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Preface

This book represents both a textbook and a monograph. Part I entitled ‘Basics’
mainly contains textbook material and this is also partly true for Part II. Here the
precise definition and characterization of the not so well-known notion of intergen-
erational efficiency within Diamond’s two-period overlapping generations model
figures prominently. In Part III, a renewable natural resource is introduced in the
log-linear Cobb-Douglas overlapping generations model, and the efficiency con-
cepts developed in Part II are applied. The balance among material for a textbook
und for a monograph is approximately even. In Part IV research monograph char-
acteristics gain progressively prominence. While this part dealing with intergenera-
tional equity in perfectly competitive market economies presents already published
work, the last part focusing on harvest cost contains still unpublished work.

As the subtitle of the present book announces, our intention is to provide an intro-
duction to the not so widespread overlapping generations approach to intertemporal
resource economics. It is introductory in that utility and production functions are
functionally specified such that the interested reader can derive explicit solutions
to intertemporal general equilibria. However, we do not primarily aim at enhancing
the reader’s skill of solving general equilibrium models—we rather aim at provid-
ing the tools for coping with analytically much more advanced dynamic general
equilibrium models with renewable natural resources, published in leading journals.

This book emerged out of lectures of the first author within the master programs
of the University of Life Sciences in Vienna and at Karl-Franzens-University of
Graz. Parts IV builds on already published work of the first author while the last
Part contains joint work of both authors. The responsibility for the content of Parts
I - IV lies primarily with the first author, while both authors share responsibility for
Part V.

Several people have helped us during the gestation of this book. First, we are
grateful to Reinhard Wurzinger who typeset the lecture notes in LATEX. Second,
special thanks go to Laurie Conway for his excellent language check. We are also
grateful to comments of students in Vienna and Graz, especially to Rosa Lugger
which helped us to eliminate errors and passages which were difficult to understand.
Last but not least we thank Dr. Werner Müller and Barbara Fess from Springer
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for accepting the manuscript for publication and for providing encouragement and
support during the writing process.

The biggest debt, however, owes the first author to his family and the second to
her husband for patience and support during the months necessary for completing
the manuscript.

Karl Farmer
Birgit Bednar-Friedl

University of Graz, April 2010
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Chapter 1
Introduction

1.1 Motivation

Conventional belief holds that the ever globalizing market economy is running out
of natural resources, and hence is doomed to fail in the foreseeable future (see Mead-
ows et al, 1972, 1992, for a system–dynamic foundation of the conventional belief).
Long–run resource statistics however show exactly the opposite trend: natural re-
source scarcity as measured by real unit extraction costs of almost all fossil and
mineral resources is decreasing (see the classic study by Barnett and Morse, 1963).
Although more recent empirical studies of real resource prices (see Slade, 1982;
Hamilton, 2008; Ghoshray and Johnson, 2010) have also detected rising prices for
some natural resources, the empirical evidence on increasing resource scarcity re-
mains mixed (Endres and Querner, 2000, 18). The question thus arises whether
natural resource scarcity is an imaginary or a real problem in economics. We will
address this major question in the present book by dividing it into subquestions
and respective brief answers to provide an intellectual roadmap to the reader of this
book.

First, which sort of scarcity is typical for natural resources? Indeed, natural re-
source scarcity results from competition of subsequent generations for the limited
amount of natural resources. Second, does this intergenerational scarcity depend
on the resource examined as well as on the time period considered? This is in fact
the case and, to address the competition for resources between generations, we will
focus on natural resources that outlive the agents who use it.

Third, how can conventional economic knowledge, that scarcity is alleviated by
an efficient use of resources, be applied to the solution of the intergenerational al-
location problem? We will show that the well-known static Pareto-efficiency notion

it moreover applies to all sort of scarce resources, one of which are natural resources.
Fourth, does a competitive market system provide an efficient consumption al-

location for all generations? The answer to this question will mainly depend on
whether we consider short-run or long-run intergenerational efficiency. Fifth, if we

3
to the Overlapping Generations Approach, DOI 10.1007/978-3-642-13229-2_1,

can be adapted to the intergenerational dimension of the allocation problem and that
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4 1 Introduction

focus on short-run intergenerational efficiency, how can efficient paths of harvest-
ing renewable resources be characterized, and will self-interested agents guided
by prices formed on perfectly competitive markets harvest intergenerationally ef-
ficiently? It will be shown that the short-run intergenerational efficiency of compet-
itive market allocations depends mainly on the property rights regime with respect
to the natural resource stock.

Sixth, can intergenerational equity, most often referred to as sustainability, be
utilized as alternative benchmark for competitive market systems? Here the answer
depends on the regeneration technology, namely whether natural resources are lin-
early or non-linearly regenerating. Seventh, how do shocks to the resource tech-
nology impact on economic dynamics? It turns out that the adjustment triggered
by a shock to resource harvesting or to resource generation depends on the type of
resource technology shock.

The rest of this chapter is devoted to an overview on the role of natural resources
in market economies, as well as on the development of the field of resource eco-
nomics since classical economic writers. Furthermore, we will characterize briefly
the type of model we will apply throughout the book before giving an overview over
remaining parts.

1.2 Natural Resources and the Economic Production Process

Natural resources are defined as those factors of production principally provided by
nature. Factors of production represent the inputs into the production process, the
output of which comprises commodities used to satisfy direct wants (final goods)
and indirect wants (intermediate goods). In commodity production new mass is not
generated but only transformed by the way of changes in material concentration and
composition in space and time.

A typical distinction is made between renewable resources, i.e. resources which
grow over time, and non–renewable resources, which do not. In the older literature,
non–renewable resources are called ‘exhaustible’, but since overutilization can also
exhaust a renewable resource, the more accurate term ‘non–renewable’ is now used.
Another common distinction made is that between stock resources (such as miner-
als and fossil fuels) and flow resources (such as solar energy, crops). According to
Ströbele (1987), it is also useful to differentiate in terms of whether the resource can
be recycled (minerals) or not (fossil fuels). The above considerations thus lead us to
five types of natural resources:

• solar energy, as an example of a flow resource,
• fossil energy (oil, gas, coal, uranium), as an example of a non-renewable stock

resource which cannot be recycled,
• minerals (copper, iron, aluminium), as an example of a non-renewable stock re-

source which can be recycled,
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• natural production and waste processes within ecological circular flows utilized
in agriculture, forest and fishery industries (grain, timber, fish,...), as examples of
a renewable (i.e. regenerating) stock resource, and

• land.

recycling

net investment

solar energy

production process

fossil energy

minerals

renewable resources

consumption process

capital stocklabor

waste

Fig. 1.1 Natural resources within the economic production process (adapted from Ströbele, 1987,
3)

This book focuses mainly on natural resources which are generated by the pro-
duction and waste utilization of nature. They are called renewable or regenerating
natural resources. Timber, grain, fish and environmental media are typical examples.

The natural production processes in which ordered structures of life are generated
by the use of minerals, water and solar energy are self-sustaining since the produc-
tion processes tend towards stable biological equilibria. While nature does not need
human support, mankind depends on the fruits of natural production processes to
survive.

This entails both a scientific and an economic problem. The questions that need
to be posed are:

• To what extent can renewable resources be utilized by mankind without their
regeneration capacity being damaged?

• Within the ‘Great Society’ (Hayek, 1973) of 6 to 7 billion, how intensively
may natural resources be used both those with limited (i.e. exclusively defined
property rights) as well as those with open access (i.e. without defined property
rights)?
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Before we are able to answer these questions, it is useful to classify natural re-
sources according to four criteria: (i) how they are produced by nature, (ii) whether
they can be recycled, (iii) how large are the costs of the implementation and con-
trol of exclusive property rights, and (iv) where they are used within the economy.
Applying these criteria, Table 1.1 provides a typology of natural resources.

Table 1.1 Classification of natural resources

Natural production mode Renewable (timber, fish) Non–renewable (energy
resources like oil, coal)

Recyclability Usable once (agricultural
products, energy resources)

Reusable several times
(minerals)

Costs of implementation and
control of exclusive
individual property rights

Prohibitive costs (open–access
resources)

Negligible costs (privately
owned land)

Use within the economy Resource as consumption good
(oxygen in the air, fish)

resource as production input
(coal, oil)

Adapted from Ströbele (1987, 5–12).

1.3 Natural Resources in the History of Economic Thought

Intertemporal resource economics dates back to the economic thought of classical
economists Adam Smith, Thomas Robert Malthus and David Ricardo. The main
natural resource that classical economists and their precursors, the physiocrats, fo-
cus on is agricultural land. This was a logical choice since in the pre-industrial era
most people earned their subsistence from agriculture.

1.3.1 Classical Economics

For the physiocrats as precursors of classical economists, agriculture alone is capa-
ble of generating an economic surplus. It is mother nature, i.e. soil fertility, which
generates the surplus. Hence, agricultural land is the natural resource considered by
the physiocrats.

With the advent of manufactures and early industrial production agricultural land
was no longer the sole origin of economic surplus. Industrial labor became the new
source of economic surplus.

Similar to the physiocrats, classical economists considered agricultural land as
a natural resource but to a lesser extent. ‘Classical political economy stressed the
power of the market to stimulate both growth and innovation, but remained essen-
tially pessimistic about long-run growth prospects.’ (Pearce and Turner, 1990, 6).
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They thought that population growth and diminishing returns to agricultural land
would reduce the profit rate and the rate of capital accumulation until a stationary
state with zero rate of capital accumulation is reached.

In 1776, Smith (1723 - 1790) published An inquiry into the nature and the causes
of the wealth of nations in which he developed a theory of ‘natural’ (‘normal’) prices
determined by the prices of labor, capital and land. Land used for agricultural pur-
poses commands a scarcity rent which accrues to the non–productive landlords.

Denoting the net product by Y , labor input by L, capital input by K, land input by
R and the production function by F(.), Smith’s aggregate production function reads
as follows:

Y = F(L,K,R). (1.1)

Denoting the growth rate of the net product by gY , the growth rate of labor by gL,
the rate of capital accumulation by gK , time by t, the Smithian growth equation can
be written as follows:

gY = f (gL,gK , t).

It is important to notice that the growth function f (·) is time dependent. In contrast
to neoclassical growth theory (see Solow, 1956), Smith’s growth function follows
no exogenously fixed pattern but emerges endogenously out of the division of la-
bor in the capitalist system of commodity production. Under given growth rate of
labor and capital, the division of labor increases output growth as long as sufficient
productive land is available. Growth of the net product comes to a halt when land
becomes so scarce that the diminishing returns of agricultural land outweigh the
increasing returns from the division of labor. Increasing returns to scale turn into
decreasing returns to scale. Average costs no longer decrease with larger output but
increase. With output prices calculated on the basis of constant mark-ups on aver-
age costs, profit rates fall approaching the stationary state of zero profit and capital
accumulation ceases.

In his An essay on the principles of population published in 1798, Malthus (1766
- 1834) claimed that food production follows the rule of an arithmetic series while
population develops according to the law of a geometric series. Denoting food pro-
duction in period t by Yt , the evolution of food production over time can then be
written as follows:

Yt = (1/2)t{2Y0 +(t −1)ΔY}, (1.2)

where Y0 denotes the initial output, and ΔY is the constant yearly increase in output.
Since both Y0 and (t−1)ΔY (i.e. the final term in the sum of an arithmetic series) are
exogenously given, it is apparent from Fig. 1.2 that Yt is a linear function of time.

In contrast, population growth is of the exponential type, or in formal terms:

Lt = L0
(
1+gL)t ≡ L(0)egLt . (1.3)

Equation 1.3 is depicted in Fig. 1.3 where it is easy to see that population growth out-
performs food production. As a consequence, people starve and population growth
becomes negative until a stationary level of population is reached which can be fed
by subsistence agriculture.
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t

Yt

Fig. 1.2 Arithmetic growth of food production

t

Lt

L0

Fig. 1.3 Exponential growth of population

Malthus has thus to be credited with the insight of exponential population growth.
Exponential growth of food production however escaped his notice since he—as
did other classical economists—overlooked the impact of the steam engine and the
associated exploitation of fossil fuels such as coal, which allowed for a subsequent
exponential growth in food production.

Building on Smith’s theory of natural prices, Ricardo (1772 - 1832) introduced in
his major work On the principles of political economy and taxation (1817) the no-
tion of differential rent on land of higher quality compared to a zero rent on marginal
land. Hence, in contrast to Smith’s aggregate production function with a constant
quality of land, in Ricardo’s aggregate production technology the quality of land
q(R) varies inversely with the amount of land already in use:

Y = F (L, K, q(R)R) ,
∂q
∂R

< 0. (1.4)

In the course of economic growth, successively less productive land is cultivated
until marginal land is reached. Since marginal land does not command any rent, the
natural price of a commodity produced by land does not include a rent component
in marked contrast to Smith’s theory of natural price where it does. Differential rent
is thus not part of long-run production costs and hence of natural price.
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Ricardo’s rent and growth theory are illustrated in Fig. 1.4 which shows output as
a function of population. Here marginal productivity of labor (dY/dL) determines
profits and rent. For a population of L1, workers are paid minimum wages wmin,
land owners receive rent, and capitalists receive profits. As land of lower and lower
productivity is used the higher the population, the larger become rents on high qual-
ity land and the lower become profits. Since profits are the only source of capital
accumulation, output growth, and hence population growth, eventually comes to a
halt.

L

rent

profit

wages

L1 L2

wmin

dY/dL

Y/L

Fig. 1.4 Ricardian rent theory

This insight that (marginal) land does not receive a payment profoundly influ-
enced neoclassical writers. Thus, in neoclassical economics natural resources no
longer appear as an input in the aggregate production function because marginal
land as representative of natural resources does not have any price.

1.3.2 Neoclassical Economics

As is well known, the neoclassical epoch commences with the writings of three fa-
mous economists from Switzerland, Great Britain and Austria. These were L. Wal-
ras (1834 - 1910) with his major work Elements of pure economics (1874), W.S.
Jevons (1835 - 1882) with his Theory of political economy (1871), and C. Menger
(1840 - 1921) with Grundsätze der Volkswirtschaftslehre (1871). As a result of Ri-
cardo’s theoretical lead (explicitly acknowledged by Walras in the introduction to
the Elements of pure economics) and the impacts of early (nineteen century’s) eco-
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nomic growth, natural resources were almost completely neglected by neoclassical
economists until the end of the 1960s.

However there is no rule without exception. The German economist Faustmann
developed optimal reforestation rules in 1849. The American economist Gray (in
1914) can be credited as the first to develop a systematic approach to the economics
of exhaustible resources. The modern approach can be traced back to H. Hotelling’s
path-breaking work on the Economics of exhaustible resources (1931).

As in China and India today, in the 1950s and 1960s, western and middle con-
tinental Europe saw vigorous economic growth and resource conservation disap-
peared from the individual and political agenda.

By the end of the high-growth era in the late 1960s environmental degradation
and resource exhaustion had became more apparent and the first Club of Rome re-
port, compiled by D.H. Meadows et al (1972) and entitled The Limits to growth,
aroused enormous political interest and also led to the foundation of modern re-
source (and environmental) economics.

1.3.3 Resource Economics and Politics since the 1970s

Economists are often accused of not dealing with real word problems and of concen-
trating too heavily on theoretical modeling of no practical relevance. Nevertheless,
following the first oil price shock in 1973, several prominent economists investi-
gated the question of whether never ending economic growth is at all feasible given
finite exhaustible resources. The results of the subsequent symposium on ‘economic
growth and exhaustible resources’ were published in a special issue of the Review of
Economic Studies in 1974 and were seen at the time as the answer of the economic
profession to the doomsday or neo–Malthusian forecasts of Meadows et al (1972).

With the fall of oil prices in the 1980s (after their hike in 1979 due to the Iran
crisis), some economists such as J. L. Simon and H. Kahn (1984) appeared on
the scene and began to stress the almost unlimited potential of natural resources.
Counter arguments also appeared, for example from R. Repetto (1985) at the World
Watch Institute who pointed to clear limits on both resources and the environment.
A fundamental change in perspective also took place in that economic growth was
perceived to be a great risk for renewable rather than exhaustible resources. While
the latter tend to be protected from overexploitation by the presence of property
rights, such rights are often absent from renewables. The resulting lack of market
incentives thus leads to relatively greater vulnerability.

If intertemporal and intergenerational efficiency cannot be adequately ensured
by the market system, it is only natural to ask which benchmark should be used in
practice in order to govern private resource utilization. The answer was provided
in the so-called Brundtland report entitled Our common future (WCED, 1987, 40).
‘Sustainable Development’ is here defined as development which ‘seeks to meet the
needs and aspirations of the present without compromising the ability to meet those
of the future.’ Not surprisingly, sustainable development so defined, focuses on in-
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tergenerational equity rather than on intergenerational efficiency. Moreover, from an
ecological perspective, here sustainable development also implies the conservation
of essential natural resources, which is clearly at odds with current utilization trends
of exhaustible and renewable resources.

Against these notions of ‘strong sustainability’ authors like Simon (1996) in the
Ultimate resource 2 and Lomborg (2001) in The sceptical environmentalist argue
that human ingenuity has always enabled man to overcome natural resource scarcity
and there is no reason why this should not be the case in the future. While we
accept that such authors are right to combat empirically unfounded pessimism of
entrenched environmentalists and resource conservationists, in our analysis we pre-
fer to leave the long-run perspective open and by focusing on intertemporal general
equilibrium approaches, we merely aim to identify those sufficient conditions which
imply a ‘good’ or a ‘bad’ long-run outcome. Thus, the question we address is not
whether economic development ultimately leads to resource collapse or whether
economic development can deal with relative resource scarcity. We focus instead on
the specific assumptions and conditions which result in the different outcomes.

1.4 Resource Scarcity, Market Equilibrium, Intergenerational
Efficiency and Equity

The basic problem of resource economics is establishing the best use of limited
natural resources by subsequent human generations. From this perspective resource
economics focuses thus on an intergenerational allocation problem. This intergen-
erational dimension of the problem was also stressed by the well-known natural
resource and environmental economists Pearce and Turner, ‘For all we know, it may
be perfectly possible to dispense with natural environments in favor of an encapsu-
lated world of plastics and microchips. But the issue surely is one of how far down
that road we wish to travel, and what regrets we think our grandchildren will have
if we travel down it too far.’ (Pearce and Turner, 1990, xii)

In this section, we review the fundamental concepts we will use in the subsequent
analysis, namely resource scarcity, intergenerational efficiency and equity and how
they can be achieved in competitive market systems.

1.4.1 Intergenerational Scarcity of Renewable Resources

There is a widely held view that non-renewable resources are scarce, i.e. that the
demand for non-renewable resources is larger than the supply, while renewable re-
sources are not, since they regenerate themselves. However, this view involves a
misunderstanding in that scarcity is defined with respect to an absolute amount. In
reality, scarcity comes about when demand is large relative to supply. For exam-
ple, if at some point in time the demand for a renewable resource is larger than the
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supply coming from natural regeneration and harvesting, the resource is scarce, and
society has to decide which of the competing resource uses are to be satisfied and
which not.

If contemporary and subsequent generations can be said to be in competition
for the use of renewable resources, resource scarcity means that the needs of ev-
ery generation in every period can not be satisfied in spite of natural regeneration.
Hence, the real question is how the present generation may harvest renewable re-
sources such that sufficient regeneration capacity remains intact for future genera-
tions. Since not all generations can be satisfied simultaneously it is rational to figure
out an allocation which satisfies the needs of subsequent generations as much as
possible. Following Pareto (1909), a mathematical solution to this problem of inter-
generationally efficient allocation has been found. This is employed, together with
an abstract market solution, in the next subsection.

1.4.2 Intergenerational Efficiency and Intertemporal Market
Equilibrium

Before delving more deeply into the intertemporal allocation problem, it is useful
to distinguish natural resources according to their respective time horizon of regen-
eration. A truly intertemporal allocation problem arises only for resources which
regenerate from one year to the next. In Table 1.2 natural resources are differenti-
ated in terms of time span of natural regeneration.

Table 1.2 Natural resources and their horizon of regeneration

Time horizon of
regeneration

Period of utilization Examples Theoretical concept

<1 year Immediately after
ripening

Fruits, corn Static market model

1–150 years Following intertemporal
optimization

Fish, forest Theory of renewable
resources

100–1000 years Following intertemporal
optimization

Atmosphere (CO2),
biodiversity

Theory of renewable
resources

>1000 years Following intertemporal
optimization

Copper, crude oil, coal, ... Theory of exhaustible
resources

Adapted from Ströbele (1987, 13).

Roughly speaking, a resource harvesting path is intergenerationally efficient, if
there is no other harvesting path along which one generation achieves a higher utility
level and no other generation suffers a utility loss. It can be shown (see, e.g. Varian,
1986) that this definition is equivalent to the mathematical problem of maximizing
the utility of the present old generation subject to the constraints that the present
and subsequent future generations obtain certain utility levels. It is important to ac-
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knowledge from the outset that in current parliamentary democracies no institutions
exist to ensure intergenerationally efficient allocation. Intergenerational efficiency
is a benchmark concept against which real mechanisms for allocating renewable
resources across different generations may be compared, e.g. market or electoral
mechanisms.

Markets in societies with an extended division of labor and an associated disper-
sion of knowledge among individuals (Hayek, 1945) (1) induce individuals to trans-
mit their subjective knowledge to other individuals in need of this knowledge and
(2) control subjective errors in knowledge acquisition and transmission among indi-
viduals (Hayek, 1979). While in reality markets and entrepreneurial competition are
clearly indispensable in directing knowledge acquisition through time, mainstream
economics normally tends to assume that the knowledge problem has already been
solved and simply aims to provide a mathematical model of market economies fo-
cusing on balances of supply and demand across all markets (general market equi-
librium).

As part of mainstream economics, intertemporal resource economics thus works
with the mathematical model of an intertemporal market equilibrium in which
households and firms maximize their utility and profit functions over more than one
period and in which markets for factors and products clear in every period. Typi-
cal questions here concern an analysis of the existence and stability of intertemporal
equilibria, including the possibility of steady state solutions. Once assured of the ex-
istence and stability of intertemporal market equilibria the main question becomes:
Under which conditions do intertemporally optimal individual harvesting decisions,
coordinated by price systems extending over time, lead to an intergenerationally
efficient allocation. In particular, is a steady-state market equilibrium long-run in-
tergenerationally efficient?

1.4.3 Intergenerational Equity (Sustainability) versus
Intergenerational Efficiency

At the latest, since the publication of the Brundtland report, the idea of intergenera-
tional efficiency as the main benchmark in evaluating real world allocation mecha-
nisms has been severely questioned. The problem is that intergenerational efficiency
is compatible with an extremely unequal distribution of utilities across subsequent
generations. Even though classical economists like J. S. Mill and K. Marx had dealt
with the concept of intergenerational equity, it did not figure prominently in eco-
nomic reasoning until the Brundtland report popularized the idea in the form of
‘sustainability’ and suggested it to be used as substitute for or together with inter-
generational efficiency.

As a result of political differences between advanced and developing countries
the sustainability notion expressed in the Brundtland report had to remain relatively
vague. It was left to (economic) science to clarify the concept. Following Hanley
et al (2007), two different notions of sustainable development (sustainability) can
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be distinguished: the ‘outcome approach’ and the ‘opportunities approach’. Accord-
ing to the outcome approach, development is sustainable if the utility of subsequent
generations does not decline over time. The second approach focuses on the means
(capital) which are available to society to generate utility (welfare). On distinguish-
ing four types of capital, namely man-made capital, human capital, natural capital
(i.e. natural resources), and social capital, development is said to be sustainable if
one or more types of capital does not decline over time.

Irrespective of which sustainability notion is used it is obvious that intergener-
ational efficiency and sustainability are different concepts. Less obvious is the re-
lationship between the two concepts. For most economists (see e.g. Farzin, 2006)
according to the outcome approach intergenerational efficiency is a necessary con-
dition for sustainability. Another question here is whether the ‘deep’ parameters of
decentralized market economies allow for the existence of sustainable development
in the sense that natural capital does not decline over time (see Mourmouras, 1991;
Farmer, 2000). To answer these and other questions analytically, we need fully spec-
ified intertemporal equilibrium models. The sort of equilibrium models we use is
described in the next section.

1.5 General Equilibrium Models

Following mainstream resource economics (see e.g. Dasgupta and Heal, 1979; Con-
rad and Clark, 1987; Pearce and Turner, 1990; Neher, 1990; Conrad, 1999; Perman
et al, 2003), we tackle the problem of optimal resource utilization by utilizing math-
ematical models representing equilibria between supply of and demand for eco-
nomic goods and natural resources.

In equilibrium models the notion of partial equilibrium is to be distinguished
from that of general equilibrium. In resource economics, partial equilibrium models,
e.g. addressing optimal harvesting of a fish stock or a forest under different property
rights regimes, predominate. Despite the great detail which can be included in this
partial equilibrium approaches, the question of resource scarcity and the resulting
implications for sustainable development cannot be properly addressed within such
a framework. Considering that natural resources (like oil) are, similar to labor, an
input into the production of not only a small set of commodities but of the whole
set of commodities produced in modern economies, resource scarcity can pose a
fundamental threat to economic growth in the long run. Thus, we focus here on
general equilibrium models where natural resources are analyzed in their role for
commodity production and consumption.

Among general equilibrium models, temporary (i.e. one-period) and intertempo-
ral general equilibrium models are to be distinguished. As mentioned above, in this
book we focus on natural resources which are more than one period in existence. As
a consequence, the agents in our general equilibrium models are confronted with in-
tertemporal decision problems. The intertemporal nature of the main decision prob-
lem is described in the next subsection.
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1.5.1 Intertemporal General Equilibrium Models

Intertemporal (general) equilibrium models deal with the optimal use of natural re-
sources and economic goods over time whereby current use constrains future utiliza-
tion. As usual, optimality begs the question of for whom the use of a natural resource
is optimal. In our basic model both the resource owner (if any) and a central planner
optimize. The former optimizes in order to satisfy his or her own interests, while
the latter is assumed (first by Pigou, 1920,1962) to act as an agent of as yet unborn
future generations.

Intertemporal optimality (efficiency) resolves the trade-off between the current
and future use of a natural resource in limited supply in both the present and the
future. Or in other words: How much should the owner of the resource or the central
planner use up now at the expense of use tomorrow?

There are two main types of intertemporal general equilibrium models: the model
with overlapping generations (OLG) and the model with infinitely lived agents
(ILA). Their commonalities and differences are dealt with in the next subsection.

1.5.2 Overlapping Generations versus Infinitely Lived Agents

As the name suggests, in the intertemporal general equilibrium model with one or
many infinitely lived agents the planning horizon of the agent(s) equals the number
of time periods the economy exists: namely infinity. There is no generation overlap.
In most ILA models there is only one agent who is representative for all agents in
the economy.1

In contrast, in intertemporal equilibrium models with overlapping generations
the planning horizon of agents comprises a smaller number of periods than the econ-
omy exists. In the now classical version (Samuelson, 1958; Diamond, 1965), agents
live for two periods and overlap for one period. As a consequence, the economy
and the natural environment are long-lived, while the agents are short-lived. Natu-
ral resources serve, either as substitute for or in addition to man-made capital, as
important store of value between generations. This basic demographic setting thus
provides us with a structure in which intergenerational conflict and the limited con-
cern of present generations for future generations can generate problems of resource
overuse and a decline of consumption over time.

1 For an overview on ILA models with renewable resources, see e.g. Clark (1990); Johannson and
Mäler (1985).
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1.5.3 The Intergenerational Conflict and the Lack of Property
Rights

The OLG structure allows for outcomes in the economic process in line with the
‘litany’ described by Lomborg (2001, 4):

‘Our resources are running out. The population is ever growing, leaving less and
less to eat. [...] The planet’s species are becoming extinct in vast numbers - we
kill off more than 40,000 each year. The forests are disappearing, fish stocks are
collapsing and the coral reefs are dying.’

While Lomborg (2001, 4) tries to show by careful statistical analysis that this
standard litany ‘does not seem to be backed up by the available evidence’, many en-
vironmentalists and other ‘friends of the earth’ remain unconvinced. To their mind,
the capitalist system is governed by a morally unchecked profit motive which re-
sults in detrimental environmental impacts. Not only is nature forced to become a
victim of capitalist greed and unfettered market competition, man himself also has
to bear the ‘silent costs’ of economic progress (= overuse of human capital) which
are estimated to be as large as 10 to 12 percent of gross domestic product (Leipert,
1989).

While not precluding overuse and even exhaustion of natural resources over time,
the OLG approach to intertemporal resource economics requires that the belief in
capitalism as the sole cause of all resource problems be qualified. The main con-
clusion from the following model analysis is that intertemporally and intergenera-
tionally inefficient overuse of natural resources can only be attributed to the com-
petitive market system if exclusive property rights to them are lacking.

1.6 Outline of the Book

In closing the first part of this book, Chap. 2 clarifies the different stances towards
the compatability (or incompatability) of natural resource use and economic growth.

To avoid unnecessary complication, we focus in Part II on a competitive mar-
ket economy with economically abundant natural resources. This assumption of
resource abundance allows to exclude natural resources from our modeling frame-
work and will thereby serve as a benchmark for our later analysis including natural
resources. We start our model analysis by characterizing the intergenerationally ef-
ficient market allocation in Chap. 3. The next step, taken in Chap. 4, is to analyze
under which conditions an intertemporal market equilibrium is intergenerationally
efficient in the short run, while in Chap. 5 we focus on long-run intergenerational
efficiency and optimality of the market equilibrium in the steady state.

With this analytical tools at hand, we are then in Part III in a position to broaden
our approach by explicitly taking account of natural resources as inputs to produc-
tion and store of value. Thus, in Chap. 6 the notion of resource regeneration and
harvesting are introduced in our basic modeling framework. We again start by char-
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acterizing the conditions for short-run intergenerational efficiency before moving on
to the conditions for long-run intergenerational efficiency. In Chap. 7, we derive the
intertemporal market equilibria under different property rights regimes and discuss
whether these equilibria are compatible with short-run and long-run efficiency.

The question of intergenerational equity, namely under which conditions eco-
nomic growth is sustainable, is addressed in Part IV. In Chap.8 the scope for sus-
tainable economic growth under linear regeneration is dealt with, while in Chap. 9
the feasibility of sustainable development with logistic regeneration is investigated.

In Part V, entitled ‘Shocks to Harvest Technology and Natural Regeneration’,
we integrate costly resource harvest depending inversely on the resource stock
(Chap. 10), and analyze in Chap. 11 the consequences of shocks to either the regen-
erative ability or to harvest costs both on the steady state and during the transition
path.
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Chapter 2
Economic Growth and Natural Resources

2.1 Introduction

From the previous chapter we know that natural resources can be distinguished in
terms of whether they are renewable or not, whether they are used as consumption
good or as input to production, whether private property rights are defined or not,
and whether they can be reused or not. Depending on these various characteristics,
natural resources might either promote or limit economic growth. For instance, new

tential, e.g. based on solar radiation, or sources of non-renewable resources might
be used up and thus restrain growth. The purpose of this chapter is to clarify the dif-

and economic growth.
In the next section different views with regard to economic growth and natu-

economics of GDP growth follows. In Sect. 2.4 the feasibility of economic growth
under exhaustible fossil resources is considered.

2.2 Economic Growth and the Use of Natural Resources:
Differing Views

growth is the main cause of environmental degradation and resource exhaustion. In

economic growth and natural resources. Colby (1990) introduced a much more dif-
ferentiated description based on five paradigms of environmental management and
development. This is reproduced (in a slightly simplified form) in Table 2.1.

19

ferent stances towards the compatibility or incompatibility of natural resource use

In terms of ‘green philosophy’ (e.g. Meadows et al, 1972; Daly, 1990), economic

ral resource utilization will be presented. Then, a short digression on the political

renewable sources of energy might become available and thus enhance growth po-

this is only a very rough characterization of the main opposing views concerning
environmental pollution and conserve resources for future generations. However,
contrast, in mainstream economics economic growth provides the means to reduce

K. Farmer and B. Bednar-Friedl, Intertemporal Resource Economics: An Introduction 
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It is not difficult to see that the approach taken in intertemporal resource eco-
nomics lies somewhere between the paradigms of environmental protection and re-
source management in Table 2.1. Since economic growth figures prominently within
frontier economics and economic development in general it is important to elabo-
rate a little bit more on its role. Table 2.2 contains the arguments for and against
economic growth.

Table 2.2 The arguments for and against economic growth

Economic growth is good, because Economic growth is bad, because

+ more goods are better
+ technological unemployment remains

low
+ in growing economies, redistribution

of income growth easier than of in-
come levels

+ financing of development aid by
highly developed countries easier

+ lower trade barriers in advanced
economies for products from develop-
ing countries

+ environmental protection and resource
conservation easier to finance

- without resource saving technological
progress, higher resource exploitation

- without labor protection, pressure on
unqualified workers rises

- infinite economic growth exhausts in-
dispensable and non–substitutable nat-
ural resources

To get a better understanding of the factors promoting and hampering economic
growth in advanced economies we will use a simple analytical framework. By eco-
nomic growth we mean the annual growth rate of gross domestic product (GDP),
denoted by Yt , which can be expressed formally by:

gY
t ≡ Yt+1 −Yt

Yt
, (2.1)

where t stands for period of time. The most general approach begins by distinguish-
ing those factors which contribute to economic growth. The main economic con-
tributions to GDP and its growth derive from man-made capital stock K, the labor
force or working population L and labor productivity τ . Proceeding as above for the
definition of the growth rate of GDP, the corresponding growth rates of the capital
stock and the working population are:

gK
t ≡ Kt+1 −Kt

Kt
, (2.2)

gL
t ≡ Lt+1 −Lt

Lt
, (2.3)

while exogenous and time-stationary labor augmenting technological progress (i.e.,
the growth rate of labor productivity) is denoted by gτ .
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When the economy depends on natural resources, the extraction of non-renewable
resources S and harvesting of renewable resources R contribute to output. Since the
extraction of the non-renewable resource stock is, by definition, equal to the de-
crease of its stock, the extraction rate of non-renewable resources in period t is
given by:

gS
t ≡

St+1 −St

St
, (2.4)

while the per–period harvest rate of the renewable resource stock is denoted by eR
t .

If moreover the quality of the environment influences output (e.g. the quality of
air and water), the state of the environment, denoted by Q, should be considered too.
The deterioration rate of environmental quality in period t is then:

gQ
t ≡ Qt+1 −Qt

Qt
. (2.5)

Before being able to denote a general identity for GDP growth, let constant
production elasticities be denoted by αK for man made capital, by αL for labor,
by αS for non-renewable resources, by αR for renewable resources, and by αQ for
environmental quality. These production elasticities indicate the percentage GDP
increase for a one percent increase in respective output. As usual, under constant
returns to scale, the total of all production elasticities equals one.

Thus, GDP growth can be described as the product of economic factors (first set
of parentheses) and ecological factors (second set of parentheses):

gY
t ≡ (

αKgK
t +αLgL +αLgτ)

(
αSgS

t +αReR
t +αQgQ

t

)
. (2.6)

The beauty of this growth identity is that it can be used to explain the following
different growth scenarios: (1) economic progress over time, (2) economic crash
in the medium to long term, and (3) ‘ecological’ development, corresponding to a
sustainable development path. We will consider each of these scenarios in turn.

Scenario 2.1 (Progress scenario). In an early phase of economic development per
capita income is low, natural resources are abundant, and environmental pollution
is low due to low economic activity. Formally, this scenario results from the general
growth identity when αQ = 0 and αSgS

t +αReR = 1. Taking this into account, (2.6)
becomes:

gY
t = αKgK

t +αLgL +αLgτ .

In a steady state the GDP growth rate is time-stationary, i.e. gY
t = gY , and GDP

and man-made capital grow at the same rate, i.e. gY = gK . In other words, the
capital/output ratio (capital coefficient) is time-stationary, which accords well with
one of the ‘stylized facts’ of growing advanced economies first explored by Kaldor
(1961).

Assuming constant returns to aggregate production, it follows that αK = 1−αL.
As a consequence, (2.6) becomes eventually:
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gY = gL +gτ . (2.7)

Here we encounter the core of neoclassical growth theory of the 1950s and 1960s
(see Solow, 1956): In the long-run the GDP growth rate is solely determined by
the growth rate of the working population and the growth rate of labor productivity.
Ecological and environmental factors do not have any impacts on the long-run GDP
growth rate. Hence, neoclassical growth theory is encapsulated by the paradigm
of frontier economics in Table 2.1. This scenario is well suited to early phases of
economic development and catch-up growth typically found in the post-war period
or the period of transition from central planning to market economy.

Scenario 2.2 (Crash scenario). This scenario is characterized by the complete ex-
haustion of non-renewable resources (gS = 0) and by the destruction of regeneration
capacity of renewable resources (eR = 0). It is easy to see that under these assump-
tions the growth identity 2.6 becomes:

gY =
(
αQgQ)(αKgK +αLgL +αLgτ) . (2.8)

Since gQ < 0, i.e. the environment deteriorates over time, equation 2.8 implies
that the steady-state growth rate becomes negative. Obviously, a negative time-
stationary growth rate cannot be upheld indefinitely, as sooner or later the economy
must collapse.

Roughly speaking, it is this crash scenario which all non–frontier economic
paradigms consider to be the long-run outcome of frontier economics. It is therefore
no surprise that the paradigm of frontier economics, with neoclassical growth the-
ory as its most prominent proponent, has lost considerable prestige since the 1970s
and that the paradigms of environmental protection and resource management have
become established subdisciplines of economics.

Scenario 2.3 (Ecological scenario). To derive the ecological scenario from the
growth identity 2.6, assume that labor and man-made capital input do not grow, i.e.
(gK = gL = 0), technological progress is completely undermined, i.e. gτ = 0, non-
renewable resources are completely preserved, i.e. gS = 0, and renewable resources
are harvested to such an extent that they only regenerate biologically, i.e.

eR = gR
t ≡ Rt+1 −Rt

Rt
. (2.9)

Given these assumptions it is easy to see that the growth identity 2.6 implies zero
GDP growth, gY = 0. However, it is clear that zero growth does not imply a zero
production level. Actually, the GDP level is determined by an aggregate production
function with time-stationary man-made capital, labor, and harvest of renewable
resources as inputs:

Y = F(K,L,eR). (2.10)

While from the point of view of the eco–development and deep–ecology paradigms
in Table 2.1, such an ecological scenario is highly desirable, it is highly unlikely,
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even in advanced countries, that voters would find it acceptable. The reason is that
without labor-saving technological progress, i.e. gτ = 0, real wages cannot grow and
it stretches the belief to expect workers or their representatives to voluntarily vote
for zero-growth of real wages.

How can such questions be resolved in advanced parliamentary democracies? A
brief schematic answer is attempted in the next section.

2.3 Political Economics of GDP Growth: A Digression

Consider now a sovereign nation governed by a parliamentary democracy where the
citizens have the right to decide by a plebiscite whether the progress scenario or the
ecological scenario should be implemented in their country (The crash scenario is
not considered as a desirable alternative).

Besides this single electoral decision concerning the two scenarios there is also
an ongoing and implicit decision mechanism in the form of consumer purchasing
(consumer sovereignty). We assume here that consumer goods are sold on compet-
itive markets and that consumers are fully aware of the ecological consequences of
their buying decisions.

However, the political and economic preferences either for growth and against
resource conservation, or against growth and for resource conservation, vary widely
across citizens and consumers. How can the collective preference for one of the two
scenarios be derived from individual preferences?

As concerns the collective economic preferences, the answer is clear: through
the aggregate demand for an ecologically less or more friendly good. If the latter
is larger than the former, producers of the less resource intensive good will win
and the suppliers of the other good will lose. Hence, consumers as buyers of goods
have ‘voted’, via their marginal propensity to pay, for the ecological and against the
progress scenario.

As known from social choice, a consistent collective political preference is ob-
tained from individual political preferences through preference aggregation pro-
vided the individual political preferences are single-peaked. Under this assumption
the theory of public choice tells us that the collective political preference order cor-
responds to the individual political preference of the median voter (Persson and
Tabellini, 2002).

Both the economic and the political collective preference is based on the indi-
vidual economic-ecological preferences or utility function u of a consumer-citizen
h = 1, ...,H:

uh = uh(ch, f h,Q), (2.11)

whereby ch denotes consumption per capita, f h is leisure, and Q is environmental
quality.
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Fig. 2.1 Possibility and desirability of GDP growth

2.4 Economic Growth and Non-Renewable Resources: An
Overview

After the publication of the first report to the Club of Rome (Meadows et al, 1972)
and the first oil price shock in late 1973, the public in advanced countries quickly
became aware of the finiteness of fossil resources such as oil and natural gas. Fore-
casts of the end of economic growth became common. In reaction to this, eminent
economists such as R. Solow and J. Stiglitz initiated a symposium on the possibil-
ity of perpetual economic growth under finite fossil resources. The basic insights
revealed are summarized below.

A basic question concerning unlimited economic growth with finite fossil re-
sources relates to the conditions under which the economy can grow without be-
ing constrained by a lack of fossil resources. Limited non-renewable resources are
compatible with unbounded economic growth under three different constellations:
(1) when non-renewable resources are not scarce economically, (2) when fossil re-
sources are unnecessary or inessential for production, or (3) after the advent of a
backstop technology.

Before being able to discuss these cases in more detail, let us first review the
concepts of necessary and essential inputs in production. To do this, we have to dig
a little deeper into different forms of aggregate production technologies F(K,gS).
Here F denotes aggregate production as a function of services of man-made capital
K, and extraction gS of the non-renewable resource S.

There are two main types of production functions in the theoretical and empirical
literature, Cobb-Douglas (CD) and constant elasticity of substitution (CES). The CD
production function has the general structure
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F(K,gS) = MKαK (gS)αS ,

where M > 0 denotes a constant scaling parameter, and αK > 0 and αS > 0 as before,
denote production elasticities. Furthermore, constant returns to scale requires that
αK +αS = 1. The CES production function can be denoted by

F(K,eS) = M
(

αKK−ϑ +αS(g
S)−ϑ

)−χ/ϑ
,

where M,χ ,αK ,αS > 0, and −1 < ϑ �= 0. It can be shown that the CD production
function is a special case of the CES functional form as ϑ goes to zero at the limit.

A further analytical tool used to characterize aggregate production functions is
the elasticity of substitution between K and gS, denoted by ρ and defined by

ρ ≡ d(K/gS)/(K/gS)

d(FK/FS)/(FK/FS)
.

For the elasticity of substitution of the CES production function we get ρ = 1/(1+
ϑ) and hence the elasticity of substitution is constant and does not vary with K/gS.

With these analytical tools at hand, we are now able to define exactly the neces-
sity and essentialness of non-renewable resources in production.

Definition 2.1. An non-renewable resource is necessary if output is zero whenever
the quantity of the input of the non-renewable resource is zero, i.e. F(K,0) = 0. An
non-renewable resource is essential if consumption per capita declines over time
whenever the quantity of the input of the non-renewable resource is zero, i.e. gS =

0 ⇒ gC/L
t ≤ 0, whereby C/L denotes consumption per capita.

Clearly, with regard to the CD production function both inputs are necessary. In
contrast, it is not easy to see that in the case of CES production technology all
inputs are necessary if ϑ > 0, while all inputs are not necessary if ϑ < 0. Looking
at the definition of the elasticity of substitution ρ above, it can be seen that no input
is necessary where ρ > 1, and all inputs are necessary where ρ < 1. Thus, we are
led to the following proposition.

Proposition 2.1. If the elasticity of substitution between man-made capital and the
input of the non-renewable resource equals one, i.e. ρ = 1 and the production elas-
ticity of capital is larger than the production elasticity of the resource input, i.e.
αK > αS, and if there is no technical progress and no population growth, then the
non-renewable resource is not essential, and non-declining consumption per capita
is feasible over an indefinite time. This is also the case if the non-renewable resource
is not necessary or the elasticity of substitution between capital and the resource is
larger than one.

We are now well prepared to discuss the three possible cases in which limited
non-renewable resources are compatible with unlimited economic growth.
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Case 2.1 (Non-renewable resources are not scarce economically). This case is
nowadays merely of historical interest. While any stock of fossil resource is finite, it
may not be scarce since economic activity and the demand for the resource is so low
that there is in fact relative resource abundance. As a consequence the price of the
resource is zero, or if positive, very low. For example, the very low price of OPEC
oil in the 1950s was an indicator that although clearly finite it was not really scarce.

Case 2.2 (Fossil resources are unnecessary or inessential for production). A sec-
ond constellation for infinite growth with limited non-renewable resources occurs
when the natural resource is neither necessary nor essential for the production of
commodities. Intuitively, if man-made capital and the non-renewable resource are
highly substitutable, i.e. the elasticity of substitution is larger than one, the declining
amount of the resource stock does not lead to a reduction in consumption per capita
since the smaller resource input can be easily compensated by a rising amount of
man-made capital. In the CD-case the resource input is necessary, but still inessen-
tial because due to the relatively higher production elasticity of capital, the decline of
the resource input and the associated output reduction is overcompensated by rising
capital input. Finally, with a growing population, constant per capita consumption
is not possible unless there is sufficiently high technological progress. This even
holds when the elasticity of substitution of the CES production function is less than
unity (all inputs are necessary), provided the share of output going to the resource
is sufficiently low.

Case 2.3 (A backstop technology becomes available). Assume that a so-called
backstop technology (Nordhaus, 1973) emerges which represents a perfect substi-
tute for the non-renewable resource. Also in this case, when the resource is not
necessary, a constant consumption level per capita can be obtained indefinitely. The
world economy turns to the backstop technology (e.g. based on unlimited solar en-
ergy within a hydrogen economy) after the price of the non-renewable resource gets
so high that with a high input of man-made capital, energy can be provided at high
but constant unit cost. As a consequence, the non-renewable resource is not used
any longer.

Figure 2.2 depicts the price and quantity paths of an non-renewable resource, where
extraction costs are zero, and hence the resource price increases exponentially with
a time constant interest rate on financial capital (Hotelling rule). The Hotelling
rule follows from a simple no-arbitrage argument (Farmer, 1987). Suppose that the
owner of an oil well is confronted with the market prices of crude oil in period t and
period t +1, i.e. pt and pt+1 respectively. The resource owner has to decide whether
to extract the resource in period t or in t +1. Suppose further that the revenue from
the extraction can be deposited in a bank at the period’s interest rate r. Under these
circumstances the resource owner will extract in period t, if pt(1+ r) > pt+1. Oth-
erwise, that is if pt(1+r)< pt+1, he will extract in period t+1. The resource owner
is indifferent between the alternatives if pt(1+ r) = pt+1, and in this case in both
periods oil is supplied to the market. Given that the resource demand is larger than
zero at all positive resource prices, only indifference is compatible with resource
market clearing.
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extraction path

price pathdemand

supply = demand

t

pt

gs
t

Fig. 2.2 Extraction path for an non-renewable resource over time (Ströbele, 1987, 42)

For an exogenously given interest rate r, pt(1+ r) = pt+1 represents a simple
difference equation in pt which can be solved recursively as follows. For t = 0 the
equation reads as follows: p1 = (1+ r)p0. For t = 1 we have: p2 = (1+ r)p1 = (1+
r)2 p0. Repeating the procedure T −1 times, we get eventually: pT = (1+ r)T p0. If
we let the length of any period go to zero, this equation turns to: p(T ) = erT p0. This
exponential equation is depicted graphically in the first quadrant of Fig. 2.2 with t
on the abscissa and pt on the vertical axis.

In the second quadrant a unitary elastic resource demand function is drawn with
quantity demanded on the abscissa and the resource price on the ordinate. In the
third quadrant the 45◦ line depicts market clearing: resource supply equals demand
at all price-quantity combinations. Finally, in the fourth quadrant with quantity ex-
tracted on the ordinate and time on the abscissa the extraction path is drawn.

In Fig. 2.3, where only the first quadrant of Fig. 2.2 is depicted, we see, however,
that the introduction of constant unit costs c of a backstop technology ends the
exponential price path and transforms it into a time-stationary one.
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T

c

pt

t

Fig. 2.3 Transition/switch to backstop technology (Ströbele 1987, 46)

2.5 Conclusions

In view of the five paradigms of environmental and resource management, presented
at the beginning of the chapter, intertemporal resource economics lies in between the
paradigms of environmental protection and resource management. Due to neoclassi-
cal growth theory encapsulated by the paradigm of frontier economics GDP growth
is determined solely by economic factors. On the other hand, the paradigm of deep
ecology will hardly win the majority vote in parliamentary democracies. Indefinite
economic growth is compatible with finite exhaustible resources when (i) in stages
of early economic development fossil fuels are not scarce, or (ii) man-made capital
can be easily substituted for fossil fuels and the later are not important, or (iii) a
backstop technology arrives.

References

Colby ME (1990) Environmental management in development. Working Paper 1990:80, World
Bank, Washington

Daly H (1990) Toward some operational principles of sustainable development. Ecological Eco-
nomics 2:1–7

Farmer K (1987) Privatwirtschaftliche Rationalität und volkswirtschaftliches Optimum in der
Ökonomik erschöpfbarer Ressourcen. In: Farmer K, Pfeiffer K, Stattegger K (eds) Ökosys-
temanalyse: Forschungsergebnisse zur Umweltsituation, Leykam, Graz

Kaldor N (1961) Capital accumulation and economic growth. In: Lutz F, Hague D (eds) The Theory
of Capital, St. Martin’s Press, New York, pp 177–222

Meadows D, Meadows D, Randers J, Behrens WW (1972) The limits to growth: A report for the
Club of Rome’s project on the predicament of mankind. Macmillan, London

Nordhaus WD (1973) The allocation of energy resources. Brookings Paper on Economic Activity
1973, Brookings Institution, Washington

Persson T, Tabellini G (2002) Political Economics. MIT Press, Cambridge (Mass.)
Solow RM (1956) A contribution to the theory of economic growth. Quarterly Journal of Eco-

nomics 70(1):65–94
Ströbele W (1987) Rohstoffökonomik. Vahlen, München



Part II
Efficiency and Market Equilibrium under

Resource Abundance



Chapter 3
Intergenerational Efficiency in Log-linear
Cobb-Douglas OLG Models

3.1 Introduction

Based on the three statements presented in Chap. 2, i.e. (i) exhaustible resources
are not scarce, (ii) fossil resources are unnecessary or inessential, and (iii) back-
stop technology is available, it may appear that the definition and characterization of
both intergenerational efficiency and intertemporal market equilibrium are no longer
a problem. Unfortunately, this is not in fact the case. Even when both exhaustible
and renewable resources are economically abundant, and may therefore be excluded
from our modeling framework, an intertemporal market equilibrium may still re-
main intergenerationally inefficient. We intend to show how such a position may
come about in the following pages. By way of illustration we use the most simple
version of the Diamond–type (Diamond, 1965) overlapping generations economy
with log-linear intertemporal utility and Cobb-Douglas (CD) production function.

In the first subsection we introduce the model economy. Then we define and char-
acterize intergenerationally efficient allocations both analytically and graphically.

3.2 The Log-Linear Cobb-Douglas OLG Economy

We now consider an economy existing over an infinite number of periods t =
0,1, · · · ,∞. The economy is populated by a large number of households living for
two periods and firms operating one period each. Households’ decision variables
relating to the first period are indexed by the superscript 1 while the second-period
decision variables are indexed by the superscript 2. In each time period, Lt young
households enter the economy and overlap for one period with the households who
entered the economy one period earlier and who therefore constitute the ‘old’ house-
holds in the current period. In the first period of their lifetime younger households
work, in the second period they are retired. To keep the analysis as simple as pos-
sible, we assume that the number of hours younger households work per period is

33K. Farmer and B. Bednar-Friedl, Intertemporal Resource Economics: An Introduction 
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exogenous. Hence, we can without loss of generality specify that each young house-
hold works exactly one unit of time. Thus, aggregate labor available for commodity
production during period t is equal to Lt .

In each period t, firms produce one homogeneous commodity, denoted by Yt ,
which can be either consumed or invested to augment the next period aggregate
stock of real capital: Kt+1. To produce this commodity, firms employ Nt workers
as well as the services of the real capital stock held by older households at the
beginning of period t. The production technology is specified by the following CD
production function:

Yt = (atNt)
1−α (Kt)

α , 0 < α < 1, (3.1)

where at denotes the efficiency of employed labor (productivity), α is the production
elasticity of capital (for simplicity we deleted the subscript K) and 1−α is the
production elasticity of labor. Labor efficiency is not assumed to be time-stationary
but evolves over time according to the following rule:

at = Gτ at−1, Gτ ≡ 1+gτ, a−1 = 1, (3.2)

where we assume that the growth factor of labor efficiency (productivity) Gτ is
identically equal to one plus the exogenously given growth rate of labor efficiency,
gτ . Hence, technological progress is modeled as labor-augmenting.

We also assume that the working population (number of young households) is
growing over time by an exogenously given growth rate of working population, gL:

Lt = GLLt−1, GL ≡ 1+gL, L−1 = 1. (3.3)

The so–called natural growth factor of the economy is then given by

(at+1Lt+1)

(atLt)
= GLGτ ≡ Gn. (3.4)

Although in each period only the younger generation works, the central planner
has not only to take into account the consumption needs of the younger generation
(where c1

t denotes consumption of a single younger household), but also those of
the older generation (c2

t denoting consumption of a single older household). How-
ever, the aggregate consumption of the younger generation Ltc1

t plus the aggregate
consumption of the older generation Lt−1c2

t cannot be larger than the gross product
Yt plus the non-depreciated capital stock (1− δ )Kt , with δ denoting the exogenous
depreciation rate, minus gross investment Kt+1:

Ltc
1
t +Lt−1c2

t ≤ Yt +(1− δ )Kt −Kt+1. (3.5)

Rearranging this inequality yields another interpretation of the aggregate consumption-
investment constraint:

Ltc
1
t +Lt−1c2

t +Kt+1 −Kt ≤ Yt − δKt , (3.6)
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which says that aggregate consumption plus aggregate net investment cannot be
larger than the net product, i.e. gross product minus capital depreciation. Since the
CD production function is linearly homogeneous, it is useful to turn the aggregate
consumption–investment constraint into per–efficiency–capita terms by dividing the
constraint on both sides by atLt :

c1
t

at
+

Lt−1c2
t

atLt
+

Kt+1

at+1Lt+1

at+1Lt+1

atLt
− Kt

atLt
≤ Yt

atLt
− δ

Kt

atLt
. (3.7)

By utilizing the definition of per-efficiency capital intensity kt = Kt/(atLt) and of
the natural growth factor Gn, this inequality can be rewritten as:

c1
t

at
+

c2
t

at−1Gn + kt+1Gn − kt ≤ Yt

atLt
− δkt . (3.8)

Another constraint the social planner has to respect is that the number of employed
younger households cannot be larger than the labor force:

Nt ≤ Lt , ∀t. (3.9)

Besides the equality and inequality constraints listed so far, the intertemporal (life-
cycle) preferences of younger households with respect to consumption in the work-
ing period c1

t and in the retirement period c2
t+1 also need to be included as input

data in the planners’ optimization problem. These preferences are depicted by the
following log-linear intertemporal utility function:

U1
t = lnc1

t +β lnc2
t+1, β ≡ 1/(1+θ ) , θ > 0, (3.10)

where θ denotes the time preference rate and β is the time discount factor. θ > 0
means that the younger household prefers present over future consumption. It is
also worth noting that the log–linear function is an example of a typical neoclassical
utility function which ensures positive but decreasing marginal utility. Notice also
that all generations adhere to the same intertemporal utility function.

Given the above description of the model economy, we now turn to the definition
and characterization of intergenerationally efficient allocations.

3.3 Intergenerational Efficiency

Before we embark on defining intergenerational efficiency within the model econ-
omy introduced in the previous section, we should remind the reader that this no-
tion is not very common in the literature. One exception, Page (1997, 582) notes
that intergenerational efficiency is usually defined in the sense of intergenerational
Pareto optimality. This simply means that an allocation is intergenerationally Pareto
optimal or intergenerationally efficient ‘if there exists no other feasible allocation
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that improves utility of at least one household without reducing utility of any other
household of any generation’ (Wendner, 2005, 21).

To make more institutional sense of this efficiency notion it can be either seen
as an allocative norm established by a long-lived benevolent social planner, or as an
equilibrium concept as found in cooperative game theory (see Dasgupta and Heal,
1979, chap. 2). In the latter sense, a feasible allocation across generations is inter-
generationally efficient if it cannot be blocked by the grand coalition of all subse-
quent generations. This cooperative interpretation demands that in each period the
younger and the older household meet the producer and all negotiate the period-
specific allocation under the assumption that subsequent generations will do the
same, or in other words that current generations act on the basis of an implicit inter-
generational contract. Thus, whether any of these two interpretations is achievable
in reality is still a matter of debate in the literature.

Starting with the analytical definition of intergenerational efficiency with re-
spect to our log-linear CD economy, we first define an employment–investment–
consumption allocation A∞

0 as follows:

A∞
0 =

〈{
(Nt ,Kt+1) ,

(
c1

t ,c
2
t

)}∞
t=0 |Nt ≥ 0, Kt+1 ≥ 0, c1

t ≥ 0, c2
t ≥ 0

〉
. (3.11)

The next step is to define a feasible employment–investment–consumption alloca-
tion. The formal definition reads as follows:

Definition 3.1 (Feasible intergenerational allocation). An employment–investment–
consumption allocation A∞

0 is feasible if for exogenously given K0, L−1,and a−1 the
allocation fulfills (3.1)-(3.9) ∀t.

Now we are able to define an intergenerationally efficient employment–investment–
consumption allocation.

Definition 3.2 (Intergenerationally efficient allocation). Consider two feasible al-
locations A∞

0 , A∞′
0 . Then, the allocation A∞

0 is intergenerationally efficient if there is
no other allocation A∞′

0 for which utility of the initially old generation is greater or
equal:

U1
−1

(
c2′

0

)
≥U1

−1

(
c2

0

)
, (3.12)

and for which utility of all other generations is strictly greater for some t and at least
equal ∀t:

U1
t

(
c1′

t ,c
2′
t+1

)
≥U1

t

(
c1

t ,c
2
t+1

)
. (3.13)
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3.4 First Order Conditions for Short-Run Intergenerational
Efficiency

This section is devoted to providing the necessary conditions for intergenera-
tional efficiency which can then be used to identify the intergenerationally efficient
employment–investment–consumptionallocation defined in the previous section. To
derive these first order conditions (FOCs) two preliminary considerations are in or-
der.

First, the definition of intergenerational efficiency given above cannot be di-
rectly used to derive these conditions. However, it can be shown (in a static context,
see Mas-Colell et al, 1995, 562) that an intergenerationally efficient employment–
investment–consumption allocation is equivalent to the solution of the following
optimization problem:

max → lnc1
−1 +β lnc2

0 (3.14)

subject to the following constraints:

lnc1
t +β lnc2

t+1 ≥
(
U1

t

)◦
, t = 0,1, · · ·∞, (3.15a)

c1
t

at
+

1
Gn

c2
t

at−1
+Gnkt+1 ≤ (kt)

α +(1− δ )kt , ∀t, (3.15b)

where
(
U1

t

)◦
are the exogenously given minimum levels of consumption for all

other generations but that born in t =−1, and k0 is given.
In problem (3.14)–(3.15b) we have inserted into the aggregate consumption-

investment constraint the CD production function and have assumed that the labor
force is fully employed, i.e. Lt = Nt . In view of the monotonous utility function of
the older household in period 0, it is natural to assume this because otherwise util-
ity could be increased by employing more people and this would contradict utility
maximization—or in other words: unemployment is inefficient.

Moreover, notice that the zero–period older household maximizes its retirement
utility (its consumption from the working period is historically given) subject to two
sets of infinite inequalities. The first set of inequality constraints (3.15a) demands
that the life-time utility levels of subsequent younger generations do not fall below
certain positive minimal levels

(
U1

t

)◦
. This protects the vested rights of coming

generations. The second set of constraints (3.15b) ensures aggregate consumption–
investment levels in all coming periods up to an unknown end of world state.

To circumvent the mathematical problem of an infinite number of constraints
we introduce the Lagrangian associated with the optimization problem above. As
usual, the Lagrangian turns a maximization problem subject to constraints into an
unconstrained maximization problem by adding to the maximand of the original
problem the constraints multiplied by the so-called Lagrangian multipliers, denoted
here by μc

t and φY
t . The advantage of this mathematical trick is that the Lagrangian

is finite, since in the optimum of the Lagrangian, the terms in squared brackets
following the Lagrangian multipliers are all equal to zero.
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L = lnc1
−1 +β lnc2

0 +
∞

∑
t=0

μc
t

[
lnc1

t +β lnc2
t+1 −

(
U1

t

)◦]
+

+
∞

∑
t=0

φY
t β t

[
(kt)

α +(1− δ )kt − c1
t

at
− 1

Gn

c2
t

at−1
−Gnkt+1

] (3.16)

While having solved a mathematical problem, an economic problem still remains.
Diamond (1965) pointed out that as time goes to infinity per–efficiency capital in-
tensity might attain an intergenerationally inefficient level. This is the case when
the capital intensity is dynamically inefficient, i.e. when the real return on man-
made capital (real interest rate) is less than the natural growth rate. Since dynamic
efficiency (a real interest rate larger than or equal to the natural growth rate) is
necessary for intergenerational efficiency (see de la Croix and Michel, 2002, 86),
it follows immediately that at a dynamically inefficient steady-state per–efficiency
capital intensity, intergenerational efficiency cannot hold.

There are several ways to solve this problem. First, one possibility is to restrict
the parameter ranges of the CD production function needed to assure dynamic effi-
ciency of steady state equilibria (as time goes to infinity). In particular, Galor and
Ryder (1991, 389) show that the steady state equilibria are dynamically efficient if
α ≥ 1/2.

Another possibility is to assume a finite number of periods (generations) over
which an intergenerationally efficient allocation is considered. Zilka (1990, 371)
opts for this solution and calls the solution ‘short-run’ (intergenerationally) efficient.
While we adopt this terminology we now face a new problem in that we still need
to determine the capital intensity and the younger consumption at the end of the
planing horizon. Suppose that the last generation which is taken into account enters
the economy at time t = T . Then, we assume that positive minimal levels of kT+1

and c1
T , namely k and c1 are exogenously given.

Under these assumptions a (short-run) intergenerationally efficient employment–
investment–consumption allocation results from the solution of the following opti-
mization problem:

max → lnc1
−1 +β lnc2

0 (3.17)

subject to the following constraints:

lnc1
t +β lnc2

t+1 ≥
(
U1

t

)◦
, t = 0,1, ...,T −1, (3.18a)

c1
t

at
+

1
Gn

c2
t

at−1
+Gnkt+1 ≤ (kt)

α +(1− δ )kt , t = 0,1, ...,T, (3.18b)

kT+1 ≥ k, (3.18c)

c1
T ≥ c1. (3.18d)

The corresponding Lagrangian reads as follows:
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L = lnc1
−1 +β lnc2

0 +
T−1

∑
t=0

μc
t

[
lnc1

t +β lnc2
t+1 −

(
U1

t

)◦]
+

+
T

∑
t=0

φY
t β t

[
(kt)

α +(1− δ )kt − c1
t

at
− 1

Gn

c2
t

at−1
−Gnkt+1

]
+

+φK
T+1 β T+1[k− kT+1]+ μc

T β T [c1 − c1
T ].

(3.19)

The first-order conditions for a saddle-point solution of this Lagrangian are as fol-
lows, where superscript ◦ denotes that the solution is short-run intergenerationally
efficient:

∂L

∂c2
0

=
β

(
c2

0

)◦ −
(
φY

0

)◦

a−1Gn = 0, (3.20a)

∂L

∂c1
t
=

(μc
t )

◦
(
c1

t

)◦ −
(
φY

t

)◦ β t

at
= 0, ∀t, (3.20b)

∂L

∂c2
t+1

=
(μc

t )
◦ β

(
c2

t+1

)◦ −
(
φY

t+1

)◦ β t+1

Gnat
= 0, ∀t, (3.20c)

∂L

∂kt+1
=
(
φY

t+1

)◦ β t+1α [(kt+1)
◦]α−1

+
(
φY

t+1

)◦ β t+1 (1− δ )−

−Gn (φY
t

)◦ β t = 0,∀t, (3.20d)

∂L

∂ μc
t
= ln

(
c1

t

)◦
+β ln

(
c2

t+1

)◦ − (U1
t

)◦
= 0, t = 0, ...,T −1, (3.20e)

∂L

∂φY
t
= [(kt)

◦]α +(1− δ )(kt)
◦ −

(
c1

t

)◦

at
−
(

1
Gn

) (
c2

t

)◦

at−1
−Gn(kt+1)

◦, ∀t, (3.20f)

∂L

∂φK
T+1

= k− (kT+1)
◦ = 0, (3.20g)

∂L

∂ μc
T+1

= c1 − (c1
T

)◦
= 0. (3.20h)

Combining (3.20b)–(3.20d) and eliminating the Lagrange multipliers yields an in-
tertemporally optimal consumption pattern for the younger generation alive in pe-
riod t: (

c2
t+1

)◦

β
(
c1

t

)◦ = α [(kt+1)
◦]α−1

+1− δ , ∀t. (3.21)

The left hand side of (3.21) shows the intertemporal marginal rate of substitution
between working-period and retirement consumption. The right hand side of (3.21)
gives the gross return on real capital invested in period t which equals gross marginal
product of capital at the beginning of period t +1 plus the non-depreciated portion
of one unit invested capital. Thus, short-run intergenerational efficiency demands
that the intertemporal marginal rate of substitution between future and present con-
sumption equals the gross real return factor on one unconsumed commodity unit.
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In maximizing the utility of zero-period older generation, we need to ensure that
no subsequent younger generation suffers a utility loss:

ln
(
c1

t

)◦
+β ln

(
c2

t+1

)◦
=
(
U1

t

)◦
, t = 0, ...,T −1. (3.22)

Furthermore, intergenerational efficiency demands that the aggregate consumption–
investment constraint is binding:

[(kt)
◦]α +(1− δ )(kt)

◦ =
(
c1

t

)◦

at
+

1
Gn

(
c2

t

)◦

at−1
+Gn (kt+1)

◦ , ∀t. (3.23)

The terminal conditions require that kT+1 = k and c1
T = c1.

Finally, (3.20a) needs to hold for t = 0:

β
(
c2

0

)◦ =
(μ0)

◦

a−1Gn . (3.24)

This optimality condition ensures that the older generation in period zero is ready
to accept the consumption level c2

0, which follows from the aggregate consumption-
investment constraint in period zero. In terms of achieving intergenerational effi-
ciency, this the only crucial intergenerational efficiency condition.

3.5 Graphical Illustration of FOCs for Short-Run
Intergenerationally Efficient Allocation

To be able to illustrate the FOCs for short-run intergenerational efficiency we set
T = 1, and we assume for the sake of simplicity that δ = 1 and GL = Gτ = Gn =
1 = a−1 = L−1. Consider now for t = 0,1 the aggregate consumption-investment
constraint. For exogenously given k0 and due to the terminal conditions

(
c1

1

)◦
=

c1 and (k2)
◦ = k, we get for the aggregate consumption-investment constraint for

periods zero and one:

(c1
0)

◦+(c2
0)

◦+(k1)
◦ = (k0)

α , (3.25)

c1 +(c2
1)

◦+ k = ((k1)
◦)α . (3.26)

Note that furthermore (c2
0)

◦ is given from the perspective of the young generation
in period 0. Then, (3.25) can be solved for (k1)

◦ and the result inserted into (3.26)
to yield a unique relationship between the present and the retirement consumption
of a zero-period younger household:

(c2
1)

◦ =
[
(k0)

α − (c1
0)

◦ − (c2
0)

◦]α − c1 − k. (3.27)

This equation, for the exogenously given parameters above, can be termed the in-
tertemporal transformation curve and is depicted in Fig. 3.1. Its slope, the intertem-
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poral marginal rate of transformation (MRT), is determined as follows:

MRT ≡−dc2
1

dc1
0

= α (k1)
α−1 .

c1
0

c2
1

MRT ≡−dc2
1

dc1
0

= α (k1)
α−1

Fig. 3.1 Intertemporal transformation curve and its slope

c1
0

c2
1

MRS ≡−dc2
1

dc1
0

=
c2

1

β c1
0

Fig. 3.2 Intertemporal indifference curve for u
(
c1

0,c
2
1

)
=
(
Ū1

0

)◦
and its slope
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c1
0

c2
1

intertemporal indifference curve

intertemporal transformation curve

(
(c1

0)
◦, (c2

1)
◦)

Fig. 3.3 Short-run intergenerationally efficient allocation
(
(c1

0)
◦, (c2

1)
◦) where MRS = MRT holds

In addition, we also need the intertemporal indifference curve which is also de-
picted in Fig. 3.2. This curve can be derived by setting the intertemporal utility
function of zero-period younger generation equal to the fixed level Ū1

0 and solving
the result for c2

1:

lnc1
0 +β lnc2

1 =
(
Ū1

0

)◦ ⇔ c1
0 ·
(
c2

1

)β
=
(
Ū1

0

)◦⇔ c2
1 =

((
Ū1

0

)◦

c1
0

) 1
β

. (3.28)

The slope of this indifference curve, termed the intertemporal marginal rate of sub-
stitution (MRS), is calculated as follows:

MRS ≡−dc2
1

dc1
0

=
c2

1

β c1
0

.

Equating the intertemporal marginal rate of transformation with the intertemporal
marginal rate of substitution (as illustrated in Fig. 3.3) yields

(c2
1)

◦

β (c1
0)

◦ = α ((k1)
◦)α−1 , (3.29)

which together with equation (3.25) gives two equations to determine the two
unknowns (c1

0)
◦ and (c2

1)
◦. Inserting the solutions for these variables into equa-

tions (3.25) and (3.26) leaves us with two equations to determine the remaining
variables (k1)

◦ and (c2
0)

◦. This shows that consumption of a zero-period older house-
hold c2

0 is not really a parameter, as temporarily assumed above, but an endogenous
variable determined by the whole set of conditions for short-run intergenerational
efficiency.
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3.6 Conclusions

This chapter provided a precise definition and an exact characterization of short-run
intergenerationally efficient consumption allocations within Diamond’s 1965 log-
linear OLG economy. After figuring out the analytical and substantial difficulties
in defining intertemporal efficiency, Zilka’s (1990) definition of short-run intergen-
erational efficiency is adopted, and is characterized by first order conditions. To
illustrate the FOCs graphically, a simplified version of a two-period economy is
used. It turns out that short-run intergenerational efficiency essentially boils down
to the equality of the intertemporal marginal rate of substitution and the intertempo-
ral marginal rate of transformation.

This chapter was devoted to efficiency issues. In the next chapter we introduce
the market analogue to the planner problem, as well as define and characterize in-
tertemporal market equilibria.
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Chapter 4
Intertemporal Market Equilibrium and
Short-Run Intergenerational Efficiency

4.1 Introduction

The main finding of Chap. 3 was that short-run intergenerational efficiency reduces
basically to intertemporal efficiency, or in other words, the specific demographic
assumptions of overlapping generations do not generate results essentially different
from those of infinitely lived agent models described in the seminal Ramsey (1928)
model.

However, the notion of intergenerational or intertemporal efficiency is largely
devoid of any realistic institutional structure, in particular with respect to Hayek’s
‘Great Society’ ‘which does not presuppose the pursuit of specific goals but which
enables individuals who do not know one another intensively and pursue competing
objectives to utilize the specific knowledge of others individuals to pursue their own
objectives.’ (Hayek, 1973, 216) As Hayek (1988) convincingly demonstrated, only
a competitive market economy is able to cope with the problem of acquiring and
utilizing knowledge in a world comprising billions of decentralized agents. Trans-
lated to the present context, the question now is whether the benchmark of short-run
intergenerational efficiency can be realized by a competitive market economy with
overlapping generations.

To answer this analytically we need an abstract model of a competitive market
economy evolving over time. As Farmer and Stadler (2005, 70) argue there are two
theoretical approaches to a competitive market economy: the neoclassical general
equilibrium model of perfect competition developed by Walras (1874) and Pareto
(1909), and later analytically refined by Arrow and Debreu (1954), and the neo-
Austrian theories of market co-ordination and entrepreneurial innovation developed
by Hayek (1963) and Kirzner (1973). Due to its greater analytical tractability, in the
following we utilize the neoclassical approach.

Thus, in the next section the highly abstract institutional framework of the neo-
classical market model is described. Then, the two-layer structure of neoclassical
general equilibrium models, namely the individual optimization problems on the
one hand and the market clearing conditions on the other, is applied. In Sect. 4.5
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the intertemporal equilibrium dynamics is derived from the FOCs for intertemporal
utility and one-period profit maximization and market clearing conditions for all pe-
riods. Finally, a version of the first theorem of welfare economics is applied to the
log-linear CD OLG economy.

4.2 The Institutional Framework

The existence of markets presupposes the definition and implementation of exclu-
sive private property rights with respect to resources and commodities. We thus as-
sume here that man-made capital at the beginning of period zero is privately owned
by the older household. It sells the services of the capital stock to producing firms
and sells any remaining capital stock (after depreciation) to younger household. The
younger household owns its human capital and sells its services to producing firms.
The producing firms own the commodities produced and sell them to the older and
to the younger household.

The resources and commodities the agents own do not in general conform to
the most preferred combination of resources and commodities. To attain the latter,
there is scope for markets, where production factors and produced commodities are
traded. Following Walras (1874), we assume that all markets are highly organized
and that traders are perfectly informed about the current prices at which factors and
produced goods are exchanged.

Moreover, we assume that a single seller or buyer on any factor or product market
cannot influence the market price by his or her decision, i.e. all agents in all markets
are price takers. Even if markets have not yet cleared it is assumed that all traders
base their decision on signals from an imaginary auctioneer such that a uniform
price exists for all items. Finally, under market disequilibrium no quantity rationing
arises—a fact which can be also attributed to the activities of the auctioneer.

As a consequence, the centralized and cooperative decision problem to determine
a short-run intergenerationally and intertemporally efficient allocation is turned into
a series of decentralized and non-cooperative (individual) decision problems. This
allows for huge savings with respect to the costs of revealing and gathering private
information. It also has the consequence that the solution of individual optimiza-
tion problems can be separated from the problem of finding an allocation compat-
ible with the aggregate consumption-investment constraint. However, there is still
the need for a coordination mechanism which processes and correctly transmits the
private information of one market participant to the other market participants and
makes the isolated individual decisions compatible in the aggregate. The market, a
system of flexible and interdependent equilibrium prices, fulfils this socially benefi-
cial function exactly.

In our highly simplified model economy there are only two (relative) prices avail-
able for the coordination of individual decisions: these are the real wage rate wt

(nominal wage expressed in terms of units of the produced commodity) and the real
price of capital services rt which is equal to the real interest rate on savings it plus
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the depreciation rate δ . Clearly, the relative price of the produced commodity is
unity. To simplify a little we assume that the depreciation rate is also unity: δ = 1.

4.3 Individual Optimization Problems

As in the previous chapter, our model economy is characterized by two types of
households, young and old, and one type of production in every period. Every house-
hold born in period t = 0,1, ... lives for two periods, a working period when young
and a retirement period when old. An old household is also alive in the initial period
(t = 0).

Starting with the optimization problem of this old household at the start of the
economy, we assume that it maximizes its lifetime utility subject to its retirement
budget constraint since the consumption of the previous period c1

−1 is historically
given:

maxlnc1
−1 +β lnc2

0 subject to: c2
0 = r0

K0

L−1
. (4.1)

The optimization problem of the younger household in any period t reads as follows:

maxlnc1
t +β lnc2

t+1 (4.2)

subject to:

c1
t + s1

t = wt , (4.3a)

c2
t+1 = (1+ rt+1 −1)s1

t = (1+ it+1) s1
t . (4.3b)

The constraint (4.3a) during working period t demands that consumption c1
t and

savings s1
t of the younger household are equal to the real wage rate wt , while the

retirement period budget constraint (4.3b) requires that consumption c2
t+1 in the

retirement period equals one plus the real interest rate on savings, denoted by it+1.
The typical producer maximizes real profit. This equals the difference between

the quantity of units sold (=produced) of the commodity and the real factor costs,
these consisting of real labor and capital costs in any period t:

maxπt = Yt −wtNt − rtKt (4.4)

subject to:

Yt = (atNt )
1−α (Kt)

α , (4.5a)

Nt ≥ 0, Kt ≥ 0. (4.5b)

The optimization problem of the older household at the start of the economy has the
following trivial solution since there is only one decision variable:
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L−1
(
c2

0

)
= r0K0. (4.6)

To derive the first order condition (FOC) of the younger generation born in any
period t = 0,1, ..., the retirement period budget constraint is solved for s1

t and the
result then inserted into the working period budget constraint which yields the so-
called intertemporal budget constraint:

c1
t +

c2
t+1

rt+1
= wt . (4.7)

Then, we maximize (4.2) subject to (4.7), set up the corresponding Lagrangian L ,
differentiate it with respect to c1

t and c2
t+1, and after eliminating the Lagrangian

multiplier we obtain the following marginal FOC:

1
β

c2
t+1

c1
t

= rt+1. (4.8)

The interpretation of (4.8) is straightforward: For an intertemporal optimal bundle
of present and future consumption the intertemporal marginal rate of substitution
(MRS) between present and future consumption (which equals the time preference
factor times the ratio of future to present consumption) has to be equal to the real
price of capital services, in period t + 1. Figure 4.1 illustrates this intertemporal
utility maximizing solution showing present consumption on the abscissa and future
consumption on the vertical axis.

On utilizing both the intertemporal budget constraint (4.7) and the marginal
FOC (4.8) it is easy to calculate the levels of intertemporal utility maximizing con-
sumption and savings for the working period:

c1
t =

wt

(1+β )
, (4.9)

s1
t =

β
(1+β )

wt . (4.10)

The FOCs for intratemporal profit maximization are easily derived as follows. In-
sert (4.5a) into the profit function (4.4), differentiate the profit function with respect
to Kt and Nt and set the results equal to zero. Using again the per–efficiency capita
notation where kt = Kt/(atNt), the first profit maximization condition requires that
the marginal productivity of labor is equal to the real wage rate:

(1−α)(kt)
α at = wt , (4.11)

and the second that the marginal productivity of capital is equal to the rental price
of capital:

α (kt)
α−1 = rt . (4.12)

Finally, due to the assumption of a constant returns CD production function, maxi-
mum profit is zero or in other words, production equals real factor costs:
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c1
t

c2
t+1

MRS = rt+1

Fig. 4.1 Intertemporal utility maximizing problem

atNtk
α
t = wtNt + rtatNt kt . (4.13)

4.4 Market Clearing Conditions

There are three perfectly competitive markets in each period in the model economy.
Clearing of the commodity market in each period t demands:

atNtk
α
t = Ltc

1
t +Lt−1c2

t +Kt+1. (4.14)

Labor market clearing in each period reads as follows:

Nt = Lt . (4.15)

Clearing of the market for capital services demands:

atNtkt = Kt . (4.16)

However, there are only two relative prices as stated above. Hence, with three equa-
tions and only two endogenous variables in each period a logical inconsistency
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seems to emerge. On employing Walras law, formulated in the following propo-
sition, the inconsistency disappears.

Proposition 4.1 (Walras law). If in each market period t (4.15) and (4.16) hold,
(4.14) also holds.

Proof. Add up the current-period budget constraints of the younger and the older
household, and you get: Ltc1

t +Lt−1c2
t−1 +Lts1

t = Ltwt + rtKt . Since on account of
the assumptions that the markets for labor and capital services clear, we know that
Lt = Nt and Kt = atNtkt . Hence, the fact that maximal profits are zero, i.e. atNtkα

t =
wtNt + rt atNtkt , implies that Ltc1

t + Lt−1c2
t−1 + Lt s1

t = atNtkα
t holds. Clearly, this

equation is equivalent to commodity market clearing if Lts1
t = Kt+1. �

The following proposition shows that the condition Lts1
t = Kt+1 is a consequence

of the market clearing conditions and that therefore aggregate savings of younger
households are equal to the capital stock in the following period.

Proposition 4.2. Clearing of the labor, capital service and commodity market in
each period implies

Kt+1 = Lts
1
t . (4.17)

Proof. Restating (4.14), taking account of (4.13) and (4.3) yields:

wtNt + rtatNtkt = wtLt −Lts
1
t +Lt−1rt s

1
t−1 +Kt+1. (4.18)

Since (4.15) requires that Nt = Lt and since (4.16) requires that atNt kt = Kt , it must
be the case that Kt+1 = Lts1

t ,∀t is true. �
Note that this savings-investment equality does not presuppose a depreciation rate
of one. It also holds for smaller depreciation rates. Moreover, (4.17) forms the basis
for the dynamics of the intertemporal equilibrium derived in the next section.

4.5 Intertemporal Equilibrium Dynamics

The derivation of the intertemporal equilibrium dynamics starts with the savings-
investment equality of the previous section. Dividing (4.17) on both sides by atLt =
atNt = At gives:

Kt+1

At
=

s1
t

at
. (4.19)

Expansion of the left-hand side by At+1 gives:

Kt+1

At+1

At+1

At
= kt+1

At+1

At
=

s1
t

at
. (4.20)

Acknowledging that At+1/At = (at+1Lt+1)(atLt) = Gτ GL ≡ Gn ≈ 1+ gn in (4.20)
and using the resulting expression in (4.17) we receive:
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kt+1 =
s1
t

Gnat
. (4.21)

Inserting (4.11) into (4.10), gives the following expression for st/at :

st

at
=

β (1−α)(kt)
α

(1+β )
. (4.22)

Insertion of (4.22) into (4.21) gives:

kt+1Gn =
β (1−α)(kt)

α

(1+β )
. (4.23)

After defining σ ≡ β (1−α)/(1+β ), the fundamental equation of motion of per-
efficiency capital intensity within the OLG model with natural resource abundance
results:

kt+1 =
σ
Gn (kt)

α , for t = 0, . . . and given k0 =
K0

a0L0
. (4.24)

Figure 4.2 illustrates the fundamental equation of motion of per–efficiency capital
intensity, and determines per–efficiency capital intensity in period t+1 as a function
of per–efficiency capital intensity in period t. Due to the functional form of the
production function (CD technology with constant returns to scale), the larger the
capital stock in period t, the smaller the rate of growth of capital (the slope of the
function) becomes.

Based on the fundamental equation of motion, it is straightforward to derive the
paths of the factor prices and consumption allocation. From the marginal produc-
tivity conditions (4.11) and (4.12) the paths of intertemporal equilibrium real wage
and real capital service price follow:

wt = at (1−α)(kt)
α t = 0, . . . , (4.25)

rt = α (kt)
α−1 , t = 0, . . . . (4.26)

With kt , wt and rt determined for t = 0, . . ., consumption allocation
(
c2

0,c
1
t ,c

2
t+1

)
and

capital intensities kt+1 in the intertemporal market equilibrium are also determined
for t = 0, . . .. Having derived the intertemporal market allocation, it is natural to ask
whether this allocation is intergenerationally efficient in the short run. The answer
is given in the next section.

4.6 Short-Run Intergenerational Efficiency of the Intertemporal
Market Equilibrium

It might be thought that the market allocation described in the previous section need
not necessarily satisfy the FOCs for short-run intergenerational efficiency as defined
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kt

kt+1

k0

k1

k1

k2

Fig. 4.2 The dynamics of per–efficiency capital intensity

in Chap. 3. However, we will show in this section that the consumption allocation
following from an intertemporal market equilibrium over a finite number of market
periods is in fact short-run intergenerationally efficient.

Proposition 4.3 (First theorem of welfare economics). The consumption alloca-
tion

{(
c1

t , c2
t ,
)∣∣ t = 0,1, ...,T

}
and the time path of capital intensities 〈kt+1, t =

0,1, ...,T 〉 along an intertemporal market equilibrium are short-run intergenera-
tionally efficient.

Before embarking on the ‘proof’ of the proposition (strictly speaking it is mere a
demonstration of the equivalence of the FOCs for intertemporal market equilibrium
and for short-run intergenerational efficiency) it seems to be useful to outline the
thinking behind the proof. The idea is to start with the individual FOCs and mar-
ket clearing conditions for an intertemporal market equilibrium. The next step is to
assume that the quantity variables determined by the FOCs for intertemporal mar-
ket equilibrium are equal to the quantity variables following from the FOCs for
short-run intergenerational efficiency. Finally, we have to show that by simple ma-
nipulation of the FOCs for intertemporal market equilibrium, those for short-run
intergenerational efficiency follow.

Proof. Consider first the optimality condition which determines consumption de-
mand of the older household in the starting period t = 0 in the following, slightly
rewritten form (i.e. using (3.3) and (4.24) in (4.6)):



4.6 Short-Run Intergenerational Efficiency of the Intertemporal Market Equilibrium 53

c2
0 = r0k0GLa0. (4.27)

To simplify the exposition without compromising the generality of the argument,
we rewrite the intertemporal budget constraint (4.7) and the FOC of the younger
household (4.3) for T = 1:

c1
0 +

c2
1

r1
= w0, (4.28)

(1+θ )
[

c2
1

c1
0

]
= r1. (4.29)

For periods t = 0,1, the FOCs for profit maximization can be rewritten as:

(1−α)(kt)
α at = wt , t = 0,1, (4.30)

rt = α (kt)
α−1 , t = 0,1. (4.31)

The next step is to divide the zero-period market clearing condition for the com-
modity market (i.e. (4.14) for t = 0) on both sides by a0L0 and expand it for a1L1.
This yields:

L0c1
0 +L−1c2

0 = a0N0 (k0)
α −K1

∣
∣∣
∣

1
a1L1

a1L1

a0L0
. (4.32)

Acknowledging furthermore (3.2), (4.24), (3.3), and Gτ GL ≡ Gn in (4.32) gives

c1
0

a0
+

c2
0

a0GL = (k0)
α − k1Gn. (4.33)

Again, the first-period commodity market clearing condition ((4.14) for t = 1) is
divided by L0

L1c1
1 +L0c2

1 = a1N1 (k1)
α −K2

∣
∣
∣
∣

1
L0

, (4.34)

and using (3.2), (4.24), (3.3), and Gτ GL ≡ Gn we get

GLc1
1 + c2

1 = a1GL (k1)
α −a1GnGLk2. (4.35)

Assume that the remaining variables within the system of intertemporal market equi-
librium equations (4.27)–(4.35) can be substituted for the corresponding variables
which are determined by the FOCs for short-run intergenerational efficiency. Under
this proviso calculate k1 = (k1)

◦ from (4.33), and you will get:

(k1)
◦ =

[(k0)
◦]α

Gn − (c1
0)

◦

a0Gn − (c2
0)

◦

a0GLGn , (4.36)

which is, upon setting GL = Gτ = Gn = 1 = a−1 = L−1, equal to (3.25). Next insert
(4.36) into (4.29) and combine the result with (4.31) for t = 1 to get (3.29) for the
case where GL,Gτ ,Gn,a−1 �= 1 and after using 1+θ ≡ 1/β :
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(1+θ )
(
c2

1

)◦
(
c1

0

)◦ = α

{

Gn−1
[(k0)

◦]α −Gn−1

(
c1

0

)◦

a0
−Gn−1

GL−1

(
c2

0

)◦

a0

}α−1

. (4.37)

The final step is to insert the zero-period commodity market clearing condition
(4.33) into the corresponding first-period condition (4.35) and substitute c1

1 for c1

and k2 for k. Solving the resulting equation for (c2
1)

◦ we get the generalized version
of (3.27) where GL,Gτ ,Gn,a−1 �= 1:

(
c2

1

)◦
= a1GL

{
[(k0)

◦]α

Gn − (c1
0)

◦

a0Gn − (c2
0)

◦

a0GnGL

}α

−Gnc1 −a1GnGLk. (4.38)

�
Proposition 4.3, an application of the first theorem of welfare economics, is illus-
trated in Fig. 4.3. The figure shows the equivalence of the intertemporal market
equilibrium allocation and short–run intergenerational efficiency.

c1
0

c2
1

(
c1

0,c
2
1

)
=
(
(c1

0)
◦, (c2

1)
◦)

Fig. 4.3 Short–run intergenerational efficiency of the intertemporal market equilibrium

4.7 Conclusions

In this chapter we described extensively the institutional framework of perfectly
competitive markets in our log-linear CD OLG economy with abundant natural re-
sources. We derived the FOCs for intertemporal utility and for intratemporal profit
maximization. Together with the market clearing conditions the intertemporal equi-
librium dynamics of per–efficiency capital intensities and associated relative prices
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were derived. In the previous section we demonstrated an application of the first
theorem of welfare economics to the intertemporal market equilibrium in the log-
linear OLG economy. We showed that the conditions for an intertemporal market
equilibrium implied those for short-run intergenerational efficiency.

The reader is reminded that in this chapter we were only able to demon-
strate short-run intergenerational efficiency of the intertemporal market equilibrium.
Thus, in the next chapter we will consider the steady state market equilibrium and
long-run intergenerational efficiency.

References

Arrow K, Debreu G (1954) Existence of equilibrium for a competitive economy. Econometrica
22:265–290

Farmer K, Stadler I (2005) Marktdynamik und Umweltpolitik: Ein Beitrag zur gleichgewichts- und
ordnungstheoretischen Fundierung umweltorientierter Volkswirtschaftslehre. LIT-Verlag, Wien

Hayek AF (1963) Arten der Ordnung. Ordo 14:1–30
Hayek FA (1973) Law, legislation, and liberty: Rules and order. Routledge & Kegan Paul, London
Hayek FA (1988) The fatal conceit: the errors of socialism. Routledge, London
Kirzner I (1973) Competition and entrepreneurship. University of Chicago Press, Chicago
Pareto V (1909) Manual d’ économie politique pure. Girard & Briere, Paris
Ramsey F (1928) A mathematical theory of savings. Economic Journal 38:543–559
Walras L (1874) Elements of pure economics. Irwin, Homewood



Chapter 5
Steady-State Market Equilibrium, Long-Run
Intergenerational Efficiency, and Optimality

5.1 Introduction

In the previous chapter we explored a competitive market economy with overlap-
ping generations along an intertemporal equilibrium path. So far we have not been
able to ascertain whether a market equilibrium with time–stationary per–efficiency
capital intensities (i.e. a non–trivial steady state) does in fact exist, and if it exists,
whether it is dynamically stable. These seminal questions will be investigated in
the next section. Then we will define long-run intergenerational efficiency in our
log-linear CD OLG economy, and provide a characterization of this efficiency no-
tion. In the subsequent section the major question of this chapter will be explored,
namely whether the steady state market equilibrium is long-run intergenerationally
efficient. Moreover, the notion of intergenerational optimality will be introduced
and compared to intergenerational efficiency. Finally, the role of resource augment-
ing technological progress for steady state economic growth is elaborated upon. As
in Chaps. 3 and 4 we continue to assume here that both exhaustible and renewable
natural resources are abundant and hence need not be considered in our model.

5.2 Steady-State Market Equilibrium

First, we have to define precisely what we mean by a steady-state market equi-
librium. A steady-state market equilibrium exists when over an infinite horizon kt

approaches a finite, non-negative value k which can be calculated from the intertem-
poral equilibrium dynamics kt+1 = (σ/Gn)(kt)

α by setting kt+1 = kt = k.
Second, we need to investigate whether a non-negative, finite k exists and

whether there is one or more steady-state solutions. The following proposition gives
a precise answer.
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Proposition 5.1 (Existence of steady states). Within the log–linear CD OLG model
with abundant natural resources, there exist exactly two steady state equilibria for
0 < α < 1. One solution comprises the trivial steady state, i.e. k = 0, and the other
solution is given by the non–trivial steady state k = (σ/Gn)(1/(1−α)).

Proof. The fixed points of the fundamental equation of motion of the intertemporal
equilibrium dynamics (4.24), i.e. where kt+1 = kt = k, result from the solution of
the following equation

Gnk = σkα , (5.1)

and they are as follows: k = 0 and k =
( σ

Gn

) 1
1−α . �

From the existence proposition follows an important corollary which better clarifies
the notion ‘steady state’. The corollary concerns the GDP growth rate associated
with the capital intensity at the non-trivial fixed point. GDP growth is steady-state
since the growth rate does not change over time.

Corollary 5.1. The steady-state GDP growth rate is determined as follows: gY =
Gn − 1. Moreover, the growth rate of the per-capita product gY/L = Gτ −1 is inde-
pendent of the population growth rate.

Proof.

gY
t = GY

t − 1 =
Yt+1

Yt
− 1 =

(At+1)
1−α(Kt+1)

α

(At)1−α(Kt)α − 1 == Gn
(

kt+1

kt

)α
− 1 (5.2)

For kt+1 = kt = k, the GDP growth rate is thus gY = Gn −1, and the growth rate of
the per-capita product is

gY/L
t =

GY
t

GL −1 =
GLGτ

GL −1 = Gτ −1. (5.3)

�
The next question concerns the dynamic stability of both steady state solutions.

The answer is provided by the following proposition. Before we state this proposi-
tion we have to clarify the term ‘asymptotic stability’. Loosely speaking, it means
that the capital intensity dynamics starting from a capital intensity lower (or larger)
than the steady state, automatically approaches the steady state as time goes to infin-
ity. Otherwise, the dynamics is asymptotically unstable. As we will see asymptotic
stability depends on the magnitude of the differential quotient of period t+1 capital
intensity to that in period t, i.e. dkt+1/dkt . If this quotient lies between zero and one,
capital intensity dynamics is asymptotically stable, otherwise it is asymptotically
unstable.



5.2 Steady-State Market Equilibrium 59

Proposition 5.2 (Dynamic stability of steady states). The trivial steady state is
asymptotically unstable, while the non-trivial steady state is asymptotically stable.

Proof. To prove this proposition we first calculate dkt+1/dkt from (4.24). It is eas-
ily seen that dkt+1/dkt = ασ/Gnkα−1

t . Clearly, dkt+1/dkt is larger than one (and
the dynamics is unstable) if kt = 0. On the other hand if kt > 0 the differential quo-
tient is larger than zero. It is also less than one at least in a small neighborhood of

k =
( σ

Gn

) 1
1−α , since for kt = k we have dkt+1/dkt = α , which is less than one by

assumption. �
Figure 5.1 illustrates the stability of the non-trivial steady-state solution k. For

initial capital stocks smaller than k, the capital stock increases towards its steady-
state value while it decreases for initial capital stocks larger than k.

kt

kt+1

k0 k′0k

Fig. 5.1 Stability of non-trivial steady solution k

In a competitive market system capital intensities are determined by firms in re-
sponse to relative factor prices. It is interesting to examine how firms are led by
market signals to adapt non-steady state capital intensities such that the economy
approaches the non-trivial steady state without the directives of a central planner.
Thus, assume the initial capital intensity k0 is less than non-trivial steady-state
capital intensity k. Since gK

0 = K1/K0 − 1 = (K1/A1)/[(A0/A1)/(K0/A0)]− 1 =

k1/(k0/Gn)− 1 = σ(1/k0)
(1−α) − 1 is larger than the corresponding steady-state

growth factor of capital, given by gK = σ(1/k)(1−α)−1 = gA = gn because k0 < k.
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In other words, in period zero capital grows faster than efficiency labor, and labor
becomes scarce relative to capital. As a consequence, real wage increases relative to
real capital price. As we know from the FOCs for profit maximization, profit max-
imizing firms respond to a rising relative wage rate by increasing capital intensity,
and this is the right decision with regard to period-one capital intensity, when the
initial capital intensity is too low relative to steady-state capital intensity (see also
Farmer and Wendner, 1999, 78).

5.3 Long-Run Intergenerational Efficiency

This section is devoted to clarifying the reason behind long-run intergenerational
inefficiency of market allocations in economies with overlapping generations. As
de la Croix and Michel (2002) point out, when there is an infinity of goods and
agents, two aspects of long-run intergenerational efficiency need to be distinguished:
(i) dynamic (in-)efficiency of production when the production frontier is extended
to an infinite horizon set up; and (ii) whether the type of generation considered in
steady state is the younger generation only or also the initial older generation.

Let us start with the problem of dynamic efficiency of production in the infinite
horizon set up. As in Chap. 3 we first define a feasible steady-state capital intensity,
before deriving the related efficiency conditions.

Definition 5.1 (Steady state feasibility). The per-efficiency capital capital stock
k ≥ 0 is feasible in the steady state if per-efficiency capita production kα is at least
large enough to allow for replacement investment Gnk.

It is convenient here to define the difference between production and replacement
investment as ‘net production’, i.e. φ(k) ≡ kα −Gnk. Moreover, let k̄ be the per–
efficiency capital intensity k where net production is zero. It is easy to see that
k̄ = (Gn)1/(α−1). This enables us to identify that level of capital intensity which
maximizes available consumption for the generations living in steady state.

Proposition 5.3 (Golden rule). For all k ∈ (0, k̄) per–efficiency capital is steady-
state feasible. Moreover, there exists a unique capital intensity kGR such that
αkGRα−1

= Gn, which is called the ‘Golden rule’ capital intensity.

Having identified the Golden rule capital intensity, we are now in a position to state
the prerequisites for steady-state dynamic efficiency.

Proposition 5.4 (Steady-state dynamic efficiency). A capital intensity k ∈ (0, k̄)
is steady-state dynamically efficient if k < kGR, while it is steady-state dynamically
inefficient if k > kGR. If α ≥ 1/2, the capital intensity is steady-state dynamically
efficient.

Proof. According to lemma 1 of Galor and Ryder (1991, 388), capital intensity k is
steady-state dynamically efficient if k ≥ [(1−α)/Gn](1/(1−α)) for k ≥ kGR. This is
the case if α ≥ (1/2). �
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Thus, without assuming α ≥ 1/2 we cannot prove intergenerational efficiency of
the consumption allocation in an infinitely lasting intertemporal market equilibrium.
Figure 5.2 depicts a case in which there exist capital intensities for which k < kGR <
k̄, and hence these capital intensities are dynamically efficient.

k

Gnk

kα

kGR k̄

Fig. 5.2 Dynamically efficient capital intensities k < kGR and Golden rule capital intensity kGR < k̄

Having investigated the steady-state dynamic efficiency of production, let us
move on to examine long-run intergenerational efficiency including the household
side. Here we encounter now the second problem mentioned above, namely whether
the initial old generation is included in the efficiency calculus or not. In his semi-
nal article, Diamond (1965, 1128-1129) defines ‘golden age’ paths by excluding
the initial older generation. Here we include the initial older generation since this
follows naturally from the first definition of intergenerational efficiency provided in
Chap. 3, where the utility of the initial older generation is maximized subject to the
constraint that the subsequent younger generations obtain certain utility levels and
that the aggregate consumption and investment constraint is met.

However, in this chapter we assume time-stationary values for capital intensities
and for the consumption variables of all younger generations. Hence, the infinite
number of younger generations’ utility constraints collapses to just one. As is well-
known from standard microeconomics it does not matter for the FOCs for Pareto
efficiency whose household’s utility function is maximized (Mas-Colell et al, 1995,
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562). Hence, in order to obtain Diamond’s 1965 ‘golden age’ paths as special cases,
we interchange the role of the older and the younger household within the efficiency
calculus: the life-cycle utility of the younger generations is maximized subject to
the constraints that the initial older generation obtains a certain utility level and that
the aggregate consumption investment constraint is met. For ease of exposition, we
restate the steady-state consumption levels in per-efficiency capita notation, i.e. c̃1 ≡
c1/a∞, c̃2 ≡ c2/a∞, and c̃2

0 ≡ c2
0/a∞. We start by defining long-run intergenerational

efficiency.

Definition 5.2 (Long-run intergenerational efficiency). The capital intensity k•,
the intertemporal consumption bundle of the younger generation in the steady state
{(c̃1)•,(c̃2)•}, and the consumption (c̃2

0)
• of the initial older generation are long-run

intergenerationally efficient if (k•,(c̃1)•,(c̃2)•,(c̃2
0)

•) is the solution of the following
maximization calculus:

max ln c̃1 +β ln c̃2

subject to:

ln c̃2
0 ≥ ln(c̃2

0)
•,

c̃1 + c̃2
0/(G

L)≤ (k0)
α −Gnk,

c̃1 + c̃2/GL ≤ kα −Gnk.

The corresponding Lagrangian to the above stated problem reads as:

L = ln c̃1 +β ln c̃2 + μc
−1[ln c̃2

0 − ln(c̃2
0)

•]+φ y
0 [(k0)

α −Gnk− c̃1 − c̃2
0/GL]+

+φ y[kα −Gnk− c̃1 − c̃2/GL], (5.4)

where μc
−1, φ y

0 , and φ y denote the Lagrangian multipliers. Upon differentiating this
function, we obtain the FOCs for long-run intergenerational efficiency as summa-
rized in the following proposition.

Proposition 5.5 (Long-run intergenerational efficiency). Long-run intergenera-
tionally efficient capital intensity k•, the intertemporal consumption bundle of
younger generation {(c̃1)•,(c̃2)•} and the consumption (c̃2

0)
• of the initial older

generation can be determined by solving the following FOCs:

(μc
−1)

•/(c̃2
0)

• = (φ y
0 )

•/GL, (5.5)

1/(c̃1)• = (φ y
0 )

•+(φ y)•, (5.6)

β/(c̃2)• = (φ y)•/(GL), (5.7)

α(k•)α−1 = Gn(1+(φ y
0)

•/(φ y)•), (5.8)

(c̃1)•+(c̃2
0)

•/GL = (k0)
α −Gnk•, (5.9)

(c̃1)•+(c̃2)•/GL = (k•)α −Gnk•. (5.10)
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Proof. Differentiating (5.4) with respect to all endogenous variables and with re-
spect to the Lagrangian multipliers, and setting the partial derivatives equal to zero
gives (5.5)–(5.10). �
Diamond’s ‘golden age’ results as a prominent special case of the FOCs for long-
run intergenerational efficiency if we assume that μc

−1 is equal to zero, or in other
words, that the utility demands of the initial older generation and the transition from
a historically given capital intensity towards the efficient intensity are ignored. This
leads us to the following proposition stating the FOCs for golden age paths of long-
run intergenerational efficiency.

Corollary 5.2 (Golden-age paths for long-run intergenerational efficiency). Sup-
pose that (μc

−1)
• = 0. Then, the golden age capital intensity is equal to the golden

rule capital intensity following from α(kGR)α−1 = Gn. The golden-age intertempo-
ral consumption bundle of the younger household {(c̃1)•,(c̃2)•} is determined by
the following FOCs:

(c̃2)•/(β (c̃1)•) = GL, (5.11)

φ(kGR) = (c̃1)•+(c̃2)•/GL. (5.12)

Having thus characterized long-run intergenerational efficiency we are now ready to
ask whether the steady-state market equilibrium capital intensity k, and the intertem-
poral and intergenerational consumption allocation, are long-run intergenerationally
efficient. The next section is devoted to answering this question.

5.4 Long-Run Intergenerational (In-)Efficiency of Steady-State
Market Equilibrium

In the previous chapter we have shown that the intertemporal market equilibrium
in a finite-horizon economy with overlapping generations is short-run intergener-
ationally efficient. It would thus appear natural to suggest that this is also true in
the long run. However, Diamond (1965) already demonstrated that a steady-state
market equilibrium might not be long-run intergenerationally efficient.

To confirm Diamond’s assertion, we first reiterate the relevant steady-state con-
ditions of the competitive market economy by again using per efficiency capita no-
tation:

c̃2
0 = GLα(k0)

α , (5.13)

c̃1 + c̃2/r = w, (5.14)

c̃2/(β c̃1) = r, (5.15)

(1−α)k = w, (5.16)

αkα−1 = r, (5.17)

kα = c̃1 + c̃2/GL +Gnk ⇐⇒ Gnk = σkα . (5.18)
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In order to be able to check whether the steady-state market equilibrium is
long-run intergenerationally efficient, we set (c̃2

0)
• = c̃2

0 = GLα(k0)
α . Imposing this

equality is feasible since it still leaves (c̃2
0)

• undetermined within the efficiency cal-
culus.

The next step is to reduce both the market equilibrium (5.13)–(5.18) and the
efficiency conditions (5.5)–(5.10) to three equations in order to determine, on the
one hand, the three endogenous market variables, k, c̃1, c̃2, and on the other, the
three long-run intergenerational efficiency variables, k•, (c̃1)•, (c̃2)•.

From the steady-state market equilibrium conditions it is easy to see that the three
endogenous market equilibrium variables are determined as follows:

k = (σ/Gn)k1/(1−α), c̃1 = (1−α)/(1+β )kα, c̃2 = αkα−1β c̃1.

While it is not so easy to determine the three efficiency variables a little manipula-
tion of the efficiency conditions reveals the following three (implicit) equations:

(1−α)(k0)
α(1+αβ (k•)α−1/GL) = (k•)α(1+αβ ), (5.19)

(c̃1)• = (1−α)(k0)
α −Gnk•, (5.20)

(c̃2)• = α(k•)α−1β (c̃1)•. (5.21)

At first sight it is not apparent whether the steady-state market solution is long-
run intergenerationally efficient or not. However, if we assume that the initial capital
intensity is occasionally equal to the long-run intergenerationally efficient capital
intensity, i.e. k0 = k•, then the first of the three efficiency equations above implies
that k• = k. This result is not surprising since we assumed that the market economy
started already at the long-run intergenerationally efficient capital intensity. It is also
immediately clear that for an initial capital intensity differing from the long-run
efficient capital intensity the market solution turns out to be long-run intergenera-
tionally inefficient. Indeed, the reader can check by the use of numerically specified
parameters that k0 < k• ⇒ k > k• and k0 > k• ⇒ k < k•, i.e. that when the initial
capital intensity is less than the long-run efficient capital intensity the competitive
market economy ‘over-accumulates’ capital, and otherwise it ‘under-accumulates’
capital.

For the special case that both the initial capital intensity and the utility level
of the initial older generation are ignored in calculating the long-run intergenera-
tionally efficient solution, we are now ready to verify the Diamond (1965) claim
that a competitive market economy does not end up in an intergenerationally effi-
cient allocation.

The FOCs for the golden age paths above now represent the benchmark for the
market solution. We know that

k• = kGR = (α/Gn)1/(1−α), (5.22)

(c̃2)•/(β (c̃1)•) = GL, (5.23)

(kGR)α −GnkGR = (c̃1)•+(c̃2)•/GL. (5.24)
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Since (kGR)α −GnkGR = (1−α)(kGR)α ,

(c̃1)• = (c̃1)GR = (1/(1+β ))(1−α)(kGR)α ,

and
(c̃2)• = (c̃2)GR = (β/(1+β ))GL(1−α)(kGR)α ,

the corresponding consumption quantities of the market solution shown above will
coincide with the efficient quantities if kGR = k or equivalently if (α/GL)1/(1−α) =
(σ/GL)1/(1−α). Clearly, this is only true if σ = α or β/(1+β ) = α/(1−α).

To demonstrate the long-run intergenerational efficiency of Golden rule capital
intensity via an alternative route, start with the asset market equilibrium and the
intertemporal budget constraint and then insert the profit maximizing real wage rate
and real capital price into the equations. This gives:

Gnk = (1−α)kα − c̃1, (5.25)

c̃1 + c̃2/(αkα−1) = (1−α)kα . (5.26)

Solving the first of these two equations for c̃1 and inserting the result into the second
equation, gives k as a positively sloped function of c̃2, denoted by k = k(c̃2):

k ≡ k(c̃2) = (1/(αGn))1/α(c̃2)1/α , with dk/dc̃2 = 1/(α2Gnkα−1)> 0. (5.27)

Inserting this solution for k back into the first of the equations, we get a relation be-
tween c̃2 and c̃1 which is termed the ‘consumption possibility frontier’ in a (c̃2, c̃1)–
diagram:

c̃1 = (1−α)(1/(αGn)c̃2 −Gn (1/(αGn)1/α (c̃2)1/α
. (5.28)

This frontier is depicted in Fig. 5.3. The (negative) slope of this curve is
−dc̃2/dc̃1 = (α2Gnka−1)/(Gn +α(α − 1)kα−1). Clearly, if the capital intensity is
Golden rule, that is αkα−1 =Gn, the (negative) slope of the consumption possibility
frontier equals Gn.

The curve confronting the consumption possibility frontier is the intertemporal
indifference curve which is also depicted in Fig. 5.2. Its slope is the marginal rate of
substitution −(dc̃2/dc̃1) = c̃2/(β c̃1). In the golden rule intertemporal utility maxi-
mum, −(dc̃2/dc̃1) = c̃2/(β c̃1) = r = αkα−1 = Gn. Thus, the intertemporal indiffer-
ence curve most distant from the origin is tangential to the consumption possibility
frontier at the golden rule capital intensity.

However, there is no reason why in general the aggregate saving rate should be
equal to the production elasticity of capital, in which case the market economy need
not end up with an intergenerationally efficient consumption allocation. In partic-
ular, if the saving rate is larger than the production elasticity of capital, there is
‘over-saving’ and ‘over-accumulation’ of capital, leading to a dynamically ineffi-
cient level of capital intensity in the market economy. If, on the other hand, σ < α
there is ‘under-saving’ and ‘under-accumulation’ of capital in the market economy,
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consumption possibility frontier

intertemporal indifference curve

golden age

c̃1

c̃2

Fig. 5.3 Intergenerational efficiency and the Golden rule

kGR

k � kGR

k � kGR

c̃1

c̃2

Fig. 5.4 Intergenerational (in)efficiency of steady-state market equilibria

resulting in a dynamically efficient level of the capital intensity in the competitive
economy. Both of these cases are depicted in Fig. 5.4.

Note, however, that while dynamic efficiency of the capital intensity is a neces-
sary condition for long-run intergenerational efficiency, it is not sufficient. On the



5.5 Intergenerational Efficiency versus Intergenerational Optimality 67

other hand, dynamic inefficient capital intensity is incompatible with long-run in-
tergenerational efficiency since under such circumstances the welfare of at least one
generation can in principle be increased without decreasing the utility of any other
generation.

5.5 Intergenerational Efficiency versus Intergenerational
Optimality

Intergenerational efficiency does not require that the utilities of subsequent gener-
ations be directly comparable. While this is clearly a methodological advantage, it
has a drawback in that nothing can then be said about the overall welfare balance be-
tween generations. Furthermore, even if we accept that the utilities of different gen-
erations need not be summed up for purposes of comparison, the question of how or
whether alternative institutional frameworks and policy interventions increase or de-
crease overall welfare remains extremely important. Unless we answer this question,
how else are we to characterize an optimal policy? Thus, in the present analysis, in
order to better understand the difference between intergenerational optimality and
intergenerational efficiency, we first derive the FOCs for intergenerational optimal-
ity and then compare them to those for intergenerational efficiency.

To derive the conditions for intergenerational optimality, we assume the exis-
tence of a benevolent social planner whose objective is to maximize a discounted
sum of life cycle utility for all current and future generations. This gives:

max
∞

∑
t=−1

γ t(lnc1
t +β lnc2

t+1)

subject to

(kt)
α = Gnkt+1 + c1

t + c2
t /GL,

whereby k0 and c1
−1 are exogenously (historically) given and γ is the social discount

factor, assumed here to be less than or equal to unity. While for γ = 1 the social
planner’s objective function is not defined, there are formal ways to circumvent this
problem (see de la Croix and Michel, 2002, 92). However, for the sake of simplicity
we will focus on the case of γ < 1.

Since the life-cycle utility function is additively separable, we can rearrange the
objective function of the planner in the following way:

∞

∑
t=0

γ t [lnc1
t +β/γ lnc2

t

]
. (5.29)

One simple method to obtain the FOCs for intergenerational optimality is to solve
the aggregate consumption and investment constraint from above for c2

t+1 and then
to insert the solution into the rearranged objective function of the planner. This leads
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to the following unconstrained maximization problem:

∞

∑
t=0

γ t(lnc1
t +β/γ ln(GL[(kt)

α −Gnkt+1 − c1
t ])). (5.30)

The FOCs are obtained by differentiating this objective function with respect to
c1

t and kt+1:
1/c1

t = β γ−1(GL/c2
t ), (5.31)

Gn/c2
t = αγ(kt+1)

α−1/c2
t+1. (5.32)

Together with the aggregate consumption and investment constraint, Gnkt+1 =
(kt)

α −c1
t −c2

t /GL, the intergenerationally optimal paths for kt+1,c1
t ,c

2
t can be found

by means of the method of unknown coefficients. Suppose that c1
t = ξ1(kt)

α and
c2

t = ξ2(kt)
α whereby ξ1 and ξ2 are as yet unknown coefficients. Inserting these

equations into (5.32), gives: Gnkt+1 = αγ(kt )
α . Inserting this result into the ag-

gregate consumption and investment constraint together with the hypotheses for c1
t

and c2
t , we obtain αγ = 1− ξ1 − ξ2/GL. From the insertion of the hypotheses for

c1
t and c2

t into (5.31), we obtain ξ2 = β γ−1GLξ1. Combining this equation with
αγ = 1− ξ1− ξ2/GL, we get ξ1 = (1−αγ)/(1+β γ−1) and ξ2 = β γ−1GLξ1.

Hence, the intergenerationally optimal path (denoted by �) for the capital inten-
sity and younger and older consumption reads as follows:

k�t+1 = (αγ)/Gn(k�t )
α , (5.33)

(c1
t )

� = (
(1−αγ)
(1+β γ−1)

(k�t )
α , (5.34)

(c2
t )

� = β γ−1 (1−αγ)
(1+β γ−1)

GL(k�t )
α . (5.35)

This optimal solution also fulfills the so-called ‘transversality condition’

lim
t→∞

γt [(c1
t )

�]−1k�t+1 = 0,

which requires that the limit of the marginal utility of capital in terms of consump-
tion be nil (see de la Croix and Michel, 2002, 103).

On looking now for a steady-state intergenerationally optimal solution to the
planner’s problem, denoted by k�,(c1)�,(c2)�, we get immediately from the optimal
dynamics above:

k� = ((αγ)/Gn)1/(1−α) ⇔ α(k�)α−1 = Gn/γ, (5.36)

(c1)� =
(1−αγ)
(1+β γ−1)

(k�)α , (5.37)

(c2)� = β γ−1 (1−αγ)
(1+β γ−1)

GL(k�)α . (5.38)
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The first equation states the so-called ‘modified Golden rule’. This says that
marginal productivity of steady-state capital intensity equals the natural growth fac-
tor divided by the planner’s discount factor. Clearly, if the discount factor is equal
to one the intergenerational efficient capital intensity coincides with the intergener-
ational optimal capital intensity.

We thus arrive at the optimality condition for intergenerational allocation (see
(5.31)) namely: the marginal utility of the younger generation is equal to the
marginal utility of the older generation times the population growth factor mul-
tiplied by the individual discount factor divided by the social discount factor, or,
in other words, the intertemporal marginal rate of substitution between individual
present and future consumption is equal to the planner’s discount factor divided by
the population growth factor.

So far in this chapter we have assumed that natural resources are abundant. This
is clearly a digression from our main topic. Thus, to return to the role of the sig-
nificance of natural resources for economic growth we close this chapter by focus-
ing again on scarce exhaustible resources and by investigating the role of resource
augmenting technological progress for steady economic growth with population
growth.

5.6 Steady-State Economic Growth and Resource Saving
Technological Progress

If natural resources (exhaustible and renewable) are free (not scarce) then the steady-
state growth rate of the gross domestic product is exclusively determined by (it is
equal to) the sum of the population growth rate and the rate of labor augmenting
technological progress (labor productivity). But what are the determinants of long-
run economic growth if natural resources (in particular exhaustible resources) secure
a scarcity rent which enters economic costs and hence influences the market prices
of produced commodities?

Taking account of the dependence of commodity production on scarce natural
resources, does not seem to help here since it tends to stifle the role played by la-
bor (capital) saving technological progress as a substitute for natural resources in
economic growth. To provide a simple but insightful answer to the question above
we therefore focus on neutral technological progress as defined by Hicks (1932).
Neutral technological progress in the sense of Hicks means that the marginal prod-
ucts of all factors change by the same amount assuming the factor intensities do not
change.

In order to keep the analysis of such technological progress as simple as possible,
we again presuppose the use of an aggregate CD production function with Hicks–
neutral technological progress, with respect to not only labor N, and man-made
capital K, but also with respect to natural (exhaustible) resources S. Thus:

Y (t) = egτ tK (t)α3 N (t)α2 S (t)α1 , α3 +α2 +α1 = 1. (5.39)
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Here α3, α2 and α1 denote the production elasticities of man-made capital, labor
and the natural resource respectively. As usual, they are assumed to lie between
zero and one and to sum to unity (constant returns to scale). Several things need to
be noted with respect to the specification of this aggregate production function with
Hicks-neutral technological progress.

Notice first that the production period for which this CD function is specified is
infinitesimally small and hence the output and the inputs in the production process
can be specified at any point in time, with time being specified as an explicit vari-
able. As a consequence, all variables can be specified as continuously differentiable
functions of time t indicated by x(t) with x = Y,K,N,S. Second, in contrast to the
discrete-time specification of technological progress in Chap. 3 above, we now as-
sume a continuous-time flow of exogenous technological improvements depicted by
egτ t , the limiting value of (1+ gτ/ν)tν when the number of subperiods ν goes to
infinity. Third, the fact that egτ t applies to all production factors in the production
function implies equi-proportional technological progress with respect to all factors.

To move on from output and input levels to the growth rates of the produced
commodity and the factor inputs, we next take the natural logarithms with respect
to all variables in the aggregate production function:

lnY (t) = gτ t +α3 lnK(t)+α2 lnN(t)+α1 lnS(t). (5.40)

Differentiating this equation on both sides with respect to time, we get:

1
Y (t)

dY (t)
dt

= gτ +α3
1

K(t)
dK(t)

dt
+α2

1
N(t)

dN(t)
dt

+α1
1

S(t)
dS(t)

dt
. (5.41)

Setting (1/x(t))dx(t)/dt = gx(t), this equation can equivalently be written as
follows:

gY (t) = gτ +α3gK(t)+α2gN(t)+α1gS(t). (5.42)

We now assume steady-state growth, which implies that in the growth equation,
all time references can be deleted:

gY = gτ +α3gK +α2gN +α1gS. (5.43)

We know that in the steady-state the following growth relation holds: gK = gY .
Moreover, in the long run labor markets are cleared, i.e. gN = gL and non-renewable
resources are either exhausted or are conserved which implies that gS = 0. Acknowl-
edging these insights in equation (5.43), we obtain:

gY (1−α3) = gτ +α2gL, (5.44)

and on considering 1−α3 = α2 +α1, the expression for GDP growth rate is found
to be:

gY =
gτ

α2 +α1
+

α2

α2 +α1
gL. (5.45)
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From this, the growth of GDP per capita follows as:

gY/L = gY −gL =
gτ

α2 +α1
− α1

α2 +α1
gL. (5.46)

This equation shows that the growth rate of per capita income depends negatively
on the population growth rate—an insight closely related to the growth pessimism
exhibited by most classical economists, in particular by Malthus. In contrast to this,
if natural resources do not have any productivity effects, i.e. α1 = 0, then the growth
rate of per capita income remains independent of population growth, as found in
neoclassical growth theory.

(5.46) also shows that the following inequality holds

gY/L > 0 ⇔ gL <
gτ

α1
. (5.47)

This equivalence says that the growth rate of income (output) per capita is larger
than zero if and only if the population growth rate is less than the rate of resource
saving technological progress divided by the production elasticity of the natural
resource (Schmitt-Rink, 1990; Arnold, 1993). A lower population growth rate, a
higher growth rate of resource saving technological growth, or a lower production
elasticity of the natural resource (this indicates the importance of the natural re-
source in the production process) all increase the likelihood of a positive per capita
growth rate.

5.7 Conclusions

This chapter is devoted to the investigation of the prospects for our log-linear OLG
economy in the long run. First, we proved that the mild restriction of 0 < α < 1
implied the existence of a non-trivial steady state solution to the intertemporal equi-
librium dynamics. This steady state is moreover asymptotically stable. Second, in
contrast to the main result of the previous chapter, the steady-state market equilib-
rium is in general not long-run intergenerationally efficient. Here we encounter a
major difference to the ILA approach. Third, as in classical growth theory with-
out technological progress, in a neoclassical growth model with productive natural
resources and resource saving technological progress population growth endangers
the rise of living standards.

Clearly, neoclassical growth theory becomes more realistic once natural re-
sources are inserted into the aggregate production function. Nevertheless, we still
have to deal with the questions of intertemporal optimality and intergenerational ef-
ficiency with respect to renewable resources in a growing economy. The next chap-
ters are devoted to elaborating on these important topics in intertemporal resource
economics.
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Part III
Efficiency and Market Equilibrium with

Scarce Renewable Resources



Chapter 6
Renewable Resources and Intergenerational
Efficiency

6.1 Introduction

The attentive reader has probably been somewhat surprised that in a book about
resource economics so many chapters have been devoted to the analysis of economic
growth with abundant natural resources. However, we will see in the present chapter
that economic growth under conditions of utilization of scarce natural resources can
in fact be regarded as merely a more complex application of intertemporal allocation
and growth theory than that found in standard allocation and growth theory. To
avoid premature complication, we first focus in the following chapters on renewable
natural resources and leave the problem of economic growth with non-renewable
resources in a general equilibrium context to Chap. 8.

There are several reasons why the introduction of renewable natural resources
makes growth theory more complex. First, since renewable natural resources sur-
vive one model period (in reality 25-30 years), man-made capital is no longer the
sole capital good. Farmer and Wendner (2003) show that the intertemporal equi-
librium dynamics of OLG models with heterogeneous capital differ substantially
from the dynamics of OLG models with homogenous capital. Second, the harvest
from the renewable resource represents a further input in the production of produced
commodities. Three-factor intertemporal general equilibrium models can thus have
different structural characteristics than two-factor models. Third, in contrast to the
Diamond model without natural resources, the durability of the renewable resource
also means that a further dimension is added to equilibrium dynamics. The analysis
of the dynamic stability of higher order-difference equations thus becomes rather
more complex.

Keeping all the above in mind, we focus now on the main problem of the eco-
nomics of renewable resources.1 The question here is how can an intergenerationally
efficient harvest policy be characterized in a growing economy, and which FOCs are
typical for efficient harvest policy and efficient asset allocation over time? Clearly,

1 For a comprehensive survey on the topics addressed in renewable resource economics, see Brown
(2000), Conrad and Clark (1987), and Plourde (1970).
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the stock of renewable resources can increase if the harvest rate is less than the
natural growth rate. However, the latter is not limitless since it depends on the car-
rying capacity of nature. Within the carrying capacity of nature renewable resources
(referred to formally as ‘sustained’ resource use) offer the opportunity of infinitely
lasting sustainable resource use and thus allow for satisfaction of human needs over
and above those which could be met by exhaustible resources.

Renewable resources, however, can still to be exhausted. Resource exhaustion
occurs if the harvest rate permanently exceeds the natural growth rate and/or if the
ecological habitat of a species is disturbed or even destroyed by human intervention,
for example as a result of excessive economic activity.

This brings us to the main topic of this chapter, namely the complex interactions
between nature and the economy. The growth of nature provides natural inputs for
the production process which in turn allows for accumulation of man-made capital.
To be able to investigate the nature-economy interactions analytically we have to
specify the growth function of nature. In order to confine ourselves to an acceptable
level of mathematics for the present text, we introduce two simplifying assump-
tions. First, we do not consider ecological interdependence between several species
and focus only on a single species taken to be representative of the natural system as
a whole.2 Second, economic-ecological interdependence is modeled in a very rudi-
mentary fashion. Despite these simplifications, the mathematical model still remains
rather demanding.

In the following section, the main analytical tool in the economics of renewable
resources, the regeneration function, is introduced. Then, the cost function for re-
source harvesting is specified. In Sect. 6.4 the notion of short-run intergenerationally
efficient resource harvest is introduced. The FOCs for short-run intergenerational ef-
ficiency are in Sect. 6.5. The final section contains some remarks regarding long-run
intergenerational efficiency.

6.2 The Regeneration Function

Use of the so-called ‘regeneration function’ largely distinguishes the economics of
renewable from that of exhaustible resources (Clark, 1990). Renewable resources
such as fish stocks, forests, agricultural land, and some environmental media (air,
water systems etc.) can all be analyzed by the use of such a function.

Definition 6.1. The regeneration function provides the absolute increase of biomass
during a period or at a point in time t measured by number or weight of resource
units.

Obviously, the regeneration function itself can vary from simple to complex forms
depending on how species growth is measured, e.g. by year of birth, sex or indi-

2 For multi-species model formulations, see Conrad (1999, chap. 13) for a three level food chain
specification, or Clark (1990) for the well-known Lotka-Volterra models of predator-prey dynamics
and the dynamics of competition between different species, known as inter-specific competition.
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vidual weight. For our general equilibrium analysis, however, we resort to a simple
yet realistic form of regeneration function. This type of regeneration corresponds
to the sigmoid growth function verified for density dependent species populations
(see, e.g., Begon et al, 1996). The basic idea behind this form is that the absolute
increase in biomass depends on the magnitude of the existing stock of the resource.
For given environmental conditions, i.e. availability of space, light, water, nutrients
etc., the increase in the resource rises with the magnitude of the stock: The more
brood animals that exist, the more offspring they produce. Nutrient and space lim-
itations are not yet binding. However, with rising resource stock these limitations
become binding. As a consequence of this competition between individuals of a
species, resource growth becomes smaller with rising stock, and eventually it turns
negative. The environmental conditions do not allow for further increases in the
resource stock.

These considerations are formalized by the following logistic function which we
present here in both a continuous-time and a discrete-time version. This function
was first used by the biologist Schaefer (1954) for pacific tuna fisheries (Brown,
2000). In the partial equilibrium literature and also in ILA general equilibrium mod-
els the continuous-time version (6.1a) normally dominates. However, within our
OLG models we need the discrete-time version (6.1b):

dR(t)
dt

= πR(t)−ΩR(t)2 , π ≡ Π −1 > 0, Ω > 0, (6.1a)

Rt+1 ≡ g(Rt) = ΠRt −ΩR2
t , (6.1b)

where π denotes the growth enhancing and Ω the growth retarding factor due to
competition among individuals within a species, e.g. with respect to food, known
as intra-specific competition. The difference between Π and π is that the former
refers to the growth factor while the latter is the growth rate. As a consequence,
there exists a minimum population which coincides with the origin and a maximum
viable population, which is called ‘carrying capacity’ in population ecology models
(Begon et al, 1996).

Note that the discrete-time version of the regeneration function follows from the
continuous-time version by acknowledging that dR(t) ≈ Rt+1 − Rt and dt ≈ 1.3

Figure 6.1 presents a graphical illustration of the logistic regeneration function in
discrete time.

At point R in Figure 6.1 the resource stock is zero.4 Nonetheless, the reader can
see that the slope of the regeneration function which is equal to π is larger than zero
by definition. This assumption appears plausible, e.g. for some tree species where

3 One crucial difference exits however between the continuous-time and discrete time version: In
the case of discrete dynamics, the potential for cyclical and chaotic behavior has to be considered,
as shown by May (1974). For a discussion, see Clark (1990, 202) or Conrad (1999, 64).
4 In more complex growth specifications, R need not coincide with the origin but can be associated
with a positive level of the resource stock. This implies that at a very small but positive level
of the resource stock, resource growth becomes negative e.g. as a lack of suitable mates. This
phenomenon is called ‘critical depensation’ (see, e.g. Hanley et al, 2007, 268).
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R

MSY

RmaxRMSY
Rt

Rt+1 −Rt

Fig. 6.1 Logistic regeneration function

roots provide new growth for trees, or for fish species where eggs laid in the water
may generate new offspring.

From point R up to point RMSY along the regeneration function the absolute in-
crease of the resource stock between time t and t + 1, namely Rt+1 −Rt , increases
with rising stock Rt . Environmental constraints are not yet binding and more brood
animals generate more offspring.

At point RMSY , where MSY stands for maximum sustainable yield (see Sec-
tion 6.2.2), the increase in the resource stock over time is maximized.

Along the curve between point RMSY and point Rmax the resource increase over
time is larger than zero but decreasing with rising resource stock, since environmen-
tal constraints such as available space and nutrients become binding. The slope of
the regeneration function is thus negative.

At point Rmax the resource stock itself is maximized. The increase in the resource
stock is nil. The resource stock has reached the limit of ecological carrying capacity.
This brings us to the notion of the natural equilibrium.

6.2.1 The Natural Equilibrium

Definition 6.2. The resource stock Rmax at which the increase in the resource stock
is nil is called the natural equilibrium.

Or more formally for the continuous-time and the discrete-time growth function,
respectively:
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dR(t)
dt

= 0, (6.2a)

Rt+1 = Rt . (6.2b)

On the basis of the logistic regeneration function, it is very easy to see that the
natural equilibrium resource stock is as follows:

Rmax =
π
Ω
. (6.3)

It is also easy to see why the term natural equilibrium is warranted. Suppose that
the initial resource R0 differs from Rmax. Will the natural dynamics depicted by
the discrete-time version of the logistic regeneration function automatically bring
about a move from R0 towards Rmax? The answer is ‘yes’, since the derivative of the
resource stock in period t + 1 with respect to the resource stock in t, dRt+1/dRt , is
equal to Π − 2ΩRt . Evaluated at the natural equilibrium Rmax, the same derivative
is equal to Π − 2ΩRt(π/Ω) = 2− Π < 1, while at R = 0 it is equal to Π > 1.
Thus, the resource dynamics is unstable in the neighborhood of R = 0 while the
natural equilibrium stock Rmax represents the single stable fixed point of the logistic
resource stock dynamics. In other words: Without human intervention the resource
stock will automatically tend towards its natural equilibrium value, i.e. the carrying
capacity of the resource stock.

6.2.2 The Sustainable Yield

While without human intervention the (logistic) resource dynamics converges to-
wards the natural equilibrium, humans cannot survive without harvesting Xt of the
natural resource Rt . Such harvesting can be formally represented in a net regen-
eration function as follows, again in the continuous-time and in the discrete-time
version, respectively:

dR(t)
dt

= πR(t)−ΩR(t)2 −X (t) , (6.4a)

Rt+1 = ΠRt −ΩR2
t −Xt ≡ g(Rt)−Xt . (6.4b)

With the aid of the net regeneration function we are able to introduce the notion
of ‘sustainable yield’ or ‘sustainable harvest volume’.

Definition 6.3. The ‘sustainable yield’ ensures that in spite of human intervention
(harvesting) the resource stock does not change over time. The harvest volume
equals natural regeneration.

Or more formally:
X = πR−ΩR2. (6.5)
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R RmaxR1 R2

R

X

Fig. 6.2 Emergence of two bio-economic equilibria R1 and R2

It is easy to see that for any given X (6.5) represents a quadratic equation in R
which allows for exactly two solutions. All points on the net regeneration function,
i.e. combinations of harvest X and resource stock R that fulfill

{
(X ,R) |X = πR−ΩR2}

are called bio-economic equilibria of logistic natural regeneration. In general, two
solutions emerge as depicted by R1 and R2 in Figure 6.2. However, a unique solution
results as maximum sustainable yield (MSY ) level:

maxX ⇔ dX
dR

= 0 ⇒ R =
π

2Ω
. (6.6)

Hence, the resource stock at which maximum sustainable yield occurs equals ex-
actly half of the natural equilibrium stock, i.e. RMSY = Rmax/2. This is typical for
logistic regeneration in which the regeneration function is symmetric about the MSY
resource stock.

6.2.3 The Own Rate of Return

For all resource stocks smaller than the resource stock associated with maximum
sustainable yield (RMSY ) the slope of the regeneration function is larger than zero,
while for larger resource stocks up to the natural equilibrium stock Rmax the slope
is negative. Thus, the question arises as to what economic interpretation can be
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attributed to the slope of the regeneration function. The answer is provided by the
notion of the own rate of return on the renewable resource, now defined below.

Definition 6.4. The own rate of return on the renewable resource gives the resource
increase or the change of the sustainable yield (harvest) for a marginal change in the
resource stock. It equals the slope of the net regeneration function.

Looking at the logistic regeneration function we immediately see that the own rate
of return on the renewable resource is larger than zero (positive) only within the
range of resource stocks which are smaller than the MSY resource stock. For a larger
resource stock the own rate of return on the renewable resource is negative. At the
MSY resource stock the own rate of return is nil. It is important to remember these
properties of the own rate of return for a logistically regenerating natural resource
because the natural resource, as an asset, has to compete with man-made capital by
providing an own rate of return as least as large as the real interest rate (= real rate
of return on man-made capital). Thus, we will find at the end of this chapter that for
any given positive real interest rate the resource stock needs to be harvested in such
a way that its own rate of return is positive and equal to the real interest rate.

6.3 The Harvest Cost Function

For the sake of simplicity, in the resource economics literature, namely general equi-
librium models, zero or constant average harvest costs are often assumed (Berck,
1981). This is clearly not a realistic assumption and this is why resource harvest
costs are commonly found in sectoral models (for an overview, see Clark, 1990;
Neher, 1990; Brown, 2000). It is a simple fact that renewable resources cannot be
harvested without the use of scarce factors (labor, man-made capital), and we thus
find, as with regeneration functions, simple or complex forms of harvest cost func-
tions. A functional specification popular in fishery models is again the Schaefer
(1954) version where a fixed amount of effort per resource stock unit, known as
catchability constant, is needed to harvest a unit of the stock. A problem with this
specification is that the resulting harvest production function exhibits increasing re-
turns to scale (Conrad, 1999), and this is why we use an alternative specification in
the remainder of this chapter.

The simplest specification of a harvest cost function assumes that (i) only hu-
man labor is necessary to harvest the resource and (ii) that labor, measured in hours,
increases progressively with rising harvest volume. The following quadratic func-
tional specification is in line with these properties.

NR
t = NR (Xt) =

(
1
2

)
A(Xt)

2 , (6.7)

where A is a positive constant. However, the hours the agents work in resource
harvesting cannot simultaneously be spent in production. Resource harvesting thus
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competes with commodity production and this is formally expressed by the follow-
ing full employment condition:

NY
t +NR

t = Lt , (6.8)

where NY
t and NR

t stand for labor demanded for commodity production and for
resource harvesting, respectively. Now that we have described the main new com-
plexities concerning the problem of intergenerational efficiency in economic growth
with renewable resources, we are ready to state the problem itself in more exact
terms. This is dealt with in the next section.

6.4 Short-Run Intergenerationally Efficient Resource Harvesting

We know from Chap. 3 that an intertemporal market equilibrium with abundant nat-
ural resources is short-run intergenerationally efficient. Thus, it is natural to suggest
that this is also true if a renewable resource is used both as an production input and
as an alternative asset. In order to verify whether this is true or not we first need to
define the nature of a short-run intergenerationally efficient consumption allocation.
To that end, we set up below the multi-period optimization problem of the initial
older generation. To simplify the analysis, we assume that Gτ = 1, i.e. the rate of
technological progress assumed is zero, and the growth factor of population growth
GL = 1, i.e. the population growth rate is zero. Thus, the production function with
resource harvest Xt , labor NY

t and man-made capital Kt reads as follows:

Yt ≡ F(Xt ,N
Y
t ,Kt) = (Xt)

α1
(
NY

t

)α2 (Kt)
α3 .

We know from Chap. 3 that short-run intergenerational efficiency is equivalent to
the solution of the following multi-period optimization problem for the initial older
generation:

max → lnc1
−1 +β lnc2

0

subject to the constraints:

lnc1
t +β lnc2

t+1 ≥
(
U1

t

)◦
, t = 0,1, ...,T −1, (6.9a)

Ltc
1
t +Lt−1c2

t +Kt+1 −Kt ≤ (Xt)
α1
(
NY

t

)α2 (Kt )
α3 − δKt ,

α1 +α2 +α3 = 1, ∀t, (6.9b)

NY
t +NR

t ≤ Lt = L0, (6.9c)

NR
t = NR (Xt) =

(
1
2

)
A(Xt)

2 , (6.9d)

Rt = ΠRt−1 −ΩR2
t−1 −Xt−1, (6.9e)

c1
T ≥ c1, KT+1 ≥ K, RT ≥ R. (6.9f)
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The objective function and the first set of constraints (6.9a) are the same as in
Chap. 3. The next constraint, (6.9b), consists of the aggregate consumption and in-
vestment constraint, into which the aggregate production function has already been
inserted. The main difference in comparison to chapter three is the inclusion of
the resource harvest as an input into commodity production. Constraint (6.9c) en-
sures that employment in resource harvesting and in commodity production is not
larger than the labor force. Then, the harvest cost function and the net regeneration
function have to be respected as further constraints, see (6.9d)–(6.9e). Finally, the
consumption of the younger generation as well as the stocks of man-made capital
and of the renewable resource at the end of the optimization horizon must be as
large as some pre-specified minimal levels which ensure that the economy is able to
move on after period T . Last but not least it is assumed that c1

−1,K0, R−1, and L−1

are exogenously fixed.
As also known from Chap. 3, the first step in solving this optimization problem is

to set up the corresponding Lagrangian. Recall that the Lagrangian multipliers, with
the exception of the constraints for younger households’ utility functions, are spec-
ified in non-discounted form. Hence, for example φL

t denotes the non-discounted
multiplier of the employment constraint while φL

t β t is the corresponding discounted
multiplier.

The Lagrangian associated with the above optimization problem reads as follows:

L = lnc1
−1 +β lnc2

0+

+
T−1

∑
t=0

μc
t

[
lnc1

t +β lnc2
t+1 −

(
U1

t

)◦]
+

T

∑
t=0

φL
t β t

[
Lt −NY

t − (1/2)A(Xt)
2
]
+

+
T

∑
t=0

φY
t β t

[
(Xt)

α1
(
NY

t

)α2 (Kt)
α3 +(1− δ )Kt −Ltc

1
t −Lt−1c2

t −Kt+1

]
+

+
T

∑
t=0

φR
t β t [ΠRt−1 −ΩR2

t−1 −Xt−1 −Rt
]
+(μc

T )β T [c1 − c1
T

]
+

+φK
T+1 β T+1 [K −KT+1]+φR

T β T [R−RT ] .

(6.10)

6.5 FOCs for Short-Run Intergenerational Efficiency

As usual, the FOCs for short-run intergenerational efficiency are obtained by dif-
ferentiating the Lagrangian above (6.10) with respect to all consumption quantities,
production inputs, stock variables and all Lagrangian multipliers, and setting the
derivatives equal to zero. We thus obtain the following FOCs which can then be
interpreted economically. Here we find that the non-discounted Lagrangian multi-
pliers play the role of so-called ‘shadow prices’. We start with the FOC for efficient
allocation of retirement consumption of old households alive in period t:
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MRS ≡ β/(c0
2)◦ = (φ0

Y )◦L−1. (6.11)

The interpretation of this FOC is the same as in Chap. 3.
For the households from period t onwards, consumption has to be allocated be-

tween working and retirement period according to:

−dc2
t+1

dc1
t

≡
(
c2

t+1

)◦

β
(
c1

t

)◦
︸ ︷︷ ︸

∂U1
t /∂c1

t
∂U1

t /∂c2
t+1

=

(
φY

t

)◦
(1+θ )

(
φY

t+1

)◦ , (6.12)

where β ≡ (1/(1+ θ )). This FOC concerns the intertemporal optimal consump-
tion bundle for the working and retirement period of period-t younger household.
To interpret the FOC economically, note that φY

t indicates the utility value of one
marginally larger unit of production in period t. Acknowledging this interpretation
of φY

t , the above FOC says that the intertemporal marginal rate of substitution be-
tween present and future consumption of period-t younger generation which is iden-
tical to the ratio of marginal utilities of present and future consumption has to be
equal to the ratio of the present to the discounted future shadow price of production.
As already known, the intertemporal marginal rate of substitution between present
and future consumption tells us how many consumption units in the retirement pe-
riod the younger household is ready to forego in order to obtain one additional
present consumption unit. The ratio of the present to the discounted future shadow
price of production equals the number of future production units the economy has
to sacrifice if one additional production unit is used for present consumption. Or in
other words: Intertemporal consumption efficiency demands that the younger house-
hold is ready to sacrifice exactly the same number of consumption units in the re-
tirement period for one additional consumption unit in the working period as the
number of future production (and consumption) units the economy has to sacrifice
for one additional unit in the current period.

The first order condition for efficient allocation of labor requires:

(
φY

t

)◦
(1−α1 −α3)

(
(Xt)

◦
(
NY

t

)◦

)α1
(

(Kt)
◦

(
NY

t

)◦

)α3

︸ ︷︷ ︸
∂F/∂NY

t

=
(
φL

t

)◦
. (6.13)

The left hand side of (6.13) gives the marginal value product of labor in commod-
ity production (in utility units), and the right hand side gives the shadow price of
the labor force, i.e the utility of a marginally higher unit of labor force. The latter
equals the (marginal) opportunity costs (in utility units) of one additional employee
in commodity production. Acknowledging these interpretations, short-run intergen-
erational efficiency demands that an additional employee in commodity production
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generates exactly the same additional utility as he or she costs, i.e. the additional
utility which an employee would generate in resource harvesting.

The first order condition for efficient resource harvesting requires that the marginal
value product of one additionally harvested resource unit equals the marginal har-
vest costs plus the marginal opportunity costs of an additionally harvested resource
unit, these latter being equal to the utility of a resource unit not harvested:

(
φY

t

)◦ α1

(
(Xt)

◦
(
NY

t

)◦

)α1−1(
(Kt)

◦
(
NY

t

)◦

)α3

︸ ︷︷ ︸
∂F/∂Xt

=
(
φL

t

)◦
AXt︸︷︷︸

NR′(Xt )

+

(
φR

t+1

)◦

(1+θ )
. (6.14)

Thus, on the left hand side of (6.14) stands the marginal value product of the
resource harvest (in utility units), while the right hand side is composed of the
marginal harvest costs and the marginal user costs of an additional resource unit
harvested and not conserved.

(
φR

t+1

)◦
/(1+θ ) is the discounted marginal value (in

utility units) of one conserved (unharvested) resource unit.
The short-run intergenerationally efficient accumulation of the renewable re-

source stock is governed by the following first order condition:
(
φR

t+1

)◦
[Π −2Ω (Rt)

◦]
︸ ︷︷ ︸

g′((Rt)
◦)

= (1+θ )
(
φR

t

)◦
. (6.15)

The left hand side of (6.15) represents the shadow price of an additional resource
unit at the beginning of period t + 1 times the own factor of return on the re-
newable resource at the beginning of period t + 1. The right hand side shows the
marginal value of postponing resource harvest by one period. The latter is equal to
the marginal opportunity of a resource unit not harvested but left to augment the re-
source stock. Thus, intergenerational efficiency demands that the utility increase
from an additional resource unit not harvested but left to increase the resource,
equals the marginal opportunity costs of the resource unit not harvested, i.e. the
utility value of an in period t additionally harvested resource times the subjective
time preference factor.

(
φY

t+1

)◦

⎡

⎢⎢
⎢
⎢
⎢
⎣

1− δ +α3

(
(Xt+1)

◦
(
NY

t+1

)◦

)α1
(
(Kt+1)

◦
(
NY

t+1

)◦

)α3−1

︸ ︷︷ ︸
∂F/∂Kt+1

⎤

⎥⎥
⎥
⎥
⎥
⎦
= (1+θ )

(
φY

t

)◦
(6.16)

On the left hand side of this equality stands the utility value of an additional unit of
production times the own return factor on man-made capital between t and t+1, and
on the right hand side we find the utility value of an additional unit of production
in period t times the subjective time preference factor. Intergenerational efficiency
demands that the utility increase of an additional unit of man-made capital at the
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beginning of t + 1 exactly equals the marginal opportunity costs of a commodity
unit invested in man-made capital, which are equal to the utility of an additional
unit of production not invested in t, times the time preference factor.

Clearly, besides the FOCs interpreted so far, there are also additional Lagrangian
constraints. When the corresponding Lagrangian multipliers are nonzero, these ad-
ditional constraints hold as equalities and an interior solution exists.

6.6 Long-Run Intergenerational Efficiency

Having thus characterized short-run intergenerational efficiency in terms of the util-
ity maximization of the initial older generation subject to a finite series of con-
straints, we now focus in this section on long-run intergenerational efficiency. No-
tice that in the following we do not seek to determine whether a steady state solution
exists, nor whether it is dynamically stable. In this section we merely assume that
this is the case for the OLG model with renewable resources introduced above. We
leave rigorous analysis of these problems to Chaps. 9 and 10.

As in Chap. 5, we permutate the role of the older and younger household within
the long-run efficiency calculus: the life-cycle utility of the younger household is
maximized subject to the constraints that the initial older generation obtains a certain
utility level and the constraints (6.9b)–(6.9f) in steady state hold:

max lnc1 +β lnc2

subject to:

lnc2
0 ≥ ln(c2

0)
•,

L0c1 +L0c2
0 ≤ (X )α1

(
NY )α2 (K0)

α3 −K,

L0c1 +L0c2 ≤ (X )α1
(
NY )α2 (K)α3 −K,

NY +NR ≤ L = L0,

NR = (1/2)A(X)2 ,

g(R) = X ,

R0 + g(R0) = R+X .

Setting up the Lagrangian

L = lnc1 +β lnc2 + μc
−1[lnc2

0 − ln(c2
0)

•]+φ y
0

[
(X )α1

(
NY )α2 (K0)

α3 −

− K −L0c1 −L0c2
0

]
+φ y

[
(X )α1

(
NY )α2 (K)α3 −K−L0c1 −L0c2

]
+

+φL
[
L0 −NY − (1/2)A(X)2

]
+φR [g(R)−X ]+φR

0 [R0 +g(R0)−X −R] ,



6.6 Long-Run Intergenerational Efficiency 87

yields the following first order conditions:

(c2)•

β (c1)•
= 1+

(φ y
0 )

•

(φ y)•
, (6.17)

(μc
−1)

•

(c2
0)

• = (φ y
0 )

•L0, (6.18)

α3
Y •

K• = 1+
(φ y

0 )
•

(φ y)•
, (6.19)

(φ y
0 )

•α1
(Y0)

•

X• +(φ y)•α1
Y •

X• = (φL)•AX•+(φR)•+(φR
0 )

•, (6.20)

(φ y
0 )

•α2
(Y0)

•

(Ny)•
+(φ y)•α2

Y •

(Ny)•
= (φL)•, (6.21)

(φR)•g′(R•) = (φR
0 )

•. (6.22)

Proposition 6.1 characterizes the properties of long-run intergenerationally efficient
and inefficient steady states.

Proposition 6.1 (Long-run intergenerational efficiency). A long-run intergenera-
tionally efficient consumption allocation {(c1)•,(c2)•,c2

0)
•} associated with steady

state man-made capital K•, natural resource stock R•, resource harvest X•, and em-
ployment in production (Ny)•, can be characterized as follows: (c2)•/(β (c1)•) =
1+(φ y

0 )
•/(φ y)• ≥ 1, (μc

−1)
•/(c2

0)
• = (φ y

0 )
•L0, α3Y •/K• = 1+(φ y

0 )
•/(φ y)• ≥ 1,

(φR)•g′(R•)> 0, X• = g(R•), (φ y
0 )

•α1(Y0)
•/

X•+(φ y)•α1Y •/X• = (φL)•AX•+(φR)•, (φ y)•α2Y •/(Ny)• = (φL)•.
The golden age allocation with Golden rule KGR and RMSY is characterized

as follows: (c2)•/(β (c1)•) = 1 = α3Y •/KGR, g′(RMSY ) = 0, XMSY = g(RMSY ),
(φ y)•α1Y •/XMSY = (φL)•AXMSY +(φR)•, (φ y)•α2Y •/(Ny)• = (φL)•.

Several comments regarding Proposition 6.1 are in order. First, long-run inter-
generational efficiency in general demands that the resource harvest X• and the
associated resource stock are lower than maximum sustainable yield (and the as-
sociated resource stock). Moreover, the man-made capital stock is lower than the
Golden rule capital stock.

Second, maximum sustainable yield emerges only in a golden age path which
presupposes that (μc

−1)
• = 0 and (φ y

0 )
• = (φR

0 )
• = 0. Moreover, in golden age the

intertemporal marginal rate of substitution between young and old consumption
equals one which is also true for the marginal productivity of man-made capital.

Figure 6.3 illustrates the main long-run efficiency conditions in Prop. 6.1. The
condition regarding the efficient resource harvest volumes is illustrated by the up-
per part of the diagram in which resource harvest volumes are depicted on the ab-
scissa, while on the vertical axis the marginal value product and the marginal har-
vest costs (in utility units) of alternative harvest quantities are depicted. The diagram
also shows that the user costs of resource harvest,

(
φR
)•
(1+g′(R•) drive a wedge
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R•

X•

(φ L)•AX•

(φ y
0 )

•α1
(Y0)

•

X• +(φ y)•α1
Y •

X•
(φ R)•(1+g′(R•))

X

Fig. 6.3 Long-run intergenerational efficient resource harvest and resource stock for (μc
−1)

• > 0.

between the marginal value product and the marginal harvest cost such that the long-
run efficient harvest volume is less than that which follows from the intersection of
marginal value product and marginal harvest cost curve. The lower part of the di-
agram depicts the net regeneration function with resource stocks on the downward
pointing ordinate, and again harvest volumes on the abscissa. At the long-run in-
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tergenerationally efficient harvest volume X• and the corresponding resource stock
R•, the own rate of return on the renewable resource is shown by the slope of the
tangent to the net regeneration function and it is larger than zero for (μc

−1)
• > 0.

Whether the long-run intergenerationally efficient solution and the bio-economic
optimal solution (maximum sustainable yield) are equivalent depends on whether
the interests of the initially old generation are taken into account or not. If the inter-
ests of the oldest generation matters, it is not long-run intergenerationally efficient
to choose MSY and the corresponding resource stock. Moreover, with decreasing
marginal value product and increasing marginal harvest cost of alternative harvest
volumes the long-run intergenerationally efficient harvest volume and the corre-
sponding resource stock are smaller than the bio-economic optimal harvest volume
and resource stock. Thus, while the long-run intergenerationally efficient solution
can coincide with the bio-economic optimal solution on the golden age path, these
will in general not be met and the long-run intergenerationally efficient solution
deviates from that which were optimal from an bio-economic perspective.

6.7 Conclusions

In this chapter the major analytical instrument of renewable resource economics,
namely the regeneration function, and associated concepts like maximum sustain-
able yield were introduced into the efficiency calculus of Chap. 3. We derived and
interpreted the FOCs for short-run intergenerationally efficient paths for resource
harvest, resource stock, man-made capital and the consumption allocation between
younger and older households. We also found that long-run intergenerationally effi-
cient harvest volumes and stock levels are smaller than bio-economic optimal levels
if the interests of the initially older generation are included. This result leaves open
the question whether an intertemporal market equilibrium allocation qualifies for
short-run and/or long-run intergenerational efficiency—a question which is dealt
with in the following chapter.
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Chapter 7
Intertemporal Market Equilibrium and
Intergenerational Efficiency with Renewable
Resources

7.1 Introduction

It is widely held that self–interest under the pressure of market competition leads
individuals to overexploit and even exhaust renewable resources world-wide. We
know however from Chap. 1 that the empirical evidence, at least for non–renewable
resources, is much more mixed, i.e. does not generally support this claim. It is the
main objective of this chapter to show that theoretical considerations also suggest
that we need to exercise considerable caution and judgement when making claims
of this sort. Indeed, it would appear that theoretical support is only forthcoming here
when no suitable property right regime exists for the renewable resource. Hence, the
empirically observed misuse of natural resources is not per se the result of individ-
ual self interest and market competition. On the other hand, for many renewable
resources it is often hard in practice to define and implement property rights ca-
pable of preventing self–interested individuals, acting under conditions of market
competition, from overusing renewable resources.

To delineate these general considerations within the theoretical framework we
have set up so far, we first introduce a renewable resource into the intertemporal
market equilibrium model (from Chap. 4). We consider below two property rights
regimes: one where the resource stock is privately owned by the households, and
where it is common property and there is open access to resource harvest. Then,
we show why under these alternative property rights regimes the market allocation
is either short-run intergenerationally efficient or inefficient. Intergenerational ef-
ficiency translates also into long-run intergenerational efficiency as will be shown
graphically at the end of the chapter.
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7.2 Intertemporal Market Equilibrium with a Privately Owned
Resource

Private ownership of the renewable resource presupposes certain economic condi-
tions, i.e. the economic value of harvest plus stock needs to be related to the respec-
tive costs of defining, implementing and controlling property rights in the resource.
If such costs are lower than economic value, a private property rights regime will
emerge. Since the renewable resources under consideration are durable, the private
property rights must be such as to extend over the full lifetime of the resource.

The costs of defining and implementing private property rights vary considerably
depending on the type of resource under examination. Property rights to immobile
renewable resources such as forests are easier to define than property rights to birds
or marine fish. The costs for the definition and control of exclusive private property
rights to herring ponds or mushroom cultivation are relatively low, and hence these
renewable resources are good examples of the kind of resources we have in mind in
this chapter.

Exclusive private property rights to the renewable resource are necessary for the
emergence of trade. Trade in the resource can mean either that the resource stock
itself is the subject of trade, or that there is only trade in resource harvest. Given
the demographic structure of the OLG model in Chap. 4, we know that trade in
the resource stock typically occurs between the older and the younger generation in
any market period, while resource harvest is typically traded between the owner of
the resource stock and the producers who need the resource harvest for commodity
production.

As in Chap. 4 we assume that the existence of well organized markets for man-
made capital, labor and the produced commodity, i.e. that perfectly competitive sup-
pliers and demanders interact in current and in future market periods. In this chapter
we extend these assumptions to include markets for the resource stock and the re-
source harvest. In particular, we assume that at the beginning of each period the
resource stock is inelastically supplied to the resource stock market by the older
household, while the younger household demands the resource stock at the start of
the period in order to be able to harvest the resource during the working period
and to sell the harvest yield to the firm on a so-called ‘one-period forward’ market,
where the price of the resource harvested during the period is negotiated at the start
of the period (see Foley, 1975; Farmer, 1989, for more details). The ‘spot’ price of
the resource stock at the beginning of period t (for delivery in the same period) is de-
noted by pt while the one-period forward price of the resource harvest in period t is
denoted by qt . Notice that both prices are relative prices indicating units of produced
commodity per unit of the resource stock and resource harvest respectively.
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7.2.1 Individual Optimization Problems

As in Chap. 4, the production sector maximizes one-period real profits defined as
the difference between output Yt ≡ F(Xt ,NY

t ,Kt ) = (Xt)
α1
(
NY

t

)α2 (Kt)
α3 and real

factor costs which in addition to labor and capital costs now also consist of the costs
for the resource harvest. For the sake of simplicity, we set gL = 1,∀t (no population
growth). We thus have:

max(Xt)
α1
(
NY

t

)α2 (Kt)
α3 −wtN

Y
t − rtKt −qtXt . (7.1)

The optimization problem of the initially older household (in t = 0) is, as in the
basic model without resources, trivial. The representative initially older household
receives revenues from sales of the man-made capital stock (in per capita terms).
Moreover, since we assume in this section that property rights over the renewable
resource are well defined, the household also receives revenues from sale of the
resource stock. This gives:

maxβ lnc2
0 (7.2)

subject to:

c2
0 = r0

K0

L−1
+ p0

R0

L−1
. (7.3)

The younger household has the same objective function as in the basic model (life-
time utility depends on consumption in working and retirement periods) but both
the budget constraint for the working and the retirement period differ from the cor-
responding constraints in the basic model. The budget constraint for the working
period includes the spot purchases of the resource stock as expenses and the one–
period forward sales of the resource harvest as revenues. When young, the house-
hold receives wage income for the share of labor which is devoted to commodity
production (see the term in square brackets in (7.5a)), and the revenues from the
selling of the resource harvest to the production sector. In the retirement period,
the representative household receives revenues from the spot sales of the man-made
capital stock and the resource stock. Since the resource is privately owned by the
younger household, i.e. the household has exclusive decision rights concerning re-
source accumulation and harvesting, the regeneration function is included among
the constraints of the utility maximization problem. This leaves us with:

maxlnc1
t +β lnc2

t+1 (7.4)

subject to the constraints:

c1
t +

Kt+1

Lt
+ pt

Rt

Lt
= wt

[
1− (1/2)A(Xt)

2

Lt

]
+qt

Xt

Lt
, (7.5a)

c2
t+1 = rt+1

Kt+1

Lt
+ pt+1

Rt+1

Lt
, (7.5b)

Rt+1 = ΠRt −Ω (Rt)
2 −Xt . (7.5c)
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7.2.2 First Order Conditions for Individual Maxima

The FOC which determines profit maximizing labor input NY
t in commodity pro-

duction reads as follows:

(1−α1 −α3)

(
Xd

t

NY
t

)α1 (Kd
t

NY
t

)α3

= wt . (7.6)

Profit maximizing harvest input, denoted by Xd
t , is determined as follows:

α1

(
Xd

t

NY
t

)α1−1(
Kd

t

NY
t

)α3

= qt . (7.7)

Finally, profit maximizing capital input, denoted by Kd
t , is determined as follows:

α3

(
Xd

t

NY
t

)α1 (Kd
t

NY
t

)α3−1

= rt . (7.8)

The optimal consumption of the older household in the initial period comes from
the budget constraint:

L−1c2
0 = r0K0 + p0R0. (7.9)

As in the basic model with resource abundance, the younger household attempts
to maximize life–cycle utility and thus equates the intertemporal marginal rate of
substitution to the factor of return on man-made capital in period t +1:

c2
t+1

β c1
t
= (1+θ )

(
c2

t+1

)
(
c1

t

) = rt+1. (7.10)

Moreover, the Hotelling rule modified for renewable resources requires that the fac-
tor of return on the resource pt+1/pt(Π −2ΩRd

t ) and on man-made capital rt+1

balance:
pt+1 =

rt+1

Π −2Ω
(
Rd

t

) pt ≡ rt+1

1+g′
(
Rd

t

) pt . (7.11)

Clearly, in maximizing life-cycle utility the younger household also acknowledges
the net regeneration function. Thus:

Rt+1 = ΠRd
t −Ω

(
Rd

t

)2 −Xt ≡ g
(

Rd
t

)
−Xt . (7.12)

Between the one–period forward price of resource harvest and the next period spot
price of the resource stock augmented by marginal harvest cost there is another no-
arbitrage condition which is presented in the following equality:

qt =
pt+1

rt+1
+wt AXt︸︷︷︸

NR ′
(Xt )

. (7.13)
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Inserting the net regeneration function (7.12) into the budget constraint for the
retirement period (7.5b), we get:

c2
t+1 = rt+1

(
Kt+1

Lt

)
+ pt+1

(
ΠRt −Ω

(
Rd

t

)2 −Xt

Lt

)

.

Solving this equation for Kt+1/Lt and inserting this expression for Kt+1/Lt into
(7.5a) gives:

c1
t +

c2
t+1

rt+1
− pt+1

rt+1

[
ΠRd

t −Ω
(
Rd

t

)2
]

Lt
+ pt

Rd
t

Lt
= wt

[

1−
(
(1/2)A(Xt)

2

Lt

)]

+

+

(
qt − pt+1

rt+1

)
Xt

Lt
. (7.14)

The next step is to take in (7.14) the no-arbitrage conditions (7.11) and (7.13) into
account. This yields the intertemporal budget constraint:

c1
t +

c2
t+1

rt+1
+

(
pt+1

rt+1

)[
g′(Rd

t )−
g(Rd

t )

Rd
t

]

︸ ︷︷ ︸
−ΩRd

t /Lt

(
Rd

t

Lt

)
=

= wt +wt

[
NR′(Xt)− NR(Xt)

Xt

]

︸ ︷︷ ︸
(1/2)A(Xt )2/Lt

. (7.15)

7.2.3 Market Clearing Conditions

The clearing of the commodity market in each period t demands:

Ltc
1
t +Lt−1c2

t = NY
t (Xt/NY

t )
α1(Kd

t /NY
t )

α3 −Kt+1. (7.16)

The clearing of the resource spot market reads as follows:

Rd
t = Rt . (7.17)

The market for capital service is cleared if the following holds:

Kd
t = Kt . (7.18)

Clearing of the resource harvest market demands:

Xd
t = Xt . (7.19)

Finally, the labor market clearing condition reads as follows:

NY
t +NR

t = Lt . (7.20)
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7.3 Perfectly Competitive Markets with an Open–Access
Renewable Resource

Before we embark on evaluating the efficiency of the market allocation with pri-
vately owned resource stocks, we focus in this section on the case where a renewable
resource is not privately owned but is a common property resource with open ac-
cess: i.e. everybody who is ready to bear the harvest costs is permitted to utilize the
resource without any constraints. As a consequence of this fundamental change in
the institutional framework, a market on which the resource stock is traded between
subsequent generations can no longer exist. Moreover, the individual resource har-
vesters do not have any incentive to include in their marginal calculus the user costs
of resource harvesting (which are equal to the discounted utility of future resource
harvest). This disregard for part of the opportunity costs of current harvesting leads
to a more intensive use of the resource (possibly overuse) than in the case where the
resource is privately owned. Seen from another perspective, there is a negative stock
externality caused by inappropriate property rights which induces self–interested
individuals to overuse or even exhaust the renewable resource. It is thus no surprise
that the market allocation is not intergenerationally efficient and that the welfare of
households is less than that in the case of privately owned resources.

A very prominent example of an open-access resource, with however very low
natural regeneration, is the stratosphere. Greenhouse gases are released into the
stratosphere as a consequence of combustion processes with fossil fuel inputs. Since
the stratosphere can be regarded as the common property of mankind, emitting
greenhouse gases is equivalent to harvesting the stratosphere without paying the
user costs of harvesting. This lack of property rights, combined with individual eco-
nomic logic, more or less guarantees excessive use of the natural resource in that
sense that collective damage incurred far exceeds the sum of individual benefits.
This type of collective damage which is not taken account of by individual decision
makers is called an external cost or negative externality.

Returning to our market equilibrium model with perfect competition on all ex-
isting markets, the absence of property rights can be dealt with by dropping the
resource stock market both in individual optimization and in market clearing condi-
tions. For brevity, we present only those equilibrium conditions which are affected
by the lack of the resource stock market.

The first equation affected is the budget constraint of the older household. Thus,
on the right hand side the revenues from sale of the resource stock vanish; leaving:

L−1c2
0 = r0K0 ����+p0R0. (7.21)

For the younger household, the modified Hotelling rule completely disappears:

����������
pt+1 =

rt+1

Π −2Ω (Rt)
pt . (7.22)
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As we will soon see, most important here is the disappearance of pt+1/rt+1 from
the no–arbitrage condition determining the price of the resource harvest:

qt =
�
��

pt+1

rt+1
+wtNR′(Xt) =

�
��

pt+1

rt+1
+wtAXt . (7.23)

Moreover, the intertemporal budget constraint of the younger household is affected
as follows:

c1
t +

c2
t+1

rt+1
+

���������������(
pt+1

rt+1

)(
g′ (Rt)− g(Rt)

Rt

)(
Rt

Lt

)
=

= wt +wt

(
NR′ (Xt)− NR (Xt)

(Xt)

)(
Xt

Lt

)
. (7.24)

Finally, the market clearing condition for the resource stock market disappears:

����Rd
t = Rt . (7.25)

7.4 Market Equilibrium and Intergenerational Efficiency under
Opposing Property Rights Regimes

This section is devoted to working out the consequences of opposing property rights
regimes for intergenerational efficiency of intertemporal market equilibrium alloca-
tions. We start by showing the short-run intergenerational efficiency of perfectly
competitive market equilibria when the renewable resource is privately owned.

7.4.1 Privately Owned Resource Stocks and Short-Run
Intergenerational Efficiency of Market Allocation

For the sake of simplicity we set δ = 1. To show that the intertemporal market
equilibrium conditions imply short-run intergenerational efficiency (denoted again
by ◦), we provisionally try the following equality settings:

wt =

(
φL

t

)◦
(
φY

t

)◦ , pt =

(
φR

t

)◦
(
φY

t

)◦ , rt+1 =

(
φY

t

)◦
(1+θ )

(
φY

t+1

)◦ , ∀t. (7.26)

We first want to show that the FOC for short-run intergenerationally efficient con-
sumption bundles of the younger household in period t, i.e.
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−dc2
t+1

dc1
t

=
c2

t+1

β c1
t
=

(
φY

t

)◦
(1+θ )

(
φY

t+1

)◦ , (6.12’)

holds in intertemporal market equilibrium. To see this, start from the intertemporal
optimality condition (7.10) and insert the above provisional setting for rt+1, noting
that β = 1/(1+θ ).

Next, we have to show that the FOC for short-run intergenerationally efficient
labor input holds, i.e.

(
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. (6.13’)

However, this is easily shown by starting from the profit maximization condi-
tion (7.6) and inserting the provisional setting for wt .

The FOC for the short-run intergenerationally efficient harvest volume, i.e.
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(1+θ )
(6.14’)

follows from the profit maximization condition (7.7), from the no-arbitrage con-
dition (7.13) and from the provisional settings for wt , pt and rt+1, and from the
definition β = 1/(1+θ ).

The FOC for short-run intergenerationally efficient accumulation of the natural
resource stock, i.e.

(
φR

t+1

)◦
[Π −2Ω (Rt)

◦] = (1+θ )
(
φR

t

)◦
(6.15’)

is a consequence of the modified Hotelling rule

pt+1 =
rt+1

Π −2Ω
(
Rd

t

) pt , (7.11)

market clearing condition (7.17), and of the provisional settings for rt+1 and pt and
the definition β = 1/(1+θ ).

Finally, the FOC for short-run intergenerationally efficient accumulation of man-
made capital, i.e.

(
φY

t+1

)◦ α3

(
Xd

t+1

NY
t+1

)α1
(

Kd
t+1

NY
t+1

)α3−1

= (1+θ )
(
φY

t

)◦
(6.16’)

results if the FOC for profit maximizing capital input is written for period t +1 as:

∂F

∂Kd
t+1

≡ α3

(
Xd

t+1

NY
t+1

)α1
(

Kd
t+1

NY
t+1

)α3−1

= rt+1, (7.27)

and where the provisional setting for rt+1 and the definition β = 1/(1+θ ) are taken
into account.
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To sum up, these results show that our provisional equality settings (7.26) are
indeed warranted, and do in fact show that the intertemporal market equilibrium
conditions imply the FOCs for short-run intergenerational efficiency. Thus, when the
renewable resource is privately owned and all markets are perfectly competitive the
consumption allocation associated with intertemporal market equilibrium is indeed
short-run intergenerationally efficient.

7.4.2 Open Access and the Inefficiency of Market Allocation

After having shown that private ownership of the renewable resource leads to short-
run intergenerational efficiency of the market allocation under perfect competition,
it is not difficult to see that the market allocation is short-run intergenerational inef-
ficient when the renewable resource can be openly accessed. The argument runs as
follows: The market allocation under private ownership of the renewable resource is
unique, and it is short-run intergenerationally efficient. We have shown above that
the market equilibrium conditions with open access to the renewable resource dif-
fer from those under private ownership. Hence, such a market allocation cannot be
short-run intergenerationally efficient. In other words: When the renewable resource
can be openly accessed, the market allocation is even short-run intergenerationally
inefficient. Notice, however, that the inefficiency must not be traced back to individ-
ual self-interest and market competition but rather to the lack of exclusive private
property rights to the natural resource stock.

It follows almost immediately that short-run intergenerationally inefficiency
leads to long-run intergenerationally inefficiency. Thus, Fig. 7.1 illustrates the long-
run intergenerational inefficiency of a market allocation with open access. Here, the
main reason for the inefficiency lies in the fact that with open access the resource
user does not take into account the user cost of resource harvest (φR)• (1+g(R•)).
In the upper diagram of Fig. 7.1 the wedge between the marginal value product and
marginal harvest cost, as found in Fig. 6.3, is lacking, and this leads to an ineffi-
ciently high resource harvest, i.e. a level below the intersection of marginal value
product and marginal harvest cost curve.
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R•

X•

(φ L)•AX•

(φ y
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•α1
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X
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Fig. 7.1 Long-run intergenerational inefficiency of market solution for an open access resource:
ROA > R•

7.5 Conclusions

In this chapter we investigated intertemporal market equilibria when the stock of the
renewable resource is either privately owned or can be openly accessed. Contrary
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to widespread thought, we were able to show that self-interested individuals are
led by perfectly competitive market prices to use the renewable resource short-run
intergenerationally efficient when the resource stock remains in exclusive private
ownership. On the other hand, when the resource stock is openly accessed, short-run
and long-run intergenerational inefficiency occur. Thus, the common presumption is
true with regard to open–access resources, but not when privately owned resources
are involved.

Since the costs of implementation and control of exclusive property rights in
many renewable resources are prohibitive, the quest for another benchmark than in-
tergenerational efficiency emerges. Moreover, intergenerational efficiency does not
preclude significant intergenerational inequity. Hence, the question arises whether
market allocations along the intertemporal equilibrium path accord with the bench-
mark of intergenerational equity (sustainability) or not. This question will be the
subject of the next chapter.
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Chapter 8
Sustainable Economic Growth with Linear
Resource Regeneration

8.1 Introduction

Until now we have focused on intergenerational efficiency as benchmark for the
social evaluation of market allocation. As mentioned in the first chapter, since the
1970s the focus of resource policy turned from intergenerational efficiency to in-
tergenerational equity, i.e. sustainability from an economic point of view. After the
first oil price shock, the sustainability of economic growth (income per capita) un-
der exhaustible (or non-renewable) became the main matter of concern. Regarding
the feasibility of sustainability, we know from Chap. 2 that a constant standard of
living is possible in the presence of exhaustible resources, even in the absence of
technological change, provided that man-made capital and exhaustible resources
are ‘good’ substitutes in production, and that resource owners invest sufficiently
in reproducible capital so as to offset the optimally declining stock of natural re-
sources and to achieve economic sustainability. However, this condition, known as
the Hartwick (1977) rule, is derived from intertemporal equilibrium models of the
infinitely-lived agent (ILA) type which ignore ‘generation overlap and treat society
in each period as a single generation which cares about (and also discounts) the wel-
fare of its immediate descendants and which has complete control over the rate of
resource use and the saving rate’ (Mourmouras, 1991, 585).

Whether a sequence of self-interested, finite-lived and overlapping generations
interacting via perfectly competitive markets will implement the ILA paths re-
mains, as Mourmouras (1991, 585) rightly remarks, an open question. This chapter
is mainly devoted to answering this question within Mourmouras’ log-linear CD
OLG model. In such a setting technical progress and population growth are ab-
sent, the natural resource which is necessary in production regenerates linearly, and
man-made capital depreciates completely after one model period. Within such a
framework, GDP growth becomes feasible because man-made capital is accumulat-
ing, despite the stock of natural resources remaining time-stationary. ‘Sustainable
growth’ is now possible even if ‘strong’ ecological sustainability, in the sense of an
unchanging initial stock of natural resources, is demanded.

105K. Farmer and B. Bednar-Friedl, Intertemporal Resource Economics: An Introduction 
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However, sustainable growth, or more generally ‘sustainable development’, is
not self-evident in Mourmouras’ OLG model with linear regeneration. Even in the
case of regenerating resources the propensity to use the resource as a production
input can be too high compared to the regeneration rate of the natural resource—
regardless of how well man-made capital can be substituted for the natural resource
in production. Moreover, in the OLG model substitutability of capital for resources
is limited by the assumption of complete depreciation of man-made capital after one
period. Such circulating capital implies that in the case of exhaustible resources,
where the regeneration rate is zero, a time–stationary living standard is impossible.
These are results which are plainly at odds with the insights from ILA intertemporal
equilibrium models (e.g. Clark, 1990).

In the next section, first the consequences of a linear regeneration function for the
optimization problem of the younger household are presented. Then the intertempo-
ral equilibrium dynamics are derived, and the linear saddle-path dynamics are an-
alyzed. Following this, both intertemporal equilibrium and steady state growth are
defined and characterized and the possibility of sustainable growth is investigated.
Finally, the feasibility and necessity of sustainable growth in competitive market
systems is discussed in general terms.

8.2 Individual Optimization and Market Clearing under Linear
Regeneration

The main change in the model is that instead of logistic (non-linear) regeneration of
the natural resource, as was assumed in the preceding chapters, the net regeneration
function now reads as follows:

Rt+1 = Π (Rt −Xt) , Π ≥ 1.

This specification, which accords exactly with the Mourmouras (1991, 586) spec-
ification, cannot be obtained exactly as a special case of the logistic specification.
However, a non-renewable resource does result as a special case where Π = 1.

The main impact of the change from the logistic to the linear specification of the
regeneration function is felt in the FOCs of the younger household. Optimizing the
utility of the younger households gives two new FOCs. The first is a Hotelling rule
modified to meet the requirements of a linearly regenerating resource:

pt+1

pt
Π = rt+1, (8.1)

which collapses to the original Hotelling (1931) rule when Π = 1.
The second FOC is a no-arbitrage condition between the harvest and resource

stock price:

qt =
pt+1

rt+1
Π . (8.2)
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As a result of the assumption of costless harvesting, the younger household faces
the following budget constraints for the working and the retirement period:

c1
t +Kt+1 + ptR

d
t = wt +qtXt , (8.3)

c2
t+1 = rt+1Kt+1 + pt+1Rt+1. (8.4)

The net regeneration function reads as follows:

Rt+1 = ΠRd
t −ΠXt . (8.5)

By combining the retirement period budget constraint (8.4) with the regeneration
function we obtain:

Kt+1 =
c2

t+1

rt+1
−
(

pt+1

rt+1

)
Π(Rt −Xt). (8.6)

Insertion of (8.6) into the working period budget constraint, acknowledging (8.1)
and (8.2) and accepting that pt = qt , ∀t, yields as intertemporal budget constraint:

c1
t +

c2
t+1

rt+1
= wt . (8.7)

To complete the description of the model, market clearing conditions have to be
specified for all markets. Labor market clearing demands:

Lt = NY
t = 1, ∀t. (8.8)

Clearing of the resource stock market reads as follows:

Rd
t = Rt , ∀t. (8.9)

Resource harvest market clearing demands:

Xd
t = Xt , ∀t. (8.10)

Aggregate savings, defined as st = wt − c1
t , follow from the current period budget

constraint of the younger household. This yields:

Kt+1 = σwt +qt(Xt −Rt), (8.11)

where σ ≡ β/(1+β ).
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8.3 Derivation of Intertemporal Equilibrium Dynamics

We first derive the intertemporal equilibrium dynamics of man-made capital before
deriving the dynamics of resource harvest and resource stock. Thus, on inserting
α2Yt = wt and α1Yt = qtXt into (8.11), we obtain:

Kt+1 = σα2Yt +α1Yt −α1

(
Yt

Xt

)
Rt . (8.12)

Taking into account the labor market clearing condition within the aggregate pro-
duction function, Yt = Kα3

t Xα1
t , and inserting the result into (8.12), yields the in-

tertemporal equilibrium dynamics, or law of motion, for man-made capital:

Kt+1 = (σα2 +α1)(Kt)
α3 (Xt)

α1 −α1 (Kt )
α3 (Xt)

α1−1 Rt . (8.13)

To ensure non-negative stocks of man-made and natural capital, namely Kt+1 ≥ 0
and Rt+1 ≥ 0, the harvest volume over time must not become either too low or too
high: [

α1

(σα2 +α1)

]
Rt ≤ Xt ≤ Rt . (8.14)

If (8.14) is strictly satisfied, it is feasible to use the no-arbitrage conditions (8.1) and
(8.2), to obtain:

qt =
qt+1

rt+1
Π . (8.15)

Utilizing the profit maximizing conditions α1Yt = qtXt and α3Yt = rtKt in (8.15)
gives:

Π

⎛

⎜
⎜
⎝

Yt+1

Xt+1
Yt

Xt

⎞

⎟
⎟
⎠= α3

(
Yt+1

Kt+1

)
. (8.16)

The next step is to insert the CD production function into this equation which yields:

ΠKt+1 (Xt)
1−α1 = α3Xt+1 (Kt)

α3 . (8.17)

Inserting (8.13) into (8.17) gives the law of motion for the resource harvest:

Xt+1 =
(σα2 +α1)

α3
ΠXt − α1

α3
ΠRt . (8.18)

The law of motion for the resource stock follows immediately from the net regener-
ation function for a given initial value of the resource stock:

Rt+1 = Π (Rt −Xt) , R0 = R0 > 0. (8.19)

In order to see whether the equilibrium dynamics is stable, we utilize the eigenvalues
associated with the eigenvector of the two equations of motion. In matrix notation
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we thus obtain:

At+1 = MAt , M ≡ Π

([
(σα2+α1)

α3

]
−
(

α1
α3

)

−1 1

)

, At ≡
(

Xt

Rt

)
.

As is well-known, this is a 2x2 system of homogeneous linear difference equations
which can be solved recursively:

At+1 = MAt ⇒ At = M tA0.

To check the existence of a stable solution, the eigenvalues ψ and the associated
eigenvectors Ã of the system matrix M can be calculated by:

MÃ = ψÃ ⇔ (M−ψI) Ã = 0 ⇒ |M−ψI|= 0.

The eigenvalues ψ for the 2x2 case can be calculated by solving the following
second-order polynomial:

α3ψ2 − (α3 +σα2 +α1)ψ +σα2 = 0. (8.20)

With this so-called characteristic polynomial at hand, we are now in a position to
determine the stability properties of the dynamic system (8.18)-(8.19).

Proposition 8.1 (Stability of equilibrium dynamics).

(i) If α3 = 0, ψ =
σα2

(σα2 +α1)
∈ (0,1) and hence the equilibrium dynamics are

asymptotically stable.

(ii) If α3 > 0, 2ψ1 =
α3 +σα2 +α1 ±

√
(α3 −σα2)

2 +α2
1 +2α1 (α3 +σα2)

(2α3)
with

ψ1 > 1, 0 < ψ2 <
σα2

(σα2+α1)
and hence the equilibrium dynamics are saddle-path

stable.

Proof. Mourmouras (1991, Appendix). �
This proposition tells us that in case (i) in which man-made capital is not pro-

ductive (α3 = 0) the equilibrium dynamics of the resource stock and its harvest are
asymptotically stable because the single eigenvalue is larger than zero and less than
unity (The equilibrium dynamics is only one-dimensional). In case (ii) we encounter
a truly two-dimensional equilibrium dynamics with two distinct, real eigenvalues
ψ1 > 1 and 0 < ψ2 < 1. Since the first eigenvalue is larger than one, while the sec-
ond eigenvalue lies between zero and one, we face in case (ii) saddle-path dynamics
which is only ‘knife-edge’ stable. Saddle-path stability implies that one of the two
dynamical variables must be a so-called ‘jump’ variable for which no exogenous
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initial value can be assumed. The jump variable in our OLG model is represented
by the resource harvest Xt or the associated resource price pt (qt).1

The eigenvalues are not only useful in determining the stability properties of a
dynamic system. They can also be used to characterize the equilibrium dynamics,
(8.13), and (8.18)-(8.19).

Proposition 8.2. Suppose that Π ≥ 1,α3 > 0 and ψ = ψ2. Then we get as intertem-
poral paths of the resource stock, its harvest, and man-made capital:

Rt+1 = ΠψRt , R0 = R0, (8.21a)

Xt = (1−ψ)Rt , (8.21b)

Kt+1 =

[
σα2 − ψ

1−ψ
α1

]
(Xt)

α1 (Kt)
α3 , K0 = K0 > 0. (8.21c)

Some remarks are now needed in order to better understand the meaning of Prop. 8.2.
First, while both stock variables require an initial value for the dynamic system to
be fully specified, the initial value of resource harvest is determined implicitly by
(8.21b) in which the dynamics of the eigenvector, associated with the second eigen-
value, is depicted. Second, Prop. 8.2 provides an alternative but equivalent represen-
tation of the original equilibrium dynamics with the advantage that the qualitative
information, provided by Prop. 8.1, can be utilized for analyzing the properties of
the equilibrium dynamics more deeply. This is the subject of the next section.

8.4 Intertemporal-Equilibrium and Steady-State Growth Rates

In this section we want to define and characterize the main model variables along
an intertemporal equilibrium path and also in a steady state. While we do not as-
sume exogenous population and/or factor productivity growth endogenous steady
state growth results on account of natural growth. We start with the definition of
the intertemporal and the steady-state growth rate rate of any variable xt in our log-
linear CD OLG model. The intertemporal growth rate for a variable x is defined by
gx

t ≡ lnxt+1 − lnxt , while the steady state growth rate is given by gx ≡ lim
t→∞

gx
t , or

equivalently, gx
t+1 = gx

t = gx. With these definitions at hand, we are ready to charac-
terize the intertemporal equilibrium growth rates of the main economic variables.

Corollary 8.1 (Intertemporal equilibrium growth rates).

gR
t = gX

t = ln(Πψ) , (8.22)

gK
t+1 = α1 ln(Πψ)+α3gK

t , (8.23)

gY
t = α3gK

t +α1gX
t , (8.24)

1 For a more extensive discussion of the role of jump variables in saddle-path systems emanating
from Diamond-type OLG models, see Farmer (2006).
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gw
t = gY

t , (8.25)

gr
t = gY

t −gK
t , (8.26)

gq
t = gY

t −gX
t . (8.27)

Proof. The proof consists in applying the definition of the growth rates to the equi-
librium dynamics in Prop. 8.2. Since this is straightforward, we provide only one
case. To show that gK

t+1 = α1 ln(Πψ)+α3gK
t is indeed the case, take the natural

logarithm of both sides of (8.21c). This yields for t +1:

lnKt+1 = ln

[
σα2 − ψ

1−ψ
α1

]
+α1 lnXt +α3 lnKt ,

and a similar expression can be derived for t. Subtracting the latter from the former
equation, we get:

lnKt+1 − lnKt = α1(lnXt − lnXt−1)+α3(lnKt − lnKt−1).

�
Corollary 8.2 (Existence, uniqueness and stability of steady state growth). A
non-trivial steady state growth rate of man-made capital exists, is unique and glob-
ally stable:

gK =
α1

α2 +α1
gR. (8.28)

At the unique steady state, man-made capital and output grow at a similar rate:

gY = gK . (8.29)

Furthermore, resource harvest price grows at

gq =− α2

α2 +α1
gR, (8.30)

and the growth rate of the interest factor on man-made capital is zero:

gr = 0. (8.31)

Proof. Here we merely show that gY = gK . From gY
t = α1gX

t +α3gK
t and knowing

that gK = α1
α2+α1

gR we obtain

gY = α1gX +α3α1/(α1 +α2)g
R = α1/(α1 +α2)g

X = gK , (8.32)

since α1 +α2 +α3 = 1. �
The results of both corollaries have interesting interpretations. First, the stock

and the harvest of the natural resource grow by the same rate ln(Πψ). Clearly, the
growth rate is larger than zero if ln(Πψ)> 1. While this growth rate is constant over
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time, the growth rate of man-made capital (accumulation rate) changes along the
intertemporal equilibrium path. Since α3 < 1, it converges asymptotically towards
gK = α1/(α2 +α1)gR. Thus, the two stocks grow differently in steady state. We
also see that gr = 0 and gq = −(α2/(α1 +α2))gR. Hence, the real interest rate is
time constant and the growth rate of the harvest price is negative (positive) when the
growth rate of the resource stock and resource harvest is positive (negative).

Moreover, the growth properties of the model depend on the product of the regen-
eration factor Π , and the equilibrium propensity to invest in resources ψ . If ψΠ < 1,
man-made and natural capital decline geometrically. This is in fact the case if the re-
sources are exhaustible and thus Π = 1. In this steady state, resource prices grow at
a constant rate while the marginal product of capital and the rate of interest remain
constant. Constancy of the marginal product of K is possible with declining levels
of K because X declines even faster. Here we encounter the case of an exponentially
declining world economy in spite of man-made capital being a good substitute for
natural resources.

8.5 A Sustainable Economic Growth Path

The case ψΠ = 1 has particularly ‘appealing properties because it provides for
natural resources to be distributed in an egalitarian fashion across generations and
simultaneously allows for improvements in standards of living to take place through
capital accumulation’ (Mourmouras, 1991, 589). It is apparent that this appealing
case is not feasible in the case of exhaustible resources, since then on account of
ψ < 1 the case ψΠ = 1 is excluded.

We focus now on the sustainable development path where ψΠ = 1, presupposing
Π sufficiently larger than one. This leads to the following proposition on sustainable
economic growth or development which requires certain combinations of parameter
values for the subjective time preference rate, output elasticities, and the natural
regeneration rate such as to ensure that ψΠ = 1.

Proposition 8.3. (Sustainable economic growth) If the ‘deep’ parameters of the
OLG economy with regenerating resources are such that Πψ = 1, then economic
growth is ecologically sustainable.

Proof. On inserting Πψ = 1 into (8.21a), we obtain: Rt = R0, ∀t. Acknowledging
ψ = Π−1 in (8.21b) implies for sustainable resource harvest:

Xt = X =
[ π

Π

]
R0. (8.33)

Proceeding similarly for (8.21c) yields for sustainable accumulation of man-made
capital:

Kt+1 =
[
σα2 − α1

π

]( π
Π

)α1
(R0)

α1 (Kt )
α3 , (8.34)
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which reduces at the steady state to:

K =

{[
σα2 − α1

π

]( π
Π

)α1
(R0)

α1

} 1
1−α3

. (8.35)

If moreover K0 < K, then the growth rate of man-made capital is positive (gK
t > 0)

and follows the following geometric series:

gK
t+1 = α3gK

t . (8.36)

�

Remark 8.1. The sustainably growing economy converges to a stationary state in
which gK = gY = 0 = gw holds.

Along the sustainable growth path towards the stationary state the real interest
rate is higher and the resource price is lower than in the stationary state. While the
resource stock remains constant over time at the initial value, resource prices rise
over time, although at a declining rate, and the real interest rate falls. Not surpris-
ingly, in the stationary state both the resource prices and the real interest rate are
stationary, and the real interest rate is equal to π , called by Samuelson (1958) the
biological interest rate. Notice also that in contrast to the growth dynamics of the Di-
amond OLG model without natural resources (Diamond, 1965) the stationary state
emanating here from sustainable growth depends on initial conditions, in particular
the economy’s initial endowment with natural resources (see (8.35)).

8.6 Feasibility of Sustainable Growth and Sustainability Policy
in Market Systems

The previous section has shown that even in an unhampered, fully competitive mar-
ket system with linearly renewable resources, sustainable growth (development) is
feasible. Economic growth and ecological sustainability are thus not fundamentally
inconsistent. Even if we disregard for the moment the restrictiveness of the linearity
assumption the question remains as to how realistic are the constellations of deep
model parameters, like the subjective rate of time preference, the output elasticities
of production factors, and the natural regeneration rate, that imply Πψ = 1?

Without going into an extensive empirical investigation we would still like to
check the plausibility of the deep parameter values leading to sustainable growth
constellations. We now distinguish two main cases.

First, consider the rather simple case of α3 = 0 and assume that α2 = 2/3 and
therefore α1 = 1/3. Considering Πψ = 1 in the determination of the eigenvalue ψ ,
according to case (i) of Prop. 8.1, yields:

α2(Π −1)β = (1+β )α1.
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On supposing furthermore that Π = 2, it follows that β/(1+ β ) = 1/2 which is
equivalent to θ = 0. Hence, with a labor share of two thirds and a net regeneration
rate of 1, i.e. the unused resource doubles every generation (a period of 30 years),
the subjective time preference rate, θ = β−1 −1, needs to be zero in order to allow
for a sustainable growth path. If the subjective rate of time preference is larger than
zero, then the natural regeneration rate has to be higher too.

Second, if α3 > 0, the condition Πψ = 1 becomes non-linear. Experimentation
with alternative values of the time preference rate and the net regeneration rate,
for given parameter values of production elasticities, shows that greater impatience
(i.e. a higher time preference factor) demands higher net regeneration rates to ensure
sustainable growth. However, notice that with a rising production elasticity of capital
the regeneration rate can decline while still enabling a positive time preference rate.
This is due to the fact that a higher production elasticity of capital implies that the
natural resource becomes, relative to man-made capital, less important in generating
output.

Eventually, the question arises how the people and their political representatives
will respond when faced with a non-sustainable growth path in a perfectly competi-
tive market economy? This question is extremely relevant since sustainable growth
is only knife-edge stable. As a consequence, even a slight deviation will lead to an
implosion of the economy in finite time. If the citizens and their political representa-
tives can foresee such a destructive development they will probably opt for political
restrictions of resource utilization by individuals (firms included). Since, however,
political intervention within a free market system of decentralized decision making
causes efficiency losses and hinders innovation dynamics, the sustainability objec-
tive needs to be pursued with considerable caution and skill.

In a situation where neither the people nor the politicians are concerned with
ecological sustainability, economic contraction remains a real possibility in OLG
economies in contrast to the expected outcome in intertemporal equilibrium models
with infinitely lived dynasties.

8.7 Conclusions

Under linear regeneration, ecological sustainability and economic growth are not
fundamentally inconsistent in a perfectly competitive market economy. Such a sus-
tainable growth path is however only knife-edge stable. The slightest changes in
deep parameters can trigger off an implosion of the economic system in finite time.

Moreover, in spite of man-made capital being a good substitute for natural re-
sources, generation overlap, finite lives of generations, and complete depreciation
of real capital after a single generation prevent constant standards of living when
the natural resource is exhaustible. This result contrasts starkly with that in ILA
intertemporal equilibrium models.

Although a ‘sustainable development’ path in an unhampered market economy is
achievable in principle, it is unrealistic to presume that such a development will be
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implemented automatically via self-interest and market competition. On the other
hand, ecologically motivated political intervention in individual decision making
may also produce counterproductive results as shown for example by Ono (2002).
Sustainable development is thus best seen as an ethical point of reference both for
individuals and for politicians—a benchmark in constant need of analysis and re-
view.

In this chapter we assumed linear regeneration of the renewable resource. A sub-
sequent question is therefore whether the main results change when resource regen-
erate non–linearly. This will be investigated in the next chapter.

References

Clark CW (1990) Mathematical Bioeconomics: The Optimal Management of Renewable Re-
sources, 2nd edn. Wiley, NY

Diamond P (1965) National debt in a neoclassical growth model. American Economic Review
55:1126–1150

Farmer K (2006) Reducing public debt under dynamic efficiency: Transitional dynamics in Dia-
mond’s OLG model. Atlantic Economic Journal 34:195–208

Hartwick J (1977) Intergenerational equity and the investing of rents from exhaustible resources.
American Economic Review 66:792–794

Hotelling H (1931) The economics of exhaustible resources. Journal of Political Economy 39:137–
175

Mourmouras A (1991) Competitive equilibria and sustainable growth in a life–cycle model with
natural resources. Scandinavian Journal of Economics 93(4):585–591

Ono T (2002) The effects of emission permits on growth and the environment. Environmental and
Resource Economics 21:75–87

Samuelson PA (1958) An exact consumption-loan model of interest with or without the social
contrivance of money. Journal of Public Economics 66:467–482



Chapter 9
Steady-State Sustainability under Logistically
Regenerating Resources

9.1 Introduction

While after the first oil price shock the sustainability of economic growth under ex-
haustible resources was the main matter of concern, the Brundtland report (WCED,
1987) brought the problem of the sustainability of renewable resources to the atten-
tion of the world community. Given the prominence of the sustainability criterion
for renewable resources, it is surprising that so little has been done to investigate
the question of whether an unhampered, competitive market economy which uti-
lizes a renewable resource both as productive input and as an asset is at all capable
of generating intertemporal equilibrium paths with either an egalitarian distribution
of utilities (consumption) of subsequent generations or an egalitarian distribution of
resource stocks across generations (ecological sustainability).

As we know from the previous chapter, Mourmouras (1991) has investigated
the feasibility of the latter ecological sustainability in a Diamond (1965) type over-
lapping generations’ market equilibrium model in which a renewable resource is
essential for production, technological progress is absent, and man-made capital
circulates. Given specific values for the time-preference parameter, for the output
elasticities of the production factors (labor, man-made capital, resource harvest),
and for the growth factor of the renewable resource, an intertemporal equilibrium
path exists along which man-made capital accumulates, the GDP growth is positive,
and the distribution of resource stock across generations is such that ‘each gener-
ation [is ready] to reserve for the future the stock of the natural resources it has
inherited from the past’ (Mourmouras, 1991, 586).

To show the feasibility of such sustainable growth in a perfectly competitive
market economy over time, Mourmouras presupposes a linear regeneration function
which implies that the (exponential) growth rate of the resource does not depend
on the resource stock (see Chap. 8). This specification simplifies the analysis of
the intertemporal market equilibrium dynamics, but it also provokes the question of
whether man-made capital accumulation and time-stationary stocks of the renew-
able resource are also to be expected under a non-linear regeneration function (e.g.
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a logistic one as in Chaps. 6–7) which captures the essentials of most renewable
resources better than Mourmouras’ linear case which is relevant for expendables
(e.g., the use of hydropower). If—as may be easily suggested—Mourmouras’ nice
sustainable-growth result does not hold in the more general case of logistic regener-
ation we have to face the question which sustainability result if any can be expected
in this case.

To anticipate the answer to this question it is only stationarity state sustainabil-
ity we will obtain under logistic regeneration. However, contrary to first thought,
neither the existence nor the dynamic stability of a steady-state solution are guar-
anteed without restrictive assumptions with respect to the parameters of the utility,
production and regeneration function as Farmer (2000) has first shown. Thus, this
chapter is devoted to proving rigorously both the existence and dynamic stability of
steady states which are both economically and ecologically sustainable almost by
definition. Furthermore, we will show the infeasibility of sustainable growth under
logistic regeneration.

The chapter is organized as follows: In the next section the log-linear CD OLG
model of the Chap. 7 is rapidly reviewed. Then, the two-dimensional equilibrium
dynamics of the resource stock and the resource harvest is explicitly derived, and the
sufficient conditions for the existence of non-trivial steady states (fixed points of the
equilibrium dynamics) are investigated, along with the local dynamic (in-)stability
of the trivial and non-trivial steady state. With the aid of the saddle-path of the
equilibrium dynamics we finally show the impossibility of ecological sustainability
under logistic regeneration.

9.2 The Log-Linear CD OLG Model with Logistic Regeneration

The basic characteristics of the OLG model of this chapter, which was already used
in Chap. 7, has two important differences to Mourmouras’ (1991) specification used
in the previous chapter: the first concerns the already mentioned nonlinearity of
the regeneration function, the second the ownership of the resource stock. While
Mourmouras (1991) did not explicitly define the structure and the transaction possi-
bilities with respect to the property rights for the resource, within the present model
the resource is privately owned by the households and traded between the older and
the younger generation in every market period. In contrast to Chap. 7 there are no
harvest costs in this chapter, and hence A = 0.

As in Mourmouras (1991), the stock of man-made capital depreciates completely
after one period. On the other hand, the natural-resource stock is assumed to be
durable. The reallocation of the already existent resource stock between traders can
be distinguished from the coordination of resource flows harvested during the mar-
ket period. To provide a glimpse of this stock-flow distinction in a discrete-time,
intertemporal equilibrium model (Farmer, 1989), the already existing stocks (of the
natural resource) are traded between (old and young) households in ‘beginning-of-
period’ (‘spot’) markets (Foley, 1975), the flow of the resource harvest is traded
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between the young household and the producer in ‘end-of-period’ (‘one-period for-
ward’) (Foley, 1975) markets.1 Transaction costs and other barriers to trade are ab-
sent in both markets.

This setup allows us to describe the budget constraints of the agents. Let us start
with the older generation (superscript 2) in market period t = 0. At the beginning
of this market period, the older generation uses the proceeds from its resource stock
Rt supplied at the spot price pt (all prices are calculated in terms of the single com-
modity produced) and its rental income rt Kt , defined by the rental rate rt times the
supply of the stock of man-made capital Kt , to finance its retirement consumption
c2

t . Notice that we assume again both no population growth and L−1 = 1, hence c2
t

denotes both individual and aggregate consumption of the older household. Similar
is true for younger households.

The younger generation (superscript 1) receives the wage income wt in exchange
for its labor supply of 1 unit, and also the revenues from the supply Xt of the resource
harvest at the one-period forward price qt . These revenues are used to purchase the
renewable resource-stock quantity Rt at the spot price pt , the consumption ‘flow’
c1

t , and the (gross) investment of man-made capital Kt+1.
The unused resource stock Rt+1 is sold at the beginning of period t+1 at the spot

price pt+1 expected by the currently younger households under perfect foresight.
The revenues from stock sales and the rental income from the man-made capital
stock rt+1Kt+1 are used to finance the retirement consumption c2

t+1 of the older
generation in t + 1.

The typical firm maximizes the profit in each period t = 0, . . .. The optimization
problem takes the following form:

max
(

Xd
t

)α1 (
NY

t

)α2
(

Kd
t

)α3 −wtN
Y
t −qtX

d
t − rtK

d
t

subject to: NY
t ≥ 0, Xd

t ≥ 0, Kd
t ≥ 0, α1 +α2 +α3 = 1.

The production elasticities of labor, resources, and man-made capital are denoted by
α1, α2 and α3 respectively, whereby 0 < αi < 1, i = 1, 2, 3. NY

t is the labor demand,
Xd

t is the demand for the resource harvest, and Kd
t is the demand for capital services

of the firm in period t.
The typical younger household solves the following intertemporal utility maxi-

mization problem:
max → lnc1

t +β lnc2
t+1

subject to:

1 We would like to alert the reader that this beginning-of-period formulation of the resource stock
market is unconventional in the literature on discrete time intertemporal resource economic models
(e.g. Olson and Knapp, 1997; Koskela et al, 2002). However, as shown in Farmer (2000), under the
end-of-period specification of the resource-stock equilibrium the optimization conditions of young
households change only slightly; merely a formally more complex resource harvesting dynamics
results without altering the main substantial arguments of this chapter.
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ptRt + c1
t +Kt+1 = qtXt +wt , (9.1a)

c2
t+1 = rt+1Kt+1 + pt+1Rt+1, (9.1b)

Rt+1 = Rt +g(Rt)−Xt , (9.1c)

c1
t ≥ 0, Rt ≥ 0, Xt ≥ 0, c2

t+1 ≥ 0, Kt+1 ≥ 0, Rt+1 ≥ 0. (9.1d)

0 < β < 1 denotes the subjective time-discount factor, g(·) is the regeneration func-
tion with g′′ < 0, g(0) = 0, and g(Rmax) = 0 for R ≥ Rmax > 0. As a parametric
example, we will again use the logistic function g(·) ≡ (Π −1)Rt −Ω (Rt)

2 with
Π > 1 as the constant-growth factor and Ω � 1 as the growth-retarding factor of
resource accumulation. (9.1a) is the current, and (9.1b) the future budget constraint
of the younger household, (9.1c) represents the net regeneration function.

At an interior solution of the household’s optimization problem the following
relationships hold:

c2
t+1

rt+1
= β c1

t , (9.2)

qt =
pt+1

rt+1
, (9.3)

(
1+g′

(
Rd

t

)) pt+1

pt
= rt+1. (9.4)

In (9.2) discounted marginal utilities are equalized; (9.3) represents the no-arbitrage
condition when deciding to harvest the resource or not, and (9.4) is the Hotelling
(1931) rule in our model of renewable natural-resource allocation over time.

To derive the intertemporal budget constraint, solve (9.1b) Kt+1 and insert (9.1c)
for Rt+1 to obtain

Kt+1 =
c2

t+1

rt+1
− pt+1

rt+1
[Rt +g(Rt)−Xt ] .

Then, insert the expression for Kt+1 into (9.1a). This yields:

c1
t +

c2
t+1

rt+1
+Rt

{
pt − pt+1

rt+1

[
1+

g(Rt)

Rt

]}
+Xt

[
pt+1

rt+1
−qt

]
= wt .

Consideration of (9.3) and (9.4) leads to the intertemporal budget constraint:

c1
t +

c2
t+1

rt+1
= wt +qt

[
g
(
Rd

t

)

Rd
t

−g′
(

Rd
t

)
]

Rd
t . (9.5)

Constraint (9.5) needs some additional comments. First, it claims that the young
household’s present discounted value of consumption does not just equal current
wage income (as in the traditional Diamond, 1965, or in the Mourmouras, 1991,
OLG model) but transgresses it by the real present value of the rent (=difference
between average and marginal productivity) of the renewable resource. This means
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that the endowment of the young household consists not only of its labor power but
also of the resource it owns. The resource rent is positive because the natural produc-
tion function is assumed to be strictly concave. The resource rent would disappear
if the regeneration function were linear as in the previous chapter.

The second comment in regard to (9.5) is that the resource rent accrues to the
young and not to the old generation because the former has purchased the resource
stock in the beginning-of-period resource stock market and is currently entitled to
receive the rent which the strictly concave ‘technology’ of the renewable resource
is generating.2

From (9.5) and (9.2) one derives for the consumption level of the current younger
generation:

c1
t = γ

{
wt +qt

[
g(Rt)

Rt
−g′ (Rt)

]
Rt

}
, γ ≡ 1

1+β
, (9.6)

while the consumption level of the current older generation is determined by:

c2
t = rtKt +qt

[
1+g′ (Rt)

]
Rt . (9.7)

Profit maximization implies:

qtX
d
t = α1Yt , wtN

Y
t = α2Yt , rtK

d
t = α3Yt . (9.8)

Additionally, intertemporal equilibrium requires the clearing of the resource
stock market, the clearing of the markets of capital and labor services, the clear-
ing of the resource harvest market, and the clearing of the output market for all
t:

Rd
t = Rt , ∀t, (9.9)

Kd
t = Kt , ∀t, (9.10)

NY
t = 1, ∀t, (9.11)

Xd
t = Xt , ∀t, (9.12)

(
Xd

t

)α1 (
NY

t

)α2
(

Kd
t

)α3
= c1

t + c2
t +Kt+1, ∀t. (9.13)

Due to Walras law, (9.13) is redundant.

2 In an economy in which each generation consists of many (a continuum) of individuals, intra-
generational externalities among individual marginal resource productivities are likely to arise. As-
suming ‘rivalrous (depletable) externalities’ (Baumol and Oates, 1988, 20) as well as well-defined
and enforceable property rights specified over the externalities, our analysis remains true even if
the notion of a representative agent is not taken literally.
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9.3 Intertemporal Equilibrium Dynamics

Combining the above stated individual optimization (9.5)-(9.8) and market clearing
(9.9)-(9.13) conditions, the intertemporal equilibrium dynamics of resource harvest
and the stocks of man-made capital and the natural resource can then be derived.

Adapting (9.6), (9.7), and (9.13), in order to take (9.10)-(9.11) into account and
inserting the revised (9.6) and (9.7) in the revised (9.13) gives:

Kt+1 = Yt − γ [wt +qtφ (Rt)Rt ]− rtKt −qt
[
1+g′ (Rt)

]
Rt , (9.14)

with φ (Rt) ≡ g(Rt)/Rt − g′ (Rt). Equations (9.9), (9.10), and (9.12) in (9.8) and
revised (9.8) in (9.14) yield:

Kt+1 = Yt − γα2Yt − γα1
Yt

Xt
φ (Rt)Rt −α3Yt −α1

Yt

Xt

[
1+g′ (Rt)

]
Rt . (9.15)

Adjusting (9.4) to take account of (9.8) yields:

Kt+1 = α3

[
Xt+1

1+g′ (Rt+1)

](
Yt

Xt

)
. (9.16)

Since (Rt+1, Kt+1)≥ 0, ∀t it is required that

{
γφ (Rt)+

[
1+ g′ (Rt)

]} α1Rt

α1 +α2σ
≤ Xt ≤ Rt +g(Rt) , (9.17)

for such Rt that 1+g′ (Rt)≥ 0, ∀t.
Assuming that (9.17) holds, the right-hand sides of (9.15) and (9.16) may be

equated. Rearranging yields the law of motion of resource harvest:

Xt+1 =

[
1+

g′ (Rt+1)

α3

]
{(α1 +α2σ)Xt−

− α1γφ (Rt)Rt −α1
[
1+g′ (Rt)

]
Rt
}
, (9.18)

with σ ≡ 1− γ .
The second equation of motion is identical with the regeneration function:

Rt+1 = Rt +g(Rt)−Xt . (9.19)

Inserting the production function in (9.16) gives:

Kt+1 = α3

[
Xt+1

1+g′ (Rt+1)

]
(Xt)

α1−1 (Kt)
α3 . (9.20)

Equations (9.18) and (9.19) represent the fundamental laws of motion of renewable
resource utilization in our intertemporal equilibrium model. Since the man-made
capital stock does not appear in (9.18) and (9.19), it is sufficient to study the proper-
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ties of the two-dimensional nonlinear difference-equation system (9.18) and (9.19).
The dynamics of man-made capital accumulation then simply follows from (9.20).

The paths where the resource stock and resource harvesting are weakly increas-
ing over time Rt+1 ≥ Rt and Xt+1 ≥ Xt follow from (9.19)

Rt+1 ≥ Rt ⇐⇒ g(Rt)≥ Xt , (9.21)

and from (9.18)

Xt+1 ≥ Xt ⇐⇒ [
1+g′ (Rt+1)

]{(α1 +α2σ)Xt −
− α1γφ (Rt)Rt −α1

[
1+g′ (Rt)

]
Rt
}≥ α3Xt . (9.22)

9.4 The Existence of (Non-Trivial) Steady States

Steady states (fixed-point solutions) of the equilibrium dynamics (9.18) and (9.19)
are defined by Xt+l = Xt = X and Rt+1 = Rt = R for t → ∞. A glance at (9.18)
and (9.19) evaluated at the so-defined steady state reveals that (X , R) = (0, 0) is an
admissible but trivial steady state since by assumption g(0) = 0. But there are also
non-trivial steady states which are characterized by the following equations:

X = g(R) , (9.23)

α3X
{(α1 +α2σ)X −α1γφ (R)R−α1 [1+g′ (R)]R} =

[
1+g′ (R)

]
. (9.24)

R

X

X

R

XMSY

RMSYR0 Rmax

RR-curve

XX-curve

Fig. 9.1 RR- and XX-curves with steady state R < RMSY and X < XMSY
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X

R

X

R

XMSY

RMSYR0 Rmax

RR-curve

XX-curve

Fig. 9.2 RR- and XX-curves with steady state R > RMSY and X < XMSY

These define two curves in the RX-space for which the resource stock and re-
source harvesting remain time-stationary. Presupposing the above mentioned para-
metric example of the natural-growth function and given plausible parameter values
for the utility, production, and natural-growth function, a numerically specified ex-
ample of (9.23) is depicted as RR-curve and an example of (9.24) is graphed as XX-
curve in Figs. 9.1 and 9.2. Noting (9.21) and (9.22), it is easily seen that the resource
stock accumulates (decreases) below (above) the RR-curve, while the harvesting of
the resource stock increases (decreases) over time above (below) the XX-curve.

To be able to answer the existence question more generally, mathematical anal-
ysis is necessary. Inspecting (9.24), a strictly positive resource harvesting requires
1+ g′ (R)> 0. Given that we can write (9.24) equivalently as

X =
α1 [1+ g′ (R)]{γφ (R)+ [1+g′ (R)]}R

[1+g′ (R)] (α1 +α2σ)−α3
≡ f (R) . (9.25)

A non-trivial steady state exists if 0 < R < Rmax such that the right-hand sides of
(9.23) and of (9.25) are equal and X resulting from (9.25) fulfills (9.17).

Differentiation of (9.23) and (9.25) yields for the slope of the RR- and XX-curve
respectively:

dX
dR

∣
∣∣
∣
Rt+1=Rt

= g′ (R) , (9.26)

dX
dR

∣
∣
∣
∣
Xt+1=Xt

=

α1 [1+g′ (R)]{1+g′ (R)σg′′ (R)R}−α3
g′′ (R)g(R)
1+g′ (R)

(α1 +α2σ) [1+g′ (R)]−α3
. (9.27)
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The slope of the RR-curve in (9.26) may be positive or negative depending on
whether the steady state resource stock is less than or greater than the resource
stock giving the maximum sustained yield. To determine the sign of the derivative
in (9.27), conditions for the existence of a non-trivial (strictly positive) steady state
are required.

As in the standard Diamond (1965) OLG model without natural resources, for
which Galor and Ryder (1989, 369-371) have provided (necessary and) sufficient
conditions for the existence of a non-trivial steady-state solution, we now have to
derive for the present CD OLG model with nonlinearly regenerating resource stock
restrictions on the nature of the interaction between preferences, technology, and
natural growth which guarantee the existence of a non-trivial steady-state solution.
At first sight such existence conditions could be simply borrowed from ILA mod-
els (as, e.g., in Clark, 1990; Neher, 1990; Tahvonen, 1991; Beltratti et al, 1998).
However, Koskela et al (2002, 498) rightly point out that the finite life of over-
lapping generations, implying inter alia resource-stock trade between subsequent
generations in intertemporal general equilibrium, ‘brings a striking difference to the
results of traditional analyses’ and requires therefore an independent analysis even if
ultimately under specific dynamic structures the existence conditions in both model
structures turn out to be similar.

With the slopes of the RR-curve (9.26) and the XX-curve (9.27) at hand, we
are able to state sufficient conditions for the existence of a strictly positive, unique
steady state (X , R).

Proposition 9.1 (Existence and uniqueness of non-trivial steady state).

If limR→0

[
(dX/dR)

∣
∣Rt+1=Rt − (dX/dR)

∣
∣
Xt+1=Xt

]
> 0, a unique, non-trivial solution

0 < R < Rmax of g(R) = f (R) satisfying (9.17) exists. For the parametric example
of the logistic regeneration function

lim
R→0

[
dX
dR

∣
∣∣
∣
Rt+1=Rt

− dX
dR

∣
∣∣
∣
Xt+1=Xt

]

= g′ (0)− α1 [1+g′ (0)]2

(α1 +α2σ) [1+g′ (0)]−α3
. (9.28)

Proof. Since g′′ (R) < 0, g′ (R) can be inverted such that we can define a unique
R̂ ≡ g′−1 (α3/(α1 +α2σ)− 1). The strict concavity of g(R) implies that the aver-
age yield of the natural capital is greater than the marginal yield: φ (R) is there-
fore strictly positive for positive R. Because by assumption 1 + g′ (R) > 0, the
numerator in (9.25) is positive for all positive R. Thus, f (R) > 0, 0 < R < R̂ if
[1+ g′ (Rt)] (α1 +α2σ) ≥ α3. However, this inequality is implied by the derivative
condition above. Given that, limR→−R̂ f (R) = +∞. Because g(R) is bounded, cer-
tainly ∃ε > 0 such that f

(
R̂− ε

)− g
(
R̂− ε

)
> 0. On the other hand, we already

know that f (0)− g(0) = 0. The derivative assumption in Prop. 9.1 implies that
∃ε > 0 such that f (R) < g(R) ⇔ f (R)− g(R) < 0, ∀R ∈ Bε (0). Given the con-
tinuity of f (R) and g(R) on

(
0, R̂

)
, the intermediate-value theorem implies that

∃R ∈ (0, R̂
)

such that f (R)− g(R) = 0 ⇔ f (R) = g(R).
Clearly, X = f (R) = g(R)≤ R+g(R), since R ≥ 0. Thus, the upper constraint in

(9.17) is fulfilled by the steady state solution. Finally, R < Rmax otherwise when R≥
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Rmax, then f (R) = f (Rmax) = g(R) = g(Rmax) = 0 which contradicts f (Rmax) =
Rmax + g(Rmax) = Rmax > 0.

In order to prove the uniqueness of the steady-state solution, monotonicity of
f (R) and g(R) is needed. However, g (R) is in (0, Rmax) either monotonically in-
creasing [g′ (R)≥ 0] or monotonically decreasing [g′ (R)< 0]. Comparing (9.25)
and (9.27), limR→−R̂ f (R) = +∞ implies limR→−R̂ f ′ (R) = +∞. Since the deriva-
tive assumption in Prop. 9.1 implies [1+g′ (Rt)] (α1 +α2σ)> α3, the denominator
of (9.27) is certainly strictly positive. The numerator of (9.27) remains positive for
R < R̂ because all terms are positive except σg′′ (R)R, and this term decreases for
R ≤ R̂− ε, ε > 0, if g′′′ (R)≥ 0 which is surely the case for the parametric example
of the logistic regeneration function. Thus, f (R) is monotonic for R ∈ (0, R̂

)
.

For the parametric example of the logistic regeneration function there is an alge-
braic solution for the steady state resource stock as follows:

R =
Ω {Π [(α2 −α1)σ ]+ 2 [α2Πσ −α1 −α2σ −α3]+α3}

4Ω 2 [(α2 −α1)σ ]
−

−
√

Ω 2 {Π [(α2 −α1)σ ]+ 2 [α2Πσ −α1 −α2σ −α3]+α3}2 −8Ω 2B

4Ω 2 [(α2 −α1)σ ]
,

with B ≡ [(α2 −α1)σ ] [Π (α2Πσ −α1 −α2σ −α3)+α3]. �
To facilitate the economic interpretation of the existence condition, a geometrical
illustration using Fig. 9.1 or 9.2 is in order. The condition in Prop. 9.1 requires that
the slope of the RR-curve at the origin (= growth potential of the resource stock)
be larger than the slope of the XX-curve at the origin. Economically interpreted the
existence condition says that the growth potential (in terms of sustained harvesting)
of the resource stock is larger than the increase of economic general-equilibrium
demand for sustained resource harvesting due to a marginally increased resource
stock. As the positive slope of the XX-curve in Figs. 9.1 and 9.2 indicates, the de-
mand for sustained resource harvesting in general equilibrium depends positively
on the resource stock. This positive dependence is, on the one hand, due to the
wealth effect of higher natural capital which means that households’ consumption
demand for the man-made product and—weighted by the production elasticity of re-
source harvesting—the production input demand for resource harvesting increases
and, on the other hand, due to the portfolio-reallocation effect of higher natural cap-
ital to more man-made capital investment and—weighted by the production elastic-
ity of resource harvesting—to more natural production input. In the contrary case,
if a marginal change of the resource stock induced a larger change of the general-
equilibrium harvesting demand than that of nature’s harvesting supply, only zero
production could be a steady-state solution.
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9.5 Stability of the Steady States

As usual, the local-stability properties of the steady-state solutions are investigated
by calculating the eigenvalues of the Jacobian matrix at the steady states, J(X , R),
defined by:

J (X , R) =

⎛

⎜
⎝

∂Xt+1

∂Xt

∂Xt+1

∂Rt
∂Rt+1

∂Xt

∂Rt+1

∂Rt

⎞

⎟
⎠ . (9.29)

The partial derivatives in (9.29) are calculated by partial differentiation of the differ-
ence equations (9.18) and (9.19) with respect to resource harvesting and the resource
stock and evaluated at the steady states:

∂Xt+1

∂Xt
=−g′′ (R)

[
g(R)

1+ g′ (R)

]
+α−1

3

[
1+g′ (R)

]
(α1 +α2σ)> 0, (9.30a)

∂Xt+1

∂Rt
= g(R)g′′ (R)− α1

α3

[
1+g′ (R)

]{
1+g′ (R)+σg′′ (R)R

}
, (9.30b)

∂Rt+1

∂Xt
=−1, (9.30c)

∂Rt+1

∂Rt
= 1+ g′ (R)> 0. (9.30d)

Let us denote the trace of the Jacobian J (X , R) by trJ (X , R), the determinant
of this Jacobian by det J (X , R), the discriminant of this Jacobian by ΔJ (X , R) ≡
trJ (X , R)2 − 4det J (X , R) and let the eigenvalues of this Jacobian be 1ψ2 =
1
2

[
trJ (X , R)±√ΔJ (X , R)

]
.

From Galor (1992, 1383) or Azariadis (1993, 63-67) we know: If the discriminant
and the determinant of the Jacobian at the trivial steady state are strictly positive,
if the trace is larger than 2 and if 1− trJ (0, 0)+ det J (0, 0) > 0, both eigenvalues
are larger than one which means that the equilibrium dynamics is asymptotically
unstable (ψ1 > 1, ψ2 > 1).

With this knowledge at hand, we can determine the stability properties of the
trivial and non-trivial steady state.

Proposition 9.2. The equilibrium dynamics (9.18) and (9.19) evaluated at the triv-
ial steady state is asymptotically unstable.

Proof. Using (9.30), simple calculation yields:

trJ (0, 0) = 1+ g′ (0)+
[

α1 +α2σ
α3

]
[
1+g′ (0)

]
> 2, (9.31)

det J (0, 0) =
α1

α2
σ
[
1+g′ (0)

]2
> 0, (9.32)

Δ J (0, 0) =
[
1+ g′ (0)

]2 α−1
3

[
(α3 −α2σ)2 +α2

1 +2α1 (α3 +α2σ)
]
> 0. (9.33)
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Thus,

1− trJ (0, 0)+ det J (0, 0)> 0 (9.34)

⇐⇒ α3 +α2σ
[
1+g′ (0)

]2
>
[
1+g′ (0)

]
(α1 +α2σ +α3) (9.35)

which exactly equals the existence condition of Prop. 9.1. �
Proposition 9.3. The non-trivial steady state resource stock R and the correspond-
ing stationary resource yield X represent a non-oscillating saddle point.

Proof. The eigenvalues of the Jacobian (9.29) 1ψ2 =
1
2

[
trJ (X , R)±√ΔJ (X , R)

]

at the non-trivial steady state are real and distinct if the discriminant of the Jacobian
defined by

Δ J (X , R)=
[
1+ g′ (R)

]−2
{
−g′′ (R)g(R)+

[
1+g′ (R)

]2
[

α1 +α2σ −α3

α3

]}2

+

− 4g′′ (R)g(R)+ 4
[
1+g′ (R)

]
(

α1

α3

)
[
1+g′ (R)+ g′′ (R)R

]
(9.36)

is positive. Comparing this discriminant expression with the numerator of (9.27),
the former is certainly positive if the latter is. From the proof of the uniqueness of
the steady state solution, we know that (9.27) is positive.

The eigenvalues are strictly positive if trJ (X , R)> 0 and det J (X , R)> 0, since
ψ1 +ψ2 = trJ (X , R)> 0 and ψ1ψ2 = det J (X , R)> 0. Now

trJ (X , R) =
−g′′ (R)g(R)
[1+g′ (R)]

+
[
1+g′ (R)

]
[

α1 +α2σ +α3

α3

]
> 0, (9.37)

det J (X , R) =

(
α2σ
α3

)
[
1+g′ (R)

]2 −
(

α1σ
α3

)
g′′ (R)

[
1+g′ (R)

]
R > 0. (9.38)

From Galor (1992, lemma A1, 1383) ψ1 > 1, 0<ψ2 < 1, iff trJ (X , R)> 0, det J (X , R)>
0, Δ J (X , R)> 0, and 1− trJ (X , R)+ det J (X , R)< 0:

1− trJ (X , R)+ det J (X , R) =

1+

{
g′′ (R)g(R)
[1+ g′ (R)]

}
− [1+g′ (R)

]
[

α1 +α2σ +α3

α3

]
+

+

(
α2σ
α3

)
[
1+g′ (R)

]2 −
(

α1σ
α3

)
g′′ (R)

[
1+g′ (R)

]
R.

(9.39)

We already know that the trace and the determinant of the Jacobian evaluated at the
non-trivial steady state are strictly positive. In order to show that 1− trJ (X , R)+
det J (X , R) < 0, we make use of the XX- and RR-curve and their derivatives de-
rived in (9.26) and (9.27). It is easy to verify that 1− trJ (X , R) + det J (X , R) <
0 ⇔ (dX/dR)|Xt+1=Xt

> (dX/dR)|Rt+1=Rt
. Therefore, the non-trivial steady state is

a stable, non-oscillating saddle point if the XX-curve cuts the RR-curve from below.
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Because (dX/dR)|Xt+1=Xt
> 0, this is certainly the case when (dX/dR)|Rt+1=Rt

< 0
(as in Fig. 9.2). Otherwise (as in Fig. 9.1), this stability condition is implied by
(dX/dR)|Xt+1=Xt

> 0 and the existence assumption of Prop. 9.1. �
The analytical information provided by the Props. 9.1-9.3 is summarized by Figs. 9.1
and 9.2. Clearly, the non-trivial steady-state solution (X , R) is exactly there where
the stationary-state curves intersect in the first orthant of the X−R space. In Fig. 9.1,
the XX-curve cuts the RR-curve in the area where the slope of the RR-curve is pos-
itive: the steady state resource stock is such that the natural own rate of return and
hence the real interest rate are positive. In Fig. 9.2, the steady-state solution exhibits
a negative natural own rate of return and a negative real interest rate. Both solutions
are compatible with Prop. 9.1.

The instability of the trivial steady state and the saddle-point stability of the non-
trivial solution are illustrated by Figs. 9.1 and 9.2. An inspection of the stationary-
state curves in both diagrams reveals that the XX-curve cuts the RR-curve at the non-
trivial steady state resource stock from below: as shown by the proof to Prop. 9.3,
saddle-point stability at the non-trivial steady state demands that the derivative of the
XX-curve is greater than the derivative of the RR-curve at the steady state resource
stock (R in Figs. 1 and 2).3

9.6 The Saddle Paths Converging to the Non-Trivial Steady State

The proof of Prop. 9.3 reveals that the eigenvalue ψ1 of the Jacobian evaluated at R
can be rejected since otherwise the equilibrium dynamics would become asymptot-
ically unstable. Only the second eigenvalue 0 < ψ2 < 1 allows for a non-explosive
equilibrium dynamics. But the exclusion of ψ1 implies that the equilibrium dynam-
ics is only saddle-path (‘knife-edge’) stable.

A linear approximation of the equilibrium dynamics evaluated at the saddle point
(X , R) reads as follows:

(
Xt+1

Rt+1

)
=
(
J (X , R)

)(Xt

Rt

)
+
(
I − J (X , R)

)(X
R

)
. (9.40)

The general solution of this linearly approximated difference-equation system takes
the following form:

Xt = X +κeXψt
2, (9.41)

Rt = R+κeRψt
2, (9.42)

with κ �= 0 and
( eX

eR

)
being the solution of the following matrix equation:

3 The phase-diagrams in Koskela et al (2002, 505) look very similar to ours in Figs. 9.1 and 9.2.
This fact is not really surprising because our log-linear CD model with man-made capital is at least
dimensionally equivalent to Koskela et al’s model without man-made capital but with quasi-linear
utility function.
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(
J (X , R)

)(eX

eR

)
= ψ2

(
eX

eR

)
. (9.43)

It is easy to see that one admissible solution of (9.43) reads as follows:
(

eX

eR

)
=

(
J22 (X , R) −ψ2

1

)
with J22 (X , R) = 1+g′ (R) . (9.44)

Now, consider (9.42) at t = 0 and put eR = 1 from (9.44). This yields:

κ = R0 −R. (9.45)

Inserting (9.44) and (9.45) in (9.41) and (9.42), one is prepared to state the following

Proposition 9.4. Let J22 (X , R) be given from (9.44) and let ψ2 be given from the
proof to Prop. 9.3. A linear approximation of the equilibrium dynamics of the
natural-resource variables evaluated at the saddle point (X , R) takes the following
form:

Rt+1 = R(1−ψ2)+ψ2Rt , given R0 > 0, (9.46a)

Xt = X +[J22 (X , R)−ψ2] (Rt −R) , (9.46b)

Kt+1 =

[
α3Xt+1

1+g′ (Rt+1)

]
Xα1−1

t Kα3
t , given K0 > 0. (9.46c)

With this equilibrium dynamics near the non-trivial steady state at hand, we will
now investigate whether there are parameter combinations of the dynamical system
at all which allow both for accumulation of man-made capital and time-stationary
stocks of the renewable resource, i.e. for a sustainable growth path as defined by
Mourmouras (1991, 589) approaching: K = {(α3Xα1)/ [1+g′(R)]}1/(1−α3) > K0,
whereby Rt = R0,∀t with R0 > 0.

Corollary 9.1 (Feasibility of sustainable growth). Man-made capital accumula-
tion and the equality of resource stocks across generations are incompatible with de-
centralized individual optimization and intertemporal market clearing except when
R0 = R.

Proof. In view of the saddle-path dynamics depicted in Prop. 9.4 man-made capital
accumulation (K0 < K) and intergenerationally equal natural capital (Rt = R0,∀t)
are compatible only if by accident R0 = R. When however R0 �= R, intergenerational
resource equality would demand ψ2 = 1 which is inconsistent with Prop. 9.3. �
While sustainable growth is not feasible in an OLG model with logistically regener-
ating resources, in the steady state the renewable resource is time-stationary and
ecologically sustainable by definition. The same is also true with respect to the
utility of younger generations in the steady state. In the long run both notions of
sustainability are fulfilled in the CD OLG model of this chapter.
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9.7 Conclusions

This chapter focused both on the existence and dynamic stability of steady states
in an intertemporal OLG market equilibrium model with a logistically regenerat-
ing resource stock. Steady states (stationary states) are by definition economically
and ecologically sustainable. However, steady state sustainability is by no means
self-evident. Finite lives of agents, generations’ overlap, intergenerational selfish-
ness, and trade of resource stocks among generations in perfectly competitive mar-
kets bring about in spite of log-linear intertemporal preferences and a CD produc-
tion function a strong tendency of the OLG economy to contract towards the trivial
steady state. To counter this contraction tendency the natural regeneration rate near
a zero resource stock has to be sufficiently high in comparison to the stationary-state
general equilibrium propensity to use the resource as production input (evaluated at
the trivial steady state).

Given this existence condition the asymptotic instability of the trivial steady state
and the saddle-path stability of the non-trivial steady state follow logically. Hereby
the log-linearity of the preferences and the Cobb-Douglas form of the production
function play an important role.

With the existence and dynamic stability of the non-trivial steady state we are
also ensured that in the long run both economic and ecologic sustainability is feasi-
ble in an unhampered market economic with logistic (non-linear) regeneration. On
the other hand, ecologically sustainable growth is not compatible with unhampered
market competition when the resource stock over time has to remain strictly at its
initial value. If the initial resource stock is less than the steady state value and a
rise of the resource stock over time is allowed a sustainable growth path from an
initially low man-made capital stock towards a higher steady state value exists even
under logistic regeneration. If however the initial resource stock is higher and the
man-made capital stock is lower than the respective steady state values (the real-
istic case), ecological sustainability neither in the strict nor in the weaker form is
attainable in the logistic model.

In this chapter we neglect for the sake of simplicity harvest costs—an assumption
which precludes the analysis of the impacts of harvest cost shocks in our CD OLG
model. To enable the impact analysis we introduce stock dependent harvest costs
into our model economy in the following chapter.
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Shocks to Harvest Technology and Natural

Regeneration



Chapter 10
Resource Use with Physical Harvest Costs

10.1 Introduction

In Chaps. 8 and 9 we implicitly assumed that resource harvest does not, unlike
commodity production, require inputs such as labor or capital. This is, however,
an unrealistic simplification and this is why resource harvest costs are commonly
found in sectoral models (for an overview, see Clark, 1990; Neher, 1990; Brown,
2000). In these models, harvest costs typically depend not only on the harvest vol-
ume as in Chaps. 6 and 7 but also on the resource stock. Applied to fisheries, harvest
costs depend on the size of catch (Heaps and Neher, 1979) and on the available fish
stock, following the general wisdom ‘the more fish the easier to catch’ (Smith, 1968;
Tahvonen and Kuuluvainen, 2000). The model of this chapter incorporates therefore
harvest costs which depend inversely on the resource stock. Since ‘most fisheries in
the world do not pay a wage rate but pay a share of the catch’ (Brown, 2000, 881),
we assume moreover that harvest costs are accountable in resource units and thus
affect the size of the stock. Both the assumptions of stock dependent harvest costs
and of physical accountability are a clear difference to the harvest cost function
employed in Chaps. 6 and 7.

Natural resources form an essential input in the production of not one, but many
goods. Thus, it is useful to investigate the resource technology shocks not in a par-
tial but in a general equilibrium framework. However, the overwhelming majority
of general equilibrium models with renewable natural resources have avoided the
explicit modeling of harvest technologies and associated costs, an approach we also
followed in Chaps. 8 and 9. Thus, the notion of harvest costs still is rare in intertem-
poral general equilibrium models of the ILA type (Krutilla and Reuveny, 2004), and
completely missing within the OLG type. As seen from partial equilibrium analysis,
this simplification is not only manifestly unrealistic but also precludes the investi-
gation of the effects of harvest cost shocks. The omission of harvest cost in general
equilibrium models is based on the implicit assumption of costs as a simple mark–up
on the harvest price (Berck, 1981).

135K. Farmer and B. Bednar-Friedl, Intertemporal Resource Economics: An Introduction 

© Springer-Verlag Berlin Heidelberg 2010
to the Overlapping Generations Approach, DOI 10.1007/978-3-642-13229-2_10,
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The present chapter offers therefore a conceptual integration of stock dependent
harvest costs into our OLG model. As a result of this fundamental change in resource
technology, an analysis of the properties of steady state solutions is necessary. This
analysis is necessary since on account of harvest costs, a non-trivial steady state
might not exist if private savings are insufficient to sustain capital and resource
accumulation in the long run. Galor and Ryder (1989) show in an OLG model with
man-made capital only that strengthened Inada conditions are necessary to ensure
the existence of a non-trivial steady state. Obviously, in our OLG economy this
problem is reinforced since stock-dependent harvest costs are particularly high if
the resource stock is small. Moreover, the introduction of harvest costs can cause
multiple equilibria (see Krutilla and Reuveny, 2004, in an ILA context), raising
the question of uniqueness in our model. Regarding intergenerational efficiency, it
remains to be seen whether the introduction of non-negligible harvest costs changes
the efficiency insights gained so far in the previous chapters. Thus, the questions
of existence, uniqueness and stability of a non-trivial steady state equilibrium with
stock-dependent harvest costs as well as its efficiency will be carefully addressed in
this chapter. In our existence and stability analysis, we closely follow the approach
developed for two–sector OLG models by Galor (1992).

This chapter is structured as follows. The following section contains a description
of the model and the derivation of the intertemporal equilibrium dynamics. After
deriving the intertemporal equilibrium loci, we derive the conditions for a non-trivial
steady state to exist, followed by the characteristics of a long-run intergenerationally
efficient solution. The next step is to analyze the stability and uniqueness of steady
state solutions.

10.2 An OLG model with Harvest Costs

The present model is an extension of the model presented in Chap. 9 in which
harvest was assumed to be costless. For incorporating harvest costs, two options
are available. The first is based on partial equilibrium models where harvesting
requires labor (or effort) as input (see, e.g. Krutilla and Reuveny, 2004; Elíasson
and Turnovsky, 2004). Usually, this approach is incorporated together with the
well–known Schaefer (1954) harvest function, a functional specification popular
in mostly partial equilibrium fishery models (see, e.g. Brown, 2000; Clark, 1990).
Extending this harvest cost formulation to a general equilibrium framework implies
that labor needs to be split optimally between two competing purposes, namely re-
source harvest and commodity production. This considerably complicates the model
since labor becomes now an endogenous variable.

An alternative approach, with similar qualitative implications but considerably
simpler analysis, is to assume that resource harvest causes costs to the resource
stock (physical harvest costs). Under such an assumption, the resource stock is re-
duced by some gross harvest level of which only a fraction can be used as resource
input in commodity production. Comparable specifications were also used by Arm-
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strong and Sumaila (2001) and Escapa and Prellezo (2003) who both assume that
the resource harvest technology alters the regeneration rate of the resource stock.
Our specification of harvest costs is analogous to the introduction of adjustment
costs into capital accumulation by Hayashi (1982) where gross investment turn only
partly into capital. Hence, we will deploy this latter approach in this and the follow-
ing chapter. For a brief outline of the model with endogenous labor supply, we refer
to Appendix A.

10.2.1 Dynamics of the Resource Stock

The economy is endowed with a renewable resource stock, Rt , which for exposi-
tional purposes we shall identify as being a forest or a freshwater fishery. Property
rights for the natural resource are fully specified and enforced without cost. In par-
ticular, the resource stock is owned by the households and can be either harvested
or saved, as an alternative investment to man-made capital, to transfer income into
the retirement period.

As in the previous chapter, we assume that resource regeneration is governed by
the logistic function, but in slightly different notation:1

g(Rt)≡ π
(

Rt − Rt
2

Rmax

)
, (10.1)

where π denotes the regeneration rate, or increase in units of biomass, and Rmax

the carrying capacity. In the absence of harvesting, the resource stock tends towards
Rmax.

Costly resource harvest is represented through a resource harvest process h(Rt)Xt

where Xt is the harvest volume and the harvest cost function h(Rt) which depends
inversely on the size of the resource stock: h′ < 0, h′′ > 0 and h(0) positive but finite.
Accordingly, the scarcer the resource the more costly it is to harvest. Harvest costs in
our model can be best understood as costs in units of the resource stock that accrue
additionally to the harvest volume, either as unintended side–effects of resource
harvest such as damage to livestock and forest stands, or as costs of employment
effort paid in resources, not money. The harvest cost function is specified by

h(Rt) = 1+
λ

ρ +Rt
, (10.2)

with the harvest cost parameters λ > 0 and ρ small (but positive). Without harvest
costs, we had λ = 0. Thus, λ reflects the effort or difficulty necessary to harvest one
unit. For a fishery, the value of λ can be understood as the catchability of fish while
for a forest it could represent the accessibility or location of the forest stand.

1 The current version can be easily transformed into the earlier version by setting Ω ≡ π/Rmax.
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Incorporating resource harvest and natural resource growth gives for the net re-
generation function:

Rt+1 = Rt +g(Rt)−h(Rt)Xt . (10.3)

Accordingly, the resource stock in (10.3) is reduced by gross harvest h(Rt)Xt but
only Xt can be actually sold on the market. The case of costless harvest as in Chap. 9
corresponds to h(Rt) = 1.

10.2.2 Household and Firm Optimization

As in the chapters before, the representative consumer’s intertemporal utility de-
pends on consumption during the working period, c1

t , and consumption during
the retirement period, c2

t+1, the latter being discounted by the time discount factor
0 < β < 1. The commodity can both be consumed and invested, and the commodity
in period t serves as the numeraire. For simplicity, the representative household’s
preferences are represented by a log–linear intertemporal utility function:

u = u(c1
t ,c

2
t+1) = ln c1

t +β ln c2
t+1. (10.4)

In maximizing intertemporal utility (10.4), the young household is constrained by a
budget constraint in each period of life. Assuming that the resource stock is acquired
at the beginning of the period and that working time is normalized to one, income
when young is gained from employment and selling of the resource harvest Xt , and
is spent on consumption c1

t . Furthermore, for transferring income to their retirement
period, young households save in terms of man-made capital Kt+1 and in terms of
the natural resource Rt :

pt Rt + c1
t +Kt+1 = wt +qtXt , (10.5)

where wt denotes real wage, and qt the price of resource harvest. The resource stock
is bought at the beginning of the period and the resource harvest is sold simulta-
neously at a one–period forward market to the representative firm where it is used
as an input to commodity production. This specification of resource stock holding
follows a beginning–of–period notion (as in in Chap. 9) in contrast to the end–of–
period notion employed in Koskela et al (2002).

From saving, the household gains income in the retirement period, where rt+1

denotes the interest factor of man-made capital and pt+1 the price of the resource
stock. Thus, revenues when old derive from sale of the capital stock and of the
resource stock to the younger generation at price pt+1 and are spent on consumption
c2

t+1 only:
c2

t+1 = rt+1Kt+1 + pt+1Rt+1. (10.6)
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As argued above, the resource stock is private property of the households and there-
fore the dynamics of the resource stock (10.3) form the third constraint to household
optimization.

At an interior solution of the household’s optimization problem, the following
FOCs hold. They require that the intertemporal marginal rate of substitution equals
the interest factor (10.7), that the net return on resource harvest equals the dis-
counted price of the resource stock (10.8), and that the returns on man-made capital
(rt+1) and the renewable resource stock (pt+1/pt (1+g′(Rt)−h′(Rt)Xt)) are bal-
anced (10.9):

c2
t+1

β c1
t
= rt+1, (10.7)

qt

h(Rt)
=

pt+1

rt+1
, (10.8)

rt+1 =
pt+1

pt

(
1+g′(Rt)−h′(Rt)Xt

)
. (10.9)

Deriving the intertemporal budget constraint from (10.5) and (10.6), taking account
of (10.7)–(10.9), yields the consumption of the young in period t:

c1
t = γ

{
wt +

qt

h(Rt)

(
g(Rt)−g′(Rt)Rt +h′(Rt)XtRt

)}
, (10.10)

with γ ≡ 1/(1+β ). The consumption of the old is determined by (10.6) for t taking
account of (10.8) and (10.9):

c2
t = rtKt +

qt

h(Rt)

(
1+g′(Rt)−h′(Rt)Xt

)
Rt . (10.11)

The firm is assumed to behave competitively and to maximize profits given output
and input prices. Output Yt is produced according to a constant returns to scale CD
production function with labor Ny

t , capital Kt , and resource harvest Xt as inputs,
where Yt = (Xt)

α1(Ny
t )

α2(Kt )
α3 , α1 +α2 +α3 = 1 and 0 < αi < 1, i = 1,2,3 de-

note the constant production elasticities of the resource harvest, labor, and capital
services, respectively. Per–period profit maximization yields the FOCs in the usual
manner:

qtXt = α1Yt , wtN
y
t = α2Yt , rtKt = α3Yt . (10.12)

All markets are assumed to clear every period, i.e. the markets for the resource stock
(traded between households of different age), for resource harvest (traded between
young households and the firm), for labor (where supply Lt is normalized to one,
i.e. Ny

t = 1), and for man-made capital. Commodity market clearing coincides again
with Walras’ Law and is therefore redundant:

(Xt)
α1(Kt )

α3 = c1
t + c2

t +Kt+1. (10.13)
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10.2.3 Intertemporal Equilibrium Dynamics

As in Chaps. 8 and 9, the intertemporal equilibrium dynamics can be reduced to a
two–dimensional system in Rt and Xt by using the goods market clearing condition
and the household’s and firm’s first order conditions. Similar to the model without
harvest costs, a relationship for Kt+1 can be derived from (10.13) by taking account
of (10.10), (10.11), and (10.12). Another relationship for Kt+1 can be derived from
(10.8), (10.9), and (10.12). Equating for Kt+1, and taking account of (10.12), yields
the equation of motion for resource harvest:

Xt+1 ≡ ΦX (Rt ,Xt) =
(1+g′(Rt+1))A(Rt ,Xt)

α3 h(Rt+1)+ h′(Rt+1)A(Rt ,Xt)
, (10.14)

with A(Rt ,Xt)≡ [(α1 +α2σ)h(Rt)+α1σh′(Rt)Rt ]Xt −α1 [γΦ(Rt )+ 1+g′(Rt)]Rt ,
where Φ(Rt)≡ g(Rt)/Rt − g′(Rt) and σ ≡ 1− γ .

In order to guarantee that Xt+1 ≥ 0 and Rt+1 ≥ 0,∀t, resource harvest has to be
bounded from above and below: Xt ∈ [Xmin (Rt) ,Xmax (Rt)], ∀Rt ∈ [0,Rmax] ,∀t. Let
Xt ≥ Xmin(Rt),∀t. To ensure that in (10.14) Xt+1 ≥ 0,∀t,

Xmin(Rt)≡
α1Rt

[
γΦ(Rt)+ 1+g′(Rt)

]

(α1 +α2σ)h(Rt)+α1σh′(Rt)Rt
,

with (α1+α2σ)h(Rt)+α1σ (h′(Rt))Rt > 0. According to the definition of the lower
bound Xt = Xmin(Rt), we have A(Rt ,Xt) = 0 which corresponds also to the case that
man-made capital is not required as an input to production. Since (α1+α2σ)h(Rt)+
α1σ (h′(Rt))Rt > 0, it follows that Xmin(Rt) > 0,∀Rt ∈ (0,Rmax]. For Rt+1 ≥ 0,∀t,
an upper bound for Xt follows from (10.15): Xmax(Rt)≡ Rt +g(Rt).

The second equation of motion, Rt+1 ≡ ΦR(Rt ,Xt), is identical to the stated nat-
ural growth function:

Rt+1 ≡ Φ(Rt ,Xt) = Rt +g(Rt)−h(Rt)Xt . (10.15)

While the derivation of (10.14) involves the capital stock implicitly, the explicit
dynamics of the capital stock follow from:

Kt+1 ≡ ΦK(Rt ,Xt ,Kt) =
α3 Xt+1h(Rt+1)Xt

α1−1Kt
α3

(1+g′(Rt+1)−h′(Rt+1)Xt+1)h(Rt)
, for given K0 > 0.

(10.16)
A non-trivial perfect–foresight equilibrium is then a sequence (Rt ,Xt)

∞
t=0 such

that (10.14)–(10.15) hold, where Rt ∈ (0,Rmax), Xt ∈ (Xmin (Rt) ,Xmax (Rt)), and
R0 > 0 given.
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10.3 Derivation of Intertemporal Equilibrium Loci

To investigate the conditions for the existence and stability of a non-trivial steady
state, we analyze the properties of the intertemporal equilibrium under perfect fore-
sight by utilizing the notion of intertemporal equilibrium loci. This allows us, in
contrast to the local analysis of the previous chapter, to conduct a global analysis of
existence, stability, and uniqueness in the subsequent sections. The RR-locus, also
referred to in the literature as isocline (see, e.g. Shone, 1997), is the geometrical
place of all pairs (Rt ,Xt) such that the resource stock is stationary (Rt = ΦR(Rt ,Xt)
in (10.15)) while at the XX-locus the resource harvest is stationary (Xt = ΦX (Rt ,Xt)
in (10.14)).2

Lemma 10.1 and 10.2 assure that the (functional) solutions to both loci are eco-
nomically feasible and single valued such that the RR-locus is given by Xt = ϕ(Rt)
and the XX-locus by Xt = μ(Rt). For the XX-locus to exist and to be single valued,
condition (10.17) is sufficient.3

Lemma 10.1 (XX-locus). Let the regeneration function g(R) and the harvest cost
function h(R) be specified by (10.1) and (10.2), and let condition

α3h(0)<
(
1+g′(0)

)
((α1 +α2σ)h(0)−α1) , (10.17)

∀Rt ∈ (0,Rmax] and for ρ near zero (but positive) hold. Then, there exists a unique
Xt ∈ (Xmin(Rt),Xmax(Rt)), ∀Rt ∈ [0,Rmax], such that (Rt ,Xt) ∈ XX, Xt = μ(Rt),
where μ(Rt) is a continuously differentiable function.

Proof. See Appendix B.

Lemma 10.2 (RR-locus). There exists a unique Xt ∈ [0,Xmax (Rt)) for all Rt ∈
[0,Rmax] such that for (Rt ,Xt) ∈ RR, Xt = ϕ(Rt) ≡ g(Rt)/h(Rt), where ϕ(Rt) is
a continuously differentiable function.

2 Note that this loci, or isoclines, are different from the RR- and XX-curves of the previous chapter
which were, strictly speaking, only defined in the steady state (X,R).
3 Inspecting Xt = ΦX (Rt ,Xt) in (10.14) reveals that ΦX (Rt ,Xt) is a polynomial of order four in Xt

which is analytically inaccessible. This is in contrast to the no harvest cost case where h(Rt ) = 1
and hence (10.14) is a second order polynomial in Xt . In the case without man-made capital, i.e.
α3 = 0, we would have a non–polynomial solution for Xt . To identify the economically feasible
and unique root, we apply the intermediate value theorem which yields condition (10.17).
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10.4 Existence of Non-Trivial Steady State

By setting Rt+1 = Rt = R and Xt+1 = Xt = X , for all t, a non-trivial steady state to
the dynamic system (10.14) and (10.15) can be defined:

X = ϕ(R)≡ g(R)
h(R)

, (10.18)

while the relationship X = μ(R) is defined implicitly by

α3h(R)X =
(
1+g′(R)−h′(R)X

)
A(R,X) . (10.19)

For economically feasible values (i.e., X ∈ (Xmin (R) ,Xmax (R)) and R ∈ [0,Rmax]),
system (10.18–10.19) defines the steady state(s).

There exists one trivial steady state (R,X) = (0,0), but it will not be further in-
vestigated here, since the condition for its existence does not involve parameters of
the harvest cost function and is thus similar to a corresponding OLG model with-
out harvest costs (see Chap. 9) where a trivial steady state exists which is locally
unstable.

Applying the methods developed by Galor (1992) for two–sector OLG models to
prove the existence of a non-trivial steady state to the present model requires that (i)
at the origin (R = 0), the RR-locus coincides with the XX-locus, (ii) at the carrying
capacity Rt = Rmax, the RR-locus is below the XX-locus, and (iii) in the vicinity of
the origin, the slope of the RR-locus is steeper than that of the XX-locus. Prop. 10.1
states precisely the condition for the existence of a non-trivial steady state.

Proposition 10.1 (Existence of non-trivial stationary state). Let Condition (10.17)
in Lemma 10.1 hold. Then, a non-trivial steady state (i.e. stationary state) solution
exists if

lim
Rt→0

dXt

dRt

∣
∣
∣
∣
Rt+1=Rt

> lim
Rt→0

dXt

dRt

∣
∣
∣
∣
Xt+1=Xt

.

But this is the case if g′(0)> α1 (1+g′(0))2 [(1+g′(0))(α1 +α2σ)−α3]
−1.

Proof. We know that ϕ(0) = μ(0) = 0, and ϕ(Rmax)< μ(Rmax) since ϕ(Rmax) = 0
and μ(Rmax) > Xmin(Rmax) > 0. In order to show that limRt→0 dXt/dRt |Rt+1=Rt

>

limRt→0 dXt/dRt |Xt+1=Xt
is sufficient for the existence of a non-trivial steady state,

we have to investigate the slopes of the two loci for limes for Rt → 0.
The slope of the RR-locus can be obtained by taking differentials of (10.15), with

respect to Xt and Rt , considering Rt+1 = Rt and solving for dXt/dRt:

dXt

dRt

∣
∣
∣
∣
Rt+1=Rt

=
g′(Rt)−h′(Rt)Xt

h(Rt)
, Xt = ϕ(Rt), (10.20)
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Proceeding similarly by differentiating (10.14’), considering Xt+1 = Xt yields for
the slope of the XX-locus:

dXt

dRt

∣
∣
∣
∣
Xt+1=Xt

=
∂RHS/∂Rt (Rt ,Xt)− ∂LHS/∂Rt (Rt ,Xt)

∂LHS/∂Xt (Rt ,Xt)− ∂RHS/∂Xt (Rt ,Xt)
, Xt = μ(Rt), (10.21)

where ∂LHS/∂Xt and ∂RHS/∂Xt are known from (10.38)–(10.39) and

∂LHS(Rt ,Xt)

∂Rt
= α3h′(Rt+1)Xt

(
1+g′(Rt)−h′(Rt)Xt

)
, (10.22)

∂RHS(Rt ,Xt)

∂Rt
=
(
1+g′(Rt+1)−h′(Rt+1)Xt

) ∂A(Rt ,Xt)

∂Rt
+A(Rt ,Xt)×

× (
1+ g′(Rt)−h′(Rt)Xt

)[
g′′(Rt+1)−h′′(Rt+1)Xt

]
. (10.23)

with

∂A(Rt ,Xt)/∂Rt = (α1 +α2σ)h′(Rt)Xt −α1
[
1+g′(Rt)+

+σ
(
g′′(Rt)−h′′(Rt)Xt

)
Rt −σh′(Rt)Xt

]
.

Evaluating (10.20) and (10.21) for Rt → 0 yields:

lim
Rt→0

ϕ ′(Rt) =
g′(0)
h(0)

> 0

lim
Rt→0

μ ′(Rt) =
α1 (1+g′(0))2

(1+g′(0))(α1 +α2σ)h(0)−α3h(0)

Because of Lemma 10.1, the denominator in limRt→0 μ ′(Rt) is positive. Thus,
limRt→0 ϕ ′(Rt) > limRt→0 μ ′(Rt) is equivalent to the requirement that g′(0) >
α1 (1+ g′(0))2 [(1+ g′(0)) (α1 +α2σ)−α3]

−1. Then, there exists an ε > 0, such
that ϕ(Rt) > μ(Rt),∀Rt ∈ (0,ε). Since furthermore ϕ(·) and μ(·) are continuous
on the interval (0,Rmax), it follows from the Intermediate Value Theorem that there
exists an Rt = R ∈ (0,Rmax) such that ϕ(Rt) = μ(Rt). �
The slope condition in Prop. 10.1 requires that at the origin, the growth potential
of the natural resource stock (represented by the slope of the RR-locus) has to be
higher than the resource harvest demanded by the production sector (represented by
the slope of the XX-locus). The demand for resource harvest depends positively on
the available resource stock (since the slope of the XX-locus near the origin is posi-
tive) because with higher holdings of the resource stock the households’ demand for
the commodity increases. A higher resource stock leads to lower harvest cost since
harvest cost depend inversely on the stock, partially offsetting the previous effect.
Moreover, resource harvest increases because of a higher resource stock causing an
asset relocation towards more man-made capital, the production of which demands
higher resource harvesting. For a non-trivial steady state to exist, it is thus necessary
that the resource harvest supply responds more to an increase in the resource stock
than the harvest demand.
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10.5 Long-Run Intergenerational Efficiency of Non-Trivial
Steady State

Knowing that a non-trivial steady state exists, we investigate whether (or under
which conditions) the steady state is long-run intergenerationally efficient. This is
particularly relevant given the fact that the non-trivial steady state solutions may or
may not be intergenerationally efficient in an OLG model with a renewable resource
but without man-made capital (Koskela et al, 2002) and that the same holds in an
OLG model with man-made capital and land (Rhee, 1991).

To investigate the efficiency of the non-trivial steady state, we first derive the
FOCs for long-run intergenerational efficiency. A social planner maximizes utility
of each individual living in the steady state (u(c1,c2)), subject to a certain level of
welfare of the oldest generation (u(c2

0)):

maxln c1 +β ln c2

subject to:
(i) lnc2

0 ≥ ln(c2
0)

•,

(ii) c1 + c2 +K = Xα1Kα3 ,

(iii) c1 + c2
0 +K = Xα1Kα3

0 ,

(iv) g(R) = h(R)X ,

(v) R0 +g(R) = h(R0)X +R,

(vi) c2
0,c

1,c2
t+1 ≥ 0, R,R0 ≥ 0, X ≥ 0, Ko,K ≥ 0,

where R0 and K0 are the resource and the capital stock owned by the initially old
generation.

Setting up the Lagrangian

L = ln c1 +β ln c2 + μc
−1

[
lnc2

0 − ln(c2
0)

•]+φ y [Xα1Kα3 − c1 − c2 −K
]
+

+φ y
0

[
Xα1Kα3

0 − c1 − c2
0 −K

]
+φR [g(R)−h(R)X ]+

+φR
0 [R0 +g(R0)−h(R0)X −R] ,

yields the following FOCs:
(c2)•

β (c1)•
= 1+

(φ y
0 )

•

φ y)•
, (10.24a)

(μc
−1)

•

(c2
0)

• = (φ y
0 )

•, (10.24b)

α3
Y •

K• = 1+
(φ y

0 )
•

(φ y)•
, (10.24c)

α1

[
(φ y

0 )
•)
(Y0)

•

(X0)•
+(φ y)•

Y •

X•

]
= φRh(R•)+φR

0 h(R0), (10.24d)

(φR)•
[
g′(R•)− h′(R•)X•]= (φR

0 )
•. (10.24e)
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Proposition 10.2 characterizes long-run intergenerationally efficient and ineffi-
cient solutions.

Proposition 10.2 (Long-run intergenerationally efficient resource stock and re-
source harvest). The Golden rule allocation is identified by the unique steady state
solution (RMSY ,XMSY ) which satisfies g′(RMSY )− h′(RMSY )XMSY = 0 and hence
X• = XMSY and R• = RMSY (maximum sustainable yield level). A non-trivial steady
state characterized by R• < RMSY and thus g′(R•)− h′(R•)X• > 0 is dynamically
(intergenerationally) efficient.

Proof. The Golden rule emerges where (μc
−1)

• = 0 and hence (φ y
0 )

• = 0 and
(φR

0 )
• = 0. Due to (φR

0 )
• = 0 steady state utility is maximized when g′(RMSY ) =

h′(RMSY )XMSY , i.e. the resource stock is at its maximum sustainable yield level,
which clearly differs from the maximum sustainable yield level without harvest
costs.

When, however, (μc
−1)

• > 0, it follows that (φ y
0 )

• > 0 and hence (c2)•/(β (c1)•)=
1 + (φ y

0 )
•/(φ y)• > 1 and therefore we get the marginal productivity of capital

α3Y •/K• = 1+(φ y
0)

•/(φ y)• > 1. Furthermore, from (10.24e) follows that g′(R•)−
h′(R•)X• > 0 which implies that R• < RMSY . �
Proposition 10.3 (Long-run intergenerational (in-)efficiency of steady-state mar-
ket equilibrium). Steady-state market equilibria with r > 1 (r = 1) are long-run
intergenerationally efficient (Golden rule) and thus also long-run dynamically ef-
ficient. Market equilibria with 0 < r < 1 are dynamically inefficient and thus also
intergenerationally inefficient.

Proof. From (10.9) in the steady state we have r = 1+g′(R)−h′(R)X . Clearly, with
r > 1 (r = 1) g′(R)−h′(R)X > 0 which coincides with the FOC for intergenerational
efficiency when R = R• < RMSY (R• = RMSY ). Otherwise, R > RMSY . �

The two possible cases are illustrated by Figs. 10.1– 10.3. In Fig. 10.1, the XX-
locus cuts the RR-locus in the area where the slope of the RR-locus is positive—the
stationary resource stock and thus, because of the no–arbitrage condition, the man-
made capital stock exhibit a positive own rate of return (underaccumulation of the
resource stock occurs).4 This resource stock is below the Golden rule resource stock
R < RGR = RMSY which coincides with the maximum sustainable yield level where
g′(RMSY ) = h′(RMSY )XMSY holds.

The second case is illustrated by Figs. 10.2 and 10.3 in which R > RMSY and the
RR-locus is negatively sloped and which is also compatible with Prop. 10.1, as the
proof to Prop. 10.2 shows. This case is, however, intergenerationally inefficient since
a central planner could increase welfare of the present and all future generations by
a reduction in resource accumulation.

4 Dynamic efficiency is in line with stylized facts of advanced economies in which the real interest
rate is strictly positive (r > 0) and hence also the own rate of return of the resource stock is, due to
the no arbitrage condition, positive: g′(R)−h′(R)X > 0, R < RMSY .
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10.6 Stability of Non-Trivial Steady State

For stability of the non-trivial steady state in the present model, the slopes of the
XX-locus and the RR-locus at the stationary state are essential. In particular, saddle
point stability of the steady state requires that at the steady state the XX-locus cuts
the RR-locus from below and hence the sign of the slopes of both loci are derived in
Prop. 10.4:

Proposition 10.4 (Slopes of XX and RR loci at the steady state). Define Ω ≡
α3h′X − (1+ g′ − h′X)∂A/∂R − [g′′ −h′′X ]A and Θ ≡ (1+g′ −h′X)∂A/∂X −
h′A−α3h.5 Then, the slope of the XX-locus at the non-trivial steady state is given
by

μ ′(R) =
Ω
Θ

. (10.25)

For the regeneration and harvest cost function specified by (10.1) and (10.2), Θ > 0
and hence μ ′(R) is positive for Ω ≥ 0 while it is negative for Ω < 0. The slope of
the RR-locus at the non-trivial stationary state, given by

ϕ ′(R) =
g′ −h′X

h
, (10.26)

is positive for R ∈ [0,RMSY ) while it is negative for R ∈ (RMSY ,Rmax].

Proof. To derive the slopes of the loci at the steady state (10.25)–(10.26), we totally
differentiate the intertemporal equilibrium dynamics (10.14) and (10.15) evaluated
at the steady state with respect to X and R and drop the cumbersome notation of
functions g, h and A. For the specified regeneration and harvest cost functions (10.1)
and (10.2), the sign of ∂A/∂X is unambiguously positive, but the sign of ∂A/∂R is
ambiguous.

By definition, at the maximum sustainable yield level RMSY we have ϕ ′(RMSY ) =
0, and hence ϕ ′(R)> 0 for R ∈ [0,RMSY ) while ϕ ′(R)< 0 for R ∈ [RMSY ,Rmax). To
sign μ ′(R), it is straightforward to verify that Θ > 0 for the specified regeneration
and harvest cost functions, (10.1) and (10.2). Hence μ ′(R) > 0 ⇐⇒ Ω > 0 and
μ ′(R)< 0 ⇐⇒ Ω < 0. �
As is typical for logistic regeneration, the slope of the RR locus, ϕ ′(Rt), is increas-
ing for low values of R while it is decreasing after the maximum sustainable yield
level RMSY . The slope of the XX-locus, μ(Rt), is positive at the origin (see Proof to
Prop. 10.1) but generally ambiguous over the whole range of Rt (Θ is certainly pos-
itive but Ω involves both positive and negative terms). Figures 10.1– 10.3, known as
phase diagrams, illustrate the three possible cases of slopes of the loci at the steady
state solution: either both loci are positively sloped at the steady state (Fig. 10.1), or
the RR-locus is negatively sloped and the XX-locus is positively sloped (Fig. 10.2),
or both loci are negatively sloped (Fig. 10.3).6

5 Clearly, Ω in this chapter has a different interpretation than in the previous chapters.
6 The graphical illustrations require a numerical specification of the model. The parameters are
chosen, in accordance with Props. 10.1– 10.5 as β = 0.9,λ = 30,ρ = 1,Rmax = 500, and for
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RMSY

XMSY

RR

XX

Rt

Xt

RmaxR

X

S

S

Fig. 10.1 Positively sloped RR and XX loci (ϕ ′(R) > 0, μ ′(R) > 0) at an intergenerationally
efficient steady state (R < RMSY )

RMSY

XMSY

S

S

RR

XX

Rt

Xt

R Rmax

X

Fig. 10.2 Negatively sloped RR-locus (ϕ ′(R) < 0) and positively sloped XX-locus (μ ′(R)> 0) at
an intergenerationally inefficient steady state (R > RMSY )

Fig. 10.1 α1 = 0.05,α2 = 0.65,α3 = 0.3,π = 0.86, for Fig. 10.2 α1 = 0.1,α2 = 0.8,α3 = 0.1,π =
1.2, and for Fig. 10.3 α1 = 0.195,α2 = 0.8,α3 = 0.005,π = 1.25.
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RMSY

XMSY

S

S

RR

XX

Rt

Xt

Rmax

X

R

Fig. 10.3 Negatively sloped RR and XX (ϕ ′(R) < 0, μ ′(R) > 0) loci at a intergenerationally inef-
ficient steady state (R > RMSY )

The next step comprises deriving the elements of the Jacobian, which follow
from partially differentiating the system of equations (10.14) and (10.15) and ac-
knowledging that A = α3hX/(1+g′ −h′X) according to (10.19):

J11 =
∂Xt+1

∂Xt
=

(1+g′ −h′X){α3h′Xh−hA [g′′ −h′′X ]+ (1+g′ −h′X)∂A/∂X}
α3 (1+g′)h

,

(10.27a)

J12 =
∂Xt+1

∂Rt
=

(1+g′ −h′X)2 {∂A/∂R+A [g′′ −h′′X ]−α3h′X}
α3 (1+g′)h

, (10.27b)

J21 =
∂Rt+1

∂Xt
=−h < 0, (10.27c)

J22 =
∂Rt+1

∂Rt
= 1+g′ − h′X > 0. (10.27d)

With this information at hand, Prop. 10.5 states that the steady state is a saddle re-
gardless whether the steady state is intergenerationally efficient or not and regardless
whether the loci are positively or negatively sloped at the steady state.
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Proposition 10.5 (Stability of the non-trivial stationary state). Let the regener-
ation and harvest cost function by specified by (10.1) and (10.2) and let the slope
conditions in Prop. 10.1 hold. Then, the non-trivial stationary state represents a
non–oscillating stable saddle point.

Proof. We start by signing the elements of the Jacobian. It is straightforward to
verify that the denominator of J11 and J12 is positive due to (10.19). According to
the proof of Prop. 10.4, for the specified regeneration and harvest cost functions the
denominator of (10.21) is negative: ∂LHS/∂X − ∂RHS/∂X < 0. Acknowledging
that, according to (10.19), α3h+Ah′ = (1+g′)A/X > 0 holds at the steady state, it
follows that the numerator of J11 is certainly positive and hence J11 > 0. Regarding
the sign of the numerator of J12, either ∂RHS/∂R−∂LHS/∂R ≤ 0 and hence J12 ≤
0 (case 1) or the opposite holds: ∂RHS/∂R− ∂LHS/∂R > 0 and hence J12 > 0
(case 2).

Then, the eigenvalues of the Jacobian at the non-trivial stationary state are real
and distinct if the discriminant of the Jacobian, �J is positive which is certainly
true in case 1 since

�J =
[
J11 −

(
1+g′ −h′X

)]2 −4hJ12 > 0.

In case 2, the sign of �J seems to be ambiguous. However, for all admissible param-
eter combinations which imply J12 > 0 it can be verified numerically that �J > 0,
too. Thus, �J > 0 regardless whether J12 ≷ 0.

For the eigenvalues to be strictly positive, the trace has to be larger than one and
the determinant at (R,X) has to be positive:

trJ = J11 + J22 > 1,

detJ =

{(
1+ g′ −h′X

) ∂A
∂X

+h
∂A
∂R

}
(1+g′ −h′X)2

α3 (1+g′)h
.

If (1+ g′ − h′X)∂A/∂X + h∂A/∂R > 0, the determinant is positive. But this re-
quirement is fulfilled, due to functional specification for the harvest and regenera-
tion functions; in that case, this expression reduces to

− λ g
(
R2 −ρ(ρ +λ )

)

(ρ +R+λ )2 (ρ +R)2 +
λ R(1+g′)

(ρ +R+λ )(ρ +R)
<
(
1+g′

) α2

α1
−g′′R,

where on the left hand side the first term is certainly negative, and the second
term is considerably smaller than the first term on the right hand side (since
λ R [(ρ +R+λ )(ρ +R)]−1 < 1 and α2 > α1), and thus detJ > 0.
Finally, to guarantee that the first of the eigenvalues, ψ1, is larger than one, and the
second, ψ2, is between zero and one, it is required that 1− trJ+detJ < 0:

1− trJ+ detJ =
(g′ −h′X)Θ −hΩ

α3h+h′A
=

1
hΘ

ϕ ′(R)− μ ′(R)
α3h+h′A

.
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To sign 1− trJ + detJ, consider first that the stationary state is intergenerationally
efficient, R ≤ RMSY . Because of Prop. 10.1, μ ′(R) > ϕ ′(R) ≥ 0 for R ∈ (0,RMSY ]
and hence 1 − trJ + detJ < 0. For a dynamically inefficient steady state, R ∈
(RMSY ,Rmax], ϕ ′(R) < 0 and μ ′(R)≷ 0, depending on the sign of Ω . But the slope
condition in Prop. 10.1 still requires that μ ′(R)> ϕ ′(R), and hence 1− trJ+detJ <
0, too. Thus, the non-trivial stationary state is a non–oscillating saddle. �
The gist of Prop. 10.5 is that the existence condition ensures saddle–point stabil-
ity of the non-trivial steady state. This confirms that in OLG models with log–
linear preferences and Cobb–Douglas technology existence, uniqueness and stabil-
ity of steady states are closely connected (see in another model context Ono, 2002;
Farmer, 2006). As shown in the proof, saddle point stability is equivalent to the fact
that the XX-locus cuts the RR-locus from below at the steady state. And this is the
case since near the origin the XX-locus is below the RR-locus while at high resource
stock levels (near the carrying capacity) the XX-locus lies above the RR-locus.

However, while the existence condition is also pivotal for dynamic stability in
the no–harvest cost case, as shown in Prop. 9.3, or in the log–linear utility case but
without man-made capital (Koskela et al, 2002, Prop. 3), for the present model with
man-made capital and harvest costs this property is much harder to demonstrate:
since positive and negative terms prevail in the numerator of J12 sign ambiguities
results for the slope of the XX-locus as well as for the determinant of the Jacobian,
which vanish when setting harvest cost to zero (and hence h(R) = 1 and h′(R) = 0).

10.7 Uniqueness of Non-Trivial Steady State

Since Krutilla and Reuveny (2004) conclude that harvest costs can lead to multi-
ple solutions in the ILA context, it remains to be investigated whether harvest costs
can lead to multiple solutions in an OLG framework, too. In principle the XX-locus
could coincide with the RR-locus more than once particularly for small values of R
where the impact of harvest costs on resource dynamics is most severe (see the ini-
tially slightly convex shape of the RR-locus). However, it follows from Props. 10.1
and 10.4 that the non-trivial steady state is unique also in our model with physical
harvest cost:

Corollary 10.1 (Uniqueness of non-trivial stationary state). Let the regeneration
and harvest cost function be specified by (10.1) and (10.2). Then, it follows from
Props. 10.1 and 10.4 that the non-trivial steady state solution (R,X) is unique.

Proof. For the (local) uniqueness of the non-trivial steady state solution, the mono-
tonicity of both the XX and the RR loci in the neighborhood of the steady state
is needed. We distinguish intergenerationally efficient (including the Golden Rule)
from intergenerationally inefficient steady state solutions. For intergenerationally
efficient steady state solutions (i.e., R < RMSY ), the stability condition 1 − trJ +
detJ < 0 implies that Ω > 0 and hence both the RR and XX-locus are monotonically
increasing in the neighborhood of (R,X). For dynamic inefficiency (i.e., R > RMSY ),
two cases are to be distinguished: either Ω ≥ 0 or Ω < 0. If Ω ≥ 0, the RR-locus
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is monotonically decreasing while the XX-locus is monotonically increasing in the
neighborhood of (R,X). If Ω < 0, both the RR-locus and the the XX-locus are mono-
tonically decreasing in the neighborhood of (R,X) but the former decreases more
than the latter. Thus, the steady state is locally unique, regardless whether it is inter-
generationally efficient or not. �
Geometrically considered, Corollary 10.1 requires that both the RR and the XX-
locus in the neighborhood of the steady state are monotonic and that hence the
RR and XX-locus intersect locally once only. But this is ensured by the existence
condition in Prop. 10.1 which requires that the slope of the RR-locus near the origin
is larger than that of the XX-locus.

Knowing that the steady state solution is a unique saddle point, we approximate
linearly the equilibrium dynamics at the non-trivial steady state, i.e. the saddle path
or stable arm, by using the elements and the second eigenvalue of the Jacobian.

Corollary 10.2 (Linearized dynamics around steady state). Let the second eigen-
value 0 < ψ2 < 1 be given from the proof to Prop. 10.5. A linear approximation of
the equilibrium dynamics of Rt , Xt , and Kt evaluated at the saddle point (R,X) takes
the following form:

Xt = X +
(1+ g′ −h′X)−ψ2

h
(Rt −R) , (10.28a)

Rt+1 = R(1−ψ2)+ψ2Rt , given R0 > 0, (10.28b)

Kt+1 = α3
Xt+1

1+ g′(Rt+1)− h′(Rt+1)Xt+1

h(Rt+1)

h(Rt)
(Xt)

α1−1 (Kt)
α3 , given K0 > 0.

(10.28c)

As a consequence of Prop. 10.5, for Ω ≥ 0 and R∈ (0,Rmax], (1+g′−h′X)−ψ2 > 0
and hence the saddle path (labeled by S) at (R,X) is positively sloped. For Ω < 0
and consequently R > RMSY , (1+g′ −h′X)−ψ2 < 0 and hence the saddle path at
(R,X) is negatively sloped.

Proof. The equilibrium dynamics at the non-trivial steady state are approximated
linearly by: (

Xt+1

Rt+1

)
= J (X ,R)

(
Xt

Rt

)
+(I− J (X ,R))

(
X
R

)
, (10.29)

where (X ,R) denote the steady state values, J (X ,R) is the Jacobian evaluated at the
stationary state and I denotes the unitary matrix. After deriving the general solution
to the system of difference equations and normalizing the eigenvector, we gain the
linearized dynamics of the resource stock and resource harvest, and the dynamics of
man-made capital follow from (10.16). �
The two cases of Prop. 10.2 are illustrated by Figs. 10.1– 10.3, either the saddle path
S in the neighborhood of the steady state is positively sloped (Fig. 10.1 and 10.2) or
negatively sloped (Fig. 10.3).
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10.8 Conclusions

In this chapter a physical harvest cost function was introduced in an OLG model
with a renewable natural resource and with man-made capital. We proved the ex-
istence, uniqueness, and stability of a strictly positive (non-trivial) steady state so-
lution. It turns out that while the notion of physical harvest costs complicates the
analysis considerably compared to the no–harvest cost case (in particular in regard
to the existence and uniqueness of the XX-locus), the general properties that unique-
ness and stability are a consequence from the existence condition carry over from
a comparable model without harvest cost.7 If, moreover, the steady-state resource
stock is smaller than the maximum sustainable yield level, the solution is dynami-
cally (intergenerationally) efficient.

In this chapter we neglected shocks to the parameters of the harvest cost function
and the regeneration function. The impacts of these shocks on the intertemporal
market equilibrium solution will be considered in the following chapter.

Appendix A: Individual Optimization and Market Clearing
Conditions with Endogenous Labor Supply

In this section we briefly outline the changes when, instead of physical harvest costs
entering the dynamics of the resource stock, resource harvest has to compete with
commodity production for labor. As in partial equilibrium resource harvest models,
we assume now that harvest requires effort (labor). Thus, the young household splits
total labor supply (which will again, without loss of generality, be normalized to 1)
between resource harvest (Et for effort) and labor in the production of the commod-
ity (Ly

t = 1−Et ). This effort is the product of harvest costs h and units harvested
X .

To account for such a division of labor between the two alternative purposes, the
first period budget constraint and the accumulation equation of the natural resource
stock take the following form instead of (10.5) and (10.3) above:

pt Rt + c1
t +Kt+1 = wt [1−h(Rt)Xt ]+ qtXt , (10.30)

Rt+1 = Rt +g(Rt)−Xt , (10.31)

where h(Rt) denotes now the stock-dependent harvest costs which can be specified
as:

h(Rt) =
λ

ρ +Rt
, (10.32)

7 One obvious objection against this point is that this result depends on the functional specification
of the harvest and resource growth function by (10.1) and (10.2). While this is true, the functional
forms are quite popular in resource models, as argued in Sect. 10.2.
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with the harvest cost parameters λ > 0 and ρ small (but positive). Accordingly, the
scarcer the resource the more costly it is to harvest and λ reflects the effort or diffi-
culty necessary to harvest one unit. For a fishery, the value of λ can be understood
as the time units necessary to catch one fish while for a forest it represents the time
units needed to harvest one tree.

The household’s FOCs under endogenous labor supply read as follows:

c2
t+1

β c1
t
= rt+1, (10.33)

qt =
pt+1

rt+1
+wth(Rt), (10.34)

pt =
pt+1

rt+1

[
1+g′(Rt)

]−wt
h′(Rt)

h(Rt)
Xt . (10.35)

Finally, labor market clearing requires now Ny
t = 1− h(Rt)Xt and commodity

market clearings changes to:

(Xt)
α1 (1− h(Rt)Xt)

α2 (Kt)
α3 = c1

t + c2
t +Kt+1. (10.36)

Appendix B: Proof to Lemma 10.1

Restating (10.14) at the XX-locus, i.e. evaluated for Xt+1 = Xt ,∀t, yields

α3h(Rt+1)Xt︸ ︷︷ ︸
LHS(Rt ,Xt )

=
(
1+ g′(Rt+1)−h′(Rt+1)Xt

)
A(Rt ,Xt)

︸ ︷︷ ︸
RHS(Rt ,Xt )

. (10.14’)

LHS(R̄t ,Xt), RHS(R̄t ,Xt)

Xmin XmaxX̃t
Xt

Fig. 10.4 Condition for the XX-locus to exist for given Rt
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To show that (10.14’) has at least one solution (Rt ,Xt) ∈ [0,Rmax]×
(Xmin(Rt),Xmax(Rt)), and that therefore the XX-locus exists, we first show that
LHS(Rt ,Xt)−RHS(Rt ,Xt) contains an arbitrary R̄t ∈ (0,Rmax] for which LHS(R̄t ,Xt)
−RHS(R̄t ,Xt) = 0 (see also Fig. 10.4 where functions LHS(Rt ,Xt) (gray graph) and
RHS(Rt ,Xt) (black graph) are depicted for a particular value of R̄t = Rt ∈ (0,Rmax]).
For that purpose, we evaluate LHS(Rt ,Xt)−RHS(Rt ,Xt) at Xt = Xmin(Rt) and Xt =
Xmax(Rt). At Xmin, LHS(Xmin(Rt)) = α3h(Rt+1)Xmin(Rt) > 0 and, since the defini-
tion of Xmin implies that A(Rt ,Xmin(Rt)) = 0, it follows that RHS (Xmin(Rt)) = 0 and
LHS(Xmin(Rt))> RHS (Xmin(Rt)).

For Xmax(Rt)⇐⇒ Rt+1 = 0, we have LHS(Rt ,Xmax(Rt)) < RHS (Rt ,Xmax(Rt))
for all Rt ∈ (0,Rmax] if the following condition holds:

α3h(0)<
(
1+g′(0)− h′(0)Xmax(Rt)

)
[(α1 +α2σ)h(Rt)−α1ξ (Rt)] , (10.37)

where ξ (Rt)≡ γφ(Rt )+ 1+ g′(Rt)−σh′(Rt)(Rt +g(Rt))

1+g′(Rt)/Rt
. Acknowledging that

g(Rt) ≡ r
(
Rt −Rt

2/Rmax
)

and h(Rt) ≡ 1+λ/(ρ +Rt), we have ξ (Rt) = ξ0(Rt)+

ξ1(Rt) with ξ0(Rt) ≡ (1+r)Rmax−(2−γ)rRt
(1+r)Rmax−rRt

and ξ1(Rt) ≡ σλ Rt
(ρ+Rt)2 . Since ξ0(Rt) is a

nearly constant, slightly positively sloped function and ξ1(Rt) is strictly concave,
there is a unique maximum of ξ ′(Rt) at ξ ′(Rt) = 0. It is not difficult to see that
ξ ′(Rt) = 0 at Rt ≈ ρ . Hence, for ρ near zero, ξ (0) = 1 maximizes ξ (Rt) and there-
fore for small ρ , condition (10.37) can be restated as:

α3h(0)< (1+g(0))((α1 +α2σ)h(0)−α1) . (10.17)

Since, moreover, LHS(Rt ,Xt) and RHS(Rt ,Xt) are continuous on (Xmin(Rt),Xmax(Rt))
and positively sloped functions according to

∂LHS(Rt ,Xt)

∂Xt
= −α3h′(Rt+1)h(Rt)Xt +α3h(Rt+1)> 0, (10.38)

∂RHS(Rt ,Xt)

∂Xt
=
(
1+g′(Rt+1)−h′(Rt+1)Xt

) ∂A(Rt ,Xt)

∂Xt
−A(Rt ,Xt)×

× [
g′′(Rt+1)h(Rt)+ h′(Rt+1)−h′′(Rt+1)h(Rt)Xt

]
> 0, (10.39)

with ∂A(Rt ,Xt)/∂Xt = (α1 +α2σ)h(Rt) + α1σh′(Rt)Rt , the Intermediate Value
Theorem ensures that there exists at least one Xt such that LHS(Rt ,Xt)−RHS(Rt ,Xt)
= 0, for all Rt ∈ (0,Rmax]. For Rt = 0, we have A(Rt ,Xt) = 0 and Xt = 0 and
therefore there exists at least one Xt for all Rt ∈ [0,Rmax] for which LHS(Rt ,Xt)−
RHS (Rt ,Xt) = 0 holds.

Knowing that for a given Rt ∈ [0,Rmax] a solution to LHS(Rt ,Xt)−RHS (Rt ,Xt)=
0 exists and ∂LHS/∂Xt −∂RHS/∂Xt �= 0, the Implicit Function Theorem assures
that there exists a single valued, continuously differentiable function Xt = μ(Rt). �
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Chapter 11
Effects of Harvest Cost and Biological Shocks

11.1 Introduction

Until now we did not consider changes in the basic parameters of our log-linear
CD OLG model with a renewable natural resource. Parameter shocks both to the
economic system and shifts in the natural resource influence the dynamics of the
market system. In this chapter, we investigate two forms of such shocks: shocks to
the regeneration ability of natural resources and a push in harvest costs. Potential
sources of the former shocks are flooding, landslide or windthrow, infectious dis-
eases or invasive species that displace native ones. Both economic factors (techno-
logical change, opportunity costs of harvesting etc.) and natural ones (remoteness,
weather and climatic conditions etc.) can cause a push in harvest costs. We want to
investigate the economic impacts of these two different types of resource shocks in
the steady state and during the transition phase.

Contrary to first thoughts, that the nature of the resource technology shock is
irrelevant for the characteristics of the harvest dynamics, the analysis of the tran-
sitional dynamics indicates that the harvest cost shock generates harvest transition
dynamics arising qualitatively different from the dynamics in response to shocks to
the parameters in the natural growth function. Moreover, a shock in resource tech-
nologies causes a revaluation of the resource stock and of the capital stock over time
and thereby effects the different generations in different ways.

We start by an analysis of the steady-state effects of a harvest cost and of a biolog-
ical shock. Building on the steady-state results, the transitional dynamics along the
saddle path following the shocks are analyzed and compared across types of shocks.
The final section discusses the results and provides suggestions for extensions of the
analysis.
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11.2 Steady-State Effects of Cost and Biological Shocks

This section is devoted to the analysis of the effects of two forms of shocks to
the natural resource technology on the stationary–state values of R and X (steady-
state analysis of resource technology shocks). This analysis requires a functional
specification of the natural resource growth and the harvest cost function. For the
regeneration function, we use as before the logistic function,

g(Rt)≡ π
(

Rt − Rt
2

Rmax

)
, (11.1)

where π denotes the natural growth rate, or increase in units of biomass, and Rmax

the carrying capacity. The harvest cost function is specified by

h(Rt) = 1+
λ

ρ +Rt
, (11.2)

with the harvest cost parameters λ > 0 and ρ small (but positive). For simplicity,
we set ρ = 1.

A harvest cost shock is then specified as an exogenous change in the harvest cost
parameter λ , while a biological shock will be specified as an exogenous change
in the natural growth rate π . To facilitate intuition for these shocks, an increase in
harvest cost can be thought of as increasing the effort necessary to harvest one unit of
the resource, caused e.g. by the occurrence of flooding, windthrow or landslide. On
the other hand, a diminished natural growth rate (i.e., smaller fish, less log biomass)
could be the result of changed climatic conditions or an alteration of the habitat or
ecosystem where the resource stock is based.

In the following, we first derive the steady-state (long-run) effects of these shocks
as a prerequisite for understanding the transition from the pre-shock to the post-
shock steady state triggered by these two forms of shocks. Furthermore, we restrict
our analysis to the case that the steady state is to the left of the maximum sustainable
yield level, i.e. the slope of the RR-locus is positive: g′ −h′X > 0.1

11.2.1 A Shock in Harvest Technologies: The Harvest Cost
Parameter λ Rises

Let us first investigate the steady-state impacts of a cost push in the harvest cost
parameter, which could emerge due to an increase in the costs associated with
the effort necessary to harvest one unit of the resource stock. For that purpose,
we acknowledge that the harvest cost function depends on the harvest cost pa-
rameter, too: h(R,λ ). Thus, from now on its partial derivatives will be denoted as
∂h(R,λ )/∂R ≡ hR (instead of h′) and ∂h(R,λ )/∂λ ≡ hλ etc.

1 For clarity of exposition, from now on we drop the cumbersome notation of functions g, h and A.
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Recall the intertemporal equilibrium dynamics (10.14) and (10.15) and investigate
them at the steady state, i.e. X =ΦX (R,X) and R=ΦR(R,X). Totally differentiating
X = ΦX (R,X) and R = ΦR(R,X) with respect to X , R and λ yields:

(
h −ϒ

−Θ Ω

)(
dX
dR

)
=

(−hλ X
Λ

)
dλ , (11.3)

where

ϒ ≡gR − hRX ,

Ω ≡− [1+ gR− hRX ]
∂A
∂R

− [gRR −hRRX ]A+α3hRX > 0,

Θ ≡ [1+ gR−hRX ]
∂A
∂X

−hRA−α3h > 0,

Λ ≡(1+ gR− hRX)
∂A
∂λ

−hRλ XA−α3hλ X ,

and ∂A/∂λ = (α1 +α2σ)hλ X +α1σhRλ XR> 0. Then, the steady-state derivatives
in (11.3) are given by

dR
dλ

=
[hΛ −hλ XΘ ]

Δ
, (11.4)

dX
dλ

=
[−hλ XΩ +(gR −hRX)Λ ]

Δ
, (11.5)

where Δ denotes the determinant of the Jacobian J in (11.3), Δ = hΩ−(gR −hRX)Θ .
Prop. 11.1 signs the steady-state effects of a harvest cost push:

Proposition 11.1 (Steady state effects of a harvest cost push). The steady-state
effects of a harvest cost push on the resource stock and on the resource harvest,
respectively, are given in general as follows:

dR
dλ

≷ 0 ⇐⇒ hΛ ≷ hλ XΘ ∧ dX
dλ

≶ 0 ⇐⇒ dX
R.

∣∣
∣
∣
XX

∂R
∂λ

∣∣
∣
∣
RR

+
∂X
∂λ

∣∣
∣
∣
XX

≶ 0,

where ∂X/∂λ|XX
≡−Λ/Θ and ∂R/∂λ|RR

≡ hλ X/(gR −hRX)).

Proof. Due to the correspondence principle according to Samuelson (1947) (see,
e.g. Gandolfo, 1997, 314), determinant Δ is positive since the stability condition
holds, i.e. 1− tr(J)+det(J)< 0, see the proof to Prop. 10.5. Hence, dR/dλ ≷ 0, if
and only if [hΛ − hλ XΘ ]≷ 0.
After substituting for the slopes of the isoclines (dX/dR|RR, dX/dR|XX ) and for the
partial derivatives (∂X/∂λ|XX and ∂R/∂λ|RR), the sign of dX/dλ can be inferred
more easily:

dX
dλ

=−h
Θ
Δ

dX
dR

∣
∣∣
∣
RR

[
dX
dR

∣
∣∣
∣
XX

∂R
∂λ

∣
∣∣
∣
RR

+
∂X
∂λ

∣
∣∣
∣
XX

]
.
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Since dX/dR|RR > 0, Θ > 0, Δ > 0 and h > 0, the sign of dX/dλ is negative if the
term in square brackets is positive. �
The ambiguity of the sign of the numerator of (11.4) confirms the general insight of
Gandolfo (1997, 309) that the correspondence principle helps to sign the denomina-
tor in the steady-state analysis but not the numerator.
The economic intuition for dR/dλ ≷ 0 if and only if hΛ ≷ hλ XΘ goes as follows.
Assume that hΛ > hλ XΘ which is equivalent to Λ/Θ > hλ X/h. This inequality
means that the relative increase in harvest cost is less than the negative impact of
the cost shock on the harvest volume. Consider an upward harvest cost push. The
steady-state resource stock rises, if the stock rising reduction of harvest quantity is
larger than the stock depressing rise of harvest cost. But Corollary 11.1 states that
this is just the case for our specification of harvest cost:

Corollary 11.1. For the specified harvest cost function 11.2, a harvest cost push
leads to an increase in the steady-state resource stock: dR/dλ > 0.

Proof. In order to sign dR/dλ , we substitute for the derivatives of function A, and
use Λ =−∂X/∂λ|XX ·Θ . This yields

dR
dλ

=
(hλ hR −hhRλ X) [A−α1σ (1+gR−hRX)R]

Δ
,

with [A−α1σ (1+ gR− hRX)R]/Δ > 0. For the chosen functional form for the
harvest cost function 11.2, we clearly know that (hλ hR −hhRλ X) > 0 and thus
dR/dλ > 0. �
Thus, according to Corollary 11.1 and illustrated by Fig. 11.1, a harvest cost push
increases the steady state resource stock and hence the new steady-state level R′ is
larger than the old one R.2

To provide some geometrical intuition for the sign of dX/dλ , assume that the RR-
locus would not change due to the cost shock (i.e., ∂R/∂λ|RR = 0). Then, dX/dλ is
clearly positive. On the other hand, if the XX-locus would not respond to an increase
in λ (∂X/∂λ|XX = 0), dX/dλ is negative because the stock is severely depleted if
the harvest decision does not take account of the cost push. In the intermediate
case, these two effects work in opposite directions, but for reasonable parameter
values, the latter effect will outweigh the former such that dX/dλ < 0, as depicted
in Fig. 11.1 where for the new steady-state harvest level X ′ < X holds.

2 The graphical illustrations require a numerical specification of the model. The parameters are
chosen, in accordance with Props. 10.1 and 10.5, as α1 = 0.05,α2 = 0.65,β = 0.9,λ = 30,ρ =
1,π = 0.86,Rmax = 500.
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Fig. 11.1 Steady state and transitional effects of an increase in physical harvest costs
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Fig. 11.2 Steady state and transitional effects of a decrease in the natural growth rate

11.2.2 Biological Shock: Lower Natural Growth Rate

Let us now turn to a biological shock, namely a shock to the resource growth rate.
For that purpose, we have to take into account that the natural growth function de-
pends on R and π and thus its partial derivatives will be denoted as: ∂g(R,π)/∂R ≡
gR (instead of g′) and ∂g(R,π)/∂π ≡ gπ etc. Prop. 11.2 gives the steady-state ef-
fects of a shock in the natural growth rate.
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Proposition 11.2 (Steady state effects of biological shock). The impact of an in-
cremental change in the natural growth rate π on the steady-state value of R is given
by:

dR
dπ

=
hΨ +gπΘ

Δ
=

Θ
Δ

[
gπ −h

∂X
∂π

∣
∣∣
∣
XX

]
, (11.6)

with ∂X/∂π|XX ≡−Ψ/Θ , and Ψ ≡
[
AgRπ +(1+gR−hRX) ∂A

∂π

]
.

The impact on equilibrium resource harvest is determined by:

dX
dπ

=
gπ Ω +(gR − hRX)Ψ

Δ
=

gπ Ω − (gR −hRX) ∂X
∂π

∣
∣
∣
XX

Θ

Δ
. (11.7)

If ∂X/∂π|XX < 0, then dR/dπ > 0 and dX/dπ > 0.

Proof. As before, Δ > 0 and Θ > 0. The signs of dR/dπ and dX/dπ can unam-
biguously be determined except with respect to Ψ . However, for a decrease in π , if
the XX-locus gets steeper (turns counterclockwise) such that ∂X/∂π|XX < 0, then
dR/dπ > 0 and dX/dπ > 0. �
The case ∂X/∂π|XX < 0 is depicted in Fig. 11.2 to illustrate the steady-state effects
of a reduction in the natural growth rate of the resource stock (π ↓). The new RR-
locus is below the previous RR-locus. The XX-locus turns counterclockwise (for
the chosen parameter values, this turn can hardly be observed, however). The cu-
mulative impact of a negative exogenous shock to the natural growth rate on the
equilibrium levels of R and X is a decrease in both steady state values.

11.3 Transitional Dynamics towards the New Steady State

To be able to study the transitional dynamics following a parameter shock in the
resource technology, the type and the timing of the shock must be specified. To
keep the analysis as simple as possible we assume that the shocks in the resource
technology parameters are permanent, unannounced and occur at the beginning of
the transition period. While we focus in this section on the algebraic analysis of the
two types of shocks, we provide in the Appendix a tool for numeric analysis. This
computable general equilibrium (CGE) version of our model, implemented in the
GAMS software package, can be utilized to perform additional parameter shocks
and discuss the consequences for the three fundamental variables (R, X , K), as well
as for all other economic quantity and price variables.
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11.3.1 The Harvest Cost Push and the Overshooting of the Initial
Harvest Quantity

To analyze the instantaneous jump of the resource harvest, we use the equilibrium
manifold of the resource harvest as given in Prop. 10.2 to investigate the nature
and the magnitude of the jump in resource harvest. In Fig. 11.1, the initial and the
new equilibrium manifolds are denoted by S and S′ respectively. Starting from the
initial steady state, the resource harvest falls sharply in the first period onto the new
equilibrium manifold S′0 and then increases monotonically towards its new, steady-
state level S′ which is lower than before the shock. Since the resource stock is fixed
in the shock period t = 0, it starts to grow in the post shock period t = 1 until it
reaches its new higher steady-state level. Prop. 11.3 states analytically this result:

Proposition 11.3. If dX/dλ < 0, then the resource harvest in the shock period t = 0
overshoots its new steady-state value: |dX0/dλ |> |dX/dλ |.
Proof. Using the equilibrium dynamics of the resource harvest (10.28a),

Xt = X +

>0
︷ ︸︸ ︷
[J22 (R,X)−ψ2]

−J21 (R,X)
︸ ︷︷ ︸

>0

(Rt −R) ,

the initial adjustment in the harvest volume is given by

dX0

dλ
=

dX
dλ

− [J22 (R,X)−ψ2]

−J21 (R,X)

dR
dλ

<
dX
dλ

.

Whether the change of X0, the harvest volume in the shock period, is larger or
smaller than the change of the harvest quantity in the new steady state (X ) depends
on the sign of the coefficient in front of (Rt −R). Since this coefficient as well as
dR/dλ are certainly positive, the resource harvest in the shock period declines more
than in the new steady state, thus |dX0/dλ |> |dX/dλ |. �
To explain the economic rationale behind the sharp initial downward jump of the
resource harvest we assume on the contrary that the resource harvest in the shock
period does not change (X0 = X̄ ) and are led to a contradiction. Furthermore, we
know that the stock variables do not change in the initial period: R0 = R̄, K0 = K̄. In
view of the production function (left hand side of 10.13), the product supply remains
unchanged. Then, the profit maximization conditions (10.12) imply that neither the
price of the resource harvest nor the wage rate nor the real interest rate of the shock
period change.

From the no–arbitrage conditions (10.8) and (10.9) it is easy to deduce that the
price of the resource stock in the shock period (p0) depends on the price of the
resource harvest, on the own rate of return to the resource stock, and inversely on
marginal harvest costs (h(R̄)):

p0 =
q̄(1+g′(R̄)−h′(R̄)X̄)

h(R̄)
.
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Calculation of dpt/dλ shows that the increase in the marginal harvest costs is larger
than the rise of the own rate of return, causing a fall in the initial stock price of the
resource. Hence, the revenues of the old household from selling the natural resource
stock decrease while the revenues from the ownership of real capital do not change.
As a consequence, the consumption of the old household decreases in the shock
period and with slight changes, the same applies to the consumption of the young
household. For the market clearing condition (10.13) to hold, the fall in consumption
of both young and old households requires that next–period capital stock increases.
But a larger capital stock induces a lower interest factor. To ensure equal rates of
return between real capital and the resource stock, the rate of return on the resource
stock has to decrease too, which implies that its price has to decrease. But a fall in
its price requires an increase in the resource stock R1 which can be achieved only by
a fall in the harvest level. Hence, the assumption of an unchanged resource harvest
in the shock period is untenable and, instead of that, X0 has to fall. Since there is a
negative relationship between the resource harvest and its price (as well as the price
of the resource stock), resource prices have to increase.

11.3.2 A Shock to the Resource Growth Rate

As for the harvest cost push, the coefficient in front of (Rt −R) in (10.28a) is pos-
itive. However, due to the fact that the stationary resource declines in response to
a negative shock in the biological parameters, the resource harvest volume of the
shock period drops less than its new stationary–state value, a result that is contrary
to the physical harvest cost shock where overshooting occurred. This is graphically
illustrated in Fig. 11.2 where X0 is smaller than its initial steady-state level X but
larger than its new level X ′ and analytically shown in Prop. 11.4:

Proposition 11.4 (Transitional dynamics of biological shocks). If dX/dπ > 0,
then the resource harvest in the shock period t = 0 does not overshoot its new steady-
state value: dX0/dπ < dX/dπ .

Proof. Utilizing again the equilibrium dynamics of the resource harvest (10.28a),
the resource harvest in the shock period 0 increases less than in the new steady
state:

dX0

dπ
=

dX
dπ

− [J22 (X ,R)−ψ2]

−J21 (X ,R)
dR
dλ

<
dX
dπ

.

�
The economic intuition of the result is as follows. After a negative shock to the re-
source growth rate, the harvest volume is reduced in the shock period while the ini-
tial resource stock and the capital stock remain unchanged. Moreover, in the shock
period the price of the harvest and of the resource stock increase, while the rate of
return on the capital stock falls slightly. As a consequence, for the young household
the income from working and resource harvest falls in the shock period, leading to a
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fall in consumption. On the other hand, for the old household income and consump-
tion increase if the rate of return from the resource stock increases by more than the
fall in the rate of return from the capital stock. In the following period, however, the
resource stock falls on account of higher harvest costs and this process continues
until the new, lower steady-state level is reached.

11.4 A Comparison of a Harvest Cost Push and a Biological
Shock

Geometrically, the differences between a harvest cost shock and a biological shock
can be explained as follows. First, a positive harvest cost shock (λ ↑) leads to an
increase in the steady-state resource stock (see the downward shifts of both loci
in Fig. 11.1). Thus, a harvest cost shock leads to a resource recovery due to the
substitution of labor and capital for harvest input. On the other hand, a negative
biological shock implies a downward shift of the RR-locus but an upward shift of
the XX-locus (see Fig. 11.2). Accordingly, the stationary–state resource stock and
the harvest volume decline. On interpreting the shift of the XX-locus, we find that
households substitute man-made capital for the resource stock since the resource
stock becomes less profitable.

Second, the transition paths, as indicated by the bold dotted lines in Figs. 11.1
and 11.2, are driven by the position of the initial and new steady states as well as
the shift of the stable arm from S0 to S′0. For the harvest cost shock, the shock leads
to a downward shift of the positively sloped stable arm. Since the new steady state
is to the right of the initial one, harvest falls to the new stable arm S′0 and moves
upward along the arm towards the new steady state. On the other hand, a biological
shock leads to a new steady state resource stock to the left of the initial stock. Thus,
harvest drops to the new stable arm and moves downward along the arm to the new
lower steady state.

The economic intuition why overshooting occurs for a harvest cost push but not
for a shock in the natural growth rate is as follows. For the case of the cost shock,
there is a direct impact of the cost push on the harvest level, leading to a sharp
initial drop in the harvest volume and a corresponding rise in the harvest price.
As a result, the price of the resource stock rises in the shock period, too. In the
long run, however, the resource stock recovers to a new higher steady-state level
and the new steady-state harvest volume is moderately lower than in the pre–shock
equilibrium. Thus, the harvest volume initially overshoots its new steady-state level
and so does its price. Moreover, in the new steady state man-made capital, total
output and consumption of both young and old households are lower than in the
pre–shock equilibrium.

On the other hand, a negative shock in the resource growth rate has a direct im-
pact on the resource stock and only an indirect one on the harvest volume. Thus, in
the post–shock period the harvest volume is only moderately reduced, its price in-
creases moderately and the price of the resource stock increases moderately, too. As
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for the harvest cost push, consumption of the young household declines while con-
sumption of the old household increases in the shock period. Thereafter, however,
both the resource stock and the harvest volume degrade gradually towards their new
lower steady state levels. As before, in the new steady state man-made capital, total
output and consumption levels of young and old households are lower than in the
initial steady state.

11.5 Conclusions

In this chapter we investigated the potentially different impacts of a harvest cost
and of a biological shock, both in the long run as well as along the transition path
towards the new stationary state. As regards the steady-state effects of a harvest cost
push we found a positive impact on the resource stock whereas the resource harvest
usually decreases. That the steady-state resource harvest declines while the resource
stock increases is also the main reason why the resource harvest of the shock period
overshoots its new stationary state value. As a consequence, the price of the resource
harvest and the price of the resource stock overshoot, too.
A negative shock to the natural growth rate has a negative impact on the main dy-
namic variables in the new steady state. In view of the equilibrium manifold (the
stable arm) the resource harvest does not overshoot its new, lower steady-state value.
This result can be seen as a rationale for modest short run economic responses, ob-
served in real world circumstances, to shocks in nature’s technology in spite of their
much larger long-run impacts.
Three directions for future research are easily identified. First, other functional
forms for the resource harvest could be used, e.g. relaxing the assumption of harvest
costs linear in the harvest volume. Another option were to replace the inverse im-
pact of the resource stock such that harvest costs increase with the resource stock, a
specification suitable e.g. for species–rich ecosystems like tropical forests. Second,
the notion of physical harvest cost could be replaced by harvest costs in terms of la-
bor (see Appendix A to Chap. 10 in the log-linear CD OLG model), and the impacts
of shocks to the resource technology analyzed. Third, rather than focusing on log–
linear intertemporal utility functions a more general function (like CES) should be
considered. The equilibrium dynamics would then depend on the man-made capital
in a non-trivial way, and a richer and hence empirically more interesting dynamical
system is to be expected.
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Appendix: GAMS Code to Analyze the Model

The GAMS code starts with a declaration of variables and parameters:

$TITLE reduced form OLG-CGE model with resources.

SETS
t time periods /1*100/;

SET TFIRST(t), TLAST(t);

TFIRST(t) = YES$(ORD(t) EQ 1);
TLAST(t) = YES$(ORD(t) EQ CARD(t));

ALIAS (t,TT) ;

SCALARS

ss savings rate
bb time discount factor /0.9/
a1 prod. elasticity of resource harvest /0.05/
a2 prod. elasticity of labor /0.65/
a3 prod. elasticity of capital /0.3/
rr growth factor of the resource /0.72/
RM growth retarding factor /500/
L scaling factor in harvest cost /30/
gg marginal propensity to consume
u level parameter in production /100/;

PARAMETERS

XZ Resource harvest (initial value)
RZ Resource stock (initial value)
KZ Capital stock (initial value);

ss=bb/(1+bb);
gg=1-ss;

XZ = 84.82952741;
RZ = 1.794297E+2;
KZ = 1.189157E+2;

VARIABLES
X(t) Resource harvest in period t
R(t) Resource stock in period t
K(t) Capital stock in period t
G(t) Regeneration function in t
GR(t) Regeneration function R derivative in t
H(t) Harvest cost function in t
HX(t) Harvest cost function X derivative in t
HR(t) Harvest cost function R derivative in t
NH(t) Net harvest function derivative in t
A(t) A function
F(t) F function
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Y(t) Aggregate Output
q(t) Harvest price
w(t) Wage rate
r(t) Capital service price
p(t) resource stock price
C1(t) Young consumption
C2(t) Old consumption
YS(t) Product excess supply
TRICK Objective variable;

POSITIVE VARIABLES X,R,K;

The next step is to define the model equations:

EQUATIONS

EQX(t) harvest dynamics
EQR(t) resource dynamics
EQK(t) capital dynamics
EQG(t) regeneration function
EQGR(t) regeneration function derivative
EQH(t) harvest cost function
EQHX(t) harvest cost function X derivative
EQHR(t) harvest cost function R derivative
EQNH(t) net harvest cost function derivative
EQA(t) A function
EQF(t) F Function
EQY(t) aggregate production function
EQq(t) harvest price equation
EQw(t) wage rate equation
EQr(t) capital service price equation
EQp(t) resource stock price equation
EQC1(t) young consumption equation
EQC2(t) old consumption equation
EQMC(t) product excess supply equation
EQXL(t) terminal condition X
EQRL(t) terminal condition R
EQKL(t) terminal condition K
EQMCL(t) terminal condition MC
EQOBJ Objective function (TRICK variable);

The three dynamic equations read as follows:

*First dynamic equation

EQR(t+1).. R(t+1)=E=R(t)+ G(t)-H(t);

EQRL(TLAST).. R(TLAST)=E=R(TLAST)+ G(TLAST)-H(TLAST);

*Second dynamic equation

EQX(t+1).. X(t+1)=E=A(t)*(1+rr-2*(rr/RM)*(R(t)+G(t)-
H(t)))/(a3*(1+L/(1+R(t)+G(t)-H(t)))-A(t)*
L/(1+R(t)+G(t)-H(t))**2);
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EQXL(TLAST).. X(TLAST)*(a3*(1+L/(1+R(TLAST)+G(TLAST)-
H(TLAST)))-A(TLAST)*L/(1+R(TLAST)+
G(TLAST)-H(TLAST))**2)=E=A(TLAST)*
(1+rr-2*(rr/RM)*(R(TLAST)+G(TLAST)-
H(TLAST)));

*Third dynamic equation

EQK(t+1).. K(t+1)*(1+GR(t+1)-HR(t+1))*HX(t)=E=
u*a3*X(t+1)*HX(t+1)*X(t)**(a1-1)*K(t)**a3;

EQKL(TLAST).. K(TLAST)*(1+GR(TLAST)-HR(TLAST))*HX(TLAST)
=E=u*a3*HX(TLAST)*X(TLAST)**a1*K(TLAST)**a3;

The remaining equations are auxiliary equations to determine harvest costs, prices,
consumption quantities etc.:

*2. Other model variables:

EQG(t).. G(t) =E= rr*R(t)-(rr/RM)*R(t)**2;

EQGR(t).. GR(t) =E= rr-2*(rr/RM)*R(t);

EQH(t).. H(t) =E= X(t)+(L*X(t)/(1+R(t)));

EQHX(t).. HX(t) =E= 1+(L/(1+R(t)));

EQHR(t).. HR(t) =E= -L*X(t)/(1+R(t))**2;

EQNH(t).. NH(t) =E= (1+GR(t)-HR(t))*R(t);

EQF(t).. F(t) =E= G(t)/R(t)-GR(t);

EQA(t).. A(t)=E=(a1+a2*ss)*X(t)*HX(t)-a1*gg*(F(t)+
HR(t))*R(t)-a1*(1+GR(t)-HR(t))*R(t);

EQY(t).. Y(t)=E=u*X(t)**a1*K(t)**a3;

EQq(t).. q(t)=E=u*a1*X(t)**(a1-1)*K(t)**a3;

EQw(t).. w(t)=E=a2*Y(t);

EQr(t).. r(t)=E=u*a3*X(t)**a1*K(t)**(a3-1);

Eqp(t).. p(t)*HX(t)=E=q(t)*(1+GR(t)-HR(t));

EQC1(t).. C1(t)=E=gg*(w(t)+(q(t)*(1+R(t))/
(1+R(t)+L))*(G(t)-GR(t)*R(t)+HR(t)*R(t)));

EQC2(t).. C2(t)=E=r(t)*K(t)+(q(t)*(1+R(t))/
(1+R(t)+L))*(1+GR(t)-HR(t))*R(t);

EQMC(t+1).. YS(t)=E=Y(t)-C1(t)-C2(t)-K(t+1);
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EQMCL(TLAST).. YS(TLAST)=E=Y(TLAST)-C1(TLAST)-C2(TLAST)-
K(TLAST);

The optimization for a discrete dynamic model is invoked by:

* Objective

EQOBJ.. TRICK =E= 1;

MODEL OLGCGE2 /ALL/;

To ensure that the numerical routine succeeds in finding a solution, initial and
boundary conditions are defined:

* Initial values and boundaries

X.L(t) = XZ; R.L(t) = RZ; K.L(t) = KZ;

X.LO(t) =.000000001;
R.LO(t) =.000000001;
K.LO(t) =.0000000001;

* Initial stocks

R.FX(TFIRST) = RZ; K.FX(TFIRST) = KZ;

OPTION decimals=8;

The model solver is initiated by the following statement:

SOLVE OLGCGE2 MAXIMIZING TRICK USING NLP;

To read the solution for the three dynamic variables as well as for factor prices,
consumption and output levels, as well as harvest cost, the following command is
used:

DISPLAY
X.L,R.L,K.L,Y.L,q.L,p.L,w.L,z.L,C1.L,C2.L,YS.L,HX.L,
HR.L,NH.L;
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