [180] among others).

Denote by Py{ X1,..., X} the set of vertices of the boundary of the convex
hull. For iid rv X;, which are uniformly distributed on the unit square, it was
proven by Groeneboom [180], Corollary 2.4, that

(mxl, X - 2 log(n)) / (;12 log(n)) v (7.18)

is asymptotically standard normal. This result can be verified by a Poisson approx-
imation in conjunction with tedious calculations of the number of vertices of the
boundary of the convex hull of the Poisson points. Note that the expected number
of vertices is of order log(n), a result already proven by Rényi and Sulanke [391].
Because the expected number is not fixed as n — oo, a weak convergence result for
the point process pertaining to Py{X1,..., X, } is not sufficient to verify (5.19)
(see Groeneboom [180], page 328, Lemma 2.2, Corollary 2.2 and, in addition, Reiss
[387], pages 215 and 216, for a general discussion of this question).

The computations by Groeneboom [180] first concern the vertices of the left-
lower boundary of the convex hull (greatest convex minorant). Then the proof can
be completed by introducing the corresponding processes for the other corners of
the unit square; these four processes are asymptotically independent. The decisive
first step will be discussed within the framework of Pareto points in the following
subsection.

PARETO POINTS

Another example concerns the set of Pareto points Py(A) of a given set A =
{Z1,..., 2.} C[0,1]%, where

Pu(A) := {a: €A: rrg(rjl (i —y) <0,y € A} . (7.19)

Thus, € A is a Pareto point if for each y € A at least one of the components of
x is smaller than or equal to the corresponding component of y. Given a simple
point measure p = » . 4 €x, let Fa(p) := > xcp,a) Ex be the point measure built
by the Pareto points of A.

We give some details, whereby our excursion to Pareto points follows the line
of research by Witte [462]. In the following lines we merely deal with the special
case of the empirical process

Nn = Z €X;

i<n
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of iid rv X; with common uniform distribution @ on the unit square [0, 1]2. For
early results concerning Pareto points we refer to Barndorff-Nielsen and Sobel
[30]. Applications in conjunction with multicriteria optimization are mentioned in
Berezovskiy and Gnedin [33] and Bruss and Rogers [57].

Let

By ={(z,y) € [0,1]* s 2y < a(n)}.
Fubini’s theorem yields
Q(Bn) = a(n)(1 —log(a(n))), (7.20)

showing that B,, is a rare event when a(n) is small. The crucial step in our com-
putations is Lemma 5.1.1 in Witte [462], where it is proved that

P{P{X1,..., X} CB,} >1—n(1l—an)" . (7.21)

Therefore, Q(B,) — 0 and the left-hand side of (5.22) tends to 1 as n — oo
for suitably chosen a(n). Thus, the Pareto points form a subset of B,, with high
probability.

Applying (5.21) and (5.22), one obtains a bound on the variational distance
between the distributions of PN, and PuV,5, where N is a Poisson process with
the same intensity measure v, = n@ as N,.

Lemma 7.2.1. Let 7(n) be a Poisson rv with parameter n. We have

A(Palo, PaN7) <1 (1 — a(n)" " +n / (1 - ak +1))* dL(r(n))(k)
+ a(n) (1~ log(a(n)))

Proof. Because of the special structure of the set B, and the fact that x is a
Pareto point of A if, and only if,

(—oo,z] N A= {x}, (7.22)
one obtains Py(A) N B, = Pu(AN B,,). This implies
(PulV) g, = Pu(NB,)

for point processes IV, where Np, is the truncation of IV outside of B,,.
Therefore, using the coupling argument and a first-order Poisson approxi-
mation one obtains from (5.21), (5.22) and the monotonicity theorem that

d(PalNn, (PuN;}) B, )

< d(PuNp, Po(Nn,5,)) + d(Nu5,, N;i 5,
<n(l—a(n)" ! + a(n)(1 —log(a(n))).
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Applying the convexity theorem and (7.21) again one obtains
A((PuN}) B, , TuN;) < / d((PaNk) B, , PaNi) dL(7(n))(k)
< [ k(1= @)t acm)®)
—n /(1 — a(k + 1) dL(r(n) (k).

Combining the preceding inequalities we obtain the assertion.

Taking a(n) = (2log(n+1))/(n—1) and using the inequality 1+ 2 < exp(x)
one obtains
d(PalNn, PuN;;) < (41og(n))/n. (7.23)

To prove the asymptotic normality of the number |P{ X1, ..., X, }| of Pareto
points one may utilize another characterization of Pareto points. These are the
points of discontinuity of the greatest piecewise constant, decreasing and right-
continuous minorant of the points of the empirical process (and likewise of the
Poisson process N;;). Replacing the point measures ), e¢, ..) by D2, E(nyi.z) We
obtain processes with the Lebesgue measure truncated outside of [0,n] x [0, 1] as
intensity measures. This indicates that the question of evaluating the number of
Pareto points can be handled via the point process of jump points of the min-
extremal-F process, where F(x) =1 — e~ % (cf. (7.36)).

We may also speak of a Pareto point @ of order k within A = {x1,...,x,} if
for each y € A at least k of the components of x are smaller than or equal to the
corresponding components of y. The previous Pareto points are of order k = 1.
Moreover, the multivariate minimum is a Pareto point of order n if the minimum
is an element of the original sample.

7.3 Thinned Empirical Processes

In this section we introduce thinned empirical processes, which generalize trun-
cated processes by allowing random truncating sets. Local asymptotic normality
is established under the condition that the probability of thinning converges to
zero. An application to density estimation leads to a fuzzy set density estimator,
which is efficient in a parametric model. This section is based on a paper by Falk
and Liese [140].

INTRODUCTION

Let X1,..., X, be independent copies of a random element (re) X, which is realized
in some arbitrary sample space S, equipped with a o-field D. Suppose that an
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observation, if falling on an point z € S, is merely counted with probability ¢(x) €
[0,1]. We assume throughout that the thinning function ¢ : (S,D) — [0,1] is
measurable.

With the particular choice ¢(z) = 1p(x) for some D € D, this setup underlies
for example the peaks-over-threshold approach (POT) in extreme value analysis
or nonlinear regression analysis (see e.g. Section 1.3); in right-censoring models
for observations in S = R, the function p(z) = P(Y > z) = 1 - P(Y < x)
is the conditional probability that the outcome X = x is not censored by an
independent censoring variable Y (see e.g. Section II.1 of Andersen et al. [13]).
In general this setup can be utilized for modelling missing observations with ¢(z)
being the conditional probability that the outcome X = x enters the data set.

A unified approach for the above models is offered by the concept of thinned
empirical point processes . First, we identify each point x € S with the pertaining
Dirac measure ¢,(B) = 1g(z), B € D. Thus, we can identify the re X with the
random Dirac measure €x. The re Uex(-) then models the outcome of X, which
is counted merely with probability ¢(x), given X = z. Here U is a rv (rv) with
values in {0, 1}, such that

PU=1X=212)=¢p(x), ze€b.
Assume now that (X;,U;), i = 1,...,n, are independent copies of (X, U). Then,

n
Ny () =Y Uiex, (),
i=1
is a thinned empirical point process with underlying empirical process
n
Na() =Y ex, ()
i=1

(Reiss [387], Section 2.4, Daley and Vere-Jones [90], Example 8.2). The thinned
process N¥ now models the sampling scheme that an observation X, if falling on
x € S, enters the data set only with probability ¢(z).

The process N is a re in the set M := {u = Z;;l €2, 1 T1,..., Ty € S0 =
0,1,2,...} of finite point measures on (S, D), equipped with the smallest o-field
M such that for any B € D the projection

g :M—{0,1,2,...}, 7wp(u):= uB)
is measurable (cf. Section 1.1 of [387]).

TRUNCATED EMPIRICAL PROCESSES

In the particular case p(x) = 1p(z), z € S, where D is a given measurable subset
of S, the thinned process NV equals the truncated empirical process
NP() =Y Ip(Xiex,() =D ex,(-ND).
i=1

=1
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If the subset D is a rare event, i.e., D = D(n) depends on the sample size
n and satisfies P(X € D) —, ,o 0, the process N” has been investigated in
a series of papers: Various Poisson approximations are derived in the preceding
chapters, efficient statistical procedures based on N in certain parametric models
are established by Hépfner [219], Hopfner and Jacod [220] and Marohn [320],
bounds for the loss of information due to truncation are computed in Falk and
Marohn [144], local asymptotic normality (LAN) of the loglikelihood ratio of N
in quite general parametric models was established in Falk [136] and Marohn [321].

In particular in Falk [136] a characterization of the central sequence in the
LAN-expansion of NP was established, which provides an if and only if condi-
tion on an underlying parametric family of distributions Py such that just the
(random) number K (n) := NP(S) = N, (D) of actually observed data contains
asymptotically the complete statistically relevant information about the true para-
meter Yy that is contained in N . This paper explained the observation that this
phenomenon typically occurs in the POT approach in extreme value theory (Falk
[135], [136]) by giving a precise description of the mathematical structures yielding
this effect; see also the discussion after Theorem 2.4.4.

We will extend these characterizations for truncated empirical processes to
thinned processes by considering sequences ¢ = ¢, with a, := E(vn(X)) 2 n-oo
0.

A VERY BRIEF SKETCH OF SOME LAN THEORY

For easier access we give in the following a very brief and informal introduction to
the concept of the powerful LAN theory , which is mainly due to LeCam [308] (cf.
also Strasser [430] and LeCam and Yang [309] for the general theory; for applica-
tions in estimation problems we refer to the books by Ibragimov and Has’'minskii
[268] and Pfanzagl [367]. A very readable introduction to both, estimation and
testing is in Chapter 8 of Andersen et al. [13]) as well as in Chapter 7 of van der
Vaart [449].

Suppose that the distribution £(NN¥) of N is governed by some parameter
¥ €O CR,ie., L(N?) = Ly(N?), where we assume just for the sake of simplicity
that the parameter space © is one-dimensional. Fix ¢y € © and choose 6, —p o0
0. Introduce a local parametrization by setting ¢, = ¥ + §,&€. The loglikelihood

ratio
o dLy, (NY) o
L, (9,]90) :=log { dLy (N?) }(Nn)

can be expanded as

2
Ln(0a100) = €200y ~ &, + 0p,, (1),
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The rv Z(,) is supposed to be asymptotically standard normal
Z(n) —>D190 N(O, 1),

where —>p, denotes convergence in distribution under the parameter ¥ and thus,

2
Lo(@alo) —pg, N(=5, €. (LAN)

LeCam’s First Lemma then implies that the distributions Ly, (N?) and Ly, (N?)
are mutually contiguous with Z,) —p, N(&,1), yielding

2
Lo(@nl0o) —p,, N<2 , gz).

Results by LeCam [308] and H&jek [196] imply further that asymptotically optimal
tests and estimates can be based on Z(,), n € N, which is therefore called the
central sequence.

THE BASIC REPRESENTATION LEMMA

A characterization of the central sequence in the special case ¢ = 1p with D =
D(n) satisfying P(X € D) —, 00 0, nP(X € D) —>,,_, 0 00 was established in
Falk [136] and Marohn [321]. In particular an iff condition was established in Falk
[136] on the family of underlying distributions such that, with K (n) = N, (D) and
an = P(X € D),

K(n) —nay,
(nam (1 — an))lm’

is the central sequence. Note that Z,) —p, N(0,1) by the Moivre-Laplace
theorem.

The derivation of the preceding result was eased by the fact that the truncated
process NP is a binomial process. Denote by Y7, Ya, ... those observations among
X1,...,X,, which actually fall into the subset D. Then we can write

Z(n) = n €N,

n K(n)
NnD:Z‘gxqz('mD):ZEYja
i—1 j=1

where Y7,Y5,... behave like independent copies of a re Y, whose distribution
P(Y €)= P(X € -| X € D) is the conditional distribution of X, given X € D,
and Y1,Ys,... are independent of their total number K (n), which is binomial

B(n, P(X € D))-distributed (see Theorem 1.3.1).

The fact that a thinned empirical process N, is in general a binomial process,
enables us to establish in the following LAN of N/~ for an arbitrary sequence ¢,
n € N, of thinning functions satisfying ., = E(pn(X)) —n—o0o 0, N, —rn—oo
0.
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Denote by Y1,Ya,..., Yk, those observations among Xi,..., X, that are
actually observed, i.e., for which U; = 1, and let again K(n) = N2(S) =", U;
be their total number. By =p we denote equality in distribution.

The following result is an immediate consequence of the fact that a thinned
process can be represented as a projection of a truncated process; see Section 2.4
of Reiss [387].

Lemma 7.3.1. Let ¢ : S — [0,1] be an arbitrary measurable thinning function
and put a:= E(U) = P(U =1) = E(p(X)). If 0 < a < 1, we have

N,’f: E €y; =D E EW;»
i=1 =1

where K(n) is B(n,«)-distributed, Wi, Wa, ..., W, are iid res with common dis-
tribution
Pw()=P(X e |U=1)

and K(n) and the vector (W1, Wa, ..., W,,) are independent.

This result shows that for a general thinned process the actually observed res
Y; can be handled like iid res, whose common distribution is Py (+), and they are
independent of their total number K (n), which is B(n, «)-distributed. The choice
¢ = 1p yields again the well-known fact for truncated processes mentioned above.

THE MODEL ASSUMPTIONS

Our statistical model, underlying the thinned process N = >""" | U;ex, for the
sample size n, is the assumption that the measure P(X € -,U =1) = L(X,U)(- x
{1}) is a member of a parametric family

PXec- . U=1)=Py(Xe-,U=1)=:Qqy(-), €0 cCR?

where Qy(S) = Py(U = 1) =: ay € [0, 1]. Note that in our model the parameter
space © C R? is fixed and does not depend on the sample size n, the measures Qy
however may depend on n, possibly due to a variation of the thinning function
¢ = 9. In particular the probability ay that an observation X; enters the data
set, then depends on n, i.e., oy = ap 9. Set

Qu.o(B) = /B oo (2) Py(da).

Suppose that 19y is an inner point of ©. We assume that Py, ¥ € O, is
dominated by the o-finite measure p and denote by f,, 9 = dQpn 9/dp the density.
To calculate the likelihood ratio for the thinned point process we use Example
3.1.2 in Reiss [387] and Lemma 7.3.1 to get
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La(9190) =, Z log{ fj o a”’”0}+K(n>log{1+O‘"”"O‘”’”O}

) Qn,9 Qn 9

+ (n — K(n)log {1 4 Onido T On0 } .
1-— Oén,ﬂo

Note that absolute continuity @y 9 << Qn 9, for ¥ close to ¥ is a consequence of
condition (7.24) below. Now we localize our model by setting 9, ; = Yo; + &ni =
Po,i +&; On i, where §p, ; —n—00 0, 1 <4 < d. Taking formally the derivative with
respect to 9 in L, (¢,9p), we get the formal expansion

0
L (9a190) =p,, {( log (/. 0>) ) - 2 log(an o>} 5 &
0) =p ; 09, 9 09, 9

jn
d
+ (Z 8(?9‘ log (tn,9,) Oni fi) K(n)

d
" (Z 8(?% log (1 — O‘nﬁo)@z,i&) (n — K(n)).

We assume that the sequence f, » admits the expansion

\g

fn719 = fn,ﬁo (1 + <'l9 - 1907 gn> + <Q9 - 1907 hn,19>)7 (724)

where gn, = (gn,1,-- > 9n,d)s hnw = (hnw1,...,hn9.q) are Borel measurable func-
tions and the remainder term satisfies

n 19n,z QTL )

[ 62 dQny —n—oo 0, (7.25)
n,: n,vo

where

Ui = V0,0 +&nyis Ony = (n/giz dQnﬁo)_l/Q

and the &; are arbitrary.

A CruciAL CONDITION

Denote by W,, a rv with £L(W,,) = a;ﬁ% Qn.9,- We index expectations Fy etc.
with the underlying parameter. We suppose that |0, || —n—oo 0 and that

Un,9y —n—oco 0, NOn9, —Fn—soc0 00 (7.26)

Besides further regularity conditions listed below, we suppose the following crucial
condition on the tangent functions g, ;, 1 <7 <d:
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Ey, (gn,i(W’ﬂ)>

(Eﬂo (972”(Wn)>) v

= fg ’ @ o —rn—oo Ci € [_171]7 (7'27)

1/2
a5, (J 42.dQu.0,)

Cpi :—

note that ¢,; € [—1,1] anyway. Theorem 7.3.2 below shows that the central se-
quence in the LAN expansion of L,, consists of the total number K (n) of actually
observed variables Y1,. .., Yg )y and of g, ;(Y;), 1 <i<d, 1 < j <n. It turns out
that the number 1 — ¢} € [0, 1] reflects the part that g (Y1), ..., gn,i(Yi(n)) con-
tribute to the central sequence. In the particular case, where |¢;| =1, 1 <14 < d,
which typically occurs in EVD models (Falk [135], [136]), Marohn [321]), the vari-
ables g,;(Y;) do not contribute to the central sequence, which consequently con-
sists only of the number K(n) of actually observed data.

This crucial condition (7.27) was introduced in [136] in the form 1/c¢2, —
1 ——00 G € ]0,00). But this formulation excludes the case ¢; = oo, i.e., ¢; =0,
which typically occurs in regression analysis (Falk [136], Example 2.4, Marohn
[321], Example 3 (c), Falk and Marohn [142]).

FURTHER REGULARITY CONDITIONS

If |¢;| < 1 we need a Lindeberg type condition . To be more precise, we set

Apici= {\gm| > s(n/gﬁ,i dQn,ﬁ0>1/2}

and require that
‘[An,i,s grzL,i dQn,9,

f 972;,@‘ dQn,ﬁo

for every € > 0. Note that this simple form of the Lindeberg condition is due to
the fact that we have iid rv for a fixed sample size n. If for some € > 0,

f ‘gn,i|2+5 dQn,v,
(f ngL,i dQn,ﬂo) el

then we obtain from Holder’s inequality

Ln(e) = —nyeo 0 (7.28)

oo O, (7.29)

, 2/(2+4¢)
fAn,i,s 9n,i dQn’ﬁO < f |gn,i|2+€ dQn,ﬁo

= —>n o0 07
[ 92.:dQn.s, (f 62, dQu.o0)" " 7

so that (7.28) is satisfied. The assumption (7.29) is a Ljapunov type condition.
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We suppose that g, i, (W,) and gni, (W,) are asymptotically uncorrelated
for 11 7é iQ, i.e.,

Ey, ((gml (Wn) = Egy(gn,iy (Wn))) (gn,ig (W) = Egy (gn.is (Wn))))
Boa (95, W)Y Boa (97 1, (Wa)) /2

S 9n.is Gnoin dQn 0,

- ) 1/2 ) 172 — CniiCniz
(fgn,il dQn)ﬁO) (fgn,iz dQTLﬂ%})
— oo 0 if 41 # do. (7.30)
THE MAIN RESULT
For every fixed n denote by Y}, j = 1,...,n, iid rv with common distribution

(Qn,90) "  Qnvy- Now we are ready to state our main result, which provides LAN
of thinned processes.

Theorem 7.3.2. If the conditions (7.24)-(7.27) and (7.28), (7.30) are satisfied,
then we have

Lo (9n]90)
n) — nop.9
=Dy, (Zfz z) nanﬂo(l_anﬂg 1/2 (Zflcz)
1 K(n) gn,z(y) - E190 gmz(Y)
+(noz )1/2 > > & J ( 1/21)
ST el By (2.,09))
d
_; ;gfu —¢})+op,, (1)
1 d , d , d
—D,, N(— ,(Xge) +Xga-d) (Y ea) +d ¢ —c§>>,
i=1 i=1 i=1 =1
where K(n) and Y1,Ya, ..., are independent and K (n) has a binomial distribution

with parameters n and oy, 9, -

With the particular thinning function ¢(z) = 1p(x), the preceding result
implies Theorem 1.1 in Falk [136] and the main result in Marohn [321].
The Moivre-Laplace theorem implies that

K(n) — nag, g,

an =
(nam,9, (1 — an,)) 12

—>D190 N(O, 1);
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recall that K (n) is binomial B(n, v, )-distributed under parameter 9o, with na, g,
—n—00 00. The proof of Theorem 7.3.2 shows that

K(n)

TR S oL S i

(nan.,)* = o Eﬂo (gn,:(¥))"/2

— Dy, N(O,Za?(l — c?));
i=1

the independence of K (n) and Y7, Y3, ... implies that Z,; and Z,,» are asymptoti-
cally independent. The limiting normal distribution in Theorem 7.3.2 is therefore
a consequence of the convolution theorem for normal distributions.

EXAMPLE: RIGHT-CENSORED DATA

Suppose that we observe right-censored data >, U;ex,, where U; = 1(Z; > X;)
and Z; is independent of X;. Assume that the censoring distribution £(Z) is an
exponential one with parameter A\, and that X follows an exponential distribution
with parameter 9 > 0, i.e., we have, for the sample size n and 1 <1 < n,

P(Z; > x) = P(Z > z) = exp(—An2), x >0,

P(X; > z) = Py(X > x) = exp(—vz), x> 0.
In this case we have, for a Borel set B C [0, 00),
Qo(B)=Py(XeBU=1)=Py(XeB, Z>X)

:/ P(Z > z)¥exp(—vz) dz
B
= / Yexp(—(A\p, +9)z) dx

B

and thus,
fo(x) := dexp(—(A\n + H)x), x>0,
is a Lebesgue density of Qy. We, consequently, obtain

an,ﬁZQnﬂ / folx =, +19

Fix 99 > 0. Iterated Taylor expansion implies, for z > 0 and 9 close to ¥y,

ﬁ)(&)) _ 1;90 exp ((190 - 0)96)

= exp(log <1+ V=%

90 )+ (00— 0)z)
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1+(190—19)(a:— ;O)

n O((ﬁo )20 — 9)2 (22 + 1) exp(|Fo — 19|x))

1 (190 - 19)9(1:) n (190 - 19) B ().

Hence, condition (7.24) is satisfied with d = 1 and

> 1
/92 dQn.9, = / (x — 9 )2190 exp ( — (M + 190);10) dx
0 0

1 Yo
1 9o + A2 1
- "= 1+ 0(1))
An (1 + 392)3 A”%(

if A\, —noo0o 00. We require in addition that A,/n —, o 0, which implies
On9 —n—oo 0, Ny 9 —rn—s0e 00. Since, moreover,

/QQ”O " inﬂoy - _Aln (1+om).

condition (7.27) is also satisfied with ¢ = —1 :

=, J 9dQn.s, _ » Aln(l +0(1))1 )
an{ﬂo(IQQ dQn,ﬂo)l/Q (3\9:) / (1+0(1))(An1190) / (1+0(1))
—>n—)oo _1'

The central sequence in the LAN expansion of Theorem 7.3.2 will consist in this
example therefore only of the number K(n) = Y% | Uiex, ([0,00)) of uncensored
observations. It remains to verify condition (7.25) with 9, = 9o + &0, (1 + o(1)) =

Do + €082 (A /) Y2 (1 + 0(1)):

ffhjfdcé?znjo =0 (A" (190 B 19">2 /Ooo(x2 +1)?exp (2|19o — 19n|x> foo () d;v)

= 0(2‘) = o(1).

Hence we obtain from Theorem 7.3.2 the LAN expansion

nay, — K(’]’L) 52
ot — a2~ 0P ()

— Dy, N( - 52/2,52).

Ln(ﬁn|190) —¢
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The complete statistical information about the underlying parameter, which is
contained in the thinned process Y .-, Uiex,, is in this example already contained
in K(n) =31, Uex,([0,00)) = Uy + -+ + Uy, but not in the actually observed
non-censored data Y1, ..., Yk (,). This phenomenon typically occurs in the peaks-
over-threshold approach (POT) in extreme value theory (Falk [135], [136]), whereas
the converse case ¢ = 0 typically occurs in regression analysis (Falk [136], Example
2.4, Marohn [321], Example 3 (c)).

AN EFFICIENT ESTIMATOR

Proposition 7.3.3. We consider the particular case d = 1 and ¢ € {1,—1}.
Suppose that the following regularity conditions are satisfied:

(a) Oc :=1nfy, y:j9—vo|>e [An,9 — nw,| > 0 for any e > 0.

(b) a9 is differentiable near 9 = 9o for any n € N with inf,, y.19_9,|<<, |aiw9| >
C > 0 for some g9 > 0 and some C > 0.

(c) SUD.g:|9— 9| < Kn—1/2 | [ hn9 dQn,9o] —Fn—oo O for any K > 0.

Then an asymptotically efficient estimator of the underlying parameter 9y based
on the thinned process is given by the solution 9, of the equation

_K(n)

n,9n n

Proof. Put ¢, = 1/(nfg2 dQn,ﬁo)l/z, Cp = fngn,ﬂo/(Oén,ﬂo f92 dQn,ﬂo)l/Q-
The expansion

K(n
M s = Q9= [ 13, d
= /1 + (ﬁn - 190)9 + (ﬁn - 190>hn,1§ dQn,ﬁo
= QOln,9, + (ﬁn - 190) /ngn,ﬂo +rn
implies that
K(n) — nag, g, B Cn n/2p,

2 0a” (90 =90) + 1)

(nan,ﬁo(l - a’ﬂ,ﬂo))l/2 B (1 — Qn,9y Q96

(1~ n90) /2
Note that
{190 — P0l > €} C {lo, 5. — n.po| > 6} C{|K(n)/n — angy| > 02}

for arbitrary e > 0. Since . > 0 by condition (a) we have consistency of 0,,.
Condition (b) now implies

, ~
an,ﬁn = Qn, 9, + an,{@jn (19” - 190)7
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where 9, is between o and J,,. We, consequently, obtain

In2(d, — )| < 0_1”1/2|0<n,1§n — angy| = C 101/ K7(ln) ~an,| = Op(oz}ﬁo).
Condition (c) now implies that nl/zrn/a;{go = op,, (1) and, hence, we obtain

/A K(n) —nan»
59, — 90 ) = oo 1).
" ( 0) C(nanﬂ% (1 - an7190))1/2 * Opﬁo ( )

The expansion of Theorem 7.3.2 is by LeCam’s First Lemma also valid under the
alternative ¢, = g + £0n,

K(n) —nang, &

Ln n = —
(19 |7~90) Cf (nan,ﬂo (1 _ Oln)ﬁo))l/2 2

+ Opy, (1)7

where now
K(n) — no,. g,

(nanﬂ% (1 - an,190>)1/2 Do, N(Cé.’ 1)

Consequently,

51 (@n - 00) —sp,, N(O,1), & (ﬁn - 19n) —p,. N(0,1),
ie, d,isa regular estimator, asymptotically unbiased under ¥y as well as under
Op. Its limiting variance 1 coincides with that of the central sequence (K(n) —
nan.9,)/ (N9, (1 — an.9,))'/? and thus Hajeks [196] Convolution Theorem now
implies that 9, actually has minimum limiting variance among all regular esti-
mates that are based on the thinned empirical process.

APPLICATION TO Fuzzy SET DENSITY ESTIMATION

Consider independent copies X1, ..., X, of arv X in R%, whose distribution £(X)
has a Lebesgue density p near some fixed point zo € R? The problem is the
estimation of p(xo). We will establish in the following a parametric model for this
non-parametric problem and we will show, how the preceding results can be utilized
to prove efficiency of a fuzzy set density estimator within this model. Though
seemingly quite similar to a usual kernel density estimator, the fuzzy set estimator
has surprising advantages over the latter. Just for notational simplicity we assume
in the following that d = 1; all subsequent considerations can be generalized to
the case d > 1 in a straightforward manner.
A common estimator of p(zg) is the kernel density estimator

A 1 & o — X;
prlan) =, Sk, %),
ni:l n
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where the kernel function k satisfies [ k(z)dz =1, [z k(z)dz =0 and b, > 0 is
a bandwidth.

In contrast to the kernel estimator, which assigns weight to all points of the
sample, we now select points from the sample with different probabilities. As we
have to evaluate the local behavior of the distribution of X, it is obvious that
only observations X; in a neighborhood of xy can reasonably contribute to the
estimation of p(xg). Our set of observations in a neighborhood of xy can now be
described by the thinned process

n
N;f" = E Uiéxi,

i=1

where U; decides, whether X; belongs to the neighborhood of z or not.
Precisely,
on(z) =PU; =1|X; =)

is the probability that the observation X; = x belongs to the neighborhood of x.
Note that this neighborhood is not explicitly defined, but it is actually a fuzzy set
in the sense of Zadeh [468], given by its membership function ¢,. The thinned
process N¥» is, therefore, a fuzzy set representation of the data, where we assume
that (X1,U1), ..., (Xn, Uy) areiid copies of (X, U). For a review of fuzzy set theory
and its applications we refer to the monograph by Zimmermann [474].

It is plausible to let ¢, (x) depend on the distance |z — x| and to put

on(@) :=so(x;x°>, z € R,

where the function ¢ has values in [0, 1] and b,, > 0 is a scaling factor or bandwidth.
We assume that ¢ is continuous at 0 with ¢(0) > 0. To keep the conditions on p
as general as possible, we require that ¢(z) = 0 = k(z) if |z| > K, where K > 0
is some fixed constant.

Put now
a
by, :

. J o(x)da’

where a,, > 0 satisfies na,, —,_00 00, nafL —n—oo 0. Elementary computations
imply that under the above conditions

(nan)"* (n(x0) — p(x0)) — Dy, NV (O,P(wo)/kQ(x) dm/w(w) d:c).

A simple analysis shows, moreover, that the fuzzy set density estimator

5 ._ K(n) _ N,f”(R) o Z?:lUi

nay, nay, nay,

satisfies
(nan)'"? (9 = plao)) —b N (0,p(x0))
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provided [ ¢(z)z dz = 0 and that the density p is twice differentiable near o with

bounded second derivative. Note that 9, depends only on the number K (n) of
non-thinned observations and that its limiting normal distribution is independent
of .

For the particular choice ¢* := 1|_k i) we obtain from the Cauchy-Schwarz

inequality
K K 1/2
1:/ k(z)dz < / k2 (z) dx (2K)'/?
-K -K

_ ( /_ Z k2(2) dx) - < / o () d:z:) v

and, thus, the limiting normal distribution N (0,p(zo) [ k*(x) dz [ ¢*(z) dx) of
the kernel density estimator p,,(xg) is more spread out than that of 5,1 with the
thinning function ¢*. Note that p,(zo) and ., use the same bandwidth sequence
b, and have the same rate of convergence (na,)~'/2.

THE ESTIMATOR ﬁn IS ACTUALLY EFFICIENT

Now we study the efficiency of U,, within the class of all estimators based on
randomly selected points from the sample. To this end we use the LAN-approach
and apply Theorem 7.3.2 to special parametric submodels.
Precisely we require
po(z) =9+ 719, x),

where ¥ € © C (0,00) and r satisfies
r(d,z0) =0, J € 0. (7.31)

The parameter 9 resembles, therefore, the possible value of the unknown
density p at xg, with p(xg) = g being the actual one. We assume in addition that

r(¥, z) is continuous near (J¢, o),

0

819T(19’ x) exists in a neighborhood of (9, x¢) and is continuous at (Jg, o),
52

5 , (U0, ) exists for x near o and is bounded. (7.32)
x

Note that (7.31) implies

oy r(9,z9) =0, ¥ € 0. (7.33)
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We apply Theorem 7.3.2 and obtain that our model leads to an LAN expan-
sion of L, (9¥,]9), where condition (7.27) is satisfied with ¢ = 1 and, hence, the
central sequence is given by
K(n) — non, g,
an = ’ 1/9°
(nanﬂ%(l - aﬂﬂ%)) /

Proposition 7.3.4. If in addition to the above assumptions on ¢ and by, condi-
tions 7.31-7.33 are satisfied, then

nan

is an efficient estimator of ¥¢ in the set of all regular estimates that are based on
the sequence of thinned processes NY™, n € N.

ASYMPTOTICALLY BIASED DENSITY ESTIMATORS

It is further interesting to compare 1/9\n as a non-parametric density estimator with
a kernel density estimator also in the case where both are asymptotically biased,
i.e., where nb> 4, 00 0. Suppose to this end that the density p(z) is twice
differentiable near zy and that p” is continuous at zg. A simple analysis shows
that the mean squared error of the non-parametric fuzzy set density estimator

~ 1 <&
Iy = nan;m

3
with

P(Uilei:x):ga(x;%)

and b,, = a,/ [ p(z)dz can be expanded as
B (00— pto?) =Pt (P50 [otwta [ ot ar)
+

nay,
1
0( +ai>.
nay

The usual kernel density estimator p,(zo) = (nb,) ™' Y1 k ((xo — X;)/byn) has,
on the other hand, the mean squared error

E ((ﬁn(xo) - p(ﬁo))z)

_ prfzi) /kZ(x) dx/gp(x) dx + by (pu(;O) /k(x)x2 dx)2 +o0 (nzn + ai) :
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If nb> /4 0, then the second terms in both asymptotic expansions cannot
be neglected compared with the first one. While with the particular choice ¢* =
1j—k, k] the first term in the above expansion of the mean squared error of p,,(zo)

is greater than that of ﬁn, this is in general not true for the second term. Take,
for example, the popular Epanechnikov kernel

kp(z) = (3/4)(1 — x2)1[_171] (x),
i.e., K = 1. Then we have
/kE(x)x2 dx=1/5

/11 ©* ()2 d;v/ /_11 ©*(z)dx =1/3.

We have, on the other hand,

but

/1 gp*(x)dx/k%(x)dx =6/5

-1

and, thus, the mean squared error of the Epanechnikov kernel with bandwidth b,
of order n=1/5 can be larger as well as smaller than that of 9,,, depending on p(zo)
and p”'(zg).

7.4 Max-Stable Stochastic Processes

In the following we study stochastic processes X = (X (t))tcr. Corresponding to
the multivariate case, arithmetic operations and relations are meant component-
wise. Thus, e.g.,

a” (X —b) = (a(t) T (X(8) = b(1))) e
where a = (a(t))ier > 0 and b = (b(¢))er-

MAX-STABILITY

The notion of max-stability can be generalized to the infinite-dimensional setting.
Let X = (X (t))er be a stochastic process and let X ..., X be independent
copies of X. The maximum is again taken componentwise, that is,

i<n i<n

max X = (max xX® (t)) .
teT

Now, X is called max-stable, if for every n € N there are normalizing functions
a, > 0 and b,, such that

max (a;l (X,(f) — bn)) =p X

i<n
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in the sense of having the same finite-dimensional marginal distributions. To prove
the max-stability, one has to verify that

P(an(@®)™ (X () —bu(t) Syt €To)" = P(X(t) <y, t € Tp) (7.34)

for every finite Ty C T and n € N.

Likewise, one may introduce the notion of a max-infinitely divisible process
(cf. Vatan [452] and Balkema et al. [23]).

We proceed by discussing an important example of max-stable processes
which will later be reconsidered in the light of theoretical results.

MAX-STABLE EXTREMAL PROCESSES

First let T'= N. Let Y;, 7 € N, be a sequence of iid rv with common df F. Put
X (i) = Y;,;. Verify that for every m € Nand 1 <nj < ng < -+ < Ny,

P(X(n1) < a1, X(n2) <xa,..., X(n) < )
ni ng—mni
= F( min Z’l) F( min J,‘i) "'F(:I,‘m)"’”_nm_l.

1<i<m 2<i<m

If F is max-stable with F"(b,, + a,x) = F(z), then it is a simple exercise to show
that X = (X(i);en is max-stable with a,, and b,, being equal to the constants a,
and b, respectively. This concept can be extended to the continuous time domain
T = (0,00).

An extremal-F process X = (X (t)):>0 pertaining to a df F' has the following
property: For every m € Nand 0 <) <ty <--- <tpp,

P(X(t1) < a1, X(ta) <oy, X(tm) < )
t1 ta—t
= F( min $1) F( min 1‘1> "'F(l‘m)tm_t"‘_l.

1<i<m 2<i<m

The preceding remark about max-stability is also valid for the continuous
time version of the extremal process.

Let >, €(v;,2;) be a Poisson process with intensity measure Ao x v, where Ag
is the Lebesgue measure restricted to (0,00) and v has the measure generating
function log(F'). Then

X(t) :=sup{Z;:Y; <t, i e N}, t>0, (7.35)

defines an extremal-F process (cf. Pickands [370], Resnick [393]). It is the smallest
piecewise constant, increasing and right-continuous majorant of the Poisson points.
This extremal process takes values in the space D(0, 00) equipped with the Borel-
o-field of the Skorohod topology if F' is continuous.

Likewise one may define a min-extremal-F process which is related to minima
instead of maxima. Then take

X(t)=inf{Z;:Y; <t, ieN}, t>0, (7.36)

and the measure v with generating function — log(1 — F').
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GENERATION OF MAX-STABLE PROCESSES BY CONVOLUTIONS

In the following we merely deal with Poisson processes related to the Gumbel df
G3 in view of our main example which concerns Brownian motions. Let N3 be a
Poisson process with mean value function

Us3(2) = log(Gs)(z) = —e™™.

Denote by v3 the pertaining intensity measure. Recall that max(/N§) has the df
G5, where the maximum of a point process is again the maximum of its points.
Let X = (X (t))ter be a stochastic process, where the finite-dimensional case is
included if T is finite. Let h(u, (z(t))ter) = (u + 2(t))ter. Let N* be the Poisson
process with intensity measure h(vs x £(X)), which is the measure induced by
h and the product v3 x L£(X). Hence, a copy of X is added independently to
every point of Nj. Let max(N*) be defined by the componentwise maximum of
the points of N* and put

(M(t))ter := max(N™). (7.37)

In the following we assume that
b(t) = / e AL(X (1)) € (0,00),  teT. (7.38)

Theorem 7.4.1. If condition (7.38) holds, then
(i) P(M(t) < x) = exp(—exp(—z + log(b(t))));
(ii) (M(t))ter is max-stable.
Proof. Put Q@ = L(X (t)ter). Using again avoidance probabilities, we obtain
P(M(t) < z) = P(N{z: z(t) > z} = 0)
exp (— k(v x Q){z : z(t) > 2}).

Moreover,
glv x Q){{z:x(t) > 2} = (v x Q){(u,y) cuty(t) > z}
= [ = roe)) dexe))
= e_Z/er/S(X(t))(r).
Hence, (i) holds. We verify (7.34) to prove the max-stability:

P(M(t) —log(n) < 2z, t € Tp)"
= P(N*{z: z(t) > 2 + log(n) for some t € Tp} =0)"
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= exp (= [0 (smintea— 0.0 ) A2 (X W)een)

teTy

—exp (= [ (qminGer— a(0).00 ) 2 (CXOes))
= P(M(t) < 2, t € Tp).

Thus, (7.34) holds.

A MAX-STABLE PROCESS
CORRESPONDING TO BROWNIAN MOTION

Let C be the space of continuous functions on [0, 00) equipped with the topology
of uniform convergence on bounded intervals. Let C be the Borel-o-field on C'. Put

Co={xeC:2(0)=0}

and denote by Cy the trace of C in Cj.
Recall that a stochastic process B = (B(t)):>0 with values in Cjy, equipped
with the o-field Cy, is a standard Brownian motion if

(i) the increments B(t1) — B(to), B(t2) — B(t1), ..., B(tm+1) — B(t;) are inde-
pendent for m € Nand ¢y < t; < -+ < tp+1;

(i) L(B(t) — B(s)) = Ng.t—s)y 0<s<t.

Moreover, B is characterized by the following properties: B is a Gaussian
process (that is, the finite-dimensional margins are normal rv) with mean function
E(B(t)) = 0 and covariance function K(s,t) = E(B(s)B(t)) = min(s,t). Let

(X(®)tz0 = (B(t) —t/2)i>0

and set
(M(t))i>0 := max(N™) (7.39)

as in (7.37). Condition (7.38) holds, because

/ erdL(B(t) — 1/2)(r) = / ¢ AN _t2.0)(r) = / dNujsn =1,  (7.40)

and, hence, we know from Theorem 7.4.1 that (M (t));>0 is max-stable. This special
max-stable process was dealt with by Brown and Resnick [55]. In the following
lemma we compute the univariate and bivariate margins. Let Hy be again the
bivariate df in Example 4.1.4.

Lemma 7.4.2. For everyt > 0:

(i) PAM(t) < z} = exp(—e™7);
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(i) POM(0) < 21, M(t) < 22) = Hpapo(o1, 22).
Proof. (i) follows from Theorem 7.4.1(i) and (7.40). Moreover,
P(M(0) < 21, M(t) < 22)
=exp(—gv x Q){z € C:z(0) > 2z or z(t) > 22})
and
g(v x Q){z € C:x(0) > 2 or z(t) > 22}
= /V{u tu >z 0ru >z —rh dL(B(t) —t/2)(r)
= / S e AN (12, (r) + / T AN(—t/2,0)(1)

— 00 Zo—2z21
22 — 21 _ 21 — 22 _
= T+ =
(/\ + 9\ ) e + ()\ + 9\ ) e

for A = t'/2/2. The proof is complete.

Generally, the finite-dimensional margins of (M(t)):~o are special cases of
the rv in Example 4.1.4.

MAXIMA OF INDEPENDENT BROWNIAN MOTIONS

Let B, B;, i € N, be independent Brownian motions. Consider
Xpi(t) = b {Bi(1 + b, 2) — by (1 +t/(202))},

where b, is again defined by b,, = np(b,) with ¢ denoting the standard normal
density.

The following result is due to Brown and Resnick [55], who used a slightly
different normalization.

Theorem 7.4.3. We have

<mame-(t)) —p max(N*), n — oo,
i<n >0

where N* is the Poisson process defined in (7.39).
The basic idea in the proof of Theorem 7.4.3 is the decomposition
Bi(1+tb,?) = B;(1) + b, ' B} (1),

where B} are iid standard Brownian motions which are independent of B;(1), i <
n. We have
Xni(t) = bn(Bi(1) — by) + (B] (t) —t/2).
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From this representation we see that one is dealing with a question related to that
in Theorem 7.4.1.

It was proven by H. Drees (personal communication) that the convergence
also holds in the variational distance, if the domain of t is restricted to a finite
interval (cf. also Reiss [387], E.6.8).

Since Theorem 7.4.3 implies the weak convergence of the finite-dimensional
margins we know that max;<, Xn,(t) is asymptotically distributed as M (¢t), where
again (M (t));>0 = max(N*). From this identity we may deduce again that M (t)
is a standard Gumbel rv.

THEORETICAL RESULTS

Because a process X = (X (t))ter is max-stable if all finite-dimensional margins
are max-stable, these margins have representations as given in (4.23). If the uni-
variate margins are of Fréchet-form and N* =} . &(y, z,), one finds f;, ¢ € T', such
that the process

(max (2:£(v2)))

has the same finite-dimensional distributions as X. Notice that this is also the
construction of extremal processes in (7.35) with f; = 119 4.

The constructions around Theorem 7.4.1 and Lemma 7.4.2 can easily be
described within the general framework of max-stable processes with univariate
margins of Gumbel-form. We have p = £(X) and fi(z) = exp(z;). Notice that
condition (7.38) corresponds to 0 < [ fidp < oo. We refer to de Haan [187],
[188] and Vatan [452] for theoretical, and to Coles [70] and further literature cited
therein for applications.

teT



PART III

Non-I1ID Observations



Chapter 8

Introduction
to the Non-IID Case

We present in the following some examples to motivate the extension of the clas-
sical extreme value theory for iid sequences to a theory for non-iid sequences. We
introduce different classes of non-iid sequences together with the main ideas. The
examples show that suitable restrictions for each class are needed to find limit
results which are useful for applications.

8.1 Definitions

By {Xi, i > 1} we denote in the following a sequence of real-valued rv X, with
marginal distributions Fly,. In contrast to the iid case we do not assume that these
marginal distributions are identical. Furthermore, the independency assumption
may also be dropped.

Such generalizations are required in many applications, where the rv are
dependent, as for instance in time series of ecological data, sulfate and ozone
concentration values and their exceedances of the threshold set by the government,
the daily rainfall amount, the daily maximum or minimum temperature.

Often, these time series exhibit in addition a trend or a seasonal compo-
nent, sometimes of a periodic nature. Furthermore, the variances of the X;’s are
often observed to be non-constant. In general, we have to specify the kind of non-
stationarity for such time series. Their extremes can only be treated with a more
general theory for the extreme values.

In addition, a more general theory reveals also the limitations of the classical
theory of the iid case. We gain a deeper insight into the properties of the classical
theory and its relation to the general one.

The iid case can be generalized in various ways by not assuming the inde-
pendence or the identical distributions Fx,(-) = Fx, () of the X;’s.

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,
DOI 10.1007/978-3-0348-0009-9 8, © Springer Basel AG 2011
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(i) The best known special case concerning dependent sequences is the station-
ary case. A random sequence is called (strongly) stationary, if the finite-
dimensional df of the random sequence are such that

FXil 1 Xigseos Xip () = FXil+7n7X'i2+m,~~~yXik.+7n(-)7 (81)

holds for any {i; € IN,j =1,...,k} and k,m € IN. Obviously, this implies
Fx, (") = Fx, () for all ¢ > 1 (by setting (k= 1) in (8.1)). If (8.1) does not
hold, then the random sequence is usually called non-stationary.

(ii) On the other hand, we may sometimes assume independence of the rv, but
dealing with non-identical marginal distributions Fx,. Such sequences are
called independent random sequences. They are used to model for instance
the extremes of some ecological data mentioned above, because one can as-
sume approximate independence of the data sets sufficiently separated in
time (or space).

The class of non-stationary random sequences is rather large; an extreme value
theory for such a general class of non-stationary random sequences does not exist.
Since in applications certain special models are considered, it is worthwhile to deal
with such particular non-stationary random sequences also. Appropriate subclasses
have been introduced and treated, for instance the random sequences {X;, i > 1}
of the form X; = p; + s;Y;, with some trend values p;, scaling values s; and
a stationary random sequence {Y;, i > 1}. Another subclass consists of non-
stationary random sequences which have identical marginal distributions: F, () =
Fx, (+), for all i > 1; for instance a sequence of standardized Gaussian rv is such a
random sequence.

We find that in the stationary or the independent case the behavior of ex-
tremes and exceedances of a level u may deviate substantially from that in the iid
case. In the following this will be illustrated by some simple examples which will
also imply the kind of restrictions needed to develop an extreme value theory for
a rather large class of non-stationary random sequences. The exact mathematical
formulation of such necessary conditions are stated in the following chapters which
present the general results.

8.2 Stationary Random Sequences

In this section we assume that the random sequence {X;, ¢ > 1} satisfies (8.1).
Let Fx,(-) = F(-) for all i > 1. In the iid case the exceedances of a high level u can
be considered as rare events. If the level u tends to the upper endpoint w(F’) of the
distribution F(+), the number of exceedances (up to time n) can asymptotically
be approximated by a Poisson rv.

e The Poisson-approximation holds in the iid case, iff the level u = u,, is such
that u, — w(F) and n(l — F(u,)) = 7 < 00 as n — oo (which means that
if w(F') < oo, w(F) is a continuity point of the distribution F(-)).
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Under certain conditions the Poisson approximation still holds for stationary
random sequences. It is obvious that in many of these cases the level u = u,, has
necessarily to tend to w(F'), being a continuity point of F() if w(F') < 0.

Example 8.2.1. Let X; = W +Y;, ¢ > 1, where W, Y;, ¢ > 1, are independent
rv with W ~ Fy, Y; ~ Fy. The sequence Xj; is stationary and each X; depends
on the rv W in the same way. If there exists a sequence {b,, n > 1} such that

P(|m<ain—bn|>e)—>O for any € >0,

then as n — 0o
P(I_n<axXl- < w—l—bn) = P(W—!—m<aXYi < w—l—bn)
—p P(W <w) = Fy(w).

This shows that any df Fyy could occur as limit distribution of extreme values of
a stationary random sequence. Note that in this case u,, /4 w(F). In this example,
X; and X; have the same dependence structure, for every pair 4,7, j # 4, even
if ¢ and j are rather far apart, (i.e., if |i — j| is large or |¢ — j| — o0). The
Poisson approximation does not make sense in this case, since events of the Poisson
process, which are separated in time, are independent. If second moments of the
rv X, exist, the random sequence {X;, i > 1} is called equally correlated, since
Corr(X;, X;) =p, i # J.

Example 8.2.2. If we take the maximum instead of the sum of the rv W and Y3,
we gain further insight into the theory on stationary sequences. Again, let Y; and
W be as in Example 8.2.1 and define

X; = max(W,Y;).
Assume now that {a,, n > 1} and {b,, n > 1} are such that as n — oo
Fy(anz +by,) —p G(z),

thus a,z + b, = w(Fy), for all z with G(x) > 0. This means that Fy belongs to
the domain of attraction of the extreme value distribution (EVD) G, denoted by
Fy € D(G) (cf. Section 2.1 and Leadbetter et al. [303], Galambos [167], Resnick
[393]). Then

P(maxXl- < ana:—l—bn) = P(W < anpz + by, m<aXY1- < anx—|—bn)

i<n

= Fw(anx + by) Fy(anz + b,) —p G(2)

if and only if 1 — Fyy (anpz +by,) — 0, or equivalently w(Fy) > w(Fw). (If w(Fy) =
w(Fw) < oo, then w(Fw ) has to be a continuity point of Fyy.)
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If w(Fy) < w(Fw), we get

‘ Fy (w) if w>w(Fy),
P(%?Xlgw) D {o if w < w(Fy).

Concerning the dependence between X; and Xj, ¢ # j, the following is observed.

PX;<u, X;j<u)=PW <, Y;<u, Y; <u)
= Fw (u)Fy (u)
+ Fu (u)(1 — Fiy (u)) Fy: (u). (8.2)

If now u — w(Fy), then the second term of (8.2) is asymptotically negligible, if
and only if 1 — Fy(u) — 0 which means w(Fy) > w(Fy ). This implies that the
events {X; < u} and {X; <u} are asymptotically independent. This is equivalent
to the asymptotic independence of {X; > u} and {X; > u}. We shall show that a
Poisson approximation is possible in this case.

For the case w(Fy) < w(Fw), neither the asymptotic independence nor the
Poisson approximation hold. Furthermore, if Fyy (anz + by,) — 1, then

P(X; > anx +by) =1— Fw(anx + by)Fy, (apx + b,) — 0.

This convergence holds even uniformly in 7. This property of the random sequence
{X;,i > 1} is called uniform asymptotic negligibility (uan) which means that none
of the rv X; has a significant influence on the extremes; each X; could be deleted
without losing important information on the extremes. The uan definition is given
in (8.3) for the general case.

The idea of the asymptotic independence of the exceedances occurring in
separated time intervals has to be formulated mathematically in an appropriate
way, such that the Poisson approximation can be proved for a general class of
stationary random sequences.

8.3 Independent Random Sequences

We consider now independent rv X; with df Fx,(-), which are in general non-
identical. Thus the distribution of the maximum M,;,, = max;<y, X; is simply given
by
P(M, <u)= P(maxXi < u) = H Fx,(u).
i<n .
i<n
From the point of view of applications, this representation is often useless, since

the Fx,(-) are not known in general. Therefore one might try to approximate the
distribution for the maximum asymptotically.
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Necessary for the Poisson approximation is the uan condition

sup pi.n, = sup P(X; > u,) = sup[l — Fx, (un)} -0 (8.3)

i<n i<n i<n

as n — oo. This means that the level u, = us > w(Fy,), for all i > 1, in other
words, it is assumed that a single exceedance at a time point 7 is negligible. Under
the uan condition the number of exceedances

Np=> 1(X; > up)

i<n

is asymptotically a Poisson rv with parameter A € [0, c0), iff

> (1= Fx, (un)] = A (8.4)

i<n

as n — oo. Condition (8.4) generalizes the condition n(l — Fx(uy,)) — A =
—log(G(x)) with u, = a,z + b, in the case of iid sequences. The error of ap-
proximation can be computed; using a result of Barbour and Holst [28], we get
that the variational distance

d(N,N,) = sup |P(N € A) — P(N,, € A)|,
ACIN

where N ~ Poisson(A), is bounded from above by

(IAAY [ - P, (un)] ™.

i<n

By (8.3) and (8.4), this is O(sup;<,, Pi.n), converging to 0 as n — oo, thus
the variational distance converges to 0. This proves the Poisson approximation.

To find possible asymptotic distributions of M,, = max;<, X;, further condi-
tions are necessary. The following well-known example shows that if further con-
ditions are not posed, every df can occur as limit distribution (compare Example
8.2.1).

Example 8.3.1. Let G(-) be any df. Then also G7(+) is a df for any v € (0, 1] and
we can define a sequence of independent rv {X;,7 > 1} such that

X; ~ GV, where ~; € (0,1) with Z% —1 asn — oo.
i<n
Then
. _ Zign Vi
P(max X; < u) = (G(u)) —p G(u).

i<n

Note that the uan condition (8.3) with u, = w does not hold in this example.



348 8. Introduction to the Non-IID Case

However, in the case of independent random sequences property (8.3) is not
sufficiently restrictive in order to obtain only the EVD of the iid case as possible
limit distributions. The class of limit distributions for the extremes in the non-
iid case is much larger. To find a reasonable subclass of limit distributions for
applications, further conditions have to be posed or special models of random
sequences have to be considered.

On the other hand, in many cases the distribution of the maxima of non-
identically distributed rv can be approximated by the distribution of the maxima
of a suitable iid sequence which implies that the limit distribution of this maxima
is one of the EVD.

Example 8.3.2. Let U; ~ Exp(1), ¢ > 1, be iid rv and set X; = U; +1log(c;) with
¢; > 0 for all 7 > 1. Then with

up () = log (Z ci> +x
i<n
and
Hiln(un(.%') —log(c;)) — oo, n — oo,
the probability of no exceedance of u,(x) at i is
P(X; < up(x)) = P(U; < up(z) —log(c;))
=1 — exp(—un(x) +log(cs)).

Thus the distribution of the normalized maxima converges

P(rinngi < un(x)> = HFXi (un())

= e;p{ — Z[l — Fx, (un(2))] (1 + 0(1))}
= exp { - <;ci>_ PP +olh)}

—p exp(—e~ ") = Gs(z).

Note that the iid case (X; = U;, i.e., ¢; = 1) belongs to this class and it is
well known that
P(mgx U; < apx + bn> —p Gs(x)

with a,, = 1,b, = log(n) as suggested by the definition of u,(z) given above. Even
if ¢; # 1, but such that

log (Z ci) = log(n) + o(1)

i<n
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or equivalently

izci—):[,

i<n

we get the same limit distribution G'3 with the same normalizing constants a,, = 1
and b, = log(n) as in the iid case. It is easy to see that the uan condition (8.3)
holds.

In this example the ‘non-stationarity’ has no influence on the asymptotic
distribution of the maxima. It is questionable whether the non-stationarity has an
influence on the extreme order statistics. We shall note in Section 8.3 that in some
cases the limit point process of exceedances is still the same as in the iid case. The
following example shows that this statement is not always true.

Example 8.3.3. Daley and Hall [89] discussed special models of independent
sequences with monotone trends and variance inhomogeneities. Let {X;, i > 1}
be an iid random sequence and

= w1 (y) > wi(y) > wit1(y) =0 as i o0 and w;(y) T 1 as v— 1,
0=v1(8) <vi(B) <vi41(B8) > 0 as i > o0 and v;(B) ] 0 as 8 — 0.

Now define M (v, 8) = sup;~q {w;(v)X;—v;(8)}, the supremum of the weighted and
shifted sequence, with shifts v;(3) and weights w; (). Daley and Hall analyzed the
class of limit distributions of M (v, ) as v — 1 and  — 0. Obviously, the EVD
G1,a,G2,o and G3 belong to this class. Two special cases are the geometrically
weighted iid sequences and linearly shifted iid sequences with suprema

W(y) =sup{y""'X;} and S(B)=sup{X;— (i —1)8},

i>1 i>1

respectively.

1) Suppose that F' = Fx € D(G1 ). Then also W(7), suitably normalized,
converges in distribution to Gi . The following more general result holds for
M (+,0), the supremum of a weighted iid sequence. If the weights w; () are such
that

oo>Zl— (1/wi(y))] = o0 asy — 1,
i>1

then
Pla(y)M(7,0) <x) =p Gra(z) asy—1,

where
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Note that since a(v) is monotone decreasing in v and tends to 0 as v — 1 by the
assumptions, we have

Pa)M 0,0 <0 =TLF (0 00)
Nexp( Z{l— l/a (7))})
i>1
— exp(—2~%) = G1,a(x), x> 0.

For instance if w;(y) = 4! with 1 — F(z) ~ cx=%, as ¥ — oo, ¢ > 0, then
the result holds with a(y) = [(1 —~%)/c]Y/.

The linearly shifted iid random sequence { X;—(i—1)3,¢ > 1} is now analyzed.
It is necessary to assume « > 1 to guarantee that S(3) is well defined (i.e., S(8) <
00 a.s.). Then define, for sufficiently small 3,

a(B) = sup{a € (0,1) : (1 - F(l/a))/a < (a—1)8}.
Note that a(8) — 0 as 8 — 0. Then

P(a(B)S(B) < z) = [ P(Xi < (i = 1)B+ x/a(B))

i>1
~ exp{— Z [1-F(iB+z/a(B))]}
i>0
~exp{—p~"! - 1—F(z2))dz
exp{—f /w/a(ﬁ)( (2))dz}
~exp{—f7 a—1)" (z/a(B))[1 - F(z/a(B))] }
— exp{—x_‘“‘l} = G1,a-1(2), x>0,

since 1 — F'(+) is regularly varying and

[1— F(1/a(8))] [a(B)Bla—1)] " —1

as § — 0. Therefore Gy o—1 is the limit distribution of S(5).
2) Daley and Hall showed also that if F' € D(G3) then both W (v) and S(f)

converge in distribution to Gs(-) (compare with Example 8.3.2). If F' € D(G2,q),
a similar statement holds.

By replacing u,, in (8.3) by x/a(v) and x/a(8), respectively, it can be shown
that the uan condition is satisfied by the sequences analyzed in this example, for
any z > 0.

The rv S(f) of the shifted iid model is related to a rv in a somewhat different
problem. Define 7(8) = sup{i > 1 : X; > i8} which is the last exit time of the
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random sequence {X;, ¢ > 1} from the region {(t,z) : = < tS}. Hisler [235]
analysed the limit distributions of 7(3) as 8 — 0, assuming that the X; ’s are iid
rv. (For extensions to stationary sequences see Hiisler [236]).

i

FIGURE 8.3.1. Last exit time 7(5) of the random sequence X;.

The following equations reveal the equivalence of the asymptotic results for
S(B) and 7(8). We have, for every [ € IN,

Hr(B) <} = HX;<ip,i>1}
=p Xy —(k-1)B<IB, k>1}
= 1{S(B) <ip}
= 1{S(B)/B <1}

Hence, a(8)87(8) has the same limit distribution as a(8)S(5).

8.4 Non-stationary Random Sequences

From the above discussion of special extensions of the iid case we deduce ideas on
how to develop a reasonably general, applicable theory for non-stationary random
sequences.

We observed in Example 8.3.2 that maxima of special non-stationary se-
quences behave asymptotically as those of iid (or stationary) sequences. As it will
be shown, this is true for a fairly large class of non-stationary sequences. This
implies that in such cases only the three types of EVD occur as limit distribution
for the maxima and therefore in some applications the problem reduces to one
which can be handled using standard statistical procedures.

However, deviations from the iid or stationary case are possible and will be
observed if the Poisson approximation for exceedances is considered instead of the
weak limit for the maxima. A question of interest is which conditions have to be
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posed on the non-stationary sequences so that the classical theory of extremes is
still applicable.

Example 8.4.1. Let {X;, ¢ > 1} be a Gaussian sequence with non-constant mean
values E(X;) = p; and variances Var(X;) = o2. The sequences {u;, i > 1} and
{o;, i > 1} are sometimes periodic, for example in time series with a seasonal
component.

A particular subclass of non-stationary Gaussian sequences is defined by X; =
wit+0;Y;, i > 1, where {Y;, ¢ > 1} is a stationary standardized Gaussian sequence.
We have for the maximum M,, = sup{X;, ¢ < n} the simple relationship

(M, <up ={Yi < (u—pi)/oi, i <n}.

This means that instead of dealing with the maxima of the non-stationary sequence
{X;, i > 1} one has to deal now with the exceedances of a non-constant boundary
by a stationary Gaussian sequence.

Example 8.4.2. Example 8.4.1 can easily be extended by replacing the standard-
ized Gaussian sequence with any stationary random sequence {Y;, i > 1}. Note
that the sequences in Example 8.3.2 and 8.3.3 are of this type with {Y;} being iid
rv. Ballerini and McCormick [25] used such a model to analyze rainfall data. They
supposed that mean values y; and variances o? are periodic.

Remark 8.4.3. Finally, we note that the theory is developed mainly for random
sequences. Stochastic processes in continuous time (parameter) and with contin-
uous paths give rise to further complications. The following simple idea can be
applied in many cases. By partitioning the interval [0, 7] we can rewrite the max-
imum

Mr =sup{X(t), 0<t<T}

in terms of the maximum of a finite number of rv Z; defined by

zj=sup{X(t), t € [(j = Vh,jh)}.  j<[T/H]

and
Z* = sup {X(t), te [h[T/h],T]},

where h > 0. In this way the suprema of stochastic processes in continuous time
can be treated in the context of the theory for the maxima of random sequences.
The suprema of Gaussian processes are analyzed in Chapter 10.

8.5 Triangular Arrays of
Discrete Random Variables

We introduced the uniform asymptotic negligibility condition as a necessary as-
sumption to show the Poisson approximation in Section 8.2. We assumed that
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sup P(X; > up) =: supp;n = o(1)
i<n i<n
as n — 0o, where u,, can be the linear normalization u,, = a,x + b,, or some other
sequence tending to the right endpoint of the distributions of the X;’s.
In the derivation of the limit distributions of the maxima of independent, but
not necessarily identically distributed rv, we investigate the product

HPX <un Nexp( szn>

i<n i<n

More generally, we can consider a triangular array of independent rv X;,, which
means that for each fixed n the rvX;,,i < n, are independent. Then defining
the factors p;,, = P(X;n > up) with u, any suitable (large) boundary value or
normalization, the distribution of the maximum of the X ,,,7 < n, is given by the
same product as above being approximated also by exp(—>_,,, Din)-

The connection to the iid case is obvious by setting X;,, = (X; — by)/an
and u, = z. Hence, this scheme of triangular arrays of rv includes also the models
introduced in Section 8.3. This scheme is analytically not much different and allows
derivation with the same effort and method laws for maxima as well as for rare
events.

Let us consider Poisson rv. It is known that the distribution of the linearly
normalized maximum of n iid Poisson rv does not converge weakly to a limit
distribution because the jumps of the discrete df not satisfy the condition

P(X =k)

P(sz)_)O as k — oo.

See e.g. Leadbetter et al. [303]. Here X is Poisson distributed, with P(X =
k)/P(X > k) —1ask — oco.

Anderson [14], [15] showed for Poisson variables X; with parameter A that
there is a sequence of integers I,, for which

lim P( max X; = [, or In—|—1) =1.
n— o0 1<i<n

Obviously no normalizing function u,(z) can be found which leads to a non-
degenerate limit distribution. Thus the distribution of max;<;<, X; concentrates
increasingly on a pair of consecutive integers as n — oo. The asymptotic properties
of the sequence of integers I,, have been characterized by Kimber [288]. This holds
for any fixed A.

However, if X is large, the concentration on the two values I, and I, + 1
happens slowly with n. If we would let A\ tend to oo with n, can we expect another
behavior of the distribution of M, ? Because the Poisson distribution converges
to a normal distribution as A\ — oo, could the limit distribution of M, be as the
maximum of (approximately) normal rv, hence the Gumbel distribution? However,
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this is expected to depend on the rate of A = A\, — co. Therefore, let {X; »,i<n},
n > 1, denote a triangular array of Poisson rv, which are iid with parameter \,
for fixed n. Then the following Gumbel limit was derived in Anderson et al. [16].

Theorem 8.5.1. Suppose that \,, grows with n in such a way that for some integer
r >0,
log(n) = o(Alr+1)/(r+3)y,

Then there is a linear normalization
Un(x) = Ay + )&/2(@@ + apx)
such that
lim P( max X, < un(x)> = exp(—e™%).

n— 00 1<i<n

It was shown that By(f) is the solution of the equation
x? 1 5 o z \’
hn(x) =" +log(z) + , log(27) — Z;cj ()\1 /2) = log(n)
Jj= n

and
an = (2log(n)) /2.

The constants c¢; depend on the moments of the Poisson r.v. In general B,(f) ~
(21og(n))'/2. More explicitly, for 7 = 0,1, 2, we use

5O = (21og(n))}/2 — loglog(n) + log(47)

2(2log(n))!/2
loglog(n) + log(4w) ~ 12log(n)
(1) — 1/2 _
ﬂn —(2log(n)) 2(210g(n))1/2 6 )\}L/Z ’
e (2log(m))/> _ 1 (2log(n)
1(21 1 (21
o= 0 st (PR - ),

The case r = 0, i.e., log(n) = O()\}L/S), or equivalently (log(n))3/\, = o(1),
covers the rather fast-growing \,,, hence a rather good approximation of the Pois-
son to the normal rv. So the discreteness of the Poisson distribution has no effect
on the limiting distribution since we use the same normalization as in the case
of iid normal rv. If » > 1, then this discreteness has a limited influence on the
convergence of M,,, since the normalization has only to be adapted to the speed
of growth of \,, by chosen By(f) appropriately. As A, grows less fast, the adaption
gets more involved.
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The arguments of Anderson et al. [16] for a Gumbel limit do not depend
critically on the rv being Poisson. They extended the above result to row-wise
maxima of certain triangular arrays of independent variables, each converging in
distribution to a normal rv at a certain speed. Then similar results can be derived
which depend again on the growth of the parameters or the speed of convergence
to the normal distribution.

Example 8.5.2. Let us consider another simple example. For fixed n let X ,, be
a discrete uniform rv on the values 1,..., N,, where N,, — oo as n — co. Then for
k = ky, such that k, /N, — 0 we get

P(M,, < Ny — kn) = (1 — kn/Np)™ ~ exp(—knn/Ny).

Hence the convergence depends on the behavior of n/N, and suitably chosen
kpn. If n/N, — ¢ € (0,00), then k, = k are the normalization values and the
limit is e, the discrete geometric type distribution. If n/N,, — ¢ = 0, then
kn = [xN,/n] = zN, /n + O(1) with > 0, and the limit is e~*, hence the limit
distribution of the normalized maximum M,, is G_1. If n/N,, — ¢ = oo, then it is
easily seen that P(M,, = N,,) — 1.

Such a result was found earlier by Kolchin [291] where he considered multi-
nomially distributed rv with N equally probable events. These limits depend in
a similar way on the behavior of n/N as n — oo with N = N,, — oo. Since he
approximated the multinomial distribution by the Poisson distribution, his inves-
tigations were rather similar for the particular case of Poisson rv. Related results
for order statistics, including expansions, may be found in [385], Section 4.6 (with
a discussion on page 150).

Nadarajah and Mitov [344] showed that this behavior holds also for maxima
of discrete rv from the uniform, binomial, geometric and negative binomial dis-
tribution, with varying parameters. They derived the suitable normalizations for
the convergence of the normalized maximum to a limit distribution. This limit
is the Gumbel distribution in case of binomial, geometric and negative binomial
distribution.

Finally we mention that such a triangular scheme can be based also on rv.
Coles and Pauli [75] extended the univariate problem of Anderson et al. [16]
to the bivariate problem with Poisson distributed rv. They considered the case
that (X;,Yin), % < n, is a triangular array of independent Poisson rv, defined
by Xin = Ui + W;,, and Y;,, = U;, + W, with independent Poisson rv
Uin, Vin, Win with parameters A, — dy, A, — dy,, and d,,, respectively. Hence X; ,,
and Y;, are dependent Poisson rv, each with parameter )\, and covariance d,,.
If d,, is the dominating term, meaning that d,, /), tends to 1, we can expect an
asymptotic dependence of the extremes of the two components. More precisely,
they showed that if

(1 —=dn/An)log(n) — A\ e (0, 00)
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and
log(n) = oAU +1D/("3))  for some integer 7 > 0,

then there exists a sequence u,(z) (defined above as the normalization in the
univariate result of Anderson et al. [16]) such that

lim P(n

n— 00 ( i<

max X, < up(z), maxyi, < un(y)> = Hx(z,y)

where H) denotes the bivariate EVD defined in Example 4.1.4 having a copula
function which was derived from the bivariate Gaussian distribution.

This result holds also for the particular cases where (i) A = 0 assuming in
addition that A, — d,, — oo, and where (ii) A = oo assuming that d, /A, — 1.
If A = 0, the row-wise maxima max;<, X; , and max;<, Y;, are asymptotically
completely dependent, and if A = co, then they are asymptotically independent.



Chapter 9

Extremes of Random
Sequences

We develop the general theory of extremes and exceedances of high boundaries by
non-stationary random sequences. Of main interest is the asymptotic convergence
of the point processes of exceedances or of clusters of exceedances. These results
are then applied for special cases, as stationary, independent and particular non-
stationary random sequences.

9.1 Introduction and General Theory

In this section we consider general non-stationary random sequences {X;, i > 1}.
The rv X; are real-valued with marginal distributions F'x,(-) = F;(-); extensions
to rv are possible with some additional effort. (See Section 11.5 and Chapter 4).
The aim of this section is to present a rather general and unified theory to derive
the most important results. In doing this we will pose conditions which are slightly
more restrictive than essentially needed. The more general results can be found in
the literature.

We deal with rare events, in this context with the exceedances of a boundary
by a random sequence. Of interest in this section are the occurrence times of such
rare events and not the excesses above the boundary. The boundary {u,;, i <
n, n > 1} for a given n is non-constant in general (see Figure 9.1.1). In Chapter
8 we showed that such an extension is natural and needed. As already mentioned,
the Poisson approximation of the sequence of exceedances is one of the topics we
are interested in. We begin by discussing non-stationary random sequences. In the
following sections we deal with certain cases of non-stationary random sequences
and apply the results to stationary and to independent ones.

M. Falk et al., Laws of Small Numbers: Extremes and Rare Events, 3rd ed.,
DOI 10.1007/978-3-0348-0009-9 9, © Springer Basel AG 2011
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A X; and uy;

X X
X
X X
X
X
X X
X - 2
0 n
point process N,
o o . > z/n
0 1

FIGURE 9.1.1. Exceedances of boundary values u,; (as step function) by a
random sequence X; (symbol: x) and the related point process N,, of
exceedances.

We mentioned in Section 8.2 that for the general case the uan condition is
necessary in order to prove the Poisson approximation. Thus from now on we
assume that

sup P(X; > up;) = sup(l — Fi(un;)) — 0, n — 0.
i<n i<n
Of main interest is the point process N, of the exceedances, counting the
number of points i/n at which the rv X; exceeds the boundary wuy,;:

No() = 0i/n() 1(X; > uni)

i<n

where 0,(+) denotes the point measure at z: 6,(B) = 1 if € B, and 0, else. The
point process N,, is defined on the unit interval (0, 1] (see Figure 9.1.1). For any
Borel set B C (0, 1], N,,(B) is the rv counting the number of exceedances X; > uy,;
for ¢ € nB. Letting B = (0,1] and uy; = up, ¢ < n, we get the following relation
between NV,, and the maximum M,,:

{NR((0,1]) = 0} ={Xi < un, i <0} ={My < up}

for any n. However, the point process IN,, contains more information about the
behavior of the exceedances and the extreme order statistics. We shall show for in-
stance that exceedances in pairwise disjoint time intervals B; € (0,1], i =1,...,k,
are, under certain restrictions, asymptotically independent.
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N, is said to converge in distribution to N (N,, —p N) if the rv (N, (B;
converges in distribution to (N(Bj)),<k for arbitrary Borel sets B; C (0,1], j
k, k € N, on the boundaries of which N has no point, with probablhty

In the following the discussion will be confined to the case where the limiting
point process NN is a Poisson process. This simplifies the proof of the convergence
N,, —p N, since we can make use of the property that the Poisson point process is
sitmple, (multiple points do not occur with probability 1), iff the intensity measure
is atomless. Furthermore, we only consider point processes where the corresponding
intensity measure A is a Radon measure, which means that A(B) = E(N(B)) < oo,
for any Borel set B C (0, 1]. This is equivalent to A((0,1]) < oo. The following
theorem is an application of a result of Kallenberg [282], (see Leadbetter et al.
[303], Resnick [393]).

Theorem 9.1.1. Let N, N,,, n > 1, be point processes on (0,1]. Assume that N
is simple, with A\((0,1]) < oco. If

a) E(N,((¢,d]) = E(N((c,d]) for every (¢,d] C (0,1], and

))i<

<

b) P(N,(B) = 0) — P(N(B) = 0) for every B, which is a finite union of
intervals B; = (c;,d;] C (0,1],
then N,, -p N.

Remark 9.1.2. This result is also valid for processes on R% or (0,1]%, (d > 1),
if the semiclosed intervals are replaced by the semiclosed rectangles in Bi or
(0,14, (d > 1), respectively.

We now check whether the conditions of Theorem 9.1.1 are satisfied by the
exceedance point process N,. We easily derive that

E(N( ) <Z5Z/n ¢, d])1(X; >um)>

i<n
= Z E<§Z/n((c, d])l()(Z > um)>
i<n
= Z E(I(Xl > Unz)) = Z P(Xl > ’Umz)
i€(ne,nd) i€(ne,nd|

Therefore condition a) holds if the sum »,_ 5(1 — Fj(un;)) converges to
A(B) = E(N(B)) for any interval B or equivalently

> P(Xi > upi) = Y (1= Fi(uni)) = At) = M(0,1)), (9.1)

i<nt i<nt

as n — oo for every t € (0,1] with A(1) < oco.
Note that we use the same notation for the function A(-) and the intensity
measure A(-). Each defines the other in a unique way. Thus the measure A(:) is
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atomless iff the function A(-) is continuous. The question whether condition a)
of Theorem 9.1.1 is satisfied, is thus reduced to the question whether one can
find a suitable normalization {uy;,¢ < n} which only depends on the marginal
distributions F;. If the random sequence is stationary and the boundaries are
constant for each n, i.e., u,; = uy,, then (9.1) is equivalent to

n(l — F(uy)) = A < 00, (9.2)
Thus A(t) = At = Am((0,¢t]), m denoting the Lebesgue measure.

LoNG RANGE DEPENDENCE

In condition a) the dependence among the rv X; does not play a role but it becomes
important in condition b) of Theorem 9.1.1. Since the limit point process N is a
Poisson process, we have

P(N(B) =0) = HP(N(BJ) =0)

for finitely many disjoint intervals B; C (0,1]. This also holds asymptotically
for point processes N, if the numbers N, (B;) of exceedances of the boundary
Un; by X;, occurring in disjoint (separated) intervals nBj;, become approximately
independent for large n. The importance of this property was already shown in
Example 8.2.1. This property is called mizing. There are several mixing conditions
in the literature. For maxima and exceedances the mixing property has to be
formulated with respect to the events {X; < w,;} only, given in Hisler [237],
applying ideas of Leadbetter (c.f. Leadbetter [303]). Let cu, ., be such that

‘P(Xh < unil?"'?‘xik Suninjl Sunj1a'~-anz < Unjl)
_P(Xi1 < uni17"'7Xik gunik)P(Xﬁ < unj17"'7ij < unjz)l
< anym
for any integers 0 < i1 < ig < -+ < i < j1 < --- < j; < n for which j; —ix > m.

Definition 9.1.3. D(u,;) holds for the random sequence {X;} with respect to the
boundary {uy,,i < n,n > 1}, if there exists a sequence {my } such that o, m, — 0
and my Fy maz — 0 as n — 00, where Fyy maz = sup;<,, (1 — Fi(uni)).

In the following cases we have A((0, 1]) > 0 implying lim inf,, nF’nymaw > 0.
Hence the assumption m, Fy, mae — 0 implies m,, = o(n).

We can always choose a sequence {k;,} of integers such that

lim knmnﬁ‘n,mm =0 and lim kpopm, =0. (9.3)
n—oo n— oo

For instance, k, = [min(my, Fy maz; n.m,, )]~ /2 is such a sequence. Note that {k,}

can be bounded or can tend to oo, but by the same reasons k,m,, = o(n). In the

following {k,} denotes always a sequence satisfying (9.3).
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Lemma 9.1.4. Suppose that D(uy;) holds for the random sequence {X;, ¢ > 1}
with respect to the boundary {u,;}. Let B; (= Bjn), j < kn, be disjoint intervals
of (0,1], where (9.3) holds for ky. Then, as n — oo,

P(Nn( U Bj) - 0) ~ I[ PWu(B)) =0) - 0.

J<kn J<kn

This lemma is proved in the usual way, using the mixing property k, — 1
times to approximate for each I, 2 < | < k,, P(]\fn(Uj<l_1 B; UB;) = 0) by
P(Nn(Uj<i—1 Bj) = 0)P(Nn(By) = 0). If the nB;’s are separated by m,,, the
statement follows, since {k, } is chosen such that &, m, — 0 as n — oco. If they
are not separated by m,,, then the B;’s are approximated by Bj’s constructed
from Bj; by deleting a small interval of length m,,/n at the right end of each B;.
These nB}’s are separated by m, and the approximation error tends to 0 since
knmy Frmae — 0 (cf. Leadbetter et al. [303], Hiisler [237], [240] and Leadbet-
ter and Nandagopalan [304]). By this lemma, the verification of condition b) in
Theorem 9.1.1 is reduced to the verification of the convergence

P(N,(B) = 0) — P(N(B) = 0)

for any B = (¢,d] C (0,1]. B may be split up into k, suitably chosen disjoint
intervals Bjn, j < kp, such that m(B;,) — 0. Applying Lemma 9.1.4 once more

P(No(B) =0) = [] P(Nu(Bjn)=0)—0.

J<kn

LocAL DEPENDENCE

The problem is now reduced to the consideration of P(N,(B;,) = 0) =
P(X; < upni, i € nBj ). We note that only the local dependence behavior of the
random sequence {X;} is involved in this probability. However, the local depen-
dence behavior of this sequence is not restricted by the mixing condition D(uy;)
and we need a further condition D*(u,;), which restricts the local dependence.
Let {k,} satisfy (9.3) and let o be such that

Z P(X; > uniy, Xj < tnj, Xjt1 > unj+1) < oy,
i<j<jt+lel
for any intervals I = {i; <17 < iy <n} C N with
S P(Xi > uni) <Y P(Xi > i) [Fin
iel i<n

Definition 9.1.5. D*(uy;) holds for the random sequence {X;} with respect to
the boundary {uy;}, if knaX — 0 as n — oc.
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Note that Condition D*(u,;) excludes the possibility of clustering of upcross-
ings in a small interval I, because it excludes cases where the random sequence
{X;} oscillates rapidly around the boundary {un;}.

Lemma 9.1.6. Suppose that condition D(un;) and D*(un;) hold for {X;} with
respect to the boundary {uy;}. Then, as n — oo,

P(X; < upi, © < nt) — exp(—p(t))

fort <1, for some function pu(t), if and only if

Z P(X; < uniy Xig1 > unjip1) = p(t), (9.4)
i<ni—1

fort <1, where u(-) is a bounded function.

Obviously, u(+) is a non-decreasing positive function with p(1) < oo. Note
that the sum in (9.4) can be taken also over all terms ¢ < nt for ¢ < 1 which will
give asymptotically the same result. This holds also for ¢t = 1, by letting wu, n41
be some value such that P(X,,11 > w, n41) tends to 0.

Lemma 9.1.6 is not formulated in terms of exceedances as in statement (9.1),
but in terms of upcrossings (condition (9.4)). In general,

p(t) <AE),  t<1

It is easy to verify that if p(1) = A(1) then u(-) = A(+), since for any ¢t < 1,

0< Z [P(Xit1 > un,i+1) — P(Xi < uni, Xig1 > Univ1)]

i<nt—1

< Z [P(Xit1 > tn,it1) — P(Xs < tng, Xig1 > Unig1)]

i<n—1

S A1) - (1) =0,
as n — Q.

Instead of D*(u,;) one might use weaker conditions as shown by Chernick et

al. [67] for stationary sequences. They used the condition D™ (w,), where k > 2
is fixed and the boundary u, is constant. This condition D*)(w,) is said to hold
if

lim nP<X1 > U, > max X;, max  X; > un> =0,

n—00 2<i<k k+1<j<r,
where 7, = [n/ky],kn = o(n) with k, satisfying (9.3) (i.e., knapnm, — 0 and
knmpn/n — 0 for the stationary case). Obviously, D®*) (u,) implies D*+1 (u,,)
and D® (u,,) corresponds to D*(u,) in the stationary case, which was proposed
by Leadbetter and Nandagopalan [304]. Weaker conditions like D) (u,,) are useful
in dealing with special random sequences (see Chernick et al. [67] and Section 11.5).
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PoiNT PROCESS OF EXCEEDANCES

We assume in the following always that u(-) and A(+) are continuous functions such
that the corresponding Poisson point processes are simple. However, the results
hold also if these functions are discontinuous at some points ¢ < 1 (see Section
11.5).

If now A(-) = p(+), then upcrossings and exceedances occur with the same
intensity and the corresponding limit point processes are the same.

Theorem 9.1.7. Suppose that conditions D(u,;) and D*(uy;) hold for the random
sequence {X;, i > 1} with respect to the boundary {un;, i < n, n > 1}. If (9.1)
and (9.4)hold with u(-) = A(-) being continuous, then

N, -p N as n — 0o,

N being a Poisson process on (0, 1] with intensity measure A(-).

Proof. To prove the statement we apply the mentioned lemmas showing the two
conditions of Theorem 9.1.1. The first statement follows by the convergence of the
mean numbers of exceedances and upcrossings to p(t) = A(¢) for any ¢. The second
statement of Theorem 9.1.1 needs long range dependence. Let B; be finitely many
disjoint intervals of (0,1], j < J, with B = J; B;. Then condition D(un;) implies
by Lemma 9.1.4 that

P(N,, = [[ PV, =0) +o(1).
i<J
We can partition (0, 1] into B;,1 < ky,, with &, as in (9.3) and such that the mean
number of exceedances in any of the B} is bounded by Y .. P(X; > upn;)/kn.
These subintervals partition each B; into disjoint B;; = Bj_ﬂ Byl < k. Note
that some of these intervals B;; are empty and thus can be deleted. Again Lemma
9.1.4 implies by long range dependence that

P(N.B)=0)= [] P(Nu(Bj1)=0)+0(1).
J<TI<kn

Because of the uniform bound for P(N,(Bj,;) > 0) which tends to 0 as n — oo,
we can approximate the product by

exp | — (14 o(1 ZP 1) >0)

Using the local dependence condition D*(u,;) and Bonferroni’s inequality, each
term of the last sum can be bounded by

P(Nu(Bjn) > 0) < > P(Xi < tni, Xig1 > tnit1) + Fomas
ienBj;
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and

P(N,(Bj,;) > 0)

> Z P(Xi < Uni, Xig1 > Unit1)
i€EnBj

— Y P(Xi S g, Xig1 > iy Xir < e, Xirg1 > Unirg).

i<i’ i,i' EnBj

The double sum is bounded by « for each j, 1. Since kna, — 0, the sum (on j,1)
of all the double sums tends also to 0 as n — oco. Summing the first sums in the
Bonferroni inequality we get . p(B;) in the limit by (9.4) and (9.3). Hence com-
bining terms it shows that P(N,(B) = 0) — exp(—>_; u(B;)) = exp(—u(B)) =
exp(—A(B)) = P(N(B) = 0) which is the second statement of Theorem 9.1.1 and
implies the stated convergence result.

For a converse statement see Section 11.1. In general, the Poisson process is
non-homogeneous, since A(t) # At. Theorem 9.1.7 states that if A(-) = wu(-) then
asymptotically each exceedance is an upcrossing, i.e., if there is an upcrossing at
i, then 1 + 1,7+ 2,... are asymptotically not exceedance points. The fact that N
is a Poisson process suggests that upcrossings occur separated in time, i.e., they
do not cluster.

The result of Theorem 9.1.7 follows also by assuming the so-called condition
D’ (uy;) (see Leadbetter et al. [303] for the stationary case with constant boundary
and Hisler [237] for the non-stationary case):

Jm ke D P(Xi > uni, Xj > ) =0,
i<jel

for the same sets I as in the condition D*(uy;). D’(uy;) implies that the proba-
bility of exceedances occurring at neighboring points is asymptotically 0. Hence,
if D'(un;) and (9.1) hold, then D*(uy,;) and (9.4) hold with (1) = A(1) and
N, — N, the Poisson process with intensity measure A.

PoiINT PROCESS OF UPCROSSINGS

In some applications one observes a different behavior of the upcrossings and ex-
ceedances. If there is an upcrossing at a given point then the sequence remains
above the boundary for the next few time points. It is then obvious that u(t) < A(t)
for some ¢ < 1. Since some exceedances occur in clusters, the limit point process
cannot be a simple Poisson process. It is in general possible to show that N,, con-
verges to an (extended) compound Poisson process Y, 5;0,, where the §;’s are in-
dependent rv in IV (cf. Hsing et al. [231] for the stationary case and Nandagopalan
et al. [347] for the non-stationary case). The 3;’s (the cluster sizes) are independent
of the 7;’s (the occurrence times of the clusters), but not identically distributed in
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general. In the stationary case, 8; =p ;, and NN is a compound Poisson process
(see Section 11.2).

However, the point process N, consisting of the upcrossings only, can be
approximated by a Poisson process. An upcrossing at the point i/n is given by
the event {X;_1 < upi—1,X; > uni}, i < n, and the corresponding point process
N,, of upcrossings by

Z Siyn () UXiz1 < unjim1, Xi > Uni).

1<i<n

Theorem 9.1.8. Suppose that the conditions D(un;) and D*(uy;) hold for the
random sequence {X;, © > 1} with respect to the boundary {un;, i < n, n > 1}.
Then (9.4) implies B

N, —p N as n — oo,
where N is a Poisson process on (0,1] with intensity measure pu(-).

A similar result can be shown for the point process of downcrossings given
by the events {X;_1 > uni—1, Xi < un;}, @ < n. The points 7;’s of the com-
pound Poisson process > 3;0,,, mentioned above, are the points of the (underly-
ing) Poisson process N of occurrences of clusters of exceedances. The whole cluster
is thinned here or replaced by the first (or last) exceedance. But we might also
consider the whole cluster as an event.

PoiNT PROCESS OF CLUSTERS

We can define the point process N;; of cluster positions. Let Bj,
j < kp, be small intervals which form a partition of (0,1]. Then the events
{Nn(Bj) # 0} define the point process

= 37 6,() 1(Na(By) £0),

J<kn

with some ¢; = t;(n) € B;, representing the position of the cluster. Thus, for any
Borel set B C (0,1],

Ni(B)= ) L(Na(B)) #0)

jgkn;tjeB

counts the number of clusters of exceedances with cluster position in B. We might
choose for instance the first point, the center or the last point of B; as t;. Note
that by this approach or definition there might be runs of exceedances which are
separated by B; into two clusters or there might be runs within B; which are joint
to form one cluster. However, Theorem 9.1.10 states that both, the run and the
block definition of clusters, lead asymptotically to the same Poisson process, if n.3;
are suitably growing sets. Another way to define the process of cluster positions
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of exceedances is given by >, 1(Nn(B; N B) # 0), which may differ from N
for finite n, but they are asymptotically equivalent. IN;¥ can be approximated by
a simple Poisson process, since the multiplicities representing the cluster sizes are
not accounted for.

In choosing B; one has to take into consideration the non-stationarity of the
sequence X; and the non-constant boundaries {uy;}. Thus, for a given n we choose
successively 0 = ip < i1 < ig < --- < ig, < n such that

Y (= Fiuw) €Y (1= Fi(uni)/kn

i5_1<i<ij i<n

and

> (L= Fiuw) =Y (1= Fi(uni)/kn,

i1 <i<i;+1 i<n

are satisfied. Define B; = (i;_1/n,i;/n] for j < k,. Note that the time domain
{i : i < n} is split up with respect to the probabilities of the exceedances and
the ¢;’s are chosen maximally. By this choice the possible exceedances at the
points i, + 1,...,n are not considered. Because of the maximally chosen i;’s it
follows easily that 7, _;,(1—Fi(uni)) < EnEyp maz- Thus this marginal effect of
exceedances in these last points is asymptotically negligible. We need also that the
P(N,(Bj) # 0) are uniformly converging to 0 which is simply implied if the term
> ien(1=F;(un;i))/ky tends to 0 which is assumed in the following. This condition
is obviously true if the sum is bounded, which holds if A\(1) < oco. Further, we
should fix the cluster position. A reasonable choice for the ¢;’s is given for instance
by the right endpoints of B;: t; = i;/n.

Theorem 9.1.9. Suppose that the conditions D(un;) and D*(u,;) hold for the
random sequence {X;, i > 1} with respect to the boundary {un;, i <n, n>1}. If

D P(Nu(B)) #0) = p*(t), <1,

j:tj St
with p*(-) continuous and p*(1) < oo, with the B;’s constructed as above, then
N} —-p N* as n — oo,
where N* is a Poisson process on (0,1] with intensity measure p*(-).
The two point processes, the point process of upcrossings N,, and the point
process of clusters N are asymptotically related. Assuming that the limits p(t)
and p*(t) hold, we show that (9.3) implies p*(t) < u(t) (< A(t)) for all ¢ € (0, 1].

Furthermore, (9.3) together with D*(uy,;) implies y* = p and therefore N;; and
N,, converge to the same Poisson process /N with intensity measure p.
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p(t) = lim Z P(N,(B;) #0)

< nh_}n;O< Z ( Z (Xi < Uni, Xig1 > Uniy1)

jii;<nt ienB;

+ P(Xij—l"l‘l > un,ij1+1))>

n—00

S hIIl Z P(Xz S uniaXz—i-l > Un 1+1) + O(kn nmar))

1<1i4(¢)

< lim Z P X < un17—X7,+1 > unl-‘rl) M(t)a

n— 00
i<nt

where j(t) is the largest j such that i; < nt for fixed n. Conversely,

M*(t):nll)Ir;o Z P(N,(Bj) #0) _nhi%o Z P(N,(Bj) #0)

Jiig<nt J<5(t)

nlgr;()( Z ( Z P(Xi—1 < tupi—1,Xi > Uni)

J<i(t