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Preface

Qu’est-ce que le passé, sinon du présent qui est en retard?
Pierre Dac (l’os à moelle, March 1940)

Modeling automatic engines or physiological systems often involves the
idea of control because feedback is used in order to maintain a stable state.
But much of this feedback require a finite time to sense information and
react to it. A popular way to describe this process is to formulate a delay
differential equation (DDE) where the evolution of a dependent variable at
time t depends on its value at time t − τ. Unfortunately, solving a DDE
is a mathematically difficult task. Over the past decade, rapid advances
in computational power have revived interest in DDEs. Previously known
equations are investigated allowing a better physical understanding of old
problems. In addition, new areas of research have appeared. This is, for
example, the case of lasers subject to optical feedback, the delayed control
of container cranes, or the real-time synthesis of musical instruments.

Oscillatory instabilities are frequently associated with systems described
by DDEs. The motivation to study these oscillations then depends on the
background of the researcher. For some, these oscillatory instabilities are
viewed as a limitation to the performance of a particular device that must
be avoided or possibly controlled. In contrast, other researchers have put
the unstable behavior to good use making practical devices such as high-
frequency optical oscillators.

New mathematical tools and reliable computer software techniques
have been developed for DDEs. Here, preference is given to analytical
approaches known collectively as asymptotic methods [22, 124], the most
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useful techniques for finding approximate solutions to equations. It is a
revised and largely expanded version of a series of lectures first given at
the Université Libre de Bruxelles in 2002–2003, at the Université Joseph
Fourier (Grenoble) in 2003, and, more recently, at the University of Utah in
2007. The minimum prerequisites for this book are a facility with calculus,
experience with differential equations, and an elementary knowledge of
bifurcation theory. The unusual format of this textbook, avoiding rigorous
mathematical proofs and concentrating on applications, aims to introduce
beginning students as well as experienced researchers to the large variety
of phenomena described by DDEs. It has no ambition to review the rich
field of DDEs and references have been selected for their historical impact
or for the experiments they are describing.

One novelty in this volume is the place given to the figures. They help in
understanding the scientific background of a specific application and how
a mathematical model is derived. In addition, computer plots compare ex-
act and approximative solutions illustrating the efficiency of the analytical
method. The mathematical computations are described in as friendly a
manner as possible.

DDE models are used by biologists, physicists, and engineers with dif-
ferent objectives and expectations. This text is meant to serve as an intro-
duction to the rich variety of applications and could be used in a modeling
course on DDEs. Some selected parts of this book could provide material
for a class on singular perturbation techniques or to stimulate a differential
equation class. It is my experience that the combination of illustrations
using a projector and compact computations on the blackboard works well
to attract the attention of the audience.

There are many colleagues to thank for their interest, suggestions, and
contributions to this book. I first wish to thank Tamás Kalmár-Nagy and
John Milton who gave me precious details on comparisons between ex-
periments and theory. The collaboration with Dirk Roose and his group
during the years 2000–2003 was a successful experience combining new
analytical and numerical approaches. Applied mathematicians Don Cohen,
Michael Mackey, and John Ockendon strongly encouraged me to go forward
with this project. The lectures by Gabor Stépan on mechanical engineer-
ing problems, by Yang Kuang and Stephen Gourley on population models,
and by John Mallet-Paret, Roger Nussbaum, and Hans-Otto Walther on
state-dependent delay equations had a strong impact on me. Of course,
I am deeply indebted to my friends in the laser community who in 1993
introduced me to the world of optical feedback. Tom Gavrielides, Vassilios
Kovanis, and Daan Lenstra educated me on the complexities of the Lang
and Kobayashi equations and Ingo Fisher, Eric Lacot, Laurent Larger, Raj
Roy, and David Sukow patiently explained to me the subtleties of the ex-
periments. Work could not have been done without the contribution of en-
thusiastic young collaborators: Kirk Green, Theodore Kolokolnikov, Michel
Nizette, Didier Pieroux, Fabien Rogister, Marc Sciamanna, and Guy Van
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der Sande. I am grateful to Gregory Kozyreff for his constructive criticisms
of the manuscript and I thank my editor Achi Dosanjh who convinced me
to go for an ambitious project. I acknowledge the Belgian National Science
Foundation and the Pole Attraction Pole program of the Belgian govern-
ment (2001-2006) for the support I received during the preparation of this
book. Lastly I would like to thank Anne, Joan, and Marc for their love and
support while I was away searching and computing. This book is dedicated
to them.

Brussels, Belgium Thomas Erneux
January 2008
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1
Introduction

After the First World War, the development and use of automatic con-
trol systems resulted in studies of an entirely different class of differential
equations the so-called delay differential equations or difference differen-
tial equations (DDE). Any system involving a feedback control will almost
certainly involve time delays. A time delay arises because a finite time is
required to sense information and then react to it. Severe stability prob-
lems, however, appear as soon as several mechanisms need to be controlled
simultaneously. The so-called pilot-induced oscillations (PIO), for example,
consist of unintentional sustained oscillations resulting from efforts of the
pilot to control the aircraft [168]. The books by Pinney [192] and Driver [52]
contain a large compilation of DDEs that have appeared in the literature.
The more recent books by MacDonald [146], Stépán [217], Kuang [132],
Fowler [65, 67], Epstein and Pojman [55], Murray [172], Fall et al. [63],
Beuter et al. [25], and Britton [34] emphasize particular DDE problems
appearing in mechanical engineering, chemistry, and biology. Mathemati-
cally, the subsequent research of Mishkis [167], Bellman and Danskin [20],
Bellman and Cooke [21], and Krasovskii [130] set the stage for the monu-
mental work of Hale [84] and students at Brown. Advanced mathematical
issues on DDEs, functional equations,1 and robust control are treated in the
books by Hale and Verduyn Lunel [85], Diekmann et al. [51], Kolmanovskii

1DDEs are a special class of more general functional equations, such as integrodif-
ferential equations. In the restricted case of a DDE, only a certain finite interval of the
immediate past is involved in the determination of the present.

T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials 1
in the Applied Mathematical Sciences 3, DOI 10.1007/978-0-387-74372-1 1,
c© Springer Science+Business Media, LLC 2009



2 1. Introduction

and Myshkis [119], and Michiels and Niculescu [161]. A large part of the re-
vised “Handbook of Chaos Control” is devoted to delayed feedback control
techniques [210]. Finally, reliable numerical methods have been developed
for DDEs [227].

In this introduction, we emphasize two fundamental properties of a DDE
and then propose a variety of examples.

1.1 Properties

A time-dependent solution of a DDE is not uniquely determined by its
initial state at a given moment but, instead, the solution profile on an
interval with length equal to the delay (or time lag) τ has to be given.
That is, we need to define an infinite-dimensional set of initial conditions
between t = −τ and t = 0. Thus, DDEs are infinite-dimensional problems,
even if we have only a single linear DDE.

The simplest way to illustrate how a DDE differs from an ordinary
differential equation (ODE) is to consider a linear first-order differential
equation. We all know that the initial value problem

dy

dt
= ky, y(0) = 1 (1.1)

admits the exponential solution

y(t) = exp(kt). (1.2)

Physically, the knowledge of the present (here: y(0) = 1) allows us to
predict the future at any time t. The past is not involved in this solution.
For a DDE, the past exerts its influence on the present and, hence, on the
future. The following DDE

dy

dt
= ky(t− τ), y(t) = 1 when − τ ≤ t < 0 (1.3)

exhibits a right hand side that depends on y at time t − τ . τ is called
the delay or time lag. Moreover, the initial condition is now replaced by an
initial function defined on a finite interval of time. There are two important
properties of this equation that need to be stressed.

1.1.1 Oscillations

In contrast to the exponential solution (1.2), the solution of Eq. (1.3) can
be oscillatory. This can be seen by seeking a particular solution of the form

y = A sin(ωt). (1.4)
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Inserting (1.4) into Eq. (1.3), we find

ωA cos(ωt) = kA sin(ωt− ωτ )
= kA [sin(ωt) cos(ωτ ) − cos(ωt) sin(ωτ )] . (1.5)

Equating to zero the coefficients of cos(ωt) and sin(ωt), we find the following
two conditions,

cos(ωτ) = 0 and ω = −k sin(ωτ ). (1.6)

The first condition is satisfied if ωτ = π/2 or 3π/2 and with the second
condition, we obtain the following possibilities,

(1) ωτ = π/2 and kτ = −π
2
, (1.7)

(2) ωτ = 3π/2 and kτ =
3π
2

. (1.8)

For these particular values of kτ , the DDE (1.3) admits the harmonic so-
lution (1.4). Condition (1.7) is used in Section 1.2 below.

1.1.2 Short time solution

The second and most obvious difference between ODEs and DDEs is the
initial data. For DDEs we must provide not just the value of the solution
at the initial point, but also the history, that is, the solution y0(t) at times
prior to the initial point. We may analytically investigate the effect of y0(t)
by using the method of steps [248]. For mathematical clarity, we consider
the case k = −1, and τ = y0 = 1. We first solve Eq. (1.3) on the interval
[0, τ [ . During this interval, Eq. (1.3) becomes

dy

dt
= −1 (1.9)

which we solve using y(0) = 1. The solution is

y = 1 − t for 0 ≤ t < 1. (1.10)

See Figure 1.1. Now that y is known up to 1, we consider the interval [1, 2[.
Equation (1.3) becomes

dy

dt
= −1 + (t− 1) (1.11)

with initial condition obtained from (1.10) at time t = 1; that is y(1) = 0.
The solution is

y = −(t− 1) +
1
2
(t− 1)2 for 1 ≤ t < 2. (1.12)
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t
–2 0 2 4 6 8 10

y

–0.5

0.0

0.5

1.0

Figure 1.1: The method of steps is used for solving y′ = −y(t − 1) with
y = 1 during the time interval [−1, 0[. It provides the solution y = 1− t for
[0, 1[ and y = −(t− 1) + 1

2 (t− 1)2 for [1, 2[ (open circles).

See Figure 1.1. One can then consider the next interval [2, 3[, and so on.
This procedure can, in principle, be continued as far as desired. But the
calculations quickly become unwieldy without revealing essential properties
of the solution2. As we show in the next chapter, there is a more interesting
way to analyze the solution of Eq. (1.3). The method of steps is nevertheless
valuable if we analyze the effect of y0(t) on a short time interval. In [16],
the time history is analyzed in order to explain the staircase growth of a
population of yeast cells.

Besides its effect on the short time behavior of the solution, the fact
that we have an initial history has another impact when we numerically
solve a DDE. Because numerical methods for both ODEs and DDEs are
intended for problems with solutions that have several continuous deriva-
tives, discontinuities in low-order derivatives require special attention. In
our particular example, we note that

y′(0−) = 0 �= −1 = y′(0+),

y′′(1−) = 0 �= 1 = y′′(1+) (1.13)

so that the jump in y′(t) at t = 0 propagates to a jump in y′′(t) at t = 1,
and so on. More generally, the jump in y′(t) at time t = 0 propagates to

2Marc R. Roussel lecturing on DDEs proposed to automate these calculations using
Maple. The damped oscillatory solution is then made up in piecewise fashion by a set
of functions. See: http://people.uleth.ca/˜roussel/.
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a jump in yn+1(t) at time t = n. The propagation of discontinuities is a
feature of DDEs that does not occur in ODEs. This is important for the
numerical solution of the DDE because once the orders are high enough,
the discontinuities will not interfere with the numerical method and we can
stop tracking them.

In summary, our analysis of the simple linear first-order DDE (1.3) sug-
gests that a long-time oscillatory solution is possible and that its initial
history may have an effect on the short-time solution. Keeping these two
properties in mind, we now introduce a variety of case studies appearing in
diverse areas. The need for a bifurcation diagram where a property of the
solution (extrema, period) is recorded as a function of a control parameter
progressively appears as a priority.

1.2 Cyclic behaviors

A familiar example of delay-induced oscillations is when we try to adjust
the shower temperature. The water flows at a uniform rate from the faucet
to the shower head and we take this time to be τ seconds. We would never
get into the shower before getting the temperature adjusted, but someone
else might. Let T (t) be the temperature at the faucet at time t and Td is our
desired temperature. We adjust the faucet based on the temperature at the
faucet τ seconds ago and so the evolution of the temperature is described by

T ′ = −κ(T (t− τ) − Td). (1.14)

The constant κ measures our reaction rate to a wrong temperature. A
phlegmatic person would choose a small value of κ whereas an energetic
person would prefer a large value of κ. But if κ is too small, the temper-
ature will adjust very slowly and if κ is too large, oscillations may occur
maybe with increasing amplitude leading to burns or frostbite. And how
would we describe the “two-shower problem” when two showers share the
same hot water resource?

Comparative studies between the observation of cyclic behaviors and
the solution of a DDE are still rare. An example of such an analysis con-
centrates on the NFL football teams during the last 40 years. Banks [15]
convincingly showed that the up and down of a football team experiences a
simple periodicity that can be described by a DDE. See Figure 1.2. Banks
considered the following linear DDE

dU

dt
= b(

1
2
− U(t− τ)), (1.15)

where 0 < U < 1 is defined as the decimal fraction of games won by an
NFL team during one season. U is computed as follows. U = (1×# games
won + 1

2 ×# tied games + 0×# games lost)/total number of games. b > 0
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t (years)
1960 1965 1970 1975 1980 1985 1990

U

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1.2: Performance of the Buffafo Bills, 1960 through 1992. Data taken
from Banks [15]. Only the biennial values are shown. Separations between
peaks are successively 10, 6, and 10 yr. Separations between troughs are
successively 10, 6, and 8 yr. The average value of these six numbers gives
a period close to 8 yr.

is defined as the growth rate. In this form, Eq. (1.15) says that the rate
at which U changes at the present time is proportional to the difference
between the average value U = 1/2 and the value of U at some previous
time t − τ . In other words, it takes a certain amount of time for a team
to turn around for better or worse. What would be interesting to know is
this “turnaround time” or delay τ. In his analysis, Banks found that the
averaged periodicity between best performances of a team was close to 8 yr
(see Figure 1.2.) Introducing y ≡ U−1/2, we may rewrite Eq. (1.15) as Eq.
(1.3) with k = −b < 0. Using then (1.7), we know that Eq. (1.15) admits
the harmonic solution U = 1/2 +A sin(ωt) if

ωτ = π/2 and bτ =
π

2
. (1.16)

Because the period P in Figure 1.2 is approximately 8 yr, we determine ω
from the expression P = 2π/ω = 8 yr. We find ω = π/4 yr−1 and using
(1.16), we obtain the delay τ as

τ = 2 yr. (1.17)

There are, of course, many other factors that influence the success of a
team (new coach, injuries of key players, player trades, etc.). But Eq.
(1.15) is based on the idea that the growth of a human activity (here
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the performance of a football team) depends on its status at a previous
time. If the performances are poor, we intend to invest in new resources to
achieve a better result in the future. If, on the contrary, the performances
are high, we are not likely to invest and we become more vulnerable with
respect to competition. If the competition or the pressure to succeed is
high, a cyclic behavior is inevitable. This idea has been discussed in a vari-
ety of businesses including the growth of scientific results. In this case, the
delay represents, for example, the time needed to write an essential paper.
Goffman and Harman [76] analyzed the list of publications in the field of
symbolic logic and discovered an oscillatory pattern. They analyzed these
observations as an epidemic process although a linear DDE such as Eq.
(1.3) was later proposed [221].

1.3 Car-following models

It is hardly necessary to emphasize the importance of transportation in our
lives. In the US, vehicles are driven an average of 10,000 miles per year for
passenger cars and 50,000 miles per year for trucks on a highway system
that comprises more than 4 million miles. The indices in other countries
may be somewhat different, but the importance of the transportation sys-
tem, and especially the highway component of it, is just the same or even
greater. Traffic flow theories seek to describe in a precise mathematical way
the interactions between the vehicles and their operators, and the highway
system with all its operational elements. The scientific study of traffic flow
had its beginnings in the 1930s with the application of probability the-
ory to the description of road traffic but it was in the 1950s that major
theoretical developments emerged using a variety of approaches, such as
car-following, traffic wave theory (hydrodynamic analogy), and queueing
theory [83, 33].

The following equation

x′′n+1(t+ τ ) = α(x′n − x′n+1) (1.18)

can be used for determining the location and speed of the following car (at
x = xn+1) given the speed pattern of the leading vehicle (at x = xn). If a
driver reacts too strongly (large value of α representing excessive braking)
or too late (long reaction time τ ), the spacing between vehicles may become
unstable (i.e., we note damped oscillations in the spacing between vehicles).
A typical solution of Eq. (1.18) for two cars is shown in Figure 1.3. The
distance between the two cars dangerously drops from 10 m to about 5 m
after the leading vehicle reduces its speed. If ατ is increased, the number
of damped oscillations increases. A sober driver needs about 1 s in order
to start breaking in view of an obstacle. With 0.5 g/l alcohol in blood
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Figure 1.3: Car-following models. Top: Speed v = x′1 and v = x′2. Bottom:
Distance d = x1 − x2 between the two cars. The lead vehicle reduces its
speed of 80 km/h to 60 km/h and then accelerates back to its original speed
with constant braking and acceleration rates. The initial spacing between
vehicles is 10 m. α = 0.5 s−1 and τ = 1 s.

(2 glasses of wine), this reaction time is estimated to be about 1.5 s3.
Figure 1.4 shows that the oscillations near the stable equilibrium increase.

It is clear that a driver’s acceleration or deceleration also depends on the
distance to the precedent car. The closer the driver is, the more likely the
driver is to respond strongly to an observed relative velocity. The simplest
way to model this is to let the sensitivity be inversely proportional to the
distance. Many models considered the general function [33]

λ = c
(x′n(t+ τ ))m

(xn−1 − xn)l
, (1.19)

where c is a positive parameter and m, l are nonnegative parameters not
necessarily integers. For example, m = 0 and l = 1 or 2.

3At a Blood Alcohol Content (BAC) of 0.8 g/l, (0.08 % BAC is the legal limit in
the U.S. and in the U.K.), the average driver reaction time doubles from 1.5 to 3 s. In
France, Belgium, and Germany the legal limit is 0.05 % BAC.
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Figure 1.4: Alcohol and driving. Alcohol decreases the reaction time of
driver 2 allowing more oscillations near the stable distance between driver
1 and driver 2.

1.4 Population dynamics

Pierre Francois Verhulst (1804–1849) was a Belgian professor of mathemat-
ics at the Université Libre de Bruxelles and at the Ecole Royale Militaire
(also located in Brussels) in 1835. Forced by the administration to make
a choice in 1840, he kept the more lucrative position at the Ecole Royale
Militaire. Stimulated by Malthus’s “Essay on the Principle of Population,”
Verhulst (1838) [237] published what he called a “logistique” equation4

to describe the sigmoidal growth of population density to carrying capac-
ity. See Mawhin [152] for an excellent review of the Verhulst legacy. The
Verhulst equation was rediscovered by Pearl and Reed (1920) [184]. Then,
Lotka (1925) [143] derived the same equation mathematically, calling it
“the law of population growth,” and the Russian biologist Gause (1934)
[69] demonstrated its validity in laboratory experiments. See Kingsland
[125] for a historical review. The so-called continuous logistic equation is
given by

dN

dt′
= rN(1 − N

K
), (1.20)

where r and K are defined as the growth rate and the carrying capacity of
the population, respectively. The solution of Eq. (1.20) can be determined
analytically because the equation is separable. It has a sigmoidal form
starting exponentially from N(0)�K and saturating at N = K.

4To presumably differentiate from the Malthusian “logarithmique.”
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Figure 1.5: The growth of Paramecium aurelia in test tubes containing
Osterhaut culture medium with bacteria as food. Population size is number
per 0.5 ml (after Gause [69], redrawn from Case [45] p. 104).

The population growth of the protozoan Paramecium in test tubes is
a typical example (Figure 1.5). Under the conditions of the experiment,
the population stopped growing when there were about 552 individuals
per 0.5 ml. The time points show some scatter, which is caused both by
the difficulty in accurately measuring population size (only a subsample of
the population is counted) and by environmental variations over time and
between replicate test tubes. A linear regression of the data N ′/N versus
N gives r = 0.99 and K = 552.

The logistic equation (1.20) assumes that organisms’ birth and/or death
rates respond instantaneously to changes in population size. However, there
are some organisms that exhibit pulses of reproduction and have some lag
time (on the order of one generation) before they reproduce again. Delays
occur if the organism stores the nutrient or due to the cell cycle or from
environmental conditions (supply of food). Hutchinson [105] was one of
the first mathematicians to introduce a delay into the logistic equation to
account for hatching and maturation periods. He pointed out that the ob-
served oscillations could be explained by a finite time delay in the crowding
or resource term. Specifically, he studied the following equation

dN

dt′
= rN(1 − N(t′ − τ )

K
). (1.21)

This equation can be rewritten in dimensionless form if we introduce

y ≡ N/K and t ≡ t′/τ. (1.22)

Eq. (1.21) then becomes

dy

dt
= λy(1 − y(t− 1)), (1.23)
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Figure 1.6: Oscillatory solutions of the logistic DDE. Top: λ = 1, the so-
lution quickly decays to the stable steady state y = 1. Bottom: λ = 1.8,
the oscillations grow and become sustained. The intial function is y = 0.5
(−1 ≤ s < 0).

where
λ ≡ rτ (1.24)

is the only parameter. Figure 1.6 represents the solution of Eq. (1.23) for
two different values of λ. The figure suggests that the stable steady-state
y = 1 becomes unstable at a value of λ between λ = 1 and λ = 1.8. We
analyze the stability of y = 1 in Section 2.1 and find indeed a change of
stability at

λc = π/2 � 1.57. (1.25)

As λ > λc, the system transfers its stability to a stable period solution. We
may represent the extrema of y as function of λ. See Figure 1.7. We note
that the amplitude of the oscillations smoothly grows from zero. This is an
example of a bifurcation diagram showing a Hopf bifurcation at λ = λc.

Lemming population cycles in the arctic north are nicely described by the
logistic DDE with r = 3.333/yr and τ = 9 months (λ = 3.333× 9/12 = 2.5
is larger than λc). See Figure 1.8. When the time lag is 2.8 (or nearly three
times r), the population overshoots K so much that it crashes down to
extinction. This behavior is not unlike the population dynamics of rein-
deer introduced on two small islands in the Alaskan Pribiloff Islands (see
Figure 1.9). Note, however, that the solution of the logistic DDE is still
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Figure 1.7: Bifurcation diagram of the stable solutions. A Hopf bifurcation
to sustained oscillations appears at λ = λc � 1.57 (black dot).

Figure 1.8: The full curve shows the density of lemmings in the Churchill
area of northern Manitoba, Canada (number of individuals per hectare).
The dashed curve is the solution of the logistic DDE with r = 3.333/year
and τ = 0.72 years (after May [154] redrawn from Case [45] p. 120).

Figure 1.9: Introduced reindeer populations on two small islands in the
Alaskan Pribiloff Islands (after Scheffer [208] redrawn from Case [45]
p. 119).
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Figure 1.10: Strongly pulsating solution of the logistic DDE with λ = 3.
The initial function is y = 0.5 (−1 ≤ s < 1). The first minimum is about
10−2 small (arrow) and the next minima are close to 10−6. Under these
conditions, the population physically disappears after the first pulse.

time-periodic if λ ≥ 3 but the minima are so small that the value of y is
meaningless in terms of population. See Figure 1.10. An asymptotic analysis
of the oscillations for large values of λ is given by Fowler [66]. The incor-
poration of the delay in Eq. (1.21) allows us to describe the appearance of
sustained oscillations in a single species population, without any predatory
interaction of other species. However, the model description raises a num-
ber of questions such as the meaning of the finite time τ or why the delay
enters the removal term y2/K and not the production term y.

1.5 Nonlinear optics

In 1979, the Japanese physicist Kensuke Ikeda considered a nonlinear ab-
sorbing medium containing two-level atoms placed in a ring cavity and
subject to a constant input of light. If the total length of the cavity is
sufficiently large, the optical system undergoes a time-delayed feedback
that destabilizes its steady-state output. Ikeda derived a set of coupled
differential-difference equations from the Maxwell–Bloch equations [106].
Then introducing more assumptions, Ikeda formulated the following scalar
DDE [107, 150]

τφ′ = −φ+A2 [1 + 2B cos (φ(t− tD) − φ0)] (1.26)
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which is known as the Ikeda DDE. If the ratio td/τ is sufficiently large, we
may neglect the left hand side and obtain the equation for a map given by

φn = A2
[
1 + 2B cos

(
φn−1 − φ0

)]
(1.27)

which is called the Ikeda map. Using (1.26), Ikeda then showed numerically
that periodic and chaotic outputs are possible. In 1983, the experimental
system was realized by his colleagues with a train of light pulses injected
in a long single-mode optical fiber [108] but the Ikeda physical system is
poorly described by Eq. (1.26). Efforts to develop an experimental device
that is accurately modeled by a simple DDE such as Eq. (1.26) immedi-
ately followed the early work of Ikeda and today quantitative comparisons
between experiments and theory are possible.

In Besançon (France), work has been done on a delayed optical system
where the dynamical variable is the wavelength [74]. An improved device
using a tunable DBR laser was then realized [75, 138]. This experience then
led to the development of a system based on coherence modulation. The
dynamical variable is the optical-path difference in a coherent modulator
driven electrically by a nonlinear delayed feedback loop [139]. The system
is realized from an MZ coherence modulator powered by a short coherence
source and driven by a nonlinear feedback loop that contains a second MZ
interferometer and a delay line. In dimensionless variables, the response of
the system is well described by [139],

τX ′ = −X + β

[
1 +

1
2

cos(X(t− tD) + Φ)
]
, (1.28)

where X is proportional to the optical-path difference. The bifurcation
parameter β is proportional to the photodetector gain K which can be
varied. The phase Φ can be changed electrically by means of a bias voltage
applied to the first MZ. Experimentally, the ratio tD/τ is chosen sufficiently
large so that we may neglect the term in the left-hand side of Eq. (1.28).
The resulting equation then is an equation for a map relating Xn+1 = X(t)
and Xn = X(t− tD):

Xn+1 = β

[
1 +

1
2

cos(Xn + Φ)
]
. (1.29)

The experimental bifurcation diagram is shown in Figure 1.11 for Φ = 0.
This bifurcation diagram is well reproduced by the numerical bifurcation
diagram obtained from Eq. (1.29). Numerical and experimental values of
the three marked points are compared in the next table.

Φ = 0
Numerical 2.08 5.04 6.59
Experimental 2.07 5.30 6.69
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Figure 1.11: Experimental bifurcation diagram for Φ = 0 from [139]. The
points at β = 2.07 and β = 5.30 are two Hopf bifurcation points. The third
point at β = 6.69 marks the transition to a “chaotic” output exhibiting
erratic oscillations.

1.6 Fluid dynamics

DDEs appear in fluid mechanics when some memory effects need to be
taken into account [238, 240]. We illustrate this by considering the case of
vertical water fountains exhibiting oscillatory motion of their tips. Only for
very low-momentum fluxes, ρu2 (ρ = 103 kg m−3 is the fluid density and
u is the initial velocity of the jet), the water exiting the fountains remains
attached to the nozzle due to capillary and gravity forces. But, above a
threshold of the momentum flux, a new regime is observed where the fluid
detaches from the nozzle, forming an upward moving jet. The upward
moving fluid then changes kinetic into potential energy until it reaches a
maximum height (Figure 1.12 (1)) at which a lump of fluid begins to accu-
mulate at the tip of the fountain. The maximum height that it can reach
is given by h = u2/(2g) where g is the acceleration due to gravity. As the
mass of the lump increases (Figure 1.12 (2)), the pull of gravity eventually
overcomes the jet’s momentum and the jet begins to fall. The backflow
initially takes the form of a lump perched on the top of the jet and fed with
liquid from below, falling under its own weight, flattening out the ascend-
ing column of fluid, and deforming under the inertial pressure of the jet
(Figure 1.12 (3)). The lump eventually breaks up into a dispersed corolla
(Figure 1.12 (4)), the jet re-emerges, and a new cycle begins (Figure 1.12
(5) to (8)). The overall effect is a pulsating motion of the jet, which is
apparent not only to the eye but also to the ear (the breakup of the corolla
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Figure 1.12: From left to right and from top to bottom: A period of the
pulsation of a vertical fountain. d = 3 mm, u0 = 1.5 ms−1. The pic-
tures are spaced by 2/25 seconds and the oscillation frequency is about
2 Hz. Note the corolla breakup of the gravity-induced backflow. Reprinted
by permission from Macmillan Publishers Ltd (Nature) Villermaux [238]
Copyright 1994.

is accompanied by a characteristic dripping sound). The pressure at the
orifice of the jet is related to its instantaneous height and its variation os-
cillates with a dominant period. For fountains with moderate aspect ratios
(height/diameter, h/d ≤ 50), this oscillatory behavior develops before the
onset of the Raleigh capillary breakup instability, which would otherwise
cause the liquid column to fragment. If the fountain is oriented slightly away
from the vertical, the backflow is no longer possible and the jet describes
a parabola with a fixed maximum elevation. The gravity-induced backflow
is thus essential for the onset of the oscillatory behavior. Villermaux [238]
proposed that the oscillations are the result of the interplay between linear
growth and a delayed nonlinear saturation and he mathematically models
this mechanism by formulating a DDE for the amplitude A(t) of the distur-
bances in the flow, equivalent to the fluctuating height of the fountain [239]

dA

dt
= rA − μ|A(t− τ )|2A, (1.30)

where τ is the transit time through the recirculation loop. This timelag
represents the interaction time of a fluid packet initially topping the foun-
tain during its deformation until it breaksup in dispersed droplets and is
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estimated as the time for the packet to fall by a distance of the order of its
own size (d) and independent of u0 : τ ∼ d/(dg)1/2 = (d/g)1/2. Eq. (1.30)
rewritten in terms of y ≡ μA2/r and the new time t′ = t/τ is equivalent
to the delayed logistic equation (1.23) with λ = 2rτ and t′ replacing t.
We know that the solution is time-periodic if λ > π/2. Moreover, the fre-
quency of the oscillations is independent of μ (because λ does not include
μ after rescaling A2) and approximate as f ∼ 1/(4τ) if the amplitude of
the oscillations is not too large. Villermaux [238] was criticized because
he did not specify the parameter r and therefore no comparison can be
made. The problem was later revived by Clanet [46] who proposed new
experiments and a detailed physical model. He found that the frequency
of the oscillations equals

f =
g

3u0
. (1.31)

Using the velocity u0 = 1.5 ms−1 given by Villermaux [238], we find f = 2.2
Hz which compares well with the experimental observation of f ∼ 2 Hz.
It is thus possible to propose a complete physical model of the fountain
oscillations. For other fluid dynamical phenomena such as turbulent flows,
a detailed description is not always available and a global mathematical
description using a DDE could be an interesting alternative [240].

1.7 Economics

The recurring fluctuations in economic activities (prices, output, inflation)
that appeared in market economies since the spread of industrialization
soon led to the idea that a business cycle is a self-sustained oscillation
resulting from the lagged reaction of economic factors and the nonlinear
relations between them. Kalecki’s business cycle mode (1935) [118] is maybe
the first mathematically detailed treatment of cyclical phenomena in eco-
nomics. A key element of the theory is to posit a lag between the investment
decision and installation of investment goods.5 The Hopf bifurcation theory
as a tool for demonstrating the emergence of a limit-cycle solution came
to the attention of economists much later [233]. Today, DDEs have found
their way in a variety of economical models [32] and bifurcation techniques
are frequently used to analyze the effects of specific nonlinearities [19].

5Michal Kalecki’s 1935 model used a linear difference-differential equation mix to
yield cycles but his work in 1937 and 1939 used a nonlinear system to obtain limit-cycles.
In economics, one should always publish in English. Although Kalecki claimed to have
anticipated many of the principles stated in Keynes’s General Theory, his articles (1933,
1935) were published in Polish and French and thus went unrecognized. Attempting to
rectify this, Kalecki decided to publish a claim of precedence to Keynes in a 1936 article
but in Polish again.
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We illustrate the importance of delay in economy by first considering
a problem that does not exhibit a cyclic behavior. We wish to describe
the aggregate human capital stock H(t) in terms of the individual’s hu-
man capital. Overlapping generations offer new ideas and technologies and
a long life working expectancy may not necessarily be interesting for ad-
vanced economies. But we need to take into account the time T devoted
to schooling before entering the job market. To this end, de la Croix and
Licandro [47] formulated the following DDE for H(t)

H ′ = exp(−βT )TH(t− T ) − βH. (1.32)

The last term on the right-hand side of Eq. (1.32) means that the aggregate
human capital decreases at a rate β. This is compensated by the entry of
new generations in the job market. At time t, exp(−βT ) individuals of
generation t−T enter the job market with human capital TH(t−T ). The
human capital is here assumed proportional to the time spent in school but
also on H(t) because we expect that the cultural ambiance of society at
the time of birth will have a positive impact (through, e.g., the quality of
the schools). Finally, the optimal time spent in school is not a constant but
needs to take into account the effect of the loss of wage income if the entry
on the job market is delayed and the negative effect of the instantaneous
probability of death β. This is modeled by writing

T =
1

β0 + β
. (1.33)

The important quantity to compute is the growth rate σ. The growth rate
is determined by substituting H = exp(σt) into Eq. (1.32). This then leads
to an equation for σ called the characteristic equation (see Chapter 2). It
is given by

β + σ = T exp(−(β + σ)T ). (1.34)

This equation admits the parametric solution

β = −β0 +
√

exp(−x)/x, (1.35)
σ = −β + (β0 + β)x, (1.36)

and σ = σ(β) is shown in Figure 1.13. Provided β0 is sufficiently small,
an increase of β from zero first leads to an increase of growth. After some
point any increase of β implies a decrease of the growth. Simply saying, the
effect of life expectancy on growth is positive for countries with a relatively
low life expectancy, but could be negative in more advanced countries.

We next consider a problem that displays unusual oscillations. For the
last 30 years, efforts have been directed to model foreign exchange rates.
Several events have contributed to these research activities such as the
adoption of the common currency Euro in 2002. A common feature of many
models is to describe the exchange rate S(t) = S0(t)+x(t) as the sum of two
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Figure 1.13: Growth rate of the aggregate human capitalH(t) as a function
of the instantaneous probability of death β (β0 = 0.1).

distinct quantities. S0(t) is defined as the “natural” foreign exchange rate
based on pure economical factors. The second term x(t) denotes the effect of
perturbations that depend on noneconomical factors such as expectations,
speculation, or random disturbances. The following DDE has been recently
proposed by Erdélyi [56] as a minimal model describing the evolution of x,

x′ = a [x− x(t − 1) − |x|x] . (1.37)

The first two terms in Eq. (1.37) describe the growth of the exchange
rate based on comparing rates at time t and at time t − 1, respectively.
If the exchange rate increases because x(t) > x(t − 1), it is worthwhile
to purchase foreign currency. Hence, the demand for foreign currency goes
up and the exchange rate will continue to increase. On the contrary, if the
exchange rate decreases because x(t) < x(t−1), the tendency will be to sell
foreign currency and the demand will go down. At some time, a number
of agents will realize that the absolute deviation |x(t)| increases and will
start to trade. The last term in Eq. (1.37) describes this effect. Because
x′ = −x2 (x > 0) and x′ = x2 (x < 0), |x| will continuously decrease.
In reality, the depreciation (or appreciation) of the domestic current rate
leading to a growth of |x| and the rescuing nonlinear feedback are competing
and we expect an oscillatory behavior. Figure 1.14 shows a bifurcation to
a periodic solution that appears as soon as a passes 1. This bifurcation
is not a Hopf bifurcation. As we approach a Hopf bifurcation point, the
amplitude of the oscillations goes to zero and the period goes to a fixed
quantity. Here, the amplitude of the oscillations goes to zero but the period
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Figure 1.14: Bifurcation diagram of the periodic solutions emerging from
a = 1. As a→ 1+, the extrema of the oscillations decrease to zero but the
period goes to infinity.

goes to infinity. By using asymptotic techniques, it is possible to show that
the extrema of oscillations xM and the period P scale such as xM ∼ a− 1
and P ∼ (a− 1)−1/2, respectively, as a→ 1+ [62].

1.8 Mechanical engineering

Gantry cranes can lift several hundred tons and can have spans of well over
50 meters. See Figure 1.15. For fabrication and freight-transfer applications,
it is important for the crane to move payloads rapidly and smoothly. If the
gantry moves too fast the payload may start to sway, and it is possible for
the crane operator to lose control of the payload. At the 2005 ASME meet-
ing, the question was raised whether a delayed feedback control for con-
tainer cranes could be more efficient than conventional techniques. Henry
et al [90] and Masoud et al [156, 157, 158] developed a control strategy
based on a time-delayed position feedback of the payload cable angles. Its
goal was to significantly reduce the sway at the end of motion.
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Figure 1.15: Container crane and ship (from H. Park and K.-S. Hong [181]).

The formulation of the pendulum model for the container crane is de-
scribed in Section 2.3. In its simplest form, it is given by

y′′ + εy′ + sin(y) = −k cos(y)(y(t− τ) − y), (1.38)

where y represents the angle. The left-hand side models a weakly damped
oscillator and the right-hand side is the contribution of the feedback con-
trol. Without going into details, it is not too difficult to understand why a
delayed feedback may have a stabilizing effect. Near the equilibrium solu-
tion y = 0, sin(y) ∼ y and cos(y) ∼ 1 and Eq. (1.38) can be rewritten as

y′′ + εy′ + y = −k(y(t− τ ) − y). (1.39)

If now τ is small, we expand the delayed variable as y(t− τ ) ∼ y− τy′ and
reformulate Eq. (1.39) as

y′′ + (ε− kτ)y′ + y = 0. (1.40)

The effect of the delay appears in the damping coefficient. If k < 0, this
coefficient increases with the delay allowing faster decaying oscillations.
This conclusion is valid provided y is sufficiently close to zero. On the other
hand, if the size of y is arbitrary, then we need to worry about nonlinear
effects. Figure 1.16 illustrates the possible danger of using a delayed feed-
back control. For small amplitude perturbation of the equilibrium position
y = 0, the oscillations are damped. On the other hand, if the perturbation
is large enough, the oscillations of the pendulum become sustained.
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Figure 1.16: The values of the fixed parameters are τ = 12, ε = 0.1, and
k = −0.15. (a): y′(0) = 0 and y = 1 (−τ < t < 0); (b): y′(0) = 0 and
y = 1.5 (−τ < t < 0).

1.9 Combustion engines

Improving the control of the air-to-fuel ratio (A/F) allows gasoline port-
fuel injection engines to meet more stringent emission regulations. With the
growing use of Universal Exhaust Gas Oxygen (UEGO) sensors more flexi-
ble air-to-fuel ratio control architectures capable of achieving low emission
levels can be implemented. The delay between the fuel injection and UEGO
sensor measurement can, however, limit the performance of the air-to-fuel
ratio control loop. Figure 1.17 (right) shows a plot of measured engine air-
to-fuel ratio in response to a step in the fuel injection rate from an engine
operating at 1000 rev/min (rpm) and at constant air flow.

The two relevant quantities are Fac(t) and Ffc(t) defined as the airflow
rate and the fuel flow rate into the engine cylinders, respectively. The air-
to-fuel ratio is then defined as R(t) ≡ Fac/Ffc and the control objective is
to regulate R to the desired value Rd. The amount of fuel available to the
engine is determined by the injection fuel flow rate Ffi(t). Averina et al.
[10] considered a simple mathematical model for the A/F control problem
that takes into account the signal coming from the UEGO sensor. The
latter is described in terms of xsen = R−1

sen and is related to x = R−1 via
first-order dynamics
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Figure 1.17: Left: Gasoline engine. Right: Delay from fuel injection step
(broken line) to A/F changes at 1000 rpm. The delay varies with engine
speed, mass flow rate through the engine, exhaust pressure, and exhaust
temperature. At 2000 rpm, the delay reduces to 0.2 s and to 0.1 s at 3000
rpm (redrawn from Averina et al. [10], copyright 2005 IEEE).

dxsen

dt
= −a(xsen − x(t− td)), (1.41)

where a (∼5 s−1)and td (∼0.25 s) correspond to the rate and the delay
of the A/F sensor. Assuming a constant airflow rate (dFac/dt = 0), the
evolution of the deviation y = xsen − xd, where xd = R−1

d is given by

y′′ + y′(a+ τ−1) + aτ−1y = ky(t− td) (1.42)

where prime means differentiation with respect to time t, τ (∼0.2 s) is the
fuel evaporation rate from the liquid puddle, and k < 0 is the gain of the
controller command.

1.10 Classes of DDEs

In the previous examples, we saw two different bifurcations to a periodic
solution, we noted that square-wave oscillations are possible if the delay
is large, and we also learned how delay could have a stabilizing effect.
Mathematicians have tried to classify DDEs by their difficulty in order to
identify some of their key properties. The problems that are the most often
discussed are first-order nonlinear DDEs exhibiting square-wave oscillations
and second-order nearly conservative equations exhibiting both periodic
and quasiperiodic oscillations.
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1.10.1 Delay recruitment equation

Equation (1.28) belongs to the family of Ikeda equations that can be refor-
mulated as

εy′ = −y + f(λ, y(t− 1)). (1.43)

Here y′ denotes the derivative of y with respect to the dimensionless time
t (t ≡ t′/td where td is the delay time). The fixed parameter ε ≡ τ/td is
defined as the ratio between the linear decay time of the dependent variable
and the delay time. In Eq. (1.43), f(λ, y) represents a nonlinear function of
y and λ is a control parameter. As we have seen for Eq. (1.28), an equation
for a map can be obtained by setting ε = 0 in (1.43). The solutions of the
map give valuable information on the solutions of Eq. (1.43) for ε small. The
DDE (1.43) has also been called a delay recruitment equation [65] in the
context of biological or medical applications. Mackey [147] (see Chapter 3)
formulated an equation of the form (1.43) where

f(λ, y) =
λ

1 + yp
(1.44)

describes a negative feedback (p > 0). Note that Eq. (1.43) exhibits a
simple damping term (−y) and that the nonlinear function f only depends
on y(t − 1). The linear DDE εy′ = ±y(t − 1) and the delayed logistic
equation εy′ = λy(1 − y(t − τ )) do not belong to this class of equations.
The bifurcation diagram of the Ikeda equation with

f(λ, y) ≡ λ(1 − sin(y)) (1.45)

has been studied in detail and has revealed a large number of bifurcation
transitions [151, 173]. The parameter ε is naturally small and is respon-
sible for a sharp Hopf bifurcation transition [61] (see Figure 1.18). Other
functions f(λ, y) have been investigated. Shanz and Pelster [207] studied
Eq. (1.43) with

f(λ, y) = −λ sin(y) (1.46)

where λ > 0 and y is defined as a phase variable (first-order phase locked
loop describing the synchronization of two oscillators (see Chapter 8). Hong
et al. [99] investigated Eq. (1.43) with

f(λ, y) = 1 − λy2. (1.47)

1.10.2 Harmonic oscillator with delay

Another class of DDEs concentrates on the harmonic oscillator with delayed
forcing [40] and has the form

y′′ + ax′ + y = f(y(t− τ), y′(t− τ )), (1.48)
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Figure 1.18: Periodic solutions of Ikeda DDE near the first Hopf bifurcation
point. ε = 10−2 and, from small to large amplitude, λ = 1.17, 1.18, 1.19,
1.20. The Hopf bifurcation point is located at λH = 1.177. Note the rapid
change of the oscillations from harmonic to square-wave as the deviation
λ− λH = O(ε) progressively increases from zero.

where the function f(y, y′) is nonlinear. In a mechanical system subject to
a delayed feedback, y and y′ represent the position and velocity at time t.
If the function f only depends on y(t− τ ), we talk about position feedback
whereas if f only depends on y′, we refer to the case of velocity feedback.
Machine tool vibrations have negative effects on the quality of machined
surfaces. One of the most important causes of undesired vibrations in the
cutting process is the so-called regenerative effect. Its physical basis is a
time delay that arises naturally in the cutting process, where the delay
is inversely proportional to the cutting speed (see Chapter 6). Johnson
and Moon [115] investigate an electromechanical system and simulate their
experiments by studying the following equation,

y′′ + ay′ + b(y − y3) = c(y′ − y′(t− 1)). (1.49)

They found periodic, quasiperiodic, and chaotic oscillations. The values of
the parameters were a = 2.623, b = 170π2, and c is the control parame-
ter. Figure 1.19 shows the bifurcation diagram where a Hopf bifurcation is
followed by a bifurcation to quasiperiodic oscillations. Quasiperiodic oscil-
lations are oscillations characterized by two noncommensurable frequencies.
As a consequence the maxima (minima) are changing at each oscillation
but are bounded by an upper and lower limit.
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Figure 1.19: Bifurcation diagram of the stable solutions of Johnson and
Moon equations. Points 1 and 2 mark a Hopf bifurcation followed by a
bifurcation to quasiperiodic oscillations.

The so-called sunflower equation

y′′ +
a

τ
y′ +

b

τ
sin(y(t− τ)) = 0 (1.50)

was originally proposed by Israelsson and Johnsson [113] to describe the
geotropic circumnutations of Helianthus annus. More than a century ago,
plant physiologists were aware that elongating plant organs–roots, shoots,
branches, flower stalks – rarely grow in just one direction. The organ’s in-
stantaneous growth direction usually oscillates slowly about a mean growth
direction. The plant organ tip, as seen from a distant viewpoint, describes
an ellipse and, in three dimensions, the tip traces a helix. Such “circum-
nutations” of sunflower seedlings were modelled in 1967 by Israelsson and
Johnsson [113]. According to the model, the movement was completely de-
pendent on gravity. However, a Spacelab experiment in 1983 showed that
under microgravity conditions oscillations were still occurring. They are,
however, less regular [37, 116]. Here, y denotes the angle with the plumb
line. Using numerical simulations, Johnsson [117] determined the values of
a and b for which Eq. (1.50) has a numerical periodic solution with period
157 minutes assuming a delay τ of 30 minutes. The equation was later
studied mathematically by Somolinos [216] who showed that for a = 4.8
and b = 0.186, there is a periodic solution for τ between 35 and 80 minutes.
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1.11 Analytical tools

Many of the problems that we are facing with DDEs involve such diffi-
culties as transcendental equations or nonlinear evolution equations that
preclude solving them exactly. Consequently, solutions are approximated
using numerical techniques, analytic techniques, and combinations of both.
Foremost among the analytic techniques are the systematic methods of
perturbations (asymptotic expansions) in terms of a small or a large pa-
rameter. In this book, several such techniques are highlighted. They have
been developed for solving particular DDE problems and they are listed in
the following table.

Methods Sect.
Linear stability analyses 2
Construction technique for a single Hopf
bifurcation

3.2, 6.6.2

Piecewise constant nonlinearities 2.6, 3.3
Weakly perturbed strongly nonlinear relaxation
oscillators

5.3.2

Multiple time-scale methods for weakly nonlinear
oscillators

6.2,6.3

Weakly perturbed strongly nonlinear conservative
oscillators

7.2.1

Construction technique for a double Hopf
bifurcation

7.2.3

One can’t do everything, however. If the model equations are too complex,
numerical approaches are needed. But it is important to make clear that
asymptotic methods are available, analytical tools capable of extracting
information of physical significance.
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Stability

The industrial revolution in Europe followed the introduction of prime
movers, or self-driven machines. It was marked by the invention of ad-
vanced grain mills, furnaces, boilers, and the steam engine. These devices
could not be adequately regulated by hand, and so arose a new requirement
for automatic control systems. A variety of control devices was invented,
including float regulators, temperature regulators, pressure regulators, and
speed control devices. In the mid-1800s mathematics was first used to an-
alyze the stability of these feedback control systems. In 1840, G.B. Airy
discovered that an improper design of the feedback control loop leads to
wild oscillations. He was the first to discuss this instability of the con-
trol system by using differential equations [1]. Later, J.C. Maxwell in 1868
analyzed the stability of steam engine regulating devices then known as
governors [159]. His technique was to linearize the differential equations of
motion to find the characteristic equation of the system. He studied the
effect of the system parameters on stability and showed that the system is
stable if the roots of the characteristic equation have negative real parts.1

1Maxwell raised the mathematical question of whether a given polynomial of order
n and real coefficients has roots with negative real parts and if we could find a solution
that can be expressed solely in terms of the coefficients, thus avoiding the explicit com-
putations of the roots. He was not aware that the problem had already been solved in
1856 by Hermite [91]. In 1877, the applied mathematician E. J. Routh provided a nu-
merical technique for determining when a characteristic equation has stable roots [201].
Unaware of the work of Maxwell and Routh, A. B. Stodola posed the problem of deter-
mining the stability of the characteristic equation to A. Hurwitz [104] in 1895. Hurwitz

T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials 29
in the Applied Mathematical Sciences 3, DOI 10.1007/978-0-387-74372-1 2,
c© Springer Science+Business Media, LLC 2009
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The principal difficulty in studying DDEs lies in the transcendental char-
acter of the characteristic equation leading to an infinite number of complex
roots. A delay problem connected to the position control of mechanical de-
vices where the number of roots is finite is analyzed below. But, in general,
we need to solve the characteristic equation using numerical methods and
graphical tools. Often, we are interested in studying the bifurcation dia-
gram of the pulsating solutions in a finite domain of parameters. Then,
most of the difficulties of determining the complete spectrum can be set
aside, because only a few eigenvalues will contribute to the observed os-
cillations. In the next section, we analyze the characteristic equation of a
simple linear DDE and identify particular points where a change of stability
occurs.

2.1 The characteristic equation

We wish to determine all the solutions of a linear DDE such as Eq. (1.3).
Redefining the time variable as t → t/τ , Eq. (1.3) can be rewritten in a
simpler form as

dy

dt
= ay(t− 1), (2.1)

where
a ≡ kτ (2.2)

is our control parameter. Eq. (2.1) is linear which suggests trying an expo-
nential solution of the form

y = c exp(σt). (2.3)

Substituting (2.3) into Eq. (1.3) leads to an equation for the growth rate
σ, called the characteristic equation, given by

σ − a exp(−σ) = 0. (2.4)

Equation (2.4) is a transcendental equation and admits several roots.2 We
separate the case σ real and the case σ complex.

gave a solution in terms of determinants on the basis of the Hermite paper. Modern
proofs may be found in Uspenky [236].

2The solution of this equation is known in terms of the Lambert function W (x) that
satisfies the equation W (x) exp(W (x)) = x. The solution of Eq. (2.4) with a real then
is σ = W (a). In symbolic software packages such as Maple and MATLAB, W (x) is a
standard function now.
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2.1.1 Roots

1. σ is real. From Eq. (2.4), we have the implicit solution

a = σ exp(σ). (2.5)

Studying the function a = a(σ) given by (2.5), we find that σ is a single
positive root if a > 0 and that there exist two distinct negative roots if
ac < a < 0, where ac ≡ −e−1. If a = ac, we have a double root (σ = −1)
and, if a < ac, there exist no real roots. See Figure 2.1.
2. σ is complex. Substituting σ = σr + iσi into Eq. (2.4) and separating
real and imaginary parts, we obtain two equations for σr and σi given by

σr − a exp(−σr) cos(σi) = 0, (2.6)
σi + a exp(−σr) sin(σi) = 0. (2.7)

Eliminating the common coefficient a exp(−σr) leads to the following
equation

cot(σi) = −σr

σi
(2.8)

σr

–4

–2

0

2

a
–4 –2 0 2 4

σi

–10

0

10

Figure 2.1: The solutions of the characteristic equation. The full and broken
lines correspond to σ complex and σ real, respectively. Each σ exhibits the
limit σr → −∞ as |a| → 0. We note that all the σr are negative in the
interval −π/2 ≤ a ≤ 0 meaning stability of the zero solution. The two dots
mark the point where one σr changes sign.
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that contains no parameter. Using (2.8) and then (2.7), the solution can
be analyzed in parametric form as (σi is the parameter)

σr = −σi cot(σi), (2.9)

a = −σi exp(σr)
sin(σi)

. (2.10)

See Figure 2.1.
In summary, the solution of Eq. (2.1) can be described as a sum of

exponentials of the form

y =
∑

n

cn exp(σnt) (2.11)

where the cn are unknown. The coefficients cn can be determined in terms
of the initial function y0(t) (−1 ≤ t < 0) using the Laplace transform
[21]. Practically, we wish to know if y → 0 as t → ∞ meaning that the
determination of the σn is good enough (Re(σn) < 0 for all n).

2.1.2 Hopf bifurcation point

At critical values of a, we note that σr = 0 but σi �= 0. From Eqs. (2.6) and
(2.7) with σr = 0, we find the conditions cos(σi) = 0 and a = −σi/ sin(σi)
which imply

σi = ±π/2 + kπ and a = ∓σi (2.12)

where k ∈ Z. The two first points a = −π/2 and a = 3π/2 are indicated in
Figure 2.1.

For the logistic equation (1.23), we know that y = 1 is a steady-state so-
lution. We may investigate its stability with respect to small perturbations
by introducing the deviation

u = y − 1 (2.13)

into Eq. (1.23). We obtain the following equation for u,

du

dt
= −λ(1 + u)u(t− 1). (2.14)

We next assume that |u| is sufficiently small so that 1 + u � 1. Equation
(2.14) then simplifies as

du

dt
= −λu(t− 1). (2.15)

Equation (2.15) is identical to Eq. (2.1) with y = u and a = −λ. Because
the zero solution is stable in the interval −π/2 < a < 0, we conclude that
y = 1 is stable if

0 < λ < π/2. (2.16)

The critical point λ = π/2 is a Hopf bifurcation point that leads to a branch
of periodic solutions (see Chapter 3).
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2.2 Position control and sampling

Position control is a frequent mechanical controlling problem in robotics.
The aim is to drive the robot arm into a desired position. To achieve a clear
picture about the behavior of the control, digital effects, such as sampling,
should also be included in the mechanical model. Sampling is a kind of
delay in information transmission that often leads to unstable oscillations.
Analytical investigations of simple models with one degree of freedom play
a central role in understanding technical phenomena and designing a safe
system. Another example of sampling is described in Chapter 5. Here, we
reproduce the analysis by Insperger and Stépán [110] of a simple position
control problem. Only the characteristic equation is modified in order to
use Hurwitz stability conditions.

Because of the digital sampling effect, the evolution equation is a DDE
but the stability problem can be reduced to a finite eigenvalue problem.
The system is described by (see Figure 2.2)

M
d2x

dt′2
= Q, (2.17)

where prime means differentiation with respect to time t′. The sampling
time is τ. At each time t′ = nτ, the control force Q is quasi-instantaneously
readjusted in terms of the observed position x(tn) and observed velocity
dx(tn)/dt′. The control law is

Q = −Px(tn) −D
dx

dt′
(tn), (2.18)

where P and D are positive coefficients. Introducing the dimensionless time

t = t′/τ , (2.19)

Eqs. (2.17) and (2.18) take the simpler form

x′′ = −px(n) − dx′(n), (2.20)

M

x
0

PD

Q

Figure 2.2: Position control. The position of massM is sensed and a control
force Q is applied to push the mass into the desired position. The control
PD has proportional and differential gains (redrawn from [110]).
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where prime means differentiation with respect to time t. The dimensionless
parameters p and d are defined by

p =
Pτ2

M
and d =

Dτ

M
. (2.21)

Knowing position xn = x(n), velocity vn = x′(n), and acceleration an =
x′′(n) ≡ −px(n)− dx′(n) at time t = n, we integrate Eq. (2.20) and obtain

x′′ = an, (2.22)
x′ = vn + an(s− n), (2.23)

x = xn + vn(s− n) +
an

2
(s− n)2. (2.24)

Consequently, we determine xn+1 = x(n+1), vn+1 = x′(n+1), and an+1 =
x′′(n+1) at time t = n+1. The resulting equations form a system of three
first-order difference equations of the form

⎛

⎝
xn+1

vn+1

an+1

⎞

⎠ =

⎛

⎝
1 1 1

2
0 1 1
−p −d 0

⎞

⎠

⎛

⎝
xn

vn

an

⎞

⎠ . (2.25)

We wish to analyze the stability of the zero solution. To this end, we seek
a solution of the form

xn+1 = zxn, vn+1 = zvn and an+1 = zan, (2.26)

where z is called the amplification factor. Substituting (2.26) into (2.25),
we obtain the following homogeneous system of equations for xn, vn and
an, ⎛

⎝
1 − z 1 1

2
0 1 − z 1
−p −d −z

⎞

⎠

⎛

⎝
xn

vn

an

⎞

⎠ = 0. (2.27)

This system of equations has a nontrivial solution if the determinant of
the coefficients vanishes. Expanding the determinant as a polynomial in z
yields

z3 − 2z2 + z(1 +
p

2
+ d) +

p

2
− d = 0. (2.28)

This polynomial is known as the amplification polynomial. It is called stable
if all the roots lie on or inside the unit circle in the complex z plane:

|z1| ≤ 1, |z2| ≤ 1, |z3| < 1. (2.29)

We next transform Eq. (2.28) to a Hurwitz polynomial to apply a more
traditional stability test. A polynomial is called Hurwitz if the location of
its roots in the left-hand plane Re(s) ≤ 0 determines stability. To trans-
form Eq. (2.28) to a Hurwitz polynomial, we use the conformal involutory
transformation

z =
1 + s

1 − s
. (2.30)
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Inserting (2.30) into (2.28), we obtain

s3(4 + 2d) + s2(4 + p− 4d) + s(−2p+ 2d) + p = 0. (2.31)

The Routh—Hurwitz stability conditions for the third-order polynomial

b3s
3 + b2s

2 + b1s+ b0 = 0 (2.32)

are given by
b1 > 0, b1b2 − b0b3 > 0 and b3 > 0. (2.33)

The last condition is always satisfied because d > 0. The first condition
requires that d > p and the second condition leads to the inequality

p2 + p(6 − 4d) + 4d(d− 1) < 0, (2.34)

or equivalently,
0 ≤ p < pH = −3 + 2d+

√
9 − 8d

because p ≥ 0. The critical point p = pH corresponds to a Hopf bifurca-
tion. This can be verified by substituting s = iω (ω �= 0) into Eq. (2.32)
and separating the real and imaginary parts. We find the two conditions
−b3ω2 + b1 = 0 and −b2ω2 + b0 = 0, or equivalently,

b1b2 − b0b3 = 0 and ω2 = b1/b3 > 0. (2.35)

The first condition is verified by p = pH(d) and the second condition pro-
vides the square of the Hopf bifurcation frequency

ω2 =
pH

1 − 2d+
√

9 − 8d
> 0. (2.36)

See Figure 2.3.

d0.0 0.1 0.2 0.3 0.4

p

0.0

0.5

1.0

1.5

stable

unstable

Figure 2.3: Position control. The Hopf bifurcation line p = pH delimits the
region of stability.
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2.3 Reduction of payload oscillations

Gantry cranes are used for moving objects within shipyards, ports, rai-
lyards, factories, and warehouses. See Figure 2.4. Gantry cranes can lift
several hundred tons and can have spans of well over 50 meters. For fab-
rication and freight-transfer applications, it is important for the crane to
move payloads rapidly and smoothly. If the gantry moves too fast the pay-
load may start to sway, and it is possible for the crane operator to lose
control of the payload. During the last four decades, different strategies of
controlling payload pendulations without including the operator in the con-
trol loop have been investigated. Recently, the question was raised whether
a delayed feedback control could be superior to conventional techniques.
Henry et al [90] and Masoud et al [156]–[158] developed a control strategy
based on a time-delayed position feedback of the payload cable angles. The
efficiency of this technique was investigated by both numerical simulations
of detailed mathematical models and by experiments in the laboratory
[90, 174]. In [60], we have analyzed the possible bifurcations of the crane–
payload system subject to a delayed control. We have shown that because of
subcritical bifurcations, stable time-periodic attractors may coexist with a
stable equilibrium. For safe control of the crane pendulations, such time-
periodic regimes should be avoided by using a physical model and finding
conditions for safe operation.

In [60], the model was derived using a Lagrangian approach. In this
section, we consider a simpler model using Newtonian laws. The main
forces controlling the crane–payload system are displayed in Figure 2.5.
We assume that the cable is inextensible or its length is slowly varying

Figure 2.4: Rail-mounted gantry cranes are used as yard cranes. Except
for the immediate loading or unloading tasks, all operations must be done
automatically with an efficient anti-sway control technique (from Erneux
and Kalmár-Nagy [60]).
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Figure 2.5: Simplest pendulum model for a container crane.

compared to the time-scale of the payload oscillations. The crane is as-
sumed to ride on frictionless rails and the payload is assumed to rotate
about a frictionless pivot P . The force applied to the motor is F (t). The
inertial force on the crane is Mu′′. The inertial force on the payload, in
the horizontal direction, is m(u′′ + lθ′′) and the gravity force on the pay-
load is simply mg. Balancing forces in the horizontal direction (ΣFx = 0)
gives

Mu′′ +m(u′′ + lθ′′) = F (2.37)

and balancing the moments about the pivot point P of the payload
(ΣMP = 0) leads to

m(u′′ + lθ′′)l cos(θ) +mgl sin(θ) = 0. (2.38)

Using (2.37), we eliminate u in Eq. (2.38) and obtain

θ′′ + tan(θ) + h(s) = 0, (2.39)

where prime means differentiation with respect to the dimensionless
time s ≡ ωt and ω is the crane–payload frequency defined by ω ≡√

(M +m)g/(Ml). The external force is h(s) ≡ F (s)/((M+m)g). Finally,
we introduce a small damping term (2μθ′) to take into account weak
dissipation. Equation (2.39) then becomes

θ′′ + tan(θ) + 2μθ′ + h(s) = 0. (2.40)



38 2. Stability

We next propose a Pyrygas-type control [194] of the form h = k(θ(s −
τ)− θ). It has the advantage that the equilibrium point is not modified by
the feedback. Linearizing Eq. (2.39) leads to

θ′′ + 2μθ′ + θ + k(θ(s− τ ) − θ) = 0. (2.41)

The linear stability boundaries are found by introducing θ = exp(iσs)
into Eq. (2.41). From the real and imaginary parts, we obtain

−σ2 + 1 + k(cos(στ ) − 1) = 0, (2.42)

2μσ − k sin(στ) = 0. (2.43)

The solution for k = k(τ ) can be determined analytically. If we wish to
avoid the inverse trigonometric functions, we may obtain the solution in
parametric form using x ≡ στ/2 ≥ 0 as parameter. Eliminating k in Eqs.
(2.42) and (2.43), and inserting σ = 2x/τ , we obtain a quadratic equation
for τ. It always admits a positive real root given by

τ = 2
[
μx tan(x) + |x|

√
μ2 tan2(x) + 1

]
. (2.44)

Having τ (x), we determine k using (2.43) with σ = 2xτ−1:

k =
4μx

τ sin(2x)
. (2.45)

By continuously increasing x from zero, the successive Hopf bifurcation
curves are generated by (2.44) and (2.45) (full lines in Figure 2.6). The
friction coefficient μ is generally small and if μ = 0, the expressions of the
Hopf bifurcation lines considerably simplify. From Eqs. (2.42) and (2.43),
we find the following three cases

k0 = 0 and σ0 = 1, (2.46)

τ0 = 2nπ and σ0 = 1, (2.47)

k0 =
1
2

[
1 − (

(2n+ 1)π
τ

)2
]

and σ0 =
(2n+ 1)π

τ
. (2.48)

where n = 0, 1, 2, .... The horizontal line k = 0, the vertical line defined by
(2.47) with n = 1, and the lines defined by (2.48) with n = 0 and 1 are
shown by broken lines in Figure 2.6.
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Figure 2.6: Successive Hopf bifurcation lines (solid) in the k versus τ pa-
rameter plane for μ = 0.025. The broken lines correspond to the limiting
case of no friction (μ = 0) and are shown for the first four Hopf bifurcations.
The crosshatched domain corresponds to a stable steady state.

2.4 Traffic stability

The control of traffic congestion problems is an important problem in our
society: where to install traffic lights or stop signs, how many lanes to build
for a new highway, should we develop alternate forms of transportation,
and so on. The desired goal is to achieve equilibrium and stability, but
this is not always attained. In heavy traffic where drivers follow each other
very closely, an acceleration or deceleration of one vehicle may be a small
disturbance that will be preserved or amplified in the system over time,
suggesting that there can be sensitive dependence on initial conditions.
This is a potential problem for traffic management, and can even result in
accidents.

2.4.1 Car-following models

The starting point of a mathematical description of traffic flow problems
is an equation describing the conservation of cars (cars are not created or
destroyed). In one space dimension, this equation is a partial differential
equation given by [26, 83, 242]

ρt + qx = 0, (2.49)

where ρ(x, t) is the density of cars and q(x, t) represents the traffic flow (in
physics: the “flux” of ρ across a boundary). However, for traffic problems
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where u is the average velocity of cars, q = ρu. We make the simplified as-
sumption that u depends only on the density of cars; that is, u = u(ρ). This
function can be determined experimentally (e.g., by counting the number of
cars passing per hour). It may also be determined by using simple models.
The motion of a line of vehicles on a crowded road link without overtaking
(a rash assumption) is described by a car-following model [33]. This model
is based on the assumption that a driver responds to the motion of the
vehicle immediately in front. In the simplest model, the acceleration on the
following car is assumed to be proportional to the difference between its
speed and that of the car in front:

d2xn

dt2
= −λ(

dxn

dt
− dxn−1

dt
). (2.50)

If the car following is going faster than the preceding one, then the car fol-
lowing will slow down (and thus λ > 0). The larger the relative velocity, the
more the car behind accelerates or decelerates. λ measures the sensitivity of
the two-car interaction. However, Eq. (2.50) suggests that acceleration or
deceleration occurs instantaneously. Instead, let us allow some time before
the driver reacts to changes in the relative velocity. The process is modeled
by specifying the acceleration at a slightly later time

d2xn(t+ τ )
dt2

= −λ(
dxn

dt
− dxn−1

dt
), (2.51)

where τ is the reaction time. Mathematically, this equation is a DDE.
Integrating Eq. (2.51) once yields

dxn(t+ τ )
dt

= −λ(xn − xn−1) + dn, (2.52)

an equation relating the velocity of cars at a later time to the distance be-
tween cars. Imagine a steady-state situation in which all cars are equidistant
apart, and hence moving at the same velocity. Thus

dxn(t+ τ )
dt

=
dxn(t)
dt

, (2.53)

and hence letting dn = d

dxn(t)
dt

= −λ(xn − xn−1) + d. (2.54)

Because
xn−1 − xn =

1
ρ

(2.55)

is a reasonable definition of traffic density, this model yields a velocity–
density relationship

u =
λ

ρ
+ d. (2.56)
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We choose the one arbitrary constant d such that at maximum density
(bumper-to-bumper traffic) u = 0. In other words

0 =
λ

ρmax

+ d. (2.57)

In this way the following velocity–density relationship is derived,

u = λ

(
1
ρ
− 1
ρmax

)
. (2.58)

See Figure 2.7. How does this compare with experimental observations of
velocity–density relationships? Equation (2.58) appears reasonable for large
densities, that is, near ρ = ρmax. However, it predicts an infinite velocity at
zero density. We can eliminate this problem by noting that this model is not
appropriate for small densities for the following reasons. At small densities,
the change of speed of a car is not due to the car in front. Instead it is more
likely that the speed limit influences a car’s velocity (and acceleration) at
small densities. Thus we may hypothesize that Eq. (2.58) is valid only for
large densities. For small densities, u is only limited by the speed limit
u = umax (see Figure 2.7).

Figure 2.7: The speed u as a function of the density ρ. The top figure shows
the hyperbolic function as predicted by the car-following model. In practice,
the maximum permitted speed u = umax is introduced (see bottom figure).
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2.4.2 Local and asymptotic stability

When the lead vehicle of a line of cars changes its motion, the response of
the following vehicle and the global response of all the cars in the line will
not be the same. In this section we address this question by considering
both the stability of two successive cars as well as the stability of a large
numbers of cars.

Equation (2.51) can be solved by the method of Laplace transform [93]
but the evaluation of the inverse Laplace transform may lead to a complex
expression with little physical insight. In this section, we address the sta-
bility of the linear car following Eq. (2.51) with respect to disturbances.
Two particular types of stabilities need to be examined, local stability and
asymptotic stability. Local stability is concerned with the response of the
following vehicle to a fluctuation in the motion of the vehicle directly in
front of it; that is, it concentrates on the localized behavior between pairs
of vehicles. Asymptotic stability is concerned with the manner in which a
fluctuation in the motion of any vehicle, say the lead vehicle of a platoon,
is propagated through a line of vehicles.

Local stability

From Eq. (2.51), we determine the equation for the velocity vn = dxn/dt
given by

dvn(t+ τ )
dt

= −λ(vn − vn−1). (2.59)

Consider the case of two cars traveling with equal speed u. Assuming that
the lead vehicle keeps its velocity, the following vehicle vn = u+ y satisfies

dy(t+ τ)
dt

= −λy, (2.60)

or equivalently,
dy

ds
= −λτy(s− 1), (2.61)

where s = t/τ + 1. Equation (2.61) was analyzed in Section 2.1. We know
that y does not exhibit any oscillations if

λτ ≤ e−1 � 0.37 (2.62)

and that y is oscillatory with exponential damping if

e−1 < λτ < π/2 � 1.57. (2.63)

In order for the following vehicle not to overcompensate for a fluctuation, it
is necessary that condition (2.62) be verified. The criterion of local stability
is often referred to this condition although the steady state is unstable only
if λτ > π/2.
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Asymptotic stability

Now assume that the lead driver’s velocity varies periodically as

v0 = 1 +
1
2

(exp(iωt) + c.c) . (2.64)

Also assume that the nth driver’s velocity varies periodically

vn = 1 +
1
2

(fn exp(iωt) + c.c) , (2.65)

where fn measures the amplification or decay that occurs. Starting with
f0 = 1, we determine f1 as a function of f0,then f2 as a function of f1, and
so on. Iterating n times, the solution is given by

fn =
1

[
1 + iω

λ exp(iωτ )
]fn−1 =

1
[
1 + iω

λ exp(iωτ )
]n f0. (2.66)

Thus, the amplitude |fn|2 is computed as

|fn|2 =
1

(
1 + iω

λ exp(iωτ)
)n

1
(
1 − iω

λ exp(−iωτ ))n |f0|2

=

[
1

(
1 + ω2

λ2 − 2ω
λ sin(ωτ )

)

]n

. (2.67)

We next wish that |fn|2 → 0 which means that

ω2

λ2 − 2ω
λ

sin(ωτ ) > 0 or
ω

λ
−2 sin(ωτ ) > 0 or

sin(ωτ )
ω

<
1
2λ
. (2.68)

The inequality holds for all ω if 3

λτ <
1
2
. (2.69)

We conclude that if the product of the sensitivity and the time lag is greater
than 0.5, it is possible for following cars to drive more erratically than the
leader. In this case, we say that the model predicts instability if λτ > 1

2 .
Note that the criterion for local stability (namely that no local oscillations
occur if λτ < e−1) also insures asymptotic stability.

2.5 Bistability

Recent experiments on polarization switching in lasers subject to optical
feedback [206] have motivated a simple analytical study of a first-order
DDE. The laser (here a vertical-cavity surface-emitting laser) is subject to

3We investigate the function λ = ω/2 sin(ωτ) and note that the limit ω small leads
to the stability limit.
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Figure 2.8: Top: Polarization mode-hopping. Bottom: Blow-up of the fast
oscillatory jump transition between modes. The frequency f ∼ 450 MHz is
close to the inverse of the delay τ (from Sciamanna et al [206]).

optical feedback from a distant mirror (see Chapter 7). As a result, the light
reinjected into the laser corresponds to the laser output at time t−τ where
τ = 2L/c. L = 20.2 cm being the distance laser-mirror and c = 3×108 m/s
the speed of light, we determine τ = 1.3 ns. Compared to the time-scale
of the laser (i.e., the photon lifetime τp ∼ 1 ps), this delay is large and we
may reasonably expect some impact on the laser response. The experiments
indicate that the laser exhibits polarization mode hopping due to noise (i.e.,
spontaneous emission noise) with fast oscillatory jump transitions with a
period close to τ . See Figure 2.8. These transient oscillations are not specific
to the laser but have been found by numerically investigating the following
first-order DDE,

x′ = x− x3 + cx(t− τ ) +
√

2Dξ(t) (2.70)

where ξ(t) is a Gaussian white noise of zero mean and unitary variance
and D is the noise level. Equation (2.70) has been analyzed by Tsimring
and Pikovsky [228] and Masoller [155] in the general context of a bistable
system subject to noise. Their studies motivated further experimental work
using a laser subject to a time-delayed optoelectronic feedback [101].

In this section, we illustrate the technique of linearization by examining
the stability of the steady states of Eq. (2.70) with D = 0. It admits the
following steady state-solutions
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x = 0, (2.71)
x = x± ≡ ±√

1 + c (c ≥ −1). (2.72)

From (2.72), we note that two non-zero steady states are branching from
the zero solution at c = −1. Introducing the deviation u = x−xs where xs

is either (2.71) or (2.72), and assuming u small, we obtain a linear DDE.
Looking then for exponential solutions leads to the following characteristic
equation for the growth rate σ,

σ = 1 − 3x2
s + c exp(−στ). (2.73)

As for Eq. (2.4), we examine this equation by first considering the case
σ real and then the case σ complex (σ = σr + iσi). In the first case,
we determine an implicit solution for c = c(σ) which can be analyzed.
In the second case, we formulate the parametric solution σr = σr(σiτ )
and c = c(σiτ ) which may or may not be expressed in terms of analytical
functions.

If c < −1, xs = 0 is the only steady state. It may change stability at
a Hopf bifurcation provided τ is sufficiently large. Inserting σ = iσi into
(2.73) with xs = 0, we obtain

1 − c cos(σiτ) = 0, (2.74)
σi + c sin(σiτ) = 0. (2.75)

Equivalently, we may formulate the parametric solution

c =
1

cos(s)
and τ = − s

tan(s)
, (2.76)

where s = σiτ . If c > −1, xs = 0 always admits a real positive σ and is
therefore unstable.

For the non–zero intensity steady-states xs = x±, a Hopf bifurcation is
possible. Inserting σ = iσi into (2.73), we now obtain

−2 + c(−3 + cos(σiτ )) = 0, (2.77)
σi + c sin(σiτ ) = 0 (2.78)

from the real and imaginary parts. These conditions can be rewritten as

c = − 2
3 − cos(s)

and τ =
s(3 − cos(s))

2 sin(s)
, (2.79)

where s = σiτ. Using (2.76) and (2.79), we may represent the Hopf bifur-
cation line in the (c, τ) stability diagram. See Figure 2.9. There are other
Hopf bifurcation lines (not shown) that appear at higher values of c or τ .

The critical point (c, τ) = (−1, 1) is a degenerate Hopf bifurcation point
because it corresponds to a double zero eigenvalue of the characteristic
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Figure 2.9: Stability diagram. The vertical line at c = −1 marks a steady
bifurcation point from the zero to the non–zero steady state. The left curve
connecting (c, τ) = (−1, 1) corresponds to a Hopf bifurcation point from
the zero intensity steady state. The right curve starting at (c, τ) = (−1, 1)
represents a Hopf bifurcation from the non–zero steady state. The critical
point (c, τ) = (−1, 1) is a degenerate Hopf bifurcation point characterized
by a double zero eigenvalue.

equation. The possible solutions near this point have been analyzed in detail
by Redmond et al. [199] who derived a slow time second order differential
equation for the small amplitude solutions. They showed that stable time-
periodic solutions may coexist with stable steady states.

2.6 Metastability

The evolution to a long time steady-state solution can be oscillatory and
very slow. The numerical solution of Eq. (2.70) is shown in Figure 2.10
starting from a square wave initial profile. Figure 2.10 shows sustained
oscillations with a period close to the delay that disappear on the long
time-scale. By tuning parameters, it is possible to observe the oscillations
for longer periods. The phenomenon has been called metastability.

This phenomenon can be analyzed in detail using the following DDE,

εx′ = −x+ f(x(t− 1)), (2.80)

where ε = τ−1, f(x) = −1 if x < 0, f(x) = 1 if x > 0, and f(0) = 0 [3]. The
numerical solution is shown in Figure 2.11. By constructing the solution in
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Figure 2.10: Top: slowly varying oscillations followed by a sudden jump to
the steady-state x = −2. Bottom: short time solution showing the initial
conditions: x = −2.45 (−τ < t < −2τ/3 and -τ/3 < t < 0) and x = 3
(−2τ/3 < t < −τ/3). The values of the parameters are c = 3 and τ = 5.
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Figure 2.11: Right: The oscillations are slowly changing until they suddenly
disappear and are replaced by the stable steady state x = 1. Left: Initial
oscillations showing the first two intervals between successive zeros. ε = 0.1
and the initial function is x = 1 (0 ≤ t < 2/3), x = −1 (2/3 ≤ t < 0), and
x(0) = 0.



48 2. Stability

n
0 5 10 15 20 25 30

αn+1

0.0

0.1

0.2

0.3

0.4

Figure 2.12: Progressive decrease of αn defined as the time interval between
two successive zeros of the solution. α0 = 1/3 and ε = 0.1.

successive time intervals, it is possible to formulate a map for the interval
αn between two successive zeros [81]. It is given by

αn+1 = αn + ε ln
[
2 − 2 exp(−ε−1αn) + exp(−ε−1)

2 − exp(−ε−1(1 − αn))

]
(2.81)

which for small ε and α0 < 0.5 simplifies as

αn+1 − αn � ε exp(−ε−1αn) (2.82)

The map (2.81) and its approximation (2.82) are mathematically valid
until αn = O(ε). The different iterations of Eq. (2.82) are shown in Figure
2.12. The expression (2.82) clearly indicates that the rate of change is
ε exp(−ε−1) small. As noted in [81], this small rate of change results from
the fact that f(x(t − 1)) = ±1 for x ≷ 0. If f(x(t − 1)) = a < 0 and
b > 0 for x ≷ 0, and if |a| �= b, the rate of change is O(ε). The behavior of
metastable patterns is further analyzed by Nizette [178] who formulated a
Ginzburg–Landau equation from a general class of DDEs.



3
Biology

Many complex processes in biology and physiology are described by ordi-
nary differential or functional differential equations. The latter are dom-
inant when the functional components in equations allow us to consider
after-effects of prehistory influence. Various classes of functional differential
equations appear in immunology, epidemiology, and the theory of neural
networks. Some areas are very well documented and benefit from regular
reviews. This is, for example, the case of the glucose–insulin regulatory
system [145], the cardiovascular control system [67], and blood pressure
oscillations [200]. Here preference is given to problems that we easily un-
derstand such as population dynamics or postural control.

As described in the introduction, DDEs have quite long ago shown their
efficiency in the study of the behavior of real populations. The majority
of DDEs appearing as mathematical models of oscillatory biological phe-
nomena are essentially nonlinear, as a rule, each of them having its own
specific features. Because of this, we are often obliged to seek an individ-
ual approach to every concrete equation. The logistic DDE admits nearly
harmonic oscillations that can be captured by a Hopf bifurcation analysis.
On the other hand, the Mackey equation describing a strongly nonlinear
self-inhibitory system requires a more subtle approach.

T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials 49
in the Applied Mathematical Sciences 3, DOI 10.1007/978-0-387-74372-1 3,
c© Springer Science+Business Media, LLC 2009
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3.1 Population periodic cycles

The population densities of many species can fluctuate nearly periodically
over time, with periods that cannot be explained simply by seasonal varia-
tion. These regular, large-amplitude oscillations have fascinated generations
of ecologists [123]. In Chapter 1, we introduced the delayed logistic equation
(1.21) as one of the simplest population models where a time lag appeared
in the density-dependent term. The incorporation of the delay allows the
description of sustained oscillations in a single species population, without
any predatory interaction of other species.

Mathematically, we have determined a critical value of λ = λ0 = π/2
above which the steady-state y = 1 is unstable and we have found by
numerical simulations that sustained oscillations are possible if λ > λ0. In
Figure 3.1, we represent the extrema of the period of the oscillations as
a function of λ. The oscillations emerge from the Hopf bifurcation point
λ = λ0. The broken line corresponds to the Hopf bifurcation approximation
described in the next section. Near the bifurcation point, Hopf showed that

λ
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Figure 3.1: Bifurcation diagram of the steady and periodic solutions of the
logistic DDE. Top: Extrema of the oscillations as a function of λ. Bottom:
Period of the oscillations. The broken lines represent the Hopf bifurcation
approximation.
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the amplitude of the oscillations follows a square-root law (i.e., ymax−1 and
ymin − 1 are proportional to (λ − λ0)1/2) and the period changes linearly
with λ−λ0. A classical example of a comparison between experiments and
theory comes from the experiments of the Australian ecologist, Nicholson
[176], using laboratory cages of sheep blowflies, which can be a serious pest
to sheep in Australia. Nicholson independently controlled the adult and
larval food supplies and observed population oscillations of about 35 to 40
days. We use the delayed logistic equation with K set by the food level
available and τ being the approximative time for a larva to mature into
an adult. The actual value of K is not important because the period does
not depend on K but only on λ ≡ rτ . r is the rate of population increase
and is unknown. Figure 3.2 compares the experiments with the solution of
the logistic DDE for λ = 2.1. The period of the oscillations is about 4.54τ
and if we consider the observed period of 40 days, we obtain a delay of 9
days. But the actual delay is 14 days. To overcome this discrepancy, Gurney
et al. [82] proposed the following delay model (now referred as Nicholson’s
blowflies equation)

dN

dt′
= rN(t′ − τ ) exp(−N(t′ − τ )/K) −mN. (3.1)

Introducing the dimensionless variables (1.22) into Eq. (3.1), we obtain

dy

dt
= ay(t− 1) exp(−y(t− 1)) − by, (3.2)

where

a ≡ rτ and b ≡ mτ. (3.3)

Figure 3.2: Blowfly numbers are fit with the solution of the logistic DDE
for λ = 2.1 (after Nicholson [176] and May [153] redrawn from Case [45]
p. 120).
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Figure 3.3: Bifurcation diagram of the extrema of the oscillations for b = 3.
Note the appearance of a second maximum–minimum at a > 70. The
broken line is the nonzero steady state. The Hopf bifurcation point is at
a = 29.69.

The nonzero steady state is

y = ln(a/b) (3.4)

and its first Hopf bifurcation in terms of a and b is given in parametric
form as

b = −ω cot(ω), (3.5)
a = b exp(1 − sec(ω)), (3.6)

where π/2 < ω < π. A typical bifurcation diagram of the periodic solutions
is shown in Figure 3.3. Gurney et al. [82] critically estimated the values of
the parameters. For the case of adult limited food supply, the parameters
were evaluated as [123] Table 1 (NLF): τ = 14.1 days, r = 5.93 days−1,
m = 0.212 days−1, K = 463 implying, using (3.3), that a = 83.61 and
b = 2.99.

3.2 The Hopf bifurcation

A Hopf bifurcation denotes the appearance of a periodic solution in the
neighborhood of a steady state whose stability changes due to the crossing
of a conjugate pair of eigenvalues over the imaginary axis. Eberhard Hopf1

1Eberhard Hopf (1902–1983) is best known for his work in topology and ergodic
theory. Born in Austria, he did most of his studies in Germany. In 1931, with the help of
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formulated and proved his theorem about the appearance of periodic solu-
tions for ordinary differential equations giving all credit to Poincaré [100].
The Hopf bifurcation theorem can be stated as follows.

Consider the differential equation

y′ = F (y, λ), (3.7)

where λ is a control parameter and suppose it admits a steady-state solution
y = y0(λ). From the linearized problem,

u′ = Fy(y0(λ), λ)u, (3.8)

we find a conjugate pair ±iω0 of simple pure imaginary eigenvalues at
λ = λ0. ω0 > 0 and no other eigenvalues exist on the imaginary axis. The
second main hypothesis stated by Hopf is that the continuous extension to
λ − λ0 �= 0 of the eigenvalue iω0, say σ(λ), should transversely cross the
imaginary axis at λ = λ0; that is,

Re(σ′(λ0)) �= 0. (3.9)

The conclusion of the theorem then is that in a neighborhood of (y, λ) =
(y0, λ0), there always exists a one-parameter family y(t,ε), λ(ε) of periodic
solutions (with y(t, ε) → y0, λ → λ0 as ε → 0) having periods T (ε) (with
T → 2π/ω0 as ε → 0). When F (y, λ) is analytic, ε can be chosen so that
y, λ, and T are analytic, and

y = y0 +εy1(t)+ ..., λ = λ0 +ε2λ2 + ..., T =
2π
ω0

(1+ε2T2 + ...). (3.10)

It turns out that λ2 �= 0, which is the generic situation; then for small ε, the
periodic solution exists either supercritically, when λ2 Re(σ′(λ0)) > 0, or
else subcritically, when λ2 Re(σ′(λ0)) < 0. If all the other eigenvalues of the
linearized problem are in the left half-plane, Hopf showed that supercritical
(subcritical) solutions are stable (unstable). See Figure 3.4.

In this section, we construct a periodic solution of a DDE by using the
Hopf perturbation technique also known as Lindstedt-Poincaré method.
It considers the sequential computation of power series solutions in an
amplitude ε and uses solvability conditions as the most economic way to

Norman Wiener, Hopf became assistant professor at the Department of Mathematics at
MIT. In 1936, at the end of the MIT contract, Hopf received an offer of full professorship
at the University of Leipzig and moved back to Germany. In 1949, he became a U.S.
citizen and joined Indiana University as a professor. Many people didn’t forgive his
moving to Germany. As a result most of his work on ergodic theory and topology was
neglected or even attributed to others in the years following the end of World War II
[250]. The Hopf bifurcation paper appeared in 1942. When asked many years later, he
could not recall how he came to this problem but presumably it came through his interest
in fluid mechanical instabilities [78].
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Figure 3.4: Left: In the case of a subcritical bifurcation, a branch of unstable
periodic solutions overlaps a branch of stable steady states. Right: In the
case of a supercritical Hopf bifurcation, a branch of stable periodic solutions
overlaps a branch of unstable steady states.

compute the solution. Because supercritical solutions are stable and can be
observed numerically, the determination of λ2 is of particular interest. A
convenient way to organize the calculation is shown for the delayed logistic
equation (1.23). This equation is also considered in [111], p150, using the
same technique, and in [51], p299, by the center manifold technique.

Equation (1.23) has the steady-state y = 1 and the linearized problem
admits a pair of purely imaginary eigenvalues at λ = λ0 = π/2. See (1.25).
We now seek a 2π-periodic solution of Eq. (1.23) of the form

y − 1 = εy1(s) + ε2y2(s) + ..., (3.11)

where
s ≡ ωt (3.12)

is a scaled time variable. The parameter ε measures the amplitude of
the periodic oscillations and can be defined by a normalization condition.
A convenient definition is

ε ≡ 1
2π

∫ 2π

0

y(s, ε) exp(−is)ds (3.13)

implying

1
2π

∫ 2π

0

y1(s) exp(−is)ds = 1 and
∫ 2π

0

yj(s) exp(−is)ds = 0, (3.14)

where j = 2, 3, .... We next expand the bifurcation parameter λ and the
frequency ω in power series of ε2

λ = λ0 + ε2λ2 + ... (3.15)

ω = ω0 + ε2ω2 + ..., (3.16)
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where λ0 = π/2 and ω0 = 1 are the values of the parameter λ and the
frequency of the oscillations at the Hopf bifurcation point. The unknown
coefficients λ2, ω2, ... will be obtained by applying solvability conditions
at each order of the perturbation analysis. Inserting (3.11), (3.12), (3.15),
and (3.16) into Eq. (1.23), we obtain from the first three orders appearing:

ω0y
′
1 = −λ0y1(s− ω0) (3.17)

ω0y
′
2 = −λ0y2(s− ω0) − λ0y1y1(s− ω0) (3.18)

ω0y
′
3 = −λ0y3(s− ω0) − λ0(y1y2(s− ω0) + y2y1(s− ω0))

− ω2y
′
1 − λ2y1(s− ω0) + λ0ω2y

′
1(s− ω0). (3.19)

The solution of Eq. (3.17) satisfying the normalization condition (3.14) is
given by

y1 = exp(is) + c.c., (3.20)

where c.c. means complex conjugate. The solution of Eq.(3.18) satisfying
the normalization condition (3.14) is given by

y2 = p2 exp(2is) + c.c., (3.21)

where

p2 =
2 − i

5
(3.22)

and there is no constant contribution. Solvability of Eq. (3.19) implies that
there are no terms of the form exp(±is) in its right-hand side. This leads
to the condition

−λ0
(−1 + 3i)

5
− iω2 + iλ2 + λ0ω2 = 0. (3.23)

The real and imaginary parts give

ω2 = −1
5

and λ2 =
3π − 2

10
. (3.24)

In summary, the Hopf leading asymptotic approximation of the solu-
tion is

y − 1 � 2

√
10(λ− λ0)

3π − 2
cos(ωs), (3.25)

where

ω � ω0 − 2(λ− λ0)
3π − 2

(3.26)
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is the frequency. The extrema of the oscillations are given by

y − 1 = ±2

√
10(λ− λ0)

3π − 2
(3.27)

and the period P ≡ 2π/ω depends on λ as

P =
2π
ω0

(
1 +

2(λ− λ0)
(3π − 2)ω0

)
. (3.28)

Both approximations of the extrema and the period are shown in Figure
3.1 by broken lines.

3.3 Time-delayed negative feedback

3.3.1 Circulating red blood cells

An important scalar DDE exhibiting a time-delayed negative feedback fre-
quently appears in the biological literature [63, 172]. This equation was
originally proposed by Mackey [147] for an autoimmune disease that causes
periodic crashes in circulating red blood cells (RBC). But it has also been
used for other problems (see, e.g., [144]). The Mackey equation (best known
as the Mackey-Glass equation [148]) exhibits limit-cycle oscillations but the
delay is moderate. It is a strong negative feedback that is responsible for
the oscillations.

When the RBC level in the blood is low, the cells produce a hormone,
called erythropoietin, that stimulates the production of RBC precursor
cells. After a few days, these precursors become mature RBCs and the pro-
duction of erythropoietin is turned down. Hence, circulating RBC is con-
trolled by a negative-feedback system with time-delay (maturation time).
Mackey formulates a simple model given by [147]

dE

dt′
= F (E(t′ − τ ′)) − γE, (3.29)

where E (cells/kg) is the circulating density of RBC, F (cell/(kg day)) is
the cell influx from erythroid colony forming units, under erythropoietin
control, τ ′ (days) is the time required to pass recognizable precursors, and
γ (day−1) is the loss rate of RBCs in the circulation. Experiments show
that the feedback function saturates at low erythrocyte numbers and is a
decreasing function of increasing red blood cell levels (negative feedback).
Mackey chose to describe the feedback term by

F = F0
θp

Ep(t′ − τ ′) + θp , (3.30)
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where F0 (cell/kg day) is the maximal red blood cell production rate that
the body can approach at very low circulating red blood cell numbers, p is
a positive exponent, and θ (cell/kg) is a shape parameter. Parameters were
estimated in the normal situation (not autoimmune hemolytic anemia) and
are listed in the following table.

Parameters Symbol Values
RBC loss rate γ 2.31 × 10−2 day−1

Maximal RBC production rate F0 7.62 × 1010 cell kg−1day−1

Steepness p 7.6
Shape θ 2.47 × 1011 cell kg−1

Feedback delay τ ′ 5.7 days

Introducing the dimensionless variables

y =
E

θ
and t =

F0t
′

θ
(3.31)

into Eqs. (3.29) and (3.30), we find

dy

dt
=

1
1 + y(t− τ )p

− by, (3.32)

where

τ =
F0τ

′

θ
and b =

γθ

F0
. (3.33)

The next table provides their values

Parameters Symbol Values
RBC loss rate b 7.45 × 10−2

Steepness p 7.6
Delay τ 1.73

Periodic hemolytic anemia can be induced in rabbits by administration
of RBC autoantibodies. The immune system destroys RBCs, thereby in-
creasing b. We thus treat b as our bifurcation parameter.

We note that the value of τ is an O(1) quantity but that the steepness pa-
rameter p = 7.6 can be considered as relatively large. A limit-cycle solution
of Eq. (3.32) for p = 20 is shown in Figure 3.5. Increasing p leads to tri-
angular oscillations connecting two distinct exponential decaying functions
of t. As noted by Mackey [147], the nonlinear function [1 + y(t− τ )p]−1 in
Eq. (3.32) approaches the Heavyside function as p→ ∞ allowing a drastic
simplification of the nonlinear equation. The large p limit of Eq. (3.32) is
linear as

dy

dt
= −by +

0 if y(t− τ ) > 1
1 if y(t− τ ) < 1 . (3.34)

In Figure 3.5, y(t − τ ) > 1 during the time interval 0 < t < tm and
y(t−τ ) < 1 during the time interval tm < t < P. We construct the solution
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Figure 3.5: Limit-cycle solution. The values of the parameters are b = 0.4,
p = 20, and τ = 1.8.

for each time interval and connect them at the critical times t = tm and
t = P. There are four steps in this analysis:

1. During the interval 0 < t < tm, the nonlinear function is zero and
Eq. (3.32) is linear. With the initial condition y(0) = ymax, it admits the
solution

y = ymax exp(−bt). (3.35)

2. At the critical time t = tm, y(tm − τ ) = 1 and y(tm) = ymin. Using
(3.35), these two conditions imply

y(tm − τ ) = 1 = ymax exp(−b(tm − τ )), (3.36)
ymin = ymax exp(−btm). (3.37)

Eliminating ymax exp(−btm) between (3.36) and (3.37) leads to a simple
expression for ymin given by

ymin = exp(−bτ). (3.38)

3. During the interval tm < t < P, the nonlinear function equals one and
Eq. (3.34) is again linear. With the condition y(tm) = ymin, it admits the
solution

y = (ymin − b−1) exp(−b(t− tm)) + b−1. (3.39)

4. At time t = P , y(P −τ) = 1 and y(P ) = ymax. These conditions imply

y(P − τ ) = 1 = (ymin − b−1) exp(−b(P − τ − tm)) + b−1, (3.40)

ymax = (ymin − b−1) exp(−b(P − tm)) + b−1. (3.41)
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Figure 3.6: Effect of p. Bifurcation diagram of the extrema of y for the
Mackey equation. τ = 1.73. The middle line is the steady-state. The upper
and lower broken lines are the approximations of the extrema for p large.

Eliminating (ymin − b−1) exp(−b(P − tm)), we obtain ymax as

ymax = (1 − b−1) exp(−bτ) + b−1. (3.42)

The expressions (3.38) and (3.42) for the extrema of the oscillations are
compared to the numerical solutions in Figure 3.6. The top figure corre-
sponds to the value of p estimated by Mackey. The two Hopf bifurcation
points located at b = 0.16 and b = 0.92 limit a domain of unstable steady
states. The estimated value of b = 7.45×10−2 for the normal RBC circula-
tion is clearly below the first Hopf point and corresponds to a stable steady
state. The bottom figure corresponds to a large value of p and we note a
better agreement between numerical and analytical values except near the
two Hopf bifurcation points (b = 0.05 and b = 1.04). As p → ∞, the Hopf
bifurcation becomes more and more vertical near b = 0 and b = 1, respec-
tively. The analysis of the bifurcation diagram near b = 0 and b = 1 for p
large is possible but is not a routine application of singular perturbation
techniques.

3.3.2 Pupil light reflex

The idea of using piecewise constant feedback goes beyond the approxi-
mation of a strong negative feedback. Piecewise constant feedback allows
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Figure 3.7: From J. Milton in Beuter et al. [25].

precise comparisons between experiments and theory as illustrated by the
study of the pupil light reflex [162]. The reflex is a delayed negative feedback
neural control mechanism that regulates the retinal light flux by changing
the pupil area. The feedback is typically like the aperture in a camera: if
the retinal light flux φ is too high, the pupil light reflex decreases the pupil
area A and hence φ; if φ is too low, φ is increased by increased A. However,
the feedback is time-delayed: pupil size does not change immediately in
response to a change in illumination, but starts to react after a delay τ of
about 300 msec. See Figure 3.7. If the gain and/or τ in the feedback loop
becomes sufficiently large, sustained oscillations in the pupil area with a
period T, where 2τ < T < 4τ , were predicted theoretically. Direct experi-
mental verification has been facilitated by the development of techniques to
“clamp” the pupil light reflex. Clamping refers to techniques in which the
feedback loop is first “opened” and then “reclosed.” The main interest of
this technique, referred to as piecewise constant negative feedback, is that
it allows an analytical insight of the delay-induced oscillations. A recent
review of the problem and its mathematical modeling is given by Milton in
[25]. Under normal physiological conditions, we do not expect to see spon-
taneous regular oscillations in A. However, the gain in the pupil light reflex
can be easily increased by focusing a narrow light beam at the pupillary
margin. Despite the simplicity of this technique, systematic observations
are difficult because many patients are distracted by the positioning of the
light beam at the edge of their pupil. To overcome this difficulty, a known
feedback is inserted into the reflex arc in a noninvasive way (clamping).
The pupil area oscillations are then controlled experimentally using piece-
wise constant types of feedback: the light is either on or off depending on
the value of the pupil area relative to certain area thresholds. A minimal
model equation describing the pupil area change has been studied in detail
by Milton and Longtin [163]. It has the form

α−1 dA

dt
+A =

Aon if A(t− τ ) > Aref

Aoff otherwise, (3.43)
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where the right-hand side corresponds to piecewise constant feedback. As
for Eq. (3.36) we may construct an analytical solution of the long-time
periodic solution by connecting two distinct solutions. Equation (3.43)
is slightly different from Eq. (3.34) because Aoff �= 0, Aon �= 1, and
Aref �= 1. Moreover, the rate constants for pupil movements significantly
differ for constriction (α = αc) and dilation (α = αd). The delay times for
constriction and dilatation are taken equal (τ c = τd = τ). The extrema of
the oscillations and the period are given by

Amin = Aon + (Aref −Aon) exp(−αcτ ), (3.44)
Amax = Aoff + (Amin − Aoff ) exp(−αd(P − tm)), (3.45)

and

P = 2τ +
1
αc

ln(
Amax −Aon

Aref −Aon
) +

1
αd

ln(
Amin −Aoff

Aref −Aoff
). (3.46)

The values of the parameters are listed in the following table2 and the
comparison with the experiments is shown in Figure 3.8.

Parameters Symbol Value
Total delay τ 380 ms
Rate of pupil contriction αc 4.46 s−1

Rate of pupil dilation αd 0.42 s−1

Initial pupil area Aon 11.8 mm2

Minimum pupil area after a 2 s light pulse Aoff 34.0 mm2

Figure 3.8: Experiment (left) and theory (right). Aref = 25 mm2 (redrawn
from J. Milton in Beuter et al. [25]).

2The parameters were estimated from pupil cycling experiments. The total delay
time is the neural time delay (280 ms) + machine time delay (100 ms). From Subject
A, Table 2 in Milton and Longtin [163].
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3.3.3 Periodic breathing

Mathematical models of the human respiratory control system have been
developed since 1940 [65, 122, 18, 127]. The phenomena collectively referred
to as periodic breathing or PB (including Cheyne–Stokes respiration and
apneustic breathing) have important medical implications. In this section,
we consider a purely quantitative approach of PB that allows treatment
using widely understood clinical concepts.

A cyclic breathing pattern characterized by a smooth rise and fall in ven-
tilation with cycle lengths ranging from ∼25 to 100 s (10−2 − 4× 10−2 Hz)
is frequently observed in chronic heart failure (CHF) patients and is com-
monly referred to as periodic breathing (PB), or usually when separated
by apnea, Cheyne–Stokes respiration [191]. Often, the same patient may
exhibit a continuum of different patterns of breathing, ranging from normal
breathing to mild PB up to cyclic periods of apnea. These patterns are also
influenced by wakefulness or sleep, posture, and physical and mental activ-
ity. The physiological mechanisms responsible for PB in CHF patients are
still a matter of debate. Two major hypotheses, however, have received the
most attention in the last two decades. The “central” hypothesis explains
PB as the result of a central vasomotor rhythm that modulates ventilation
either indirectly through modulation of blood flow or directly through cen-
tral irradiation to respiratory centers. The “instability” hypothesis, on the
contrary, explains PB as a self-sustained oscillation due to loss of stability
in the close loop chemical control of ventilation. The instability hypothesis
has gained wider acceptance mainly because of its sound theoretical basis
using mathematical models of the respiratory control system. These studies
have shown that increased circulatory delay and loop gain brought about
by the decreased cardiac output of CHF patients may lead to instability in
their feedback control of ventilation.

While the exchange of gases take place in the lungs, the control of the
rate of ventilation is accomplished in the brain. There, in the respiratory
center, changes in carbon dioxide pressure of are detected and this leads
to changes in the rate of breathing. Fluxes of CO2 into and out of the
lung arise from metabolism, ventilation,and exchange with blood stores.
Metabolic production is assumed constant and denoted by M . The rate of
CO2 removal from the lung by ventilation is expressed as pV (p(t−τ)) where
V (p) is nonlinear and τ is the delay (say 0.25 min) between ventilation of
the blood and the measurement of p at the respiratory center in the brain.
The transport of blood from the lungs back to the heart and then to the
brain takes time. Oscillations in arterial CO2 necessitate a net transfer of
CO2 from the lung into extrapulmonary stores and are described by W (p).
The rate of increase of lung CO2 stores is VLdp/dt where VL is the alveolar
volume and it satisfies

VL
dp

dt
= M − pV (p(t− τ)) −W (p). (3.47)
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We assume that there exists a steady-state solution p = p0. The linearized
equation for the small deviation u = p− p0 then is

VL
du

dt
= u(V (p0) +W ′(p0))u − p0V

′(p0)u(t− τ). (3.48)

The coefficients appearing in (3.48) are all measurable quantities [68]. V (p0)
is the mean value of alveolar ventilation. W ′(p0) = βQ where β is the solu-
bility of CO2 in blood and Q is the cardiac output. V ′(p0) = S is called the
chemoreflex gain. Substituting u = u0 exp(σt) leads to the characteristic
equation

στ + x+ y exp(−στ ) = 0 (3.49)

where the coefficients x and y are defined by

x ≡ (V (p0) +W ′(p0))τ
VL

and y ≡ p0V
′(p0)τ
VL

. (3.50)

PB is considered as a oscillatory instability resulting from a Hopf bifurca-
tion. Substituting σ = iω into (3.49), we obtain the following conditions
from the real and imaginary parts:

x+ y cos(ωτ ) = 0, (3.51)
ωτ − y sin(ωτ ) = 0. (3.52)

A parametric solution for y = (x) is possible and is given by

y =
ωτ

sin(ωτ)
and x = −ωτ cot(ωτ ). (3.53)

Clinical measurements of x and y are shown in Figure 3.9. The almost
straight line that separates patients with PB and patients without PB is
given by (3.53) (0.5π < ωτ < 0.9π). For the 10 patients with PB, the
observed cycle time averaged 1.2 ±0.2 min and using P/τ = 2π/ωτ, the
delay is about 0.3 to 0.5 min.

3.3.4 Genetic oscillations

Gene expression is regulated by transcription factors which themselves
are gene products. The resulting system of genetic interactions are in-
terconnected dynamical systems, which generally generate oscillatory
instabilities. Genetic oscillations are observed in a growing number of
systems.

The best-studied examples of genetic oscillators are circadian clocks [53]
and cell cycle oscillators [230]. More recently, oscillations involved in the
segmentation of vertebrates [193] and oscillations of the tumor suppres-
sor p53 [17] and of the NFκ−IκBα signaling module [97] have received
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Figure 3.9: Observed values of x and y in patients with PB (squares) pa-
tients without PB (triangles), and normal controls (circles). The line is the
Hopf boundary line (data taken from Francis et al. [68]).

gene transcription

mRNA

protein
translation

nucleus

–

Figure 3.10: Delayed Hes1 negative feedback loop. The first process is the
transcription and the export of the hes1 mRNA from the nucleus to the cy-
toplasm. The second process is the synthesis of Hes1 protein by translation
of the hes1 mRNA. Both the transcription and the translation contribute
to delay the feedback. Finally, the inhibition of the transcript initiation
from the hes1 gene is controlled by the Hes1 protein.

attention. In order to understand the role of oscillatory gene expression,
the study of simple models has proven to be extremely valuable [77]. The
simplest case of a feedback oscillator is represented by a gene, its prod-
uct and the corresponding mRNA (see Figure 3.10). If the gene product
inhibits transcription of mRNA, the gene expression can oscillate if the
time between the beginning of transcription and the end of translation can
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be represented by a time delay in the self-inhibitory system [169]. This
mechanism has been proposed to provide the basis of segmentation oscil-
lations [141]. Furthermore the p53-Mdm2 and the NFκB−IκBα systems
can successfully be described using the same ideas. Oscillators based on
autoinhibition with time delay possess the property that the oscillations
period is mainly determined by the time delay and depends only weakly
on the average protein expression rates [169].

Here, we review the analysis by Monk [169] for the oscillatory expres-
sion of Hes1 protein. The model is further developed in [23]. The analysis
is based on the experiments by Hirata et al. [95] who observe that the
transcription of messenger RNAs (mRNAs) for notch signaling molecules
exhibits a two-hour cyclic behavior. Monk [169] and Jensen et al. [114] in-
dependently proposed to take into account the relatively large time delay
for transport between the cell nucleus and the cytoplasm. Here the delay
τ represents the lengthy processes of translation, transcription, and so on.
See Figure 3.10. Denoting the concentrations of Hes1 mRNA by M and
Hes1 protein by P , the minimal system of equations is given by

dM

dt
= αmG(P (t− τ )) − μmM, (3.54)

dP

dt
= αpM − μpP, (3.55)

where μm and μp are the rates of degradation of mRNA and protein, respec-
tively. αm is the rate of transcript initiation in the absence of Hes1 protein,
αp is the rate at which Hes1 protein is produced from hes1 mRNA, and
G(P (t − τ )) is a monotonic decreasing function representing the delayed
repression of hes1 mRNA production by Hes1 protein. G takes the general
form

G(P ) =
1

1 + (P/P0)n
, (3.56)

where P0 is called the repression threshold and n is a Hill coefficient that
determines the steepness of G. The delay τ represents the sum of the tran-
scriptional and translational time delays. We may reduce the number of
independent parameters by introducing the following dimensionless vari-
ables

m ≡ μm

M

αm
, p ≡ P

P0
, and s ≡ μmt. (3.57)

Inserting (3.57) into (3.54) and (3.55), we obtain

dm

ds
=

1
1 + p(s− θ)n

−m, (3.58)

a
dp

ds
= bm− p, (3.59)

where
θ ≡ μmτ , a ≡ μm/μp, and b ≡ αpαm

μpμm

1
P0
. (3.60)
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The values of the parameters considered by Monk [169] and the values of
the dimensionless parameters θ, a, and b are listed in the following table.

Parameter Value
μm = μp 0.03 min−1

τ 18.5 min
P0/(αmαp) 100 min2

n 5
θ 0.56
a 1
b 11.11

The steady-state solution m(b) and p(b) is given in implicit form as

b = p(1 + pn) and m = (1 + pn)−1. (3.61)

From the linearized equations, we then determine the characteristic equa-
tion for the growth rate σ. It has the form

σ2 + σ(1 + a−1) + a−1

(
1 +

npn

1 + pn
exp(−σθ)

)
= 0, (3.62)

where we eliminated b using the first steady-state expression in (3.61). The
bifurcation parameter now is p instread of b. Inserting σ = iω into (3.62),
we obtain the two Hopf conditions from the real and imaginary parts. They
are given by

−ω2 + a−1

(
1 +

npn

1 + pn
cos(ωθ)

)
= 0, (3.63)

ω(1 + a−1) − a−1 npn

1 + pn
sin(ωθ) = 0. (3.64)

Keeping a fixed, we seek an analytical solution for the Hopf boundary in the
p versus θ plane. To this end, we introduce the rescaled frequency x ≡ ωθ
and eliminate npn/(1 + pn) between the two equations. This leads to a
quadratic equation for θ of the form

θ2 tan(x) + θx(1 + a) − ax2 tan(x) = 0. (3.65)

Having θ as a function of x, we use Eq. (3.64) to determine p. Solving for
pn, we obtain

pn =
x(1 + a)

(nθ sin(x) − x(1 + a))
. (3.66)

The Hopf bifurcation boundary is shown in Figure (3.11) for a = 1. There
is a minimal value of θ below which a Hopf bifurcation is not possible. A
vertical asymptote in the b versus θ stability diagram corresponds to the
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Figure 3.11: Hopf stability boundaries for a = 1 and n = 5, 4, and 3. The
dot is located at (θ, b) = (0.555, 11.11).
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Figure 3.12: Periodic solution for n=5, θ=0.56, a=1, and b=11.11.These
values correspond to an unstable steady state located close to the Hopf
stability boundary.

limit b → ∞ or qn → ∞. From Eqs. (3.63) and (3.64) with a = 1, we
determine

ω∞ =
√
n− 1 and θ∞ =

1√
n− 1

arcsin(
2
√
n− 1
n

). (3.67)

Figure 3.12 shows the periodic solution.
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3.4 Human postural control

Upright stance in humans is inherently unstable [186]. A small sway devia-
tion from a perfect upright position results in a torque due to gravity that
accelerates the body farther away from the upright position. To maintain
upright balance, the destabilizing torque due to gravity must be countered
by a corrective torque exerted by the feet against the support surface.
This control is achieved by the detection of body-sway motion through vi-
sual, vestibular,3 and proprioceptive sensory4 systems. In the laboratory,
stimulus–response data are analyzed using spectral analysis to compute
transfer functions. The latter are then fitted with numerically obtained
transfer functions using a simple feedback control model. The model then
provides estimates on postural stiffness, damping, and feedback time delay.

The simplest model of body sway in quiet standing is provided by an in-
verted pendulum pivoted at the ankle joint [187]. See Figure 3.13. Balancing
the torques provides the biomechanical model for the body sway θ given by

I
d2θ

dt2
= mgh sin(θ) + Tc. (3.68)

In Eq. (3.68), m is the mass of the body (m = 85 kg), I is the moment of
inertia about the ankle joints (I = 81 kg m2), h is the height of center mass

Figure 3.13: Feedback model of the eyes closed postural control system.
The body is modeled as an inverted pendulum. Body position in space (θ)
is sensed by the graviceptive system. A neural controller models the cor-
rective torque Tc generated in response to the internal orientation estimate
y (Fig. 2 modified with permission from Peterka and Loughtin [187]).

3The vestibular system (or balance system) is a sensory system that provides in-
formation on our movement and orientation in space. Together with the cochlea, the
auditory organ, it is situated in the vestibulum in the inner ear.

4Proprioception is the sense of the relative position of neighboring parts of the body.
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above the ankle joint axis (h = 0.9 m), and Tc is the corrective torque about
the ankle joint. The internal body-orientation estimate y is provided by the
graviceptive sensory system and has the form y = −Wθ where the weight
W (t) can vary in time but is typically close to 1 for eye-closed stance.
The neural controller that takes into account both position and velocity
information produces the corrective torque Tc as a function of y at time
t−td. It can be described as Tc = KP y(t−td)+KDdy(t−td)/dt+KI

∫
y(t−

td)dt where KP = 970 N m rad−1, KD = 344 N m s rad−1, KI = 86
N ms−1rad−1, and td = 0.175 s were estimated from experimental data
[187, 163]. Introducing the dimensionless time s =

√
mgh/It, Eq. (3.68)

simplifies as
d2θ

ds2
= sin(θ) +M, (3.69)

where

M = −aθ(s− τ) − b
dθ(s− τ )

ds
− c

∫
θ(s− τ )ds (3.70)

and

a =
KP

mgh
W, b =

KD√
mghJ

W, c =
Ki√

(mgh)3/J
, and τ =

√
mgh/Itd.

(3.71)

Using the values of the parameters listed above, we find a = 1.29 W rad−1,
b = 1.32 W rad−1, c = 0.04 W rad−1, and τ = 0.53. Because c � a, b, we
may neglect the integral contribution to the corrective torque.

We next analyze the stability of the equilibrium position θ = 0 by lin-
earizing Eqs. (3.69) and (3.70) with c = 0. Our objective is to determine the
region of stability in the a versus τ diagram. The characteristic equation
for the growth rate σ is

σ2 = 1 − a exp(−στ ) − bσ exp(−στ ) (3.72)

The case of purely real eigenvalues can be treated analytically by studying
the inverse function a = a(σ)

a =
(
1 − σ2

)
exp(στ) − bσ. (3.73)

From this analysis, we find that σ < 0 provided that a > 1. We next
consider the case of a Hopf bifurcation. The conditions for a Hopf bifurca-
tion are obtained by inserting σ = iω into Eq. (3.72). From the real and
imaginary parts, we find

ω2 + 1 − a cos(ωτ) − bω sin(ωτ ) = 0, (3.74)
a sin(ωτ) − bω cos(ωτ ) = 0. (3.75)

From the last equation, we find a as

a = bω cot(ωτ) (3.76)
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and eliminating a in (3.74) gives

ω2 + 1 − bω/ sin(ωτ ) = 0. (3.77)

Equations (3.76) and (3.77) provide a solution for a = a(τ ) in parametric
form

τ =
1
ω

arcsin(
bω

1 + ω2
) > 0, (3.78)

a =
√

(1 + ω2)2 − b2ω2. (3.79)

See Figure 3.14.
For τ = 0.53, the equilibrium position θ = 0 is stable if 1 < a < 2.2. If we

consider the Hopf bifurcation frequency at τ = 0.53 (ω � 1.3) as an esti-
mate of the oscillatory frequency, we find f = 0.63 Hz (f = ω

√
mgh/I/2π)

which is in the 1 Hz range observed experimentally.
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Figure 3.14: Stability region delineated by the Hopf bifurcation σ = ±iω
and the line where σ = 0. The critical point (τ, a) = (b, 1) corresponds to a
double zero eigenvalue (ω = 0). The square marks the experimental point
(τ , a) = (0.53, 1.29).
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3.5 The inverted pendulum

Physically related to the postural control problem, the control of an in-
verted pendulum is a classic problem that has applications to both bio-
logical and mechanical balancing tasks. Stick-balancing experiments are
a noninvasive method to learn how the nervous system reacts when a
person acquires new skills and how it becomes accustomed to a specific
task.

Cabrera and Milton [39] investigated experimentally the vertical dis-
placement of a stick balanced at the fingertip. The observations are re-
produced by a simple model for an inverted pendulum based on Newton’s
laws. A time-delayed feedback with parametric noise describes the effect
of the neural control of balance (see Stépán and Kollár [214] who used a
Lagrangian approach). Specifically, an inverted pendulum of massm, length
l, and moment of inertia I = ml2/3 is subject to three forces namely, its
weight, friction, and a restoring force applied by the hand, that depends
on the angular deviation at time t− τ . Balancing torques, the equation of
motion (without noise) is of the form

Iθ′′ + γl2θ′ −mgl sin(θ) + r0lθ(t− τ ) = 0, (3.80)

where prime means differentiation to time t. The minus sign multiplying
sin(θ) is because we have taken θ = 0 to be the upright position. Introducing
s ≡ t/τ, Eq. (3.80) can be rewritten in dimensionless form as

θ′′ + Γθ′ − q sin(θ) +R0θ(s− 1) = 0, (3.81)

where prime now means differentiation with respect to time s. The dimen-
sionless coefficients are defined by

Γ ≡ 3γτ
m

, q ≡ 3gτ2

l
, and R0 ≡ r0

3τ2

ml
. (3.82)

In addition to the zero solution, Eq. (3.81) admits a nonzero steady state
given by (in implicit form)

R0 =
q sin(θ)

θ
. (3.83)

We next investigate the stability of the equilibrium position θ = 0. From
the linearized equation, we determine the following characteristic equation
for the growth rate σ

σ2 + Γσ − q +R0 exp(−σ) = 0. (3.84)

There exist two distinct stability boundaries corresponding to either σ = 0
or σ = iω. In the first case, we find from (3.84) R0 = q (r0 = mg).
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It corresponds to the bifurcation point to the nonzero steady-state solution
(3.83). The second case implies the two conditions

−ω2 − q +R0 cos(ω) = 0, (3.85)
Γω −R0 sin(ω) = 0. (3.86)

We wish to investigate these equations in terms of the feedback rate r0
and delay τ. Using (3.82), Eqs. (3.85) and (3.86) become

−ω2 − 3gτ2

l
+

3τ2r0
ml

cos(ω) = 0, (3.87)

γω − r0τ

l
sin(ω) = 0. (3.88)

Using (3.88), we eliminate r0 in Eq. (3.87) and obtain a quadratic equation
for τ

3g
l
τ2 − γω

3
m

cot(ω)τ + ω2 = 0. (3.89)

Solving for τ = τ (ω), we then compute r0 = r0(ω) from (3.88) as

r0 =
γlω

sin(ω)
1
τ
. (3.90)

The stability boundaries are shown in Figure 3.15. We have not analyzed
the stability of the nonzero steady states. Considering τ = 0.07 as in [39],
we have verified numerically that the upper boundary is a supercritical

τ

r0

0.0

0.5

1.0

1.5

2.0

τ
0.0 0.1 0.2 0.0 0.1 0.2

R0

0.0

0.5

1.0

1.5

2.0

3 steady states 

θ = 0
stable 

θ =
 0 

sta
bl
e

3 steady
states

Figure 3.15: Stability boundaries. Left: Stability domain of θ = 0 in terms of
r0 and τ . Right: Same stability domain in terms of R0 ≡ 3r0τ2/(ml) and τ
as shown in [39]. The values of the parameters are: l = 0.62 m, m = 0.035
kg, γ = 0.1 kg s−1, and g = 9.81 ms−2. The thin line corresponds to a
bifurcation point from the zero to the nonzero steady states. The thicker
line is a Hopf bifurcation line. The dot marks a double zero eigenvalue.
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Hopf bifurcation to stable oscillations and the lower stability limit is a
steady bifurcation to stable non-zero steady states.

The pupil eye reflex, the postural control, and the stick-balancing exper-
iments are based on the fact that perceiving a stimulus and initiating an
action take about 0.1 s each because of the time electrical impulse needs to
travel through nerve cells. By the time a person’s hand is trying to grasp
a moving object, say a ball, the hand’s position is being guided by infor-
mation that is already 0.2 s old. The ball may have slightly changed its
trajectory. Researchers believe the visual-motor system accounts for this
delay by predicting an object’s trajectory and moving the body in accor-
dance with that prediction, like a quarterback throwing the ball ahead of
a running receiver. In [112], the authors asked people to use a computer
mouse to track a moving target on a screen. The results confirmed that
the hand motion precedes on the average the target motion suggesting one
way the brain’s visual-motor system compensates for the lag time between
perception and action.



4
Bernoulli’s equation

Daniel Bernoulli (1700–1782) disclosed the equation used most frequently
in engineering hydraulics in 1738 (Hydrodynamica). This equation relates
the pressure, velocity, and height in the steady motion of an ideal fluid. The
modern form of his equation is v2/2+p/ρ+gz = cst, where v is the velocity
at a point, p the pressure, ρ the density, g the acceleration of gravity, and z
the height above an arbitrary reference level. The simplest derivation comes
from the conservation of energy and Bernoulli himself took an equivalent
approach.

The application of Bernoulli’s equation leads to simple physical laws. In
the classical problem of a hole in the side of a tank, we imagine a streamline
beginning at the free surface, where the velocity is zero, and extending
into the jet a distance h below. The pressures at the two points are the
same: atmospheric. From Bernoulli’s equation, we then get v =

√
2gh.

Another simple law relates the change of velocities to the change of pressure
in a horizontal tube. If the output velocity is zero, the input velocity is
v =

√
2Δp/ρ where Δp is defined as the change of pressure.

What happens if Bernoulli flow undergoes delayed feedback? This occurs
when a control is acting on the flow either artificially through an external
device (see Section 4.3) or naturally through a physiological control (see
Section 4.2). Another interesting case appears for reed wind instruments
such as the clarinet where the delay comes from the round trip of a pressure
wave in the pipe (See Section 4.1).

T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials 75
in the Applied Mathematical Sciences 3, DOI 10.1007/978-0-387-74372-1 4,
c© Springer Science+Business Media, LLC 2009
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4.1 The clarinet

Sound production in reed wind instruments is the result of self-sustained
oscillations. A mechanical oscillator, the reed, acts as a valve that modu-
lates the air flow entering into the mouthpiece. See Figure 4.1. The desta-
bilization of the mechanical element is the result of a complex aeroelastic
coupling among the reed, the air flow into the instrument driven by the
mouth pressure of the musician, and the resonant acoustic field in the in-
strument itself. Following McIntyre et al. [149], wind instruments can be
described in terms of a lumped model formed by a closed feedback loop
operating as a self-sustained oscillator. In their model, the loop is made of
two elements, a lumped nonlinear element (the mouthpiece) and a linear
passive element (the resonator, that is, the instrument itself). The mod-
eling and measurement of the resonator have been studied extensively by
many authors but the nonlinear element and its action have only recently
been addressed.

The nonlinear element can be defined by a relationship between the pres-
sure difference across the reed and the volume flow at the inlet of the pipe of
the instrument. By modulating the aperture height H(t) between the reed
and the mouthpiece, the musician controls the volume velocity u(t) through
the reed slit. The latter is related to the pressure difference Δp ≡ pm − p
through the Bernoulli equation

u = wH

√
2Δp
ρ
, (4.1)

u

p

pm

mouth

reed

mouthpiece

pipe

H

p+

p−

Figure 4.1: Schematic description of the clarinet. The physical model of a
clarinet combines a passive resonator (the pipe) and a nonlinear element
(the mouthpiece). An aeroelastic instability leads to self-sustained oscilla-
tions that produce the sound of the instrument. The reed acts as a valve
that modulates the air flow entering into the mouthpiece. H(t) (0− 1 mm)
is the aperture height and u is the air volume velocity (100−2000 cm3s−1).
It depends nonlinearly on the pressure difference Δp = pm −p between the
mouth pressure pm (0 − 150 hPa) and the acoustic pressure p(t) in the
mouthpiece. The latter is the sum of the positive and negative plane wave
pressures at the input (p+ and p−, respectively).
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where w is the width of the slit and ρ is the density of air. The reed is
assumed to behave as an ideal spring characterized by its stiffness K. H(t)
then is a linear function of the pressure difference Δp given by

H = H0(1 − Δp
pM

) (4.2)

if Δp ≤ pM ≡ KH0 and is zero if Δp > pM . H0 is the opening at rest. Using
(4.2), we eliminate H in (4.1) and find u as a function of the normalized
pressure difference Δp/pM . It is given by

u = F (p) ≡ u0(1 − Δp
pM

)

√
Δp
pM

if Δp ≤ pM ,

= 0 if Δp > pM . (4.3)

The function has a typical parabolic form starting from Δp = 0 and ending
at Δp = pM . The volume velocity parameter u0 is the only parameter and
is defined by

u0 ≡ wH0

√
2KH0

ρ
. (4.4)

Its value ranges from 100 to 2000 cm3s−1.
We next need to take into account the effect of the resonator. The acous-

tic pressure p(t) and the volume velocity u(t) are related to the outgo-
ing and ongoing plane wave pressures p+ and p− as p = p+ + p− and
u = Z−1

c (p+ − p−) where Zc = ρc/S is the characteristic impedance of the
pipe and S is its cross-section area. Equivalently, we may express p+ and
p− in terms of p and u as

p+ =
1
2
(p+ Zcu), (4.5)

p− =
1
2
(p− Zcu). (4.6)

The outgoing and ongoing wave pressures are related. The simplest way is
to assume that

p− = −p+(t− τ ), (4.7)
where τ = 2L/c is the round-trip time of a wave at speed c along the pipe
of length L.1 The main weakness of this lossless model is the fact that it
allows periodic oscillations for every mouth pressure above the threshold
of oscillations and that it shows no extinction phenomenon. Atig et al. [7]

1More precisely, we assume a delayed delta function for the reflection coefficient of

the form r(t) = −δ(t − τ). The positive and negative plane-wave pressures are related
by the convolution integral as p− = r(t) ∗ p+(t), and after inegration, we obtain (4.7).
For (4.8), the reflection function is given by r(t) = − exp(−2αL)δ(t − τ).
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have recently demonstrated that losses are responsible for this extinction
phenomenon. Dalmont et al. [50] take into account losses by assuming that

p− = − exp(−2αL)p+(t− τ ), (4.8)

where α is defined as a frequency-independent absorption coefficient. Using
(4.5) and (4.6), Eq. (4.8) can be rewritten as

p− Zcu = − exp(−2αL)(p(t− τ ) + Zcu(t− τ )). (4.9)

This equation is a difference equation from which we may formulate a map
relating (p, u) = (pn, un) and (p, u) = (pn−1, un−1). The equation for the
map has the form

pn − Zcun = − exp(−2αL)(pn−1 + Zcun−1). (4.10)

We next rewrite our equations in dimensionless form by introducing xn

and yn defined by

xn ≡ Zc

PM
un and yn ≡ pn

PM
. (4.11)

In terms of xn and yn, Eqs. (4.10) and (4.3) become

yn − xn = − exp(−2αL)(yn−1 + xn−1), (4.12)
xn = F (yn), (4.13)

where

F (y) ≡ ζ(1 − γ + y)
√
γ − y if γ − y ≤ 1,

= 0 if γ − y > 1. (4.14)

The new bifurcation parameter γ and the fixed parameter ζ are defined by

γ ≡ pm

pM
and ζ ≡ Zcu0/pM . (4.15)

A square-wave periodic solution (period 2τ) satisfying the condition
xn+2 = xn and yn+2 = yn is the simplest periodic solution. It is the funda-
mental regime (first register) and its bifurcation diagram defines the playing
range of the instrument. Using Eq. (4.12) for two successive steps leads to
the following problem

y2 − x2 = − exp(−2αL)(y1 + x1), (4.16)
y1 − x1 = − exp(−2αL)(y2 + x2), (4.17)

where we have used y3 = y1 and x3 = x1 to simplify the left-hand side
of Eq. (4.17). Adding and substracting Eqs. (4.16) and (4.17) leads to the
following equations

y2 + y1 = (x2 + x1) tanh(αL), (4.18)

y2 − y1 =
1

tanh(αL)
(x2 − x1). (4.19)
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Two types of periodic regimes are possible: the nonbeating reed regime and
the beating reed regime for which one of the two states of the reed is held
motionless against the lay (say x2 = 0). We first concentrate on the beating
reed regime. Assuming x2 = 0, we determine y2 and y1 from Eqs. (4.18)
and (4.19). We find

y1 = x1/ tanh(2αL) and y2 = −y1/ cosh(2αL). (4.20)

We then use x1 = F (y1) where F (y) is defined in (4.14) and obtain an
equation for y1 only of the form

βy1 = (1 − γ + y1)
√
γ − y1 (γ − y1 < 1), (4.21)

where
β = tanh(2αL)/ζ. (4.22)

Equation (4.21) is valid provided x2 = 0, that is, provided γ− y2 > 1. The
critical point satisfying the condition γ − y2 = 1 defines the beating reed
threshold. Using (4.20), this condition can be rewritten as

γ = 1 − y1
cosh(2αL)

(4.23)

and after eliminating γ in Eq. (4.21), we find

y1 =
1

1 + sech(2αL)

[

1 −
(

β

1 + sech(2αL)

)2
]

. (4.24)

If losses are weak (αL� 1 and β� 1), y1 � 0.5 and γ � 0.5.
Equation (4.21) can be reformulated as a cubic polynomial in y1. Alterna-

tively, we can express the solution in parametric form. This is suggested by
the observation that γ in Eq. (4.21) always appears combined with γ − y1.
Introducing the parameter z as

y1 = γ − z (4.25)

Eq. (4.21) leads to

γ = z + (1 − z)
√
z/β (4.26)

and then using (4.25)
y1 = (1 − z)

√
z/β. (4.27)

Together with (4.26), (4.27) provides the solution y1 = y1(γ) by changing z
continuously (0 ≤ z ≤ 1). See Figure (4.2). The branch starts at the critical
point where γ − y2 = 1 (beating reed threshold where x2 = 0). It reaches
a limit point at γ = γextup. From (4.26) and the condition dγ/dz = 0, we
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Figure 4.2: Bifurcation diagrams representing the pressure in the mouth-
piece y1 = p1/PM as a function of mouth pressure γ = pm/PM . β = 0.2.
Different evolutions are obtained if we increase (a) or decrease (b) γ. La-
bels O and � denote the threshold of oscillation and beating reed threshold,
respectively.

obtain the following quadratic equation for
√
z : −3(

√
z)2 + 2β

√
z + 1 = 0

leading to
√
z = (β −

√
β2 + 3)/3. In the limit β small, we have z � 1/3

meaning

γextup � 2
3
√

3
β−1. (4.28)

Because γthdown = 1, the domain of the hysteresis loop in Figure 4.2 de-
creases if β is increased.

The nonbeating regime where both x1 and x2 are nonzero is more difficult
to determine analytically. However, if tanh(αL) is sufficiently small, there
is a simple approximation obtained by setting tanh(αL) = 0 in (4.18) and
(4.19). We successively find x2 = x1, y2 = −y1, and finally

y1 = −y2 �
√

(3γ − 1)(1 − γ). (4.29)

Equation (4.29) describes the branch of periodic solutions in Figure 4.2
emerging from the oscillation threshold at γ = 1/3 to the beating reed
threshold at γ = 1/2.

Figures 4.3 show experimental recording investigating the influence of
the reed opening. A small reed opening leads to a small playing range.
From (4.15) with (4.4), decreasing H0 implies decreasing ζ and then from
(4.22) an increase of β.

When a clarinet is blown with increasing mouth pressure the reed
begins to oscillate as the pressure surpasses the threshold of oscilla-
tions and stops as the pressure reaches the threshold of extinction.
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Figure 4.3: Acoustical pressure as a function of the mouth pressure during
(a) crescendos and (b) decrescendos. The three curves in each figure cor-
respond to three different embouchures. Tight, medium and slack refers to
H0 = 0.37, 0.53, and 0.79 mm, respectively. Reprinted from Atig et al., [7],
with permission from Elsevier.

See Figure 4.2. Above this threshold, the reed is held motionless against
the lay. We have found that losses in the pipe significantly affect the value
of the extinction threshold and, consequently, the maximum power of the
instrument.

An essential nonlinearity comes from the Bernoulli equation, v =√
2Δp/ρ, which relates the volume velocity u = wH(t)v of the flow

through the reed channel and the pressure difference Δp on both sides
of the reed. It is based on the asumption that the kinetic energy of the
jet entering the instrument is completely dissipated into turbulence dur-
ing its expansion in the mouthpiece. Flow-induced vibrations such as the
musical sound produced by a reed instrument can be seen as the loss
of stability of a mechanical oscillator interacting with a continuous flow.
Another documented example of such aeroelastic instability is human
snoring.

4.2 Sleep disorders

Sleep disorders affect a measurable segment of the population. Conse-
quently, normal and abnormal functions of the airway are extensively stud-
ied from a medical point of view. Two of these disorders, namely snoring
and obstructive sleep apnea (OSA) are defined as disorders of the upper air-
way. The upper airway stretches from the nasal and oral inlets to the larynx
(or vocal box), as shown in Figure 4.4. Snoring describes the audible sound
generated by a fluttering soft palate. OSA mainly affects the pharyngeal
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Figure 4.4: Upper airway narrowing is known as a predisposing factor for
snoring and obstructive sleep apnea. It occurs in the pharynx near the soft
palate. Reprinted from Aurégan and Depollier [9], with permission from
Elsevier.

x

x0

Fe

V lungFr FB

Figure 4.5: Airway model. A collapsible segment is represented as a section
of length L, width W , and depth x. It is supported by a spring with elastic
constant K and is connected to the rigid upper airway having resistance
(R) to flow (V ).

region, collapsing it fully or partially, thereby restricting the airflow to
the lungs. This flow-induced instability can also be caused by large de-
flections of the soft palate. Theories of snoring include the early work of
Gavriely and Jensen [71], where steady Bernoulli flow with pressure loss
due to upper airways resistance enters a spring-loaded channel section.
The resulting nonlinear model predicts either flutter oscillations around a
neutral wall position, or closure (obstruction) instability, where the chan-
nel height decreases to zero as the wall mass overshoots its equilibrium.
The model predictions for the closure time course compared favorably with
sound recordings of snores. Figure 4.5 gives a schematic representation of
the upper airways as described by Gavriely and Jensen [71]. A collaps-
ing segment is represented as a section of length L with a rectangular
cross-section of width W and depth x. The moveable wall of the collapsible
segment is assumed to have a massm and to be supported by a linear spring
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with a Hooke spring constant K. Its neutral position is at x = x0. A con-
stant mean V is assumed in the inspiratory direction. The upper airways,
from the collapsible section to the airway opening, are assumed to have a
linear flow resistance (R). The intra-airway pressure in the collapsible seg-
ment has two components: a pressure drop due to the viscous resistance of
the upper airways (Pr = V R) and a Bernoulli effect pressure across the
collapsible segment (PB = 1

2ρ (V/(Wx))2 where ρ is the gas density). The
subatmospheric pressure beneath the movable wall tends to pull it closer
to the opposing wall and to reduce x.

The equation of motion of the plate takes into account all forces and is
given by

m
d2x

ds2
= Fe − Fr − FB , (4.30)

where s is time. The elastic viscous resistance and Bernoulli forces are
defined by

Fe ≡ K(x0 − x), Fr ≡ PrLW = V RLW,

FB ≡ LWPB = LW
1
2
ρ

(
V

Wx

)2

. (4.31)

In this purely mechanical model, the neuromuscular reflex is ignored. Huang
and Williams [103] coupled snoring mechanics with neurological responses,
which tend to contract (stiffen) pharyngeal muscles (walls). If the elastic
forces are insufficient to maintain the stability of the airway, neuromus-
cular functions become crucial. However, these functions are very much
reduced during sleep, and the muscle reflex mechanism may have a time
delay of several cycles of oscillations experienced during snoring. Huang
and Williams assumed that following a delayed signal from the neural re-
ceptors, the dilator muscle opposes the collapsing tendency by increasing
the wall stiffness by an amount proportional to the negative pressure at
time s− T. Huang and Williams [103] formulated a linearized theory and
ignored the viscous resistance. Here, we add the delayed rescuing force in
Eq. (4.30) and find

m
d2x

ds2
= Fe − Fr − FB + α [Fr(s− T ) + FB(s− T )] , (4.32)

where α is a dimensionless parameter. Its value is unknown but the range
of T is available for muscle reflex during wakefulness and sleep. Introduc-
ing the dimensionless variables and parameters defined in [71], Eq. (4.32)
simplifies as

d2y

dt2
+ δ

dy

dt
= 1 − y − q(1 − α) − μq2

2

[
1
y2

− α

y2(t− τ )

]
, (4.33)

where we have added damping and the damping parameter δ is small and
positive. The parameter q is proportional to the inspiratory flow V and μ



84 4. Bernoulli’s equation

is independent of V . Using reasonable values of the physical parameters,
Gavriely and Jensen [71] estimated the values of q and μ for normal breath-
ing conditions close to 0.3 and 1, respectively. The steady-state solutions
satisfy the following equation

1 − y − q(1 − α) − μq2

2
1 − α

y2
= 0. (4.34)

Taking the derivative of Eq. (4.34) with respect to y indicates that
dq/dy > 0 (dq/dy < 0) if

1 − μq2

y3
(1 − α) < 0 (> 0). (4.35)

The bifurcation diagram for two different values of α is shown in
Figure 4.6. If α = 0, only the upper branch is stable [71]. We examine
the linear stability of the steady states if α �= 0. The linearized problem is
given by

d2u

dt2
+ δ

du

dt
+ u− μq2

y3
(u− αu(t− τ)) = 0. (4.36)

Introducing u = exp(λt) into Eq. (4.36) leads to the following characteristic
equation

λ2 + δλ+ 1 − μq2

y3
(1 − α exp(−λτ)) = 0. (4.37)
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

α=0

α=0.2

collapse
closure

Figure 4.6: Steady-state solutions. The upper and lower branches corre-
spond to stable (center) and unstable (saddle) steady state solutions, re-
spectively. μ = 1 and α = 0 or α = 0.2. The neuromechanical effect is
stabilizing because the limit point above which collapse appears is moved
to a larger value of q.
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Assuming τ small and expanding the exponential in (4.37), we find

λ2 + (δ − μq2

y3
ατ )λ+ 1 − μq2

y3
(1 − α) � 0, (4.38)

where we note a decrease of the damping coefficient multiplying λ. This
crucial point was already observed by Huang and Williams [103]. If the
damping coefficient becomes negative, flutter occurs and this instability
results from the muscle rather than the flow. The critical point where the
damping coefficient is zero corresponds to a Hopf bifurcation point given by

τH =
δy3

μq2α
(4.39)

in the τ = O(δ) → 0. The oscillatory instability occurs as soon as τ > τH

which suggests that τ needs to be sufficiently small in order to guarantee
stability. But we need to remember that our analysis is valid if τ = O(δ).
If τ is arbitrary, we need to determine the Hopf stability boundary in a
different way. Introducing λ = iω into Eq. (4.37) leads to the two Hopf
conditions for the frequency ω and amplitude q2/y3:

ω2 − 1 +
μq2

y3
(1 − α cos(ωτ )) = 0, (4.40)

δω − μq2

y3
α sin(ωτ ) = 0. (4.41)

The numerical solution of the first Hopf boundary is shown in Figure 4.7.
The lowest broken line is given by (4.39). The upper broken line is given by

τ =
π

√
1 − μq2(1 + α)y−3

(4.42)

4.3 Cascaded control of a liquid level system

A classical liquid level control system is perhaps the simplest example of a
Bernoulli problem where the delay may play a major role [31]. In Figure 4.8,
the control variable is the inlet flow rate into the tank. The outlet flow is
assumed to be turbulent such that a nonlinear Bernoulli equation relates
the liquid level to the outlet flow rate. The mass balance equation is of the
form

dx

ds
= c1(us + u) − c2

√
hs + x (4.43)

where x ≡ h−hs is the liquid level deviation from its steady-state value and
us is the steady state inlet flow rate satisfying the steady-state condition
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Figure 4.7: First Hopf bifurcation line (full line). μ = 1, α = 0.2, and
δ = 0.01. The broken lines are the asymptotic approximations for δ → 0.
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Figure 4.8: Experimental set-up.

c1us = c2
√
hs. The coefficient c1 is the inverse tank cross-sectional area

and c2 is related to the valve coefficient of the outlet orifice. Introducing
the new variables y ≡ c22x, t ≡ c22s, and the new parameters v ≡ c1u and
c ≡ c1us, Eq. (4.43) simplifies as

dy

dt
= c+ v −

√
y + c2. (4.44)
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We next introduce a cascaded control scheme. The inner loop consists of a
PI (Proportional-Integral) controller of the form

v = −k1(y − yset) − k2

∫ t

0

(y − yset)dt, (4.45)

where k1 and k2 are defined the proportional and integral gains, respec-
tively. The outer loop is controlled by a proportional controller with gain
k and delay τ of the form

yset = ky(t− τ ). (4.46)

The integrodifferential delay equation (4.44)–(4.46) can be rewritten into
a set of DDEs by introducing the new variable

z ≡ −k2

∫ t

0

(y − yset)dt (4.47)

into (4.45) and by differentiating (4.47). We then obtain

dy

dt
= c− k1(y + ky(t− τ)) + z −

√
y + c2, (4.48)

dz

dt
= −k2(y + ky(t− τ)). (4.49)

From the linearized equations for y = 0, we determine the characteristic
equation for the growth rate σ. It is given by

(1 + k exp(−στ))(σk1 + k2) + σ2 + σ/2c = 0. (4.50)

The Hopf bifurcation boundaries are obtained by inserting σ = iω into
(4.50) and by separating the real and imaginary parts. We obtain the fol-
lowing two conditions for k and τ ,

k cos(ωτ) = A ≡ ω2(k2 − k1/2c)
k2
2 + k2

1ω
2

− 1, (4.51)

k sin(ωτ) = B ≡ ω(k1ω
2 + k2/2c)

k2
2 + k2

1ω
2

. (4.52)

The possible solutions are obtained by continuously changing ω from a
large negative value to a large positive value and by computing k = k(ω)
from k =

√
A2 +B2. Knowing k = k(ω), we then determine τ = τ (ω) using

Eq. (4.51). The possible solution branches are

τ = τ1(n) ≡ (arccos(A/k) + 2nπ)/ω, (4.53)
τ = τ2(m) ≡ (− arccos(A/k) + 2mπ)/ω, (4.54)
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Figure 4.9: Hopf stability boundaries. Left: Stability diagram in terms of
τ versus k. The Hopf bifurcation lines 1 and 2 correspond to n = 0 and
m = 1, respectively. Regions 1, 2, and 1+2 represent the domains of os-
cillations with frequency ω1, frequency frequency ω2, and quasiperiodic
oscillations with frequencies ω1 and ω2, respectively. Right: Hopf bifurca-
tion frequencies associated with the Hopf lines 1 and 2. The values of the
fixed parameters are k1 = −0.8, k2 = 1, and c = 1/2.

where n = 0, 1, ... and m = 1, 2, ... are integers. Figure 4.9 represents the
Hopf bifurcation lines in the (k, τ) parameter space for n = 0 (line 1)and
m = 1 (line 2). The two lines cross at the double Hopf point located at

(k∗, τ∗) = (0.5969, 4.2565). (4.55)

This Hopf bifurcation corresponds to two pair of imaginary eigenvalues or
two different frequencies given by

ω∗
1 = 0.5918 and ω∗

2 = 1.3556. (4.56)

The experiments used a cylindrical clear plastic tank with diameter of 20
cm and height of approximatively 110 cm. The inlet at the top of the tank
was fed through a one inch pneumatic control valve. The height was inferred
by measuring the hydrostatic pressure at the bottom of the tank with a
Teledyne pressure transducer. The signal from the pressure transducer was
sent to the computer which in turn output the appropriate delayed signal
to the control valve (Figure 4.8). Figure 4.10 shows the experimental Hopf
bifurcation points in the (k, τ) parameter space. These points were deter-
mined at fixed delay τ by increasing k until the system was destabilized.
The gain k was then decreased to check for any hysteresis. In all these ex-
periments, the stability boundary did not exhibit any hysteresis suggesting



4.3 Cascaded control of a liquid level system 89

Figure 4.10: Experimental stability boundary. A crossing of two distinct
Hopf bifurcation lines with Hopf frequencies ω1 and ω2 occurs near τ = 60 s.
As τ increased from 52 to 58 s, the Hopf frequency jumps from a low to
a higher value. Reprinted from Boe and Chang [31], with permission from
Elsevier.

Figure 4.11: Experimental time traces of the liquid level oscillations for k
slightly above its Hopf bifurcation value. Reprinted from Boe and Chang
[31], with permission from Elsevier.
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that the Hopf bifurcation is supercritical. The measured Hopf bifurcation
frequency ω exhibits a discontinuity at a delay close to 55 s. It jumps from
0.059 rad s−1 to 0.130 rad s−1 as τ increases from 52 to 58 s.

The experimental traces shown in Figure 4.11 investigate the transition
from high to low values of τ . For τ = 58 s and τ = 52 s, the system ex-
hibits high-frequency and low-frequency oscillations, respectively. Between
these two regimes, the system exhibits a nonperiodic behavior suggesting
quasiperiodic with the two frequencies ω1 and ω2.

In summary, we found that a delayed control induces several Hopf bi-
furcations characterized by different frequencies. Depending on the param-
eters, the Hopf bifurcation lines in parameter space may cross generating
double Hopf bifurcation points. Near those points, the dynamical response
of the system can be rich and includes jumps between oscillations at dif-
ferent frequencies or quasiperiodic oscillations. The bifurcation analysis at
and near a double Hopf bifurcation is analyzed in detail in Chapter 7.



5
Chemistry

Chemists have been making a serious study of the rates of reactions since
the middle of the 19th century. Often they found that the rates were
proportional to the concentrations of the substances that were reacting
together. In 1892, however, Adrian John Brown, Professor of Malting and
Brewing at Birmingham found that the rate of fermentation of sucrose
in the presence of yeast seemed to be independent of the amount of su-
crose present [35]. Ten years later, he explained his results by assuming
that the invertase molecules present in yeast formed an addition com-
plex with sucrose [36]. This was the first time that the existence of an
enzyme–substrate complex was deduced from the kinetics of an enzyme
reaction.1 Brown thought that the enzyme–substrate complex needed
a fixed lifetime to decay rather than decaying by the usual first-order
rate law [36]. Although the idea was not popular at the time of Brown,
there is evidence today that we need to take into account the duration
of conformational changes that take place at the molecular level during
the catalytic cycle of the monomer [2]. Moreover, there has been a re-
newed interest for DDEs since the end of the 1990s and, in particular,
for model reduction [202, 54, 94]. Consider the following sequence of re-
actions modeling the enzymatic transformation of a substrate S into a
product P

1While writing his paper, Brown became aware of the work by Victor Henri [89] who
wrote down a mathematical expression for the rate of the enzymatic reaction that we
now know as the Michaelis–Menten reaction [160].

T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials 91
in the Applied Mathematical Sciences 3, DOI 10.1007/978-0-387-74372-1 5,
c© Springer Science+Business Media, LLC 2009
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S + E
k0→ C1

k1→ ... Cn
kn→ E + P. (5.1)

The question is whether we may describe this cascade of reactions (5.1) by
the following reaction

S + E
delay−→ P + E (5.2)

if the number of intermediates N is sufficiently large. In 2004, Hinch and
Schnell [94] showed that the rate of P is directly related to the decrease of
S as

dS

dt
= −R(t) and

dP

dt
� R(t− τ) (5.3)

provided that τ ≡ ∑N
i=2 k

−1
i � k−1

1 . The inclusion of the delay simplifies
the mathematical description of the kinetic model because we don’t need
to know all its details such as the kj .

In a different setting, delay cannot be ignored in industrial applications
where recycling of unreacted reagents reduces the cost of the reaction.
The output stream of a continuously stirred tank reactor (CSTR) is sent
through a separation process. Then the unreacted reagents are returned
into the reactor by traveling through pipes. This process requires a finite
amount of time and will introduce a delay into the model because both the
concentration of the reagents and the temperature in the reactor depend on
some time in the past. In practice (industry), however, it is quite common
to ignore the recycle delay and to use standard ODE models [29, 234, 185].
In the 1980s, chemical engineers had the idea to stabilize unstable states in
bistable chemical systems by using feedback controls. On the practical side,
the deliberate operation of chemical reactors near or at an unstable steady
state could allow for a higher yield and/or selectivity. In 1984, Zimmermann
et al. in [247] used a delayed feedback loop to stabilize the unstable branch
of steady states of an illuminated thermochemical reaction. Photochemical
reactions offer a convenient opportunity to introduce delays because it is
relatively easy to vary the intensity of illumination in response to the value
of some measured property at an earlier time.

Although Zimmermann et al. [247] successively stabilized unstable steady
states using a delayed feedback with a small delay, the delay is not the
mechanism responsible for the stabilization of the unstable steady states
but rather a clever feedback design. Nevertheless, the authors discovered
that limit-cycle oscillations appear if the delay is sufficiently large and that
these oscillations result from a Hopf bifurcation mechanism. In the first part
of this chapter, we review their work on the illuminated thermochemical
reaction and then consider a different bistable system which was investi-
gated by Laplante in 1989. In the second part of this chapter, we examine
strongly oscillating chemical reactions subject to a weak delayed feedback.
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5.1 Illuminated thermochemical reaction

When gaseous S2O6F2 is illuminated at 488 nm, only the product SO3F
absorbs the light, which is converted to heat. As a result of the heating,
the equilibrium shifts to the right, causing more SO3F to be produced,
and increasing further the amount of light absorbed. The reaction thus
exhibits a form of autocatalysis. If the incident light intensity is slowly
varied, the system shows hysteresis between a high-monomer and a low-
monomer steady state [246]. We next describe the formulation of the rate
equations. The gaseous reaction mixture

S2O6F2 � 2SO3F

at a total fixed pressure p0, is contained in a cell of length l, with the
walls of the cell held at a temperature Tb. A laser beam of radius r and
power Φ0 is incident on a small region of the cell at a wavelength absorbed
only by SO3F. The system is defined as the volume of the cell illuminated
by the beam. The absorbed light causes the temperature rise which drives
the thermochemical system out of equilibrium. Energy is lost through the
boundaries by heat transfer. The state of the system is described by the
concentration of SO3F and by the temperature [X (in mol cm−3) and T
(in K), respectively]. Their kinetic equations are given by

dX

dt
= k2

[α
T

exp(−ΔH/RT )(
p0

RT
−X) −X2

]
, (5.4)

C
dT

dt
= A(X)Φ0 − β(T − T0) − λ

dX

dt
, (5.5)

where A(X) ≡ 1 − exp(−εXl). Equation (5.4) is the chemical kinetic re-
lation for the reaction including the pressure constraint. Equation (5.5)
is the thermal energy balance equation. The terms in the right-hand side
of Eq. (5.5) represent, respectively, the power input due to absorption ac-
cording to Beer’s law, the heat transfer rate from the system, and the rate
of enthalpy change due to chemical reaction. A is the total absorption of
light by the reaction mixture that can be measured directly. Φ0 is the light
power measured in W.

5.1.1 Reformulation

Introducing the dimensionless variables x ≡ X/X0, θ ≡ T/T0, and s ≡ t/t0
where

X0 ≡ 1
εl
, T0 ≡ Tb and t0 ≡ 1

k2X0
, (5.6)
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we rewrite Eqs. (5.4) and (5.5) as

dx

ds
=

1 − aθx

θ2
exp

[
E(

1
θ∗

− 1
θ
)
]
− x2, (5.7)

c
dθ

ds
= A(x)Φ0 − b(θ − 1) − Λ

dx

ds
, (5.8)

where
A(x) ≡ 1 − exp(−x). (5.9)

The new parameters E, θ∗, a, b, c, and Λ are defined by

E ≡ ΔH
RT0

, exp(E/θ∗) ≡ αp0

RX2
0T

2
0

, a ≡ RT0X0

p0
,

b ≡ βT0, c ≡ CT0k2X0, and Λ ≡ λk2X
2
0 . (5.10)

Using the values of the parameters documented in [247], we find X0 =
5 × 10−7mol cm−3, T0 = 333 K, and t0 = (1/750). The values of the
parameters are listed in the following table.

parameters values
E 33.33
θ∗ 1.29
a 4.26 × 10−2

c 0.51 W
b 0.81 W
Λ 3.38 × 10−2

We note that a and Λ are small. Neglecting them, Eqs. (5.7) and (5.8)
simplify as

x′ =
1
θ2

exp
[
E(

1
θ∗

− 1
θ
)
]
− x2, (5.11)

cθ′ = AΦ0 − b(θ − 1), (5.12)

where A is given by (5.9). In parametric form, the steady state solution is
given by

x =
1
θ

exp
[
E

2
(

1
θ∗

− 1
θ
)
]
, (5.13)

Φ0 =
b(θ − 1)

1 − exp(−x) . (5.14)

The analytical steady state solution is compared to the exact numerical
solution in Figure 5.1.
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Figure 5.1: Full and broken lines represent the exact steady state and its
approximation, respectively. The upper and lower branches are stable and
the middle branch is unstable. There is no Hopf bifurcation.

5.1.2 Feedback

Zimmermann et al. [247] introduce a simple feedback in the light power
Φ0. The light output of the feedback loop is given by

Φ0(t+ τ) = C1 + C2(1 −A(t))Φ0(t), (5.15)

where C1 and C2 are two new parameters. The incident power Φ0 is no
longer a constraint parameter as it is the system without feedback but is
now a dependent variable coupled to the concentration X and the temper-
ature T . In terms of the dimensionless time variable s, Eq. (5.15) for Φ0

becomes
Φ0(s+ sd) = C1 + C2(1 −A(s))Φ0(s), (5.16)

where sd ≡ τ/t0 = 0.75ms−1×τ and τ is measured in ms. The steady-state
solutions of Eqs. (5.11), (5.12), and (5.16) now satisfy the three conditions

1
θ2

exp
[
E(

1
θ∗

− 1
θ
)
]
− x2 = 0, (5.17)

AΦ0 − b(θ − 1) = 0, (5.18)
−Φ0 + C1 + C2(1 −A)Φ0 = 0. (5.19)

If C1 is our new control parameter, the steady-state solution admits the
parametric solution (5.13) and (5.14), and

C1 = −C2(1 −A)Φ0 + Φ0. (5.20)
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Thus, the steady-state curve θ = θ(Φ0) obtained in the absence of feed-
back has not changed. The stability of the steady-state solutions can be
investigated from the linearized equations [247]. If the delay is sufficiently
large, Hopf bifurcation to stable periodic solutions is possible. See Figure
(5.2). They have been observed experimentally (Figure 5.3).

Φ0
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θ
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1.5

0.9

1

Figure 5.2: Emergence of limit-cycle oscillations as sd > 0.82 (τ � 1.09 ms).
Two limit-cycles have been obtained numerically from Eqs. (5.11), (5.12),
and (5.16) for sd = 0.9 and sd = 1, respectively. The values of the parame-
ters E, c, b, θ∗ are listed in the previous table. C1 = 0.2625 and C2 = 0.8.

Figure 5.3: Experimental limit-cycle in the (A,Φ0) plane. C2 = 1.5 and
τ = 40 ms. The dashed curve is the stable upper absorption branch ob-
tained by slowly changing C1 from high to low values. At the point marked
by a dot, the steady state becomes unstable and the system spirals out to a
limit-cycle (solid closed curve). Three revolutions have been recorded and
the arrows indicate the direction of motion of the cycle reprinted with per-
mission from Zimmermann et al. [247] Copyright 1984 American Institute
of physics.
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5.2 The bistable iodate–arsenous acid reaction

Under excess arsenous acid conditions, the iodate–arsenous acid reaction
in a continuously stirred tank reactor can be conveniently described by a
first-order nonlinear equation [137],

dY

dT
= (k1 + k2Y )(X0 + Y0 − Y )Y +K(Y0 − Y ), (5.21)

where Y (= [I−]) denotes the concentration of iodide and T is time. X0

(= [IO−
3 ]0) and Y0 (= [I−]0) represent the reactant stream concentra-

tions of iodate and iodide, respectively. k1 and k2 are defined as k1 =
kB1[H+]2k1 = kB1[H+]2 where kB1 and kB2 are kinetic constants. K is
the reciprocal residence time and is proportional to the total flow rate.
Equation (5.21) can be simplified if we introduce the following dimension-
less variables

y =
Y

X0
, t = k1X0T, and k =

K

k1X0
. (5.22)

In terms of (5.22), Eq. (5.21) becomes

dy

dt
= y(1 + αy)(1 + δ − y) + k(δ − y). (5.23)

The dimensionless parameters α, δ, and k are defined by

α =
k2X0

k1
=
kB2X0

kB1
, δ =

Y0

X0
, and k =

K

k1X0
. (5.24)

The values of the original parameters and α and δ are given in the following
table.

kB1 4.5 × 103 M−1s−1

kB2 4.5 × 108 M−1s−1

[H+] 1.097 × 10−2 (pH = 1.96)
X0 7.1 × 10−4 M
Y0 3.2 × 10−5 M
α 71
δ 0.045

The steady state solution y = y(k) is given by (in implicit form)

k =
y(1 + αy)(1 + δ − y)

y − δ
(5.25)

Laplante [137] proposed to determine the unstable steady states by con-
trolling the flow rate at the successive times t = tn ≡ nt0 (n = 0, 1, 2, ...).
A simpler form of his algorithm is given by

kn+1 = kn + c(yn+1 − yn). (5.26)
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Figure 5.4: Stabilization of an unstable steady-state. The system is first
resting at the stable steady state (20.72, 0.06) (Point 1). k is quickly
changed to zero (Point 2). The value of k is then sequentially changed
following the algorithm (5.26). c = 100, t0 = 0.04.

Figure 5.4 shows a numerical simulation leading to the stabilization of an
unstable steady state. The first four steps are documented in the following
table.

n tn yn kn

0 0. 0.060 0
1 0.04 0.075 1.52
2 0.08 0.096 3.57
3 0.12 0.122 6.18

Proceeding in this way, Laplante [137] determined the branch of unstable
saddle-node steady states (see Figure 5.5). The success of this control strat-
egy is essentially the result of the two-dimensional phase-plane (y, k) with
restriction of the growth of y(t) (arrows in Figure 5.4). Although several
delayed control strategies have successfully stabilized unstable foci near
Hopf bifurcation points, they seem unable to stabilize saddle-node steady
states [126, 102]. If Laplante were to redo his experiment today, he would
presumably use the adaptive controller used by his colleague J. L. Hudson
[195]. To stabilize an unstable steady state, the parameter k is perturbed
by an adaptive feeback

k = k0 + c1(w − y), (5.27)
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Figure 5.5: Iodate–arsenous acid bistability showing the experimental sta-
ble steady states (solid symbol) and unstable states (open symbol). An
iodide-selective electrode was used to monitor the iodide concentration. The
figure repesents the iodide electrode potential as a function of the total flow
rate (proportional to k). Reprinted with permission from Laplante [137]
Copyright 1989. America Chemical Society.
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Figure 5.6: Stabilization of the unstable steady state located at (k, y) =
(19.55, 0.3) using an adaptive feeddback Initial conditions are y(0) = 0.4
and w(0) = 0.3. The values of the control parameters are c1 = −30 and
c2 = 1.

where w is a dynamical variable of the controller that satisfies

w′ = c2(w − y). (5.28)

Figure 5.6 shows a numerical example.
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Interest in the stabilization of unstable steady states persisted in the
1990s but now for oscillatory chemical reactions [96, 182, 183]. Because the
unstable steady states are unstable foci, the feedback delay will have an
significant effect [102]. At the same time several delayed feedback control
techniques were tested to stabilize unstable time-periodic orbits in chemical
systems [209, 140, 182] as well as in other fields [27, 28, 215].

5.3 Weak delayed feedback

5.3.1 Experiments

In 2003, Beta et al. [24] investigated an oscillatory surface chemical reaction
(CO oxidation on platinum) and studied the effect of a delayed feedback
by controlling the partial pressure of one of the reactants. The control was
of the form p = p0 + α(I − I(t − τ)) where p and I denote the pressure
of CO and the integral intensity of a photoemission electron microscope
image, respectively (see Figure 5.7). The delay τ is of the same order of
magnitude as the period T of the homogeneous limit-cycle oscillations (T =
2 − 10 s). By progressively increasing the value of τ, they observed that
the period exhibits a jump transition from T > τ to T < τ suggesting
the possibility of a Z-shaped branch of periodic regimes (see Figure 5.8).
However, the existence of two stable regimes for the same value of τ could
not be demonstrated experimentally because of technical difficulties. In an
earlier study, Weiner et al. [241] were more successful. They examined the
effect of delay on the oscillations of the minimal bromate oscillator in a
continuous stirred tank reactor. These authors controlled the flow rate as
k = k0

[
1 + β(C(t− τ ) − Cav)C−1

av

]
where C denotes the concentration of

ceric ions Ce4+, Cav is a constant reference value, and τ ranges from zero to
three times the period of the oscillations without delay (T ∼ 102 s). They
recorded the period of the oscillations by progressively increasing and then

PEEM

I(t) I(t - τ) - I(t)

GAS

Figure 5.7: PEEM: photoemission electron microscope
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Figure 5.8: Period of the homogeneous oscillations versus the delay
reprinted Fig. 3 with permission from Beta et al. [24]. Copyright 2003 by
the American physical Society.
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Figure 5.9: Dots: experimental data. Data taken from Figure 3 with permis-
sion from Weiner et al. [241]. Copyright 1989. American chemical society.

decreasing τ and found three successive regions where low- and large-period
oscillations may coexist (see Figure 5.9). Although Beta et al. [24] could
not obtain a similar bifurcation diagram, they provided a first analytical
explanation of the phenomena. Close to a supercritical Hopf bifurcation
(ε2 = λ − λc � 1) and in limit of weak feedback (δ = O(ε3)), only the
phase of the nearly harmonic oscillations is affected by the delay. If the
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delayed feedback control is linear, the phase φ(t) of the oscillations satisfies
an equation of the form

φ′ = ω0 + ε2ω2 + δF (Δ), (5.29)

where F is a harmonic function of Δ ≡ φ(t − τ) − φ of the form
F = a + b sin(Δ + c). The two first contributions for φ′ are the Hopf
bifurcation frequency ω0 and its nonlinear correction ε2ω2. The small δ
contribution describes the effect of the delayed control. Equation (5.29)
admits constant frequency solutions of the form φ = Ωt + φ0 where Ω
satisfies

Ω = ω0 + ε2ω2 + δF (−Ωτ). (5.30)

The solution τ = τ(Ω) can be analyzed by inverting the function F .
We illustrate this analysis by considering the case ω2 = a = b− 1 = c = 0.
Equation (5.30) then reduces to

Ω = ω0 − δ sin(Ωτ ) (5.31)

which leads to the implicit solution

τ = Ω−1 arcsin
(
ω0 − Ω
δ

)
. (5.32)

The period T = 2π/Ω is shown in Figure 5.10.
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Figure 5.10: Period of the oscillations: ω0 = 2 and δ = 1.
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5.3.2 A piecewise linear oscillator

The theory leading to the phase equation (5.29) is limited to the near vicin-
ity of a Hopf bifurcation and the requirement of very weak feedback. But
most of our experimentally studied chemical oscillators exhibit strongly
pulsating relaxation oscillations and we wish to examine the effect of de-
layed feedback on such an oscillator. To this end, we consider a minimal
two-variable model described by the following equations,

εx′ = y − f(x), (5.33)
y′ = −x+ δ(x(t− τ ) − x), (5.34)

where ε� 1 and f(x) is a piecewise linear function of x given by

f(x) = −x (|x| ≤ 1),
= x− 2 (x > 1),
= x+ 2 (x < 1). (5.35)

The model mimics two variable kinetic models of chemical oscillators
exhibiting relaxation oscillations.2 If δ= 0, Eqs. (5.33) and (5.34) re-
duces to

εx′ = y − f(x), y′ = −x, (5.36)

and admits a limit-cycle solution in the phase-plane (x, y) (see Figure 5.11).
The oscillations consist of slow evolutions connected by fast transition lay-
ers (see Figure 5.12). If ε→ 0, these oscillations approach a discontinuous
limit satisfying

y0 = f(x0) and y′0 = −x0. (5.37)

Using (5.35), the solution is easily obtained as

x0 = 3 exp(−t), y0 = x0 − 2 (0 < t ≤ t0 = ln(3)),

x0 = −3 exp(−(t− t0)), y0 = x0 + 2 (t0 < t ≤ T0 = 2t0). (5.38)

This analytical solution is useful in our analysis of the DDE problem.
If 0 < δ� 1 we note that the amplitude of the oscillations does not

change very much but the period T as a function of the delay admits
an interesting behavior. See Figure 5.13. The period varies between two

2The relaxation oscillations of the Belousov–Zhabotinskii reaction is analyzed in a
two-variable phase plane in [172] p 268 and [65] p 149; the two-variable model for the
chlorine diode–iodine–malonic acid is described in [219] p 256.
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Figure 5.11: Limit-cycle solution for δ = 0 and ε = 10−2. The broken line
represents the function y = f(x).

t
200 201 202 203 204 205

–4

–3

–2

–1

0

1

2

3

4

x(t)

y(t)

Figure 5.12: Relaxation oscillations for δ = 0 and ε = 10−2. The period of
the oscillations is T1 = 2.32.

extrema and exhibits bistability if τ is sufficiently large. The two extrema
of the period can be explained as follows. First, we seek a particular solution
satisfying

x(t− τ ) = x(t). (5.39)
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Figure 5.13: Progressive emergence of bistable cycles for the period T as
a function of the delay τ . The figure has been obtained by progressevely
increasing and then decreasing τ . ε = 10−2 and δ = 0.1.

Inserting (5.39) into Eqs. (5.33) and (5.34), we obtain (5.36) which admits
a limit cycle solution of period T1 (note: T1 → T0 as ε → 0). We then
conclude that (5.39) is satisfied if

τ = nT1 (5.40)

for n = 0, 1, 2... Second, we seek another particular solution satisfying

x(t− τ ) = −x(t). (5.41)

Inserting (5.41) into Eqs. (5.33) and (5.34), we obtain

εx′ = y − f(x), y′ = −x(1 + 2δ). (5.42)

These equations admit a limit-cycle of period T2 < T1 (note: T2 → T0/(1+
2δ) as ε → 0). Because x(t − T2/2) = −x(t), we conclude that (5.41) is
satisfied if

τ = (1 + 2n)
T2

2
(5.43)

for n = 0, 1, ....
In order to demonstrate the bistability phenomenon, we now apply a

technique developed by Grasman [79]. In the limit ε → 0, Eqs. (5.33) and
(5.34) reduce to

0 = y − f(x), (5.44)
y′ = −x+ δ(x(t − τ ) − x), (5.45)
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or equivalently, the single DDE for x,

x′ = −x+ δ(x(t− τ ) − x) (5.46)

supplemented by the conditions

x = −3 if x < 1 and x = 3 if x > −1. (5.47)

If 0 < δ� 1, the delayed feedback is too weak for changing the amplitude of
the oscillations but it may change the phase of the oscillations. Introducing

x = x0(φ(t)) (5.48)

into Eq. (5.46) and using the fact that dx0/dφ = −x0, we obtain

dφ

dt

dx0

dφ
= −x0 + δ(x0(φ(t− τ )) − x0),

dφ

dt
= 1 + δ − δ

x0(φ(t− τ ))
x0

. (5.49)

We now seek a solution of Eq. (5.49) of the form φ = φ0(t, s)+δφ1(t, s)+ ...
where s ≡ δt is defined as a slow time variable. The leading problem,
φ0t = 1, admits the solution

φ0 = t+ ψ(s), (5.50)

where ψ(s) is unknown. The next problem for φ1 then reduces to

φ1t = −ψs + a− x0(t+ ψ(s− δτ) − τ )
x0(t+ ψ(s))

, (5.51)

where we assume δτ = O(1).We wish that φ1 remains bounded with respect
to the fast time t. This implies the solvability condition

dψ

ds
= a− F (Δ), (5.52)

where

F (Δ) ≡ 1
T

∫ T

0

x0(ζ + Δ)
x0(ζ)

dζ (5.53)

and Δ = ψ(s+ δτ)− ψ − τ is assumed constant in the ζ integral. We next
seek a solution of (5.52) of the form

ψ = σs+ ψ0 (5.54)

and compute F (Δ) where Δ reduces to

Δ = −(1 + δσ)τ (5.55)
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and is assumed negative. We find

F =
exp(−Δ)

t0

[
t0 +

4Δ
3

]
(0 < −Δ < t0),

=
exp(−Δ)

3t0

[
−4Δ

3
− 7t0

3

]
(t0 < −Δ < 2t0), (5.56)

0.0 0.5 1.0 1.5 2.0 2.5

− Δ

F

–1.0

–0.5

0.0

0.5

1.0

2t0t0

Figure 5.14: The phase-shift function F as a function of −Δ > 0.

Figure 5.15: Period as a function of τ for the reduced DDE problem (ε = 0).
The dots have been obtained numerically (δ = 0.1). The line is the analyt-
ical approximation valid in the limit δ small.



108 5. Chemistry

where t0 = ln(3). The function is represented in Figure 5.14. Injecting
(5.54) into Eq. (5.52), we find that σ satisfies the following equation

σ = 1 − F (Δ), (5.57)

where Δ is defined by (5.55). This equation admits an analytical solution
in parametric form. From (5.55), we obtain

τ =
−Δ

1 + δσ
=

−Δ
1 + δ(1 − F (Δ))

. (5.58)

Equations (5.57) and (5.58) provide a parametric solution for σ = σ(τ )
where Δ is the parameter. The period is then computed as T = 2π/(1+δσ).
It is shown by a full line in Figure 5.15 and agrees quantitatively with the
numerical solution.
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Mechanical vibrations

6.1 Control engineering

Control engineering saw rapid development in many countries in the pe-
riod immediately following the Second World War. Research groups were
set up in industrial, academic, and government laboratories. Heretofore se-
cret wartime work was widely disseminated, and new military, industrial,
and other applications of the emerging discipline were identified. Alexandr
Aleksandrovich Andronov (1901–1952) was a key figure in the development
of control engineering in the former Soviet Union during this period, yet
his name, and his contributions to control theory and nonlinear dynam-
ics, are much less well known in the West than they deserve [30]. Major
figures in the promulgation of his work in the English-speaking world in-
clude Princeton mathematician Solomon Lefschetz (e.g., in [4], [131]) and
Nicholas Minorsky [164]. The latter performed an invaluable service by
reporting the Soviet state of the art in a set of (at first classified) U.S. gov-
ernment reports, which formed the basis of later published texts. Lefschetz
was convinced that the Soviet nonlinear oscillation research was a vital field
of applied mathematics that had been neglected in the United States. In
the context of heavy military support for basic research created by World
War II and the Cold War, he set up a “project on differential equations”
most specifically devoted to nonlinear equations [8], p.291.

DDE problems naturally appear in control engineering. Any system in-
volving a feedback control will almost certainly involve time delays. These
arise because a finite time is required to sense information and then react

T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials 109
in the Applied Mathematical Sciences 3, DOI 10.1007/978-0-387-74372-1 6,
c© Springer Science+Business Media, LLC 2009
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to it. In the 1930s and 1940s, studies began of certain stabilization prob-
lems in which delay plays a role (Minorsky1 [164]). Consider, for example,
a system whose motion is described by the following second order linear
equation

y′′ + ay′ + y = 0. (6.1)

The solution of this equation with arbitrarily specified initial conditions is
a function that decays exponentially toward zero. Let us assume that the
solution is underdamped (a2 < 4) and we wish to somehow increase the
damping coefficient a in order to diminish the oscillations more rapidly.
If our system is a spring-mass system then we might simply immerse the
whole system in motor oil. However, if, as in Minorsky’s case, our system
is a ship rolling in the sea and y is the angle of tilt from the normal upright
position [166] (Figure 6.1), we must be more ingenious. We might, for
example, introduce ballast tanks, partially filled with water, on each side
of the ship. We would also have a servomechanism designed to pump water
from one tank to the other in an attempt to counteract the roll of the ship.
It is hoped that this will introduce another term proportional to y′ in the
equation say, by′ :

y′′ + ay′ + by′ + y = 0. (6.2)

Figure 6.1: Ship rolling and its control. Two ballast tanks are partially filled
with water on each side of the ship. A servomechanism pumps water from
one tank to the other trying to counteract the roll of the ship (redrawn
from Driver [164]).

1Nicholas Minorsky (1885–1970) contributed to several problems in ship navigation.
In 1922 he presented a detailed analysis of a position feedback control system which
today is refered to as Proportional-Integral-Derivative (PID) control [165]. Minorsky
was born in Russia and studied at the Imperial Technical School in St. Petersburg. He
joined the Russian Navy in 1917 but immigrated to the U.S. in 1918. His experiments
with the U.S. Navy on PID control started in 1922. The work was successful but he
didn’t pursue it.
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But now we need to recognize that the servomechanism cannot respond
instantaneously. The control takes τ > 0 to respond and therefore the
control term is proportional to the velocity at the earlier instant t − τ.
Thus instead of Eq. (6.2), we should consider

y′′ + ay′ + by′(t− τ ) + y = 0. (6.3)

But what would happen if the delayed control was too slow? Could the force
by′(t − τ ) initiate some undesired instability? We analyze this problem in
the next section by assuming small values of a and b.

6.2 The method of multiple scales

Equation (6.1) with y(0) = 0 and y′(0) = 1 has an exact solution. Its
expression simplifies for small a as

y = exp(−at/2) sin(t) +O(a). (6.4)

The expression (6.4) displays the product of two functions with distinct
time-scales, namely a fast time t and a slow time s ≡ at. This suggests
seeking a solution of the DDE (6.3) for small a and b = O(a) that is a
function of both t and s. Specifically, we introduce a small parameter ε
defined by

ε ≡ a (6.5)

and expand b as
b = εb1 + ... . (6.6)

We then seek a solution of Eq. (6.3) of the form

y = y0(t, s) + εy1(t, s) + ..., (6.7)

where s ≡ εt is defined as a slow time variable. In the method of multiple
scales [22, 124], the two times t and s are treated as independent variables.
This implies the chain rules

y′ = yt + εys

y′′ = ytt + 2εyts + ε2yss, (6.8)

where the subscripts mean partial derivatives with respect to t or s. The
two independent time variables also mean that y(t − τ ) is now a function
of both t− τ and s− ετ . Expanding for small ε, we have

y(t− τ) = y(t− τ, s− ετ ) = y(t− τ , s) − ετys(t− τ , s) + . . . . (6.9)
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Substituting (6.5)–(6.9) into Eq. (6.3), and equating to zero the coefficients
of each power of ε lead to a sequence of simple problems for the unknown
functions y0, y1, .... The first two problems are given by

O(1) : y0tt + y0 = 0, (6.10)

O(ε) : y1tt + y1 = −2y0ts − y0t − b1y0t(t− τ ). (6.11)

Equation (6.10) has the solution

y = A(s) exp(it) + c.c., (6.12)

where c.c. means complex conjugate and A(s) is an unknown (complex)
function of s. Substituting (6.12) into the right-hand side of Eq. (6.11), we
find

y1tt + y1 = −i [2A′ +A+ b1A exp(−iτ)] exp(it) + c.c. (6.13)

Because the right hand side exhibits the functions exp(±it) which are iden-
tical to the solutions of the homogeneous problem, y1 will exhibit secular
terms of the form t exp(±it). These terms become large as t increases and
prevent the perturbation expansion (6.7) from being valid. Solvability of
Eq. (6.13) then means that we equate to zero the coefficients of exp(±it)
in the right hand side so that y1 is a bounded function of t. This condition
provides an ordinary differential equation for A given by

2
dA

ds
= −A− b1A exp(−iτ). (6.14)

Introducing A = R exp(iφ) and separating real and imaginary parts, Eq.
(6.14) is equivalent to the following equations for R and φ,

2
dR

ds
= −(1 + b1 cos(τ ))R, (6.15)

2
dφ

ds
= b1 sin(τ ). (6.16)

The solution of Eqs. (6.15) and (6.16) is

R = R(0) exp
[
−1

2
(1 + b1 cos(τ ))

]
s (6.17)

φ =
1
2
b1 sin(τ )s+ φ(0) (6.18)

The expression (6.18) means that there is a frequency correction if
sin(τ ) �= 0. Using (6.12) with A= R exp(iφ), the frequency of the rapid
oscillations in t is now given by

ω(ε) = 1 +
ε

2
b1 sin(τ ). (6.19)
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On the other hand, the expression (6.17) means that R slowly decays
exponentially if

Γ ≡ 1 + b1 cos(τ ) > 0. (6.20)

If τ progressively increases from zero, the damping rate Γ decreases from
1 + b1 and becomes less than 1 if cos(τ ) < 0. Moreover, if both cos(τ ) < 0
and b1 > 1, Γ may even change sign meaning that R will grow exponentially
in time. Minorsky was fully aware of this problem and investigated the
response of the nonlinear mechanical oscillator in detail.

6.3 Minorsky’s equation

Minorsky assumed that the delayed feedback is nonlinear and leads to a
nonlinear damping term of the form −by′+εcy′3. Instead of the linear DDE
(6.3), he then analyzed the following equation,

y′′ + ay′ + y = −by′(t− τ) + εcy′3(t− τ), (6.21)

which is called Minorsky’s equation [192]. The coefficients ε = a� 1, b, and
c are positive. Pinney [192] discussed another problem (sound generated by
a speaker) described by the same equation.

6.3.1 Hopf bifurcation

The analysis of Eq.(6.21) is similar to our previous analysis of Eq. (6.3)
and we summarize the main results. The leading solution of Eq.(6.21) is
again given by (6.12). But the solvability condition of the O(ε) problem
leads to a new amplitude equation given by

2
dA

ds
= −A− b1A exp(−iτ) + 3cA2A exp(−iτ). (6.22)

Introducing A = R exp(iφ) into Eq. (6.22), we obtain the following equa-
tions for R and φ,

2
dR

ds
= −(1 + b1 cos(τ ))R + 3cR3 cos(τ ) (6.23)

2
dφ

ds
= b1 sin(τ ) − 3cR2 sin(τ ). (6.24)

Equation (6.23) is an equation for R only. Knowing R, we determine the
phase φ by integrating Eq. (6.24). From Eq. (6.23), we note that if

Γ ≡ 1 + b1 cos(τ ) < 0, (6.25)

the steady-state solution R = 0 is unstable. Mathematically, the critical
point b1 = b1H where

b1H ≡ − cos−1(τ ) (cos(τ ) < 0) (6.26)
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is a Hopf bifurcation point because y(t) will exhibit oscillations as soon
as b1 > b1H . The delay τ needs to be large enough in order to verify the
condition cos(τ ) < 0. The question now is whether the oscillations will
continuously grow in time or if they will reach a fixed amplitude R �= 0.
Setting dR/ds = 0 in Eq. (6.23) and solving for R, we find

R =

√
b1 − b1H

3c
(6.27)

if b1 ≥ b1H . This solution is the Hopf bifurcation branch that emerges from
the Hopf bifurcation point b1 = b1H . Its amplitude has the typical square-
root behavior of a Hopf bifurcation. Because y � R exp(i(t+φ))+ c.c., the
extrema of the oscillations are given by

y � ±2R. (6.28)

Finally, we may investigate the stability of this solution. Linearizing Eq.
(6.23) for R �= 0 and simplifying, the small perturbation u satisfies

du

ds
= 3cR2 cos(τ )u. (6.29)

Because cos(τ ) < 0 and c > 0, the growth rate 3cR2 cos(τ ) is negative and
the Hopf bifurcation branch is stable. The Hopf theorem [100] stating that
a supercritical bifurcation (here, b1 > b1H) is stable is verified.

Figure 6.2 shows the numerical bifurcation diagram of Minorsky’s equa-
tion (6.21) for the following values of the parameters

a = 0.1, c = 1, ε = 0.1, and τ = 3π. (6.30)

From (6.26), we determine b1H = 1. Using then (6.27) and (6.28), we
determine the extrema of y as y = ±2

√
(b1 − 1)/3. The two parabolic lines

are shown in Figure 6.2. They are in good agreement with the numerical
branches until a secondary bifurcation appears at bS = 0.35. This new
bifurcation is a bifurcation to quasiperiodic oscillations (torus bifurcation).
These oscillations are characterized by two noncommensurable frequencies,
namely ω1 � 1 and ω2 = O(ε).

6.3.2 Hopf bifurcation for large delay

We suspect that the torus bifurcation results from the relatively large value
of τ (here τ = 3π � 9). But if we now consider τ as a large parameter, we
need to compare it to ε−1. We also need to be more careful as we expand
the delayed variable y(t − τ ). Recall that Eq. (6.22) is derived assuming
τ = O(1). The slow time delay

θ ≡ ετ (6.31)
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Figure 6.2: Bifurcation diagram of Minorsky’s equation. A Hopf bifurcation
appears at bH ≡ εb1H = 0.1 and is followed by a secondary bifurcation
to quasiperiodic oscillations at bS � 0.35. Other bifurcations appear for
higher values of b. The two parabolic lines are the approximations of the
Hopf bifurcation branch.

is a small O(ε) quantity and we may expand y(t− τ, s− ετ ) in power series
of ε as in (6.9). However, this expansion is no longer valid if τ = O(ε−1) or
larger. Nevertheless, the leading expression of the solution is still given by
(6.12) and the solvability condition now leads to

2
dA

ds
= −A−A(s− θ) exp(−iτ)

[
b1 − 3c |A(s− θ)|2

]
, (6.32)

where we note the appearance of the slow time delayed amplitude A(s−θ).
In contrast to Eq. (6.22), Eq. (6.32) is now a DDE. This DDE is, however,
an important simplification of the original DDE problem because steady
and periodic solutions of Eq. (6.32) correspond to periodic and quasiperi-
odic solutions of Eq. (6.21), respectively. For mathematical simplicity, we
analyze Eq.(6.32) with

τ = (1 + 2n)π, (6.33)

where n is an arbitrary large integer. Equation (6.32) then simplifies as

2
dA

ds
= −A+A(s− θ)

[
b1 − 3c |A(s− θ)|2

]
. (6.34)

Introducing A = R exp(iφ) into Eq. (6.34), we obtain

2R′ = −R+R(s− θ)
[
b1−3cR2(s− θ)

]
cos(φ(s− θ) − φ), (6.35)

2Rφ′ = R(s− θ)
[
b1 − 3cR2(s− θ)

]
sin(φ(s− θ) − φ). (6.36)
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One solution is the Hopf bifurcation solution (6.27) with b1H = 1; that is,

R =

√
b1 − 1

3c
and φ = φ0, (6.37)

where φ0 is an arbitrary constant. We next examine its stability. From
Eqs. (6.35) and (6.36), we determine the linearized equations for the small
perturbations u and v. They are given by

2u′ = −u+ u(s− θ)
[
b1 − 9cR2

]
, (6.38)

2v′ =
[
b1 − 3cR2

]
(v(s− θ) − v). (6.39)

After substituting u = u0 exp(σs) and v = v0 exp(σs) into Eqs.(6.38) and
(6.39), we find separate conditions for the growth rate σ

2σ = −1 + exp(−σθ) [−2b1 + 3] , (6.40)
2σ = exp(−σθ) − 1. (6.41)

A graphical analysis of (6.41) (we study the intersections of the functions
2σ and exp(−σθ) − 1) indicates that σ = 0 is the only solution. Assuming
σ �= 0, we concentrate on Eq. (6.40) and wonder if a Hopf bifurcation is
possible. Inserting σ = iω into Eq. (6.40), we find two conditions from the
real and imaginary parts. They are given by

0 = −1 + cos(ωθ)(−2b1 + 3), (6.42)
2ω = − sin(ωθ)(−2b1 + 3). (6.43)

We may eliminate b1 and obtain a single equation for ω. With Eq. (6.42),
we then obtain the conditions

tan(ωθ) = −2ω, (6.44)
2b1 = 3 − 1/ cos(ωθ). (6.45)

Using the values of the parameters listed in (6.30), we determine θ = ετ �
0.94. Solving then Eqs. (6.44) and (6.45) numerically, we obtain

ωθ � 1.8 and b1 � 3.5. (6.46)

The point (b,±2R) where b = εb1 = 0.35 and 2R = 2
√

(b1 − 1)/3 = 1.825 is
shown in Figure 6.2 by two open circles. They exactly match the numerical
estimates of the torus bifurcation point obtained by integrating Eq. (6.21).

6.3.3 Torus bifurcation

At the torus bifurcation point, u = u0 exp(iωs) + c.c. but v = 0. This
suggests we seek a particular solution with R = R(s) �= 0 but φ = φ0
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Figure 6.3: Bifurcation diagram of the slow time amplitude equation. The
broken line is the Hopf bifurcation branch 2R =

√
(b − ε)/3ε. The full line

is the extremum of 2R obtained numerically.

constant. From Eqs. (6.35) and (6.36), we then find that R satisfies a scalar
DDE given by

2R′ = −R+R(s− θ)
[
b1 − 3cR2(s− θ)

]
. (6.47)

The bifurcation diagram of Eq. (6.47) is shown in Figure 6.3. The figure in-
dicates a Hopf bifurcation of Eq. (6.47) corresponding to a torus bifurcation
of the original equation (6.21). Slightly before b1 = 0.5, a new bifurcation
appears which we do not analyze.

6.3.4 Map

We wish to determine an analytical approximation of the torus bifurcation
branch for large θ. A graphical analysis of Eq. (6.44) (look for the inter-
sections of tan(ωθ) and the straight line −(ωθ)/θ) indicates that the first
positive root of Eq. (6.44) (π/2 < ωθ < π) approaches ωθ = π as θ → ∞.
Equation (6.45) then gives b1 as

ωθ = π and b1 = 2. (6.48)

Equations (6.48) suggest that the new frequency ω scales as θ−1. We
take this feature into account by introducing the following new slow time
variable

S ≡ s/θ. (6.49)



118 6. Mechanical vibrations

Inserting (6.49) into Eq. (6.32), we note a small O(θ−1) term multiplying
the left hand side. Eliminating this term, we obtain an equation relating
An = A(S) and An−1 = A(S − 1) of the form

An = An−1

[
b1 − 3c |An−1|2

]
. (6.50)

The torus branch is a periodic solution of Eq. (6.32) which means a period
2 fixed point of Eq. (6.50). Assuming An real, this solution satisfies the
condition A2 = A0 and, from (6.50), the conditions

A1 = A0

[
b1 − 3cA2

0

]
, (6.51)

A0 = A1

[
b1 − 3cA2

1

]
. (6.52)

Eliminating b1 in Eqs. (6.51) and (6.52), we obtain a useful relation between
A1and A0 given by

A1 + 3cA3
0

A0
=
A0 + 3cA3

1

A1
. (6.53)

This equation can be rewritten as

(A2
1 −A2

0)(1 − 3cA1A0) = 0. (6.54)

The first solution of Eq. (6.54) is A2
1 = A2

0 and represents the steady
state. The second solution of Eq. (6.54) satisfies 1 − 3cA1A0 = 0 which
implies that

A1 =
1

3cA0
. (6.55)

From (6.51), we then obtain 1/(3cA0) = A0

[
b1 − 3cA2

0

]
which leads to the

quadratic equation
9c2A4

0 − 3cb1A2
0 + 1 = 0. (6.56)

This equation admits a real solution only if b1 ≥ 2. In implicit form, it is
given by

b1 − 2 =
3c
A2

0

(A2
0 −A2

0s)
2, (6.57)

where A2
0s ≡ 1/(3c). The secondary bifurcation branch is clearly super-

critical because b1 > 2 if A2
0 �= A2

0s. The first and secondary bifurcation
branches are shown in Figure 6.4 and compared to the solutions obtained
numerically from Eq. (6.50).

A second example of a nonlinear second-order DDE is examined in the
next section.

6.3.5 Large delay asymptotics: Ginzburgh–Landau equation

Our previously analysis of Minorsky’s equation (6.21) is valid provided
ε→ 0 and τ = O(ε−1). The solution of the amplitude DDE quantitatively
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Figure 6.4: Bifurcation diagram of the slow time amplitude equations for
large delay. The broken lines are the primary and secondary branches
obtained analytically. The figure indicates a period-4 bifurcation followed
by higher-order bifurcations that we do not analyze.

agrees with the numerical solution of the original equation suggesting that
the amplitude DDE could be valid for larger values of τ . In this section,
we show that this conclusion is premature because a distinguishing limit is
possible if τ = O(ε−2).

Specifically, we consider discrete values of τ of the form (6.33) with n
large and scale τ as

τ = ε−2τ0. (6.58)

Restricting τ to (6.33) is not a limitation of the multiple-scale method but
allows that the first Hopf bifurcation be simply located at b = a = ε. We
then seek a small amplitude solution of the form

y = εy1(t, x, ν) + ε2y2(t, x, ν) + .... (6.59)

where

x ≡ τ−1(1 + εc1 + ε2c2 + ...)t, (6.60)
ν ≡ ε2τ−1t, (6.61)

are two slow-time variables. The strained coordinate x is motivated by the
large delay τ . The corrections c1, c2, ... will be determined by solvability
conditions. The strained coordinate eliminates the need for an additional
slow time ετ−1t. The variable ν is motivated by the leading-order amplitude
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equation and describes the slow decay of the fast oscillations. The three
independent times t, x, and ν imply the chain rules

yt(t− τ ) = yt − (εc1 + ε2c2 + ...)ytx +
ε2c21
2
ytxx − ε2ytν + ε2τ−1

0 yx +O(ε3),

(6.62)
where y ≡ y(t− τ , x− 1, ν) and

y′ = yt + ε2τ−1
0 yx +O(ε3yx), (6.63)

y′′ = ytt + 2ε2τ−1
0 (1 + εc1)ytx +O(ε4ytx). (6.64)

Furthermore, we expand the control parameter b as

b = ε+ ε2β2 + ... . (6.65)

As the slow time (6.61), the expansion (6.65) is motivated by the leading-
order slow time amplitude equation. Introducing (6.59), and (6.62)–(6.65)
into Eq. (6.21) with a = ε, we obtain the following sequence of problems
for the unknown functions y1, y2, ...,

O(ε) : y1tt + y1 = 0, (6.66)
O(ε2) : y2tt + y2 = −y1t − y1t, (6.67)
O(ε3) : y3tt + y3 = −y2t − y2t + c1y1tx − 2τ−1

0 y1tx, (6.68)
O(ε4) : y4tt + y4 = −y3t − y3t + c1y2tx − 2τ−1

0 y2tx

+ c2y1tx −
[
c21
2
y1txx − y1tν + τ−1

0 y1x

]

− τ−1
0 y1x − β2y1t − 2c1τ−1

0 y1tx + cy3
1t. (6.69)

The solution of Eq. (6.66) is

y1 = A(x, ν) exp(it) + c.c., (6.70)

where A is an unknown complex amplitude. Solvability of Eq. (6.67) with
respect to the periodic solution exp(±it) requires the condition

−iA− iA(x− 1) exp(−iτ) = −i [A−A(x − 1)] = 0, (6.71)

or equivalently,
A(x− 1) = A. (6.72)

The solution of Eq. (6.67) is then

y2 = B(x, ν) exp(it) + c.c., (6.73)

where B is a new unknown amplitude. The solvability condition for Eq.
(6.68) now leads to the following equation for B,

i [B −B(x − 1)] = c1iAx(x− 1) exp(−iτ) − 2iτ−1
0 Ax. (6.74)
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This equation defines an equation for a map of the form forBm−Bm−1 = F,
where F is a constant. A bounded solution for B requires that F = 0 or

c1iAx(x − 1) exp(−iτ) − 2iτ−1
0 Ax = −iAx

(
c1 + 2τ−1

0

)
= 0. (6.75)

Equation (6.75) is satisfied if

c1 = −2τ−1
0 . (6.76)

The solution of Eq. (6.68) is then

y3 = C(x, ν) exp(it) + c.c. (6.77)

and B satisfies the condition B(x−1) = B. Because A is still unknown, we
explore Eq. (6.69). Applying the two previously discussed solvability con-
ditions now leads to the following equation (after simplifying using (6.58)
and (6.72))

0 = − c2iAx −
[
−c

2
1

2
iAxx + iAν − τ−1

0 Ax

]

− τ−1
0 Ax + β2iA− 2c1τ−1

0 iAx − 3icA2A. (6.78)

We eliminate the term multiplying Ax by requiring that c2 satisfies c2 +
2c1τ−1

0 = 0. The remaining terms then lead to the following Ginzburg–
Landau equation [48]

Aν = 2τ−2
0 Axx + β2A− 3A2A. (6.79)

with A satisfying the boundary condition (6.72). The singular nature of
the delay now clearly appears in the diffusion coefficient that decreases like
τ−2

0 as τ0 → ∞. τ0 plays the same role as the length of a spatiotemporal
system. If τ0 is sufficiently large, stable periodic solutions in x are possible
[229].

A historical note is in order. Physicists have long been fascinated by
the idea that a DDE could be equivalent to a partial differential equa-
tion (PDE). Giacomelli et al.[72] and Grigorieva et al. [80] proposed that
a small amplitude periodic solution of a DDE could be captured by a
Ginzburg–Landau equation [48] that exhibits either identical perturbation
solutions or identical spectral properties. The question of deriving such an
equation from solvability conditions directly applied to the original DDE
remained open. The subsequent works by Nizette [178], Erneux et al. [61],
and Wolfrum and Yanchuk [244] on first-order DDEs then showed that two
successive solvability conditions can be used to properly derive the expected
PDE.
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6.4 Johnson and Moon’s equation

Johnson and Moon [115] investigated experimentally an electromechanical
system. Their experiments were compared to the numerical solutions of the
following equation

y′′ + ay′ + b(y − y3) = c(y′ − y′(t− 1)) (6.80)

which exhibits periodic, quasiperiodic, and chaotic oscillations. The values
of the parameters were

a = 2.623 and b = 170π2 (6.81)

with c the control parameter. The bifurcation diagram of the stable solu-
tions is shown in Figure 6.5 and reveals both Hopf and torus bifurcations.
We take into account the fact that b is large by introducing the new time
T ≡ b1/2t. Equation (6.80) then becomes

y′′ + y − y3 = ε2(−ay′ + c(y′ − y′(T − ε−2)), (6.82)

where prime now means differentiation with respect to T and

ε2 ≡ b−1/2 (6.83)

is a small parameter.

Figure 6.5: Bifurcation diagram. The values of the fixed parameters are a =
2.623 and b = (13π)2. The broken lines correspond to the approximation
of the Hopf bifurcation branch. Labels 1 to 4 mark succesive bifurcations.
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6.4.1 Unusual Hopf bifurcation

The left-hand side is the equation of a conservative oscillator whereas the
right-hand side is responsible for O(ε2) small damping. The small param-
eter suggests seeking a small amplitude solution. To this end, we use the
method of multiple time-scales introduced previously in Section 6.2. Specif-
ically, we seek a solution of the form

y = εy1(T, s) + ε3y3(T, s) + ..., (6.84)

where s ≡ ε2T. The power series is an odd power of ε because the only
nonlinear term in Eq. (6.84) is the cubic function y3. Because of the two-
time formulation, we need to rewrite the delayed term y′(T − ε−2) as

yT (T − ε−2) = yT (T − ε−2, s− 1) + ε2ys(T − ε−2, s− 1). (6.85)

Introducing (6.84) and (6.85) into Eq. (6.82) leads to the following problems
for the functions y1 and y3,

y1TT + y1 = 0, (6.86)
y3TT + y3 = y3

1 − ay1T + c
[
y1T − y1T (T − ε−2, s− 1)

]

− 2y1Ts. (6.87)

The solution of Eq. (6.86) is

y1 = A(s) exp(iT ) + c.c. (6.88)

Solvability of Eq. (6.87) then implies the condition

3A2A− iaA+ ic
[
A−A(s− 1) exp(−iε−2)

] − 2iA′ = 0. (6.89)

In terms of A = R exp(iφ), the real and imaginary parts of Eq. (6.89) give

2R′ = −aR+ c(R−R(s− 1) cos(ε−2 − φ(s− 1) + φ)), (6.90)
2Rφ′ = −3R3 + cR(s− 1) sin(ε−2 − φ(s− 1) + φ)). (6.91)

The Hopf bifurcation branch satisfies the condition R = cst and φ = σs
where σ is the correction of the Hopf frequency. From Eqs. (6.90) and
(6.91), we obtain

0 = −a+ c(1 − cos(ε−2 + σ)), (6.92)
2σ = −3R2 + c sin(ε−2 + σ) (6.93)

which leads to the parametric solution

c =
a

(1 − cos(ε−2 + σ))
, (6.94)

R2 =
1
3
(−2σ + c sin(ε−2 + σ)) ≥ 0. (6.95)
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In Figure 6.5, we compare this solution to the numerical solution. The value
of b is b = (13π)2 implying ε−2 = 13π. The expressions (6.94) and (6.95)
then simplify as

c =
a

(1 + cos(σ))
, (6.96)

R2 = −1
3
(2σ + c sin(σ)) ≥ 0, (6.97)

where −π/2 < σ ≤ 0. The Hopf bifurcation point corresponds to σ = 0
and R = 0 and is located at

cH ≡ a/2. (6.98)

We may also expand (6.96) and (6.97) for small σ. Then eliminating σ, we
obtain R as a function of c− cH as

R =

√
2
3
(2 + cH)

(
c− cH
cH

)1/4

(6.99)

which exhibits a (c − cH)1/4 power law that differs from the traditional
squareroot law. As for Minorsky’s equation, we may now analyze the sta-
bility of the Hopf bifurcation branch and possibly determine the secondary
Hopf bifurcation. In Figure (6.6), we determine numerically the bifurcation

Figure 6.6: Bifurcation diagram of the slow time amplitude equations. The
broken line comes from the expression of the Hopf bifurcation branch.
Labels 1 to 4 mark the same bifurcations as in Figure 6.5.
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diagram of the slow time amplitude equations (6.90) and (6.91). The suc-
cesive bifurcations compare well with the bifurcations determined from the
orginal equation (compare Figures 6.5 and 6.6).

6.5 Machine tool vibrations

The history of machine tool chatter goes back almost 100 years to when
machine tool chatter was recognized as one of the most delicate problems
facing the machinist [217]. Today, the so-called regenerative effect has be-
come the commonly accepted explanation for machine tool chatter. Chatter
instability is a violent vibratory motion occurring between the cutting tool
and workpiece when the tool is removing material in the form of chips from
a previously machined surface profile. Its presence in machining operations
has been estimated to be the most undesirable factor increasing manu-
facturing costs of vital components for aerospace, automotive, biomedical
construction, household devices, military, transportation, and many other
machine-related applications. See Figure 6.7. Following a small external
perturbation, the tool starts a damped vibration relative to the workpiece.
The surface of the workpiece becomes wavy and after a round, the chip
thickness will vary at the tool because of this wavy surface. Thus, the cut-
ting force depends on the actual and delayed values of the relative displace-
ment of the tool and workpiece. The delay is exactly equal to the time of
revolution of the workpiece and is the key source of the regenerative effect
allowing self-excited vibrations in the machining operation. The energy for
the vibrations comes from the forward motion of the tool and workpiece.
The frequency is typically slightly larger than the natural frequency of the
most flexible vibration mode of the machine-tool system. The frequency is

wave from
previous pass

y(t - τ)
wave from
current pass

y(t) 

tool

Figure 6.7: Workpiece (left) and cutting tool (right) are vibrating because
of the wavy surface that is never the same after each round of the workpiece.
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not synchronous with the spindle drive frequency. This mismatch typically
accounts for the screechy sound that is characteristic of chatter.

6.5.1 Formulation and stability

In order to describe the instability, we assume orthogonal cutting and con-
sider the problem as one-dimensional. The machine tool is characterized by
its mass m, spring constant k, and damping r. The zero value of the tool
edge position is set in a way that the cutting force Fc is in balance with
the spring force when the chip thickness d is just the prescribed steady-
state cutting value d0 (see Figures 6.8 and 6.9). The restoring force of the

d0
Fc

Fr

y

x

l

l0

Figure 6.8: Steady-state cutting.

d0
d0 + Δy

y(t - τ)

y(t)
Fr

Fc

Figure 6.9: Steady cutting with chip thickness d = d0. In practice, the
thickness varies with time and is a function of the present and previous
position of the tool: d = d0 + Δy, where Δy ≡ y(t) − y(t− τ ).
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tool is given by Fr(y) ≡ −k(l− l0 + y) where l and l0 represent the initial
spring length and spring length in steady state cutting, respectively. The
cutting force Fc(d) is assumed to be a function of the chip thickness only.
In steady-state cutting, Fr(0)+Fc(d0) = 0 which then leads to the relation

k(l − l0) + Fc(d0) = 0. (6.100)

Equation (6.100) provides an expression for l − l0 < 0 (pre-stress in the
spring). The equation of motion of the tool is

my′′ = −k(l − l0 + y) − ry′ − Fc(d) (6.101)

which simplifies, using (6.100), as

my′′ = −ky − ry − (Fc(d) − Fc(d0)). (6.102)

Dividing by m, Eq. (6.102) can be rewritten as

y′′ + 2ζωy′ + ω2
0y = − 1

m
[Fc(d(t)) − Fc(d0)] , (6.103)

where ω0 ≡ √
k/m is the natural angular frequency of the undamped free

oscillating tool and ζ ≡ r/(2mω0) is the so-called relative damping factor.
The cutting force Fc(d) is a strong nonlinear function of d (see Fig. 6.10)
and a power-law relation of the form

Fc(d) =
0 if d ≤ 0
Kwdα if d > 0 (6.104)

Figure 6.10: Experimental force in the feed direction for aluminum (from
Kalmár-Nagy Ph.D. thesis with permission [121]).
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is often used. In (6.104), w is the chip width and K is a material-based
constant. For aluminum, the exponent is α = 0.41. If d ≤ 0, the tool is no
longer in contact with the workpiece and Fc = 0. If the deviation d− d0 is
small, we may use a linear approximation and express the change in force as

Fc(d) − Fc(d0) = F ′
c(d0)(d− d0). (6.105)

We now need to relate d and y. See Figure 6.9. The actual chip thickness
depends on the present and a previous displacement of the tool at time
t− τ and is given by

d = d0 + y(t) − y(t− τ ), (6.106)

where τ ≡ 2π/Ω and Ω is the angular frequency of the rotating workpiece.
With (6.105) and (6.106), Eq. (6.103) becomes

y′′ + 2ζω0y
′ + ω2

0y +
F ′

c(d0)
m

(y − y(t− τ )) = 0. (6.107)

We now formulate a dimensionless equation of motion by introducing the
new time

s = ω0t. (6.108)

Equation (6.107) then simplifies as

y′′ + ay′ + y + b(y − y(s− θ)) = 0. (6.109)

where prime now means differentiation with respect to time s and the new
parameters a, b, and θ are defined by

a ≡ 2ζ, b ≡ F ′
x(d0)
mω2

0

, and θ ≡ ω0τ . (6.110)

We have reduced the number of independent parameters from four to three.
We next wish to analyze the stability of the steady-state y = 0. Introduc-

ing y = y0 exp(σt) into Eq. (6.109), we find that the growth rate σ satisfies

σ2 + aσ + 1 + b(1 − exp(−σθ)) = 0. (6.111)

We next assume that the stability boundary is a Hopf bifurcation boundary
where σ is purely imaginary. Introducing σ = iω into Eq. (6.111), we find

1 − ω2 + b(1 − cos(ωθ)) = 0, (6.112)
aω + b sin(ωθ) = 0. (6.113)

By eliminating the trigonometric functions, we find

b =
(1 − ω2)2 + a2ω2

2(ω2 − 1)
. (6.114)
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Because b > 0, Eq. (6.114) implies ω > 1. By using the trigonometric
identity

1 − cos(ωθ)
sin(ωθ)

= tan(
ωθ

2
), (6.115)

we may eliminate b in Eqs. (6.112) and (6.113). The resulting equation
leads to an equation for θ given by

θ =
2
ω

[
arctan(

1 − ω2

aω
) + nπ

]
, (6.116)

where n = 1, 2, ... is the wave-number of the workpiece surface modulation
(n > 0 because ω > 1 and τ is positive). The expressions (6.113) and
(6.116) provide a parametric solution for b = b(θ). The dimensionless delay
θ is inversely proportional to the angular velocity Ωθ ≡ 2π/θ. See Fig. 6.11.
If we are chattering, we may speed the spindle up (increase Ωθ) or change
the dynamics of the tool (decrease b). The minima of the stability boundary
satisfy the condition db/dω = 0. This leads to ωmin =

√
1 + a and the

minimum
bmin = a(1 + a/2). (6.117)

Note that the analysis of Eqs. (6.112) and (6.113) for a small is more
immediate. Equation (6.113) suggests the scaling b = ab1 and Eq. (6.112)
then motivates the scaling ω− 1 = aω1. Inserting these expresions of b and
ω into Eqs. (6.112) and (6.113) leads to the conditions

Ωθ

0.0 0.5 1.0 1.5 2.0 2.5 3.0

b

0.0

0.1

0.2

0.3

0.4
n = 1

unstable

stable

Figure 6.11: Stability lobes. The succesive maxima occurs close to
Ωθ = 1/n. They are points of resonance between the tool and workpiece
oscillations implying maximal stability. a = 0.0272.
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−2ω1 + b1(1 − cos(θ)) = 0, (6.118)
1 + b1 sin(θ) = 0 (6.119)

in first approximation (a → 0). Equation (6.119) gives the Hopf stability
boundaries; that is, b1 = −1/ sin(θ) > 0. The minima of each stability lobe
occur at b = a and

θ = θn ≡ (2n+ 1)π − π/2, (6.120)

where n = 1, 2, .... The Hopf bifurcation for the case n = 7 is examined in
Section 6.6.2.

6.6 Experiments

Shi and Tobias [214] observed experimentally that finite-amplitude oscilla-
tions of the tool may appear as an alternate to stable stationary cutting.
This suggests the coexistence of stable steady and periodic motions result-
ing from a subcritical Hopf bifurcation. The problem has been analyzed in
detail by Kalmár-Nagy [120, 121] who showed experimentally, analytically,
and numerically the hysteretic nature of the instability. His model equations
incorporate both the nonlinear cutting force and the multiple-regenerative
effect due to the tool leaving the cut. When the chatter amplitude exceeds
a certain amplitude, the contact ceases between the tool and the workpiece
and the tool starts a damped vibration until it comes in contact with the
workpiece again. When this happens, the uncut chip thickness is affected
by the trace of the tool motion even from two or more previous turns be-
fore. This phenomenon is called the multiple regenerative effect. Instead
of the previously used linear approximation, we now take into account the
full expression (6.104). The cutting force variation is given by

Fc(d) − Fc(d0) =
−Fc(d0) if Δd ≤ −d0

Kw(dα − dα
0 ) if Δd > −d0

(6.121)

where d0 is the nominal chip thickness in steady-state cutting and Δd ≡
d−d0 = y(t)−y(t−τ) from (6.106). The delay τ ≡ 2π/Ω is the time period
of one revolution with Ω being the constant angular velocity of the rotating
workpiece. With the force variation (6.121), the equation of motion (6.103)
now is

y′′ + 2ζω0x
′ + ω2

0x =
− 1

mFc(d0) if Δd ≤ −d0

1
mFc(d0)

[
1 − ( d

d0
)α

]
if Δd > −d0

(6.122)

Introducing the dimensionless time and space variables

s = ω0t and z = y/y0, (6.123)



6.6 Experiments 131

where y0 ≡ 3d0/(2 − α), Eqs. (6.122) can be rewritten as

z′′ + az′ + z =
− b(2−α)

3α if Δz ≤ − 2−α
3

b(2−α)
3α

[
1 − (1 + ( 3

2−αΔz))α
]

if Δz > − 2−α
3

(6.124)

where prime means differentiation with respect to s and

Δz = min(z(t− θ) − z,−2− α

3
). (6.125)

6.6.1 Linear theory

Assuming Δz > −(2 − α)/3, the linearized problem for z = 0 is

z′′ + az′ + z + b(z(s− θ) − z) = 0. (6.126)

which is identical to Eq. (6.109). A specific lobe of the stability diagram
has been determined experimentally. The parameters have been evaluated
experimentally and are given by: m = 10 kg, ω0 = 578.79 s−1, ζ = 0.0135,
and Fc(d) = Kwdα = 553d0.41 for w = 0.25 mm. This gives a = 0.027 and
b � 0.12 mm−1 × w where w is measured in mm. The angular frequency
Ω is increased between 840 rpm and 925 rpm (between 14 rot/s and 15.42
rot/s). Because θ = ω0τ = ω0/Ω, Ωθ = 2π/θ = 2πΩ/ω0 and we find that
Ωθ changes between 0.152 and 0.167. The stability diagram in terms of b
and Ωθ is shown in Figure 6.12.

Ωθ

0.12 0.15 0.18 0.21 0.24 0.27 0.30

b

0.00

0.05

0.10

0.15

n = 7

unstable

stable

bmin

Figure 6.12: Blow-up of the stability diagram. The experimental value of
Ωθ corresponds to the minimum of the n = 7 lobe.
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Figure 6.13: The line represents the analytical stability boundary for
n = 7. Dots are the experimental estimates (from Kalmár-Nagy [121]).

The experiments have been done as follows. All cutting measurements
were made with the same feed rate sp = 508 μm/s. Beginning with a small
stable cut at a fixed speed, the width of the cut w was increased in 25
μm increments using the manual slide in a ramp and hold fashion. The
experiment was stopped and recorded when self-sustained oscillations were
observed in the accelerometer voltage monitored on a digital oscilloscope.
The tests were repeated at different speeds until the lobe was mapped.
The experimental stability chart shown in Figure 6.13 shows the stability
domain in terms of the rotational rate Ω and the width of cut w.

6.6.2 Nonlinear theory

The bifurcation diagram has been determined with Ω = 836 rpm = 13.93
rot s−1 (τ = 1/Ω = 0.072 s) implying θ ≡ ω0τ = 41.67 and Ωθ ≡ 2π/θ =
0.15. Ωθ exactly corresponds to the minimum of the n = 7 lobe (see Figure
6.12). The width of the cut has been varied near the critical Hopf bifurca-
tion point (w = 0.23) either forward or backward.

For small Δz = z− z(s− θ), we expand the nonlinear function in (6.124)
in power series of Δz and consider

z′′ + az′ + z + bΔz = bc(Δz2 − Δz3), (6.127)

where

c =
3(1 − α)
2(2 − α)

= 0.56. (6.128)
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As in the experiment, we concentrate on the minimum of the n = 7 stability
lobe where the Hopf bifurcation point is located at b = bmin = a(1 + a/2).
In [120], the bifurcation analysis has been done for an arbitrary a and then
the final result has been evaluated for low values of a. Here, we immediately
take advantage of the small value of a in order to simplify the perturbation
analysis. Specifically, we note that bmin is O(a) small and seek a solution
of the form

b = ab1 + ... (6.129)

z = z0(s, ζ) + az1(s, ζ) + ... (6.130)

θ = θ0 + aθ1 + ..., (6.131)

where ζ = as is a slow time variable. θ0 is defined as the a small leading
approximation of θ = ω0τ that corresponds to the minimum of the n = 7
stability lobe (see (6.120)). It is defined by

θ0 = −π/2 + 14π � 42.41. (6.132)

Introducing (6.129)–(6.132) into Eq. (6.127) and equating the coefficients
of each power of a leads to a sequence of linear problems for z0, z1, .... The
first two problems are

z0ss + z0 = 0, (6.133)
z1ss + z1 = −z0s − 2z0sζ − b1Δz0 + b1c(Δz2

0 − Δz3
0), (6.134)

where Δz0 = z0 − z0(s− θ). The solution of Eq. (6.133) is

z0 = A(ζ) exp(is) + c.c., (6.135)

where A is an unknown amplitude. The solvability condition for Eq. (6.134)
then leads to the following equation for A,

2iA′ = −iA− b1(1 − i)A− 6b1c(1 − i)A2A∗. (6.136)

Introducing the decomposition A = R exp(iφ), the real and imaginary parts
of Eq. (6.136) give

2R′ = −R+ b1R+ 6b1cR3, (6.137)
2Rφ′ = b1R+ 6b1cR3. (6.138)

From Eq. (6.137), we determine the amplitude of the oscillations as

R2 =
1 − b1
6b1c

≥ 0 (6.139)

and Eq. (6.138) provides the correction of the frequency of the oscillations

φ′ =
b1
2

+ 3b1cR2 =
1
2
. (6.140)
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Figure 6.14: Experimental bifurcation diagram obtained by varying w for-
ward (full circles) and backward (open circles). Squares are numerical sim-
ulations and the line is obtained analytically from a local analysis near the
Hopf bifurcation point. The horizontal broken line is an estimate of the
critical amplitude where the tool leaves the workpiece (from Kalmár-Nagy
Ph.D. thesis with permission [121]).

The Hopf bifurcation is subcritical because the inequality in (6.139) implies

b1 < 1. (6.141)

In summary, we have found that the bifurcation is subcritical as suggested
by the experiments. See Fig. 6.14. In contrast to Johnson and Moon’s prob-
lem, the transition through the Hopf bifurcation point is not smooth (hard)
and leads to large amplitude oscillations as soon as the Hopf bifurcation
point is passed.
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Lasers

Lasers are ubiquitous today, mostly in the form of semiconductor lasers
(SLs, also known as laser diodes), which are characterized by smallness in
size, weight, cost of production, and power requirements. Optical networks
depend on SLs for generation, amplification, and distribution of the light
that transmits voice, video, and data. They also are the lasers used in
our everyday activities (CD player, laser printer, and barcode reading at
the supermarket). However, an unfortunate property of these devices is
their high susceptibility to unavoidable optical feedback (OFB), such as
reflection from any optical element of the system surrounding the laser.
Even tiny amounts of OFB (less than 0.01%) can cause the laser to enter
a state of erratic pulsating instabilities and irregular chaotic transitions.

Systematic experimental investigations started in the early 1970s. If the
external cavity is of the order of one meter, noise peaks appear at GHz
frequencies and are referred to as “high-frequency noise”. Moreover, “low-
frequency” noise dominates at frequencies less than 100 MHz and appears
to be proportional to the external cavity length. However, many effects re-
sulting from OFB depend on the experimental conditions (see [70] for an
excellent review). The interest of OFB arises from the rich phenomenol-
ogy observed, ranging from multistability, bursting, intermittency, irreg-
ular intensity drops (low-frequency fluctuations or LFFs), and transition
to developed chaos (coherence collapse). A complete understanding of the
physical mechanisms as the basis of such complex behavior is, however, still
missing. In particular, the origin of the LFF regime (stochastic, determin-
istic, or both) has been under debate since the very first observations and
yet this puzzling problem has not been solved. A widely used theoretical
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description of the system is the Lang–Kobayashi (LK) model [136] intro-
duced in 1980 in an effort to provide a simplified but effective analysis
of a SL optically coupled with a distant reflector. Significant progress has
been made by comparing experimental and numerical simulations of the
LK equations. These equations consist of three coupled equations for the
amplitude and the phase of the laser field in the cavity, and the carrier
density. However, some specific feedback configurations allow is to ignore
the phase of the laser field and we first consider these systems.

We determine bifurcation diagrams of periodic solutions by massively
using solvability conditions. These conditions are required to guarantee
that the periodic solution is bounded at each order of the perturbation
analysis. As we demonstrate, they are powerful tools to determine unknown
quantities such as the amplitude or the frequency correction of the solution.

7.1 Optoelectronic feedback

A feedback system where the intensity of the field and the carrier density
are the only dependent variables can be realized if the intensity of the
laser field is detected electronically, amplified, and then reinjected into the
pumping current of the laser.

An example of a semiconductor laser system and its optoelectronic feed-
back is sketched in Figure 7.1. Part of the laser output is detected with a

Figure 7.1: Semiconductor laser subject to an optoelectronic feedback. Part
of the output light is injected into a photodetector connected to the pump.
The feedback delay is controlled by changing the length of the optical path
(full line). From Pieroux et al. [189] copyright c© 2000 Society for Industrial
and Applied Mathematics. Reprinted with permission. All rights reserved.
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high-speed photodetector. The detector photocurrent component is selected
with a T bias, amplified, and added to the DC pump current [203]. The
laser rate equations modeling this system are given by

dI

dt
= 2NI, (7.1)

T
dN

dt
= P + ηI(t− τ ) −N − (1 + 2N)I, (7.2)

where I and N represent the intensity of the laser field and the electronic
carrier density, respectively. Time t is measured in units of the photon
lifetime τp (t ≡ t′/τp). T ≡ τn/τp is the ratio of the carrier lifetime τn

and the cavity lifetime τp; τ ≡ τ ′/τp is the delay of the feedback where
τ ′ = 2L/c is the cavity transit time (L is the distance laser-mirror and
c is the speed of light); P ∼ J/Jth − 1 is the pumping current above
threshold. These equations are the well-known SL rate equations rewritten
in dimensionless form. Only P is replaced by P + η |Y (t− τ )|2 to take
into account the effect of the DC coupled optoelectronic feedback. Typical
values of the parameters are τp ∼ 2 ps, τn ∼ 2 ns, and τ ∼ 1− 10 ns which
mean that T ∼ 103 and τ ∼ 103 are relatively large parameters.

The large T multiplying the left-hand side of Eq.(7.2) is a source of
numerical difficulties but can be removed by a change of variables. We
introduce x, y, and s defined as

I = P (1 + y), N =
ωr

2
x, s = ωrt, (7.3)

where
ωr ≡

√
2P/T (7.4)

is known as the laser relaxation oscillation (RO) frequency. Inserting (7.3)
into (7.1) and (7.2), we obtain

x′ = −y + η (1 + y(s− θ)) − εx

[
1 +

2P
1 + 2P

y

]
, (7.5)

y′ = (1 + y)x, (7.6)

where prime now means differentiation with respect to time s. The new
parameters ε and θ are defined by

ε ≡ ωr
(1 + 2P )

2P
and θ ≡ ωrτ . (7.7)

The large T parameter is now located in ε which is small because ωr is
proportional to T−1/2 and T ∼ 103. Because τ is of the same size as T ,
the rescaled delay θ is proportional to T 1/2 and remains a relatively large
parameter.
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7.2 Delayed incoherent feedback

For a laser subject to optoelectronic feedback, the bandwidth of the elec-
tronics is required to be very large and flat because the chaotic dynamics of
the SL can span tens of GHz. If the bandwidth of the electronics does not
match the speed of the optical intensity fluctuations, the response of the
laser system will be dominated by this bandwidth limitation. An alterna-
tive way to investigate this specific delayed feedback problem is to consider
a SL subject to incoherent optical feedback [180, 188]. The output field of
a SL is reinjected into the laser cavity after rotation of the polarization
to the orthogonal state, providing a delayed feedback that affects only the
carriers. The advantage is that the feedback remains purely optical. This
system has been experimentally studied in [205]. The laser device is de-
scribed by the following equations for the intensity of the laser field I and
the carriers N,

dI

dt
= 2NI, (7.8)

T
dN

dt
= P −N − (1 + 2N) [I + ηI(t− τ )] , (7.9)

where the last term in Eq. (7.9) represents the reinjected orthogonal po-
larization intensity. With the new variables previously introduced in (7.3),
Eqs. (7.8) and (7.9) take the form

x′ = −y − η (1 + y(s− θ))

−εx
[
1 +

2P
1 + 2P

(y + η(y + y(s− θ)))
]
, (7.10)

y′ = (1 + y)x. (7.11)

If η is O(ε) small, we may neglect the εη term in Eq. (7.10) and we find Eq.
(7.5). Thus the optoelectronic feedback and incoherent feedback problems
are described by the same equations if the feedback rate is sufficiently low.
In the next subsections, we analyze these equations for low and moderate
values of the feedback rate.

7.2.1 Small feedback rate

We wish to analyze Eqs. (7.10) and (7.11) in the limit ε small assuming

η = εC, (7.12)

where C = O(1). Specifically, we seek a solution of Eqs. (7.10) and (7.11)
of the form

x = x0(s) + εx1(s) + ... (7.13)
y = y0(s) + εy1(s) + .... (7.14)
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Figure 7.2: One-parameter family of periodic solutions. Different periodic
orbits surrounding the origin are shown in the phase plane (x0, y0). They
are all bounded below by the invariant line y = −1.

After introducing (7.13) and (7.14) into Eqs. (7.10) and (7.11), we find that
(x0, y0) satisfies

x′0 = −y0, (7.15)
y′0 = x0(1 + y0). (7.16)

These equations admit a one-parameter family of periodic solutions. See
Figure 7.2. The first integral is given by

E0 =
x2

0

2
+ y0 − ln(1 + y0), (7.17)

where E0 is a constant of integration that depends on the initial conditions
(x0(0), y0(0)). We denote by (x0, y0) = (X,Y ) the solution of period P .
Because we ignore how this period depends on the parameters C and θ, we
investigate the problem for (x1, y1) and formulate a solvability condition.
This condition can be derived in the following way. Suggested by (7.17),
we introduce the energy E = E(x, y) defined as

E ≡ x2

2
+ y − ln(1 + y). (7.18)

Differentiating E with respect to s and using Eqs. (7.10) and (7.11), we
find the following equation for E,

E′ = ε

[
x2

(
1 +

2P
1 + 2P

y

)
+ Cx (1 + y(s− θ))

]
, (7.19)
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where the right-hand side is proportional to ε. Inserting

E = E0(s) + εE1(s) + ... (7.20)

into (7.19), we obtain

E′
0 = 0, (7.21)

E′
1 = x2

0

(
1 +

2P
1 + 2P

y0

)
+ Cx0 [1 + y0(s− θ)] . (7.22)

Equation (7.21) implies that E0 is a constant as we already knew from
(7.17). The left-hand side of Eq.(7.22) admits a constant solution whereas
the right-hand side of Eq.(7.22) is time-periodic in s. A bounded solution
for E1, without a secular term proportional to s, then implies that the
average of the right-hand side is zero. This leads to the condition

∫ P

0

X2ds+ C

∫ P

0

XY (s− θ)ds = 0, (7.23)

where we have used the fact that1

∫ P

0

x2
0y0ds = 0 and

∫ P

0

x0ds = 0. (7.24)

Equation (7.23) is the bifurcation equation for the P -periodic solutions
relating the amplitude of (x0, y0) = (X,Y ) to the parameters C and θ.
Multiplying by ε, Eq. (7.23) is rewritten in terms of the original parameters
ε and η,

ε

∫ P

0

X2ds+ η

∫ P

0

XY (s− θ)ds = 0. (7.25)

ε � 1 measures the damping of the relaxation oscillations and η is the
feedback parameter. If we neglect the damping (ε = 0), (7.25) reduces to
the integral ∫ P

0

XY (s− θ)ds = 0 (7.26)

which is verified if
θ = n

P

2
(n = 0, 1, 2, ...). (7.27)

The different branches of time-periodic solutions satisfying (7.27) are shown
in Figure 7.3. Equation (7.27) can be explained as follows. We may redefine
time s, without loss of generality, such that X(s) is an even function of s
and so s = 0 corresponds to Y (0) = min(Y ) and X(0) = 0 (see Figure 7.4).

1Using (7.15), y0ds = −dx0. The resulting integrals on x0 are zero because we
integrate over a complete period.
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Figure 7.3: Successive branching of limit-cycle solutions as η → 0+. Full
and broken lines represent stable and unstable solutions, respectively.

time s

Y(s)

X(s)

0–P/2 P/2

Figure 7.4: One-periodic solution of the conservative system.X(s) and Y (s)
are an odd and even function of s, respectively.

If X(s) is an even function of s, Y = −X ′ is an odd function of s on the
interval −P/2 < s < P/2. Because Y (s− nP/2) is also an odd function of
s, (7.26) is an integral of an odd-periodic function over one period and is
equal to zero.

If n = 0, θ = 0 for all amplitudes (vertical bifurcation) and the role
of damping (i.e., ε nonzero) will be important. But if n �= 0, (7.27) is an
amplitude equation because P is a function of the amplitude. Because P is
a monotonic increasing function of the amplitude of (X,Y ) (2π ≤ P <∞),
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we deduce from (7.27) that the bifurcating periodic solution only exists
for θ > θn = nπ (n = 0, 1, 2, ...). θn denotes the Hopf bifurcation point
corresponding to P = 2π.

In order to describe how the solution depends on the feedback rate, we
go back to Eq. (7.25) and formulate the implicit solution as

η = −ε
∫ P

0

X2ds

[∫ P

0

XY (s− θ)ds

]−1

. (7.28)

Recall that X and Y satisfy Eqs. (7.15) and (7.16). Having θ fixed, we
may solve the integrals in (7.28) numerically for various amplitudes and
obtain2 C = η/ε. Figure 7.5 shows the different bifurcation possibilities.
Note that a separate analysis is needed to determine the stability of the
branches. Here, we have ignored any secondary bifurcation and only taken
into account the direction of bifurcation. The case of a period-doubling bi-
furcation is analyzed in detail in [188]. Figure 7.6 illustrates the coexistence
of multiple stable periodic solutions.

7.2.2 Moderate feedback rate

In the previous subsection, we showed that Hopf bifurcation branches se-
quentially appear as we progressively increase the delay. This is the typical
bifurcation diagram if the feedback rate is low. But what happens if the
feedback rate is larger as it is the case in the experiments by Lin and Liu
[142]? As we now demonstrate, resonant Hopf–Hopf interactions are possi-
ble [41]–[43]. Mathematically, we wish to investigate the case η = O(1) but
ε� 1. From Eqs. (7.10) and (7.11), we find the following problem if ε = 0,

x′ = −y − η (1 + y(s− θ)) , (7.29)
y′ = (1 + y)x, (7.30)

where −1 < η < 1. The basic steady state solution is given by

x0 = 0 and y0 = −η(1 + η)−1. (7.31)

From the linearized equations, we then find the following characteristic
equation for the growth rate σ,

σ2 + 1 + η exp(−σθ) = 0. (7.32)

By analyzing the implicit function η = −(σ2 +1) exp(σθ) (θ fixed), we note
that there exists a real root for −1 < η < 0 that is always negative. We

2As the amplitude of X and Y increases, the periodic solution is pulsating in time
and its numerical determination becomes harder because of the high accuracy needed
when Y is (exponentially) close to −1. To remove part of this difficulty, we integrate the
laser equations in term of X and Z = − ln(1 + Y ) when Y is close to −1.
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a b

c d

e f

Figure 7.5: The maximum of X is shown as a function of the scaled feed-
back rate C = η/ε for increasing values of the delay θ. Stable and unstable
solutions are represented by full and dotted lines, respectively. (a) θ = 0.15
supercritical Hopf bifurcation; (b) θ = θc � 2.26 vertical Hopf bifurca-
tion; (c) θ = 3 subcritical Hopf bifurcation; (d) θ = 3.3 isolated branch
of periodic solutions; (e) θ = 6.45, coexistence of bifurcating and isolated
branches; (f) θ = 12.75, coexistence of a bifurcating branch and two iso-
lated branches (reprinted Fig. 4 with permission from Pieroux et al. [188]
copyright 1994 American Physical Society).
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a a

b b

c c

Figure 7.6: If θ = 12.75, our bifurcation analysis predicts three distinct
branches of limit-cycle solutions. We have obtained these regimes by solving
numerically the original laser equations. The values of the parameters are
ε = 10−3, η = 2 × 10−2 (C = 20), and θ = 12.75. (a) The oscillations are
nearly harmonic and result from a Hopf bifurcation. The period is close to
2π, (b) The oscillations are pulsating and the period is equal to the delay θ,
(c) The oscillations are of high intensity and strongly pulsating. The period
is much larger than θ (� 6.5θ). The arrow in the figure indicates the effect
of the function y(s− θ) which is pulsating after the pulse of y(s) (reprinted
Fig. 6 with permission from Pieroux et al. [188] copyright 1994 American
Physical Society).
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thus concentrate on the complex roots and examine the case of the Hopf
bifurcations. Introducing σ = iω into Eq. (7.32), we obtain the following
two conditions for a Hopf bifurcation

(1 + η)ω2 = 1 + η cos(ωθ), (7.33)
sin(ωθ) = 0. (7.34)

We obtain the following two possibilities

(1) θ = 2nπ and ω = 1 (n = 1, 2, ...) (7.35)

(2) θ = (1 + 2m)π and ω = (1 + 2m)π
√

1 + η

1 − η
(m = 0, 1, 2...). (7.36)

The Hopf bifurcation lines are shown in Figure 7.7. The stable regions are
indicated and have been found by determining the sign of the real part of
σ near each Hopf bifurcation line. Note that the points of intersection are
double Hopf points with two distinct frequencies. See the following table.
Because ω1θ = 2nπ and ω2θ = (1 + 2m)π, the ratio of the two frequencies
at the double Hopf points is a ratio of two integers: ω1/ω2 = n/(1 + 2m).
This means that near these points, a secondary bifurcation to a periodic
solution is likely to appear. An example of a secondary bifurcation is shown
in Figure 7.8.

–1.0 –0.5 0.0 0.5 1.0
η

θ

0
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S

Figure 7.7: Hopf bifurcation lines in the θ versus η plane. The regions
marked by S correspond to a stable steady state. The different bifurca-
tion lines intersect at double Hopf points (two distinct frequencies). The
bifurcation diagram near the point encircled is examined in detail.
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Figure 7.8: Secondary bifurcation. Bifurcation diagram of the stable solu-
tions for η = 0.4 < η∗ = 0.6 and for decreasing values of θ (6 < θ < 7.6).
The Hopf bifurcation at θ1 = 2π � 6.28 is followed by a period-doubling
bifurcation at θ2 � 6.62. Note that the branch emerging at θ = θ1 can
be computed independently using the fact that its period P equals θ (full
line).

η θ ω1 ω2

3/5 2π 1 1/2
7/25 4π 1 3/4
−5/13 2π 1 2/3
−9/41 4π 1 4/5

7.2.3 Bifurcation near a double Hopf point

We wish to construct periodic solutions of Eqs. (7.29) and (7.30) near the
double Hopf bifurcation (η, θ) = (η∗, θ∗) defined by

(η∗, θ∗) = (3/5, 2π). (7.37)

To minimize computational efforts, we first eliminate the variable x. From
Eq. (7.30), we find x as

x =
y′

1 + y
= (ln(1 + y))′. (7.38)

Inserting (7.38) into Eq. (7.29), we obtain

ln(1 + y)′′ = −y − η (1 + y(s− θ)) (7.39)
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which is a second order differential equation for y only. We next introduce
the deviation from the steady state (7.31). Specifically, we introduce Y
defined by

Y ≡ −1 +
1 + y

1 + y0
, (7.40)

where y0 is given by (7.31). From (7.39), we obtain the following equation
for Y,

ln(1 + Y )′′ = − 1
1 + η

(−Y + ηY (s− θ)). (7.41)

Finally, we introduce the new time variable S ≡ sπ/θ so that Y (s − θ) =
Y (S − π) exhibits a fixed delay. The resulting equation is given by

(1 + η) ln(1 + Y )′′ = −(
θ

π
)2 [Y + ηY (S − π)] , (7.42)

where prime means differentiation with respect to time S. Equation (7.42)
is ready for the perturbation analysis. We first introduce a small parameter
0 < ν � 1 defined as

η = η∗ + νη1, (7.43)

where η1 = ±1. We next expand the parameter θ as

θ = θ∗(1 + νδ1 + ν2δ2 + ...) (7.44)

and seek a 2π-periodic solution of the form

Y = νY1(T ) + ν2Y2(T ) + ..., (7.45)

where the new time T is defined by

T ≡ (1 + νσ1 + ν2σ2 + ...)S. (7.46)

Inserting (7.43)–(7.46) into Eq. (7.42) and equating to zero the coefficients
of each power of ν lead to a sequence of linear problems for Y1, Y2, ... The
first two problems are

LY1 ≡ 8
5
Y ′′

1 + 4
[
Y1 +

3
5
Y1(T − π)

]
= 0, (7.47)

LY2 = −η1Y
′′
1 − 16

5
σY ′′

1 +
4
5
(Y 2

1 )′′ − 8δ1

[
Y1 +

3
5
Y1(T − π)

]

− 4η1Y1(T − π) +
12π
5
σY ′

1(T − π), (7.48)

where prime now means differentiation with respect to time T . The solution
of Eq. (7.47) is

Y1 = A1 exp(iT ) + c.c.+A2 exp(2iT ) + c.c., (7.49)
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where A1 and A2 are two unknown amplitudes. Note that two periodic
functions [namely, exp(iT ) and exp(2iT )] contribute to the solution because
of the double Hopf bifurcation point. This implies that we need to apply
two solvability conditions with respect to each periodic function. Because
the left-hand side is a single linear second-order equation, these conditions
are easy to formulate. We need to expand the right-hand side of Eq. (7.48)
and set the coefficients of exp(iT ) and exp(2iT ) equal to zero. This leads
to two coupled equations for A1 and A2 given by

[(4 − 3πi)4σ1 + (25η1 − 16δ1)]A1 − 8A∗
1A2 = 0, (7.50)

[(8 + 3πi)σ1 − 8δ1A2]A2 − 2A2
1 = 0. (7.51)

We now investigate these conditions. The cases σ1 = 0 and σ1 �= 0 must
be treated separately.

Secondary bifurcation

In terms of Aj = Rj exp(iφj), the solution of Eqs. (7.50) and (7.51) with
σ1 = 0 satisfies the two conditions

R2 = −R2
1

4δ1
exp(−iΦ) and R1

[
δ1(−25η1 + 16δ1) − 2R2

1

]
= 0, (7.52)

where Φ = φ2 − 2φ1. The first solution is the trivial solution

(1) : R1 = R2 = 0. (7.53)

The second solution verifies R1 �= 0 and R2 �= 0 and is given by

(2) : R2
1 =

δ1
2

(−25η1 + 16δ1) > 0, (7.54)

R2 = −1
8
(−25η1 + 16δ1) cos(Φ) > 0, (7.55)

where Φ = 0 or π. A third solution is possible if δ1 = 0 and has the form

(3) : δ1 = 0, R1 = 0 but R2 arbitrary. (7.56)

It corresponds to a vertical Hopf bifurcation. The connection between So-
lution (2) and Solution (3) appears at a secondary bifurcation with critical
amplitude

R2 = ±25
8
η1 > 0. (7.57)

See Figure 7.9. But because δ1 = 0 and R2 is unknown for Solution (3),
we need to investigate the higher-order problem. The solution of Eq. (7.48)
with Y1 = A2 exp(2iS) + c.c. and δ1 = 0 is

Y2 = B1 exp(iT ) + c.c.+B2 exp(2iT ) + c.c.+
2
3
A2

2 exp(4iT ) + c.c., (7.58)
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Figure 7.9: Bifurcation diagram of R1 and R2 as a function of δ1. The labels
2, 3, and 4 refer to the different solution branches determined analytically.
The bifurcation at R2 = 25/8 marks a period-doubling bifurcation. As δ1
progressively increases from zero, R1 progressively increases but the period
remains constant. At the point where R1 = R2 (δ1 = 25/16), the period-2
solution experiences a bifurcation to a new period-2 solution where the
period is now a function of δ1.

where B1 and B2 are two new unknown amplitudes. The problem for Y3

with δ1 = σ1 = σ2 = 0 is

LY3 = −η1Y
′′
2 +

8
5
(Y2Y

′
1 + Y1Y

′
2 − Y 2

1 Y
′
1)′

− 8δ2(Y1 +
3
5
Y1(S − π)) − 4η1Y2(S − π). (7.59)
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η − η∗
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Figure 7.10: Period-doubling bifurcation lines emerging from the double
1:2 Hopf point. The parabolic and straight lines were obtained analyti-
cally and correspond to the secondary bifurcation and the tertiary bifur-
cation, respectively. The dots were obtained by solving the laser equations
numerically.

The two solvability conditions require that

η125B1 − 8B∗
1A2 = 0, (7.60)

−2δ2A2 +
1
3
A2

2A2 = 0 (7.61)

implying that either

B1 = 0 and R2
2 = 6δ2 > 0 (7.62)

or B1 �= 0 and

R2
2 = 6δ2 = (

25
8
η1)

2. (7.63)

The expression (7.63) locates the secondary bifurcation in parameter space
(θ, η). Using (7.43) and (7.44), we find

θ − θ∗

θ∗
=

1
6

(
25
8

)2

(η − η∗)2. (7.64)

The parabolic function is shown in Figure 7.10.

Tertiary bifurcation

We next seek a solution of Eqs. (7.50) and (7.51) of the form Aj =
Rj exp(iφj) with σ1 �= 0. The first nontrivial solution is R1 = 0 and
R2 �= 0. However, this solution is possible only if δ1 = σ1 = 0 which is
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a case that was previously studied. The second solution verifies R1 �= 0
and R2 �= 0. From the real and imaginary parts, we find the following four
equations

16σ1 + 25η1 − 16δ1 − 8R2 cos(Φ) = 0, (7.65)
−σ112π − 8R2 sin(Φ) = 0, (7.66)
8σ1R2 − 8δ1R2 − 2R2

1 = 0, (7.67)
3πσ1R2 − 2R2

1 sin(Φ) = 0. (7.68)

Adding R2×(7.66) and 4×(7.68) leads to the condition

8(R2
1 −R2

2) sin(Φ) = 0. (7.69)

A first solution of Eq. (7.69) is sin(Φ) = 0 meaning σ1 = 0 from (7.66) or
(7.68). This case was studied in the previous subsection. A second possi-
bility verifying condition (7.69) is

(4) : R1 = R2 = R. (7.70)

Equations (7.65)-(7.68) then simplify as

16σ1 + 25η1 − 16δ1 − 8R cos(Φ) = 0, (7.71)
−σ112π − 8R sin(Φ) = 0, (7.72)

8σ1 − 8δ1 − 2R cos(Φ) = 0, (7.73)
3πσ1 + 2R sin(Φ) = 0. (7.74)

Eliminating R cos(φ) from Eqs. (7.71) and (7.73), we obtain an expression
for σ1 given by

σ1 =
25
16
η1 + δ1. (7.75)

Note from (7.54) and (7.55) with Φ = π, δ1 > 0, and η1 < 0 that the point
where R1 = R2 of Solution (2) appears at

δ1 = −25η1

16
, (7.76)

which is exactly the point where σ1 defined by (7.75) is zero. This point is
a tertiary bifurcation point. In terms of θ, it is located at

θ − θ∗

θ∗
= −25

16
(η − η∗). (7.77)

The function is the straight line shown in Figure 7.10. Finally, from (7.72)
and (7.73), we obtain R sin(Φ) = −σ13π/4 and R cos(Φ) = 4(σ1−δ1) which
lead to

R =

√
σ29π2

16
+ 16(σ1 − δ1)2 (7.78)

which describes the amplitude of solution (7.70). See Figure 7.9.
In summary, we determined analytically three successive bifurcations.

Their locations compare well with the numerical estimates obtained by
simulating the original laser equations. See Fig. 7.11.



152 7. Lasers

Figure 7.11: Cascading bifurcations. Numerical bifurcation diagram of the
stable solutions obtained by decreasing θ from θ = 7.6 to θ = 6.1. The
value of η = 0.55 < η∗ = 0.6. The three first bifurcation points found
numerically are located at: θ1 = 2π � 6.28, θ2 � 6.31 (θ2anal � 6.31), and
θ3 � 6.75 (θ3anal � 6.77).

7.3 Delayed coherent feedback

OFB from distant reflectors may have dramatic effects on the laser normal
output. This is the case for SLs used in telecommunication, data transmis-
sion, and data storage technologies. Moreover, because the RO frequency
is of the order of a few GHz, the laser is particularly sensitive to GHz sig-
nals, threatening reliable performance in optical communication systems.
Careful isolation of the laser is possible but increases the complexity and
cost of the laser system.

The response of the laser due to OFB is rich and varied. Typical exper-
iments in the laboratory consider the case of an external mirror located
at one to several meters from the laser [98]. See Fig. 7.12. The round-trip
frequency of light νEC = τ−1 is then some hundreds of MHz and is sub-
stantially lower than the GHz range relaxation oscillation frequency νRO.
The output intensity is chaotic but is characterized by at least two distinct
time-scales. Figure 7.13 shows an example recorded for injection currents
close to the solitary laser threshold. Figure 7.13 (top) shows irregular
fluctuations of the laser intensity on a time scale of microseconds, which
is very slow compared with the RO period. Figure 7.13 (bottom) shows
the same dynamics on faster time-scales indicating that indeed there is a
faster dynamics (νaverage � νRO) underlying the slow dynamics. Note in
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Figure 7.12: Typical experimental set-up. A temperature-stabilized laser
diode is subject to delayed optical feedback from a semitransparent di-
electric mirror. The laser beam is collimated using an aspheric lens, and
feedback strength is controlled with a polarizer (Pol.). The optical isolator
(Iso.) shields this external cavity configuration (rectangle in broken lines)
from the detection branch. The light is analyzed using a single-shot streak
camera and the optical spectrum is monitored with a grating spectrome-
ter (reprinted Fig. 1 with permission from Heil et al. [87], copyright 2001
American Physical Society).

Figure 7.13 (top) the irregular intensity drops. This phenomenon is called
Low Frequency Fluctuations or LFF.

However, in many practical applications such as fiber couplers or in com-
pact discs, the external cavity is only a few centimeters long. The ratio of
the two basic frequencies νEC and νRO is reversed and a different laser re-
sponse is possible [87]. See Figure 7.14. We note that the intensity output is
more regular than the one shown in Figure 7.13. The laser intensity shows
a periodic emission of regular pulse packages separated by short intervals of
very low intensity. The dynamics on the short time-scale is now dominated
by the delay time.

Mathematically, we consider the idealized case of a single mode laser sub-
ject to a weak optical feedback so that multiple reflection can be ignored.
With the injection of the delayed optical field [136], the laser equations for
the amplitude of the field Y and the carrier density Z are given by

dY

dt
= (1 + iα)ZY + η exp(−iΩ0θ)Y (t− θ), (7.79)

T
dZ

dt
= P − Z − (1 + 2Z)|Y |2, (7.80)

where t = t′/τp. P is the pump parameter above threshold (P = O(1)),
T ≡ τc/τp, θ ≡ τL/τp are ratios of times, η is the feedback rate (η� 1),
and Ω0θ ≡ ω0τ is a phase called the feedback phase. The delay τ appears
in the delayed field amplitude Y (t−τ) and in the phase factor exp(−iω0τ ).
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Figure 7.13: Intensity time series recorded for a laser operating close to its
threshold. Top: Oscilloscope single-shot measurement, bandwidth 1 GHz.
Bottom: streak camera single-shot measurement, bandwidth more than 50
GHz (from Heil et al. [88]).

Varying the position of the external mirror over one half optical wavelength
(250–750 nm) corresponds to a variation in the phase ω0τL of 2π.

The LK equations (7.79) and (7.80) have been studied analytically and
numerically. Computer simulations have shown that they correctly describe
the dominant effects observed experimentally. These include the occurrence
of mode hopping [211, 171, 232], low-frequency fluctuations [170, 204], or
the onset of “coherence collapse” [211, 179]. The LK equations admit simple
solutions called the external cavity modes (ECMs). These modes are the
reference solutions for all analytical or numerical bifurcation studies.
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Figure 7.14: Streak camera measurements of the intensity time series of
the laser operating in the short cavity regime. The injection curent is I =
1.15Ith,sol. The external cavity is 3.2 cm long corresponding to νEC = 4.7
Ghz (reprinted Fig. 2 with permission from Heil et al. [87], copyright 2001
American Physical Society).

7.3.1 Single-mode solutions

A basic solution of Eqs. (7.79) and (7.80) is the single-frequency solution

Y = A exp (i(Ω − Ω0)t) and Z = B, (7.81)

where A, Ω, and B are constants. Equation (7.81) is called an external
cavity mode or ECM. Substituting (7.81) into Eqs. (7.79) and (7.80) leads
to three equations for A, B, and Δ ≡ Ωθ given by

B = −η cos(Δ), (7.82)

Δ − Ω0θ = −ηθ (α cos(Δ) + sin(Δ)) (7.83)

A2 =
P + η cos(Δ)
1 − 2η cos(Δ)

≥ 0. (7.84)

Δ is called the ECM frequency. It satisfies the transcendental equation
(7.83) and the implicit solution is

ηθ = − Δ − Ω0θ

α cos(Δ) + sin(Δ)
. (7.85)

By continuously changing Δ from negative to positive values, we determine
ηθ from Eq. (7.85) and find several branches of solutions. See Figure 7.15.
Except for the first mode that appears at η = 0, all other modes emerge
by pairs from limit points and their number progressively increases with η.
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Figure 7.15: Bifurcation diagram of the ECMs. The upper and lower figures
represent the ECM frequency and amplitude Δ and A, respectively. The
values of the parameters are P = 10−3, T = θ = 103, α = 4, and Ω0θ = −1.
Full and broken lines represent stable and unstable solutions, respectively.
Black squares denote Hopf bifurcation points.

7.3.2 Two mode solutions and mode beating

Optical sources pulsating with high frequencies of several tens of gigahertz
are required for a number of signal-processing applications. By the end of
the 1990s, the group of Bernd Sartorius from the Heinrich-Hertz-Institut
(HHI) in Berlin started to be interested in laser devices capable of gener-
ating tunable self-pulsations (SPs) with frequencies above 20 GHz. It was
later discovered that Tager and Elenkrig [222] and Tager and Petermann
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[223] already were concerned with this problem. Using the single-mode LK
equations, they analyzed the possibility of a Hopf bifurcation to a high-
frequency mode–antimode beating (MB) regime. They found that a short
external cavity and a high feedback rate were necessary for this type of
output. But the authors didn’t give any clue on the stability of such high-
frequency SPs. Could a stable mode and an unstable mode combine and
produce a stable two-mode regime? Starting in 1999,3 a series of work-
shops was organized at the WIAS by Klaus Schneider with the aim of
attracting mathematicians and engineers and discuss these issues. In 2000,
an asymptotic analysis of the LK equations based on the relative slow
time-scale of the carriers compared to the photon lifetime showed that the
high-frequency MB regimes belong to branches that connect isolated ECM
branches (bridges) [57, 190]. Therefore, the LK equations may exhibit two
types of Hopf bifurcations, namely, the bifurcation to RO oscillations or the
bifurcation to MB regimes. How these bifurcations interact in parameter
space was carefully investigated in [243]. In 2002, Sieber [213] proposed a
detailed bifurcation analysis of the traveling wave laser equations empha-
sizing the domains of parameters where the high-frequency pulsations are
possible. To achieve the required high feedback, Bauer et al. [11] from the
HHI have attached to the passive short external cavity an active ampli-
fier section. The carriers in the amplifier introduce an additional degree of
freedom leading to a stabilization of the MB regime [13] as well as a com-
plex dynamics including chaos [14]. High-frequency dynamical regimes of
passive feedback lasers were then reported by Ushakov et al. in 2004 [235]
using an integrated distributed feedback device that allows the control of
the feedback phase.

7.3.3 Numerical simulations and bridges

Although the single-ECM solution (7.81) exactly satisfies the LK equations,
the two-ECM solution of the form

Y = A1 exp (i(Ω1 − Ω0)t) +A2 exp (i(Ω2 − Ω0)t) (7.86)

is not an exact solution of the LK equations. However, (7.86) can be the
leading approximation of an asymptotic solution valid for large T. Specifi-

3The first workshop on “Dynamics of Semiconductor Lasers” occurred at the WIAS
in September 1999. It gathered mathematicians, physicists, and engineers with very
different backgrounds. But the expectations were high. H. J. Wünsche asked the math-
ematicians to tell “how dynamical systems may provide new ideas for 40 GHz lasers”.
Most mathematicians were scared, having no understanding of what, for example, a
DFB laser was. But the interaction between mathematicians and physicists persisted
almost every year at the WIAS workshops. Today, the topics discussed go beyond laser
problems and deal with the delayed synchronization of oscillators or the stabilization of
unstable states by a delayed feedback control.
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cally, we seek a perturbation solution of the form

Y = Y0(t) + εY1(t) + ... (7.87)
Z = Z0(t) + εZ1(t) + ..., (7.88)

where ε ≡ T−1. From Eqs. (7.79) and (7.80), the leading-order problem as
ε = 0 is given by

dY0

dt
= (1 + iα)Z0Y0 + η exp(−iΩ0θ)Y0(t− θ), (7.89)

dZ0

dt
= 0. (7.90)

Equation (7.90) implies that
Z0 = C (7.91)

is an unknown constant. Equation (7.89) with Z0 = C is then linear and
admits the solution (7.86) only at particular values of the feedback rate
(η = ηc). At η = ηc, two single ECMs admit the same value of Z = B and
the frequencies

Δ1 = Δ1c and Δ2 = Δ2c. (7.92)

The two-ECM solution (7.86) exhibits two amplitudes A1 and A2 which
are undetermined at this order of the perturbation analysis. In order to
determine equations for A1 and A2, we need to investigate the higher-
order problem for Y1 and Z1 and apply solvability conditions [57]. The
analysis is long and tedious because of transcendental equations for the
unknown amplitudes A1, A2 and the first-order correction of the frequencies
Ω1 and Ω2. But the bifurcation results are relatively simple. The two-ECM
solution (7.86) belongs to a closed branch of solutions connecting two Hopf
bifurcation points each located on a different single ECM branch. They are
the bridges found numerically (see Figure 7.16). The bifurcation diagram of
the maxima and minima of |Y | obtained by integrating the LK equations
for gradually increasing (or decreasing) values of η is shown in the top
figure for the same values of the parameters as in Figure 7.15. The figure
shows successive stable ECM branches each undergoing a Hopf bifurcation.
The same diagram now obtained by a continuation method is shown in
the bottom figure. Only the maxima are shown. The figure reveals bridges
connecting distinct Hopf bifurcation points. The single-ECM solution (7.81)
admits a constant intensity given by I = A2 but the two-ECM solution
(7.86) exhibits time-periodic intensity oscillations of the form

I = |A1|2 + |A2|2 + 2 |A1| |A2| cos
(
(Δ1c − Δ2c)θ−1t+ φ

)
, (7.93)

where φ is a constant phase. The period of the oscillations is the mode-
beating period

PMB = 2πθ |Δ1c − Δ2c|−1 (7.94)
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Figure 7.16: Top: Bifurcation diagram of the stable solutions obtained by
integration in time. Bottom: Bifurcation diagram of the stable and unstable
steady and periodic solutions obtained by a continuation method (reprinted
Fig. 1 with permission from Pieroux et al. [190] copyright 2001 American
Physical Society).

which is clearly proportional to the delay θ. Numerical bifurcation studies
suggest that bridges are either unstable or are partially stable [57, 190, 59].
However, stable bridges are possible if α is sufficiently low (α ≤ 1) [59].
For an arbitrary value of α > 1, a stable bridge may change its stability
at a torus bifurcation point as we increase the feedback rate. The torus
bifurcation leads to quasiperiodic oscillations with two distinct frequencies.
The first and second frequencies are the bridge intensity frequency P−1

MB

and the RO frequency ωr =
√

2P/T [190, 59].
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7.4 Imaging using OFB

Few people need to inspect an object in a glass of milk [134]. If, how-
ever, an imaging technique can see through milk, it probably can image
objects effectively through other diffusing media such as blood or even a
suspension of silica powder in a polishing workshop. It then becomes an
effective inspection tool in applications as diverse as manufacturing inspec-
tion, medical imaging of living tissues, and even tasks requiring undersea
visibility.

Current options for imaging through diffusing media include techniques
such as time-resolved holography, optical coherence tomography, and scan-
ning confocal microscopy.

In 1999 Frédéric Stoeckel at the Laboratoire de Spectrométrie Physique
of the Université Joseph Fourier de Grenoble (Saint-Martin-d’Héres,
France) had the idea of taking advantage of optical feedback using Nd:YAG
microchip lasers [134]. Together with his colleague Eric Lacot, they de-
veloped a new technique called LaROFI for Laser Relaxation Oscillation
Frequency Imaging [135] (see Figure 7.17). The technique relies on the
resonant sensitivity of a short-cavity laser to optical feedback produced
by ballistic photons retrodiffused from the media. The method produces
two– and three-dimensional imaging in turbid media that is similar to
heterodyne scanning confocal microscopy, but resolves some of the limita-
tions. One important advantage of the LaROFI method is that the laser
source is also the detector. In addition to its optical-amplification duties,

Figure 7.17: Two-dimensional (262× 262 pixels) image of a French 1-franc
piece using the laser relaxation oscillation frequency imaging technique.
The pixel dimensions are 100 μm×100 μm (from Lacot et al. [135]).
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Figure 7.18: In confocal microscopy, spatial filtering is controlled by the
size of the hole and the quality of the detection depends on the detector. In
LFI and LaROFI imaging, spatial filtering is achieved by selection of one
laser mode and the quality of the detection depends on the laser.

it provides self-aligned spatial and temporal coherent detection (acts as
both a spatial and temporal filter). See Figure 7.18. Another novelty of
the LaROFI technique is that the frequency of the intensity relaxation
oscillations is measured together with the intensity of the laser field. This
provides a 100 × higher sensitivity compared to previous techniques based
on external cavity frequency measurements (LFI for Laser Feedback In-
terferometry). In this section, we determine approximations of the laser
intensity and the laser relaxation oscillation frequency that we compare
with the experimental data.

7.4.1 Stability analysis

The LK equations (7.79) and (7.80) describe the response of a single-mode
laser subject to optical feedback from a distant mirror. Introducing the
amplitude and the phase of the field, Y = R exp(iφ), these equations with
α = 0 (we are dealing with microchip solid state lasers where α is zero)
can be rewritten as

dR

dt
= ZR+ ηR(t− θ) cos(φ(t− θ) − φ− Ω0θ), (7.95)

dφ

dt
= αZ + η

R(t− θ)
R

sin(φ(t− θ) − φ− Ω0θ), (7.96)

T
dZ

dt
= P − Z − (1 + 2Z)R2. (7.97)
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Equations (7.95)–(7.97) admit the ECMs (7.81) as the basic solutions. In
terms of R, φ,and Z, they are given by

R = A, φ = (Ω − Ω0)t and Z = B, (7.98)

where A, B, and Δ = Ωθ are constants given by (7.82), (7.83), and (7.84)
with α = 0. We investigate their linear stability properties by introduc-
ing the small perturbations u, v and w. The linearized equations are the
following equations for u, v, and w

du

dt
= Bu+ η cos(Δ)u(t− θ) + ηA sin(Δ)(v(t − θ) − v) (7.99)

+ Aw,

dv

dt
= − η

R
(u(t− θ) − u) sin(Δ) + η cos(Δ)(v(t − θ) − v)

+ αw, (7.100)
dw

dt
= −T−1

[
(1 + 2B)2Au+ w(1 + 2A2)

]
. (7.101)

We solve these equations by looking for a solution of the form u = a exp(λt),
v = b exp(λt) and w = c exp(λt). We then obtain the following problem for
the coefficients a, b, and c

λ

⎛

⎝
a
b
c

⎞

⎠ = L

⎛

⎝
a
b
c

⎞

⎠ , (7.102)

where the Jacobian matrix L is defined by

L ≡
⎛

⎝
η cos(Δ)F ηA sin(Δ)F A

− η sin(Δ)
A F η cos(Δ)F α

−(1 + 2B)2Aε 0 −(1 + 2A2)ε

⎞

⎠ , (7.103)

where
F ≡ exp(−λθ) − 1 and ε ≡ T−1. (7.104)

A nontrivial solution is possible only if λ satisfies the condition det(L −
λI) = 0. This condition leads to the characteristic equation for the growth
rate λ,

0 =
[−(1 + 2A2)ε− λ

]
{

[η cos(Δ)F − λ]2

+η2 sin2(Δ)F 2

}

+ (1 + 2B)2A2ε [η cos(Δ)F − λ] . (7.105)

7.4.2 Low feedback rate approximation

Equation (7.105) is hard to solve even numerically. Several approximations
have been investigated in the past (see review in [58]). In this section, we
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propose to investigate the solution of Eq.(7.105) for low values of η. If ηθ
is small, there is only one ECM. From (7.83), (7.84), and (7.82), we find
the simple approximation

Δ = Ω0θ +O(ηθ), A2 = P +O(η) and B = O(η). (7.106)

If η = 0, the characteristic equation (7.105) reduces to

λ
[
λ2 + λ(1 + 2P )ε+ 2Pε

]
= 0 (7.107)

which we recognize as the characteristic equation for the solitary laser. For
small ε and λ �= 0, Eq. (7.107) has the solution

λ = ±i
√

2Pε− ε
1 + 2P

2
+O(ε3/2). (7.108)

The leading term is the RO frequency defined by

ωr ≡
√

2Pε. (7.109)

The expression (7.108) motivates seeking a solution of (7.105) of the form

λ = ε1/2λ0 + ελ1 + ... (7.110)

and in order to balance terms with η in Eq. (7.105), we assume η as an
O(ε) quantity. Specifically, we expand η as

η = εη1 + .... (7.111)

Introducing (7.110) and (7.111), taking into account (7.109), we equate to
zero the coefficients of each power of ε1/2. The first two problems are

O(ε3/2) : 0 = −λ3
0 − 2Pλ0, (7.112)

O(ε2) : 0 = −(3λ2
0 + 2Pε)λ1 + 2λ2

0η1 cos(Ω0θ)F0

−(1 + 2P )λ2
0 + 2PF0η1 cos(Ω0θ), (7.113)

where
F0 ≡ exp(−ε1/2λ0θ) − 1 (7.114)

and we have assumed ε1/2θ = O(1). From Eq. (7.112) and then Eq. (7.113),
we determine λ0 and λ1. Together, the growth rate λ is given by

λ � ±iωr +
1
2

⎡

⎣
−ε(1 + 2P )

−2 sin2(ωrθ)η cos(Ω0θ)
∓i sin(ωrθ)η cos(Ω0θ)

⎤

⎦ . (7.115)

Lacot et al. [135] designed the LaROFI imaging technique using the ex-
pression (7.115). See Figure 7.19. Specifically, the method determines the
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Figure 7.19: The laser beam is focused on a target. Only photons backscat-
tered from points located near the center of the laser beam on the target are
reinjected by mode matching into the laser. The laser dynamics is modified
by the interference effects taking place between the backscattered field and
the standing wave inside the laser cavity. This interference effect depends
on the reflectivity, distance, and motion of the target. The laser output
power is detected by a photodetector and the laser relaxation frequency is
determined by a spectrum analyzer. In order to obtain an image, a micro-
metric translation unit combined with a PZT moves the target (from Lacot
et al. [135]).

modification of the relaxation oscillation frequency of the laser as the feed-
back rate increases. In the case of constructive interference,

cos(Ω0θ) = 1, (7.116)

the ECM solution 7.106) is stable because Re(λ) < 0. The imaginary part
provides the correction to the RO frequency ωr due to optical feedback.
This relative change of the RO frequency is given by

ωOF − ωr

ωr
= − η

2ωr
sin(ωrθ). (7.117)

Furthermore, if ωrθ is small, we have sin(ωrθ) � ωrθ, and the expression
(7.117) can be further simplified. In terms of the original parameters, it
leads to

F ≡ ΩOF − Ωr

Ωr

√
Reff

= −γc

2
τ = −γc

c
d. (7.118)
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Figure 7.20: Modified RO frequency due to optical feedback. The figure
represents the relative change of the relaxation frequency |F | as a function
of the distance laser target d.

Ωr and τ are defined by

Ωr ≡
√
γ1γc(P − 1) and τ ≡ 2d

c
, (7.119)

where the population inversion damping rate γ1 = 1/(255 μs) = 3.9215 ×
103 s−1, the cavity damping rate γc = 1.55×1010 s−1, the pump parameter
above threshold P = 2, and the effective feedback reflectivity Reff = 10−4.

d is the distance laser target and c = 3×108 ms−1 is the speed of light. The
expression (7.118) indicates that the relative change of the RO frequency
is linearly proportional to the distance d for low values of d (broken line in
Figure 7.20) Figure 7.20 also shows the frequency correction |F | obtained
from (7.117) but without the approximation ωrθ is small (full line). The
dots are experimental points. Note that the increase of |F | does not remain
linear but exhibits a maximum near d = 30 m. This behavior resulting
from the sine function in (7.117) remains to be checked experimentally.

7.5 Optoelectronic oscillators

High repetition rate pulse sources are usually implemented by active mode
locking of fiber or diode lasers which requires a microwave-driving source
whose phase noise determines or limits the resultant jitter.4 A completely

4Jitter is an unwanted variation of the signal characteristics of the laser output. Jitter
may be seen in the interval between successive pulses, or the amplitude, frequency, or
phase of successive cycles.
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different approach for obtaining sustained pulse sources is to use opto-
electronic oscillators (OEO). OEOs typically incorporate a nonlinear mod-
ulator, an optical-fiber delay line, and optical detection in a close-loop
resonating configuration. These devices can generate radio-frequency os-
cillations with extremely high spectral purity and low phase noise in the
microwave range as up to tens of GHz.

Recently, new OEO devices with band-limited feedback that use a Mach-
Zehnder modulator have been investigated in several laboratories [12, 109,
128, 129]. A mathematically interesting property of these devices is the fact
that their description is sufficiently simple to allow detailed comparisons
between experiments and theory. In [128], a continuous-wave semiconductor
laser provides the energy source. It illuminates a Mach-Zehnder modulator
that produces the essential nonlinearity of the feedback loop. The output
of the modulator is then injected into a long optical fiber of delay time τD

and a photodiode converts the light into an electrical current. The photo-
diode admits a low and a high cutoff frequencies fL and fH , respectively.
Finally, a radio-frequency amplifier converts the signal from the photodiode
into an electrical voltage that is fed back in the Mach-Zehnder modulator.
In dimensionless form, the voltage of the feedback loop satisfies the follow-
ing integro-delay differential equation [128]

x+ τ
dx

dt
+ θ−1

∫ t

0

x(s)ds = β
[
cos2 (x(t− τD) + φ) − cos2 (φ)

]
, (7.120)

where the feedback amplitude β and the feedback phase φ are two indepen-
dent control parameters. The time constants θ and τ are directly related
to the cutoff frequencies fL and fH , respectively. Eq. (7.120) differs from
Ikeda equation (1.26) by the presence of the integral term. In [128], the
OEO exhibits different orders of magnitude for the three time constants,
namely,

τ = 25 ps, τD = 30 ns, and θ = 5 μs,

suggesting the possibility of multiple time-scale regimes. Figure 7.21 shows
two different experimental outputs for the power, proportional to β cos2

(x+ φ) , as a function of time, measured in μs. The square-wave oscillations
(bottom) are reminiscent of Ikeda square-wave oscillations but the low-
frequency asymmetric regime (top) is new.

To have an analytical insight of this particular solution, we reformulate
Eq. (7.120) as a system of two coupled first order DDEs. To this end, we
differentiate Eq. (7.120) once, introduce x = dz/dt, and obtain

x′ = z, (7.121)
τz′ = −z − θ−1x− β sin (2x(t− τD) + 2φ) , (7.122)

where prime means differentiation with respect to t. We next anticipate
that the solution exhibits a basic time scale proportional to θ and introduce
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Figure 7.21: Two distinct oscillatory outputs are observed for β = 1.3.
Top: sin(2φ) < 0 and the oscillations are asymmetric and exhibit a period
proportional to θ. The thin grey line corresponds to the numerical solution
of the integro-differential equation for β = 1.3, φ = −0.57, and using
F = 1.632β cos2(x+φ). Bottom: sin(2φ) > 0 and the oscillations are nearly
square-wave with a period close to 2τD. Experiments courtesy of Laurent
Larger.
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Figure 7.22: Limit-cycle solution of the coupled first order equatuions with
δ = 0.

s ≡ t/θ and v ≡ θz. From Eqs. (7.121) and (7.122), we find

x′ = v, (7.123)
εv′ = −v − x− β sin (2x(s− δ) + 2φ) , (7.124)
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where prime now means differentiation with respect to s and

ε ≡ τθ−1 = 2.46 × 10−6 and δ ≡ τDθ
−1 = 8.43 × 10−3.

Neglecting the delay δ, Eqs. (7.123) and (7.124) reduce to two ordinary
differential equations for a relaxation oscillator (ε� 1). We may analyze
the limit-cycle solution in the phase-plane (x, v) like Van der Pol limit-
cycle [22]. The numerical limit-cycle solution of Eqs. (7.123) and (7.124)
with δ = 0 is shown in Figure 7.22. The parabolic plateaus are functions
of s (Δs = O(1) or Δt ∼ θ ∼ μs) and are connected by fast transition
layers (Δs = O(ε)). Compared to the experimental time trace in Figure
7.21 (top), we note that the analytical transition layers in Figure 7.22 are
much sharper. This comes from the fact that we neglect the delay δ, in first
approximation.
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Phase equations

Systems of coupled oscillators are a suitable approach for studying rhyth-
mic behavior at many levels of biological organization, from populations
of molecules to populations of organisms. Because their collective response
is rich and varied, there exists a large literature on the synchronization
properties of coupled oscillators. Communication between different units
of a population may take time (as electrical signals propagating between
neurons) and scientists are now investigating the effect of a delayed cou-
pling. This chapter does not fall into the trap of reviewing this emerg-
ing field of research. But some salient features of the response of delayed
coupled oscillators can be understood by analyzing just two coupled os-
cillators. The simplest approach that describes the synchronization of two
oscillators is based on single Delay Differential Phase Equations (DDPEs).
Although simple, they offer challenging new bifurcation problems because
both bounded and unbounded solutions are acceptable.

In Chapter 5, we discussed the case of a chemical oscillator subject to
weak delayed feedback. It is not an example of two coupled oscillators but
it leads to a DDPE that is whorthwhile to discuss. Close to a supercritical
Hopf bifurcation, the effect of a weak delayed feedback on a limit-cycle
oscillator can be described by the following DDPE,

φ′ = ω + μ sin [φ− φ(t− τ)] , (8.1)

where φ represents the phase of the limit-cycle oscillator. This equation is
one form of Adler’s equation with delay.1 Another form is introduced below.

1Robert Adler (1913–2007) is best known as the co-inventor of the television remote
control using ultrasonic waves. But in the 1940s, he and others at Zenith Corporation
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The first term in the right-hand side of Eq. (8.1) represents the nonlinear
correction of the frequency of the free oscillator. The second term in Eq.
(8.1) is the contribution of the delayed feedback. Substituting φ = Ωt into
Eq. (8.1) leads to the following equation for Ω,

Ω = ω + μ sin(Ωτ ) (8.2)

from which we extract the implicit solution

τ =
1
Ω

arcsin(
Ω − ω

μ
). (8.3)

Provided μ is sufficiently large, the period T ≡ 2π/Ω as a function of
τ exhibits hysteresis as shown in Figure 8.1. Using the conditions for a
nascent hysteresis (dτ/dΩ = d2τ/dΩ2 = 0), we find

1 = μτ cos(Ωτ ) and sin(Ωτ ) = 0. (8.4)

Together with Eq. (8.2), this determines the critical value of μ = μc ≡ ω/2π
above which a bistable response diagram is possible. The solutions φ = Ωt
are called the locked states because the period T = 2πΩ−1 of the free
oscillations try to match the delay τ .

τ
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T = τ 

Figure 8.1: The values of the parameters are ω = 2 and μ = 1.

were interested in reducing the number of vacuum tubes in an FM radio. The possibility
that a locked oscillator might offer a solution inspired his 1946 paper “A Study of Locking
Phenomena in Oscillators.” Adler’s work concerned a single nonlinear phase oscillator.
Later the idea was exploited and generalized to describe a number of similar coupled
oscillators. Some authors refer to “Adler-type equations” in connection with models of
the form (8.1) where the sine function is the nonlinear function.
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8.1 Weakly coupled oscillators

For two weakly coupled oscillators, the predominant effect is a synchro-
nization of the frequencies of the individual oscillators to a single common
frequency once the coupling strength exceeds a certain threshold, while
the amplitudes remain unaffected. Schuster and Wagner [212] and Niebur
et al. [177] first investigated the response of two delayed coupled oscillators
using the following equations

φ′
1 = −Δ

2
− κ sin(φ1 − φ2(t− τ)), (8.5)

φ′
2 =

Δ
2
− κ sin(φ2 − φ1(t− τ )). (8.6)

We have restricted the model equations to the case of symmetric detuning
where ω2 = −ω1 = Δ/2. Δ > 0 is considered as the bifurcation parameter.
The choice of a symmetric detuning is motivated by the analysis of a laser
experiment considered in the next section.

8.1.1 Basic solutions

Equations (8.5) and (8.6) admit a constant phase solution of the form

φ1 = 0 and φ2 = α. (8.7)

From Eqs. (8.5) and (8.6), we find α as

α = arcsin(
Δ
2κ

) (Δ ≤ 2κ). (8.8)

We next investigate its stability. From the linearized equations, we deter-
mine the characteristic equation for the growth rate λ

λ2 + 2κλ cos(α) + κ2 cos2(α)(1 − exp(−2λτ)) = 0. (8.9)

The case of purely real eigenvalues can be analyzed by solving the quadratic
equation in cos(α). We find two possible solutions given by

cos(α) = −λ
κ

(1 + exp(−λτ))−1, (8.10)

cos(α) = −λ
κ

(1 − exp(−λτ))−1. (8.11)

The two branches of solutions are shown in Figure 8.2 (left). We note from
the figure that λτ < 0 if cos(α) > 0. This condition is thus a necessary
condition for stability. The open circle marks a simple zero eigenvalue that
corresponds to a limit point of the α = α(Δτ ) branch (see Figure 8.2
(right); the limit point is located at (Δτ , α) = (2κτ, π/2)). The filled circle
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Figure 8.2: Stability of the constant phase solution. The values of the pa-
rameters are κ = π and τ = 1. Left: Real eigenvalues λτ as a function of
cos(α). The full and open circles indicate simple zero eigenvalues. Right:
Bifurcation diagram of the constant phase solution φ1 = 0, φ2 = α. Based
on the sign of the real eigenvalues, the lower and upper branches are sta-
ble and unstable, respectively. The dot marks a bifurcation point to the
frequency locked solution φ1 = Ωt and φ2 = Ωt+ α.

in Figure 8.2 (left) denotes another zero eigenvalue located at cos(α) =
−1/κτ . With sin(α) obtained from (8.8), we find that this particular point
is located at Δ = Δc where

Δc ≡ 2κ

√

1 − 1
κ2τ2

(1 − 1
κ2τ2

> 0) (8.12)

(full circle in Figure 8.2 (right)). This point is a bifurcation point to a
frequency locked solution of the form

φ1 = Ωt and φ2 = Ωt+ α. (8.13)

Schuster and Wagner [212] analyzed these solutions. Substituting (8.13)
into Eqs. (8.5) and (8.6), we obtain two equations for Ω and α given by

Ω = −Δ
2

− κ sin(Ωτ − α), (8.14)

Ω =
Δ
2

− κ sin(Ωτ + α). (8.15)

Adding and substracting Eqs. (8.14) and (8.15) lead to expressions for
cos(α) and sin(α), respectively. We then eliminate α using a trigonometric
identity and obtain the solution in the implicit form Δ = Δ(Ω) :

Δ = 2κ |cos(Ωτ )|
√

1 − Ω2

κ2 sin2(Ωτ )
, (8.16)
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Figure 8.3: Frequency locked solution: κ = π and τ = 1.

where the expression in the squareroot must be positive. Note that as
Ω → 0, Δ → Δc where Δc is defined by 8.12. The branch of frequency
locked solutions is shown in Figure 8.3. Its stability needs to be analyzed
numerically. Simulations of Eqs. (8.5) and (8.6), however, suggest that the
constant phase solution (8.7) is the only stable solution for 0 < Δτ < κτ.

Motivated by laser experiments, Wünsche et al. [245] became interested
in other forms of synchronization. Adding Eqs. (8.5) and (8.6), we obtain

φ′
1 + φ′2 = −2κ sin

(
φ1 − φ2(t− τ) + φ2 − φ1(t− τ)

2

)

× cos
(
φ1 − φ2(t− τ ) − φ2 + φ1(t− τ)

2

)
. (8.17)

Equation (8.17) admits the particular solution

φ2 + φ1 = C, (8.18)

where C is a constant (the left-hand side and the sine function in the right-
hand side are zero). With (8.18), the two equations for φ1 and φ2 reduce to
a single equation. Introducing φ1 = C/2 − Φ and φ2 = C/2 + Φ, Eq. (8.6)
can be rewritten as

Φ′ =
Δ
2

− κ sin(Φ + Φ(t− τ)). (8.19)

The steady-state solution satisfies Φ = 1
2 arcsin(Δ/2κ) and matches (8.8)

with C = 2Φ and α = 2Φ. From (8.19), we determine the linearized equa-
tion and obtain the characteristic equation (8.10), which told us that a
stable solution is possible in the interval 0 < Δτ < 2κτ.
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Figure 8.4: Numerical bifurcation diagram: κτ = π. The dots are the stable
solutions of the phase equation. They have been obtained by progressively
increasing Δτ (0 < Δτ < 24; Φ = 10 for −τ < t < 0) and by progressively
descreasing Δτ (0 < Δτ < 24; Φ = 0 for −τ < s < 0). The staircase
bifurcation diagram is bounded above by the straight line τ < Φ′ >= Δτ/2
and below by the parabola τ < Φ′ >=

√
Δ2τ2/4 − κ2τ2.

The numerical bifurcation diagram for the average of φ′2 = Φ′ is shown
in Figure 8.4.2 As the product Δτ is progressively increased from zero, the
staircase bifurcation diagram changes into a snake-like diagram that we
would like to capture analytically. To this end, we consider the large Δτ
limit of Eq. (8.19). Introducing the new time

s ≡ Δt, (8.20)

Eq. (8.19) becomes

Φ′ =
1
2
− κ

Δ
sin(Φ + Φ(s− Δτ )) (8.21)

where prime now means differentiation with respect to s. If Δ → ∞, the
leading equation is Φ′ = 1/2 implying the solution Φ = s/2 + Θ where Θ
is a constant. This motivates seeking a solution of the form

Φ = Ω
s

2
+ Θ + Δ−1Φ1(s) + Δ−2Φ2(s) + ..., (8.22)

where Ω is expanded as

Ω = 1 + Δ−2Ω2 + ... (8.23)

2The average of Φ′ is defined as < Φ′ >= limt→∞ t−1
∫ t Φ′(s)ds = limt→∞ t−1Φ(t).
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and takes into account possible corrections to Ω = 1. We have anticipated
that the first nonzero correction is O(Δ−2). Ω2 will be determined by re-
quiring that the functions Φ1,Φ2 are bounded periodic 2π-functions of s.
Substituting (8.22) and (8.23) into Eq. (8.21), we obtain the following prob-
lems for Φ1 and Φ2,

Φ′
1 = −κ sin(s− Δτ

2
+ 2Θ) (8.24)

Φ′
2 = −κ cos(s− Δτ

2
+ 2Θ)(Φ1 + Φ1(s− Δτ )) − Ω2

2
. (8.25)

The solution of Eq. (8.24) is purely periodic and has the form

Φ1 = κ cos(s− Δτ
2

+ 2Θ) + Θ1, (8.26)

where Θ1 is a new constant. The solution of Eq. (8.25), however, will contain
a term proportional to s unless we set the average of its right-hand side
equal to zero. This is the solvability condition that allows Φ2 to be bonded
and 2π-periodic in s. The condition leads to an expression for Ω2 given by

Ω2 = −κ2(1 + cos(Δτ )). (8.27)

In summary, we have found that the average < Φ′ >= ΩΔ/2 is given by

< Φ′ >� Δ
2

− κ2

2Δ
(1 + cos(Δτ )), (8.28)

where the second term explains the snakelike structure of the bifurcation
diagram.

8.1.2 Experiments

Two delay-coupled semiconductor lasers have been studied in the regime
where the coupling delay is comparable to the time-scales of the internal
laser oscillations [245]. Detuning the optical frequencies between the two
lasers leads to two distinct responses. See Figure 8.5. For small detun-
ing (−4.1 GHz < Δf < 7 GHz), the lasers lock onto a common optical
frequency and the output intensities are steady and stable. Outside this
locking region, the output intensity of both lasers oscillates periodically.
The observed oscillation frequencies appear in a discontinuous way. For
sufficiently large detunings, the frequency plateaus approach the straight
lines f = ± |Δ| . Numerical simulations of the laser equations allow to give
a more detailed description of the staircase distribution of the frequencies
(see Figure 8.6).
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Figure 8.5: Intensity oscillation frequencies f obtained from power spectra
as a function of the optical frequency detuning Δ (reprinted Fig. 2b with
permission from Wünsche et al. [245], copyright 2005 American Physical
Society).

Figure 8.6: Main intensity frequencies obtained numerically from the laser
model equations (reprinted Fig. 5b with permission from Wunsche et al.
[245] copyright 2005 American Physical Society). All frequencies are in
units of 1/2τ (i.e., the roundrip laser 1–laser 2–laser 1 frequency). The
frequencies exhibit a typical staircase bifurcation diagram. For sufficiently
large detuning Δ, the frequencies f are close to the straight line f = Δ.

8.2 Strongly coupled oscillators

For stronger couplings the amplitudes also play an important role and give
rise to interesting behaviors such as partial synchronization or large ampli-
tude oscillations. In this section, we concentrate on the so-called “amplitude
death” phenomenon. This designation is somewhat unfortunate inasmuch
as it corresponds to a stabilization phenomenon where the delay plays a
crucial role. We examine this stability problem by introducing the following
model equations,
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Z ′
1 =

[
1 + iω1 − |Z1|2

]
Z1 + κ [Z2(t− τ ) − Z1] , (8.29)

Z ′
2 =

[
1 + iω2 − |Z2|2

]
Z2 + κ [Z1(t− τ ) − Z2] , (8.30)

where τ is the delay, κ is the coupling strength, ωj are the intrinsic frequen-
cies of the two oscillators, and Z1,2 are complex. The time delay parameter
is introduced in the argument of the coupling oscillator (e.g., Z2 in (8.29))
to physically account for the fact that its phase and amplitude information
is received by oscillator Z1 only after a finite time τ (due to finite prop-
agation speed effects). In the absence of coupling (κ = 0) each oscillator
has a stable limit cycle at |Zi| = 1 on which it moves at its natural fre-
quency ωj . The coupled equations represent the interaction between two
weakly nonlinear oscillators (that are near a Hopf bifurcation) and whose
coupling strength is comparable to the attraction of the limit cycles. It is
important then to retain both the phase and amplitude response of the
oscillators. The state Zi = 0 is a steady-state solution of Eqs. (8.29) and
(8.30). For κ = 0, this equilibrium solution is linearly unstable because the
individual oscillators tend to a stable limit-cycle |Zi| = 1. The question
is whether a nonzero κ may stabilize the zero solution. The conditions for
this phenomenon (called amplitude death) have been studied by Aronson
et al. [5] who investigated Eqs. (8.29) and (8.30) with τ = 0. They found
the following stability conditions

κ > 1 and Δ = |ω2 − ω1| > 2
√

2κ− 1. (8.31)

Conditions (8.31) indicate that amplitude death occurs only for sufficiently
large values of the coupling strength κ and detuning Δ. In particular, the
phenomenon is not possible if the two oscillators are identical (Δ = 0). The
question now is whether stabilization of the zero solution for two identi-
cal oscillators is possible with a delayed coupling. This problem has been
investigated in great detail by Ramana Reddy et al. [196, 197] and we sum-
marize the main results. The linearized equations with ω1 = ω2 = ω lead
to the following characteristic equation for the growth rate λ,

(1 − κ+ iω − λ)2 − κ2 exp(−2λτ) = 0, (8.32)

which implies the following two possibilities

(1) : 1 − κ+ iω − λ+ κ exp(−λτ ) = 0, (8.33)
(2) : 1 − κ+ iω − λ− κ exp(−λτ ) = 0. (8.34)

We now assume that the stability boundaries are determined by a Hopf
bifurcation and introduce λ = iσ into Eqs. (8.33) and (8.34). From the real
and imaginary parts, we find

(1) : 1 − κ+ κ cos(στ ) = 0 and ω − σ − κ sin(στ) = 0, (8.35)
(2) : 1 − κ− κ cos(στ ) = 0 and ω − σ + κ sin(στ) = 0 (8.36)
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Figure 8.7: Death island. In the closed region, the zero solution is stable
whereas it is unstable in all other regions above the lower line κ(τ ) ≤ 1.
The value of ω = 10.

which lead to the solutions (in parametric form)

(1) : κ = 1/(2 sin2(x/2)) and τ = x/(ω − cot(x/2)), (8.37)
(2) : κ = 1/(2 cos2(x/2)) and τ = x/(ω + tan(x/2)). (8.38)

The curves κ = κ(τ ) are shown in Figure 8.7 and have been obtained by
progressively changing x from zero in (8.37) and (8.38). The closed region
called “death island” corresponds to a stable zero solution. All other regions
above the lower branches of the Hopf curves (κ ≤ 1) correspond to an
unstable zero solution. The death region exists only if ω > ωc � 4.812.
At ω = ωc, the death region has shrunk into a point located at (τ c, κc) �
(0.33, 3.06). If ω < ωc, the two Hopf curves move apart leaving a central
unbounded region where the zero solution is stable. See Figure 8.8.

As we progressively increase τ from zero and cross the death island in
Figure 8.7, we pass through two Hopf bifurcations. The first bifurcation
(line 1) leads to in-phase oscillations and the second bifurcation (line 2)
leads to antiphase oscillations. This can be demonstrated by determining
the eigenvectors associated with each bifurcation. At the Hopf bifurcation,
the small deviations from zero are time-periodic with complex amplitudes
u1 = u2 for the first case (line 1) and with u1 = −u2 in the second case
(line 2).

Is the amplitude death with delay observed in real systems? A number
of experiments have addressed this question and carried out laboratory
experiments. The simplest example of amplitude death induced by delay
was described in 2000 by Ramana Reddy et al. [198] who examined the
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Figure 8.8: ω = 4.

response of two coupled nonlinear electronic circuits. There is good agree-
ment between experiments and theory including the observation of a second
death island. Observations of amplitude death were reported by Herrero
et al. [92] for a pair of optothermal oscillators but the results were not con-
clusive on the role of the delay. Takamatsu et al. [224] studied the effects
of time-delay in a living coupled oscillator system by looking at the time
variation of the thickness of the plasmodium of the slime mold Physarum
polycephalum. Although amplitude death was not observed, typical delay-
induced synchronization patterns such as in-phase and out-of-phase regimes
were observed. Tang et al. [226] studied the amplitude death phenomenon
(called “death by delay” by the authors) for two semiconductor lasers with
optoelectronic feedback mutually coupled optoelectronically. Both the indi-
vidual feedbacks and the coupling are delayed. The feedback delay induces
the limit-cycle oscillations for each laser and the delayed mutual optoelec-
tronic coupling provides the necessary negative feedback for the amplitude
death phenomenon. Depending on the delay of the coupling, several re-
gions of amplitude death have been found. On the theoretical side, Atay [6]
recently showed that the parameter space of amplitude death for the two-
oscillators case is enhanced when the oscillators are connected with time
delays distributed over an interval rather than concentrated on a point.

The two coupled oscillator model remains an active topic of research
full of surprises. Motivated by a specific two coupled laser problem, Carr
et al. [44] discovered that two identical nearly conservative oscillators may
exhibit a delay-induced resonance phenomenon where the amplitude of
the oscillations become suddenly large. Investigating the possible coupling
mechanisms of neural populations, Dahlem et al. [49] considered the delayed
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coupling of two excitable systems3 and found that sustained oscillations
in antiphase may coexist with a stable steady state (called echo-waves in
[231]). On the experimental front, the synchronization properties of chaotic
lasers are studied comparing the response of two and three coupled lasers
[86, 64]. When three lasers in a row shine into one another in just the right
way, they can forge a connection in which the intensities of the first and
last lasers vary in unison. This contrasts to the case of two coupled lasers
where the variations of one simply lag those of the other by the amount of
time it takes light to pass between them, as we might expect. Researchers
believe that these synchronization properties are not limited to lasers but
applies to other systems of delayed coupled oscillators.

3In an excitable system, a small perturbation from a stable steady-state may lead
to a large pulse of excitation before coming back to rest.
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