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Preface

Around 1980, recursions for aggregate claims distributions started receiving atten-
tion in the actuarial literature. Two common ways of modelling such distributions
are as compound distributions and convolutions.

At first, one considered recursions for compound distributions. In particular, Pan-
jer (1981) became crucial in this connection. He considered a class of counting dis-
tributions consisting of the negative binomial, Poisson, and binomial distributions,
that is, the three most common types of counting distributions in the actuarial liter-
ature.

In the mid-eighties, De Pril turned his attention to recursions for convolutions
and published several papers on that topic. These recursions can be rather time- and
space-consuming, and he, and other authors, therefore developed approximations
based on these recursions and error bounds for these approximations.

By extending the Panjer class, Sundt (1992) presented a framework that also
covered De Pril’s recursions for convolutions.

Originally, the recursions were deduced for the probability function of the distri-
bution, but later they were adapted to other functions like cumulative distributions
and stop loss transforms. As in this book we focus mainly on recursions for prob-
ability functions of distributions on the integers, we shall normally refer to such
functions as distributions.

From the late nineties, the theory has been extended to multivariate distributions.
In the present book, we give a presentation of the theory. We restrict to classes of

recursions that are somehow related to those of Panjer (1981), and we aim at giving
a unified presentation. Although the theory has been developed mainly within the
actuarial literature, the recursions can also be applied in other fields, and we have
therefore tried to make the presentation relatively general. However, we use appli-
cations from insurance to illustrate and motivate the theory. Not all the recursions
that we are going to present, are equally interesting in practice, but we wish to give
a broad presentation of recursions within the framework of the book with emphasis
on how they can be deduced.

We have tried to make the book self-contained for readers with a reasonable
knowledge of probability theory. As an exception, we present Theorem 12.1 without
proof.

Our main goal is to deduce recursions and give general ideas of how such re-
cursions can be deduced. Although applications are used to illustrate and motivate
the theory, the book does not aim at giving guidelines on what methods to apply in
situations from practice. We consider the recursions primary as computational tools

xi



xii Preface

to be used for recursive evaluation of functions. However, we shall also use the re-
cursions in analytical proofs of for instance characterisations of infinitely divisible
distributions and normal distributions.

One area that we have not considered, is numerical stability. That is obviously an
important aspect when considering recursions, but the tools and methodology would
have been quite different from the rest of the book. Furthermore, if we should have
kept the principle of making the book self-contained, then we would have needed
to include a lot of deductions of results from numerical mathematics, an area where
the present authors do not consider themselves as specialists. Some references are
given at the end of Chap. 13.

The most compact way of presenting the theory would have been to start with
the most general results and deduce the more specific results as special cases. We
have chosen the opposite approach, that is, we start with the simple cases, and grad-
ually develop the more general and complex results. This approach better reflects
the historical development, and we find it more pedagogical. When knowing and
understanding a proof in a simple model, it will be much easier to follow a gen-
eralised proof of an extended result. Furthermore, a reader who wants a recursion
for a compound geometric distribution, should not first have to go through a com-
plicated deduction of a messy recursion for a general multivariate distribution and
get the desired result as a special case. To make it easier for the reader to see what
changes have to be made in the proof when extending a result, we have sometimes
copied the proof of the simple case and edited it where necessary. A problem with
going from the simple to the complex, is how much to repeat. When the proof of
the extension is straight forward, then we sometimes drop the proof completely or
some details. We apologise to readers who find that we give too much or too lit-
tle.

Each chapter is preceded by a summary. We do not give literature references
in the main text of the chapter, but allocate that to a section Further remarks and
references at the end of the chapter.

The book consists of two parts. Part I (Chaps. 1–13) is restricted to univariate
distributions, whereas in Part II (Chaps. 14–20), we extend the theory to multivariate
distributions. To some extent, we have tried to make Part II mirror Part I.

Chapter 1 gives an introduction to Part I. After having given a motivation for
studying aggregate claims distributions in insurance, we introduce some notation
and recapitulate some concepts from probability theory.

In Chap. 2, we restrict the class of counting distributions to distributions that
satisfy a recursion of order one, that is, the mass of the distribution in an inte-
ger n is a factor multiplied by the mass in n − 1; this factor will normally be
in the form a + b/n for some constants a and b. Within this framework, we
characterise various classes of counting distributions and deduce recursions for
compound distributions. We also deduce recursions for convolutions of a distrib-
ution.

Chapter 3 is devoted to compound mixed Poisson distributions. Such distribu-
tions are also discussed in Chap. 4 on infinitely divisible distributions. There we in
particular use recursions presented in Chap. 2 to prove that an infinitely divisible
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distribution on the non-negative integers is infinitely divisible if and only if it can
be expressed as a compound Poisson distribution.

In Chap. 5, we extend the classes of counting distributions to distributions that
satisfy recursions of higher order, and we discuss properties of such distributions.
We allow for infinite order of the recursions. Within that setting, the coefficients of
a recursion can be expressed as a De Pril transform, a term introduced by Sundt
(1995) for a function that is central in De Pril’s recursions for convolutions. Many
results on De Pril transforms follow as special cases of results deduced in Chap. 5
and are given in Chap. 6, which is devoted to properties and applications of De Pril
transforms.

Chapter 7 is devoted to individual models, including collective approximation of
such models.

In Chap. 8, we extend the theory to recursions for cumulative functions and tails,
and Chap. 9 is devoted to recursions for moments of distributions.

As pointed out above, De Pril presented approximations based on his exact re-
cursions for convolutions. These approximations consist of approximating the mass
at zero and the De Pril transform of the distributions. Such approximations con-
stitute the subject of Chap. 10. As the approximations to the distributions are not
necessarily distributions themselves, we have to extend the theory to a wider class
of functions.

Up to this stage, we have restricted to distributions on the non-negative integers.
In Chap. 11, we extend the theory of Chap. 10 to distributions that are bounded from
below, and Chap. 12 opens for negative severities.

Part I closes with Chap. 13, where we discuss how we can modify the recursions
to avoid problems with numerical underflow or overflow.

In Part II, Chap. 14 mirrors Chap. 1.
In the multivariate case, we distinguish between two cases of compound distri-

butions; those with univariate counting distribution and multivariate severity dis-
tribution and those with multivariate counting distribution and univariate severity
distributions. The former case is the most straight-forward to obtain by extending
the univariate case, and that is the topic of Chap. 15. From the theory presented
there, we introduce the De Pril transform of a multivariate function in Chap. 16,
which mirrors Chaps. 6 and 7.

Chapters 17 and 18 mirror Chaps. 9 and 10 respectively. It should be relatively
straight-forward to also extend the recursions of Chap. 8 to a multivariate setting,
but we have not found it worth while to pursue that in this book.

In Chap. 19, we deduce recursions for compound distributions with multivari-
ate counting distribution and univariate severity distributions. Such distributions are
also considered in Chap. 20, which mirrors Chap. 3.

We are grateful to all the people who have stimulated us and given us feedback on
earlier versions of the manuscript. In particular, we would like to thank Montserrat
Guillén for hosting both of us in 2006 and Bjørn Sundt in 2007 on fruitful research
leave at the University of Barcelona. We would also like to thank Penelope Brading
for helpful advice on linguistic issues.
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Course Outline

In the following, we indicate some ideas on application of the book as textbook for
a one semester course. Preferably, the course should be given on the Master level.
Some knowledge of non-life insurance and risk theory will give the students a better
motivation.

As the book more aims at giving a general understanding of how to develop
and apply recursions than teaching specific methods, the lecturer should himself
consider what would be natural for him to include in the course, possibly supple-
menting with material not contained in the book. Furthermore, the contents of the
course should be adapted to the level of the students. Hence, the course structures
presented in the following should be considered only as suggestions.

A reasonable course structure could be:

• Chapter 2. Sections 2.1–2.2, 2.3.1–2.3.2, 2.4, 2.7.
• Chapter 3. Sections 3.1–3.4.
• Chapter 4. Example 4.3 can be dropped.
• Chapter 5. Sections 5.1–5.3, Theorem 5.1 can be dropped.
• Chapter 6.
• Chapter 7.
• Chapter 9. Sections 9.1.1, 9.1.3 and 9.2.
• Chapter 10.
• Chapter 13.
• Chapter 15. Sections 15.1–15.5.
• Chapter 16. Sections 16.1–16.4 and 16.7.
• Chapter 18

For a shorter course, the material from Chap. 9 and/or Part II could be dropped.
Instead of including the material from Part II, one could give a more extensive

treatment of the univariate case, including, in addition to the material indicated
above:

• Chapter 2. Section 2.3.3.
• Chapter 5. Section 5.4.
• Chapter 11.
• Chapter 12.

The material could be presented in the same sequence as in the book.
Material from Chaps. 1 and 14 should be included to the extent needed for un-

derstanding the rest of the course, and it should be presented when needed as back-
ground for other material; going through the whole of Chap. 1 at the beginning of
the course could make the students lose interest before they get really started. Much
of this material would typically be known to students from before.

xv
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Chapter 1
Introduction

Summary

In the present chapter, we introduce some concepts that we shall apply later in the
book. We restrict to concepts needed in the univariate setting of Part I; in Chap. 14,
we introduce concepts that are needed only in the multivariate setting of Part II.
Many of the concepts will be known to most readers, e.g. convolutions, compound
distributions, moments, generating functions, etc. However, it is our aim to make
this book reasonably self-contained. Furthermore, even to readers who are already
familiar with the concepts, it might be useful to see them introduced within the
notational framework that we will apply in this book.

Although the recursive methods that we shall present in this book, are applicable
also in other areas than insurance, we shall use aggregate claims distributions in an
insurance context to motivate the methods. Therefore, we give a description of this
area in Sect. 1.1.

In Sect. 1.2, we list notation and concepts that will be used in this book. In par-
ticular, we give an overview of notation that will be applied in different meanings.

It will be useful to have some general notation for classes of distributions and
other functions that will be considered in this book. Such notation will be introduced
in Sect. 1.3.

Sections 1.4 and 1.6 are devoted to convolutions and compound distributions
respectively. These areas are crucial in this book as its main subject is recursions for
such distributions.

Mixed distributions is the topic of Sect. 1.5. In particular, we describe the dif-
ference between an empirical and a pure Bayes approach. As motivation, we use
determination of insurance premiums.

Section 1.7 covers definition and properties of moments, cumulants, (probabil-
ity) generating functions, moment generating functions, characteristic functions,
Laplace transforms, and cumulant generating functions.

In Sect. 1.8, we introduce some operators that will be useful for us in this book.
In particular, we discuss some properties of the cumulation operator and the tail
operator.

In Sect. 1.9, we discuss some properties of stop loss premiums.
Finally, in Sect. 1.10, we deduce some criteria for convergence of infinite series

with positive terms.

1.1 Aggregate Claims Distributions

The topic of this book is recursions for convolutions and compound distributions on
the integers. Since about 1980, this topic has received much attention in the actuar-

B. Sundt, R. Vernic, Recursions for Convolutions and Compound Distributions
with Insurance Applications, EAA Lecture Notes,
DOI 10.1007/978-3-540-92900-0_1, © Springer-Verlag Berlin Heidelberg 2009

3

http://dx.doi.org/10.1007/978-3-540-92900-0_1


4 1 Introduction

ial literature. The setting is then usually evaluation of aggregate claims distributions,
that is, the distribution of the aggregate amount of insurance claims occurred in an
insurance portfolio within a given period. Studying this distribution is of crucial
value for insurance companies. Whereas for most enterprises, uncertainty is an un-
intended and unwanted effect of the general activities of the enterprise, it is the basis
for an insurance company; without uncertainty, there would be no need for insur-
ance. The basis for an insurance company is selling its customers economic pro-
tection against uncertain economic losses. When a customer buys such a protection
from the insurance company, neither he nor the company knows whether the losses
will occur, when they will occur, or their magnitude. Hence, when the insurer sells
such a product, he does not know how much it will cost him to deliver it. However,
he will typically have statistical data from delivery of such products in the past, and
from that he can estimate the probability distribution of amounts and numbers of
claims, etc. These distributions can then be incorporated when modelling the distri-
bution of the aggregate claims of a given period. The insurance contract between an
insurance company and a customer is called an insurance policy, and the customers
are called policyholders.

Although being a professional risk carrier, an insurance company will itself also
normally buy risk protection from another professional risk carrier, a reinsurance
company. The insurance company (the cedant) insures (cedes) some of the risk that
it has taken over from its policyholders to a reinsurance company. There are various
forms of reinsurance, and the reinsurance cover of an insurance portfolio often con-
sists of various forms with several reinsurers. Reinsurance can increase the capacity
of an insurance company, enable it to take on more and/or larger risks. Furthermore,
it can be used to make the balance of the insurance company fluctuate less between
years.

Let us mention some specific applications of aggregate claims distributions:

1. Evaluation of the need for reserves. A natural requirement could be that the re-
serves should be so large that the probability that they would be insufficient to
cover the claims, should be less than a given value, e.g. 1%. Hence, we need to
evaluate the upper 1% quantile of the aggregate claims distribution.

2. Calculation of stop loss premiums. With the simplest form of stop loss reinsur-
ance, the reinsurer covers the part of the aggregate claims that exceeds a given
limit called the retention.

3. Study the effect of changing the form and level of deductibles. Then one can
compare the aggregate claims distribution with and without the change. In par-
ticular, we can see the effect on the reserve requirement and stop loss premiums.

4. Study how various reinsurance covers will affect the aggregate claims distribu-
tion.

5. Study how the aggregate claims distribution will be affected by changes in the
composition and size of the portfolio. This is crucial for the company’s sales
strategies. What market segments should we concentrate on, how will the need
for reinsurance be affected by an increase of the portfolio, etc.?

There are various ways to model aggregate claims distributions. Two main
classes are individual and collective models.
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In an individual model, it is assumed that the portfolio consists of a fixed number
of independent policies. Then the aggregate claims of the portfolio becomes the
sum of the aggregate claims of each of the policies, that is, the aggregate claims
distribution of the portfolio becomes the convolution (see Sect. 1.4) of the aggregate
claims distributions of each of the policies that comprise the portfolio.

In the individual model, the claims of the portfolio were related to the individ-
ual policies and then aggregated to the portfolio. In a collective model, we do not
consider the individual policies. Instead, we consider the individual claims without
relating them to the policies, and we assume that the amounts of these claims are
independent and identically distributed. Thus, the aggregate claims of the portfo-
lio is still a sum of independent and identically distributed random variables, but
whereas in the individual model the number of such variables was the number of
policies, in the collective model it is the number of claims. In the individual model,
we assumed that the number of policies was given and fixed. It would be highly un-
realistic to make such an assumption about the number of claims. The uncertainty
about the number of claims is a part of the uncertainty that the insurance company
has taken over from its policyholders in its capacity as a professional risk carrier.
It is therefore natural to model the number of claims as a random variable, and it
is normally assumed that it is independent of the claim amounts. Under these as-
sumptions, the aggregate claims distribution becomes a compound distribution (see
Sect. 1.6) with the claim number distribution as counting distribution and the claim
amount distribution as severity distribution.

We can also have combinations of individual and collective models where we
consider the subportfolio of “normal” policies collectively and some special policies
individually. Furthermore, collective models are often applied as approximations to
individual models.

A special case of the individual model is the individual life model, where each
policy can have at most one claim with a given amount. This model can typically be
applied to life assurance. Here each policy usually has a sum assured which is paid
out when the policyholder dies. When assuming that the policies are independent,
the total amount paid out from the portfolio during a given period can be modelled
by the individual life model. For long term policies, there will normally be built up a
reserve for each policy. Then the loss suffered by the company when a policyholder
dies, is the sum assured minus the reserve of the policy. This amount is called the
sum at risk of the policy. The aggregate loss of the company during the period is the
sum of the sums at risk of the policyholders who die during the period, and can be
modelled by the individual life model.

A probabilistic model will always be an approximation to reality where one has to
find a balance between realism and mathematical simplicity; a completely realistic
model would have insurmountable complexity and so many parameters that it would
be impossible to estimate all of them reliably. Furthermore, we would normally
not have sufficient knowledge to set up a completely realistic model. In particular,
some of the independence assumptions we have made, would not always be realistic;
a windstorm could destroy many houses, and in a cold winter with icy roads, there
could be many automobile accidents of a similar kind. Since the mid-nineties, there
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has been an increasing interest in modelling dependence between insurance claims
and risks. We shall allow for such dependences in Part II where we study recursions
for multivariate distributions.

At the beginning of this section, we made the restriction that the claim amounts
should be integer-valued. By changing the monetary unit, the theory trivially extends
to claim amounts in the set {hi}∞i=−∞ for some constant h > 0. Such distributions
are called lattice distributions or arithmetic distributions.

As so much of the literature on recursions for convolutions and compound dis-
tributions has appeared in the framework of aggregate claims distributions, it seems
natural to use that framework as a reference point in the presentation in this book.
However, the recursions should also be applicable in other settings both within and
outside actuarial science.

In the discussion above, we have assumed that all the distributions we have dis-
cussed, are univariate. That will be the framework in Part I of the book. In Part II,
we shall extend the theory to multivariate distributions.

1.2 Some Notation and Conventions

Let us now introduce some notation and conventions that will be applied in the book:

1. In Part I, we shall mainly concentrate on distributions on the integers. For con-
venience, we shall normally mean such distributions when referring to discrete
distributions or the discrete case. Furthermore, our main attention will be on
the probability function of the distribution, and then it will be convenient to
associate the distribution with its probability function. Hence, when referring
to a distribution, we shall normally mean its probability function. Such func-
tions will be denoted by lower case italics. On the rare occasions when we
encounter other sorts of univariate distributions, this convention becomes awk-
ward. Although somewhat inconsistent, we associate such a distribution with
its cumulative distribution function, which we denote by a capital italic. Hence,
the case of the letter indicates what we mean.

2. To avoid thinking too much about regularity conditions, etc., we will always
tacitly assume the existence of the quantities that we work with.

3. When giving a function an argument outside the range for which it has been
defined, we tacitly assume that the value of the function for that argument is
equal to zero.

4. A summation
∑b

i=a is assumed to be equal to zero when b < a.
5. If x is a real number, then we let [x] denote the largest integer less than or

equal to x and {x} the smallest integer greater than or equal to x, and we let
x+ = max(x,0) and x− = min(x,0).

6. If u is a univariate function, then we let u(x+) = limy↓x u(y) and u(x−) =
limy↑x u(y). Analogously, if wθ is a function that depends on a parameter θ ,
then we let wγ+ = limθ↓γ wθ and wγ− = limθ↑γ wθ .
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7. We shall normally indicate the number of an element in a sequence by a sub-
script. However, if that number does not contain necessary information in a
context, then, for convenience, we sometimes drop it. For instance, if Y1, Y2, . . .

are identically distributed random variables, then we might write EY instead of
EYi as EYi has the same value for all values of i.

8. For a sequence x1, x2, . . . , we let xn denote the n × 1 vector of the n first ele-
ments, that is, xn = (x1, x2, . . . , xn)

′.
9. If ϒ is an operator on functions on some countable set, then we define ϒtf =

ϒϒt−1f for t = 1,2, . . . with initial value ϒ0f = f .
10. We use the Halmos iff in the meaning if and only if.
11. A � is used to mark the end of a proof or an example.

Sometimes we shall use the same notation in different meanings, but we hope
that this will not create confusion. In the following, we list some cases.

1. For a sequence x1, x2, . . . , we let x•n = ∑n
j=1 xj . However, in a two-way classi-

fication with numbers xij , we let x•j = ∑
i xij and xi• = ∑

j xij .
2. We shall apply the letter π for a parameter in some parametric classes of distri-

butions. On the rare occasions when we apply π in its traditional meaning as the
Ludolph number 3.14 . . . , then that will be pointed out explicitly.

3. We shall denote the r th derivative of a function f by f (r), but in the context
of approximations, we use that notation for an r th order approximation (see
Chap. 10), and we shall also use (r) in the context n(r) = ∏r−1

j=0(n − j).
4. We shall apply � for the Gamma function

�(x) =
∫ ∞

0
yx−1e−y dy, (x > 0) (1.1)

but also for the cumulation operator (see Sect. 1.8).
5. We let I denote the indicator function, that is, I (A) is equal to one if the condi-

tion A is satisfied, and zero otherwise. However, we also sometimes apply I for
a parameter.

6. We shall indicate complementary sets by ∼, that is, if A and B are sets, then
A ∼ B is the set of elements that are contained in A, but not in B . However, we
shall also apply ∼ to denote asymptotic equality, that is, by

f (x) ∼ g(x), (x → a)

we shall mean that limx→a f (x)/g(x) = 1.

Other conventions and notation will be introduced in the following sections.

1.3 Classes of Distributions and Functions

We let P1 denote the class of all univariate distributions on the integers. In Part I,
the subscript 1 may seem as a nuisance; the reason for having it is that in Part II, we
will replace it with m when we introduce similar notation for classes of m-variate
distributions.
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For all integers l, we let P1l denote the class of all distributions f ∈ P1 for which
f (x) = 0 for all integers x < l. We obviously have P1,l+1 ⊂ P1l . We also introduce
P1l = P1l ∼ P1,l+1, that is, the class of all distributions in P1l with a positive mass
at l.

Let

P1_ =
∞⋃

l=−∞
P1l =

∞⋃

l=−∞
P1l ,

that is, the set of all distributions in P1 whose support is bounded from below.
As we are also going to approximate distributions with functions that are not

necessarily distributions themselves, that is, they are not necessarily non-negative
and do not necessarily sum to one, we shall also introduce analogous classes of
such functions. Whereas we denote classes of distributions with P , we shall apply
F for analogous classes of functions, so that F1 will denote the class of all functions
on the integers.

For all integers l, we let F1l denote the set of all functions f ∈ F1 for which
f (x) = 0 for all integers x < l, and we let F1l denote the set of functions f ∈ F1l

with a positive mass at l. Note that we do not have F1l equal to F1l ∼ F1,l+1 as the
latter class also contains the functions in F1l with a negative mass at l.

Finally, we introduce F1_ = ⋃∞
l=−∞ F1l .

1.4 Convolutions

The convolution of a finite number of distributions is the distribution of the sum of
that number of independent random variables having these distributions.

If f,g ∈ P1, then we denote their convolution by f ∗ g. If X and Y are indepen-
dent random variables with distribution f and g respectively, then, for all integers z,

(f ∗ g)(z) = Pr(X + Y = z) = Pr

( ∞⋃

x=−∞
((X = x) ∩ (Y = z − x))

)

=
∞∑

x=−∞
Pr((X = x) ∩ (Y = z − x)) =

∞∑

x=−∞
Pr(X = x)Pr(Y = z − x)

=
∞∑

x=−∞
f (x)g(z − x).

When f,g ∈ P10, this reduces to the finite summation

(f ∗ g)(z) =
z∑

x=0

f (x)g(z − x) (z = 0,1,2, . . . ) (1.2)
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as f (x) = 0 when x < 0, and g(z − x) = 0 when x > z; in particular, this gives

(f ∗ g)(0) = f (0)g(0). (1.3)

The M-fold convolution of a distribution is defined as the distribution of the
sum of M independent random variables with the original distribution. The M-fold
convolution of f is denoted by f M∗, and we have f M∗ = f (M−1)∗ ∗ f for M =
1,2, . . . with f 0∗ being the distribution concentrated in zero. In particular, we have
f 1∗ = f . When f ∈ P10, (1.3) gives

f M∗(0) = f (0)M. (1.4)

In terms of cumulative distributions we define the convolution F ∗ G of two
univariate distributions F and G by the Lebesgue–Stieltjes integral

(F ∗ G)(z) =
∫

(−∞,∞)

G(z − x)dF(x), (−∞ < z < ∞)

and we have FM∗ = F (M−1)∗ ∗ F for M = 1,2, . . . with F 0∗ being the distribution
concentrated in zero.

We define the convolution of two functions f,g ∈ F1 by (1.2); the M-fold con-
volution f M∗ is defined accordingly with f 0∗ being concentrated in zero with mass
one.

1.5 Mixed Distributions

Let us assume that in an automobile insurance portfolio with independent policies,
we have reason to believe that for each policy, the number of claims occurring dur-
ing a policy year has a parametric distribution with a real-valued parameter θ where
a higher value of θ indicates that we can expect more claims. If we also assumed the
value of this parameter to be the same for all the policies, then it could be estimated
from portfolio data. However, we know that some drivers are good and are likely
to have few claims whereas others are bad and are likely to have lots of claims. It
is then natural to assume that a good driver has a low value of θ and a bad driver
has a high value. When we gradually get experience with the individual policy, the
claims data can give an indication on whether it is a good driver or a bad driver,
that is, whether the value of θ is low or high. In such situations, it can be reason-
able to apply experience rating, that is, the premium depends on the past claims
experience of the individual policy. However, even for an old policy, it would be
rather hazardous to base the estimate of θ solely on the claims experience of that
policy, and for a new policy, we do not have any claims experience at all, so what
should we do then? On the one hand, we know that there are differences between
the policies reflected in their values of θ . On the other hand, we have a portfolio
with lots of such policies; wouldn’t there be any value in all the claims experience
we have got from the portfolio when we are going to rate a new policy? One way to
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relate data from each policy to other policies, is to consider the parameters θ as val-
ues of independent and identically distributed random variables. In this setting, the
unconditional distribution is called a mixed distribution. The random parameter is
called the mixing variable and its distribution the mixing distribution. The portfolio
data could be applied to estimate the mixing distribution and its parameters, in par-
ticular, its mean. The mixing distribution represents the distribution of the random
parameters among all possible policies. We know that the policies have different
parameter values; when drawing a policy at random from a representative sample
of policies, then the mixing distribution represents the probability that its parameter
value will be within some given interval. In this example, the mixing distribution
has a frequentist interpretation; it represents the risk structure of the portfolio and is
therefore often called the structure distribution. Its parameters are called structure
parameters, and the random parameter is called a structure variable. This setting
is within the framework of empirical Bayes theory; each unit (policy) has a ran-
dom risk parameter, and we can estimate the distribution of this parameter from a
portfolio of independent units.

A mixed distribution can also arise within a pure Bayesian (subjectivistic) con-
text. A Bayesian would have a subjective opinion on the likeliness of the value of
the parameter, and he would represent that opinion by assigning a distribution to the
parameter.

In an insurance context, there should be room for both ways of modeling. In an
automobile insurance portfolio, there could be lots of similar policies from which
one could estimate the structure parameters, so that one can afford to be a frequen-
tist. On the other hand, when setting the premium for a rather special type of ship
with which one does not have any experience, one has to rely on subjective judge-
ment.

Let U denote the mixing distribution, A its range, and � the mixing variable of
our policy. The conditional claim number distribution given that � = θ is pθ for
each θ ∈ A. Then the unconditional distribution of the policy is the mixed distribu-
tion p given by

p(n) =
∫

A

pθ (n)dU(θ) = Ep�(n). (n = 0,1,2, . . . )

More generally, if Fθ is a univariate distribution for all values of θ ∈ A, then we
can construct the mixed distribution F given by

F(x) =
∫

A

Fθ (x)dU(θ) = EF�(x). (−∞ < x < ∞)

The distributions Fθ would usually belong to a parametric class. If these distribu-
tions have a particular name, then one would name the mixed distribution by putting
mixed in front of that name. For instance, if all the Fθ s are Poisson distributions, then
one would call F a mixed Poisson distribution.

Above, we modelled dependence between claim numbers from different years
for a fixed policy by assigning a random risk parameter to this policy and assuming
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that these claim numbers are conditionally independent given this parameter. In a
similar way, we can apply mixed distributions for modelling dependence between
policies within an insurance portfolio. Let us mention two cases:

1. We can model dependence between policies within a group of policies, say, poli-
cies from the same district, by assigning a random risk parameter to this group
and assuming that these policies are conditionally independent given this para-
meter.

2. Some phenomena, e.g. hurricanes, can affect many policies within a year. We can
model such dependence between policies within that year by assigning a random
risk parameter to the year and assuming that the policies are conditionally inde-
pendent given this parameter.

1.6 Compound Distributions and Functions

The compound distribution p∨H with counting distribution p ∈ P10 and univariate
severity distribution H is the distribution of X = Y•N where Y1, Y2, . . . are indepen-
dent and identically distributed with distribution H and independent of N , which has
distribution p. In an insurance context, N could be the number of claims occurring
in an insurance portfolio during a specified period and Yi the ith of these claims for
i = 1,2, . . . ,N . We have

(p ∨ H)(x) = Pr(X ≤ x) = Pr

( ∞⋃

n=0

((Y•n ≤ x) ∩ (N = n))

)

=
∞∑

n=0

Pr((Y•n ≤ x) ∩ (N = n)) =
∞∑

n=0

Pr(N = n)Pr(Y•n ≤ x|N = n)

=
∞∑

n=0

p(n)Pr(Y•n ≤ x) =
∞∑

n=0

p(n)Hn∗(x),

that is,

p ∨ H =
∞∑

n=0

p(n)Hn∗. (1.5)

From this expression, we see that a compound distribution can be interpreted as a
mixed distribution with the counting distribution as mixing distribution.

The counting distribution of a compound distribution typically belongs to a para-
metric class where it has a particular name. In that case, one would name the com-
pound distribution by putting compound in front of that name. For instance, if the
counting distribution is a Poisson distribution, then one would call the compound
distribution a compound Poisson distribution.
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If h ∈ P1, then

p ∨ h =
∞∑

n=0

p(n)hn∗. (1.6)

When h ∈ P10, insertion of (1.4) gives

(p ∨ h)(0) =
∞∑

n=0

p(n)h(0)n. (1.7)

When h ∈ P11, then each Yi is greater than or equal to one, so that
∑n

i=1 Yi ≥ n.
This implies that hn∗(x) = Pr(Y•n = x) = 0 when n > x. Hence,

(p ∨ h)(x) =
x∑

n=0

p(n)hn∗(x), (x = 0,1,2, . . . ) (1.8)

so that we avoid the infinite summation in (1.6). In particular, we obtain that

(p ∨ h)(0) = p(0). (1.9)

For p ∈ F10 and h ∈ F1, we define p ∨ h by (1.6), provided that the summation
exists.

1.7 Some Useful Transforms

1.7.1 Definitions and General Results

For a univariate distribution F , we introduce the (probability) generating func-
tion τF , the moment generating function ωF , the Laplace transform γF , the charac-
teristic function ζF , and the cumulant generating function θF . To be able to interpret
these functions in terms of random variables, we also introduce a random variable
X with distribution F .

For real numbers s, we have

τF (s) = E sX =
∫

(−∞,∞)

sx dF(x) (1.10)

ωF (s) = E esX =
∫

(−∞,∞)

esx dF(x) = τF (es)

γF (s) = E e−sX =
∫

(−∞,∞)

e−sx dF(x) = ωF (−s) = τF (e−s)

ζF (s) = E eisX =
∫

(−∞,∞)

eisx dF(x)

θF (s) = lnωF (s) = ln τF (es). (1.11)
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When they exist, each of these functions defines the distribution F uniquely. The
generating function is normally applied only for distributions in P10 and the Laplace
transform only for distributions on the non-negative numbers.

As eisx = cos sx + i sin sx is bounded, the characteristic function exists for all
(measurable) distributions. This is also the case for Laplace transforms and generat-
ing functions if we restrict to distributions on the non-negative numbers and s ≥ 0.
In connection with characterisations, this is an advantage of these functions.

For any non-negative integer j and any real number c, we denote the j th order
moment of F around c by μF (j ; c), that is,

μF (j ; c) = E(X − c)j =
∫

(−∞,∞)

(x − c)j dF(x).

In particular, we have μF (0; c) = 1 for any value of c. For convenience, we
let μF (j) = μF (j ;0). This is the j th order non-central moment of F , whereas
μF (j ;μF (1)) is the j th order central moment of F .

For all non-negative integers j , we have ω
(j)
F (s) = EXj esX . In particular, with

s = 0, this gives

μF (j) = ω
(j)
F (0). (1.12)

Thus, if F possesses moments of all orders, then

ωF (s) =
∞∑

j=0

μF (j)

j ! sj . (1.13)

For all non-negative integers j , we define the j th order factorial moment νF (j)

of F by νF (j) = EX(j). We have τ
(j)
F (s) = EX(j)sX−j , which in particular gives

νF (j) = τ
(j)
F (1). (1.14)

Thus, if F possesses moments of all orders, then

τF (s + 1) =
∞∑

j=0

νF (j)

j ! sj . (1.15)

For all non-negative integers j , the j th order cumulant κF (j) of F is defined by
κF (j) = θ

(j)
F (0); in particular, we have κF (0) = 0. Hence, if F possesses cumulants

of all orders, then

θF (s) =
∞∑

j=1

κF (j)

j ! sj .

The following theorem gives a recursion for the non-central moments of F in
terms of its cumulants.
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Theorem 1.1 For any univariate distribution F for which ωF exists, we have the
recursion

μF (j) =
j∑

u=1

(
j − 1

u − 1

)

κF (u)μF (j − u). (j = 1,2, . . . ) (1.16)

Proof For any univariate distribution F for which ωF exists, (1.11) gives

θ ′
F (s) = d

ds
lnωF (s) = ω′

F (s)

ωF (s)
.

Hence,

∞∑

j=1

μF (j)

(j − 1)! s
j = sω′

F (s) = sθ ′
F (s)ωF (s) =

∞∑

u=1

κF (u)

(u − 1)! s
u

∞∑

j=0

μF (j)

j ! sj

=
∞∑

j=1

j∑

u=1

κF (u)

(u − 1)!
μF (j − u)

(j − u)! sj

=
∞∑

j=1

(
1

(j − 1)!
j∑

u=1

(
j − 1

u − 1

)

κF (u)μF (j − u)

)

sj .

Comparison of coefficients gives (1.16). �

Solving (1.16) for κF (j) gives the recursion

κF (j) = μF (j) −
j−1∑

u=1

(
j − 1

u − 1

)

κF (u)μF (j − u). (j = 1,2, . . . ) (1.17)

In particular, we obtain κF (1) = μF (1) and κF (2) = μF (2) − μF (1)2, that is, the
first and second order cumulants are equal to the mean and variance.

1.7.2 Convolutions

Let X and Y be independent random variable with distribution F and G respectively.
Then

ζF∗G(s) = E eis(X+Y) = E eisX E eisY ,

that is,

ζF∗G = ζF ζG. (1.18)
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Analogously, we get

ωF∗G = ωF ωG (1.19)

τF∗G = τF τG (1.20)

γF∗G = γF γG,

but

θF∗G = lnωF∗G = lnωF ωG = lnωF + lnωG = θF + θG,

that is,

κF∗G(j) = κF (j) + κG(j). (j = 0,1,2, . . . ) (1.21)

For all non-negative integers j and constants c and d , we have

μF∗G(j ; c + d) = E(X + Y − c − d)j = E((X − c) + (Y − d))j

=
j∑

i=0

(
j

i

)

E(X − c)i E(Y − d)j−i ,

that is,

μF∗G(j ; c + d) =
j∑

i=0

(
j

i

)

μF (i; c)μG(j − i;d). (1.22)

1.7.3 Discrete Distributions

For f ∈ P1, we have

τf (s) =
∞∑

x=−∞
sxf (x); ωf (s) =

∞∑

x=−∞
esxf (x) (1.23)

γf (s) =
∞∑

x=−∞
e−sxf (x); ζf (s) =

∞∑

x=−∞
eisx f (x); θf (s) = lnωf (s).

(1.24)

For all non-negative integers j , we introduce the moments

μf (j ; c) =
∞∑

x=−∞
(x − c)jf (x); μf (j) =

∞∑

x=−∞
xjf (x), (1.25)

the factorial moments

νf (j) =
∞∑

x=−∞
x(j)f (x) (1.26)
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and the cumulants

κf (j) = θ
(j)
f (0). (1.27)

If f ∈ P10, then, for all non-negative integers x,

τ
(x)
f (s) = EX(x)sX−x =

∞∑

y=x

y(x)sy−xf (y).

In particular, we obtain

τ
(x)
f (0) = EX(x)I (X = x) = x!f (x),

so that

f (x) = τ
(x)
f (0)

x! . (1.28)

If, in addition, f (x) = 0 for all integers x greater than some positive integer r , then
νf (j) = 0 for j = r + 1, r + 2, . . . .

1.7.4 Compound Distributions

We shall now consider the compound distribution p ∨ H with counting distribu-
tion p ∈ P10 and univariate severity distribution H . Let Y1, Y2, . . . be independent
and identically distributed random variables with distribution H independent of N ,
which has distribution p. Then

ζp∨H (s) = E eisY•N = E E

[
N∏

j=1

eisYj

∣
∣
∣
∣
∣
N

]

= E(E eisY )N ,

that is,

ζp∨H (s) = τp(ζH (s)). (1.29)

Analogously, we have

τp∨H (s) = τp(τH (s)) (1.30)

ωp∨H (s) = τp(ωH (s)) (1.31)

γp∨H (s) = τp(γH (s)).

We have

μp∨H (1) = EY•N = E E[Y•N |N ] = E[N EY ] = EN EY,
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that is,

μp∨H (1) = μp(1)μH (1), (1.32)

which could also be deduced by derivation of (1.29).
For h ∈ P10, we can write (1.7) as

(p ∨ h)(0) = τp(h(0)). (1.33)

1.7.5 Extension to Functions

We extend the definitions (1.23)–(1.27) to functions f ∈ F1. For such functions, we
do not necessarily have μf (0; c) = 1 and κf (0) = 0. However, the other properties
we have shown, still hold, provided that the functions exist. For convenience, we
also introduce

μf (−1) =
∞∑

x=1

f (x)

x
. (f ∈ F11)

1.8 Some Useful Operators

The operator  is applied to univariate functions and gives the function multiplied
by its argument, that is, if f is a univariate function, then f (x) = xf (x) for all x.
We easily see that

τf = (τ ′
f ). (1.34)

The operator � is applied to functions in F11 and gives the function divided by
its argument, that is, if f ∈ F11, then �f ∈ F11 is given by

�f (x) = f (x)

x
. (x = 1,2, . . . )

We obviously have that �f = �f = f .
We introduce the cumulation operator � and the tail operator � defined by

�f (x) = ∑x
y=−∞ f (y) and �f (x) = ∑∞

y=x+1 f (y) respectively for all integers x

and all functions f ∈ F1 for which the summations exist. When f ∈ F1_, �f always
exists as then there will always exist an integer l such that �f (x) = ∑x

y=l f (y) for
all integers x ≥ l. We shall also need the difference operator � defined by �f (x) =
f (x) − f (x − 1) for all integers x and all functions f ∈ F1.

For all integers x, we have �f (x) + �f (x) = μf (0) when these functions exist.
We have

f = ��f = −��f (1.35)

when the functions involved exist.
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Note that even if f ∈ P10, that is not necessarily the case with �f as then we
have that for all negative integers x,

�f (x) = �f (−1) = �f (0) + f (0) =
∞∑

x=0

f (x).

If f ∈ P1, then �f is the corresponding cumulative distribution function and �f

is the tail.

Theorem 1.2 For all f ∈ F10, we have

�tf (x) =
x∑

y=0

(
x − y + t − 1

t − 1

)

f (y). (x = 0,1,2, . . . ; t = 1,2, . . . ) (1.36)

Proof It is immediately seen that application of the operator � is equivalent with
convolution with the function γ ∈ F10 given by

γ (x) = 1. (x = 0,1,2, . . . ) (1.37)

Thus, �tf = γ t∗ ∗ f . For |s| < 1, we have

τγ (s) =
∞∑

x=0

sx = (1 − s)−1,

from which we obtain

τγ t∗(s) = τγ (s)t = (1 − s)−t =
∞∑

x=0

(
t + x − 1

x

)

sx =
∞∑

x=0

(
t + x − 1

t − 1

)

sx,

so that

γ t∗(x) =
(

t + x − 1

t − 1

)

. (x = 0,1,2, . . . )

This gives

�tf (x) = (γ t∗ ∗ f )(x) =
x∑

y=0

γ t∗(x − y)f (y) =
x∑

y=0

(
t + x − y − 1

t − 1

)

f (y),

that is, (1.36) holds. �

To derive a similar result for �tf , we need the following lemma.

Lemma 1.1 For all f ∈ F10, we have

ν�f (j − 1) = νf (j)

j
(1.38)

for all positive integers j for which νf (j) exists.
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Proof Let j be a positive integer for which νf (j) exists.
We shall first show by induction that

y−1∑

x=0

x(j−1) = y(j)

j
. (y = 1,2, . . . ) (1.39)

This equality obviously holds for y = 1. Let us now assume that it holds for y =
z − 1 for some integer z > 1. Then

z−1∑

x=0

x(j−1) =
z−2∑

x=0

x(j−1) + (z − 1)(j−1) = (z − 1)(j)

j
+ (z − 1)(j−1)

= (z − 1)(j−1)

(
z − j

j
+ 1

)

= (z − 1)(j−1) z

j
= z(j)

j
.

Thus, (1.39) holds also for y = z, and by induction it then holds for all positive
integers y.

Application of (1.39) gives

ν�f (j − 1) =
∞∑

x=1

x(j−1)�f (x) =
∞∑

x=0

x(j−1)

∞∑

y=x+1

f (y)

=
∞∑

y=1

f (y)

y−1∑

x=0

x(j−1) =
∞∑

y=1

f (y)
y(j)

j
= νf (j)

j
.

�

The following theorem follows by repeated application of (1.38).

Theorem 1.3 For all f ∈ F10, we have

�tf (−1) = ν�t−1f (0) = νf (t − 1)

(t − 1)! (1.40)

for all positive integers t for which �tf exists.

We shall prove the following corollary by translation.

Corollary 1.1 For all f ∈ F1 and all integers x, we have

�tf (x) =
∞∑

y=t+x

(
y − x − 1

t − 1

)

f (y) (1.41)

for all positive integers t for which �tf exists.
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Proof For x = −1, (1.41) follows easily from (1.40) if f ∈ F10. This result obvi-
ously holds even if we drop the restriction f ∈ F10 as �tf (−1) does not depend on
f (x) for negative integers x.

For all integers x, y, let

fx(y) = f (y + x + 1).

Then

�tf (x) = �tfx(−1) =
∞∑

y=t−1

(
y

t − 1

)

fx(y) =
∞∑

y=t−1

(
y

t − 1

)

f (y + x + 1)

=
∞∑

y=t+x

(
y − x − 1

t − 1

)

f (y),

that is, (1.41) holds for all integers x. �

1.9 Stop Loss Premiums

Let X be the aggregate claims of an insurance portfolio and F its distribution. As
explained in Sect. 1.1, if this portfolio is covered by stop loss reinsurance with re-
tention x, then the reinsurer pays (X − x)+ and the cedant pays min(X,x). Let
�F (x) = E(X − x)+ and �F (x) = E min(X,x). We call the functions �F and �F

the stop loss transform and retention transform of F . We define these functions for
all real numbers and all distributions on the real numbers although in reinsurance ap-
plications, the distribution will normally be restricted to the non-negative numbers.
For simplicity, we assume that μF (1) exists and is finite.

We have

�F (x) = E(X − x)+ =
∫ ∞

x

(y − x)dF(y) =
∫ ∞

x

∫ y

x

dzdF(y)

=
∫ ∞

x

∫

(z,∞)

dF(y)dz,

that is,

�F (x) =
∫ ∞

x

(1 − F(z))dz. (1.42)

Letting x ↓ −∞ gives μF (1) = ∫ ∞
−∞(1 − F(z))dz. Thus,

�F (x) = μF (1) − �F (x) =
∫ ∞

−∞
(1 − F(z))dz −

∫ ∞

x

(1 − F(z))dz

=
∫ x

−∞
(1 − F(z))dz.
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We shall now deduce some results on stop loss ordering. We start with mixed
distributions.

Theorem 1.4 For all values of θ in a set A, let Fθ and Gθ be univariate distribu-
tions such that �Fθ ≤ �Gθ , and let U be a mixing distribution on A. Then the mixed
distributions F and G given by F = ∫

A
Fθ dU(θ) and G = ∫

A
Gθ dU(θ) satisfy the

inequality �F ≤ �G.

Proof For any real number x, we have

�F (x) =
∫ ∞

x

(1 − F(z))dz =
∫ ∞

x

∫

A

(1 − Fθ(z))dU(θ)dz

=
∫

A

∫ ∞

x

(1 − Fθ(z))dzdU(θ) =
∫

A

�Fθ (x)dU(θ) ≤
∫

A

�Gθ (x)dU(θ)

= �G(x),

which proves the theorem. �

We now turn to convolutions.

Lemma 1.2 Let F , G, and H be univariate distributions such that �F ≤ �G. Then
�F∗H ≤ �G∗H .

Proof For any real number x, we have

�F∗H (x) =
∫ ∞

x

(1 − (F ∗ H)(z))dz =
∫ ∞

x

∫

(−∞,∞)

(1 − F(z − y))dH(y)dz

=
∫

(−∞,∞)

∫ ∞

x

(1 − F(z − y))dzdH(y) =
∫

(−∞,∞)

�F (x − y)dH(y)

≤
∫

(−∞,∞)

�G(x − y)dH(y) = �G∗H (x),

which proves the lemma. �

Theorem 1.5 For j = 1,2, . . . , let Fj and Gj be univariate distributions such that
�Fj

≤ �Gj
. Then

�∗M
j=1Fj

≤ �∗M
j=1Gj

. (M = 0,1,2, . . . ) (1.43)

Proof The inequality (1.43) obviously holds for M = 0. Let us now assume that it
holds for M = k − 1 for some positive integer k. Then the induction hypothesis and
two applications of Lemma 1.2 give

�∗k
j=1Fj

= �
(∗k−1

j=1Fj )∗Fk
≤ �

(∗k−1
j=1Fj )∗Gk

≤ �
(∗k−1

j=1Gj )∗Gk
= �∗k

j=1Gj
,
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so that the induction hypothesis holds also for M = k. By induction, it then holds
for all positive integers M .

This completes the proof of Theorem 1.5. �

The following corollary follows immediately from Theorem 1.5 by letting Fj =
F and Gj = G for j = 1,2, . . . .

Corollary 1.2 If F and G are univariate distributions such that �F ≤ �G, then

�FM∗ ≤ �GM∗ . (M = 0,1,2, . . . )

The following corollary follows by application of Theorem 1.4 and Corollary 1.2.

Corollary 1.3 If p ∈ P10 and F and G are univariate distributions such that �F ≤
�G, then �p∨F ≤ �p∨G.

Theorem 1.6 If F1,F2, . . . are univariate distributions, then

�∗M
j=1Fj

≥
M∑

j=1

�Fj
. (M = 1,2, . . . ) (1.44)

Proof The inequality (1.44) obviously holds for M = 1. Let us now assume that it
holds for M = k−1 for some integer k > 1, and let Y and Z be independent random
variables with distribution ∗k−1

j=1Fj and Fk respectively. For any numbers x, y, and z,
we have

(y + z − x)+ ≥ (y − x)+ + (z − x)+.

This gives that for all numbers x, we have

�∗k
j=1Fj

(x) = E(Y + Z − x)+ ≥ E(Y − x)+ + E(Z − x)+

= �∗k−1
j=1Fj

(x) + �Fk
(x) ≥

k∑

j=1

�Fj
(x);

the last inequality follows by the induction hypothesis (1.44). Hence, (1.44) holds
also for M = k, and by induction, it then holds for all positive integers M . �

The following corollary follows immediately from Theorem 1.6 by letting Fj =
F for j = 1,2, . . . .

Corollary 1.4 If F is a univariate distribution, then

�FM∗ ≥ M�F . (M = 1,2, . . . )
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Theorem 1.7 If p ∈ P10 and H is a univariate distribution, then �p∨H ≥
μp(1)�H .

Proof Application of Corollary 1.4 gives

�p∨H = �∑∞
n=0 p(n)Hn∗ =

∞∑

n=0

p(n)�Hn∗ ≥
∞∑

n=0

p(n)n�H = μp(1)�H .
�

In the following theorem, we apply the stop loss transform of the same distrib-
ution to obtain an upper and a lower bound of the stop loss transform of another
distribution.

Theorem 1.8 Let F and G be univariate distributions with finite mean, and assume
that F ≤ G. Then

�G ≤ �F ≤ �G + ε (1.45)

�F − ε ≤ �G ≤ �F (1.46)

with ε = μF (1) − μG(1).

Proof As F ≤ G, (1.42) immediately gives that �G ≤ �F .
On the other hand, for any real number x, we have

�F (x) = μF (1) −
∫ x

−∞
(1 − F(z))dz ≤ μF (1) −

∫ x

−∞
(1 − G(z))dz

= μF (1) − μG(1) + �G(x),

so that also the second inequality in (1.45) holds.
We easily obtain (1.46) by rearranging (1.45).
This completes the proof of Theorem 1.8. �

Now let f ∈ P1 and assume that μf (1) exists and is finite. Then, for all inte-
gers x,

�f (x) =
∞∑

y=x+1

(y − x)f (y) =
∞∑

y=x

�f (y) = �2f (x − 1) (1.47)

�f (x) =
x−1∑

y=−∞
�f (y).

Theorem 1.2 gives

�2f (x) =
x∑

y=0

(
x − y + 1

1

)

f (y) =
x∑

y=0

(x − y + 1)f (y) = E(x + 1 − X)+.
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Thus,

�f (x) = E(X − x)+ = E(x − X)+ + EX − x = �2f (x − 1) + μf (1) − x

and

�f (x) = E min(X,x) = μf (1) − �f (x)

= μf (1) − (�2f (x − 1) + μf (1) − x) = x − �2f (x − 1).

In some respects, distributions in P1, and, by change of unit, more generally
arithmetic distributions, are often easier to handle than more general distribution,
for instance, with respect to recursions. Hence, it can be desirable to approximate a
more general distribution by an arithmetic distribution. We shall now have a look at
some such approximations obtained by rounding. Let X be a random variable with
distribution F and h some positive number. We introduce the approximation Xh+
(Xh−) with distribution Fh+ (Fh−) obtained by rounding X upwards (downwards)
to the nearest whole multiple of h. Then Xh− ≤ X ≤ Xh+, and, hence, Fh+ ≤ F ≤
Fh−. Theorem 1.8 gives

�Fh+ − ε ≤ �F ≤ �Fh+

with

ε = μFh+(1) − μF (1) = E(Xh+ − X) ≤ Eh = h,

so that

�Fh+ − h ≤ �F ≤ �Fh+ .

Analogously, we obtain

�Fh− ≤ �F ≤ �Fh− + h.

Hence, we can obtain any desired accuracy of the approximation to the stop loss
transform by choosing h sufficiently small.

We shall prove the following corollary to Theorem 1.8.

Corollary 1.5 Let f,g ∈ P1 with finite mean, and assume that �f ≤ �g. Then

�g ≤ �f ≤ �g + ε (1.48)

�f − ε ≤ �g ≤ �f (1.49)

�g − ε ≤ �f ≤ �g (1.50)

�f ≤ �g ≤ �f + ε (1.51)

|f − g| ≤ ε (1.52)

with ε = μf (1) − μg(1).
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Proof The first inequality in (1.48) follows immediately from the assumption that
�f ≤ �g by using that

�f = 1 − �f ; �g = 1 − �g. (1.53)

By application of (1.47) and (1.45), we obtain that for any integer x,

�f (x) = �f (x) − �f (x + 1) ≤ �g(x) + ε − �g(x + 1) = �g(x) + ε,

so that also the second inequality in (1.48) holds.
We easily obtain (1.49) by rearranging (1.48).
We easily obtain (1.50) and (1.51) by application of (1.53) in (1.48) and (1.49).
By application of (1.50), we obtain that for any integer x,

f (x) = �f (x) − �f (x − 1) ≤ �g(x) − �g(x − 1) + ε = g(x) + ε

f (x) = �f (x) − �f (x − 1) ≥ �g(x) − ε − �g(x − 1) = g(x) − ε,

and these two inequalities give (1.52).
This completes the proof of Corollary 1.5. �

It should be stressed that even if Theorem 1.8 gives reasonable bounds, that is
not necessarily the case with the bounds of Corollary 1.5 as the magnitude of the
quantities that we bound there, is much smaller whereas ε is the same.

1.10 Convergence of Infinite Series with Positive Terms

In this section, we shall deduce some criteria for convergence of infinite series with
positive terms. As the partial sums of such a series constitutes an increasing se-
quence, it will either converge to a positive number or diverge to infinity.

Theorem 1.9 If l is a non-negative integer and {xn}∞n=l a sequence of positive num-
bers such that limn↑∞ xn/xn−1 = c exists, then the infinite series

∑∞
n=l xn is con-

vergent if c < 1 and divergent if c > 1.

Proof We first assume that c < 1. Then, for any d ∈ (c,1), there exists a positive
integer m > l such that xn/xn−1 < d for all integers n ≥ m. Hence,

∞∑

n=m

xn ≤ xm

∞∑

j=0

dj = xm

1 − d
< ∞.

Hence,
∑∞

n=l xn is convergent.
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Now, assume that c > 1. Then, for any d ∈ (1, c), there exists a positive integer
m > l such that xn/xn−1 > d for all integers n ≥ m. Hence,

∞∑

n=m

xn ≥ xm

∞∑

j=0

dj = ∞.

Hence,
∑∞

n=l xn is divergent.
This completes the proof of Theorem 1.9. �

Unfortunately, Theorem 1.9 does not give any clue on convergence or divergence
when c = 1. In that case, the following theorem can be useful. In the proof, we shall
use that

∞∑

n=1

1

n
= ∞.

This divergence follows by observing that

∞∑

n=1

1

n
>

∞∑

n=1

xn

n
= − ln(1 − x). (0 < x < 1)

Theorem 1.10 If l is a non-negative integer and {xn}∞n=l a sequence of positive
numbers such that

lim
n↑∞n

(

1 − xn

xn−1

)

= c

exists, then the infinite series
∑∞

n=l xn is convergent if c > 1 and divergent if c < 1.

Proof We first assume that c > 1. Then, for any d ∈ (1, c), there exists a positive
integer m > l such that for all integers n ≥ m, we have

n

(

1 − xn

xn−1

)

≥ d,

that is,

(n − 1)xn−1 − nxn ≥ (d − 1)xn−1 > 0.

Hence, the sequence {nxn}∞n=m is decreasing, and then the limit limn↑∞ nxn = v

exists and is finite. Summation gives

(m − 1)xm−1 − v ≥ (d − 1)

∞∑

n=m

xn−1.

Hence,
∑∞

n=l xn is convergent.
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Now, assume that c < 1. Then, for any d ∈ (c,1), there exists a positive integer
m > l such that for all integers n ≥ m, we have

n

(

1 − xn

xn−1

)

≤ d,

that is,

(n − 1)xn−1 − nxn ≤ (d − 1)xn−1 < 0.

Hence, the sequence {nxn}∞n=m is increasing, so that for all integers n > m, we have
nxn > mxm. Thus,

∞∑

n=m

xn > mxm

∞∑

n=m

1

n
= ∞.

Hence,
∑∞

n=l xn is divergent.
This completes the proof of Theorem 1.10. �

Whereas Theorems 1.9 and 1.10 are standard results from the theory of infinite
series, the following theorem is more tailor-made for our purpose in Chap. 2, where
we apply this theorem for characterisation of classes of distributions that satisfy
some specific types of recursions.

Theorem 1.11 Let

xn =
(

a + b

n

)

xn−1 (n = l + 1, l + 2, . . . ) (1.54)

with xl, a > 0 and b ≥ −(l + 1)a for some non-negative integer l. Then the infinite
series

∑∞
n=l xn is convergent if a < 1 and divergent if a > 1. If a = 1, then it is

convergent if b < −1 and divergent if b ≥ −1.

Proof From (1.54), we immediately see that limn↑∞ xn/xn−1 = a. Hence, Theo-
rem 1.9 gives that

∑∞
n=l xn is convergent if a < 1 and divergent if a > 1.

Now let a = 1. Then, for n > l,

n

(

1 − xn

xn−1

)

= −b,

and Theorem 1.10 gives that
∑∞

n=l xn is convergent if b < −1 and divergent if
b > −1.

When a = 1 and b = −1, we have

∞∑

n=l

xn = l

∞∑

n=l

1

n
= ∞,

that is,
∑∞

n=l xn is divergent.
This completes the proof of Theorem 1.11. �
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Further Remarks and References

For more details on modelling of the aggregate claims of insurance portfolios, see
e.g. Panjer and Willmot (1992), Sundt (1999b), Kaas et al. (2001), Klugman et al.
(2004), or Dickson (2005). Schröter (1995) gives an overview of methods for evalu-
ation of aggregate claims distributions. Denuit et al. (2005) specialise on modelling
dependent risks.

An extensive presentation of reinsurance is given by Gerathewohl (1980, 1983).
For stop loss reinsurance, see also Rytgaard (2004).

For more details on life assurance, see e.g. Bowers et al. (1997).
For more details on experience rating, see e.g. Neuhaus (2004), Lemaire (2004),

and Norberg (2004). Interesting outlines of Bayes statistics are given by DeGroot
(2004) and Jewell (2004).

Theorem 1.1 was proved by Dhaene et al. (1996). The recursion (1.17) was
pointed out by Sundt et al. (1998).

Antzoulakos and Chadjiconstantinidis (2004) proved Theorems 1.2 and 1.3.
Applications of Theorem 1.8 and Corollary 1.5 have been discussed by Sundt

(1986a, 1986b, 1991c, 1999b). Most of the other results in Sect. 1.9 are based on
Bühlmann et al. (1977). There exists an extensive literature on inequalities for stop
loss transforms; Kaas et al. (1994) give an extensive presentation.

Gerber and Jones (1976), Gerber (1982), Panjer and Lutek (1983), De Vylder
and Goovaerts (1988), Walhin and Paris (1998), Sundt (1999b), and Grübel and
Hermesmeier (1999, 2000) discussed various ways of approximating a distribution
with an arithmetic distribution.

For convergence criteria of infinite series, see e.g. Knopp (1990).
In older literature, cumulants are sometimes called semi-invariants.
In non-actuarial literature, compound distributions are sometimes called gener-

alised or stopped sum distributions.



Chapter 2
Counting Distributions with Recursion
of Order One

Summary

In Chap. 1, we defined compound distributions, presented some of their properties,
and mentioned their importance in modelling aggregate claims distributions in an
insurance setting. The main topic of the present chapter is recursions for compound
distributions, mainly with severity distribution in P11, but in Sect. 2.7, we extend
the theory to severity distributions in P10; as a special case, we consider thinning in
Sect. 2.7.2.

Section 2.3 is devoted to the Panjer class of distributions p ∈ P10 that satisfy a
recursion in the form

p(n) =
(

a + b

n

)

p(n − 1) (n = 1,2, . . . )

for some constants a and b. This class is characterised in Sect. 2.3.2. The key re-
sult of the present chapter is the Panjer recursion for compound distributions with
counting distribution in the Panjer class. This recursion is motivated and deduced
in Sect. 2.3.1, where we also give a continuous version. Section 2.3.3 discusses an
alternative recursion that for some severity distributions is more efficient than the
Panjer recursion.

To motivate the Panjer recursion and the sort of deductions that we shall mainly
apply in the present book, we first discuss two special cases, geometric counting
distribution in Sect. 2.1 and Poisson counting distribution in Sect. 2.2. Within the
Poisson case, in Sect. 2.2.2 we also discuss an alternative way of deduction based
on generating functions as well as present an alternative recursion that for some
severity distributions can be more efficient than the Panjer recursion.

Section 2.5 is devoted to an extension of the Panjer class, and that class is further
extended in Sect. 2.6.

Although the main emphasis is on compound distributions in the present chapter,
Sect. 2.4 is devoted to recursions for convolutions of a distribution on the integers
with range bounded on at least one side as these recursions are closely related to the
Panjer recursion.

2.1 Geometric Distribution

Let N be a random variable with distribution p ∈ P10 and Y1, Y2, . . . independent
and identically distributed random variables with distribution h ∈ P11. It is assumed

B. Sundt, R. Vernic, Recursions for Convolutions and Compound Distributions
with Insurance Applications, EAA Lecture Notes,
DOI 10.1007/978-3-540-92900-0_2, © Springer-Verlag Berlin Heidelberg 2009
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that the Yj s are independent of N . We want to evaluate the distribution f of X =
Y•N , that is, f = p ∨ h. From (1.9), we obtain the initial value

f (0) = p(0). (2.1)

The simplest case is when p is the geometric distribution geo(π) given by

p(n) = (1 − π)πn. (n = 0,1,2, . . . ;0 < π < 1) (2.2)

Theorem 2.1 When p is the geometric distribution geo(π) and h ∈ P11, then f =
p ∨ h satisfies the recursion

f (x) = π

x∑

y=1

h(y)f (x − y) (x = 1,2, . . . ) (2.3)

f (0) = 1 − π. (2.4)

Proof The initial condition (2.4) follows immediately from (2.1) and (2.2).
From (2.2), we see that

p(n) = πp(n − 1). (n = 1,2, . . . ) (2.5)

Insertion in (1.6) gives that for x = 1,2, . . . , we have

f (x) =
∞∑

n=1

p(n)hn∗(x) = π

∞∑

n=1

p(n − 1)(h ∗ h(n−1)∗)(x)

= π

(

h ∗
( ∞∑

n=1

p(n − 1)h(n−1)∗
))

(x) = π(h ∗ f )(x) = π

x∑

y=1

h(y)f (x − y),

which proves (2.3).
This completes the proof of Theorem 2.1. �

2.2 Poisson Distribution

2.2.1 General Recursion

We now assume that the claim number distribution p is the Poisson distribution
Po(λ) given by

p(n) = λn

n! e−λ, (n = 0,1,2, . . . ;λ > 0) (2.6)

but keep the other assumptions and notation of Sect. 2.1.
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Theorem 2.2 When p is the Poisson distribution Po(λ) and h ∈ P11, then f = p∨h

satisfies the recursion

f (x) = λ

x

x∑

y=1

yh(y)f (x − y) (x = 1,2, . . . ) (2.7)

f (0) = e−λ. (2.8)

Proof The initial condition (2.8) follows immediately from (2.1) and (2.6).
For the recursion for the compound geometric distribution, we utilised a recur-

sion for the counting distribution, so let us try to do something similar in the Poisson
case. From (2.6), we obtain

p(n) = λ

n
p(n − 1). (n = 1,2, . . . ) (2.9)

Insertion in (1.6) gives that for x = 1,2, . . . , we have

f (x) =
∞∑

n=1

λ

n
p(n − 1)hn∗(x). (2.10)

This one looks more awkward, but let us see what we can do. This hn∗(x), the
probability that Y•n = x, might lead to something. If we condition on that event,
then the conditional expectation of each Yj must be x/n, that is,

1

n
= E

[
Y1

x

∣
∣
∣
∣Y•n = x

]

=
x∑

y=1

y

x

h(y)h(n−1)∗(x − y)

hn∗(x)
. (2.11)

Insertion in (2.10) gives

f (x) = λ

∞∑

n=1

p(n − 1)

x∑

y=1

y

x

h(y)h(n−1)∗(x − y)

hn∗(x)
hn∗(x)

= λ

x

x∑

y=1

yh(y)

∞∑

n=1

p(n − 1)h(n−1)∗(x − y) = λ

x

x∑

y=1

yh(y)f (x − y),

which proves (2.7).
This completes the proof of Theorem 2.2. �

2.2.2 Application of Generating Functions

The proofs we have given for Theorems 2.1 and 2.2, introduce a technique we shall
apply to deduce many recursions in this book. However, the results can often also
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be proved by using generating functions. Some authors do that with great elegance.
However, in the opinion of the present authors, when working on the distributions
themselves instead of through generating functions, you get a more direct feeling of
what is going on. Using generating functions seems more like going from one place
to another by an underground train; you get where you want, but you do not have
any feeling of how the landscape gradually changes on the way.

To illustrate how generating functions can be used as an alternative to the tech-
nique that we shall normally apply, we shall now first give an alternative proof of
Theorem 2.2 based on such functions. After that, we shall deduce an alternative
recursion for f based on the form of τh.

Alternative Proof of Theorem 2.2 We have

τp(s) =
∞∑

n=0

snp(n) =
∞∑

n=0

sn λn

n! e−λ = e−λ
∞∑

n=0

(sλ)n

n! ,

that is,

τp(s) = eλ(s−1). (2.12)

By application of (1.30), we obtain

τf (s) = τp(τh(s)) = eλ(τh(s)−1). (2.13)

Differentiation with respect to s gives

τ ′
f (s) = λτ ′

h(s)τf (s), (2.14)

that is,
∞∑

x=1

xsx−1f (x) = λ

∞∑

y=1

ysy−1h(y)

∞∑

x=0

sxf (x), (2.15)

from which we obtain

∞∑

x=1

sxxf (x) = λ

∞∑

y=1

∞∑

x=0

ysx+yh(y)f (x) = λ

∞∑

y=1

∞∑

x=y

ysxh(y)f (x − y)

=
∞∑

x=1

sxλ

x∑

y=1

yh(y)f (x − y).

Comparison of coefficients gives (2.7). �

This proof still holds when h ∈ P10. From (2.12) and (1.33), we then get the
initial value f (0) = e−λ(1−h(0)).

With some experience, one would see (2.7) immediately from (2.15).
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Let us now assume that h ∈ P10 satisfies the relation

τ ′
h(s) =

∑r
y=1 η(y)sy−1

1 − ∑r
y=1 χ(y)sy

(2.16)

with r being a positive integer or infinity. Then

∞∑

y=1

yh(y)sy−1 = τ ′
h(s) =

r∑

y=1

η(y)sy−1 +
r∑

y=1

χ(y)syτ ′
h(s)

=
r∑

y=1

η(y)sy−1 +
r∑

z=1

χ(z)sz
∞∑

u=1

usu−1h(u)

=
∞∑

y=1

(

η(y) +
r∑

z=1

(y − z)χ(z)h(y − z)

)

sy−1.

Comparison of coefficients gives

h(y) = η(y)

y
+

r∑

z=1

(

1 − z

y

)

χ(z)h(y − z). (y = 1,2, . . . ) (2.17)

Theorem 2.3 If p is the Poisson distribution Po(λ) and h ∈ P10 satisfies the recur-
sion (2.17) for functions η and χ on {1,2, . . . , r} with r being a positive integer or
infinity, then f = p ∨ h satisfies the recursion

f (x) =
r∑

y=1

(
λ

x
η(y) +

(

1 − y

x

)

χ(y)

)

f (x − y). (x = 1,2, . . . ) (2.18)

Proof Insertion of (2.17) in (2.7) gives that for x = 1,2, . . . ,

f (x) = λ

x

x∑

y=1

(

η(y) +
r∑

z=1

(y − z)χ(z)h(y − z)

)

f (x − y)

= λ

x

(
r∑

y=1

η(y)f (x − y) +
r∑

z=1

χ(z)

x∑

y=z+1

(y − z)h(y − z)f (x − y)

)

,

and by application of (2.7), we get (2.18). �

We see that the conditions of the theorem are always satisfied with r = ∞, η =
h, and χ ≡ 0. In that case, (2.18) reduces to (2.7).

Let us now look at three examples where Theorem 2.3 gives some simplification.
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Example 2.1 Let h be the logarithmic distribution Log(π) given by

h(y) = 1

− ln(1 − π)

πy

y
. (y = 1,2, . . . ;0 < π < 1) (2.19)

Then

h(y) = π

− ln(1 − π)
I (y = 1) +

(

1 − 1

y

)

πh(y − 1), (y = 1,2, . . . )

that is, h satisfies the conditions of Theorem 2.3 with

r = 1; η(1) = π

− ln(1 − π)
; χ(1) = π.

Insertion in (2.18) gives that for x = 1,2, . . . , we have

f (x) = π

x

(
λ

− ln(1 − π)
+ x − 1

)

f (x − 1) = α + x − 1

x
πf (x − 1)

with

α = λ

− ln(1 − π)
, (2.20)

that is,

f (x) = (α + x − 1)(x)

x! πxf (0) =
(

α + x − 1

x

)

πxf (0).

From (2.8) and (2.20), we obtain f (0) = e−λ = (1 − π)α . Hence,

f (x) =
(

α + x − 1

x

)

πx(1 − π)α.

This is the negative binomial distribution NB(α,π). Hence, we have shown that
a compound Poisson distribution with logarithmic severity distribution can be ex-
pressed as a negative binomial distribution. In Example 4.1, we shall show this in
another way. �

Example 2.2 Let h be the shifted geometric distribution given by

h(y) = (1 − π)πy−1. (y = 1,2, . . . ;0 < π < 1) (2.21)

In this case, the compound distribution f is called a Pólya–Aeppli distribution. We
have

τh(s) =
∞∑

y=1

(1 − π)πy−1sy = (1 − π)s

1 − πs
, (2.22)
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from which we obtain

τ ′
h(s) = 1 − π

1 − 2πs + π2s2
,

that is, h satisfies the conditions of Theorem 2.3 with

r = 2; η(1) = 1 − π; η(2) = 0; χ(1) = 2π; χ(2) = −π2. (2.23)

Insertion in (2.18) gives

f (x) = 1

x
((λ(1 − π) + 2(x − 1)π)f (x − 1) − (x − 2)π2f (x − 2)).

(x = 1,2 . . . ) �

Example 2.3 Let h be the uniform distribution on the integers 0,1,2, . . . , k, that is,

h(y) = 1

k + 1
. (y = 0,1,2, . . . , k) (2.24)

Then

τh(s) =
k∑

y=0

1

k + 1
sy = 1

k + 1

1 − sk+1

1 − s
, (2.25)

from which we obtain

τ ′
h(s) =

1
k+1 − sk + k

k+1 sk+1

1 − 2s + s2
, (2.26)

that is, h satisfies the conditions of Theorem 2.3 with

r = k + 2

η(1) = 1

k + 1
; η(k + 1) = −1; η(k + 2) = k

k + 1

χ(1) = 2; χ(2) = −1

and η(y) and χ(y) equal to zero for all other values of y. Insertion in (2.18) gives

f (x) = 1

x

((
λ

k + 1
+ 2(x − 1)

)

f (x − 1) − (x − 2)f (x − 2)

− λ

(

f (x − k − 1) − k

k + 1
f (x − k − 2)

))

. (x = 1,2, . . . ) �
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2.3 The Panjer Class

2.3.1 Panjer Recursions

Let us now compare the proof of Theorem 2.1 and the first proof of Theorem 2.2.
In both cases, we utilised that the claim number distribution p ∈ P10 satisfied a
recursion in the form

p(n) = v(n)p(n − 1). (n = 1,2, . . . ) (2.27)

In the Poisson case, we found a function t such that

E[t (Y1, x)|Y•n = x] = v(n) (x = 1,2, . . . ;n = 1,2, . . . ) (2.28)

was independent of x; we had

t (y, x) = λ
y

x
; v(n) = λ

n
.

In the geometric case, we actually did the same with t (y, x) = v(n) = π . In both
cases, (2.28) was satisfied for any choice of h ∈ P11.

For any p ∈ P10, if (2.28) is satisfied, then by proceeding like in the first proof
of Theorem 2.2, using that

E[t (Y1, x)|Y•n = x] =
x∑

y=1

t (y, x)
h(y)h(n−1)∗(x − y)

hn∗(x)
(2.29)

(x = 1,2, . . . ;n = 1,2, . . . )

like in (2.11), we obtain

x∑

n=1

v(n)p(n − 1)hn∗(x) =
x∑

y=1

t (y, x)h(y)f (x − y). (2.30)

(x = 1,2, . . . )

For n = 1,2, . . . , we have p(n) = q(n) + v(n)p(n − 1) with

q(n) = p(n) − v(n)p(n − 1), (2.31)

so that

f (x) = (q ∨ h)(x) +
x∑

n=1

v(n)p(n − 1)hn∗(x). (x = 1,2, . . . )

Insertion of (2.30) gives
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f (x) = (q ∨ h)(x) +
x∑

y=1

t (y, x)h(y)f (x − y)

=
x∑

n=1

(p(n) − v(n)p(n − 1))hn∗(x)

+
x∑

y=1

t (y, x)h(y)f (x − y). (x = 1,2, . . . ) (2.32)

We have t (x, x) = v(1) because in the conditional distribution of Y1 given
∑n

j=1 Yj = x we have Y1 = x iff n = 1 as the Yj s are strictly positive. Insertion
in (2.32) gives

f (x) = p(1)h(x) +
x∑

n=2

(p(n) − v(n)p(n − 1))hn∗(x)

+
x−1∑

y=1

t (y, x)h(y)f (x − y). (x = 1,2, . . . ) (2.33)

If p ∈ P1l and h ∈ P1r , then we have f (x) = 0 for all x < lr . Thus, f ∈ P1lr ,
and the initial value of the recursion is

f (lr) =
{

p(l)hl∗(r) (l = 1,2, . . . )

p(0). (l = 0)

If p satisfies (2.27), then q ≡ 0, so that (2.32) reduces to

f (x) =
x∑

y=1

t (y, x)h(y)f (x − y). (x = 1,2, . . . ) (2.34)

If both (t1, v1) and (t2, v2) satisfy (2.28), then (t, v) = (at1 +bt2, av1 +bv2) also
satisfies (2.28) for any constants a and b. In particular, this gives that for all h ∈ P11,
(2.28) is satisfied for all linear combinations of the ts of Theorems 2.1 and 2.2, that
is, for

t (y, x) = a + b
y

x
; v(n) = a + b

n
. (2.35)

Insertion in (2.31)–(2.33) gives

q(n) = p(n) −
(

a + b

n

)

p(n − 1) (n = 1,2, . . . ) (2.36)
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and

f (x) = (q ∨ h)(x) +
x∑

y=1

(

a + b
y

x

)

h(y)f (x − y)

=
x∑

n=1

(

p(n) −
(

a + b

n

)

p(n − 1)

)

hn∗(x)

+
x∑

y=1

(

a + b
y

x

)

h(y)f (x − y)

= p(1)h(x) +
x∑

n=2

(

p(n) −
(

a + b

n

)

p(n − 1)

)

hn∗(x)

+
x−1∑

y=1

(

a + b
y

x

)

h(y)f (x − y), (x = 1,2, . . . ) (2.37)

from which we immediately obtain the following theorem.

Theorem 2.4 If p ∈ P10 satisfies the recursion

p(n) =
(

a + b

n

)

p(n − 1) (n = 1,2, . . . ) (2.38)

for some constants a and b, then

f (x) =
x∑

y=1

(

a + b
y

x

)

h(y)f (x − y) (x = 1,2, . . . ) (2.39)

for any h ∈ P11.

The following theorem is a continuous version of Theorem 2.4.

Theorem 2.5 The compound distribution with continuous severity distribution on
(0,∞) with density h and counting distribution p ∈ P10 that satisfies the recursion
(2.38), has mass p(0) at zero and for x > 0 density f that satisfies the integral
equation

f (x) = p(1)h(x) +
∫ x

0

(

a + b
y

x

)

h(y)f (x − y)dy. (2.40)

Proof We immediately see that the compound distribution has mass p(0) at zero.
For x > 0, we have

f (x) =
∞∑

n=1

p(n)hn∗(x) = p(1)h(x) +
∞∑

n=2

(

a + b

n

)

p(n − 1)hn∗(x)
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= p(1)h(x) +
∞∑

n=2

∫ x

0

(

a + b
y

x

)
h(y)h(n−1)∗(x − y)

hn∗(x)
dy p(n − 1)hn∗(x)

= p(1)h(x) +
∫ x

0

(

a + b
y

x

)

h(y)

∞∑

n=2

p(n − 1)h(n−1)∗(x − y)dy

= p(1)h(x) +
∫ x

0

(

a + b
y

x

)

h(y)f (x − y)dy.

This completes the proof of Theorem 2.5. �

The Volterra integral equation (2.40) can be solved by numerical methods. How-
ever, in practice it seems more natural to approximate the continuous severity dis-
tribution with a discrete one, perhaps using an approximation that gives an upper or
lower bound for the exact distribution.

Analogously, other recursions presented in this book can be modified to integral
equations when the severity distribution is continuous.

2.3.2 Subclasses

The class of counting distributions satisfying the recursion (2.38) is often called the
Panjer class. We already know that this class contains the geometric distribution and
the Poisson distribution. The following theorem gives a complete characterisation
of the Panjer class.

Theorem 2.6 If p ∈ P10 satisfies the recursion (2.38), then we must have one of the
following four cases:

1. Degenerate distribution in zero:

p(n) = I (n = 0). (2.41)

2. Poisson distribution Po(λ).
3. Negative binomial distribution NB(α,π):

p(n) =
(

α + n − 1

n

)

πn(1 − π)α. (n = 0,1,2, . . . ;0 < π < 1;α > 0)

(2.42)
4. Binomial distribution bin(M,π):

p(n) =
(

M

n

)

πn(1 − π)M−n. (n = 0,1,2, . . . ,M;0 < π < 1;M = 1,2, . . . )

(2.43)
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Proof To avoid negative probabilities, we must have a + b ≥ 0.
If a + b = 0, we obtain p(n) = 0 for all n > 0, so that we get the degenerate

distribution given by (2.41).
For the rest of the proof, we assume that a + b > 0.
From (2.9), we see that if a = 0, then p satisfies (2.6) with λ = b.
We now assume that a > 0. Then Theorem 1.11 gives that a < 1. With α =

(a + b)/a and π = a, we obtain

p(n) = p(0)

n∏

i=1

(

a + b

i

)

= p(0)πn
n∏

i=1

(

1 + α − 1

i

)

= p(0)πn
n∏

i=1

α + i − 1

i

= p(0)πn (α + n − 1)(n)

n! = p(0)πn

(
α + n − 1

n

)

.

Comparison with (2.42) gives that p must now be the negative binomial distribution
NB(α,π).

Let us finally consider the case a < 0. To avoid negative probabilities, there must
then exist an integer M such that

a + b

M + 1
= 0,

that is,

M = a + b

−a
; b = −a(M + 1).

In that case, we have p(n) = 0 for all n > M . For n = 0,1,2, . . . ,M , we obtain

p(n) = p(0)

n∏

i=1

(

a + b

i

)

= p(0)an
n∏

i=1

(

1 − M + 1

i

)

= p(0)(−a)n
n∏

i=1

M − i + 1

i
= p(0)(−a)n

M(n)

n! = p(0)(−a)n
(

M

n

)

,

which gives (2.43) when −a = π/(1 − π), that is, π = −a/(1 − a).
This completes the proof of Theorem 2.6. �

In Fig. 2.1, the four cases of Theorem 2.6 are illustrated in an (a, b) diagram.
Table 2.1 presents the recursion of Theorem 2.4 for the three non-degenerate cases
of Theorem 2.6.

As a special case of the negative binomial distribution, we obtain the geometric
distribution of Theorem 2.1 with α = 1.

It is well known that both the binomial class and the negative binomial class sat-
isfy the property that the convolution of two distribution within the class with the
same value of the parameter π is the distribution in the same class with the same
value of π and the other parameter being the sum of that parameter from the two
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Fig. 2.1 (a, b) for the Panjer class

Table 2.1 Recursions for compound Panjer distributions

Distribution a b f (x) f (0)

NB(α,π) π (α − 1)π π
∑x

y=1(1 + (α − 1)
y
x
)h(y)f (x − y) (1 − π)α

Po(λ) 0 λ λ
x

∑x
y=1 yh(y)f (x − y) e−λ

bin(M,π) − π
1−π

(M+1)π
1−π

π
1−π

∑x
y=1((M + 1)

y
x

− 1)h(y)f (x − y) (1 − π)M

original distributions. When looking at the expressions for a and b for these two
classes, we see that the two original distributions and their convolutions are in the
Panjer class and have the same value of a, and the b of their convolution is a plus the
sum of the bs of the two original distributions. As the convolution of two Poisson
distributions is a Poisson distribution with parameter equal to the sum of the parame-
ters of the two original distributions, this property also holds for the Poisson distrib-
utions, and, hence, for the whole Panjer class. We formulate this result as a theorem.

Theorem 2.7 The convolution of two distributions that satisfy the recursion (2.38)
with the same value of a, satisfies (2.38) with the same value of a and b equal to a

plus the sum of the bs of the two original distributions.
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In Sect. 5.3.4, we shall prove a more general version of this theorem.
Let us now consider the moments of a distribution p ∈ P10 that satisfies the

recursion (2.38). For j = 1,2, . . . , we have

μp(j) =
∞∑

n=1

njp(n) =
∞∑

n=1

nj

(

a + b

n

)

p(n − 1) =
∞∑

n=1

nj−1(an + b)p(n − 1)

=
∞∑

n=0

(n + 1)j−1(a(n + 1) + b)p(n),

that is,

μp(j) = aμp(j ;−1) + bμp(j − 1;−1). (2.44)

By using that

μp(k;−1) =
k∑

i=0

(
k

i

)

μp(i) (k = 0,1, . . . )

and solving (2.44) for μp(j), we obtain a recursion for μp(j); we shall return to
that in Sect. 9.2.2. In particular, we get

μp(1) = aμp(1;−1) + bμp(0;−1) = aμp(1) + a + b,

which gives

μp(1) = a + b

1 − a
.

Furthermore,

μp(2) = aμp(2;−1) + bμp(1;−1)

= a(μp(2) + 2μp(1) + 1) + b(μp(1) + 1)

= aμp(2) + (a + b)μp(1) + aμp(1) + a + b,

from which we obtain

μp(2) = 1

1 − a
((a + b)μp(1) + aμp(1) + a + b)

= μp(1)2 + 1

1 − a

(

a
a + b

1 − a
+ a + b

)

= μp(1)2 + a + b

(1 − a)2
,

which gives

κp(2) = a + b

(1 − a)2
.
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Table 2.2 Moments of distributions in the Panjer class

p μp(1) κp(2) κp(2)/μp(1)

NB(α,π) απ/(1 − π) απ/(1 − π)2 1/(1 − π)

Po(λ) λ λ 1

bin(M,π) Mπ Mπ(1 − π) 1 − π

Hence,

κp(2)

μp(1)
= 1

1 − a
.

From this we see that the variance is greater than the mean when a > 0, that is,
negative binomial distribution, equal to the mean when a = 0, that is, Poisson dis-
tribution, and less than the mean when a < 0, that is, binomial distribution. This
makes the Panjer class flexible for fitting counting distributions by matching of mo-
ments. In Table 2.2, we display the mean and the variance and their ratio for the
three non-degenerate cases of Theorem 2.6.

2.3.3 An Alternative Recursion

For evaluation of f = p ∨ h with h ∈ P11 and p ∈ P10 satisfying the recursion
(2.38), we shall deduce an alternative recursive procedure that can sometimes be
more efficient than Theorem 2.4. We assume that h satisfies the relation

τh(s) =
∑m

y=1 α(y)sy

1 − ∑m
y=1 β(y)sy

(2.45)

with m being a positive integer or infinity. Rewriting this as τh = τα + τβτh and
using (1.20), we obtain that

h = α + β ∗ h, (2.46)

which gives the recursion

h(y) = α(y) +
m∑

z=1

β(z)h(y − z). (y = 1,2, . . . )

We shall need the following lemma.

Lemma 2.1 If w ∈ F10 and h ∈ P11 satisfies the relation (2.45) with m being a
positive integer or infinity, then h ∗ w satisfies the recursion

(h ∗ w)(x) =
m∑

y=1

(α(y)w(x − y) + β(y)(h ∗ w)(x − y)). (x = 1,2, . . . ) (2.47)



44 2 Counting Distributions with Recursion of Order One

Proof Application of (2.46) gives h ∗ w = α ∗ w + β ∗ h ∗ w, from which (2.47)
follows. �

We see that (2.45) is always satisfied with m = ∞, α = h, and β ≡ 0. In that
case, (2.47) gives

(h ∗ w)(x) =
x∑

y=1

h(y)w(x − y), (x = 1,2, . . . )

which we already know.
We can express (2.39) in the form

f (x) = (a + b)(h ∗ f )(x) − b

x
(h ∗ f )(x). (x = 1,2, . . . ) (2.48)

For x = 1,2, . . . , we can first evaluate (h ∗ f )(x) and (h ∗ f )(x) by (2.47) and
then f (x) by insertion in (2.48).

Example 2.4 Let p be the geometric distribution geo(π). Then a = π and b = 0
so that (2.48) reduces to f = π(h ∗ f ). Application of (2.47) gives that for x =
1,2, . . . ,

f (x) = π

m∑

y=1

(α(y)f (x − y) + β(y)(h ∗ f )(x − y))

=
m∑

y=1

(πα(y) + β(y))f (x − y).

This recursion can be considered as a parallel to the recursion (2.18). �

Example 2.5 Let h be the shifted geometric distribution given by (2.21). From
(2.22), we see that (2.45) is satisfied with

m = 1; α(1) = 1 − π; β(1) = π.

Insertion in (2.47) gives

(h ∗ w)(x) = (1 − π)w(x − 1) + π(h ∗ w)(x − 1). (x = 1,2, . . . ) �

By differentiating (2.45), we obtain

τ ′
h(s) =

∑m
y=1 yα(y)sy−1(1 − ∑m

z=1 β(z)sz) + ∑m
y=1 α(y)sy

∑m
z=1 zβ(z)sz−1

(1 − ∑m
z=1 β(z)sz)2

,

which can be written in the form (2.16) with r = 2m. Hence, when p is the Poisson
distribution Po(λ), we can also evaluate f by the recursion (2.18). In this case, a = 0
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and b = λ so that we can write (2.48) as

f (x) = λ

(

(h ∗ f )(x) − (h ∗ f )(x)

x

)

. (x = 1,2, . . . ) (2.49)

As r = 2m, the number of terms in the summation in (2.18) is twice the number of
terms in the summation in (2.47). On the other hand, for each value of x in (2.49),
we have to apply (2.47) twice, whereas in the recursion of Theorem 2.3, it suffices
with one application of (2.18). As it seems to be an advantage to have the recursion
expressed in one formula, we tend to go for the recursion of Theorem 2.3 in this
case.

2.4 Convolutions of a Distribution

Let us now for a moment leave compound distributions and instead let f = gM∗
with g ∈ P10, that is, f is the distribution of X = Y•M , where Y1, Y2, . . . , YM are
independent and identically distributed with distribution g. Then we have the fol-
lowing result.

Theorem 2.8 The M-fold convolution f = gM∗ of g ∈ P10 satisfies the recursion

f (x) = 1

g(0)

x∑

y=1

(

(M + 1)
y

x
− 1

)

g(y)f (x − y) (x = 1,2, . . . ) (2.50)

f (0) = g(0)M. (2.51)

Proof Formula (2.51) follows immediately from (1.4).
Let us now prove (2.50). We introduce an auxiliary random variable Y0, which is

independent of X and has distribution g. Then, because of symmetry, we easily see
that for x = 1,2, . . .

E

(

(M + 1)
Y0

x
− 1

)

I (Y0 + X = x) = 0, (2.52)

that is,

x∑

y=0

(

(M + 1)
y

x
− 1

)

g(y)f (x − y) = 0.

Solving for f (x) gives (2.50).
This completes the proof of Theorem 2.8. �
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Example 2.6 If g is the discrete uniform distribution given by (2.24), then the re-
cursion (2.50) reduces to

f (x) =
k∑

y=1

(

(M + 1)
y

x
− 1

)

f (x − y), (x = 1,2, . . . )

and (2.51) gives the initial condition f (0) = (k + 1)−M . In Example 5.2, we shall
deduce a simpler recursion for f in the present situation. �

The simplest special case of a non-degenerate distribution g in Theorem 2.8 is
the Bernoulli distribution Bern(π) given by

g(1) = π = 1 − g(0), (2.53)

that is, the binomial distribution bin(1,π). By Theorem 2.7 and Table 2.1, we obtain
that then f is bin(M,π). Insertion of (2.53) in (2.50) gives

f (x) = π

1 − π

(
M + 1

x
− 1

)

f (x − 1), (x = 1,2, . . . ) (2.54)

which is (2.38) with a and b given by Table 2.1 for the binomial distribution.
More generally, for any g ∈ P10, it follows from (1.8) that g = q ∨h with q being

Bern(π) with

π = 1 − g(0) (2.55)

and h ∈ P11 given by

h(y) = g(y)

π
. (y = 1,2, . . . ) (2.56)

Then

f = gM∗ = (q ∨ h)M∗ = qM∗ ∨ h = p ∨ h

with p = qM∗, that is bin(M,π). Insertion of (2.55) and (2.56) in the recursion for
the compound binomial distribution in Table 2.1 gives Theorem 2.8.

If

k = max(x : g(x) > 0) < ∞, (2.57)

then f (x) = 0 for all integers x > Mk, and we can turn the recursion (2.50) around
and start it from f (Mk). This can be convenient if we are primarily interested in
f (x) for high values of x. Furthermore, in this converted recursion, we can also
allow for negative integers in the range of g.
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Theorem 2.9 If the distribution g ∈ P1 satisfies the condition (2.57), then f = gM∗
satisfies the recursion

f (x) = 1

g(k)

Mk−x∑

y=1

(
(M + 1)y

Mk − x
− 1

)

g(k − y)f (x + y)

(x = Mk − 1,Mk − 2, . . . ,0)

f (Mk) = g(k)M.

Proof Let Ỹj = k − Yj (j = 1,2, . . . ,M) and

X̃ =
M∑

j=1

Ỹj =
M∑

j=1

(k − Yj ) = Mk − X,

and denote the distributions of Ỹj and X̃ by g̃ and f̃ respectively. Then g̃, f̃ ∈ P10.
Thus, they satisfy the recursion of Theorem 2.8, and we obtain

f (Mk) = f̃ (0) = g̃(0)M = g(k)M.

For x = Mk − 1,Mk − 2, . . . ,0, (2.50) gives

f (x) = f̃ (Mk − x) = 1

g̃(0)

Mk−x∑

y=1

(
(M + 1)y

Mk − x
− 1

)

g̃(y)f̃ (Mk − x − y)

= 1

g(k)

Mk−x∑

y=1

(
(M + 1)y

Mk − x
− 1

)

g(k − y)f (x + y).

This completes the proof of Theorem 2.9. �

If g ∈ P1l for some non-zero integer l, then we can also obtain a recursion for
g = f M∗ from Theorem 2.8 by shifting g and f to P10.

Theorem 2.10 If g ∈ P1l for some integer l, then f = gM∗ satisfies the recursion

f (x) = 1

g(l)

x−Ml∑

y=1

(
(M + 1)y

x − Ml
− 1

)

g(l + y)f (x − y)

(x = Ml + 1,Ml + 2, . . . )

f (Ml) = g(l)M.
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Proof Let Ỹj = Yj − l (j = 1,2, . . . ,M) and

X̃ =
M∑

j=1

Ỹj =
M∑

j=1

(Yj − l) = X − Ml,

and denote the distributions of Ỹj and X̃ by g̃ and f̃ respectively. Then g̃ and f̃

satisfy the recursion of Theorem 2.8, and we obtain

f (Ml) = f̃ (0) = g̃(0)M = g(l)M.

For x = Ml + 1,Ml + 2, . . . ,

f (x) = f̃ (x − Ml) = 1

g̃(0)

x−Ml∑

y=1

(
(M + 1)y

x − Ml
− 1

)

g̃(y)f̃ (x − Ml − y)

= 1

g(l)

x−Ml∑

y=1

(
(M + 1)y

x − Ml
− 1

)

g(l + y)f (x − y).

This completes the proof of Theorem 2.10. �

2.5 The Sundt–Jewell Class

2.5.1 Characterisation

Let us now return to the situation of Sect. 2.3.1. There we showed that if there ex-
ist functions t and v such that (2.28) holds, then (2.30) holds. If, in addition, the
counting distribution p satisfies the recursion (2.27), then the compound distribu-
tion f = p ∨ h satisfies the recursion (2.34). Furthermore, we showed that for all
severity distributions h ∈ P11, (2.28) is satisfied for t and v given by (2.35). A nat-
ural question is then for what other couples (t, v) (2.28) is satisfied for all h. The
following theorem gives the answer.

Theorem 2.11 There exists a function t that satisfies the relation (2.28) for all
h ∈ P11 iff there exist constants a and b such that

v(n) = a + b

n
. (n = 2,3, . . . ) (2.58)

Proof If the function v satisfies (2.58), then (2.28) is satisfied for all h ∈ P11 with

t (y, x) =
{

a + b
y
x

(x �= y)

v(1). (x = y)
(2.59)
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The reason that it works with a different value when x = y, is that in the conditional
distribution of Y1 given Y•n = x, we have Y1 = x iff n = 1 as the Yj s are strictly
positive.

Let us now assume that there exists a function t that satisfies (2.28) for all h ∈
P11. We want to prove that then v must satisfy (2.58). It is then sufficient to show
that for a particular choice of h (2.58) must be satisfied. We let

h(1) = h(2) = 1

2
.

By using that hn∗ is a shifted binomial distribution, we obtain

hn∗(y) =
(

n

y − n

)

2−n (y = n,n + 1, n + 2, . . . ,2n;n = 1,2, . . . )

from (2.43). Letting

hn(y|x) = Pr(Y1 = y|Y•n = x)

for n = 1,2, . . . ; x = n,n + 1, n + 2, . . . ,2n, and y = 1,2, we obtain

hn(1|x) = h(1)h(n−1)∗(x − 1)

hn∗(x)
=

1
2

(
n−1
x−n

)
2−(n−1)

(
n

x−n

)
2−n

= 2 − x

n

hn(2|x) = 1 − hn(1|x) = x

n
− 1.

Insertion in (2.28) gives

v(n) = E[t (Y1, x)|Y•n = x] = t (1, x)hn(1|x) + t (2, x)hn(2|x)

= t (1, x)

(

2 − x

n

)

+ t (2, x)

(
x

n
− 1

)

.

With x = n and x = 2n respectively, we obtain

v(n) = t (1, n) = t (2,2n).

Letting x = 2z be an even number, we obtain

v(n) = t (1,2z)

(

2 − 2z

n

)

+ t (2,2z)

(
2z

n
− 1

)

= v(2z)

(

2 − 2z

n

)

+ v(z)

(
2z

n
− 1

)

,

that is,

v(n) = A(z) + B(z)

n
(1 ≤ n ≤ 2z ≤ 2n)
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with

A(z) = 2v(2z) − v(z); B(z) = 2z(v(z) − v(2z)).

In particular, for z ≥ 2, we obtain

v(z + 1) = A(z + 1) + B(z + 1)

z + 1
= A(z) + B(z)

z + 1

v(z + 2) = A(z + 1) + B(z + 1)

z + 2
= A(z) + B(z)

z + 2
,

which gives

A(z + 1) = A(z); B(z + 1) = B(z),

that is, (2.58) must be satisfied for some a and b.
This completes the proof of Theorem 2.11. �

2.5.2 Recursions

From (2.37) we immediately obtain that if p ∈ P10 satisfies the recursion

p(n) =
(

a + b

n

)

p(n − 1) (n = l + 1, l + 2, . . . ) (2.60)

for some positive integer l and h ∈ P11, then the compound distribution f = p ∨ h

satisfies the recursion

f (x) =
l∑

n=1

(

p(n) −
(

a + b

n

)

p(n − 1)

)

hn∗(x)

+
x∑

y=1

(

a + b
y

x

)

h(y)f (x − y)

= p(1)h(x) +
l∑

n=2

(

p(n) −
(

a + b

n

)

p(n − 1)

)

hn∗(x)

+
x−1∑

y=1

(

a + b
y

x

)

h(y)f (x − y). (x = 1,2, . . . ) (2.61)

In particular, if

p(n) =
(

a + b

n

)

p(n − 1), (n = 2,3, . . . ) (2.62)
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then

f (x) = p(1)h(x) +
x−1∑

y=1

(

a + b
y

x

)

h(y)f (x − y). (x = 1,2, . . . ) (2.63)

The class of counting distributions given by (2.62) is sometimes called the Sundt–
Jewell class.

2.5.3 Subclasses

The Sundt–Jewell class obviously contains the Panjer class. In the proof of The-
orem 2.6, we pointed out that to avoid negative probabilities, we had to have
a + b ≥ 0; this is also illustrated in Fig. 2.1. In the Sundt–Jewell class, the recursion
(2.62) starts at n = 2, so that we need only 2a + b ≥ 0 when a > 0.

Let us now look at what sort of distributions we have in the Sundt–Jewell class:

1. The Panjer class.
2. Degenerate distribution concentrated in one. Here we have 2a + b = 0. In this

case, f = h.
3. Logarithmic distribution Log(π). Here we have

a = π; b = −π, (2.64)

so that

f (x) = π

(
h(x)

− ln(1 − π)
+

x−1∑

y=1

(

1 − y

x

)

h(y)f (x − y)

)

. (x = 1,2, . . . )

(2.65)
4. Extended truncated negative binomial distribution ETNB(α,π). Let

p(n) = 1
∑∞

j=1

(
α+j−1

j

)
πj

(
α + n − 1

n

)

πn. (2.66)

(n = 1,2, . . . ;0 < π ≤ 1;−1 < α < 0)

Then

a = π; b = (α − 1)π (2.67)

so that

f (x) = π

(
αh(x)

∑∞
j=1

(
α+j−1

j

)
πj

+
x−1∑

y=1

(

1 − (1 − α)
y

x

)

h(y)f (x − y)

)

.

(x = 1,2, . . . ) (2.68)
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When 0 < π < 1, then

∞∑

j=1

(
α + j − 1

j

)

πj = (1 − π)−α − 1.

5. Truncated Panjer distributions. Let p̃ be a distribution in the Panjer class and
define the distribution p ∈ P11 by

p(n) = p̃(n)

1 − p̃(0)
. (n = 1,2, . . . )

6. Zero-modification of distributions in the Sundt–Jewell class. If p̃ is in the Sundt–
Jewell class and 0 ≤ ρ ≤ 1, then the mixed distribution p given by

p(n) = ρI (n = 0) + (1 − ρ)p̃(n) (n = 0,1,2, . . . )

is also in the Sundt–Jewell class with the same a and b. We can also have ρ /∈
[0,1] as long as p(n) ∈ [0,1] for all n. If f = p ∨h and f̃ = p̃ ∨h, then we also
have

f (x) = ρI (x = 0) + (1 − ρ)f̃ (x). (x = 0,1,2, . . . )

The following theorem shows that there are no other members in the Sundt–
Jewell class than those in these classes.

Theorem 2.12 The six classes described above contain all distributions in the
Sundt–Jewell class.

Proof Because of the mixtures in the class 6, there is an infinite number of counting
distributions p with the same a and b. On the other hand, for each distribution
in the Sundt–Jewell class, the corresponding distribution with lower truncation at
one also belongs to the class, and any distribution in the Sundt–Jewell class can be
obtained as a mixture between one of these truncated distributions and a degenerate
distribution concentrated in zero. Hence, it suffices to study the distributions in the
intersection between the Sundt–Jewell class and P11, and for each admissible pair
(a, b) there exist only one such p ∈ P11.

We know that the class of Panjer distributions is contained in the Sundt–Jewell
class, and, hence, that also goes for the truncated Panjer distributions. In Theo-
rem 2.6 and Fig. 2.1, we have characterised the classes of (a, b) for these distribu-
tions.

Now, what other admissible values of (a, b) have we got with the extension from
the Panjer class to the Sundt–Jewell class? We must now have 2a + b ≥ 0, and
we have already considered the distributions with a + b > 0 in Theorem 2.6 and
Fig. 2.1. From Theorem 1.11, we see that we still cannot have a > 1, and that we
can have a = 1 only when b < −1. Hence, it suffices to check all possibilities within
the closed triangle bounded by the lines 2a+b = 0, a+b = 0, and a = 1, apart from
the point with a = 1 and b = −1. This set is illustrated in Fig. 2.2.
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Fig. 2.2 (a, b) diagram for the complement of the Panjer class in the Sundt–Jewell class

When 2a+b = 0, we obtain the degenerate distribution concentrated in one, and,
when a + b = 0 with a < 1, the logarithmic distribution Log(a).

For any (a, b) in the remaining area, we define π and α by (2.67), that is,

π = a; α = a + b

a
.

We then obviously have 0 < π ≤ 1. Furthermore, as a + b < 0,

α = a + b

a
< 0,

and, as 2a + b > 0,

α = 2a + b − a

a
> −1.

Hence, for each (a, b) in our remaining area, there exists an extended truncated
negative binomial distribution ETNB(α,π).

We have now allocated distributions in P11 from the classes 2–5 to all admissible
pairs (a, b).

This completes the proof of Theorem 2.12. �
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2.6 Higher Order Panjer Classes

2.6.1 Characterisation

For l = 0,1,2, . . . , let Sl denote the class of counting distributions p ∈ P1l that
satisfy the recursion (2.60). We call this class the Panjer class of order l. Like we
have done earlier, we often call the Panjer class of order zero simply the Panjer
class.

The following theorem is proved analogous to Theorem 2.12.

Theorem 2.13 If p ∈ Sl with l = 2,3, . . . , then p belongs to one of the four classes:

p(n) = p̃(n)

1 − p̃(l − 1)
(p̃ ∈ Sl−1)

p(n) = I (n = l) (2.69)

p(n) = 1
∑∞

j=l π
j
(
j
l

)−1
πn

(
n

l

)−1

(0 < π ≤ 1) (2.70)

p(n) = 1
∑∞

j=l

(
α+j−1

j

)
πj

(
α + n − 1

n

)

πn (0 < π ≤ 1;−l < α < −l + 1)

(2.71)

for n = l, l + 1, l + 2, . . . .

With the distribution (2.70), we have a = π and b = −lπ , so that in the (a, b)

plane, we cover the line la + b = 0 with a ∈ (0,1], and we obtain the distribution
(2.69) when (l + 1)a + b = 0. With the distribution (2.71), we have a and b given
by (2.67), that is, in the (a, b) plane, we cover the triangle given by the restrictions
0 < a ≤ 1, la + b < 0, and a(l + 1) + b ≥ 0.

If p ∈ Sl and h ∈ P11, then f = p ∨ h ∈ P1l , and from (2.61), we obtain that f

satisfies the recursion

f (x) = p(l)hl∗(x) +
x−l∑

y=1

(

a + b
y

x

)

h(y)f (x − y). (x = l, l + 1, l + 2, . . . )

(2.72)
We can evaluate hl∗ recursively by Theorem 2.10.

2.6.2 Shifted Counting Distribution

Let us now assume that p ∈ P10 satisfies the recursion

p(n) =
(

a + b

n + l

)

p(n − 1), (n = 1,2, . . . ) (2.73)
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and that we want to evaluate the compound distribution f = p ∨ h with h ∈ P11.
Then the shifted distribution pl given by pl(n) = p(n− l) for n = l, l + 1, l + 2, . . .

is the distribution in Sl given by (2.60). Thus, we can evaluate the compound distri-
bution fl = pl ∨ h recursively by (2.72). Furthermore, we have fl = hl∗ ∗ f , so that
for x = lr, lr + 1, lr + 2, . . .

fl(x) =
x∑

y=lr

hl∗(y)f (x − y)

if h ∈ P1r . By solving this equation for f (x − lr), using that hl∗(lr) = h(r)l , we
obtain

f (x − lr) = 1

h(r)l

(

fl(x) −
x∑

y=lr+1

hl∗(y)f (x − y)

)

.

Change of variable gives

f (x) = 1

h(r)l

(

fl(x + lr) −
x∑

y=1

hl∗(y + lr)f (x − y)

)

. (x = 0,1,2, . . . )

Let us look at shifting the opposite way. We want to evaluate f = p ∨ h with
h ∈ P11 and p ∈ P1l satisfying the recursion

p(n) =
(

a + b

n − l

)

p(n − 1). (n = l + 1, l + 2, . . . )

Then the shifted distribution p−l given by p−l(n) = p(n + l) satisfies the recursion
(2.38), and, thus, the compound distribution f−l = p−l ∨ h satisfies the recursion
(2.39). As f = hl∗ ∗ f−l , we can evaluate f by

f (x) =
x∑

y=l

hl∗(y)f−l (x − y). (x = l, l + 1, l + 2, . . . )

2.6.3 Counting Distribution with Range Bounded from Above

Let us now consider a distribution p on a range of non-negative integers {l, l + 1,

l + 2, . . . , r} obtained from a distribution p̃ ∈ Sl by

p(n) = p̃(n)
∑r

j=l p̃(j)
. (n = l, l + 1, . . . , r)

Then p satisfies a recursion in the form

p(n) =
(

a + b

n

)

p(n − 1). (n = l + 1, l + 2, . . . , r) (2.74)
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Application of (2.37) gives

f (x) = p(l)hl∗(x) −
(

a + b

r + 1

)

p(r)h(r+1)∗(x) +
x∑

y=1

(

a + b
y

x

)

h(y)f (x − y).

(x = l, l + 1, l + 2, . . . ) (2.75)

The recursions (2.74) and (2.75) are satisfied for more general pairs (a, b) than
what follows from the construction from distributions in Sl , as for n > r , a + b/n

does not need to be non-negative.

Example 2.7 Let p ∈ P10 be given by

p(n) =
(
M
n

)
( π

1−π
)n

∑r
j=0

(
M
j

)
( π

1−π
)j

.

(n = 0,1,2 . . . , r;0 < π < 1; r = 1,2, . . . ;M ≥ r)

Then

a = − π

1 − π
; b = (M + 1)

π

1 − π
,

and (2.75) gives

f (x) = π

1 − π

(
x∑

y=1

(

(M + 1)
y

x
− 1

)

h(y)f (x − y) − M − r

r + 1
p(r)h(r+1)∗(x)

)

.

(x = 1,2, . . . ) (2.76)

If r = M , then p is the binomial distribution bin(M,π), and (2.76) reduces to the
recursion for compound binomial distributions given in Table 2.1. �

2.7 Extension to Severity Distributions in P10

2.7.1 Recursions

Apart from Sect. 2.2.2, till now, we have always assumed that the severity distri-
bution belongs to P11 when discussing recursions for compound distributions. We
shall now relax this assumption by allowing the severities to be equal to zero, so let
h ∈ P10. In (2.29) and (2.30), we must then sum from y = 0 instead of y = 1, so
that (2.32) becomes

f (x) = (q ∨ h)(x) +
x∑

y=0

t (y, x)h(y)f (x − y). (x = 1,2, . . . )
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As f (x) appears with y = 0 in summation, this does not yet give an explicit expres-
sion for f (x), so we solve for f (x) and obtain

f (x) = 1

1 − t (0, x)h(0)

(

(q ∨ h)(x) +
x∑

y=1

t (y, x)h(y)f (x − y)

)

= 1

1 − t (0, x)h(0)

( ∞∑

n=1

(p(n) − v(n)p(n − 1))hn∗(x)

+
x∑

y=1

t (y, x)h(y)f (x − y)

)

= 1

1 − t (0, x)h(0)

(

p(1)h(x) +
∞∑

n=2

(p(n) − v(n)p(n − 1))hn∗(x)

+
x−1∑

y=1

t (y, x)h(y)f (x − y)

)

. (x = 1,2, . . . ) (2.77)

From (1.33) we obtain that f (0) = τp(h(0)). If h and/or p belong to P10, then we
can use this as initial value for the recursion (2.77).

If p ∈ P10 satisfies (2.60), then (2.77) gives the recursion

f (x) = 1

1 − ah(0)

(
l∑

n=1

(

p(n) −
(

a + b

n

)

p(n − 1)

)

hn∗(x)

+
x∑

y=1

(

a + b
y

x

)

h(y)f (x − y)

)

= 1

1 − ah(0)

(

p(1)h(x) +
l∑

n=2

(

p(n) −
(

a + b

n

)

p(n − 1)

)

hn∗(x)

+
x−1∑

y=1

(

a + b
y

x

)

h(y)f (x − y)

)

. (x = 1,2, . . . ) (2.78)

In particular, if p is in the Panjer class, we obtain

f (x) = 1

1 − ah(0)

x∑

y=1

(

a + b
y

x

)

h(y)f (x − y). (x = 1,2, . . . ) (2.79)

Table 2.3 presents this recursion and its initial value f (0) for the three subclasses of
non-degenerate distributions in the Panjer class as given by Theorem 2.6. We have
already encountered the Poisson case in Sect. 2.2.2.
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Table 2.3 Recursions for compound Panjer distributions

Distribution f (x) f (0)

NB(α,π) π
1−πh(0)

∑x
y=1(1 + (α − 1)

y
x
)h(y)f (x − y) ( 1−π

1−πh(0)
)α

Po(λ) λ
x

∑x
y=1 yh(y)f (x − y) e−λ(1−h(0))

bin(M,π) π
1−π+πh(0)

∑x
y=1((M + 1)

y
x

− 1)h(y)f (x − y) (1 − π(1 − h(0)))M

2.7.2 Thinning

The recursions introduced in Sect. 2.7.1 can be used to study the effect of thinning.
Let N be the number of observations and Yj the size of the j th of these. We assume
that the Yj s are mutually independent and identically distributed with distribution h

and independent of N which has distribution p. We also introduce X = Y•N and its
distribution f = p ∨ h. Let us assume that we are interested in the number of ob-
servations that satisfy a certain criterion. In insurance, this could e.g. be the number
of claims that exceed some retention. In this context, we can let Yj be an indicator
variable equal to one if the observation satisfies the criterion, and zero otherwise.
Thus, we let h be the Bernoulli distribution Bern(π) with 0 < π < 1. Then, for
n = 1,2, . . . , hn∗ is the binomial distribution bin(n,π), and insertion of (2.43) in
(2.78) gives that for x = 1,2, . . . ,

f (x) = 1

1 − a(1 − π)

(
l∑

n=x

(

p(n) −
(

a + b

n

)

p(n − 1)

)(
n

x

)

πx(1 − π)n−x

+
(

a + b

x

)

πf (x − 1)

)

= 1

1 − a(1 − π)

l∑

n=x

(

p(n) −
(

a + b

n

)

p(n − 1)

)(
n

x

)

πx(1 − π)n−x

+
(

aπ + bπ

x

)

f (x − 1)

with

aπ = aπ

1 − a + aπ
; bπ = bπ

1 − a + aπ
. (2.80)

For x > l, the first term vanishes, so that

f (x) =
(

aπ + bπ

x

)

f (x − 1). (x = l + 1, l + 2, . . . )

It is interesting to note that (aπ , bπ ) is on the line between (0,0) and (a, b) in
Fig. 2.1. As each of the classes of distributions given by (2.6), (2.42), (2.43), (2.70),
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and (2.71) satisfy the property that for any point in its area in the (a, b) diagram, all
points on the line between that point and (0,0) also belong to the same class, we
see that all these classes, in particular the Panjer class, are closed under thinning.

The thinned distribution f is called the π -thinning of p, that is, p is thinned with
thinning probability π . Analogously, X is called a π -thinning of N .

2.7.3 Conversion to Severity Distributions in P11

Let h ∈ P10. When discussing the connection between the recursions for the M-fold
convolutions and compound binomial distributions after the proof of Theorem 2.8,
we showed how any distribution in P10 can be expressed as a compound Bernoulli
distribution with severity distribution in P11. Let us now do this with a distribution
h ∈ P10, denoting the counting distribution by q , its Bernoulli parameter by π , and
the severity distribution by h̃, so that h = q ∨ h̃. We want to evaluate the compound
distribution f = p ∨ h with p ∈ P10 satisfying the recursion (2.60). Then

f = p ∨ h = p ∨ (q ∨ h̃) = (p ∨ q) ∨ h̃ = p̃ ∨ h̃

with p̃ = p ∨ q . Hence, we have now transformed a compound distribution with
severity distribution in P10 to a compound distribution with severity distribution
in P11. Furthermore, from the discussion above, we know that the counting distrib-
ution satisfies a recursion of the same type as the original counting distribution.

Further Remarks and References

With a different parameterisation, the Panjer class was studied by Katz (1945, 1965)
and is sometimes referred to as the Katz class. In particular, Katz (1965) gave a
characterisation of this class similar to Theorem 2.6 and visualised it in a diagram
similar to Fig. 2.1. However, he seems to believe that when a < 0, we obtain a proper
distribution even when b/a is not an integer; as we have indicated in the proof of
Theorem 2.6, we then get negative probabilities.

Even earlier traces of the Panjer class are given by Carver (1919), Guldberg
(1931), and Ottestad (1939); see Johnson et al. (2005, Sect. 2.3.1).

Luong and Garrido (1993) discussed parameter estimation within the Panjer
class, and Katz (1965) and Fang (2003a, 2003b) discussed testing the hypothesis
that a distribution within the Panjer class is Poisson.

In the actuarial literature, Theorem 2.4 is usually attributed to Panjer (1981).
However, there are earlier references both within and outside the actuarial area.
In the actuarial literature, the Poisson case was presented by Panjer (1980) and
Williams (1980) and the Poisson and negative binomial cases by Stroh (1978). The
Poisson, binomial, and negative binomial cases were deduced separately by Tilley
in a discussion to Panjer (1980). Outside the actuarial literature, the Poisson case
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was treated by Neyman (1939), Beall and Rescia (1953), Katti and Gurland (1958),
Shumway and Gurland (1960), Adelson (1966), Kemp (1967), and Plackett (1969);
Khatri and Patel (1961) treat the Poisson, binomial, and negative binomial cases
separately. Other proofs for Theorem 2.2 are given by Gerber (1982) and Hürlimann
(1988).

Panjer (1981) also proved the continuous case given in Theorem 2.5. The neg-
ative binomial case was presented by Seal (1971). Ströter (1985) and den Iseger
et al. (1997) discussed numerical solution of the integral equation (2.40). Another
approach is to approximate the severity distribution by an arithmetic distribution;
references for such approximations are given in Chap. 1.

Panjer (1981) was followed up by Sundt and Jewell (1981). They discussed vari-
ous aspects of Panjer’s framework. In particular, they proved Theorem 2.6 and visu-
alised it in an (a, b) diagram like Fig. 2.1. They also introduced the framework with
(2.27) and (2.28) and proved a slightly different version of Theorem 2.11. Further-
more, they presented the recursion (2.61) and its special case (2.72) as well as the
recursion (2.75). They also extended the recursions to severity distributions in P10
like in Sect. 2.7.1.

Compound geometric distributions often appear in ruin theory and queuing
theory. For applications of Theorem 2.1 in ruin theory, see e.g. Goovaerts and
De Vylder (1984), Dickson (1995, 2005), Willmot (2000), and Cossette et al.
(2004), and for applications in queuing theory, Hansen (2005) and Hansen and Pitts
(2006). Reinhard and Snoussi (2004) applied Theorem 2.2 in ruin theory.

From Theorem 2.2, we obtain that if f = p ∨ h with h ∈ P11 and p being the
Poisson distribution Po(λ), then

λ = − lnf (0) (2.81)

h(x) = 1

f (0)

(

− xf (x)

lnf (0)
−

x−1∑

y=1

yh(y)f (x − y)

)

. (x = 1,2, . . . ) (2.82)

Hence, λ and h are uniquely determined by f . Buchmann and Grübel (2003) pro-
posed estimating λ and h by replacing f in (2.81) and (2.82) with the empirical dis-
tribution of a sample of independent observations from the distribution f . It should
be emphasised that as a compound Poisson distribution with severity distribution
in P11 always has infinite support, such an estimate of h based on the empirical
distribution of a finite sample from f , can never be a distribution itself.

Such an estimation procedure can also be applied for other counting distributions
p as long as p has only one unknown parameter. When the counting distribution has
more parameters, we can still estimate h by replacing f in (2.82) with its empirical
counterpart if we consider the parameters of p as given. Such estimation procedures
were studied by Hansen and Pitts (2009).

Panjer and Willmot (1992) used generating functions extensively for deduction
of recursions for aggregate claims distributions.

Theorem 2.3 was proved by De Pril (1986a), who also gave some examples.
Chadjiconstantinidis and Pitselis (2008) present results based on that theorem.
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In July 2006, Georgios Pitselis kindly gave us an early version of that paper and
was positive to us to use material from it in our book. Since then, there has been
some exchange of ideas between him and us, and this has influenced results both
later in this book and in the paper.

The representation of a negative binomial distribution as a compound Poisson
distribution with a logarithmic severity distribution was presented by Ammeter
(1948, 1949) and Quenouille (1949).

The discussion on moments in Sect. 2.3.2 is based on Jewell (1984).
Lemma 2.1 and the related algorithm for recursive evaluation of compound distri-

butions was presented by Hipp (2006) within the framework of phase distributions.
He also discussed continuous and mixed severity distributions.

Willmot and Woo (2007) applied Panjer recursions in connection with evaluating
discrete mixtures of Erlang distributions.

Reinsurance applications of Panjer recursions are discussed by Panjer and Will-
mot (1984), Sundt (1991a, 1991b), Mata (2000), Walhin (2001, 2002a), and Walhin
et al. (2001).

McNeil et al. (2005) presented Theorem 2.4 within the framework of quantitative
risk management.

Douligeris et al. (1997) applied Panjer recursions in connection with oil trans-
portation systems.

For M-fold convolutions, De Pril (1985) deduced the recursions in Theorems 2.8
and 2.10. However, in pure mathematics, the recursion in Theorem 2.8 is well known
for evaluation of the coefficients of powers of power series; Gould (1974) traces it
back to Euler (1748). Sundt and Dickson (2000) compared the recursion of Theo-
rem 2.8 with other methods for evaluation of M-fold convolutions of distributions
in P10.

Willmot (1988) characterised the Sundt–Jewell class; see also Panjer and Will-
mot (1992, Sect. 7.2) and Johnson et al. (2005, Sect. 2.3.2). The higher order Panjer
classes were characterised by Hess et al. (2002). Recursive evaluation of compound
distributions with counting distribution satisfying (2.70) or (2.71) and severity distri-
bution in P10 have been discussed by Gerhold et al. (2008). Sundt (2002) presented
the procedure for recursive evaluation of a compound distribution with counting
distribution given by (2.73).

Thinning in connection with the recursions has been discussed by Milidiu (1985),
Willmot (1988), and Sundt (1991b). For more information, see also Willmot (2004)
and Grandell (1991).

Panjer and Willmot (1982) and Hesselager (1994) discussed recursive evaluation
of compound distributions with severity distribution in P10 and counting distribution
p ∈ P10 that satisfies a recursion is the form

p(n) =
∑t

i=0 c(i)ni

∑t
i=0 d(i)ni

p(n − 1). (n = 1,2, . . . )

The Panjer class appears as a special case with t = 1 and d(0) = 0.
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Ambagaspitiya (1995) discussed a class of distributions pa,b ∈ P10 that satisfy a
relation in the form

pa,b(n) =
(

u(a, b) + v(a, b)

n

)

pa+b,b(n − 1). (n = l + 1, l + 2, . . . )

In particular, he discussed recursive evaluation of compound distributions with such
a counting distribution and severity distribution in P11. The special case where pa,b

satisfies the relation

pa,b(n) = a

a + b

(

a + b

n

)

pa+b,b(n − 1), (n = 1,2, . . . )

was treated by Ambagaspitiya and Balakrishnan (1994).
Hesselager (1997) deduced recursions for a compound Lagrange distribution and

a compound shifted Lagrange distribution with kernel in the Panjer class. Recur-
sions in connection with Lagrange distributions have also been studied by Sharif
(1996) and Sharif and Panjer (1998). For more information on Lagrange distribu-
tions, see Johnson et al. (2005).

A special case of compound Lagrange distributions is the generalised Poisson
distribution. Recursions in connection with this distribution have been studied by
Goovaerts and Kaas (1991), Ambagaspitiya and Balakrishnan (1994), and Sharif
and Panjer (1995).

By counting the number of dot operations (that is, multiplications and divisions),
Bühlmann (1984) compared the recursive method of Theorem 2.2 with a method
presented by Bertram (1981) (see also Feilmeier and Bertram 1987) based on the
Fast Fourier Transform. Such comparison of methods presented in this book with
each other or other methods have been performed by Kuon et al. (1987), Waldmann
(1994), Dhaene and Vandebroek (1995), Sundt and Dickson (2000), Dickson and
Sundt (2001), Dhaene et al. (2006), Sundt and Vernic (2006), and, in a bivariate
setting, Walhin and Paris (2001c), some of them also counting bar operations (that
is, additions and subtractions). Where both dot and bar operations are treated, these
two classes are usually considered separately. The reason for distinguishing between
these classes and sometimes dropping the bar operations, is that on computers, dot
operations are usually more time-consuming than bar operations. Counting arith-
metic operations is not a perfect criterion of comparing methods. There are also
other aspects that should be taken into account. This is discussed by Sundt and Dick-
son (2000). It should be emphasised that when doing such counting, one should not
just count the operations mechanically from the recursion formulae, but also con-
sider how one could reduce the number of operations by introduction of auxiliary
functions. For instance, in the recursion (2.7), one can save a lot of multiplications
by first evaluating h instead of multiplying y by h(y) at each occurrence, and if
h has a finite range, we can further reduce the number of multiplications by instead
evaluating λh. How one sets up the calculations, can also affect the numerical ac-
curacy of the evaluation. This aspect has been discussed by Waldmann (1995). We
shall not pursue these issues further in this book.
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Operators like ∨, , and � can be used to make our formulae more compact.
However, it has sometimes been difficult to decide on how far to stretch this. As an
example, let us look at the first part of (2.37), that is,

f (x) = (q ∨ h)(x) +
x∑

y=1

(

a + b
y

x

)

h(y)f (x − y). (2.83)

This formula can be made more compact as

f (x) = (q ∨ h)(x) + a(h ∨ f )(x) + b�(h ∨ f )(x). (2.84)

On the other hand, it can be made less compact as

f (x) =
x∑

n=1

q(n)hn∗(x) +
x∑

y=1

(

a + b
y

x

)

h(y)f (x − y). (2.85)

So why have we then used something between these two extremes? The reason
that in (2.83) we have not written the last summation in the compact form we use
in (2.84), is that with the compact form, the recursive nature of the formula be-
comes less clear; we do not immediately see how f (x) depends on f (0), f (1), . . . ,

f (x −1) like in (2.83). On the other hand, in such a respect, we do not gain anything
by writing the first term in (2.83) in the less compact form of (2.85), so it seems ap-
propriate to use the compact form of that term. This reasoning may lead to apparent
notational inconsistencies even within the same formula.



Chapter 3
Compound Mixed Poisson Distributions

Summary

In Sect. 1.5, we defined mixed distributions and described some insurance applica-
tions. In the present chapter, we shall concentrate on a special class of mixed distri-
butions, the mixed Poisson distributions. Within insurance mathematics, this is the
most common class of mixed distributions. Our main emphasis will be on recursions
for mixed Poisson distributions and compound mixed Poisson distributions.

In Sect. 3.1, we introduce the mixed Poisson distribution and discuss some of its
properties.

We then turn to compound mixed Poisson distributions. First, in Sect. 3.2, we
discuss the Gamma mixing distribution as a simple example. Then, in Sect. 3.3,
we turn to a rather general setting where we deduce a recursive procedure. In the
special case of a finite mixture, we compare this procedure with an alternative pro-
cedure in Sect. 3.4.

The procedure of Sect. 3.3 can be simplified when the mixing distribution be-
longs to the Willmot class. This is the topic of Sect. 3.5, and the special case of
evaluation of the counting distribution is considered in Sect. 3.6. In Sect. 3.7, we
discuss some invariance properties of the Willmot class.

Finally, in Sect. 3.8, we look at some specific parametric classes of mixing dis-
tributions within the Willmot class.

3.1 Mixed Poisson Distributions

Let � be a positive random variable with distribution U . We assume that for all
θ > 0, the conditional distribution pθ of the non-negative integer-valued random
variable N given that � = θ is the Poisson distribution Po(θ), that is,

pθ(n) = θn

n! e−θ . (n = 0,1,2, . . . ; θ > 0) (3.1)

Then the unconditional distribution p of N is a mixed Poisson distribution with
mixing distribution U , that is,

p(n) =
∫

(0,∞)

pθ (n)dU(θ) =
∫

(0,∞)

θn

n! e−θ dU(θ) = (−1)n

n! γ
(n)
U (1).

(n = 0,1,2, . . . ) (3.2)
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Application of (2.12) gives

τp(s) = E sN = E E[sN |�] = E τp�(s) = E e�(s−1),

that is,

τp(s) = ωU(s − 1) = γU (1 − s). (3.3)

This gives that τp(s+1) = ωU(s), and by application of (1.15) and (1.13), we obtain
that

νp(j) = μU(j). (j = 0,1,2, . . . )

In particular, when U is concentrated in a positive number λ, that is, p is the Poisson
distribution Po(λ), then this gives

νp(j) = λj . (j = 0,1,2, . . . ) (3.4)

In Sect. 2.3.2, we pointed out that for the Poisson distribution, the variance is
equal to the mean. For our mixed Poisson distribution, we obtain

VarN = E Var[N |�] + Var E[N |�] = E E[N |�] + Var�

= EN + Var� ≥ EN

with strict inequality if the mixing distribution is non-degenerate.
In the following theorem, we relate a convolution of mixed Poisson distributions

to their mixing distributions.

Theorem 3.1 The convolution of a finite number of mixed Poisson distributions is
a mixed Poisson distribution whose mixing distribution is the convolution of the
mixing distributions of these distributions.

Proof We shall first show that the theorem holds for the convolution of two mixed
Poisson distributions. It is most convenient to prove this result in terms of random
variables, so let N1 and N2 be independent random variables with mixed Poisson
distributions, and let �1 and �2 be the corresponding mixing variables. Then we
know that given �1 and �2, N1 and N2 are conditionally Poisson distributed with
parameter �1 and �2 respectively, and from Theorem 2.7 then follows that N1 +N2

is conditionally Poisson distributed with parameter �1 + �2. Hence, uncondition-
ally, N1 + N2 is mixed Poisson distributed, and the mixing distribution is the distri-
bution of �1 +�2, that is, the convolution of the mixing distributions of N1 and N2.
Hence, the theorem holds for the convolution of two mixed Poisson distributions,
and by induction it follows that it holds for the convolution of an arbitrary finite
number of mixed Poisson distributions. �
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3.2 Gamma Mixing Distribution

In the following, we shall consider evaluation of a compound mixed Poisson dis-
tribution f = p ∨ h with mixing distribution U and severity distribution h ∈ P10.
We first consider the special case when U is the Gamma distribution Gamma(α,β)

with density

u(θ) = βα

�(α)
θα−1e−βθ . (θ > 0;β,α > 0) (3.5)

From (3.2), we obtain that for n = 0,1,2, . . .

p(n) =
∫ ∞

0

θn

n! e−θ βα

�(α)
θα−1e−βθ dθ = βα

n!�(α)

∫ ∞

0
θα+n−1e−(β+1)θ dθ

= βα

n!�(α)

�(α + n)

(β + 1)α+n
.

By partial integration, (1.1) gives that

�(x + 1) = x�(x). (x > 0)

Hence,

p(n) =
(

α + n − 1

n

)(
1

β + 1

)n(
β

β + 1

)α

. (3.6)

By comparison with (2.42), we see that p is the negative binomial distribution
NB(α, (β + 1)−1). Then Table 2.3 gives the recursion

f (x) = 1

β + 1 − h(0)

x∑

y=1

(

1 + (α − 1)
y

x

)

h(y)f (x − y) (x = 1,2, . . . )

f (0) =
(

β

β + 1 − h(0)

)α

.

In particular, we obtain

p(n) = 1

β + 1

(

1 + α − 1

n

)

p(n − 1) (n = 1,2, . . . )

p(0) =
(

β

β + 1

)α

.

In Sect. 3.1, we showed that for a mixed Poisson distribution with non-degenerate
mixing distribution, the variance is greater than the mean. As a negative binomial
distribution can be expressed as a mixed Poisson distribution with Gamma mix-
ing distribution, it follows that for a negative binomial distribution, the variance is
greater than the mean. In Sect. 2.3.2, we showed this by other means.
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We shall return to mixed Poisson distributions with Gamma mixing distribution
in Example 4.2.

Unfortunately, it is not in general that simple to evaluate f and p. In the follow-
ing, we shall consider some more complicated procedures that can be applied more
generally.

3.3 General Recursion

We now drop the assumption that the mixing distribution is a Gamma distribution.
Let

vi(x) =
∫

(0,∞)

θ ifθ (x)dU(θ) (x, i = 0,1,2, . . . ) (3.7)

with fθ = pθ ∨ h. In particular, we have v0 = f . By application of Table 2.3, we
obtain that for i = 0,1,2, . . . ,

vi(0) =
∫

(0,∞)

θ ifθ (0)dU(θ) =
∫

(0,∞)

θ ie−θ(1−h(0)) dU(θ)

= (−1)iγ
(i)
U (1 − h(0)); (3.8)

letting i = 0 gives

f (0) =
∫

(0,∞)

e−θ(1−h(0)) dU(θ) = γU (1 − h(0)). (3.9)

From (2.7), we obtain

fθ (x) = θ

x

x∑

y=1

yh(y)fθ (x − y). (x = 1,2, . . . ) (3.10)

Multiplication by θi dU(θ) and integration gives

vi(x) = 1

x

x∑

y=1

yh(y)vi+1(x − y). (x = 1,2, . . . ; i = 0,1,2, . . . ) (3.11)

We can now evaluate f (0), f (1), f (2), . . . , f (x) by the following algorithm:

Evaluate f (0) by (3.9).
For y = 1,2, . . . , x:

Evaluate vy(0) by (3.8).
For z = 1,2, . . . , y:

Evaluate vy−z(z) by (3.11).
Let f (y) = v0(y).
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If h satisfies the conditions of Theorem 2.3, then we can replace (3.11) in this
algorithm with

vi(x) =
r∑

y=1

(
η(y)

x
vi+1(x − y) +

(

1 − y

x

)

χ(y)vi(x − y)

)

, (3.12)

(x = 1,2, . . . ; i = 0,1,2, . . . )

which is found from (2.18) by proceeding like with the deduction of (3.11).

3.4 Finite Mixtures

Let us now consider the situation when the mixing distribution U is given by

Pr(� = θk) = uk (k = 1,2, . . . , t) (3.13)

with
∑t

k=1 uk = 1 for some positive integer t . We then have

f =
t∑

k=1

ukfθk
. (3.14)

As an alternative to the algorithm of Sect. 3.3, we can evaluate each fθk
by The-

orem 2.2 and then f by (3.14). We refer to the former method as Method A and
the latter as Method B. The question is which of them to prefer for evaluation of
f (0), f (1), . . . , f (x). To answer this question, we need an optimality criterion.
A criterion that is sometimes applied for comparison of methods, is the number
of elementary algebraic operations, that is, addition, subtraction, multiplication, and
division. Under this criterion, one would intuitively expect Method A to be prefer-
able when x is small and/or t is large. With Method B, we would have to apply the
recursion of Theorem 2.2, and that would be inefficient when t is large so Method A
seems better. On the other hand, with Method A, we would have to maintain x vis,
and that would be inefficient when x is large, so then Method B seems better.

3.5 Willmot Mixing Distribution

When x is large, the algorithm at the end of Sect. 3.3 can be rather time- and storage-
consuming. We shall now show that if U is continuous with density u on an interval
(γ, δ) with 0 ≤ γ < δ ≤ ∞ that satisfies the condition

d

dθ
lnu(θ) = u′(θ)

u(θ)
=

∑k
i=0 η(i)θ i

∑k
i=0 χ(i)θ i

(γ < θ < δ) (3.15)
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for some non-negative integer k, then we need to evaluate vi only for i = 0,1, . . . , k.
We call this class of mixing distributions the Willmot class. For the rest of the present
chapter, we shall assume that (3.15) is satisfied.

We shall need the auxiliary functions

wθ(x) = fθ (x)u(θ)

k∑

i=0

χ(i)θ i (x = 0,1,2, . . . ;γ < θ < δ) (3.16)

ρ(i) = (1 − h(0))χ(i) − η(i) − (i + 1)χ(i + 1) (3.17)

(i = −1,0,1, . . . , k)

with χ(−1) = η(−1) = χ(k + 1) = 0.

Theorem 3.2 If f is a compound mixed Poisson distribution with severity distrib-
ution h ∈ P10 and continuous mixing distribution on the interval (γ, δ) with differ-
entiable density u that satisfies (3.15), and wγ+(x) and wδ−(x) exist and are finite
for all non-negative integers x, then

ρ(k)vk(x) =
x∑

y=1

h(y)

k∑

i=0

χ(i)vi(x − y) −
k−1∑

i=0

ρ(i)vi(x)

+ wγ+(x) − wδ−(x). (x = 1,2, . . . ) (3.18)

Proof Application of (3.7), (3.15), and partial integration gives that for x = 1,2, . . .

k∑

i=0

η(i)vi(x) =
k∑

i=0

η(i)

∫ δ

γ

θ ifθ (x)u(θ)dθ =
k∑

i=0

χ(i)

∫ δ

γ

θ ifθ (x)u′(θ)dθ

= wδ−(x) − wγ+(x) −
k∑

i=0

χ(i)

∫ δ

γ

(
d

dθ
θifθ (x)

)

u(θ)dθ

= wδ−(x) − wγ+(x)

−
k∑

i=0

χ(i)

∫ δ

γ

(

iθ i−1fθ (x) + θi d

dθ
fθ (x)

)

u(θ)dθ,

that is,

k∑

i=0

η(i)vi(x) = wδ−(x) − wγ+(x) −
k∑

i=1

iχ(i)vi−1(x)

−
k∑

i=0

χ(i)

∫ δ

γ

θ i

(
d

dθ
fθ (x)

)

u(θ)dθ. (3.19)
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We have

d

dθ
fθ (x) =

∞∑

n=1

hn∗(x)
d

dθ

θn

n! e−θ =
∞∑

n=1

hn∗(x)
1

n! (nθn−1e−θ − θne−θ )

=
∞∑

n=1

hn∗(x)(pθ (n − 1) − pθ(n)) = (h ∗ fθ )(x) − fθ (x)

=
x∑

y=0

h(y)fθ (x − y) − fθ (x) =
x∑

y=1

h(y)fθ (x − y) − (1 − h(0))fθ (x).

Insertion in (3.19) gives

k∑

i=0

η(i)vi(x) = wδ−(x) − wγ+(x) −
k−1∑

i=0

(i + 1)χ(i + 1)vi(x)

−
k∑

i=0

χ(i)

(
x∑

y=1

h(y)vi(x − y) − (1 − h(0))vi(x)

)

.

After some rearranging, we obtain

k∑

i=0

ρ(i)vi(x) =
k∑

i=0

χ(i)

x∑

y=1

h(y)vi(x − y) + wγ+(x) − wδ−(x),

from which (3.18) follows. �

If ρ(k) �= 0, then (3.18) gives

vk(x) = 1

ρ(k)

(
x∑

y=1

h(y)

k∑

i=0

χ(i)vi(x − y)

−
k−1∑

i=0

ρ(i)vi(x) + wγ+(x) − wδ−(x)

)

. (x = 1,2, . . . ) (3.20)

In this case, we can evaluate f (0), f (1), f (2), . . . , f (x) with x being an integer
greater than k by the following algorithm:

Evaluate f (0) by (3.9).
For y = 1,2, . . . , k:

Evaluate vy(0) by (3.8).
For z = 1,2, . . . , y:

Evaluate vy−z(z) by (3.11).
Let f (y) = v0(y).
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For y = k + 1, k + 2, . . . , x:
Evaluate vk(y − k) by (3.20).
For z = 1,2, . . . , k:

Evaluate vk−z(y − k + z) by (3.11).
Let f (y) = v0(y).

If h satisfies the conditions of Theorem 2.3, then we can replace (3.11) with
(3.12) in this algorithm.

Let us now consider the condition that wγ+(x) and wδ−(x) should exist and be
finite for all positive integers x. For finite γ and δ, this condition holds when u(γ+)

and u(δ−) exist and are finite. In particular, we have

w0+(x) = f0(x)u(0+)χ(0) = 0 (x = 1,2, . . . )

as the distribution f0 is concentrated in zero.
From (3.16) and (3.10) we obtain the recursion

wθ(x) =
{

θ
x

∑x
y=1 yh(y)wθ (x − y) (x = 1,2, . . . )

e−θ(1−h(0))u(θ)
∑k

i=0 χ(i)θ i . (x = 0)
(γ < θ < δ)

(3.21)
If γ > 0 and u(γ+) exists and is finite, then we can evaluate wγ+ recursively

in the same way. Furthermore, we can make wγ+ vanish by multiplying the nu-
merator and denominator in (3.15) with θ − γ as then

∑k
i=0 χ(i)θ i is replaced with

(θ − γ )
∑k

i=0 χ(i)θ i , which is zero when θ = γ . However, then we increase k by
one. Analogous for wδ− when δ < ∞ and u(δ−) exists and is finite.

3.6 The Counting Distribution

When h is concentrated in one, we get f = p. In that case, we can replace vi , wθ ,
and ρ with v̇i , ẇθ , and ρ̇ given by

v̇i (n) =
∫

(0,∞)

θ ipθ (n)dU(θ) = 1

n!
∫

(0,∞)

θn+ie−θ dU(θ)

= (n + i)(i)p(n + i) (n, i = 0,1,2, . . . ) (3.22)

ẇθ (n) = pθ(n)u(θ)

k∑

i=0

χ(i)θ i = θn

n! e−θu(θ)

k∑

i=0

χ(i)θ i

(n = 0,1,2, . . . ;γ < θ < δ)

ρ̇(i) = χ(i) − η(i) − (i + 1)χ(i + 1). (i = −1,0,1, . . . , k) (3.23)
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The recursion (3.21) now reduces to

ẇθ (n) =
{

θ
n
ẇθ (n − 1) (n = 1,2, . . . )

e−θu(θ)
∑k

i=0 χ(i)θ i . (n = 0)
(γ < θ < δ) (3.24)

From (3.22), we obtain that p(n) = v̇n(0)/n! for n = 0,1,2, . . . .

Theorem 3.3 If p is a mixed Poisson distribution with continuous mixing distri-
bution on the interval (γ, δ) with differentiable density that satisfies (3.15), and
ẇγ+(n) and ẇδ−(n) exist and are finite for all non-negative integers n, then

ρ̇(k)p(n) =
k+1∑

i=1

((n − k)χ(k − i + 1) − ρ̇(k − i))
p(n − i)

n(i)

+ ẇγ+(n − k) − ẇδ−(n − k)

n(k)
. (n = k + 1, k + 2, . . . ) (3.25)

Proof From (3.18), we obtain that for x = 1,2, . . . ,

ρ̇(k)v̇k(x) =
k∑

i=0

χ(i)v̇i (x − 1) −
k−1∑

i=0

ρ̇(i)v̇i (x) + ẇγ+(x) − ẇδ−(x),

and insertion of (3.22) gives

ρ̇(k)(x + k)(k)p(x + k)

=
k∑

i=0

χ(i)(x − 1 + i)(i)p(x − 1 + i) −
k−1∑

i=0

ρ̇(i)(x + i)(i)p(x + i)

+ ẇγ+(x) − ẇδ−(x)

=
k−1∑

i=−1

χ(i + 1)(x + i)(i+1)p(x + i) −
k−1∑

i=0

ρ̇(i)(x + i)(i)p(x + i)

+ ẇγ+(x) − ẇδ−(x)

=
k−1∑

i=−1

(xχ(i + 1) − ρ̇(i))(x + i)(i)p(x + i) + ẇγ+(x) − ẇδ−(x).

Letting x = n − k for n = k + 1, k + 2, . . . gives

ρ̇(k)n(k)p(n) =
k−1∑

i=−1

((n − k)χ(i + 1) − ρ̇(i))(n − k + i)(i)p(n − k + i)

+ ẇγ+(n − k) − ẇδ−(n − k),
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and by division by n(k) we obtain

ρ̇(k)p(n) =
k−1∑

i=−1

((n − k)χ(i + 1) − ρ̇(i))
p(n − k + i)

n(k−i)

+ ẇγ+(n − k) − ẇδ−(n − k)

n(k)
.

Finally, by changing the summation variable, we obtain (3.25). �

If ρ̇(k) �= 0, then (3.25) gives the recursion

p(n) = 1

ρ̇(k)

(
k+1∑

i=1

((n − k)χ(k − i + 1) − ρ̇(k − i))
p(n − i)

n(i)

+ ẇγ+(n − k) − ẇδ−(n − k)

n(k)

)

. (n = k + 1, k + 2, . . . ) (3.26)

Let us consider the special case k = 1. Then (3.26) gives

p(n) = 1

ρ̇(1)

(

bγ+(n) − bδ−(n) +
(

χ(1) − χ(1) + ρ̇(0)

n

)

p(n − 1)

+ χ(0)

n
p(n − 2)

)

(n = 2,3, . . . ) (3.27)

with

bθ (n) = ẇθ (n)

θ
. (n = 0,1,2, . . . ;γ < θ < δ) (3.28)

Thus,

p(n) = 1

ρ̇(1)

(

I (n = 1)(ρ̇(1)p(1) + ρ̇(0)p(0) + bδ−(1) − bγ+(1))

+ bγ+(n) − bδ−(n) +
(

χ(1) − χ(1) + ρ̇(0)

n

)

p(n − 1)

+ χ(0)

n
p(n − 2)

)

, (n = 1,2, . . . )

which is in the form (5.6). Insertion in (5.8) gives

f (x) = 1

ρ̇(1) − χ(1)h(0)

(

(ρ̇(1)p(1) + ρ̇(0)p(0) + bδ−(1) − bγ+(1))h(x)

+ (bγ+ ∨ h)(x) − (bδ− ∨ h)(x)
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+
x∑

y=1

((

χ(1) − (χ(1) + ρ̇(0))
y

x

)

h(y) + χ(0)

2

y

x
h2∗(y)

)

f (x − y)

)

.

(x = 1,2, . . . ) (3.29)

By (3.24), for γ < θ < δ, ẇθ and, hence, bθ are proportional to the Poisson distri-
bution Po(θ) as given by (2.6), so by Table 2.3, we can evaluate bθ ∨ h recursively
by

(bθ ∨ h)(x) = θ

x

x∑

y=1

yh(y)(bθ ∨ h)(x − y), (x = 1,2, . . . ) (3.30)

and by (3.28) and (3.24), we obtain the initial value

(bθ ∨ h)(0) =
(

χ(0)

θ
+ χ(1)

)

u(θ)e−θ(1−h(0)). (3.31)

When γ > 0, we can evaluate bγ+ ∨ h by such a recursion, and, when δ < ∞, we
can do it with bδ− ∨ h.

When k = 1, the recursion (3.29) is more efficient than the algorithm given after
formula (3.20).

3.7 Invariance Properties in the Willmot Class

3.7.1 Introduction

In Sect. 3.7, we shall consider how the condition (3.15) is affected by some types
of transforms of the mixing distribution. In this connection, it will be convenient
to introduce a mixing variable � having distribution U with continuous density
satisfying (3.15). We distinguish the notation for the transformed situation by adding
a tilde to the notation for the transformed situation.

3.7.2 Scaling

We let �̃ = c� for some positive constant c. Then we have

Ũ (θ) = Pr(�̃ ≤ θ) = Pr(c� ≤ θ) = Pr(� ≤ θ/c) = U(θ/c),

so that for θ ∈ (γ̃ , δ̃) with γ̃ = cγ and δ̃ = cδ

ũ(θ) = d

dθ
Ũ(θ) = d

dθ
U(θ/c) = u(θ/c)

c
,
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which gives

d

dθ
ln ũ(θ) = d

dθ
ln

u(θ/c)

c
= d

dθ
lnu(θ/c) = 1

u(θ/c)

d

dθ
u(θ/c)

= 1

c

u′(θ/c)

u(θ/c)
= 1

c

∑k
i=0 η(i)(θ/c)i

∑k
i=0 χ(i)(θ/c)i

=
∑k

i=0 η̃(i)θ i

∑k
i=0 χ̃ (i)θ i

with η̃(i) = η(i)c−i and χ̃ (i) = χ(i)c1−i for i = 0,1,2, . . . , k.
This invariance of (3.15) under scale transforms can be convenient e.g. in con-

nection with experience rating. In some insurance classes where experience rating
is applied, there could be an objective risk measure that could vary between policies
and for each policy between years. For instance, in worker’s compensation insur-
ance, the risk volume could be the number of workers insured under the policy.
Then it seems reasonable to assume that the random Poisson parameter is propor-
tional to the number of workers, so that this parameter is c� with c denoting the
number of workers. In this situation, it would be unreasonable if (3.15) should hold
only for one value of c.

3.7.3 Shifting

Let �̃ = � + c for some positive constant c. Then, for θ ≥ c, we have

Ũ (θ) = Pr(�̃ ≤ θ) = Pr(� + c ≤ θ) = Pr(� ≤ θ − c) = U(θ − c),

so that for θ ∈ (γ̃ , δ̃) with γ̃ = γ + c and δ̃ = δ + c, we have ũ(θ) = u(θ − c). This
gives

d

dθ
ln ũ(θ) = d

dθ
lnu(θ − c) = u′(θ − c)

u(θ − c)
=

∑k
i=0 η(i)(θ − c)i

∑k
i=0 χ(i)(θ − c)i

=
∑k

i=0 η(i)
∑i

j=0

(
i
j

)
θj (−c)i−j

∑k
i=0 χ(i)

∑i
j=0

(
i
j

)
θj (−c)i−j

=
∑k

j=0 θj
∑k

i=j η(i)
(
i
j

)
(−c)i−j

∑k
j=0 θj

∑k
i=j χ(i)

(
i
j

)
(−c)i−j

=
∑k

j=0 η̃(j)θj

∑k
j=0 χ̃ (j)θj

with

η̃(j) =
k∑

i=j

η(i)

(
i

j

)

(−c)i−j ; χ̃ (j) =
k∑

i=j

χ(i)

(
i

j

)

(−c)i−j .

(j = 0,1,2, . . . , k)
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In experience rating, shifting can be interpreted as if there are two sorts of claims,
one sort where the number of claims depends on the individual unknown risk prop-
erties of the policy, and another sort where this is not the case. In automobile in-
surance, these two sorts could be accident and theft. Given the unknown random
risk parameter � of the policy, the number of the first sort of claims would be Pois-
son distributed with parameter �, whereas the number of the second sort of claims
would be Poisson distributed with parameter c independent of �. An example of
such a shifted distribution is the Delaporte distribution, which will be studied in
Example 5.3.

3.7.4 Truncating

Now let the transformed distribution Ũ be the conditional distribution � given that
γ̃ < � < δ̃ with γ ≤ γ̃ < δ̃ ≤ δ. Then, for θ ∈ (γ̃ , δ̃), we have

ũ(θ) = u(θ)

U(δ̃) − U(γ̃ )
,

so that

d

dθ
ln ũ(θ) = d

dθ
ln

u(θ)

U(δ̃) − U(γ̃ )
= d

dθ
lnu(θ) =

∑k
i=0 η(i)θ i

∑k
i=0 χ(i)θ i

,

that is η̃ = η and χ̃ = χ .

3.7.5 Power Transform

Let �̃ = �1/c for some non-zero constant c. Then

Ũ (θ) = Pr(�̃ ≤ θ) = Pr(�1/c ≤ θ)

=
{

Pr(� ≤ θc) = U(θc) (c > 0)

Pr(� ≥ θc) = 1 − U(θc) (c < 0)

so that

ũ(θ) = d

dθ
Ũ(θ) = |c|θc−1u(θc)

for θ ∈ (γ̃ , δ̃) with

(γ̃ , δ̃) =
{

(γ 1/c, δ1/c) (c > 0)

(δ1/c, γ 1/c). (c < 0)
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This gives

d

dθ
ln ũ(θ) = d

dθ
ln |c|θc−1u(θc) = d

dθ
((c − 1) ln θ + lnu(θc))

= c − 1

θ
+ cθc−1 u′(θc)

u(θc)
= c − 1

θ
+ cθc−1

∑k
i=0 η(i)θci

∑k
i=0 χ(i)θci

=
∑k

i=0(c − 1)χ(i)θci + ∑k
i=0 cη(i)θc(i+1)

∑k
i=0 χ(i)θci+1

,

that is,

d

dθ
ln ũ(θ) =

∑k+1
i=0 ((c − 1)χ(i) + cη(i − 1))θci

∑k
i=0 χ(i)θci+1

. (3.32)

If c is a positive integer greater than one, then this gives

d

dθ
ln ũ(θ) =

∑k̃
j=0 η̃(j)θj

∑k̃
j=0 χ̃ (j)θj

with k̃ = c(k + 1),

η̃(ci) = (c − 1)χ(i) + cη(i − 1); χ̃ (ci + 1) = χ(i),

(i = 0,1,2, . . . , k + 1)

and χ̃ (j) and η̃(j) equal to zero for all other values of j .
If c is a negative integer, then multiplication by θ−c(k+1) in the numerator and

denominator of (3.32) gives

d

dθ
ln ũ(θ) =

∑k+1
i=0 ((c − 1)χ(i) + cη(i − 1))θ−c(k+1−i)

∑k
i=0 χ(i)θ−c(k+1−i)+1

=
∑k̃

j=0 η̃(j)θj

∑k̃
j=0 χ̃ (j)θj

with k̃ = −c(k + 1),

η̃(−c(k + 1 − i)) = (c − 1)χ(i) + cη(i − 1)

χ̃(−c(k + 1 − i) + 1) = χ(i),
(i = 0,1,2, . . . , k + 1)

and χ̃ (j) and η̃(j) equal to zero for all other values of j .
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3.8 Special Classes of Mixing Distributions

3.8.1 Shifted Pareto Distribution

Let U be the shifted Pareto distribution SPar(α, γ ) with density

u(θ) = αγ α

θα+1
. (θ > γ ;α,γ > 0) (3.33)

Insertion in (3.2) gives

p(n) = αγ α

n!
∫ ∞

γ

θn−α−1e−θ dθ, (n = 0,1,2, . . . )

and by partial integration, we obtain the recursion

p(n) = αγ n−1

n! e−γ +
(

1 − α + 1

n

)

p(n − 1) (n = 1,2, . . . )

with initial value

p(0) = αγ α

∫ ∞

γ

θ−α−1e−θ dθ.

From (2.78), we get

f (x) = 1

1 − h(0)

(

(bγ+ ∨ h)(x) +
x∑

y=1

(

1 − (α + 1)
y

x

)

h(y)f (x − y)

)

(x = 1,2, . . . )

with

bγ+(n) = αγ n−1

n! e−γ , (n = 0,1,2, . . . )

and insertion of (3.33) in (3.9) gives the initial value

f (0) = αγ α

∫ ∞

γ

e−θ(1−h(0))

θα+1
dθ.

We could also have obtained these recursions from (3.27) and (3.29).

3.8.2 Pareto Distribution

Let U be the Pareto distribution Par(α,β) with density

u(θ) = αβα

(β + θ)α+1
. (θ > 0;α,β > 0) (3.34)
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Then
d

dθ
lnu(θ) = −α − 1

β + θ
. (θ > 0)

Thus, (3.15) is satisfied with

k = 1; γ = 0; δ = ∞ (3.35)

η(0) = −α − 1; η(1) = 0 (3.36)

χ(0) = β; χ(1) = 1, (3.37)

from which we obtain

ρ̇(0) = α + β; ρ̇(1) = 1.

Insertion in (3.27) gives

p(n) =
(

1 − α + β + 1

n

)

p(n − 1) + β

n
p(n − 2) (n = 2,3, . . . )

and from (3.2) we obtain the initial values

p(0) = αβα

∫ ∞

0

e−θ

(β + θ)α+1
dθ; p(1) = αβα

∫ ∞

0

θe−θ

(β + θ)α+1
dθ.

From (3.29), we get the recursion

f (x) = 1

1 − h(0)

(

(p(1) + (α + β)p(0))h(x)

+
x∑

y=1

((

1 − (α + β + 1)
y

x

)

h(y) + β

2

y

x
h2∗(y)

)

f (x − y)

)

,

(x = 1,2, . . . )

and insertion of (3.34) in (3.9) gives the initial value

f (0) = αβα

∫ ∞

0

e−θ(1−h(0))

(β + θ)α+1
dθ.

3.8.3 Truncated Normal Distribution

Let U be the truncated normal distribution TN(ξ, σ ) with density

u(θ) = e
− 1

2σ2 (θ−ξ)2

∫ ∞
0 e

− 1
2σ2 (y−ξ)2

dy

. (θ > 0; ξ ∈ R;σ > 0) (3.38)
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Then
d

dθ
lnu(θ) = ξ − θ

σ 2
,

so that (3.15) is satisfied with

k = 1; γ = 0; δ = ∞ (3.39)

η(0) = ξ ; η(1) = −1 (3.40)

χ(0) = σ 2; χ(1) = 0, (3.41)

from which we obtain

ρ̇(0) = σ 2 − ξ ; ρ̇(1) = 1.

Insertion in (3.27) gives

p(n) = ξ − σ 2

n
p(n − 1) + σ 2

n
p(n − 2), (n = 2,3, . . . )

and by insertion of (3.38) in (3.2), we obtain

p(n) =
∫ ∞

0 θne
−θ− 1

2σ2 (θ−ξ)2
dθ

n! ∫ ∞
0 e

− 1
2σ2 (θ−ξ)2

dθ

, (n = 0,1,2, . . . )

which gives in particular the initial values p(0) and p(1).
From (3.29), we get the recursion

f (x) = (p(1) + (σ 2 − ξ)p(0))h(x)

+ 1

x

x∑

y=1

y

(

(ξ − σ 2)h(y) + σ 2

2
h2∗(y)

)

f (x − y), (x = 1,2, . . . )

and insertion of (3.38) in (3.9) gives the initial value

f (0) =
∫ ∞

0 e
−θ(1−h(0))− 1

2σ2 (θ−ξ)2
dθ

∫ ∞
0 e

− 1
2σ2 (θ−ξ)2

dθ

.

3.8.4 Inverse Gauss Distribution

Let U be the inverse Gauss distribution IGauss(ξ,β) with density

u(θ) = ξ√
2πβ

θ− 3
2 e− (θ−ξ)2

2βθ (θ > 0; ξ,β > 0) (3.42)
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where π denotes the Ludolph number. Then

d

dθ
lnu(θ) = − 3

2θ
− 1

2β
+ ξ2

2βθ2
= ξ2 − 3βθ − θ2

2βθ2
,

so that (3.15) is satisfied with

k = 2; γ = 0; δ = ∞ (3.43)

η(0) = ξ2; η(1) = −3β; η(2) = −1 (3.44)

χ(0) = χ(1) = 0; χ(2) = 2β. (3.45)

Insertion in (3.17) gives

ρ(0) = −ξ2; ρ(1) = −β; ρ(2) = 2(1 − h(0))β + 1,

and by letting h(0) = 0, we obtain

ρ̇(0) = −ξ2; ρ̇(1) = −β; ρ̇(2) = 2β + 1.

Insertion in (3.26) gives

p(n) = 1

2β + 1

(

β

(

2 − 3

n

)

p(n − 1) + ξ2

n(n − 1)
p(n − 2)

)

,

(n = 3,4, . . . )

and by insertion of (3.42) in (3.2), we obtain

p(n) = ξ√
2πβn!

∫ ∞

0
θn− 3

2 e−θ− (θ−ξ)2

2βθ dθ, (n = 0,1,2, . . . )

which gives in particular the initial values p(0), p(1), and p(2).
From (3.20), we obtain

v2(x) = 1

2(1 − h(0))β + 1

(

2β

x∑

y=1

h(y)v2(x − y) + ξ2f (x) + βv1(x)

)

.

(x = 1,2, . . . )

In Example 4.3, we shall present another procedure for recursive evaluation of f .

3.8.5 Transformed Gamma Distribution

Let U be the transformed Gamma distribution TGamma(α,β, k) with density

u(θ) = kβα

�(α)
θkα−1e−βθk

. (θ > 0;α,β, k > 0) (3.46)
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If � has the distribution Gamma(α,β) given by (3.5), then �1/k has the distribution
TGamma(α,β, k). From (3.46), we obtain

d

dθ
lnu(θ) = kα − 1

θ
− βkθk−1 = kα − 1 − kβθk

θ
,

so that (3.15) is satisfied when k is a positive integer. We have already discussed the
case k = 1 in Sect. 3.2, so we now assume that k is a positive integer greater than
one. In that case, we have

γ = 0; δ = ∞ (3.47)

η(0) = kα − 1; η(k) = −kβ (3.48)

χ(1) = 1 (3.49)

and η(i) and χ(i) equal to zero for all other values of i. This gives

ρ(0) = −kα; ρ(1) = 1 − h(0); ρ(k) = kβ

ρ̇(0) = −kα; ρ̇(1) = 1; ρ̇(k) = kβ

and ρ(i) = ρ̇(i) = 0 for all other values of i.
Insertion in (3.26) gives

p(n) = 1

kn(k−1)β

(
n − k + kα

n − k + 1
p(n − k) − p(n − k + 1)

)

,

(n = k + 1, k + 2, . . . )

and by insertion of (3.46) in (3.2) we obtain

p(n) = kβα

n!�(α)

∫ ∞

0
θkα+n−1e−θ−βθk

dθ, (n = 0,1,2, . . . )

which gives in particular the initial values p(0),p(1), . . . , p(k).
From (3.20), we obtain

vk(x) = 1

kβ

(
x∑

y=1

h(y)v1(x − y) + kαf (x) − (1 − h(0))v1(x)

)

.

(x = 1,2, . . . )

Further Remarks and References

Willmot (1993) proved Theorem 3.3 by using generating functions and discussed
the invariance properties of the condition (3.15). Hesselager (1996a) proved The-
orem 3.2 and described how it can be applied for evaluation of compound mixed
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Poisson distributions. He also indicated how Theorem 3.3 can be deduced from
Theorem 3.2. Grandell (1997) deduced the recursion (3.29) from Theorem 3.3 and
pointed out that it is more efficient than the recursion of Hesselager (1996a) when
k = 1. Other recursions for compound mixed Poisson distributions have been dis-
cussed by Willmot (1986a, 1986b) and Gerhold et al. (2008).

Section 3.4 is based on Sect. 4B in Sundt and Vernic (2004).
The examples in Sect. 3.8 are based on examples in Willmot (1993) and Hes-

selager (1996a), who also discuss other parametric classes of mixing distributions.
Mixed Poisson distributions with inverse Gauss mixing distribution are discussed by
Willmot (1989). For more information on the parametric classes of distributions that
we have applied for the mixing distributions, see e.g. Johnson et al. (1994, 1995).

For overviews of the theory of mixed Poisson distributions, see Grandell (1997)
and Karlis and Xekalaki (2005).

In Sect. 4.3, we shall deduce some other recursions for mixed Poisson distri-
butions and compound mixed Poisson distributions in the case when the mixing
distribution is infinitely divisible.



Chapter 4
Infinite Divisibility

Summary

In the present chapter, the emphasis is on infinitely divisible distributions in P10.
In Sect. 4.1, we define infinite divisibility and prove some properties of infinitely

divisible distributions.
The kernel of Sect. 4.2 is the result that a distribution in P10 is infinitely divisible

iff it can be represented as a compound Poisson distribution with severity distrib-
ution in P11. To prove this result, we shall apply the recursion of Theorem 2.8 for
convolutions of a distribution and the recursion of Theorem 2.2 for a compound
Poisson distribution. We also discuss how to find the Poisson parameter and the
severity distribution of this representation of an infinitely divisible distribution.

In Sect. 4.3, we study mixed Poisson distributions with infinitely divisible mixing
distribution. Such mixed distributions are themselves infinitely divisible, and, hence,
by the characterisation mentioned above, it follows that they can be represented as
compound Poisson distributions. We discuss how to find the Poisson parameter and
the severity distribution.

The De Pril transform is a tool for recursive evaluation of convolutions of dis-
tributions in P10, in insurance applications in particular within individual models.
In Chap. 6, this transform will be discussed in full generality within P10. However,
already in Sect. 4.4, we shall introduce it within the context of infinitely divisible
distributions in P10. In this context, it is easy to motivate the De Pril transform
and its properties in relation to compound Poisson distributions. In particular, we
shall show that a distribution in P10 is infinitely divisible iff its De Pril transform is
non-negative.

4.1 Definitions and Properties

A distribution is said to be infinitely divisible if for each positive integer M there
exists a distribution of which the original distribution is the M-fold convolution.
Correspondingly, we say that a random variable is infinitely divisible if its distribu-
tion is infinitely divisible.

We say that a distribution is infinitely divisible within a set S of distributions
if for each positive integer M there exists in S a distribution of which the original
distribution is the M-fold convolution. For convenience, we shall normally mean
infinitely divisible in S when saying that a distribution in S is infinitely divisible.

From Theorem 2.7 and Fig. 2.1, we see that in the Panjer class, the Poisson and
negative binomial distributions are infinitely divisible, but the binomial distribution
is not.

B. Sundt, R. Vernic, Recursions for Convolutions and Compound Distributions
with Insurance Applications, EAA Lecture Notes,
DOI 10.1007/978-3-540-92900-0_4, © Springer-Verlag Berlin Heidelberg 2009
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The following theorem summarises some properties of infinitely divisible dis-
tributions. As most of these results hold more generally than for distributions on
integers, we shall identify the distributions with their cumulative distribution func-
tions and therefore denote them by capitals.

Theorem 4.1 i) A distribution concentrated in one point, is infinitely divisible.
ii) The convolution of two infinitely divisible distributions is infinitely divisible.
iii) A shifted infinitely divisible distribution is infinitely divisible.
iv) A scaled infinitely divisible distribution is infinitely divisible.
v) A mixed Poisson distribution is infinitely divisible if its mixing distribution is

infinitely divisible.
vi) A compound distribution is infinitely divisible if its counting distribution is

infinitely divisible in distributions in P10.
vii) An infinitely divisible distribution in P10 has a positive probability in zero.

Proof i) For any positive integer M , the distribution concentrated in a point x is the
M-fold convolution of a distribution concentrated in x/M .

ii) Let F = F1 ∗ F2 where F1 and F2 are infinitely divisible distributions. Then,
for each positive integer M , there exist distributions F1M and F2M such that F1 =
FM∗

1M and F2 = FM∗
2M . From this follows that

F = F1 ∗ F2 = FM∗
1M ∗ FM∗

2M = (F1M ∗ F2M)M∗,

that is, for each positive integer M , F = FM∗
M with FM = F1M ∗ F2M . Hence, F is

infinitely divisible.
iii) This result follows from i) and ii).
iv) Let X = aY where a is a constant and Y is an infinitely divisible random

variable. Then, for each positive integer M , there exist independent and identically
distributed random variables YM1, YM2, . . . , YMM such that Y = ∑M

i=1 YMi . Then
X = ∑M

i=1 XMi with XMi = aYMi for i = 1,2, . . . ,M . Hence, for each positive
integer M , X can be expressed as the sum of M independent and identically distrib-
uted random variables, and X is therefore infinitely divisible.

v) Let F be a mixed Poisson distribution with infinitely divisible mixing distrib-
ution U . Then, for each positive integer M , there exists a distribution UM such that
U = UM∗

M . Let FM be the mixed Poisson distribution with mixing distribution UM .
From Theorem 3.1 follows that FM∗

M = F . Thus, for each positive integer M , there
exists a distribution of which F is the M-fold convolution, and F is therefore infi-
nitely divisible.

vi) Let F = p ∨ H be a compound distribution with severity distribution H and
infinitely divisible counting distribution p ∈ P10, which is infinitely divisible in
distributions in P10. Then, for each positive integer M , there exists a distribution
pM ∈ P10 such that p = pM∗

M . Thus,

F = p ∨ H = pM∗
M ∨ H = (pM ∨ H)M∗,
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that is, for each positive integer M , F = FM∗
M with FM = pM ∨ H . Hence, F is

infinitely divisible.
vii) If f ∈ P10 is infinitely divisible, then, for each positive integer M , there

exists a distribution fM ∈ P10 such that f = f M∗
M . In particular, this gives

f (0) = f M∗
M (0) = fM(0)M,

so that fM(0) = f (0)1/M . Thus, if f (0) = 0, then we must have fM(0) = 0 for
all M . However, if fM(0) = 0, then f (x) = f M∗

M (x) = 0 for all x < M , and, as this
should hold for all positive integers M , we must have f (x) = 0 for all non-negative
integers x, which is impossible for a distribution in P10. Hence, f must have a
positive probability in zero.

This completes the proof of Theorem 4.1. �

4.2 Characterisation

We are now ready to prove the following characterisation of infinite divisible distri-
butions in P10.

Theorem 4.2 A non-degenerate distribution in P10 is infinitely divisible iff it can
be expressed as a compound Poisson distribution with severity distribution in P11.

Proof As Poisson distributions and compound distributions with infinitely divisible
counting distribution are infinitely divisible, we have that all compound Poisson
distributions with severity distribution in P11 are infinitely divisible.

Let us now assume that f ∈ P10 is non-degenerate and infinitely divisible. Then,
for each positive integer M , there exists a distribution fM ∈ P10 such that f = f M∗

M .
From Theorem 2.8, we obtain that for x = 1,2, . . . ,

f (x) = 1

fM(0)

x∑

y=1

(

(M + 1)
y

x
− 1

)

fM(y)f (x − y),

that is,

f (x) = 1

f (0)1/M

x∑

y=1

((
1

M
+ 1

)
y

x
− 1

M

)

gM(y)f (x − y)

with gM = MfM . Solving for gM(x) gives

gM(x) = 1

f (0)

(

f (0)1/Mf (x) −
x−1∑

y=1

((
1

M
+ 1

)
y

x
− 1

M

)

gM(y)f (x − y)

)

.

(4.1)
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We want to show by induction that g(x) = limM↑∞ gM(x) exists and is finite for
all positive integers x. From (4.1), we obtain that

lim
M↑∞gM(1) = lim

M↑∞
1

f (0)
f (0)1/Mf (1) = f (1)

f (0)
.

Thus, the hypothesis holds for x = 1. Let us now assume that it holds for x =
1,2, . . . , z−1. We want to show that it also holds for x = z. Letting M go to infinity
in (4.1) with x = z gives

g(z) = 1

f (0)

(

f (z) − 1

z

z−1∑

y=1

yg(y)f (z − y)

)

, (4.2)

that is, the hypothesis holds also for x = z. Hence, it holds for all non-negative
integers x.

Solving (4.2) for f (z) gives

f (z) = 1

z

z∑

y=1

yg(y)f (z − y).

Letting h = g/λ and

λ = − lnf (0), (4.3)

we see that f satisfies the recursion of Theorem 2.2 for a compound Poisson distri-
bution with Poisson parameter λ and severity distribution h ∈ P11. We know that h

is non-negative. Hence, it is a distribution if it sums to one. If it had not summed to
one, then f would not have summed to one either. However, as f is a distribution,
it does sum to one, and then h must also sum to one.

We have now shown that a non-degenerate infinitely divisible distribution in P10
can be expressed as a compound Poisson distribution with severity distribution
in P11.

This completes the proof of Theorem 4.2. �

By interpreting a distribution concentrated in zero as a Poisson distribution with
parameter zero, we can drop the assumption in Theorem 4.2 that the distribution
should be non-degenerate.

If a non-generate distribution f ∈ P10 is infinitely divisible, then Theorem 4.2
gives that it can be expressed as a compound Poisson distribution with severity
distribution in P11, but how do we find the Poisson parameter λ and the severity
distribution h? We have already seen that λ is given by (4.3). If we know f , then we
can evaluate h recursively by solving the recursion (2.7) for h(x), that is,

h(x) = 1

f (0)

(
f (x)

λ
− 1

x

x−1∑

y=1

yh(y)f (x − y)

)

. (x = 1,2, . . . ) (4.4)
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Alternatively, we can use generating functions and solve (2.13) for τh(s), that is,

τh(s) = 1 + ln τf (s)

λ
= 1 − ln τf (s)

lnf (0)
=

ln
τf (0)

τf (s)

ln τf (0)
. (4.5)

Example 4.1 We have already pointed out that the negative binomial distribution
NB(α,π) is infinitely divisible. By insertion of (2.42) in (4.3), we obtain

λ = −α ln(1 − π), (4.6)

as well as

τf (s) =
∞∑

x=0

sx

(
α + x − 1

x

)

πx(1 − π)α = (1 − π)α
∞∑

x=0

(
α + x − 1

x

)

(πs)x,

that is,

τf (s) =
(

1 − π

1 − πs

)α

. (4.7)

Insertion in the last expression in (4.5) gives

τh(s) = ln(1 − πs)α

ln(1 − π)α
= ln(1 − πs)

ln(1 − π)
= 1

− ln(1 − π)
ln

1

1 − πs

= 1

− ln(1 − π)

∞∑

x=1

πx

x
sx,

from which follows that h is the logarithmic distribution Log(π). Hence, we have
shown that a negative binomial distribution can be expressed as a compound Poisson
distribution with logarithmic severity distribution. In Example 2.1, we showed that
in another way. �

4.3 Mixed Poisson Distributions

4.3.1 Infinitely Divisible Mixing Distribution

By combining Theorems 4.1v) and 4.2, we obtain the following corollary.

Corollary 4.1 A mixed Poisson distribution with infinitely divisible mixing distribu-
tion can be expressed as a compound Poisson distribution with severity distribution
in P11.

If we know that a mixed Poisson distribution f has an infinitely divisible mixing
distribution U , then Corollary 4.1 gives that it can be expressed as a compound
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Poisson distribution with severity distribution in P11, but how do we find the Poisson
parameter λ and the severity distribution h? This is closely related to what we did
above for Theorem 4.2.

Application of (4.3), (1.28), and (3.3) gives

λ = − lnf (0) = − ln τf (0) = − lnγU(1), (4.8)

and by insertion of (3.3) and (4.8) in (4.5), we obtain

τh(s) = 1 + lnγU(1 − s)

λ
= 1 − lnγU(1 − s)

lnγU(1)
= ln γU (1)

γU (1−s)

lnγU(1)
. (4.9)

We can also evaluate h recursively by (4.4) if f is known.

Example 4.2 From Sect. 3.2, we know that a mixed Poisson distribution with
Gamma mixing distribution Gamma(α,β) is the negative binomial distribu-
tion NB(α, (β + 1)−1) given by (3.6). From Example 4.1, we obtain that λ =
−α ln(β/(β + 1)) and h is the logarithmic distribution Log((β + 1)−1). �

Example 4.3 Let U be the inverse Gauss distribution IGauss(ξ,β) with density u

given by (3.42). Then

γU(s) = ξ√
2πβ

∫ ∞

0
e−sθ θ− 3

2 e− (θ−ξ)2

2βθ dθ

= ξ√
2πβ

∫ ∞

0
θ− 3

2 exp

(

−sθ − θ2 − 2ξθ + ξ2

2βθ

)

dθ

= ξ√
2πβ

∫ ∞

0
θ− 3

2 exp

(

−2βs + 1

2βθ

(

θ2 − 2ξθ

2βs + 1
+ ξ2

2βs + 1

))

dθ

= ξ√
2πβ

∫ ∞

0
θ− 3

2 exp

(

−2βs + 1

2βθ

((

θ − ξ√
2βs + 1

)2

− 2ξθ

2βs + 1
+ 2ξθ√

2βs + 1

))

dθ

= ξ√
2πβ

exp

(
ξ

β

(
1 − √

2βs + 1
)
)

×
∫ ∞

0
θ− 3

2 exp

(

−2βs + 1

2βθ

(

θ − ξ√
2βs + 1

)2)

dθ

= ξ√
2πβ

exp

(
ξ

β

(
1 − √

2βs + 1
)
)√

2βs + 1

ξ

√

2π
β

2βs + 1

= exp

(

− ξ

β

(√
2βs + 1 − 1

)
)

.
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From this, we see that for any positive integer M , IGauss(ξ,β) is the M-fold
convolution of IGauss(ξ/M,β). Hence, U is infinitely divisible. Insertion in (4.8)
and (4.9) gives

λ = ξ

β

(√
2β + 1 − 1

)

and

τh(s) = 1 −
√

2β(1 − s) + 1 − 1√
2β + 1 − 1

=
√

2β + 1 − 2βs − √
2β + 1

1 − √
2β + 1

= 1

(2β + 1)−1/2 − 1

((

1 − 2β

2β + 1
s

)1/2

− 1

)

= 1

(2β + 1)−1/2 − 1

∞∑

x=1

(− 1
2 + x − 1

x

)(
2β

2β + 1

)x

sx.

By comparison with (2.66), we see that h is the extended truncated negative bino-
mial distribution ETNB(−1/2,2β/(2β + 1)). If we want to evaluate the compound
distribution f ∨ k for some k ∈ P11, then, as an alternative to the procedure of
Sect. 3.8.4, we can first evaluate h ∨ k by the recursion (2.68) and then

f ∨ k = (p ∨ h) ∨ k = p ∨ (h ∨ k)

by the recursion (2.7) with p being the Poisson distribution Po(λ). �

4.3.2 Mixing Distribution in P10

If the mixing distribution is in P10, then we can sometimes apply the following
theorem for recursive evaluation of f.

Theorem 4.3 A mixed Poisson distribution with mixing distribution in P10 can be
expressed as a compound distribution with the mixing distribution as counting dis-
tribution and severity distribution Po(1).

Proof Let f be a mixed Poisson distribution with mixing distribution u ∈ P10. Then
f = ∑∞

θ=1 u(θ)hθ with hθ denoting the Poisson distribution Po(θ). When θ is a
non-negative integer, Po(θ) is the θ -fold convolution of Po(1) so that hθ = hθ∗

1 .
Hence, by (1.6),

f =
∞∑

θ=1

u(θ)hθ =
∞∑

θ=1

u(θ)hθ∗
1 = u ∨ h1,

that is, a compound distribution with the mixing distribution as counting distribution
and severity distribution Po(1). �
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In particular, by combining Theorem 4.3 with (2.78), we obtain that if f is a
mixed Poisson distribution with infinitely divisible mixing distribution u ∈ P10 that
satisfies the recursion

u(θ) =
(

a + b

θ

)

u(θ − 1) (θ = l + 1, l + 2, . . . )

for some non-negative integer l and constants a and b, then f can be evaluated
recursively by

f (x) = 1

e − a

(

e1−θ
l∑

θ=1

(

u(θ) −
(

a + b

θ

)

u(θ − 1)

)
θx

x!

+
x∑

y=1

(

a + b
y

x

)
f (x − y)

y!

)

(x = 1,2, . . . ) (4.10)

with initial value

f (0) =
∞∑

θ=1

e−θu(θ) = γu(1).

When l = 0, that is, u is in the Panjer class, then (4.10) reduces to

f (x) = 1

e − a

x∑

y=1

(

a + b
y

x

)
f (x − y)

y! . (x = 1,2, . . . )

Other classes of recursions for u can be handled analogously.

4.4 De Pril Transforms of Infinitely Divisible Distributions in P10

4.4.1 Definition and Properties

We shall need the following theorem.

Theorem 4.4 For j = 1,2, . . . ,M , let Fj be a compound Poisson distribution with
Poisson parameter λj and severity distribution Hj . Then F = ∗M

j=1Fj is a com-
pound Poisson distribution with Poisson parameter

λ = λ•M (4.11)

and severity distribution

H = 1

λ

M∑

j=1

λjHj .
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Proof We have

ζH (s) =
∫

(−∞,∞)

eisx dH(x) = 1

λ

M∑

j=1

λj

∫

(−∞,∞)

eisx dHj(x) = 1

λ

M∑

j=1

λj ζHj (s),

and by using (1.18), (1.29), and (2.12), we obtain

ζF (s) =
M∏

j=1

ζFj
(s) =

M∏

j=1

exp(λj (ζHj
(s) − 1)) = exp

(
M∑

j=1

λj (ζHj
(s) − 1)

)

= exp

(

λ

(
1

λ

M∑

j=1

λj ζHj
(s) − 1

))

= exp(λ(ζH (s) − 1)).

This is the characteristic function of a compound Poisson distribution with Pois-
son parameter λ and severity distribution H , and, hence, F is such a compound
distribution. �

Let f1, f2, . . . , fM ∈ P10 be infinitely divisible. Then Theorem 4.2 gives that
for j = 1,2, . . . ,M , fj can be expressed as a compound Poisson distribution with
severity distribution in P11; let λj denote the Poisson parameter and hj the severity
distribution. Theorem 4.4 gives that f = ∗M

j=1fj is a compound Poisson distribution
with Poisson parameter λ given by (4.11) and severity distribution

h = 1

λ

M∑

j=1

λjhj . (4.12)

Thus, if we know the fj s, then we can evaluate the convolution f by for each j first
finding λj by (4.3) and then hj recursively by (4.4). After that, we find λ by (4.11)
and h by (4.12) and evaluate f recursively by Theorem 2.2.

If the purpose of expressing the fj s as compound Poisson distributions is to
evaluate their convolution, is it then necessary to evaluate the λj s and hj s, or can
we do some shortcuts? We see that for each j , λj and hj appear in (2.7) only through
the function

ϕfj
= λjhj , (4.13)

so why not rather work with that? From (4.4), we obtain that ϕfj
can be evaluated

recursively by

ϕfj
(x) = 1

fj (0)

(

xfj (x) −
x−1∑

y=1

ϕfj
(y)fj (x − y)

)

. (x = 1,2, . . . ) (4.14)

We call the function ϕfj
the De Pril transform of fj and use the recursion (4.14) as

definition of the De Pril transform of any infinitely divisible distribution fj ∈ P10.



94 4 Infinite Divisibility

Solving (4.14) for fj (x) gives the recursion

fj (x) = 1

x

x∑

y=1

ϕfj
(y)fj (x − y), (x = 1,2, . . . ) (4.15)

for an infinitely divisible distribution in P10 in terms of its De Pril transform.
In terms of De Pril transforms, we can rewrite (4.12) as

ϕf =
M∑

j=1

ϕfj
. (4.16)

We can now evaluate f by evaluating each ϕfj
recursively by (4.14), find-

ing ϕf by (4.16), and finally evaluating f recursively by (4.15) with initial value
f (0) = ∏M

j=1 fj (0). This is De Pril’s first method for evaluating the convolution of
M distributions.

As a Poisson distribution is a compound Poisson distribution with severity dis-
tribution concentrated in one, (4.13) gives that the De Pril transform of a Poisson
distribution f with parameter λ is given by

ϕf (y) = λI (y = 1). (y = 1,2, . . . ) (4.17)

Now let f be an infinitely divisible distribution in P10 and k ∈ P11. Then there
exists a λ > 0 and a distribution h ∈ P11 such that f is a compound Poisson dis-
tribution with Poisson parameter λ and severity distribution h. Hence, f ∨ k is a
compound Poisson distribution with Poisson parameter λ and severity distribution
h ∨ k. Application of (4.13) and (1.8) gives that for x = 1,2, . . . ,

ϕf ∨k(x) = λx(h ∨ k)(x) = λx

x∑

y=1

h(y)ky∗(x),

and by one more application of (4.13), we obtain

ϕf ∨k(x) = x

x∑

y=1

ϕf (y)

y
ky∗(x), (x = 1,2, . . . ) (4.18)

that is,

ϕf ∨k = (�ϕf ∨ k). (4.19)

Now let f be the negative binomial distribution NB(α,π). In Examples 2.1
and 4.1, we showed that this distribution is a compound Poisson distribution with
Poisson parameter −α ln(1 − π) and logarithmic Log(π) severity distribution. In-
sertion of that Poisson parameter and (2.19) in (4.13) gives that

ϕf (y) = απy. (y = 1,2, . . . ) (4.20)
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By insertion in (4.18), we obtain that if k ∈ P11, then

ϕf ∨k(x) = αx

x∑

y=1

πy

y
ky∗(x). (x = 1,2, . . . ) (4.21)

By introducing ξ = λη in (2.17) and using (4.13) and Theorem 2.3, we obtain
that if an infinitely divisible distribution f ∈ P10 satisfies the recursion

ϕf (x) = ξ(x) +
r∑

z=1

χ(z)ϕf (x − z) (x = 1,2, . . . ) (4.22)

for functions ξ and χ on {1,2, . . . , r} with r being a positive integer or infinity, then
it also satisfies the recursion

f (x) =
r∑

y=1

(
ξ(y)

x
+

(

1 − y

x

)

χ(y)

)

f (x − y). (x = 1,2, . . . ) (4.23)

Example 4.4 For j = 0,1,2, . . . ,M , let fj = pj ∨ hj with hj ∈ P11. We let pj

be the Poisson distribution Po(λ) for j = 0 and the negative binomial distribution
NB(αj ,πj ) for j = 1,2, . . . ,M . We want to evaluate f = ∗M

j=0fj and p = ∗M
j=0pj .

Insertion of (4.13) and (4.21) in (4.16) gives

ϕf (x) = x

(

λh0(x) +
x∑

y=1

1

y

M∑

j=1

αjπ
y
j h

y∗
j (x)

)

, (x = 1,2, . . . ) (4.24)

and by insertion in (4.15), we obtain

f (x) = 1

x

x∑

y=1

y

(

λh0(y) +
y∑

z=1

1

z

M∑

j=1

αjπ
z
j hz∗

j (y)

)

f (x − y) (x = 1,2, . . . )

(4.25)
with initial value

f (0) =
M∏

j=0

pj (0) = e−λ
M∏

j=1

(1 − πj )
αj .

The expression (4.24) looks rather awkward, so let us have a look at how it can
be evaluated.

For j = 1,2, . . . ,M , Example 4.1 gives that pj = qj ∨ kj with qj being the
Poisson distribution Po(−αj ln(1 − πj )) and kj being the logarithmic distribution
Log(πj ). Then fj = qj ∨ (kj ∨ hj ), and (4.13) gives that

ϕfj
(x) = −αj (ln(1 − πj ))x(kj ∨ hj )(x). (x = 1,2, . . . ) (4.26)



96 4 Infinite Divisibility

The compound distribution kj ∨hj can be evaluated recursively by (2.65). Combin-
ing this with (4.26) gives that for x = 1,2, . . .

ϕfj
(x) = −αj (ln(1 − πj ))

× xπj

(
hj (x)

− ln(1 − πj )
+

x−1∑

y=1

(

1 − y

x

)

hj (y)(kj ∨ hj )(x − y)

)

= πj

(

αjxhj (x) −
x−1∑

y=1

hj (y)αj (ln(1 − πj ))(x − y)(kj ∨ hj )(x − y)

)

,

and by one more application of (4.26), we obtain the recursion

ϕfj
(x) = πj

(

αjxhj (x) +
x−1∑

y=1

hj (y)ϕfj
(x − y)

)

. (x = 1,2, . . . ) (4.27)

From (4.13), we obtain that ϕf0 = λh0.
We have now explained how to evaluate ϕfj

for j = 0,1,2, . . . ,M . Then we can
evaluate ϕf by (4.16), and finally we evaluate f by (4.15).

By letting hj be concentrated in one for j = 0,1,2, . . . ,M , we obtain that fj =
pj for j = 0,1,2, . . . ,M and f = p. Then (4.24) and (4.25) reduce to

ϕp(x) = λI (x = 1) +
M∑

j=1

αjπ
x
j (x = 1,2, . . . )

p(x) = 1

x

(

λp(x − 1) +
x∑

y=1

p(x − y)

M∑

j=1

αjπ
y
j

)

. (x = 1,2, . . . )
�

Let us now assume that we have an insurance portfolio with independent policies
of M different types. Policies of type j have infinitely divisible aggregate claims
distribution fj ∈ P10, and there are Mj such policies in the portfolio. The aggregate
claims distribution of the portfolio is then

f = ∗M
j=1f

Mj ∗
j ,

and its De Pril transform is

ϕf =
M∑

j=1

Mjϕfj
.

Hence, if we have evaluated the ϕfj
s, then it is easy to change the Mj s, that is, study

the effect of changes in portfolio composition on the aggregate claims distribution
of the portfolio.

Even when a distribution f ∈ P10 is not infinitely divisible, we can still define
its De Pril transform by (4.14), and then (4.15) holds trivially. In Chap. 6, we shall
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show that (4.16) and (4.18) still hold. Hence, the De Pril transform is a general tool
for evaluation of convolutions of distributions in P10 and compound distributions
with counting distribution in P10 and severity distribution in P11.

4.4.2 Characterisation of Infinitely Divisible Distributions in
Terms of De Pril Transforms

From the way we defined the De Pril transform of an infinitely divisible distribution
in P10, it is clear that such distributions have non-negative De Pril transforms. From
the following theorem, we see that this property holds only for such distributions.
Hence, it can be applied for characterising them.

Theorem 4.5 A distribution in P10 is infinitely divisible iff its De Pril transform is
non-negative.

To prove this theorem, we shall need the following lemma.

Lemma 4.1 If a distribution f ∈ P10 has non-negative De Pril transform, then
μϕf

(−1) < ∞.

Proof Application of (4.14) gives

μϕf
(−1) =

∞∑

x=1

ϕf (x)

x
=

∞∑

x=1

1

f (0)

(

f (x) − 1

x

x−1∑

y=1

ϕf (y)f (x − y)

)

≤
∞∑

x=1

f (x)

f (0)
= 1 − f (0)

f (0)
< ∞.

�

Proof of Theorem 4.5 We have already shown that infinitely divisible distributions
in P10 have non-negative De Pril transforms.

Now, let f ∈ P10 with non-negative De Pril transform. From Lemma 4.1, we get
that

λ = μϕf
(−1) < ∞. (4.28)

Let h(x) = ϕf (x)/(λx) for x = 1,2, . . . . Then h is non-negative and sums to one
and is therefore a distribution in P11. Insertion of ϕf (x) = λxh(x) in (4.15) gives
the recursion (2.7) for p∨h where p denotes the Poisson distribution Po(λ). Hence,
f and p ∨ h must be proportional, and, as both of them are distributions and there-
fore sum to one, they must be equal. Thus, any distribution in P10 with non-negative
De Pril transform can be expressed as a compound Poisson distribution with severity
distribution in P11, and, by Theorem 4.2, it is therefore infinitely divisible.

This completes the proof of Theorem 4.5. �
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From (4.28), we have that

f (0) = p(0) = e−λ = e−μϕf
(−1)

.

Hence,

μϕf
(−1) = − lnf (0). (4.29)

Furthermore,

μϕf
(0) =

∞∑

x=1

ϕf (x) =
∞∑

x=1

λxh(x) = λμh(1) = μp(1)μh(1) = μp∨h(1),

that is,

μϕf
(0) = μf (1). (4.30)

In Sect. 6.1, we shall show that (4.29) and (4.30) hold for a wider class of distribu-
tions in P10.

Further Remarks and References

In Theorem 4.1, we showed that a mixed Poisson distribution is infinitely divisible
if the mixing distribution is infinitely divisible. Maceda (1948) showed the converse
implication, that is, a mixed Poisson distribution is infinitely divisible iff the mixing
distribution is infinitely divisible, see also Godambe and Patil (1975) and Bühlmann
and Buzzi (1971).

Our proof of Theorem 4.2 was given by Ospina and Gerber (1987). Feller (1968,
Sect. XII.2) proved it by using generating functions.

If we have a sample of independent observations from an infinitely divisible dis-
tribution in P10, then we can use the procedure outlined in connection with (2.81)
and (2.82) for estimating the Poisson parameter and severity distribution in its rep-
resentation as a compound Poisson distribution with severity distribution in P11.

Example 4.3 is based on Willmot (1987).
Kestemont and Paris (1985) deduced a recursion for the Hofmann distribution

by expressing this distribution in P10 as a compound Poisson distribution and using
Theorem 2.2. This recursion has also been studied by Walhin and Paris (1999). The
class of Hofmann distributions contains the class of mixed Poisson distributions
with Gamma and inverse Gauss mixing distributions.

The material on De Pril transforms in Sect. 4.4 is to a large extent based on Sundt
(1995), who introduced the term De Pril transform. De Pril’s first method was in-
troduced by De Pril (1989). Formula (4.15) was given by Chan (1982a, 1982b).
Theorem 4.5 was proved by Katti (1967) in a slightly different parameterisation by
using probability generating functions; see also Theorem 4.4 in Chap. II of Steu-
tel and van Harn (2004). The present proof and formulation in terms of De Pril
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transforms was presented in Sundt (1995) after having been suggested to Sundt by
Gordon Willmot in a letter of December 3, 1992.

Example 4.4 is based on Willmot and Sundt (1989). Ammeter (1949) suggested
to evaluate the convolution of compound negative binomial distributions by express-
ing it as a compound Poisson distribution, using Theorem 4.4 and the representation
of a negative binomial distribution as a compound Poisson distribution with loga-
rithmic severity distribution. A distribution in the form of f plays an important role
in the credit risk management framework CreditRisk+. Recursive evaluation of that
distribution is discussed in the CreditRisk+ manual (Credit Suisse Financial Prod-
ucts 1997) as well as by Giese (2003) and Haaf et al. (2004). Further developments
are presented by Bürgisser et al. (2001), Kurth and Tasche (2003), and Gerhold et
al. (2008).

For more information on infinite divisibility, see e.g. Lukacs (1970) and Steutel
and van Harn (2004).



Chapter 5
Counting Distributions with Recursion
of Higher Order

Summary

Chapter 2 circled around various forms of the recursion

p(n) =
(

a + b

n

)

p(n − 1)

for a distribution p ∈ P10. In the present chapter, we extend this recursion to

p(n) =
k∑

i=1

(

a(i) + b(i)

n

)

p(n − i). (5.1)

In Sect. 5.1, we study compound distributions where the counting distribution satis-
fies various forms of this recursion. These recursions require evaluation of convolu-
tions of the severity distribution, and such evaluation is the topic of Sect. 5.2.

Section 5.3 is devoted to study of the properties of the classes of distributions
that satisfy the recursion (5.1) for n = 1,2, . . . .

In Sect. 5.4, we consider a recursion that can be applied for compound distribu-
tions when the generating function of the counting distribution is rational.

5.1 Compound Distributions

In Chap. 2, we studied classes of distributions in P10 for which there existed a
recursion of order one, that is, if p is such a counting a distribution, then p(n)

should be a function of p(n − 1), at least for all n greater than a certain limit.
We gave characterisations of some of these classes, and from the recursions for
these distributions we deduced recursions for compound distributions with these
distributions as counting distribution. We shall now extend our setup to classes of
distributions in P10 of order k, that is, p(n) shall be a function of p(n−1),p(n−2),

. . . , p(n − k), at least for n greater than a certain limit.
We return to the setting of Sect. 2.7.1: Let N be the number of claims occurring

in an insurance portfolio within a given period and Yi the amount of the ith of these
claims. We assume that the amounts of the individual claims are independent of
the number of claims and mutually independent and identically distributed on the
non-negative integers with distribution h. Let p denote the distribution of N and
f = p ∨ h the distribution of the aggregate claims X = Y•N .

B. Sundt, R. Vernic, Recursions for Convolutions and Compound Distributions
with Insurance Applications, EAA Lecture Notes,
DOI 10.1007/978-3-540-92900-0_5, © Springer-Verlag Berlin Heidelberg 2009
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Our faithful workhorse in Chap. 2 was the relation

E

[

a + b
Y1

x

∣
∣
∣
∣Y•n = x

]

= a + b

n
(x = 1,2, . . . ;n = 1,2, . . . ) (5.2)

for constants a and b. From this, we deduced that

∞∑

n=1

(

a + b

n

)

p(n − 1)hn∗(x) =
x∑

y=0

(

a + b
y

x

)

h(y)f (x − y),

(x = 1,2, . . . )

from which we obtained

f (x) = 1

1 − ah(0)

(
x∑

n=1

(

p(n) −
(

a + b

n

)

p(n − 1)

)

hn∗(x)

+
x∑

y=1

(

a + b
y

x

)

h(y)f (x − y)

)

, (x = 1,2, . . . ) (5.3)

and the terms in the first summation gracefully vanished when p(n) = (a +
b/n)p(n − 1) for n = 1,2, . . . , x.

As this was such a nice experience, it would be great if we could do something
similar in our extended setup, but what do we then need? In the first summation
in (5.3), we had the difference between p(n) and the product of p(n − 1) with
something, and we were delighted when that difference was equal to zero. In our
extended setting, we want that difference replaced with the difference between p(n)

and a function of p(n − 1),p(n − 2), . . . , p(n − k), but what should that function
be? As multiplying p(n − 1) by something was so fruitful in Chap. 2, it is tempting
to multiply p(n− i) by something for i = 1,2, . . . , k, and then perhaps take the sum
of these products? But how should we choose the something? Well, as we were so
successful with a + b/n in Chap. 2, let us see what we can achieve with that. Thus,
we need to extend (5.2) from one to i for i = 1,2, . . . , k. The only place one appears
in that equation, is through Y1. Obviously, just replacing Y1 with Yi would not bring
anything, but what about Y•i? Let us try. By the same reasoning we used for setting
up (2.11), we obtain

E

[

a + b

i

Y•i
x

∣
∣
∣
∣Y•n = x

]

= a + b

n
; (5.4)

(x = 1,2, . . . ;n = i, i + 1, i + 2, . . . ; i = 1,2, . . . )

the reason that we have to divide b by i, is that the conditional expectation of the
sum of i observations is ix/n. This gives that for x = 1,2, . . . ,
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∞∑

n=1

(

a + b

n

)

p(n − i)hn∗(x)

=
∞∑

n=i

(

a + b

n

)

p(n − i)hn∗(x) =
∞∑

n=i

E

[

a + b

i

Y•i
x

∣
∣
∣
∣Y•n = x

]

p(n − i)hn∗(x)

=
∞∑

n=i

x∑

y=0

(

a + b

i

y

x

)
hi∗(y)h(n−i)∗(x − y)

hn∗(x)
p(n − i)hn∗(x)

=
x∑

y=0

(

a + b

i

y

x

)

hi∗(y)

∞∑

n=i

p(n − i)h(n−i)∗(x − y),

that is,

∞∑

n=1

(

a + b

n

)

p(n − i)hn∗(x) =
x∑

y=0

(

a + b

i

y

x

)

hi∗(y)f (x − y). (5.5)

(x = 1,2, . . . )

With a slight abuse of notation, now letting a and b be functions, we have

p(n) = q(n) +
k∑

i=1

(

a(i) + b(i)

n

)

p(n − i) (n = 1,2, . . . ) (5.6)

with

q(n) = p(n) −
k∑

i=1

(

a(i) + b(i)

n

)

p(n − i). (n = 1,2, . . . )

Then

f (x) = (q ∨ h)(x) +
k∑

i=1

∞∑

n=1

(

a(i) + b(i)

n

)

p(n − i)hn∗(x), (5.7)

(x = 1,2, . . . )

and insertion of (5.5) gives

f (x) = (q ∨ h)(x) +
x∑

y=0

f (x − y)

k∑

i=1

(

a(i) + b(i)

i

y

x

)

hi∗(y)

= (q ∨ h)(x) +
x∑

y=0

(

(a ∨ h)(y) + (�b ∨ h)(y)

x

)

f (x − y),

(x = 1,2, . . . )
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that is,

f (x) = 1

1 − τa(h(0))

(

(q ∨ h)(x) +
x∑

y=1

(

(a ∨ h)(y) + (�b ∨ h)(y)

x

)

f (x − y)

)

= 1

1 − τa(h(0))

( ∞∑

n=1

(

p(n) −
k∑

i=1

(

a(i) + b(i)

n

)

p(n − i)

)

hn∗(x)

+
x∑

y=1

(

(a ∨ h)(y) + (�b ∨ h)(y)

x

)

f (x − y)

)

= q̃(x) +
x∑

y=1

(

ã(y) + b̃(y)

x

)

f (x − y) (x = 1,2, . . . ) (5.8)

with

q̃(y) = (q ∨ h)(y)

1 − τa(h(0))
(5.9)

ã(y) = (a ∨ h)(y)

1 − τa(h(0))
; b̃(y) = (�b ∨ h)(y)

1 − τa(h(0))
(5.10)

for y = 1,2, . . . , that is, the recursion (5.8) for f is in the same form as the recursion
(5.6) for p with k, q , a, and b replaced with ∞, q̃ , ã, and b̃ respectively. This
implies that many results for distributions represented in the shape (5.6) also hold
for compound distributions with counting distribution represented in the shape (5.6).

We have already used (5.8) to deduce the recursion (3.29).
If

p(n) =
k∑

i=1

(

a(i) + b(i)

n

)

p(n − i) (n = l + 1, l + 2, . . . ) (5.11)

for some positive integer l, then

f (x) = 1

1 − τa(h(0))

(
l∑

n=1

(

p(n) −
k∑

i=1

(

a(i) + b(i)

n

)

p(n − i)

)

hn∗(x)

+
x∑

y=1

(

(a ∨ h)(y) + (�b ∨ h)(y)

x

)

f (x − y)

)

, (x = 1,2, . . . )

and when l = 0, that is,

p(n) =
k∑

i=1

(

a(i) + b(i)

n

)

p(n − i), (n = 1,2, . . . ) (5.12)
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this reduces to

f (x) = 1

1 − τa(h(0))

x∑

y=1

(

(a ∨ h)(y) + (�b ∨ h)(y)

x

)

f (x − y)

=
x∑

y=1

(

ã(y) + b̃(y)

x

)

f (x − y). (x = 1,2, . . . ) (5.13)

When further assuming that h ∈ P11, we obtain

f (x) =
k∑

i=1

x∑

y=i

(

a(i) + b(i)

i

y

x

)

hi∗(y)f (x − y). (x = 1,2, . . . )

Before closing this section, let us deduce a more general recursion.

Theorem 5.1 The compound distribution f = p ∨ h with h,p ∈ P10 and p satisfy-
ing the recursion

p(n) =
k∑

i=1

(

a(i) +
max(l,i−1)∑

j=0

b(i, j)

n − j

)

p(n − i) (n = l + 1, l + 2, . . . )

satisfies the recursion

f (x) = 1

1 − τa(h(0))

(
l∑

n=1

(

p(n) −
k∑

i=1

a(i)p(n − i)

)

hn∗(x)

−
k∑

i=1

max(l,i−1)∑

j=0

l∑

n=j+1

b(i, j)

n − j
p(n − i)hn∗(x) +

k∑

i=1

x∑

y=1

a(i)hi∗(y)f (x − y)

+
k∑

i=1

max(l,i−1)∑

j=0

b(i, j)

(

c(i − j)hj∗(x)

+ 1

i − j

x−1∑

y=0

hj∗(y)

x−y∑

z=1

z

x − y
h(i−j)∗(z)f (x − y − z)

))

(5.14)

(x = 1,2, . . . )

with

c(i) =
∞∑

n=1

1

n
p(n − i)h(0)n. (i = 1,2, . . . )
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Proof Application of (5.5) gives that for x, i = 1,2, . . . and j = 0,1,2, . . . , i − 1,
we have

∞∑

n=j+1

1

n − j
p(n − i)hn∗(x)

=
∞∑

n=1

1

n
p(n − i + j)h(n+j)∗(x) =

x∑

y=0

hj∗(y)

∞∑

n=1

1

n
p(n − i + j)hn∗(x − y)

= c(i − j)hj∗(x) +
x−1∑

y=0

hj∗(y)

x−y∑

z=1

1

i − j

z

x − y
h(i−j)∗(z)f (x − y − z).

Together with (5.5), this gives that for x = 1,2, . . . ,

f (x) =
∞∑

n=1

p(n)hn∗(x)

=
l∑

n=1

p(n)hn∗(x) +
∞∑

n=l+1

k∑

i=1

(

a(i) +
max(l,i−1)∑

j=0

b(i, j)

n − j

)

p(n − i)hn∗(x)

=
l∑

n=1

(

p(n) −
k∑

i=1

a(i)p(n − i)

)

hn∗(x)

−
k∑

i=1

max(l,i−1)∑

j=0

l∑

n=j+1

b(i, j)

n − j
p(n − i)hn∗(x)

+
k∑

i=1

∞∑

n=1

a(i)p(n − i)hn∗(x) +
k∑

i=1

max(l,i−1)∑

j=0

∞∑

n=j+1

b(i, j)

n − j
p(n − i)hn∗(x)

=
l∑

n=1

(

p(n) −
k∑

i=1

a(i)p(n − i)

)

hn∗(x)

−
k∑

i=1

max(l,i−1)∑

j=0

l∑

n=j+1

b(i, j)

n − j
p(n − i)hn∗(x) +

k∑

i=1

x∑

y=0

a(i)hi∗(y)f (x − y)

+
k∑

i=1

max(l,i−1)∑

j=0

b(i, j)

(

c(i − j)hj∗(x)

+ 1

i − j

x−1∑

y=0

hj∗(y)

x−y∑

z=1

z

x − y
h(i−j)∗(z)f (x − y − z)

)

.

Solving for f (x) gives (5.14). �
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Unfortunately, evaluation of the function c involves a summation over an infinite
range. However, this summation vanishes when h ∈ P11. In that case, (5.14) reduces
to

f (x) =
l∑

n=1

(

p(n) −
k∑

i=1

a(i)p(n − i)

)

hn∗(x)

−
k∑

i=1

max(l,i−1)∑

j=0

l∑

n=j+1

b(i, j)

n − j
p(n − i)hn∗(x) +

k∑

i=1

x∑

y=i

a(i)hi∗(y)f (x − y)

+
k∑

i=1

max(l,i−1)∑

j=0

b(i, j)

i − j

x−1∑

y=j

hj∗(y)

x−y∑

z=i−j

z

x − y
h(i−j)∗(z)f (x − y − z).

(x = 1,2, . . . )

5.2 Convolutions of the Severity Distribution

We see that in recursions like (5.13) we might need to evaluate hi∗ for i =
1,2, . . . , k. For these evaluations, the recursions of Sect. 2.4 do not seem to be ef-
ficient unless many of the hi∗s vanish because a(i) = b(i) = 0. Normally, it would
be more efficient to use that the convolution of two distributions h1, h2 ∈ P10 can
be evaluated by

(h1 ∗ h2)(y) =
y∑

z=0

h1(z)h2(y − z). (y = 0,1,2, . . . )

At first glance, it might then seem natural to evaluate hi∗ by applying this procedure
with h1 = h and h2 = h(i−1)∗. However, when i is even, it seems more efficient to
use h1 = h2 = hi/2∗ as then

hi∗(y) = 2
[(y−1)/2]∑

z=0

hi/2∗(z)hi/2∗(y − z) + I (y even)hi/2∗(y/2)2. (5.15)

(y = 0,1,2, . . . )

For some classes of severity distributions, there are other ways of evaluating these
convolutions. For instance, if h belongs to P10 and satisfies the recursion (2.38), then
Theorem 2.7 gives that

hi∗(y) =
(

a + (a + b)i − a

y

)

hi∗(y − 1). (i, y = 1,2, . . . )
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5.3 The Rk Classes

5.3.1 Definitions and Characterisation

If the extension (5.13) of the Panjer recursion (2.79) should be of interest, then there
have to exist interesting counting distributions p satisfying (5.12). To find out about
that, we shall in the following look into the properties of these distributions, and to
do that, we need some notation.

We denote the distribution p given by (5.12) by Rk[a, b]. For simplicity, we
often drop the argument in the functions a and b when k = 1. We denote by Rk the
class of all distributions in P10 that can be represented in the form Rk[a, b] with the
same k. As a distribution in Rk−1 can be expressed as a distribution in Rk by letting
a(k) = b(k) = 0, we have that Rk−1 ⊂ Rk . Hence, it is of interest to study the sets
R0

k = Rk ∼ Rk−1 for k = 1,2, . . . , that is, the set of distributions that satisfy (5.12),
but not such a recursion of lower order. The class R0 consists of only the degenerate
distribution concentrated in zero. We also introduce the limiting classes R∞ = P10

and R0∞ = R∞ ∼ ⋃∞
k=0 Rk , that is, the set of distributions in P10 that cannot be

represented in the form Rk[a, b] with a finite k.
For studying the properties of the Rk classes, it will be convenient to introduce

the functions

ρp(s) = d

ds
ln τp(s) = τ ′

p(s)

τp(s)
. (p ∈ P10) (5.16)

The distribution p is uniquely determined by ρp .

Theorem 5.2 A distribution p ∈ P10 can be expressed as Rk[a, b] iff

ρp(s) =
∑k

i=1(ia(i) + b(i))si−1

1 − ∑k
i=1 a(i)si

= τ ′
a(s) + τb(s)/s

1 − τa(s)
. (5.17)

Proof If p can be expressed as Rk[a, b], then

τ ′
p(s) =

∞∑

n=1

nsn−1p(n) =
∞∑

n=1

nsn−1
k∑

i=1

(

a(i) + b(i)

n

)

p(n − i)

=
k∑

i=1

∞∑

n=1

sn−1(na(i) + b(i))p(n − i)

=
k∑

i=1

∞∑

n=0

sn+i−1((n + i)a(i) + b(i))p(n)

=
k∑

i=1

(

(ia(i) + b(i))si−1
∞∑

n=0

snp(n) + a(i)si
∞∑

n=0

nsn−1p(n)

)
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=
k∑

i=1

((ia(i) + b(i))si−1τp(s) + a(i)siτ ′
p(s)),

that is,

τ ′
p(s)

(

1 −
k∑

i=1

a(i)si

)

= τp(s)

k∑

i=1

(ia(i) + b(i))si−1,

from which we obtain (5.17). Hence, (5.17) is a necessary condition for p to be rep-
resentable in the form Rk[a, b]. As ρp determines p uniquely, it is also a sufficient
condition, and, thus, Theorem 5.2 is proved. �

From this theorem, we immediately get the following characterisation of Rk .

Corollary 5.1 A distribution in P10 belongs to Rk iff the derivative of the natural
logarithm of its generating function can be expressed as the ratio between a polyno-
mial of degree at most k − 1 and a polynomial of degree at most k with a non-zero
constant term.

Combining Theorem 5.2 with (3.3) gives the following corollary.

Corollary 5.2 A mixed Poisson distribution with mixing distribution U can be ex-
pressed as Rk[a, b] iff

d

ds
lnγU(1 − s) = −γ ′

U(1 − s)

γU (1 − s)
=

∑k
i=1(ia(i) + b(i))si−1

1 − ∑k
i=1 a(i)si

.

By multiplying numerator and denominator in the first fraction of (5.17) by
1 − qs for some constant q and expressing these products as polynomials in s, we
can express ρp in the form

ρp(s) =
∑k+1

i=1 (iaq(i) + bq(i))si−1

1 − ∑k+1
i=1 aq(i)si

with the functions aq and bq depending on q . Then we have that p is Rk+1[aq, bq ].
As this holds for all values of q , we see that for a distribution Rk+1[c, d] ∈ Rk+1,
the functions c and d are not unique.

Example 5.1 Let us look at the simple case where p is the Poisson distribution
Po(λ), that is, p is R1[0, λ]. Then, for any number q ,

ρp(s) = λ = λ(1 − qs)

1 − qs
,
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from which we see that p is R2[aq, bq ] with aq(1) = q , bq(1) = λ − q , aq(2) = 0,
and bq(2) = −qλ, Hence,

p(n) =
(

q + λ − q

n

)

p(n − 1) − qλ

n
p(n − 2), (n = 1,2, . . . )

and this holds for any value of q . �

We have now seen that the functions a and b are not unique for a distribution
Rk[a, b] ∈ Rk , but what if Rk[a, b] ∈ R0

k? The following theorem gives the answer.

Theorem 5.3 If Rk[a, b] ∈ R0
k with k < ∞, then the functions a and b are unique.

Proof If p is Rk[a, b] ∈ R0
k , then there exists no k′ < k and no functions a′ and b′

such that p is Rk′ [a′, b′], that is,

ρp(s) =
∑k′

i=1(ia
′(i) + b′(i))si−1

1 − ∑k′
i=1 a′(i)si

.

This means that the polynomials in the numerator and denominator in the first frac-
tion of (5.17) cannot have any common factor, and hence, their coefficients must be
unique, that is, a and b are unique. �

In Theorem 5.3, we had to make the assumption that k < ∞ as the uniqueness
property does not hold for R0∞. If p is R∞[a, b], then (5.12) can be written as

p(n) =
n∑

i=1

(

a(i) + b(i)

n

)

p(n − i). (n = 1,2, . . . ) (5.18)

From this, we easily see that the uniqueness property cannot hold for any distribu-
tion R∞[a, b] ∈ R∞; for instance, for any function a, we can solve (5.18) for b(n).
Then we obtain

b(n) = 1

p(0)

(

np(n) −
n−1∑

i=1

(na(i) + b(i))p(n − i)

)

− na(n), (n = 1,2, . . . )

(5.19)
which gives a recursion for b. From this, we see that for any given p ∈ R∞ = P10
and any given function a, there exists a unique b such that p can be represented
as R∞[a, b]. For instance, we can choose a ≡ 0. In that case, (5.18) and (5.19)
reduce to

p(n) = 1

n

n∑

i=1

b(i)p(n − i); b(n) = 1

p(0)

(

np(n) −
n−1∑

i=1

b(i)p(n − i)

)

.

(n = 1,2, . . . )
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This looks familiar; by comparison with (4.14), we see that with this choice of a, b

becomes the De Pril transform ϕp of p, so that any p ∈ P10 can be represented
as R∞[0, ϕp]. Thus, many of the results that we prove for distributions in the Rk

classes, can also be applied in connection with De Pril transforms. We shall return
to that in Chap. 6.

5.3.2 Compound Distributions

In the following theorem, we reformulate the recursion (5.13) with our new notation,
also taking into account the effect of finite support for h.

Theorem 5.4 The compound distribution with counting distribution Rk[a, b] and
severity distribution h ∈ P10 is Rmk[ã, b̃] with m = sup{y : h(y) > 0} and ã and b̃

given by (5.10).

In the following corollary, we study the effect of thinning on Rk[a, b].

Corollary 5.3 The π -thinning of Rk[a, b] is Rk[aπ , bπ ] with

aπ(y) = πy

1 − τa(1 − π)

k∑

i=y

a(i)

(
i

y

)

(1 − π)i−y

bπ (y) = πy

1 − τa(1 − π)

k∑

i=y

b(i)

(
i − 1

y − 1

)

(1 − π)i−y

for y = 1,2, . . . , k.

Proof We let h be the Bernoulli distribution Bern(π). Then, for i = 1,2, . . . , hi∗ is
the binomial distribution bin(i,π), and the corollary follows from Theorem 5.4. �

From this corollary, we see that Rk is closed under thinning.
For k = 1, thinning was discussed in Sect. 2.7.2.
By letting the severity distribution h be concentrated in some positive integer m

and using that then its i-fold convolution hi∗ is concentrated in im for all positive
integers i, we obtain the following corollary to Theorem 5.4.

Corollary 5.4 If the random variable N has distribution Rk[a, b] and m is a posi-
tive integer, then mN has distribution Rmk[am,bm] with

(am(y), bm(y)) =
{

(a(y/m),mb(y/m)) (y = m,2m, . . . , km)

(0,0). (otherwise)

The following theorem is a reformulation of Theorem 2.3.
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Theorem 5.5 A compound Poisson distribution with Poisson parameter λ and
severity distribution h ∈ P10 that satisfies the conditions of Theorem 2.3, can be
expressed as Rr [χ,λη − χ].

5.3.3 Distributions in P10 on the Range {0,1,2, . . . , k}

The following theorem shows that any distribution in P10 on the range {0,1,2,

. . . , k} can be expressed as a distribution in Rk .

Theorem 5.6 Any distribution p ∈ P10 on the range {0,1,2, . . . , k} where k is a
positive integer or infinity, can be expressed as Rk[−p/p(0),2p/p(0)].

Proof From (5.16), we obtain

ρp(s) =
∑k

i=1 isi−1p(i)
∑k

i=0 sip(i)
=

∑k
i=1(i(− p(i)

p(0)
) + 2i

p(i)
p(0)

)si−1

1 − ∑k
i=1(− p(i)

p(0)
)si

.

From Theorem 5.2 follows that p is Rk[−p/p(0),2p/p(0)]. �

5.3.4 Convolutions

In Sect. 5.3.4, we shall prove some results on convolutions. We start softly with a
lemma.

Lemma 5.1 If p,q ∈ P10, then ρp∗q = ρp + ρq .

Proof We have

ρp∗q(s) = d

ds
ln τp∗q(s) = d

ds
ln(τp(s)τq(s)) = d

ds
(ln τp(s) + ln τq(s))

= d

ds
ln τp(s) + d

ds
ln τq(s) = ρp(s) + ρq(s). �

From this theorem, we realise that if ρp and ρq are represented in the form (5.17),
then we can find an analogous representation of ρp∗q by arranging the sum of these
two fractions as one fraction and sorting out the coefficients of the polynomials of
the denominator and the numerator. The simplest case is obviously when the two
initial fractions have the same denominator. Then the sum of these fractions has the
same denominator, and the numerator is the sum of the numerators of the initial
fractions. We start with that case.
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Theorem 5.7 The convolution of the M distributions Rk[a, b1],Rk[a, b2], . . . ,
Rk[a, bM ] can be expressed as Rk[a, (M − 1)a + b•M ].

Proof For i = 1,2, . . . ,M , let pi denote the distribution Rk[a, bi]. By application
of Lemma 5.1 and Theorem 5.2, we obtain

ρ∗M
j=1pj

(s) =
M∑

j=1

ρpj
(s) =

M∑

j=1

∑k
i=1(ia(i) + bj (i))s

i−1

1 − ∑k
i=1 a(i)si

=
∑k

i=1(Mia(i) + b•M(i))si−1

1 − ∑k
i=1 a(i)si

=
∑k

i=1(ia(i) + ((M − 1)a + b•M)(i))si−1

1 − ∑k
i=1 a(i)si

,

which gives that ∗M
j=1pj is Rk[a, (M − 1)a + b•M ]. �

By letting all the bj s be equal, we obtain the following corollary.

Corollary 5.5 The M-fold convolution of Rk[a, b] is Rk[a, (M − 1)a + Mb].

By combining this with Theorem 5.6, we obtain the following corollary.

Corollary 5.6 For any distribution p ∈ P10 on the range {0,1,2, . . . , k} where
k is a positive integer or infinity, pM∗ can be expressed as Rk[−p/p(0),

(M + 1)p/p(0)], so that

pM∗(n) = 1

p(0)

k∑

i=1

(

(M + 1)
i

n
− 1

)

p(i)pM∗(n − i). (n = 1,2, . . . )

This is the same recursion that we got in Theorem 2.8.

Example 5.2 Let p ∈ P10 be the discrete uniform distribution given by (2.24). Then
Theorem 5.6 gives that p can be expressed as Rk[a, b] with

a(i) = −1; b(i) = 2i. (i = 1,2, . . . , k) (5.20)

If h ∈ P10, then Theorem 5.4 gives

(p ∨ h)(x) = 1 − h(0)

x(1 − h(0)k+1)

x∑

y=1

(2y − x)(p ∨ h)(x − y)

k∑

i=1

hi∗(y),

(x = 1,2, . . . )

and in Example 2.6, we presented a recursion for pM∗. In the following, we shall
deduce simpler recursions for pM∗ and p ∨ h in the present case.
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Insertion of (2.25) and (2.26) in the last expression in (5.16) gives

ρp(s) = 1 − (k + 1)sk + ksk+1

(1 − sk+1)(1 − s)
= 1 − (k + 1)sk + ksk+1

1 − (s + sk+1 − sk+2)
. (5.21)

Hence, p can be expressed as Rk+2[α,β] with

α(1) = α(k + 1) = 1; α(k + 2) = −1

β(1) = 0; β(k + 1) = −2(k + 1); β(k + 2) = 2(k + 1)

α(i) = β(i) = 0, (i = 2,3, . . . , k)

that is,

p(n) = p(n − 1) +
(

1 − 2
k + 1

n

)

(p(n − k − 1) − p(n − k − 2)).

(n = 1,2, . . . )

Application of Corollary 5.5 gives that pM∗ can be expressed as Rk+2[α,βM ]
with

βM(1) = M − 1

βM(i) = 0 (i = 2,3, . . . , k)

βM(k + 1) = −(M + 1)(k + 1); βM(k + 2) = (M + 1)k + 2

that is,

pM∗(n) =
(

1 + M − 1

n

)

pM∗(n − 1) +
(

1 − (M + 1)(k + 1)

n

)

pM∗(n − k − 1)

+
(

(M + 1)k + 2

n
− 1

)

pM∗(n − k − 2), (n = 1,2, . . . ) (5.22)

and Theorem 5.4 gives that

(p ∨ h)(x) = 1

(1 − h(0)k+1)(1 − h(0))

x∑

y=1

(

h(y) +
(

1 − 2
y

x

)

h(k+1)∗(y)

+
(

2
k + 1

k + 2

y

x
− 1

)

h(k+2)∗(y)

)

(p ∨ h)(x − y). (x = 1,2, . . . )

(5.23)

If k is large, then it seems reasonable to evaluate h(k+1)∗ recursively by Theo-
rem 2.10 and h(k+2)∗ by

h(k+2)∗(y) =
y∑

z=0

h(z)h(k+1)∗(y − z). (y = 0,1,2, . . . )
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It is interesting to note that in the present case, although p can be expressed as
a distribution in Rk , it seems more efficient to express it as a distribution in Rk+2

when k is large.
In Example 5.4, we shall deduce a much simpler recursion for p ∨ h. �

When k = 1, Theorem 5.7 reduces to the following corollary, which is equivalent
with Theorem 2.7.

Corollary 5.7 The convolution of the M distributions R1[a, b1],R1[a, b2], . . . ,
R1[a, bM ] can be expressed as R1[a, (M − 1)a + b•M ].

In particular, we obtain that the M-fold convolution of R1[a, b] can be expressed
as R1[a, (M − 1)a + Mb].

Till now, we have discussed convolutions of distributions with the same func-
tion a. Unfortunately, the situation gets much more complicated when they do not
have the same a. We turn to that case now.

Theorem 5.8 The convolution of Rk1 [a1, b1] and Rk2[a2, b2] can be expressed as
Rk1+k2[a, b] with

a(i) = a1(i) + a2(i) −
min(i−1,k1)∑

j=max(1,i−k2)

a1(j)a2(i − j) (5.24)

b(i) = b1(i) + b2(i) −
min(i−1,k1)∑

j=max(1,i−k2)

(b1(j)a2(i − j) + a1(j)b2(i − j))

for i = 1,2, . . . , k1 + k2.

Proof Let pj be Rkj
[aj , bj ] for j = 1,2. By using Lemma 5.1 and Theorem 5.2,

we obtain

ρp1∗p2(s) =
2∑

j=1

ρpj
(s) =

2∑

j=1

∑kj

i=1(iaj (i) + bj (i))s
i−1

1 − ∑kj

i=1 aj (i)si
,

which gives

ρp1∗p2(s) =
(

k1∑

i=1

(ia1(i) + b1(i))s
i−1

(

1 −
k2∑

j=1

a2(j)sj

)

+
k2∑

i=1

(ia2(i) + b2(i))s
i−1

(

1 −
k1∑

j=1

a1(j)sj

))
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/((

1 −
k1∑

i=1

a1(i)s
i

)(

1 −
k2∑

j=1

a2(j)sj

))

=
∑k1+k2

i=1 (ic(i) + d(i))si−1

1 − ∑k1+k2
i=1 c(i)si

(5.25)

for some functions c and d . It remains to show that c = a and d = b.
By equating the denominators in (5.25), we obtain

k1+k2∑

i=1

c(i)si = 1 −
(

1 −
k1∑

i=1

a1(i)s
i

)(

1 −
k2∑

i=1

a2(i)s
i

)

=
k1∑

i=1

a1(i)s
i +

k2∑

i=1

a2(i)s
i −

k1∑

j=1

k2∑

i=1

a1(j)a2(i)s
i+j

=
k1+k2∑

i=1

(

a1(i) + a2(i) −
min(i−1,k1)∑

j=max(1,i−k2)

a1(j)a2(i − j)

)

si

=
k1+k2∑

i=1

a(i)si .

Hence, c = a.
By using this and equating the numerators in (5.25), we obtain

k1+k2∑

i=1

(ia(i) + d(i))si−1

=
k1+k2∑

i=1

(ic(i) + d(i))si−1 =
k1∑

i=1

(ia1(i) + b1(i))s
i−1

(

1 −
k2∑

j=1

a2(j)sj

)

+
k2∑

j=1

(ja2(j) + b2(j))sj−1

(

1 −
k1∑

i=1

a1(i)s
i

)

=
k1+k2∑

i=1

(

i(a1(i) + a2(i)) + b1(i) + b2(i)

−
min(i−1,k1)∑

j=max(1,i−k2)

(ia1(j)a2(i − j) + b1(j)a2(i − j) + a1(j)b2(i − j))

)

si−1

=
k1+k2∑

i=1

(ia(i) + b(i))si−1.

Hence, d = b.
This completes the proof of Theorem 5.8. �
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We can obviously deduce a representation of lower order for the convolution
when the denominators 1 − ∑k1

i=1 a1(i)s
i and 1 − ∑k2

j=1 a2(j)sj have a common
factor. The extreme case is when a1 = a2; that is the case treated in Theorem 5.7.

Theorem 5.8 gives in particular that the convolution of R1[a1, b1] and R1[a2, b2]
can be expressed as R2[a, b] with

a(1) = a1 + a2; a(2) = −a1a2 (5.26)

b(1) = b1 + b2; b(2) = −a1b2 − a2b1. (5.27)

We see that a(2) = 0 iff at least one of these distributions is Poisson.

Example 5.3 Let p be a mixed Poisson distribution with shifted Gamma mixing
distribution with density

u(θ) = βα

�(α)
(θ − λ)α−1e−β(θ−λ). (θ > λ;β,α,λ > 0)

In this case, p is called a Delaporte distribution.
Our shifted Gamma distribution can be interpreted as the convolution of the dis-

tribution concentrated in λ and the Gamma distribution Gamma(α,β). Hence, The-
orem 3.1 gives that p is the convolution of the Poisson distribution Po(λ), that is,
R1[0, λ], and a mixed Poisson distribution with mixing distribution Gamma(α,β).
In Sect. 3.2, we showed that that mixed distribution is the negative binomial dis-
tribution NB(α, (β + 1)−1), and, from Table 2.1, we obtain that that distribution is
R1[(β + 1)−1, (α − 1)(β + 1)−1]. Application of (5.26) and (5.27) gives that p is
R2[a, b] with

a(1) = 1

β + 1
; a(2) = 0; b(1) = α − 1

β + 1
+ λ; b(2) = − λ

β + 1
.

(5.28)
Hence,

p(n) = 1

β + 1

((

1 + α + βλ + λ − 1

n

)

p(n − 1) − λ

n
p(n − 2)

)

.

(n = 1,2, . . . )

If f = p ∨ h with h ∈ P10, then (5.13) gives that

f (x) = 1

β + 1 − h(0)

×
x∑

y=1

f (x − y)

((

1 + (α + βλ + λ − 1)
y

x

)

h(y) − λ

2

y

x
h2∗(y)

)

.

(x = 1,2, . . . )
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As p is the convolution between a Poisson distribution and a negative binomial
distribution, we could also have evaluated p and f by the algorithms of Exam-
ple 4.4. �

To extend Theorem 5.8 to the convolution of M distributions seems rather messy.
However, let us have a go on the special case of M distributions in R1.

Theorem 5.9 The convolution of the M distributions R1[a1, b1],R1[a2, b2], . . . ,
R1[aM,bM ] can be expressed as RM [a, b] with

a(i) = (−1)i+1
∑

1≤j1<j2<···<ji≤M

i∏

k=1

ajk
(i = 1,2, . . . ,M)

b(i) = (−1)i+1
M∑

l=1

bl

∑

1≤j1<j2<···<ji−1≤M
jk �=l (k=1,2,...,i−1)

i−1∏

k=1

ajk
− (i − 1)a(i)

= (−1)i+1
M∑

l=1

(bl − (i − 1)al)
∑

1≤j1<j2<···<ji−1≤M
jk �=l (k=1,2,...,i−1)

i−1∏

k=1

ajk

(i = 2,3, . . . ,M)

b(1) = b•M.

Proof That the convolution of M distributions in R1 is in RM , follows from Theo-
rem 5.8. Hence, there exist functions c and d such that the convolution is RM [c, d].
It remains to show that c = a and b = d .

Application of Theorem 5.2 and Lemma 5.1 gives

∑M
i=1(ic(i) + d(i))si−1

1 − ∑M
i=1 c(i)si

=
M∑

i=1

ai + bi

1 − ais
=

∑M
i=1(ai + bi)

∏
j �=i (1 − aj s)

∏M
i=1(1 − ais)

.

By equating the denominators, we obtain

M∑

i=1

c(i)si = 1 −
M∏

i=1

(1 − ais) = −
M∑

i=1

(−s)i
∑

1≤j1<j2<···<ji≤M

i∏

k=1

ajk
=

M∑

i=1

a(i)si ,

that is, c = a, and equating the numerators gives

M∑

i=1

(ia(i) + d(i))si−1

=
M∑

i=1

(ic(i) + d(i))si−1 =
M∑

i=1

(ai + bi)
∏

j �=i

(1 − aj s)
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=
M∑

l=1

(al + bl) +
M∑

i=2

(−s)i−1
M∑

l=1

(al + bl)
∑

1≤j1<j2<···<ji−1≤M
jk �=l (k=1,2,...,i−1)

i−1∏

k=1

ajk

=
M∑

i=1

(ia(i) + b(i))si−1,

that is, d = b.
This completes the proof of Theorem 5.9. �

In particular, we obtain a(1) = ∑M
i=1 ai .

Even in the present case, it seems more convenient to evaluate a and b recursively
by Theorem 5.8 than by using Theorem 5.9. Such a procedure is described in the
following corollary that immediately follows from Theorem 5.8.

Corollary 5.8 For k = 1,2, . . . , the convolution of the k distributions R1[a1, b1],
R1[a2, b2], . . . ,R1[ak, bk] can be expressed as Rk[αk,βk], where the functions αk

and βk can be evaluated recursively by

αk(i) =
{

αk−1(i) − akαk−1(i − 1) (i = 2,3, . . . , k)

αk−1(1) + ak (i = 1)
(5.29)

βk(i) =
{

βk−1(i) − akβk−1(i − 1) − bkαk−1(i − 1) (i = 2,3, . . . , k)

βk−1(1) + bk. (i = 1)
(5.30)

with initial values α1(1) = a1 and β1(1) = b1.

5.3.5 Cumulants

The following theorem gives a recursion for the cumulants of a compound Rk dis-
tribution.

Theorem 5.10 If F = p∨H where p is Rk[a, b] and H is a univariate distribution,
then

κF (j) = 1

1 − μa(0)

(

μ(a+�b)∨H (j) +
j−1∑

u=1

(
j − 1

u

)

μa∨H (u)κF (j − u)

)

,

(j = 1,2, . . . ) (5.31)

provided that the quantities in this formula exist.
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Proof By application of (1.11), (1.31), (5.16), and (5.17), we obtain

θ ′
F (s) = d

ds
lnωF (s) = d

ds
ln τp(ωH (s)) = τ ′

p(ωH (s))

τp(ωH (s))
ω′

H (s)

= ρp(ωH (s))ω′
H (s) =

∑k
i=1(ia(i) + b(i))ωH (s)i−1

1 − ∑k
i=1 a(i)ωH (s)i

ω′
H (s),

which gives

θ ′
F (s) =

k∑

i=1

(ia(i) + b(i))ωH (s)i−1ω′
H (s) + θ ′

F (s)

k∑

i=1

a(i)ωH (s)i

= d

ds

k∑

i=1

(

a(i) + b(i)

i

)

ωH (s)i + ωa∨H (s)θ ′
F (s)

= ω′
(a+�b)∨H (s) + ωa∨H (s)θ ′

F (s),

that is,

∞∑

j=1

κF (j)

j ! jsj−1 =
∞∑

j=1

μ(a+�b)∨H (j)

j ! jsj−1 +
∞∑

u=0

μa∨H (u)

u! su
∞∑

j=1

κF (j)

j ! jsj−1,

which we rewrite as
∞∑

j=1

κF (j)

(j − 1)! s
j−1 =

∞∑

j=1

1

(j − 1)!

(

μ(a+�b)∨H (j)

+
j−1∑

u=0

(
j − 1

u

)

μa∨H (u)κF (j − u)

)

sj−1.

Comparison of coefficients gives that for j = 1,2, . . . , we have

κF (j) = μ(a+�b)∨H (j) +
j−1∑

u=0

(
j − 1

u

)

μa∨H (u)κF (j − u).

Solving for κF (j) gives

κF (j) = 1

1 − μa∨H (0)

(

μ(a+�b)∨H (j) +
j−1∑

u=1

(
j − 1

u

)

μa∨H (u)κF (j − u)

)

.

As

μa∨H (0) =
k∑

i=1

a(i)μHi∗(0) =
k∑

i=1

a(i) = μa(0),

(5.31) follows. �
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For H concentrated in one, (5.31) gives

κp(j) = 1

1 − μa(0)

(

μa(j) + μb(j − 1) +
j−1∑

u=1

(
j − 1

u

)

μa(u)κp(j − u)

)

.

(j = 1,2, . . . ) (5.32)

In the special case when p is R1[a, b], (5.31) and (5.32) reduce to

κF (j) = 1

1 − a

(

(a + b)μH (j) + a

j−1∑

u=1

(
j − 1

u

)

μH (u)κF (j − u)

)

(5.33)

κp(j) = 1

1 − a

(

a + b + a

j−1∑

u=1

(
j − 1

u

)

κp(j − u)

)

(5.34)

for j = 1,2, . . . .
Let us apply the recursions (5.33) and (5.34) to the three main classes in R1. The

values of a and b are found in Table 2.1.

1. Poisson distribution Po(λ). In this case, we obtain

κF = λμH (5.35)

and κp ≡ λ. By combining this with Theorem 4.2, we see that an infinitely di-
visible distribution in P10 whose cumulant generating function exists, has non-
negative cumulants of all orders.

2. Binomial distribution bin(M,π). For j = 1,2, . . . , we obtain

κF (j) = π

(

MμH (j) −
j−1∑

u=1

(
j − 1

u

)

μH (u)κF (j − u)

)

κp(j) = π

(

M −
j−1∑

u=1

(
j − 1

u

)

κp(j − u)

)

. (5.36)

3. Negative binomial distribution NB(α,π). For j = 1,2, . . . , we obtain

κF (j) = π

1 − π

(

αμH (j) +
j−1∑

u=1

(
j − 1

u

)

μH (u)κF (j − u)

)

κp(j) = π

1 − π

(

α +
j−1∑

u=1

(
j − 1

u

)

κp(j − u)

)

.
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Theorem 5.11 If h ∈ P10 satisfies the conditions of Theorem 2.3, then its non-
central moments satisfy the recursion

μh(j) = 1

1 − μχ(0)

(

μη(j − 1) +
j−1∑

u=1

(
j − 1

u

)

μχ(u)μh(j − u)

)

,

(j = 1,2, . . . ) (5.37)

provided that the quantities in this formula exist.

Proof Let f be a compound Poisson distribution with Poisson parameter one and
severity distribution h. By Theorem 5.5, f can be represented in the form Rr [χ,

η − χ], and (5.35) gives that κF = μh. By application of these results in (5.32),
we obtain (5.37). �

With r = ∞, η = h, and χ ≡ 0, the right-hand side of (5.37) reduces to μh(j).
In Sect. 9.2, we shall study recursions for moments of compound distributions

more generally.

5.4 Counting Distributions with Rational Generating Function

We assume that p ∈ P10 satisfies the condition

τp(s) =
∑m

i=0 α(i)si

1 − ∑m
i=1 β(i)si

(5.38)

for some positive integer m and functions α and β . Then

ρp(s) =
∑m

i=1 iα(i)si−1(1 − ∑m
j=1 β(j)sj ) + ∑m

i=0 α(i)si
∑m

j=1 jβ(j)sj−1

∑m
i=0 α(i)si(1 − ∑m

j=1 β(j)sj )
,

(5.39)
and Theorem 5.2 gives that p ∈ R2m. Thus, p can be evaluated recursively by (5.12).
However, like in Sect. 2.3.3, we obtain that p satisfies the relation p = α + β ∗ p,
from which we obtain the alternative recursion

p(n) = α(n) +
m∑

i=1

β(i)p(n − i). (n = 0,1,2, . . . ) (5.40)

If f = p ∨ h with h ∈ P10, then application of (5.40) and (5.8) gives

f (x) = 1

1 − τβ(h(0))

(
m∑

i=1

α(i)hi∗(x) +
x∑

y=1

f (x − y)

m∑

i=1

β(i)hi∗(y)

)

.

(x = 1,2, . . . ) (5.41)
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Example 5.4 Let p ∈ P10 be the discrete uniform distribution given by (2.24). Then

p(n) = I (n = 0) − I (n = k + 1)

k + 1
+ p(n − 1), (n = 1,2, . . . )

that is, (5.40) is satisfied with

m = k + 1; α(0) = 1

k + 1
; α(k + 1) = − 1

k + 1
; β(1) = 1,

and α(i) and β(i) equal to zero for all other values of i. Application of (5.41) gives
the recursion

f (x) = 1

1 − h(0)

(
x∑

y=1

h(y)f (x − y) − h(k+1)∗(x)

k + 1

)

, (x = 1,2, . . . )

which is much simpler than (5.23). The convolution h(k+1)∗ can be evaluated recur-
sively by Theorem 2.10. �

Further Remarks and References

Schröter (1990) characterised the subclass of distributions R2[a, b] ∈ R2 with
a(2) = 0. For compound distributions with counting distribution in this class and
severity distribution in P10, he deduced the recursion (5.13), and in that connection
he indicated (5.4) for general i.

In particular, Schröter showed that his class contained the convolutions of a Pois-
son distribution and another distribution in the Panjer class. That was a strong in-
dication that convolutions could be a clue for deducing more general results. This
was followed up in Sundt (1992), from which most of the results and notation in this
chapter originate.

The Delaporte distribution was introduced by Delaporte (1959) for fitting the
numbers of claims in an automobile insurance portfolio and has later been studied by
Delaporte (1960, 1972a, 1972b), Philipson (1960), Kupper (1962), Albrecht (1981,
1984), Ruohonen (1983, 1988), Willmot and Sundt (1989), and Schröter (1990).
The recursions of Example 5.3 were presented by Schröter (1990).

Corollary 5.8 was deduced by Sundt and Vernic (2006).
Example 5.2 is based on Sundt (1999a). Recursive evaluation of the M-fold

convolution of a discrete uniform distribution had earlier been discussed by Sundt
(1988).

Sundt et al. (1998) deduced the recursion (5.32).
Sundt (2002) presented the procedure for recursive evaluation of a compound

distribution with counting distribution given by (2.73) in a more general setting
with counting distribution satisfying a recursion of higher order.

Gerhold et al. (2008) presented an extended version of the recursion (5.8).
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Kitano et al. (2005) studied the generalised Charlier distribution p ∈ P10, which
satisfies a recursion on the form

p(n) =
(

a + b

n

)

p(n − 1) +
(

c + d

n
+ f

n − 1

)

p(n − 2). (n = 2,3, . . . )

In particular, they proved Theorem 5.1 for this p.
Sundt and Dickson (2000) discussed the procedure for evaluation of h2∗, h3∗, . . . ,

hk∗ outlined in Sect. 5.2.
With a somewhat different parameterisation, Eisele (2006) deduced the recursion

(5.41) within the framework of phase distributions and compared it with the recur-
sion based on the R2m representation (5.39) of the counting distribution. He also
considered the case with continuous severity distribution.

Wang and Sobrero (1994) presented an algorithm for recursive evaluation of
compound distributions with severity distribution in P10 and counting distribution
p ∈ P10 that satisfies a recursion in the form

p(n) =
k∑

i=1

∑t
j=0 c(i, j)nj

∑t
j=0 d(j)nj

p(n − i). (n = l + 1, l + 2, . . . )

The recursion (5.11) is obtained by letting

t = 1; d(0) = 0; d(1) = 1

c(i,0) = b(i); c(i,1) = a(i). (i = 1,2, . . . )

Doray and Haziza (2004) discussed statistical inference in the Rk classes.
Note that in (5.9) and (5.10), we defined q̃(y), ã(y), and b̃(y) for y = 1,2, . . . ;

we did not give the definitions

q̃ = q ∨ h

1 − τa(h(0))

ã = a ∨ h

1 − τa(h(0))
(5.42)

b̃ = (�b ∨ h)

1 − τa(h(0))
.

The reason is that when h ∈ P10, the latter definitions could give a non-zero mass
at zero. This could create problems. Let us look at an example. Let p be Rk[a, b]
and h,g ∈ P10. We want to evaluate (p ∨ h) ∨ g. With ã and b̃ given by (5.10), two
applications of (5.13) give

((p ∨ h) ∨ g)(x) = 1

1 − τã(g(0))

x∑

y=1

(

(ã ∨ g)(y) + (�b̃ ∨ g)(y)

x

)

× ((p ∨ h) ∨ g)(x − y).
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Here, τã(g(0)) = ∑∞
y=1 ã(y)g(0)y , whereas with the definition (5.42), we get

τã(g(0)) = ∑∞
y=0 ã(y)g(0)y with

ã(0) = (a ∨ h)(0)

1 − τa(h(0))
= τa(h(0))

1 − τa(h(0))
.



Chapter 6
De Pril Transforms of Distributions in P10

Summary

Within the context of infinitely divisible distributions in P10, we defined the De Pril
transform and studied some of its properties in Sect. 4.4. In the present chapter, we
shall study the De Pril transform more generally for all distributions in P10.

In Sect. 6.1, we recapitulate some results from Sect. 4.4, define the De Pril trans-
form of a distribution in P10, and present some of its properties. Most of these
properties follow immediately as corollaries to results from Sect. 5.3.

In Sect. 6.2, we more specifically consider De Pril transforms of distributions
within the Rk classes.

6.1 General Results

In Sect. 4.4, we defined the De Pril transform ϕf of a distribution f ∈ P10 by (4.14)
and discussed some of its properties for infinitely divisible distributions. In particu-
lar, we

• showed that the De Pril transform of the convolution of M infinitely divisible
distributions in P10 is the sum of the De Pril transforms of these distributions

• found the expression (4.19) for the De Pril transform of a compound distribution
with severity distribution in P11 and infinitely divisible counting distribution in
terms of the severity distribution and the De Pril transform of the counting distri-
bution

• found the expressions (4.17) and (4.20) for the De Pril transform of a Poisson
distribution and a negative binomial distribution respectively

• presented De Pril’s first method for evaluating the convolution of M infinitely
divisible distributions in P10

• showed that a distribution in P10 is infinitely divisible iff its De Pril transform is
non-negative.

Consistent with the definition of the De Pril transform of an infinitely divisible
distribution in P10 in Sect. 4.4.1, for any distribution f ∈ P10, we now define its
De Pril transform ϕf ∈ P11 recursively by

ϕf (x) = 1

f (0)

(

xf (x) −
x−1∑

y=1

ϕf (y)f (x − y)

)

. (x = 1,2, . . . ) (6.1)

B. Sundt, R. Vernic, Recursions for Convolutions and Compound Distributions
with Insurance Applications, EAA Lecture Notes,
DOI 10.1007/978-3-540-92900-0_6, © Springer-Verlag Berlin Heidelberg 2009
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By solving for f (x), we obtain the recursion

f (x) = 1

x

x∑

y=1

ϕf (y)f (x − y). (x = 1,2, . . . ) (6.2)

Multiplication by x gives the more compact representation

f = ϕf ∗ f. (6.3)

In Sect. 5.3.1, we showed that any distribution f ∈ P10 can be represented in
the form R∞[0, ϕf ]. This means that we can obtain results for De Pril transforms
as special cases of results that we proved in Chap. 5 for distributions in the Rk

classes; the following corollaries follow immediately from Theorem 5.7, Corol-
lary 5.5, Theorem 5.4, Corollary 5.3, Corollary 5.4, Theorem 5.2, and (5.32) re-
spectively. For infinitely divisible distributions, Corollaries 6.1 and 6.3 were proved
already in Sect. 4.4.1.

Corollary 6.1 The De Pril transform of the convolution of a finite number of distri-
butions in P10 is the sum of the De Pril transforms of these distributions.

Corollary 6.2 The De Pril transform of the M-fold convolution of a distribution in
P10 is M times the De Pril transform of that distribution.

Corollary 6.3 If p ∈ P10 and h ∈ P11, then

ϕp∨h = (�ϕp ∨ h). (6.4)

Corollary 6.4 If pπ is the π -thinning of a distribution p ∈ P10, then

ϕpπ (x) = πx

∞∑

y=x

ϕp(y)

(
y − 1

x − 1

)

(1 − π)y−x . (x = 1,2, . . . )

Corollary 6.5 If the random variable N has distribution p ∈ P10 and pm is the
distribution of mN for some positive integer m, then

ϕpm(x) =
{

mϕp(x/m) (x = m,2m, . . . )

0. (otherwise)

Corollary 6.6 If f ∈ P10, then

τϕf
= ρf . (6.5)

Corollary 6.7 If f ∈ P10, then

κf (j) = μϕf
(j − 1). (j = 1,2, . . . ) (6.6)
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In Sect. 4.4.1, we proved Corollary 6.1 for infinitely divisible distributions in P10.
Now that we know that it holds for all distributions in P10, we see that De Pril’s first
method for evaluating the convolution of M distributions holds for all distributions
in P10, not only for the infinitely divisible ones.

Example 6.1 Let f ∈ P10 be the discrete uniform distribution given by (2.24). In-
sertion of (2.24) in (6.1) gives

ϕf (x) = xI (x ≤ k) −
x−1∑

y=max(1,x−k)

ϕf (y). (x = 1,2, . . . )

From this, we obtain that ϕf (x) = 1 for x = 1,2, . . . , k. For x = k + 1, k + 2, . . . ,
we have ϕf (x) = −∑x−1

y=x−k ϕf (y), from which we see that ϕf (y(k + 1)) = −k for
y = 1,2,3, . . . , and ϕf (x) = 1 otherwise. Hence,

ϕf = 1 − (k + 1)δk (6.7)

with

δk(x) =
{

1 (x = k + 1,2(k + 1), . . . )

0. (otherwise)

For j = 1,2, . . . ,M , let fj be the discrete uniform distribution on 0,1,2, . . . , kj .
Then application of (6.7) and Corollary 6.1 gives

ϕ∗M
j=1fj

=
M∑

j=1

ϕfj
= M −

M∑

j=1

(kj + 1)δkj
, (6.8)

and by insertion in (6.2), we obtain

(∗M
j=1fj )(x) = 1

x

x∑

y=1

(

M −
M∑

j=1

(kj + 1)δkj
(y)

)

(∗M
j=1fj )(x − y)

= 1

x

(

M�(∗M
j=1fj )(x − 1)

−
M∑

j=1

(kj + 1)

[x/(kj +1)]∑

z=1

(∗M
j=1fj )(x − z(kj + 1))

)

.

(x = 1,2, . . . )

In particular,

f M∗(x) = M

x

x∑

y=1

(1 − (k + 1)δk(y))f M∗(x − y)
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= M

x

(

�f M∗(x − 1) − (k + 1)

[x/(k+1)]∑

z=1

f M∗(x − z(k + 1))

)

,

(x = 1,2, . . . )

but in that case the recursion (5.22) is more efficient. �

Insertion of (5.16) in (6.5) gives

τϕf
(s) = s

d

ds
ln τf (s) = s

τ ′
f (s)

τf (s)
, (6.9)

which defines the De Pril transform of f in terms of the generating function of f .
From (1.34), the last expression in (6.9), and (1.20) we obtain

τf = (τ ′
f ) = τϕf

τf = τϕf ∗f ,

which brings us back to (6.3).
From (4.29), we know that if p is infinitely divisible, then

μϕp(−1) = − lnp(0). (6.10)

We shall now show that this relation holds more generally.

Theorem 6.1 If p ∈ F10 and μ|ϕp |(−1) < ∞, then

κp(0) = lnp(0) + μϕp(−1). (6.11)

Proof By application of (1.27), (1.11), (5.16), (1.28), and Corollary 6.6, we obtain

κp(0) = θp(0) = ln τp(1) = ln τp(0) +
∫ 1

0

d

ds
ln τp(s)ds

= lnp(0) +
∫ 1

0
ρp(s)ds = lnp(0) +

∫ 1

0

( ∞∑

n=1

ϕp(n)sn−1

)

ds

= lnp(0) +
∞∑

n=1

ϕp(n)

n
= lnp(0) + μϕp(−1).

�

We know that κp(0) = 0 when p ∈ P10. Thus, (6.10) is satisfied if in addition
μ|ϕp |(−1) < ∞.

6.2 The Rk Classes

The recursion (4.23) is trivially extended to the case when we drop the assumption of
infinite divisibility. Furthermore, because a distribution in P10 uniquely determines
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its De Pril transform, we also have that that recursion implies the recursion (4.22).
Hence, we obtain the following theorem.

Theorem 6.2 A distribution f ∈ P10 satisfies the recursion

f (x) =
r∑

y=1

(
ξ(y)

x
+

(

1 − y

x

)

χ(y)

)

f (x − y) (x = 1,2, . . . ) (6.12)

for functions ξ and χ on {1,2, . . . , r} with r being a positive integer or infinity iff
its De Pril transform satisfies the recursion

ϕf (x) = ξ(x) +
r∑

y=1

χ(y)ϕf (x − y). (x = 1,2, . . . ) (6.13)

By letting f = p, r = k, χ = a, and ξ = a + b, we obtain the following corol-
lary.

Corollary 6.8 If p is Rk[a, b] with k being a positive integer or infinity, then

ϕp(n) = na(n) + b(n) +
k∑

i=1

a(i)ϕp(n − i). (n = 1,2, . . . ) (6.14)

From Theorem 5.6, we know that p can be expressed as R∞[−p/p(0),

2p/p(0)]. Insertion of a = −p/p(0) and b = 2p/p(0) in (6.14) brings us back
to the recursion (6.1).

By letting k = ∞, a ≡ 0, and b = ϕp in (6.14), we get the obvious result ϕp(n) =
ϕp(n).

By combining Theorem 5.4 and Corollary 6.8, we obtain the following corollary.

Corollary 6.9 If f = p ∨ h where p is Rk[a, b] and h ∈ P10, then

ϕf (x) = 1

1 − τa(h(0))

(

x((a + �b) ∨ h)(x) +
x−1∑

y=1

(a ∨ h)(y)ϕf (x − y)

)

.

(x = 1,2, . . . ) (6.15)

Now let k = 1. In this case, (6.15) reduces to

ϕf (x) = 1

1 − ah(0)

(

(a + b)xh(x) + a

x−1∑

y=1

h(y)ϕf (x − y)

)

. (6.16)

(x = 1,2, . . . )
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In particular, with h concentrated in one, this gives

ϕp(n) =
{

a + b (n = 1)

aϕp(n − 1), (n = 2,3, . . . )

from which we obtain

ϕp(n) = (a + b)an−1. (n = 1,2, . . . ) (6.17)

If h ∈ P11, then insertion in (6.4) gives

ϕf (x) = x(a + b)

x∑

n=1

an−1

n
hn∗(x). (x = 1,2, . . . ) (6.18)

Let us apply (6.16)–(6.18) to the three main classes in R1. The values of a and
b are found in Table 2.1.

1. Poisson distribution Po(λ). In this case, both (6.16) and (6.18) give (4.13), and
from (6.17), we obtain (4.17).

2. Binomial distribution bin(M,π). We obtain

ϕf (x) = π

1 − π + πh(0)

(

Mxh(x) −
x−1∑

y=1

h(y)ϕf (x − y)

)

(6.19)

(x = 1,2, . . . )

ϕp(n) = −M

(
π

π − 1

)n

(n = 1,2, . . . ) (6.20)

ϕf (x) = −Mx

x∑

n=1

1

n

(
π

π − 1

)n

hn∗(x). (x = 1,2, . . . ) (6.21)

When M = 1 and h ∈ P11, insertion of (2.55) and (2.56) in (6.19) brings us
back to (6.1).

3. Negative binomial distribution NB(α,π). We obtain

ϕf (x) = π

1 − πh(0)

(

αxh(x) +
x−1∑

y=1

h(y)ϕf (x − y)

)

, (x = 1,2, . . . )

which also follows from (4.27) when h ∈ P11, and

ϕp(n) = απn (n = 1,2, . . . )

ϕf (x) = αx

x∑

y=1

πn

n
hn∗(x), (x = 1,2, . . . )

which also follow from (4.20) and (4.21) respectively.
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Further Remarks and References

Theorem 6.1 was proved by Sundt et al. (1998). Formula (6.10) was deduced by
Dhaene and De Pril (1994).

Example 6.1 is based on Sundt (1999a).
Corollary 6.9 was proved by Sundt and Ekuma (1999).
Most of the remaining results in this chapter were presented by Sundt (1995).



Chapter 7
Individual Models

Summary

In Sect. 4.4.1, we discussed recursive evaluation of the aggregate claims distribution
of an individual model where each policy had an infinitely divisible aggregate claims
distribution in P10. In the present chapter, we extend this setting by dropping the
assumption of infinite divisibility.

We start Sect. 7.1 with a recapitulation of De Pril’s first method from Sect. 4.4.1,
extended to our present setting. Then we present De Pril’s second method within
that setting. The difference between these two methods is that whereas in the first
method, the De Pril transform of the aggregate claims distribution of each policy
is evaluated recursively, we use a closed-form expression for this De Pril transform
in the second method. Within the same setting, Sect. 7.2 is devoted to Dhaene–
Vandebroek’s method, which is more efficient than De Pril’s methods in some situ-
ations.

The methods of De Pril and Dhaene–Vandebroek are sometimes presented in a
two-way model referred to as De Pril’s individual model. This model is discussed
in Sect. 7.3, and, in addition to those methods, we introduce two other recursive
methods.

Section 7.4 is devoted to collective approximations to the individual model, and
we also discuss a semi-collective model where “normal” policies are treated collec-
tively and some “special” policies individually.

7.1 De Pril’s Methods

Let us assume that we want to evaluate f = ∗M
j=1fj with f1, f2, . . . , fM ∈ P10.

As outlined in Sect. 4.4.1, in De Pril’s first method, we first evaluate the De Pril
transform of each fj by (6.1), then we find the De Pril transform of f by summing
these De Pril transforms, and finally we evaluate f by (6.2); we can express these
last two steps by

f (x) = 1

x

x∑

y=1

f (x − y)

M∑

j=1

ϕfj
(y). (x = 1,2, . . . ) (7.1)

In De Pril’s second method, we evaluate the De Pril transform of each fj from a
closed-form expression instead of using the recursion (6.1). To derive this expres-
sion, we express fj as a compound Bernoulli distribution pj ∨ hj where pj is

B. Sundt, R. Vernic, Recursions for Convolutions and Compound Distributions
with Insurance Applications, EAA Lecture Notes,
DOI 10.1007/978-3-540-92900-0_7, © Springer-Verlag Berlin Heidelberg 2009
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the Bernoulli distribution Bern(πj ) with πj = 1 − fj (0) and severity distribution
hj ∈ P11 given by hj (y) = fj (y)/πj for y = 1,2, . . . . From (6.21), we obtain that

ϕfj
(x) = −x

x∑

n=1

1

n

(
πj

πj − 1

)n

hn∗
j (x). (x = 1,2, . . . )

Application of Corollary 6.1 gives

ϕf (x) = −x

x∑

n=1

1

n

M∑

j=1

(
πj

πj − 1

)n

hn∗
j (x), (x = 1,2, . . . ) (7.2)

which should be inserted in (6.2).
If

sj = max{x : fj (x) > 0} < ∞, (j = 1,2, . . . ,M)

then

s = max{x : f (x) > 0} =
M∑

j=1

sj ,

and we can evaluate f by a backward recursion similar to Theorem 2.9. Let
X = X•M where X1,X2, . . . ,XM are independent random variables, Xj with dis-
tribution fj for j = 1,2, . . . ,M . For j = 1,2, . . . ,M , we introduce X̃j = sj − Xj .
Its distribution f̃j belongs to P10 and is given by

f̃j (x) = fj (sj − x)

for x = 0,1,2, . . . . The distribution of X̃ = X̃•M = s − X is f̃ = ∗M
j=1f̃j and can

be expressed by

f̃ (x) = f (s − x)

for x = 0,1,2, . . . . We can evaluate f̃ by the recursion of the previous paragraph.
This gives a backwards recursion for f .

If each hj is concentrated in a positive integer sj , then hn∗
j is concentrated in

nsj . Then (7.2) can be written as

ϕf (x) = −
M∑

j=1

sj

(
πj

πj − 1

)x/sj

I (x = [x/sj ]sj > 0), (x = 1,2, . . . ) (7.3)

and insertion in (6.2) gives

f (x) = − 1

x

M∑

j=1

sj

[x/sj ]∑

n=1

(
πj

πj − 1

)n

f (x − nsj ). (x = 1,2, . . . ) (7.4)
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If we let sj = 1 for j = 1,2, . . . ,M , then f becomes the distribution of the number
of policies with claims, and we obtain

ϕf (x) = −
M∑

j=1

(
πj

πj − 1

)x

; f (x) = − 1

x

x∑

n=1

f (x − n)

M∑

j=1

(
πj

πj − 1

)n

.

(x = 1,2, . . . )

For the recursion for f̃ in the previous paragraph, we use the same recursion as for
f with πj replaced with 1 − πj for j = 1,2, . . . ,M .

7.2 Dhaene–Vandebroek’s Method

As we shall see from the following results, it can sometimes be useful to express
(7.1) as

f (x) = 1

x

M∑

j=1

σj (x) (x = 1,2, . . . ) (7.5)

with

σj (x) =
x∑

y=1

ϕfj
(y)f (x − y). (x = 1,2, . . . ; j = 1,2, . . . ,M) (7.6)

Theorem 7.1 Let f1, f2, . . . , fM ∈ P10 and f = ∗M
j=1fj . If fj is Rk[a, b] for

some j , then

σj (x) =
k∑

y=1

((ya(y) + b(y))f (x − y) + a(y)σj (x − y)). (7.7)

(x = 1,2, . . . )

Proof By starting with (7.6) and successive application of Corollary 6.8 and (7.6),
we obtain

σj (x) =
x∑

y=1

ϕfj
(y)f (x − y)

=
x∑

y=1

(

ya(y) + b(y) +
k∑

i=1

a(i)ϕfj
(y − i)

)

f (x − y)

=
k∑

y=1

(ya(y) + b(y))f (x − y) +
k∑

i=1

a(i)

x−i∑

z=1

ϕfj
(z)f (x − i − z)
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=
k∑

y=1

(ya(y) + b(y))f (x − y) +
k∑

i=1

a(i)σj (x − i)

=
k∑

y=1

((ya(y) + b(y))f (x − y) + a(y)σj (x − y)).
�

With k = ∞, a = 0, and b = ϕfj
, (7.7) brings us back to the definition (7.6).

By inserting (5.10) in (7.7), we obtain the following corollary.

Corollary 7.1 Let f1, f2, . . . , fM ∈ P10 and f = ∗M
j=1fj . If fj is a compound dis-

tribution with counting distribution Rk[a, b] and severity distribution h ∈ P10 for
some j , then

σj (x) = 1

1 − τa(h(0))

x∑

y=1

(y((a + �b) ∨ h)(y)f (x − y) + (a ∨ h)(y)σj (x − y)).

(x = 1,2, . . . ) (7.8)

The following corollary is obtained by application of Theorem 5.6 in (7.7).

Corollary 7.2 Let f1, f2, . . . , fM ∈ P10 and f = ∗M
j=1fj . Then

σj (x) = 1

fj (0)

x∑

y=1

(yf (x − y) − σj (x − y))fj (y). (7.9)

(x = 1,2, . . . ; j = 1,2, . . . ,M)

We see that by evaluating the σj s recursively by (7.9), we easily find f (x) by
(7.5) instead of using the recursion (6.2); this is Dhaene–Vandebroek’s method. On
the other hand, the recursion (7.9) is somewhat more complicated than (6.1).

In Sect. 4.4.1, we pointed out that when we know the De Pril transforms of the
aggregate claims distributions of the various types of policies, then it is easy to eval-
uate the aggregate claims distribution of the portfolio under changes of the com-
position of the portfolio. As the σj s depend on the aggregate claims distribution of
the portfolio, and, hence, the composition of the portfolio, Dhaene–Vandebroek’s
method is less convenient for studying changes in the composition of the portfolio
than De Pril’s methods.

7.3 De Pril’s Individual Model

The methods of De Pril and Dhaene–Vandebroek are sometimes presented in a two-
way model for an insurance portfolio of independent policies where each policy
can have at most one claim during the period under consideration. It is assumed
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that there are classes (i, j) with i = 1,2, . . . , I and j = 1,2, . . . , J . In class (i, j),
there are Mij policies and each policy has claim probability πj ∈ (0,1) and severity
distribution hi ∈ P11, that is, the aggregate claims distribution for a policy in this
class is fij = pj ∨ hi where pj is the Bernoulli distribution Bern(πj ). Then we
have fij (0) = 1 − πj and fij (x) = πjhi(x) for x = 1,2, . . . . We shall call this
model De Pril’s individual model.

With De Pril’s first method, we first evaluate the De Pril transform of each
fij by (6.1), then the De Pril transform of the aggregate claims distribution f =
∗I

i=1 ∗J
j=1 f

Mij ∗
ij by ϕf = ∑I

i=1
∑J

j=1 Mijϕfij
, and finally f by (6.2). With Dhaene–

Vandebroek’s method, for x = 1,2, . . . , we first evaluate

σij (x) =
x∑

y=1

Mijϕfij
(y)f (x − y)

by the recursion (7.9) for each cell (i, j), and then we find f (x) by

f (x) = 1

x

I∑

i=1

J∑

j=1

Mijσij (x). (7.10)

For De Pril’s second method, (7.2) gives

ϕf (x) = −x

x∑

n=1

1

n

J∑

j=1

(
πj

πj − 1

)n I∑

i=1

Mijh
n∗
i (x). (x = 1,2, . . . ) (7.11)

We see that for De Pril’s second method, the knowledge of the two-way structure
gives a computational advantage whereas this is not the case for the two other meth-
ods. On the other hand, the need for all the convolutions in (7.11) will often make
De Pril’s second method rather inefficient in practice. However, this method has
been used as basis for development of approximations based on approximating each
pj with a function p

(r)
j ∈ F10 with ϕ

p
(r)
j

(n) = 0 for each n greater than some inte-

ger r . Then we are in the unusual situation of finding it efficient to approximate one
of the simplest of all types of non-degenerate distributions, the Bernoulli distribu-
tion, with a much more complex function. We shall study such approximations in
Chap. 10.

In the individual life model with hi concentrated in a positive integer si for i =
1,2, . . . , I , (7.3) and (7.4) give that for x = 1,2, . . . ,

ϕf (x) = −
I∑

i=1

siI (x = [x/si]si > 0)

J∑

j=1

Mij

(
πj

πj − 1

)x/si

f (x) = − 1

x

I∑

i=1

si

[x/si ]∑

n=1

f (x − nsi)

J∑

j=1

Mij

(
πj

πj − 1

)n

.
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Returning to general severity distributions in P11, let us now look at yet an-
other method for evaluating f . For each cell (i, j), the aggregate claims distri-
bution can be expressed as a compound binomial distribution with counting dis-
tribution bin(Mij ,πj ) and severity distribution hi . Hence, the aggregate claims
distribution fi for all the cells (i, j) for fixed i is a compound distribution fi

with severity distribution hi and counting distribution pi being the convolution of
bin(Mi1,π1),bin(Mi2,π2), . . . ,bin(MiJ ,πJ ). As each of these binomial distribu-
tions is in R1, Theorem 5.8 gives that their convolution pi can be represented
in the form RJ [ai, bi]. From Table 2.1, we obtain that for each j , bin(Mj ,πj ) is
R1[−πj/(1 − πj ), (Mj + 1)πj /(1 − πj )], and insertion in Corollary 5.8 gives the
following corollary.

Corollary 7.3 Let Rk[αk,βk] be the convolution of the binomial distributions
bin(M1,π1),bin(M2,π2), . . . ,bin(Mk,πk) for k = 1,2, . . . . Then the functions αk

and βk can be evaluated recursively by

αk(u) =
⎧
⎨

⎩

αk−1(u) + πk

1−πk
αk−1(u − 1) (u = 2,3, . . . , k)

αk−1(1) − πk

1−πk
(u = 1)

βk(u) =

⎧
⎪⎨

⎪⎩

βk−1(u) + πk

1−πk
(βk−1(u − 1) − (Mk + 1)αk−1(u − 1))

(u = 2,3, . . . , k)

βk−1(1) + (Mk + 1)
πk

1−πk
(u = 1)

for k = 2,3, . . . with

α1(1) = − π1

1 − π1
; β1(1) = (M1 + 1)

π1

1 − π1
. (7.12)

When we have found ai and bi by this procedure, then we can evaluate fi re-
cursively by (5.13), and finally we evaluate the convolution f = ∗I

i=1fi by brute
force.

We could also insert ai and bi in (7.8) and evaluate f by (7.10).
When the De Pril transform was introduced, some people argued that there was

no need for introducing it as what one could show by De Pril transforms, could
also be shown by generating functions. Against this criticism, it should be empha-
sised that whereas the generating function is primarily a tool for proving analytical
results, the De Pril transform is primarily a tool for evaluation of e.g. compound
distributions and convolutions. Although, as we have seen, it can also be applied to
prove analytical results, that is not its primary purpose.

7.4 Collective Approximations

We have now considered various methods for recursive exact evaluation of the ag-
gregate claims distribution in an individual model. In this model, the aggregate
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claims distribution is a convolution. In a collective model, the aggregate claims
distribution is a compound distribution, and we have developed recursive methods
for compound distributions under various assumptions. These methods often seem
much simpler than the methods we have developed for the individual model. One of
the simplest cases is when the counting distribution of the compound distribution is
a Poisson distribution. We shall now consider approximating the aggregate claims
distribution of the individual model in the setting of Sect. 7.1 with a compound
Poisson distribution.

Let us consider each fj as a compound Bernoulli distribution like we did in
connection with De Pril’s second method, and approximate the Bernoulli counting
distribution pj with a Poisson distribution qj with parameter equal to the Bernoulli
parameter πj = 1 − fj (0). Thus, we approximate fj = pj ∨ hj with gj = qj ∨ hj

and the aggregate claims distribution f = ∗M
j=1fj with g = ∗M

j=1gj . From Theo-
rem 4.4, we obtain that g = q ∨ h where q is the Poisson distribution Po(λ) with
λ = π•M and

h = 1

λ

M∑

j=1

πjhj .

Thus, we can evaluate g recursively by Theorem 2.2.
For x = 1,2, . . . , we have

h(x) = 1

λ

M∑

j=1

πjhj (x) =
∑M

j=1 πjhj (x)
∑M

j=1 πj

=
∑M

j=1 fj (x)
∑M

j=1(1 − fj (0))
= f̃ (x)

1 − f̃ (0)

with

f̃ = 1

M

M∑

j=1

fj ,

and we have λ = M(1 − f̃ (0)), that is, the approximation g depends on f1, f2,

. . . , fM only through f̃ and M . Thus, the transition from f to g can be considered
as a two-step operation. In the first step, we approximate each fj with f̃ , which im-
plies that f is approximated with f̃ M∗, and in the second step, we approximate that
aggregate claims distribution with a compound Poisson distribution. When consid-
ering the transition to the compound Poisson distribution like that, it seems likely
that we would get a better approximation by only carrying through the first step.
Then we can evaluate f̃ M∗ by the recursion of Theorem 2.8. This approximation is
sometimes called the natural approximation.

The distribution f̃ can be interpreted as a mixed distribution. To simplify the
evaluation of the aggregate claims distribution in an insurance setting, we consider
the individual risk characteristics of each individual policy as random; we incorpo-
rate these characteristics in an abstract random risk parameter and consider these
parameters of different policies as independent and identically distributed. We esti-
mate their distribution by the empirical distribution of the distributions fj within the
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portfolio. In this setting, f̃ becomes the unconditional aggregate claims distribution
of an arbitrary policy from the portfolio.

Our compound approximation g of f can be interpreted as if we approximate the
distribution p = ∗M

j=1pj of the number of policies with claims by q . Furthermore, it
is assumed that the aggregate claims of policies with claims are independent of the
number of such policies and mutually independent and identically distributed with
distribution h. Although the total number of policies is M , the approximation q

gives positive probability of having more than M policies with claims. If we assume
that each policy can have at most one claim, then q can be interpreted as the claim
number distribution and h as the claim amount distribution.

We shall show that �f ≤ �g , that is, our approximation gives an upper bound to
the exact stop loss transform. We shall prove this result for a more general class of
distributions. First we consider the case M = 1.

Lemma 7.1 Let H be a univariate distribution, 0 < π < 1, p the Bernoulli distrib-
ution Bern(π), and q the Poisson distribution Po(π). Then �q∨H ≥ �p∨H .

Proof Application of Theorem 1.7 gives

�q∨H ≥ μq(1)�H = π�H = �p∨H . �

We now turn to the general case.

Theorem 7.2 For j = 1,2, . . . ,M , let Hj be a univariate distribution, pj the
Bernoulli distribution Bern(πj ) with 0 < πj < 1, and qj the Poisson distribution
Po(πj ). Then �q∨H ≥ �∗M

j=1(pj ∨Hj ) where q is the Poisson distribution Po(λ) with

λ = ∑M
j=1 πj and

H = 1

λ

M∑

j=1

πjHj .

Proof By application of Theorem 4.4, Lemma 7.1, and Theorem 1.5, we obtain

�q∨H = �∗M
j=1(qj ∨Hj ) ≥ �∗M

j=1(pj ∨Hj ). �

As a special case, we obtain that �f ≤ �g . We do not have such a result for the
natural approximation f̃ M∗.

Now let us consider a mixed setting with mixing variable � with distribution U .
Conditionally given that � = θ , we have the same assumptions as in Theorem 7.2
apart from replacing πj with θπj for j = 1,2, . . . ,M . Letting now

q(n) =
∫

(0,∞)

(θλ)n

n! e−θλ dU(θ), (n = 0,1,2, . . . )

we have that �q∨h gives an upper bound of the stop loss transform of the exact un-
conditional distribution. In an insurance setting, we can interpret � as representing
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unknown random conditions that will affect the risk of all policies in the portfolio,
e.g. windstorms. This is a way of modelling dependence between policies within the
individual model.

Let us now return to the original setting of our individual model. We have con-
sidered various ways of exact evaluation as well as a collective compound Poisson
approximation for evaluation of the aggregate claims distribution in this model. If
we feel that the collective approximation is not sufficiently accurate, then we could
apply a semi-collective approximation where we use the collective approximation
on a part of the portfolio and the individual model on the rest. The approximation
might work well on the normal policies, but it might improve the accuracy signifi-
cantly to apply exact evaluation on some special policies. But which of the policies
should we consider as special? To answer that, we need a measure of the quality of
the approximation.

Let A ⊆ {1,2, . . . ,M} denote the normal policies. The idea is then to approxi-
mate f by fA = gA ∗ (∗j /∈Afj ) with

gA = ∗j∈A(qj ∨ hj ) = qA ∨ hA

where qA is the Poisson distribution Po(λA) with λA = ∑
j∈A πj and the severity

distribution hA is given by

hA = 1

λA

∑

j∈A

πjhj .

We then have �f ≤ �fA
≤ �g . As μpj

(1) = μqj
(1) = πj for j = 1,2, . . . , (1.32)

gives that

μf (1) = μfA
(1) = μg(1), (7.13)

that is, �f (0) = �fA
(0) = �g(0).

Application of (4.13) gives that for x = 1,2, . . . ,

ϕgA
(x) = λAxhA(x) = x

∑

j∈A

πjhj (x) = x
∑

j∈A

fj (x),

and by Corollary 6.1 we obtain

ϕfA
(x) = ϕgA

(x) +
∑

j /∈A

ϕfj
(x) = λAhA(x) +

∑

j /∈A

ϕfj
(x)

= x
∑

j∈A

fj (x) +
∑

j /∈A

ϕfj
(x) =

∑

j∈A

fj (x) +
∑

j /∈A

ϕfj
(x).

We see that the compound Poisson approximation of an fj actually consists of ap-
proximating ϕfj

(x) with fj (x) for x = 1,2, . . . .
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As a measure of the quality of the approximation fA compared with the approx-
imation g, we introduce the efficiency

eA =
∑∞

x=0(�g − �fA
)(x)

∑∞
x=0(�g − �f )(x)

. (7.14)

In particular, we have e{1,2,...,M} = 0 and e∅ = 1.
Application of (1.47) and (1.41) gives

∞∑

x=0

(�g − �fA
)(x) =

∞∑

x=0

�2(g − fA)(x − 1) = �3(g − fA)(−2)

=
∞∑

y=1

(
y + 1

2

)

(g − fA)(y) = 1

2

∞∑

y=1

(y2 + y)(g − fA)(y)

= 1

2
(μg(2) + μg(1) − μfA

(2) − μfA
(1)).

By (7.13), we obtain

2
∞∑

x=0

(�g(x) − �fA
(x)) = μg(2) − μfA

(2)

= μg(2) − μ2
g(1) − μfA

(2) + μ2
fA

(1) = κg(2) − κfA
(2)

=
∑

j /∈A

(κgj
(2) − κfj

(2)) =
∑

j /∈A

(πjμhj
(2) − κfj

(2))

=
∑

j /∈A

(μfj
(2) − κfj

(2)) =
∑

j /∈A

μ2
fj

(1),

and insertion in (7.14) gives

eA =
∑

j /∈A μ2
fj

(1)
∑M

j=1 μ2
fj

(1)
.

We see that under our present efficiency criterion, it is the fj s with the largest
mean that we ought to treat individually.

Let us now compare our approximations with exact evaluation in a numerical
example.

Example 7.1 We consider De Pril’s individual model on a dataset that has often been
applied in the literature. We have I = 5 and J = 4. For i = 1,2, . . . , I , the severity
distribution is concentrated in i. The πj s and the Mij s are given in Table 7.1.

In Fig. 7.1, we display the efficiency eA of the semi-collective approximation as a
function of n when treating the n policies with largest mean individually. We clearly
see that the effect of removing one more policy from collective treatment decreases
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Table 7.1 Dataset
i 1 2 3 4 5

j πj Mij

1 0.03 2 3 1 2 0

2 0.04 0 1 2 2 1

3 0.05 0 2 4 2 2

4 0.06 0 2 2 2 1

Fig. 7.1 Efficiency of the semi-collective approximation when treating the n policies with largest
mean individually

in the number of policies already removed; the policy with the highest mean (0.3)
gives a contribution of 0.114 to the efficiency whereas the one with the lowest mean
(0.03) contributes with 0.00114.

In Table 7.2, we compare the exact aggregate claims distribution f of the port-
folio with the natural approximation and the collective compound Poisson approx-
imation, as well as the semi-collective approximation with the five policies with
largest mean treated individually; that gives an efficiency of 0.418. Table 7.3 gives
an analogous comparison in terms of stop loss transforms. �

Further Remarks and References

De Pril’s second method for evaluation of the convolution of M distributions in P10
was first presented by White and Greville (1959) for evaluation of the distribution
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Table 7.2 The exact distribution and some approximations

x Exact Semi-collective Collective Natural

0 2.38195E-01 2.44580E-01 2.46597E-01 2.38688E-01

1 1.47337E-02 1.46748E-02 1.47958E-02 1.49986E-02

2 8.77342E-02 8.60432E-02 8.67528E-02 8.79481E-02

3 1.13183E-01 1.10314E-01 1.11224E-01 1.12820E-01

4 1.10709E-01 1.11367E-01 1.10397E-01 1.12203E-01

5 9.63274E-02 9.44358E-02 9.28589E-02 9.47052E-02

6 6.15487E-02 6.13015E-02 6.10080E-02 6.25913E-02

7 6.90221E-02 6.65192E-02 6.54270E-02 6.70024E-02

8 5.48171E-02 5.49829E-02 5.45768E-02 5.56748E-02

9 4.31471E-02 4.26416E-02 4.13208E-02 4.18689E-02

10 3.01073E-02 3.01176E-02 3.05794E-02 3.06936E-02

11 2.35291E-02 2.36543E-02 2.33078E-02 2.31499E-02

12 1.82824E-02 1.83879E-02 1.83438E-02 1.80376E-02

13 1.25093E-02 1.29504E-02 1.31494E-02 1.27325E-02

14 8.71076E-03 8.99017E-03 9.21800E-03 8.75461E-03

15 5.91165E-03 6.25302E-03 6.50426E-03 6.05269E-03

16 4.15190E-03 4.41542E-03 4.59553E-03 4.19105E-03

17 2.71505E-03 2.96194E-03 3.17641E-03 2.83267E-03

18 1.74094E-03 1.93839E-03 2.12340E-03 1.84149E-03

19 1.11736E-03 1.26792E-03 1.41386E-03 1.18991E-03

20 7.11015E-04 8.28029E-04 9.39530E-04 7.67248E-04

30 3.09434E-06 5.31779E-06 8.63294E-06 4.57655E-06

40 3.53514E-09 1.28654E-08 3.64155E-08 9.89289E-09

of the number of policies with claims. Within the framework of De Pril’s individual
model, De Pril’s first and second method were deduced for the individual life model
by De Pril (1986b) and extended to severity distributions in P11 by De Pril (1989).
Dufresne (1996) considered the case where each severity distribution is distributed
on two points.

The backward recursion in Sect. 7.1 was presented by De Pril (1986b) within the
context of the individual life model.

Dhaene–Vandebroek’s method was introduced for the individual life model by
Waldmann (1994) and extended to general distributions in P10 by Dhaene and Van-
debroek (1995).

Sundt and Vernic (2006) introduced the last two methods we presented for eval-
uation of the aggregate claims distribution in De Pril’s individual model. They also
compared these methods with other methods by counting the number of dot oper-
ations. Such comparisons of De Pril’s methods with other methods have also been
presented by Kuon et al. (1987), Waldmann (1994), Dhaene and Vandebroek (1995),
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Table 7.3 The exact stop loss transform and some approximations

x Exact Semi-collective Collective Natural

0 4.49000E+00 4.49000E+00 4.49000E+00 4.49000E+00

1 3.72819E+00 3.73458E+00 3.73660E+00 3.72869E+00

2 2.98112E+00 2.99383E+00 2.99799E+00 2.98237E+00

3 2.32179E+00 2.33913E+00 2.34614E+00 2.32401E+00

4 1.77563E+00 1.79475E+00 1.80551E+00 1.77846E+00

5 1.34019E+00 1.36172E+00 1.37527E+00 1.34512E+00

6 1.00107E+00 1.02314E+00 1.03790E+00 1.00648E+00

7 7.23501E-01 7.45857E-01 7.61530E-01 7.30437E-01

8 5.14954E-01 5.35093E-01 5.50590E-01 5.21393E-01

9 3.61224E-01 3.79312E-01 3.94228E-01 3.68024E-01

10 2.50642E-01 2.66173E-01 2.79186E-01 2.56524E-01

11 1.70166E-01 1.83151E-01 1.94723E-01 1.75717E-01

12 1.13220E-01 1.23783E-01 1.33568E-01 1.18061E-01

13 7.45566E-02 8.28035E-02 9.07573E-02 7.84415E-02

14 4.84022E-02 5.47743E-02 6.10958E-02 5.15549E-02

15 3.09585E-02 3.57352E-02 4.06522E-02 3.34229E-02

16 1.94265E-02 2.29492E-02 2.67130E-02 2.13437E-02

17 1.20464E-02 1.45786E-02 1.73693E-02 1.34554E-02

18 7.38134E-03 9.16997E-03 1.12019E-02 8.39986E-03

19 4.45721E-03 5.69970E-03 7.15801E-03 5.18578E-03

20 2.65044E-03 3.49735E-03 4.52794E-03 3.16162E-03

30 7.25353E-06 1.53233E-05 2.97954E-05 1.27278E-05

40 5.72551E-09 2.86340E-08 1.01131E-07 2.10815E-08

Sundt and Dickson (2000), Dickson and Sundt (2001), Dhaene et al. (2006), and,
in a bivariate setting, Walhin and Paris (2001c), some of them also counting bar
operations.

Ribas et al. (2003) extended the individual life model by allowing for pair-
wise dependence of policies within the portfolio and deduced Dhaene–Vandebroek’s
method and De Pril’s second method within that setting. Cossette et al. (2002) dis-
cussed recursive evaluation of the aggregate claims distribution in another extension
of the individual model giving dependence between policies.

The natural approximation to the individual model was discussed by Sundt
(1985). Jewell and Sundt (1981) approximated the individual model by compound
mixed binomial distributions and compound zero-modified binomial distributions.

Lemma 7.1 and Theorem 7.2 are based on Bühlmann et al. (1977). Error bounds
for compound Poisson approximations to an individual model of independent poli-
cies are also studied by Gerber (1984), Hipp (1985, 1986), Michel (1987), Hipp
and Michel (1990), and De Pril and Dhaene (1992). Goovaerts and Dhaene (1996)
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extended an error bound of Michel (1987) to a collective Poisson approximation of
an individual model with dependencies between policies. In the non-actuarial liter-
ature, compound Poisson approximations have a long history; an overview is given
by Barbour and Chryssaphinou (2001).

The discussion on treating some policies collectively and others individually is
based on Kaas et al. (1988a), who restricted to the individual life model. This subject
is also studied by Kaas et al. (1988b, 1989).

The dataset that we applied in Example 7.1, was introduced by Gerber (1979)
and has later been applied by Jewell and Sundt (1981), Chan (1984), Sundt (1985),
Hipp (1986), Vandebroek and De Pril (1988), Kuon et al. (1993), and Dhaene and
Goovaerts (1997).

Most of the remaining results in this chapter are based on Sundt (1995).



Chapter 8
Cumulative Functions and Tails

Summary

The present chapter is devoted to recursions for �tp and �tp with p ∈ P10 and
t = 0,1,2, . . . . In some cases, we present the recursions more generally for p ∈ F10
when the proof does not depend on properties specific for distributions.

In Sect. 8.1, we deduce recursions when p satisfies the recursion (5.6). A short
Sect. 8.2 treats recursive evaluation of �tpM∗, and Sect. 8.3 is devoted to compound
distributions. In Sect. 8.4, we study De Pril transforms, that is, the special case of
(5.6) with q = a ≡ 0 and b = ϕp . Finally, in Sect. 8.5, we turn to the special case of
(5.6) with b ≡ 0.

8.1 General Results

In the preceding chapters, we have discussed algorithms for recursive evaluation of
probability functions of distributions in P10 under various assumptions. However,
there are situations where we would be interested in other representations of the
distribution than the probability function, for instance, the cumulative distribution
function or the tail. In the present chapter, we shall consider recursions for �tp and
�tp for p ∈ P10 and t = 0,1,2, . . . .

Any recursion for p can be used for recursive evaluation of �tp and �tp by
adding the recursions

�tp(n) = �tp(n − 1) + �t−1p(n) (8.1)

�tp(n) = �tp(n − 1) − �t−1p(n) (8.2)

for t = 1,2, . . . , starting with n = 0 or n = −1. However, in the following, we shall
deduce direct recursions from recursions we have for p, and similar to these. One
advantage with these recursions compared to the corresponding recursions for p is
that for p > 0, �tp and �tp will be monotonic. That is an advantage in connection
with numerical stability. As the proofs of the recursions hold more generally than
for distributions in P10, we shall state the recursions for functions in F10.

For the recursion (8.1), we have the initial value �tp(0) = p(0) or �tp(−1) = 0.
For (8.2), Theorem 1.3 gives �tp(−1) = νp(t − 1)/(t − 1)! for t = 1,2, . . . .

It seems that the most interesting applications of recursions for �tp and �tp

are evaluation of the cumulative distribution function, tail, stop loss transform, and
retention transform of p, so that we are interested in �tp and �tp mainly for t =
0,1,2.

B. Sundt, R. Vernic, Recursions for Convolutions and Compound Distributions
with Insurance Applications, EAA Lecture Notes,
DOI 10.1007/978-3-540-92900-0_8, © Springer-Verlag Berlin Heidelberg 2009
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We shall now deduce recursions for �tp and �tp with p ∈ F10 satisfying the
recursion (5.6) and t = 0,1,2, . . . . We start with �tp(n).

Theorem 8.1 If p ∈ F10 satisfies the recursion (5.6) where k is a positive integer
or infinity, then, for t = 0,1,2, . . . , �tp satisfies the recursion

�tp(n) = q(n) +
k+t∑

i=1

(

�ta(i) + �tb(i)

n

)

�tp(n − i) (n = 1,2, . . . ) (8.3)

with a(0) = −1.

Proof The recursion (8.3) trivially holds for t = 0 as in that case it reduces to (5.6).
Let us now assume that it holds for t = s − 1 for some positive integer s. For n =
1,2, . . . , application of (8.1), (8.3), (1.35) gives

�sp(n) = �sp(n − 1) + �s−1p(n)

= �sp(n − 1) + q(n) +
k+s−1∑

i=1

(

�s−1a(i) + �s−1b(i)

n

)

�s−1p(n − i)

= �sp(n − 1) + q(n) +
k+s−1∑

i=1

(

�s−1a(i) + �s−1b(i)

n

)

��sp(n − i)

= q(n) +
k+s∑

i=1

(

�sa(i) + �sb(i)

n

)

�sp(n − i),

so that (8.3) holds also for t = s. Induction gives that it holds for all non-negative
integers t . �

The following theorem gives an analogous recursion for �tp.

Theorem 8.2 If p ∈ F10 satisfies the recursion (5.6) for some positive integer k,
then, for all non-negative integers t for which �tp exists, �tp satisfies the recursion

�tp(n) = (−1)tq(n) +
k+t∑

i=1

(

�ta(i) + �tb(i)

n

)

�tp(n − i) (n = 1,2, . . . )

(8.4)
with a(0) = −1. For t > 0, the initial values are given by

�tp(n) =
∞∑

i=t+n

(
i − n − 1

t − 1

)

p(i). (n = 0,−1,−2, . . . ,1 − k − t) (8.5)

Proof The deduction of (8.4) is analogous to the deduction of (8.3), the initial values
(8.5) are obtained from Corollary 1.1. This completes the proof of Theorem 8.2. �
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Note that as in (8.4) we normally have �tp(n − i) �= 0 when i > n, we cannot
just replace k + t with n as upper limit in the summation in (8.4). This is the reason
that we cannot apply this recursion with k = ∞.

We shall now deduce an alternative recursion for �tp.

Theorem 8.3 If p ∈ F10 satisfies the recursion (5.6) where k is a positive integer
or infinity, then, for t = 0,1,2, . . . , �tp satisfies the recursion

�tp(n) = �tq(n)

n
+

n∑

i=1

(

a(i) + b(i) + t (1 − �a(i − 1))

n

)

�tp(n − i).

(n = 1,2, . . . ) (8.6)

Proof We shall prove the theorem by induction on two levels. We first note that
(8.6) trivially holds for t = 0 as in that case it reduces to (5.6). Then we assume
that it holds for t = s − 1 for some positive integer s. Under this assumption, we
first show that (8.6) holds for t = s and n = 1. Then we prove that if it holds for
t = s and n = j − 1 for some integer j > 1, then it must hold also for n = j . It then
follows by induction that it holds for all positive integers n when t = s, and from
this it follows by induction that this result must hold for all non-negative integers t .

Let us now assume that (8.6) holds for t = s − 1 for some positive integer s.
From (8.6), using that �tp(0) = p(0) for all t , we obtain

�sp(1) = �s−1p(0) + �s−1p(1)

= �s−1p(0) + �s−1q(1) + (a(1) + b(1) + s − 1)�s−1p(0)

= �sq(1) + (a(1) + b(1) + s)�sp(0),

so that (8.6) holds for n = 1 when t = s. Let us now assume that it holds for n =
j − 1 for some integer j > 1 when t = s. Then, application of (8.6) gives

j�sp(j) = j (�sp(j − 1) + �s−1p(j))

= �sp(j − 1) + (j − 1)�sp(j − 1) + j�s−1p(j)

= �sp(j − 1) + �sq(j − 1) +
j−1∑

i=1

((j − 1)a(i) + b(i)

+ s(1 − �a(i − 1)))�sp(j − 1 − i) + �s−1q(j)

+
j∑

i=1

(ja(i) + b(i) + (s − 1)(1 − �a(i − 1)))�s−1p(j − i)

= �sq(j) +
j∑

i=1

((ja(i) + b(i) + s(1 − �a(i − 1)))�sp(j − i)

+ �a(i − 1)(�sp(j − i) − �sp(j − 1 − i)) − a(i)�sp(j − 1 − i))
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= �sq(j) +
j∑

i=1

((ja(i) + b(i) + s(1 − �a(i − 1)))�sp(j − i)

+ �a(i − 1)�sp(j − i) − �a(i)�sp(j − 1 − i))

= �sq(j) +
j∑

i=1

(ja(i) + b(i) + s(1 − �a(i − 1)))�sp(j − i),

from which we see that (8.6) holds also for n = j when t = s. By induction, it then
holds for all positive integers n when t = s. Thus, we have shown that if (8.6) holds
for t = s − 1, then it also holds for t = s, and it then follows by induction that it
holds for all non-negative integers t . �

In the following corollary, we modify the recursion (8.6) in a way that will usu-
ally be more convenient when k is finite.

Corollary 8.1 If p ∈ F10 satisfies the recursion (5.6) where k is a positive integer
or infinity, then, for t = 1,2, . . . , we have the recursion

�tp(n) = �t−1q(n)

n
+

k+1∑

i=1

(

�a(i) + �b(i) − (t − 1)a(i − 1)

n

)

�tp(n − i)

(n = 1,2, . . . ) (8.7)

with a(0) = −1.

Proof For the moment, we let a(0) = 0 as usual.
For t, n = 1,2, . . . , application of (8.1) and (8.6) gives

�tp(n) = �tp(n − 1) + �t−1p(n)

= �tp(n − 1) + �t−1q(n)

n

+
n∑

i=1

(

a(i) + b(i) + (t − 1)(1 − �a(i − 1))

n

)

�t−1p(n − i)

= �t−1q(n)

n
+ �tp(n − 1)

+
n∑

i=1

(

a(i) + b(i) + (t − 1)(1 − �a(i − 1))

n

)

× (�tp(n − i) − �tp(n − i − 1))

= �t−1q(n)

n
+ �tp(n − 1)
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+
n∑

i=1

(

a(i) + b(i) + (t − 1)(1 − �a(i − 1))

n

)

�tp(n − i)

−
n∑

i=2

(

a(i − 1) + b(i − 1) + (t − 1)(1 − �a(i − 2))

n

)

�tp(n − i)

= �t−1q(n)

n
+

(

1 + a(1) + b(1) + t − 1

n

)

�tp(n − 1)

+
n∑

i=2

(

�a(i) + �b(i) − (t − 1)a(i − 1)

n

)

�tp(n − i),

which gives (8.7) when letting a(0) = −1. �

When k is finite, (8.7) will normally be more convenient than (8.6) as in (8.7),
the summation term vanishes for all i > k + 1, whereas in (8.6) this is not the case
unless μa(0) = 1. From (8.6), we obtain

�tp(n) = �tq(n)

n
+

k∑

i=1

(

a(i) + b(i) + t (1 − �a(i − 1))

n

)

�tp(n − i)

+ t

n
(1 − μa(0))�t+1p(n − k − 1). (n = 1,2, . . . ; t = 0,1,2, . . . )

(8.8)

8.2 Convolutions

By combining Corollary 5.6 and Theorem 8.3, we obtain the following corollary.

Corollary 8.2 If p ∈ P10, then for t = 0,1,2, . . . and M = 1,2, . . . , we have the
recursion

�tpM∗(n) = 1

p(0)

n∑

i=1

((

(M + 1)
i

n
− 1

)

p(i) + t

n
�p(i − 1)

)

�tpM∗(n − i).

(n = 1,2, . . . )

In particular, for M = 1, this gives

�tp(n) = 1

p(0)

n∑

i=1

((

2
i

n
− 1

)

p(i) + t

n
�p(i − 1)

)

�tp(n − i). (n = 1,2, . . . )

With this recursion, we can evaluate �tp directly from p instead of having to eval-
uate �sp by (8.1) for s = 1,2, . . . , t .
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Example 8.1 Let p ∈ P10 be the discrete uniform distribution given by (2.24). We
want to evaluate �tpM∗ by application of (5.22) with one of the recursions we have
deduced now. In the present case, μa(0) = 1, so that the last term in (8.8) vanishes,
and this recursion becomes simpler than (8.7). We obtain

�tpM∗(n) =
(

1 + M + t − 1

n

)

�tpM∗(n − 1)

+
(

1 − (M + 1)(k + 1)

n

)

�tpM∗(n − k − 1)

+
(

(M + 1)k − t + 2

n
− 1

)

�tpM∗(n − k − 2). (n = 1,2, . . . )

�

8.3 Compound Distributions

If f = p ∨ h with h ∈ P10 and p ∈ P10 satisfying the recursion (5.6), then we can
obtain recursions for �tf and �tf by replacing p, k, q , a, and b with f , ∞, q̃

given by (5.9), and ã and b̃ given by (5.10). In particular, Theorem 8.3 gives the
following corollary.

Corollary 8.3 If h ∈ P10 and p ∈ P10 satisfies the recursion (5.6), then for t =
0,1,2, . . . , f = p ∨ h satisfies the recursion

�tf (x) = 1

1 − τa(h(0))

(
�t(q ∨ h)(x)

x
+

x∑

y=1

(

(a ∨ h)(y)

+ (�b ∨ h)(y) + t (1 − �(a ∨ h)(y − 1))

x

)

�tf (x − y)

)

.

(x = 1,2, . . . ) (8.9)

In the following corollary, we consider the special case when the counting distri-
bution p belongs to the Panjer class.

Corollary 8.4 If p is R1[a, b] and h ∈ P10, then for t = 0,1,2, . . . , f = p ∨ h

satisfies the recursion

�tf (x) = 1

1 − ah(0)

x∑

y=1

((

a + b
y

x

)

h(y) + t

x
(1 − a�h(y − 1))

)

�tf (x − y).

(x = 1,2, . . . )

Application of Theorem 5.5 in (8.6) and (8.7) gives the following corollary.
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Corollary 8.5 If f = p ∨ h where p is the Poisson distribution Po(λ) and h ∈ P10
satisfies the conditions of Theorem 2.3, then

�tf (x) =
x∑

y=1

(
λ

x
η(y) +

(

1 − y

x

)

χ(y) + t

x
(1 − �χ(y − 1))

)

�tf (x − y)

(x = 1,2, . . . ; t = 0,1,2, . . . )

and, with χ(0) = −1,

�tf (x) =
r+1∑

y=1

(

�χ(y) + �(λη − χ)(y) − (t − 1)χ(y − 1)

x

)

�tf (x − y).

(x, t = 1,2, . . . ) (8.10)

Example 8.2 Let h ∈ P11 be the shifted geometric distribution given by (2.21). Then
h satisfies the conditions of Theorem 2.3 with r , η, and χ given by (2.23). Insertion
in (8.10) gives

�tf (x) =
(

λ(1 − π) − 2π + t − 1

x
+ 2π + 1

)

�tf (x − 1)

+
(

λ(π − 1) + 2π(π − t + 2)

x
− π(π + 2)

)

�tf (x − 2)

+
(

t − 3

x
+ 1

)

π2�tf (x − 3). (x, t = 1,2, . . . ) (8.11)

�

8.4 De Pril Transforms

By letting k = ∞, q = a ≡ 0, and b = ϕp in Theorem 8.3, we obtain the following
corollary.

Corollary 8.6 For all f ∈ P10 and t = 0,1,2, . . . , we have the recursion

�tf (x) = 1

x

x∑

y=1

(ϕf (y) + t)�tf (x − y). (x = 1,2, . . . ) (8.12)

This recursion is thought-provoking. By comparison with (6.2), we see that the
first factor in the summand takes the role of a De Pril transform of �tf , that is,

ϕ�tf (x) = ϕf (x) + t. (x = 1,2, . . . ) (8.13)

However, till now we have defined De Pril transforms only for distributions in P10,
and �tf is not a distribution, so if we should introduce this De Pril transform, then
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we would have to extend the definition of the De Pril transform to a wider class of
functions. Here, F10 seems to be a natural candidate, and for functions in this class,
we still define the De Pril transform by (6.1).

In the proof of Theorem 1.2, we argued that �tf = γ t∗ ∗ f with γ ∈ F10 given
by (1.37). If (6.1) should hold also for functions in F10, then we should have ϕ�tf =
ϕf + tϕγ . This is consistent with (8.13), and then we would have

ϕγ (x) = 1. (x = 1,2, . . . ) (8.14)

Application of (6.1) also gives this expression.

Example 8.3 For j = 1,2, . . . ,M , let fj be the discrete uniform distribution on
0,1,2, . . . , kj . Then insertion of (6.8) in (8.12) gives

�t(∗M
j=1fj )(x) = 1

x

(

(M + t)�t+1(∗M
j=1fj )(x − 1)

−
M∑

j=1

(kj + 1)

[x/(kj +1)]∑

z=1

�t(∗M
j=1fj )(x − z(kj + 1))

)

.

(x = 1,2, . . . ) �

We shall discuss De Pril transforms of functions in F10 more thoroughly in
Chap. 10.

8.5 The Special Case b ≡ 0

In this section, we consider functions that satisfy (5.6) with b ≡ 0, that is,

p(n) = q(n) +
k∑

i=1

a(i)p(n − i) (n = 1,2, . . . ) (8.15)

with k being a positive integer or infinity.

Theorem 8.4 If p ∈ F10 satisfies the recursion (8.15), then, for t = 0,1,2, . . . , we
have the recursion

�tp(n) = �tq(n) +
k∑

i=1

a(i)�tp(n − i) (n = 1,2, . . . ) (8.16)

with

q(0) = p(0). (8.17)
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Proof The recursion (8.16) trivially holds for t = 0 as it then reduces to (8.15).
Let us now assume that it holds for t = s − 1 for some positive integer s. For n =
1,2, . . . , we then have

�sp(n) =
n∑

i=0

�s−1p(i) = p(0) +
n∑

i=1

(

�s−1q(i) +
k∑

j=1

a(j)�s−1p(i − j)

)

= �sq(n) +
k∑

j=1

a(j)

n∑

i=1

�s−1p(i − j) = �sq(n) +
k∑

j=1

a(j)�sp(n − j)

so that (8.16) holds also for t = s. By induction follows that it holds for all non-
negative integers t . �

Dropping the convention (8.17) and now letting q(0) = 0 as usual, we can rewrite
(8.16) as

�tp(n) = p(0)�t r(n) + �tq(n) +
k∑

i=1

a(i)�tp(n − i), (n = 1,2, . . . ) (8.18)

with r(n) = I (n = 0) for n = 0,1,2, . . . . Application of Theorem 1.2 gives

�tr(n) =
(

n + t − 1

t − 1

)

. (n = 0,1,2, . . . ; t = 1,2, . . . )

Insertion in (8.18) gives

�tp(n) = p(0)

(
n + t − 1

t − 1

)

+ �tq(n) +
k∑

i=1

a(i)�tp(n − i). (8.19)

(n, t = 1,2, . . . )

Theorem 8.5 If p ∈ F10 satisfies the recursion

p(n) = q(n) +
n∑

i=1

a(i)p(n − i), (n = 1,2, . . . ) (8.20)

then, for t = 0,1,2, . . . , we have the recursion

�tp(n) = �tq(n) +
t∑

u=1

�ua(n)�t−u+1p(−1) +
n∑

i=1

a(i)�tp(n − i).

(n = 1,2, . . . ) (8.21)

Proof The recursion (8.21) trivially holds for t = 0 as it then reduces to (8.20).
Let us now assume that it holds for t = s − 1 for some positive integer s. For n =
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1,2, . . . , we then have

�sp(n) =
∞∑

i=n+1

�s−1p(i)

=
∞∑

i=n+1

(

�s−1q(i) +
s−1∑

u=1

�ua(i)�s−up(−1) +
i∑

j=1

a(j)�s−1p(i − j)

)

= �sq(n) +
s−1∑

u=1

�u+1a(n)�s−up(−1)

+
∞∑

j=1

a(j)

∞∑

i=max(n+1,j)

�s−1p(i − j)

= �sq(n) +
s∑

u=2

�ua(n)�s−u+1p(−1) +
∞∑

j=1

a(j)�sp((n + 1 − j)+ − 1)

= �sq(n) +
s∑

u=1

�ua(n)�s−u+1p(−1) +
n∑

j=1

a(j)�sp(n − j),

that is, (8.21) holds also for t = s. By induction follows that it holds for all non-
negative integers t . �

By combining Theorems 8.4 and 8.5 with (5.40), we obtain the following corol-
lary.

Corollary 8.7 If p ∈ P10 has rational generating function given by (5.38), then p

satisfies the recursions

�tp(n) = �tα(n) +
m∑

i=1

β(i)�tp(n − i)

�tp(n) = �tα(n) +
t∑

u=1

�uβ(n)�t−u+1p(−1) +
n∑

i=1

β(i)�tp(n − i) (8.22)

for n = 1,2, . . . and t = 0,1,2, . . . .

In this corollary, we did not need to state a convention like (8.17) as (5.40) implies
that α(0) = p(0).

If f = p∨h with p,h ∈ P10 and p satisfying the recursion (8.15), then, by (5.8),
we obtain

f (x) = 1

1 − τa(h(0))

(

(q ∨ h)(x) +
x∑

y=1

(a ∨ h)(y)f (x − y)

)

, (x = 1,2, . . . )
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that is, a recursion in the same form. Hence, (8.19) gives

�tf (x) =
(

x + t − 1

t − 1

)

f (0) + 1

1 − τa(h(0))

(

�t(q ∨ h)(x) − (q ∨ h)(0)

+
x∑

y=1

(a ∨ h)(y)�tf (x − y)

)

, (x, t = 1,2, . . . ) (8.23)

where we have adjusted for the possibility of (q ∨ h)(0) �= 0.
From Theorem 8.5 we get

�tf (x) = 1

1 − τa(h(0))

(

�t(q ∨ h)(x) +
t∑

j=1

�j(a ∨ h)(x)�t−j+1f (−1)

+
x∑

y=1

(a ∨ h)(y)�tf (x − y)

)

. (8.24)

(x = 1,2, . . . ; t = 0,1,2, . . . )

Example 8.4 Let p be the geometric distribution geo(π). Then the recursion (8.15)
is satisfied as

p(n) = πp(n − 1), (n = 1,2, . . . )

and insertion in (8.23) and (8.24) gives that for x = 1,2, . . . ,

�tf (x) = 1

1 − πh(0)

(

(1 − π)

(
x + t − 1

t − 1

)

+ π

x∑

y=1

h(y)�tf (x − y)

)

�tf (x) = π

1 − πh(0)

(
t∑

j=1

�jh(x)�t−j+1f (−1) +
x∑

y=1

h(y)�tf (x − y)

)

.

For t = 1, we obtain

�f (x) = 1

1 − πh(0)

(

1 − π + π

x∑

y=1

h(y)�f (x − y)

)

�f (x) = π

1 − πh(0)

(

�h(x) +
x∑

y=1

h(y)�f (x − y)

)

.

The former recursion is in the form of a discrete renewal equation with defective
distribution. �
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Further Remarks and References

Sundt (1982) deduced recursions for the cumulative distribution function, tail, and
stop loss transform of a compound geometric distribution. Compound geometric
distributions with continuous severity distribution often appear in connection with
infinite time ruin theory. By discretising the severity distribution, one can obtain
upper and lower bounds for the ruin probability, see Dickson (1995).

The first recursion in Corollary 8.5 was presented by Chadjiconstantinidis and
Pitselis (2008), who also gave recursions for �tf under the same assumptions. They
also deduced the recursion (8.11).

Examples 8.1 and 8.3 are based on Sundt (1999a).
Most of the other results in the present chapter are based on Dhaene et al. (1999).
Waldmann (1996) discussed recursions for the cumulative distribution function,

stop loss transform, and retention transform of a compound distribution with count-
ing distribution in

⋃∞
l=0 Sl and severity distribution in P11.

Antzoulakos and Chadjiconstantinidis (2004) presented recursions for cumula-
tive functions and tails of mixed Poisson distributions and compound mixed Poisson
distributions with mixing distribution in the Willmot class and severity distribution
in P10.

Waldmann (1995) deduced an algorithm for recursive evaluation of the retention
transform of the aggregate claims distribution in the individual life model.



Chapter 9
Moments

Summary

Recursions for moments is the topic of the present chapter. It consists of two sec-
tions; Sect. 9.1 is devoted to evaluation of moments of convolutions of a distribution
in terms of moments of that distribution, whereas in Sect. 9.2, we consider evalu-
ation of moments of a compound distribution in terms of moments of its severity
distribution.

In Sect. 9.1.1, we develop recursions for ordinary moments of convolutions of
a distribution. We apply one of these recursions to prove a characterisation of nor-
mal distributions in Sect. 9.1.2. By comparing a differential equation for generating
functions with a differential equation for moment generating functions in Sect. 9.1.3,
we conclude that a recursion for factorial moments has the same shape as the recur-
sion for central moments.

In Sect. 9.2.1, we deduce recursions for moments of compound distributions with
counting distribution satisfying (5.6). The special case with counting distribution in
the Panjer class is treated in Sect. 9.2.2. Section 9.2.3 is devoted to compound Pois-
son distributions with severity distribution satisfying the conditions of Theorem 2.3.

9.1 Convolutions of a Distribution

9.1.1 Ordinary Moments

In Sect. 9.1, we shall discuss recursions for moments of the M-fold convolution of
univariate distributions. As we do not need to restrict to distributions on integers,
we shall identify the distributions by their cumulative distribution function.

We shall need the following lemma.

Lemma 9.1 Let X and Y be independent random variables such that the distribu-
tion of X is the M-fold convolution of the distribution of Y . Then

E(X − MY)r(X + Y) = 0

for any function r .

Proof For any number x, we have

0 = r(x)E[X − MY |X + Y = x] = E[(X − MY)r(X + Y)|X + Y = x].
B. Sundt, R. Vernic, Recursions for Convolutions and Compound Distributions
with Insurance Applications, EAA Lecture Notes,
DOI 10.1007/978-3-540-92900-0_9, © Springer-Verlag Berlin Heidelberg 2009
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From this, we obtain

E(X − MY)r(X + Y) = E E[(X − MY)r(X + Y)|X + Y ] = 0. �

In particular, by letting r(z) = I (z = x) for some number x, we obtain

0 = E(X − MY)I (X + Y = x) = E(x − (M + 1)Y )I (X + Y = x),

and by division by x, we obtain (2.52), that is, for this choice of r , we have already
applied Lemma 9.1 to deduce a recursion for an M-fold convolution. We shall now
apply another choice of r to deduce a recursion for moments of an M-fold convolu-
tion.

Theorem 9.1 Let G be a univariate distribution and F = GM∗ for some positive
integer M . Then

μF (j ; c) =
j∑

u=1

(
j − 1

u − 1

)((

M + 1 − j

u

)

μG(u) − cμG(u − 1)

)

μF (j − u; c).

(j = 1,2, . . . ) (9.1)

Proof Let j be a positive integer and X and Y independent random variables with
distribution F and G respectively. By letting r(x) = (x − c)j−1 in Lemma 9.1, we
obtain

0 = E(X − MY)(X + Y − c)j−1

=
j−1∑

u=0

(
j − 1

u

)

E((X − c) − MY + c)Y u(X − c)j−1−u

=
j−1∑

u=0

(
j − 1

u

)
(
μG(u)μF (j − u; c) − MμG(u + 1)μF (j − u − 1; c)

+ cμG(u)μF (j − u − 1; c))

= μF (j ; c)

−
j∑

u=1

(
j − 1

u − 1

)(

MμG(u) − cμG(u − 1) − j − u

u
μG(u)

)

μF (j − u; c),

which gives (9.1). �

For all the recursions that we deduce in this chapter, the initial condition is that
μF (0; c) = 1.
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By replacing Y with Y − b, X with X − Mb, and c with c − Mb, we obtain

μF (j ; c) =
j∑

u=1

(
j − 1

u − 1

)((

M + 1 − j

u

)

μG(u;b) + (Mb − c)μG(u − 1;b)

)

× μF (j − u; c). (j = 1,2, . . . ) (9.2)

In particular, letting c = 0 gives

μF (j) =
j∑

u=1

(
j − 1

u − 1

)((

M + 1 − j

u

)

μG(u;b) + MbμG(u − 1;b)

)

μF (j − u).

(j = 1,2, . . . )

Let us consider some special cases.

1. For ordinary non-central moments, that is, b = c = 0, we obtain

μF (j) =
j∑

u=1

(
j − 1

u − 1

)(

M + 1 − j

u

)

μG(u)μF (j − u). (j = 1,2, . . . )

(9.3)
2. To evaluate the central moments of F , we let c = μF (1) = MμG(1). By, in

addition, letting b = μG(1), we can evaluate the central moments of F from the
central moments of G. We obtain

μF (j ;μF (1)) = MμG(j ;μG(1))

+
j−2∑

u=2

(
j − 1

u − 1

)(

M + 1 − j

u

)

μG(u;μG(1))μF (j − u;μF (1)).

(j = 1,2, . . . )

In particular, we see that μF (j ;μF (1)) = MμG(j ;μG(1)) for j = 2,3. If
G is symmetric, then that is the case with F too, and then μF (j ;μF (1)) =
μG(j ;μG(1)) = 0 when j is odd, so that

μF (2j ;μF (1)) =
j∑

u=1

(
2j − 1

2u − 1

)(

M + 1 − j

u

)

μG(2u;μG(1))

× μF (2(j − u);μF (1)). (j = 1,2, . . . )

3. For M = 1, (9.2) reduces to

μF (j ; c) =
j∑

u=1

(
j − 1

u − 1

)((

2 − j

u

)

μF (u;b) + (b − c)μF (u − 1;b)

)

× μF (j − u; c), (j = 1,2, . . . )
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which can be applied to obtain moments of F around c from moments of F

around b. In particular, for j = 1,2, . . . , we have

μF (j ; c) =
j∑

u=1

(
j − 1

u − 1

)((

2 − j

u

)

μF (u) − cμF (u − 1)

)

μF (j − u; c)

μF (j) =
j∑

u=1

(
j − 1

u − 1

)((

2 − j

u

)

μF (u; c) + cμF (u − 1; c)
)

μF (j − u).

(9.4)

Example 9.1 In the special case when g is the Bernoulli distribution Bern(π), f =
gM∗ is the binomial distribution bin(M,π). In this case, we have μg(j) = π for
j = 1,2, . . . . Insertion in (9.1) gives

μf (j ; c) = ((M + 1 − j)π − c)μf (j − 1; c)

+ π

j∑

u=2

(
j − 1

u − 1

)(

M + 1 − j

u
− c

)

μf (j − u; c); (j = 1,2, . . . )

in particular,

μf (j) = π

j∑

u=1

(
j − 1

u − 1

)(

M + 1 − j

u

)

μf (j − u). (j = 1,2, . . . )
�

Let X and Y be independent random variables with distribution F and G respec-
tively. Sometimes it can be of interest to evaluate the moments of a rescaled convo-
lution variable, that is, the moments of the distribution F̃ of X/d instead of F . If we
were interested in the moments of the empirical mean, then we would have d = M ,
and it could also be of interest to consider the case d = √

M such that F̃ and G

have the same variance. With G̃ denoting the distribution of Y/d , we can of course
immediately replace F and G with F̃ and G̃ in (9.1), and, as μ

G̃
(u) = μG(u)/du,

we obtain

μ
F̃
(j ; c) =

j∑

u=1

(
j − 1

u − 1

)

d−u

((

M + 1 − j

u

)

μG(u) − cdμG(u − 1)

)

× μ
F̃
(j − u; c). (j = 1,2, . . . )

In particular, with d = √
M , c = μF (1) = 0, and hence μ

F̃
(1) = 0, we obtain

μ
F̃
(j) =

j∑

u=2

(
j − 1

u − 1

)(

M + 1 − j

u

)
μG(u)

Mu/2
μ

F̃
(j − u). (j = 2,3, . . . ) (9.5)
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9.1.2 The Normal Distribution

In Sect. 9.1.2, we shall apply the recursion (9.5) to deduce a characterisation of
normal distributions with mean zero. However, we first recapitulate some properties
of normal distributions.

The standard normal distribution N(0,1) is a continuous distribution H with
density

h(y) = 1√
2π

e− y2

2 (−∞ < y < ∞)

with π denoting the Ludolph number. If a random variable Y has the standard nor-
mal distribution, then the distribution G of

X = σY + ξ (9.6)

is the normal distribution N(ξ, σ ) with density

g(x) = 1√
2πσ

e
− (x−ξ)2

2σ2 . (−∞ < x < ∞)

We have

ωH (s) = E esY = 1√
2π

∫ ∞

−∞
e− y2−2sy

2 dy = e
s2
2

∫ ∞

−∞
1√
2π

e− (y−s)2

2 dy = e
s2
2 ,

which gives

ωG(s) = E esX = E es(ξ+σY ) = eξs ωH (σs),

that is,

ωG(s) = eξs+ (σ s)2
2 . (9.7)

This function has obviously finite derivatives of all orders, and, hence, N(ξ, σ ) has
moments of all orders. In particular, we obtain that it has mean ξ and variance σ 2.

From (9.7) and (1.19), we obtain that for all non-negative integers M

ωGM∗(s) = eMξs+ (
√

Mσs)2
2 , (9.8)

that is, GM∗ is N(Mξ,
√

Mσ).
We are now ready to give a characterisation of the normal distribution with mean

zero.

Theorem 9.2 A univariate distribution G with finite moments of first and second
order is normal with mean zero iff

GM∗(x) = G
(
x/

√
M

)
(−∞ < x < ∞) (9.9)

for some integer M > 1.
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Proof We have shown above that a normal distribution has finite moments of all
orders. Furthermore, we have shown that for any positive integer M , the M-fold
convolution of the normal distribution N(ξ, σ ) is N(Mξ,

√
Mσ), and this implies

that (9.9) holds for all positive integers M when ξ = 0.
Let us now assume that (9.9) holds for some integer M > 1. This means that if

Y1, Y2, . . . , YM are independent and identically distributed random variables with
distribution G, then Y•M/

√
M also has distribution G. Then they must have the

same mean, which must be zero. From (9.5), we obtain

μG(j) =
j∑

u=2

(
j − 1

u − 1

)(

M + 1 − j

u

)
μG(u)

Mu/2
μG(j − u). (j = 2,3, . . . )

Solving for μG(j) gives

μG(j) = 1

1 − M1−j/2

j−1∑

u=2

(
j − 1

u − 1

)(

M + 1 − j

u

)
μG(u)

Mu/2
μG(j − u).

(j = 3,4, . . . )

This recursion determines all moments of G from μG(1) = 0 and a given value
of μG(2). As there exists a normal distribution with the same first and second order
moments as G and this normal distribution satisfies (9.9) for all positive integers M ,
this normal distribution must have the same moments as G, and as the moment
generating function of a normal distribution exists for all real numbers, this implies
that G must be equal to that normal distribution.

This completes the proof of Theorem 9.2. �

Letting M ↑ ∞ in (9.5), we obtain that, in the limit,

μ
F̃
(j) = (j − 1)μG(2)μ

F̃
(j − 2), (j = 2,3, . . . )

which gives that for j = 1,2, . . . , we have μ
F̃
(2j − 1) = 0 and μ

F̃
(2j) =

μG(2)j
∏j

i=1(2i − 1). As

j∏

i=1

(2i − 1) = (2j − 1)!
∏j−1

i=1 (2i)
= (2j − 1)!

(j − 1)!2j−1
= (2j − 1)(j)

2j−1
,

we obtain

μ
F̃
(j) =

⎧
⎪⎨

⎪⎩

(j−1)
(
j
2 )

2
j
2 −1

μG(2)
j
2 (j = 2,4,6, . . . )

0. (j = 1,3,5, . . . )

(9.10)

From this, we see that the asymptotic moments of F̃ are determined by μG(2). As
there exists a normal distribution with the same first and second order moments
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as G, and F̃ is normal when G is normal, the recursion (9.10) must generate the
moments of a normal distribution, as expected. In particular, if G is normal, then
Theorem 9.2 gives that F̃ = G. Hence, if G is the normal distribution N(0, σ ), then
we obtain from (9.10) that

μG(j) =

⎧
⎪⎨

⎪⎩

(j−1)
(
j
2 )

2
j
2 −1

σ j (j = 2,4,6, . . . )

0. (j = 1,3,5, . . . )

(9.11)

More generally, if F is the normal distribution N(ξ, σ ), then the central moments
of F are the moments of G given by (9.11). For the non-central moments of F ,
insertion of (9.11) in (9.4) gives that for j = 1,2, . . . ,

μF (j) =
j∑

u=1

(
j − 1

u − 1

)((

2 − j

u

)

μF (u; ξ) + ξμF (u − 1; ξ)

)

μF (j − u)

=
[j/2]∑

u=1

(
j − 1

2u − 1

)(

2 − j

2u

)

μF (2u; ξ)μF (j − 2u)

+ ξ

[(j−1)/2]∑

u=0

(
j − 1

2u

)

μF (2u; ξ)μF (j − 2u − 1)

=
[j/2]∑

u=1

(
j − 1

2u − 1

)(

2 − j

2u

)
(2u − 1)(u)

2u−1
σ 2uμF (j − 2u)

+ ξ

[(j−1)/2]∑

u=0

(
j − 1

2u

)
(2u − 1)(u)

2u−1
σ 2uμF (j − 2u − 1).

9.1.3 Factorial Moments

Let G be a univariate distribution and F = GM∗ for some positive integer M . Then,
letting r(x) equal to sx and esx in Lemma 9.1 gives respectively

τ ′
F (s)τG(s) − Mτ ′

G(s)τF (s) = 0 (9.12)

ω′
F (s)ωG(s) − Mω′

G(s)ωF (s) = 0. (9.13)

We can obviously deduce (9.3) by taking the j th order derivative of (9.13) at zero,
using (1.12), and solving for μF (j). Analogously, we can find a recursion for the
factorial moments of F by taking the j th order derivative of (9.12) at one, using
(1.14), and solving for νF (j). Because of the similarity of the formulae involved
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in these two deductions, the latter recursion is obtained by simply replacing the
moments in (9.3) with the corresponding factorial moments, that is,

νF (j) =
j∑

u=1

(
j − 1

u − 1

)(

M + 1 − j

u

)

νG(u)νF (j − u). (j = 1,2, . . . )

9.2 Compound Distributions

9.2.1 General Results

In Sect. 9.2.1, we consider recursions for moments of a compound distribution F =
p ∨ H with univariate severity distribution H and counting distribution p ∈ P10
satisfying the recursion (5.6).

In this situation, we have the following analogue to Lemma 9.1.

Lemma 9.2 Let X,Y1, Y2, . . . be independent random variables, the Yis with dis-
tribution H and X with distribution p ∨ H with p ∈ P10 satisfying the recursion
(5.6) where k is a positive number or infinity. Then

EXr(X) =
∞∑

n=1

q(n)EY•nr(Y•n)

+
k∑

i=1

E(a(i)(X + Y•i ) + �b(i)Y•i )r(X + Y•i ) (9.14)

for any function r for which these expectations exist.

Proof Let N,Z1,Z2, . . . be mutually independent random variables independent of
the Yis; N with distribution p and the Zis with distribution H . Then

EXr(X) = EZ•Nr(Z•N) =
∞∑

n=1

p(n)EZ•nr(Z•n)

=
∞∑

n=1

(

q(n) +
k∑

i=1

(

a(i) + b(i)

n

)

p(n − i)

)

EZ•nr(Z•n),

that is,

EXr(X) =
∞∑

n=1

q(n)EY•nr(Y•n) +
k∑

i=1

∞∑

n=1

p(n − i)

(

a(i) + b(i)

n

)

EZ•nr(Z•n).

(9.15)
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For i = 1,2, . . . , k, we have

∞∑

n=1

p(n − i)

(

a(i) + b(i)

n

)

EZ•nr(Z•n)

=
∞∑

n=0

p(n)

(

a(i) + b(i)

n + i

)

EZ•(n+i)r(Z•(n+i))

=
∞∑

n=0

p(n)

(

a(i) + b(i)

n + i

)

E(Z•n + Y•i )r(Z•n + Y•i )

=
∞∑

n=0

p(n)E

(

a(i)(Z•n + Y•i ) + b(i)

i
Y•i

)

r(Z•n + Y•i )

= E(a(i)(Z•N + Y•i ) + �b(i)Y•i )r(Z•N + Y•i )

= E(a(i)(X + Y•i ) + �b(i)Y•i )r(X + Y•i ).

Insertion in (9.15) gives (9.14). �

If H ∈ P1, then letting r(z) = I (z = x) in (9.14) for some integer x gives

xf (x) =
∞∑

n=0

q(n)xhn∗(x) +
k∑

i=1

∞∑

y=−∞
(a(i)x + �b(i)y)hi∗(y)f (x − y), (9.16)

which is a trivial extension of (5.7).
For deducing a recursion for moments of F , we shall also need the following

lemma.

Lemma 9.3 For constants A, B , v, and w, we have

A(v + w)j + Bw(v + w)j−1 = Avj +
j∑

u=1

(
j − 1

u − 1

)(
j

u
A + B

)

wuvj−u.

(j = 1,2, . . . )

Proof We have

A(v + w)j + Bw(v + w)j−1 = A

j∑

u=0

(
j

u

)

wuvj−u + B

j−1∑

u=0

(
j − 1

u

)

wu+1vj−1−u

= Avj +
j∑

u=1

(
j − 1

u − 1

)(
j

u
A + B

)

wuvj−u.
�

We are now ready to deduce a recursion for moments of F .
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Theorem 9.3 If F = p∨H with univariate severity distribution H ∈ P1 and count-
ing distribution p ∈ P10 satisfying (5.6) with μa(0) �= 1, then

μF (j ; c) = 1

1 − μa(0)

(

μq∨H (j ; c) + cμq∨H (j − 1; c) − cμF (j − 1; c)

+
j∑

u=1

(
j − 1

u − 1

)(
j

u
μa∨H (u) + μ�b∨H (u) + cμa∨H (u − 1)

)

× μF (j − u; c)
)

(j = 1,2, . . . ) (9.17)

for any constant c.

Proof Let X,Y1, Y2, . . . be independent random variables, the Yis with distribution
H and X with distribution F . For any positive integer j , we then have

μF (j ; c) = E(X − c)j = EX(X − c)j−1 − cμF (j − 1; c).

Insertion of (9.14) with r(x) = (x − c)j−1 gives

μF (j ; c) =
∞∑

n=1

q(n)EY•n(Y•n − c)j−1

+
k∑

i=1

E(a(i)(X + Y•i ) + �b(i)Y•i )(X + Y•i − c)j−1

− cμF (j − 1; c). (9.18)

For i = 1,2, . . . , k, application of Lemma 9.3 gives

E(a(i)(X + Y•i ) + �b(i)Y•i )(X + Y•i − c)j−1

= E
(
a(i)((X − c) + Y•i )j + �b(i)Y•i ((X − c) + Y•i )j−1

+ a(i)c((X − c) + Y•i )j−1)

= a(i)μF (j ; c) +
j∑

u=1

(
j − 1

u − 1

)((
j

u
a(i) + �b(i)

)

μHi∗(u)

+ ca(i)μHi∗(u − 1)

)

μF (j − u; c).
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By insertion in (9.18), we obtain

μF (j ; c) = μq∨H (j ; c) + cμq∨H (j − 1; c) − cμF (j − 1; c) + μa(0)μF (j ; c)

+
j∑

u=1

(
j − 1

u − 1

)(
j

u
μa∨H (u) + μ�b∨H (u) + cμa∨H (u − 1)

)

× μF (j − u; c). (9.19)

Solving for μF (j ; c) gives (9.23). �

Theorem 5.11 is a special case of this theorem.
For evaluation of μa∨H and μ�b∨H , we need the non-central moments of con-

volutions of H . These can be evaluated recursively by (9.3). However, if we need
μHi∗(u) for several values of i, then it might be more efficient to use that

μH(i+j)∗(u) =
u∑

v=0

(
u

v

)

μHi∗(v)μHj∗(u − v), (i, j, u = 1,2, . . . )

which follows from (1.22). When i = j , we have the more efficient formula

μH 2j∗(u) = 2
[(u−1)/2]∑

v=0

(
u

v

)

μHj∗(v)μHj∗(u − v) + I (u even)

(
u

u/2

)

μHj∗(u/2)2.

(j, u = 1,2, . . . )

For c = 0, (9.17) reduces to

μF (j) = 1

1 − μa(0)

(

μq∨H (j)

+
j∑

u=1

(
j − 1

u − 1

)(
j

u
μa∨H (u) + μ�b∨H (u)

)

μF (j − u)

)

. (9.20)

(j = 1,2, . . . )

In particular, this gives

μF (1) = μq∨H (1) + μa∨H (1) + μ�b∨H (1)

1 − μa(0)
. (9.21)

By grouping the terms with factor μF (j − 1; c) in (9.17), we obtain

μF (j ; c) = 1

1 − μa(0)

(

μq∨H (j ; c) + cμq∨H (j − 1; c)

+ (jμa∨H (1) + μ�b∨H (1) − c(1 − μa(0)))μF (j − 1; c)



172 9 Moments

+
j∑

u=2

(
j − 1

u − 1

)(
j

u
μa∨H (u) + μ�b∨H (u) + cμa∨H (u − 1)

)

× μF (j − u; c)
)

. (j = 1,2, . . . ) (9.22)

Insertion of c = μF (1) and application of (9.21) give the following recursion for the
central moments:

μF (j ;μF (1)) = 1

1 − μa(0)

(

μq∨H (j ;μF (1)) + μF (1)μq∨H (j − 1;μF (1))

+ ((j − 1)μa∨H (1) − μq∨H (1))μF (j − 1;μF (1))

+
j∑

u=2

(
j − 1

u − 1

)(
j

u
μa∨H (u) + μ�b∨H (u) + μF (1)μa∨H (u − 1)

)

× μF (j − u;μF (1))

)

. (j = 1,2, . . . ) (9.23)

In the special case when H is symmetric around zero, we have

μHn∗(j) = μF (j) = μa∨H (j) = μ�b∨H (j) = 0

for all integers n when j is odd so that in this case (9.20) gives

μF (2j) = 1

1 − μa(0)

(

μq∨H (2j)

+
j∑

u=1

(
2j − 1

2u − 1

)(
j

u
μa∨H (2u) + μ�b∨H (2u)

)

μF (2(j − u))

)

.

(j = 1,2, . . . )

If p is Rk[a, b], then (9.17) reduces to

μF (j ; c) = 1

1 − μa(0)

(
j∑

u=1

(
j − 1

u − 1

)(
j

u
μa∨H (u) + μ�b∨H (u) + cμa∨H (u − 1)

)

× μF (j − u; c) − cμF (j − 1; c)
)

. (j = 1,2, . . . ) (9.24)
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With k = ∞, a ≡ 0, and b = ϕp , we obtain

μF (j ; c) =
j∑

u=1

(
j − 1

u − 1

)

μ�ϕp∨H (u)μF (j − u; c) − cμF (j − 1; c).

(j = 1,2, . . . )

Let us now look at the case when H is concentrated in one, so that F reduces
to p. In this case, (9.17) reduces to

μp(j ; c) = 1

1 − μa(0)

(

μq(j ; c) + cμq(j − 1; c)

+
j∑

u=1

(
j − 1

u − 1

)(
j

u
μa(u) + μb+ca(u − 1)

)

μp(j − u; c)

− cμp(j − 1; c)
)

. (j = 1,2, . . . )

When p is Rk[a, b], we obtain

μp(j ; c) = 1

1 − μa(0)

(
j∑

u=1

(
j − 1

u − 1

)(
j

u
μa(u) + μb+ca(u − 1)

)

μp(j − u; c)

− cμp(j − 1; c)
)

, (j = 1,2, . . . ) (9.25)

and with k = ∞, a ≡ 0, and b = ϕp , we get

μp(j ; c) =
j∑

u=1

(
j − 1

u − 1

)

μϕp(u − 1)μp(j − u; c) − cμp(j − 1; c).

(j = 1,2, . . . ) (9.26)

By application of Corollary 5.6 in (9.25) and some manipulation, we get back to
(9.1).

Let us look at some examples.

Example 9.2 Let p be the logarithmic distribution Log(π). Then p satisfies (5.6)
with k = 1, a and b given by (2.64), and

q(n) = p(1)I (n = 1) = π

− ln(1 − π)
I (n = 1). (n = 1,2, . . . )
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Insertion in (9.17) gives that for j = 1,2, . . . ,

μF (j ; c) = 1

1 − π

(
π

− ln(1 − π)
(μH (j ; c) + cμH (j − 1; c)) − cμF (j − 1; c)

+ π

j∑

u=1

(
j − 1

u − 1

)((
j

u
− 1

)

μH (u) + cμH (u − 1)

)

μF (j − u; c)
)

.

In particular, we obtain

μp(j ; c) = 1

1 − π

(
(1 + c)π

− ln(1 − π)
− cμp(j − 1; c)

+ π

j∑

u=1

(
j − 1

u − 1

)(
j

u
+ c − 1

)

μp(j − u; c)
)

.
�

9.2.2 Compound Panjer Distributions

In Sect. 9.2.2, we consider the special case when p is R1[a, b], that is, q ≡ 0 and
k = 1.

Under this assumption, (9.17), (9.20), and (9.23) reduce to

μF (j ; c) = 1

1 − a

(
j∑

u=1

(
j − 1

u − 1

)((
j

u
a + b

)

μH (u) + caμH (u − 1)

)

μF (j − u; c)

− cμF (j − 1; c)
)

(9.27)

μF (j) = 1

1 − a

j∑

u=1

(
j − 1

u − 1

)(
j

u
a + b

)

μH (u)μF (j − u) (9.28)

μF (j ;μF (1)) = 1

1 − a

(

(j − 1)aμH (1)μF (j − 1;μF (1))

+
j∑

u=2

(
j − 1

u − 1

)((
j

u
a + b

)

μH (u) + aμF (1)μH (u − 1)

)

× μF (j − u;μF (1))

)

(9.29)

for j = 1,2, . . . .
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When H is concentrated in one, F reduces to p and μH (u) = 1 for all u. Thus,
these recursions reduce to

μp(j ; c) = 1

1 − a

(
j∑

u=1

(
j − 1

u − 1

)(
j

u
a + b + ca

)

μp(j − u; c) − cμp(j − 1; c)
)

(9.30)

μp(j) = 1

1 − a

j∑

u=1

(
j − 1

u − 1

)(
j

u
a + b

)

μp(j − u) (9.31)

μp(j ;μp(1)) = 1

1 − a

(

(j − 1)aμp(j − 1;μp(1))

+
j∑

u=2

(
j − 1

u − 1

)(
j

u
a + b + aμp(1)

)

μp(j − u;μp(1))

)

(9.32)

for j = 1,2, . . . .
In our present case, (9.14) reduces to

EXr(X) = E(a(X + Y1) + bY1)r(X + Y1). (9.33)

Letting r(x) equal to sx and esx gives respectively

τ ′
F (s) = aτG(s)τ ′

F (s) + (a + b)τ ′
G(s)τF (s) (9.34)

ω′
F (s) = aωG(s)ω′

F (s) + (a + b)ω′
G(s)ωF (s). (9.35)

We can obviously deduce (9.28) by taking the j th order derivative of (9.35) at zero
and using (1.12). Analogously, we can find a recursion for the factorial moments of
F by taking the j th order derivative of (9.34) at one and using (1.14). Because of the
similarity of the formulae involved in these two deductions, the latter recursion is
obtained by simply replacing the moments in (9.28) with the corresponding factorial
moments, that is,

νF (j) = 1

1 − a

j∑

u=1

(
j − 1

u − 1

)(
j

u
a + b

)

νH (u)νF (j − u). (9.36)

When H is concentrated in one, we have νH (u) = I (u = 1) for u = 1,2, . . . . Hence,

νp(j) = ja + b

1 − a
νp(j − 1),

that is,

νp(j) =
∏j

i=1(ia + b)

(1 − a)j
. (9.37)
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More generally, when p is Rk[a, b], by applying (9.24), reasoning like we did
for setting up (9.36), and assuming that νa(0) �= 0, we obtain

νF (j) = 1

1 − νa(0)

j∑

u=1

(
j − 1

u − 1

)(
j

u
νa∨H (u) + ν�b∨H (u)

)

νF (j − u).

(j = 1,2, . . . )

When H is concentrated in one, this reduces to

νp(j) = 1

1 − νa(0)

j∑

u=1

(
j − 1

u − 1

)(
j

u
νa(u) + ν�b(u)

)

νp(j − u).

(j = 1,2, . . . )

As i(u) = 0 when u > i, we have νa(u) = ν�b(u) = 0 when u > k. Hence, in this
case, we obtain

νp(j) = 1

1 − νa(0)

min(j,k)∑

u=1

(
j − 1

u − 1

)(
j

u
νa(u) + ν�b(u)

)

νp(j − u).

(j = 1,2, . . . ) (9.38)

Let us apply the recursions (9.27)–(9.32) and (9.37) to the three main classes
in R1 for j = 1,2, . . . . We do not bother to display the recursion (9.36) as that is
obtained from (9.28) by simply replacing the moments by factorial moments. The
values of a and b are found in Table 2.1.

1. Poisson distribution Po(λ).

μF (j ; c) = λ

j∑

u=1

(
j − 1

u − 1

)

μH (u)μF (j − u; c) − cμF (j − 1; c) (9.39)

μF (j) = λ

j∑

u=1

(
j − 1

u − 1

)

μH (u)μF (j − u) (9.40)

μF (j ;μF (1)) = λ

j∑

u=2

(
j − 1

u − 1

)

μH (u)μF (j − u;μF (1)) (9.41)

μp(j ; c) = λ

j∑

u=1

(
j − 1

u − 1

)

μp(j − u; c) − cμp(j − 1; c)

μp(j) = λ

j∑

u=1

(
j − 1

u − 1

)

μp(j − u) (9.42)
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μp(j ;μp(1)) = λ

j∑

u=2

(
j − 1

u − 1

)

μp(j − u;μp(1))

νp(j) = λj .

The last formula was also given in (3.4).
2. Binomial distribution bin(M,π).

μF (j ; c) = π

j∑

u=1

(
j − 1

u − 1

)((

M + 1 − j

u

)

μH (u) − cμH (u − 1)

)

μF (j − u; c)

− (1 − π)cμF (j − 1; c) (9.43)

μF (j) = π

j∑

u=1

(
j − 1

u − 1

)(

M + 1 − j

u

)

μH (u)μF (j − u)

μF (j ;μF (1)) = π

(
j∑

u=2

(
j − 1

u − 1

)((

M + 1 − j

u

)

μH (u) − μF (1)μH (u − 1)

)

× μF (j − u;μF (1)) − (j − 1)μH (1)μF (j − 1;μF (1))

)

μp(j ; c) = π

j∑

u=1

(
j − 1

u − 1

)(

M + 1 − j

u
− c

)

μp(j − u; c)

− (1 − π)cμp(j − 1; c)

μp(j) = π

j∑

u=1

(
j − 1

u − 1

)(

M + 1 − j

u

)

μp(j − u)

μp(j ;μp(1)) = π

(
j∑

u=2

(
j − 1

u − 1

)(

M + 1 − j

u
− μp(1)

)

μp(j − u;μp(1))

− (j − 1)μp(j − 1;μp(1))

)

νp(j) = M(j)πj .

3. Negative binomial distribution NB(α,π).

μF (j ; c) = 1

1 − π

(

π

j∑

u=1

(
j − 1

u − 1

)((
j

u
+ α − 1

)

μH (u)

+ cμH (u − 1)

)

μF (j − u; c) − cμF (j − 1; c)
)
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μF (j) = π

1 − π

j∑

u=1

(
j − 1

u − 1

)(
j

u
+ α − 1

)

μH (u)μF (j − u)

μF (j ;μF (1)) = π

1 − π

(

(j − 1)μH (1)μF (j − 1;μF (1))

+
j∑

u=2

(
j − 1

u − 1

)((
j

u
+ α − 1

)

μH (u) + μF (1)μH (u − 1)

)

× μF (j − u;μF (1))

)

μp(j ; c) = 1

1 − π

(

π

j∑

u=1

(
j − 1

u − 1

)(
j

u
+ α + c − 1

)

μp(j − u; c)

− cμp(j − 1; c)
)

μp(j) = π

1 − π

j∑

u=1

(
j − 1

u − 1

)(
j

u
+ α − 1

)

μp(j − u)

μp(j ;μp(1)) = π

1 − π

(

(j − 1)μp(j − 1;μp(1))

+
j∑

u=2

(
j − 1

u − 1

)(
j

u
+ α − 1 + μp(1)

)

μp(j − u;μp(1))

)

νp(j) = (α + j − 1)(j)

(
π

1 − π

)j

.

9.2.3 Compound Poisson Distributions

Let f = p ∨ h where p is the Poisson distribution Po(λ) and h ∈ P10 satisfies the
conditions of Theorem 2.3. Application of Theorem 5.5 in (9.25) and (9.38) gives
that for j = 1,2, . . . ,

μf (j) = 1

1 − μχ(0)

j∑

u=1

(
j − 1

u − 1

)(

λμη(u − 1) + j − u

u
μχ(u)

)

μf (j − u)

(9.44)
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νf (j) = 1

1 − νχ (0)

min(j,r)∑

u=1

(
j − 1

u − 1

)(

λν�η(u) + j − u

u
νχ(u)

)

νf (j − u).

(9.45)

In (9.45) we can stop the summation at r . Unfortunately, this is not the case with
(9.44); there we have to sum to j . Hence, if the moments of h are known, then
that recursion seems more complicated than the general recursion (9.40), and we
therefore discard it. This was also the reason that we did not bother to state that
recursion more generally for μf (j ; c).

As pointed out after the proof of Theorem 2.3, the conditions of that theorem
are always satisfied with r = ∞, η = h, and χ ≡ 0. Insertion in (9.45) gives the
special case of (9.36) corresponding to (9.42).

Example 9.3 Let h ∈ P11 be the shifted geometric distribution given by (2.21). Then
h satisfies the conditions of Theorem 2.3 with r , η, and χ given by (2.23), so that

ν�η(1) = 1 − π; νχ (0) = π(2 − π); νχ (1) = 2π(1 − π); νχ (2) = −2π2,

and νη(u) and νχ (u) equal to zero for all other values of u. Insertion in (9.45) gives

νf (j) = 1

1 − π

(

(λ + 2(j − 1)π)νf (j − 1)

− (j − 1)(2) π2

1 − π
νf (j − 2)I (j ≥ 2)

)

. (j = 1,2, . . . ) �

Further Remarks and References

Section 9.1 is to a large extent based on Sundt (2003a). A more general version of
Theorem 9.2 was proved by Shimizu (1962) by using cumulant generating func-
tions. For more information on the normal distribution, see e.g. Johnson et al.
(1994).

Section 9.2 is primarily based on Sundt (2003b).
The recursion (9.24) was deduced by Murat and Szynal (1998). With c = 0 and

H ∈ P11, Sundt et al. (1998) deduced the recursions (9.24)–(9.26).
The recursions (9.27)–(9.29) were deduced by De Pril (1986b), using moment

generating functions. Murat and Szynal (2000a) presented a more general version
of (9.27). The special case of moments of the counting distribution was discussed
by Szynal and Teugels (1995), who also deduced another recursion for these mo-
ments. Goovaerts et al. (1984) deduced the recursion (9.41), and Shiu (1977) gave
an explicit expression for central moments of a compound Poisson distribution. Re-
cursions for moments of compound distributions are also discussed by Gerhold et
al. (2008).
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For the Poisson case, the moment relation (9.33) was used by Ross (1996).
For H ∈ P11, deduction of the recursion (9.36) was given as a question in Exer-

cise 11.13 of Sundt (1999b).
Recursions for moments of counting distributions belonging to other classes have

been presented by Murat and Szynal (1998, 2000a) and for the counting distribution
by Murat and Szynal (2000b).

Kaas and Goovaerts (1985) presented a recursion for the non-central moments
of compound distributions in terms of the factorial moments of the counting distri-
bution and the non-central moments of the severity distribution. This recursion is
applicable for any type of counting and severity distribution.

The recursions (9.44) and (9.45) and Example 9.3 were presented by Chadji-
constantinidis and Pitselis (2008), who also gave other recursions for more general
classes of moments within the same setting.

Chadjiconstantinidis and Antzoulakos (2002) presented recursions for moments
of mixed Poisson distributions and compound mixed Poisson distributions with mix-
ing distribution in the Willmot class.



Chapter 10
Approximations Based on De Pril Transforms

Summary

In Chap. 7, we pointed out that because of the need for all the convolutions of the
his in (7.11), De Pril’s second method can be rather inefficient for exact results in
practice, but that it has been used as basis for developing approximations where
we replace each pj with a function p

(r)
j ∈ F10 with ϕ

p
(r)
j

(y) = 0 for all integers y

greater than some positive integer r . The present chapter is devoted to such approx-
imations.

As p
(r)
j is not necessarily a distribution, we need to extend the definition of the

De Pril transform to functions in F10. This is done in Sect. 10.1, where we also
introduce an error measure for the quality of approximations in F10 to distributions
in P10. Furthermore, we briefly define the approximations of De Pril, Kornya, and
Hipp.

When studying approximations in F10 of distributions in P10, we need to ex-
tend results that we have proved for distributions in P10 to functions in F10. Such
extension is performed in Sect. 10.2.

In Sect. 10.3, we deduce upper bounds for our error measure for approximations.
Section 10.4 is devoted to a generalisation of De Pril’s individual model, extend-

ing the class of the pj s from the Bernoulli class to P10. Within that model, we study
the approximations of De Pril, Kornya, and Hipp in Sects. 10.5, 10.6, and 10.7 re-
spectively. We deduce expressions for the approximations and give upper bounds
for the error measure.

Finally, in Sect. 10.8, we present a numerical example.

10.1 Introduction

We now return to the setting of Sect. 7.1. To avoid evaluating all the convolutions
of the his in (7.11), we want to apply an approximation where we replace each pj

with a function p
(r)
j ∈ F (r)

10 , the class of functions p ∈ F10 for which ϕp(y) = 0

for all integers y greater than some positive integer r . We have F (r−1)
10 ⊂ F (r)

10 for
r = 2,3, . . . .

Although pj is a distribution, that does not need to be the case with p
(r)
j . As

indicated above and in Chap. 7, we need the De Pril transform of p
(r)
j , but we have

defined the De Pril transform only for distributions in P10. Hence, we need to ex-
tend the definition of the De Pril transform to a more general class of functions. We
also touched the desirability of such an extension in the discussion to Corollary 8.6.

B. Sundt, R. Vernic, Recursions for Convolutions and Compound Distributions
with Insurance Applications, EAA Lecture Notes,
DOI 10.1007/978-3-540-92900-0_10, © Springer-Verlag Berlin Heidelberg 2009
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There we suggested to extend the definition (6.1) of the De Pril transform to func-
tions in F10, and that is what we are going to do, that is, we define the De Pril
transform ϕf of a function f ∈ F10 by

ϕf (x) = 1

f (0)

(

xf (x) −
x−1∑

y=1

ϕf (y)f (x − y)

)

. (x = 1,2, . . . ) (10.1)

Then each of the relations (6.2) and (6.3) still holds and determines ϕf uniquely.
We have earlier deduced several results for De Pril transforms of distributions

in P10. Now we have to check to what extent these results still hold for, or could be
extended to, functions in F10. Many of the results were presented as special cases of
results that we had deduced for distributions in the form Rk[a, b] by letting k = ∞
and a ≡ 0. For distributions in P10, the functions a and b determined the distribu-
tion uniquely. This was because a distribution sums to one. This is not necessarily
the case with functions in F10, so such a function is determined by a and b only up
to a multiplicative constant. We could say that a distribution in P10 was Rk[a, b],
but for a function in F10, we can only say that it is in the form Rk[a, b], by which
we mean that it satisfies the recursion (5.12); if a function in F10 is in the form
Rk[a, b], then that is the case for all functions in F10 that are proportional to it. Un-
fortunately, that also goes for De Pril transforms of functions in F10; each function
in F10 has a unique De Pril transform, but all functions in F10 proportional to it have
that De Pril transform too. The additional information we need for determining the
function uniquely, will typically be its value at zero, that is, the initial value for the
recursion (6.2).

Of course, to any function from the set of non-negative integers to the set of
real numbers, any other function between the same two sets can be considered as
an approximation, but it would not necessarily be a good approximation. But what
do we mean by a good approximation? What do we mean when we say that one
approximation is better than another approximation? To say that, we need a measure
of the quality of approximations; we shall call such a measure an error measure. Let
ε denote such a measure. Relative to this measure, we say that an approximation f̂

of a function f is better than another approximation ˆ̂
f if ε(f, f̂ ) < ε(f,

ˆ̂
f ). Our

choice of ε is

ε(f, f̂ ) = μ|f −f̂ |(0) =
∞∑

x=0

|f − f̂ |(x). (f, f̂ ∈ F10) (10.2)

This measure satisfies the desirable property that ε(f,f ) = 0.
The three most well-known classes of approximations based on approximat-

ing De Pril transforms are the approximations of De Pril, Kornya, and Hipp.
The De Pril approximation is presumably the simplest and the most intuitive of
these. There we simply replace ϕpj

(x) with zero for all integers x greater than

r and let p
(r)
j (0) = pj (0), or, equivalently, we determine p

(r)
j ∈ F (r)

10 such that

p
(r)
j (n) = pj (n) for n = 0,1,2, . . . , r . The Kornya approximation has the same
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De Pril transform, but now p
(r)
j (0) is determined such that p

(r)
j sums to one like

a probability distribution. In that sense, there is a tiny touch of moment-matching
in the Kornya approximation; the zeroth order moment of the approximation should
match the zeroth order moment of the exact distribution. In the Hipp approximation,
the element of moment-matching is more pronounced; here the approximation is de-
termined such that the moments of order 0,1,2, . . . , r of the approximation match
the corresponding moments of the exact distribution.

10.2 Extension of Results for Distributions

10.2.1 Key Result

When extending the results for distributions to more general functions, it is natural
to pose the following questions:

1. What properties of distributions that do not hold for functions, do we use?
2. Where do we use them?
3. How do we use them?

We sometimes use that a distribution is non-negative and sums to one, but the
relation (5.4) is more essential; if we can extend that relation from distributions in
P10 to functions in F10, then the proofs of most of the results will still hold. Obvi-
ously, for functions in F10, we cannot express the relation in terms of conditional
expectations, so let us now express it in terms of distributions. Let Y1, Y2, . . . be
independent and identical distributed random variables with distribution h ∈ P10.
Then we can express (5.4) as

∑x
y=0(a + b

i
y
x
)hi∗(y)h(n−i)∗(x − y)

hn∗(x)
= a + b

n

for x = 1,2, . . . ; n = i, i + 1, i + 2, . . . , and i = 1,2, . . . . Strictly speaking, we have
to be a bit careful here as the denominator hn∗(x) could be equal to zero. However,
in the deductions we made in earlier chapters, that did not do any harm as the relation
always appeared in the context of a + b/n being multiplied with hn∗(x). To be safe,
we multiply the relation with hn∗(x) and obtain

x∑

y=0

(

a + b

i

y

x

)

hi∗(y)h(n−i)∗(x − y) =
(

a + b

n

)

hn∗(x).

This relation can be split into the two relations

x∑

y=0

hi∗(y)h(n−i)∗(x − y) = hn∗(x)
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n

i

x∑

y=0

yhi∗(y)h(n−i)∗(x − y) = xhn∗(x).

The first one follows immediately from the definition of the convolution between
hi∗ and h(n−i)∗. It remains to prove the second one, which we reformulate as

hn∗ = n

i
hi∗ ∗ h(n−i)∗. (10.3)

To prove that this relation holds more generally for all h ∈ F10, we shall need the
following lemma.

Lemma 10.1 If f,g ∈ F10, then (f ∗ g) = f ∗ g + f ∗ g.

Proof For any non-negative integer x, we have

(f ∗ g)(x) = x(f ∗ g)(x) = x

x∑

y=0

f (y)g(x − y)

=
x∑

y=0

yf (y)g(x − y) +
x∑

y=0

f (y)(x − y)g(x − y)

=
x∑

y=0

f (y)g(x − y) +
x∑

y=0

f (y)g(x − y)

= (f ∗ g)(x) + (f ∗ g)(x) = (f ∗ g + f ∗ g)(x),

which proves the lemma. �

We are now ready to prove our key result.

Theorem 10.1 For h ∈ F10, the relation (10.3) holds for n = 1,2, . . . and i = 1,

2, . . . , n.

Proof For i = 1, (10.3) reduces to

hn∗ = nh ∗ h(n−1)∗. (10.4)

We shall prove this relation by induction on n. It obviously holds for n = 1. Let
us now assume that it holds for n = j − 1 for some integer j > 1. Then, by using
Lemma 10.1 and the induction hypothesis, we obtain

hj∗ = (h ∗ h(j−1)∗) = h ∗ h(j−1)∗ + h ∗ h(j−1)∗

= h ∗ h(j−1)∗ + h ∗ ((j − 1)h ∗ h(j−2)∗) = jh ∗ h(j−1)∗,
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that is, (10.4) holds also for n = j , and by induction it holds for all positive inte-
gers n.

Let us now prove (10.3) for i = 2,3, . . . , n. By using (10.4) twice, we obtain

hn∗ = nh ∗ h(n−1)∗ = n

i
(ih ∗ h(i−1)∗) ∗ h(n−i)∗ = n

i
hi∗ ∗ h(n−i)∗,

which completes the proof of Theorem 10.1. �

10.2.2 Applications

Theorem 10.1 gives us the key to extend to functions in F10 many of the results
that we have deduced for distributions in P10. We shall not go through all of these.
However, as we shall need the extension of Corollaries 6.1 and 6.3 in the following,
we shall now prove these results.

Theorem 10.2 The convolution of a finite number of functions in F10 is a function
in F10, and its De Pril transform is the sum of the De Pril transforms of these
functions.

Proof We prove the theorem for the convolution of two functions f,g ∈ F10; the
general case follows by induction.

As f,g ∈ F10, f (0) > 0 and g(0) > 0. Hence, (f ∗ g)(0) = f (0)g(0) > 0, so
that f ∗ g ∈ F10.

By using Lemma 10.1 and (6.3), we obtain

(f ∗ g) = f ∗ g + f ∗ g = (ϕf ∗ f ) ∗ g + f ∗ (ϕg ∗ g) = (ϕf + ϕg) ∗ (f ∗ g).

As the relation (6.3) determines the De Pril transform of a function in F10 uniquely,
we must have ϕf ∗g = ϕf + ϕg . This proves that the De Pril transform of the con-
volution of two functions in F10 is the sum of the De Pril transforms of these two
functions.

This completes the proof of Theorem 10.2. �

Theorem 10.3 If p ∈ F10 and h ∈ F11, then

ϕp∨h = (�ϕp ∨ h). (10.5)

Proof For x = 1,2, . . . , application of (1.8), (6.2), and (10.3) gives

(p ∨ h)(x) =
x∑

n=1

p(n)hn∗(x) =
x∑

n=1

1

n

(
n∑

i=1

ϕp(i)p(n − i)

)

hn∗(x)

=
x∑

n=1

n∑

i=1

ϕp(i)

i
p(n − i)(hi∗ ∗ h(n−i)∗)(x)
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=
x∑

n=1

n∑

i=1

�ϕp(i)p(n − i)

x∑

y=1

hi∗(y)h(n−i)∗(x − y)

=
x∑

y=1

x∑

i=1

�ϕp(i)hi∗(y)

x∑

n=i

p(n − i)h(n−i)∗(x − y)

=
x∑

y=1

(�ϕp ∨ h)(y)(p ∨ h)(x − y) = ((�ϕp ∨ h) ∗ (p ∨ h))(x).

Comparison with (6.3) gives (10.5). �

10.3 Error Bounds

10.3.1 Main Result

The error measure ε can be considered as a measure for the distance between two
functions in F10. We shall also need the distance measure δ given by

δ(f, f̂ ) =
∣
∣
∣
∣ln

f̂ (0)

f (0)

∣
∣
∣
∣ +

∞∑

x=1

|ϕf − ϕ
f̂
|(x)

x
=

∣
∣
∣
∣ln

f̂ (0)

f (0)

∣
∣
∣
∣ + μ|ϕf −ϕ

f̂
|(−1).

(f, f̂ ∈ F10) (10.6)

Like ε, this measure satisfies the desirable property that δ(f, f̂ ) = 0. The following
theorem gives a relation between these two distance measures.

Theorem 10.4 If f ∈ P10 and f̂ ∈ F10, then

ε(f, f̂ ) ≤ eδ(f,f̂ ) − 1. (10.7)

Proof As the theorem trivially holds when δ(f, f̂ ) = ∞, we assume in the follow-
ing that δ(f, f̂ ) < ∞.

Let g ∈ F10 be defined by

ϕg = ϕ
f̂

− ϕf ; g(0) = f̂ (0)

f (0)
. (10.8)

Then Theorem 10.2 gives that f̂ = f ∗ g, and we obtain

(f − f̂ )(x) = (1 − g(0))f (x) −
x∑

y=1

g(y)f (x − y). (x = 0,1,2, . . . ) (10.9)
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Thus,

ε(f, f̂ ) =
∞∑

x=0

∣
∣
∣
∣
∣
(1 − g(0))f (x) −

x∑

y=1

g(y)f (x − y)

∣
∣
∣
∣
∣

≤
∞∑

x=0

(

|1 − g(0)|f (x) +
x∑

y=1

|g(y)|f (x − y)

)

= |1 − g(0)| +
∞∑

y=1

|g(y)|
∞∑

x=y

f (x − y),

from which we obtain

ε(f, f̂ ) ≤ |1 − g(0)| +
∞∑

y=1

|g(y)|. (10.10)

Let k be a compound Poisson distribution with Poisson parameter

λ = δ(f, f̂ ) − |lng(0)| =
∞∑

y=1

|ϕg(y)|
y

and severity distribution h ∈ P11 given by

h(y) = |ϕg(y)|
λy

. (y = 1,2, . . . )

From (4.13), we see that ϕk = |ϕg|.
We shall prove by induction that

|g(x)| ≤ k(x)eδ(f,f̂ ). (x = 0,1,2, . . . ) (10.11)

We have

|g(0)| = g(0) = elng(0) ≤ e| lng(0)| = e−λ+δ(f,f̂ ) = k(0)eδ(f,f̂ ),

so (10.11) holds for x = 0. Let us now assume that it holds for x = 0,1,2, . . . , z− 1
for some positive integer z. Then, by application of (6.2), we obtain

|g(z)| =
∣
∣
∣
∣
∣

1

z

z∑

y=1

ϕg(y)g(z − y)

∣
∣
∣
∣
∣
≤ 1

z

z∑

y=1

ϕk(y)|g(z − y)|

≤ 1

z

z∑

y=1

ϕk(y)k(z − y)eδ(f,f̂ ) = k(z)eδ(f,f̂ ).
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Hence, (10.11) holds also for x = z, and by induction it holds for all non-negative
integers z.

From (10.11), we obtain

|1 − g(0)| +
∞∑

y=1

|g(y)| ≤ |1 − elng(0)| +
∞∑

x=1

k(x)eδ(f,f̂ )

≤ e| lng(0)| − 1 + (1 − k(0))eδ(f,f̂ )

= eδ(f,f̂ )−λ − 1 + (1 − e−λ)eδ(f,f̂ ),

that is,

|1 − g(0)| +
∞∑

y=1

|g(y)| ≤ eδ(f,f̂ ) − 1, (10.12)

and together with (10.10), this gives (10.7).
This completes the proof of Theorem 10.4. �

As proportional functions in F10 have the same De Pril transform, (10.6) gives
that

δ(f, cf̂ ) =
∣
∣
∣
∣ln

cf̂ (0)

f (0)

∣
∣
∣
∣ + μ|ϕf −ϕ

f̂
|(−1)

for any positive constant c. From this, we see that δ(f, cf̂ ) and, hence, the upper
bound in (10.7) is minimised when c = f (0)/f̂ (0), that is, when we scale the ap-
proximation f̂ such that f̂ (0) = f (0). This does not appeal to our intuition; it does
not seem reasonable that whatever approximation f̂ we apply for f , it will always
be best to scale it such that f̂ (0) = f (0). This property is a deficiency of the error
bound of Theorem 10.4. In particular, Theorem 10.4 will always give a lower value
for the bound for the De Pril approximation than for the Kornya approximation.
However, as it is only an upper bound for ε(f, f̂ ), that does not necessarily im-
ply that the De Pril approximation is always better than the Kornya approximation
relative to the error measure ε. Let us look at a simple example.

Example 10.1 Let f ∈ P10 with f (0) < 1/2. We define f̂ ∈ F10 by

f̂ (x) =
{

cf (0) (x = 0)

f (x) (x = 1,2, . . . )

with 1 < c < 1/f (0) − 1 and let ˆ̂
f = f̂ /c. Then

δ(ϕf ,ϕ
f̂
) = |ln c| + δ(ϕf ,ϕ ˆ̂

f
) > δ(ϕf ,ϕ ˆ̂

f
).
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Hence, Theorem 10.4 will give a higher value of the upper bound for ε(f, f̂ ) than

for ε(f,
ˆ̂

f ). However,

ε(f, f̂ )

ε(f,
ˆ̂

f )

= (c − 1)f (0)

(1 − 1/c)(1 − f (0))
= c

f (0)

1 − f (0)
< 1,

that is, ε(f, f̂ ) < ε(f,
ˆ̂

f ), so relative to the error measure ε, f is better approxi-

mated by f̂ than by ˆ̂
f although δ(ϕf ,ϕ

f̂
) > δ(ϕf ,ϕ ˆ̂

f
). �

10.3.2 The Dhaene–De Pril Transform

For any f ∈ F10, the Dhaene–De Pril transform ψf ∈ F10 is defined by

ψf (x) =
{

lnf (0) (x = 0)

ϕf (x)/x. (x = 1,2, . . . )

This gives δ(f, f̂ ) = ε(ψf ,ψ
f̂
) so that (10.7) can be written as

ε(f, f̂ ) ≤ eε(ψf ,ψ
f̂
) − 1.

Furthermore, (6.6) and (6.11) can be merged into the more pleasant shape

κp(j) = μψp(j) (j = 0,1,2, . . . ) (10.13)

in terms of the Dhaene–De Pril transform. Hence, we see that in connection with
approximations, the Dhaene–De Pril transform has some advantages compared to
the De Pril transform:

1. We do not need to introduce the distance measure δ; it suffices to use ε.
2. The connection to cumulants becomes simpler.
3. A function in F10 is uniquely determined by its Dhaene–De Pril transform.

Re Advantage 1: Construction of error bounds was not our main reason for intro-
ducing the De Pril transform. Our primary reason was to deduce a simple algorithm
for recursive evaluation of the convolution of a finite number of functions in F10 by
applying the recursions (6.2) and (6.1) as described in Sect. 4.4.1, and these recur-
sions are more complicated in terms of the Dhaene–De Pril transform.

Re Advantage 2: Our main application of (10.13) is in connection with the Hipp
approximation. However, as we shall see in Sect. 10.7, the relation for j = 0 gets a
special treatment anyhow, and in that setting it is more convenient to have it in its
old shape.

Re Advantage 3: As we have not defined ϕf (0), we could also have defined that
as e.g. lnf (0). However, it does not seem that urgent to have a function in F10
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uniquely determined by its De Pril transform. In Chap. 11, we shall see that when
extending the definition of the De Pril transform to functions in F1_, then it will be
convenient to define ϕf (0) = 0 for functions in F10.

Let us also point out that in terms of Dhaene–De Pril transforms, the relation
(10.5) for compound distributions reduces to ψp∨h = ψp ∨ h.

10.3.3 Corollaries to the Main Result

We shall prove some corollaries to Theorem 10.4.

Corollary 10.1 If f ∈ P10 and f̂ ∈ F10, then

|�f − �f̂ | ≤ (eδ(f,f̂ ) − 1)�f ≤ eδ(f,f̂ ) − 1. (10.14)

Proof With g defined by (10.8), we obtain that for x = 0,1,2, . . . ,

(�f − �f̂ )(x) =
x∑

y=0

(f − f̂ )(y) =
x∑

y=0

(

f (y) −
y∑

z=0

g(z)f (y − z)

)

= �f (x) −
x∑

z=0

g(z)

x∑

y=z

f (y − z) = �f (x) −
x∑

z=0

g(z)�f (x − z)

= (1 − g(0))�f (x) −
x∑

z=1

g(z)�f (x − z),

so that

|�f − �f̂ |(x) ≤ |1 − g(0)|�f (x) +
x∑

z=1

|g(z)|�f (x − z)

≤
(

|1 − g(0)| +
∞∑

z=1

|g(z)|
)

�f (x).

Application of (10.12) gives the first inequality in (10.14).
As �f is a cumulative distribution function, �f ≤ 1, and this gives the second

inequality in (10.14).
This completes the proof of Corollary 10.1. �

The following corollary gives bounds for �f .

Corollary 10.2 If f ∈ P10 and f̂ ∈ F10, then

�f ≥ e−δ(f,f̂ )�f̂ . (10.15)
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If we also have δ(f, f̂ ) < ln 2, then

�f ≤ �f̂

2 − eδ(f,f̂ )
. (10.16)

Proof By application of the first inequality in (10.14), we get

�f̂ − �f ≤ (eδ(f,f̂ ) − 1)�f,

that is,

eδ(f,f̂ )�f ≥ �f̂ , (10.17)

from which we obtain (10.15). Furthermore, we have

�f − �f̂ ≤ (eδ(f,f̂ ) − 1)�f,

that is,

(2 − eδ(f,f̂ ))�f ≤ �f̂ ,

from which we obtain (10.16) when δ(f, f̂ ) < ln 2.
This completes the proof of Corollary 10.2. �

As limx↑∞ �f (x) = 1, (10.17) gives that limx↑∞�f̂ (x) ≤ eδ(f,f̂ ).
As �f ≥ 0, (10.16) gives that �f̂ ≥ 0 when δ(f, f̂ ) < ln 2.
When δ(f, f̂ ) < ln 2 and �f̂ (x) > 0, Corollary 10.2 gives that

e−δ(f,f̂ ) ≤ �f (x)

�f̂ (x)
≤ 1

2 − eδ(f,f̂ )
. (10.18)

Unfortunately, to apply the first inequality in (10.14), we need to know �f , that
is, the quantity that we want to approximate. The following corollary avoids that
problem.

Corollary 10.3 If f ∈ P10 and f̂ ∈ F10 with δ(f, f̂ ) < ln 2, then

|�f − �f̂ | ≤ eδ(f,f̂ ) − 1

2 − eδ(f,f̂ )
�f̂ . (10.19)

Proof By Corollary 10.1, we obtain that

|�f − �f̂ | ≤ (eδ(f,f̂ ) − 1)(�f − �f̂ + �f̂ )

≤ (eδ(f,f̂ ) − 1)(|�f − �f̂ | + �f̂ ),

from which the corollary easily follows. �
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We see that when δ(f, f̂ ) goes to zero, the upper bounds in (10.7), (10.14) and
(10.19) go to zero whereas the bounds in (10.18) go to one. This is very satisfactory.
Furthermore, the upper bounds in (10.7), (10.14), (10.18), and (10.19) are increasing
in δ(f, f̂ ) whereas the lower bound in (10.18) is decreasing. Hence, we get weaker
bounds by replacing δ(f, f̂ ) with a higher value.

10.3.4 Convolutions and Compound Distributions

Our interest for approximations originated in De Pril’s individual model . There we
wanted to approximate a convolution of a finite number of compound distributions
by replacing each of the counting distributions with an approximation. Therefore,
we are interested in the properties of the distance measure δ in connection with con-
volutions as well as with compound functions where both the original distribution
and the approximation have the same severity distribution.

We start with convolutions.

Theorem 10.5 If fj , f̂j ∈ F10 for j = 1,2, . . . ,M , then

δ(∗M
j=1fj ,∗M

j=1f̂j ) ≤
M∑

j=1

δ(fj , f̂j ).

Proof Application of Theorem 10.2 gives

δ(∗M
j=1fj ,∗M

j=1f̂j ) =
∣
∣
∣
∣ln

(∗M
j=1f̂j )(0)

(∗M
j=1fj )(0)

∣
∣
∣
∣ +

∞∑

x=1

|ϕ∗M
j=1fj

− ϕ∗M
j=1f̂j

|(x)

x

=
∣
∣
∣
∣ln

∏M
j=1 f̂j (0)

∏M
j=1 fj (0)

∣
∣
∣
∣ +

∞∑

x=1

|∑M
j=1(ϕfj

− ϕ
f̂j

)(x)|
x

≤
∣
∣
∣
∣

M∑

j=1

ln
f̂j (0)

fj (0)

∣
∣
∣
∣ +

∞∑

x=1

∑M
j=1 |ϕfj

− ϕ
f̂j

|(x)

x

≤
M∑

j=1

(∣
∣
∣
∣ln

f̂j (0)

fj (0)

∣
∣
∣
∣ +

∞∑

x=1

|ϕfj
− ϕ

f̂j
|(x)

x

)

=
M∑

j=1

δ(fj , f̂j ).
�

Let us now turn to compound functions.

Theorem 10.6 If p, p̂ ∈ F10 and h ∈ P11, then

δ(p ∨ h, p̂ ∨ h) ≤ δ(p, p̂).
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Proof By application of Theorem 10.3, we obtain

δ(p ∨ h, p̂ ∨ h) =
∣
∣
∣
∣ln

(p̂ ∨ h)(0)

(p ∨ h)(0)

∣
∣
∣
∣ +

∞∑

x=1

|ϕp∨h − ϕp̂∨h|(x)

x

=
∣
∣
∣
∣ln

p̂(0)

p(0)

∣
∣
∣
∣ +

∞∑

x=1

|(�ϕp ∨ h) − (�ϕp̂ ∨ h)|(x)

x

=
∣
∣
∣
∣ln

p̂(0)

p(0)

∣
∣
∣
∣ +

∞∑

x=1

∣
∣
∣
∣
∣

x∑

n=1

(ϕp − ϕp̂)(n)hn∗(x)

n

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣ln

p̂(0)

p(0)

∣
∣
∣
∣ +

∞∑

x=1

∞∑

n=1

|ϕp − ϕp̂|(n)hn∗(x)

n

=
∣
∣
∣
∣ln

p̂(0)

p(0)

∣
∣
∣
∣ +

∞∑

n=1

|ϕp − ϕp̂|(n)
∑∞

x=1 hn∗(x)

n

=
∣
∣
∣
∣ln

p̂(0)

p(0)

∣
∣
∣
∣ +

∞∑

n=1

|ϕp − ϕp̂|(n)

n
= δ(p, p̂).

�

Now let N be a random variable with distribution p, and let pm denote the distri-
bution of mN for some positive integer m. As discussed in connection with Corol-
lary 5.4, then pm = p ∨ hm with hm concentrated in m. It then seems natural to
approximate pm with p̂m = p̂ ∨ hm. Application of Corollary 6.5 on (10.6) gives
that δ(pm, p̂m) = δ(p, p̂). As

pm(n) =
{

p(n/m) (n = 0,m,2m, . . . )

0 (otherwise)

p̂m(n) =
{

p̂(n/m) (n = 0,m,2m, . . . )

0, (otherwise)

the definition (10.2) of ε immediately gives that ε(pm, p̂m) = ε(p, p̂). The invari-
ance of the distance measures ε and δ against scaling seems very logical and satis-
factory. Note that if p̂ ∈ F (r)

10 , then p̂m ∈ F (mr)
10 .

For ε, we have the following parallel to Theorem 10.6.

Theorem 10.7 If p, p̂ ∈ F10 and h ∈ P10, then

ε(p ∨ h, p̂ ∨ h) ≤ ε(p, p̂).

Proof We have

ε(p ∨ h, p̂ ∨ h) =
∞∑

x=0

|p ∨ h − p̂ ∨ h|(x)
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=
∞∑

x=0

∣
∣
∣
∣
∣

∞∑

n=0

(p − p̂)(n)hn∗(x)

∣
∣
∣
∣
∣
≤

∞∑

x=0

∞∑

n=0

|p − p̂|(n)hn∗(x)

=
∞∑

n=0

|p − p̂|(n)

∞∑

x=0

hn∗(x) =
∞∑

n=0

|p − p̂|(n) = ε(p, p̂).
�

By successive application of Theorems 10.7 and 10.4, we obtain

ε(p ∨ h, p̂ ∨ h) ≤ ε(p, p̂) ≤ eδ(p,p̂) − 1. (p, p̂ ∈ F10, h ∈ P11)

We see that compounding the exact counting distribution and its approximation with
the same severity distribution reduces the error measure.

With respect to convolution, we have the same situation. For f, f̂ ∈ F10 and
g ∈ P11, we obtain

ε(f ∗ g, f̂ ∗ g) =
∞∑

x=0

|f ∗ g − f̂ ∗ g|(x) =
∞∑

x=0

∣
∣
∣
∣
∣

x∑

y=0

(f − f̂ )(y)g(x − y)

∣
∣
∣
∣
∣

≤
∞∑

x=0

x∑

y=0

|f − f̂ |(y)g(x − y) =
∞∑

y=0

|f − f̂ |(y)

∞∑

x=y

g(x − y)

=
∞∑

y=0

|f − f̂ |(y) = ε(f, f̂ ),

and application of Theorem 10.4 gives

ε(f ∗ g, f̂ ∗ g) ≤ ε(f, f̂ ) ≤ eδ(f,f̂ ) − 1.

From Theorem 10.5, we immediately obtain that δ(f ∗ g, f̂ ∗ g) ≤ δ(f, f̂ ).

10.4 The Generalised De Pril Individual Model

Let us now return to De Pril’s individual model as presented in Sect. 7.3. However,
we assume that the pj s are in P10 without restricting them to the Bernoulli class.
We shall refer to this model as the generalised De Pril individual model. We want
to approximate f with

f (r) = ∗I
i=1 ∗J

j=1 (p
(r)
j ∨ hi)

Mij ∗, (10.20)

where each p
(r)
j ∈ F (r)

10 for some fixed positive integer r called the order of the
approximation. Then

ϕf (x) = x

x∑

n=1

1

n

J∑

j=1

ϕpj
(n)

I∑

i=1

Mijh
n∗
i (x) (10.21)
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ϕf (r) (x) = x

r∑

n=1

1

n

J∑

j=1

ϕ
p

(r)
j

(n)

I∑

i=1

Mijh
n∗
i (x) (10.22)

for x = 1,2, . . . and

f (0) =
J∏

j=1

pj (0)M•j

f (r)(0) =
J∏

j=1

p
(r)
j (0)M•j (10.23)

with M•j = ∑I
i=1 Mij for j = 1,2, . . . , J . By application of Theorems 10.5 and

10.6, we obtain

δ(f,f (r)) ≤
I∑

i=1

J∑

j=1

Mij δ(pj ∨ hi,p
(r)
j ∨ hi) ≤

I∑

i=1

J∑

j=1

Mij δ(pj ,p
(r)
j ),

that is,

δ(f,f (r)) ≤
J∑

j=1

M•j δ(pj ,p
(r)
j ). (10.24)

Combining this inequality with Theorem 10.4 gives

ε(f,f (r)) ≤ exp

(
J∑

j=1

M•j δ(pj ,p
(r)
j )

)

− 1. (10.25)

This error bound depends on only the counting distributions and their approxi-
mations, not the severity distributions, and it depends on them only through the
δ(pj ,p

(r)
j )s. Hence, when applying this inequality for this kind of approximations

in the following sections, we should focus on δ(p,p(r)) for some representative
counting distribution p ∈ P10 and its r th order approximation p(r) ∈ F (r)

10 .
When each hi is concentrated in a positive integer si , (10.21) and (10.22) give

that for x = 1,2, . . . ,

ϕf (x) =
I∑

i=1

siI (x/si = [x/si] > 0)

J∑

j=1

Mijϕpj
(x/si)

ϕf (r) (x) =
I∑

i=1

siI (0 < x/si = [x/si] ≤ r)

J∑

j=1

Mijϕp
(r)
j

(x/si),
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and by insertion in (6.2) we obtain that for x = 1,2, . . . ,

f (x) = 1

x

I∑

i=1

si

[x/si ]∑

n=1

f (x − nsi)

J∑

j=1

Mijϕpj
(n)

f (r)(x) = 1

x

I∑

i=1

si

[r/si ]∑

n=1

f (r)(x − nsi)

J∑

j=1

Mijϕp
(r)
j

(n). (10.26)

We have assumed that the aggregate claims distribution of each policy is approx-
imated with an approximation of order r . In the semi-collective approximation of
Sect. 7.4, we suggested using a collective compound Poisson approximation for the
normal policies and the exact distribution for some special policies. Analogously,
in our present setting, we can use the r th order approximation for the normal poli-
cies and the exact distribution for the special policies. More generally, we can use
different order of the approximation for different policies; the more normal policy,
the lower order of the approximation. Exact evaluation corresponds to infinite or-

der. One way to achieve this is to approximate fij with f
(rij )

ij , where the order rij

is chosen such that ε(fij , f
(rij )

ij ) or δ(f, f̂ ) does not exceed some fixed positive
number.

In Sects. 10.5–10.7, we discuss the approximations of De Pril, Kornya, and Hipp
respectively. In each case, we start with the general assumption that p ∈ P10 and
define an r th order approximation p(r) of p. For the De Pril and Kornya approx-
imations, we then restrict to p ∈ R1 and after that further to p being a Bernoulli
distribution; we can exclude the case where p is a Poisson distribution as then
p ∈ F (1)

10 . For the Hipp approximation, we go straight from the general assumption

p ∈ P10 to Bernoulli p. When we have found p(r)(0), the De Pril transform ϕp(r) ,

and the distance δ(p,p(r)), or an upper bound for it, in the Bernoulli case, we turn to
De Pril’s individual model and insert these quantities for each pj in (10.22)–(10.24)
and (10.26). In Table 10.1, we display the expressions for f (r)(0) and ϕf (r) for these

three types of approximation, and Table 10.2 gives upper bounds for δ(f,f (r)) for
the case when all the πj s are less than 1/2. For 0 < π < 1/2, we have

2
π(1 − π)

1 − 2π
= π

1 − 2π
+ π >

π

1 − 2π
,

that is, as expected, the error bound for the De Pril approximation is lower than for
the Kornya approximation. Furthermore, for any positive integer r , we have

2
π(1 − π)

1 − 2π

(
π

1 − π

)r

< 2
π(1 − π)

1 − 2π
(2π)r = 1 − π

1 − 2π
(2π)r+1 ≤ (2π)r+1

1 − 2π
,

so that the error bound for the Kornya approximation is lower than the error bound
for the Hipp approximation. However, these are only upper bounds so one should
not necessarily conclude that they give a correct ranking between the three classes
of approximations, cf. the discussion after the proof of Theorem 10.4.
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Table 10.1 Approximations of order r

Approximation f (r)(0) ϕf (r) (x)

De Pril
∑J

j=1(1 − πj )
M•j −x

∑r
n=1

1
n

∑J
j=1(

πj

πj −1 )n
∑I

i=1 Mijh
n∗
i (x)

Kornya exp(
∑r

n=1
1
n

∑J
j=1 M•j (

πj

πj −1 )n) −x
∑r

n=1
1
n

∑J
j=1(

πj

πj −1 )n

× ∑I
i=1 Mijh

n∗
i (x)

Hipp exp(−∑r
l=1

∑J
j=1 M•j

πl
j

l
) x

∑r
l=1

1
l

∑l
n=1(−1)n+1

(
l
n

)∑J
j=1 πl

j

× ∑I
i=1 Mijh

n∗
i (x)

Table 10.2 Upper bounds
for δ(f,f (r)) Approximation Bound

De Pril 1
r+1

∑J
j=1 M•j

πj

1−2πj
(

πj

1−πj
)r

Kornya 2
r+1

∑J
j=1 M•j

πj (1−πj )

1−2πj
(

πj

1−πj
)r

Hipp 1
r+1

∑J
j=1 M•j

(2πj )r+1

1−2πj

We see that for each of the three classes of approximations, the bound in Ta-
ble 10.2 goes to zero when r goes to infinity. Hence, this is also the case with
δ(f,f (r)), and, by (10.7), ε(f,f (r)). For any positive integer x and any non-
negative integer r , we have

|f (x) − f (r)(x)| ≤
∞∑

y=0

|f (y) − f (r)(y)| = ε(f,f (r))

|�f (x) − �f (r)(x)| =
∣
∣
∣
∣
∣

x∑

y=0

(f (y) − f (r)(y))

∣
∣
∣
∣
∣
≤

∞∑

y=0

|f (y) − f (r)(y)| = ε(f,f (r)),

from which we obtain that f (r) and �f (r) converge uniformly to f and �f .

10.5 The De Pril Approximation

10.5.1 General Counting Distribution

Let us look more closely at the distance measure δ when approximating a distribu-
tion p ∈ P10 with a function p(r) ∈ F (r)

10 . From (10.6), we obtain

δ(p,p(r)) =
∣
∣
∣
∣ln

p(r)(0)

p(0)

∣
∣
∣
∣ +

r∑

n=1

|ϕp(n) − ϕp(r) (n)|
n

+ ��|ϕp|(r). (10.27)
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We have already pointed out that among proportional approximations, δ(p,p(r)) is
minimised by the approximation that approximates p(0) with p(0). Let us therefore
now restrict to approximations p(r) for which

p(r)(0) = p(0). (10.28)

Then (10.27) reduces to

δ(p,p(r)) =
r∑

n=1

|ϕp(n) − ϕp(r) (n)|
n

+ ��|ϕp|(r).

In this class, we see that δ(p,p(r)) is minimised when

ϕp(r) (n) = ϕp(n). (n = 1,2, . . . , r) (10.29)

This is the r th order De Pril approximation and gives

δ(p,p(r)) = ��|ϕp|(r) ≤ �|ϕp|(r)
r + 1

. (10.30)

Hence,

δ(p,p(r)) = δ(p,p(r−1)) − �|ϕp(r)|. (r = 2,3, . . . ) (10.31)

Suppose that we require the approximation p(r) to be so good that ε(p,p(r))

is not greater than some given positive number ε0. By Theorem 10.4, this condi-
tion is satisfied if δ(p,p(r)) ≤ ln(ε0 + 1). If μ|ϕp |(−1) < ∞, then we can evaluate
δ(p,p(r)) recursively by (10.31) until we get to the first r for which this inequal-
ity is satisfied, and evaluate p(r) with this r . In this case, we have the initial value
δ(p,p(1)) = μ|ϕp |(−1) − |ϕp(1)| for the recursion (10.31).

Once more, we stress that Theorem 10.4 only gives an upper bound for
ε(p,p(r)), so, even if the r th order De Pril approximation minimises δ(p,p(r))

among all r th order approximations, that does not necessarily imply that it also
minimises ε(p,p(r)).

From (10.29), we see that if ϕp is non-negative (that is, p is infinitely divisible,
cf. Theorem 4.5), then

ϕp(1) ≤ ϕp(2) ≤ ϕp(3) ≤ · · · ≤ ϕp

and application of (10.28) and (6.2) gives that

p(1) ≤ p(2) ≤ p(3) ≤ · · · ≤ p.
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10.5.2 Counting Distribution in R1

Let us now assume that p is R1[a, b] with a �= 0. Then, insertion of (6.17) in (10.30)
gives

δ(p,p(r)) = (a + b)

∞∑

n=r+1

|a|n−1

n
<

a + b

r + 1

∞∑

n=r+1

|a|n−1. (10.32)

We see that δ(p,p(r)) = ∞ when a ≤ −1. For 0 < |a| < 1, (10.32) gives

δ(p,p(r)) = −a + b

|a|

(

ln(1 − |a|) +
r∑

n=1

|a|n
n

)

<
a + b

1 − |a|
|a|r
r + 1

, (10.33)

so that we have the recursion

δ(p,p(r)) =
⎧
⎨

⎩

δ(p,p(r−1)) − (a + b)
|a|r−1

r
(r = 2,3, . . . )

−(a + b)(
ln(1−|a|)

|a| + 1). (r = 1)
(10.34)

When p is the Bernoulli distribution Bern(π), then

a = − π

1 − π
; b = 2

π

1 − π
. (10.35)

In this case, the condition |a| < 1 means that π < 1/2. Under this condition, inser-
tion of (10.35) in (10.33) and (10.34) gives

δ(p,p(r)) = ln
1 − π

1 − 2π
−

r∑

n=1

1

n

(
π

1 − π

)n

<
1

r + 1

π

1 − 2π

(
π

1 − π

)r

(10.36)

δ(p,p(r)) =
{

δ(p,p(r−1)) − 1
r
( π

1−π
)r (r = 2,3, . . . )

ln 1−π
1−2π

− π
1−π

. (r = 1)

10.5.3 De Pril’s Individual Model

Let us now return to De Pril’s individual model. By application of (10.22), we obtain
that the De Pril transform of the r th order De Pril approximation is given by

ϕf (r) (x) = −x

r∑

n=1

1

n

J∑

j=1

(
πj

πj − 1

)n I∑

i=1

Mijh
n∗
i (x), (x = 1,2, . . . ) (10.37)

and the initial value for the recursion (6.2) for f (r) is

f (r)(0) = f (0) =
J∏

j=1

(1 − πj )
M•j . (10.38)
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If πj < 1/2 for j = 1,2, . . . , J , then insertion of (10.36) in (10.24) gives

δ(f,f (r)) ≤ δ̃(f, f (r)) <
1

r + 1

J∑

j=1

M•j
πj

1 − 2πj

(
πj

1 − πj

)r

, (10.39)

with

δ̃(f, f (r)) =
J∑

j=1

M•j

(

ln
1 − πj

1 − 2πj

−
r∑

n=1

1

n

(
πj

1 − πj

)n
)

,

for which we have the recursion

δ̃(f, f (r)) =
⎧
⎨

⎩

δ̃(f, f (r−1)) − 1
r

∑J
j=1 M•j (

πj

1−πj
)r (r = 2,3, . . . )

∑J
j=1 M•j (ln

1−πj

1−2πj
− πj

1−πj
). (r = 1)

For the individual life model, application of (10.26) gives the recursion

f (r)(x) = − 1

x

I∑

i=1

si

[r/si ]∑

n=1

f (r)(x − nsi)

J∑

j=1

Mij

(
πj

πj − 1

)n

. (x = 1,2, . . . )

(10.40)

10.6 The Kornya Approximation

10.6.1 General Counting Distribution

For p ∈ P10, we let p(r) ∈ F (r)
10 be defined by (10.29) and μp(r) (0) = 1. Thus, the

Kornya approximation and the De Pril approximation of p are proportional, and that
also goes for these approximations of f . As

μ|ϕ
p(r) |(−1) = �|�ϕp|(r) < ∞,

and Theorem 6.1 trivially extends to functions in F (r)
10 , we obtain

p(r)(0) = exp(−��ϕp(r)). (10.41)

Hence,
∣
∣
∣
∣ln

p(r)(0)

p(0)

∣
∣
∣
∣ = |lnp(0) + ��ϕp(r)|.

By insertion of this and (10.29) in (10.27), we obtain

δ(p,p(r)) = |lnp(0) + ��ϕp(r)| + �|�ϕp|(r), (10.42)
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and when μ|ϕp |(−1) < ∞, application of Theorem 6.1 gives that

δ(p,p(r)) = |��ϕp(r)| + �|�ϕp|(r). (10.43)

10.6.2 Counting Distribution in R1

Let us now assume that p is R1[a, b] with a �= 0. Then insertion of (6.17) in (10.41)
and (10.42) gives

p(r)(0) = exp

(

−(a + b)

r∑

n=1

an−1

n

)

(10.44)

δ(p,p(r)) = (a + b)

(∣
∣
∣
∣
∣

lnp(0)

a + b
+

r∑

n=1

an−1

n

∣
∣
∣
∣
∣
+

∞∑

n=r+1

|a|n−1

n

)

. (10.45)

If a < −1, then δ(p,p(r)) = ∞.
When 0 < |a| < 1, (10.45) gives

δ(p,p(r)) = a + b

|a|

(∣
∣
∣
∣
∣

a

a + b
lnp(0) +

r∑

n=1

an

n

∣
∣
∣
∣
∣
− ln(1 − |a|) −

r∑

n=1

|a|n
n

)

= (a + b)

(∣
∣
∣
∣
∣

∞∑

n=r+1

an−1

n

∣
∣
∣
∣
∣
+

∞∑

n=r+1

|a|n−1

n

)

. (10.46)

For n = 0,1,2, . . . , we have

a2n

2n + r + 1
+ a2n+1

2n + r + 2
= a2n

2n + r + 1

(

1 + 2n + r + 1

2n + r + 2
a

)

> 0.

Hence,
∣
∣
∣
∣
∣

∞∑

n=r+1

an−1

n

∣
∣
∣
∣
∣
= |a|r

∣
∣
∣
∣
∣

∞∑

n=0

(
a2n

2n + r + 1
+ a2n+1

2n + r + 2

)∣
∣
∣
∣
∣

= |a|r
∞∑

n=0

(
a2n

2n + r + 1
+ a2n+1

2n + r + 2

)

= |a|r
∞∑

n=0

an

n + r + 1
.

Insertion in (10.46) gives

δ(p,p(r)) = (a + b)|a|r
∞∑

n=0

an + |a|n
n + r + 1

≤ (a + b)
|a|r
r + 1

∞∑

n=0

(an + |a|n)
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= (a + b)

(
1

1 − a
+ 1

1 − |a|
) |a|r

r + 1
,

that is,

δ(p,p(r)) ≤
{

2 a+b
1−a

ar

r+1 (a > 0)

2 a+b

1−a2
|a|r
r+1 . (a < 0)

(10.47)

When 0 < a < 1, (10.46) and (10.47) give

δ(p,p(r)) = 2(a + b)

∞∑

n=r+1

an−1

n
≤ 2

a + b

1 − a

|a|r
r + 1

,

that is, twice of what we got for the De Pril approximation.
Let us now assume that p is the Bernoulli distribution Bern(π). Then insertion

of (10.35) in (10.44) gives

p(r)(0) = exp

(
r∑

n=1

1

n

(
π

π − 1

)n
)

. (10.48)

If π < 1/2, then insertion of (10.35) in (10.46) and (10.47) gives

δ(p,p(r)) =
∣
∣
∣
∣
∣
ln(1 − π) −

r∑

n=1

1

n

(
π

π − 1

)n
∣
∣
∣
∣
∣
+ ln

1 − π

1 − 2π
−

r∑

n=1

1

n

(
π

1 − π

)n

≤ 2

r + 1

π(1 − π)

1 − 2π

(
π

1 − π

)r

. (10.49)

10.6.3 De Pril’s Individual Model

Let us now return to De Pril’s individual model. Under the r th order Kornya ap-
proximation, ϕf (r) is given by (10.37), and by insertion of (10.48) in (10.23) we
obtain

f (r)(0) = exp

(
r∑

n=1

1

n

J∑

j=1

M•j
(

πj

πj − 1

)n
)

. (10.50)

If πj < 1/2 for j = 1,2, . . . , J , then insertion of (10.49) in (10.24) gives

δ(f,f (r)) ≤
J∑

j=1

M•j

(∣
∣
∣
∣
∣
ln(1 − πj ) −

r∑

n=1

1

n

(
πj

πj − 1

)n
∣
∣
∣
∣
∣

+ ln
1 − πj

1 − 2πj

−
r∑

n=1

1

n

(
πj

1 − πj

)n
)
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≤ 2

r + 1

J∑

j=1

M•j
πj (1 − πj )

1 − 2πj

(
πj

1 − πj

)r

. (10.51)

Let us consider the special case r = 1. Then, by (10.1) we obtain that for j =
1,2, . . . , J ,

ϕ
p

(1)
j

(1) = ϕpj
(1) = pj (1)

pj (0)
= πj

1 − πj

,

and from (4.17) we see that p
(1)
j is the Poisson distribution Po(πj /(1 − πj )). The-

orem 4.4 gives that the approximation f (1) is a compound Poisson distribution with
Poisson parameter

λ =
J∑

j=1

M•j
πj

1 − πj

and severity distribution

h = 1

λ

J∑

j=1

πj

1 − πj

I∑

i=1

Mijhi,

that is, a collective compound Poisson approximation similar to the one of Sect. 7.4.
For our present approximation, (10.51) gives

δ(f,f (1)) ≤
J∑

j=1

M•j
(∣

∣
∣
∣ln(1 − πj ) + πj

1 − πj

∣
∣
∣
∣ + ln

1 − πj

1 − 2πj

− πj

1 − πj

)

≤
J∑

j=1

M•j
π2

j

1 − 2πj

. (10.52)

Analogous to what we did in Sect. 7.4, we could apply this collective approxi-
mation for normal policies and exact evaluation for some special policies. We see
that it is the policies with the highest value of πj that give the highest contribution
to the weaker bound in (10.52), so that it seems reasonable to choose those policies
for exact evaluation.

Let us now compare the first order Kornya approximation with the collective
compound Poisson approximation g of Sect. 7.4 where each pj is approximated
with the Poisson distribution Po(πj ). As

πj

1 − πj

− πj = π2
j

1 − πj

> 0,

Po(πj /(1 − πj )) is the convolution of Po(πj ) and Po(π2
j /(1 − πj )). Hence, The-

orem 4.4 gives that f (1) = g ∗ k with k = ∗I
i=1 ∗J

j=1 (qj ∨ hi)
Mij∗ where qj is
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Po(π2
j /(1 − πj )). As k ∈ P10, we must have �f (1) ≤ �g. Application of Theo-

rem 1.8 gives that �f (1) ≥ �g , and by combining this with Theorem 7.2, we obtain
that �f ≤ �g ≤ �f (1) . Hence, for the stop loss transform, the collective compound
Poisson approximation of Sect. 7.4 gives a closer approximation than the first order
Kornya approximation.

For the individual life model, (10.40) still holds.

10.7 The Hipp Approximation

10.7.1 General Counting Distribution

For p ∈ P10, we let p(r) ∈ F (r)
10 be defined by the constraints

κp(r) (j) = κp(j), (j = 0,1,2, . . . , r)

assuming that these cumulants exist and that μ|ϕp |(−1) < ∞. The advantage of
expressing these conditions in terms of cumulants instead of ordinary moments is
the simple relation (6.6) between cumulants of a distribution and moments of its
De Pril transform. This relation gives that the last r constraints can be expressed as

μϕ
p(r)

(j − 1) = κp(j), (j = 1,2, . . . , r)

that is,
r∑

n=1

nj−1ϕp(r) (n) = κp(j). (j = 1,2, . . . , r) (10.53)

Hence, determining ϕp(r) boils down to solving a system of r linear equations with
r unknowns. By application of Theorem 6.1, the first constraint gives

p(r)(0) = exp

(

−
r∑

n=1

ϕp(r) (n)

n

)

. (10.54)

The following theorem gives an algorithm for solving the equations (10.53).

Theorem 10.8 Let

η
(i)
j = η

(i−1)
j − (i − 1)η

(i−1)
j−1 (j = i, i + 1, i + 2, . . . , r; i = 2,3, . . . , r)

η
(1)
j = κp(j). (j = 1,2, . . . , r)

Then ϕp(r) (r), ϕp(r) (r − 1), . . . , ϕp(r) (1) can be evaluated by the recursion

ϕp(r) (i) = η
(i)
i

(i − 1)! −
r∑

n=i+1

(
n − 1

i − 1

)

ϕp(r) (n). (i = r, r − 1, . . . ,1) (10.55)
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Proof We shall first prove by induction in i that

η
(i)
j =

r∑

n=i

nj−i (n − 1)(i−1)ϕp(r) (n). (10.56)

(j = i, i + 1, i + 2, . . . , r; i = 1,2, . . . , r)

From (10.53), (10.56) holds for i = 1. Let us now assume that it holds for i = k − 1
for some k ∈ {2,3, . . . , r}. Then, for j = k, k + 1, k + 2, . . . , r , we have

η
(k)
j = η

(k−1)
j − (k − 1)η

(k−1)
j−1

=
r∑

n=k−1

nj−k+1(n − 1)(k−2)ϕp(r) (n)

− (k − 1)

r∑

n=k−1

nj−k(n − 1)(k−2)ϕp(r) (n)

=
r∑

n=k

nj−k(n − 1)(k−1)ϕp(r) (n),

that is, the induction hypothesis holds also for i = k, and, hence, it holds for i =
1,2, . . . , r .

For j = i, (10.56) gives

η
(i)
i =

r∑

n=i

(n − 1)(i−1)ϕp(r) (n), (i = 1,2, . . . , r)

from which we obtain (10.55). �

10.7.2 Bernoulli Counting Distribution

We now assume that p is the Bernoulli distribution Bern(π). From (5.36), we obtain

κp(j) = π

(

1 −
j−1∑

u=1

(
j − 1

u − 1

)

κp(u)

)

. (j = 1,2, . . . ) (10.57)

By induction, we easily see that κp(j) can be expressed as a polynomial of order j

in π .
The following theorem gives an exact expression for the cumulants of p.
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Theorem 10.9 If p is the Bernoulli distribution Bern(π), then, for any positive
integer r , we have

κp(j) =
r∑

n=1

nj−1(−1)n+1
r∑

l=n

πl

(
l − 1

n − 1

)

. (j = 1,2, . . . , r) (10.58)

Proof For j = 1,2, . . . , r , insertion of (6.20) in (6.6) gives

κp(j) = μϕp(j − 1) =
∞∑

n=1

nj−1ϕp(n) = −
∞∑

n=1

nj−1
(

π

π − 1

)n

=
∞∑

n=1

nj−1(−1)n+1πn(1 − π)−n =
∞∑

n=1

nj−1(−1)n+1πn
∞∑

l=0

(
l + n − 1

n − 1

)

πl

=
∞∑

n=1

nj−1(−1)n+1
∞∑

l=n

(
l − 1

n − 1

)

πl =
∞∑

l=1

πl

l∑

n=1

nj−1(−1)n+1
(

l − 1

n − 1

)

.

As κp(j) is a polynomial of order j in π , the inner summation must be equal to
zero for all l > r , so that

κp(j) =
r∑

l=1

πl
l∑

n=1

nj−1(−1)n+1
(

l − 1

n − 1

)

, (10.59)

and by once more changing the order of summation, we obtain (10.58). �

By comparing (10.53) and (10.58), we obtain

ϕp(r) (n) = (−1)n+1
r∑

l=n

πl

(
l − 1

n − 1

)

, (n = 1,2, . . . , r)

that is,

ϕp(r) (n) = (−1)n+1n

r∑

l=n

πl

l

(
l

n

)

. (n = 1,2, . . . , r) (10.60)

Insertion in (10.54) gives

p(r)(0) = exp

(

−
r∑

n=1

(−1)n+1
r∑

l=n

πl

l

(
l

n

))

= exp

(
r∑

l=1

πl

l

l∑

n=1

(−1)n
(

l

n

))

,

from which we obtain

p(r)(0) = exp

(

−
r∑

l=1

πl

l

)

. (10.61)
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Letting r go to infinity in (10.60) and (10.61) gives

ϕp(n) = (−1)n+1n

∞∑

l=n

πl

l

(
l

n

)

(n = 1,2, . . . ) (10.62)

p(0) = exp

(

−
∞∑

l=1

πl

l

)

. (10.63)

Let us now turn to δ(p,p(r)). By insertion of (10.60)–(10.63) in (10.27), we
obtain

δ(p,p(r)) =
∣
∣
∣
∣ln

exp(−∑r
l=1 πl/ l)

exp(−∑∞
l=1 πl/ l)

∣
∣
∣
∣ +

r∑

n=1

∣
∣
∣
∣
∣
(−1)n+1

∞∑

l=r+1

πl

l

(
l

n

)∣
∣
∣
∣
∣

+
∞∑

n=r+1

∣
∣
∣
∣
∣
(−1)n+1

∞∑

l=n

πl

l

(
l

n

)∣
∣
∣
∣
∣

=
∞∑

l=r+1

πl

l
+

∞∑

n=1

∞∑

l=max(r+1,n)

πl

l

(
l

n

)

≤
∞∑

l=r+1

πl

l
+

∞∑

n=1

∞∑

l=r+1

πl

l

(
l

n

)

=
∞∑

l=r+1

πl

l

l∑

n=0

(
l

n

)

=
∞∑

l=r+1

(2π)l

l

≤ 1

r + 1

∞∑

l=r+1

(2π)l.

If π < 1/2, then this gives

δ(p,p(r)) ≤ δ̃(p,p(r)) ≤ 1

r + 1

(2π)r+1

1 − 2π
(10.64)

with

δ̃(p,p(r)) = − ln(1 − 2π) −
r∑

l=1

(2π)l

l
,

which we can evaluate recursively by

δ̃(p,p(r)) =
{

δ̃(p,p(r−1)) − (2π)r

r
(r = 2,3, . . . )

− ln(1 − 2π) − 2π. (r = 1)
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10.7.3 De Pril’s Individual Model

Let us now return to De Pril’s individual model. By insertion of (10.60) in (10.22)
and interchanging summations, we obtain

ϕf (r) (x) = x

r∑

l=1

1

l

l∑

n=1

(−1)n+1
(

l

n

) J∑

j=1

πl
j

I∑

i=1

Mijh
n∗
i (x).

(x = 1,2, . . . )

Insertion of (10.61) in (10.23) gives

f (r)(0) = exp

(

−
r∑

l=1

J∑

j=1

M•j
πl

j

l

)

.

If πj < 1/2 for j = 1,2, . . . , J , then insertion of (10.64) in (10.24) gives

δ(f,f (r)) ≤ δ̃(f, f (r)) ≤ 1

r + 1

J∑

j=1

M•j
(2πj )

r+1

1 − 2πj

(10.65)

with

δ̃(f, f (r)) = −
J∑

j=1

M•j

(

ln(1 − 2πj ) +
r∑

l=1

(2πj )
l

l

)

,

which can be evaluated recursively by

δ̃(f, f (r)) =
{

δ̃(f, f (r−1)) − ∑J
j=1 M•j

(2πj )r

r
(r = 2,3, . . . )

−∑J
j=1 M•j (ln(1 − 2πj ) + 2πj ). (r = 1)

As for each j the moments of pj are matched by those of its approximation, that
is also the case with f .

Let us consider the special case r = 1. Then (10.53) gives that for j = 1,2, . . . , J ,

ϕ
p

(1)
j

(1) = κpj
(1) = μpj

(1) = πj ,

and from (4.17) we see that p
(1)
j is the Poisson distribution Po(πj ), that is, f (1) is the

collective compound Poisson approximation of Sect. 7.4. For this approximation,
(10.65) gives

δ(f,f (1)) ≤ −
J∑

j=1

M•j (ln(1 − 2πj ) + 2πj ) ≤ 2
J∑

j=1

M•j
π2

j

1 − 2πj

. (10.66)
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By comparison with (10.52), we see that the weaker bound is twice the correspond-
ing bound for the Kornya approximation. On the other hand, from the discussion at
the end of Sect. 10.6.3 follows that for the stop loss transform, the first order Hipp
approximation gives a closer approximation than the first order Kornya approxima-
tion.

In the semi-collective compound Poisson approximation of Sect. 7.4, we sug-
gested using the present collective compound Poisson approximation for the normal
policies and exact evaluation for some special policies. Under the efficiency crite-
rion introduced there, we found that it was for the policies with the highest mean
that we should use exact evaluation. We see that it is the policies with the highest πj

that contribute most to the weaker bound in (10.66), so that in our present setting, it
seems reasonable to choose those policies for exact evaluation.

For the individual life model, insertion of (10.60) in (10.26) gives

f (r)(x) = 1

x

I∑

i=1

si

[r/si ]∑

n=1

(−1)n+1nf (r)(x − nsi)

J∑

j=1

Mij

r∑

l=n

πl
j

l

(
l

n

)

.

(x = 0,1,2, . . . )

10.8 Numerical Example

Let us now compare the approximations of De Pril, Kornya, and Hipp on the dataset
of Table 7.1. With these data, we consider the exact aggregate claims distribution as
well as the approximations of De Pril, Kornya, and Hipp of order 1, 2, 3, and 4. We
see that f (x) = 0 for all x ≥ k = ∑I

i=1 i
∑J

j=1 Mij = 97.

In Table 10.3, we display the upper bounds for ε(f,f (r)) obtained by insertion of
the upper bounds for δ(f,f (r)) from Table 10.2 in (10.7). The bounds in Table 10.2
are rather simple and are often used in the literature. However, in (10.39), (10.51),
and (10.65), we also gave sharper upper bounds for δ(f,f (r)). In Table 10.4, we
have inserted these sharper bounds in (10.7). We see that the improvement by using
these bounds is rather small.

To check how good the bounds in Table 10.4 are, it would have been interesting
to compare them with the exact values of ε(f,f (r)). Unfortunately, this is difficult in
practice. However, as we know that the value of f (x) is equal to zero for all x ≥ k,

Table 10.3 Upper bounds for ε(f,f (r)) based on upper bounds for δ(f,f (r)) from Table 10.2

r 1 2 3 4

Method Bound

De Pril 0.040014867 0.001394498 0.000057886 0.000002641

Kornya 0.077354499 0.002644503 0.000109536 0.000004991

Hipp 0.160692717 0.010061612 0.000784806 0.000067409
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Table 10.4 Sharper upper bounds for ε(f,f (r))

r 1 2 3 4

Method Bound

De Pril 0.039269708 0.001374488 0.000057199 0.000002614

Kornya 0.077236372 0.002641161 0.000109415 0.000004986

Hipp 0.154574226 0.009779147 0.000766601 0.000066069

Table 10.5 ε̃(f, f (r))

r 1 2 3 4

Method ε̃(f, f (r))

De Pril 0.036532060 0.001263337 0.000052213 0.000002372

Kornya 0.043662436 0.001903977 0.000087262 0.000004299

Hipp 0.026290081 0.001718855 0.000135298 0.000010774

we are mainly interested in the performance of the approximations on the range
{0,1,2, . . . , k}. Hence, in Table 10.5, we have displayed ε̃(f, f (r)) = ∑k

x=0 |f (x)−
f (r)(x)|. We have

ε̃(f, f (r)) = ε(f,f (r)) −
∞∑

x=k+1

|f (x) − f (r)(x)| < ε(f,f (r)).

Table 10.5 gives quite a different impression of the Hipp approximation than Ta-
bles 10.3 and 10.4. It is better than the Kornya approximation for r = 1,2, and for
r = 1, it is even better than the De Pril approximation. Considering the discussion
after the proof of Theorem 10.4, it is not that surprising that the upper bound in
(10.7) seems to give a too flattering impression of the De Pril approximation com-
pared to other approximations.

In Table 10.6, we display exact values of f as well as the approximations.
In Table 10.7, we display the bounds for �f/�f (r) from formula (10.18) with

δ(f,f (r)) replaced with the sharp bounds of (10.39), (10.51), and (10.65).
In Table 10.8, we display values of �f together with the approximations of

De Pril and Kornya found by subtracting the approximation of the cumulative dis-
tribution from one. These figures illustrates a feature that has often appeared in
numerical studies of these approximations. Let f (r)D and f (r)K denote the r th or-
der approximation of De Pril and Kornya respectively. In numerical examples, in
particular in our present example, it often seems that

�f (2)D ≤ �f (4)D ≤ �f (6)D ≤ · · · ≤ �f ≤ · · · ≤ �f (5)D ≤ �f (3)D ≤ �f (1)D

(10.67)
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Table 10.7 Bounds based on
(10.18) r Bound Method

De Pril Kornya Hipp

1 Lower 0.962214 0.928301 0.866120

2 0.998627 0.997366 0.990316

3 0.999943 0.999891 0.999234

4 0.999997 0.999995 0.999934

4 Upper 1.000003 1.000005 1.000066

3 1.000057 1.000109 1.000767

2 1.001376 1.002648 1.009876

1 1.040875 1.083701 1.182836

�f (1)K ≤ �f (3)K ≤ �f (5)K ≤ · · · ≤ �f ≤ · · · ≤ �f (6)K ≤ �f (4)K ≤ �f (2)K.

(10.68)

These inequalities would imply

�f (r)D ≤ �f ≤ �f (r)K = f (r)K(0)

f (r)D(0)
�f (r)D (r = 2,4,6, . . . )

�f (r)D ≥ �f ≥ �f (r)K = f (r)K(0)

f (r)D(0)
�f (r)D, (r = 1,3,5, . . . )

which can be expressed as

min

(

1,
f (r)K(0)

f (r)D(0)

)

≤ �f (x)

�f (r)D(x)
≤ max

(

1,
f (r)K(0)

f (r)D(0)

)

(10.69)

when �f (r)D(x) > 0. Insertion of (10.50) and (10.38) gives

f (r)K(0)

f (r)D(0)
=

exp(
∑r

n=1
1
n

∑J
j=1 M•j (

πj

πj −1 )n)

∏J
j=1(1 − πj )

M•j

=
J∏

j=1

(
exp(

∑r
n=1

1
n
(

πj

πj −1 )n)

1 − πj

)M•j

.

In Table 10.9, we have displayed the span of the bounds in (10.69), that is, the upper
bound minus the lower bound,

max

(

1,
�f (r)K(0)

�f (r)D(0)

)

− min

(

1,
�f (r)K(0)

�f (r)D(0)

)

=
∣
∣
∣
∣
�f (r)K(0)

�f (r)D(0)
− 1

∣
∣
∣
∣,

together with the span of the bounds for the De Pril approximation from Table 10.7.
We see that the span of the bounds from Table 10.7 is more than twice the span of
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Table 10.9 Span of the
bounds of Table 10.7 and
(10.69)

r Table 10.7 (10.69)

1 0.07866072 0.03524451

2 0.00274898 0.00126493

3 0.00011440 0.00005221

4 0.00000523 0.00000237

the bounds of (10.69), so it is tempting to go for the latter bounds. However, we
should keep in mind that we know that the bounds in Table 10.7 hold, whereas we
do not know what regularity conditions are needed for the bounds in (10.69).

The reason that we have represented the inequalities in terms of � and not �, is
that, as the De Pril approximation normally does not sum to one, the figures for the
De Pril approximation in Table 10.8 are not values of �f (r)D.

Further Remarks and References

The definition of the De Pril transform was extended to functions in F10 by Dhaene
and Sundt (1998), who studied the properties of functions in F10, in particular in
relation to their De Pril transforms and in the context of approximating distributions
in P10 with functions in F10. Sections 10.1–10.5 are to a large extent based on that
paper. Within the same context, Sundt et al. (1998) studied moments and cumulants
of functions in F10.

The Kornya approximation was introduced by Kornya (1983) for the individual
life model and by Hipp (1986) for the general model. Both these papers gave error
bounds. In particular, Hipp (1986) proved that the cumulative first order Kornya
approximation gives a lower bound to the exact distribution in De Pril’s individual
model.

The De Pril approximation was introduced by Vandebroek and De Pril (1988)
and De Pril (1988) for the individual life model and De Pril (1989) for the general
model. In the published discussion to Kornya (1983), within the context of the in-
dividual life model, Elias Shiu suggested the De Pril approximation as a possible
improvement to the Kornya approximation, arguing that it matches the first proba-
bilities of the exact distribution.

The Hipp approximation was introduced by Hipp (1986); see also Hipp and
Michel (1990). Dhaene et al. (1996) showed that the moments of that approximation
match the moments of the exact distribution up to the order of the approximation.
Sundt et al. (1998) deduced the Hipp approximation by using the moment matching
as constraints. The algorithm of Theorem 10.8 was deduced by Christian Irgens in
a note to Bjørn Sundt in 1997.

De Pril (1989) compared the approximations of De Pril, Kornya, and Hipp and
deduced separately for each of the approximations the upper bounds for ε(f,f (r))

obtained by insertion in (10.7) of the upper bounds for δ(f,f (r)) given in Ta-
ble 10.2; for the De Pril approximation in the individual life model, the bound for
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ε(f,f (r)) had been given by De Pril (1988). A unified approach to such approx-
imations and error bounds was presented by Dhaene and De Pril (1994). In par-
ticular, they proved Theorem 10.4 and gave the bounds for δ(f,f (r)) displayed in
Table 10.2. Furthermore, they proved Corollaries 10.1 and 10.3. Their results were
expressed in terms of the Dhaene–De Pril transform.

For the error measure ε, Dhaene and Sundt (1997) deduced inequalities that
are not expressed in terms of De Pril transforms. In particular, they proved The-
orem 10.7.

Dhaene and De Pril (1994) and Dhaene and Sundt (1997, 1998) also deduced er-
ror bounds for approximations of stop loss transforms based on the approximations
for the associated aggregate claims distribution.

Kornya (1983) gave a proof of (10.68) within the context of the individual life
model, but in the published discussion to that paper, David C. McIntosh and Donald
P. Minassian pointed out an error in the proof. The latter discussant gave coun-
terexamples. Hence, one needs some regularity conditions. Vernic et al. (2009) give
sufficient conditions for the ordering (10.67) to hold for the distribution of the num-
ber of policies with claims and discuss both that ordering and the ordering (10.68)
more generally.

Within the individual life model, Vandebroek and De Pril (1988) made a nu-
merical comparison between the approximations of De Pril and Kornya and the
compound Poisson approximation obtained as the first order Hipp approximation,
as well as the natural approximation presented in Sect. 7.4.

Hipp (1986) studied the approximations of Hipp and Kornya for a more general
class of severity distributions in the setting of signed Poisson measures. This ap-
proach has been further studied in the non-actuarial literature, see e.g. Roos (2005)
and references therein.

Within the actuarial framework, Kornya (2007) gave upper bounds for |�f −
�f (r)| under the approximations of Kornya and Hipp, illustrated with numerical ex-
amples. In particular for large portfolios, these bounds seem to perform well com-
pared with the bounds presented in the present chapter.



Chapter 11
Extension to Distributions in P1_

Summary

In Chap. 10, we discussed approximations in F10 of distributions in P10 and error
measures for such approximations. In the present chapter, we shall extend this set-
ting to approximations in F1_ of distributions in P1_. Our trick is shifting, like when
we deduced Theorem 2.10 from Theorem 2.8.

Section 11.1 is devoted to De Pril transforms. In Sect. 11.1.1, the definition of
the De Pril transform is extended to functions in F1_. For a function in F10, we
defined the De Pril transform as a function in F11; for a function in F1_, we let
the shifting parameter needed for shifting that function to F10 be the value of its
De Pril transform at zero, and, at positive integers, we let it have the same value
as the De Pril transform of that shifted function. In Sect. 11.1.2, we extend some
results on the De Pril transform to our present setting.

Finally, in Sect. 11.2, we extend the error measure ε and some results on bounds
for this measure to approximations in F1_ of distributions in P1_.

11.1 De Pril Transforms

11.1.1 Definition

In the present and next chapter, we shall extend some results to distributions of ran-
dom variables that can take negative values. In the present chapter, we concentrate
on distributions in P1_ and approximations in F1_.

To sort out our basic idea, let us consider M independent random variables
X1,X2, . . . ,XM with distributions in P1_. For j = 1,2, . . . ,M , let fj denote the
distribution of Xj . As fj ∈ P1_, there exists an integer lj such that fj ∈ P1lj . We
want to evaluate the distribution f of X = X•M .

In Theorem 2.10, we have already encountered such a situation in the special
case with identically distributed Xj s. In that case, let l denote the common value
of the lj s. What we did in the proof of Theorem 2.10, was to replace each Xj

with X̃j = Xj − l. The distribution of X̃j was then easily found by shifting the
distribution of Xj , and this shifted distribution was in P10. Then we could evaluate
the distribution X̃ = X̃•M as the M-fold convolution of the distribution of X̃1 by
the recursion of Theorem 2.8. As X = X̃ + Ml, its distribution was easily found by
shifting the distribution of X̃.

B. Sundt, R. Vernic, Recursions for Convolutions and Compound Distributions
with Insurance Applications, EAA Lecture Notes,
DOI 10.1007/978-3-540-92900-0_11, © Springer-Verlag Berlin Heidelberg 2009
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It seems obvious how to extend this procedure to the general case: For each j ,
let X̃j = Xj − lj , and let

X̃ =
M∑

j=1

(Xj − lj ) = X − l

with l = l•M . The distribution of X̃ is now the convolution of M distributions in P10,
and we know how to evaluate such a convolution by De Pril’s first method. Finally,
the distribution of X is found by shifting the distribution of X̃.

Let us try to express this procedure in terms of De Pril transforms. For each j ,
we let f̃j denote the distribution of X̃j , and we let f̃ denote the distribution of X̃,
that is, f̃ = ∗M

j=1f̃j . Then

ϕ
f̃

=
M∑

j=1

ϕ
f̃j

.

For each j , ϕ
f̃j

is uniquely determined by f̃j , and f̃ is uniquely determined by ϕ
f̃

.
Thus, what we still need, is the shifting parameter lj of each fj and l of f . We have
already seen that the shifting parameters are additive for convolutions, that is, that
the shifting parameter of the convolution is equal to the sum of the shifting para-
meters of the distributions that we convolute. From Corollary 6.1, we know that the
De Pril transform also has this property. Furthermore, we know that a distribution
in P1_ is uniquely determined by the De Pril transform of the shifted distribution in
P10 and the shifting parameter. It is therefore natural to define the De Pril transform
of a distribution in P1_ by these two quantities. Till now, we have defined the De Pril
transform of a distribution only on the positive integers. To also include the shifting
parameter, it seems natural to extend the range of the De Pril transform to zero and
let its value at zero be equal to the shifting parameter of the shifted distribution in
P10. For positive integers, we let the De Pril transform of a distribution in P1_ be
equal to the De Pril transform of the shifted distribution in P10.

If f ∈ P1_, then

ϕf (0) = min{x : f (x) > 0}. (11.1)

Let f̃ denote f shifted to P10. Then

ϕf (x) = ϕ
f̃
(x). (x = 1,2, . . . ) (11.2)

For x = ϕf (0) + 1, ϕf (0) + 2, . . . , application of (6.2) gives

f (x) = f̃ (x − ϕf (0)) = 1

x − ϕf (0)

x−ϕf (0)∑

y=1

ϕ
f̃
(y)f̃ (x − ϕf (0) − y),
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from which we obtain that (6.2) extends to

f (x) = 1

x − ϕf (0)

x−ϕf (0)∑

y=1

ϕf (y)f (x − y) (x = ϕf (0) + 1, ϕf (0) + 2, . . . )

(11.3)
for f ∈ P1_. Solving for ϕf (x − ϕf (0)) gives

ϕf (x − ϕf (0)) = 1

f (ϕf (0))

(

(x − ϕf (0))f (x) −
x−ϕf (0)−1∑

y=1

ϕf (y)f (x − y)

)

,

and by change of variable we obtain

ϕf (x) = 1

f (ϕf (0))

(

xf (x + ϕf (0)) −
x−1∑

y=1

ϕf (y)f (x + ϕf (0) − y)

)

,

(x = 1,2, . . . ) (11.4)

which extends (6.1) to distributions in P1_.
Also for functions f ∈ F1_, we define the De Pril transform ϕf by (11.1) and

(11.4).

11.1.2 Extension of Results

From the way we constructed the De Pril transform of a function in F1_, it is obvious
that Theorem 10.2 holds also for functions in F1_.

The following theorem extends Theorem 10.3 to compound functions with count-
ing function in F10.

Theorem 11.1 If p ∈ F10 and h ∈ P11, then

ϕp∨h(x) = ϕp(0)ϕh(x) + x

x∑

n=1

ϕp(n)

n
hn∗(x). (x = 0,1,2, . . . ) (11.5)

Proof Let p̃ denote the function p shifted to F10. Then p ∨ h = hϕp(0)∗ ∗ (p̃ ∨ h),
and application of Theorems 10.2 and 10.3 gives

ϕp∨h = ϕp(0)ϕh + ϕp̃∨h = ϕp(0)ϕh + (�ϕp̃ ∨ h).

By application of (11.2), we obtain (11.5). �

It seems tempting to write (11.5) in the more compact form ϕp∨h = ϕp(0)ϕh +
(�ϕp ∨ h). However, as ϕp(0) is now not necessarily equal to zero, ϕp is not
necessarily in F11, and we have defined the operator � only for functions in F11.

The following theorem extends Theorem 6.1 to functions in F1_.
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Theorem 11.2 If p ∈ F1_ and
∑∞

n=1 |ϕp(n)|/n < ∞, then

κp(j) = I (j = 0) lnp(0) + I (j = 1)ϕp(0) +
∞∑

x=1

xj−1ϕp(x). (j = 0,1,2, . . . )

(11.6)

Proof Let p̃ denote the function p shifted to F10. From (1.21), we obtain that

κp(j) = I (j = 1)ϕp(0) + κp̃(j), (j = 0,1,2, . . . )

and application of (6.6), Theorem 6.1, and (11.2), gives (11.6). �

11.2 Error Bounds

Let us now try to extend some of the results of Sect. 10.3. The obvious extension of
the error measure ε to F1_ is

ε(f, f̂ ) = μ|f −f̂ |(0) =
∞∑

x=−∞
|f (x) − f̂ (x)|. (f, f̂ ∈ F1_)

However, it seems non-trivial to extend δ(f, f̂ ), and Theorem 10.7, to all choices of
f and f̂ in F1_, so we restrict to the case with f̂ ∈ F1ϕf

, and for that case we let

δ(f, f̂ ) =
∣
∣
∣
∣
∣
ln

f̂ (ϕf (0))

f (ϕf (0))

∣
∣
∣
∣
∣
+

∞∑

x=1

|ϕf (x) − ϕ
f̂
(x)|

x
.

With this definition, we obtain by simple shifting that Theorem 10.4 more generally
holds for f ∈ P1_ and f̂ ∈ F1ϕf

. Analogously, Theorem 10.5 holds more generally

when f1, f2, . . . , fM ∈ P1_ and f̂j ∈ F1ϕfj
for j = 1,2, . . . ,M .

Let us now extend Theorem 10.6.

Theorem 11.3 If p ∈ P10, p̂ ∈ F1ϕp , and h ∈ P11, then

δ(p ∨ h, p̂ ∨ h) ≤ δ(p, p̂).

Proof Let p̃ and ˜̂p denote p and p̂ shifted to P10 and F10 respectively. Then

δ(p ∨ h, p̂ ∨ h) = δ(hϕp(0)∗ ∗ (p̃ ∨ h),hϕp(0)∗ ∗ ( ˜̂p ∨ h))

≤ δ(hϕp(0)∗, hϕp(0)∗) + δ(p̃ ∨ h, ˜̂p ∨ h) = δ(p̃ ∨ h, ˜̂p ∨ h)

≤ δ(p̃, ˜̂p ) = δ(p, p̂). �
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Further Remarks and References

Sundt (1995) pointed out that by shifting one could extend De Pril’s first method for
evaluating the convolution of a finite number of distributions in P10 to distributions
in P1_.

Sundt (1998) extended the definition of the De Pril transform to functions in F1_
and proved the results that we have presented in the present chapter.



Chapter 12
Allowing for Negative Severities

Summary

In Chap. 2, we started with developing recursions for compound distributions with
severity distribution in P11 and counting distribution in P10, the latter satisfying
a linear recursion of order one. In Sect. 2.7, we extended the setting to sever-
ity distributions in P10, and in Chap. 5, we allowed for recursions of higher or-
der for the counting distribution. Section 9.2 was devoted to recursions for mo-
ments of compound distributions, and there we allowed for negative severities; we
did not even require them to be integer-valued. But what about extending the re-
cursions for compound distributions to severity distributions in P1, that is, allow-
ing for negative integer-valued severities? That is the topic of the present chap-
ter.

Section 12.1 gives a general introduction, pointing out the problems that arise
when extending the recursions by allowing for negative severities. As the extension
is non-trivial even when the counting distribution is in the Panjer class, we restrict to
that case. In Sects. 12.2–12.4, we treat the binomial, Poisson, and negative binomial
case respectively.

12.1 Introduction

Let us consider the compound distribution f = p ∨ h with p ∈ P10 and h ∈ P1. If
p satisfies the recursion (5.6), then we would have to extend the relation (5.8) to
severity distribution h ∈ P1. We actually did that in (9.16).

For simplicity, we restrict to the case where p is R1[a, b], that is, p is in the
Panjer class R1. Then (9.16) reduces to

xf (x) =
∞∑

y=−∞
(ax + by)h(y)f (x − y). (12.1)

When h ∈ P10, this gives

xf (x) =
x∑

y=0

(ax + by)h(y)f (x − y).

By solving this equation for f (x), we obtain (2.79).
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That it is not always trivial to extend this procedure to allow for negative sever-
ities, is clearly seen even in the apparently simple case where h is non-degenerate
with support {−1,1}. Then (12.1) reduces to

xf (x) = (ax − b)h(−1)f (x + 1) + (ax + b)h(1)f (x − 1),

which gives

f (x + 1) = xf (x) − (ax + b)h(1)f (x − 1)

(ax − b)h(−1)
(12.2)

f (x − 1) = xf (x) − (ax − b)h(−1)f (x + 1)

(ax + b)h(1)
(12.3)

if the denominators are not equal to zero. In principle, these are recursions for f ,
but where should we start the recursion? In the negative binomial and Poisson cases,
the support of f would be unbounded both upwards and downwards. However, if
p is the binomial distribution bin(M,π), then f (x) = 0 for all integers x such that
|x| > M . Furthermore, we have f (−M) = (πh(−1))M and f (M) = (πh(1))M , so
that we can evaluate f recursively by (12.2) or (12.3). More generally, in Sect. 12.2,
we shall extend this procedure to the case when the support of h is bounded on at
least one side.

From this example, we see that even when p is in the Panjer class, a general
extension to severity distributions allowing for negative severities would be non-
trivial. To avoid making our presentation too complex, we shall therefore restrict to
this case in the following.

12.2 Binomial Counting Distribution

Let p be the binomial distribution bin(M,π).
If h ∈ P1l for some negative integer l, then f (Ml) = (πh(l))M and f (x) = 0 for

all integers x < Ml. For x = Ml + 1,Ml + 2, . . . , (12.1) gives

xf (x) =
x−Ml∑

y=l

(ax + by)h(y)f (x − y).

The highest argument of f in this equation is x − l, so we solve for f (x − l) and
obtain

f (x − l) = 1

(ax + bl)h(l)

(

xf (x) −
x−Ml∑

y=l+1

(ax + by)h(y)f (x − y)

)

.

Replacing x with x + l and y with y + l gives
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f (x) = 1

(ax + (a + b)l)h(l)

×
(

(x + l)f (x + l) −
x−Ml∑

y=1

(ax + by + (a + b)l)h(y + l)f (x − y)

)

.

Finally, by insertion of the expressions for a and b from Table 2.1, we obtain

f (x) = 1

(x − Ml)h(l)

(
x−Ml∑

y=1

(Ml + (M + 1)y − x)h(y + l)f (x − y)

−
(

1

π
− 1

)

(x + l)f (x + l)

)

. (x = Ml + 1,Ml + 2, . . . ) (12.4)

On the other hand, let us now assume that the range of h is bounded upwards
so that there exists an integer k such that h(k) > 0 and h(y) = 0 for all integers
y > k. Then f (Mk) = (πh(k))M and f (x) = 0 for all integers x > Mk. For x =
Mk − 1,Mk − 2, . . . , (12.1) gives

xf (x) =
k∑

y=x−Mk

(ax + by)h(y)f (x − y).

The lowest argument of f in this equation is x − k so we solve for f (x − k) and
obtain

f (x − k) = 1

(ax + bk)h(k)

(

xf (x) −
k−1∑

y=x−Mk

(ax + by)h(y)f (x − y)

)

.

Replacing x with x + k and y with k − y gives

f (x) = 1

(ax + (a + b)k)h(k)

×
(

(x + k)f (x + k) −
Mk−x∑

y=1

(ax − by + (a + b)k)h(k − y)f (x + y)

)

.

Finally, by insertion of the expressions from Table 2.1 for a and b, we obtain

f (x) = 1

(Mk − x)h(k)

((
1

π
− 1

)

(x + k)f (x + k)

−
Mk−x∑

y=1

(Mk − x − (M + 1)y)h(k − y)f (x + y)

)

.

(x = Mk − 1,Mk − 2, . . . )
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If the support of the severity distribution h is unbounded both from above and be-
low, then the procedures presented above do not work. It seems then to be advisable
to approximate the severity distribution with a function whose support is bounded
on one side. As the left tail would normally be much lighter than the right tail, we
consider truncation from the left.

Let Y1, Y2, . . . , be independent and identically distributed random variables with
distribution h independent of the random variable N , which has distribution p. Then
X = Y•N has distribution f = p ∨ h. For some negative integer l, we introduce
Yil = max(l, Yi) for i = 1,2, . . . . The distribution hl ∈ P1l of the Yils is given by

hl(y) =
{

h(y) (y = l + 1, l + 2, . . . )

�h(l), (y = l)

and Xl = ∑N
i=1 Yil has distribution fl = p ∨ hl , which can be evaluated recursively

by (12.4). As Xl ≥ X, we have �f ≥ �fl . Thus, from (1.46), we obtain �fl
− εl ≤

�f ≤ �fl
with

εl = μfl
(1) − μf (1) = E(Xl − X) = μp(1)E(Y1l − Y1)

= μp(1)(�h(l) + l − μh(1)),

and application of Corollary 1.5 gives

�fl − εl ≤ �f ≤ �fl; �fl ≤ �f ≤ �fl + εl; |f − fl | ≤ εl.

12.3 Poisson Counting Distribution

Let p be the Poisson distribution Po(λ). Then we obtain from Table 2.1 that a = 0
and b = λ so that (12.1) reduces to

xf (x) = λ

∞∑

y=−∞
yh(y)f (x − y).

Somewhat simpler, but still not too encouraging. However, let us consider the setting
in terms of random variables. Let the severities Y1, Y2, . . . be mutually independent
and identically distributed with distribution h and independent of the counting vari-
able N , which has distribution p. For i = 1,2, . . . , we also introduce the variables
Y+

i = (Yi)+ and Y−
i = (−Yi)+. Then Yi = Y+

i − Y−
i . We denote the distributions

of the Y+
i s and the Y−

i s by h+ and h− respectively. Then h+, h− ∈ P10, and these
distributions are given by

h+(y) =
{

h(y) (y = 1,2, . . . )

�h(0) (y = 0)
(12.5)



12.3 Poisson Counting Distribution 227

h−(y) =
{

h(−y) (y = 1,2, . . . )

�h(−1). (y = 0)
(12.6)

Let X = Y•N , X+ = Y+
•N , X− = Y−

•N . Then X, X+, and X− have distributions
f = p ∨ h, f + = p ∨ h+, and f − = p ∨ h− respectively, and we have X = X+ −
X−. The compound Poisson distributions f + and f − can be evaluated recursively
by (2.7); from Table 2.3, (12.5), and (12.6), we obtain the initial values f +(0) =
e−λ�h(0) and f −(0) = e−λ�h(−1).

Lemma 12.1 Under the above assumptions, the variables X+ and X− are inde-
pendent.

Proof For convenience, in this proof, we denote the characteristic function of the
distribution of a random variable by ζ with the symbol of that random variable as
subscript.

We have

ζY (s) =
∞∑

y=−∞
eisyh(y) = h(0) +

∞∑

y=1

eisyh+(y) +
∞∑

y=1

e−isyh−(y)

= h(0) + ζY+(s) − �h(0) + ζY−(−s) − �h(−1) = ζY+(s) + ζY−(−s) − 1.

By application of (1.29) and (2.12), we obtain

ζX(s) = τp(ζY (s)) = eλ(ζY (s)−1) = eλ(ζY+ (s)+ζY− (−s)−2)

= eλ(ζY+ (s)−1)eλ(ζY− (−s)−1) = τp(ζY+(s))τp(ζY−(−s))

= ζX+(s)ζX−(−s) = ζX+(s)ζ−X−(s).

Hence, X+ and −X− are independent, and this implies that X+ and X− are inde-
pendent. �

From Lemma 12.1, we obtain

f (x) =
∞∑

z=max(0,−x)

f +(x + z)f −(z).

At least, we have now got an explicit expression for f (x) in the shape of a sum
of quantities that we are able to evaluate. However, unfortunately, the sum has an
infinite number of terms. Hence, we need some approximation. We introduce the
random variables X−

m = min(m,X−) and Xm = X+ − X−
m . The distribution f −

m of
X−

m is given by

f −
m (x) =

{
f −(x) (x = 0,1,2, . . . ,m − 1)

�f −(m − 1), (x = m)
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and for the distribution fm of Xm we obtain

fm(x) =
m∑

z=max(0,−x)

f +(x + z)f −
m (z)

=
m−1∑

z=max(0,−x)

f +(x + z)f −(z) + f +(x + m)�f −(m − 1).

We obviously have X−
m ≤ X− and Xm ≥ X. This implies that �f ≥ �fm. From

(1.46), we obtain �fm − εm ≤ �f ≤ �fm with

εm = μfm(1) − μf (1) = E(Xm − X) = E(X− − X−
m) = �f −(m),

and application of Corollary 1.5 gives

�fm − εm ≤ �f ≤ �fm; �fm ≤ �f ≤ �fm + εm; |f − fm| ≤ εm.

12.4 Negative Binomial Counting Distribution

Let p be the negative binomial distribution NB(α,π). For convenience, we assume
that h has finite range {l, l + 1, l + 2, . . . , r} with l < 0 < r and f (l) �= 0 �= f (r).
If this assumption is not fulfilled from the origin, then we could approximate the
original severity distribution with a distribution with finite range, analogous to what
we did in Sect. 12.2.

By insertion of the expressions for a and b from Table 2.1 in (12.1), we obtain
that

xf (x) = π

r∑

y=l

(x + (α − 1)y)h(y)f (x − y)

for any integer x. Solving for f (x − l) gives

f (x − l) = 1

(x + (α − 1)l)h(l)

(
xf (x)

π
−

r∑

y=l+1

(x + (α − 1)y)h(y)f (x − y)

)

,

and by replacing x with x + l, we obtain

f (x) = 1

(x + αl)h(l)

(
(x + l)f (x + l)

π

−
r∑

y=l+1

(x + l + (α − 1)y)h(y)f (x + l − y)

)

. (12.7)

We still have the problem where to start the recursion. In this connection, the
following asymptotic result can be useful.
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Theorem 12.1 Let p be the negative binomial distribution NB(α,π) and h ∈ P1.
i) If there exists a σ+ > 1 such that τh(σ+) = 1/π , then

(p ∨ h)(x) ∼ 1

�(α)

(
1 − π

πσ+τ ′
h(σ+)

)α

xα−1σ−x+ . (x ↑ ∞)

ii) If there exists a σ− ∈ (0,1) such that τh(σ−) = 1/π , then

(p ∨ h)(x) ∼ 1

�(α)

(
1 − π

πσ−τ ′
h(σ−)

)α

|x|α−1σ−x+ . (x ↓ −∞) (12.8)

We suggest to start the recursion (12.7) at x equal to some small negative integer
L < l, approximating f (x) by the asymptotic expression (12.8) for x = L + l − 1,

L + l − 2, . . . ,L + l − r . To get an idea whether we have chosen L sufficiently
small, we can check whether the first couple of values of f from the recursion are
reasonably close to the corresponding asymptotic values obtain from (12.8).

Further Remarks and References

The question of how to evaluate a compound distribution with counting distribu-
tion in the Panjer class and severity distribution that allows for negative severities,
was briefly addressed by Sundt and Jewell (1981). They presented the recursion
(12.4) for a compound binomial distribution, pointed out that in the Poisson case,
one could utilise that X+ and X− are independent, and suggested that one could ap-
ply an iterative approach in the negative binomial case. This research was followed
up in Milidiu’s (1985) doctoral thesis, supervised by Jewell; some results from that
thesis were presented in Jewell and Milidiu (1986). Theorem 12.1 was proved by
Milidiu (1985). Of other literature on asymptotic expressions for compound dis-
tributions, we mention Sundt (1982), Embrechts et al. (1985), Panjer and Willmot
(1986, Chap. 10), and Willmot (1989, 1990).

The error bounds presented in Sect. 12.3 were deduced by Sundt (1986b). The
results were generalised by Hürlimann (1991).



Chapter 13
Underflow and Overflow

Summary

One issue that we have ignored till now, is numerical problems. In the present chap-
ter, we shall concentrate on underflow and overflow. In our recursions for distri-
butions, underflow could typically occur at the initiation of the recursion. For the
compound Poisson recursion of Theorem 2.2, the initial value at zero is e−λ. The
parameter λ is the mean of the counting variable; in insurance applications, that
could typically be the expected number of claims in an insurance portfolio. If λ is
very large, then e−λ could be so small that the computer would round it to zero, and
then all values of the compound distribution evaluated by the recursion (2.7) will be
set to zero. With a common spreadsheet program, that seems to happen when the
expected number of claims exceeds 708.

For simplicity, we restrict to recursions for distributions in P10.
In a short Sect. 13.1, we discuss avoiding underflow and overflow by simple

scaling, that is, for the recursive evaluation of the distribution, we multiply the dis-
tribution by a constant, and afterwards we divide it by that constant. Exponential
scaling is a more advanced scaling procedure to be discussed in Sect. 13.2. Finally,
in Sect. 13.3, we consider handling underflow and overflow by expressing the dis-
tribution as a convolution.

13.1 Simple Scaling

We assume that we want to evaluate a function f ∈ P10 recursively. The most obvi-
ous way to proceed if f (0) is so small that we get underflow, is to evaluate fc = cf

for some large number c, that is, we let the initial value be cf (0) instead of f (0).
When we have done the recursive evaluation of cf , then we scale back by dividing
the evaluated values by c.

If c is large, then we risk overflow when evaluating cf (x) for x sufficiently large.
Then we can scale back to f or df for some smaller constant d .

13.2 Exponential Scaling

Let us now consider a more advanced scaling method. We assume that p ∈ P10

satisfies the recursion (5.6).
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For some number u and some positive integer v, let

p̈(n) = p(n)eu(v−n) (n = 0,1,2, . . . )

q̈(n) = q(n)eu(v−n) (n = 1,2, . . . )

ä(i) = a(i)e−ui; b̈(i) = b(i)e−ui . (i = 1,2, . . . , k)

Then (5.6) gives

p̈(n) = q̈(n) +
k∑

i=1

(

ä(i) + b̈(i)

n

)

p̈(n − i). (n = 1,2, . . . ) (13.1)

It is suggested to apply this transformed recursion for n up to v, and then apply the
original recursion (5.6).

By letting q = a ≡ 0, we obtain that

ϕp̈(n) = e−unϕp(n). (n = 1,2, . . . )

The constants u and v can be adjusted so that the transformed function p̈ gets a
shape less susceptible to underflow and overflow than the original distribution p. It
might be reasonable to start the recursion such that p̈(0) = 1, that is,

u = − lnp(0)

v
.

It is difficult to decide on how to choose v. To avoid underflow and overflow,
one may have to do some trial and error. It could be an idea to include a test in
the program that gives a warning when p̈(n) exceeds a limit close to the maximum
number that the computer can handle. Then one could adjust u and v and rescale the
values of p̈ that have already been evaluated.

The transformed recursion (13.1) is in the same form as the original recursion
(5.6). We need only to change the initial value p(0) to p̈(0) = p(0)euv and replace
the functions q , a, and b with q̈ , ä, and b̈. In particular when evaluating p̈(0), one
should take care that one does not run into underflow again. Thus, it might be better
to first evaluate p̈(0) by p̈(0) = exp(lnp(0) + uv) instead of using straight forward
multiplication.

Now let f = p ∨ h with h ∈ P11 and p being R1[a, b]. Then f satisfies the
recursion (2.39), which is a special case of (5.6). The transformed recursion (13.1)
then becomes

f̈ (x) =
x∑

y=1

(

a + b
y

x

)

ḧ(y)f̈ (x − y) (x = 1,2, . . . )

with

f̈ (x) = f (x)eu(v−x) (x = 0,1,2, . . . )

ḧ(y) = h(y)e−uy. (y = 1,2, . . . )
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13.3 Convolutions

A distribution f ∈ P10 can often be decomposed as the convolution f = ∗M
j=1fj

with f1, f2, . . . , fM ∈ P10. We assume that all these distributions can be evaluated
recursively. If we run into problems with underflow and/or overflow with the recur-
sion for f , then it might be better to evaluate the fj s separately by recursion and
finally evaluate f by brute force convolution of the fj s.

If all the fj s are equal to some distribution g, then it might seem tempting to
evaluate f by the recursion of Theorem 2.8. However, then we are likely to run into
the same underflow problem so that we have to use brute force convolution.

As we have seen in Sect. 5.1, we can do the brute force convolution of two
distributions in F10 more efficiently when these distributions are equal. The fol-
lowing algorithm for evaluating f = gM∗ seems to be the procedure that takes
as much as possible advantage of this feature. We introduce the binary expansion
M = ∑kM

i=0 wMi2i with wMkM
= 1 and wMi ∈ {0,1} for i = 0,1,2, . . . , kM − 1.

Let gi = g2i∗ for i = 0,1,2, . . . , kM . We evaluate the gis recursively by eval-
uating gi = gi−1 ∗ gi−1 by (5.15) for i = 1,2, . . . , kM , and finally we evaluate
f = ∗{i:wMi=1} gi by brute force convolution.

In particular, if f is infinitely divisible, then we can choose M freely. It then
seems most efficient to let it be a power of two, that is, M = 2k for some integer k.
Then we evaluate g1, g2, . . . , gk recursively as described above, and finally we let
f = gM .

Further Remarks and References

The present chapter is based on Panjer and Willmot (1986). However, they restricted
their discussion to the compound Panjer case. The binary convolution procedure of
Sect. 13.3 is discussed in Sundt and Dickson (2000).

Underflow and overflow in connection with recursive evaluation of distributions
is discussed by Waldmann (1994, 1995) for the aggregate claims distribution in the
individual life model and by Waldmann (1996) for a compound distribution with
counting distribution in

⋃∞
l=0 Sl and severity distribution in P11. He argues that for

numerical reasons it is advantageous to apply recursions for non-negative increasing
convex functions, that is, if f ∈ P10, it could be advantageous to use recursions for
�f and �2f instead of f .

Underflow and overflow are also discussed by Wang and Panjer (1994).
Stability is another numerical issue. When doing calculations on real numbers,

a computer will never be completely accurate; there will always be rounding errors.
That could be particularly important in connection with recursive evaluation of a
function, where the evaluation of any new value of the function will depend on the
whole history of evaluation of values of the function done earlier. Thus, the rounding
errors could accumulate and affect the numerical stability of the recursion. To give
a more or less self-contained account of stability properties of the sort of recursions
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that we study in the present book, would involve theory rather different from the
rest of the book, and we feel that it would break the scope of the book. We therefore
rather refer to more specialised literature on that area. Stability of recursions for
distributions of the type presented in this book, has been studied by Panjer and
Wang (1993, 1995), Wang and Panjer (1993), and Wang (1994, 1995). Gerhold et
al. (2008) discuss modifying recursions to get them more stable, but then they also
get more time-consuming.
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Multivariate Distributions



Chapter 14
Introduction

Summary

In Chap. 1, we introduced some prerequisites for this book, but restricted to concepts
needed in the univariate setting of Part I. In the present chapter, we shall supplement
this with concepts needed in the multivariate setting of Part II.

In Sect. 14.1, we discuss how it would be interesting to consider aggregate claims
distributions in a multivariate setting.

When working in a multivariate setting, we shall need notation for vectors and
matrices. This is the topic of Sect. 14.2.

When extending to a multivariate setting results that we have proved in the uni-
variate case, the proof is often so similar to the proof we presented in the univari-
ate case, that we omit the proof. However, as it might be difficult to see immedi-
ately how to extend an induction proof to the multivariate case, we discuss that in
Sect. 14.3.

In Sect. 14.4, we extend to the multivariate case the notation of Sect. 1.3 for
classes of distributions and other functions.

Sections 14.5 and 14.7 are devoted to convolutions and moments respectively.
Extension of the concept of compound distributions to the multivariate case is

the topic of Sect. 14.6. There are two main types of extension, Type 1 with uni-
variate counting distribution and multivariate severity distribution and Type 2 with
multivariate counting distribution and univariate severity distribution. We also have
a combined Type 3 with multivariate counting distribution and multivariate severity
distributions.

14.1 Aggregate Claims Distributions

In Sect. 1.1, we discussed univariate aggregate claims distributions. In this section,
we shall extend that discussion to multivariate distributions.

In an individual model, a natural setting could be that each policyholder has some
policies, between which we believe that there might be dependence; a careless per-
son could have high fire risk in his home, be a risky car driver, etc. For such cases,
we can extend the concept of individual model from Sect. 1.1 by replacing the one-
dimensional aggregate claims of each policyholder with a vector of elements repre-
senting his aggregate claims in home insurance, his aggregate claims in automobile
insurance, etc.

In insurance, it is not always so that the amount of a claim is known and paid im-
mediately when a claim event occurs. Firstly, it can take some time before the claim
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is reported to the insurance company. This could e.g. be the case for product liability
of a pharmaceutical company. Let us say that a child has got some medical defect,
and that it turns out that this is caused by some drug that the mother used during the
pregnancy. Depending on the conditions of the policy, this could be covered by the
policy that was in force when the damage was caused, not when it was discovered.
Also, after a claim is made, it can take long until the final amount is known, and in
the meantime there could be made partial payments. In personal injury, it could take
long until one knows the total costs of the treatment and the final outcome of the
injury. Furthermore, there could be disagreement between the insurance company
and the injured person, so that the final amount would have to be settled by a court.

In such cases, one could split the aggregate claim amount of a policy into a vector
whose first element is the payments made in the year of the claim event, the second
element the payments made next year, and so on.

Analogously, one could let the first element of the vector be the amount paid
by the cedant after reinsurance, the second element the amount paid by the first
reinsurer, and so on. This would not work with stop loss reinsurance where the part
paid by the reinsurer is not determined by the aggregate claims of the individual
policy, only by the aggregate claims of the whole portfolio.

The concept of splitting between years of payment can of course also be applied
in a collective model. Like in the univariate case, we let the counting variable be
the number of claims. In the univariate case, each of these claims generated a one-
dimensional amount whereas now we split this amount into a vector where the first
element is the payment made in the year of the claim event, the second amount is
the payment made in the next year, and so on. We assume that these vectors are
mutually independent and identically distributed and independent of the number of
claims, that is, the aggregate claims distribution is now a compound distribution
with univariate counting distribution and multivariate severity distribution.

This way of modelling could also be applied with the concept of splitting between
what is paid by the cedant and the various reinsurers, provided that the part paid of
each claim is determined only by that claim, which is not the case with stop loss
reinsurance.

As an example, we assume that there is only one reinsurer, and that the reinsur-
ance is an unlimited excess of loss reinsurance that for each claim pays the amount
that exceeds a fixed retention. This is like stop loss reinsurance with the difference
that in excess of loss reinsurance, the retention is applied on each claim whereas in
stop loss reinsurance it is applied only on the aggregate claims of the whole portfo-
lio.

A natural question is now, is it of interest to know the joint distribution of what is
covered by the cedant and what is paid by the reinsurer? Perhaps not too interesting
in the present case, but let us modify the reinsurance treaty by adding an aggregate
limit, that is, a fixed upper limit on the payments to be made by the reinsurer. The
excess of the aggregate limit is paid by the cedant unless he has got reinsurance
protection elsewhere. Let N denote the number of claims, Yi the amount of the ith
of these claims, r the retention, and l the aggregate limit. Before the aggregate limit,
the amount of the nth claim paid by the cedant is Yi1 = min(Yi, r), and the reinsurer
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pays Yi2 = (Yi − r)+. The aggregate claims vector without the aggregate limit is
X = (X1,X2)

′ = ∑N
i=1 Yi with Yi = (Yi1, Yi2)

′, and the part paid by the cedant
after the aggregate limit, is Z = X1 + (X2 − l)+. It seems that to be able to evaluate
the distribution of Z, we have to go by the distribution of X. We shall return to this
situation in Example 15.4.

Let us now consider a situation where a claim event can cause claims on more
than one policy. A typical example is hurricane insurance. In such situations, we
could use a collective model where claim event n produces a claim amount vector
whose j th element is the claim amount caused to the j th policy by this claim event.
We assume that these vectors are mutually independent and identically distributed
and independent of the number of claims.

In the first example of individual models discussed in this section, the aggregate
claims vector was comprised of aggregate claims for different types of insurance,
e.g. home insurance and automobile insurance. In the collective models we have
mentioned till now in this section, we have assumed that the aggregate claims dis-
tribution is a compound distribution with univariate counting distribution and mul-
tivariate severity distribution. In principle, we can apply such a model also in the
present case, letting the counting variable be the number of claim events and the ith
severity vector the vector whose j th element is the amount caused to insurance type
j by this event. However, in this setting, we would typically have that most of these
vectors would have only one non-zero element; it is not that common that a claim
event hits both home insurance and automobile insurance. In this setting, it seems
more natural to consider a collective model where the aggregate claims distribution
is a compound distribution with a multivariate, say m-variate, claim number dis-
tribution, and m univariate severity distributions. Here we have an m-variate claim
number vector whose j th element is the number of claims to insurance type j . Fur-
thermore, it is assumed that all the claim amounts are mutually independent and
independent of the claim number vector, and that the claim amounts for the same
type of insurance are identically distributed.

We have now introduced two different types of compound distributions for aggre-
gate claims in collective models, the first one with univariate counting distribution
and multivariate severity distribution and the second one with multivariate counting
distribution and univariate severity distributions. We can also combine these two
settings; in the setting of the previous paragraph, we could assume that each claim
amount is replaced with a vector with that amount split on payment year, and the
dimension of these severity vectors could be different for different insurance types.

14.2 Vectors and Matrices

We shall normally denote the dimension of aggregate claims vectors by m.
We shall denote an m×1 vector by a bold letter and for j = 1,2, . . . ,m its j th el-

ement by the corresponding italic with subscript j ; when the subscript is •, we mean
the sum of these elements, e.g. the column vector x has elements x1, x2, . . . , xm and
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we have x• = x•m. For j = 1,2, . . . ,m, we let ej denote the vector whose j th ele-
ment is equal to one and all other elements equal to zero, and introduce the notation
ej1j2...js = ∑s

r=1 ejr for different integers j1, j2, . . . , js ∈ {1,2, . . . ,m}. In particu-
lar, we let e = e12···m. Furthermore, we introduce the zero vector 0 with all elements
equal to zero. We hope that it will not cause problems for the readers that the di-
mension m does not appear explicitly in some of the vector notation.

For a sequence of vectors x1,x2, . . . , we let x•n = ∑n
j=1 xj and, for i =

1,2, . . . ,m, we denote the ith element of this vector by x•ni ; the sum of these ele-
ments is denoted by x•n•.

We let Zm and Rm denote the set of all m × 1 vectors with integer-valued and
real-valued elements respectively. If x,y ∈ Rm, then by y < x, we shall mean that
yj < xj for j = 1,2, . . . ,m, and by y ≤ x that yj ≤ xj for j = 1,2, . . . ,m. When
indicating a range like e.g. 0 ≤ y ≤ x for fixed x ∈ Zm, it will always be tacitly
assumed that the vector y has integer-valued elements. We let Nm = {x ∈ Zm : x ≥ 0}
and Nm+ = {x ∈ Zm : x > 0}.

Matrices will be denoted by bold upper-case letters. The columns of a matrix will
be denoted by the corresponding bold lower-case letter with a subscript indicating
the number of the column. We denote the elements of a matrix by the corresponding
italic with subscripts indicating the row and the column. Thus, if A is an m × s

matrix, then, for j = 1,2, . . . , s, aj denotes its j th column, and, for i = 1,2, . . . ,m

and j = 1,2, . . . , s, aij denotes the element in the ith row and j th column; using
• to indicate summation like we did for vectors, we let ai• denote the sum of the
elements in the ith row, a•j the sum of the elements of the j th column, and a•• the
sum of the elements of the whole matrix.

14.3 Induction Proofs in a Multivariate Setting

In the following chapters, we shall present multivariate versions of many of the
results that we have proved in the univariate case in Part I. We shall often omit the
proof of such an extension when it is a straight-forward modification of the proof
of the univariate case. Some of these omitted proofs involve induction, so let us
indicate how such induction proofs can be extended from the univariate case to the
multivariate case.

Let us assume that in the univariate case, we want to prove by induction the
hypothesis that some result holds for all non-negative integers x. Then we first show
that it holds for x = 0. Next, we show that if it holds for all non-negative integers x

less than some positive integer z, then it must also hold for x = z. When this is the
case, then the result must hold for all non-negative integers x. Hence, our hypothesis
is proved.

In the multivariate extension, we want to prove by induction the hypothesis that
the result holds for all x ∈ Nm. Then we first show that it holds for x = 0. Next, we
show that if it holds for all x ∈ Nm such that 0 ≤ x < z for some z ∈ Nm+, then it
must also hold for x = z. When this is the case, then the result must hold for all
x ∈ Nm. Hence, our hypothesis is proved.
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If, in the univariate case, we want to prove the hypothesis that the result holds for
all positive integers, then we proceed as indicated above, but start by showing that
the result holds for x = 1.

In the multivariate case, this corresponds to proving the hypothesis that the result
holds for all x ∈ Nm+. We now start by showing that for j = 1,2, . . . ,m, it holds
for x = ej . Next, we show that if it holds for all x ∈ Nm+ such that ej ≤ x < z for
some z ∈ Nm+, then it must also hold for x = z.

In the present book, an induction proof in a multivariate setting following the
ideas outlined in the present section, has been written out for Theorem 16.4.

14.4 Classes of Distributions and Functions

In Part II, we shall mainly concentrate on distributions on vectors with integer-
valued elements. Our main attention will be on the probability function of such dis-
tributions, and then it will be convenient to associate the distribution with its proba-
bility function. Hence, when referring to a distribution, we shall normally mean its
probability function. Such functions will be denoted by lower case italics.

We let Pm denote the class of all distributions on Zm. For all l ∈ Zm, we let
Pml denote the class of all distributions f ∈ Pm for which f (x) = 0 when x < l.
By Pml, we denote the class of all distributions in Pml with a positive mass at l.
Let Pm_ = ⋃

l∈Zm
Pml, that is, the set of all distributions in Pm whose support is

bounded from below. We let Pm+ = ⋃m
j=1 Pmej

, that is, the set of distributions on
Nm+; in particular, we have P1+ = P11.

We let Fm denote the class of all functions on Zm. For all l ∈ Zm, we let Fml
denote the set of all functions f ∈ Fm for which f (x) = 0 when x < l, and we
let Fml denote the set of functions f ∈ Fml with a positive mass at l. Let Fm_ =⋃

l∈Zm
Fml. We let Fm+ = ⋃m

j=1 Fmej
.

We introduce the cumulation operator � given by �f (x) = ∑
y≤x f (y) for all

x ∈ Zm and all functions f ∈ Fm for which the summation exists. When f ∈ Fm_,
�f always exists as then there will always exist a vector l ∈ Zm such that �f (x) =∑

l≤y≤x f (y) for all x ∈ Zm such that x ≥ l.
The operator  is applied to functions in Fm0 and gives the function multiplied

by the sum of its arguments, that is, if f ∈ Fm0, then f ∈ Fm0 is given by f (x) =
x•f (x) for x ∈ Nm.

14.5 Convolutions

The definition of convolution trivially extends to the m-variate case.
We define the convolution f ∗ g of two functions f,g ∈ Fm by

(f ∗ g)(z) =
∑

x∈Zm

f (x)g(z − x). (z ∈ Zm)
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Like in the univariate case, we let f M∗ = f (M−1)∗ ∗ f for M = 1,2, . . . with f 0∗
being the function concentrated in 0 with mass one.

If f,g ∈ Fm0, then

(f ∗ g)(z) =
∑

0≤x≤z

f (x)g(z − x); (z ∈ Nm)

in particular, we have (f ∗ g)(0) = f (0)g(0).
Now let f,g ∈ Pm. If X and Y are random vectors with distribution f and g

respectively, then f ∗ g is the distribution of X + Y.
In terms of cumulative distributions, we define the convolution F ∗ G of two

m-variate distributions F and G by

(F ∗ G)(z) =
∫

Rm

G(z − x)dF(x), (x ∈ Rm)

and we have FM∗ = F (M−1)∗ ∗ F for M = 1,2, . . . with F 0∗ being the distribution
concentrated in zero.

14.6 Compound Distributions

As discussed in Sect. 14.1, we can extend the definition of univariate compound
distributions of Sect. 1.6 to multivariate distributions in the following two ways:

1. Univariate counting distribution and multivariate severity distribution. The ex-
tension of the definition of univariate compound distributions of Sect. 1.6 to this
case is trivial; the compound distribution p ∨ H where p ∈ P10 and H is a mul-
tivariate distribution, is still given by (1.5), and if h ∈ Pm, then (1.6) still holds.
If h ∈ Pm+, then

(p ∨ h)(x) =
x•∑

n=0

p(n)hn∗(x). (x ∈ Nm) (14.1)

2. Multivariate counting distribution and univariate severity distributions. Let p ∈
Pm0 and H = (H1,H2, . . . ,Hm) where H1,H2, . . . ,Hm are univariate distribu-
tions. Then the compound distribution p ∨ H with counting distribution p and
severity distributions H is given by

(p ∨ H)(x) =
∑

n∈Nm

p(n)

m∏

j=1

H
nj ∗
j (xj ). (x ∈ Rm)

If h = (h1, h2, . . . , hm) with h1, h2, . . . , hm ∈ P1, then p ∨ h is given by

(p ∨ h)(x) =
∑

n∈Nm

p(n)

m∏

j=1

h
nj ∗
j (xj ), (x ∈ Zm) (14.2)
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and in the special case h1, h2, . . . , hm ∈ P11, we obtain

(p ∨ h)(x) =
∑

0≤n≤x

p(n)

m∏

j=1

h
nj ∗
j (xj ); (x ∈ Nm)

in particular, this gives (p ∨ h)(x) = p(0).

As Type 2 is a compounding of a multivariate counting distribution, we could
call that a compound multivariate distribution. On the other hand, Type 1 is a mul-
tivariate compounding of a univariate counting distribution, so we could call that a
multivariate compound distribution. However, it can also be convenient to have one
term covering both these multivariate types of compound distributions, and then
it seems natural to say multivariate compound distribution as it is a multivariate
version of a compound distribution. Hence, we shall refer to the two types simply
as Types 1 and 2 and let the term multivariate compound distribution cover both
cases.

In Sect. 14.1, we discussed various insurance applications of these two types
of compound distributions. Furthermore, we pointed out that the two types can be
combined by letting the hj s in Type 2 be multivariate. Let us call that combination a
multivariate compound distribution of Type 3. Letting m = 1 in that setting, brings
us to Type 1.

Let us try to compare Types 1 and 2. We consider an insurance portfolio with
m policies. Let f ∈ Pm be the joint distribution of the aggregate claims of each
of the m policies during a given period; there could be dependences between these
variables.

We see that in both approaches, the claim amounts from one policy are indepen-
dent of the claim number(s) and mutually independent and identically distributed.

Type 1 is more general than Type 2 in the sense that in Type 2 the claim amounts
of different policies are always independent. On the other hand, Type 1 is less gen-
eral in the sense that there we have more specific assumptions on the occurrence of
claim events.

From the above discussion, it seems that it would be possible to find cases that
could be modelled in both ways if we have independent claim amounts from dif-
ferent policies and assumptions on claim events. Let us look at such a case. We let
p1 ∈ P1 and h be defined as above and introduce an m-variate Bernoulli distribu-
tion (that is, each variable can take only the values zero and one) q ∈ Pm. Then we
let pm = p1 ∨ q and h = q ∨ h. Both these distributions are in Pm, and we have
f = p1 ∨ h = pm ∨ h. When letting all the hj s be concentrated in one, h reduces to
q and f to pm.

Example 14.1 Let us consider the special case when q is given by

q(ej ) = πj . (0 ≤ πj ≤ 1; j = 1,2, . . . ,m; π• = 1) (14.3)
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Then, for M = 0,1,2, . . . , we have that qM∗ is the multinomial distribution
mnom(M,π) given by

qM∗(n) = M!
m∏

j=1

π
nj

j

nj ! . (14.4)

(0 < n ≤ Me; n• = M; 0 ≤ πj ≤ 1; j = 1,2, . . . ,m; π• = 1)

Hence, for all n ∈ Nm, qs∗(n) > 0 only when s = n•, so that (14.1) gives

pm(n) = p1(n•)qn•∗(n) = p1(n•)n•!
m∏

j=1

π
nj

j

nj ! . (n ∈ Nm) (14.5)

Furthermore,

h(y) = πjhj (yj ). (y = yj ej ; yj = 1,2, . . . ; j = 1,2, . . . ,m) (14.6)
�

We extend the definition (1.6) of p ∨ h to p ∈ F10 and h ∈ Fm and the definition
(14.2) of p ∨ h to p ∈ Fm0 and h1, h2, . . . , hm ∈ F1.

14.7 Moments

Let X be an m × 1 random vector with distribution F . For j ∈ Zm and c ∈ Rm, we
denote the jth order moment of F around c by μF (j; c), that is,

μF (j; c) = E
m∏

i=1

(Xi − ci)
ji =

∫

Rm

(
m∏

i=1

(xi − ci)
ji

)

dF(x).

In particular, we have μF (0; c) = 1 for any value of c. For convenience, we let
μF (j,0) = μF (j).

If f ∈ Fm, then we let

μf (j; c) =
∑

x∈Zm

f (x)

m∏

i=1

(xi − ci)
ji

and μf (j) = μf (j;0).

Further Remarks and References

The discussion in Sect. 14.6 on the two types of compound distributions is based on
Sect. 3 in Sundt and Vernic (2004).

Johnson et al. (1997) give a broad overview of discrete multivariate distributions
and their properties. Kocherlakota and Kocherlakota (1992) consider discrete bivari-
ate distributions.



Chapter 15
Multivariate Compound Distributions of Type 1

Summary

The main purpose of the present chapter is to develop recursions for multivariate
compound distributions of Type 1, that is, compound distributions with univariate
counting distribution and multivariate severity distribution.

We first give some results on covariances in Sect. 15.1.
Section 15.2 is devoted to the case where the counting distribution belongs to

the Panjer class. We give some examples, in particular related to reinsurance. Like
in the univariate case, we can deduce recursions for convolutions of multivariate
distributions from recursions for compound binomial distributions. This is done in
Sect. 15.3.

A short Sect. 15.4 is devoted to infinitely divisible distributions. Its main result
is a multivariate extension of Theorem 4.2.

In Sect. 15.5, we extend some recursions from Chap. 5 to multivariate severity
distributions.

Finally, in Sect. 15.6, we deduce some recursions for compound distributions
with univariate counting distribution and multivariate Bernoulli severity distribu-
tion.

15.1 Covariances

Let Y1,Y2, . . . be mutually independent and identically distributed non-degenerate
random m × 1 vectors with non-negative elements, independent of the non-
degenerate random variable N . In this section, we shall study the covariance be-
tween two elements Xj and Xk of X = Y•N . We have

Cov(Xj ,Xk) = E Cov[Y•Nj ,Y•Nk|N ] + Cov(E[Y•Nj |N ],E[Y•Nk|N ]),
which gives

Cov(Xj ,Xk) = EN Cov(Y1j , Y1k) + EY1j EY1k VarN

= EN EY1j Y1k + EY1j EY1k(VarN − EN). (15.1)

If Y1j and Y1k are uncorrelated, then

Cov(Xj ,Xk) = EY1j EY1k VarN > 0,

B. Sundt, R. Vernic, Recursions for Convolutions and Compound Distributions
with Insurance Applications, EAA Lecture Notes,
DOI 10.1007/978-3-540-92900-0_15, © Springer-Verlag Berlin Heidelberg 2009
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that is, Xj and Xk are positively correlated. This seems intuitively reasonable; if
Xj is large, then that could indicate that N is large, and a large value of N could
indicate a large value of Xk .

If N is Poisson distributed, then VarN = EN and the last expression in (15.1)
reduces to

Cov(Xj ,Xk) = EN EY1j Y1k ≥ 0,

with equality iff EY1j Y1k = 0, that is, when the probability that both Y1j and Y1k

are positive, is zero. In the situation when the elements of the severity vectors are
claim amounts of different policies from the same claim event, this means that the
same claim event cannot affect both policy j and k.

More generally, if we leave the Poisson assumption, but keep the assumption that
EY1j Y1k = 0, the second expression in (15.1) gives

Cov(Xj ,Xk) = EY1j EY1k(VarN − EN),

that is, the sign of Cov(Xj ,Xk) is the same as the sign of VarN − EN . From the
discussion at the end of Sect. 2.3.2 follows that this covariance is positive when
the counting distribution is negative binomial, equal to zero when the counting dis-
tribution is Poisson (as we have already shown), and negative when the counting
distribution is binomial.

15.2 Counting Distribution in the Panjer Class

In this section, we shall consider evaluation of f = p ∨ h where p is R1[a, b] and
h ∈ Pm0. In the univariate case, our faithful workhorse was (5.2), so a crucial ques-
tion seems to be how to extend this relation to m > 1.

Let the random m × 1 vectors Y1,Y2, . . . be mutually independent and iden-
tically distributed with distribution h and independent of the random variable N ,
which has distribution p. Then X = Y•N has distribution f . With analogous rea-
soning to what we used to set up (5.2), we obtain

E[axj + bY1j |Y•n = x] =
(

a + b

n

)

xj . (15.2)

(x ∈ Nm;n = 1,2, . . . ; j = 1,2, . . . ,m)

This gives that for x ∈ Nm+ and j = 1,2, . . . ,m,

xjf (x) = xj

∞∑

n=1

p(n)hn∗(x) = xj

∞∑

n=1

p(n − 1)

(

a + b

n

)

hn∗(x)

=
∞∑

n=1

p(n − 1)E[axj + bY1j |Y•n = x]hn∗(x)
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=
∞∑

n=1

p(n − 1)
∑

0≤y≤x

(axj + byj )h(y)h(n−1)∗(x − y)

=
∑

0≤y≤x

(axj + byj )h(y)

∞∑

n=1

p(n − 1)h(n−1)∗(x − y)

=
∑

0≤y≤x

(axj + byj )h(y)f (x − y)

= axjh(0)f (x) +
∑

0<y≤x

(axj + byj )h(y)f (x − y),

from which we obtain

xjf (x) = 1

1 − ah(0)

∑

0<y≤x

(axj + byj )h(y)f (x − y). (15.3)

(x ∈ Nm+; j = 1,2, . . . ,m)

When xj > 0, we can divide by xj , and this gives

f (x) = 1

1 − ah(0)

∑

0<y≤x

(

a + b
yj

xj

)

h(y)f (x − y). (15.4)

(x ≥ ej ; j = 1,2, . . . ,m)

For any x ∈ Nm+, there must exist at least one j ∈ {1,2, . . . ,m} for which xj > 0.
Hence, together with the initial condition f (0) = τp(h(0)), (15.4) gives a procedure
for recursive evaluation of f (x) for all x ∈ Nm.

If Y1j > 0 almost surely, then h(x) = f (x) = 0 for all x ∈ Nm+ with xj = 0. In
this case, we do not need to apply (15.4) for any other j . However, if there exists
no j such that Y1j > 0 almost surely, then we cannot apply the same j in (15.4) for
all x ∈ Nm+. This complicates programming the procedure. However, we shall now
see how we can avoid that problem.

Let c be an m × 1 vector. Multiplication of (15.3) by cj and summation over j

gives

c′xf (x) = 1

1 − ah(0)

∑

0<y≤x

(ac′x + bc′y)h(y)f (x − y). (x ∈ Nm+)

When c′x �=0, we can divide by c′x and obtain

f (x) = 1

1 − ah(0)

∑

0<y≤x

(

a + b
c′y
c′x

)

h(y)f (x − y). (x ∈ Nm+; c′x �=0)
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For c = e, we have c′x = x•, which is greater than zero for all x ∈ Nm+. Hence,

f (x) = 1

1 − ah(0)

∑

0<y≤x

(

a + b
y•
x•

)

h(y)f (x − y). (x ∈ Nm+) (15.5)

Example 15.1 Let us return to the setting of Example 14.1 with the additional as-
sumption that p1 is R1[a, b]. Insertion of (14.6) in (15.4) and (15.5) gives

f (x) = a

m∑

k=1

πk

xk∑

y=1

hk(y)f (x − yek) + b
πj

xj

xj∑

y=1

yhj (y)f (x − yej )

(x ≥ ej ; j = 1,2, . . . ,m) (15.6)

f (x) =
m∑

j=1

πj

xj∑

y=1

(

a + b
y

x•

)

hj (y)f (x − yej ). (x ∈ Nm+) (15.7)

When letting all the hj s be concentrated in one, h reduces to q and f to pm.
Hence, we obtain

pm(n) = a

m∑

k=1

πkpm(n − ek) + b
πj

nj

pm(n − ej ) (15.8)

(n ≥ ej ; j = 1,2, . . . ,m)

pm(n) =
(

a + b

n•

) m∑

j=1

πjpm(n − ej ). (n ∈ Nm+) (15.9)

When p1 is the Poisson distribution Po(λ), that is, a = 0 and b = λ (see Ta-
ble 2.1), (15.6) reduces to

f (x) = λ
πj

xj

xj∑

y=1

yhj (y)f (x − yej ). (x ≥ ej ; j = 1,2, . . . ,m)

By comparison with Theorem 2.2, we see that there exists a function f̃j such that

f (x) = fj (xj )f̃j (x1, x2, . . . , xj−1, xj+1, . . . , xm),

(x ≥ ej ; j = 1,2, . . . ,m)

where fj is the compound Poisson distribution with Poisson parameter λπj and
severity distribution hj . Then fj must be the marginal distribution of Xj and f̃j

the joint distribution of the other elements of X. It follows that in this case, the Xj s
are independent and each Xj compound Poisson distributed with Poisson parameter
λπj and severity distribution hj . �



15.2 Counting Distribution in the Panjer Class 249

Example 15.2 Let us now consider the bivariate case with m = 2. With some abuse
of notation, to avoid carrying subscripts 1 and 2 all the time, we assume that
the severity vectors (U1,V1)

′, (U2,V2)
′, . . . are mutually independent, identically

distributed with distribution h ∈ P2+, and independent of the counting variable
N whose distribution p is R1[a, b]. Then (X,Y )′ = (U•N,V•N)′ has distribution
f = p ∨ h.

In this case, (15.4) gives

f (x, y) =
x∑

u=0

(

a + b
u

x

) y∑

v=0

h(u, v)f (x − u,y − v) (15.10)

(x = 1,2, . . . ;y = 0,1,2, . . . )

f (x, y) =
y∑

v=0

(

a + b
v

y

) x∑

u=0

h(u, v)f (x − u,y − v), (15.11)

(x = 0,1,2, . . . ;y = 1,2, . . . )

and from (15.5) we obtain

f (x, y) =
x∑

u=0

y∑

v=0

(

a + b
u + v

x + y

)

h(u, v)f (x − u,y − v). (15.12)

((x, y) > (0,0))

Note that to simplify the formulae, we have, unlike in (15.4) and (15.5), included
(u, v) = (0,0). This does not change the value as h(0,0) = 0.

To assume that U1 and V1 are independent does not seem to give any significant
simplification; with hU and hV denoting their marginal distributions, (15.10) gives

f (x, y) =
x∑

u=0

(

a + b
u

x

)

hU(u)

y∑

v=0

hV (v)f (x − u,y − v).

(x = 1,2, . . . ;y = 0,1,2, . . . ) �

Example 15.3 Let us now consider a univariate situation where N is the number of
claims in an insurance portfolio and Wi the amount of the ith of these claims. We
assume that the distribution p of N is R1[a, b] and that the Wis are independent of
N and mutually independent and identically distributed with distribution g ∈ P11.
We want to evaluate the joint distribution f of the aggregate claim amount X =∑N

i=1 Wi and the number of claims N . We are now in the setting of Example 15.2
with Ui = Wi and Vi = 1 for i = 1,2, . . . . This gives of course Y = N . We obtain

h(u, v) = g(u) (u = 1,2, . . . ;v = 1) (15.13)

f (x, y) = p(y)gy∗(x). (x, y = 0,1,2, . . . )
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Insertion of (15.13) in (15.10) and (15.11) gives that for x, y = 1,2, . . .

f (x, y) =
x∑

u=1

(

a + b
u

x

)

g(u)f (x − u,y − 1)

=
(

a + b

y

) x∑

u=1

g(u)f (x − u,y − 1); (x, y = 1,2, . . . )

the latter recursion is the most convenient of the two.
In the present case, (15.1) gives that Cov(X,N) = EW VarN > 0. �

Example 15.4 Let us now assume that the portfolio of Example 15.3 is protected
by an unlimited excess of loss reinsurance where the retention is a positive inte-
ger r . We want to evaluate the joint distribution of the aggregate payments X of
the cedant and Y of the reinsurer. We are now in the setting of Example 15.2 with
Ui = min(Wi, r) and Vi = (Wi − r)+ for i = 1,2, . . . . This gives

h(u, v) =
{

g(u) (u = 1,2, . . . , r;v = 0)

g(r + v). (u = r;v = 1,2, . . . )
(15.14)

Insertion in (15.10) and (15.11) gives

f (x, y) =
r∑

u=1

(

a + b
u

x

)

g(u)f (x − u,y)

+
(

a + b
r

x

) y∑

v=1

g(r + v)f (x − r, y − v)

(x = 1,2, . . . ;y = 0,1,2, . . . )

f (x, y) = a

r∑

u=1

g(u)f (x − u,y) +
y∑

v=1

(

a + b
v

y

)

g(r + v)f (x − r, y − v).

(x = r, r + 1, r + 2, . . . ;y = 1,2, . . . )

As the Uis are strictly positive, the former recursion specifies f completely together
with the initial value f (0,0). The latter recursion may be more convenient for small
values of y, but then we still need the former recursion to evaluate f (x,0) for x =
1,2, . . . . Insertion of (15.14) in (15.12) gives

f (x, y) =
r∑

u=1

(

a + b
u

x + y

)

g(u)f (x − u,y)

+
y∑

v=1

(

a + b
r + v

x + y

)

g(r + v)f (x − r, y − v).

(x = 1,2, . . . ;y = 0,1,2, . . . )
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If the reinsurance treaty also has an aggregate limit l where l is a positive integer,
then the cedant pays X + (Y − l)+ with distribution k given by

k(z) =
l∑

y=0

f (z, y) +
z+l−r∑

y=l+1

f (z − y + l, y). (z = 0,1,2, . . . )
�

The following multivariate extension of Theorem 2.3 is proved like in the uni-
variate case.

Theorem 15.1 If p is the Poisson distribution Po(λ) and h ∈ Pm0 satisfies the re-
lation

yjh(y) = η(y) +
∑

0<z≤r

(yj − zj )χ(z)h(y − z) (y ∈ Nm+) (15.15)

for functions η and χ on {y ∈ Nm+ : y ≤ r} with r = (r1, r2, . . . , rm)′ with rj being a
positive integer or infinity for j = 1,2, . . . ,m, then f = p ∨ h satisfies the relation

xjf (x) =
∑

0<y≤r

(λη(y) + (xj − yj )χ(y))f (x − y). (15.16)

(x ∈ Nm+; j = 1,2, . . . ,m)

By proceeding from (15.16) in the way we deduced (15.4) and (15.5), we obtain
the recursions

f (x) =
∑

0<y≤r

(
λ

xj

η(y) +
(

1 − yj

xj

)

χ(y)

)

f (x − y) (x ≥ ej ; j = 1,2, . . . ,m)

f (x) =
∑

0<y≤r

(
m

x•
λη(y) +

(

1 − y•
x•

)

χ(y)

)

f (x − y); (x ∈ Nm+) (15.17)

for the latter recursion, we can replace the condition (15.15) with the weaker

h(y) = m

y•
η(y) +

∑

0<z≤r

(

1 − z•
y•

)

χ(z)h(y − z). (y ∈ Nm+) (15.18)

15.3 Convolutions of a Distribution

In this section, we shall extend the theory of Sect. 2.4 to the multivariate case. In
that section, we gave a direct proof of Theorem 2.8 and afterwards indicated how it
could also be deduced from the binomial case of Theorem 2.4. For the multivariate
case, we go straight to the binomial case of (15.4) and (15.5). The advantage is that
then we can get straight to both of these recursions at the same time. With h ∈ Pm+
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and p being bin(M,π), insertion of the values of a and b from Table 2.1 in (15.4)
and (15.5) gives

f (x) = π

1 − π

∑

0<y≤x

(

(M + 1)
yj

xj

− 1

)

h(y)f (x − y) (15.19)

(x ≥ ej ; j = 1,2, . . . ,m)

f (x) = π

1 − π

∑

0<y≤x

(

(M + 1)
y•
x•

− 1

)

h(y)f (x − y). (x ∈ Nm+) (15.20)

We are now ready to prove the following multivariate version of Theorem 2.8.

Theorem 15.2 The M-fold convolution f = gM∗ of g ∈ Pm0 satisfies the recursions

f (x) = 1

g(0)

∑

0<y≤x

(

(M + 1)
yj

xj

− 1

)

g(y)f (x − y) (15.21)

(x ≥ ej ; j = 1,2, . . . ,m)

f (x) = 1

g(0)

∑

0<y≤x

(

(M + 1)
y•
x•

− 1

)

g(y)f (x − y) (x ∈ Nm+) (15.22)

with initial value f (0) = g(0)M .

Proof We represent g as a compound Bernoulli distribution with Bernoulli counting
distribution Bern(π) with π = 1 − g(0) and severity distribution h ∈ Pm+ given by
h(y) = g(y)/π for y ∈ Nm+. Then f = p∨h with p being the binomial distribution
bin(M,π), and the theorem follows from (15.19) and (15.20). �

The following multivariate extensions of Theorems 2.9 and 2.10 are proved like
in the univariate case.

Theorem 15.3 If the distribution g ∈ Pm0 has a finite range {x ∈ Nm : 0 ≤ x ≤ k}
with g(k) > 0 for some k ∈ Nm, then f = gM∗ satisfies the recursion

f (x) = 1

g(k)

∑

0<y≤k

(
(M + 1)yj

Mkj − xj

− 1

)

g(k − y)f (x + y)

(0 ≤ x ≤Mk − ej ; j = 1,2, . . . ,m)

f (x) = 1

g(k)

∑

0<y≤k

(
(M + 1)y•
Mk• − x•

− 1

)

g(k − y)f (x + y) (0 ≤ x ≤Mk)

with initial value f (Mk) = g(k)M .
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Theorem 15.4 If g ∈ Pml for some l ∈ Zm, then f = gM∗ satisfies the recursions

f (x) = 1

g(l)

∑

0<y≤x−Ml

(
(M + 1)yj

xj − Mlj
− 1

)

g(l + y)f (x − y)

(x ≥ ej ; j = 1,2, . . . ,m)

f (x) = 1

g(l)

∑

0<y≤x−Ml

(
(M + 1)y•
x• − Ml•

− 1

)

g(l + y)f (x − y) (x ∈ Nm+)

with initial value f (Ml) = g(l)M .

In the following example, we shall extend the univariate recursion (2.54) to the
multivariate case.

Example 15.5 Let f ∈ Pm+ be the multinomial distribution mnom(M,π). Then
f = gM∗ where g ∈ Pm+ is the m-variate Bernoulli distribution given by (14.3). At
first glance, it seems that we cannot apply Theorem 15.4 in this case as there exists
no l ∈ Zm such that f ∈ Pml although the support of f is bounded from below

by 0. However, as xm = M −∑m−1
j=1 xj when f (x) > 0, we can just as well consider

f̃ ∈ Pm−1,0 given by

f̃ (x1, x2, . . . , xm−1) = f

(

x1, x2, . . . , xm−1,M −
m−1∑

j=1

xj

)

,

which satisfies f̃ = g̃M∗ with g̃ ∈ Pm−1,0 given by

g̃(y1, y2, . . . , ym−1) = g

(

y1, y2, . . . , ym−1,1 −
m−1∑

j=1

yj

)

.

When xm < M , insertion in (15.22) gives

f (x) = 1

g(em)

m−1∑

i=1

(
M + 1

∑m−1
j=1 xj

− 1

)

g(ei )f (x − ei )

= 1

πm

m−1∑

i=1

(
M + 1

M − xm

− 1

)

πif (x − ei ) = 1

πm

xm + 1

M − xm

m−1∑

i=1

πif (x − ei ).

More generally, we obtain

f (x) = 1

πj

xj + 1

M − xj

∑

i �=j

πif (x − ei ). (0 < x ≤Me − ej ;x• = M; j = 1,2, . . . ,m)

In addition, we have f (Mej ) = πM
j for j = 1,2, . . . ,m. �
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15.4 Infinite Divisibility

The main purpose of the present section is to extend Theorem 4.2 and its proof to
the multivariate case.

The definitions of infinite divisibility at the beginning of Chap. 4 are immediately
applicable for multivariate distributions. Many of the results presented in that chap-
ter for univariate distributions, are easily extended to the multivariate case, in par-
ticular Theorem 4.1. The following multivariate extension of its item vii) is proved
like in the univariate case.

Theorem 15.5 An infinitely divisible distribution in Pm0 has a positive probability
in 0.

From Table 2.1, we know that the Poisson distribution Po(λ) is R1[0, λ]. Inser-
tion in (15.5) gives that the compound Poisson distribution f with Poisson parame-
ter λ > 0 and severity distribution h ∈ Pm+ satisfies the recursion

f (x) = λ

x•

∑

0<y≤x

y•h(y)f (x − y) (x ∈ Nm+) (15.23)

with initial condition

f (0) = e−λ. (15.24)

The following multivariate version of Theorem 4.2 can be proved by a trivial
modification of the proof of the univariate case.

Theorem 15.6 A non-degenerate distribution in Pm0 is infinitely divisible iff it can
be expressed as a compound Poisson distribution with severity distribution in Pm+.

By interpreting a distribution concentrated in zero as a Poisson distribution with
parameter zero, we can drop the assumption in Theorem 15.6 that the distribution
should be non-degenerate.

15.5 Counting Distribution with Recursion of Higher Order

Let us return to the setting of Sect. 15.2 with the weaker assumption on the counting
distribution p that it belongs to P10. Proceeding like in the deduction of (5.4), (15.2)
easily extends to

E

[

a + b

i

∑i
l=1 Ylj

xj

∣
∣
∣
∣Y•n = x

]

= a + b

n
.

(x ≥ ej ; j = 1,2, . . . ,m;n = i, i + 1, i + 2, . . . ; i = 1,2, . . . )
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Analogous to the deduction of (15.4) and (15.5), representing p in the form (5.6)
with a and b now being functions, we extend (5.8) to

f (x) = 1

1 − τa(h(0))

×
(

(q ∨ h)(x) +
∑

0<y≤x

(

(a ∨ h)(y) + (�b ∨ h)(y)
yj

xj

)

f (x − y)

)

(x ≥ ej ; j = 1,2, . . . ,m) (15.25)

f (x) = 1

1 − τa(h(0))

×
(

(q ∨ h)(x) +
∑

0<y≤x

(

(a ∨ h)(y) + (�b ∨ h)(y)
y•
x•

)

f (x − y)

)

.

(x ∈ Nm+) (15.26)

When p is Rk[a, b], we obtain

f (x) = 1

1 − τa(h(0))

∑

0<y≤x

(

(a ∨ h)(y) + (�b ∨ h)(y)
yj

xj

)

f (x − y)

(x ≥ ej ; j = 1,2, . . . ,m) (15.27)

f (x) = 1

1 − τa(h(0))

∑

0<y≤x

(

(a ∨ h)(y) + (�b ∨ h)(y)
y•
x•

)

f (x − y).

(x ∈ Nm+) (15.28)

In particular, if p ∈ Pm0 and h ∈ Pm+, we have

f (x) = 1

xj

∑

0<y≤x

yj (�ϕp ∨ h)(y)f (x − y) (x ≥ ej ; j = 1,2, . . . ,m) (15.29)

f (x) = 1

x•

∑

0<y≤x

y•(�ϕp ∨ h)(y)f (x − y). (x ∈ Nm+) (15.30)

With

c(y) = (a ∨ h)(y)

1 − τa(h(0))
; d(y) = (�b ∨ h)(y)

1 − τa(h(0))
, (0 < y ≤ x) (15.31)

we can rewrite (15.28) as

f (x) =
∑

0<y≤x

(

c(y) + d(y)

x•

)

f (x − y). (x ∈ Nm+)
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This is a multivariate version of (5.12) with k = ∞. We therefore find it natural to
introduce the notation Rk[α,β] for a distribution g ∈ Pm0 that satisfies the recursion

g(x) =
∑

0<y≤k

(

α(y) + β(y)

x•

)

g(x − y) (x ∈ Nm+) (15.32)

with k = (k1, k2, . . . , km)′ with kj being a positive integer or infinity for j =
1,2, . . . ,m (we hope that it will not cause problems for the readers that the dimen-
sion m does not appear explicitly in the notation Rk[α,β]). The recursion (15.27)
can now be expressed as

f (x) =
∑

0<y≤x

(

c(y) + yj

y•
d(y)

xj

)

f (x − y). (x ≥ ej ; j = 1,2, . . . ,m)

15.6 Multivariate Bernoulli Severity Distribution

We shall now give a rather general result for compound distributions where the
severity distribution is the multivariate Bernoulli distribution given by (14.3).

Theorem 15.7 If p ∈ Pm0 satisfies the recursion

p(n) = b(n) +
k∑

i=1

bi(n)p(n − i), (n = 1,2, . . . ) (15.33)

and h is the multivariate Bernoulli distribution given by (14.3), then f = p ∨ h

satisfies the recursion

f (x) = b(x•)hx•∗(x) +
k∑

i=1

bi(x•)
∑

0<y<x

f (x − y)hi∗(y)

= x•!b(x•)
(

m∏

j=1

π
xj

j

xj !

)

+
k∑

i=1

i!bi(x•)
∑

0<y<x
y•=i

(
m∏

j=1

π
yj

j

yj !

)

f (x − y).

(x ∈ Nm+) (15.34)

Proof Insertion of (15.33) in (14.5) gives that for all x ∈ Nm+, we have

f (x) =
(

b(x•) +
k∑

i=1

bi(x•)p(x• − i)

)

hx•∗(x). (15.35)
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By application of (14.5), we obtain that for i = 1,2, . . . , k,

p(x• − i)hx•∗(x) = p(x• − i)
∑

0<y<x

h(x•−i)∗(x − y)hi∗(y)

=
∑

0<y<x

f (x − y)hi∗(y),

and insertion in (15.35) gives the first equality in (15.34). The second equality fol-
lows by insertion of (14.4).

This completes the proof of Theorem 15.7. �

The following recursion can sometimes be more convenient.

Theorem 15.8 Let f = p ∨ h with p ∈ Pm0 satisfying the recursion (15.33) and h

being the multivariate Bernoulli distribution given by (14.3). For i = 1,2, . . . , k, let
iy ∈ Nm+ with iy• = i such that 1y < 2y < · · · < ky. Then

f (x) = b(x•)hx•∗(x) +
k∑

i=1

bi(x•)x(i)•

(
m∏

j=1

π
iyj

j

x
(iyj )

j

)

f (x − iy). (x ≥ ky)

(15.36)

Proof Application of (14.4) and (14.5) gives that for all x ∈ Nm+ such that x ≥ ky
and i = 1,2, . . . , k, we have

p(x• − i)hx•∗(x) = p(x• − i)h(x•−i)∗(x − iy)
hx•∗(x)

h(x•−i)∗(x − iy)

= f (x − iy)x(i)•

(
m∏

j=1

π
iyj

j

x
(iyj )

j

)

,

and insertion in (15.35) gives (15.36). �

When letting iy = iej for i = 1,2, . . . , k and j ∈ {1,2, . . . ,m}, (15.36) reduces
to

f (x) = b(x•)hx•∗(x) +
k∑

i=1

bi(x•)
x

(i)•
x

(i)
j

πi
j f (x − iej ).

(x ≥kej ; j = 1,2, . . . ,m)

Further Remarks and References

Sections 15.1–15.3 and 15.5 are based on Sundt (1999c). The recursion (15.4) was
deduced independently by Ambagaspitiya (1999), Sundt (1999c), and Walhin and
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Paris (2000a). Reinsurance applications have been presented by Mata (2000, 2003),
Walhin and Paris (2000a, 2001a), Walhin et al. (2001), Walhin (2002b, 2002c), and
Witdouck and Walhin (2004).

Section 15.4 is based on Sundt (2000a). Theorem 15.6 follows from Theorem 2
in Horn and Steutel (1978).



Chapter 16
De Pril Transforms

Summary

The main purpose of the present chapter is to extend the definition of the De Pril
transform to functions in Fm0 and study some properties of the De Pril transform
within that context.

In Sect. 16.1, we extend the definition of the De Pril transform and the Dhaene–
De Pril transform to distributions in Pm0 and give expressions for these transforms
of a multivariate compound distribution of Type 1. Such compound distributions are
further discussed in Sect. 16.2, but there we restrict the counting distributions to the
Rk classes.

In Sect. 16.3, we show that a distribution in Pm0 is infinitely divisible iff its
De Pril transform is non-negative.

In Sect. 16.4, we extend the definition of the De Pril transform to functions Fm0
and point out that the most important properties are easily extended to that setting. In
particular, we point out that the De Pril transform of a convolution of such functions
is the sum of the De Pril transforms of those functions.

Individual models is the topic of Sect. 16.7, and we extend parts of the theory of
Chap. 7 to the multivariate case.

Whereas in Sects. 16.1–16.4 and 16.7, we extend definitions and results from
the univariate case, Sects. 16.5 and 16.6 are devoted to issues that were not present
in the univariate case, namely, respectively, independence and dependence within
a random vector. In particular, we deduce a recursion for the multivariate Poisson
distribution.

16.1 Definitions

Like in the univariate case, for any distribution in f ∈ Pm0, there exists a unique
function ϕf on Fm+ such that f can be expressed as R∞[0, ϕf ]. We define this
function as the De Pril transform of f . Insertion in (15.32) gives

f (x) = 1

x•

∑

0<y≤x

ϕf (y)f (x − y), (x ∈ Nm+) (16.1)

and by solving for ϕf (x), we obtain the recursion

ϕf (x) = 1

f (0)

(

x•f (x) −
∑

0<y<x

ϕf (y)f (x − y)

)

. (x ∈ Nm+) (16.2)
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Comparison between (16.1) and (15.30), gives that if f = p ∨ h with p ∈ P10
and h ∈ P11, then

ϕf = (�ϕp ∨ h). (16.3)

By insertion of this in (15.29), we obtain the recursion

f (x) = 1

xj

∑

0<y≤x

yj

y•
ϕf (y)f (x − y). (x ≥ ej ; j = 1,2, . . . ,m) (16.4)

As any distribution in Pm0 can be represented as a compound distribution with
Bernoulli counting distribution in P10 and severity distribution in Pm+, this recur-
sion holds for any distribution f ∈ Pm0.

The recursion (16.4) gets a more pleasant shape if we use the Dhaene–De Pril
transform instead of the De Pril transform. Extending the univariate case discussed
in Sect. 10.3.2, we define the Dhaene–De Pril transform of a distribution f ∈ Pm0
by

ψf (x) =
{

lnf (0) (x = 0)

ϕf (x)/x•. (x ∈ Nm+)

Insertion in (16.1) and (16.4) gives

f (x) = 1

x•

∑

0<y≤x

y•ψf (y)f (x − y) (x ∈ Nm+)

f (x) = 1

xj

∑

0<y≤x

yjψf (y)f (x − y), (x ≥ ej ; j = 1,2, . . . ,m)

and by solving for ψf (x), we obtain the recursions

ψf (x) = 1

f (0)

(

f (x) − 1

x•

∑

0<y<x

y•ψf (y)f (x − y)

)

(x ∈ Nm+)

ψf (x) = 1

f (0)

(

f (x) − 1

xj

∑

0<y<x

yjψf (y)f (x − y)

)

.

(x ≥ ej ; j = 1,2, . . . ,m)

Like in the univariate case, in terms of Dhaene–De Pril transforms, (16.3) reduces to
ψf = ψp ∨ h. Although the Dhaene–De Pril transform has some advantages com-
pared to the De Pril transform, we shall not pursue it further in this book.

16.2 The Rk Classes

The following multivariate extension of Theorem 6.2 is proved from (15.18) and
(15.17) by a trivial modification of the proof from the univariate case.



16.2 The Rk Classes 261

Theorem 16.1 A distribution f ∈ Pm0 satisfies the recursion

f (x) =
∑

0<y≤r

(
ξ(y)

x•
+

(

1 − y•
x•

)

χ(y)

)

f (x − y) (x ∈ Nm+)

for functions ξ and χ on {y ∈ Nm+ : y ≤ r} with r = (r1, r2, . . . , rm)′ with rj being
a positive integer or infinity for j = 1,2, . . . ,m iff its De Pril transform satisfies the
recursion

ϕf (x) = ξ(x) +
∑

0<y≤r

χ(y)ϕf (x − y). (x ∈ Nm+)

By letting r = k, χ = c, and ξ = c + d , we obtain the following multivariate
extension of Corollary 6.8.

Corollary 16.1 If f is Rk[c, d] with k = (k1, k2, . . . , km)′ with kj being a positive
integer or infinity for j = 1,2, . . . ,m, then

ϕf (x) = (c + d)(x) +
∑

0<y≤k

c(y)ϕf (x − y). (x ∈ Nm+) (16.5)

By letting kj = ∞ for j = 1,2, . . . ,m, c ≡ 0, and d = ϕf in (16.5), we get the
obvious result ϕf (x) = ϕf (x).

Insertion of (15.31) in (16.5) with kj = ∞ for j = 1,2, . . . ,m gives the following
multivariate extension of Corollary 6.9.

Corollary 16.2 If f = p ∨ h where p is Rk[a, b] and h ∈ Pm0, then

ϕf (x) = 1

1 − τa(h(0))

(

x•((a + �b) ∨ h)(x) +
∑

0<y<x

(a ∨ h)(y)ϕf (x − y)

)

.

(x ∈ Nm+) (16.6)

Letting k = ∞, a ≡ 0, and b = ϕp , brings us back to (16.3).
Now let k = 1. In this case, (16.6) reduces to

ϕf (x) = 1

1 − ah(0)

(

x•(a + b)h(x) + a
∑

0<y<x

h(y)ϕf (x − y)

)

.

(x ∈ Nm+)

Insertion of (6.17) in (16.3) extends (6.18) to

ϕf (x) = x•(a + b)

x•∑

n=1

an−1

n
hn∗(x). (x ∈ Nm+) (16.7)
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16.3 Infinite Divisibility

The following theorem extends Theorem 4.5 to multivariate distributions.

Theorem 16.2 A distribution in Pm0 is infinitely divisible iff its De Pril transform
is non-negative.

Analogous to the univariate case, we shall need the following lemma to prove
this theorem.

Lemma 16.1 If a distribution f ∈ Pm0 has non-negative De Pril transform, then∑
x∈Nm+ ϕf (x)/x• < ∞.

Proof Application of (16.2) gives

∑

x∈Nm+

ϕf (x)

x•
=

∑

x∈Nm+

1

f (0)

(

f (x) − 1

x•

∑

0<y<x

ϕf (y)f (x − y)

)

≤
∑

x∈Nm+

f (x)

f (0)
= 1 − f (0)

f (0)
< ∞.

�

Proof of Theorem 16.2 From Theorem 15.6, we know that a distribution in Pm0 is
infinitely divisible iff it can be expressed as a compound Poisson distribution with
severity distribution in Pm+. Hence, it is sufficient to show that a distribution in Pm0
has non-negative De Pril transform iff it can be expressed as a compound Poisson
distribution with severity distribution in Pm+.

Let f be a compound Poisson distribution with Poisson parameter λ and severity
distribution h ∈ Pm+. From Table 2.1, we know that the counting distribution is
R1[0, λ], and insertion in (16.7) gives

ϕf (x) = λx•h(x) ≥ 0, (x ∈ Nm+) (16.8)

that is, a compound Poisson distribution with severity distribution in Pm+ has non-
negative De Pril transform.

Now, let f be a distribution with non-negative De Pril transform. From
Lemma 16.1, we have that

λ =
∑

x∈Nm+

ϕf (x)

x•
< ∞.

Let h(x) = ϕf (x)/(λx•) for x ∈ Nm+. Then h is non-negative and sums to one and is
therefore a distribution in Pm+. Insertion of ϕf (x) = λx•h(x) in (16.1) gives the re-
cursion (15.23) for p∨h where p denotes the Poisson distribution with parameter λ.
Hence, f and p ∨h must be proportional, and, as both of them are distributions and
therefore sum to one, they must be equal. Thus, any distributions in Pm0 with non-
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negative De Pril transform can be expressed as a compound Poisson distribution
with severity distribution in Pm+.

This completes the proof of Theorem 16.2. �

16.4 Extension to Functions in Fm0

In Chap. 6, we studied some properties of the De Pril transform of distributions in
P10. Later we found that it would be convenient to apply De Pril transforms more
generally for functions in F10 in connection with cumulative functions and tails
(Chap. 8) as well as approximations to distributions (Chap. 10). In Chap. 10, we
discussed extension of properties of De Pril transforms to functions in F10. Anal-
ogously, in the multivariate setting, it can be convenient to extend the definition of
the De Pril transform to functions in Fm0, and we therefore use (16.2) as definition
of the De Pril transform of any function f ∈ Fm0.

Like in the univariate case, a distribution in Pm0 is uniquely determined by its
De Pril transform as a distribution sums to one, whereas the De Pril transform of a
function in Fm0 determines that function only up to a multiplicative constant.

The proofs of Lemma 10.1 and Theorems 10.1–10.3 easily extend to the multi-
variate case. Hence, the De Pril transform of the convolution of a finite number of
functions in Fm0 is still the sum of the De Pril transforms of these functions, and
(16.3) still holds when p ∈ F10 and h ∈ Fm+.

16.5 Vectors of Independent Random Subvectors

Let X be a random m × 1 vector with distribution f ∈ Pm0. We express X as
X = (X(1)′,X(2)′, . . . ,X(s)′)′, where X(j) is an mj × 1 subvector for j = 1,2, . . . , s

with
∑s

j=1 mj = m. With analogous notation, we split other m × 1 vectors in the
same way. The main purpose of this section is to show how to express the De Pril
transform of f in terms of the De Pril transforms of the marginal distributions of
the subvectors X(1),X(2), . . . ,X(s) when these subvectors are independent. Further-
more, we shall characterise such independence in terms of De Pril transforms.

We introduce the sets

Cj = {x ∈ Nm : x(i) = 0; i �= j}; Cj+ = Cj ∼ {0}; (j = 1,2, . . . , s)

the Cj+s are disjoint. For functions f ∈ Fm0 and j = 1,2, . . . , s, we define the

function f̂j ∈ Fmj 0 by

f̂j (x(j)) = f (x). (x ∈ Cj) (16.9)

For the following, it will be convenient to rewrite (16.2) as

ϕf (x) = 1

f (0)

(

x•f (x) −
∑

0<y<x

ϕf (x − y)f (y)

)

. (x ∈ Nm+) (16.10)
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Lemma 16.2 For f ∈ Fm0, we have

ϕf (x) = ϕ
f̂j

(x(j)). (x ∈ Cj+; j = 1,2, . . . , s)

Proof From (16.10) and (16.9), we obtain that

ϕf (x) = 1

f̂j (0)

(

x(j)• f̂j (x(j)) −
∑

0<y<x

ϕf (x − y)f̂j (y(j))

)

.

(x ∈ Cj+; j = 1,2, . . . , s)

This is the same recursion as the recursion (16.10) for ϕ
f̂j

, and, thus, Lemma 16.2
is proved. �

The following theorem follows immediately from Lemma 16.2.

Theorem 16.3 If f,g ∈ Fm0 with f (x) = cg(x) for all x ∈ Cj+ for some j and
some positive constant c, then ϕf (x) = ϕg(x) for all x ∈ Cj+.

Theorem 16.4 Let j ∈ {1,2, . . . , s}. Then the function f ∈ Fm0 satisfies

f (x) = 0 (x ∈ Nm ∼ Cj ) (16.11)

iff

ϕf (x) = 0. (x ∈ Nm+ ∼ Cj+) (16.12)

Proof We first assume that (16.11) holds. Insertion of (16.11) in (16.10) gives

ϕf (x) = − 1

f (0)

∑

{y∈Cj+:0<y<x}
ϕf (x − y)f (y). (x ∈ Nm+ ∼ Cj+)

This gives a recursion for ϕf (x) for x ∈ Nm+ ∼ Cj+ as x − y ∈ Nm+ ∼ Cj+ when
x ∈ Nm+ ∼ Cj+ and y ∈ Cj+. In particular, if x(j) is a unit vector, we obtain that
ϕf (x) = 0. By induction follows that ϕf (x) = 0 also for all other x ∈ Nm+ ∼ Cj+.

We now assume that (16.12) holds. Let

fj (x) = f (x)I (x ∈ Cj). (x ∈ Nm) (16.13)

Then Theorem 16.3 gives that ϕfj
(x) = ϕf (x) for all x ∈ Cj+. As fj satisfies

(16.11), it must also satisfy (16.12) so that for all x ∈ Nm+ ∼ Cj+, ϕfj
(x) =

0 = ϕf (x). Hence, ϕf = ϕfj
so that f and fj must be proportional; as also

f (0) = fj (0), they are even equal. Hence, f satisfies (16.11).
This completes the proof of Theorem 16.4. �
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Theorem 16.5 If f ∈ Fm0 can be written in the form

f (x) =
s∏

j=1

fj (x(j)) (x ∈ Nm) (16.14)

with fj ∈ Fmj 0 for j = 1,2, . . . , s, then

ϕf (x) =
{

ϕfj
(x(j)) (x ∈ Cj+; j = 1,2, . . . , s)

0. (otherwise)
(16.15)

Proof We have f = ∗s
j=1ḟj with

ḟj (x) = fj (x(j))I (x ∈ Cj ). (x ∈ Nm; j = 1,2, . . . , s)

Application of Theorems 16.3 and 16.4 gives that

ϕḟj
(x) = ϕfj

(x(j))I (x ∈ Cj+), (x ∈ Nm+; j = 1,2, . . . , s)

and (16.15) follows as ϕf = ∑s
j=1 ϕḟj

. �

In the setting at the beginning of this section, the condition (16.14) is satisfied iff
the X(j)s are independent and X(j) has marginal distribution fj for j = 1,2, . . . , s.

Corollary 16.3 A function f ∈ Fm0 can be expressed in the form (16.14) iff

ϕf (x) = 0.

(

x ∈ Nm+ ∼
s⋃

j=1

Cj+

)

(16.16)

Proof Theorem 16.5 gives that if f ∈ Fm0 can be expressed in the form (16.14),
then (16.16) holds.

We now assume that f ∈ Fm0 satisfies (16.16) and define f̃ ∈ Fm0 by

f̃ (x) =
s∏

j=1

fj (x(j)) (x ∈ Nm)

with fj ∈ Fmj 0 given by fj = f (0)1/s−1f̂j for j = 1,2, . . . , s. Then f̃ (x) = f (x)

when x ∈ ⋃s
j=1 Cj+, and, thus, Theorem 16.3 gives that ϕf (x) = ϕ

f̃
(x) when

x ∈ ⋃s
j=1 Cj+. Furthermore, from Theorem 16.5 and (16.16) follows that ϕ

f̃
(x) =

0 = ϕf (x) when x ∈ Nm+ ∼ ⋃s
j=1 Cj+ so that ϕ

f̃
= ϕf . Hence, f and f̃ are pro-

portional, and, as f (0) = f̃ (0), we have f = f̃ , that is, f can be expressed in the
form (16.14).

This completes the proof of Corollary 16.3. �
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In particular, this corollary gives a necessary and sufficient condition for inde-
pendence of subvectors of a random vector in terms of the De Pril transform of the
distribution of this vector.

Let us now reformulate Theorem 16.5 in the special case when s = m and mj = 1
for j = 1,2, . . . , s. In the setting of the beginning of this section, this corresponds to
the situation that X is a vector of m independent random variables with distributions
f1, f2, . . . , fm.

Corollary 16.4 If f ∈ Fm0 can be written in the form

f (x) =
m∏

j=1

fj (xj ) (x ∈ Nm) (16.17)

with fj ∈ F10 for j = 1,2, . . . ,m, then

ϕf (x) =
{

ϕfj
(x) (x = ej x;x = 1,2, . . . ; j = 1,2, . . . ,m)

0. (otherwise)
(16.18)

By application of (16.17), (16.4), and (16.18), we obtain that for all x ≥ ej and
j = 1,2, . . . ,m

m∏

i=1

fi(xi) = f (x) = 1

xj

xj∑

y=1

ϕfj
(y)f (x − ej y)

= 1

xj

xj∑

y=1

ϕfj
(y)fj (xj − y)

m∏

i �=j

fi(xi).

When
∏m

i �=j fi(xi) �= 0, which is the case at least when xi = 0 for all i �= j , division
by

∏m
i �=j fi(xi) gives

fj (xj ) = 1

xj

xj∑

y=1

ϕfj
(y)fj (xj − y),

that is, we are back to the univariate recursion (6.2) for fj .
Let us finally apply Corollary 16.4 to extend (8.13) to the multivariate case.

Theorem 16.6 For f ∈ Fm0 and t = 0,1,2, . . . , we have

ϕ�tf (x) =
{

ϕf (x) + t (x = ej x;x = 1,2, . . . ; j = 1,2, . . . ,m)

ϕf (x). (otherwise)
(16.19)
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Proof We easily see that �f = f ∗ γm with γm ∈ Fm0 defined by

γm(x) =
m∏

j=1

γ (xj ) (x ∈ Nm)

with γ given by (1.37). Hence, for t = 0,1,2, . . . , �tf = f ∗ γ t∗
m and

ϕ�tf = ϕf + tϕγm. (16.20)

By insertion of (8.14) in (16.18), we obtain

ϕγm(x) =
{

1 (x = xej ;x = 1,2, . . . ; j = 1,2, . . . ,m)

0, (otherwise)

and insertion in (16.20) gives (16.19). �

16.6 Vectors of Linear Combinations of Independent Random
Variables

Like in the previous section, let X be a random m × 1 vector with distribution
f ∈ Pm0. Whereas in the previous section we studied the effect on the De Pril trans-
form of f of stochastic independence within the vector X, we shall now look at the
effect of modelling linear dependence within X. Our framework will be that X = AY
where Y is an s × 1 vector of independent random variables Y1, Y2, . . . , Ys with dis-
tributions g1, g2, . . . , gs ∈ P10 and A is a non-random m× s matrix of non-negative
integers.

We start with the special case s = 1.

Theorem 16.7 Let f ∈ Fm0 be defined by

f (x) = g(y), (x = ay;y = 1,2, . . . ) (16.21)

where g ∈ F10 and a is a non-random vector of non-negative integers. Then

ϕf (x) =
{

a•ϕg(y) (x = ay;y = 1,2, . . . )

0. (otherwise)
(16.22)

Proof We express f as a compound function f = g ∨ h with h ∈ Pm+ being the
degenerate distribution concentrated in a. Then, for y = 0,1,2, . . . , hy∗ is the dis-
tribution concentrated in ay, and insertion in (16.3) gives (16.22). �

The special case with f ∈ P10 was treated in Corollary 6.5.
The following corollary follows easily from Theorem 16.7 and characterises

functions that can be expressed in the form (16.21), in terms of their De Pril trans-
forms.
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Corollary 16.5 If f ∈ Fm0 satisfies ϕf (x) = 0 except when x = ay for y = 1,2, . . .

and some non-zero m × 1 vector a of non-negative elements, then f can be written
in the form (16.21) with g ∈ F10 given by g(0) = f (0) and

ϕg(y) = ϕf (ay)

a•
. (y = 1,2, . . . )

Let us now turn to general s. In the setting of the beginning of this section, we
have X = Z•s with Zi = aiYi for i = 1,2, . . . , s. For i = 1,2, . . . , s, let fi denote
the distribution of Zi . Then Theorem 16.7 gives that

ϕfi
(x) =

{
a•iϕgi

(y) (x = aiy;y = 1,2, . . . )

0. (otherwise)
(i = 1,2, . . . , s) (16.23)

As the Yis are mutually independent, this is also the case with the Zis so that

ϕf =
s∑

i=1

ϕfi
. (16.24)

By insertion of this and (16.23) in (16.1) and (16.4), we obtain

f (x) = 1

x•

s∑

i=1

a•i
∑

{y∈N1+:ai y≤x}
ϕgi

(y)f (x − aiy) (x ∈ Nm+) (16.25)

f (x) = 1

xj

s∑

i=1

aji

∑

{y∈N1+:ai y≤x}
ϕgi

(y)f (x − aiy). (x ≥ ej ; j = 1,2, . . . ,m)

(16.26)

If none of the columns of A are proportional to each other, insertion of (16.23)
in (16.24) gives

ϕf (x) =
{

a•iϕgi
(y) (x = aiy;y = 1,2, . . . ; i = 1,2, . . . , s)

0. (otherwise)
(16.27)

These procedures also apply when we approximate each gi with a function in
F10. When s = m and A = I, (16.27) then reduces to (16.18).

Example 16.1 For i = 1,2, . . . , s, let gi be a compound Poisson distribution with
Poisson parameter λi and severity distribution hi ∈ P11. Then (16.8) gives that
ϕgi

= λihi . Insertion in (16.25) and (16.26) gives

f (x) = 1

x•

s∑

i=1

a•iλi

∑

{y∈N1+:ai y≤x}
yhi(y)f (x − aiy) (x ∈ Nm+) (16.28)
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f (x) = 1

xj

s∑

i=1

ajiλi

∑

{y∈N1+:ai y≤x}
yhi(y)f (x − aiy). (16.29)

(x ≥ ej ; j = 1,2, . . . ,m)

By comparing (16.28) with (16.1), we see that ϕf = λ•h with λ• = ∑s
i=1 λi and

h ∈ Pm+ given by

h(x) =
{

λi

λ• hi(y) (x = aiy;y = 1,2, . . . ; i = 1,2, . . . , s)

0. (otherwise)
(16.30)

Comparison with (16.8) shows that f is a compound Poisson distribution with Pois-
son parameter λ• and severity distribution h. From (16.27), we obtain that

ϕf (x) =
{

a•iλiyhi(y) (x = aiy;y = 1,2, . . . ; i = 1,2, . . . , s)

0 (otherwise)
(16.31)

when none of the columns of A are proportional to each other.
In the special case when each gi is the Poisson distribution Po(λi), that is, hi is

the degenerate distribution concentrated in one, (16.28)–(16.31) reduce to

f (x) = 1

x•

s∑

i=1

a•iλif (x − ai ) (x ∈ Nm+) (16.32)

f (x) = 1

xj

s∑

i=1

ajiλif (x − ai ) (x ≥ ej ; j = 1,2, . . . ,m) (16.33)

h(x) =
{

λi/λ• (x = ai; i = 1,2, . . . , s)

0 (otherwise)
(16.34)

ϕf (x) =
{

a•iλi (x = ai; i = 1,2, . . . , s)

0 (otherwise)

respectively. When all the elements in A are equal to zero or one, the distribution f

is the multivariate Poisson distribution mPo(A,λ). In that case, (16.33) reduces to

f (x) = 1

xj

∑

{i:aji=1}
λif (x − ai ). (x ≥ ej ; j = 1,2, . . . ,m) (16.35)

The reason that we restrict the elements of A to zero and one, is that in that case,
Theorem 4.4 gives that the marginal distributions of X are Poisson distributed. We
shall discuss the multivariate Poisson distribution more thoroughly in Sect. 20.1. �

Example 16.2 A common way to construct dependent random variables from inde-
pendent ones is to take a set of independent random variables and add to each of
them the same random variable which is independent of the other variables. Let
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Y0, Y1, Y2, . . . , Ym be independent random variables and assume that for each i,
Yi has distribution gi ∈ P10. For i = 1,2, . . . ,m, we let Xi = Y0 + Yi . Then

X = (X1,X2, . . . ,Xm)′ =
m∑

i=0

Zi

with

Zi =
{

eY0 (i = 0)

eiYi . (i = 1,2, . . . ,m)

We denote the distribution of X by f and the distribution of Zi by fi for i =
0,1,2, . . . ,m. From (16.22), we obtain

ϕf0(x) =
{

mϕg0(y) (x = ey;y = 1,2, . . . )

0 (otherwise)
(16.36)

ϕfi
(x) =

{
ϕgi

(y) (x = eiy;y = 1,2, . . . )

0. (otherwise)
(i = 1,2, . . . ,m) (16.37)

As ϕf = ∑m
i=0 ϕfi

, we get

ϕf (x) =
⎧
⎨

⎩

mϕg0(y) (x = ey;y = 1,2, . . . )

ϕgi
(y) (x = eiy;y = 1,2, . . . ; i = 1,2, . . . ,m)

0, (otherwise)

and insertion in (16.1) and (16.4) gives

f (x) = 1

x•

(

m

minxi∑

y=1

ϕg0(y)f (x − ey) +
m∑

i=1

xi∑

y=1

ϕgi
(y)f (x − eiy)

)

(x ∈ Nm+)

f (x) = 1

xj

( minxi∑

y=1

ϕg0(y)f (x − ey) +
xj∑

y=1

ϕgj
(y)f (x − ej y)

)

.

(x ≥ ej ; j = 1,2, . . . ,m)

If each gi is a compound Poisson distribution with Poisson parameter λi and
severity distribution hi ∈ P11, then similar to the previous example, we obtain

ϕf (x) =
⎧
⎨

⎩

mλ0yh0(y) (x = ey;y = 1,2, . . . )

λiyhi(y) (x = eiy;y = 1,2, . . . ; i = 1,2, . . . ,m)

0 (otherwise)

f (x) = 1

x•

(

mλ0

minxj∑

y=1

yh0(y)f (x − ey) +
m∑

i=1

λi

xi∑

y=1

yhi(y)f (x − eiy)

)

(x ∈ Nm+)
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f (x) = 1

xj

(

λ0

minxi∑

y=1

yh0(y)f (x − ey) + λj

xj∑

y=1

yhj (y)f (x − ej y)

)

.

(x ≥ ej ; j = 1,2, . . . ,m)

In the special case when each gi is the Poisson distribution Po(λi), these formulae
reduce to

ϕf (x) =
⎧
⎨

⎩

mλ0 (x = e)
λi (x = ei; i = 1,2, . . . ,m)

0 (otherwise)

f (x) = 1

x•

(

mλ0f (x − e) +
m∑

i=1

λif (x − ei )

)

(x ∈ Nm+)

f (x) = 1

xj

(λ0f (x − e) + λjf (x − ej )). (x ≥ ej ; j = 1,2, . . . ,m) �

16.7 Individual Models

In this section, we shall extend parts of the theory of Chap. 7 to multivariate distri-
butions.

Let us assume that we want to evaluate f = ∗M
j=1fj with f1, f2, . . . , fM ∈ Pm0.

In De Pril’s first method, we first evaluate the De Pril transform of each fj by
(16.2), then we find the De Pril transform of f by summing these De Pril transforms,
and finally we evaluate f by (16.1); we can express these last two steps by

f (x) = 1

x•

M∑

j=1

∑

0<y≤x

ϕfj
(y)f (x − y). (x ∈ Nm+) (16.38)

In De Pril’s second method, we express each fj as a compound distribution pj ∨
hj where pj is the Bernoulli distribution Bern(πj ) with πj = 1 − fj (0) and the
severity distribution hj ∈ Pm+ is given by hj (y) = fj (y)/πj for y ∈ Nm+. Insertion
of (6.20) in (16.3) gives

ϕfj
(x) = −x•

x•∑

n=1

1

n

(
πj

πj − 1

)n

hn∗
j (x), (x ∈ Nm+)

from which we obtain

ϕf (x) = −x•
x•∑

n=1

1

n

M∑

j=1

(
πj

πj − 1

)n

hn∗
j (x). (x ∈ Nm+) (16.39)
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With

σj (x) =
∑

0<y≤x

ϕfj
(y)f (x − y), (x ∈ Nm+; j = 1,2, . . . ,M) (16.40)

we rewrite (16.38) as

f (x) = 1

x•

M∑

j=1

σj (x). (x ∈ Nm+)

The following theorem extends Corollary 7.1.

Theorem 16.8 Let f1, f2, . . . , fM ∈ Pm0 and f = ∗M
j=1fj . If fj is a compound

distribution with counting distribution Rk[a, b] and severity distribution h ∈ Pm0
for some j , then

σj (x) = 1

1 − τa(h(0))

×
∑

0<y≤x

(y•((a + �b) ∨ h)(y)f (x − y) + (a ∨ h)(y)σj (x − y)).

(x ∈ Nm+) (16.41)

Proof By starting with (16.40) and successive application of Corollary 16.2 and
(16.40), we obtain that for all x ∈ Nm+

σj (x) =
∑

0<y≤x

ϕfj
(y)f (x − y)

= 1

1 − τa(h(0))

×
∑

0<y≤x

(

y•((a + �b) ∨ h)(y) +
∑

0<z<y

(a ∨ h)(z)ϕfj
(y − z)

)

f (x − y)

= 1

1 − τa(h(0))

∑

0<z≤x

(

z•((a + �b) ∨ h)(z)f (x − z)

+ (a ∨ h)(z)
∑

z<y≤x

ϕfj
(y − z)f (x − y)

)

= 1

1 − τa(h(0))

×
∑

0<z≤x

(z•((a + �b) ∨ h)(z)f (x − z) + (a ∨ h)(z)σj (x − z)).
�
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The following theorem extends Dhaene–Vandebroek’s method to the multivariate
case.

Theorem 16.9 Let f1, f2, . . . , fM ∈ Pm0 and f = ∗M
j=1fj . Then

σj (x) = 1

fj (0)

∑

0<y≤x

(y•f (x − y) − σj (x − y))fj (y). (16.42)

(x ∈ Nm+; j = 1,2, . . . ,M)

Proof For all x ∈ Nm+, application of (16.1) and (16.40) gives

∑

0<y≤x

y•f (x − y)fj (y) =
∑

0<y≤x

f (x − y)
∑

0<z≤y

ϕfj
(z)fj (y − z)

=
∑

0<z≤x

∑

z≤y≤x

ϕfj
(z)f (x − y)fj (y − z)

=
∑

0<z≤x

∑

0≤u≤x−z

ϕfj
(z)f (x − u − z)fj (u)

=
∑

0≤u≤x

fj (u)
∑

0<z≤x−u

ϕfj
(z)f (x − u − z)

=
∑

0≤u≤x

fj (u)σj (x − u),

and by solving for σj (x), we obtain (16.42). �

The presentation in Sect. 7.3 of De Pril’s individual model and methodology for
evaluation the aggregate claims distribution within that model easily extends to the
multivariate case with h1, h2, . . . , hm ∈ Pm+. In particular, in this setting, (7.11)
extends to

ϕf (x) = −x•
x•∑

n=1

1

n

J∑

j=1

(
πj

πj − 1

)n I∑

i=1

Mijh
n∗
i (x). (x ∈ Nm+) (16.43)

In Chap. 18, we shall discuss approximations to ϕf by approximating the counting
distributions. As these are still the same Bernoulli distributions for which we de-
duced approximations for the univariate case in Chap. 10, we simply insert these
same approximations in (16.43) in the multivariate case.

Further Remarks and References

This chapter is to a large extent based on Sundt (2000b).
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Papageorgiou (1984) deduced a recursion similar to (16.1).
The recursion (16.33) was presented by Teicher (1954). By using moment gen-

erating functions, Ambagaspitiya (1999) showed that the distribution f in Exam-
ple 16.1 can be expressed as a compound Poisson distribution with Poisson pa-
rameter λ• and severity distribution h given by (16.30). For more information on
multivariate Poisson distributions, see Johnson et al. (1997).

Walhin and Paris (2001c) considered De Pril’s second method and the Dhaene–
Vandebroek method in the bivariate case and presented a numerical application from
reinsurance.



Chapter 17
Moments

Summary

The purpose of the present chapter is to extend to a multivariate setting results that
were deduced in a univariate setting in Chap. 9. Like that chapter, the present chapter
is divided into two sections, Sect. 17.1 on convolutions and Sect. 17.2 on compound
distributions.

In Sect. 17.1.1, we develop recursions for ordinary moments of convolutions of
a multivariate distribution. We apply one of these recursions to prove a characteri-
sation of multinormal distributions in Sect. 17.1.2.

In Sect. 17.2.1, we deduce recursions for moments of multivariate compound
distributions of Type 1 with counting distribution satisfying (5.6). The special case
with counting distribution in the Panjer class is treated in Sect. 17.2.2.

17.1 Convolutions of a Distribution

17.1.1 Moments

In Sect. 17.1, we shall discuss recursions for moments of M-fold convolutions of
multivariate distributions. As we do not need to restrict to distributions on vectors of
integers, we shall identify the distributions by their cumulative distribution function.

The following lemma extends Lemma 9.1 to the multivariate case and is proved
in the same way by conditioning on X + Y.

Lemma 17.1 Let X and Y be independent random m × 1 vectors such that the
distribution of X is the M-fold convolution of the distribution of Y. Then

E(Xl − MYl)r(X + Y) = 0

for any function r and l = 1,2, . . . ,m.

We are now ready to extend Theorem 9.1 to the multivariate case.

Theorem 17.1 Let G be an m-variate distribution and F = GM∗ for some positive
integer M . Then, for any m × 1 vector c, we have

μF (j; c) =
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))

×
((

M + 1 − jl

ul

)

μG(u) − clμG(u − el )

)

μF (j − u; c)
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−
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μG(u)μF (j − u; c)

=
∑

el≤u≤j

(
m∏

i=1

(
ji

ui

))

×
((

ul

jl

(M + 1) − 1

)

μG(u) − ul

jl

clμG(u − el )

)

μF (j − u; c)

−
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μG(u)μF (j − u; c). (17.1)

(j ≥ el; l = 1,2, . . . ,m)

Proof Let X and Y be independent random m × 1 vectors with distribution F and
G respectively, and let j ≥ el for some l ∈ {1,2, . . . ,m}. By letting

r(x) = (xl − cl)
jl−1t (x) (x ∈ R

m) (17.2)

in Lemma 17.1 for some function t and proceeding like in the proof of Theorem 9.1,
we obtain

E(Xl − cl)
jl t (X + Y)

=
jl∑

ul=1

(
jl − 1

ul − 1

)

E

((

M + 1 − jl

ul

)

Y
ul

l − clY
ul−1
l

)

(Xl − cl)
jl−ul t (X + Y).

(17.3)

Letting

t (x) =
∏

i �=l

(xi − ci)
ji (x ∈ R

m) (17.4)

gives

t (X + Y) =
∏

i �=l

(Xi + Yi − ci)
ji =

∏

i �=l

ji∑

ui=0

(
ji

ui

)

Y
ui

i (Xi − ci)
ji−ui . (17.5)

Insertion in the left-hand side and the right-hand side of (17.3) gives

E(Xl − cl)
jl t (X + Y)

=
∑

0≤u≤j−jlel

(
∏

i �=l

(
ji

ui

))

μG(u)μF (j − u; c)

= μF (j; c) +
∑

0<u≤j−jlel

(
∏

i �=l

(
ji

ui

))

μG(u)μF (j − u; c)
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and

jl∑

ul=1

(
jl − 1

ul − 1

)

E

((

M + 1 − jl

ul

)

Y
ul

l − clY
ul−1
l

)

(Xl − cl)
jl−ul t (X + Y)

=
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))

×
((

M + 1 − jl

ul

)

μG(u) − clμG(u − el)

)

μF (j − u; c),

and by equating these two expressions and solving for μF (j; c), we obtain (17.1). �

For all the recursions that we deduce in Chap. 17, we use the initial condition
μF (0; c) = 1.

We see that like the recursion (15.21), the recursion (17.1) depends on one of
the dimensions in a special way and cannot be applied on the whole range of the
recursion variable, so that we normally will have to apply it with more than one
value of l. With (15.21), it was simple to combine the recursions to get the universal
recursion (15.22). However, in (17.1), the dependence on the special dimensions
seems too complex for doing something similar.

When c = 0, the recursion (17.1) reduces to

μF (j) =
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))(

M + 1 − jl

ul

)

μG(u)μF (j − u)

−
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μG(u)μF (j − u)

=
∑

el≤u≤j

(
m∏

i=1

(
ji

ui

))(
ul

jl

(M + 1) − 1

)

μG(u)μF (j − u)

−
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μG(u)μF (j − u). (j ≥ el; l = 1,2, . . . ,m)

Example 17.1 In the special case when m = 2 and l = 1, (17.1) gives

μF (j1, j2; c) =
j2∑

u2=0

(
j2

u2

) j1∑

u1=1

(
j1 − 1

u1 − 1

)

×
((

M + 1 − j1

u1

)

μG(u1, u2) − c1μG(u1 − 1, u2)

)

× μF (j1 − u1, j2 − u2; c)
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−
j2∑

u=1

(
j2

u

)

μG(0, u)μF (j1, j2 − u; c).

(j1 = 1,2, . . . ; j2 = 0,1,2, . . . ) �

Example 17.2 Let G be the distribution of an m×1 random vector that we split into
two subvectors, and let G1 be the marginal distribution of the first one. Then, using
the notation of Sect. 16.5,

μG1(j) = μG

((
j
0

))

; μGM∗
1

(j; c) = μGM∗

((
j
0

)

,

(
c
0

))

,

and insertion in (17.1) gives the corresponding recursion for μGM∗
1

(j; c) when l =
1,2, . . . ,m1. �

Example 17.3 Let f ∈ Pm+ be the multinomial distribution mnom(M,π). Then,
f = gM∗ where g ∈ Pm+ is the m-variate Bernoulli distribution given by (14.3). In
this case, we have

μg(j) =
⎧
⎨

⎩

πi (j = jei; j = 1,2, . . . ; i = 1,2, . . . ,m)

1 (j = 0)

0. (otherwise)

Insertion in (17.1) gives that for j ≥ el and l = 1,2, . . . ,m,

μf (j; c) = πl

jl∑

u=1

(
jl − 1

u − 1

)(

M + 1 − jl

u
− cl

)

μf (j − elu; c)

−
∑

i �=l

πi

ji∑

u=1

(
ji

u

)

(μf (j − eiu; c) + clμf (j − el − eiu; c))

− cl(1 − πl)μf (j − el; c).

When c = 0, this reduces to

μf (j) = πl

jl∑

u=1

(
jl − 1

u − 1

)(

M + 1 − jl

u

)

μf (j − elu) −
∑

i �=l

πi

ji∑

u=1

(
ji

u

)

μf (j − eiu).

�

Let X be a random m × 1 vector with distribution F . With F̃ denoting the distri-
bution of (X1/d1,X2/d2, . . . ,Xm/dm)′ with di �= 0 for i = 1,2, . . . ,m, (17.1) gives

μ
F̃
(j; c) =

∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))
1

∏m
i=1 d

ui

i
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×
((

M + 1 − jl

ul

)

μG(u) − cldlμG(u − el )

)

μ
F̃
(j − u; c)

−
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))
μG(u)

∏m
i=1 d

ui

i

μ
F̃
(j − u; c).

(j ≥ el; l = 1,2, . . . ,m)

In particular, with di = √
M for i = 1,2, . . . ,m and c = E X = 0, we obtain

μ
F̃
(j) =

∑

el<u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))(

M + 1 − jl

ul

)
μG(u)

Mu•/2
μ

F̃
(j − u)

−
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))
μG(u)

Mu•/2
μ

F̃
(j − u). (17.6)

(j > el; l = 1,2, . . . ,m)

17.1.2 The Multinormal Distribution

Before extending Theorem 9.2 to the multivariate case, we shall recapitulate some
properties of the multinormal distribution.

Let Y be an m × 1 vector of independent and identically distributed random
variables with the standard normal distribution N(0,1), and let � be a non-random
m × m matrix and ξ a non-random m × 1 vector. Then

X = �Y + ξ (17.7)

has the multinormal distribution mN(ξ ,�) with � = ��′. As for any m × 1 vec-
tor v,

v′�v = v′��′v = (�′v)′�′v ≥ 0,

the matrix � is symmetric and positive semi-definite. Furthermore, for any symmet-
ric positive semi-definite m×m matrix �, there exists an m×m matrix � such that
� = ��′ so that our definition of the multinormal distribution covers all symmetric
positive definite m × m matrices �.

As the standard normal distribution has finite moments of all orders, (17.7) gives
that this is also the case with multinormal distributions. In particular, as the standard
normal distribution has mean zero, (17.7) gives that the multinormal distribution
mN(ξ ,�) has mean ξ .

We are now ready to extend Theorem 9.2 to the multivariate case.
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Theorem 17.2 An m-variate distribution G with finite moments of first and second
order is multinormal with mean 0 iff

GM∗(x) = G
(
x/

√
M

)
(x ∈ R

m) (17.8)

for some integer M > 1.

Proof We first assume that G is an m-variate multinormal distribution with mean 0.
Then G is the distribution of X = �Y for some non-random m×m matrix � and Y
being an m × 1 vector of independent and identically distributed random variables
with standard normal distribution. As the standard normal distribution satisfies (9.9),
it follows that G satisfies (17.8).

Let us now assume that (17.8) holds for some integer M > 1. This means that
if Y1,Y2, . . . ,YM are independent and identically distributed random vectors with
distribution G, then Y•M/

√
M also has distribution G. Then they must have the

same mean, which must be equal to 0. From (17.6), we obtain

μG(j) =
∑

el<u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))(

M + 1 − jl

ul

)
μG(u)

Mu•/2
μG(j − u)

−
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))
μG(u)

Mu•/2
μG(j − u). (j > el; l = 1,2, . . . ,m)

Solving for μG(j) gives

μG(j) = 1

1 − M1−j•/2

(
∑

el<u<j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))(

M + 1 − jl

ul

)
μG(u)

Mu•/2

× μG(j − u)

−
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))
μG(u)

Mu•/2
μG(j − u)

)

.

(j > el; j• > 2; l = 1,2, . . . ,m)

This recursion determines all moments of G from μG(j) = 0 for each j with j• = 1
and a given value of μG(j) for each j with j• = 2. As there exists a multinormal
distribution with the same first and second order moments as G and this multinormal
distribution satisfies (17.8) for all positive integers M , this multinormal distribution
must have the same moments as G, and as the moment generating function of a
multinormal distribution exists for all m× 1 vectors with real elements, this implies
that G must be equal to that multinormal distribution.

This completes the proof of Theorem 17.2. �
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For j > el and l = 1,2, . . . ,m, letting M ↑ ∞ in (17.6) gives the limiting expres-
sion

μ
F̃
(j) =

∑

el<u≤j
u•=2

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))

μG(u)μ
F̃
(j − u),

that is,

μ
F̃
(j) =

m∑

i=1

I (j ≥ el + ei )jiμG(el + ei )μF̃
(j − el − ei )

− I (j ≥ 2el)μG(2el)μF̃
(j − 2el), (17.9)

from which we see that the asymptotic moments of F̃ are determined by the second
order moments of G. As there exists a multinormal distribution with the same first
and second order moments as G and F̃ is multinormal when G is multinormal,
the recursion (17.9) must generate the moments of a multinormal distribution, as
expected. In particular, if G is multinormal, we obtain

μG(j) =
m∑

i=1

I (j ≥ el + ei )jiμG(el + ei )μG(j − el − ei )

− I (j ≥ 2el)μG(2el)μG(j − 2el). (j ≥ el; j• > 2; l = 1,2, . . . ,m)

17.2 Compound Distributions

17.2.1 General Results

In Sect. 17.2.1, we consider recursions for moments of a compound distribution
F = p∨H with m-variate severity distribution H and counting distribution p ∈ P10
satisfying the recursion (5.6).

The following multivariate extension of Lemma 9.2 is proved in the same way as
in the univariate case.

Lemma 17.2 Let X,Y1,Y2, . . . be independent random m×1 vectors, the Yis with
distribution H and X with distribution p ∨ H with p ∈ P10 satisfying the recursion
(5.6) where k is a positive number or infinity. Then

EXlr(X) =
∞∑

n=1

q(n)EY•nlr(Y•n)

+
k∑

i=1

E(a(i)(Xl + Y•il) + �b(i)Y•il)r(X + Y•i ) (17.10)

(l = 1,2, . . . ,m)

for any function r for which these expectations exist.
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We are now ready to prove the following multivariate extension of Theorem 9.3.

Theorem 17.3 If F = p ∨ H with m-variate distribution H and p ∈ P10 satisfying
(5.6) with μa(0) �= 1, then

μF (j; c) = 1

1 − μa(0)

(

μq∨H (j; c) + clμq∨H (j − el; c) − clμF (j − el; c)

+
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μa∨H (u)μF (j − u; c)

+
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))

×
(

jl

ul

μa∨H (u) + μ�b∨H (u) + clμa∨H (u − el)

)

μF (j − u; c)

)

= 1

1 − μa(0)

(

μq∨H (j; c) + clμq∨H (j − el; c) − clμF (j − el; c)

+
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μa∨H (u)μF (j − u; c)

+
∑

el≤u≤j

(
m∏

i=1

(
ji

ui

))

×
(

μa∨H (u) + ul

jl

(μ�b∨H (u) + clμa∨H (u − el))

)

μF (j − u; c)

)

(j ≥ el; l = 1,2, . . . ,m) (17.11)

for any constant m × 1 vector c.

Proof Let X,Y1,Y2, . . . be independent random m × 1 vectors, the Yis with dis-
tribution H and X with distribution F .

With c ∈ R
m, j ≥ el for some l ∈ {1,2, . . . ,m}, and r given by (17.2), proceeding

like in the deduction of (9.19), we obtain

E(Xl − cl)
jl t (X)

=
∞∑

n=1

q(n)E(Y•nl − cl)
jl t (Y•n)

+ cl

∞∑

n=1

q(n)E(Y•nl − cl)
jl−1t (Y•n) − cl E(Xl − cl)

jl−1t (X)
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+
k∑

i=1

a(i)E(Xl − cl)
jl t (X + Y•i )

+
jl∑

ul=1

(
jl − 1

ul − 1

) k∑

i=1

E

((
jl

ul

a(i) + �b(i)

)

Y
ul•il

+ cla(i)Y
ul−1
•il

)

(Xl − cl)
jl−ul t (X + Y•i ).

With t given by (17.4) and using (17.5), this gives

μF (j; c) = μq∨H (j; c) + clμq∨H (j − el; c) − clμF (j − el; c)

+
∑

0≤u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μa∨H (u)μF (j − u; c)

+
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))

×
(

jl

ul

μa∨H (u) + μ�b∨H (u) + clμa∨H (u − el)

)

μF (j − u; c),

and by solving for μF (j; c), we obtain (17.11). �

In particular, for all p ∈ P10, we have

μF (j; c) =
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))

μ�ϕp∨H (u)μF (j − u; c) − clμF (j − el; c).

(j ≥ el; l = 1,2, . . . ,m)

17.2.2 Compound Panjer Distributions

In Sect. 17.2.2, we consider the special case when p is R1[a, b]. Under this assump-
tion, (17.11) reduces to

μF (j; c) = 1

1 − a

(

a
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μH (u)μF (j − u; c)

+
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))((
jl

ul

a + b

)

μH (u)

+ claμH (u − el )

)

μF (j − u; c) − clμF (j − el; c)

)
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= 1

1 − a

(

a
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μH (u)μF (j − u; c)

+
∑

el≤u≤j

(
m∏

i=1

(
ji

ui

))((

a + ul

jl

b

)

μH (u)

+ ul

jl

claμH (u − el)

)

μF (j − u; c) − clμF (j − el; c)

)

. (17.12)

In particular, with c = 0, we obtain

μF (j) = 1

1 − a

(

a
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μH (u)μF (j − u)

+
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))(
jl

ul

a + b

)

μH (u)μF (j − u)

)

= 1

1 − a

(

a
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μH (u)μF (j − u)

+
∑

el≤u≤j

(
m∏

i=1

(
ji

ui

))(

a + ul

jl

b

)

μH (u)μF (j − u)

)

. (17.13)

Example 17.4 In the special case when m = 2 and l = 1, (17.12) gives

μF (j1, j2; c) = 1

1 − a

(

a

j2∑

u=1

(
j2

u

)

μH (0, u)μF (j1, j2 − u; c)

+
j1∑

u1=1

(
j1 − 1

u1 − 1

) j2∑

u2=0

(
j2

u2

)((
j1

u1
a + b

)

μH (u1, u2)

+ c1aμH (u1 − 1, u2)

)

μF (j1 − u1, j2 − u2; c)

− c1μF (j1 − 1, j2; c)

)

. �

Let us now consider the recursions (17.12) and (17.13) in the three main sub-
classes of R1. The values of a and b are found in Table 2.1.
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1. Poisson distribution Po(λ).

μF (j; c) = λ
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))

μH (u)μF (j − u; c) − clμF (j − el; c)

μF (j) = λ
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))

μH (u)μF (j − u).

2. Binomial distribution bin(M,π).

μF (j; c) = π

(
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))

×
((

M + 1 − jl

ul

)

μH (u) − clμH (u − el)

)

μF (j − u; c)

−
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μH (u)μF (j − u; c)

)

− (1 − π)clμF (j − el; c)

μF (j) = π

(
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))(

M + 1 − jl

ul

)

μH (u)μF (j − u)

−
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μH (u)μF (j − u)

)

.

3. Negative binomial distribution NB(α,π).

μF (j; c) = 1

1 − π

(

π
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μH (u)μF (j − u; c)

+ π
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))

×
((

jl

ul

+ α − 1

)

μH (u) + clμH (u − el)

)

μF (j − u; c)

− clμF (j − el; c)

)

μF (j) = π

1 − π

(
∑

0<u≤j−jlel

(
m∏

i=1

(
ji

ui

))

μH (u)μF (j − u)
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+
∑

el≤u≤j

(
jl − 1

ul − 1

)(
∏

i �=l

(
ji

ui

))(
jl

ul

+ α − 1

)

μH (u)μF (j − u)

)

.

Further Remarks and References

Section 17.1 is based on Sundt (2003a) and Sect. 17.2 on Sundt (2003b). For more
information on the multinormal distribution, see e.g. Johnson et al. (2000).



Chapter 18
Approximations Based on De Pril Transforms

Summary

The purpose of the present chapter is to extend to a multivariate setting the approx-
imations of Chap. 10 and the corresponding error bounds.

In Sect. 18.1, we extend the approximations and the definition of the error mea-
sure ε.

Section 18.2 is devoted to error bounds. We extend Theorem 10.4 and indicate
that some of its consequences are easily extended. Furthermore, we extend Theo-
rems 10.5–10.7.

18.1 Approximations

For convolutions of compound distributions with counting distribution in P10 and
severity distribution in Pm+, we shall approximate the counting distribution with a
function in F (r)

10 .
To assess the quality of the approximations, we extend the definition of the error

measure ε defined by (10.2) to the multivariate case by

ε(f, f̂ ) = μ|f −f̂ |(0) =
∑

x∈Nm

|f (x) − f̂ (x)|. (f, f̂ ∈ Fm0)

We extend the generalised De Pril individual model as defined in Sect. 10.4 by
assuming that h1, h2, . . . , hI ∈ Pm+ and keeping the other assumptions, letting the
approximation f (r) still be defined by (10.20).

In the special case when each pj is the Bernoulli distribution Bern(πj ), we obtain
a multivariate version of De Pril’s individual model. The approximations of De Pril,
Kornya, and Hipp immediately extend to this model. We simply replace the pj s
with their approximations. Table 18.1 extends Table 10.1 to the multivariate case.

18.2 Error Bounds

In addition to the error measure ε, we shall also need the distance measure δ given
by

δ(f, f̂ ) =
∣
∣
∣
∣ln

f̂ (0)

f (0)

∣
∣
∣
∣ +

∑

x∈Nm+

|ϕf (x) − ϕ
f̂
(x)|

x•
, (f, f̂ ∈ Fm0)

that is, we extend the definition (10.6) to the multivariate case.
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Table 18.1 Approximations of order r

Approximation f (r)(0) ϕf (r) (x)

De Pril
∑J

j=1(1 − πj )
M•j −x•

∑r
n=1

1
n

∑J
j=1(

πj

πj −1 )n
∑I

i=1 Mijh
n∗
i (x)

Kornya exp(
∑r

n=1
1
n

∑J
j=1 M•j (

πj

πj −1 )n) −x•
∑r

n=1
1
n

∑J
j=1(

πj

πj −1 )n

× ∑I
i=1 Mijh

n∗
i (x)

Hipp exp(−∑r
l=1

∑J
j=1 M•j

πl
j

l
) x•

∑r
l=1

1
l

∑l
n=1(−1)n+1

(
l
n

)∑J
j=1 πl

j

× ∑I
i=1 Mijh

n∗
i (x)

The following multivariate version of Theorem 10.4 can be proved by a trivial
modification of the proof of the univariate case.

Theorem 18.1 If f ∈ Pm0 and f̂ ∈ Fm0, then

ε(f, f̂ ) ≤ eδ(f,f̂ ) − 1. (18.1)

The results in Sect. 10.3.3 are trivially extended to the present multivariate set-
ting.

The following multivariate extensions of Theorems 10.5–10.7 are proved in the
same way as in the univariate case.

Theorem 18.2 If fj , f̂j ∈ Fm0 for j = 1,2, . . . ,M , then

δ(∗M
j=1fj ,∗M

j=1f̂j ) ≤
M∑

j=1

δ(fj , f̂j ).

Theorem 18.3 If p, p̂ ∈ F10 and h ∈ Pm+, then

δ(p ∨ h, p̂ ∨ h) ≤ δ(p, p̂); ε(p ∨ h, p̂ ∨ h) ≤ ε(p, p̂).

By application of Theorems 18.2 and 18.3, we easily show that (10.25) holds also
for the multivariate version of the generalised De Pril individual model introduced
in Sect. 18.1.

The error bounds of Table 10.2 still hold.

Further Remarks and References

This chapter is to a large extent based on Sundt (2000c). Other results on the error
measure ε are given there and in Sundt and Vernic (2002).

Walhin and Paris (2001c) considered the De Pril approximation in the bivariate
case and presented a numerical application from reinsurance.



Chapter 19
Multivariate Compound Distributions of Type 2

Summary

Till now, our treatment of multivariate compound distributions has been restricted
to Type 1. As we have seen, in that setting, it was often rather easy to extend results
from the univariate case, and, although the multivariate case might be more awkward
to program, the formulae did not look too messy compared to the univariate case.
Unfortunately, it is not that simple with Type 2, which is the topic of the present
chapter. Although we can utilise some elements from the univariate case, it is not
that obvious how to proceed, and the formulae look much more messy.

In Sect. 19.1, we present a setting that could be considered as a Type 2 extension
of the framework of Chap. 2, and in Sect. 19.2 we indicate an extension comparable
to the extension from Chap. 2 to Chap. 5. Finally, in Sect. 19.3, we briefly indicate
how recursions developed for Type 2 can be extended to Type 3.

19.1 Main Framework

Let f = p ∨ h with p ∈ Pm0 and h1, h2, . . . , hm ∈ P11. It will be convenient to
relate these distributions to random variables, so let N be a random m × 1 vector
with distribution p and for i = 1,2, . . . and j = 1,2, . . . ,m, let Yij be a random
variable with distribution hj . We assume that the Yij s are mutually independent and

independent of N and introduce X = (X1,X2, . . . ,Xm)′ with Xj = ∑Nj

i=1 Yij for
j = 1,2, . . . ,m.

Lemma 19.1 If there exist functions t and v and a subset {j1, j2, . . . , js} of
{1,2, . . . ,m} such that

E

[

t (Y1j1 , Y1j2 , . . . , Y1js ;x)

∣
∣
∣
∣
∣

m⋂

j=1

( nj∑

i=1

Yij = xj

)]

= v(n) (19.1)

for all x,n∈Nm+ for which
∏m

j=1 h
nj ∗
j (xj ) > 0, then

∑

n∈Nm+
v(n)p(n − ej1j2...js )

m∏

j=1

h
nj ∗
j (xj ) (x ∈ Nm+)

=
xj1∑

yj1=1

xj2∑

yj2 =1

· · ·
xjs∑

yjs =1

t (yj1 , yj2, . . . , yjs ;x)f

(

x −
s∑

i=1

yji
eji

)
s∏

i=1

hji
(yji

).
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Proof Extending the set {j1, j2, . . . , js} to a permutation {j1, j2, . . . , jm} of {1,2,

. . . ,m}, we obtain that for all x ∈ Nm+,

∑

n∈Nm+
v(n)p(n − ej1j2...js )

m∏

j=1

h
nj ∗
j (xj )

=
∑

n∈Nm+
p(n − ej1j2...js )E

[

t (Y1j1 , Y1j2 , . . . , Y1js ;x)

∣
∣
∣
∣
∣

m⋂

j=1

( nj∑

i=1

Yij = xj

)]

×
m∏

j=1

h
nj ∗
j (xj )

=
∑

n∈Nm+
p(n − ej1j2...js )

xj1∑

yj1 =1

xj2∑

yj2 =1

· · ·
xjs∑

yjs =1

t (yj1 , yj2, . . . , yjs ;x)

×
(

s∏

i=1

hji
(yji

)h
(nji

−1)∗
ji

(xji
− yji

)

)
m∏

i=s+1

h
nji

∗
ji

(xji
)

=
xj1∑

yj1 =1

xj2∑

yj2 =1

· · ·
xjs∑

yjs =1

t (yj1 , yj2, . . . , yjs ;x)

(
s∏

i=1

hji
(yji

)

)

×
∑

n∈Nm+
p(n − ej1j2...js )

(
s∏

i=1

h
(nji

−1)∗
ji

(xji
− yji

)

)
m∏

i=s+1

h
nji∗
ji

(xji
)

=
xj1∑

yj1 =1

xj2∑

yj2 =1

· · ·
xjs∑

yjs =1

t (yj1 , yj2, . . . , yjs ;x)f

(

x −
s∑

i=1

yji
eji

)
s∏

i=1

hji
(yji

).

�

The following theorem follows immediately from Lemma 19.1 and (14.2).

Theorem 19.1 If for any subset {j1, j2, . . . , js} of {1,2, . . . ,m} for s = 1,2, . . . ,m,
the pair (tj1j2...js , vj1j2...js ) satisfies (19.1), then

f (x) =
∑

n∈Nm+

(

p(n) −
m∑

s=1

∑

1≤j1<j2<···<js≤m

vj1j2···js (n)p(n − ej1j2...js )

)

×
m∏

j=1

h
nj ∗
j (xj )

+
m∑

s=1

∑

1≤j1<j2<···<js≤m

xj1∑

yj1=1

xj2∑

yj2=1

· · ·
xjs∑

yjs =1

tj1j2...js (yj1, yj2 , . . . , yjs ;x)
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× f

(

x −
s∑

i=1

yji
eji

)
s∏

i=1

hji
(yji

). (x ∈ Nm+)

In particular, if p satisfies the recursion

p(n) =
m∑

s=1

∑

1≤j1<j2<···<js≤m

vj1j2...js (n)p(n − ej1j2...js ), (n ∈ Nm+)

then we obtain the recursion

f (x) =
m∑

s=1

∑

1≤j1<j2<···<js≤m

xj1∑

yj1 =1

xj2∑

yj2 =1

· · ·
xjs∑

yjs =1

tj1j2...js (yj1, yj2, . . . , yjs ;x)

× f

(

x −
s∑

i=1

yji
eji

)
s∏

i=1

hji
(yji

). (x ∈ Nm+) (19.2)

Let us now have a look at what sort of pairs (t, v) satisfy (19.1).
When t and v are equal to the same constant, then (19.1) is obviously satisfied.
We easily see that if the couples (t1, v1) and (t2, v2) satisfy (19.1), then (c1t1 +

c2t2, c1v1 + c2v2) also satisfies that relation for any constants c1 and c2.
As for j = 1,2, . . . ,m, hj ∈ P11, we obviously have Xj = 0 when Nj = 0.

This implies that if {k1, k2, . . . , kr} ⊆ {j1, j2, . . . , js} and (t1, v1) satisfies (19.1)
when both

∏r
l=1 nkl

and
∏r

l=1 xkl
are positive, and (t0, v0) satisfies (19.1) when∏r

l=1 xkl
= ∏r

l=1 nkl
= 0, then (19.1) holds for (t, v) given by

t (yj1 , yj2, . . . , yjs ;x) =
{

t1(yj1 , yj2, . . . , yjs ;x) (
∏r

l=1 xkl
> 0)

t0(yj1 , yj2, . . . , yjs ;x) (
∏r

l=1 xkl
= 0)

v(n) =
{

v1(n) (
∏r

l=1 nkl
> 0)

v0(n). (
∏r

l=1 nkl
= 0)

In particular, we see that when both
∏r

l=1 nkl
and

∏r
l=1 xkl

are positive, then
(19.1) is satisfied for

t (yj1 , yj2, . . . , yjs ;x) =
r∏

l=1

ykl

xkl

; v(n) = 1
∏r

l=1 nkl

.

However, we obviously cannot apply this when
∏r

l=1 xkl
= ∏r

l=1 nkl
= 0.

Using the additivity property of (19.1), we obtain that when both
∏r

l=1 nkl
and∏r

l=1 xkl
are positive, then (19.1) is satisfied for

t (yj1 , yj2, . . . , yjs ;x) = a +
r∑

u=1

∑

{z1,z2,...,zu}⊆{k1,k2,...,kr }
az1z2...zu

u∏

l=1

yzl

xzl
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v(n) = a +
r∑

u=1

∑

{z1,z2,...,zu}⊆{k1,k2,...,kr }

az1z2...zu∏u
l=1 nzl

.

Then we can construct a similar function when, say, nkw = 0 and the other nkl
s are

positive, and, so on.
Combining this with (19.2), we obtain the following theorem.

Theorem 19.2 Let {j1, j2, . . . , js} ⊆ {1,2, . . . ,m}. If p satisfies the recursion

p(n) =
s∑

r=1

∑

{k1,k2,...,kr }⊆{j1,j2,...,js }

(

ak1k2...kr

+
r∑

u=1

∑

{z1,z2,...,zu}⊆{k1,k2,...,kr }

ak1k2...kr |z1z2...zu∏u
l=1 nzl

)

p(n − ek1k2...kr ) (19.3)

for all n ∈Nm+ with
∏s

i=1 nji
> 0 and

∏m
i=s+1 nji

= 0, then

f (x) =
s∑

r=1

∑

{k1,k2,...,kr }⊆{j1,j2,...,js }

xk1∑

yk1=1

xk2∑

yk2=1

· · ·
xkr∑

ykr =1

(

ak1k2...kr

+
r∑

u=1

∑

{z1,z2,...,zu}⊆{k1,k2,...,kr }
ak1k2...kr |z1z2...zu

u∏

l=1

yzl

xzl

)

× f

(

x −
r∑

i=1

yki
eki

)
r∏

i=1

hki
(yki

) (19.4)

for all x ∈Nm+ with
∏s

i=1 xji
> 0 and

∏m
i=s+1 xji

= 0.

To obtain more transparency, let us restrict to the bivariate case m = 2 in the
following corollary.

Corollary 19.1 Let p ∈ P20 and h1, h2 ∈ P11.
i) If

p(n1, n2) =
(

a1 + a2

n1

)

p(n1 − 1, n2) +
(

a3 + a4

n2

)

p(n1, n2 − 1)

+
(

a5 + a6

n1
+ a7

n2
+ a8

n1n2

)

p(n1 − 1, n2 − 1),

(n1, n2 = 1,2, . . . )
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then

f (x1, x2) =
x1∑

y1=1

(

a1 + a2
y1

x1

)

h1(y1)f (x1 − y1, x2)

+
x2∑

y2=1

(

a3 + a4
y2

x2

)

h2(y2)f (x1, x2 − y2)

+
x1∑

y1=1

x2∑

y2=1

(

a5 + a6
y1

x1
+ a7

y2

x2
+ a8

y1y2

x1x2

)

h1(y1)h2(y2)

× f (x1 − y1, x2 − y2). (x1, x2 = 1,2, . . . )

ii) If

p(n1,0) =
(

b1 + b2

n1

)

p(n1 − 1,0), (n1 = 1,2, . . . )

then

f (x1,0) =
x1∑

y1=1

(

b1 + b2
y1

x1

)

h1(y1)f (x1 − y1,0). (x1 = 1,2, . . . )

iii) If

p(0, n2) =
(

c1 + c2

n2

)

p(0, n2 − 1), (n2 = 1,2, . . . )

then

f (0, x2) =
x2∑

y2=1

(

c1 + c2
y2

x2

)

h2(y2)f (0, x2 − y2). (x2 = 1,2, . . . )

Let us now give two examples of multivariate distributions that satisfy (19.3).

Example 19.1 Let the distribution q of N• be R1[a, b] and the conditional distribu-
tion of N given N• the multinomial distribution mnom(N•,π). Then p is the com-
pound distribution with counting distribution q and the severity distribution is the
multivariate Bernoulli distribution given by (14.3). In Example 15.1, we showed that
in this case, p satisfies the recursions (15.8). Hence, it follows from Theorem 19.2
that f satisfies the recursions (15.6). �

Example 19.2 From (16.35), we see that (19.3) is satisfied for multivariate Pois-
son distributions. Hence, we can apply (19.4) to obtain recursions for compound
multivariate Poisson distributions. This will be discussed more thoroughly in
Sect. 20.1. �
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19.2 Recursions of Higher Order

For the univariate case m = 1, we extended the recursion of Theorem 2.4 for com-
pound distributions with counting distribution that satisfies a recursion of order one,
to the recursion of Theorem 5.4 for compound distributions with counting distrib-
ution that satisfies a recursion of higher order. Analogously, we could extend the
recursions that we have deduced for multivariate distributions in the present chap-
ter to allow for counting distributions that satisfy higher order recursions. In that
connection, we would need the following extension of Lemma 19.1.

Lemma 19.2 If there exist functions t and v, a subset {j1, j2, . . . , js} of {1,2,

. . . ,m}, and positive integers k1, k2, . . . , ks such that

E

[

t

(
k1∑

i=1

Yij1,

k2∑

i=1

Yij2, . . . ,

ks∑

i=1

Yijs ;x

)∣
∣
∣
∣
∣

m⋂

j=1

( nj∑

i=1

Yij = xj

)]

= v(n)

for all x,n ∈Nm+ for which
∏m

j=1 h
nj ∗
j (xj ) > 0, then

∑

n∈Nm+
v(n)p

(

n −
s∑

i=1

kieji

)
m∏

j=1

h
nj ∗
j (xj )

=
xj1∑

yj1=1

xj2∑

yj2=1

· · ·
xjs∑

yjs =1

t (yj1, yj2, . . . , yjs ;x)f

(

x −
s∑

i=1

yji
eji

)
s∏

i=1

h
ki∗
ji

(yji
).

(x ∈ Nm+)

Theorem 19.2 can be extended correspondingly, although more messy. As a spe-
cial case, we give the following extension of Corollary 19.1.

Corollary 19.2 Let p ∈ P20 and h1, h2 ∈ P11. If

p(n1, n2) =
k1∑

i1=1

(

a1(i1) + a2(i1)

n1

)

p(n1 − i1, n2)

+
k2∑

i2=1

(

a3(i2) + a4(i2)

n2

)

p(n1, n2 − i2)

+
k1∑

i1=1

k2∑

i2=1

(

a5(i1, i2) + a6(i1, i2)

n1
+ a7(i1, i2)

n2
+ a8(i1, i2)

n1n2

)

× p(n1 − i1, n2 − i2), (n1, n2 = 1,2, . . . ) (19.5)
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then

f (x1, x2) =
x1∑

y1=1

f (x1 − y1, x2)

k1∑

i1=1

(

a1(i1) + a2(i1)

i1

y1

x1

)

h
i1∗
1 (y1)

+
x2∑

y2=1

f (x1, x2 − y2)

k2∑

i2=1

(

a3(i2) + a4(i2)

i2

y2

x2

)

h
i2∗
2 (y2)

+
x1∑

y1=1

x2∑

y2=1

f (x1 − y1, x2 − y2)

×
k1∑

i1=1

k2∑

i2=1

(

a5(i1, i2) + a6(i1, i2)

i1

y1

x1
+ a7(i1, i2)

i2

y2

x2

+ a8(i1, i2)

i1i2

y1y2

x1x2

)

h
i1∗
1 (y1)h

i2∗
2 (y2). (x1, x2 = 1,2, . . . )

19.3 Multivariate Compound Distributions of Type 3

In Chap. 15, we extended the theory of compound univariate distributions to com-
pound distributions with multivariate severity distribution. Analogously, we can ex-
tend the theory of the present chapter to the case when the severity distributions
h1, h2, . . . , hm are multivariate.

Further Remarks and References

The present chapter is primarily based on Sundt (2000d).
Vernic (1999) proved Corollary 19.1 and discussed some special cases. Hesse-

lager (1996b) discussed Example 19.1 in the bivariate case m = 2. He also presented
some other recursions for bivariate distributions and compound distributions with
bivariate counting distribution and univariate severity distributions.

Vernic (2004) proved Corollary 19.2 and discussed the properties of bivariate
distributions that satisfy a recursion of the type (19.5), along the line of what we did
for univariate distributions in Sect. 5.3.

Eisele (2008) extended the recursion (5.41) to bivariate counting distributions.
Vernic (1997) deduced a recursion for the bivariate generalised Poisson distribu-

tion. She extended this to multivariate distributions in Vernic (2000).
Recursions for compound distributions with bivariate counting distribution and

multivariate severity distributions have also been studied by Ambagaspitiya (1998)
and Walhin and Paris (2000b, 2001b).



Chapter 20
Compound Mixed Multivariate Poisson
Distributions

Summary

The purpose of the present chapter is to extend the theory of Chap. 3 to a class of
compound mixed multivariate Poisson distributions.

Multivariate Poisson distributions were introduced in Example 16.1. We give a
more extensive presentation in Sect. 20.1. In particular, we emphasise that, whereas
a multivariate Poisson distribution is multivariate so that when compounding it, it
becomes a compound distribution of Type 2, it can also be expressed as a compound
distribution of Type 1, so that we can apply the theory of compound multivariate
distributions of Type 1. When extending the class of counting distributions to mixed
distributions, we want to restrict the class of mixing distributions in such a way that
this aspect is preserved. Such an extension is the topic of Sect. 20.2.

Like in the univariate case, the Gamma mixing distribution is a rather simple
case, so we warm up with that in Sect. 20.3.

Then we turn to compound distributions of Type 1 in Sect. 20.4. Like in the
univariate case, we first treat a general case in Sect. 20.4.1 before restricting to the
Willmot class in Sect. 20.4.2.

Recursions for the univariate counting distribution are deduced in Sect. 20.5.
In a short Sect. 20.6, we describe how the theory of Sect. 20.4 can be used to

evaluate compound mixed multivariate Poisson distributions by using the Type 1
representation of such distributions. The special case of the multivariate counting
distribution is the topic of Sect. 20.7.

Finally, in Sect. 20.8, we consider some specific parametric classes of mixing
distributions within the Willmot class.

20.1 Multivariate Poisson Distributions

Let λ be an s × 1 vector of positive numbers, A an m × s matrix with elements in
{0,1}, and ν = λ•. Furthermore, let f = p ∨ h with p ∈ Pm0 and h1, h2, . . . , hm ∈
P10.

In Example 16.1, we showed that if p is the m-variate Poisson distribution
mPo(A,λ), then p can be written as a compound distribution p = q ∨ g where the
counting distribution q is the Poisson distribution Po(ν), that is, R1[0, ν], and the
severity distribution g the m-variate Bernoulli severity distribution given by (16.34),
that is,

g(y) = λi

ν
. (y = ai; i = 1,2, . . . , s) (20.1)

B. Sundt, R. Vernic, Recursions for Convolutions and Compound Distributions
with Insurance Applications, EAA Lecture Notes,
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Insertion in (15.4) and (15.5) with a = 0 and b = ν gives

p(n) = 1

nl

∑

{i:ali=1}
λip(n − ai ) (n ≥ el; l = 1,2, . . . ,m)

p(n) = 1

n•

s∑

i=1

a•iλip(n − ai ) (n ∈ Nm+)

with initial condition p(0) = e−ν ; these recursions also follow from (16.35) and
(16.32).

We now have f = q ∨ h with h = g ∨ h. We see that h ∈ Pm0. By application
of (14.2), we obtain

h(y) = 1

ν

s∑

i=1

λi

m∏

j=1

h
aji∗
j (yj ); (y ∈ Nm) (20.2)

in particular, we have

h(0) = 1

ν

s∑

i=1

λi

m∏

j=1

h
aji

j (0). (20.3)

Insertion of (20.2) in (15.4) and (15.5) with a = 0 and b = ν gives

f (x) = 1

xl

∑

0<y≤x

f (x − y)yl

s∑

i=1

λi

m∏

j=1

h
aji∗
j (yj ) (x ≥ el; l = 1,2, . . . ,m)

(20.4)

f (x) = 1

x•

∑

0<y≤x

f (x − y)y•
s∑

i=1

λi

m∏

j=1

h
aji∗
j (yj ) (x ∈ Nm+) (20.5)

with initial condition

f (0) = e−ν(1−h(0)) = exp

(

−ν +
s∑

i=1

λi

m∏

j=1

h
aji

j (0)

)

.

Let us consider the special case studied in Example 16.2, that is,

s = m + 1; A = (I, e); λ = (λ1, λ2, . . . , λm,μ)′, (20.6)

with some abuse of notation; here ν = μ + ∑m
j=1 λj . We shall refer to these as-

sumptions as the special design. Under these assumptions, we obtain

h(y) = 1

ν

(
m∑

j=1

λjhj (yj )I (y = yj ej ) + μ

m∏

j=1

hj (yj )

)

(y ∈ Nm)
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f (x) = 1

xl

(

λl

xl∑

y=1

yhl(y)f (x − yel) + μ
∑

0<y≤x

ylf (x − y)

m∏

j=1

hj (yj )

)

(x ≥ el; l = 1,2, . . . ,m) (20.7)

f (x) = 1

x•

(
m∑

i=1

λi

xi∑

y=1

yhi(y)f (x − yei ) + μ
∑

0<y≤x

y•f (x − y)

m∏

j=1

hj (yj )

)

(x ∈ Nm+) (20.8)

f (0) = exp

(

−ν +
m∑

j=1

λjhj (0) + μ

m∏

j=1

hj (0)

)

.

When comparing (20.7) and (20.8), we see that in (20.8), we have to sum over i

whereas in (20.7), we need the corresponding term only for i = l. At first glance,
this seems to be an advantage with (20.7). However, in (20.5), with (20.8) as a
special case, one would typically do the summation over i in advance or, even better,
evaluate the De Pril transform

ϕf (y) = νy•h(y) = y•
s∑

i=1

λi

m∏

j=1

h
aji∗
j (yj ) (y ∈ Nm+)

and then f by (16.1).
As a special case under the assumptions (20.6), we obtain that the counting dis-

tribution p satisfies the recursions

p(n) = 1

nl

(λlp(n − el ) + μp(n − e)) (n ≥ el; l = 1,2, . . . ,m)

p(n) = 1

n•

(
m∑

i=1

λip(n − ei ) + mμp(n − e)

)

. (n ∈ Nm+)

Now let μ = 0. Then f is the distribution of a vector of independent random
variables with compound Poisson distribution, and we have f (x) = ∏m

j=1 fj (xj )

for all x ∈ Nm+. Application of this and (20.7) gives that for all x ∈ Nm+ and l =
1,2, . . . ,m, we have

m∏

j=1

fj (xj ) = f (x) = λl

xl

xl∑

y=1

yhl(y)f (x − yel)

= λl

xl

xl∑

y=1

yhl(y)fl(xl − y)
∏

j �=l

fj (xj ).
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When
∏

j �=l fj (xj ) > 0, this gives

fl(xl) = λl

xl

xl∑

y=1

yhl(y)fl(xl − y),

which is the univariate recursion (2.7) for fl .

20.2 Extension to Mixed Distributions

When deducing the recursions (20.4) and (20.5) for f , we expressed our compound
distribution f with m-variate Poisson counting distribution p and univariate sever-
ity distributions h1, h2, . . . , hm as a compound distribution with univariate Poisson
counting distribution q and m-variate severity distribution. We then evaluated f by
known recursions for compound distributions with univariate Poisson counting dis-
tribution and multivariate severity distribution. Could we use such a procedure more
generally when p is a mixed multivariate Poisson distribution?

Let � be a random s × 1 vector with non-negative elements and distribution V .
Then a random m × 1 vector N has a mixed multivariate Poisson distribution if
the conditional distribution of N given � = θ has the distribution mPo(A, θ) for
any value of θ in the range of �. Let p denote the unconditional distribution of
N and pθ the conditional distribution given � = θ for all values of θ in the range
of �. Proceeding like in Sect. 20.1, we obtain that pθ can be expressed in the form
pθ = qθ ∨ gθ where qθ is the Poisson distribution Po(θ•) and

gθ (y) = θi

θ•
, (y = ai; i = 1,2, . . . , s)

and we can express fθ = pθ ∨h in the form fθ = qθ ∨hθ with hθ = gθ ∨h. However,
as hθ depends on θ , we cannot in general express f as a compound distribution with
mixed Poisson counting distribution q given by

q =
∫

R
s+

qθ dV (θ). (20.9)

Hence, we have to restrict V such that gθ does not depend on θ , that is, we should
have θi/θ• independent of θ for all values of θ in the range of � and i = 1,2, . . . , s.
This condition is fulfilled if � ≡ �λ for some non-negative random variable �; to
avoid the degenerate case that � = 0, we assume that � > 0. We now get gθ = g

given by (20.1) for all values of θ in the range of �, so that f = q ∨ h with q and h

given by (20.9) and (20.2). In particular, this gives

p = q ∨ g (20.10)
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with g given by (20.1). Letting U denote the distribution of � and qθ the Poisson
distribution Po(θν) for 0 < θ < ∞, we have

q(n) =
∫

(0,∞)

qθ (n)dU(θ) =
∫

(0,∞)

(θν)n

n! e−θν dU(θ) = (−ν)n

n! γ
(n)
U (ν).

(n = 0,1,2, . . . ) (20.11)

In the special case when s = m and A = I, insertion of (14.5) and (20.1) in
(20.10) gives

p(n) = q(n•)gn•∗(n) = q(n•)
n•!
νn•

m∏

j=1

λ
nj

j

nj ! . (n ∈ Nm+) (20.12)

As the elements of N are now mutually dependent through �, p is no longer the dis-
tribution of a vector of independent random variables unless the mixing distribution
U is degenerate.

20.3 Gamma Mixing Distribution

Before continuing with developing the general theory, let us consider the special
case where the mixing distribution U is the Gamma distribution Gamma(α,β) with
density u given by (3.5). Then, for n = 1,2, . . . , we have

q(n) =
∫ ∞

0

(θν)n

n! e−θν βα

�(α)
θα−1e−βθ dθ

= βανn

n!�(α)

∫ ∞

0
θα+n−1e−(β+ν)θ dθ = βανn

n!�(α)

�(α + n)

(β + ν)α+n
,

which gives

q(n) =
(

α + n − 1

n

)(
ν

β + ν

)n(
β

β + ν

)α

. (20.13)

This is the negative binomial distribution NB(α, ν/(β + ν)), that is, R1[a, b] with

a = ν

β + ν
; b = (α − 1)

ν

β + ν
.

Insertion of this and (20.2) in (15.4) and (15.5) gives

f (x) = 1

β + ν − ∑s
i=1 λi

∏m
j=1 h

aji

j (0)

×
∑

0<y≤x

(

1 + (α − 1)
yl

xl

)

f (x − y)

s∑

i=1

λi

m∏

j=1

h
aji∗
j (yj )

(x ≥ el; l = 1,2, . . . ,m)
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f (x) = 1

β + ν − ∑s
i=1 λi

∏m
j=1 h

aji

j (0)

×
∑

0<y≤x

(

1 + (α − 1)
y•
x•

)

f (x − y)

s∑

i=1

λi

m∏

j=1

h
aji∗
j (yj ). (x ∈ Nm+)

By a trivial extension of the expression in Table 2.3, we obtain

f (0) =
(

β

β + ν − ∑s
i=1 λi

∏m
j=1 h

aji

j (0)

)α

.

Letting all the hj s be concentrated in one gives

p(n) = 1

β + ν

s∑

i=1

λi

(

1 + (α − 1)
ali

nl

)

p(n − ai ) (n ≥ el; l = 1,2, . . . ,m)

p(n) = 1

β + ν

s∑

i=1

λi

(

1 + (α − 1)
a•i
n•

)

p(n − ai ) (n ∈ Nm+)

with initial condition

p(0) =
(

β

β + ν

)α

.

Under the special design (20.6), we have

f (x) = 1

β + ν − ∑m
j=1 λjhj (0) − μ

∏m
j=1 hj (0)

×
(

λl

xl

(α − 1)

xl∑

y=1

yhl(y)f (x − ely) +
m∑

j=1

λj

xj∑

y=1

hj (y)f (x − ej y)

+ μ
∑

0<y≤x

(

1 + (α − 1)
yl

xl

)

f (x − y)

m∏

j=1

hj (yj )

)

(x ≥ el; l = 1,2, . . . ,m)

f (x) = 1

β + ν − ∑m
j=1 λjhj (0) − μ

∏m
j=1 hj (0)

×
(

m∑

j=1

λj

xj∑

y=1

(

1 + (α − 1)
y

x•

)

hj (y)f (x − ej y)

+ μ
∑

0<y≤x

(

1 + (α − 1)
y•
x•

)

f (x − y)

m∏

j=1

hj (yj )

)

(x ∈ Nm+)
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f (0) =
(

β

β + ν − ∑m
j=1 λjhj (0) − μ

∏m
j=1 hj (0)

)α

p(n) = 1

β + ν

(
λl

nl

(α − 1)p(n − el) +
m∑

j=1

λjp(n − ej )

+ μ

(

1 + α − 1

nl

)

p(n − e)

)

(n ≥ el; l = 1,2, . . . ,m) (20.14)

p(n) = 1

β + ν

((

1 + α − 1

n•

) m∑

j=1

λjp(n − ej ) + μ

(

1 + (α − 1)
m

n•

)

p(n − e)

)

.

(n ∈ Nm+)

By equating the two expressions for p(n) for n ≥ el and solving for
∑m

j=1 λjp(n −
ej ), we obtain

m∑

j=1

λjp(n − ej ) = λl

nl

n•p(n − el ) +
(

n•
nl

− m

)

μp(n − e),

and insertion in (20.14) gives

p(n) = 1

β + ν

(
λl

nl

(α + n• − 1)p(n − el ) + μ

(
α + n• − 1

nl

− m + 1

)

p(n − e)
)

,

(n ≥ el; l = 1,2, . . . ,m) (20.15)

which also follows from (20.65).
In the special case when μ = 0, insertion of (20.13) in (20.12) gives

p(n) = (α + n• − 1)(n•)
(

β

β + ν

)α m∏

j=1

1

nj !
(

λj

β + ν

)nj

. (n ∈ Nm+)

(20.16)

This is a negative multinomial distribution. In this case, (20.15) reduces to

p(n) = 1

β + ν

λl

nl

(α + n• − 1)p(n − el ), (n ≥ el; l = 1,2, . . . ,m)

which also follows immediately from (20.16).
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20.4 Compound Distributions with Univariate Counting
Distribution

20.4.1 General Recursion

In Sect. 20.4, we shall extend the theory of Sects. 3.3 and 3.5 to the case with
multivariate severity distribution h ∈ Pm0. Let q be the mixed Poisson distribution
given by (20.11) with qθ being the Poisson distribution Po(θν) for all θ ∈ (0,∞).
We want to evaluate f = q ∨ h.

Let

vi(x) =
∫

(0,∞)

θ ifθ (x)dU(θ) (x ∈ Nm; i = 0,1,2, . . . ) (20.17)

with fθ = qθ ∨ h. In particular, we have v0 = f . Furthermore, for i = 0,1,2, . . . ,
we have

vi(0) =
∫

(0,∞)

θ ifθ (0)dU(θ) =
∫

(0,∞)

θ ie−θν(1−h(0)) dU(θ)

= (−1)iγ
(i)
U (ν(1 − h(0))); (i = 0,1,2, . . . ) (20.18)

in particular, we get

f (0) =
∫

(0,∞)

e−θν(1−h(0)) dU(θ) = γU(ν(1 − h(0))). (20.19)

By letting a = 0 and b = θν in (15.4) and (15.5), we obtain

fθ (x) = θν

xl

∑

0<y≤x

ylh(y)fθ (x − y) (x ≥ el; l = 1,2, . . . ,m) (20.20)

fθ (x) = θν

x•

∑

0<y≤x

y•h(y)fθ (x − y), (x ∈ Nm+) (20.21)

and multiplication by θi dU(θ) and integration over θ gives that for i = 0,1,2, . . . ,

vi(x) = ν

xl

∑

0<y≤x

ylh(y)vi+1(x − y) (x ≥ el; l = 1,2, . . . ,m) (20.22)

vi(x) = ν

x•

∑

0<y≤x

y•h(y)vi+1(x − y). (x ∈ Nm+) (20.23)

We can now evaluate f (y) for all y ∈ Nm such that 0 ≤ y ≤ x by the following
algorithm:
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Evaluate f (0) by (20.19).
For i = 1,2, . . . , x•:

Evaluate vi(0) by (20.18).
For j = 1,2, . . . , i:

For all y ∈ Nm+ such that y ≤ x and y• = j :
Evaluate vi−j (y) by (20.22) or (20.23).

For all y ∈ Nm+ such that y ≤ x and y• = i:
Let f (y) = v0(y).

The discussion in Sect. 3.4 on finite mixtures also applies to the multivariate case.

20.4.2 Willmot Mixing Distribution

Like in the univariate case, we shall show that if the mixing distribution U is con-
tinuous with density u on the interval (γ, δ) with 0 ≤ γ < δ ≤ ∞ that satisfies the
condition (3.15), then we need to evaluate vi only for i = 0,1,2, . . . , k. We shall
need the auxiliary functions

wθ(x) = fθ (x)u(θ)

k∑

i=0

χ(i)θ i (x ∈ Nm;γ < θ < δ) (20.24)

ρ(i) = (1 − h(0))νχ(i) − η(i) − (i + 1)χ(i + 1) (20.25)

(i = −1,0,1, . . . , k)

with χ(−1) = η(−1) = χ(k + 1) = 0.

Theorem 20.1 If f = q ∨ h with h ∈ Pm+ and q given by (20.11) with continu-
ous mixing distribution U on the interval (γ, δ) with differentiable density u that
satisfies (3.15), and wγ+(x) and wδ−(x) exist and are finite for all x ∈ Nm+, then

ρ(k)vk(x) = ν
∑

0<y≤x

h(y)

k∑

i=0

χ(i)vi(x − y) −
k−1∑

i=0

ρ(i)vi(x)

+ wγ+(x) − wδ−(x). (x ∈ Nm+) (20.26)

Proof Application of (20.17), (3.15), and partial integration gives that for all x ∈
Nm+

k∑

i=0

η(i)vi(x) =
k∑

i=0

η(i)

∫ δ

γ

θ ifθ (x)u(θ)dθ

=
k∑

i=0

χ(i)

∫ δ

γ

θ ifθ (x)u′(θ)dθ
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= wδ−(x) − wγ+(x) −
k∑

i=0

χ(i)

∫ δ

γ

(
d

dθ
θifθ (x)

)

u(θ)dθ

= wδ−(x) − wγ+(x)

−
k∑

i=0

χ(i)

∫ δ

γ

(

iθ i−1fθ (x) + θi

(
d

dθ
fθ (x)

))

u(θ)dθ,

that is,

k∑

i=0

η(i)vi(x) = wδ−(x) − wγ+(x) −
k∑

i=1

iχ(i)vi−1(x)

−
k∑

i=0

χ(i)

∫ δ

γ

θ i

(
d

dθ
fθ (x)

)

u(θ)dθ. (20.27)

We have

d

dθ
fθ (x) =

∞∑

n=1

hn∗(x)
d

dθ

(θν)n

n! e−θν

=
∞∑

n=1

hn∗(x)
νn

n! (nθn−1e−θν − νθne−θν)

= ν

∞∑

n=1

hn∗(x)(qθ (n − 1) − qθ (n)) = ν((fθ ∗ h)(x) − fθ (x))

= ν

( ∑

0≤y≤x

h(y)fθ (x − y) − fθ (x)

)

= ν

( ∑

0<y≤x

h(y)fθ (x − y) − (1 − h(0))fθ (x)

)

,

and insertion in (20.27) gives

k∑

i=0

η(i)vi(x) = wδ−(x) − wγ+(x) −
k−1∑

i=0

(i + 1)χ(i + 1)vi(x)

− ν

k∑

i=0

χ(i)

( ∑

0<y≤x

h(y)vi(x − y) − (1 − h(0))vi(x)

)

.
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After some rearranging, we obtain

k∑

i=0

ρ(i)vi(x) = ν

k∑

i=0

χ(i)
∑

0<y≤x

h(y)vi(x − y) + wγ+(x) − wδ−(x),

from which (20.26) follows. �

If ρ(k) �= 0, then (20.26) gives

vk(x) = 1

ρ(k)

(

ν
∑

0<y≤x

h(y)

k∑

i=0

χ(i)vi(x − y)

−
k−1∑

i=0

ρ(i)vi(x) + wγ+(x) − wδ−(x)

)

. (x ∈ Nm+) (20.28)

In this case, we can evaluate f (y) for all y ∈ Nm such that 0 ≤ y ≤ x for some
x ∈ Nm+ such that x• > k by the following algorithm:

Evaluate f (0) by (20.19).
For i = 1,2, . . . , k:

Evaluate vi(0) by (20.18).
For j = 1,2, . . . , i:

For all y ∈ Nm+ such that y ≤ x and y• = j :
Evaluate vi−j (y) by (20.22) or (20.23).

For all y ∈ Nm+ such that y ≤ x and y• = i:
Let f (y) = v0(y).

For i = k + 1, k + 2, . . . , x•:
For all y ∈ Nm+ such that y ≤ x and y• = i − k:

Evaluate vk(y) by (20.28).
For j = 1,2, . . . , k:

For all y ∈ Nm+ such that y ≤ x and y• = i − k + j :
Evaluate vk−j (y) by (20.22) or (20.23).

For all y ∈ Nm+ such that y ≤ x and y• = i:
Let f (y) = v0(y).

Let us now consider the condition that wγ+(x) and wδ−(x) should exist and be
finite for all x ∈ Nm+. For finite γ and δ, this condition holds when u(γ+) and
u(δ−) exist and are finite. In particular, we have

w0+(x) = f0(x)u(0+)χ(0) = 0 (x ∈ Nm+)

as the distribution f0 is concentrated in zero.
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For θ ∈ (γ, δ), wθ is proportional to fθ , and (20.20) and (20.21) give the recur-
sions

wθ(x) = θν

xl

∑

0<y≤x

ylh(y)wθ (x − y) (x ≥ el; l = 1,2, . . . ,m) (20.29)

wθ(x) = θν

x•

∑

0<y≤x

y•h(y)wθ (x − y), (x ∈ Nm+) (20.30)

and from (20.24), we obtain the initial condition

wθ(0) = e−θν(1−h(0))u(θ)

k∑

i=0

χ(i)θ i . (20.31)

If γ > 0 and u(γ+) exists and is finite, then we can evaluate wγ+ recursively in
the same way. Analogous for wδ− when δ < ∞ and u(δ−) exists and is finite.

20.5 The Univariate Mixed Counting Distribution

For evaluation of the univariate mixed counting distribution, we have to slightly
extend the theory of Sect. 3.6 as there we had ν = 1.

We introduce

v̇i (n) =
∫

(0,∞)

θ iqθ (n)dU(θ) = νn

n!
∫

(0,∞)

θn+ie−θν dU(θ)

= (n + i)(i)

νi
q(i + n) (n, i = 0,1,2, . . . ) (20.32)

ẇθ (n) = qθ (n)u(θ)

k∑

i=0

χ(i)θ i = (θν)n

n! e−θνu(θ)

k∑

i=0

χ(i)θ i

(n = 0,1, . . . ;γ < θ < δ) (20.33)

ρ̇(i) = νχ(i) − η(i) − (i + 1)χ(i + 1). (i = −1,0,1, . . . , k) (20.34)

The following corollary to Theorem 3.3 extends that theorem to general ν.

Corollary 20.1 If q is the mixed Poisson distribution given by (20.11) with contin-
uous mixing distribution U on the interval (γ, δ) with differentiable density u that
satisfies (3.15), and ẇγ+(n) and ẇδ−(n) exist and are finite for all non-negative
integers n, then

ρ̇(k)q(n) =
k+1∑

i=1

((n − k)χ(k − i + 1) − ρ̇(k − i))
νi

n(i)
q(n − i)

+ (ẇγ+(n − k) − ẇδ−(n − k))
νk

n(k)
. (n = k + 1, k + 2, . . . ) (20.35)
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Proof From the discussion in Sect. 3.7.2, we have that q can be expressed in the
form

q(n) =
∫ δ̃

γ̃

θn

n! e−θ ũ(θ)dθ (n = 0,1,2, . . . ; γ̃ < θ < δ̃)

with γ̃ = νγ , δ̃ = νδ and the mixing density ũ satisfying

d

dθ
ln ũ(θ) =

∑k
i=0 η̃(i)θ i

∑k
i=0 χ̃(i)θ i

(γ̃ < θ < δ̃)

with η̃(i) = η(i)ν−i and χ̃ (i) = χ(i)ν1−i for i = 0,1,2, . . . , k. From Theorem 3.3,
we obtain

˜̇ρ(k)q(n) =
k+1∑

i=1

((n − k)χ̃(k − i + 1) − ˜̇ρ(k − i))
q(n − i)

n(i)

+
˜̇wγ̃+(n − k) − ˜̇wδ̃−(n − k)

n(k)
(n = k + 1, k + 2, . . . ) (20.36)

with

˜̇ρ(i) = χ̃ (i) − η̃(i) − (i + 1)χ̃(i + 1) = ρ̇(i)

νi
. (i = −1,0,1,2, . . . , k)

˜̇wθ(n) = θn

n! e−θ ũ(θ)

k∑

i=0

χ̃ (i)θ i = ẇθ/ν(n). (n = 0,1, . . . ; γ̃ < θ < δ̃)

Insertion of the expressions for γ̃ , δ̃, ˜̇ρ, χ̃ , and ˜̇wθ in (20.36) gives

ρ̇(k)

νk
q(n) =

k+1∑

i=1

(

(n − k)
χ(k − i + 1)

νk−i
− ρ̇(k − i)

νk−i

)
q(n − i)

n(i)

+ ẇγ+(n − k) − ẇδ−(n − k)

n(k)
, (n = k + 1, k + 2, . . . )

and by multiplication by νk , we obtain (20.35). �

When ρ̇(k) �= 0, (20.35) gives

q(n) = 1

ρ̇(k)

(
k+1∑

i=1

((n − k)χ(k − i + 1) − ρ̇(k − i))
νi

n(i)
q(n − i)

+ (ẇγ+(n − k) − ẇδ−(n − k))
νk

n(k)

)

. (n = k + 1, k + 2, . . . )
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Let us consider the special case k = 1. Then (20.35) gives

q(n) = 1

ρ̇(1)

(

bγ+(n) − bδ−(n) +
(

χ(1) − χ(1) + ρ̇(0)

n

)

νq(n − 1)

+ χ(0)

n
ν2q(n − 2)

)

(n = 2,3, . . . ) (20.37)

with

bθ (n) = ẇθ (n − 1)

n
ν = ẇθ (n)

θ
. (n = 1,2, . . . ;γ < θ < δ) (20.38)

By application of (15.25) and (15.26), we obtain

f (x) = 1

ρ̇(1) − χ(1)νh(0)

(

(ρ̇(1)q(1) + ρ̇(0)νq(0) + bδ−(1) − bγ+(1))h(x)

+ (bγ+ ∨ h)(x) − (bδ− ∨ h)(x)

+ ν
∑

0<y≤x

((

χ(1) − (χ(1) + ρ̇(0))
yl

xl

)

h(y) + ν
χ(0)

2

yl

xl

h2∗(y)

)

f (x − y)

)

(x ≥ el; l = 1,2, . . . ,m) (20.39)

f (x) = 1

ρ̇(1) − χ(1)νh(0)

(

(ρ̇(1)q(1) + ρ̇(0)νq(0) + bδ−(1) − bγ+(1))h(x)

+ (bγ+ ∨ h)(x) − (bδ− ∨ h)(x)

+ ν
∑

0<y≤x

((

χ(1) − (χ(1) + ρ̇(0))
y•
x•

)

h(y) + ν
χ(0)

2

y•
x•

h2∗(y)

)

× f (x − y)

)

. (x ∈ Nm+) (20.40)

We can evaluate bθ ∨ h recursively by

(bθ ∨ h)(x) = θν

xl

∑

0<y≤x

ylh(y)(bθ ∨ h)(x − y) (x ≥ el; l = 1,2, . . . ,m)

(20.41)

(bθ ∨ h)(x) = θν

x•

∑

0<y≤x

y•h(y)(bθ ∨ h)(x − y), (x ∈ Nm+) (20.42)

and by (20.33) and (20.38), we obtain the initial condition

(bθ ∨ h)(0) =
(

χ(0)

θ
+ χ(1)

)

u(θ)e−θν(1−h(0)). (20.43)
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When k = 1, these recursions for f are more efficient than the algorithm given
after formula (20.28).

20.6 Compound Distributions with Multivariate Counting
Distribution

Let us now return to the setting of Sect. 20.2. In that setting, we had that the com-
pound mixed multivariate Poisson distribution f = p ∨ h could also be represented
in the form f = q ∨ h with h ∈ Pm0 given by (20.2). Hence, we can evaluate f by
the recursions of Sect. 20.4 with h given by (20.2). As one would typically evaluate
this h in advance, we will not display the formulae obtained by insertion of (20.2).

20.7 The Multivariate Counting Distribution

20.7.1 General Design

For evaluation of the multivariate counting distribution p by the recursions for f ,
we replace vi and wθ with v̈i and ẅθ given by

v̈i (n) =
∫

(0,∞)

θ ipθ (n)dU(θ) (n ∈ Nm; i = 0,1,2, . . . )

ẅθ (n) = pθ(n)u(θ)

k∑

i=0

χ(i)θ i (n ∈ Nm;γ < θ < δ) (20.44)

whereas ρ is replaced with ρ̇ given by (20.34). Insertion of (20.1) in (20.22) and
(20.23) gives that for i = 0,1,2, . . . ,

v̈i (n) = 1

nl

∑

{t :alt=1}
λt v̈i+1(n − at ) (n ≥ el; l = 1,2, . . . ,m) (20.45)

v̈i (n) = 1

n•

s∑

t=1

λta•t v̈i+1(n − at ) (n ∈ Nm+) (20.46)

with initial condition

v̈i (0) =
∫

(0,∞)

θ ie−θν dU(θ) = (−1)iγ
(i)
U (ν).

In particular, we have

p(0) = v̈0(0) =
∫

(0,∞)

e−θν dU(θ) = γU(ν).
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If the mixing distribution U satisfies the conditions of Theorem 20.1, then inser-
tion of (20.1) in (20.26) and (20.29)–(20.31) gives

ρ̇(k)v̈k(n) =
k∑

i=0

χ(i)

s∑

t=1

λt v̈i(n − at ) −
k−1∑

i=0

ρ̇(i)v̈i (n)

+ ẅγ+(n) − ẅδ−(n) (n ∈ Nm+) (20.47)

ẅθ (n) = θ

nl

∑

{t :alt=1}
λt ẅθ (n − at ) (n ≥ el; l = 1,2, . . . ,m) (20.48)

ẅθ (n) = θ

n•

s∑

t=1

λta•t ẅθ (n − at ) (n ∈ Nm+) (20.49)

ẅθ (0) = e−θνu(θ)

k∑

i=0

χ(i)θ i .

20.7.2 The Special Design

In Sect. 20.7.2, we shall concentrate on the special design (20.6). Then (20.45) and
(20.46) give that for i = 1,2, . . . ,

v̈i (n) = λl

nl

v̈i+1(n − el ) + μ

nl

v̈i+1(n − e) (n ≥ el; l = 1,2, . . . ,m) (20.50)

v̈i (n) = 1

n•

(
m∑

l=1

λlv̈i+1(n − el) + mμv̈i+1(n − e)

)

, (n ∈ Nm+)

and if the mixing distribution U satisfies the conditions of Theorem 20.1, then
(20.47)–(20.49) give

ρ̇(k)v̈k(n) =
k∑

i=0

χ(i)

(
m∑

j=1

λj v̈i(n − ej ) + μv̈i(n − e)

)

−
k−1∑

i=0

ρ̇(i)v̈i (n) + ẅγ+(n) − ẅδ−(n) (n ∈ Nm+) (20.51)

ẅθ (n) = θ

nl

(λlẅθ (n − el) + μẅθ (n − e)) (n ≥ el; l = 1,2, . . . ,m) (20.52)

ẅθ (n) = θ

n•

(
m∑

l=1

λlẅθ (n − el) + mμẅθ (n − e)

)

. (n ∈ Nm+)
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From (20.50), we get

nlv̈i(n) = λlv̈i+1(n − el ) + μv̈i+1(n − e), (20.53)

(l = 1,2, . . . ,m; i = 0,1,2, . . . )

which holds for all n ∈ Zm. As this also goes for many of the other formulae in the
following, we shall often drop giving the range explicitly. By summation over l and
some manipulation, we obtain

m∑

l=1

λlv̈i(n − el ) = n• v̈i−1(n) − mμv̈i(n − e). (i = 1,2, . . . )

Insertion in (20.51) gives

ρ̇(k)v̈k(n) = χ(0)

(
m∑

j=1

λjp(n − ej ) + μp(n − e)

)

+
k∑

i=1

χ(i)(n• v̈i−1(n) − (m − 1)μv̈i(n − e))

−
k−1∑

i=0

ρ̇(i)v̈i (n) + ẅγ+(n) − ẅδ−(n). (n ∈ Nm+) (20.54)

To get rid of the summation over j , we multiply the numerator and denominator in
(3.15) by θ , so that for γ < θ < δ

d

dθ
lnu(θ) =

∑k
i=0 η(i)θ i+1

∑k
i=0 χ(i)θ i+1

=
∑k+1

i=1 η(i − 1)θ i

∑k+1
i=1 χ(i − 1)θ i

=
∑k∗

i=0 η∗(i)θ i

∑k∗
i=0 χ∗(i)θ i

with k∗ = k + 1 and

η∗(i) = η(i − 1); χ∗(i) = χ(i − 1) (i = 1,2, . . . , k∗)

η∗(0) = χ∗(0) = 0.

Correspondingly, we introduce

ρ̇∗(i) = ρ̇(i − 1) − χ(i) (i = −1,0,1,2, . . . , k∗)

ẅ∗
θ = θẅθ . (γ < θ < δ)

From (20.54), we obtain

ρ̇∗(k∗)v̈k∗(n) =
k∗

∑

i=0

χ∗(i)(n• v̈i−1(n) − (m − 1)μv̈i(n − e))

−
k∗−1∑

i=0

ρ̇∗(i)v̈i (n) + ẅ∗
γ+(n) − ẅ∗

δ−(n).
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Insertion of the expressions for k∗, ρ̇∗, χ∗, and ẅ∗
θ and some manipulation give

ρ̇(k)v̈k+1(n) =
k∑

i=0

(((n• + 1)χ(i) − ρ̇(i − 1))v̈i(n) − (m − 1)χ(i)μv̈i+1(n − e))

+ ẅ∗
γ+(n) − ẅ∗

δ−(n).

We shall need the operator �l defined by

�lc(n) = λlc(n − el) + μc(n − e)

where c is a function on Zm.

Lemma 20.1 For any function c on Zm and l = 1,2, . . . ,m, we have

�i
lc(n) =

i∑

z=0

(
i

z

)

μzλi−z
l c(n − (i − z)el − ze). (i = 0,1,2, . . . ) (20.55)

Proof For i = 0, (20.55) obviously holds. Let us now assume that it holds for i

equal to some non-negative integer j . Then

�
j+1
l c(n) = λl�

j
l c(n − el ) + μ�

j
l c(n − e)

=
j∑

z=0

(
j

z

)

μzλ
j−z+1
l c(n − (j − z + 1)el − ze)

+
j∑

z=0

(
j

z

)

μz+1λ
j−z
l c(n − (j − z)el − (z + 1)e)

= λ
j+1
l c(n − (j + 1)el)

+
j∑

z=1

((
j

z

)

+
(

j

z − 1

))

μzλ
j+1−z
l c(n − (j + 1 − z)el − ze)

+ μj+1c(n − (j + 1)e)

=
j+1∑

z=0

(
j + 1

z

)

μzλ
j+1−z
l c(n − (j + 1 − z)el − ze).

Hence, (20.55) holds also for i = j +1, and by induction it holds for all non-negative
integers i. �

Lemma 20.2 For l = 1,2, . . . ,m, we have

�i
l ẅ

∗
θ (n) = n

(i)
l

θ i−1
ẅθ (n). (i = 0,1,2, . . . ;γ < θ < δ) (20.56)
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Proof For i = 0, (20.56) obviously holds. Let us now assume that it holds for i

equal to some non-negative integer j . Then

�
j+1
l ẅ∗

θ (n) = λl�
j
l ẅ

∗
θ (n − el ) + μ�

j
l ẅ

∗
θ (n − e)

= λl

(nl − 1)(j)

θj−1
ẅθ (n − el ) + μ

(nl − 1)(j)

θj−1
ẅθ (n − e)

= n
(j+1)
l

θj

θ

nl

(λlẅθ (n − el) + μẅθ (n − e)) = n
(j+1)
l

θj
ẅθ (n),

using (20.52) for the last step. Thus, (20.56) holds also for i = j + 1, and by induc-
tion it holds for all non-negative integers i. �

Lemma 20.3 We have

n
(j)
l v̈i−j (n) = �

j
l v̈i(n) =

j∑

z=0

(
j

z

)

μzλ
j−z
l v̈i (n − (j − z)el − ze).

(j = 0,1,2, . . . , i; i = 0,1,2, . . . ) (20.57)

Proof The second equality in (20.57) follows immediately from Lemma 20.1. The
first equality obviously holds for j = 0. Let us now assume that it holds for j = t −1
for some positive integer t ≤ i. Then application of (20.53) gives

n
(t)
l v̈i−t (n) = (nl − 1)(t−1)nl v̈i−t (n)

= (nl − 1)(t−1)(λl v̈i−t+1(n − el) + μv̈i−t+1(n − e))

= λl�
t−1
l v̈i (n − el ) + μ�t−1

l v̈i (n − e) = �t
l v̈i(n),

that is, (20.57) holds also for j = t , and by induction it holds j = 0,1,2, . . . , i.
This completes the proof of Lemma 20.3. �

By letting j = i in (20.57), we obtain

p(n) = �i
l v̈i(n)

n
(i)
l

= 1

n
(i)
l

i∑

z=0

(
i

z

)

μzλi−z
l v̈i (n − (i − z)el − ze).

(i = 0,1,2, . . . ) (20.58)

As indicated above, we can always convert a situation with χ(0) �= 0 to a situ-
ation with χ(0) = 0. Hence, for simplicity, we shall assume that χ(0) = 0 in the
following.
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By application of (20.53) and (20.54), we obtain

ρ̇(k)nl v̈k−1(n) = ρ̇(k)(λl v̈k(n − el ) + μv̈k(n − e))

=
k∑

i=1

χ(i)
(
λl(n• − 1)v̈i−1(n − el) + μ(n• − m)v̈i−1(n − e)

− (m − 1)μ(λlv̈i(n − el − e) + μv̈i(n − 2e))
)

−
k−1∑

i=0

ρ̇(i)(λl v̈i(n − el) + μv̈i(n − e)) + �lẅγ+(n) − �lẅδ−(n)

= χ(1)(λl(n• − 1)p(n − el) + μ(n• − m)p(n − e))

+
k∑

i=2

χ(i)(nl(n• − 1)v̈i−2(n) − μ(m − 1)v̈i−1(n − e))

− (m − 1)μ(nl − 1)

k∑

i=1

χ(i)v̈i−1(n − e)

− ρ̇(0)(λlp(n − el ) + μp(n − e)) − nl

k−1∑

i=1

ρ̇(i)vi−1(n)

+ �lẅγ+(n) − �lẅδ−(n),

that is,

ρ̇(k)nl v̈k−1(n) = χ(1)(λl(n• − 1)p(n − el) + μ(n• − (m − 1)nl − 1)p(n − e))

+ nl

k∑

i=2

χ(i)((n• − 1)v̈i−2(n) − μ(m − 1)v̈i−1(n − e))

− ρ̇(0)(λlp(n − el) + μp(n − e)) − nl

k−1∑

i=1

ρ̇(i)vi−1(n)

+ �lẅγ+(n) − �lẅδ−(n). (20.59)

We have now got rid of v̈k . From (20.53), we obtain

ρ̇(k)n
(2)
l v̈k−2(n) = λlρ̇(k)(nl − 1)v̈k−1(n − el )

+ μρ̇(k)(nl − 1)v̈k−1(n − e), (20.60)

and by insertion of (20.59), we get rid of v̈k−1 too. In this way, we can continue
until we have got rid of all the v̈is apart from v̈0 = p.
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Let us consider the special case k = 2. Then (20.59) reduces to

ρ̇(2)nl v̈1(n) = nl((n• − 1)χ(2) − ρ̇(1))p(n)

+ ((n• − 1)χ(1) − ρ̇(0))λlp(n − el )

+ (χ(1)(n• − (m − 1)nl − 1) − ρ̇(0))μp(n − e)

− nl(m − 1)χ(2)μv̈1(n − e) + �lẅγ+(n) − �lẅδ−(n).

Application of (20.60) gives

ρ̇(2)n
(2)
l p(n) = λlρ̇(2)(nl − 1)v̈1(n − el) + μρ̇(2)(nl − 1)v̈1(n − e)

= λl(nl − 1)((n• − 2)χ(2) − ρ̇(1))p(n − el )

+ μ(nl − 1)((n• − m − 1)χ(2) − ρ̇(1))p(n − e)

+ λl((n• − 2)χ(1) − ρ̇(0))λlp(n − 2el)

+ μ((n• − m − 1)χ(1) − ρ̇(0))λlp(n − e − el)

+ λl(χ(1)(n• − (m − 1)(nl − 1) − 2) − ρ̇(0))μp(n − el − e)

+ μ(χ(1)(n• − m − (m − 1)(nl − 1) − 1) − ρ̇(0))μp(n − 2e)

− (nl − 1)(m − 1)χ(2)μ(λl v̈1(n − el − e) + μv̈1(n − 2e))

+ �2
l ẅγ+(n) − �2

l ẅδ−(n).

Using that from (20.53) we have

λlv̈1(n − el − e) + μv̈1(n − 2e) = (nl − 1)p(n − e),

some reorganisation and division by n
(2)
l gives

ρ̇(2)p(n) = (n• − 2)χ(2) − ρ̇(1)

nl

λlp(n − el)

+
(

(n• − 2)χ(2) − ρ̇(1)

nl

− (m − 1)χ(2)

)

μp(n − e)

+ ((n• − 2)χ(1) − ρ̇(0))
λ2

l

n
(2)
l

p(n − 2el)

+ 1

nl − 1

(
(n• − 2)χ(1) − ρ̇(0)

nl

− (m − 1)χ(1)

)

μ2p(n − 2e)

+ 1

nl − 1

(

2
(n• − 2)χ(1) − ρ̇(0)

nl

− (m − 1)χ(1)

)

μλlp(n − e − el )

+ �2
l ẅγ+(n) − �2

l ẅδ−(n)

n
(2)
l

. (n ≥ 2el) (20.61)
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When k = 1 and not necessarily χ(0) = 0, insertion of the expressions for k∗,
χ∗, and ρ̇∗ gives

ρ̇(1)p(n) = (n• − 1)χ(1) − ρ̇(0)

nl

λlp(n − el)

+
(

(n• − 1)χ(1) − ρ̇(0)

nl

− (m − 1)χ(1)

)

μp(n − e)

+ χ(0)

nl − 1

(
n• − 1

nl

λ2
l p(n − 2el) +

(
n• − 1

nl

− m + 1

)

μ2p(n − 2e)

+
(

2
n• − 1

nl

− m + 1

)

μλlp(n − e − el )

)

+ �2
l ẅ

∗
γ+(n) − �2

l ẅ
∗
δ−(n)

n
(2)
l

. (n ≥ 2el) (20.62)

20.7.3 The Special Case μ = 0

For the rest of this section, we restrict to the special case μ = 0, but general k. In
this case, insertion of (20.12) in (20.44) gives that for all n ∈ Nm and γ < θ < δ

ẅθ (n) = qθ (n•)gn•∗(n)u(θ)

k∑

i=0

χ(i)θ i ,

and by insertion of (20.33) we get

ẅθ (n) = ẇθ (n•)gn•∗(n). (20.63)

We shall now prove a multivariate corollary to Corollary 20.1.

Corollary 20.2 For i = 1,2, . . . , k + 1, let iy ∈ Nm+ with iy• = i such that 1y <

2y < · · · < k+1y. Then

ρ̇(k)p(n) =
k+1∑

i=1

((n• − k)χ(k − i + 1) − ρ̇(k − i))

(
m∏

j=1

λ
iyj

j

n
(iyj )

j

)

p(n − iy)

+ (ẅγ+(n − ky) − ẅδ−(n − ky))

(
m∏

j=1

λ
kyj

j

n
(kyj )

j

)

. (n ≥ k+1y)

(20.64)
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Proof Application of (20.10), Theorem 15.8, Corollary 20.1, and (20.63) gives that
for all n ∈ Nm+ such that n ≥ k+1y, we have

ρ̇(k)p(n) = (ẇγ+(n• − k) − ẇδ−(n• − k))
νk

n
(k)•

gn•∗(n)

+
k+1∑

i=1

((n• − k)χ(k − i + 1) − ρ̇(k − i))
νi

n
(i)•

n(i)•

×
(

m∏

j=1

(λj /ν)iyj

n
(iyj )

j

)

p(n − iy)

= (ẅγ+(n − ky) − ẅδ−(n − ky))
νk

n
(k)•

gn•∗(n)

g(n•−k)∗(n − ky)

+
k+1∑

i=1

((n• − k)χ(k − i + 1) − ρ̇(k − i))

(
m∏

j=1

λ
iyj

j

n
(iyj )

j

)

p(n − iy),

and insertion of (14.4) gives (20.64). �

When letting iy = iel for i = 1,2, . . . , k + 1 and l ∈ {1,2, . . . ,m}, (20.64) re-
duces to

ρ̇(k)p(n) =
k+1∑

i=1

((n• − k)χ(k − i + 1) − ρ̇(k − i))
λi

l

n
(i)
l

p(n − iel )

+ (ẅγ+(n − kel) − ẅδ−(n − kel))
λk

l

n
(k)
l

. (20.65)

(n ≥ (k + 1)el; l = 1,2, . . . ,m)

When k = 1, this reduces to

ρ̇(1)p(n) = ((n• − 1)χ(1) − ρ̇(0))
λl

nl

p(n − el) + (n• − 1)χ(0)
λ2

l

n
(2)
l

p(n − 2el )

+ (ẅγ+(n − el) − ẅδ−(n − el))
λl

nl

, (n ≥ 2el; l = 1,2, . . . ,m)

which is a special case of (20.62), and for k = 2, we obtain

ρ̇(2)p(n) = ((n• − 2)χ(2) − ρ̇(1))
λl

nl

p(n − el)

+ ((n• − 2)χ(1) − ρ̇(0))
λ2

l

n
(2)
l

p(n − 2el)
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+ (n• − 2)χ(0)
λ3

l

n
(3)
l

p(n − 3el)

+ (ẅγ+(n − 2el) − ẅδ−(n − 2el))
λ2

l

n
(2)
l

, (n ≥ 3el; l = 1,2, . . . ,m)

which follows from (20.61) when χ(0) = 0.

20.8 Special Classes of Mixing Distributions

20.8.1 Shifted Pareto distribution

Let U be the shifted Pareto distribution SPar(α, γ ) with density u given by (3.33).
Application of (20.11) gives

q(n) = αγ α νn

n!
∫ ∞

γ

θn−α−1e−θν dθ. (n = 0,1,2, . . . )

By partial integration, we obtain the recursion

q(n) = α(γ ν)n−1

n! e−γ ν +
(

1 − α + 1

n

)

q(n − 1) (n = 1,2, . . . )

with initial value

q(0) = αγ α

∫ ∞

γ

e−θν

θα+1
dθ.

Application of (15.25) and (15.26) gives the recursions

f (x) = 1

1 − h(0)

(

(bγ ∨ h)(x) +
∑

0<y≤x

(

1 − (1 + α)
yl

xl

)

h(y)f (x − y)

)

(x ≥ el; l = 1,2, . . . ,m)

f (x) = 1

1 − h(0)

(

(bγ ∨ h)(x) +
∑

0<y≤x

(

1 − (1 + α)
y•
x•

)

h(y)f (x − y)

)

(x ∈ Nm+)

with

bγ (n) = α(γ ν)n−1

n! e−γ ν, (n = 0,1,2, . . . ) (20.66)
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and insertion of (3.33) in (20.19) gives the initial value

f (0) = αγ α

∫ ∞

γ

e−θν(1−h(0))

θα+1
dθ.

We could also have obtained these recursions from (20.37)–(20.40).
We can evaluate bγ ∨ h recursively by (20.41) or (20.42) with initial condition

(bγ ∨ h)(0) = α

γ ν
e−γ ν(1−h(0))

obtained by insertion of (20.66) in (1.7).

20.8.2 Pareto Distribution

Let U be the Pareto distribution Par(α,β) with density u given by (3.34). From
(3.35), we obtain that u satisfies (3.15) with k = 1, γ = 0, and δ = ∞, and η and χ

are given by (3.36) and (3.37) respectively. Insertion in (20.34) gives

ρ̇(0) = α + βν; ρ̇(1) = ν.

By insertion in (20.39) and (20.40), we obtain the recursions

f (x) = 1

1 − h(0)

(

(q(1) + (α + βν)q(0))h(x)

+
∑

0<y≤x

((

1 − (α + βν + 1)
yl

xl

)

h(y) + ν
β

2

yl

xl

h2∗(y)

)

f (x − y)

)

(x ≥ el; l = 1,2, . . . ,m)

f (x) = 1

1 − h(0)

(

(q(1) + (α + βν)q(0))h(x)

+
∑

0<y≤x

((

1 − (α + βν + 1)
y•
x•

)

h(y) + ν
β

2

y•
x•

h2∗(y)

)

f (x − y)

)

,

(x ∈ Nm+)

and insertion of (3.34) in (20.19) gives the initial value

f (0) = αβα

∫ ∞

0

e−θν(1−h(0))

(β + θ)α+1
dθ.
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By insertion of (3.34) in (20.11), we get

q(n) = νn

n! αβα

∫ ∞

0
θn e−θν

(β + θ)α+1
dθ, (n = 0,1,2, . . . )

which gives in particular q(0) and q(1).
From (20.62), we obtain that under the special design (20.6) we have the recur-

sion

p(n) = 1

ν

(
n• − α − βν − 1

nl

λlp(n − el)

+
(

n• − α − βν − 1

nl

− m + 1

)

μp(n − e)

+ β

nl − 1

(
n• − 1

nl

λ2
l p(n − 2el) +

(
n• − 1

nl

− m + 1

)

μ2p(n − 2e)

+
(

2
n• − 1

nl

− m + 1

)

μλlp(n − e − el )

))

. (n ≥ 2el; l = 1,2, . . . ,m)

20.8.3 Truncated Normal Distribution

Let U be the truncated normal distribution TN(ξ, σ ) with density u given by (3.38).
From (3.39), we obtain that u satisfies (3.15) with k = 1, γ = 0, and δ = ∞, and η

and χ are given by (3.40) and (3.41) respectively. Insertion in (20.34) gives

ρ̇(0) = νσ 2 − ξ ; ρ̇(1) = 1.

By insertion in (20.39) and (20.40), we obtain the recursions

f (x) = (q(1) + (νσ 2 − ξ)νq(0))h(x)

+ ν

xl

∑

0<y≤x

yl

(

(ξ − νσ 2)h(y) + ν
σ 2

2
h2∗(y)

)

f (x − y)

(x ≥ el; l = 1,2, . . . ,m)

f (x) = (q(1) + (νσ 2 − ξ)νq(0))h(x)

+ ν

x•

∑

0<y≤x

y•
(

(ξ − νσ 2)h(y) + ν
σ 2

2
h2∗(y)

)

f (x − y), (x ∈ Nm+)

and insertion of (3.38) in (20.19) gives the initial condition

f (0) =
∫ ∞

0 e
−θν(1−h(0))− 1

2σ2 (θ−ξ)2
dθ

∫ ∞
0 e

− 1
2σ2 (θ−ξ)2

dθ

.
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By insertion of (3.38) in (20.11), we get

q(n) = νn

n!

∫ ∞
0 θn exp(−θν − 1

2σ 2 (θ − ξ)2)dθ
∫ ∞

0 exp(− 1
2σ 2 (θ − ξ)2)dθ

, (n = 0,1,2, . . . )

which gives in particular q(0) and q(1).
From (20.62), we obtain that under the special design (20.6) we have the recur-

sion

p(n) = ξ − νσ 2

nl

(λlp(n − el) + μp(n − e))

+ σ 2

nl − 1

(
n• − 1

nl

λ2
l p(n − 2el) +

(
n• − 1

nl

− m + 1

)

μ2p(n − 2e)

+
(

2
n• − 1

nl

− m + 1

)

μλlp(n − e − el )

)

. (n ≥ 2el; l = 1,2, . . . ,m)

20.8.4 Inverse Gauss Distribution

Let U be the inverse Gauss distribution IGauss(ξ,β) with density u given by (3.42).
From (3.43), we obtain that u satisfies (3.15) with k = 2, γ = 0, and δ = ∞, and η

and χ are given by (3.44) and (3.45) respectively. Insertion in (20.25) gives

ρ(0) = −ξ2; ρ(1) = −β; ρ(2) = 2(1 − h(0))νβ + 1,

and by letting h(0) = 0, we obtain

ρ̇(0) = −ξ2; ρ̇(1) = −β; ρ̇(2) = 2νβ + 1.

Insertion in (20.28) gives

v2(x) = 1

2(1 − h(0))νβ + 1

(

2νβ
∑

0<y≤x

h(y)v2(x − y) + ξ2f (x) + βv1(x)

)

.

(x ∈ Nm+)

From (20.61), we obtain that under the special design (20.6) we have the recur-
sion

p(n) = 1

2νβ + 1

(
2n• − 3

nl

βλlp(n − el) +
(

2n• − 3

nl

− 2m + 2

)

βμp(n − e)

+ ξ2

n
(2)
l

(λ2
l p(n − 2el) + μ2p(n − 2e) + 2μλlp(n − e − el))

)

.

(n ≥ 2el; l = 1,2, . . . ,m)
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20.8.5 Transformed Gamma Distribution

Let U be the transformed Gamma distribution TGamma(α,β, k) with density u

given by (3.46) with k being a positive integer greater than one. From (3.47), we
obtain that u satisfies (3.15) with γ = 0 and δ = ∞, and η and χ are given by (3.48)
and (3.49) respectively. Insertion in (20.25) gives

ρ(0) = −kα; ρ(1) = (1 − h(0))ν; ρ(k) = kβ,

and by letting h(0) = 0, we obtain

ρ̇(0) = −kα; ρ̇(1) = ν; ρ̇(k) = kβ.

Insertion in (20.28) gives

vk(x) = 1

β

(
ν

k

( ∑

0<y≤x

h(y)v1(x − y) − (1 − h(0))v1(x)

)

+ αf (x)

)

.

(x ∈ Nm+)

Let us now restrict to the special design (20.6). Then (20.59) gives

v̈k−1(n) = 1

kβ

(

−νp(n) + n• + kα − 1

nl

λlp(n − el)

+
(

n• + kα − 1

nl

− m + 1

)

μp(n − e)
)

. (20.67)

(n ≥ el; l = 1,2, . . . ,m)

Letting i = k − 1 in (20.58) gives

p(n) = 1

n
(k−1)
l

k−1∑

z=0

(
k − 1

z

)

μzλk−z−1
l v̈k−1(n − (k − z − 1)el − ze),

(n ≥ (k − 1)el; l = 1,2, . . . ,m)

and by insertion of (20.67) we obtain

p(n) = 1

kβn
(k−1)
l

k−1∑

z=0

(
k − 1

z

)

μzλk−z−1
l

(

−νp(n − (k − z − 1)el − ze)

+ n• + k(α − 1) − z(m − 1)

nl − k + 1
λlp(n − (k − z)el − ze)

+
(

n• + k(α − 1) − z(m − 1)

nl − k + 1
− m + 1

)
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× μp(n − (k − z − 1)el − (z + 1)e)
)

.

(n ≥ kel; l = 1,2, . . . ,m) (20.68)

When k = 2, (20.61) gives

p(n) = 1

2β

(

− ν

nl

(λlp(n − el ) + μp(n − e)) + 1

nl − 1

(
n• + 2α − 2

nl

λ2
l p(n − 2el)

+
(

n• + 2α − 2

nl

− m + 1

)

μ2p(n − 2e)

+
(

2
n• + 2α − 2

nl

− m + 1

)

μλlp(n − e − el)

))

.

(n ≥ 2el; l = 1,2, . . . ,m)

When μ = 0 and k = 2,3, . . . , (20.65) gives

p(n) = 1

kβ

(

−ν
λk−1

l

n
(k−1)
l

p(n − (k − 1)el) + (n• + k(α − 1))
λk

l

n
(k)
l

p(n − kel)

)

.

(n ≥ kel; l = 1,2, . . . ,m)

Both these recursions can also be deduced from (20.68).

Further Remarks and References

This chapter is to a large extent based on Sundt and Vernic (2004).
In the bivariate case k = 2, Hesselager (1996b) deduced the algorithm after

(20.28), and Vernic (2002) discussed the algorithm after (20.23) without making
the restriction (3.15).

Binnenhei (2004) developed recursions for bivariate distributions in connection
with a modification of the CreditRisk+ model.
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